Analyzing Characteristic equation of time delay systems

Sourabh Mittal

email: sourabhmittal19@gmail.com github: https://github.com/smittal1995

May 2021

1 Lambert W function

In mathematics, the Lambert-W function, also called the omega function or product logarithm, is a set of functions, namely the branches of the inverse relation of the function $f(z) = ze^z$ where e^z is the exponential function and z is any complex number. In other words

$$z = f^{-1}(ze^z) = W(ze^z)$$

By substituting $z_0 = ze^z$ into the equation above, we get the defining equation for the W function (and for the W relation in general):

$$z_0 = W(z_0) * e^{W(z_0)}$$

Now, Taking equation $ze^z = c$.

This imply $z = W_k(c)$. where W_k for k an integer are countably many branches of the W function. W_0 being the principal branch, see fig 1,. The branch point for the principal branch is at $z = \frac{-1}{e}$, with a branch cut that extends to $-\infty$ along the negative real axis. This branch cut separates the principal branch from the two branches W_{-1} and W_1 In all other branches, there is a branch point at z = 0 and a branch cut along the whole negative real axis.

Substituting, z = x + iy, and separating real and imaginary parts we get

$$e^{x}(x\cos y - y\sin y) = c \& ie^{x}(x\sin y + y\cos y) = 0$$

. After further simplification we get

$$x = -y \cot y & x = \log -\frac{c \sin y}{y}$$

Figure 1

From fig 2., I calculated the point of intersection of this graph for c=1. To find out y coordinate of point of intersection.

$$FindRoot[-y*\cot[y]-Log[-1*\sin[y]/y],(y,\frac{3\pi}{2})]$$

this command gives root near $y=\frac{3\pi}{2}$ as it is can be seen in graph that we have root near $y=\frac{3\pi}{2}$ and the output is $(y\to 4.37519)$. putting this output in $-y\cot[y]$ we get $x\to -1.53391$, Thus, (-1.53391,4.37519) will satisfy $(x+iy)*e^{-(x+iy)}=1$.

And from the symmetry of graph (-1.53391,-4.37519) is also a solution. The values of lambert W function can be easily calculated in python.

$$-2.401-10.77I, -1.533-4.375I, 0.5671, -1.533+4.375I, -2.401+10.776I$$

These are values of $W_k(1)$ from k = -2 to k = 2.

Now, we can see the point of intersection exatly matches with values of Lambert W function. From here we can attempt to write general expression of W_k .

$$Im(W_k(c)) = y : -y \cot y = \log -\frac{c \sin y}{y}, \begin{cases} 2k\pi < y < (2k+1)\pi & for \ k \ge 0\\ (2k+1)\pi < y < (2k+2)\pi & for \ k < 0 \end{cases}$$

$$Re(W_k(c)) = -y \cot y \text{ or } \log -\frac{c \sin y}{y} : y \text{ is the } Im(W_k(c))$$

Figure 2

This expression is true for $c < \frac{-1}{e}$ where all roots are imaginary. For $\frac{-1}{e} < c < 0$ this expression is still true except for real roots W_{-1} and W_0 .

For c > 0 only W_0 is real, thus expression is:

$$Im(W_k(c)) = y : -y \cot y = \log -\frac{c \sin y}{y}, \begin{cases} (2k-1)\pi < y < 2k\pi & for \ k > 0\\ (2k)\pi < y < (2k+1)\pi & for \ k < 0 \end{cases}$$

$$Re(W_k(c)) = -y \cot y \text{ or } \log -\frac{c \sin y}{y} : y \text{ is the } Im(W_k(c))$$

From fig 2, we can infer that W_0 has maximum real part and real part of W_k decreases as k goes away from zero.

2 Transcendental equation for linear time delay system

The characteristic equation for linear time delay systems is given by Eq. looks like:

$$\lambda + \alpha e^{-\lambda \tau} = \beta \tag{1}$$

There are infinite solutions to above equation are given as below $\forall k \in \mathbb{Z}$,

$$\lambda_k = \beta + \frac{W_k(-\alpha \tau e^{-\beta \tau})}{\tau} \quad , \tag{2}$$

where W_k is the k^{th} branch of the Lambert W function with k=0 as the principal brach. The stability of fixed point is governed by the eigenvalue corresponding to the principal branch(since it has maximum real part). Consequently we will focus on the solution λ_0 analytically. It is easy to check that the solution for $\alpha=0$ is $\lambda_0=\beta$. The eigenvalue corresponding to the principal branch is real if and only if W_0 is real. This implies,

$$-\alpha \tau e^{-\beta \tau} \ge -1/e; \quad \forall \quad \tau \ge 0 \quad . \tag{3}$$

This can be rewritten as,

$$\alpha \le \frac{e^{\beta \tau}}{e \tau} \implies \begin{cases} \alpha \le \frac{1}{e \tau}, & \text{if } \beta = 0\\ \alpha \le \frac{\beta}{e} \frac{e^{\beta \tau}}{\beta \tau}, & \text{if } \beta \ne 0 \end{cases}$$
 (4)

Since α, β are known system parameters. From Eq. 4 it is clear that if $\alpha \leq \min[\frac{e^{\beta\tau}}{e\tau}]$; $\forall \tau > 0$ then the eigenvalue corresponding to the principal branch (λ_0) will always be real for all $\tau > 0$. One can note that the maximum value of α in this scenario can be given as,

$$\alpha_{max} = \begin{cases} \frac{\beta}{e} \max[\frac{e^{\beta\tau}}{\beta\tau}] = 0, & \text{for } \beta < 0\\ \frac{\beta}{e} \min[\frac{e^{\beta\tau}}{\beta\tau}] = \beta, & \text{for } \beta > 0\\ \min[\frac{1}{e\tau}] = 0, & \text{for } \beta = 0 \end{cases}$$
 (5)

If the above doesnot hold true then, λ_0 will be complex for some $\tau > 0$. Suppose, $\exists \tau = \tau_c$, for which $\lambda_k = i\omega$ for a particular $k \in \mathbb{Z}$. By putting this in Eq. 1 and separating real and imaginary part we get,

$$\omega^2 = \alpha^2 - \beta^2 ,$$

$$\tau_c = \frac{\pm 1}{\sqrt{\alpha^2 - \beta^2}} \cos^{-1}(\frac{\beta}{\alpha}) + \frac{2\pi m}{\sqrt{\alpha^2 - \beta^2}} ,$$
 (6)

where m is any integer. For τ_c to be real ω must be real, i.e., $|\alpha| > |\beta|$. The case m=0 corresponds to the principal solution and we denote it as τ_0 . If we combine inequality 5 and Eq. 6 we can comment that for λ_0 to be purely imaginary we must have the following condition satisfied, $\forall \beta \in (-\infty, +\infty)$,

$$\alpha > \max\{\beta, 0\} \quad \text{and} \quad \alpha + \beta \in \mathbb{R}^+$$
 (7)

The nature of roots λ_0 and λ_{-1} is shown in figure 3. The proof for remaining cases is similar to above and we can infer the stability and existence of limit cycle from figure 3.

Figure 3