

Neural Network Basics

José R. Dorronsoro Dpto. de Ingeniería Informática Escuela Politécnica Superior Universidad Autónoma de Madrid

Modeling Basics

Machine Learning Basics Multilaver Perceptrons

Machine Learning Basics

- Basic Modeling
- Regression Basics
- Bias, Variance and Cross Validation
- Basic Classification
- Logistic Regression

- Rosenblatt's Perceptrons
- Classical MLPs
- Neural Network Classification
- MLP Regularization
- Unconstrained Smooth Optimization
- Computational Costs of MLPs

Afi Edition What Is Machine Learning (ML)?

- Lofty definition: make machines learn!!!
 - Have to make "machines" and "learn" more precise
- The machines of ML: mathematical input—output processes that lend themselves to some form of (numerical) parameterization
- The learning process: adjust the machine's parameters until a goal is reached
- New thing: "goal"?
 - At first sight, get something done
 - Ultimately, to minimize some error measure
- Summing things up: a ML process tries to find a concrete mathematical/algorithmic input-output parameterized transformation that minimizes an error measure by iteratively adjusting the transformation's parameters

- In the middle of a possibly long process chain
- Before ML starts we must
 - Go from raw to organized data: accessing, gathering, cleaning, formatting, ...
 - Go from organized to (potentially) informative data: extracting basic and derived features
- After ML finishes and start applying a model, we must perform
 - Outcome evaluation: how good/actionable is
 - Outcome **exploitation**: collect, organize, act
 - Individual model maintenance: monitor performance, tune hyper-parameters
 - Modeling life cycle maintenance: discard old models, introduce new ones and communicate our work/results

- ML model types: supervised, unsupervised
- Supervised models:
 - Targets y^{ρ} are known and the model tries to predict or estimate them
 - These known targets guide, or supervise, model building
 - Main emphasis here
- Unsupervised models:
 - There are no predetermined or supervising outputs
 - But nevertheless the model is supposed to learn relations or find structure in the data
 - Often as a first step towards a supervised model
- Semisupervised models lie in between: some patterns have targets, some don't

- Problems (usually) to be solved by ML models: regression, classification
- In both patterns come in pairs (x, y)
 - x: inputs, predictors, features, independent variables
 - v: target, response, dependent variable; numerical in regression, class labels in classification
- **Regression**: the desired output y is **regressed** into the inputs x to derive a model $\hat{y} = f(x)$
 - We want $y \simeq \hat{y}$ so having $y \hat{y}$ "small" is the natural goal
- Classification: inputs are derived from several classes C_1, \ldots, C_K , to which labels ℓ_k are assigned
 - The model now assigns a label $\ell(x)$ to an input x
 - If x is derived from C_k we want to have $\ell(x) = \ell_k$
 - Here having $\ell(x) \ell_k$ "small" may not make sense

Affi tension The Boston Housing Regression Problem

- This is a first, widely used "toy" problem
- We want to estimate the median of house values over an area from some information about it which we believe relevant
- Features x: several real estate-related variables of Boston areas
 - CRIM: per capita crime rate by town
 - RM: average number of rooms per dwelling
 - NOX: nitric oxides concentration (parts per 10 million)
 - AGE: proportion of owner-occupied units built prior to 1940
 - LSTAT: % lower status of the population
 -
- Target y: MEDV, median value of owner-occupied homes in \$1,000's

Afi before The MNIST Classification Problem

- This is a well known benchmark, moderately large classification problem
- We have 28 × 28 grey scale image rasters with handwritten digits 0 to 9
- We want to build a classifier that assigns each raster to one of the 0 to 9 digits
- Features x: 28 × 28 image matrices
- Target y: labels [0, 1, ..., 9]
- Examples (0-padded to 32 × 32):

- Often individual models are selected through (ideally optimal) parameter sets
 - The parameters (weights) $w \in R^M$ select a concrete f in a model family \mathcal{F}
- **Parametric** models have a fixed functional form f(x) = f(x; W)
 - Simplest example: **linear regression**, where *x* has dimension *d*, M = d + 1 and $W = (w_0, w)$

$$f(x; w_0, w) = w_0 + \sum_{j=1}^d w_j x_j = w_0 + w \cdot x$$

- **Semi-parametric** models: also use weights but without a predefined functional form
 - MLPs but also RF or GBR
- Non parametric models do not use weights nor follow any broad functional form
 - Nearest Neighbor models

Issues in Model Building

- There are some initial questions when working with models from a given family \mathcal{F} :
 - Which assumptions do they make?
 - How do they work on the input features?
 - How we do build them?
- In turn, these questions lead to another two:
 - How do we select the best model from the given family for the problem at hand?
 - How do we control the model building procedure?
- All of them address fundamental issues that require a moderately deep understanding of what is going on under the model's hood
- This understanding is usually framed in mathematical language

Regression Basics

Machine Learning Basics Multilaver Perceptrons

Machine Learning Basics

- Basic Modeling
- Regression Basics
- Basic Classification
- Logistic Regression

- Rosenblatt's Perceptrons
- Classical MLPs
- Neural Network Classification
- MLP Regularization
- Unconstrained Smooth Optimization
- Computational Costs of MLPs

Aff Models How to Build Regression Models

Machine Learning Basics Multilayer Perceptrons

- In general we have a sample $S = \{x^p, y^p\}$, $1 \le p \le N$, with x^p the **features** and v^p the **targets**
- We want to build a model $\hat{y} = f(x)$ so that $\hat{y}^p = f(x^p) \simeq y^p$; ■ I.e., we want to **regress** y to the f(x)
- The concrete f is chosen within a certain family \mathcal{F}
 - Examples here: linear regression, multilayer perceptrons (MLPs)
 - And also: SVMs, Random Forests (RF), Gradient Boosting (GB), nearest neighbor (NN)
- Natural option to ensure $f(x^p) \simeq y^p$: choose f to minimize the sample Mean Square Error (MSE)

$$\widehat{e}(f) = \widehat{e}_{S}(f) = \frac{1}{2N} \sum_{p=1}^{N} (y^{p} - f(x^{p}))^{2}$$

This corresponds to the population error

$$e(w_0, w) = \frac{1}{2} E_{x,y}[(y - f(x))^2] = \frac{1}{2} E[(y - f(x))^2 p(x, y) dx dy]$$
$$= \frac{1}{2} \int (y - f(x))^2 p(x, y) dx dy$$

Aff Colors | Model Estimation as Error Minimization

Machine Learning Basics Multilayer Perceptrons

- Thus, we may select a model by solving $\hat{f} = \hat{f}_S = \arg\min_{f \in \mathcal{F}} \hat{e}_S(f)$
 - But this may be guite complicated mathematically and we must simplify it
- For a parametric or semiparametric f(x; W) we can write $\widehat{e}_{S}(f) = \widehat{e}_{S}(f(\cdot; W)) = \widehat{e}_{S}(W)$
- The problem to solve becomes

$$\widehat{W}^* = \widehat{W}^*_{\mathcal{S}} = \arg\min_{W} \widehat{e}_{\mathcal{S}}(W), \; \text{ i.e., } \; \widehat{e}_{\mathcal{S}}(\widehat{W}^*) \leq \widehat{e}_{\mathcal{S}}(W) \; \forall W$$

For linear regression (LR) the sample error is

$$\widehat{\mathbf{e}}(w_0, w) = \frac{1}{2N} \sum_{\rho} (y^{\rho} - w_0 - w \cdot x^{\rho})^2$$

Minimizing the sample error $\hat{e}_S(W)$ becomes a problem in mathematical optimization

Affi Regression Assumptions

- **Key assumption**: x and y are related as $y = \phi(x) + n$ where
 - $\phi(x)$ is the **true** underlying function
 - *n* is **additive noise** with 0 mean and finite variance σ_N^2
- Our sample is just a particular instance of a deeper sample generation process
- Thus x, n are produced by random variables X, N
 - And so is y, given by $Y = \phi(X) + N$
- Moreover, X and N are independent distributions with densities q(x), $\nu(n)$
- Thus, X and Y (or X and N) have a joint density

$$p(x, y) = p(x, \phi(x) + n) = q(x) \nu(n) = q(x) \nu(y - \phi(x))$$

■ We can decompose the MSE error of any model f as

$$2\mathsf{mse}(f) = E_{x,y}[(y - f(x))^{2}] = \int (n + \phi(x) - f(x))^{2} q(x)\nu(n) dx dn$$

$$= \int (n^{2} + 2n(\phi(x) - f(x)) + (\phi(x) - f(x))^{2}) q(x)\nu(n) dx dn$$

$$= \int n^{2}\nu(n) dn + \int (\phi(x) - f(x))^{2} q(x) dx +$$

$$2\left(\int n\nu(n) dn\right) \left(\int (\phi(x) - f(x)) q(x) dx\right)$$

$$= \sigma_{N}^{2} + E_{x}[(\phi(x) - f(x))^{2}]$$

- Thus for any model we have $mse(f) \ge \sigma_N^2$ always
 - Beware of zero regression errors!!
- And we should focus on achieving on $f \simeq \phi$ (which we don't know!!)

It is easy to see that the best f is simply $f(x) = E_{\nu}[y|x]$, for

$$E_{y}[y|x] = E_{n}[\phi(x) + n] = \int (\phi(x) + n) \nu(n) dn = \phi(x)$$

- Have we finished? In theory yes; in practice, not at all!!!
 - \blacksquare We do not know ν and, thus, cannot compute the required integral
 - If we would have several M values y^{j} for any x, we could try $\widehat{\phi}(x) = \frac{1}{M} \sum_{i=1}^{M} v^{i}$
 - But this doesn't happen either
- Now we have two options:
 - Try to stretch the E[y|x] approach, for instance, by k–**NN** Regression
 - Forget about it and get back to get models f for which we hope $f \simeq \phi$

Affi forms From The Best Regressor to k-NN

Machine Learning Basics Multilayer Perceptrons

The left hand side shows the ideal situation but the right one is what we should expect in practice

Affi de financial | k-NN Regression

- We can try to use the y^p values of several x^p close to a new x
- We fix *k* neighbors x^{p_1}, \ldots, x^{p_k} of *x* and estimate $\hat{y} = \hat{y}(x)$ as

$$\widehat{y}(x) = \frac{1}{k} \sum_{j=1}^{k} y^{p_j}$$

- $\widehat{y}(x) = \widehat{Y}_{\iota}^{NN}(x)$ is the *k*-Nearest Neighbor (NN) regressor
 - This can be refined to weighted versions, such as

$$\widehat{y}(x) = \frac{1}{C_k(x)} \sum_{j=1}^k \frac{1}{\|x^{\rho_j} - x\|^2} y^{\rho_j}$$

with
$$C_k(x) = \sum_{j=1}^k \frac{1}{\|x^{p_j} - x\|^2}$$
 a normalizing constant

- But we need that close predictors give predictions that are also close, and that there are enough of them close by
 - This is very unlikely

- Even for low dimensions and large samples, the sample space is essentially empty
- Assume we have 1.000 *d*—dimensional *x* patterns whose features have values between 1 and 10
 - In dimension d = 1 there are 100 patterns per unit length
 - But when d = 3 we have just 1 pattern per volume unit
 - And if d = 6 we have just 1 pattern per 1,000 units of volume
 - And in dimension 10 (not a big one nowadays) we have just ... !!!
- Thus, for most problems, there never will be enough close points
- As a consequence, to get k observations we may go too far away from x and the average will not be meaningful
- Therefore, unless we deal with violently non-linear problems, a simple linear model may be better than k-NN regression for moderate dimensions

■ Assuming $x \in \mathbb{R}^d$, recall the basic linear model is

$$f(x) = w_0 + \sum_{1}^{\alpha} w_i x_i = w_0 + w \cdot x$$

- w_0 complicates notation; to drop it we center x and y so that $E[x_i] = E[y] = 0$; then $w_0 = 0$
- Then we are left with the simpler homogeneous model $f(x) = w \cdot x$
- In practice we will always **normalize** x, for instance to have 0 mean and 1 standard deviation (std) on each feature
 - But not y if we may help it (or it is easy to reverse this)
- But: how do we find w?

- Assume that features X and target Y are **centered**, i.e., have 0 means
- For 1-dimensional patterns x the LR model then becomes f(x) = w x
- And the error is then the function

$$\widehat{e}(w) = \frac{1}{2N} \sum_{p=1}^{N} (w \, x^p - y^p)^2 = \frac{1}{2N} \sum_{p} (w^2 \, (x^p)^2 - 2x^p \, y^p \, w + (y^p)^2$$

$$= \frac{1}{2} \left(\frac{1}{N} \sum_{p} (x^p)^2 \right) w^2 - \left(\frac{1}{N} \sum_{p} x^p \, y^p \right) w + \frac{1}{2N} \sum_{p} (y^p)^2$$

- Thus, $\hat{e}(w) = aw^2 + bw + c$ with a > 0 and it has obviously a minimum w*
- To find it we just solve $\hat{e}'(w) = 0$

■ We first compute $\hat{e}'(w)$, for which we have

$$\widehat{e}'(w) = w \left(\frac{1}{N} \sum_{\rho} (x^{\rho})^2\right) - \frac{1}{N} \sum_{\rho} x^{\rho} y^{\rho}$$

■ The optimal w^* solves $\hat{e}'(w) = 0$ and is given by

$$w^* = \frac{\frac{1}{N} \sum_{\rho} x^{\rho} y^{\rho}}{\frac{1}{N} \sum_{\rho} (x^{\rho})^2} = \frac{\frac{1}{N} X^t Y}{\frac{1}{N} X^t X} = \frac{\operatorname{covar}(x, y)}{\operatorname{var}(x)}$$

where X and Y denote the $N \times d$ data matrix (vector here) and the $N \times 1$ target vector

& Affi Evolution | General Linear Regression

- Assume again that X and Y are centered
- The LR model becomes now $f(x) = \sum_{i=1}^{d} w_i x_i = w \cdot x$
- If Y is the $N \times 1$ target vector and we organize the sample S in a $N \times d$ data matrix X, the sample mse is given by

$$\widehat{e}(w) = \frac{1}{2N} \sum_{p} (w \cdot x^{p} - y^{p})^{2} = \frac{1}{2N} (Xw - Y)^{t} (Xw - Y)$$
$$= \frac{1}{2N} (w^{t} X^{t} Xw - 2w^{t} X^{t} Y + Y^{t} Y)$$

- We have now a quadratic form $w^t A w + w^t b + c$, with A a $d \times d$ matrix, b a d vector and c a scalar
- Now we have to solve $\nabla \widehat{e}(w) = 0$, i.e., $\frac{\partial \widehat{e}}{\partial w_i}(w) = 0, 1 \le i \le d$
- It is easy to see that

$$\nabla \widehat{e}(w) = \frac{1}{N} X^t X w - \frac{1}{N} X^t Y = \widehat{R} w - \widehat{b}$$

Afi Solving the Linear Equations

Machine Learning Basics Multilayer Perceptrons

■ The optimal \hat{w}^* must verify $\nabla \hat{e}(\hat{w}) = \hat{R} \hat{w} - \hat{b} = 0$, where

$$\widehat{R} = \frac{1}{N} X^t X, \ \widehat{b} = \frac{1}{N} X^t Y$$

Over the original, non-centered data matrix we have

$$\widehat{R} = \frac{1}{N}(X - \overline{X})^t(X - \overline{X});$$

i.e., \widehat{R} is the sample covariance matrix

If \widehat{R} is **invertible**, we just solve the linear system \widehat{R} $\widehat{w} = \widehat{b}$ to get

$$\widehat{w}^* = \widehat{R}^{-1}\widehat{b} = (X^tX)^{-1}X^tY = \operatorname{covar}(X)^{-1}\operatorname{covar}(X,Y)$$

- We won't but we should write \widehat{w}_{S}^{*} , as it is sample-dependent
- \hat{R} is oftent inverted through the **Singular Value Decomposition** (SVD) of the data matrix X

- The Singular Value Decomposition (SVD) of a (complex) $m \times n$ matrix M, $m \ge n$, is $M = UDV^*$ where
 - U and V are orthonormal (unitary) matrices with dimensions $m \times n$, $n \times n$ respectively
 - D is an $m \times n$ matrix, diagonal on its first n rows and with zeros in its last m n ones
- \blacksquare Graphically, the SVD decomposition of M is

Taken from Wikipedia

- The columns of U and V are called the left and right singular vectors; the diagonal elements in D are the singular values
- We may interpret this image as M performing first a rotation with V^* , then feature dilations with Σ (our D) and, finally, another rotation with U
 - Actually both are a roto-reflections

- It is easy to see that we can also write $M = \widetilde{U}\widetilde{D}V^*$, with \widetilde{U} having the first n columns of U and D the top diagonal block of D
 - Assuming M to be real and with a slight abuse of language, we will write $M = UDV^t$
- In our case we can write $X = UDV^t$, with dimensions $N \times d$, $d \times d$ and $d \times d$ respectively
- Then $X^tX = VDU^tUDV^t = VD^2V^t$ and $(X^tX)^{-1} = VD^{-2}V^t$ ■ D^{-2} is a diagonal matrix with $(D^{-2})_{ii} = 1/D_{ii}^2 = 1/\delta_i^2$
- \blacksquare The columns of *U* and *V* are unique up to a sign change
 - So different packages may give seemingly different U and V

- Computing the covariance matrix has a $O(N \times d^2)$ cost and invert it has a $O(d^3)$ cost
 - For big data problems it may not possible to solve analytically the normal equation $\nabla \hat{e}(w) = 0$
- The simplest numerical alternative is gradient descent:
 - Starting from some random w^0 , we iteratively compute

$$w^{k+1} = w^k - \rho_k \nabla \widehat{e}_B(w^k) = w^k - \frac{\rho}{n_B} \left(X_B^t X_B w^k - X_B^t Y \right)$$

over a **mini-batch** X_B with n_B samples and batch error \hat{e}_B

- Component wise: $w_i^{k+1} = w_i^k \rho_k \frac{\partial \hat{e}_B}{\partial w_i}(w^k)$
- ρ_k is the learning rate
- If $w^k \to w^*$, then $\nabla \widehat{e}(w^*) = 0$
 - Since our problems have obviously minima, this should be enough

- We have just built our first neural network: the linear regression architecture can be seen as a multilayer perceptron (MLP) with no hidden lavers
- Thinking of this as an MLP seems far-fetched, as we are missing the hidden layers and the much more complicated gradient computation
- But the layer architecture is there and we also have learning as iterative error minimization, i.e., training
- In fact, we will see that MLPs perform linear regression on the last hidden layer outputs
- And the process from the input to the last hidden layer produces an enhanced feature representation upon which the regression error should be better

- First option: **Root Square Error** $RSE = \sqrt{\frac{1}{N}\sum (y^p \hat{y}^p)^2}$
- OK, but how to compare this? We must always have a base model to benchmark our results
- Simplest model: a constant $\hat{y} = w_0$, which reduces to predict the mean $\overline{y} = \frac{1}{N} \sum_{1}^{N} y^{p}$, with square error

$$\frac{1}{N}\sum (y^p - \overline{y})^2 = \operatorname{Var}(y)$$

We can compare our model against this base model by computing

$$\frac{\sum (y^{\rho} - \hat{y}^{\rho})^{2}}{\sum (y^{\rho} - \overline{y})^{2}} = \frac{\frac{1}{N} \sum (y^{\rho} - \hat{y}^{\rho})^{2}}{\frac{1}{N} \sum (y^{\rho} - \overline{y})^{2}} = \frac{RSE^{2}}{Var(y)}$$

■ The widely used R^2 coefficient is simply $R^2 = 1 - \frac{RSE^2}{Var(V)}$

- Our regression solution $\widehat{w}^* = (X^t X)^{-1} X^t Y$ won't work if $X^t X$ is not invertible
 - For instance, when some features are highly correlated
 - We can at most say that X^tX is **positive semidefinite**
- We could fix this working instead with $X^tX + \alpha I$ for some $\alpha > 0$
 - This is then always **positive definite** and we can thus invert it
- To make this practical, note that $\hat{w}^* = (X^t X + \alpha I)^{-1} X^t Y$ minimizes

$$e_R(w) = \frac{1}{2N} \sum_{p} (y^p - w \cdot x_p^p)^2 + \frac{\alpha}{2} ||w||^2,$$

- This is the Ridge Regression problem
 - Our first example of **regularization**, a key technique in Machine Learning
 - All ML models must be regularized in some way
- Important issue: how to find the right choice for α ?

- We introduced supervised models
- We have reviewed the essentials of the linear regression model (always the first thing to try)
- We have considered model estimation as a problem on error minimization
- We have seen how to build linear models analytically and numerically
- We have seen how to measure model fit
- We have introduced regularization

Bias, Variance and Cross Validation

Machine Learning Basics Multilaver Perceptrons

Machine Learning Basics

- Basic Modeling
- Regression Basics
- Bias, Variance and Cross Validation
- Logistic Regression

- Rosenblatt's Perceptrons
- Classical MLPs
- Neural Network Classification
- MLP Regularization
- Unconstrained Smooth Optimization
- Computational Costs of MLPs

Afi Sample Bias and Variance

- Remember: all the models f we will build are **sample** dependent, i.e., $f = f_S$
- With several **independent** samples S_1, \ldots, S_M , it is natural to use as our best final model the average of their associated $\hat{f}_{S_n}(x)$ models, i.e.,

$$\frac{1}{M}\sum_{1}^{M}\widehat{f}_{S_{m}}(x)\simeq E_{S}[\widehat{f}_{S}(x)]=\widehat{f}_{N}(x)$$

- Here we take the (theoretical) expectation $E_S[\hat{f}_S(x)]$ over all samples S of size N
- $\widehat{f}_N(x) = E_S[\widehat{f}_S(x)]$ is our ideal **best model** and $\phi(x) \widehat{f}_N(x)$ is its bias
- The **variance** of the $\hat{f}_S(x)$ estimates is then

$$V_N(x) = E_S \left[(\widehat{f}_S(x) - \widehat{f}_N(x))^2 \right]$$

- \blacksquare Recall that our goal is to estimate ϕ in our regression model $y = \phi(x) + n$
- Ideally we would like to have a model such that

$$\widehat{f}_N(x) - \phi(x) \simeq 0,$$

i.e., a model with small bias

- This should be achievable if we have rich, highly flexible models
- Or with essentially no regularization (or both!)
- But we would also like to have a robust model building procedure which results in a small **variance** $V_N(x) \simeq 0$
 - This should be achievable if models are simple with few parameters
 - Or with more severe regularization if not
- Obviously both goals are contradictory to a large extent

■ There is thus a **tradeoff** between bias (low for complex models) and variance (low for simple models)

Taken from Hastie et al., p. 38

Recall that in *k*-NN regression we choose the *k* nearest neighbors x^{p_1}, \dots, x^{p_k} of x and estimate $\hat{y} = \hat{y}(x)$ as

$$\widehat{y}(x) = \frac{1}{k} \sum_{j=1}^{k} y^{\rho_j}$$

- Here the parameter that controls the tradeoff is just k
- If k = N, the sample size, the N-NN estimator is just the mean: $Y_N^{NN} = \overline{y}$, with very small variance but large bias (it's an obviously bad model!!)
- If k = 1, the 1-NN estimator will have smaller bias but a large variance: changing the sample is very likely to change the sample point nearest to x

Recall that the Ridge Regression loss is

$$e_R(w) = \frac{1}{2N} \sum_{\rho} (y^{\rho} - w \cdot x_{\rho}^{\rho})^2 + \frac{\alpha}{2} ||w||^2,$$

- \blacksquare Here the parameter that controls the tradeoff is α
- If $\alpha \gg 1$, any non zero w implies a large regularization penalty
 - It is thus likely that $w \simeq 0$ and the Ridge model reduces again to the mean \overline{y} , with small variance but possibly a large bias
- But if $\alpha \simeq 0$, w can wander on the entire \mathbf{R}^d
 - The bias will be then smaller, but the weights w_S and $w_{S'}$ from different samples may be very different, particularly if the covariance is nearly singular

8 Afi & France | Evaluating Expected Performance

- Recall that we build a model over a **train** sample but apply it on a test sample
- Thus, before we start applying a model, we should have a reasonably accurate idea of its performance in practice
- I.e., we want to estimate the model's **generalization** performance
- Estimating the generalization performance only over the sample S used for training results in misleading error values
- The preceding suggests to try to have *M* independent subsamples S_m and then
 - To compute $\widehat{f}_M(x) = \frac{1}{M} \sum_m \widehat{f}_{S_m}(x) \simeq \widehat{f}_N(x)$
 - To get the error estimate $\hat{e} = \frac{1}{N} \sum_{p} (y^{p} \hat{f}_{M}(x^{p}))^{2}$ over a new, **unseen** sample $S' = \{(x^p, y^p)\}$
- But since usually we only have a single S, we "simulate" this by Cross Validation (CV) to get our first realistic generalization error estimates

Cross Validation I

Machine Learning Basics Multilayer Perceptrons

Graphically, the general schema of Cross Validation is the following

From Scikit-learn

Afi & Cross Validation II

- In more detail, in Cross Validation (CV) and for a global sample S we
 - Randomly split $S = S_{tr-val} \cup S_{ts}$
 - Randomly split S_{tr-val} in M subsets S_1, \ldots, S_M
 - Work with *M* folds: pairs (S_m, S_m^c) , with

$$S_m^c = S - S_m = \cup_{i \neq m} S_i$$

- Build M different models using the S_m^c as training subsets
- \blacksquare Compute their errors e_m on the folds' validation subsets S_m
- Use these errors' average as a first estimate of the true model performance
- CV can and must be used in any model building procedure
 - Most data science packages have tools to simplify this
- We will also use CV to find optimal model hyper-parameters such as α in Ridge Regression

& Afi Error | Grid Hyper-parameter Selection

Machine Learning Basics Multilaver Perceptrons

- Consider for Ridge regression a hyperparameter range $\alpha \in [a, A]$, with 0 < a < A
 - In general $a \simeq 0$, $A \gg 1$
 - $\alpha = a$: essentially no penalty, small bias and high variance
 - \blacksquare $\alpha = \Lambda$: large penalty, small variance but high bias
- Select an L+1 point **grid** $\{\alpha_0 = a < \alpha_1 < ... < \alpha_L = A\}$
 - The α_i can be equi—spaced, log equi—spaced, random, ...
- At each α_ℓ
 - Train *M* models on the S_m^c using the hyperparameter α_ℓ
 - Average their test errors e_m on the S_m to get the error $e(\alpha_\ell)$ at α_ℓ
- \blacksquare And choose the final (hopefully) optimal hyperparameter α^* as

$$\alpha^* = \operatorname{arg\;min}_{0 < \ell < L} e(\alpha_\ell)$$

 \blacksquare α^* gives the model with the **best expected generalization** among all possible α choices

- We have stressed that any model estimation is sample-dependent and that this has to be controlled
- We have introduced the bias and variance as the two key components of any model error
- We have discussed bias-variance trade-off
- We have introduced Cross Validation here as a tool to estimate a model's generalization performance
- We have also introduced Cross Validation as a tool to estimate a model's hyper-parameters

Affi Excell The Classification Model

Machine Learning Basics Multilaver Perceptrons

Machine Learning Basics Basic Modeling

- Regression Basics
- Bias, Variance and Cross Validation
- Basic Classification
- Logistic Regression

- Rosenblatt's Perceptrons
- Classical MLPs
- Neural Network Classification
- MLP Regularization
- Unconstrained Smooth Optimization
- Computational Costs of MLPs

Regression vs Classification

- Recall that in regression we have numerical continuous targets y and want our predictions \hat{y} to be as close to y as possible
- But in classification we have a finite number of labelled targets for which "selection by closeness" doesn't make sense
- Natural alternative: select the most probable label given the pattern x we have just received
 - The concrete labels used for targets do not matter much anymore
 - Model learning should thus be "target" agnostic
 - And good probability estimates should be quite useful
- Let's analyze this in an example

Afi Employer Afirst Problem: Pima Indian Diabetes

- We want to diagnose whether a person may have diabetes from some clinical measures.
- Features x: clinical measures
 - numPregnant
 - bloodPress
 - massIndex
 - age ...
- Target y: 0 (no diabetes), 1 (diabetes)
- Clear goal but perhaps too radical
- Better: try to estimate the probability P(1|x) of having diabetes depending on the features x we measure

- We have random patterns ω from M classes, $C_1, \ldots C_M$
- Over each pattern we "measure" d features $x = x(\omega) \in \mathbb{R}^d$
 - \mathbf{x} inherits the randomness in ω and becomes a random variable
- \blacksquare A ω has a **prior probability** π_m of belonging to C_m
- Inside each class C_m there is a **conditional class density** f(x|m) that "controls" the appearance of a given x
- The π_m and f(x|m) determine the **posterior probability** P(m|x)that x comes from class C_m
- **Intuition:** we should assign x to the class with the largest P(m|x), that is, work with the classifier

$$\delta(x) = \arg\max_{m} P(m|x)$$

- Bayes rule: $P(B|A) = \frac{P(A \cap B)}{P(A)}$
- This requires to work with probabilities, not densities, but $P(\{x\}) = P(m \cap \{x\}) = 0$ and

$$P(m|x) = \frac{P(m \cap \{x\})}{P(\{x\})} = \frac{0}{0} = \dots???$$

But we can use the approximation

$$P(m|x) \simeq P(m|B_{r}(x)) = \frac{P(C_{m} \cap B_{r}(x))}{P(B_{r}(x))} = \frac{P(B_{r}(x)|m)P(C_{m})}{P(B_{r}(x))}$$

$$= \frac{\pi_{m}P(B_{r}(x)|m)}{P(B_{r}(x))} = \pi_{m}\frac{\int_{B_{r}(x)}f(y|m)dy}{\int_{B_{r}(x)}f(z)dz}$$

where we assume that features x are measured independently from classes m

SAfi Served Computing Posterior Probabilities II

Machine Learning Basics Multilayer Perceptrons

Remember the Fundamental Theorem of Calculus: if $F(x) = \int_{a}^{x} f(y) dy$,

$$\lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{x_0 - \epsilon}^{x_0 + \epsilon} f(y) dy = \frac{dF}{dx}(x_0) = f(x_0)$$

In d dimensions it becomes

$$g(w) = \lim_{r \to 0} \frac{1}{|B_r(w)|} \int_{B_r(w)} g(z) dz$$

Putting everything toghether, we arrive

$$P(m|x) = \lim_{r \to 0} P(m|B_r(x)) = \pi_m \lim_{r \to 0} \frac{\int_{B_r(x)} f(y|m) dy}{\int_{B_r(x)} f(z) dz}$$

$$= \pi_m \lim_{r \to 0} \frac{\frac{1}{|B_r(x)|} \int_{B_r(x)} f(y|m) dy}{\frac{1}{|B_r(x)|} \int_{B_r(x)} f(z) dz} = \frac{\pi_m f(x|m)}{f(x)}$$

■ This suggests that a natural choice is the **classifier** δ_B

$$\delta_B(x) = \operatorname{arg max}_m P(m|x) = \operatorname{arg max}_m \frac{\pi_m f(x|m)}{f(x)}$$

$$= \operatorname{arg max}_m \pi_m f(x|m)$$

- With some extra work we can show that this **Bayes Classifier** δ_B defines an optimal solution (in some precise sense) of the classification problem
- But ... this doesn't look too practical, for we do not know either π_m or (much harder) f(x|m)

Affi books Approximating the Bayes Classifier

- To define δ_B we need to know the prior probabilities π_m and the prior densities f(x|m)
- A reasonable choice for π_m is $\widehat{\pi}_m = \frac{N_m}{N}$, where N_m is the number of patterns of C_m in the sample
- But effective multidimensional density estimates are rather difficult, because of the curse of dimensionality
 - Densities generalize histograms
 - Good histograms need accurate counts of elements nearby
 - But in high dimensions there won't be nearby elements!!
- Options:
 - Restrict possible density models: logistic regression
 - Assume no model and apply a Nearest Neighbor (NN) strategy

- Very simple: at any x consider the subset $N_k(x)$ of its k closest sample points and
 - Let $n_m(x)$ the number of elements of class m in $N_k(x)$
 - Notice that $0 \le n_m(x) \le k$
 - Define $\delta_{kNN}(x) = \arg \max_{m} n_{m}(x)$
- That is, $\delta_{kNN}(x)$ assigns x to the class that has more patterns in $N_k(x)$
- We can partially justify this definition from a Bayesian point of view
- Assume that $B_r(x)$ is the smallest ball that contains $N_k(x)$ and consider the approximations
 - $P(B_r(x)|m) \simeq \frac{n_m(x)}{N_m}$
 - Similarly, $P(B_r(x)) \simeq \frac{k}{N}$
 - And $\pi_m \simeq \frac{N_m}{N}$

We then have

$$P(m|x) \simeq P(m|B_r(x)) = \frac{\pi_m P(B_r(x)|m)}{P(B_r(x))}$$
$$\simeq \frac{N_m}{N} \frac{n_m(x)}{N_m} \frac{1}{\frac{k}{N}} = \frac{n_m(x)}{k}$$

■ Therefore δ_{kNN} might be close to δ_B , for

$$\delta_{kNN}(x) = \operatorname{arg\ max}_{m} n_{m}(x) = \operatorname{arg\ max}_{m} \frac{n_{m}(x)}{k}$$

$$\simeq \operatorname{arg\ max}_{m} P(m|x) = \delta_{B}(x)$$

Some *k*–NN Issues

- Q1: How do we choose k? Using CV, of course
- There are no closed form solution and we have to deal again with the bias-variance tradeoff
 - Small variance with large k: if k = N, k–NN classification returns the majority class
 - Small bias with small k: if k = 1 a point very close to x should be in the same class
 - But also large variance: the nearest point to x in another sample may well belong to a different class
- Q2: Is *k*–NN always meaningful?
 - Well, only if classes are concentrated and far from each other
 - In other words, when the classification problem is easy!!

- Consider a two class problem with labels y = 0.1
- We will call patterns with label 1 **positive** and those with label 0 negative
 - Usually the positive patterns are the interesting ones: sick people, defaulted loans, ...
- Let $\hat{y} = \hat{y}(x)$ the label predicted at x; we say that x is a
 - **True Positive** (TP) if $y = \hat{y} = 1$
 - **True Negative** (TN) if $y = \hat{y} = 0$
 - **False Positive** (FP) if y = 0 but $\hat{y} = 1$
 - **False Negative** (FN) if y = 1 but $\hat{y} = 0$
- These values are combined in many performance measures

Classifier Metrics

- The classifier **accuracy** is $acc = \frac{TP + TN}{N}$
 - The first thing to measure but ...
- It may not be too significant when the number N_0 of negatives is $\gg N_1$, the number of positives; then
 - The classifier $\delta(x) = 0$ will have a high accuracy $N_0/N \simeq 1$
 - But it will also be useless!!
- First variant: Precision. Recall
 - **Recall**: TP/(TP + FN), i.e., the fraction of positives detected
 - **Precision**: TP/(TP + FP), i.e., the fraction of true alarms issued
- Recall measures how many positive cases we recover, i.e., how effective is our method
- Precision measures the effort we need for that, i.e., its efficiency
- Ideally: high recall, high precision (i.e., effective and efficient!!)
- Another way of presenting the performance is through the confusion matrix

Aff 550084 The Confusion Matrix

Machine Learning Basics Multilayer Perceptrons

Standard layout

	P'	N'
	(Predicted)	(Predicted)
Р	True Positive	False Negative
(Actual)		
N	False Positive	True Negative
(Actual)		

- Other layouts:
 - Positives (with label 1) at bottom (as done in confusion_matrix of sklearn)
 - Predicted values in rows, real values in columns
- Accuracy and the confusion matrix can be extended to multi-class problems
 - But not other concepts such as recall or precision

Affi Excella Logistic Regression (LogR)

Machine Learning Basics Multilaver Perceptrons

Machine Learning Basics Basic Modeling

- Regression Basics
- Bias, Variance and Cross Validation
- Basic Classification
- Logistic Regression

- Rosenblatt's Perceptrons
- Classical MLPs
- Neural Network Classification
- MLP Regularization
- Unconstrained Smooth Optimization
- Computational Costs of MLPs

- *k*–NN Classifier is simple but also crude; have to look elsewhere
- Building a regression model with targets given by some coding of class labels usually doesn't make sense
- However, for a binary 0–1 response, it can be shown that the $w_0 + w \cdot x$ obtained using linear regression is in fact an estimate of P(1|x)
 - We may thus fix a threshold δ_0 and decide 0 if $w_0 + w\dot{x} < \delta_0$ and 1 otherwise
 - However, we may end up with probability estimates less than 0 o bigger than 1!!!
- Better idea: try to transform the linear output $w_0 + w \cdot x \in (-\infty, \infty)$ into a probability $P(1, x) \in (0, 1)$
 - Logistic regression does this through the logistic or sigmoid function

We assume

$$P(1|x) = P(1|x; w_0, w) = \frac{1}{1 + e^{-(w_0 + w \cdot x)}}$$

- Then $0 \le P(1|x) \le 1$ for any x
- We then have

$$P(0|x) = 1 - P(1|x) = \frac{e^{-(w_0 + w \cdot x)}}{1 + e^{-(w_0 + w \cdot x)}} = \frac{1}{1 + e^{w_0 + w \cdot x}}$$

- Notice that if $w_0 + w \cdot x = 0$, P(1|x) = P(0|x) = 0.5
- The ratio $\frac{P(1|x)}{P(0|x)} = e^{w_0 + w \cdot x}$ is called the **odds** of x and its log the loa odds or loait
- Thus, the basic assumption in LogR is that the logit is a linear **function** $w_0 + w \cdot x$ of x
- We have the model f(x; w); we need a **loss** function $L(w_0, w)$ to minimize for which we use the sample's likelihood

- Assume a single sample x, y and two possible model coefficients w_0 , w and w'_0 , w'
- Denoting by $p = P(y|x; w_0, w)$ and $p' = P(y|x; w'_0, w')$, it is clear that we should prefer w_0 , w if p > p' and w'_0 , w' if not
 - In other words, we prefer the coefficients that give a higher posterior probability
- For an **independent** sample $S = \{(x^p, y^p)\}$, its joint probability under a posterior model $p = P(y|, x, w_0, w)$ is

$$P(Y|X; w_0, w) = \prod_{p=1}^{N} P(y^p|x^p; w_0, w)$$

■ And, again, given two possible model coefficients w_0 , w and $w_0', w',$ we should prefer w_0, w iff

$$P(Y|X; w_0, w) > P(Y|X; w'_0, w')$$

■ Therefore, we can estimate the optimal w_0^* , w^* as

$$w_0^*, w^* = \text{arg max}_{w_0, w} P(Y|X; w_0, w)$$

By the independence assumption we have

$$P(Y|X; w_0, w) = \prod_{\rho=1}^{N} P(y^{\rho}|x^{\rho}; w_0, w)$$

$$= \left\{ \prod_{y^{\rho}=1} P(1|x^{\rho}) \right\} \left\{ \prod_{y^{\rho}=0} P(0|x^{\rho}) \right\}$$

$$= \prod_{\rho=1}^{N} P(1|x^{\rho})^{y^{\rho}} P(0|x^{\rho})^{1-y^{\rho}}$$

because

If
$$y^{\rho} = 1$$
, $P(1|x^{\rho}) = P(1|x^{\rho})^{y^{\rho}} = P(1|x^{\rho})^{y^{\rho}} P(0|x^{\rho})^{1-y^{\rho}}$, and
If $y^{\rho} = 0$, $P(0|x^{\rho}) = P(0|x^{\rho})^{1-y^{\rho}} = P(1|x^{\rho})^{y^{\rho}} P(0|x^{\rho})^{1-y^{\rho}}$

If
$$y^p = 0$$
, $P(0|x^p) = P(0|x^p)^{1-y^p} = P(1|x^p)^{y^p} P(0|x^p)^{1-y^p}$

■ The **log-likelihood** of w_0 , w given S is then

$$\ell(w_0, w; S) = \log P(Y|X; w_0, w)$$

$$= \sum_{p} \{y^p \log p(1|x^p) + (1 - y^p) \log p(0|x^p)\}$$

$$= \sum_{p} y^p \log \frac{p(1|x^p)}{p(0|x^p)} + \sum_{p} \log p(0|x^p)$$

$$= \sum_{p} y^p (w_0 + w \cdot x^p) - \sum_{p} \log(1 + e^{w_0 + w \cdot x^p})$$

■ We can thus estimate the optimal \hat{w}_0^*, \hat{w}^* as

$$\widehat{w}_0^*, \widehat{w}^* = \operatorname{arg\ min}_{w_0, w} - \ell(w_0, w; S)$$

Extra bonus: $-\ell$ is a convex differentiable function of (w_0, w) and, thus, it is enough to solve $\nabla \ell(w_0, w) = 0$

Afi Series Newton-Raphson Solution

- However, $\nabla \ell(w_0, w) = 0$ doesn't admit a closed form solution, but only an iterative, numerical one
- We apply the **Newton–Raphson** iterative method, here equivalent to the general Newton method for function minimization
- For a general weight vector w, and starting with an initial random w^0 , Newton's iterations are

$$w^{k+1} = w^k + (\mathcal{H}_{\ell}(w^k))^{-1} \nabla \ell(w^k)$$

- **\blacksquare** $\mathcal{H}_{\ell}(w^k)$ denotes the **Hessian** of ℓ at w^k , which may or may not be invertible
 - **Everything** is fine if the w^k are close enough to the optimum w^* but far away things may get tricky
- Just as before, we can add a regularization term $\frac{\alpha}{2} ||w||^2$ to avoid invertibility problems
- The iterations in Logistic Regression are again typical of many of the model building methods used in Machine Learning

Afi Except Recap: Learning in ML

Machine Learning Basics Multilayer Perceptrons

- The general approach to **learning** is the following:
 - \blacksquare A **model** f(x; w) is chosen
 - Given a sample $S = \{(x^1, y^1), \dots, (x^N, y^N)\}$, we define a **sample** dependent loss function

$$L(w) = L(w|S) = L(y^1, ..., y^N, f(x^1; w), ..., f(x^N; w))$$

 \blacksquare L(w) is often minimized from some w^0 by **iterations**

$$\mathbf{w}^{k+1} = \mathbf{w}^k - \rho_k \mathbf{G}(\mathbf{w}^k, \mathbf{S})$$

with ρ_k a **learning rate** and G some vectorial function

- When $G(w) = \nabla L(w)$ we have gradient descent
- When $G(w) = \mathcal{H}(w)^{-1} \nabla L(w)$ we obtain **Newton's method**
- When the entire sample S is used at each iteration, we speak of batch learning
- When only single patterns (x^p, y^p) or small subsamples are used, we speak of on-line or minibatch learning

- We have just built our second neural network: the logistic regression architecture can be seen as a multilayer perceptron (MLP) with no hidden layers and sigmoid outputs
- Again, thinking of this as an MLP seems far-fetched, as we are missing the hidden layers
- Now the gradient computations are more involved
- But we also have learning as iterative loss minimization, i.e., training
- In fact, we will see that classification MLPs for two class problems perform logistic regression on the last hidden layer outputs
- And , again, the process from the input to the last hidden layer produces an enhanced feature representation upon which the regression error should be better

Affi definitions What's New from Regression?

- Some things change from regression, some don't
- We should check feature correlations: although less clearly influential, they will affect most models
 - \blacksquare Scatter plots (x_i, y) are usually less informative
- Important: positive and negative-class feature histograms
- The bias-variance trade-off is subtler in classification
- Accuracy, recall, precision are the usual model quality measures
 - But NN training does not directly minimize them
- We use CV with **stratified folds** to estimate generalization performance
- We also use CV for hyperparameter estimation, as regularization will also be needed
 - In LogR we should minimize $-\ell(w_0, w; S) + \frac{\alpha}{2} ||w||^2$

- If possible, we don't want labels as model outputs but **posterior** probabilities
- Most models give them as pairs

$$(\widehat{P}(0|x), \widehat{P}(1|x)) = (\widehat{P}(0|x), 1 - \widehat{P}(0|x))$$

- In principle we would decide 1 if $\widehat{P}(1|x) > 0.5$ and viceversa, but this may be too crude
- It may be advisable to set a **decision threshold** $0 < \theta < 1$ and decide 1 if $\widehat{P}(1|x) > 1 - \theta$ and 0 if $\widehat{P}(1|x) < \theta$
- For **imbalanced** problems where $\pi_0 \gg \pi_1$ (usually the interesting ones) we would have $\widehat{P}(1|x) \simeq 0$ for most x
 - In this case we may choose another $\theta \ll 0.5$ and suggest 1 if $\widehat{P}(1|x) > \theta$

- We have introduced the classification problem as one of computing posterior probabilities
- We have found the optimal Bayes classifier and approximated it by k-NN
- We have introduced Logistic Regression and the numerical minimization of its (minus) log-likelihood
- We have introduced several measures of classifier performance
- We have reviewed some practical issues of classification

Rosenblatt's Perceptrons

Machine Learning Basics Multilaver Perceptrons

Basic Modeling

- Regression Basics
- Bias, Variance and Cross Validation
- Basic Classification
- Logistic Regression

2 Multilayer Perceptrons

- Rosenblatt's Perceptrons
- Classical MLPs
- Neural Network Classification
- MLP Regularization
- Unconstrained Smooth Optimization
- Computational Costs of MLPs

Basic Neural Models

Machine Learning Basics Multilaver Perceptrons

Basic model: Ramón y Cajal's neuron (1900)

- Basic behavior: the neuron either fires or stays at rest depending basically on its inputs
- This translates into an electrical nerve impulse or action potential
- The brain has about 10¹¹ neurons
 - Each one has about 7.000 connections
 - These connections are often recurrent

Hodgkin-Huxley

- They developed (circa 1935) the first electro-physiological model to describe the generation and propagation of action potentials in neurons
- They used the giant squid axon for this

From Wikipedia's Squid Giant Synapse

Afi Escuel Electronic Neuron

Machine Learning Basics Multilayer Perceptrons

Electronic version: McCulloch-Pitts (1940)

■ Since $I = \frac{V}{R} = wV$, with w the conductance, the McCulloch–Pitts neuron output is

$$H\left(\sum_{j=1}^d w_j V_j + I\right) = V$$

with the Heaviside function H ensuring a 0-1 output

■ The perceptron is a mathematical formulation of the McC–P neuron where the conductances are to be learned

Affi Excell Rosenblatt's Perceptron

Machine Learning Basics Multilayer Perceptrons

■ Given a sample $S = \{(x^p, y^p)\}$ with $y^p = \pm 1$, Rosenblatt's **Perceptrons** (PCPs) are linear machines $w \cdot x$ such that

$$w \cdot x^{\rho} > 0$$
 if $y^{\rho} = 1$
 $w \cdot x^{\rho} < 0$ if $y^{\rho} = -1$

- This can be seen as a homogeneous classification problem
- In more compact form we want for all p

$$y^p \quad w \cdot x^p > 0$$

- If such a separating w exists, it can be computed in many ways
- But Rosenblatt's goal was to **learn** w, i.e., to arrive at a separating w by repeatedly examining the (x^p, y^p) and adjusting w if necessary

The Delta Rule algorithm

```
Start with w=0
While stopping condition not met:
     Get a new pattern (x^p, y^p) = (x^{p(t)}, y^{p(t)})
     if y^{\rho}w \cdot x^{\rho} \leq 0 then:

w = w + v^{\rho}x^{\rho}
```

• Writing w for the new vector and w' for the previous one, notice that

$$y^p \ w \cdot x^p = y^p \ w' \cdot x^p + \|x^p\|^2 > y^p \ w' \cdot x^p$$

& Afi Series Novikov's Theorem

Machine Learning Basics Multilaver Perceptrons

- It states that if the sample S is **linearly separable**, the Delta rule yields a separating w in a finite number of steps
 - I.e., it learns!!
- More precisely, if for some separating hyperplane w with ||w|| = 1 we have min $y^{\rho}w \cdot x^{\rho} = \gamma > 0$, then a separating w'can be found after at most $T = R^2/\gamma^2$ wrong classifications. where $R = \max_{p} ||x^p||$
- Notice that γ is the **margin** of the w hyperplane. Thus, if

$$\gamma^* = \max_{\|w\|=1} m(w, S) = \max_{\|w\|=1} \min_{p} y^p w \cdot x^p$$

is the **maximum margin**, we will need at most $R^2/(\gamma^*)^2$ iterations to train a Perceptron

- The maximum margin hyperplane gives the best (smallest) Novikov bound
- And problems with smaller margins require more iterations

Affi definition Margins and Generalization

Machine Learning Basics Multilayer Perceptrons

■ Intuitively, when the margin is large, the problem is easier

Mi touch Distance to a Line

Machine Learning Basics Multilayer Perceptrons

■ The margin of *w* is just the smallest distance between sample points and the hyperplane defined by *w*

- This extends to the multidimensional case: if ||w|| = 1 and b = 0, the distance of x to the hyperplane defined by w is $|w \cdot x| = yw \cdot x$
- Thus the Delta Rule corrects weight vectors with negative margins

Affi Extratal Novikov's Proof Sketch

Machine Learning Basics Multilayer Perceptrons

- Assume x^t is the t-th pattern such that $y^t w^{t-1} \cdot x^t \le 0$
- Then $\|w^t\|^2 = \|v^t x^t + w^{t-1}\|^2 < \|x^t\|^2 + \|w^{t-1}\|^2$ and, thus,

$$\|\mathbf{w}^t\|^2 \le \|\mathbf{x}^t\|^2 + \ldots + \|\mathbf{x}^1\|^2 + \|\mathbf{w}^0\|^2 \le tR^2$$

if $w^0 = 0$ and $||x^p|| < R$ for all p

■ Also, if w' is a 1-norm separating hyperplane i.e., $\min_{p} v^{p} w' \cdot x^{p} = \gamma > 0$ for all p, we have

$$w^t \cdot w' = (y^t x^t + w^{t-1}) \cdot w' \ge \gamma + w^{t-1} \cdot w' \ge \ldots \ge t\gamma + w^0 \cdot w'$$

■ Putting both together we have for all t for which x^t is erroneous

$$t\gamma \leq \mathbf{w}^t \cdot \mathbf{w}' \leq \|\mathbf{w}^t\| \leq \sqrt{t}\mathbf{R}$$

which implies $t < R^2/\gamma^2$

■ Thus, the Delta Rule will stop after at most R^2/γ^2 iterations

Problems with Perceptrons

Machine Learning Basics Multilayer Perceptrons

- Rosenblatt's Perceptron caused a big stir on the feasibility of Conexionist Artificial Intelligence but soon its first winter came
- Observation 1: A PCP can learn (obviously) only linearly separable problems; for instance, it can learn the AND and OR predicates

But a PCP cannot learn the XOR predicate

Dichotomies

- Observation 2: for PCPs to be useful, **linearly separable** problems must be frequent
- Q: how frequent are they?
- **A dichotomy** for $S = \{x^1, x^2, \dots, x^N\}$ is any separation of S in two classes
- It corresponds to any asignment of the ± 1 values to the x^p
- The total number of dichotomies is 2^N
- Thus, the total number of 2-class problems over S is 2^N

- We have to compare the total number of dichotomies with the number of dichotomies that are linearly separable
- The points in a sample S are said to be in **general position** if there are not d + 1 patterns in a d - 1-dimensional hyperplane
- **Theorem** If S is in general position, the number L(N, d) of linearly separable dichotomies is

$$L(N,d) = \left\{ \begin{array}{cc} 2^N & \text{si } N \leq d+1 \\ 2\sum_{i=0}^d \binom{N-1}{i} & \text{si } N \geq d+1 \end{array} \right\}$$

Affi Except Points in General Position

Machine Learning Basics Multilayer Perceptrons

■ Consider d = 2, 3 = d + 1 points and a 1 = d - 1-dimensional hyperplane

Afi Edition Points Not in General Position

Machine Learning Basics Multilayer Perceptrons

Consider now d = 2 and 3 = d + 1 points **not** on a 1 = d - 1-dimensional hyperplane (i.e., a line)

Notice that for d fixed.

$$\frac{L(N,d)}{2^N}\to 0$$

as $N \to \infty$

- In practice we can expect $N \gg d$ and the fraction of separable dichotomies will be very small
- Thus, linear PCPs will not be useful
- But a **one hidden layer** PCP can solve XOR and, in fact, separate any convex region from the rest of the space
- And a two hidden layer PCP can separate any polyhedral region and hence solve any classification problem
- The same is essentially true for regression problems
- But: no algorithm is known to learn these 2-hidden layer **PCPs**

- Rosenblatt's Perceptrons are natural online machines:
 - Patterns appear sequentially and each may change the current weights
- We can also define a perceptron loss over a given sample as

$$L(w|S) = -\sum_{\{p: y^p w \cdot x^p < 0\}} y^p w \cdot x^p$$

- The local error would thus be $-y^p w \cdot x^p$ when $y^p w \cdot x^p < 0$ and 0 otherwise
- Since $\nabla_w(-y^p w \cdot x^p) = -y^p x^p$, the Delta Rule can be seen as a kind of local gradient descent on the loss L(w|S):

$$w^{t} = w^{t-1} + y^{p(t)}x^{p(t)} = w^{t-1} - \nabla_{w}\left(-y^{p(t)}x^{p(t)} \cdot w\right)$$

However L(w|S) is not differentiable and it is not clear what to make of $\nabla_w L(w|S)$...

- First option: work with linear models but somehow ensure that $d \gg N$
 - Transform the original d-dimensional features x in new D-dimensional ones such that $D \gg d$
 - We overcome then that, in practice, we usually have $N \gg d$
 - This is the goal of **kernel-based Support Vector Machines**
- Second option: build trainable PCPs replacing the Heaviside function
 - Work with differentiable PCP transfer function
 - Transform PCP training into a differentiable optimization problem
 - This is what we will do next
- Before doing so, note that Rosenblatt's PCPs can be seen as the first Machine Learning model
- And modern ML started around 1985 along the PCP's ideas

Classical MLPs

Machine Learning Basics Multilaver Perceptrons

- Basic Modeling
- Regression Basics
- Bias, Variance and Cross Validation
- Basic Classification
- Logistic Regression

2 Multilayer Perceptrons

- Rosenblatt's Perceptrons
- Classical MLPs
- Neural Network Classification
- MLP Regularization
- Unconstrained Smooth Optimization
- Computational Costs of MLPs

Affi Escuela MLP Architecture

Machine Learning Basics Multilayer Perceptrons

- General layout:
 - An input layer (input)
 - One or several hidden layers
 - One output layer
- Feedforward connections only

■ Example: TensorFlow Playground

Afi escuels MLP Connections

- No feedback or lateral conections
- Fully connected layers
- **Linear weight connections** between units and (usually) **non** linear activations inside each unit
 - Combined effect of sucesive layers: potentially highly non-linear transformation
- General processing: layered and feedforward
- In practice (1990s), one hidden layer and only sometimes two
- Later (around 2010): Deep Networks with "many" (from 3 to 10) layers
- Now: almost anything!

■ The activations a_i^h of a unit in layer h receives the outputs o_i^{h-1} from processing in the previous layer

$$a_i^h = \sum_{j=1}^{m_{h-1}} w_{ij}^h o_j^{h-1} + b_i^h,$$

In matrix/vector form:

$$a^h = W^h o^{h-1} + b^h$$

- **Output** o_i^h of a unit: **non linear processing** $o_i^h = \varphi(a_i^h)$ of its activation
- In vector form:

$$o^h = \varphi(a^h),$$

where φ is applied over each unit

- Choices for f:
 - Heaviside (in the very first Rosenblatt's Perceptrons): $\varphi(a) = 0$ if $a < 0, \varphi(a) = 1 \text{ if } a > 0$
 - Identity/linear: $\varphi(a) = a$
 - Sigmoid:

$$\varphi(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

Hyperbolic tangent:

$$\varphi(a) = \tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

Rectified Linear Units (ReLUs): $\varphi(a) = r(a) = \max(0, a)$

Sigmoid, Hyperbolic Tangent, ReLUs

- Sigmoid and tanh: smooth version of Heaviside step function
- For ReLUs r'(x) is either 0 or 1 (hoping x = 0 never happens!!)
 - Many gradient elements will go to 0 and many units will have constant activations no matter their input

From Stanford's UFLDL Tutorial

- Usual activation choices:
 - For hidden units: hyperbolic tangent and, currently, ReLU
 - Linear outputs for regression, sigmoid/soft max outputs for classification

- We need first to compute an MLP's outputs through the forward pass
- At each layer h we compute two variable sets
 - The linear **activations** $a^h = W^h o^{h-1} + b^h$ with o^{h-1} the previous layer's output and W^h , b^h the weights and biases connecting layer h-1 with layer h
 - The nonlinear **outputs** $o^h = \varphi(a^h)$,
- In unit–wise terms: $a_i^h = \sum w_{ii}^h o_i^{h-1} + b_i^h$, $o_i^h = \varphi(a_i^h)$
- Concatenating these operations we arrive at the outputs $\hat{y} = f(x; \mathcal{W})$ of the network, with $\mathcal{W} = (W^1, b^1, \dots, W^H, b^H)$ the network's weight set

- The Single Hidden Layer (SHL) MLP
 - D inputs (determined by the problem at hand)
 - One hidden layer with H units (number to be chosen) and tanh (or what you prefer) activation
 - One linear or sigmoid output (according to the problem at hand)
- Input-hidden processing: denoting inputs by x and the hidden unit ouput as o^H .

$$o_h^H = anh \left(b_h^H + \sum_{j=1}^D W_{hj}^H x_j
ight)$$

■ In matrix/vector form: $o^H = \tanh (W^H x + b^H)$

Hidden-output processing: since targets are 1-dimensional, we have for the outputs \hat{v}

$$\widehat{y} = \sum_{h=0}^{H} w_h^O o_h^H + b^O,$$

- In vector form: $\hat{y} = w^O \cdot o^H + b^O$
- That is, a linear model on the last hidden layer outputs o^H
- Global process:

$$\widehat{y} = f(x; w^O, W^H, b^O, b^H) = b^O + \sum_h w_h^O \tanh \left(b_h^H + \sum_j W_{hj}^H x_j \right)$$

Or in matrix/vector form

$$\widehat{y} = f(x; w^O, W^H, b^O, b^H) = b^O + w^O \cdot \tanh \left(b^H + W^H x\right)$$

Or in Python y_pred = np.tanh(x.dot(w_H.T) + b_H).dot(w_O.T) + b_O

MSE is the standard error function for regression MLPs

$$e(\mathcal{W}) = \frac{1}{2} E_{x,y} \left[(y - f(x; \mathcal{W}))^2 \right] = E_{x,y} \left[e^{\ell}(x, y; \mathcal{W}) \right]$$
$$= \int e^{\ell}(x, y; \mathcal{W}) p(x, y) dx dy$$

with $e^{\ell}(x, y; \mathcal{W})$ denotes the **local error**

$$e^{\ell}(x, y; \mathcal{W}) = \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - f(x; \mathcal{W}))^2$$

The general idea would be to obtain the optimal W^* as a solution of $\nabla e(\mathcal{W}) = 0$, where

$$\nabla e(\mathcal{W}) = E_{x,y} \left[\nabla_{\mathcal{W}} e^{\ell}(x, y; \mathcal{W}) \right]$$

= $E_{x,y} \left[\nabla_{\mathcal{W}} f(x; \mathcal{W}) (f(x; \mathcal{W}) - y) \right]$

for we have

$$\nabla_{\mathcal{W}} \mathbf{e}^{\ell}(\mathbf{x}, \mathbf{y}; \mathcal{W}) = -(\mathbf{y} - f(\mathbf{x}; \mathcal{W})) \nabla_{\mathcal{W}} f(\mathbf{x}; \mathcal{W})$$
$$= \nabla_{\mathcal{W}} f(\mathbf{x}; \mathcal{W}) (f(\mathbf{x}; \mathcal{W}) - \mathbf{y})$$

- This suggests to get $\nabla_{\mathcal{W}} f(x; \mathcal{W})$ but it is much better to focus on ∇e^{ℓ} , and
 - We will compute first ∇e^{ℓ} (and then $\nabla e = E[\nabla e^{\ell}]$)
 - We will exploit it to build MLPs through optimization methods

Affi Ecology | The Forward Pass (again)

Machine Learning Basics Multilayer Perceptrons

- Recall that we compute an MLP's outputs through the **forward** pass
- At each layer h we compute (and **store**) first the linear **activations** $a^h = w^h o^{h-1} + b^h$ with o^{h-1} the previous layer's output and W^h , b^h the weights and biases connecting layer h-1 with layer h
- We the compute (and store) the nonlinear **outputs** $o^h = \varphi(a^h)$,
- In unit—wise terms:

$$a_i^h = \sum w_{ij}^h o_j^{h-1} + b_i^h, \quad o_i^h = \varphi(a_i^h)$$

And we also have

$$\frac{\partial a_i^h}{\partial w_{ii}^h} = o_j^{h-1}, \ \frac{\partial o_i^h}{\partial a_i^h} = \varphi'(a_i^h)$$

Affi Existent | Computing the Gradient

- The key tool is the **chain rule** that we will apply backwards from the output layer
- If w_{ij}^h is the general weight connecting unit j in layer h-1 to unit iin layer h, we have

$$\frac{\partial e^{\ell}}{\partial w_{ij}^{h}} = \frac{\partial e^{\ell}}{\partial a_{i}^{h}} \frac{\partial a_{i}^{h}}{\partial w_{ij}^{h}} = \frac{\partial e^{\ell}}{\partial a_{i}^{h}} o_{j}^{h-1} = \delta_{i}^{h} o_{j}^{h-1}$$

- That is, we have an easy to compute term $\frac{\partial a_i^h}{\partial w_i^h}$, and a more complicated but crucial one $\frac{\partial e^{\ell}}{\partial a^{\hbar}}$
- We refer to $\frac{\partial e^{\ell}}{\partial a^h} = \delta_i^h$ as the **generalized error** at unit i of layer h

Safe Series | Gradient at the Output Layer

Machine Learning Basics Multilayer Perceptrons

- Let's assume that we have layers $1, 2, \dots, H-1, H$, with H the output laver
- For simplicity, consider a regression problem with linear outputs
- In the output H layer we have

$$e^{\ell} = \frac{1}{2}(y - \hat{y})^2$$
 and $\hat{y} = o^H = a^H = \sum_j w_j^H o^{H-1}$

Thus, the partial derivative is straightforward

$$\delta^{H} = \frac{\partial \mathbf{e}^{\ell}}{\partial \mathbf{a}^{H}} = \frac{\partial \mathbf{e}^{\ell}}{\partial \widehat{\mathbf{y}}} = \widehat{\mathbf{y}} - \mathbf{y}$$

i.e., the generalized error δ^H is here the **standard error**

Therefore, we have for the output layer H

$$\frac{\partial e^{\ell}}{\partial w_i^H} = (\widehat{y} - y) \frac{\partial a^H}{\partial w_i^H} = (\widehat{y} - y) o_j^{H-1}$$

Now it is (quite) easy to extend this to other layers

Let w_{ii}^h be the weight connecting unit j in layer h-1 with unit i in laver h: recall that then

$$\frac{\partial e^{\ell}}{\partial w_{ij}^{h}} = \frac{\partial e^{\ell}}{\partial a_{i}^{h}} \frac{\partial a_{i}^{h}}{\partial w_{ij}^{h}} = \frac{\partial e^{\ell}}{\partial a_{i}^{h}} o_{j}^{h-1}$$

And if we have already computed the generalized errors $\delta_k^{h+1} = \frac{\partial e^{\ell}}{\partial a^{h+1}}$ for layer h+1, we have

$$\frac{\partial e^{\ell}}{\partial \mathbf{a}_{i}^{h}} = \sum_{k} \frac{\partial e^{\ell}}{\partial \mathbf{a}_{k}^{h+1}} \frac{\partial \mathbf{a}_{k}^{h+1}}{\partial \mathbf{a}_{i}^{h}} = \sum_{k} \delta_{k}^{h+1} \frac{\partial \mathbf{a}_{k}^{h+1}}{\partial \mathbf{a}_{i}^{h}} \\
= \sum_{k} \delta_{k}^{h+1} \frac{\partial \mathbf{a}_{k}^{h+1}}{\partial \mathbf{o}_{i}^{h}} \frac{\partial \mathbf{o}_{i}^{h}}{\partial \mathbf{a}_{i}^{h}} = \left[\sum_{k} \delta_{k}^{h+1} \mathbf{w}_{ki}^{h+1} \right] \varphi'(\mathbf{a}_{i}^{h})$$

Backprop and Deep Networks

- The previous formulae work for any number of hidden layers
 - We can work with **deep** MLPs
- Moreover, the chain rule can be automated and modern NN packages compute gradients automatically for very general NN architectures
 - Basic tool: automatic symbolic differentiation on computational graphs
 - This is one of the key reasons of the great success of deep neural nets
- Some examples: convolutional nets, residual nets, recurrent NNs, . . .

Automating Backprop

- To deal with such general networks requires automating backprop
- This is done upon the network's computational graph

From Zhang et al., Dive into Deep Learning

- It corresponds to a SHL with a loss J = L + s
- The circles contain differentiable operators
- The shadowed squares contain the variables against which differentiation takes place

Neural Network Classification

Machine Learning Basics Multilaver Perceptrons

Basic Modeling

- Regression Basics
- Bias, Variance and Cross Validation
- Basic Classification
- Logistic Regression

2 Multilayer Perceptrons

- Rosenblatt's Perceptrons
- Classical MLPs
- Neural Network Classification
- MLP Regularization
- Unconstrained Smooth Optimization
- Computational Costs of MLPs

- Recall that our Logistic Regression model gave us estimate of $P(0|x; w_0, w), P(1|x; w_0, w)$
- We then wrote the likelihood of a given sample as

$$P(Y|X; w_0, w) = \prod_{p=1}^{N} P(y^p|X^p; w_0, w)$$

■ And then derived the optimum parameters w_0^* , w^* as

$$w_0^*, w^* = \arg \max_{w_0, w} P(Y|X; w_0, w)$$

Notice that we can see the output of a logistic regression model as that of an NN with no hidden layers and sigmoid outputs

Aff Erricol Neural 2-class Classification

Machine Learning Basics Multilayer Perceptrons

■ We can follow the same path for a 2 class classification problem changing that output for the one

$$f(x; \mathcal{W}) = w_0 + w \cdot \Phi(x, \mathcal{W}^H)$$

with w_0 , w the weights from the last hidden layer (LHL) to the output and $\Phi(x, \mathcal{W}^H)$ the map from inputs to the LHL outputs

■ And now derive the optimum parameters W^* as

$$\mathcal{W}^* = \operatorname{arg min}_{\mathcal{W}} - \sum_{p=1}^{N} \log P(y^p | x^p; \mathcal{W})$$

$$= \underset{w_0, w, \mathcal{W}^H}{\operatorname{arg min}} - \sum_{p} y^p (w_0 + w \cdot \Phi(x^p, \mathcal{W}^H)) + \sum_{p} \log(1 + e^{w_0 + w \cdot \Phi(x^p, \mathcal{W}^H)})$$

- Forward and backpropagation are also straightforward here
- We change things a little bit for K class problems

Afi Section MLPs for K-class Classification

Machine Learning Basics Multilaver Perceptrons

- We consider an input layer and a number of hidden layers
- Targets are the 1-hot encodings of class labels, so we use Koutputs
- We want the MLP's k-th output to estimate the posterior P(k|x)
- The natural output layer activation is thus the **softmax function**

$$\sigma_j(o) = F_j(x; \mathcal{W}) = \frac{e^{w'_0 + w' \cdot o}}{\sum_1^K e^{w'_0 + w' \cdot o}}$$

- Here o are the last hidden layer outputs and w^{j} , w_{0}^{j} are the weight and bias from the last hidden layer to the network's j output
- Moreover $\sum_i F_j(x; \mathcal{W}) = 1$ and we assume $P(j|x) \simeq F_j(x; \mathcal{W})$
- For two classes this becomes

$$\sigma_1(o) = \frac{e^{w_0^1 + w^1 \cdot o}}{e^{w_0^0 + w^0 \cdot o} + e^{w_0^1 + w^1 \cdot o}} = \frac{1}{1 + e^{w_0^0 - w_1^1 + (w^0 - w^1) \cdot o}} = \frac{1}{1 + e^{\omega_0 + \omega \cdot o}}$$

We thus get the sigmoid activation of Logistic Regression

- We change slightly the preceding for a K class classification problem
- We define an MLP $F(x; W) \in \mathbf{R}^K$ with softmax outputs
 - Recall that $0 \le F_k(x; \mathcal{W}) \le 1$ and $\sum_k F_k(x; \mathcal{W}) = 1$
 - And also we assume that $P(k|x) \simeq F_k(x; \mathcal{W})$
- We label now the multiclass targets via the 1-hot encoding, with the target of class k being the vector $e_k = (0, ..., 1, ..., 0)$
- Then, if $x \in C_k$, its label is $y = (y_1, ..., y_k)^t$ is e_k , with $y_k = 1$, and

$$P(k|x) = P(k|x)^{1} = P(k|x)^{y_{k}} = \prod_{c=1}^{K} P(c|x)^{y_{c}} \simeq \prod_{c=1}^{K} F_{c}(x; \mathcal{W})^{y_{c}}$$

- We have a sample $S = \{x^p, y^p\}$ with (x^p, y^p) in class c(p) and, hence, $y^p = e_{c(p)}$
- We also consider a posterior model $P(c|x, w) = F_c(x, \mathcal{W})$, the probability of getting S = (X, Y) is

$$P(Y|X; \mathcal{W}) = \prod_{1}^{N} P(c(p)|x^{p}; \mathcal{W}) = \prod_{1}^{N} \prod_{c=1}^{K} P(c|x^{p}; \mathcal{W})^{y_{c}^{p}}$$

$$\simeq \prod_{1}^{N} \prod_{c=1}^{K} F_{c}(x; \mathcal{W})^{y_{c}^{p}}$$

 \blacksquare Thus, we estimate \mathcal{W} by maximizing the sample's **likelihood**

$$\mathcal{P}(Y|X;\mathcal{W}) = \prod_{p=1}^{N} \prod_{c=1}^{K} F_c(x^p;\mathcal{W})^{y_c^p}$$

As before, we will work with the sample's log-likelihood, i.e.

$$\ell(\mathcal{W}; S) = \log \mathcal{P}(Y|X; \mathcal{W}) = \sum_{p=1}^{N} \sum_{c=1}^{K} \log \left(F_c(x^p; \mathcal{W})^{y_c^p} \right)$$
$$= \sum_{p=1}^{N} \sum_{c=1}^{K} y_c^p \log F_c(x^p; \mathcal{W})$$

■ The **cross**—**entropy** loss is now simply the negative $log-likelihood -\ell(W; S)$, i.e.,

$$L(\mathcal{W}) = -\ell(\mathcal{W}; S) = -\sum_{p=1}^{N} \sum_{c=1}^{K} y_c^p \log F_c(x^p; \mathcal{W})$$

It is now straightforward to carry this into a NN setting

- They have a layered structure with outputs computed in a forward pass using differentiable activations
- Usual activations: ReLUs, sigmoid, tanh, linear
- MSE is the usual regression cost; we use a variant of cross entropy in classification
- The error function gradients are computed by backpropagation of generalized errors
- Backprop is basically a very simple procedure than can be largely automated
- Regression and classification problems fit very well in this setting

Afi Sould MLP Regularization

Machine Learning Basics Multilaver Perceptrons

Basic Modeling

- Regression Basics
- Bias, Variance and Cross Validation
- Basic Classification
- Logistic Regression

2 Multilayer Perceptrons

- Rosenblatt's Perceptrons
- Classical MLPs
- Neural Network Classification
- MLP Regularization
- Unconstrained Smooth Optimization
- Computational Costs of MLPs

& Afi Email MLPs and Universal Approximation

Machine Learning Basics Multilayer Perceptrons

- In regression we assume $y = \phi(x) + n$ and our goal is to get $f \simeq \phi$
- We say that $\mathcal{F} = \{f(x; \mathcal{W})\}$ is a **Universal Approximation Family** over a domain R if

For any $\epsilon > 0$ and any reasonable ϕ , we can find an $f(x; \mathcal{W}_{\phi, \epsilon})$ s.t.

$$e(W_{\phi,\epsilon}) = \int (\phi(x) - f(x; W_{\phi,\epsilon}))^2 p(x) dx \le \epsilon$$

- Notice that Universal Approximation is just what we need in regression
- In fact a Single Hidden Layer MLP with enough hidden units is an effective universal approximator
- But it also implies the risk of **overfit** whose control is crucial

- Since MLPs are a UAF, they can also approximate the noise in the sample
 - Given $S = \{(x^p, y^p)\}$ if we allow enough hidden units in a SHL MLP we can arrive to a w^* s.t. $y^p = f(x^p; w^*)$
 - We get thus a sample error $\hat{e}(w^*) = 0$ but possibly with a very high generalization error
- I.e., MLPs may have very small bias but possibly large variance

(Ph.D. Thesis of Carlos Alaíz)

- Why is there overfitting?
 - Because we may end up having too many weights with respect to sample size
 - Because we allow these weights to explore the entire weight space
- We can avoid this wandering if we limit w's growth, for which we add a **regularization** term g(||w||) to e(w) with g(r) increasing
- Working with $e_B(w) = e(w) + g(\|w\|)$ we have to **balance** the minimization of e(w) and that of g(||w||)
- This balanced learning results in better generalization

\Re Afi Bernell L_2 Regularization

Machine Learning Basics Multilayer Perceptrons

The simplest regularization procedure adds a quadratic penalty to the square error e

$$e_R(w) = e(w) + \frac{\lambda}{2} ||w||^2,$$

with λ the weight decay factor

- Also known as Tikhonov's regularization (or Ridge Regression for linear models)
- The desired effect is to constrain the evolution of w:
 - In fact, the regularized loss is essentially the Lagrangian of the constrained problem

$$\min_{w} e(w)$$
 subject to $||w||^2 \le \rho$, $\rho > 0$

■ The gradient becomes $\nabla e_B(w) = \nabla e(w) + \lambda w$ and gradient descent becomes

$$\mathbf{w}^{k+1} = \mathbf{w}^k - \rho_k(\nabla_{\mathbf{w}}\mathbf{e}(\mathbf{w}^k) + \lambda\mathbf{w}^k)$$

- Again, the correct choice of λ is crucial
- \blacksquare A small $\lambda\ll$ 1 results in a small regularization effect and overfitting risk appears
- A large $\lambda \gg 1$ causes learning to forget about e(w) and the model will be essentially constant and will underfit
- Usually λ is chosen by using CV by exploring a discrete set of values λ_j ,
- The same can essentially done for any other hyper—parameter:
 - Number of hidden layers and of hidden units?
 - Learning rate??
 - Minibatch size???
- But this may become unmanageable if we want to work with many (more than three?) hyperparameters

- Recall that for MLPs e(w) does not have a single minimum
- Moreover, the final MLP depends on the random initial w^0
- And mini-batch training adds extra randomness to the final model
- Therefore, you may never get the same MLP twice!!!
- But we can turn this to our advantage by
 - Starting from K independent initial weights and get K optimal weight sets w_{ν}^{*}
 - Giving as the output the average $f_e(x) = \frac{1}{\kappa} \sum_{1}^{K} f(x; w_k^*)$
- We expect outputs of the form $\hat{y}_k^p = y^p + \epsilon_k^p$ with the errors ϵ_k^p being independent
- Hence $\frac{1}{K} \sum_{k} \epsilon_{k}^{p} \simeq 0$ and $\frac{1}{K} \sum_{k} \widehat{y}_{k}^{p} \simeq y^{p}$

- MLPs have a high risk of overfitting
- Thus, they must be regularized to avoid overfitting
 - The regularization hyperparameter is chosen through cross validation
- MLP training has two random components: the initial point and minibatch selection
 - Thus, each training will converge to a different optimum
- MLP ensembles can take advantage of this
 - They imply extra costs but ensembles are embarrassingly parallelizable

Aff formula Unconstrained Smooth Optimization

Machine Learning Basics Multilaver Perceptrons

Basic Modeling

- Regression Basics
- Bias, Variance and Cross Validation
- Basic Classification
- Logistic Regression

2 Multilayer Perceptrons

- Rosenblatt's Perceptrons
- Classical MLPs
- Neural Network Classification
- MLP Regularization
- Unconstrained Smooth Optimization
- Computational Costs of MLPs

Back to Optimization

- To build a ML model ≡ to minimize a loss function
- General optimization theory is a key tool in Machine Learning (ML)
- There are two optimization set ups in ML
 - Unconstrained optimization, slightly simpler and the one used for MLPs
 - Constrained optimization, wider and more complex
- In ML we have also to consider the optimization of differentiable and also non differentiable error functions
- MLP optimization: unconstrained and differentiable
- And also batch, i.e., over the entire sample, mini-batch over subsamples or on line, pattern by pattern

- We "stretch" the weight set \mathcal{W} into a vector \mathbf{w}
- We recall that $-\nabla e(w)$ is the maximum descent direction
- First idea: to build a (hopefully convergent) sequence w^k iterating (small) steps along $-\nabla e(w^k)$

In more detail, we start from a random w^0 and compute

$$\mathbf{w}^{k+1} = \mathbf{w}^k - \rho_k \nabla_{\mathbf{w}} \mathbf{e}(\mathbf{w}^k)$$

- ρ_k is the **learning rate** (LR)
- With a small ρ_k we ensure $e(w^{k+1}) < e(w^k)$ (although with possibly a very small descent)
- We can get a better iteration $w^{k+1} = w^k \rho_{\nu}^* \nabla_w e(w^k)$ using a ρ_{ν}^* given by

$$\rho_k^* = \arg\min_{\rho} e(w^k - \rho \nabla_w e(w^k));$$

this is known as line minimization

These GD methods are called first order methods in part because they only use ∇e

- Assume a quadratic function $q(w) = aw^2 + bw + c$, with a > 0, and a minimum at w*
- We can reach w^* from any w with a step Δw such that

$$0 = q'(w + \Delta w) = 2a(w + \Delta w) + b$$

■ We have thus $\Delta w = \frac{-b-2aw}{2a}$, that is,

$$w^* = w - \frac{2aw + b}{2a} = w - \frac{1}{q''(w)}q'(w)$$

This leads to **Newton's method**: minimize a general f iteratively using steps

$$w^{k+1} = w^k - \rho_k \frac{1}{f''(w^k)} f'(w^k)$$

with ρ_k a suitable learning rate

Afi Books One Dimensional Newton's Method II

- Notice how the $\frac{1}{f''(w_k)}$ acts as a **self adjusting learning rate**
- When the parabola is very sharp (i.e., $a \gg 1$), we will be close to the minimum and the descent can overstep it
- But then $f''(w_k)$ will be big and, hence, $\frac{1}{f''(w_k)}$ moderates the gradient step
- Conversely, when the parabola is very wide (i.e., $a \simeq f''(w_k) \ll 1$), the minimum will be far away and the gradient step small descent will
- But then $f''(w_k)$ will be rather small and, hence, $\frac{1}{f''(w_k)}$ accelerates the gradient step
- We can extend this to several dimensions

For a d dimensional w, the Taylor expansion of e at an optimum w* is

$$e(w) \approx e(w^*) + \frac{1}{2}(w - w^*)^t \cdot \mathcal{H}(w^*) \cdot (w - w^*)$$

- **\blacksquare** $\mathcal{H}(w^*)$ is the **Hessian** of *e* at w^* and $\nabla e(w^*) = 0$
- It follows that $\nabla e(w) \approx \mathcal{H}(w^*) \cdot (w w^*)$ and, therefore,

$$\mathbf{w}^* \approx \mathbf{w} - \mathcal{H}(\mathbf{w}^*)^{-1} \nabla_{\mathbf{w}} \mathbf{e}(\mathbf{w})$$

This suggest to derive the w^k by

$$\mathbf{w}^{k+1} = \mathbf{w}^k - \rho_k \mathcal{H}(\mathbf{w}^k)^{-1} \nabla_{\mathbf{w}} \mathbf{e}(\mathbf{w}^k)$$

which is known as **Newton's Method** (NM)

- Theoretically NM converges very fast near w^* , but
 - Far from w* convergence is not guaranteed
 - Moreover $\mathcal{H}(w^k)$ may not be invertible
 - Besides, computing $\mathcal{H}(w^k)$ is cumbersome and costly
- The Gauss-Newton (GN) approximation

$$\mathcal{H}(w) \simeq E[\nabla e(w)\nabla e(w)^{\tau}],$$

holds for any quadratic cost and simplifies the third problem

- The Levenberg-Marquardt (LM) method deals with the other two problems combining
 - Gradient descent "away" from w*
 - Gauss-Newton "near" w*

although "away" and "near" have to be properly addressed

■ Assume $e(w) = \frac{1}{2} \int (f(x; w) - y)^2 p(x, y) dxdy$; then

$$e'(w) = \int (f(x; w) - y) \frac{\partial f}{\partial w}(x, y) p(x, y) dxdy;$$

$$e''(w) = \int \left(\frac{\partial f}{\partial w}\right)^2 p(x, y) dxdy$$

$$+ \int (f(x; w) - y) \frac{\partial^2 f}{\partial w^2}(x, y) p(x, y) dxdy$$

Near a minimum w^* we may expect $f(x; w) \simeq y$ and, therefore,

$$e''(w) \simeq \int \left(\frac{\partial f}{\partial w}\right)^2 p(x,y) dx dy > 0$$

■ Thus, for square errors, we can use first derivates to approximate e''(w)

In the general case we have

$$\nabla e(w) = E\left[\nabla f(x; w) \left(f(x; w) - y\right)\right]$$

And, therefore,

$$\nabla^2 e(w) = E\left[\nabla^2 f(x; w) \left(f(x; w) - y\right)\right] + E\left[\nabla f(x; w) \nabla f(x; w)^{\tau}\right]$$

- The second term is easy to compute once we have ∇f
- If $w \approx w^*$, $f(x; w) \approx y$; therefore $f(x; w) y \approx 0$,
 - We can ignore the first, more complex, term

■ We arrive at $\nabla^2 e(w) \simeq E[\nabla f(x; w) \nabla f(x; w)^{\tau}]$ or, equivalently,

$$\mathcal{H}_{(i,j)(p,q)}(w) = \left(\frac{\partial^2 e}{\partial w_{ij} \partial w_{pq}}(w)\right) \simeq \left(E\left[\frac{\partial f}{\partial w_{pq}} \frac{\partial f}{\partial w_{ij}}\right]\right)_{(i,j)(p,q)}$$

- $\mathcal{J} = E\left[\nabla f(x; w)\nabla f(x; w)^{\tau}\right]$ is Fisher's information matrix
 - \blacksquare \mathcal{J} is semidefinite positive
 - And thus not necessarily invertible
- Often only its diagonal is considered and we have

$$\mathcal{H}_{(i,j)(i,j)}(w) = \left(\frac{\partial f}{\partial w_{ij}}\right)^2$$

Affi Escuela Advanced Optimization

- There are many more proposals in unconstrained optimization
- The Conjugate Gradient (CG) and Quasi-Newton (QN) methods are important in classical MLP training
- The basic idea in CG is to replace gradient descent directions $g_k = -\nabla e(w_k)$ with new conjugate directions that try to keep somehow the previous "good directions"
- The basic idea in QN is to iterate as in NM but with simple approximations A_k to $\mathcal{H}^{-1}(w^k)$ that converge to $\mathcal{H}^{-1}(w^*)$
- When training "small" NNs the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) QN variant is often used

- A possibility on the error surface of a NN is to have many long, narrow ravines
 - Gradients bounce in the narrow section, but may be very small along the wider one

- **Momentum** pushes them forward in the wider section (but we have to cope with a new parameter)
- Momentum tries to maintain descent's inertia with a term $\Delta^{k} = w^{k} - w^{k-1}$. i.e..

$$\mathbf{w}^{k+1} = \mathbf{w}^k - \rho_k \nabla_{\mathbf{w}} \mathbf{e}(\mathbf{w}^k) + \mu_k \Delta^k$$

- More or less, what a heavy ball would do
- The goal is to keep w^k advancing in "plateaux", i.e., small gradient zones
- Momentum can be seen as a crude approximation of a CG step
- Nice explanation at Why Momentum Really Works

- Let's rewrite momentum in two steps
 - Define $\Delta^{k+1} = -\rho_k \nabla_w e(w^k) + \mu_k \Delta^k$ and
 - 2 Apply

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \Delta^{k+1} = \mathbf{w}^k - \rho_k \nabla_{\mathbf{w}} \mathbf{e}(\mathbf{w}^k) + \mu_k \Delta^k$$

Nesterov's Accelerated Gradient is a variant of this

$$\widetilde{\Delta}^{k+1} = -\rho_k \nabla_w e(w^k + \mu_k \widetilde{\Delta}^k) + \mu_k \widetilde{\Delta}^k;$$

$$w^{k+1} = w^k + \widetilde{\Delta}^{k+1}$$

In convex optimization it improves GD and is often highly effective in Deep Network training

- Adam is currently the most widely used gradient-descent method for deep NN training
- At each step t Adam uses a new random mini-batch to
 - Update **exponentially smoothed** averages m_t of the gradient g_t and v_t of the the squared gradient $g_t^2 = g_t \odot g_t$ as

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \ v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2;$$

Since we have

$$E[m_t] \simeq (1 - \beta_1^t) E[g_t], \ E[v_t] \simeq (1 - \beta_2^t) E[g_t^2],$$

we compute bias corrections \widehat{m}_t , \widehat{v}_t as

$$\widehat{m}_t = \frac{1}{1 - \beta_1^t} m_t, \ \widehat{v}_t = \frac{1}{1 - \beta_2^t} v_t;$$

■ Update weights as $W_t = W_{t-1} - \alpha \frac{m_t}{\sqrt{\hat{v}_{t+\epsilon}}}$

& Afi See Understanding Adam

Machine Learning Basics Multilaver Perceptrons

- Default values $\alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999$, and $\epsilon = 10^{-8}$ usually work fine
- What is going on in Adam?
- At each step we work with estimates of the average local gradient:

$$\widehat{m}_t \simeq E[\nabla_W f]; \ \widehat{v}_t \simeq \sigma(g_t) \simeq E[(\nabla_W f)^2]$$

Thus, we can first see the Adam iterations

$$W_t = W_{t-1} - \alpha \frac{\widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}$$

as a kind of "normalized" gradient descent

■ And in more detail, since we can expect $E[(\nabla_W f)^2] \simeq E[\nabla^2_{\text{\tiny M/2}} f]$, we can see Adam as a "dampened" variant of diagonal Gauss-Newton's steps

Afi Except When to Stop Training

- Typically the $e(\mathcal{W}^k)$ error diminishes towards an asymptotic minimum
 - If many units are used, we may arrive to 0 error, which usually implies overfitting
- First solution: to use a separate **validation subset** *V* and stop training when the error in V, i.e., the **validation error** starts growing
 - This early stopping is available in the main NN packages
 - But what do we do for small samples?
- Second solution: get a good regularization
 - Now training stops because of reasons such as computational cost, but not because of overfitting risk
- We must combine both, to save on training time and because overfitting is a serious MLP risk

- **Gradient descent** is the simplest method but possibly also the slowest
- Momentum can be used to speed it up
- **Newton's method** is much faster but may be very costly and difficult to apply in full form
- All the previous methods require the (usually tricky) selection of a learning rate
- Second order methods such as Conjugate Gradient and Quasi-Newton avoid learning rates and are more efficient but costlier
- Limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) is currently the option of choice for "small" MLPs

Big Data

- Basic Modeling

 - Regression Basics
 - Bias, Variance and Cross Validation
 - Basic Classification
 - Logistic Regression
- 2 Multilayer Perceptrons
 - Rosenblatt's Perceptrons
 - Classical MLPs
 - Neural Network Classification
 - MLP Regularization
 - Unconstrained Smooth Optimization
 - Computational Costs of MLPs

- Many Vs in Big Data: **Volume, Velocity**, Variety, Veracity, Value, ...
- Velocity: information flows in data streams that require fast processing and feed back
 - MLPs are rather fast
 - Less than linear models but much more so than SVMs
- Volume is probably the greatest attractive of Big Data
 - Huge samples and/or very large pattern dimension
 - Large impact in model training

- Parallelism is the first answer to Big Volume
- On a standalone machine it may be
 - Passive: let the SO distribute work among several CPU cores, or use GPUs with low level parallelized libraries such as Linpack or BLAS for linear algebra
 - Active: explicitly exploit a problem's parallelism programming an algorithm in, say, OpenMP
- It is easy to passively parallelize the training of several MLPs
 - But memory costs may multiply
- Training an isolated MLP is not CPU parallelizable:
 - There is a sequential layer dependence in Backprop
 - Each training iteration depends on the previous one
 - But matrix-vector multiplications can exploit GPU parallelism

- Two consequences of a large N are
 - Sample doesn't fit in memory and we have to split it somehow
 - Training gets "lost", for in the global gradient $\nabla e = E[\nabla e^{\ell}]$ we average many local gradients that may cancel each other out
- The fist problem has been always present in fields such as analog signal filtering
- Solution for both: adaptive or **on line**, i.e., pattern by pattern, weight updates
 - It also allows a relatively simple setting for a theoretical analysis
 - But not used today; instead, medium-to-large NNs are trained using mini-batches

- MLPs are fast to apply but costly to train
- How can we estimate this cost?
- MLP traning cost is determined by
 - Its architecture, that determines the number of weights to fit and that is also dependent on the input dimension D
 - The full or mini-batch sample size N, that determines the cost of the averages to be computed
 - The training method, with more or less iterations that, in turn, are more or less costly

■ The number of weights in a single hidden layer (SHL) MLP with D inputs, one output and one hidden layer with H units is

$$(D+1)\times H+(H+1)\simeq HD$$

- **Each** extra hidden layer pair with (H_1, H_2) units adds $(H_1 + 1) \times H_2 \simeq H_1 H_2$ weights
- The cost per pattern of the feedforward step between layers h-1, h is basically that of $H_{h-1} \times H_h$ floating point operations (FPOs)
- Thus, for a general MLP the cost in floating point operations of a forward pass is $\simeq N \times (\sum_{h} H_h \times H_{h-1})$
 - Very fast on GPUs as it theoretically becomes $O(N \times \sum_h H_h)$

- Computing a local gradient ∇e^{ℓ} in a SHL MLP with square error and one output essentially requires to compute
 - H components for the hidden to output connections, with a O(1) cost each, for $\frac{\partial e^{\ell}}{\partial w^{O}} = (\widehat{y} - y)o_{h}$
 - DH components for the input to hidden connections with essentially an O(1) cost each, for $\frac{\partial e^{\ell}}{\partial w_{h,i}^{H}} = \left(\sum_{i=1}^{L} \delta_{i} w_{ih}^{O}\right) \sigma^{'}(a_{h}) x_{j}$
- In these we are omitting the cost of the partials with respect the bias, but they are much smaller
- Thus, the overall cost of computing ∇e^{ℓ} on a SHL MLP is essentially O(DH)
- More layers with H_h units add a cost $O(H_{h-1} \times H_h)$
 - $O(\sum_h H_h)$ on GPUs

- For a mini-batch of size N_b, the cost of the mini-batch gradient ∇e of a SHL MLP is $O(N_b \times D \times H)$
- And extra layers add a cost $O(N_b \times H_{b-1} \times H_b)$
- This is of the same order of magnitude than the cost of the forward pass
- This also dominates the $O(H_{h-1} \times H_h)$ cost of updating the (H_{h-1}, H_h) weights in gradient descent
- And all these costs have to be multiplied by the number of training epochs

Afi Establish Training Complexity

Machine Learning Basics Multilaver Perceptrons

- The important term in the overall training cost is nEps \times cost of ∇e , with nEps the number of epochs
 - One epoch = one pass on the entire sample
- Thus, the **globally dominant term** in a SHL MLP is

$$nEps \times cost of \nabla e = O(nEps \times N \times D \times H)$$

with N here the entire sample size

And for each hidden layer we add an extra cost

$$O(nEps \times N \times H_{h-1} \times H_h)$$

- Thus, training many layered, large MLPs can be very costly
 - But linear in sample size N

- MLP complexity is determined by its architecture $\{H_h\}$, training procedure and sample size N
- The forward and backward MLP passes have basically the **same** complexity
- Their cost per pattern and layer is $H_{h-1} \times H_h$
- For gradient descent these costs are multiplied by the number nEps of epochs
- First order methods essentially do not add extra complexity
- Second order methods add extra per iteration costs but should require less iterations
- Single MLP training is **not CPU parallelizable**
- But **GPUs** can greatly improve MLP processing costs