Лабораторна робота №3 Моделювання дискретних випадкових величин

Мета роботи — ознайомитися з алгоритмом побудови ряду розподілу дискретних випадкових величин та його графічним зображенням; побудувати імітаційну модель отримання системи дискретних випадкових величин (СДВВ).

Короткі теоретичні відомості

Випадкова величина називається $\partial u c \kappa p e m h o \omega$, якщо її часткові (можливі) значення можна занумерувати скінченною кількістю натуральних чисел від 1 до k або усіма натуральними числами.

Дискретна випадкова величина X може бути задана: 1) рядом розподілу, 2) функцією розподілу.

Рядом розподілу називається сукупність всіх можливих значень x_i та відповідні їм ймовірності $p_i = P(X = x_i)$. Ряд розподілу може бути задано у вигляді таблиці (табл. 3.1) або формули.

Таблиця 3.1

X	x_{I}	x_2		\mathcal{X}_n
$P(X=x_i).$	P_I	P_2	•••	P_n

Ймовірності P_i задовольняють умові $\sum_{i=1}^n P_i = 1$, де число можливих значень n може бути скінченним або нескінченним.

Графічне зображення ряду розподілу називається *многокутником розподілу*. Для його побудови можливі значення випадкової величини x_i відкладаються по осі абсцис, а ймовірності p_i – по осі ординат; точки A_i з координатами $(x_i; p_i)$ з'єднуються лініями (рис.3.1).

Рис. 3.1. Многокутник розподілу

Функцією розподілу дискретної випадкової величини X називається функція F(x), яка дорівнює ймовірності P(X < x) того, що випадкова величина буде менша від довільно вибраного значення x. Функція F(x) обчислюється за формулою:

$$F(x) = P(X < x) = \sum_{x_i < x} P(X = x_i), \tag{3.1}$$

де нерівність $x_i < x$ під знаком суми вказує, що сумування розповсюджується на всі ті значення x_i , які менші за x.

Геометрично функція розподілу виражає ймовірність попадання випадкової величини в півінтервал, що лежить на числовій осі лівіше точки x (рис.3.2).

Побудуємо графік функції розподілу для дискретної випадкової величини, що задана рядом розподілу у вигляді таблиці (табл.3.1).

1. Нехай $x \le x_1$. Оскільки випадкова величина X не приймає можливих значень, які знаходяться лівіше точки x, то подія X в цьому випадку неможлива та її ймовірність дорівнює нулю.

$$F(x) = P(X < x) = 0$$

2. Нехай тепер $x_1 < x \le x_2$. При цьому випадкова величина X приймає єдине можливе значення x_I , що знаходиться лівіше x, з ймовірністю P_I . Тому:

$$F(x) = P(X < x_2) = P(X = x_1) = P_1$$

3. Нехай далі $x_2 < x \le x_3$. При цьому випадкова величина може прийняти або значення x_1 , або x_2 , що знаходиться лівіше x. Використовуючи теорему додавання ймовірностей несумісних подій, отримаємо:

$$F(x) = P(X = x_1) + P(X = x_2) = P_1 + P_2$$

4. Для випадку $x_{n-1} < x \le x_n$ аналогічно отримаємо:

$$F(x) = P(X = x_1) + P(X = x_2) + ... + P(X = x_{n-1}) = P_1 + P_2 + ... + P_{n-1}$$

5. Нехай $x_n > x$. Тоді випадкова величина X приймає одне з всіх можливих значень $x_1, x_2,$ x_n . Ця подія достовірна, а, отже, її ймовірність дорівнює одиниці. Тому F(x)=1.

Зобразимо отримані результати графічно (рис.3.3).

Рис. 3.3. Функція розподілу F(x) дискретної випадкової величини X

Отже, функція розподілу дискретної випадкової величини є розривна ступінчаста ліня, постійна між можливими значеннями випадкової величини. З побудови функції розподілу випливає, що розмір стрибка функції дорівнює ймовірності відповідного значення дискретної випадкової величини.

Зразок розв'язання задачі

Задача 1. Відбувається випробування надійності системи, яка складається з двох незалежно працюючих приладів. Ймовірність виходу з ладу першого приладу дорівнює 0,1, а другого -0,2. Побудувати ряд розподілу випадкової величини X – числа приладів, що відмовили.

Розв'язування. Випадкова величина X приймає можливі значення: 0, 1, 2. Позначимо через g_1 та g_2 ймовірності відмови першого та другого приладів, а через q_1 та q_2 — відповідно ймовірності їх нормальної роботи. За умовою задачі: $g_1 = 0,1$ та $g_2 = 0,2$, а, отже, $q_1 = 0,9$ та $q_2 = 0,8$. За теоремами про множення та додавання ймовірності того, що випадкова величина X прийме значення 0; 1 та 2 дорівнюють:

$$p_1 = P(X=0) = q_1 \cdot q_2 = 0.9 \cdot 0.8 = 0.72$$

 $p_2 = P(X=1) = q_1 \cdot g_2 + g_1 \cdot q_2 = 0.9 \cdot 0.2 + 0.1 \cdot 0.8 = 0.26$
 $p_3 = P(X=2) = g_1 \cdot g_2 = 0.1 \cdot 0.2 = 0.02$

Ряд розподілу випадкової величини X запишемо у вигляді (табл. 3.2):

Таблиця 3.2.

X	0	1	2
P	0,72	0,26	0,02

Для контролю обчислень перевіримо умову: $\sum_{i=1}^{n} P_i = 0.72 + 0.26 + 0.02 = 1.$

Побудуємо многокутник розподілу для ряду розподілу (рис. 3.4):

Рис. 3.4. Многокутник розподілу випадкової величини X

Побудуємо графік функції розподілу для дискретної випадкової величини, що задана рядом розподілу у вигляді таблиці (табл. 3.2).

- 1. Нехай $x \le 0$. Оскільки випадкова величина X не приймає можливих значень, які знаходяться лівіше точки x=0, то подія X в цьому випадку неможлива та її ймовірність дорівнює нулю та F(x)=0.
- 2. Якщо $0 < x \le 1$, тоді випадкова величина X приймає єдине можливе значення $x_i = 1$, що знаходиться лівіше x, з ймовірністю $P_i = 0.72$. Тому F(x) = 0.72.
- 3. Якщо $1 < x \le 2$, тоді випадкова величина може прийняти або значення x_1 , або x_2 , що знаходиться лівіше x. За теоремою про додавання ймовірностей несумісних подій, маємо: F(x) = 0.72 + 0.26 = 0.98.

4. Якщо x > 2, тоді випадкова величина X приймає одне з всіх можливих значень x_1 , x_2 , x_3 . Ця подія достовірна, а, отже, її ймовірність дорівнює одиниці. Тому F(x) = 0.72 + 0.26 + 0.02 = 1. Зобразимо отримані результати графічно (рис.3.5).

Рис. 3.3. Функція розподілу F(x) дискретної випадкової величини X

Завдання на роботу

- 1. Побудувати імітаційну модель отримання системи дискретних випадкових величин (СДВВ). Відповідно до варіанту завдання (згідно з номером списку студентів групи) таблиці 3.3 побудувати ряд розподілу дискретної випадкової величини X.
- 2. На основі СДВВ, в створеній програмі, побудувати многокутник розподілу та графік функції розподілу F(x).

№ варіанта	Задача
1.	АТС невеликої фірми обслуговує n абонентів. Ймовірність того, що протягом 5 хвилин на АТС надійде виклик з телефонної точки дорівнює 0,3. Побудувати ряд розподілу випадкової величини X — кількості викликів, що надійдуть до АТС протягом 5 хвилин. Скористатись розподілом Пуассона.
2.	На шляху руху автомобіля n світлофорів. Кожен із них з ймовірністю 0,5 або дозволяє, або не дозволяє автомобілю їхати далі. Побудувати ряд розподілу випадкового числа світлофорів, пройдених автомобілем до першої зупинки.
3.	Відбуваються n незалежних пострілів в однакових умовах по цілі. Ймовірність влучення при першому пострілі дорівнює 0,23. Побудувати ряд розподілу для числа влучень в ціль, використавши закон біноміального розподілу.
4.	В грошовій лотереї випущено n білетів. Розігрується 1 виграш в 5 000 грн. та 10 виграшів по 100 грн. Побудувати ряд розподілу випадкового виграшу X для власника одного лотерейного білета.
5.	Розглядається робота n незалежно працюючих технічних пристроїв (ТП). Ймовірність нормальної роботи першого ТП дорівнює 0,8, другого — 0,6, третього — 0,5 і т.д Побудувати ряд розподілу для числа тих, що нормально працюють ТП.
6.	Два баскетболісти почергово закидають м'яч у корзину до тих пір, поки один з них не попаде. Побудувати ряд розподілу випадкового числа кидків, що виконується кожним із баскетболістів, якщо ймовірність попадання для першого дорівнює 0,4, а для другого 0,6. Скористатись геометричним розподілом.
7.	Вироби випробовують в перевантаженому режимі. Ймовірності для кожного виробу пройти випробування дорівнюють $1/5$ та незалежні. Випробування закінчуються після першого ж виробу, який не витримав випробувань. Побудувати ряд розподілу випадкового числа X — числа випробувань. Визначити на якому виробі закінчуються випробування. Скористатись геометричним розподілом.
8.	В партії з n_1 деталей є n_2 стандартних деталей. Навмання із всієї партії вибирається 2 деталі. Побудувати ряд розподілу числа X — числа стандартних деталей серед відібраних. Скористатись гіпергеометричним розподілом.
9.	Прилад складається з n незалежно працюючих елементів. Ймовірність виходу з ладу кожного елемента в першому досліді дорівнює $0,1$. Побудувати ряд розподілу числа X — числа елементів, які можуть вийти з ладу в першому досліді. Скористатись біноміальним розподілом.
10.	Випробування складається із n незалежних підкидань монети, при кожному із яких герб випадає із ймовірністю $p=0,3$. Для випадкового числа появ герба побудувати ряд розподілу.
11.	Ймовірність влучення в мішень дорівнює $0,3$. Стрілок має n патронів і стріляє по мішені до першого попадання або до повної витрати патронів. Побудувати ряд розподілу ймовірностей випадкового числа X витрачених патронів, скориставшись формулою геометричного розподілу дискретної випадкової величини.
12.	Граючи в більярд, два гравця почергово забивають останній м'яч у лузу до тих пір, поки один з них не попаде. Побудувати ряд розподілу випадкового числа штовхань, що виконується кожним із гравців, якщо ймовірність попадання для першого дорівнює 0,3, а для другого 0,7. Скористатись геометричним розподілом.
13.	Пристрій складається з n елементів, які працюють незалежно один від одного. Ймовірність виходу з ладу будь-якого з елементів протягом часу t дорівнює 0,2.

	Побудувати ряд розподілу числа X — кількості елементів, що можуть вийти з ладу протягом часу t . Скористатись розподілом Пуассона.
14.	В нормальному режимі незалежно працюють n теплових агрегатів. Ймовірність нормальної роботи n_1 агрегату $p(n_1)=0.8$, $p(n_2)=0.9$, $p(n_3)=0.7$. Побудувати ряд розподілу для числа нормально працюючих агрегатів.
15.	При випробуванні виробів ймовірності для кожного виробу пройти випробування дорівнюють $0,4$. Оскільки випробування здійснюються незалежно, то вони закінчуються одразу після першого виробу, який не витримав випробувань. Побудувати ряд розподілу випадкового числа X - числа випробувань. Визначити на якому виробі закінчуються випробування. Скористатись геометричним розподілом.
16.	По цілі відбуваються n пострілів, причому ймовірність влучення при кожному пострілі дорівнює 0,8. Розглядається випадкова величина X — число влучень в ціль. Побудувати ряд розподілу для числа X , використавши закон біноміального розподілу.
17.	Розігрується один виграш в 10000 грн. та 10 виграшів по 1000 грн. Всього в грошовій лотереї випущено n білетів. Побудувати ряд розподілу випадкового виграшу X для власника одного лотерейного білета.
18.	Система складається з n незалежно працюючих елементів. Ймовірність виходу з ладу будь-якого з елементів протягом часу t дорівнює 0,4. Побудувати ряд розподілу числа X — кількості елементів, що можуть вийти з ладу протягом часу t . Скористатись розподілом Пуассона.
19.	За маршрутом виконання рейсу ϵ <i>n</i> районів, в кожному з яких із ймовірністю 0,5 можлива поява грозового фронту. Побудувати ряд розподілу випадкового числа районів, пройдених літаком до зустрічі з грозовим фронтом.
20.	Деяка складна система складається із n незалежно працюючих підсистем. Ймовірність нормальної роботи першої підсистеми дорівнює 0,95, другої — 0,9, третьої — 0,8. Побудувати ряд розподілу для числа тих підсистем, що працюють нормально.
21.	Під час гри два учасники підкидають монету n разів. При кожному підкиданні «решка» випадає із ймовірністю $p=0,3$. Для випадкового числа появ «решки» побудувати ряд розподілу.
22.	Завод відправив на базу n деталей. Ймовірність пошкодження деталей при перевозі дорівнює 0,03. Побудувати ряд розподілу для числа X — кількості пошкоджених в дорозі деталей (перших десяти). Скористатись розподілом Пуассона.
23.	В грошовій лотереї випущено n білетів. Розігрується 1 виграш в 50 000 грн. та 100 виграшів по 100 грн. Побудувати ряд розподілу випадкового виграшу X для власника одного лотерейного білета.
24.	Із партії, що складається із n виробів, серед яких є n_1 бракованих, випадково вибираються n_2 виробів для перевірки їх якості. Побудувати ряд розподілу випадкової величини X — числа бракованих деталей серед відібраних. Побудувати ряд розподілу випадкової величини X — числа бракованих деталей серед відібраних. Скористатись гіпергеометричним розподілом.
25.	Мисливець, маючи n патронів, стріляє по ведмедю до першого попадання або до повної витрати патронів. Ймовірність влучення в ведмедя дорівнює 0,3. Побудувати ряд розподілу ймовірностей випадкового числа X витрачених патронів, скориставшись формулою геометричного розподілу дискретної випадкової величини.
26.	Система складається з n незалежно працюючих вузлів. Ймовірність виходу з ладу кожного вузла в першому випробуванні дорівнює $0,2$. Побудувати ряд розподілу

	числа X — числа вузлів, які можуть вийти з ладу в першому випробуванні. Скористатись біноміальним розподілом.
27.	В комп'ютерній мережі в звичайному режимі незалежно працюють n серверів. Ймовірність нормальної роботи n_1 сервера $p(n_1)=0,7,\ p(n_2)=0,8,\ p(n_3)=0,9$ і т.д. Побудувати ряд розподілу для числа нормально працюючих серверів.
28.	Виконуються послідовні випробування шести приладів на надійність. Кожен наступний прилад випробовується тільки в тому випадку, якщо попередній виявився надійним. Побудувати ряд розподілу випадкового числа приладів, що випробовуються, якщо ймовірність витримати випробування для кожного з них дорівнює 0,9.