CS 353 Spring 2020 Homework 4 Solutions

Due: 13 April, Monday till midnight

Q.1 [18 pts, 2 pts each] Given the following instance of the relation R(A,B,C)

	A	В	С
Tuple 1	a1	b1	c1
Tuple 2	a1	b2	c2
Tuple 3	a2	b3	c1
Tuple 4	a2	b3	c2

Which of the following dependencies may hold in relation R? If a dependency cannot hold, indicate which tuples cause the violation.

(a) B
$$\rightarrow$$
 A (b) C \rightarrow A (c) A \rightarrow B (d) C \rightarrow B (e) A \rightarrow C (f) B \rightarrow C (g) BC \rightarrow A (h) AC \rightarrow B (i) AB \rightarrow C

Answer:

	FD	Holds?
a)	$B \to A$	holds
b)	$C \to A$	fails: tuples 1,3
c)	$A \to B$	fails: tuples 1,2
d)	$C \to B$	fails: tuples 1,3
e)	$A \to C$	fails: tuples 1,2
f)	$B \to C$	fails: tuples 3,4
g)	$BC \to A$	holds
h)	$AC \to B$	holds
i)	$AB \to C$	fails: tuples 3,4

Q.2 [8 pts, 4 pts each] Given the following relations with functional dependencies:

Relations: P(A, B, C, D) and Q(A, B, C, D)

Functional Dependencies:

- For P: $A \rightarrow BCD$, $B \rightarrow ACD$
- For Q: BC \rightarrow AD, D \rightarrow B
- (a) Find all candidate keys in P
- (b) Find all candidate keys in Q

Answer:

- a) A and B
- b) BC and CD

Q.3 [20 pts] Given the following relation with functional dependencies:

Relation: S(A, B, C, D, E, F, G)

Functional Dependencies: $F = \{BCD \rightarrow A, BC \rightarrow E, A \rightarrow F, F \rightarrow G, C \rightarrow D, A \rightarrow G\}$

Decompose S into 3NF. The decomposition should be lossless-join and dependency preserving. Show all your work.

Answer:

The candidate key of this relation is BC. BC is unique (BC⁺ = S) and minimal (B⁺ = B, C⁺ = CD).

Finding the canonical cover:

We apply union rule

 $F' = \{BCD \rightarrow A, BC \rightarrow E, A \rightarrow FG, F \rightarrow G, C \rightarrow D\}$

D is extraneous in BCD \rightarrow A, Since A is in (BC)⁺, we replace BCD \rightarrow A by BC \rightarrow A

$$F' = \{BC \rightarrow A, BC \rightarrow E, A \rightarrow FG, F \rightarrow G, C \rightarrow D\}$$

We apply union rule again

$$F' = \{BC \rightarrow AE, A \rightarrow FG, F \rightarrow G, C \rightarrow D\}$$

Now consider BC \rightarrow AE

- Check if A is extraneous in BC \rightarrow AE:

$$F'' = \{BC \rightarrow E, A \rightarrow FG, F \rightarrow G, C \rightarrow D\}$$

BC⁺ under F'' = BCED does not include A so A is not extraneous.

- Check if E is extraneous in BC \rightarrow AE:

$$F'' = \{BC \rightarrow A, A \rightarrow FG, F \rightarrow G, C \rightarrow D\}$$

 BC^+ under F'' = BCAD does not include E so E is not extraneous.

Now consider A \rightarrow FG

- Check if F is extraneous in A \rightarrow FG:

$$F'' = \{BC \rightarrow AE, A \rightarrow G, F \rightarrow G, C \rightarrow D\}$$

 A^+ under $F^{**} = AG$ does not include F so F is not extraneous.

- Check if G is extraneous in A \rightarrow FG:

$$F'' = \{BC \rightarrow AE, A \rightarrow F, F \rightarrow G, C \rightarrow D\}$$

 A^+ under F'' = AFG include G so G is extraneous.

Thus, the canonical cover $F' = \{BC \rightarrow AE, A \rightarrow F, F \rightarrow G, C \rightarrow D\}$

For each $X \rightarrow Y \in F'$, create a relation:

The candidate key is in S1, and none of the relations is a subset of any other relation.

Therefore, we do not add any more relations.

S is decomposed into S1, S2, S3 and S4 which are all in 3NF.

Q.4 [24 pts] Given the following relation with functional dependencies:

Relation: Q(A,B,C,D,E)

Functional Dependencies: AB \rightarrow E and D \rightarrow C

- (a) [6 pts] Find all superkey(s) and candidate key(s)
- (b) [18 pts] Decompose Q into BCNF. Show all your work.

Answer:

a) A superkey is a set of attributes X s.t. X^+ = all attributes. From the FDs above, we can derive:

$$\{A, B, D\}^+ = \{A, B, C, D\}^+ = \{A, B, D, E\}^+ = \{A, B, C, D, E\}^+ = \{A, B, C, D, E\}^+$$

Hence, {A, B, D}, {A, B, C, D}, {A, B, D, E} and {A, B, C, D, E} are all superkeys.

A candidate key is a minimal superkey. {A, B, D} is the only candidate key.

b) Both functional dependencies violate BCNF. Try $\{A, B\}^+ = \{A, B, E\}$. Decompose into Q1(A, B, E) and Q2(A, B, C, D). For Q1, AB \rightarrow E is the only FD and $\{A, B\}$ is a candidate key for Q1, so Q1 is in BCNF. Q2 is not in the BCNF, since $\{D\}$ is not a key and we have D \rightarrow C.

Try $\{D\}^+ = \{C, D\}$. Decompose into Q3(C, \underline{D}) and Q4(\underline{A} , \underline{B} , \underline{D}). D is a candidate key for Q3 (D+ = CD), so Q3 is in BCNF. There is no nontrivial FD for Q4, so Q4 is also in BCNF. As a result, Q is replaced by: Q1(\underline{A} , \underline{B} , \underline{E}), Q3(C, \underline{D}) and Q4(\underline{A} , \underline{B} , \underline{D}) which are all in BCNF.

Q.5 [18 pts, 6 pts each] Determine if the following decompositions are lossless-join or not. Show all your work.

- (a) Given the relational schema S(A, B, C, D, E), and the functional dependency set:
- $\{A \rightarrow C, BD \rightarrow A, D \rightarrow E\}$. S is decomposed into S1(B, C, D), S2(A, B, D) and S3(A, E)
- (b) Given the relational schema S(A, B, C, D), and the functional dependency set:
- $\{A \rightarrow BCD, B \rightarrow C, CD \rightarrow A\}$. S is decomposed into S1(A, B, C) and S2(B, C, D)
- (c) Given the relational schema S(A, B, C, D), and the functional dependency set:
- $\{A \rightarrow BCD, B \rightarrow C, CD \rightarrow A\}$. S is decomposed into S1(A, B, D) and S2(B, C)

Answer:

- a) Decomposition of S into S1(B, C, D), S2(A, B, D) and S3(A, E) is not lossless-join, because S2 \cap S3 = A is not a superkey for S2 or S3 (neither A \rightarrow S2 nor A \rightarrow S3 is true).
- b) Decomposition of S into S1(A, B, C) and S2(B, C, D) is not lossless-join, because S1 \cap S2 = BC is not a superkey for S1 or S2 (neither BC \rightarrow S1 nor BC \rightarrow S2 is true).
- c) Decomposition of S into S1(A, B, D) and S2(B, C) is lossless-join, because S1 \cap S2 = B is a superkey for S2.

Q.6 [12 pts]] Given the relational schema S(A, B, C, D), and the functional dependency set: { $A \rightarrow BCD, B \rightarrow C, CD \rightarrow A$ }. Determine if the decomposition of S into S1(A, B, C) and S2(B, C, D) is dependency preserving or not. Show all your work.

Answer:

Decomposition of S into S1(A, B, C) and S2(B, C, D) is not dependency preserving, because $A \rightarrow BCD$ is lost.

```
- For A → BCD we have:

result = A

using S1:

(result \cap S1) + = A+ = ABCD

t = (result \cap S1) + \cap S1 = ABCD \cap S1 = ABC

result = result U t = ABC

using S2:

(result \cap S2) + = (BC)+ = BC

t = (result \cap S2) + \cap S2 = BC \cap S2 = BC

result = result U t = ABC
```

In the second turn of the while loop of the algorithm the result does not change, so we stop here. As the rhs of FD A \rightarrow BCD is not included in the result, we conclude that the decomposition is not dependency preserving.