12.
$$f'(x) = 4e^{2x} - 5e^{x} = e^{x}(4e^{x} - 5)$$

Signe e^{x} : positif $e^{x} > 0$ $\rightarrow +oujou(s)$
Signe de $4e^{x} - 5$:

$$4e^{x}-5>0 = 2e^{x} > \frac{5}{4} = 2e^{x} > \ln\left(\frac{5}{4}\right)$$

X	- 00	ln (5/4)		+00
6 _x		+		
he"-5		0	+	
P1	_	φ	+	
f	2	7 - 8		700

$$\lim_{x\to -\infty} f(x) = 0 - 0 + 2 = 2$$

$$f(\ln(\frac{5}{4})) = 2e^{2\ln \frac{5}{14}} - 5e^{-5\frac{1}{16}} + 2 =$$

$$= 2e^{\ln(\frac{5}{4})^{2}} - 5 \times \frac{5}{4} + 2 =$$

$$= 2 \times (\frac{5}{4})^{2} - \frac{25}{4} + 2 =$$

$$= \frac{50}{16} - \frac{25}{4} + 2 = \frac{50 - 100 + 32}{16} = -\frac{18}{16} = -\frac{9}{8}$$