DM 12

Exercice 1. Pour tout réel t > 0, on note P_t le polynôme $X^5 + tX - 1 \in \mathbb{R}_5[X]$. Le but de ce problème est d'étudier les racines de P_t en fonction de t > 0.

- 1. On fixe t > 0 pour cette question. Prouver que P_t admet une unique racine notée f(t).
- 2. Montrer que $f(t) \in]0,1[$ pour tout t > 0.
- 3. Montrer que f est strictement décroissante sur $]0, +\infty[$ (On pourra considérer deux réels t_1, t_2 tel que $t_1 < t_2$ et essayer de faire la même chose que pour les suites définies implicitement).
- 4. En déduire que f admet des limites finies en 0^+ et en $+\infty$.
- 5. Déterminer $\lim_{t\to 0^+} f(t)$. (Attention, f n'est pas définie en 0 et a fortiori n'est pas continue en 0)
- 6. Déterminer $\lim_{t\to+\infty} f(t)$.
- 7. En déduire $\lim_{t\to+\infty} tf(t)=1$. (Comment noter ce résultat avec le signe équivalent : \sim)
- 8. Justifier que f est la bijection réciproque de $g:]0,1[\to]0,+\infty[$ $x\mapsto \frac{1-x^5}{x}$
- 9. (a) Justifier que f est dérivale sur $]0, +\infty[$ et exprimer f'(t) en fonction de f(t) pour tout t>0.
 - (b) En déduire la limite de f'(t) en 0 et calculer la limite de $t^2f'(t)$ (Comment noter ce résultat avec le signe équivalent : \sim)

Exercice 2. On considère la suite de polynômes $(T_n)_{n\in\mathbb{N}}$ définie par

$$T_0 = 1$$
 et $T_1 = X$ et $\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n$

- 1. (a) Calculer T_2 , T_3 et T_4 .
 - (b) Calculer le degré et le coefficient de T_n pour tout $n \in \mathbb{N}$.
 - (c) Calculer le coefficient constant de T_n .
- 2. (a) Soit $\theta \in \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$ on a $T_n(\cos(\theta)) = \cos(n\theta)$.
 - (b) En déduire que $\forall x \in [-1, 1]$, on a $T_n(x) = \cos(n \arccos(x))$.
- 3. (a) En utilisant la question 2a), déterminer les racines de T_n sur [-1,1].
 - (b) Combien de racines distinctes a-t-on ainsi obtenues? Que peut on en déduire?
 - (c) Donner la factorisaiton de T_n pour tout $n \in \mathbb{N}^*$.