VACACIONES DIVERTIÚTILES

TRIGONOMETRÍA

Chapter 2

1th
SECONDARY

Razones trigonométricas de un ángulo agudo

TRIGONOMETRÍA

indice

01. MotivatingStrategy 🕥

02. HelicoTheory

03. HelicoPractice

04. HelicoWorshop

 \bigcirc

CUATRO SÍMBOLOS FAMILIARES ESCRITOS EN ESTILO ANTIGUO

Desde la primitiva Babilonia los matemáticos han ahorrado tiempo y esfuerzo al sustituir las palabras por símbolos.

Entre dichas creaciones abreviadas se encuentran los breves signos +, -, × y ÷ que utilizamos para indicar suma, resta, multiplicación y división.

Estos cuatro símbolos son relativamente nuevos en la historia matemática. Al lado aparecen algunas formas primitivas de representarlos.

MOTIVATING STRATEGY

SUMA

RESTA

MULTIPLICACIÓN

DIVISIÓN

Resumen

HELICO THEORY

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Es el cociente entre las longitudes de los lados de un triángulo rectángulo, respecto de uno de sus ángulos agudos.

$$sen \alpha = \frac{Cateto opuesto}{Hipotenusa} = \frac{C. O}{H}$$

$$\cos \alpha = \frac{\text{Cateto adyacente}}{\text{Hipotenusa}} = \frac{\text{C. A}}{\text{H}}$$

$$tan\alpha = \frac{Cateto opuesto}{Cateto adyacente} = \frac{C. O}{C. A}$$

 \bigcirc

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

Del gráfico, halle las razones trigonométricas de θ .

senθ	
cosθ	
tanθ	

RECORDEMOS

$$sen\alpha = \frac{C. O}{H}$$

$$\cos \alpha = \frac{C.A}{H}$$

$$\tan \alpha = \frac{C. O}{C. A}$$

$$sen\theta = \frac{4}{5}$$

$$\cos\theta = \frac{3}{5}$$

$$tan\theta = \frac{4}{3}$$

Problema 02

Resolución

Del gráfico, efectúe $K = sen\theta + cos\theta$

RECORDEMOS

$$H^2 = a^2 + c^2$$

$$sen\alpha = \frac{C. O}{H}$$

$$\cos \alpha = \frac{C.A}{H}$$

$$\tan\alpha = \frac{C. O}{C. A}$$

Por el teorema de Pitágoras.

$$H^2 = 5^2 + 12^2$$
 $H = \sqrt{169}$

$$H^2 = 25+144$$
 $H = 13$

$$H^2 = 169$$

$$K = sen\theta + cos\theta$$

$$K = \frac{12}{13} + \frac{5}{13}$$

Respuesta

$$K = \frac{17}{13}$$

Resolución

RECORDEMOS

$$sen\alpha = \frac{C.O}{H}$$

$$\cos \alpha = \frac{C.A}{H}$$

$$\tan \alpha = \frac{C. O}{C. A}$$

$$\tan\theta = \frac{\delta n}{9n}$$

$$\tan\theta = \frac{2}{3}$$

Respuesta
$$\therefore \tan \theta = \frac{2}{3}$$

Se desea confeccionar unos banderines determinados por triángulos rectángulos tal que la longitud de sus catetos sean 12cm y 5 cm. Si el precio de cada banderín es M soles, ¿cuánto costará cada banderín?

$$M = \sin^2\theta + \cos^2\theta$$

RECORDEMOS

$$H^2 = a^2 + c^2$$

$$sen\alpha = \frac{C. O}{H}$$

$$\cos \alpha = \frac{C. A}{H}$$

$$\tan \alpha = \frac{C. O}{C. A}$$

Por el teorema de Pitágoras.

$$H^2 = 5^2 + 12^2$$
 $H = \sqrt{169}$

$$H = \sqrt{169}$$

$$H^2 = 25+144$$
 $H = 13$

$$H^2 = 169$$

$$M = \sin^2\theta + \cos^2\theta$$

$$M = \left(\frac{5}{13}\right)^2 + \left(\frac{12}{13}\right)^2$$

$$M = \frac{25}{169} + \frac{144}{169}$$

$$M = \frac{169}{169}$$

$$M = 1$$

Respuesta .: Cada banderín costará 1 sol

Un poste eléctrico se encuentra en el suelo y sujetado por un cable a otro poste eléctrico (observe el gráfico).

Calcule $E = sen \alpha + cos \alpha$

RECORDEMOS

$$H^2 = a^2 + c^2$$

$$sen\alpha = \frac{C. O}{H}$$

$$\cos \alpha = \frac{C. A}{H}$$

$$\tan\alpha = \frac{\text{C. O}}{\text{C. A}}$$

Por el teorema de Pitágoras.

$$5^2 = 4^2 + CA^2$$
 $CA^2 = 9$

25 =
$$16 + CA^2$$
 $CA = \sqrt{9}$

$$CA^2 = 25 - 16$$
 $CA = 3$

$$E = sen\theta + cos\theta$$

$$E = \frac{4}{5} + \frac{3}{5}$$

Respuesta

$$E = \frac{7}{5}$$

 \bigcirc

Problema 06

Problema 07

Problema 08

Problema 09

Problema 10

Problema 06

Problema 07

Problema 08

Del gráfico, halle las RT de θ.

Del gráfico, calcule $K = sen\alpha + cos\alpha$

Del gráfico, halle el valor de tanθ

Se desea confeccionar unos banderines determinados por triángulos rectángulos tal que la longitud de sus catetos sean 7cm y 24 cm. Si el precio de cada banderín es k soles, ¿cuánto costará cada banderín?

Un poste eléctrico se encuentra en el suelo y sujetado por un cable a otro poste eléctrico (observe el gráfico). Calcule el seno del ángulo que forman el poste caído y el cable.

