Atividade 2 - Radiciação

Matemática

9

Nome: n°: data: 9° ano

Exercício 1. Calcule

a)
$$\sqrt{2}\cdot\sqrt{2}\cdot\sqrt{8}$$

b)
$$\sqrt{3}\cdot\sqrt{12}$$

c)
$$\sqrt{144} \cdot 2\sqrt{25}$$

d)
$$\sqrt{125} \div \sqrt{5}$$

e)
$$\frac{\sqrt{332}}{\sqrt{83}}$$

f)
$$\sqrt{9 + 16}$$

h)
$$\sqrt{72 + \sqrt{81}}$$

i)
$$\frac{\sqrt[5]{11^2} \cdot \sqrt[5]{11^3}}{\sqrt[5]{11^4} \cdot \sqrt[5]{11}}$$

Exercício 2¹. Nesse exercício, vamos ver o que acontece quando somamos radicais de mesmo radicando. Recorde o que acontece quando somamos variáveis:

$$x + x = 2x$$

 $2a + 3a = 5a$
 $3m + 2n + 5m - 4n = 8m - 2n$

Algo semelhante vai se passar com os radicais. Simplifique:

a)
$$\sqrt{2} + \sqrt{2}$$

b)
$$\sqrt{11} + \sqrt{11}$$

c)
$$2\sqrt{2} + 3\sqrt{2}$$

d)
$$3\sqrt{5} + 2\sqrt{7} + 5\sqrt{5} - 4\sqrt{7}$$

Exercício 3². Agora, para realizar a soma dos radicais, você terá que simplificá-los antes. Aproveite algumas simplificações já feitas no exercício 02.18.

a)
$$\sqrt{3 \cdot 5^2} + \sqrt{3 \cdot 7^2}$$

b)
$$\sqrt{27} + \sqrt{75}$$

c)
$$4\sqrt{27} - 2\sqrt{75}$$

¹ Igual ao 02.19 da apostila

² Igual ao 02.20 da apostila

d)
$$\sqrt[3]{81} + \sqrt[3]{24}$$

e)
$$2\sqrt{20} - \sqrt{80}$$

f)
$$\sqrt{\frac{7}{25}} + \sqrt{343}$$

Exercício 4. Para se afinar um piano, como fizeram recentemente na escola, é preciso ajustar a tensão de cada corda de modo que a frequência com que elas vibram corresponda à nota que devem soar. A frequência com que uma nota vibra é medida em hertz (Hz), o que quer dizer "oscilações por segundo". A nota lá do meio do piano, por exemplo, corresponde à frequência de 440 Hz.

Além disso, é necessário que a frequência com que uma nota vibra seja igual à frequência da nota anterior multiplicada pela raiz décima segunda de 2. A nota lá sustenido (a próxima nota, depois do lá) deve vibrar com frequência $440 \cdot \sqrt[12]{2}$. Veja um esquema:

Nota	Lá	Lá sustenido	Si	Dó
Frequência (Hz)	440	$440\cdot\sqrt[12]{2}\cdot\sqrt[12]{2}$	$\boxed{ 440 \cdot \sqrt[12]{2} \cdot \sqrt[12]{2} \cdot \sqrt[12]{2} }$	$440\cdot\sqrt[12]{2}\cdot\sqrt[12]{2}\cdot\sqrt[12]{2}\cdot\sqrt[12]{2}$

a) Dizemos que uma nota está a uma **oitava** de outra quando elas estão a 12 notas de distância. Ou seja, quando uma nota está 12 à frente da outra. Qual deve ser a frequência de vibração de uma nota que está a uma oitava do lá (440 Hz)?

b) Semelhantemente, dizemos que uma nota está a **duas oitavas** de outra quando elas estão a 24 notas de distância, ou então, uma está 24 notas à frente da outra. Qual deve ser a frequência de vibração da nota que está a duas oitavas do lá (440 Hz)?

c) Dizemos que uma nota está a uma **quinta** de outra quando elas estão a 7 notas de distância. Qual deve ser a frequência de vibração da nota que está a uma quinta do lá (440 Hz)? Dê a resposta em forma de radical.