The Faddeev-LeVerrier algorithm

The Faddeev-LeVerrier algorithm may be used to determine the inverse, determinant, and characteristic polynomial of an $n \times n$ matrix. The algorithm terminates in n steps, where each step involves a single matrix multiplication and only integer division. It works like magic!

FADDEEV-LEVERRIER ALGORITHM

```
1 given an n \times n matrix A
c_n \coloneqq 1
3 N \leftarrow 0
4 for k \in (n-1, ..., 1, 0)
       N \leftarrow N + c_{k+1} \mathbb{I}
\begin{array}{c|c} \mathbf{8} & A^{-1} = -N/c_0 \\ \mathbf{9} & \det(A) = (-1)^n c_0 \\ \mathbf{10} & \chi(\lambda) = \sum_{k=0}^n c_k \lambda^k \end{array}
```

Derivation

Start with the characteristic polynomial of A.

$$\chi(\lambda) = \det(\lambda \mathbb{I} - A) = \sum_{k=0}^n c_k \lambda^k$$

Useful fact.

The *adjunct* of a matrix, $\operatorname{adj}(X)$, satisfies $\det(X)\mathbb{I} = A\operatorname{adj}(X)$.

If A is $n \times n$, then $\det(X)$, and hence the entries of $X \operatorname{adj}(X)$, are degree n polynomials in the entries of A. Hence, the entries of adj(X) are degree n-1 polynomials.

The entries of $N(\lambda) := \operatorname{adj}(\lambda \mathbb{I} - A)$ are λ -polynomials of order n-1, so $N(\lambda) = \sum_{k=0}^{n-1} N_k \lambda^k$ where N_k are matrices. From $\det(\lambda \mathbb{I} - A)\mathbb{I} = (\lambda \mathbb{I} - A)N(\lambda)$,

$$\begin{split} \det(\lambda \mathbb{I} - A) \mathbb{I} &= (\lambda \mathbb{I} - A) \sum_{k=0}^{n-1} N_k \lambda^k \\ &= -AN_0 + \sum_{k=1}^{n-1} (N_{k-1} - AN_k) \lambda^k + N_{n-1} \lambda^n \end{split}$$

Equating coefficients of λ with $\chi(\lambda)\mathbb{I}$, we obtain:

$$\begin{split} c_0 \mathbb{I} &= -AN_0 \\ c_k \mathbb{I} &= N_{k-1} - AN_k \\ c_n \mathbb{I} &= N_{n-1} \end{split}$$

To remember these, just write $c_k\mathbb{I}=N_{k-1}-AN_k$ for all $0\leq k\leq n$ with the understanding that N_k vanishes outside the range $0 \le k \le n-1$. Equivalently, $N_k = N_{k+1} - c_{k+1} \mathbb{I}$

gives a descending recurrence relation for N_k in terms of the coefficients c_k .

Finding c_k in terms of A and N_k This stroke of genious is due to (Hou, 1998).

Useful fact: Laplace transform of derivative.

$$\begin{split} \mathcal{L}\{f'(t)\}(s) &= \int_0^\infty f'(t)e^{-st} \,\mathrm{d}t \\ &= f(t)e^{-st}\big|_{t=0}^\infty + s \int_0^\infty f(t)e^{-st} \,\mathrm{d}t \\ &= -f(0) + s\mathcal{L}\{f(t)\}(s) \end{split}$$

Consider

 $\frac{\mathrm{d}e^{At}}{\mathrm{d}t} = Ae^{At}$

 $-\mathbb{I} + s\mathcal{L}\{e^{At}\} = A\mathcal{L}\{e^{At}\}$

$$s \operatorname{tr} \mathcal{L} \{e^{At}\} - n = \operatorname{tr} (A \mathcal{L} \{e^{At}\})$$

and finally take the trace:

Useful fact: the trace of a matrix exponential in terms of eigenvalues. If
$$\lambda_i$$
 are the eigenvalues of A then $\operatorname{tr}(A) = \sum_i \lambda_i$. Also, A can be put in Jordan normal form

(1)

(2)

(3)

 $A=PJP^{-1}$ where J is triangular with $\mathrm{diag}(\mathring{J})=(\lambda_1,...,\lambda_n).$ Since it is triangular, $\operatorname{diag}(J^k) = (\lambda_1^k, ..., \lambda_n^k).$

Therefore, $\operatorname{tr}(A^k) = \operatorname{tr}(PJ^kP^{-1}) = \operatorname{tr}(J^kP^{-1}P) = \operatorname{tr}(J^k) = \sum_{i=1}^n \lambda_i^k$ Consequently, $\operatorname{tr}\!\left(e^{At}\right) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \operatorname{tr}\!\left(A^k\right) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \sum_{i=1}^n \lambda_i^k = \sum_{i=1}^n e^{\lambda_i t}$.

 $\mathcal{L}\left\{e^{At}\right\} = \int_{-\infty}^{\infty} e^{(A-s\mathbb{I})t} \, \mathrm{d}t = (A-s\mathbb{I})^{-1} e^{(A-s\mathbb{I})t} \Big|_{-\infty}^{\infty} = (s\mathbb{I}-A)^{-1}$

We now compute the terms in Equation 1.

Caution. I'm uncomfortable with these indefinite integrals. Why should
$$\lim_{t\to\infty}e^{(A-s\mathbb{I})t}$$
 converge?

Note that from $\chi(\lambda) = \det(\lambda \mathbb{I} - A) = (\lambda \mathbb{I} - A)N(\lambda)$ we have

Caution.

 $(\lambda \mathbb{I} - A)^{-1} = \frac{N(\lambda)}{\gamma(\lambda)}$

$$\operatorname{tr} \mathcal{L} \big\{ e^{At} \big\} = \int_0^\infty \operatorname{tr} e^{(A-s\mathbb{I})t} \, \mathrm{d}t = \sum_{i=1}^n \int_0^\infty e^{(\lambda_i - s)t} \, \mathrm{d}t = \sum_{i=1}^n \frac{1}{s - \lambda_i}$$
 Recall that the roots of the characteristic polynomial of A are its eigenvalues, so $\chi(s) = \sum_{i=1}^n \frac{1}{s - \lambda_i}$

 $\prod_{i=1}^{n} (s - \lambda_i).$ $\operatorname{tr} \mathcal{L} \big\{ e^{At} \big\} = \sum_{i=1}^n \frac{\mathrm{d}}{\mathrm{d}s} \ln(s - \lambda_i) = \frac{\mathrm{d}}{\mathrm{d}s} \ln \bigg(\prod_{i=1}^n (s - \lambda_i) \bigg) = \frac{\mathrm{d}}{\mathrm{d}s} \ln \chi(s) = \frac{\chi'(s)}{\nu(s)}$

Let $(\lambda_1,...,\lambda_n)$ be the eigenvalues of A. Then $A-s\mathbb{I}$ has eigenvalues λ_i-s .

Substituting Equation 2 and Equation 3 into Equation 1, we have
$$s\chi'(s)-n\chi(s)=\mathrm{tr}(AN(\lambda))$$

 $\sum_{k=0}^{n}(k-n)c_{k}s^{k}=\sum_{k=0}^{n-1}\operatorname{tr}(AN_{k})s^{k}$

which, expanding and equating powers of λ ,

$$c_k = \frac{\operatorname{tr}(AN_k)}{k-n}$$
 for all $0 \le k \le n$ where we define $N_n = 0$.

 $\chi(\lambda) = c_0 + \dots + c_{n-1}\lambda^{n-1} + c_n\lambda^n$

 $c_0 = (-1)^n \det(A), \quad c_{n-1} = -\operatorname{tr}(A), \quad c_n = 1$

 $= \det(-A) + \dots + \operatorname{tr}(-A)\lambda^{n-1} + \lambda^n$

Final algorithm Useful fact.

References

Hou, S.-H. (1998). Classroom Note: A Simple Proof of the Leverrier-Faddeev Characteristic Polynomial Algorithm. SIAM Rev., 40(3), 706-709. https://doi.org/10.1137/S003614459732076X