TRIGONOMETRY Chapter 22

Signos de las razones trigonométricas

SI TE RINDES CUANDO LAS COSAS SE EMPIEZAN A PONER DIFÍCILES, NUNCA LOGRARÁS ALGO QUE VALGA LA PENA

TRIGONOMETRÍA

SIGNOS DE LAS RAZONES **TRIGONOMÉTRICAS**

Los signos de las razones trigonométricas dependen de los signo de la abscisa (x) y la ordenada (y), ya que el radio vector siempre es positivo(r).

- \triangleright Si $\alpha \in IC$

$$sen \alpha = \frac{y}{r} = \frac{(+)}{(+)} = (+)$$

- \triangleright Si $\alpha \in IIC$

$$\cos \alpha = \frac{x}{r} = \frac{(-)}{(+)} = (-)$$

- \sim Si $\alpha \in IIIC$
- → 180°< α < 270°

$$\tan \alpha = \frac{y}{x} = \frac{(-)}{(-)} = (+$$

- \rightarrow Si $\alpha \in IVC$
 - → 270°< α < 360°</p>

$$sen\alpha = \frac{y}{r} = \frac{(+)}{(+)} = (+) \qquad cos\alpha = \frac{x}{r} = \frac{(-)}{(+)} = (-) \qquad tan\alpha = \frac{y}{x} = \frac{(-)}{(-)} = (+) \qquad csc\alpha = \frac{r}{y} = \frac{(+)}{(-)} = (-)$$

RESUMEN ESTRATÉGICO DE LOS SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS

Ejemplos:

$$\sec 84^{\circ} = (+)$$

$$IC$$

$$\cos 150^{\circ} = (-)$$
IIC

$$\sec 300^{\circ} = (+)$$
IVC

j Excelente!

Del gráfico, indique el signo de tanß

Recuerda:

Resolución:

Como $\beta \in IIIC$

Del gráfico, indique el signo de cscα y cos∅

Recuerda:

Resolución:

Como $\alpha \in IIIC$

 $csc\alpha$ es negativa

Como ∅ ∈ IIC

cosø es negativa

Del gráfico, determine el signo de: $F = \cos\theta \cdot \tan\beta \cdot \csc\alpha$

$$F = (-)(+)(-)$$

$$F = (-)(-)$$

$$\mathbf{F} = (+)$$

Recuerda:

Del gráfico, determine el signo de: $M = \frac{sec\theta}{csc\alpha}$ y $N = \frac{cot\alpha}{cos\theta}$

Resolución:

 \in IVC

$$\mathbf{M} = \frac{\sec \theta}{\csc \alpha} = \frac{(+)}{(+)} = (+)$$

∈ IIC

∈ IIC

$$\mathbf{N} = \frac{\cot \alpha}{\cos \theta} = \frac{(-)}{(+)} = (-)$$

$$\in \mathbf{IVC}$$

Recuerda:

Si $\theta \in IIc$, indique el signo de:

$$M = \sec\theta.\tan\theta$$

 $N = \cot\theta.\cos\theta.sen\theta$

$$\mathbf{P} = \frac{\csc\theta}{\tan\theta}$$

Recuerda:

Resolución:

$$M = \sec \theta \cdot \tan \theta = (-)(-) = (+)$$
(-) (-)

N =
$$\cot\theta$$
. $\cos\theta$. $\sin\theta$ = $(-)(-)(+)$ = $(+)$

$$M = \frac{\csc\theta}{\tan\theta} = \frac{(+)}{(-)} = (-)$$
 iMuy bien!

Determine el signo de $sec(\frac{\theta}{2})$ si se tiene el siguiente gráfico:

Resolución:

 $\theta \in IIIC$

$$/2 180^{\circ} < \theta < 270^{\circ}$$

$$90^{\circ} < \frac{\theta}{2} < 135^{\circ}$$

$$\rightarrow \frac{\theta}{2} \in IIC$$

$$\therefore \sec\left(\frac{\theta}{2}\right) = (-)$$

Recuerda:

∈ IIIC

Dos estudiantes Zamir y Sonia están explicando a su compañero Sebastián el tema realizado en clase, mediante un ejemplo, por eso cada uno plantea una condición para determinar el cuadrante al que pertenece un ángulo trigonométrico.

- Zamir dice: $sen 132^{\circ}$. $tan \alpha < 0$
- Sonia dice: $cos225^{\circ}$. $cos\alpha > 0$

Con estas condiciones. ¿Cuál es el cuadrante al que pertenece el ángulo?

El ángulo pertenece al IIC

