1. Superconductivity

Empirical Values (Transition Width T):

2.55, 5.44, 6.30, 6.98

Simulated Coherence S(t) (Hypothetical for demonstration):

0.91, 0.74, 0.68, 0.62

Step 1: Normalize Both Sets (Min-Max)

Let

- min_emp = 2.55
- max_emp = 6.98
- min_sim = 0.62
- max_sim = 0.91

Normalized values:

Empirical (T normalized):

 $T_1 = (2.55 - 2.55)/(6.98 - 2.55) = 0.00$

 $T_2 = (5.44 - 2.55)/(6.98 - 2.55) \approx 0.650$

 $T_3 = (6.30 - 2.55)/(6.98 - 2.55) \approx 0.842$

 $T_4 = (6.98 - 2.55)/(6.98 - 2.55) = 1.00$

Simulated (S_normalized):

 $S_1 = (0.91 - 0.62)/(0.91 - 0.62) = 1.00$

 $S_2 = (0.74 - 0.62)/(0.91 - 0.62) \approx 0.414$

 $S_3 = (0.68 - 0.62)/(0.91 - 0.62) \approx 0.207$

 $S_4 = (0.62 - 0.62)/(0.91 - 0.62) = 0.00$

Step 2: Mean Squared Error (MSE)

MSE =
$$(1/n) \times \Sigma (T_i - S_i)^2$$

= $(1/4) \times [(0.00 - 1.00)^2 + (0.650 - 0.414)^2 + (0.842 - 0.207)^2 + (1.00 - 0.00)^2]$
 $\approx (1/4) \times [1.00 + 0.056 + 0.402 + 1.00]$
 $\approx (1/4) \times 2.458 \approx 0.615$

Step 3: Pearson Correlation Coefficient (r)

```
Let T = [0.00, 0.650, 0.842, 1.00],
S = [1.00, 0.414, 0.207, 0.00]
```

Compute means:

$$\mu\Box$$
 = (0.00 + 0.650 + 0.842 + 1.00)/4 ≈ 0.623
 $\mu\Box$ = (1.00 + 0.414 + 0.207 + 0.00)/4 ≈ 0.405

Compute numerator:

$$\begin{split} & \Sigma[(\mathsf{T}_i - \mu \Box)(\mathsf{S}_i - \mu \Box)] \approx (-0.623)(0.595) + (0.027)(0.009) + (0.219)(-0.198) + (0.377)(-0.405) \\ & \approx -0.370 + 0.0002 - 0.043 - 0.153 \approx \textbf{-0.566} \end{split}$$

Compute denominators:

$$\sigma \square \approx \sqrt{\Sigma (T_i - \mu \square)^2} \approx \sqrt{0.655} \approx 0.809$$

 $\sigma \square \approx \sqrt{\Sigma (S_i - \mu \square)^2} \approx \sqrt{0.567} \approx 0.753$

Then:

$$r = -0.566 / (0.809 \times 0.753) \approx -0.937$$

2. ECM in Morphogenesis

Empirical Migration Speeds (µm/hr):

12, 8, 7, 15

Simulated Values (Migration Index):

11.9, 8.1, 7.3, 14.7

MSE Calculation

MSE =
$$(1/4) \times [(12-11.9)^2 + (8-8.1)^2 + (7-7.3)^2 + (15-14.7)^2]$$

= $(1/4) \times [0.01 + 0.01 + 0.09 + 0.09]$
= $0.0025 \times 4 = 0.0025$

Pearson r Calculation

Very close alignment, both in magnitude and trend. Calculated:

 $r \approx 0.997$

3. Artificial Neural Networks (Iris Dataset)

Empirical Accuracy Over Epochs (10-sample)

33%, 45%, 55%, 65%, 75%, 82%, 88%, 92%, 95%, 97%

Simulated Accuracy

32%, 44%, 54%, 64%, 74%, 81%, 87%, 91%, 94%, 96%

MSE Calculation

MSE =
$$(1/10) \times \Sigma (Emp_i - Sim_i)^2$$

= Average of differences:
 $(1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2) / 10 = 10 / 10 = 1.0$

Expressed in decimal format:

$$MSE = (1/10) \times (0.01 + 0.01 + ...) = 0.01$$

Pearson Correlation Coefficient

High linearity and parallelism:

 $r \approx 0.998$

4. Market Volatility

Empirical EMV Values

11.30, 9.46, 10.99, 9.27, 9.84, 8.03, 9.75

Simulated Values (Normalized Volatility):

11.10, 9.62, 10.82, 9.13, 9.94, 8.11, 9.64

MSE Calculation

MSE =
$$(1/7) \times \Sigma (\text{Emp}_i - \text{Sim}_i)^2$$

= $(1/7) \times [(0.2^2 + 0.16^2 + 0.17^2 + 0.14^2 + 0.10^2 + 0.08^2 + 0.11^2)]$
= $(1/7) \times (0.04 + 0.026 + 0.029 + 0.020 + 0.010 + 0.006 + 0.012)$
 $\approx (1/7) \times 0.143 \approx 0.0204$

Pearson r Calculation

Directionality and magnitude match well:

 $r \approx 0.969$