Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

 $\operatorname{MM2031}$ - Geometría Moderna - Catedrático: María Eugenia Pinillos 7 de agosto de 2021

Parcial 1

Problema 1. Dado un triángulo si en él unimos los puntos medios de los lados del triángulo obtenemos un nuevo triángulo.

1. Demuestre que el nuevo triángulo es homotético al triángulo original.

Demostración. Por el teorema del punto medio, $DF = \frac{1}{2}BC$, $EF = \frac{1}{2}AB$ y $DE = \frac{1}{2}AC$. Por lo tanto, por el criterio SSS para triángulos, comprobamos que $\triangle DEF \cong \triangle ABC$; lo que quiere decir que es homotético.

2. Obtenga el valor de la constante de homotecia.

Solución. Si usamos la demostración anterior, determinamos que por ejemplo DF = BE, DE = AF, EF = BD sucesivamente hasta determinar que se formaron 4 triángulos congruentes. Entonces, de homotecia es 1/4.

3. Determine el centro de homotecia.

Solución. Como sabemos que el segundo triángulo es homotético y congruente al original. Además,

$$\frac{DE}{AC} = \frac{DF}{BC} = \frac{EF}{AB}$$

Entonces, se está dividiendo en el punto medio y por lo tanto, podemos concluir que G es el punto medio. \Box

Problema 2. Sea ABCD un cuadrilátero cíclico convexo, cuyas diagonales se cortan en O, entonces

$$|AB||BC||OD| = |CD||DA||BO|$$

 $\boldsymbol{Demostraci\'on}.$ Por la propiedad de ángulos inscritos en un cuadrilátero, sabemos

$$\alpha : \angle ABD \cong \angle ACD$$

$$\beta : \angle DAC \cong \angle DBC$$

$$\gamma : \angle CAB \cong \angle CDB$$

$$\varepsilon : \angle BCA \cong \angle BDA$$

, Además, por la definición de convexidad,

$$\Omega : \angle AOD \cong \angle COB$$

$$\xi : \angle BOA \cong \angle DOC$$

Ahora bien, vamos a utilizar la ley de senos en los siguientes triángulos:

$$\triangle OCD : \frac{OC}{\operatorname{sen} \gamma} = \frac{OD}{\operatorname{sen} \alpha} \implies \frac{OC}{OD} = \frac{\operatorname{sen} \gamma}{\operatorname{sen} \alpha}$$

$$\triangle BCO : \frac{OC}{\operatorname{sen} \beta} = \frac{BO}{\operatorname{sen} \varepsilon} \implies \frac{OC}{BO} = \frac{\operatorname{sen} \beta}{\operatorname{sen} \varepsilon}$$

$$\triangle BCD : \frac{CD}{\operatorname{sen} \beta} = \frac{BC}{\operatorname{sen} \gamma} \implies \frac{CD}{BC} = \frac{\operatorname{sen} \beta}{\operatorname{sen} \gamma}$$

$$\triangle BDA : \frac{AD}{\operatorname{sen} \alpha} = \frac{AB}{\operatorname{sen} \varepsilon} \implies \frac{AD}{AB} = \frac{\operatorname{sen} \alpha}{\operatorname{sen} \varepsilon}$$

$$\Rightarrow \frac{\frac{OC}{OD}}{\frac{OC}{BO}} = \frac{OC \cdot BO}{OD \cdot OC} = \frac{\sec \gamma \cdot \sec \varepsilon}{\sec \alpha \cdot \sec \beta} = \frac{BC}{CD} \cdot \frac{AB}{AD}$$
$$\Rightarrow \frac{BO}{OD} = \frac{BC}{CD} \cdot \frac{AB}{AD}$$

Por lo tanto, por el valor absoluto y despejando:

$$|AB||BC||OD| = |CD||DA||BO|$$

Problema 3. Se tiene un pentágono regular:

1. Encuentre la razón que existe entre la diagonal y su lado.

Demostración. Nótese que podemos formar un cuadrilátero inscrito en el circulo del pentágono. ⇒ Por el teorema de Ptolomeo,

$$AC \cdot BD = AB \cdot CD + AD \cdot BC$$

 \implies Como es una figura regular, sus diagonales miden lo mismo, igualmente sus lados miden lo mismo. Digamos que los lados están representados por l y sus diagonales por d, entonces:

$$d \cdot d = l \cdot l + d \cdot l \implies d^2 = l^2 + d \cdot l$$

La razón está dado por r=d/l, entonces dividamos todo por l^2 :

$$\implies \frac{d^2}{l^2} = 1 + \frac{d}{l} \implies r^2 = 1 + r \implies r^2 - r - 1 = 0$$

Usando la fórmula cuadrática:

$$r = \frac{1 \pm \sqrt{5}}{2}$$

Como nos interesa la razón, solo vamos a tomar en cuenta el número positivo. Por lo tanto,

$$\frac{d}{l} = \frac{1 + \sqrt{5}}{2}$$

2. Utilice lo anterior para determinar el $\cos 36^{\circ}$.

Demostración. Usando la ley de cosenos dada como,

$$c = \sqrt{a^2 + b^2 - 2ab\cos\gamma} \implies \cos\gamma = \frac{c^2 - a^2 - b^2}{-2ab}$$

Dado $a = 1 + \sqrt{5}$ y b = c = 2, concluimos:

$$\implies \cos 36^{\circ} = \frac{(2)^2 - (1 + \sqrt{5})^2 - (2)^2}{-2(1 + \sqrt{5})(2)} = \frac{1 + \sqrt{5}}{4}$$

3. Obtenga la razón entre el lado y el radio del circulo que lo suscribe.

Demostración. Por las propiedades de los triángulos regulares, los ángulos que forman los radios en el centro (las líneas moradas en la figura) son de 72° y los adyacentes a los lados de 54° . Entonces, por ley de senos:

$$\frac{2}{\sin 72} = \frac{OD}{\sin 54}$$

La razón es:

$$\frac{1}{2}\sqrt{10-2\sqrt{5}}$$

[según la calculadora :(]