DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

PH2140 Mathematics on the Computer

Assignment 8 (II)

28 Sep 2015

1. Establish the following identity:

$$U = \exp\left(\frac{i\theta\boldsymbol{\sigma}\cdot\boldsymbol{n}}{2}\right) = I_{2\times 2}\cos\left(\theta/2\right) + i(\boldsymbol{\sigma}\cdot\boldsymbol{n})\sin\left(\theta/2\right)$$

where σ represents a "vector" whose components are the three Pauli matrices; i.e., $\sigma \equiv [\sigma_x, \sigma_y, \sigma_z]$. You might want to remember to following points:

- 1. $\exp(M)$ for a matrix M is defined via the series: $\exp(M) = I + \sum_{k=1}^{\infty} M^k / k!$, where M^k is M multiplied k times with itself.
- 2. The vector \mathbf{n} above is by definition a unit vector in 3 dimensions; i.e., $\mathbf{n} \cdot \mathbf{n} = 1$. Make sure you take this into account properly.

Comment: The above identity provides an alternate way of describing rotations (by the angle θ about the axis n) in 3 dimensions, the usual description being in terms of the 3×3 rotation matrices $R_n(\theta)$.

- 2. Establish the above comment through following steps:
 - 1. Construct a 2×2 matrix $H = \mathbf{r} \cdot \boldsymbol{\sigma} = x\sigma_x + y\sigma_y + z\sigma_z$.
 - 2. Define H' as the transform of H under U:

$$H' = UHU^{\dagger}$$

3. Compare the components of H' and H and hence make the connection with rotations in 3 dimensions.