Title

D. Zack Garza

Tuesday 13th October, 2020

Contents

1	Mor	nday, October 12	1
	1.1	Proof of Bott-Borel-Weil	1
	1.2	Serre Duality and Grothendieck Vanishing	4
	1.3	Weyl's Character Formula	6
		1.3.1 Formal Characters	6

1 | Monday, October 12

1.1 Proof of Bott-Borel-Weil

Recall the Bott-Borel-Weil theorem: in characteristic zero, we're looking at the closure of the region containing the fundamental region $C_{\mathbb{Z}}$:

Figure 1: Image

Theorem 1.1.1(due to Aandersen). a. If $\lambda \in \overline{C}_{\mathbb{Z}}$ and $\lambda \notin X(T)_+$ then $H^0(w \circ \lambda) = 0$. b. If $\lambda \in \overline{C}_{\mathbb{Z}} \cap X(T)_+$ then for all $w \in W$, we have

$$H^{i}(w \cdot \lambda) = \begin{cases} H^{0}(\lambda) & i = \ell(w) \\ 0 & \text{otherwise} \end{cases}$$
.

 $Proof\ (of\ a).$

For (a): we use induction on $\ell(w)$. For $\ell(w) = 0$, we have $w = \mathrm{id}$. Let $\lambda \in \overline{\mathbb{C}}_{\mathbb{Z}}$ and $\lambda \notin X(T)_+$. Then

$$\begin{aligned} 0 &\leq \left\langle \lambda + \rho, \ \alpha^{\vee} \right\rangle \\ &= \left\langle \lambda, \ \alpha^{\vee} \right\rangle + 1 \\ \Longrightarrow \left\langle \lambda, \ \alpha^{\vee} \right\rangle = -1. \end{aligned}$$

Applying the previous proposition, we get $H^0(\lambda) = 0$.

Proof (of b).

For the base case $w = \mathrm{id}$, this follows from Kempf vanishing. Assuming the result holds for any word of length $l < \ell(w)$, if $\ell(w) > 0$, there exists some simple reflection s_{α} for $\alpha \in \Delta$ such that $\ell(s_{\alpha}w) = \ell(w) - 1$. Moreover, $w^{-1}(\alpha) \in -\Phi^+$, so set $\beta = -w^{-1}(\alpha) \in \Phi^+$. We can the make the following computation:

$$\langle (s_{\alpha}w) \cdot \lambda, \ \alpha^{\vee} \rangle = \langle (s_{\alpha}w)(\lambda + \rho) - \rho, \ \alpha^{\vee} \rangle$$

$$= \langle (s_{\alpha}w)(\lambda + \rho), \ \alpha^{\vee} \rangle - 1$$

$$= \langle w(\lambda + \rho), \ s_{\alpha}\alpha^{\vee} \rangle - 1$$

$$= -\langle w(\lambda + \rho), \ \alpha^{\vee} \rangle - 1$$

$$= \langle \lambda + \rho, \ -w^{-1}\alpha^{\vee} \rangle - 1$$

$$= \langle \lambda + \rho, \ \beta^{\vee} \rangle - 1$$

$$> -1$$

and $\langle (s_{\alpha}w) \cdot \lambda, \alpha^{\vee} \rangle < \rho$ since $\lambda \in \overline{\mathbb{C}}_{\mathbb{Z}}$. Note that we've used the fact that the inner product is W-invariant.

Now if $\langle (s_{\alpha}w) \cdot \lambda, \alpha^{\vee} \rangle \geq 0$, we can apply the prior proposition part (d). Here we use the fact that $\operatorname{Ind}_{B}^{P_{\alpha}}(s_{\alpha}w)\lambda$ is simple. Applying the inductive hypothesis yields

$$H^{i}(s_{\alpha} - \lambda) = H^{i+1}(w \cdot \lambda).$$

Now if $\langle s_{\alpha}w \cdot \lambda, \alpha^{\vee} \rangle = -1$, then

$$-1 = \langle \lambda + \rho, \ \beta^{\vee} \rangle - 1$$

$$\Longrightarrow \langle \lambda + \rho, \ \beta^{\vee} \rangle = 0$$

$$\Longrightarrow \langle \lambda, \ \beta^{\vee} \rangle = 0$$
...

Missing computation

Then applying (a) yields $H^1(w \cdot \lambda) = 0$.

1 MONDAY, OCTOBER 12

3

1.2 Serre Duality and Grothendieck Vanishing

Let P be a parabolic subgroup, i.e. $P_J = P := L_J \rtimes U_J$ for some $J \subseteq \Delta$. Set $n(P) = |\Phi^+| - |\Phi_J^+|$.

Example 1.2.1.

Let $\Phi = A_4$, which has ten simple roots:

- $\alpha_i, 1 \leq i \leq 4$
- $\alpha_i + \alpha_{i+1}$, i = 1, 2, 3. $\alpha_1 + \alpha_2 + \alpha_3$, $\alpha_2 + \alpha_3 + \alpha_4$
- $\sum_{i=1}^{4} \alpha_i.$

Figure 2: Image

Then n(P) = 10 - 3 = 7.

Theorem 1.2.1 (Grothendieck Vanishing).

$$R^i \operatorname{Ind}_P^G M = 0$$
 for $i > n(P)$.

Theorem 1.2.2 (Serre Duality).

$$\left(R^i\operatorname{Ind}_B^GM\right)^{\vee}\cong R^{n(P)-i}\operatorname{Ind}_P^GM^{\vee}\otimes (-2\rho_P).$$

where

$$\rho_p \coloneqq \frac{1}{2} \sum_{\beta \in \Phi^+ \setminus \Phi_J} \beta$$

Example 1.2.2.

Take B = P and $M = \lambda$. Then $\lambda^{\vee} = -\lambda$, so

$$\left(R^i\operatorname{Ind}_B^G\lambda\right)^{\vee}\cong R^{|\Phi^+|-i}\operatorname{Ind}_P^G(-\lambda)^{\vee}\otimes(-2\rho).$$

From this we can conclude

$$H^{i}(\lambda) = H^{n-i}(-\lambda - 2\rho)^{\vee},$$

where $n = |\Phi^+|$.

Corollary 1.2.1(?).

Let $\lambda \in X(T)_+ \cap \overline{C}_{\mathbb{Z}}$ be a dominant weight. Then

- a. The irreducible representations are given by $L(\lambda) = H^0(\lambda)$.
- b. $\operatorname{Ext}_G^1(L(\lambda), L(\mu)) = 0$ for all λ, μ in $\overline{\mathbb{C}}_{\mathbb{Z}}$.
- c. If char (k) = 0, so $X(T)_+ \subset \overline{\mathbb{C}}_{\mathbb{Z}}$, then all G-modules are completely reducible.

Proof (of a).

Note that the longest element takes positive roots to negative roots, so $w_0 \rho = -\rho$, and moreover $-w_0(\overline{C}_{\mathbb{Z}}) = \overline{C}_{\mathbb{Z}}$. We also have

$$w_0 \cdot (w_0 \lambda) = w_0(-w_0 \lambda + \rho) - \rho$$
$$= -\lambda + w_0 \rho - \rho$$
$$= -\lambda - 2\rho.$$

By Serre duality, if we take the Weyl module we obtain

$$V(-w_0\lambda) := H^0(\lambda)^{\vee}$$

$$= H^n(-\lambda - 2\rho)$$

$$= H^n(w_0 \cdot (-w_0\lambda))$$

$$= H^n(-w_0\lambda) \quad \text{by Bott-Borel-Weil,}$$

where we've used that $\ell(w_0) = |\Phi^+|$. We know that $L(-w_0\lambda) \subseteq \operatorname{Soc} H^0(-w_0\lambda) = V(-w_0\lambda) \twoheadrightarrow L(-w_0\lambda)$, where the last term is contained in the head. But this means that this splits, so by indecomposability we must have $L(-w_0\lambda) = H^0(-w_0\lambda) = V(-w_0\lambda)$. So we can conclude

$$L(\mu) = H^0(\mu) = V(\mu) \qquad \forall \mu \in X(T)_+ \cap \overline{C}_{\mathbb{Z}}.$$

Proof (of b and c).

Suppose $\operatorname{Ext}^1_G(L(\lambda),L(\mu))\neq 0$, then $L(\lambda)$ is in $H^0(\mu)/\operatorname{Soc}_GH^0(\mu)=0$ and $L(\mu)$ is in $H^0(\lambda)/\operatorname{Soc}_GH^0(\lambda)=0$, but this forces $\operatorname{Ext}^1_G(L(\lambda),L(\mu))=0$.

Part (c) follows from part (b).

1.3 Weyl's Character Formula

Problem: Determine char $H^0\lambda$ for $\lambda \in X(T)_+$.

Solution: Let $A(\lambda) = \sum_{w \in W} \operatorname{sgn}(w) e^{w\lambda} \in \mathbb{Z}[X(T)]$, where we sum over the usual Weyl group and not

the affine Weyl groups, taken as a formal sum in the group algebra on the weight lattice. We can then state Weyl's character formula:

char
$$H^0(\lambda) = \frac{A(\lambda + \rho)}{A(\rho)}$$
 for $\lambda \in X(T)_+$.

This is a formal sum, so it's surprising that the bottom term even divides the top. But there is a great deal of cancellation, we'll see this in examples such as GL_3 .

1.3.1 Formal Characters

Let M be a T-module, then define the *character*

$$\operatorname{char} M := \sum_{\mu \in X(T)} (\dim M_{\mu}) e^{\mu} \in \mathbb{Z}[X(T)].$$

We then define the Euler characteristic

$$\chi(M) := \sum_{i>0} (-1)^i \operatorname{char} H^i(M).$$

Note that by Grothendieck vanishing, $H^i(M) = 0$ for $i > |\Phi^+| = \dim(G/B)$, so this is a finite sum. In fact, if M is a G-module, then this is W-invariant and thus in fact $\chi(M) \in \mathbb{Z}[X(T)]^W$.