Roll	No.:	 	•••••

National Institute of Technology, Delhi

Name of the Examination: Mid Sem Exam (Oct 2022)

Branch

: ECE (B.Tech)

Semester

: 111

Title of the Course

: Electromagnetic Theory

Course Code : ECL 203

Time: 1 Hour 30 Minutes

Maximum Marks: 25

Note: All questions are compulsory. Figure in right hand margin indicates full marks for the question.

Write the unit vector in the direction from the origin towards the point P(4, -3, -2). Q1.

[1 Marks]

Q2. Convert point (1,2,3) in spherical coordinate system. [1 Marks]

Write the vector $\mathbf{A} = 10\mathbf{\hat{a}}_x - 8\mathbf{\hat{a}}_y + 6\mathbf{\hat{a}}_z$ in cylindrical coordinate system at point Q3. P(10, -8, 6)

[2 Marks]

Write the gradient of L = $(40 \cos \theta) / r^2$ at point P(3, $\pi/3$, $\pi/6$). Q4.

[2 Marks]

Given a vector $\mathbf{A} = (3x + C_1 z) \hat{\mathbf{a}}_x + (C_2 x - 5 z) \hat{\mathbf{a}}_y + (4x - C_3 y + C_4 z) \hat{\mathbf{a}}_z$ **Q5.** What will be the values of C₁, C₂, C₃ and C₄, if the vector A is irrotational and solenoidal?

[2 Marks]

Q6. A volume charge density is expressed as $\rho_v = 10z^2 x \sin(\pi y)$. Find the total charge inside the volume $(-1 \le x \le 2)$, $(0 \le y \le 1)$, $(3 \le z \le 3.6)$.

[2 Marks]

Q7. Find E at P(1,5,2) m in free space if a point charge of 6μ C is located at (1,1,1), the uniform line charge with density $\rho_L = 180 \text{ nC/m}$ along x axis..

[2 Marks]

The flux density $\mathbf{D} = (r/3) \hat{\mathbf{a}}_r \, nC/m^2$ is in free space. How much total electric flux Q8. leaving the sphere of r = 0.3 m?

[2 Marks]

 $Q_1 = -20 \text{ uC}$ and $Q_2 = 50 \text{ uC}$ are the point charges located at P(-6,4, 6) and R(5, 8, -2) in free space. Find the force exerted on Q_1 by Q_2 in vector form.

[3 Marks]

Q9. The charge lies on the circular disc $r \le 4m$, z = 0, with density $\rho_s = (10^{-4}/r) \text{ C/m}^2$. Determine **E** at r = 0, z = 3m.

[3 Marks]

Derive the expressions for electric field intensity and electric flux density due charged circular ring carrying a uniform charge density ρ_L C/m along its circumference of radious R placed in xz plane with center at origin.

[5 Marks]