1. Revisión de columna de concreto

Revisión de columna de concreto a flexo compresión

1.1. Datos de los elementos

Los datos de la columna se muestran en la tabla 1

Tabla 1. Datos de la columna

Dato	Valor	Unidades	Comentarios
b	20.00	cm	Ancho de la columna
b	20.00	cm	Ancho de la columna
r	3.00	cm	Recubrimiento
f'c	250	kg/cm^2	Resistencia del concreto
fy	4200	kg/cm^2	Resistencia del acero

1.2. Compresión pura

La resistencia a compresión pura se obtiene con:

$$P_u = F_r(A_g f_c^{"} + A_s f_y) \tag{1}$$

donde P_u es la capacidad resistente del concreto, $F_r = 0.75$, A_g es el área del concreto, A_s es el área del acero. El área del concreto se obtiene con $A_g = BH$; el área de una varilla del #4 es 1.27 cm por lo que:

$$A_g = (20.00)(20.00)$$

 $A_g = 400.00cm^2$
 $A_s = 1.27(8)$
 $A_s = 10.13cm^2$

Por lo que el la resistencia a compresión pura es:

$$P_u = 0.75[(400.00)(0.85)(250) + (10.13)(4200)]$$

 $P_u = 95672.57kg$

1.3. Flexo-Compresión

Para el diseño a flexo-compresión se propone un eje neutro c a diferentes distancias para obtener su capacidad a flexión y compresión.

Para obtener la deformación de cada barra de acero se considera que la deformación actúa como se muestra en la Figura

Para obtener las deformaciones en cada punto se considera que la deformación se obtiene con:

$$\epsilon_i = \left(\frac{d_i - c}{d - c}\right) 0.003 \tag{2}$$

donde ϵ_i es la deformación de la barra de acero a una altura i deseada, d_i es la distancia de la barra de acero i a la barra más profunda, d es el peralte efectivo, y c es la distancia al eje neutro desde la barra más profunda.

En la Tabla 2 se muestran las distancias d_i de cada barra con sus respectivas áreas.

Tabla 2. Distancias de cada barra respecto a la barra mas profunda

Barra	$d_i(cm)$	$A_s(cm^2)$
1	14.00	3.80
2	7.00	2.53
3	0.00	3.80

Considerando un eje neutro igual a $c=3.00~{\rm y}$ aplicando la ecuación 2 se tiene que para la barra 1 la deformación es:

$$\epsilon_1 = \left(\frac{14.00 - 3.00}{17.00 - 3.00}\right) 0.003$$

$$\epsilon_1 = 0.0024$$

Aplicando las ecuaciones para las demás barras se tiene

$$\epsilon_2 = 0.0009$$
 $\epsilon_3 = -0.0006$

El esfuerzo máximo que alcanza el acero es $\epsilon_s=0.002$ por lo que se considera la siguiente desigualdad

$$F_s = \epsilon E_y \le 0.002 E_y \tag{3}$$

Cosndierando que $E_y=2100000kg/cm^2$ se tiene entonces que los esfuerzos de cada barra son:

$$Fs_1 = (0.0024)(2100000)$$
 = $4200.00kg/cm^2$
 $Fs_2 = (0.0009)(2100000)$ = $1800.00kg/cm^2$
 $Fs_3 = (-0.0006)(2100000)$ = $-1350.00kg/cm^2$

Para obtener la fuerza se multiplica el esfuerso ${\cal F}_s$ por el área por lo que las fuerzas se muestran en la Tabla 3

Para obtener la fuerza a compresión del concreto se aplica la ecuación 4

$$F_c = (0.85)(f'c)(B)0.85(d-c)$$
(4)

Por lo que la fuerza compresión del concreto es

$$F_c = (0.85)(250)(20.00)0.85(17.00 - 3.00)$$

$$F_c = 50575.00kg$$

En la tabla 3 se muestran las fuerzas del acero y concreto

Tabla 3. Fuerzas de cada barra

Barra	ϵ	$F_s(kg/cm^2)$	$A_s(cm^2)$	$F_i(kg)$
1	0.0024	4200.00	3.80	15961.29
2	0.0009	1800.00	2.53	4560.37
3	-0.0006	-1350.00	3.80	-5130.41
Concreto	0.003	250		50575.00
			$P_r =$	65966.24

Para obtener los momentos se requiere multiplicar las fuerzas de la Tabla 3 por su brazo de palanca al centro de la columna.

El brazo de palanca para el bloque de concreto se obtiene:

$$b_r = [B - 0.85(d - c)]/2 \tag{5}$$

por lo que el brazo de palanca es

$$b_r = [20.00 - 0.85(17.00 - 3.00)]/2$$

 $b_r = 4.05cm$

En la tabla 4 se muestran los momentos del acero y concreto

Tabla 4. Momentos

Barra	Fuerza (kg)	Brazo (cm)	Momento (kg-cm)
1	15961.29	7.00	111729.00
2	4560.37	0.00	0.00
3	-5130.41	-7.00	35912.89
Concreto	50575.00	4.05	204828.75
		Suma	352470.64 T-m

En la Figura 1 se muestra el diagrama de interacción de la columna

Figura 1. Diagrama de Interacción de Columna