iemisc: Comparing Saturated Vapor Pressure Formulas to the Reference

Irucka Embry, E.I.T. (EcoC²S)

2023-03-03

Contents

Replicate the R code	1
Fraction (or Mixed number) to a Decimal (Numeric Vector) R Source	1
$ m EcoC^2S~Links$	4
Copyright and License	4

Replicate the R code

Note: If you wish to replicate the R code below, then you will need to copy and paste the following commands in R first (to make sure you have all the packages and their dependencies):

```
install.packages(c("install.load", "iemisc", "units"))
# install the packages and their dependencies

# load the required packages
install.load::load_package("iemisc", "units", "pander")
# load needed packages using the load_package function from the install.load
# package (it is assumed that you have already installed these packages)
import::from(fpCompare, "%==%")
```

Fraction (or Mixed number) to a Decimal (Numeric Vector)

```
install.load::load_package("iemisc", "data.table", "units", "pander")
# reference vapor pressures
reference <- sort(c(611.655, 2339.32, 7384.94, 19946.4, 47414.5, 101418))</pre>
```

```
T \leftarrow sort(c(0.01, seq(from = 20, to = 100, by = 20)))
# hydraulics
hydraulics svp <- hydraulics::svp(T = T, units = "SI")
# iemisc
iemisc sat vapor pressure huang <- sat vapor pressure(T = T, units = "SI", formula = "Huang")
iemisc_sat_vapor_pressure_buck <- sat_vapor_pressure(T = T, units = "SI", formula = "Buck")</pre>
iemisc_sat_vapor_pressure_iapws <- sat_vapor_pressure(T = T, units = "SI", formula = "IAPWS")</pre>
# aiRthermo
# create a numeric vector with the units of degrees Celsius
T_C <- set_units(T, "degree_C")</pre>
T C
## Units: [°C]
## [1] 1e-02 2e+01 4e+01 6e+01 8e+01 1e+02
# create a numeric vector to convert from degrees Celsius to Kelvin
T K <- T C
T_K
## Units: [°C]
## [1] 1e-02 2e+01 4e+01 6e+01 8e+01 1e+02
# create a numeric vector with the units of Kelvin
units(T_K) <- make_units(K)
aiRthermo_saturation_pressure_H2O <- aiRthermo::saturation_pressure_H2O(drop_units(T_K))
comparePress <- data.table(Reference_Pressure = reference, Hydraulics_Pressure = hydraulics_svp,</pre>
   Huang_Pressure = iemisc_sat_vapor_pressure_huang, Buck_Pressure = iemisc_sat_vapor_pressure_buck,
    IAPWS_Pressure = iemisc_sat_vapor_pressure_iapws, aiRthermo_Pressure = aiRthermo_saturation_pressure
comparePress[, `:=`(mreHydraulics = mapply(mre, Hydraulics_Pressure, Reference_Pressure) *
    100, mreHuang = mapply(mre, Huang_Pressure, Reference_Pressure) * 100, mreBuck = mapply(mre,
    Buck_Pressure, Reference_Pressure) * 100, mreIAPWS = mapply(mre, IAPWS_Pressure,
   Reference_Pressure) * 100, mreaiRthermo = mapply(mre, aiRthermo_Pressure, Reference_Pressure) *
    100)] # Source 1
# which row(s) has the maximum value
max_row <- pmax(comparePress$mreHydraulics, comparePress$mreHuang, comparePress$mreBuck,
    comparePress$mreIAPWS, comparePress$mreaiRthermo)
# which row(s) has the minimum value
min_row <- pmin(comparePress$mreHydraulics, comparePress$mreHuang, comparePress$mreBuck,
```

comparePress\$mreIAPWS, comparePress\$mreaiRthermo)

```
# which rows are TRUE
max_row2 <- comparePress == max_row

# which rows are TRUE
min_row2 <- comparePress == min_row

comparePress[, max_mre := c(rep("mreaiRthermo", 3), rep("mreBuck", 3))]

comparePress[, min_mre := c("mreBuck", rep("mreHydraulics / mreHuang", 4), "mreIAPWS")]

setnames(comparePress, c("Reference Pressure (Pa)", "Hydraulics Package Pressure (Pa)",
    "Huang Pressure (Pa)", "Buck Pressure (Pa)", "IAPWS Pressure (Pa)", "aiRthermo Pressure (Pa)",
    "MRE % (Hydraulics Package vs. Reference)", "MRE % (Huang vs. Reference)", "MRE % (Buck vs. Reference)",
    "MRE % (IAPWS vs. Reference)", "MRE % (aiRthermo vs. Reference)", "Maximum MRE % Formula",
    "Minumum MRE % Formula"))</pre>
```

pander(comparePress)

Reference Pressure (Pa)	Hydraulics Package Pressure (Pa)	Huang Pressure (Pa)
611.7	611.7	611.7
2339	2339	2339
7385	7385	7385
19946	19946	19946
47414	47415	47415
101418	101417	101417

Buck Pressure (Pa)	IAPWS Pressure (Pa)	aiRthermo Pressure (Pa)
611.7	611.7	611.4
2338	2339	2335
7382	7385	7382
19945	19947	19945
47410	47416	47410
101308	101418	101308

MRE % (Hydraulics Package vs. Reference)	MRE % (Huang vs. Reference)
0.005632	0.005632
3.205 e - 05	3.205 e - 05
9.734 e - 05	9.734 e - 05
0.001482	0.001482
0.001141	0.001141
0.0009911	0.0009911

MRE % (Buck vs. Reference)	MRE $\%$ (IAPWS vs. Reference)
0.0001454	0.0003384

MRE % (Buck vs. Reference)	MRE % (IAPWS vs. Reference)
0.04189	0.005397
0.03494	0.002308
0.006289	0.004926
0.008927	0.002709
0.1087	6.096 e - 06

MRE % (aiRthermo vs. Reference)	Maximum MRE % Formula	Minumum MRE % Formula
0.03453	mreaiRthermo	mreBuck
0.1765	${\it mreaiRthermo}$	mreHydraulics / mreHuang
0.03494	${\it mreaiRthermo}$	mreHydraulics / mreHuang
0.006289	${ m mre}{ m Buck}$	mreHydraulics / mreHuang
0.008927	${ m mre}{ m Buck}$	mreHydraulics / mreHuang
0.1087	${\operatorname{mreBuck}}$	mreIAPWS

R Source

r - How do I reset all options() arguments to their default values? - Stack Overflow answered by stevec on Jul 27 2020 and edited by stevec on Feb 27 2022. See https://stackoverflow.com/questions/36848785/how-do-i-reset-all-options-arguments-to-their-default-values

EcoC²S Links

EcoC²S Home – https://www.ecoccs.com/

About EcoC2S - https://www.ecoccs.com/about_ecoc2s.html

Products - https://www.questionuniverse.com/products.html

EcoC²S Media – https://www.ecoccs.com/media.html

EcoC²S Resources – https://www.ecoccs.com/resources.html

R Trainings and Resources provided by $\mathrm{EcoC^2S}$ (Irucka Embry, E.I.T.) – $\mathrm{https://www.ecoccs.com/rtraining.html}$

Copyright and License

All R code written by Irucka Embry is distributed under the GPL-3 (or later) license, see the GNU General Public License {GPL} page.

All written content originally created by Irucka Embry is copyrighted under the Creative Commons Attribution-ShareAlike 4.0 International License. All other written content retains the copyright of the original author(s).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.