```
T(n) = aT(n/b) + \Theta(n^k \log^p n)
a>=1, b>1, k>=0 and p is a real number.
if a>b^k, then T(n) = \Theta(n^{\log_b a})
if a=b<sup>k</sup>
    if p>-1, then T(n) = \Theta(n^{\log_{h} a} \log^{p+1} n)
    if p = -1, then T(n) = \Theta(n^{\log_{h} a} \log \log n)
    if p<-1, then T(n) = \Theta(n^{\log_b a})
if a<b
    if p>=0 then T(n) = \Theta(n^k \log^p n)
    if p<0 then T(n) = \Theta(n^k)
```

Master's Theorem

```
T(n)= aT(n/b) + \Theta(n^k \log^p n)
a>=1, b>1, k>=0 and p is a real number.
```

- 1. if $a>b^k$, then $T(n) = \Theta(n^{\log_b a})$
- 2. if a=b^k
 - if p>-1, then $T(n) = \Theta(n^{\log_b a} \log^{p+1} n)$
 - if p = -1, then $T(n) = \Theta(n^{\log_b a} \log \log n)$
 - if p<-1, then $T(n) = \Theta(n^{\log_b a})$
- 3. if a<b
 - if $p \ge 0$ then $T(n) = \Theta(n^k \log^p n)$
 - if p<0 then $T(n) = \Theta(n^k)$