Test 3 Solutions

Problem 1 a) $f(x,y) = e^{x+y}$. We have

α	$\partial^{\alpha} f(0,0)$	$\alpha!$
(0,0)	1	1
(1,0)	1	1
(0,1)	1	1
(2,0)	1	2
(1, 1)	1	1
(2,0)	1	2
(3,0)	1	6
(2,1)	1	2
(1, 2)	1	2
(0, 3)	1	6

$$f(x,y) = 1 + x + y + \frac{1}{2}x^2 + \frac{1}{2}y^2 + xy + \frac{1}{6}x^3 + \frac{1}{2}x^2y + \frac{1}{2}xy^2 + \frac{1}{6}y^3 + R_f(x,y)$$

b) $g(x,y) = \sin(xy)$. Since $\sin(xy) = xy + \frac{1}{6}(xy)^3 + \cdots$ then up to order 3, we have

$$g(x,y) = xy + R_g(x,y)$$

Problem 2 $f(x,y) = 3y^2 - 2y^3 - 3x^2 + 6xy$

- a) $\nabla f = (-6x + 6y, 6y 6y^2 + 6x) = 0$ and thus $p_0 = (0, 0), p_1 = (2, 2)$ are two critical points. The function is differentiable everywhere and there is no other critical points.
- b) At p_0 , the Hessian matrix is

$$H_f(0,0) = \left(\begin{array}{cc} -6 & 6 \\ 6 & 6 \end{array} \right),$$

and therefor p_0 is a saddle point. At p_1 , the Hessian matrix is

$$H_f(2,2) = \left(\begin{array}{cc} -6 & 6 \\ 6 & -18 \end{array} \right),$$

and thus p_1 is a maximum.

Problem 3 Consider two curves $y = x^2$ and q = p - 1. Two solutions are given.

i. Minimize the conditional minimization problem

$$\min(x-p)^2 + (x^2-q)^2$$
 subject to $q = p-1$

Make the function

$$F(x, p, q, \lambda) = (x - p)^{2} + (x^{2} - q)^{2} - \lambda(q - p + 1).$$

For $\nabla F = 0$, we obtain

$$\begin{cases} 2(x-p) + 4x(x^2 - q) = 0 \\ -2(x-p) + \lambda = 0 \\ -2(x^2 - q) - \lambda = 0 \\ q = p - 1 \end{cases}$$

Solving above system, gives $x=\frac{1}{2},\,p=\frac{7}{8},\,q=\frac{-1}{8}$ and $\lambda=\frac{-3}{4}.$ Therefore, $R=\frac{3}{4\sqrt{2}}.$

ii. Form the minimization problem

$$F(x, y, p, q, \lambda) = (x - p)^{2} + (y - q)^{2} - \lambda_{1}(y - x^{2}) - \lambda_{2}(q - p + 1)$$

Solving the equation gives again $x=\frac{1}{2},y=\frac{1}{4},\,p=\frac{7}{8}$ and $q=\frac{-1}{8},\,\lambda_1=1,\,\lambda_2=-1$ and $R=\frac{3}{4\sqrt{2}}$.

Problem 4 $f(\theta, \varphi) = (\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)$.

- a) $f(t, \pi/2) = (\cos t, \sin t, 0) \Rightarrow S_1 : x^2 + y^2 = 1$. $f(0, t) = (\sin t, 0, \cos t) \Rightarrow S_2 : x^2 + z^2 = 1$
- b) $\frac{\partial f}{\partial \theta}(0, \pi/2) = (0, 1, 0), \frac{\partial f}{\partial \varphi}(0, \pi/2) = (0, 0, -1).$
- c) These are the same as $\frac{\partial f}{\partial \theta}(0, \pi/2)$ and $\frac{\partial f}{\partial \varphi}(0, \pi/2)$.

Problem 5 a) Define $f(x,y) = \ln y + xy - 1$. It is simply verified that f(1,1) = 0. The function f is C^1 in a neighborhood of (1,1) and furthermore $\partial_y f(1,1) = 2 \neq 0$ and thus there is an interval $I = (1-\delta, 1+\delta)$ and a C^1 function $y: I \to \mathbb{R}$ such that f(x,y(x)) = 0.

b) $F(\vec{x}, y) = (\vec{x}, f(\vec{x}, y))$ where $\vec{x} \in \mathbb{R}^n$ and $f : \mathbb{R}^{n+1} \to \mathbb{R}$. We have

$$DF(\vec{x}_0, y_0) = \begin{pmatrix} I_{n \times n} & 0 \\ \nabla_{\vec{x}}^t f & \frac{\partial f}{\partial y}(\vec{x}_0, y_0) \end{pmatrix}.$$

We observe that $\det DF(\overrightarrow{x_0}, y_0) = \frac{\partial f}{\partial y}(\overrightarrow{x_0}, y_0)$ and therefore DF is invertible at $(\overrightarrow{x_0}, y_0)$ iff $\frac{\partial f}{\partial y}(\overrightarrow{x_0}, y_0) \neq 0$.

Problem 6 Define $f_1(x,y) = x + y + \sin(xy)$, $f_2(x,y) = \sin(x^2 + y)$ and the C^1 function $F(x,y) = (f_1(x,y), f_2(x,y))$. We have F(0,0) = (0,0) and furthermore $DF(0,0) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is invertible. The inverse function theorem guarantees the existence of open sets U, V of (0,0) such that $F: U \to V$ is one to one and onto. Choose a small enough such that $(a, 2a) \in V$ and thus $F^{-1}(a, 2a) \in U$.

Problem 7 Let $\varepsilon = 1$ and assume $\delta > 0$ exists such that if $|x-y| < \delta$ then $|x^2 - y^2| < 1$ for all $x, y \in [0, \infty)$. Choose $y = x + \frac{\delta}{2}$ and thus

$$\frac{\delta}{2}\left(2x + \frac{\delta}{2}\right) < 1,$$

for all $x \in [0, \infty)$. If we choose $x = \frac{1}{\delta}$, we obtain $1 + \frac{\delta^2}{4} < 1$ that is impossible.