STAT1006 Week 7 Cheat Sheet

Lisa Luff

10/3/2020

Contents

Predicting the Mean Value of the Population Regression Line	2
Confidence Intervals for the Population Regression Line	2
Fitted (Predicted) Values Prediction Interval for the Least Squares Line	3
Intervals in R The ANOVA Table	3
Analysis of Variance (ANOVA) for Regression ANOVA Hypotheses for Regression	4
ANOVA Analysis for Regression Models Model Means	6
Chi-Squared, F-Distribution and T-Distribution	7
Γ-Test or F-Test (ANOVA)	7
Hypothesis Testing for Regression in R Examples of T-Test and F-Test Hypothesis Testing	8
Coefficient of Determination	8
Read TXT Files in R	9

Predicting the Mean Value of the Population Regression Line

- $\mu_y = E(Y|X)$ is the value of the regression line at $X = X_0$
- For any given value of X_0 , we know
 - $E(Y|X) = \beta_0 + \beta_1 X$
 - $Var(Y|X) = \sigma^2$
- To predict the average value of Y for a given value of X_0
 - $E(Y_i|X_0) \sim \hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_0$, where
 - * $E(Y_i|X_0)$ is the point estimate
 - * \hat{Y} is the prediction of y

Confidence Intervals for the Population Regression Line

- We can calculate a confidence interval for the population mean μ_y of all responses y when x take the value x^* (within the range of tested data)
 - ONE x for ALL y
 - $-x^*$ is a specific value of x
- This is given by $\hat{\mu}_y \pm t^* SE_{\hat{\mu}}$, where
 - $-\hat{\mu}_y$ is the estimate of the parameter
 - $-t^*$ is the critical value of the t_{n-2} distribution for the confidence interval
 - $-SE_{\hat{\mu}}$ if the standard error
 - $-t^*SE_{\hat{\mu}}$ together is the margin of error
- This can be found across all values of x and shown as a continuous curve on either side of \hat{y}
- To place a confidence interval around the prediction of the mean E(Y|X) we need to estimate
 - $Var(E(Y|X_0)) = Var(\hat{Y}) = Var(\hat{\beta}_0 + \hat{\beta}_1 X_0)$
 - And because the random variable $\hat{\beta}_1 = \overline{Y} \hat{\beta}_1 \overline{X}$
 - * Then $\hat{Y} = \overline{Y} + \hat{\beta}_1(X_0 \overline{X})$
 - * And so the variance will be the variance of those two parts

• So
$$SE(\hat{Y}|X_0) = \sqrt{\sigma^2 \left(\frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum (X_i - \overline{X})^2}\right)}$$

- Broken into the two parts
 - * $Var(\overline{Y}) = \frac{\sigma^2}{n}$ Variance of Observations * $Var(\hat{\beta}_1(X_0 \overline{X}))$ Variance of Estimated
- Together
 - $* \frac{\sigma^2 (X_0 \overline{X})^2}{\sum (X_i \overline{X})^2}$
- To create a confidence interval we must assume Normality (or some other distribution) for the residuals,
 - $-(\hat{\beta}_0 + \hat{\beta}_1 X_0) \pm t_{n-2,\frac{1-\alpha}{2}} \times SE(\hat{Y}|X_0)$
 - * Preferrable to use σ^2 if that is know instead of SE
- This is a confidence interval for the regression line at any point X_0

Fitted (Predicted) Values

- ALL x for ONE y
- We can use the equation of the least squares line to predict y for each value of x (within the range of x)
 - $-\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
 - * Just substitute x to find \hat{y}

Prediction Interval for the Least Squares Line

- We use a prediction interval to estimate the *individual* response of y for a given x
- For many samples for a given x there will be many values for y following $N(0,\sigma)$ around the mean response μ_y
- The prediction interval of μ_y is given by
 - $-\hat{y} \pm t^* SE_{\hat{y}}$, where
 - * t^* is the critical value of the t_{n-2} distribution for the confidence level
 - This is shown as a continuous curve on either side of \hat{y}
- These prediction intervals are wider than the corresponding confidence intervals for μ_{ν}
- If you want a confidence interval for all future values of y, then we can obtain that with

$$- SE(Y|X_0) = \sqrt{\sigma^2 \left(1 + \frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum (X_i - \overline{X})^2}\right)}$$

- Again this has two parts
 - * $Var(Y|X=X_0) = \sigma^2$ Variance of Observations
 - * $Var(\hat{\beta}_0 + \hat{\beta}_1 X_0) = Var(\hat{Y}|X = X_0)$ Variance of Estimated
- It is the extra part that means this interval is extra wide
- To make a confidence interval we must assume normality (or some other distribution) for the residuals
 - $-(\hat{\beta}_0 + |hat\beta_1 X_0) \pm t_{n-2,\frac{1-\alpha}{2}} \times SE(Y|X_0)$

Intervals in R

- Confidence Intervals:
- Use the predict function
 - variableconfmean = predict(variablelm, interval = "confidence", level = percent as decimal)
 - To predict as specific values add the argument
 - * newdata = data.frame(explanatory = c(values))
- Add the lines to a plot with the matlines function
 - matlines(sort(explanatory), variableconfmean[order(explanatory), 2:3], lwd = line width, col = "colour", lty = 1)
- Prediction Intervals:
- Use the predict function again
 - variablepi = predict(variablelm, interval = "prediction", level = percent as decimal)
 - To predict as specific values add the argument
 - * newdata = data.frame(explanatory = c(values)))
- Again use the matlines function to the plot the lines
 - matlines(sort(Explanatory), variablePI[order(explanatory), 2:3], lwd = line width, col = "colour", lty = 1)

The ANOVA Table

Source	Sum of Squares (SS)	DF	Mean Squares (MS)	F	P-value
Regression	$SSReg = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	1	$MSR = \frac{SSReg}{DFR}$	$\frac{MSR}{DFR}$	Tail area above F
Error	$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	n-2	$MSE = \frac{SSE}{DFE}$ $s^2 = MSE$		
Total	$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$ SST = SSReg + SSE	$ \begin{array}{c} n-1 \\ DFT = DFR + DFE \end{array} $			

^{*} Where s^2 is an unbiased estimate of the regression variance σ^2

Analysis of Variance (ANOVA) for Regression

- The regression model resembles an ANOVA, which also assumes equal variance, where
 - SST = SSR + SSE, and
 - DFT = DFR + DFE as seen above
 - * These are related to the t distribution
- ANOVA is very important for regression
 - It can compare different but similar models and choose the best model for a set of data

ANOVA Hypotheses for Regression

- For a simple linear relationship, ANOVA tests the hypotheses:
 - $-H_0: \beta_1 = 0$ There isn't a relationship, versus
 - $-H_A: \beta_1 \neq 0$ There is a relationship
 - We can look at these as two competing models
 - * $(1)Y_i = \beta_0 + \epsilon_1$ There isn't any relationship, versus
 - * $(2)Y_i = \beta_0 + \beta_1 X_i + \epsilon_1$ There is a relationship

ANOVA Analysis for Regression Models

- We can use these models to evaluate SST, SSE and therefore SSR for each model:
- Model 1
 - SSE -
 - * The least squares line for the model minimises to $SSE = \sum (Y_i \beta_0)^2 = \hat{\beta}_0 = \overline{Y}$
 - - * $SST = \sum (Y_i \hat{\beta}_0)^2 = \sum (Y_i \overline{Y})^2 = (n-1)s_y^2$, where s_y^2 is the sample variance of y
 - - * There is no SSR, because the model is a mean line (not regression line)
- Model 2
 - SSE -

 - * $SSE = \sum (Y_i \hat{\beta}_0 \hat{\beta}_1 X_i)^2 = \sum \hat{\epsilon}_i^2 = (n-2)\hat{\sigma}^2$, where * $\sum \hat{\epsilon}_i^2$ is the sum of the squares of the residuals (Not SSR, SSR is for Regression)
 - - * $SST = \sum (Y_i \overline{Y})^2 = (n-1)s_y^2$ as shown for Model 1
 - SSR (SSReg) -
 - * $SSR = SST SSE = \sum (Y_i \overline{Y})^2 \sum \hat{\epsilon}_i^2 = (n-1)s_y^2 (n-2)\hat{\sigma}^2$
 - * OR $SSR(SSReg) = SST SSE = \sum (Y_i \overline{Y})^2 \sum (Y_i \hat{Y})_i^2 = \sum (\hat{Y}_i \overline{Y})^2$
 - * This is called the Sum of the Squares DUE to Regression (SSReg), because it measures how much residual variation has decreased by fitting a linear model, rather than a constant mean to the data
- If Y and X are linearly related, then SSReg will be large
- If Y and X are not linearly related, then SSReg will be small
- Degrees of freedom = $SST = SSReg + SSE \rightarrow (n-1) = 1 + (n-2)$

Model Means

- If we divide a sum of squares by it's degrees of freedom, we get a Mean Square (MS)

 - Mean Square of the Error (MSE)

 * $MSE = \frac{SSE}{(n-2)} = \hat{\sigma}^2$ Mean Square Total (MST)

 * $MST = \frac{SST}{n-1}$ Mean Square of the Regression (MSR)
 - * $MSR = \frac{SSReg}{}$
- For the linear model (2) to fit better than the constant mean model (1), we want MSE to be much less than MST
 - Otherwise why bother?

F Distribution for Models

- The F statistic compares the MSR to the MSE

 - The F statistic compares the Mish to the F $-F = \frac{(SST SSE)}{MSE} = \frac{\frac{SSReg}{1}}{\hat{\sigma}^2}$ If SSReg is large, then F will be large
 - If SSReg is small, then F will be small
- \bullet F is a statistic and subject to random variation based on the parameters it estimates:
 - $-\hat{\beta}_0, \hat{\beta}_1, \hat{\sigma}^2, s^2, \overline{Y}$
 - As such the F distribution has two different degrees of freedom, one for the numerator and one for the denomenator
 - * $F(\text{distribution}) = \frac{\frac{SSReg}{1}}{\frac{SSE}{(n-2)}}$ * Or, a distribution of $F_{1,n-2}$
- We can use this distribution test our hypotheses
 - Comparing Mean Square Regression (MSR) to Mean Square Error (MSE)
 - Where $F = \frac{MSR}{MSE}$
 - When H_0 is true, F follows the $F_{1,n-2}$ distribution And the p-value is $P(F \ge f)$
- The ANOVA test and the two sided t-test for $H_0: \beta_1 = 0$ give the exact or very close to exact same
 - Software output might provide t, F, or both alone with the p-value
 - So don't worry which test is used

Assumptions for ANOVA

- The statistic will have an F-distribution only if the residuals are Normally distributed
 - So when using the test, we need to examine the residuals
 - If they are highly non-Normal, the test is not valid
 - * Can use a diagnostic to check this
 - Usually it is enough if the histogram is roughly mound shaped
 - * This means the histogram is roughly symmetric with the highest density in the middle, and lowest density in the tails

Chi-Squared, F-Distribution and T-Distribution

- This will NOT be tested, just FYI
- Both SSE and SSR follow χ^2 distributions
 - SSE χ^2_{n-2} distribution SSR χ^2_1 distribution
- A χ^2 variable describes the distribution of a sum of squares of normal data minue its mean - Eg, $SSE = \sum (Y_i - \hat{Y}_i)^2 \sim \chi_{n-2}^2$
- If Y has a Normal distribution with estimated mean \hat{Y} and variance σ^2 , then $-\frac{SST}{\sigma^2} = \frac{\sum (Y_i \hat{Y}_i)^2}{\sigma^2} \sim \chi_{df}^2$ $-\text{So, } SSE = \sum (Y_i \hat{Y}_i)^2 \sim \chi_{n-2}^2$ $-\text{And } E(\chi_{df}^2) = df$

$$-\frac{SST}{\sigma^2} = \frac{\sum (Y_i - \hat{Y}_i)^2}{\sigma^2} \sim \chi_{df}^2$$

- So,
$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 \sim \chi_{n-2}^2$$

- The F distribution is a ratio of χ^2 with it's degree of freedom
- \bullet So if an F distribution is formed by two different chi-squared distributions

 - Say, $U \sim \chi_u^2$ and, $V \sim \chi_v^2$ Then $F = \frac{U}{\frac{U}{V}} \sim F_{u,v}$
 - * And, usually $E(F) \sim 1$

- Eg,
$$F = \frac{\frac{SSR}{1}}{\frac{SSE}{(n-2)}} = \frac{\frac{\chi_1^2}{1}}{\frac{\chi_{n-2}^2}{(n-2)}} \sim F_{1,n-2}$$

- Both the χ^2 and F distributions tend towards normal as their degrees of freedom increase
- And the F distribution is the t distribution squared

$$-F = T^2$$

T-Test or F-Test (ANOVA)

• Although we previously used a t-test

$$-T = \frac{\hat{\beta}_1 - \beta_0^0}{se(\hat{\beta}_1)} \sim t_{n-1}$$

• We can also use the
$$F$$
-test as before
$$-T = \frac{\hat{\beta}_1 - \beta_0^0}{se(\hat{\beta}_1)} \sim t_{n-2}$$

$$-\text{ To test } H_0: \beta_1 = \beta_0^0 \text{ against } H_A: \beta_1 \neq \beta_0^0$$
• We can also use the F -test as before
$$-F = \frac{\sum_{SSReg}}{\frac{1}{s_n-2}} \sim F_{1,n-2}$$
When H is thus

$$-F = \frac{\frac{1}{1}}{\frac{SSE}{n-2}} \sim F_{1,n-1}$$

- When H_0^{n-2} is true
- This is due to the relationship $F = T^2$

Hypothesis Testing for Regression in R

- T-test
- We use the lm function to create the linear model, and use the summary function to get details as before
 - If you want a one sided p-value use pt function with lower.tail = FALSE
 - Or if β_0^0 for H_0 isn't 0, find T using the equation and use it in the pt function
- F-test
- Use ANOVA as we have previously
 - Where the output will have:
 - Coefficients: Explanatory and Residuals
 - \ast For each: Df, Sum Sq (SSR and MSR), Mean Sq (SSE and MSE), F Value and PR(>F) (P-value)
 - If you want a one sided p-value use pf function with lower.tail = FALSE
- Both will give the exact same, or very close to the exact same P-value

Examples of T-Test and F-Test Hypothesis Testing

Step	T-Test	F-Test (ANOVA)
1 Hypotheses	$H_0: \beta_1 = 0 \text{ vs } H_A: \beta_1 \neq 0$	$H_0: \beta_1 = 0 \text{ vs } H_A: \beta_1 \neq 0$
2 Test statistic	T = 9.478	F = 84.824
3 Sampling distribution	$T \sim t_{df=(n-2)} = t_8$	$F \sim F_{df=(1,n-2)} = F_{df=(1,8)}$
4 P-value	$P(t_8 > 9.478) = 2*pt(9.478, 8)$ = 1.27e - 05	$P(F_{1,8} > 89.824) = 2*pf(89.824, 1, 8)$ = 1.265e - 05
5 Decision	As the p-value is very small, we reject H_0	As the p-value is very small, we reject H_0
6 Conclusion	We conclude there is a positive relationship	We conclude there is a positive relationship

Coefficient of Determination

- Describes the fraction of the variation in the values of y that is explained by the least squares regression line
- It is a number between 0 and 1, which represents the percentage between 0 and 100%
- The higher the value of the coefficient, the better the least squares regression line explains the variation in the data
- \mathbb{R}^2 is the correlation coefficient (r) squared
- In R:
 - This is in the summary of lm as Multiple R-Squared

Read TXT Files in R

- Need to manually call them in
 - variable = read.table("name.txt", header = T)