ВАРИАНТЫ

задания на расчетно-исследовательской работы магистранта (РИРМ) по курсу «ИНТЕЛЛЕКТУАЛЬНОЕ УПРАВЛЕНИЕ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ»

Для непрерывного объекта управления, заданного в виде передаточной функции (П Φ) «вход-выход (ВВ)» НОУ

$$\Phi(s,q) = \frac{b_0(1+q_1)s + b_1(1+q_2)}{(a_0(1+q_3)s + a_1(1+q_4))(a_2(1+q_5)s^2 + a_3(1+q_6)s + a_4(1+q_7))},$$

где $q_{10}=q_{20}=q_{30}=q_{40}=q_{50}=q_{60}=q_{70}=0$ — номинальные значения параметров $q_{i0},\ j=\overline{1,7}$:

- 1. Построить МТЧ непрерывного $\dot{x}(t,q) = A(q)x(t,q) + B(q)u(t); y(t,q) = C(q)x(t,q) + D(q)u(t,q)$
 - в требуемом базисе; произвести ранжирование параметров q_j по потенциальной чувствительности к ним выхода ОУ с использованием матрицы управляемости агрегированной системы; оценить, какое из дополнительных движений, вызванных вариацией Δq_j , потребует максимальных затрат управления при обеспечении его асимптотической сходимости к нулю.
- 2. Перейти к дискретному описанию ОУ $x(k+1,q) = \overline{A}(q)x(k,q) + \overline{B}(q)u(k); \ y(k,q) = \overline{C}(q)x(k,q) + \overline{D}(q)u(k)$ указанным в задании методом. Построить МТЧ дискретного ОУ к вариации интервала дискретности.
- 3. Синтезировать закон управления (ЗУ) вида $u(t)=k_gg(t)-kx(t)$, который должен обеспечивать **системе**

$$\dot{x}(t,q) = F(q)x(t,q) + G(q)g(t); y(t,q) = C(q)x(t,q) + D(q)u(t,q)$$

 $F(q) = A(q) - B(q)K, G(q) = B(q)K_g,$

образованной объединением НОУ и ЗУ равенство входа g(t) и выхода y(t) в неподвижном состоянии при номинальных значениях параметров с помощью:

- матрицы k_g прямой связи по входу g(t);
- матрицы k обратной связи по состоянию x(t)

распределение мод Баттерворта с характеристической частотой ω_0 .

Построить МТЧ спроектированной системы по каждому из параметров и для значения $|\Delta q_j| = 0.3$; выделить доминирующие параметры по степени их влияния на величину σ перерегулирования и длительность t_n переходного процесса;

оценить в процентах отклонения величин перерегулирования и времени переходного процесса систем с неопределенностями от значений σ и t_n 3C с номинальными параметрами ($\Delta q_i = 0$).

- 4. Построить матрицу функций модальной чувствительности и выделить неблагоприятное сочетание вариаций параметров;
- 5. Получить ВМО НОУ с интервальными параметрами $\dot{x}(t) = \begin{bmatrix} A \end{bmatrix} x(t) + \begin{bmatrix} B \end{bmatrix} u(t); \ y(t) = Cx(t) + Du(t),$ $\begin{bmatrix} A \end{bmatrix} = A_0 + \begin{bmatrix} \Delta A \end{bmatrix}, \ \begin{bmatrix} B \end{bmatrix} = B_0 + \begin{bmatrix} \Delta B \end{bmatrix},$
 - с использованием **интервальной арифметики** на основе интервальной реализации параметров q_j , записываемых в форме $\left[q_j\right] = \left[\underline{q_j}, \overline{q_j}\right]$ при заданных граничных (угловых) значениях.
- 6. Синтезировать закон медианного модального управления, базовый алгоритм которого дополняется контролем нормы $\|F_0\|$ медианной составляющей интервальной матрицы [F] спроектированной системы с последующим вычислением оценки $\delta_I F$, вычислить матрицы k_g и k.

Закон управления (ЗУ) вида
$$u(t)=k_gg(t)-kx(t)$$
 должен доставлять системе $\dot{x}(t)=\big[F\big]x(t)+\big[G\big]g(t); y(t)=Cx(t)+Du(t)$ $\big[F\big]=\big[A\big]-\big[B\big]K=F_0+\big[\Delta F\big], \ \big[G\big]=\big[B\big]K_g=G_0+\big[\Delta G\big],$

образованной объединением НОУ и ЗУ равенство входа g(t) и выхода y(t) в неподвижном состоянии при номинальных значениях параметров с помощью:

- -матрицы k_g прямой связи по входу g(t);
- матрицы \boldsymbol{k} обратной связи по состоянию $\boldsymbol{x}(t)$

распределение мод Баттерворта с характеристической частотой ω_0 , которая гарантирует достижение значение оценки относительной

интервальности матрицы состояния системы $\delta_I F = \frac{\left\|\Delta F\right\|}{\left\|F_0\right\|}$ не больше

заданной $\delta_{\it IR} F$. Исследовать свойство робастности системы, полученной в п.6, с помощью метода В.Л. Харитонова.

ПРИМЕЧАНИЕ. При формировании интервального ВМО ВСВ НОУ следует стремиться к тому, чтобы интервальной была бы **только** матрица состояния НОУ.

7. Оценить алгебраическую реализуемость неадаптивного и адаптивного управления, обеспечивающего параметрическую инвариантность выхода системы, и синтезировать каждый из видов закона управления. Величина параметрической неопределенности ОУ характеризуется величиной, указанной в табл.1, и определяется вариантом задания.

Таблица 1

Варианты	A	Б	В	гаолица т Г	
Барианты	A	ь	ь	1	
Исходные					
данные					
1.1. Значения	$b_0 = 3;$	$b_0 = 0;$	$b_0 = 0;$	$b_0 = 1;$	
параметров	$b_1 = 0.4$;	$b_1 = 0.67;$	$b_1 = 2;$	$b_1 = 0.25;$	
ПФ	$a_0 = 2;$	$a_0 = 0;$	$a_0 = 5;$	$a_0 = 0;$	
	$a_1 = 0.6;$	$a_1 = 1;$	$a_1 = 1;$	$a_1 = 1;$	
	$a_2 = 0;$	$a_2 = 16;$	$a_2 = 0;$	$a_2 = 4;$	
	$a_{2} = 6;$	$a_{3} = 3;$	$a_2 = 0$; $a_3 = 2.5$;	$\begin{vmatrix} a_2 & 1 \\ a_3 = 3 & 3 \end{vmatrix}$	
		3		3	
	$a_4 = 10$	$a_4 = 10$	$a_4 = 25$	$a_4 = 1$	
1.2. Базис	каноничес-	каноничес-	физичес-	произволь-	
описания НОУ	кий	кий	кий	ный	
	управляе-	наблюдае-			
	мый	мый			
2.1. Интервал	$\Delta t=0.05c$	$\Delta t=0.03c$	$\Delta t=0.02c$	$\Delta t=0.07c$	
дискретности					
2.2. Метод	заменой	с помощью	заменой	произволь-	
перехода к	производ-	интеграль-	производ-	ный	
ДОУ	ной отно-	ной моде-	ной		
	шением	ли ВСВ	отношени-		
	конечных	НОУ	ем конеч-		
2.87	малых		ных малых		
3.Характерис-	21	1	10l	151	
тическая	$\omega_0 = 3c^{-1}$	$\omega_0 = 5c^{-1}$	$\omega_0 = 10c^{-1}$	$\omega_0 = 15c^{-1}$	
частота	a = 0.2	a = 0.2	a = 0.4	a - 05	
5. Граничные (угловые)	$\frac{q_j}{\underline{}}$ -0.2	$\frac{q_j}{=}$ -0.3	$\frac{q_j}{=} = -0.4$ $\frac{q_j}{q_j} = 0.4$	$\frac{q_j}{\underline{}}$ 0.3	
значения	$\frac{q_j}{\overline{q}_j} = -0.2$ $\overline{q}_j = 0.2$	$\frac{q_j = -0.3}{\frac{-0.3}{q_j}} = 0.3$	$q_{i} = 0.4$	$\frac{q_j}{\overline{q}_j} = -0.5$ $\overline{q}_j = 0.5$	
параметра q_i	_	_	_	_	
,	S = F = 0.02	S = F = 0.02	S = F = 0.04	S = F - O O S	
6. Относитель-	$\delta_{IR}F = 0.02$	$\delta_{IR}F = 0.03$	$\delta_{IR}F = 0.04$	$\delta_{IR}F = 0.05$	
интерваль-					
ность					
матрицы					
состояния					
системы					
7. Величина	$q_i = -0.2$	$q_i = -0.3$	$q_i = -0.4$	$q_i = -0.5$	
параметричес-	$\frac{q_j = -0.2}{\overline{q}_j = 0.2}$	$\frac{q_j = -0.3}{\overline{q_j}} = 0.3$	$\frac{q_j = -0.4}{\overline{q}_j = 0.4}$	$\frac{q_j = -0.5}{\overline{q_j}} = 0.5$	
кой неопреде-	$q_j = 0.2$	$q_{j} = 0.3$	$q_{j} = 0.4$	$q_j = 0.5$	
ленности					
	<u>l</u>	<u> </u>	l		

Таблица 2

No॒	номера пунктов задания									
варианта	1.1	1.2	2.1	2.2	3	5	6	7		
1	A	A	A	A	A	A	A	A		
2	Б	Б	Б	Б	Б	Б	Б	Б		
3	В	В	В	В	В	В	В	В		
4	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ		
5	Б	Б	A	A	A	A	A	A		
6	A	A	Б	Б	A	A	A	A		
7	A	A	A	A	Б	Б	A	A		
8	A	A	A	A	A	A	Б	Б		
9	В	В	A	A	A	A	A	A		
10	A	A	В	В	A	A	A	A		
11	A	A	A	A	В	В	A	A		
12	A	A	A	A	A	A	В	В		
13	Γ	Γ	A	A	A	A	A	A		
14	A	A	Γ	Γ	A	A	A	A		
15	A	A	A	A	Γ	Γ	A	A		
16	A	A	A	A	A	A	Γ	Γ		
17	Б	Б	Б	A	A	A	A	A		
18	A	A	Б	Б	Б	A	A	A		
19	A	A	A	A	Б	Б	Б	A		
20	A	A	A	A	A	Б	Б	Б		
21	В	В	В	A	A	A	A	A		
22	A	В	В	В	A	A	A	A		
23	A	A	В	В	В	A	A	A		
24	A	A	A	В	В	В	A	A		
25	A	A	A	A	A	В	В	В		
26	Γ	Γ	Γ	A	A	A	A	A		
27	A	Γ	Γ	Γ	A	A	A	A		
28	A	A	Γ	Γ	Γ	A	A	A		
29	A	A	A	Γ	Γ	Γ	A	A		
30	A	A	A	A	Γ	Γ	Γ	A		
31	A	A	A	A	A	Γ	Γ	Γ		
32	Б	Б	Б	Б	A	A	A	A		
33	A	A	Б	Б	Б	A	A	A		
34	A	A	Б	Б	Б	Б	A	A		
35	A	A	A	A	Б	Б	Б	Б		
36	В	В	В	В	A	A	A	A		
37	A	A	В	В	В	A	A	A		
38	A	A	В	В	В	В	A	A		
39	A	A	A	В	В	В	В	A		
40	A	A	A	A	В	В	В	В		