AMENDMENTS TO THE CLAIMS:

Please amend Claims 1-3, 6, 11, and 16-19 as follows:

- 1. (Currently amended) A component mounting system comprising:
 - a) a ball which is adapted to be fixed to a component to be aligned, the ball
 and component together forming a ball-and-component assembly;
 - b) a socket into which the ball-and-component assembly is placed; and
 - and collar capture the ball-and-component assembly between them, the collar having an opening and also having at least three springs located symmetrically about the opening which [[make]] contact [[with]] the ball such that the ball may portion of the ball and component assembly whereby the assembly is relative free to pivot into angular alignment but is relatively fixed translationally, the springs being fixed adapted to be attached to the ball-portion of the ball and component assembly when the assembly has been properly aligned.
- (Currently amended) The component mounting system of claim 1 wherein the springs are adapted to be laser-welded to the ball.
- 3. (Currently amended) The component mounting system of claim 1 wherein the socket comprises raised features about the socket's inner perimeter whereby the ball-and-component assembly can be more freely pivoted when captured between the collar and the socket.
- 4. (Original) The component mounting system of claim 3 wherein the raised features are ball bearings mounted into the socket.
- 5. (Original) The component mounting system of claim 3 wherein the raised features are raised surfaces of the socket.
- 6. (Currently amended) The component mounting system of claim 3 wherein the <u>raised</u> features are symmetrically located about the socket ball is stainless steel.
- 7. (Original) The component mounting system of claim 6 wherein the raised features are stainless steel.
- 8. (Original) The component mounting system of claim 6 wherein the raised features are

TI-32682 - Page 2

brass.

- 9. (Original) The component mounting system of claim 6 wherein the raised features are tetrafluoroethylene.
- 10. (Original) The component mounting system of claim 1 wherein the component to be mounted is an optical component.
- 11. (Currently amended) The component mounting system of claim 1 [[10]] wherein the socket has a circular opening into which the ball-and-component assembly is placed optical component is a collimator.
- 12. (Original) The component mounting system of claim 1 wherein the socket, collar, and ball are formed of the same material.
- 13. (Original) The component mounting system of claim 1 wherein the socket, collar, and ball are formed of stainless steel.
- 14. (Original) The component mounting system of claim 1 wherein the component to be mounted is selected from the group consisting of collimators, lasers, lenses, and spatial light modulators.
- 15. (Original) The component mounting system of claim 1 wherein the springs are shaped like fins which protrude from the collar.
- 16. (Currently amended) A component mounting system comprising:
 - a) a ball which is adapted to be fixed to a component to be aligned, the ball and component together forming a ball-and-component assembly;
 - b) a socket having a circular opening into which the ball-and-component assembly may be placed, the socket comprising raised features located symmetrically about the inner circumference of its circular opening; and
 - c) a collar which is adapted to be mounted to the socket, the collar also having a circular opening therein, whereby the socket and collar are adapted to capture the ball-and-component assembly within their respective circular openings, the collar also having springs that are located generally symmetrically about the circular opening wherein the springs are adapted to make contact with the ball portion of the ball-and-component assembly, whereby the assembly ball may be

TI-32682 - Page 3

pivotally aligned when captured by the socket and collar but is relatively fixed translationally, wherein the springs being adapted to be attached, after alignment, to the ball portion of the ball-and-component assembly to hold the assembly in place.

- 17. (Currently amended) The component mounting system of claim 16 wherein the springs are shaped like fins which protrude from the collar.
- 18. (Currently amended) A method for aligning an optical component, the method comprising:
 - a) affixing the optical component to a ball to form a ball and component assembly;
 - b) placing the ball-and-component assembly into a socket;
 - c) fastening a collar <u>having an opening</u> to the socket, capturing the ball-and-component assembly within the collar/socket assembly, the collar having <u>at least</u> three springs that are mechanically biased <u>symmetrically around and</u> against the ball portion of the ball-and-component assembly;
 - d) pivoting the ball-and-component assembly into position; and
 - e) affixing the springs to the ball portion of the ball and component assembly, thereby fixing the pivotal alignment of the ball and component assembly relative to the collar/socket assembly.
- 19. (Currently amended) The method of claim 18 wherein a beam of light exits from the optical component in a direction fixed by the pivotal alignment of the optical component and further comprising:
 - a) placing an optical sensor at a spot terminating a path from the optical component;
 - b) measuring the intensity of the optical signal received at the optical sensor;
 - c) continuing the pivoting of the ball-and-component assembly until the intensity of the received optical signal is generally at a maximum.
- 20. (Original) The method of claim 19 wherein the affixing of the springs to the ball is accomplished by welding.
- 21. (Original) The method of claim 20 wherein the welding is laser welding.

TI-32682 - Page 4

- 22. (New) The component mounting system of claim 16 wherein the springs are welded to the ball.
- 23. (New) The component mounting system of claim 16 wherein the socket comprises ball bearings about the socket's inner perimeter in contact with the ball.
- 24. (New) The component mounting system of claim 16 wherein the socket comprises stainless steel raised features in contact with the ball.
- 25. (New) The component mounting system of claim 16 wherein the socket comprises brass raised features in contact with the ball.
- 26. (New) The component mounting system of claim 16 wherein the socket comprises tetrafluoroethylene raised features in contact with the ball.
- 27. (New) The component mounting system of claim 16 wherein the socket, collar, and ball are formed of stainless steel.
- 28. (New) The component mounting system of claim 16 wherein the component to be mounted is selected from the group consisting of collimators, lasers, lenses, and spatial light modulators.