

NoC IP Vendor-of-Choice

Sonics' on-chip networks help leading SoC designers solve some of the most difficult challenges in SoC design

Sonics System IP: On-chip Networks, Memory Subsystem, Power Partitioning & Management, Performance Monitor & Debug, Security Firewalls

Sonics NoC IP Suites

s	Fully Non- Blocking	Interface Protocols		
On-Chip Network System IP	SonicsGN [®]	High-speed, serialized, router-based network with integrated power/clock domain management and scalability from IoT to servers		
	SonicsSX [®]	Low-power, low-latency, high-bandwidth network featuring cascaded switching exchanges, multi-channel memory interleaving and a rich set of network services	ACE-Lite	
	SonicsLX®	A limited version of the SonicsSX suitable for mid-range SoCs and IP subsystems requiring minimum latency to subsystem memory		AXI
	Sonics3220™	Non-blocking, peripheral interconnect that ensures power- efficient, low latency access to a large number of low bandwidth target cores while spanning large physical distances		АНВ
	SonicsExpress™	A highly configurable bridge, with native OCP or AXI support, typically used for asynchronous clock, voltage, or power domain crossing.	\checkmark	АРВ
DRAM Systems	MemMax®	A multi-threaded DRAM scheduler that optimizes memory throughput while protecting QoS		ОСР
On-Chip Analysis	SonicsMT™	Performance monitoring and hardware trace IP provides real- time measurement of throughput and latency and tracing of transactional events for CoreSight®-compliant debug		

Schedules traffic for high throughput and QoS

Independent from DRAM type/organization

Schedules traffic for high throughput and QoS

Independent from DRAM type/organization

Schedules traffic for high throughput and QoS

Independent from DRAM type/organization

- Schedules traffic for high throughput and QoS
- Independent from DRAM type/organization

Behavioral MemDDRC matches almost any DRAM subsystem configuration or behavior

MemMax Benefits

- High DRAM utilization (i.e. bandwidth) and Quality of Service (QoS) are always in conflict
 - High BW requires longer DRAM bursts for better page hit rate
 - QoS demands short DRAM bursts for better interleaving
- MemMax solution gives the designer the power to optimize DRAM efficiency and the freedom to tune the trade-offs between BW and QoS

MemMax Technology Overview

Agenda

- Configuration Challenges
- NoC + MemMax + Controller
- Weighted DRAM scheduling with QoS
- Flexible Address Tiling for Higher Efficiency
- > Quality-of-Service (QoS)
- MemMax® Block Diagram
- Scheduler Block Diagram
- Memory State Awareness
- Efficient Transaction Grouping
- Summary

Configuration Challenges

- Lots of wires = congestion
- Must have Initiator FIFOs to match DRAM protocol and rate
- Difficult for placement
- > Poor scalability
- Custom for each SoC design

Interconnect + MemMax + Controller

- NoC providing flexible mapping between initiator flows and MemMax threads → Scalability
- ➤ Unified multi-threaded nonblocking interface → Throughput and Wire Minimization
- Separation of memory scheduling from protocol control
 → Decoupling
- ➤ Unified buffering using compiled RAM → Area Optimization
- ➤ Programmable QoS → Flexibility
- Internal bank timers avoid sending commands to busy banks → Efficiency

Weighted DRAM Scheduling with QoS

Weighted scheduling algorithm

- > QoS measured per-thread
 - QoS levels: Priority, Guaranteed Bandwidth and Best-effort
- > Page Filter keeps page open to maximize in-page access
- > Direction Filter groups RDs or WRs together
- Chip Filter minimizes rank crossing
- > LRS ensures fairness / prevents starvation

Quality-of-Service (QoS)

- Initiator data flow (threads) mapped to MemMax threads through interconnects
 - Multiple master can share one thread before coming into MemMax
- > Each MemMax thread is assigned to one of the QoS levels
- Non-blocking, multi-threaded interface allows
 - Out of order acceptance for high priority traffic
 - Minimize buffer size w/ guaranteed throughput
 - Maintain best achievable DRAM efficiency

Thread QoS Level	Bandwidth Allocation?	QoS Model w/ Promotion and Demotion	
Priority	Yes	Low latency while within BW allocation, best- effort otherwise	
Bandwidth	Yes	Guaranteed BW while within BW allocation best-effort otherwise	
Best-effort	No	N/A	

Flexible Address Tiling for Higher Efficiency

- > Up to 7 different tiling regions simultaneously active
 - Triggered by NoC address space (associated with address regions)
- > Frequently used for video frame buffers
 - Put rectangular region of pixels in same page, e.g. to speed macroblock fetch
- > Support Bit Swapping as well as Bank Bit Transformation

MemMax Block Diagram

Scheduler Block Diagram

Memory State Awareness

Efficient Transaction Grouping

MemMax Memory System Summary

- > Separation of system from memory speeds, protocols
- > Achieve higher DRAM efficiency
- > Multi-threaded non-blocking interface with end-to-end QoS
- Compile-time/runtime configurability maximize flexibility to match DRAM type and organization
- Centralized data buffers with compiled RAM minimizes area, including optional asynchronous clock crossing

Thank You!

