Iris Dataset

Iris Versicolor

Iris Setosa

Iris Virginica

Num	Sepal Length	Sepal Width	Petal Length	Petal Width	Species
1					Iris-Setosa
50					
51					Iris-Versicolor
100					
101					Iris-Virginica
150					_

- 150 Rows
- 4 X columns
- 1 y column
- 3 classes
- No missing values

Iris – Classification Results

Classification algorithms

- Logistic Regression
- KNN
- Decision tree
- Neural networks
- SVM
- Naïve bayes
- Adaboost
- Many many more
- Each one has its properties wrt bias, speed, accuracy, transparency...

Classification vs. Numeric Prediction

Classification

- predicts categorical class labels (discrete or nominal)
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Numeric Prediction

- models continuous-valued functions, i.e., predicts unknown or missing values
- Typical Classification applications
 - Credit/loan approval:
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

An example application

- An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients.
- A decision is needed: whether to put a new patient in an intensive-care unit.
- Due to the high cost of ICU, those patients who may survive less than a month are given higher priority.
- Problem: to predict high-risk patients and discriminate them from low-risk patients.

Another application

- A credit card company receives thousands of applications for new cards. Each application contains information about an applicant,
 - age
 - Marital status
 - annual salary
 - outstanding debts
 - credit rating
 - etc.
- Problem: to decide whether an application should approved, or to classify applications into two categories, approved and not approved.

Character recognition (multi category)

 Identify handwritten characters: classify each image of character into one of 10 categories '0', '1', '2'

Supervised learning process: two steps

- Learning (training): Learn a model using the training data
- Testing: Test the model using unseen test data to assess the model accuracy

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}},$$

Step 1: Training

Step 2: Testing

Decision Tree

- Decision tree learning is one of the most widely used techniques for classification.
 - Its classification accuracy is competitive with other methods, and
 - it is very efficient.
- The classification model is a tree, called decision tree.

Use the decision tree

Age	Has_Job	Own_h	nouse	Credit-Ra	ating _	Class
young	false	false		good		? No
		Aş	ge?			
	Young	mic	idle	old		
Has_	job?	Own_l	house?	Cre	dit_rat	ing?
true	false	true	false	fair		excellent
Voc	No	37	NT-	Ma	37	37
Yes	No	Yes	No	No	Yes	Yes
(2/2)	(3/3)	(3/3)	(2/2)	(1/1)	(2/2)	(2/2)

Is the decision tree unique?

- No. Here is a simpler tree.
- We want smaller tree and accurate tree.
 - Easy to understand and perform better.

- Finding the best tree is NP-hard.
- All current tree building algorithms are heuristic algorithms

From a decision tree to a set of rules

- A decision tree can be converted to a set of rules
- Each path from the root to a leaf is a rule.


```
Own_house = true → Class =Yes [sup=6/15, conf=6/6]
Own_house = false, Has_job = true → Class = Yes [sup=5/15, conf=5/5]
Own_house = false, Has_job = false → Class = No [sup=4/15, conf=4/4]
```

Evaluating classification methods

Predictive accuracy

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}}$$

- Efficiency
 - time to construct the model
 - time to use the model
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability:
 - understandable and insight provided by the model
- Compactness of the model: size of the tree, or the number of rules.

Precision and recall measures

- Used in information retrieval and text classification.
- We use a confusion matrix to introduce them.

	Classified Positive	Classified Negative
Actual Positive	TP	FN
Actual Negative	FP	TN

where

TP: the number of correct classifications of the positive examples (true positive),

FN: the number of incorrect classifications of positive examples (false negative),

FP: the number of incorrect classifications of negative examples (false positive), and

TN: the number of correct classifications of negative examples (true negative).

Classifier Evaluation Metrics:

Precision and Recall, and F-measures

Precision: exactness – what % of tuples that the classifier labeled as positive are actually positive
TP

$$precision = \frac{TT}{TP + FP}$$

- Recall: completeness what % of positive tuples did the classifier label as positive?
 TP
- Perfect score is 1.0
- Inverse relationship between precision & recall
- F measure (F_1 or F-score): harmonic mean of precision and recall, $\frac{2 \times precision \times recall}{F}$
- $F_{\mathcal{S}}$: weighted measure of precision and recall
 - assigns ß times as much weight to recall as to precision

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$