Janvier 2014

TD de Mathématiques Discrètes TD 1 - Arithmétique

Fait par: Farah AIT SALAHT

Exercice 1: Nombres premiers

On note \mathcal{P} l'ensemble des nombres premiers positifs. On rappelle que pour tout entier naturel non nul n, il existe un suite $(v_p(n))_{p\in\mathcal{P}}$ d'entiers naturels nuls sauf un nombre fini d'entre eux vérifiant

$$n = \prod_{p \in \mathcal{P}} p^{v_p(n)}$$

Cette écriture s'appelle la décomposition en facteurs premiers de l'entier n.

- 1. Donner la décomposition en facteurs premiers des entiers $10, \ldots, 14$.
- 2. Pour tout entier naturel non nul n, prouver l'unicité de la suite $(v_p(n))_{p\in\mathcal{P}}$.
- 3. Soient m et n deux entiers naturels non nuls. Donner la décomposition en facteurs premiers des entiers pgcd(m, n) et ppcm(m, n) en fonction de la décomposition de m et celle de n.
- 4. Montrer que \mathcal{P} est infini.
- 5. Trouver un entier naturel non nul n vérifiant $n! + 1 \notin \mathcal{P}$.
- 6. Trouver un entier naturel non nul n vérifiant

$$1 + \prod_{\substack{p \in \mathcal{P} \\ p \le n}} p \notin \mathcal{P}$$

7. Soit n est un entier naturel non nul qui n'appartient pas à \mathcal{P} . Établir l'existence d'un entier p vérifiant simultanément p|n et $p^2 \leq n$.

Corrigé:

L'ensembles de tous nombres premiers est noté par $\mathcal{P} = \{2, 3, 5, 7, \ldots\}$. Remarquons que $1 \notin \mathcal{P}$. De plus, 0 et 1 ne sont ni premiers ni composés.

Proposition. Pour tout entier naturel non nul n, il existe une suite $(v_p)_{p\in\mathcal{P}}$ d'entiers naturels nuls sauf un nombre fini d'entre eux vérifiant

$$n = \prod_{p \in \mathcal{P}} p^{v_p} = 2^{v_2} \times 3^{v_3} \times 5^{v_5} \times \dots$$

Cette écriture s'appelle la **décomposition en facteurs premiers** de l'entier n. La suite $\{v_p\}$ est encore notée $\{v_p(n)\}$.

- 1. Décomposition de 10 à 14 : 10 = 2 * 5, 11 est premier, $12 = 2^2 * 3$, 13 est premier, 14 = 2 * 7.
- 2. Preuve de l'unicité de la décomposition : On suppose l'existence d'un entier naturel non nul n minimal tel qu'il existe deux suites distinctes v_p et v_p' vérifiant $n = \prod_{p \in \mathcal{P}} p^{v_p} = \prod_{p \in \mathcal{P}} p^{v_p'}$. On a $n \geq 2$ car les nombres 0 et 1 ne sont pas composés. On note p0 un nombre premier tel que $v_{p0} > 0$. Alors $p0| = \prod_p p^{v_p}$, donc $p0| = \prod_p p^{v_p'}$ de sorte que $v_{p0}' > 0$. On divise par p0 les deux écritures de n et on obtient ainsi deux factorisations pour n/p0. Ces deux factorisations sont identiques, par minimalité de n. En remultipliant par p0, on obtient que les deux factorisations de n sont identiques. Absurde.

3. PGCD(m,n), PPCM(m,n).

Exemple : $20 = 2^2 * 5$ et $50 = 2 * 5^2$, le pgcd(20, 50) = 2 * 5 ; $200 = 2^3 * 5^2$ et $2500 = 2^2 * 5^4$, le $pgcd(200, 2500) = 2^2 * 5^2$. Alors le $PGCD(n, m) = \prod_p p^{min(m_p, n_p)}$. En résumé, Vous prenez les plus petit facteurs de chacun (mais qui apparaissent dans les deux).

Exemple : le PPCM (plus petit multiple commun) $ppcm(20,50) = 2^2 * 5^2 = 100$ et le $ppcm(200,2500) = 2^3 * 5^4 = 5000$ (200*25 = 2*2500). Ainsi, $PPCM(n,m) = \prod_p p^{max(m_p,n_p)}$. En résumé, vous prenez les plus grand facteurs de chacun (pas obligé d'apparaître dans les deux), par exemple le ppcm(15,20) on sait que $20 = 2^2 * 5$ et 15 = 3*5 le ppcm correspondant est $2^2 * 3 * 5 = 60$.

4. Infini

Soit \mathcal{P} l'ensemble des nombres premiers. On suppose \mathcal{P} est fini et contient n éléments $\{p_1, \ldots, p_n\}$. On considère le nombre $N = 1 + p_1 * p_2 * \ldots p_n$. N est strictement supérieur à tout nombre de \mathcal{P} , donc N n'appartient pas à \mathcal{P} et ne peut donc pas être premier. De plus, $N \geq 1$, par définition, N possède au moins un diviseur premier p_k élément de \mathcal{P} . Donc

- a) p_k divise N
- b) p_k divise $p_1 * p_2 * \dots p_n$ (puisqu'il en fait parti)

Ainsi p_k divise $N - p_1 * p_2 * \dots p_n$ (toute combinaison linéaire à coefficient entiers de ces deux deux nombre, et notamment leur différence), différence qui est égale à 1. Alors p_k divise 1, ce qui est impossible car son seul diviseur est 1 et que 1 n'est pas premier. Contradiction.

- 5. Pour éviter de faire croire aux étudiants que tout nombre du type "je multiplie plein de nombres" + 1 est premier (suite à la démonstration précédente). "N = 4", alors N! = 24 donc N! + 1 = 25 et 25 n'est pas premier.
- 6. Pour éviter l'adaptation du genre "il suffit de prendre que des nombres premiers" +1, comme la démonstration précédente. Il faut monter à 13:2*3*5*7*11*13+1=30031=59*509.
- 7. $p^2 \le n$

On choisit un entier n différent de 0 et de 1 et non-premier. On nomme p sont plus petit diviseur autre que 1, on a 1 . Comme <math>p divise n, il existe q tel que pq = n. q n'est pas nul car $n \neq 0$, q n'est pas 1 car $n \neq p$, donc q > 1. Comme p > 1, pq > q, donc n > q. Ainsi, 1 < q < n et q divise q divise q est le plus petit diviseur et que q est aussi diviseur, $q \leq q$. Donc $q \leq q$. Donc $q \leq q$.

Exercice 2 : Indicateur d'Euler

Montrer qu'il existe une infinité de nombres premiers de la forme 6k-1, avec $k \in \mathbb{N}^*$.

Corrigé:

1.

- ▶ Comme le reste dans une division par 6 peut etre 0, 1, 2, 3, 4 ou 5, tout entier naturel est nécessairement de la forme 6k, 6k + 1, 6k + 2, 6k + 3, 6k + 4 ou 6k + 5.
 - S'il est de la forme 6k, il n'est jamais premier car il est divisible par 6.
 - S'il est de la forme 6k + 2, il n'est jamais premier (sauf si k = 0) car il est divisible par 2 et n'est pas égal a 2.
 - S'il est de la forme 6k + 3, il n'est jamais premier (sauf si k = 0) car il est divisible par 3 et n'est pas égal a 3.
- S'il est de la forme 6k+4, il n'est jamais premier car il est divisible par 2 (et different de 2). Conclusion : un nombre premier strictement supérieur a 3 est nécessairement de la forme 6k+1 ($k \ge 1$) ou 6k+5 ($k \ge 0$).

Comme 6k + 5 = 6(k + 1) - 1 = 6K - 1, on peut finalement dire que tout nombre premier est nécessairement de la forme 6k + 1 ou 6k - 1, avec $k \ge 1$.

▶ Remarquons d'abord que tout nombre premier p tel que $p \neq 2$ et $p \neq 3$ est, $k \in \mathbb{N}^*$, soit de la forme 6k+1 soit de la forme 6k-1. Pour le montrer, considérons un nombre premier p qui n'est ni 2, ni 3. Sa classe modulo 6 ne peut valoir que -1 ou 1. En effet, si elle valait 0, 6 diviserait p, qui ne serait donc pas premier. Si elle valait 2, 2 diviserait p, mais p est premier différent de 2. Si elle valait 3, 3 diviserait p, mais p est premier différent de 3. Enfin, si elle valait 4, 2 diviserait p, ce qui conduit encore une fois à une contradiction. Donc finalement, la classe de p modulo 6 vaut -1 ou 1.

2

Maintenant, montrons qu'il y a une infinité de nombre premier de la forme 6k-1. Supposons qu'il n'y a qu'un nombre fini de nombres premiers de la forme 6k-1, avec $k \in \mathbb{N}^*$. On note N le plus grand d'entre eux. M=6N!-1, ce nombre est impair, donc n'est pas divisible par 2. De plus, M vaut -1 modulo3, donc 3 ne le divise pas. Soit p un facteur premier de M. Si p est de la forme 6k-1, on a $p \leq N$, donc p divise 6N!, puis p divise 6N!-M=1. Impossible. Donc p n'est pas de la forme 6k-1. Comme p ne peut valoir ni 2, ni 3, il est de la forme 6k+1 (voir remarque au début de l'exercice). Dans la décomposition de M en facteurs premiers, $p_1 \dots p_n$, on a $p_i = 1 mod6$, donc M = 1 mod6. Absurde, car M = -1 mod6 par construction.

Exercice 3: $pgcd(a^n - 1, a^m - 1)$

Soient $a, m, n \in \mathbb{N}^*$, $a \ge 2$, et $d = \operatorname{pgcd}(a^n - 1, a^m - 1)$.

- 1. Soit n = qm + r la division euclidienne de n par m. Démontrer que $a^n \equiv a^r \pmod{a^m 1}$.
- 2. En déduire que $d = \operatorname{pgcd}(a^r 1, a^m 1)$, puis que $d = a^{\operatorname{pgcd}(n, m)} 1$.
- 3. À quelle condition $a^m 1$ divise-t-il $a^n 1$?

Corrigé:

1. On a $a^n = a^{qm+r} = a^r(a^{mq} - 1) + a^r$ et

$$a^{mq} - 1 = (a^m)^q - 1 = (a^m - 1) \sum_{k=0}^{q-1} (a^m)^k$$
 (1)

donc $a^{mq} - 1$ est divisible par $a^m - 1$ ainsi $a^n \equiv a^r \pmod{a^m - 1}$. On peut également remarquer que $a^m \equiv 1 \pmod{a^m - 1}$ donc $a^{qm} \equiv 1 \pmod{a^m - 1}$ donc $a^{qm+r} \equiv a^r \pmod{a^m - 1}$ i.e. $a^n \equiv a^r \pmod{a^m - 1}$.

2. a)

De l'équation 1 nous avons

$$a^{n} - 1 = a^{r} (a^{m} - 1) \left(\sum_{k=0}^{q-1} (a^{m})^{k} \right) + a^{r} - 1.$$

donc $a^n - 1 = a^r - 1 \pmod{a^m - 1}$ et $0 \le a^r - 1 \le a^m - 1$ car r < q et a > 1. On sait que d divise $a^n - 1$ et $a^m - 1$ donc, d'après l'équation ci-dessus, d divise $a^r - 1$. Par conséquent,

$$d = \operatorname{pgcd}(a^r - 1, a^m - 1)$$

b)

On définit la suite d'entiers (r_k) par $r_0=n$, $r_1=m$ et si r_{k+1} est non nul, r_{k+2} est le reste de la division euclidienne de r_k par r_{k+1} i.e. on applique l'algorithme d'Euclide à n et m. On sait qu'il existe K tel que $a_K=\operatorname{pgcd}(n,m)$ et $a_{K+1}=0$. D'après ce qui précède, on démontre par récurrence que $(a^{r_k}-1)$ est la suite des entiers définis par l'algorithme d'Euclide appliqué à a^n-1 et a^m-1 . Comme $a^{r_{K+1}}-1=0$, c'est que $a^{r_K}-1=a^{\operatorname{pgcd}(n,m)}-1$ est le pgcd de a^n-1 et a^m-1 .

3. $a^m - 1$ divise $a^n - 1$ si et seulement si

$$pgcd(a^{n} - 1, a^{m} - 1) = a^{m} - 1 \iff a^{pgcd(n,m)} - 1 = a^{m} - 1.$$

Comme a > 1, cela signifie que pgcd(n, m) = m i.e. m divise n.

Exercice 4

- 1. On admet que 1999 est premier. Déterminer l'ensemble des couples (a, b) d'entiers naturels vérifiant simultanément a + b = 11994 et pgcd(a, b) = 1999.
- 2. Déterminer l'ensemble des couples (a,b) d'entiers naturels non nuls vérifiant pgcd(a,b) + ppcm(a,b) = b + 9.
- 3. Même question avec $2 \operatorname{ppcm}(a, b) + 7 \operatorname{pgcd}(a, b) = 111$.

Corrigé: