Guía Álgebra - Práctica 1

Lorenzo Durante

1. Introducción

Esta es la resolución de la primera guía de ejercicios de Álgebra 1 para Ciencias de la Computación en la UBA.

2. Conjuntos

- 2.1. Dado el conjunto $A = \{1, 2, 3\}$, determinar cuáles de las siguientes afirmaciones son verdaderas.
 - I) $1 \in A$
 - II) $\{1\} \subseteq A$
 - III) $\{2,1\} \subseteq A$
 - IV) $\{1,3\} \in A$
 - v) $\{2\} \in A$

Resolución

- I) $1 \in A$: el número 1 es un elemento que pertenece al conjunto A.
- II) $\{1\} \subseteq A$: el conjunto $\{1\}$ está contenido en A, ya que todos sus elementos pertenecen a A.
- III) $\{2,1\} \subseteq A$: el conjunto $\{2,1\}$ es un subconjunto de A, pues tanto 1 como 2 pertenecen a A.
- IV) $\{1,3\} \notin A$: el conjunto $\{1,3\}$ no es un elemento de A, es decir, A no contiene a $\{1,3\}$ como uno de sus elementos.
- v) $\{2\} \notin A$: el elemento $\{2\}$ no pertenece al conjunto A.
- **2.2.** Dado el conjunto $A = \{1, 2, \{3\}, \{1, 2\}\}$, determinar cuáles de las siguientes afirmaciones son verdaderas.

I) $3 \in A$

v) $\{1, 2\} \in A$

II) $\{3\} \subseteq A$

VI) $\{1,2\} \subseteq A$

III) $\{3\} \in A$

VII) $\{\{1,2\}\}\subseteq A$

IV) $\{\{3\}\}\subseteq A$

VIII) $\{\{1,2\},3\} \subseteq A$

ix) $\emptyset \in A$

 $XI) A \in A$

 $X) \emptyset \subseteq A$

XII) $A \subseteq A$

Resolución

1) $3 \notin A$: es falso ya que el número 3 no es un elemento del conjunto A.

II) $\{3\} \not\subseteq A$: es falso ya que el elemento 3 no está en A.

III) $\{3\} \in A$: es verdadero porque el elemento $\{3\}$ pertenece al conjunto A.

IV) $\{\{3\}\}\subseteq A$: es verdadero ya que el único elemento de este conjunto es $\{3\}$ y este pertenece a A.

v) $\{1,2\} \in A$: verdadero, ya que $\{1,2\}$ pertenece a A.

VI) $\{1,2\} \subseteq A$: verdadero porque 1 y 2 pertenecen a A.

VII) $\{\{1,2\}\}\subseteq A$: verdadero porque $\{1,2\}$ pertenece a A.

VIII) $\{\{1,2\},3\} \not\subseteq A$: falso, ya que 3 no pertenece a A.

IX) $\emptyset \in A$: falso, ya que \emptyset no está como elemento dentro de A.

x) $\emptyset \subseteq A$: verdadero, ya que el conjunto vacío es subconjunto de todos los conjuntos.

XI) $A \in A$: falso, ya que A no es un elemento de sí mismo.

XII) $A \subseteq A$: verdadero, ya que todo conjunto es subconjunto de sí mismo.

2.3. Determinar si $A \subseteq B$ en cada uno de los siguientes casos.

I) $A = \{1, 2, 3\}, B = \{5, 4, 3, 2, 1\}$

II) $A = \{1, 2, 3\}, \quad B = \{1, 2, \{3\}, -3\}$

III) $A = \{x \in \mathbb{R} \mid 2 < |x| < 3\}, \quad B = \{x \in \mathbb{R} \mid x^2 < 3\}$

 ${\rm iv)}\ A=\{\emptyset\},\quad B=\emptyset$

Resolución

- I) $A \subseteq B$
- II) $A \not\subseteq B$
- III) $A \not\subseteq B$

$$A = [-3, -2] \cup (2, 3)$$

$$B=(-\sqrt{3},\sqrt{3})$$

Entonces, $A \nsubseteq B$

Por ejemplo, $-2.5 \in A$ pero $-2.5 \notin B$.

IV) $A \not\subseteq B$

2.4. Dados los subconjuntos

$$A = \{1, -2, 7, 3\},$$

$$B = \{1, \{3\}, 10\},$$

$$C = \{-2, \{1, 2, 3\}, 3\}$$

del conjunto referencial

$$V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\},\$$

hallar

- I) $A \cap (B \triangle C)$
- II) $(A \cap B) \triangle (A \cap C)$
- III) $A^c \cap B^c \cap C^c$

Resolución

I) $A \cap (B \triangle C) = \{1, -2, 3\}$

Pienso el ejercicio por partes: primero analizo $B\triangle C$. La diferencia simétrica contiene lo que está en uno u otro, pero no en ambos.

$$B = \{1, \{3\}, 10\}$$

$$C = \{-2, \{1, 2, 3\}, 3\}$$

$$B\triangle C = \{1, \{3\}, 10, -2, \{1, 2, 3\}, 3\}$$

Sea $D = B \triangle C$, evaluemos ahora la intersección entre A y D.

$$A = \{1, -2, 7, 3\},$$

$$D = \{1, \{3\}, 10, -2, \{1, 2, 3\}, 3\}$$

$$A \cap D = \{1, -2, 3\}$$

Entonces, el resultado de la intersección es $\{1, -2, 3\}$.

II)
$$(A \cap B) \triangle (A \cap C) = \{1, -2, 3\}$$

Primero analizo la primera intersección:

$$A = \{1, -2, 7, 3\}$$
$$B = \{1, \{3\}, 10\}$$
$$A \cap B = \{1\}$$

Ahora analizo la segunda intersección:

$$A = \{1, -2, 7, 3\}$$

$$C = \{-2, \{1, 2, 3\}, 3\}$$

$$A \cap C = \{-2, 3\}$$

Ahora podemos calcular la diferencia simétrica:

$$A \cap B = \{1\}$$
$$A \cap C = \{-2, 3\}$$
$$(A \cap B) \triangle (A \cap C) = \{1, -2, 3\}$$

III)
$$A^c \cap B^c \cap C^c = \emptyset$$

El complemento se toma respecto al conjunto referencial V.

Primer complemento:

$$A = \{1, -2, 7, 3\}$$

$$V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\}$$

$$A^{c} = \{\{3\}, 10, \{1, 2, 3\}\}$$

Segundo complemento:

$$B = \{1, \{3\}, 10\}$$

$$V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\}$$

$$B^{c} = \{-2, 7, \{1, 2, 3\}, 3\}$$

Tercer complemento:

$$C = \{-2, \{1, 2, 3\}, 3\}$$

$$V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\}$$

$$C^{c} = \{1, \{3\}, 7, 10\}$$

Intersección final:

$$A^c = \{\{3\}, 10, \{1, 2, 3\}\}$$

$$B^c = \{-2, 7, \{1, 2, 3\}, 3\}$$

$$C^c = \{1, \{3\}, 7, 10\}$$

$$A^c \cap B^c \cap C^c = \emptyset$$

2.5. Dados subconjuntos A,B,C de un conjunto referencial V, describir $(A \cup B \cup C)^c$ en términos de intersecciones y complementos, y $(A \cap B \cap C)^c$ en términos de uniones y complementos.

Resolución

Resolvemos con leyes de Morgan:

$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
$$(A \cap B \cap C)^c = A^c \cup B^c \cup C^c$$

2.6. Sean A, B y C conjuntos. Representar en un diagrama de Venn

I)
$$(A \cup B^c) \cap C$$

II)
$$A\triangle(B\cup C)$$

III)
$$A \cup (B \triangle C)$$

Completado en hoja

2.7. Encontrar fórmulas que describan las partes rayadas de los siguientes diagramas de Venn, utilizando únicamente intersecciones, uniones y complementos.

Resolución

I)
$$(B^c \cap A) \cup (A^c \cap C \cap B)$$

II)
$$(A \cap B^c \cap C^c) \cup (C \cap B^c \cap C^c)$$

III)
$$(C^c \cap B \cap A) \cup (A^c \cap B \cap C) \cup (B^c \cap A \cap C)$$

ii)

Figura 1: Diagramas de Venn

2.8. Hallar el conjunto P(A) de partes de A en los casos

I)
$$A = \{1\}$$

II)
$$A = \{a, b\}$$

III)
$$A = \{1, \{1, 2\}, 3\}$$

Resolución

I)
$$P(A) = \{\emptyset, \{1\}\}\$$

II)
$$P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

III)
$$P(A) = \{\emptyset, \{1\}, \{\{1,2\}\}, \{3\}, \{1,\{1,2\}\}, \{1,3\}, \{\{1,2\},3\}, \{1,\{1,2\},3\}\}$$

2.9. Sean A y B conjuntos. Probar que $P(A) \subseteq P(B) \Leftrightarrow A \subseteq B$

2.10. Sean p,q proposiciones. Verificar que las siguientes expresiones tienen la misma tabla de verdad para concluir que son equivalentes.

$$\text{I)} \ p \Rightarrow q, \quad \sim q \Rightarrow \sim p, \quad \sim p \vee q \quad \text{ y } \quad \sim (p \wedge \sim q).$$

Esto nos dice que podemos demostrar una afirmación de la forma $p \Rightarrow q$ probando en su lugar $\sim q \Rightarrow \sim p$ (es decir demostrando el contrarrecíproco), o probando $\sim (p \land \sim q)$ (esto es una demostración por reducción al absurdo).

II)
$$\sim (p \Rightarrow q)$$
 y $p \land \sim q$.

Resolución

1)

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

p	q	$\neg q \rightarrow \neg p$
V	V	V
V	F	V
F	V	F
F	F	V

p	q	$\neg pq$
V	V	V
V	F	F
F	V	V
F	F	V

	p	q	$\neg (p \land \neg q)$
	V	V	V
İ	V	F	F
İ	F	V	V
	F	F	V

Todas las tablas tienen la misma tabla de verdad por ende, son equivalentes.

II)

p	q	$\neg(p \to q)$
V	V	F
V	F	V
F	V	F
F	F	F

p	q	$p \land \neg q$
V	V	F
V	F	V
F	V	F
F	F	F

Es equivalente.

2.11. Hallar contraejemplos para mostrar que las siguientes proposiciones son falsas.

- I) $\forall a \in \mathbb{N}, \ \frac{a-1}{a}$ no es un número entero.
- II) $\forall x, y \in \mathbb{R} \text{ con } x, y \text{ positivos, } \sqrt{x+y} = \sqrt{x} + \sqrt{y}.$
- III) $\forall x \in \mathbb{R}, \ x^2 > 4 \Rightarrow x > 2.$

Resolución

I