FMI, Info, 2018/2019, Anul I, ID Logică matematică și computațională

Partea 2 Exerciții

(S2.1) Fie următoarele propoziții exprimate în limbaj natural:

- (i) Merg în parc dacă îmi termin treaba și nu apare altceva.
- (ii) Treci examenul la logică numai dacă înțelegi subiectul.

Transpuneți-le în formule ale limbajului formal al logicii propoziționale.

(S2.2) Să se arate că pentru orice formulă φ , numărul parantezelor deschise care apar în φ coincide cu numărul parantezelor închise care apar în φ .

(S2.3) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \dim \{0, 1\}$ avem:

- (i) $((x_0 \to x_1) \to x_0) \to x_0 = 1;$
- (ii) $(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1.$

(S2.4) Să se găsească câte un model pentru fiecare din formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

(S2.5) Să se demonstreze că, pentru orice formulă φ ,

- (i) φ este tautologie dacă și numai dacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă dacă și numai dacă $\neg \varphi$ este tautologie.

(S2.6) Arătați că pentru orice φ , ψ , $\chi \in Form$, avem:

(i) $\psi \vDash \varphi \rightarrow \psi$;

- (ii) $(\varphi \to \psi) \land (\psi \to \chi) \vDash \varphi \to \chi$;
- (iii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$;
- (iv) $\varphi \vee (\varphi \wedge \psi) \sim \varphi$;
- (v) $\varphi \wedge \psi \rightarrow \chi \sim (\varphi \rightarrow \chi) \vee (\psi \rightarrow \chi);$
- (vi) $\vDash \neg \varphi \rightarrow (\neg \psi \rightarrow (\psi \leftrightarrow \varphi)).$
- (S2.7) Să se arate că

$$\{v_0, \neg v_0 \lor v_1 \lor v_2\} \vDash (v_3 \to v_2) \lor (\neg v_1 \to v_2)$$

(S2.8) Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$. Să se demonstreze:

- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \vDash \psi$ dacă și numai dacă $\Gamma \vDash \varphi \to \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ dacă și numai dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi$.

(S2.9) (Metoda reducerii la absurd)

Să se arate că pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi) \ \Rightarrow \ \Gamma \vdash \psi.$$

(S2.10) Să se arate că pentru orice formule φ, ψ ,

- (i) $\{\psi, \neg\psi\} \vdash \varphi$;
- (ii) $\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi);$
- (iii) $\vdash \neg \neg \varphi \rightarrow \varphi$;
- (iv) $\vdash \varphi \rightarrow \neg \neg \varphi$.

(S2.11) ("Reciproca" axiomei 3)

Să se arate că pentru orice formule φ, ψ ,

$$\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi).$$

(S2.12) Să se arate că pentru orice formule φ, ψ ,

$$\{\psi,\neg\varphi\}\vdash\neg(\psi\to\varphi).$$