ENSIIE 2018-2019 2A UE Méthodes de Simulation

Feuille 2 de Travaux pratiques

Exercice 1. (Exemple simple mais illustratif). Soit X une v.a. à valeurs dans $\{-5, 0, 5\}$ avec :

$$\mathbb{P}(X = -5) = 1/3$$
, $\mathbb{P}(X = 0) = 1/6$, $\mathbb{P}(X = 5) = 1/2$,

Soit Y une autre variable aléatoire telle que $\mathbb{P}(Y=0)=5/6$.

- 1. Déterminez $\mathbb{P}(Y = -1)$ et $\mathbb{P}(Y = 1)$ pour que $\mathbb{E}(Y) = \mathbb{E}(X)$.
- 2. Calculez Var(Y) et expliquez pourquoi Var(Y) < Var(X).
- 3. Pour $N=1,\ldots,1000$, tracez sur le même graphe la fonction $N\mapsto \bar{X}_N$ et la fonction $N\mapsto \bar{Y}_N$ où pour toute v.a. $Z, \bar{Z}_N=(Z_1+\ldots+Z_N)/N$ est la moyenne empirique associée au N-échantillon Z_1,\ldots,Z_N de la loi de Z. Commentez les graphes.
- 4. Tracez sur deux fenêtres graphiques différentes les graphiques précédentes, chacun accompagné des bornes inférieures et supérieures des intervalles de confiance (qui est partout de niveau de confiance 95%) pour tout N. Commentez les graphes.
- 5. Pour chacun des estimateurs \bar{X}_N et \bar{Y}_N , déterminer numériquement l'entier approximatif N_0 à partir duquel l'erreur d'estimation est d'ordre 10^{-2} (au niveau de confiance 95%).

Exercice 2. Soit $X \sim \mathcal{N}(0,1)$. On veut comparer la méthode de Monte Carlo naive et la méthode d'échantillonage préférentiel dans l'estimation de

$$\mathbb{E}(g(X))$$
 où $g(x) = x \, \mathbb{1}_{\{x > 3.5\}}.$ (1)

- 1. Donnez une estimation de (1) par la méthode de Monte Carlo en simulant un N-échantillon X_1, \ldots, X_N de taille N=10000 de la loi de X.
- 2. Pour $N=1,\ldots,10000$, tracez sur le même graphe la fonction $N\mapsto \bar{X}_N$ et les intervalles de confiances associés.
- 3. Soit A = [0, 6] et $\{Z^{\mu}, \mu \in A\}$, une famille de variables aléatoires telle que $Z^{\mu} \sim \mathcal{N}(\mu; 1)$.
 - (a) Identifiez la fonction ψ telle que $\mathbb{E}(g(X)) = \mathbb{E}(\psi(Z^{\mu}))$.
 - (b) On pose $\mu=2.5$. Pour N=1000, puis pour N=10000, donnez une estimation de (1) par la méthode d'échantillonage préférentiel en utilisant un N-échantillon de Z^{μ} .
 - (c) Pour $N=1,\ldots,10000$, tracez sur le même graphe les fonctions $N\mapsto \frac{g(X_1)+\ldots g(X_N)}{N}$ et $N\mapsto \frac{\psi(Z_1^\mu)+\ldots \psi(Z_N^\mu)}{N}$, pour $\mu=2.5$.
 - (d) Faites un zoom des graphes précédents pour $N=1,\ldots,1000$ et comparez-les.
 - (e) Pour $N=1,\ldots,10000$, tracez sur une nouvelle fenêtre graphique la fonction $N\mapsto \frac{\psi(Z_1^\mu)+\ldots\psi(Z_N^\mu)}{N}$ et les intervalles de confiance associés.
- 4. On veut chercher le paramètre μ^* qui minimise $\mathbb{E}\psi^2(Z^\mu)$.
 - (a) Spécifiez la fonction K qui vérifie $\mathbb{E}\psi^2(Z^\mu) = \mathbb{E}(K(\mu,\xi))$, avec $\xi \sim \mathcal{N}(0,1)$.
 - (b) Utilisez l'algorithme suivant pour donner une approximation de μ^* :

$$\mu_{n+1} = \mu_n - \gamma_{n+1} K'_{\mu}(\mu_n, \xi_{n+1}), \qquad \mu_0 \in A,$$

où $(\xi_n)_{n\geq 1}$ est une suite iid de v.a. de même loi que ξ et $(\gamma_n)_{n\geq 1}$ vérifie:

$$\sum_{n\geq 0} \gamma_{n+1} = +\infty \quad \text{ et } \quad \sum_{n\geq 0} \gamma_{n+1}^2 < +\infty,$$

et K'_{μ} est la dérivée partielle de K par rapport à μ .

- (c) Pour $N=1,\ldots,10000$, tracez la fonction $N\mapsto \frac{\psi(Z_1^{\mu^*})+\ldots\psi(Z_N^{\mu^*})}{N}$ et les intervalles de confiance associés. Comparez avec les résultats obtenus pour $\mu=0$ et $\mu=2.5$.
- 5. Pour chacun des cas $\mu = 0$, $\mu = 2.5$, $\mu = \mu^*$, déterminer numériquement l'entier approximatif N_0 à partir duquel l'erreur d'estimation est d'ordre 10^{-2} (au niveau de confiance 95%). On fera croître N par pas de 10 pour atteindre le critère d'erreur d'approximation (voir cours).

Exercice 3. Soit T>0 et soit $t_k=\frac{kT}{n}$, $k=0,\ldots,n$, des points de discrétisation réguliers sur [0,T]. On considère le modèle d'évolution suivant de deux actifs financiers (X,Y) corrélés:

$$\begin{cases} X_{t_{k+1}} = X_{t_k} \left((1 + r\Delta) + \sigma_1 \sqrt{\Delta} Z_{k+1} \right) \\ Y_{t_{k+1}} = Y_{t_k} \left((1 + r\Delta) + \rho \sigma_2 \sqrt{\Delta} Z_{k+1} + \sigma_2 \sqrt{1 - \rho^2} \sqrt{\Delta} \tilde{Z}_{k+1} \right) \end{cases}$$

où r est le taux d'intérêt, $\Delta = T/n$, $\sigma_1, \sigma_2 > 0$, $\rho \in (-1,1)$ est le coefficient de corrélation entre Z et \tilde{Z} ; $(Z_k)_{k \geq 1}$ est une suite iid de loi $\mathcal{N}(0;1)$, de même que $(\tilde{Z}_k)_{k \geq 1}$, et Z_k et \tilde{Z}_k sont indépendantes pour tout k > 1

On veut donner une approximation par Monte Carlo de $(x_+ = \max(x, 0))$

$$e^{-rT}\mathbb{E}\Big(\big(0.5 \times X_{t_n} + 0.5 \times Y_{t_n} - K\big)_+\Big)$$
 (2)

- 1. On pose $T=1, n=50, \sigma_1=0.5, \sigma_2=0.8, r=0.03, X_0=50, Y_0=60, K=55.$
 - (a) Donner une estimation de (2) par la méthode de Monte Carlo pour $\rho=0.1,\,\rho=0.5$ et pour $\rho=0.9.$
 - (b) Donnez l'intervalle de confiance associé pour un niveau de confiance de 95%.
- 2. On pose toujours T=1, n=50, $\sigma_2=0.8$, r=0.03, $X_0=50$, $Y_0=60$, K=55, et $\rho=0.5$. Donnez une estimation de (2) par la méthode de Monte Carlo pour $\sigma_1=0.7$ et $\sigma_1=1$. Donnez les intervalles de confiance associées.