

α)

- i. Το σημείο $A(2\sqrt{2},0)$ είναι εξωτερικό του κύκλου C γιατί είναι σημείο του θετικού ημιάξονα Ox με $OA = 2\sqrt{2} > 2$ με $OA = 2\sqrt{2}$ με
- ii. Οι ευθείες που διέρχονται από το σημείο $A(2\sqrt{2},0)$ είναι:
 - Η κατακόρυφη x= $2\sqrt{2}$ που δεν είναι εφαπτομένη του κύκλου C γιατί d(O,ε) = $2\sqrt{2}$
 - Oι ευθείες με εξίσωση (ε): y-0=λ(x-2 $\sqrt{2}$) με λ \in R ή λx-y-2λ $\sqrt{2}$ =0 Η (ε) είναι εφαπτομένη του C αν και μόνο αν η απόσταση του κέντρου του O ισούται με την ακτίνα του κύκλου. Δηλαδή d(O,ε) = ρ $\Leftrightarrow \frac{|\lambda \cdot 0 - 0 - 2\lambda \sqrt{2}|}{\sqrt{\lambda^2 + 1}}$ =2 \Leftrightarrow $2\sqrt{2} |\lambda| = 2\sqrt{\lambda^2 + 1} \Leftrightarrow 8\lambda^2 = 4\lambda^2 + 4 \Leftrightarrow 4\lambda^2 - 4 = 0 \Leftrightarrow \lambda^2 = 1 \Leftrightarrow \lambda = \pm 1$ Για λ=1, (ε₁): y=x-2 $\sqrt{2}$ και για λ= -1, (ε₂): y=-x+2 $\sqrt{2}$

Παρατηρούμε ότι οι συντελεστές διεύθυνσης $λ_1$ και $λ_2$ των ευθειών $ε_1$ και $ε_2$ είναι 1 και -1 αντίστοιχα και $λ_1 \cdot λ_2$ = -1. Άρα οι εφαπτόμενες ευθείες $ε_1$ και $ε_2$ του κύκλου από το σημείο Α είναι μεταξύ τους κάθετες.

β) Αν Β, Γ τα σημεία επαφής των εφαπτόμενων ευθειών $ε_1$ και $ε_2$ με τον κύκλο C, τότε οι ακτίνες του κύκλου στα σημεία αυτά είναι κάθετες στις αντίστοιχες εφαπτόμενες. Δηλαδή το τετράπλευρο ΑΒΟΓ έχει 3 ορθές γωνίες, οπότε είναι ορθογώνιο. Επειδή ΟΑ = ΟΒ = 2 ως ακτίνες του κύκλου, άρα είναι ρόμβος. Επομένως το ΑΒΟΓ είναι τετράγωνο με πλευρά ίση με την ακτίνα του κύκλου, δηλαδή 2. Συνεπώς (ΑΒΟΓ) = 2^2 = 4 τ.μ.