ELEKTRONİK DEVRELERİ

Final Sinavi

1-Şekil-1'deki A1 için $r_{i1}=10000$, $r_{o1}=\infty$, Ym=1mA/V ve A2 için $r_{i2}=100$ K, $r_{o2}=10$ K ve Kv=1000 verilmiştir.

- a) Geribeslemenin türünü ve β devresini belirleyin.
- b)Orta frekanslarda sistemin geri beslemesiz yükleme etkili Zm geçiş empedansını bulun ve yüksek frekanslardaki kutup frekansını hesaplayın.

c)Geribeslemeli durumdaki rif, rof ve Vo/V₁ kazancını bulun. Alt ve üst kesim frekansları hesaplayıp frekans eğrisini çizin.

2-Şekil-2'de verilen devrede kullanılan eşlenik tranzistorların her biri için T_{jmax}=140°C, R_{thjc}=2,5°C/W, R_{thch}=1°C/W ve R_{thha}=5,5°C/W değerleri verilmiştir. T_a=50°C ve V_{CEsat}=1V olduğu bilindiğine göre:

a) Yüke maksimum güç aktarmak üzere V_{cc} gerilimini, soğutmaya esas olan gücü göz önüne alarak bulun.

(Her bir tranzistor ayn soğutucuya monte edilmekte)

- b) Tranzistorlar için I_{CM}=5A ve V_{CEM}=40V verildiğine göre V_{CC}'nin bu değeri maksimum güç aktarmak için uygun olur mu?
- c) a ve b şıklarında bulduğunuz V_{cc} gerilimlerinden uygununu seçip yüke en fazla ne kadar güç aktarılabileceğini ve bu sırada verimin ne olacağının bulun.

3-Şekil-3'de bir dolup-boşalma osilatörü gözükmektedir.

İK, R₁, bR ₁ elemanlarından oluşan devre schmitt
tetikleyici olarak çalışmaktadır. Vo, +9V ile -9V değerlerini
almaktadır. V_{IH} ile V_{IL}, b katsayısı ile belirlenmektedir.
V_A>V_{IH}ise Vo=V_{OL}=-9V, V_A<V_{IL}ise V_O=V_{OH}=9V olmaktadır.
Diyotlar için V_{DO}=0.7V(Sabit gerilim düşümü modeli) alınmalıdır

- a) f çalışma frekansını, b katsayısı ve devre elemanlarına bağlı belirleyin.
- b) A noktasındaki işaretin tepeden tepeye değeri 6V ve B noktasındaki **simetrik kare dalganın** frekansı 1KHz olacak şekilde elemanların değerini belirleyin. (C=68nF)
- c) f=1Khz ve Vo'nun darbe süresi 250µs olacak şekilde R2 ve R3 dirençlerini bulun. (C=68nF)

Şekil-1

Şekil-2

Sekll-3

Vecnax jule nax gir obtavacak garilim deferidir.

T'hude harconstalecek mex, gus. 1 Pyrox = (Vcc-VcExxt)2 = (21,21)2 ~ 45Watt Gerlin Kandy

2Ry

Alum Koxulu

a) Yoke max gic aldormak viewe Vecigi, agulmaga esas alan gocii gas arine alanak bul.

(Tiller sagurhicuya ayr. ayr. bajlanyar.)

WT'le isin Ich = 5A, VEEN=40V ise Veenin bu dejer nex gir oktarim irin ugan shrmit c) a ve b 'de bulman Vcc 'lorden uygun der socije yille en faste ne hadorgis aktorohilecejini ve bu sirada verimi bulun.

Ptot = 2 Pymaxi = 2 Vec - Vec - Vec - Ti2 Py 10 = Vcc = 12,21 Valt

VCEN > Vac-VCEET V 417 Vcc

Alum Kopula Ry = Vm = Vcc/2 - VcEsst.

> ik, Re, ble: Schmitt Retikleyicisi Vo +9V, -9V degodeni digar Vo, VO2 b katsaynyle belindrigar · Digotlar iain Voo= 274 (Sobit grillin discursi medili a) f calisma fickensini & me dane denadema bajli ifade esin b) I nottorindo tepedan tepege by 'Intiraret, B' beli simetrit kone dalganin fiekansi 1 kHz dassk zetilde demonterin degerte belirkyin.

c) f= 16Hz ve Vo'nu darke siresi 250 Ar => R2 meR3? $T_{1} = R_{2} C J_{n} \left(\frac{1+\beta}{1-\beta} \right) = T_{1} + T_{2} = (R_{2} + R_{3}) C J_{n} \left(\frac{1+\beta}{1-\beta} \right) - J_{2} = \frac{1}{T} = \frac{1}{(R_{2} + R_{3}) C J_{n} \left(\frac{1+\beta}{1-\beta} \right)}$ $T_{2} = R_{3} C J_{n} \left(\frac{1+\beta}{1-\beta} \right)$ $\beta = \frac{-R_{1}}{R_{1}(1+\delta)} = \frac{-R_{1}}{H_{1}} = \frac{-1}{H_{1}}$ $R_{1}(1+\delta) = \frac{1}{H_{1}}$

Vo RI(HL) = VA => Vo RI = VSH Vo RI = VEL 9-(-9) (RI (H6)) = 6 => 6=2

RI(HL) = RI => 1/3 = (EHE => T= 15) 5M

To = 250 Ms =>