17 RF exposure

RF Exposure MPE Calculation

KDB 447498

Prediction of MPE limit at a given distance

Equation from IEEE C95.1

$$S = \frac{EIRP}{4\pi R^2} \text{ re-arranged } R = \sqrt{\frac{EIRP}{S4\pi}}$$

where:

S = power density
R = distance to the centre of radiation of the antenna
EIRP = EUT Maximum power

Note:

The EIRP was calculated by addition of the maximum conducted carrier power plus the antenna gain.

OR

The following formula may be used to convert field strength (FS) in volts/metre to transmitter output power (TP) in watts:

$$TP = (FS \times D)^2 / (30 \times G)$$

where D is the distance in metres between the two antennas and G is the antenna numerical gain referenced to isotropic gain.

Result

Prediction Frequency (MHz)	Maximum Conducted Power (dBm)	Antenna Gain (dBi)	Maximum EIRP (mW)	Minimum Distance (cm)	Power density at distance (mW/cm²)	Power density limit (S) (mW/cm²)
2403.0	-0.49	0	0.893	0.27	0.974	1
2439.0	-0.55	0	0.881	0.27	0.961	1
2481.0	-0.75	0	0.841	0.26	0.990	1