Подготовка: Дифференциальные уравнения

Полная версия с разборами тем и ссылками

11 сентября 2025 г.

Содержание

1 Линейные разностные уравнения с постоянными коэффициентами (ЛОС)

 $\mathbf{2}$

by werserk 1

1 Линейные разностные уравнения с постоянными коэффициентами (ЛОС)

1. Тип экзаменационной задачи (полное условие)

Найдите общее решение:

$$y_{t+3} - y_{t+2} + 4y_{t+1} - 4y_t = 26 \cdot 3^t + 10t + 9,$$

где $t \in \mathbb{Z}$, $(y_t)_{t \in \mathbb{Z}} \subset \mathbb{R}$ (или \mathbb{C}).

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано ЛОС порядка $n \in \mathbb{N}$:

$$a_n y_{t+n} + a_{n-1} y_{t+n-1} + \dots + a_1 y_{t+1} + a_0 y_t = f(t),$$

где $a_n \neq 0$, $a_k \in \mathbb{R}$ (или \mathbb{C}), $t \in \mathbb{Z}$. Вводим: $\chi(r) := r^n + b_{n-1}r^{n-1} + \cdots + b_1r + b_0$ — характеристический многочлен (после нормировки $a_n = 1$); $k_{\chi}(\lambda) \in \mathbb{N}$ — кратность корня λ в χ ; $P_d(t) \in \mathbb{R}[t]$ — произвольный полином степени $\leq d$; $Q_{\lambda,\theta}(r) := r^2 - 2\lambda \cos\theta \, r + \lambda^2$.

Шаг 0. Привести уравнение к канонической форме.

Разделить на a_n (если $a_n \neq 1$) и написать

$$y_{t+n} + b_{n-1}y_{t+n-1} + \dots + b_1y_{t+1} + b_0y_t = f(t).$$

Шаг 1. Построить $\chi(r)$ и зафиксировать кратности корней.

Выписать $\chi(r) = r^n + b_{n-1}r^{n-1} + \dots + b_1r + b_0$, найти все λ_i и $k_{\chi}(\lambda_i)$.

Шаг 2. Записать общее решение однородной части $y_t^{(h)}$.

Для каждого корня λ кратности $s=k_\chi(\lambda)$ включить базис

$$t^0\lambda^t$$
, $t^1\lambda^t$,..., $t^{s-1}\lambda^t$;

для пары $\lambda = \rho e^{i\theta}$, $\bar{\lambda} = \rho e^{-i\theta}$ — реальный базис $\rho^t \cos(\theta t)$, $\rho^t \sin(\theta t)$.

Шаг 3. Выбрать пробную форму $y_t^{(p)}$ по атомам f(t) и признакам резонанса через χ . Разложить f(t) на атомы и применить правила из таблицы:

Атом	Резонанс?	Вклад в пробную форму
λ^t	$k_{\chi}(\lambda) = 0$?	$A \lambda^t$
$P_d(t)$	$k_{\chi}(1) = 0?$	$\sum_{k=0}^{d} c_k t^k$
$\lambda^t P_d(t)$	$k_{\chi}(\lambda) = 0$?	$\lambda^t \sum_{k=0}^d c_k t^k$
$\lambda^t \cos(\theta t)$	$Q_{\lambda,\theta} \mid \chi$?	$\lambda^t (A\cos(\theta t) + B\sin(\theta t))$
$\lambda^t \sin(\theta t)$		
При резонансе:	любая форма	умножить на t^s

Шаг 4. Определить коэффициенты пробной формы.

Подставить $y^{(p)}$ в уравнение, сгруппировать по независимым типам (λ^t , t^k , $\lambda^t \cos / \sin$) и решить линейную систему на коэффициенты.

Шаг 5. Собрать общий ответ и учесть начальные условия (при наличии).

Записать $y_t = y_t^{(h)} + y_t^{(p)}$. При наличии y_0, \dots, y_{n-1} подставить соответствующие t и решить систему для констант при $y^{(h)}$.

by werserk 2

3. Сопроводительные материалы (таблицы и обозначения)

Атом \rightarrow пробная форма (до резонанса):

$$\lambda^t \mapsto A \lambda^t, \qquad P_d(t) \mapsto \sum_{k=0}^d c_k t^k, \qquad \lambda^t P_d(t) \mapsto \lambda^t \sum_{k=0}^d c_k t^k,$$

$$\lambda^t \cos(\theta t), \ \lambda^t \sin(\theta t) \mapsto \lambda^t (A\cos(\theta t) + B\sin(\theta t)).$$

Правило резонанса (через χ): $s=k_{\chi}(1)$ для $P_d(t)$; $s=k_{\chi}(\lambda)$ для $\lambda^t P_d(t)$; если $Q_{\lambda,\theta}\mid \chi$, умножить триг-форму на t^s .

4. Применение алгоритма к объявленной задаче

$$y_{t+3} - y_{t+2} + 4y_{t+1} - 4y_t = 26 \cdot 3^t + 10t + 9.$$

Шаг 0. Канонический вид зафиксирован.

Уравнение уже записано как $y_{t+3} + (-1)y_{t+2} + 4y_{t+1} + (-4)y_t = f(t)$, нормировка не требуется.

Шаг 1. Построить $\chi(r)$ и кратности корней.

$$\chi(r) = r^3 - r^2 + 4r - 4 = (r-1)(r^2+4);$$
 корни 1, $\pm 2i$, все кратности равны 1: $k_{\chi}(1) = 1$, $k_{\chi}(\pm 2i) = 1$.

Шаг 2. Записать $y_t^{(h)}$ по найденному спектру.

$$y_t^{(h)} = C_1 \cdot 1^t + 2^t \left(C_2 \cos \frac{\pi t}{2} + C_3 \sin \frac{\pi t}{2} \right).$$

Шаг 3. Выбрать $y_t^{(p)}$ по атомам RHS и признакам резонанса на χ . $f(t)=26\cdot 3^t+P_1(t)$, где $P_1(t)=10t+9$.

- Для 3^t : $k_{\gamma}(3) = 0$ (3 не корень) $\Rightarrow A \cdot 3^t$
- Для $P_1(t)$: $k_\chi(1)=1$ (1- корень кратности $1)\Rightarrow t(\tilde{a}t+\tilde{b})=\tilde{a}t^2+\tilde{b}t$

Итого

$$y_t^{(p)} = A \cdot 3^t + a t^2 + b t.$$

Шаг 4. Найти коэффициенты пробной формы, учитывая разложение по типам. Подстановка даёт

$$L[y^{(p)}] = 26A \cdot 3^t + 10at + (9a + 5b) \stackrel{!}{=} 26 \cdot 3^t + 10t + 9 \Rightarrow A = 1, \ a = 1, \ b = 0.$$

Следовательно, $y_t^{(p)} = 3^t + t^2$.

Шаг 5. Собрать общий ответ и отметить, как добавляются начальные условия.

$$y_t = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{2} + C_3 \sin \frac{\pi t}{2} \right) + 3^t + t^2$$

При наличии y_0, y_1, y_2 — подставить t = 0, 1, 2 и решить систему для C_1, C_2, C_3 .