

Effects of Ambient Gas Pressure on the Breakup of Sprays in Like-Doublet and Swirl Coaxial Injectors

Youngbin Yoon and In-Seuk Jeung
Seoul National University, Korea

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE 22 JUN 2004	2. REPORT TYPE N/A	3. DATES COVERED -		
4. TITLE AND SUBTITLE Effects of Ambient Gas Pressure on the Breakup of Sprays in Like-Doublet and Swirl Coaxial Injectors			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Seoul National University, Korea			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited				
13. SUPPLEMENTARY NOTES See also ADM001793, International Symposium on Energy Conversion Fundamentals Held in Istanbul, Turkey on 21-25 June 2005., The original document contains color images.				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT UU	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	18. NUMBER OF PAGES 34	19a. NAME OF RESPONSIBLE PERSON

Korean Liquid Rockets

KSR-III

	KSR-III	KSLV-I
Period	1998 ~ 2002	2003 ~ 2007
Budget	\$ 6,800,000	\$ 300,000,000
Target	<ul style="list-style-type: none">Science Observation1st Liquid Rocket	<ul style="list-style-type: none">Launch of Small Satellite (100kgf)
Injector	Impinging Type (Kerosene/LOX)	Swirl Coaxial Type (Kerosene/LOX)
System	Non-staged	2 stage (1st: liquid, 2nd: solid)
Supply	Pressure Type	Tubopump
Cooling	Ablative Cooling	Regenerative Cooling
Engine Development	Independent Development	Co-development with Russia
Specification		
Total Weight	5.6 ton	140 ton
Thrust	13 ton	150~170 ton
P@chamber	200 psi	5.25 MPa
T@chamber	3200 K	3616 K
Burning time	59 sec	about 120 sec

Breakup Mechanism

➤ Impinging type injector (Like-Doublet)

➤ Coaxial type injector (Swirl-Coaxial)

- Impact force
- Aerodynamic force

- Centrifugal force (thinning of sheet)
- Aerodynamic force
- Impact force (emulsion injection)

Linear Instability Theory

→ Modeling sheet breakup length and droplet size

Huang [1970]

$$\frac{x_b}{d_o} = 7.1 \rho^{-2/3} We_j^{-1/3}$$

where $\rho = \frac{\rho_g}{\rho_l}$, $We_j = \frac{\rho_l U_j^2 d_o}{\sigma}$

Ryan et al. [1995]

$$\frac{x_b}{d_o} = 10.4 \rho^{-2/3} We_j^{-1/3}$$

$$\frac{d_D}{d_o} = 1.25 \rho^{-1/6} We_j^{-1/3}$$

$$x_b \propto \rho^{-2/3} We_j^{-1/3}$$

$$d_D \propto \rho^{-1/6} We_j^{-1/3}$$

Objectives

➤ Impinging type injector (Like-Doublet)

Find the breakup characteristics of laminar and turbulent sheets in high pressure environments.

➤ Coaxial type injector (Swirl-Coaxial)

Find the effect of recess on the spray characteristics of liquid-liquid swirl coaxial sprays in high pressure environments.

D. Kendrick et al.
(ONERA, FRANCE, 1999)

High Pressure Chamber

Traversing device

Quartz window

Air-curtain system

Drain

	Present	AFRL (USA)
Chamber Diameter	500mm	500mm
Window Size	80mm×4	50mm×3 120mm×1
Window Material	quartz	sapphire
Max. Pressure	6MPa	about 10MPa
Spray Simulant	water	water
Pressurizing Gas	nitrogen	nitrogen

Like-Doublet Injector Design

Changes of Sheet Shapes

Increasing injection velocity, U_j

Sheet Breakup Length

- When $We_g < 1$, laminar sheets expand as increasing mass flow rate and aerodynamic force does not affect the sheet breakup.
- When $We_g > 1$, laminar sheets are broken by aerodynamic force.

Breakup Length Modeling

- Huang [1970] :

$$x_b/d_o = 7.1 \rho^{-2/3} We_j^{-1/3}$$
- Ryan et al. [1995] :

$$x_b/d_o = 10.4 \rho^{-2/3} We_j^{-1/3}$$
- Present :

$$x_b/d_o = 9.4 \rho^{-2/3} We_j^{-1/3}$$

Changes of Sheet Shapes

Increasing injection velocity, U_j

Sheet Breakup Criteria

(A) Expansion Regime ($We_g < 2$)

- Sheet breakup is not controlled by waves.
- Breakup periodicity does not appear.

(B) Wave Breakup Regime ($2 < We_g < 100$)

- Sheets are broken by waves.
- Breakup periodicity appears.
- It is difficult to measure breakup wavelength when $We_g > 50$.

(C) Catastrophic Breakup Regime ($We_g > 100$)

- Sheets are broken just after injection.
- x_b as well as λ_b can not be discriminated.

Sheet Breakup Length

- When $We_g < 2$, turbulent sheets expand as increasing mass flow rate; aerodynamic force does not affect the sheet breakup.
- When $2 < We_g < 100$, turbulent sheets are broken by waves generated by aerodynamic force and impact force.

Breakup Length Modeling

- When $2 < We_g < 100$,

$$x_b/d_o = 0.59 \rho^{-4.63} We_j^{-0.41} We_j^{0.31}$$

- The effect of ambient density is mitigated as increasing jet Weber number (i.e., impact force).

Changes of Drop Images

Increasing injection velocity, U_j

Increasing ambient gas pressure, P_c

Dropsizing Method

Characteristics of this method

- Convenience to setup and handle, capability to treat the non-spherical and overlapped drops
- Direct visualization of drops, and relatively cheap method
- Hard to select in focus drops and a proper threshold
- Need a algorithm to recognize the pattern

Overall procedure of image processing method

Intermediate images

Drop Size & Distribution

Ryan et al. [1995]

$$\frac{d_D}{d_o} = 1.25 \rho^{-1/6} W e_j^{-1/3}$$

Present

$$\frac{d_D}{d_o} = 1.64 \rho^{-1/6} W e_j^{-1/3}$$

Rosin-Rammler distribution

$$1-Q = \exp[-(d/X)^q]$$

Swirl Coaxial Injector

Injector Parts

Operating Conditions

- Oxidizer flowrate : 25.6 g/s
- Fuel flowrate : 10.76 g/s
- O/F ratio : 2.38

Spray Patterns

➤ Definition of Recess Number

$$RN = \frac{L_R}{L_C}, \quad L_C = \frac{R_o - R_i}{\tan \theta_{in}}$$

θ_{in} : inner spray angle

R_o : outer injector radius

R_i : inner injector radius

L_R : recess length

➤ Spray patterns with recess number

Breakup Length

- The **ripple** is formed due to the internal interaction of propellants.
- The breakup length is affected by the initial wave amplitude, η_0 , of the ripple in the recess.

$$(\eta_0)_{\text{shallow}} > (\eta_0)_{\text{deep}}$$

Clark and Dombrowski [1972] – Breakup Length

$$x_b^{2/3} = \left[\frac{9\rho_L K U^2}{32(\rho_a U^2 k - \sigma k^2)} \right]^{1/2} \cosh^{-1} [8(\eta_0 k)^{-2} + 1] \sim (\ln \eta_0)$$

Spray Angle & Breakup Length

- In large recess region (emulsion injection)
- $$\eta_0 = \eta_i \exp(ikx) \quad k = k_r + ik_i$$
- $$\ln(\eta_0 / \eta_i) = k(L_R - L_C)$$
- η_0 : wave amplitude at the injector tip
 η_i : wave amplitude just after impinging

Atomization Characteristics

- The mean drop size increases with recess increased due to :
 - the increase of effective film thickness and
 - the decrease of spray angle.

Mixing Efficiency

- The decrease of mixing efficiency beyond the recess number of 2.0 is due to the propellant separation by the **density difference**.

Separation due to the density difference

Inner Oxidizer Spray

**Increase
of
oxidizer
injection
pressure**

10.02 g/s

14.42 g/s

25.60 g/s

Increase of chamber pressure

Seoul

Spray Angle (Single Oxidizer)

$$We_g = \rho_g U_o^2 d_o / \sigma$$

U_o : oxidizer axial velocity
 d_o : oxidizer injector diameter
 We_o : oxidizer Weber number

- The spray cone angle increases as We_o or mass flow rate increases.
- The spray cone angle decreases as ambient chamber pressure increases.

Breakup Length (Single Oxidizer)

- The breakup length decreases as ambient density or We_o increases.
- In spite of $We_g < 1$, the breakup length decreases as ambient density or We_o increases due to the increase of spray angle.

Coaxial Spray with Recess

**Increase
of
oxidizer
injection
pressure**

O/F = 0.94

O/F = 1.33

O/F = 2.38

Increase of chamber pressure

Seoul

Spray Angle (Coaxial Spray)

$$We_g = \rho_g U_o^2 d_o / \sigma$$

- The spray cone angle decreases by increasing oxidizer We_o .
- The effect of ambient density on the spray angle is not significant compared with that of oxidizer We_o .

Breakup Length (Coaxial Spray)

$$We_g = \rho_g U_o^2 d_o / \sigma$$

- As the oxidizer We_o increases,
 - internal impact force increases. \rightarrow strong wave occurs. $\rightarrow x_b$ decreases.

Modeling of Spray Angle

De Corso and Kemeny [1957]

$$\theta \sim P_a^{-1.6}$$

(a range of gas pressure : 0.01-0.8 MPa)

Modeling of Breakup Length

- The effect of **ambient density** on the breakup length of coaxial spray is very small.
→ The main breakup mechanism of coaxial spray spray is the **impingement** of both propellants and the formation of **unstable wave** on the conical liquid sheet.

Research Progress in SNU

Hierarchy of injector experiments

Progress of injector design

(Ref.: D.Talley, AFRL / USA)

Conclusions : impinging type injector

- ❖ The **aerodynamic force** significantly affects the breakup of **laminar sheet** when the aerodynamic force is higher than the surface tension force (i.e. $We_g > 1$).
 - When $We_g < 1$, the laminar sheet expands as increasing the injection velocity; the aerodynamic force does not affect the sheet breakup.
- ❖ The breakup characteristics of **turbulent sheets** had three regimes: i.e. expansion regime, wave breakup regime and catastrophic breakup regime based on We_g .
- ❖ **Droplet size** agrees well with that of linear instability theory.
 - Drop size distribution can be modeled with Rosin-Rammler distribution function.

Conclusions : swirl coaxial injector

- ❖ The spray characteristics of swirl coaxial injectors are much influenced by **the interaction position of propellants** in the recess.
 - Two regimes are found : outer mixing injection and emulsion injection.
- ❖ In the case of **single inner oxidizer spray**, the spray angle and breakup length decrease as the ambient chamber pressure increases.
- ❖ In the case of **coaxial spray with recess**, the effects of ambient density on the spray characteristics are not significant compared with those of inner oxidizer We_o .