Program Name: Master of Computer Applications

Semester: 2

Paper Title: Data Structures

Submitted by: Anurag Joshi

Examination roll number: 19234757007

Department roll Number: 07

Data Structures Assignments

Assignments:

- 1. Linked List (Assignment-1)
- 2. Heap Questions (Assignment-2)
- 3. Hash Maps and Binary Search Tree (Assignment-3)
- 4. AVL Tree (Assignment -4)
- 5. Programming BST, Heap, AVL Tree, etc (Assignment-5)

Q1. Single Linked List

```
MENU::
1)Add ele to head.
2)Add ele to tail.
3) Add ele in a position.
4)Delete ele from head.
5)Delete ele from tail.
6)Delete ele from a position.
7)Reverse list.
8) Search element and Swap.
9)Exit.
Enter your choice: 1
Enter the info: 3
Element added.
Linked list: 3 -> NULL
MENU::
1) Add ele to head.
2)Add ele to tail.
3) Add ele in a position.
4)Delete ele from head.
5)Delete ele from tail.
6)Delete ele from a position.
7)Reverse list.
8) Search element and Swap.
9)Exit.
Enter your choice: 2
Enter the info: 8
```

```
Element added.
Linked list: 3 -> 8 -> NULL
MENU::
1) Add ele to head.
2)Add ele to tail.
3)Add ele in a position.
4)Delete ele from head.
5)Delete ele from tail.
6)Delete ele from a position.
7)Reverse list.
8) Search element and Swap.
9)Exit.
Enter your choice: 3
Enter the index of the new element: 1
Enter the info: 4
Linked list: 3 -> 4 -> 8 -> NULL
MENU::
1) Add ele to head.
2)Add ele to tail.
3) Add ele in a position.
4)Delete ele from head.
5)Delete ele from tail.
6)Delete ele from a position.
7)Reverse list.
8) Search element and Swap.
9)Exit.
Enter your choice: 7
List is reversed.
```

```
Linked list: 8 -> 4 -> 3 -> NULL
MENU::
1)Add ele to head.
2)Add ele to tail.
3) Add ele in a position.
4)Delete ele from head.
5)Delete ele from tail.
6)Delete ele from a position.
7)Reverse list.
8) Search element and Swap.
9)Exit.
Enter your choice: 8
Enter ele to search: 4
Element found at index 1 is swapped with its previous element.
Linked list: 4 -> 8 -> 3 -> NULL
MENU::
1) Add ele to head.
2)Add ele to tail.
3) Add ele in a position.
4)Delete ele from head.
5)Delete ele from tail.
6) Delete ele from a position.
7)Reverse list.
8) Search element and Swap.
9)Exit.
Enter your choice: 6
Enter the index of the element to be deleted: 1
Element deleted.
```

```
Linked list: 4 -> 3 -> NULL
MENU::
1) Add ele to head.
2)Add ele to tail.
3) Add ele in a position.
4)Delete ele from head.
5)Delete ele from tail.
6)Delete ele from a position.
7)Reverse list.
8) Search element and Swap.
9)Exit.
Enter your choice: 4
Linked list: 3 -> NULL
MENU::
1)Add ele to head.
2)Add ele to tail.
3)Add ele in a position.
4)Delete ele from head.
5)Delete ele from tail.
6)Delete ele from a position.
7)Reverse list.
8) Search element and Swap.
9)Exit.
Enter your choice: 5
Linked list: Empty
```

Q2. Doubly Linked List

Output:

MAIN MENU 1. Add to node to head 2. Add a node to tail 3. Print the list 4. Print the list in reverse 5. Search for an element 6. Delete a node from head 7. Delete a node from tail 8. Delete a node from a position 11. Exit Enter your choice: 4 Reversed list: 3 5 7 Program for Unordered Double Linked List MAIN MENU 1. Add to node to head 2. Add a node to tail 3. Print the list 4. Print the list in reverse 5. Search for an element 6. Delete a node from head 7. Delete a node from tail 8. Delete a node from a position 9. Delete a node with a given value 10. Add a node at a given position 11. Exit Enter your choice: 5 Enter the element to search: 7 Element found Program for Unordered Double Linked List MAIN MENU 1. Add to node to head 2. Add a node to tail 3. Print the list 4. Print the list in reverse 5. Search for an element 6. Delete a node from head 7. Delete a node from tail 8. Delete a node from a position 9. Delete a node with a given value 10. Add a node at a given position 11. Exit Enter your choice: 9

Enter the value of the node to be deleted: 5 List: 7 3 Program for Unordered Double Linked List MAIN MENU 1. Add to node to head 2. Add a node to tail 3. Print the list 4. Print the list in reverse 5. Search for an element 6. Delete a node from head 7. Delete a node from tail 8. Delete a node from a position 9. Delete a node with a given value 10. Add a node at a given position 11. Exit Enter your choice: 6 Element deleted from head List: 3 Program for Unordered Double Linked List MAIN MENU 1. Add to node to head 2. Add a node to tail 3. Print the list 4. Print the list in reverse 5. Search for an element 6. Delete a node from head 7. Delete a node from tail 8. Delete a node from a position 9. Delete a node with a given value 10. Add a node at a given position 11. Exit Enter your choice: 7 Element deleted from tail

List: List is empty.

Q3. Circular Linked List

```
MENU::
1) Add node
2) Remove node
3) Print Front
4) Print Back
5) Advance
6)Traverse list
7)Exit.
Enter your choice: 1
Enter the info: 4
Circular List-> 4
MENU::
1) Add node
2) Remove node
3)Print Front
4) Print Back
5) Advance
6)Traverse list
7)Exit.
Enter your choice: 1
Enter the info: 6
Circular List-> 6 4
MENU::
1) Add node
2) Remove node
3) Print Front
```

```
4) Print Back
5) Advance
6)Traverse list
7)Exit.
Enter your choice: 1
Enter the info: 8
Circular List-> 8 6 4
MENU::
1)Add node
2)Remove node
3) Print Front
4) Print Back
5) Advance
6)Traverse list
7)Exit.
Enter your choice: 3
Front element is 8
MENU::
1) Add node
2)Remove node
3)Print Front
4) Print Back
5) Advance
6)Traverse list
7)Exit.
Enter your choice: 4
Back element is 4
```

```
MENU::
1) Add node
2) Remove node
3) Print Front
4) Print Back
5) Advance
6)Traverse list
7)Exit.
Enter your choice: 2
Circular List-> 6 4
MENU::
1) Add node
2) Remove node
3) Print Front
4) Print Back
5) Advance
6)Traverse list
7)Exit.
Enter your choice: 5
Circular List-> 4 6
```

Q4. Rearrange the given array such that even numbers come before odd numbers.

```
Enter Size of the array: 10

Enter the elements of the array: 6 3 9 7 1 2 4 0 5 8

Rearranged array: 6 8 0 4 2 1 7 5 9 3
```

Q5. Reverse String Using Recursion.

```
Enter the string: We shall overcome one day
Reversed String: yad eno emocrevo llahs eW
```


Submitted by:	
D	sta Structure Assignment - 3
01 5017 120	1 8 12 25 27 6 18 3 Leight = 10
Keys	H (i)
=======================================	1 % 10 = 1
3	9.1.10 = 9
12	144 1/310 = 9
4	16 % 10 = 6
25	6)< 1/10 = 5
6	360/310 = 6 $(36+1)$ = 7
18	324 /010 = 4 => 45, 47 occupied >> 8
20	900-/010 = 0
8	84 %= 4 => (4+8) med 10 = 2
	$\begin{array}{l} \text{upto } k = 7 \text{no place is empty that is} \\ = 8 \\ (3 + k) \cdot 10 = (4 + 8) \cdot 10 \\ = 120/510 = 2 \end{array}$
Maximum	prole value => 8.
	table given below:
140	1 2 2 4 5 6 7 8 9

K	4, (K)	H ₂ (K)	Дн)H(K) if heided.		
•			i=0	[i=1	1 i=2	i=3
23	3	8	. 3	1.45	6.0	103
91	1 (41)	4	l			
12	7	2	2			
40	0	1	0			
50	0	3	0	3	6	
60	0	2	0	2		
63	2	7	2.	9		
	1 = 1 - 1 -	L		1		
No.	of collision	3	(i=0)	, 1 (i=1	
				•		
£	r 50,	ī=0 (·	reales	Collist-~		
	1	i=1 D(nto Dr	1(K) = (5+1 *3)	1.10=
2		i= 2				%10=
1			190			
	60	io (real	es Coll	ision		
fen					•	
ten		=1 (6+	-1 x5) °/0	10 - 5		
Fen	·	=1, (6+	1 22) %	00 - 5		
	Ţ.			00 = 5	1	
	or 62,	i=0 (611;	sm)	j = 4-5		1.10=9
	or 62,		sm)	j = 4-5		1-10=9
	or 62,	i=0 (colli	8m) (k)=(2-	j = 4-5		1.10=9
	or 62,	i=0 (611;	8m) (k)=(2-	j = 4-5		1.10=9
	or 62,	i=0 (colli	8m) (k)=(2-	j = 4-5		1.10=9

Q1. WAP to print postorder traversal of a binary tree from given inorder and preorder traversals.

```
Enter number of nodes in the tree: 8
Enter in order traversal: 6 4 3 8 9 1 2 7
Enter pre order traversal: 1 7 3 8 9 6 4 2
Post Order Traversal: 4 6 9 8 3 2 7 1
```

Q2. WAP to print preorder traversal of a binary tree from given inorder and postorder traversals.

```
Enter number of nodes in the tree: 8
Enter in order traversal: 1 2 3 4 5 6 7 8
Enter post order traversal: 6 5 4 8 7 3 2 1
Pre Order Traversal: 1 2 3 7 4 5 6 8
```

Q3. WAP to create Binary Search Tree and perform insertion and deletion in it.

```
Menu::
1.Insert element in BST.
2.Delete element from BST.
3.Print InOrder traversal.
4.Exit.
```

```
Enter your Choice: 1
Enter value to be inserted: 12
Done.
Menu::
1. Insert element in BST.
2.Delete element from BST.
3.Print InOrder traversal.
4.Exit.
Enter your Choice: 1
Enter value to be inserted: 56
Done.
Menu::
1. Insert element in BST.
2.Delete element from BST.
3.Print InOrder traversal.
4.Exit.
Enter your Choice: 1
Enter value to be inserted: 43
Done.
Menu::
1. Insert element in BST.
2.Delete element from BST.
3.Print InOrder traversal.
4.Exit.
Enter your Choice: 3
```

```
In order traversal: 12 43 56
Menu::
1. Insert element in BST.
2.Delete element from BST.
3.Print InOrder traversal.
4.Exit.
Enter your Choice: 2
Enter value to be deleted: 43
Done.
Menu::
1. Insert element in BST.
2.Delete element from BST.
3.Print InOrder traversal.
4.Exit.
Enter your Choice: 3
In order traversal: 12 56
```

Q4. WAP to implement heapsort (max heap).

```
Enter the size of the array: 8
Input elements of the array: 6 3 7 2 1 9 4 10
Sorted array: 1 2 3 4 6 7 9 10
```

Q5. WAP to implement AVL tree.

```
Menu::
1.Insert Element.
2.Show AVL Tree.
3.Print InOrder traversal.
4.Print PreOrder traversal.
5.Print PostOrder traversal.
6.Exit
Enter your Choice: 1
Enter value to be inserted: 6
Menu::
1. Insert Element.
2.Show AVL Tree.
Print InOrder traversal.
4.Print PreOrder traversal.
<u>5.Print</u> PostOrder traversal.
6.Exit
Enter your Choice: 1
Enter value to be inserted: 4
Menu::
1.Insert Element.
2.Show AVL Tree.
Print InOrder traversal.
4.Print PreOrder traversal.
5.Print PostOrder traversal.
6.Exit
Enter your Choice: 1
Enter value to be inserted: 89
```

```
Menu::
1. Insert Element.
2.Show AVL Tree.
3.Print InOrder traversal.
4.Print PreOrder traversal.
5.Print PostOrder traversal.
6.Exit
Enter your Choice: 1
Enter value to be inserted: 99
Menu::
1. Insert Element.
2.Show AVL Tree.
3.Print InOrder traversal.
4.Print PreOrder traversal.
5.Print PostOrder traversal.
6.Exit
Enter your Choice: 1
Enter value to be inserted: 2
Menu::
1. Insert Element.
2.Show AVL Tree.
3.Print InOrder traversal.
4.Print PreOrder traversal.
5.Print PostOrder traversal.
6.Exit
Enter your Choice: 2
AVL Tree:
```

```
89

Root -> 6

4

2

Menu::
1.Insert Element.
2.Show AVL Tree.
3.Print InOrder traversal.
4.Print PreOrder traversal.
5.Print PostOrder traversal.
6.Exit

Enter your Choice: 3

Inorder Traversal:
2 4 6 89 99
```