SIMPLE LINEAR-TIME ALGORITHMS TO TEST CHORDALITY OF GRAPHS, TEST ACYCLICITY OF HYPERGRAPHS, AND SELECTIVELY REDUCE ACYCLIC HYPERGRAPHS*

ROBERT E. TARJAN† AND MIHALIS YANNAKAKIS†

Abstract. Chordal graphs arise naturally in the study of Gaussian elimination on sparse symmetric matrices; acyclic hypergraphs arise in the study of relational data bases. Rose, Tarjan and Lueker [SIAM J. Comput., 5 (1976), pp. 266–283] have given a linear-time algorithm to test whether a graph is chordal, which Yannakakis has modified to test whether a hypergraph is acyclic. Here we develop a simplified linear-time test for graph chordality and hypergraph acyclicity. The test uses a new kind of graph (and hypergraph) search, which we call *maximum cardinality search*. A variant of the method gives a way to selectively reduce acyclic hypergraphs, which is needed for evaluating queries in acyclic relational data bases.

Key words. graph algorithm, acyclic data base scheme, sparse Gaussian elimination, graph search, hypergraph

1. Introduction. We shall use more-or-less standard terminology from the theory of graphs and hypergraphs [3], some of which we review here. A hypergraph H = (V, E) consists of a set of vertices V and a set of edges E; each edge is a subset of V. A graph is a hypergraph all of whose edges have size two. The graph G(H) of a hypergraph H is the graph whose vertices are those of H and whose edges are the vertex pairs $\{v, w\}$ such that v and w are in a common edge of H. Two vertices of a graph G are adjacent if they are contained in an edge. A path in G is a sequence of distinct vertices v_0, v_1, \dots, v_k such that v_i and v_{i+1} are adjacent for $0 \le i < k$. A cycle is a path v_0, v_1, \dots, v_k such that $k \ge 2$ and v_0 and v_k are adjacent. Vertices v_i and $v_{(i+1) \mod (k+1)}$ for $0 \le i \le k$ are consecutive on the cycle. A clique of G is a set of pairwise adjacent vertices. A hypergraph H is conformal if every clique of G(H) is contained in an edge of H. A graph G is chordal if every cycle of length at least four has a chord, i.e., an edge joining two nonconsecutive vertices on the cycle. A hypergraph H is acyclic if H is conformal and G(H) is chordal.

Chordal graphs arise in the study of Gaussian elmination on sparse symmetric matrices [12]. Acyclic hypergraphs arise in the study of relational data base schemes [1], [7], [21]; they are powerful enough to capture most real-world situations but simple enough to have many desirable properties [1], [2], [9], [18]. Rose, Tarjan and Lueker [15] have given an O(n+m)-time¹ algorithm (henceforth called the RTL algorithm) to test whether a graph is chordal. Yannakakis [19] has extended the algorithm to the problem of testing whether a hypergraph is acyclic. In this paper we propose a simplified version of the RTL algorithm that can be used for testing both chordality of graphs and acyclicity of hypergraphs. In § 2 we develop the algorithm as it applies to graph chordality testing. In § 3 we modify the algorithm for hypergraph acyclicity testing. Besides leading to a method simpler than the RTL test, our analysis provides additional insight into the structure of chordal graphs and acyclic hypergraphs. In § 4 we use this insight to develop a simple linear-time algorithm for selectively reducing acyclic hypergraphs, a problem that arises in evaluating queries in acyclic relational data bases.

^{*} Received by the editors October 7, 1982, and in revised form May 23, 1983.

[†] Bell Laboratories, Murray Hill, New Jersey 07974.

¹ We shall use n to denote the number of vertices and m to denote the total size of the edges in a hypergraph.