Problem Set #7

Danny Edgel Econ 711: Microeconomics I Fall 2020

October 22, 2020

(a) If u is linear, then then marginal utility is constant, so the agent maximizes utility by maximizing expected wealth. The agent's optimization problem, then, is

$$\max_{a} p(w+2a) + (1-p)(w-a) = \max_{a} a(1-3p) + w$$

Thus, expected wealth is maximized by choosing the maximum value of a if $p > \frac{1}{3}$ and by choosing the maximum value of w (i.e. a = 0) if $p > \frac{1}{3}$

(b) If the marginal utility of investing is strictly positive at a=0, then the optimal level of investment is strictly positive. Then,

$$\frac{\partial U(a)}{\partial a} = 2pu'(w+2a) - (1-p)u'(w-a)$$

$$\frac{\partial U(a)}{\partial a} \Big|_{a=0} = 2pu'(w) - (1-p)u'(w) = 3pu'(w) - u'(w) = u'(w)(3p-1)$$

Where u' > 0 since u is strictly increasing, and $p > \frac{1}{3}$, so U'(0) = u'(w)(3p-1) > 0.

(c) Continuing from the last problem's calculation, the second derivative of the utility function is

$$\frac{\partial^2 U(a)}{\partial a^2} = 5pu''(w+2a) + (1-p)u''(w-a)$$

Where, by assumption, u'' < 0. Thus, U'' < 0, so U(a) is strictly concave in a, and the FOC is necessary and sufficient for finding a^* .

(d) When all wealth is invested, u'(w-a) = u'(0) and u'(w+2a) = u'(3w). It would be optimal to invest all wealth if U'(w) > 0:

$$\frac{\partial U(a)}{\partial a} = 2pu'(3w) - (1-p)u'(0) > 0$$

$$2pu'(3w) > (1-p)u'(0)$$

$$\frac{u'(3w)}{u'(0)} > \frac{1-p}{2p}$$

If $u'(0) \to \infty$, then the left side of the inequality is zero. Since $p \le 1$, it is not possible for the right side of the inequality to be negative. Thus, it cannot be optimal to invest all wealth. If u'(0) is finite, then we can solve for \overline{p} , the probability level above which the agent will invest all of their wealth:

$$\frac{u'(3w)}{u'(0)} > \frac{1-p}{2p}$$

$$2p\left(\frac{u'(3w)}{u'(0)}\right) > 1-p$$

$$p\left(1+2\left(\frac{u'(3w)}{u'(0)}\right)\right) > 1$$

$$\overline{p} = \frac{1}{1+2\left(\frac{u'(3w)}{u'(0)}\right)}$$

If $p \geq \overline{p}$, then U'(w) > 0, so the agent will invest all of their wealth.

(e) Given CARA utility, U becomes $U(a) = p \left(1 - e^{-c(w+2a)}\right) + (1-p) \left(1 - e^{-c(w-a)}\right)$, where solving the FOC yields:

$$\begin{split} \frac{\partial U(a)}{\partial a} &= p \left(e^{-c(w+2a)} \right) (-2c) + (1-p) \left(-e^{-c(w-a)} \right) (c) = 0 \\ & 2pce^{-c(w+2a)} = (1-p)ce^{-c(w-a)} \\ & e^{-c(w+2a)+c(w-a)} = \frac{1-p}{2p} \\ & c(w-a-w-2a) = \log \left(\frac{1-p}{2p} \right) \\ & a^* = \frac{-1}{3c} \log \left(\frac{1-p}{2p} \right) \end{split}$$

Thus, optimal investment, a^* , does not depend on w.

(f) Assume $A(x) = -\frac{u^{\prime\prime}(x)}{u^\prime(x)}$ is decreasing in x and recall that

$$\frac{\partial U(a)}{\partial a} = 2pu'(w+2a) - (1-p)u'(w-a)$$

Now, let $a^* = \operatorname{argmax} U(a)$ be a function of w such that $a^* = a(w)$ (for syntactical simplicity, assume that a(w) always refers to the optimal value of a and that a, inside of any utility function or derivative thereof, is a function of w). Then, since $U'(a^*) = 0$, we can solve:

$$\frac{\partial}{\partial w} \left[2pu'(w + 2a(w)) - (1 - p)u'(w - a(w)) \right] = \frac{\partial}{\partial w} (0)$$
$$2pu''(w + 2a)(1 + 2a'(w)) - (1 - p)u''(w - a)(1 - a'(w)) = 0$$

$$2pu''(w+2a) + a'(w)4pu''(w+2a) - (1-p)u''(w-a) + a'(w)(1-p)u''(w-a)) = 0$$

$$a'(w)(4pu''(w+2a) + (1-p)u''(w-a))) = (1-p)u''(w-a) - 2pu''(w+2a))$$
$$a'(w) = \frac{(1-p)u''(w-a) - 2pu''(w+2a)}{4pu''(w+2a) + (1-p)u''(w-a)}$$

a'(w) > 0 if the right side of the equality is greater than zero. Since u'' < 0, this is only true if:

$$2pu''(w+2a) > (1-p)u''(w-a)$$
$$\frac{u''(w+2a)}{u''(w-a)} < \frac{1-p}{2p}$$

Recall that, at a^* , $\frac{1-p}{2p} = \frac{u'(w+2a)}{u'(w-a)}$. Thus, the condition for a'(w) > 0 is

$$\frac{u''(w+2a)}{u''(w-a)} < \frac{u'(w+2a)}{u'(w-a)}$$
$$\frac{u''(w+2a)}{u'(w+2a)} > \frac{u''(w-a)}{u'(w-a)}$$

Where, by assumption, $-\frac{u''(x)}{u'(x)}$ is decreasing in x. Since w+2a>w-a, this inequality holds. Therefore, $\frac{\partial a^*}{\partial w}>0$. Thus, if the agent is wealthier, they will invest more in the start-up regardless of $p\in(\frac{1}{3},\overline{p})$.

(g) Let $u(x) = \frac{1}{1-\rho}x^{1-\rho}$, where $\rho \le 1$ and $\rho \ne 0$. Define investment in terms of t, where a = tw. Then, the utility function is

$$U(t) = p \frac{1}{1-\rho} ((1_t)w)^{1-\rho} + (1-p) \frac{1}{1-\rho} (w(1-t))^{1-\rho}$$
$$= \frac{w^{1-\rho}}{1-\rho} \left[p(1+2t)^{1-rho} + (1-p)(1-t)^{1-\rho} \right]$$

$$2pu'(w+2a) - (1-p)u'(w-a) = 0$$

¹This comes from solving the first order condition:

We can find t^* by solving the first-order condition:

$$\begin{split} \frac{\partial U(t)}{\partial t} &= \frac{w^{1-\rho}}{1-\rho} \left[2p(1-\rho)(1+2t)^{-rho} - (1-p)(1-\rho)(1-t)^{-\rho} \right] = 0 \\ & 2p(1+2t)^{-rho} - (1-p)(1-t)^{-\rho} = 0 \\ & 2p(1+2t)^{-rho} = (1-p)(1-t)^{-\rho} \\ & \left(\frac{1-t}{1+2t} \right)^{\rho} = \frac{1-p}{2p} \\ & 1-t = \left(\frac{1-p}{2p} \right)^{\frac{1}{\rho}} (1+2t) \\ & t = 1 - \left(\frac{1-p}{2p} \right)^{\frac{1}{\rho}} - 2t \left(\frac{1-p}{2p} \right)^{\frac{1}{\rho}} \\ & \left[1+2\left(\frac{1-p}{2p} \right)^{\frac{1}{\rho}} \right] t = 1 - \left(\frac{1-p}{2p} \right)^{\frac{1}{\rho}} \\ & t^* = \frac{1-\left(\frac{1-p}{2p} \right)^{\frac{1}{\rho}}}{1+2\left(\frac{1-p}{2p} \right)^{\frac{1}{\rho}}} \end{split}$$

Thus, t^* does not depend on w.

(h) Suppose $R(x) = -\frac{xu''(x)}{u'(x)}$ is increasing. The first-order condition for a general u is:

$$\frac{\partial U(t)}{\partial t} = pu'((1+2t)w)(2w) + (1-p)u'(w(1-t))(-w) = 0$$
$$2pu'((1+2t)w) - (1-p)u'(w(1-t)) = 0$$

Which gives the relation:

$$\frac{u'((1+2t)w)}{u'(w(1-t))} = \frac{1-p}{2p}$$

Let $t=t^*=t(w)$ and assume that all references to t below are to the optimal value of t as a function of w. Taking the partial derivative of the first-order condition at $t=t^*$ yields:

$$\frac{\partial}{\partial w} [2pu'((1+2t)w) - (1-p)u'(w(1-t))] = \frac{\partial}{\partial w}(0)$$

$$2pu''((1+2t)w)[2t'(w)w + 1 + 2t] - (1-p)u''(w(1-t))[w(-t'(w)) + 1 - t] = 0$$

$$[4pu''((1+2t)w)w + (1-p)u''(w(1-t))]t'(w) = (1-p)u''(w(1-t))(1-t) - 2pu''((1+2t)w)(1+2t)$$

$$t'(w) = \frac{(1-p)u''(w(1-t))(1-t) - 2pu''((1+2t)w)(1+2t)}{4pu''((1+2t)w)w + (1-p)u''(w(1-t))}$$

For t'(w) < 0, the following inequality must be satisfied:

$$(1-p)u''(w(1-t))(1-t) > 2pu''((1+2t)w)(1+2t)$$

Recall the relation derived from the first-order condition, $\frac{u'((1+2t)w)}{u'(w(1-t))} = \frac{1-p}{2p}$. Then, we can simplify the above relation as:

$$\frac{1-p}{2p} < \frac{u''((1+2t)w)(1+2t)}{u''(w(1-t))(1-t)}$$

$$\frac{u'((1+2t)w)}{u'(w(1-t))} < \frac{u''((1+2t)w)(1+2t)}{u''(w(1-t))(1-t)}$$

$$\frac{u''(w(1-t))(1-t)}{u'(w(1-t))} > \frac{u''((1+2t)w)(1+2t)}{u'((1+2t)w)}$$

Which, if we let $w(1-t) = x_0$ and $w(1_2t) = x_1$, then multiplying each side of the inequality by -w < 0, we have:

$$-\frac{u''(x_0)x_0}{u'(x_0)} < -\frac{u''(x_1)x_1}{u'(x_1)}$$

Since $x_0 < x_1$ and, by assumption, $-\frac{xu''(x)}{u'(x)}$ is increasing in x, this inequality holds. Thus, if R(x) is increasing, the agent invests a smaller fraction of their welath as w increases.