Introdução à Software Básico: Operações Ponto Flutuante IA-32

Departamento de Ciência da Computação Instituto de Ciências Exatas Universidade de Brasília

Sumário

Sumário

- Padrão IEEE de Ponto Flutuante
- Arredondamento
- Operações com Ponto Flutuante
- Propriedades Matemáticas
- Ponto Flutuante em IA-32

Ponto Flutuante

Puzzels

- Para cada expressão seguinte em C, verifique se é ou não verdadeira:
 - x == (int)(float) x
 - x == (int)(double) x
 - f == (float)(double) f
 - d == (float) d
 - f == -(-f);
 - 2/3 == 2/3.0
 - $d < 0.0 \Rightarrow ((d*2) < 0.0)$
 - $d > f \Rightarrow -f < -d$
 - d * d ≥ 0.0
 - (d+f)-d == f
- Sendo que as declarações inicias foram:
 - int x = ...;
 - float f = ..;
 - double d =;

Padrão IEEE

Padrão IEEE 754

- Estabelecido em 1985 como padrão para aritmética de ponto flutuante (antes dele vários formatos diferentes)
- Compatível com a maioria de CPUs

Objetivos do Padrão

- Poder realizar operações aritméticas, com facilidade no tratamento de arredondamento, overflow e underflow.
- Não foi pensado com foco para implementação em hardware, logo é difícil de implementar e otimizar.

Representação

- Bits a direita do "ponto binario" representa frações em potência de 2.
- ullet Representação do número decimal: $\sum_{k=-j}^i (b_k imes 2^k)$

Exemplos

- \bullet $5\frac{3}{4}:101.11_2$
- \bullet $2\frac{7}{8}:10.111_2$
- \bullet $\frac{63}{64}$: 0.111111₂

Observação

- Dividir por 2 = fazer shift para direita
- Multiplicar por 2 = fazer shift para esquerda

Limitação

- ullet Somente podem ser representados número da forma $X/2^k$
- Outros números tem representação com expansão repetidas de bits
- \bullet $\frac{1}{3}$: 0.0101010101[01]₂
- \bullet $\frac{9}{5}$: 0.001100110011[0011]₂
- \bullet $\frac{3}{10}$: 0.0001100110011[0011]₂

Numerical Form

- ullet $-1^S imes ext{Mantissa} imes 2^{ ext{Expoente}}$
 - S 1 bit de sinal que determina se o numero é negativo ou positivo
 - Mantissa também é chamada de significand.
 - Expoente:
 - no padrão IEEE 754 o expoente pode ser base 2 ou 10 ($-1^S \times M \times 10^E$).
 - Nos sistemas computacionais normalmente é utilizado a base 2.

Tamanhos

- ullet E = codificação do expoente, M = codificação da Mantissa
- Single precision: E 8 bits, M 23 bits (32 total)
- Double precision: E 11 bits, M 52 bits (64 total)
- Em IA-32 existe a extended precision.

Números Binários Normalizados

Condição

• E ≠ 000...00 e E ≠ 111...11

Expoente é codificado com um BIAS

- Bias: Modificador do expoente
 - single precision: 127 (E: 1...254,Expoente= -126...127)
 - double precision: 1023 (E: 1...2046, Expoente = -1022...1023)
 - BIAS $= 2^{m-1} 1$, onde m é a quantidade de bits de E

Mantissa é codificada com "1" como precedente

- Mantissa = $1.XXXXXXXXXX_2$
 - somente são codificados os bits decimais, o "1" inicial é simplesmente assumido que existe. ($M=XXXXX_2$)
 - se todos os bits são zeros, então Mantissa = 1.0

Números Binários Normalizados

Exemplo

- Float F = 15213.0;
 - $15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$
- \bullet Mantissa é $1.1101101101101_2,$ logo é codificada como $M=1101101101101101000000000_2$
- Expoente é 13, porém como o BIAS é 127, então $E=140=10001100_2$.

Floating Point Representation (Class 02):

140: 100 0110 0

15213: 1110 1101 1011 01

Números Binários Não-Normalizados

Condição

• E = 000...00

Codificação

- Mantissa é $0.XXXXXXXXX_2$ (O valor "0" inicial não é codificado)
- O expoente é interpretado como -BIAS+1

Casos

- E = 0000...00, M = 000...00
 - Representa o valor 0.
- $E = 0000...00, M \neq 000...00$
 - Números próximos de 0.0
 - A precisão vai diminuindo assim que os números ficam menores
 - "Gradual Underflow"

Números Binários Especiais

Condição

• E = 111...11

Casos

- \bullet E = 1111...11, M = 000...00
 - Representa o valor infinito ou divisão por zero.
 - Indica que aconteceu overflow
 - Tanto para o valor positivo como negativo
- E = 1111...11, $M \neq 000...00$
 - Not-a-Number (NaN)
 - Representa um valor que não pode ter representação númerica
 - Por exemplo: sqrt(-1)

Figura: Resumo

Exemplo com Representação de 8 bits

- Mesma forma geral que o formato IEEE
- Mesmas regras para valores normalizados, não-normalizados, NaN e infinito.

7	6 3	2 0
s	exp	frac

Exemplo com Representação de 8 bits

Valores relacionados ao expoente

Exp	exp	E	2 ^E	
0	0000	-6	1/64	(denorms)
1	0001	-6	1/64	
2	0010	-5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	n/a		(inf, NaN)

Exemplo com Representação de 8 bits

• Faixa Dinâmica

	s exp fra	.c <i>E</i>	Value
Denormalized numbers	0 0000 000 0 0000 001 0 0000 010	6) -6	0 $1/8*1/64 = 1/512 \leftarrow \text{closest to zero}$ $2/8*1/64 = 2/512$ $6/8*1/64 = 6/512$
	00.000 1.1.1 0 0001 000		7/8*1/64 = 7/512 ← largest denorm 8/8*1/64 = 8/512 ← smallest norm
	0 0001 001	6	9/8*1/64 = 9/512
Normalized	0 0110 110 0 0110 111	1	14/8*1/2 = 14/16 $15/8*1/2 = 15/16 \leftarrow \text{closest to 1 below}$
numbers	0 0111 000 0 0111 001 0 0111 010	. 0	8/8*1 = 1 9/8*1 = 9/8 ← closest to 1 above 10/8*1 = 10/8
	0 1110 110	7	14/8*128 = 224
	0 1110 111 0 1111 000		15/8*128 = 240 ← largest norm inf

Números Interesantes

Valores relacionados ao expoente

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm. • Single $\approx 1.4 \times 10^{-45}$ • Double $\approx 4.9 \times 10^{-32}$		0001	2- {23,52} X 2- {126,1022}
• Single ≈ 1.18 X 10 ⁻³⁸ • Double ≈ 2.2 X 10 ⁻³⁰	3	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. Normalized • Just larger than large			1.0 X 2 ^{- {126,1022} }
One	0111	0000	1.0
• Single ≈ 3.4 X 10 ³⁸ • Double ≈ 1.8 X 10 ³⁰⁸		1111	$(2.0 - \varepsilon) \times 2^{(127,1023)}$

- ullet é o limite superior do erro de arrendondamento em aritmética de ponto flutuantes.
- single precision: $\epsilon = 2^{-23}$
- double precision: $\epsilon = 2^{-52}$

Propriedades Importantes

- O número 0 em representação de ponto flutuante é igual ao numero 0 em representação de inteiros (todos os bits zero)
- A comparação entre dois números ponto flutuante pode ser feita utilizando comparação inteira sem sinal, considerando o seguinte:
 - primeiro comparar o bit de sinal
 - considerar -0 = 0
 - NaN é um problema, é maior que os outros números? qual o resultado da compração?
 - Todos os outros casos a comparação inteira sem sinal vai funcionar (normalizado vs não-normalizado, normalizado vs infinito)

Modelo Conceitual

- Primeiro calcular o valor exato
- Fazer que o valor encaixe na precissão desejada
 - Pode dar overflow se o expoente é muito grande
 - Pode ser necessário fazer arrendondamento para que a mantissa possa ser expressada com o número de bits desejado.
- Modos de arredondamento:

:	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
• Zero	\$1.00	\$1.00	\$1.00	\$2.00	-\$1.00
 Round down (-∞) 	\$1.00	\$1.00	\$1.00	\$2.00	-\$2.00
 Round up (+∞) 	\$2.00	\$2.00	\$2.00	\$3.00	-\$1.00
 Nearest Even (default) 	\$1.00	\$2.00	\$2.00	\$2.00	-\$2.00

• "Round down" é conhecido como FLOOR, e o "round up" como CEIL.

Multiplicação

- Operandos:
 - $(-1)^{s1} \times M1 \times 2^{E1}$
 - $(-1)^{s2} \times M2 \times 2^{E2}$
- Valor Exato:
 - \bullet $(-1)^s \times M \times 2^E$
 - s = s1 XOR s2
 - ullet Mantissa é M1 imes M2
 - Expoente é E1 + E2
- Colocando na precisão desejada:
 - Se $M \ge 2$, shift M um bit para direita e incrementa E
 - Se E fica precisa mais bits do que os reservados então overflow
 - Arredondar M para que fique entre os bits reservados

Adição

- Operandos:
 - \bullet $(-1)^{s1} \times M1 \times 2^{E1}$
 - $(-1)^{s2} \times M2 \times 2^{E2}$
- Valor Exato:
 - \bullet $(-1)^s \times M \times 2^E$
 - s e M é resultado do somo alinhada
 - \bullet E=E1

- Colocando na precisão desejada:
 - Se $M \ge 2$, shift M um bit para direita e incrementa E
 - Se M < 1, shift M para esquerda k posições, decrementa E por k.
 - Se E fica precisa mais bits do que os reservados então overflow
 - Arredondar M para que fique entre os bits reservados

Propriedades da Adição

- Commutativa: SIM
- Associativa: Não, devido ao overflow e arredondamento
- 0 é a identidade aditiva: SIM
- Todo elemento tem um inverso aditivo: SIM, com exeção do infinito e NaN
- $a \ge b \Rightarrow a + c \ge b + c$: SIM, com exeção de infinito e NaN

Propriedades da Multiplicação

- Commutativa: SIM
- Associativa: Não, devido ao overflow e arredondamento
- 1 é a identidade aditiva: SIM
- A multiplicação é distributiva sobre a adição: NÃO, devido ao overflow e arredondamento
- $a > b \& c > 0 \Rightarrow a \times c > b \times c$: SIM, com exeção de infinito e NaN

Precisão

• FLOAT e DOUBLE

Conversão

- Casting entre inteiro, single e double muda os valores númericos
 - Ponto flutuante para inteiro: trunca a parte fracionaria
 - inteiro para double: Conversão exata a mantissa tem 53 bits maior que o inteiro.
 - inteiro para float: Vai arredondar para caber em 23 bits.

Ponto Flutuante

Puzzels

- Para cada expressão seguinte em C, verifique se é ou não verdadeira:
 - x == (int)(float) x Não: 24 bit significand
 - $x == (int)(double) \times SIM: 53 bit significand$
 - f == (float)(double) f SIM: Aumento precisão
 - ullet d == (float) d Não: Perdeu Precisão
 - f == -(-f); SIM: sinal mudou duas vezes
 - 2/3 == 2/3.0 Não: 2/3 == 0
 - $d < 0.0 \Rightarrow ((d*2) < 0.0)$ Sim
 - $d > f \Rightarrow -f < -d$ Sim
 - $d * d \ge 0.0$ Sim
 - (d+f)-d == f Não: Não associativo
- Sendo que as declarações inicias foram:
 - int x = ...;
 - float f = ..;
 - double d =;

Precisão

- FLOAT 32 bits
- DOUBLE 64 bits
- Extended 80 bits

Operações

- Hardware específico para somar, multiplicar e dividir ponto flutuante
- Registradores específicos para ponto flutuante

Registrador FPU

79		63 0
s	ехр	frac

FPU stack

- A pilha cresce de R7 para R0
- Os registros são referênciados com relação ao inicio da pilha: st(0) é o topo, seguido de st(1), st(2), etc.

Instruções

- Grande variedade de instruções de ponto flutuante
 - aprox. 50 instruções
 - o load, store, add e mult
 - sin, cos, tan, arctan, and log!

Instruction	Effect	Description
fldz flds S fmuls S faddp	<pre>push 0.0 push S st(0) <- st(0)*S st(1) <- st(0)+st(1); pop</pre>	Load zero Load single precision real Multiply Add and pop

Figura: exemplo de instruções de FPU

Exemplo

Calcular o produto interno de dois vetores

```
pushl %ebp
                          # setup
  mov1 %esp, %ebp
  pushl %ebx
  mov1 8(%ebp),%ebx
                         # %ebx=&x
  mov1 12(%ebp), %ecx # %ecx=&v
  movl 16(%ebp),%edx
                         # %edx=n
  fldz
                         # push +0.0
  xorl %eax.%eax
                         # i=0
  cmpl %edx, %eax
                         # if i>=n done
  jge .L3
.L5:
  flds (%ebx,%eax,4)
                        # push x[i]
  fmuls (%ecx, %eax,4)
                        # st(0)*=v[i]
  faddp
                         # st(1) += st(0); pop
                         # i++
  incl %eax
  cmpl %edx, %eax
                         # if i<n repeat
  11 .L5
.L3:
  mov1 -4(%ebp),%ebx
                         # finish
  leave
  ret
                          # st(0) = result
```

Figura: exemplo de instruções de FPU

Exemplo

Próxima Aula

Próxima Aula

Introdução a Assembly x64