Tugas Video Aljabar 1

Teosofi Hidayah Agung 5002221132

December 2023

ETS Aljabar 1 2023 no.1

Diberikan $a \in \mathbb{R}$ dan $n = \frac{\sqrt{3-|a-1|} + \sqrt{|a-1|-3}}{a+2} + \frac{1+2a}{a-3}$. Tentukan digit terakhir dari nilai n^{2023} .

ETS Aljabar 1 2023 no.1

Diberikan $a \in \mathbb{R}$ dan $n = \frac{\sqrt{3-|a-1|}+\sqrt{|a-1|}-3}{a+2} + \frac{1+2a}{a-3}$. Tentukan digit terakhir dari nilai n^{2023} .

Ingat

- $\sqrt{f(x)}$ terdefinisi, jika $f(x) \ge 0$
- $\frac{f(x)}{g(x)}$ terdefinisi untuk $g(x) \neq 0$

Untuk
$$\sqrt{3-|a-1|}$$
, maka

$$|3-|a-1| \ge 0 \Longrightarrow |a-1| \le 3....(1)$$

Untuk $\sqrt{3-|a-1|}$, maka

$$|3-|a-1| \ge 0 \Longrightarrow |a-1| \le 3....(1)$$

Untuk
$$\sqrt{|a-1|-3}$$
, maka

$$|a-1|-3 \ge 0 \Longrightarrow |a-1| \ge 3....(2)$$

Untuk
$$\sqrt{3-|a-1|}$$
, maka

$$|3-|a-1| \ge 0 \Longrightarrow |a-1| \le 3....(1)$$

Untuk $\sqrt{|a-1|-3}$, maka

$$|a-1|-3 \ge 0 \Longrightarrow |a-1| \ge 3....(2)$$

Dari (1) dan (2) didapatkan |a-1|=3. Sehingga nilai a yang memenuhi adalah a=-2 atau a=4.

a=-2 tidak memenuhi sebab membuat penyebut menjadi 0. Sehingga a=4 adalah solusi satu-satunya.

a=-2 tidak memenuhi sebab membuat penyebut menjadi 0. Sehingga a=4 adalah solusi satu-satunya.

Nilai
$$n = \frac{\sqrt{3-|4-1|} + \sqrt{|4-1|-3}}{4+2} + \frac{1+2(4)}{4-3} = 9$$

a=-2 tidak memenuhi sebab membuat penyebut menjadi 0. Sehingga a=4 adalah solusi satu-satunya.

Nilai
$$n = \frac{\sqrt{3-|4-1|} + \sqrt{|4-1|-3}}{4+2} + \frac{1+2(4)}{4-3} = 9$$

Grup modulo

Perhatikan bahwa untuk menentukan digit terakhir suatu bilangan, dapat digunakan konsep grup (\mathbb{Z}_{10},\cdot). Dimana untuk [9]₁₀ berorde 2 pada grup tersebut.

a=-2 tidak memenuhi sebab membuat penyebut menjadi 0. Sehingga a=4 adalah solusi satu-satunya.

Nilai
$$n = \frac{\sqrt{3-|4-1|} + \sqrt{|4-1|-3}}{4+2} + \frac{1+2(4)}{4-3} = 9$$

Grup modulo

Perhatikan bahwa untuk menentukan digit terakhir suatu bilangan, dapat digunakan konsep grup (\mathbb{Z}_{10},\cdot). Dimana untuk [9]₁₀ berorde 2 pada grup tersebut.

$$([9]_{10})^{2023} = ([9]_{10})^{2022} \cdot [9]_{10} = ([9]_{10}^2)^{1011} \cdot [9]_{10} = ([1]_{10})^{1011} \cdot [9]_{10} = [9]_{10}.$$

a=-2 tidak memenuhi sebab membuat penyebut menjadi 0. Sehingga a=4 adalah solusi satu-satunya.

Nilai
$$n = \frac{\sqrt{3-|4-1|} + \sqrt{|4-1|-3}}{4+2} + \frac{1+2(4)}{4-3} = 9$$

Grup modulo

Perhatikan bahwa untuk menentukan digit terakhir suatu bilangan, dapat digunakan konsep grup (\mathbb{Z}_{10},\cdot). Dimana untuk [9]₁₀ berorde 2 pada grup tersebut.

$$([9]_{10})^{2023} = ([9]_{10})^{2022} \cdot [9]_{10} = ([9]_{10}^2)^{1011} \cdot [9]_{10} = ([1]_{10})^{1011} \cdot [9]_{10} = [9]_{10}.$$

∴ Digit terakhir 9²⁰²³ adalah 9.

Diberikan $f: G \to G'$ homomorpisma grup. Tunjukkan bahwa ker(f) subgrup normal dari G.

Diberikan $f: G \to G'$ homomorpisma grup. Tunjukkan bahwa ker(f) subgrup normal dari G.

Diketahui

- f memenuhi $f(ab) = f(a)f(b), \forall a, b \in G$.
- $\ker(f) = \{x \in G \mid f(x) = e_{G'}\}$

Diberikan $f: G \to G'$ homomorpisma grup. Tunjukkan bahwa ker(f) subgrup normal dari G.

Diketahui

- f memenuhi $f(ab) = f(a)f(b), \forall a, b \in G$.
- $\bullet \ker(f) = \{x \in G \mid f(x) = e_{G'}\}$

Pertama-tama akan ditunjukkan bahwa $\ker(f) < G$. Ambil sembarang $a,b \in \ker(f)$, maka

Diberikan $f: G \to G'$ homomorpisma grup. Tunjukkan bahwa ker(f) subgrup normal dari G.

Diketahui

- f memenuhi $f(ab) = f(a)f(b), \forall a, b \in G$.
- $\ker(f) = \{x \in G \mid f(x) = e_{G'}\}$

Pertama-tama akan ditunjukkan bahwa ker(f) < G. Ambil sembarang $a, b \in ker(f)$, maka

$$f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e_{G'}e_{G'}^{-1} = e_{G'}$$

Diberikan $f: G \to G'$ homomorpisma grup. Tunjukkan bahwa ker(f) subgrup normal dari G.

Diketahui

- f memenuhi $f(ab) = f(a)f(b), \forall a, b \in G$.
- $\ker(f) = \{x \in G \mid f(x) = e_{G'}\}$

Pertama-tama akan ditunjukkan bahwa ker(f) < G. Ambil sembarang $a, b \in ker(f)$, maka

$$f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e_{G'}e_{G'}^{-1} = e_{G'}$$

Jadi $ab^{-1} \in \ker(f)$ yang secara definisi adalah $\ker(f) < G$.

$$f(gxg^{-1}) = f(g)f(x)f(g^{-1}) = f(g)e_{G'}f(g)^{-1} = f(g)f(g)^{-1} = e_{G'}$$

$$f(gxg^{-1}) = f(g)f(x)f(g^{-1}) = f(g)e_{G'}f(g)^{-1} = f(g)f(g)^{-1} = e_{G'}$$

Jadi $gxg^{-1} \in \ker(f)$ yang secara definisi adalah $\ker(f) \triangleleft G$.

$$f(gxg^{-1}) = f(g)f(x)f(g^{-1}) = f(g)e_{G'}f(g)^{-1} = f(g)f(g)^{-1} = e_{G'}$$

Jadi $gxg^{-1} \in \ker(f)$ yang secara definisi adalah $\ker(f) \triangleleft G$. Terbukti bahwa $\ker(f)$ subgrup normal dari G