Linear Algebra

This is a summary of the linear algebra concepts used in the course:

- Linear Algebra
 - Matrices and Vectors
 - Matrix Transpose and Matrix Product
 - * Properties
 - Norms
 - Special Kinds of Matrices and Vectors
 - Eigendecomposition
 - Matrix Inverse
 - Quadratic Form and Positive Semidefinite Matrices

Matrices and Vectors

• $A \in \mathbb{R}^{m \times n}$: matrix with m rows and n columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

• $x \in \mathbb{R}^n$: (column) vector with n rows and 1 column:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- A row vector is a matrix with 1 row and n columns;
- A scalar is a matrix with 1 row and 1 column (i.e. a number).

Matrix Transpose and Matrix Product

- Transpose of a matrix $A \in \mathbb{R}^{m \times n}$ is the matrix $A^T \in \mathbb{R}^{n \times m}$ such that $A_{ii}^T = A_{ii}$;
- Matrix A is symmetric if $A = A^T$;
- The **product** of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is the matrix $C \in \mathbb{R}^{m \times p}$:

$$C = AB$$
 where $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$

• The inner product (or dot product) of two vectors $x, y \in \mathbb{R}^n$ is the scalar $x^Ty \in \mathbb{R}$:

$$< x, y > = x^T y = y^T x = \sum_{i=1}^{n} x_i y_i$$

• The **outer product** of two vectors $x, y \in \mathbb{R}^n$ is the matrix $xy^T \in \mathbb{R}^{n \times n}$:

$$xy^{T} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \dots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \dots & x_{2}y_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}y_{1} & x_{n}y_{2} & \dots & x_{n}y_{n} \end{bmatrix}$$

• The **Hadamard/Schur product** of two vectors $x, y \in \mathbb{R}^n$ is the vector $x \circ y \in \mathbb{R}^n$ such that $(x \circ y)_i = x_i y_i$:

$$x \circ y = \begin{bmatrix} x_1 y_1 \\ x_2 y_2 \\ \vdots \\ x_n y_n \end{bmatrix}$$

Properties

• Associativity: (AB)C = A(BC);

• It is **not commutative**: $AB \neq BA$ - unless A or B is a scalar;

• Transpose of a product: $(AB)^T = B^T A^T$;

• Transpose of sum: $(A+B)^T = A^T + B^T$.

Norms

- The **norm** of a vector is its **length** or **magnitude**;
- The euclidean norm (or l_2 norm) of a vector $x \in \mathbb{R}^n$ is:

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x^T x} = \sqrt{\langle x, x \rangle}$$

• More generally, the l_p norm of a vector $x \in \mathbb{R}^n$ is:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

- The l_1 norm of a vector $x \in \mathbb{R}^n$ is: $||x||_1 = \sum_{i=1}^n |x_i|$;
- The l_{∞} norm of a vector $x \in \mathbb{R}^n$ is: $||x||_{\infty} = \max_i |x_i|$.

Special Kinds of Matrices and Vectors

- Diagonal matrix: a matrix $D \in \mathbb{R}^{n \times n}$ such that $D_{ij} = 0$ for $i \neq j$;
- Identity matrix: a diagonal matrix $I \in \mathbb{R}^{n \times n}$ such that $I_{ii} = 1$ for all i;
 - -AI = IA = A for any matrix $A \in \mathbb{R}^{m \times n}$ **neutral element** of matrix multiplication;
- Upper triangular matrix: a matrix $U \in \mathbb{R}^{n \times n}$ such that $U_{ij} = 0$ for i > i:
- Lower triangular matrix: a matrix $L \in \mathbb{R}^{n \times n}$ such that $L_{ij} = 0$ for i < j.

Eigendecomposition

• **Eigenvector** of a matrix $A \in \mathbb{R}^{n \times n}$ is a nonzero vector $\vec{v} \in \mathbb{R}^n$ such that $A\vec{v} = \lambda \vec{v}$ for some scalar $\lambda \in \mathbb{R}$;

$$Ax = \lambda \vec{v} \Leftrightarrow (A - \lambda I)\vec{v} = 0$$

- The eigenvalues of a diagonal matrix are its diagonal elements;
- The matrix **trace** is the sum of its diagonal elements: $\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} \lambda_i$;
- The matrix **determinant** is the product of its eigenvalues: $\det(A) = |A| = \prod_{i=1}^{n} \lambda_i$;
 - $|A| = |A^T|;$
 - |AB| = |A||B|;
 - $|\alpha A| = \alpha^n |A|.$

Matrix Inverse

- A matrix is **invertible** if there exists a matrix B such that AB = BA = I;
- The **inverse** of a matrix $A \in \mathbb{R}^{n \times n}$ is the matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that $AA^{-1} = A^{-1}A = I$;
- $det(A) \neq 0 \Leftrightarrow A \text{ is invertible};$
- $det(A^{-1}) = \frac{1}{det(A)}$;
- If A is invertible, then Ax = b has a unique solution $x = A^{-1}b$ for any b;
- Computational cost of inverting a matrix is $O(n^3)$.

Properties:

- $(A^{-1})^{-1} = A$;
- $(AB)^{-1} = B^{-1}A^{-1}$;
- $(A^T)^{-1} = (A^{-1})^T$.

Quadratic Form and Positive Semidefinite Matrices

Given a matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$, the quadratic form is:

$$x^T A x = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$
 where $A \in \mathbb{R}^{n \times n}$

This can be written as:

$$\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- A positive semidefinite matrix is a symmetric matrix $A \in \mathbb{R}^{n \times n}$ such that $x^T A x \geq 0$ for all $x \in \mathbb{R}^n$;
 - A is positive semidefinite $\Leftrightarrow \lambda_i(A) \geq 0$ for all i;
- A positive definite matrix is a symmetric matrix $A \in \mathbb{R}^{n \times n}$ such that $x^T A x > 0$ for all $x \in \mathbb{R}^n$;
 - A is positive definite $\Leftrightarrow \lambda_i(A) > 0$ for all i.