Review of Application of hafnium hydride control rod to large sodium cooled fast breeder reactor

Kazumi Ikeda, Hiroyuki Moriwaki, Yoshiyuki Ohkubo, Tomohiko Iwasaki, Kennji Konashi

Accepted: July 08, 2014

ILLINOIS

- Review of Paper
- 2 Methodology
- Results
- 4 Assessment
- **5** Extension

Potential extensions of current work

Extension 1 - Accident Scenario and Hydrogen Desorption

Extension 2 - Axial Variation of Control Rod

6 Conclusion

Sodium-Cooled Fast Reactor (SFR) is being pursued as Japan's next-generation nuclear reactor.

- Inherent safety features
 - Net negative reactivity feedback with temperature rise
- Better thermal and neutronics properties
 - Larger temperature outlier for liquid sodium (371 1156K)
 - Atmospheric operating pressure
 - Low neutron absorption of Na
 - Better heat transfer
 - Higher efficiency
- Breeding of fissile material
- 'Closing' the fuel cycle
- Actinide burning (fueled by TRU-NatU)

Need for a control rod with a longer lifetime in Sodium-cooled Fast Reactors

- Current SFR designs use 80% B-10 enriched boron carbide
 - Swelling due to accumulation of He and Li produced by (n,α)
 - He buildup in the gas plenum
 - Degradation of control rod worth with irradiation
 - Lifetime ~2 years

Hafnium as an absorber - 1/3

Comparable absorption cross section in core with hydrogen moderation

Form of absorber	Nuclides	Absorption cross section (10 ⁻²⁸ m ²)	Abundance per atoms (%)	Produced nuclides	Capture cross section of products (barn)
80% B-10 enriched B ₄ C	B-10	2.28	19.9	Li-7	0.00003
	Hf-176	0.38	5.26	Hf-177	1.00
	Hf-177	1.00	18.6	Hf-178	0.21
Hf	Hf-178	0.21	27.28	Hf-179	0.63
	Hf-179	0.63	13.62	Hf-180	0.10
	Hf-180	0.10	35.24	Ta-181	0.49
	Hf-176	1.93	5.26	Hf-177	6.11
	Hf-177	6.11	18.6	Hf-178	0.93
HfH _{1.3}	Hf-178	0.93	27.28	Hf-179	3.67
	Hf-179	3.67	13.62	Hf-180	0.21
	Hf-180	0.21	35.24	Ta-181	6.65

Figure 1: Absorption cross section comparison of various forms

Hafnium as an absorber - 2/3

Continued absorption integrity and low induced radioactivity after irradiation.

Figure 2: Nuclear transmutation of hafnium nuclides by capture. Ta-181 is stable and Hf-182 has a half life of 8.9e6 years

Hafnium as an absorber - 3/3

Other peripheral beneficial characteristics of hafnium include:

- Malleability, ductility
- Rich reserve of raw materials
- Resistance to chemical activity
- · Corrosion resistance
- High melting temperature
- Stable at high temperature and pressure

Demonstrate the feasibility and benefits of using a HfH_x control rod over a B_4C control rod in a Japanese Sodium-cooled Fast Reactor (JSFR) by comparing various metrics. Metrics include:

- Reactor nuclear characteristic (Enrichment, Na void reactivity, etc.)
- · Coolant flow rate
- Hydrogen desorption
- Control rod performance over time (irradiation)
- · Linear heat rate
- Reactivity
- Temperature distribution

Outline

- 1 Review of Paper
- 2 Methodology
- Results
- 4 Assessment
- **5** Extension

Potential extensions of current work

Extension 1 - Accident Scenario and Hydrogen Desorption

Extension 2 - Axial Variation of Control Rod

6 Conclusion

6-year study of HfHx control rod feasibility

Deterministic Method for reactor design

- Unified 70-group fast set of group constants (ADJ2000R) [1]
- Diffusion Code (TRISTAN)
 - verified with (CITATION) from Oak Ridge National Laboratory (ORNL).
- Perturbation Code (TRI-PERT)
 - nuclear characteristics
- Depletion (JFS3-J3.3)
- Heating density of hafnium hydride absorber (MCNP-5) [8]
- Nuclear Data (ENDL92 for Hf and ENDF-VI for others)

- Effects of reactor constants and heterogeneity of control rod structure (MVP, GMVP) [9]
 - Neutron and photon transport
 - · Based on continuous energy and multigroup methods

Core simulation with hafnium control rods

Hafnium hydride control rods replaced the boron carbide in the JSFR [10] for comparison, with U-TRU mixed oxide fuel [3].

Figure 3: Core diagram of the JSFR.

- Pu enrichments so that excess reactivity ~0.2%
- ratio of H to Hf is constant (no hydrogen desorption)
- Transmutation from Hf-180 to Hf-181, or Ta-181 neglected.
- temperature of cladding limited to 600°C
- Absorber pellet limited 800 C for hydrogen desorption
- No swelling of HfH_x control rod

Figure 4: Elevator view of control rod position with respect to active core fuel. Control rod remains static.

Outline

- 1 Review of Paper
- 2 Methodology
- 3 Results
- 4 Assessment
- **5** Extension

Potential extensions of current work

Extension 1 - Accident Scenario and Hydrogen Desorption

Extension 2 - Axial Variation of Control Rod

6 Conclusion

Reactivity of HfH_x control rods

Reactivity similar to 80% B-10 enriched boron carbide rods with enhanced control rod reactivity with hydrogen moderation of neutrons.

Figure 5: Neutron spectrum of the hafnium hydride control rod

HfH_x control rod depletion calculation results - 1/2

Neutron absorption performance degrades very little with irradiation because the produced isotopes are also absorbers.

Figure 6: Change of hafnium isotope ratio in the control rod during irradiation.

HfH_x control rod depletion calculation results - 2/2

Reactivity degradation is 4% after 2400 Effective Full Power Day (EFPD) (3 cycles)

Figure 7: Capture reaction rate and reactivity of hafnium hydride control rod.

Results of nuclear calculation with HfH_X control rods

Nuclear characteristics as good as or better than with B_4C .

	Unit	HfH _{1.3} CR	B ₄ C CR
Pu enrichment inner/outer	Pu/HM (wt%)	18.1%/20.4%	18.2%/20.5%
Burn-up reactivity	$\Delta k/kk'$	2.3%	2.4%
Maximum linear heat rate	(W/cm)		
Core fuel		391	403
Control rod He/Na		199/313	399 (B ₄ C) ^a
Fast fluence	(n/cm ²)	5.3E + 23	5.4E + 23
Na void reactivity	\$	5.1	5.2
Doppler constant	(Tdk/dT)	-0.00571	-0.00567
Effective delayed neutron fraction	-	0.00334	0.00329
Discharge burn-up	(GWd/t)	145	145
Breeding ratio	-	1.11	1.10

The number of pin is assumed to be 37.

Figure 8: Nuclear characteristics of the reactors with the hafnium hydride and the boron carbide absorber.

Neutron-induced energy of the absorber is approximately twice as large as B_4C . Limit of $800^{\circ}C$ to prevent hydrogen desorption. Maximum absorber temperature = $718^{\circ}C$

Characteristics	Values
Maximum temperature (°C)	-
Cladding of core fuel	700
Cladding of control rod	600
Pellet of Hafnium hydride He bond/Na bond	718/631
Flow allocation of primary coolant circuit (%)	-
Core fuel and radial blanket	90.5
Control rods	1.6
Sum	92.1

Figure 9: Thermal hydraulic characteristics in the hafnium hydride control rod deployed reactor.

Heat density of HfH_x

Twice the heat generation of B_4C , but peak of heat densities are comparable due to hydrogen moderation and gamma-ray transport.

Figure 10: Effect of gamma transport in the linear heat rate of HfH_x absorber.

Local radial power distribution of subassembly adjacent to control rod

 B_4C : Less power near the control rod HfH_x : More power near the control rod due to hydrogen moderation leading to enhanced reaction rate.

Figure 11: Local radial power distribution of subassembly adjacent to control rod inserted

Important Results and Conclusion

- Longer lifetime due to hafnium isotopes after neutron absorption
- Hydrogen increase of absorption
- 9 years lifetime (compared with 1-2 year for B_4C)
- Slightly better reactor parameters (flow rate, safety margin, breeding ratio etc.)
- Able to meet absorber temperature below hydrogen desorption temperature

Outline

- Review of Paper
- 2 Methodology
- Results
- 4 Assessment
- **5** Extension

Potential extensions of current work

Extension 1 - Accident Scenario and Hydrogen Desorption

Extension 2 - Axial Variation of Control Rod

6 Conclusion

Relevance and Novelty

- Reactor performance metric change with control rod
- Improvements on SFR design
- Improvements on control rod lifetime and performance
- Reduction in low-level waste
 - Less radiotoxicity from used control rods
 - Longer lifetime = less waste

Technical Detail and Analytic Rigor

- Reactivity and 'nuclear characteristics' of JSFR
- Thermal profile of reactor and control rod
- Lacking in transient scenarios

Verifiability (Reproducibility)

- Codes are well-known and published
- Input files unavailable
- Specifications of simulation (geometry, pellet diameter etc.) well-documented.

- Grammatical mistakes
- Confusing noun-verb relationship
- Run-on sentences ("Futhermore the comparison with the B-10 enriched boron carbide rods.")
- Lengthy explanation would be much more concise in tables.
- Abstract represents the conclusion well.
- Axial location of control rod in core simluation unclear

Technical Gaps, missing analyses

- Multiplication factor (assuming critical because it is a control rod experiment)
- Assumed static control rod position for entire cycle
- Non-normal operation scenarios
 - Large temperature shift effect
 - Hydrogen desorption
 - Loss of hydrogen leads to lower control rod worth
- · Swelling of hafnium hydride
- Flux profile of reactor
- Static control rod position
 - Axial variation of control rod depletion
- What happens when Hf-180 absorbs a neutron?
- Effect of higher power near control rod

- Review of Paper
- 2 Methodology
- Results
- 4 Assessment
- **5** Extension

Potential extensions of current work Extension 1 - Accident Scenario and Hydrogen Desorption Extension 2 - Axial Variation of Control Rod

6 Conclusion

- Hydrogen desorption in operating conditions
- Uncertainty of control rod reactivity
- Swelling of control rod

Potential extension of work

- Accident scenarios leading to higher core temperature \to desorption of hydrogen \to less control rod worth
- Axial depletion change during operation
 - Position of control rod changes over time with operation
 - Axial variation of irradiation / depletion
- With the allowance of longer life control rods, 'breed and burn' core designs with a much longer cycle time of 800 EFPD
- Swelling of control rod with longer irradiation
- Effect of local moderation on used fuel composition and flux
- Effect of higher power near HfH_x control rod
- Enrichment of Hf (increase composition of lower isotopes) for better performance

Unprotected Loss of Flow Accident (ULOFA) - pump trip leading to loss of flow through core, sodium boiling, core meltdown and slumping, and large reactivity addition [11]

- Hydrogen desorption possible at 1,000 C [4]
- Core temperature higher than 1,000 C during accident scenarios
- HfH_x can lose up to 65% of reactivity with hydrogen loss

- \bullet HfH_x in higher temperature than 800 C and observe hydrogen desorption with temperature
- 2 Calculate model for hydrogen desorption with temperature
- **3** Calculate HfH_x control rod reactivity change with temperature / irradiation

- 1 Run accident scenario core simulation with implemented hydrogen desorption model (Nodal code coupled with Thermal-hydraulics code)
- Track core nuclear and thermal metrics with time
- Identify reactor shutdown problems

In normal operation control rod position moves within cycle.

- This paper remains control rod static at half way pulled out
- In reality control rod would be irradiated more if starting from bottom
- Axial variation of control rod depletion

Simplified to more elaborate:

- Linear control rod position from bottom to top throughout cycle $(y = \frac{h}{800}t)$
- Past historical control rod movement throughout cycle
- Use code to figure out critical rod position in t

Axial power distribution change with control rod depletion

Run Monte Carlo core simulation code (SERPENT 2) with control rod movement.

- · Core axial power distribution with axially-varying control rod
- · Linear heat rate with axially-varying control rod
- Control rod depletion

- Review of Paper
- 2 Methodology
- Results
- 4 Assessment
- **5** Extension

Potential extensions of current work

Extension 1 - Accident Scenario and Hydrogen Desorption

Extension 2 - Axial Variation of Control Rod

6 Conclusion

- This paper claims feasibility of HfHx control rods in SFR reactors
- Performs as good as or better in a JSFR than B₄C control rods using the methodology by the authors
- Multiple issues have not been taken into account
- Hydrogen desorption, criticality and swelling of control rod requires further study

References I

- T. Hazama, G. Chiba, K. Numata, and W. Sato.
 Development of the unified cross-section set ADJ2000r for fast reactor analysis.
- [2] M. Hirai, H. Sakurai, R. Yuda, A. Ouchi, and K. Konashi. Study on an innovative fast reactor utilizing hydride neutron absorber - fabrication and high temperature behavior of hafnium hydride pellets. 3:2084–2091.
- [3] K. Ikeda, H. Moriwaki, Y. Ohkubo, T. Iwasaki, and K. Konashi. Application of hafnium hydride control rod to large sodium cooled fast breeder reactor. 278:97–107.
- K. Konashi, K. Itoh, T. Kido, Y. Kosaka, and S. Seino.
 Development of hydride neutron absorber for fast reactor: irradiation experiment on hydride neutron absorber in bor-60.
 In *Proceedings of ICAPP*, pages 14–18, 2013.
- [5] K. Konashi, T. Iwasaki, K. Itoh, M. Hirai, J. Sato, K. Kurosaki, A. Suzuki, Y. Matsumura, and S. Abe.
 Study on an innovative fast reactor utilizing hydride neutron absorber - final report of phase in

Study on an innovative fast reactor utilizing hydride neutron absorber - final report of phase i study.

References II

- [6] K. Konashi and M. Yamawaki.
 - Environmentally friendly application of hydrides to nuclear reactor cores.

111(1):106–111.

- [7] K. Konashi and M. Yamawaki.
 - Utilization of hydride materials in nuclear reactors.

In Advances in Science and Technology, volume 73, pages 51-58. Trans Tech Publ.

- [8] X. MCNP.
 - Monte carlo team, MCNPa general purpose monte carlo n-particle transport code, version 5.
- Y. Nagaya, K. Okumura, T. Mori, and M. Nakagawa.
 MVP/GMVP version 2: general purpose monte carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods.
- [10] M. Ogura, Y. Okubo, T. Ito, M. Toda, S. Kobayashi, S. Ohki, T. Okubo, T. Mizuno, and S. Kotake.

Conceptual design study of JSFR (1)-overview and core concept.

[11] S. Raghupathy.

Source terms estimation for radioactivity release under severe accident scenarios in sodium cooled fast reactors.

[12] W. M. Stacey.

Nuclear reactor physics.

John Wiley & Sons.

Coolant Cross section

Figure 12: Coolant and cross section [12]

Cheat Sheet

- Reactor Shutdown System passively released due to curie point effect by abnormal rising of coolant temperature.
- ullet Passive safety o thermal expansion of absorbing liquid
- Edge Na expansion leads to more neutron leakage (negative reactivity coeff)
- Center Na expansion leads to less absorption (positive reactivity coeff)
- Doppler coefficient: "Fuel temperature coefficient of reactivity" how reactivity changes per temperature in fuel
- Gamma Ray transport: Gamma ray has a long mfp that the decay energy to leave the zone of origin
- Fuel Slumping: Fuel melts to the bottom of the pin, increasing fuel density
- Peaking Factor: HighestLocalPowerDensity

 AvgPowerDensity

Review of Paper Methodology Results Assessment Extension Conclusion

Predictor - corrector

Current flux, deplete the fuel, if it is critical Run another calculation to finds ENDF JEFF 252 groups 'continuous'

SERPENT 2 and SCALE are for doing depletion calculation generates homogenized cross section collapses to 7 group for fast

homogenized cross sections to characterize the core criticality values critical control rod position / ppm for boron fuel depletion

Thermal-hydraulics code internal to PARCS coupled to TRACE

Provide reduced number of groups of cross sections to Core simulators like PARCS, set delta t adjust critical boron concentration and control rod position.