- > Orientable Surfaces
- > Flux Integrals

Surface integral of g over S

$$\iint\limits_{S} g(x, y, z) \, d\sigma = \iint\limits_{R} g(x, y, z) \, \frac{|\nabla f|}{|\nabla f \cdot \vec{p}|} \, dA$$

R is the projection of S on on the xy, yz or zx plane

 \vec{p} is the unit normal to R and $\nabla f \cdot \vec{p} \neq 0$

Orientable Surface

S is an orientable surface if it has two sides which may be painted in two different colors.

Orientable Surfaces

Non-Orientable Surface

Flux of a vector field \overrightarrow{F} through a surface S

The flux of a vector field \vec{F} across an orientable surface S in the direction of \vec{n} (unit normal to S) is given by the integral

$$\mathsf{Flux} = \iint\limits_{S} \vec{F} \cdot \vec{n} \ d\sigma$$

Geometrically, a flux integral is the surface integral over S of the normal component of \vec{F} .

If \vec{F} is the continuous velocity field of a fluid and $\rho(x,y,z)$ is the density of the fluid at (x,y,z)

then the flux integral

$$\iint\limits_{S} \rho \ \vec{F} \cdot \vec{n} \ d\sigma$$

represents the mass of the fluid flowing across S per unit of time.

Evaluation of Flux Integral $\iint_S \vec{F} \cdot \vec{n} \ d\sigma$

Suppose S is a part of a level surface f(x, y, z) = C, then \vec{n} may be taken either of the two unit vectors

$$\vec{n} = \pm \frac{\nabla f}{|\nabla f|}$$

Flux =
$$\pm \iint_{R} \vec{F} \cdot \left(\frac{\nabla f}{|\nabla f|}\right) \frac{|\nabla f|}{|\nabla f \cdot \vec{p}|} dA$$

$$= \pm \iint\limits_{R} \vec{F} \cdot \frac{\nabla f}{|\nabla f \cdot \vec{p}|} \ dA$$

Problem-1 Find the flux of $\vec{F} = yz\hat{j} + z^2\hat{k}$ outward through the surface S cut from the cylinder $y^2 + z^2 = 1, z > 0$

by the planes x = 0 and x = 1.

Solution Surface f(x, y, z) = C

$$\vec{n} = \frac{\nabla f}{|\nabla f|} = \frac{2y\hat{\jmath} + 2z\hat{k}}{\sqrt{4(y^2 + z^2)}} = y\hat{\jmath} + z\hat{k} \qquad \qquad \vec{p} = \vec{k}$$

$$d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \vec{p}|} dA = \frac{|\nabla f|}{|\nabla f \cdot \vec{k}|} dA = \frac{2}{|2z|} dA = \frac{1}{z} dA$$

$$d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \vec{p}|} dA = \frac{|\nabla f|}{|\nabla f \cdot \vec{k}|} dA = \frac{2}{|2z|} dA = \frac{1}{z} dA \qquad (1, -1, 0)$$

Also
$$\vec{F} \cdot \vec{n} = y^2 z + z^3 = z$$

Flux through S:
$$\iint\limits_{S} \vec{F} \cdot \vec{n} \, d\sigma = \iint\limits_{R_{xy}} z \times \frac{1}{z} \, dA = \iint\limits_{R_{xy}} dA = 2$$

Problem-2 Evaluate the integral

$$\iint_{S} \vec{F} \cdot \vec{n} \, d\sigma \quad \text{where} \qquad \vec{F} = 6z \, \hat{\imath} + 6 \, \hat{\jmath} + 3y \, \hat{k}$$

and S is the portion of the plane 2x + 3y + 4z = 12 which is in the first octant.

Solution Let
$$f(x, y, z) = 2x + 3y + 4z \Rightarrow \nabla f = 2\hat{\imath} + 3\hat{\jmath} + 4\hat{k}$$

$$\vec{n} = \frac{\nabla f}{|\nabla f|} = \frac{1}{\sqrt{29}} (2\hat{\imath} + 3\hat{\jmath} + 4\hat{k})$$

$$\vec{F} \cdot \vec{n} = \frac{1}{\sqrt{29}} (12z + 18 + 12y)$$

$$d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \vec{k}|} dA = \frac{\sqrt{29}}{4} dA \qquad (\vec{p} = \hat{k})$$

We are projecting of S on the xy plane.

The projection R is bounded by x-axis, y-axis and 2x + 3y = 12

Note that
$$\vec{F} \cdot \vec{n} = \frac{1}{\sqrt{29}} (12z + 18 + 12y)$$
 Also given surface $2x + 3y + 4z = 12$

$$\iint_{S} \vec{F} \cdot \vec{n} \, d\sigma = \iint_{R} \frac{1}{\sqrt{29}} (3(12 - 2x - 3y) + 18 + 12y) \left(\frac{\sqrt{29}}{4}\right) dA$$

$$d\sigma = \frac{\sqrt{29}}{4} \ dA$$

$$= \frac{1}{4} \iint\limits_{R} (54 - 6x + 3y) \ dA$$

$$= \frac{1}{4} \int_{x=0}^{6} \int_{y=0}^{(12-2x)/3} (54 - 6x + 3y) \, dy \, dx$$

= 138

Problem-3 Evaluate the surface integral $\iint_{S} \vec{F} \cdot \vec{n} \ d\sigma \text{ where } \vec{F} = z^2 \ \hat{\imath} + xy \ \hat{\jmath} - y^2 \ \hat{k}$

and S is the portion of the surface of the cylinder $x^2 + y^2 = 36$, $0 \le z \le 4$ included in the first octant.

Solution Let
$$f(x, y, z) = x^2 + y^2 - 36$$

$$\Rightarrow \nabla f = 2x \,\hat{\imath} + 2y \,\hat{\jmath} \ \Rightarrow |\nabla f| = \sqrt{4 \times 36} = 12$$

$$\vec{n} = \frac{\nabla f}{|\nabla f|} = \frac{1}{12} (2x \,\hat{\imath} + 2y \,\hat{\jmath})$$

$$=\frac{1}{6}(x\,\hat{\imath}+y\,\hat{\jmath})$$

$$d\sigma = \frac{|\nabla f|}{|\nabla f.\vec{p}|} dA$$

 $d\sigma = \frac{|Vf|}{|\nabla f, \vec{p}|} dA \qquad \qquad \vec{p} = i \text{ (if projection is on } yz \text{ plane)}$

$$d\sigma = \frac{12}{|2x|}dA = \frac{6}{x}dA$$

Therefore
$$\iint_{S} \vec{F} \cdot \vec{n} \, d\sigma = \iint_{R_{vz}} \frac{1}{6} (xz^2 + xy^2) \frac{6}{x} \, dA$$

$$= \int_{z=0}^{4} \int_{y=0}^{6} (y^2 + z^2) \, dy dz = \int_{0}^{4} \left[\frac{y^3}{3} + z^2 y \right]_{0}^{6} dz$$

$$= \int_0^4 (72 + 6z^2) dz = 72 \times 4 + \frac{6}{3} \times 64 = 416$$

$$\nabla f = 2x \,\hat{\imath} + 2y \,\hat{\jmath}$$

$$|\nabla f| = 12$$

$$\vec{F} = z^2 \,\hat{\imath} + xy \,\hat{\jmath} - y^2 \,\hat{k}$$

$$\vec{n} = \frac{1}{6}(x \,\hat{\imath} + y \,\hat{\jmath})$$

KEY TAKEAWAY

Surface Integrals
$$\iint\limits_{S} \vec{F} \cdot \vec{n} \, d\sigma \, = \iint\limits_{R} \vec{F} \cdot \left(\frac{\nabla f}{|\nabla f|} \right) \, \frac{|\nabla f|}{|\nabla f \cdot \vec{p}|} \, dA$$

$$= \iint\limits_{R} \vec{F} \cdot \frac{\nabla f}{|\nabla f \cdot \vec{p}|} \ dA$$

> Stokes' Theorem (Generalization of Green's Theorem)

Green's Theorem (Recall):

Let R be a region in \mathbb{R}^2 whose boundary is a simple closed curve C

Let $\vec{F} = F_1(x, y) \hat{i} + F_2(x, y) \hat{j}$ be smooth vector field $(F_1 \& F_2 \text{ are } C^1 \text{ functions})$ on both R and C, then

$$\oint_{C} \vec{F} \cdot d\vec{r} = \iint_{R} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dA$$

Note that the above can also be written as

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_R (\operatorname{curl} \vec{F}) \cdot \hat{k} \ dA$$

Stokes' Theorem

Green's theorem in the plane
$$\oint_C \vec{F} \cdot d\vec{r} = \iint_D (\nabla \times \vec{F}) \cdot \vec{k} \ dxdy$$

Let C be a closed curve in 3-D space which forms the boundary of a surface S whose unit normal vector is \vec{n}

Then for a continuously differentiable vector field \vec{F} , we have

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot \vec{n} \ ds \quad \text{where the direction of the line integral}$$

around C and the normal \vec{n} are oriented in a right-handed sense

If $\nabla \times \vec{F} = 0$ (\vec{F} is irrotational, or \vec{F} is conservative) then, Stokes' theorem tells us that

$$\oint_C \vec{F} \cdot d\vec{r} = 0$$

Problem-1 Verify Stokes' theorem for the hemisphere $S: x^2 + y^2 + z^2 = 9$, $z \ge 0$, its boundary

$$C: x^2 + y^2 = 9$$
, $z = 0$ and the field $\vec{F} = y\hat{\imath} - x\hat{\jmath}$ Stokes' theorem: $\oint_C \vec{F} \cdot d\vec{r} = \iint_C (\nabla \times \vec{F}) \cdot \vec{n} \, ds$

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot \vec{n} \ ds$$

Solution: Parametric equation of the curve

$$\vec{r}(\theta) = 3\cos\theta \,\hat{\imath} + 3\sin\theta \,\hat{\jmath}, \qquad 0 \le \theta \le 2\pi$$

$$\Rightarrow \frac{d\vec{r}}{d\theta} = -3\sin\theta \,\hat{\imath} + 3\cos\theta \,\hat{\jmath}$$

$$\vec{F} = 3\sin\theta \,\hat{\imath} - 3\cos\theta \,\hat{\jmath}$$

$$\vec{F} \cdot \frac{d\vec{r}}{d\theta} = -9\sin^2\theta - 9\cos^2\theta = -9$$

$$\oint_C \vec{F} \cdot d\vec{r} = \int_{\theta=0}^{2\pi} \vec{F} \cdot \frac{d\vec{r}}{d\theta} d\theta$$

$$= \int_0^{2\pi} -9 \ d\theta = -18\pi$$

$$\nabla \times \vec{F} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & -x & 0 \end{vmatrix} = \hat{\imath} (0) + \hat{\jmath} (0) + \hat{k} (-1 - 1) = -2\hat{k}$$

$$\vec{n} = \frac{\nabla f}{|\nabla f|} = \frac{2x\hat{\imath} + 2y\hat{\jmath} + 2z\hat{k}}{\sqrt{4 \times 9}} = \frac{x\hat{\imath} + y\hat{\jmath} + z\hat{k}}{3}$$

$$\iint_{S} (\nabla \times \vec{F}) \cdot \vec{n} \, ds = \iint_{x^{2} + y^{2} \le 9} -\frac{2z}{3} \frac{|\nabla (x^{2} + y^{2} + z^{2})|}{|\nabla (x^{2} + y^{2} + z^{2}) \cdot \hat{k}|} dx dy$$

$$= \iint\limits_{x^2+y^2 \le 9} -\frac{2z}{3} \frac{6}{2z} dx dy = -2 \iint\limits_{x^2+y^2 \le 9} dx dy = -18\pi$$

$$S: x^{2} + y^{2} + z^{2} = 9$$

$$f = x^{2} + y^{2} + z^{2}$$

$$\vec{F} = y\hat{\imath} - x\hat{\jmath}$$

Problem-2 Verify Stokes' theorem for the function $\vec{F} = x\hat{\imath} + z^2\hat{\jmath} + y^2\hat{k}$ over the plane surface x + y + z = 1 lying in the first quadrant.

Solution Stokes' theorem:
$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot \vec{n} \ ds$$

S: triangle ABD C: lines AB, BD and DA

$$\oint_C \vec{F} \cdot d\vec{r} = \oint_C (x\hat{\imath} + z^2\hat{\jmath} + y^2\hat{k}) \cdot (\hat{\imath} dx + \hat{\jmath} dy + \hat{k} dz)$$

$$= \int_{AB} x \, dx + z^2 dy + y^2 dz + \int_{BD} x dx + z^2 dy + y^2 dz + \int_{DA} x dx + z^2 dy + y^2 dz$$

Equating to the line AB:
$$\frac{x-1}{0-1} = \frac{y-0}{1-0} = \frac{z-0}{0-0} = t$$

$$x = 1 - t$$
 $y = t$ $z = 0$

$$\int_{AB} x dx + z^2 dy + y^2 dz = \int_{t=0}^{1} (1-t)(-dt) = \left[\frac{(1-t)^2}{2}\right]_0^1 = -\frac{1}{2}$$

Equating to the line *BD*:
$$\frac{x-0}{0-0} = \frac{y-1}{0-1} = \frac{z-0}{1-0} = t$$
 $x = 0$ $y = 1-t$ $z = t$

$$\int_{BD} x dx + z^2 dy + y^2 dz = \int_{t=0}^{1} t^2 (-dt) + (1-t)^2 dt = \int_{t=0}^{1} (1-2t) dt = 0$$

Equating to the line *DA*:
$$\frac{x-0}{1-0} = \frac{y-0}{0-0} = \frac{z-1}{0-1} = t$$

$$x = t$$
 $y = 0$ $z = 1 - t$

$$\int_{DA} x dx + z^2 dy + y^2 dz = \int_{t=0}^{1} t \ dt = \frac{1}{2}$$

We have
$$\oint_{AB} \vec{F} \cdot d\vec{r} = -\frac{1}{2}$$
 $\oint_{BD} \vec{F} \cdot d\vec{r} = 0$ $\oint_{DA} \vec{F} \cdot d\vec{r} = \frac{1}{2}$

$$\Rightarrow \oint_C \vec{F} \cdot d\vec{r} = 0$$

Projecting S on the x-y plane, let R be its projection.

R is bounded by the x-axis, y-axis and straight line AB.

Given surface
$$f = x + y + z = 1 \Rightarrow \nabla f = \hat{\imath} + \hat{\jmath} + \hat{k}$$

$$\vec{n} = \frac{\nabla f}{|\nabla f|} = \frac{\hat{\imath} + \hat{\jmath} + \hat{k}}{\sqrt{3}} \qquad \frac{|\nabla f|}{|\nabla f \cdot \hat{k}|} = \frac{\sqrt{3}}{|1|} = \sqrt{3}$$

$$\operatorname{curl} \vec{F} \cdot \vec{n} = (2(y-z)\,\hat{\imath}) \cdot \left(\frac{\hat{\imath} + \hat{\jmath} + \hat{k}}{\sqrt{3}}\right) = \frac{2}{\sqrt{3}}(y-z) = \frac{2}{\sqrt{3}}(2y+x-1)$$

$$\iint\limits_{S} \left(\operatorname{curl} \vec{F}\right) \cdot \vec{n} \, ds = \iint\limits_{R_{xy}} \frac{2}{\sqrt{3}} (2y + x - 1) \, \sqrt{3} \, dx dy$$

$$=2\int_0^1 \int_0^{1-x} (2y+x-1) \, dy \, dx$$

$$=2\int_0^1 (1-x)^2 + (x-1)(1-x) dx$$

= 0

$$\vec{F} = x\hat{\imath} + z^2\hat{\jmath} + y^2\hat{k}$$

$$S: x + y + z = 1$$

$$\vec{n} = \frac{\hat{\imath} + \hat{\jmath} + \hat{k}}{\sqrt{3}}$$

$$\frac{|\nabla f|}{|\nabla f \cdot \hat{k}|} = \sqrt{3}$$

Problem: Let $\vec{F} = -y\hat{\imath} + x\,\hat{\jmath} - xyz\,\hat{k}$ and let S be the part of cone $z = \sqrt{x^2 + y^2}$ for $x^2 + y^2 \le 9$.

Evaluate $\oint_C \vec{F} \cdot d\vec{r}$ or $\iint_S (\nabla \times \vec{F}) \cdot \vec{n} \, d\sigma$ whichever appears easier. Here \vec{n} is the inner normal vector.

KEY TAKEAWAY

Stokes' Theorem

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot \vec{n} \ ds$$

➤ Divergence Theorem (volume integrals ↔ surface integrals)

Recall Green's Theorem
$$\oint_C \vec{F} \cdot d\vec{r} = \iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA$$

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_R (\nabla \times \vec{F}) \cdot \hat{k} \ dA$$

Its generalization in space
$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot \vec{n} \ ds$$
 Stokes' Theorem

The Divergence Theorem (Generalization of Green's Theorem)

Green's Theorem:
$$\oint_C \vec{F} \cdot \hat{n} \ ds = \iint_D \nabla \cdot \vec{F} \ dA$$

Replace the closed curve $C \rightarrow$ a closed surface S in 3D

Replace the bounding domain $D \rightarrow$ the bounding volume M

The vector field $\vec{F}(x, y) \rightarrow$ The vector field $\vec{F}(x, y, z)$

$$\iint\limits_{S} \vec{F} \cdot \hat{n} \, d\sigma = \iiint\limits_{M} \nabla \cdot \vec{F} \, dV$$

The Divergence Theorem

The flux of a vector field $\vec{F} = F_1 \hat{\imath} + F_2 \hat{\jmath} + F_3 \hat{k}$ across a closed oriented surface

 ${\it S}$ in the direction of the surface's outward unit normal field \hat{n} equals the

integral of $\nabla \cdot \vec{F}$ over the region M enclosed by the surface

$$\iint\limits_{S} \vec{F} \cdot \hat{n} \ d\sigma = \iiint\limits_{M} \nabla \cdot \vec{F} \ dV$$

Intuitively, it states that sum of all sources minus the sum of all sinks gives the net flow of a region.

Problem-1 Verify Divergence theorem for the field $\vec{F} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ over the sphere $x^2 + y^2 + z^2 = 9$

Solution:
$$\vec{n} = \frac{x\hat{\imath} + y\hat{\jmath} + z\hat{k}}{3} \Rightarrow \vec{F} \cdot \vec{n} = \frac{1}{3}(x^2 + y^2 + z^2) = 3$$

$$\iint_{S} \vec{F} \cdot \vec{n} \, d\sigma = \iint_{S} 3 \, d\sigma = 3 \iint_{S} d\sigma = 3 (4\pi \, 3^{2}) = 108 \, \pi$$

$$\vec{\nabla} \cdot \vec{F} = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z) = 3$$

$$\implies \iiint_{D} \vec{\nabla} \cdot \vec{F} \, dV = \iiint_{D} 3 \, dV = 3 \times \frac{4}{3} \pi \, 3^3 = 108 \, \pi$$

Problem-2 Find the flux of $\vec{F} = xy \ \hat{\imath} + yz \hat{\jmath} + xz \ \hat{k}$ outward through the surface of the cube from the first octant by the planes x = 2, y = 2 and z = 2.

Solution: $\nabla \cdot \vec{F} = y + z + x$

Flux =
$$\iint_{S} \vec{F} \cdot \vec{n} \, d\sigma = \iiint_{D} \vec{\nabla} \cdot \vec{F} \, dV$$
 Divergence Theorem

$$= \int_0^2 \int_0^2 \int_0^2 (x + y + z) \, dx \, dy \, dz$$

$$= 24$$

Problem-3 If V is the volume enclosed by a closed surface S and $\vec{F} = 3x\hat{\imath} + 2y\hat{\jmath} + z\hat{k}$ show that

$$\iint\limits_{S} \vec{F} \cdot \vec{n} \, ds = 6V$$

Solution:
$$\vec{\nabla} \cdot \vec{F} = \frac{\partial}{\partial x} (3x) + \frac{\partial}{\partial y} (2y) + \frac{\partial}{\partial z} (z) = 6$$

By Gauss Divergence theorem:
$$\iint\limits_{S} \vec{F} \cdot \vec{n} \ d\sigma = \iiint\limits_{D} \nabla \cdot \vec{F} \ dV$$

$$=6\iiint\limits_{D}dV=6V$$

Problem-4 Evaluate
$$\iint_{S} \left((x^3 - yz)\hat{\imath} - 2x^2y\hat{\jmath} + 2\hat{k} \right) \cdot \hat{n} \ d\sigma$$
 where S denotes the surface of the cube

bounded by the planes
$$x = 0$$
, $x = 3$, $y = 0$, $y = 3$, $z = 0$, $z = 3$

Solution:
$$\nabla \cdot \vec{F} = 3x^2 - 2x^2 - 0 = x^2$$

By Gauss Divergence theorem:

$$\iint_{S} \vec{F} \cdot \vec{n} \, d\sigma = \iiint_{D} \nabla \cdot \vec{F} \, dV = \iiint_{D} x^{2} \, dx dy dz$$
$$= \int_{0}^{3} \int_{0}^{3} \int_{0}^{3} x^{2} \, dx dy dz = 81$$

Problem-5 Let S be given by the cone $z = \sqrt{x^2 + y^2}$ for $x^2 + y^2 \le 1$ together with the disk $x^2 + y^2 \le 1$, z = 1. For $\vec{F} = x \hat{\imath} + y \hat{\jmath} + z \hat{k}$, verify the divergence theorem.

Solution Let
$$S_1$$
: $z = \sqrt{x^2 + y^2}$, $x^2 + y^2 \le 1$

Let
$$S_2$$
: $x^2 + y^2 \le 1$, $z = 1$

Surface Integral:
$$\iint\limits_{S} \vec{F} \cdot \hat{n} \ d\sigma = \iint\limits_{S_{1}} \vec{F} \cdot \hat{n} \ d\sigma + \iint\limits_{S_{2}} \vec{F} \cdot \hat{n} \ d\sigma$$

For
$$S_1$$
: $\hat{n} = \frac{2x \hat{i} + 2y \hat{j} - 2z \hat{k}}{2\sqrt{x^2 + y^2 + z^2}} = \frac{x \hat{i} + y \hat{j} - z \hat{k}}{\sqrt{2} z}$ $\vec{F} \cdot \hat{n} = 0$

For
$$S_2$$
: $\hat{n} = k$ $\vec{F} \cdot \hat{n} = z$

$$\iint_{S} \vec{F} \cdot \hat{n} \, d\sigma = \iint_{S_{1}} \vec{F} \cdot \hat{n} \, d\sigma + \iint_{S_{2}} \vec{F} \cdot \hat{n} \, d\sigma$$
$$= \iint_{S_{2}} d\sigma = \pi$$

Volume Integral
$$\iiint_{M} \nabla \cdot \vec{F} \ dV = 3 \iiint_{M} dV = 3 \times \pi (1)^{2} \frac{1}{3} = \pi$$

Volume of a cone of height h and radius $r = \pi r^2 \frac{h}{3}$

$$S_2$$
: $x^2 + y^2 \le 1$, $z = 1$
$$\vec{F} = x \hat{\imath} + y \hat{\jmath} + z \hat{k}$$

KEY TAKEAWAY

The Divergence Theorem:

$$\iint\limits_{S} \vec{F} \cdot \hat{n} \ d\sigma = \iiint\limits_{M} \nabla \cdot \vec{F} \ dV$$