Теоретические ("малые") домашние задания

Теория типов, ИТМО, МЗЗЗ4-МЗЗЗ9, осень 2018 года

Домашнее задание №1: «знакомство с лямбда-исчислением»

1. Расставьте скобки:

$$\lambda f.\lambda x.f \ x \ (\lambda c.g \ f) \ x \ a \ \lambda b.\lambda a.x$$

- 2. Проведите бета-редукции и приведите выражения к нормальной форме:
 - (a) $(\lambda f.\lambda x.f\ (f\ x))\ (\lambda f.\lambda x.f\ (f\ x))$
 - (b) $(\lambda a.\lambda b.b)$ $((\lambda x.x \ x) \ (\lambda x.x \ x \ x))$
- 3. Выразите следующие функции в лямбда-исчислении:
 - (a) Or, Xor
 - (b) isZero (T, если аргумент равен 0, иначе F)
 - (c) isEven (T, если аргумент чётный)
 - (d) умножение на 2, умножение
 - (е) возведение в степень
 - (f) вычитание 1, вычитание

Домашнее задание №2: «пропущенные теоремы лямбда-исчисления»

Докажите следующие леммы, упомянутые, но недоказанные на лекции:

- 1. Если отношение R обладает ромбовидным свойством, то и отношение R^* (транзитивное и рефлексивное замыкание R) также им обладает.
- 2. Отношение альфа-эквивалентности является отношением эквивалентности.
- 3. Если $P_1 \rightrightarrows_{\beta} P_2$ и $Q_1 \rightrightarrows_{\beta} Q_2$, то $P_1[x := Q_1] \rightrightarrows_{\beta} P_2[x := Q_2]$.
- 4. (\Rightarrow_{β}) обладает ромбовидным свойством.
- $5. \ (\Rightarrow_{\beta}) \subseteq (\rightarrow_{\beta})^*$
- 6. $(\rightarrow_{\beta}) \subseteq (\rightrightarrows_{\beta})$

Домашнее задание №3: «просто типизированное лямбда-исчисление»

- 1. Докажите лемму о промежуточных типах (Generation lemma, 3.1.6 из Morten Heine B. Sørensen, Pawel Urzyczyn: Lections on the Curry-Howard Isomorphism). А именно, покажите, что:
 - (a) $\Gamma \vdash x : \tau$ влечёт $x : \tau \in \Gamma$.
 - (b) $\Gamma \vdash MN : \sigma$ влечёт существование типа τ , такого, что что $\Gamma \vdash M : \tau \to \sigma$ и $\Gamma \vdash N : \tau$.
 - (c) $\Gamma \vdash \lambda x.M : \sigma$ влечёт существование типов τ и ρ , таких, что $\Gamma, x : \tau \vdash M : \rho$ и $\sigma = \tau \to \rho$
- 2. Докажите лемму о подстановке (Substitution lemma, 3.1.8):
 - (a) Обозначим за $\sigma[\alpha := \tau]$ (за $\Gamma[\alpha := \tau]$) замену всех элементарных типов α на тип τ в типе σ (во всех типах в Γ). Тогда, если $\Gamma \vdash M : \sigma$, то $\Gamma[\alpha := \tau] \vdash M : \sigma[\alpha := \tau]$.
 - (b) Если $\Gamma, x: \tau \vdash M: \sigma$ и $\Gamma \vdash N: \tau$, то $\Gamma \vdash M[x:=N]: \sigma$.
- 3. Докажите лемму о редукции терма (Subject reduction proposition, 3.1.9): если $\Gamma \vdash M : \sigma$ и $M \to_{\beta} N$, то $\Gamma \vdash N : \sigma$.
- 4. Пользуясь предыдущими пунктами, покажите, что Y нетипизируем в просто типизированном лямбда-исчислении.

- 5. Найдите терм M и два различных типа σ и τ , что $\vdash M : \sigma$ и $\vdash M : \tau$. А существует ли терм M, имеющий в точности один тип?
- 6. Покажите, что лемма о редукции терма не работает «в обратную сторону». А именно, что:
 - (a) Найдутся M, N и τ , что $\vdash N : \tau, M \rightarrow_{\beta} N$, но M не имеет типа.
 - (b) Найдутся M, N, σ и τ , что $\vdash M : \sigma$, $\vdash N : \tau$ и $M \to_{\beta} N$, но $\nvdash M : \tau$.

Домашнее задание №4: «просто типизированное лямбда-исчисление; алгебраические типы»

- 1. Списки и алгебраические типы. В данном задании потребуется строить и преобразовывать довольно сложные лямбда-выражения. Для проверки рекомендуем пользоваться интерпретатором, например, можно взять LCI: https://chatziko.github.io/lci/. Возможно, для демонстрации домашнего задания вам потребуется использовать свой ноутбук и проектор.
 - (a) Определите алгебраический тип для списка целых чисел в вашем любимом языке программирования. На Окамле это будет type int_list = Nil | Cons of (int * int_list). Вы можете использовать и не функциональный язык (C++, Kotlin и т.п.), но вы должны применять именно алгебраический тип или его аналог (то есть, union в C++, sealed class в Kotlin и т.п.).
 - (b) Напишите функции вычисления длины списка, подсчёта суммы списка, произведения списка.
 - (c) Определите функцию высшего порядка тар (применяющую переданную параметром функцию к каждому элементу списка), и примените её для построения списка нулей (превратить список чисел в список нулей той же длины), удвоенных значений (превратить список [1,3,5] в [2,6,10]), списка остатков от деления на [2,3,5] в [0,1,1]).
 - (d) Перепишите весь код из предыдущих пунктов в чистых лямбда-выражениях, используя рассмотренные на лекции представления в лямбда-исчислении для упорядоченных пар и алгебраических типов.
- 2. Ещё немного алгебраических типов. Аналогично предыдущему пункту, определите на языке высокого уровня алгебраический тип для корней квадратного уравнения. Варианты значений: «нет решений» без параметров, «одно решение» с одним параметром, «два решения» с двумя параметрами. Определите функции вычисления корней по коэффициентам квадратного уравнения и печати корней.
- 3. Деревья с помощью алгебраических типов. Определите на языке высокого уровня тип для дерева двоичного поиска, варианты для узла: «лист» без параметров и «ветвь» с двумя сыновьями и целочисленным значением. Определите:
 - (а) функцию печати дерева;
 - (b) функцию поиска значения в дереве;
 - (с) функцию добавления значения в дерево двоичного поиска;
 - (d) функцию удаления значения из дерева.
- 4. Доопределите бета-редукцию для просто типизированного лямбда-исчисления по Чёрчу.
- 5. Докажите теорему Чёрча-Россера для просто типизированного лямбда-исчисления по Чёрчу.
- 6. Докажите лемму о поднятии с лекции, а именно, что для всех $M,N\in\Lambda_{\mathbf{x}}$:
 - (а) если $M \to_{\beta} N$, то для любого $M' \in \Lambda_{\mathfrak{q}}$, такого, что |M'| = M, найдётся такой $N' \in \Lambda_{\mathfrak{q}}$, что |N'| = N и $M' \to_{\beta} N'$;
 - (b) если $\Gamma \vdash M : \sigma$, то найдётся такой $M' \in \Lambda_\mathtt{q}$, что $\Gamma \vdash_\mathtt{q} M' : \sigma$.

Домашнее задание №5: «выразительная сила просто типизированного лямбда-исчисления, алгоритм унификации»

- 1. Покажите, что чёрчевский нумерал в общем случае имеет тип $(\alpha \to \alpha) \to (\alpha \to \alpha)$. Имеют ли нумералы для 0, 1 и 2 какие-то более общие типы?
- 2. Обозначим тип для целых чисел $\eta = (\alpha \to \alpha) \to (\alpha \to \alpha)$. В данных обозначениях покажите, что операция сложения имеет тип $\eta \to \eta \to \eta$.
- 3. Напомним, что $\overline{m}=\lambda f.\lambda x.f^{(m)}$ x (чёрчевский нумерал для m). Рассмотрим выражение $Power=\lambda m.\lambda n.n\ m.$
 - (a) найдите тип Power;
 - (b) покажите, что $Power \ \overline{m} \ \overline{n} = \overline{m^n}$, найдите тип $Power \ \overline{m} \ \overline{n}$;
 - (c) покажите, что $\lambda x.Power \ x \ x$ не имеет типа;
 - (d) объясните кажущееся противоречие между предыдущими пунктами: почему $Power\ \overline{2}\ \overline{2}$ имеет тип, а $(\lambda x. Power\ x\ x)\ \overline{2}$ не имеет типа.
- 4. Докажите, что изложенный на лекции алгоритм унификации всегда завершается. Указание: постройте оценку сложности уравнения в алгебраических термах и покажите, что эта оценка уменьшается при каждом шаге алгоритма.

Домашнее задание №6: «унификация и типы, комбинаторы»

- 1. Выразите $\lambda f.\lambda x.f$ x через S и K.
- 2. Докажите, что алгоритм устранения абстракций T с лекции, преобразующий замкнутое лямбдавыражение в выражение в комбинаторах S и K, корректен. То есть, для любого лямбда-выражения A:
 - (a) T(A) определено и вычисляется за конечное время;
 - (b) $T(A) =_{\beta} A;$
 - (c) если A замкнуто, то T(A) не содержит абстракций и свободных переменных и состоит только из применений (аппликаций) и комбинаторов S и K.
- 3. Покажите, что базис B, C, K, W позволяет выразить любое замкнутое лямбда-выражение.
- 4. Постройте систему аксиом для импликационного фрагмента просто типизированного лямбда-исчисления на основе базиса B, C, K, W.
- 5. Будем говорить, что тип σ есть частный случай типа θ (и записывать это как $\sigma \sqsubseteq \theta$), если существует такая подстановка S, что $\sigma = S(\theta)$. Рассмотрим лямбда-выражение M, такое, что $\vdash M : \sigma$ и $\vdash M : \theta$.
 - (a) Покажите, что найдётся тип τ , что $\vdash M : \tau, \sigma \subseteq \tau$ и $\theta \subseteq \tau$.
 - (b) Всегда ли найдётся τ , что $\tau \subseteq \sigma$ и $\tau \subseteq \theta$?
 - (c) Всегда ли выполнено либо $\theta \subseteq \sigma$, либо $\sigma \subseteq \theta$?
 - (d) Можно ли определить решётку на типах для данного M с определённым выше отношением предпорядка (\subseteq)? Естественно, вам потребуется рассмотреть классы эквивалентности типов, чтобы «склеить» случаи типов, отличающихся только переименованием переменных. Какими свойствами эта решётка будет обладать (дистрибутивность, импликативность, существование 0 и т.п.)?

Домашнее задание №7: «исчисление второго порядка, система F»

- 1. Докажите, что введённые на лекции представления для связок соответствуют правилам для связок:
 - (a) Конъюнкция. Если $\varphi \& \psi \equiv \forall \alpha. (\varphi \to \psi \to \alpha) \to \alpha$, то всегда можно доказать заключения следующих правил при доказанных посылках:

$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \& \psi} \qquad \frac{\Gamma \vdash \varphi \& \psi}{\Gamma \vdash \varphi} \qquad \frac{\Gamma \vdash \varphi \& \psi}{\Gamma \vdash \psi}$$

(b) Дизъюнкция. Если $\varphi \lor \psi \equiv \forall \alpha. (\varphi \to \alpha) \to (\psi \to \alpha) \to \alpha$, то можно показать такие правила:

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \qquad \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} \qquad \frac{\Gamma, \varphi \vdash \pi}{\Gamma \vdash \pi} \qquad \frac{\Gamma, \psi \vdash \pi}{\Gamma \vdash \pi} \qquad \frac{\Gamma, \psi \vdash \pi}{\Gamma \vdash \pi}$$

(c) Квантор существования. Если $\exists \alpha. \varphi \equiv \forall \theta. (\forall \alpha. \varphi \to \theta) \to \theta)$, то можно показать и следующие правила:

$$\frac{\Gamma \vdash \varphi[\alpha := \theta]}{\Gamma \vdash \exists \alpha. \varphi} \qquad \frac{\Gamma \vdash \exists \alpha. \varphi \quad \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi} \ (\alpha \notin FV(\Gamma, \psi))$$

Домашнее задание №8: «экзистенциальные типы, ранг типа»

- 1. Докажите, что если $\sigma \in R(1)$, то существует ψ с поверхностными кванторами, что $\psi \vdash \sigma$ и $\sigma \vdash \psi$.
- 2. Докажите, что если $M:\sigma$ и $\sigma\in R(1)$, то существует ψ с поверхностными кванторами и лямбдавыражения N, F и B в системе F, такие, что $N:\psi, F:\sigma\to\psi$ и $B:\psi\to\sigma$.
- 3. Пусть задан экзистенциальный тип $\exists \alpha.\sigma$. Если рассматривать экзистенциальные типы в терминах АТД, то α здесь переменная для типа структуры данных (массив, список и т.п.), а σ интерфейс (например, рассматривавшийся на лекции интерфейс стэка: α & $(\alpha \to \nu \to \alpha)$ & $(\alpha \to (\nu \& \alpha))$).

Также пусть задана реализация этого типа (актуальный тип для структуры данных — β , и актуальная реализация интерфейса — T).

(а) Операция упаковки: обозначим за

pack
$$\{\beta, T\}$$
 to $\exists \alpha. \sigma$

выражение

$$\Lambda \gamma . \lambda x : (\forall \alpha . \sigma \rightarrow \gamma) . x \beta T$$

Покажите выполнение правила

$$\frac{\Gamma \vdash T : \sigma[\alpha := \beta]}{\Gamma \vdash \mathsf{pack} \; \{\beta, T\} \; \mathsf{to} \; \exists \alpha. \sigma : \exists \alpha. \sigma}$$

(b) Операция распаковки: обозначим за

$$\mathtt{unpack}\ \{\alpha,x:\sigma\}=T\ \mathtt{in}\ E^\delta$$

выражение

$$T \delta (\Lambda \alpha. \lambda x : \sigma. E)$$

Покажите выполнение правила

$$\frac{\Gamma \vdash T : \exists \alpha.\sigma \quad \Gamma, x : \sigma \vdash E : \delta}{\Gamma \vdash \mathtt{unpack} \ \{\alpha, x : \sigma\} = T \ \mathtt{in} \ E^{\delta} : \delta}$$

- (c) Выразите алгебраический тип от двух аргументов через экзистенциальный тип: постройте лямбда-выражения для in_L , in_R и case, использующие pack и unpack, покажите, что правила вывода для дизъюнкции будут выполняться и что результат бета-редукции выражений в правилах будет ожидаемым.
- 4. Рассмотрим абстрактный тип данных NatNum («натуральное число»), с операциями: (а) константа 0; (б) сравнение двух значений; (в) прибавление 1; (г) печать в строку. Задайте его на языке Хаскель с помощью экзистенциальных типов, предусмотрите три реализации (через Integer, аксиоматику Пеано и в виде строчек из цифр), напишите функции: (—) печати списка чисел в строку ([NatNum] -> String); (—) удвоения каждого числа в списке ([NatNum] -> [NatNum]); (—) суммы списка ([NatNum] -> NatNum).

Указание: напомним, что значение экзистенциального типа — это функция, берущая на вход функцию, проводящую вычисление с абстрактным типом данных. Этот абстрактный тип доступен только внутри вызова, наружу его передать нельзя. Поэтому, чтобы увидеть результат исполнения функций (—), ($\stackrel{-}{\Box}$) и ($\stackrel{-}{\Xi}$), нужно также обернуть их в какое-то вычисление, выдающее «не-абстрактный» результат (например, текстовую строку), и уже это вычисление передавать внутрь значения экзистенциального типа.

Смотрите пример реализации https://github.com/shd/tt2018/blob/master/existential.hs

Домашнее задание №9: «Idris, введение»

- 1. Определите в языке Идрис конъюнкцию и дизъюнкцию. Определите все стандартные операции для них (инъекции, проекции и т.п.): эти операции, очевидно, будут доказательством некоторых утверждений в интуиционистской логике. Какие это утверждения, приведите их.
- 2. Определите функцию swap: Vect n a -> (Fin n) -> Vect n a, строящую новый вектор, в котором два элемента вектора поменяны местами.

```
3. Определите функции арифметики для Fin:
(a) plus_fin: Fin a -> Fib b -> Fin (a+b)
(б) mul_fin: Fin a -> Fin b -> Fin (a*b)
(в) dec_fin: Fin (S a) -> Fin a
```

4. Определите функции минимума для натуральных (Пеано) и конечных чисел:

```
nat_min: Nat -> Nat -> Nat
min_fin: {a:Nat} -> {b:Nat} -> Fin (S a) -> Fin (S b) -> Fin (S (nat_min a b))

Также определите функции:

map2: {X:Type} -> {Y:Type} -> {Z:Type} -> (a:Nat) -> (b:Nat) -> (X->Y->Z) -> Vect a X -> Vect b Y -> Vect (nat_min a b) Z

index2: {X:Type} -> {Y:Type} -> (a:Nat) -> (b:Nat) -> Fin (nat_min a b) -> Vect a X -> Vect b Y -> (X,Y)
```

Домашнее задание №10: «Идрис, простые доказательства»

Ещё раз напомним основную идею доказательства: доказать утверждение σ — это построить такое выражение M, что $\vdash M$: σ .

В языках с типовой системой Хиндли-Милнера существует алгоритм, разрешающий задачу типизации: там для вывода типов достаточно самого выражения M и типа σ . В Идрисе, с учётом сложности языка, задача типизации неразрешима, поэтому компилятор может догадаться до типа сам только в очень простых случаях. В остальных ситуациях компилятору нужны подсказки.

Например, заметить, что Ref1: 0+z=z+0, компилятор сам не может (сразу напомним, что если тип значений компилятору известен, то мы можем писать + вместо plus, 0 вместо Z, 1 вместо S Z). Ему можно это пояснить, написав функцию, проводящую доказательство по индукции, на лекции мы рассматривали такой её вариант:

```
plus_zero_commutative : (a : Nat) -> (0+a) = (a+0)
plus_zero_commutative Z = Refl
plus_zero_commutative (S k) = rewrite (plus_zero_commutative k) in Refl
```

Однако, магия конструкции **rewrite** оставила много вопросов, поэтому давайте копнём глубже, и разберём этот пример с точки зрения функции **replace**, которую использует **rewrite**.

```
replace: (x=y) \rightarrow P x \rightarrow P y.
```

Функция replace берёт два явных параметра, и один неявный (P). P — это некоторый тип, зависящий от x. Функция имеет естественный смысл: если два значения равны, и свойство выполнено для одного из них, то оно выполнено и для другого.

Неявность P предполагает, что компилятор может догадаться до того, что это за значение, но на практике он не справляется с этой задачей. Поэтому обычно P нужно указывать.

Давайте поймём, что это должен быть за P. В случае plus_zero_commutative мы, имея предположением индукции 0+a=a+0, должны доказать 0+(Sa)=(Sa)+0. Логично взять предположение за равенство x=y, при этом x будет соответствовать 0+a, а y будет соответствовать a+0. Теперь подберём такое P, чтобы P (0+a) унифицировалось C0 + (C0) унифицировалось C0 + 0.

Давайте возьмём $P = \w = S (0+a) = S w$. Тогда P (0 + a) -это S (0+a) = S (0+a) (что очевидно доказывается при помощи Refl), а P (a+0) -это S (0+a) = S (a+0) (что является требуемым утверждением, так как S (0+a) = S(a) = 0+S(a); компилятор, как мы обсуждали, способен короткие цепочки подобных преобразований производить самостоятельно).

Итак, мы получили следующий код:

```
plus_zero_commutative: (a:Nat) -> 0 + a = a + 0 plus_zero_commutative Z = Refl plus_zero_commutative (S a) = replace \{P = w => S (0+a)=S w\} (plus_zero_commutative a) Refl
```

В отличие от replace, конструкция rewrite имеет дополнительный эвристический алгоритм для подбора соответствующего P, поэтому в части случаев мы можем довериться её интеллекту.

- 1. Свойства равенства. Докажите, что:
 - (a) $x = y \rightarrow y = x$
 - (b) x = y -> y = z -> x = z
 - (c) (конгруэнтность) (P: A -> B) -> x = y -> P x = P y
- 2. Простая арифметика сложение. Докажите, что:
 - (a) x = x + 0
 - (b) S x = 1 + x
 - (c) S x = x + 1
 - (d) S x + S x = S (S (x + x))
 - (e) S x + S y = S (S (x + y))
 - (f) S (x + y) = x + (S y)
 - (g) x + y = y + x
 - (h) x + (y + z) = (x + y) + z
- 3. Простая арифметика умножение. Докажите, что:
 - (a) 0 = x * 0
 - (b) 0 = 0 * x
 - (c) x = 1 * x
 - (d) x = x * 1
 - (e) x * y = y * x
 - (f) x * (y * z) = (x * y) * z
 - (g) x * (y + z) = x * y + x * z
- 4. Отношение «меньше или равно» определено в библиотеке Идрис так:

- (a) Докажите, что LTE 3 5
- (b) Докажите, что LTE x y -> LTE x (S y)
- (c) Докажите, что LTE x y -> LTE (x+n) (y+n)
- 5. Определите отношение «строго больше», GT. Докажите, что

```
(x:Nat) \rightarrow (y:Nat) \rightarrow Either (LTE x y) (GT x y)
```

- 6. Определите ограниченное вычитание sub (sub x у равно 0, если x < y), докажите:
 - (a) LTE x y \rightarrow sub x y = 0
 - (b) sub $x y = 0 \rightarrow LTE x y$
 - (c) LTE y x \rightarrow y + (sub x y) = x