Rýchly Algoritmus na Výpočet Riedkych Hlavných Komponentov

Peter Richtárik

Centrum pre Operačný Výskum a Ekonometriu (CORE) a

Fakulta Matematického Inžinierstva (INMA)

Katolícka univerzita v Louvain – Belgicko

(týž)Deň Absolventov Matfyzu, 19.12.2008, FMFI UK, Bratislava

CORE Discussion Paper #2008/70 spoluautori: Michel Journée, Yurii Nesterov a Rodolphe Sepulchre

1. Obsah prednášky

- Analýza riedkych hlavných komponentov (ARHK)
- Reformulácia problému
- Algoritmus a analýza zložitosti
- Numerické experimenty

2. Analýza riedkych hlavných komponentov

- Vstup: Matica $A = [a_1, \ldots, a_n] \in \mathbf{R}^{p \times n}, \quad p \leq n$
- ullet Ciel': Nájdi jednotkový vektor $z^* \in \mathbf{R}^n$ ktorý simultánne
 - 1. maximalizuje hodnotu funkcie $z^T A^T A z$
 - 2. je **riedky**

Ak riedkosť nie je požadovaná, z^* je dominantným pravým singulárnym vektorom matice A:

$$\max_{z^T z < 1} z^T A^T A z = \lambda_{\max}(A^T A) = (\sigma_{\max}(A))^2.$$

Extrahovanie viacerých komponentov: Práve sme definovali problém pre prípad získania jedného komponentu (m = 1). Častokrát v praxi je potrebné vypočítať viac komponentov (m > 1).

Aplikácie: genetická analýza, financie, vizualizácia dát, spracovanie signálu, počítačové videnie, ...

3. Náš prístup k ARHK

- 1. Formuluj ARHK ako optimalizačný problém s **penalizáciou** riedkosti (ℓ_1 or ℓ_0) kontrolovanou jedným parametrom
- 2. Reformuluj na problém vhodnej štuktúry:
 - vhodnej na analýzu
 - vhodnej na výpočet
- 3. "Vyrieš" reformulovaný problém pomocou jendoduchej **gradien- tovej metódy**
- 4. Spätne vypočítaj riešenie pôvodného problému

Kroky 1), 2) a 4) ilustrujeme na prípade jedného komponentu a ℓ_1 penalizácie. Potom sa pustíme do všeobecnej analýzy kroku 3).

4. Tri postrehy o ℓ_1 penalizácii

Symbolika: $||z||_1 = \sum_i |z_i|$.

Penalizačná formulácia ARHK pre prípad jedného komponentu:

$$\phi_{\ell_1}(\gamma) \stackrel{\mathsf{def}}{=} \max_{z^T z \le 1} \sqrt{z^T A^T A z} - \gamma \|z\|_1. \tag{1}$$

Postrehy:

- 1. $\gamma = 0 \Rightarrow$ žiaden dôvod na to aby súradnice vektora z^* boli nulové
- 2. Ak $\gamma \ge \|a_{i^*}\|_2 \stackrel{\mathsf{def}}{=} \max_i \|a_i\|$, tak $z^* = 0$. Dôvod:

$$\max_{z \neq 0} \frac{\|Az\|_2}{\|z\|_1} = \max_{z \neq 0} \frac{\|\sum_i z_i a_i\|_2}{\|z\|_1}$$

$$\leq \max_{z \neq 0} \frac{\sum_i |z_i| \|a_i\|_2}{\sum_i |z_i|} = \max_i \|a_i\|_2.$$

3. V skutočnosti: $\gamma \geq \|a_i\|_2 \Rightarrow z_i^*(\gamma) = 0$ pre všetky i

5. Reformulácia

Všimnime si, že:

$$\phi_{\ell_1}(\gamma) = \max_{z \in \mathcal{B}^n} ||Az||_2 - \gamma ||z||_1 = \max_{z \in \mathcal{B}^n} \max_{x \in \mathcal{B}^p} x^T A z - \gamma ||z||_1$$
$$= \max_{x \in \mathcal{B}^p} \max_{z \in \mathcal{B}^n} \sum_{i=1}^n z_i (a_i^T x) - \gamma |z_i|.$$

Pre dané x vnútorný max-problém má riešenie v uzatvorenej forme:

$$z_i = \text{sign}(a_i^T x)[|a_i^T x| - \gamma]_+, \qquad z^* = z/\|z\|_2.$$

Takže na vyriešenie problému (1) stačí **vyriešiť nasledovnú re- formuláciu**:

$$\phi_{\ell_1}^2(\gamma) = \max_{\substack{x \in \mathbf{R}^p \\ x^T x = 1}} \sum_{i=1}^n [|a_i^T x| - \gamma]_+^2, \tag{2}$$

Poznámka: Cieľová funkcia problému (2) je konvexná a hladká a vektor x má rozmer p a nie n ($p \ll n$).

6. ARHK pomocou ℓ_0 penalizácie

Podobný postup ako v prípade ℓ_1 , takže iba stručne:

Symbolika: $||z||_0 = \operatorname{Card}\{i : z_i \neq 0\}.$

Formulácia problému pomocou penalizácie:

$$\phi_{\ell_0}(\gamma) \stackrel{\text{def}}{=} \max_{z^T z < 1} z^T A^T A z - \gamma \|z\|_0, \tag{3}$$

Na vyriešenie (3) stačí najprv vyriešiť túto úlohu

$$\phi_{\ell_0}(\gamma) = \max_{\substack{x \in \mathbf{R}^p \\ x^T x = 1}} \sum_{i=1}^n [(a_i^T x)^2 - \gamma]_+, \tag{4}$$

a potom položiť

$$z_i = [\operatorname{sign}((a_i^T x)^2 - \gamma)]_+ a_i^T x, \qquad z^* = z/\|z\|_2.$$

7. Maximalizácia konvexnej funkcie

Problémy (2) a (4) (a ich zovšeobecnenia pre výpočet viacerých komponentov) sú nasledovnej štruktúry:

$$f^* = \max_{x \in \mathcal{Q}} f(x),$$
 kde (P)

- E je konečnorozmerný vektorový priestor,
- $f: \mathbf{E} \to \mathbf{R}$ je konvexná funkcia,
- $Q \subset E$ je kompaktná množina.

V prípade ARHK máme

- ullet $\mathcal{Q}=$ jedotková **euklidovská sféra** v \mathbf{R}^p / jeden komponent (m=1)
- Q =Stiefelova množina v $\mathbf{R}^{p \times m}$, i.e. množina $p \times m$ matíc s ortonormálnymi stĺpcami / viac komponentov (m > 1)

Ako vyriešiť problém (P)?

8. Gradientový algoritmus

Problém (P) navrhujeme riešiť nasledovnou metódou:

- 1. **Vstup:** Bod $x_0 \in \mathcal{Q}$
- 2. Pre $k \ge 0$ opakuj
 - $x_{k+1} \in \operatorname{Arg\,max} \{ f(x_k) + \langle f'(x_k), y x_k \rangle \mid y \in \mathcal{Q} \}$
 - $k \leftarrow k + 1$

Tento algoritmus je zovšeobecnením tzv. "power method" na výpočet najväčšej vlastnej hodnoty symetrickej kladne semidefinitnej matice C:

$$f(x) = \frac{1}{2}x^T C x \rightarrow x_{k+1} = \frac{C x_k}{\|C x_k\|_2}.$$

Preto sme zvolili názov "Generalized Power Method" (GPower).

9. Iteračná zložitosť

V každom bode $x \in \mathcal{Q}$ definujeme nasledovnú **mieru splnenia optimalizačných podmienok prvého rádu**:

$$\Delta(x) \stackrel{\text{def}}{=} \max_{y \in \mathcal{Q}} \langle f'(x), y - x \rangle.$$

Je zrejmé že $\Delta(x) \geq 0$, pričom $\Delta(x) = 0$ práve vtedy keď gradient f'(x) leží v kuželi normálnom k množine $\operatorname{Conv}(\mathcal{Q})$ v bode x.

Nech
$$\Delta_k \stackrel{\text{def}}{=} \min_{0 \le i \le k} \Delta(x_i)$$
.

Veta: Ak postupnosť bodov $\{x_k\}_{k=0}^{\infty}$ je generovaná algoritmom GPower aplikovanom na konvexnú funkciu f, potom postupnosť $\{f(x_k)\}_{k=0}^{\infty}$ je **rastúca** a $\lim_{k\to\infty} \Delta(x_k) = 0$. Naviac,

$$\Delta_k \le \frac{f^* - f(x_0)}{k + 1}.\tag{5}$$

10. Silná konvexnosť funkcií a množín

Funkcia f je silne konvexná ak existuje konštanta $\sigma_f > 0$ taká, že pre každé $x,y \in \mathbf{E}$

$$f(y) \ge f(x) + \langle f'(x), y - x \rangle + \frac{\sigma_f}{2} ||y - x||^2.$$

Množina $\operatorname{Conv}(\mathcal{Q})$ je silne konvexná ak existuje konštanta $\sigma_{\mathcal{Q}} > 0$ taká, že pre každé $x,y \in \operatorname{Conv}(\mathcal{Q})$ a $\alpha \in [0,1]$ platí nasledovná inklúzia:

$$\alpha x + (1 - \alpha)y + \frac{\sigma_{\mathcal{Q}}}{2}\alpha(1 - \alpha)\|x - y\|^2 \cdot \mathcal{S} \subset \text{Conv}(\mathcal{Q}).$$

Veta: Ak $f: \mathbf{E} \to \mathbf{R}$ je nezáporná funkcia, $\sigma_f > 0$ a ak $f': \mathbf{E} \to \mathbf{E}^*$ je L_f -Lipschitzovská, tak pre každé $\omega > 0$ je množina

$$\mathcal{Q}_{\omega} \stackrel{\mathsf{def}}{=} \{ x \mid f(x) \le \omega \}$$

silne konvexná s parametrom $\sigma_{\mathcal{Q}_{\omega}} = \sigma_f / \sqrt{2\omega L_f}$.

11. Zlepšená analýza v prípade silnej kovexnosti

Veta:

Nech

- ullet je konvexná s parametrom silnej konvexnosti $\sigma_f \geq 0$ a
- Conv(Q) konexná s parametrom silnej konvexnosti $\sigma_Q \ge 0$.

Ak $0 < \delta_f = \inf_{x \in \mathcal{Q}} \|f'(x)\|_*$ a ak $\sigma_f > 0$ alebo $\sigma_{\mathcal{Q}} > 0$, potom

$$\sum_{k=0}^{N} ||x_{k+1} - x_k||^2 \le \frac{2(f^* - f(x_0))}{\sigma_{\mathcal{Q}} \delta_f + \sigma_f}.$$

Poznámka: Ak minimum funkcie f neleží v množine \mathcal{Q} , potom $\delta_f > 0$.

12. Numerické experimenty

Porovnáme nasledovné algoritmy na riešenie **ARHK**:

Testovacie problémy:

- Náhodne generované
 - A =Štandardné normálne rozdelenie
- Reálne dáta z genetickej analýzy

^{*}Greedy je dramaticky pomalší algoritmus v porovnaní s ostatnými horeuvedenými metódami, najmä v prípade riešenia s veľkou kardinalitou.

13. Trade-off krivky

Trade-off medzi vysvetleným rozptylom a kardinalitou. Metódy GPower_{ℓ_1} , GPower_{ℓ_0} , Greedy a rSVD_{ℓ_0} vykazujú lepšie výsledky (čierna plná čiara), pričom SPCA a rSVD_{ℓ_1} horšie výsledky (červená prerušovaná čiara).

Graf je založený na 100 náhodne generovaných testovacích problémoch veľkosti p=100, n=300.

14. Náhodné dáta: rýchlosť

Fixný pomer n/p:

$p \times n$	250×2500	500×5000	750×7500	1000×10000
$GPower_{\ell_1}$	0.85	2.61	3.89	5.32
$GPower_{\ell_0}$	0.46	1.21	2.41	2.93
SPCA	2.77	14.0	41.0	81.6
$rSVD_{\ell_1}$	1.40	6.80	17.8	41.2
$rSVD_{\ell_0}$	1.33	6.20	15.4	36.3

Fixované p, rastúce n:

		1 ·		
$p \times n$	500×2000	500×4000	500×8000	500×16000
$GPower_{\ell_1}$	0.97	1.96	4.30	8.43
$GPower_{\ell_0}$	0.39	0.97	2.01	4.63
SPCA	7.37	11.4	22.4	44.6
$rSVD_{\ell_1}$	2.56	5.27	11.3	26.8
$rSVD_{\ell_0}$	2.30	4.70	10.3	23.8

15. Ako sa trade-off vyvíja v čase?

Vývoj **vysvetleného rozptylu** (plné čiary – os vľavo) a **kardinality** (prerušované čiary – os vpravo) v čase v prípade algoritmov GPower_{ℓ_1} and rSVD_{ℓ_1} .

Graf je založený na 100 náhodne generovaných testovacích problémoch veľkosti p=250 and n=2500.

16. Dáta z genetickej analýzy: rýchlosť

Dáta ("breast cancer cohorts"):

Štúdia	Vzorky (p)	Gény (n)	Článok
Vijver	295	13319	van de Vijver et al. [2002]
Wang	285	14913	Wang et al. [2005]
Naderi	135	8278	Naderi et al. [2006]
JRH-2	101	14223	Sotiriou et al. [2006]

Rýchlosť (v sekundách):

•	•		,	
	Vijver	Wang	Naderi	JRH-2
$GPower_{\ell_1}$	7.72	6.96	2.15	2.69
$GPower_{\ell_0}$	3.80	4.07	1.33	1.73
$GPower_{\ell_1,m}$	5.40	4.37	1.77	1.14
$GPower_{\ell_0,m}$	5.61	7.21	2.25	1.47
SPCA	77.7	82.1	26.7	11.2
$rSVD_{\ell_1}$	46.4	49.3	13.8	15.7
$rSVD_{\ell_0}$	46.8	48.4	13.7	16.5

17. Dáta z genetickej analýzy: kvalita výsledku

PEI: 536 "pathways" súvisiacich s rakovinou:

	Vijver	Wang	Naderi	JRH-2
PCA	0.0728	0.0466	0.0149	0.0690
$GPower_{\ell_1}$	0.1493	0.1026	0.0728	0.1250
$GPower_{\ell_1}$	0.1250	0.1250	0.0672	0.1026
$GPower_{\ell_1,m}$	0.1418	0.1250	0.1026	0.1381
$GPower_{\ell_0,m}$	0.1362	0.1287	0.1007	0.1250
SPCA	0.1362	0.1007	0.0840	0.1007
$rSVD_{\ell_1}$	0.1213	0.1175	0.0914	0.0914
$rSVD_{\ell_0}$	0.1175	0.0970	0.0634	0.1063

Pathway Enrichment Index (PEI) meria štatistickú významnosť prieniku medzi dvoma súbormi génov.

18. Rekapitulácia

- Navrhli sme 4 reformulácie (jeden komponent/viacero komponentov $\times \ell_1/\ell_0$) problému Analýzy Riedkych Hlavných Komponentov (ARHK), ktoré nám umožnili
 - použiť veľmi **rýchly algoritmus** (pracujeme v \mathbf{R}^p a nie v \mathbf{R}^n pričom $p \ll n$ a používame iba prvé derivácie)
 - analyzovať iteračnú zložitosť tohto algoritmu.
- Analyzovali sme jednoduchý gradientový algoritmus (Generalized Power Method) na maximalizáciu konvexných funkcií na kompaktných množinách;
- Aplikovali sme GPower na tieto 4 reformulácie, čím sme dostali 4 algoritmy na riešenie problému ARHK;
- testovali sme naše algortimy na náhodne generovaných a na reálnych dátach:
 - sú podstatne rýchlejšie,
 - v prípade biologických dát produkujú riešenia s mierne vyššou hodnotou indexu PEI.

19. Referencie

- [1] M. Journée, Yu. Nesterov, P. Richtárik, R. Sepulchre. **Generalized Power Method for Sparse Principal Component Analysis (táto prednáška).** *submitted to Journal of Machine Learning Research*, November 2008.
- [2] H. Zou, T. Hastie, R. Tibshirani. **Sparse Principal Component Analysis**. *Journal of Computational and Graphical Statistics*, 15(2):265–286, 2006.
- [3] A. d'Aspremont, F. R. Bach, L. El Ghaoui. **Optimal Solutions for Sparse Principal Component Analysis.** *Journal of Machine Learning Research*, 9:1269–1294, 2008.
- [4] H. Shen, J. Z. Huang. Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation. *Journal of Multivariate Analysis*, 99(6):1015–1034, 2008.