

Heart Failure Prediction Using Machine Learning

Project Overview

Title: Heart Failure Prediction Using Machine Learning

Dataset: heart_failure_clinical_records_dataset.csv

Goal

Predict the risk of death in heart failure patients

(DEATH_EVENT: 0 or 1)

Data Preprocessing

Loaded Dataset

1

data = pd.read_csv('heart_failure_clinical_records_dataset.csv')

- Target Variable: DEATH_EVENT
- Features: All other columns

Split & Resampling

2

X = data.drop('DEATH_EVENT', axis=1)

y = data['DEATH_EVENT']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)

Handled Class Imbalance

3

sm = SMOTE(random_state=42)

X_train_resampled, y_train_resampled = sm.fit_resample(X_train, y_train)

Scaling

4

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train_resampled)

X_test_scaled = scaler.transform(X_test)

Random Forest Classifier

Model & Tuning

- **Model:** RandomForestClassifier(random_state=42)
- **Hyperparameter Tuning:** GridSearchCV

Parameters Tested

- n_estimators: 30, 50, 100
- max_depth: 2, 4
- min_samples_split: 3, 4
- min_samples_leaf: 2, 3
- bootstrap: True
- class_weight: 'balanced'

Preprocessing Applied

- Data resampled using SMOTE
- Scaled using StandardScaler

Outcome

- Best Accuracy: (insert from training results)
- Helped handle class imbalance & improved generalization

Support Vector Machine (SVM)

Model & Tuning

- Model: SVC()
- Hyperparameter Tuning: GridSearchCV

Parameters Tested

- C: [0.1, 1, 10, 100]
- kernel: ['rbf', 'linear']
- gamma: ['scale', 'auto', 0.01, 0.1, 1]
- class_weight: 'balanced'

Preprocessing Applied

- Used **SMOTE** to balance training data
- Scaled using StandardScaler

Outcome

- Best Parameters: (insert from grid.best_params_)
- Best Balanced Accuracy: (insert from grid.best_score_)

XGBoost Classifier

Model & Tuning

 Model: XGBClassifier(random_state=42, use_label_encoder=False, eval_metric='logloss')

• Hyperparameter Tuning: GridSearchCV

Parameters Tested

• n_estimators: 50, 100, 150

max_depth: 2, 3, 4

• learning_rate: 0.01, 0.1, 0.2

• subsample: 0.8, 1

• colsample_bytree: 0.8, 1

Preprocessing Applied

- Resampled with **SMOTE**
- Scaled with StandardScaler

Outcome

- Best Parameters: (insert best parameters)
- Test Accuracy: (insert accuracy_score)
- Classification Report: (Precision / Recall / F1-Score from classification_report)

Model Evaluation

y_pred_best = grid.best_estimator_.predict(X_test_scaled)

Final Accuracy:

print("Accuracy:", accuracy_score(y_test, y_pred_best))

Classification Report:

print(classification_report(y_test, y_pred_best))

- Precision, Recall, F1-score for each class
- Balanced evaluation due to class imbalance

Challenges & Solutions

Challenge: Imbalanced dataset (DEATH EVENT 0/1)

Solution: Used **SMOTE** to balance

classes in training data

Challenge: Feature scale inconsistency

Solution: Applied **StandardScaler**

Challenge: Overfitting risk in Random Forest

Solution: Used GridSearchCV with

limited depth + early stopping

Challenge: Multiple models and parameter tuning

Solution: Applied cross-validation with GridSearchCV

Challenge: Choosing best model

Solution: Compared accuracy and classification report

results

Future Work

Advanced Models

Try more advanced models like LightGBM, CatBoost

Dimensionality Reduction

Perform **feature selection** or **PCA** to reduce dimensionality

Model Interpretability

Use SHAP or LIME for model interpretability

Clinical Collaboration

Collaborate with clinicians to validate model in practice

Web Application Deployment

Deploy as a web app using **Gradio / Streamlit**

Project Hosting

Host model and dataset on GitHub + Hugging Face Spaces

Project Hosting & Live Presentation

Hosted on:

- GitHub Repository (GitHub abdo7820/Project NTI)
- Hugging Face Space (link)

Presentation Covers:

- Preprocessing logic & transformations
- Model building & comparison
- Performance metrics
- Team obstacles & how they were solved
- Roadmap for improvement