数学物理方法

Mathematical Methods in Physics

YLJ a.k.a. Natyiano

2022年3月3日

目录

第一	一章	Complex Numbers	1
	1.1	定义以及运算	1
	1.2	复数的几何表示	2
	1.3	复数数列	3
	1.4	欧拉公式以及复数的指数函数形式	3
第二	二章	Complex Functions	5
	2.1	复变函数的概念	5
	2.2	单值性与黎曼面	6
	2.3	导数及解析函数的定义	7
	2.4	柯西-黎曼条件	8
	2.5	解析函数的特性	9
	2.6	由部分确定整个解析函数	10
	2.7	解析函数的积分特性	11
	2.8	柯西积分公式	12
	2.9	最大模定理	13
	2.10	复变函数在其解析圆域上的泰勒级数展开	13
	2.11	利用泰勒级数讨论最大模定理	14
	2.12	解析函数的零点及其孤立性	15
	2 13	解析环域上的洛朗级数展开	16

第一章 Complex Numbers

约定: 我们认为 $z \in \mathbb{C}$, $x, y \in \mathbb{R}$

1.1 定义以及运算

定义 1.1.1.

$$i = \sqrt{-1}$$

称之为虚数单位。通过虚数单位和『实数单位 (1)』的线性组合,可以得到任意复数的表示方式:

$$z = x + iy, \ z \in \mathbb{C}, x \& y \in \mathbb{R}$$

x,y 分别称为实部和虚部,记为:

$$x = \text{Re } z$$

$$y = \operatorname{Im} z$$

定义 1.1.2.

$$z^* = x - yi$$

称为 z 的共轭复数。容易得到,

$$z \cdot z^* = x^2 + y^2 = |z|^2 \ge 0$$

$$x = \operatorname{Re} z = \frac{z + z^*}{2}$$

$$y = \operatorname{Im} z = \frac{z - z^*}{2i}$$

注意到复数的运算与实数的运算存在许许多多的不同之处,例如

例 1.1.3.

$$\lim_{y \to 0} \frac{1}{x + yi} \neq \frac{1}{x}$$

$$\lim_{y \to 0} \frac{1}{x + yi} = \lim_{y \to 0} \frac{x - yi}{x^2 + y^2} \to$$

$$\operatorname{Re} z = \begin{cases} 0, & x = 0 \\ \frac{1}{x}, & x \neq 0 \end{cases} \quad \operatorname{Im} z = -i\pi\delta(x)$$

1.2 复数的几何表示

引入复平面可以容易地表示复数的几何形式: 即 z = x + yi 在 x 轴 (实轴) 上的投影为 x, 在 y 轴 (虚轴) 上的投影为 y。那么,对应向量的 (主) 辐角 θ 以及模 ρ 便定义为:

定义 1.2.1.

$$\theta = \text{Arg } z; \ \rho = \sqrt{x^2 + y^2}$$

主辐角记为 $\operatorname{Arg} z \in [-\pi, \pi] = \arctan \frac{y}{x}$,辐角记为 $\operatorname{arg} z$ 那么得到:

引理 1.2.2.

$$z = \rho(\cos\theta + i\sin\theta)$$

注意到:

$$\frac{1}{z} = \frac{1}{\rho(\cos\theta + i\sin\theta)} = \frac{1}{\rho}(\cos\theta - i\sin\theta)$$

引理 1.2.3. 假设 $1/z = n \in \mathbb{C}$,

$$\rho_n = 1/\rho_z$$
; arg $z = -\arg n$

同样

引理 1.2.4. 假设

$$z = \prod_{i=1}^{n} z_i \to \rho_z = \prod_{i=1}^{n} \rho_{z_i}; \quad \arg z = \sum_{i=1}^{n} \arg z_i$$

$$z_i \in \mathbb{C}$$

定理 1.2.5. de Moivre's 定理:

$$z_1 = \rho_1(\cos\theta_1 + i\sin\theta_1) \quad z_2 = \rho_2(\cos\theta_2 + i\sin\theta_2)$$

$$\Rightarrow$$

$$z_1 \cdot z_2 = \rho_1\rho_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$$

结合1.2.3和1.2.4, 我们可以得到任意个复数的乘法除法公式:

推论 1.2.6.

$$z = \frac{\prod_{i=1}^{n} a_i \in \mathbb{C}}{\prod_{i=1}^{n} b_i \in \mathbb{C}} :\Longrightarrow \rho_z = \frac{\prod_{i=1}^{n} \rho_{a_i}}{\prod_{i=1}^{n} \rho_{b_i}} \quad \text{arg } z = \sum_{i=1}^{n} \text{arg } a_i - \sum_{i=1}^{n} \text{arg } b_i$$

1.3 复数数列

形式如下的序列称为复数数列

$$z_n = x_n + iy_n, \quad n = 1, 2, 3, 4, \dots$$

 z_n 收敛 $\Leftrightarrow x_n, y_n$ 收敛

1.4 欧拉公式以及复数的指数函数形式

定理 1.4.1. 欧拉公式:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

证明. 由 Taylor-Sereis

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

得到

$$e^{i\theta} = \sum_{n=0}^{\infty} \frac{i^n \theta^n}{n!} = \left[1 - \frac{\theta^2}{2} + \frac{\theta^4}{4!} + \dots\right] + i\left[\theta - \frac{\theta^3}{3!} + \dots\right]$$

考虑到 $\cos \theta$ 和 $\sin \theta$ 的 Taylor-Series, 得到:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

显然如上的证明并不是一个严格的证明,因为我们没有证明如上的展开适用于复数域,以及在交换次序时没有事先证明它绝对收敛。结合1.2.2得到

$$z = \rho e^{i\theta}$$

称为复数的指数函数形式。

例 1.4.2. 计算无穷级数: $\cos \theta + \cos 2\theta + \cos 3\theta + \dots$

第一章 COMPLEX NUMBERS

4

证明. 原式等价于

Re
$$[e^{i\theta} + e^{i2\theta} + e^{i3\theta} + \dots]$$

 $e^{i\theta} + e^{i2\theta} + e^{i3\theta} + \dots$
 $= \lim_{n \to \infty} \frac{e^{i\theta} - e^{i(n+1)\theta}}{1 - e^{i\theta}}$

第二章 Complex Functions

2.1 复变函数的概念

定义 2.1.1. 复变函数是复数区域到复数区域的映射。

$$f: \mathbb{C} \to \mathbb{C}$$

$$f(z) = u(x,y) + iv(x,y)$$
 $z = x + iy$ $x, y \in \mathbb{R}$

与实变函数不同,区域与区间是有显著差异的。

定义 2.1.2. 如果复平面上的点集 D 满足以下条件:

- 1. 开集性: 不包含边界。 $\forall z_0 \in D$, $\exists \epsilon > 0$ s.t. $\{z \mid |z z_0| < \epsilon\} \subset D$
- 2. 连通性:任意两点之间可以用区域内的线连通。

那么点集 D 称为 (开) 区域。闭区域

$$\overline{D} = D + \partial D$$

 ∂D 是 D 区域的边界。边界具有方向,其正方向定义为使得区域位于运动方向的左手侧的方向。

定义 2.1.3. 双曲函数定义为:

$$\begin{split} \sinh(z) &= \frac{e^z - e^{-z}}{2} & \cosh(z) &= \frac{e^z + e^{-z}}{2} & \tanh(z) &= \frac{\sinh(z)}{\cosh(z)} \\ \coth(z) &= \frac{\cosh(z)}{\sinh(z)} & \mathrm{sech}(z) &= \frac{1}{\cosh(z)} & \mathrm{csch}(z) &= \frac{1}{\sinh(z)} \end{split}$$

类比 $\cos z, \sin z$ 可以得到: 双曲函数的周期性:

 $\sinh(z) = \sinh(z + i2n\pi) \quad \cosh(z) = \cosh(z + i2n\pi) \quad \tanh(z) = \tanh(z + in\pi) \quad n \in \mathbb{Z}$

定义 2.1.4. 函数 $f^{-1}(z)$ 称为函数 f(z) 的逆函数, 如果:

$$f^{-1}(f(z)) = z$$

单值性与黎曼面 2.2

注意函数的多值性:

定义域
$$G$$
 $z=x+\mathrm{i}y$ 值域 W $w=f(z)=u(x,y)+\mathrm{i}v(x,y)$

例 2.2.1. 根式函数: $w = \sqrt[n]{z-a}$ 。令 $z-a=re^{i\theta}$ 得到 w 有 n 个根:

$$w_1 = \sqrt[n]{r}e^{\theta/n}$$
 $w_2 = \sqrt[n]{r}e^{\theta/n + 2\pi/n}$... $w_n = \sqrt[n]{r}e^{\theta/n + 2(n-1)\pi/n}$

辐角的多值性

例 2.2.2. 对数函数:

$$w = \ln z = \ln |z| + i(\theta \pm 2n\pi)$$

模的多值性

反三角函数:

$$\arcsin(z) = \frac{1}{i} \ln \left(iz + \sqrt{1 - z^2} \right)$$
$$\arccos(z) = \frac{1}{i} \ln \left(z + \sqrt{z^2 - 1} \right)$$
$$\arctan(z) = \frac{1}{2i} \ln \frac{1 + iz}{1 - iz}$$

例 2.2.3. 以 $\arcsin z$ 为例:

$$\sin(w) = \frac{e^{iw} - e^{-iw}}{2i} = z$$

Multiply e^{iw} for both sides, we have

$$(e^{iw})^2 - 2iz(e^{iw}) - 1 = 0$$

$$e^{iw} = \frac{2iz \pm \sqrt{4 - 4z^2}}{2} = iz + \sqrt{1 - z^2}$$

$$\Rightarrow w = \frac{1}{i}\ln\left(iz + \sqrt{1 - z^2}\right)$$

复合函数多值性的判断:

例 2.2.4. $\sin \sqrt{z}$ 是多值函数 (两个值), 而 $\cos \sqrt{z}$ 是单值函数。

定义 2.2.5. 当自变量 z 围绕某点 z_0 旋转一圈 (辐角增加 2π) 之后,若得到的新的函数与原函数不相等,则 z_0 称为一个支点。

例如:

例 2.2.6. $w = \sqrt{z}$:

$$z' = z \cdot e^{2\pi i} \rightarrow w' = \sqrt{z} \cdot e^{\pi i} = -\sqrt{z} \neq w$$

所以 $z_1 = 0$, $z_2 = \infty$ 是 w 的两个支点。

2.3 导数及解析函数的定义

定义 2.3.1. f(z) 在 z_0 以及其邻域上有定义,且沿任何路径 $z \to z_0$ 时均有

$$\lim_{z \to z_0} f(z) = f(z_0)$$

则 f(z) 在 z_0 上连续。

定义 2.3.2. 若 f(z) 在其定义域上处处连续,则称其为连续函数。

定义 2.3.3. 若 f(z) 在其 z_0 上连续, 且沿任何路径 $\Delta z \to 0$

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

存在且唯一,则称 f(z) 在 z_0 可导。

定义 2.3.4. 若 f(z) 在 z_0 及其邻域各点均可导,则称为在 z_0 解析。

定义 2.3.5. 若 f(z) 在域 D 上处处解析,则称为 D 上的解析函数。

2.4 柯西-黎曼条件

若 f(z) = u(x,y) + iv(x,y) 其中 u,v 均为二元实函数,那么 f(z) 可导的必要条件之一为柯西-黎曼条件:

定义 2.4.1. Cauchy-Riemann Condition:

$$\begin{cases} \frac{\partial u(x,y)}{\partial x} = \frac{\partial v(x,y)}{\partial y} \\ \frac{\partial v(x,y)}{\partial x} = -\frac{\partial u(x,y)}{\partial y} \end{cases}$$

极坐标的柯西黎曼条件:

$$z = re^{i\theta} \Rightarrow \Delta z = \frac{\partial z}{\partial r} \Delta r + \frac{\partial z}{\partial \theta} \Delta \theta = e^{i\theta} \Delta r + ire^{i\theta} \Delta \theta$$

(1) Along r direction $(\Delta \theta = 0)$

$$\lim_{\Delta r \to 0} \frac{\Delta u + \mathrm{i} \Delta v}{\Delta r e^{\mathrm{i}\theta}} = \frac{1}{e^{\mathrm{i}\theta}} \left(\frac{\partial u}{\partial r} + \mathrm{i} \frac{\partial v}{\partial r} \right)$$

(2) Along θ direction ($\Delta r = 0$)

$$\begin{split} \lim_{\Delta\theta\to 0} \frac{\Delta u + \mathrm{i}\Delta v}{r\Delta\theta \mathrm{i}\mathrm{e}^{\mathrm{i}\theta}} &= \frac{1}{r\mathrm{i}e^{\mathrm{i}\theta}} \left(\frac{\partial u}{\partial\theta} + \mathrm{i}\frac{\partial v}{\partial\theta} \right) = \frac{1}{e^{\mathrm{i}\theta}} \left(\frac{-\mathrm{i}}{r}\frac{\partial u}{\partial\theta} + \frac{1}{r}\frac{\partial v}{\partial\theta} \right) \\ \Rightarrow &\begin{cases} \frac{\partial u}{\partial r} &= \frac{1}{r}\frac{\partial v}{\partial\theta} \\ \frac{\partial v}{\partial r} &= -\frac{1}{r}\frac{\partial u}{\partial\theta} \end{cases} \end{split}$$

推论 2.4.2. f(z) 可导的充分必要条件:

- 1. 函数的实部和虚部均为二元可微实函数
- 2. 满足柯西黎曼条件。

证明. 假设 f(z) = u(x,y) + iv(x,y), 由条件 1 得:

$$\Delta u = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$
$$\Delta v = \frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + \epsilon_3 \Delta x + \epsilon_4 \Delta y$$
$$\lim_{\Delta x \to 0, \Delta y \to 0} \epsilon_i = 0 \quad i = 1, 2, 3, 4$$

$$\begin{split} \Delta f &= \Delta u + i \Delta v = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y + \\ &\quad i \left(\frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + \epsilon_3 \Delta x + \epsilon_4 \Delta y \right) \\ &= \left(i \frac{\partial v}{\partial x} + \frac{\partial u}{\partial x} \right) \Delta x + \left(i \frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} \right) \Delta y + (\epsilon_1 + i \epsilon_3) \Delta x + (\epsilon_2 + i \epsilon_4) \Delta y \\ &= \left(i \frac{\partial v}{\partial x} + \frac{\partial u}{\partial x} \right) \Delta x + i \left(\frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} \right) \Delta y + (\epsilon_1 + i \epsilon_3) \Delta x + (\epsilon_2 + i \epsilon_4) \Delta y \end{split}$$

由条件 2 得:

$$\Delta f = \left(i\frac{\partial v}{\partial x} + \frac{\partial u}{\partial x}\right) \Delta z + (\epsilon_1 + i\epsilon_3) \Delta x + (\epsilon_2 + i\epsilon_4) \Delta y$$
$$z = x + iy \to \Delta z = \Delta x + i\Delta y$$
$$\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}$$

2.5 解析函数的特性

假设某个复变解析函数: f(z)=u(x,y)+iv(x,y) $u,v\in\mathbb{R}$ 。由柯西-黎曼条件得到:

引理 2.5.1.

$$\frac{\partial^2 u(x,y)}{\partial^2 x} + \frac{\partial^2 u(x,y)}{\partial^2 y} = 0 \tag{2.1}$$

$$\frac{\partial^2 v(x,y)}{\partial^2 x} + \frac{\partial^2 v(x,y)}{\partial^2 y} = 0 \tag{2.2}$$

2.1和2.2 是拉普拉斯方程。所以解析函数的实部和虚部均为调和函数。

定理 2.5.2.

$$\frac{\partial f(z)}{\partial z^*} = 0$$

即解析函数与其自变量的共轭无关。

证明.

$$\begin{split} x &= \frac{z+z^*}{2}, \quad y = \frac{z-z^*}{2} \\ \frac{\partial f(z)}{\partial z^*} &= \frac{\partial f(z)}{\partial x} \frac{\partial x}{\partial z^*} + \frac{\partial f(z)}{\partial y} \frac{\partial y}{\partial z^*} = \\ \frac{1}{2} \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right] + \frac{i}{2} \left[\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right] = 0 \end{split}$$

2.6 由部分确定整个解析函数

如果已知某个解析函数的实部 u(x,y) 以及在某点 z_0 的取值,可以确定整个解析函数:

方法 2.6.1. 由于柯西-黎曼条件,

$$\frac{\partial u(x,y)}{\partial x} = \frac{\partial v(x,y)}{\partial y} \to v(x,y) = \int \frac{\partial v}{\partial x} dx + h(y)$$

$$\frac{\partial u(x,y)}{\partial y} = -\frac{\partial v(x,y)}{\partial x} \to v(x,y) = -\int \frac{\partial u}{\partial y} dx + h(y)$$

$$\Rightarrow$$

$$\frac{\partial v(x,y)}{\partial y} = -\int \frac{\partial^2 u}{\partial y^2} dx + h'(y) = \frac{\partial u(x,y)}{\partial x}$$

$$\Rightarrow$$

$$h'(y) = \frac{\partial u(x,y)}{\partial x} + \int \frac{\partial^2 u(x,y)}{\partial y^2} dx \to h(y) = \int h'(y) dy + C$$

方法 2.6.2. 利用 C-R 条件, 先找到解析函数的导数:

$$\frac{\mathrm{d}f}{\mathrm{d}z} = \frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y} \equiv g(z)$$

$$\Rightarrow$$

$$f(z) = \int g(z)\mathrm{d}z + C$$

方法 2.6.3.

$$f(z) = u(x, y) + iv(x, y), \quad f^*(z) = u(x, y) - iv(x, y)$$

$$\Rightarrow u(x, y) = \frac{f(z) + f^*(z)}{2}, \quad v(x, y) = \frac{f(z) - f^*(z)}{2i}$$

通过代数运算, 我们可以将 u(x,y) 写成:

$$u(x,y) = u\left(\frac{z+z^*}{2}, \frac{z-z^*}{2i}\right) = h(z) + h^*(z) = [h(z) + iC] + [h(z) + iC]^*$$

对比系数可得:

$$f(z) = 2h(z) + 2iC$$

2.7 解析函数的积分特性

定义 2.7.1. 复变函数的积分定义为:

$$\int_{L} f(z) dz \equiv \lim_{n \to \infty} \sum_{j=1}^{n} f(\xi_{j})(z_{j} - z_{j-1})$$

其中 L 为有向路径。

一些较为常用的性质:

$$\int_{L} f_1(z) + f_2(z) dz = \int_{L} f_1(z) dz + \int_{L} f_2(z) dz$$

$$\int_{L} f(z) dz = -\int_{-L} f(z) dz$$

$$\int_{L_1 + L_2} f(z) dz = \int_{L_1} f(z) dz + \int_{L_2} f(z) dz$$

定理 2.7.2. 单连通域上解析函数的柯西积分定理: 假设 C 是某个单连通域的边界。

$$\oint_C f(z) \mathrm{d}z = 0$$

证明. 假设将复变解析函数 f(z) 沿着某一单连通域做回路积分:

$$\oint_C f(z)dz = \oint_C [u(x,y) + iv(x,y)] (dx + idy)$$
(2.3)

其中正方向定义为确保解析区域在左手边的方向。展开2.3得到:

$$\oint_C \left[u \mathrm{d}x - v \mathrm{d}y \right] + i \oint_C \left[u \mathrm{d}y + v \mathrm{d}x \right]$$

由格林公式

$$\oint_C \left[P \mathrm{d} x + Q \mathrm{d} y \right] = \iint_{\Sigma} \left[-\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x} \right] \mathrm{d} x \mathrm{d} y$$

得到:

$$\oint_C f(z)dz = \iint_{\Sigma} \left[-\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right] dxdy + i \iint_{\Sigma} \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right] dxdy \tag{2.4}$$

考虑 C-R 条件,

$$2.4 \equiv 0$$

定理 2.7.3. 复连通域上解析函数的柯西积分定理: 假设 C 是一个复连通域的边界,而填上这个复连通域中的 C_1,C_2,\ldots,C_N 所围成的区域可以将该域变为单连通域。那么:

$$\oint_C f(z) dz = \sum_{n=1}^N \oint_{C_n} f(z) dz$$

2.8 柯西积分公式

定理 2.8.1. 柯西积分公式: 假设 C 包围了 f(z) 的单连通解析区域, z_0 为区域内一点,则

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

证明. 不妨用一个小圆将 z_0 包围,其边界设为 C_r : $\forall z \in \Sigma_{C_r}$ $z=z_0+re^{i\theta}$,则由2.7.3,

$$\oint_C \frac{f(z)}{z - z_0} dz = \oint_{C_r} \frac{f(z)}{z - z_0} dz =$$

$$\int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta = i \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$$
(2.5)

再不妨令 $r \rightarrow 0$, 那么2.5化为

$$i\int_0^{2\pi} f(z_0) \mathrm{d}\theta = 2\pi i f(z_0)$$

即:

$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$
(2.6)

引理 **2.8.2.** 令 2.6 中的 f(z) = 1, 推出公式:

$$\frac{1}{2\pi i} \oint_C \frac{1}{z - z_0} dz = \begin{cases} 1 & z_0 \in \Sigma_C \\ 0 & z_0 \notin \Sigma_C \end{cases}$$

可以利用2.6计算解析函数的导数:

方法 2.8.3.

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi - z} d\xi \to$$

$$f'(z) = \frac{1}{2\pi i} \frac{d}{dz} \oint_C \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{(\xi - z)^2} d\xi \to$$

$$f''(z) = \frac{2!}{2\pi i} \oint_C \frac{f(\xi)}{(\xi - z)^3} d\xi \to$$

$$\dots$$

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

这说明解析函数是任意阶可导的。

2.9 最大模定理

定理 2.9.1. 最大模定理:设 f(z) 在闭区域上解析,则其模 |f(z)| 的最大值只能出现在该区域的边界上,除非 f(z) 是一个常函数。

证明.

$$f^{n}(z) = \frac{1}{2\pi i} \oint \frac{f^{n}(\xi)}{\xi - z} d\xi$$
$$|f(z)|^{n} = |[f(z)]^{n}| = \left| \frac{1}{2\pi i} \oint \frac{f^{n}(\xi)}{\xi - z} d\xi \right|$$
$$\leq \frac{1}{2\pi} \oint \frac{|f(\xi)^{n}|}{|\xi - z|} |d\xi| \leq \frac{M^{n}}{2\pi d} \oint_{C} |d\xi| = \frac{M^{n}}{2\pi d} l$$

d 为 z 至边界的最短距离, \forall z : $|z-\xi| \geq d$ M 为 $|f(\xi)|$ 的最大值, \forall z : $|f(\xi)| \leq M$, $\xi \in C$ 即

$$|f(z)| \leq M \left[\frac{l}{2\pi d}\right]^{1/n} \to |f(z)| \leq \lim_{n \to \infty} M \left[\frac{l}{2\pi d}\right]^{1/n} = M$$

即 f(z), $z \in \overline{\Sigma_C}$ 的最大值便是 $f(\xi)$, $\xi \in C$ 的最大值。

2.10 复变函数在其解析圆域上的泰勒级数展开

f(z) 在 z_0 为圆心的圆域内解析,则对于任意一圆域内点 z,有

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
$$a_n = \frac{1}{2\pi i} \oint \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi = \frac{f^{(n)}(z_0)}{n!}$$

证明.

$$\begin{split} f(z) &= \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi - z} \mathrm{d}\xi = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{(\xi - z_0) - (z - z_0)} \mathrm{d}\xi \\ &= \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi - z_0} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \mathrm{d}\xi \end{split}$$

由于

$$\frac{z-z_0}{\xi-z_0} \le 1$$
, $\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n$, $|t| < 1$

$$\frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi - z_0} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} d\xi = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi - z_0} \sum_{n=0}^{\infty} \left[\frac{z - z_0}{\xi - z_0} \right]^n d\xi = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_C \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi \right] (z - z_0)^n = f(z)$$

复变函数在其解析圆域上的泰勒级数展开的收敛半径为:

$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 or $R = |z_0 - z_1|$ z_1 是离 z_0 最近的奇点

2.11 利用泰勒级数讨论最大模定理

定义 2.11.1. Kronecker-δ 符号:

$$\delta_{mn} \equiv \frac{1}{2\pi} \int_0^{2\pi} e^i (n-m)\theta d\theta = \begin{cases} 0, & m \neq n \\ 1, & m = n \end{cases}$$

假设最大模定理不成立,即:

$$\exists z_0 \in \Sigma, z_0 \notin \partial \Sigma \ s.t. |f(z_0)| = \max |f(z)|$$

那么以 20 为中心做泰勒展开:

$$f(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n \to a_0 = f(z_0)$$

由于

$$z - z_0 = re^{i\theta}$$

$$|a_{0}|^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} |a_{0}|^{2} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} |f(z_{0})|^{2} d\theta \ge \frac{1}{2\pi} \int_{0}^{2\pi} f^{*}(z) \cdot f(z) d\theta$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{m=1}^{\infty} a_{m}^{*} [(z - z_{0})^{*}]^{m} \cdot \sum_{n=1}^{\infty} a_{n} (z - z_{0})^{n} d\theta$$

$$= \sum_{m,n=0}^{\infty} a_{m}^{*} a_{n} r^{m+n} \frac{1}{2\pi} \int_{0}^{2\pi} e^{i(n-m)\theta} d\theta$$

$$= \sum_{m,n=0}^{\infty} a_{m}^{*} a_{n} r^{m+n} \delta_{mn} = \sum_{n=0}^{\infty} a_{n}^{*} a_{n} r^{2n} = \sum_{n=0}^{\infty} |a_{n}|^{2} r^{2n}$$

$$= |a_{0}|^{2} + \sum_{m=1}^{\infty} |a_{n}|^{2} r^{2n}$$

$$(2.7)$$

考虑到

$$\sum_{n=1}^{\infty} |a_n|^2 r^{2n} \ge 0 \Rightarrow |a_0|^2 + \sum_{n=1}^{\infty} |a_n|^2 r^{2n} \ge |a_0|^2$$

若想要2.7成立,那么

$$\sum_{n=1}^{\infty} |a_n|^2 r^{2n} = 0 \to a_n = 0 \to f(z) = constant.$$

定理 2.11.2. 刘维尔定理: 在全复平面内解析且有界的复变函数必为常函数。

证明. 以 $z_0 = 0$ 为中心做泰勒展开:

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
, $a_n = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi^{n+1}} d\xi$

由于

$$\xi \in C \to \xi = re^{i\theta} \to \mathrm{d}\xi = ire^{i\theta}\mathrm{d}\theta$$

则 $|a_n|$ 可以化为

$$|a_n| \le \frac{1}{2\pi} \oint_C \frac{|f(\xi)|}{|\xi^{n+1}|} |d\xi| \le \frac{1}{2\pi} \int_0^{2\pi} \frac{M}{r^n} d\theta = \frac{M}{r^n}$$

由于 f(z) 在整个复平面上解析,即其泰勒展开的收敛半径 $R = \infty$,那么

$$|a_n| \le \lim_{r \to \infty} \frac{M}{r^n} = 0 \to \forall n \ne 0 : a_n = 0$$

2.12 解析函数的零点及其孤立性

定义 2.12.1. f(z) 在 z_0 点有 $f(z_0) = 0$,且在以 z_0 为圆心的圆域内的泰勒级数展开式最低幂次 (最小的使得 $a_n \neq 0$ 的 n) 为 k 次,则称 z_0 为 f(z) 的 k- 阶零点。

由定义得到, 若 z_0 是 f(z) 的 k-阶零点,则 $\forall k > n > 0$: $f^{(n)}(z_0) = 0$

定理 2.12.2. 零点的孤立性: 假设 z_0 为 f(z) 的一个零点,则

$$\exists r > 0 \text{ s.t. } \forall z \in \{z \mid |z - z_0| < r\}, \ f(z) \neq 0$$

即零点不能构成区域。

证明. 假设 z_0 为 f(z) 的一个 k-阶零点:

$$f(z) = \sum_{n=k}^{\infty} a_n (z - z_0)^n = (z - z_0)^k \sum_{m=0}^{\infty} a_{m+k} (z - z_0)^m = (z - z_0)^k \varphi(z)$$
$$\varphi(z_0) \equiv a_k \neq 0$$

由于函数解析,函数必定连续,则

$$\forall \epsilon > 0: \exists z \neq z_0 \text{ s.t. } |\varphi(z_0) - \varphi(z)| < \epsilon$$

 $\Leftrightarrow \epsilon = |\varphi(z_0)|/2$:

$$|\varphi(z_0)| - |\varphi(z)| < |\varphi(z_0) - \varphi(z)| < |\varphi(z_0)|/2$$

$$|\varphi(z)| > |\varphi(z_0)|/2 > 0$$

$$f(z) = (z - z_0)^k \varphi(z) \neq 0$$

即总可以在 z_0 为中心找到一圆域使得在该圆域内除圆心 z_0 外的所有点 z 满足 $f(z) \neq 0$

2.13 解析环域上的洛朗级数展开

f(z) 在以 z_0 为圆心的环域内解析,则对于该环域内任何一点 z,有

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$
 $a_n = \frac{1}{2\pi i} \oint f(\xi) (\xi - z_0)^{-n-1} d\xi$

证明. 将环域的外环和内环建立一微小链接,使得 $L=C_1+C_2+\partial L-\partial L=C_1+C_2$ 为一单连通区域的边界,

$$\begin{split} f(z) &= \frac{1}{2\pi i} \oint_L \frac{f(\xi)}{\xi - z} \mathrm{d}\xi = \frac{1}{2\pi i} \oint_{C_1} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi + \frac{1}{2\pi i} \oint_{C_2} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi \\ &= \frac{1}{2\pi i} \oint_{C_1} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi - \frac{1}{2\pi i} \oint_{C_2} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi \end{split}$$

回想起证明泰勒级数时的过程,不妨将 $\xi - z_0$ 设为 r, $z - z_0$ 设为 R, 不难发现: 对于 C_1 , r > R, 对于 C_2 , r < R。

$$\begin{split} \frac{1}{2\pi i} \oint_{C_1} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi &= \frac{1}{2\pi i} \oint_{C_1} \frac{f(\xi)}{r - R} \mathrm{d}\xi \\ &= \frac{1}{2\pi i} \oint_{C_1} \frac{f(\xi)}{1 - R/r} \mathrm{d}\xi \\ &= \frac{1}{2\pi i} \oint_{C_1} \sum_{n=0}^{\infty} \left(\frac{R}{r}\right)^n \frac{f(\xi)}{\xi - z_0} \mathrm{d}\xi \\ &= \frac{1}{2\pi i} \oint_{C_1} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\xi - z_0}\right)^n \frac{f(\xi)}{\xi - z_0} \mathrm{d}\xi \end{split}$$

同理可得

$$\begin{split} -\frac{1}{2\pi i} \oint_{C_2} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi &= -\frac{1}{2\pi i} \oint_{C_2} \frac{f(\xi)}{r - R} \mathrm{d}\xi \\ &= \frac{1}{2\pi i} \oint_{C_2} \frac{f(\xi)}{1 - r/R} \mathrm{d}\xi \\ &= \frac{1}{2\pi i} \sum_{n=0}^{\infty} \oint_{C_2} \left(\frac{r}{R}\right)^n \frac{f(\xi)}{z - z_0} \mathrm{d}\xi \\ &= \frac{1}{2\pi i} \oint_{C_2} \sum_{n=0}^{\infty} \left(\frac{\xi - z_0}{z - z_0}\right)^n \frac{f(\xi)}{z - z_0} \mathrm{d}\xi \end{split}$$

代入 f(z) 中得到

$$f(z) = \frac{1}{2\pi i} \oint_{C_1} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{\xi-z_0}\right)^n \frac{f(\xi)}{\xi-z_0} d\xi + \frac{1}{2\pi i} \oint_{C_2} \sum_{n=0}^{\infty} \left(\frac{\xi-z_0}{z-z_0}\right)^n \frac{f(\xi)}{z-z_0} d\xi$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left[\oint_{C_2} \frac{f(\xi)}{(\xi-z_0)^{n+1}} d\xi \right] (z-z_0)^n$$

$$+ \frac{1}{2\pi i} \sum_{n=-\infty}^{-1} \left[\oint_{C_2} \frac{f(\xi)}{(\xi-z_0)^{n+1}} d\xi \right] (z-z_0)^n$$

$$= \frac{1}{2\pi i} \sum_{n=-\infty}^{\infty} \left[\oint_{C_2} \frac{f(\xi)}{(\xi-z_0)^{n+1}} d\xi \right] (z-z_0)^n$$

洛朗级数的收敛半径:

$$R_1 < |z - z_0| < R_2, \quad R_1 = \lim_{n \to -\infty} \left| \frac{a_{n-1}}{a_n} \right| \quad R_2 = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

或者可以认为

 $R_1 :=$ 以 z_0 为圆心的包含考察点 z 的最大解析环域的内径 $R_2 :=$ 以 z_0 为圆心的包含考察点 z 的最大解析环域的外径