AGH	Głosowa łączność z komputerem							
Kierunek: Inżynieria Biomedyczna	Rok: V	Grupa:	Data wykonania: 18.04.2018	Data oddania: 19.04.2018				
Temat projektu:	Roz	poznawanie	e komend glosowych					
Imię i nazwisko, nr. inde Karolina Gajewska, 2666 Magdalena Hetmańska, 26 Aneta Kalamaszek, 26668 Klaudia Kantor, 266691 Katarzyna Zawada, 26668	73 66684 89							

Cel projektu

Celem niniejszego projektu było utworzenie algorytmu przetwarzania i klasyfikacji sygnałów audio w celu rozpoznania wypowiadanych komend głosowych na potrzeby obsługi "inteligentnego domu".

Rozwiązanie

1. Przygotowanie sygnałów

Pierwszym etapem projektu była rejestracja wybranych komend głosowych, które zostały wybrane na drodze "burzy mózgów" i uznane zostały za najbardziej przydatne w obsłudze domu. Każda z osób nagrała czterokrotnie ten sam zestaw komend rano, przed południem, po południu oraz wieczorem. Następnie w programie Audacity dokonano oznaczenia poszczególnych słów.

2. Otrzymanie wektora cech

Kolejnym etapem było podzielenie sygnału na pliki zawierające oddzielnie każde słowo zgodnie ze wcześniejszym oznaczeniem. Po otrzymaniu słów w oddzielnych plikach,

następnym krokiem było wyznaczenie wektora cech dla każdego ze słów. W tym celu wykorzystano bibliotekę *librosa*, która dedykowana jest dla analizy sygnałów dźwiękowych. Z biblioteki tej do wyznaczenia wektora cech sygnału wykorzystano funkcję *mfcc()*, która posiada zaimplementowany algorytm Mel-frequency Cepstral Coefficients (MFCCs). Do obliczenia odległości między otrzymanymi wektorami cech, wykorzystano algorytm Dynamic Time Warping (DTW), znajdujący się w bibliotece *dtw*.

3. Klasyfikacja

Ostatnim etapem było przeprowadzenie klasyfikacji słów na podstawie otrzymanych z DTW odległości. Działanie prostego klasyfikatora polega na tym, że sprawdza on do którego słowa z zestawu testowego klasyfikowany dźwięk ma najmniejszą odległość i to słowo jest przyporządkowywane. Gdy minimalna odległość między słowami przekracza 200, słowo nie zostaje sklasyfikowane. Całość kodu zawierająca przetwarzanie i klasyfikację, z dołączoną macierzą błędów znajduje się w pliku *classification_with_final_matrix.ipynb*.

Rezultaty

Zaimplementowane algorytmy zostały przetestowane na zarejestrowanych sygnałach. Wykorzystany algorytm MFCC+DTW pozwolił na uzyskanie zadowalających rezultatów. Otrzymana skuteczność algorytmu wyniosła **52.91 %.** Wynikową macierz błędów przedstawia rysunek 1, całośc macierzy dostępna jest w generowanym pliku Excel.

	JEDEN	KANAL	KUCHNI	TELEWIZOR	ZAMKNIJ	ZAPAL	SYPIALNI	LAZIENCE	WLACZ	RADIO	KAWE	OGRZEWANIE	ALARM	ZWIEKSZ	STOPIEN
JEDEN	25	0	0	0	0	0	0	25	0	0	0	0	0	0	0
KANAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KUCHNI	0	0	25	0	0	0	0	0	0	25	0	0	0	0	0
TELEWIZOR	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0
ZAMKNIJ	0	0	0	0	50	0	0	0	0	25	0	0	0	0	0
ZAPAL	0	0	0	0	0	25	0	0	0	50	0	0	0	0	0
SYPIALNI	0	0	0	0	0	0	25	25	0	0	0	0	0	0	0
LAZIENCE	0	0	0	0	0	0	0	75	0	0	0	0	0	0	0
WLACZ	0	0	0	0	0	0	0	0	50	0	0	0	0	0	0
RADIO	0	0	0	0	0	0	0	0	0	50	0	0	0	0	25
KAWE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OGRZEWANIE	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0
ALARM	0	25	0	0	0	0	0	0	12.5	25	0	0	0	0	0
ZWIEKSZ	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0
STOPIEN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100

Rysunek 1. Wynikowa macierz błędów algorytmu MFCC+DTW.

Sprawdzono również skuteczność innych funkcji obliczających wektor cech, jednak nie przyniosły one pozytywnych rezultatów. Użycie funkcji *tonnetz()*, pozwoliło na uzyskanie skuteczności na poziomie 1,16 %, natomiast funkcja *spectral_centroid()*, obniżyła skuteczność algorytmu do 6,4 %. Można więc z cała pewnościa stwierdzić, że połaczenie

MFCC i DTW daje najlepsze rezultaty, co również potwierdzają liczne publikacje wykorzystujące te metody w algorytmach rozpoznania mowy.