Name:	• • • • • • •	••••••	•••••	• • • • • • • • • •				
Roll No. :				• • • • • • • • • • • • • • • • • • • •				
Invigilator's Signature:					1			
		CS/B.Te	ch(EIE)/S	EM-5/	EE-5 11	(EI)/200	9-10	
			200	9				
		CO	NTROL	THEC	RY			
Time Allotted: 3 Hours					1	Full Mark	s: 70	
	Ti	ne figures i	n the margi	n indica	ite full m	arks.		
Candic	lates	are require	ed to give th as far as			veir own u	vords	
			GROUE	- A		•		
		(Multipl	le Choice 1	урс Д	estions)	,	
1. Ch	oose	the correc	t alternativ	es for a	any <i>ten</i> o	f the follo	wing:	
						10 × 1	l = 10.	
i)	For a unit step input, a system with a closed loop transfer function $\frac{20}{s^2+2s+5}$ has a steady-state output							
	tra	nsfer funct	$\frac{2c}{s^2+2}$	$\frac{1}{s+5}$	as a stea	dy-state	output	
	of				•			
	a)	10	•	b)	5			
•	c)	2		d)	4.			
ii)	For a second order system $2 \frac{d^2y}{dt} + 4 \frac{dy}{dt} + 8y = 8x$.							
	The	e damping	ratio is	•				
	a)	0.1		b)	0.25			
	c)	0.333		d)	0.5			
55408						[Tu	rn over	

CS/B.Tech(EIE)/SEM-5/EE-511(EI)/2009-10

- iii) Which of the following systems is stable?
 - $AS^2 + BS + C = 0$
 - $AS^4 + BS^2 + CS + D = 0$
 - $-AS^2 + BS C = 0$
 - $AS^2 BS C = 0.$
- iv) The closed loop gain of the system in the given figure is

- arwellor at a) 6 ms tot sevulaments b) 6 11 500

- v) By the use of PD control to a 2nd order system, the rise time
 - a) decreases
- b) increases
- remains same c)
- has no effect. d)
- The unit step response of a particular control system in $C(t) = 1 - 10 e^{-1}$. Then transfer function is

b)

55408

- vii) The steady-state error for a type 2 system subjected to a unit ramp input is
 - a) 2

b) 1

c) 0

- d) ∝.
- viii) Consider the root locus diagram of a system and the following statements:
 - I. The open loop system is a second order system
 - II. The system is overdamped for k > 1
 - III. The system in absolutely stable for all the value of k. when the bound is the system of the sys

Of the statements:

- a) I, II and III are correct is stop significantly university
- b) I and III are correct
- c) I and II are correct
- d) II and III are correct.

5408

3

[Turn over

CS/B.Tech(EIE)/SEM-5/EE-511 (EI)/2009-10

ix) The transfer function of a simple R-C integrator circuit shown in the fig. is

a) $\frac{1}{S-a}$

b) $\frac{1}{S+a}$

c) $\frac{a}{S-a}$

- d) $\frac{a}{S+a}\left[a=\frac{1}{RC}\right]$.
- x) A system is stable
 - a) if bounded inputs produce bounded outputs
 - b) if unbounded inputs produce bounded outputs
 - c) if bounded inputs produce unbounded outputs
 - d) if all bounded inputs produce bounded outputs.
- xi) The initial slope of Bode plot for a transfer function having simple pole at origin is
 - a) 20 db/dec
- b) -40 db/dec
- c) 40 db/dec
- d) 20 db/dec.

55408

4

CS/B.Tech(EIE)/SEM-5/FFV5hb/F4/2009110

xii) The signal flow diagram of a system is shown in the given figure. The number of forward paths and the number at pairs of non-touching loops are respectably

a) 3, 1

b) 3, 2

c) 4, 2

d) 2, 4.

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- a) Show the use of feedback in control system reduces the sensitivity of the system to parameter variation. 3
- b) What is regenerative feedback?

- 2
- Obtain the state model of the network shown below:

The characteristics equation for certain feedback control systems are given below. Determine the range of K for which the system is stable.

$$S^3 + 2KS^2 + (K+2)S + 4 = 0.$$

5408

1.

1.

5

[Turn over

CS/B.Tech(EIE)/SEM-5/EE-511 (EI)/2009-10

 Construct an equivalent signal flow-graph for the block diagram shown in the following figure and evaluate transfer function.

6. Derive an expression for step response of a typical first order system. Sketch the response. What is the steady-state error due to step input to the first order system. 3 + 1 + 1

GROUP - C (Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. a) The characteristic equation of a system in differential equation form is

$$d^2x/dt^2 - (K+2) dx/dt + (2K+5) x = 0.$$

- Find the range of values of K for which the system is
 - x) stable
 - y) limitedly stable
 - z) unstable.

 3×1

- For the stable case, find the range of values of K
 for which the system is
 - x) under damped
 - y) over damped.

 2×2

b) A feedback system employing output rate damping is shown in Fig. :

- i) In the absence of derivative feedback ($K_t = 0$), determine the damping ratio of the system for amplifier gain $K_A = 5$. Also find the steady state error to unit ramp input.
- ii) Find suitable values of the parameters K_A and K_t so that the damping ratio of the system is increased to 0.7 without affecting the steady state error as obtained in part (i). 3+5
- 3. a) State and explain Nyquist criterion.
 - A unity feedback control system has open loop transfer function

$$G(s)H(s) = \frac{2}{s(1-2s)}$$

Draw the Nyquist plot and determine closed loop stability.

The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K}{s(\tau s + 1)}$, where K and τ are positive constants. By what factor should the amplifier gain be reduced so that the peak overshoot of unit step response of the closed loop system is reduced from 75% to 25%?

55408

7

[Turn over

CS/B.Tech(EIE)/SEM-5/EE-511 (EI)/2009-10

9. Construct the Bode plot for a unity feedback control system having

$$G(s) = \frac{10(s+10)}{s(s+2)(s+5)}$$

- a) From the plot obtain the gain margin, phase margin and gain cross-over frequency, phase cross over frequency.
- b) Comment on the stability of the system. 8 + 5 + 2
- 10. Sketch the root locus of the unity feedback control system whose open loop transfer function is given by

$$G(s)H(s) = \frac{K}{s(s+2)(s^2+4s+13)}$$

Find:

- i) the number, angle and centroid of asymptotes
- ii) angle of departure
- iii) the break-away point
- iv) the condition for marginal stability
- v) the value of K so that the system has a damping factor 0.5 3+3+3+3+3
- 11. Write notes on any three of the following: 3×5
 - a) Special cases of Routh-Hurwith stability criteria
 - b) Static error coefficients
 - c) Armature controlled DC servomotor
 - d) Correlation between time domain and frequency domain responses of a system
 - e) Principle of argument.