부산 응급실 혼잡도 예측 데이터베이스 ERD 설계

📊 테이블 구조

1. hospitals (병원 정보 - 정적 데이터)

목적: 부산 응급실 기본 정보 저장

컬 럼 명	데이터 타입		제 약 조 건	설 명
id	VARCHAR(10)	PRIMARY KEY		병원 고유 ID (예: ER001)
name	VARCHAR(100)	NOT NULL		병원명
address	VARCHAR(200)	NOT NULL		도로명주소
phone	VARCHAR(20)	NOT NULL		대표 전화번호
emergency_phon	e VARCHAR(20)			응급실 직통번호
latitude	DECIMAL(10, 8) NOT NULL		위도
longitude	DECIMAL(11, 8) NOT NULL		경도
district	VARCHAR(20)	NOT NULL		구 (예: 서구, 해운대구)
emergency_leve	I VARCHAR(50)	NOT NULL		응급실 등급
hospital_type	VARCHAR(50)	NOT NULL		병원 유형
beds_total	INT			총 병상 수
has_ct	BOOLEAN	DEFAULT FALSE		CT 보유 여부
has_mri	BOOLEAN	DEFAULT FALSE		MRI 보유 여부
created_at	TIMESTAMP	DEFAULT CURRENT_TIMES	TAMP	생성일시
updated_at	TIMESTAMP	DEFAULT CURRENT_TIMES	TAMP ON UPDATE CURRENT_TIMESTAM	P 수정일시

인덱스:

- PRIMARY KEY: id
- INDEX: district (구별 검색용)
- INDEX: emergency_level (등급별 검색용)

2. emergency_predictions (혼잡도 예측 - 동적 데이터, 나중에 구현)

목적: 시간대별 응급실 혼잡도 예측 정보

컬 럼 명	데이터 타입	제 약 조 건	설 명
id	INT	PRIMARY KEY AUTO_INCREMENT	예측 레코드 ID
hospital_id	VARCHAR(10)	FOREIGN KEY	병원 ID (hospitals.id 참조)
prediction_datetime	DATETIME	NOT NULL	예측 시점
<pre>predicted_wait_time</pre>	INT		예상 대기시간 (분)
congestion_level	ENUM('여유', '보통', '혼잡')	NOT NULL	혼잡도 상태
congestion_color	<pre>ENUM('green', 'yellow', 'red')</pre>	NOT NULL	혼잡도 색상
predicted_patients	INT		예상 대기 환자 수
confidence_score	DECIMAL(5, 2)		예측 신뢰도 (0-100)
created at	TIMESTAMP	DEFAULT CURRENT TIMESTAMP	예측 생성일시

인덱스:

- PRIMARY KEY: id
- FOREIGN KEY: hospital_id → hospitals(id)
- INDEX: (hospital_id, prediction_datetime) (병원별 시간 조회용)

3. historical_data (과거 데이터 - 머신러닝 학습용, 나중에 구현)

목적: 머신러닝 모델 학습을 위한 시계열 데이터

컬 럼 명 데이터 타입 제 약 조 건 설 명 PRIMARY KEY AUTO_INCREMENT 레코드 ID id hospital_id VARCHAR(10) FOREIGN KEY 병원 ID record_datetime DATETIME NOT NULL 기록 시점 actual_wait_time INT 실제 대기시간 (분) patient_count 대기 환자 수 INT available_beds INT 가용 병상 수 day_of_week TINYINT 요일 (0=월요일) hour_of_day TINYINT 시간 (0-23) is_holiday **BOOLEAN** 공휴일 여부 DEFAULT FALSE weather_condition VARCHAR(20) 날씨 상태 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP 생성일시

인덱스:

- PRIMARY KEY: id
- FOREIGN KEY: hospital_id → hospitals(id)
- INDEX: (hospital_id, record_datetime) (병원별 시계열 조회용)
- INDEX: (day_of_week, hour_of_day) (패턴 분석용)

∅ 테이블 관계 (Relationships)


```
hospitals (1) ----< (N) emergency_predictions

(N) historical_data
```

• hospitals ↔ emergency_predictions: 1:N 관계

- ㅇ 하나의 병원은 여러 시간대의 예측 데이터를 가짐
- hospitals ↔ historical_data: 1:N 관계
 - 하나의 병원은 여러 과거 기록을 가짐

📝 현재 단계에서 구현할 테이블

Phase 1 (현재):

- V hospitals 테이블만 구현
- CSV 데이터 import
- 기본 CRUD API 개발

Phase 2 (2주차):

- emergency_predictions 테이블 추가
- 머신러닝 시뮬레이션 데이터 생성

Phase 3 (선택사항):

- historical_data 테이블 추가
- 시계열 데이터 누적

锅 Draw.io에서 ERD 그리는 방법

1단계: Draw.io 시작

- 1. https://app.diagrams.net/ 접속
- 2. "Create New Diagram" 클릭

3. "Blank Diagram" 선택

2단계: 테이블 추가

- 1. 왼쪽 패널에서 "Entity Relation" 카테고리 선택
- 2. "Table" 아이콘을 캔버스에 드래그
- 3. 테이블 이름 변경: hospitals

3단계: 컬럼 추가

테이블을 더블클릭하여 편집 모드:

hospitals

PK id: VARCHAR(10)

name: VARCHAR(100) address: VARCHAR(200)

phone: VARCHAR(20)

emergency_phone: VARCHAR(20)

latitude: DECIMAL(10,8) longitude: DECIMAL(11,8)

district: VARCHAR(20)

emergency_level: VARCHAR(50)

hospital_type: VARCHAR(50)

beds_total: INT has ct: BOOLEAN

has mri: BOOLEAN

created_at: TIMESTAMP
updated_at: TIMESTAMP

4단계: 나머지 테이블 추가 (나중에)

- emergency_predictions
- historical_data

5단계: 관계선 연결 (나중에)

• 테이블 간 선을 그어서 FOREIGN KEY 관계 표시

💾 다음 단계

ERD 완성 후:

- 1. MySQL 데이터베이스 생성
- 2. CREATE TABLE SQL 문 작성
- 3. CSV 데이터 import
- 4. Spring Boot Entity 클래스 생성