FORMAS INDETERMINADAS Y REGLA DE L'HÔPITAL

La regla
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$$

se aplica cuando los límites existen y

$$\lim_{x\to a} g(x) \neq 0.$$

Si
$$\lim_{x\to a} f(x) = 0$$
 y $\lim_{x\to a} g(x) = 0$

tenemos una forma indeterminada del tipo $\frac{0}{0}$.

Si
$$\lim_{x\to a} f(x) = \pm \infty$$
 y $\lim_{x\to a} g(x) = \pm \infty$,

tenemos una forma indeterminada del tipo $\pm \frac{\infty}{\infty}$.

 $\lim_{x\to 0} \frac{\sin x}{x}$ que es una indeterminación del tipo $\frac{0}{0}$

 $\lim_{x\to\infty} \frac{x^2+1}{x^2+x+1}$ que es una indeterminación del tipo $\frac{\infty}{\infty}$

La regla de L'Hôpital en sus diferentes formas es una herramienta que permite eliminar esos tipos de indeterminaciones y algunos otros, haciendo uso de la derivada.

Regla de L'Hôpital. Primera forma.

Sean f y g funciones diferenciables en un intervalo abierto que contiene a a, excepto eventualmente en a. Si $g'(x) \neq 0$ en ese intervalo y

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$$

entonces

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

siempre que $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exista.

La regla de L'Hopital nos sirve aún en el caso en que $x \to \infty$. En efecto, si definimos t tal que $t = \frac{1}{x}$, entonces $x \to \infty$ si y solo si $t \to 0$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{t \to 0} \frac{f(\frac{1}{t})}{g(\frac{1}{t})} = \lim_{t \to 0} \frac{f'(\frac{1}{t})(-\frac{1}{t^2})}{g'(\frac{1}{t})(-\frac{1}{t^2})}$$

$$= \lim_{t \to 0} \frac{f'(\frac{1}{t})}{g'(\frac{1}{t})} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

Regla de L'Hôpital. Segunda forma.

Sean f y g funciones diferenciables en un intervalo abierto que contiene a a, excepto eventualmente en a.

Si
$$\lim_{x\to a} f(x) = \pm \infty$$
 y $\lim_{x\to a} g(x) = \pm \infty$

entonces

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

El teorema también es válido si $x \to \pm \infty$

Al calcular límites pueden presentarse otros tipos de indeterminaciones que pueden ser eliminadas llevandolas a la forma $\frac{0}{0}$ o $\frac{\pm \infty}{\pm \infty}$.

- **1.** Tipo $0 \cdot \infty$ o $0 \cdot (-\infty)$
 - **a.** $\lim_{x\to\frac{\pi^-}{2}}(x-\frac{\pi}{2})\sec x$ del tipo $0\cdot\infty$

$$\lim_{x \to \frac{\pi^{-}}{2}} (x - \frac{\pi}{2}) \sec x = \lim_{x \to \frac{\pi^{-}}{2}} \frac{x - \frac{\pi}{2}}{\cos x}$$

indeterminación de tipo $\frac{0}{0}$

$$\lim_{x \to \frac{\pi^{-}}{2}} \frac{x - \frac{\pi}{2}}{\cos x} = \lim_{x \to \frac{\pi^{-}}{2}} \frac{1}{-\sin x} = -1$$

b.
$$\lim_{x\to 0^+} x^2 \ln x$$
 de tipo $0(-\infty)$ $\lim_{x\to 0^+} x^2 \ln x = \lim_{x\to 0^+} \frac{\ln x}{\frac{1}{x^2}}$ de tipo $\frac{-\infty}{\infty}$ $\lim_{x\to 0^+} \frac{\ln x}{\frac{1}{x^2}} = \lim_{x\to 0^+} \frac{1}{\frac{x^2}{2}} = \lim_{x\to 0^+} \frac{x^2}{2} = 0$

2. Tipo $\infty - \infty$

$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{\sin x}\right) = \lim_{x\to 0^+} \frac{\sin x - x}{x \sin x}$$
 de tipo $\frac{0}{0}$
 $\lim_{x\to 0^+} \frac{\sin x - x}{x \sin x} = \lim_{x\to 0^+} \frac{\cos x - 1}{\sin x + x \cos x}$
 $= \lim_{x\to 0^+} \frac{-\sin x}{2\cos x - x \sin x} = \frac{0}{2} = 0$

3. Tipo $1^{\infty}, 0^{0}, \infty^{0}, 0^{\infty}$.

En este caso se aplica logaritmo natural.

a. Para calcular $\lim_{x\to 0^+} x^x$, sea $y=x^x$.

Entonces $\ln y = x \ln x$

 $\lim_{x\to 0^+} \ln y = \lim_{x\to 0^+} x \ln x$ de tipo $0(-\infty)$

$$\lim_{x\to 0^+} x \ln x = \lim_{x\to 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x\to 0^+} \frac{\frac{1}{x}}{\frac{-1}{x^2}} = \lim_{x\to 0^+} -x = 0$$

Así $\lim_{x\to 0^+} \ln y = 0$

$$\lim_{x\to 0^+} y = \lim_{x\to 0^+} e^{\ln y} = e^{\lim_{x\to 0^+} \ln y} = e^0 = 1$$

$$\lim_{x\to 0^+} x^x = 1$$

b. $\lim_{x\to 0^+} (e^x + x)^{\frac{1}{x}}$ indeterminación del tipo 1^{∞}

Si $y = (e^x + x)^{\frac{1}{x}}$ entonces $\ln y = \frac{1}{x} \ln(e^x + x)$ y

$$\lim_{x\to 0^+} \ln y = \lim_{x\to 0^+} \frac{\ln(e^x + x)}{x}$$
 de tipo $\frac{0}{0}$

$$\lim_{x\to 0^+} \frac{\ln(e^x + x)}{x} = \lim_{x\to 0^+} \frac{\frac{e^x + 1}{e^x + x}}{1} = \lim_{x\to 0^+} \frac{e^x + 1}{e^x + x} = 2$$

Como

$$\lim_{x\to 0^+} y = \lim_{x\to 0^+} e^{\ln y} = e^{\lim_{x\to 0^+} \ln y}$$

entonces
$$\lim_{x\to 0^+} (e^x + x)^{\frac{1}{x}} = e^2$$