Lý thuyết trường

TS. Bùi Xuân Diệu

Viện Toán Ứng dụng và Tin học, Đại học Bách Khoa Hà Nội

Chương 6: Lý thuyết trường

Trường vô hướng

2 Trường véctơ

Chương 6: Lý thuyết trường

Trường vô hướng

2 Trường véctơ

TS. Bùi Xuân Diệu Lý thuyết trường I ♡ HUST 3 / 17

Trường vô hướng

Định nghĩa

Cho $\Omega \subset \mathbb{R}^3$. Một hàm số

$$u: \Omega \to \mathbb{R}$$

 $(x, y, z) \mapsto u = u(x, y, z)$

được gọi là một trường vô hướng xác định trên Ω .

Cho f(x,y,z) là một hàm số và $\vec{v}=(a,b,c)\in\mathbb{R}^3$ là một véctơ đơn vị.

Định nghĩa

Giới hạn, nếu có,

$$\lim_{t\to 0}\frac{f(M+t\vec{v})-f(M)}{t}$$

Cho f(x,y,z) là một hàm số và $\vec{v}=(a,b,c)\in\mathbb{R}^3$ là một véctơ đơn vị.

Định nghĩa

Giới hạn, nếu có,

$$\lim_{t\to 0}\frac{f(M+t\vec{v})-f(M)}{t}$$

$$\vec{v} = \vec{i} \Rightarrow$$

Cho f(x,y,z) là một hàm số và $\vec{v}=(a,b,c)\in\mathbb{R}^3$ là một véctơ đơn vị.

Định nghĩa

Giới hạn, nếu có,

$$\lim_{t\to 0}\frac{f(M+t\vec{v})-f(M)}{t}$$

- $\vec{v} = \vec{i} \Rightarrow \frac{\partial f}{\partial \vec{i}}(M) = \frac{\partial f}{\partial x}(M)$.
- $\vec{v} = \vec{j} \Rightarrow$

Cho f(x,y,z) là một hàm số và $\vec{v}=(a,b,c)\in\mathbb{R}^3$ là một véctơ đơn vị.

Định nghĩa

Giới hạn, nếu có,

$$\lim_{t\to 0}\frac{f(M+t\vec{v})-f(M)}{t}$$

- $\vec{v} = \vec{i} \Rightarrow \frac{\partial f}{\partial \vec{i}}(M) = \frac{\partial f}{\partial x}(M)$.
- $\vec{v} = \vec{j} \Rightarrow \frac{\partial f}{\partial \vec{j}}(M) = \frac{\partial f}{\partial y}(M).$

Cho f(x,y,z) là một hàm số và $\vec{v}=(a,b,c)\in\mathbb{R}^3$ là một véctơ đơn vị.

Định nghĩa

Giới hạn, nếu có,

$$\lim_{t\to 0}\frac{f(M+t\vec{v})-f(M)}{t}$$

- $\vec{v} = \vec{i} \Rightarrow \frac{\partial f}{\partial \vec{i}}(M) = \frac{\partial f}{\partial x}(M).$
- $\vec{v} = \vec{j} \Rightarrow \frac{\partial f}{\partial \vec{j}}(M) = \frac{\partial f}{\partial y}(M).$
- $\vec{v} = \vec{k} \Rightarrow$

Cho f(x,y,z) là một hàm số và $\vec{v}=(a,b,c)\in\mathbb{R}^3$ là một véctơ đơn vị.

Định nghĩa

Giới hạn, nếu có,

$$\lim_{t\to 0}\frac{f(M+t\vec{v})-f(M)}{t}$$

- $\vec{v} = \vec{i} \Rightarrow \frac{\partial f}{\partial \vec{i}}(M) = \frac{\partial f}{\partial x}(M)$.
- $\vec{v} = \vec{j} \Rightarrow \frac{\partial f}{\partial \vec{j}}(M) = \frac{\partial f}{\partial y}(M).$
- $\vec{v} = \vec{k} \Rightarrow \frac{\partial f}{\partial \vec{k}}(M) = \frac{\partial f}{\partial z}(M)$.

Đạo hàm theo hướng vs Đạo hàm riêng

Cho f(x,y,z) là một hàm số và $\vec{v}=(a,b,c)\in\mathbb{R}^3$ là một véctơ đơn vị.

Mối liên hệ giữa đạo hàm theo hướng và đạo hàm riêng

$$\frac{\partial f}{\partial \vec{v}}(M) = \frac{\partial f}{\partial x}(M) \cdot a + \frac{\partial f}{\partial y}(M) \cdot b + \frac{\partial f}{\partial z}(M) \cdot c.$$

Đạo hàm theo hướng vs Đạo hàm riêng

Cho f(x,y,z) là một hàm số và $\vec{v}=(a,b,c)\in\mathbb{R}^3$ là một véctơ đơn vị.

Mối liên hệ giữa đạo hàm theo hướng và đạo hàm riêng

$$\frac{\partial f}{\partial \vec{v}}(M) = \frac{\partial f}{\partial x}(M) \cdot a + \frac{\partial f}{\partial y}(M) \cdot b + \frac{\partial f}{\partial z}(M) \cdot c.$$

Nếu \vec{l} không phải là một vectơ đơn vị thì $\vec{v} = \frac{\vec{l}}{\|\vec{l}\|}$ và $\frac{\partial f}{\partial \vec{l}} = \frac{\partial f}{\partial \vec{v}}$.

Ví du

Tính đạo hàm theo hướng $\vec{l}=(1,1,1)$ của hàm số $f(x,y,z)=x^2y^3z^4$ tại điểm M(1,1,1).

Gradient

$$\overrightarrow{\operatorname{grad}} f(M) = \left(\frac{\partial f}{\partial x}(M), \frac{\partial f}{\partial y}(M), \frac{\partial f}{\partial z}(M)\right).$$

Gradient

$$\overrightarrow{\operatorname{grad}} f(M) = \left(\frac{\partial f}{\partial x}(M), \frac{\partial f}{\partial y}(M), \frac{\partial f}{\partial z}(M)\right).$$

Ví du

Tính $\overrightarrow{\operatorname{grad}} u$ với $u = r^2 + \frac{1}{r} + \ln r$ và $r = \sqrt{x^2 + y^2 + z^2}$.

Gradient

$$\overrightarrow{\operatorname{grad}} f(M) = \left(\frac{\partial f}{\partial x}(M), \frac{\partial f}{\partial y}(M), \frac{\partial f}{\partial z}(M)\right).$$

Ví dụ

Tính $\overrightarrow{\operatorname{grad}} u$ với $u = r^2 + \frac{1}{r} + \ln r$ và $r = \sqrt{x^2 + y^2 + z^2}$.

Đạo hàm theo hướng vs Gradient

$$\frac{\partial f}{\partial \vec{l}}(M) = \frac{\overrightarrow{\operatorname{grad}} f(M) \cdot \vec{l}}{\|\vec{l}\|}$$

Ý nghĩa của Gradient

 $\frac{\partial f}{\partial \vec{l}}(M)$ thể hiện tốc độ biến thiên của hàm số f tại M theo hướng \vec{l} .

Ý nghĩa của Gradient

 $\frac{\partial f}{\partial \vec{l}}(M)$ thể hiện tốc độ biến thiên của hàm số f tại M theo hướng \vec{l} .

• $\left| \frac{\partial f}{\partial \vec{l}}(M) \right|$ đạt GTLN bằng $\left| \overrightarrow{\text{grad}} f \right|$ nếu $\vec{l} /\!\!/ \overrightarrow{\text{grad}} f$.

Ý nghĩa của Gradient

 $\frac{\partial f}{\partial \vec{l}}(M)$ thể hiện tốc độ biến thiên của hàm số f tại M theo hướng \vec{l} .

- $\left| \frac{\partial f}{\partial \vec{l}}(M) \right|$ đạt GTLN bằng $\left| \overrightarrow{\operatorname{grad}} f \right|$ nếu $\vec{l} /\!\!/ \operatorname{grad} \vec{f}$.
- Hàm số f tăng nhanh nhất tại M nếu $\vec{l} \uparrow \uparrow \uparrow \overrightarrow{\text{grad } f}$.

Ý nghĩa của Gradient

 $\frac{\partial f}{\partial \vec{l}}(M)$ thể hiện tốc độ biến thiên của hàm số f tại M theo hướng \vec{l} .

- $\left| \frac{\partial f}{\partial \vec{l}}(M) \right|$ đạt GTLN bằng $\left| \overrightarrow{\operatorname{grad}} f \right|$ nếu $\vec{l} /\!\!/ \overrightarrow{\operatorname{grad}} f$.
- Hàm số f tăng nhanh nhất tại M nếu $\vec{l} \uparrow \uparrow \uparrow \overrightarrow{\text{grad } f}$.
- Hàm số f giảm nhanh nhất tại M nếu $\vec{l} \uparrow \downarrow \overrightarrow{\mathsf{grad}} \vec{f}$.

Ví du

Theo hướng nào thì sự biến thiên của hàm số $u = x \sin z - y \cos z$ từ gốc toạ độ O(0,0,0) là lớn nhất?

Chương 6: Lý thuyết trường

Trường vô hướng

2 Trường véctơ

TS. Bùi Xuân Diệu Lý thuyết trường I ♡ HUST 9 / 17

Cho Ω là một miền mở trong \mathbb{R}^3 . Một hàm véctơ

$$\overrightarrow{F} = P(x, y, z)\overrightarrow{i} + Q(x, y, z)\overrightarrow{j} + R(x, y, z)\overrightarrow{k}$$

được gọi là một trường vectơ trên Ω .

Cho Ω là một miền mở trong \mathbb{R}^3 . Một hàm véctơ

$$\overrightarrow{F} = P(x, y, z)\overrightarrow{i} + Q(x, y, z)\overrightarrow{j} + R(x, y, z)\overrightarrow{k}$$

được gọi là một trường vectơ trên Ω .

Thông lượng

Cho S là một mặt định hướng và \overrightarrow{F} là một trường véctơ. Đại lượng

$$\phi = \iint\limits_{S} P dy dz + Q dz dx + R dx dy \tag{1}$$

được gọi là thông lượng của \overrightarrow{F} đi qua mặt cong S.

Thông lượng

Ví du

Cho $\overrightarrow{F} = xz^2 \overrightarrow{i} + 2 \overrightarrow{j} + zy^2 \overrightarrow{k}$. Tính thông lượng của \overrightarrow{F} qua mặt cầu $S: x^2 + y^2 + z^2 = 1$ hướng ra ngoài.

Dive - Trường ống

- a. dive $\overrightarrow{F} := \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$.
- b. Trường véctơ \overrightarrow{F} xác định trên Ω được gọi là một trường ống nếu dive $\overrightarrow{F}(M) = 0$ với mọi $M \in \Omega$.

Dive - Trường ống

- a. dive $\overrightarrow{F} := \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$.
- b. Trường véctơ \overrightarrow{F} xác định trên Ω được gọi là một trường ống nếu dive $\overrightarrow{F}(M)=0$ với mọi $M\in\Omega$.

Tính chất của trường ống

Nếu \overrightarrow{F} là một trường ống thì thông lượng đi vào bằng thông lượng đi ra.

Hoàn lưu

Cho $\mathcal C$ là một đường cong (có thể kín hoặc không kín) trong không gian. Đại lượng

$$\int_{C} Pdx + Qdy + Rdz \tag{2}$$

được gọi là hoàn lưu (hay lưu số) của \overrightarrow{F} dọc theo đường cong \mathcal{C} .

TS. Bùi Xuân Diệu Lý thuyết trường I ♡ HUST 13 / 17

Hoàn lưu

Cho $\mathcal C$ là một đường cong (có thế kín hoặc không kín) trong không gian. Đại lượng

$$\int_{C} Pdx + Qdy + Rdz \tag{2}$$

được gọi là hoàn lưu (hay lưu số) của \overrightarrow{F} dọc theo đường cong \mathcal{C} .

Ví du

Cho $\vec{F}(x,y,z)=(x+y^2)\mathbf{i}+(y+z^2)\mathbf{j}+(z+x^2)\mathbf{k}$ và L là tam giác ABC, A(1,0,0), B(0,1,0), C(0,0,1) hướng ngược chiều kim đồng hồ nhìn từ chiều dương của các trục tọa độ. Tính lưu số của \vec{F} dọc theo L.

Hoàn lưu (Lưu số)

Ví du

Cho $\vec{F}(x,y,z) = (x+y^2)\mathbf{i} + (y+z^2)\mathbf{j} + (z+x^2)\mathbf{k}$ và L là tam giác ABC, A(1,0,0), B(0,1,0), C(0,0,1) hướng ngược chiều kim đồng hồ nhìn từ chiều dương của các trục tọa độ. Tính lưu số của \vec{F} dọc theo L.

Trường thế - hàm thế vị

Vécto xoáy

Vécto

$$\overrightarrow{rot} \overrightarrow{F} := \begin{pmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{pmatrix}$$

được gọi là véctơ xoáy (hay véctơ rota) của trường véctơ \overrightarrow{F} .

Trường thế - hàm thế vị

Véctơ xoáy

Vécto

$$\overrightarrow{rot} \overrightarrow{F} := \begin{pmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{pmatrix}$$

được gọi là véctơ xoáy (hay véctơ rota) của trường véctơ \overrightarrow{F} .

Trường thế

Trường véctơ \overrightarrow{F} được gọi là trường thế (trên Ω) nếu tồn tại trường vô hướng u sao cho $\overrightarrow{\operatorname{grad}} u = \overrightarrow{F}$ (trên Ω). Khi đó u được gọi là hàm thế vị.

1.
$$\overrightarrow{\operatorname{rot}}\overrightarrow{F} = \overrightarrow{0}$$
.

- 1. $\overrightarrow{rot}\overrightarrow{F} = \overrightarrow{0}$.
- 2. $\int\limits_{L} Pdx + Qdy + Rdz = 0$ với mọi đường cong đóng kín L.

- 1. $\overrightarrow{rot}\overrightarrow{F} = \overrightarrow{0}$.
- 2. $\int\limits_{L} Pdx + Qdy + Rdz = 0$ với mọi đường cong đóng kín L.
- 3. $\int\limits_{\widehat{AB}} Pdx + Qdy + Rdz$ không phụ thuộc vào đường đi từ A đến B.

- 1. $\overrightarrow{rot}\overrightarrow{F} = \overrightarrow{0}$.
- 2. $\int\limits_{L} Pdx + Qdy + Rdz = 0$ với mọi đường cong đóng kín L.
- 3. $\int\limits_{\widehat{AB}} Pdx + Qdy + Rdz$ không phụ thuộc vào đường đi từ A đến B.
- 4. \overrightarrow{F} là một trường thế, nghĩa là có hàm số u(x, y, z) sao cho $\overrightarrow{\text{grad}} u = \overrightarrow{F}$.

- 1. $\overrightarrow{rot}\overrightarrow{F} = \overrightarrow{0}$.
- 2. $\int\limits_{L} Pdx + Qdy + Rdz = 0$ với mọi đường cong đóng kín L.
- 3. $\int\limits_{\widehat{AB}} Pdx + Qdy + Rdz$ không phụ thuộc vào đường đi từ A đến B.
- 4. \overrightarrow{F} là một trường thế, nghĩa là có hàm số u(x, y, z) sao cho $\overrightarrow{\text{grad}}u = \overrightarrow{F}$.

$$u(x,y,z) = \int_{x_0}^{x} P(x,y_0,z_0) dx + \int_{y_0}^{y} Q(x,y,z_0) dy + \int_{z_0}^{z} R(x,y,z) dz + C.$$

Trường thế - hàm thế vị

Hàm thế vi

Nếu \overrightarrow{F} là trường thế thì hàm thế vị u được tính theo công thức

$$u = \int_{x_0}^{x} P(x, y_0, z_0) dx + \int_{y_0}^{y} Q(x, y, z_0) dy + \int_{z_0}^{z} R(x, y, z) dz + C.$$
 (3)

Ví du

Trong các trường sau, trường nào là trường thế? Nếu nó là trường thế, hãy tìm hàm thế vị của nó.

a.
$$\overrightarrow{a} = 5(x^2 - 4xy)\overrightarrow{i} + (3x^2 - 2y)\overrightarrow{j} + \overrightarrow{k}$$
.

b.
$$\overrightarrow{b} = yz\overrightarrow{i} + xz\overrightarrow{j} + xy\overrightarrow{k}$$
.

c.
$$\overrightarrow{c} = (x+y)\overrightarrow{i} + (x+z)\overrightarrow{j} + (z+y)\overrightarrow{k}$$
.