MATB24 TUTORIAL PROBLEMS 7

KEY WORDS: inner product space, orthogonal decomposition, orthogonal projection, orthogonal complement

RELEVANT SECTIONS IN THE TEXTBOOK: 6.2 6.3 6.5 FB or 6.B 6.C SA

WARM-UP:

Write down a complete definition or a complete mathematical characterization

- (1) Orthogonal decomposition of a vector \vec{u} in an inner product space V onto a vector v
- (2) orthogonal complement of a subspace W of an inner product space V
- (3) An orthogonal basis for a vector space W
- (4) An orthonormal basis for a vector space W

A:

(1) Let V_1 be the subspace of \mathbb{R}^4 given by

$$x_1 - x_2 - 2x_3 = 0,$$

$$x_2 + x_3 - 2x_4 = 0.$$

Find an orthonormal basis of V_1 .

(2) Let V_2 be the subspace of \mathbb{R}^4 given by

$$x_1 + x_2 - x_3 - 2x_4 = 0.$$

Find an orthonormal basis of V_2 .

(3) Let \vec{w} be the vector

$$\vec{w} = \begin{bmatrix} 1\\2\\-1\\2 \end{bmatrix} \in \mathbb{R}^4.$$

Find the orthogonal projections of \vec{w} onto the subspaces V_1, V_2 .

B: Let W be a subspace of an inner product space V. We proved (or will prove) in class that for every $\vec{x} \in V$ there is a unique vector $\operatorname{proj}_W \vec{x} \in V$ such that $\vec{x} - \operatorname{proj}_W \vec{x}$ is orthogonal to W. The vector $\operatorname{proj}_V \vec{x}$ is called the *orthogonal projection* of \vec{x} onto W, and we found a formula for it: if $\mathcal{U} = \{\vec{u}_1, \dots, \vec{u}_n\}$ is an orthonormal basis of W, then

$$\operatorname{proj}_V(\vec{x}) = \sum_{i=1}^n \langle \vec{x}, \vec{u}_i \rangle \vec{u}_i.$$

- (1) Prove that the transformation $\operatorname{proj}_V: V \to V$ is linear.
- (2) What is the kernel of $proj_V$?
- (3) Write the rank nullity equation for this transformation. Is it familiar?
- (4) Suppose $V = \mathbb{R}^m$. Since the orthogonal projection $\operatorname{proj}_W : \mathbb{R}^m \to \mathbb{R}^m$ is linear, is there an $m \times m$ matrix P such that $\operatorname{proj}_V(\vec{x}) = P\vec{x}$ for all $\vec{x} \in \mathbb{R}^m$?

C: Let
$$V$$
 be the subspace of \mathbb{R}^3 spanned by $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

¹we will do this in class

- (1) Find a basis for V^{\perp} .
- (2) Find the standard matrix of $proj_V$.
- (3) Find the kernel of proj_V . How does this compare to V^{\perp} ?
- (4) What is $\dim V^{\perp} + \dim V$? How can you see this an instance of rank-nullity?
- (5) Explain why the union of an orthonormal basis for V and one for V^{\perp} are a basis for \mathbb{R}^3 . What is the matrix of π_V in this basis?

D:

Let V and W be subspaces of coordinate vector spaces \mathbb{R}^n and \mathbb{R}^m , and suppose that $T:V\to W$ is an isomorphism.

- (1) If $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_r\}$ is a basis of V, is the set $\{T(\vec{b}_1), \dots, T(\vec{b}_r)\}$ necessarily a basis of W?
- (2) If $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_r\}$ is an orthonormal basis of V, is the set $\{T(\vec{b}_1), \dots, T(\vec{b}_r)\}$ necessarily an orthonormal basis of W?
- (3) Which $n \times n$ matrices A do you expect to have the property that for every orthonormal basis $\{\vec{u}_1, \dots, \vec{u}_n\}$ of \mathbb{R}^n , the set $\{A\vec{u}_1, \dots, A\vec{u}_n\}$ is also an orthonormal basis of \mathbb{R}^n ? Can you come up with a few examples that works and a few that doesn't?

²we will revisit this question in class soon