

Merge sort

- Divide array in two parts
- Sort both partitions individually (by merge sort only)
- Merge sorted partitions into temporary array
- Overwrite temporary array into original array

Number of elements = n levels of division = logn Comparisons per level $\approx n$ Total comps = $n \log n$

temp[] - needed to merge two sorted partitions Aunilliany Space & n S(n) = O(n)

Merge sort

Quick sort

- 1. Select pivot/axis/reference element from array
- 2. Arrange lesser elements on left side of pivot
- 3. Arrange greater elements on right side of pivot
- 4. Sort left and right side of pivot again (by quick sort)

No. of elements = n levels of division = log n Comps per level = n Total comps = n log n Time & n log n Best T(n) = O(n log n) Avg

i. extreme left or right element is middle element random 3 elements is. median random 5 elements iv. dual pirot

- time complexity of quick is dependent on selection of pivot.

Quick sort

	space	Reet	lime	worst
selection sort	Space	O(n2)	lime Avg O(n2)	0(n2)
bubble sort		O(n)		
insertion sort	Oci) in place	0(n)	0(n ²)	
Heap sort	sorting	O(nlogn)	O(nlogn) O(nlogn)
quick sort				$) O(n^2)$
Merge sort	0(n)	O(nlogn)	O(nlogn)) O(nlogn)

$$33_a$$
 11_a 22 11_b 33_b
 11_a 11_b 22 33_a 33_b — more stable

 11_b 11_a 22 33_b 33_a — un stable

Thank you!!!

Devendra Dhande

devendra.dhande@sunbeaminfo.com