SQL SERVER2005

数据库系统概论

第 2 章 关系数据库

第2章 关系数据库

- ◆第一节 关系数据结构及形式化定义
- ❖第二节 关系操作
- ❖第三节 关系的完整性
- ❖第四节 关系代数

本讲教学目标

❖掌握

- 关系的定义、特点;
- 关系的三类完整性约束;
- 传统集合运算和专门的关系运算

❖了解

关系的操作及其分类、关系演算

❖重点

关系数据结构、关系的三类完整性约束、关系代数

❖难点

■专门的关系运算

第2章 关系数据库

- ●第一节 关系数据结构及形式化定义
- ❖第二节 关系操作
- ❖第三节 关系的完整性
- ❖第四节 关系代数

关系数据结构及形式化定义

- ♦ 关系
 - ■域
 - 笛卡尔积
 - ■关系
- ❖关系模式
- ❖ 关系数据库

域

❖域是一组具有相同数据类型的值的集合

❖ 例:

- ■整数
- 实数
- 介于某个取值范围的整数
- ■指定长度的字符串集合
- {'男', '女'}
- 介于某个取值范围的日期

笛卡尔积

❖笛卡尔积—域上的一种集合运算

给定一组域 D_1 , D_2 , ..., D_n , 允许其中某些域是相同的。 D_1 , D_2 , ..., D_n 的笛卡尔积为: $D_1 \times D_2 \times ... \times D_n =$

{
$$(d_1, d_2, ..., d_n) | d_i \in D_i, i=1, 2, ..., n$$
}

- 所有域的所有取值的一个组合
- 其中每一个元素 $(d_1, d_2, ..., dn)$ 叫作一个n元组(n-tuple)或 简称元组(Tuple)
- 元素中的每一个值d_i叫做一个**分量**
- 一个域允许的不同取值个数称为这个域的基数

例:给出三个域:

 D_{1} ={ 张清玫,刘逸 } 导师集合 D_{2} ={计算机专业,信息专业} 专业集合 D_{3} ={李勇,刘晨,王敏} 研究生集合

则D1, D2, D3的笛卡尔积为:

```
D1 \times D2 \times D3 =
```

(张清玫, 计算机专业, 李勇), (张清玫, 计算机专业, 刘晨), (张清玫, 计算机专业, 王敏), (张清玫, 信息专业, 李勇), (张清玫, 信息专业, 王敏), (刘逸, 计算机专业, 李勇), (刘逸, 计算机专业, 刘晨), (刘逸, 计算机专业, 王敏), (刘逸, 信息专业, 李勇), (刘逸, 信息专业, 李勇), (刘逸, 信息专业, 王敏)

笛卡尔积

- 基数 (Cardinal number)

$$M = \prod_{i=1}^n m_i$$

- 笛卡尔积的表示方法
 - 笛卡尔积可表示为一个二维表
 - 表中的每行对应一个元组,表中的每列对应一个域

D1 = {张清玫、刘逸} D2 = {计算机专业、信息专业}

D3 = {李勇、刘晨、王敏}

表 2.1 D_1 , D_2 , D_3 的笛卡尔积

SUPERVISOR	SPECIALITY	POSTGRADUATE
张清玫	计算机专业	李勇有
张清玫	计算机专业	刘晨实
张清玫	计算机专业	王敏 「
张清玫	信息专业	李勇 意
张清玫	信息专业	刘晨
张清玫	信息专业	王敏
刘逸	计算机专业	李勇
刘逸	リ逸 计算机专业	
刘逸	计算机专业	王敏
刘逸	信息专业	李勇
刘逸	信息专业	刘晨
刘逸 信息专业		王敏

关系

❖关系

 $D_1 \times D_2 \times ... \times D_n$ 的子集叫作在域 D_1 , D_2 , ..., D_n 上的关系,表示为

- R: 关系名 R (D_1 , D_2 , ..., D_n)
- n: 关系的目或度 (Degree)

例:在表2.1 的笛卡尔积中取出有实际意义的元组来构

造关系

关系: SAP(SUPERVISOR, SPECIALITY, POSTGRADUATE)

假设:专业与导师:1:n,导师与研究生:1:n

于是: SAP关系可以包含三个元组

表 2.2 SAP 关系

SUPERVISOR	SPECIALITY	POSTGRADUATE
张清玫	信息专业	李勇
张清玫	信息专业	刘晨
刘逸	计算机专业	王敏

❖关系的术语

- 表(table)、列(column)、行(row)
- 关系(relation)、元组(tuple)、属性(attribute)

关系或表

属性或列

元组或行

学号	姓名	性别	年 龄	所 在 系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

❖ 关系术语

- 候选码(Candidate key) 全码(All-key)
- 主码 主属性 非主属性

SC (Sno, Cno, Grade) 主码 主属性 主属性 非主属性 成绩 学 号 课程号 **Grade** Sno Cno 201215121 92 201215121 2 85 3 201215121 88 201215122 90 3 201215122 80

❖三类关系

■ 基本关系 (基本表或基表)

实际存在的表,是实际存储数据的逻辑表示

■ 查询表

查询结果对应的表

■视图表

由基本表或其他视图表导出的表,是虚表,不对应实际存储的数据

❖基本关系的性质

- ① 列是同质的(Homogeneous)
- ② 不同的列可出自同一个域
 - 其中的每一列称为一个属性
 - 不同的属性要给予不同的属性名
- ③ 列的顺序无所谓, 列的次序可以任意交换
- ④ 任意两个元组的候选码不能相同
- ⑤ 行的顺序无所谓,行的次序可以任意交换
- ⑥ 分量必须取原子值

关系数据结构及形式化定义

- ❖关系
- ❖关系模式
 - 什么是关系模式
 - 定义关系模式
 - 关系模式与关系
- ❖关系数据库

关系模式

学号	姓 名	性别	年 龄	所 在 系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	cs
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

- ❖ 关系模式是对关系的描述, 是静态的、稳定的
- ❖关系是关系模式在某一时刻的状态或内容,是动态的、 随时间不断变化的
- ❖ 关系模式和关系往往统称为关系,通过上下文加以区别

关系模式可以形式化地表示为:

R (U, D, DOM, F)

R 关系名

U 组成该关系的属性名集合

D 属性组U中属性所来自的域

DOM 属性向域的映象集合

F 属性间的数据依赖关系集合

定义关系模式

❖关系模式通常可以简记为

R(U) 或 R(A1, A2, ..., An)

- R: 关系名
- A1, A2, ..., An:属性名
- 注: 域名及属性向域的映象常常直接说明为属性的类型、长度

关系数据结构及形式化定义

- ❖关系
- ❖关系模式
- ❖关系数据库

关系数据库

❖关系数据库

在一个给定的应用领域中,所有关系的集合构成一个关系数据库

❖关系数据库的型与值

- 关系数据库的型也称关系数据库模式,是对关系数据库的描述
- 关系数据库的值是关系模式在某一时刻对应的关系的集合,简称为关系数据库

第2章 关系数据库

- ❖第一节 关系数据结构及形式化定义
- ●第二节 关系操作
- ❖第三节 关系的完整性
- ❖第四节 关系代数

关系操作

- ❖基本关系操作
- ❖关系数据库语言的分类

基本关系操作

❖常用的关系操作

- 查询: 选择、投影、连接、除、并、交、差
- 数据更新: 插入、删除、修改
- 查询的表达能力是其中最主要的部分
- 选择、投影、并、差、笛卡尔积是5种基本操作

❖ 关系操作的特点

■ 集合操作方式:操作的对象和结果都是**集合**,一次一 **集合**的方式

关系数据库语言的分类

■ 关系数据语言的分类

 一关系代数语言
 ISBL

 关系数据语言
 一元组关系演算 APLHA,QUEL

 一大系演算语言
 域关系演算 QBE

 一双重特点的语言
 SQL

第2章 关系数据库

- ◆第一节 关系数据结构及形式化定义
- ❖第二节 关系操作
- ●第三节 关系的完整性
- ❖第四节 关系代数

第三节 关系的完整性

❖关系的三类完整性约束

实体完整性 参照完整性 用户定义的完整性

关系的三类完整性约束

❖实体完整性和参照完整性:

关系模型必须满足的完整性约束条件

称为关系的两个不变性,应该由关系系统自动支持

❖用户定义的完整性:

应用领域需要遵循的约束条件,体现了具体领域中的语义 约束

实体完整性

规则2.1 实体完整性规则(Entity Integrity)

若属性A是基本关系R的主属性,则属性A不能取空值

例:学生的选修(学号、课程号、成绩)中学号和课程号 为主码,则学号、课程号都是主属性,都不能取空值

SC (Sno, Cno, Grade)

(201215121, 1, 92)

(201215121, null, 92)

关系的完整性

关系的三类完整性约束

- ❖实体完整性
- ❖参照完整性
 - 关系间的引用
 - 外码
 - ■参照完整性规则
- ◆用户定义的完整性

关系间的引用

❖模型中实体及实体间的联系都是用关系来描述的, 因此可能存在着关系与关系间的引用

学号	姓名	性别	专业号	年龄
801	张三		01	19
801	死二	女	U1	19
802	李四	男	01	20
803	王五	男	01	20
804	赵六	女	02	20
805	钱七	男	02	19

专业号	专业名
01	信息
02	数学
03	计算机

学号	姓名	性别	专业号	年龄
801	张三	女	01	19
802	李四	男	01	20
803	王五	男	01	20
804	赵六	女	02	20
805	钱七	男	02	19

课程

课程号	课程名	学分
01	数据库	4
02	数据结构	4
03	编译	4
04	PASCAL	2

学生选课

学号	课程号	成绩
801	04	92
801	03	78
801	02	85
802	03	82
802	04	90
803	04	88

学生实体及其内部的一对多联系

[例1] 学生(学号,姓名,性别,专业号,年龄,班长)

学号	姓名	性别	专业号	年龄	班长
801	张三	女	01	19	802
802	李四	男	01	20	
803	王五.	男	01	20	802
804	赵六	女	02	20	805
805	钱七	男	02	19	

- ■"学号"是主码,"班长"引用了本关系的"学号"
- ■"班长" 必须是确实存在的学生的学号

外码 (Foreign Key)

- ightharpoonup设F是基本关系R的一个或一组属性,但不是关系R的码, K_s 是基本关系S的主码。如果F与 K_s 相对应,则称F是基本关系R的外码
 - 关系R和S不一定是不同的关系
 - 目标关系S的主码Ks 和参照关系的外码F必须定义在同一个 (或一组)域上
 - 外码并不一定要与相应的主码同名,当外码与相应的主码属 于不同关系时,往往取相同的名字,以便于识别

❖ [**狗**2] :

学生(<u>学号</u>、姓名、性别、专业号、年龄)课程(<u>课程号</u>、课程名、学分) 选修关系(<u>学号、课程号</u>、成绩)

- "学号"和"课程号"是选修关系的外码
- ■学生关系和课程关系均为被参照关系
- ■选修关系为参照关系

❖ [例3] "班长"与本身的主码"学号"相对应

- "班长"是外码
- ■学生关系既是参照关系也是被参照关系

参照完整性规则

规则2.2 参照完整性规则

若属性(或属性组)F是基本关系R的外码,它与基本关系S的主码 K_S 相对应(基本关系R和S不一定是不同的关系),则对于R中每个元组在F上的值必须为:

- 或者取空值(F的每个属性值均为空值)
- 或者等于S中某个元组的主码值

- [例4] 学生关系中每个元组的"专业号"属 性只取两类值:
 - (1) 空值,表示尚未给该学生分配专业
 - (2) 非空值,这时该值必须**是专业关系中某个元组 的"专业号"值**,表示该学生不可能分配一个不存在的专业

[例5] 选修 (<u>学号</u>, <u>课程号</u>, 成绩)

"学号"和"课程号"可能的取值:

- (1) 选修关系中的主属性,不能取空值
- (2) 只能取相应被参照关系中已经存在的主码值

关系的完整性

- ❖关系的三类完整性约束
 - ■实体完整性
 - ■参照完整性
 - ■用户定义的完整性

用户定义的完整性

- ❖针对某一具体关系数据库的约束条件, 反映某一具体 应用所涉及的数据必须满足的语义要求
- ❖关系模型应提供定义和检验这类完整性的机制,以便用统一的系统的方法处理它们,而不要由应用程序承担这一功能
- ❖例:课程(课程号,课程名,学分)
 - "课程号"属性必须取唯一值
 - 非主属性"课程名"也不能取空值
 - "学分"属性只能取值{1, 2, 3, 4}

第2章 关系数据库

- ❖第一节 关系数据结构及形式化定义
- ❖第二节 关系操作
- ❖第三节 关系的完整性
- ●第四节 关系代数

关系代数

- ❖传统集合运算
 - 并(Union)
 - 差(Except)
 - 交(Intersection)
 - 笛卡尔积(Cartesian Product)
- ❖专门的集合运算

概 述

表2.4 关系代数运算符

运第	符	含义	运第	百符	含义
集合运算符	- - ×	并差交 笛积	比较运算符	> <u>></u> < <u><</u> = \	大于等于 大于等于 小于等于 小于等于 不等于

表2.4 关系代数运算符(续)

运算符	含义		运算符	含义	
专门的关系运算符	σ π ×	选择 投影 连 除	逻辑运算符	\ \ \	非与或

传统的集合运算

- ❖并 (Union)
 - R和S
 - 具有相同的目n(即两个关系都有n个属性)
 - ■相应的属性取自同一个域
 - $\blacksquare R \cup S$
 - 仍为n目关系,由属于R或属于S的元组组成

$$R \cup S = \{ t | t \in R \lor t \in S \}$$

R		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	D	
	B	C
a_1	b_2	c_2

$R \cup S$ CAB b_1 a_1 c_1 b_2 c_2 a_1 b_2 c_1 a_2 b_3 c_2 a_1

❖差 (Difference)

- R和S
 - \blacksquare 具有相同的目n
 - 相应的属性取自同一个域
- $\blacksquare R S$
 - 仍为n目关系,由属于R而不属于S的所有元组组成

$$R - S = \{ t | t \in R \land t \notin S \}$$

R		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	C
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

R-S		
A	В	C
a_1	b_1	c_1

- *R*和*S*
 - \blacksquare 具有相同的目n
 - 相应的属性取自同一个域
- $\blacksquare R \cap S$
 - 仍为n目关系,由既属于R又属于S的元组组成

$$R \cap S = \{ t | t \in R \land t \in S \}$$

$$R \cap S = R - (R-S)$$

R CAB b_1 a_1 c_1 b_2 a_1 c_2 b_2 a_2 c_1 S AВ C b_2 a_1 c_2 b_3 a_1 c_2 b_2 a_2 c_1

$R \cap S$		
A	В	C
a_1	b_2	c_2
a_2	b_2	c_1

❖笛卡尔积 (Cartesian Product)

- 严格地讲应该是广义的笛卡尔积 (Extended Cartesian Product)
- R: n目关系, k_1 个元组
- S: m目关系, k_2 个元组
- $\blacksquare R \times S$
 - 列: (n+m) 列元组的集合
 - 元组的前n列是关系R的一个元组
 - 后m列是关系S的一个元组
 - 行: $k_1 \times k_2$ 个元组
 - $-R \times S = \{t_{r} t_{s} | t_{r} \in R \land t_{s} \in S \}$

R		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
S A	В	С
	B b_2	C
A		

$R \times S$

R.A	R.B	R.C	S.A	S.B	S.C
a_1	b_1	c_1	a_1	b_2	c_2
a_1	b_1	c_1	a_1	b_3	c_2
a_1	b_1	c_1	a_2	b_2	c_1
a_1	b_2	c_2	a_1	b_2	c_2
a_1	b_2	c_2	a_1	b_3	c_2
a_1	b_2	c_2	a_2	b_2	c_1
a_2	b_2	c_1	a_1	b_2	c_2
a_2	b_2	c_1	a_1	b_3	c_2
a_2	b_2	c_1	a_2	b_2	c_1

关系代数

- ❖传统集合运算
- ❖专门的集合运算
 - ■选择
 - ■投影
 - ■连接
 - 除

专门的关系运算

先引入几个记号

 $(1) R, t \in R, t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$

它的一个关系设为尺

 $t \in \mathbb{R}$ 表示t是 \mathbb{R} 的一个元组

 $t[A_i]$ 则表示元组t中相应于属性 A_i 的一个分量

(2) A, t[A], \overline{A}

 $t[A] = (t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])$ 表示元组t在属性列A上诸分量的集合。

A则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_{ik}\}$ 后剩余的属性组。

(3) $\widehat{t_r t_s}$

R为n目关系,S为m目关系。

 $t_{\rm r} \in R$, $t_{\rm s} \in S$, $t_{\rm r} t_{\rm s}$ 称为元组的连接。

 $t_{\rm r}t_{\rm s}$ 是一个n+m列的元组,前n个分量为R中的

一个n元组,后m个分量为S中的一个m元组。

(4) 给定一个关系R(X,Z)X和Z为属性组。 当t[X]=x时,x在R中的象集定义为

 $Z_X = \{t[Z] | t \in \mathbb{R}, \ t[X] = x\}$

它表示R中属性组X上值为x的诸元组在Z上分量的集合。

学生-课程数据库

❖学生关系Student、课程关系Course和选修关系SC

学号	姓名	性别	年龄	所在系	课程号	课程名	先行课
Sno	Sname	Ssex	Sage	Sdept	Cno	Cname	Cpno
					-		
201215121	李勇	男	20	CS	1	数据库	5
				_	2	数学	
201215122	刘晨	女	19	IS	3	信息系统	1
201215123	王敏	女	18	MA	4	操作系统	6
					5	数据结构	7
201215125	张立	男	19	IS	6	数据处理	

Student

Course

学分

Ccredit

4

4

2

SC

 学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

选择 (Selection)

- ❖ 选择又称为限制 (Restriction)
- ❖ 选择运算符的含义
 - 在关系R中选择满足给定条件的诸元组

$$\sigma_{F}(R) = \{t | t \in R \land F(t) = '\check{A}'\}$$

- F: 选择条件,是一个逻辑表达式,基本形式为: $X_1\theta Y_1$
- ❖ 选择运算是从关系R中选取使逻辑表达式F为真的元组,是 从行的角度进行的运算

[例1] 查询信息系 (IS系) 全体学生 σ_{Sdept = 'IS'} (Student)

Sno	Sname	Ssex	Sage	Sdept
201215122	刘晨	女	19	IS
201215125	张立	男	19	IS

思考: 查询年龄小于20岁且性别为男的学生

投影 (Projection)

- ❖1)投影运算符的含义
 - 从R中选择出若干属性列组成新的关系

$$\pi_A(R) = \{ t[A] \mid t \in R \}$$

A: R中的属性列

❖ 2) 投影操作主要是从列的角度进行运算

■ 但投影之后不仅取消了原关系中的某些列,而且还可能取消 某些元组(避免重复行)

❖ [例2] 查询学生的姓名和所在系

即求Student关系上学生姓名和所在系两个属性上的投影

 $\pi_{Sname, Sdept}(Student)$

Sname	Sdept
李勇	CS
刘晨	IS
王敏	MA
张立	IS

连接 (Join)

- ❖连接也称为θ连接
- ❖连接运算的含义

从两个关系的笛卡尔积中选取属性间满足一定条件的元组

$$R \bowtie_{A \theta B} S = \{ \widehat{t_{\mathbf{r}} t_{\mathbf{s}}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] \theta t_{\mathbf{s}}[B] \}$$

- \rightarrow A和B: 分别为R和S上度数相等且可比的属性组
- ν θ: 比较运算符
- 连接运算从R和S的广义笛卡尔积 $R \times S$ 中选取(R关系)在A属性组上的值与(S关系)在B属性组上值满足比较关系 θ 的元组

❖两类常用连接运算

- 等值连接(equijoin)
 - · 什么是等值连接

θ为"="的连接运算称为等值连接

等值连接的含义

从关系*R*与*S*的广义笛卡尔积中选取*A、B*属性值相等的那些元组,即等值连接为:

$$R \bowtie S = \{ \widehat{t_{\mathbf{r}}t_{\mathbf{s}}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] = t_{\mathbf{s}}[B] \}$$

■自然连接(Natural join)

- ■自然连接是一种特殊的等值连接
 - ▶两个关系中进行比较的分量必须是相同的属性组
 - ▶在结果中把重复的属性列去掉
- ■自然连接的含义

R和S具有相同的属性组B

$$R \bowtie S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$$

❖一般的连接操作是从行的角度进行运算

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

❖[例3] 关系R和关系S如下所示:

 A B C

 a_1 b_1 5

 a_1 b_2 6

 a_2 b_3 8

 a_2 b_4 12

S

В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

ightharpoonup一般连接 $R_{C < E}^{\bowtie}$ S的结果如下

 $\underset{C\leq E}{R\bowtie S}$

A	R.B	C	S.B	Ε
a_1	b_1	5	b_2	7
a_1	b_1	5	b_3	10
a_1	b_2	6	b_2	7
a_1	b_2	6	b_3	10
a_2	b_3	8	b_3	10

\Rightarrow 等值连接 $R \bowtie S$ 的结果 R.B=S.B

•自然连接 $R \bowtie S$ 的结果

A	R.B	С	S.B	Е
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_3	8	b_3	2

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2

❖外连接

■ 如果把舍弃的元组也保存在结果关系中,而在其他属性 上填空值(Null),这种连接就叫做外连接(OUTER JOIN)

❖左外连接

■ 如果只把左边关系*R*中要舍弃的元组保留就叫做左外连接(LEFT OUTER JOIN或LEFT JOIN)

❖右外连接

■ 如果只把右边关系S中要舍弃的元组保留就叫做右外连接 (RIGHT OUTER JOIN或RIGHT JOIN)

R

A	В	С
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

S

В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

❖下图是例5中关系/和5的外连接、左连接、右连接

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL
NULL	b_5	NULL	2

A	В	С	Е
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL

A	В	С	Е
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
NULL	b_5	NULL	2

(a) 外连接

(b) 左外连接

(c) 右外连接

除(Division)

给定关系R(X, Y)和S(Y, Z),其中X, Y,Z为属性组R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。R与S的除运算得到一个新的关系P(X),P是R中满足下列条件的元组在X属性列上的投影:元组在X上分量值X的象集 Y_{x} 包含S在Y上投影的集合。

$$R \div S = \{t_r[X] \mid t_r \in R \land \pi_Y(S) \subseteq Y_x\}$$

 Y_r : x 在 R 中的象集, $x = t_r[X]$

除(续)

\boldsymbol{A}	В	C
a_1	\boldsymbol{b}_1	$c^{}_2$
a_2	\boldsymbol{b}_3	c_7
a_3	b_4	c_6
a_1	\boldsymbol{b}_2	c_3
a_4	$\boldsymbol{b_6}$	c_6
a_2	\boldsymbol{b}_2	c_3
a_1	\boldsymbol{b}_2	c_1

R

B	<i>C</i>	D
b_1	c_2	d_1
b_2	c_1	d_1
b_2	c_3	d_2

$R \div S$	
\boldsymbol{A}	
a_1	

分析:

在关系R中,A可以取四个值 $\{a1, a2, a3, a4\}$

 a_1 的象集为 {(b_1 , c_2), (b_2 , c_3), (b_2 , c_1)}

 a_2 的象集为 {(b_3 , c_7), (b_2 , c_3)}

 a_3 的象集为 { (b_4, c_6) }

 a_4 的象集为 $\{(b_6, c_6)\}$

Sac(B, C)上的投影为

 $\{(b1, c2), (b2, c1), (b2, c3)\}$

只有 a_1 的象集包含了Sac(B, C)属性组上的投影

所以
$$R \div S = \{a_1\}$$

综合举例

以学生-课程数据库为例 (P.60)

[例4] 查询至少选修1号课程和3号课程的学生号码

首先建立一个临时关系 K:

Cno
1
3

然后求: $\pi_{Sno.Cno}(SC) \div K$

综合举例(续)

❖ [例 4]续
$$\pi_{Sno.Cno}(SC)$$

201215121象集{1, 2, 3}

201215122象集{2, 3}

$$\pi_{Cno}(K) = \{1, 3\}$$

Sno	Cno
201215121	1
201215121	2
201215121	3
201215122	2
201215122	3

于是: π_{Sno, Cno} (SC) ÷ *K*={201215121}

- ❖ 关系结构
- ❖ 关系操作
- ❖ 关系的完整性
- ❖ 关系代数运算
 - 关系代数运算
 - 并、差、交、笛卡尔积、投影、选择、连接、除
 - 基本运算
 - 并、差、笛卡尔积、投影、选择
 - 交、连接、除

休息…

子曰 『君子不器。