

Intelligence Artificielle pour les systèmes autonomes (IAA)

Reinforcement Learning (RL)

Prof. Yann Thoma - Prof. Marina Zapater

Février 2024

Basé sur le cours du Prof. A. Geiger

Summary

Today's lesson

→ Reinforcement learning

On the previous lecture: supervised techniques

Imitation learning and direct perception

- → Supervised learning
 - Using expert demonstration
 - Imitation learning: computing the differences between the result of our action and the expert's action (loss function → try to minimize the loss)
 - Direct perception: computing the loss on the affordance indicators
- → Today's lecture: reinforcement learning
 - Learning models based on the loss that we actually care about
 - Minimize time to get to a location
 - · Minimize number of collisions
 - ...

Three types of learning

Supervised, unsupervised, reinforcement learning

- → Supervised
 - We have a dataset of samples x_i with labels y_i : we want to learn the mapping of $x \rightarrow y$
 - Examples: classification (NNs), regression, imitation learning, affordance learning, etc.
- → Unsupervised
 - We have a dataset (x_i) and we want to discover the underlying structure
 - Examples: clustering
- → Reinforcement Learning (RL)
 - Agent interacting with an environment that provides numeric rewards
 - · Goal: taking actions to maximize the reward
 - Example: learning of manipulation and control tasks

Reinforcement Learning

Overview

- → Agent observes environment state s_t at time t
- → Send an action at at time t to the environment
- → Environment returns the reward and its new state

- → Goal: selecting actions that maximize the reward.
- → Knowing that:
 - Actions may have long-term consequences
 - Reward may be delayed, not instantaneaous
 - It might be better to sacrifice immediate reward to gain more long-term reward

Examples

Atari game, AlphaGo, Car racing

https://openai.com/research/gym-retro

► **Objective:** Maximize game score

► **State:** Raw pixels of screen (210x160)

► **Action:** Left, right, up, down

► **Reward:** Score increase/decrease at *t*

https://deepmind.google/technologies/alphago/

► **Objective:** Winning the game

► **State:** Position of all pieces

► Action: Location of next piece

► **Reward:** 1 if game won, 0 otherwise

► **Objective:** Lane Following

► **State:** Image (96x96)

► Action: Acceleration, Steering

How do we know which actions to take

A simple grid example

- → Goal: reaching one of the terminal states (marked with *) in the least number of actions possible
- → Penalty: negative "reward" given for every transition made

```
actions = {
    1. right →
    2. left ←
    3. up ↑
    4. down ↓
}
```

states

reward: r = -1 for each transition

The simple grid example

Random policy vs optimal policy

→ Arrows indicate equal probability of moving into each direction

Random Policy

Optimal Policy

→ How do we choose how to cover the possible space of actions in RL?

Q-learning

A model-free algorithm for RL for learning the value of an action

- → The algorithm calculates the Quality of a state-action combination
 - Trying to maximize total reward over any and all successive steps
- → Builds and updates the Quality of a sequence of actions iteratively
- → Implementation:
 - Initialize Q-table and initial state randomly
 - Repeat:
 - Observe state, choose action using epsilon-greedy strategy
 - Observe reward and next state
 - Compute error
 - Update Q-tables
 - Explore new states until a certain threshold is achieved, then exploit what has been learned

$$Q^{new}(S_t, A_t) \leftarrow (1 - \underbrace{\alpha}_{ ext{learning rate}}) \cdot \underbrace{Q(S_t, A_t)}_{ ext{current value}} + \underbrace{\alpha}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{R_{t+1}}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}}\right)}_{ ext{discount factor}}$$

$$\max_a Q(S_{t+1},a)$$
 estimate of optimal future value

Q-learning example

The mouse finding the cheese in the maze

What's the main issue of Q-learning?

Scalability, and how to solve it

- → Scalability: tables don't scale to high-dimensional state/action pairs
- → Solution:
 - Multi-agent reinforcement learning: splitting the environment, agents collaborate/compete observing parts of it
 - Deep Q-learning: use a function approximator (a neural network) to represent Q(s,a)

- → Deep Q-learning:
 - Very popular today, but has shortcomings
 - Long training times, simplistic exploration strategy, action space limited

"Learn to drive in a day"

Real world RL demo for self-driving by Wayve

- → Input: single camera image
- → Action: steering and speed
- → Reward: distance travelled without safety driver taking control
- → No maps / localization required
- → 4 Conv layers / 2 FC layers
- → Only 35 training episodes

Fig. 1: We design a deep reinforcement learning algorithm for autonomous driving. This figure illustrates the actorcritic algorithm which we use to learn a policy and value function for driving. Our agent maximises the reward of distance travelled before intervention by a safety driver.

"Learn to drive in a day"

Youtube video

Expert and Reinforcement learning

Take the best of the two worlds

Trustworthy improvement RL (TiRL)

https://www.sciencedirect.com/science/article/pii/S0968090X22000997

Reinforcement learning for safety validation

- → Finding corner cases and safety-critical events is hard
- → Use reinforcement learning to generate such events
- → https://www.nature.com/articles/s41586-023-05732-2

TODO's for last lecture

Exercises

- 1. Analysis of the Dronet running on the Crazyflie (papers provided on Cyberlearn)
- 2. Conditional Imitation Learning
- 3. Conditional Affordance Learning

TODO's for today

Exercises

- 1. Understand the mouse and cheese problem
- 2. Checking the Wayve paper and demo ("Learn to drive in a day")
- 3. RL using Deep Q-Learning (Deep Q Networks) Using OpenAl Gym (Car Racing environment)
 - https://github.com/andywu0913/OpenAI-GYM-CarRacing-DQN
 - https://towardsdatascience.com/applying-a-deep-q-network-for-openais-car-racing-game-a642dat58fc9
 - https://scientificpython.readthedocs.io/en/latest/notebooks_rst/6_Machine_Learning/04_Exercices/02_Practical_Work/02_RL_2_CarRacing.html
- 4. Take a look at the RL Zoo https://github.com/DLR-RM/rl-baselines3-zoo

HE VD

REDS
Institut
Reconfigurable
and Embedded
Digital Systems

