Phase 2 Project

By: Tommy Quan-Duc Phung

Overview

Client: Zillow Home Group Inc.

Source: King County House Sales

Parameters Used:

- Dependent Price
- > Independent Square Feet of Living, Grade, and House Age
 - > Extra categorical variables were used

Business Problem

- What makes an expensive house?
- Is the house estimate accurate?
- Could we predict the price of a house?

Objective

Zillow Estimation Tool: Zestimate

- Company's Algorithm
- Median Error Rate 2.4% to 7.49%

Objective:

Create a model to incorporate with or replace currently placed algorithm in hopes to improve accuracy for seller and buyers.

Data

- > **30154** samples (3%)
- > 25 columns or attributes
- Numerical and Categorical data types

Analysis should only be applied to houses in King County, Washington

Baseline Model - Intercept-Only Model

Y = 982,866

Interpretation:

All houses are priced at **\$982,866**.

Fig 1. Square foot of living vs Price with mean price

Baseline Model - Limitation

Simple To Model

- Only uses price mean
- No manipulation required

Not Accurate

- Assume all house price are the same
- Assume no factors influence price

Method

A series of modeling and progression plots:

- 1. Highest correlation Single Variable
- 2. Second Highest 2 Variables
- **3.** ... Multi-Variable

Added parameters:

- > Interaction Terms Top Two Highest
- > House Age Modify Year Built

Why Linear Regression

- 1. Explains the **relationship** between two variables.
- 2. Can be used to **predict prices** with given variables.

Line of Best Fit:

Price = (sqft_living cost * num sqft) + constant

Model Overview

36.2%

41.8%

46.4%

Model 1:

+ Square Feet of Living

Model 2:

+ Grade

Model 3:

+ House Age

- Only 1 parameter
- Relatively low house cost

- Two parameters with a negative house cost.
- > High grade influence.

- A larger negative starting value.
- Lower cost per square foot.
- Bigger grade influence.

Model 1

Interpretation -

> **\$356** per square foot

Price = \$261,000 + (356 * square footage)

Fig 2. Square foot of living vs Price with line of best fit

Model 1 Limitations

Simple To Interpret

- Single Independent Variable
- Logical starting price

Only Explains 36.2% of Variance

- Not Considering Other parameters
- "A house with no living cost \$261,000"

Multiple Linear Regression

Uses:

- Multiple Variables
- Increase complexity

Partial Regression Plots

- Plot values not explained by model against one another
- > Shows **benefit** of adding the variable in the model

Model 2

Partial Regression QQ Plot - Sqft_living

Partial Regression QQ Plot - Grade

Interpretation -

- \$232 per square foot of living
- > **\$150,700** per grade (1-13)

Model 2 Limitations

Best Parameters

- Two Highest Correlating Parameters
- Grade and square foot of living benefits price
- Not too complicated

Only 4.4% increase

- Negative house cost
- Assume all grade increase price

Model 3

Interpretation -

- > **\$221** per square foot
- > **\$216,400** per grade
- > **\$3867** per age of house.

The more parameters added, the larger the constant becomes

Model 3 Limitations

Logical Coefficients

- All coefficient are reasonable
- Higher R Square Value

Concerning Constant

- Negative initial House Cost
- Still assume all grade is beneficial

Other Categorical Data

Method: Grouped by category with mean taken for each sub-category

Outcome:

No significant difference in Nuisance

Include: Waterfront and Greenbelt

Exclude: Nuisance

Final Model Reference

The model parameters are in reference to the following:

- > No Greenbelt
- > No view
- Average Condition
- Oil Heat Source
- Private Sewer System
- Building Grade of 7

Final Model Key Coefficients 49.7%

- 1. **Sqft_living** \$116 per square feet
- 2. **Grade** (1-13) Depends on grade
- 3. **Greenbelt** \$126,900 if on a greenbelt
- 4. **house_age** \$3673 per year *
- 5. **Interaction Terms** (9) \$112 per square feet if grade is 9 *

* Created variables added to the final model

Other parameters didn't influence price heavily.

Final Model Regression Plots

Slight Positive Linear Relationship

- ➤ Not as strong as model 2
- House Age has clear relationship

Legend:

Top Left: Sqft_living **Top Right:** Grade 9

Bottom Left: Sqft_living * Grade 9

Bottom Right: House Age

Grade Interpretation

Formula:

Price = Constant + grade + (interaction * square foot of living) + others*

- Grades below 7 are negative
- > Grades above 7 are **positive**.
- Grade doesn't match their interaction terms.
 - (Positive Grade, Negative Living)
- > Less influence the closer to Grade 7

Continuous Interpretation

In general, **all parameters** involving square foot of an area are **positive**, **excluding square foot of garage**.

- Garage = -73 per square foot
- > Patio = **63** per square foot
- Basement = 61 per square foot

Other Categorical Parameters

Greenbelt - Yes = \$126,900

View -

- Average = \$61,690
- > Good = \$72,050
- > Excellent = \$288,600

Condition -

- > Good = 42,480
- ➤ Very Good = 106,700

In general, any parameters that is **better than the reference**, will **increase** house value.

Conclusion

- ➤ More Parameters → Better modeling
- ➤ Negative Parameter → More Positive Constant

- > Strongest Effect on Price: Square living and Grade
- Not all parameters are useful such as sqft_above, nuisance, etc.

Recommendations: Zillow

Zillow: Use model to improve Zestimate.

Improve Accuracy

Final Model: 49.7%

Can help explain half of the variance for Zestimate.

Recommendations: Buyer

Buyers: Inform on expensive and inexpensive aspect of a house.

Price Checking

Expensive Attributes:

- ➤ View > Good
- Condition > Good
- **>** Grade < 9

Inexpensive Attributes:

Nuisances

Recommendations: Seller

Sellers: Renovate or improve aspects to increase price.

Increase Home Values

Positive Attributes:

- Basement
- Building Grade
- > Patio

Negative Attributes:

➤ Garage

Next Step

1. More interaction terms

Greenbelt and Square Foot of Living

2. More outside interaction

Schools, parks, crime rate

3. Economic Status

> Recession, Pandemic

Question?

Email: phungtommy109@gmail.com

Github: @Tommyphung1