第1問

グラフ問題。各数字が書かれた地点から隣り合う地点へボールが移動する。移動出来るのは矢印の方向のみ。複数移動出来る場面では、その選択肢の中から等確率でランダムに選び出すことにする。

- (1) 移動確率行列 P を求めよ。移動確率行列は以下のように定義されるものである。次の一回の移動で数字地点 i から数字地点 j へと移る可能性を成分 (i,j) として表すもの。
- (3) $P^{(n)}(i,j)>0, n>0$ となる全ての n の最大公約数を各地点 i ごとに求めよ。 $(\dots$ ちょっとよくわかりませんでした)
- (4) 状態 $\phi=\{\phi(1),\phi(2),\phi(3),\phi(4),\phi(5),\phi(6)\}$ 。 $\phi(i)$ は地点 i にボールがいる確率である。これは、移動の度に刻々変化していくが、移動前後で変化しない状態があった場合、それ以降変化しない定常状態となる。今の問題設定において、定常状態 ϕ を求めよ。また、 $P^{(N)}$ は $\lim_{N\to\infty}$ で収束するか?
- (5) 地点 1,2,3 から地点 4 もしくは 5 に移るまでの回数の期待値を (地点 $1 \sim 3$ についてそれぞれ) 求めよ。
- (6) グラフの設定を変更する。一方通行矢印を、両方通行矢印に変える。この場合における定常状態を求めよ。また、この時 $P^{(N)}$ は $\lim_{N \to \infty}$ で収束するか?

第2問

ロボットアームの問題。2 本のアーム (長さ l) を持つロボットについて、先端を P とする。図のように座標系 $O_1:(x,y)$ と $O_2:(u,v)$ を取る。角度 $\theta_1,\theta_2,\alpha,\beta$ を図のように取る。点 P の位置をそれぞれの座標系での座標 (x_p,y_p) および (u_p,v_p) のように表記する。

(1) (x_p,y_p) と (u_p,v_p) を l,θ_1,θ_2 で表わせ。

$$(2) \left(egin{array}{c} x_p \ y_p \ 1 \end{array}
ight) = M \left(egin{array}{c} u_p \ v_p \ 1 \end{array}
ight)$$
 となる変換行列 M を求めよ

 $(3)\cos\alpha$ と $\cos\beta$ を x_p,y_p,l で表わせ。

(4) $(x_p,y_p)=(rac{\sqrt{3}}{2},rac{3}{2})$ の時の $heta_1$ と $heta_2$ を求めよ。

$$(5) \ \textbf{ヤコビ行列} \ J(\theta_1,\theta_2) = \left(\begin{array}{c} \frac{\partial x_p}{\partial \theta_1} \frac{\partial x_p}{\partial \theta_2} \\ \frac{\partial y_p}{\partial \theta_1} \frac{\partial y_p}{\partial \theta_2} \end{array} \right) \ \textbf{を計算せよ}.$$

$$(6)$$
 $\Delta \vec{p} = \left(egin{array}{c} \Delta x_p \ \Delta y_p \end{array}
ight)$ とする。 $\Delta \vec{p}$ を $\Delta \vec{\theta} = \left(egin{array}{c} \Delta heta_1 \ \Delta heta_2 \end{array}
ight)$ で表わせ。

(7) アームの角度 $heta_1, heta_2$ を調節し、先端 P を目的の位置 $ec{P_G}$ へと動かすことを考える。 $\Delta ec{p} \equiv ec{P_G} - ec{P}$ とし、微小量 λ とした時、アームを $\lambda \Delta ec{p}$ ずつ動かして行くことで $ec{P_G}$ に到達する。上図のように始状態 $ec{P}$ から終状態 $ec{P_G}$ まで動かす場合について、 $\lambda \Delta ec{p}$ に対応するような $\Delta ec{\theta}$ を求めよ。

2

(8) 上の方法で先端 P が到達できない場所の例をあげよ。それに対する解決策を提案せよ。

第3問

以下の8項目から4項目を選択し、各項目を4~8行程度で説明せよ。

- (1) アウトオブオーダー処理
- (2) プロセッサにおけるキャッシュミスの種類と解決法
- (3)
- (4)
- (5) ブロックチェーン
- (6)
- (7)
- (8) 勾配降下法

(すみません、自分の答えたやつしか覚えてません)