Obydwa algorytmy (Jarvisa i Grahama) działają poprawnie dla zbiorów punktów points1, points2, points3, points4, points5, points6, points7, points8 stworzonych w sposób podany w zadaniu (Podpunkty 1 oraz 3). Zbiory points1 oraz points5, składające się z losowych punktów o współrzędnych z danego prostokąta, działają poprawnie i ciężko przewidzieć ich otoczkę. Zbiory points2 oraz points6, składające się z losowych punktów na danym okręgu, działają poprawnie i jak łatwo przewidzieć otoczka to wszystkie punkty w zbiorze. Zbiory points3 oraz points7, składające się z losowych punktów na danym prostokącie, działają poprawnie i składają się zawsze z 8 punktów (po 2 punkty najbardziej wysunięte na każdym boku). Zbiory points4 oraz points8, składające się z losowych punktów na przekątnych kwadratu,dwóch bokach oraz czterech wierzchołków, działają poprawnie oraz jak łatwo przewidzieć otoczka składa się zawsze z 4 wierzchołków. Każdy zbiór jest stworzony w taki sposób, by móc wyciągnąć z niego wnioski na temat działania algorytmów oraz stwierdzenie czy algorytmy działają poprawnie. Problemy, które mogły stworzyć zbiory:

- zbiory typu 2 dla algorytmu Jarvisa osiągają zawsze złożoność  $O(n^2)$
- zbiory typu 3 oraz 4 porównywały niemal zawsze 3 punkty na tej samej linii, więc algorytm, który by tego nie uwzględniał zawsze byłby nieprawidłowy Porównanie czasów:

|         | Czas t (s)           |                       |                |             |
|---------|----------------------|-----------------------|----------------|-------------|
| Zbiór:  | Graham               | Jarvis                | Który szybszy? | Ile razy?   |
| Points1 | 0.014002799987792969 | 0.004014253616333008  | Jarvis         | 3.49        |
| Points2 | 0.021941423416137695 | 0.11967897415161133   | Graham         | 5.45        |
| Points3 | 0.010965108871459961 | 0.0019943714141845703 | Jarvis         | 5.50        |
| Points4 | 0.004988193511962891 | 0.0                   | Jarvis         | Bardzo dużo |
| Points5 | 0.6611931324005127   | 0.05186176300048828   | Jarvis         | 12.75       |
| Points6 | 1.804250955581665    | 15.976462602615356    | Graham         | 8.85        |
| Points7 | 59.19614887237549    | 0.023144960403442383  | Jarvis         | 2557.63     |
| Points8 | 2.2051022052764893   | 0.010970115661621094  | Jarvis         | 201.01      |

Jak widać algorytm Jarvisa jest wolniejszy tylko w przypadku, gdy osiąga złożoność  $O(n^2)$ . Dla dużych zbiorów osiągnał bardzo dobre wyniki w porównaniu do Grahama (nawet 2500 razy szybciej). Gdy więc wiemy, że otoczka nie będzie duża, warto stosować algorytm Jarvisa.



10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -10.0−<del>7</del>.5 -2.5 0.0 2.5 -10.0 -5.0 5.0 7.5 10.0 Otoczka wypukła dla zbioru points2







Otoczka wypukła dla zbioru points4