

Emma Junhao Benjamin Gabriel

Overview

- Problem Statement
- Interesting Features
- Model Selection
- Feature Importance
- Cost Benefit Analysis
- Conclusion/Recommendations

Problem Statement

 We are a team of data scientists at the Disease And Treatment Agency. In the last few years, there have been several episodes of the West Nile Virus (WNV) outbreak in Chicago. The aim of our project is to leverage on weather, location and time data to predict West Nile Virus occurrences in Chicago.

 By understanding these features and whether they can predict the virus, we will then evaluate whether spraying areas with pesticides will be an effective tool vis-a-vis medical and economic costs

Interesting Features

Relative Humidity

Humidity - ambiguous relationship with WNV Instead of using DewPoint x Tavg interaction term - worked out RH=100 \times (e / es)

Lagged Weather Features

Culex: egg to adult ~7 to 10 days.

Lagged weather features by 14 days - factor in time needed to pick up the virus

Risk Classification

136 unique trap addresses 5 categories based on WNV occurrences: Low, Very Low, Medium, High, Very High

Which model is suitable?

(Selected Model)

Logistic Regression

81.8% 82.8% 82.9% 83.0% 81.5%

Test Score

84.5% **Train Score**

Gradient Boost

Test Score

89.4% **Train Score**

XGBoost

Test Score

89.6% **Train Score**

ADA Boost

Test Score

89.3% **Train Score**

Random **Forest**

Test Score

93.7% **Train Score**

- Baseline
- No parameter tuning

- Best recall: 0.49
- Precision: 0.22
- Best F1: 0.3

- **SMOTE**
- Recall: 0.48
- Precision: 0.21
 - F1: 0.29

- Worst recall: 0.11
- Best precision: 0.25 •
- Worst F1: 0.15

- SMOTE
- Recall: 0.38
- Most overfitted

model

Confusion Matrix of Actual vs Predicted WMV

Top 10 Feature Importance

Date	Effective Areas	Ineffective Areas
7 Sep 2011	1	0
17 Jul 2013	1	1
25 Jul 2013	1	0
8 Aug 2013	2	0
15 Aug 2013	1	3
22 Aug 2013	0	3
29 Aug 2013	1	2
5 Sep 2013	0	1
Total	7	10

41.18% success rate!

Cost Benefit Analysis

Taking into account: Previous Sprays 41.9% < Predicted Sprays 49%

Benefit

Hull Reduce disease in population

Lower load on hospital services

Overall better quality of life

Approximate cost of \$4.5 million

No Spray

High Medical Expenses

Loss of Workplace Productivity

More death rates

Approximate cost of \$1 million

Conclusion

- Gradient Boost Classifier has a roc-auc score of 83% with highest recall score of 49%
- Concentrate spray efforts during month of August
- Consolidate weather information on Temperature / Wind Speed / Humidity
- Location a relatively strong predictor, WNV may be transient

Recommendations

Adult Control	Spray during (month/location/weather)	
Larval Control	Larva-ciding water bodies	
Public Education	Educated public on personal protection	
Bird Surveillance	Monitor birds known to be carriers, data collected to enhance model	

