CENG 218 Design and Analysis of Algorithms

Izmir Institute of Technology

Lecture 4: Solving recurrences

Slides were mostly prepared using the material provided by Prof. Charles E. Leiserson and Prof. Erik Demaine from MIT

Solving recurrences

• The analysis of merge sort required us to solve a recurrence, that is obtaining asymptotic bounds on the solution.

- Recurrences are a major tool for analysis of algorithms. We will learn a few methods:
 - *Substitution method*: We guess a bound and then use mathematical induction to prove it.
 - Recurrence tree method converts the recurrence into a tree.
 - *Master method* uses a formula.

Reminder on mathematical induction

Mathematical induction is a powerful proof technique based on the fact that if you show:

- 1) Base case: P(1) is true.
- 2) Inductive step: $\forall k \geq 1 \ (P(k) \rightarrow P(k+1))$ is true.

then, this implies $\forall n \ P(n)$.

Mathematical induction example

Prove that sum of first *n* positive integers is n(n+1)/2

$$\forall n \ge 1 : \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Base case: P(1) is True. For n=1 equality holds.

Inductive step: $\forall k \geq 1$ Assume P(k), and prove P(k+1).

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

By inductive hypothesis P(k)

Thus, if P(k) holds, P(k+1) holds.

Substitution method

- It comprises two steps:
 - 1. Guess the form of the solution
 - 2. Use mathematical induction to find the constants and show the solution works.
- We can use substitution method to establish either upper or lower bounds on a recurrence.
- Let us determine an upper bound for $T(n) = 2T(\lfloor n/2 \rfloor) + n$
- This is the recurrence relation for merge sort. Actually it is $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but we neglect the difference.

Substitution method

- We guess that the solution is $T(n)=O(n \lg n)$.
- The method requires us to prove $T(n) \le cn \lg n$. Also, for n/2, $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg (\lfloor n/2 \rfloor)$ should hold.
- Substituting into recurrence yields

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

 $T(n) \le 2 (c \lfloor n/2 \rfloor \lg (\lfloor n/2 \rfloor)) + n$
 $\le cn \lg (n/2) + n$
 $= cn \lg n - cn \lg 2 + n$
 $= cn \lg n - (cn - n) \leftarrow desired - residual$
 $\le cn \lg n$
 $\le cn \lg n$
 $\le cn \lg n$
 $\le cn \lg n$
 $\le cn \lg n$

Substitution method

- Mathematical induction now requires us to show our solution holds for the base case.
- We expect that $T(1) = \Theta(1)$ (as it should take a constant time).
- We choose n=1 as the base case. However $T(1) \le c$ 1 lg1=0. Not good!
- But, we are free to choose the base case (n_0) . Let us choose $n_0=2$, then $T(2) \le c \ 2 \ \lg 2 = 2c$. T(2) is a constant time. (Inductive step requires $c \ge 1$)
- Thus, with $n_0=2 \& c \ge 1$, we proved $T(n)=O(n \lg n)$

- Consider T(n) = 2T(n/2) + 1
- We guess T(n) = O(n). So, we try to show $T(n) \le cn$.

$$T(n) \le 2c(n/2) + 1$$

$$= cn + 1$$

$$\nleq cn$$

We are off only by the constant 1.

O(n) is correct but the math did not work out!

IDEA: Strengthen the inductive hypothesis by *subtracting* a low-order term.

Let us subtract a constant d and try: $T(n) \le cn - d$.

$$T(n) \le 2(c(n/2) - d) + 1$$

$$= cn - 2d + 1$$

$$\le cn - d \dots \text{ as long as } d \ge 1$$

$$\stackrel{desired}{\text{desired}}$$

What about the base case?

We expect $T(1)=\Theta(1)$ because it takes constant time.

For n=1:

$$T(1) \le c - d$$
 ...choose c larger than d

Thus, with $n_0=1$, $d\ge 1$ and c>d, we proved T(n)=O(n)

Example:
$$T(n) = 4T(n/2) + n$$

Guess $O(n^3)$
 $T(n) = 4T(n/2) + n$
 $\leq 4c(n/2)^3 + n$
 $= (c/2)n^3 + n$
 $= cn^3 - ((c/2)n^3 - n) \leftarrow desired - residual$
 $\leq cn^3 \leftarrow desired$
whenever $(c/2)n^3 - n \geq 0$, e.g. $c \geq 2$ and $n \geq 1$.

- Check the base case.
- **Base:** $T(n) \le cn^3$ for n=1.
- $T(1) = \Theta(1) \le cn^3 = c$, no problem if we pick c big enough.

This bound is not tight!

A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(n) \le cn^2$:

$$T(n) = 4T(n/2)+n$$

$$\leq 4c(n/2)^2+n$$

$$\leq cn^2+n$$

$$\leq cn^2$$

true for **no** choice of c > 0. Lose!

Solution: Strengthen the inductive hypothesis by *subtracting* a low-order term.

A tighter upper bound?

New inductive hypothesis: $T(n) \le c_1 n^2 - c_2 n$ T(n) = 4T(n/2) + n $\le 4 (c_1(n/2)^2 - c_2(n/2)) + n$ $= c_1 n^2 - 2c_2 n + n$ $= c_1 n^2 - c_2 n - (c_2 n - n)$ $\le c_1 n^2 - c_2 n$... true if $c_2 \ge 1$.

Pick c_1 big enough to handle the base case.

Base: $T(1) \le c_1 - c_2$, any $c_1 > c_2$ can be chosen.

Show
$$T(n) = T(n-1) + n$$
 is $\Omega(n^2)$
This time, inductive hypothesis is $T(n) \ge cn^2$
 $T(n) = T(n-1) + n$
 $\ge c(n-1)^2 + n$
 $= cn^2 - 2cn + c + n$
 $= cn^2 + n(1-2c) + c \leftarrow desired + residual$
 $\ge cn^2$... as long as $n(1-2c) + c \ge 0$
 $desired$ holds when $n \ge 0$ and $0 < c \le 0.5$

Note: Substitution method requires c > 0

Base case: $T(1) \ge 0$ is trivial

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable for exact estimations.
- It promotes intuitions, however.
- Usually we make a guess by recursion tree, then prove by substitution method.

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:
$$T(n)$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$n^{2} \qquad n^{2} \qquad n^{2}$$

$$(n/4)^{2} \qquad (n/8)^{2} \qquad (n/8)^{2} \qquad (n/4)^{2} \qquad \frac{5}{16}n^{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\Theta(1) \qquad \text{Total} = n^{2} \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^{2} + \left(\frac{5}{16}\right)^{3} + \ldots\right)$$

$$\leq n^{2} \left(\frac{1}{1 - \frac{5}{16}}\right) = O(n^{2})$$

$$24$$

Appendix: geometric series

$$1+x+x^2+...+x^n = \frac{1-x^{n+1}}{1-x}$$
 for $x \ne 1$

$$1+x+x^2+...=\frac{1}{1-x}$$
 for $|x|<1$

Recursion tree method as an initial guess to substitution method

Now use substitution method to prove $T(n) = T(n/4) + T(n/2) + n^2$ is $O(n^2)$ Assume that $T(n) \leq cn^2$: $T(n) \le cn^2/16 + cn^2/4 + n^2$ $= (5/16)cn^2 + n^2$ $= cn^2 - (11/16)cn^2 + n^2$ $= cn^2 - ((11/16)c-1)n^2$..choose $c \ge 16/11$ $< cn^2$

Solve
$$T(n) = T(n/3) + T(2n/3) + O(n)$$

Solve
$$T(n) = T(n/3) + T(2n/3) + cn$$

- Our estimate from recursion tree method is
 O(n lg n)
- We can use it as an initial guess of substitution method.
- Please check Chapter 4.4 (4.2 in 2^{nd} edition) to see the proof by substitution of T(n) = T(n/3) + T(2n/3) + O(n) is $O(n \lg n)$

Solve
$$T(n) = 2T(n-1) + O(1)$$

Solve
$$T(n) = 2T(n-1) + O(1)$$

$$= c \frac{1-2^{n+1}}{1-2} = c(2^{n+1}-1) = 2c2^n - c = \Theta(2^n)$$

The master method

- The third method for solving recurrences is the master method. It is as easy as applying formulas given by 'master theorem'.
- It applies to recurrences of the form

$$T(n) = a T(n/b) + f(n)$$

where $a \ge 1$, b > 1, and f(n) is asymptotically positive.

Idea of master theorem

Master method: Case 1

Compare f(n) with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$. meaning: f(n) grows polynomially slower than $n^{\log_b a}$.

Solution: $T(n) = \Theta(n^{\log_b a})$.

Idea of master theorem

Master method: Case 2

Compare f(n) with $n^{\log_b a}$:

2. $f(n) = \Theta(n^{\log ba} \lg^k n)$ for some constant $k \ge 0$. meaning: f(n) and $n^{\log ba}$ grow at similar rates. Solution: $T(n) = \Theta(n^{\log ba} \lg^{k+1} n)$.

Idea of master theorem

Master method: Case 3

Compare f(n) with $n^{\log_b a}$:

3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.

meaning: f(n) grows polynomially faster than $n^{\log_b a}$.

Solution: $T(n) = \Theta(f(n))$.

Idea of master theorem

Master method examples

Eg.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
Case 1: $f(n) = O(n^{\log_b a - \epsilon}) = O(n^{2 - \epsilon})$ for $\epsilon = 1$.
 $\therefore T(n) = \Theta(n^2).$

Eg.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^{\log_b a} \lg^k n) = \Theta(n^2 \lg^0 n),$
that is, $k = 0.$
 $\therefore T(n) = \Theta(n^2 \lg^{k+1} n) = \Theta(n^2 \lg n).$

Master method examples

Eg.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon}) = \Omega(n^{2 + \epsilon})$ for $\epsilon = 1$.
 $\therefore T(n) = \Theta(n^3).$

Master method examples

Eg.
$$T(n) = 2T(n/2) + n \lg n$$

 $a = 2, b = 2 \Rightarrow n^{\log_b a} = n; f(n) = n \lg n$.
Case 3: $f(n)$ is polynomially larger than n .
NO!

 $f(n) = n \lg n$ is asymptotically larger than n but not polynomially larger. I.e., $n \lg n \neq \Omega(n^{1+\epsilon})$.

Actually it is Case 2:

$$f(n) = \Theta(n^{\log_b a} \lg^k n) = \Theta(n \lg n)$$
, that is, $k = 1$.
 $\therefore T(n) = \Theta(n \lg^{k+1} n) = \Theta(n \lg^2 n)$.

Master method for Binary search

Binary search: Break list into one sub-problem of size $\leq \lceil n/2 \rceil$.

$$T(n) = T(n/2) + c$$
 ($c = \text{constant time}$)
So, $a=1$, $b=2 \Rightarrow n^{\log_b a} = 1$; $f(n) = 1$.
CASE 2: $f(n) = \Theta(n^{\log_b a} \lg^k n) = \Theta(\lg^0 n)$, $k = 0$.
 $\therefore T(n) = \Theta(\lg^{k+1} n) = \Theta(\lg n)$.

Please also try to apply recursion tree method.

Master method for Merge sort

Merge sort: Break the list into 2 sublists, each of size $\leq \lceil n/2 \rceil$, then merge in $\Theta(n)$ time.

$$T(n) = 2T(n/2) + \Theta(n)$$

So,
$$a=2$$
, $b=2 \Rightarrow n^{\log_b a} = n$; $f(n) = \Theta(n)$.

CASE 2: $f(n) = \Theta(n \lg^0 n)$, that is, k = 0.

$$\therefore T(n) = \Theta(n \lg n).$$

Please also try to apply recursion tree method.

The End

- Next time: Analysis of some divide and conquer algorithms
- Read and try to solve the exercises of Chapters 4.3, 4.4, 4.5 (3rd Edition) Chapters 4.1, 4.2, 4.3 (2nd Edition)
- Also check problems of Chapter 4.