4:30		5:15		
Comenzado el jueves, 9 de febrero de 2023, 14:30	Estado Finalizado	Finalizado en jueves, 9 de febrero de 2023, 15:15	Tiempo empleado 44 minutos 51 segundos	Calificación 2,40 de 6,00 (40 %)
Comenzado el	Estado	Finalizado en	Tiempo empleado	Calificación

Pregunta **1**

Finalizado

Puntúa 0,60 sobre 2,00

Simular el movimiento de un péndulo simple de longitud L y masa m sujeto a una $\overline{ ext{uerza}}$ de rozamiento de la forma

 $ec{f}_r=-r\,ec{v}$ y analizar la disminución de la amplitud de las oscilaciones. La ecuación del movimiento puede escribirse en la forma:

$$\frac{d^2\theta}{dt^2} = -\omega_0^2 \sin\theta - q \frac{d\theta}{dt}$$

Para $\omega_0=1$ y q=0.2

1. Presentar el algoritmo implementado para encontrar la amplitud en función del tiempo.

2. Presentar el gráfico de $\ln\!A$ vs t con las condiciones iniciales $heta_0=\pi/2$ y $heta_0=0$.

Se utilizó el siguente fragmento de codigo:

if(abs(v4)<1e-3){ file3<<t/T<<" "<<abs(x4)<<endl; En este algoritmo se almacenan los máximos cuando cumplen con la condición del mínimo de velocidad.

2

Comentario:

Punto 1: 0.0

El código no es el algoritmo.

Punto 2: 0.6

Puntos?

Pregunta 2

Finalizado

Puntúa 1,70 sobre 2,00

Ą, Resolver las ecuaciones del movimiento del sistema de $\overline{osciladores}$ a $\overline{coplados}$ mostrado en la figura. Las condiciones iniciales son: $x_3^0=$

$$x_1^0 = x_2^0 = 0$$
 , $v_1^0 = v_2^0 = v_3^0 = 0$

Utilizar $T=2\pi\sqrt{rac{m}{k}}$ como unidad de tiempo y A como unidad de longitud.

- 1. Presentar la subrutina (procedimiento) que implementa el algoritmo para encontrar la posición y la velocidad en un instante de tiempo particular
- 2. Presentar gráficos con la evolución temporal de x_3 y $\dot{x_3}$ en función del tiempo.

void eulerm (double & x1, double & v1, double & x2, double & v2, double & x3, double & v3, double & t)

double a1, a2, a3;

x1 = x1 + v1 * dt;

x2 = x2 + v2*dt;

a1 = -2w0*w0*x1+w0*w0*x2;x2 = x3+v3*dt;

v1 = v1 + a1*dt;

 $a2 = wo^*wo^*x1 - 2^*wo^*wo^*x2 + wo^*wo^*x3;$ v2 = v2 + a2*dt;

a3 = 0.5*wo*wo*x2-0.5*wo*wo*x3;

v3 = v3 + a3 * dt;

Comentario:

Punto 1: 1.0

Punto 2: 0.7

Leyenda incorrecta.

Unidad de velocidad incorrecta

Pregunta 3

Finalizado

Puntúa 0,10 sobre 2,00

Utilizar el método del disparo para encontrar el potencial entre dos esferas concéntricas de radio 1 y 4 cm. La esfera interna se encuentra a 50 V y la externa se encuentra a un voltaje \$V_f\$. No existe presencia de cargas entre las esferas, por lo tanto el potencial cumple con la ecuación.

$$\frac{d^2\phi}{dr^2} + \frac{2}{r}\frac{d\phi}{dr} = 0$$

- 1. Presentar la parte del código que resuelve la ecuación diferencial en cada iteración del método.
- 2. Presentar los valores del potencial en \$r=2cm\$ para los siguientes valores de \$V_f\$: 100, 120, 130, 140 y 150 V.

//funcion para encontrar la raiz

double fa(double uo, double a)

double x,dx,f;

n=no;

for (int i = 0; i < N; i++) {

eulercromer(u,v); f=u; return f;

//busqueda de la solucion

h=0.001; a=0.1; do{//Algoritmo de Newton Raphson para la raíz

```
} while (abs(u1)>0.000001 and c<100);
print(file,a,1);
u1=fa(0,a);
u2=fa(0,a+h);
a=a-h*u1/(u2-u1);
                                                                                                                                  2
```

Comentario: Punto 1: 0.1 eulercromer?

Punto 2: 0.0

