IVRE, IL PRATIQUAIT LE ML SANS RECUL

Hugo Mougard

4 février 2019

NANTES MACHINE LEARNING MEETUP

Je suis

ingé R&D ML à source{d} co-organisateur de ce meetup

Je ne suis pas

climatologue sociologue magistrat

•••

AVANT-PROPOS

Je reviens de la FOSDEM

Je reviens de la FOSDEM, en avion

PLAN DE LA PRÉSENTATION

Introduction

Le ML est-il important?

Coût carbone

Technocratie

Asymétrie des acteurs

Biais et ML

Pistes d'action

INTRODUCTION

But

Examiner le ML sous quelques angles critiques

QUELQUES POINTS DE DÉPART

- Collapsologie
- · Rapports du GIEC sur le Climat
- · Révélations d'Edward Snowden
- Climat social
- · Épisode de Data Gueule Algocratie

COLLAPSOLOGIE

Étude de l'effondrement de la société thermo-industrielle.

Meetup sur Nantes.

RAPPORT DU GIEC

Rapport spécial sur le réchauffement d'1,5°C (2018).

RÉVÉLATIONS D'EDWARD SNOWDEN

Omnipotence de la surveillance (2014).

CLIMAT SOCIAL

Gilets jaunes, optimisation fiscale, augmentation des inégalités, \dots

ALGOCRATIE

Épisode 84, Algocratie

LE ML EST-IL IMPORTANT?

QUESTION

Pour X, Y et Z,

le ML est-il vraiment important ?

CHANGEONS DE PERSPECTIVE HISTORIQUE

Replaçons les algorithmes au centre $^{\rm 1}$.

^{1.} Basé très vaguement sur une présentation de Thierry Caminel.

ÉVOLUTION GÉNÉTIQUE

Accumulation biochimique des algorithmes (très lente).

HISTOIRE

Accumulation culturelle des algorithmes (lente).

HISTOIRE MODERNE

 $\label{lem:accumulation} \mbox{Accumulation explicite des algorithmes} - \mbox{informatique (rapide)}.$

MAINTENANT

Accumulation semi-automatique des algorithmes — AI/ML (très rapide).

PEUT-ÊTRE UN JOUR

Accumulation automatique des algorithmes — AGI (quasi instantanée).

CHANGEONS DE PERSPECTIVE ÉCONOMIQUE

Capital dominant : algorithmes.

MEILLEURES VALORISATIONS EN BOURSE

2T 2007	2T 2018		
PetroChina	Apple		
Exxon	Amazon		
GE	Google		
China Mobile	Microsoft		
Bank of China	Berkshire		
Microsoft	Facebook		
Gazprom	Alibaba		
Shell	Tenscent		
AT&T	JP Morgan		

IMPORTANCE DU ML

Algorithmes = enjeu majeur

ML = enjeu majeur

COÛT CARBONE

IMPACT DU ML

Utilisation de l'impact du numérique comme proxy ².

^{2.} Toute cette section est basée sur le Rapport pour une sobritété numérique de THE SHIFT PROJECT

BACKGROUND: PLAN

[Source: The Shift Project, 2016]

BACKGROUND: PART DU NUMÉRIQUE

4% (2% pour l'aéronautique domestique, 8 pour le parc automobile).

EFFET YOUTUBE

Impact énergétique de la vue d'une vidéo : **1500** fois plus grand que la consommation du smartphone

EFFET YOUTUBE — GOOGLE TRANSLATE VU PAR UN UTILISATEUR

EFFET YOUTUBE — GOOGLE TRANSLATE VU PAR UN DATA SCIENTIST

EFFET REBOND

Accroître le rendement énergétique d'un objet **augmente** la consommation d'énergie globale dédiée à la fonction technique que remplit cet objet.

COÛT DE PRODUCTION

Pour un smartphone, 33 fois supérieur à sa consommation électrique annuelle.

CONSOMMATION DU NUMÉRIQUE EN CROISSANCE

Consommation d'énergie en Twh	2015	2020	2025	CAGR ⁸ 2015/2020	CAGR 2020/2025
Expected - 2015	2312	2878	4350	4,5%	8,7%
Worst - 2015	3677	5976	12 352	10%	15,5%
Expected updated	2389	3834	6254	9,9%	10,2%
Higher growth higher EE	2373	3622	5716	8,9%	9,5%
Superior growth peaked EE	2373	3622	7096	8,9%	14,5%
Sobriety	2373	3622	3909	8,9%	1,6%

Tableau 1 : Consommation d'énergie mondiale du Numérique en TWh

[Source : [Lean ICT Materials] Forecast Model. Produit par The Shift Project à partir des données publiées par (Andrae & Edler, 2015)]

PART DU NUMÉRIQUE EN CROISSANCE

MODE DE GOUVERNANCE

 $\cdot \ \text{par les experts} \\$

MODE DE GOUVERNANCE

- par les experts
- méritocratie

MODE DE GOUVERNANCE

- par les experts
- méritocratie
- · productivité

COMPARATIF RÉDUCTEUR, SUBJECTIF & SUPERFICIEL

	Technocracie	Démocratie
Question optimisée	Comment	Quoi
Décideurs	Experts	Citoyens / représentants
Valeur optimisée	Intérêt sectoriel	Intérêt général

EXEMPLE

Naonedia

RÔLE DU ML EN TECHNOCRATIE

 \mbox{ML} = expert parfait \rightarrow renforcement de la technocratie.

À ÉVITER

QUESTION

Tous les acteurs peuvent-ils utiliser le ML aussi efficacement ?

Trade-off entre libertés individuelles et contrôle étatique 3.

Sûreté Protection contre l'état

Sécurité Protection contre les autres citoyens

^{3.} Basé sur l'excellent billet de blog de Maître Eolas *Relisons la notice*.

Quelques stats sur la NSA

 $\cdot \approx$ 11 milliards en 2013 (Snowden)

- $\cdot \approx$ 11 milliards en 2013 (Snowden)
- Datacenter en Utah : des Exa-octets en stockage (10¹⁸ octets)

- \approx 11 milliards en 2013 (Snowden)
- Datacenter en Utah : des Exa-octets en stockage (10¹⁸ octets)
- · 30k à 40k employés

- \approx 11 milliards en 2013 (Snowden)
- Datacenter en Utah : des Exa-octets en stockage (10¹⁸ octets)
- · 30k à 40k employés
- → Fort déséquilibre en faveur de la sécurité.

Et en France

Et en France

· Installation de boîtes noires chez les FAI

Et en France

- · Installation de boîtes noires chez les FAI
- Renforcement du pouvoir administratif

Et en France

- · Installation de boîtes noires chez les FAI
- · Renforcement du pouvoir administratif
- ightarrow En sûreté, recours au ML compliqué

Coût d'entrée élevé en ML dû à

· la force de calcul nécessaire (АLРНАGO)

- · la force de calcul nécessaire (ALPHAGO)
- · la quantité de données nécessaires (CRITEO)

- · la force de calcul nécessaire (ALPHAGO)
- · la quantité de données nécessaires (CRITEO)
- · la quantité d'utilisateurs nécessaire (WAZE)

- · la force de calcul nécessaire (ALPHAGO)
- · la quantité de données nécessaires (CRITEO)
- · la quantité d'utilisateurs nécessaire (WAZE)
- \rightarrow Effet monopole accentué.

BIAIS ET ML

Dû à l'entraînement depuis les données, risque de biais.

Dû à l'entraînement depuis les données, risque de biais.

· pas biais statistique

Dû à l'entraînement depuis les données, risque de biais.

- pas biais statistique
- · biais social

Dû à l'entraînement depuis les données, risque de biais.

- · pas biais statistique
- · biais social
- possibilité d'être biaisé statistiquement et pas socialement, ou l'inverse.

Recette classique :

1. données biaisées \rightarrow modèle biaisé

- 1. données biaisées → modèle biaisé
- 2. modèle biaisé → nouvelles données biaisées

- 1. données biaisées → modèle biaisé
- 2. modèle biaisé → nouvelles données biaisées
- 3. **goto** 1., potentiellement avec intérêts

- 1. données biaisées → modèle biaisé
- 2. modèle biaisé → nouvelles données biaisées
- 3. **goto** 1., potentiellement avec intérêts
- 4. Profit. Biais éternel

CRÉATION DE BIAIS SOCIAL

Cas YouTube

Cas YouTube

• optimise le temps passé sur le site

Cas YouTube

- · optimise le temps passé sur le site
- · vidéo polémique > vidéo normale pour ce critère

Cas YouTube

- · optimise le temps passé sur le site
- · vidéo polémique > vidéo normale pour ce critère
- · biais social énorme vers les complot, Trump, etc, ...

Cas YouTube

- · optimise le temps passé sur le site
- · vidéo polémique > vidéo normale pour ce critère
- · biais social énorme vers les complot, Trump, etc, ...
- ightarrow Facteur important de l'élection de Trump.

PISTES D'ACTION

Directement du rapport Pour une sobriété numérique :

· adopter la sobriété numérique comme principe d'action

- · adopter la sobriété numérique comme principe d'action
- accélérer la prise de conscience des impacts environnementaux du numérique

- · adopter la sobriété numérique comme principe d'action
- accélérer la prise de conscience des impacts environnementaux du numérique
- permettre aux organisations de piloter environnementalement leur transition numérique

- · adopter la sobriété numérique comme principe d'action
- accélérer la prise de conscience des impacts environnementaux du numérique
- permettre aux organisations de piloter environnementalement leur transition numérique
- · procéder à un bilan carbone des projets numériques

- · adopter la sobriété numérique comme principe d'action
- accélérer la prise de conscience des impacts environnementaux du numérique
- permettre aux organisations de piloter environnementalement leur transition numérique
- · procéder à un bilan carbone des projets numériques
- améliorer la prise en compte des aspects systémiques du numérique dans les secteurs clefs

- · adopter la sobriété numérique comme principe d'action
- accélérer la prise de conscience des impacts environnementaux du numérique
- permettre aux organisations de piloter environnementalement leur transition numérique
- procéder à un bilan carbone des projets numériques
- améliorer la prise en compte des aspects systémiques du numérique dans les secteurs clefs
- · mettre en place des mesures à l'échelle européenne

 intégrer le coût équivalent carbone comme métrique décisionnelle

- intégrer le coût équivalent carbone comme métrique décisionnelle
- · régulièrement, à plusieurs échelles

- intégrer le coût équivalent carbone comme métrique décisionnelle
- · régulièrement, à plusieurs échelles
- en prenant en compte les effets YouTube, rebond, etc

https://hippocrate.tech/

1. Intégrité scientifique et rigueur

- 1. Intégrité scientifique et rigueur
- 2. Transparence

- 1. Intégrité scientifique et rigueur
- 2. Transparence
- 3. Équité

- 1. Intégrité scientifique et rigueur
- 2. Transparence
- 3. Équité
- 4. Respect

- 1. Intégrité scientifique et rigueur
- 2. Transparence
- 3. Équité
- 4. Respect
- 5. Responsabilité et indépendance

DROIT DE RETRAIT

Lié à l'indépendance du Serment d'Hippocrate du Data Scientist.

LUTTER CONTRE LES BIAIS

Consultation des citoyens, sociologues, magistrats, \dots

S'INFORMER, COMMUNIQUER

Très peu d'infos disponibles encore sur le coût carbone et social du ML.

TRANSPARENCE

Communiquer à vos utilisateurs l'impact de votre utilisation du ML.

Merci pour votre attention !

Questions / débat time!