2. 수의 체계

논리회로

부경대 컴퓨터 인공지능공학부 최필주

목차

- 10진수
- 2진수
- 16진수
- 진법 변환
- 2진수 정수 연산과 보수
- 2진 부동소수점수의 표현

10진수

- 10진수 표현법
 - 10진수: 기수가 10인 수
 - 기수: 진법을 나타내는 기본수
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9의 10개 수로 표현

$$9345.35 = 9 \times 1000 + 3 \times 100 + 4 \times 10 + 5 \times 1 + 3 \times 0.1 + 5 \times 0.01$$
$$= 9 \times 10^{3} + 3 \times 10^{2} + 4 \times 10^{1} + 5 \times 10^{0} + 3 \times 10^{-1} + 5 \times 10^{-2}$$

- 바빌로니아인 : 60진법을 사용(기원전 4000~3000년)
- 고대 로마의 기수법에는 5진법을 사용
- 10진법의 아라비아 숫자는 인도에서 기원전 2세기에 발명

2진수

- 2진수 표현법
 - 기수가 2인 수
 - 0, 1 두 개의 수로 표현

$$\begin{aligned} 1010.1011_{(2)} &= 1 \times 1000_{(2)} + 0 \times 100_{(2)} + 1 \times 10_{(2)} + 0 \times 1_{(2)} \\ &+ 1 \times 0.1_{(2)} + 0 \times 0.01_{(2)} + 1 \times 0.001_{(2)} + 1 \times 0.0001_{(2)} \\ &= 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} \end{aligned}$$

Punch card Core memory

16진수

- 16진수 표현법
 - 0~9, A~F까지 16개의 기호로 표현

$$6C7.3A_{(16)} = 6 \times 100_{(16)} + C \times 10_{(16)} + 7 \times 1_{(16)} + 3 \times 0.1_{(16)} + A \times 0.01_{(16)}$$
$$= 6 \times 16^{2} + C \times 16^{1} + 7 \times 16^{0} + 3 \times 16^{-1} + A \times 16^{-2}$$

■ 2진수 4자리는 16진수 1자리 :

```
10101110100010.0111111_{(2)} = 10 1011 1010 0010.0111 111_{(2)}
= 0010 1011 1010 0010.0111 11110<sub>(2)</sub>
= 2 B A 2. 7 E<sub>(16)</sub>
```

10	2	16
진수	진수	진수
0	0000	0
1	0001	1
2	0010	3
3	0011	
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	Е
15	1111	F

진법 변환

- 10진수-2진수 변환
 - 정수부분과 소수부분으로 나누어 변환
 - 정수부분은 2로 나누고, 소수부분은 2를 곱한다.
 - 10진수 75.6875를 2진수로 변환

$$75.6875_{(10)} = 1001011.1011_{(2)}$$

진법 변환

- 10진수-16진수 변환
 - 정수부분과 소수부분으로 나누어 변환
 - 정수부분은 16로 나누고, 소수부분은 16를 곱한다.
 - 또는 2진수로 변환 후 4자리씩 묶어 16진수로 변환

```
75.6875 = 1001011.1011_{(2)} 10진 \rightarrow 2진 \rightarrow 16진 4자리씩 나눔 = 4 B. B_{(16)}
```

```
75.6 = 1001011.1001100110011001..._{(2)}
= 0100 1011.1001 1001 1001 1001 1001..._{(2)}
= 4 B. 9 9 9 9 9..._{(16)}
```

진법 변환

- 10진수로의 변환
 - 각 자리에 기수의 거듭제곱을 곱하여 변환

$$101101.101_{(2)} = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$
$$= 32 + 0 + 8 + 4 + 0 + 1 + 0.5 + 0 + 0.125 = 45.625_{(10)}$$

$$A3.D2_{(16)} = 10 \times 16^{1} + 3 \times 16^{0} + 13 \times 16^{-1} + 2 \times 16^{-2}$$

$$= 10 \times 16^{-1} + 3 \times 1 + 13 \times 0.0625 + 2 \times 0.00390625$$

$$= 160 + 3 + 0.8125 + 0.0078125$$

$$= 163.8203125_{(10)}$$

- 2진 양의 정수 덧셈
 - 0+0=0, 0+1=1, 1+0=1, 1+1=10 (자리올림 발생)

10진수	2진수
carry → 11	carry → 0110000
49	00110001
+ 58	+ 00111010
107	01101011

- 2진 음의 정수 표현과 보수
 - 최상위비트(MSB)를 부호비트로 사용
 - 양수(+):0
 - 음수(-):1
 - 2진수 음수를 표시하는 방법

	음수를 나타내는 방법	-5의 표현 방법
부호와 절대치(sign-magnitude)	부호비트를 1로	1101 ₍₂₎
1의 보수(1's complement)	0 ↔ 1 변환	1010(2)
2의 보수(2's complement)	1의 보수에 +1	1011(2)

- 부호와 절대치, 1의 보수의 단점: 0 표현이 두 개, 자연스런 덧셈/뺄셈 어려움
- $5_{(10)} = 0101_{(2)}$

● 2진수의 표현 방법 3가지(8 bits)

2진수	부호와 절대치	1의 보수	2의 보수
00000000	+0	+0	+0
0000001	+1	+1	+1
00000010	+2	+2	+2
•••	•••	•••	•••
01111110	+126	+126	+126
01111111	+127	+127	+127
10000000	-0	-127	-128
10000001	-1	-126	-127
10000010	-2	-125	-126
10000011	-3	-124	-125
•••	•••	•••	•••
11111101	-125	-2	-3
11111110	-126	-1	-2
11111111	-127	-0	-1

● 2진 정수의 2의 보수 개념도 (4 bits)

0	0	0	0	0	0
	0	0	0	1	+1
	0	0	1	0	+2
	0	0	1	1	+3
+	0	1	0	0	+4
	0	1	0	1	+5
	0	1	1	0	+6
	0	1	1	1	+7
	1	0	0	0	-8
	1	0	0	1	-7
	1	0	1	0	-6
	1	0	1	1	-5
-	1	1	0	0	-4
	1	1	0	1	-3
	1	1	1	0	-2
	1	1	1	1	-1

● 뺄셈

- 2의 보수를 취하여 덧셈(Carry는 버림)
- \mathfrak{A} : 7928-879 = 7928+(-879) = 7928+(-0879) $7928+(10^4-0879) = 7928+9121 = 17049$

● 2의 보수 사용 시 2진 정수의 표현 범위

bit 수	2의 보수를 사용한 2진 정수의 표현 범위
<i>n</i> bit	$-2^{n-1} \sim +2^{n-1} -1$
4 bit	$-2^{4-1} \sim +2^{4-1} -1 (-8 \sim +7)$
8 bit	$-2^{8-1} \sim +2^{8-1} -1 \ (-128 \sim +127)$
16 bit	$-2^{16-1} \sim +2^{16-1} -1 (-32,768 \sim +32,767)$
32 bit	$-2^{32-1} \sim +2^{32-1} -1 (-2,147,483,648 \sim +2,147,483,647)$
64 bit	$-2^{64-1} \sim +2^{64-1} -1 \ (-9,223,372,036,854,775,808 \sim 9,223,372,036,854,775,807)$

- 2의 보수로 표현된 음수를 10진수로 변환
 - 2의 보수 10101100을 10진수로 변환하는 경우

첫번째방법

MSB가 1이므로 음수이다. 실제크기는 -128이다.

$$10101100_{(2)} = -1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$
$$= -128 + 0 + 32 + 0 + 8 + 4 + 0 + 0 = -128 + 44$$
$$= -84$$

누번째방법

2의 보수로 바꾸어 10진수로 바꾼 다음 -부호를 붙인다.

10101100₍₂₎ ⇒ 2의 보수 01010100₍₂₎

$$=0\times 2^7 +1\times 2^6 +0\times 2^5 +1\times 2^4 +0\times 2^3 +1\times 2^2 +0\times 2^1 +0\times 2^0$$

$$=0+64+0+16+0+4+0+0$$

$$=84$$
 부호를 붙이면 -84

2진 부동소수점의 표현

- 컴퓨터의 부동소수점수
 - 정규화 후 부호(sign), 지수(exponent), 가수(mantissa)의 세 부분으로 표시
 - 두 가지 정확도

※ 2진수의 정규화

 $75.6875 = 1001011.1011_{(2)}$ $= 1.0010111011_{(2)} \times 2^{6}$ $= 1.0010111011_{(2)} \times 2^{110_{(2)}}$

	IEEE 754 표준 부동소수점수의 비트 할당	Bias
single precision	8 bit 23 bit $31 \ 30 \ 29 \ \cdots \ 24 \ 23 \ 22 \ 21 \ \cdots \ 1 \ 0$ S Exponent Mantissa $10000101_{(2)} \ 0010111011{(2)} \ (○ 0 ○ 로 채우 ○ 1000111011{(2)} \ (○ 1000111011{(2)} \ (○ 1000111011{(2)} \ (○ 1000111011{(2)} \ (○ 1000111011{(2)} \ (○ 10001111011{(2)} \ (○ 10011111011{(2)} \ (○ 10011111011{(2)} \ (○ 10011111011{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 1001111111{(2)} \ (○ 10011111111{(2)} \ (○ 1001111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 10011111111{(2)} \ (○ 1001111111{(2)} \ (○ 10011111111{(2)} \ ($	127 [점)
double precision	11 bit 52 bit 63 62 61 53 52 51 50 1 0 S Exponent Mantissa	1023

- n진수 표현법
 - 0, 1, ..., n-1의 n개의 수로 표현

	표현에 사용되는 숫자	예시
2진수	0, 1	1010.1011 ₍₂₎
10진수	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	9345.35
16진수	0, 1, 2,, 9, A, B, C, D, E, F	6C7.3A ₍₁₆₎

• 2진수 4자리는 16진수 1자리

10	2	16
진수	진수	진수
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	Е
15	1111	F

● 진수 변환

- 10진수 → n진수 변환
 - 정수부분: 몫이 0이 될 때까지 기수(n)로 나눈 나머지를 취함
 - 소수부분: 소수 부분이 0이 될 때까지 기수(n)로 곱한 정수 부분을 취함
- n진수 → 10진수 변환
 - 각 자리에 기수(n)의 거듭제곱을 곱함
 - \mathfrak{P} : $101101.101_{(2)} = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$ = $32 + 0 + 8 + 4 + 0 + 1 + 0.5 + 0 + 0.125 = 45.625_{(10)}$

- 음수의 표현
 - 최상위비트(MSB)를 부호비트로 사용(음수일 경우 1)
 - 3가지 표현 방법

	음수를 나타내는 방법
① 부호와 절대치(sign-magnitude)	부호비트를 1로
② 1의 보수(1's complement)	0 ↔ 1 변환
③ 2의 보수(2's complement)	1의 보수에 +1

				1	2	3
1	0	0	0	-0	-7	-8
1	0	0	1	-1	-6	-7
1	0	1	0	-2	-5	-6
1	0	1	1	-3	-4	-5
1	1	0	0	-4	-3	-4
1	1	0	1	-5	-2	-3
1	1	1	0	-6	-1	-2
1	1	1	1	-7	-0	-1

- 2진 부동소수점의 표현
 - ① 정규화된 표현으로 변환
 - ② 3부분으로 나누어 표현
 - S: 음수일 경우 1
 - E: 지수 + bias한 값
 - M: 정수 부분을 제외한 소수 부분만 취함
 - 예시

$$75.6875 = 1001011.1011_{(2)}$$
$$= 1.0010111011_{(2)} \times 2^{6}$$
$$= 1.0010111011_{(2)} \times 2^{110_{(2)}}$$

