

GABARITO QUÍMICA

Questão 11

Um reator de 24,6 L foi carregado com 1 mol de N_2O_4 em $300\,\mathrm{K}$ e o equilíbrio foi estabelecido:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

A pressão total registrada no reator foi 1,2 atm.

Quando o reator é aquecido até $360\,\mathrm{K}$, a pressão total sobe para $1.8\,\mathrm{bar}$

- a. **Determine** a constante de equilíbrio da reação em 300 K.
- b. **Determine** a constante de equilíbrio da reação em 350 K.
- c. **Determine** a entalpia padrão de reação.
- d. **Determine** a entropia padrão de reação

Gabarito

- a. 0,2
- b. 2,4
- c.

Questão 12

Considere os hidrocarbonetos que produzem 2,4-dimetilpent-1-eno por hidrogenação catalítica.

- a. Apresente a reação dos hidrocarbonetos com bromo.
- b. Apresente a reação dos hidrocarbonetos com uma solução aquosa de bromo.
- c. Apresente as rotas de síntese para interconversão entre os isômeros.

Questão 13

A cianamida, H_2NCN , é um produto de grande relevância industrial. Esse composto é produzido conforme as etapas:

$$\begin{split} &\operatorname{CaC_2(s)} + \operatorname{N_2(g)} \longrightarrow \operatorname{CaNCN}(s) + \operatorname{C}(g) \\ &\operatorname{CaNCN}(s) + 2\operatorname{H_2O}(l) \longrightarrow \operatorname{Ca}(\operatorname{OH})_2(s) + \operatorname{H_2NCN}(\operatorname{aq}) \end{split}$$

 $\label{eq:control} Uma\ das\ aplicações\ da\ cianamida\ \'e\ a\ s\'intese\ da\ melamina,\ a\ 1,3,5-triazina-2,4,6-triamina,\ C_3H_6N_6.$

$$\begin{aligned} & H_2NCN \longrightarrow NCNC(NH_2)_2 \\ & NCNC(NH_2)_2 \longrightarrow C_3H_6N_6 \end{aligned}$$

- a. **Apresente** a estrutura de Lewis das espécies NCN²⁻, H₂NCN, NCNC(NH₂)₂ e C₃H₆N₆.
- b. Compare a carga dos átomos de nitrogênio na espécie NCN^{2-} .
- c. Ordene as ligações C-N no $NCNC(NH_2)_2$ em função de seu comprimento.

Questão 14

A entalpia de ressonância é a diferença entre a entalpia média de uma ligação e a entalpia da mesma ligação em um composto onde há ressonância. Esse parâmetro é utilizado para quantificar a estabilidade de compostos aromáticos e pode ser estimado a partir de dados termodinâmicos.

- a. **Determine** a entalpia de hidrogenação do cicloexeno em 25 °C.
- b. **Determine** a entalpia de hidrogenação do benzeno em 25 °C.
- c. Determine a entalpia de ressonância do benzeno.

${\rm Dados\ em\ 298K}$	$\operatorname{cicloexano}(g)$	$ciclo exeno\left(g\right)$	$benzeno\left(g\right)$	$H_2(g)$
Entalpia padrão de combustão, $\Delta H_{ m c}^{\circ}/{{{ m kJ}\over{ m mol}}}$	-3950	-3750	-3300	-394

Questão 15

O composto binário $\bf A$ foi completamente dissolvido por reação com ácido nítrico concentrado. Foram formados ânions oxigenados a partir do composto $\bf A$ e foi liberado um gás castanho $\bf B$ 1,59 vezes mais denso que o ar.

Quando excesso de cloreto de bário foi adicionado à solução resultante, um sólido branco ${\bf C}$ precipitou. A solução foi filtrada e o sólido obtido pesou cerca de 10 mg quando seco. O filtrado foi tratado com excesso de uma solução saturada de sulfato de prata, levando a precipitação dos sólidos ${\bf C}$ e ${\bf D}$.

Ao novo filtrado foi adicionado hidróxido de sódio lentamente. Quando o pH da solução chega a 7, um sólido amarelo $\bf E$ precipita. O sólido $\bf E$ tem 77,31% de prata em massa, massa molar 2,06 vezes maior que a de $\bf C$ e pesou cerca de 24 mg quando seco.

- a. Identifique o gás B.
- b. Identifique os sólidos C, D e E.
- c. Identifique o composto binário A.

Questão 16

Um composto $\bf A$ tem fórmula molecular $C_8H_{14}Cl_2$ e é opticamente ativo. Em um experimento, $\bf A$ foi submetido à hidrogenação catalítica na presença de paládio, sendo convertido no composto $\bf B$, opticamente inativo e com fórmula molecular $C_8H_{16}Cl_2$.

A reação de $\bf A$ com ozônio formou o intermediário $\bf X$, que ao ser tratado com peróxido de hidrogênio levou à formação de ácido cloroacético e de um ácido carboxílico opticamente ativo $\bf C$. O tratamento do intermediário $\bf X$ com zinco metálico resultou na formação dos produtos $\bf D$ e $\bf E$. O composto $\bf D$ apresenta configuração absoluta R.

Apresente a estrutura dos compostos A, B, C, D e E.

Questão 17

Um laboratório de análises foi encarregado de identificar um fertilizante.

- 1. Uma pequena amostra do fertilizante foi submetida a análise elementar. Os resultados da análise mostraram que essa substância é composta por carbono, hidrogênio, nitrogênio e oxigênio, apenas.
- 2. Uma amostra de 780 mg do fertilizante foi analisada por combustão. Os gases de combustão foram passados por um leito do composto higroscópico Mg(ClO₄)₂ e por um leito contendo NaOH. A massa do primeiro leito aumentou 540 mg e a massa do leito de hidróxido de sódio aumentou 440 mg.
- 3. Uma amostra de 390 mg do fertilizante foi analisada pelo método Kjeldahl. Todo nitrogênio do composto foi convertido em amônia que foi coletada em $50\,\mathrm{mL}$ de HCl $0.5\,\mathrm{mol}\,\mathrm{L}^{-1}$. A solução de amônia foi titulada com $15\,\mathrm{mL}$ de NaOH $1\,\mathrm{mol}\,\mathrm{L}^{-1}$.
- 4. Uma amostra de 975 mg do fertilizante foi dissolvida em 20 g de água. O ponto de congelamento da solução foi -2.5 °C. A constante crioscópica da água é $2\,\mathrm{K\,kg\,mol}^{-1}$.
- a. Determine a fórmula empírica do fertilizante.
- b. Proponha uma estrutura molecular plausível para o fertilizante.

Questão 18

- a. Compare o comprimento das P-F no PCl₅.
- b. **Ordene** as moléculas SF_4 , SeF_4 , ClF_3 e IF_3 em função do ângulo de ligação F-X-F considerando os átomos de flúor mais afastados um do outro.
- c. Explique porque os ângulos de ligação nas moléculas SF_4 , SCl_4 e SBr_4 variam conforme os diagramas:

Questão 19

Um reator de 1L para desidrogenação do propano foi carregado com 2 atm de propano e 9 atm de dióxido de carbono. A mistura é aquecida e os equilíbrios são estabelecidos:

$$\begin{aligned} C_3H_8(g) & \Longleftrightarrow C_3H_6(g) + H_2(g) & \quad K_1 = 0, 1 \\ CO_2(g) + H_2(g) & \Longleftrightarrow CO(g) + H_2O(g) & \quad K_2 \end{aligned}$$

No equilíbrio, a pressão total no reator é 12 atm

- a. Determine a concentração de propeno no equilíbrio.
- b. **Determine** a constante de equilíbrio K_2 .

Questão 20

A reação de Cannizzaro é o desproporcionamento induzido por base de duas moléculas de um aldeído não enolizável formando um álcool primário e um íon carboxilato:

Uma solução foi preparada contendo, inicialmente, $2 \, \text{mol} \, \mathbf{L}^{-1}$ de hidróxido de sódio e $1 \, \text{mol} \, \mathbf{L}^{-1}$ de benzaldeído. Essa solução é adicionada à uma célula cúbica de $17 \, \text{mL}$ com $3,4 \, \text{cm}$ comprimento.

No equilíbrio, a resistência da célula é $2\,\Omega$

- a. **Determine** a condutividade da solução no equilíbrio.
- b. **Determine** a concentração do íon benzoato no equilíbrio.
- c. **Determine** a contante de equilíbrio da reação.

$\rm Dados\ em\ 298K$	$Na^{+}(aq)$	$\mathrm{OH}^{-}(\mathrm{aq})$	$C_6H_5CO_2^-(aq)$
Condutividade iônica molar, $\lambda / \frac{S}{m M}$	5	20	3