Exercices: Nombres Complexes

Pour s'entraîner, des cours et exercices pour la préparation au cursus d'ingénieur se trouvent à l'adresse emaths.education

Exercice 1:

Développer et simplifier les expressions suivantes :

a)
$$A = (2+3i)(7-3i)$$

b)
$$B = 1 + i + i^2 + i^3 + i^4$$

c)
$$C = (1+i)(2-5i)(4+5i)$$

d)
$$D = (2+3i)^2$$

e) Trouver un complexe z tel que $z^2=5+12i$ (poser z=a+ib puis résoudre le système d'équations).

Exercice 2:

Placer dans le plan complexe les nombres suivant, puis les écrire sous forme trigonométrique :

a)
$$z_1 = 1 + i$$

b)
$$z_2 = 3 + 3i$$

c)
$$z_3 = -1 + 3i$$

Quelle est la nature du triangle formé par z_1, z_2 et z_3 ? Justifier.

Exercice 3:

- a) Calculer le module et l'argument du nombre complexe $z = \left(\sqrt{3} 2\right) \left(\cos\left(\frac{\pi}{5}\right) + i\sin\left(\frac{\pi}{5}\right)\right)$.
- b) Écrire $z = (1 + i\sqrt{3})^5$ sous forme algébrique.

Exercice 4:

- a) Soient $z_1 = e^{i\frac{\pi}{3}}$ et $z_2 = e^{i\frac{\pi}{4}}$. Calculer le quotient $Z = \frac{z_1}{z_2}$ de deux façons différentes et en déduire les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.
- b) On écrit $z = a + ib = Re^{i\theta}$. Écrire de même \bar{z} et $\frac{1}{z}$.
- c) Linéariser $\sin^3 \theta$.

d) Linéariser $\sin^4 \theta$

Exercice 5:

A, B et C sont des points d'affixe $a=6-i,\,b=-6+3i$ et c=-18-7i. Montrer que ces points sont alignés.

1

Exercice 6:

Trouver les racines dans $\mathbb C$ des polynômes suivants :

a)
$$x^2 + x + 1$$

b)
$$4x^2 + 8x + 29$$

c)
$$x^2 - (4+3i)x + (1+5i)$$

- d) $x^2 \sqrt{2} + 1$. Les écrire sous forme algébrique et exponentielle.
- e) $x^8 1$ et les placer dans le plan complexe.

Exercice 7:

On note (H) l'ensemble des points M du plan d'affixe z vérifiant : $z^2-4=4-\bar{z}^2$

- a) On note x et y les parties réelle et imaginaire de l'affixe z d'un point M. Montrer l'équivalence : M appartient à (H) ssi $x^2-y^2=4$.
- b) Soient A, B et C les points d'affixes 2, $-3-i\sqrt{5}$ et $-3+i\sqrt{5}$. Vérifier que A, B et C appartiennent à (H).