

One hidden layer Neural Network

Gradient descent for neural networks

deeplearning.ai

Gradient descent for neural networks

Porometrs:
$$(n^{(i)}, h^{(i)})$$
 $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ Corpute product $(\hat{y}^{(i)}, \hat{t}^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $(n^{(i)}, h^{(i)})$ $(n^{(i)}, h^{(i)})$ $= \frac{1}{m} \sum_{i=1}^{m} \chi(\hat{y}, y)$ $= \frac{1}{m} \sum_{i=1}^{m}$

Formulas for computing derivatives

$$\begin{aligned}
Y_{LSJ} &= \partial_{LSJ} (S_{LSJ}) = e(S_{LSJ}) \\
S_{LSJ} &= P_{LSJ} (S_{LSJ}) = e(S_{LSJ}) \\
S_{LSJ} &= P_{LSJ} (S_{LSJ}) &= e(S_{LSJ}) \\
S_{LSJ} &= P_{LSJ}$$