Stability of Finite Difference Methods

Sheila Tonui

August 2024

1 Exercise

To compare the errors between the analytical Black-Scholes price and the price obtained through the finite difference methodS for a European put option, we proceed with the following steps

Define Parameters:

• Strike price: E = 10

• Risk-free rate: r = 0.05

• Time to maturity: T = 0.5

• Volatility: $\sigma = 0.2$

• Underlying asset price range: $S = \{5, 6, \dots, 15\}$

• Number of space steps: N = 100

• Number of time steps: M = 30

Calculate the Analytical Black-Scholes Price:

• Use the Black-Scholes formula for a European put option to calculate the theoretical prices for the given range of S. European Put Option:

$$P(S,t) = K \cdot e^{-r(T-t)} \cdot \Phi(-d_2) - S \cdot \Phi(-d_1)$$

Where:

$$d_1 = \frac{\ln\left(\frac{S}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)(T - t)}{\sigma\sqrt{T - t}}$$

$$d_2 = d_1 - \sigma \sqrt{T - t}$$

Implement the Explicit, Implicit and Crank- Nicolson Finite Difference Methods:

• Explicit

Set up the grid for space and time.

Use the boundary conditions for the option at S=0 and $S=\infty$.

Iterate backwards in time to compute the option prices

• Implicit

Set up the grid for space and time.

Use boundary conditions for the option at S=0 and $S=\infty$.

Construct the tridiagonal matrix corresponding to the implicit method.

Use matrix inversion or LU decomposition to solve the system of linear equations backward in time.

• Crank-Nicolson

Set up the grid for space and time.

Use boundary conditions for the option at S=0 and $S=\infty$.

Construct the tridiagonal matrix corresponding to the Crank-Nicolson method.

Solve the system of linear equations backward in time using LU decomposition.

Compute Errors:

• For each underlying price in the range $S = \{5, 6, ..., 15\}$, calculate the absolute error between the Black-Scholes price and the price obtained through the Explicit, Implicit and Crack Nicolson methods.

When increasing the number of time steps from M=30 to M=500, the plot typically shows reduced errors for all three finite difference methods. This improvement is due to the finer discretization of the time domain, which results in a more accurate approximation of the partial differential equation governing the option's price. Key observations include:

- With more time steps, the errors decrease for all methods, especially near the boundaries of the underlying asset price range.
- Even with more time steps, the largest errors occur around the strike price S=E=10. This is because the option's value and its derivatives (such as delta) are more sensitive in this region, making it harder to approximate accurately.
- The Crank-Nicolson method, known for its stability and accuracy, shows the least error among the three methods, especially with increased time steps.

Increasing the number of space steps N to 200 while keeping the number of time steps M at 30, and then increasing the volatility from $\sigma = 0.2$ to $\sigma = 0.4$, would generally lead to the following observations:

- Higher volatility increases the magnitude of the option's payoff, making it more sensitive to changes in the underlying asset's price.
- This sensitivity usually leads to larger errors in the finite difference methods, particularly in the Explicit method, which is more prone to numerical instability under high volatility.
- Further, increasing N improves the spatial resolution, leading to a more accurate representation of the underlying asset's price. This generally reduces errors across the board.
- For $\sigma = 0.2$: The errors are expected to be lower, especially with the increased N. The Explicit method may still show larger errors near the strike price.
- For $\sigma = 0.4$: The errors will generally increase due to the higher volatility.

When you vary the number of space steps N from 300 to 700 while keeping the number of time steps M=30, the stability and accuracy of the errors in the finite difference schemes are affected as follows:

- As N increases, errors decrease, but the scheme's stability needs to be monitored. If the grid becomes too fine (high N) while keeping M fixed, you might approach the stability limits of the explicit method. The explicit scheme becomes less stable, especially if the time step Δt is too large relative to the spatial step ΔS .
- Implicit and Crank-Nicolson Methods Errors will consistently decrease as
 N increases, with minimal risk of instability. The Crank-Nicolson method,
 in particular, shows excellent stability and accuracy as N increases.