LUNDS TEKNISKA HÖGSKOLA MATEMATIK

SVAR OCH ANVISNINGAR FUNKTIONSTEORI 2013–04–03 kl 08 – 13

1. Den homogena lösningen blir $x_h(n) = A \cdot 3^n + B \cdot 1^n$. Ansätt en partikulärlösning av typen $x_p(n) = C \cdot 2^n + Dn \cdot 3^n$.

Allmänna lösningen är: $x(n) = -3 \cdot 2^n + (n/3)3^n + A \cdot 3^n + B$. Begynnelsevillkor ger $x(n) = 2 + (1 + n/3)3^n - 3 \cdot 2^n$.

- 2. A: Absolut konvergent (och därmed konvergent).
 - B: Konvergent enl t ex rotkriteriet ty.
 - C: Divergent. Studera t ex $\lim_{k\to\infty} a_k/b_k \mod b_k = 1/k$.
 - D: Divergent eftersom termerna inte går mot noll.
 - E: Konvergent enl Leibnitz. Observera att termernas absolutbelopp inte är avtagande i början, men att en undersökning visar att $\ln k/\sqrt{k}$ går monotont mot noll då $k \ge e^2$.
- **3. a)** För det första uttrycket måste man gå "omvägen" via log och exp, dvs $(-2)^{\pi} = e^{\pi \log{(-2)}} = e^{\pi(\log{2} + i\pi + 2k\pi i)} = 2^{\pi}e^{i\pi^{2}(1+2k)} , \text{ där } k \text{ är ett godtyckligt heltal. (Alla dessa värden blir olika punkter på cirkeln } |z| = 2^{\pi}.) Det andra uttrycket har givetvis bara ett värde, nämligen <math>1/\pi^{2}$.
 - b) C-R bestämmer v(x,y) = Im f(x+iy) så när som på en (reell) konstant. Den senare bestäms av villkoret f(0) = 3i. Svar: $f(z) = i(3-2\sinh z)$.
- **4.** a) Konvergensradien är R = 1/2
 - b) Potensserier får deriveras termvis inom konvergensskivan. Speciellt gäller $\sum_{n=0} nz^n = z \frac{d}{dz} \sum_{n=0} z^n = z \frac{d}{dz} (1-z)^{-1} = z(1-z)^{-2}, \text{ samt } \sum_{n=0} (2z)^n = (1-2z)^{-1}.$ Därmed blir $f(z) = z(1-z)^{-2} + (1-2z)^{-1}$.
 - c) f(1/4) = 22/9 och f'(0) = 3.
- 5. a) Se sats 13.1 i kompendiet.
 - b) Funktionen har två enkla poler i $z=\pm i$. Endast polen i z=i innesluts av kurvan γ . Integralen blir $I=2\pi i \mathrm{Res}_{z=i} \frac{\cos z}{z^2+1}=2\pi i \lim_{z\to i} \frac{\cos z}{z+i}$, där Regel 3 har använts. Slutligen, $I=\frac{\pi}{2}(e+1/e)$.

6. a) Det gäller

$$\sum_{k=-\infty}^{\infty} \frac{ike^{ikt}}{2^{|k|}} = \sum_{k=-\infty}^{-1} \frac{ike^{ikt}}{2^{|k|}} + \sum_{k=0}^{\infty} \frac{ike^{ikt}}{2^k} = \sum_{n=0}^{\infty} \frac{-ine^{-int}}{2^n} + \sum_{k=0}^{\infty} \frac{ike^{ikt}}{2^k}$$
$$= \sum_{k=0}^{\infty} f_k(t) + \sum_{k=0}^{\infty} \overline{f_k(t)},$$

där $||f_k|| = ||\overline{f_k}|| = k2^{-k}$. Mha exempelvis kvotkriteriet konstateras att serierna $\sum_{k=0}^{\infty} ||f_k||$ och $\sum_{k=0}^{\infty} ||\overline{f_k}||$ är konvergenta, så den givna serien är likformigt konvergent enligt sats 10.7.

På liknande sätt ses att serierna $\sum_{k=0}^{\infty} F_k(t)$ och $\sum_{k=0}^{\infty} \overline{F_k(t)}$, där

$$F_k(t) = \left(\frac{e^{it}}{2}\right)^k$$

är likformigt konvergenta. Dessa serier är geometriska och kan summeras direkt, och samtidigt är villkoren för termvis derivation uppfyllda med $F'_k(t) = f_k(t)$. Vi får

$$f(t) = \frac{d}{dt} \left(\frac{1}{1 - \frac{e^{-it}}{2}} + \frac{1}{1 - \frac{e^{it}}{2}} \right) = \frac{d}{dt} \left(\frac{2 - \cos t}{5 - 4\cos t} \right) = \boxed{-\frac{12\sin t}{(5 - 4\cos t)^2}}.$$

Vi ser direkt att f(t) får deriveras hur många gånger som helst. Speciellt är f'(t) kontinuerlig, så dess Fourierkoefficienter ges av sambandet $c_k(f') = ikc_k(f)$. Fourierserien blir alltså

$$-\sum_{k=-\infty}^{\infty} \frac{k^2}{2^{|k|}} e^{ikt}.$$

Serien konvergerar likformigt eftersom f' har kontinuerlig andraderivata.

 \mathbf{c}

Funktionen f är reellvärd så integranden kan skrivas

$$f(t)f'(t) = \frac{d}{dt} \left(\frac{1}{2}f(t)^2\right)$$
.

Integralen blir alltså

$$\left[\frac{1}{2}f(t)^2\right]_0^{2\pi} = 0,$$

eftersom f är periodisk med perioden 2π . Man kan också använda att integranden är udda och 2π -periodisk, eller Parsevals formel.