University of Illinois Chicago

A Sample Thesis in Mathematics

by

A. Student

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Advisor: Prof. Ada Lovelace

October 7, 2025

Contents

Chapter 1. Introduction	1
1. Motivation	1
2. Outline of the thesis	2
Chapter 2. Background	3
1. Group theory	3
2. Linear representations	3
Chapter 3. Main Results	5
1. A computer simulation	5
2. Second main result	5
Appendix A. Technical Lemmas	7
Appendix. Bibliography	9

CHAPTER 1

Introduction

This is the introduction chapter. We cite some classic works [1, 2].

Theorem 1.1. This is a theorem

We reference Theorem 1.1. University of Illinois Chicago.

1. Motivation

1.1. Historical context. A brief overview of how the problem developed.

$$\int_0^1 f(x)dx = 2\tag{1}$$

FIGURE 1. This is a torus

FIGURE 2. The Snake Lemma

How to solve (1)

1.2. Open questions. Some questions remain open for future work.

2. Outline of the thesis

We summarize the structure of the thesis.

CHAPTER 2

Background

This chapter gives necessary background.

1. Group theory

DEFINITION 2.1. A group is a set G with a binary operation satisfying closure, associativity, identity, and inverses.

Theorem 2.2. Every finite subgroup of the multiplicative group of a field is cyclic.

PROOF. This is a standard result from algebra.

2. Linear representations

As explained in Serre's book [?], representation theory plays a key role.

CHAPTER 3

Main Results

Here we present the main contributions of the thesis.

1. A computer simulation

```
def factorial(n):
    """Compute the factorial of n recursively."""
    if n == 0:
        return 1
    else:
        return n * factorial(n - 1)

print(f"5! = {factorial(5)}")
```

2. Second main result

Another significant theorem.

APPENDIX A

Technical Lemmas

Here we collect some supporting lemmas.

Bibliography

- [1] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
- [2] D. Mumford, Abelian Varieties, Oxford University Press, 1970.
- [3] J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels, and R. R. Thomas, "The Euclidean distance degree of an algebraic variety," arXiv:1309.0049 (2013). Available at: https://arxiv.org/abs/1309.0049