Lecture Summary: Independence of Multiple Random Variables and I.I.D. Case

Source: Lec2.2.pdf

Key Points

- Definition of Independence for Multiple Random Variables:
 - n random variables X_1, X_2, \ldots, X_n are independent if:

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) \cdot P(A_2) \cdot \cdots \cdot P(A_n),$$

for any events A_1, A_2, \ldots, A_n related to X_1, X_2, \ldots, X_n .

- Alternatively, for discrete random variables, independence holds if the joint PMF factors as:

$$f_{X_1,X_2,...,X_n}(t_1,t_2,...,t_n) = f_{X_1}(t_1) \cdot f_{X_2}(t_2) \cdot \cdot \cdot \cdot f_{X_n}(t_n).$$

- Examples of Independence:
 - Example 1: Tossing a Fair Coin Thrice:
 - * Joint PMF: $f_{X_1,X_2,X_3}(t_1,t_2,t_3) = \frac{1}{8}$ for all $t_1,t_2,t_3 \in \{0,1\}$.
 - * Marginal PMFs: $f_{X_i}(t_i) = \frac{1}{2}$.
 - * Check: The product of marginals equals the joint PMF, confirming independence.
 - Example 2: Three-Digit Lottery Numbers:
 - * Random variables:
 - \cdot X: Hundreds place digit (uniform 0 to 9).
 - · Y: Parity of the number (even or odd).
 - · Z: Units place digit (uniform 0 to 9).
 - * Observations:
 - · X and Z are independent, as their joint PMF equals the product of their marginals.
 - · Y and Z are dependent, as certain combinations (e.g., Y = 1 and Z = 2) are impossible.
- Special Case: I.I.D. Random Variables:
 - Independent and Identically Distributed (i.i.d.) random variables satisfy:
 - * Independence: The joint PMF factors as a product of marginals.
 - * Identical distribution: All marginals are the same, $f_{X_i}(t) = f_X(t)$.
 - Joint PMF simplifies to:

$$f_{X_1,X_2,...,X_n}(t_1,t_2,...,t_n) = \prod_{i=1}^n f_X(t_i).$$

- Applications of I.I.D. Random Variables:
 - Simplifies probability calculations for complex events.

- Example: Geometric Distribution:
 - * Let $X_1, X_2, \ldots, X_n \sim \text{Geometric}(p)$ be i.i.d.
 - * Probability that all $X_i > j$:

$$P(X_1 > j, X_2 > j, \dots, X_n > j) = (P(X > j))^n$$
.

- Example: Missing Value:
 - * Let X_i take values 0, 1, 2, 3, 4 with known PMF. The probability that $X_i \neq 4$ for all i:

$$P(X_1 \neq 4, X_2 \neq 4, ..., X_n \neq 4) = (P(X \neq 4))^n$$
.

- Memoryless Property of Geometric Distributions:
 - The Geometric distribution satisfies:

$$P(X > m + n \mid X > m) = P(X > n).$$

- Interpretation: The future waiting time is independent of the past.

Simplified Explanation

Independence: Random variables are independent if the joint PMF equals the product of their marginals.
I.I.D. Random Variables: Independent and identically distributed variables share the same marginal PMF and simplify computations.

Example (Geometric): For $X \sim \text{Geometric}(p)$:

$$P(X_1 > j, ..., X_n > j) = (P(X > j))^n$$
.

Conclusion

In this lecture, we:

- $\bullet\,$ Defined independence for multiple random variables.
- Explored examples, including dependent and independent cases.
- Introduced the i.i.d. case and discussed its practical applications.
- Highlighted the memoryless property of the Geometric distribution.

Understanding independence and the i.i.d. case is essential for probabilistic modeling and statistical inference.