Géométrie dans l'espace, vecteurs.

1 Vecteurs de l'espace

1.1 Vecteurs colinéaires

Définition :

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement s'il existe $k \in \mathbb{R}$ tel que $\overrightarrow{u} = k\overrightarrow{v}$ ou $\overrightarrow{v} = k\overrightarrow{u}$.

Remarque : Le vecteur $\overrightarrow{0}$ est colinéaire à tous les vecteurs.

Propriété : Deux vecteurs non nuls sont colinéaires si et seulement s'ils ont la même direction.

Remarque:

Deux vecteurs sont colinéaires si et seulement s'ils peuvent être représentés sur une même droite.

Propriété : Trois points L, M et N définissent un plan si et seulement si \overrightarrow{LM} et \overrightarrow{LN} non colinéaires.

Preuve : \overrightarrow{LM} et \overrightarrow{LN} non colinéaires \iff L, M, N ne sont pas alignés.

1.2 Coordonnées

1.2.1 Repère de l'espace

Définitions: • Si $\overrightarrow{1}$, \overrightarrow{j} et \overrightarrow{k} sont trois vecteurs, alors dire que $(\overrightarrow{1}, \overrightarrow{j}, \overrightarrow{k})$ est une base de l'espace signifie que pour tout vecteur \overrightarrow{u} de l'espace, il existe un unique triplet de réels (a;b;c) tel que $\overrightarrow{u}=a\overrightarrow{1}+b\overrightarrow{j}+c\overrightarrow{k}$.

• Si O est un point alors dire que $\left(O; \overrightarrow{1}, \overrightarrow{J}, \overrightarrow{k}\right)$ est un repère de l'espace signifie que $\left(\overrightarrow{1}, \overrightarrow{J}, \overrightarrow{k}\right)$ est une base de l'espace.

Théorème: Soient trois points O, I, J non alignés et K un point n'appartenant pas au plan (OIJ). Soient les vecteurs: $\overrightarrow{1} = \overrightarrow{OI}$, $\overrightarrow{J} = \overrightarrow{OJ}$ et $\overrightarrow{k} = \overrightarrow{OK}$. Alors $\left(O; \overrightarrow{1}, \overrightarrow{J}, \overrightarrow{k}\right)$ est un repère de l'espace, et $\left(\overrightarrow{1}, \overrightarrow{J}, \overrightarrow{k}\right)$ est une base de l'espace.

Exemple : On considère un cube ABCDEFGH. Dire si les affirmations suivantes sont vraies ou fausses.

(a) $\left(A;\overrightarrow{AD},\overrightarrow{AB},\overrightarrow{AE}\right)$ est un repère de l'espace

(b) $\left(A;\overrightarrow{AC},\overrightarrow{AB},\overrightarrow{AD}\right)$ est un repère de l'espace

(c) $\left(B;\overrightarrow{BD},\overrightarrow{BA},\overrightarrow{BH}\right)$ est un repère de l'espace

(d) $\left(A;\overrightarrow{ED},\overrightarrow{HC},\overrightarrow{EC}\right)$ est un repère de l'espace

1.2.2 Coordonnées d'un point, d'un vecteur

Dans ce qui suit, l'espace est rapporté à un repère $(O; \overrightarrow{1}, \overrightarrow{1}, \overrightarrow{k})$

Définitions : Soient M un point et \overrightarrow{u} un vecteur.

- Dire que $\overrightarrow{u}(a;b;c)$ signifie que $\overrightarrow{u}=a\overrightarrow{1}+b\overrightarrow{1}+c\overrightarrow{k}$.
- Dire que M(x; y; z) signifie que $\overrightarrow{OM} = x \overrightarrow{1} + y \overrightarrow{1} + z \overrightarrow{k}$.
- c est appelé la cote du vecteur \overrightarrow{u} ; z est appelé la cote du point M.

Remarque : Dans un repère donné, les coordonnées d'un vecteur sont uniques, ainsi que celles d'un point.

1.2.3 Calculs sur les coordonnées

Les règles de calcul des coordonnées dans le plan s'étendent à l'espace.

Propriété : Soit un repère $(O; \overrightarrow{1}, \overrightarrow{J}, \overrightarrow{k})$ de l'espace.

- Si deux vecteurs \overrightarrow{u} et \overrightarrow{v} ont pour coordonnées $\overrightarrow{u}(x;y;z)$ et $\overrightarrow{v}(x';y';z')$ et $\lambda \in \mathbb{R}$ alors : $\overrightarrow{u} + \overrightarrow{v}(x+x';y+y';z+z')$ $\overrightarrow{u} \overrightarrow{v}(x-x';y-y';z-z')$ $\lambda \overrightarrow{u}(\lambda x;\lambda y;\lambda z)$.
 Si deux points A et B ont pour coordonnées $A(x_A;y_A;z_A)$ et $B(x_B;y_B;z_B)$
- alors: $\overrightarrow{AB}(x_B x_A; y_B y_A; z_B z_A)$.
- Le milieu I du segment [AB] a pour coordonnées : $I\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2};\frac{z_A+z_B}{2}\right)$
- ullet Si de plus C a pour coordonnées $C(x_C,y_C,z_C)$ alors le centre de gravité G du triangle ABC a pour coordonnées : $G\left(\frac{x_A+x_B+x_C}{3}; \frac{y_A+y_B+y_C}{3}; \frac{z_A+z_B+z_C}{3}\right)$

1.2.4 Colinéarité

Propriété: Deux vecteurs sont colinéaires si et seulement si leurs coordonnées sont proportionnelles.

Propriété : Si $\overrightarrow{u}(a;b;c)$ et $\overrightarrow{v}(\alpha;\beta;\gamma)$ alors \overrightarrow{u} et \overrightarrow{v} colinéaires $\iff a\beta = \alpha b$ et $b\gamma = \beta c$ et $a\gamma = \alpha c$.

Remarques:

- Pour prouver que deux vecteurs sont colinéaires, il est en général plus simple de trouver le coefficient de proportionalité.
- Pour prouver que deux vecteurs ne sont pas colinéaires, il suffit de trouver un produit en croix qui ne "marche" pas.

2

Exemples:

- (a) $\overrightarrow{u}(2;0;3)$ et $\overrightarrow{v}(1;0;2)$ sont-ils colinéaires?
- (b) $\overrightarrow{u}(1,2;1;-0,8)$ et $\overrightarrow{v}(-3;-2,5;2)$ sont-ils colinéaires?

1.3 Vecteurs coplanaires

Définition :

Des vecteurs sont dits "coplanaires" si et seulement s'ils peuvent être représentés dans un même plan.

Propriété: Deux vecteurs sont toujours coplanaires.

Preuve: Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs, soit A un point.

Soient B l'image de A par la translation de vecteur \overrightarrow{u} , et C l'image de A par la translation de vecteur \overrightarrow{v} .

Il existe un plan P passant par A, B et C.

Les vecteurs \overrightarrow{u} et \overrightarrow{v} peuvent être représentés sur P puisque $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$.

Propriété : Soient un point O et trois vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} .

Alors $(O; \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est un repère de l'espace $\iff \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$ non coplanaires.

La figure ci-contre illustre cette propriété. **Preuve**: Admise.

Propriété : Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs.

S'il existe $a,b\in\mathbb{R}$ tels que $\overrightarrow{w}=a\overrightarrow{u}+b\overrightarrow{v}$ alors \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires.

Preuve: Soit A un point.

Soit A' l'image de A par la translation de vecteur \overrightarrow{u} ,

soit B l'image de A par la translation de vecteur $a\overrightarrow{u}$.

 $\overrightarrow{AB} = a\overrightarrow{u} = a\overrightarrow{AA'}$ donc les vecteurs \overrightarrow{AB} et $\overrightarrow{AA'}$ sont colinéaires donc les poitns A, A' et B sont alignés.

Soit B' l'image de B par la translation de vecteur \overrightarrow{v} ,

soit C l'image de B par la translation de vecteur $b\overrightarrow{v}$.

 $\overrightarrow{BC} = b\overrightarrow{v} = b\overrightarrow{BB'}$ donc les vecteurs \overrightarrow{BC} et $\overrightarrow{BB'}$ sont colinéaires donc les poitns B, B' et C sont alignés.

Il existe un plan P passant par A, B et C.

Or $\overrightarrow{w} = a\overrightarrow{u} + b\overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$,

donc on peut représenter \overrightarrow{w} sur P.

Comme les poitns A, A', B sont alignés, $A' \in P$; et comme les poitns B, B', C sont alignés, $B' \in P$.

Il découle de cette propriété un cas particulier important : **Propriété** : Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs dont deux sont colinéaires.

Alors \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires.

Preuve : Supposons par exemple que \overrightarrow{v} et \overrightarrow{w} soient colinéaires.

Supposons par exemple que $\overrightarrow{w} = k\overrightarrow{v}$ où $k \in \mathbb{R}$.

Alors $\overrightarrow{w} = 0\overrightarrow{u} + k\overrightarrow{v}$, donc d'après la propriété précédente, \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires.

Propriété: Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs coplanaires, tels que \overrightarrow{u} et \overrightarrow{v} ne soient pas colinéaires. Alors il existe $a, b \in \mathbb{R}$ tels que $\overrightarrow{w} = a \overrightarrow{u} + b \overrightarrow{v}$.

Preuve : Soit P un plan sur lequel \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} peuvent être représentés.

Soit $O \in P$. Comme \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires, $(O; \overrightarrow{u}, \overrightarrow{v})$ est un repère du plan P.

Soient (a;b) les coordonnées de \overrightarrow{w} dans ce repère, on a : $\overrightarrow{w} = a\overrightarrow{u} + b\overrightarrow{v}$.

Remarque : Dans la propriété précédente, l'hypothèse " \overrightarrow{u} et \overrightarrow{v} non colinéaires" est indispensable. Supposons par exemple, $\overrightarrow{u} \neq \overrightarrow{0}$, \overrightarrow{v} colinéaire à \overrightarrow{u} , et \overrightarrow{w} non colinéaire à \overrightarrow{u} . Alors \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires car ils comportent deux vecteurs colinéaires. Mais pour tous $a, b \in \mathbb{R}$, $a\overrightarrow{u} + b\overrightarrow{v}$ est colinéaire à \overrightarrow{u} et donc différent de \overrightarrow{w} .

Propriété : Soient \overline{A} , \overline{B} , C et \overline{D} quatre points. Alors :

A, B, C et D coplanaires $\iff \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}$ coplanaires $\iff \overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CD}$ coplanaires.

Droites 2

Vecteur directeur 2.1

Définition: On appelle "vecteur directeur" d'une droite D tout vecteur ayant la direction de D.

Conséquences :

- Un vecteur directeur est non nul.
- Les vecteurs d'une même droite sont colinéaires entre eux.

Exemple:

- Si A et B sont deux points distincts alors les vecteurs directeurs de la droite (AB) sont les vecteurs $k\overrightarrow{AB}$ où $k \in \mathbb{R}^*$.
- Soit M un point. $M \in (AB) \Longleftrightarrow ABM$ alignés \iff il existe $s \in \mathbb{R}$ tel que $\overrightarrow{AM} = s\overrightarrow{AB}$.
- Si \overrightarrow{u} est un autre vecteur directeur de (AB), alors il existe $k \in \mathbb{R}^*$ tel que $\overrightarrow{u} = k\overrightarrow{AB}$, donc $\overrightarrow{AB} = \frac{1}{\iota} \overrightarrow{u}. \text{ Donc } M \in (AB) \Longleftrightarrow \overrightarrow{AM} = s \times \frac{1}{k} \overrightarrow{u} = \frac{s}{k} \overrightarrow{u}.$

Et en posant $t = \frac{s}{L}$, on obtient $M \in (AB) \iff \overrightarrow{AM} = t\overrightarrow{u}$ où $t \in \mathbb{R}$.

Propriété : Si D est une droite passant par A avec pour vecteur directeur \overrightarrow{u} alors D est l'ensemble des points M tels que $\overrightarrow{AM} = t\overrightarrow{u}$ où $t \in \mathbb{R}$.

L'espace est muni d'un repère

Théorème : Si lpha, eta et γ ne sont pas tous nuls alors l'ensemble des points M(x;y;z) tels que $y = \beta \, t + b$ où $t \in \mathbb{R}$ est la droite passant par A(a;b;c) avec pour vecteur directeur $\overrightarrow{u}(\alpha;\beta;\gamma)$.

Preuve: Par hypothèse $\overrightarrow{u} \neq \overrightarrow{0}$.

Soit D la droite passant par A(a;b;c) avec pour vecteur directeur $\overrightarrow{u}(\alpha;\beta;\gamma)$. Alors

 $M(x;y;z) \in D \iff \text{il existe } t \in \mathbb{R} \text{ tel que } \overrightarrow{AM} = t \overrightarrow{u} \iff \begin{pmatrix} x-a \\ y-b \\ z-c \end{pmatrix} = \begin{pmatrix} t \, \alpha \\ t \, \beta \\ t \, \gamma \end{pmatrix} \iff \begin{cases} x = \alpha \, t + a \\ y = \beta \, t + b \\ z = \gamma \, t + c \end{cases}.$

Définition : La représentation d'une droite D sous la forme $\begin{cases} x = \alpha \, t + a \\ y = \beta \, t + b \\ z = \gamma \, t + c \end{cases}$ où $t \in \mathbb{R}$

Remarque : Pour une même droite, il existe une multitude de systèmes d'équations paramétriques. Ceux-ci dépendent du point A choisi et du vecteur \overrightarrow{u} choisi.

Exemples:

(a) Enoncé:

Soit Δ la droite déquations $\begin{cases} x = -2 \\ y = 2t \\ z = -1 + t \end{cases}$ où $t \in \mathbb{R}$.

- (1) Donner un vecteur directeur de Δ .
- 2 Déterminer si les points E(-2; 10; 5) et F(-2; -8; -5) sont sur Δ .

Solution:

- 1 \overrightarrow{u} $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ est un vecteur directeur de Δ .

4

$$\begin{cases} -2 = -2 \\ -8 = 2t \\ -5 = -1 + t \end{cases} \iff t = -4 \text{ donc } F(-2; -8; -5) \in \Delta.$$

- (b) Soient les points A(6; -2; 4), B(2; 4; 2), et C(-1; 3; 4). Soit D la parallèle à (BC) passant par A.
 - ① Donner un système d'équations paramétriques de (AB) ainsi que de D.
 - 2 Le point O est-il sur (AB)? Est-il sur D?

1

2.3 Positions relatives

Vecteurs directeurs Points communs	Oui	Non
Oui		
Non		

Remarque : Le paramètre t est différent pour chaque droite bien qu'il soit souvent désigné par la même lettre. Il convient de leur donner des noms différents lorsqu'on cherche les points communs à deux droites.

3 Plans

3.1 Vecteurs directeurs

On dira que \overrightarrow{u} est un vecteur du plan P si et seulement si \overrightarrow{u} peut être représenté sur P.

Propriété : Deux plans sont parallèles si et seulement si tout vecteur de l'un est un vecteur de l'autre.

Preuve : Cela découle de la propriété suivante : deux plans sont parallèles si et seulement si toute droite incluse dans l'un est parallèle à une droite incluse dans l'autre. *L*

Définition :

On appelle "vecteurs directeurs" d'un plan P la donnée de deux vecteurs non colinéaires de P.

Remarque: \overrightarrow{u} et \overrightarrow{v} sont des vecteurs directeurs de P si et seulement si $(\overrightarrow{u}; \overrightarrow{v})$ est une base de P.

Propriété : Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs directeurs d'un plan P_1 , soient \overrightarrow{a} et \overrightarrow{b} deux vecteurs directeurs d'un plan P_2 .

Alors P_1 est P_2 sont parallèles ou confondus si et seulement si les vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{a} et \overrightarrow{b} sont coplanaires.

Preuve :

• Supposons $P_1//P_2$.

Alors tout vecteur de P_2 est un vecteur de P_1 , donc \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{a} et \overrightarrow{b} sont coplanaires.

• Réciproquement, supposons \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{d} et \overrightarrow{b} coplanaires. Comme \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires, il existe $c,d,e,f\in\mathbb{R}$ tels que $\overrightarrow{d}=c\overrightarrow{u}+d\overrightarrow{v}$ et $\overrightarrow{b}=e\overrightarrow{u}+f\overrightarrow{v}$.

Soit \overrightarrow{w} un autre vecteur de P_2 . Alors \overrightarrow{a} , \overrightarrow{b} et \overrightarrow{w} sont coplanaires et \overrightarrow{a} et \overrightarrow{b} non colinéaires.

Donc il existe $x,y\in\mathbb{R}$ tels que $\overrightarrow{w}=x\overrightarrow{d}+y\overrightarrow{b}$. Donc $\overrightarrow{w}=x\left(c\overrightarrow{u}+d\overrightarrow{v}\right)+y\left(e\overrightarrow{u}+f\overrightarrow{v}\right)=xc\overrightarrow{u}+xd\overrightarrow{v}+ye\overrightarrow{u}+yf\overrightarrow{v}=(xc+ye)\overrightarrow{u}+(xd+yf)\overrightarrow{v}$.

Or \overrightarrow{u} et \overrightarrow{v} sont des vecteurs de P_1 , donc \overrightarrow{w} est un vecteur de P_1 .

Ainsi, tout vecteur de P_2 est un vecteur de P_1 , donc $P_1//P_2$.

Application : preuve du théorème du toit.

Théorème : Si deux plans sécants P_1 et P_2 contiennent deux droites parallèles D_1 et D_2 , alors la droite d'intersection de P_1 et P_2 est parallèle à D_1 et D_2 .

Preuve :

- Soient P_1 et P_2 deux plans se coupant suivant une droite Δ . On suppose que D_1 est une droite de P_1 , que D_2 est une droite de P_2 , et que $D_1//D_2$. D_1 et D_2 admettent un même vecteur directeur \overrightarrow{u} . Soit \overrightarrow{w} un vecteur directeur de Δ . \overrightarrow{u} et \overrightarrow{w} sont deux vecteurs à la fois de P_1 et de P_2 .
- Supposons que \overrightarrow{u} et \overrightarrow{w} ne soient pas colinéaires. Alors \overrightarrow{u} et \overrightarrow{w} seraient des vecteurs directeurs à la fois de P_1 et de P_2 , donc P_1 et P_2 seraient parallèles ou confondus, ce qui est contradictoire avec le fait P_1 et P_2 sont sécants. Donc \overrightarrow{u} et \overrightarrow{w} sont colinéaires, d'où : $D_1//\Delta//D_2$.

3.2 Equations paramétriques

Propriété: Soit P un plan passant par un point A avec pour vecteurs directeurs \overrightarrow{u} et \overrightarrow{v} . Alors $M \in P$ si et seulement s'il existe $s,t \in \mathbb{R}$ tels que $\overrightarrow{AM} = s\overrightarrow{u} + t\overrightarrow{v}$.

Preuve :

- Soient $s,t\in\mathbb{R}$. Comme \overrightarrow{u} et \overrightarrow{v} peuvent être représentés sur P, le vecteur $s\overrightarrow{u}+t\overrightarrow{v}$ peut être représenté sur P. Si $\overrightarrow{AM}=s\overrightarrow{u}+t\overrightarrow{v}$ alors M est l'extrémité du représentant de $s\overrightarrow{u}+t\overrightarrow{v}$ d'origine A, donc $M\in P$.
- $\begin{array}{ll} \bullet & \text{R\'eciproquement, supposons que } M \in P. \\ \text{Alors comme } \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ ne sont pas colin\'eaires,} \\ (A;\overrightarrow{u},\overrightarrow{v}) \text{ est un rep\`ere du plan } P. \\ \text{Soient } (s,t) \text{ les coordonn\'ees de } M \text{ dans ce rep\`ere;} \\ \text{par d\'efinition, on a } \overrightarrow{AM} = s\overrightarrow{u} + t\overrightarrow{v}. \\ \end{array}$

Théorème et définition : Soient $\overrightarrow{u}(a;b;c)$ et $\overrightarrow{v}(\alpha;\beta;\gamma)$. Si \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires alors le plan P passant par $A(x_0;y_0;z_0)$ avec pour vecteurs directeurs $x = x_0 + a \, s + \alpha \, t$

 $\overrightarrow{u} \text{ et } \overrightarrow{v} \text{ est l'ensemble des points } M(x;y;z) \text{ tels que } \begin{cases} x = x_0 + a\,s + \alpha\,t \\ y = y_0 + b\,s + \beta\,t \\ z = z_0 + c\,s + \gamma\,t \end{cases} \quad \text{ où } s,t \in \mathbb{R}.$

Ce système s'appelle représentation paramétrique de P.

Preuve : $M \in P \iff$ il existe $s, t \in \mathbb{R}$ tels que $\overrightarrow{AM} = s\overrightarrow{u} + t\overrightarrow{v}$

 $\iff \text{il existe } s,t \in \mathbb{R} \text{ tels que } \begin{cases} x-x_0=s\,a+t\,\alpha \\ y-y_0=s\,b+t\,\beta \\ z-z_0=s\,c+t\,\gamma \end{cases} \iff \text{il existe } s,t \in \mathbb{R} \text{ tels que } \begin{cases} x=x_0+a\,s+\alpha\,t \\ y=y_0+b\,s+\beta\,t \\ z=z_0+c\,s+\gamma\,t \end{cases}.$

Remarque : Pour un même plan, il existe une multitude de représentations paramétriques.