HW5 20201127 PeiShanYen

Question 01

- **5.3.** Suppose the data $(x_1, \ldots, x_7) = (6.52, 8.32, 0.31, 2.82, 9.96, 0.14, 9.64)$ are observed. Consider Bayesian estimation of μ based on a $N(\mu, 3^2/7)$ likelihood for the minimally sufficient $\bar{x} \mid \mu$, and a Cauchy(5,2) prior.
 - **a.** Using a numerical integration method of your choice, show that the proportionality constant is roughly 7.84654. (In other words, find k such that $\int k \times (\text{prior}) \times (\text{likelihood}) d\mu = 1.$)

Using Riemann Sum, the approximately value of the normalizing constant k is 7.84654.

```
# Data
x = c(6.52, 8.32, 0.31, 2.82, 9.96, 0.14, 9.64)
x_bar = mean(x)
# Bayesian Model
\# X_{bar} \mid mu \sim N(mu, 3^2/7)
f_{\text{likelihood}} = f_{\text{unction}}(mu) \{1/sqrt(2*pi*9/7) * exp(-(x_bar - mu)^2/(2*9/7))\}
# mu ~ Cauchy(5, 2) (prior)
f_{prior} = function(mu) \{1/(pi*2*(1 + ((mu - 5)/2)^2))\}
# Find the constant k (normalizing constant)
# Perform variable transformation.
\# mu = log(y/(1-y)), -inf < mu < inf --> 0 < y < 1.
# Jacobian matrix = (1/(y*(1-y)))
f_y = function(y) \{f_likelihood(log(y/(1-y))) * f_prior(log(y/(1-y))) * (1/(y*(1-y)))\}
# Riemann Sum
int_Riemann = function(f, a, b, n = 100000) {
  h = (b - a)/n
  x = seq(a, b, by = h)
  y = f(x)
  result = h * sum(y[1:n])
  return(result)
}
k = round(1/int_Riemann(f_y, 1e-10, 1 - 1e-10), 5)
print(k)
## [1] 7.84654
```

b. Using the value 7.84654 from (a), determine the posterior probability that $2 \le \mu \le 8$ using the Riemann, trapezoidal, and Simpson's rules over the range of integration [implementing Simpson's rule as in (5.20) by pairing adjacent subintervals]. Compute the estimates until relative convergence within 0.0001 is achieved for the slowest method. Table the results. How close are your estimates to the correct answer of 0.99605?

All the results are close to 0.99605.

```
f_posterior = function(mu) { k * f_likelihood(mu) * f_prior(mu)}
# Riemann Sum
int_Riemann = function(f, a, b, n = 100000) {
  h = (b - a)/n
 x = seq(a, b, by = h)
 y = f(x)
 result = h * sum(y[1:n])
  return(result)
# Trapezoidal Rule
int_trapzoidal = function(f, a, b, n = 100000) {
  h = (b - a)/n
 x = seq(a, b, by = h)
 y = f(x)
  result = h * (y[1] + 2*sum(y[2:n]) + y[n+1]) / 2
  return(result)
}
# Simpson's Rule
int_Simpson = function(f, a, b, n = 100000) {
 h = (b - a)/n
 x = seq(a, b, by = h)
 y = f(x)
 if (n == 2) {
    result = (h/3) * (y[1] + 4*y[2] + y[3])
    result = (h/3) * (y[1] + sum(2*y[seq(2, n, by = 2)]) + sum(4*y[seq(3, n-1, by = 2)])
+ y[n+1])
 return(result)
}
# 2 <= mu <= 8
data.frame(method = c("Riemann Sum", "Trapezoidal Rule", "Simpson's Rule"),
           result = c(int_Riemann(f_posterior, 2, 8),int_trapzoidal(f_posterior, 2, 8), i
nt_Simpson(f_posterior, 2, 8)))
##
               method
                         result
## 1
          Riemann Sum 0.9960544
## 2 Trapezoidal Rule 0.9960547
       Simpson's Rule 0.9960544
## 3
```

- c. Find the posterior probability that $\mu \ge 3$ in the following two ways. Since the range of integration is infinite, use the transformation $u = \exp\{\mu\}/(1 + \exp\{\mu\})$. First, ignore the singularity at 1 and find the value of the integral using one or more quadrature methods. Second, fix the singularity at 1 using one or more appropriate strategies, and find the value of the integral. Compare your results. How close are the estimates to the correct answer of 0.99086?
- **d.** Use the transformation $u = 1/\mu$, and obtain a good estimate for the integral in part (c).

Using Riemann sum method, both results are extremely close to 0.99086.

```
# Perform variable transformation.
# mu = log(u/(1-u)), 3 <= mu < inf --> exp(3)/(1 + exp(3)) < u < 1 .
# Jacobian matrix = (1/(u*(1-u)))

fu_posterior = function(u) { k * f_likelihood(log(u/(1-u))) * f_prior(log(u/(1-u))) * (1/(u*(1-u)))}
int_Riemann(fu_posterior, exp(3)/(1 + exp(3)), 1 - 1e-10)

## [1] 0.9908596

# Perform variable transformation.
# mu = 1/u, , 3 <= mu < inf --> 0 < u < 1/3.
# Jacobian matrix = 1/u^2
fu_posterior = function(u) { k * f_likelihood(1/u) * f_prior(1/u) * (1/u^2)}
int_Riemann(fu_posterior, 1e-10, 1/3)

## [1] 0.9908591</pre>
```

Question 02

5.4. Let $X \sim \text{Unif}[1, a]$ and Y = (a - 1)/X, for a > 1. Compute $E\{Y\} = \log a$ using Romberg's algorithm for m = 6. Table the resulting triangular array. Comment on your results.

When a is a small value, the result obtained from Romberg's algorithm for m = 6 is close to the theoretical solution. When a = e, the Romberg solution for m = 6 is 1. However, as the value of a increases, such as 100, the dimension of the triangular array needs to enlarge to obtain an acceptable result. (The theoretical solution is 4.60517. The Romberg solution for m = 6, 8, 10, 12, are 4.768311, 4.608066, 4.605174, 4.60517, respectively)

```
# Reference: https://en.wikipedia.org/wiki/Romberg%27s_method
# Romberg Integration
int_Romberg = function(f, a, b, m) {
  R = matrix(NA, m, m)
  h = b - a
  R[1,1] = (f(a) + f(b)) * h/2
  for (i in 2:m) { R[i,1] = 1/2 * (R[i-1,1] + h * sum(f(a + (1:2^(i-2) - 0.5) * h)))
    for (j in 2:i) { R[i,j] = R[i,j-1] + (R[i,j-1] - R[i-1,j-1]) / (4^(j-1) - 1) }
    h = h/2
  result = R[m,m]
  return(list(R, result))
}
EY = function(a, m){
  # Romberg's Integration
  int_Romberg(function(x) 1/x, 1, a, m)
 # Simulated Solution (MC integration)
   set.seed(20200824)
   x = runif(n=100000, min = 1, max = a)
   y = (a -1)/x
   mean(y)
  # Theoretical Solution
  log(a)
   return(list(Romberg_Triangular_Array = int_Romberg(function(x) 1/x, 1, a, m )[[1]],
               Romberg Solution = int Romberg(function(x) 1/x, 1, a, m)[[2]],
               MC integration Solution= mean(y),
               Theoretical_Solution = log(a)))
}
EY(a=exp(1),m=6)
## $Romberg Triangular Array
                                        [,4] [,5] [,6]
##
            [,1]
                     [,2]
                              [,3]
## [1,] 1.175201
                                NA
                                         NA
                                               NA
                       NA
                                                    NA
## [2,] 1.049718 1.007890
                                NA
                                         NA
                                               NA
                                                    NA
## [3,] 1.013039 1.000813 1.000341
                                               NA
                                                    NA
## [4,] 1.003307 1.000063 1.000013 1.000008
                                               NA
                                                    NA
## [5,] 1.000830 1.000004 1.000000 1.000000
                                                    NA
```

```
## [6,] 1.000208 1.000000 1.000000 1.000000
                                                 1
##
## $Romberg_Solution
## [1] 1
##
## $MC_integration_Solution
## [1] 0.999145
##
## $Theoretical_Solution
## [1] 1
EY(a=exp(2),m=6)
## $Romberg_Triangular_Array
##
                                                            [,6]
                      [,2]
                                [,3]
                                         [,4]
                                                   [,5]
             [,1]
## [1,] 3.626860
                        NA
                                  NA
                                           NA
                                                     NA
                                                              NA
## [2,] 2.575024 2.224412
                                  NA
                                           NA
                                                     NA
                                                              NA
## [3,] 2.178272 2.046022 2.034129
                                           NA
                                                     NA
                                                              NA
## [4,] 2.049460 2.006522 2.003889 2.003409
                                                     NA
                                                              NA
## [5,] 2.012847 2.000642 2.000250 2.000192 2.000180
                                                              NA
## [6,] 2.003248 2.000049 2.000009 2.000005 2.000004 2.000004
##
## $Romberg_Solution
## [1] 2.000004
##
## $MC_integration_Solution
## [1] 1.997491
##
## $Theoretical Solution
## [1] 2
EY(a=2,m=6)
## $Romberg_Triangular_Array
                                              [,4]
##
              [,1]
                        [,2]
                                   [,3]
                                                        [,5]
                                                                   [,6]
## [1,] 0.7500000
                          NA
                                     NA
                                                NA
                                                          NA
                                                                     NA
## [2,] 0.7083333 0.6944444
                                     NA
                                                NA
                                                          NA
                                                                     NA
                                                NA
                                                          NA
                                                                     NA
## [3,] 0.6970238 0.6932540 0.6931746
## [4,] 0.6941219 0.6931545 0.6931479 0.6931475
                                                          NA
                                                                     NA
## [5,] 0.6933912 0.6931477 0.6931472 0.6931472 0.6931472
                                                                     NA
## [6,] 0.6932082 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472
##
## $Romberg_Solution
## [1] 0.6931472
##
## $MC_integration_Solution
## [1] 0.6927141
##
## $Theoretical Solution
## [1] 0.6931472
EY(a=100,m=6)
## $Romberg_Triangular_Array
##
              [,1]
                        [,2]
                                  [,3]
                                           [,4]
                                                     [,5]
                                                              [6,]
## [1,] 49.995000
                          NA
                                    NA
                                             NA
                                                       NA
                                                                NA
## [2,] 25.977698 17.971931
                                    NA
                                             NA
                                                       NA
                                                                NA
```

```
## [3,] 14.278918 10.379324 9.873151
                                                       NA
                                                                NA
                                             NA
## [4,]
         8.727329
                    6.876799 6.643297 6.592030
                                                       NA
                                                                NA
## [5,]
         6.214877
                    5.377393 5.277433 5.255753 5.250512
                                                                NA
## [6,]
         5.165740 4.816027 4.778603 4.770685 4.768782 4.768311
##
## $Romberg Solution
## [1] 4.768311
##
## $MC_integration_Solution
## [1] 4.606614
##
## $Theoretical_Solution
## [1] 4.60517
EY(a=100, m=12)
## $Romberg_Triangular_Array
##
                                   [,3]
                                            [,4]
                                                               [6,]
                                                                         [,7]
                                                                                   [,8]
               [,1]
                         [,2]
                                                      [,5]
    [1,] 49.995000
##
                           NA
                                     NA
                                              NA
                                                        NA
                                                                  NA
                                                                           NA
                                                                                     NA
    [2,] 25.977698 17.971931
                                     NA
                                              NA
                                                        NA
                                                                  NA
                                                                           NA
                                                                                     NA
##
                                                                                     NA
##
    [3,] 14.278918 10.379324 9.873151
                                              NA
                                                        NA
                                                                  NA
                                                                           NA
##
                    6.876799 6.643297 6.592030
                                                        NA
                                                                  NA
                                                                           NA
                                                                                     NA
   [4,]
          8.727329
##
    [5,]
                     5.377393 5.277433 5.255753 5.250512
                                                                  NA
                                                                           NA
                                                                                     NA
          6.214877
##
    [6,]
          5.165740 4.816027 4.778603 4.770685 4.768782 4.768311
                                                                           NA
                                                                                     NA
    [7,]
          4.777158 4.647631 4.636405 4.634148 4.633612 4.633480 4.633447
##
                                                                                     NA
    [8,]
##
          4.652598 4.611078 4.608641 4.608200 4.608098 4.608073 4.608067 4.608066
##
   [9,]
          4.617457
                    4.605743 4.605387 4.605336 4.605325 4.605322 4.605321 4.605321
                    4.605213 4.605178 4.605175 4.605174 4.605174 4.605174 4.605174
## [10,]
          4.608274
                     4.605173 4.605170 4.605170 4.605170 4.605170 4.605170 4.605170
##
   [11,]
          4.605948
##
   [12,]
          4.605365
                    4.605170 4.605170 4.605170 4.605170 4.605170 4.605170 4.605170
##
              [,9]
                      [,10]
                               [,11]
                                       [,12]
##
    [1,]
               NA
                         NA
                                 NA
                                          NA
##
    [2,]
               NA
                         NA
                                 NA
                                          NA
##
   [3,]
               NA
                         NA
                                 NA
                                          NA
##
    [4,]
               NA
                         NA
                                 NA
                                          NA
##
    [5,]
               NA
                         NA
                                 NA
                                          NA
##
    [6,]
               NA
                         NA
                                 NA
                                          NA
##
    [7,]
               NA
                         NA
                                 NA
                                          NA
##
   [8,]
               NA
                         NA
                                 NA
                                          NA
##
   [9,] 4.605321
                         NA
                                 NA
                                          NA
## [10,] 4.605174 4.605174
                                 NA
                                          NA
## [11,] 4.605170 4.605170 4.60517
## [12,] 4.605170 4.605170 4.60517 4.60517
##
## $Romberg Solution
## [1] 4.60517
##
## $MC_integration_Solution
## [1] 4.606614
##
## $Theoretical_Solution
## [1] 4.60517
```

Question 03

- **5.5.** The Gaussian quadrature rule having w(x) = 1 for integrals on [-1, 1] (cf. Table 5.6) is called Gauss-Legendre quadrature because it relies on the Legendre polynomials. The nodes and weights for the 10-point Gauss-Legendre rule are given in Table 5.8.
 - a. Plot the weights versus the nodes.
 - **b.** Find the area under the curve $y = x^2$ between -1 and 1. Compare this with the exact answer and comment on the precision of this quadrature technique.

The area obtained by the 10-point Gaussian quadrature method is identical to the theoretical solution.

```
# 10-point Gaussian quadrature rule
nodes = c(-0.148874338981631, 0.148874338981631, -0.433395394129247, 0.433395394129247,
          -0.679409568299024, 0.679409568299024, -0.865063366688985, 0.865063366688985,
          -0.973906528517172, 0.973906528517172)
weights = c(0.295524224714753, 0.295524224714753, 0.269266719309996, 0.269266719309996,
            0.219086362515982, 0.219086362515982, 0.149451394150581, 0.149451394150581,
            0.066671344308688, 0.066671344308688)
# Plot the weights versus the nodes.
plot(x = nodes, y = weights, type = 'p',
     main = 'weights vs. nodes', xlab = 'nodes', ylab = 'weight')
```

0

weights vs. nodes

```
0.30
0.20
0.10
       -1.0
                                            -0.5
                                                                                0.0
                                                                                                                    0.5
                                                                                                                                                        1.0
                                                                              nodes
```

```
Area = function(nodes, weights, fun, lower, upper){
  return(list( Theoretical_Solution = integrate(fun, lower , upper),
               number_of_Gaussian_quadrature = length(nodes),
               Area Gaussian quadrature = sum(weights * f(nodes)) )) }
f = function(x) \{x^2\}
Area(nodes= nodes, weights= weights, fun = f, lower=-1, upper=1)
## $Theoretical Solution
## 0.6666667 with absolute error < 7.4e-15
##
## $number_of_Gaussian_quadrature
## [1] 10
##
## $Area_Gaussian_quadrature
## [1] 0.6666667
```

Question 04

- **5.6.** Suppose 10 i.i.d. observations result in $\bar{x} = 47$. Let the likelihood for μ correspond to the model $\bar{X} \mid \mu \sim N(\mu, 50/10)$, and the prior for $(\mu 50)/8$ be Student's t with 1 degree of freedom.
 - **a.** Show that the five-point Gauss–Hermite quadrature rule relies on the Hermite polynomial $H_5(x) = c(x^5 10x^3 + 15x)$.

Hermite
$$dk = 0$$
, $Bk = 2$, $Tk = k - 1$, $M(M) = C - \frac{3^{2}}{2^{2}}$

Orthogonal polymonial;

 $P_{K}(N) = (dK + NBN)P_{K-1}(N) - TK P_{K-2}(N)$

When $P_{C}(N) = 1$
 $P_{C}(N) = 1$
 $P_{C}(N) = 0$
 P_{C

b. Show that the normalization of $H_5(x)$ [namely, $\langle H_5(x), H_5(x) \rangle = 1$] requires $c = 1/\sqrt{120\sqrt{2\pi}}$. You may wish to recall that a standard normal distribution has odd moments equal to zero and rth moments equal to $r!/[(r/2)!2^{r/2}]$ when r is even.

To show normalization of H5(1)

$$\int_{\infty}^{\infty} \frac{1}{W(A)^{-2}} W(A) = e^{-\frac{A^{2}}{2}}$$
If $\int_{a}^{b} f(x)^{2}W(A) < DD$, f is square -transpable with regard to w on tabject f in f and f are scaled, f in f in f and f are scaled, f in f

c. Using your favorite root finder, estimate the nodes of the five-point Gauss–Hermite quadrature rule. (Recall that finding a root of f is equivalent to finding a local minimum of |f|.) Plot $H_5(x)$ from -3 to 3 and indicate the roots.

```
# Find the root of H5(x)
# Bisection method
bisection = function(f, a, b, n = 1000, tol = 1e-7) {
  if (f(a) * f(b) > 0) {
    stop('signs of f(a) and f(b) differ')}
  for (i in 1:n) \{ c = (a + b) / 2 \}
    if (f(c) == 0 | ((b - a) / 2) < tol) { return(c)}</pre>
    if (sign(f(c)) == sign(f(a))) { a = c } else { b = c }}
  print('Too many iterations')}
# Plot H5(x) from -3 to 3.
x = seq(-3, 3, length = 100)
H5 = function(x) \{ (1/sqrt(120*sqrt(2*pi))) * (x^5 - 10*x^3 + 15*x) \}
plot(x = x, y = H5(x), type = 'l')
abline(h = 0, lty = 2)
points(x = bisection(f=H5, a=-3, b=-2), y = 0, pch = 16, col = 'red')
points(x = bisection(f=H5, a=-2, b=-1), y = 0, pch = 16, col = 'red')
points(x = bisection(f=H5, a=-1, b=1), y = 0, pch = 16, col = 'red')
points(x = bisection(f=H5, a=1, b=2), y = 0, pch = 16, col = 'red')
points(x = bisection(f=H5, a=2, b=3), y = 0, pch = 16, col = 'red')
```



```
data.frame(point=c(1,2,3,4,5),
           root=c(bisection(f=H5, a=-3, b=-2),
                  bisection(f=H5, a=-2, b=-1),
                  bisection(f=H5, a=-1, b=1),
                  bisection(f=H5, a=1, b=2),
                  bisection(f=H5, a=2, b=3)))
     point
                root
         1 -2.856970
## 1
         2 -1.355626
## 2
## 3
         3 0.000000
         4 1.355626
## 4
         5 2.856970
## 5
```

d. Find the quadrature weights. Plot the weights versus the nodes. You may appreciate knowing that the normalizing constant for $H_6(x)$ is $1/\sqrt{720\sqrt{2\pi}}$.

```
nodes = c(bisection(H5, -3, -2), bisection(H5, -2, -1), bisection(H5, -1, 1), bisection(H
5, 1, 2), bisection(H5, 2, 3))
fun_qw = function(x) {
  c5 = 1/sqrt(120*sqrt(2*pi))
  c6 = \frac{1}{\text{sqrt}}(720 * \text{sqrt}(2 * \text{pi}))
  qw = -c6 / (c5 * c6 * (x^6 - 15*x^4 + 45*x^2 - 15) * c5 * (5*x^4 - 30*x^2 + 15)) # for
mula from section 5.3.2 in textbook
  return(qw) }
data.frame(points=c(1,2,3,4,5),nodes=nodes, weights=fun_qw(nodes)/sum(fun_qw(nodes)))
     points
##
                 nodes
                          weights
## 1
          1 -2.856970 0.01125741
## 2
          2 -1.355626 0.22207592
## 3
          3 0.000000 0.53333333
## 4
          4 1.355626 0.22207592
## 5
          5 2.856970 0.01125741
```

weights vs. nodes

e. Using the nodes and weights found above for five-point Gauss-Hermite integration, estimate the posterior variance of μ . (Remember to account for the normalizing constant in the posterior before taking posterior expectations.)

The posterior variance of u is 4.53585.

$$\chi = 4J,$$

$$\chi = 4J,$$

$$\chi = 4J,$$

$$\chi = \sqrt{1}J_{1} - \sqrt{1}J_{2} - \sqrt{1}J_{2} - \sqrt{1}J_{2} - \sqrt{1}J_{2}}$$

$$\chi = \sqrt{1}J_{1} - \sqrt{1}J_{2} - \sqrt$$

\$14~N(4.5) 10, X=49 X14 AN(U. 59 Sigfithin) - DOCNIE 60 C= (= 0) 10 TO C (10 , 8 + 1+ (1-50) 2 dg = f-0 = 10 8 to 1+(450)2 dy detire y= 4+7 dy = 1/5 dy (471) = (9° - 4° = Los Jox. 87, C - 1+(50) dy U= 554+47 R-20 = 12/13 = J-00 e-42 . 1+(J=y-3)2 dy = 1 = 1 | = 1 | Weight (node) = From Horning = (normalizing constant)-1

```
Find Var(u1\pi), = E(u1\pi) - \left[ \pm iu1\pi \right]^2

E(u1\pi) = \frac{1}{2} \int_{-\infty}^{\infty} u \cdot f(\pi)uf(u)dy

= \frac{1}{2} \int_{-\infty}^{\infty} u \cdot e^{-\frac{i\pi}{2}} \frac{1}{1+(\frac{\pi}{2}+\frac{\pi}{2})^2} d^2y

= \frac{1}{2} \int_{-18\pi^2}^{\infty} \frac{1}{2} \frac{1}{1+(\frac{\pi}{2}+\frac{\pi}{2})^2} d^2y

E(u^2|3) = \frac{1}{2} \cdot \frac{1}{1+(\frac{\pi}{2}+\frac{\pi}{2})^2} \cdot weight(node)

E(u^2|3) = \frac{1}{2} \cdot \frac{1}{1+(\frac{\pi}{2}+\frac{\pi}{2})^2} \cdot weight(node)

E(u^2|3) = \frac{1}{2} \cdot \frac{1}{1+(\frac{\pi}{2}+\frac{\pi}{2})^2} \cdot weight(node)
```

```
f_{constant} = function(x) \{1/(1 + ((sqrt(5)*x - 3)/8)^2)\}
weights=fun_qw(nodes)/sum(fun_qw(nodes))
c = 1/sqrt(128*pi^3) * sum(weights * f_constant(nodes))
c
## [1] 0.01342143
f_{mu} = function(x) \{ (sqrt(5)*x + 47)/(1 + ((sqrt(5)*x - 3)/8)^2) \}
E_mu = (1/c) * (1/sqrt(128*pi^3)) * sum(weights * f_mu(nodes))
E_mu
## [1] 47.32485
f_{mu2} = function(x) \{ (sqrt(5)*x + 47)^2/(1 + ((sqrt(5)*x - 3)/8)^2) \}
E_mu2 = (1/c) * (1/sqrt(128*pi^3)) * sum(weights * f_mu2(nodes))
E_mu2
## [1] 2244.177
Var mu = E mu2 - (E mu)^2
print(Var_mu)
## [1] 4.53585
```