Database

By Dr. Taghinezhad

Scan for More Information:

SEVENTH EDITION

Database System Concepts

Website: ataghinezhad@gmail.com

Chapter 1: Introduction

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Outline

- کاربردهای سیستم پایگاه داده
- هدف از سیستمهای یایگاه داده
- (View of Data)نمایش داده
 - زبانهای یایگاه داده
 - طراحی پایگاه داده
 - موتور پایگاه داده
 - معماری پایگاه داده
 - کاربران و مدیران پایگاه داده
 - تاریخچه سیستمهای پایگاه داده

سیستمهای پایگاهداده

- ا DBMS شامل اطلاعات مربوط به یک کمپانی خاص است:
 - مجموعهای از دادههای مرتبط به هم.
 - مجموعهای از برنامهها برای دسترسی به دادهها.
- محیطی که هم مناسب و هم کارآمد برای استفاده باشد.
- سیستمهای پایگاه داده برای مدیریت مجموعههایی از دادهها استفاده میشوند که: بسیار ارزشمند هستند.
 - نسبتاً بزرگ هستند.
 - توسط چندین کاربر و برنامه، اغلب به طور همزمان، دسترسی میشوند.
 - یک سیستم پایگاه داده مدرن یک سیستم نرمافزاری پیچیده است که وظیفه آن مدیریت یک مجموعه بزرگ و پیچیده از دادهها است.
 - پایگاههای داده تمام جنبههای زندگی ما را تحت تأثیر قرار میدهند.

نمونههای کاربرد پایگاه داده

- اطلاعات سازمانی
- 🔾 فروش: مشتريان، محصولات، خريدها.
- 🔾 حسابداری: پرداختها، دریافتها، داراییها.
- منابع انسانی: اطلاعات در مورد کارمندان، حقوق، مالیات بر حقوق.
 - **تولید**: مدیریت تولید، موجودی، سفارشات، زنجیره تأمین.
 - بانکداری و امور مالی
 - اطلاعات مشتری، حسابها، وامها و تراکنشهای بانکی.
 - تراکنشهای کارت اعتباری.
- امور مالی: خرید و فروش ابزارهای مالی (مانند سهام و اوراق قرضه)؛ ذخیره
 دادههای بازار در زمان واقعی.
 - **دانشگاهها:** ثبتنام، نمرات

نمونههای کاربرد پایگاه داده (ادامه)

- خطوط هوایی: رزرو، برنامهها.
- **مخابرات:** سوابق تماسها، پیامکها و مصرف داده، تولید صورتحسابهای ماهانه، حفظ موجودی کارتهای اعتباری پیشپرداخت.
 - خدمات مبتنی بر وب
 - 🔾 خردهفروشان آنلاین: پیگیری سفارش، توصیههای شخصیسازی شده.
 - تبليغات آنلاين.
 - پایگاههای داده اسناد (Document databases)
- سیستمهای ناوبری: برای نگهداری مکانهای مختلف مورد علاقه همراه با مسیرهای دقیق جادهها، سیستمهای قطار، اتوبوسها و غیره.

هدف از سیستمهای پایگاه داده

در روزهای اولیه، برنامههای پایگاه داده مستقیماً بر روی سیستمهای فایل ساخته می شدند، که منجر به موارد زیر می شد:

- تکرار و عدم سازگاری دادهها: دادهها در چندین قالب فایل ذخیره میشوند که منجر به تکثیر اطلاعات در فایلهای مختلف میشود.
 - دشواری در دسترسی به دادهها
 - نیاز به نوشتن یک برنامه جدید برای انجام هر کار جدید.
 - انزوای داده(Data isolation)
 - فایلها و فرمتهای متعدد.
 - مشکلات یکپارچگی(Integrity problems)
 - محدودیتهای یکپارچگی (مانند موجودی حساب > 0) به جای اینکه صراحتاً بیان شوند، "مدفون" در کد برنامه می شوند.
 - افزودن محدودیتهای جدید یا تغییر محدودیتهای موجود سخت است.

هدف از سیستمهای پایگاه داده (ادامه)

■ اتمی بودن بهروزرسانیها(Atomicity of updates)

- ممکن است خطاها پایگاه داده را در یک حالت ناسازگار با بهروزرسانیهای جزئی انجام شده باقی
 بگذارند.
- مثال: انتقال وجه از یک حساب به حساب دیگر باید یا به طور کامل انجام شود یا اصلاً اتفاق نیفتد.

■ دسترسی همزمان توسط چندین کاربر

- دسترسی همزمان برای عملکرد مورد نیاز است.
- دسترسیهای همزمان کنترل نشده میتواند منجر به عدم سازگاری شود.
- مثال: دو نفر به طور همزمان یک موجودی (مثلاً ۱۰۰) را میخوانند و آن را با برداشت پول (مثلاً ۵۰ برای هر کدام) بهروزرسانی میکنند.

■ مشكلات امنيتي

• سخت است که به کاربر اجازه دسترسی به برخی از دادهها، و نه همه آنها، داده شود.

سیستمهای پایگاه داده راهحلهایی برای همه مشکلات فوق ارائه میدهند.

مثال پایگاه داده دانشگاه

- در این متن ما از یک پایگاه داده دانشگاهی برای توضیح همه مفاهیم استفاده خواهیم کرد.
 - دادهها شامل اطلاعات در مورد:
 - دانشجویان 🔾
 - اساتید ٥
 - کلاسها

- نمونههای برنامه کاربردی:
- افزودن دانشجویان، اساتید و دورههای جدید.
- نبتنام دانشجویان در دورهها و تولید فهرست کلاسها.
- اختصاص نمرات به دانشجویان، محاسبه میانگین نمرات (GPA) و تولید کارنامهها.

نمایش داده (View of Data)

- یک سیستم پایگاه داده مجموعهای از دادههای مرتبط به هم و مجموعهای از برنامهها است که به کاربران اجازه میدهد تا به این دادهها دسترسی پیدا کرده و آنها را تغییر دهند.
 - یک هدف اصلی از سیستم پایگاه داده ارائه یک نمای انتزاعی از دادهها به کاربران است.

o مدلهای داده(Data models)

• مجموعهای از ابزارهای مفهومی برای توصیف دادهها، روابط دادهها، معناشناسی دادهها و محدودیتهای سازگاری.

(Data abstraction) انتزاع داده

• پنهان کردن پیچیدگی ساختارهای داده برای نمایش دادهها در پایگاه داده از کاربران از طریق چندین سطح.

مدلهای داده

- مجموعهای از ابزارها برای توصیف:
 - داده
 - و روابط داده
 - معناشناسی داده
 - محدودیتهای داده 🔾
- مدل رابطهای (Relational model)
- مدل داده موجودیت-رابطه(Entity-Relationship data model) :عمدتاً برای طراحی پایگاه داده
 - مدلهای داده مبتنی بر شیء (Object-based data models) :شیء-گرا و شیء-رابطهای
 - مدل داده نیمهساختیافته (Semi-structured data model) (XML) مدل داده نیمهساختیافته
 - سایر مدلهای قدیمی تر:
 - (Network model) مدل شبکهای
 - (Hierarchical model) مدل سلسلهمراتبی

مدل رابطهای

- تمام دادهها در جداول مختلف ذخیره میشوند.
 - مثال دادههای جدولی در مدل رابطهای

Columns

ID	пате	dept_name	salary	
22222	Einstein	Physics	95000	•
12121	Wu	Finance	90000	
32343	El Said	History	60000	
45565	Katz	Comp. Sci.	75000	
98345	Kim	Elec. Eng.	80000	
76766	Crick	Biology	72000	/
10101	Srinivasan	Comp. Sci.	65000	*
58583	Califieri	History	62000	
83821	Brandt	Comp. Sci.	92000	
15151	Mozart	Music	40000	
33456	Gold	Physics	87000	
76543	Singh	Finance	80000	

Rows

Ted CoddTuring Award 1981

(a) The *instructor* table

یک نمونه پایگاه داده رابطهای

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

(a) The instructor table

dept_name	building	budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Packard	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

(b) The *department* table

سطوح انتزاع

■ سطح فیزیکی(Physical level) : توصیف میکند که یک رکورد (به عنوان مثال، استاد) چگونه ذخیره می شود.

• سطح منطقی (Logical level) : دادههای ذخیرهشده در پایگاه داده و روابط میان دادهها را توصیف می کند.

type instructor = record

ID: string;

name: string;

dept_name : string;

salary: integer;

end;

■ سطح نما(View level) : برنامههای کاربردی جزئیات انواع داده را پنهان میکنند.

• نماها همچنین می توانند اطلاعات (مانند حقوق کارمند) را برای اهداف امنیتی پنهان کنند.

نمای داده (View of Data)

یک معماری برای یک سیستم پایگاه داده

نمونهها و طرحها (Instances and Schemas)

- شبیه به انواع (types) و متغیرها (variables) در زبانهای برنامهنویسی.
 - طرح منطقی (Logical Schema) : ساختار منطقی کلی پایگاه داده.
- مثال: پایگاه داده شامل اطلاعاتی در مورد مجموعهای از مشتریان و حسابها در
 یک بانک و رابطه بین آنها است.
 - مشابه اطلاعات نوع (type information) یک متغیر در یک برنامه.
 - طرح فیزیکی کلی پایگاه داده. (Physical schema) : ساختار فیزیکی کلی پایگاه داده.
 - نمونه(Instance): محتوای واقعی پایگاه داده در یک نقطه زمانی خاص. (value) مشابه با مقدار (value) یک متغیر.

استقلال فیزیکی داده (Physical Data Independence)

- استقلال فیزیکی داده: توانایی اصلاح طرح فیزیکی بدون تغییر طرح منطقی.
 - برنامههای کاربردی به طرح منطقی وابسته هستند.
- به طور کلی، واسطهای بین سطوح و مولفههای مختلف باید به خوبی تعریف شوند تا تغییرات در برخی قسمتها به طور جدی بر دیگر قسمتها تأثیر نگذارد.

زبان تعریف داده (Data Definition Language - DDL) زبان تعریف داده

- نماد مشخصات برای تعریف شمای پایگاه داده.
 - ا مثال:

```
create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2)
```

- کامپایلر DDL مجموعهای از الگوهای جدول (table templates) را تولید می کند که در یک دیکشنری داده (data dictionary) ذخیره می شوند.
 - دیکشنری داده حاوی فراداده (metadata) است (یعنی دادهها در مورد دادهها).
 - طرح پایگاه داده.
 - o محدودیتهای یکپارچگی(Integrity constraints).
 - کلید اصلی (Primary key) (ID) به طور منحصربهفرد اساتید را شناسایی می کند.
 - احراز هویت(Authorization).
 - چه کسی می تواند به چه چیزی دسترسی داشته باشد.

Data Manipulation Language - زبان دستکاری داده (DML)

- زبانی برای دسترسی و بهروزرسانی دادههآیی که توسط مدل داده مناسب سازماندهی شدهاند.
 - o بنز شناخته می شود. (query language) بیز شناخته می شود. OML

اساساً دو نوع زبان دستکاری داده وجود دارد:

- **DML رویهای(Procedural DML)**: از کاربر میخواهد مشخص کند که چه دادههایی مورد نیاز است و چگونه آن دادهها را بدست آورد.
- DML اعلانی(Declarative DML) : از کاربر میخواهد مشخص کند که چه دادههایی مورد نیاز است بدون تعیین چگونگی بدست آوردن آن دادهها.
 - DMLهای اعلانی معمولاً یادگیری و استفاده آسان تری نسبت به DML های رویهای دارند.
 - DMLهای اعلانی به عنوان DML های غیررویهای (non-procedural DMLs) نیز شناخته می شوند.
 - بخشی از یک DML که شامل بازیابی اطلاعات است، زبان پرس و جو نامیده میشود.

زبان پرس و جو SQL

- زبان پرس و جو SQL غیررویهای است .یک پرس و جو چندین جدول (احتمالاً فقط یکی) را به عنوان ورودی می گیرد و همیشه یک جدول واحد را برمی گرداند.
 - مثال برای پیدا کردن همه اساتید در دپارتمان علوم کامپیوتر:

select name
from instructor
where dept_name = 'Comp. Sci.'

- SQL معادل یک ماشین تورینگ نیست.
- برای اینکه بتوان توابع پیچیده را محاسبه کرد، SQLمعمولاً در یک زبان سطح بالاتر تعبیه میشود.
 - برنامههای کاربردی عموماً از طریق یکی از موارد زیر به پایگاههای داده دسترسی پیدا میکنند:
 - . (embedded SQL) تعبیه شده SQL افزونه های زبان برای اجازه دادن به SQL
- واسط برنامه کاربردی (Application program interface) مانند (ODBC/JDBC) که به پرس و جوهای SQL اجازه می دهد به پایگاه داده ارسال شوند.

دسترسی به پایگاه داده از برنامه کاربردی

- زبانهای پرس و جو غیررویهای مانند SQL به اندازه یک ماشین تورینگ جهانی قدرتمند نیستند.
- SQL از اعمالی مانند ورودی از کاربران، خروجی به نمایشگرها، یا ارتباط از طریق شبکه پشتیبانی نمی کند.
- چنین محاسبات و اعمالی باید در یک زبان میزبان(host language) ،
 مانند++ Java ، C/C یا Python با پرس و جوهای Java تعبیهشده
 که به دادهها در پایگاه داده دسترسی پیدا می کنند، نوشته شوند.
- برنامههای کاربردی (Application programs) برنامههایی هستند که برای تعامل با پایگاه داده به این شیوه استفاده میشوند.

طراحی پایگاه داده

فرآیند طراحی ساختار کلی پایگاه داده:

- طراحی منطقی(Logical Design): تصمیم گیری در مورد طرحواره
 پایگاه داده .طراحی پایگاه داده مستلزم یافتن مجموعهای "خوب" از طرحهای
 رابطه (relation schemas) است.
 - تصمیم کسب و کار: چه صفاتی (attributes) را باید در پایگاه داده
 ثبت کنیم؟
 - تصمیم علوم کامپیوتر: چه طرحوارههای رابطهای باید داشته باشیم و
 چگونه صفات باید بین طرحوارههای مختلف رابطه توزیع شوند؟
- طراحی فیزیکی (Physical Design) : تصمیم گیری در مورد چیدمان فیزیکی یایگاه داده.

موتور پایگاه داده (Database Engine)

- یک سیستم پایگاه داده به ماژولهایی تقسیم میشود که هر یک از مسئولیتهای سیستم کلی را مدیریت میکنند.
- مولفههای عملیاتی (functional components) یک سیستم پایگاه داده را می توان به موارد زیر تقسیم کرد:
 - (The storage manager) مدير ذخيرهسازي \circ
- O مولفه پردازشگر پرس و جو (The query processor component) مولفه پردازشگر
 - (The transaction management مولفه مديريت تراکنش component)

مدير ذخيرهسازي (Storage Manager)

- یک ماژول برنامهای است که واسطی بین دادههای سطح پایین ذخیره شده در پایگاه داده و برنامههای کاربردی و پرس و جوهای ارسال شده به سیستم فراهم می کند.
 - مدیر ذخیرهسازی مسئول وظایف زیر است:
 - . (OS file manager) تعامل با مدير فايل سيستم عامل
 - 🔾 ذخیرهسازی، بازیابی و بهروزرسانی کارآمد دادهها.
 - مولفههای مدیر ذخیرهسازی شامل:
 - (Authorization and integrity مدیر احراز هویت و یکپارچگی manager)
 - (Transaction manager) مدير تراكنش
 - (File manager) مدير فايل
 - (Buffer manager) مدير بافر

مدیر ذخیرهسازی (ادامه)

- ا مدیر ذخیرهسازی چندین ساختار داده را به عنوان بخشی از پیادهسازی سیستم فیزیکی پیادهسازی می کند:
 - o فایلهای داده (Data files) : خود پایگاه داده را ذخیره می کنند.
 - دیکشنری داده (Data dictionary) : فراداده در مورد ساختار پایگاه داده، به ویژه طرحواره پایگاه داده، را ذخیره می کند.
 - o شاخصها(Indices) : مى توانند دسترسى سريع به اقلام داده را فراهم كنند.
- یک شاخص پایگاه داده به آن اقلام دادهای اشاره میکند که یک مقدار خاص را نگه میدارند.

پردازشگر پرس و جو (Query Processor)

- •مولفههای پردازشگر پرس و جو شامل:
- مفسر (DDL interpreter) دستورات DDL را تفسیر کرده و
 تعاریف را در دیکشنری داده ثبت می کند.
- O کامپایلر (DML compiler) دستورات DML و به یک زبان پرس و جو به یک طرح ارزیابی (evaluation plan) ترجمه می کند که شامل دستورالعملهای سطح پایینی است که موتور ارزیابی پرس و جو query) دستورالعملهای سطح پایینی است که موتور ارزیابی پرس و جو evaluation engine)
- کامپایلر DML بهینهسازی پرس و جو (query optimization) را انجام میدهد؛ یعنی کمهزینهترین طرح ارزیابی را از بین گزینههای مختلف انتخاب می کند.
 - o موتور ارزیابی پرس و جو(Query evaluation engine): دستورالعملهای سطح پایین تولید شده توسط کامپایلر DML را اجرا می کند.

مديريت تراكنش (Transaction Management)

•یک تراکنش (transaction) مجموعهای از عملیات است که یک تابع منطقی واحد را در یک برنامه پایگاه داده انجام میدهد.

• مولفه مدیریت تراکنش اطمینان حاصل می کند که پایگاه داده علیرغم خرابیهای سیستم (مانند قطع برق و خرابیهای سیستم عامل) و خرابیهای تراکنش، در یک حالت سازگار (صحیح) باقی می ماند.

•مدیر کنترل همروندی (Concurrency-control manager) تعامل بین تراکنشهای همزمان را کنترل می کند تا از سازگاری پایگاه داده اطمینان حاصل شود.

معماری پایگاه داده

- پایگاههای داده متمرکز (Centralized databases)
 - یک تا چند هسته، حافظه مشتر ک.
 - ا مشتری سرویس دهنده (Client-server)
- یک دستگاه سرویسدهنده کار را به نمایندگی از چندین دستگاه مشتری اجرا می کند.
 - ا پایگاههای داده موازی(Parallel databases)
 - حافظه مشترک چند هستهای.
 - . (Shared disk) دیسک مشتر ک
 - بدون اشتراک(Shared nothing).
 - پایگاههای داده توزیع شده(Distributed databases)
 - توزیع جغرافیایی.
 - o عدم یکنواختی طرحواره/داده(Schema/data heterogeneity) عدم یکنواختی طرحواره/داده

برنامههای کاربردی پایگاه داده (Database Applications)

برنامههای کاربردی پایگاه داده معمولاً به دو یا سه قسمت تقسیم میشوند:

■ معماری دو لایه(Two-tier architecture): برنامه در دستگاه مشتری قرار دارد، جایی که عماری دو لایه(عماری داده را در دستگاه سرویسدهنده فراخوانی میکند.

■ معماری سه لایه(Three-tier architecture): دستگاه مشتری به عنوان یک جبهه front): دستگاه مشتری به عنوان یک جبهه end)

- مشتری با یک سرور برنامه کاربردی(application server) ، معمولاً از طریق یک واسط
 فرمها، ارتباط برقرار می کند.
 - صرور برنامه کاربردی به نوبه خود برای دسترسی به دادهها با یک سیستم پایگاه داده ارتباط برقرار می کند.

معماریهای دو لایه و سه لایه

کاربران پایگاه داده

مدیر پایگاه داده (Database Administrator - DBA) مدیر پایگاه داده

شخصی که کنترل مرکزی بر سیستم دارد، مدیر پایگاه داده (DBA)نامیده میشود. وظایف یک DBA شامل:

- تعریف طرح.
- تعریف ساختار ذخیرهسازی و روش دسترسی.
 - اصلاح طرح و سازمان فیزیکی.
 - اعطای مجوز دسترسی به دادهها.
 - نگهداری روتین:
 - پشتیبانگیری دورهای از پایگاه داده.
- اطمینان از در دسترس بودن فضای کافی دیسک آزاد برای عملیات عادی و ارتقاء فضای
 دیسک در صورت نیاز.
 - o نظارت بر کارهایی که در پایگاه داده در حال اجرا هستند.

تاریخچه سیستمهای پایگاه داده

دهه ۱۹۵۰ و اوایل دهه ۱۹۶۰:

- پردازش داده با استفاده از نوارهای مغناطیسی برای ذخیرهسازی.
- نوارها فقط دسترسی ترتیبی (sequential access) را فراهم می کردند.
 - کارتهای سوراخدار (Punched cards) برای ورودی.

· اواخر دهه ۱۹۶۰ و دهه ۱۹۷۰:

- دیسکهای سخت اجازه دسترسی مستقیم به دادهها را دادند.
- مدلهای داده شبکهای و سلسلهمراتبی به طور گستردهای مورد استفاده قرار گرفتند.
 - o تد کاد (Ted Codd) مدل داده رابطهای را تعریف کرد.
 - برای این کار برنده جایزه تورینگ ACM شد.
 - BM Research انمونه اوليه System R را آغاز كرد.
- ا آغاز کرد. UC Berkeley (Michael Stonebraker)
 - Oracle اولین پایگاه داده رابطهای تجاری را منتشر کرد.
 - پردازش تراکنش با عملکرد بالا (برای آن دوران).

تاریخچه سیستمهای پایگاه داده (ادامه)

= دهه ۱۹۸۰:

- نمونههای اولیه رابطهای تحقیقاتی به سیستمهای تجاری تکامل یافتند.
 - SQL به استاندارد صنعتی تبدیل شد.
 - 🔾 سیستمهای پایگاه داده موازی و توزیعشده.
 - Teradata, IBM Wisconsin•
 - سیستمهای پایگاه داده شیء-گرا.

:199+ aas =

- برنامههای کاربردی بزرگ پشتیبانی از تصمیم گیری (decision support) و
 داده کاوی (data-mining) .
 - o انبارهای داده (data warehouses) بزرگ چند ترابایتی.
 - ظهور تجارت وب.

تاریخچه سیستمهای پایگاه داده (ادامه)

:Y*** aas =

- الاستمهای ذخیرهسازی دادههای بزرگ(Big data storage systems).
 - .Amazon ،Yahoo PNuts ،Google BigTable
 - سيستمهاي"NoSQL".
 - . SQL تجزیه و تحلیل دادههای بزرگ: فراتر از
 - Map reduceو موارد مشابه.

: ۲۰۱۰ **-**

- . (SQL reloaded) بارگذاری مجدد شد(SQL reloaded) .
- . Map Reduceبه سیستمهای SQL (SQL front end) جبهه
- سیستمهای پایگاه داده موازی گسترده Massively parallel database). systems)
- پایگاههای داده درون حافظه (main-memory databases) چند هستهای.

End of Chapter 1

https://ataghinezhad.github.io/

تمرینات عملی (Practice Exercises)

- ۱.۱ این فصل چندین مزیت عمده سیستم پایگاه داده را توصیف کرده است .دو مورد از معایب آن چیست؟
- ۱.۲ پنج روش را فهرست کنید که در آنها سیستم اعلام نوع (type declaration system) یک زبان مانند جاوا یا ++C با زبان تعریف دادهای که در پایگاه داده استفاده می شود، تفاوت دارد .
 - ۱.۳ شش مرحله اصلی را که برای راهاندازی یک پایگاه داده برای یک بنگاه خاص انجام میدهید، فهرست کنید .
 - ۱.۴ فرض کنید میخواهید یک سایت ویدیویی شبیه به یوتیوب بسازید .

هر یک از نکات ذکر شده در بخش ۱٫۲ را به عنوان معایب نگهداری دادهها در یک سیستم پردازش فایل (file-processing system) در نظر بگیرید .

در مورد ارتباط هر یک از این نکات با ذخیرهسازی دادههای ویدیویی واقعی، و با فرادادهها در مورد ویدیو، مانند عنوان، کاربری که آن را بارگذاری کرده است، برچسبها، و کاربرانی که آن را مشاهده کردهاند، بحث کنید .

- ۱.۵ پرس و جوهای کلمه کلیدی (Keyword queries) که در جستجوی وب استفاده می شوند، کاملاً با
 پرس و جوهای پایگاه داده متفاوت هستند .
 - ا تفاوتهای کلیدی بین این دو را، از نظر نحوه مشخص شدن پرس و جوها و از نظر نتیجه یک پرس و جو،

Exercises

- ۱.۶ چهار برنامه کاربردی که استفاده کردهاید و به احتمال زیاد از یک سیستم پایگاه داده برای ذخیره دادههای ماندگار (persistent data) استفاده کردهاند، فهرست کنید .
 - ۱.۷ چهار تفاوت مهم بین یک سیستم پردازش فایل و یک DBMS را فهرست کنید .
 - ۱.۸ مفهوم استقلال داده فیزیکی (physical data independence) و اهمیت آن در سیستمهای پایگاه داده را توضیح دهید .
- ۱.۹ پنج مسئولیت عمده یک سیستم مدیریت پایگاه داده (database-management system) را فهرست کنید .برای هر مسئولیت، مشکلاتی را که در صورت عدم انجام آن مسئولیت ایجاد می شود، توضیح دهید .
- ۱.۱۰ حداقل دو دلیل را فهرست کنید که چرا سیستمهای پایگاه داده از دستکاری دادهها با استفاده از یک زبان پرس و جو اعلانی مانندSQL ، به جای فقط ارائه یک کتابخانه از توابع C یا ++C برای انجام دستکاری دادهها، پشتیبانی میکنند .
 - ۱.۱۱ فرض کنید دو دانشجو در تلاش برای ثبتنام در یک درسی هستند که تنها یک صندلی خالی دارد .

 کدام مولفه از یک سیستم پایگاه داده مانع از این میشود که به هر دو دانشجو آن صندلی آخر داده شود؟
 - ۱.۱۲ تفاوت بین معماریهای برنامه دو لایه و سه لایه را توضیح دهید. کدام یک برای برنامههای کاربردی وب مناسبتر است؟ چرا؟
 - ۱.۱۳ دو ویژگی توسعه یافته در دهه ۲۰۰۰ را فهرست کنید که به سیستمهای پایگاه داده کمک میکنند تا حجم کاری تجزیه و تحلیل داده-data)

 (analytics workloads) مدیریت کنند .
 - ۱.۱۴ توضیح دهید که چرا سیستمهای NoSQL در دهه ۲۰۰۰ ظهور کردند و به طور خلاصه ویژگیهای آنها را با سیستمهای پایگاه داده سنتی مقایسه کنید .
 - ا ۱.۱۵ حداقل سه جدولی را توصیف کنید که ممکن است برای ذخیره اطلاعات در یک سیستم شبکههای اجتماعی مانند فیسبوک استفاده شود.