3.012 Fund of Mat Sci: Bonding – Lecture 10 MOLE(ULES FROM ATOMS

Image of a journal article removed for copyright reasons.

See Slater, J. C., and G. F. Koster. "Simplified LCAO Method for the Periodic Potential Problem." *Physical Review* 94, no. 6 (1954).

Homework for Mon Oct 17

• Study: 25.2, 25.4, 24.4, 24.6

Last time:

- 1. Variational principle
- 2. Application to the hydrogen atom
- 3. LCAO optimize the coefficients
- 4. Hydrogen molecular ion

Energy of a Molecule

$$E = T_e + V_{e-N} + V_{e-e} + V_{N-N}$$

Linear Combination of Atomic Orbitals

 Trial wavefunction is a linear combination of atomic orbitals – the variational parameters are the coefficients:

$$\Psi_{trial} = c_1 \Psi_{1s} \left(\vec{r} - \vec{R}_A \right) + c_2 \Psi_{1s} \left(\vec{r} - \vec{R}_B \right)$$

Formation of a Bonding Orbital

See animation at http://winter.group.shef.ac.uk/orbitron/MOs/H2/1s1s-sigma/index.html

Formation of an Antibonding Orbital

See animation at http://winter.group.shef.ac.uk/orbitron/MOs/H2/1s1s-sigma-star/index.html

Bonding and Antibonding (II)

Figure by MIT OCW.

Many-Atoms Hamiltonian

$$\hat{H} = \hat{T}_{e} + \hat{V}_{e-N} + \hat{V}_{e-e} + V_{N-N}$$

$$\hat{T}_{e} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} \qquad \hat{V}_{e-N} = -\sum_{i} \sum_{I} \frac{Z_{I}}{|\vec{r}_{i} - \vec{R}_{I}|} \qquad \hat{V}_{e-e} = \sum_{i} \sum_{j>i} \frac{1}{|\vec{r}_{i} - \vec{r}_{i}|}$$

Molecular Orbitals From Atomic Orbitals

$$\begin{split} \Psi_{trial} &= c_1 \Psi_{1s,H_a} + c_2 \Psi_{1s,H_b} + c_3 \Psi_{1s,H_c} + c_4 \Psi_{1s,H_d} \\ &+ c_5 \Psi_{2s,C} + c_6 \Psi_{2p_x,C} + c_7 \Psi_{2p_y,C} + c_8 \Psi_{2p_z,C} \end{split}$$

sp3 hybridization

sp³ Hypbridization. Source: Wikipedia.

Diagram of s and p orbitals combining to create sp³ hybridization removed for copyright reasons.

See p. 440, figure 12-5 in Petrucci, R. H., W. S. Harwood, and F. G. Herring. *General Chemistry: Principles and Modern Applications*. 8th ed. Upper Saddle River, NJ: Prentice Hall, 2002.

sp³ hybridization

Images of sp³ hybridization in CH₄ and NH₃ removed for copyright reasons. See pp. 441-442, figures 12-6 and 12-7 in Petrucci, R. H., W. S. Harwood, and F. G. Herring. *General Chemistry: Principles and Modern Applications*. 8th ed. Upper Saddle River, NJ: Prentice Hall, 2002.

Great gases and liquids...

sp2 hybridization

sp² Hypbridization. Source: Wikipedia.

Diagram of s and p orbitals combining to create sp² hybridization removed for copyright reasons.

See p. 442, figure 12-8 in Petrucci, R. H., W. S. Harwood, and F. G. Herring. *General Chemistry: Principles and Modern Applications*. 8th ed. Upper Saddle River, NJ: Prentice Hall, 2002.

Carbon Compounds

sp hybridization

Diagram of s and p orbitals combining to create sp hybridization removed for copyright reasons. See p. 443, figure 12-9 in Petrucci, R. H., W. S. Harwood, and F. G. Herring. *General Chemistry: Principles and Modern Applications* 8th ed. Upper Saddle River, NJ: Prentice Hall, 2002.

Ethyne (Acetylene)

Source: Wikipedia

Diagram of the formation of σ and π bonds in ethyne removed for copyright reasons.

Formation of a σ Bonding Orbital

See animation at http://winter.group.shef.ac.uk/orbitron/MOs/N2/2pz2pz-sigma/index.html

Formation of a π Bonding Orbital

See animation at http://winter.group.shef.ac.uk/orbitron/MOs/N2/2px2px-pi/index.html

Ethene (Ethylene)

Diagram of the formation of σ and π bonds in ethene removed for copyright reasons.

Ethane (saturated)

Diagram of ethane removed for copyright reasons. See Goodman et al., Nature (2001).

Bond Lengths and Bond Energies

Tables of Average Bond Lengths and Average Bond Energies removed for copyright reasons. See p. 420, table 11.2, and p. 422, table 11.3, in Petrucci, R. H., W. S. Harwood, and F. G. Herring. *General Chemistry: Principles and Modern Applications*. 8th ed. Upper Saddle River, NJ: Prentice Hall, 2002.