MSDM5004 Numerical Methods and Modeling in Science Spring 2024

Lecture 5

Prof Yang Xiang
Hong Kong University of Science and Technology

Tridiagonal linear system: Thomas algorithm

A sufficient condition for finding the solution by Gaussian elimination:

Diagonally dominant:

 $|d_{ij}| > |a_{ij}| + |c_{ij}|$ in the case of the tridiagonal matrix.

Forward elimination

$$d'_{1} = d_{1}$$

$$d'_{2} = d_{2} - \frac{a_{2}}{d'_{1}}c_{1}$$

$$\dots$$

$$d'_{i} = d_{i} - \frac{a_{i}}{d'_{i-1}}c_{i-1}$$

Accordingly

$$b'_{1} = b_{1}$$

$$b'_{2} = b_{2} - \frac{a_{2}}{d'_{1}}b'_{1}$$

$$b'_{i} = b_{i} - \frac{a_{i}}{d'_{i-1}}b'_{i-1}$$

Backward substitution

$$x_n = \frac{b'_n}{d'_n}$$

$$x_{n-1} = \frac{b'_{n-1} + c_{n-1}x_n}{d'_{n-1}}$$

$$\dots$$

$$x_i = \frac{b'_i + c_i x_{i+1}}{a_n}$$

$$\begin{bmatrix} d_1 & c_1 & & & & & \\ a_2 & d_2 & c_2 & & & & \\ & a_3 & d_3 & c_3 & & \\ & & a_4 & d_4 & c_4 & & \\ & & & \ddots & \ddots & \ddots & \\ & & & a_{n-1} & d_{n-1} & c_{n-1} \\ & & & a_n & d_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}$$

The Thomas Algorithm

1. Forward elimination

$$d_i = d_i - \frac{a_i}{d_{i-1}} c_{i-1},$$

$$b_i = b_i - \frac{a_i}{d_{i-1}} b_{i-1},$$
for $i = 2, 3, \dots, N$.

2. Backward substitution

$$x_n = \frac{b_n}{d_n}$$

$$x_i = \frac{b_i + c_i x_{i+1}}{d_i}, \quad i = n - 1, n - 2, \dots, 2, 1.$$

Chapter 7

Iterative Methods for Solving Linear Systems

1. Iterative methods

Solve linear system $A\mathbf{x} = \mathbf{b}$

by iterations

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c},$$

Advantages

- Iterative techniques are seldom used for solving linear systems of small dimension since the time required for sufficient accuracy exceeds that required for direct techniques such as Gaussian elimination.
- For large systems with a high percentage of 0 entries, however, these techniques are efficient in terms of both computer storage and computation.

sparse matrices

2. Jacobi method

For each $k \ge 1$, generate the components $x_i^{(k)}$ of $\mathbf{x}^{(k)}$ from the components of $\mathbf{x}^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1\\j \neq i}}^n \left(-a_{ij} x_j^{(k-1)} \right) + b_i \right], \quad \text{for } i = 1, 2, \dots, n.$$

Example

The linear system $A\mathbf{x} = \mathbf{b}$ given by

$$E_1: 10x_1 - x_2 + 2x_3 = 6,$$

 $E_2: -x_1 + 11x_2 - x_3 + 3x_4 = 25,$
 $E_3: 2x_1 - x_2 + 10x_3 - x_4 = -11,$
 $E_4: 3x_2 - x_3 + 8x_4 = 15$

Use Jacobi's iterative technique to find approximations $\mathbf{x}^{(k)}$ to \mathbf{x} starting with $\mathbf{x}^{(0)} = (0, 0, 0, 0)^t$

Solution

We first solve equation E_i for x_i , for each i = 1, 2, 3, 4, to obtain

$$x_{1} = \frac{1}{10}x_{2} - \frac{1}{5}x_{3} + \frac{3}{5},$$

$$x_{2} = \frac{1}{11}x_{1} + \frac{1}{11}x_{3} - \frac{3}{11}x_{4} + \frac{25}{11},$$

$$x_{3} = -\frac{1}{5}x_{1} + \frac{1}{10}x_{2} + \frac{1}{10}x_{4} - \frac{11}{10},$$

$$x_{4} = -\frac{3}{8}x_{2} + \frac{1}{8}x_{3} + \frac{15}{8}.$$

$$E_1: 10x_1 - x_2 + 2x_3 = 6,$$

$$E_2: -x_1 + 11x_2 - x_3 + 3x_4 = 25,$$

$$E_3: 2x_1 - x_2 + 10x_3 - x_4 = -11,$$

$$E_4: 3x_2 - x_3 + 8x_4 = 15$$

From the initial approximation $\mathbf{x}^{(0)} = (0, 0, 0, 0)^t$ we have $\mathbf{x}^{(1)}$ given by

$$x_{1}^{(1)} = \frac{1}{10}x_{2}^{(0)} - \frac{1}{5}x_{3}^{(0)} + \frac{3}{5} = 0.6000,$$

$$x_{2}^{(1)} = \frac{1}{11}x_{1}^{(0)} + \frac{1}{11}x_{3}^{(0)} - \frac{3}{11}x_{4}^{(0)} + \frac{25}{11} = 2.2727,$$

$$x_{3}^{(1)} = -\frac{1}{5}x_{1}^{(0)} + \frac{1}{10}x_{2}^{(0)} + \frac{1}{10}x_{4}^{(0)} - \frac{11}{10} = -1.1000,$$

$$x_{4}^{(1)} = -\frac{3}{8}x_{2}^{(0)} + \frac{1}{8}x_{3}^{(0)} + \frac{15}{8} = 1.8750.$$

Additional iterates, $\mathbf{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, x_4^{(k)})^t$, are generated in a similar manner and are presented in Table 7.1.

Table 7.1

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.0473	0.9326	1.0152	0.9890
$x_{2}^{(k)}$	0.0000	2.2727	1.7159	2.053	1.9537	2.0114
$x_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493	-0.9681	-1.0103
$\chi_4^{(k)}$	0.0000	1.8750	0.8852	1.1309	0.9739	1.0214

6	7	8	9	10
1.0032	0.9981	1.0006	0.9997	1.0001
1.9922	2.0023	1.9987	2.0004	1.9998
-0.9945	-1.0020	-0.9990	-1.0004	-0.9998
0.9944	1.0036	0.9989	1.0006	0.9998

Remark: The exact solution is $x=(1,2,-1,1)^t$.

Linear system $A\mathbf{x} = \mathbf{b}$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

write A = D - L - U where

$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix} \qquad L = \begin{bmatrix} 0 & \cdots & \cdots & 0 \\ -a_{21} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} -a_{21} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{bmatrix}$$

and

The equation $A\mathbf{x} = \mathbf{b}$, or $(D - L - U)\mathbf{x} = \mathbf{b}$, is then transformed into

$$D\mathbf{x} = (L+U)\mathbf{x} + \mathbf{b}$$

and, if D^{-1} exists, that is, if $a_{ii} \neq 0$ for each i, then

$$\mathbf{x} = D^{-1}(L+U)\mathbf{x} + D^{-1}\mathbf{b}$$

This results in the matrix form of the Jacobi iterative technique:

$$\mathbf{x}^{(k)} = D^{-1}(L+U)\mathbf{x}^{(k-1)} + D^{-1}\mathbf{b}, \quad k = 1, 2, ...$$

Assumption: $a_{ii} \neq 0$, for each i = 1, 2, ..., n.

This formulation based on D, L, U is only for analysis.

Use the formulation on page 8 in codes.

Introducing the notation $T_j = D^{-1}(L + U)$ and $\mathbf{c}_j = D^{-1}\mathbf{b}$ gives the Jacobi technique the form

$$\mathbf{x}^{(k)} = T_j \mathbf{x}^{(k-1)} + \mathbf{c}_j$$
Jacobi