- 1. V_{CC} =15 V, β_{Fn} =200, β_{Fp} =50, $|V_{BEon}|$ =0.7 V, $|V_{CEsat}|$ =0.2 V is given for the circuit in Figure below. Assume I_{C3} =0.22 mA and sinusoidal signals.
- a) Calculate the positive and negative limits of the output voltage for 1 k Ω and 200 Ω load resistance values when positive and negative voltages are applied at the input.
- **b)** How should the current I_{C_3} be chosen so that the output voltage swings equally on both sides for R_L =200 Ω ?
- c) Calculate the maximum power which can be delivered to the load before clipping occurs for $R_L=1$ $k\Omega$.
- **d)** Calculate the efficiency for the output devices only, for conditions given in c).
- **e)** Design a V_{BE} multiplier circuit which can replace the diodes D_1 and D_2 .

Solutions:

$$V_0 = -V_{CC} + V_{CESA+6} + V_{EBS} + V_{EB2}$$

= -15 + 0,2 + 0,7 + 0,7 = -13,4 V

c)
$$P_{Lmax} = \frac{(V_0^-)^2}{2.R_L} = \frac{(13,4)^2}{2.103} = 89.8 \text{ mW}$$

d)
$$P_{DC} = 2. V_{DC} I_{DC} = 2. V_{DC} \frac{V_0}{\pi . R_L} = \frac{2.15.13.4}{\pi . 103} = 128 \text{ mW}$$

$$N = \frac{P_{L_{Max}}}{P_{DC}} = \frac{89.8 \text{ mW}}{128 \text{ mW}} = \%70$$

e)
$$R_{1} = \frac{1}{R_{1}} = \frac{1}{R_{2}} \cdot V_{BE}$$

$$V_{BE} + \frac{1}{R_{2}} = \frac{R_{1} + R_{2}}{R_{2}} \cdot V_{BE}$$

$$I_{P} \gg I_{B}$$

$$I_{C} \gg I_{P}$$