

ACADGILD

SESSION 3: FOUNDATIONAL R PROGRAMMING

Assignment 1

Data Analytics

Table of Contents

1.Introduction	3
2.Objective	
3. Prerequisites	
4.Associated Data Files	
5.Problem Statement	
5.Expected Output	
7.Approximate Time to Complete Task	. 3

1. Introduction

This assignment will help you understand the concepts learnt in the session.

2. Objective

This assignment will test your skills on the basics of R.

3. Prerequisites

Not applicable.

4. Associated Data Files

Not applicable.

5. Problem Statement

1. Define an m x n matrix of zeros and then enters a nested-for loop to fill the locations of the matrix, only if the two indexes differ.

The purpose is to create a lower triangular matrix, that is a matrix whose
elements below the main diagonal are non-zero, the others are left
untouched to their initialized zero value.
When the indexes are equal (if condition in the inner loop, which runs over
j, the column index), a break is executed and the innermost loop is
interrupted with a direct jump to the instruction following the inner loop,
which is a print; then control gets to the outer for condition (over the
rows, index i), which is evaluated again.
If the indexes differ, the assignment is performed and the counter is
incremented by 1.
At the end, the program prints the counter ctr, which contains the
#number of elements that were assigned.

```
ANS: mat=matrix(0,3,4)

mat

for(row in 1:nrow(mat)){

for(col in 1:ncol(mat)){

print(paste('Row is =', row, 'Col is =', col, 'value =', mat[row,col]))

}

mat= matrix(1:6, 4,4)

lower.tri(mat)
```

```
> lower.tri(mat)

[,1] [,2] [,3] [,4]

[1,] FALSE FALSE FALSE FALSE

[2,] TRUE FALSE FALSE FALSE

[3,] TRUE TRUE FALSE FALSE

[4,] TRUE TRUE TRUE FALSE

> mat[lower.tri(mat, diag = F)]=0

> mat

[,1] [,2] [,3] [,4]

[1,] 1 5 3 1

[2,] 0 6 4 2

[3,] 0 0 5 3

[4,] 0 0 0 4
```

```
#----if condtion-----
# Make a lower triangular matrix (zeroes in upper right corner)
m=10
n=10
# A counter to count the assignment
ctr=0
# Create a 10 x 10 matrix with zeroes
mymat = matrix(0,m,n)
for(i in 1:m) {
for(j in 1:n) {
  if(i==j) {
   break;
  } else {
   # you assign the values only when i<>j
   mymat[i,j] = i*j
   ctr=ctr+1
print(i*j)
# Print how many matrix cells were assigned
print(ctr)
```

```
+ }
[1] 1
[1] 4
[1] 9
[1] 16
[1] 25
[1] 36
[1] 49
[1] 64
[1] 81
[1] 100
>
> # Print how many matrix cells were assigned
> print(ctr)
[1] 45
```