Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Contents

- Review : rules for eval.
 Review : represent to s://eduassistpro.github.io/
- β -reduction, nam
- Reduction strategies and the Church Rosser theorem
 Different kinds of Conference Charles of Charles of

Review: rules for evaluation

- α -reduction
- β-reduction https://eduassistpro.github.io/
- η -reduction
- δ-rules there is a separate δ-rule for each operator (suc u_assist_prosuper that 3 + 4 evaluates to 7

•

Review : η -reduction example

Assignment Project Exam Help

https://eduassistpro.github.io/

Äďď WeChat edu_assist_pro

Review: representing numbers

- In the pure type-free λ -calculus there are no constants.
- In the previous lectu $\lambda f. \lambda x. (f x).$
- This extends to https://eduassistpro.gith(Ufb))io/
 What makes this an to merform
- arithmetic on these representation. For example, it is possible to wr $\lambda x. \lambda v. E$ that will take a representation of the number 1 and a representation of the num to return a representation of the vulber 3. hat edu_assist_pro

 • Challenge — can you write the λ-calculus function for ad
- numbers?

Name Clashes

- Using a normal orde the rule $(\lambda x.E) \stackrel{z}{\sim} \rightarrow \text{https://eduassistpro.githup}_{\text{in}} \stackrel{\text{the rule}}{\circ} \stackrel{\text{the rule$

• NB : E[z/x] means "for each *free* occurrence of x in E replace that x with z". It can help to annotate each occurrence of x according to whether it is bound or free, as follows : $E = ((\lambda x.(x_{bound} + 3))(x_{free} + 4))$. Thus, the correct reduction result is $((\lambda x.(x + 3))(5 + 4))$

Free Variable Capture

- For Assignment Project Exam Help
- Consider the "free variable capture" problem as demonstrated by the following example subexpression wh
 ee: 1

https://eduassistpro.github.io/

- So β -reduction needs to be more sophisticated in the way that it operates.

^{1.} Assume this subexpression is part of a larger enclosing expression which contains a lambda binding for the second a.

Avoiding Free Variable Capture

- During β -reduce at are bound inside E, t before performing the β -reduction substitution before performing the Thus:
 - $(\lambda f.(\lambda a.(f a))) (\lambda f.(f a))$

Reduction Strategies

- Any expression that matches the left-hand-side of a reduction rule is called a "reducible expression" or "redex"
- An expression continue in the surpression is the surpression in the surpression continue in the surpression cont
- Normal Form is reached.
- Whether an arbitrary expression what Problem). Add WeChatedu_assist_pro
- Many different sequences of reductions are possible how does thi

Church-Rosser Theorem

- The Church-Ross converge on the attps://eduassistpro.github.io/
- $\begin{array}{c} \bullet \text{ Corollary : the Normal Form, for a given expression is unique (if it exists} \\ Add & we chat edu_assist_pro \\ \end{array}$
- So β -reductions can be performed in any order (even in parallel!).

Normalising orders

- Not all reduction str
 - https://eduassistpro.github.io/
- So which should we c
- Normal Order Reduction definiost eatern beat, edu _assist_pro is possible
 - ▶ Strategies that are guaranteed to terminate are called "normalising" reduction orders

Comparing strategies

- Normal Order Reduction
 - Assignment Project Exam Help
 - Safe, but can be slow
 - Similar to "call-by-reference" passing of function arguments (though simple implementations can suffer from du

https://eduassistpro.github.io/

$$(\lambda x.3) ((\lambda x.(x x)) (\lambda x.(x x)))$$
 by β reduction

by
$$eta$$
 reduction

- Applicative Order Reduction WeChat edu_assist_pro
 - Fast, but unsafe (may not terminate)
 - ▶ Similar to "call by value" passing of function arguments

$$(\lambda x.(x+x))$$
 $(3+5)$ \rightarrow by δ reduction \rightarrow $(\lambda x.(x+x))$ 8

$$(\lambda x.3)$$
 $((\lambda x.(x x)) (\lambda x.(x x))) \rightarrow by \beta reduction \rightarrow (\lambda x.3) ((\lambda x.(x x)) (\lambda x.(x x)))$

Different kinds of Normal Form

Assignment Project Exam Help

• Practical implem ation)

https://eduassistpro.github.io/

- Weak Head Norm
 on the journey to full Normal Form
- The definitions consider all possible syntactic variants of all expressions and the simple labely and λ-talculus only labels and unction definition).

^{2.} If we were to add data constructors to the lambda calculus (which is not strictly necessary), we would extend the definitions appropriately.

Assignment Project Exam Help

An expression is in Normal

- Variable: x is in https://eduassistpro.github.io/
- Application : M

t a lambda abstraction

• Abstraction : $(\lambda x.E)$ is in Normal Form if E is in Normal Normal Form is unique. Add WeChat edu_assist_pro

Definition Assignment Project Exam Help An expression M is in Head Normal Form if it is of the form

 $M \equiv \lambda x_1 \dots x_n \cdot x N$

Note that in the about the ps://eduassistpro.github.io/

- Application : $xN_1 \dots N_m$ is in Head Normal Form (consider
- Abstraction : λx. Ais in Head Wormal Comfif at in Edu_assist_pro

^{3.} We assume that the variable x will be bound to a lambda abstraction by some enclosing expression — here we just consider whether this subexpression is in HNF.

Definition Assignment Project Exam Help An expression M is in Weak Head Normal Form if it is of one of the following two forms:

$$M \equiv \lambda x_1 \dots x_n \cdot x N$$

or

 $M = \lambda \times N$

https://eduassistpro.github.io/

- Variable: x is in Weak Head Normal Form
- Application: xN is in Weak Head Normal Form
 Abstraction: xxE is in W

Weak Head Normal Form is not unique.

Examples

Assignment Project Exam Help

HNF

https://eduassistpro.github.io/

NF

Add WeChat edu_assist_pro

 $\lambda x.(+11)$

Summary

- Review: rules frattps://eduassistpro.github.io/
- Deduction strategies and the Chamb Decree there
- Reduction strategies and the Church Rosser theorem
- Different kinds of Nordal Or We Chat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro