Geometrische Operationen

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Bisher haben wir Operationen betrachtet, die die Intensität, Farbe etc. von Pixeln verändert haben.

Jetzt betrachten wir Operationen, die die Position von Pixeln verändern.

Original

Verzerrte Bilder

Geometrische Operationen

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Eine **geometrische Operation** ist eine Abbildung (Transformation)

$$t: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$$

die jedem Pixel (x,y) von Bild I eine neue Pixelposition (x',y') von Bild I' zuweist.

Beispiel: Die Abbildung

$$t(x, y) = (0.5 \cdot \frac{y}{H}(x - \frac{B}{2}) + \frac{B}{2}, y)$$

erzeugt eine perspektivische Transformation:

Schreibweisen

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Geometrische Operationen setzen sich also aus zwei Funktionen zusammen:

$$x' = t_x(x, y)$$

$$y' = t_y(x, y)$$

In der Regel verwenden wir für geometrische Operationen Vektorschreibweise, d.h. wir fassen die Pixelpositionen als zweidimensionale Vektoren auf:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = t \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} t_x(x, y) \\ t_y(x, y) \end{pmatrix}$$

oder kurz

$$\vec{x}' = t(\vec{x})$$

Ziel-nach-Quelle Transformation I

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Problem: Wenn wir die Grauwerte von I mit einer Funktion ins Bild I' abbilden, liegen die neuen Positionen (x',y') in der Regel nicht auf dem Pixelraster

Lösung: Für jede Pixelposition (x',y') im (Ziel-)Bild I': Berechne mit der Umkehrabbildung t^{-1} von t die ursprünglichen Koordinaten (x,y) in I

Ziel-nach-Quelle Transformation II

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Die Position (x,y) in I wird ebenfalls i.d.R. nicht im Pixelraster liegen. Hier jedoch können wir interpolieren:

Wir bestimmen also den Grauwert von (x',y') aus den Nachbarpixeln von (x,y)!

Nächster Nachbar

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Die einfachste Methode ist die **Nächster-Nachbar-Methode**: Wir suchen diejenige Pixelposition, die am nächsten an (x,y) liegt und verwenden deren Grauwert:

Diese Methode wird selten eingesetzt...

Bilineare Interpolation I

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Die gängigste Methode ist die der bilinearen Interpolation:

Sei
$$x_0 = \lfloor x \rfloor$$
 und $y_0 = \lfloor y \rfloor$ und

$$\delta_x = x - x_0 \text{ und } \delta_y = y - y_0$$

dann ist die bilineare Interpolation gegeben durch:

$$I(x, y) = I(x_0 + \delta_x, y_0 + \delta_y)$$

$$= (1 - \delta_x)(1 - \delta_y)I(x_0, y_0)$$

$$+ \delta_x(1 - \delta_y)I(x_0 + 1, y_0)$$

$$+ (1 - \delta_x)\delta_yI(x_0, y_0 + 1)$$

$$+ \delta_x\delta_yI(x_0 + 1, y_0 + 1)$$

Bilineare Interpolation II

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Die bilineare Interpolation ist die Bildung des gewichteten Mittelwerts der benachbarten Grauwerte.

http://www.codecogs.com/library/maths/approximati

on/interpolation/multivariate.php

Bikubische Interpolation

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Alternativ kann auch bikubisch interpoliert werden. Dabei wird auch die Steigung (1. Ableitung) berücksichtigt.

Konsequenz: Es müssen noch Nachbarpixel berücksichtigt werden.

Affine Transformationen I

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Affine Transfor-mationen mit $\det A \neq 0$ heißen **Affinität**.

Die einfachsten geometrischen Operationen sind die affinen Transformationen, also diejenigen Operationen, die sich als Matrixmultiplikation und / oder Vektoraddition

$$\vec{x}' = A\vec{x} + \vec{b}$$
 bzw $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} b_x \\ b_y \end{pmatrix}$

schreiben lassen. Zu diesen Transformationen gehören

Skalierung längs der x- bzw. y-Achse um einen Faktor s_x

bzw. s_y :

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Scherung längs der x- bzw. y-Achse um Faktor b_x bzw. b_y :

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & b_x \\ b_y & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Affine Transformationen II

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

• **Translation** um einen Vektor \vec{b} :

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} b_x \\ b_y \end{pmatrix}$$

• **Drehung** um den Winkel α

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

oder als **Bewegung** (erst Drehung, dann Translation)

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} b_x \\ b_y \end{pmatrix}$$

Homogene Koordinaten

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Affine Transformationen lassen sich linearisieren, wenn man sie von kartesischen in **homogene Koordinaten** überführt:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & b_x \\ a_{21} & a_{22} & b_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Allgemeiner sind affine Transformationen genau diejenigen Abbildungen, die in homogenen Koordinaten wie folgt darstellbar sind:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Drehung um einen Punkt

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

In dieser Schreibweise wird eine Drehung um die Pixelposition (x_c, y_c)

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & x_c \\ 0 & 1 & y_c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -x_c \\ 0 & 1 & -y_c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\begin{array}{c} \text{Translation} \\ \text{um } (x_c, y_c) \end{array}$$

$$\begin{array}{c} \text{Drehung um } \alpha \\ \text{um } (-x_c, -y_c) \end{array}$$

zu der folgenden Vorschrift

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha & -x_c \cos \alpha + y_c \sin \alpha + x_c \\ \sin \alpha & \cos \alpha & -x_c \sin \alpha - y_c \cos \alpha + y_c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} x_c + (x - x_c) \cos \alpha - (y - y_c) \sin \alpha \\ y_c + (x - x_c) \sin \alpha + (y - y_c) \cos \alpha \\ 1 \end{pmatrix}$$

Eigenschaften affiner Transformationen

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Affine Transformationen haben folgende Eigenschaften:

- Die Verkettung zweier affiner Transformationen ist wieder eine affine Transformation (z.B. darstellbar als Multiplikation der entsprechenden homogenen Matrizen)
- Affine Transformationen bilden
 - Geraden auf Geraden,
 - Dreiecke auf Dreiecke,
 - Parallele Geraden auf parallele Geraden und
 - Rechtecke auf Parallelogramme

ab.

 Das Abstandsverhältnis von Punkten, die auf einer Geraden liegen, bleibt bei affinen Transformationen erhalten.

Geradentreue Parallelentreue Teilverhältnistreue

Charakterisierung affiner Transformationen

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Eine affine Transformationen ist durch <u>drei</u> Paare von Punkten (Vektoren)

$$\vec{x}_i \rightarrow \vec{x}'_i$$
 für $i = 1,2,3$

eindeutig bestimmt, vorausgesetzt, die Vektoren \vec{x}_1, \vec{x}_2 und \vec{x}_3 bilden ein echtes Dreieck, liegen also nicht auf einer Geraden.

Die affine Transformation kann durch Lösung eines linearen Gleichungssystems mit <u>sechs</u> Gleichungen bestimmt werden, denn jedes Punktepaar liefert zwei Gleichungen:

$$x'_{i} = a_{11}x_{i} + a_{12}y_{i} + a_{13}$$

$$y'_{i} = a_{21}x_{i} + a_{22}y_{i} + a_{23}$$

Eine geschlossene Form der Lösung findet man z.B. in [Burger & Burge 2005], siehe Literaturliste zur Vorlesung.

Projektive Transformationen

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Multiplikation der Matrix mit einer Zahl $s \neq 0$ ändert nichts am Ergebnis!

Astrid Laubenheimer Stand 28.06.2018

Eine Homographie (Kollineation, Vier-Punkt-Transformation) ist eine Abbildungen der Form

$$\begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{w} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Im Gegensatz zu den affinen Transformationen muss hier nach der Matrix-Vektor-Multiplikation normiert werden, d.h. das (zweidimensionale) Ergebnis einer **projektiven Transformation** ist:

$$x' = \frac{\hat{x}}{\hat{w}}$$
 und $y' = \frac{\hat{y}}{\hat{w}}$

Homographien spielen in der Bildverarbeitung eine große Rolle, insbesondere, wenn es um 3D-Bildverarbeitung geht!!!

Eigenschaften projektiver Transformationen

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Geradentreue

Projektive Transformationen haben folgende Eigenschaften:

- Die Verkettung zweier projektiver Transformationen ist wieder eine projektive Transformation
- Projektive Transformationen bilden
 - Geraden auf Geraden und
 - Rechtecke auf Vierecke ab.
- Abstandsverhältnisse und Parallelität bleiben i.A. nicht erhalten!
- Mit einer projektiven Transformationen lässt sich jedes Viereck auf jedes andere Viereck abbilden:

Charakterisierung projektiver Transformationen

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Eine projektive Transformation ist durch <u>vier</u> Paare von Punkten

$$\vec{x}_i \rightarrow \vec{x}'_i$$
 für $i = 1,...,4$

(bis auf einen Faktor s) eindeutig bestimmt, vorausgesetzt, die Vektoren $\vec{x}_1, \vec{x}_2, \vec{x}_3$ und \vec{x}_4 bilden ein nicht degeneriertes Viereck.

Die Transformation kann durch Lösung eines linearen Gleichungssystems mit <u>acht</u> Gleichungen bestimmt werden, denn wieder liefert jedes Punktepaar zwei Gleichungen:

$$x'_{i} = a_{11}x_{i} + a_{12}y_{i} + a_{13} - a_{31}x_{i}x'_{i} - a_{32}y_{i}x'_{i}$$

$$y'_{i} = a_{y1}x_{i} + a_{y2}y_{i} + a_{y3} - a_{31}x_{i}y'_{i} - a_{32}y_{i}y'_{i}$$

Das Gleichungssystem wird i.d.R. mit Standard-Methoden zur Lösung linearer Gleichungssysteme wie z.B. DLT (direkte lineare Transformation) gelöst.

Ein OpenCV-Beispiel

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Beispiel: Eine projektive Transformation erzeugt durch vier Paare von Pixelpositionen:


```
CvMat* homo=cvCreateMat(3,3,CV_32FC1);
CvPoint2D32f *c1 = new CvPoint2D32f[4];  // source points
CvPoint2D32f *c2 = new CvPoint2D32f[4];  // dest points
c1[0].x = 40.0;    c1[0].y = 159.0;
c1[1].x = 80.0;    c1[1].y = 159.0;
:
homo = cvGetPerspectiveTransform(c1, c2, homo);
cvWarpPerspective(I, IStrich, homo, 1+8, cvScalarAll(128));
delete[] c1; delete[] c2; cvReleaseMat( &homo );
```

Beispiel Gebäuderekonstruktion

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Beispiel: Eine projektive Transformation zur Herstellung einer Frontalansicht:

Beispiel Geokodierung I

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Für die Geokodierung wird eine Transformation von einem aktuellen Bild *I* auf eine Karte oder (wie hier) auf ein Orthophoto *I* 'gesucht:

Referenzierung t

Vogelperspektive »bird's eye view«

Beispiel Geokodierung II

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Für die Referenzierung werden aus beiden Bildern Merkmale extrahiert, hier z.B. Strecken:

Bestimme eine projektive Abbildung, die die Merkmale der Schrägansicht optimal auf die Merkmale des Orthophotos abbildet.

Beispiel Geokodierung III

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Wenn die Parameter der Transformation bekannt sind, können die bekannten Geokoordinaten der Karte oder des Orthophotos auf das aktuelle Bild transformiert werden.

Radiale Transformationen

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Für eine **radiale Transformation** wird ein Ankerpunkt (x_c, y_c) festgelegt und für jedes Pixel (x, y) die folgenden Werte (x', y') berechnet

$$d_x = x - x_c \quad \text{und} \quad d_y = y - y_c$$

$$r = \sqrt{d_x^2 + d_y^2}$$

Je nach gewünschtem Grad 2n wird die Transformation durch eine Reihe von Parametern $k_2, k_4, \ldots k_{2n}$ bestimmt. Sie ist gegeben durch

$$x' = x + d_x (1 + k_2 r^2 + k_4 r^4 + \dots + k_{2n} r^{2n})$$

$$y' = y + d_y (1 + k_2 r^2 + k_4 r^4 + \dots + k_{2n} r^{2n})$$

Beispiel Radiale Transformation

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Beispiel: Eine radiale Transformation vom Grad 2 (n=1) bezogen auf die Bildmitte als Ankerpunkt

Kissenförmige Verzerrung $k_2 = -0.00001$

Tonnenförmige Verzerrung $k_2 = 0.00001$

Bilineare Transformationen

Kapitel 6

Geom. Operationen

Transformationen

- affin
- projektiv
- nicht-linear

Bilineare Transformationen sind Polynome ersten Grades mit zwei Veränderlichen x und y: bezogen auf den Ankerpunkt (x_c, y_c)

$$x' = a_1 d_x + a_2 d_y + a_3 d_x d_y + a_4 + x_c$$
$$y' = b_1 d_x + b_2 d_y + b_3 d_x d_y + b_4 + y_c$$

mit

$$d_x = x - x_c$$
 und $d_y = y - y_c$

Beispiel: Mit der Bildmitte als Ankerpunkt und

$$a_1 = 1, a_2 = 0, a_3 = 0.002, a_4 = 0$$

 $b_1 = 0, b_2 = 1, b_3 = -0.005, b_4 = 0$

