行列分解

宗政一舟

もくじ

- 1. 行列分解とは
- 2. 自然言語処理では
- 3. 行列分解の例
 - 1. 確率的勾配降下法(SGD)
 - 2. 非負値行列分解(NMF)
 - 3. 特異值分解(SVD)
- 4. 欠損値の扱い

1.行列分解とは

行列分解とは

- 高次元の行列がある時にデータスパースネスが発生してしまうことがある
- 行列Rを行列Wと行列Hに分解することでこの問題の解決する

今回

- ・紹介する行列分解
 - 1. 確率的勾配降下法(SGD)
 - 2. 非負値行列分解(NMF)
 - 3. 特異値分解(SVD)
- 細かい証明などはやらず、具体的にどのようにやるかが中心

2.自然言語処理では

自然言語処理では

- ・例えば、ある商品レビューの[レビュー×語彙] 行列を作成したい
- ・レビュー数が増えたら語彙数も爆発的に増える可能性がある → 行列分解

レビュー 1 : I have a very good time .

レビュー 2: I do not like this goods.

レビュー 3: I want to buy this again.

[レビュー×語彙] 行列 作成

	l	have	а	very	good	time	do	not	like	this	goods	want	to	buy	again
レビュー1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
レビュー2	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0
レビュー3	1	0	0	0	0	0	0	0	0	1	0	0	1	1	1

3. 行列分解の例

行列分解の例

- ·確率的勾配降下法(SGD)
- 非負値行列分解(NMF)
- •特異値分解(SVD)

3.1 確率的勾配降下法(SGD)

SGDの更新式

• 式(1)を w_i と h_j で偏微分をしてあげる

$$f(\mathbf{W}, \mathbf{H}) = \frac{1}{2} \sum_{(i,j) \in D} (r_{ij} - \mathbf{w}_i \mathbf{h}_j)^2 + \frac{\lambda}{2} (\|\mathbf{W}\|_F^2 + \|\mathbf{V}\|_F^2) - (1)$$

• 1度の更新で w_i と h_j から式(1)偏微分後を引いてあげる

$$\mathbf{w}_i \leftarrow \mathbf{w}_i - \eta \{ -(r_{ij} - \mathbf{w}_i \mathbf{h}_j) \mathbf{h}_j + \lambda \mathbf{w}_i \} - (2)$$
 $\mathbf{h}_j \leftarrow \mathbf{h}_j - \eta \{ -(r_{ij} - \mathbf{w}_i \mathbf{h}_j) \mathbf{w}_i + \lambda \mathbf{h}_j \} - (3)$ \mathbf{w}_i で微分した項

 η :学習率, λ : 正則化の度合を決めるパラメータ

R $\mathbf{w}_i \leftarrow \mathbf{w}_i - \eta \{ -(r_{ij} - \mathbf{w}_i \mathbf{h}_i) \mathbf{h}_i^T + \lambda \mathbf{w}_i \} - (2)$ $\hat{r}_{ij} \approx w_i h_j$ * W, H行列の初期値はランダム値をいれたりする

3.2 非負値行列分解(NMF)

NMFの更新式

- 式(4)を最小にするようなW, Hを求める
 - W, Hは非負値になるため制約つき
 - Dは距離関数でユークリッド距離、KLダイバージェンスなど(今回はユークリッド距離の更新式を紹介)
 - イェンシェンの不等式を用いて算出する

$$W, H = \arg\min_{W,H} D(R|WH)$$
, s.t. $W_{i,k}, H_{kj} > 0$ – (4)

• 更新式

$$W_{i,k} \leftarrow W_{i,k} \frac{[RH^T]_{i,k}}{[WHH^T]_{i,k}} - (5) \qquad H_{k,j} \leftarrow H_{k,j} \frac{[W^TR]_{k,j}}{[W^TWH]_{k,j}} - (6)$$

 $*W_{i,k}$ のようにカンマで区切られている場合はi行k列の行列と解釈してください

2016/12/10

k

3.3 特異值分解

ランク

• 任意の行列Aを階段形にしたときに0でない行が残る数

行列A

• *には0でない数が入っている。上の場合、*rankA* = 3になります

固有値、固有ベクトル

・正方行列Aに0でないベクトルx,スカラー λ の間に

$$Ax = \lambda x$$

- 上式が成立するようなxを固有ベクトル,スカラーλを固有値と呼ぶ。
- 固有値,固有ベクトルの計算

 λ がAの固有値 \Leftrightarrow $\det(A - \lambda I) = 0$

Iは単位行列

特異值分解

• 定義

- 行列R_{i,j}のランクをrとする
- この時、 $R_{i,j} = W_{i,r} \Sigma H_{r,j}$ に分解することを特異値分解と呼ぶ
- また、 $W^TW = H^TH = I$ になる。Iは単位行列
- Σ は対角行列で $\Sigma = diag(\sigma_1, \sigma_2, ... \sigma_r)$ である。 $(\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0)$
- σ_1 , σ_2 , ... σ_r を特異値といい、特異値 σ_k の左特異ベクトルはWの第k列ベクトル、右特異ベクトルはHの 第k列ベクトルである

特異值分解

- •特異値 σ_k において
 - 左特異ベクトルを W_k ,右特異ベクトルを h_k とする
- $\mathbf{R}\mathbf{h}_k^T = \sigma_k \mathbf{w}_k$, $\mathbf{R}^T \mathbf{w}_k = \sigma_k \mathbf{h}_k^T$ total, $\mathbf{w}_k \neq \mathbf{0}$, $\mathbf{h}_k^T \neq \mathbf{0}$
- σ_k は RR^T または R^TR の固有値の正の平方根
- h_k は $\mathbf{R}^T \mathbf{R}$ の固有ベクトル
- w_k は RR^T の固有ベクトル

具体例

• 特異値分解の具体例

行列
$$\mathbf{R} = \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ 2 & 1 \end{pmatrix}$$
の特異値分解をしてみよう

- ・特異値分解の流れ
 - 行列Rのランクを求める
 - $R^T R$ の固有値の正の平方根を求める -> σ_k
 - $R^T R$ の固有ベクトルを求める -> h_k
 - $\mathbf{R}\mathbf{h}_k^T = \sigma_k \mathbf{w}_k$ を変形 $\frac{1}{\sigma_k} \mathbf{R}\mathbf{h}_k^T = \mathbf{w}_k$

- $Rh_k^T = \sigma_k w_k$, $R^T w_k = \sigma_k h_k^T$ tetel, $w_k \neq 0$, $h_k^T \neq 0$
- σ_k は RR^T または R^TR の固有値の正の平方根
- $\bullet h_k$ は R^TR の固有べクトル
- w_k は RR^T の固有べクトル

具体例

ランクを求める

•
$$Rh_k^T = \sigma_k w_k$$
, $R^T w_k = \sigma_k h_k^T$ tetel, $w_k \neq 0$, $h_k^T \neq 0$

- $\bullet \sigma_k$ は RR^T または R^TR の固有値の正の平方根
- h_k は R^TR の固有ベクトル
- w_k は RR^T の固有べクトル

$$\mathbf{R} = \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & -4/3 \\ 0 & 0 \end{pmatrix}$$
なので $rank\mathbf{R} = 2$

• $R^T R$ の固有値,固有ベクトルを求める -> h_k

$$\det(\mathbf{R}^T\mathbf{R} - \lambda \mathbf{I}) = 0$$

- 上式を計算すると $\lambda=24,4$ となる。よって、特異値 $\sigma_1=2\sqrt{6},\sigma_2=2$
- ・ また、固有ベクトル $\lambda=24$ の時 $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$, $\lambda=4$ の時 $(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ それぞれ h_1,h_2 に対応する

* 固有ベクトルの選び方が難しそう -> $W^TW = H^TH = I$

具体例

- $\mathbf{R}\mathbf{h}_k^T = \sigma_k \mathbf{w}_k$ を変形 $\frac{1}{\sigma_k} \mathbf{R}\mathbf{h}_k^T = \mathbf{w}_k$
 - 上の式に今まで求めた値を代入すると求まる

•
$$w_1 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$
, $w_2 = (\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}})$

• あとは,この形にすれば特異値分解終了 $R_{i,j} = W_{i,r} \Sigma H_{r,j}$

- $\bullet \sigma_k$ は RR^T または R^TR の固有値の正の平方根
- $\bullet h_k$ は R^TR の固有べクトル
- W_k は RR^T の固有ベクトル

$$R_{3,2} = (w_1, w_2) diag(\sigma_1, \sigma_2) (h_1, h_2)^T$$

$$= \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{3} & 0 \\ 1/\sqrt{3} & -1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 2\sqrt{6} & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

行列分解をする上での注意点

- 行列分解では行列をk次元に圧縮できる
 - SGDやNMFでは分解対象の行列の行数や列数よりも多く指定してはならない
 - SVDでは、ランク以上の行数や列数を指定することはできない(特異値分解は特異値の大きい値から使うらしい)
- 行列の要素が空の場合(欠損値)が発生する可能性
 - SGDは欠損値を無視して更新することは一応できる
 - NMFやSVDは欠損値を無視することはできない

4. 欠損値の扱い

欠損値の扱い

- 表のようなユーザ×アイテム行列
 - Eコマースを想定して、userに対してitemの評価値が入っているものとする
 - user1はitem4の評価値を付けていない
 - レビュー×語彙行列のように現れていないから「0」というようにするのは安易
- ・たとえば
 - ・ (user1,item4)の要素にuser1の評価の平均値に入れてあげたりする(これも安易だが、、、)

	item1	item2	item3	item4	item5
user1	3	1	5	-	-
user2	4	-	1	2	1
user3	3	-	5	-	-

ご静聴ありがとうございました

参考文献

- •[集合知プログラミング](オライリー本)
- •[ビッグデータの計算科学第3-4回線形代数の基礎](http://www.iedu.i.kyotou.ac.jp/uploads/20141022.pdf#search=%27%E7%89%B9%E7%95%B0%E5%80%A4+%E6%B1%82 %E3%82%81%E6%96%B9%27)
- [高校数学の美しい物語] [http://mathtrain.jp]