Theoretische Informatik HS23

Nicolas Wehrli

Übungsstunde 07

10. November 2023

ETH Zürich nwehrl@ethz.ch

Heute

1 Feedback zur Serie

2 Reduktion

3 How To Reduktion

Feedback zur Serie

Feedback

- $f: \mathcal{P}(\mathbb{Q}^+) \to [0,1]$ mit

$$f(A) = \sum_{q_i \in A} \frac{1}{2^i},$$

wobei q_i das *i*-te Element von \mathbb{Q}^+ ist.

Da

$$f(\{q_1\}) = \frac{1}{2} = \sum_{i=2}^{\infty} \frac{1}{2^i} = f(\mathbb{Q}^+ \setminus \{q_1\})$$

ist *f* nicht injektiv.

- A und B überabzählbar \implies Existiert Bijektion zw. A und B

Klassifizierung verschiedener Sprachen

Begrifflichkeiten

Für eine Sprache *L* gilt folgendes

$$L$$
 regulär $\iff L \in \mathcal{L}_{EA} \iff \exists EA \ A \ mit \ L(A) = L$
 L rekursiv $\iff L \in \mathcal{L}_{R} \iff \exists Alg. \ A \ mit \ L(A) = L$
 L rekursiv aufzählbar $\iff L \in \mathcal{L}_{RE} \iff \exists TM \ M. \ L(M) = L$

"Algorithmus" = TM, die immer hält.

L rekursiv = L entscheidbar

L rekursiv aufzählbar = L erkennbar

Reduktion

Things

Reduktionen sind klassische Aufgaben an dem Endterm. Ein bisschen wie Nichtregularitätsbeweise.

Ist aber auch nicht so schlimm.

R-Reduktion

Definition 5.3

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ zwei Sprachen. Wir sagen, dass L_1 auf L_2 rekursiv reduzierbar ist, $L_1 \leq_R L_2$, falls

$$\textit{L}_2 \in \mathcal{L}_R \implies \textit{L}_1 \in \mathcal{L}_R$$

Bemerkung:

Intuitiv bedeutet das " L_2 mindestens so schwer wie L_1 " (bzgl. algorithmischen Lösbarkeit).

7

EE-Reduktion

Definition 5.4

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ zwei Sprachen. Wir sagen, dass $\mathbf{L_1}$ auf $\mathbf{L_2}$ EE-reduzierbar ist, $\mathbf{L_1} \leq_{\mathsf{EE}} \mathbf{L_2}$, wenn eine TM M existiert, die eine Abbildung f_M : $\Sigma_1^* \to \Sigma_2^*$ mit der Eigenschaft

$$x \in L_1 \iff f_M(x) \in L_2$$

für alle $x \in \Sigma_1^*$ berechnet. Wir sagen auch, dass die TM M die Sprache L_1 auf die Sprache L_2 reduziert.

8

EE-Reduktion

Wir sagen, dass M eine Funktion $F: \Sigma^* \to \Gamma^*$ berechnet, falls für alle $x \in \Sigma^*$: $q_0 converge x |_{M}^* q_{\text{accept}} converge F(x)$.

Abbildung 1: Abbildung 5.7 vom Buch

Verhältnis von EE-Reduktion und R-Reduktion

Lemma 5.3

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ zwei Sprachen.

$$L_1 \leq_{\mathsf{EE}} L_2 \implies L_1 \leq_{\mathsf{R}} L_2$$

Beweis:

$$L_1 \leq_{\text{EE}} L_2 \implies \exists \text{TM } M. \ x \in L_1 \iff M(x) \in L_2$$

Wir zeigen nun $L_1 \leq_R L_2$, i.e. $L_2 \in \mathcal{L}_R \implies L_1 \in \mathcal{L}_R$.

Sei $L_2 \in \mathcal{L}_R$. Dann existiert ein Algorithmus A (TM, die immer hält), der L_2 entscheidet.

Verhältnis von EE-Reduktion und R-Reduktion

Wir konstruieren eine TM B (die immer hält) mit $L(B) = L_1$

Für eine Eingabe $x \in \Sigma_1^*$ arbeitet B wie folgt:

- (i) B simuliert die Arbeit von M auf x, bis auf dem Band das Wort M(x) steht.
- (ii) B simuliert die Arbeit von A auf M(x).

Wenn A das Wort M(x) akzeptiert, dann akzeptiert B das Wort x.

Wenn A das Wort M(x) verwirft, dann verwirft B das Wort x.

A hält immer $\implies B$ hält immer und somit gilt $L_1 \in \mathcal{L}_R$

L und L^{\complement}

Lemma 5.4

Sei Σ ein Alphabet. Für jede Sprache $L\subseteq \Sigma^*$ gilt:

$$L \leq_{\mathbf{R}} L^{\mathbf{C}}$$
 und $L^{\mathbf{C}} \leq_{\mathbf{R}} L$

Beweis:

Es reicht $L^{\complement} \leq_{\mathbb{R}} L$ zu zeigen, da $(L^{\complement})^{\complement} = L$ und somit dann $(L^{\complement})^{\complement} = L \leq_{\mathbb{R}} L^{\complement}$.

Sei M' ein Algorithmus für L, der immer hält ($L \in \mathcal{L}_R$). Dann beschreiben wir einen Algorithmus B, der L^{\complement} entscheidet.

B übernimmt die Eingaben und gibt sie an M' weiter und invertiert dann die Entscheidung von M'. Weil M' immer hält, hält auch B immer und wir haben offensichtlich L(B) = L.

Anwendung vom Lemma 5.4

Korollar 5.2

$$(L_{\mathrm{diag}})^{\complement} \notin \mathcal{L}_{\mathrm{R}}$$

Beweis:

Aus Lemma 5.4 haben wir $L_{\text{diag}} \leq_{\mathbb{R}} (L_{\text{diag}})^{\complement}$. Daraus folgt $L_{\text{diag}} \notin \mathcal{L}_{\mathbb{R}} \implies (L_{\text{diag}})^{\complement} \notin \mathcal{L}_{\mathbb{R}}$. Da $L_{\text{diag}} \notin \mathcal{L}_{\text{RE}}$ gilt auch $L_{\text{diag}} \notin \mathcal{L}_{\mathbb{R}}$. Folglich gilt $(L_{\text{diag}})^{\complement} \notin \mathcal{L}_{\mathbb{R}}$.

13

Beweise

$$L_H \leq_{\rm EE} L_U$$

wobei

$$L_H = \{ \operatorname{Kod}(M) \# w \mid M \text{ h\"alt auf } w \wedge w \in (\Sigma_{\operatorname{bool}})^* \}$$

und

$$L_U = \{ \operatorname{Kod}(M) \# w \mid M \text{ akzeptiert } w \wedge w \in (\Sigma_{\operatorname{bool}})^* \}$$

Wir wollen $L_H \leq_{\text{EE}} L_U$ zeigen.

Wir geben die Reduktion zuerst als Zeichnung an.

Abbildung 2: EE-Reduktion von L_H auf L_U

Wir definieren eine Funktion M(x) für ein $x \in \{0, 1, \#\}^*$, so dass

$$x \in L_H \iff M(x) \in L_U$$
 (1)

Falls x nicht die richtige Form hat, ist $M(x) = \lambda$, sonst ist M(x) = Kod(M') # w wobei M' gleich aufgebaut ist wie M, ausser dass alle Transitionen zu q_{reject} zu q_{accept} umgeleitet werden. Wir sehen, dass M' genau dann w akzeptiert, wenn M auf w hält.

Dieses M(x) übergeben wir dem Algorithmus für L_U .

Wir beweisen nun $x \in L_H \iff M(x) \in L_U$:

(i) $x \in L_H$ Dann ist x = Kod(M) # w von der richtigen Form, und M hält auf w. Das heisst die Simulation von M auf w endet entweder in q_{reject} oder in q_{accept} . Folglich wird M' w immer akzeptieren, da alle Transitionen zu q_{reject} zu q_{accept} umgeleitet wurden.

$$x \in L_H \implies M(x) \in L_U$$

(ii) $x \notin L_H$

Dann unterscheiden wir zwischen zwei Fällen:

(a) x hat nicht die richtige Form, i.e. $x \neq \text{Kod}(M) \# w$. Dann ist $M(x) = \lambda$ und da es keine Kodierung einer Turingmaschine M gibt, so dass $\text{Kod}(M) = \lambda$, gilt $\lambda \notin L_U$.

- (i) $x \in L_H$ done above.
- (ii) $x \notin L_H$
 - (a) **falsche Form** *done above.*
 - (b) x = Kod(M) # w hat die richtige Form. Dann haben wir M(x) = Kod(M') # w.

Da aber $x \notin L_H$, hält M nicht auf w. Da M nicht auf w hält, erreicht es nie q_{reject} oder q_{accept} in M und so wird w von M' nicht akzeptiert.

$$\implies M(x) \notin L_U$$

So haben wir mit diesen Fällen (a) und (b) $x \notin L_H \implies M(x) \notin L_U$ bewiesen. Aus indirekter Implikation folgt $M(x) \in L_U \implies x \in L_H$

Aus (i) und (ii) folgt

$$x \in L_H \iff M(x) \in L_U$$
 (1)

Somit ist die Reduktion korrekt.

19

Sei

$$L_{infinite} = \{Kod(M) \mid M \text{ h\"alt auf keiner Eingabe}\}$$

Zeige
$$(L_{infinite})^C \notin \mathcal{L}_R$$

Wir zeigen, dass $(L_{\text{infinite}})^{C} \notin \mathcal{L}_{R}$ mit einer geeigneten Reduktion.

Wir beweisen $L_H \leq_R (L_{\text{infinite}})^C$

Um dies zu zeigen nehmen wir an, dass wir einen Algorithmus A haben, der $(L_{\text{infinite}})^{C}$ entscheidet. Wir konstruieren einen Algorithmus B, der mit Hilfe von A, die Sprache L_{H} entscheidet.

Wir betrachten folgende Abbildung:

Abbildung 3: R-Reduktion von L_H auf $(L_{infinite})^C$

- I. Für eine Eingabe $x \in \{0, 1, \#\}^*$ berechnet das Teilprogramm C, ob x die richtige Form hat(i.e. ob x = Kod(M) # w für eine TM M).
- II. Falls nicht, verwirft *B* die Eingabe *x*.
- III. Ansonsten, konstruiert C eine Turingmaschine M', die Eingaben ignoriert und immer M auf w simuliert. Wir sehen, dass M' genau dann hält, wenn M auf w hält.
- IV. Folglich hält M' entweder für jede Eingabe (M hält auf w) oder für keine (M hält nicht auf w).
- V. Da A genau dann akzeptiert, wenn die Eingabe keine gültige Kodierung ist(ausgeschlossen, da C das herausfiltert) oder wenn die Eingabe $M(x) = \operatorname{Kod}(M')$ und M' für mindestens eine Eingabe hält, akzeptiert A M(x) genau dann, wenn $x = \operatorname{Kod}(M) \# w$ die richtige Form hat und M auf w hält.

Folglich gilt

$$x \in L_H \iff M(x) \in (L_{\text{infinite}})^C$$

$$\implies L_H \leq_R (L_{\text{infinite}})^C$$

Also folgt die Aussage

$$(L_{\text{infinite}})^C \in \mathcal{L}_R \implies L_H \in \mathcal{L}_R$$

Da wir $L_H \notin \mathcal{L}_R$ (**Satz 5.8**), folgt per indirekter Implikation:

$$(L_{\text{infinite}})^C \notin \mathcal{L}_R$$

How To Reduktion

 $L \in \mathcal{L}_{\mathbf{R}}$

Wir kennen zwei Methoden um dies zu beweisen:

- Wir finden eine Sprache $L' \in \mathcal{L}_R$ und zeigen $L \leq_R L'$. (Meistens ein wenig umständlich)
- Direkter Beweis: Eine TM (bzw. ein Algorithmus) A beschreiben, so dass L(A) = L und A immer terminiert.

Wir kennen hier auch 3 Arten:

- Folgt sofort aus $L \notin \mathcal{L}_{RE}$, da $\mathcal{L}_{R} \subset \mathcal{L}_{RE}$.
- Wir wählen eine Sprache L', so dass $L' \notin \mathcal{L}_R$ und beweisen $L' \leq_{R/EE} L$. Geeignete Sprachen als L' sind: L_{empty}^{\complement} , L_{diag}^{\complement} , L_H , L_U , $L_{H,\lambda}$. (Alle im Buch bewiesen)
- Satz von Rice

Anwendung von Satz von Rice

Für den **Satz von Rice**:

- Wir können mit diesem Satz nur $L \notin \mathcal{L}_R$ beweisen!
- Wir haben folgende Bedingungen:
 - i. $L \subseteq KodTM$
 - ii. $\exists \text{ TM } M: \text{Kod}(M) \in L$
 - iii. $\exists \text{ TM } M: \text{Kod}(M) \notin L$
 - iv. $\forall \text{ TM } M_1, M_2 : L(M_1) = L(M_2) \implies (\text{Kod}(M_1) \in L \iff \text{Kod}(M_2) \in L)$

Für den letzten Punkt (4) muss man überprüfen, ob in der Definition von $L = \{ \operatorname{Kod}(M) \mid M \text{ ist TM und ...} \}$ überall nur L(M) vorkommt und nirgends M direkt. Beziehungsweise reicht es, wenn man die Bedingung so umschreiben kann, dass sie nur noch durch L(M) beschrieben ist.

$L \in \mathcal{L}_{RE}$

Wir beschreiben eine TM M mit L(M) = L, die nicht immer halten muss.

Meistens muss die TM eine Eigenschaft, für alle möglichen Wörter prüfen. (Bsp: $Kod(M_1) \in L_H^{\complement}$: Wir gehen alle Wörter durch, um dasjenige zu finden, für das M_1 hält.)

Wir verwenden oft einen von den folgenden 2 Tricks, um dies zu tun:

Da es für jede NTM M', eine TM M gibt, so dass L(M') = L(M), können wir eine solche definieren, für die L(M') = L gilt.

Die andere Variante, ist die parallele Simulation von Wörtern, bei dem man das Diagonalisierungsverfahren aus dem Buch verwendet. (Bsp: Beweis $L_{\text{empty}} \in \mathcal{L}_{\text{RE}}$, S. 156 Buch)

Hier haben wir 2 mögliche (offizielle) Methoden:

- Diagonalisierungsargument mit Widerspruch, wie beim Beweis von $L_{\mathrm{diag}} \notin \mathcal{L}_{\mathrm{RE}}.$
- Widerspruchsbeweis mit der Aussage $L \in \mathcal{L}_{RE} \wedge L^{\complement} \in \mathcal{L}_{RE} \implies L \in \mathcal{L}_{R}$.

Inoffiziell könnten wir auch die EE-Reduktion verwenden, wird aber weder in der Vorlesung noch im Buch erwähnt.

EE- und R-Reduktionen: Tipps und Tricks

- Die vorgeschaltete TM *A* muss immer terminieren! I.e. sie muss ein Algorithmus sein.
- Die Eingabe sollte immer zuerst auf die Richtige Form überprüft werden! Auch im Korrektsheitsbeweis, sollte dieser Fall als erstes abgehandelt werden.
- Für Korrektheit müssen wir immer $x \in L_1 \iff A(x) \in L_2$ beweisen.
- Wir verwenden meistens folgende 2 Tricks:
 - i. Transitionen nach q_{accept} oder q_{reject} umleiten nach q_{reject}/q_{accept} oder einer **Endlosschleife**.
 - ii. TM *M'* konstruieren, die ihre Eingabe ignoriert und immer dasselbe tut (z.B. eine TM dessen Kodierung gegeben ist, auf ein fixes Wort simuliern).
- Die Kodierung einer TM generieren, dessen Sprache gewisse Eigenschaften hat(z.B. sie akzeptiert alle Eingaben, läuft immer unendlich etc.)