PRE-FINAL ÁLGEBRA FORMAS CUADRÁTICAS - MATRICES UNITARIAS Y HERMÍTICAS - DVS

Apellido y nombres: . Curso:	Número de padrón:
Los razonamientos que	Justifique todas las respuestas. utilice para resolver cada ejercicio deben constar en el escrito.
El examen se aprueba	resolviendo correctamente 1 ejercicio y 2 demostraciones ó 2 ejercicios y 1 demostración.
1.	
Determine si las siguio o contraejemplo según co	entes afirmaciones son verdaderas o no, dando una demostración rresponda:
a) Si $A \in \mathbb{R}^{nxn}$ es anti	simétrica entonces A es diagonalizable unitariamente
b) Si A es definida pos	sitiva entonces sus valores singulares y autovalores coinciden.
c) Si A es simétrica y coinciden con los au	$P \in \mathbb{R}^{nxn}$ es una matriz ortogonal entonces los autovalores de A atovalores de PA
2.	
Sea $A \in \mathbb{R}^{420}$ tal que:	(i) $Nul(A) = \operatorname{gen} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ (ii) $\operatorname{Col}(A) = \left\{ x \in R^4 : x_1 - x_3 = 0, x_2 + x_4 = 0 \right\}$ (iii) El valor máximo de $ Ax $ sujeto a la restricción $ x = 2$ es 6 (iv) La traza de A^tA es 10
Hallar la solución por	cuadrados minimos de norma mínima del sistema: $Ax = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$
3.	(*)
_	$\begin{bmatrix} 4i \\ 0 \\ 2 \end{bmatrix}$. Halle una matriz simétrica $C \in \mathbb{R}^{3 \times 3},$ semejante a $A,$ y
tal que, para que la forma	a cuadrátrica $Q(x) = x^T C x, x \in \mathbb{R}^3$, sea $Q\begin{pmatrix} 1\\2\\1 \end{pmatrix} < 0$

į Éxitos! į
¡Que te vaya muy bien!! :)