FONCTIONS POLYNOMIALES DU SECOND DEGRÉ

Nous allons généraliser ce que nous avons appris sur la fonction carré. Il est donc judicieux d'avoir relu *ce cours* avant de commencer...

I Jouons avec la parabole

Notons f la fonction carré, c'est à dire $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$.

Nous savons que sa représentation graphique est la parabole d'équation y = f(x) ou encore $y = x^2$.

Nous savons également que son sommet S a pour coordonnées (0;0).

I.1 Premier jeu

Amusons-nous à translater cette parabole de deux unités selon l'axe des ordonnées et « vers les positifs » (quelqu'un a parlé d'un vecteur \vec{u} de coordonnées (0;2)? c'est très bien!)

Nous n'avons pas changé les abscisses, par contre nous avons augmenté toutes les ordonnées de 2.

Notre nouvelle parabole a donc pour équation y = f(x)+2 ou encore $y = x^2+2$. Elle représente une nouvelle fonction que l'on peut

appeler g et telle que $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 + 2 \end{cases}$

Son sommet S' a alors pour coordonnées (0;2).

I.2 Deuxième jeu

Amusons-nous à translater cette parabole de trois unités selon l'axe des abscisses et « vers les positifs » (quelqu'un a parlé d'un vecteur \vec{v} de coordonnées (3;0) ? c'est très bien!)

Nous avons augmenté les abscisses de 3 mais nous n'avons pas changé les ordonnées. C'est à dire que si $A(x_A; y_A)$ est un point de la parabole de départ alors son image $B(x_B; y_B)$ est telle que : $\begin{cases} x_B = x_A + 3 \end{cases}$

De la première égalité, on déduit que $x_A = x_B - 3$ et de la seconde, on déduit que $y_B = y_A = f(x_A) = f(x_B - 3)$. Notre nouvelle parabole a alors pour équation : y = f(x-3) ou encore $y = (x-3)^2$. (Comprenez bien d'où vient le « moins »). Elle représente une nouvelle fonction que l'on

peut appeler h et telle que $h: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (x-3)^2 \end{cases}$

Son sommet S'' a alors pour coordonnées (3;0).

I.3 Troisième jeu

Amusons-nous à « déformer » cette parabole en multipliant les ordonnées par 2,5.

Notre nouvelle parabole a alors pour équation : $y = 2.5 \times f(x)$ ou encore $y = 2.5 x^2$.

Elle représente une nouvelle fonction que l'on peut appeler k et telle que $k:\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2.5 x^2 \end{cases}$

Son sommet reste le même : S(0; 0)

I.4 Dernier Jeu

On combine les trois premiers jeux!

On obtient la parabole d'équation : $y = 2.5(x-3)^2 + 2$ qui répresente une fonction que l'on appeler l et telle que $l: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2.5(x-3)^2 + 2 \end{cases}$. Son sommet est alors le point S'(3;2)

Cliquer pour Visualiser $y=a(x-\alpha)^2+\beta$ Sur cette page, vous pourrez faire varier les trois paramètres (a=2,5; $\alpha=3$ et $\beta=2$) afin d'observer en détail leur influence sur la parabole.

Rentrons à présent dans le vif du sujet...

II Expressions des fonctions polynomiales du second degré

II.1 La forme développée réduite

Définition n°1. Le trinôme

On appelle fonction polynomiale du second degré toute fonction f définie sur \mathbb{R} et telle que pour tout réel x, on peut écrire $f(x) = ax^2 + bx + c$ avec a, b et c des réels et $a \neq 0$ L'expression $ax^2 + bx + c$ est appelée : Trinôme

Exemple n°1.

Soit g la fonction définie sur \mathbb{R} par $l(x) = 2,5(x-3)^2 + 2$. On peut écrire :

$$l(x) = 2,5(x-3)^2+2$$

$$l(x) = 2,5[x^2-6x+9]+2$$

$$l(x) = 2,5x^2-15x+24,5$$

Ainsi $l(x) = ax^2 + bx + c$ avec a = 2,5, b = -15 et c = 24,5

l est donc une fonction polynomiale du second degré.

Remarque n°1.

On devine, sur cet exemple, que toute fonction du type de celle que nous avons observée au dernier jeu est une fonction polynomiale du second degré.

Exercice n°1.

Démontrez-le en partant de l'expression $a(x-\alpha)^2+\beta$ où $a\neq 0$; α et β sont des nombres réels.

II.2 La forme canonique

Propriété n°1.

(et définition)

Si f est une fonction polynomiale du second degré telle pour tout réel x

$$f(x) = ax^2 + bx + c$$

(avec a, b et c des réels et $a \neq 0$) alors on peut l'écrire sous

sa forme canonique :
$$f(x) = a(x-\alpha)^2 + \beta$$

avec
$$\alpha = \frac{-b}{2a}$$
 et $\beta = \frac{-(b^2 - 4ac)}{4a}$

Remarque n°2.

C'est bien le « même a ».

Il faut retenir la formule de α mais pas forcément celle de β car $\beta = f(\alpha)$

preuve : (de la propriété)

$$f(x) = ax^{2} + bx + c$$

$$= a \left[x^{2} + \frac{b}{a} x + \frac{c}{a} \right]$$

$$= a \left[\left(x + \frac{b}{2a} \right)^{2} - \left(\frac{b}{2a} \right)^{2} + \frac{c}{a} \right]$$

$$= a \left[\left(x - \frac{-b}{2a} \right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} \right]$$

$$= a \left[\left(x - \frac{-b}{2a} \right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{4ac}{4a^{2}} \right]$$

$$= a \left[\left(x - \frac{-b}{2a} \right)^{2} + \frac{-(b^{2} - 4ac)}{4a^{2}} \right]$$
On a réduit au même dénominateur
$$= a \left(x - \frac{-b}{2a} \right)^{2} + \frac{-(b^{2} - 4ac)}{4a}$$
On a distribué a

$$= a \left(x - \alpha \right)^{2} + \beta$$

Remarque n°3.

La troisième ligne semble peu naturelle... L'idée est la suivante :

 $x^2 + \frac{b}{a}x$ est forcément le début de la première identité remarquable $\left(x + \frac{b}{2a}\right)^2$. En effet $\left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2$. Le problème est qu'il y a un terme « en trop », il faut donc l'enlever : $-\left(\frac{b}{2a}\right)^2$

Remarque n°4.

Représentation graphique d'une fonction polynomiale du second degré.

D'après nos petits jeux, nous pouvons dire que :

de sommet $(\alpha; \beta)$ et admettant pour axe de symétrie $x = \alpha$

Remarque n°5. Tableau de variations d'une fonction polynomiale du second degré

Soit f une fonction polynomiale du second degré telle pour tout réel x, $f(x) = ax^2 + bx + c$ (avec a, b et c des réels et $a \ne 0$)

II.3 La forme factorisée

Dans ce paragraphe, f est une fonction polynomiale du second degré définie pour tout réel x par $f(x) = ax^2 + bx + c$. Nous savons que l'on peut écrire $f(x) = a(x-\alpha)^2 + \beta$

avec
$$\alpha = \frac{-b}{2a}$$
 et $\beta = \frac{-(b^2 - 4ac)}{4a}$.

Ajoutons une notation supplémentaire : $\Delta = b^2 - 4ac$.

On peut alors écrire :

$$f(x) = a \left[(x - \alpha)^2 - \frac{\Delta}{4a^2} \right]$$

Si $\Delta < 0$ alors la factorisation n'est pas possible dans \mathbb{R} .

Si
$$\Delta = 0$$
 $f(x) = a(x-\alpha)^2$

Si
$$\Delta > 0$$
 alors

$$f(x) = a\left(x - \alpha - \frac{\sqrt{\Delta}}{2a}\right)\left(x - \alpha + \frac{\sqrt{\Delta}}{2a}\right)$$

et comme $\alpha = \frac{-b}{2a}$

$$f(x) = a \left(x - \frac{-b}{2a} - \frac{\sqrt{\Delta}}{2a} \right) \left(x - \frac{-b}{2a} + \frac{\sqrt{\Delta}}{2a} \right)$$

ou encore

$$f(x) = a \left(x - \frac{-b + \sqrt{\Delta}}{2a} \right) \left(x - \frac{-b - \sqrt{\Delta}}{2a} \right)$$

Nous obtenons la propriété suivante :

Propriété n°2. Forme factorisée

Soit f est une fonction polynomiale du second degré telle pour tout réel x ,

$$f(x) = ax^2 + bx + c$$
 (avec a , b et c des réels et $a \ne 0$) et posons $\Delta = b^2 - 4ac$,

• Si $\Delta < 0$ alors f(x) n'admet pas de factorisation dans \mathbb{R}

• Si
$$\Delta = 0$$
 alors $f(x) = a(x-\alpha)^2$ avec $\alpha = \frac{-b}{2a}$

• Si
$$\Delta > 0$$
 alors $f(x) = a(x-x_1)(x-x_2)$ avec $x_1 = \frac{-b-\sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b+\sqrt{\Delta}}{2a}$

 α est une racine double x_1 et x_2 sont des racines On peut aussi dire zéros

Remarque n°6. Résolution des équations du second degré

La propriété suivante nous donne une méthode de résolution des équations à une inconnue du second degré.

On fait en sorte d'avoir zéro pour le membre de droite puis on réduit le membre de gauche de façon à obtenir un trinôme, on doit alors résoudre :

$$ax^2+bx+c=0$$
 (avec a, b et c des réels et $a \neq 0$)

$$ax^2+bx+c=0$$
 (avec a, b et c des réels et $a \neq 0$)

Posons
$$\Delta = b^2 - 4ac$$
 le **discriminant** de cette équation.

$$\Delta < 0$$
 $\Delta = 0$

L'équation n'admet aucune L'équation admet une solution réelle.
$$-b$$

L'équation admet une solution double :
$$\frac{-b}{2a}$$
 L'équation admet deux solutions : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$

$$x_2 = \frac{2a}{\text{et}}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

 $\Delta > 0$

Remarque n°7.

 x_1 et x_2 sont les abscisses des points d'intersection de la parabole avec l'axe des abscisses.

Exemple n°2.

Résolvons les équations suivantes dans \mathbb{R} .

$$-3x^2+5x-6=0$$

Posons
$$\Delta = 5^2 - 4 \times (-3) \times (-6) = -47$$
 le discriminant de cette équation.

Comme $\Delta < 0$, cette équation n'admet aucune solution réelle .

$$9x^2 - 42x + 49 = 0$$

Posons
$$\Delta = (-42)^2 - 4 \times 9 \times 49 = 0$$
 le discriminant de cette équation.

Comme
$$\Delta = 0$$
, cette équation admet une unique solution : $\frac{7}{3}$

$$\left(\frac{-(-42)}{2\times9} = \frac{2\times3\times7}{2\times3\times3}\right)$$

$$2x^2-5x+3=0$$

Posons
$$\Delta = (-5)^2 - 4 \times 2 \times 3 = 1$$
 le discriminant de cette équation.
Comme $\Delta > 0$, cette équation admet deux solutions :1 et 1,5

$$x_1 = \frac{-(-5)-\sqrt{1}}{2\times 2} = 1$$
 et $x_2 = \frac{-(-5)+\sqrt{1}}{2\times 2} = 1.5$

Remarque n°8.

Dans l'exemple précédent, nous n'avons pas défini a, b et c, nous n'avons donc pas utilisé ces lettres...

III Le résumé du cours

Fonction polynôme du second degré, Trinôme

On appelle fonction polynomiale du second degré toute fonction f \mathbb{R} et telle que pour tout réel x , $f(x) = ax^2 + bx + c$

avec a, b et c des réels et $a \neq 0$

L'expression ax^2+bx+c est appelée :

Forme canonique

Si f est une fonction polynomiale du second degré telle pour tout réel $f(x) = ax^2 + bx + c$

(avec a, b et c des réels et $a \neq 0$) alors on peut l'écrire sous forme canonique : $f(x) = a(x-\alpha)^2 + \beta$

avec
$$\alpha = \frac{-b}{2a}$$
 et $\beta = \frac{-(b^2 - 4ac)}{4a}$ on a aussi $\beta = f(\alpha)$

toute fonction polynomiale du second degré est représentée par une parabole

Soit f une fonction polynomiale du second degré telle pour tout réel x,

tournée vers le bas si a < 0, tournée vers le haut si *a*>0

de sommet $(\alpha; \beta)$ et admettant pour | axe de symétrie $x = \alpha$

Cliquer pour Visualiser $y=a(x-\alpha)^2+\beta$

 $f(x) = ax^2 + bx + c$

Forme factorisée

variations

 α est une racine double x_1 et x_2 sont des racines On peut aussi dire *zéros*

Soit f est une fonction polynomiale du second degré telle pour tout réel x, $f(x) = ax^2 + bx + c$ (avec a, b et c des réels et $a \neq 0$) et posons $\Delta = b^2 - 4ac$

- Si $\Delta < 0$ alors f(x) n'admet pas de factorisation dans
- Si $\Delta = 0$ alors $f(x) = a(x-\alpha)^2$ avec $\alpha = \frac{-b}{2a}$
- Si $\Delta > 0$ alors $f(x) = a(x-x_1)(x-x_2)$ avec $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

 $ax^2 + bx + c = 0$ (avec a, b et c des réels et $a \neq 0$)

Posons $\Delta = b^2 - 4ac$ le discriminant de cette équation.

 $\Delta < 0$

Aucune solution réelle.

 $\Delta = 0$

Une solution double:

 $\Delta > 0$

Deux solutions:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{\text{et}}{-b + \sqrt{\Delta}}$$

IV Le résumé des exercices et activités

Méthode n°1. Somme et produit des racines pour factoriser

Pour un exemple (voir E02 ex4 et M02 ex4) Soit f est une fonction polynomiale du second degré telle pour tout réel x, $f(x) = ax^2 + bx + c$ (avec a, b et c des réels et $a \neq 0$) et posons $\Delta = b^2 - 4ac$

Si $\Delta > 0$ alors les racines x_1 et x_2 vérifient les relations :

$$\boxed{x_1 + x_2 = -\frac{b}{a} \quad \text{et} \quad \boxed{x_1 x_2 = \frac{c}{a}}}$$

Cas particulier: Si a = 1En posant $S = x_1 + x_2$ et $P = x_1 x_2$, on peut écrire: $x^2 + bx + c = x^2 - Sx + P$

Méthode n°2.

Pour un exemple (voir E03 ex4 et M03 ex4)

Propriété n°3.

Tableaux de signes et résolution d'inéquation

Pour résoudre, de manière générale une inéquation du second degré, on s'arrange pour avoir zéro dans l'un des deux membres et on factorise l'autre à l'aide du discriminant. On dresse un tableau des signes grâce à la propriété n°4 et on s'en sert pour trouver l'ensemble des solutions.

Signe d'une fonction polynomiale du second degré

Soit f une fonction polynomiale de degré 2 telle que pour tout $x \in \mathbb{R}$, $f(x) = ax^2 + bx + c$ avec a; b et c des réels, $a \ne 0$ et possédant deux racines distinctes alors

Si a < 0							Si a > 0							
	\boldsymbol{x}	$-\infty$	x_1		x_2	$+\infty$	x	$-\infty$		x_1		x_2		$+\infty$
	f(x)	_	•	+	ø	-	f(x)		+	•	_	•	+	

On retient avec l'une des deux phrases suivantes :

Le trinôme est du signe de moins *a* entre les racines.

Ou

Le trinôme est du signe de *a* à l'extérieur des racines.

(Retenez en une sur les deux et oubliez l'autre!)