

Discrete Mathematics MH1812

Topic 2.2 - Propositional Logic II Dr. Gary Greaves

SINGAPORE

What's in store...

By the end of this lesson, you should be able to...

- Prove equivalence using logical equivalence laws.
- Use the conditional operator to combine propositions.
- Use the biconditional operator to combine propositions.
- Evaluate logical expressions using operator precedence.

Logical Equivalence Laws: Already Seen

Useful laws to transform one logical expression to an equivalent one

Axioms

T ≡ Tautology*C* ≡ Contradiction

$$\neg T \equiv F$$

$$\neg F \equiv T$$

$$\neg T \equiv C \equiv F$$

$$\neg C \equiv T \equiv T$$

De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Commutativity

$$p \land q \equiv q \land p$$

$$p \lor q \equiv q \lor p$$

Logical Equivalence Laws: More Laws

Double Negation

$$\neg(\neg p) \equiv p$$

Absorption

$$p \lor (p \land q) \equiv p$$

$$p \wedge (p \vee q) \equiv p$$

Idempotent

$$p \wedge p \equiv p$$

$$p \lor p \equiv p$$

Logical Equivalence Laws: Distributive Law

Distributivity

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

Conditional Operator: Known Operators

Conditional Operator: If Then

If p then $q: p \rightarrow q$.

By definition, when p is false, $p \rightarrow q$ is true.

This is called vacuously true or true by default.

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	T
F	F	

```
gap>
gap> a:=10;; if (a>5) then Print("yes"); fi;
yes
gap> a:=1;; if (a>5) then Print("yes"); fi;
gap>
gap>
```

Not really the same!

Conditional Operator: Conversion Theorem

Theorem: $p \rightarrow q \equiv \neg p \lor q$

F	Proof							
	рq	$p \rightarrow q$	¬р	$\neg p \lor q$				
	ΤT	Т	F	Т				
	ΤF	F	F	F				
	FΤ	Т	Т	Т				
	FF	Т	Т	Т				

Conditional Operator: Converse, Inverse, Contrapositive

Statement	$p \rightarrow q$	
Converse	$q \rightarrow p$	
Inverse	$\neg p \rightarrow \neg q$	
Contrapositive	$\neg q \rightarrow \neg p$	

Theorem: $\neg q \rightarrow \neg p \equiv p \rightarrow q$

Proof

$$\neg q \rightarrow \neg p$$

$$\equiv \neg (\neg q) \lor \neg p$$

$$\equiv q \lor \neg p$$

$$\equiv \neg p \lor q$$

$$\equiv p \rightarrow q$$

Conditional Operator: Only If

- p only if $q \triangleq \neg q \rightarrow \neg p$
- $\neg q \rightarrow \neg p$ is the contrapositive of $p \rightarrow q$
- (If not q then not p) \equiv (p \Rightarrow q) (why?)

"Bob pays taxes only if his income ≥ \$1000"

 \triangleq "if Bob's income < \$1000 then he does not pay taxes"

 \equiv "if Bob pays tax then his income $\geq 1000 "

Conditional Operator: Sufficient and Necessary Conditions

When $p \rightarrow q$, p is called a sufficient condition for q, q is a necessary condition for p.

- Being an apple is a sufficient condition for being a fruit.
 - ≡ If it is an apple then it must be a fruit.
- Being a fruit is a necessary condition for being an apple.
 - **≡** If it is not a fruit then it cannot be an apple.

Conditional Operator: Example

Let f: "you fix my ceiling", p: "I will pay my rent"

"You fix my ceiling or I won't pay my rent!"

$$f \lor \neg p \equiv p \to f$$

"If you do not fix my ceiling, then I won't pay my rent."

$$\neg f \to \neg p \equiv p \to f$$

Tenant

"I will pay my rent only if you fix my ceiling."

Landlord

Biconditional Operator: Known Operators

Biconditional Operator: If and Only If

 \leftrightarrow

- The biconditional of p and q: $p \leftrightarrow q \triangleq (p \rightarrow q) \land (q \rightarrow p)$
 - True only when p and q have identical truth value
- If and only if (iff)

pq	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$
TT	Т	Т	Т
TF	F	Т	F
FT	Т	F	F
FF	Т	Т	Т

Operator Precedence: High to Low

Operator Precedence: Leftmost and Rightmost

Leftmost Precedence

When equal priority instances of binary connectives are not separated by (), the leftmost one has precedence.

E.g.,
$$p \rightarrow q \rightarrow r \equiv (p \rightarrow q) \rightarrow r$$

High Low

Rightmost Precedence

When instances of ¬ are not separated by (), the rightmost one has precedence.

E.g.,
$$\neg\neg\neg p \equiv \neg(\neg(\neg p))$$

Operator Precedence: Example

Show that
$$p \lor q \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$$

$$p \lor q \rightarrow r$$

$$\equiv (p \lor q) \rightarrow r$$

$$\equiv \neg (p \lor q) \lor r$$

$$\equiv (\neg p \land \neg q) \lor r$$

$$\equiv (\neg p \lor r) \land (\neg q \lor r)$$

$$\equiv (p \rightarrow r) \land (q \rightarrow r)$$

Operator precedence

Why?

De Morgan's

Why?

Why?

Let's recap...

- Useful logical equivalence laws:
 - Proving equivalence using these laws
- Conditional and biconditional operators:
 - Sufficient and necessary conditions
- Operator precedence

