Homework 6

Madilyn Simons

1. To prove that "is an associate of" is an equivalence relation on R, we must show that it is reflexive, symmetric, and transitive.

First, since R is a commutative ring, there exists some identity element in R, 1_R , such that $a1_R = a$. We can say that 1_R is a unit since $(1_R)(1_R) = 1_R$. Since $a1_R = a$, a is an associate of a and "is an associate of" is reflexive.

Next, let $a, b \in R$ such that a is an associate of b. Therefore, there exist some unit, u, in R such that a = bu. Since u is a unit, there also exists some unit $v \in R$ such that $uv = 1_R$.

If a = bu, then

$$av = buv = b1_R = b$$

Therefore, b is an associate of a and "is an associate of" is reflexive.

Finally, let a be an associate of b and let b be an associate of c for some elements $a, b, c \in R$. Therefore, a = bu and b = cv for some units $u, v \in R$.

We notice that

$$a = bu = cvu$$

We know that vu is a unit because there exists some v^{-1} , $u^{-1} \in R$ such that $vv^{-1} = 1_R$ and $uu^{-1} = 1_R$ since v and u are units. Thus, $(vu)(v^{-1}u^{-1}) = (vv^{-1})(uu^{-1}) = 1_R$ and so vu is a unit. Since vu is a unit, u is an associate of u are units.

2. (a) There are 4 different quadratic polynomial in $(\mathbb{Z}/2\mathbb{Z})[x]$:

$$x^{2}$$

$$x^{2} + 1$$

$$x^{2} + x$$

$$x^{2} + x + 1$$

Let f(x) be any quadratic polynomial in $(\mathbb{Z}/2\mathbb{Z})[x]$. We know that if $f(x) = x^2$, then f(x) is reducible because 0 is a root. If $f(x) = x^2 + 1$,

then f(x) is reducible because 1 is a root. If $f(x) = x^2 + x$, then f(x) is reducible because 1 is a root.

If $f(x) = x^2 + x + 1$, then f(x) is irreducible because f(x) has no roots in $(\mathbb{Z}/2\mathbb{Z})[x]$:

$$f(0) = 0^2 + 0 + 1 = 1$$

$$f(1) = 1^2 + 1 + 1 = 3 = 1$$

Therefore the only irreducible quadratic polynomial in $(\mathbb{Z}/2\mathbb{Z})[x]$ is $x^2 + x + 1$.

- (b) No, because f(1) = 0.
- (c) No, because $g(x) = x^5 + x^4 + 1 = (x^2 + x + 1)(x^3 x + 1)$.
- (d) Yes. Since h(x) does not have any roots, it is not divisible by a polynomial with degree 1. Therefore, it can only be the product of an irreducible polynomial with degree 2 and an irreducible polynomial of degree 3. The only irreducible polynomial with degree 2 in $(\mathbb{Z}/2\mathbb{Z})[x]$ is $x^2 + x + 1$. Therefore, if h(x) is reducible, then it is divisible by $x^2 + x + 1$ in $(\mathbb{Z}/2\mathbb{Z})[x]$. However, h(x) is NOT divisible by $x^2 + x + 1$, so it must be irreducible.
- 3. By Eisenstein's Criterion, p(x) is irreducible. Let q=2. Since q is a prime that divides all of the coefficients except for the leading coefficient and q^2 does not divide 34, p(x) is irreducible.
- 4. Let p = 11. Then $\overline{q}(x) = x^4 + 7x + 5$. Since $\overline{q}(x)$ is irreducible in $(\mathbb{Z}/p\mathbb{Z})[x]$ and p does not divide the leading coefficient of q(x), q(x) is irreducible.