Sous-groupes distingués

Definition

H est **distingué** dans G, noté $H \triangleleft G$ si $\forall g \in H$, gH = Hg

- $H \triangleleft G \iff H = \operatorname{Ker} \varphi \quad \text{avec } G/\operatorname{Ker} \varphi \simeq \operatorname{Im} \varphi$
- Si $H \triangleleft G$, $G/H = \{gH | g \in G\}$ est un groupe et |G/H| = |G|/|H|

Definition

- Une **suite exacte** est $1 \to G_1 \xrightarrow{i} G_2 \xrightarrow{s} G_3 \to 1$ avec i injective, s surjective et Im i = Ker s
- Une action d'un groupe G sur E est $\varphi: G \longrightarrow \text{Bij}(E): g.e := \varphi(g)(e)$
- Une action φ est fidèle si φ est injective et transitive si φ e
- L'orbite de $x \in E$ est G.x (les orbites partitionnent E), son stabilisateur est $G_x = \{g \in G \mid g.x = x\}$. On note $E^H := \{x \in E \mid \forall h \in H, h.x = x\}$
- le **type** de $\sigma \in S_n$ est (n_1, \dots, n_N) avec les n_i les longueurs des orbites non triviaux.

Lemme de Cauchy Soit G fini et $p \in \mathcal{P}$ divisant #G. Alors $\exists x \in G$, o(x) = p.

Lemme de Gauss Si $P \in \mathbb{Z}[X]$ est irréductible dans $\mathbb{Z}[X]$ alors il l'est dans $\mathbb{Q}[X]$.

Critère d'Eisenstein Soit $P = \sum_{k=0}^{n} a_k X^k$ unitaire. Si $\exists p \in \mathcal{P} : p | a_0, \dots a_{n-1}$ et $p^2 \not | a_0$ alors P est irréductible dans $\mathbb{Q}[X]$.

Résolubilité de groupes

Definition

- G est **résoluble** si on peut écrire $\{e\} = G_n \triangleleft \cdots \triangleleft G_0 = G$ avec G_{i-1}/G_i commutatif
- Le sous-groupe dérivé de G est $DG := \langle \{[a,b] = aba^{-1}b^{-1}\} \rangle$
- $DG \triangleleft G$ et G/DG est commutatif : cela définit la **suite dérivée**.
- Si $0 \to G \to M \to D \to 0$ est une suite exacte, M résoluble $\iff G$ et D le sont.
- G est résoluble \iff $\exists n \in \mathbb{N}^*, \quad D^nG = \{e\}$

Tous les anneaux sont considérés commutatifs dans ce cours.

Idéaux

- $I \triangleleft (A, +)$, A/I est un anneau et l'injection π est un morphisme d'anneaux.
- A/I est un corps \iff I est un idéal maximal de A (pour \subset)

Théorème Chinois

Si $(I_i)_{i=1}^n$ idéaux avec $\forall i \neq j, I_i + I_j = A$ alors $\bigcap I_i = I_1 \cdots I_n$ et $A/(I_1 \cdots I_n) \simeq \Pi(A/I_i)$

Definition

 $\operatorname{car}(\mathbb{K})=p\in\mathcal{P}\cup\{0\}$ où pour $\varphi:n\longmapsto n1_A,\,\operatorname{Ker}\varphi=p\mathbb{Z}$

 $\exists ! \psi : \mathbb{Z}/\mathrm{car}\mathbb{K} \ \mathbb{Z} \hookrightarrow \mathbb{K} \ \mathrm{et \ si} \ p = \mathrm{car}\mathbb{K} < +\infty, \quad \mathrm{Im} \psi \simeq \mathbb{F}_p \ \mathrm{c'est \ le \ sous-corps \ premier \ de \ } \mathbb{K}$

Extensions de corps

Definition

- Si \mathbb{K} est un corps et une k-algèbre c'est une **extension** de k notée \mathbb{K}/k
- Le **degré** de \mathbb{K}/k est $[\mathbb{K}:k] := \dim_k(\mathbb{K})$

Théorème de la base télescopique

Si \mathbb{L}/\mathbb{K} et \mathbb{K}/k sont de bases respectives (μ_j) et (λ_i) alors $(\lambda_i \mu_j)$ est une base de \mathbb{L}/k et $[\mathbb{L}:k] = [\mathbb{L}:\mathbb{K}][\mathbb{K}:k]$

Definition

Si A et B sont des \mathbb{K} - algèbres, $\operatorname{Hom}_{\mathbb{K}}(A,B)$: morphismes de \mathbb{K} -algèbres de A dans B

On a la bijection $\left\{ \begin{array}{ccc} \operatorname{Hom}_k(\mathbb{K}[X],B) & \longrightarrow & B \\ \varphi & \longmapsto & \varphi(X) \end{array} \right.$

Definition

- Le corps de rupture de $P \in k[X]$ irréductible sur k est k[X]/(P)
- Le corps de décomposition de $P \in k[X]$ est $k[x_1, \dots x_n]$ avec $\{x_i\} = Z_{\overline{k}}(P)$
- $[k[X]/(P):k] = \deg P$ et l'image de X (notée x) dans k[X]/(P) est racine de P
- $\mathbb{K} := k[X]/(P) \simeq k[x]$ et $\operatorname{Hom}_k(\mathbb{K}, \mathbb{L}) \simeq Z_{\mathbb{L}}(P)$

Soit P irréductible dans k[X] de degré d et de corps de décomposition $\mathbb{L}: [\mathbb{L}:k] \leq d!$ avec égalité ssi P est à racines simples.

Algébricité

Definition

- $x \in \mathbb{K}$ est algébrique sur k si $\exists P \in k[X] \{0\}$ avec P(x) = 0, sinon x est transcendant. Les algébriques forment un sous-corps de \mathbb{K} .
- \mathbb{K}/k est une **extension algébrique** si les éléments de \mathbb{K} sont algébriques sur k.
- Le **polynôme minimal** de $x \in \mathbb{K}$ algébrique sur k est l'unique polynôme de k[X] tel que $\{P \in k[X] \mid P(x) = 0\} = \pi_{x,k} \ k[X]$
- Les k-conjugués dans \mathbb{L} de x algébrique sur k sont $\operatorname{Conj}_{k,\mathbb{L}}(x) := Z_{\mathbb{L}}(\pi_{x,k})$
- $\deg_k[x] := [k[x] : k] = \deg \pi_{x,k}$
- x algébrique sur $k \iff [k[x]:k] < +\infty \iff k[x]$ est un corps.
- Si $x_1 \cdots x_n$ sont algébriques, $[k[x_1, \cdots, x_n] : k] \leq \prod \deg_k(x_i)$
- $[\mathbb{K}:k]<+\infty \iff \mathbb{K}/k$ est algébrique et engendrée par un nombre fini d'éléments.

Clôture algébrique

Definition

- \mathbb{K} est algébriquement clos si tout $P \in \mathbb{K}[X]$ non constant est scindé sur \mathbb{K} .
- \mathbb{K} est une clôture algébrique du sous-corps k si \mathbb{K}/k est algébrique et que tout $P \in k[x]$ est scindé sur \mathbb{K} .

Théorème de Steiniz

Tout corps k admet une clôture algébrique \overline{k} unique à morphisme de k-algèbres près.

Théorème de prolongement des morphismes

- v
1 Soit \mathbb{K}/k , Ω/k avec \mathbb{K} algébrique, Ω algébriquement clos **alors** \mathbb{K} se plonge dans Ω
- v2 Soit B/A avec A,B des k-algèbres et Ω algébriquement clos vérifiant Ω/A algébrique.

alors tout $\sigma: A \longrightarrow \Omega$ se prolonge en $\sigma': B \longrightarrow \Omega:$

Corps finis

Definition

Pour $p \in \mathcal{P}$, on note $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$. On note $\mathbb{F}_q := Z_{\Omega}(X^q - X)$ pour $q = p^n$ (voir plus bas)

- Soit k un corps fini. On a $q := \#k = (\operatorname{car} k)^n =: p^n$ et $k = Z_{\Omega}(X^q X)$ avec $\Omega = \overline{\mathbb{F}_p}$.
- Le morphisme de Frobenius $F: x \longmapsto x^p \in \operatorname{Aut}_{\mathbb{F}_p}(\mathbb{F}_q)$
- $\mathbb{F}_{p^n} \subset \mathbb{F}_{p^m} \iff n|m$
- Soit \mathbb{K} un corps. Si $\mathbb{L} \subset (\mathbb{K}^*, \times)$ est fini, il est cyclique.
- Aut $\mathbb{F}_p(\mathbb{F}_q)$ est cyclique d'ordre m engendré par $F_q:=x\longmapsto x^q=F^n$

 $P \in \mathbb{F}_p[X]$ irréductible de degré d a comme corps de rupture $\mathbb{K} = \mathbb{F}_{p^d}$ car $[\mathbb{K} : \mathbb{F}_p] = d$

 $P \in \mathbb{F}_p[X]$ est irréductible sur $\mathbb{F}_p[X]$ ssi il n'a pas de racine dans \mathbb{F}_{p^r} pour $r \leq \frac{\deg P}{2}$.

Tout $\mathbb{F}_q \subset \overline{\mathbb{F}_p}$ extension de \mathbb{F}_p est noyau d'un F^d et $[\mathbb{F}_p[x] : \mathbb{F}_p] = \min\{d \geq 1 | F^d(x) = x\}$

 $N := o(x, \overline{\mathbb{F}_p}^{\times}) \wedge p = 1 \text{ et } [\mathbb{F}_p[x] : \mathbb{F}] = o(p, \mathbb{Z}/N\mathbb{Z}^{\times}); \, \pi_{x, \mathbb{F}_p} = \prod_{n=0}^{a-1} (X - F^n(x))$

Corps parfaits

Definition

- k est **parfait** si cark = 0 ou si $F \in Aut_{\mathbb{F}_p}(k)$ (tout $x \in k$ a une $\sqrt[p]{x} \in k$, p = cark)
- $P \in k[X]$ est séparable \iff ses racines dans \overline{k} sont simples $\iff P \wedge P' = 1$
- si k est parfait et \mathbb{K}/k est finie alors \mathbb{K} est parfait.
- k est parfait \iff les irréductibles de k[X] sont séparables.
- si k est parfait et \mathbb{K}/k finie alors $\#\mathrm{Hom}_k(\mathbb{K},\Omega) = [\mathbb{K}:k]$ avec $\Omega = \overline{k}$

Théorème de l'élément primitif

Soit k parfait et \mathbb{K}/k une extension finie alors \mathbb{K}/k est monogène ($\mathbb{K}=k[x]$)

Extensions galoisiennes

On fixe k parfait avec $k \subset E \subset \mathbb{K}$.

Definition

- \mathbb{K}/k est **galoisienne** si elle est algébrique et que $\forall x \in \mathbb{K}$, $\operatorname{Conj}_{k,\Omega}(x) \subset \mathbb{K}$
- dans ce cas on note son **groupe de Galois** $\operatorname{Gal}(\mathbb{K}/k) := \operatorname{Aut}_k(\mathbb{K})$
- Si \mathbb{K}/k est galoisienne, $\operatorname{Gal}(\mathbb{K}/k) := \operatorname{Aut}_k(\mathbb{K}) = \operatorname{Hom}_k(\mathbb{K}, \Omega)$ est d'ordre $[\mathbb{K} : k]$ si finie.
- Si \mathbb{K}/k est galoisienne, \mathbb{K}/E est galoisienne. (pas necéssairement E/k)
- \mathbb{K}/k est galoisienne \iff l'injection canonique $\mathrm{Aut}_k(\mathbb{K}) \hookrightarrow \mathrm{Hom}_k(\mathbb{K},\Omega)$ est bijective.
- Si \mathbb{K}/k est galoisienne, $\forall x \in \mathbb{K}$, $\operatorname{Conj}_{k,\Omega}(x) = G.x := \{\sigma(x) \mid \sigma \in \operatorname{Gal}(\mathbb{K}/k)\}$
- Si \mathbb{K}/k est galoisienne, $Gal(\mathbb{K}/E)$ est un sous-groupe de $Gal(\mathbb{K}/k)$.
- Si \mathbb{K}/k et E/k sont galoisiennes, $\varphi : \left\{ \begin{array}{ccc} \operatorname{Gal}(\mathbb{K}/k) & \twoheadrightarrow & \operatorname{Gal}(E/k) \\ \sigma & \mapsto & \sigma|_E \end{array} \right.$ est surjective.

On a alors une suite exacte de Galois $0 \to \operatorname{Gal}(\mathbb{K}/E) \to \operatorname{Gal}(\mathbb{K}/k) \xrightarrow{\varphi} \operatorname{Gal}(E/k) \to 0$ Avec $\operatorname{Ker} \varphi = \operatorname{Gal}(\mathbb{K}/E)$ et $\operatorname{Gal}(E/k) \simeq \operatorname{Gal}(\mathbb{K}/k) / \operatorname{Gal}(\mathbb{K}/E)$

- \mathbb{K}/k algébrique est galoisienne $\iff \forall x \in \mathbb{K}, \operatorname{Aut}_k(\mathbb{K}).x = \operatorname{Conj}_{k,\Omega}(x)$ (action transitive)
- \mathbb{K}/k finie est galoisienne $\iff \exists P \in k[X] : \mathbb{K} = k[Z_{\Omega}(P)]$ (corps de décomposition)
- Si \mathbb{K}/k est galoisienne finie, $\mathbb{K}^G := \{x \in \mathbb{K} \mid \forall \sigma \in G, \sigma(x) = x\} = k$

Lemme d'Artin

Supposons \mathbb{K} parfait, soit $G \subset \operatorname{Aut}_k(\mathbb{K})$ un sous-groupe fini, alors \mathbb{K}^G est parfait, \mathbb{K}/\mathbb{K}^G est galoisienne et $G = \operatorname{Gal}(\mathbb{K}/\mathbb{K}^G)$.

Correspondance de Galois

Soit \mathbb{K}/k galoisienne finie avec $k \subset \mathbb{K} \subset \Omega$ parfaits et $G := \operatorname{Gal}(\mathbb{K}/k)$. Soient $\mathcal{F} := \{\mathbb{L} \text{ corps } | k \subset \mathbb{L} \subset \mathbb{K}\}$ et $\mathcal{G} := \{\text{sous groupes de } G\}$. On a alors :

- $f: \left\{ \begin{array}{ccc} \mathcal{F} & \longrightarrow & \mathcal{G} \\ \mathbb{L} & \longmapsto & \operatorname{Gal}(\mathbb{K}/\mathbb{L}) \end{array} \right.$ est bijective; strictement décroissante. $f^{-1}: \left\{ \begin{array}{ccc} \mathcal{G} & \longrightarrow & \mathcal{F} \\ H & \longmapsto & \mathbb{K}^H \end{array} \right.$
- pour $H \in \mathcal{G}, \, \mathbb{K}/\mathbb{K}^H$ est galoisienne avec $\mathrm{Gal}(\mathbb{K}/\mathbb{K}^H) = H$
- La restriction à \mathbb{K}^H $r_H : \begin{cases} G \longrightarrow \operatorname{Hom}_k(\mathbb{K}^H, \Omega) \\ \sigma \longmapsto \sigma|_{\mathbb{K}^H} \end{cases}$ est surjective avec $r_H^{-1}(\{I\}) = H$
- pour $H \in \mathcal{G}$, \mathbb{K}^H/k est galoisienne $\iff H \triangleleft G$ et alors $G/H \simeq \operatorname{Gal}(\mathbb{K}^H/k)$
- Si \mathbb{L}/k est galoisienne, on a la suite exacte $1 \to \operatorname{Gal}(\mathbb{K}/\mathbb{L}) \to \operatorname{Gal}(\mathbb{K}/k) \to \operatorname{Gal}(\mathbb{L}/k) \to 1$

Correspondance de Galois des corps finis

 $q = p^n$. $\mathbb{F}_{q^n}/\mathbb{F}_q$ est galoisienne finie, $\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) = \langle F_q \rangle \simeq \mathbb{Z}/n\mathbb{Z}$. Soit $\mathcal{F} := \{\mathbb{F}_q \subset \mathbb{L} \subset \mathbb{F}_{q^n}\}$ et $\mathcal{G} := \{G' \subset \mathbb{Z}/n\mathbb{Z}\} = \{r\mathbb{Z}/n\mathbb{Z} \mid r|n\} = \langle F_q^r \rangle \simeq \{\mathbb{Z}/\frac{n}{r}\mathbb{Z}\}$ Dans ce cas $f^{-1} : r\mathbb{Z}/n\mathbb{Z} \longmapsto (\mathbb{F}_{q^n})^{\mathbb{F}_{q^r}} = \{x \in \mathbb{F}^{q^n} \mid x^{q^r} = x\} = \mathbb{F}_{q^r}$ Finalement $\mathbb{Z}/n\mathbb{Z} / r\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/r\mathbb{Z} \simeq \operatorname{Gal}(\mathbb{F}_{q^r}/\mathbb{F}_q)$ qui contient un r-cycle.

Polynômes et théorie de Galois

Soit $P \in k[X]$ avec k parfait, on peut se ramener au cas où les racines $x_1 \cdots x_n$ sont simples.

Definition

- Le groupe de Galois de P sur k est $Gal(P,k) := Gal(k[x_1, \cdots x_n]/k)$.
- Le discriminant de P est discr $P:=(-1)^{n(n-1)/2}\prod_{x\neq y\in Z(P)}(x-y)\in k^*$
- P est irréductible sur $k[X] \implies Gal(P,k)$ agit transitivement (une seule orbite)
- Si car $k \neq 2$, $\exists d \in k^* : d^2 = \operatorname{discr} P \iff \operatorname{Gal}(P, k) \subset A_n$

 $P \in k[X]$ irréductible de degré n. Alors $n \mid \#\mathrm{Gal}(P,k) \mid n!$

Si $P \in \mathbb{Z}[X]$ est de degré 3, il est irréductible sur $\mathbb{Q}[X]$ ssi il n'a pas de racine dans \mathbb{Q}

Soit $P \in \mathbb{F}_p[X]$ irréductible de degré n et de racines $x_1, \dots x_n$. On a $P = \pi_{\mathbb{F}_p, x_1}$.

Soit $\mathbb{K} := \mathbb{F}_p[x_1, \cdots x_n] = \mathbb{F}_q \subset \overline{\mathbb{F}_p}$ avec $q = p^r$.

On a $\operatorname{Gal}(\mathbb{K}/\mathbb{F}_p) \simeq \mathbb{Z}/r\mathbb{Z}$ engendré par F, soit $\varphi : \operatorname{Gal}(\mathbb{K}/\mathbb{F}_p) \hookrightarrow S_n : \operatorname{Im}\varphi$ contient un n-cycle.

Théorème de la réduction modulo p

Soit $P \in \mathbb{Z}[X]$ unitaire, séparable. Soit $p \in \mathcal{P}, \overline{P} \in \mathbb{F}_p[X]$ (deg $\overline{P} = \deg P = n$) Soit $\varphi : \operatorname{Gal}(P, \mathbb{Q}) \hookrightarrow S_n$ et $\overline{\varphi} : \operatorname{Gal}(\overline{P}, \mathbb{F}_p) \hookrightarrow S_n$. Si \overline{P} est séparable, **alors** :

- $\exists G'$ sous-groupe de $\operatorname{Gal}(P, \mathbb{Q})$ avec $G' \simeq \operatorname{Gal}(\overline{P}, \mathbb{F}_p)$
- $\forall \sigma \in \text{Im}\overline{\varphi}, \ \exists \tau \in \text{Im}\varphi \text{ de même type.}$
- Si $\overline{P} = P_1 \cdots P_k$ irréductibles alors G contient un élément $c_1 \cdots c_k$ des deg P_i -cycles.
- Si \overline{P} est irréductible dans $\mathbb{F}_p[X]$, il existe un cycle de longueur n dans $\mathrm{Im}\varphi$

Cyclotomie sur k parfait

Soit $n \in \mathbb{N}^*$ avec si $\operatorname{car} k = p > 0, n \wedge p = 1$.

Definition

- $\mu_n(\Omega) := Z_{\Omega}(X^n 1) \simeq \mathbb{Z}/n\mathbb{N}$ généré par ζ_n toute racine primitive n-ième de 1.
- Le caractère cyclotomique $\chi : \operatorname{Gal}(k[\zeta_n]/k) \longrightarrow \mathbb{Z}/n\mathbb{Z}^*$ tel que $g(\zeta) = \zeta^{\chi(g)}$ est un morphisme injectif
- $k[\zeta_n]/k$ est galoisienne c'est la *n*-ième extension cyclotomique de k.
- $G_n := \operatorname{Gal}(k[\zeta_n]/k) = \operatorname{Gal}(X^n 1, k)$ est commutatif.

Cyclotomie sur \mathbb{Q}

Lemme de Gauss

- Soient $P, Q \in \mathbb{Z}[X]$ avec Q unitaire. Si Q|P dans $\mathbb{Q}[X]$ alors aussi dans $\mathbb{Z}[X]$.
- Si $P \in \mathbb{Z}[X]$ est irréductible dans $\mathbb{Z}[X]$ alors il l'est dans $\mathbb{Q}[X]$.
- Soit $P \in \mathbb{Z}[X]$ unitaire. Ses facteurs irréductibles dans $\mathbb{Q}[X]$ sont dans $\mathbb{Z}[X]$.

Soit $\zeta_n := e^{\frac{2i\pi}{n}}$

Definition

 $n\text{-i\`eme polyn\^ome cyclotomique} := \phi_n = \prod_{m \in \mathbb{Z}/n\mathbb{N}^*} \left(X - \exp\left(\frac{2im\pi}{n}\right) \right) = \pi_{\zeta_n,\mathbb{Q}} \in \mathbb{Z}[X]$

- $X^n 1 = \prod_{d|n} \phi_d$, χ est surjective donc $\operatorname{Gal}(\mathbb{Q}[e^{\frac{2i\pi}{n}}]/\mathbb{Q}) \simeq \mathbb{Z}/n\mathbb{Z}^*$
- $[\mathbb{Q}[\zeta_n]:\mathbb{Q}] = \deg \phi_n = \varphi(n) = \#\mathbb{Z}/n\mathbb{Z}^* = \#\mathrm{Gal}(\mathbb{Q}[\zeta_n]/\mathbb{Q}))$

Constructibilité

- [Wantzel] $z \in \mathbb{C}$ constructible $\Leftrightarrow \exists \mathbb{Q} = \mathbb{L}_0 \subset \cdots \subset \mathbb{L}_n \ni z \text{ avec } [\mathbb{L}_{i+1}/\mathbb{L}i] = 2$
- Soit $z \in \mathbb{C}$ et $\mathbb{K} := \langle \operatorname{Conj}_{\mathbb{O},\mathbb{C}}(z) \rangle$. z est constructible $\Leftrightarrow [\mathbb{K} : \mathbb{Q}] = 2^n$
- [Gauss-Wantzel] Le polygone régulier à n côtés est constructible $\Leftrightarrow n=2^Np_1\cdots p_m$ avec $p_i=2^{2^{a_i}}-1\in\mathcal{P}$

Cyclisme de k parfait

Si $\operatorname{car} k = p > 0$, on suppose que $p \wedge n = 1$. On suppose que $\mu_n(\Omega) \subset k$.

Definition

- Une extension cyclique est \mathbb{K}/k monogène avec $\mathbb{K}=k[\alpha]$ où $\alpha^n \in k^*$
- $\kappa: \left\{ \begin{array}{ccc} \operatorname{Gal}(K/k) & \longrightarrow & \mu_n(k) \\ g & \longmapsto & g(\alpha)\alpha^{-1} \end{array} \right.$ est un morphisme de groupes injectif.
- Si \mathbb{K}/k est cyclique alors \mathbb{K} est le corps de rupture et de décomposition de $X^n \alpha^n$
- Si \mathbb{K}/k est cyclique alors $\operatorname{Gal}(\mathbb{K}/k) \simeq \mathbb{Z}/d\mathbb{Z}$ cyclique avec d|n
- $X^n \alpha^n$ irréductible dans $k[X] \Leftrightarrow \operatorname{Gal}(\mathbb{K}/k) \simeq \mathbb{Z}/n\mathbb{Z} \simeq \mu_n(k)$

Théorème de Kumman

Si \mathbb{K}/k est galoisienne de degré n et $k \supset \mu_n(\Omega)$ et que $\operatorname{Gal}(\mathbb{K}/k)$ est cyclique alors $\exists a \in k$ tel que \mathbb{K} soit le corps de décomposition de $X^n - a$

Résolution d'équations

On suppose que $\operatorname{car} k = 0$ et plus d'hypothèse sur la contenance de $\mu_n(\Omega)$.

Definition

- \mathbb{K}/k est radicale si $\exists k = \mathbb{K}_0 \subset \cdots \subset \mathbb{K}_n$ avec $\mathbb{K}_{i+1} = \mathbb{K}_i[x_i], \ x_i^{n_i} \in \mathbb{K}_i$
- \mathbb{K}/k est **résoluble** si $\exists \mathbb{L} \supset \mathbb{K}$ avec \mathbb{L}/k radicale.
- $P \in k[X]$ est **résoluble** sur k si pour $\mathbb{K} := k[Z_{\Omega}(P)]$, \mathbb{K}/k est résoluble.

Si \mathbb{K}/k est résoluble alors tout $x \in \mathbb{K}$ s'écrit comme sommes, produits, fractions et radicaux d'éléments de k.

Théorème de Galois

Si \mathbb{K}/k galoisienne est résoluble alors $\operatorname{Gal}(\mathbb{K}/k)$ est résoluble

Solutions d'équations polynomiales

Soit $\mathbb{L} := \mathbb{C}(X_1, \dots X_n)$. S_n agit dessus par permutation des indéterminées.

Soit $\mathbb{K} := \mathbb{L}^{S_n}$, on a par le lemme d'Artin que \mathbb{L}/\mathbb{K} est galoisienne de groupe S_n .

Par le théorème d'Abel-Galois, \mathbb{L}/\mathbb{K} n'est pas résoluble si $n \geq 5$ car S_n ne l'est pas.

Soit
$$P(X) = \prod_{i=1}^{n} (X - X_i) = X^n + \sum_{i=1}^{n} (-1)^i \sigma_i X^{n-i} \in (\mathbb{C}(X_1 \cdots X_n))[X]$$

Les σ_i sont des expressions symétriques en X_i , donc des éléments invariants par l'action de S_n donc dans \mathbb{K} . Comme \mathbb{L}/\mathbb{K} n'est pas résoluble si $n \geq 5$, en général les $X_i \in \mathbb{L}$ ne peuvent pas s'écrire en fonction des $\sigma_i \in \mathbb{K}$.