Homework #1. Solutions to selected problems.

- **2.** In each of the following examples determine if H is a bilinear form on V (make sure to justify your answer):
 - (a) $V = Mat_n(F)$ for some field F and $n \in \mathbb{N}$ and H(A, B) = AB.
 - (b) $V = Mat_n(F)$ for some field F and $n \in \mathbb{N}$ and $H(A, B) = (AB)_{1,1}$ (the (1,1)-entry of the matrix AB).
 - (c) $V = F^n$ for some field F and $n \in \mathbb{N}$ and $H((x_1, \dots, x_n), (y_1, \dots, y_n)) = x_1 + y_1$.

Solution: (a) If n = 1, this is a bilinear form. If n > 1, this is a bilinear MAP, but not a bilinear form since its values are not scalars (do not lie in the field F).

- (b) this is bilinear which can be checked by straightforward verification.
- (c) This is not bilinear. If it were bilinear, for all $x \in V$ we would have had H(0,x) = H(0+0,x) = H(0,x) + H(0,x) and hence H(0,x) = 0. But the latter is false, e.g. because $H(0,e_1) = 1 \neq 0$.
- **4.** Let F be any field, $n \in \mathbb{N}$ and $V = Mat_n(F)$, the vector space of $n \times n$ matrices over F. Let e_{ij} be the matrix whose (i, j)-entry is equal to 1 and all other entries are 0. Then $\beta = \{e_{ij} : 1 \leq i, j \leq n\}$ is a basis of V (you do not need to verify this). Define $H : V \times V \to F$ by

$$H(A,B) = Tr(AB^T)$$

(where B^T is the transpose of B).

Solution: Bilinearity is straightforward. By direct computation $H(e_{ij}, e_{kl}) = Tr(e_{ij}e_{lk}) = Tr(\delta_{ik}e_{jl}) = \delta_{ik}\delta_{jl}$. Thus, $H(e_{ij}, e_{kl}) = 1$ if (i, j) = (k, l) as pairs and $H(e_{ij}, e_{kl}) = 0$ otherwise. Hence $[H]_{\beta} = I_{n^2}$, the identity $n^2 \times n^2$ -matrix. Since this matrix is symmetric, the form H is also symmetric (it is also not hard to check the latter directly).

5. Let F be a field with $\operatorname{char}(F) \neq 2$, let V be a finite-dimensional vector space over F, and let H be a bilinear form on V. Prove that H can be **uniquely** written as $H = H^+ + H^-$ where H^+ is a symmetric bilinear form on V and H^- is an antisymmetric bilinear form on V.

Solution: Define $H^+(x,y) = \frac{1}{2}(H(x,y) + H(y,x))$ and $H^-(x,y) = \frac{1}{2}(H(x,y) - H(y,x))$. Note that we can divide by 2 precisely because $\operatorname{char}(F) \neq 2$. Then it is clear that H^+ is symmetric, H^- is antisymmetric and $H = H^+ + H^-$. This proves existence.

For uniqueness assume that we have two representations $H = S_1 + A_1 = S_2 + A_2$ where S_1 and S_2 are symmetric and A_1 and A_2 are antisymmetric. Then $S_1 - S_2 = A_2 - A_1$, so the form $G = S_1 - S_2 = A_2 - A_1$ is both symmetric (being the difference of two symmetric forms) and antisymmetric (being the difference of two antisymmetric forms). Then for all x, y we have G(x,y) = G(y,x) = -G(x,y) which implies that G(x,y) = 0 (again using that G(x,y) = 0). Thus G(x,y) = 0 is identically zero and hence $S_1 = S_2$ and $S_1 = S_2$.

- **6.** Let F be any field and $n \in \mathbb{N}$.
- (a) Let $V = F^n$ (the standard *n*-dimensional vector space over F). Let $D: V \times V \to F$ be the dot product form. Prove that D is left non-degenerate.
- (b) Now V be any n-dimensional vector space over F, β an ordered basis for V and H a bilinear form on V. Prove that H is left non-degenerate if and only if $[H]_{\beta}$ (the matrix of H with respect to β) is invertible.

Solution: (a) Take any $0 \neq x = (x_1, ..., x_n) \in V$ and choose any i such that $x_i \neq 0$. Then $D(x, e_i) = x_i \neq 0$, so D is left non-degenerate.

(b) " \Rightarrow " We argue by contrapositive (we want to show that if $[H]_{\beta}$ is not invertible, then H is left degenerate). Suppose that $[H]_{\beta}$ is not invertible. Then $[H]_{\beta}^{T}$ (the transposed matrix) is also not invertible. By elementary linear algebra we know that there exists $0 \neq v \in V$ such that $[H]_{\beta}^{T}[v]_{\beta} = 0$. Transposing both sides of this equation, we get $[v]_{\beta}^{T}[H]_{\beta} = 0$ (note that the 0 on the right is now a row vector). But then $H(v, w) = [v]_{\beta}^{T}[H]_{\beta}[w]_{\beta} = 0$ for all $w \in V$, so H is left degenerate.

" \Leftarrow " Suppose that $[H]_{\beta}$ is invertible. Take any $0 \neq v \in V$. Then $[v]_{\beta} \neq 0$ as well. Since the dot product D is left non-degenerate by (a), there exists $y \in V$ such that $D([v]_{\beta}, [y]_{\beta}) \neq 0$. Since $[H]_{\beta}$ is invertible, it is surjective as a map from F^n to F^n , so we can find $w \in V$ such that $[H]_{\beta}[w]_{\beta} = [y]_{\beta}$. Thus, $D([v]_{\beta}, [H]_{\beta}[w]_{\beta}) \neq 0$. Since $D([v]_{\beta}, [H]_{\beta}[w]_{\beta}) = [v]_{\beta}^T [H]_{\beta}[w]_{\beta} = H(v, w)$, this implies that H is left non-degenerate.

7. Let F be any field, $n \in \mathbb{N}$, $V = F^n$ and $\{e_1, \ldots, e_n\}$ the standard basis of V. Define $\rho: S_n \to GL(V)$ by $(\rho(g))(e_i) = e_{g(i)}$. As discussed in Lecture 1, the pair (ρ, V) is a representation of S_n .

(a) Let V_0 be the subspace of V consisting of all vectors whose sum of coordinates is equal to 0:

$$V_0 = \{(x_1, \dots, x_n) \in V : x_1 + \dots + x_n = 0\}.$$

Prove that V_0 is an S_n -invariant subspace of V, and therefore (ρ, V_0) is also a representation of S_n .

(b) Now prove that the representation (ρ, V_0) is irreducible, that is, if W is any S_n -invariant subspace of V_0 , then W = 0 or $W = V_0$.

Solution: (a) Let us see how $\rho(g)$ acts on an arbitrary element of V. Take $x = (x_1, \ldots, x_n) \in V$. Then $x = \sum_{i=1}^n x_i e_i$, so $(\rho(g))(x) = \sum_{i=1}^n x_i (\rho(g)) e_i = \sum_{i=1}^n x_i e_{g(i)}$. Hence, the ith coordinate of $(\rho(g))(x)$ is equal to x_j where j is the unique integer such that g(j) = i; in other words $j = g^{-1}(i)$. Thus,

$$(\rho(g))((x_1,\ldots,x_n))=(x_{q^{-1}(1)},\ldots,x_{q^{-1}(n)}).$$

In other words, $\rho(g)$ permutes the coordinates of every $x \in V$, so if the sum of coordinates of x is 0, it will still be 0 after permutation. Thus, V_0 is S_n -invariant.

(b) The assertion is false in general – we need to assume that char(F) does not divide n. This is equivalent to saying that $n \neq 0$ in F.

Let W be any S_n -invariant subspace of V_0 . We shall assume that $W \neq 0$ and deduce that $W = V_0$. Since $W \neq 0$, we can choose a nonzero vector $x = (x_1, \ldots, x_n) \in W$. We claim that at least two coordinates of x are different. Indeed, suppose all coordinates of x are equal to each other. Then the sum of the coordinates is nx_1 . Since $x \in V_0$, we have $nx_1 = 0$, and since $n \neq 0$ in F (by the extra assumption), we get $x_1 = 0$, which then forces x = 0, a contradiction.

Thus, there exist $i \neq j$ such that $x_i \neq x_j$. Let g = (i, j), the transposition that swaps i and j. An easy computation then shows that $(\rho(g))(x) - x = (x_i - x_j)(e_j - e_i)$. Since W is S_n -invariant, we must have $(x_i - x_j)(e_j - e_i) \in W$, and since $x_i \neq x_j$, dividing by $x_i - x_j$, we get $e_j - e_i \in W$.

Now given any $k \neq l$, with $1 \leq k, l \leq n$, we can find $f \in S_n$ such that f(j) = k and f(i) = l. Then $(\rho(f))(e_j - e_i) = e_{f(j)} - e_{f(i)} = e_k - e_l$. Thus, W contains all elements of the form $e_k - e_l$. These elements span V_0 (for instance, any $(x_1, \ldots, x_n) \in V_0$ can be written as $\sum_{i=1}^{n-1} x_i(e_i - e_n)$ since x_n must equal $-\sum_{i=1}^{n-1} x_i$). Thus W contains a spanning set for V_0 and hence must equal V_0 .