

Description

Features

- 40V, 190A
 - $R_{DS(ON)}$ < 2.6m Ω @ V_{GS} = 10V
- Advanced Trench Technology
- Provide Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

100% UIS 100% ΔVds

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM190DN04-T3	VSM190DN04	TAPING	TO-263	13inch	1000	5000

Absolute Maximum Ratings (T_C =25 $^{\circ}$ C unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		40	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Continuous Drain Current	T _C = 25°C	190	Α
		T _C = 100°C	124	Α
I _{DM}	Pulsed Drain Current note1		760	Α
EAS	Single Pulsed Avalanche Energy note2		576	mJ
P _D	Power Dissipation	T _C = 25°C	197	W
$R_{ heta JC}$	Thermal Resistance, Junction to Case		0.76	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	$^{\circ}$ C

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	40	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =40V, V _{GS} =0V,	-	-	1.0	μA		
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±100	nA		
On Characteristics								
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V		
R _{DS(on)}	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =30A	-	1.9	2.6	mΩ		
Dynamic Characteristics								
C _{iss}	Input Capacitance	.,	-	9060	-	pF		
Coss	Output Capacitance	V _{DS} =20V, V _{GS} =0V, f=1.0MHz	-	1000	-	pF		
C _{rss}	Reverse Transfer Capacitance	I I I I .UIVIMZ	-	666	-	pF		
Qg	Total Gate Charge	\/ 00\/ L 00A	-	145	-	nC		
Q _{gs}	Gate-Source Charge	V_{DS} =20V, I_{D} =30A, V_{GS} =10V	-	30	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	VGS-10V	-	37	-	nC		
Switching	Characteristics							
t _{d(on)}	Turn-on Delay Time	.,	-	39	-	ns		
t _r	Turn-on Rise Time	V _{DD} =20V, I _D =30A,	-	56	-	ns		
t _{d(off)}	Turn-off Delay Time	$R_L=1\Omega$, $R_{GEN}=3\Omega$, $V_{GS}=10V$	-	108	-	ns		
t _f	Turn-off Fall Time	VGS-10V	-	71	-	ns		
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings						
Is	Maximum Continuous Drain to Source Diode Forward Current			-	190	Α		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	760	Α		
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _S =30A	-	-	1.2	V		
t _{rr}	Body Diode Reverse Recovery Time		-	50	-	ns		
Q _{rr}	Body Diode Reverse Recovery Charge	T _J =25℃, I _F =20A,dI/dt=100A/μs	-	81		nC		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition : TJ=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω ,IAS=48A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms