Lesson 1

Áron F. Hegyi, GitHub Copilot

February 1, 2023

1 Konjuktív és diszjunktív logikai kapcsolatok

1.1 Egyszerűbb írásmód: De Morgan's Laws

m_i^n	i	j	$\overline{M^n_j}$
A * B * C	7	0	$\overline{\overline{A} + \overline{B} + \overline{C}}$
$\overline{A} * B * \overline{C}$	2	5	$\overline{A + \overline{B} + C}$
$A * \overline{B} * C$	5	2	$\overline{\overline{A} + B + \overline{C}}$

This is the sum of all the minterms of F^4 .

$$F^4 = \sum_{1}^{4} (0, 2, 3, 4, 5, 11, 15)$$

 $F^4 = ABCD 7 times$

$$F^{4} = (\overline{A} + \overline{B} + \overline{C} + \overline{D}) \cdot (\overline{A} + \overline{B} + C + \overline{D}) \cdot (\overline{A} + \overline{B} + C + D) \cdot (\overline{A} + B + \overline{C} + \overline{D}) \cdot (\overline{A} + B + \overline{C} + D) \cdot (\overline{A} + B + C + D) \cdot (\overline{A} + B + C + D)$$

ABCD igazságtábla

0	A	В	\mathbf{C}	D	F
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	1
4	0	0	1	1	1
5	0	1	0	0	1
6	0	1	0	1	0
7	0	1	1	0	0
8	0	1	1	1	0
9	1	0	0	0	0
10	1	0	0	1	0
11	1	0	1	0	1
12	1	0	1	1	0
13	1	1	0	0	0
14	1	1	0	1	0
15	1	1	1	0	1

2 Egyszerűsítés

Logikai függvények egszerűsítése! Logikai algebra. Szabályai és alkalmazásuk:

2.1 Kommutatív szabály

$$A + B = B + A$$
$$A \cdot B = B \cdot A$$

2.2 Disztributív szabály

$$A \cdot (B+C) = A \cdot B + A \cdot C$$

$$A + (B \cdot C) = (A+B) \cdot (A+C)$$

2.3 A logikai algebra alapszabályai

$$\begin{array}{lll} A \cdot \oslash = \oslash & A \cdot A = A & \oslash \cdot \oslash = \oslash \\ A + \oslash = A & A + A = A & \oslash + \oslash = \oslash \\ A \cdot 1 = A & A + 1 = 1 & 1 \cdot 1 = 1 \\ A + 1 = 1 & A \cdot 1 = A & 1 + 1 = 1 \end{array}$$

2.4 De Morgan szabály

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

Igazságtábla:

A	В	$A \cdot B$	$\overline{A} + \overline{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

De Morgan szabály megfordítja a logikai műveleteket a negációval.