

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Introduction to Data Mining

Lecture10 Adaboost

Jun Huang

Anhui University of Technology

Spring 2018

huangjun_cs@163.com

How to improve the generalization ability of machine learning learners?

Introduction to Data Mining

Jun Huang

Ensemble

Methods Bagging

Boosting Random Forest

- Ensemble learning
- A machine learning paradigm where multiple learners are used to solve the problem
- The generalization ability of the ensemble is usually significantly better than that of an individual learner
- Boosting is one of the most important families of ensemble methods

Ensemble Methods:Increasing the Accuracy Bagging and Boosting

Introduction to Data Mining

Jun Huang

Ensemble

Methods Bagging

Boosting

Adaboost

Random Forest

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, $M_1, M_2, ..., M_k$, with the aim of creating an improved model M^*
- Popular ensemble methods
 - Bagging
 - Boosting

Bagging: Bootstrap Aggregation

Introduction to Data Mining

Jun Huang

Ensemble

Methods

Boosting Random Forest

Adaboost

Analogy: Diagnosis based on multiple doctors' majority vote

- Training
 - Give a data set $\mathcal D$ of N samples, at each iteration i, a training set $\mathcal D_i$ is sampled with replacement from $\mathcal D$
 - ullet A classifier model M_i is learned for each training set \mathcal{D}_i
- Classification: classify an unknown data sample X
 - Each classifier M_i returns its class prediction
 - \bullet The bagged classifier M^* counts the votes and assigns the class with the most votes to X

Bagging: Bootstrap Aggregation

Introduction to Data Mining

Jun Huang

Ensemble

Methods

Boosting Random Forest

Adaboost

• $M^*(x) = maxcount_t M_t(x)$

Bagging: Bootstrap Aggregation

Introduction to Data Mining

Jun Huang

Ensemble

Methods

Boosting

Random Forest

- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy
 - \bullet Often significant better than a single classifier derived from ${\cal D}$
 - For noise data: not considerably worse, more robust
 - Proved improved accuracy in prediction

Exercise

Introduction to Data Mining

Jun Huang

0.1 Х

0.3 0.4-1

Following is a data set to construct a bagging classifier

1

0.2

1

-1

0.7

0.6

8.0 -1 1

0.9

1.0

Ensemble Methods

Bagging

Boosting Random Forest

Adaboost

Examples chosen for training in each round are shown below:

Х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
У	1	1	1	1	-1	-1	-1	-1	-1	- 1
Classifier: ① $x \le 0.35 - y = 1$, ② $x > 0.35 - y = -1$										
Х	0.1	0.2	0.3	0.5	0.5	0.8	0.9	1	1	1
у	1	1	1	-1	-1	1	1	1	1	1
Classifier: ① $0.4 <= x <= 0.55 -> y=-1$, ② $x>0.55 -> y=1$, ③ $x<0.4 -> y=1$										
Х	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	0.8	0.9
У	1	1	1	-1	-1	-1	-1	-1	1	1
Cla	Classifier: ① $x \le 0.35 - y = 1$ ② $0.35 \le x \le 0.75 - y = 1$ ③ $x > 0.75 - y = 1$									

0.5

-1

Please predict the class label for x = 0.38?

Introduction to Data Mining

Jun Huang

Ensemble Methods Bagging

Boosting

Random Forest

- Analogy: Consult several doctors, based on a combination of weighted diagnoses - weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier M_{i+1} pay more attention to the training tuples that were misclassified by M_i
 - ullet A series of k classifiers are iteratively learned
 - \bullet The final M^* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy

Introduction to Data Mining

Jun Huang

Ensemble Methods

Bagging Boosting

Random Forest

•
$$M^*(x) = \operatorname{argmax}_{M_c} \sum_{t}^{k} w_t M_t(x)$$

Introduction to Data Mining

Jun Huang

Ensemble Methods

Boosting

Random Forest

- The boosting algorithm can be extended for the prediction of continuous values
- Comparing with bagging: boosting tends to achieve greater accuracy, but it also risks overfitting the model to the misclassified data

Set of weighted instances adjust weights Classifier Mt

Bagging vs. Boosting

Introduction to Data Mining

Jun Huang

Ensemble Methods

Bagging Boosting

Random Forest

Adaboost

Model training:

- Bagging: random sampling, independent classifiers
- ullet Boosting: subsequent classifier M_{i+1} pay more attention to the training tuples that were misclassified by M_i
- Model usage:
 - Bagging: equal weight
 - Boosting: different weights assigned

Introduction to Data Mining

Jun Huang

Ensemble Methods

Bagging

Random Forest

Adaboost

Significant advantageous:

- Solid theoretical foundation
- Very accurate prediction
- Very simple ("just 10 lines of code" [R. Schapire])
- Wide and successful applications
-
- R. Schapire and Y. Freund won the 2003 Godel Prize (one of the most prestigious awards in theoretical computer science)
 - Prize winning paper (which introduced AdaBoost): "A
 decision theoretic generalization of on-line learning and an
 application to Boosting, "Journal of Computer and System
 Sciences, 1997, 55: 119-139.

Random Forest

Tree bagging

Introduction to Data Mining

Jun Huang

Ensemble Methods Bagging Boosting

Random Forest

- Given a training set $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$, $x_i \in \mathbb{R}^d$, and y_i is the corresponding class label.
- The procedures of Tree bagging is summarized as following:

 - Sample, with replacement, n training examples from \mathcal{D} , call $\mathcal{D}_b = \{x_i, y_i\}_{i=1}^n$;
 - **3** Train a classification or regression tree f_b on \mathcal{D}_b ;
 - End
- \bullet Predictions for unseen samples x' can be made by taking the majority vote in the case of classification trees.
- ullet or by averaging the predictions from all the individual regression trees on x'

$$\hat{f} = \frac{1}{B} f_b(x')$$

Random Forest

Introduction to Data Mining

Jun Huang

Ensemble Methods Bagging Boosting

Random Forest

- Random forests differ in only one way from Tree Bagging
 - They use a modified tree learning algorithm that selects, at each candidate split in the learning process, a random subset of the features.

 - Sample, with replacement, n training examples with p features from \mathcal{D} , call $\mathcal{D}_b = \{x_i, y_i\}_{i=1}^n, x_i \in \mathbb{R}^p$;
 - **3** Train a classification or regression tree f_b on \mathcal{D}_b ;
 - End
- Typically, for a classification problem with d features, \sqrt{d} (rounded down) features are used in each split.
- For regression problems the inventors recommend d/3 (rounded down) with a minimum node size of 5 as the default. (The Elements of Statistical Learning, 2nd ed.)

Random Forest

Introduction to Data Mining

Jun Huang

Ensemble Methods Bagging Boosting

Random Forest

- Decision trees are a popular method for various machine learning tasks. Tree learning comes closest to meeting the requirements for serving as an off-the-shelf procedure for data mining
- It is invariant under scaling and various other transformations of feature values, is robust to inclusion of irrelevant features
- Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks
- Random decision forests correct for decision trees' habit of overfitting to their training set

A formal decription of Boosting

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example Error Bound Overfitting Conclusion Reference

- given training set $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$
- $y_i \in \{0,1\}$ correct label of instance $\mathbf{x}_i \in \mathcal{X}$
- for t = 1, ..., T
 - construct distribution \mathcal{D}_t on $\{1,...,m\}$
 - find weak classifier

$$h_t: \mathcal{X} \to \{-1, +1\}$$

ullet with samll error ϵ_t on \mathcal{D}_t

$$\epsilon_t = \mathsf{Pr}_{i \sim \mathcal{D}_t}[h_t(\mathbf{x}_i) \neq y_i]$$

ullet output final classifier $H_{ extsf{final}}$

AdaBoost

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example Error Bound Overfitting Conclusion • constructing \mathcal{D}_t :

•
$$\mathcal{D}_1(i) = \frac{1}{m}$$

• given \mathcal{D}_t and h_t :

$$\begin{split} \mathcal{D}_{t+1}(i) &= & \frac{\mathcal{D}_{t}(i)}{Z_{t}} \times \left\{ \begin{array}{l} e^{-\alpha_{t}}, \text{ if } y_{i} = h_{t}(\mathbf{x}_{i}) \\ e^{-\alpha_{t}}, \text{ if } y_{i} \neq h_{t}(\mathbf{x}_{i}) \end{array} \right. \\ &= & \frac{\mathcal{D}_{t}(i)}{Z_{t}} e^{-\alpha_{t}y_{i}h_{t}(\mathbf{x}_{i})} \end{aligned}$$

where

$$Z_t = \text{normalization constant}$$
 $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$

final classifier

$$H_{\mathsf{final}}(\mathbf{x}) = \mathsf{sign}\left(\sum_t lpha_t h_t(\mathbf{x})
ight)$$

Adaboost (Adaptive Boost) Algorithm

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example Error Bound Overfitting Conclusion Reference

- **1 Input**: Training set $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\}$, , T rounds, base learner \mathcal{L}
- **Q** Output: $H_{\text{final}}(\mathbf{x}) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$
- **3** $\mathcal{D}_1(i) = \frac{1}{m}, 1 \le i \le m$
- **4** for t = 1, ..., T
- $\bullet \quad \epsilon_t = \mathsf{Pr}_{i \sim \mathcal{D}_t}[h_t(\mathbf{x}_i) \neq y_i]$
- \bullet if $\epsilon_t > 0.5$, then break
- 9

$$\mathcal{D}_{t+1}(i) = \frac{\mathcal{D}_t(i)}{Z_t} \times \left\{ \begin{array}{l} e^{-\alpha_t}, \text{ if } y_i = h_t(\mathbf{x}_i) \\ e^{-\alpha_t}, \text{ if } y_i \neq h_t(\mathbf{x}_i) \end{array} \right. = \frac{\mathcal{D}_t(i)}{Z_t} e^{-\alpha_t y_i h_t(\mathbf{x}_i)}$$

end

Toy Example

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example

Error Bound Overfitting Conclusion Reference • weak classifiers = vertical or horizontal half-planes

Round1

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example

Error Bound Overfitting Conclusion Reference

Round2

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example

Error Bound

Overfitting Conclusion Reference

Round3

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example

Error Bound Overfitting Conclusion Reference + + - + - + - - + - - -

$$\epsilon_3 = 0.14$$

 $\alpha_3 = 0.92$

Final Classifier

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

luaboos

Toy Example Error Bound

Overfitting Conclusion Reference $H_{\text{final}} = \text{sign} \left(0.42 \right) + 0.65 + 0.92$

Analyzing the training error

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Tov Example

Error Bound

Overfitting

Conclusion

Theorem:

- write ϵ_t as $\frac{1}{2} \gamma_t$
- then

$$\begin{array}{ll} \operatorname{training\ error}(H_{\mathrm{final}}) & \leq & \prod_t \left[2 \sqrt{\epsilon_t (1 - \epsilon_t)} \right] \\ \\ & = & \prod_t \sqrt{1 - 4 \gamma_t^2} \\ \\ & \leq & \exp \left(-2 \sum_t \gamma_t^2 \right) \end{array}$$

- so, if $\forall t : \gamma_t \geq \gamma > 0$, then training error $(H_{\text{final}}) \leq e^{-2\gamma^2 T}$
- AdaBoost is adaptive:
 - ullet does not need to know γ or T apriori
 - can exploit $\gamma_t \gg \gamma$

Proof

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example

Overfitting

Conclusion Reference

$$\bullet$$
 Let $\mathit{f}(\mathbf{x}) = \sum_t \alpha_t h_t(\mathbf{x}) \Rightarrow \mathit{H}_{\mathsf{final}}(\mathbf{x}) = \mathsf{sign}(\mathit{f}(\mathbf{x}))$

• Step 1: unwrapping recurrence:

$$\mathcal{D}_{\mathsf{final}}(i) = \frac{1}{m} \frac{\exp(-y_i \sum_t \alpha_t h_t(\mathbf{x}_i))}{\prod_t Z_t}$$
$$= \frac{1}{m} \frac{\exp(-y_i f(\mathbf{x}_i))}{\prod_t Z_t}$$

Proof (cont.)

Introduction to Data Mining

Jun Huang

Ensemble Methods

ivietnoas

Adaboost

Error Bound

Overfitting Conclusion Reference

- Step 2: training error $(H_{\mathsf{final}}) \leq \prod_t Z_t$
- proof:

$$\begin{array}{lll} \operatorname{training\ error}(H_{\operatorname{final}}) & = & \frac{1}{m} \sum_{i} \left\{ \begin{array}{l} 1, \ \text{if} \ y_{i} \neq H_{\operatorname{final}(\mathbf{x}_{i})} \\ 0, \ \text{else} \end{array} \right. \\ \\ & = & \frac{1}{m} \sum_{i} \left\{ \begin{array}{l} 1, \ \text{if} \ y_{i} f(\mathbf{x}_{i}) \leq 0 \\ 0, \ \text{else} \end{array} \right. \\ \\ & \leq & \frac{1}{m} \sum_{i} \exp(-y_{i} f(\mathbf{x}_{i})) \\ \\ & = & \sum_{i} \mathcal{D}_{\operatorname{final}}(i) \prod_{t} Z_{t} \\ \\ & = & \prod Z_{t} \end{array}$$

Proof (cont.)

Introduction to Data Mining

Jun Huang

Ensemble

Methods

Adaboost Toy Example

Error Bound

Overfitting Conclusion

• Step 3:
$$Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$$

Proof:

$$Z_t = \sum_{i} \mathcal{D}_t(i) \exp(-\alpha_t y_i h_t(\mathbf{x}_t))$$

$$= \sum_{i: y_i \neq h_t(\mathbf{x}_t)} \mathcal{D}_t(i) e^{\alpha_t} + \sum_{i: y_i = h_t(\mathbf{x}_t)} \mathcal{D}_t(i) e^{\alpha_t}$$

$$= \epsilon_t e^{\alpha_t} + (1 - \epsilon_t) e^{-\alpha_t}$$

$$= 2\sqrt{\epsilon_t (1 - \epsilon_t)}$$

How Will Test Error Behave? (A first Guess)

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example Error Bound

Overfitting

• Expect:

- training error to continue to drop (or reach zero)
- test error to increase when Hfinal becomes "too complex"
 - "Occam' s razor"
 - overfitting
 - hard to know when to stop training

Actual Typical Run

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example Error Bound

Overfitting

Reference

- test error does not increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- test error continues to drop even after training error is zero!

	# rounds						
	5	100	1000				
train error	0.0	0.0	0.0				
test error	8.4	3.3	3.1				

Overfitting

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example Error Bound

Overfitting

Conclusion Reference

Overfitting:

- the data size is too small
- the base learner is too weak

(boosting "stumps" on heart-disease dataset)

Conclusions

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example Error Bound Overfitting

Conclusion

Reference

 Boosting is a practical tool for classification and other learning problems

- grounded in rich theory
- performs well experimentally
- often (but not always!) resistant to overfitting
- many applications and extensions
- Many ways to think about boosting
 - none is entirely satisfactory by itself, but each useful in its own way
 - considerable room for further theoretical and experimental work

References

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example Error Bound Overfitting

Reference

- Freund "An adaptive version of the boost by majority algorithm"
- Freund "Experiments with a new boosting algorithm"
- Freund, Schapire "A decision-theoretic generalization of on-line learning and an application to boosting"
- Friedman, Hastie, etc "Additive Logistic Regression: A Statistical View of Boosting"
- Jin, Liu, etc (CMU) "A New Boosting Algorithm Using Input-Dependent Regularizer"
- Li, Zhang, etc "Floatboost Learning for Classification"
- Opitz, Maclin "Popular Ensemble Methods: An Empirical Study"
- Ratsch, Warmuth "Efficient Margin Maximization with Boosting"

References

Introduction to Data Mining

Jun Huang

Ensemble Methods

Adaboost

Toy Example Error Bound Overfitting Conclusion

Reference

- Schapire, Freund, etc "Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods"
- Schapire, Singer "Improved Boosting Algorithms Using Confidence-Weighted Predictions"
- Schapire "The Boosting Approach to Machine Learning: An overview"
- Zhang, Li, etc "Multi-view Face Detection with Floatboost"