```
In [ ]: import pandas as pd
        data= pd.read csv('/content/Financial Analytics data.csv')
        #print(data.describe())
        print(data.head(10))
        #print(data.info())
          S.No.
                          Name Mar Cap - Crore Sales Qtr - Crore
             1 Reliance Inds.
                                      583436.72
                                                          99810.00
       1
             2
                           TCS
                                      563709.84
                                                          30904.00
                     HDFC Bank
       2
             3
                                      482953.59
                                                          20581.27
       3
             4
                           ITC
                                      320985.27
                                                           9772.02
       4
                       HDFC
                                                          16840.51
                                     289497.37
       5
             6 Hind. Unilever
                                      288265.26
                                                           8590.00
       6
             7 Maruti Suzuki
                                      263493.81
                                                          19283.20
       7
             8
                       Infosys
                                     248320.35
                                                          17794.00
       8
             9
                       0 N G C
                                      239981.50
                                                          22995.88
             10 St Bk of India
                                      232763.33
                                                          57014.08
In [ ]: #check the proportion of the missing value
        missing value=data.isnull().sum()
        missing value
Out[]:
                        0
                 S.No.
                       0
                 Name
                       0
         Mar Cap - Crore
        Sales Qtr - Crore 29
       dtype: int64
In [ ]: # Impute missing values using the median
        data['Mar Cap - Crore'].fillna(data['Mar Cap - Crore'].median(), inplace=
        data['Sales Qtr - Crore'].fillna(data['Sales Qtr - Crore'].median(), inpl
In [ ]: # Verify that there are no more missing values
        data.isnull().sum()
                       0
Out[]:
                 S.No. 0
                 Name 0
         Mar Cap - Crore 0
        Sales Qtr - Crore 0
       dtype: int64
In [ ]: #Removing S.NO
        data=data.drop('S.No.',axis=1)
In [ ]: # Calculate summary statistics for numerical columns
        summary stats = data.describe()
```

```
# Display the summary statistics
summary_stats
```

Out[]: Mar Cap - Crore Sales Qtr - Crore count 488.000000 488.000000 mean 27708.961086 3649.084570 58963.329098 9708.054143 std min 3017.070000 0.000000 25% 4879.612500 570.035000 50% 9885.050000 1137.170000 75% 23400.815000 2580.797500 max 583436.720000 110666.930000

```
In []:
    from matplotlib import pyplot as plt
    summary_stats['Mar Cap - Crore'].plot(kind='hist', bins=20, title='Mar Ca
    plt.gca().spines[['top', 'right',]].set_visible(False)
```


In []: from matplotlib import pyplot as plt
 summary_stats['Sales Qtr - Crore'].plot(kind='line', figsize=(8, 4), titl
 plt.gca().spines[['top', 'right']].set_visible(False)

In []: from matplotlib import pyplot as plt
summary_stats['Mar Cap - Crore'].plot(kind='line', figsize=(8, 4), title=
plt.gca().spines[['top', 'right']].set_visible(False)


```
In [ ]: from matplotlib import pyplot as plt
summary_stats.plot(kind='scatter', x='Mar Cap - Crore', y='Sales Qtr - Cr
plt.gca().spines[['top', 'right',]].set_visible(False)
```


In []: from matplotlib import pyplot as plt
 summary_stats['Sales Qtr - Crore'].plot(kind='hist', bins=20, title='Sale
 plt.gca().spines[['top', 'right',]].set_visible(False)


```
In [ ]: import matplotlib.pyplot as plt

# Histograms
plt.figure(figsize=(10, 5))
```

```
plt.subplot(1, 2, 1)
data['Mar Cap - Crore'].hist(bins=30, edgecolor='k')
plt.title('Market Cap Distribution')
plt.xlabel('Market Cap (Crore)')
plt.ylabel('Frequency')

plt.subplot(1, 2, 2)
data['Sales Qtr - Crore'].hist(bins=30, edgecolor='k')
plt.title('Quarterly Sales Distribution')
plt.xlabel('Sales (Crore)')
plt.ylabel('Frequency')

plt.tight_layout()
plt.show()
```



```
In []: import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt

# Select only numeric columns for correlation calculation
   numeric_data = data.select_dtypes(include=[float, int])

# Compute the correlation matrix
   corr_matrix = numeric_data.corr()

# Plot the correlation matrix
   plt.figure(figsize=(8, 6))
   sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
   plt.title('Correlation Matrix')
   plt.show()
```


Out[]: 0.6256901302344715

```
In []: total_market_cap = data['Mar Cap - Crore'].sum()
   total_sales = data['Sales Qtr - Crore'].sum()
   avg_market_cap = data['Mar Cap - Crore'].mean()
   avg_sales = data['Sales Qtr - Crore'].mean()

   print(f"Total Market Cap: {total_market_cap}")
   print(f"Total Quarterly Sales: {total_sales}")
   print(f"Average Market Cap: {avg_market_cap}")
   print(f"Average Quarterly Sales: {avg_sales}")
```

Total Market Cap: 13521973.01 Total Quarterly Sales: 1780753.269999998 Average Market Cap: 27708.961086065574 Average Quarterly Sales: 3649.084569672131

```
In []: category_analysis = data.groupby('Name').agg({
    'Mar Cap - Crore': ['sum', 'mean', 'median'],
    'Sales Qtr - Crore': ['sum', 'mean', 'median']
})
print(category_analysis)
```

	Mar Cap - Crore			Sales Qtr - Crore	\
	sum	mean	median	sum	
Name					
3M India	23101.19	23101.19	23101.19	645.77	
A B B	31983.33	31983.33	31983.33	2779.40	
ACC	30803.68	30803.68	30803.68	3494.24	
AIA Engg.	13593.35	13593.35	13593.35	572.16	
APL Apollo	4775.03	4775.03	4775.03	1314.38	
Yes Bank	71028.13	71028.13	71028.13	5070.30	
Zee Entertainmer	54817.89	54817.89	54817.89	1838.07	
Zensar Tech.	4066.42	4066.42	4066.42	793.76	
Zydus Wellness	4921.45	4921.45	4921.45	132.40	
eClerx Services	5259.14	5259.14	5259.14	339.89	

	mean	median
Name		
3M India	645.77	645.77
ABB	2779.40	2779.40
ACC	3494.24	3494.24
AIA Engg.	572.16	572.16
APL Apollo	1314.38	1314.38
Yes Bank	5070.30	5070.30
Zee Entertainmen	1838.07	1838.07
Zensar Tech.	793.76	793.76
Zydus Wellness	132.40	132.40
eClerx Services	339.89	339.89

[488 rows x 6 columns]

```
In [ ]: # Pairplot to see relationships between variables
    sns.pairplot(data)
    plt.show()
```



```
In [ ]: import statsmodels.api as sm
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Independent variable (Sales)
        X = data['Sales Qtr - Crore']
        # Dependent variable (Market Cap)
        y = data['Mar Cap - Crore']
        # Add a constant to the independent variable
        X = sm.add\_constant(X)
        # Fit the regression model
        model = sm.OLS(y, X).fit()
        # Get the regression results
        summary = model.summary()
        # Scatter plot with regression line
        plt.figure(figsize=(10, 6))
        sns.regplot(x='Sales Qtr - Crore', y='Mar Cap - Crore', data=data, line kw
        plt.title('Regression Analysis of Market Cap vs. Sales')
        plt.xlabel('Sales Qtr - Crore')
        plt.ylabel('Mar Cap - Crore')
        plt.grid(True)
        plt.show()
        summary
```


Out[]: OLS Regression Results

Dep. Variable:	Mar Cap - Crore	R-squared:	0.391
Model:	OLS	Adj. R-squared:	0.390
Method:	Least Squares	F-statistic:	312.7
Date:	Sat, 17 Aug 2024	Prob (F-statistic):	2.18e-54
Time:	10:57:57	Log-Likelihood:	-5931.3
No. Observations:	488	AIC:	1.187e+04
Df Residuals:	486	BIC:	1.187e+04
Df Model:	1		
Covariance Type:	nonrohust		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	1.384e+04	2226.925	6.216	0.000	9466.035	1.82e+04
Sales Qtr - Crore	3.8002	0.215	17.682	0.000	3.378	4.223

Omnibus:	458.190	Durbin-Watson:	0.693
(Omnibus):	0.000	Jarque-Bera (JB):	25240.135
Skew:	3.852	Prob(JB):	0.00
Kurtosis:	37.380	Cond. No.	1.11e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.11e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In []: data=data.sort_values('Mar Cap - Crore', ascending=False)
    plt.bar(data['Name'].head(20), data['Mar Cap - Crore'].head(20),)
    plt.ylabel("Company Name") # Corrected typo
    plt.xlabel("Market Capitalization (Crore)") # Fixed label based on data
    plt.title("Distribution of Company by Market Capitalization")
    plt.xticks(rotation='vertical')# Adjusted title
    plt.show()
```



```
In [ ]: data=data.sort_values('Sales Qtr - Crore', ascending=False)
    plt.bar(data['Name'].head(15), data['Sales Qtr - Crore'].head(15))
    plt.ylabel("Company Name")
    plt.xlabel("Quaerterly Sales(Crore)")
    plt.title("Distribution of Company by Quraterly Sales")
    plt.xticks(rotation='vertical')
    plt.show()
```

Distribution of Company by Quraterly Sales


```
In [ ]: import pandas as pd
        # Financial Analysis
        data=data.sort_values('Mar Cap - Crore', ascending=False)
        # Market Share Analysis (assuming 'Mar Cap - Crore' represents total mark
        total market cap = data['Mar Cap - Crore'].sum()
        data['Market Share (%)'] = data['Mar Cap - Crore'] / total_market_cap * 1
        print("\nMarket Share:")
        print(data[['Name', 'Market Share (%)']].round(2)) # Round to 2 decimal
        # Recalculate Market Share (%)
        data['Market Share (%)'] = data['Mar Cap - Crore'] / data['Mar Cap - Cror
        # Visualize Top 10 Companies by Market Share
        top market share = data.sort values('Market Share (%)', ascending=False).
        plt.figure(figsize=(10, 6))
        sns.barplot(x='Market Share (%)', y='Name', data=top_market share, palett
        plt.title('Top 10 Companies by Market Share')
        plt.xlabel('Market Share (%)')
        plt.ylabel('Company Name')
        plt.show()
```

Market Share:

	Name	Market Share (%)
0	Reliance Inds.	4.31
1	TCS	4.17
2	HDFC Bank	3.57
3	ITC	2.37
4	HDFC	2.14
482	Prime Focus	0.02
483	Lak. Vilas Bank	0.02
484	NOCIL	0.02
485	Orient Cement	0.02
486	Natl.Fertilizer	0.02

[488 rows x 2 columns]

<ipython-input-27-679793326d9c>:17: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be remove d in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x='Market Share (%)', y='Name', data=top_market_share, palet
te='viridis')

