PARTIE I: OBJETS INTELLIGENTS

Qu'est-ce qu'un Objet Intelligent?

Objet intelligent = Internet des choses = web des objets = web des choses = objets coopérants → même type de technologies fondamentales.

Qu'est-ce qu'un Objet Intelligent ?

- Un objet intelligent est un appareil équipé de capteurs, d'actionneurs, d'un petit microprocesseur, d'une interface de communication et d'une alimentation.
 - Capteur ou actionneur: permets d'interagir avec le monde extérieur
 - Microprocesseur: transforme les données acquises par les capteurs
 - Interface de communication: transmets les valeurs des capteurs et reçois des informations d'autres objets intelligents
 - Alimentation: fournis l'énergie électrique nécessaire au fonctionnement
- Propriétés communes à tous les objets intelligents:
 - Interaction avec le monde extérieur:
 - Acquérir des informations avec leurs capteurs
 - Influencer le monde extérieur avec leurs actionneurs
 - Communication → réseau d'objets intelligents

D'où viennent les Objets Intelligents ?

Les objets intelligents sont le lien entre l'informatique et la téléphonie; empruntant les techniques des deux domaines.

D'où viennent les Objets Intelligents ?

Systèmes embarqués

- Définition: un ordinateur embarqué dans autre chose qu'un ordinateur.
- Système temps-réel: un système qui répond à une entrée extérieure ou un timer dans un temps donné :
 - Système d'exploitation temps réel
 - Tous les systèmes embarqués n'ont pas de contraintes temps réel
- Les systèmes embarqués et temps réels partagent beaucoup de caractéristiques avec les objets intelligents:
 - Même matériel (les mêmes microcontrôleurs sont utilisés)
 - Contraintes similaires en termes de puissance de calcul et de mémoire
 - Réutilisation des mêmes logiciels
- Mais la communication n'est pas la fonction centrale des systèmes embarqués;
 contrairement aux objets intelligents.

D'où viennent les Objets Intelligents ?

Informatique pervasive et omniprésente

- [Mark Weiser, MIT, 1988]: l'informatique va s'intégrer dans notre quotidien, living in the « woodwork of everywhere » → les ordinateurs sont devenus invisible (par exemple: les vêtements intelligents).
- La plupart des premières recherches et visions de l'informatique omniprésente s'appliquent aux objets intelligents.
- L'informatique omniprésente s'intéresse aux interactions entre celle-ci et les humains, tandis que les objets intelligents ont une approche plus technique.

Challenges pour les Objets Intelligents

Challenges techniques

- Au niveau des nœuds:
 - Consommation énergétique
 - Taille
- Au niveau du réseau:
 - Mécanismes
 - Structures

Challenges non techniques

- Standardisation
- Interopérabilité
 - → IPSO: Internet Protocol for Smart Objects Alliance a été mise en place pour pouvoir répandre les connaissances au sujet des objets intelligents.

PARTIE II: TECHNOLOGIES SANS FIL

Ecosystème de l'IoT

Technologies de Communication sans Fils

- Critères:
 - Portée
 - Consommation
 - Débit
 - Standard
 - Sécurité
 - Maturité / interopérabilité

- Technologies:
 - NFC/RFID
 - WiFi
 - Bluetooth / BLE
 - ZigBee / ANT+
 - 6LoWPAN
 - WirelessHART
 - Z-Wave
 - Cellular (3G/4G/5G)
 - LTE / NB-IoT
 - LoRa
 - Sigfox

Technologies de Communication sans Fils

Technologies de Communication sans Fils

PARTIE III: MODÈLES ET PROTOCOLES

OSI Model (Open Systems Interconnection)

OSI Model (Media Layers)

- La couche <u>physique</u> (Physical) est chargée de la transmission effective des signaux entre les interlocuteurs. Son service est limité à l'émission et la réception d'un bit ou d'un train de bit continu.
- La couche <u>liaison de données</u> (Data Link) gère les communications entre 2 machines directement connectées entre elles, ou connectées à un équipement qui émule une connexion directe.
- La couche <u>réseau</u> (Network) gère les communications de proche en proche, généralement entre machines : routage et adressage des paquets.

Source: wikipedia

OSI Model (Host Layers)

- La couche <u>transport</u> (Transport) gère les communications de bout en bout entre processus (programmes en cours d'exécution).
- La couche <u>session</u> (Session) gère la synchronisation des échanges et les « transactions », permet l'ouverture et la fermeture de session.
- La couche <u>présentation</u> (Presentation) est chargée du codage des données applicatives, précisément de la conversion entre données manipulées au niveau applicatif et chaînes d'octets effectivement transmises.
- La couche <u>application</u> (Application) est le point d'accès aux services réseaux, elle n'a pas de service propre spécifique et entrant dans la portée de la norme.

Source: wikipedia

TCP/IP Model vs OSI Model

	Application
Application	Presentation
	Session
Transport	Transport
Internet	Network
Network Interface	Data Link
NetworkInterface	Physical

6LoWPAN vs OSI Model vs ZigBee

6LoWPAN

User Application

COAP, MQTT, HTTP, JSON, websocket, etc...

TCP, UDP, ICMP

IPv6, RPL

6LoWPAN

IEEE802.15.4

OSI Model

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

ZigBee

User Application

ZCL and ZDO

APS

AODV or MTO / Source Routing

IEEE802.15.4

(Wireless-)HART Model vs OSI Model

OCH Susa	HART				
OSI Layer	Wired FSK/PSK and RS485		Wireless 2.4GHz		
Application	Command Oriente Types and applic				
Presentation					
Session					
Transport	Auto-Segmented Transfer of Large Data Sets, Reliable Stream Transport, Negotiated Segment Sizes				
Network					zed, redundant path reless Mesh Network
Data Link	Mechanical/electrical connection. Transmits raw bit stream		Secure and reliable, time synched TDMA/CSMA, frequency agile /w Arq		
Physical	Simultaneous analog and Digital Signaling. 4-20mA Cooper Wiring		2.4GHz Wireless, 802.15.4 based radios. 10dBm Tx Power		

Bluetooth Model vs OSI Model

Application Layer Presentation Layer Session Layer Transport Layer Network Layer Data Link Layer Physical Layer

Applications RFCOMM / SDP L2CAP Host Controller Interface (HCI) Link Manager (LM) Link Controller Baseband Radio

OSI Reference Model Bluetooth

LoRa Model vs OSI Model

Conclusions