Problem Set 3

Question 1

Lifetime of a light bulb T is given by $P(T > t) = e^{-t/3}$ for all $t \ge 0$. The bulb has lasted x years, so the conditional probability that it will last at most x + 2 years is given by the conditional probability equation.

$$\begin{split} P(A|B) &= \frac{P(A\cap B)}{P(B)} \\ P(A\cap B) &= \int_{x}^{x+2} e^{-t/3} dt = -\frac{1}{3} e^{-t/3} \Big|_{x}^{x+2} = \frac{1}{3} e^{-x/3} - \frac{1}{3} e^{-(x+2)/3} \\ P(B) &= \int_{0}^{x} e^{-t/3} dt = -\frac{1}{3} e^{-t/3} \Big|_{0}^{x} = -\frac{1}{3} e^{-x/3} + \frac{1}{3} e^{-0/3} = \frac{1}{3} - \frac{1}{3} e^{-x/3} \\ P(A|B) &= \frac{\frac{1}{3} e^{-x/3} - \frac{1}{3} e^{-(x+2)/3}}{\frac{1}{3} - \frac{1}{3} e^{-x/3}} = \frac{e^{-x/3} - e^{-x/3} e^{-2/3}}{1 - e^{-x/3}} \end{split}$$

Part A

The probability that both children are female, assuming the first is female, is given by the conditional probability equation P(A|B).

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{.25}{.5} = .5$$

There is a probability of .5 that given the first child is female that the second will also be female.

Part B

Here the conditional probability equation is used again, but the order of children no longer matters.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{.25}{.75} = .333$$

There is a probability of .333 that given as least one child is female that the other will also be female.

Part C

$$P(\mathrm{ff}\mid \geq \mathrm{Katie}) = \frac{P(\mathrm{ff}\cap \geq \mathrm{Katie})}{P(\geq \mathrm{Katie})} =$$

Part A

Part B

Part C

Part A

The set \mathcal{X} of possible values for X is given by $S = \{1, 2, 4, 8, 16, 32, ...\}$ (or by 2^x where x can take all integers starting at 0).

Part B

The PMF of X is given by $p_X(x) = P(X = x)$.

Part C

Part D

Part E

${\bf Question}~{\bf 5}$

Part A

$$\begin{cases} 0 & x \mid -2 \\ 2 & -2 \le x \le -1 \end{cases}$$

 $.1 - 1 \le x < 0.40 \le$

Part B

Part C

Part A

Part B

Part C

Part D

Part E