

Praca Magisterska

Implementacja modułu predykcji skoków mikroprocesora RISC

Promotor: dr hab. inż. Robert Czerwiński Wykonanie: Michał Gold

Cel i Zakres Pracy Magisterskiej

Celem pracy magisterskiej było zaprojektowanie, implementacja i zbadanie efektywności modułu **predykcji skoków dla mikroprocesora RISC**, bazującego na popularnej specyfikacji RISC-V.

Zakres pracy:

- Analiza aktualnego stanu wiedzy na temat algorytmów predykcji skoków
- Analiza implementacji mikroprocesora RISC-V.
 - Projekt mikroprocesora powstał w wyniku realizacji projektu PBL oraz innych prac magisterskich i nie obejmował modułu predykcji skoków.
- Implementacja predyktora, w wielu wariantach, wykonana w sposób możliwie modularny
- Stworzenie środowiska pozwalającego na weryfikację funkcjonalną projektu
- Porównanie efektywności zaimplementowanych algorytmów predykcji skoków

Potok procesora, a instrukcje skoku

Standardowe techniki predykcji skoków

2-bitowy Licznik Nasycenia

Instrukcje skoku w RISC-V

31	20	19 15	14 12	11 7	6 0	Nazwa
imm rd 1101111						JAL
imm		rs1	000	rd	1100111	JALR
imm	rs2	rs1	000	imm	1100011	BEQ
imm	rs2	rs1	001	imm	1100011	BNE
imm	rs2	rs1	100	imm	1100011	BLT
imm	rs2	rs1	101	imm	1100011	BGE
imm	rs2	rs1	110	imm	1100011	BLTU
imm	rs2	rs1	111	imm	1100011	BGEU

CALL - JAL z *rd* równym *x1* **RET** - JALR z *rs1* równym *x1*

JAL - bezwzględny, bezwarunkowy JALR - względny, bezwarunkowy Bxx - bezwzględny, warunkowy

Analizowane mikroprocesory RISC-V

IBEX

- O Tylko 2-fazowy potok
- O Predykcja wyłącznie statyczna, wyłącznie skoków bezwzględnych (bez JALR)

CV32A65X

- O 6-fazowy potok
- O Predykcja bazująca na BTB (Branch Target Buffer), BHT (Branch History Table) oraz RAS (Return Address Stack)

SonicBOOM

- Około 10-fazowy potok, z rozgałęzieniami
- 2 rodzaje predykcji
 - NLP (Next Line Predictor) szybszy, podobnie jak w CV32A65X
 - BPD (Backing Predictor) dokładniejszy, algorytm **TAGE** (Tagged Geometric)

Potok rozbudowywanego mikroprocesora

Moduł Predykcji Skoków

Zaimplementowane algorytmy predykcji:

PM Strategy:

- Hardcoded
- Random
- BTB
- BHT
- BHTRET

ID Strategy:

- JUMP
- JUMPRET

Porównanie efektywności predyktorów - JUMP i JUMPRET

Jako program testowy wykorzystano FizzBuzz.

ID Strategy	FLUSHES	MISSES JAL	MISSES JALR	MISSES BR
Brak	40.3%	100%+0%	100%+0%	63.3%+0%
	(3240/8049)	(297+0/297)	(102+0/102)	(681+0/1075)
JUMP	35.5%	0%+100%	100%+0%	63.3%+0%
	(2646/7455)	(0+297/297)	(102+0/102)	(681+0/1075)
JUMPRET	33.7%	0%+100%	0%+100%	63.3%+0%
	(2442/7251)	(0+297/297)	(0+102/102)	(681+0/1075)

Porównanie efektywności predyktorów - BTB

Badanie PM Strategy przeprowadzono z wyłączoną ID Strategy!

Porównanie efektywności predyktorów - BHT

Wersja z mnożeniem

Wersja bez mnożenia

Porównanie efektywności predyktorów - BHTRET

Podsumowanie

Pomyślnie osiągnięto cel pracy magisterskiej, a zakres w pełni zrealizowano.

Stworzono wiele różnych algorytmów predykcji, korzystających ze wspólnego interfejsu, pozwalając na prostą ingerencję w algorytm predykcji, bez potrzeby znania całej struktury mikroprocesora i sygnałów między jego modułami.

Wykonano badanie każdego z zaimplementowanych algorytmów, dla wielu różnych parametrów, sprawdzając jego efektywność. Najciekawsze wyniki dał algorytm BHT, który w prawie każdym przypadku dawał gorsze efekty, niż brak zastosowania jakiegokolwiek predyktora.

Stworzono też **rozbudowane środowisko testowe**, składające się między innymi z **modelu referencyjnego oraz wizualizatora stanu potoku**, pozwalając na weryfikację funkcjonalną oraz łatwe wykrywanie błędów.

Znaczny czas pracy nad projektem poświęcono także na **wykrycie i naprawę błędów** w już istniejącej implementacji procesora RISC-V, które uniemożliwiały wykonanie miarodajnych badań.

Dziękuję za Uwagę

