Autor: Krzysztof Zdon

Prowadzacy: Krzysztof Zdon

WIELOMIANY

Bezout i dzielenie z resztą

Twierdzenie 1. Jeżeli $f(X) \in \mathbb{K}[X]$ jest wielomianem stopnia n i $\alpha \in \mathbb{K}$, to istnieje taki wielomian $g(X) \in \mathbb{K}[X]$, że zachodzi równość:

$$f(X) = (X - \alpha)g(X) + f(\alpha)$$

Niegłupie zadanie 1. Udowodnij, że dla dowolengo wielomianu $f(X) \in \mathbb{Z}[X]$ i liczb całkowitych a, b zachodzi

$$a-b \mid f(a)-f(b)$$

Twierdzenie 2. (Bezout) Element $\alpha \in \mathbb{K}$ jest pierwiastkiem niezerowego wielomianu $f(X) \in \mathbb{K}[X]$ wtedy i tylko wtedy, gdy istnieje taki wielomian $g(X) \in \mathbb{K}[X]$, że

$$f(X) = (X - \alpha)g(X)$$

Twierdzenie 3. Jeżeli $a(X), b(X) \in \mathbb{K}[X]$ i $b(X) \neq 0$, to istnieją takie, jednoznacznie wyznaczone wielomiany $q(X), r(X) \in \mathbb{K}[X]$, że

$$a(X) = q(X)b(X) + r(X)$$
 i $deg r(X) < deg b(X)$

Największy wspólny dzielnik dla wielomianów

Def. 1 Niech dane będą dwa niezerowe wielomiany $a(X), b(X) \in \mathbb{K}[X]$. Wielomian $d(X) \in \mathbb{K}[X]$ nazywamy największym wspólnym dzielnikiem wielomianów a(X) i b(X), gdy:

1. d(X)|a(X) oraz d(X)|b(X),

2. jeżeli e(X)|a(X) oraz e(X)|b(X) to e(X)|d(X).

Twierdzenie 1. Jeżeli dane są dwa niezerowe wielomiany $a(X), b(X) \in \mathbb{K}[X]$, to istnieją takkie wielomiany $s(X), t(X) \in \mathbb{K}[X]$, że:

$$NWD(a(X), b(X)) = a(X)s(X) + b(X)t(X)$$

Niegłupie zadanie 2. Udowodnij, że jesli dla wielomianów a, b, przy czym $b \not\equiv 0$ i wielomianów q, r zachodzi równość a(X) = q(X)b(X) + r(X), to NWD(a, b) = NWD(b, r).

Rozkłady wielomianów w $\mathbb{Q}[X]$

Def. 2 Wielomian $a_0 + a_1X + ... + a_nX^n \in \mathbb{Z}[X]$ nazwiemy wielomianem pierwotnym, jeśli $NWD(a_1, ..., a_n) = 1$. **Def. 3** Jeżeli $f(X) = b_0 + b_1X + ... + b_nX^n \in \mathbb{Q}[X]$ jest niezerowym wielomianem o współczynnikach wymiernych, to zawartością tego wielomianu nazywamy taką liczbę wymierną C = C(f) > 0, dla której zachodzi równość:

$$f(X) = C(f)(a_0 + a_1X + \dots + a_nX^n) = C(f)a(X),$$

gdzie a jest wielomianem pierwotnym.

Niegłupie zadanie 3. Udowodnij, że niezerowy wielomian a o współczynnikach wymiernych ma dokładnie jedną zawartość.

Niegłupie zadanie 4. Jeżeli $f(X), g(X) \in \mathbb{Z}[X]$ są dwoma wielomianami pierwotnymi, to f(X)g(X) również jest wielomianem pierwotnym.

Twierdzenie 2. Jeżeli $f(X) \in \mathbb{Z}[X]$ i f(X) = g(X)h(X) jest rozkładem na iloczyn wielomianów o współczynnikach wymiernych, to istnieją takie wielomiany g'(X) oraz h'(X) o współczynnikach całkowitych, że:

$$f(X) = g'(X)h'(X)$$
 oraz istnieją takie $c, d \in \mathbb{Q}$, że $g(X) = dg'(X)$ oraz $h(X) = dh'(X)$.

Poręba Wielka 25.09.2024

Autor: Krzysztof Zdon Prowadzący: Krzysztof Zdon

Zadania

- **Zadanie 1.** Niech $P \in \mathbb{Z}[X]$ będzie unormowanym wielomianem. Załóżmy, że P(q) = 0 dla pewnej liczby $q \in \mathbb{Q}$. Udwodnij, że $q \in \mathbb{Z}$.
- **Zadanie 2.** Niech $P \in \mathbb{Z}[X]$ będzie takim wielomianem, że dla każdej liczby naturalnej n zachodzą nierówności P(-n) < P(n) < n. Udowodnij, że dla każdej liczby naturalnej P(-n) < -n.
- **Zadanie 3.** Dany mamy wielomian $P \in \mathbb{Z}[X]$ stopnia n, dla którego $P(i) = 2^i$ dla $i \in \{0, 1, ..., n\}$. Znajdź wartość P(n+1).
- **Zadanie 4.** Załóżmy, że istnieje $P \in \mathbb{Z}[X]$ o stopniu n, gdzie $2 \not\mid n$ oraz ciąg $x_1, ..., x_n$ zdefiniowany zastępująco: $x_2 = P(x_1), x_3 = P(x_2), ..., x_1 = P(x_n)$. Udowodnij, że ten ciąg jest w istocie stały.
- **Zadanie 5.** Znajdź wszystkie takie wielomiany $f \in \mathbb{Z}[X]$, że dla wszystkich $n \in \mathbb{N}$ liczby f(n) oraz $f(2^n)$ są względnie pierwsze.
- **Zadanie 6.** Potężny Kaszub ma wielomian P o współczynnikach całkowitych, który posiada pewną własność: $n|P(2^n)$ dla każdego $n \in \mathbb{Z}_+$. Udowodnij, że P jest wielomianem zerowym.
- **Zadanie 7.** Znajdź wszystkie takie wielomiany $P \in \mathbb{Z}[X]$, że dla dowolnych liczb rzeczywistych a, b P(a + b) jest liczbą całkowitą wtedy i tylko wtedy, gdy P(a) + P(b) jest liczbą całkowitą.
- Zadanie 8. Udowodnij, że liczba

$$\sqrt{2012^2+1} + \sqrt{2013^2+1} + \dots + \sqrt{2024^2+1}$$

jest niewymierna. Wskazówka: Warto pomyśleć nad tym, czemu nie jest całkowita