Texture

Issues

- 1. Analysis
 - Determining if textures are similar
- 2. Synthesis
 - Creating textures from other textures
 - Painting
- 3. Segmentation
- 4. Shape

What is Texture?

- · Repeats with variation
- Must separate what repeats and what stays the same
- Model as repeated trials of a random process
 - Probability distribution stays the same
 - Each trial is different

How to Compare Textures

- Simplest comparison is SSD
- View histograms
 - Test probability samples drawn from same distribution
- Chi squared distance between histograms

$$\chi^2(h_i,h_j) = rac{1}{2} \sum_{m=0}^k rac{[h_i(m) - h_j(m)]^2}{[h_i(m) - h_j(m)]}$$

Gabor Filters

· Filters at different scales and spatial frequencies

Markov Model

- · Captures local dependencies
 - Each pixel depends on neighborhood

Markov Random Field

- Generalization of Markov chains to two or more dimensions
- First Order MRF
 - Probability that pixel X takes a certain value given the values of neighbors A,B,C,D

$$P(X|A,B,C,D) = egin{array}{|c|c|c|c|} \hline A & & & & \\ \hline D & X & B & & \\ \hline C & & & & \\ \hline \end{array}$$

Texture Synthesis

· Given texture, apply it to another space

Synthesizing One Pixel

- Find P(x|neighbors)
- Find all windows in image that match the neighborhood
 - o Consider only pixels in neighborhood that are already filled in
- To synthesize **x**
 - Pick one matching window at random
 - $\circ~$ Assign \boldsymbol{x} to be the center of that window
- Increasing window size -> Better results