JUNE 10

set stuff

Author

Tom Jeong

Contents

1 Connected Set 3

1 Connected Set

A set E is connected if $\not\exists$ a separation of E into two open componenets. $E = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$ and $V_1 \neq \emptyset \neq V_2$ and $\bar{V_1} \cap V_2 = V_1 \cap \bar{V_2} = \emptyset$ and $V_1 \neq E \neq V_2$.

Theorem 1.1. $E \subseteq \mathbb{R}$, E connected is equivalent to E is on interval I.

Proof. suppose $E \subseteq \mathbb{R}$ is connected. solution implying $H_1 \subseteq H_2 \subseteq H_3 \dots$ (sequences in \mathbb{R}^n) E is empty or, if E contains only c, E = (c, c) or [c, c], suppose E contains at least 2 points.

$$a = \inf(E)$$

$$b = \sup(E)$$

and a < b two casese we can take: $a \in E$ or $a \not lnE$, $b \in E$ or $b \not lnE$. property of supremums and infimums.

consider $E_k = [a_k, b_k]$ Q: is $E_k \subseteq E$? E is one of the following: E = (a, b), E = [a, b], E = (a, b], E = [a, b) how to prove $E_k \subseteq E$? suppose not then, $\exists x \in E_k$ such that $x \notin E$ $a < a_k \le x \le b_k < b$ consider $E \setminus \{x\} = E$ $E_R = \{y \in E : y > x\}$

Definition 1.1. U is erlatively open wrt E if \exists open set A such that $U = E \cap A$

by
$$E = [a, b]$$
 and $U = E \cap A$ then $A = (\frac{a+b}{2}, b+\epsilon)$ and $U = [\frac{a+b}{2}, b]$

back to E_R , show $\exists V$ open s.t. $V \cap E = E_2$

 $\bigcup_{k=1}^{\infty} E_k \subseteq E \ x \in E_k$ for some k which meanns $x \in E$

case 1: $a_k = a \in E$ true

case 2: $a_k > a \notin E : x \in \tilde{E} \to x \in E_k$ for some $k \to a < a_k \le x$

Definition 1.2. A set E is perfect if E = limit pots of E limit points of $E: \{x \in X : \forall B \text{ open}, x \in B, \exists y (\neq x) \in E \cap N\}$

Definition 1.3. A set E is nowhere dense if \bar{A} (closure of A) has empty interior

 $\bar{E} = \bigcap V, \, \{ V \text{ closed } : V \supseteq E \} \,\, E^0 = \{ x \in E : \exists V \text{ open } x \in V \subseteq E \}$

Cantor Set: $C = \bigcap_{k=1}^{\infty} I_k$ where $I_1 = [0, 1], I_2 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1], I_3 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{1}{9}, \frac{1}{9}] \cup [\frac$

 $\left[\frac{8}{9},1\right]$ Q: is C closed? yes intersection of closed I_k

Q: is C compact, yes, closed and bounded.

Q: is perfect?

Q: is C nowhere dense?

$$C = \{ \sum_{k=1}^{\infty} a_k (\frac{1}{3})^k : a_k \in \{0, 2\} \}$$