

Advanced Neural Ordinary Differential Equation Solver **Using PETSc**

Wenjun Zhao Givens Associate Argonne National Laboratory Ph.D. Candidate at New York University Mentor: Dr. Hong Zhang Assistant Computational Mathematician Argonne National Laboratory

> August 21st, 2020 New York City, NY

Introduction to Neural ODEs

• Residual networks: with *f* as a neural network,

$$z_{t+1} = z_t + f(z_t, \theta_t), \qquad t \in \{0, 1, ..., T\},$$

which can be interpreted as an Euler discretization of an ODE.

• **Neural ODE**[1]: in the limit of smaller time steps,

$$\frac{dz}{dt} = f(z(t), \theta(t), t), \qquad z(0) = z_0,$$

and the output is defined by z(T).

Applications:

- Replacing residual blocks in supervised learning[1];
- Time series modeling[1];
- Density estimation through continuous normalizing flows[1][2], ...,

(a) Recurrent Neural Network

(b) Latent Neural Ordinary Differential Equation

5%	20%	40%	60%	80%	100%
•	(<u>0</u>)		0	0	0

Different implementations

To calculate the gradient for the loss function, the adjoint method is applied:

Forward: $z(t_1) = z(t_0) + \int_{t_0}^{t_1} f(z, t) dt$

Backward: $a(t_0) = a(t_1) + \int_{t_1}^{t_0} a(t)^T f_z(z,t) dt$, where $a(t) = L_z(z(t))$ is the adjoint state

Gradient: $L_{\theta} = \int_{t_0}^{t_1} a(t)^T f_{\theta}(z, t) dt$

Our approach:

We use discrete adjoint method and checkpointing strategy through PETSc TSAdjoint [6]

We compare it with the following 3 existed implementations:

- Discrete adjoint, checkpointing everything (referred as NODE [1])
- Continuous adjoint, no checkpointing (referred as NODE cont.[1])
- Discrete adjoint, multi-level checkpointing (referred as ANODE [3])

Accuracy

- NODE, ANODE, PETSc use <u>discrete adjoint</u> method, which provides exact gradients;
- NODE cont uses **continuous adjoint**, has large error with low accuracy time steppers.

Example: Classification on Cifar-10 dataset, architecture with 4 ODE blocks [3]

(1) With forward Euler method (first order):

(2) With Runge-Kutta 4 method (4-th order):

Efficiency

- NODE <u>checkpoints everything</u> (function evaluations and trajectory) in the forward pass;
- NODE cont. reverses the ODE and <u>does not require checkpointing</u>;
- ANODE <u>saves only initial conditions</u> and recomputes from the checkpoints;
- PETSc implementation <u>saves the complete trajectory</u> but not function evaluations;

L: # ODE blocks; Nt: # time steps NFE: # function evaluations

	Mem	Time	NFE
NODE	O(LNt)	O(LNt)	O(LNt)
NODE cont.	O(1)	O(2LNt)	O(2LNt)
ANODE	O(L+Nt)	O(2LNt)	O(2LNt)
PETSc	O(LNt)	O(2LNt)	O(2LNt)

Example: Classification on Cifar-10 dataset, with 4 ODE blocks, solved through Runge-Kutta 4

Implicit methods for neural ODEs

- PETSc offers sophisticated linear and nonlinear solvers that allows for implicit time stepping;
- Implicit methods are known for <u>absolute stability with arbitrary step size</u>, always find non-blow-up solutions during training and test.

Example: a 2D toy model

(1) With Crank-Nicolson (2nd order, implicit)

(2) With Runge-Kutta 2 (2nd order, explicit)

References:

- [1] Neural Ordinary Differential Equations, Ricky T. Q. Chen, Yulia Rubanova, lesse Bettencourt, David Duvenaud, Advances in Neural Information Processing Systems (NeurIPS), 2019
- [2] FFJORD: Free-form Continuous Dynamics For Scalable Reversible Generative Models, Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, David Duvenaud, International Conference On Learning Representations (ICLR), 2019
- [3] ANODE: Unconditionally Accurate Memory-efficient Gradients For Neural Odes, Amir Gholami, Kurt Keutzer, George Biros, International Joint Conferences On Artificial Intelligence (IJCAI'19), 2019.
- [4] Discretize-optimize Vs. Optimize-discretize For Time-series Regression And Continuous Normalizing Flows,
- Derek Onken, Lars Ruthotto, arXiv:2005.13420
- [5] PETSc/TS: A Modern Scalable ODE/DAE Solver Library, Shrirang Abhyankar, Jed Brown, Emil M. Constantinescu, Debojyoti Ghosh, Barry F. Smith, Hong Zhang, arXiv:1806.01437
- [6] PETSc TSAdjoint: A Discrete Adjoint ODE Solver For First-order And Second-order Sensitivity Analysis, Hong Zhang, Emil M. Constantinescu, Barry F. Smith, arXiv: 1912.07696

Thank you!

