Capstone Project - Applied Data Science

Open a new Iranian/Persian restaurant in Toronto, Canada

1. Introduction

A client wants to open his first restaurant in the city of Toronto. He would like me to study where he has more chance to succeed in his new business.

A. Background

My client is originally from Iran and new in Canada. He decided to live in Toronto and try to find the best place to open a food business. He wants to offer iranian speciatities to his customers. He is a

chef so do not fear about the quality of his cuisine. As a new immigrant, he does not know the habits of people and does not want to be in a area where the competition is too high. He does not fear about how long is he going to commute to go to work. One of his concern is not be close to another iranian cuisine around the city. He does not take the rental price into consideration so the financial aspect will not be considered for the study. He does not want to do a bad investment that is a reason why his choice will be based on facts and study.

Toronto is Canada's largest city and a world leader in such areas as business, finance, technology, entertainment and culture. Its large population of immigrants from all over the globe has also made Toronto one of the most multicultural cities in the world.

B. Data

- StatCan or wiki to get the iranian population living in Toronto, if possible breaking down per Borough
- Use the client location and Foursquare to search the iranian/ persian restaurants
- use the demography of Toronto per Borough to analyze where it is more possible to establish a new business

C. Methodology

- 1. Build the dataframe of Toronto neighborhood, merge with coordinates
- 2. Use foursquare to find all Persian restaurants around the city
- 3. Get my client address and explore areas with less iranian restaurants
- 4. Propose to the client one of two areas where he can get more chance to succeed

2. Assumption

My client lives in a crowded area where he can see many middle east immigrants. As we have done working in the first week of the Capstone project with the Toronto neighborhood location, I will use the same data as data entry. Also, I could not found a recent demographic population in the all Toronto so, I decided to use the 2016 demographic data available at

https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/hlt-fst/pd-pl/comprehensive.cfm The

Toroto geojson file has been created using a shapefile. Thanks to YKCZoli who has an excellent tutorial on how to do this a this url:

https://gist.github.com/YKCzoli/b7f5ff0e0f641faba0f47fa5d16c4d8d Those 2 files have been saved into my github and been used in the notebook.

So Let's get started by installing and importing libraries

3. Data preparation and demonstration

```
In [ ]: !conda install -c conda-forge geopy --yes
         !conda install -c conda-forge folium=0.5.0 --yes
         !conda install -c conda-forge geocoder
In [79]: import numby as np # library to handle data in a vectorized manner
         import pandas as pd # library for data analsysis
         pd.set option("display.max columns", None)
         pd.set option("display.max rows", None)
         import json # library to handle JSON files
         from geopy.geocoders import Nominatim # convert an address into latitude and 1
         ongitude values
         import geocoder # to get coordinates
         import requests # library to handle requests
         from bs4 import BeautifulSoup # library to parse HTML and XML documents
         from pandas.io.json import json normalize # tranform JSON file into a pandas d
         ataframe
         # Matplotlib and associated plotting modules
         import matplotlib.cm as cm
         import matplotlib.colors as colors
         # import k-means from clustering stage
         from sklearn.cluster import KMeans
         import folium # map rendering library
```

```
In [80]: path = 'https://raw.githubusercontent.com/Teninmarie/Coursera_Capstone/master/
    T1201EN.CSV'
    df_pop = pd.read_csv(path)
    df_pop=df_pop[['Geographic code','Province or territory', 'Population, 2016']]
    df_pop=df_pop[(df_pop['Province or territory']== "Ontario")]
    df_pop2 = df_pop.sort_values(by=['Population, 2016'], ascending=False)
    df_pop2.head()
```

Out[80]:

	Geographic code	Province or territory	Population, 2016
657	K0K	Ontario	111372.0
822	L5M	Ontario	104868.0
890	L9T	Ontario	103839.0
650	K0A	Ontario	103474.0
803	L4N	Ontario	98663.0

Consumble and Duratings on townitons Denvilation 2046

```
In [81]: import requests # library to handle requests
url ='https://raw.githubusercontent.com/Teninmarie/Coursera_Capstone/master/To
ronto.geojson'
r = requests.get(url)
#print(r.json())
```

Scrapping Data from website, put it into a dataframe and merge with the Toronto geospatial coordinates

```
In [82]: #Assign the url to a variable called url
         url = https://en.wikipedia.org/w/index.php?title=List of postal codes of Canad
         a: M&oldid=906439794'
         response = requests.get(url)
         soup = BeautifulSoup(response.content, 'html.parser')
         table =soup.find all('table', class = 'wikitable sortable')
         table = table[0]
         col1 = []
         col2 = []
         col3 = []
         for row in table.find all('tr'):
             cell = row.find all('td')
             if (len(cell)) > 0:
                 col1.append(cell[0].text)
                 col2.append(cell[1].text)
                 col3.append(cell[2].text.rstrip('\n'))
```

```
In [83]: df = pd.DataFrame({'PostalCode': col1, 'Borough': col2, 'Neighborhood': col3})
    df.drop(df[df.Borough == 'Not assigned'].index, inplace=True)
    df.head()
```

Out[83]:

	PostalCode	Borough	Neighborhood
2	МЗА	North York	Parkwoods
3	M4A	North York	Victoria Village
4	M5A	Downtown Toronto	Harbourfront
5	M5A	Downtown Toronto	Regent Park
6	M6A	North York	Lawrence Heights

```
In [84]: df_group = df.groupby(["PostalCode", "Borough"], as_index=False).agg(lambda x:
    ',' .join(x))
    df_group.head()
```

Out[84]:

Neighborhoo	Borough	PostalCode	
Rouge,Malver	Scarborough	M1B	0
Highland Creek,Rouge Hill,Port Union	Scarborough	M1C	1
Guildwood,Morningside,West Hi	Scarborough	M1E	2
Woburn	Scarborough	M1G	3
Cedarbra	Scarborough	M1H	4

```
In [85]: path='http://cocl.us/Geospatial_data/Geospatial_Coordinates.csv'
    df_Geospatial = pd.read_csv(path)
    df_Geospatial.rename(columns={"Postal Code": "PostalCode"}, inplace=True)
    df_toronto = df_group.merge(df_Geospatial, on="PostalCode", how="left")
    df_toronto.head()
```

Out[85]:

	PostalCode	Borough	Neighborhood	Latitude	Longitude
0	M1B	Scarborough	Rouge,Malvern	43.806686	-79.194353
1	M1C	Scarborough	Highland Creek,Rouge Hill,Port Union	43.784535	-79.160497
2	M1E	Scarborough	Guildwood,Morningside,West Hill	43.763573	-79.188711
3	M1G	Scarborough	Woburn	43.770992	-79.216917

Define Foursquare credentials

```
In [86]: #@ hidden_cell
    CLIENT_ID = 'your Foursquare ID' # your Foursquare ID
    CLIENT_SECRET = 'your Foursquare Secret' # your Foursquare Secret
    VERSION = '20190604'
```

Convert my client adress to longitude, latitude and check how many restaurants he has within 10 kms

```
In [87]: address = '26 Grover Hill Avenue, Richmond Hill, ON'

geolocator = Nominatim(user_agent="foursquare_agent")
    location = geolocator.geocode(address)
    latitude = location.latitude
    longitude = location.longitude
    print(latitude, longitude)
```

43.8852770434783 -79.4112332173913

Search all the iranian retaurants

```
In [88]: search_query = 'persian'
    radius = 100000
    LIMIT = 100
    url = 'https://api.foursquare.com/v2/venues/search?client_id={}&client_secret=
    {}&ll={},{}&v={}&query={}&radius={}&limit={}'.format(CLIENT_ID, CLIENT_SECRET,
    latitude, longitude, VERSION, search_query, radius, LIMIT)
```

There are 30 Iranian/Persian around your address.

There are 30 Iranian restaurants based on the data retrieve from foursquare website. hen, let see

the details of this data into a dataframe.

```
In [90]: venues = results['response']['venues']
    dataframe = json_normalize(venues)
    dataframe.head()
```

Out[90]:

	categories	hasPerk	id	location.address	location.c
0	[{'id': '4bf58dd8d48988d115941735', 'name': 'M	False	4bba721e1261d13a8da8ea98	10711 Yonge St	С
1	[{'id': '52f2ab2ebcbc57f1066b8b2a', 'name': 'C	False	571ff3d8498ee3255e52bc5b	9251	С
2	[{'id': '4bf58dd8d48988d1c4941735', 'name': 'R	False	588cf74e5289302f30e711e1	2015 Avenue Rd	С
3	[{'id': '52f2ab2ebcbc57f1066b8b2a', 'name': 'C	False	5787ab82498ec9461f0fea79	9-2100 Steeles Ave W	С
4	[{'id': '4bf58dd8d48988d1f8941735', 'name': 'F	False	51d875ac454a0fb48cbac2b4	10133 Yonge St.	С

```
In [91]: # keep only columns that include venue name, and anything that is associated w
         ith location
         filtered columns = ['name', 'categories'] + [col for col in dataframe.columns
         if col.startswith('location.')] + ['id']
         dataframe filtered = dataframe.loc[:, filtered columns]
         # function that extracts the category of the venue
         def get category type(row):
              try:
                 categories list = row['categories']
              except:
                 categories list = row['venue.categories']
             if len(categories list) == 0:
                 return None
             else:
                 return categories list[0]['name']
         # filter the category for each row
```

dataframe_filtered['categories'] = dataframe_filtered.apply(get_category_type,
 axis=1)

clean column names by keeping only last term
dataframe_filtered.columns = [column.split('.')[-1] for column in dataframe_filtered.columns]

dataframe_filtered

Out[91]:

	name	categories	address	СС	city	country	crossStreet	distance
0	Persian Palace	Middle Eastern Restaurant	10711 Yonge St	CA	Richmond Hill	Canada	at Elgin Mills Rd	2399
1	Persian Rugs please	Carpet Store	9251	CA	Richmond Hill	Canada	YONGE &16th	392 ⁻
2	Darbar Persian Grill	Restaurant	2015 Avenue Rd	CA	North York	Canada	NaN	16689
3	Persian Rugs Inc	Carpet Store	9-2100 Steeles Ave W	CA	Concord	Canada	NaN	1302{
4	Royalty Persian Rugs	Furniture / Home Store	10133 Yonge St.	CA	Richmond Hill	Canada	1st rug store north of Major Macenzie	2337
5	Pastry Persian Bakery	Bakery	NaN	CA	NaN	Canada	NaN	2720
6	Persian & Oriental Rug Centre	Furniture / Home Store	8240 Yonge Street	CA	Vaughan	Canada	South of Highway 407	6532
7	Persian Auto Performance	None	38 Guardsman Ave.	CA	Thornhill	Canada	NaN	726
8	Turco Persian Rug Company Inc	Laundry Service	452 Richmond St E	CA	Toronto	Canada	at Ontario St	25989
9	persian gourmet food	Restaurant	NaN	CA	NaN	Canada	NaN	10092
10	Taj persian rugs inc.	Furniture / Home Store	8400 Woodbine	CA	Markham	Canada	NaN	594(

			Ave.					
11	Zaytoon Persian Kitchen & Dessert Bar	Middle Eastern Restaurant	8199 Yonge Street	CA	Thornhill	Canada	NaN	637 ⁻
12	Persian Rug Specialist	Laundry Service	7-1110 Finch Ave W	CA	North York	Canada	NaN	13977
13	Mediterranean & Persian Kabob House	Mediterranean Restaurant	141 King Road, Unit 3	CA	Richmond Hill	Canada	NaN	752 [,]
14	Shatter Abbas Persian شاطر Cuisine عباس	Middle Eastern Restaurant	Centerpoint Mall	CA	Toronto	Canada	Yonge St	9994
15	Cyrus Persian Restaurant	Middle Eastern Restaurant	NaN	CA	NaN	Canada	NaN	844{
16	Treasure Gallery	Antique Shop	9875 Yonge St	CA	Richmond Hill	Canada	at Major Mackenzie Dr	2747
17	Shah Persian Food	BBQ Joint	NaN	CA	NaN	Canada	NaN	10519
18	North Restaurant	Middle Eastern Restaurant	27-100 Steeles Ave W	CA	Vaughn	Canada	btwn Hilda & Yonge	9777
19	Tabriz Persian Cookhouse	Persian Restaurant	995 bay street	CA	Toronto	Canada	NaN	2455{
20	Sheharzad Persian Grill	Restaurant	NaN	CA	NaN	Canada	NaN	2545(
21	Woven Treasures Persian Rug Gallery	Furniture / Home Store	169 Queen St E	CA	Toronto	Canada	NaN	25914
22	Cyrus Persian Restaurant	Restaurant	Ritson	CA	Oshawa	Canada	NaN	45279
23	Rayhoon Persian Eatery	Persian Restaurant	420 Pearl St.	CA	Burlington	Canada	NaN	69474
24	Nannaa	Persian	1010 King	CA	Hamilton	Canada	Marion Ave S	7998

	Persian Eatery	Restaurant	St W					
25	Paradise Persian Cuisine	Middle Eastern Restaurant	NaN	CA	Hamilton	Canada	NaN	78687
26	Silk Road Persian Rugs	Furniture / Home Store	428 Gage Ave.	CA	Kitchener	Canada	NaN	101996
27	Canadian Distribution Channel Inc.	Distillery	636 Queensway Court	CA	Peterborough	Canada	at The Queensway	96267
28	Altona Kabob	Middle Eastern Restaurant	460 George St. N	CA	Peterborough	Canada	NaN	9909
29	Sorena Kebab House	Persian Restaurant	220 King St North, Waterloo, Unit B	CA	Waterloo	Canada	King&University	10055 ⁻

From this results, we can tell that the information concerning the neighborhood is not properly entered so It will be difficult to know where exactly are located those restaurants if we do not plot them on the map. Let see how many Persian restaurants are located close (radius less than 5 kms) to the client's address

```
In [92]: dataframe filtered[(dataframe filtered['distance']<5000)].count()</pre>
Out[92]: name
         categories
          address
          CC
         city
          country
          crossStreet
         distance
                              5
         formattedAddress
         labeledLatLngs
         lat
                              5
         lnq
         neighborhood
                              1
         postalCode
                              4
                              4
          state
```

```
id dtype: int64
```

5

There are 5 restaurants in the Richmond area so it is not a good idea to open a new shop offering the same cuisine. Based on this information, he will not be suitable to have a new investment in this community.

We are going to map the population as well as the location of all those persian restaurants and see which is area is propably suitable for a new investment.

```
In [93]: venues map = folium.Map(location=[latitude, longitude], zoom start=10) # gener
          ate map centred around my client's address
          folium.Marker(
             [latitude, longitude],
            # color='red',
             popup='Clients address'
          ).add to (venues map)
          # add a red circle marker to represent my client address with a radius equals
          to 5 kms
          folium.features.CircleMarker(
             [latitude, longitude],
             radius= 5,
             color='red',
             popup='5 kms circle around the focus point',
            fill = True,
             fill color = 'red',
             fill opacity = 0.6
          ).add to (venues map)
          # add the iranian restaurants as blue circle markers
         for lat, lng, label in zip(dataframe filtered.lat, dataframe filtered.lng, dat
         aframe filtered.categories):
              folium.features.CircleMarker(
                  [lat, lng],
                  radius=5,
                  color='blue',
                  popup=label,
                  fill = True,
                  fill color='blue',
                  fill opacity=0.6
```

```
venues_map.choropleth(
    geo_data=r.json(),
    data = df_pop,
    columns=['Geographic code','Population, 2016'],
    key_on='feature.properties.CFSAUID',
    fill_color='YlOrRd',
    fill_opacity=0.4,
    line_opacity=0.4,
    legend_name='Population by FSA'

# display map
venues_map
```

Out[93]:

Discussion

Some area seem to not have any restaurant and seem to be crowded based on our dataset. it is obvious that the eastern and wetern part of Toronto are good candidates. However, those

information can be considered. For example, how many venues are located in those area and what are the habits of people living in those area. The study can be go deeper and will probably help to reduce the neighborhoods which can be interesting to invest in.

4. Conlusion

Based on the study, some area like Mississauga (Airport Area), Churchill Meadows (Western most area of Mississauga) seem to be a perfect location. However, this study is not enough to decide which one represent the most suitable area. The information about the current popuplation in both area as well as the habits and number of venues could be represent a best way to deep dive this study.