

Level:

Pokhara University

Everest Engineering College Final Assessment II

Fall - 2020

F.M. 100 Bachelor Program: BE(Cmp) P.M. 45

Time:3hrs

Subject: Electrical Engineering Materials (3rd Semester)

Attempt all the questions.

Faculty: Science & Technology

1	a) b)	Show that the difference in energy between any two consecutive energy levels of a free particle inside infinite potential well is inversely proportional to the square of well length. Silver has the FCC crystal structure. The atomic mass of silver is 107.87 g/mol and the radius of silver atom is 0.1444 nm. Calculate the lattice parameter, density, atomic concentration and atomic packing factor of silver.	7
2	a) b)	What are magnetic domains? Explain domain wall motion in a ferromagnetic material. Describe ionic conduction in electrolyte and show that ionic conduction in electrolyte depends on temperature.	8 7
3	a) b)	What is electronic polarization? Derive the mathematical relation showing the relation between electronic polarization and relative permittivity, using Clausius-Massotti equation. A parallel plate capacitor of area $20~\text{cm}^2$ and separation of 1mm. The space between plates is filled with Al_2O_3 . When potential difference of $10V$ is applied, calculate field strength and dipole moment induced in oxide layer. Assume relative permittivity of $Al_2O_3=8$	7

4	a) Why silicon is preferred for semiconducting materials than Germanium? Explain the Floating Zone process of crystal growth with necessary figure.	8
	b) A pn junction Semiconductor has resistivity of 5Ω -cm. If mobility of hole is $450 \text{ cm}^2 \text{ V}^{-1} \text{ S}^{-1}$ and electron mobility is three times the mobility of hole. At room temperature, find (i) Built in potential (ii) depletion width that lies in n-region and p-region and (iii) built in electric field at $x=0$ (Given, $n = 1.45 \times 10^{10} \text{ cm}^{-3}$ at $T=300 \text{ K}$, $\epsilon_r=11.9 \text{ for Si}$)	7
5	 a) What is minority carrier suppression? Prove electron concentration in n - type semiconductor is defined by impurity donor. b) In an n-type semiconductor, the Fermi level lies 0.4 eV below the conduction band. If the concentration of donor atoms is doubled find the new position of the Fermi level. Assume K_BT = 	7
	0.03 eV.	
6	a) What is diffusion? State and explain Fick's law. Derive Einstein's relation between diffusion coefficient and mobility of electrons.	9
	b) A magnetic field strength in copper is 10 6 ampere/ meter.If the magnetic susceptibility of copper is -0.8 ×10 -5 ,calculate the flux density and magnetization in copper.	6
7	Write short notes on: (Any two) a) Chzochralski process b) Compensation doping c) Wave particle Duality	2* 5= 10
	c) wave particle Duality	