PROJECT REPORT

Design and Simulation of Circuits and Embedded Systems

Project Title: RKE (Remote Keyless Entry)

Submitted by:

99007670

99006771

99006772

99007673

Content

1	Introduction	3
	1.1 Description	3
2.	Requirements	3
	2.1 High level requirements	3
	2.2 Low level requirements	3
	2.3 SWOT Analysis	4
	2.4 4W's and 1H	4
3.	Architecture	5
4	Test Plan	6
	4.1 High level test plan	6
5	Output	7

i. RKE (Remote Keyless Entry)

Problem Statement

Remote keyless entry (RKE) system is a system designed to remotely lock or unlock access to automobiles. RKE functions are printing lock, unlock, alarm activation/deactivation, approach light. As many of us know there were lot of thefts happening in recent times in automobiles either the vehicle or personal things so here is the solution where we can unlock our automobiles with RKE.

1. Introduction

The term far off keyless framework (RKS), likewise called keyless section or distant focal locking, alludes to a lock that involves an electronic controller as a key which is enacted by a handheld gadget or naturally by nearness. Broadly utilized in vehicles, a RKS fills the roles of a standard vehicle key without actual contact.

1.1 Description

Now a days as we are noticing that many of the automobiles work on this framework it is widely used for remotely lock or unlock vehicles as earlier many of the car manufacturers have gone through this process but at present even many motor vehicles following this framework to keep their automobiles secured. Actually the principle behind this is RKE transmission requires two parts - a transmitter and a recipient. Transmitter - RKE key dandy, other ID gadget with RKE coordinate Recipient - Body Control ECU, other ECU with coordinated RKE. It works by communicating radio waves on a specific recurrence unidirectionally. RKE frameworks execute encryption and moving code calculations to forestall vehicle criminals from blocking and ridiculing the messages. Typical RKE capacities are: Print lock - (Blue switch on-All driven on simultaneously), Print open - (Blue switch press twice All begun simultaneously), Print caution enactment/deactivation - (Blue switch press multiple times-All drove on in clockwise way), Print approach light - (Blue switch press multiple times-All drove on in enemy of clockwise way). This is the modern solution.

2. Requirements

2.1 High Level Requirements

id	Description	
HR01	Function to print the lock	
HR02	Function to print the Unlock	
HR03	Function to print alarm	
	activation/deactivation	
HR04	Function to print approach light	

2.2 Low Level Requirements

id	Description		
LR01	Press switch once to turn on all led's at a time		
LR02	Press switch twice to turn off all led's at a		
	time		
LR03	Press switch thrice to blink of all led's in		
	clockwise manner		
LR04	Press switch four times to blink of all led's in		
	anticlockwise manner		

2.3. SWOT

Fig 2.1 SWOT Analysis

2.4. 4W's & 1H

Fig 2.2 4W and 1H

3. Architecture

Fig 2.3 User and wake up Button circuit

Fig 2.4 LED circuit

4. Test plan and Output

4.1 High level Test plan

Test ID	Description	i/p	Expected o/p	Actual o/p	Status
HL_1	Function to execute door lock	Press Blue Button once	All Leds ON	All Leds ON	pass
HL_2	Function to execute door unlock	Press Blue Button twice	All Leds OFF	All Leds OFF	pass
HL_3	Function to execute alarm activation/deactiva tion	Press Blue Button Thrice	All led on in clockwise manner	All led on in clockwise manner	pass
HL_4	Function to execute approach light	press Blue Button four times	All led on in clockwise manner	All led on in clockwise manner	Pass

5. Output

Fig 4.1 LED ON

Fig 4.2 LED OFF

Fig 4.1 LED