

Experiment No.1: Verification of ohmis Law

Aim: To verify the Ohms daw for given resistive network

Statement: It states that the voltage across the Conductor is divertly proportional to the current flowing through it, provided all physical conditions & temp remains constant.

Apparatus Regulred:

	6	បា	4	w	83	4	S.No.
DAG S	Connecting wixes	Ohm Law Kit	Resistar	Ammeter	Voltmeter	Regulated power	Apparatus Name
20	10000	1	1, 1.5,2.2kg	(0-200)mA	(0-20)V	(0-30)Y	Range
45	-	Total Control	variable	DC	DC	8	Туре
-	Required	10	Required	10	10	20	Quantity
		033					

16 At 1KA Resistance

Ø	ы	4	S.No.
12.13	8.28	4.76	voltage (V)
12.9	8.6	4.8	Current (A)
1KR	1 K J	1KA	Resigiance (chmis)

(ii) At 1.5KA Resistance

	w	2	1	S.No.
	12.12	8.46	4.16	voltage (V)
	# 3	5.5	03.4	current (A)
1	1.5kg	1.5k2	4.5%2	Resistance (ohms)

dii) At 2.2K.2 Resistance

ω	20	4	8. S
12.49	8.22	4.45	voltage (V)
6.0	3.7	2.0	current (A)
2.2ks	2.2K.9	2.2ks	Resistance (ohm's

Page No.02

Procedure:

- * Make the Connections as per circuit Diagram
- * Switch on the power supply to RPS and Apply a voltage (104) and take Reading of voltmeter and Ammeter
- * Adjust the Rheostat in steps and take down the Readings of Ammeter and voltmeter.
- Plot and graph with Along 2-axis and I along Y-Axis
- * The Graph will be straight line which verifies ohmis daw
- * Determine the slope of V-I graph. The reciprocal of the slope gives resistance of the wire.

Model Grouph:

VOLTAGE & CURRENT FOR 15.0.

VOLTAGE & CURRENT FOR 25.2

Calculation for ohmis Law:

(i) Resistance at 1kg

		Town to the same of the same o
$S = \frac{T}{\Lambda} = 4$	V= IxR = 4	I=V=4=4
$R = \frac{V}{I} = 1$	V=IxR = 8	T = V = 8 = 8
R=V = 1	V= IxR= 12	I=V=12=12

(ii) Resistance at 1.5 Kil

$R = \frac{V}{I} = 1.50$	V=IxR =4	$I = \frac{V}{R} = \frac{4}{1.5} = 2.66$
$R = \frac{V = 8}{I} = 1.50$	V=IxR=8	I=V=8 = 5.33
R=¥ £4.50	V=IxR =12	I = V = 12 = 8

allo Resistance at 2.2Kil

223		
$R = \frac{V}{I} = \frac{4}{1.81} = 2.20$ $R = \frac{V}{I} = \frac{8}{3.63}$	V= IxR =1.81x2.2 = 4	$T = \frac{V}{R} = \frac{4}{2.2} = 1.81$
$R = \frac{V}{I} = \frac{8}{3.63} = 2.20$	V=IxR ~3.63 x2.2 =8	I=V=8 R 2.2 = 3.63
=2.20 R=V =12 =2.20 I 5.45	V=IxR =12	I = V = 12 = 6.46 R 2.2

Date: 20 | 09 | 23

Page No. 03

Precoutions:

- * Take Care of connecting the Ammeter and voltmeter
- * Make Sure of proper colour coding of resistors
- Result:

Hence, we proved ohm's daw for a given resistivity network [1k2, 1.5k2, 2.2k2].

Theoritical values of KCL:

w	W	1	S.No.	
15	40	ហ	volte	voltage E
32.1	20.9	44.3	Н	0
14.8	9,95	57.00	H	Current
997	6.7	9.6	I, I2 I3	1
6.9	20.9 9.95 6.7 4.4	2.4	F8	
16.87	THE	6.0	I ₁ = I ₂ +I ₃	

Practical values of KCL:

3	10	4	0. Z)
L			6	
45	10	O	Volte	Voltage E
32.5	21.5 10	77.4	H	
15	10	5.4	I, I2	Cwn
10.3	10 6.9	° ∞	I ₂	ent
	4.6		T ₃	
17.1	11.5	6.3	$I_1=I_2+I_3$	

Date: 27 |09 | 23

Page No. 04

Experiment - 4(B): Verification of Kirchoff's daws

Alm: Verify Kirchoff's current daw and Kirchoff's voltage daw tor agiven circuit

Apparatus Required:

on	100	4	10	w	-	2		4		S.No.	
Bread Board & wires	87 (S) (S) (S)	Voltmeter	00 30	Ammeler		Resistance	C. Herring	Regulated Buser Gundu (0-30) V	11	Apparadus	The second secon
	GP S	(0-30V) MC	11/08/0	(0-30)mA Mc	1.2kg, 1.6kg	2201, 6801		(0-30) V	0	Range	-
Required	26 1	08.00	+	S	Manual In	6		N	0	Quantity	_
	172	10	te	100		Sanga			- Iggue	CYCS	1

Statement:

Kirchoffis current dows The Algebraic sum of the currents meeting

Kirchaffe voltage daw: In any closed Path I mesh sum of all voltages is zero the Algebraic

Theoritical values of KYL:

14.3	6.78	4.68	2,95	14	w
10.22	4.86	3.27	2.10	40	12
4.21	2.0	1.36	0,86	4	4
E1 = V1+V2+	Va	V2	4	Volts (Vs)	S.No.

Practical values of KVL:

	100		T.
O	0	1	S.No.
44	10	4	Volts (VS)
297	2.12	0.85	V _I
4.4	3.18	1.27	V2
68,3	4.66	1.87	V3
13.9	9.96	8.99	E1=V1+V2+V3

* Note down the Corresponding Ammeder Reading * Give the Connections as per circuit Diagram * Repeat the same for different voltages * Grive the Connections as per the circuit Diagram Procedure for KCL: * Repeat the same for different voltages Procedure for KYL: Date: 27/09/23 Set a particular value in RPS Note down All the voltage Reading Get a particular value in RPS Page No.05

Calculations of KYL:

$$I = \frac{V}{R} = \frac{V}{Req} = \frac{4V}{(1+1.5+2.2)\times10^3\Omega}$$

$$I = \frac{4}{4.7 \times 10^3 \Omega}$$
 $\Rightarrow I = 0.851 \times 10^{-3} A \Rightarrow I = 0.851 mA$

$$V_3 = IR_3 = 0.861 \times [N_x^3 2.2 \times [N_3^3] \Rightarrow V_3 = 4.872$$

 $\Rightarrow V = V_1 + V_2 + V_3 = 3.999 V = 4V$

Calculations of KCL:

$$\mathbb{I} = \mathbb{I}_1 + \mathbb{I}_2 + \mathbb{I}_3$$

$$I_1 = \frac{V}{R_1}$$
, $I_2 = \frac{V}{V}$, $I_3 = \frac{V}{R_3}$

$$\frac{4}{Req} = \frac{4}{R_1} + \frac{4}{R_2} = \frac{R_2 \cdot R_1}{R_1 + R_2} = \frac{1.5 \times 10^6}{2.5 \times 10^3} \Rightarrow \frac{0.6 \times 10^3 \times 2.2 \times 10^3}{2.5 \times 10^3} = 4713$$

$$I = \frac{V}{Req} = \frac{10}{471} = 0.212A \Rightarrow \{I = 21.2mA\}$$

$$Req 47i$$
 $-0.2127 - 0.4 = 2.2mH$
 $I_1 = V = 10 = 10mA$, $I_2 = V = 10 = 6.66mA$, $I_3 = V = 4.54mA$
 $R_1 = 1 \times 10^3 = 10mA$, $R_2 = 1.5 \times 10^3 = 6.66mA$, $R_3 = 4.54mA$

Date: 27/09/23

Page No. 06

Precoutions

* Check for proper connections before switching ON

* Make Sure of proper colour coding of resistors the terminal of the resistance should be connected.

Regult: 1 for KCL}

are proved by Applications We can east that KCL values are theoritically and practically

Result for KYL

are proved by Applications We can say that KVL values are theoritically and Practically

Experiment -02: Verification of Superposition Theorem

Experiment -02 : Verification of Superposition Theorem

Aim's To Verify Superposition theorem theoritically & Practically

Statement: Which States that in any linear network containing 2 or more sources, the response in any element is equal to algebraic sum of the responses caused by individual sources acting alone with other sources are reduced to zero

Apparatus Required:

	OI	4	co e	8	4	5.No.	
	Connecting wires	Resistors	5Ptheorem Kit	RP6	Ammeler	Eguipment	
23 KM - 27 %0		82,100,41,564	To Stor	(0-30)V	(0-200)mA	Range	
100	,	Fixed	0.00	Mc	MC	Type	-
The state of the s	As Required	Each 01	70	02	Q.	Quantity	

0	5 9		
တ	ц	4	S.No.
0	12	12	Voltage (Vi)
oı	0	OT 4014	Voltage (VI) Voltage (V2)
16 (I ")	C, 10 ±±	(I) 8P	Theoritical
47.2(1")	77.1(1")	93.8(1)	Practical

Theoritical Calculations:

H

$$V \Rightarrow R = 0 \Rightarrow low$$

$$I \Rightarrow R = \infty \Rightarrow very high$$

11+

121

718

(H-12) 100 J

I = opp res x total current

C

3

156 and 47 in Parallel
$$\Rightarrow$$
 $\frac{156 \times 17}{156 + 47} = 3612 \, \Omega$, 82836.2 are in series Req = 118.12 \Rightarrow $V_1 = 12V$
 $I_1 = \frac{V}{RCa} = \frac{12}{118.12} = 0.102A \Rightarrow \{I^1 = 77mA\}$

Rea

118.12

* Note down the Ammeter Reading as 1111) Terminal of Resistance should be connected * Apply 12V in RPS 1 and Take Ammeter as I! * Apply 12 v in RPS 1 v and * Connect the circuit as shown in Figure frocedure: (1) X A Connect the circuit Diagram as shown in Fig. 2 50 * According to super position theorem, I = I'+I" * Apply 57 in RPS 2 and Take Ammeteras I" Precautions: Date: 04 10 23 Connect the circuit Diagram as shown in Fig. 3 Check for proper connection before switching on the supply Make sure of proper colour coding of resistors 51 m RP52 Page No. 08

Reg = (82//47)+1562

$$I_2 = \frac{V_2}{Req} = \frac{5}{29.87}$$

Result: De can say that the super position theorem is theoritically and practically proved.

Date: 41/10/28 Page No.10

expiriment -3(A): Verification of the vening theorem

Alm: To Verify Thevening theorem theoritically and Practically

energy sources eliminated. (but not thier internal Resistances voltage source Vth in series with Resistance Rth. the value of and Rth & Resistance measured between terminals with all 4th is open circuit voltage between the terminals of the network Statement: Any two terminal Active Linear network containing explained and replaced with equivalent circuit consisting of energy sources (generators) and resistance can be

Apparatus Reguired

							ş
0	on	4	O)	23	1	o.No.	months consisted
Connecting wires	Resishors	T. Theorem Kit	R.P.S	Vollmeter	Ammeter	Eguipment	Aure
1	82,47,100A	-8.58	(0-30) V	(0-20) V	(0_200)mA	Range	
1	Fixed	1,00	DC	2,	R	Турс	
Required	04	01	0.1	10	04	Quantity	
	Connecting wires	Resistors 82,47,000 Fixed	T. Theorem Kit Connecting wires	R.P.S (0-30) V DC T. Theorem Kit — — — Resishors 82,47,1009 Fixed Connecting wires — —	Volkmeter (0-20) V DC R.P.S (0-30) V DC T. Theorem Kit — — — Resistors 82,47,100% Fixed	Anneter (0-200) M DC Voltmeter (0-20) V DC, R.P.S (0-30) V DC T. Theorem Kit — — — — — — — — — — — — — — — — — — —	Equipment Range Type Ammeter (0-200) MA DC Valtmeter (0-20) V DC R.P.S (0-30) V DC R.P.S (0-30) V DC Connecting wires 82,47,000 P. Fixed

Table - 1: Original Circuit

43	The Contract of the	G.No. Ap
12.1	6	plied voltage (V)
52.2	25.3	Ammeter Reading IL (mA)

Table - 2: To find Vth

22	4	5.8
12.1	6	Applied voltage (V)
52.2	25.8	IL (ma)
7.86	18.69	Vth
100	100	Rth
4	4	RL

Table - 3: To find Rth

83	40	S. 4.
7.86	3.87	V+h
52,4	25.3	(I) mA
100	100	RHA
4	1	RL

(11) Terminal of Resistance should be properly connected 111 Make sure of proper colour coding of resistars * Connect the Series as shown in Figure 1 * Note down the Reading of Ammeter (I) as Vth * Switch ON the supply and Apply 6V Precoutions : * Now connect the thevenin's equivalent as Fig 4 and Note * Note down the Reading of Ammeter (I) & calculate Rth (Rth = V/I) * Connect the circuit as Fig 3 and Apply 6V * Connect the circuit as Fig 2 and Apply SV * Note down the Reading of Ammeter as I is Check for proper connections before switching and the supply Procedure : Date: 11 10 23 down the Reading of Ammeter as II in Series Page No. 11

Theoritical Calculations:

is Remove 1002 Resistor and find Vth
between terminals A and B
No current flowing through 472 Resistor
Vth = VAB is thevenin's voltage between
terminals then Reg = 150+82 = 232.2

Current, I = V = G = 0.026AReq. 232

Voltage Across 150.0. = IxR $\Rightarrow 0.026 \times 150 = 3.9V \Rightarrow Vth$

1) To Find Rth

Reducing 6V voltage to zero, s.e short

chruloting space terminals

822 & 15052 in parallel, then in series

with 442 is Rth = 82×150

147

⇒ <u>12300</u> + 47 = 100 л

Therenin's Equivalent circuit and Reconnect Load Resistance

Lood current,
$$IL = V_{th}$$

$$R_{th} + R_{L}$$

$$= 3.9 = 0.0196 A$$

$$100+100$$

\$ IL = 0.0196A 100 19.5 MA

		10 mm m m m m m m m m m m m m m m m m m		The state of the s	Result: We can say that the thevenin's theorem and practically proved by Applications
-	19 17 17 17 17 17 17 17 17 17 17 17 17 17				Page No. 1 nîn's theorem is theriotically Applications

Experiment -3(B): Verification of Norton's Theorem

Alm: To Verify Norton's theorem theoritically and Practically

Statement: Any 2 terminal linear Active Network Containing energy source (generators) and resistant can be replaced with equivalent circuit consisting of current source In in parallel with Resistance RN. The value of IN is short circuit between terminals of Network and RN is the Resistance measured between terminals with all energy sources eliminated but not thier internal Resistances?

Apparatus Required:

-			T			
0	o)	4	w	22	12	S.No.
Connecting wixes	Realstors	Norton's theorem	R.P.5	Voltmeter	Ammeter	Eguipment
1	82,47,100	1	V(06-0)	(0.20) V	(0-200)mA	Range
1	Fixed	1	MC	MC	Mc	Type
As Required	40	100	40	04	04	Quantity

Table 4: To Find RN

	3	
23	1	S.No.
10.6	oī	Applied voltage (VIII)
30.5	14.6	IL (ma)
67.6	32	IN (MA)
120	120	RL
100	100	RZ

Table - 2: Norton's Equivalent Circuit

es	۲	S.No.
67.6	32	IN (MA)
400	100	Ru (a)
30.2	14.6	IL (mA)
120	120	Rr

* Now Connect Norton's Equivalent circuit as shown in figure

and Note down reading of Ammater as II

* According to Nortans theorem, II = IL

Precautions:

in Take pare to connect Ammeter and voltmeter with thier

Correct palarity

Recordure:

Recordure:

* Connect the circuit as shown in Fig. 1

* Note down the Reading of Ammeter as In

* Note down the Ammeter Reading as In

* Note down the Ammeter Reading as In

* Note down the Reading of Ammeter as I and Calculate

RN where (RN = VI)

Theoritical Calculations: 822 (b) To Find In: Discomment the load WM

(b) To Find In: Disconnect the Load GV
Resistance and place a short Across
the terminals A & B. Find In through short.

4728 1500 are in parallel in series with 8212

15002

> Reg = 47x150 +82

825 \$25

45

1502

II= V = 6 = 0.509A

Apply CD Rule at point x then North no current be
IN = II. 150 = 0.509 x 150 = 0.0387 > [IN = 38.7mA]

in To Find RN: Reducing voltage source to zero

3

-WW-

Northis equivalent circuit and Reconnect the Load Resistance

Load current, IL = IN. 100

= 38.7× 10 × 100

> IL = 0.0166 A (or) 15.5mA

00

0 Ħ (in Make sure of Proper colour coding of Resistors in The Terminal of resistance should be properly connected to it Result: Practically proved by its Applications We can say that the Norton's theorem is theoritically and Date: 48 40 28 Page No. 15

Date: 01 | 11 | 23 Experiment - 04: Determination of self mutual Inductances and Coefficient of coupling

Page No. 16

Aim: To Determine Self inductance and Mutual inductance and coefficient of coupling of mutually coupled circuit

Apparatus Required:

	S.No.	Equipment	Range	Type	Quantity
	1	Ammeter	0-20A	MI	01
	2	Voltmeter	0-300V	MI	01
-	3	Single Phase transformer	1000	2.15.	01
	4	Single Phase	0-300V	AC	01
	5	Connecting wires	711-	-	As Required

Theory: Self-Inductance:

Coefficient of self induction or self inductance (1) is ability of coil to induce emf in it due to change in its own current measured in Henry (H)

Self inductance of mil A, LI = Nio Ni2 II [/µopra]

Selfindudance of coil A, 12 = N202 N22 [1/40 ura]

Theoritical Calculations;

For Clircutt - I.:

Neglecting Resistance, then
$$wh = \frac{V_1}{I_1} = \frac{224}{0.13} \Rightarrow 1728.07$$

Self inductance of HV coil,
$$L_1 = \frac{V_1}{\omega L_1} = \frac{224}{314.16 \times 0.13} = 5.48H$$

Mutual Inductance $Miz = \frac{V_2}{wL_1} = 2.744$

For circuit -2:

Input Impedance,
$$Z2 = R2 + \overline{3}\omega 12 = \frac{V_1}{I_1} = \frac{115}{0.29} = 396.55$$

$$M = \frac{M_2 + M_2}{2} = \frac{2.74 + 2.51}{2} = 2.625$$

$$\Rightarrow \frac{2.625}{\sqrt{6.48 \times 1.26}} \Rightarrow \{K = 0.9989\}$$

Page No. 17

Mutual Inductance: May be defined as ability of one cail or circuit or inductance an ent is nearby cail

by induction when current flowing in 1st coil is changed the Action is also Reciprocal. the change in current flowing through and coil will also induce an emf in 1st coil.

Coefficient of Mutual inductance > M = N2002 = KNIN2I = KNIN2

II [1/40pra]I [1/40pra]

Coefficient of Coupling: When 2 coils are placed near each other.

with other coil, K being less than unity where K= M

Procedure for circuit -1:

- (4) Connect the circuit as shown in Fig. 1
- (2) Keep the variac output valtage in minimum position
- (3) Switch ON the supply
- (4) Vary the variac till rated voltage is obtained on HV side
- (5) Note down Readings of all meters

Procedure for Circuit -2:

- (4) Connect the circuit Chown in Fig. 2
- (2) Keep the variac output voltage in minimum position
- (3) switch ON the supply
- (4) Vary the variac till Rated is obtained on LV side
- (5) Note down the Readings of all meters

Self Inductores of HV coil

$$l_1 = \frac{W}{L_1} \Rightarrow Wl_1 = \frac{V_1}{L_1} = \frac{224}{0.13} = 1723.07$$

314.16 x 0.13 >0.09, Mutual industrance > Mrs = 1/2 = 112 =0.046

Mutual inductance > Mr = V2 34.16×0.29 = 229 = 208.68

Observation Table:

S.	Ch	0
Chault-I	Chrowit I	Cfrcult
0.29	0.18	I. (A)
116	224	8
229	112.1	V2 (V)
0.294	0.134	seffinductance (1) Mutual
0.577	0.654	Musteral indudance

Page No. 18

Precautions:

- (4) Connections should be made properly
- 8 Always Keep variac output voltage in minimum position
- (3) Show connections to lab faculty
- (4) Note down the Readings without parallex error

Result:

- * Self Inductance HV coil, L1 = 0.13H
- * Self Inductance Ly coil, 12 = 1.26
- * Mutual Inductonce / M12 = 2.51
- * Mutrual Inductance, M21 = 0.0625 H
- * Coefficient of Coupling K = 0.9989
- coupling of mutually coupled circuit is calculated Self inductance and mutual inductance and coefficient of

Circuit Diagram For Geries R-1 circuit

Circuit Diagram For Series R-C circuit

Experiment -05: Sinusoldal Steady States Response of

Ri and Ri Circuits

Ri and Ri Circuits

Aims Calculating the impedance and current of RL RC and RLC series circuits.

Approxime Required:

	7	6	on	4	O)	и	4	S.No.	um
0	Cannecking wires	Single phase variac	Capacitar	Inductor	Resistar	Ammeter	Voltmeter	Name of Apparatus	dem when
	A Comment	AC		200	MM	MH	MI	Type	
	CHARGO	3KVA, 0-260V	4µF	160mA, 5A	100shm, 5A	0-5A.0-2A	0-300V	Range	-
,	As Required	4	4	4	1	4	w	Quantity	1
									1

Theory: Passive components in AC circuits behaves very differently than with connected in DC circuit due to influence of frequency.

** In Pure resistive circuit, the current is in phase with the voltage &=0, cos &=1 (unity)

Theoritical Calculations of R-1 circuit

 $Z = \frac{V_{\odot} \Omega}{I} \Rightarrow \frac{9.7}{0.14} \Rightarrow 69.28 \Omega$

エルシ 3.4 ⇒ 24.28 A

Kr = Tr & 0.19 \$ 63.5₹1

P.f cost = R = 24.28 69.28 ⇒ 0.350

P=VI0050 > 9.7×0.14×0.35 >{P=0.470}

Theoritical Calculations of R.C. cfront

T 0.02 0.17 = 58.82.0

= 3.9 8.17 = 22.942

Xc = VE 0 = 89 0.17 = 62,360

 $P.f.\cos \varphi = \frac{R}{2} = \frac{22.94}{58.82} \Rightarrow 0.390$

P= VICOS & =10.0 x0.17 x0.890 >1P =0.663 w}

Page No 20

- * In Pure Inductive circuit, the current logs the Applied valtage by 90 degrees, & = 90 and cas & =0 lagging
- * In Pure Capacitar circuit, the current leads the Applied voltage by 90 degrees Q = 90 and cos & = 0 Leading
- * In series RI circuit, the current lags applied voltage by angle & ocacap and 1>cosaxo Lagging
- * In Series Richauit, the current leads Applied valtage by angle a. 028290 and 1> coss >0 leading
- * In Benes RIC, the current either leads or lags or lags the witige by an angle of Ocacgo lag or lead, 1>0000 >0 lag or Lead

Impedance of series R-Leircuit, X=R+Jus

Impedance of series R-Ccircuit Z=R+JD

Impedance of Series RIC circuit, Z=R+II

Impedance

4	co -	ĸ	4	20 8
25.3	20.0	16.6	4.7	Ne (x)
12.6	9.2	6.3	3.4	CHI CH TA CA) AM
20.7	16.8	13.1	3	KF (A)
0.53	0.39	0.28	0.14	H(A)
47.73	1,19	66.71	69.28	Z= 1/1/z
23.77	23,58	22.6	24.28	R= " XL= Y/I P.F
23.77	28,68	46.78	63.67	X1=1/1
0.49	19.81	0.40	0.36	P.F
6,57	154.4	4.	0.44	P.W

		_		_
4	w	25	44	5. No.
25.7	20.1	16.0	10.0	S.No. VS(W) VR(W) Vc(W)
10.1	7.9	2.0	20	VR(V)
24.2	18.00	13.1	6.9	Vc(V)
0.4	0.32	0.24	71.0	I(A)
62.6	62.8	62.6	57	Z=15/1 R=18/1 Xc=1/1 P.F
24.63	24.68	24.58	27.92	R=48/1
24.63 69.02 0.39	58.76 0.39 2.60	54.68	52.3	Xc= 1/5
	0.33	0.39	52.31 0.39	P.F
4.10	2.50	1.40	0.66	P.W

VLWD

Page No 21

Precautions :

(4) Avoid Loose Connections

(2) Note down the Readings carefully

Result:

We can say that the state of all R1 and Rc series circust values are sinusolidally steady.

RL-Scries Circust

RC-Series Circust

RC-Series Circust

RC-Series Circust

RC-Series Circust

RC-Series Circust

RC-Series Circust

RC-C

RC-Series Circust

RC-C

Experiment -06: Measurement of Phase voltage / Current line voltage / current and Power in a balanced three Phase circuit connected in star and Delta

Alm: To Measure the Active Power for Y- a connected balanced loads

Apparatus Required: 6. No. w 1 4 SI 4 Connecting wires Digital voltmeter Equipment R-load Banks Modtmeter Ammeter (0-600 V, 5A) (Y-D connect) (0-10A) MI IM(NOOD-0) Range Quantity 01 201 2 04

In Balanced Connected Loads:

Procedure :

(4) Make the Connections as per circuit Diagram

(2) Connect the supply to Y- A Connected load through all meters as per circuit Diagram

Tabular Column:

R-Connection

		_		-	-
4	w	23	12	5. No.	
		Contract of the Contract of th	395.2	Vol.(V)	Designation of the last of the
		Come	1.53	Н	0000
THEOLINE		- Opto	0.5	obe	-M
0		120	500	obs Act	TO SHE
The state of		The No.	0.5	obs	W2
100		THE REAL PROPERTY.	500	obs Act	2

A-Connection

4	w	2	12	S.No.	
			392.8	W) (W)	-
			4.57	+	1
		1	1.6	060	M
			1600	Act	10
		Date under	16	obs	W2
		1	1600	Act	12

Calculations: Active Rower (Y-connection) Star Load

W1 = 0.5x100 = 500

W2 = 0.5x100 = 500

Active Power in (A-connection) Delta load W1 = 1.6×100 = 1600

W2 = 1.6×100 = 1600

Date: 15/11/28

Page No. 23

(3) Switch ON the Main supply (MCB)

(4) Apply voltage using 3-& dimmer Y (Star) upto 4004

(5) Take the Readings of waltmeter (W1 and W2)

(6) Repeat step and for A Connection Also

(7) Take the Readings of Wi and W2

(8) Switch OFF the A Connected Series

Precautions :

(1) Avoid doose Contacts

(2) Set the dimmer position to before switching on

Result:

Hence the Active power for Y-A Loads are verified

GI	4	ω	2	4	5. No.	Appar	GI	4	w	65	12	0. No.	Transf	Am:	Ехрет	Date
Connecting wires	-	Wattmeter		Voltmeter	to. Equipment	Apparatus Required:	H Side Current	Hy (in voltes)	Ly (Side Current)	dy (in volta)	Transformer Rating	o. Specifications	Transformer Specifications:	Alm: To Obtain the Regulation and efficiency of a single phase trans- former by conducting oc and so test.	Experiment - O.F.: OC and SC Test on Single Phase Transfermen	Date: 13 12 23
	Dynama type	Dynamo type	N:1	M:1	Type		ent		ent)	- Burning	gnate	8		g oc and sc	SC Test on S	
1	Dynamitype (0+60)VVPF	(0-130V) LPF	(0-2A)(0-10A)	(0-150Y) (0-60Y)	Range		4.6A	440Y	8.7A	230V	2K.R. A	Rading	of the same	History of a si	ingle Phase Trans	
Required	2	2	2	2	Quantity				200	S. P. Calor	THE REAL PROPERTY.			agle phase trans	texmer	Page No. 24

Calculations:

(4) Open Clicult test Loc test]:

225	16.8	7.9	446.3	0.28	_
Vo	Actual	obs	volta	Amps	
Seco	ower (WoC)	Power	Open Chaust	Open Circuit	6.No.

প্ত Short Circuit test [SC test] :

8	25	8.3	0.214	12
Actual	obs Ac	volts	Amps	
3	Power (Wac)	Primary Voltage	Primary Current	S.No.

Page No. 25

Procedure for Chault - 1 10 pen Chault test !

(4) Connections are made as per circuit Diagram

(2) By Varying single phase variac, the input valtage to be applied

on low voltage side of transformer.

(3) Now take down Readings of Ammeter, voltmeter and wattmeter

Procedure For Circuit - 31 Short Circuit test?

(4) Connections are made as per circuit diagram

(3) By Varying single phase variac, the rated current is applied to high voltage side of transformer.

(3) Now take down Readings of voltmeter and Ammeter

Precoutions:

(4) Avoid Loose Connections

(2) Avoid Connecting of meters directly to machines

(3) Switch OFF the supply before making Connections

(4) Do not touch the Base Conductors

(5) Avoid Parallal enors while making observations

Result: Hence, I have verified that regulation and efficiency of single phase transformer by conducting the cand sc test

	(2) Slou	(1) Con	Procedure:	on	4	w	8	4	S.No.	Apparatus:	Aim:	Experio	Date : 2
	oly Apply the	(1) Connect the circuit as	wre:	Wathmeter	Ammeter	Voltmeter	Auto-transform	Transformer	Item		to dood the	nent-08 : 5	Date: 20 12 28
3 3	rated volt		40	Analog	Analog	Analog		230//1151	Type		rimary and	and a secon	
242	(2) Slowly Apply the rated voltage on primary using	per circuit diagram	On the last	0-3004,0-20	0-10A, 0-20A	0-800V	0-230/274	500 VA	Range	100	Aim: To dood the transformer and measure voltage, current and power in primary and secondary sides	Experiment - 08: Scarding of transformers: Measurement of the	
	my using the			ANo.	1 No.	1.16.	INo.	1No,	Quantity		e voltage,	Measurene s.current en	
	0			50-70-7	1000	oof Ko	25000	E 24 21	Jp (3)	Total Land	current	THE PERSONAL PROPERTY AND	Page No. 20

Tabulation For Load Resistance on Single Phase Transformer

	-	L. 1	I	Secondonicument	Wath	neter	Input	output	Effectioncy	Post
6.No.	Primary volto	Amps	Secondary vollage Volta	Amps	obs	Act	Watto	Watts	MP/IPxI00	2 8
1	229	0	114.8	0	0	0			9 5 3	在 部
2	226	1.27	112	2.36	149	298			D. Towns	at to
3	226.3	2.40	109.3	4.63	270	540	1		A THOMAS	Stantal Stantal

	Result: We can say that measurement of primary and the secondary powers are verified.	Precoutions: (4) Apply voltage Using Auto transformer slowly	(5) Verify the transformation ratio with voltage & current values	(3) Note down the primary voltage, current and Bower.	Date: 20 12 28 Plage No 27
--	---	---	---	---	-----------------------------