Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Testul 12

Filiera teoretică, profilul real, specializarea matematică-informatică

- Filiera vocațională, profilul militar, specializarea matematică-informatică
- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

(60 40)		,
1.	$a=2\sqrt{2}$	2p
	Cum $\sqrt{4} < \sqrt{8} < \sqrt{9}$, deci $2 < a < 3$, obținem că $[a] = 2$	3p
2.	Axa Ox este tangentă la graficul funcției $f \Rightarrow \Delta = 0$	2p
	$m^2 - 4 = 0$, deci $m = -2$ sau $m = 2$	3p
3.	$(x-1)(x+2) = (x-1)(x+2)^2 \Rightarrow (x-1)(x+2)(x+1) = 0$	2p
	x = -2, care nu convine; $x = -1$, care nu convine; $x = 1$, care convine	3p
4.	$C_n^2 = 55 \Rightarrow \frac{n(n-1)}{2} = 55 \Rightarrow n^2 - n - 110 = 0$	3p
	Cum n este număr natural, $n \ge 2$, obținem $n = 11$	2p
5.	Punctul de intersecție a dreptelor d_1 și d_2 este punctul $M(-1,-1)$	2p
	$m_{d_2} = -1$ și, cum $m_d \cdot m_{d_2} = -1$, obținem $m_d = 1$, deci ecuația dreptei d este $y = x$	3p
6.	$\sin\frac{5\pi}{12} + \sin\frac{\pi}{12} = 2\sin\frac{\frac{5\pi}{12} + \frac{\pi}{12}}{2}\cos\frac{\frac{5\pi}{12} - \frac{\pi}{12}}{2} = 2\sin\frac{\pi}{4}\cos\frac{\pi}{6} =$	3 p
	$=2\cdot\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2}=\frac{\sqrt{6}}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

	` <u>-</u>	
1.a)	$A(4,2) = \begin{pmatrix} 2 & -2 & 1 \\ 1 & 4 & 3 \\ 3 & -2 & 2 \end{pmatrix} \Rightarrow \det(A(4,2)) = \begin{vmatrix} 2 & -2 & 1 \\ 1 & 4 & 3 \\ 3 & -2 & 2 \end{vmatrix} =$	2p
	= 16 + (-2) + (-18) - 12 - (-12) - (-4) = 0	3 p
b)	$A(2,1) = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 3 \\ 3 & -2 & 1 \end{pmatrix} \Rightarrow \det(A(2,1)) = 0 \Rightarrow \operatorname{rang}(A(2,1)) \le 2$	3р
	Cum $\begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = 5 \neq 0$, obținem că rangul matricei $A(2,1)$ este egal cu 2	2p
c)	$n^2 - 3n + 1 = p^2 - 3p + 1 \Leftrightarrow (n-p)(n+p-3) = 0$	2p
	Cum n și p sunt numere naturale nenule și distincte, obținem $n+p=3$, iar perechile sunt $(1,2)$ și $(2,1)$	3 p
2.a)	$(-1)*3 = \frac{-3}{3} - (-1) - 3 + 6 =$	3 p
	=-1+1-3+6=3	2p

b)	$x*(y+z-3) = \frac{x(y+z-3)}{3} - x - (y+z-3) + 6 = \frac{xy+xz}{3} - 2x - y - z + 9 =$	2p
	$= \frac{xy}{3} - x - y + 6 + \frac{xz}{3} - x - z + 6 - 3 = (x * y) + (x * z) - 3, \text{ pentru orice numere reale } x, y \text{ si } z$	3p
c)	x*6=6*x=x, pentru orice număr real x , deci $e=6$ este elementul neutru al legii de compoziție "*", de unde obținem că $x*x'=x'*x=6$, unde x' este simetricul lui x în raport cu legea de compoziție "*"	2p
	Decoarece $2x - 3 = x + x - 3$ şi $x * (y + z - 3) = (x * y) + (x * z) - 3$, pentru orice $x, y, z \in \mathbb{R}$, obţinem $(x * x) + (x * x') - 3 + (x' * x) + (x' * x) - 3 = 42 \Leftrightarrow (x * x) + 6 - 3 + 6 + 6 - 3 = 42$, deci $x * x = 30 \Rightarrow \frac{x^2}{3} - 2x + 6 = 30$, de unde obţinem $x = -6$ sau $x = 12$, care convin	3р

(30 de puncte) $f(x) = \sqrt{x^2 + 2} \Rightarrow f'(x) = \frac{1}{2\sqrt{x^2 + 2}} \cdot (x^2 + 2)' =$ 3p $=\frac{2x}{2\sqrt{x^2+2}}=\frac{x}{\sqrt{x^2+2}}\,,\ x\in\mathbb{R}$ Tangenta la graficul funcției f în punctul de abscisă $x=\sqrt{2}$, situat pe graficul funcției f, 2p 2p este paralelă cu axa $Ox \Leftrightarrow f'(\sqrt{2}) = 0$ Cum $f'(x) = \frac{x}{\sqrt{x^2 + 2}} - a$, pentru orice număr real a, obținem că $\frac{\sqrt{2}}{2} - a = 0$, deci $a = \frac{\sqrt{2}}{2}$ 3p $\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{f(x)}{x} = \lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{\sqrt{x^2 + 2} - ax}{x} = \lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{x\left(\sqrt{1 + \frac{2}{x^2}} - a\right)}{x} = 1 - a, \text{ pentru orice număr real } a$ 3p $\lim_{x \to +\infty} (f(x) - (1-a)x) = \lim_{x \to +\infty} (\sqrt{x^2 + 2} - x) = \lim_{x \to +\infty} \frac{2}{\sqrt{x^2 + 2} + x} = 0, \text{ deci, pentru orice număr}$ 2p real a, dreapta de ecuație y = (1-a)x este asimptotă spre $+\infty$ la graficul funcției f 2.a) $\int_{1}^{3} \frac{x f(x)}{\operatorname{arctg} x} dx = \int_{1}^{3} x^{3} dx = \frac{x^{4}}{4} \Big|_{1}^{3} =$ 3p 2p **b)** $\int_{1}^{\sqrt{3}} \frac{f(x)}{x} dx = \frac{1}{2} \int_{1}^{\sqrt{3}} (x^2 + 1) \operatorname{arctg} x dx = \frac{x^2 + 1}{2} \operatorname{arctg} x \Big|_{1}^{\sqrt{3}} - \frac{1}{2} \int_{1}^{\sqrt{3}} \frac{x^2 + 1}{x^2 + 1} dx = 2 \cdot \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} -$ 3p $=\frac{5\pi}{12}-\frac{1}{2}x\Big|_{1}^{\sqrt{3}}=\frac{5\pi}{12}-\frac{\sqrt{3}-1}{2}$ 2p Pentru orice $n \in \mathbb{N}^*$ și orice $x \in [0,1]$, $0 \le x^{2n} \le 1$ și $0 \le \operatorname{arctg} x \le \frac{\pi}{4} \Rightarrow 0 \le \operatorname{arctg}^n x \le \left(\frac{\pi}{4}\right)^n$, 3p de unde obținem că $0 \le \int_{0}^{1} f^{n}(x) dx \le \int_{0}^{1} \left(\frac{\pi}{4}\right)^{n} dx = \left(\frac{\pi}{4}\right)^{n}$ Cum $\lim_{n \to +\infty} \left(\frac{\pi}{4}\right)^n = 0$, obţinem că $\lim_{n \to +\infty} \int_0^1 f^n(x) dx = 0$ 2p