

Logic & Problem Solving Lecture week 23

Linear Programming Using Graphical Method

Agenda:

- Week 23 lecture coverage
 - Introduction to LPP
 - Mathematical Formulation of LPP
 - Solving LPP graphically

Important Notice:

Please bring scale, pencil and A4 graph paper on your tutorial classes.

Unexpected Goals in Football....

Lets talk about group course work

This coursework accounts for 50% of your total module marks.

You are supposed to form a group of **3 students** and do the group coursework.

Every group will be given with 3 questions (same for all groups) and groups are supposed to answer all the question.

Warning:

London Metropolitan University and Islington College takes Plagiarism seriously. Offenders will be dealt with sternly.

Topics to be covered for GW...

- ➤ Linear Programming Problem
- > Break even Analysis Problem
- ➤ How to use excel for solving Linear Programming Problems?
- ➤ How to write a procedure in MS -excel to calculate taxes?

Any Questions?

Linear Programming Problem:

- Linear programming has nothing to do with computer programming.
- The use of the word "programming" here means "choosing a course of action."
- Linear programming involves choosing a course of action when the mathematical model of the problem contains only linear functions.

Linear Programming Problem:

A **linear programming** is a mathematical techniques which is used to solve optimization problems (Maximization/Minimization).

The linear programming model consists of the following components:

- Decision Variables
- Objective Function
- *****Constraints

Problem 1:

A watch dealer wishes to buy new watches and has two models M1 and M2 to choose from. Model M1 costs \$100 and M2 costs \$200.In view of the showcase of the dealer, he wants to buy watches not more than 30 and can spend up to \$4000. The watch dealer can make a profit of \$20 in M1 and \$50 in M2.How Many of each model should he buy to obtain maximum profit?

Problem analysis:

Cost Price	\$100 for M1	\$200 for M2
Profit	\$20 from M1	\$50 from M2
Showcase constraints	Not more than 30 Watches	
Investment Constraints	Can Spend only up to \$4000	

Mathematical Formulation of LPP:

For Decision Variables:

Let **x** and **y** be the number of watches of model M1 and M2 the dealer should purchase in order to maximize his profit .

For Objective Function:

Total profit = (20x + 50y)

Let Z = 20x + 50y

Maximize Z = 20x + 50y

For Constraints:

 $x + y \le 30$ (Showcase Constraints)

100x + 200y ≤ **4000** (Investment Constraints)

x,y≥0 (Non negativity Constraints)

Problem 2:

A manufacturer produces cycles and scooters, each of which must be processed through two machines A and B. Machine A has a maximum of **120 hours** available and machine B has a maximum of **180 hours** available. Manufacturing a cycle requires **6 hours in machine A** and **3 hours in machine B**. Manufacturing a scooter requires **4 hours in machine A** and **10 hours in machine B**. If profits are **\$45** for cycle and **\$55** for a scooter ,formulate a mathematical model for the **maximization** of the profits .

Problem analysis:

For cycle	6 hours in Machine A	3 hours in machine B
For Scooter	4 hours in Machine A	10 hours in machine B
Profit	\$45 from cycle	\$55 from scooter
Machine A constraints	Can operate Maximum 120 hours	
Machine B constraints	Can operate Maximum 180 hours	

Mathematical Formulation of LPP:

For Decision Variables:

Let **x** and **y** be the number of cycle and scooter the manufacturer should produce in order to maximize the profit .

For Objective Function:

Total profit = \$(45x + 55y)

Let Z = 45x + 55y

Maximize Z = 45x + 55y

For Constraints:

 $6x + 4y \le 120$ (Machine A Constraints)

 $3x + 10y \le 180$ (Machine B Constraints)

 $x, y \ge 0$ (Non negativity Constraints)

Any Questions?

Problem 3:

A manufacturer of furniture's makes two products - chairs and tables. Processing of these products is done on two machines A and B. A chair requires 2 hours on machine A and 6 hours on machine B. A table requires 5 hours on machine A and requires no time in machine B. There are 16 hours of time per day available on machine A and 30 hours on machine B. Profit gained by the manufacturer from a chair and a table is \$ 1 and \$ 5 respectively. Formulate the mathematical model to maximize the profit.

Problem 4:

Food X contains 5 units of vitamin A and 6 units of vitamin B per gram and cost 20 paisa/gram. Food Y contains 8 units of vitamin A and 10 units of vitamin B per gram and costs 30 paisa/gram. The minimum daily requirements of A and B are 80 units and 100 units respectively. Formulate the above as a L.P. problem to minimize the cost.

Problem 5:

Suppose that **8, 12 and 9** units of protein, carbohydrates and fats respectively are the minimum weekly requirements for a person. Food A contains **2, 6 and 1** units of protein, carbohydrate and fat respectively per kg., food B contains **1, 1** and **3** units respectively per kg. and food C contains **2, 3 and 2 units** respectively per kg. If A costs **\$ 85 per kg**, B costs **\$ 40 per kg** and C costs **\$ 30 per kg**; how many kgs of each should he buy per week to minimize his cost and still meet his minimum requirements? Formulate the above problem as a linear programming problem.

LPP Using Graphical Method:

Steps for graphical method:

- 1. Formulate the mathematical model of the given LPP.
- 2. Change the inequalities involved in the constraints to equality.
- 3. Plot each equation on the graph paper finding at least two points and also do the origin test.
- 4. Find the corners of feasible region or solution area and get the solution to the given LPP.

Problem:

A factory uses three different resources for the manufacture of two different products, **20 units of resource A**, **12 units of resource B** and **16 units of C** being available. One unit of first product requires **2**, **2 and 4 units** of the respective resources and 1 unit of the second product requires **4**, **2 and 0 units** of the respective resources. It is known that the first product gives a profit of **\$ 2** per unit and the second **\$ 3**. Formulate the linear programming problem to find the number of units of each product that should be manufactured for **maximizing the profit**.

Solve it graphically.

Problem analysis:

Resource			Available
Α	2	4	20
В	2	2	12
C	4	0	16
Profit	\$2	\$3	

Mathematical formulation:

• For Decision variables:

Let ${\bf x}$ and ${\bf y}$ be the numbers of units of products ${\bf 1}^{\rm st}$ and ${\bf 2}^{\rm nd}$ should be produced in order to maximize the profit and meet the requirements.

• For Objective function:

```
Total profit = 2x + 3y
Let Z = 2x + 3y
Maximize Z = 2x + 3y
```

• For Constraints:

```
2x + 4y \le 20 (Resource A constraints)

2x + 2y \le 12 (Resource B constraints)

4x + 0y \le 16 (Resource C constraints)

x,y \ge 0 (Nonnegative constraints)
```


Graphical Solution:

For Graphical solution:

```
Changing the above inequalities to equalities, we get,
```

$$2x + 4y = 20 \dots i$$

 $2x + 2y = 12 \dots ii$

For graphing equation (i)

$$2x + 4y = 20$$

Put
$$x = 0$$
, $y = 5$

Put
$$y = 0$$
, $x = 10$

Equation (i) passes through (0,5) and (10,0)

Origin test:

Put
$$x = 0$$
 and $y = 0$ in the $2x + 4y \le 20$

 $0 \le 20$ which is **true**, so the origin lies inside equation (i)


```
For graphing equation (ii)
```

```
2x + 2y = 12

Put x = 0 , y = 6

Put y = 0 , x = 6

Equation (ii) passes through (0 , 6 ) and ( 6 , 0)
```

Origin test:

Put x = 0 and y = 0 in the $2x + 2y \le 12$

 $0 \le 12$ which is **true**, so the origin lies inside equation (ii)

For graphing equation (iii)

$$4x + 0y = 16$$

This is a straight line perpendicular to x axis i.e x = 4

Origin test:

Put x = 0 and y = 0 in the $4x + 0y \le 16$

 $0 \le 16$ which is **true**, so the origin lies inside equation (iii)

• Graphical representation of equations:

• From Graph OABCD Is the feasible region:

Vertex	х	у	Z = 2x + 3y
O(0,0)	0	0	0
A(4,0)	4	0	8
B(4,2)	4	2	14
C(2,4)	2	4	16 Maximum value
D(0,5)	0	5	15

Conclusion:

Hence the maximum value of Z will be 16 when x = 2 and y = 4, therefore the factory should produce 2 units of 1st product and 4 units of 2nd product in order to get the **maximum profit** of \$ 16.

Summary:

- Linear Programming problem
- Decision variables
- Objective functions
- Constraints
- Graphical solution for LPP

What to Expect: Week 23 Tutorials

• **Review** and **practice** Linear Programming Problems through inclass assignments to acquire them.

• **Practice problems** to know how concept of LPP can be useful in solving various mathematical problems.

Thank you

