YIN LIANGWEI 513-501-9078 | yinl8@miamioh.edu

Education

M. Sc. Bioinformatics, Miami University, USA

2019-present

B. Sc. Biotechnology, Hubei University of Chinese Medicine, China

2018

Research Experiences

Project I: Chromatin and epigenetic features shape subgenome in maize

- Evolutionary feature of whole genome duplication
- 1. Enrichment of genomic features of subgenome blocks
- Calculate and compare evolutionary rates of genes at different chromosome region
- 3. Examine genome-wide DNA methylation.
- 4. Examine genome-wide siRNA pattern.
- Dominant expression pattern under classified chromosome region
- 1. Transcriptome profiling of subgenome across multiple tissues
- 2. Protein abundance profiling of subgenome across multiple tissues
- Perform ChIPseq analysis to examine histone marks enrichment of high- and lowexpressed genes
- Histone marks feature of subgenome genes
- 1. Perform ChIPseq analysis to examine histone modifications on differentially evolutionary genes
- 2. Histone features of classified chromosome region
- 3. Chromosome segments identification by ChroHMM
- 4. Examine enrichment of TE and histone marks surrounding classified genes

Project I I: Mop1 mutation affects recombination rate in maize

- 1. Sample preparation for NGS experiment
- 2. Examine recombination rate of *mop1* mutant and wildtype
- 3. SNPs calling analysis for Big DNA resequencing data

Skills: Python (numpy, pandas, matplotlib), MySQL; cloud computing (ohio supercomputer center); DNA-seq, RNA-seq, Chip-seq, whole genome Bisulfite-seq and small RNA-seq analysis; BWA, GATK, Bcftools, Hisat2, Cuflinks, HTSeq, MACS2, ChromHMM, Bismark, Bowtie, Bedtools

Work Experiences

Graduate teaching assistant. Intro. Biology Laboratory 2020/2019
Data analyst Shanghai Transmedia 2019
Clinical coordinator Mingma Shanghai technologies 2018

Poster presentations

Yin et al., Chromatin types and epigenomic features shape the differentiation of the maize subgenomes. Maize Genetics Meeting, 2021.

Publications

Yin, Liangwei; Zhao, Meixia. Chromatin types and epigenomic features shape the differentiation of the maize subgenomes. In preparation for **Plant Journal**

Zhao, M., Ku, J. C., Liu, B., Yang, D., Yin, L., Ferrell, T. J., ... & Lisch, D. (2021). The mop1 mutation affects the recombination landscape in maize. *Proceedings of the National Academy of Sciences*, *118*(7).

Li, Tong; **Yin, Liangwei**; Stoll, Claire; Lisch, Damon; Zhao, Meixia. Imprinted conserved non-coding sequences and novel imprinted genes introduced by Mutator transposons provide new insights into the mechanisms of genomic imprinting. (**Plant Cell**, Under Review).