Household Heterogeneity and Macroeconomic Shocks

Ralph Luetticke

University College London

March 2018

Heterogeneous Agents New Keynesian (HANK)

Heterogeneous Agents New Keynesian (HANK)

Incomplete Markets (IM) Household Problem

Decision	Determined by	Relevant input	СМ	IM
intertemporal consumption -savings	sequence of Euler equations	real rate	х	х
	life-time budget	life-time income	x	Х
	borrowing constraints	current income & asset portfolio		x x

IM Consumption Euler Equation

Individual consumption Euler equation:

$$u'(c_{i,t}) \geq \beta R_t \mathbb{E}_{i,t} \{ u'(c_{i,t+1}) \}$$

Approximate aggregate consumption Euler equation:

$$u'(C_t^R) = \beta R_t \mathbb{E}_t \{ u'(C_{t+1}^R) \Phi_{t+1}^{mean} \Phi_{t+1}^{var} \}$$

(for unconstrained households, see Debortoli & Gali, 2017)

Heterogeneous Agents New Keynesian (HANK)

Incomplete markets household problem

- Sizable average MPC out of transitory income changes
- Distribution of MPCs driven by portfolios
- Consumption/savings respond to idiosyncratic risk
- Lower sensitivity to interest rate changes

New Keynesian Phillips Curve

- Aggregate demand effects
- Role for monetary and fiscal stabilization policy

Positive Contributions

- Reassess "old" macroeconomic shocks
- Assess distributional responses
- Assess "new" macroeconomic shocks

Normative Contributions

Reassess optimal policy

Assess "new" macroeconomic shocks

Aggregate shocks that directly interact with household heterogeneity

- Idiosyncratic income risk (Bayer et al, 2017)
- Income inequality (Auclert & Rognlie, 2018)
- Fiscal transfers (Oh & Reis, 2012)
- Borrowing constraints (Guerrieri & Lorenzoni, 2017)

Reassess "old" macroeconomic shocks

- Focus on monetary policy (most studied)
- Theoretical results
- Quantitative assessments
- Forward guidance

Werning (2015) on HANK vs RANK

Assumptions on			Response of aggregate	
Income Risk	Liquidity		consumption to interest rates	
countercyclical	procyclical	\rightarrow	higher sensitivity	
acyclical	acyclical	\rightarrow	'As if' representative agent	
procyclical	countercyclical	\rightarrow	lower sensitivity	

HANK with portfolio choice (Luetticke, 2017)

HANK with portfolio choice (Luetticke, 2017)

Cyclicality of income risk matters:

HANK meets SAM (Ravn & Sterk, 2016)

- Endogeneous UE risk via search&matching model
- Labor market tightness shows up in Euler equation
- Monetary policy has (in)direct effect on intertemporal substitution through its effect on the labor market

$$\begin{array}{lcl} -\mu \widehat{c}_{e,s} + \mu \beta \overline{R} \mathbb{E}_s \widehat{c}_{e,s+1} & = & \widehat{R}_s - \mathbb{E}_s \widehat{\Pi}_{s+1} - \underbrace{\beta \overline{R} \Theta^F \mathbb{E}_s \widehat{\eta}_{s+1},}_{\text{endogenous risk wedge}}, \\ \Theta^F & \equiv & \omega \eta \left((\vartheta/w)^{-\mu} - 1 \right) - \chi \mu \omega \left(1 - \eta \right). \end{array}$$

HANK meets SAM (Ravn & Sterk, 2016)

Forward guidance

- McKay-Nakamura-Steinsson (2016): Effect of forward guidance smaller in HANK
- Werning's results apply: Cyclicality of income risk and liquidity key for effect of FG

HANK meets SAM (Kim, 2017)

Forward guidance can be more or less powerful in HANK relative to complete markets depending on the cyclicality of income risk

Empirical Evidence: Idiosyncratic Risk

Variance of persistent income shocks is counter-cyclical

Source: Bayer et al (2017)

Empirical Evidence: Liquidity

Time to sell a house is counter-cyclical (pro-cyclical liquidity)

Source: Bayer & Luetticke (2018)

Assess distributional responses

- Quantify distributional consequences of aggregate shocks and systematic policy responses
- Differential responses across households can be used for identification
 - HANK models speak to macro and micro data

Assess distributional responses

- Differential savings response across households to monetary shocks (interest rate hike)
- Change in liquid-nominal to illiquid-real asset holdings:

Source: Luetticke (2017)

Reassess optimal policy

 Normative implications are a different question altogether (Equivalence of IRFs does not imply equivalence of optimal policy)

Examples:

- Weight of inflation vs output in Taylor rule (Gornemann et al, 2013)
- Fiscal vs monetary stabilization (Bayer et al, 2017)

- Enlarges the set of questions we can answer
- Provides new identification via heterogeneity in responses
- Opens up new perspectives on normative results
 - Trade-off between equity and efficiency?
 - No optimal equilibrium with incomplete markets (Hart, 1975)
 - Asset supply key for welfare

Positive results depend on business cycle response of

- Idiosyncratic risk
- Liquidity

Positive results depend on business cycle response of

- Idiosyncratic risk
- Liquidity

... empirical evidence for cyclicality of both

Positive results depend on business cycle response of

- Idiosyncratic risk
- Liquidity

... empirical evidence for cyclicality of both

Ultimatively a quantitative questions!

Looking ahead

- Micro-foundation of labor income risk
- Micro-foundation of liquidity (asset supply)
- Gross and nominal asset positions
- Optimal policy

Numerical challenges

- Endogenous distribution is a state
- High dimensional heterogeneity is numerically challenging:
 e.g. joint-distribution over income and two assets has
 100 * 100 * 100 = 1.000.000 states

Need to approximate distribution:

- Discrete time
 - Bayer et al (2017): Copula function
 - Krusell et al (2017): One-time anticipated shocks
- Continuous time
 - Ahn et al (2017): Projection on lower dim. state space