

Data Structure and Algorithms [CO2003]

Chapter 2 - Algorithm Complexity

Lecturer: Duc Dung Nguyen, PhD. Contact: nddung@hcmut.edu.vn

Faculty of Computer Science and Engineering Hochiminh city University of Technology

Contents

- 1. Algorithm Efficiency
- 2. Big-O notation
- 3. Problems and common complexities
- 4. P and NP Problems

Outcomes

- L.O.1.1 Define concept "computational complexity" and its special cases, best, average, and worst.
- L.O.1.2 Analyze algorithms and use Big-O notation to characterize the computational complexity of algorithms composed by using the following control structures: sequence, branching, and iteration (not recursion).
- L.O.1.3 List, give examples, and compare complexity classes, for examples, constant, linear, etc.
- L.O.1.4 Be aware of the trade-off between space and time in solutions.
- L.O.1.5 Describe strategies in algorithm design and problem solving.

Algorithm Efficiency

- A problem often has many algorithms.
- Comparing two different algorithms \Rightarrow Computational complexity: measure of the difficulty degree (time and/or space) of an algorithm.
 - How fast an algorithm is?
 - How much memory does it cost?

Algorithm Efficiency

General format

$$efficiency = f(n)$$

n is the size of a problem (the key number that determines the size of input data)

Linear Loops

The number of times the body of the loop is replicated is 1000.

$$f(n) = n$$

The number of times the body of the loop is replicated is 500.

$$f(n) = n/2$$

Linear Loops

Logarithmic Loops

Multiply loops

```
i = 1
while (i <= n)
    // application code
    i = i x 2
end while</pre>
```

Divide loops

```
i = n
while (i >= 1)
   // application code
i = i / 2
end while
```

The number of times the body of the loop is replicated is

$$f(n) = \log_2 n$$

Logarithmic Loops

Nested Loops

Iterations = Outer loop iterations \times Inner loop iterations

Example

The number of times the body of the loop is replicated is

$$f(n) = n \log_2 n$$

Nested Loops

Quadratic Loops

Example

The number of times the body of the loop is replicated is

$$f(n) = n^2$$

Dependent Quadratic Loops

Example

The number of times the body of the loop is replicated is

$$1+2+\ldots+n = n(n+1)/2$$

Quadratic Loops

Asymptotic Complexity

- Algorithm efficiency is considered with only big problem sizes.
- We are not concerned with an exact measurement of an algorithm's efficiency.
- Terms that do not substantially change the function's magnitude are eliminated.

Big-O notation

Example

$$f(n) = c.n \to f(n) = O(n)$$

 $f(n) = n(n+1)/2 = n^2/2 + n/2 \to f(n) = O(n^2)$

- Set the coefficient of the term to one.
- Keep the largest term and discard the others.

Some example of Big-O:

$$\log_2 n, n, n \log_2 n, n^2, \dots n^k \dots 2^n, n!$$

Standard Measures of Efficiency

Efficiency	Big-O	Iterations	Est. Time		
logarithmic	$O(\log_2 n)$	14	microseconds		
linear	O(n)	10 000	0.1 seconds		
linear log	$O(n \log_2 n)$	140 000	2 seconds		
quadratic	$O(n^2)$	10000^2	15-20 min.		
polynomial	$O(n^k)$	10000^{k}	hours		
exponential	$O(2^n)$	2^{10000}	intractable		
factorial	O(n!)	10000!	intractable		

Assume instruction speed of 1 microsecond and 10 instructions in loop.

$$n = 10000$$

Standard Measures of Efficiency

Big-O Analysis Examples


```
Algorithm addMatrix(val matrix1<matrix>, val matrix2<matrix>, val size<integer>, ref matrix3<matrix>)
Add matrix1 to matrix2 and place results in matrix3
Pre: matrix1 and matrix2 have data
size is number of columns and rows in matrix
Post: matrices added - result in matrix3
r = 1
while r \le size do
    c = 1
    while c \le size do
         matrix3[r, c] = matrix1[r, c] + matrix2[r, c]
         c = c + 1
    end
    r = r + 1
end
return matrix3
End addMatrix
```

Big-O Analysis Examples

Nested linear loop:

$$f(size) = O(size^2)$$

Time Costing Operations

- The most time consuming: data movement to/from memory/storage.
- Operations under consideration:
 - Comparisons
 - Arithmetic operations
 - Assignments

Problems and common complexities

Binary search

Recurrence Equation

An equation or inequality that describes a function in terms of its value on smaller input.

1	2	3	5	8	13	21	34	55	89
		-	-Xa 7/						

$$T(n) = 1 + T(n/2) \Rightarrow T(n) = O(\log_2 n)$$

Binary search

- Best case: when the number of steps is smallest. T(n) = O(1)
- ullet Worst case: when the number of steps is largest. $T(n) = O(\log_2 n)$
- ullet Average case: in between. $T(n) = O(\log_2 n)$

Sequential search

8 5 21 2	1 13	4 34	7 18
----------	------	------	------

• Best case: T(n) = O(1)

• Worst case: T(n) = O(n)

• Average case: $T(n) = \sum_{i=1}^{n} i.p_i$

 p_i : probability for the target being at a[i]

$$p_i = 1/n \to T(n) = (\sum_{i=1}^n i)/n = O(n(n+1)/2n) = O(n)$$

Quick sort

19 8	3	15	28	10	22	4	12	83
------	---	----	----	----	----	---	----	----

- Best case: $T(n) = O(n \log_2 n)$
- Worst case: $T(n) = O(n^2)$
- Average case: $T(n) = O(n \log_2 n)$

- P: Polynomial (can be solved in polynomial time on a deterministic machine).
- NP: Nondeterministic Polynomial (can be solved in polynomial time on a nondeterministic machine).

Travelling Salesman Problem:

A salesman has a list of cities, each of which he must visit exactly once. There are direct roads between each pair of cities on the list.

Find the route the salesman should follow for the shortest possible round trip that both starts and finishes at any one of the cities.

Travelling Salesman Problem: Deterministic machine: $f(n) = n(n-1)(n-2) \dots 1 = O(n!)$

 \rightarrow NP problem

NP-complete: NP and every other problem in NP is polynomially reducible to it.

$$P = NP?$$