Cauã Borges Faria RA: 834437 Atividade Avaliativa 4

Expedição à Caverna Perdida com Busca em Largura (BFS)

a) Estrutura da Caverna: grafo não-direcionado

A caverna é composta por 15 salas conectadas por túneis, de acordo com o seguinte mapeamento (cada sala é um vértice, cada túnel é uma aresta não-direcionada):

- Sala 1 (Entrada) conecta com as salas 2, 3 e 4; - Sala 2 conecta com a sala 5; - Sala 3 conecta com a sala 6; - Sala 4 conecta com as salas 7 e 8; - Sala 5 conecta com a sala 9; - Sala 6 conecta com as salas 9 e 10; - Sala 7 conecta com as salas 10 e 11; - Sala 8 conecta com a sala 11; - Sala 9 conecta com as salas 12 e 13; - Sala 10 conecta com as salas 13 e 14; - Sala 11 conecta com as salas 14 e 15 (Câmara Secreta).

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			W (a. c	1 (21)	- (a)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\imath		_	. ,	$\pi(v)$
$ \begin{vmatrix} \lambda(3) = \lambda(1) + 1 = 1 & 1 \\ \pi(3) = 1 \\ \lambda(4) = \lambda(1) + 1 = 1 & \pi(4) = 1 \end{vmatrix} $ $ \begin{vmatrix} \lambda(3) = \lambda(1) + 1 = 1 & \pi(3) = 1 \\ \pi(4) = 1 & \pi(4) = 1 \end{vmatrix} $ $ \begin{vmatrix} 1 & 2 & 5 \\ 1 & \lambda(5) = \lambda(2) + 1 = 2 \\ 2 & 3 & 66 \end{vmatrix} $				1	(0)
$ \begin{array}{ c c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	0		$\{2, 3, 4\}$	$\lambda(2) = \lambda(1) + 1 = 1$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				$\lambda(3) = \lambda(1) + 1 = 1$	
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $				$\lambda(4) = \lambda(1) + 1 = 1$	$\pi(4) =$
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	1	2	{5}	$\lambda(5) = \lambda(2) + 1 = 2$	
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	2	3	{6}	$\lambda(6) = \lambda(3) + 1 = 2$	
$ \begin{array}{ c c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	3	4	{7,8}	$\lambda(7) = \lambda(4) + 1 = 2$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				$\lambda(8) = \lambda(4) + 1 = 2$	$\pi(8) =$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	5	{9}	$\lambda(9) = \lambda(5) + 1 = 3$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	6	{10}	. , , , ,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	7	{11}		
$\begin{vmatrix} 4 \\ \lambda(13) = \lambda(9) + 1 = \begin{vmatrix} 9 \\ \pi(13) = 4 \end{vmatrix}$ $9 \begin{vmatrix} 10 \\ 10 \end{vmatrix} \begin{cases} 14 \} \qquad \begin{vmatrix} \lambda(14) = \\ \lambda(10) + 1 = 4 \end{vmatrix} \begin{cases} \pi(14) = \\ 10 \end{vmatrix}$ $10 \begin{vmatrix} 11 \\ 11 \end{vmatrix} \begin{cases} 15 \} \qquad \begin{vmatrix} \lambda(15) = \\ \lambda(11) + 1 = 4 \end{vmatrix} \begin{cases} \pi(15) = \\ 11 \end{vmatrix}$ $11 \begin{vmatrix} 12 \\ 13 \end{vmatrix} \qquad \emptyset \qquad \qquad$	7	8	Ø	_	_
$ \begin{vmatrix} \lambda(13) = \lambda(9) + 1 = & \pi(13) = \\ 9 & 10 & \{14\} & \lambda(14) = & \pi(14) = \\ & \lambda(10) + 1 = 4 & 10 \end{vmatrix} $ $ \begin{vmatrix} 10 & 11 & \{15\} & \lambda(15) = & \pi(15) = \\ & \lambda(11) + 1 = 4 & 11 \end{vmatrix} $ $ \begin{vmatrix} 11 & 12 & \emptyset & - & - \\ 12 & 13 & \emptyset & - & - \\ 13 & 14 & \emptyset & - & - \end{vmatrix} $	8	9	{12, 13}		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				$\lambda(13) = \lambda(9) + 1 =$	$\pi(13) =$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	10	{14}		
12 13 Ø — 13 14 Ø —	10	11	{15}		
13 14 Ø — —	11	12	Ø	_	
	12	13	Ø	_	
14 15 Ø — —	13	14	Ø	_	_
	14	15	Ø	_	

BFS-TREE

Passo	Fila
$Q^{(0)}$	[1]
$Q^{(1)}$	[2, 3, 4]
$Q^{(2)}$	[3, 4, 5]
$Q^{(3)}$	[4, 5, 6]
$Q^{(4)}$	[5, 6, 7, 8]
$Q^{(5)}$	[6, 7, 8, 9]
$Q^{(6)}$	[7, 8, 9, 10]
$Q^{(7)}$	[8, 9, 10, 11]
$Q^{(8)}$	[9, 10, 11]
$Q^{(9)}$	[10, 11, 12, 13]
$Q^{(10)}$	[11, 12, 13, 14]
$Q^{(11)}$	[12, 13, 14, 15]
$Q^{(12)}$	[13, 14, 15]
$Q^{(13)}$	[14, 15]
$Q^{(14)}$	[15]
$Q^{(15)}$	Ø

b) Complexidade Computacional da Busca em Largura

A análise da complexidade da BFS clássica em um grafo com n vértices e m arestas segue abaixo.

- Inicialização: Para colorir e inicializar todos os n vértices, o custo é O(n). - Exploração das arestas: Para cada vértice removido da fila, percorremos cada um dos seus vizinhos. Como o grafo é não-direcionado, cada aresta é examinada no máximo duas

vezes (uma por extremidade). Portanto, o custo total para esse processo é O(m). - Fila: Cada vértice entra e sai da fila ao menos uma vez, custo O(n).

Assim, o custo total da BFS pode ser expresso por:

$$T(n,m) = O(n) + O(m) = O(n+m)$$

ou seja, linear em relação à soma do número de vértices e arestas do grafo.

c) Prova de que BFS Calcula as Menores Distâncias em Grafos Não Ponderados

Teorema: Executando BFS a partir de um vértice s, ao terminar tem-se $\lambda(v) = d(s, v)$ para todo vértice v, onde d(s, v) é a menor distância (mínimo número de arestas) entre s e v.

Demonstração por contradição:

- 1. Suponha que exista $v \in V$ tal que, ao ser removido da fila Q pela primeira vez, temos $\lambda(v) > d(s, v)$, e que v seja o primeiro nó para o qual essa desigualdade ocorre.
- 2. Como $d(s, v) < \infty$, existe caminho mínimo P de s a v. Seja u o vértice imediatamente anterior a v nesse caminho (ou seja, o predecessor de v em P).
- 3. Por definição de caminho mínimo, tem-se d(s, v) = d(s, u) + 1.
- 4. Quando u foi removido da fila, a aresta (u, v) foi considerada. Assim, apenas três possibilidades podem ocorrer quanto à cor de v:
 - (i) v estava BRANCO: $\lambda(v)$ seria atualizado para $\lambda(u) + 1 = d(s, u) + 1 = d(s, v)$, o que contradiz a hipótese de $\lambda(v) > d(s, v)$.
 - (ii) v estava PRETO: v já saiu da fila antes de u, então necessariamente $\lambda(v) \leq \lambda(u)$, logo $\lambda(v) < \lambda(u) + 1 = d(s, v)$, o que é absurdo.
 - (iii) v estava CINZA: v já foi descoberto anteriormente por algum w removido antes de u, logo $\lambda(v) \leq \lambda(w) + 1 \leq \lambda(u) + 1 = d(s, v)$.
- 5. Nenhuma dessas hipóteses resulta em $\lambda(v) > d(s, v)$.

Portanto, por absurdo, sempre $\lambda(v) = d(s, v)$ ao retirar v da fila, mostrando que BFS constrói corretamente a árvore de caminhos mínimos em grafos não ponderados.

2. Resgate na Estação Espacial com Busca em Profundidade (DFS)

a) Estrutura da Estação Espacial

A estação é composta por 15 módulos interconectados por corredores. Cada módulo é representado por um vértice e cada ligação, por uma aresta não-direcionada. Os módulos e suas interligações são:

- Módulo 1 (Sala de Controle) conecta com os módulos 2, 3 e 4. - Módulo 2 conecta com os módulos 5 e 6. - Módulo 3 conecta com o módulo 7. - Módulo 4 conecta com os módulos 8 e 9. - Módulo 5 conecta com o módulo 10. - Módulo 6 conecta com os módulos 10 e 11. - Módulo 7 conecta com o módulo 11. - Módulo 8 conecta com o módulo 11. - Módulo 9 conecta com o módulo 12. - Módulo 10 conecta com o módulo 13. - Módulo 11 conecta com os módulos 14 e 15 (Sala de Suporte Vital). - Módulo 12 conecta com o módulos 14 e 15. - Módulo 13 conecta com o módulos 14. - Módulo 14 conecta com o módulo 15.

Ordem de acesso aos vértices (com detalhes de DFS)

u	u.color	u.d	$V' = \{v \in N(u) - v.color = WHITE\}$	$\pi(v)$	u.f
1	gray	1	{2, 3, 4}	_	30
2	gray	2	$\{5, 6\}$	1	17
5	gray	3	{10}	2	12
10	gray	4	{13}	5	11
13	gray	5	{14}	10	10
14	gray	6	$\{15\}$	13	9
15	gray	7	\emptyset	14	8
6	gray	13	{11}	2	16
11	gray	14	\emptyset	7	15
3	gray	18	{7}	1	21
7	gray	19	\emptyset	3	20
4	gray	22	$\{9, 8\}$	1	29
8	gray	23	\emptyset	4	24
9	gray	25	{12}	4	28
12	gray	26	Ø	9	27

Pilha

b) Análise Matemática da Complexidade do DFS

O algoritmo DFS em um grafo com n vértices e m arestas funciona de maneira recursiva, explorando completamente cada vértice antes de voltar ao anterior. Vamos detalhar o custo:

- Inicialização: Marcar todos os n vértices como não visitados, custo O(n). - Chamada Recursiva: Para cada vértice, ao ser descoberto, percorrer a lista de vizinhos. - Visitação de Arestas: Como cada aresta (em grafo não direcionado) aparece

duas vezes (uma para cada extremidade), o total de iterações sobre todos os vizinhos dos vértices é 2m.

Assim, durante toda execução, - cada vértice é visitado exatamente uma vez, - cada aresta é considerada no máximo duas vezes.

Logo, o tempo total é dominado pelo número de vértices mais o número de arestas:

$$T(n,m) = O(n) + O(m) = O(n+m)$$

Isto significa que, para grafos esparsos (quando m está próximo de n), o DFS é extremamente eficiente, escalando linearmente conforme cresce a entrada.

3. Resgate em uma Cidade Inundada com Dijkstra

a) Estrutura do Problema e Descrição do Grafo

A cidade é composta por seis bairros e cada um é representado por um vértice. As ruas conectando os bairros são arestas ponderadas, cujo peso indica o tempo, em minutos, necessário para atravessar aquela rua. A conexão entre Bairro Sul (5) e o Hospital (6) encontra-se bloqueada e, portanto, não pode ser utilizada no cálculo dos caminhos.

As conexões possíveis e respectivos tempos são:

- Centro (1) se conecta a Bairro Norte (2) em 10 min; - Centro (1) se conecta a Bairro Leste (3) em 5 min; - Centro (1) se conecta a Bairro Oeste (4) em 8 min; - Bairro Norte (2) se conecta a Bairro Oeste (4) em 3 min; - Bairro Norte (2) se conecta a Bairro Sul (5) em 6 min; - Bairro Leste (3) se conecta a Bairro Oeste (4) em 7 min; - Bairro Leste (3) se conecta a Bairro Sul (5) em 12 min; - Bairro Leste (3) se conecta a Bairro Norte (2) em 4 min; - Bairro Oeste (4) se conecta a Bairro Sul (5) em 9 min; - Bairro Oeste (4) se conecta ao Hospital (6) em 2 min.

Destaca-se novamente: a rua entre Bairro Sul (5) e o Hospital (6) está bloqueada, sendo a aresta desconsiderada.

	С	N	L	О	S
$\lambda(0)(v)$	0	∞	∞	∞	∞
$\lambda(1)(v)$	0	10	5	8	∞
$\lambda(2)(v)$	0	10	5	8	16
$\lambda(3)(v)$	0	9	5	8	16
$\lambda(4)(v)$	0	9	5	8	16

U	$V' = \{ v \in N(u) \land v \in Q \} \mid$	$\lambda(v), \forall v \in V'$	$\pi(v)$
С	{N, L, O}	$\begin{array}{l} \lambda(N) = \min(\lambda(N), \ \lambda(C) + w(U,N)) = \min(\infty, 0+10) = 10 \\ \lambda(L) = \min(\lambda(L), \ \lambda(C) + w(U,L)) = \min(\infty, 0+5) = 5 \\ \lambda(O) = \min(\lambda(O), \ \lambda(C) + w(U,O)) = \min(\infty, 0+8) = 8 \end{array}$	$\pi(N) = C$ $\pi(L) = C$ $\pi(O) = C$
N	{O,S}	$\lambda(O) = \min(\lambda(O), \lambda(N) + w(N,O)) = \min(8,10+3) = 8$ $\lambda(S) = \min(\lambda(S), \lambda(N) + w(N,S)) = \min(\infty,10+6) = 16$	$\pi(O) = N$ $\pi(S) = N$
L	{O, S, N}	$\lambda(O) = \min(\lambda(O), \lambda(L) + w(L,O)) = \min(8,5+7) = 8$	$\pi(O) = L$

U	$V' = \{v \in N(u) \land v \in Q\}$	$\lambda(v), \forall v \in V'$	$\pi(v)$
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \pi(S) = L \\ \pi(N) = L \end{array}$
О	{S, H}	$ \begin{vmatrix} \lambda(S) = \min(\lambda(S), \lambda(O) + w(O,S)) = \min(16,8+9) = 16 \\ \lambda(H) = \min(\lambda(H), \lambda(O) + w(O,H)) = \min(\infty,8+2) = 10 \end{vmatrix} $	$\begin{array}{c} \pi(S) = O \\ \pi(H) = O \end{array}$
S	-	-	-
Н	-	_	_

b) Análise da Complexidade Computacional do Dijkstra

(i) Implementação com fila de prioridades simples (array):

- Inicialização de distâncias: O(n). - Em cada iteração do while, busca pelo menor valor λ na fila, o que custa O(n), repetido n vezes: $O(n^2)$. - As operações de relaxamento, atualização e inserção podem ser feitas em tempo constante ou linear na vizinhança. - No todo, temos $T(n) = O(n^2) + O(m) = O(n^2)$, pois $O(n^2)$ domina para grandes n.

(ii) Implementação com min-heap:

- Inicialização: O(n). - Cada operação de inserção ou extração do menor elemento no heap custa $O(\log n)$. - As operações de ExtractMin e DecreaseKey sobre todos os vértices e arestas, respectivamente, custam $O(n\log n)$ e $O(m\log n)$. - Assim, totalizando $T(n) = O(n\log n) + O(m\log n) = O(m\log n)$.

Conclusão: Para grafos grandes, a implementação com min-heap é preferível, especialmente quando o número de arestas m é próximo de n (grafos esparsos). A versão com array só é prática para grafos muito pequenos.

c) Prova de Correção: Dijkstra Computa Caminhos Mínimos em Grafos com Pesos Não Negativos

Seja G=(V,E) com pesos $w(u,v)\geq 0$ para quaisquer arestas. Queremos provar que, ao final da execução do Dijkstra a partir de s, temos, para todo $v\in V$, $\lambda(v)=d(s,v)$, onde d(s,v) é a distância geodésica.

Base da indução: O primeiro vértice extraído é a própria fonte s, para o qual $\lambda(s) = 0 = d(s, s)$, portanto a base é satisfeita.

Hipótese da indução: Assuma que, após k extrações, para todo vértice já retirado, $\lambda(u) = d(s, u)$.

Passo da indução: Seja v o próximo vértice a sair da fila. Por absurdo, suponha que $\lambda(v) > d(s,v)$. Considere um caminho ótimo de s até v usando os vértices $s = v_0, v_1, \ldots, v_k = v$, e suponha que algum intermediário v_i está ainda na fila quando seu antecessor v_{i-1} foi retirado. Quando v_{i-1} foi removido, a aresta (v_{i-1}, v_i) foi relaxada,

então:

$$\lambda(v_i) \le \lambda(v_{i-1}) + w(v_{i-1}, v_i)$$

Mas $\lambda(v_{i-1}) = d(s, v_{i-1})$ (hipótese), então

$$\lambda(v_i) \le d(s, v_{i-1}) + w(v_{i-1}, v_i) = d(s, v_i)$$
.

Seguindo este raciocínio pelo caminho mínimo, chegamos a $\lambda(v) \leq d(s, v)$, que contradiz a hipótese inicial. Portanto, remove-se da fila exatamente no momento em que $\lambda(v) = d(s, v)$.

Em conclusão, ao final da execução do algoritmo, todos os $\lambda(v)$ obtidos correspondem às menores distâncias de s até v, demonstrando a correção do Dijkstra em grafos com pesos não negativos.

4. Sistema de Navegação de Drones com Dijkstra Multisource

	A	В	С	D	Е	F	G	Н	Ι
$\lambda(0)(v)$	0	∞	∞	∞	∞	∞	∞	0	∞
$\lambda(1)(v)$	0	1	2	∞	∞	∞	∞	0	∞
$\lambda(2)(v)$	0	1	2	∞	∞	5	1	0	4
$\lambda(3)(v)$	0	1	2	∞	∞	3	1	0	4
$\lambda(4)(v)$	0	1	2	∞	6	2	1	0	3
$\lambda(5)(v)$	0	1	2	3	5	2	1	0	3
$\lambda(6)(v)$	0	1	2	3	5	2	1	0	3
$\lambda(7)(v)$	0	1	2	3	4	2	1	0	3

U	$V' = \{ v \in N(u) \mid A = C(u) \}$	$\lambda(v), \forall v \in V'$	$\pi(v)$
	$ \land v \in Q $		
Α	{B, C}	$\lambda(B) = \min(\lambda(B),$	$\pi(B) = A$
		$\lambda(A) + w(A,B) = \min(\infty, 0+1) = 1$ $\lambda(C) = \min(\lambda(C),$	$\pi(C) = A$
		$\lambda(A) + w(A,C) = \min(\infty, 0+2) = 2$	$n(\mathcal{O}) = n$
Н	{I, F, G}	$\lambda(I) = \min(\lambda(I),$	$\pi(I) = H$
		$\lambda(H) + w(H,I) = \min(\infty,0+4) = 4$	$\pi(F) = H$
		$\begin{array}{c} \lambda(F) = \min(\lambda(F), \\ \lambda(H) + w(H,F)) = \min(\infty, 0+5) = 5 \end{array}$	$\pi(\mathbf{r}) = \mathbf{n}$
		$\lambda(G) = \min(\lambda(G), 1)$	$\pi(G) = H$
		$\lambda(H) + w(H,G) = min(\infty,0+1) = 1$	
В	(C, F)	$\lambda(C) = \min(\lambda(C), $	$\pi(C) = A$
		$\lambda(B) + w(B,C) = \min(2,1+4) = 2$ $\lambda(F) = \min(\lambda(F),$	$\pi(F) = B$
		$\lambda(F) = \min(\lambda(F), \lambda(B) + w(B,F)) = \min(5,1+2) = 3$	$n(\Gamma) = D$
G	{I, F, E}	$\lambda(I) = \min(\lambda(I),$	$\pi(I) = G$
	, ,	$\lambda(G) + w(G,I) = min(4,1+2) = 3$	
		$\lambda(F) = \min(\lambda(F),$	$\pi(F) = G$
		$ \lambda(G) + w(G,F) = \min(3,1+1) = 2 $ $\lambda(E) = \min(\lambda(E),$	$\pi(E) = G$
		$\lambda(G) + w(G,E) = \min(\infty,1+5) = 6$	(2)
\overline{C}	(D, E)	$\lambda(D) = \min(\lambda(D),$	$\pi(D) = C$
		$\lambda(C)+w(C,D)=\min(\infty,2+1)=3$	(E) C
		$\begin{array}{l} \lambda(E) = \min(\lambda(E), \\ \lambda(C) + w(C, E)) = \min(6, 2+3) = 5 \end{array}$	$\pi(E) = C$
	 {D}	$\frac{ \lambda(D) + w(C,D) \min(o,D + o)}{ \lambda(D) - \min(\lambda(D),o) }$	$\pi(D) = C$
1		$\lambda(F) + w(F,D) = \min(3,2+3) = 3$	n(D) = 0
D	{E}	$\lambda(E) = \min(\lambda(E),$	$\pi(E) = D$
		$\lambda(D)+w(D,E)=\min(5,3+1)=4$	
Е	Ø		
Ι	Ø		

Peso Total: 4

Os tempos de entrega para os pontos F, G e I, anteriormente atendidos por H, seriam impactados da seguinte forma:

- Ponto F: O tempo de entrega aumentaria de 2 minutos para 3 minutos (rota A \rightarrow B \rightarrow F), representando um acréscimo de +1 minuto.
- Ponto G: O tempo de entrega passaria de 1 minuto para 4 minutos (rota $A \to B \to F \to G$), resultando em um aumento de +3 minutos.
- Ponto I: O tempo de entrega subiria de 3 minutos para 6 minutos (rota $A \to B \to F \to G \to I$), com um acréscimo de +3 minutos.

Portanto, a falha do centro H resultaria em um aumento significativo nos tempos de voo para os pontos afetados, além de uma considerável elevação da carga logística sobre o centro A.