PROBLEMAS DE ALGEBRA LINEAL. CURSO 2010-11. GRUPO T

- 1. Capítulo 1. Espacios vectoriales, subespacios, espacios cociente
- 1.1. Espacios vectoriales y subespacios.
- 1. Sea (E, 0, +, -(?)) un grupo conmutativo.
 - (1) Prueba que si $e \in E$ cumple e + x = x, para todo $x \in E$, entonces e = 0.
 - (2) Prueba que si x + y = 0, entonces y = -x y x = -y.
 - (3) Prueba que -0 = 0 y -(-x) = x.
- **2.** Sea E un espacio vectorial sobre un cuerpo K.
 - (1) Prueba que, para todo $\lambda \in K$ y para todo $u \in E$, $\lambda \cdot \mathbf{0} = \mathbf{0}$, $0 \cdot u = \mathbf{0}$, (-1)u = -u.
 - (2) Prueba que si $\lambda \in K$ y $u \in E$ son no nulos, entonces $\lambda u \neq \mathbf{0}$.
- **3.** Sea X un conjunto. Denotamos por $\mathcal{F}(X)$ el conjunto de funciones de X en \mathbb{R} . Dotamos a $\mathcal{F}(X)$ de las siguientes operaciones:
- Si $f, g \in \mathcal{F}(X)$, $\lambda \in \mathbb{R}$, se definen la suma de f y g, f + g, el producto de λ por f, $\lambda \cdot f$, la función opuesta de f, -f, y la función cero, $\mathbf{0}$, por

$$(f+g)(x) := f(x) + g(x), \quad (\lambda \cdot f)(x) := \lambda \cdot (f(x)),$$

para todo $x \in X$. Prueba que $\mathcal{F}(X)$ con estas operaciones es un \mathbb{R} -espacio vectorial y que se cumple

$$(-f)(x) = -(f(x)), \quad \mathbf{0}(\mathbf{x}) = \mathbf{0}, \ \forall \mathbf{x} \in \mathbf{X}.$$

- **4.** Sean \mathbb{N} el conjunto de los números naturales y $\mathcal{F}(\mathbb{N})$ el \mathbb{R} -espacio vectorial de las sucesiones de números reales. Sea \mathcal{C} el subconjuto de las sucesiones convergentes. Prueba que \mathcal{C} es un subespacio vectorial de $\mathcal{F}(\mathbb{N})$.
- **5.** Sean I un intervalo de \mathbb{R} , $C^0(I)$ el subconjunto de $\mathcal{F}(I)$ formado por las funciones continuas y, para $n \geq 1$, $C^n(I)$ el subconjunto de las funciones n veces derivables. Prueba que $C^n(I)$ es un subespacio vectorial de $\mathcal{F}(I)$, para todo entero $n \geq 0$.

1

1.2. Aplicaciones lineales.

- **6.** Sea I un intervalo de \mathbb{R} , $f \in \mathcal{C}^0(I)$. Sea \mathcal{G} el subconjunto de $\mathcal{C}^1(I)$ de las funciones $g \in \mathcal{C}^1(I)$ tales que g' = f, es decir, el conjunto de las primitivas de f. ¿Es \mathcal{G} un subespacio vectorial de $\mathcal{C}^1(I)$?
- 7. Sea I = [a, b] un intervalo cerrado de \mathbb{R} . Estudia si los siguientes subconjuntos de $\mathcal{C}^{\infty}(I)$ son subespacios vectoriales

$$\mathcal{G}_1 = \{ f \in \mathcal{C}^1(I); \ f' = f \}, \ \mathcal{G}_2 = \{ f \in \mathcal{C}^2(I); \ f'' = -f \}, \ \mathcal{G}_3 = \left\{ f \in \mathcal{C}^0(I); \int_a^b f(x) dx = 0 \right\}.$$

8. Sean I un intervalo de \mathbb{R} , $n \geq 0$ un entero. Denotamos la derivada de una función f por D(f), y la derivada i-ésima por $D^i(f)$, para todo i. Sea $P(t) = a_0 + a_1 t + \cdots + a_n t^n$ un polinomio de grado $\leq n$. Denotamos por P(D)(f) la función

$$P(D)(f) = a_0 f + a_1 D(f) + \dots + a_n D^n(f).$$

Sea \mathcal{G} el subconjunto de $\mathcal{C}^{\infty}(I)$ de las funciones $f \in \mathcal{C}^{\infty}(I)$ tales que $P(f) = \mathbf{0}$. Prueba que \mathcal{G} es un subespacio vectorial de $\mathcal{C}^n(I)$.

9. Sea $E = \mathbb{R}[x]$. Determina cuales de los siguientes subconjuntos de E son subespacios vectoriales de E:

$$F_{1} = \{p(x) \in E; \ p(3) = 0\}, \qquad F_{2} = \{p(x) \in E; \ p'(3) = 0\}$$

$$F_{3} = \left\{p(x) \in E; \ \int_{0}^{1} p(x)dx \le 100\right\}, \qquad F_{4} = \left\{p(x) \in E; \ \int_{0}^{1} p(x)dx = 0\right\}$$

$$F_{5} = \left\{p(x) \in E; \ \operatorname{grado}(p(x)) \text{ es par}\right\}, \qquad F_{6} = \left\{p(x) \in E; \ \operatorname{grado}(p(x)) > 4\right\}$$

10. Sean $m, n \in \mathbb{N}$. Determina cuales de los siguientes conjuntos son subespacios vectoriales de $\mathbb{R}(m, n)$:

$$F_{1} = \{A = (a_{i}^{j}) \in \mathbb{R}(m, n); \ a_{1}^{1} = 0\}, \qquad F_{2} = \{A = (a_{i}^{j}) \in \mathbb{R}(m, n); \ a_{1}^{1} + a_{1}^{2} = 0\}$$

$$F_{3} = \{A = (a_{i}^{j}) \in \mathbb{R}(n, n); \ \text{traza}(A) = 0\}, \quad F_{4} = \{A = (a_{i}^{j}) \in \mathbb{R}(m, n); \ a_{i}^{j} = 2\pi \ \forall i, j\}$$

$$F_{5} = \{A \in \mathbb{R}(n, n); \ A = A^{t}\}$$

$$F_{6} = \{A \in \mathbb{R}(n, n); \ A = -A^{t}\}.$$

11. Sea $E = \mathcal{F}(\mathbb{R})$. Determina cuales de los siguientes subconjuntos de E son subespacios vectoriales:

$$F_{1} = \{ f \in E; \ f(-x) = f(x) \ \forall x \in \mathbb{R} \}, \quad F_{2} = \{ f \in E; \ f(-x) = -f(x) \ \forall x \in \mathbb{R} \}.$$

$$F_{3} = \{ f \in E; \ f(x^{2}) = (f(x))^{2} \ \forall x \in \mathbb{R} \}, \quad F_{4} = \{ f \in E; \ f(5 - x) = f(x) \ \forall x \in \mathbb{R} \},$$

$$F_{5} = \{ f \in E; \ f(\pi) = 0 \}, \quad F_{6} = \{ f \in E; \ f(\pi) = \pi \},$$

$$F_{7} = \{ f \in E; \ f(0) = f(1) \}, \quad F_{8} = \{ f \in E; \ f(0) \neq 0, \ f(x) = 0 \ \forall x \in \mathbb{R} \setminus \{0\} \},$$

$$F_{9} = \{ f \in E; \# \{ x \in \mathbb{R}; f(x) = 0 \} < \infty \}, \quad F_{10} = \{ f \in E; \ 0 \leq f(x) \leq 1 \ \forall x \in \mathbb{R} \}.$$

1.3. Combinaciones lineales.

- 12. Sea $E = \mathcal{F}(\mathbb{R})$. Expresa, si es posible, los siguientes elementos \mathbf{v} de E como combinación lineal de las familias S correspondientes:
- (1) $\mathbf{v} = \sin x$; $S = \{1, x, x^2, \dots\}$
- (2) $\mathbf{v} = 1$; $S = \{x + 1, x^2 1, x^3 + 1\}$
- (3) $\mathbf{v} = x^2 + x 1$; $S = \{1, x 1, (x 1)^2\}$
- (4) $\mathbf{v} = 0$; $S = \{(x+1)^2, x, x^2 + 2, \sqrt{3}\}$
- 13. Sea $E = \mathbb{R}[x]$. Expresa, si es posible, los siguientes elementos \mathbf{v} de E como combinación lineal de las familias S correspondientes:
- (1) $\mathbf{v} = 1$; $S = \{x, x^2, x^3 1\}$
- (2) $\mathbf{v} = x 1$; $S = \{2, x 2, (x 3)^2\}$
- (3) $\mathbf{v} = 1 + x + x^2 + \dots + x^n$; $S = \{(x+1)^n, 1, x+1, x^n 1\}$ (4) $\mathbf{v} = x$; $S = \{x^2 x^3, x^4 x^3, x x^3\}$
- (5) $\mathbf{v} = x$; $S = \{x x^2, x^2, x^4 1, 1\}$
- (6) $\mathbf{v} = \sqrt{2}$; $S = \{x, x^2, (x+1)^2, x^2+1\}$
- Determina cuales de los siguientes conjuntos de matrices son linealmente dependientes:

$$S_{1} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\}; S_{2} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix} \right\}$$

15. Sea $E = \mathcal{F}(\mathbb{R})$. Determina cuales de los siguientes subconjuntos de E son linealmente independientes:

$$S_1 = \{\sin x, \cos x, 1\}, \ S_2 = \{e^x, e^{x+1}\}, \ S_3 = \{e^x, e^{-x}, 1\}, \ S_4 = \{e^{\lambda_i x}; 1 \le i \le n\}.$$

- Sea E un espacio vectorial sobre un cuerpo K y F un subespacio vectorial de E.
 - (1) Prueba que todo conjunto minimal de generadores de F es linealmente indepen-
 - (2) Prueba que todo conjunto maximal de vectores de F linealmente independiente genera F.

(Nota: Sea X un conjunto ordenado. Un elemento $x_0 \in X$ se llama minimal (resp. maximal) si ningún elemento de X es menor (resp. mayor) que x_0 .)

Sean E un espacio vectorial sobre un cuerpo K y S un subconjunto de E. Prueba que S es linealmente dependiente si, y sólo si, alguno de los vectores $u_i \in S$ es combinación lineal de los restantes.

- 4
- **18.** Sean E un K-espacio vectorial y S un subconjunto de E. Supongamos que $S \cup \{v\}$ es un conjunto de generadores de E. Prueba que si v es combinación lineal de S, entonces S es un conjunto de generadores de E.
- 19. Sean E un espacio vectorial sobre un cuerpo K, S un subconjunto de E linealmente independiente, y $\mathbf{v} \in E$. Entonces $\{\mathbf{u}_1, \dots, \mathbf{u}_n, \mathbf{v}\}$ es linealmente dependiente si, y sólo si, \mathbf{v} es combinación lineal de $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$.
- 1.4. Bases y dimensión.
- **20.** Sea $E = \mathbb{R}[x]$. Determina cuales de los siguientes subconjuntos de E son linealmente independientes y encontrad bases de los subespacios que generan los que no son linealmente independientes.

$$S_{1} = \{1, x, x^{2}, \dots\},$$

$$S_{2} = \{x - 1, x^{2} - 1, x - 2\}$$

$$S_{3} = \{1, x - 1, x^{2} - 2, \dots, x^{n} - n\}$$

$$S_{4} = \{1 + x + x^{2}, 1 + x + x^{3}, 1 + x\}$$

$$S_{5} = \{1, (x - 1), (x - 1)^{2}, \dots, (x - 1)^{n}\}$$

$$S_{6} = \{x^{3} - 1, x^{2}, x^{4} - 1, x^{4} - x^{3} + x^{2}\}$$

21. Sea $E = \mathbb{R}[x]_{\leq 3}$. Prueba que el subconjunto F de E de polinomios p(x) tales que

$$\int_{-1}^{1} p(x)dx = p(0)$$

es un subespacio de E. Halla una base de F y un sistema de ecuaciones de F en las coordenadas canónicas de E.

22. Sean $E = \mathbb{R}[x]_{\leq n}$, $a \in \mathbb{R}$. Prueba que si $e_i(x) = \frac{1}{i!}(x-a)^i$, $0 \leq i \leq n$, entonces $B = \{e_i; 1 \leq i \leq n\}$ es una base de E. Determina las coordenadas de $p(x) \in E$ en esta base.

Indicación: (i) Prueba que, para todo $p(x) \in \mathbb{R}[x]$, se cumple $p(x) = q_a(x-a) = \sum c_i(x-a)^i$, donde $q_a(x) = p(x+a) = \sum_i c_i x^i$. Concluye de aquí que B genera E. (ii) Prueba que si $p(x) = \sum_i c_i \frac{1}{i!} (x-a)^i$, entondes $D^i(p)(a) = c_i$. Concluye de aquí que B es linealmente independiente.

- **23.** Sea E un K-espacio vectorial.
- (1) Sea S un subconjunto finito de E. Prueba que existe $B \subset S$ tal que B es una base de < S >.
- (2) Prueba que si E es un subespacio finitamente generado, E tiene una base finita.
- **24.** [Sucesiones de Fibonacci] Sea $E = \mathcal{F}(\mathbb{N})$ el espacio vectorial de las sucesiones de números reales. Sea

$$F := \{ a \in E; \ a_{n+2} = a_{n+1} + a_n \ \forall n \in \mathbb{N} \} \subseteq E.$$

- (1) Prueba que F es un subespacio vectorial de E.
- (2) Calcula la dimensión de F y determina una base.
- (3) Demuestra que si (a_n) es una progresión geométrica de razón r del subespacio Fentonces se tiene que $r = \frac{1 \pm \sqrt{5}}{2}$. (Nota: Una progresión geométrica de razón $r \in \mathbb{R}$ es una sucesión $a \in E$ tal que para todo $n \in \mathbb{N}$ se tiene que $a_{n+1} = r \cdot a_n$.)
- (4) Halla una base de F formada por progresiones geométricas.
- (5) Expresa la sucesión de Fibonacci $f \in F$ determinada por $f_0 = 1$, $f_1 = 1$, en la base determinada en el apartado anterior y expresa el término general de f_n de forma no recurrente.

1.5. Suma de subespacios.

- Sea $E := \mathbb{R}(3, 4)$. **25**.
- (a) Prueba que los siguientes subconjuntos de E son subespacios vectoriales:

- (c) Calcula la dimensión de $F_i \cap F_j$ y de $F_i + F_j$ cuando $1 \le i, j \le 4$. Determina una base de cada uno de estos subespacios. Determina cuales de las sumas $F_i + F_j$ son sumas directas.
- (d) ¿Es $F_1 + F_2 + F_3$ suma directa? ¿Y $F_1 + F_2 + F_4$?
- En $E = \mathbb{R}[x]_{\leq 3}$ consideremos la base canónica $\{1, x, x^2, x^3\}$. 26.
- (1) Calcula la dimensión, una base y ecuaciones en las coordenadas canónicas de E del
- (2) Determina para qué valores de a el conjunto $G = \{p(x) \in E; p'(x) = a\}$ es un subespaico vectorial. Para estos valores calcula la dimensión, una base y ecuaciones
- (3) Para a=0, halla la dimensión una base y ecuaciones de $F\cap G$ y de F+G. ¿Es directa la suma F + G?
- Prueba que el espacio vectorial de matrices cuadradas $\mathbb{R}(n,n)$ es suma directa del subespacio de las matrices simétricas con el subespacio de las matrices antisimétricas.
- Prueba que el espacio vectorial de funciones $\mathcal{F}(\mathbb{R})$ es suma directa del subespacio de las funciones pares con el subespacio de las funciones impares.

- **29.** Determina cuales de las siguientes afirmaciones son siempre ciertas para subespacios cualesquiera F, G y H de un espacio vectorial E, y cuales no.
 - (1) $F \cap (G + H) = (F \cap G) + (F \cap H)$.
 - (2) $F + (G \cap H) = (F + G) \cap (F + H)$.
 - (3) dim $(F \cap (G+H)) = \dim (F \cap G) + \dim (F \cap H) \dim (F \cap G \cap H)$.
- **30.** Sean F y G dos subespacios vectoriales de un espacio vectorial E de dimensión finita n.
 - (1) Prueba que si dim $F + \dim G > n$ entonces $F \cap G \neq \{0\}$.
 - (2) Prueba que si dim $F + \dim G < n$ entonces $F + G \neq E$.
 - (3) Estudia si son ciertas las implicaciones recíprocas.

1.6. Espacio cociente.

- **31.** Sean E un espacio vectorial sobre un cuerpo K y F un subespacio vectorial de E. Si $k \in \mathbb{N}$, demuestra que $[v_1], \ldots, [v_k] \in E/F$ son linealmente independientes si y solo si $\dim \langle v_1, \ldots, v_k \rangle = k$ y $\langle v_1, \ldots, v_k \rangle \cap F = \{\vec{0}\}.$
- **32.** Sea $E := \mathbb{R}^4$ y sean

$$F := \langle (0,1,0,0), (1,0,0,2) \rangle \subset E, \ G := \{(x,y,z,t) \in E : x-y+z=0, x-y=0\}.$$

- (1) Calcula las dimensiones de $F, G, F \cap G$ y de F + G y halla bases de cada uno de los subespacios.
- (2) Determina una base de cada uno de los espacios cociente $F/F \cap G$, $G/F \cap G$, E/F, E/G, $E/(F \cap G)$ E/(F + G).
- **33.** Sean $E = \mathbb{R}[x]_{\leq 3}$, $a \in \mathbb{R}$. Sea V_a el conjunto de polinomios de grado ≤ 3 que tienen a como raíz.
 - (1) Prueba que V_a es un subespacio vectorial de dimensión 3 de E, y halla una base de V_a .
 - (2) Prueba que si $a \neq b$ entonces se tiene que $V_a + V_b = E$ y determina la dimensión y una base de $V_a \cap V_b$.
 - (3) Halla una base de E/V_a y una base de $V_a/(V_a\cap V_b)$.
- **34.** Sea F el subespacio de las matrices diagonales de $E = \mathbb{R}(3,3)$. Da una base del espacio cociente E/F.
- **35.** Sea $E = \mathbb{R}[x]_{\leq 3}$, y sean F el subespacio de los polinomios pares y G el subespacio de los polinomios p(x) tales que p(1) = 0. Halla bases de los subespacios F, G, $F \cap G$, F + G, $F/(F \cap G)$ y $(F + G)/(F \cap G)$.