КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

	фi:	зичний фак	ультет	//	
	(1	назва факультет	у, інституту)		
Кафедракваг	нтової теорії по	оля та космо	мікрофізики	and described to	
РОБОЧА І ТЕОРІ	Я ФУНКЦІЙ	і́ КОМПЛІ	Заступниклах факультет чальної Ексної змін	Оксан Врис	льної роботи а МОМОТ _2022 року
	(пові		ьної дисципліни)		
		для студ	ентів		
галузь знань	1	10 Природн (шифр і н	ичі науки		
спеціальність	1	04 Фізика т	а астрономія		
освітній рівень		(шифр і назва сп	гијальності)		
освітни рівень	(мо	бака. элодший бакалавр, б	іакалавр, магістр)		-
освітня програма	фізичне	е матеріало	знавство / неме	еталічне	
		матеріало (назва освітнью	ЗНАВСТВО		
вид дисципліни	OR 1.24	обов'я			MARKANIA PROGRAMMA
		Форма на	punua		денна
		Навчальні			2022/2023
		Семестр	in pik		3
		-	кредитів ECTS		3
			тадання, навчанн	R	українська
			слючного контро.	IIIO	іспит
Викладач: <u>Барабан</u>	ı Олег Віталійов	-	лючного контро.	лю	_ICHIPI
Пролонгован	но: на 20/20	н.р	(підпис, ПІБ, дата)	«»	20 p.
,	на 20/20	н.р			20p

КИЇВ — 2022

Розробник: Барабаш Олег Віталійович, к. ф.-м. наук, доцент кафедри квантової теорії поля та космомікрофізики

3ATB	ЕРДЖЕНО				
Зав.	кафедри	квантової	теорії	поля	та
космо	мікрофізиі	ки			
he	у (підпис)		це та ініціали)	
Прото	окол № 17	' від « 27 »	травня	2022 p.	

Савынено науково - методичного комп	стею фізичного факуль	iciy.
Протокол від «_10_» _червня_2022 ро	оку №_11	
Голова науково-методичної комісії _	(підпис)	(Олег ОЛІХ) (прізвище та ініціали)
//		

- **1. Мета дисципліни** ознайомлення й оволодіння сучасними математичними методами, теоретичними положеннями та основними застосуваннями методів теорії функцій комплексної змінної у математиці та фізиці, сприяння розвитку логічного й аналітичного мислення студентів.
- 2. Попередні вимоги до опанування або вибору навчальної дисципліни (за наявності):
 - 1. Знати основи алгебри та аналізу, диференціальне та інтегральне числення функцій дійсного аргументу.
 - 2. **Вміти** розв'язувати задачі з математичного аналізу, володіти диференціальним та інтегральним численням функцій дійсного аргументу.
 - 3. **Володіти навичками** опрацьовувати літературу, роботи з інтерактивними і мультимедійними засобами, взаємодії з колегами під час навчання.
- **3. Анотація навчальної дисципліни**: теорія функцій комплексної змінної ϵ базовою математичною дисципліною, в рамках якої студенти оволодіють основними поняттями комплексної алгебри та методами комплексного аналізу та навчяться використовувати отримані знання в задачах математичного аналізу.
- **4.** Завдання (навчальні цілі): основними завданнями вивчення дисципліни «Теорія функцій комплексної змінної» є оволодіння необхідними теоретичними положеннями і методами курсу та застосування їх до профільних дисциплін, формування системи знань та застосування властивостей основних понять курсу для розв'язування практичних задач.

Згідно освітньо-професійної програми дисципліна забезпечує набуття здобувачами освіти наступних компетентностей:

Інтегральної:

Здатність розв'язувати складні спеціалізовані задачі та практичні проблеми з фізики у професійній діяльності або у процесі подальшого навчання, що передбачає застосування певних теорій і методів фізики і характеризується комплексністю та невизначеністю умов.

Загальних

- ЗК1. Здатність до абстрактного мислення, аналізу та синтезу.
- 3К3. Навички використання інформаційних і комунікаційних технологій.
- ЗК5. Здатність приймати обгрунтовані рішення.
- 3К6. Навички міжособистісної взаємодії.
- ЗК8. Здатність оцінювати та забезпечувати якість виконуваних робіт.
- ЗК9. Визначеність і наполегливість щодо поставлених завдань і взятих обов'язків.
- 3К10. Прагнення до збереження навколишнього середовища.
- 3К12. Здатність спілкуватися державною мовою як усно, так і письмово. *фахових*:
- ФК1. Знання і розуміння теоретичного та експериментального базису сучасної фізики та астрономії.
- ФК2. Здатність використовувати на практиці базові знання з математики як математичного апарату фізики і астрономії при вивченні та дослідженні фізичних та астрономічних явищ і процесів.
- ФКЗ. Здатність оцінювати порядок величин у різних дослідженнях, так само як точності та значимості результатів.
- ФК4. Здатність працювати із науковим обладнанням та вимірювальними приладами, обробляти та аналізувати результати досліджень.
- ФК5. Здатність виконувати обчислювальні експерименти, використовувати чисельні методи для розв'язування фізичних та астрономічних задач і моделювання фізичних систем.
- ФК8. Здатність виконувати теоретичні та експериментальні дослідження автономно та у складі наукової групи.
- ФК9. Здатність працювати з джерелами навчальної та наукової інформації.
- ФК11. Розвинуте відчуття особистої відповідальності за достовірність результатів досліджень та дотримання принципів академічної доброчесності разом з професійною гнучкістю.

5. Результати навчання за дисципліною:

	Результат навчання (1. знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність)	Форми (та/або методи і технолог	Методи оцінювання та ії) пороговий	Відсоток у підсумкові й оцінці з
Ко д	Результат навчання	викладання і навчання	критерій оцінювання (за необхідності)	и оцінці з дисциплін и
		1. Знати		
1.1	поняття комплексного числа та операції з ними: добуток, ділення, додавання та віднімання	лекціїпрактичні заняттяконсультації	контроль	8
1.2	основні теореми диференціального числення функцій комплексного аргументу	• самостійна робота	перевірка домашніх завданьекзаменаційна робота	8
1.3	основні теореми інтегрального числення функцій комплексного аргументу, зокрема теореми про інтегрування аналітичних функцій		possin	8
1.4	основні результати теорії аналітичних функцій, ряди Тейлора та Лорана			8
1.5	класифікацію особливих точок функцій та основні властивості лишків функцій			8
			Загалом:	40
		2. Вміти		
2.1	виконувати алгебраїчні операції з комплексними числами	• лекції • практичні заняття	• контрольні роботи • модульний	8
2.2	диференціювати функції комплексного аргумента	консультаціїсамостійна робота	контроль • перевірка домашніх завдань	8
2.3	інтегрувати функції комплексного аргументу по контуру	pooora	• екзаменаційна робота	8
2.4	розкладати функції комплексного аргумента в ряди Тейлора та Лорана			8
2.5	застосовувати теорію лишків при обчисленні означених інтегралів, підсумовуванні рядів, розв'язанні лінійних диференційних рівнянь			8
			Загалом:	40
	3.	Комунікація		
3.1	здатність бути активним учасником обговорень	лекціїпрактичні заняття	•	3
3.2	презентувати результати самостійної роботи у форматі усних та/або письмових повідомлень із/без використання наочних	консультаціїсамостійна робота	контроль • перевірка домашніх завдань	4

	засобів		• екзаменаційна робота							
3.3	майстерність методологічного сумніву висловленої позиції колег та/або авторитетного джерела		1	3						
	Загалом:									
4. Автономність та відповідальність										
4.1	віднаходити необхідну інформацію з різних джерел	• лекції • практичні заняття	• контрольні роботи • модульний	4						
4.2	застосовувати отримані знання в професійній діяльності	 практичні заняття консультації самостійна робота 	контроль • перевірка домашніх завдань	3						
4.3	демонструвати вміння працювати в колективі та самостійно	poooru	• екзаменаційна робота	3						
			Загалом:	10						

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання (необов'язково для вибіркових дисциплін які не входять до блоків спеціалізації)

Результати навчання дисципліни			1					2				3			4	
Програмні результати навчання	1	2	3	4	5	1	2	3	4	5	1	2	3	1	2	3
ПРН2. Знати і розуміти фізичні основи астрономічних явищ: аналізувати, тлумачити, пояснювати і класифікувати будову та еволюцію астрономічних об'єктів Всесвіту (планет, зір, планетних систем, галактик тощо), а також основні фізичні процеси, які відбуваються в них.	+	+	+	+	+	+	+	+	+	+						
ПРН3. Знати і розуміти експериментальні основи фізики: аналізувати, описувати, тлумачити та пояснювати основні експериментальні підтвердження існуючих фізичних теорій.	+	+	+	+	+	+	+	+	+	+						
ПРН12. Вміти представляти одержані наукові результати, брати участь у дискусіях стосовно змісту і результатів власного наукового дослідження.											+	+	+			
ПРН16. Мати навички роботи із сучасною обчислювальною технікою, вміти використовувати стандартні пакети прикладних програм і програмувати на рівні, достатньому для реалізації чисельних методів розв'язування фізичних задач, комп'ютерного моделювання фізичних та астрономічних явищ і процесів, виконання обчислювальних експериментів.														+	+	+
ПРН19. Знати та розуміти необхідність														+	+	+

збереження та примноження моральних, культурних та наукових цінностей і досягнень суспільства.									
ПРН24. Розуміти місце фізики та астрономії у загальній системі знань про природу і суспільство та у розвитку суспільства, техніки і технологій.							+	+	+

7. Схема формування оцінки.

Контроль знань здійснюється за системою ECTS, яка передбачає дворівневе оцінювання засвоєного матеріалу, зокрема:

• оцінювання теоретичної підготовки

(результати навчання: **знати** 1.1 - 1.6), що складає 40% від загальної оцінки;

• оцінювання практичної підготовки

(результати навчання: **вміти** 2.1-2.6; **комунікація** 3.1-3.6; **автономність та відповідальність** 4.1-4.6), що складає 60% загальної оцінки.

7.1 Форми оцінювання студентів:

- семестрове оцінювання розмежоване поміж практичними заняттями, лекційними заняттями, самостійною роботою. Загалом форми викладання і навчання проводяться у форматі усних та письмових завдань, обов'язкову кількість яких оцінюють різною кількістю балів:
- min найменша кількість балів (їх отримання є свідченням, що студент приділив недостатньо уваги окремому завданню)
- max висока кількість балів (їх отримання є свідченням, що студент приділив достатньо уваги та самоорганізації для опрацювання теми)

Форми викладання і	Форми контролю	Результати	Кількісті	ь балів
навчання		навчання	min	max
Проктучний рор чогила	Контрольна робота 1	1.1-1.5 2.1-2.5 3.1-3.3	8	15
Практичні завдання	Контрольна робота 2	4.1-4.3		
Лекційні заняття	Модульний контроль	1.1-1.5 2.1-2.5 3.1-3.3 4.1-4.3	9	30
Самостійна робота	Виконання домашніх завдань	1.1-1.5 2.1-2.5 3.1-3.3 4.1-4.3	7	15
	24	60		

⁻ відпрацювання пропусків практичних занять, всі пропуски студентом без поважної причини повинні бути відпрацьовані.

⁻ допуском студента до підсумкового оцінювання є виконання обов'язкових самостійних

завдань, відпрацювання пропусків практичних занять та набирання мінімальної (24) кількості балів.

- підсумкове оцінювання у формі екзамену здійснюється у формі письмового екзамену. Екзаменаційний білет включає три теоретичних питання і сім практичних. Загальна кількість балів за екзаменаційну роботу складає 40 балів (кожне завдання оцінюється в 4 бали).

Оцінка за екзаменаційну роботу вноситься у екзаменаційну відомість тільки якщо вона рівна або більша 20 балам (тобто від 20 до 40). Якщо загальна оцінка за екзаменаційну роботу буде меншою 20 балів, тоді у екзаменаційну відомість вноситься 0 балів і іспит є нескладеним і загальна оцінка за навчальну дисципліну є «незадовільною».

7.2 Організація оцінювання:

Форма	Форми .	.	Графік оцінювання				
оцінюва ння	викладання і навчання	Форми контролю	конкретизований	загальний			
	Практичні	Контрольна робота 1 Після теми 2					
Семестро	завдання	Контрольна робота 2	Після теми 4	Впродовж теоретичного навчання у			
<i>5.</i>	Самостійна робота	Виконання домашніх завдань	В рамках теоретичного навчання, до початку семестрового контролю	семестрі			
Підсумк ова	Письмова робота	Екзаменаційна робота	Залежно від графіку навчання	Впродовж семестрового контролю			

7.3 Шкала відповідності оцінок

зэ шкала ыдпоыдпості оциток							
Відмінно / Excellent	90-100						
Д обре / Good	75-89						
Задовільно / Satisfactory	60-74						
Незадовільно / Fail	0-59						
Зараховано / Passed	60-100						
He зараховано / Fail	0-59						

ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

Змістовий модуль 1 Комплексні числа, функції та операції з ними

Тема 1. Комплексні числа та операції з ними.

Означення комплексного числа, різні форми запису, основні алгебраїчні операції: додавання, віднімання, множення та ділення комплексних чисел, операція піднесення в степінь, показникова та логарифмічна функції. Стеріографічна проекція.

Тема 2. Функції комплексної змінної.

Функції комплексного аргументу: однозначні та неоднозначні функції, диференційовність функцій, умови Коші-Рімана та наслідки з них, аналітична (голоморфна) і регулярна функції. Інтегрування аналітичних функцій: теорема Коші та наслідки з неї, формула Ньютона-Лейбниця, інтегральна формула Коші. Степеневий ряд та область його збіжності, теорема Абеля та наслідки з неї, теорема Веєрштраса, ряд Тейлора та радіус його збіжності, ряд Лорана. Типи особливих точок: полюс, суттєво особлива точка, точка розгалуження, лишки функцій, теорема Коші про лишки, способи обрахунку лишків.

Змістовий модуль 2 Застосування методів ТФКЗ в задачах матаналізу та диференційних рівнянь.

Тема 3. Теорія лишків та її застосування.

Теорема Коші про лишки та її застосування для обрахунку означених інтегралів. Лема Жордана. Підсумовування рядів.

Тема 4. Операційне числення та асимптотичний аналіз.

Перетворення Лапласа: зображення та оригінал, теорема обернення (формула Меліна), властивості перетворення Лапласа, застосування перетворення Лапласа для знаходження розв'язку лінійних диференційних рівнянь. Асимптотичні оцінки, символіка O, о. Асимптотика інтегралів. Інтеграли Лапласа та Φ ур'є, вихід в комплексну площину.

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ТЕМАТИЧНИЙ ПЛАН ЛЕКЦІЙ І СЕМІНАРСЬКИХ ЗАНЯТЬ

No		Кількість годин								
п/п	Назва лекції	лекції	семінари	C/P						
	Змістовий модуль 1 Комплексні числа, функції та операції з ними									
1	Тема 1 Комплексні числа та операції з ними	2	4	10						
2	Тема 2. Функції комплексної змінної	6	10	15						
3	Модульна контрольна робота 1		2							
Зміс	Змістовий модуль 2 Застосування методів ТФКЗ в задачах матаналізу та диференційних									

	рівнянь							
4	Тема 3 Теорія лишків та її застосування	4	6	10				
5	Тема 4 Операційне числення та асимптотичний аналіз	2	6	10				
6	Модульна контрольна робота 2		2					
	ВСЬОГО	14	30	45				

Загальний обсяг **90**_ год, в тому числі: Лекцій — _**14**_ год. Семінари(практичні)— **30** год. Самостійна робота - _**45**_ год.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА:

Основна:

Консультації — 1 год.

- 1. В.Г.Самойленко, В.А.Бородін, Г.В.Верьовкіна, А.В.Ловейкін, І.Б.Романенко. Комплексний аналіз. Приклади і задачі: навчальний посібник. Видавництво Київський Університет, 2010 р., 224 с.
- 2. С.М. Єжов, М.А. Разумова. Теорія функцій комплексної змінної. Видавництво Київський Університет, 2012 р., 191 с.
- 3. Т.А. Мельник, Комплексний аналіз. Видавництво Київський Університет, 2015, 192 с.
- 4. Сидоров Ю.В., Федорюк М.В., Шбунин М.И. Лекции по теории функций комплексной переменной. М.: Наука, 1989.
- 5. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексной переменной. М.: Наука, 1988.

Додаткова:

- 1. S. Lang "Complex Analysis", Springer Science, 1999, 498 p.
- 2. J. M. Howie "Complex Analysis", Undergraduate mathematics series. Springer Science, 2003, 274 p.
- 3. В.В.Дрозд. Функції комплексної змінної: Практикум з компл. аналізу для студ. 3 курсу фіз.-мат. ф-ту:. К.: НТУУ «КПІ імені Ігоря Сікорського», 2017, 88 с.

ЗМІСТОВИЙ МОДУЛЬ 1

Комплексні числа, функції та операції з ними

ТЕМА 1. Комплексні числа та операції з ними – ($_6_$ год.)

<u>Лекція 1</u>. Комплексні числа – 2 год.

Означення комплексного числа, різні форми запису, основні алгебраїчні операції: додавання, віднімання, множення та ділення комплексних чисел (КЧ), операція піднесення в степінь, показникова та логарифмічна функції.

Семінар 1-2. Комплексні числа – 4 год.

План

- 1. Показникова та декартова форми запису КЧ. Геометрична інтерпретація КЧ.
- 2. Множення, ділення та піднесення в комплексну степінь КЧ.
- 3. Знаходження розв'язків алгебраїчних рівнянь.
- 4. Логарифм від комплексного числа.

ТЕМА 2. Функції комплексної змінної — (22 год.)

<u>Лекція 2</u>. Функції комплексного аргументу – 2 год.

Означення функції комплексного аргументу, однозначні та неоднозначні функції, диференційовність функцій, умови Коші-Рімана та наслідки з них, аналітична (голоморфна) і регулярна функції.

<u>Семінар 3-4</u>. Функції комплексного аргументу – 4 год.

План.

- 1. Умови Коші-Рімана в декартовій та полярній системі координат.
- 2. Знаходження аналітичної функції за її дійсною (уявною) частиною.

<u>Лекція 3</u>. Інтегрування функцій комплексної змінної – 2 год.

Інтеграл від функції комплексної змінної (ФКЗ), інтегрування аналітичних функцій: теорема Коші та наслідки з неї, формула Ньютона-Лейбниця, інтегральна формула Коші.

<u>Семінар 5-6</u>. Інтегрування функцій комплексної змінної – 4 год.

План

- 1. Інтегрування ФКЗ методом зведення до криволінійного інтегралу 2-го роду.
- 2. Інтегрування аналітичних функцій за допомогою формули Ньютона-Лейбниця та інтегральної формули Коші.

Лекція 4. Степеневі ряди – 2 год.

Степеневий ряд та область його збіжності, теорема Абеля та наслідки з неї, теорема Веєрштраса, ряд Тейлора та радіус його збіжності, ряд Лорана.

<u>Семінар 7-8</u>. Степеневі ряди – 4 год.

План.

- 1. Розклад функції в ряд Тейлора та радіус його збіжності.
- 2. Розклад функції в ряд Лорана.

<u>Лекція 5</u>. Особливі точки та лишки – 2 год.

Типи особливих точок: полюс, суттєво особлива точка, точка розгалуження, лишки функцій, теорема Коші про лишки, способи обрахунку лишків.

<u>Семінар 9</u>. Особливі точки та лишки – 2 год.

План.

- 1. Знаходження особливих точок функції та їх тип.
- 2. Обрахунок лишків.

Контрольні запитання: комплексне число та форми його запису, дії з КЧ, аналітична функція та умови Коші-Рімана (різні форми запису), інтегральна формула Коші, особливі точки та їх види, лишки функції, лишок функції в нескінченності, теорема про суму лишків.

Поза аудиторна контрольна робота: розв'язок лінійних диференційних рівнянь методом інтегрального перетворення Лапласа.

ТИПОВЕ ЗАВДАННЯ МОДУЛЬНОЇ КОНТРОЛЬНОЇ РОБОТИ

- 1. Знайти всі розв'язки рівняння $z^5 z^* = i$.
- 2. Знайти аналітичну функцію f = u(x, y) + v(x, y) якщо u + v = 2x.
- 3. Знайти інтеграл $\oint_C (z^2 + z^*) dz$ по контуру $C : \varphi = 0, \varphi = \pi/3, |z| = 1$.
- 4. Вказати всі особливі точки функції f(z) та їх тип, якщо $f(z) = \frac{z+1}{z^6(1+z^2)}$. Знайти лишки в усіх особливих точках та в точці $z = \infty$.
- 5. Знайти радіує збіжності ряду Маклорена функції $f(z) = \frac{1}{Ln(z^2-4z+5)}$.
- 6. Розкласти функцію $f(z) = \frac{1}{z(2i+z)}$ в ряд Лорана в кільці, що включає в себе точку z=i і з центром в точці z=1. Яка область збіжності цього ряду?

ЗМІСТОВИЙ МОДУЛЬ 2

Застосування методів ТФКЗ в задачах матаналізу та диференційних рівнянь.

ТЕМА 3. Теорія лишків та її застосування — (8 200.)

<u>Лекції 6-7</u>. Обчислення інтегралів за допомогою лишків – 3 год.

Застосування теореми Коші про лишки для обрахунку означених інтегралів. Лема Жордана. знаходження інтегралів виду

$$\int_{0}^{2\pi} R(\cos\varphi,\sin\varphi)d\varphi, \int_{-\infty}^{+\infty} R(x)dx, \int_{-\infty}^{+\infty} e^{i\alpha x}R(x)dx, \int_{0}^{+\infty} x^{\alpha}R(x)dx, \int_{0}^{+\infty} (\ln x)^{n}R(x)dx.$$

<u>Семінари 6-7</u>. Обчислення інтегралів за допомогою лишків — 4 год.

План.

1. Застосування теорії лишків для знаходження означених інтегралів певних типів.

<u>Лекції 7</u>. Обчислення рядів за допомогою лишків – 1 год.

Застосування теореми Коші про лишки для обрахунку рядів.

ТЕМА 4. Операційне числення та асимптотичний аналіз – (4_2 год.)

<u>Лекція 8</u>. Операційне числення – 2 год.

Перетворення Лапласа: зображення та оригінал, теорема обернення (формула Меліна), властивості перетворення Лапласа, застосування перетворення Лапласа для знаходження розв'язку лінійних диференційних рівнянь.

<u>Семінар 8</u>. Операційне числення – 2 год.

План.

- 1. Зображення основних елементарних функцій.
- 2. Застосування перетворення Лапласа для знаходження розв'язку лінійних диференційних рівнянь.

Завдання для самостійної роботи (45 год.)

- 1. Операція піднесення в степінь, показникова та логарифмічна функції.
- 2. Різні форми запису умов Коші-Рімана.
- 3. Інтегральна формула Коші та її застосування.
- 4. Аналітичне продовження функцій.
- 5. Особливі точки комплекснозначних функцій. Теорема Пікара.
- 6. Обчислення інтегралів за допомогою теорії лишків.
- 7. Застосування операційного числення для розв'язку диференційних рівнянь в частинних похідних.
- 8. Застосування теорії лишків для знаходження сум рядів.
- 9. Асимптотика інтегралів: метод Лапласа та метод перевалу.

Контрольні запитання: теорема Коші про лишки, лема Жордана, перетворення Лапласа та його властивості, формула обернення Меліна.

ТИПОВЕ ЗАВДАННЯ МОДУЛЬНОЇ КОНТРОЛЬНОЇ РОБОТИ

Знайти інтеграли:

$$1. \qquad \int_{0}^{2\pi} \frac{d\varphi}{2 + \sin\varphi};$$

$$2. \qquad \int_{-\infty}^{\infty} \frac{\cos x dx}{x^2 - 2x + 10};$$

3.
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + 2x + 2)^2};$$

$$4. \qquad \int\limits_0^\infty \frac{\sqrt{x} dx}{x^2 - x + 1} \, .$$

Питання на іспит

- 1. Комплексні числа та дії над ними.
- 2. Умови Коші-Рімана та наслідки з них.
- 3. Інтегральна формула Коші.
- 4. Формула Ньютона-Лейбниця.
- 5. Радіус збіжності степеневого ряду. Теореми Абеля та Веєрштрасса.
- 6. Розклад функцій в ряд Тейлора. Радіус збіжності ряду.
- 7. Ряд Лорана та його область збіжності.
- 8. Типи особливих точок.
- 9. Теорема Коші про лишки.
- 10. Способи обрахунку лишків.
- 11. Обчислення типових інтегралів за допомогою теорії лишків. Лема Жордана.
- 12. Операційне числення. Перетворення Лапласа.
- 13. Застосування перетворення Лапласа для знаходження розв'язку лінійних диференційних рівнянь.
- 14. Формула обернення Меліна.

ЗАДАЧІ ДЛЯ САМОСТІЙНОЇ РОБОТИ

1) Обчислити:

a)
$$\left(\frac{\pi}{3} + \frac{i}{2}\ln 3\right)$$
, \hat{a} $\ln\left(\frac{1+i^{1001}}{\sqrt{2}}\right)$, \hat{a} $(3-4i)^{1+i}$.

- 2) Для яких z всі значення arcsin z дійсні?
- 3) Знайти $\Re ef(z)$, $\Im mf(z)$ та |f(z)| для $f(z) = \sin z$.
- 4) Розв'язати рівняння:

a) ctg z=
$$-\frac{3}{5}i$$
, \(\alpha\) 2chz+shz=i, \(\alpha\) sin $z = ishz$.

5) Знайти множину розв'язків рівняння:

a)
$$|z + \sqrt{1+z^2}| = 1$$
, \vec{a}) $\left| \frac{z}{z+1} \right| < 1$.

- 6) Виходячи з геометричних міркувань, довести, що обидва значення $\sqrt{z^2-1}$ лежать на прямій, що проходить через початок координат і паралельна бісектрисі внутрішнього кута трикутника з вершинами в точках -1, 1 та z, проведеної з точки z.
- 7) Початкове значення $\arg f(z)$ в точці z=2 прийнято рівним нулю. Точка z робить один повний оберт проти годинникової стрілки по колу з центром в початку координат і повертається в точку z=2. Знайти значення $\arg f(z)$ після вказаного оберту, якщо:

a)
$$f(z) = \sqrt{z^2 + 2z - 3}$$
, (a) $f(z) = \sqrt{\frac{z - 1}{z + 1}}$, (a) $f(z) = \ln(z + 1/z)$.

8) Знайти аналітичну функцію f(z) = u + iv, якщо

a)
$$u = x^2 + y^2 + 5x + y$$
, á) $u = x^3 + 6x^2y - 3xy^2 - 2y^3$, â) $2u + v = x^2 - y^2$.

- 9) Знайти аналітичну функцію f(z), якщо $\arg f(z) = x^2 y^2$.
- 10) Якій умові повинна задовольняти функція g(x, y) для того, щоб існувала аналітична функція f(z) = u + iv, для якої виконується рівняння:
 - a) au + bv = g(x, y), $a,b c\hat{a}\ddot{a}\hat{a}i^3 \hat{e}\hat{i}i \ddot{e}\tilde{a}\hat{e}\tilde{n}i^3 \div \hat{e}\tilde{n}\ddot{e}\hat{a}; \hat{a}i^3 \hat{a}i^3 + \hat{a}i^3$
- 11) Будь-яку функцію f = u(x, y) + iv(x, y) можна записати як функцію від змінних z та z^* :

$$f = u\left(\frac{z+z^*}{2}, \frac{z-z^*}{2i}\right) + iv\left(\frac{z+z^*}{2}, \frac{z-z^*}{2i}\right) = F(z, z^*).$$

Доведіть, що умова диференційовності функції f в точці z_0 еквівалентна рівнянню

$$\left(\frac{\partial F}{\partial z^*}\right)_{(z_0,z_0^*)} = 0.$$

Як виражається через функцію $F(z,z^*)$ значення похідної $f'_z(z_0)$?

- 12) Для яких z функція f(z) є диференційовною? Чому дорівнює ця похідна?
 - a) $f(z)=z^*(z-a)$, $(a) f(z)=z^2 arg z$, (a) f(z)=ln|z|.
- 13) Нехай $\mathbf{E} = (u(x, y), v(x, y))$ векторне поле на площині. Співставимо вектору \mathbf{E} комплекснозначну функцію E = u + iv. Доведіть, що система диференційних рівнянь $div \mathbf{E} = 0$, $(rot \mathbf{E})_3 = 0$,

еквівалентна одному рівнянню $\partial E/\partial z = 0$, загальний розв'язок якого $E = E(z^*)$ — довільна функція від змінної $z^* = x - iy$.

14) Знайти суму рядів:

a)
$$\sum_{n=0}^{N} \sin(2n+1)\varphi$$
, \vec{a}) $\sum_{n=1}^{\infty} \frac{\cos n\varphi}{n}$, \vec{a}) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin n\varphi}{n}$, $-\pi < \varphi < \pi$.

- 15) Розкласти в ряд Тейлора по степеням (z-1) функцію $f(z) = \frac{z^2}{(1+z)^2}$.
- 16) Розкласти в ряд Лорана в околі точки z = i та $z = \infty$ функцію $f(z) = \frac{1}{(1+z^2)^2}$.
- 17) З'ясувати, чи допускає вказана багатозначна функція розклад в ряд Лорана в околі даної точки

a)
$$\sqrt{\frac{\pi}{2} - \arcsin z}$$
, $z=1$; \vec{a}) $\sqrt{\frac{\pi}{4} - \arcsin z}$, $z=1/\sqrt{2}$.

18) Знайти область збіжності наступних функціональних рядів:

a)
$$\sum_{n=1}^{\infty} 2^n z^{n!}$$
, 6) $\sum_{n=1}^{\infty} n^n z^{2^n}$, B^*) $\sum_{n=1}^{\infty} n^{2^n} \left(\frac{z}{1+z}\right)^{n!}$.

19) Знайти радіус збіжності ряда Маклорена для функції:

a)
$$f(z) = \ln\left(\frac{\sin z}{z}\right)$$
, 6) $f(z) = \frac{\ln(2 + \sin z)}{z^2 + 4}$.

20) Знайти особливі точки функції (для полюсів вказати їх порядок):

a)
$$z-1/z$$
, $(a) \frac{1}{z(z^2+4)^2}$, $(a) e^{1/z}$, $(b) \frac{1}{\ln(z^2-4z+5)}$

21) Знайти лишки функцій відносно всіх ізольованих особливих точок та точки $z = \infty$

à)
$$f(z) = \frac{\sin 2z}{(z+1)^3}$$
, 6) $f(z) = \frac{z^2 + z - 1}{z^2(z-1)}$, â) $f(z) = z \cot z^2$, ā) $f(z) = e^{z+1/z}$,

22) Знайти контурні інтеграли:

а)
$$\int_C \frac{z \, dz}{(z-1)(z-2)^2}$$
, äå $C -$ коло $|z-2| = 1/2$,

б)
$$\frac{1}{2\pi i} \int_C \sin^2(1/z) dz$$
, де $C -$ коло $|z| = 2$,

в)
$$\int_C \frac{z}{z^*} dz$$
, де C – контур, що зображений на малюнку 1.

$$\Gamma^*$$
) $\int_C \ln[z(z^2-4)]dz$, де C – контур, що починається в точці $z=3$ і закінчується в точці $z=-1$ (дивись малюнок 2). Вважати, що $\ln[z(z^2-4)]_{z=3}=\ln 15$.

23) Знайти інтеграли:

a)
$$\int_0^\infty \frac{\cos x}{x^4 + 8x^2 + 16} dx$$
, \hat{a}) $\int_{-\infty}^\infty \frac{dx}{x^2 - 2ix - 2}$, \hat{a}) $\int_0^\infty \frac{x^2 dx}{(x^2 + a^2)^3}$, \hat{a}) $\int_0^\infty \frac{x^p dx}{(x + 1)^2}$, $-1 д)
$$\int_0^\pi (x + ia) dx$$
, $\Im m a = 0$, $\int_0^\infty \frac{(b + a \cos \varphi) d\varphi}{a^2 + b^2 + 2ab \cos \varphi}$, $|a| \neq |b|$, \hat{a}) $\int_{-\infty}^\infty \frac{e^{ax}}{1 + e^x} dx$, $0 < a < 1$.$

24) Знайти інтеграли:

a)
$$\int_0^1 \left(\frac{x}{1-x}\right)^{1/3} \frac{dx}{1+x^2}$$
, \tilde{a}) $\int_{-1}^1 \frac{\sqrt[4]{(1-x)(1+x)^3}}{1+x^2} dx$, \tilde{b}) $\int_0^\infty \frac{\sqrt{x} dx}{(1+x^n)^2}$, \tilde{a}) $\int_0^\infty \frac{dx}{(1+x)(1+x^2)}$, \tilde{a}) $\int_0^1 \ln \frac{1-x}{x} \frac{dx}{x+a}$, $\tilde{a} > 0$, \tilde{b}) $\int_0^\infty \frac{\cosh x}{x^2+a^2} dx$, \tilde{b}) $\int_0^\infty \frac{\ln x}{(1+x)\sqrt{x}} dx$, \tilde{b}) $\int_0^\infty \frac{x-\sin x}{x^3(x^2+a^2)} dx$.

25) Знайти асимптотичну поведінку інтегралу $I(\lambda)$ при $\lambda \to +\infty$.

a)
$$I(\lambda) = \int_0^1 \ln x e^{i\lambda x} dx$$
, $a) I(\lambda) = \int_{-\infty}^\infty \frac{e^{i\lambda x}}{\sqrt{1 + x^{2n}}} dx$.

26) За допомогою теорії лишків, знайти суми рядів

a)
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$$
, \vec{a}) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2 + a^2}$.

27) Розв'язати операційним методом

a)
$$x''-2x'+2x=1$$
, $x(0) = x'(0) = 0$;

6)
$$x''-2x'=e^{-2t}$$
, $x(0)=x'(0)=0$;

B)
$$x''+4x'+4x=2e^{-2t}\sin t$$
, $x(0)=-1$, $x'(0)=1$;

$$\Gamma^*$$
) $x''+tx'-(t+1)x=0$, $x(0)=x'(0)=1$;

$$\pi^*$$
) $x''+(t+1)x'+tx=0$, $x(0)=1, x'(0)=-1$;

$$e^*$$
) $tx''+(2t-1)x'+(t-1)x=0$, $x(0)=1$, $x'(0)=-1$.