Detecting Parkinsons Disease Using Machine Learning

Guide:

G R Hemalakshmi AP/CSE

Team members:

Surya Perumal K – 1912114

Sri Charan B J – 1912110

Kabilan S- 1912066

Rohith Kumar S - 1912095

ABSTRACT

The Parkinson's disease is progressive neuro degenerative disorder that affects a lot only people significantly affecting their quality of life. It mostly affect the motor functions of human. The main motor symptoms are called "parkinsonism" or "parkinsonian syndrome". The symptoms of Parkinson's disease will occur slowly, the symptoms include shaking, rigidity, slowness of movement and difficulty with walking, Thinking and behavior change, Depression and anxiety are also common. There is a model for detecting Parkinson's using voice. The deflections in the voice will confirm the symptoms of Parkinson's disease. A model will be trained for detecting the parkinson's disease in people using machine learning techniques like XGBoost, Random Forest, the algorithm with best accuracy will be taken as a solution.

S.No	Author Name	Year	Methodoloy	Input Data	Performances
1	Mohammad S Islam etal	201 4	SVM,Random Tree and Feedforward Back propagation built Artifical Neural Network	Speech	90% recognition accuracy
2	Oana Geman et al	201 5	SVM,DNN	Voice data	SVM:AUC-0.9623 ANFIS:AUC-0.848
3	Bo Penga et al	201 5	T-test,SVM and Minimum Redundancy and Maximum Relevance	Speech impairmen t data	Proposed method used multilevel ROI-based features and is observed better classification accuracy
4	Othman Ibrahim Mehrbakhsh Nilashi, & Ali Ahani	201 6	PCA is used for feature selection, EM, ANFIS and Support Vector Regression (SVR)	Voice Data	SVM:AUC-0.9623 ANFIS:AUC-0.848
5	Hui-Ling Chen et al	201 6	Extreme learning machine and kernel ELM	Speech samples	10- fold cross validation through 10 runs achieved 96.47% accuracy

6	Derya Avei and Akif Dogantekin et al	201	Genetic Algorithm, wavelet kernel and Extreme Learning Machines(ELM)	Voice data	96.81%
7	Thomas J. Hirschauer	201 5	EPNN (Enhanced Probabilistic Neural Network	Speech	98.6%
8	Ligia Sousa et al	201 9	DNN, KNN,PCA (for optimizing feature set)	Voice Samples	93.4% for the binary classification ,84.7% for multiclass classification
9	Leandro A. Passos	201 8	ResNet-50, Optimum-Path Forest (OPF) classifier	HandPD dataset speech	96% of identification rate using speech samples.
10	Deepak Gupta	201 8	Optimized cuttlefish algorithm Decision tree, KNN	Speech data and Handwritten data are used to evaluate the proposed model.	94%

11	Shreya Bhat	201 8	Along with advanced machine learning methods, Neuroimaging modalities also used	Image data. speech. MRI EEG	(Various implementations are discussed)
12	Hariharan et al	201 4	Gaussian mixture with PCA and LDA. SVM classifier	Speech data	100%
13	Zhang et al	201 9	Stacked autoencoders, KNN	Speech	93. In the range of 94- 98%
14	Oung et al	201 8	ResNet-50, Optimum-Path Forest (OPF) classifier	Motion and Speech	KNN:93.26% PNN:95.22% ELM:95.93%
15	Indrajit Mandal et al	201 7	Multinomial logistic regression, rotation forest together with SVM and PCA, ANN boostin methods	Speech	100% accuracy achieved with sparse multinomial logistic regression and linear regression ,observed sensitivity:0.983 and specificity:0.996

THANK YOU