Esperimento di verifica della Legge di Hooke

Lorenzo Mauro Sabatino

Sommario

In questa esperienza andremo a misurare la costante elastica K di una molla sfruttando la legge di Hooke.

1 Introduzione

Robert Hooke è stato un fisico, biologo, geologo e architetto inglese ricordato in particolare per la prima formulazione storica della legge sull'elasticità lineare. Hooke si accorse che tirando due molle o due fili, entrambi della stessa lunghezza e l'uno con un peso doppio dell'altro, subiranno un allungamento l'uno il doppio dell'altro.

L'obiettivo dell'esperienza è verificare la legge di Hooke:

$$\vec{F} = -K\Delta \vec{x} \tag{1}$$

e trovare la costante elastica K. Le dimensioni della costante elastica sono $[N \cdot m^{-1}]$

2 Materiali

Ш	base con asta verticale e un'asta orizzontale per realizzare i supporti;
	molle di varia natura di cui si vuole determinare la costante elastica;
	pesetti;
	bilancia;
	calibro 1

3 Procedimento

Consideriamo un sistema costituito da una molla posta verticalmente sorretta da un asta metallica a cui è giunta tramite un morsetto un corpo di massa m. All'equilibrio in presenza di un campo gravitazionale costante, tipo quello terrestre, \vec{g} , la posizione d'equilibrio è data dalla seguente relazione: $K\Delta l = mg$ Procediamo nel seguente modo:

П	misurare	la.	lunghezza	della.	molla	a. 1	riposo ((e	il	S110	errore	١.
ш	misurare	ıa.	iungnezza	ucna	шопа	a_{1}	Those i	C	11	Suo	CITOIC.	,

¹Vedi appendice sull'uso del calibro

□ misurare la massa dei pesetti con la bilancia (e il loro errore);
□ applicare (alla molla) una massa nota e misurare l'allungamento della molla. Ripetere la misura almeno 5 volte (propgando l'errore sull'allugamento della molla);
□ procedere allo stesso modo con un'altra massa. Utilizzare in totale almeno 4 masse diverse;
□ riportare in una tabella i dati e gli errori ottenuti per diverse tensioni applicate;
□ costruire un grafico con lo spostamento sull'asse delle ordinate e la forza esercitata sulla molla sull'asse delle ascisse riportando su questa i dati sperimentali.
□ Opzionale: ripetere l'esperimento con una molla diversa.

Figura 1: Setup

4 Tabelle e analisi dati

I dati devono essere raccolte in tabelle ordinate. Esempio di tabella:

Tabella massa X:

	$ m[g] e_m$	$ l_0 [cm] e_{l_0}$	$l_f [cm] e_{l_f}$	$\Delta x[cm]$ $e_{\Delta x}$	K
Mis. 1	土	士	土	土	
Mis. 2	土	土	土	土	
Mis. 3	土	±	土	土	
	土	土	±	± ±	

- □ Potete creare le tabelle nella maniera che preferite
- \Box La legge 1 rappresenta un esempio di una relazione lineare (y = a·x) tra le grandezze. Costruire un grafico F vs δx per verificare tale relazione e trovare il valore di K attraverso l'inclinazione della retta "a"

☐ **Importante:** segnate sempre gli errori degli strumenti di misura (sensibilità). Ripetete le misure e calcolate media ed errore. Per propagare l'errore usate le formule viste a lezione.

Figura 2: Esempio analisi dati relazione lineare

5 Conclusioni e domande

- Che valori di K si sono ottenuti? Sono ragionevoli?
- Facendo un confronto grafico, si ottengono valori compatibili di K?
- Quali sono le fonti di errori?

6 Per approfondire e altro

- https://phet.colorado.edu/sims/html/hookes-law/latest/hookes-law_all. html?locale=it
- https://phet.colorado.edu/sims/html/masses-and-springs/latest/masses-and-springs all.html?locale=it