Manual de Usuario

COMPUTACIÓN GRÁFICA E INTERACCIÓN HUMANO-COMPUTADORA

30 DE JULIO DEL 2021

SEMESTRE 2021-2

ARJONA MÉNDEZ ALBARRÁN SEBASTIÁN
RAMOS VILLASEÑOR CÉSAR MAURICIO
SANDOVAL MIRAMONTES JOAQUÍN

ÍNDICE

Instalación y Ejecución	3
Modelos	7
Interacción con el entorno	9
Animaciones	9
Forma de trabajo	13
Diagrama de Gantt	15
Estimación de costos del proyecto	18
Evidencias de ejecución	18

Instalación y Ejecución

- 1. Es necesario clonar (descargar) el repositorio del proyecto en cualquier carpeta. El enlace en dónde se encuentra es el siguiente:
 - Vía HTTP: https://github.com/Arjona99/ProyectoCG.git
 - Vía SSH: git@github.com:Arjona99/ProyectoCG.git
 - Vía GitHub CLI: gh repo clone Arjona99/ProyectoCG
- 2. Dentro de la carpeta del repositorio de nombre ProyectoCG (extraída si es el caso o por la generada por Git al clonar el repositorio) se encontrarán dos carpetas. La primera se llama Documentos y contiene este manual de usuario junto con los cronogramas de trabajo. La segunda posee el nombre ProyectoCG, en la cual se encuentra el archivo de la solución de VSCode (ProyectoCG.sln), junto con otra carpeta llamada ProyectoCG, la cual contiene todos los archivos fuente del proyecto, además de los generados por VSCode. El más importante es el archivo denominado Final.cpp, este fichero contiene todo nuestro código fuente.
- 3. Para la ejecución vía .exe (por medio de fichero ejecutable), es necesario acceder al archivo ProyectoCG.exe. Haciendo doble click en él, correrá el proyecto. El archivo se encuentra en la misma carpeta que el archivo Final.cpp

NOTA: Es importante no mover ningún otro archivo o cambiarlos de ruta, la estructura de archivos está definida de dicha manera para que tanto el archivo .exe como el código fuente puedan encontrar las dependencias necesarias para su ejecución.

Para la ejecución del proyecto vía Visual Studio 2019 por medio de un nuevo proyecto (en caso de que los archivos de VSCode precargados en el repositorio generen problemas) realice lo siguiente:

 Cree un nuevo proyecto desde Visual Studio 2019, abra el programa y seleccione Crear un proyecto

Ilustración 1. Creación de un proyecto en Visual Studio

2. Escoja la opción *Proyecto Vacío* de C++, es necesario que previamente haya instalado dicha paquetería, esto se hace al ejecutar Visual Studio 2019 por primera vez

Ilustración 2. Selección de tipo de proyecto.

3. Decida el nombre del proyecto y la ubicación de este, asegurar que la casilla *Colocar la solución y el proyecto en el mismo directorio* se encuentre desmarcada.

Ilustración 3. Dando nombre al proyecto.

- 4. Copie todos los elementos de la carpeta del repositorio del proyecto dentro de la carpeta que recién se creó por Visual Studio 2019 (no copiar o eliminar los archivos de VSCode precargados en el repositorio), esta carpeta se llamará justo como el nombre que se la asignó al crear el proyecto en el paso anterior y su ubicación será la ubicación dada también en el paso anterior.
- 5. Una vez con todos los elementos dentro de la carpeta creada por Visual Studio, será necesario ir a este programa recién abierto y dejar el Explorador de Soluciones como se indica en la imagen, esto se hace haciendo click derecho y seleccionando la opción: Agregar->Agregar elemento existente, en las carpetas que se muestran en la imagen (Archivos de encabezado, de origen y de recursos). Los archivos de recursos se

encuentran en la carpeta *shaders*, y el archivo *camera.h* se encuentra dentro de la carpeta *include*. El archivo *glad.c* se encuentra en el mismo directorio que **Final.cpp** y **ProyectoCG.exe**.

Ilustración 4. Resultado final del explorador de soluciones

6. Posteriormente hacer doble click en el archivo **Final.cpp** ya agregado, desde el explorador de soluciones. Una vez con el archivo abierto en VSCode, hacer click en la pestaña del panel superior llamada Proyecto->Propiedades del proyecto y realizar las configuraciones siguientes, señaladas en las imágenes a continuación.

Se debe ir a las propiedades del proyecto, donde:

1. En C/C++ > General, en Directorios de inclusión adicionales se debe dejar como:

2. En Vinculador > General, Directorios de bibliotecas adicionales se debe dejar como:

Ilustración 5. Configuración adicional del proyecto.

7. En Vinculador > Entrada, Dependencias adicionales se debe dejar lo siguiente:

Winmm.lib;SDL2.lib;SDL2main.lib;assimp-vc141
mtd.lib;opengl32.lib;glfw3.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32

.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(

AdditionalDependencies)

Ilustración 6. Librerías adiconales del proyecto.

- 8. Finalmente, ejecutar el código con el botón de la flecha verde en el panel superior, aun lado se indica con la leyenda *Depurador local de Windows*.
- 9. Podrían generarse errores por la versión de Visual Studio que se está utilizando (2017 en vez de 2019) con la biblioteca de audio al compilar. Si existen errores de compilación referidas a las líneas de la función *PlaySound* únicamente será necesario quitar el carácter L antes del *string* que indica el nombre del audio.

Modelos

Los modelos utilizados en este proyecto fueron obtenidos de las siguientes páginas que permiten la descarga de algunos modelos de manera gratuita e incluyen los archivos necesarios para poder importarlos a algún software de modelado (3DS Max) para su edición y adaptación según se necesite. Desarrollamos en 3Ds Max, a partir de primitivas sobre un cono, el diseño de los tipis indios.

TurboSquid

- o Vaca: https://www.turbosquid.com/3d-models/cow-3d-model/1126261
- o Toro: https://www.turbosquid.com/3d-models/bull-3d-model-1393066
- Valla: https://www.turbosquid.com/3d-models/medieval-wooden-fence-3ds-free/993091
- Árboles: https://www.turbosquid.com/3d-models/3d-xfrogplants-honey-locust-gledista-triacanthos-1734005
- o Rocas: https://www.turbosquid.com/3d-models/3d-rock-model-1577462
- Molino: https://www.turbosquid.com/3d-models/free-obj-model-windmill/674933
- Barril: https://www.turbosquid.com/3d-models/free-max-model-barrel/903544

Sketchfab

- Locomotora y vías: Willy Decarpentrie Loco. https://sketchfab.com/3d-models/loco-65b96c939dad45fd8b01798284ae670b
- Vagón del Tren: Kefla Train Wagon. https://sketchfab.com/3d-models/train-wagon-cfa7a3d7f4f543ab92efb9510b8fab89
- Bar: Yevheniia Wild West Saloon. https://sketchfab.com/3d-models/wild-west-saloon-7e24d622bfda479986ec6327568ddf65
- Estación de Tren: Kefla https://sketchfab.com/3d-models/train-station-4d4921faa2904bd0b5b5fb6eb26e8154

- Túnel: Merrittfx https://sketchfab.com/3d-models/tunnel-9e19628687a44de18c8c096e7f51d89d
- Montañas: Rodrigo Gelmi https://sketchfab.com/3d-models/mountains-ae7c7d4938784b4d9f095101e90833e1
- Minecraft Villager: Vincent Yanez https://sketchfab.com/3d-models/minecraft-villager-905c2547478f4bc9b4a8a1521966ab81
- Tumbleweed: https://sketchfab.com/3d-models/tumbleweed01-f9f2c474b4d44b868a45bf4bd00bd846
- Granero: https://sketchfab.com/3d-models/granja-western-texturizada-
 03f1cbb2229844c7a3266b5646b892cd
- Torre de agua: https://sketchfab.com/3d-models/free-water-tower-56fbfe448a2a41879c382444b9d1c8e1
- Buitre: Devcels Vulture: https://sketchfab.com/3d-models/vulture-22996e35d9654d889726f5e7a656e876
- Free3D

Una cantidad de modelos de casas y edificios fueron extraídos de este <u>enlace</u>, pero muchos de los edificios no contenían texturas, así que estas fueron agregadas por nosotros.

Todos los modelos utilizados fueron gratuitos y de licencia libre (se puede observar en los enlaces de descarga de los modelos). Así mismo, para algunas texturas nos auxiliamos del sitio web <u>Textures</u>, posteriormente fueron editadas con la herramienta *Gimp* o *Adobe Photoshop*, de la misma forma que los modelos, estas son de licencia libre o para proyectos no comerciales.

La música principal del proyecto (ambient.wav) fue compuesta y mezclada por un miembro de nuestro equipo de trabajo (César Ramos), por lo tanto, la licencia es completamente nuestra. Para los efectos especiales se utilizó el sitio <u>Freesound</u>, el cual permite descargar sonidos con licencia gratuita y abierta. Algunos fueron editados nuevamente para acortarlos o alargarlos.

Interacción con el entorno

Para interactuar con el ambiente virtual, se necesitará de un teclado y un mouse para utilizar las teclas y movimientos pertinentes.

Movimiento hacia adelante Tecla W Tecla A Movimiento hacia la izquierda Tecla S Movimiento hacia atrás Tecla D Movimiento hacia la derecha - Tecla C Comenzar la animación por KeyFrames (vaca) - Tecla T Activa/Desactiva el movimiento del tren - Tecla X Activa la animación de la planta rodadora Tecla M Inicia la reproducción de la música ambiente.

Para el movimiento de la cámara se acudirá al movimiento del mouse para realizar cambios de orientación, y el *scroll* del mouse para alejamiento y acercamiento de la misma.

Animaciones

Animación 1

La primera animación consta del movimiento de unos buitres en el cielo del ambiente virtual. El vuelo de los buitres consta por el movimiento de sus alas verticalmente y un desplazamiento del modelo con ayuda de traslaciones. Esta animación fue desarrollada por estados. Está activa por defecto y no es posible pararla.

Ilustración 7. Animación en ejecución.

Animación 2

Esta animación realiza la caminata de una vaca, la cual está compuesta por distintos modelos (cuerpo y patas por separado). De esta manera, es posible manipular las patas independientemente para lograr la animación de caminata y desplazarla de un punto a otro, implementando traslaciones y rotaciones, tratando de asemejarse en lo más posible al desplazamiento de una vaca real, también se implementó sonido. Se activa con la tecla **C**, fue realizada por medio de *KeyFrames*, los cuales fueron precargados en el código, un total de 24. **NOTA:** Es necesario dejar que la animación termine antes de volver a inicializarla. Si la música está activa será necesario volver a activarla presionando la tecla **M**

Ilustración 8. Animación en ejecución.

Animación 3

Esta animación es automática. En la animación observamos a un aldeano caminando de un punto a otro de la aldea (licencia no comercial). Comienza desde la estación del sheriff,

camina hacia el bar, gira a la izquierda y camina hasta el fondo; después gira a la derecha y llega al final de la calle. Por último, realiza el mismo recorrido de regreso. Este recorrido se repite constantemente durante la ejecución. La animación fue hecha usando estados.

Ilustración 9. Animación en ejecución.

Animación 4

Esta animación realiza el movimiento del tren a lo largo de las vías, esta goza de gran detalle ya que se puede ver como se mueven las llantas del tren y los ejes para simular el movimiento del tren lo más real posible. En un inicio el tren estará oculto y al presionar la tecla **T**, el tren saldrá por el túnel y se detendrá en la estación del tren. Y si se presiona nuevamente la tecla **T**, el tren continúa su recorrido hacia el túnel del lado opuesto de la superficie.

Ilustración 10. Animación en ejecución.

Animación 5

Podemos observar en esta animación como una planta rodante con sombrero y pistola sale de su escondite para aproximarse a un enfrentamiento en la comisaría. Realiza un recorrido a lo largo de la calle frente al parque, compuesto por rotaciones y traslaciones, finalmente simula disparar hacia la comisaría. Esta animación se realizó por medio de cinco estados más un estado inicial (0). Implementa dos sonidos, una melodía clásica en un silbido para ambientar el movimiento de la planta, y sonidos de detonación de una pistola. Se inicializa con la tecla **X. NOTA:** Si la música está activa será necesario volver a activarla presionando la tecla **M.**

Ilustración 11. Animación en ejecución.

Ilustración 12. Animación en ejecución.

Forma de trabajo

Para trabajar de manera eficiente y síncrona, se decidió utilizar Git como sistema de control de versiones, y GitHub como almacenamiento remoto del repositorio. En un principio se creó la rama *trunk*, en la cual se incluyó el archivo *README.md* y la configuración del archivo *.gitignore* para evitar hacer *commit* de archivos que no necesitan estar en el repositorio, entre ellos los generados por *VSCode*. Esto facilito bastante el trabajo entre *commits*, pero dificultó solamente un poco la instalación.

Posteriormente, para lograr el trabajo síncrono, se realizó la repartición del trabajo: cada integrante se encargó de una rama propia para añadir los modelos que se necesitaban de su zona (se dividió el escenario en tres zonas, una para cada integrante).

Ilustración 13. Boceto de nuestro escenario.

Una vez que los modelos estuvieran listos, se creaba un *Pull Request* de la rama para que los demás integrantes pudieran revisar el trabajo del responsable de la rama y aprobar los cambios, finalmente era posible hacer un *merge* a la rama *trunk* sin problema alguno.

Ilustración 14. Evidencia de trabajo en Git.

Ilustración 15. Evidencia de trabajo en GitHub.

Enlace del repositorio en GitHub: Pueblo Vaquero

Diagrama de Gantt

Previo al comienzo del proyecto se realizó un diagrama de Gantt para hacer una estimación del tiempo que tomaría cada actividad. Como era de esperarse, los tiempos establecidos en un inicio no se cumplieron, así que también se mostrará un diagrama de Gantt con los tiempos reales.

Diagrama de Gantt

Ilustración 16. Estimación inicial

Diagrama de Gantt

Ilustración 17. Avance real

Estimación de costos del proyecto

CONCEPTO	соѕто
Programa 3DS MAX	\$2,813 mensual
Photoshop	\$449 mensual
Internet	\$500 mensual
Luz eléctrica	\$240 mensual
Honorarios	\$42,000 mensual (3 programadores)
Composición musical	\$2,000
TOTAL	\$48,002.00

Evidencias de ejecución

1. Enlace al video demo del pueblo vaquero:

https://drive.google.com/file/d/1nVKxkn8ivzlUvUFne3Ii8IYDC5du0Oz9/view?usp=s haring

2. Animación de buitres:

https://drive.google.com/file/d/1683BQ889FGKB2r27pYs9lDQbDYHCQVGh/view?usp=sharing

3. Animación de vaca:

https://drive.google.com/file/d/10rKDVeK6 HqRQk1TN29OJX9GCwqD Os/view?usp=sharing

- 4. Animación del tren:
- 5. https://drive.google.com/file/d/1oAkQ2x8avBtQP0a3HhziDUiJqOS7Shv6/view?usp = sharing
- 6. Animación de aldeano:

https://drive.google.com/file/d/12ZaefGdspRqMXkInqUIaaTf8OJeWvTZI/view?usp =sharing

7. Animación de planta rodante:

https://drive.google.com/file/d/1nXaT2g8D86yilcuiubt65-

XHy5kyvN 8/view?usp=sharing