TEST ON MATHEMATICS

Ответом к каждой задаче служит целое число или десятичная дробь, округленная до тысячных. The answer to each task is an integer or a decimal rounded to three decimal places.

Task 1.

Найдите количество целых чисел, удовлетворяющих неравенству

$$\frac{(64-x^2)(x^3+6x^2)}{x-5} \ge 0$$

Если таких чисел бесконечно много, запишите в ответ число -1.

Find the number of integers satisfying the inequality

$$\frac{(64 - x^2)(x^3 + 6x^2)}{x - 5} \ge 0$$

If there are infinitely many of such numbers, then write down the number -1 as the answer.

Task 2.

 O_1O_2 — ось прямого кругового цилиндра. Плоскость α_1 перпендикулярна O_1O_2 , а плоскость α_2 параллельна прямой O_1O_2 и находится на расстоянии 7 от нее, причем площади сечений цилиндра плоскостями α_1 и α_2 равны соответственно 65π и $\frac{32}{\pi}$. Найдите объем цилиндра.

 O_1O_2 is an axis of a straight circular cylinder. The plane α_1 is perpendicular to O_1O_2 and the plane α_2 is parallel to the line O_1O_2 and is located at a distance of 7 from it. Cross-sectional areas of the cylinder by planes α_1 and α_2 are equal to 65π and $\frac{32}{\pi}$, respectively. Find the volume of the cylinder.

Task 3.

Найдите сумму всех попарных произведений различных корней уравнения

$$x^2 - 12x + \frac{120}{x} + \frac{100}{x^2} + 7 = 0$$

Если уравнение имеет не более одного корня, запишите в ответ число 0.

Find the sum of all pairwise products of different roots of the equation

$$x^2 - 12x + \frac{120}{x} + \frac{100}{x^2} + 7 = 0$$

Task 4.

Найдите количество корней уравнения

$$(\cos 9\pi x + 1)^2 + (2\cos 10\pi x + 1)^2 = 0$$

при условии $x \in [3.3; 9.9]$.

Find the number of roots of the equation

$$(\cos 9\pi x + 1)^2 + (2\cos 10\pi x + 1)^2 = 0$$

while $x \in [3.3; 9.9]$.

Task 5.

Дан квадратный трехчлен $f(x) = 2x^2 + bx + 8$. Известно, что касательные к графику f(x), проходящие через начало координат, пересекаются под углом $\operatorname{arctg} \frac{4}{3}$. Найдите b^2 .

There is a function $f(x) = 2x^2 + bx + 8$ given. It is known that the tangent lines to the graph of f(x) that pass through the origin are intersecting at the angle of $\frac{4}{3}$. Find the value of b^2 .

Task 6.

В треугольнике $\triangle ABC$ точка M – центр вписанной окружности, и биссектриса угла $\angle ABC$ пересекает описанную окружность в точке K.

Найдите длину отрезка MK, если $\cos \angle ABC = -\frac{7}{32}, AC = 45.$

In the triangle $\triangle ABC$ the point M is the center of the inscribed circle. The bisector of the angle $\angle ABC$ intersects the circumcircle of $\triangle ABC$ at the point K. Also $\cos \angle ABC = -\frac{7}{32}$, AC = 45. Find the distance between M and K.