ECE421 - Winter 2022 Homework Problems - Tutorial #11

Theme: PAC Learning and VC Dimension

Due: April 10, 2022 11:59 PM

Question 1 (Examples 2.2 from LFD)

Consider the following learning models.

- 1. \mathcal{H} is the set of positive rays consisting of all hypothesis $h: \mathbb{R} \to \{-1, +1\}$ of the form h(x) = sign(x-a).
- 2. \mathcal{H} is the set of positive intervals consisting of all hypothesis $h: \mathbb{R} \to \{-1, +1\}$, such that h(x) = +1 if x is within some predefined interval and -1 otherwise.

For each of the above learning models, compute

- the maximum number of dichotomies $m_{\mathcal{H}}(N)$,
- \bullet the smallest breakpoint k, and
- the VC dimension d_{vc} .

Reason clearly how you arrive at the answers. The final expression for $m_{\mathcal{H}}(N)$ is provided on page 44 of LFD to help you to verify the answer.

Question 2 (Problem 2.3 from LFD)

Compute the maximum number of dichotomies $m_{\mathcal{H}}(N)$ for the following learning models, and compute the VC dimension d_{vc} .

- 1. Positive or negative ray: \mathcal{H} contains the functions that are +1 on $[a, \infty)$ (for some a) and -1 otherwise, together with functions that are +1 on $(-\infty, a]$ (for some a) and -1 otherwise.
- 2. Two concentric spheres in \mathbb{R}^d : \mathcal{H} contains the functions which are +1 for $a \leq \sqrt{x_1^2 + \ldots + x_d^2} \leq b$, and -1 otherwise.

Question 3

Consider an arbitrary hypothesis space \mathcal{H} , where $h \in \mathcal{H}$ is a binary linear classifier. Suppose that $m_{\mathcal{H}}(1) = 2$ and $m_{\mathcal{H}}(2) = 3$. Find the largest possible value for $m_{\mathcal{H}}(3)$. (Hint: proceed by induction, for instance, what does it mean for $m_{\mathcal{H}}(1) = 2$ and $m_{\mathcal{H}}(2) = 3$? A table could be helpful.).