Statistique bayésienne Feuille 1 : introduction à l'inférence bayésienne

Robin Ryder

Automne 2019

1 Loi conditionnelle, loi marginale

Soient X et Y deux variables iid de loi $\mathcal{E}(\lambda)$. On pose Z = X + Y.

- 1. Donner la loi jointe de (X,Y) et en déduire la loi jointe de (X,Z).
- 2. Calculer la loi marginale de Z.
- 3. Calculer la loi conditionnelle de X sachant Z=z et l'espérance conditionnelle E[X|Z=z]. Quelle est la loi conditionnelle de Y sachant Z=z?

2 Modèle Bernoulli-Beta

On considère un échantillon (X_1, \ldots, X_n) suivant la loi de Bernoulli de paramètre p à estimer. On prend comme loi a priori sur p la loi U([0,1]).

1. On rappelle que la loi Beta(a,b) est la loi sur [0,1] de densité

$$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} \mathbb{I}_{[0,1]}(x).$$

L'espérance de cette loi est $\frac{a}{a+b}$ et sa variance est $\frac{ab}{(a+b)^2(a+b+1)}$.

Tracer la densité de la loi Beta(a, b) pour quelques valeurs de a et b, à l'aide de la fonction R dbeta().

- 2. Vérifier que la loi a posteriori de p sachant (X_1, \ldots, X_n) est une loi Beta, et donner ses paramètres.
- 3. Simuler trois échantillons de la loi de Bernoulli (avec le paramètre de votre choix), de tailles respectives n=20, n=100 et n=1000. Tracer les lois a posteriori correspondantes. Qu'observez-vous?

3 Modèle Poisson-Gamma

Soit (X_1, \ldots, X_n) un échantillon de la loi de Poisson de paramètre $\lambda > 0$, avec λ à estimer.

- 1. Vérifier que la famille des lois a priori $\Gamma(a,b)$ est conjuguée pour ce modèle.
- 2. Quelle est la loi a priori de Jeffreys associée à ce modèle? Cette loi est-elle bien définie? Quelle est la loi a posteriori associée?
- 3. On considère les valeurs suivantes des hyperparamètres :

$$a_1 = 1$$
 $b_1 = 0.5$

$$a_2 = 1 \quad b_2 = 2$$

$$a_3 = 1 \quad b_3 = 10$$

$$a_4 = 2$$
 $b_4 = 2$.

Tracer sur le même graphique les distribution a priori correspondantes, ainsi que l'a priori de Jeffreys.

- 4. Simuler trois échantillons de la loi de Poisson (avec le paramètre $\lambda=0.5$), de tailles respectives $n=20,\ n=100$ et n=1000. Tracer sur le même graphique les lois a posteriori correspondant aux lois a priori de la question précédente. Qu'observez-vous?
- 5. Dans chaque cas, donner les estimateurs bayésiens de λ : espérance a posteriori, maximum a posteriori.
- 6. Dans chaque cas, donner un intervalle de crédibilité à 95% pour λ .
- 7. Répéter l'expérience avec le jeu de données ShipAccidents :
 - > library(AER)
 - > data(ShipAccidents)