Einführung in die Stochastik - Mitschrieb

$Vor lesung \ im \ Wintersemester \ 2011/2012$

Sarah Lutteropp

31. Januar 2012

Inhaltsverzeichnis

1	Des	skriptive Statistik
	1.1	Der Grundraum
	1.2	Absolute und relative Häufigkeit
	1.3	Histogramm
	1.4	Lagemaße
	1.5	Streuungsmaße
	1.6	Empirischer Korrelationskoeffizient
2	\mathbf{Ere}	ignisse und Zufallsvariablen 1
	2.1	Definition
	2.2	Beispiele
	2.3	Bemerkung (Mengentheoretische Operationen)
	2.4	Definition
	2.5	Definition
	2.6	Definition
	2.7	Bemerkungen (Rechenregeln für Indikatorfunktionen) 1
	2.8	Definition
3	Dis	krete Wahrscheinlichkeitsräume 1
	3.1	Motivation
	3.2	Definition
	3.3	Folgerung
	3.4	Satz
	3.5	Definition + Satz
	3.6	Definition
	3.7	Definition
	3.8	Definition
	3.9	Satz
4	Koı	mbinatorik 2
_	4.1	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	4.2	Satz
	4.3	Beispiel (Urnenmodelle)

	4.4	D-C-:::	21
	4.4		
	4.5		21
	4.6	1 (01)	22
	4.7	*	22
	4.8	Beispiel (Besetzungsmodelle)	22
5	\mathbf{Der}	Erwartungswert	23
	5.1	Definition	23
	5.2	Satz	23
	5.3	Folgerung	24
	5.4	Satz (Transformationsformel)	24
	5.5		25
6	Die	hypergeometrische Verteilung und die Binomialvertei-	
	lung	• •	26
	6.1	Definition	26
	6.2	Satz	27
	6.3	Motivation	27
	6.4	Definition	27
	6.5	Satz	28
7	Meł	rstufige Experimente	29
	7.1	8 r	$\frac{-5}{29}$
	7.2	r	$\frac{-9}{29}$
	7.3		3 0
	7.4		30
8	Rad	ngte Wahrscheinlichkeiten	32
G	8.1	8	32
	8.2		$\frac{32}{32}$
	8.3	Bemerkung (Zusammenhang zu Übergangswahrscheinlichkei-	J
	0.0	9 (33
	8.4	· · · · · · · · · · · · · · · · · · ·	აა 33
	8.5		აა 33
	8.6	±	34
	8.7	1 (9 1)	34
	8.8	Beispiel (Simpson-Paradoxon)	35
9	Stoc	0.0	36
	9.1	Definition	36
	9.2	Bemerkung	36
	9.3	Bemerkungen	37
	9.4	Beispiel (Produkträume)	37
	0.5	Satz	38

	9.6	Satz (Blockungslemma)
	9.7	Satz
	9.8	Beispiel (Bernoulli-Kette der Länge $n)$
10	Gen	neinsame Verteilung 41
		Definition
		Beispiel
		Beispiel
		Definition
		Satz
	10.6	Satz (Blockungslemma)
		Satz (allgemeine Transformations-Formel)
		Satz
		Satz (Faltungsformel)
		OSatz (Additionsgesetz für Binomialverteilungen)
	10110	(Traditions gessell ful Dinomization tending on)
11		anz, Kovarianz, Korrelation 46
	11.1	Definition
	11.2	Bemerkungen
	11.3	Satz
	11.4	Beispiel
	11.5	Definition
	11.6	Satz (Tschebyschov-Ungleichung)
	11.7	<u>Definition</u>
	11.8	Satz
		Folgerung
		Beispiel
		Satz
		Folgerung
		Bemerkung
12		htige diskrete Verteilungen 53
	12.1	Satz (Gesetz seltener Ereignisse)
	12.2	Definition
	12.3	Satz
	12.4	Definition und Satz
	12.5	Definition und Satz
	12.6	Satz
	12.7	Bemerkungen
		Beispiel (Multinomiales Versuchsschema)
		Definition
		Folgering 58

13	Bedingte Erwartungswerte und bedingte Verteilungen	59
	13.1 Definition	59
	13.2 Bemerkungen	59
	13.3 Beispiel	60
	13.4 Satz (Formel vom totalen Erwartungswert)	60
	13.5 Beispiel	60
	13.6 Satz (Eigenschaften)	61
	13.7 Satz (Substitutionsformel)	61
	13.8 Beispiel (Würfelwurf)	62
	13.9 Definition	62
	13.10Beispiel	63
	13.11Satz	63
11	Grenzwertsätze	64
14	14.1 Satz (Schwache Gesetz der großen Zahlen, SGGZ)	64
	14.2 Definition	64
	14.3 Folgerung (SGGZ von Jakob Bernoulli)	65
	14.4 Satz	65
	14.5 Definition	67
	14.6 Satz	67
	14.7 Satz (ZGWS Lindeberg-Levy)	67
	11.7 Satz (ZGVVS Ellideberg Eevy)	01
15	Statistik - Schätzprobleme	69
	15.1 Schätzung der Erfolgswahrscheinlichkeit einer Bernoulli-Kette	69
	15.2 Allgemeiner Modellrahmen	70
	15.3 Beispiel (Binomialverteilung)	70
	15.4 Beispiel	71
	15.5 Definition	71
	15.6 Bemerkungen	71
	15.7 Definition	72
	15.8 Bemerkung	72
	15.9 Definition	72
	15.10Beispiel	72
	15.11Definition	73
	15.12Beispiel	73
	15.13Beispiel (vgl. 15.4)	73
16	Konfidenzbereiche	75
10	16.1 Beispiel	75
	16.2 Definition	75
	16.3 Bemerkungen	76
	16.4 Beispiel (Konfidenzschranken für p in $Bin(n,p)$)	76
	16.5 Allgemeines Konstruktionsprinzip	78
	16.6 Bemerkung	78
	Total Demarkans	10

16.8 $(Bin(n,p), S_n := X_1 + \ldots + X_n)$ 79 17 Testtheorie: fällt weg 80 18 Allgemeine Modelle 81 18.1 Definition 81 18.2 Bemerkungen 81 18.3 Lemma 82 18.4 Satz und Definition 82 18.5 Folgerung 82 18.6 Folgerung und Definition 82 18.7 Definition (Axiomensystem von Kolmogrov) 84 18.9 Definition und Satz 84 18.10Existenz- und Eindeutigkeitssatz 85 18.11Satz 85 18.12Beispiel 86 18.13Beispiel 87 18.14Definition 87 18.15Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 92 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 <		16.7 Definition	79
18 Allgemeine Modelle 81 18.1 Definition 81 18.2 Bemerkungen 81 18.3 Lemma 82 18.4 Satz und Definition 82 18.5 Folgerung 82 18.6 Folgerung und Definition 82 18.7 Definition (Axiomensystem von Kolmogrov) 84 18.8 Bemerkung 84 18.9 Definition und Satz 84 18.10Existenz- und Eindeutigkeitssatz 85 18.11Satz 85 18.12Beispiel 86 18.13Beispiel 87 18.14Definition 87 18.15Beispiel 88 18.16Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 92 19.3 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel			79
18.1 Definition 81 18.2 Bemerkungen 81 18.3 Lemma 82 18.4 Satz und Definition 82 18.5 Folgerung 82 18.6 Folgerung und Definition 82 18.7 Definition (Axiomensystem von Kolmogrov) 84 18.8 Bemerkung 84 18.9 Definition und Satz 84 18.10 Existenz- und Eindeutigkeitssatz 85 18.11 Satz 85 18.12 Beispiel 86 18.13 Beispiel 87 18.14 Definition 87 18.15 Beispiel 88 18.16 Beispiel 88 18.17 Definition und Bemerkung 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96	17	Testtheorie: fällt weg	80
18.2 Bemerkungen 81 18.3 Lemma 82 18.4 Satz und Definition 82 18.5 Folgerung 82 18.6 Folgerung und Definition 82 18.7 Definition (Axiomensystem von Kolmogrov) 84 18.8 Bemerkung 84 18.9 Definition und Satz 84 18.10 Existenz- und Eindeutigkeitssatz 85 18.11 Satz 85 18.12 Beispiel 86 18.13 Beispiel 87 18.14 Definition 87 18.15 Beispiel 88 18.16 Beispiel 88 18.17 Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel	18	<u> </u>	81
18.3 Lemma 82 18.4 Satz und Definition 82 18.5 Folgerung 82 18.6 Folgerung und Definition 82 18.7 Definition (Axiomensystem von Kolmogrov) 84 18.8 Bemerkung 84 18.9 Definition und Satz 84 18.10 Existenz- und Eindeutigkeitssatz 85 18.11 Satz 85 18.12 Beispiel 86 18.13 Beispiel 87 18.14 Definition 87 18.15 Beispiel 88 18.17 Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.2 Beispiel 96 20.3 Beispiel 96		18.1 Definition	81
18.4 Satz und Definition 82 18.5 Folgerung 82 18.6 Folgerung und Definition 82 18.7 Definition (Axiomensystem von Kolmogrov) 84 18.8 Bemerkung 84 18.9 Definition und Satz 84 18.10Existenz- und Eindeutigkeitssatz 85 18.11Satz 85 18.12Beispiel 86 18.13Beispiel 87 18.14Definition 87 18.15Beispiel 88 18.16Beispiel 88 18.17Definition und Bemerkung 90 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.5 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.2 Bemerkungen	81
18.5 Folgerung 82 18.6 Folgerung und Definition 82 18.7 Definition (Axiomensystem von Kolmogrov) 84 18.8 Bemerkung 84 18.9 Definition und Satz 84 18.10 Existenz- und Eindeutigkeitssatz 85 18.11 Satz 85 18.12 Beispiel 86 18.13 Beispiel 87 18.14 Definition 87 18.15 Beispiel 88 18.16 Beispiel 88 18.17 Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96			82
18.5 Folgerung 82 18.6 Folgerung und Definition 82 18.7 Definition (Axiomensystem von Kolmogrov) 84 18.8 Bemerkung 84 18.9 Definition und Satz 84 18.10 Existenz- und Eindeutigkeitssatz 85 18.11 Satz 85 18.12 Beispiel 86 18.13 Beispiel 87 18.14 Definition 87 18.15 Beispiel 88 18.16 Beispiel 88 18.17 Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.4 Satz und Definition	82
18.7 Definition (Axiomensystem von Kolmogrov) 84 18.8 Bemerkung 84 18.9 Definition und Satz 84 18.10Existenz- und Eindeutigkeitssatz 85 18.11Satz 85 18.12Beispiel 86 18.13Beispiel 87 18.14Definition 87 18.15Beispiel 88 18.16Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96 20.3 Beispiel 96			82
18.8 Bemerkung 84 18.9 Definition und Satz 84 18.10Existenz- und Eindeutigkeitssatz 85 18.11Satz 85 18.12Beispiel 86 18.13Beispiel 87 18.14Definition 87 18.15Beispiel 88 18.16Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.6 Folgerung und Definition	82
18.9 Definition und Satz 84 18.10Existenz- und Eindeutigkeitssatz 85 18.11Satz 85 18.12Beispiel 86 18.13Beispiel 87 18.14Definition 87 18.15Beispiel 88 18.16Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 92 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.7 Definition (Axiomensystem von Kolmogrov)	84
18.10Existenz- und Eindeutigkeitssatz 85 18.11Satz 85 18.12Beispiel 86 18.13Beispiel 87 18.14Definition 87 18.15Beispiel 88 18.16Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.8 Bemerkung	84
18.11Satz 85 18.12Beispiel 86 18.13Beispiel 87 18.14Definition 87 18.15Beispiel 88 18.16Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.9 Definition und Satz	84
18.12Beispiel 86 18.13Beispiel 87 18.14Definition 87 18.15Beispiel 88 18.16Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.10Existenz- und Eindeutigkeitssatz	85
18.13Beispiel 87 18.14Definition 87 18.15Beispiel 88 18.16Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.11Satz	85
18.14Definition 87 18.15Beispiel 88 18.16Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.12Beispiel	86
18.15Beispiel 88 18.16Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.13Beispiel	87
18.16Beispiel 88 18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.14Definition	87
18.17Definition und Bemerkung 89 19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.15Beispiel	88
19 Zufallsvariablen 90 19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.16Beispiel	88
19.1 Definition und Satz 90 19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		18.17Definition und Bemerkung	89
19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96	19	Zufallsvariablen	90
19.2 Bemerkung 90 19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		19.1 Definition und Satz	90
19.3 Bemerkung 92 19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96			90
19.4 Bemerkung 92 19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96			92
19.5 Bemerkung 93 19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96			92
19.6 Beispiel 93 19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96		- Carlotte and the second	93
19.7 Definition 94 19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96			93
19.8 Bemerkung 94 20 Rechnen mit Dichten 95 20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96			94
20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96			94
20.1 Satz 95 20.2 Beispiel 96 20.3 Beispiel 96	20	Rechnen mit Dichten	95
20.2 Beispiel 96 20.3 Beispiel 96	_0		
20.3 Beispiel			
±			
		20.4 Beispiel	96

Vorwort

Dies ist ein Mitschrieb der Vorlesung "Einführung in die Stochastik" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von

Herrn Prof. Dr. Günther Last gehalten wird.

Deskriptive Statistik

1.1 Der Grundraum

 $\emptyset \neq \Omega = \text{Grundraum (Grundgesamtheit, Merkmalsraum, Stichprobenraum)}$ Annahme: Ω ist diskret(endlich oder abzählbar unendlich) (Häufig $\Omega \subseteq \mathbb{R}$)

1.2 Absolute und relative Häufigkeit

$$x_1,\ldots,x_n\in\Omega$$
 ("Daten")
 $h(\omega)=\mathrm{card}\left\{j\in\{1,\ldots,n\}\colon x_j=\omega\right\},\omega\in\Omega,$ absolute Häufigkeit von ω

Bemerkung
$$\sum_{\omega \in \Omega} h(\omega) = n$$

Definition $\frac{1}{n}h(\omega)$ = relative Häufigkeit von ω $h(A) = \operatorname{card} \{j \in \{1, \dots, n\} : x_j \in A\}, A \subset \Omega$ = absolute Häufigkeit von A, $\frac{1}{n}h(A)$ = relative Häufigkeit von A

1.3 Histogramm

$$x_1, \dots, x_n \in \mathbb{R}, b_1 < b_2 < \dots < b_s \text{ mit } b_1 \leq \min_{1 \leq i \leq n} x_i, b_s > \max_{1 \leq i \leq n} x_i$$

TODO: BILD
 $d_j(b_{j+1} - b_j) = h([b_j, b_{j+1})) = \operatorname{card} \{i \in \{1, \dots, n\} : b_j \leq x_i < b_{j+1}\}$

1.4 Lagemaße

Definition Ein **Lagemaß** ist eine Abbildung $l: \mathbb{R}^n \to \mathbb{R}$ mit

$$l(x_1 + a, \dots, x_n + a) = l(x_1, \dots, x_n) + a$$

[&]quot;Verschiebungskovarianz". $x_1, \ldots, x_n, a \in \mathbb{R}$

1.4 Lagemaße 9

1.4.1 Arithmetisches Mittel

$$x_1, \ldots, x_n \in \mathbb{R}, \bar{x} := \frac{1}{n} \sum_{j=1}^n x_j$$
 "Schwerpunkt der Daten"

Fakt
$$\sum_{i=1}^{n} (x_i - t)^2 \xrightarrow{t} \text{Min}$$

Lösung: $t = \bar{x}$

"Prinzip der kleinsten Quadrate"

Beweis
$$\frac{1}{n}\sum_{j=1}^{n}(x_j-t)^2=t^2-2\bar{x}t+\frac{1}{n}\sum_{j=1}^{n}x_j^2=(t-\bar{x})^2+\frac{1}{n}\sum_{j=1}^{n}x_j^2-(\bar{x})^2$$

1.4.2 Median, Quantile

$$x_1, \ldots, x_n \in \mathbb{R} \Rightarrow x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$$
 geordnete Stichprobe

Definition

$$x_{1/2} := \begin{cases} x_{(\frac{n+1}{2})} & \text{, falls } n \text{ ungerade} \\ \frac{1}{2}(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}) & \text{, falls } n \text{ gerade} \end{cases}$$

heißt **Median** von x_1, \ldots, x_n .

Fakt
$$\sum_{j=1}^{n} |x_j - x_{1/2}| = \min_{t} \sum_{j=1}^{n} |x_j - t| Übungsaufgabe$$

Bemerkung Der Median ist "robust" gegenüber "Ausreißern". Ist etwa $x_1 = \ldots = x_9 = 1$ und $x_{10} = 1000(n = 10)$, so gilt $\bar{x} = 100, 9, x_{1/2} = 1$

Definition Für 0 heißt

$$x_p := \begin{cases} x_{(\lfloor n \cdot p + 1 \rfloor)} & \text{, falls } n \cdot p \notin \mathbb{N} \\ \frac{1}{2} (x_{(n \cdot p)} + x_{(n \cdot p + 1)}) & \text{, falls } n \cdot p \in \mathbb{N} \end{cases}$$

p-Quantil von x_1, \ldots, x_n .

Interpretation Mindestens $p \cdot 100\%$ der Daten liegen links von x_p und mindestens $(1-p) \cdot 100\%$ liegen rechts von x_p . $x_{1/4}$ = unteres Quartil, $x_{3/4}$ = oberes Quartil

1.5Streuungsmaße

Definition Eine Abbildung $\sigma: \mathbb{R}^n \to \mathbb{R}$ mit

$$\sigma(x_1 + a, \dots, x_n + a) = \sigma(x_1, \dots, x_n)$$
 (Translationsinvarianz)

heißt Streuungsmaß.

1.5.1Empirische Varianz

$$s^2 := \frac{1}{n-1} \sum_{j=1}^n (x_j - \bar{x})^2 =$$
empirische Varianz von x_1, \dots, x_n

1.5.2 Empirische Standardabweichung

 $s := +\sqrt{s^2} =$ empirische Standardabweichung von x_1, \dots, x_n

1.5.3Spannweite

$$x_{(n)}-x_{(1)}=$$
 Spannweite von x_1,\ldots,x_n

1.5.4 Quartilsabstand

$$x_{(3/4)} - x_{(1/4)} =$$
Quartilsabstand von x_1, \ldots, x_n

Empirischer Korrelationskoeffizient

$$(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^2$$
 TODO: BILD
Gesucht: Gerade $y = a + b \cdot x$ so, dass

$$(*)$$
 $\sum_{j=1}^{n} (y_j - a - bx_j)^2 \xrightarrow{a,b} \text{Min}$

Definition
$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \ \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2$$

$$\sigma_{xy} = \frac{1}{n} \sum_{j=1}^{n} (x_j - \bar{x})(y_j - \bar{y})$$
 empirische Kovarianz $\sigma_x^2 > 0, \sigma_y^2 > 0.$

Lösung von (*):
$$b^* = \frac{\sigma_{xy}}{\sigma_{xz}}, a^* = \bar{y} - b^* \cdot \bar{x}$$

$$\min_{\substack{a,b \ y_{j-1}}} \sum_{j=1}^{n} (y_j - a - bx_j)^2 \stackrel{!}{=} \min_{\substack{b \ y_{j-1}}} \sum_{j=1}^{n} (y_i - \bar{y} - b(x_j - \bar{x}))^2 = \dots$$

"lineare Regression"

Einsetzen von a^* und b^* in die Zielfunktion:

$$0 \le \sum_{j=1}^{n} (y_j - a^* - b^* x_j)^2 = \dots = n\sigma_y^2 (1 - (\frac{\sigma_{xy}}{\sigma_x \sigma_y})^2)$$

Definition $r_{xy}:=rac{\sigma_{xy}}{\sigma_x\sigma_y}$ heißt empirischer Korrelationskoeffizient (Pearson).

Folgerung $|r_{xy}| \le 1$ Es gilt $r_{xy} = \pm 1 \Leftrightarrow$ Punktewolke liegt exakt auf der Geraden $y = a^* + b^*x$. Dabei ist $b^* > 0$, falls $r_{xy} = 1$ und $b^* < 0$, falls $r_{xy} = -1$.

Dieser empirische Korrelationskoeffizient ist ein Maß für die (affin) lineare $Abh \ddot{a}ngigkeit zwischen den x_j und den y_j$.

Ereignisse und Zufallsvariablen

2.1 Definition

Gegeben sei eine Grundmenge Ω . Die Elemente von Ω heißen **Elementarereignisse**. Teilmengen von Ω heißen **Ereignisse**. (Idee: $\omega \in \Omega$ ist Ausgang eines zufälligen Versuchs.)

Interpretation Ein Ereignis $A \subset \Omega$ "tritt ein", wenn $\omega \in A$.

2.2 Beispiele

- (i) (Münzwurf) $\Omega = \{0, 1\} (\text{oder } \Omega = \{W, Z\})$
- (ii) (m Münzwürfe) $\Omega = \{0,1\}^m (A = \{\omega = (\omega_1,\ldots,\omega_m): \sum_{j=1}^m \omega_j \geq k\} \text{ Ereignis })$
- (iii) Werfen von 2 Würfeln $\Omega = \{1, \dots, 6\}^2$
- (iv) Brownsche Bewegung (TODO: BILD) Bewegung eines Blütenpollens in einer Flüssigkeit \Rightarrow Zukunftsmusik $\Omega = C([0,1], \mathbb{R}^2)$

2.3 Bemerkung (Mengentheoretische Operationen)

```
Seien A, B, A_1, A_2, \ldots \subset \Omega.

A \cap B = \{\omega \in \Omega : \omega \in A \text{ und } \omega \in B\} = \text{"A und B treten ein"}

A \cup B = \text{"A oder B treten ein"}

\bar{A} \equiv A^c := \Omega \setminus A = \{\omega \in \Omega : \omega \notin A\} = \text{"A tritt nicht ein"}
```

2.4 Definition 13

 $A \backslash B = A \cap B^c \hat{=}$ "A tritt ein, aber nicht B" $A \subset B \hat{=}$ "wenn A, dann B" $\emptyset \hat{=}$ "unmögliches Ereignis" $\Omega \hat{=}$ "sicheres Ereignis"

Abkürzung $AB = A \cap B$

2.4 Definition

Eine Abbildung $X : \Omega \to \mathbb{R}$ heißt (reelle) **Zufallsvariable**. Für $\omega \in \Omega$ heißt $X(\omega)$ **Realisierung** der Zufallsvariable zu ω .

Idee Mit $\omega \in \Omega$ bekommt auch $X(\omega)$ einen zufälligen Charakter.

Definition
$$X^{-1} \colon \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\Omega) = \{A \colon A \in \Omega\}$$
 ist definiert durch $X^{-1}(A) = \{\omega \in \Omega \colon X(\omega) \in A\}$ ("Urbild von A unter X")

Bemerkung

•
$$X^{-1}(A \cap B) = X^{-1}(A) \cap X^{-1}(B), A, B \subset \mathbb{R}$$

•
$$X^{-1}(A \cup B) = X^{-1}(A) \cup X^{-1}(B)$$

•
$$X^{-1}(\bigcup_{j=1}^{\infty} A_j) = \bigcup_{j=1}^{\infty} X^{-1}(A_j)$$

•
$$X^{-1}(\bigcap_{j=1}^{\infty} A_j) = \bigcap_{j=1}^{\infty} X^{-1}(A_j)$$

Vereinbarung Es sei X eine Zufallsvariable und $t \in \mathbb{R}$. Wir setzen

•
$$\{X = t\} := \{\omega : X(\omega) = t\} (= X^{-1}(t))$$

•
$$\{X \ge t\} := \{\omega \colon X(\omega) \ge t\}$$

2.5 Definition

Sind X, Y Zufallsvariablen, so definiert man

•
$$(X + Y)(\omega) = X(\omega) + Y(\omega)$$

•
$$(X - Y)(\omega) = X(\omega) - Y(\omega)$$

•
$$(X \cdot Y)(\omega) = X(\omega) \cdot Y(\omega)$$

2.6 Definition 14

 $\omega \in \Omega,$ neue Zufallsvariablen $X+Y, X-Y, X\cdot Y$ analog für $a \in \mathbb{R}$

- $aX(\omega) = a \cdot (X(\omega))$
- $\min(X, Y) = (X \wedge Y)(\omega) := \min\{X(\omega), Y(\omega)\}\dots$

2.6 Definition

Sei $A \subset \Omega$. Die Funktion $1_A : \Omega \to \mathbb{R}$ ist definiert durch

$$1_A(\omega) = \begin{cases} 1 & \text{, falls } \omega \in A \\ 0 & \text{, falls } \omega \notin A \end{cases}$$

und heißt Indikatorfunktion von A.

2.7 Bemerkungen (Rechenregeln für Indikatorfunktionen)

- $1_{\emptyset} \equiv 0$
- $1_{\Omega} \equiv 1$
- $(1_A)^2 = 1_A$
- $1_{A^c} = 1 1_A$
- $\bullet \ 1_{A \cap B} = 1_A \cdot 1_B$
- $1_{A \cup B} = 1_A + 1_B 1_{A \cap B}$
- $A \subset B \Leftrightarrow 1_A \leq 1_B$
- $1_{A \wedge B} = |1_A 1_B|$

2.8 Definition

Seien $A_1, \ldots, A_n \subset \Omega$. Die Zufallsvariable

$$X := \sum_{j=1}^{n} 1_{A_j}$$

heißt Zählvariable oder Indikatorsumme.

2.8 Definition 15

Bemerkung

- $\{X = 0\} = \{\omega \colon X(\omega) = 0\} = A_1^c \cap \dots A_n^c$
- $\{X=n\}=A_1\cap\ldots\cap A_n$
- $\{X=k\}$ = "genau k der Ereignisse A_1,\ldots,A_n treten ein" = $\bigcup_{T\subset\{1,\ldots,n\},|T|=k} (\bigcap_{j\in T} A_j\cap\bigcap_{j\notin T} A_j^c) (T\subset\{1,\ldots,n\},|T|=\mathrm{card}\ T=k)$

Diskrete Wahrscheinlichkeitsräume

3.1 Motivation

Zufallsexperiment mit Ausgängen in Ω n-malige, 'unabhängige' Wiederholung \Rightarrow Ergebnis $(a_1,\ldots,a_n)\in\Omega^n$ $r_n(A):=\frac{1}{n}\sum_{j=1}^n 1_A(a_j), A\subset\Omega$ relative Häufigkeit von A $0\leq r_n(A)\leq 1, r_n(\emptyset)=0, r_n(\Omega)=1$ $r_n(A\cup B)=r_n(A)+r_n(B), A\cap B=\emptyset$ empirisches Gesetz über Stabilisierung relativer Häufigkeiten: $r_n(A) \underset{n\to\infty}{\leadsto} ?$

3.2 Definition

Ein Paar (Ω, \mathbb{P}) bestehend aus einer diskreten Menge $\Omega \neq \emptyset$ und einer Funktion $\mathbb{P} \colon \mathcal{P} \to \mathbb{R}$ heißt diskreter Wahrscheinlichkeitsraum, falls:

- (P1) $\mathbb{P}(A) \geq 0, A \subset \Omega$
- (P2) $\mathbb{P}(\Omega) = 1$
- (P3) $\mathbb{P}(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mathbb{P}(A_j), A_i \cap A_j = \emptyset, i \neq j$ Diese Eigenschaft heißt σ -Additivität.

Man nennt \mathbb{P} Wahrscheinlichkeitsmaß (auf Ω) (oder Wahrscheinlichkeitsverteilung) und $\mathbb{P}(A)$ heißt Wahrscheinlichkeit von A.

3.3 Folgerung 17

3.3 Folgerung

- a) $\mathbb{P}(\emptyset) = 0$
- b) $\mathbb{P}(\bigcup_{j=1}^{n} A_j) = \sum_{j=1}^{n} \mathbb{P}(A_j), A_i \cap A_j = \emptyset, i \neq j$
- c) $0 \leq \mathbb{P}(A) \leq 1, A \subset \Omega$
- d) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B), A, B \subset \Omega$
- e) $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$ (Monotonie)
- f) $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$ (Komplementärwahrscheinlichkeit)
- g) $\mathbb{P}(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} A_j$ (Subadditivität)
- h) $A_n \subset A_{n+1}, n \in \mathbb{N} \Rightarrow \mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$ (Stetigkeit von unten)
- i) $A_n \supset A_{n+1}, n \in \mathbb{N} \Rightarrow \mathbb{P}(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$ (Stetigkeit von oben)

Beweis • a): $A_j = \emptyset, j \in \mathbb{N}$ (P3) 1 $\mathbb{P}(\emptyset) = 0$.

- b): $A_{n+1} = A_{n+2} = \ldots = \emptyset$ in P3!
- c) + f): Für $A \subset \Omega$ gilt nach b) (für n = 2):

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(A \cup A^c) \stackrel{(b)}{=} \mathbb{P}(A) + \mathbb{P}(A^c)$$

• d): Nach b) gilt $\mathbb{P}(A) = \mathbb{P}(A \backslash B) + \mathbb{P}(A \cap B)$, $\mathbb{P}(B) = \mathbb{P}(B \backslash A) + \mathbb{P}(A \cap B)$ und somit $\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) = \mathbb{P}(A \backslash B) + \mathbb{P}(B \backslash A) + \mathbb{P}(A \cap B) \stackrel{(b)}{=} \mathbb{P}(A \cup B)$

• e): Wegen $B = A \cup (B \setminus A)$ folgt² $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \geq \mathbb{P}(A)$

• g):
$$B_1 := A_1, B_2 := A_2 \setminus A_1, \dots, B_n := A_n \setminus (\bigcup_{j=1}^{n-1} A_j), n \ge 2.$$

Dann gilt $B_n \subset A_n$ und $\bigcup_{j=1}^n B_j = \bigcup_{j=1}^n A_j$ sowie $B_i \cap B_j = \emptyset, i \neq j$.

Es folgt aus (P3):

$$\mathbb{P}(\bigcup_{j=1}^{\infty} A_j) \stackrel{!}{=} \mathbb{P}(\bigcup_{j=1}^{n} B_j) \stackrel{(P3)}{=} \sum_{j=1}^{n} \mathbb{P}(B_j) \stackrel{e)}{\leq} \sum_{j=1}^{n} \mathbb{P}(A_j) \ (\infty \text{ ist zugelassen})$$

 \bullet h) + i): Übungsaufgabe

 $^{{}^{1}\}mathbb{P}(\emptyset) = \mathbb{P}(\emptyset \cup \emptyset) = \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset) = 2 \cdot \mathbb{P}(\emptyset)$ ²(aus der Additivität)

3.4 Satz 18

3.4 Satz

Seien $A_1, \ldots, A_n \subset \Omega$. Setze

$$S_k := \sum_{1 \le i_1 < \dots < i_k \le n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$

Dann gilt

• a)
$$\mathbb{P}(\bigcup_{j=1}^{n} A_j) = \sum_{k=1}^{n} (-1)^{k-1} S_k$$
 'Siebformel'

• b)
$$\mathbb{P}(\bigcup_{j=1}^{n} A_j) \le \sum_{k=1}^{2s+1} (-1)^{k-1} S_k, s = 0, \dots, \lfloor \frac{n-1}{2} \rfloor$$

 $\mathbb{P}(\bigcup_{j=1}^{n} A_j) \ge \sum_{k=1}^{2s} (-1)^{k-1} S_k, s = 1, \dots, \lfloor \frac{n}{2} \rfloor$

Beweisidee für Siebformel vollständige Induktion nach n:

$$\underline{\mathbf{n}} = \underline{\mathbf{2}} : \mathbb{P}(A_1 \cup A_2) \stackrel{(d)}{=} \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2) = S_1 - S_2 \\
\underline{\mathbf{n}} = \underline{\mathbf{3}} : \mathbb{P}(\underline{A_1 \cup A_2} \cup A_3) \stackrel{(d)}{=} \mathbb{P}(A_1 \cup A_2) + \mathbb{P}(A_3) - \mathbb{P}((A_1 \cup A_2) \cap A_3)^3 \\
\stackrel{(d)}{=} \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2) + \mathbb{P}(A_3) - \mathbb{P}(A_1 \cap A_3) - \mathbb{P}(A_2 \cap A_3) + \mathbb{P}(A_1 \cap A_2) \\
\underline{A_2 \cap A_3} = S_1 - S_2 + S_3$$

3.5 Definition + Satz

a) Sei (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum. Dann heißt $p: \Omega \to \mathbb{R}$ definiert durch $p(\omega) := \mathbb{P}(\{\omega\})$ Wahrscheinlichkeitsfunktion (von \mathbb{P}). Es gilt $\mathbb{P}(A) = \sum_{\omega \in A} p(\omega), A \subset \Omega$.

b) Sind Ω diskret und $p \colon \Omega \to \mathbb{R}$ eine Abbildung mit $p(\omega) \geq 0$ und $\sum_{\omega \in \Omega} p(\omega) = 1$, so erhält man vermöge $\mathbb{P}(A) := \sum_{\omega \in A} p(\omega)$ einen diskreten Wahrscheinlichkeitsraum.

Beweis • a) σ -Additivität $(A = \bigcup_{\omega \in A} \{\omega\})$ • b) σ -Additivität: Großer Umordnungssatz! (Analysis)

3.6 Definition

 $|\Omega| =: n < \infty$. Definiere $\mathbb{P}(A) = \frac{|A|}{n}$. Dann heißt (Ω, \mathbb{P}) (ein diskreter Wahrscheinlichkeitsraum!) Laplace-Raum. Man nennt P Gleichverteilung auf

('homogene Münze', 'Würfeln', ...)

 $[\]overline{{}^{3}(A_{1} \cup A_{2}) \cap A_{3} = (A_{1} \cap A_{3}) \cup (A_{2} \cap A_{3})}$

3.7 Definition 19

3.7 Definition

Sei $\Omega \neq \emptyset$ beliebig! (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum $\Leftrightarrow \exists$ abzählbare Menge $\Omega_0 \subset \Omega$, $\exists p \colon \Omega \to [0, \infty)$ mit $p(\omega = 0)$ für alle $\omega \notin \Omega_0$, und $\sum_{\omega \in \Omega_0} p(\omega) = 1$, und $\mathbb{P}(A) = \sum_{\omega \in A \cap \Omega_0} p(\omega)$, $A \subset \Omega$.

Wiederholung (Ω, \mathbb{P}) Wahrscheinlichkeitsraum

$$p: \Omega \to [0, 1], \sum_{\omega \in \Omega} p(\omega) = 1$$

$$\mathbb{P}(A) := \sum_{\omega \in A} p(\omega), A \subset \Omega$$

$$p(\omega) := \mathbb{P}(\{\omega\})$$

$$\begin{array}{l} \Omega \text{ allgemeine Menge, } \Omega_0 \subset \Omega \text{ diskret} \\ p \colon \Omega \to [0,1], \sum_{\omega \in \Omega_0} p(\omega) = 1, p(\omega) = 0, \omega \notin \Omega_0 \\ \mathbb{P}(A) := \sum_{\omega \in A} p(\omega) := \sum_{\omega \in A \cap \Omega_0} p(\omega) \\ \Omega_0 = \text{Träger von } \mathbb{P} \end{array}$$

3.8 Definition

 (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum mit Träger Ω_0 . Es sei $X : \Omega \to \mathbb{R}$ eine Zufallsvariable. Dann heißt die Funktion $\mathbb{P}^X : \mathbb{P}(\mathbb{R}) \to \mathbb{R}$ definiert durch $\mathbb{P}^X(B) := \mathbb{P}(X^{-1}(B)), B \subset \mathbb{R}$ Verteilung um X.

3.9 Satz

In der Situation von Definition 3.8 ist $(\mathbb{R}, \mathbb{P}^X)$ ein diskreter Wahrscheinlichkeitsraum mit Träger $B_0 := X(\Omega_0) = \{X(\omega) : \omega \in \Omega_0\}$

Beweis. Für $B \subset \mathbb{R}$.

$$\mathbb{P}^{X}(B) = \mathbb{P}(\{\omega \colon X(\omega) \in B\})$$
$$\stackrel{!}{=} \mathbb{P}(\{\omega \colon X(\omega) \in B \cap B_{0}\})$$

Definiert man für $t \in \mathbb{R}$

$$p_t = \mathbb{P}(\{\omega \colon X(\omega) = t\}) = \mathbb{P}(X = t)$$

so ergibt sich aus der $\sigma\text{-}\mathrm{Additivit}$ ät von $\mathbb P$

$$\mathbb{P}^X(B) = \sum_{t \in B \cap B_0} \mathbb{P}(\{\omega \colon X(\omega) = t\}) = \sum_{t \in B \cap B_0} p_t$$

Kombinatorik

|A| = card(A) = Anzahl der Elemente einer endlichen Menge A

4.1 Grundregeln

$$\begin{array}{l} A_1,\ldots,A_k \text{ endliche Menge} \\ \text{(i)} \ A_i\cap A_j=\emptyset, i\neq j \Rightarrow \left|\bigcup_{j=1}^n A_j\right| = \sum\limits_{j=1}^n A_j \\ \text{(ii)} \ |A_1\times\ldots\times A_n| = \prod\limits_{j=1}^k |A_j| \end{array}$$

(ii)
$$|A_1 \times \ldots \times A_n| = \prod_{j=1}^k |A_j|$$

4.2 Satz

Es sollen k-Tupel (a_1, \ldots, a_k) durch sukzessives Festlegen von a_1, a_2, \ldots, a_k nach folgenden Regeln gebildet werden:

- $\bullet\,$ es gibt j_1 Möglichkeiten für die Wahl von a_1
- \bullet es gibt (dann) j_2 Möglichkeiten für die Wahl von a_2
- ullet es gibt (dann) j_k Möglichkeiten für die Wahl von a_k

Dann gibt es genau $j_1 \cdot \ldots \cdot j_k$ solcher Tupel.

4.3 Beispiel (Urnenmodelle)

Betrachte Urne mit n durchnummerierten Kugeln. Es werden k Kugeln nach folgenden Regeln gezogen: $(M := \{1, \dots, n\})$

4.4 Definition 21

Beachtung der Reihenfolge Zurücklegen (Wiederholung)	ja	nein
ja	k-Permutationen aus	k-Kombinationen aus
	M mit Wiederholung,	M mit Wiederholung,
	Per_k^n	Kom_k^n
nein	k-Permutationen aus	k-Kombinationen aus
	M ohne Wiederholung,	M ohne Wiederholung,
	$Per_{k,\neq}^n$	$Kom^n_{k, \neq}$

4.4 Definition

 $M = \{1, \dots, n\} (n \in \mathbb{N})$

- $Per_k^n := M^k$
- $Per_{k,\neq}^n := \{(a_1, \dots, a_k) \in M^k : a_i \neq a_j \text{ für } i \neq j\}$
- $Kom_k^n := \{(a_1, \dots, a_k = \in M^k : a_1 \le a_2 \le \dots \le a_k\}$
- $(Kom_{k,\neq}^n := \{(a_1,\ldots,a_k) \in M^k : a_1 < a_2 < \ldots < a_k\}$

4.5 Satz

- (i) $|Per_k^n| = n^k$
- (ii) $|Per_{k,\neq}^n| := n^{\underline{k}} = n \cdot (n-1) \cdot \ldots \cdot (n-k+1)$
- (iii) $|Kom_k^n| = \binom{n+k-1}{k}$
- (iv) $|Kom_{k,\neq}^n| = \binom{n}{k}$

Beweis. (i): 4.1.(ii)

- (ii) Satz 4.2
- (iv) Betrachte Äquivalenzrelation

$$(a_1,\ldots,a_k)\sim(b_1,\ldots,b_k)\Leftrightarrow\{a_1,\ldots,a_k\}=\{b_1,\ldots,b_k\}$$

auf $Per_{k,\neq}^n$. Jede Äquivalenzklasse hat k! Elemente! Es folgt

$$|Kom_{k,\neq}^n| \cdot k! = |Per_{k,\neq}^n| = n^{\underline{k}}$$

(iii) Die Abbildung $g\colon Kom_k^n\to Kom_{k,\neq}^{n+k-1}$ definiert durch

$$(a_1,\ldots,a_k)\mapsto (a_1,a_2+1,a_3+2,\ldots,a_k+k-1)$$

ist eine Bijektion! (Umkehrabbildung!) Es folgt(!)

$$|Kom_k^n| = |Kom_{k,\neq}^{n+k-1}| = \binom{n+k-1}{k}$$

4.6 Beispiel (Geburtstagsproblem)

Wie groß ist die Wahrscheinlichkeit, dass unter k rein zufällig ausgewählten Personen mindestens zwei am selben Tag Geburtstag haben?

Antwort Betrachte $\Sigma = Per_k^n$ mit n = 365, und der Laplace-Verteilung. Es sei $A := \{(a_1, \ldots, a_k) \in \Omega : \text{ es gibt } i, j \in \{1, \ldots, k\} \text{ mit } i \neq j, a_i = a_j\}$. Es gilt

$$\mathbb{P}(A) = 1 - \mathbb{P}(A^c)$$

$$= 1 - \mathbb{P}(Per_{k,\neq}^n)$$

$$\stackrel{!}{=} 1 - \frac{|Per_{k,\neq}^n|}{card\Omega}$$

$$= 1 - \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{n^k}$$

$$= 1 - \frac{n}{n} \cdot \frac{(n-1)}{n} \cdot \dots \cdot \frac{n-k+1}{n}$$

$$= 1 - (1 - \frac{1}{n}) \cdot \dots \cdot (1 - \frac{k-1}{n})$$

$$\begin{array}{l} \underline{k=23:} \ \mathbb{P}(A)\approx 0,507>\frac{1}{2} \\ n=\binom{49}{6}, k=4004, \mathbb{P}(A)=0,5001>\frac{1}{2} \end{array}$$

4.7 Beispiel

n Personen bringen (zu einer Feier) je ein Geschenk mit. Geschenke werden "rein zufällig" verteilt. Mit welcher Wahrscheinlichkeit bekommt mindestens eine Person ihr eigenes Geschenk?

4.8 Beispiel (Besetzungsmodelle)

k Teilchen sollen auf n nummerierte Fächer verteilt werden. Analogie zu Urnenmodell: Nummer der Kugel $\hat{=}$ Nummer des Fachs, Nummer der Ziehung

	9				_
$\hat{=}$ N	Nummer des Teilchens				
	Mehrfachbesetzungen	;,		nain	
	Unterscheidbare Teilchen	Ja		nein	
	renchen	D 20	3.6 11	TZ m	
	Ja	Per_k^n	${ m Maxwell}$ -	$\mid Kom_k^n \mid$	Bose -
		Boltzm	ann	Einstein-S	tatistik
	nein	$Per_{k,\neq}^n$	Fermi-	$Kom_{k,\neq}^n$	
		Dirak-S	Statistik	.,,	
CL.	: : 1 D1 :1				

Statistische Physik

Der Erwartungswert

 $p(\omega) = \mathbb{P}(\{\omega\}), (\Omega, \mathbb{P})$ diskreter Wahrscheinlichkeitsraum

5.1 Definition

• Der Erwartungswert einer Zufallsvariablen $X: \Omega \to \mathbb{R}$ existiert (genauer: X ist integrierbar bezüglich \mathbb{P}), falls

$$\sum_{\omega \in \Omega} |X(\omega)| p(\omega) < \infty \tag{5.1}$$

In diesem Fall heißt

$$\mathbb{E} X = \mathbb{E}[X] := \sum_{\omega \in \Omega} X(\omega) p(\omega)$$

(Physik: $\langle X \rangle = \mathbb{E}[X]$) Erwartungswert von X.

• Ist $X \ge 0$ eine Zufallsvariable, so heißt

$$\mathbb{E} X := \sum_{\omega \in \Omega} X(\omega) p(\omega) \in [0,\infty]$$

ebenfalls Erwartungswert von X.

5.2 Satz

Sei $L^1 \equiv L^1(\mathbb{P}) := \{X \colon X \text{ erfüllt 5.1}\}$. Dann ist L^1 ein reeller Vektorraum. Genauer:

- (i) $\mathbb{E}[X+Y] = \mathbb{E}X + \mathbb{E}Y, X, Y \in L^1$
- (ii) $\mathbb{E}[aX] = a\mathbb{E}X, X \in L^1, a \in \mathbb{R}$
- (iii) $\mathbb{E}1_A = \mathbb{P}(A), A \subset \Omega$

5.3 Folgerung 24

- (iv) $X \le Y \Rightarrow \mathbb{E}X \le \mathbb{E}Y$
- (v) $|\mathbb{E}X| \leq \mathbb{E}|X|$

Beweis. (i) $|(X+Y)(\omega)| \le |X(\omega)| + |Y(\omega)|$. Also $X+Y \in L^1(\mathbb{P})$ und

$$\sum_{\omega \in \Omega} (X(\omega) + Y(\omega)) p(\omega) \stackrel{!}{=} \sum_{\omega \in \Omega} X(\omega) p(\omega) + \sum_{\omega \in \Omega} Y(\omega) p(\omega)$$

(ii) analog

(iii)
$$\mathbb{E}1_A = \sum_{\omega \in \Omega} p(\omega) = \mathbb{P}(A)$$

$$(iv) + (v)$$
 Übungsaufgabe

5.3 Folgerung

Seien $A_1, \ldots, A_n \subset \Omega$ und $X := \sum_{j=1}^n 1_{A_j}$. Dann gilt $\mathbb{E}X = \sum_{j=1}^n \mathbb{P}(A_j)$. (Gilt auch für ∞ viele Ereignisse.)

5.4 Satz (Transformationsformel)

Seien $X: \Omega \Rightarrow \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$. Definiere $g(X): \Omega \to \mathbb{R}$ durch

$$g(X)(\omega) = g(X(\omega)).$$

Dann ist $g(X) \in L^1(\mathbb{P})$ genau dann, wenn

$$\sum_{x \colon \mathbb{P}(X=x) > 0} |g(x)| \mathbb{P}(X=x) < \infty$$

1

In diesem Fall gilt

$$\mathbb{E}g(x) = \sum_{x \colon \mathbb{P}(X=x) > 0} g(x)\mathbb{P}(X=x)$$

Beweis. Es gilt

$$\sum_{\omega \in \Omega} \left| g\left(X(\omega) \right) \right| p(\omega) = \sum_{x \in \mathbb{R} \colon \mathbb{P}(X=x) > 0} \left| g(x) \right| \sum_{\omega \in \Omega \colon X(\omega) = x} p(\omega)$$

$$\Omega = \bigcup_{x \in \mathbb{R}: \ X(\omega) = x, \mathbb{P}(X = x) > 0} \{\omega : X(\omega) = x\} \cup \Omega', \mathbb{P}(\Omega') = 0$$

 $[\]overline{{}^{1}\mathbb{P}(X=x) = \mathbb{P}(\{\omega \in \Omega \colon X(\omega) = x\})}$

5.5 Beispiele 25

$$\begin{split} &= \sum |g\left(X(\omega)\right)|p(\omega) = \sum_{\omega \notin \Omega'} |g\left(X(\omega)\right)|p(\omega) \\ &= \sum_{x \in \mathbb{R} \colon \mathbb{P}(X=x) > 0} \sum_{\omega \in \{\omega \in \Omega \colon X(\omega) = x\}} |g(X(\omega))|p(\omega) \\ &= \sum_{x \cdots} |g(x)|\mathbb{P}(X=x) \end{split}$$

Ist das endlich, so gilt die Rechnung auch ohne Betragsstriche! Insbesondere gilt

$$\mathbb{E}X = \sum_{x \in \mathbb{R}} x \mathbb{P}(X = x) (g(x) \equiv x)$$

5.5 Beispiele

• Würfelwurf, X=Augenzahl, $\mathbb{P}(X = j) = \frac{1}{6}$.

$$\mathbb{E}X = \sum_{j=1}^{6} j \cdot \mathbb{P}(X = j) = \frac{6 \cdot 7}{2} \cdot \frac{1}{6} = \frac{7}{2} = 3, 5$$

• Zweifacher Würfelwurf, X= Maximum der Augenzahlen ($\Omega=\{1,\ldots,6\}^2,\mathbb{P}=$ Gleichverteilung)

$$\mathbb{P}(X=1) = \frac{1}{36}$$

$$\mathbb{P}(X=2) = p((1,2)) + p((2,1)) + p((2,2)) = \frac{3}{36}$$

$$\frac{\text{Allgemein:}}{\text{Es folgt}} \mathbb{P}(X=j) = \frac{2j-1}{36}, j = 1, \dots, 6$$

$$\mathbb{E}X = \sum_{i=1}^{6} j \cdot \frac{2j-1}{36} \stackrel{?}{\approx} 4,47$$

Die hypergeometrische Verteilung und die Binomialverteilung

Urne mit Kugeln
$$\underbrace{1,2,\ldots,r}_{rot},\underbrace{r+1,\ldots,r+s}_{schwarz}$$
 $r,s\in\mathbb{N}_0,r+s>0.$

6.1 Definition

- $\bullet \ n$ mal Ziehen ohne Zurücklegen
- $a_j := \text{Nummer der } j\text{-ten gezogenen Kugel}$
- $\Omega = Per_{n,\neq}^{r+s}$
- \bullet $\mathbb{P} =$ Gleichverteilung ("unabhängiges", "rein zufälliges" Ziehen)
- $A_j := \{(a_1, \dots, a_n) \in \Omega \colon a_j \le r\} \hat{=} \{\text{j-te gezogene Kugel ist rot}\}$
- $X := \sum_{j=1}^{n} 1_{A_j}$ = Anzahl der gezogenen roten Kugeln

 \mathbb{P}^X (die Verteilung von X)heißt **hypergeometrische Verteilung** mit Parametern r,s,n, kurz:

$$X \sim Hyp(n, r, s), n \le r + s$$

$$\mathbb{P}^X = Hyp(n, r, s)$$

6.2 Satz 27

6.2Satz

Es gilt

• (i)
$$\mathbb{E}X = n \cdot \frac{r}{r+s}$$

• (ii)
$$\mathbb{P}(X=k) = \frac{\binom{r}{s}\binom{s}{n-k}}{\binom{r+s}{s}}, k=0,\ldots,r \wedge n$$

Beweis. (i) Es gilt (Symmetrieargument!) $|A_i| = r \cdot (r+s-1)^{n-1}$ $\begin{aligned} |\Omega| &= (r+s)^{\underline{n}} \Rightarrow \mathbb{P}(A_j) = \frac{|A_j|}{|\Omega|} = \frac{r}{r+s} \\ \text{Aus 5.3 folgt } \mathbb{E}X &= n \cdot \frac{r}{r+s} \end{aligned}$

(ii)
$$|\{X = k\}| \stackrel{!}{=} \binom{n}{k} r^{\underline{k}} s^{\underline{n-k}}$$

$$\Rightarrow \mathbb{P}(X = k) = \frac{\binom{n}{k} r^{\underline{k}} s^{\underline{n-k}}}{(r+s)^{\underline{n}}} = \frac{\binom{r}{k} \binom{s}{n-k}}{\binom{r+s}{n}}$$

6.3 Motivation

X Zufallsvariable, $\sum_{k=1}^{r} \mathbb{P}(X = x_n) = 1$

 X_1, X_2, \ldots, X_n "unabhängige" Wiederholungen von X (= Ergebnis eines zufälligen Versuchs)

 $\bar{X} := \frac{1}{n}(X_1 + \ldots + X_n)$ Zufallsvariable!

Mit $h_j := card\{i \in \{1, \dots, n\}: X_i = x_j\}$ gilt $\bar{X} \stackrel{!}{=} \frac{1}{n}(h_1x_1 + h_2x_2 + \dots + h_nx_n)$ empirisches Gesetz über Stabilität relativer Häufigkeiten

$$\underset{n\to\infty}{\to} \mathbb{P}(X=x_1)x_1 + \ldots + \mathbb{P}(X=x_r)x_r \stackrel{!}{=} \mathbb{E}X$$

$$X \sim Hyp(n,r,s) = \mathbb{P}^X, n \le r + s$$

$$X \sim Hyp(n, r, s) = \mathbb{P}^X, n \le r + s$$
$$\mathbb{P}(X = k) = \frac{\binom{r}{s}\binom{s}{n-k}}{\binom{r+s}{n}}, k = 0, \dots, n$$

Wegen $\binom{m}{l} := 0$ für m < l gilt: $\mathbb{P}(X = k) = 0$ für k < r und für n - k > ls(k < n - s)

Definition 6.4

Binomial verteilung:

- \bullet n maliges Ziehen aus einer Urne mit r+s Kugeln mit Zurücklegen
- $\Omega = Per_n^{r+s} = \{(a_1, \dots, a_n) : 1 \le a_i \le r + s, i = 1, \dots, n\}$
- P Gleichverteilung

$$X := \sum_{i=1}^{n} 1_{A_j}, A_j := \{(a_1, \dots, a_n) \in \Omega \colon a_j \le r\}$$

 \mathbb{P}^X heißt Binomialverteilung mit Parametern
n und $p:=\frac{r}{r+s}$. Man schreibt auch $Bin(n,p) := \mathbb{P}^X$.

6.5 Satz

6.5 Satz

Es gilt

1.
$$\mathbb{E}X = np$$

2.
$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, 0 \le k \le n$$

Beweis. 1.
$$|A_j| = r \cdot (r+s)^{n-1}$$

 $|\Omega| = (r+s)^n \leadsto \mathbb{P}(A_j) = \frac{|A_j|}{|\Omega|} = \frac{r}{r+s} = p$
Folgerung 5.3 $\leadsto \mathbb{E}X = np$.

2.
$$card\{X = k\} = \binom{n}{k} r^k s^{n-k}$$

 $\rightsquigarrow \mathbb{P}(X = k) = \frac{\binom{n}{k} r^k s^{n-k}}{(r+s)^k (r+s)^{n-k}}$

Bemerkung Bin(n,p) ist für jedes $p \in [0,1]$ definiert.

Mehrstufige Experimente

7.1Beispiel

Urne mit einer roten und drei schwarzen Kugeln

- 1. Experiment Kugel ziehen, Farbe notieren, Kugel und eine weitere Kugel derselben Farbe zurücklegen
- 2. Experiment Erneut Kugel ziehen

Modell:
$$\Omega := \{0, 1\} \times \{0, 1\}, \quad (0 = s, 1 = r)$$

Konstruction von
$$\mathbb{P}$$
 $p(\omega) := \mathbb{P}(\{\omega\})$
 $p(1,1) := \frac{1}{4} \cdot \frac{2}{5} = \frac{2}{50} = \frac{1}{10}$

$$\begin{array}{c} \textbf{Konstruktion von} \ \mathbb{P} \quad p(\omega) := \mathbb{P}(\{\omega\}) \\ p(1,1) := \frac{1}{4} \cdot \frac{2}{5} = \frac{2}{20} = \frac{1}{10} \\ p(1,0) := \frac{1}{4} \cdot \frac{3}{5} = \frac{3}{20} \\ p(0,1) := \frac{3}{4} \cdot \frac{1}{5} = \frac{3}{20} \\ p(0,0) := \frac{3}{4} \cdot \frac{4}{5} = \frac{12}{20} \end{array} \right\} 1. \ \text{Pfadregel}$$

$$\sum_{\omega \in \Omega} p(\omega) = 1.$$

Betrachte $B := \{(1, 1), (0, 1)\}$. Dann gilt

$$\mathbb{P}(B) = p(1,1) + p(0,1) = (2.$$
 Pfadregel)

$$= \frac{2}{20} + \frac{3}{20} = \frac{1}{4} \stackrel{!}{=} \mathbb{P}(\text{erste Kugel ist rot})$$

(TODO: Bild(Baumdiagramm))

7.2Definition

Mehrstufige Experimente $\Omega = \Omega_1 \times ... \times \Omega_n \ (\Omega_j = Grundraum \ für \ j$ -tes Teilexperiment)

$$\omega = (a_1, \ldots, a_n) \in \Omega$$

Problem: Definiere $p(\omega) = \mathbb{P}(\{\omega\})$

7.3 Satz

1. Startverteilung
$$p_1 \colon \Omega_1 \to [0,1]$$
 $\sum_{\omega \in \Omega_1} p_1(\omega) = 1$

2. Übergangswahrscheinlichkeiten $p_2(a_2|a_1) \ge 0$ $\sum_{a_2 \in \Omega_2} p_2(a_2|a_1) \stackrel{!}{=} 1$

 $(p_2(a_2|a_1) = Wahrscheinlichkeit, dass 2.$ Versuch das Ergebnis a_2 liefert unter der Bedingung, dass 1. Versuch Ergebnis a_1 geliefert hat.)

$$p_3(a_3|a_1, a_2) \ge 0$$
 $\sum_{a_3 \in \Omega_3} p_3(a_3|a_1, a_2) = 1$

$$p_n(a_n|a_1,\ldots,a_{n-1}) \ge 0$$
 $\sum_{a_n \in \Omega_n} p_n(a_n|a_1,\ldots,a_{n-1}) = 1$

Setze für $\omega = (a_1, \ldots, a_n) \in \Omega$

$$p(\omega) := p_1(a_1) \cdot p_2(a_2|a_1) \cdot p_3(a_3|a_1, a_2) \cdot \dots \cdot p_n(a_n|a_1, \dots, a_{n-1})$$
 1. Pfadregel

Schließlich sei

$$\mathbb{P}(A) := \sum_{\omega \in A} p(\omega), \quad A \subset \Omega \qquad \text{Produkt von Übergangswahrscheinlichkeiten}$$

7.3 Satz

 (Ω, \mathbb{P}) ist diskreter Wahrscheinlichkeitsraum.

Beweis. zu zeigen: $\sum_{\omega \in \Omega} p(\omega) = 1$

Induktion (oder direkt)! Zum Beispiel gilt für n=2

$$\sum_{\omega \in \Omega} p(\omega) = \sum_{(a_1, a_2) \in \Omega_1 \times \Omega_2} p_1(a_1) p_2(a_2 | a_1) = \sum_{a_1 \in \Omega_1} \sum_{a_2 \in \Omega_2} p_1(a_1) p_2(a_2 | a_1)$$

$$\sum_{a_1 \in \Omega_1} p_1(a_1) \cdot 1 = 1.$$

7.4 Beispiel

Unabhängige Experimente $(\Omega_j, \mathbb{P}_j), j = 1, \dots, n$, diskrete Wahrscheinlichkeitsräume, $p_i(a_i) = \mathbb{P}_i(\{a_i\})$

Idee: "Unabhängiges" Durchführen der zugehörigen Experimente

$$\Omega := \Omega_1 \times \ldots \times \Omega_n, p(\omega) := p_1(a_1) \cdot \ldots \cdot p_n(a_n), \omega = (a_1, \ldots, a_n) \in \Omega$$

$$(p_2(a_2|a_1) = p_2(a_2), \dots, p_n(a_n|a_1, \dots, a_{n-1}) = p_n(a_n))$$

$$\mathbb{P}(A) = \sum_{\omega \in A} p(\omega)$$

7.4 Beispiel 31

Man nennt $\mathbb P$ das $\mathbf{Produkt}$ von $\mathbb P_1,\dots,\mathbb P_n$ und schreibt

$$\mathbb{P} := \bigotimes_{i=1}^{n} \mathbb{P}_{i}.$$

z.B. kann
$$\Omega = \Omega_1 \times \Omega_2$$
, $\Omega_1 = \Omega_2 = \{1, \dots, 6\}$
 $p_1(a_1) = p_2(a_2) = \frac{1}{6}$
Dann ist

$$p(a_1, a_2) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

und \mathbb{P} ist die Laplace-Verteilung auf Ω .

Bedingte Wahrscheinlichkeiten

 (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum.

8.1 Definition

Sei $B \subset \Omega$ mit $\mathbb{P}(B) > 0$. Dann heißt

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

bedingte Wahrscheinlichkeit von $A\subset \Omega$ unter der Bedingung B. Alternativ: $P_B(A):=\mathbb{P}(A|B)$

8.2 Satz

 P_B ist ein Wahrscheinlichkeitsmaß auf Ω . Dabei ist $P_B(A) = 1$ falls $B \subset A$ und $P_B(A) = 0$ falls $A \cap B = \emptyset$. Es gilt:

$$p_B(\omega) := \begin{cases} \frac{p(\omega)}{\mathbb{P}(B)} & \text{, falls } \omega \in B \\ 0 & \text{, sonst} \end{cases} \quad \text{mit } p_B(\omega) := \mathbb{P}_B(\{\omega\})$$

Beweis ist klar! $(\sum_{\omega \in \Omega} p_B(\omega) = \frac{1}{\mathbb{P}(B)} \sum_{\omega \in B} p(\omega) = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1.)$

Motivation Für $A \subset B$

$$\frac{h_n(A)}{h_n(B)} = \frac{\frac{1}{n}h_n(A)}{\frac{1}{n}h_n(B)} \leadsto \frac{\mathbb{P}(A)}{\mathbb{P}(B)}.$$

(Zusammenhang zu Übergangs-8.3 Bemerkung wahrscheinlichkeiten)

$$\Omega=\Omega_1\times\Omega_2,\quad p(\omega)=p_1(a_1)p_2(a_2|a_1),\quad \omega=(a_1,a_2)$$
 Für $a_1\in\Omega_1$ sei

$$B := \{a_1\} \times \Omega_2.$$

Für $a_2 \in \Omega_2$ sei

$$A := \Omega_1 \times \{a_2\}.$$

Es gilt $A \cap B = \{(a_1, a_2)\},\$

$$\mathbb{P}(A \cap B) = \sum_{\omega \in A \cap B} p(\omega) = \sum_{(b_1, b_2) \in A \cap B} p_1(b_1) p_2(b_2 | b_1) = p_1(a_1) p_2(a_2 | a_1),$$

$$\mathbb{P}(B) = \sum_{b_2 \in \Omega_2} p(a_1|b_2) = \sum_{b_2 \in \Omega_2} p_1(a_1)p_2(b_2|a_1) = p_1(a_1)$$

Es folgt

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \stackrel{p_1(a_1) > 0}{=} p_2(a_2|a_1)$$

Satz (Multiplikationsformel) 8.4

Seien $A_1, \ldots, A_n \subset \Omega$ mit $\mathbb{P}(A_1 \cap \ldots \cap A_{n-1}) > 0$. Dann gilt

$$\mathbb{P}(A_1 \cap \ldots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2) \cdot \ldots \cdot \mathbb{P}(A_n|A_1 \cap \ldots \cap A_{n-1})$$

Beweis. Für n=2:

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1)$$

$$\frac{\text{Allgemein:}}{n=3: \text{ rechte Seite: } \mathbb{P}(A_1) \cdot \frac{\mathbb{P}(A_1 \cap A_2)}{\mathbb{P}(A_1)} = \frac{\mathbb{P}(A_1 \cap A_2 \cap A_3)}{\mathbb{P}(A_1 \cap A_2)} = \mathbb{P}(A_1 \cap A_2 \cap A_3) \qquad \Box$$

Satz 8.5

Sei A_1, A_2, \ldots Zerlegung von $\Omega(\bigcup A_i = \Omega, A_i \cap A_j = \emptyset, i \neq j)$.

1.
$$\mathbb{P}(B) = \sum_{j=1}^{\infty} \mathbb{P}(A_j) \mathbb{P}(B|A_j)$$
 Formel der totalen Wahrscheinlichkeit

2. ¹ Für $\mathbb{P}(B) > 0$, so gilt

$$\mathbb{P}(A_k|B) = \frac{\mathbb{P}(A_k)\mathbb{P}(B|A_k)}{\sum_{j=1}^{\infty} \mathbb{P}(A_j)\mathbb{P}(B|A_j)}, \quad k = 1, 2, \dots$$

¹Formel von Bayes

8.6 Beispiel 34

(Man vereinbart $\mathbb{P}(B|A_i)\mathbb{P}(A_i) := 0$, falls $\mathbb{P}(A_i) = 0$)

Beweis. 1. $B = B \cap \Omega = \bigcup_{j=1}^{\infty} \underbrace{B \cap A_j}_{\text{paarweise disjunkt}}$ Aus der σ -Additivität von $\mathbb P$

folgt

$$\mathbb{P}(B) = \sum_{j=1}^{\infty} \mathbb{P}(B \cap A_j) = \sum_{j=1}^{\infty} \mathbb{P}(B|A_j)\mathbb{P}(A_j)$$

2. rechte Seite der Behauptung: $\frac{\mathbb{P}(B \cap A_k)}{\mathbb{P}(B)} \stackrel{!}{=} \mathbb{P}(A_k|B)$

8.6 Beispiel

Eine Krankheit komme bei 4% der Bevölkerung vor². Ein Test spreche bei 90% der Kranken an und bei 20% der Gesunden!

Modell

- \bullet Ω : Menge der Personen in Deutschland
- $K \subset \Omega$: Menge der kranken Personen
- $A \subset \Omega$: Menge der (hypothetisch) positiv getesteten Personen
- \mathbb{P} = Gleichverteilung auf Ω

Dann

 $\mathbb{P}(K|A) = \text{Wahrscheinlichkeit, dass eine positiv getestete Person krank ist}$

$$\stackrel{Bayes}{=} \frac{\mathbb{P}(K)\mathbb{P}(A|K)}{\mathbb{P}(K)\mathbb{P}(A|K) + \mathbb{P}(K^c)\mathbb{P}(A|K^c)} \quad (K = A_j, K^c = A_k)$$

$$= \frac{0,04 \cdot 0,9}{0,04 \cdot 0,9 + 0,96 \cdot 0,2} = \frac{0,036}{0,036 + 0,192} = \frac{0,036}{0,228} = 0,158$$

8.7 Beispiel (Ziegenproblem)

Ausgelassen.

²Die Mediziner sprechen von "Prävalenz".

8.8 Beispiel (Simpson-Paradoxon)

Zulassung von Studenten in Berkeley (1973)

• Zulassungsrate Männer: 44%

• Zulassungsrate Frauen: 35%

<u>Aber:</u> Zulassungsraten der Männer in den einzelnen Fächern kleiner als die der Frauen

Erklärung

- $A = \text{Zulassung}^3$
- $\bullet~B \hat{=}$ Frau 4
- $K_j =$ Bewerbung für Fach j

Dann kann gelten

$$\mathbb{P}(A|B) < \mathbb{P}(A|B^c)$$

aber

$$\mathbb{P}(A|B\cap K_j) > \mathbb{P}(A|B^c\cap K_j), \quad j=1,2,\ldots$$

Denn:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \sum_{j} \frac{\mathbb{P}(A \cap B \cap K_{j})}{\mathbb{P}(B)} \frac{\mathbb{P}(B \cap K_{j})}{\mathbb{P}(B \cap K_{j})}$$

$$= \sum_{j} \underbrace{\mathbb{P}(K_{j}|B)}_{\text{Bewerbungsrate der Frauen im j-ten Fach}} \underbrace{\mathbb{P}(A|B \cap K_{j})}_{\text{siehe oben}}$$

analog

$$\mathbb{P}(A|B^c) = \sum \mathbb{P}(K_j|B^c)\mathbb{P}(A|B^c \cap K_j)$$

Die absolute Erfolgsquote ist eine gewichtete Summe der relativen Erfolgsquoten.

 $^{^3}$ Ereignis, dass rein zufällig ausgewählter Bewerber erfolgreich ist mit seiner Bewerbung.

 $^{^4}$ Ereignis, dass zufällig ausgewählte weibliche Bewerberin erfolgreich ist.

Stochastische Unabhängigkeit

 (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum.

9.1 Definition

 $A_1, \ldots, A_n \subset \Omega$ heißen stochastisch unabhängig, falls

$$\mathbb{P}(\bigcap_{j \in T} A_j) = \prod_{j \in T} \mathbb{P}(A_j), \quad T \subseteq \{1, \dots, n\}, |T| \ge 2.$$

$$(2^n - n - 1 \text{ Gleichungen.})$$

9.2Bemerkung

- 1. A, B stochastisch unabhängig
 - $\Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

$$\begin{array}{l}
\mathbb{P}(B)>0 \\ \Leftrightarrow & \mathbb{P}(A|B) = \mathbb{P}(A) \text{ (Interpretation!)} \\
\Leftrightarrow & \mathbb{P}(B|A) \stackrel{\mathbb{P}(B)>0}{=} \mathbb{P}(B)
\end{array}$$

$$\Leftrightarrow \mathbb{P}(B|A) \stackrel{\mathbb{P}(B)>0}{=} \mathbb{P}(B)$$

- 2. $\mathbb{P}(B) = 0 \rightsquigarrow A$ und B sind stochastisch unabhängig
 - $\mathbb{P}(B) = 1 \rightsquigarrow A$ und B sind stochastisch unabhängig
- 3. A, B, C unabhängig \Leftrightarrow

$$\begin{array}{l} \mathbb{P}(A\cap B) = \mathbb{P}(A)\mathbb{P}(B) \\ \mathbb{P}(A\cap C) = \mathbb{P}(A)\mathbb{P}(C) \\ \mathbb{P}(B\cap C) = \mathbb{P}(B)\mathbb{P}(C) \end{array} \right\} \text{ paarweise stochastische Unabhängigkeit}$$

$$\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$$

 $^{^1\}mathrm{Wenn}$ die Kenntnis des Eintretens von B
 keinerlei Rückschlüsse auf das Eintreten von A zulässt.

Wiederholung $A, B \subset \Omega$ stochastisch unabhängig

$$\Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

$$\Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A) \Leftrightarrow \mathbb{P}(B|A) = \mathbb{P}(B)$$

 A_1, \ldots, A_n stochastisch unabhängig \Leftrightarrow

$$\mathbb{P}(\bigcap_{j\in T} A_j) = \prod_{j\in T} \mathbb{P}(A_j), \quad T\subset \{1,\ldots,n\}, |T|\geq 2$$

9.3 Bemerkungen

(iv) A, B stochastisch unabhängig. Dann:

$$\mathbb{P}(A \cap B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$$

$$\stackrel{!}{=} \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B)$$

$$= \mathbb{P}(A)(1 - \mathbb{P}(B)) = \mathbb{P}(A)\mathbb{P}(B^c)$$

Also sind A und B^c (also auch A^c und B^c bzw. A^c und B) stochastisch unabhängig.

- (v) Seien A_1, \ldots, A_n unabhängig und $1 \leq i_1 < \ldots < i_k \leq n$. Dann sind A_{i_1}, \ldots, A_{i_k} stochastisch unabhängig.
- (vi) Ist A von A unabhängig, so ist

$$\mathbb{P}(A) = \mathbb{P}(A)^2$$

d.h. $\mathbb{P}(A) \in \{0, 1\}$.

(vii) Man nennt $A_1, A_2, \ldots \subset \Omega$ stochastisch unabhängig

 $\overset{d}{\Leftrightarrow} A_1, \dots, A_n$ stochastisch unabhängig für jedes $n \geq 2.$

9.4 Beispiel (Produkträume)

Sei
$$(\Omega, \mathbb{P}) := (\bigotimes_{j=1}^{n} \Omega_{j}, \bigotimes_{j=1}^{n} \mathbb{P}_{j}), \text{ d.h.}$$

$$\mathbb{P}(\{(a_{1}, \dots, a_{n})\}) = p(\omega) \quad \omega = (a_{1}, \dots, a_{n})$$

$$= p_{1}(a_{1}) \cdot \dots \cdot p_{n}(a_{n}) \quad (p_{i}(a_{i}) = \mathbb{P}_{i}(\{a_{i}\}))$$
Sei $B = B_{1}^{*} \times \dots \times B_{n}^{*}, \quad B_{i}^{*} \in \Omega_{i}. \text{ Dann } \mathbb{P}(B_{1}^{*} \times \dots \times B_{n}^{*})$

$$= \sum_{(a_{1}, \dots, a_{n}) \in B_{1}^{*} \times \dots \times B_{n}^{*}} p_{1}(a_{1}) \cdot \dots \cdot p_{n}(a_{n})$$

 $9.5 \; \mathrm{Satz}$

$$= \sum_{a_1 \in B_1^*} \dots \sum_{a_n \in B_n^*} p_1(a_1) \cdot \dots \cdot p_n(a_n)$$
$$= \prod_{j=1}^n \sum_{a \in B_j^*} p_j(a) = \prod_{j=1}^n \mathbb{P}_j(B_j^*) \qquad (*)$$

Sei jetzt $A_j^* \subset \Omega_j, j = 1, \ldots, n$.

Behauptung $A_j = \Omega_1 \times \ldots \times \Omega_{j-1} \times A_j^* \times \Omega_{j+1} \times \ldots \times \Omega_n$, $j = 1, \ldots, n$ stochastisch unabhängig.

Beweis. Sei $T \subset \{1, \dots, n\}$ mit $|T| \geq 2$. Definiere

$$B_j^* := \begin{cases} A_j^*, & j \in T, \\ \Omega_j, & j \notin T. \end{cases}$$

Dann

$$\mathbb{P}(\bigcap_{j\in T} A_j) = \mathbb{P}(B_1^* \times \ldots \times B_n^*)$$

2

$$(*) \quad \prod_{j=1}^{n} \mathbb{P}_{j}(B_{j}^{*}) = \prod_{j \in T} \mathbb{P}_{j}(A_{j}^{*})$$

$$\stackrel{(*)}{=} \prod_{j \in T} \mathbb{P}_{j}(A_{j})$$

3

9.5 Satz

 A_1, \ldots, A_n stochastisch unabhängig \Leftrightarrow

$$\mathbb{P}(\bigcap_{j\in I} A_j \cap \bigcap_{j\in J} A_j^c) = \prod_{j\in I} \mathbb{P}(A_j) \prod_{j\in J} \mathbb{P}(A_j^c) \quad I, J \subset \{1, \dots, n\}, I \cap J = \emptyset$$

(Hierbei
$$\bigcap_{j \in \emptyset} B_j := \Omega, \prod_{j \in \emptyset} a_j := 1$$
)

Beweis. Induktion über Anzahl der Elemente von J (vergleiche auch Bemerkung 9.3 (iv))

 $^{^{2}(}A_{1} \times A_{2}) \cap (B_{1} \times B_{2}) = (A_{1} \cap B_{1}) \times (A_{2} \cap B_{2})$ ³ mit $B_{i}^{*} = \Omega_{i}$ bis auf ein i

Definition Für $A \subset \Omega$ sei $A^0 := A^c, A^1 := A$. Für $B_1, \ldots, B_n \subset \Omega$ sei

$$\sigma(B_1,\ldots,B_k) := \{ B \subset \Omega \colon \exists U \subset \{0,1\}^k \text{ mit } B = \bigcup_{(\epsilon_1,\ldots,\epsilon_n) \in U} B_1^{\epsilon_1} \cap \ldots \cap B_k^{\epsilon_k} \}.$$

(Die von B_1, \ldots, B_k erzeugte Algebra).

Beispiel 9.1. (TODO: Bild)

Bemerkung 9.1. Eine Menge der Form

$$B_1^{\epsilon_1} \cap \ldots \cap B_k^{\epsilon_k}$$
 für $(\epsilon_1, \ldots, \epsilon_k) \in \{0, 1\}^k$

heißt Atom von $\sigma(B_1, \ldots, B_k)$. Jede Menge in $\sigma(B_1, \ldots, B_k)$ ist Vereinigung von Atomen. Insbesondere gilt

$$B_1, \ldots, B_k \in \sigma(B_1, \ldots, B_k), \emptyset \in \sigma(B_1, \ldots, B_k), \Omega \in \sigma(B_1, \ldots, B_k).$$

9.6 Satz (Blockungslemma)

Seien $A_1, \ldots, A_k, A_{k+1}, \ldots, A_n$ stochastisch unabhängig und $B \in \sigma(A_1, \ldots, A_k), C \in \sigma(A_{k+1}, \ldots, A_n)$. Dann sind B und C stochastisch unabhängig.

Beweis. Es gilt

$$\mathbb{P}(B \cap C) = \mathbb{P}\left(\underbrace{(\bigcup_{(\epsilon_1, \dots, \epsilon_k) \in U} A_1^{\epsilon_1} \cap \dots A_k^{\epsilon_k}) \cap (\bigcup_{(\epsilon_{k+1}, \dots, \epsilon_n) \in V} A_{k+1}^{\epsilon_{k+1}} \cap \dots \cap A_n^{\epsilon_n})}_{C}\right)$$

disjunkte Vereinigung

$$\begin{split} &= \sum_{U} \mathbb{P} \left((A_1^{\epsilon_1} \cap \ldots \cap A_k^{\epsilon_k}) \cap \bigcup_{V} (A_{k+1}^{\epsilon_{k+1}} \cap \ldots \cap A_n^{\epsilon_n}) \right) \\ &= \sum_{U,V} \mathbb{P} (A_1^{\epsilon_1} \cap \ldots \cap A_k^{\epsilon_k} \cap A_{k+1}^{\epsilon_{k+1}} \cap \ldots A_n^{\epsilon_n}) \\ &= \sum_{U,V} \left(\underbrace{\prod_{j=1}^{k} \mathbb{P} (A_j^{\epsilon_j})}_{\mathbb{P} (A_j^{\epsilon_k+1} \cap \ldots \cap A_j^{\epsilon_n})} \underbrace{\prod_{j=k+1}^{n} \mathbb{P} (A_j^{\epsilon_j})}_{\mathbb{P} (A_j^{\epsilon_k+1} \cap \ldots \cap A_j^{\epsilon_n})} \right) \end{split}$$

 $9.7 \, \mathrm{Satz}$

$$= \sum_{(\epsilon_1, \dots, \epsilon_k) \in U} \mathbb{P}(A_1^{\epsilon_1} \cap \dots \cap A_k^{\epsilon_k}) \sum_{(\epsilon_{k+1}, \dots, \epsilon_n) \in V} \mathbb{P}(A_{k+1}^{\epsilon_{k+1}} \cap \dots \cap A_n^{\epsilon_n})$$

$$\stackrel{!}{=} \mathbb{P}(B)\mathbb{P}(C)$$

9.7 Satz

 $A_1,\ldots,A_n\subset\Omega$ stochastisch unabhängig. Ferner gelte $\mathbb{P}(A_i)=p,\quad i=1,\ldots,n.$ Dann ist

$$X := \sum_{j=1}^{n} 1_{A_j}$$

Bin(n, p)-verteilt.

Beweis. Es gilt

$$\{X = k\} = \bigcup_{T \subseteq \{1, \dots, n\}, |T| = k} \left(\bigcap_{j \in T} A_j \cap \bigcap_{j \notin T} A_j^c \right)$$

disjunkte Vereinigung, also

$$\mathbb{P}(X=k) = \mathbb{P}(\{X=k\}) = \sum_{T \subseteq \{1,\dots,n\}, |T|=k} \mathbb{P}(\bigcap_{j \in T} A_j \cap \bigcap_{j \notin T} A_j^c)$$

$$\stackrel{\text{Voraussetzung}}{=} \sum_{T \subseteq \{1,\dots,n\}, |T|=k} p^k (1-p)^{n-k} = \binom{n}{k} p^k (1-p)^{n-k}$$

9.8 Beispiel (Bernoulli-Kette der Länge n)

$$(\Omega, \mathbb{P}) := \bigotimes_{j=1}^{n} (\Omega_{j}, \mathbb{P}_{j})$$

$$\Omega_{1} = \ldots = \Omega_{n} = \{0, 1\}$$

$$\mathbb{P}_{j}(\{1\}) = 1 - \mathbb{P}_{j}(\{0\}) = p, \quad j = 1, \ldots, n$$
Die Ereignisse

$$A_j := \{(a_1, \dots, a_n) \in \Omega \colon a_j = 1\}, \quad j = 1, \dots, n$$

sind stochastisch unabhängig.

Ferner
$$\mathbb{P}(A_i) = p$$
.

Kapitel 10

Gemeinsame Verteilung

 (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum (mit Träger Ω_0).

10.1 Definition

Seien $X_j \colon \Omega \to \mathbb{R}$ (j = 1, ..., k) Zuvfallsvariablen. Definiere $X \colon \Omega \to \mathbb{R}^k$ vermöge $X(\omega) = (X_1(\omega), ..., X_k(\omega)), \quad \omega \in \Omega$. Dann heißt X k-dimensionaler Zufallsvektor.

Für $B \subset \mathbb{R}^k$ sei $X^{-1}(B) \equiv \{X \in B\} := \{\omega \in \Omega \colon X(\omega) \in B\}$. Die Abbildung

$$\mathbb{P}^X \colon \mathcal{P}(\mathbb{R}) \to [0,1]$$

definiert durch

$$\mathbb{P}^X(B) := \mathbb{P}(\{X \in B\}) (= \mathbb{P}(X \in B))$$

heißt Verteilung von X oder auch gemeinsame Verteilung von X_1, \ldots, X_k . Die Verteilung von X_j heißt j-te Marginalverteilung (von X_j).

Wiederholung (Ω, \mathbb{P}) Wahrscheinlichkeitsraum

 $\Omega_0 := \{ \omega \in \Omega \colon \mathbb{P}(\{\omega\}) > 0 \} \text{ diskret}$

$$X = (X_1, \dots, X_k) \colon \Omega \to \mathbb{R}^k$$

Verteilung: \mathbb{P}^X

$$\mathbb{P}^{X}(A) := \mathbb{P}(X \in A) \equiv \mathbb{P}(\{\omega \colon X(\omega) \in A\}), \quad A \subset \mathbb{R}^{k}$$

Bemerkung Die gemeinsame Verteilung legt Randverteilungen fest. (k = 2)

$$\mathbb{P}(X_1 = x_1) \quad \left(= \mathbb{P}^{X_1}(\{x_1\}) \right)$$
$$= \mathbb{P}\left(\{X_1 = x_1\} \cap \bigcup_{x_2 \in X_2(\Omega_0)} \{X_2 = x_2\} \right)$$

10.2 Beispiel 42

$$\stackrel{\sigma\text{-Additivit"at}}{=} \sum_{x_2 \in X_2(\Omega_0)} \underbrace{\mathbb{P}(\{X_1 = x_1\} \cap \{X_2 = x_2\})}_{\mathbb{P}(X_1 = x_1, X_2 = x_2)}$$
$$= \sum_{x_2 \in X_2(\Omega_0)} \mathbb{P}^{(X_1, X_2)} \left(\{(x_1, x_2)\} \right)$$

10.2 Beispiel

$$\Omega := \{1, \dots, 6\}^2$$

 $\mathbb{P} = \text{Gleichverteilung } (2\text{-maliger Würfelwurf})$

$$X_1((k,l)) := \min(k,l), X_2((k,l)) := \max(k,l)$$

(TODO: Tabelle)

$$\mathbb{P}(X_1 = i, X_2 = j), \quad i, j = 1, \dots, 6$$

Es gilt

$$\mathbb{P}(X_1 = i) = \mathbb{P}(X_2 = 7 - i), \quad i = 1, \dots, 6$$

 $\leadsto \mathbb{P}^{X_1} = \mathbb{P}^{7 - X_2} \quad (X_1 \neq 7 - X_2)$

 $X_1 \stackrel{d}{=} 7 - X_2$ Verteilungsgleichheit

10.3 Beispiel

$$\mathbb{P}(X_1 = i, X_2 = j)$$

($c \in [0, \frac{1}{2}] \text{ fest}$)

j	1	2	
1	c	$\frac{1}{2}-c$	$\frac{1}{2}$
2	$\frac{1}{2} - c$	c	$\frac{1}{2}$
	$\frac{1}{2}$	$\frac{1}{2}$	

$$\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = 1, X_2 = 1) + \mathbb{P}(X_1 = 1, X_2 = 2)$$

$$\leadsto \mathbb{P}^{X_1} = \mathbb{P}^{X_2} \hat{=} \text{ fairer Münzwurf!}$$

Also legen die Randverteilungen $\mathbb{P}^{X_1}, \mathbb{P}^{X_2}$ die gemeinsame Verteilung $\mathbb{P}^{(X_1,X_2)}$ nicht fest.

10.4 Definition

 $X_1,\ldots,X_k\colon\Omega\to\mathbb{R}$ heißen stochastisch unabhängig

$$\Leftrightarrow \{X_1 \in B_1\}, \dots, \{X_k \in B_k\} \text{ stochastisch unabhängig } \forall B_1, \dots, B_k \subset \mathbb{R}$$

10.5 Satz 43

10.5 Satz

Die folgenden Aussagen sind äquivalent:

1. X_1, \ldots, X_k sind stochastisch unabhängig

2.
$$\mathbb{P}(X_1 \in B_1, \dots, X_k \in B_k) = \prod_{i=1}^k \mathbb{P}(X_i \in B_i) \quad B_1, \dots, B_k \subset \mathbb{R}$$

3.
$$\mathbb{P}(X_1 = x_1, \dots, X_k = x_k) = \prod_{i=1}^k \mathbb{P}(X_i = x_i) \quad x_1, \dots, x_k \in \mathbb{R}$$

Beweis. $(1) \Rightarrow (2)$ Klar nach Definition.

(2) \Rightarrow (1): Wähle in der Definition $B_j = \mathbb{R}$ für $j \notin T(\{X_j \in B_j\} = \Omega)$

 $(2) \Rightarrow (3)$: Setze $B_i = \{x_i\}$

1

 $(3) \Rightarrow (2)$: Für $B_1, \ldots, B_k \subset \mathbb{R}$ gilt

$$\mathbb{P}(X_1 \in B_1, \dots, X_k \in B_k) \quad (= \mathbb{P}^{(X_1, \dots, X_k)}(B_1 \times \dots \times B_k)) \quad (B_i \subset \underbrace{X_i(\Omega_0)}_{\text{diskret}})$$

$$= \sum_{x_1 \in B_1, \dots, x_k \in B_k} \mathbb{P}(X_1 = x_1, \dots, X_k = x_k)$$

$$\stackrel{(3)}{=} \sum \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_k = x_k)$$

$$= \mathbb{P}(X_1 \in B_1) \cdot \dots \cdot \mathbb{P}(X_k \in B_k)$$

Bemerkung Im Falle stochastischer Unabhängigkeit legen die Randverteilungen die gemeinsame Verteilung fest.

10.6 Satz (Blockungslemma)

Es seien X_1, \ldots, X_k stochastisch unabhängige, eindimensionale Zufallsvariablen und $1 \leq l \leq k-1, g \colon \mathbb{R}^l \to \mathbb{R}, h \colon \mathbb{R}^{k-l} \to \mathbb{R}$. Dann sind $g(X_1, \ldots, X_l)$ und $h(X_{l+1}, \ldots, X_k)$ stochastisch unabhängig.

Beweis. Übung!
$$\frac{1}{\sum_{i,j} a_i b_j = (\sum a_i)(\sum b_j) \text{ "Fubini"}}$$

10.7 Satz (allgemeine Transformations-Formel)

Seien $Z: \Omega \to \mathbb{R}^k$ Zufallsvektor, $g: \mathbb{R}^k \to \mathbb{R}$. Setze

$$M := \{ z \in \mathbb{R}^k \colon \mathbb{P}(Z = z) > 0 \}.$$

Dann ist g(Z) integrierbar² genau dann, wenn

$$\sum_{z \in M} |g(z)| \cdot \mathbb{P}(Z=z) < \infty$$

In diesem Fall ist der Erwartungswert

$$\mathbb{E}g(Z) = \sum_{z \in M} g(z) \cdot \mathbb{P}(Z = z)$$

Beweis. vgl. eindimensionalen Spezialfall.

10.8 Satz

Seien $X, Y : \Omega \to \mathbb{R}$ stochastisch unabhängig. Sind X, Y integrierbar, so ist auch $X \cdot Y$ integrierbar und $\mathbb{E}(X \cdot Y) = (\mathbb{E}X) \cdot (\mathbb{E}Y)$.

Beweis. Setze $M := \{(x,y) \in \mathbb{R}^2 : \mathbb{P}(X=x,Y=y) > 0\} = \{(x,y) : \mathbb{P}(X=x) > 0, \mathbb{P}(Y=y) > 0\}$. Dann

$$\mathbb{E}|X \cdot Y| = \sum_{\omega \in \Omega_0} |X(\omega)||Y(\omega)|\mathbb{P}(\{\omega\})$$

$$\stackrel{!}{=} \sum_{(x,y)\in M} |x||y| \underbrace{\mathbb{P}(X=x,Y=y)}_{\mathbb{P}(X=x)\cdot\mathbb{P}(Y=y)}$$

$$= \underbrace{\left(\sum_{x:\,\mathbb{P}(X=x)>0} |x|\mathbb{P}(X=x)\right)}_{y:\,\mathbb{P}(Y=y)>0} \cdot \underbrace{\left(\sum_{y:\,\mathbb{P}(Y=y)>0} |y|\mathbb{P}(Y=y)\right)}_{y:\,\mathbb{P}(Y=y)>0}$$

Dieselbe Rechnung "ohne Betragsstriche" liefert die behauptete Formel. \Box

10.9 Satz (Faltungsformel)

Sind X, Y unabhängige reelle Zufallsvariablen, so gilt

$$\mathbb{P}(X+Y=z) = \sum_{x \in X(\Omega_0)} \mathbb{P}(X=x) \mathbb{P}(Y=z-x), \quad z \in \mathbb{R}$$

²d.h. der Erwartungswert existiert.

Beweis. Ohne Unabhängigkeit gilt

$$\mathbb{P}(X+Y=z) \stackrel{!}{=} \sum_{X \in X(\Omega_0)} \mathbb{P}(X=x,Y=z-x)$$

10.10 Satz (Additionsgesetz für Binomialverteilungen)

Seien $X \sim Bin(m, p), Y \sim Bin(n, p)$ stochastisch unabhängig. Dann ist $X + Y \sim Bin(m + n, p) \quad \forall m, n \geq 1, p \in [0, 1]$

Beweis. Es seien $A_1, \ldots, A_m, A_{m+1}, \ldots, A_{m+n}$ unabhängige Ereignisse mit $\mathbb{P}(A_i) = p$. Dann sind

$$X' := \sum_{i=1}^m 1_{A_i}, \qquad Y' := \sum_{i=m+1}^{m+n} 1_{A_i}$$

Bin(m,p) bzw. Bin(n,p) Binomialverteilt. (Bernoulli-Kette) Nach Blockungslemma sind X',Y' stochastisch unabhängig! Außerdem

$$X' + Y' = \sum_{i=1}^{m+n} 1_{A_i} \sim Bin(m+n, p)$$

Aber aus $(X', Y') \stackrel{d}{=} (X, Y)$ folgt

$$X'+Y' \stackrel{d}{=} X+Y, \text{ d.h. } X+Y \sim Bin(m+n,p)$$

$$\mathbb{P}^{X'+Y'} = \mathbb{P}^{X+Y}$$

Kapitel 11

Varianz, Kovarianz, Korrelation

 (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum.

11.1 Definition

Falls X Zufallsvariable und $\mathbb{E}X^2 < \infty$, so heißt

$$V(X) \equiv Var(X) := \mathbb{E}(X - \mathbb{E}X)^2$$

Varianz von X.

11.2 Bemerkungen

1. Wegen

$$|X| \le 1 + X^2$$

 $(X - a)^2 \le X^2 + 2|a||X| + a^2$

ist V(X) wohldefiniert.

2. Gilt
$$\sum_{i=1}^{\infty} \mathbb{P}(X = x_i) = 1$$
, so ist

$$V(X) = \sum (x_i - \mathbb{E}X)^2 \mathbb{P}(X = x_i)$$
 (Transformationsformel)

3. Es gilt

$$V(X) = \mathbb{E}(X^2 - 2\underbrace{(\mathbb{E}X)}_{\mu}X + \underbrace{(\mathbb{E}X)^2}_{\mu^2})$$

$$= \mathbb{E}X^2 - 2\mu\mathbb{E}X + \mu^2 \quad \text{(Linearität des Erwartungswertes)}$$
$$= \mathbb{E}X^2 - \mu^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2$$

4. Varianz kann als Trägheitsmoment interpretiert werden.

11.3 Satz 47

11.3 Satz

Sei $\mathbb{E}X^2 < \infty$.

1.
$$V(X) = \mathbb{E}(X-c)^2 - (\mathbb{E}X-c)^2, \quad c \in \mathbb{R}$$
 (Steiner-Formel)

2.
$$V(X) = \min_{c} \mathbb{E}(X - c)^2$$

3.
$$V(aX + b) = a^2V(X)$$

4.
$$V(X) = 0 \Leftrightarrow \exists a \in \mathbb{R} : \mathbb{P}(X = a) = 1$$
.

Beweis. (1)
$$V(X) =$$

$$= \mathbb{E}(\underline{X - c} + \underline{c - \mathbb{E}X})^{2}$$

$$= \mathbb{E}(X - c)^{2} + 2 \underbrace{\mathbb{E}(X - c)(c - \mathbb{E}X)}_{} + (c - \mathbb{E}X)^{2}$$

1

$$= \mathbb{E}(X - c)^{2} - 2\mathbb{E}(c - \mathbb{E}X)^{2} + (c - \mathbb{E}X)^{2}$$

(2) (1)
$$\leadsto \mathbb{E}(X - c)^2 = V(X) + (\mathbb{E}X - c)^2$$

(3)
$$\mathbb{E}(aX + b - \mathbb{E}(aX + b))^2$$

$$= \mathbb{E}(aX + b - a\mathbb{E}X - b)^{2}$$
$$= a^{2}\mathbb{E}(X - \mathbb{E}X)^{2}$$

(4) Bemerkung $11.2.(2) \rightsquigarrow$

$$V(X) = 0 \Leftrightarrow (x_i - \mathbb{E}X)^2 \mathbb{P}(X = x_i) = 0$$

$$\Leftrightarrow \forall i \text{ mit } \mathbb{P}(X = x_i) \text{ gilt } x_i = \mathbb{E}X$$

$$\Leftrightarrow \text{ Es gibt nur ein } i_0 \text{ mit } \mathbb{P}(X = x_{i_0}) > 0$$
Dann ist $\mathbb{P}(X = x_{i_0}) = 1$, und $x_{i_0} = \mathbb{E}X$.

11.4 Beispiel

1.
$$X = 1_A$$
, $A \subset \Omega$.

$$VarX = \mathbb{E}1_A^2 - (\mathbb{E}1_A)^2 = \mathbb{E}1_A - (\mathbb{E}1_A)^2$$
$$= \mathbb{P}(A) - \mathbb{P}(A)^2 = \mathbb{P}(A)(1 - \mathbb{P}(A))$$

 $^{^{1}\}mathbb{E}c = c$

11.5 Definition 48

2.
$$X = \sum_{i=1}^{n} 1_{A_i}, \quad A_i \subset \Omega_i, i = 1, \dots, n$$

$$V(X) = \mathbb{E}\left(\sum_{i=1}^{n} 1_{A_i}\right) \cdot \left(\sum_{j=1}^{n} 1_{A_j}\right) - (\mathbb{E}\sum_{i=1}^{n} 1_{A_i})^2$$

$$= \sum_{i=1}^{n} \mathbb{P}(A_i) + \sum_{i \neq i} \mathbb{P}(A_i \cap A_j) - (\sum_{i=1}^{n} \mathbb{P}(A_i))^2$$

Es gelte etwa (für ein $c \geq -r, r, s \in \mathbb{N}$)

$$\mathbb{P}(A_i) = \frac{r}{r+s} =: p$$

$$\mathbb{P}(A_i \cap A_j) = \frac{r}{r+s} \frac{r+c}{r+s+c}, \quad i \neq j$$

(c = -1): Ziehen ohne Zurücklegen, c = 0ê Ziehen mit Zurücklegen, c > 0: Polyasches Urnenschema). Dann

$$V\left(\sum_{i=1}^{n} X_i\right) = np(1-p) \cdot \left(1 + \frac{(n-1) \cdot c}{r+s+c}\right)$$

(3)
$$X \sim Bin(n, p) : V(x) = np(1-p) \quad (c = 0)$$

(4)
$$X \sim Hyp(n,r,s) : V(X) = np(1-p)\left(1 - \frac{(n-1)}{r+s-1}\right) \quad (c = -1)$$

11.5 Definition

X heißt standardisiert, wenn $\mathbb{E}X = 0$ und V(X) = 1. Ist X eine beliebige Zufallsvariable ($\mathbb{E}X^2 < \infty$), so heißt (falls V(X) > 0)

$$X^* = \frac{X - \mathbb{E}X}{\sqrt{V(X)}}$$

Standardisierung von X. (Es gilt $\mathbb{E}X^* = 0, V(X^*) = 1$)

Bemerkung
$$X \sim Bin(n,p), \quad X^* = \frac{X-np}{\sqrt{np(1-p)}}$$

11.6 Satz (Tschebyschov-Ungleichung)

Für jede Zufallsvariable X mit $\mathbb{E}X^2 < \infty$ gilt

$$\mathbb{P}(|X - \mathbb{E}X| \ge c) \le \frac{V(X)}{c^2}), \quad c > 0.$$

11.7 Definition 49

Beweis. Es sei (für gegebenes c > 0)

$$g(t) = \begin{cases} 1, & \text{falls } |t - \mathbb{E}X| \ge c \\ 0, & \text{sonst} \end{cases}, \quad t \in \mathbb{R}$$

Ferner sei

$$h(t) = \frac{(t - \mathbb{E}X)^2}{c^2}$$

(TODO: Bild)

Wegen $g \leq h$ ist $g(X) \leq h(X)$, also

$$\underbrace{\mathbb{E}g(X)}_{=\mathbb{P}(|X-\mathbb{E}X|\geq c)} \leq \underbrace{\mathbb{E}h(X)}_{=\mathbb{E}\frac{(X-\mathbb{E}X)^2}{c^2}}$$

$$=\underbrace{\mathbb{E}\frac{(X-\mathbb{E}X)^2}{c^2}}_{=\frac{1}{c^2}V(X)}$$

11.7 Definition

Es gelte $\mathbb{E}X^2 < \infty$, $\mathbb{E}Y^2 < \infty$. Die Zahl

$$(Cov(X,Y) =)C(X,Y) := \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y)$$

heißt Kovarianz zwischen X und Y. Gilt C(X,Y)=0, so heißen X und Y unkorreliert. Gilt V(X)>0, V(Y)>0, so heißt

$$\rho(X,Y) := \frac{C(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}$$

Korrelationskoeffizient zwischen X und Y. (Wegen $|a \cdot b| \leq \frac{1}{2}(a^2 + b^2)$ ist $(X - \mathbb{E}X)(Y - \mathbb{E}Y) \in L^1(\mathbb{P}))^2$.

11.8 Satz

- 1. $C(X,Y) = \mathbb{E}XY (\mathbb{E}X\mathbb{E}Y)$
- 2. $C(X,Y) = C(Y,X), \quad C(X,X) = V(X)$
- 3. $C(aX + b, cY + d) = a \cdot c \cdot C(X, Y)$
- 4. X, Y unabhängig $\Rightarrow C(X, Y) = 0$
- 5. V(X,Y) = V(X) + V(Y) + 2C(X,Y)

 $^{^{2}}L^{1}(\mathbb{P}) \rightsquigarrow \text{integrierbar}$

11.9 Folgerung 50

6.
$$V(\sum_{j=1}^{n} X_j) = \sum_{j=1}^{n} V(X_j) + \sum_{i \neq j} C(X, Y)$$

7.
$$C(1_A, 1_B) = \mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)$$

8.
$$C(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j) = \sum_{i,j} C(X_i, Y_j)$$

9.
$$\rho(aX + b, cY + d) = sgn(a \cdot c)\rho(X, Y)$$

Beweis. a),b),c) stimmt.

d) Satz 10.8.

$$C(X,Y) = \mathbb{E}X \cdot Y - \mathbb{E}X\mathbb{E}Y = 0.$$

- e) folgt aus f, f folgt aus h
- h) linke Seite

$$\mathbb{E}(\sum_{i} X_{i} - \sum_{i} \mathbb{E}X_{i}, \sum_{j} X_{j} - \sum_{j} \mathbb{E}X_{j})$$

$$= \mathbb{E}(\sum_{i} (X_{i} - \mathbb{E}X_{i}))(\sum_{j} (X_{j} - \mathbb{E}X_{j}))$$

$$= \sum_{i,j} \mathbb{E}(X_{i} - \mathbb{E}X_{i}) \cdot (Y_{j} - \mathbb{E}Y_{j})$$

i) für $a, b \in \mathbb{R}, c, d \in \mathbb{R}$

$$\rho(aX + b, cY + d)$$

$$\stackrel{Def}{=} \frac{cov(aX + b, cY + d)}{\sqrt{Var(aX + b) \cdot Var(cY + d)}}$$

$$\stackrel{11.8.c}{=} \frac{acCov(X, Y)}{\sqrt{a^2c^2}\sqrt{Var(X) \cdot Var(Y)}}$$

$$= sqn(ac) \cdot \rho(X, Y)$$

11.9 Folgerung

Sind X_1, \ldots, X_n unabhängig, so folgt

$$V(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} V(X_i)$$
 (aus iv+vi(d+f))

11.10 Beispiel 51

11.10 Beispiel

Für $X \sim Bin(n, p)$ gilt (nach Satz 9.6)

$$X \stackrel{d}{=} X_1 + \ldots + X_n$$

mit X_1, \ldots, X_n unabhängig und identisch verteilt mit

$$\mathbb{P}(X_i = 1) = 1 - \mathbb{P}(X_i = 0) = p \quad \text{für } i = 1, \dots, n$$

Also ist nach 11.9 und 11.4.i

$$V(X) = \sum_{i=1}^{n} V(X_i)$$

$$= n \cdot V(X_1) = np(1-p)$$

in Übereinstimmmung mit 11.4.iii (siehe auch Übung). Das folgende Resultat ist analog zu 1.6:

11.11 Satz

Gilt $\mathbb{E}X^2 < \infty$, $\mathbb{E}Y^2 < \infty$ und V(X)V(Y) > 0, so folgt

$$\min_{a,b} \mathbb{E}(Y - a - bX)^2 = V(Y)(1 - \rho^2(X, Y))$$

Die Minimalstelle (a^*, b^*) ist gegeben durch

$$b^* = \frac{C(X,Y)}{V(X)}, \quad a^* = \mathbb{E}Y - b^* \mathbb{E}X$$

Beweis. (allg. $\inf_{x,y} f(x,y) = \inf_{x} \inf_{y} f(x,y) = \inf_{y} \inf_{x} f(x,y)$) Es seien $a,b \in \mathbb{R}$ und Z := Y - bX. Dann ist

$$\mathbb{E}(Y - bX - a)^2 = \mathbb{E}(Z - a)^2$$

$$\stackrel{11.3.i,Steiner}{=} V(Z) + \underbrace{(\mathbb{E}Z - a)^2}_{\geq 0}$$

Also ist $a^* = \mathbb{E}Z = \mathbb{E}Y - b^*\mathbb{E}X$.

Es verbleibt die Aufgabe

$$\min_{b} \underbrace{\mathbb{E}(Y - \mathbb{E}Y - b(X - \mathbb{E}X))^{2}}_{=:f(b)}$$

$$f(b) = Var(Y) - 2bC(X,Y) + b^2Var(X)$$

11.12 Folgerung 52

$$= {}^{3}V(X)\underbrace{\left(b - \frac{C(X,Y)}{V(X)}\right)^{2}}_{\geq 0} + V(Y) - \frac{C(X,Y)^{2}}{V(X)}$$
$$\Rightarrow b^{*} = \frac{C(X,Y)}{V(X)}$$

11.12 Folgerung

1. $C(X,Y)^2 \le V(X) \cdot V(Y)$ (Cauchy-Schwarz-Ungleichung)

2.
$$|\rho(X,Y)| \leq 1$$

3.
$$|\rho(X,Y)| = 1$$

$$\Leftrightarrow \exists a, b \in \mathbb{R} \colon \mathbb{E}(Y - a - bX)^2 = 0$$

$$\Leftrightarrow \exists a, b \in \mathbb{R} \colon \mathbb{P}(Y - a - bX = 0) = 1$$

$$(\Leftrightarrow Y = a + bX \quad \mathbb{P} - \text{fast sicher})$$

insbesondere $\rho(X,Y) = 1 \Rightarrow b > 0$

$$(b^* = \frac{C(X,Y)}{V(X)}) = \rho(X,Y) \cdot \underbrace{\sqrt{\frac{V(Y)}{V(X)}}}_{>0}$$

und
$$\rho(X,Y) = -1 \Rightarrow b < 0$$
.

11.13 Bemerkung

Falls $\mathbb{P}(X = x_j, Y = y_j) = \frac{1}{n} \quad (1 \le j \le n)$ so

$$\mathbb{E}(Y - a - bX)^{2} = \sum_{j=1}^{n} \frac{1}{n} \cdot (y_{j} - a - bx_{j})^{2}$$

 \leadsto Methode der kleinsten Quadrate \leadsto Kapitel 1 (empirischer Korrelationskoeffizient)

³quadratische Ergänzung

Kapitel 12

Wichtige diskrete Verteilungen

- 1. Binomialverteilung $Bin(n,p) \leadsto \text{Kapitel } 6,9.6$
- 2. Hypergeometrische Verteilung $Hyp(n,r,s) \leadsto \text{Kapitel } 6$
- 3. Poisson-Verteilung $Po(\lambda)$
- 4. Geometrische Verteilung G(p)
- 5. Negative Binomial verteilung Nb(r, p)
- 6. Multinomial verteilung $Mult(n, p_1, \ldots, p_s)$

12.1 Satz (Gesetz seltener Ereignisse)

Sei $(p_n)_{n\geq 1}, 0\leq p_n\leq 1$ eine Folge mit

$$np_n \stackrel{n \to \infty}{\to} \lambda \quad (0 < \lambda < \infty)$$

Dann gilt

$$\underbrace{\binom{n}{k} p_n^k (1 - p_n)^{n-k}}_{=\mathbb{P}(X_n = k) \text{ für } X_n \sim Bin(n, p_n)} \stackrel{n \to \infty}{\to} e^{-\lambda} \frac{\lambda^k}{k!}$$

Beweis. linke Seite:

$$\frac{n!}{k!(n-k)!} \frac{1}{n^k} \cdot (n \cdot p_n)^k (1 - \frac{n \cdot p_n}{n})^{n-k}$$

$$\frac{1}{k!} \underbrace{\frac{n^k}{n^k}}_{\to 1} \underbrace{\frac{(n, p_n)^k}{N}}_{\to \lambda^k} \underbrace{\frac{(1 - \frac{n \cdot p_n}{n})^{n-k}}_{\to e^{-\lambda}}}_{\to e^{-\lambda}}$$

$$\frac{n^k}{n^k} = \frac{n}{n} \cdot \frac{(n-1)}{n} \cdot \frac{(n-2)}{n} \cdot \dots \cdot \frac{(n-k+1)}{n}$$

12.2 Definition 54

und allgemein für $a_n \to 1$ gilt

$$(1 + \frac{a_n}{n})^n \to e^a$$

12.2 Definition

$$X \sim Po(\lambda) \Leftrightarrow \mathbb{P}(X = k) = e^k \frac{\lambda^k}{k!}, \quad k \in \mathbb{N}_0$$

(Poisson-Verteilung mit Parameter $\lambda, \lambda \in (0, \infty)$) Also, falls $n \cdot p_n \to \lambda$,

$$Bin(n, p_n) \to Po(\lambda)$$
 im Sinne von 12.1

12.3 Satz

1.
$$X \sim Po(\lambda) \Rightarrow \mathbb{E}X = V(X) = \lambda$$

2. X, Y unabhängig, $X \sim Po(\lambda), Y \sim Po(\mu)$

$$\Rightarrow X + Y \sim Po(\lambda + \mu)(Additivgesetz)$$

Beweis. 1.

$$\mathbb{E}X = \sum_{k=1}^{\infty} k \cdot e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \cdot \lambda \underbrace{\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}}_{=\sum_{j=0}^{\infty} \frac{\lambda^j}{j!} = e^{\lambda}} = \lambda$$

$$\mathbb{E}(X(X-1)) = \sum_{k=2}^{\infty} k(k-1)e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda}\lambda^2 e^{\lambda} = \lambda^2$$

$$Var(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2$$

$$= \mathbb{E}(X(X-1)) + \mathbb{E}X - \mathbb{E}X^2$$

$$= \lambda^2 + \lambda - \lambda^2 = \lambda$$

2. Faltungsformel (Übung!)

12.4 Definition und Satz

Sei 0 .

$$X \sim G(p) : \Leftrightarrow \mathbb{P}(X = k) = (1 - p)^k \cdot p, \quad k \in \mathbb{N}_0$$

(geometrische Verteilung mit Parameter p) Es gilt

1.
$$\mathbb{E}X = \frac{1}{p} - 1$$

2.
$$V(X) = \frac{1-p}{p^2}$$

X modelliert <u>Anzahl der Nieten vor dem ersten Treffer</u> in einer unendlichen Bernoulli-Kette mit Trefferwahrscheinlichkeit p.

Beweis.

$$\sum_{k=0}^{\infty} X^{k} \equiv \frac{1}{1-x} \text{ auf } (-1,1)$$

$$\Rightarrow \sum_{k=1}^{\infty} k \cdot x^{k-1} = \frac{1}{(1-x)^{2}} \text{ für } |x| < 1$$

$$\Rightarrow \sum_{k=2}^{\infty} k(k-1)x^{k-2} = \frac{2}{(1-x)^{3}}$$

$$\mathbb{E}X = \sum_{k=1}^{\infty} k(1-p)^{k} \cdot p = p(1-p) \sum_{k=1}^{\infty} k(1-p)^{k-1}$$

$$p(1-p) \frac{1}{(1-(1-p))^{2}}$$

$$= \frac{1-p}{p}$$

$$\mathbb{E}X(X-1) = p(1-p)^{2} \sum_{k=2}^{\infty} k(k-1)(1-p)^{k-2}$$

$$= \frac{2}{p^{3}}$$

$$= 2\left(\frac{(1-p)}{p}\right)^{2}$$

$$\Rightarrow Var(X) = 2\left(\frac{1-p}{p}\right)^{2} + \frac{1-p}{p} - \left(\frac{1-p}{p}\right)^{2}$$

$$= \left(\frac{1-p}{p}\right)^{2} + \frac{1-p}{p} = \left(\frac{1-p}{p}\right) \underbrace{\left(\frac{1-p}{p}+1\right)}_{=1} = \frac{1-p}{p^{2}}$$

12.5 Definition und Satz

X hat eine negative Binomialverteilung mit Parametern r und p ($r \in \mathbb{N}$ und 0), falls gilt:

$$\mathbb{P}(X=k) = \binom{k+r-1}{k} p^r (1-p)^k, \quad k \in \mathbb{N}_0$$

Es gilt

$$\mathbb{E}X = r \cdot \frac{1-p}{p}$$

$$V(X) = r \cdot \frac{1-p}{p^2},$$

Notation: $X \sim Nb(r, p)$

12.6 Satz

$$X_1, \ldots, X_r \stackrel{u.i.v._1}{\sim} G(p)$$

$$\Rightarrow X_1 + \ldots + X_r \sim Nb(r, p)$$

Beweis. Faltungsformel (Übung)

Bemerkung

1. $X \sim Nb(r, p)$

$$\mathbb{P}(X = k) = \frac{(k+r-1)^{k}}{k!} p^{r} (1-p)^{k}$$

$$= \frac{-r \cdot (-r-1) \cdot \dots \cdot (-r-k+1)}{k!} (-1)^{k} p^{r} (1-p)^{k}$$

$$= {\binom{-r}{k}} \cdot p^{r} (-(1-p))^{k}$$

wobei
$$\binom{-r}{k} = \frac{-r^k}{k!} \quad \forall r \in \mathbb{R}$$

 $X \sim Nb(r, p)$, falls

$$\mathbb{P}(X=k) = \binom{k+r-1}{k} p^r (1-p)^k$$
$$= \boxed{\binom{-r}{k} p^r (-(1-p))^k}$$

 $k=0,1,2,\dots \binom{x}{k}:=\frac{x^{\underline{k}}}{k!}=\frac{x(x-1)\cdots(x-k+1)}{k!})$ W
kt. für k Fehlversuche bis zum r-ten Erfolg in einer ("un
endlichen" Bernoulli-Kette) $r=1:\mathbb{P}(X=k)=p(1-p)^k$

¹unabhängig identisch verteilt

12.7 Bemerkungen

- 1. Siehe Box oben.
- 2. $X \sim Nb(r, p), Y \sim Nb(r, p), X$ und Y unabhängig

$$\Leftarrow X + Y \sim Nb(r + s, p)$$

Beweis. Faltungsformel. Inhaltlich folgt das aus der Interpretation der negativen Binomialverteilung. \Box

12.8 Beispiel (Multinomiales Versuchsschema)

n unabhängige Experimente mit Ausgängen in $\{1,\ldots,s\}$ mit $s\geq 2$. (Ausgang k = Treffer der k-ten Art)

 $p_k = \text{Wkt. für Treffer der } k\text{-ten Art}$

$$p_1 + \ldots + p_s = 1$$

$$\begin{aligned} \textbf{Modell:} \quad & (\Omega, \mathbb{P}) = (\bigotimes_{j=1}^n \Omega_j, \bigotimes_{j=1}^n \mathbb{P}_j) \\ & \Omega = \{1, \dots, s\}, \mathbb{P}_j(\{k\}) = p_k \\ & A_j^{(k)} := \{\omega = (\omega_1, \dots, \omega_n) \in \Omega \mid \omega_j = k\} \\ & X_k := \sum_{j=1}^n 1_{A_j^{(k)}} \quad \text{Anzahl der Treffer k-ter Art} \\ & X_1 + \dots + X_s = n \end{aligned}$$

Es gilt für $i_1, \ldots, l_s \in \mathbb{N}_0, i_1 + \ldots + i_s = n$

$$\begin{aligned} |\{X_1 = i_1, \dots, X_s = i_s\}| \\ &= \binom{n}{i_1} \binom{n - i_1}{i_2} \cdots \binom{n - i_1 \dots - i_{s-1}}{i_s} \\ &= \frac{n!}{i_1! i_2! \dots i_s!} =: \binom{n}{i_1 \dots i_s} \\ (p_1^{i_1} \cdot p_2^{i_2} \cdots p_s^{i_s}) \end{aligned}$$

12.9 Definition

$$(X_1,\ldots,X_s) \sim Mult(n,p_1,\ldots,p_s)$$
, falls

$$\mathbb{P}(X_1 = i_1, \dots, X_s = i_s) = \binom{n}{i_1 \cdots i_s} p_1^{i_1} \cdots p_s^{i_s}$$

$$i_1, \ldots, i_s \in \mathbb{N}_0, i_1 + \ldots + i_s = n.$$

12.10 Folgerung 58

12.10 Folgerung

Es gelte $(X_1, \ldots, X_s) \sim Mult(n, p_1, \ldots, p_s)$

1. $X_k \sim Bin(n, p_k)$

2.
$$X_{i_1} + \ldots + X_{i_0} \sim Bin(n, p_{i_1} + \ldots + p_{i_{\nu}}), \quad (\{i_1, \ldots, i_{\nu}\} \subset \{1, \ldots, s\})$$

3. $C(X_i, X_j) = -np_i p_j, \quad i \neq j.$

4.
$$\rho(X_i, X_j) = -\sqrt{\frac{p_i p_j}{(1 - p_i)(1 - p_j)}}, \quad i \neq j, p_i < 1, p_j < 1.$$

Beweis. 1. Ist Spezialfall von (2) ($\nu = 1$).

Bildung der Randverteilung von (X_1, \ldots, X_s)

Benutze Multinomialformel

$$(X_1 + \dots + X_s)^n = \sum_{j_1,\dots,j_s} {n \choose j_1 \cdots j_s} X_1^{j_1} X_2^{j_2} \cdots X_s^{i_s}$$

$$\underline{n=2} \binom{n}{j_1 j_2} = \binom{n}{j_1} = \binom{n}{j_2}, \quad j_1 + j_2 = n$$

2. $B_j := \bigcup_{k=1}^{\nu} A_j^{(i,k)} = \text{im } j\text{-ten Versuch liegt Erfolg mit Typ in } \{i_1, \dots, i_{\nu}\}$

 B_1, \ldots, B_n sind unabhängig (!) und es gilt

$$\mathbb{P}(B_i) = p_{i_1} + \ldots + p_{i_n} =: q$$

Satz $9.6 \rightsquigarrow$

$$X_{i_1} + \ldots + X_{i_{\nu}} \stackrel{d}{=} \sum_{j=1}^{n} 1_{B_j} \sim Bin(n, q)$$

3.
$$Var(X_i + X_j) \stackrel{(2)}{=} n(p_i + p_j)(1 - p_i - p_j)$$

$$= Var(X_i) + Var(X_j) + 2Cov(X_i, X_j)$$

$$= np_i(1 - p) + np_j(1 - p_j)$$

$$\rightsquigarrow 2Cov(X_i, X_j) = -2np_ip_j$$

4.

$$\rho(X_i, X_j) = \frac{Cov(X_i, X_j)}{\sqrt{var(X_i)}\sqrt{Var(X_j)}} = \frac{-np_i p_j}{\sqrt{np_i(1 - p_i)}\sqrt{np_j(1 - p_j)}}$$
$$= -\frac{\sqrt{p_i}\sqrt{p_j}}{\sqrt{1 - p_i}\sqrt{1 - p_j}}$$

Kapitel 13

Bedingte Erwartungswerte und bedingte Verteilungen

 (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum, $X : \Omega \to \mathbb{R}$ mit $\mathbb{E}(X) < \infty$.

13.1 Definition

1. Für $A \subset \Omega$ mit $\mathbb{P}(A) > 0$ heißt

$$\mathbb{E}[X|A] := \frac{1}{\mathbb{P}(A)} \cdot \sum_{\omega \in A} X(\omega) \mathbb{P}(\{\omega\})$$

bedingter Erwartungswert von X unter (der Bedingung) A.

2. Ist speziell $A = \{Z = z\}, z \in \mathbb{R}^k$, für einen Zufallsvektor $Z \colon \Omega \to \mathbb{R}^k$, so heißt

$$\mathbb{E}[X|Z=z] := \mathbb{E}[X|\{Z=z\}] = \frac{1}{\mathbb{P}(Z=z)} \cdot \sum_{\omega \colon Z(\omega)=z} X(\omega) \mathbb{P}(\omega)$$

bedingter Erwartungswert von X unter der Bedingung Z=z. (Annahme: $\mathbb{P}(Z=z)>0)$

13.2 Bemerkungen

1. Sei $\mathbb{P}_A(B)=\mathbb{P}(B|A)=\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(A)}$. Dann ist \mathbb{P}_A ein Wahrscheinlichkeits-Maß.

Denn:
$$\mathbb{E}[X|A] = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}_A(\{\omega\})$$

2.
$$\mathbb{E}[X|A]\mathbb{P}(A) = \mathbb{E}X1_A$$
 $\left(X = 1_B, \mathbb{E}[X|A] = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \mathbb{P}(B|A)\right)$

13.3 Beispiel 60

13.3 Beispiel

 X_1, X_2 unabhängig, $\mathbb{P}(X_i = k) = \frac{1}{6}, k = 1, \dots, 6 \ (\Omega = \{1, \dots, 6\}^2, \mathbb{P} = Gleichverteilung)$

$$\mathbb{E}[X_1|X_1 + X_2 = 10] = ?$$

$$A = \{X_1 + X_2 = 10\} = \{(4,6), (5,5), (6,4)\}$$

$$\mathbb{P}(A) = \frac{3}{36} = \frac{1}{12}$$

$$\mathbb{E}[X_1|A] = 12(4 \cdot \frac{1}{36} + 5 \cdot \frac{1}{36} + 6 \cdot \frac{1}{36})$$

 $=\frac{1}{3}(15) = 5$ Übung: $\mathbb{E}[X_1|X_1 + X_2 \ge 10]$

13.4 Satz (Formel vom totalen Erwartungswert)

Es gelte $\Omega = \bigcup_j A_j$ mit $A_i \cap A_j = \emptyset$ Für $i \neq j$ und $\mathbb{P}(A_j) > 0, j = 1, 2, \dots$. Dann

$$\mathbb{E}X = \sum_{j} \mathbb{E}[X|A_{j}]\mathbb{P}(A_{j})$$

 $(X = 1_B \leadsto \text{Formel der totalen Wahrscheinlichkeit})$

Beweis. Analog zur Formel der totalen Wahrscheinlichkeit!

13.5 Beispiel

"Unendliche" Bernoulli-Kette.

Beobachte bis erstmalig "1 1" auftritt. Sei X die Anzahl der Versuche.

$$\mathbb{E}X = ?$$

Sei $A_1 = \{ \text{Kette beginnt mit } 0 \}.$

$$\mathbb{E}[X|A_1] = 1 + \mathbb{E}X$$

 $A_2 := \{ \text{Kette beginnt "1,0"} \}$

$$\mathbb{E}[X|A_2] = 2 + \mathbb{E}X$$

 $A_3 = \{ \text{Kette beginnt mit "1,1"} \}$

$$\mathbb{E}[X|A_3] = 2$$

13.4
$$\rightsquigarrow \mathbb{E}X = (1-p)(\mathbb{E}X+1) + p(1-p)(2+\mathbb{E}X) + p^2 \cdot 2$$

$$\mathbb{E}X(1-(1-p)-p(1-p)) = 1-p+2p(1-p)+2p^2$$

$$(\mathbb{E}X)p^2 = 1+p$$

$$\begin{array}{ll} \mathbf{Erinnerung} & \mathbb{E}[X|A] = \frac{1}{\mathbb{P}(A)} \sum_{\omega \in A} X(\omega) \mathbb{P}(\{\omega\}) \\ \mathbb{E}X = \sum_{j} \mathbb{E}[A|A_{j}] \mathbb{P}(A_{j}) \end{array}$$

13.6 Satz (Eigenschaften)

 $\mathbb{E}|X| < \infty, \mathbb{E}|Y| < \infty, Z \colon \Omega \to \mathbb{R}^n, z \in \mathbb{R}^n \text{ mit } \mathbb{P}(Z=z) > 0.$

1.
$$\mathbb{E}[X + Y|A] = \mathbb{E}[X|A] + \mathbb{E}[Y|A]$$

2.
$$\mathbb{E}[aX|A] = a\mathbb{E}[X|A]$$

3.
$$X \leq Y \Rightarrow \mathbb{E}[X|A] < \mathbb{E}[Y|A]$$

4.
$$\mathbb{E}[1_A|B] = \mathbb{P}(A|B)$$

5.
$$\mathbb{E}[X|A] = \sum_{j} x_j \mathbb{P}(X = x_j|A)$$
 $\sum_{j} \mathbb{P}(X = x_j) = 1$

6.
$$\mathbb{E}[X|Z=z] = \sum_{j} x_j \mathbb{P}(X=x_j|Z=z)$$

7. $\mathbb{E}[X|Z=z]=\mathbb{E}X$ falls X und Z stochastisch unabhängig

Beweis. 13.2 und Satz 5.4

13.7 Satz (Substitutionsformel)

Sei $X\colon\Omega\to\mathbb{R}^n,Z\colon\Omega\to\mathbb{R}^k,g\colon\mathbb{R}^n\to\mathbb{R}^k$ mit $\mathbb{E}|g(X,Z)|<\infty$. Dann gilt für $z\in\mathbb{R}^k$ mit $\mathbb{P}(Z=z>0)$

$$\mathbb{E}[g(X,Z)|Z=z] = \mathbb{E}[g(X,z)|Z=z]$$

Beweis.

$$\mathbb{E}[g(X,Z)|Z=z] = \frac{1}{\mathbb{P}(Z=z)} \sum_{\omega \in \Omega: \ Z(\omega)=z} g(X(\omega),Z(\omega)) \mathbb{P}(\{\omega\})$$

$$=\frac{1}{\mathbb{P}(Z=z)}\sum_{\omega\in\Omega\colon Z(\omega)=z}g(X(\omega),z)\mathbb{P}(\{\omega\})=\text{ rechte Seite der Behauptung}.$$

13.8 Beispiel (Würfelwurf)

Falls k auftritt, wird noch k mal gewürfelt. Sei X die Gesamtaugensumme. $\mathbb{E}X = ?$

Modell: $\Omega = \{1, \dots, 6\}^7, \mathbb{P} = \text{Gleichverteilung}$ $X_j(\omega) = \omega_j \quad \omega = (\omega_0, \dots, \omega_6) \in \Omega$ X_0, \dots, X_6 stochastisch unabhängig. Dann

$$X = X_0 + \sum_{j=1}^{X_0} X_j$$

$$\mathbb{E}[X|X_0 = k] = \mathbb{E}[X_0 + \sum_{j=1}^{X_0} X_j | X_0 = k]$$

$$= \mathbb{E}[k + \sum_{j=1}^k X_j | X_0 = k]$$

$$= k + \sum_{j=1}^k \mathbb{E}[X_j | X_0 = k]$$

$$\stackrel{g}{=} k + \sum_{j=1}^k \mathbb{E}X_j = k + k \cdot 3, 5 = 4, 5k$$

$$\mathbb{E}X = \sum_{j=1}^6 \mathbb{E}[X | X_0 = k] \mathbb{P}(X_0 = k)$$

$$= 4, 5 \cdot \frac{1}{6} \cdot \sum_{j=1}^6 k = \frac{9}{2} + \frac{1}{6} \cdot \frac{42}{2} = \frac{63}{4}$$

13.9 Definition

Es sei $Z: \Omega \to \mathbb{R}^k$ mit $\mathbb{P}(Z=z_j) > 0, j \geq 1, \sum_j \mathbb{P}(Z=z_j) = 1.$

Es sei X Zufallsvariable mit $\mathbb{E}(X) < \infty$. Dann heißt die durch

$$\mathbb{E}[X|Z](\omega) := \begin{cases} \mathbb{E}[X|Z = z_j], & \text{falls } Z(\omega) = z_j \\ 0, & \text{sonst.} \end{cases}$$

definierte <u>Zufallsvariable</u> $\mathbb{E}[X|Z]$ die **bedingte Erwartung** von X bei gegebenem Z.

13.10 Beispiel 63

13.10 Beispiel

In Bsp. 13.8 gilt

$$\mathbb{E}[X|X_0] = \frac{9}{2}X_0$$

13.11 Satz

Sei $\mathbb{E}X^2 < \infty$, $Z: \Omega \to \mathbb{R}^k$ (wie in 13.9), $h: \mathbb{R}^k \to \mathbb{R}$ mit $\mathbb{E}h(Z)^2 < \infty$. Dann wird

$$\mathbb{E}(X - h(Z))^2$$

minimal für $h(Z) = \mathbb{E}[X|Z]$.

Beweis. Beweis durch Verwirrung und Klammerchaos. (Ohne Gewähr)

$$\mathbb{E}(X - h(Z))^2$$

$$\stackrel{13.4}{=} \sum_j \mathbb{E}[(X - h(Z))^2 | Z = z_j] \mathbb{P}(Z = z_j)$$

$$= \sum_j \mathbb{E}[(X - h(z_j))^2 | Z = z_j] \mathbb{P}(Z = z_j)$$

$$= \sum_j (\mathbb{E}[(X - \mathbb{E}[X | Z = z_j]) + (\mathbb{E}[X | Z = z_j] - h(z_j))^2 | Z = z_j] \mathbb{P}(Z = z_j)$$

TODO: Rauskriegen, was das heißen soll

$$\sum_{j} \mathbb{E}[(X - \mathbb{E}[X|Z = z_j]))^2 | Z = z_j] \mathbb{P}(Z = z_j)$$

$$2 \sum_{j} \mathbb{E}[\underbrace{(\mathbb{E}[X|Z = z_j] - h(z_j))}_{\text{Vor den EW ziehen}} (X - \mathbb{E}[X|Z = z_j]) | Z = z_j) \mathbb{P}(Z = z_j)$$

$$+ \sum_{j} (\mathbb{E}[X|Z = z_j] - h(z_j))^2 \mathbb{P}(Z = z_j)$$

Nebenrechnung: $\mathbb{E}[X - \mathbb{E}[X|Z = z_j]|Z = z_j] = 0$

$$\rightsquigarrow$$
 Minimierer: $h(z_j) = \mathbb{E}[X|Z = z_j]$

Kapitel 14

Grenzwertsätze

14.1 Satz (Schwache Gesetz der großen Zahlen, SGGZ)

Seien X_1,X_2,\ldots unabhängige Zufallsvariablen mit gleicher Verteilung und $\mathbb{E} X_1^2<\infty.$ Sei

$$\bar{X}_n := \frac{1}{n} \sum_{j=1}^n X_j$$

Dann gilt

$$\mathbb{P}(|\bar{X}_n - \mathbb{E}X_1| > \epsilon) \to 0$$

 $\lim n \to \infty, \epsilon > 0$

Beweis.

$$\mathbb{E}\bar{X_n} = \frac{1}{n}(\mathbb{E}X_1 + \ldots + \mathbb{E}X_n) = \mathbb{E}X_1$$

$$V(\bar{X}_n) = \frac{1}{n^2}V(X_1 + \dots + X_n) = \frac{1}{n^2}(V(X_1) + \dots + V(X_n)) = \frac{1}{n}V(X_1)$$

Tschebyschevsche Ungleichung (Satz 11.6)

$$\mathbb{P}(|\bar{X}_n - \mathbb{E}\bar{X}_n| > \epsilon) \le \frac{V(\bar{X}_n)}{\epsilon^2} = \frac{V(X_1)}{n\epsilon^2}$$

14.2 Definition

Sind Y_1, Y_2, Y_3, \dots Zufallsvariablen, so schreibt man

$$Y_n \stackrel{\mathbb{P}}{\to} Y$$
 für $n \to \infty$

$$\mathbb{P}(|Y_n - Y| > \epsilon) \to 0 \text{ für } n \to \infty \quad \forall \epsilon > 0.$$

 $(\operatorname{SGGZ} \colon \bar{X_n} \xrightarrow{\mathbb{P}} \mathbb{E} X_1)$

Bemerkung Auf einem diskreten Wahrscheinlichkeitsraum gibt es keine unendlichen Folgen von unabhängigen Zufallsvariablen. Lösung:

$$\mathbb{P} \to \mathbb{P}_n$$

→ Wahrscheinlichkeitstheorie-Vorlesung

14.3 Folgerung (SGGZ von Jakob Bernoulli)

Seien A_1, A_2, \ldots unabhängige Ereignisse mit $\mathbb{P}(A_j) = p, j \geq 1$. Dann

$$R_n = \frac{1}{n} \sum_{j=1}^n 1_{A_j} \stackrel{\mathbb{P}}{\to} p$$

Bemerkung $\forall \epsilon > 0 \forall \delta \in (0,1) \exists n \in \mathbb{N} \colon \mathbb{P}(|R_n - p| \leq \epsilon) \geq 1 - \delta$ Das bedeutet nicht

$$\mathbb{P}(\bigcap_{n>=n_0} \{|R_n - p| \le \epsilon\}) \ge 1 - \delta!$$

→ Starkes GGZ (Wahrscheinlichkeitstheorie)

Es seien X_1, X_2, \ldots unabhängige Bern(p)-verteilte Zufallsvariablen. Setze

$$S_n := X_1 + \ldots + X_n, n > 1$$
 Irrfahrt, $X_i \in \{-1, 1\}$ besser!

Frage Wie stark schwankt S_n um seinen Erwartungswert np? (TODO: Bild)

14.4 Satz

Es sei (a_n) eine reelle Zahlenfolge. Dann gilt

$$\lim_{n \to \infty} \mathbb{P}(|S_n - np| \le a_n) = \begin{cases} 1, & \text{falls } \frac{a_n}{\sqrt{n}} \to \infty \\ 0 & \text{falls } \frac{a_n}{\sqrt{n}} \to 0 \end{cases}$$

Wiederholung $S_n := X_1 + \ldots + X_n, X_i$ unabhänbh. $Bern(p) = \underbrace{Bin(1,p)}_{\text{entweder } p \text{ oder } 1-p}$

(TODO: Bild)

absolute Häufigkeiten!

 $^{^1\}mathrm{Random}$ Walk

14.4 Satz 66

Satz

$$\lim_{n\to\infty} \mathbb{P}(|S_n - np| \le a_n) = \begin{cases} 1 & \frac{a_n}{\sqrt{n}} \to \infty \\ 0 & \frac{a_n}{\sqrt{n}} \to 0 \end{cases}$$

Beweis. Sterlingsche Formel (Ausblick/Exkurs) $n! = \sqrt{2\pi n} n^n e^{-n} (1 + R(n))$ mit $R(n) \to 0$ für $n \to \infty, n \in \mathbb{N}$ Genauer $R(n) = e^{\eta(n)} - 1, 0 \le \eta(n) \le \frac{1}{12n}$ Insbesondere $n! \sim \sqrt{2\pi n} n^n e^{-n}$ für $n \to \infty$ $((c_n) \sim (d_n) \Leftrightarrow \frac{c_n}{d_n} \to 1)$

Nun:

- Tschebyschevsche Ungleichung $\mathbb{P}(|S_n - np| \le a_n) = 1 - \mathbb{P}(|S_n - np| > a_n) \ge 1 - \frac{V(S_n)}{a_n^2} = 1 - \frac{np(1-p)}{a_n^2}$ Im Fall $a_n/\sqrt{n} \to \infty$ strebt das gegen 1.
- Für den anderen Fall setzen wir $p = \frac{1}{2}$ (der Einfachheut halber!) $\mathbb{P}(|S_n - np| \le a_n) = \sum_{n: |K - \frac{n}{2}| \le a_n} \underbrace{\binom{n}{k}}_{\text{Monstante}} \underbrace{2^{-n}}_{\text{Konstante}} \le \underbrace{2^{-n}}_{\text{Konstante}}$

$$\underbrace{(2a_n+1)\binom{n}{\lfloor \frac{n}{2} \rfloor}} \ 2^{-n}$$

nach unten abgeschätzt
$$\begin{array}{lll} \text{F\"{u}r} & n &=& 2m \quad \text{gilt} \quad {2m \choose m} \, \cdot \, 2^{-n} &=& \frac{(2m)!}{m!m!} \, \cdot \, 2^{-2m} & \overset{\text{Asymm., \"{a}quiv.}}{\approx} \\ & \frac{\sqrt{2\pi \cdot 2m} (2m)^{2m} e^{-2m}}{2\pi m \cdot m^n \cdot m^m e^{-m} e^{-m}} \, \cdot 2^{-2n} \approx \frac{1}{\sqrt{\pi m}} \\ \text{Es folgt} \end{array}$$

$$\limsup_{m \to \infty} \mathbb{P}(|S_{2m} - 2mp| \le a_{2m}) \le \limsup_{m \to \infty} \frac{2a_{2m} + 1}{\sqrt{\pi} \cdot \sqrt{m}}$$
$$= \frac{\sqrt{22}}{\sqrt{\pi}} \lim_{m \to \infty} \frac{a_{2m}}{\sqrt{2m}} = 0, \text{ falls } \frac{a_n}{\sqrt{n}} \to 0$$

Analog für m = 2n + 1!

Fazit: Die Abweichungen von S_n vom Erwartungswert weichen "typischerweise" wie \sqrt{n} .

Beachte:
$$S_n^*$$
 $^2 := \frac{S_n - np}{\sqrt{np(1-p)}}, \mathbb{E}S_n^* = 0, V(S_n^*) = 1$

 $^{^2}$ standardisiert

14.5 Definition 67

Fragen: $\mathbb{P}(|S_n^*| \leq a) \underset{n \to \infty}{\longrightarrow} ? \quad (a \in \mathbb{R})$

14.5 Definition

- 1. Sei $l(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}, x \in \mathbb{R}$ (l(x) = Gaußsche Glockenkurve) heißt **Dichte der standardisierten Normalverteilung**.
- 2. $\phi(x):=\int_{-\infty}^{\infty}l(t)dt, x\in\mathbb{R}^{-3}$ heißt Verteilungsfunktion der standardisierten Normalverteilung.

Bemerkung

$$\int_{-\infty}^{\infty} l(t)dt = 1 \text{ (Analysis 3)}.$$
 Dann ist $\lim_{x\to\infty} \phi(x) = 1$ (TODO: Bild)

14.6 Satz

Immernoch in der Bernoullikette gilt

1.
$$\lim_{n\to\infty} \mathbb{P}(a \leq S_n^* \leq b) = \underbrace{\phi(b)}_{=\int_a^b l(t)dt} -\phi(a) \text{ und } \lim_{n\to\infty} \mathbb{P}(\ldots) = 0$$

2.
$$\lim_{n\to\infty} \mathbb{P}(S_n^* \leq b) = \phi(b) \longrightarrow \text{(Moivre-Laplace)}$$

Beweis. Sterlingsche Formel! (2 Seiten Rechnung) \leadsto Wahrscheinlichkeitstheorie-Vorlesung im Sommersemester (TODO: Bild)

14.7 Satz (ZGWS Lindeberg-Levy)

Seien X_1, X_2, \ldots unabhängig auf gleicher Verteilung mit $\mathbb{E} X_1^2 < \infty$. Setze

$$S_n := X_1 + \ldots + X_n, \quad n \in \mathbb{N}$$

$$S_n^* = \frac{S_n - n\mathbb{E}X_1}{\sqrt{n \cdot V(X_1)}}, \quad n \in \mathbb{N}$$

Dann gilt $\lim_{n\to\infty} \mathbb{P}(S_n^y \leq h) = \phi(h), \quad h \in \mathbb{R}$

Beweis. Wahrscheinlichkeitstheorie im Sommersemester. \Box

³uneigentliches Riemann-Integral

Anwendung: Sei $S_n \sim Bin(n, p)$.

Anwendung: Sei
$$S_n \sim Bin(n,p)$$
.
Nun sei $\mathbb{P}(a \leq S_n \leq b) = \frac{a-np^{+\frac{1}{2}}}{\sqrt{np(1-p)}} \leq \underbrace{\frac{S_n-np}{\sqrt{np(1-p)}}}_{S_n^*} \leq \underbrace{\frac{b-np^{+\frac{1}{2}}}{\sqrt{np(1-p)}}}_{S_n^*} =$

$$\begin{split} \phi\left(\frac{b-np}{\sqrt{np(1-p)}}\right) - \phi\left(\frac{a-np}{\sqrt{np(1-p)}}\right) \\ \text{erst standardisieren, dann approximieren} \end{split}$$

Stetigkeitskorrekturen

lim sup: $n = 600, p = \frac{1}{6}$ a = 90, b = 110

 $\underline{Exakter\ Wert}\colon 0.7531$

Approx. Wert: 0.7264 mit Stetigkeitskorrektur 0.7498

Kapitel 15

Statistik - Schätzprobleme

15.1 Schätzung der Erfolgswahrscheinlichkeit einer Bernoulli-Kette

(als Motivation)

 $k\text{-}\mathrm{Treffer}$ in einer B-Kette im Umfang nmit
 unbekannter Erfolgswahrscheinlichkeit p.

Wie groß ist p?

Modell Annahme einer zufälligen Trefferzahl mit $S_n \sim Bin(n, p)^{-1}$. Ereignis $S_n = k$ sei eingetreten.

$$\mathbb{P}_p(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

2

Plausibler "Schätzer" für p:

$$\hat{p} := \frac{k}{n}$$
 (relative Häufigkeit)

 \hat{p} ist Realisierung einer Zufallsvariable $R_n:=\frac{1}{n}S_n$

1.

2.

(TODO: Rest texen)

¹auch ohne es zu kennen

 $^{^2}$ abhängig vom Parameter p

Erinnerung $S_n \sim Bin(n,p)$ $(S_n := X_1 + \ldots + X_n)$

$$\mathbb{P}_p(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$S_n = k$$
 Realisierung

$$p = ?$$

natürliche Idee: $\hat{p} = \frac{k}{n}$ \hat{p} ist Realisierung der Zufallsvariable $R_n = \frac{1}{n}S_n$ Die Funktion

$$p \mapsto L_k(p) = \mathbb{P}(S_n = k)$$

heißt Likelyhood-Funktion.

 \hat{p} maximiert $L_k!$

15.2 Allgemeiner Modellrahmen

Daten $x \in \mathcal{X} =$ "Stichprobenraum" gegeben. Oft: $x = (x_1, \dots, x_n) \in \mathbb{R}^n \quad (\mathcal{X} \subset \mathbb{R}^n)$

Annahme: $x = X(\omega)$ Realisierung einer \mathcal{X} -wertigen Zufallsvariable $X \colon \Omega \to \mathcal{X}$

Gesucht: Verteilung \mathbb{P}^X von X!

 Ω spielt "keine Rolle".

Wichtig ist das (unbekannte) \mathbb{P}^X .

Oft:
$$\Omega = \mathcal{X}, X = id_{\Omega}, \mathbb{P} = \mathbb{P}^X$$

Annahme: $\mathbb{P} \in \{\mathbb{P}_{\vartheta} : \vartheta \in \Theta\}$ wobei $\Theta \neq \emptyset$ Parameterraum (A priori-Informationen!)

 $(\mathcal{X}, {\mathbb{P}_{\vartheta} \colon \vartheta \in \Theta})$ heißt statistisches Modell.

Falls $\mathbb{P} = \mathbb{P}_{\vartheta}$, so schreiben wir $\mathbb{P}_{\vartheta}(X = x), \mathbb{E}_{\vartheta}X, V_{\vartheta}(X), \dots$

15.3 Beispiel (Binomialverteilung)

 $\mathcal{X} = \{0,1\}^n, \quad X = (X_1,\ldots,X_n), \quad X_1,\ldots,X_n$ unabhängig, $Bern(p)^3$ $\vartheta \in \Theta = (0,1)$

$$\mathbb{P}_{\vartheta}(X = (x_1, \dots, x_n)) = \vartheta^k (1 - \vartheta)^{n-k}, \quad k = x_1 + \dots + x_n.$$

$$\mathbb{P}_{\vartheta}(X_1 + \ldots + X_n = k) = \binom{n}{k} \vartheta^k (1 - \vartheta)^{n-k}$$

 $^{^3 =} Bin(1, n)$

⁴Unabhängig verteilt: $\mathbb{P}(X_1 = i_1, \dots, X_n = i_n) = \mathbb{P}(X_1 = i_1) \cdot \dots \cdot \mathbb{P}(X_n = i_n)$

15.4 Beispiel 71

15.4 Beispiel

Warensendung vom Umfang N mit ϑ defekten und $N-\vartheta$ intakten Exemplaren. n-maliges Ziehen ohne Zurücklegen.

$$X_j := \begin{cases} 1 & j-\text{te entnommene Exemplar ist defekt} \\ 0 & \text{sonst} \end{cases}$$

$$X = (X_1, \dots, X_n) \quad (n \le N)$$

 $\Theta = \{0, \dots, N\}, \quad \vartheta \hat{=} \text{ Anzahl der defekten Exemplare}$

$$\mathbb{P}_{\vartheta}(X = (x_1, \dots, x_n)) = (*) \quad k = \sum_{i=1}^{n} x_i$$

(*)
$$\frac{\vartheta}{N} \cdot \frac{\vartheta - 1}{N - 1} \cdot \dots \cdot \frac{\vartheta - k + 1}{N - k + 1} \cdot \underbrace{\frac{N - \vartheta}{(N - k)}}_{\text{fix}} \cdots \underbrace{\frac{N - \vartheta - (n - k) + 1}{(N - k + 1)}}_{\text{fix}} = \frac{\vartheta^{\underline{k}} (N - \vartheta)^{n - \underline{k}}}{N^{\underline{n}}}$$

$$X_1 + \dots + X_n \sim Hyp(\underbrace{n, N}_{\text{fix}} - \vartheta, \underbrace{\vartheta}_{\text{e}}) \text{ Qualitätskontrolle}$$

15.5 Definition

Sei $(\mathcal{X}, {\mathbb{P}_{\vartheta} : \vartheta \in \Theta})$ ein statistisches Modell.

Ein (Punkt)**Schätzer** (für den unbekannten Parameter ϑ) ist eine Abbildung

$$T \colon \mathcal{X} \to \widetilde{\Theta} \supset \Theta$$

 $(\text{oft }\widetilde{\Theta} = \Theta)$

T(x) heißt konkreter Schätzwert⁵.

15.6 Bemerkungen

- 1. Allgemein heißt eine Abbildung auf \mathcal{X} Stichprobenfunktion.
- 2. \mathbb{P}_{ϑ} "steuert" Auftreten von x und damit T(x). T ist eine auf \mathcal{X} definierte Zufallsvariable! Ist T eine Schätzfunktion, so definiert

$$\mathbb{P}_{\vartheta}(T=t) := \mathbb{P}_{\vartheta}(\{x \in \mathcal{X} : T(x) = t\})$$

Wünschenswert: $\mathbb{P}_{\vartheta}(T = \vartheta) \approx 1^6, \vartheta \in \Theta$ $\mathbb{P}_{\vartheta}(|T - \vartheta| \leq 1) \approx 1, \vartheta \in \Theta$

⁵auf der Grundlage der Daten

 $^{^6\,\}mathrm{nicht}$ erreichbar

15.7 Definition 72

15.7 Definition

Sei $T \colon \mathcal{X} \to \widetilde{\Theta} \supset \Theta \quad (\widetilde{\Theta} \subset \mathbb{R})$. Dann

$$\mathbb{E}_{\vartheta} T^2 = \sum_{x \in \mathcal{X} \atop \text{diskret!}} T(x)^2 \mathbb{P}_{\vartheta}(\{x\}) < \infty, \quad \vartheta \in \widetilde{\Theta} \subset \mathbb{R}$$

- 1. $MQA_T(\vartheta) := \mathbb{E}_{\vartheta}(T \vartheta)^2 = \sum_{x \in \mathcal{X}} (T(x) \vartheta)^2 \mathbb{P}_{\vartheta}(\{x\})$ heißt **mittlere** quadratische Abweichung von T an der Stelle ϑ .
- 2. $b_T(\vartheta) = \mathbb{E}_{\vartheta} T \vartheta$ heißt **Verzerrung** (Bias) von T an der Stelle ϑ . Gilt $b_T(\vartheta) = 0$, so heißt T **erwartungstreu**.

15.8 Bemerkung

Es gilt $MQA_T(\vartheta) = V_{\vartheta}(T) + b_T(\vartheta)^2$ (Steiner-Formel) Wünschenswert: $MQA_T(\vartheta) \leq MQA_{T^*}(\vartheta)$, $\forall \vartheta \forall T^*$ (*) ist nicht erfüllbar, da $T^*(x) = \vartheta^*$, $x \in \mathcal{X}$ ($\vartheta^* \in \Theta$) Es gilt $V_{\vartheta}(T^*) = 0$ 8 und deswegen:

$$b_T(\vartheta)^2 = (\vartheta^* - \vartheta)^2$$

(TODO: Bild: Parabel)

15.9 Definition

Gegeben sei eine Folge $(\mathcal{X}_n, \{\mathbb{P}_{\vartheta}^{(n)} : \vartheta \in \Theta\})$ von statistischen Modellen. Die Zufallsvariablen seinen von der Form $X^{(n)}$ (n = Stichprobenumfang). Eine Folge $T_n : \mathcal{X}_n \to \widetilde{\Theta}$ heißt **Schätzfolge**.

- 1. (T_n) heißt **konsistent**, wenn $\mathbb{P}_{\vartheta}^{(n)}(|T_n \vartheta| \geq \epsilon) \underset{n \to \infty}{\to} 0$.
- 2. (T_n) heißt asymptotisch erwartungstreu, wenn $\lim_{n\to\infty} \mathbb{E}_{\vartheta} T_n = \vartheta$, $\vartheta \in \Theta$.

15.10 Beispiel

 X_1, \ldots, X_n unabhängig, Bern(p). $T_n := (x_1, \ldots, x_n) = \frac{1}{n}(x_1 + \ldots + x_n)$ ($\mathbb{E}_{\vartheta}T_n = \vartheta$) ist konsistent!

⁷In dem Fall ist die mittlere quadratische Abweichung nichts anderes als die Varianz.

⁸Zufallsvariable konstant, Varianz 0

15.11 Definition 73

Wiederholung $(\mathcal{X}, \{\mathbb{P}_{\vartheta} : \vartheta \in \Theta\})$ statistisches Modell $x = X(\omega)$ Beobachtung (Daten) $T \colon \mathcal{X} \to \widetilde{\Theta} \supset \Theta$ Schätzfunktion Idee: T(x) schätzt den unbekannten Parameter $MQA_T(\vartheta) := \mathbb{E}_{\vartheta}(T - \vartheta)^2 \quad (\Theta \subset \mathbb{R})$

Bemerkung 15.8:

$$MQA_T(\vartheta) = V_{\vartheta}(T) + b_T(\vartheta)^2$$

nicht erfüllbarer Wunsch für $T: MQA_T(\vartheta) \leq MQA_{T^*}(\vartheta), \quad \forall \vartheta \forall T^*$

15.11 Definition

 $(\mathcal{X}, {\mathbb{P}_{\vartheta} : \vartheta \in \Theta})$ statistisches Modell $x \in \mathcal{X}$. Definiere $L_x : \Theta \to [0, 1]$

$$L_x(\vartheta) = \mathbb{P}_{\vartheta}(X = x), \quad \vartheta \in \Theta.$$

Diese Funktion heißt **Likelihood-Funktion** zu gegebenen x. Existiert ein $\hat{\vartheta}(x) \in \Theta$ (manchmal: $\widetilde{\vartheta} \in \widetilde{\Theta}$) mit

$$L_x(\hat{\vartheta}(x)) = \sup_{\vartheta \in \Theta} L_x(\vartheta) \quad (*)$$

so heißt $\hat{\vartheta}(x)$ ML-Schätzwert (von ϑ) zu x. Ein Schätzer $\hat{\vartheta} \colon \mathcal{X} \to \Theta$ mit (*) für jedes $x \in \mathcal{X}$ heißt ML-Schätzer. 9

15.12 Beispiel

$$L_{\vartheta}(x) = \vartheta^{k} (1 - \vartheta)^{n-k}$$

$$X = (x_{1}, \dots, x_{n}), k = \sum_{i=1}^{n} x_{i}$$

$$\hat{\vartheta}(x) = \frac{k}{n}$$

15.13 Beispiel (vgl. 15.4)

$$\mathbb{P}_{\vartheta}(X=x) = L_x(\vartheta)$$

$$= \frac{\vartheta^{\underline{k}}(N-\vartheta)^{\underline{n-k}}}{N^{\underline{n}}}$$

ML-Schätzer? $x_1 + \ldots + x_n = k$

1.
$$k = 0$$
 $L_x(\vartheta) = \frac{(N - \vartheta)^n}{N^n} \leadsto \hat{\vartheta}(x) = 0$.

 $^{^9\}mathrm{Zu}$ geg. Datum wähle mir den Parameterwert, welcher das Datum am wahrscheinlichsten macht.

2.
$$k = n$$
 $L_x(\vartheta) = \frac{\vartheta^n}{N^n} \leadsto \hat{\vartheta}(x) = N$

3. 0 < k < n:

$$\frac{L_x(\vartheta+1)}{L_x(\vartheta)} \stackrel{!}{=} \frac{\vartheta+1}{\vartheta-k+1} \frac{N-\vartheta+k-n}{N-\vartheta} > 1$$

$$\Leftrightarrow \vartheta < \frac{k(N+1)}{n} - 1$$

$$\Rightarrow \hat{\vartheta}(x) : \begin{cases} \lfloor \frac{k(N+1)}{n} \rfloor & \text{falls } \frac{k(N+1)}{n} \notin \mathbb{N} \\ \in \{\frac{k(N+1)}{n} - 1, \frac{k(N+1)}{n}\} & \text{sonst} \end{cases}$$

Vergleich mit heur. Schätzer:

$$\frac{k}{n} = \frac{\vartheta}{N} \Rightarrow \hat{\vartheta} = \frac{Nk}{n}$$

Konfidenzbereiche

16.1 Beispiel

Sei $S_n \sim Bin(n, p), \quad p \in [0, 1]$ unbekannt.

$$\mathbb{E}_p S_n = np, \quad V_p(S_n) = np(1-p)$$

Für $R_n = \frac{1}{n}S_n$

$$\mathbb{E}_p R_n = p, \quad V_p(R_n) = \frac{p(1-p)}{n} \stackrel{!}{\leq} \frac{1}{4n}$$

Sei $\alpha \in (0,1)$ (z.B. $\alpha = 0.05$). Dann:

$$\mathbb{P}_p(R_n - \frac{1}{2\sqrt{\alpha n}} \le p \le R_n + \frac{1}{2\sqrt{\alpha n}})$$

$$= \mathbb{P}_p(|R_n - p| \le \frac{1}{2\sqrt{\alpha n}}) \ge 1 - \frac{V_p(R_n)}{(\frac{1}{2\sqrt{\alpha n}})^2} = 1 - \frac{p(1-p)4\alpha n}{n} \ge 1 - \alpha$$

Mit

$$I_n := [\max\{0, R_n - \frac{1}{2\sqrt{\alpha n}}, \min\{1, R_n + \frac{1}{2\sqrt{\alpha n}}\}]$$

gilt

1

$$\mathbb{P}_p(I_n \ni p) \ge 1 - \alpha \quad (\text{z.B. } \ge 0.95)$$

16.2 Definition

Sei $(\mathcal{X}, \{\mathbb{P}_{\vartheta} : \vartheta \in \Theta\})$ statistisches Modell $\alpha \in (0, 1)$. Eine Abbildung

$$C: \mathcal{X} \to \mathcal{P}(\Theta)$$

¹ Hier wurde die Tschebyschew- Ungl. benutzt.

heißt Konfidenzbereich (für ϑ) zum Konfidenzwert $1 - \alpha$, falls

$$\mathbb{P}_{\vartheta}(\{x \in \mathcal{X} : C(x) \ni \vartheta\}) \ge 1 - \alpha \quad \vartheta \in \Theta$$

Falls $\Theta \subset \mathbb{R}$ und C(x) Intervall $(\forall x)$, so heißt C Konfidenzintervall.

16.3 Bemerkungen

- 1. C ist $\mathcal{P}(\Theta)$ -wertige Zufallsvariable.
- 2. $C(x) = \Theta, x \in \mathcal{X}$, ist ein Konfidenzbereich. Sinnlos! (Ziel: C(x) "klein")
- 3. C(x) konkreter Konfidenzbereich. Die Tatsache, dass $\vartheta \in C(x)$ gilt, hat keine Wahrscheinlichkeit.
- 4. Es sei $\Theta \subset \mathbb{R}$ und $\beta \in (0,1)$. Dann heißt

 $O\colon \mathcal{X} o \Theta$

obere Konfidenzschranke (für ϑ) zum Konfidenzniveau $1-\beta,$ falls

$$\mathbb{P}_{\vartheta}(\{x \in \mathcal{X} : \vartheta \le O(x)\}) \ge 1 - \beta$$

 $U\colon \mathcal{X} o \Theta$

untere Konfidenzschranke (für ϑ) zum Konfidenzniveau $1-\beta$, falls

$$\mathbb{P}_{\vartheta}(\{x \in \mathcal{X} \colon U(x) \le \vartheta\}) \ge 1 - \beta$$

16.4 Beispiel (Konfidenzschranken für p in Bin(n, p))

Sei $S_n \sim Bin(n, p)$. Gesucht $p_u, p_o \colon \{0, \dots, n\} \to [0, 1]$ mit

$$\mathbb{P}_p(p \le p_o(S_n) \ge 1 - \beta), \quad p \in [0, 1] \quad (2)$$

$$\mathbb{P}_p(p_u(S_n) \le p) \ge 1 - \beta), \quad p \in [0, 1] \quad (3)$$

- 1. k = 0: $p_u(0) := 0$ $p_o(0) := 1 \beta^{\frac{1}{n}}$ Dann gilt $\beta = (1 - p_o(0))^n \ge (1 - p)^n$, falls $p \ge p_o(0)$
- 2. k = n: $p_o(n) := 1$, $p_u(n) := \beta^{\frac{1}{n}}$ Dann gilt $p_u(n)^n = \beta \ge p^n$, $p \le p_u(n)$
- 3. 0 < k < n: $p_o(k)$ ist Lösung von $P(S_n \le k) = \beta$

Behauptung Dann gilt (2)!

$$\begin{array}{ll} \textbf{Wiederholung} & (\mathcal{X}, \{\mathbb{P}_{\vartheta} \colon \vartheta \in \Theta\}), \quad x \mapsto C(x) \subset \Theta \\ \mathbb{P}_{\vartheta}(\{x \in \mathcal{X} \colon C(x) \ni \vartheta\}) \geq 1 - \alpha \\ \Theta \subset \mathbb{R} : \\ \mathbb{P}_{\vartheta}(\{x \in \mathcal{X} \colon \vartheta \leq O(x)\}) \geq 1 - \beta \text{ obere Konfidenzschranke} \\ \mathbb{P}_{\vartheta}(\{x \in \mathcal{X} \colon U(x) \leq \vartheta\}) \geq 1 - \beta \text{ untere Konfidenzschranke} \\ \end{array}$$

Beispiel

$$S_n \sim Bin(n,p)^2$$
, $S_n = k$

$$(*) \quad \mathbb{P}_p(S_n \le k) = \beta$$

(stetige Funktion von p) ³

 $p_o(k)$ Lösung von (*)

 $p_u(k)$ Lösung von

$$\mathbb{P}_p(S_n \ge k) = \beta \quad (**)$$

Es gelte $p \in (0,1)$. Setze

$$M := \{j \in \{0, \dots, n\} : p > p_o(j)\}$$

zu zeigen: $\mathbb{P}_p(p > p_o(S_n)) \leq \beta,! \text{ d.h.}$

$$\mathbb{P}_p(S_n \in M) \le \beta.$$

Nebenrechnung $M \neq \emptyset$

$$k_0 := \max M$$
$$M \subset \{0, \dots, k_0\}$$

Es folgt

$$\mathbb{P}_n(S_n \in M) \leq \mathbb{P}_n(S_n \leq k_0)$$

 4 Fällt in p! (Übung)

$$p_o(k_0) < p$$

$$\leq \mathbb{P}_{p_o(k_0)}(S_n \leq k_0) = \beta$$

5

Analog folgt

$$\mathbb{P}_p(p < p_u(S_n)) \le \beta.$$

 $^{^{2}}n$ bekannt, p unbekannt

 $^{^{3}\}beta$ ist vorgegeben

⁴Wegen der Monotonie der Wahrscheinlichkeitsmaße

⁵benutzt: Monotonie und Tatsache, dass k in M ist

16.5 Allgemeines Konstruktionsprinzip

Wähle zu jedem $\vartheta \in \Theta$ eine Menge $A(\vartheta) \subset \mathcal{X}$ mit

$$\mathbb{P}_{\vartheta}(A(\vartheta)) \ge 1 - \alpha$$

Setze

$$C(x) := \{ \vartheta \in \Theta \colon x \in A(\vartheta) \}$$

⁶ Dann gilt

$$x \in A(\vartheta) \Leftrightarrow \vartheta \in C(x)$$

$$\widetilde{C} := \{(x, \vartheta) \colon x \in A(\vartheta)\}$$

Ziel: C(x) "möglichst klein", d.h. $A(\vartheta)$ möglichst klein

16.6 Bemerkung

Setzt man in 16.4

$$\mathcal{X} = \{0, \dots, n\}, \Theta = [0, 1]$$
$$A(\vartheta) := \{x \in \mathcal{X} : u(\vartheta) \le x \le o(\vartheta = \},$$

wobei

$$u(\vartheta) := \max \left\{ k \in \mathcal{X} : \sum_{j=0}^{k-1} \binom{n}{j} \vartheta^j (1 - \vartheta)^{n-j} \le \frac{\alpha}{2} \right\},\,$$

$$o(\vartheta) := \min \left\{ k \in \mathcal{X} : \sum_{j=k+1}^{n} {n \choose j} \vartheta^{j} (1-\vartheta)^{n-j} \le \frac{\alpha}{2} \right\}$$

Dann folgt 16.5 auf den in 16.4 angegebenen Konfidenzbereich $[p_u(k), p_o(k)]$.

 $^{^6}$ Konfidenzbereich

16.7 Definition 79

16.7 Definition

Betrachte Folge $(\mathcal{X}_n, \{\mathbb{P}_{\vartheta} : \vartheta \in \Theta\})$ von stochastischen Modellen. Eine Folge $C_n : \mathcal{X}_n$ heißt **asymptotischer Konfidenzbereich zum Niveau** $1 - \alpha$, falls

$$\lim_{n \to \infty} \mathbb{P}_{\vartheta}(\{x \in \mathcal{X}_n : C_n(x) \ni \vartheta\}) \ge 1 - \alpha$$

16.8
$$(Bin(n,p), S_n := X_1 + \ldots + X_n)$$

 $X_1 + \ldots + X_n$ unabhängig, Bin(1, p) = Bern(p) verteilt.

$$R_n := \frac{1}{n} S_n.$$

Dann gilt für h > 0

$$\mathbb{P}_{\vartheta}\left(-h \leq \frac{S_n - n\vartheta}{\sqrt{n\vartheta(1 - \vartheta)}} \leq h\right) \xrightarrow[n \to \infty]{\textbf{ZGWS}} \phi(h) - \phi(-h) = 2\phi(h) - 1$$

7

$$A_n(\vartheta) \Leftrightarrow \frac{|S - n - n\vartheta|}{\sqrt{n\vartheta(1 - \vartheta)}} \le h$$

$$\Leftrightarrow \sqrt{n}|R_n - n\vartheta| \le h\sqrt{\vartheta(1 - \vartheta)}$$

$$\Leftrightarrow (n + h^2)\vartheta^2 - (2nR_n + h^2)\vartheta + nR_n^2 \le 0$$

$$\Leftrightarrow U_n \le \vartheta \le O_n,$$

wobei

$$O_n = \frac{R_n + \frac{h^2}{2n} + \frac{h}{\sqrt{n}} \sqrt{R_n (1 - R_n) + \frac{h^2}{4n}}}{1 + \frac{h^2}{n}}$$

$$U_n = \frac{R_n + \frac{h^2}{2n} - \frac{h}{\sqrt{n}} \sqrt{R_n (1 - R_n) + \frac{h^2}{4n}}}{1 + \frac{h^2}{n}}$$

Damit ist

$$\mathbb{P}_{\vartheta}(U_n \leq \vartheta \leq O_n) \xrightarrow{n \to \infty} 2\phi(h) - 1$$

$$h: 2\phi(h) - 1 = \alpha$$

 $^{^7}$ nach dem Zentralen Grenzwertsatz

Testtheorie: fällt weg

Allgemeine Modelle

Bisher: Ω diskret, $\mathbb{P} \colon \mathcal{P}(\Omega) \to [0,1]$

Aber: Im Fall $\Omega = \mathbb{R}^k$ ist die Wahl $\mathcal{P}(\Omega)$ keine gute Idee! Zum Beispiel gibt es dann¹ kein Wahrscheinlichkeitsmaß (vgl. unten folgende Definition) mit

$$\mathbb{P}([a,b]) = b - a \quad 0 \le a \le b \le 1$$

18.1 Definition

Sei $\Omega \neq \emptyset$. Eine Menge $\mathcal{A} \subset \mathcal{P}(\Omega)$ heißt σ -Algebra (über Ω), falls

- 1. $\emptyset \in \mathcal{A}$
- 2. $A \in \mathcal{A} \Rightarrow A^c = \Omega \backslash A \in \mathcal{A}^2$
- 3. $A_n \in \mathcal{A}, n \in \mathbb{N} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$

18.2 Bemerkungen

 \mathcal{A} sei σ -Algebra

1.
$$\Omega \in \mathcal{A} \ (\emptyset = \Omega^c \in \mathcal{A})$$

2.
$$A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$$

 $A \cap B = (A^c \cup B^c)^c \in \mathcal{A}^3$

3.
$$A_n, B_n \in \mathcal{A}, n \in \mathbb{N} \Rightarrow \bigcap_{n=1}^{\infty} A_n = (\bigcup A_n^c)^c \in \mathcal{A}$$

 $^{^{1}}$ im Fall k=1

²Abgeschlossenheit unter Komplementbildung

 $^{^3 \}mathrm{Eine}~\sigma\text{-}\mathrm{Algebra}$ ist abgeschlossen unter abzählbaren Vereinigungen und Durchschnitten.

18.3 Lemma 82

4. $\mathcal{P}(\Omega)$ ist eine σ -Algebra. Wie auch $\{\emptyset, \Omega\}$.

18.3 Lemma

Seien $I \neq \emptyset, A_i$ σ -Algebren über $\Omega, i \in I$. Dann ist

$$\bigcap_{i\in I} A_i$$

eine σ -Algebra.

Beweis. klar! \Box

18.4 Satz und Definition

Sei $\mathcal{M} \subset \mathcal{P}(\Omega)$. Dann existiert genau eine σ -Algebra $\sigma(\mathcal{M})$ über Ω mit

- 1. $\mathcal{M} \subset \sigma(\mathcal{M})$
- 2. Für alle σ -Algebren \mathcal{A} mit $\mathcal{M} \subset \mathcal{A}$, dann ist $\sigma(\mathcal{M}) \subset \mathcal{A}$.

Man nennt $\sigma(\mathcal{M})$ die von \mathcal{M} erzeugte σ -Algebra und \mathcal{M} Erzeuger von $\sigma(\mathcal{M})$.

Beweis.

$$\bigcap_{\mathcal{A} \text{ σ-Algebren}, \mathcal{M} \subset \mathcal{A}} \mathcal{A}$$

q.e.d. (Lemma 18.3)

18.5 Folgerung

- 1. $\mathcal{M}_1 \subset \mathcal{M}_2 \Rightarrow \sigma(\mathcal{M}_1 \subset \sigma(\mathcal{M}_2))$
- 2. $\sigma(\sigma(\mathcal{M})) \subset \sigma(\mathcal{M})$
- 3. $\mathcal{M}_1 \subset \sigma(\mathcal{M}_2)$ und $M_2 \subset \sigma(\mathcal{M}_1) \Rightarrow \sigma(\mathcal{M}_1) = \sigma(\mathcal{M}_2)$ Übungsaufgabe

18.6 Folgerung und Definition

Seien $k \in \mathbb{N}$ und

$$\mathcal{O}^k := \{ A \subset \mathbb{R}^n \colon A \text{ offen } \},$$

$$\mathcal{A}^k := \{ A \subset \mathbb{R}^n \colon A \text{ abgeschlossen } \},$$

$$\mathcal{K}^k := \{ A \subset \mathbb{R}^n \colon A \text{ kompakt } \},$$

$$\mathcal{I}^k := \{(x, y] : x, y \in \mathbb{R}^k, x < y\}$$

⁴ wobei $x \le y := x_i \le y_i, \quad i = 1, ..., k,$ $x < y := x_i < y_i, \quad i = 1, ..., k$

$$\mathcal{B}^k := \sigma(\mathcal{O}^k)$$

heißt σ -Algebra der Borelmengen ⁵ Es gilt

- 1. $\mathcal{B}^k = \sigma(\mathcal{A}^k)$
- 2. $\mathcal{B}^k = \sigma(\mathcal{K}^k)$
- 3. $\mathcal{B}^k = \sigma(\mathcal{I}^k)$

Wiederholung $\Omega \neq \emptyset, A \subset \mathcal{P}(\Omega)$ σ -Algebren

$$\mathcal{A} = \sigma(\mathcal{M}) := \bigcap_{\dashv' \sigma - Algebra, \dashv' \supset \mathcal{M}} \dashv'$$

$$\mathcal{B}^k := \sigma(\{U \subset \mathbb{R}^k \colon U \text{ offen})$$

Borelsche σ -Algebra

1. $\mathcal{B}^k = \sigma(\mathcal{A}^k)$

Beweis. Sei $A \subset \mathbb{R}^k$ abgeschlossen. Dann ist $\mathbb{R}^k \setminus A$ offen, also in B^k . Also ist $A \in \mathcal{B}^k$, d.h. $\mathcal{A}^k \subset \mathcal{B}^k$. Also ist $\sigma(\mathcal{A}^k) \subset \mathcal{B}^k$. Umgekehrt analog.

2. $\mathcal{B}^k = \sigma(\mathcal{K}^k)$

Beweis. (\subset) klar nach (1). Sei $A \in \mathcal{A}^k$. Dann gilt

$$A \cap [-n, n]^k \uparrow_{n \to \infty} A$$
,

$$\mathrm{d.h.} \ \bigcup_{n=1}^{\infty} A \cap [-n,n]^k = A.$$

Damit ist $A \in \sigma(\mathcal{K}^k)$, d.h.

$$\mathcal{B}^k = \sigma(\mathcal{A}^k) \subset \sigma(\mathcal{K}^k)$$

3. $\mathcal{B}^k = \sigma(\mathcal{I}^k)$

Beweis. Übungsaufgabe

⁴halboffene Quader

 $^{^5}$ Die kleinste σ -Algebra, die alle offenen Mengen enthält.

18.7 Definition (Axiomensystem von Kolmogrov)

Ein Wahrscheinlichkeitsraum ist ein Tripel $(\Omega, \mathcal{A}, \mathbb{P})$ mit $\Omega \neq \emptyset, \mathcal{A} \subset \mathcal{P}(\Omega)$ ist σ -Algebra und einem Wahrscheinlichkeitsmaß (auf (Ω, \mathcal{A}) , auf \mathcal{A} , auf Ω) $\mathbb{P} \colon \mathcal{A} \to \mathbb{R}$ mit:

- 1. $\mathbb{P}(A) \geq 0$, $A \in \mathcal{A}$
- 2. $\mathbb{P}(\Omega) = 1$

3.
$$\mathbb{P}(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mathbb{P}(A_j), \quad A_j \in \mathcal{A}, \quad A_i \cap A_j = \emptyset, i \neq j. \ (\sigma\text{-Additivität})$$

Die Elemente von \mathcal{A} heißen **Ereignisse**.

18.8 Bemerkung

Alle bisherigen Definitionen und Resultate (Stetigkeit von oben bzw. unten, Bayes' Formel, Unabhängigkeit) bleiben erhalten.

18.9 Definition und Satz

 \mathbb{P} sei Wahrscheinlichkeitsmaß auf \mathcal{B}^1 .

Die Funktion $F: \mathbb{R} \to [0,1]$ definiert durch

$$F(x) := \mathbb{P}((-\infty, x]), x \in \mathbb{R},$$

heißt **Verteilungsfunktion** (VF) von P. Es gilt

- 1. $x \le y \Rightarrow F(x) \le F(y)$
- 2. F ist rechtsseitig stetig.
- 3. $F(-\infty) := \lim_{x \to -\infty} F(x) = 0$,
- 4. $F(\infty) := \lim_{x \to \infty} F(x) = 1$.

Beweis. 1. $(-\infty, x] \subset (-\infty, y]$ $(x \le y)$. \mathbb{P} monoton $\rightsquigarrow F(x) \le F(y)$

2. Es gelte $x_n \downarrow x$. Dann ist $\bigcap_{n=1}^{\infty} (-\infty, x_n] = (-\infty, x]$ \mathbb{P} ist stetig von oben \leadsto

$$\lim_{n \to \infty} \mathbb{P}((-\infty, x_n]) = \mathbb{P}((-\infty, x])$$

3.

$$\emptyset = \bigcap_{n=1}^{\infty} (-\infty, -n],$$

$$\mathbb{R} = \bigcup_{n=1}^{\infty} (-\infty, n]$$

18.10 Existenz- und Eindeutigkeitssatz

Sei $F: \mathbb{R} \to [0,1]$ eine Verteilungsfunktion, d.h. es gelte (1)-(3). Dann existiert genau ein Wahrscheinlichkeitsmaß \mathbb{P} auf \mathcal{B}^1 mit

$$F(x) = \mathbb{P}((-\infty, x]), \quad x \in \mathbb{R}.$$

Beweis. WT. \Box

18.11 Satz

Sei F Verteilungsfunktion eines Wahrscheinlichkeitsmaßes \mathbb{P} auf \mathcal{B}^1 .

1.
$$\mathbb{P}((a,b]) = F(b) - F(a), \quad a \le b$$

2.
$$\mathbb{P}(\{x\}) = F(x) - F(\underbrace{x}_{\text{linksseitiger Grenzwert}})$$

3.
$$\mathbb{P}(\{x\}) = 0 \Leftrightarrow F \text{ ist stetig in } x$$

18.12 Beispiel 86

 $4.\ F$ besitzt höchstens abzählbar unendlich viele Unstetigkeitsstellen.

Beweis. 1. Für $a \leq b$ gilt $(-\infty, a] \cup (a, b] = (-\infty, b]$ also

$$F(a) + \mathbb{P}((a,b]) = F(b).$$

2. Sei $x_n \uparrow x$ mit $x_n < x$. Dann

$$(-\infty, x) = \bigcup_{n=1}^{\infty} (-\infty, x_n]$$

also

$$\mathbb{P}((-\infty, x)) = \lim_{n \to \infty} F(x_n) = F(x-)$$

Damit

$$F(x) - F(x-) = \mathbb{P}((-\infty, x]) - \mathbb{P}((-\infty, x))$$
$$= \mathbb{P}((-\infty, x] \setminus (-\infty, x)) = \mathbb{P}(\{x\}).$$

3. klar.

4.
$$\{x : F(x) \neq F(x-)\} \subset \bigcup_{n=1}^{\infty} \underbrace{\{x : \mathbb{P}(\{x\}) \geq \frac{1}{n}\}}_{\text{hat h\"ochstens } n \text{ Punkte}}$$

18.12 Beispiel

Sei $\mathbb P$ diskretes Wahrscheinlichkeitsmaß auf $\mathcal B^1$ mit Träger

$$T = \{t_1, t_2, t_3, \ldots\},\$$

d.h.
$$\mathbb{P}(\{t_j\}) > 0, \sum_{j=1}^{\infty} \mathbb{P}(\{t_j\}) = 1$$

Dann gilt (nach Definition)

$$F(x) = \sum_{j: t_j \le x} \mathbb{P}(\{t_j\})$$

18.13 Beispiel 87

18.13 Beispiel

$$F(x) = \begin{cases} 0, & x \le 0 \\ x, & 0 \le x \le 1 \\ 1, & x \ge 1. \end{cases}$$

Das zugehörige Wahrscheinlichkeitsmaß \mathbb{P} auf \mathcal{B}^1 heißt **Gleichverteilung** auf [0,1] ($\mathbb{P}=U([0,1])$). Der Wahrscheinlichkeitsraum ($\mathbb{R},\mathcal{B}^1,\mathbb{P}$) modelliert einen "rein zufälligen" Punkt in [0,1].

18.14 Definition

 $f: \mathbb{R} \to \mathbb{R}$ heißt (Lebesque)Dichte (über \mathbb{R}), falls

- 1. $f(x) \ge 0, x \in \mathbb{R}$
- 2. $\{x: f(x) \ge c\} \in \mathcal{B}^1, c \in \mathbb{R}.$ (f ist Borel-messbar)
- 3. $\int_{-\infty}^{+\infty} f(x)dx = 1$ (Lebesque-Integral)

Die durch

$$F(x) := \int_{-\infty}^{x} f(y)dy, x \in \mathbb{R}$$

definiterte Funktion $F: \mathbb{R} \to [0, 1]$ ist stetig und ist eine Verteilungsfunktion im Sinne von 18.9(1),(2),(3). Das nach 18.10 zu F gehörende Wahrscheinlichkeitsmapß \mathbb{P} auf \mathcal{B}^1 erfüllt

$$\mathbb{P}(a,b]) = \int_{a}^{b} f(y)dy$$

18.15 Beispiel 88

Ist f in x stetig, dann ist F in x stetig differenzierbar und F'(x) = (x). Das bedeutet

"
$$\mathbb{P}((x, x + dx]) \approx f(x)dx$$
"

(TODO: Rest texen)

18.15 Beispiel

Seien f_1, \ldots, f_k Dichten auf \mathbb{R} . Setze

$$f(x_1, \dots, x_k) = \prod_{j=1}^k f_j(x_j), \quad x_1, \dots, x_k \in \mathbb{R}$$

Diese Funktion ist messbar und

$$\int f(x)dx = \int \dots \int f_1(x_1) \dots f_k(x_k)dx_1 \dots dx_k = \prod_{j=1}^k \int f_j(x_j)dx_j = 1$$

18.16 Beispiel

$$f_j(t) = f(t) = \frac{1}{\sqrt{2\pi}} exp[-\frac{t^2}{2}]$$

Dann ist

$$f(x_1, \dots, x_k) = \prod_{j=1}^k f_j(x_j) = \frac{1}{(2\pi)^{\frac{k}{2}}} exp[-\frac{1}{2} \sum_{j=1}^k x_j^2]$$

die Dichte der k-dimensionalen Normalverteilung.

18.17 Definition und Bemerkung

Sei $\mathbb P$ ein Wahrscheinlichkeitsmaß auf $\mathbb R^k$. Für $j\in\{1,\ldots,k\}$ sei

$$\mathbb{P}_j(B) := \mathbb{P}(\mathbb{R}^{j-1} \times B \times \mathbb{R}^{k-j}), B \in \mathcal{B}^1$$

Das ist ein Wahrscheinlichkeitsmaß. Man nennt es j-te Randverteilung von \mathbb{P} . Hat \mathbb{P} die Dichte f, so hat \mathbb{P}_j die Dichte

$$f_j(t) = \int \dots \int f(x_1, \dots, x_{i-1}, t, x_{i+q}, \dots, x_k) dx_1 \dots dx_{j-1} \dots dx_k$$

(Fubini)

Zufallsvariablen

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ Wahrscheinlichkeitsraum. Früher: $X: \Omega \to \mathbb{R}, \mathbb{P}^X(B) := \mathbb{P}(X^{-1}(B))$

19.1 Definition und Satz

Sei $\Omega' \neq \emptyset, \mathcal{A}' \subset \mathcal{P}(\Omega')$ σ -Algebra.

Eine Abbildung $X \colon \Omega \to \Omega'$ heißt $(\mathcal{A}, \mathcal{A}')$ -messbar, falls

$$X^{-1}(B) \in \mathcal{A}, \quad B \in \mathcal{A}'.$$

Dann heißt $X \Omega'$ -wertige Zufallsvariable.

Die Verteilung $\mathbb{P}^X(\mathbb{P}(X_{...}),\mathcal{L}(x),\mathbb{P}X^{-1},\ldots)$ von X ist definiert als

$$\mathbb{P}^X(B) := \mathbb{P}(X^{-1}(B)), B \in \mathcal{A}'$$

Das ist ein Wahrscheinlichkeitsmaß auf (Ω', \mathcal{A}') . $(\ddot{U}A)$. Ist $(\Omega', \mathcal{A}') = (\mathbb{R}^k, \mathcal{B}^k)$, nennt man X einen k-dimensionalen Zufallsvektor. Im Fall k = 1 spricht man von einer Zufallsvariable.

19.2 Bemerkung

1. Sei $\mathcal{M}' \subset \mathcal{A}'$ mit $\sigma(\mathcal{M}') = \mathcal{A}'$. Dann gilt

$$X^{-1}(A') \in \mathcal{A}', A' \in \mathcal{M}' \Leftrightarrow X^{-1}(A') \in \mathcal{A}', A' \in \mathcal{U}'.$$

Zu zeigen ist (\Rightarrow) . Setze

$$\mathcal{G} := \{ A' \subset \Omega' \colon X^{-1}(A') \in \mathcal{A} \}$$

Das ist eine σ -Algebra (ÜA).

Also gilt (wegen $\mathcal{M}' \subset \mathcal{G}$)

$$\mathcal{A}' = \sigma(\mathcal{M}') \subset \sigma(\mathcal{G}) = \mathcal{G}$$

2. Sei $g: \mathbb{R}^k \to \mathbb{R}^l$ stetig. Dann gilt

$$g^{-1}(A') \in \mathcal{O}^k \subset \mathcal{B}^k, A' \in \mathcal{O}^l$$

Wegen $\sigma(\mathcal{O}^l) = \mathcal{B}^l$ folgt aus (i)

$$g^{-1}(A') \in \mathcal{B}^k, A' \in \mathcal{B}^l.$$

Also ist g messbar.

3. $g: \mathbb{R}^k \to \mathbb{R}$ messbar (d.h. $(\mathcal{B}^k, \mathcal{B}^1)$ -messbar) \Leftrightarrow

$${x: g(x) \ge c} \in \mathcal{B}^k$$
.

Beweis. Das System

$$\{[c,\infty)\colon c\in\mathbb{R}\}$$

ist ein Erzeuger von \mathcal{B}^1 .

Man benutze jetzt (i).

4. Sei $X: \Omega \to \Omega'$ $(\mathcal{A}, \mathcal{A}')$ -messbar. Sei $h: \Omega' \to \Omega''$ $(\mathcal{A}', \mathcal{A}'')$ -messbar, wobei $\mathcal{A}'' \subset \mathcal{P}(\Omega'')$ eine σ -Algebra

Dann ist die Abbildung $h \circ X \colon \Omega \to \Omega''$ $(\mathcal{A}, \mathcal{A}'')$ -messbar. Für $A'' \in \mathcal{A}''$

$$(h \circ X)^{-1}(A'') = X^{-1}(\underbrace{h^{-1}(A'')}_{\in \mathcal{A}'}) \in \mathcal{A}.$$

5. Sei \mathcal{D} ein Wahrscheinlichkeitsmaß auf $(\mathbb{R}^k, \mathcal{B}^k)$. Dann existiert ein Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ mit $\mathbb{P}^X = \mathcal{D}$.

Dazu: $(\Omega, \mathcal{A}, \mathbb{P}) = (\mathbb{R}^k, \mathcal{B}^k, \mathcal{D}),$

$$X = id_{\mathbb{D}^k}$$

Erinnerung $(\Omega, \mathcal{A}, \mathbb{P})$ $X: \Omega \to \Omega' \mathcal{A}'$

Messbarkeit: $X^{-1}(B) \in \mathcal{A}, B \in \mathcal{A}'$ \mathbb{P}^X Wahrscheinlichkeitsmaß auf (Ω', \mathcal{A}')

$$\mathbb{P}^X(B) = \mathbb{P}(X^{-1}(B)) =: \mathbb{P}(X \in B)$$

$$(=\mathbb{P}(\{X\in B\})=\mathbb{P}(\{\omega\in\Omega\colon X(\omega)\in B\}))$$

 $\Omega' = \mathbb{R}^k \quad \mathcal{B}^k$ Zufallsvektor k = 1 Zufallsvariable

19.3 Bemerkung 92

19.3 Bemerkung

Sei \mathbb{Q} Wahrscheinlichkeitsmaß auf \mathbb{R}^k . $X \colon \Omega \to \mathbb{R}^k$ mit Verteilung \mathbb{Q} . Man schreibt

$$X \sim \mathbb{Q}$$

 $("X \text{ ist nach } \mathbb{Q} \text{ verteilt."})$

$$\frac{\text{z.B.:}}{X \sim U[a,b]} \frac{1}{1} \\ X \sim Exp(\lambda), X \sim N(\mu, \sigma^2)$$

Hat \mathbb{Q} die Dichte f, so sagt man "X hat Dichte f". Man sagt X ist eine (absolut) stetige Zufallsvariable. ²

$$\mathbb{P}(a \le X \le b) = \int_{a}^{b} f(x)dx, \quad a \le b$$

$$\mathbb{P}(X = t) = 0!$$

19.4 Bemerkung

Sei
$$\mathcal{Q}^k:=\{[a,b]\colon a\leq b\}^3$$

Für $\lambda^k([a,b]):=\prod\limits_{j=1}^k (b_j-a_j)^4$

 $N \in \mathcal{B}^k$ heißt **Nullmenge**

$$\Leftrightarrow \forall \epsilon > 0 \quad \exists k_1, k_2, \ldots \in \mathcal{Q}^k$$

mit
$$N \subset \bigcup_{i=1}^{\infty} k_i$$
 und $\sum_{j=1}^{\infty} \lambda^k(k_j) \leq \epsilon$.
(Hyperebenen $\{x: \langle x, n \rangle = c\}$ sind Nullmengen)

Sind $f,g\colon\mathbb{R}^k\to\mathbb{R}$ Dichten eines Wahrscheinlichkeitsmaßes $\mathbb{Q},$ so gilt

$$f(x) = g(x), \quad x \notin N,$$

mit einer Nullmenge N.

 $^{^{1}}X$ auf dem Intervall [a, b] gleichverteilt.

 $^{^2}$ Das bedeutet: X hat eine Dichte.

 $a, b \in \mathbb{R}^k$

 $^{^4}$ Lebesque-Maß

19.5 Bemerkung 93

19.5 Bemerkung

Hat ein k-dimensionaler Zufallsvektor die Dichte f, so hat die X_j die Dichte

$$f_j(t) = \int \dots \int f(x_1, \dots, x_{j-1}, t, x_{j+1}, \dots, x_k) dx_1 \dots dx_k$$

19.6 Beispiel

(X,Y) habe Dichte

$$f(x,y) := \frac{1}{\pi} 1_{\{}x^2 + y^2 \le 1\} \equiv 1_K(x,y), K = \{(x,y) : x^2 + y^2 \le 1\})$$

Dann

$$f_1(x) = \int f(x,y)dy = \int 1_{\{x^2 + y^2 \le 1\}} dy = \int 1_{\{|y| \le \sqrt{1 - x^2}\}} dy$$
$$= \begin{cases} 0, & \text{falls } |x| > 1\\ \frac{2}{\pi} \sqrt{1 - x^2}, & \text{falls } |x| \le 1 \end{cases}$$

Ferner

$$F_X(t) = \mathbb{P}(X \le t) = \int_{-\infty}^t f_1(x) dx = \int_{-1}^t \frac{2}{\pi} \sqrt{1 - x^2} dx, \quad -1 \le t \le 1$$
$$\stackrel{!}{=} \frac{1}{2} + \frac{1}{\pi} \arcsin(t) + \frac{1}{\pi} t \sqrt{1 - t^2}$$

(Differentiation und $\frac{\partial}{\partial t}\arcsin(t) = \frac{1}{\sqrt{1-t^2}}$)

19.7 Definition 94

19.7 Definition

1. ⁵ $A_1, \ldots, A_n \in \mathcal{A}$ heißen stochastisch unabhängig, falls

$$\mathbb{P}(\bigcap_{j\in T} A_j) = \prod_{j\in T} \mathbb{P}(A_j), \quad T\subset \{1,\dots,n\}, T\neq \emptyset$$

2. Zufallsvariablen X_1, \ldots, X_n heißen **stochastisch unabhängig**, falls $X_1^{-1}(B_1), \ldots, X_n^{-1}(B_n)$ stochastisch unabhängig, für alle $B_1, \ldots, B_n \in \mathcal{B}^1$, bzw. falls

$$\mathbb{P}(X_1 \in B_1, \dots X_n \in B_n) = \prod_{j=1}^n \mathbb{P}(X_j \in B_j) \text{ für alle } B_1, \dots, B_n \in \mathcal{B}^1.$$

19.8 Bemerkung

Hat (X_1, \ldots, X_n) die Dichte f. Dann gilt:

1.
$$f(x) = \prod_{j=1}^{n} f_j(x_j) \Rightarrow X_1, \dots, X_n$$
 stochastisch unabhängig

2. X_1, \ldots, X_n stochastisch unabhängig $\Rightarrow f(x) = \prod_{j=1}^n f_j(x_j)$ außerhalb einer Nullmenge

Beweis. (1):

$$\mathbb{P}((X_1, \dots, X_n) \in B_1 \times \dots \times B_n)$$

$$= \mathbb{P}^X(B_1 \times \dots \times B_n) = \int_{B_1 \times \dots \times B_n} f(x) dx$$

$$\stackrel{(1),Fubuni}{=} \int \int_{B_1} \dots \int_{B_n} f(x_1) \dots f(x_n) dx_n \dots dx_1$$

$$= \prod_{j=1}^n \int_{B_j} f_j(x) dx = \prod_{j=1}^n \mathbb{P}^{X_j}(B_j) = \prod_{j=1}^n \mathbb{P}(X_j \in B_j)$$

$$(2) : WT$$

 $^{^5\}mathrm{Die}$ Ereignisse

Rechnen mit Dichten

 $X = (X_1, \dots, X_k)$ k-dimensionaler Zufallsvektor mit Dichte f. Sei

$$T: \mathbb{R}^k \to \mathbb{R}^s \quad (s \le k)$$

Sei Y := T(X). (Y ist s-dimensionaler Zufallsvektor, falls Z messbar ist.)

20.1 Satz

Sei K=1, d.h. X sei reelle Zufallsvariable. Die Dichte f sei stückweise stetig und es gelte

$$\mathbb{P}(X \in I) = 1$$

für ein offenes Intervall $I \subset \mathbb{R}$. Die Einschränkung $T|_I$ (von T auf I) sei stetig differenzierbar, streng monoton und $T'(x) \neq 0, x \in I$. Dann hat Y = T(X) die Verteilungsfunktion

$$G(y) = \begin{cases} F(T^{-1}(y)), y \in T(I), & \text{falls } T \uparrow \\ 1 - F(T(y)), y \in T(I), & \text{falls } T \downarrow \end{cases}$$

wobei F die Verteilungsfunktion von X ist. Ferner hat G die Dichte

$$g(y) = \frac{f(T^{-1}(y))}{|T'(T^{-1}(y))|}, \quad y \in T(I)$$

und g(y) = 0 für $y \notin T(I)$.

Beweis. Sei T wachsend. Dann

$$G(y) = \mathbb{P}(Y \le y) = \mathbb{P}(T(X) \le y)$$
$$= \mathbb{P}(X \le T^{-1}(y)) \quad y \in T(I)$$

Die Funktion G ist stetig differenzierbar mit Ableitung

$$g(y) = G'(y) = \frac{f(T^{-1}(y))}{T'(T^{-1}(y))}$$

20.2 Beispiel 96

20.2Beispiel

$$T(x) = ax + b, \quad a \neq 0, b \in \mathbb{R}$$

 $T'(x) = a, T^{-1}(y) = \frac{y-b}{a}$
 $g(y) = \frac{1}{|a|} f(\frac{y-b}{a})$

20.3 Beispiel

$$X \sim N(0,1)^{-1}, T(x) = \sigma x + \mu \ (\sigma > 0, \mu \in \mathbb{R}), Y := T(X) = \sigma X + \mu$$
$$g(y) = \frac{1}{\sigma} \varphi(\frac{y - \mu}{\sigma}) = \frac{1}{\sqrt{2\pi}} \exp[-\frac{(y - \mu)^2}{\sigma^2}]$$

2

20.4 Beispiel

$$\begin{split} T(x) &= x^2, Y = X^2 \\ G(y) &= \mathbb{P}(Y \leq y) \\ &= \mathbb{P}(X^2 \leq y) \\ \overset{y \geq 0}{=} \mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y}) \\ &= F(\sqrt{y}) - F(-\sqrt{y}) \end{split}$$

³ Dichte (y > 0):

$$g(y) = f(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} + f(-\sqrt{y}) \cdot \frac{1}{2\sqrt{y}}$$

 $^{^1}$ Normalverteilung mit Mittelwert 0 und Standardabweichung 1 $^2\varphi$ ist die Dichte der Standardnormalverteilung 3F ist die Verteilungsfunktion von X.