

数据科学与工程算法基础

Algorithm Foundations of Data Science and Engineering

第十二章 子模函数及其应用

$$(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots$$

1 算法引入

2 子模函数

3 集合覆盖

4 爬山算法

课程提 纲

1 算法引入

2 子模函数

3 集合覆盖

4 爬山算法

WiFi 布置

- 函数 f(A) 度量所有布置的WiFi 覆盖空间的大小
- 例如
 - 当 $A = \{X_1, X_2, X_3\}$ 时,覆盖范围 广,因此 f(A) 值大
 - 当 $B = \{X_1, X_4, X_5\}$ 时,覆盖范围小,因此 f(B) 值小
- 类似的问题还有很多
 - 线下门店选址
 - 仓库选址
 - 分支机构设置
- 都是集合函数的实例

集合函数

- 给定有限集 $V = \{1,2,...,n\}$,集合函数定义为 $f: 2^V \to \mathbb{R}$ 或 $f: \{0,1\}^n \to \mathbb{R}$,其中 2^V 为 V 的幂集。即对 $\forall A \subseteq V, f(A) \in \mathbb{R}$ 。
- 集合函数的重要性质
 - 单调性: $\forall A \subseteq B \subseteq V, f(A) \leq f(B)$
 - 非负性: $\forall A \subseteq V, f(A) \ge 0$
 - 规范性: $f(\emptyset) = 0$
- 例如,WiFi 信号覆盖、设施选址、文本摘要等都是集合函数

连续优化

• 如果函数 $f: \mathbb{R}^n \to \mathbb{R}$ 是 凸函数,则能最小化

• 如果函数 $f: \mathbb{R}^n \to \mathbb{R}$ 是 凹函数,则能最大化

离散优化

如果 $f(\cdot)$ 是集合函数,如何求解 $f(\cdot)$ 的最大值或者最小值?

课程提 纲

1 算法引入

2 子模函数

3 集合覆盖

4 爬山算法

从凹函数到子模

Concavity:

• 如果连续函数 $f: \mathbb{R}^n \to \mathbb{R}$ 的导数 f'(x) 是非增的,则 f(x) 是凹函数

Submodularity:

対集合函数 f: {0,1}ⁿ → ℝ,
 ∀i, ∂_if(x) = f(x + e_i) - f(x) 是非増的, 则 f(x) 是子模函数

子模函数

● 集合函数 $f: \{0,1\}^n \to \mathbb{R}$ 是子模函数当且仅当对 $\forall A, B \subseteq V$,以下不等式成立

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$

子模函数的等价定义

• 两个等价定义

• 边际效用递减: $\forall A \subset B \subseteq V$ 和 $\forall v \in V \setminus B$, 满足

$$f(A+v) - f(A) \ge f(B+v) - f(B)$$

• 集合效用递减: $\forall A \subset B \subseteq V$ 和 $\forall C \subseteq V \setminus B$, 满足

$$f(A \cup C) - f(A) \ge f(B \cup C) - f(B)$$

等价性证明

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B) \Leftrightarrow$$

- $f(A + v) f(A) \ge f(B + v) f(B)$
- 证明:(必要性)

令 $A \subset B$, 给定集合 $A \cup \{v\}$ 和 B, 若 $v \notin B$, 则

$$f(A \cup \{v\}) + f(B) \ge f((A \cup \{v\}) \cap B) + f((A \cup \{v\}) \cup B)$$

注意到 $A \cup \{v\} \cup B = B \cup \{v\}$ 和 $(A \cup \{v\}) \cap B = A$

因此, 我们得到

$$f(A \cup \{v\}) + f(B) \ge f(A) + f(B \cup \{v\})$$

即得证。

等价性证明 (续)

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B) \Leftrightarrow$$

- $f(A+v) f(A) \ge f(B+v) f(B)$
- 证明: (充分性)

对任意两个集合
$$A, B \subseteq V$$
, $B \setminus A = \{v_1, ..., v_k\}$, $B_j = \{v_1, ..., v_j\}$, $S_j = (A \cap B) \cup B_j$ 和 $T_j = A \cup B_j$, 容易知道 $\forall j = 0, 1, ..., k - 1$
$$f(S_j + v_{j+1}) - f(S_j) \ge f(T_j + v_{j+1}) - f(T_j)$$

将 k 个式子求和得到

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$

子模函数应用

• 博弈论

- 子模函数是对边际效用递减规律的数学刻画
- 在其他商品消费量保持不变的条件下,消费某商品的效用增量 (即边际效用)是递减的
- 边际效用递减的原因在于
 - 生理或心理的原因
 - 物品本身用途的多样性

• 机器学习

- 子模函数经常作为机器学习任务的目标函数
- 例如传感器布置、文本摘要、特征选取、信息传播等问题

WiFi 布置

• 信号边际增益

- $\Delta_f(s|A) = f(A+s) f(A)$
- 若 $A = \{X_1, X_2\}$,多布置一个 s
- 若 $B = \{X_1, X_2, X_3\}$,多布置一个 s
- 信号边际收益递减
 - $\Delta_f(s \mid A) \ge \Delta_f(s \mid B)$
 - $\bullet \ f(A+s) f(A) \ge f(B+s) f(B)$

颜色计数和集合覆盖

• 颜色计数

- 假设罐子中多个球构成集合 S, f(S) 衡量罐子中不同颜色球的个数
- 罐子中球越多,往其中放一个球,和已有颜色不同的概率越低
- 因此, *f*(*S*) 是一个子模函数

• 集合覆盖

- 若 $A = \{S_1, S_2\}, B = \{S_1, S_2, S_3, S_4\}$ 表示句子 集合,定义 f(A) 为句子集合 A 中词的数量
- $\Delta_f(s \mid A) \ge \Delta_f(s \mid B)$
- 因此, f(A) 为一个子模函数

社交网络影响力

- 网络拓扑结构
- "种子用户"
- 以"种子用户"为 起始点信息在网 络上传播的范围

设施选址

- •用户位置集合
- 候选设施位置集合
- 选取k个设施位置,使得用户 距离它们的位置最近

$$\bullet f(S) = \sum_{i=1}^{m} \max_{j \in S} M_{ij}$$

子模的性质

- 给定集合 *V*, *f*₁, *f*₂ 均为子模函数
 - $\forall a_1, a_2 \ge 0$, $a_1 f_1 + a_2 f_2$ 也是一个子模函数
 - 对 $S \subseteq V$,集合函数 $f'(A) = f(A \cap S)$ 是一个子模函数
 - $\bar{f}(A) = f(V \setminus A)$ 是一个子模函数
 - 其他性质见课本定理 12.2
- 更有用的性质
 - $f_{\theta}(A)$ 是一个子模函数,则期望 $\sum_{\theta} f_{\theta}(A)p(\theta)$ 是一个子模函数
 - f_i 为子模函数且 $\lambda_i \geq 0$,则 $\sum_i \lambda_i f_i(A)$ 是一个子模函数

组合优化

- 组合优化可以表示成 $\arg\max_{S\in\mathcal{F}}f(S)$ 或者 $\arg\min_{S\in\mathcal{F}}f(S)$
- 其中 ℱ 为离散的可行解集合
 - 很多问题可以建模成组合优化问题,例如最小切割、最大切割、顶点覆盖、集合覆盖等
 - 其中有一些目标函数是子模函数
 - WiFi 信号覆盖
 - 集合覆盖
 - 信息传播
 - 设施选址
 - •

课程提 纲

1 算法引入

2 子模函数

3 集合覆盖

4 爬山算法

集合覆盖问题

• 集合覆盖

- *S* 表示句子,为单词或者关键词构成的集合
- 定义 f(A) 为句子集合 A 中包含词的数量
- 已知 *f*(*A*) 是子模函数
- 集合全覆盖
 - 找到最小的句子集合包含所有的单词
- k-最大覆盖问题
 - 找到 k 个句子使得其包含的单词数量最多

例子: 2-最大覆盖

- 给定全集 $U = \{a, b, c, ..., l\}$
- 子集 $A_1 = \{a, b, c, d\}, A_2 = \{e, f, g, h\},$ $A_3 = \{i, j, k, l\}, A_4 = \{a, e\}, A_5 = \{b, f, g, i\},$ $A_6 = \{c, d, g, h, k, l\}, A_7 = \{l\}$
 - 集合 A₆ 包含 6 个元素, A₁, A₂, A₃, A₅ 包含 4 个元素
 - 由于 $|A_6 \cup A_1| = 8$, $|A_6 \cup A_2| = 8$, $|A_6 \cup A_3| = 8$, $|A_6 \cup A_5| = 9$
- 因此, {*A*₅, *A*₆} 为 2-最大集合覆盖

抽取式文本摘要

- **定义**: 关键词集合 $V = \{w_1, ..., w_n\}$ 和句子集合 $S = \{S_1, ..., S_m\}$,其中 $S_i \subseteq V$,抽取式文本摘要的目标是找 k 个句子可能多的覆盖关键词
 - $\Diamond \mathscr{C}$ 为找出的 k 个句子, 设

$$x_i = \begin{cases} 1, S_i \in \mathcal{C} \\ 0, S_i \notin \mathcal{C} \end{cases} \text{ for } y_j = \begin{cases} 1, w_j \in \bigcup_{S \in \mathcal{T}} S \\ 0, w_j \notin \bigcup_{S \in \mathcal{T}} S \end{cases}$$

• 整数规划问题

$$\max \sum_{j} y_{j}$$
s.t.
$$\sum_{i} x_{i} \leq k$$

$$\sum_{w_{j} \in S_{i}} x_{i} \geq y_{j}$$

$$x_{i} \in \{0,1\}, \forall i \in [m]$$

$$y_{j} \in \{0,1\}, \forall j \in [n]$$

• 除了求解整数规划问题, 还可以利用贪心算法近似求解

课程提 纲

1 算法引入

2 子模函数

3 集合覆盖

4 爬山算法

爬山算法

- 1. 初始化 $\mathscr{C} = \emptyset$
- 2. 对 i = 1, 2, ..., k 到
- 3. 选择 $S^* = \arg \max_{S \in V \setminus \mathscr{C}} f(\mathscr{C} \cup \{S\}) f(\mathscr{C})$
- 4. $\mathscr{C} = \mathscr{C} \cup \{S^*\}$
- 5. 输出 8
- **定理**: 如果集合函数 $f(\cdot)$ 是<mark>单调非减的子模</mark>函数,且 $f(\emptyset) = 0$,则 爬山算法的近似率至少是最优解的 $1 \frac{1}{e} \approx 0.632$,即找到的 $\mathscr C$ 满足 $f(\mathscr C) \geq (1 \frac{1}{e}) \cdot \max_{\mathscr T \subseteq \mathscr S \colon |\mathscr T| = k} f(\mathscr T)$
- 该结论表明运用爬山算法的贪心策略解决满足子模定义的目标函数 的最大化问题是一个还不错的选择

爬山算法的理论证明(1)

Proof Nemhauser et al. only discussed the case $\ell=k$, however their very elegant argument easily yields the slight generalization above. It goes as follows. Fix ℓ and k. Let $S^* \in \arg\max\{f(S): |S| \le k\}$ be an optimal set of size k (due to monotonicity of f we can assume w.l.o.g. it is of size exactly k), and order the elements of S^* arbitrarily as $\{v_1^*, \ldots, v_k^*\}$. Then we have the following sequence of inequalities for all $i < \ell$, which we explain below.

$$f(S^*) \le f(S^* \cup S_i) \tag{3}$$

$$= f(S_i) + \sum_{j=1}^k \Delta(v_j^* \mid S_i \cup \{v_1^*, \dots, v_{j-1}^*\})$$
(4)

$$\leq f(S_i) + \sum_{v \in S^*} \Delta(v \mid S_i) \tag{5}$$

$$\leq f(S_i) + \sum_{v \in S^*} \left(f(S_{i+1}) - f(S_i) \right) \tag{6}$$

$$\leq f(S_i) + k \left(f(S_{i+1}) - f(S_i) \right)$$
 (7)

Eq. (3) follows from monotonicity of f, Eq. (4) is a straightforward telescoping sum, Eq. (5) follows from the submodularity of f, Eq. (6) holds because S_{i+1} is built greedily from S_i in order to maximize the marginal benefit $\Delta(v \mid S_i)$, and Eq. (7) merely reflects the fact that $|S^*| \leq k$. Hence

爬山算法的理论证明(2)

 $|S^*| \leq k$. Hence

$$f(S^*) - f(S_i) \le k \left(f(S_{i+1}) - f(S_i) \right).$$
 (8)

Now define $\delta_i := f(S^*) - f(S_i)$, which allows us to rewrite Eq. (8) as $\delta_i \le k (\delta_i - \delta_{i+1})$, which can be rearranged to yield

$$\delta_{i+1} \le \left(1 - \frac{1}{k}\right)\delta_i \tag{9}$$

Hence $\delta_{\ell} \leq \left(1 - \frac{1}{k}\right)^{\ell} \delta_0$. Next note that $\delta_0 = f(S^*) - f(\emptyset) \leq f(S^*)$ since f is nonnegative by assumption, and by the well-known inequality $1 - x \leq e^{-x}$ for all $x \in \mathbb{R}$ we have

$$\delta_{\ell} \leq \left(1 - \frac{1}{k}\right)^{\ell} \delta_0 \leq e^{-\ell/k} f(S^*). \tag{10}$$

Substituting $\delta_{\ell} = f(S^*) - f(S_{\ell})$ and rearranging then yields the claimed bound of $f(S_{\ell}) \ge (1 - e^{-\ell/k}) f(S^*)$.

集合覆盖: 单调子模函数

- 。关键词覆盖 $f(\mathscr{C})$ 定义为 $f(\mathscr{C}) = |\bigcup_{S \in \mathscr{C}} S|$
- • $f(\mathscr{C})$ 满足三个关键特性
 - $\bullet f(\emptyset) = 0$
 - 单调性
 - 子模性
- ●因此,运用爬山算法解决 *k*-最大集合覆盖问题 是一个不错的选择

抽取式文本摘要示例 (第一轮)

- 提取关键词集合 $V = \{w_1, w_2, ..., w_8\}$
- 候选句子 $S_1 = \{w_1, w_2, w_8\}, S_2 = \{w_1, w_3, w_7\}, S_3 = \{w_1, w_6\},$ $S_4 = \{w_1, w_3, w_7, w_8\}, S_5 = \{w_1, w_5, w_6\}, S_6 = \{w_1, w_5, w_8\},$ $S_7 = \{w_5\}, S_8 = \{w_1, w_4, w_6\}, S_9 = \{w_2, w_8\}$

句子	f(C)	$f(C + \{S\})$	Delta(S C)
S1	0	3	3
S2	0	3	3
S3	0	2	2
S4	0	4	4
S5	0	3	3
S6	0	3	3
S7	0	1	1
S8	0	3	3
S9	0	2	2

句子 S_4 对关键词覆盖的边际贡献最大,因此第一轮迭代选择句子 S_4

抽取式文本摘要示例 (第二轮)

- 提取关键词集合 $V = \{w_1, w_2, ..., w_8\}$
- 候选句子 $S_1 = \{w_1, w_2, w_8\}, S_2 = \{w_1, w_3, w_7\}, S_3 = \{w_1, w_6\},$ $S_4 = \{w_1, w_3, w_7, w_8\}, S_5 = \{w_1, w_5, w_6\}, S_6 = \{w_1, w_5, w_8\},$ $S_7 = \{w_5\}, S_8 = \{w_1, w_4, w_6\}, S_9 = \{w_2, w_8\}$

句子	f(C)	$f(C + \{S\})$	Delta(S C)
S1	4	5	1
S2	4	4	0
S3	4	5	1
S5	4	6	2
S6	4	5	1
S7	4	5	1
S8	4	6	2
S9	4	5	1

句子 S_5 和 S_8 对 关键词覆盖的边 际贡献最大,因 此第二轮迭代选 择其中之一 S_5

抽取式文本摘要示例 (第三轮)

- 提取关键词集合 $V = \{w_1, w_2, ..., w_8\}$
- 候选句子 $S_1 = \{w_1, w_2, w_8\}, S_2 = \{w_1, w_3, w_7\}, S_3 = \{w_1, w_6\},$ $S_4 = \{w_1, w_3, w_7, w_8\}, S_5 = \{w_1, w_5, w_6\}, S_6 = \{w_1, w_5, w_8\},$ $S_7 = \{w_5\}, S_8 = \{w_1, w_4, w_6\}, S_9 = \{w_2, w_8\}$

句子	f(C)	f(C + {S})	Delta(S C)
S1	6	7	1
S2	6	6	0
S3	6	6	0
S6	6	6	0
S7	6	6	0
S8	6	7	1
S9	6	7	1

句子 S_1 , S_8 和 S_9 对 关键词覆盖的边际贡献最大,因此第三轮 战代选择句子 S_1 。最终文本摘要结果为 $\mathscr{C} = \{S_4, S_5, S_1\}$

社交网络影响力最大化

- 网络拓扑结构
- "种子用户"
- 以"种子用户"为 起始点信息在网 络上传播的范围
- •如何选择k个"种 子用户"?

Independent Cascade Model

- Initially some nodes S are active
- Each edge (v, w) has probability (weight) p_{vw}

- When node v becomes active:
 - It activates each out-neighbor $m{w}$ with prob. $m{p}_{m{v}m{w}}$
- Activations spread through the network

设施选址(如何解决?)

- •用户位置集合
- 候选设施位置集合
- 选取k个设施位置,使得用户 距离它们的位置最近

$$\bullet f(S) = \sum_{i=1}^{m} \max_{j \in S} M_{ij}$$

本章小结

- 连续优化 VS. 组合优化
 - 凸凹性是解决连续优化问题的关键
 - 类似于凹函数,子模是离散函数边际效用递减的数学表述
 - 除了子模, 还有超模函数, 类似于连续情形下的凸函数
- 子模函数
 - 子模函数的运算性质
 - 运用爬山算法在保证一定精度的情况下解决单调子模优化问题
 - 集合覆盖
 - Wifi 布置
 - 文本摘要
 -