## Aula 4: Notação O

- Definições das notações O,  $\Omega$  e  $\theta$
- Manipulação de expressões em notação O
- Conceito de algoritmos ótimos

## A Notação O



### Relembrando:

- Nas complexidades são irrelevantes constantes aditivas ou multiplicativas
- Somente valores assintóticos



#### Exemplos:

$$6n^{3} \longrightarrow n^{3}$$

$$n^{2}+5 \longrightarrow n^{2}$$

$$6n^{2}+4 \longrightarrow n^{2}$$

$$n^2+n \longrightarrow n^2$$
 $3n^2+5n-7 \longrightarrow n^2$ 
 $2n^3+\log n \longrightarrow n^3$ 



Objetivo: encontrar operadores matemáticos que possam representar as situações acima



Notações: O,  $\Omega$  e  $\theta$ 

## Definição da Notação O



$$n > n_0 \Rightarrow f(n) \leq c.h(n)$$

A função h atua como limite superior para valores assintóticos da função f.

## Exemplos:

$$f=n^{2}-1 => f=O(n^{2}) | f=5 + 2 \log n + 3 \log^{2} n => f=O(\log^{2} n)$$

$$f=n^{2}-1 => f=O(n^{3}) | f=5n + 2 \log n + 3 \log^{2} n => f=O(n)$$

$$f=403 => f=O(1) | f=3n + 5 \log n + 2 => f=O(n)$$

$$f=54 => f=O(1) | f=5.2^{n} + 5.n^{10} => f=O(2^{n})$$

$$cederj$$

## Propriedades da Notação O



$$O(g+h) = O(g) + O(h)$$

$$O(g.h) = O(g) \cdot O(h)$$

$$O(k.g) = k.O(g) = O(g)$$



| Algoritmo                 | Complexidade        |
|---------------------------|---------------------|
| inversão de uma sequência | O( n )              |
| cálculo de fatorial       | O( n )              |
| soma de matrizes          | O( n <sup>2</sup> ) |
| produto de matrizes       | O( n <sup>3</sup> ) |

<u>ceder</u>j

#### Complexidade de Procedimentos Recursivos



- Determinar o número total de chamadas do procedimento recursivo;
- Determinar a complexidade de execução de uma única chamada, sem considerar as chamadas recursivas;
- Complexidade total = número de chamadas vezes complexidade de cada chamada



- Número de chamadas = n
- Complexidade de cada chamada = O(1)
- ightharpoonup Complexidade = n.O(1) = O(n)
- Exemplo: algoritmo da Torre de Hanói:
  - $\rightarrow$  Número de chamadas =  $O(2^n)$
  - ightharpoonup Complexidade de cada chamada = O(1)
  - ightharpoonup Complexidade =  $O(2^n).O(1) = O(2^n)$

<u>cederj</u>



Escrever as seguintes funções, em notação O:

- 1) n<sup>3</sup> 1
- 2)  $n^2 + 2.\log n$
- $3) 3.n^{n} + 5.2^{n}$
- 4)  $(n-1)^n + n^{n-1}_2$
- $5) 5.3^{n} + 4.2^{n^2}$
- 6) 6.547.326
- 7)  $5.n^7 + 3.2^n + n!$
- 8) 3.n + 7.m + 2
- 9)  $5.n^2 + 9.m + 4$
- 10) 3.n + 5.m + n.m

Tempo: 3 minutos

## Notação O



Solução:

- 1) O( n<sup>3</sup> )
- 2) O( n<sup>2</sup> )
- 3) O( n<sup>n</sup>)
- 4) O( n<sup>n</sup><sub>2</sub>)
- 5) O( 2<sup>n<sup>2</sup></sup> )
- 6) O(1)
- 7) O( n! )
- 8) O(n + m)
- 9)  $O(n^2 + m)$
- 10) O( n.m )

#### Notação 0

- Para exprimir limites superiores justos, utiliza-se a <u>notação θ</u>
- Sejam f, g funções reais positivas da variável n.
  Diz-se que f é θ(g), escrevendo-se f=θ(g), quando ambas as condições f=O(g) e g=O(f) forem verificadas.
- A notação θ exprime o fato de que duas funções possuem a mesma ordem de grandeza assintótica.
- Quando possível, a notação θ deve ser preferida à notação O.

<u>cederj</u>

## Exemplos de Notação θ



## Exemplo:

$$f = n^{2} - 1$$

$$g = n^{2}$$

$$h = n^{3}$$





$$f = 5+2.\log n + \log^2 n$$
$$g = n$$

$$f$$
 não é  $\theta(g)$   
 $>$  No caso,  
 $f$  é  $\theta(\log^2 n)$ 

Certo ou Errado?

Se a complexidade (de pior caso) de um algoritmo for f, então o número de passos que o algoritmo efetua é igual a O(f).

Certo ou Errado?

Se a complexidade (de pior caso) de um algoritmo for f, então o número de passos que o algoritmo efetua é igual a  $\theta(f)$ .

Verificar se f é  $\theta(g)$ .

3.1) 
$$f = 3.n^2 + \log n$$
,  $g = 2.n^2 + 1$ 

3.2) 
$$f = 3.2^n + 1$$
,  $g = 250. n^7 + \log n$ 

3.3) 
$$f = 525$$
,  $g = 10$ 

Tempo: 3 minutos

4.11

## Solução

- Certo.
- Errado.
- 3.1) f é  $\theta$ ( g ).
  - 3.2) f não é  $\theta$ ( g ).
  - 3.3) f é  $\theta$ ( g ).

#### Notação $\Omega$





$$n > n_0 => f(n) \ge c.h(n)$$

$$f = n^2 - 1 = 0(n^2)$$

$$f = n^2 - 1 => f = \Omega(1)$$

$$f = n^2 - 1 \Rightarrow n\tilde{a}o \text{ vale } f = \Omega(n^3)$$



Certo ou errado?

Se f, g são funções tais que f = O(g) e g =  $\Omega(f)$ , então f =  $\theta(g)$ .

Certo ou errado?

Se a complexidade de melhor caso de um algoritmo for f, então o número de passos que o algoritmo efetua é  $\Omega(f)$ .

Determinar o valor  $\Omega(f)$ , nos seguintes casos:

$$3.1) f = 3.n^2 + 2.\log n$$

$$3.2) f = n + 5.\log n$$

$$3.3) f = n^3 + 2.n + 7$$

Tempo: 3 minutos

<u>cederj</u>



Certo.

3.1) 
$$f = \Omega(\log n)$$
  
3.2)  $f = \Omega(\log n)$   
3.3)  $f = \Omega(1)$ 



## Noção de complexidade:

- relacionada a um dado algoritmo específico;
- não considera a possível existência de outros algoritmos, para o mesmo problema.

# Próximo objetivo:

 comparar as eficiências de diferentes algoritmos, para um mesmo problema.

- Seja P um problema. Um limite inferior para P é uma função 1, tal que a complexidade de pior caso de qualquer algoritmo que resolva P é  $\Omega(1)$ .
- Se existir um algoritmo A, cuja complexidade seja O(1), então A é denominado algoritmo ótimo para o problema P. Nesse caso, o limite  $\Omega(1)$  é o melhor (maior) possível.

Um algoritmo ótimo apresenta a menor complexidade dentre todos os possíveis algoritmos para o mesmo problema.



- Exprimir complexidades: notação O Exprimir limites inferiores: notação Ω
- Determinação de limites inferiores:
  - pode ser de difícil tratamento matemático;
  - limite inferior natural: quantidade de dados de entrada.
- Exemplo: inversão de uma sequência Complexidade do algoritmo: O(n) Quantidade de dados:  $O(n) => Limite inferior: <math>\Omega(n)$

Logo, o algoritmo é ótimo.

### Exemplo: Soma de matrizes

Complexidade do algoritmo: O( n<sup>2</sup> )
Limite inferior: O( n<sup>2</sup> )
Logo, algoritmo ótimo.

Exemplo: Produto de matrizes
Complexidade do algoritmo: O( n³)
Limite inferior: O( n²)
Algoritmo ótimo?

- O algoritmo não é ótimo porque há outros de complexidade menor. Contudo, não se sabe se estes são ótimos ou não.
- Exemplo: Problema de ordenação Menor complexidade conhecida: O( n log n ) Maior limite inferior conhecido: Ω( n log n ) Logo, o algoritmo é ótimo.

Certo ou errado?

A complexidade de melhor caso de um algoritmo é necessariamente maior ou igual a qualquer limite inferior para o mesmo problema.



A sequência de Fibonacci é uma sequência de elementos  $f_1$ , ...,  $f_n$  definida do seguinte modo:

$$\begin{cases} f_1 = 0 \\ f_2 = 1 \\ f_j = f_{j-1} + f_{j-2}, j > 2 \end{cases}$$

Elaborar um algoritmo para determinar o elemento  $f_n$  da seqüência, cuja complexidade seja linear em n.

Tempo: 5 minutos.

## Solução



Algoritmo: seqüência de Fibonacci

```
F(1) := 0
F(2) := 1
    para j := 3, ..., n faça
    F(j) := F(j-1) + F(j-2)
Complexidade: O(n)
```