Dodatek **A** Mezinárodní soustava jednotek (SI)

1. ZÁKLADNÍ JEDNOTKY SI

VELIČINA	NÁZEV	Značka	A DEFINICE
délka	metr	m	"metr je délka dráhy proběhnuté světlem ve vakuu za dobu 1/299 792 458 sekundy" (ČSN ISO 31-1, prosinec 1994)
hmotnost	kilogram	kg	"kilogram je jednotka hmotnosti; rovná se hmotnosti mezinárodního prototypu kilogramu" (ČSN ISO 31-3, prosinec 1994)
čas	sekunda	s	"sekunda je trvání 9 192 631 770 period záření odpovídají- cího přechodu mezi dvěma velmi jemnými hladinami zá- kladního stavu atomu cesia 133" (ČSN ISO 31-1, prosinec 1994)
elektrický proud	ampér	A	"ampér je stálý elektrický proud, který při průtoku dvěma přímými nekonečně dlouhými rovnoběžnými vodiči zanedbatelného kruhového průřezu, umístěnými ve vakuu ve vzdálenosti 1 metru, vyvolá mezi nimi sílu $2\cdot 10^{-7}$ newtonu na metr délky" (ČSN ISO 31-5, listopad 1995)
termodynamická teplota	kelvin	K	"kelvin, jednotka termodynamické teploty, je 1/273,16 termodynamické teploty trojného bodu vody" (ČSN ISO 31-4, prosinec 1994)
látkové množství	mol	mol	"mol je látkové množství soustavy, která obsahuje tolik elementárních entit, kolik je atomů v 0,012 kg uhlíku 12. Při užití molu musí být elementární entity specifikovány. Mohou to být atomy, molekuly, ionty, elektrony, jiné částice nebo specifikované skupiny takových částic." (ČSN ISO 31-8, červen 1996)
svítivost	kandela	cd	"kandela je svítivost zdroje v daném směru, který vysílá monochromatické záření s kmitočtem 540·10 ¹² hertzů a má v tomto směru zářivost 1/683 wattů na steradián" (ČSN ISO 31-6, listopad 1995)

2. NĚKTERÉ ODVOZENÉ JEDNOTKY SI

VELIČINA	Název jednotky	Značka
plocha objem	čtverečný metr krychlový metr	$\frac{m^2}{m^3}$
rychlost zrychlení		$\begin{array}{c} m \cdot s^{-1} \\ m \cdot s^{-2} \end{array}$
rovinný úhel prostorový úhel	radián steradián	rad sr
úhlová rychlost úhlové zrychlení		$rad \cdot s^{-1}$ $rad \cdot s^{-2}$
frekvence, kmitočet	hertz	Hz s^{-1}
hustota		$kg \cdot m^{-3}$
síla tlak	newton pascal	$\begin{array}{ccc} N & & kg\cdot m\cdot s^{-2} \\ Pa & & N\cdot m^{-2} \end{array}$
práce, energie, teplo výkon	joule watt	$\begin{array}{ccc} J & & N \cdot m \\ W & & J \cdot s^{-1} \end{array}$
elektrický náboj potenciál, napětí intenzita elektrického pole elektrický odpor elektrická vodivost kapacita	coulomb volt ohm siemens farad	$\begin{array}{ccc} C & A \cdot s \\ V & W \cdot A^{-1} \\ V \cdot m^{-1} & N \cdot C^{-1} \\ \Omega & V \cdot A^{-1} \\ S & \Omega^{-1} \\ F & A \cdot s \cdot V^{-1} \end{array}$
magnetická indukce magnetický tok indukčnost intenzita magnetického pole	tesla weber henry	$\begin{array}{ccc} T & Wb\cdot m^{-2} \\ Wb & V\cdot s \\ H & V\cdot s\cdot A^{-1} \\ A\cdot m^{-1} \end{array}$
entropie měrná tepelná kapacita tepelná vodivost Celsiova teplota	stupeň Celsia	$\begin{array}{c} \textbf{J} \cdot \textbf{K}^{-1} \\ \textbf{J} \cdot \textbf{k} \textbf{g}^{-1} \cdot \textbf{K}^{-1} \\ \textbf{W} \cdot \textbf{m}^{-1} \cdot \textbf{K}^{-1} \\ ^{\circ}\textbf{C} \end{array}$
světelný tok osvětlení zářivost	lumen lux	$\begin{array}{ccc} lm & cd\cdot sr \\ lx & lm\cdot m^{-2} \\ W\cdot sr^{-1} \end{array}$

Dodatek B Některé základní fyzikální konstanty*

		Přibližná	Nejpřesnější hodnota (1986)	
KONSTANTA	Značka	HODNOTA	HODNOTA ^a	Nejistota ^b
Rychlost světla ve vakuu	С	$3,00\cdot10^{8}\mathrm{m\cdot s^{-1}}$	2,99792458	přesně
Elementární náboj	e	$1,60 \cdot 10^{-19} \mathrm{C}$	1,60217733	0,30
Gravitační konstanta ^e	G	$6,67 \cdot 10^{-11} \text{m}^3 \cdot \text{s}^{-2} \cdot \text{kg}^{-1}$	6,67259	128
Univerzální plynová konstanta	R	$8,31\mathrm{J\cdot mol^{-1}\cdot K^{-1}}$	8,314510	8,4
Avogadrova konstanta	$N_{ m A}$	$6.02 \cdot 10^{23} \text{mol}^{-1}$	6,0221367	0,59
Boltzmannova konstanta	k	$1,38 \cdot 10^{-23} \text{J} \cdot \text{K}^{-1}$	1,380658	8,5
Stefanova-Boltzmannova konstanta	σ	$5,67 \cdot 10^{-8} \mathrm{W \cdot m^{-2} \cdot K^{-4}}$	5,67051	34
Molární objem ideálního plynu za STP ^d	$V_{ m m}$	$2,24 \cdot 10^{-2} \mathrm{m}^3 \cdot \mathrm{mol}^{-1}$	2,241409	8,4
Permitivita vakua	$arepsilon_0$	$8,85 \cdot 10^{-12} \mathrm{F} \cdot \mathrm{m}^{-1}$	$1/(c^2\mu_0)$	přesně
Permeabilita vakua	μ_0	$1,26 \cdot 10^{-6} \text{H} \cdot \text{m}^{-1}$	$4\pi \cdot 10^{-7}$	přesně
Planckova konstanta	h	$6,63 \cdot 10^{-34} \text{J} \cdot \text{s}$	6,6260755	0,60
Redukovaná Planckova konstanta	$\hbar = h/(2\pi)$	$1,05 \cdot 10^{-34} \mathrm{J \cdot s}$	1,0545727	0,10
Hmotnost elektronu ^c	$m_{ m e}$	$9,11\cdot10^{-31}\mathrm{kg}$	9,1093897	0,59
		$5,49 \cdot 10^{-4} \mathrm{u}$	5,48579903	0,023
Hmotnost protonu ^c	$m_{\rm p}$	$1,67 \cdot 10^{-27} \mathrm{kg}$	1,672 623 1	0,59
	•	1,0073 u	1,0072764660	0,005
Poměr hmotností protonu a elektronu	$m_{\rm p}/m_{\rm e}$	1840	1836,152701	0,020
Měrný náboj elektronu	$e/m_{\rm e}$	$1,76 \cdot 10^{11} \mathrm{C\cdot kg^{-1}}$	1,75881961	0,30
Hmotnost neutronu ^c	$m_{\rm n}$	$1,67 \cdot 10^{-27} \mathrm{kg}$	1,6749286	0,59
		1,0087 u	1,0086649235	0,0023
Hmotnost atomu vodíku ^c	$m_{1_{ m H}}$	1,0078u	1,0078250316	0,0005
Hmotnost atomu deuteria ^c	$m_{2_{ m H}}$	2,0141 u	2,0141017779	0,0005
Hmotnost atomu helia ^c	$m_{ m ^4He}$	4,0026 u	4,0026032	0,067
Hmotnost mionu	m_{μ}	$1,88 \cdot 10^{-28} \mathrm{kg}$	1,8835326	0,61
Magnetický moment elektronu	μ_{e}	$9,28 \cdot 10^{-24} \text{J} \cdot \text{T}^{-1}$	9,2847701	0,34
Magnetický moment protonu	$\mu_{ m p}$	$1,41\cdot 10^{-26}\mathrm{J}\cdot\mathrm{T}^{-1}$	1,41060761	0,34
Bohrův magneton	$\mu_{ m B}$	$9,27 \cdot 10^{-24} J \cdot T^{-1}$	9,2740154	0,34
Jaderný magneton	$\mu_{ m N}$	$5,05 \cdot 10^{-27} \mathrm{J} \cdot \mathrm{T}^{-1}$	5,0507866	0,34
Bohrův poloměr	$r_{ m B}$	$5,29 \cdot 10^{-11} \mathrm{m}$	5,29177249	0,045
Rydbergova konstanta	R	$1,10\cdot10^7\mathrm{m}^{-1}$	1,0973731534	0,0012
Comptonova vlnová délka elektronu	λ_{C}	$2,43\cdot10^{-12}\mathrm{m}$	2,42631058	0,089

^a K hodnotám v tomto sloupci je nutno přiřadit stejnou jednotku a mocninu desítky jako u přibližné hodnoty.

b V miliontinách

^c Hmotnosti zapsané v u jsou v atomových hmotnostních jednotkách, kde $1 \text{ u} = 1,6605402 \cdot 10^{-27} \text{ kg}$.

 $[^]d$ STP znamená standardní teplotu a tlak: 0° C a 1,0 atm (0,1 MPa).

^e V ČR je dosud dosti rozšířena starší značka κ.

^{*} Hodnoty v této tabulce byly vybrány ze *Symbols, Units and Nomenclatur in Physics* (IUPAP), který sestavili E. Richard Cohen a Pierre Giacomo, 1986.

Dodatek **C** Některá astronomická data

NĚKTERÉ VZDÁLENOSTI OD ZEMĚ

k Měsíci (průměrná vzdálenost)	$3,82 \cdot 10^8 \text{m}$
ke Slunci (průměrná vzdálenost)	$1,50 \cdot 10^{11} \mathrm{m}$
k nejbližší hvězdě (Proxima Centauri)	$4,04 \cdot 10^{16} \mathrm{m}$
k centru naší Galaxie	$2,2\cdot10^{20}\mathrm{m}$
ke galaxii v Andromedě	$2,1\cdot10^{22}\mathrm{m}$
k okraji pozorovatelného vesmíru	$\sim 10^{26}\mathrm{m}$

SLUNCE, ZEMĚ A MĚSÍC

VLASTNOST	JEDNOTKA	SLUNCE	Země	Měsíc
Hmotnost	kg	$1,99 \cdot 10^{30}$	$5,98 \cdot 10^{24}$	7,36·10 ²²
Střední poloměr	m	$6,96 \cdot 10^{8}$	$6,37 \cdot 10^6$	$1,74 \cdot 10^6$
Střední hustota	$kg \cdot m^{-3}$	1410	5 5 2 0	3 3 4 0
Tíhové zrychlení na povrchu	$m \cdot s^{-2}$	274	9,81	1,67
Úniková rychlost	$km \cdot s^{-1}$	618	11,2	2,38
Doba rotace ^a	_	37 d na pólech ^b	23 h 56 min	27,3 d
		26 d na rovníku ^b		
Zářivý výkon ^c	W	$3,90 \cdot 10^{26}$		

 $^{^{\}it a}$ Měřeno vzhledem ke vzdáleným hvězdám.

^b Slunce, plynná koule, nerotuje jako tuhé těleso.

 $[^]c$ Výkon sluneční energie dopadající kolmo na povrch Země, měřeno vně zemské atmosféry, je $1340\,\rm W\cdot m^{-2}.$

NĚKTERÉ CHARAKTERISTIKY PLANET

	MERKUR	Venuše	Země	Mars	JUPITER	SATURN	Uran	NEPTUN	PLUTO
Střední vzdálenost od Slunce (10 ⁶ km)	57,9	108	150	228	778	1430	2870	4500	5900
Doba oběhu (y)	0,241	0,615	1,00	1,88	11,9	29,5	84,0	165	248
Doba ^a rotace (d)	58,7	-243^{b}	0,997	1,03	0,409	0,426	$-0,451^{b}$	0,658	6,39
Orbitální rychlost (km·s ⁻¹)	47,9	35,0	29,8	24,1	13,1	9,64	6,81	5,43	4,74
Sklon osy k rovině oběhu	< 28°	≈ 3°	23,4°	25,0°	3,08°	26,7°	97,9°	29,6°	57,5°
Sklon orbity k ekliptice	7,00°	3,39°	0°	1,85°	1,30°	2,49°	0,77°	1,77°	17,2°
Excentricita trajektorie	0,206	0,0068	0,0167	0,0934	0,0485	0,0556	0,0472	0,0086	0,250
Rovníkový průměr (km)	4880	12100	12800	6790	143 000	120 000	51 800	49500	2300
Hmotnost (Země = 1)	0,0558	0,815	1,000	0,107	318	95,1	14,5	17,2	0,002
Hustota ($voda = 1$)	5,60	5,20	5,52	3,95	1,31	0,704	1,21	1,67	2,03
Tíhové zrychlení ^c na povrchu (m·s ⁻²)	3,78	8,60	9,78	3,72	22,9	9,05	7,77	11,0	0,5
Úniková rychlost ^c (km/s)	4,3	10,3	11,2	5,0	59,5	35,6	21,2	23,6	1,1
Známé satelity a prstence	0	0	1	2	16+ p	18+ pp	15+ pp	8+ pp	1

 $^{^{\}it a}$ Měřeno vzhledem ke vzdáleným hvězdám.

^b Venuše a Uran rotují retrográdně (tj. v opačném smyslu, než v jakém obíhají kolem Slunce).

^c Měřeno na rovníku.

Dodatek D Převodní koeficienty mezi jednotkami

Převodní koeficienty odečítáme přímo z jednotlivých tabulek. Např. 1 stupeň $(1^{\circ}) = 2,778 \cdot 10^{-3}$ otáček, takže hodnotu $16,7^{\circ}$ převedeme úpravou: $16,7^{\circ} = 16,7 \cdot 2,778 \cdot 10^{-3}$ ot $= 4,64 \cdot 10^{-2}$ ot.

PLOŠNÝ ÚHEL

	0	,	″	rad	ot
0	1	60	3 600	$1,745\cdot 10^{-2}$	$2,778 \cdot 10^{-3}$
′	$1,667 \cdot 10^{-2}$	1	60	$2,909 \cdot 10^{-4}$	$4,630 \cdot 10^{-5}$
″	$2,778 \cdot 10^{-4}$	$1,667 \cdot 10^{-2}$	1	$4,848 \cdot 10^{-6}$	$7,716 \cdot 10^{-7}$
rad	57,30	3 438	$2,063\cdot10^5$	1	0,1592
ot	360	$2,16\cdot10^4$	$1,296 \cdot 10^6$	6,283	1

Zápis jednotek: 1 stupeň 1°; 2 minuty 2′; 3 vteřiny 3″. Otáčka není jednotka SI, ale často se užívá; zde ji zkracujeme na ot.

PROSTOROVÝ ÚHEL

plný prostorový úhel = 4π steradiánu $\doteq 12,57$ steradiánu

DÉLKA

	cm	m	km	in	ft	mi
m	100	1	1.10^{-3}	39,37	3,281	$6,214\cdot10^{-4}$
in	2,540	$2,540 \cdot 10^{-2}$	$2,540 \cdot 10^{-5}$	1	$8,333 \cdot 10^{-2}$	$1,578 \cdot 10^{-5}$
ft	30,48	0,3048	$3,048 \cdot 10^{-4}$	12	1	$1,894 \cdot 10^{-4}$
mi	$1,609 \cdot 10^5$	1 609	1,609	$6,336 \cdot 10^4$	5 280	1
_	tröm $(1 \text{ Å}) = 1.10^{-10}$		$= 1.10^{-15} \mathrm{m}$	1 fathom = 6ft	5 202 10-ll	1 rod = 16,5 ft

1 Angström (1 A) = $1 \cdot 10^{-10}$ m 1 fermi (1 fm) = $1 \cdot 10^{-15}$ m 1 fathom = 6 ft 1 rod = 16,5 ft 1 nautical mile = 1852 m přesně 1 light-year (1 ly) = $9,460 \cdot 10^{12}$ km 1 Bohrův poloměr = $5,292 \cdot 10^{-11}$ m 1 mil = $1 \cdot 10^{-15}$ 1 mil =

Výklad zkratek: in = inch (palec, coul); ft = foot (stopa); mi = mile (míle); nautical mile (námořní míle); rod = rod (tyč); ly = light-year (světelný rok)

PLOCHA

	m^2	cm^2	ft^2	in ²
m^2	1	1.10^{4}	10,76	1 550
cm^2	1.10^{-4}	1	$1,076 \cdot 10^{-3}$	0,1550
ft^2	$9,290 \cdot 10^{-2}$	929,0	1	144
in ²	$6,452 \cdot 10^{-4}$	6,452	$6,944 \cdot 10^{-3}$	1

1 square mile = $2,788 \cdot 10^7$ ft² = 640 akr 1 barn = $1 \cdot 10^{-28}$ m² 1 hektar = $1 \cdot 10^4$ m² = 2,471 akr 1 ar = $1 \cdot 10^2$ m²

 $1 \text{ akr} = 43560 \text{ ft}^2$

-	-	_	

	m^3	cm ³	1	ft ³	in^3
m^3	1	1.10^{6}	1.10^{3}	35,31	$6,102 \cdot 10^4$
cm^3	1.10^{-6}	1	$1,000\cdot10^{-3}$	$3,531 \cdot 10^{-5}$	$6,102 \cdot 10^{-2}$
1	$1,000 \cdot 10^{-3}$	1.10^{3}	1	$3,531 \cdot 10^{-2}$	61,02
ft^3	$2,832 \cdot 10^{-2}$	$2,832 \cdot 10^4$	28,32	1	1 728
in^3	$1,639 \cdot 10^{-5}$	16,39	$1,639 \cdot 10^{-2}$	$5,787 \cdot 10^{-4}$	1

¹ U.S. fluid gallon = 4 U.S. fluid quarts = 8 U.S. pints = 128 U.S. fluid ounces = 231 in^3 ,

HMOTNOST

Jednotka ve zbarvené oblasti je jednotkou síly, ale používá se někdy i pro hmotnost. Píšeme-li tedy např. "1 kg = 2,205 lb", znamená to, že kilogram je hmotnost tělesa vážícího 2,205 liber v místě, kde má tíhové zrychlení standardní hodnotu 9,806 65 m⋅s⁻².

	g	kg	u	OZ	lb
kg	1 000	1	$6,022 \cdot 10^{26}$	35,27	2,205
u	$1,661 \cdot 10^{-24}$	$1,661 \cdot 10^{-27}$	1	$5,857 \cdot 10^{-26}$	$3,662 \cdot 10^{-27}$
oz	28,35	$2,835 \cdot 10^{-2}$	$1,718 \cdot 10^{25}$	1	$6,250 \cdot 10^{-2}$
lb	453,6	0,4536	$2,732 \cdot 10^{26}$	16	1

Výklad zkratek: u = unit (atomová hmotnostní jednotka), oz = ounce (unce), lb = pound (libra)

HUSTOTA

Hodnoty ve zbarvených oblastech jsou hustoty síly (váhy) a jejich rozměr se liší od ostatních. Vysvětlení jako u tabulky hmotností.

	$kg \cdot m^{-3}$	g⋅cm ⁻³	lb⋅ft ⁻³	lb·in ^{−3}
kg⋅m ⁻³	1	0,001	$6,243\cdot 10^{-2}$	$3,613 \cdot 10^{-5}$
$g \cdot cm^{-3}$	1 000	1	62,43	$3,613 \cdot 10^{-2}$
lb⋅ft ⁻³	16,02	$1,602 \cdot 10^{-2}$	1	$5,787 \cdot 10^{-4}$
lb·in ^{−3}	$2,768 \cdot 10^4$	27,68	1 728	1

ČAS

	У	d	h	min	S
y	1	365,25	$8,766 \cdot 10^3$	$5,259 \cdot 10^5$	$3,156\cdot10^7$
d	$2,738 \cdot 10^{-3}$	1	24	1 440	$8,640 \cdot 10^4$
h	$1,141\cdot10^{-4}$	$4,167\cdot10^{-2}$	1	60	3 600
min	$1,901 \cdot 10^{-6}$	$6,944 \cdot 10^{-4}$	$1,667 \cdot 10^{-2}$	1	60
S	$3,169 \cdot 10^{-8}$	$1,157 \cdot 10^{-5}$	$2,778 \cdot 10^{-4}$	$1,667 \cdot 10^{-2}$	1

Výklad zkratek: y = year (rok), d = day (den), h = hour (hodina), min = minute (minuta), s = second (sekunda; dříve se užíval i název vteřina, ale ten je nyní rezervován jen pro úhel)

¹ British imperial gallon = $277.4 \text{ in}^3 = 1.201 \text{ U.S. fluid gallons}$

RYCHLOST

	$ft \cdot s^{-1}$	$km \cdot h^{-1}$	$m \cdot s^{-1}$	$\mathrm{mi}\!\cdot\!\mathrm{h}^{-1}$	cm·s ⁻¹
ft⋅s ⁻¹	1	1,097	0,3048	0,6818	30,48
$km \cdot h^{-1}$	0,9113	1	0,2778	0,6214	27,78
$m \cdot s^{-1}$	3,281	3,6	1	2,237	100
$mi \cdot h^{-1}$	1,467	1,609	0,4470	1	44,70
$\text{cm}\cdot\text{s}^{-1}$	$3,281 \cdot 10^{-2}$	$3,6\cdot10^{-2}$	0,01	$2,237 \cdot 10^{-2}$	1

1 knot (uzel) = 1 nautical mile per hour = $1,688 \, \text{ft} \cdot \text{s}^{-1}$

SÍLA

Jednotka síly ve zbarvené oblasti se u nás nyní neužívá: 1 gram síly (gram-force) je tíhová síla působící na těleso o hmotnosti 1 gram v místě, kde má tíhové zrychlení standardní hodnotu $9,80665 \,\mathrm{m\cdot s^{-2}}$. Dříve se nazýval 1 pond.

	dyn	N	lb	pdl	gf
dyn	1	1.10^{-5}	$2,248 \cdot 10^{-6}$	$7,233 \cdot 10^{-5}$	$1,020\cdot10^{-3}$
N	1.10^{5}	1	0,2248	7,233	102,0
lb	$4,448 \cdot 10^5$	4,448	1	32,17	453,6
pdl	$1,383 \cdot 10^4$	0,1383	$3,108 \cdot 10^{-2}$	1	14,10
gf	980,7	$9,807 \cdot 10^{-3}$	$2,205\cdot10^{-3}$	$7,093 \cdot 10^{-2}$	1

 $V\acute{y}klad\ zkratek$: lb = pound, pdl = poundal

TLAK

		2	inch of	**	D.	11 : -2	u c-2
	atm	dyn∙cm ⁻²	water	mm Hg	Pa	lb∙in ^{−2}	lb∙ft ^{−2}
atm	1	$1,013 \cdot 10^6$	406,8	760	$1,013 \cdot 10^5$	14,70	2116
dyn·cm ⁻²	$9,869 \cdot 10^{-7}$	1	$4,015\cdot10^{-4}$	$7,501 \cdot 10^{-4}$	0,1	$1,405\cdot 10^{-5}$	$2,089 \cdot 10^{-3}$
inch of water ^{a,b}	$2,458 \cdot 10^{-3}$	2 491	1	1,868	249,1	$3,613 \cdot 10^{-2}$	5,202
$\operatorname{mm}\operatorname{Hg}^{a,c}$	$1,316\cdot10^{-3}$	$1,333\cdot10^3$	0,5353	1	133,3	$1,934 \cdot 10^{-2}$	2,785
Pa	$9,689 \cdot 10^{-6}$	10	$4,015\cdot10^{-3}$	$7,501 \cdot 10^{-3}$	1	$1,450\cdot10^{-4}$	$2,089 \cdot 10^{-2}$
$1b \cdot in^{-2}$	$6,805 \cdot 10^{-2}$	$6,895 \cdot 10^4$	27,68	51,71	$6,895 \cdot 10^3$	1	144
$lb \cdot ft^{-2}$	$4,725 \cdot 10^{-4}$	478,8	0,1922	0,3591	47,88	$6,944 \cdot 10^{-3}$	1

^a Při normálním tíhovém zrychlení $g = 9,80665 \,\mathrm{m\cdot s^{-2}}$.

1 bar = $1 \cdot 10^6$ dyn·cm⁻² = 0,1 MPa, 1 milibar = $1 \cdot 10^3$ dyn·cm⁻² = $1 \cdot 10^2$ Pa, 1 torr = 1 mm Hg

Překlad: inch of water = palec vody

^b Při teplotě 4°C.

^c Při teplotě 0°C.

ENERGIE, PRÁCE, TEPLO

Jednotky ve zbarvených oblastech jsou jednotkami hmotnosti a nikoli energie, nicméně je vhodné je zde uvést. Převod je založen na relativistické ekvivalenci hmoty a energie vyjádřené vztahem $E=mc^2$.

	Btu	erg	ft∙lb	hp∙h	J	cal	kW⋅h	eV	kg	u
Btu	1	1,055⋅ ⋅10 ¹⁰	777,9	3,929⋅ ⋅10 ⁻⁴	1 055	252,0	2,930· ·10 ⁻⁴	6,585· ·10 ²¹	1,174· ·10 ^{−14}	7,070· ·10 ¹²
erg	9,481· ·10 ^{−11}	1	$7,376 \cdot 10^{-8}$	3,725· ·10 ^{−14}	10^{-7}	$2,389 \cdot 10^{-8}$	$2,778.$ $\cdot 10^{-14}$	6,242· ·10 ¹¹	1,113· ·10 ⁻²⁴	670,2
ft·lb	$1,285 \cdot 10^{-3}$	1,356· ·10 ⁷	1	5,051· ·10 ^{−7}	1,356	0,3238	3,766· ·10 ^{−7}	$\begin{array}{c} 8,464 \cdot \\ \cdot 10^{18} \end{array}$	1,509⋅ ⋅10 ⁻¹⁷	9,037⋅ ⋅10 ⁹
hp∙h	2 545	2,685· ·10 ¹³	1,980⋅ ⋅10 ⁶	1	2,685· ·10 ⁶	6,413· ·10 ⁵	0,7457	1,676· ·10 ²⁵	2,988· ·10 ^{−11}	1,799⋅ ⋅10 ¹⁶
J	9,481· ·10 ^{−4}	10 ⁷	0,7376	3,725· ·10 ^{−7}	1	0,2389	$2,778 \cdot 10^{-7}$	$6,242 \cdot \cdot 10^{18}$	1,113· ·10 ^{−17}	6,702· ·10 ⁹
cal	$3,969 \cdot 10^{-3}$	4,186· ·10 ⁷	3,088	1,560· ·10 ^{−6}	4,186	1	$1,163 \cdot 10^{-6}$	2,613· ·10 ¹⁹	4,660· ·10 ^{−17}	2,806· ·10 ¹⁰
kW∙h	3 413	3,600⋅ ⋅10 ¹³	$2,655 \cdot \cdot 10^6$	1,341	3,600⋅ ⋅10 ⁶	8,600⋅ ⋅10 ⁵	1	$2,247 \cdot 10^{25}$	4,007· ·10 ^{−11}	2,413· ·10 ¹⁶
eV	1,519· ·10 ^{−22}	1,602· ·10 ^{−12}	$1,182 \cdot 10^{-19}$	$5,967 \cdot 10^{-26}$	1,602· ·10 ^{−19}	$3,827 \cdot 10^{-20}$	4,450· ·10 ^{−26}	1	$1,783 \cdot 10^{-36}$	1,074⋅ ⋅10 ⁻⁹
kg	8,521· ·10 ¹³	8,987· ·10 ²³	6,629⋅ ⋅10 ¹⁶	3,348· ·10 ¹⁰	8,987⋅ ⋅10 ¹⁶	2,146· ·10 ¹⁶	2,497. $\cdot 10^{10}$	5,610· ·10 ³⁵	1	6,022· ·10 ²⁶
u	1,415· ·10 ^{−13}	1,492· ·10 ^{−3}	$1,101.$ $\cdot 10^{-10}$	5,559⋅ ⋅10 ⁻¹⁷	1,492· ·10 ^{−10}	3,564· ·10 ^{−11}	4,146· ·10 ^{−17}	9,320· ·10 ⁸	1,661· ·10 ^{−27}	1

 $V\dot{y}klad\ zkratek$: Btu = British thermal unit, hp·h = horse-power-hour, J = joule, cal = kalorie, kW·h = kilowatthodina, eV = elektronvolt, u = atomová hmotnostní jednotka \doteq 1,661·10⁻²⁷ kg

VÝKON

	Btu·h ^{−1}	ft·lb·s ^{−1}	hp	cal·s ^{−1}	W
1 Btu⋅h ⁻¹	1	0,2161	$3,929 \cdot 10^{-4}$	$6,998 \cdot 10^{-2}$	0,2930
$1 \text{ ft} \cdot \text{lb} \cdot \text{s}^{-1}$	4,628	1	$1,818 \cdot 10^{-3}$	0,3239	1,356
1 hp	2 5 4 5	550	1	178,1	745,7
$1 \text{cal} \cdot \text{s}^{-1}$	14,29	3,088	$5,615\cdot10^{-3}$	1	4,186
1 W	3,413	0,7376	$1,341 \cdot 10^{-3}$	0,2389	1

Výklad zkratek: Btu·h⁻¹ = British thermal unit per hour, $ft·lb·s^{-1} = foot-pound per second,$ hp = horse-power (koňská síla), $cal \cdot s^{-1} = kalorie za sekundu, W = watt$

MAGNETICKÉ POLE

	G	T
G	1	1.10^{-4}
T	1.10^{4}	1

MAGNETICKÝ TOK

	M	Wb
M	1	1.10^{-8}
Wb	1.10^{8}	1

Výklad zkratek: G = gauss, T = tesla, M = maxwell, Wb = weber

 $¹ T = 1 Wb \cdot m^{-2}$

Dodatek **E** Matematické vzorce

GONIOMETRICKÉ FUNKCE

Inverzní funkce

Je-li
$$0 \le \theta \le \pi$$
 a $y = \cos \theta$, pak $\arccos y = \theta$.
Je-li $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ a $y = \sin \theta$, pak $\arcsin y = \theta$.
Je-li $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ a $y = \operatorname{tg} \theta$, pak $\operatorname{arctg} y = \theta$.

Vztahy

$$\sin \theta = \sin(360^{\circ} + \theta) = \sin(180^{\circ} - \theta) =$$

$$= -\sin(-\theta) = -\sin(180^{\circ} + \theta) =$$

$$= \cos(90^{\circ} - \theta) = -\cos(90^{\circ} + \theta)$$

$$\cos \theta = \cos(360^{\circ} + \theta) = \cos(-\theta) =$$

$$= -\cos(180^{\circ} - \theta) = -\cos(180^{\circ} + \theta) =$$

$$= \sin(90^{\circ} - \theta) = -\sin(90^{\circ} + \theta)$$

$$tg \theta = tg(180^{\circ} + \theta) = -tg(-\theta)$$

$$\cot \theta = \cot(180^{\circ} + \theta) = -\cot(-\theta)$$

$$\sin^{2} \theta + \cos^{2} \theta = 1$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = \cos^{2} \theta - \sin^{2} \theta = 2\cos^{2} \theta - 1 = 1 - 2\sin^{2} \theta$$

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$

$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

$$tg(\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha tg \beta}$$

$$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cos \frac{\alpha \mp \beta}{2}$$
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

BINOMICKÁ VĚTA

Výraz $(1+x)^n$ lze rozvinout v řadu

$$1 + \frac{n}{1}x + \frac{n \cdot (n-1)}{1 \cdot 2}x^2 + \frac{n \cdot (n-1) \cdot (n-2)}{1 \cdot 2 \cdot 3}x^3 + \dots$$

Pro přirozené n má řada jen n+1 sčítanců a vzorec platí pro libovolné x.

Pro ostatní n je tato řada nekonečná a vzorec platí jen pro |x| < 1.

Ověřte si, že pro $x = \alpha$ a $n = \frac{1}{2}$, resp. $x = -\beta^2$ a $n = -\frac{1}{2}$ dostaneme:

$$\sqrt{1+\alpha} = 1 + \frac{1}{2}\alpha - \frac{1}{8}\alpha^2 + \frac{1}{16}\alpha^3 + \dots,$$
$$\frac{1}{\sqrt{1-\beta^2}} = 1 + \frac{1}{2}\beta^2 + \frac{3}{8}\beta^4 + \frac{5}{16}\beta^6 + \dots.$$

ROZVOJE NĚKTERÝCH FUNKCÍ

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \quad \text{(všechna } x\text{)}$$

$$\cosh x = \frac{1}{2}(e^{x} + e^{-x}) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots \quad \text{(všechna } x\text{)}$$

$$\sinh x = \frac{1}{2}(e^{x} - e^{-x}) = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots \quad \text{(všechna } x\text{)}$$

$$\ln(1 \pm x) = \pm x - \frac{1}{2}x^{2} \pm \frac{1}{3}x^{3} + \dots \quad (|x| < 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots \quad \text{(všechna } x\text{)}$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots \quad \text{(všechna } x\text{)}$$

$$tg x = x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \dots \quad (|x| < \pi/2)$$

KOMPLEXNÍ ČÍSLA

Každá lineární rovnice ax + b = c pro $a \neq 0$ s reálnými koeficienty a, b, c má reálné řešení x. Toto však neplatí pro kvadratické rovnice: rovnice $x^2 = -1$ nemá řešení x mezi reálnými čísly. Zavádíme proto komplexní jednotku "i" (elektrotechnici raději užívají symbol "j") takovou, že $i^2 = -1$. Komplexní číslo z pak lze psát jako z = x + iy (s reálnou částí x = Re z a imaginární částí y = Im z) a pracujeme s ním jako s obvyklým dvojčlenem. Lze dokázat, že *každá* rovnice libovolného stupně s komplexními koeficienty pak má (komplexní) řešení. Komplexní čísla s výhodou zobrazujeme jako body v rovině (komplexní, Gaussově). Každé komplexní číslo můžeme zapsat kterýmkoliv z těchto tvarů:

$$z = x + iy = re^{i\varphi} = r(\cos\varphi + i\sin\varphi).$$

Velikost |z| (absolutní hodnota) komplexního čísla je rovna r. Převodní vztahy jsou zřejmé z geometrie:

$$x = r \cos \varphi,$$
 $y = r \sin \varphi$
 $r = \sqrt{x^2 + y^2},$ $\operatorname{tg} \varphi = y/x.$

K číslu z zavádíme číslo komplexně sdružené z* vztahem

$$z^* = x - iy = re^{-i\varphi} = r(\cos \varphi - i\sin \varphi).$$

Často jsou užitečné vztahy

$$z + z^* = 2x,$$

$$z - z^* = i \cdot 2y,$$

$$zz^* = |z|^2 = r^2.$$

Hodnotu funkce s komplexním argumentem získáme např. dosazením dvojčlenu x + iy do jejího rozvoje. Ověřte si sami, že platí

$$i^{0} = 1;$$
 $i^{1} = i;$ $i^{2} = -1;$ $i^{3} = -i;$ $i^{4} = 1;$ $i^{4k+m} = i^{m}, k, m$ přirozená čísla, $m < 4;$ $e^{i\pi} = -1;$ $e^{2i\pi} = 1;$
$$\sqrt{i} = \frac{\sqrt{2}}{2}(1 \pm i);$$
 $e^{i\varphi} = \cos \varphi + i \sin \varphi$

Přirozený logaritmus ln (o základě e, nikoli 10) komplexního čísla je rovněž komplexní číslo. Pro libovolné komplexní číslo $z = re^{i\varphi}$ a pro libovolné přirozené číslo k platí

$$\ln z = \ln r + \mathrm{i}(\varphi + 2k\pi).$$

Ověřte si, že $i^{i} = e^{-\pi/2} = 0.208$.

VEKTORY

Označme i, j a k jednotkové vektory ve směrech os x, y a z. Pak

$$i \cdot i = j \cdot j = k \cdot k = 1,$$

$$i \cdot j = j \cdot k = k \cdot i = 0,$$

$$i \times i = j \times j = k \times k = 0,$$

$$i \times j = k, \quad j \times k = i, \quad k \times i = j.$$

Pro vektor \boldsymbol{a} o složkách a_x , a_y a a_z platí

$$\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k},$$

$$a_x = \mathbf{a} \cdot \mathbf{i}; \quad a_y = \mathbf{a} \cdot \mathbf{j}; \quad a_z = \mathbf{a} \cdot \mathbf{k}.$$

Nechť θ je menší z úhlů sevřených vektory **a** a **b**. Potom platí

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = a_x b_x + a_y b_y + a_z b_z = ab \cos \theta,$$

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} =$$

$$= \mathbf{i} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \mathbf{j} \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} =$$

$$= (a_y b_z - b_y a_z) \mathbf{i} + (a_z b_x - b_z a_x) \mathbf{j} + (a_x b_y - b_x a_y) \mathbf{k},$$

$$|\mathbf{a} \times \mathbf{b}| = ab \sin \theta.$$

Pro vektory **a**, **b**, **c** a skalár s platí:

$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \cdot \mathbf{b}) + (\mathbf{a} \cdot \mathbf{c}),$$

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c}),$$

$$(s\mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (s\mathbf{b}) = s(\mathbf{a} \cdot \mathbf{b}) = s(\mathbf{b} \cdot \mathbf{a}),$$

$$(s\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (s\mathbf{b}) = s(\mathbf{a} \times \mathbf{b}) = -s(\mathbf{b} \times \mathbf{a}),$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}),$$

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}.$$

Známe-li skalární i vektorový součin neznámého vektoru v se známým nenulovým vektorem a, můžeme vždy jednoznačně určit vektor \mathbf{v} : Jestliže $\mathbf{v} \cdot \mathbf{a} = \gamma$ a $\mathbf{v} \times \mathbf{a} = \mathbf{b}$, pak platí

$$\mathbf{v} = (\gamma \mathbf{a} + \mathbf{a} \times \mathbf{b})/a^2.$$

Řešení představuje rozklad vektoru **v** na průmět rovnoběžný s **a** a průmět kolmý k **a**.

DERIVACE A INTEGRÁLY

Názorný význam derivace jako směrnice křivky a integrálu jako plochy pod grafem funkce je rozebrán v bodu 2.5 a 7.1.

V následujících vzorcích představují u, v funkce proměnné x; w je funkcí y a y je funkcí t; a, b a m jsou konstanty. Ke každému neurčitému integrálu můžeme přičíst libovolnou integrační konstantu. Derivace a primitivní funkce (tj. integrál jako funkce své horní meze) jsou navzájem "inverzní" operace: derivace primitivní funkce dává zpět původní funkci.

"Gramatika"

$$\frac{\mathrm{d}}{\mathrm{d}x}(au\pm bv) = a\frac{\mathrm{d}}{\mathrm{d}x}u\pm b\frac{\mathrm{d}}{\mathrm{d}x}v$$

$$\frac{\mathrm{d}}{\mathrm{d}x}uv = \frac{\mathrm{d}u}{\mathrm{d}x}v + u\frac{\mathrm{d}v}{\mathrm{d}x} \quad \text{derivace součinu}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}w(y(t)) = \frac{\mathrm{d}w}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}t} \quad \text{derivace složené funkce}$$

$$\frac{\mathrm{d}x}{\mathrm{d}u} = 1 / \frac{\mathrm{d}u}{\mathrm{d}x} \quad \text{derivace inverzní funkce } x(u)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_a^x u(x') \, \mathrm{d}x' = u(x); \quad \text{stručně se psává}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \int u(x) \, \mathrm{d}x = u(x)$$

$$\int (au\pm bv) \, \mathrm{d}x = a \int u \, \mathrm{d}x \pm b \int v \, \mathrm{d}x$$

$$\int u \, \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x = uv - \int \frac{\mathrm{d}u}{\mathrm{d}x}v \, \mathrm{d}x \quad \text{,per partes''}$$

$$\int w(y) \frac{\mathrm{d}y}{\mathrm{d}t} \, \mathrm{d}t = \int W(t) \, \mathrm{d}t \quad \text{substituce,}$$

$$\text{kde } W \text{ je složená funkce } W(t) = w(y(t)).$$

"Slovník"

$$\frac{da}{dx} = 0$$

$$\frac{dx}{dx} = 1$$

$$\frac{d}{dx}x^m = mx^{m-1}$$

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\cot x = -\frac{1}{\sin^2 x}$$

$$\frac{d}{dx}e^u = e^u \frac{du}{dx}$$

$$\frac{d}{dx}\sin u = \cos u \frac{du}{dx}$$

$$\frac{d}{dx}\cos u = -\sin u \frac{du}{dx}$$

$$\int dx = x$$

$$\int x^m dx = \frac{x^{m+1}}{m+1} \quad (m \neq -1)$$

$$\int \frac{dx}{x} = \ln|x|$$

$$\int e^x dx = e^x$$

$$\int \sin x dx = -\cos x$$

$$\int \cos x dx = \sin x$$

$$\int tg x dx = -\ln|\cos x|$$

$$\int \sin^2 x dx = \frac{1}{2}x - \frac{1}{4}\sin 2x$$

$$\int e^{-ax} dx = -\frac{1}{a}e^{-ax}$$

$$\int xe^{-ax} dx = -\frac{1}{a^2}(ax+1)e^{-ax}$$

$$\int x^2 e^{-ax} dx = -\frac{1}{a^3}(a^2x^2 + 2ax + 1)e^{-ax}$$

$$\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$$

$$\int_0^\infty x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2^{n+1}a^n} \sqrt{\frac{\pi}{a}}$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

 $\int \frac{x \, dx}{(x^2 + a^2)^{3/2}} = -\frac{1}{(x^2 + a^2)^{1/2}}$

 $\int \frac{\mathrm{d}x}{(x^2 + a^2)^{3/2}} = \frac{x}{a^2(x^2 + a^2)^{1/2}}$

 $\frac{d}{dx} \operatorname{tg} x = \frac{1}{\cos^2 x}$

Vhodný výklad potřebné matematiky naleznete např. v knize Jozef Kvasnica, *Matematický aparát fyziky*, 2. opr. vydání, Academia, Praha 1997.

Dodatek **F** Vlastnosti prvků

Z protonové číslo; $m_{\rm m}$ molární hmotnost; ϱ hustota; $T_{\rm t}$ teplota tání; $T_{\rm v}$ teplota varu; c_p měrná tepelná kapacita při stálém tlaku. Všechny fyzikální vlastnosti jsou za standardních podmínek, není-li uvedeno jinak.

PRVEK	ZNAČKA	Z	$\frac{m_{\rm m}}{{\rm g\cdot mol}^{-1}}$	$\frac{\varrho}{\text{g}\cdot\text{cm}^{-3}}$	$\frac{T_{t}}{^{\circ}C}$	$\frac{T_{\rm v}}{{}^{\circ}{ m C}}$	$\frac{c_p}{\text{J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}}$
Aktinium	Ac	89	(227)	10,06	1323	(3473)	0,092
Americium	Am	95	(243)	13,67	1541	(5 .75) —	
Antimon	Sb	51	121,75	6,691	630,5	1380	0,205
Argon	Ar	18	39,948	$1,6626 \cdot 10^{-3}$	-189,4	-185,8	0,523
Arsen	As	33	74,9216	5,78	817 (28 atm)	613	0,331
Astat	At	85	(210)	_	(302)	_	_
Baryum	Ba	56	137,34	3,594	729	1640	0,205
Berkelium	Bk	97	(247)	14,79	_	_	_
Beryllium	Be	4	9,0122	1,848	1287	2770	1,83
Bismut	Bi	83	208,980	9,747	271,37	1560	0,122
Bor	В	5	10,811	2,34	2030	_	1,11
Brom	Br	35	79,909	3,12 (kapalný)	-7.2	58	0,293
Cer	Ce	58	140,12	6,768	804	3470	0,188
Cesium	Cs	55	132,905	1,873	28,40	690	0,243
Cín	Sn	50	118,69	7,2984	231,868	2270	0,226
Curium	Cm	96	(247)	13,3		_	_
Draslík	K	19	39,102	0,862	63,20	760	0,758
Dusík	N	7	14,0067	$1,1649 \cdot 10^{-3}$	-210	-195.8	1,03
Dysprosium	Dy	66	162,50	8,55	1409	2330	0,172
Einsteinium	Es	99	(254)	_	_	_	_
Erbium	Er	68	167,26	9,15	1522	2630	0,167
Europium	Eu	63	151,96	5,243	817	1490	0,163
Fermium	Fm	100	(237)	-	_	_	_
Fluor	F	9	18,9984	$1,696 \cdot 10^{-3} (0 ^{\circ}\text{C})$	-219,6	-188,2	0,753
Fosfor	P	15	30,9738	1,83	44,25	280	0,741
Francium	Fr	87	(223)	_	(27)	_	_
Gadolinium	Gd	64	157,25	7,90	1312	2730	0,234
Gallium	Ga	31	69,72	5,907	29,75	2237	0,377
Germanium	Ge	32	72,59	5,323	937,25	2830	0,322
Hafnium	Hf	72	178,49	13,31	2227	5400	0,144
Hahnium	Ha	105	_	_	_	_	_
Hassium	Hs	108	_	_	_	_	_
Helium	He	2	4,0026	$0,1664 \cdot 10^{-3}$	-269,7	-268,9	5,23
Hliník	Al	13	26,9815	2,699	660	2450	0,900
Holmium	Но	67	164,930	8,79	1470	2330	0,165
Hořčík	Mg	12	24,312	1,738	650	1107	1,03
Chlor	Cl	17	35,453	$3,214\cdot10^{-3} (0^{\circ}\text{C})$	-101	-34,7	0,486
Chrom	Cr	24	51,996	7,19	1857	2665	0,448
Indium	In	49	114,82	7,31	156,634	2000	0,233
Iridium	Ir	77	192,2	22,5	2447	(5300)	0,130
Jod	I	53	126,9044	4,93	113,7	183	0,218
Kadmium	Cd	48	112,401	8,65	321,03	765	0,226
Kalifornium	Cf	98	(251)	_	_	_	
Kobalt	Co	27	58,9332	8,85	1495	2900	0,423

Pokračování na další straně

PRVEK	ZNAČKA	Z	$\frac{m_{\rm m}}{{\rm g\cdot mol}^{-1}}$	$\frac{\varrho}{\text{g}\cdot\text{cm}^{-3}}$	$\frac{T_{\mathrm{t}}}{^{\circ}\mathrm{C}}$	$\frac{T_{\mathrm{v}}}{\circ \mathbf{C}}$	$\frac{c_p}{\mathbf{J} \cdot \mathbf{g}^{-1} \cdot \mathbf{K}^{-1}}$
Kyslík	О	8	15,9994	$1,3318\cdot10^{-3}$	-218,80	-183,0	0,913
Krypton	Kr	36	83,80	$3,488 \cdot 10^{-3}$	-157,37	-152	0,247
Křemík	Si	14	28,086	2,33	1412	2680	0,712
Lanthan	La	57	138,91	6,189	920	3470	0,195
Lawrencium	Lr	103	(257)	_	_	_	_
Lithium	Li	23	6,939	0,534	180,55	1300	3,58
Lutecium	Lu	71	174,97	9,849	1663	1930	0,155
Mangan	Mn	25	54,9380	7,44	1 244	2150	0,481
Meitnerium	Mt	109	_		_	_	
Mendelevium	Md	101	(256)	_	_	_	_
Měď	Cu	29	63,54	8,96	1083,40	2595	0,385
Molybden	Mo	42	95,94	10,22	2617	5560	0,251
Neodym	Nd	60	144,24	7,007	1016	3180	0,188
Neon	Ne	10	20,183	$0.8387 \cdot 10^{-3}$	-248,597	-246,0	1,03
Neptunium	Np	93	(237)	20,25	637		1,26
Nielsbohrium	Ns Ns	107	(231)	20,23 —	—	_	1,20 —
Nikl	Ni	28	 58,71	 8,902	1453	2730	0,444
Niob	Nb	41	92,906	8,57	2468	4927	0,264
Nobelium	No	102	(255)	0,57	2400	+ 921	
Olovo	Pb	82	207,19	11,35	327,45	1725	0,129
Osmium	Os	76	190,2	22,59	3027	5500	0,129
Palladium	Pd				1552	3980	
		46	106,4 195.05	12,02			0,243
Platina	Pt	78 94	,	21,45	1 769 640	4530 3235	0,134
Plutonium	Pu		(244)	19,8			0,130
Polonium	Po	84	(210)	9,32	254		
Praseodym	Pr	59	140,907	6,773	931	3 0 2 0	0,197
Promethium	Pm	61	(145)	7,22	(1027)	_	_
Protaktinium	Pa	91	(231)	15,37 (odhad)	(1230)	_	_
Radium	Ra	88	(226)	5,0	700		
Radon	Rn	85	(222)	$9,96\cdot10^{-3}(0^{\circ}\text{C})$	(-71)	-61,8	0,092
Rhenium	Re	75	186,2	21,02	3180	5900	0,134
Rhodium	Rh	45	102,905	12,41	1963	4500	0,243
Rtuť	Hg	80	200,59	13,55	-38,87	357	0,138
Rubidium	Rb	37	85,47	1,532	39,49	688	0,364
Ruthenium	Ru	44	101,107	12,37	2250	4900	0,239
Rutherfordium	Rf	104	_	_	_	_	_
Samarium	Sm	62	150,35	7,52	1072	1630	0,197
Seaborgium	Sg	106	_	_	_	_	_
Selen	Se	34	78,96	4,79	221	685	0,318
Síra	S	16	32,064	2,07	119,0	444,6	0,707
Skandium	Sc	21	44,956	2,99	1539	2730	0,569
Sodík	Na	11	22,9898	0,9712	97,85	892	1,23
Stroncium	Sr	38	87,62	2,54	768	1380	0,737
Stříbro	Ag	47	107,870	10,49	960,8	2210	0,234
Tantal	Ta	73	180,948	16,6	3014	5425	0,138
Thallium	Tl	81	204,37	11,85	304	1457	0,130
Thorium	Th	90	(232)	11,72	1755	(3850)	0,117
Thulium	Tm	69	168,934	9,32	1 545	1720	0,159
Technecium	Tc	43	(99)	11,46	2200	_	0,209
Tellur	Te	52	127,60	6,24	449,5	990	0,201
Terbium	Tb	65	158,924	8,229	1357	2530	0,180
Titan	Ti	22	47,90	4,54	1670	3 2 6 0	0,523
Uhlík	C	6	12,01115	2,26	3727	4830	0,691

Pokračování na další straně

Prvek	Značka	Z	$\frac{m_{\rm m}}{\rm g \cdot mol^{-1}}$	$\frac{\varrho}{\text{g}\cdot\text{cm}^{-3}}$	$\frac{T_{\mathrm{t}}}{^{\circ}\mathrm{C}}$	$\frac{T_{\rm v}}{^{\circ}{ m C}}$	$\frac{c_p}{\text{J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}}$
Vanad	V	23	50,942	6,11	1902	3400	0,490
Vápník	Ca	20	40,08	1,55	838	1440	0,624
Vodík	H	1	1,00797	$0.08375 \cdot 10^{-3}$	-259,19	-252,7	14,4
Wolfram	W	74	183,85	19,3	3380	5930	0,134
Xenon	Xe	54	131,30	$5,495\cdot10^{-3}$	-111,79	-108	0,159
Ytterbium	Yb	70	173,04	6,965	824	1530	0,155
Yttrium	Y	39	88,905	4,469	1526	3 0 3 0	0,297
Zinek	Zn	30	65,37	7,133	419,58	906	0,389
Zirkon	Zr	40	91,22	6,506	1852	3580	0,276
Zlato	Au	79	196,967	19,32	1064,43	2970	0,131
Železo	Fe	26	55,847	7,874	1536,5	3 000	0,447

Hodnoty v závorce ve sloupci molárních hmotností jsou hmotnostní čísla izotopu radioaktivního prvku s největším poločasem rozpadu. Teploty tání a varu v závorkách jsou nejisté.

Hodnoty pro plyny jsou platné jen pro jejich běžné molekulární stavy, jako např. H₂, He, O₂, Ne atd.

Zdroj: Upraveno podle Wehr, Richards, Adair, Physics of Atom, 4th ed., Addison-Wesley, Reading, MA, 1984, a podle J. Emsley, The Elements, 2nd ed., Clarendon Press, Oxford, 1991.

Dodatek **G** Periodická soustava prvků

Ne	Nepřechodné prvky													Nepřechodné prvky						
1	1 1 H		kovy polokovy (metaloidy) nekovy											1.4	15	16	17	18 Pe		
2	Li	Be Be	Přechodné prvky (kovy)											6 C	7 N	8 O	17 9 F	Ne Ne		
3	Na	Mg^{12}	3	4	5	6	7	8	9	10	11	12	Al	Si	P 15	S	Cl	Ar		
4	K	Ca Ca	Sc Sc	Ti	V 23	Cr	Mn	Fe	Co	Ni	Cu	$\overset{\scriptscriptstyle{30}}{\mathrm{Zn}}$	Ga Ga	Ge 32	As	Se	Br	Kr		
5	Rb	Sr	39 Y	$\overset{\scriptscriptstyle{40}}{\mathrm{Zr}}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn 50	Sb	Te	53 I	Xe		
6	Cs Cs	Ba	57-71 *	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn		
7	Fr	Ra	89–103	Rf	Db	Sg	Bh	Hs	109 M t	110	111	112							•	
										Vnitřr	iě přec	hodné	prvky ((kovy)						
Lanthan a lanthanoidy *					La La	Ce Ce	Pr	Nd	Pm	Sm	Eu	Gd Gd	Tb	⁶⁶ Dy	Ho	Er	Tm	Yb	Lu	
			Aktino	oidy†	89 Ac	90 Th	Pa	$\overset{_{92}}{\mathrm{U}}$	⁹³ Np	Pu	Am	Cm	97 Bk	Cf	Es	Fm	Md	No	Lr	

Periodická soustava se též nazývá **Mendělejevova tabulka** podle ruského přírodovědce D. I. Mendělejeva, který ji kolem r. 1869 sestavil (v poněkud jiné podobě).

Podle doporučení názvoslovné komise IUPAC se sloupce (zvané též skupiny) průběžně číslují od 1 do 18 (dřívější dělení na podskupiny A, B bylo různé v Evropě a v USA). Speciální skupinové názvy:

Prvky s-bloku: sloupce 1 a 2.

Prvky d-bloku, též přechodné prvky (kovy): ze 3. sloupce 21 Sc a 39 Y, dále celé sloupce 4–12.

Prvky f-bloku, též vnitřně přechodné prvky (kovy): lanthan 57 La, **lanthanoidy** 58 Ce až 71 Lu a **aktinoidy** 89 Ac až 103 Lr.

Prvky p-bloku: sloupce 13 až 18.

Další názvy sloupců: sloupec 1 (dříve I A) ³Li až ⁸⁷Fr: **alkalické kovy**;

sloupec 2 (dříve II A) ²⁰Ca až ⁸⁸Ra, někdy i ⁴Be a ¹²Mg: **kovy alkalických zemin**;

sloupec 3 (dříve III B): vzácné zeminy;

sloupec 15 (dříve V A): pniktidy;

sloupec 16 (dříve VIA) ¹⁶S až ⁸⁴Po, často i ⁸O: **chalkogeny**;

sloupec 17 (dříve VII A): halogeny;

sloupec 18 (dříve 0): **vzácné** neboli **netečné plyny** (ačkoliv nejsou ani vzácné — argonu je ve vzduchu kolem 1 %, ani netečné — z novější doby známe sloučeniny xenoničelany, oxidy a fluoridy xenonu aj.).

Prvky následující za uranem (od ⁹³Np) se nazývají **transurany**. Prvky za ¹⁰⁹Mt zatím nemají dohodnutá jména. Možná se setkáte i s označením **triáda železa** (²⁶Fe, ²⁷Co, ²⁸Ni) a platinové kovy: lehké (⁴⁴Ru, ⁴⁵Rh, ⁴⁶Pd) a těžké (⁷⁶Os, ⁷⁷Ir, ⁷⁸Pt).

Dodatek **H** Nositelé Nobelových cen za fyziku*

- **1901** Wilhelm Conrad Röntgen (1845–1923) za objev paprsků X (nyní zvaných rentgenové záření)
- **1902** Hendrik Antoon Lorentz (1853–1928) a Pieter Zeeman (1865–1943) za výzkum vlivu magnetismu na záření
- **1903** Antoine Henri Becquerel (1852–1908) za objev přirozené radioaktivity
 - Pierre Curie (1859–1906) a Marie Sklodowska-Curie (1867–1934) za společný výzkum záření objeveného Becquerelem
- **1904** Lord Rayleigh (John William Strutt) (1842–1919) za zkoumání hustoty nejdůležitějších plynů a za objev argonu
- **1905** Philipp Eduard Anton von Lenard (1862–1947) za výzkum katodových paprsků
- **1906** Joseph John Thomson (1856–1940) za teoretický a experimentální výzkum elektrické vodivosti plynů
- **1907** Albert Abraham Michelson (1852–1931) za přesné optické přístroje a za spektroskopické a metrologické výzkumy, které s jejich pomocí provedl
- **1908** Gabriel Lippmann (1845–1921) za objev metody barevné fotografe založené na interferenci světla
- **1909** Guglielmo Marconi (1874–1937) a Carl Ferdinand Braun (1850–1918) za příspěvky k rozvoji bezdrátové telegrafie
- **1910** Johannes Diderik van der Waals (1837–1932) za práci o stavové rovnici plynů a kapalin
- 1911 Wilhelm Wien (1864–1928) za objevy týkající se zákonů tepelného záření
- **1912** Nils Gustaf Dalén (1869–1937) za vynález acetylenového akumulátoru a automatického regulátoru osvětlení pro majáky a bóje
- 1913 Heike Kamerlingh-Onnes (1853–1926) za výzkum vlastností látek při nízkých teplotách, který mj. vedl ke zkapalnění helia
- **1914** Max von Laue (1879–1960) za objev difrakce rentgenového záření na krystalech
- **1915** William Henry Bragg (1862–1942) a William Lawrence Bragg (1890–1971) za výzkum struktury krystalů pomocí rentgenového záření
- 1916 Nobelova cena nebyla udělena

- **1917** Charles Glover Barkla (1877–1944) za objev charakteristického rentgenového záření prvků
- 1918 Max Planck (1858–1947) za objev energiových kvant
- **1919** Johannes Stark (1874–1957) za objev Dopplerova jevu v kanálových paprscích (tvořených kladnými ionty zbytků plynu ve výbojové trubici) a rozštěpení spektrálních čar v elektrickém poli
- **1920** Charles-Édouard Guillaume (1861–1938) za objev anomálií niklových ocelí a jeho využití pro získání ideálního materiálu pro přesná mechanická měřidla (invar)
- **1921** Albert Einstein (1879–1955) za příspěvky k teoretické fyzice, zejména za formulaci zákona popisujícího fotoelektrický jev
- 1922 Niels Bohr (1885–1962) za výzkum struktury atomů a záření jimi vysílaného
- **1923** Robert Andrews Millikan (1868–1953) za práce o elementárním elektrickém náboji a o fotoelektrickém jevu
- **1924** Karl Manne Georg Siegbahn (1888–1978) za objevy a výzkum v oblasti rentgenové spektroskopie
- **1925** James Franck (1882–1964) a Gustav Hertz (1887–1975) za objev zákonů pro srážky elektronu s atomem
- **1926** Jean Baptiste Perrin (1870–1942) za práci o nespojité struktuře hmoty a zejména za objev sedimentační rovnováhy
- **1927** Arthur Holly Compton (1892–1962) za objev jevu, který nyní nese jeho jméno
 - Charles Thomson Rees Wilson (1869–1959) za metodu zviditelnění dráhy elektricky nabitých částic pomocí kondenzace páry
- **1928** Owen Willans Richardson (1879–1959) za práci o termoemisi a zvláště za formulaci zákona nyní pojmenovaného po něm
- **1929** Prince Louis Victor de Broglie (1892–1987) za objev vlnové povahy elektronů
- 1930 Sir Chandrasekhara Venkata Raman (1888–1970) za práci o rozptylu světla a za objev jevu nyní pojmenovaného po něm
- 1931 Nobelova cena nebyla udělena

^{*} Biografie oceněných a jejich přednášky při přebírání ceny viz *Nobel Lectures, Physics*, 1901–1970, Elsevier Publishing Company; český seznam s fotografiemi je v Čs. čas. fyz., (4), 1995, po r. 1970 publikuje Čs. čas. fyz. též texty přednášek; srv. též www.nobel.se/physics.

- 1932 Werner Heisenberg (1901–1976) za formulaci kvantové mechaniky, jejíž použití vedlo mj. k objevu alotropních forem vodíku
- 1933 Erwin Schrödinger (1887–1961) a Paul Adrien Maurice Dirac (1902-1984) za nové formulace atomové teorie
- 1934 Nobelova cena nebyla udělena
- 1935 James Chadwick (1891–1974) za objev neutronu
- 1936 Victor Franz Hess (1883–1964) za objev kosmického záření
 - Carl David Anderson (1905–1991) za objev pozitronu
- 1937 Clinton Joseph Davisson (1881-1958) a George Paget Thomson (1892–1975) za experimentální důkaz difrakce elektronů na krystalech
- 1938 Enrico Fermi (1901-1954) za prokázání nových radioaktivních prvků produkovaných ozářením neutrony a s tím spojený objev jaderných reakcí způsobených pomalými neutrony
- 1939 Ernest Orlando Lawrence (1901–1958) za vynález a zdokonalování cyklotronu a za výsledky pomocí něj získané, zejména za uměle vyrobené radioaktivní prvky
- 1943 Otto Stern (1888–1969) za příspěvek k vývoji metody molekulových paprsků a za objev magnetického momentu protonu
- 1944 Isidor Isaac Rabi (1898–1988) za rezonanční metodu zaznamenávání magnetických vlastností atomových jader
- 1945 Wolfgang Pauli (1900–1958) za formulaci vylučovacího principu (zvaného též Pauliho princip)
- **1946** Percy Williams Bridgman (1882–1961) za sestrojení aparatury k přípravě extrémně vysokých tlaků a za objevy v oblasti fyziky vysokých tlaků díky tomu učiněné
- 1947 Sir Edward Victor Appleton (1892–1965) za výzkum ve fyzice horních vrstev atmosféry, zejména za objev tzv. Appletonovy vrstvy
- 1948 Patrick Maynard Stuart Blackett (1897–1974) za zdokonalení Wilsonovy mlžné komory a s tím spojené objevy v jaderné fyzice a v kosmickém záření
- 1949 Hideki Yukawa (1907–1981) za předpověď existence mezonů na základě teoretického rozboru jaderných sil
- 1950 Cecil Frank Powell (1903–1969) za zdokonalení fotografické metody studia jaderných procesů a za touto metodou učiněné objevy týkající se mezonů
- 1951 Sir John Douglas Cockcroft (1897–1967) a Ernest Thomas Sinton Walton (1903-1995) za transmutaci atomových jader uměle urychlenými atomovými částicemi
- **1952** Felix Bloch (1905–1983) a Edward Mills Purcell (*1912) za příspěvky k rozvoji jaderné magnetické rezonance a za objevy s tímto spojené
- 1953 Frits Zernike (1888-1966) za demonstraci metody fázového kontrastu, a zejména za vynález mikroskopu založeném na fázovém kontrastu

- 1954 Max Born (1882–1970) za zásadní výzkum v kvantové mechanice, zejména za statistickou interpretaci vlnové funkce
 - Walther Bothe (1891–1957) za metodu koincidence a s ní související objevy
- 1955 Willis Eugene Lamb (*1913) za objevy týkající se jemné struktury spektra vodíku
 - Polykarp Kush (1911-1993) za přesné určení magnetického momentu elektronu
- **1956** William Shockley (1910–1989), John Bardeen (1908 až 1991) a Walter Houser Brattain (1902-1987) za výzkum polovodičů a objev tranzistorového jevu
- 1957 Chen Ning Yang (*1922) a Tsung Dao Lee (*1926) za zkoumání zákonů parity, které vedlo k významným objevům týkajícím se elementárních částic
- 1958 Pavel Aleksejevič Čerenkov (1904–1990), Il'ja Michajlovič Frank (1908–1990) a Igor' Evgeněvič Tamm (1895 až 1971) za objev a interpretaci Čerenkovova jevu
- 1959 Emilio Gino Segrè (1905-1989) a Owen Chamberlain (*1920) za objev antiprotonu
- **1960** Donald Arthur Glaser (*1926) za vynález bublinové ko-
- 1961 Robert Hofstadter (1915–1990) za průkopnická pozorování rozptylu elektronů na jádrech atomů a tím určené tvary a velikosti nukleonů
 - Rudolf Ludwig Mössbauer (*1929) za výzkum rezonanční absorpce γ -záření a s tím spojený objev jevu, jenž je po něm pojmenován
- **1962** Lev Davidovič Landau (1908–1968) za objevitelské teorie týkajících se kondenzovaného stavu hmoty, a především kapalného helia
- 1963 Eugene P. Wigner (1902–1995) za příspěvek k teorii atomového jádra a elementárních částic, a to objevem a aplikací základních principů symetrie
 - Maria Goeppert Mayer (1906-1972) a J. Hans D. Jensen (1907–1973) za vypracování modelu slupkové struktury jádra
- **1964** Charles H. Townes (*1915), Nicolai G. Basov (*1922) a Alexander M. Prochorov (*1916) za základní práce v oblasti kvantové elektroniky, které vedly ke konstrukci maseru a laseru
- **1965** Sin-itiro Tomonaga (1906–1979), Julian Schwinger (1918 až 1994) a Richard P. Feynman (1918–1988) za zásadní práci v kvantové elektrodynamice, s dalekosáhlými důsledky ve fyzice elementárních částic
- **1966** Alfred Kastler (1902–1984) za objev a rozvíjení optických metod ke studiu Hertzovy rezonance v atomech
- **1967** Hans Albrecht Bethe (*1906) za příspěvek k teorii jaderných reakcí, zejména objevy týkající se produkce energie ve hvězdách

- 1968 Luis W. Alvarez (1911–1988) za rozhodující příspěvek k fyzice elementárních částic, především za objev velkého počtu rezonancí díky jím zdokonalené vodíkové bublinové komory a analýze z ní získaných dat
- **1969** Murray Gell-Mann (*1929) za příspěvky a objevy týkající se klasifikace elementárních částic a jejich interakcí
- 1970 Hannes Alfvén (1908–1995) za základní práci a objevy v magnetohydrodynamice s bohatým využitím v různých oblastech fyziky plazmatu
 - Louis Néel (*1904) za významnou práci a objevy týkající se antiferomagnetismu a ferimagnetismu, které vedly k důležitým aplikacím ve fyzice pevných látek
- **1971** Dennis Gabor (1900–1979) za vynález a rozvoj holografie
- **1972** John Bardeen (1908–1991), Leon N. Cooper (*1930) a J. Robert Schrieffer (*1931) za společně vypracovanou teorii supravodivosti, běžně nazývanou BBS-teorií
- 1973 Leo Esaki (*1925) za objev tunelového jevu v polovodi-
 - Ivar Giaever (*1929) za objev tunelového jevu v supravodičích
 - Brian D. Josephson (*1940) za teoretickou předpověď vlastností supravodivého proudu tunelovou bariérou, speciálně těch jevů, které jsou nyní obecně známé jako Josephsonovy jevy
- **1974** Antony Hewish (*1924) za objev pulzarů Sir Martin Ryle (1918–1984) za průkopnickou práci v radioastronomii
- **1975** Aage Bohr (*1922), Ben Mottelson (*1926) a James Rainwater (1917–1986) za objev vztahu mezi kolektivním pohybem a pohybem individuálních částic v atomových jádrech a za rozvoj teorie struktury jádra atomu na základě tohoto vztahu
- 1976 Burton Richter (*1931) a Samuel Chao Chung Ting (*1936) za objev těžkých elementárních částic nového
- 1977 Phillip Warren Anderson (*1923), Nevill Francis Mott (1905–1996) a John Hasbrouck Van Vleck (1899–1980) za významný teoretický výzkum elektronové struktury magnetických a neuspořádaných systémů
- 1978 Pjotr L. Kapica (1894–1984) za základní objevy a vynálezy ve fyzice nízkých teplot
 - Arno A. Penzias (*1933) a Robert Woodrow Wilson (*1936) za objev reliktního mikrovlnného kosmického záření
- **1979** Sheldon Lee Glashow (*1932), Abdus Salam (1926–1996) a Steven Weinberg (*1933) za model sjednocující slabé a elektromagnetické interakce a předpověď existence neutrálních proudů
- **1980** James W. Cronin (*1931) a Val L. Fitch (*1923) za objev porušení základních principů symetrie při rozpadu kaonů

- 1981 Nicolaas Bloembergen (*1920) a Arthur Leonard Schawlow (*1921) za příspěvek k rozvoji laserové spektroskopie
 - Kai M. Siegbahn (*1918) za rozvoj laserové spektroskopie s vysokým rozlišením
- **1982** Kenneth Geddes Wilson (*1936) za teorii kritických jevů ve vztahu k fázovým změnám
- 1983 Subrehmanyan Chandrasekhar (1910–1995) za teoretické studium struktury a vývoje hvězd
 - William A. Fowler (1911-1995) za studium vzniku chemických prvků ve vesmíru
- **1984** Carlo Rubbia (*1934) a Simon van der Meer (*1925) za rozhodující příspěvky k velkému projektu, který vedl k objevu polních částic W a Z, zprostředkujících slabou
- 1985 Klaus von Klitzing (*1943) za objev kvantového Hallova
- 1986 Ernst Ruska (1906–1988) za vynález elektronového mikroskopu
 - Gerd Binnig (*1947) a Heinrich Rohrer (*1933) za vynález řádkovacího tunelového mikroskopu
- **1987** Karl Alex Müller (*1927) a J. George Bednorz (*1950) za průkopnický objev supravodivosti v keramických materiálech
- **1988** Leon M. Lederman (*1922), Melvin Schwartz (*1932) a Jack Steinberger (*1921) za první použití svazku neutrin a za objev mionového neutrina
- 1989 Norman Ramsey (*1915), Hans Dehmelt (*1922) a Wolfgang Paul (1913-1993) za práci, která vedla k rozvoji atomových hodin a přesného měření času
- **1990** Jerome I. Friedman (*1930), Henry W. Kendall (*1926) a Richard E. Taylor (*1929) za základní práce týkající se nepružného rozptylu elektronů na protonech a vázaných neutronech, které umožnily rozvoj kvarkového modelu v částicové fyzice
- 1991 Pierre de Gennes (*1932) za objev, že metody rozvinuté pro studium jiných jevů v jednoduchých systémech mohou být zobecněny na komplexnější formy hmoty, zejména na tekuté krystaly a polymery
- 1992 George Charpak (*1924) za vynález a vývoj detektorů částic, zejména vícedrátové proporcionální komory
- 1993 Joseph H. Taylor (*1941) a Russel A. Hulse (*1950) za objev nového typu pulzaru, objevu, který dává nové možnosti pro studium gravitace
- 1994 za rozvoj metod rozptylu neutronů pro studium kondenzovaných látek
 - Bertram N. Brockhouse (*1918) za rozvoj neutronové spektroskopie
 - Clifford G. Shull (*1915) za rozvoj neutronových difrakčních metod

- 1995 za průkopnické experimentální příspěvky k fyzice leptonů Martin L. Perl (*1927) za objev leptonu τ (tauonu) Frederick Reines (*1918) za detekci neutrina
- **1996** David M. Lee (*1931), Robert C. Richardson (*1937) a Douglas D. Oscheroff (*1944) za objev supratekutosti helia-3
- **1997** Steven Chu (*1948), Claude Cohen-Tannoudji (*1933) a William D. Phillips (*1948) za vývoj metod pro ochlazení a záchyt atomů laserovým světlem
- **1998** Robert B. Laughlin (*1950), Horst L. Stormer (*1949) a Daniel C. Tsui (*1939) za objev nové formy kvantové tekutiny s excitacemi nesoucími zlomkový náboj

- 1999 Gerardus 't Hooft (*1946) a Martinus J.G. Veltman (*1931) za objasnění kvantové struktury elektroslabých interakcí
- 2000 za základní práce, které přispěly k informačním a komunikačním technologiím
 - Žores I. Alferov (*1930), Herbert Kroemer (*1928) za vývoj polovodičových heterostruktur používaných v optoelektronice a velmi rychlých elektronických obvodech Jack S. Kilby (*1923) za příspěvek k vývoji integrovaných obvodů