단어 임베딩

임베딩(Embedding)

컴퓨터가 자연어를 처리할 수 있게 하려면 자연어를 계산 가능한 형식인 임베딩으로 바꿔줘야 합니다.

■임베딩(embedding)

- 임베딩은 자연어를 숫자의 나열인 벡터로 바꾼 결과 혹은 그 일련의 과정 전체를 가리키는 용어입니다.
- 단어나 문장 각각을 벡터로 변환해 벡터 공간에 '끼워 넣는다(embed)'는 취지에서 임베딩이라는 이름이 붙었습니다.

■ 임베딩이 중요한 이유

- 임베딩에는 말뭉치(corpus)의 의미, 문법 정보가 응축돼 있습니다.
- 임베딩은 벡터이기 때문에 사칙연산이 가능하며, 단어/문서 관련도(relevance) 역시 계산할 수 있습니다.
- 최근 임베딩이 중요해진 이유는 전이 학습(transfer learning) 때문입니다.
- 전이 학습이란 특정 문제를 풀기 위해 학습한 모델을 다른 문제를 푸는 데 재사용하는 기법입니다. 예컨대 대규모 말뭉치를 미리 학습(pre train)한 임베딩을 문서 분류 모델의 입력값으로 쓰고, 해당 임베딩을 포함한 모델 전체를 문서 분류 과제를 잘할 수 있도록 업데이트(fine-tuning)하는 방식
- 대규모 말뭉치를 학습시켜 임베딩을 미리 만들고(pre train), 이후 임베딩을 포함한 모델 전체를 문서 분류 과제에 맞게 업데이트합니다(fine-tuning).

임베딩 종류

■ 단어 수준 임베딩

- NPLM : Neural Probabilistic Language Model
- Word2Vec
- FastText
- LSA(Latent Semantic Analysis, 잠재의미 분석)
- GloVe
- Swivel

■문장수준임베딩

- Doc2Vec(Document Embedding with Paragraph Vectors)
- LDA (Latent Dirichlet Allocation, 잠재 디리클레 할당)
- ELMo(Embeddings from Language Model)
- BERT(Bidirectional Encoder Representations from Transformers)

원핫 인코딩(one hot encoding)

고유 값에 해당하는 칼럼에만 1을 표시하고 나머지 칼럼에는 0을 표시하는 방법입니다.

Human-Readable

Machine-Readable

Pet	Cat	Dog	Turtle	Fish
Cat	1	0	0	0
Dog Turtle	0	1	0	0
Turtle	0	0	1	0
Fish	0	0	0	1
Cat	1	0	0	0

- 단어를 범주형 변수로 변환
- 이진벡터로 표현
- 벡터의 각 차원이 단어 하나를 나타냄
- 모든 단어들의 유사도가 없음

"thank you"
"love you"

	단어	임베딩
7 	thank	[1, 0, 0]
	you	[0, 1, 0]
"	love	[0, 0, 1]

원 핫 인코딩 실습

onehot_encoding.ipynb

희소표현 vs 밀집표현(분산표현)

■ 희소표현 (sparse representation)

1 0 0 3 강아지 0 0

0

■ 밀집표현(distributed representation) 분산표현(distributed representation)

0

차원의 저주(The curse of dimensionality)

- 데이터 학습을 위해 차원이 증가하면서 학습데이터 수가 차원의 수보다 적어져 성능이 저하되는 현상
- 차원이 증가할 수록 개별 차원 내 학습할 데이터 수가 적어지는(sparse) 현상 발생
- 해결책 : 차원을 줄이거나 데이터를 많이 획득

밀집표현(분산표현) 장점

임베딩 벡터의 차원을 축소하고 단어간 유사도를 계산할 수 있습니다

Word2Vec

Want? food tonight

Word2Vec

단어의 주변을 보면 그 단어를 안다. You shall know a word by the company it keeps. - 언어학자 J.R. Firth (1957)

Word2Vec 알고리즘

맥락으로 단어를 예측하는 CBOW (continuous bag of words)과 단어로 맥락을 예측하는 skip-gram 모델이 있습니다.

- CBOW (Continuous Bag Of Words: 주변 단어들의 임베딩 벡터의 합을 이용하여 타깃 단어를 예측
- skip-gram: 타깃의 임베딩을 이용하여 주변 단어들을 예측

Word2Vec 실습

```
model = Word2Vec(sentences=sentences, size=100, window=4, min_count=2, sg=1)
model.save('nsmc.model')
```

- sentences : 학습 문장 데이터(입력)
- size : 단어 임베딩 벡터의 차원(크기)
- window : 주변 단어 윈도우의 크기
- min_count : 단어 최소 빈도 수 제한(학습에서 제외)
- sg : 0(CBOW 모델), 1(skip-gram 모델)

word2vec_model.ipynb

OOV(Out of Vocabulary)

생성된 코퍼스 데이터만 사용하여 학습한 임베딩 모델은 코퍼스 외부에 존재하는 단어에는 대응할 수 없는 문제가 있습니다.

"체크카드 만드는 법 알려줘"

"체카 만드는 법 알려줘"

FastText

FastText는 Facebook에서 만든 단어 임베딩 및 텍스트 분류 학습을 위한 라이브러리입니다. FastText에서는 각 단어는 글자 단위 n-gram의 구성으로 취급하며, subword를 고려하여 학습합니다.

- Word2Vec는 OOV(Out Of Vocabulary)에 대해서는 벡터를 못 구하고, 빈도수가 낮은 단어에도 학습이 부족합니다.
- FastText는 이를 보환하기 위하여, 단어를 구성하는 subwords (substrings) 의 벡터의 합으로 단어 벡터를 표현합니다
- FastText는 새로운 단어에 대해서도 단어의 형태적 유사성을 고려한 적당한 word representation 을 얻도록 도와줍니다.

https://fasttext.cc/

Library for efficient text classification and representation learning

FastText 실습

fasttext_model.ipynb

단어 임베딩의 한계

주변 단어를 통해 학습이 이루어지기 때문에 문맥을 고려하지 못하며, 동형어, 다의어 등에서 성능이 안 좋습니다.

10과 4의 차는 6이다. → 차8

표준국어대시전

차가 식으니 어서 드세요.

표준국어대시전

결혼 10년 <mark>차</mark>에 내 집을 장만했다. → 차 ⁴ 표준국어대시전

잠이 막 들려던 † 에 전화가 왔다. \rightarrow 차 4 표준국어대시전

100에서 49를 빼면 그 <mark>차가 얼마인가? → 차⁸</mark> 표준국어대사전

차⁴ 次 ★ ⊕

- 의존명사 '번', '차례'의 뜻을 나타내는 말.
- 2. 의존명사 어떠한 일을 하던 기회나 순간.
- 3. 의존명사 수학 방정식 따위의 차수를 이르는 말.

유의어 번 ⁴ 차례 ²

표준국어대시전

차² ★ ⊕

- 1. 명사 차나무의 어린잎을 달이거나 우린 물.
- 2. 명사 식물의 잎이나 뿌리, 과실 따위를 달이거나 우리거나 하여 만든 마실 것을 통틀어 이르는 말. 인삼차, 생강차....
- 3. 명사 식물 [같은 말] 차나무(차나뭇과의 상록 활엽 관목).

유의어 차나무

표준국어대시전

차6 車 🕀

- 1. 명사 바퀴가 굴러서 나아가게 되어 있는, 사람이나 짐을 실어 옮기는 기관. 자동차, 기차, 전차, 우차, 마차 따위를 ...
- 2. 명사 화물을 '[1]'에 실어 그 분량을 세는 단위.
- 3. 명사 운동 '車' 자를 새긴 장기짝. 한편에 둘씩 모두 넷이 있고 일직선으로 가로나 세로로 몇 칸이든지 다닌다.

Thank you