Chapitre 2

Calcul vectoriel dans le plan

San	ımaire
2011	mname

Sommare			
1	Activités	1	
2	Vecteurs du plan (rappels)	1	
	2.1 Éléments d'un vecteur	1	
	2.2 Égalité de deux vecteurs	2	
	2.3 Somme de deux vecteurs		
	2.3.1 Règle du triangle (Relation de Chasles)	2	
	2.3.2 Règle du parallélogramme		
3	Multiplication d'un vecteur par un réel	3	
	3.1 Produit d'un vecteur par un réel	3	
	3.2 Colinéarité de deux vecteurs – Alignement de trois points	3	
4	Milieu d'un segment	4	
5	Exercices	4	

Activités

Activité 1

Compléter le tableau suivant par «oui» ou «non»:

Activité 2

 \vec{u} et \vec{v} ont le même sens

 \vec{u} et \vec{v} ont la même norme

Dans une droite graduée (OI), on considère les points A, B et C d'abscisses 2, 5 et -3.

- 1. Exprimer les vecteurs \overrightarrow{OA} , \overrightarrow{OB} et \overrightarrow{OC} en fonction de \vec{u} .
- 2. Construire les points G et H définis par $\overrightarrow{OG} = -\frac{1}{2}\vec{u}$ et $\overrightarrow{OH} = \frac{7}{2}\vec{u}$.
- 3. Construire le point *K* tel que : $\overrightarrow{BK} = 2\vec{u}$
- 4. Exprimer les vecteurs \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{AC} et \overrightarrow{AK} en fonction de \vec{u} .
- 5. Que représente le point A pour le segment [CK]?

Activité 3

En utilisant la figure ci-conte, compléter les égalités suivante :

- (a) $\overrightarrow{AB} = \cdots$ (b) $\overrightarrow{BD} = \cdots$ (c) $\overrightarrow{AB} + \overrightarrow{BD} = \cdots$ (d) $\overrightarrow{AB} + \overrightarrow{AE} = \cdots$ (e) $\overrightarrow{AB} + \overrightarrow{CA} = \cdots$ (f) $\overrightarrow{ED} + \overrightarrow{CA} = \cdots$

Vecteurs du plan (rappels)

Éléments d'un vecteur

Définition

Le vecteur \vec{u} , d'origine un point A et d'extrémité un autre point B (noté \overrightarrow{AB}), et est caractérisé par :

- Sa « **direction** » est la droite (*AB*).
- Son « **sens** » (De *A* vers *B*)
- Sa « **norme** » est la longueur du segment [AB], notée $||\vec{u}|| = AB$.

Remarques

- Le vecteur \overrightarrow{BA} a la même direction et la même norme que le vecteur \overrightarrow{AB} , mais de sens contraire. Il est appelé l'« opposé du vecteur \overrightarrow{AB} », et est noté $-\overrightarrow{AB}$.
- Le vecteur \overrightarrow{AA} (de même pour le vecteur \overrightarrow{BB}) n'a ni direction, ni sens, et sa norme est nulle. Il est appelé « **vecteur nulle** », et est noté $\vec{0}$.

2.2 Égalité de deux vecteurs

Définition

Deux vecteurs du plan sont dit « égaux » s'ils ont la même direction, la même norme et le même sens.

Exemple

Dans la figure ci-contre, on a $\overrightarrow{AB} = \overrightarrow{CD}$ car :

- \overrightarrow{AB} et \overrightarrow{CD} ont la même direction ((AB)//(CD)).
- \overrightarrow{AB} et \overrightarrow{CD} ont le même sens (de *A* vers *B* et de *C* vers *D*).
- \overrightarrow{AB} et \overrightarrow{CD} ont la même norme (AB = CD)

Propriété

Soient \vec{u} est un vecteur du plan.

Pour tout point A du plan, il existe unique un point M tel que $\overrightarrow{AM} = \vec{u}$.

Remarques

Soient *A*, *B* et *C* trois points du plan.

• $\overrightarrow{AB} = \overrightarrow{0}$ si et seulement si A = B.

•
$$\overrightarrow{AB} = \overrightarrow{AC}$$
 si et seulement si $B = C$.

Théorème

Un quadrilatère ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$.

2.3 Somme de deux vecteurs

2.3.1 Règle du triangle (Relation de Chasles)

Propriété

Soient *A* et *B* deux points du plan.

On a $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$, pour tout point C du plan.

Construction

Pour construire la résultante $\vec{u} + \vec{v}$, des deux vecteurs \vec{u} et \vec{v} , par la méthode du triangle :

- 1. On prend l'extrémité d'un vecteur et on la place à l'origine du deuxième vecteur,
- 2. On réunit l'origine du premier vecteur à l'extrémité du deuxième vecteur,
- 3. Le vecteur obtenu est la résultante cherchée.

Remarque

La propriété précédente s'appelle « **relation de Chasles** », et peut s'appliquer dans le cas de plusieurs vecteurs. En effet, si *A* et *B* deux points du plan, alors, pour tous points *C*, *D*, *E* et *F* du plan, on a :

$$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FB}$$

2.3.2 Règle du parallélogramme

Propriété

Soient A, B, C et D quatre points du plan.

On a $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$ si et seulement si \overrightarrow{ABDC} est un parallélogramme.

Construction

Pour construire la résultante $\vec{u} + \vec{v}$, des deux vecteurs \vec{u} et \vec{v} , par la méthode du parallélogramme :

- 1. On place les origines des deux vecteurs ensemble pour compléter un parallélogramme,
- 2. On réunit le sommet du parallélogramme, origine des deux vecteurs, à son opposé,
- 3. Le vecteur obtenu est la résultante cherchée.

Remarque

Soustraire un vecteur \vec{u} d'un autre vecteur \vec{v} , c'est lui ajouter son opposé $-\vec{v}$.

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

3 Multiplication d'un vecteur par un réel

3.1 Produit d'un vecteur par un réel

Définition

Soit \vec{u} un vecteur non nul et k un réel non nul.

Le produit du vecteur \vec{u} par le réel k est le vecteur, noté $k\vec{u}$, caractérisé par :

- 1. Sa direction est la même que celle de \vec{u} .
- 2. Son sens est:
 - le même que celui de \vec{u} , si k > 0.

• le contraire de celui de \vec{u} , si k < 0.

- 3. Sa norme est:
 - $||k\vec{u}|| = k||\vec{u}||$, si k > 0.

• $||k\vec{u}|| = -k||\vec{u}||$, si k < 0.

Propriétés

Pour tous vecteurs \vec{u} et \vec{v} du plan, et pour tous réels k et k', on a :

- $k\vec{u} = \vec{0}$ si et seulement si k = 0 ou $\vec{u} = \vec{0}$.
- $\bullet \ k(k'\vec{u}) = (kk')\vec{u}.$

 $\bullet \ k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}.$

 $\bullet (k+k')\vec{u} = k\vec{u} + k'\vec{u}.$

3.2 Colinéarité de deux vecteurs - Alignement de trois points

Définition

Deux vecteurs non nuls \vec{u} et \vec{v} du plan, sont dits « **colinéaires** » s'il existe un réel k non nul tel que $\vec{v} = k\vec{u}$.

Théorèmes

- Deux droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} son colinéaires.
- Trois points A, B et C du plan, sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Milieu d'un segment

Théorème

Le milieu *I* d'un segment [*AB*] du plan, est l'unique point qui vérifie l'une des propriétés suivantes :

•
$$\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$$
.

•
$$\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$$
.

• Pour tout point M du plan,
$$\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$$
.

Propriété

Soit ABC un triangle.

Si *I* et *J* sont les milieux respectifs des segments [*AB*] et [*AC*], alors $\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{BC}$.

5 **Exercices**

Exercice 1

Construire dans chaque figure, le point M sachant que $\overrightarrow{AM} = \overrightarrow{u} + \overrightarrow{v}$.

Exercice 2

1. Construire les points M, N, P et Q tels que :

$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$$

$$\overrightarrow{AN} = \overrightarrow{AB} + \overrightarrow{BC}$$

$$\overrightarrow{AQ} = \overrightarrow{AB} + \overrightarrow{BC}$$

$$\overrightarrow{AQ} = \overrightarrow{AB} + \overrightarrow{CA}$$

- 2. Montrer que ABCP est un parallélogramme.
- 3. Montrer que A est le milieu de [PQ].

Exercice 3

Soient A, B et C trois points sur une droite graduée :

Trouver x, y et z tels que: (a) $\overrightarrow{AB} = x\overrightarrow{AC}$; (b) $\overrightarrow{BC} = y\overrightarrow{BA}$; (c) $\overrightarrow{CA} = z\overrightarrow{CB}$.

(a)
$$\overrightarrow{AB} = x\overrightarrow{AC}$$

(b)
$$\overrightarrow{BC} = y\overrightarrow{BA}$$

(c)
$$\overrightarrow{CA} = z\overrightarrow{CB}$$

Construire les points M, N et P tels que :

- (a) $\overrightarrow{AM} = 2\overrightarrow{v}$;
- (b) $\overrightarrow{BN} = \frac{1}{2}\overrightarrow{u}$;
- (c) $\overrightarrow{AP} = \frac{1}{2}\overrightarrow{u} + 2\overrightarrow{v}$.

Exercice 5

Construire les points *E*, *F* et *G* tels que :

- (a) $\overrightarrow{AE} = \frac{2}{3} \overrightarrow{u}$;
- (b) $\overrightarrow{AF} = \frac{5}{4} \overrightarrow{v}$;
- (c) $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{u} + \frac{5}{4}\overrightarrow{v}$.

Exercice 6

On considère la figure ci-contre :

Construire les points E, F et G tels que :

- (a) $\overrightarrow{AE} = \frac{2}{3} \overrightarrow{u}$;
- (b) $\overrightarrow{BF} = \frac{7}{5} \overrightarrow{v}$;
- (c) $\overrightarrow{CG} = \frac{2}{3}\overrightarrow{u} + \frac{7}{5}\overrightarrow{v}$.

Exercice 7

Réduire les vecteurs suivants :

(d) $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{DC} - \overrightarrow{AC} + \overrightarrow{BC}$;

(a)
$$\overrightarrow{v} = \overrightarrow{AB} - \overrightarrow{AC}$$
;

(b)
$$\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$
;

(b)
$$u = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$
;
(e) $\overrightarrow{v} = \overrightarrow{MN} + \overrightarrow{PM} + \overrightarrow{NP}$;

(c)
$$\overrightarrow{w} = \overrightarrow{MA} - \overrightarrow{MF} + \overrightarrow{FA}$$
;

(f)
$$\overrightarrow{w} = \overrightarrow{AP} - \overrightarrow{AQ} + \overrightarrow{EQ} - \overrightarrow{EP}$$
.

Exercice 8

Écrire en fonction de \overrightarrow{AB} et \overrightarrow{AC} les vecteurs suivants :

(a)
$$\vec{u} = 2\vec{A}\vec{B} - \frac{1}{3}\vec{A}\vec{C} + \vec{B}\vec{C}$$
;

(b)
$$\overrightarrow{v} = \overrightarrow{AB} + 3\overrightarrow{CA} - 2\overrightarrow{BC}$$
;

(c)
$$\overrightarrow{w} = \frac{2}{5}(\overrightarrow{AB} - 5\overrightarrow{BC}) + 3\overrightarrow{CA}$$
.

Exercice 9

Soient A, B, C et M quatre points du plan.

On considère les vecteurs \vec{u} et \vec{v} définis par $\vec{u} = \overrightarrow{MA} + 2\overrightarrow{MB} - 3\overrightarrow{MC}$ et $\vec{v} = 2\overrightarrow{BA} - 6\overrightarrow{BC}$.

- 1. Montrer que : $\vec{u} = 2\overrightarrow{AB} 3\overrightarrow{AC}$.
- 2. Montrer que les vecteurs \vec{u} et \vec{v} sont colinéaires.

Exercice 10

Soit ABCD un parallélogramme. On considère les points E et F définis par $\overrightarrow{DE} = \frac{5}{2}\overrightarrow{DA}$ et $\overrightarrow{DF} = \frac{5}{3}\overrightarrow{DC}$.

- 1. Construire une figure (on donne AD = 4cm et DC = 6cm).
- 2. Montrer que $\overrightarrow{BE} = \frac{3}{2}\overrightarrow{DA} \overrightarrow{AB}$ et $\overrightarrow{BF} = \frac{2}{3}\overrightarrow{DC} + \overrightarrow{BC}$.
- 3. Exprimer les vecteurs \overrightarrow{BE} et \overrightarrow{BF} en fonction de \overrightarrow{AB} et \overrightarrow{BC} .
- 4. Montrer que $2\overrightarrow{BE} = 3\overrightarrow{FB}$, et en déduire que les points B, E et F sont alignés.

Soit ABC un triangle.

- 1. Construire les points E et F tels que $\overrightarrow{AE} = \frac{1}{2}\overrightarrow{BA}$ et $\overrightarrow{AF} = \frac{4}{3}\overrightarrow{BC} \frac{1}{2}\overrightarrow{AC}$
- 2. Montrer que $E\hat{F} = \frac{5}{6}B\hat{C}$.
- 3. En déduire que les droites (EF) et (BC) sont parallèles.

Exercice 12

Soit ABC un triangle. On considère les points M et N définis par $\overrightarrow{CM} = \frac{1}{3}\overrightarrow{CA} + \frac{5}{4}\overrightarrow{CB}$ et $\overrightarrow{CN} = -\frac{2}{3}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{CB}$.

- 1. Construire une figure.
- 2. Montrer que $\overrightarrow{CB} = \frac{2}{3}\overrightarrow{CM} + \frac{1}{3}\overrightarrow{CN}$.
- 3. En déduire que les points M, N et B sont alignés.

Exercice 13

Soient *A* et *B* deux points distincts.

1. Construire C, D et E vérifiant les égalités suivantes :

(a)
$$\overrightarrow{AC} = 2\overrightarrow{AB}$$
;

(b)
$$\overrightarrow{AD} = -3\overrightarrow{BC}$$
;

(c)
$$\overrightarrow{CE} = 5\overrightarrow{AB}$$
.

2. Montrer que le point C est le milieu de [DE].