Исследование AB-тестирования нового алгоритма рекомендаций в развлекательном приложении

• Автор: Егорова Ольга

Компания разрабатывает развлекательное приложение с функцией «бесконечной» ленты. В приложении существует две модели монетизации: первая — ежемесячная платная подписка, которая позволяет пользователям смотреть ленту без рекламы, вторая — демонстрация рекламы для пользователей, которые ещё не оформили подписку.

Команда разработчиков рекомендательных систем создала новый алгоритм рекомендаций, который, по их мнению, будет показывать более интересный контент для каждого пользователя.

Описание данных

В распоряжении имеется 3 таблицы:

- Таблица sessions_project_history.csv с историческими данными по сессиям пользователей на период с 2025-08-11 по 2025-09-23.
- Таблица sessions_project_test_part.csv с данными за первый день проведения А/В-теста, то есть за 2025-10-14.
- Таблица sessions_project_test.csv с данными за весь период проведения А/В-теста, то есть с 2025-10-14 по 2025-11-02.

Структура и содержание полей совпадают, различаются лишь периоды наблюдения.

Поля таблиц sessions_project_history.csv, sessions_project_test.csv, sessions_project_test_part.csv:

- user_id идентификатор пользователя;
- session_id идентификатор сессии в приложении;
- session_date дата сессии;
- session_start_ts дата и время начала сессии;
- install_date дата установки приложения;
- session_number порядковый номер сессии для конкретного пользователя;
- registration_flag является ли пользователь зарегистрированным;
- page_counter количество просмотренных страниц во время сессии;
- region регион пользователя;
- device тип устройства пользователя;
- test_group тестовая группа (в таблице с историческими данными этого столбца нет).

Задачи:

• рассчитать параметры теста, оценить корректность его проведения и проанализировать результаты эксперимента.

План работы:

- 1. Работа с историческими данными (EDA)
- 2. Мониторинг А\В-теста
- 3. Проверка результатов А\В-теста

Работа с историческими данными (EDA)

Загрузка и знакомство с историческими данными

```
In [1]: # Импорт библиотек
import pandas as pd
import matplotlib.pyplot as plt

# для математических расчетов: округление и модуль
from math import ceil, fabs

# для расчета размера выборки
from statsmodels.stats.power import NormalIndPower

# для z-mecma пропорций, расчета эффекта и мощности
from statsmodels.stats.proportion import proportions_ztest
from statsmodels.stats.proportion import proportion_effectsize
from statsmodels.stats.power import zt_ind_solve_power
```

```
# \chi^2-тест на гомогенность from scipy.stats import chisquare

# \chi^2-тест на независимость двух категориальных переменных from scipy.stats import chi2_contingency
```

• Загружаем в sessions_history csv-файл с историческими данными о сессиях пользователей sessions_project_history.csv:

```
In [4]: # Загружаем данные
url_1 = 'https://drive.google.com/uc?export=download&id=1-cwY5JJciNUoJicfIKcm-P1U0UadkndU'
sessions_history = pd.read_csv(url_1)
```

• Посмотрим краткую сводку о датафрейме sessions_history:

```
In [5]: sessions_history.info()
```

```
RangeIndex: 435924 entries, 0 to 435923
Data columns (total 10 columns):
                        Non-Null Count Dtype
# Column
---
                                 -----
0 user_id 435924 non-null object
1 session_id 435924 non-null object
2 session_date 435924 non-null object
3 session_start_ts 435924 non-null object
4 install_date 435924 non-null object
5 session_number 435924 non-null int64
     registration_flag 435924 non-null int64
      page_counter 435924 non-null int64 region 435924 non-null object
 8
    region
9
                                 435924 non-null object
     device
dtypes: int64(3), object(7)
memory usage: 33.3+ MB
```

<class 'pandas.core.frame.DataFrame'>

Данные не содержат пропусков. Некоторые столбцы имеют некорректный тип данных, например, столбцы с датами имеют тип object, однако в рамках проекта работа с датами не подразумевается, поэтому типы преобразовывать не будем.

• Проверим корректность числовых данных в столбцах session_number, registration_flag, page_counter:

In [6]: sessions_history.describe()

Out[6]:		session_number	$registration_flag$	page_counter
	count	435924.000000	435924.000000	435924.000000
	mean	2.382908	0.077325	3.005561
	std	1.288487	0.267107	1.024625
	min	1.000000	0.000000	1.000000

	2.502500	0.01.525	5.005501
std	1.288487	0.267107	1.024625
min	1.000000	0.000000	1.000000
25%	1.000000	0.000000	2.000000
50%	2.000000	0.000000	3.000000
75%	3.000000	0.000000	4.000000
max	10.000000	1.000000	7.000000

Никаких аномалий не наблюдается.

• Проверим количество уникальных значений в каждом столбце таблицы:

In [7]: sessions_history.nunique()

```
Out[7]: user_id
        session id
                            435924
        session date
                               44
        session_start_ts
                            373059
        install date
                               31
        session_number
                                10
        registration_flag
        page_counter
                                 7
        region
                                 4
        device
        dtype: int64
```

Единственное поле с уникальными значениями по всей таблице - это идентификаторы сессий session_id.

• Посмотрим пользователи каких регионов region присутствуют в данных и какими типами устройств device они пользуются:

```
In [8]: region_name = sessions_history['region'].unique()
device_type = sessions_history['device'].unique()

print('Регионы:', list(region_name))
print('Устройства:', list(device_type))
```

```
Регионы: ['CIS', 'MENA', 'EU']
Устройства: ['iPhone', 'Android', 'PC', 'Mac']
```

• Выведем все поля таблицы sessions_history на примере пользователя с наибольшим количеством сессий. Для этого воспользуемся комбинацией методов .value_counts().idxmax():

```
In [9]: # Выводим данные одного пользователя
sessions_history[sessions_history['user_id'] == sessions_history['user_id'].value_counts().idxmax()]
```

Out[9]:		user_id	session_id	session_date	session_start_ts	install_date	session_number	registration_flag	page_counter	region	device
	124515	6A73CB5566BB494D	110E3F28C1F5415F	2025-08-28	2025-08-28 18:58:19	2025-08-28	1	0	3	MENA	Mac
	196252	6A73CB5566BB494D	D68C8D98A0F1C439	2025-08-29	2025-08-29 20:53:27	2025-08-28	2	1	3	MENA	Mac
	242428	6A73CB5566BB494D	6587D217472BF807	2025-08-30	2025-08-30 13:08:22	2025-08-28	3	1	1	MENA	Mac
	304287	6A73CB5566BB494D	A9BC25593D056F8E	2025-09-01	2025-09-01 18:52:49	2025-08-28	4	1	2	MENA	Mac
	346611	6A73CB5566BB494D	CB6F9C4191FAF6F6	2025-09-03	2025-09-03 22:49:08	2025-08-28	5	1	3	MENA	Mac
	363510	6A73CB5566BB494D	9C609432F6E6535A	2025-09-04	2025-09-04 13:59:46	2025-08-28	6	1	4	MENA	Mac
	391902	6A73CB5566BB494D	5D892E33B97A257A	2025-09-06	2025-09-06 18:46:55	2025-08-28	7	1	2	MENA	Mac
	404322	6A73CB5566BB494D	22A9BD3861F49087	2025-09-07	2025-09-07 18:33:49	2025-08-28	8	1	3	MENA	Mac
	415489	6A73CB5566BB494D	F70E351154B092DC	2025-09-08	2025-09-08 20:30:22	2025-08-28	9	1	4	MENA	Mac
	425805	6A73CB5566BB494D	84A3DC0CFF449F53	2025-09-09	2025-09-09 16:36:04	2025-08-28	10	1	1	MENA	Mac

Сразу возникает вопрос, а может ли у пользователя быть несколько сессий в один день? И может ли у пользователя измениться регион или тип устройства?

• Проверим, есть ли пользователи с количеством сессий в день больше 1. Для этого сгруппируем данные по user_id и session_date и найдем количество сессий. Далее найдем сумму истинных значений, если число сессий > 1:

```
In [10]: # Группируем и агрегируем данные
# Проверяем условие и подсчитываем истинные значения
    (sessions_history.groupby(['user_id', 'session_date']).agg({'session_id':'count'}) > 1).sum()
```

Out[10]: session_id 0 dtype: int64

• Также проверим, есть ли пользователи с несколькими регионами и типами устройств:

```
In [11]: # Группируем и агрегируем данные, проверяем условие и подсчитываем истинные значения (sessions_history.groupby(['user_id']).agg({'region':'nunique'}) > 1).sum()

Out[11]: region 0 dtype: int64
```

In [12]: # Группируем и агрегируем данные, проверяем условие и подсчитываем истинные значения
(sessions_history.groupby(['user_id']).agg({'device':'nunique'}) > 1).sum()

Out[12]: device 0 dtype: int64

За указанный период пользователи не меняли регион и тип устройства. Кроме того, они имеют по 1 сессии в день, значит статус регистрации в течение одного дня меняться не может.

Исследовательский анализ исторических данных

Анализ числа регистраций

Одна из важнейших метрик продукта — это число зарегистрированных пользователей. Посмотрим, как менялось число регистраций в приложении за время его существования.

• Crpyппируем таблицу sessions_history по полю session_date . Для каждого дня посчитаем количество уникальных пользователей с помощью nunique по полю user_id и количество зарегистрированных пользователей как сумму sum по полю registration_flag . Переименуем названия столбцов, чтобы они соответствовали содержащейся в них информации:

```
In [13]: # Γργηπαργεм α αερεεαργεм
sessions_history_users = sessions_history.groupby('session_date').agg({'user_id':'nunique', 'registration_flag':'sum'})

# Περεαμαειοδωθαεμ αποιότω
sessions_history_users.columns = ['total_users', 'registered_users']
```

Out[14]: total_users registered_users

	total_users	registered_users
session_date		
2025-08-11	3919	169
2025-08-12	6056	336
2025-08-13	8489	464
2025-08-14	10321	625
2025-08-15	14065	840
2025-08-16	12205	916
2025-08-17	11200	833
2025-08-18	10839	860
2025-08-19	12118	831
2025-08-20	13514	1008
2025-08-21	15051	1063
2025-08-22	17563	1251
2025-08-23	16082	1253
2025-08-24	13683	1181
2025-08-25	13635	1060
2025-08-26	13289	1050
2025-08-27	14766	1076
2025-08-28	15388	1175
2025-08-29	16873	1174
2025-08-30	14891	1165
2025-08-31	13266	1105
2025-09-01	12685	1028
2025-09-02	12672	1039
2025-09-03	12777	1035
2025-09-04	13683	1007
2025-09-05	15324	1030
2025-09-06	13078	1023
2025-09-07	12367	1069
2025-09-08	11826	1009
2025-09-09	11780	980
2025-09-10	12526	1015
2025-09-11	8623	824
2025-09-12	6436	669
2025-09-13	5183	537
2025-09-14	4364	440
2025-09-15	3698	383
2025-09-16	3032	286
2025-09-17	2548	272
2025-09-18	1952	201
2025-09-19	1418	132
2025-09-20	1100	107
2025-09-21	776	87
2025-09-22	546	68
2025-09-23	317	32

• Построим линейные графики общего числа пользователей и общего числа зарегистрированных пользователей по дням:

```
In [15]: # Задаем размер фигуры
plt.figure(figsize=(15,4))

# Строим линейный график
plt.plot(sessions_history_users, marker='o', label=['все пользователи', 'зарегистрированные\ппользователи'])
```

```
# Отображаем легенду
plt.legend()

# Настраиваем название и подписи осей
plt.title('Динамика числа пользователей и числа зарегистрированных пользователей\n')
plt.ylabel('Цисло пользователей')

# Устанавливаем поворот для меток тиков
plt.xticks(rotation=90)

# Добавляем сетку
plt.grid()

# Отображаем график
plt.show()
```

Динамика числа пользователей и числа зарегистрированных пользователей

Пользователи приложения ведут себя нестабильно, наблюдаются периодические пики активности:

- первые 4 пика приходятся на пятницы (имеют интервал в 1 неделю);
- последний пик был достигнут раньше не через 7 дней, а уже на 5. Вероятно пользователи, как и прежде, ожидали бонуса, но, не получив его стали уходить, из-за чего активность пошла на спад. В результате всего за два дня аудитория сократилась почти на 6000 человек.

К концу рассматриваемого периода активность существенно падает, опускаясь значительно ниже начальных значений. Снижение происходит постепенно на протяжении последниъ 1.5 недель. "Кривая всех пользователей" плавно приближается к "кривой зарегистрированных" и в конце периода они находятся максимально близко друг к другу, что вероятно говорит о потере интереса и снижении активности значительной части незарегистрированных пользователей.

Поведение зарегистрированных пользователей в наблюдаемый период более стабильно. Также наблюдается увеличение их активности, однако без ярковыраженных скачков.

Можно сделать вывод, что внешние факторы оказывают заметное воздействие на пользовательскую активность, особенно среди незарегистрированных посетителей.

• Построим линейный график доли зарегистрированных пользователей от всех пользователей по дням. Для этого подготовим данные и посчитаем долю зарегистрированных пользователей. Результат запишем в столбец share:

```
Іп [16]: # Создаем новых столбец с долей
         sessions_history_users['share'] = sessions_history_users['registered_users'] / sessions_history_users['total_users']
In [17]: # Задаем размер фигуры
         plt.figure(figsize=(15,4))
         plt.plot(sessions_history_users['share'], marker='o', label='доля зарегистрированных\n пользователей')
         # Отображаем легенду
         plt.legend()
         # Настраиваем название и подписи осей
         plt.title('Динамика доли зарегистрированных пользователей от всех по дням\n')
         plt.xlabel('Дата наблюдения')
         plt.ylabel('Доля')
         # Устанавливаем поворот для меток тиков
         plt.xticks(rotation=90)
         # Добавляем сетку
         plt.grid()
         # Отображаем график
         plt.show()
```


За рассматриваемый период доля зарегистрированных пользователей демонстрирует устойчивый рост, увеличившись с начальных 4% до 10% к концу наблюдений.

Анализ числа просмотренных страниц

Число просмотренных страниц в приложении - это также важная метрика продукта. Чем больше страниц просмотрено, тем сильнее пользователь увлечён контентом, а значит, выше шансы на то, что он зарегистрируется и оплатит подписку.

• Посмотрим как часто пользователи просматривали определенное количество страниц за одну сессию. Для этого найдем количество сессий для каждого значения количества просмотренных страниц, сгруппируем таблицу sessions_history по полю page_counter и с помощью count посчитаем количество сессий session_id:

```
In [18]: # Группируем и агрегиуем данные
sessions_history_page_counter = sessions_history.groupby('page_counter').agg({'session_id':'count'})
# Выбодим результат
sessions_history_page_counter
```

Out[18]: session_id

page_counter				
1	29160			
2	105536			
3	166690			
4	105569			
5	26288			
6	2589			
7	92			

• Построим столбчатую диаграмму с распределение сессий по количеству просмотренных страниц:

```
In [19]: fig, ax = plt.subplots(figsize=(10,5))

# Строим столбчатую диаграмму
ax.bar(sessions_history_page_counter.index, sessions_history_page_counter['session_id'])

# Задаем название и подписываем оси
ax.set_title('Pacпределение сессий по количеству просмотренных страниц\n')
ax.set_ylabel('Количество просмотренных страниц')
ax.set_ylabel('Количество сессий')

# Подписываем бары
plt.bar_label(ax.containers[0])

# Убираем границы
ax.spines[['top', 'right']].set_visible(False)

# Отображаем график
plt.show()
```

Распределение сессий по количеству просмотренных страниц

Наиболее распространенные сессий - это сессии с просмотром 3 страниц (166 690 сессий), а также сессии с просмотром 2 (105 536) и 4 страниц (105 569). С увеличением числа просмотренных страниц (от 4 и более) количество сессий резко снижается: 5 страниц — 26 288 сессий, 6 страниц — 2 589 сессий, 7 страниц — 92 сессии.

График демонстрирует, что поведение пользователей чаще всего ограничивается взаимодействием с приложением в рамках не более 4 страниц. Это может указывать на то, что либо контент быстро удовлетворяет их запросы, либо приложение не удерживает внимание пользователей дольше.

Доля пользователей, просмотревших четыре и более страниц

Важной прокси-метрикой для продукта является доля сессии, в рамках которых пользователь просмотрел 4 и более страниц, что говорит об удовлетворённости контентом и алгоритмами рекомендаций..

• В датафрейме sessions_history создадим дополнительный столбец good_session, который покажет, успешна или нет сессия. Пусть в столбец войдет значение 1, если за одну сессию было просмотрено 4 и более страниц, и значение 0, если было просмотрено меньше:

```
In [20]: # Создаем дубликат столбца 'page_counter'
sessions_history['good_session'] = sessions_history['page_counter']

# Применяем к столбцу метод .mask() и заменяем значения в нем на в или 1 при выполнении определенных условий sessions_history['good_session'] = sessions_history['good_session'].mask(sessions_history['good_session']>=4, 0)
sessions_history['good_session'] = sessions_history['good_session'].mask(sessions_history['good_session']>=4, 1)
```

• Рассчитаем для каждого дня наблюдения количество всех сессий, количество успешных сессий и долю успешных сессий. Для этого сгруппируем таблицу sessions_history по полю session_date и произведем рассчеты:

```
In [21]: # Группируем и агрегируем даные sessions_history_good_total = sessions_history_groupby('session_date', as_index=False).agg({'good_session':'sum', 'session_id':'count'})

# Переименуем столбец 'session_id' в 'session_total' sessions_history_good_total = sessions_history_good_total.rename(columns = {'session_id': 'session_total'})

# Создадим дополнительный столбец с долей успешных сессий sessions_history_good_total['share_good_session'] = sessions_history_good_total['good_session'] / sessions_history_good_total['session_total']

# Посмотрим на получившиеся данные sessions_history_good_total
```

	session_date	good_session	session_total	share_good_session
0	2025-08-11	1226	3919	0.312835
1	2025-08-12	1829	6056	0.302015
2	2025-08-13	2604	8489	0.306750
3	2025-08-14	3262	10321	0.316055
4	2025-08-15	4289	14065	0.304941
5	2025-08-16	3737	12205	0.306186
6	2025-08-17	3557	11200	0.317589
7	2025-08-18	3366	10839	0.310545
8	2025-08-19	3791	12118	0.312840
9	2025-08-20	4148	13514	0.306941
10	2025-08-21	4563	15051	0.303169
11	2025-08-22	5500	17563	0.313158
12	2025-08-23	4858	16082	0.302077
13	2025-08-24	4239	13683	0.309800
14	2025-08-25	4165	13635	0.305464
15	2025-08-26	4132	13289	0.310934
16	2025-08-27	4594	14766	0.311120
17	2025-08-28	4779	15388	0.310567
18	2025-08-29	5283	16873	0.313104
19	2025-08-30	4673	14891	0.313814
20	2025-08-31	4013	13266	0.302503
21	2025-09-01	3964	12685	0.312495
22	2025-09-02	3998	12672	0.315499
23	2025-09-03	3886	12777	0.304140
24	2025-09-04	4317	13683	0.315501
25	2025-09-05	4656	15324	0.303837
26	2025-09-06	3983	13078	0.304557
27	2025-09-07	3860	12367	0.312121
28	2025-09-08	3652	11826	0.308811
29	2025-09-09	3599	11780	0.305518
30	2025-09-10	3822	12526	0.305125
31	2025-09-11	2627	8623	0.304650
32	2025-09-12	1941	6436	0.301585
33	2025-09-13	1550	5183	0.299055
34	2025-09-14	1343	4364	0.307745
35	2025-09-15	1131	3698	0.305841
36	2025-09-16	946	3032	0.312005
37	2025-09-17	816	2548	0.320251
38	2025-09-18	571	1952	0.292520
39	2025-09-19	451	1418	0.318054
40	2025-09-20	332	1100	0.301818
41	2025-09-21	224	776	0.288660
42	2025-09-22	169	546	0.309524
43	2025-09-23	92	317	0.290221

• Данные подготовлены, теперь построим линейный график доли успешных сессий по дням:

```
ax2.plot(sessions_history_good_total['session_total'],
         color='tab:orange', linewidth=0.5,
         label='общее количество сессий')
# Отображаем среднее значение доли
# Среднее значение
avg_share = sessions_history_good_total['share_good_session'].mean()
# Наносим на график линию с долей
ax1.axhline(avg_share, color='black'
            linestyle='--', linewidth=1,
            label=f'cpeднee значение доли {round(avg_share, 3)}')
# Отображаем легенды
ax1.legend(loc=(0.006, 0.1))
ax2.legend(loc=3)
# Настраиваем название и подписи осей
plt.suptitle('Динамика доли успешных сессий по дням\n')
ax1.set_xlabel('Дата наблюдения')
ax1.set_ylabel('Доля успешных сессий', color='tab:blue')
ax2.set_ylabel('Общее количество сессий', color='tab:orange')
# Передаем новые метки для оси Х
ax1.set_xticks(sessions_history_good_total.index,
               sessions_history_good_total['session_date'], rotation=90)
# Добавляем сетку
ax1.grid(linestyle='dotted')
# Отображаем график
plt.show()
```

Динамика доли успешных сессий по дням

Показатель колеблется в узком диапазоне от 0,29 до 0,32, что говорит об относительной стабильности. Не наблюдается рост или падение, однако присутствуют периодические колебания. В конце периода, когда снизилось число сессий, доля успешных сессий стала более вариативной из-за меньшего количества наблюдений.

Подготовка к тесту

Расчёт размера выборки

Pассчитаем необходимое для дизайна эксперимента количество наблюдений, используя метод solve_power() из класса power.NormalIndPower модуля statsmodels.stats.

Установим следующие параметры:

- Уровень значимости 0.05.
- Вероятность ошибки второго рода 0.2.
- Минимальный детектируемый эффект (MDE) 3% (0,03)

```
In [25]: # Задаём параметры:

# Уровень значимости
alpha = 0.05
# Ошибка второго рода
beta = 0.2
# Мощность теста
power = 1 - beta
# Минимальный детектируемый эффект
mde = 0.03

# Инициализируем класс NormalIndPower
power_analysis = NormalIndPower()
```

```
# Рассчитываем размер выборки
sample_size = power_analysis.solve_power(
    effect_size = mde,
    power = power,
    alpha = alpha,
    ratio = 1
)

print(f'Heoбходимый размер выборки для каждой группы: {int(sample_size)}')
```

Необходимый размер выборки для каждой группы: 17441

Отметим, что наша метрика привязана к сессиям, поэтому при расчете размера выборки мы получаем требуемое количество сессий на группу - 17441. Ранее мы убедились, что в данных отражена только 1 сессия каждого пользователя за 1 день, поэтому в дальнейших рассуждениях будем считать "количество сессий" = "количество пользователей" в рамках одного дня.

Расчёт длительности А/В-теста

Рассчитаем длительность теста, для этого:

- найдем среднее количество уникальных пользователей приложения в день.
- определим длительность теста, исходя из рассчитанного значения размера выборок и среднего дневного трафика приложения. Полученное количество дней округлите в большую сторону.

Найдем среднее количество пользователей в день, для этого воспользуемся ранее сформированной таблицей sessions_history_users , которая содержит данные о количестве пользователей total_users за каждый день:

```
In [26]: # Среднее количество пользователей приложения в день по историческим данным
avg_daily_users = sessions_history_users['total_users'].mean().round()
avg_daily_users = int(avg_daily_users)
```

Рассчитаем длительность теста в днях как отношение размера выборки sample size к среднему числу пользователей в день:

```
In [27]: # Рассчитываем длительность теста
test_duration = ceil(sample_size * 2 / avg_daily_users)
print(f"Рассчитанная длительность A/B-теста при текущем уровене трафика в {avg_daily_users} пользователей в день составит {test_duration} дней")
```

Рассчитанная длительность А/В-теста при текущем уровене трафика в 9907 пользователей в день составит 4 дней

Чтобы учесть полный недельный цикл необходимо увеличить длительность до 7 дней.

Ранее мы установили, что в начале предэкспериментального периода активность пользователей, вероятно, была искажена маркетинговой кампанией. При этом в последние две недели внешнее воздействие отсутствовало, и количество пользователей постепенно вернулось к обычному уровню. Это свидетельствует о том, что подобное влияние носит нерегулярный характер.

Следовательно, использование всего периода для расчёта среднего числа пользователей и определения длительности эксперимента приведёт к некорректным результатам. Чтобы получить достоверные данные, мы рассчитаем среднее количество пользователей на основе последних двух недель предэкспериментального периода и скорректируем продолжительность эксперимента соответствующим образом:

```
In [28]: # Найдем среднее число пользователей за последние 14 дней avg_daily_users_2_weeks = sessions_history_users['total_users'].tail(14).mean()

# Рассчитываем длительность теста в днях как отношение размера выборки к среднему числу пользователей test_duration_2_weeks = ceil(sample_size * 2 / avg_daily_users_2_weeks)

print(f"Длительность A/B-теста при текущем уровене трафика в {int(avg_daily_users_2_weeks)} пользователей в день составит {test_duration_2_weeks} дне
```

Длительность А/В-теста при текущем уровене трафика в 3751 пользователей в день составит 10 дней

С учётом недельной цикличности данных общий анализируемый период охватывает 14 дней. Однако следует отметить, что в первые дни этого двухнедельного интервала ещё сохраняется остаточное влияние внешних факторов на активность пользователей.

Для получения более репрезентативных данных целесообразно сосредоточиться на периоде, когда это влияние становится минимальным, а снижение количества пользователей замедляется. Таким оптимальным интервалом являются последние 11 дней предэкспериментального периода. Этот подход позволит минимизировать искажающее воздействие маркетинговых активностей, учесть естественную пользовательскую динамику и повысить точность расчётов:

```
In [29]: # Найдем среднее число пользователей за последние 11 дней
avg_daily_users_1_weeks = sessions_history_users['total_users'].tail(11).mean()

# Рассчитываем длительность теста в днях как отношение размера выборки к среднему числу пользователей
test_duration_1_weeks = ceil(sample_size * 2 / avg_daily_users_1_weeks)

print(f"Длительность A/B-теста при текущем уровене трафика в {int(avg_daily_users_1_weeks)} пользователей в день составит {test_duration_1_weeks} дне
```

Длительность А/В-теста при текущем уровене трафика в 2266 пользователей в день составит 16 дней

С учетом недельной цикличности продолжительность экспериментального периода составит 21 день.

Резюмируем, последние 11 дней предэкспериментального периода отражают "очищенную" динамику без маркетингового влияния, а 3 полные недели (21 день) позволяют нивелировать эффекты, связанные с конкретными днями недели. Таким образом, 21-дневный эксперимент даст репрезентативные данные, минимизируя влияние временных искажений и внешних факторов.

Проверка распределения пользователей

Проверим, соответствует ли фактическое распределение пользователей между группами А и В заявленному 50/50.

Сохраним в датафрейм sessions_test_part csv-файл sessions_project_test_part.csv с данными за первый день проведения теста:

```
In [30]: # Загружаем данные
url2 = 'https://drive.google.com/uc?export=download&id=1-g3NxIHmEeEV0NJ6JhjM8Yhov6SJIUjW'
sessions_test_part = pd.read_csv(url2)
```

Рассчитаем количество и долю уникальных пользователей в каждой из экспериментальных групп за один день:

- сгруппируем данные по полю test_group и для каждой группы посчитаем количество уникальных пользователей;
- создадим новый столбец share с долей пользователей в каждой группе

```
In [31]: # Группируем и агрегируем данные
sessions_test_part_agg = sessions_test_part.groupby(['test_group']).agg({'user_id':'nunique'})

# Переименовываем столбец на более подходящее имя
sessions_test_part_agg.columns = ['user_count_uniq']

# Добавляем столбец с долей пользователей в каждой группе
#sessions_test_part_agg['share'] = sessions_test_part_agg['user_count_uniq'] / sessions_test_part_agg['user_count_uniq'].sum()

# Выводим результат
sessions_test_part_agg
```

Out[31]: user_count_uniq

test_group

Α	1477
В	1466

Рассчитаем процентную разницу в количестве пользователей в группах и пострим визуализацию, на которой можно увидеть возможное различие двух групп.

Для расчёта процентной разницы воспользуемся формулой:

$$P = 100 \cdot \frac{|A - B|}{A}$$

```
In [32]: # Расчитываем процентную разницу между группами

# Подготовим данные
count_user_a = sessions_test_part_agg.loc['A', 'user_count_uniq']
count_user_b = sessions_test_part_agg.loc['B', 'user_count_uniq']
# Производим расчет
percentage_difference = 100 * fabs(count_user_a - count_user_b) / count_user_a
# Выводим результат
print(f'Процентная разница в количестве пользователей в группах А и В: {round(percentage_difference,3)}%')
```

Процентная разница в количестве пользователей в группах A и B: 0.745%

```
In [33]: # Задаем область и оси
         fig, ax = plt.subplots(figsize=(8, 4))
         # Строим столбчатую диаграмму
         ax.bar(sessions_test_part_agg.index, sessions_test_part_agg['user_count_uniq'])
         # Ограничиваем оси Ү
         plt.ylim(1450, 1480)
         # Задаем название и подписываем оси
         ax.set_title(f'Распределение пользователей по группам.\пПроцентная разница между группами составляет {round(percentage_difference,3)}%')
         ax.set_xlabel('Группы')
         ax.set_ylabel('Количество пользователей')
         # Убираем границы
         ax.spines[['top', 'right']].set_visible(False)
         # Подписываем бары
         plt.bar_label(ax.containers[0])
         # Отображаем график
         plt.show()
```


Распределение близко к идеальному: разница между группами составляет менее процента, а именно 0,745%. Важно контролировать, чтобы отклонение не увеличивалось со временем.

Проверка пересечений пользователей

Проверим, что группы A и B - независимы. Для этого убедимся, что никто из пользователей случайно не попал в обе группы одновременно. Используем пересечение множеств для нахождения общих элементов:

```
In [34]: # ΗαῦδεΜ ΜΗΟΘΕCΠΘΟ ΠΟΛЬΒΟΘΑΠΕΛΕΙ ΘΑΝ ΚΑΘΑΘΟ ΣΡΥΠΠΗ

set_a = set(sessions_test_part['user_id'][sessions_test_part['test_group'] == 'A'])

set_b = set(sessions_test_part['user_id'][sessions_test_part['test_group'] == 'B'])

# ΗαῦδεΜ περεσεψεμία ΜΗΟΘΕCΠΘ

set_a.intersection(set_b)
```

Out[34]: set()

Пересечение множеств пользователей пусто, то есть нет ни одного пользователи, попавшего одновременно в группу А и группу В.

Проверка равномерности разделения пользователей по категориям

Проверим, что пользователи равномерно распределены по всем доступным категориальным переменным — типам устройства и регионам.

Проверка равномерности разделения пользователей по устройствам

Проверим, что пользователи равномерно распределены по всем типам устройства. Для этого сгруппируем данные по device и test_group и посчитаем количество уникальных пользователей в каждой группе:

```
In [35]: # Группируем и агрегируем данные
df_group_device = sessions_test_part.groupby(['device', 'test_group'])['user_id'].nunique().unstack(fill_value=0)

# Преобразовываем в проценты и округляем
df_group_device = (100 * df_group_device / sessions_test_part['user_id'].nunique()).round(2)

# Выводим результат
df_group_device
```

```
        Out[35]:
        test_group
        A
        B

        device
        Android
        22.29
        22.70

        Mac
        5.30
        5.03

        PC
        12.54
        12.95

        iPhone
        10.06
        9.14
```

```
In [36]: # Добавляем столбец с разницей между группами A и B

df_group_device['delta'] = df_group_device['A'] - df_group_device['B']

# Проверяем результат

df_group_device
```

```
Out[36]: test_group
              device
            Android 22.29 22.70 -0.41
                Mac
                       5.30
                              5.03
                                     0.27
                  PC 12.54
                            12.95
                                    -0.41
             iPhone 10.06
                             9.14 0.92
In [37]: # Строим столбчатую диаграмму
          graf_group_device = df_group_device[['A', 'B']].plot.bar(
              title=f'Распределение пользователей группы А и В по типам устройств\nc указанием разницы между ними (Δ)\n',
              xlabel='Типы устройств', ylabel='Доля пользователей, %', legend=True, figsize=(10, 5), width=0.7, rot=0
          # Убираем границы
          graf_group_device.spines[['top', 'right']].set_visible(False)
          # Добавляем заголовок легенды
          plt.legend(title='Группы пользователей:')
          #Задаем переменные
          android_delta = round(fabs(df_group_device.loc['Android','delta']), 2)
          mac_delta = round(fabs(df_group_device.loc['Mac','delta']), 2)
pc_delta = round(fabs(df_group_device.loc['PC','delta']), 2)
          iphone_delta = round(fabs(df_group_device.loc['iPhone','delta']), 2)
```

Распределение пользователей группы А и В по типам устройств с указанием разницы между ними (Δ)

Проверим независимость двух категориальных переменных:

B delta

Добавляем текст со значением разницы между группами

plt.bar_label(graf_group_device.containers[0], fmt='%.2f%') plt.bar_label(graf_group_device.containers[1], fmt='%.2f%%')

Подписываем бары

Отображаем график plt.show()

plt.text(-0.1, 1, f'∆={android_delta}%', color='w', fontweight='bold') plt.text(0.9, 1, $f'\Delta=\{mac_delta\}\%'$, color='w', fontweight='bold') plt.text(1.9, 1, f'∆={pc_delta}%', color='w', fontweight='bold')
plt.text(2.9, 1, f'∆={iphone_delta}%', color='w', fontweight='bold')

```
In [38]: # Уровень значимости
         alpha = 0.05
         # Создаем таблицу сопряженности: группы * регионы
         contingency_table = df_group_device[['A', 'B']].T
         print("Таблица сопряженности:\n\n", contingency_table)
         # Хи-квадрат тест на независимость
         chi2, p_value, dof, expected = chi2_contingency(contingency_table)
         # Выводим результат
         print('\nПроверка по типам устройств:')
         if p_value > alpha:
             print(f'p-value={p_value:.4f} > {alpha}')
             print('Распределение между группами корректно!')
```

```
print(f'p-value={p_value:.4f} < {alpha}')</pre>
     print('⚠ Есть статистически значимый дисбаланс!')
Таблица сопряженности:
device
            Android Mac
                              PC iPhone
test group
             22.29 5.30 12.54 10.06
Α
В
             22.70 5.03 12.95
                                  9.14
Проверка по типам устройств:
p-value=0.9962 > 0.05
Распределение между группами корректно!
 Разница между группами не превышает одного процента (от 0,27% до 0,92%). Пользователи корректно распределены группам и типам устройств. Значимых
```

Проверка равномерности распределения пользователей по регионам

перекосов не наблюдается. Группы А и В сопоставимы по типам устройств.

```
Аналогично проверим равномерность распределения пользователей по регионам:
In [39]: # Группируем и агрегируем данные
                   \label{eq:df_group_region} df\_group\_region = sessions\_test\_part.groupby(['region', 'test\_group'])['user\_id'].nunique().unstack(fill\_value=0) df\_group\_region = sessions\_test\_groupby(['region', 'test\_group'])['user\_id'].nunique().unstack(fill\_value=0) df\_groupby(['region', 'test\_groupby(['region', 'test\_groupby(['
                   # Преобразовываем в проценты и округляем df_group_region = round(100 * df_group_region / sessions_test_part['user_id'].nunique(), 2)
                    # Проверяем результат
                   df_group_region
Out[39]: test_group
                           region
                                  CIS 21.88 21.92
                                   EU 7.61 7.37
                             MENA 20.69 20.52
In [40]: # Добавляем столбец с разницей между группой A и В
                    df_group_region['delta'] = df_group_region['B'] - df_group_region['A']
                    # Проверяем результат
                   df_group_region
Out[40]: test_group
                                                                B delta
                                  CIS 21.88 21.92
                                                                       0.04
                                             7.61
                                                          7.37 -0.24
                             MENA 20.69 20.52 -0.17
In [41]: # Строим горизонтальную столбчатую диаграмму
                    graf_region = df_group_region[['A', 'B']].plot(kind='barh', subplots=True,
                                                                                                                       sharex=True, figsize=(8, 5), legend=False,
                                                                                                                       title = ['Распределение пользователей по регионам:\n\nГруппа A ', 'Группа B']
                   # Настраиваем название и подписи осей
                    graf region[0].set ylabel('Регионы')
                    graf_region[1].set_ylabel('Регионы')
                   plt.xlabel('Доля пользователей')
                   # Включаем сетку для каждого из подграфиков
                    {\tt graf\_region[0].grid(which='both', \ linestyle='dotted')}
                    graf_region[1].grid(which='both', linestyle='dotted')
                    # Убираем границы
                   graf_region[0].spines[['top', 'right']].set_visible(False)
graf_region[1].spines[['top', 'right']].set_visible(False)
                    # Оптимизируем расположение элементов
                   plt.tight_layout()
                    # Добавим текст со значением разницы между группами
                    mena_delta = round(fabs(df_group_region.loc['MENA','delta']), 2)
                    eu_delta = round(fabs(df_group_region.loc['EU','delta']), 2)
                    cis_delta = round(fabs(df_group_region.loc['CIS','delta']), 2)
                   plt.text(0, -2, f'Разница между группами для региона MENA составляет {mena_delta}%, для EU {eu_delta}%, для CIS {cis_delta}%')
                    # Подписываем бары
                    graf_region[0].bar_label(graf_region[0].containers[0], fmt='%.2f%')
                    graf_region[1].bar_label(graf_region[1].containers[0], fmt='%.2f%%')
                    # Отображаем график
                    plt.show()
```

Распределение пользователей по регионам:

Разница между группами для региона MENA составляет 0.17%, для EU 0.24%, для CIS 0.04%

Проверим независимость двух категориальных переменных:

```
In [42]: # Уровень значимости
alpha = 0.05

# Создаем таблицу сопряженности: группы * регионы
contingency_table = df_group_region[['A', 'B']].Т
print("Таблица conpяженности:\n\n", contingency_table)

# Хи-квадрат тест на независимость
chi2, p_value, dof, expected = chi2_contingency(contingency_table)

# Выводим результат
print('\nПроверка по регионам:')
if p_value > alpha:
    print(f'p-value={p_value:.4f} > {alpha}')
    print('Pacnределение между группами корректно!')
else:
    print(f'p-value={p_value:.4f} < {alpha}')
    print('_МЕсть статистически значимый дисбаланс!')
```

Таблица сопряженности:

```
region CIS EU MENA test_group A 21.88 7.61 20.69 B 21.92 7.37 20.52
```

Проверка по регионам:

p-value=0.9984 > 0.05

Распределение между группами корректно!

Разница между группами не превышает одного процента (от 0,04% до 0,24%). Пользователи корректно распределены. Значимых перекосов не наблюдается. Группы A и B сопоставимы по регионам.

Вывод после мониторинга А/В-теста

Результаты мониторинга А/В-теста:

- 1. Независимость выборок:
 - пересечение между тестовой и контрольной группами отсутствует ни один пользователь не был зафиксирован одновременно в обеих группах.
- 2. Корректность распределения:
 - размеры групп имеют незначительное расхождение всего 0.745%, что находится в пределах допустимой погрешности.
- 3. Равномерность распределения:
 - пользователи равномерно распределены по типам устройств (Android, iOS, PC, Mac);
 - пользователи равномерно распределены по группам стран (MENA, EU, CIS)

А/В-тест проводится в соблюдением правил, каких-либо нарушений и перекосов не выявлено.

Проверка результатов А/В-теста

А/В-тест завершён, в распоряжении есть результаты за все дни проведения эксперимента. Убедимся в корректности теста и интерпретируем результаты.

Получение результатов теста

• Загрузим и сохраните в датафрейм sessions_test csv-файл sessions_project_test.csv с данными за весь период проведения А/В-теста.

```
In [43]: # Сохраняем данные в датафрейм
url3 = 'https://drive.google.com/uc?export=download&id=1UE4YH-lEUxMDVbaCyN_2V602josTeqCY'
sessions_test = pd.read_csv(url3)
```

• Посмотрим краткую сводку о датафрейме sessions_test и проверим его на наличие пропусков:

```
In [44]: # Выводим информацию
             sessions_test.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 100005 entries, 0 to 100004
           Data columns (total 11 columns):
                                  Non-Null Count Dtype
            # Column

        0
        user_id
        100005 non-null object

        1
        session_id
        100005 non-null object

        2
        session_date
        100005 non-null object

        3
        session_start_ts
        100005 non-null object

            4 install_date 100005 non-null object 5 session_number 100005 non-null int64
                 registration_flag 100005 non-null int64
                  page_counter 100005 non-null object 100005 non-null object
             8 region
                  device
                                              100005 non-null object
            10 test_group
                                             100005 non-null object
           dtypes: int64(3), object(8)
           memory usage: 8.4+ MB
              Данные не содержат пропусков.
```

• Проверим корректность числовых данных в столбцах session_number, registration_flag, page_counter:

```
In [45]: # Βωβοδιμα μιφορμαιμιω sessions_test.describe()

Out[45]: session number registration flag page counter
```

	session_number	registration_flag	page_counter
count	100005.000000	100005.000000	100005.000000
mean	2.391900	0.076396	3.023349
std	1.295824	0.265632	1.042987
min	1.000000	0.000000	1.000000
25%	1.000000	0.000000	2.000000
50%	2.000000	0.000000	3.000000
75%	3.000000	0.000000	4.000000
max	9.000000	1.000000	7.000000

Аномалий не наблюдается.

• В датафрейме sessions_test создадим дополнительный столбец good_session , который покажет, успешна или нет сессия. Пусть в столбец войдет значение 1, если за одну сессию было просмотрено 4 и более страниц, и значение 0, если было просмотрено меньше:

```
In [46]: # Создаем дубликат столбца 'page_counter'
sessions_test['good_session'] = sessions_test['page_counter']

# Применяем к столбцу метод .mask() и заменяем значения в нем на 0 или 1 при выполнении условий
sessions_test['good_session'] = sessions_test['good_session'].mask(sessions_test['good_session']<4, 0)
sessions_test['good_session'] = sessions_test['good_session'].mask(sessions_test['good_session')>=4, 1)
```

Проверка корректности результатов теста

Проверим, что тест проведён корректно и группы сопоставимы. При этом важно контролировать две составляющие: и распределения пользователей по группам и распределения сессий по группам.

Проверим, что в данных учитывается только первая сессия пользователей за день

• Проверим, есть ли пользователи с количеством сессий в день больше 1. Для этого сгруппируем данные по user_id и session_date и найдем количество сессий. Далее найдем сумму истинных значений, если число сессий > 1:

```
In [47]: # Группируем и агрегируем данные
# Проверяем условие и подсчитываем истинные значения
(sessions_test.groupby(['user_id', 'session_date']).agg({'session_id':'count'}) > 1).sum()
```

Out[47]: session_id 24 dtype: int64

№ В данных присутствуют 245 пользователей с несколькими сессиями в день!

• Получим идентификаторы этих пользователей и даты. Для этого сгруппируем данные таблицы sessions_test по полям user_id и session_date, для каждой группы найдем количество сессий session_id и с помощью query() оставим записи с числом сессий больше 1:

```
In [48]: # Группируем и агрегируем данные
user_duplicat = sessions_test.groupby(['user_id', 'session_date'], as_index=False).agg({'session_id':'count'}).query('session_id > 1')

# Меняем имя столбца на более подходящее
user_duplicat.columns.values[2] = 'count_sessions'

# выводим таблицу
user_duplicat
```

Out[48]:		user_id	session_date	count_sessions
	917	024817D675AECE70	2025-11-01	7
	1012	0287649F4C8B36A4	2025-11-01	7
	1083	02A8F7EE472C94D5	2025-10-14	6
	1379	03557FA66351298A	2025-10-14	4
	1823	048B830142BD9EBF	2025-10-17	7
	97476	FBAB358739E60963	2025-10-29	2
	97758	FC6E828AC08F4AEA	2025-10-22	7
	98318	FDF95C769A11F3A7	2025-10-29	7
	98321	FDF9FB3CF5ACD148	2025-10-14	7
	98504	FE5E9A0DA832F1A3	2025-10-14	3

245 rows × 3 columns

• Изучим все данные таблицы sessions_test для одного пользователя с несколькими сессиями в один день, например, для первого пользователя из user_duplicat:

Out[49]:		user_id	session_id	session_date	session_start_ts	install_date	session_number	registration_flag	page_counter	region	device	test_
	66606	024817D675AECE70	7039FBB66A21CDB6	2025-11-01	2025-11-01 21:34:04	2025-10-17	1	0	3	MENA	Mac	
	34174	024817D675AECE70	194B02763BDCED9F	2025-11-01	2025-11-01 05:01:05	2025-10-17	2	0	7	MENA	Mac	
	8169	024817D675AECE70	A5A3EE1EE693A8D0	2025-11-01	2025-11-01 19:33:37	2025-10-17	3	0	4	MENA	Mac	
	32110	024817D675AECE70	8B6FD0BCFEDE4110	2025-11-01	2025-11-01 12:16:31	2025-10-17	4	0	6	MENA	Mac	
	70472	024817D675AECE70	FF778CE5C77306DD	2025-11-01	2025-11-01 17:10:55	2025-10-17	5	0	3	MENA	Mac	
	97935	024817D675AECE70	63FAE096CE68B039	2025-11-01	2025-11-01 11:30:21	2025-10-17	6	0	5	MENA	Mac	
	91732	024817D675AECE70	BOBAAA36CBB8E7C6	2025-11-01	2025-11-01 21:11:24	2025-10-17	7	0	6	MENA	Mac	
	4											-

Обратим внимание, что нумерация сессий не соответствует реальному времени их начала, например, сессия № 1 началась гораздо позже (в 21:34), чем сессия № 2 (05:01). Вероятно номер сессии формируется не по времени, а в порядке регистрации её в базе данных. Таким образом, использовать номер сессий для их фильтрации нельзя.

• В таблице sessions_test оставим только по одной сессии для пользователя в день. Для пользователей с несколькими сессиями в день - оставим только первые, при этом первой сессией будем считать более ранюю по времени.

Отсортируем данные по идентификатору пользователя user_id , по дате сессии session_date и по старту сессии session_start_ts в порядке возрастания, чтобы более раннии сессии были первыми. Дубликатами будем считать записи с одинаковыми идентификаторами и датами. Удалим дубликаты, оставив только первые записи, то есть более раннии сессии:

```
In [50]: # Сортируем данные и удаляем дубликаты
sessions_test_cleaned = sessions_test.sort_values(by=['user_id', 'session_date', 'session_start_ts']\
).drop_duplicates(subset=['user_id', 'session_date'], keep='first')
```

Проверим результат и выведем количество пользователей с несколькими сессиями в день:

```
In [51]: # Группируем и агрегируем данные
         # Проверяем условие и подсчитываем истинные значения
         (sessions_test_cleaned.groupby(['user_id', 'session_date']).agg({'session_id':'count'}) > 1).sum()
Out[51]: session_id
         dtype: int64
         Теперь данные содержат только по 1 сессии пользователя в день.
In [52]: print('Общее число сессий в первоначальном датафрейме', sessions_test['session_id'].nunique())
         print('Общее число сессий после удаления', sessions_test_cleaned['session_id'].nunique())
         print('Количество удаленных сессий', sessions_test['session_id'].nunique() - sessions_test_cleaned['session_id'].nunique())
        Общее число сессий в первоначальном датафрейме 100005
        Общее число сессий после удаления 99171
        Количество удаленных сессий 834
         Проверим, есть ли пользователи с несколькими регионами и типами устройств:
In [53]: # Группируем и агрегируем данные, проверяем условие и подсчитываем истинные значения
         (sessions_test_cleaned.groupby(['user_id']).agg({'region':'nunique'}) > 1).sum()
Out[53]: region 0
         dtype: int64
In [54]: # Группируем и агрегируем данные, проберяем условие и подсчитываем истинные значения
         (sessions_test_cleaned.groupby(['user_id']).agg({'device':'nunique'}) > 1).sum()
Out[54]: device
         dtype: int64
         За указанный период пользователи не меняли регион и тип устройства.
```

Проверка длительности эксперимента

Определим сколько дней, согласно предоставленным данным, длился эксперимент:

```
In [55]: # Находим количество уникальных дат sessions_test_cleaned['session_date'].nunique()
```

Out[55]: 20

Обратим внимание, что длительность эксперимента меньше расчетного значения в 21 день!

Проверка пересечений пользователей

Проверим, что никто из пользователей случайно не попал в обе группы одновременно. Для этого для каждого пользователя user_id найдем количество уникальных групп test_group и выведем пользователей с количеством групп больше 1:

```
In [56]: # Группируем и агрегируем данные
sessions_test_cleaned.groupby(['user_id']).agg({'test_group':'nunique'}).query('test_group > 1')
```

Out[56]: test_group

user_id

Пользователей, попавших в более чем одну группу нет.

Проверка распределения пользователей по группам

Рассчитаем количество уникальных пользователей в каждой из групп:

```
In [57]: # Группируем и агрегируем данные
sessions_test_cleaned_user = sessions_test_cleaned.groupby(['test_group']).agg({'user_id':'nunique'})

# Переименовываем столбец на более подходящее имя
sessions_test_cleaned_user.columns = ['user_count_uniq']
sessions_test_cleaned_user
```

user_count_uniq

test_group

Out[57]:

A 15163B 15416

Убедимся, что дисбаланс между группами (15 163 и 15 416) — это случайность, а не ошибка в распределении. Обозначим n_a и n_b - количество пользователей в группах A и B соответственно, а total_observed - общее количество. Воспользуемся хи-квадрат тестом:

```
In [58]: # уровень значимости
alpha = 0.05

# Фактическое распределение
n_a = sessions_test_cleaned_user.loc['A', 'user_count_uniq']
```

```
observed = [n_a, n_b]
         # Планируемое распределение
         total_observed = sessions_test_cleaned_user['user_count_uniq'].sum()
         expected = [total_observed / 2, total_observed / 2]
         chi2, p_value_chi2 = chisquare(observed, f_exp=expected)
         if p_value_chi2 > alpha:
             print(f'p-value=\{p\_value\_chi2:.4f\} > \{alpha\}')
             print('Нулевая гипотеза находит подтверждение - разница между группами незначима! Дисбаланс - это случайность')
             print(f'p-value={p_value_chi2:.4f} < {alpha}')</pre>
             print('∧ Нулевая гипотеза не находит подтверждения - разница между группами значима!')
        p-value=0.1480 > 0.05
        Нулевая гипотеза находит подтверждение - разница между группами незначима! Дисбаланс - это случайность
         Проверим корректность разбиения пользователей по регионам:
In [59]: # Группируем и агрегируем данные
         sessions\_test\_cleaned\_region = sessions\_test\_cleaned.groupby(['region', 'test\_group'])['user\_id'].nunique().unstack(fill\_value=0) \\
         # Посмотрим на таблицу
         sessions_test_cleaned_region
Out[59]: test_group
             region
                CIS 6790 6858
                EU 2373 2369
             MENA 6000 6189
         Используем критерий Пирсона для проверки независимости двух категориальных переменных:
In [60]: # Уровень значимости
         alpha = 0.05
         # Создаем таблицу сопряженности: группы * регионы
         contingency_table = sessions_test_cleaned_region.T
         print("Таблица сопряженности:\n\n", contingency_table)
         # Хи-квадрат тест на независимость
         chi2, p_value, dof, expected = chi2_contingency(contingency_table)
         # Выводим результат
         print('\nПроверка по регионам:')
         if p_value_chi2 > alpha:
             print(f'p-value={p_value:.4f} > {alpha}')
             print('Распределение между группами корректно, распределение пользователей по группам не зависит от региона!')
             print(f'p-value={p_value:.4f} < {alpha}')</pre>
             print('⚠Есть статистически значимый дисбаланс. Регионы влияют на распределение между группами!')
        Таблица сопряженности:
                            EU MENA
                     CIS
        region
        test_group
                   6790 2373 6000
        В
                   6858 2369 6189
        Проверка по регионам:
        p-value=0.5544 > 0.05
        Распределение между группами корректно, распределение пользователей по группам не зависит от региона!
         Проверим корректность разбиения пользователей по типам устройств:
In [61]: # Группируем и агрегируем данные
         sessions_test_cleaned_device = sessions_test_cleaned.groupby(['device', 'test_group'])['user_id'].nunique().unstack(fill_value=0)
         # Посмотрим на таблицу
         sessions_test_cleaned_device
Out[61]: test_group
                             В
           Android 6796 6982
               Mac 1502 1541
                PC 3830 3849
```

Проверим независимость двух категориальных переменных:

iPhone 3035 3044

n_b = sessions_test_cleaned_user.loc['B', 'user_count_uniq']

```
In [62]: # Уровень значимости
alpha = 0.05
```

```
# Создаем таблицу сопряженности: группы * регионы

contingency_table = sessions_test_cleaned_device.T

print("Таблица сопряженности:\n\n", contingency_table)

# Хи-квадрат тест на независимость

chi2, p_value, dof, expected = chi2_contingency(contingency_table)

# Выводим результат

print('\nПроверка по типам устройств:')

if p_value_chi2 > alpha:
    print(f'p-value={p_value:.4f} > {alpha}')
    print('Pacnределение между группами корректно, распределение пользователей по группам не зависит от типа устройства!')

else:
    print(f'p-value={p_value:.4f} < {alpha}')
    print(' ♠ Ecть статистически значимый дисбаланс. Тип устройства влияет на распределение между группами!')
```

Таблица сопряженности:

```
        device
        Android
        Mac
        PC
        iPhone

        test_group
        6796
        1502
        3830
        3035

        B
        6982
        1541
        3849
        3044
```

Проверка по типам устройств: p-value=0.8066 > 0.05

Распределение между группами корректно, распределение пользователей по группам не зависит от типа устройства!

Проверим распределение сессий по тестовым группам.

Рассчитаем количество сессий в каждой из групп:

```
In [63]: # Группируем и агрегируем данные sessions_test_cleaned.groupby(['test_group']).agg({'session_id':'nunique'})

# Переименовываем столбец на более подходящее имя sessions_test_cleaned_sessions.columns = ['sessions_count']

sessions_test_cleaned_sessions
```

Out[63]: sessions_count

test_group

A	49242
R	49929

```
In [64]: print(f'Разница между группами: {sessions_test_cleaned_sessions.loc['B', 'sessions_count'] - sessions_test_cleaned_sessions.loc['A', 'sessions_count']
```

Разница между группами: 687

Убедимся, что дисбаланс между группами — это случайность, а не ошибка в распределении. Воспользуемся хи-квадрат тестом:

```
In [65]: alpha = 0.05

# Фактическое pacnpe∂eneнue
observed = [sessions_test_cleaned_sessions.loc['A', 'sessions_count'], sessions_test_cleaned_sessions.loc['B', 'sessions_count']]
total_observed = sessions_test_cleaned_sessions['sessions_count'].sum()

# Планируемое pacnpe∂eneнue
expected = [total_observed / 2, total_observed / 2]

chi2, p_value_chi2 = chisquare(observed, expected)

if p_value_chi2 > alpha:
    print(f'p-value={p_value_chi2:.4f} > {alpha}')
    print('Hyлевая гипотеза находит подтверждение - разница между группами незначима!')
else:
    print(f'p-value={p_value_chi2:.4f} < {alpha}')
    print(' ▲ Нулевая гипотеза не находит подтверждения - разница между группами значима!')
```

p-value=0.0291 < 0.05

▲ Нулевая гипотеза не находит подтверждения - разница между группами значима!

Тест показал, что разница в количестве сессий между группами (687 сессий) статистически значима. Рассчитаем процентную разницу между группами:

```
In [66]: # Подготовим данные
count_sessions_a = sessions_test_cleaned_sessions.loc['A', 'sessions_count']
count_sessions_b = sessions_test_cleaned_sessions.loc['B', 'sessions_count']
# Производим расчет
percentage_difference = 100 * fabs(count_sessions_a - count_sessions_b) / count_sessions_a
# Выбодим результат
print(f'Процентная разница в количестве сессий в группах А и В: {round(percentage_difference,3)}%')
```

Процентная разница в количестве сессий в группах А и В: 1.395%

Проверим распределение сессий по регионам

```
In [67]: # Группируем и агрегируем данные sessions_test_cleaned_groupby(['region', 'test_group'])['session_id'].nunique().unstack(fill_value=0)
```

```
sessions_test_cleaned_region
Out[67]: test_group
                     Α
            region
              CIS 22025 22302
              EU
                  7696
                        7672
            MENA 19521 19955
```

Используем критерий Пирсона для проверки независимости двух категориальных переменных:

```
In [68]: # Уровень значимости
         alpha = 0.05
         # Создаем таблицу сопряженности: группы * регионы
         contingency_table = sessions_test_cleaned_region.T
         print("Таблица сопряженности:\n\n", contingency_table)
         # Хи-квадрат тест на независимость
         chi2, p_value, dof, expected = chi2_contingency(contingency_table)
         # Выводим результат
         print('\nПроверка по регионам:')
         if p_value > alpha:
             print(f'p-value={p_value:.4f} > {alpha}')
             print('Распределение между группами корректно, распределение сессий по группам не зависит от региона!')
         else:
             print(f'p-value={p_value:.4f} < {alpha}')</pre>
             print('⚠ Есть статистически значимый дисбаланс. Регионы влияют на распределение между группами!')
```

Таблица сопряженности:

Посмотрим на таблицу

```
CIS EU MENA
region
test_group
          22025 7696 19521
          22302 7672 19955
```

Проверка по регионам:

p-value=0.4105 > 0.05

Распределение между группами корректно, распределение сессий по группам не зависит от региона!

Проверим корректность разбиения сессий по типам устройств:

```
In [69]: # Группируем и агрегируем данные
         sessions_test_cleaned_device = sessions_test_cleaned.groupby(['device', 'test_group'])['session_id'].nunique().unstack(fill_value=0)
         # Посмотрим на таблицу
         sessions_test_cleaned_device
```

```
Out[69]: test_group
                     Α
           device
          Android 22062 22713
             Mac 4925 4991
              PC 12387 12408
```

iPhone 9868 9817

Используем критерий Пирсона для проверки независимости двух категориальных переменных:

```
In [70]: # Уровень значимости
         alpha = 0.05
         # Создаем таблицу сопряженности: группы * регионы
         contingency_table = sessions_test_cleaned_device.T
         print("Таблица сопряженности:\n\n", contingency_table)
         # Хи-квадрат тест на независимость
         chi2, p_value, dof, expected = chi2_contingency(contingency_table)
         # Выводим результат
         print('\nПроверка по регионам:')
         if p_value > alpha:
             print(f'p-value={p_value:.4f} > {alpha}')
             print('Распределение между группами корректно, распределение пользователей по группам не зависит от типа устройства!')
             print(f'p-value={p_value:.4f} < {alpha}')</pre>
             print('⚠Есть статистически значимый дисбаланс. Тип устройства влияет на распределение между группами!')
```

```
Таблица сопряженности:
```

```
    device
    Android
    Mac
    PC
    iPhone

    test_group
    F
    12387
    9868

    A
    22062
    4925
    12387
    9868

    B
    22713
    4991
    12408
    9817
```

Проверка по регионам: p-value=0.1514 > 0.05

Распределение между группами корректно, распределение пользователей по группам не зависит от типа устройства!

Распределение количества сессий для каждого дня и обеих тестовых групп.

• Подготовим данные и сохраним в sessions_test_cleaned_agg количество сессий за каждый день для каждой тестовой группы:

```
In [71]: # Группируем и агрегируем данные sessions_test_cleaned.groupby(['session_date','test_group']).agg({'session_id':'nunique'}).unstack(fill_value=0) # Выводим результат sessions_test_cleaned_agg
```

Out[71]: session_id

```
test_group A
                   В
session_date
 2025-10-14 1477 1466
 2025-10-15 2220 2262
 2025-10-16 3255 3214
 2025-10-17 4070 4028
 2025-10-18 4999 5038
 2025-10-19 6532 6763
 2025-10-20 5822 6076
 2025-10-21 3919 3972
 2025-10-22 3062 3093
 2025-10-23 2459 2529
 2025-10-24 2082 2064
 2025-10-25 1888 1797
 2025-10-26 1658 1678
 2025-10-27 1449 1486
 2025-10-28 1258 1270
 2025-10-29 1053 1104
 2025-10-30 871
                  863
 2025-10-31 622
                  639
 2025-11-01 408 447
 2025-11-02 138 140
```

```
In [72]: # Удалим нулевой уровень индексов строк sessions_test_cleaned_agg.droplevel(0, axis=1) sessions_test_cleaned_agg
```

```
Out[72]:
                              В
          test_group
         session_date
           2025-10-14 1477 1466
          2025-10-15 2220 2262
           2025-10-16 3255 3214
           2025-10-17 4070 4028
           2025-10-18 4999 5038
           2025-10-19 6532 6763
           2025-10-20 5822 6076
           2025-10-21 3919 3972
           2025-10-22 3062 3093
           2025-10-23 2459 2529
           2025-10-24 2082 2064
           2025-10-25 1888 1797
           2025-10-26 1658 1678
           2025-10-27 1449 1486
           2025-10-28 1258 1270
           2025-10-29 1053 1104
                      871
           2025-10-30
                            863
           2025-10-31
                      622
                            639
           2025-11-01
                      408
                            447
           2025-11-02 138
                           140
```

• Построим визуализацию для каждой группы:

```
In [73]: # Зададим размер фигуры
plt.figure(figsize=(8,3))

# Строим линейный график
plt.plot(sessions_test_cleaned_agg, marker='o', label=['rpynna A', 'rpynna B'])

# Отображаем легенду
plt.legend()

# Настраиваем название и подписи осей
plt.title('Динамика числа уникальных сессий пользователей\n')
plt.xlabel('Дата наблюдения')
plt.ylabel('Число сессий')

#
plt.xticks(sessions_test_cleaned_agg.index, rotation=90)

# Добавим сетку
plt.grid()

# Отображаем график
plt.show()
```

Динамика числа уникальных сессий пользователей

Наблюдается рост и падение числа сессий в обеих группах. Рост числа сессий вероятно говорит о проведенно маркетинговой акции. Метрики демонстрирует одинаковую динамику.

Вывод

- Датафрейм sessions_test_cleaned содержит информацию по одной сессии в день для каждого пользователя, при этом каждый пользователь относится только к одному региону и имеет один тип устройства.
- Длительность эксперимента составляет не полные 3 недели 20 дней.
- Группы не пересекаются по пользователям. Пользователи корректно распределены по группам: сбалансированы по типам устройств и регионам.
- Размеры групп больше запланированного объема (17441) примерно в 3 раза: группа А 49242 наблюдения, группа В 49929.
- Между группами А и В существует разница в распределении сессий (687 сессий) и она, согласно тесту, статистически значима. Эта разница не связана с регионом проживания пользователей и с типами устройств. Однако график динамики числа сессий по дням показывает внешнее воздействие на обе группы пользователей в течение эксперимента, что могло искусственно увеличить число сессий. Фактический прирост числа сессий в группе В составил всего 1,395% незначительный с практической точки зрения.

Анализ ключевых метрик

Сравнение доли успешных сессий

Анализ ключевой метрики — доли успешных сессий.

Paccчитаем долю успешных сессий good_session для выборок A и B, а также разницу в этом показателе:

```
In [74]: # Расчитаем долю успешных сессий
         sessions_test_cleaned_good_session = sessions_test_cleaned.groupby('test_group')['good_session'].value_counts(normalize=True).unstack(fill_value=0).1
         sessions_test_cleaned_good_session
Out[74]:
           test group
                             Α
         good_session
                    0 0.692965 0.686635
                    1 0.307035 0.313365
In [75]: # Удаляем строку с неуспешными сессиями
         sessions_test_cleaned_good_session = sessions_test_cleaned_good_session.drop([0], axis=0)
In [76]: # Переведем в проценты
         sessions_test_cleaned_good_session = round(sessions_test_cleaned_good_session * 100, 3)
         sessions_test_cleaned_good_session
Out[76]:
           test_group
         good_session
                    1 30.703 31.336
In [77]: # Расчитаем разницу долей успешных сессий
         sessions_test_cleaned_good_session['delta'] = (sessions_test_cleaned_good_session['B'] - sessions_test_cleaned_good_session['A']).round(2)
         display(sessions test cleaned good session)
         good_session_a = sessions_test_cleaned_good_session.loc[1, 'A']
         good_session_b = sessions_test_cleaned_good_session.loc[1, 'B']
         good_session_delta = sessions_test_cleaned_good_session.loc[1, 'delta']
         print(f'Доля успешных сессий группы A: {good_session_a}%')
         print(f'Доля успешных сессий группы В: {good session b}%')
         print(f'Разница в долях (delta) групп A и B : {good_session_delta}%')
         # Производим расчет
         percentage_difference = 100 * fabs(good_session_a - good_session_b) / good_session_a
         # Выводим результат
         print(f'Процентная разница в количестве успешных сессий в группах A и B: {round(percentage_difference,3)}%')
                                 B delta
          test aroup
        good_session
                  1 30.703 31.336 0.63
        Доля успешных сессий группы А: 30.703%
```

Проверка статистической значимости изменения ключевой метрики

Процентная разница в количестве успешных сессий в группах А и В: 2.062%

Согласно расчетов, количество успешных сессий в тестовой выборке примерно на 0.63% выше, чем в контрольной, однако делать выводы только на основе этого значения будет некорректно. Для принятия решения проверим, является ли это изменение статистически значимым.

Сформулируем гипотезу: доля успешных сессий после внедрения нового алгоритма рекомендаций увеличится. В качестве основной метрики выбираем долю успешных сессий.

Обозначим за {pA,pB} доли успешных сессий в группах А и В. Тогда гипотезы будут выглядеть так:

```
• H0: pA >= pB
```

Доля успешных сессий группы В: 31.336% Разница в долях (delta) групп A и В : 0.63% • H1: pA < pB

Гипотеза касается долевых метрики, поэтому будем использовать z-тест пропорций:

• Проверим, выполняется ли предпосылка Z-теста пропорций о достаточном размере выборок. Для этого посчитаем количество сессий в каждой группе и количество успешных сессий в них.

```
In [78]: # Найдем размер выборок
         n_a = sessions_test_cleaned[sessions_test_cleaned['test_group'] == 'A'].shape[0]
         n_b = sessions_test_cleaned[sessions_test_cleaned['test_group'] == 'B'].shape[0]
         # Найдем количество успешных сессий
         m_a = sessions_test_cleaned[(sessions_test_cleaned['test_group'] == 'A') & (sessions_test_cleaned['good_session'] == True)].shape[0]
         m_b = sessions_test_cleaned[(sessions_test_cleaned['test_group'] == 'B') & (sessions_test_cleaned['good_session'] == True)].shape[0]
         # Рассчитаем доли успехов для каждой группы
         pa = ma/na
         p_b = m_b/n_b
         print(f'Число сессий n_a={n_a}, n_b={n_b}')
         print(f'Число успешных сессий m_a={m_a}, m_b={m_b}')
         print(f'Доли успехов p_a={p_a}, p_b={p_b}')
         if (p_a*n_a > 10) and ((1-p_a)*n_a > 10) and (p_b*n_b > 10) and ((1-p_b)*n_b > 10):
             print('Предпосылка о достаточном количестве данных выполняется!')
         else:
             print('▲Предпосылка о достаточном количестве данных НЕ выполняется!')
        Число сессий n a=49242, n b=49929
```

Число сессий n_a=49242, n_b=49929 Число успешных сессий m_a=15119, m_b=15646 Доли успехов p_a=0.3070346452215588, p_b=0.31336497826914217 Предпосылка о достаточном количестве данных выполняется!

• Рассчитаем размер эффекта - индекс Cohen's h для сравнения двух пропорций:

```
In [79]: # Υροβεμь значимости
alpha = 0.05

# Считаем размер эφφεκπа
effect_size = proportion_effectsize(p_a, p_b)

print(f"Pasмep эφφεκτα Cohen's h: {(effect_size):.6f}")
```

Размер эффекта Cohen's h: -0.013685

Знак указывает, что эффект в группе В лучше, однако он крайне мал |0.014| < 0.2

• Рассчитаем фактическую мощность:

```
In [80]: # Считаем соотношение размеров групп
ratio = n_b / n_a

# Считаем фактическую мошность

power = zt_ind_solve_power(
    effect_size=effect_size,
    nobs1=n_a,
    alpha=alpha,
    ratio=ratio
)

print(f"Мощность теста: {power:.2f}")
```

Мощность теста: 0.58

Несмотря на большие выборки, мощность теста недостаточна. Вероятность обнаружить разницу, если она есть, составляет 58%

• Применяем Z-тест пропорций для проверки гипотезы:

pvalue=0.01559250114478942 < 0.05 <u>№</u> Нулевая гипотеза не находит подтверждения!

Изменение количества успешных сессий в тестовой выборке на + 0.63%, чем в контрольной, является статистически значимым.

Вывод по результатам А/В-эксперимента

1).В рамках эксперимента проверялась гипотеза о положительном влиянии нового алгоритма рекомендации на вовлеченность пользователей. Ключевая метрика: доля успешных сессий, т.е. сессий в рамках которых было просмотрено 4 или более страниц контента.

2).Дизайн эксперимента:

- уровень значимости в эксперименте был выбран на уровне 5%;
- планируемая мощность теста 80%;
- минимальный детектируемый эффект 3%;
- расчетный размер выборок- 17441 наблюдений для каждой группы;
- планируемая длительность эксперимента 3 недели

3).Аудитория:

- в эксперименте участвуют пользователи 3 регионов: CIS, EU и MENA
- 4 типа устройств: Android, Mac, PC и iPhone.

4). Фактическая длительность:

• эксперимент проводился на протяжении не полных трех недель - 20 дней: с 2025-10-14 (вторник) по 2025-11-02 (воскресенье).

5). Фактический размер групп:

- размеры групп больше запланированного объема примерно в 3 раза: группа A - 49242 наблюдения, группа B - 49929.
- между группами существует статистически значимая разница: + 687 сессий в группе В.

В результате проведенного анализы было выявлено:

- внедрение нового алгоритма рекомендаций статистически значимо (полученное значение pvalue=0.0156) улучшило метрику на 0.63% (относительный прирост составил +2.06% к базовой конверсии). Но размер эффекта Cohen's крайнне мал (0.0137) и изменение метрики не достигает запланированного MDE в 3%, что указывает на сомнительную практическую значимость внедрение может не окупить затраты;
- в процессе эксперимента наблюдалось внешнее воздействие на обе группы пользователей, что могло искусственно увеличить число сессий и исказить результаты;
- не смотря на большие объемы выборок, мощность теста составляет 58% и недостаточна для надежных выводов.

Таким образом, результаты не позволяют сделать однозначный вывод о преимуществах нового алгоритма. Полагаться на результаты эксперимента и внедрять новый алгоритм рекомендаций стоит крайне осторожно. При высоких затратах на нововведение эффект может не окупиться. Рекомендую провести дополнительные исследования и проверить эффект на подгруппах (по регионам и типам устройств) или проверить эффект на новых данных, предварительно устранив влияние внешних факторов, и повысить мощность теста путем увеличения выборки или длительности эксперимента.