ST233

AY22/23 Sem 2

github.com/SeekSaveServe

Chapter 1: Basic Concepts of Probability

DEFINITION 1 (EXPERIMENT, SAMPLE SPACE, EVENT)

A statistical experiment is any procedure that produces data or observations.

The sample space, denoted by *S*, is the set of all possible outcomes of a statistical experiment. The sample space depends on the problem of interest!

A sample point is an outcome (element) in the sample space.

An event is a subset of the sample space.

Union: $A \cup B = x : x \in A \lor x \in B$

Union of n events: $\bigcup_{i=1}^n = x : x \in A_1 \lor x \in A_2...$

Union: $A \cap B = x : x \in A \land x \in B$

Interection of n events: $\bigcap_{i=1}^n = x : x \in A_1 \land x \in A_2...$

Complement: $A' = x : x \in S \land x \notin A$ Mutually Exclusive: $A \cap B = \emptyset$

MORE EVENT OPERATIONS

(a) $A \cap A' = \emptyset$ (b) $A \cap \emptyset = \emptyset$

(c) $A \cup A' = S$ (d) (A')' = A

(e) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

(f) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

(g) $A \cup B = A \cup (B \cap A')$

(h) $A = (A \cap B) \cup (A \cap B')$

DE MORGAN'S LAW

For any n events A_1, A_2, \ldots, A_n ,

(i) $(A_1 \cup A_2 \cup \ldots \cup A_n)' = A'_1 \cap A'_2 \cap \ldots \cap A'_n$.

A special case: $(A \cup B)' = A' \cap B'$.

(j) $(A_1 \cap A_2 \cap ... \cap A_n)' = A_1' \cup A_2' \cup ... \cup A_n'$.

A special case: $(A \cap B)' = A' \cup B'$.

Multiplication

Sequential experiments

 $n_1 * n_2 * ... * n_r$ outcomes

Addition

 $\begin{aligned} & \text{Independent} \\ & \text{experiments} \\ & n_1 + n_2 + \ldots + n_r \end{aligned}$

outcomess

Permutation: $P_r^n = \frac{n!}{(n-r)!} = n(n-1)...(n-(r-1))$ Selection and arrangement of r objects out of n. Order is

considered.

Combination: $C_r^n = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-(r-1))}{r!}$

Selection of r objects out of n. Order is not considered. $C^n_r = C^n_{n-r}$

Axioms and Properties of Probability

 $1 \ 0 \le P(A) \le 1$

2 P(S)=1

3 $P(A \cup B) = P(A) + P(B)$ if A and B are **mutex** (not to be confused with independence)

4 P(∅)=0

5 $P(A_1 \cup A_2 \cup ...A_n) = \sum_{i=1}^n A_i$

6 P(A')=1-P(A)

 $7P(A \cup B) = P(A) + P(B) - P(AB)$

8 P(A)= $P(A \cap B) + P(A \cap B')$

9 $A \subset B \to P(A) \leq P(B)$

10 $P(A_1) = P(A_2) = ... = P(A_k) \rightarrow for B \subset$

$$S, P(B) = \frac{|B|}{|S|}$$

Conditional Probability (B occurs given A):

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Multiplication rules

$$P(A \cap B) = P(A)P(B|A)$$
 if $P(A)! = 0$
 $P(A \cap B) = P(B)P(A|B)$ if $P(B)! = 0$

Inverse Probability Formula: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Indepenence $A\perp BiffP(A\cap B)=P(A)P(B)$ This implies P(A|B)=P(A) and P(B|A)=P(B)

Partition

 $A_1, A_2...A_r$ are mutually exclusive and $\sum_{i=1}^n A_i = S$

THEOREM 11 (LAW OF TOTAL PROBABILITY)

Suppose $A_1, A_2, ..., A_n$ is a partition of S. Then for any event B, we have

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(A_i) P(B|A_i).$$

P(B) = P(A)P(B|A) + P(A')P(B|A')

Bayes' theorem

$$P(A_k|B = \frac{P(B|A)P(A_k)}{P(A)P(B|A) + P(A')P(B|A')})$$

Bayes' Theorem (n=2): $P(A|B) = \frac{P(B|A)P(A)}{\sum_{i=1}^n P(A_i)P(B|A_k)}$ Denom is P(B)

L2:Random Variables

Random variable X is a function from S to R Uppercase letters denote random variables

Lowercase letters denote observed values of random variables

DEFINITION 3 (PROBABILITY MASS FUNCTION)

For a discrete random variable X, define

$$f(x) = \begin{cases} P(X = x), & \text{for } x \in R_X; \\ 0, & \text{for } x \notin R_X. \end{cases}$$

Then f(x) is known as the probability function (pf), or probability mass function (pmf) of X.

The collection of pairs $(x_i, f(x_i)), i = 1, 2, 3, ..., is$ called the **probability distribution** of X.

PROPERTIES OF THE PROBABILITY MASS FUNCTION

The probability mass function f(x) of a discrete random variable **must** satisfy:

- (1) $f(x_i) \ge 0$ for all $x_i \in R_X$;
- (2) f(x) = 0 for all $x \notin R_X$;

(3)
$$\sum_{i=1}^{\infty} f(x_i) = 1$$
, or $\sum_{x_i \in R_X} f(x_i) = 1$.

For any set $B \subset \mathbb{R}$, we have

$$P(X \in B) = \sum_{x_i \in B \cap R_X} f(x_i).$$

DEFINITION 4 (PROBABILITY DENSITY FUNCTION)

The **probability density function** of a continuous random variable X, denoted by f(x), is a function that satisfies:

- (1) $f(x) \ge 0$ for all $x \in R_X$; and f(x) = 0 for $x \notin R_X$;
- (2) $\int_{R_Y} f(x) dx = 1;$
- (3) For any a and b such that $a \le b$,

$$P(a \le X \le b) = \int_a^b f(x) \, \mathrm{d}x.$$

note:
$$P(a < X < b) = P(a < X < B)$$

To cheek that a function is a PDF, cheek conditions 1 and 2 **Cumulative Distribution Function:** $F(x) = P(X \le x)$