Environmental effects in the most dense environments: Clusters of galaxies:

Mass ~1e14-1e15 Msol

Ngal ~1000-2000

Vel-dispersion~1000 km/s

Intracluster-medium:

Assuming hydrostatic equilibrium:

$$k_B T \sim 1/2 m_p V^2$$

Environmental effects in the most dense environments: Clusters of galaxies:

Mass ~1e14-1e15 Msol

Ngal ~1000-2000

Vel-dispersion~1000 km/s

Intracluster-medium:

Assuming hydrostatic equilibrium:

$$k_B T \sim 1/2 m_p V^2$$

T=6e7 K

Environmental effects in the most dense environments: Clusters of galaxies:

Mass ~1e14-1e15 Msol

Ngal ~1000-2000

Vel-dispersion~1000 km/s

Intracluster-medium:

Assuming hydrostatic equilibrium:

$$k_B T \sim \frac{1}{2} m_p V^2$$

T=6e7 K

Beta profile: $\rho = \rho$

 $\rho = \rho(0)(1 + r^2/r_c^2)^{-3\beta/2}$

Virgo cluster:

beta=0.5, rc=50 kpc rho0=2e-26 g/cc

The Intra-Cluster Medium

Virgo cluster in X-rays, ROSAT

Simulation of a galaxy disk undergoing RPS

The motion of a galaxy through the intra-cluster medium causes a drag force on it's HI gas disk

gas (grey cloudy) Stars (white) ...but stars unaffected!

Some basic theory:

For exponential gas and stellar disk: $\Sigma(R) = \Sigma_0 \exp(R/R_d)$

$$\Sigma(R) = \Sigma_0 \exp(R/R_{\rm d})$$

Some basic theory:

For exponential gas and stellar disk:

$$\Sigma(R) = \Sigma_0 \exp(R/R_{\rm d})$$

stellar disk + thin gas disk

Some basic theory:

For exponential gas and stellar disk:

$$\Sigma(R) = \Sigma_0 \exp(R/R_{\rm d})$$

Ram pressure: $P_{\rm ram} = \rho_{\rm ICM} v^2$

stellar disk + thin gas disk

Pram

Some basic theory:

For exponential gas and stellar disk: $\Sigma(R) = \Sigma_0 \exp(R/R_d)$

Some basic theory:

For exponential gas and stellar disk: $\Sigma(R) = \Sigma_0 \exp(R/R_d)$

ram pressure

VS

self-gravity of disk

Observable consequences (gas):

Gas asymmetry/tails:

CGCG 97079 – Radio continuum and Hα, Boselli & Gavazzi, 2006

Kenney, 2004, note no effect on stellar disk!

Extra-galactic Star Formation in RPS galaxies:

MUSE H-alpha map of Jellyfish galaxy

Poggianti+16

So-called 'Jellyfish' galaxies

A Jellyfish galaxies after the tail has gone