criterion performance measurements

overview

want to understand this report?

Monitor/Parsing rules

Outlying measurements have moderate (19.4%) effect on estimated standard deviation.

get/cost

250

Outlying measurements have slight (8.7%) effect on estimated standard deviation.

get/auto-scaling

 OLS regression
 443 μ s
 445 μ s
 448 μ s

 R² goodness-of-fit
 0.999
 1.000
 1.000

 Mean execution time
 426 μ s
 429 μ s
 433 μ s

 Standard deviation
 9.72 μ s
 11.0 μ s
 13.3 μ s

Outlying measurements have moderate (17.6%) effect on estimated standard deviation.

get/redundancy

 OLS regression
 $262 \mu s$ $263 \mu s$ $264 \mu s$
 R^2 goodness-of-fit
 1.000 1.000 1.000

 Mean execution time
 $254 \mu s$ $256 \mu s$ $257 \mu s$

 Standard deviation
 $4.95 \mu s$ $6.14 \mu s$ $7.66 \mu s$

Outlying measurements have moderate (16.8%) effect on estimated standard deviation.

get/firewall

 OLS regression
 29.8 µs
 29.9 µs
 29.9 µs
 29.9 µs

 R² goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 29.2 µs
 29.3 µs
 29.4 µs

 Standard deviation
 261 ns
 331 ns
 425 ns

Outlying measurements have slight (6.1%) effect on estimated standard deviation.

Synchronizer/Determine order Safety

 OLS regression
 $40.5 \, \mu s$ $40.6 \, \mu s$ $40.8 \, \mu s$

 R² goodness-of-fit
 1.000 1.000 1.000

 Mean execution time
 $39.4 \, \mu s$ $39.7 \, \mu s$ $39.9 \, \mu s$

 Standard deviation
 $534 \, ns$ $680 \, ns$ $993 \, ns$

Outlying measurements have moderate (12.8%) effect on estimated standard deviation.

Synchronizer/Determine order Last

OLS regression 41.0 μ s 41.0 μ s 41.1 μ s R² goodness-of-fit 1.000 1.000 1.000 Mean execution time 39.9 μ s 40.0 μ s 40.2 μ s Standard deviation 436 ns 553 ns 663 ns

Synchronizer/Order Safety

Outlying measurements have moderate (13.7%) effect on estimated standard deviation.

Synchronizer/Order Last

R2 goodness-of-fit

0.999

Outlying measurements have moderate (20.0%) effect on estimated standard deviation.

Analysis and Planning http/All (determine order, ordering and analysis & plan)

1.000

1.000

Outlying measurements have slight (9.0%) effect on estimated standard deviation.

Analysis and Planning http/Cost

OLS regression 19.3 ms 19.6 ms 19.9 ms R^2 goodness-of-fit 0.998 0.999 1.000 Mean execution time 19.4 ms 19.6 ms 20.2 ms Standard deviation 261 μ s 840 μ s 1.55 ms

Outlying measurements have moderate (13.5%) effect on estimated standard deviation.

Analysis and Planning http/Firewall

Outlying measurements have moderate (33.2%) effect on estimated standard deviation.

Analysis and Planning http/Redundancy

15 20 25 30 35 5 iters 10 15 20 lower bound estimate upper bound

Outlying measurements have severe (80.6%) effect on estimated standard deviation.

Analysis and Planning http/AutoScaling

Outlying measurements have moderate (15.7%) effect on estimated standard deviation.

Analysis and Planning local/All (determine order, ordering and analysis & plan)

OLS regression 11.2 ms 11.3 ms 11.3 ms R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time 10.8 ms 11.0 ms 11.0 ms Standard deviation 179 μ s 277 μ s 406 μ s

Outlying measurements have slight (6.7%) effect on estimated standard deviation.

Analysis and Planning local/Cost

lower bound estimate upper bound

OLS regression 4.22 ms 4.24 ms 4.25 ms R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time 4.08 ms 4.11 ms 4.14 ms Standard deviation 65.8 μ s 86.5 μ s 115 μ s

Analysis and Planning local/Firewall

 OLS regression
 148 μs
 150 μs
 152 μs

 R^2 goodness-of-fit
 0.997
 0.998
 0.999

 Mean execution time
 146 μs
 147 μs
 150 μs

 Standard deviation
 3.74 μs
 5.52 μs
 9.31 μs

Outlying measurements have moderate (35.9%) effect on estimated standard deviation.

Analysis and Planning local/Redundancy

 OLS regression
 1.86 ms
 1.87 ms
 1.88 ms

 R² goodness-of-fit
 0.999
 1.000
 1.000

 Mean execution time
 1.79 ms
 1.80 ms
 1.82 ms

 Standard deviation
 39.5 µs
 45.1 µs
 54.0 µs

Outlying measurements have moderate (13.0%) effect on estimated standard deviation.

Analysis and Planning local/AutoScaling

OLS regression 6.25 ms 6.27 ms 6.30 ms R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time 6.06 ms 6.11 ms 6.14 ms Standard deviation 97.9 μ s 115 μ s 139 μ s

Outlying measurements have slight (2.6%) effect on estimated standard deviation.

put/cost

OLS regression 1.14 ms 1.14 ms 1.14 ms R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time 1.09 ms 1.10 ms 1.11 ms Standard deviation 20.2 μ s 22.7 μ s 25.9 μ s

Outlying measurements have slight (9.7%) effect on estimated standard deviation.

put/auto-scaling

Outlying measurements have moderate (17.1%) effect on estimated standard deviation.

put/redundancy

lower bound estimate upper bound

 OLS regression
 718 μs
 720 μs
 722 μs

 R^2 goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 695 μs
 699 μs
 703 μs

 Standard deviation
 11.3 μs
 13.2 μs
 15.5 μs

Outlying measurements have slight (9.8%) effect on estimated standard deviation.

put/firewall

lower bound estimate upper bound

 OLS regression
 141 μs
 142 μs
 142 μs

 R^2 goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 139 μs
 139 μs
 140 μs

 Standard deviation
 1.43 μs
 1.88 μs
 2.35 μs

Outlying measurements have slight (6.9%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

- The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
- The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

- OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the mean estimate below it, as it more effectively eliminates measurement overhead and other constant factors.
- R² goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
- Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

colophon

This report was created using the criterion benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.