

Spfy: bringing real-time, big data batch analyses of E. coli to SuperPhy

using containerization and graph-based data storage

Supervisor: Chad Laing Student: Kevin Le

Kevin Le

Currently:

- BASc Software Engineering (uOttawa)
 - o Focus on applied math
- Co-op @NML Lethbridge (8-months)

Previously Completed:

- BSc Neuroscience (Dalhousie)
 - Research: transgenic mouse models of Alzheimer's, molecular neurosci.
 - Cryptography & network security

Software Background:

- Largely Python
- Linux
- Virtualization

Career Goals:

Big-data companies / grad. studies in comp. sci

Bioinformatics Co-ops @Lethbridge Winter '17

Why work on *E. coli*?

- Within Canada it is estimated that over 4,000 hospitalizations and 100 deaths per year occur due to bacterial infections
- ❖ E. coli represents 33% of bacterial outbreaks from produce
- Incidence of ~30.3/100,000 people

Why work on E. coli?

Common Symptoms:

- Stomach cramps
- Diarrhea
- Vomiting

Complications:

- Hemolytic uremic syndrome (HUS)
- Can lead to kidney failure

Why work on E. coli?

Traditional monitoring efforts used wet-lab methods for subtyping

WGS-Based Predictions

BMC Microbiol. 2016 Apr 12;16:65. doi: 10.1186/s12866-016-0680-0.

SuperPhy: predictive genomics for the bacterial pathogen Escherichia coli.

Whiteside MD¹, Laing CR², Manji A¹, Kruczkiewicz P¹, Taboada EN¹, Gannon VP¹.

Author information

- National Microbiology Laboratory @ Lethbridge, Public Health Agency of Canada, Lethbridge, AB, T1J 3Z4, Canada.
- 2 National Microbiology Laboratory @ Lethbridge, Public Health Agency of Canada, Lethbridge, AB, T1J 3Z4, Canada. chad.laing@canada.ca.

Abstract

BACKGROUND: Predictive genomics is the translation of raw genome sequence data into a phenotypic assessment of the organism. For bacterial pathogens, these phenotypes can range from environmental survivability, to the severity of human disease. Significant progress has been made in the development of generic tools for genomic analyses that are broadly applicable to all microorganisms; however, a fundamental missing component is the ability to analyze genomic data in the context of organism-specific phenotypic knowledge, which has been accumulated from decades of research and can provide a meaningful interpretation of genome sequence data.

The Previous Version

What Worked:

- Pre-computed, predictive genomic analyses for Shiga toxin subtype, AMR genes, virulence factors
- Presence / absence of genomic regions and single nucleotide variants, for bacterial sub-groups

What Didn't:

- No batch upload and get results in real-time
- Large scale storage and retrieval of results in real-time
- Easy deployment and replication

Goal: BIG data

Why big data?

Spfy replicates *E.coli* related functions of traditional reference labs

Performs the same tasks except using whole-genome sequencing (WGS) data

Spfy is also *online* & *in-silico*, incorporating species-specific knowledge for:

- Population-wide analysis
- Historical context
- Automatically linking new results

Main Approach

Graph Database
Parallelization

The Graph Database is the Core

The Graph Database is the Core

The Web Platform

How do we get to results?

Major Change: task queues

Dozen+ Parallel Task Workers

What can we do with this?

given a new whole genome sequencing result...

Serotype, Virulence Factors via ECTyper (<1 min)

Antimicrobial Resistance Genes via RGI (~3-4 mins)

Pangenome Regions via Panseq (5 mins)

Stx Type & Closely Related Strains via Phylotyper (<1 min)

Recall: Parallel Task Queues

Not affected by the size of the database

Group Comparisons

Ask: what Pangenome Regions are over-represented among O157 strains over O53 strains?

Simplicity: Google's Material Design

Analysis Modules

Familiar Tabular Results for Download

Orchestration:
Docker,
Docker-Compose

Used Spfy to compute & store results for ~20,000 genomes

One-Time Cost: Results are <u>permanently</u> stored for <u>future comparisons - "Big Data"</u>

What was done

What didn't work in Superphy:

- No batch upload and get results in real-time
- Large scale storage and retrieval of results in real-time
- Easy deployment and replication

How it was solved in Spfy:

- Modern website and use of task queues
- Graph database
- Docker

Where do we go from here?

More analysis modules

Data
Visualization

Machine Learning

Thanks!

E.coli team @ Lethbridge

- Chad Laing
- Matt Whiteside
- Vic Gannon

Campy team @ Lethbridge

- Eduardo Taboada
- Dillon Barker

Questions?