

Tall og tallregning

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

- 1 Tall og tallregning
 - Mengdelære
 - Talltyper
 - Regnerekkefølge

2 Brøkregning

3 Bokstavregning og parenteser

Mengdelære

Mengder

En mengde er en samling tall. Vi skriver mengder ved hjelp av krøllparenteser.

Eksempel

Mengden $\{1,2,4,5\}$ består av tallene 1, 2, 4 og 5. Mengden $\{1\}$ består kun av tallet 1. Mengden $\{\}$ har ingen tall i seg. Dette kalles den tomme mengden og vi bruker symbolet \varnothing . Mengden $\{1,3,5,7,9,\ldots\}$ har uendelig mange tall i seg.

Mengder

Det eneste som betyr noe for en mengde er om et tall er med eller ikke. Det har ingenting å si hvor ofte et element er med, eller i hvilken rekkefølge.

Eksempel

Mengdene $\{1,2,3,2\}$ og $\{3,2,3,1,1\}$ er like, da de begge (kun) inneholder tallene 1, 2, og 3.

Når vi skriver opp en mengde, pleier vi å kun skrive hvert tall én gang, og å skrive dem i stigende rekkefølge, men dette er ikke et krav.

Mengdenotasjon

Vi bruker symbolet \in for å symbolisere «inneholdt i».

Eksempel

Setningen «Tallet 5 er inneholdt i mengden {1,4,5}» skrives matematisk som

$$5 \in \{1,4,5\}.$$

Setningen «Tallet 3 er ikke inneholdt i mengden $\{1,4,5\}.$ » skrives matematisk som

$$3 \not\in \{1,4,5\}.$$

Mengdenotasjon

Vi bruker symbolet \subset for å symbolisere «delmengde av».

Eksempel

Setningen «Mengden $\{2,3\}$ er en del av mengden $\{2,3,4\}$ » skrives matematisk som

$$\{2,3\}\subset \{2,3,4\}.$$

Setningen «Mengden $\{2,5\}$ er ikke en del av mengden $\{1,3,4\}$.» skrives matematisk som

$$\{2,5\} \not\subset \{1,3,4\}.$$

Union

Vi bruker symbolet \cup for å symbolisere å slå sammen to mengder. Symbolet uttales union.

Eksempel

Setningen «Om vi slår sammen mengden $\{1,2,3\}$ og mengden $\{2,4,7\}$ får vi $\{1,2,3,4,7\}$ » skrives matematisk som

$$\{1,2,3\} \cup \{2,4,7\} = \{1,2,3,4,7\},$$

og uttales $\{1,2,3\}$ union $\{2,4,7\}$ er $\{1,2,3,4,7\}$.»

Snitt

Vi bruker symbolet \cap for å symbolisere det som er til felles for to mengder. Symbolet uttales snitt.

Eksempel

Setningen «Det som er til felles for mengdene $\{1,3,4\}$ og $\{2,3,5\}$ er $\{3\}$ » skrives matematisk som

$$\{1,3,4\} \cap \{2,3,5\} = \{3\},$$

og uttales «{1,3,4} snitt {2,3,5} er {3}.»

Minus

Vi bruker symbolet \ for å symbolisere å fjerne noe fra en mengde.

Eksempel

Setningen «Om vi fjerner $\{1,3,4\}$ fra $\{1,2,3\}$ sitter vi igjen med $\{2\}$ » skrives matematisk som

$$\{1,2,3\}\setminus\{1,3,4\}=\{2\}.$$

Merk at det ikke gjør noe at 4 ikke var med i mengden $\{1,2,3\}$. Det vil da bare ignoreres.

Noen mattebøker bruker vanlig minustegn, -, i stedet for skråstrek, \setminus , for å betegne mengdeminus.

Naturlige tall

Det finnes (i dette kurset) fire typer tall, den første typen kaller vi naturlige tall.

Definisjon

De naturlige tallene N er tallene 1, 2, 3, 4, 5

Tallet 0 er også noen ganger med, avhengig av hvem du spør.

De kalles naturlige fordi det er tallene man «naturlig» møter på, når man skal telle ting og så videre.

Primtall

- Et tall er delelig med et annet dersom vi kan dele dem på hverandre uten å få kommatall.
- Eksempel: 4 er delelig med 2 siden 4 : 2 = 2, men 3 er ikke delelig med 2 siden 3 : 2 = 1,5.
- Et naturlig tall kalles en faktor av et annet tall, om det andre tallet er delelig med det første.
- Eksempel: 2 er en faktor av 6 siden 6 er delelig med 2.
- Et primtall er et tall som har nøyaktig to faktorer.
- Alle tall som ikke er primtall kalles sammensatte tall, og de kan alltid skrives som et gangestykke hvor alle tallene er primtall.
- Denne måten å skrive tall som gangestykker på er unik.

Primtall, eksempler

- Tallet 5 er et primtall, da det er delelig med 1 og 5.
- Tallet 4 er ikke et primtall, da det er delelig med 1, 2 og 4.
- Tallet 1 er ikke et primtall, da det kun er delelig med ett naturlig tall, nemlig 1 selv. Dette er det eneste naturlige tallet med kun én faktor.
- De første primtallene er

$$\{2,3,5,7,11,13,17,19,23,29,31,\ldots\}$$

Primtallsfaktorisering

- A skrive et tall som et produkt av primtall kalles å primtallsfaktorisere tallet.
- Vi kan for eksempel skrive 588 = 2 ⋅ 2 ⋅ 3 ⋅ 7 ⋅ 7. Dette er da primtallsfaktoriseringen av 588.
- Måten vi kommer frem til faktoriseringen på er at vi ser at 588 er delelig med 2, så vi deler det på 2 og får 294. Dette er igjen delelig på 2, så vi utfører divisjonen og får 147.
- Dette er ikke delelig på 2, så vi går videre til neste primtall, 3, og sjekker om det er delelig på det.
- Tallet 147 er delelig på 3, og vi sitter igjen med 49 etter å ha utført divisjonen.
- Her kjenner vi igjen at $49 = 7 \cdot 7$ og er ferdig.

Primtallsfaktorisering, visuelt

Nikolai Bjørnestøl Hansen Tall og tallregning 23. juni 2020 12 / 22

Heltall

Den neste talltypen er heltallene.

Definisjon

Heltallene \mathbb{Z} er tallene ..., -3, -2 – 1, 0, 1, 2, 3,

Symbolet $\mathbb Z$ kommer fra tyske «Zahlen». Ved hjelp av mengdelære-språket vi nettopp har lært, kan vi skrive

$$\mathbb{N} \subset \mathbb{Z}$$

for å påpeke at de naturlige tallene er inneholdt i heltallene.

Partall og oddetall

Definisjon

- Heltallene som er delelig med 2 kalles partall. Eksempler: 2, 4, −14, 288.
- Heltallene som ikke er delelig med 2 kalles oddetall. Eksempler: 3, 77, −11, 103.
- Lett å se om et tall er partall: Det slutter på 0, 2, 4, 6 eller 8.
- Lett å se om et tall er oddetall: Det er ikke et partall.
- Merk at også negative tall vil være partall/oddetall.
- Tallet 0 er delelig med 2, og er derfor et partall.
- Litt gammeldags språk: Partall kalles også for like tall eller jevne tall.

Rasjonale tall

Den tredje typen tall er de rasjonale tallene.

Definisjon

De rasjonale tallene Q er alle tall som kan skrives som en brøk

 $\frac{a}{b}$

hvor både a og b er heltall, med $b \neq 0$. Tallet over brøkstreken kalles teller og tallet under brøkstreken kalles nevner.

Jeg pleier bruke huskeregelen «teller er på topp, nevner er nederst.»

Rasjonale tall

Nesten alle tall dere bruker er rasjonale.

- Alle heltall er rasjonale fordi vi for eksempel kan skrive 5 som 5/1.
- Alle endelige desimaltall er rasjonale fordi vi kan skrive 2,3721 som $\frac{23721}{10000}$.
- Alle repeterende desimaltall viser seg også å være rasjonale.

Symbolet $\mathbb Q$ kommer fra engelske «Quotient». Siden vi har at alle heltall også er rasjonale, så har vi

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$$
.

Reelle tall

Den fjerde og siste typen tall er reelle tall.

Definisjon

De reelle tallene \mathbb{R} er alle mulige desimaltall.

- De reelle tallene som ikke er rasjonale kalles irrasjonale tall.
- Dette er da alle desimaltall som ikke vil repetere seg.
- De mest kjente eksemplene er $\sqrt{2}$ og π .
- Vi har:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
.

Reelle tall

- Det er ekstremt mange flere irrasjonale tall enn det er rasjonale tall.
- De fleste desimaltall vil jo ikke repetere seg.
- Det er uendelig mange steder det kan «gå galt».
- Men det må også «gå galt» uendelig mange steder.

Teorem

Om n er et naturlig tall, og \sqrt{n} ikke er et naturlig tall, så er \sqrt{n} irrasjonal.

Så eksempelvis er $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$ og $\sqrt{7}$ irrasjonale, men $\sqrt{4}=2$ er ikke.

Regnerekkefølge

Regnerekkefølgen

Når vi skal regne ut et regnestykke, må vi regne gjennom ting i riktig rekkefølge.

- Parenteser
- 2 Eksponenter (opphøyd i)
- 3 Multiplikasjon og divisjon (ganging og deling)
- 4 Addisjon og subtraksjon (plussing og minusing)

Lite spesialtilfelle: Om jeg skriver 4^{3+2} så betyr det egentlig $4^{(3+2)}$. Tenk over dette. Hva skulle det ellers betydd?

Regnerekkefølgen, eksempel

Eksempel

Om vi skal regne ut

$$2 + 3 \cdot 4^{3-1}$$

får vi

$$2 + 3 \cdot 4^{3-1} = 2 + 3 \cdot 4^{2}$$

$$= 2 + 3 \cdot 16$$

$$= 2 + 48$$

$$= 50$$

Regnerekkefølgen,

Merk at ganging/deling skjer i samme steg, og plussing/minusing også skjer i samme steg. Om to ting skjer i samme steg, går vi fra venstre til høyre.

Eksempel

Hvis vi skal regne ut 10 - 2 + 3 får vi 11, og ikke 5.

Hvorfor er akkurat denne rekkefølgen riktig?

En eller annen rekkefølge må jo bli den riktige, og dette er den som er mest behagelig å jobbe med. Prøv deg frem med andre rekkefølger, se hvordan de føles!

Vanskelige navn

- Alle de vanlige regneoperasjonene har vanskelige navn.
- Når du plusser sammen to tall så summerer du to ledd og får en sum.
- Når du minuser to tall så subtraherer du en subtrahend fra en minuend og får en differanse.
- Når du ganger to tall så multipliserer du to faktorer og får et produkt.
- Når du deler to tall så dividerer du en dividend på en divisor og får en kvotient.
- Av disse så er det kun ledd, sum, faktor og produkt som er verd å huske.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET