Algorithms

Asymptotic Performance

Asymptotic Performance

- *Asymptotic performance*: How does algorithm behave as the problem size gets very large?
 - o Running time
 - o Memory/storage requirements
 - Remember that we use the RAM model:
 - o All memory equally expensive to access
 - No concurrent operations
 - o All reasonable instructions take unit time
 - Except, of course, function calls
 - o Constant word size
 - Unless we are explicitly manipulating bits

Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function call most statements roughly require the same amount of time
 - We can be more exact if need be
- Worst case vs. average case

```
InsertionSort(A, n) {
 for i = 2 to n {
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
          j = j - 1
     A[j+1] = key
```



```
i = \emptyset j = \emptyset key = \emptyset

A[j] = \emptyset A[j+1] = \emptyset
```

```
InsertionSort(A, n) {
  for i = 2 to n {
      key = A[i]
      j = i - 1;
      while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
      A[j+1] = key
```



```
i = 2 j = 1 key = 10
A[j] = 30 A[j+1] = 10
```

```
InsertionSort(A, n) {
   for i = 2 to n {
      key = A[i]
      j = i - 1;
      while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
      }
      A[j+1] = key
   }
}
```



```
i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 30
```



```
i = 2 j = 1 key = 10
A[j] = 30 A[j+1] = 30
```



```
i = 2 j = 0 key = 10

A[j] = \emptyset A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 0 key = 10

A[j] = \emptyset A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 0 key = 10

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 0 key = 10

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 0 key = 40

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 0 key = 40

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
  for i = 2 to n {
      key = A[i]
      j = i - 1;
      while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
      A[j+1] = key
```



```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20
```

```
InsertionSort(A, n) {
   for i = 2 to n {
      key = A[i]
      j = i - 1;
      while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
      }
      A[j+1] = key
   }
}
```

Insertion Sort

```
What is the precondition
InsertionSort(A, n) {
                              for this loop?
  for i = 2 to n {
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
           j = j - 1
     A[j+1] = key
```

Insertion Sort

```
InsertionSort(A, n) {
 for i = 2 to n {
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
     A[j+1] = key
                           How many times will
                           this loop execute?
```

Insertion Sort

```
Effort
  Statement
InsertionSort(A, n) {
  for i = 2 to n {
                                                       c_1 n
       key = A[i]
                                                       c_2(n-1)
       j = i - 1;
                                                       c_{3}(n-1)
       while (j > 0) and (A[j] > key) {
                                                       c_4T
                                                       c_5(T-(n-1))
               A[j+1] = A[j]
                                                       c_6(T-(n-1))
               j = j - 1
                                                       \mathbf{0}
                                                       c_7(n-1)
       A[j+1] = key
                                                       \mathbf{0}
```

 $T = t_2 + t_3 + ... + t_n$ where t_i is number of while expression evaluations for the ith for loop iteration

Analyzing Insertion Sort

- $T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 T + c_5 (T (n-1)) + c_6 (T (n-1)) + c_7 (n-1)$ = $c_8 T + c_9 n + c_{10}$
- What can T be?
 - Best case -- inner loop body never executed o $t_i = 1 \rightarrow T(n)$ is a linear function
 - Worst case -- inner loop body executed for all previous elements
 - o $t_i = i \rightarrow T(n)$ is a quadratic function
 - Average case
 - o ???

Analysis

- Simplifications
 - Ignore actual and abstract statement costs
 - *Order of growth* is the interesting measure:
 - o Highest-order term is what counts
 - Remember, we are doing asymptotic analysis
 - As the input size grows larger it is the high order term that dominates

Upper Bound Notation

- We say InsertionSort's run time is $O(n^2)$
 - Properly we should say run time is in $O(n^2)$
 - Read O as "Big-O" (you'll also hear it as "order")
- In general a function
 - f(n) is O(g(n)) if there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$
- Formally
 - O(g(n)) = { f(n): \exists positive constants c and n_0 such that f(n) $\leq c \cdot g(n) \ \forall \ n \geq n_0$

Insertion Sort Is O(n²)

- Proof
 - Suppose runtime is $an^2 + bn + c$
 - o If any of a, b, and c are less than 0 replace the constant with its absolute value
 - $an^2 + bn + c \le (a + b + c)n^2 + (a + b + c)n + (a + b + c)$
 - $\leq 3(a+b+c)n^2 \text{ for } n \geq 1$
 - Let c' = 3(a + b + c) and let $n_0 = 1$
- Question
 - Is InsertionSort O(n³)?
 - Is InsertionSort O(n)?

Big O Fact

- A polynomial of degree k is O(n^k)
- Proof:
 - Suppose $f(n) = b_k n^k + b_{k-1} n^{k-1} + ... + b_1 n + b_0$ o Let $a_i = |b_i|$
 - $f(n) \le a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$

$$\leq n^k \sum a_i \frac{n^i}{n^k} \leq n^k \sum a_i \leq cn^k$$

Lower Bound Notation

- We say InsertionSort's run time is $\Omega(n)$
- In general a function
 - f(n) is $\Omega(g(n))$ if \exists positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0$
- Proof:
 - Suppose run time is an + b
 - o Assume a and b are positive (what if b is negative?)
 - $an \le an + b$

Asymptotic Tight Bound

• A function f(n) is $\Theta(g(n))$ if \exists positive constants c_1 , c_2 , and n_0 such that

$$c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0$$

- Theorem
 - f(n) is $\Theta(g(n))$ iff f(n) is both O(g(n)) and $\Omega(g(n))$
 - Proof: someday

Other Asymptotic Notations

- A function f(n) is o(g(n)) if \exists positive constants c and n_0 such that $f(n) < c g(n) \forall n \ge n_0$
- A function f(n) is $\omega(g(n))$ if \exists positive constants c and n_0 such that $c g(n) < f(n) \forall n \ge n_0$
- Intuitively,
 - o() is like <

- ω () is like >
- Θ () is like =
- O() is like \leq Ω () is like \geq

Up Next

- Solving recurrences
 - Substitution method
 - Master theorem