Discussion: Adaptive Text Embeddings for Causal Inference (Veitch, Sridhar & Blei, 2020)

Julian Ashwin

University of Oxford

NLP Reading Group, November 26, 2020

Summary

 Summary
 Intuition
 Two Models
 Exercise
 Comments

 ●
 ○○
 ○○○
 ○○
 ○○
 ○○

Summary

- Motivation: to test causal hypotheses, we often have to adjust for confounding features.
- **Problem:** these confounding features might appear as unstructured data such as text.
- **Approach:** Develop *causally sufficient embeddings* that provide a supervised low-dimensional representation of documents.
- **Answer:** Show improved causal estimation in synthetic datasets and two real-world examples.

 Summary
 Intuition
 Two Models
 Exercise
 Comments

 ○
 ●○
 ○○○○
 ○○
 ○
 ○

Intuition

Does adding a theorem to a paper affect its chance of acceptance?

- Inclusion of theorem is straightforward to measure and observable
- But any causal link could be confounded by the subject of the paper:
 - Some subjects are more likely to be treated (i.e. have a theorem)
 - Outcome also varies by subject (i.e. some more likely to be accepted than others)
- We want to use the text to adjust for the subject and estimate the causal effect.
- If treatment is binary, all we need is the propensity score (prob of treatment given text) and the expected outcome given text.

Strategy

- An observation consists of outcome Y_i , treatment T_i and text W_i .
- $Z_i = f(W_i)$ is the part of the text that might confound the causal effect.
- The causal effect is then

$$\psi = \mathbb{E}[\mathbb{E}[Y|Z, T=1]] - \mathbb{E}[Y|Z, T=0]|T=1]$$

- The conditional expectation for Y is $Q(t,z) = \mathbb{E}[Y|t,z]$
- The propensity score is g(z) = P(T = 1|z).
- So we need estimators $\hat{g}(z_i)$ and $\hat{Q}(t,z)$, which we then use for, e.g.

$$\hat{\psi} = \frac{1}{n} \sum_{i} \left[\hat{Q}(1, z_i) - \hat{Q}(0, z_i) \right] \hat{g}(z_i) / \left(\frac{1}{n} \sum_{i} t_i \right)$$

Two Models

- Causal BERT
- Causal Amortized Topic Model

Causal Bert

Summary

Three outputs:

- Document-level embeddings
 - ▶ Unsupervised embedding, I think just the standard BERT:

$$\lambda_i = f((\xi_{w_{i1}}, \xi_{w_{il}}), \gamma^U)$$

- Map from embeddings to treatment probability
 - ▶ Logit linear layer $\lambda_i \to \tilde{g}(\lambda_i; \gamma^g)$
- Map from embeddings to expected outcomes
 - ▶ 2-hidden layer neural net for each value of t:

$$\lambda_i
ightarrow ilde{Q}(0,\lambda_i;\gamma^{Q_0})$$

$$\lambda_i o ilde{Q}(1,\lambda_i;\gamma^{Q_1})$$

Estimate these jointly, so objective includes prediction of outcome and treatment as well as unsupervised embedding.

Causal Amortized Topic Model

- Topic model estimated using feedforward "encoder" neural network
 - Produces topic proportions for each document, θ_i
- **2** Logit linear mapping for propensity score: $\theta_i \to \tilde{g}(\theta_i; \gamma^g)$
- **3** Linea mapping from topics to outcome: $\theta_i \to \tilde{Q}(\theta_i; \gamma^Q)$

Also estimated jointy, so the loss function is includes prediction of outcome and treatment as well as unsupervised embedding.

Key Assumption

Summary

Key assumption for causal identification is that adjusting for z is sufficient to capture all relevant information from w

Additional assumption: there are no confounding variables that are external to the text.

- do referees recognise papers by more prestigious authors?
- do well-known Reddit users get more positive feedback?

Semi-synthetic data

Summary

- Can't observe true causal effect, so use semi-synthetic dataset:
 - Simulate an outcome that dependson both the treatment and a confounder.
 - ightharpoonup Confounders used: title buzziness and subreddit \tilde{z}
 - ► Simulate outcome from observed treatment and the propensity score given the observed confounder, e.g.

$$Y_i = t_i + b_1(\pi(\tilde{z} - 0.5)) + \epsilon_i$$

• Both language modelling and the supervison elements are important in recovering the ground truth causal effect.

Results

(a) Language Modeling Helps			(b) Supervision Helps		
Dataset:	Reddit (NDE)	PeerRead (ATT)	Dataset:	Reddit (NDE)	PeerRead (ATT)
Ground truth	1.00	0.06	Ground truth	1.00	0.06
Unadjusted	1.24	0.14	Unadjusted	1.24	0.14
NN $\hat{\psi}^Q$	1.17	0.10	BOW $\hat{\psi}^Q$	1.17	0.13
NN $\hat{\psi}^{ ext{plugin}}$	1.17	0.10	BOW $\hat{\psi}^{ ext{plugin}}$	1.18	0.14
BERT (sup. only) $\hat{\psi}^Q$	0.93	0.19	BERT $\hat{\psi}^Q$	-15.0	-0.25
BERT (sup. only) $\hat{\psi}^{\mathrm{plugin}}$	1.17	0.18	BERT $\hat{\psi}^{ ext{plugin}}$	-14.1	-0.28
C-ATM $\hat{\psi}^Q$	1.16	0.10	LDA $\hat{\psi}^Q$	1.20	0.07
C-ATM $\hat{\psi}^{ ext{plugin}}$	1.13	0.10	LDA $\hat{\psi}^{ ext{plugin}}$	1.20	0.09
C-BERT $\hat{\psi}^Q$	1.07	0.07	ATM $\hat{\psi}^Q$	1.17	0.08
C-BERT $\hat{\psi}^{ ext{plugin}}$	1.15	0.09	ATM $\hat{\psi}^{ ext{plugin}}$	1.17	0.08

Summary Intuition Two Models Exercise Comments

O OO OOO OOO OO

Comments

- What if there are non-text confounding factors?
- What if the treatment is non-binary? Makes the separate neural network for each value of *t* impractical...
- Can we adapt this to identifying the causal effect of the text, rather than just using it as a control?
- Just gives point estimates, how can we run a hypothesis test?