Coloraciones, Caminos y ciclos

Clase 29

IIC 1253

Prof. Cristian Riveros

Outline

Coloraciones

Caminos

Ciclos

Outline

Coloraciones

Caminos

Ciclos

¿cómo programar los exámenes de fin de semestre?

Debemos programar los exámenes de:

Programación Avanzada (PA), Matemáticas Discretas (MD), Arquitectura de Computadores (AC), Bases de Datos (BD) y Estructuras de Datos (ED)

- Los exámenes pueden realizarse solo en las mañanas.
- No puede haber un alumno que tenga dos exámenes en un mismo día.

¿cuánto es el mínimo de días que necesitamos?

¿cómo programar los exámenes de fin de semestre?

Grafo de conflictos:

"una arista entre los cursos c_1 y c_2 si ambos cursos tienen algún alumno en común."

¿podemos hacer los exámenes en 5 días? ¿en 4 días? ¿en 3 días?

Programar los exámenes en colores . . .

Los colores en el grafo deben cumplir que:

"si c_1 esta conectado con c_2 , entonces c_1 y c_2 tienen colores distintos."

Cantidad de colores = Cantidad de días para exámenes.

¿es posible colorear el grafo con menos de 3 colores?

Coloración de un grafo

Definición

Una k-coloración de un grafo G = (V, E) es una función:

$$C: V \to \{0, \ldots, k-1\}$$

tal que para todo $u, v \in V$, si $\{u, v\} \in E$, entonces $C(u) \neq C(v)$.

Ejemplo

Coloración de un grafo

Definición

Una k-coloración de un grafo G = (V, E) es una función:

$$C: V \to \{0,\ldots,k-1\}$$

tal que para todo $u, v \in V$, si $\{u, v\} \in E$, entonces $C(u) \neq C(v)$.

El mínimo valor k tal que G = (V, E) tiene una k-coloración se define como el número cromático de G y lo denotaremos por $\chi(G)$.

¿cuál es el número cromático de . . .

- \blacksquare el grafo completo K_n ?
- el grafo línea *L*_n?
- el grafo ciclo *C_n*?

Encontrar el número cromático de un grafo es muy díficil!

(NP-completo)

Teorema

Un grafo G con grado máximo a lo más k es (k+1)-coloreable.

Demostración

Por inducción simple (para un k fijo):

```
P(n) := \text{todo grafo } G \text{ con } n \text{ nodos y}
grado máximo a los más k \in (k+1)-coloreable.
```

Demostración

$$P(n)$$
 := todo grafo G con n nodos y grado máximo a los más k es $(k+1)$ -coloreable.

Caso base:
$$G = (\{u\}, \emptyset)$$

Demostración

$$P(n) := \text{todo grafo } G \text{ con } n \text{ nodos y}$$

grado máximo a los más $k \text{ es } (k+1)\text{-coloreable.}$

Caso inductivo: Suponemos P(n-1) y demostramos P(n).

Sea
$$G = (V, E)$$
 tal que $|V| = n$ y deg $(v) \le k$ para todo $v \in V$.

Sea $u \in V$ un vértice cualquiera.

Defina el grafo
$$G - u = (V \setminus \{u\}, \{e \in E \mid u \notin e\}).$$

Como
$$|V \setminus \{u\}| = n - 1$$
,

Como
$$|V \setminus \{u\}| = n-1$$

sea
$$C: V \setminus \{u\} \to \{0, \dots k\}$$
 una $k+1$ -coloración de $G-u$. (?)
Escoja un color $b \in \{0, \dots k\} \setminus \{C(v) \mid \{u, v\} \in E\}$. (?)

Defina
$$C': V \rightarrow \{0, ..., k\}$$
 como:

$$C'(v) \int C(v) \sin v$$

$$C'(v) = \begin{cases} C(v) & \text{si } v \neq u \\ b & \text{si } v = u \end{cases}$$

Demostración

$$P(n)$$
 := todo grafo G con n nodos y grado máximo a los más k es $(k+1)$ -coloreable.

Caso inductivo:

Escoja un color
$$b \in \{0, \dots k\} \setminus \{C(v) \mid \{u, v\} \in E\}$$
.

Defina $C': V \rightarrow \{0, \dots k\}$ como:

$$C'(v) = \begin{cases} C(v) & \text{si } v \neq u \\ b & \text{si } v = u \end{cases}$$

Para todo $\{v_1, v_2\} \in E$ se tiene que $C'(v_1) \neq C'(v_2)$:

- Si $v_1 \neq u \neq v_2$, entonces $C'(v_1) = C(v_1) \neq C(v_2) = C'(v_2)$.
- Si $u = v_1$ (SPDG), entonces $C'(u) = b \neq C(v_2)$. (?)

Por lo tanto, C' es una k+1 coloración de G.

Outline

Coloraciones

Caminos

Ciclos

Caminos en un grafo

Definición

Un camino en un grafo G = (V, E) es una secuencia de vértices:

$$v_0, v_1, \ldots, v_n$$

tal que $\{v_i, v_{i+1}\} \in E$ para todo $i \in \{0, \dots, n-1\}$.

¿cuál es un camino en G?

Caminos en un grafo

Definición

Un camino en un grafo G = (V, E) es una secuencia de vértices:

$$v_0, v_1, \ldots, v_n$$

tal que $\{v_i, v_{i+1}\} \in E$ para todo $i \in \{0, ..., n-1\}$.

Un camino $v_0, v_1, ..., v_n$ en G se dice **simple** si todos los vértices de la secuencia son distintos $(v_i \neq v_j)$.

¿cuál es un camino simple en G?

Caminos en un grafo

Definición

Un camino en un grafo G = (V, E) es una secuencia de vértices:

$$v_0, v_1, \ldots, v_n$$

tal que $\{v_i, v_{i+1}\} \in E$ para todo $i \in \{0, ..., n-1\}$.

Un camino $v_0, v_1, ..., v_n$ en G se dice **simple** si todos los vértices de la secuencia son distintos $(v_i \neq v_i)$.

Lema

Si existe un camino entre dos nodos u y v de largo k, entonces existe un camino simple entre u y v de largo menor o igual que k.

Demostración (ejercicio).

Definición

Dos vértices u y v se dicen conectados en G si existe un camino de u a v.

Definición

Dos vértices u y v se dicen conectados en G si existe un camino de u a v.

Un grafo se dice conexo si cualquier par de vértices están conectados.

Definición

Dos vértices u y v se dicen conectados en G si existe un camino de u a v.

Un grafo se dice conexo si cualquier par de vértices están conectados.

Para un grafo G = (V, E) se define la relación $R_G \subseteq V \times V$ tal que $(u, v) \in R_G$ si, y solo si, u esta conectado a v en G.

¿qué propiedades cumple la relación R_G ?

- Refleja. ✓
- 2. Simétrica. 🗸
- Transitiva. ✓

Definición

Dos vértices u y v se dicen conectados en G si existe un camino de u a v.

Un grafo se dice conexo si cualquier par de vértices están conectados.

Para un grafo G = (V, E) se define la relación $R_G \subseteq V \times V$ tal que $(u, v) \in R_G$ si, y solo si, u esta conectado a v en G.

Para un grafo G = (V, E) se define las componentes conexas de G como el conjunto de las clases de equivalencia de R_G .

¿cuáles son las componentes conexas de cada grafo?

Un grafo G es conexo si, y solo si, G tiene una sola componente conexa.

Teorema

Todo grafo G = (V, E) tiene al menos |V| - |E| componentes conexas.

Demostración

Por inducción fuerte:

$$P(n)$$
 := todo grafo $G = (V, E)$ con n aristas tiene al menos $|V| - |E|$ componentes conexas.

(Ejercicio: termine la demostración)

Corolario

Todo grafo G = (V, E) conexo tiene al menos |V| - 1 aristas.

Outline

Coloraciones

Caminos

Ciclos

Los siete puentes de Köningsberg (Siglo XVIII)

Los siete puentes de Köningsberg (Siglo XVIII)

¿existe una caminata por la ciudad que recorra cada puente exactamente una vez?

Caminos cerrados y ciclos

Definición

Un camino cerrado en G = (V, E) es una secuencia de vértices:

$$v_0, v_1, \ldots, v_n$$

tal que $\{v_i, v_{i+1}\} \in E$ para todo $i \in \{0, ..., n-1\}$ y $v_0 = v_n$.

Un camino cerrado v_0, v_1, \ldots, v_n en G es un ciclo si todos los vértices son distintos exceptuando v_0 y v_n .

¿cuál es un ciclo en G?

Caminos y tours Eulerianos

Definición

Un camino v_0, v_1, \ldots, v_n en G = (V, E) es **Euleriano** si el camino **recorre todas las aristas** exactamente una vez, formalmente:

para todo
$$e \in E$$
 existe un único $i < n$ tal que $e = \{v_i, v_{i+1}\}$

Un tour Euleriano es un camino Euleriano cerrado.

¿cuál grafo tiene un tour Euleriano?

¿cómo verificamos si un grafo tiene un tour Euleriano?

¿cómo verificamos si un grafo tiene un tour Euleriano?

Teorema

Sea G = (V, E) un grafo conexo.

G tiene un tour Euleriano si, y solo si, todo vértice en G tiene grado par.

Demostración (⇒)

Si G = (V, E) tiene un tour Euleriano, entonces sea $\pi = v_0, \dots, v_n$ el tour.

Como π es Euleriano, entonces para todo vértice $v \in V$, se tiene que:

$$deg(v) = 2 \cdot |\{ i \in \{0, ..., n-1\} \mid v = v_i \}|$$
 (¿por qué?)

Por lo tanto, todos vértice en G tiene grado par.

¿cómo verificamos si un grafo tiene un tour Euleriano?

Demostración (←)

Suponemos que todo vértice en G grado par.

Sea $\pi = v_0, \dots, v_n$ un camino de largo máximal que recorre cada arista a lo más una vez.

- \blacksquare π recorre todas las aristas incidentes a v_0 y v_n . (¿por qué?)
- $\mathbf{v}_0 = \mathbf{v}_n.$ (¿por qué?)

Por lo tanto, π tiene que ser un camino cerrado.

PD: π es un tour Euleriano.

Por contradicción, suponga que

existe $\{u, v_i\} \in E$ con $i \le n$ tal que $\{u, v_i\}$ NO es visitada por π .

(¿por qué existe $\{u, v_i\} \in E$?)

Entonces sea $\pi' = u, v_i, v_{i+1}, \dots, v_n, v_1, \dots, v_i$ un nuevo camino.

Como π' recorre cada arista a lo más una vez, **contradicción**! (¿por qué?)

Juegos de Hamilton

Inventados por William Hamilton (1857)

Juegos de Hamilton

¿existe una caminata por el tablero que recorra cada nodo exactamente una vez?

Caminos y tours Hamiltoneanos

Definición

Un camino v_0, v_1, \dots, v_n en G = (V, E) es **Hamiltoneano** si el camino **recorre todos los vértices** exactamente una vez, formalmente:

para todo
$$v \in V$$
 existe un único $i < n$ tal que $v = v_i$

Un tour Hamiltoneano es un camino Hamiltoneano cerrado.

¿cuál grafo tiene un tour Hamiltoneano?

¿cómo verificamos si un grafo tiene un tour Hamiltoneano?

(NP-completo)

FIN ...

¿dónde puedo saber más sobre teoría de la computación?

Algunos cursos:

- 1. Teoría de autómatas y lenguajes formales.
- 2. Lógica para ciencia de la computación.
- 3. Complejidad computacional.
- 4. Teoría de modelos finitos.

Si están interesados, solo preguntar!