

Devoir de synthèse de Physique

2ème année, Janvier 2018 : Correction et barême

Partie 1 : La cuisson par induction	Points	Tot. Ques- tion
1- Symétries : tout plan de type $(\vec{u}_r, \vec{u}_\theta)$ est plan de symétrie de la distribution		8
de courant. Donc le champ magnétique est perpendiculaire à ce plan.		
$\vec{B_0} = B_z(r, \theta, z) \ \vec{u}_z$	1	
Invariance en θ et z (car solénoïde supposé infini)	1	
$\vec{B_0} = B_z(r) \ \vec{u}_z$		
Pas de courants volumiques dans le solénoïde, on peut donc écrire :	1	
$ec{ abla} \wedge ec{B} = 0$, seule la composante en z n'est pas nulle, elle dépend de r ,		
dong:	1	
$\begin{vmatrix} donc : \\ -\frac{\partial B_z}{\partial r} = 0 \Rightarrow B_z = cte = A \end{vmatrix}$		
La relation de passage en $r = R$ s'écrit :	1	
$ec{u}_r \wedge (ec{0} - B_z ec{u}_z) = \mu_0 ec{k}$		
Il faut définir k :		
On définit une longueur de solénoïde L à travers laquelle passe soit kL		
Ampères, soit LnI Ampères. On a donc :	2	
k = nI		
(Ne pas donner les points si aucune justification)		
La relation de passage devient :	1	
$B_z \vec{u}_\theta = \mu_0 n I \vec{u}_\theta$		
D' où $B_z = \mu_0 nI$		
2- Le flux envoyé par le solénoïde dans lui-même est :		5
$\phi = NB_0\pi R^2$ (car \vec{B}_0 est constant sur toute la surface du solénoïde)	2	
$\phi = N\mu_0 n I \pi R^2 = \frac{\pi \mu_0 N^2 R^2}{I} I$		
(compter 0 si N oublié, mais compter juste dans la question suivante si		
cohérent)		
Par identification de $\phi=L_1i$, on tire :		
$L_1 = \frac{\pi \mu_0 N^2 R^2}{I}$	2	
ι	1	
$A.N.: L_1 = 4.4 \times 10^{-5} H$	1	

3- Le circuit inducteur est alimenté par une tension sinusoïdale, donc variable	2	2
dans le temps. Le courant qui y circule, donc le champ magnétique $ec{B}_0$ sont		
donc aussi variables dans le temps.		
Comme:		
$ec{ abla}\wedgeec{E}=-rac{\partialec{B}}{\partial t}$, alors la variation de $ec{B}_0$ avec le temps en tout point de		
l'inducteur fait apparaître un champ électrique. Le milieu étant conducteur,		
alors une densité de courant apparaît $\vec{j}=\gamma \vec{E}$, donc un courant électrique.		
(3 points pour une explication complète, enlever 1 point pour toute		
imprécision ou élement manquant)		
4- Les équations de Maxwell valables dans ces conditions sont :		6+2
		bonus
$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} = 0$ $\vec{\nabla} \cdot \vec{B} = 0$	1	
$ \vec{\nabla} \cdot \vec{R} = 0$	1	
\vec{r}		
$ec{ abla}\wedgeec{E}=-rac{\partialec{B}}{\partial t} \ ec{ abla}\wedgeec{B}=\muec{j}$	1	
	1	
Justification : Les fréquences considérées restent basses, on peut donc	2	
utiliser l'ARQP. Comme on se trouve dans un métal (conducteur), alors les		
courants de déplacement sont négligeables (voir cours). Il ne reste que les		
courants de conduction.		
(Bonus si les étudiants comparent les amplitudes des courants de conduction		
et de déplacement par un calcul : 2 points)		
5- On $a: \vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t} \Rightarrow \frac{1}{r} \frac{\partial (rE_{\theta})}{\partial r} - \frac{1}{r} \frac{\partial E_r}{\partial \theta} = -\frac{\partial B_z}{\partial t}$	1	8
Seule la composante orthoradiale est non nulle et \vec{E} ne dépend que de r :		
$\frac{1}{r}\frac{\partial(rE_{\theta})}{\partial r} = -\frac{\partial B_z}{\partial t} \Rightarrow \frac{1}{r}\frac{\partial(rE_{\theta})}{\partial r} = +B_0\omega\sin(\omega t)$		
$\frac{1}{r} \frac{1}{\partial r} = -\frac{1}{\partial t} \Rightarrow \frac{1}{r} \frac{1}{\partial r} = +B_0 \omega \sin(\omega t)$	1	
L'intégration de cette équation donne :	1 1	
Entregration de cette equation donne : $E_{ heta} = rac{1}{2} r B_0 \omega \sin(\omega t) + cte$	1	
$L_{\theta} = \frac{1}{2} I D_0 \omega \sin(\omega t) + cte$ La condition aux limites donnée dans l'énoncé impose $cte = 0$	1	
Ce qui aboutit à $E_{\theta} = \frac{1}{2} r B_0 \omega \sin(\omega t)$	1	
Ecrit en complexe : $E_{\theta} = \frac{1}{2}rB_0\omega \ sin(\omega t)$		
On a donc $:E_1(r)=rac{\sqrt{2}}{2}r\mu nI_1\omega$	1	
	1	
$egin{array}{cccccccccccccccccccccccccccccccccccc$		
Comme $\vec{j}=\gamma \vec{E}$, on a $j_1(r)=rac{\sqrt{2}}{2}rac{r\mu nI_1\omega}{ ho_a}$	1	
$et \; arphi_E = -rac{\pi}{2}$	1	
6- Puissance Joule volumique $p_1= ho_a j_{1 heta}^2$ (énoncé)		7
Donc $p_1 = \frac{1}{2} \frac{(r\mu n I_1 \omega)^2}{a} sin^2(\omega t)$	1	
$L_{\square}a$ puissance Joule volumique moyenne est donc :		
$\langle p_1 \rangle = \frac{(r\mu n I_1 \omega)^2}{4\rho_a}$	1	
La puissance Joule totale s'obtient par :		
$\langle P_1 \rangle = \iiint_{d_2} \langle p_1 \rangle . d\tau$	1	
$egin{aligned} A extbf{vec}: d au = rd hetadrdz = 2\pi re_\delta dr \end{aligned}$	2	

Ce qui donne : $\langle P_1 \rangle = \iiint_{\Gamma} \frac{(r\mu n I_1 \omega)^2}{2a} \pi r e_{\delta} dr$		
$\begin{array}{l} \textit{Ce qui donne} : < P_1 > = \int \!\! \int_{d\tau} \frac{(r\mu n I_1 \omega)^2}{2\rho_a} \pi r e_{\delta} dr \\ \textit{et finalement} : < P_1 > = \frac{\pi e_{\delta} \mu^2 n^2 I_1^2 \omega^2}{2\rho_a} \int_0^{R_c} r^3 dr \end{array}$		
Ce aui donne :	2	
$ < P_1 >= \frac{\pi e_\delta \mu^2 n^2 I_1^2 \omega^2}{8\rho_a} R_c^4 $ $ 7-A.N. : < P_1 >= 7 \ kW \ (ou \ cette \ valeur \ divisée \ par \ 2 \ en \ efficace) $		
7-A.N. : $\langle P_1 \rangle = 7$ kW (ou cette valeur divisée par 2 en efficace)	4	4
8- L'expression obtenue est en μ^2 donc si on prend un matériau à μ_0^2 on divise la puissance par 350^2 . Le chauffage est donc largement insuffisant sans propriétés ferromagnétiques.	3	3
9- Il s'agit d'une onde harmonique, progressive, se propageant dans la	4	4
direction + z, plane, amortie dans la direction de propagation,		
monochromatique, de fréquence $f=\omega/2\pi$, de vitesse $V=\omega\delta$		
2×1 points pour les paramètres marqués en gras + 0.5 point pour un autre		
paramètre parmi ceux qui sont énoncés à concurrence de 4 points.		
10- Si on fixe $z=0$, l'expression devient : $j_{\theta}=Ae^{j(\omega t)}$	2	3 + 1
Quand on trace la partie réelle de j_{θ} , on obtient donc une simple sinusoïde		point
d'amplitude A.		bonus
A t = 0 la valeur de la sinusoïde est A .	1	
Bonus : la distance entre 2 extrema est $T=\frac{2\pi}{\omega}$: 1 point 11- Si on fixe $t=0$, l'expression devient : $\underline{j}_{\theta}=Ae^{(-\frac{z}{\delta})}e^{j(-\frac{z}{\delta})}$		
11. Si on five $t=0$ l'expression devient $i_0=Ae^{(-\frac{z}{\delta})}e^{j(-\frac{z}{\delta})}$	2	3 + 1
Quand on trace la partie réelle de j_{θ} , on obtient une sinusoïde amortie dont	2	point
l'enveloppe est exponentielle décroissante.		bonus
A $z = 0$ la valeur de la sinusoïde est A .	1	Donus
$A z = 0$ to valeur de la sinusoide est A . Bonus : la longueur d'onde et $2\pi\delta$: 1 point	1	
12 - $\delta = 380,5 \mu m$	2	3
L'onde pénètre à peine dans la casserole avant de disparaître. A $z=\delta$, l'onde	1	
est atténuée de 63%. elle disparaît vers $z=3\delta$.	1	
Total jusqu'ici :		56+4
Total jusqu'ici .		bonus
13- Les lois de Kirchhoff donnent :		6
$v_1 = R_1 i_1 + j L_1 \omega i_1 + j M \omega i_2$	3	
$\begin{vmatrix} \underline{e_1} - R_1\underline{e_1} + jH_1\underline{\omega}\underline{e_2} \\ 0 = R_2\underline{e_2} + jL_2\underline{\omega}\underline{e_2} + jM\underline{\omega}\underline{e_1} \end{vmatrix}$	3	
Si erreur de signe, notamment sur le terme en M , compter 0 pour l'équation		
mais compter juste ensuite si cohérent.		
14- De la seconde équation on tire le rapport entre les deux courants :		4
i_2 $jM\omega$	2	
$\left \begin{array}{l} rac{i_2}{i_1} = -rac{jM\omega}{R_2 + jL_2\omega} \end{array} ight.$	2	
On reporte cette expression dans la première équation pour trouver ·		
$Z_e = \frac{v_1}{i} = R_1 + jL_1\omega + \frac{M^2\omega^2}{R_1 + iL_2\omega}$	2	
$\frac{Z_e}{\frac{i_1}{i_1}} = R_1 + jL_1\omega + \frac{M^2\omega^2}{R_2 + jL_2\omega}$ $15 - \frac{i_2}{\underline{i_1}} \simeq \frac{jM\omega}{jL_2\omega} = \frac{M}{L_2}$	1	4
$\frac{i_1}{ i_2 } \frac{j L_2 \omega}{ M } \frac{L_2}{ M }$		
$donc: \left \frac{\underline{i_2}}{\underline{i_1}} \right = \frac{ M }{L_2} \ car \ M \ peut \ être \ négatif$	1	
(1 point pour le signe de M uniquement) $M^{2} = \frac{1}{2} \frac{1}{4} $		
$\frac{Z_e}{Z_e} \simeq jL_1\omega + \frac{M^2\omega^2}{jL_2\omega} = \frac{-L_1L_2\omega^2 + M^2\omega^2}{jL_2\omega}$		
$JL_2\omega$ $JL_2\omega$	1	II

$\left \begin{array}{c} \left \underline{Z_e} ight = rac{\omega(L_1L_2-M^2)}{L_2} \; car \left(-L_1L_2 + M^2 < 0 ight) \end{array}$	2	
Compter 1/2 si erreur de signe ou signe pas justifié		
16- A.N. $ Z_e $ =4.7 Ω	2	2
17- Si $P_{max} = 50 W \ alors \ (R_1 i_1^2)_{max} = 50 W.$	2	4
ce qui aboutit à $(I_1)_{max} = 52.7$ A	1	
$igg extit{Comme} \ ig rac{ z_e }{i_1} = igg rac{v_1}{i_1} \ alors \ v_{1max} = 250 \ V$	1	
On retrouve à peu de choses près la tension du secteur		
18 - $\left \frac{i_2}{i_1} \right = \frac{ M }{L_2} \ alors \ \left \underline{i_2} \right _{max} = \left \frac{Mi_1}{L_2} \right = 363.5 \ A$	2	6
On avait bien prévenu que les intensités seraient élevées!		
Donc avec $P_2 = R_2 i_2^2$ on a 1585.4 W	2	
$et\ donc\ r = 96.9\%$	2	
Total de cette partie :		26
Total de la partie 1 :		82+4
		bonus

Partie 2 : Génération et propagation d'une onde ultrasonore dans un	Total .	
tube à parois rigides contenant un fluide parfait - Application à	Total:	
l'imagerie médicale par effet photo-acoustique n circuit résonant	+ Bonus :	
4.7 1.4 (1.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1		4
1- Les solutions générales sont du type $p = f(x-Vt) + g(x+Vt)$	2	4
Elles correspondent à deux ondes progressives se propageant dans des directions opposées.	2	
2 - Le coefficient devant la dérivée secondes temporelle est $rac{1}{v^2}$	2	4
$Donc V = \sqrt{\frac{\kappa}{\rho}} = 1490 \ m.s^{-1}$	2	
3- Si l'onde se propage le long des x croissants alors $p=Z\frac{\partial u}{\partial t}$. Si l'onde se propage le long des x décroissants alors $p=-Z\frac{\partial u}{\partial t}$.		
Si l'onde se propage le long des x décroissants alors $p=-Z\frac{\partial u}{\partial t}$.	2	6
On a donc: $\frac{\partial u}{\partial t} = \frac{1}{Z}f(x-Vt) - \frac{1}{Z}g(x+Vt)$	2	
Comme $Z=\sqrt{\kappa\rho}$ et $V=\sqrt{\frac{\kappa}{\rho}}$ alors $Z=\rho V$. On retrouve bien l'expression	2	
demandée.		
$ extbf{4-} t_d = 67 \ ns$, donc très supérieur à $5 \ ns$.	2	2
$5 - p_h = 1090 \ Pa$	2	2 + 2
		bonus
A comparer à la pression atmosphérique de $\simeq 1000\;hPa$, donc très inférieure		
Bonus : 2 ils ne sont pas censés connaître par coeur la pression	Bonus :	
atmosphérique.	2	
6- Si $\frac{\partial u}{\partial t}(x,t=0)=0$, $\forall x$, alors $f(x)=g(x)$ à $t=0$.	3	18
Comme $p(x, t = 0) = p_h = f(x) + g(x)$ à $t = 0$, alors en combinant les deux	2	
informations:		
$f(x) = g(x) = \frac{p_h}{2} \dot{a} t = 0.$	2	

