PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5	:		(1	1) International Publication Number:	WO 94/26934					
C12Q 1/70, 1/68		A2	(43) International Publication Date: 24 November 1994 (24.11.94)							
(21) International Application Number: PC		94/050	85	(81) Designated States: AU, CA, JP, US, E	Suropean patent (AT, BE,					
(22) International Filing Date:	6 May 1994 (06.05.94)			CH, DB, DK, ES, FR, GB, GR, IE, IT, LU, MC, N SE).						

US

(60) Parent Application or Grant (63) Related by Continuation

(30) Priority Data: 08/058,920

08/057,920 (CIP)

US Filed on

6 May 1993 (06.05.93)

(71) Applicant (for all designated States except US): BAXTER DI-AGNOSTICS INC. [US/US]; One Baxter Parkway, Deerfield, IL 60015 (US).

6 May 1993 (06.05.93)

(72) Inventor; and

(75) Inventor/Applicant (for US only): BROWN, Janice, T. [US/US]; 3508 S.W. Admiral Way, Seattle, WA 98126

(74) Agents: BUONAIUTO, Mark, J. et al.; One Baxter Parkway, Deerfield, IL 60015 (US).

Published Without international search report and to be republished upon receipt of that report.

(54) Title: HUMAN PAPILLOMAVIRUS DETECTION ASSAY

(57) Abstract

A two-step nucleic acid hybridization probe assay for certain types of human papilloma virus (HPV) associated with cervical cell dysplasia and malignancy comprises a fluid phase capture hybridization step in which amplified specific gene E6/E7 messenger RNA from a biological specimen is hybridized to a biotinylated capture reagent to form a complex, attachment of the capture reagent complex to a solid phase by reaction with immobilized streptavidin, a second hybridization step in which a virus type-specific enzyme-conjugated detection probe hybridizes with the complexed amplified messenger RNA, and detection of the complexed detection probe by color or fluorophor production following a wash of the solid phase and addition of an appropriate chromogenic or fluorogenic substrate. The assay has enhanced sensitivity compared to conventional tests and is specific for actual expression of HPV oncogenes in cervical specimens, and not merely indicative of viral presence.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
ΑU	Australia	GB	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NB	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Paso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	П	Italy	PL.	Poland
BR	Brazil	· IP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Кутдуяла	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SB	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
a	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Сагретоод	u	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovskia	LO	Linembourg	TG	Togo
cz	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	П	Trinidad and Tobago
DK	Dexmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagancar	US	United States of America
PĪ	Finland	ML	Mali	0Z	Uzbekistan
PR.	Prance	MN	Mongolia	VN	Viet Nam
GA	Gabon		•		

1

HUMAN PAPILLOMAVIRUS DETECTION ASSAY

BACKGROUND OF THE INVENTION

Human papillomaviruses (HPVs) are a heterogeneous group of DNA viruses associated with a variety of proliferative lesions of the epithelium. Many of these lesions are benign such as those associated with HPV 6 and HPV 11, and are considered causative of such conditions as warts, and condylomas (see Gissman, Canc. Surv., 3: 161 (1984)). However, epidemiological and molecular studies implicate several high risk types that infect the genital tract associated with dysplasia and sometimes progress to cervical cancer (see, for example, Durst. et al., PNAS, 80: 3812 (1983)). High risk HPV types are predominately HPV 16 and HPV 18, with HPV 31, HPV 33, and HPV 35 being of lesser significance. More recently, another HPV type associated with malignancy, HPV 44, has been identified (Lorincz, U.S. Patent No. 4,849,331).

HPV of any type is generally found in extremely low numbers in biological specimens. Therefore, molecular techniques must be performed for amplifying nucleic acid viral markers from very low copy number in a specimen to detectable levels. Polymerase chain reaction (PCR) has been utilized to amplify HPV viral DNA in this manner, as disclosed in WO 90/02821, and Shibata, et al., J. Exp. Med., 167: 225 (DATE). Other applications of PCR to HPV diagnostics are Maitland, et al., May

1988. Seventh International Papillomavirus Workshop, Abstract, p. 5 and Campione-Piccardo, et al., May 1988, Seventh International Papillomavirus Workshop. One major problem with PCR amplification of HPV is that these viruses are detectable as fortuitous passengers in a significant percentage of healthy women showing no evidence of any benign of malignant pathology. Percentage estimates of such passenger presence range 10% (see U.S. Patent No. 4,983,728) to as high as 60%. Detection of HPV per se is thus of limited diagnostic value.

Many nucleic acid-based assays utilize the well-known sandwich configuration in a heterogeneous format. In this format a capture oligonucleotide is chemically conjugated to a solid support such as a microtiter well or bead, the sample is added, and the target nucleic acid having base homology to capture oligonucleotide is allowed to hybridize. After a wash (phase separation), a detection oligonucleotide hybridizes, and after a second wash to remove unhybridized detection oligonucleotide, the amount of tracer or reporter is measured, or the signal generating means produces a signal. For the details of such assays, refer to Ranki, U.S. Patent No. 4,486,539 and U.S. Patent No. 4,731,325. The basic problem with such sandwich assays is relatively low capture efficiency on the solid support, which may profoundly reduce sensitivity of the assay.

10

15

20

30

SUMMARY OF THE INVENTION

It is an object of this invention to provide a specific assay for HPV infections associated with cervical dysplasia and cellular transformation to malignancy. In achieving this object, it is essential to first amplify to detectable levels only the messenger RNA (mRNA) expressed from oncogene regions (genes E6/E7) of HPV types implicated in malignant or pre-malignant cervical lesions. This not only restricts detection to malignant and pre-malignant HPV types, but also distinguishes actual oncogene expression from mere passenger presence of virus.

15

20

25

30

It is a further object to provide a highly sensitive assay for HPV having a high capture efficiency in the initial capture hybridization step. This is important because in situations in which the patient specimen contains very low copy number of viral mRNA, amplification may not occur to a level high enough for detection unless the assay itself is sensitive.

It is a still further aspect of the invention to provide reagents such as primer families for optimally efficient amplification, and probes which anneal to their targets under stringent conditions to give high selectivity and specificity. Finally, the invention contemplates a kit comprising these reagents, buffers, sample preparation solutions, solid supports, and reaction vessels.

In accordance with the assay of the present invention, a patient specimen suspected of containing messenger RNA encoded by at least one type of HPV associated with cervical dysplasia, malignant cells, or pre-malignant cells is

(1) subjected to nucleic acid amplification by self sustained sequence replication utilizing two primers separated by at least ten nucleotides, at least one such primer containing a transcriptional promoter,

annealing the first such primer to its complementary sequence on the target region messenger RNA, extending the 3' end of the primer by action of a strand-extending polymerase in the presence of cofactors and nucleotide triphosphates,

digesting the RNA strand of the nascent RNA/DNA duplex with an enzyme having exogenous or endogenous RNAse H activity,

annealing the second such primer to its complementary sequence on the resultant single stranded cDNA, primer extending the 3' end of the primer by action of a strand-extending polymerase,

transcribing the double stranded DNA with a transcriptase in the presence of nucleoside triphosphates, and

15

20

repeating the amplification utilizing the newly synthesized transcripts as new targets,

- (2) hybridizing in solution amplified messenger RNA to a free biotinylated reagent capture probe having a sequence complementary to a first segment of the amplified RNA to form a reagent capture complex,
- (3) attachment of the capture complex to a solid phase by reaction of the biotin residue of the capture probe with streptavidin bound to the surface of the solid phase,
- (4) washing the bound complex to remove unbound and 10 unreacted reagents,
 - (5) hybridizing a virus type-specific enzyme-conjugated detection probe having a sequence complementary to a second segment of the amplified RNA not overlapping the sequence of the first such RNA segment to form a solid phase-bound capture probe-target sequence-detection probe complex,
 - (6) washing the complex to remove unhybridized detection probe, and
 - (7) adding a fluorogenic or chromogenic enzyme substrate and reacting the conjugated enzyme to produce a detectable fluorophor or chromogen.

The present invention is also directed to certain primer families and selected probes for use in the HPV detection assay, and to kits for conveniently providing reagents to users.

25 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1: HPV 16 genome organization. Transcription proceeds clockwise from the P_{97} promotor. A_E and A_L are the polyadenylation sites for the early and late transcripts.

Figure 2: Sequence of HPV 16. The primers are indicated by underlines. Boxes indicate splice donor and acceptor sequences.

Figure 3: Sequence of HPV 18. Sequences of HPV 18 primers are indicated by underlines. Boxes indicate splice donors and acceptor sequences.

Figure 4: HPV 16 primer families. A variety of primers were tested by the ability to amplify total RNA from SiHa cells (infected with HPV 16). The reactions contained 10% DMSO and 15% sorbitol. The primers are indicated on the autoradiogram.

Figure 5: The effect of increasing the RNAse H concentration using HPV 16 primer families.

Figure 6: HPV 16 primer sensitivity. Total RNA is titrated from 1, 0.1, 0.01, 0.001 attomoles of specific E6-7 RNA isolated from SiHa RNA. p. 32. N5.

10

15

20

30

Figure 7: Primer sensitivity using cells which contain HPV 18 DNA. From right to left is 104 to 10 cells. p34 N4.

Figure 8: An autoradiogram slotting 3SR reaction products. A RNAse titration was performed using primers 32-54 which amplified HPV 18 RNA.

Figure 9: Autoradiogram of a 3SR reaction using primers 32-54 containing different additives. The additives (left to right) were 10% DMSO, 10% polyethylene glycol and 10% glycerol. The cross reactivity using primers 29-15 using SiHa cell using these additives were included to determine if there was any cross reactivities of the reactions.

Figure 10: Autoradiogram of a 3SR reaction comparing primers 32-54 and 69-54. The 3SR reaction using primers 69-54 contained either no additives (column 1) or 15% sorbitol (column 2). The reactions using Primers 32-54 contained 10% polyethylene glycol (column 3). From top to bottom was a titration of RNAse H, 1-3 units per reaction.

Figure 11: Co-amplification. Lane A used primers 136-73 (HPV 16), Lane B used primers 136-91 (HPV 16) amplifying 5 amol of SiHa RNA using decreasing amounts of DMSO/sorbitol mixture. Lane C from top to bottom: 136-73 (HPV 16) and 54-69 (HPV 18), 136-91 and 54-69, and 54-69 amplifying a mixture of 5 amol of SiHa cell (infected with HPV 16)

10

15

30

and HeLa cell (infected with HPV 18) RNA. Duplicate blots were prepared and probed with an HPV 18 specific probe (59) and an HPV 16 specific probe (98).

Figure 12: HPV 16 plate optimization. Capture 245 temperature optimum. Absorbance values using CAP245 at different temperature ranges: 30°C, 40°C, 50°C, 60°C and 70°C. Each line represents a different detectors; DET 251, DET 252, and DET 254.

Figure 13: HPV 16 plate optimization. Capture 250 temperature optimum. Absorbance values using CAP250 at different temperature ranges: 30°C, 40°C, 50°C, 60°C and 70°C. Each line represents a different detectors; DET 251, DET 252, and DET 254.

Figure 14: Detector hybridization optimum using CAP 245. Detectors were hybridized using different temperature ranges: 30°C, 40°C, 50°C, 60°C and 70°C. Each line represents different detectors: DET 98, DET 251, DET 252, and DET 254.

Figure 15: Detector hybridization optimum using CAP 250. Detectors were hybridized using different temperature ranges: 30°C, 40°C, 50°C, 60°C and 70°C. Each line represents different detectors: DET 98, DET 251, DET 252, and DET 254.

Figure 16: HPV 16 plate assay. A comparison of captures 245, 250, and 253 using DET 98, DET 251, DET 252, and DET 254. Each capture was hybridized to the 3SR product at 50°C. The detectors were hybridized at room temperature.

Figure 17: HPV 16 detector performance. A comparison of all the detector oligos for HPV 16 using CAP 250. The detector names are listed in the bottom of each figure.

Figure 18: A comparison of detector lengths using CAP 250 in the enzyme probe assay. DET 256 is a 17mer oligo and DET 257 is a 15mer oligo. The sequence was identical except that 2 bases were omitted for DET 257.

Figure 19: A comparison in absorbance values using different additives in the capture buffer. From left to right are duplicate wells using

20

DET 255, DET 98 and DET 256. Columns 1-6 are 3SR products using primers 96-91. Columns 7-12 are 3SR products using primer 137-91 using different detectors. The additives are indicated on the left of the absorbance values. Rows 1 and 2 are plus and minus templates using 5% polyethylene glycol. Rows 3 and 4 are plus and minus templates using 1% BSA. Rows 5 and 6 are plus and minus templates using 5% PEG, 1% BSA. Rows 7 and 8 are the standard hybridization buffer using 0.1% polyvinylpyrrolidone, 5X SSC.

Figure 20: A comparison in absorbance values using different additives in the detection buffer. From left to right using different detectors: DET 256, DET 98, and DET 255. Columns 1, 5, and 9 contained the standard hybridization buffer 30% glycerol, 0.1% PVP, 1% BSA and 5X SSC. Columns 2, 6, and 10 contained 5% PEG, 0.1% PVP, and 5X SSC as the hybridization buffer. Columns 3, 7, and 11 contained 1% BSA, 0.1% PVP and 5X SSC as the hybridization buffer. Columns 4, 8, and 12 contained 5% PEG, 1% BSA, 0.1% PVP, and 5X SSC as the hybridization buffer. Rows A and B are plus and minus templates using primers 96-91 which amplify SiHa RNA. Rows C and D is plus and minus template using primers 136-91 which amplify SiHa RNA.

Figure 21: Different primers sets which amplify HeLa RNA (HPV 18). Primers are noted on the autoradiogram.

Figure 22: Comparison of capture oligos for HPV 18 using the enzyme probe assay. The 3SR product was amplified from HeLa RNA using primer 54-69. Column 1 is substrate only. Columns 2 and 3 are plus and minus templates using capture 56. Columns 4 and 5 is plus and minus templates using capture 267. Rows indicate different detectors. Row A DET 59, Row B DET 260, Row C DET 262, Row D DET 268, Row E DET 269, and Row F DET 270.

Figure 23: Comparison of capture oligos for HPV 16 and HPV 18 using the enzyme probe assay. The 3SR product was a co-amplification from HeLa and SiHa RNA using primers 136-91 (HPV 16) and 54-69 (HPV 18).

Figure 24: HPV 16 and HPV 18 EPA. The absorbance levels of a typical specimen. HPV 16 and HPV 18 were co-amplified using primers 136-91 and 54-69. CAP 265 and CAP 267 were added and allowed to hybridize. The reaction was added to two microwells and detected using a type specific oligo DET 256 and HPV 16 and DET 260 for HPV 18.

Figure 25: Schematic of the Enzyme Probe Assay. The capture oligo hybridizes to the amplified 3SR product either HPV 16 or HPV 18. The complex is detected using HRP labeled oligonucleotide.

Figures 26 and 27: Autoradiographs of amplification products comparing yields of reaction performed at 50°C and at 42°C.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Figure 1 is a schematic drawing showing a generalized HPV 16 genome. The heavy concentric lines indicate open reading frames. Figures 2 and 3 locate the splice donor and acceptors for HPV 16 and 18 genes (indicated by boxes around the terminal two bases involved in the splice in the E6/E7 region). The portion of the HPV 16 and 18 viral genomes coding for E6/E7 polypeptides are identified in the Sequence Listing as SEQ. ID. Nos. 1 and 2 respectively. This is a significant region of the genome since the proteins encoded are thought to be involved in degradation of the p53 suppressor protein, which regulates cell growth. Loss of p53 function is associated with malignancy. Thus, expression of E6/E7 is diagnostic for cervical cancer or pre-malignant states.

In the expression of the E6/E7 region, splicing at the positions indicated in the figures occurs at substantial but unknown frequency. In designing primers for amplification of mRNA targets transcribed from this region, it is therefore important to make certain that all primer pairs lie outside the portion of the transcript from which the splice leads to excision of an mRNA fragment. Typical primers selected are illustrated in figures 2 and 3.

25

30

Since the rationale of the assay of the present invention is to detect only gene products produced in cells actually expressing genes

E6/E7, self-sustained sequence replication (3SR) is the amplification method of choice. Polymerase chain reaction amplifies DNA, and while it may detect the presence of virus with great sensitivity, it is unsuitable for detecting gene expression. The method of 3SR is fully described in Gingeras, et al., Ann. Biol. Clin., 48: 498 (1990), Guatelli, et al., PNAS, 87: 1874 (1990), and WO 90/06995. The methods described therein are followed herein except as noted, and define the procedure to be followed in the practice of the present invention. The general 3SR amplification procedure as set forth in Gingeras et al. and Guatelli et al. involves the following steps: One hundred-microliter 3SR amplification reactions contained the target RNA, 40 mM Tris-HCl at pH 8.1, 20 mM MgCl₂, 25 mM NaCl, 2 mM spermidine hydrochloride, 5 mM dithiothreitol, 80 µg/ml bovine serum albumin, 1 mM dATP, 1 mM dCTP, 1 mM dGTP, 1 mM dTTP, 4 mM ATP, 4 mM CTP, 4 mM GTP, 4 mM UTP, and 250 ng of each selected oligonucleotide primer. After heating at 65°C for 1 minute and cooling at 37°C for 2 minutes, 30 units of AMV reverse transcriptase, 100 units of T7 RNA polymerase, and 4 units of E. coli RNase H were added to each reaction. All reactions were incubated at 37°C for 1 hour and stopped by placing the reaction on ice.

In general, 3SR is carried out as follows on HPV specimens: samples are obtained by vaginal lavage or cervical scrape. Messenger RNA is released by treatment with chaotrophic/phenol reagents and precipitated conventionally with ethanol. A preferred one step extraction utilizes RNAzol B (Cinna/Tiotecx Laboratories, Inc.) according to the manufacturer's instructions. The RNA is then dissolved in 3SR buffer, together with nucleotide and nucleoside triphosphates, primers, enzymes, and cofactors to carry out 3SR amplification. Reagents were obtained as follows:

30 Primer Oligonucleotides

5

10

20

25

All oligonucleotides may be synthesized on a commercially available synthesizer such as a Milligen 8700 DNA synthesizer.

Oligonucleotides which contained a 5' biotin may be synthesized using a biotin phosphoramidite (Glenn Research). Oligonucleotides which contain a 3' biotin may be synthesized using control pore glass containing a protected biotin (Glenn Research). Oligonucleotides which contain a 3' amine are conveniently synthesized using a amino-on control pore glass column (Glenn Research). Below is a list of oligonucleotides used in the development of HPV 16/18 enzyme probe assay of the present invention. All of the sequences are from left to right 5' to 3'. The oligonucleotide primers are also listed in the Sequence Listing as SEQ. ID. Nos. 3-31.

10

WO 94/26934

10			
	SEO. ID. No.	Primer Pro	<u>obes</u>
	3	HPV15 :	AAT TTA ATA CGA CTC ACT ATA GGG
			AGC TTT TCT TCA GGA CAC AGT GGC
			T
15	4	HPV19:	AAT GTT TCA GGA CCC ACA GGA GC
	5	HPV20:	GAA TGT GTG TAC TGC AAG CAA
			CAG
	6	HPV29:	ATG CAC AGA GCT GCA AAC AAC TA
	7	HPV32:	CAC TTC ACT GCA AGA CAT AGA A
20	8	HPV48:	AAT TTA ATA CGA CTC ACT ATA GGG
			ATG TGT CTC CAT ACA CAG AGT C
	9	HPV53:	GAA TGT GTG TAC TGCC AAG CAA
			CAG
	10	HPV54:	AAT TTA ATA CGA CTC ACT ATA GGG
2 5			AAA GGT GTC TAA GTT TTT CTG CTG
			G
	11	HPV69:	CTG AAC ACT TCA CTG CAA GAC
	12	HPV73:	CAG TTA TGC ACA GAG CTG CAA AC
	13	HPV74:	GTT ATG CAC AGA GCT GCA AAC AA
30	14	HPV77:	CAA GCA ACA GTT ACT GCG AC
	15 .	HPV89:	AGC AAC AGT TAC TGC GAC GT
	16	HPV90:	GCA CAG AGC TGC AAA CAA CTA TA

	17	HPV91:	ACA GAG CTG CAA ACA ACT ATA CA
	18	HPV92:	AAT TTA ATA CGA CTC ACT ATA GGG
			ACT TTT CTT CAG GAC ACA GTG GCT
			TTT
5	19	HPV93:	AAT TTA ATA CGA CTC ACT ATA GGG
			ATT TGC TTT TCT TCA GGA CAC AGT
			GG
	20	HPV94:	AAT TTA ATA CGA CTC ACT ATA GGG
			ATC TTT GCT TTT CTT CAG GAC ACA
10			GT
	21	HPV95:	AAT TTA ATA CGA CTC ACT ATA GGG
			ATG TCT TTG CTT TTC TTC AGG ACA
			CA
	22	HPV96:	AAT TTA ATA CGA CTC ACT ATA GGG
15			AGA TGT CTT TGC TTT TCT TCA GGA
			CA
	23	HPV101:	AGA GCT GCA AAC AAC TAT ACA TG
	24	HPV106:	AAT TTA ATA CGA CTC ACT ATA GGG
			ATT CAT GCA ATG TAG GTG TAT CTC
20			С
	25	HPV107:	AAT TTA ATA CGA CTC ACT ATA GGG
			ATA TTC ATG CAA TGT AGG TGT ATC
			T
	26	HPV118:	AGC TGC AAA CAA CTA TAC ATG AT
25	27	HPV120:	AAT TTA ATA CGA CTC ACT ATA GGG
			ATG CAA TGT AGG TGT ATC TCC ATG
			С
	28	HPV129:	AAT TTA ATA CGA CTC ACT ATA GGG
			AAA TGT AGG TGT ATC TCC ATG CAG
30	29	HPV131:	AAA CAA CTA TAC ATG ATA TAA TA

12

	30	HPV136:	AAT TTA ATA CGA CTC ACT ATA GGG
			AAT GTA GGT GTA TCT CCA TGC ATG
			A
	31	HPV137:	AAT TTA ATA CGA CTC ACT ATA GGG
5			ATG TAG GTG TAT CTC CAT GCA TGA
			T

Primer selection for high level amplification is basically a directed trial and error process. To define a first set of primers a span of 400 bases (with beginning and ending sites outside the spliced region) was selected by designating the first 10-30 nucleotides at the 5' end of the E6 gene beginning with the ATG codon and counting off 400 bases, then selecting as primers the next 10-30 bases. Note that for each pair, at least one of the primers must contain a promoter for transcription. The bacteriophage T7 RNA polymerase binding site (SEQ. ID. No. 44), AAT TTA ATA CGA CTC ACT ATA GGG A, is preferred because of its strength and specificity.

10

15

20

25

30

The primer pairs are tested for their amplification efficiency. To optimize, the second primer position is held stationary and the first primer is moved arbitrarily 20 bases towards the second (thereby decreasing the interprimer span, e.g. the bases between the position of the 3' end of the first primer and the 5' end of the second primer, by 20 bases to 380 bases). Fine tuning is accomplished by walking the primers from the best pairings by 2-5 base jumps.

Primer families. Figure 4 gives primer families that amplify the HPV 16 E6-7. All primers amplified total RNA isolated from the SiHa cell line which contain the HPV 16 transcripts. The reaction conditions include 7mM rNTPs, 1mM dNTPs, 40mM Tris pH 8.1, 30mM MgCl₂ 20mM KCl, 50mM dithiothreitol, 20 mM spermidine, 10% DMSO, 15% sorbitol, and 15pmol each priming oligonucleotide. After pre-warming each tube at 42°C for 5 minutes 30 units of AMV-RT, 2 units RNAse H, and 250 units of T7 RNA polymerase were added as a cocktail to each reaction. The

WO 94/26934

10

15

20

25

30

reaction was allowed to proceed for one hour at 42°C. A sample of the 3SR reaction was slotted onto nitrocellulose. The nitrocellulose was baked for 45 minutes and then hybridized for 45 minutes using a type specific detection oligo. An autoradiogram was generated by exposing the nitrocellulose to film for 45 minutes at -70°C. The primer family for 120 is 29 and 90. The primer family for 15 is 19, 20, 77, 53, and 89. The primer family for primer 129 is 29, 74, 73, 118, 130, and 131. The primer family for primer 136 is 91, 29, 90, 74, 73, 130, 131, and 118. The primer family for primer 137 is 29, 90, 74, 73, 131, and 118.

Figure 5 illustrates the effect of titrating the RNAse H HPV 16 primer families. The 3SR reaction conditions are identical as described in figure 4 except the DMSO and sorbitol were omitted from the reaction. Ten microliters were slotted onto nitrocellulose then baked and probed with a type specific detection oligo (HPV55). The primer family for primer 93 is 73 and 91. The optimal RNAse H needed for the reaction using these two primer pairs is between 1 and 2 units. The primer family 95 is 101 and 91. These primer sets do not appear to be sensitive to different RNAse H concentrations. A single primer set was defined for primer 92; 92-91, primer 94; 94-91, and primer 85; 85-77. The primer family for primer 96 is 73 and 91. All of these primer sets amplify optimally using between 2 and 3 units of RNAse H. The sensitivity of primers 96-73, 96-91, and 94-91 were tested using a titration of E6-7 isolated from SiHa cells. Once each primer set has been defined and optimized the sensitivity can be measured by amplifying decreasing amounts of RNA from control cells (figure 6). The 3SR reaction conditions are identical to those described in figure 4 except, using primers 96-73 the DMSO was included and the sorbitol was omitted, and using primers 94-91 only 10% sorbitol was included.

Figures 7-10 describe the primers used to amplify HPV 18 E6-7. The primer family for primer 54 is 32, 69, and 70. Primers 48 and 32 also amplify HeLa RNA. Primers 54-32 and 54-48 both require the addition of additives 10% polyethylene glycol or DMSO and sorbitol to the 3SR reaction. Primers 54-69 do not require the addition of additives for

successful amplification. Additional primer families for primer 214 is 69, 244, 214, and 70 all which require additives to the amplification reaction.

Co-amplification. Once primers have been selected for both HPV 16 and HPV 18 a co-amplification of both targets is required for clinical use. Co-amplification is required because only a single specimen is obtained. This can be done not only for HPV 16 or HPV 18, but also can be applied to a plurality of HPV types including but not limited to HPV 31, 33, and 35, as well as any other types that prove to be oncogenic. It is not practical to split a single specimen for two independent reactions. Figure 11 is a duplicate blot which is probed with a 16 and 18 type specific detection probe. Lane C demonstrates the cross reactivity of amplifying two independent targets.

Capture and Detection Probes. Because it is impractical to incubate the plate in elevated temperatures the detector should produce maximum signal at room temperature. Many times uneven temperatures across a microwell can cause differences in hybridization thereby causing variability of absorbance values. The format of the plate affects the performance of the assay. Incubating both capture and detector probes simultaneously rather than capturing the 3SR product first and detecting in a separate incubation step affects the relative OD values. There are disadvantages of co-incubation of both capture and detection probes. In high template concentration, the 3SR reaction produces very high product concentrations. When the capture is incubated to the target in one step then applied to the microwell and allowed to bind, excess target is subsequently washed away. The detection probe is then applied which only hybridizes to the capture 3SR target.

15

25

When designing capture oligonucleotide sequences, defining the hybridization temperatures is critical to the performance of the assay. Figures 12 and 13 define the optimum temperature of hybridization for HPV 16 capture oligonucleotide. The 3SR product is diluted 1:10,000 to reduce the absorbance levels thereby allowing differences of different detection probes to become more pronounced. The hybridization reaction

contain 50 µl of the diluted 3SR product in 0.1% PVP, 2X SSC, and 4 pmol capture oligonucleotide. The reaction was incubated at different temperatures ranging from room temperature to 70°C. The reaction proceeded in the microwell for 20 minutes and the well washed 3 times with 2X SSC (0.6 M NaCl, 0.06 M Na citrate pH 7.0), 0.05% Tween 20®, and 0.01% Thimersol™. The detection probe was added and incubated for 30 minutes at room temperature. The microwell was again washed 3 times with 2X SSC, 0.5% Tween 20, and 0.01% Thimersol. Substrate for the horseradish peroxidase enzyme, 3′, 3′, 5′, tetra methyl benzidine and hydrogen peroxide was added to each well and allowed to develop for 15 minutes at room temperature. The reaction was stopped by the addition of 1 M phosphoric acid and read at 450 nm.

10

15

20

The optimum temperature of hybridization for capture 245 is between 50°C and 60°C. The signal remains relatively constant at 70°C but thermal degradation of the RNA is a concern at this temperature. Capture 250 hybridization optimum is between 50°C and 60°C. A variety of detection probes should be tested because the optimum temperatures for hybridization of the detection probes must be empirically determined. Once the capture oligo temperature optimum has been defined, the same experiments must be repeated using different probes.

Best Mode. Figures 14 and 15 define the detector optimum. CAP 250 and CAP 245 produced the highest absorbance values when hybridizing DET 251 at room temperature. The reaction was performed as described in figure 13. The following is a list of useful detection, capture probes, and positive hybridization control probes. The detection, capture and positive hybridization control probes are also listed in the Sequence Listing as SEQ. ID. Nos. 32-43.

SEO. ID. No. Capture Probes: 30 32 CAP235: TGT ATT AAC TGT CAA AAG CCA BIOTIN 33 CAP250: TGT ATT AAC TGT CAA AAG CCA AAA AAA BIOTIN

16

	34	CAP 253:	TGT ATT AAC TGT CAA AAG CCA AAA AAA AAA A BIOTIN
	35	CAP265:	GTA GAG AAA CCC AGC TGT AAA AAA BIOTIN
5	36	CAP267:	GTG CCT GCG GTG CCA GAA AAA AAA
			BIOTIN
	SEO, ID. No.	Detection	Probes:
	37	DET59:	GAC AGT ATT GGA ACT TAC AG
10	38	DET98 :	TTA GAA TGT GTG TAC TGC AAG NH2
	39	DET255:	CAA CAG TTA CTG CGA CGT GAG NH2
	40	DET256:	TTA CTG CGA CGT GAG GT NH2
	41	DET260:	GTA TAT TGC AAG ACA GTA NH2

15 SEO. ID. No. Positive Hybridization Control Probes:

20

25

30

42 PHC271: TGT CTT GCA ATA TAC AAA AA BIOTIN

43 PHC272: CTC ACG TCG CAG TAA AAA AAA BIOTIN

Figure 16 is a comparison of all the best performing capture probes using 4 different detection probes. The capture probes were hybridized to the 3SR product at the temperature optima for 30 minutes in 0.1% PVP, 2X SSC and 8 pmol capture probe. The reaction was applied to the microwell and allowed to incubate at room temperature for 20 minutes. The microwell was washed 3 times in 2X SSC, 0.05% Tween 20 and 0.01% Thimersol. The detection probe was added to the microwell and hybridized at room temperature for 30 minutes. The well was again washed 3 times and developed for 15 minutes. The reaction was stopped and read at A450. The performance of the capture probes on the plate assay could be increased by the addition of adenine residues on the end of the oligos closest to the well (data not shown). Different bases were targeted (G, C, A, and T). T was not chosen because most mRNA's are polyadenylated which would cause end hybridization. CAP 250 produces

15

20

25

30

PCT/US94/05085

the highest signal when amplifying SiHa cells; however, CAP 250 only can capture two of the three spliced E6 RNA's. Several other capture probes were investigated and CAP 265 captures all three E6 transcripts. Each cell line splices E6 at different rates. CAP 265 was chosen because clinical specimens may be heterogenous in splicing E6.

Once the capture probe has been defined, selecting an enzyme-conjugated detection probe is undertaken. Figure 17 is a comparison of all the detection probes for HPV 16. DET 256 produces the highest absorbance values in the present assay. Two detection probes were synthesized for illustration. The first a 17mer and the second a 15mer to define the minimum number of bases needed for efficient hybridization. The minimum length a detector oligo can be is about 17 bases (figure 18). Please note that best results are achieved when the signal enzyme is conjugated to the oligonucleotide at the 3' end.

Various additives in the capture buffer were performed with little increase in the relative absorbance in the plate assay (figure 19). When these same additives were added to the detection buffer the signal was more than doubled (figure 20). This effect appears to be related to the length of the 3SR product. The longer the product the more pronounced the effect. Primers 96-91 produce a shorter 3SR product than 136-91 (figure 20). Including additives in the detection buffer increases background levels. A titration using glycerol reduces background levels. Figure 21 is an autoradiogram of additional primer set that amplify HPV 18 using HeLa RNA. Figure 22 demonstrates the performance of HPV 18 capture probes using a variety of detection probes. Figure 23 demonstrates the absorbance values of a co-amplification and co-capture of HPV 16 and HPV 18 using type specific detection probes. Best results were achieved in coamplification for HPV 16 and HPV 18 simultaneously utilizing primers 136-91 (HPV 16), 54-69 (HPV 18), CAP 265 (HPV 16), CAP 267 (HPV 18), and DET 256 (HPV 16), DET 60 (HPV 18) as shown in figure 24. The configuration of this assay is shown in figure 25.

PCT/US94/05085 WO 94/26934

The Assay Format. Utilizing the reagents described hereinabove, the assay format of the present invention was devised to optimize the signal obtainable from specimens having low viral mRNA copy number. A fluid phase capture of sample target sequence complementary to a capture prove sequence is much more efficient than adsorbing directly onto a solid phase. In fact, in a typical sandwich configuration, it is not uncommon to capture only 1-3% of total available nucleic acid in the sample. This reduces sensitivity correspondingly by two orders of magnitude.

Since it is still necessary to separate nucleic acid complexes on a solid phase, the "capture" sample must be immobilized onto the solid phase before the detection probe is added. The present assay takes advantage of the extremely high binding constant for the interaction between biotin and streptavidin. The capture oligonucleotide is biotinylated through 3' or 5' terminal labeling by conventional techniques. It has been empirically determined for the probes studied to date that biotinylating the capture probe at the 3' terminus is more efficient in immobilizing the probe hybridized to sample target sequence.

10

15

20

30

The solid phase is coated with streptavidin, so that when the hybridized capture-sample sequence complex is brought into contact with it, the reaction between streptavidin and biotin takes place. The solid phase is preferably the inner surface of microtiter tray wells, but any solid phase separation system known to the art is satisfactory including but not limited to polystyrene beads, magnetic microparticles, test strips of plastic 25 or metal, dipsticks, columns packed with a variety of materials, etc. The fluid phase capture method of the present invention is expected to give enhanced results with solid supports made of plastic because of the especially low capture efficiencies with plastic supports in conventional assays.

Any signal-generating enzyme or other reporter or tracer system capable of being conjugated covalently or electrostatically to a oligonucleotide without hindering its hybridizing to a complementary

19

sequence is contemplated in the present assay. Horseradish peroxidase is preferred, but alkaline phosphatase and synthetic fluorogenic and chromogenic molecule hydrolyzing enzymes may also be employed. Nonisotopic reporter/tracer systems are preferred over radioactive tracers because of environmental and stability considerations.

The kinetics of hybridization of various capture and detection probes will differ according to their thermodynamic characteristics, and some relatively insignificant amount of experimentation may be required to optimize the assay for probes of similar but not identical sequence disclosed herein for illustrative purposes.

Alternative Amplification Reaction Conditions

10

25

30

Figure 26 compares amplification reactions performed using the standard 3SR reaction conditions (42°C) with amplification reactions performed at an elevated temperature (50°C). The assays used the primer sets 136-91 (HPV 16) and 54-69 (HPV 18) together and separately. The standard 3SR reaction conditions were 40 mM Tris-HCl, pH 8.1; 30 mM MgCl₂; 20 mM KCl; 10 mM dithiothreitol; 4 mM spermidine; 15 pmole each priming oligonucleotide; 1 mM dNTP's; 7 mM rNTP's; 30 units AMV 20 reverse transcriptase; 2 units RNAse H; and 1000 units T7 RNA polymerase. The reaction was incubated for 1 hour at 42°C. The elevated temperature reaction conditions were 40 mM Tris acetate, pH 8.1; 30 mM Mg acetate; 10 mM dithiothreitol; 100 mM potassium glutamate, pH 8.1; 1 mM dNTP's; 6 mM rNTP's; 15% sorbitol; 30 units AMV reverse transcriptase; 2 units RNAse H; and 1000 units T7 RNA polymerase. The reaction was incubated for 1 hour at 50°C.

After incubating the amplification reactions, 1/10th of the amplification products were denatured in 90 µl of 7.4% formaldehyde and 10X SSC in a 65°C water bath for 10 minutes and quick-chilled on ice for at least 1 minute. BA-85 nitrocellulose was pre-wetted with water and then with 10X SSC. The denatured amplification samples were applied to a slot blot apparatus containing the pre-wetted nitrocellulose and the samples

WO 94/26934

15

20

25

30

PCT/US94/05085

were drawn onto the nitrocellulose using a vacuum. The filter was then baked for 45 minutes at 80°C and hybridized with a type-specific oligonucleotide specific for HPV 18 (DET59) or HPV 16 (DET98). The hybridization solution contains 6X SSC; 10X Denhardts; 10 mM Tris, pH 7.4; 0.2 mg/ml sheared salmon sperm DNA; and 1% SDS.

Figures 26 and 27 depict a comparison of the amplification yields of reactions performed at 50°C and at 42°C. In both figures, the amplification reactions in column 1 used the HPV 16 primers 136-91, the reactions in column 2 used the HPV 18 primers 54-69, and the reactions in column 3 used a combination of the HPV 16 and HPV 18 primers 136-91 and 54-69. The target sequence was a mixture of 5 amol each of SiHa cell (infected with HPV 16) and HeLa cell (infected with HPV 18) RNA. Rows 1-4 contained sorbitol concentrations of 15%, 10%, 5% and 0% respectively; row 5 was a minus template reaction using 15% sorbitol; row 6 was blank; and rows 7-11 contained sorbitol concentrations of 15%, 10%, 5% and 0% respectively. Rows 1-5 were incubated at 50°C and rows 7-11 were incubated at 42°C. The amplification products in figure 26 were probed with DET 98 which is specific for HPV 16. The amplification products in figure 27 were probed with DET 59 which is specific for HPV 18.

Figure 26 depicts that the bands were much stronger at the 15% and 15% sorbitol levels than at the 5% or 0% levels. These results demonstrate that the increased sorbitol concentrations protect the enzymes so that the reaction can be incubated at 50°C rather than 42°C. When the sorbitol concentration was dropped below 10% the enzymes were not thermally protected and denatured at elevated temperatures, resulting in the decreased level of amplification. Figures 26 and 27 demonstrate that the elevated temperature increased the level of amplification when compared to the 42°C reaction conditions. This was particularly evident when the target sequence was co-amplified using the mixed primer set, 136-91 (HPV 16) and 54-69 (HPV 18). The estimated level of amplification using the elevated temperature was 10 fold higher than the level of amplification using the 42°C reaction conditions.

5

21

The foregoing detailed description has been provided for a better understanding of the invention only and no unnecessary limitation should be understood therefrom as some modifications will be apparent to those skilled in the art without deviating from the spirit and scope of the appended claims.

22

SEQUENCE LISTING

	(1) GENERAL INFORMATION:
5	(i) APPLICANT: Janice T. Brown
	(ii) TITLE OF INVENTION: HUMAN PAPILLOMAVIRUS DETECTION ASSAY
10	(iii) NUMBER OF SEQUENCES:44
	(iv) CORRESPONDENCE ADDRESS
15	(A) ADDRESSEE: Baxter Diagnostics Inc.
12	(B) STREET: One Baxter Parkway, Building DP-3E
	(C) CITY: Deerfield
20	(D) STATE: Illinois
	(E) COUNTRY: USA
25	(F) ZIP: 60015
4 5	(v)COMPUTER READABLE FORM (A) MEDIUM TYPE: Floppy disk
30	(B) COMPUTER: Apple Macintosh
50	(C) OPERATING SYSTEM: Apple Macintosh System 7.0
	(D) SOFTWARE: Macintosh Text File
35	(vi)CURRENT APPLICATION DATA (A) APPLICATION NUMBER: N/A
	(B) FILING DATE: N/A
40	(C) CLASSIFICATION: N/A
45	(vii)PRIOR APPLICATION DATA (A) APPLICATION NUMBER: US 08/058,920
	(B) FILING DATE: May 6, 1993
50	(viii)ATTORNEY/AGENT INFORMATION (A) NAME: Mark Buonaiuto
	(B) REGISTRATION NUMBER: 31,593
55	(C) REFERENCE/DOCKET NUMBER: BA-4448

PCT/US94/05085 WO 94/26934

23

(ix)TELECOMMUNICATION INFORMATION
(A) TELEPHONE: 708/948-2537

5

(B) TELEFAX: 708/948-2642

	(2)	INFOR	MATION FOR	SEQ ID NO: 1								
	(:	i) S	EQUENCE CH	ARACTERISTICS								
5		(A)	LENGT	н: 570								
		(B)	TYPE:	nucleic acid								
10		(C)	STRAN	EDNESS: double								
10		(D)	TOPOL	OGY: linear								
	(:	iii) H	YPOTHETICA	L: no								
15	(:	iv) A	NTI-SENSE:	no								
20	virus	•	RIGINAL SO ORGANISM	URCE: : Papaoviridae, Human papilloma								
20		(B)	STRAIN:	16								
	(:	ix) F	EATURE:									
25	E6/E7 p	(A) polypep		: Portion of viral genome coding for								
30	M.,			<pre>INFORMATION: Seedorf, K., Krammer, G., Durst,</pre>								
	·			Suhai, S., and Rowekamp, W.								
35	Sequenc	(B) ce	TITLE:	Human Papillomavirus Type 16 DNA								
33		(C)	JOURNAL:	Virology								
		(D)	VOLUME:	145								
40		(E)	ISSUE:									
		(F)	PAGES:	181-185								
45		(G)	DATE:	1985								
40	(2	ci) SI	EQUENCE DE	SCRIPTION: SEQ ID NO: 1								
	T ATG C	CAC CAA	AAG AGA A	CT GCA ATG TTT CAG GAC CCA CAG GAG								
50			Lys Arg T	nr Ala Met Phe Gln Asp Pro Gln Glu								
	15		5	10								

	CCC	AGA	AAG	TTA	CCA	CAG	TTA	TGC	ACA	GAG	CTG	CAA	ACA	ACT
	ATA Pro	91 Arg	Lys	Leu	Pro	Ġln	Leu	Cys	Thr	Glu	Leu	Gln	Thr	Thr
5	Ile		_		20					25				
J	30				20					23				
	CAT		ATA	ATA	TTA	GAA	TGT	GTG	TAC	TGC	AAG	CAA	CAG	TTA
10	His		Ile	Ile	Leu	Glu	Cys	Val	Tyr	Cys	Lys	Gln	Gln	Leu
	Leu				35					40				
	45													
15		CGT 81	GAG	GTA	TAT	GAC	TTT	GCT	TTT	CGG	GAT	TTA	TGC	ATA
	Arg		Glu	Val	Tyr	Asp	Phe	Ala	Phe	Arg	Asp	Leu	Cys	Ile
	Val				50					55				
20	60													
		AGA	GAT	GGG	AAT	CCA	TAT	ĢCT	GTA	TGT	GAT	AAA	TGT	TTA
25	Tyr		Asp	Gly	Asn	Pro	Tyr	Ala	Val	Cys	Asp	Lys	Cys	Leu
25	Lys				65					70				
	75													
30		TAT 271	TCT	AAA	ATT	AGT	GAG	TAT	AGA	CAT	TAT	TGT	TAT	AGT
	Phe		Ser	Lys	Ile	Ser	Glu	Tyr	Arg	His	Tyr	Cys	Tyr	Ser
	Leu				80		?			85				
35	90													
		GGA 16	ACA	ACA	TTA	GAA	CAG	CAA	TAC	AAC	AAA	CCG	TTG	TGT
			Thr	Thr	Leu	Glu	Gln	Gln	Tyr	Asn	Lys	Pro	Leu	Cys
40					95					100				
	105					•								
		TTA 61	ATT	AGG	TGT	ATT	AAC	TGT	CAA	AAG	CCA	CTG	TGT	CCT
45	Leu Glu	Leu	Ile	Arg	Cys	Ile	Asn	Cys	Gln	Lys	Pro	Leu	Cys	Pro
				•	110					115				
	120													
50		AAG 106	CAA	AGA	CAT	CTG	GAC	AAA	AAG	CAA	AGA	TTC	CAT	AAT
			Gln	Arg	His	Leu	Asp	Lys	Lys	Gln	Arg	Phe	His	Asn
E E	135				125		•			130				
55	エンン													

	AGG GG'	T CGG TGG	ACC GGT	CGA TGT	ATG TCT	TGT TGC	: AGA TCA						
E	Arg Gl	y Arg Trp	Thr Gly	Arg Cys	Met Ser	Cys Cys	; Arg Ser						
5	Ser		140		145		•						
	150												
10	AGA AC	A CGT AGA	GAA ACC	CAG CTG			GA GAT ACA						
	Arg Th	r Arg Arg	Glu Thr 155	Gln Leu	M	et His G	Sly Asp Thr 5						
15	CCT AC	A TTG CAT	GAA TAT	ATG TTA	GAT TTG	CAA CCA	GAG ACA						
13		r Leu His	Glu Tyr	Met Leu	Asp Leu	Gln Pro	Glu Thr						
	20		10		15								
20	GAT CT	C TAC TGT	TAT GAG	CAA TTA	AAT GAC								
	570 Asp Le	u Tyr Cys		Gln Leu									
25			25		30	•							
	(2)	INFORMATI	ON FOR S	EQ ID NO	: 2								
	(i)	SEQUE	NCE CHAR	ACTERIST:	ics								
30		(A)	LENGTH:	483									
		(B)	TYPE: nucleic acid										
35		(C)	STRANDE	STRANDEDNESS: double									
		(D)	TOPOLOG	Y: line	ar								
40	(ii	i) HYPOT	HETICAL:	no									
20	(iv) ANTI-	SENSE:	no									
	(vi) ORIGI	NAL SOUR GANISM:	CE: Papovavi:	ridae, H	luman par	oilloma						
45	virus	(11)	-	-	·								
		(B) ST	RAIN: 18										
50	(vi	ii) POSIT (A) CH		ENOME /SEGMENT									
	(ix	:) FEATU	RE:	Portion	of wirel	σenome.	coding for						
	E6/E7 po	(A) NA lypeptide		FOLCION	OT ATTG	. genome	Couring Tor						
55													

		(x			LICA AUTH					-	Dano	s, O				
5	Com			•	TITL	E:	Nu	cleo	tide	Seq	uenc	e an	d			
5	,	_	tive mavi				An	alys	is o	f th	e Hu	man				
	rap	1110	nica v T	rus			Type 18 Genome.									
10			(C)	JOUR	NAL:	Jo	Journal of Molecular Biology								
			(D)	VOLU	ME:	19	193								
15			(E)	ISSU	E:										
	(F)				PAGE	S:	59	9-60	8							
			(G)	DATE	:	19	87								
20		(x:	i)	SEQ	UENC:	E DE	SCRI	PTIO	N: :	SEQ :	ID N	o: :	2			
	ATG	GCG	CGC	TTT	GAG	GAT	CCA	ACA	CGG	CGA	ccc	TAC	AAG	CTA	CCT	
25	45 Met	Ala	Arg	Phe	Glu 5	Asp	Pro	Thr	Arg	Arg 10	Pro	Tyr	Lys	Leu	Pro 15	
		CTG	TGC	ACG	GAA	CTG	AAC	ACT	TCA	CTG	CAA	GAC	АТА	GAA	ATA	
30	90 Asp	Leu	Cys	Thr	Glu 20	Leu	Asn	Thr	Ser	Leu 25	Gln	Asp	Ile	Glu	Ile 30	
	ACC 135	TGT	GTA	TAT	TGC	AAG	ACA	GTA	TTG	GAA	CTT	ACA	GAG	GTA	TTT	
35		Cys	Val	Tyr	Cys 35	Lys	Thr	Val	Leu	Glu 40	Leu	Thr	Glu	Val	Phe 45	
	GAA 180	TTT	GCA	TTT	AAA	GAT	TTA	TTT	GTG	GTG	TAT	AGA	GAC	AGT	ATA	
40		Phe	Ala	Phe	Lys 50	Asp	Leu	Phe	Val	Val 55	Tyr	Arg	Asp	Ser	Ile 60	
	CCG 225	CAT	GCT	GCA	TGC	CAT	AAA	TGT	ATA	GAT	TTT	TAT	TCT	AGA	ATT	
45	Pro	His	Ala	Ala	Cys 65	His	Lys	Cys	Ile	Asp 70	Phe	Tyr	Ser	Arg	Ile 75	
•	AGA 270	GAA	TTA	AGA	CAT	ТАТ	TCA	GAC	TCT	GTG	TAT	GGA	GAC	ACA	TTG	
50		Glu	Leu	Arg	His 80	Tyr	Ser	Asp	Ser	Val 85	Tyr	Gly	Asp	Thr	Leu 90	
	GAA 315	AAA	CTA	ACT	AAC	ACT	GGG	TTA	TAC	AAT	TTA	TTA	ATA	AGG	TGC	
55		Larc	Lon	Th~	λσπ	mb~	C1	T 011	(Te	7 ~~	T 033	T 011	τ1.	3	~	

					95					100					105
	CTG 360	CGG	TGC	CAG	AAA	CCG	TTG	AAT	CCA	GCA	GAA	AAA	CTT	AGA	CAC
5		Arg	Cys	Gln	Lys 110	Pro	Leu	Asn	Pro	Ala 115	Glu	Lys	Leu	Arg	His 120
	CTT 405	AAT	GAA	AAA	CGA	CGA	TTT	CAC	AAC	ATA	GCT	GGG	CAC	TAT	AGA
10	Leu	Asn	Glu	Lys	Arg 125	Arg	Phe	His	Asn	Ile 130	Ala	Gly	His	Tyr	Arg 135
	GGC 450	CAG	TGC	CAT	TCG	TGC	TGC	AAC	CGA	GCA	CGA	CAG	GAA	CGA	CTC
15	Gly	Gln	Cys	His	Ser 140	Cys	Cys	Asn	Arg	Ala 145	Arg	Gln	Glu	Arg	Leu 150
20			CGC Arg							TTAT	AΑ				
	(2)		INF	ORMA	rion	FOR	SEQ	ID 1	10:	3					
25		(i))	SEQ	JENCI	E CHA	ARAC'	reris	STICS	5					
			(2	A)	L	engti	I: 4	19							
30			·	B) C)		(PE: [RAN]			sir	id ngle					
			(1	D)	T	POLO	GY:	lir	near						
35	DNA	(i				E TYI		Othe	er ni	ıclei	ic a	cid,	synt	heti	ic
		(i:	ii)	HYPO	THE:	ricai	j: 1	10							
40		(iv	v)	ANT	I-SEI	NSE:	no								
45		(v :	ii) (2	IMMI E (A					ynthe	esize	er				
	bino	•	x) (i site	A) 1	NAME,	KEY:	: HPV	/15. owed	Phag by I	ge Ti	7 RNZ 16/18	A pol	lymei	case	
50		_	i)												
	AAT: 49	PTAA!	rac (GACT(CACT	AT AC	GGA(GCTT.	r TC	rtca(GAC	ACAG	GTGG(CT	

	(2)	INFORMATION FOR SEQ ID NO: 4
		(i) SEQUENCE CHARACTERISTICS
5		(A) LENGTH: 23
		(B) TYPE: nucleic acid
10		(C) STRANDEDNESS: single
10		(D) TOPOLOGY: linear
15	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
		(iii) HYPOTHETICAL: no
20		(iv) ANTI-SENSE: no
20		<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>
25		(ix) FEATURE: (A) NAME/KEY: HPV19.
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4
30	AATG'	TTTCAG GACCCACAGG AGC 23
	(2)	INFORMATION FOR SEQ ID NO: 5
		(i) SEQUENCE CHARACTERISTICS
35		(A) LENGTH: 24
		(B) TYPE: nucleic acid
40		(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
4 5	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
•		(iii) HYPOTHETICAL: no
50		(iv) ANTI-SENSE: no
•		<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>
55		(ix) PRAMIDE.

			(A) N	AME/KEY:	HPV20	•			
		(xi)	SEQU	ENCE DES	CRIPTIO	on:	SEQ I	O NO:	5
5	GAATO	STGTGT	ACTGC	AAGCA AC	AG				24
	(2)	IN	IFORMAT	ION FOR	SEQ ID	NO:	6		
10		(i)	SEQU	ENCE CHA	RACTER	[STI	cs		
			(A)	LENGTH	: 23				
			(B)	TYPE:	nuclei	ic a	cid		
15			(C)	STRAND	EDNESS:	: si	ingle		
			(D)	TOPOLO	GY: li	inear	r		
20		(ii)		CULE TYP			- 7	: a	
	DNA		(A) D	ESCRIPTIO	ON: OEI	ier i	nuciei	c acid,	, synthetic
25		(iii)	НҮРО	THETICAL	: no				
		(iv)	ANTI	-SENSE:	no				
30		(ix)	FEAT	URE: AME/KEY:	HPV29	•			

		(xi)	SEQUE	NCE DESCRI	PTION:	SEQ ID	NO:6		
	ATGC	ACAGAG	CTGCAA	ACAA CTA			23		
5	(2)	INE	FORMATIO	ON FOR SEQ	ID NO:	7			
		(i)	SEQUE	NCE CHARAC	TERISTI	cs			
10		((A)	LENGTH:	22				
		((B)	TYPE: nu	cleic a	cid			
	•	((C)	STRANDEDN	ESS: s	ingle			
15			(D)	TOPOLOGY:	linea	.r			
20	DNA			JLE TYPE: SCRIPTION:	Other	nucleic	acid,	synthetic	
		(iii)	HYPOTI	HETICAL:	no				
		(iv)	ANTI-	SENSE: no					
25		<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>							
30			FEATU (A) NAI	RE: ME/KEY: HP	V32.				
		(xi)	SEQUE	NCE DESCRI	PTION:	SEQ ID	NO:7		
35	CACT	CACTG	CAAGAC	ATAG AA			22		
	(2)	INI	FORMATIO	ON FOR SEQ	ID NO:	8			
4.0		(i)	SEQUE	NCE CHARAC	TERISTI	CS			
40			(A)	LENGTH:	46				
			(B)	TYPE: nu	cleic a	cid			
45			(C)	STRANDEDN	ESS: s	ingle			
			(D)	TOPOLOGY:	linea	ır			
50	DNA			ULE TYPE: SCRIPTION:	Other	nucleic	acid,	synthetic	
		(iii)	нүрот	HETICAL:	no				
55		(iz)	ANTT-	SENSE: DO					

		<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>						
5		(ix) FEATURE: (A) NAME/KEY: HPV48.						
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8						
10	AATT 46	PAATAG CACTCACTAT AGGGATGTGT CTCCATACAC AGAGTC						
15	(2)	(2) INFORMATION FOR SEQ ID NO:9						
13		(i) SEQUENCE CHARACTERISTICS						
		(A) LENGTH: 25						
20		(B) TYPE: nucleic acid						
		(C) STRANDEDNESS: single						
25		(D) TOPOLOGY: linear						
.22	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic						
30		(iii) HYPOTHETICAL: no						
		(iv) ANTI-SENSE: no						
35		(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer						
40		(ix) FEATURE: (A) NAME/KEY: HPV53.						
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9						
	GAAT	STGTGT ACTGCCAAGC AACAG 25						
45	(2)	INFORMATION FOR SEQ ID NO:10						
		(i) SEQUENCE CHARACTERISTICS						
50		(A) LENGTH: 49						
		(B) TYPE: nucleic acid						
55		(C) STRANDEDNESS: single						

	(D) TOPOLOGY: linear
5	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, syntheti DNA
	(iii) HYPOTHETICAL: no
10	(iv) ANTI-SENSE: no
	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>
15	(ix) FEATURE: (A) NAME/KEY: HPV54.
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10
20	AATTTAATAC GACTCACTAT AGGGAAAGGT GTCTAAGTTT TTCTGCTGG 49
	(2) INFORMATION FOR SEQ ID NO:11
25	(i) SEQUENCE CHARACTERISTICS
	(A) LENGTH: 21
30	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
35	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic DNA
	(iii) HYPOTHETICAL: no
40	(iv) ANTI-SENSE: no
45	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>
	(ix) FEATURE: (A) NAME/KEY: HPV69.
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11
	CTGAACACTT CACTGCAAGA C 21
55	(2) INFORMATION FOR SEQ ID NO:12

		(i) SEQUENCE CHARACTERISTICS
		(A) LENGTH: 23
5		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single
10		(D) TOPOLOGY: linear
10	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
15		(iii) HYPOTHETICAL: no
		(iv) ANTI-SENSE: no
20		(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer
		(ix) FEATURE: (A) NAME/KEY: HPV73.
25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12
	CAGT'	TATGCA CAGAGCTGCA AAC 23
30	(2)	INFORMATION FOR SEQ ID NO:13
		(i) SEQUENCE CHARACTERISTICS
35		(A) LENGTH: 23
33		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single
40		(D) TOPOLOGY: linear
	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
45		(iii) HYPOTHETICAL: no
		(iv) ANTI-SENSE: no
50		<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>
		(ix) FEATURE: (A) NAME/KEY: HPV74.
55		/

		(xi)	SEQUE	NCE DESCR	RIPTION:	SEQ II	NO:13	
	GTTA	TGCACA	GAGCTG	CAAA CAA			2	3
5	(2)	IN	FORMATI	ON FOR SI	EQ ID NO	0:14		
		(i)	SEQUE	NCE CHARA	CTERIST	rics		
10			(A)	LENGTH:	20			
			(B)	TYPE: r	ucleic	acid		
15			(C)	STRANDEL	NESS:	single		
15			(D)	TOPOLOGY	: line	ear		
20	DNA			ULE TYPE: SCRIPTION		nucleic	acid,	synthetic
		(iii)	нүрот	HETICAL:	no			
		(iv)	ANTI-	SENSE: n	0			
25				IATE SOUR BRARY:		thesizer		
30			FEATU (A) NA	RE: ME/KEY: H	PV77.			
		(xi)	SEQUE	NCE DESCR	IPTION:	SEQ ID	NO:14	
35	CAAG	CAACAG	TTACTG	CGAC			20	
	(2)	IN	FORMATI	ON FOR SE	Q ID NO	:15		
40		(i)	SEQUE	NCE CHARA	CTERIST	rics		
40		1	(A)	LENGTH:	20			
			(B)	TYPE: n	ucleic	acid		
45		•	(C)	STRANDED	NESS:	single		
		((D)	TOPOLOGY	: line	ar		
50	DNA			ULE TYPE: SCRIPTION	: Other	nucleic	acid,	synthetic
		(iii)	нүрот	HETICAL:	no			
55		(iv)	ANTI-	SENSE: n	0			

				DIATE SOU		nthesiz	er	
5		(ix)	FEAT	URE: AME/KEY: 1	HPV89.			
		(xi)	SEQUI	ENCE DESC	RIPTION	: SEQ	ID NO:1	5
10	AGCA?	ACAGTT	ACTGC	GACGT			2	0
	(2)	IN	FORMAT:	ION FOR S	EQ ID N	0:16		
15		(i)	SEQU	ENCE CHAR	ACTERIS	TICS		
			(A)	LENGTH:	23			
			(B)	TYPE:	nucleic	acid		
20			(C)	STRANDE	DNESS:	single	e	
			(D)	TOPOLOG	Y: lin	ear		
25	DNA	(ii)	MOLE(A) Di	CULE TYPE ESCRIPTION	: N: Othe	r nucle	eic acid	, synthetic
		(iii)	НҮРО'	THETICAL:	no			
30				-SENSE:				
			IMME	DIATE SOU	RCE:	nthesi	zer	
35		(ix)	FEAT					
		(xi)	, .	ENCE DESC		I: SEQ	ID NO:1	6
40	GCAC			CAACT ATA				23
	(2)	IN	FORMAT	ION FOR S	EQ ID N	10:17		
45		(i)	SEQU	ENCE CHAR	ACTERIS	TICS		
			(A)	LENGTH:	2	13		
50			(B)	TYPE:	nucleic	acid		
			(C)	STRANDE	DNESS:	single	e	
55	•		(D)	TOPOLOG	Y: lin	near		

	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
5		(iii) HYPOTHETICAL: no
,		(iv) ANTI-SENSE: no
		(vii) IMMEDIATE SOURCE:
10		(A) LIBRARY: DNA synthesizer
		(ix) FEATURE: (A) NAME/KEY: HPV91.
15		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17
	ACAGA	GCTGC AAACAACTAT ACA 23
20	(2)	INFORMATION FOR SEQ ID NO:18
		(i) SEQUENCE CHARACTERISTICS
25		(A) LENGTH: 51
25		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single
30		(D) TOPOLOGY: linear
	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
35		(iii) HYPOTHETICAL: no
		(iv) ANTI-SENSE: no
40		<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>
45		(ix) FEATURE: (A) NAME/KEY: HPV92.
40		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18
50	AATTT 51	AATAC GACTCACTAT AGGGACTTTT CTTCAGGACA CAGTGGCTTT T
	(2)	INFORMATION FOR SEQ ID NO:19
		(i) SEQUENCE CHARACTERISTICS
55		

		(A)	LENGTH:	50	
		(B)	TYPE: nucl	eic acid	
5		(C)	STRANDEDNES	S: single	
		(D)	TOPOLOGY:	linear	
10	(i	Li) MOLEC (A) DE		ther nucleic ac	id, synthetic
	(:	lii) HYPOT	HETICAL: n	0	
15	(:	lv) ANTI-	SENSE: no		
	(7		IATE SOURCE: BRARY: DNA	synthesizer	
20	(i	x) FEATU (A) NA	RE: ME/KEY: HPV9	3.	
	()	ci) SEQUE	NCE DESCRIPT	ION: SEQ ID NO	9:19
25	AATTTA 50	ATAC GACTCA	CTAT AGGGATT	TGC TTTTCTTCAG	GACACAGTGG
•	(2)	INFORMATI	ON FOR SEQ I	D NO:20	
30	(i	.) SEQUE	NCE CHARACTE	RISTICS	
		(A)	LENGTH:	50	
35		(B)	TYPE: nucle	eic acid	
		(C)	STRANDEDNES	S: single	
40		(D)	TOPOLOGY:	linear	
	DNA	(A) MOLEC		ther nucleic ac	eid, synthetic
45	(1	lii) HYPOT	HETICAL: n	o	
	(:	v) ANTI-	SENSE: no		
50	(7		IATE SOURCE: BRARY: DNA	synthesizer	
	(:	x) FEATU (A) NA	RE: ME/KEY: HPV9	4.	
55	(5	ci) SEQUE	NCE DESCRIPT	ION: SEO ID NO	20

	AATTTAATAC GACTCACTAT AGGGATCTTT GCTTTTCTTC AGGACACAGT 50					
5	(2) INFORMATION FOR SEQ ID NO:21					
	(i) SEQUENCE CHARACTERISTICS					
10	(A) LENGTH: 50					
	(B) TYPE: nucleic acid					
15	(C) STRANDEDNESS: single					
13	(D) TOPOLOGY: linear					
20	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic					
	(iii) HYPOTHETICAL: no					
25	(iv) ANTI-SENSE: no					
25	(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer					
30	(ix) FEATURE: (A) NAME/KEY: HPV95.					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21					
35	AATTTAATAC GACTCACTAT AGGGATGTCT TTGCTTTTCT TCAGGACACA 50					
	(2) INFORMATION FOR SEQ ID NO:22					
40	(i) SEQUENCE CHARACTERISTICS					
	(A) LENGTH: 50					
45	(B) TYPE: nucleic acid					
.,	(C) STRANDEDNESS: single					
	(D) TOPOLOGY: linear					
50	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic DNA					
	(iii) HYPOTHETICAL: no					
55						

	(iv) ANTI-SENSE: no
F	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>
5	(ix) FEATURE: (A) NAME/KEY: HPV96.
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22
10	AATTTAATAC GACTCACTAT AGGGAGATGT CTTTGCTTTT CTTCAGGACA 50
15	(2) INFORMATION FOR SEQ ID NO:23
	(i) SEQUENCE CHARACTERISTICS
20	(A) LENGTH: 23
20	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
25	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
30	DNA
	(iii) HYPOTHETICAL: no
	(iv) ANTI-SENSE: no
35	(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer
40	<pre>(ix) FEATURE: (A) NAME/KEY: HPV101.</pre>
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23
	AGAGCTGCAA ACAACTATAC ATG 23
45	(2) INFORMATION FOR SEQ ID NO:24
	(i) SEQUENCE CHARACTERISTICS
50	(A) LENGTH: 49
	(B) TYPE: nucleic acid
55	(C) STRANDEDNESS: single

			(D) TOPOLOGY: linear
5	DNA	(ii)	MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
		(iii)	HYPOTHETICAL: no
		(iv)	ANTI-SENSE: no
10		(vii)	IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer
15		(ix)	FEATURE: (A) NAME/KEY: HPV106.
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:24
20	AATT' 49	TAATAC	GACTCACTAT AGGGATTCAT GCAATGTAGG TGTATCTCC
	(2)	IN	FORMATION FOR SEQ ID NO:25
25		(i)	SEQUENCE CHARACTERISTICS
			(A) LENGTH: 49
20			(B) TYPE: nucleic acid
30			(C) STRANDEDNESS: single
			(D) TOPOLOGY: linear
35	DNA	(ii)	MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
40		(iii)	HYPOTHETICAL: no
		(iv)	ANTI-SENSE: no
45			IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer
		(ix)	FEATURE: (A) NAME/KEY: HPV107.
50		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:25
- -	AATT: 49	FAATAC	GACTCACTAT AGGGATATTC ATGCAATGTA GGTGTATCT
55	(2)	IN	FORMATION FOR SEQ ID NO:26

		(i) SEQUE	NCE CHARACTI	ERISTICS		
_		(A)	LENGTH:	23		
5		(B)	TYPE: nuc	leic acid		
		(C)	STRANDEDNE	SS: single	:	
10		(D)	TOPOLOGY:	linear		
	DNA	(ii) MOLEC (A) DE	ULE TYPE: SCRIPTION: (Other nucle	eic acid, s	synthetic
15		(iii) HYPOT	HETICAL: 1	no		•
		(iv) ANTI-	SENSE: no			
20		(vii) IMMED (A) LI	IATE SOURCE BRARY: DN		er	
25		(ix) FEATU (A) NA	RE: ME/KEY: HPV	118.		
25		(xi) SEQUE	NCE DESCRIP	rion: SEQ	ID NO:26	-
	AGCT	GCAAAC AACTAT	ACAT GAT		23	1
30	(2)	INFORMATI	ON FOR SEQ	ID NO:27		
		(i) SEQUE	NCE CHARACT	ERISTICS		
35		(A)	LENGTH:	49		
		(B)	TYPE: nuc	leic acid		
40		(C)	STRANDEDNE	SS: single	•	
40		(D)	TOPOLOGY:	linear		
45	DNA	(ii) MOLEC (A) DE	ULE TYPE: SCRIPTION: (Other nucle	eic acid, s	synthetic
		(iii) HYPOT	HETICAL:	no		
50		(iv) ANTI-	SENSE: no			
50		(vii) IMMED (A) LI	IATE SOURCE BRARY: DN		er	
		(ix) FEATU	RE:			

	(A) NAME/KEY: HPV120. Phage T/ RNA polymerase binding site at 5'end, followed by HPV-16/18 sequence.								
_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27								
5	AATTTAATAC GACTCACTAT AGGGATGCAA TGTAGGTGTA TCTCCATGC 49								
10	(2) INFORMATION FOR SEQ ID NO:28								
	(i) SEQUENCE CHARACTERISTICS								
	(A) LENGTH: 48								
15	(B) TYPE: nucleic acid								
	(C) STRANDEDNESS: single								
20	(D) TOPOLOGY: linear								
	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic DNA								
25	(iii) HYPOTHETICAL: no								
	(iv) ANTI-SENSE: no								
30	(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer								
35	(ix) FEATURE: (A) NAME/KEY: HPV129.								
33	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28								
	AATTTAATAC GACTCACTAT AGGGAAATGT AGGTGTATCT GGATGCAT 48								
40	(2) INFORMATION FOR SEQ ID NO: 29								
	(i) SEQUENCE CHARACTERISTICS								
45	(A) LENGTH: 23								
	(B) TYPE: nucleic acid								
50	(C) STRANDEDNESS: single								
20	(D) TOPOLOGY: linear								
55	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic DNA								

	((iii)	HYPOTI	HETICAL:	no		
-	((iv)	ANTI-	SENSE: no)		
5	. (IATE SOUR(BRARY: I		thesizer	
10	(FEATU (A) NAI	RE: ME/KEY: HI	PV131.		
	((xi)	SEQUE	NCE DESCRI	PTION:	SEQ ID NO): 29
15	AAACAA	CTAT	ACATGA'	TATA ATA		23	
	(2)	IN	FORMATI	ON FOR SE	ON DI	:30	
20	((i)	SEQUE	NCE CHARAC	CTERIST	ics	
20	•		(A)	LENGTH:	4	9	
			(B)	TYPE: nu	ıcleic	acid	
25			(C)	STRANDED	NESS:	single	
			(D)	TOPOLOGY	line	ar	`
30	DNA	(ii)	MOLEC (A) DE	ULE TYPE: SCRIPTION	: Other	nucleic ac	eid, synthetic
	((iii)	HYPOT	HETICAL:	no		
35	((iv)	ANTI-	SENSE: no	o		
	,	(vii)	IMMED	IATE SOURG	CE: ONA syn	thesizer	
40		(ix)	FEATU	RE:		71 m7 F	
	bindir	ng si					NA polymerase sequence.
	1	(xi)	SEQUE	NCE DESCR	IPTION:	SEQ ID NO	30
45	AATTT 4 9	AATAC	GACTCA	CTAT AGGG	AATGTA	GGTGTATCTC	CATGCATGA
50	(2)	IN	FORMATI	ON FOR SE	ON DI Q	:31	
		(i)	SEQUE	NCE CHARA	CTERIST	ics	
55			(A)	LENGTH:	49		

		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single
5		(D) TOPOLOGY: linear
	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
10		(iii) HYPOTHETICAL: no
		(iv) ANTI-SENSE: no
15		<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>
20		(ix) FEATURE: (A) NAME/KEY: HPV137.
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31
25	AATT. 49	PAATAC GACTCACTAT AGGGATGTAG GTGTATCTCC ATGCATGAT
	(2)	INFORMATION FOR SEQ ID NO:32
3.0		(i) SEQUENCE CHARACTERISTICS
30		(A) LENGTH: 21
		(B) TYPE: nucleic acid
35		(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
40	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
		(iii) HYPOTHETICAL: no
45		(iv) ANTI-SENSE: no
		<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>
50		(ix) FEATURE: (A) NAME/KEY: CAP245.
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32
E E	mcmx	መጥአ እርጥ ርጥር እ አል እርርር እ 21

	(2)	INFORMATION FOR SEQ ID NO:33	
5		(i) SEQUENCE CHARACTERISTICS	
		(A) LENGTH: 27	
		(B) TYPE: nucleic acid	
10		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
15	DNA	(ii) MOLECULE TYPE:(A) DESCRIPTION: Other nucleic acid, syntheti	С
20		(iii) HYPOTHETICAL: no	
20		(iv) ANTI-SENSE: no	
25		(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer	
		(ix) FEATURE: (A) NAME/KEY: CAP250.	
30		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33	
50	TGTA	TAACT GTCAAAAGCC AAAAAAA 27	
35	(2)	INFORMATION FOR SEQ ID NO:34	
3.5		(i) SEQUENCE CHARACTERISTICS	
		(A) LENGTH: 31	
40		(B) TYPE: nucleic acid	
	٠	(C) STRANDEDNESS: single	
45		(D) TOPOLOGY: linear	
	DNA	(ii) MOLECULE TYPE:(A) DESCRIPTION: Other nucleic acid, syntheti	.C
50		(iii) HYPOTHETICAL: no	
		(iv) ANTI-SENSE: no	
55		<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>	

		(ix)			: /KEY:	CAF	253.				
5		(xi)	SE	QUENC	E DES	CRIF	TION	: SEÇ	D	NO:34	
	TGTA	TAACT	GTC	AAAAG	CC AA	AAAA	AAAA	A	31		,
10	(2)	IN	FORM	ATION	FOR	SEQ	ID NO	0:35			
		(i)	SE	QUENC	E CHA	RACI	ERIS	rics			
15			(A)	I	ENGTH	:	2	24			
15			(B)	r	YPE:	nuc	leic	acid			
			(C) .	S	TRAND	EDNE	SS:	singl	.e		
20			(D)	r	OPOLO	GY:	line	ear			
	DNA	(ii)	MOI (A)	LECUI DESC	E TYP:	E: ON:	Othe	r nucl	.eic	acid,	synthetic
25		(iii)	HY	РОТНЕ	TICAL	:	no				
		(iv)	AN'	ri-se	NSE:	no					
30		(vii)			ATE SO			nthesi	.zer		
2.5		(ix)			: E/KEY:	CAI	265.				
35		(xi)	SE	QUENC	E DES	CRIE	MOIT	: SEÇ) ID	NO:35	
	GTAG	AGAAAC	CCA	GCTGT	'AA AA	AA			2	4	
40	(2)	IN	FORM	MOITA	I FOR	SEQ	ID N	0:36			
		(i)	SE	QUENC	E CHA	RACI	ERIS'	rics		•	
45			(A)	I	ENGTH	:	24				
			(B)	7	TYPE:	nuc	cleic	acid			
50			(C)	9	STRAND	EDNE	ESS:	sing	le		
30			(D)	7	ropolo	GY:	lin	ear			
55	DNA	(ii)	MO	LECUI DESC	LE TYP CRIPTI	E: ON:	Othe	r nucl	leic	acid,	synthetic

PCT/US94/05085

		(iii)	HYPOTHETICAL: no
5		(iv)	ANTI-SENSE: no
3		(vii)	IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer
10		(ix)	FEATURE: (A) NAME/KEY: CAP267.
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:36
15	GTGCC	TGCGG	TGCCAGAAAA AAAA 24
	(2)	IN	FORMATION FOR SEQ ID NO:37
20		(i)	SEQUENCE CHARACTERISTICS
			(A) LENGTH: 20
			(B) TYPE: nucleic acid
25			(C) STRANDEDNESS: single
			(D) TOPOLOGY: linear
30	DNA	(ii)	MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
		(iii)	HYPOTHETICAL: no
35		(iv)	ANTI-SENSE: no
		(vii)	IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer
40			FEATURE:

	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:37
	GACA	GTATTG GAACTTACAG 20
5	(2)	
		(i) SEQUENCE CHARACTERISTICS
10		(A) LENGTH: 21
		(B) TYPE: nucleic acid
1 =		(C) STRANDEDNESS: single
15		(D) TOPOLOGY: linear
20	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
		(iii) HYPOTHETICAL: no
•		(iv) ANTI-SENSE: no
25		(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer
30		(ix) FEATURE: (A) NAME/KEY: DET98.
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38
35	TTAG	AATGTG TGTACTGCAA G 21
	(2)	INFORMATION FOR SEQ ID NO:39
40		(i) SEQUENCE CHARACTERISTICS
40		(A) LENGTH: 21
		(B) TYPE: nucleic acid
45		(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
50	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
		(iii) HYPOTHETICAL: no
55		(iv) ANTI-SENSE: no

PCT/US94/05085

				IATE SOUBRARY:		synt	hesiz	er		
5 .			FEATU	RE: ME/KEY:	DET25	5.				
		(xi)	SEQUE	NCE DESC	CRIPTI	ON:	SEQ	ID :	NO:39	
10	CAACA	AGTTAC	TGCGAC	GTGA G		2	1			
	(2)	IN	FORMATI	ON FOR	SEQ ID	NO:	40			
15		(i)	SEQUE	NCE CHAI	RACTER	ISTI	CS			
			(A)	LENGTH	:	17				
20			(B)	TYPE:	nucle	ic a	cid			
20			(C)	STRAND	EDNESS	: s	ingle	:		
			(D)	TOPOLO	gy: l	inea	r			
25	DNA	(ii)		ULE TYPI SCRIPTIO		her :	nucle	ic	acid,	synthetic
		(iii)	нүрот	HETICAL	: no					
30		(iv)	ANTI-	SENSE:	no					
35		(vii)		IATE SOUBRARY:		synt	hesiz	er		
33			FEATU (A) NA	RE: ME/KEY:	DET 2	56.				
40		(xi)	SEQUE	NCE DES	CRIPTI	ON:	SEQ	ID :	NO:40	
40	TTAC	rgcgac	GTGAGG	T		17				
	(2)	IN	IFORMATI	ON FOR	SEQ ID	NO:	41		,	
45		(i)	SEQUE	NCE CHA	RACTER	ISTI	cs			
			(A)	LENGTH	:	18				
50			(B)	TYPE:	nucle	ic a	cid			
			(C)	STRAND	EDNESS	: s	ingle	;		
55			(D)	TOPOLO	GY: 1	inea	r			

	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
5		(iii) HYPOTHETICAL: no
		(iv) ANTI-SENSE: no
10		<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>
		(ix) FEATURE: (A) NAME/KEY: DET260.
15		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41
	GTATA	TTGCA AGACAGTA 18
20	(2)	INFORMATION FOR SEQ ID NO:42
		(i) SEQUENCE CHARACTERISTICS
25		(A) LENGTH: 20
2,5		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single
30		(D) TOPOLOGY: linear
	DNA	(ii) MOLECULE TYPE: (A) DESCRIPTION: Other nucleic acid, synthetic
35		(iii) HYPOTHETICAL: no
		(iv) ANTI-SENSE: no
40		<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: DNA synthesizer</pre>
45		(ix) FEATURE: (A) NAME/KEY: PHC271.
13		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42
	TGTC	TGCAA TATACAAAAA 20
50	(2)	INFORMATION FOR SEQ ID NO:43
		(i) SEQUENCE CHARACTERISTICS
55		(A) LENGTH: 21

	(B)	TYPE: nucleic acid
_	(C)	STRANDEDNESS: single
5	(D)	TOPOLOGY: linear
10	(ii) MOLECU (A) DES DNA	JLE TYPE: SCRIPTION: Other nucleic acid, synthetic
	(iii) HYPOTH	HETICAL: no
15	(iv) ANTI-S	SENSE: no
	(vii) IMMEDI (A) LIB	IATE SOURCE: BRARY: DNA synthesizer
20	(ix) FEATUR (A) NAM	RE: ME/KEY: PHC272.
	(xi) SEQUEN	NCE DESCRIPTION: SEQ ID NO:43
25	CTCACGTCGC AGTAAAA	AAAA A 21
	(2) INFORMATIO	ON FOR SEQ ID NO:44
30	(i) SEQUEN	NCE CHARACTERISTICS
30	(A)	LENGTH: 25
	(B)	TYPE: nucleic acid
35	(C)	STRANDEDNESS: single
	(D)	TOPOLOGY: linear
40	(xi) SEQUEN	NCE DESCRIPTION: SEQ ID NO:44
4 V	እአመመመእአመአር ሮእርሞሮእር	כיייאית אכיכיכא 25

I claim:

1	1. An assay of a patient specimen suspected of containing messenger
2	RNA encoded by at least one type of HPV associated with cervical
3	dysplasia, malignant cells, or pre-malignant cells comprising
4	(1) subjecting said specimen to nucleic acid amplification
5	by self sustained sequence replication utilizing two primers
6	separated by at least ten nucleotides, at least one such primer
7	containing a transcriptional promoter,
8	annealing the first said primer to its complementary
9	sequence on a target region of said messenger RNA, extending the 3'
10	end of said primer by action of a strand-extending polymerase in the
11	presence of cofactors and nucleotide triphosphates,
12	digesting the RNA strand of the nascent RNA/DNA
13	duplex with an enzyme RNAse H activity,
14	annealing the second said primer to its complementary
15	sequence on the resultant single stranded cDNA, primer extending
16	the 3' end of the primer by action of a strand-extending polymerase,
17	transcribing the double stranded DNA with a
18	transcriptase in the presence of nucleoside triphosphates, and
19	repeating the amplification utilizing the newly
20	synthesized transcripts as new targets,
21	(2) hybridizing in solution amplified messenger RNA to a
22	free biotinylated reagent capture probe have a sequence
23	complementary to a first segment of the amplified RNA to form a
24	reagent capture complex,
25	(3) attaching said capture complex to a solid phase by
26	reaction of the biotin residues of said capture probe with
27	streptavidin covalently bound to the surface of said phase,
28	(4) washing the bound capture complex to remove
29	unbound and unreacted reagents,
30	(5) hybridizing a virus type-specific reporter-conjugated
31	detection probe having a sequence complementary to a second

32	segment of the amplified RNA not overlapping the sequence of the
33	first such RNA segment to form a solid phase-bound capture probe-
34	target sequence-detection probe complex,
35	(6) washing the complex to remove unhybridized
36	detection probe, and
37	(7) adding a fluorogenic or chromogenic enzyme substrate
38	and reacting the conjugated enzyme to produce a detectable
39	fluorophor or chromogen.
1	2. An assay for detecting HPV in a cervical specimen associated with
2	cervical dysplasia or premalignant or malignant cells comprising
3	(1) amplifying target HPV messenger RNA encoding
4	sequences contained in the viral E6/E7 region which is contained in
5	said specimen by self sustained sequence replication,
6	(2) capturing said amplified messenger sequences by fluid
7	hybridization with a biotinylated capture probe having a sequence
8	complementary thereto,
9	(3) reacting said hybridized capture prove with a
10	streptavidin coated solid phase,
11	(4) washing to remove unbound hybridized capture probe,
12	(5) hybridizing a detection probe to said target sequence,
13	(6) washing said solid phase, and
14	(7) detecting the detecting probe.
1	3. An assay for detecting HPV in a cervical specimen associated with
2	cervical dysplasia or premalignant or malignant cells comprising
3	(1) coamplifying a plurality of oncogenic HPV type
4	messenger RNAs contained in said specimen and having sequences
5	encoding the respective E6/E7 genes of the HPV types or portions
6	thereof,

7	(2) capturing said amplified messenger sequences by fluid
8	hybridization with a biotinylated capture probe having a sequence
9	complementary thereto,
10	(3) reacting said hybridized capture probe with a
11	streptavidin coated solid phase,
12	(4) washing to remove unbound hybridized capture probe,
13	(5) hybridizing a detection probe to said target sequence,
14	(6) washing said solid phase, and
15	(7) detecting the detecting probe.

- 1 4. The assay of claims 1, 2, or 3 wherein said capture probes are selected
- 2 from the group consisting of CAP245, CAP250, CAP253, CAP265 and
- 3 CAP267.
- 1 5. The assay of claim 1 wherein the human papillomavirus-16 primers
- 2 for self sustained sequence replication are selected from the group of
- 3 primer pairs consisting of HPV 16: 120-29, 120-90; 15-19, 15-20, 15-77, 15-53,
- 4 15-89, 15-29; 129-29, 129-74, 129-73, 129-118, 129-130, 129-131; 136-91, 136-29,
- 5 136-90, 136-74, 136-73, 136-130; 137-29, 137-90, 137-74, 137-73, 137-118; 93-73;
- 93-91; 85-77; 95-101, 95-91; 96-91, 96-73; 136-131; 94-91. 6
- 1 6. The assay of claims 1, 2, or 3 wherein said detection probes are
- 2 selected from the group consisting of DET256, DET255, DET98 and DET260.
- 1 7. Primer pairs for self sustained sequence amplification of the E6/E7
- 2 region of HPV-16 associated with cervical dysplasia or premalignant or
- 3 malignant cervical cells consisting of: 15-19, 15-20, 15-77, 15-53, 15-89, 15-29;
- 136-91, 136-29, 136-90, 136-74, 136-73, 136-130, 136-131, 136-118; 96-91, 96-73;
- and 94-91. 5
- 8. Capture probes for capturing amplified RNA target sequences of the 1
- 2 HPV E6/E7 region consisting of CAP265 and CAP267.

- 1 9. Detection probes hybridizing to the E6/E7 region of HPV consisting
- 2 of enzyme-conjugated probes having the sequence of DET256, DET255,
- 3 DET98 and DET260.
- 1 10. Primer pairs for self sustained sequence amplification of the E6/E7
- 2 region of HPV-18 associated with cervical dysplasia or premalignant or
- 3 malignant cervical cells consisting of: 54-69, 54-70, 54-32.
- 1 11. The assay of claim 1 wherein the HPV-18 primers for self sustained
- 2 sequence replication are selected from the group of primer pairs consisting
- of: 54-32, 54-69, 54-70; 48-32; 214-69, 214-244, 214-214, 214-70.
- 1 12. A kit for detection of HPV associated with cervical dysplasia,
- 2 premalignant or malignant cervical cells comprising any of the primer
- 3 pairs of claims 7 or 10, any of the capture probes of claim 8, and any of the
- 4 detection probes of claim 9.
- 1 13. The assay of claim 1 wherein said nucleic acid amplification by self
- 2 sustained sequence replication is performed at an elevated temperature of
- 3 about 50°C in the presence of a thermal protection agent.
- 1 14. The assay of claim 2 wherein said amplifying of said target RNA is
- 2 performed at an elevated temperature of about 50°C in the presence of a
- 3 thermal protection agent.
- 1 15. The assay of claim 3 wherein said coamplifying of said plurality of
- 2 RNAs is performed at an elevated temperature of about 50°C in the
- 3 presence of a thermal protection agent.

- 1 16. The assay of claim 1 wherein said patient sample is suspected of
- 2 containing messenger RNA encoded by the E6/E7 splice region of human
- 3 papillomavirus 16 or 18.
- 1 17. The assay of claim 2 wherein said viral E6/E7 region is from HPV 16
- 2 or 18.
- 1 18. The assay of claim 3 wherein said sequences encoding the E6/E7
- 2 genes are specific for the E6/E7 splice region of HPV 16 or 18.

Fig.1

	T	ATG M		CAA Q	AAG K	R	ACT T	A	ATG M	TTT F	CAG Q	GAC D	CCA P	CAG Q	GAG E	CG R	126
	A ,	CCC P	AGA R	AAG K	TTA L	CCA	HPV9 CAG Q	TTA	TGC C	<u>aca</u> T	Ė	L	u	ı	<u>act</u> T	AT \	_171
	A	CAT		ATA	ATA	ΤΤΔ	GAA E	TRT	GTG	TAC	TGC	AAG	CAA	CAG	TTA		_216
 ~	G	<u>CGA</u> R	CGT R	GAG E	GTA V	TAT Y NH	GAC D	TTT F	GCT A	TTT F	CGG R	GAT D	TTA L	TGC C	ATA I	GT V	261
	A	TAT Y	AGA R	GAT D	GGG G	AAT	CCA P	TAT Y	GCT A	GTA V	TGT C	GAT D	AAA K	TGT C	TTA L	AA K	306
	G	TTT F		TCT S	AAA K	ATT I	AGT S	GAG E	TAT Y	AGA R	CAT H	TAT Y	TGT C	TAT Y	AGT S	TT L	351
	G		GGA G	ACA T	ACA T	TTA L	GAA E	CAG Q	CAA Q	TAC	AAC N	AAA K	CCG P	TTG L	TGT C	GA D	396
		L	L	I	R	C	ATT	N	C	a	K	Р	L	U	P	E	441
		E	K	0	R	H	CTG L	D	K	K	a	R	r	н	N	i	486
i.		R	G 2265.	R	W	Ţ	GGT G	R	C HPV	м 136-	้ ว	L	L	AGA R	TCA S	S	531
	· A	AG/ R	A AC/	A C <u> G1</u> R	R	E	T ACC	a	L	•	ક્	~ AA	AAAA	 Bioti	N		565
_	-∕∿	M	H	G	D	T	P	T	r.	\H PBS	:	Y	M	L	U	TTG L	606
		CA Q	A CC	A GAI	G AC	A AC	T GAT	CTI L	C TAI	CTGT	TAT	F GA	G CA/	A TT/	N N	T GAC D	651

	GCG A			Ε				CGG R	-		TAC Y	AAG K		CCT P	162
D	CTG L	C	ACG	GAA									GAA E	ATA I	207
	260- TGT C	GTA	<u>TAT</u> Y			ACA T	GTA V	L	GAA E	CTT L	ACA T	GAG E	GTA V	TTT F	252
GAA E	TTT F	GCA A	TTT F	_	GAT D			'NH ₂ GTG V					AGT S	ATA I	297
	CAT H						_		GAT D	TTT F		TCT S	AGA R	ATT I	342
AGA R	GAA E						GAC D			TAT Y	G	D	ACA T	TTG L	387
GAA E	AAA K	CTA L				G	L	Y	AAT N	TTA L	CAP2 TTA L	ATA	AGG R	TGC ~	432
	CGG R	TGC C	CAG Q	\overline{K}	P	TTG L	N	CCA P	GCA A	GAA E	AAA K	CTT L	AGA R	CAC 1	477
	AAT N		AAA K	CGA	'AAA CGA R	Ш	CAC	AAC		GCT A		CAC H		AGA R	522
GGC G	CAG Q		CAT H		TGC C		_			CGA R		GAA E	CGA R	CTC L	567
	CGA R		AGA R		ACA T	CAA Q	GTA V		TAT Y	TAA •					600

IOAM SI HO 2500 H2M Fig.4 6-7μg/λ T 7 2500 10% DMS0 8.6 BUFFER 15% SORB. 10/3 PAULSXT 90 129 130 90 120 30 136 113 29 90 137 30 455118 29 106 107 118

75 LSI217

16100FM 134-b 136-90 136-74 136-73 HC-144 98 2PM 0.193 0.532 0.584 2.932 0.093

SUBSTITUTE SHEET (RULE 26)

5/20

SUBSTITUTE SHEET (RULE 26)

6/20

Fig.6

Fig. 7

2hr 3SR TEMP AT 45°C 18 BB 33 O/N

SUBSTITUTE SHEET (RULE 26)

Fig. 8

	•		70°C 1,5HR.
•	BB 51		
3.0 UNIT	20 UNIT	I.O UNIT	HELA 20 <i>uq</i>
			32-54 #1
contention.			- T
			32-54 #1 15µDNASE
Visionity			32-54 #1
			15µDNASE 32-54#2
'צני			-T
			32-54#2 DNAse
3.0 _M	2.0m	1.0m	32-54 SİHQ HELA PRIMERS
			DNASE
3.0 _M	2.Ou	1.0m	SiHa 29-15S
•		•	DNASE

SI Ha 29-15	10%DMSO 10%PEG 10%GLY.
-T 29-15	10%DMSO 10%PEG 10%GLY.
Si Ha 29-15	NO ADD + DNASE
29-15 -T 29-15	
HELA	10%DMSO 10%PEG 10% GLY.
54-32 -T	10%DMSO 10%PEG 10%GLY.
HELA 54-32	NO ADD DNASE
-T	SUBSTITUTE SHEET (RULE 26)

9/20 **Fig. 12**

Fig. 13

SUBSTITUTE SHEET (RULE 26)

PCT/US94/05085

10/20

Fig. 14

DETECTOR HYBRIDIZATION OPTIMUM USING CAPTURE 240

Fig. 15

DETECTOR HYBRIDIZATION OPTIMUM
USING CAPTURE 250

11/20

Fig. 16

HPV CAPTURES AND DETECTORS

Fig. 17

HPVI6 DETECTOR HYBRIDIZATION TEMPERATURE
CAPTURE 250

12/20

Fig. 18

HPVI6 DETECTOR HYBRIDIZATION TEMPERATURE CAPTURE 250

	PROTOCOL: MODE: ENDPOINT WAVELENGTH: 450								CALIBRATION: ON			
1-6 96-91 1:200 6-12 1 OPTICAL DENSITY									37-91			
PEG A	1 255-31 0.477	2 NH ₂ 0.667	3 0.450	98	5 0.242	256		255		98		256
5%		0.033										•
1% C BSA	0.418	0.500	0.240	0.349	0.155	0.128	2.709	2.003	0.839	0.551	2.051	1.93
-T D		0.032										
1% BS	Α	0.625										
		0.031				•						
0.1%	VP 5	1.133 0.035										

	PR	101	OCOL: Mode:	ENDPO		3 OPTINI	ZATION AUTON					THU SEP 03 1992 11:33 AM CALIBRATION: ON			
١	WAV	ELI	ENGTH:	450											
١	1:20	0	-	256 -		-		<u> </u>		-	-		255-		
	Final		1	2	3	4	5	6	7 18 D	8 50110	9 0	10 5%P	11 1%B	12 5P/1B	
-			0	5%P	1%B	5P/1BS	U	אמלכ	1705	סווזכ	U	376	טוק ו	31710	
	96-9	1A	0.234	0.865	0.358	0.676	0.234	0.425	0.307	0.449	0.507	1.742	1.670	2.060	
	-Т	В	0.040	0.293	0.095	0.278	0.043	0.041	0.280	0.135	0.069	1.874	1.404	2.020	
		C	0.545	1.269	0.747	1.313	0.266	0.586	0.344	0.523	0.632	1.547	1.396	1.908	
	τ.	D	0.038	0.429	0.128	0.359	0.051	0.042	0.042	0.052	0.039	1.474	1.123	1.359	
		E	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		F	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		G	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000	0.000	0.000	
		Н	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			STOP /	PLATE DET 0-	20' - 30% (250, 55 SLYCERO	L, 0.1%	PVP, 1	% BSA, !						
				1%B-	1% BS/	i, 0.1%P' A, 0.1% i	PVP, 5×	55c							
				5P/1B	- 5% PE	G, 1% B	SA, 0.1	% PVP,	5×55C						

16/20

Fig. 22

RAW DATA

	PROTOCOL:													TUES. JAN 12 1993 7:46 PM			
l	WAV		MODE: Ength:	ENDPO	INT			AUIUN	AIX: ON				CALIBRATION: ON				
	-un		Linu:				OPTICAL DENSITY										
			1	2	6 3	4	267 - 5	6	7	8	9	10	11	12			
	59	A	0.038	0.988	0.087	1.762	0.067	0.036	0.000	0.000	0.000	0.000	0.000	0.000			
ĺ	260	В	0.033	1.129	0.033	2.621	0.037	0.031	0.000	0.000	0.000	0.000	0.000	0.000			
	262	C	0.034	0.712	0.036	2.153	0.037	0.031	0.000	0.000	0.000	0.000	0.000	0.000			
	268	D	0.037	0.919	0.037	2.311	0.038	0.037	0.000	0.000	0.000	0.000	0.000	0.000			
İ	269	E	0.027	0.727	0.036	1.718	0.040	0.034	0.000	0.000	0.000	0.000	0.000	0.000			
	270	F	0.026	0.237	0.038	0.662	0.040	0.030	0.000	0.000	0.000	0.000	0.000	0.000			
		G	0.034	0.037	0.036	0.040	0.034	0.033	0.000	0.000	0.000	0.000	0.000	0.000			
		Н	0.029	0.120	0.038	0.039	0.038	0.034	0.000	0.000	0.000	0.000	0.000	0.000			

Fig. 23

RAW DATA

	DATA FILE: I DESCRIPTION: PROTOCOL: MODE: WAVELENGTH:	HPV 16 / Endpoil	AND 18	PLATE		AUTOM	IIX: ON	THU. JAN 14 1993 5:49 PM CALIBRATION: ON					
•	177220000		PTUR	ES	OPTICA	L DENS 18	ITY						
	1	2	3	_4	5	6	7	8	9	10	11	12	
	BLANK A 0.038	' 267 <i>/</i> n 179	250 0.208	-) 0 035	0.035	267 0.041	0.041	0.365	.50 0.368	0.046	98	·	
	,, 0.000							1 170	1 274	ภ กจร	255		D
	В					0.040							투
	C	0.454	0.408	0.036	0.041	0.049	0.040	0.778	0.754	0.059	256		Ę
	D	2.367	2.429	0.035	2.619	2.626	0.038	0.039	0.043	0.040	260		DETECTORS
	E	2.607	2.593	0.035	2.724	2.695	0.039	0.527	0.524	0.038	98, 260		Ř
	F	2.842	2.742	0.047	2.729	2.773	0.040	1.427	1.537	0.174	255, 260		
	G	2.781	2.799	0.043	2.894	2.804	0.097	1.034	1.054	0.125	256, 260		
	Н	0.041	0.042	0.038	0.042	0.042	0.044	0.039	0.056	0.043			

18/20

Fig. 24

HPV EPA
CONCENTRATION VS SIGNAL

Fig. 25

BIOTINYLATED CAPTURE OLIGO

SUBSTITUTE SHEET (RULE 26)

STREPTAVIDIN

Fig. 26

20/20

Fig. 27

SUBSTITUTE SHEET (RULE 26)