TA Info: Gary Baker (he/him)

Office: Social Sciences 6470
Email: gary.baker@wisc.edu
Website: garygbaker.com
Office Hours: Mondays, 1–2 PM (2

Mondays, 1–2 PM (Zoom, see Canvas for link)

Wednesdays, 9–10 AM (in person)

1 Review, Chapters, 5–7

1.1 Ch. 5: Behavior of interest rates

- Money supply growth rate and interest rates
- Liquidity preference framework predicts that increase in money supply leads to lower interest rates.

Milton Friedman's criticism:

- Liquidity effect: higher money supply leads to lower interest rates immediately (Fast)
- Expected-inflation effect: Higher money leads to higher expected inflation, pushing interest rates up (Fast)
- Income effect: Higher money supply leads to higher income and wealth, push interest rates up (Slower)
- Price-level effects: Higher money supply leads to inflation (higher price levels) pushing interest rates up (Fisher effect) (Slower)

1.2 Ch. 6: Risk and term structure of interest rates

- Risk structure of interest rates
 - Bonds with the same maturity may have different interest rates due to
 - * Default risk
 - · U.S. Treasury bonds generally considered to have near zero default risk
 - · **Risk premium:** Spread between interest rates on bonds with default risk and rate on risk-free asset of same maturity (Treasury bonds)
 - * Liquidity: ease at which asset can be bought/sold (converted to cash)
 - · Cost of buying/selling a bond (transaction costs)
 - · number of buyers and sellers in a bond market
 - * Tax considerations
 - · Interest payments on municipal bonds are exempt from federal income taxes
 - Bond ratings by ratings agencies (e.g. Moody's, S&P, Fitch)
 - * Rating agencies rate default risk. (Different agencies use different scales—e.g. Baa1 from Moody's is roughly equivalent to BBB+ from S&P or Fitch.)
 - * Bonds with BBB-/Baa3 or higher are considered **Investment Grade (IG)**. Lower rated bonds are considered **Non-investment Grade/Junk bonds**
 - Bonds with identical risk, liquidity, and tax characteristics may have different interest rates because time remaining to maturity is different
- Yield curve
 - Yield curve: plots interest rate on bonds with differing maturity, but same risk, liquidity, and tax considerations (usually Treasury bonds)
 - * Upward-sloping (normal): long-term rates higher than short-term rates
 - * Flat: short- and long-term rates the same
 - * Inverted: long-term rates lower than short-term (often portends a recession)
- Term structure of interest rates
 - Interests rates of bonds of different maturities tend to move together
 - When short-term interest rates are low, yield curves are more likely to slope up; when short-term rates are high, yield curves are more likely to be inverted.
 - Yield curves almost always slope up. (Inversion is rare and usually followed a recession)
- 3 main theories to explain these facts:
 - Expectations theory
 - * Interest rate on a long-term bond will equal an average of the expected short-term interest rates over the life of the long-term bond
 - * Considers long-term bonds are **perfect substitutes**
 - * $i_{nt} = \frac{i_t + i_{t+1}^e + i_{t+2}^e + \dots + i_{t+(n-1)}^e}{n}$
 - Segmented markets theory
 - * Bonds of different maturities are **not all substitutable**
 - * Interest rates for each maturity length are determined by supply supply and demand for that individual bond
 - * Investors have different preferences over different maturity lengths
 - Liquidity premium theory
 - * Bonds of different maturities are partially substitutable
 - * $i_{nt} = \frac{i_t + i_{t+1}^e + i_{t+2}^e + \dots + i_{t+(n-1)}^e}{n} + l_{nt}$ where l_{nt} is the liquidity premium for the *n*-period bond at time t
 - * l_{nt} positive and rising with maturity length

1.3 Ch. 7: The stock market

- How to price a stock? Use cash-flow discounting!
 - One-period valuation model (compare to our previous formulation of rate of return)
 - * Assumes you collect the dividend for 1 period then sell
 - * Want to find: Price you're willing to pay today: P_0
 - * Need to know: Desired rate of return k_e on equity, dividends over the period, D_1 , and expected price next period P_1
 - $* P_0 = \frac{D_1}{1+k_e} + \frac{P_1}{1+k_e}$
 - Generalized dividend valuation model
 - * Same as one-period valuation, but hold for n periods instead of just 1

*
$$P_0 = \frac{D_1}{1+k_e} + \frac{D_2}{(1+k_e)^2} + \ldots + \frac{D_n}{(1+k_e)^n} + \frac{P_n}{(1+k_e)^n}$$

- Gordon growth model
 - * Assumes you hold forever (very long term), and dividends grow at a stable rate g
 - * $P_0 = \frac{D_0(1+g)}{1+k_e} + \frac{D_0(1+g)^2}{(1+k_e)^2} + \dots = \frac{D_0(1+g)}{k_e-g} = \frac{D_1}{k_e-g}$ (D_0 is most recently paid dividend)
 - * Requires $g < k_e$ (Why? What happens as g gets close to k_e ?)

2 Exercises

- 1. U.S. government bonds have no default risk because
 - (a) they are backed by the full faith and credit of the federal government
 - (b) the federal government can increase taxes to pay its obligations
 - (c) they are backed with gold reserves
 - (d) they can be exchanged for silver at any time
- 2. If the probability of a bond default increases because corporations begin to suffer large losses, then the default risk on a corporate bond will _____, and the expected return on these bonds will _____, everything else held constant.
 - (a) decrease; increase
 - (b) decrease; decrease
 - (c) increase; increase
 - (d) increase; decrease
- 3. Which of the following securities has the lowest interest rate?
 - (a) Junk bonds
 - (b) U.S. Treasury bonds
 - (c) Investment-grade bonds
 - (d) Corporate A-rated bonds
- 4. Risk premia on corporate bonds tend to _____ during business cycle expansions and _____ during recessions, everything else held constant.
 - (a) increase; increase
 - (b) increase; decrease
 - (c) decrease; increase
 - (d) decrease; decrease

- 5. Everything else held constant, if the tax-exempt status of municipal bonds were eliminated, then
 - (a) the interest rate on municipal bonds would still be less than the interest rate on Treasury bonds.
 - (b) the interest rate on municipal bonds would equal the rate on Treasury bonds.
 - (c) the interest rate on municipal bonds would exceed the rate on Treasury bonds.
 - (d) the interest rate on municipal, Treasury, and corporate bonds would all increase.
- 6. If the expected path of one-year interest rates over the next five years is 1%, 2%, 3%, 4%, and 5%, the expectations theory predicts that the bond with the highest interest rate today is the one with a maturity of
 - (a) two years.
 - (b) three years.
 - (c) four years.
 - (d) five years.
- 7. If the one-year interest rates for the next three years are expected to be 4%, 2%, and 3% respectively, and the three-year term premium is 1%, then the three-year bond rate will be (according to the liquidity premium theory)
 - (a) 1%
 - (b) 2%
 - (c) 3%
 - (d) 4%
- 8. If the yield curve slope is mildly upward sloping for short maturities and then steeply upward sloping for longer maturities, the liquidity premium theory (assuming a mild preference for shorter-term bonds) indicates that the market is predicting
 - (a) a rise in short-term interest rates in the near future and a decline further out in the future.
 - (b) constant short-term interest rates in the near future and a rise further out in the future and further out in the future.
 - (c) a decline in short-term interest rates in the near future and a rise further out in the future.
 - (d) constant short-term interest rates in the near future and a rise further out in the future.
- 9. According to the liquidity premium theory of term structure, a flat sloping yield curve indicates that short-term interest rates are expected to
 - (a) rise in the future.
 - (b) remain unchanged in the future.
 - (c) decline moderately in the future.
 - (d) decline sharply in the future.