- 8.1. Пусть μ комплексная мера на алгебре $\mathscr A$ подмножеств множества X.
- 1) Докажите, что ее вариация $|\mu|$ также является мерой.
- **2)** Докажите, что если μ σ -аддитивна, то и $|\mu|$ σ -аддитивна.
- **8.2.** Пусть μ комплексная мера на алгебре \mathscr{A} подмножеств множества X. Назовем подалгебру $\mathscr{B}\subset\mathscr{A}$ плотной относительно μ , если для каждого $A\in\mathscr{A}$ и каждого $\varepsilon>0$ найдется такое $B \in \mathscr{B}$, что $|\mu|(A\triangle B) < \varepsilon$. Докажите, что если \mathscr{B} плотна в \mathscr{A} относительно μ , то для любого $B \in \mathscr{B}$ справедливо равенство $|\mu|(B) = |\mu|_{\mathscr{B}}|(B)$.
- 8.3. Восполните детали в доказательстве теоремы Хильдебрандта-Канторовича об изометрическом изоморфизме между $M(\mathscr{A})$ и $B_{\mathscr{A}}(X)^*$ (см. лекцию).
- **8.4. 1)** Докажите, что каждая функция из $C^1[a,b]$ имеет ограниченную вариацию.
- **2)** Приведите пример непрерывной функции на [a,b] неограниченной вариации.
- **3)** Приведите пример дифференцируемой функции на [a,b] неограниченной вариации.
- 8.5. Пусть φ кусочно постоянная функция на [a,b]. Как устроена соответствующая ей мера Лебега-Стилтьеса?
- **8.6.** Пусть φ функция ограниченной вариации на [a,b], непрерывная справа на (a,b) и такая, что $\varphi(a) = 0$. Пусть μ_{φ} — соответствующая ей мера Лебега—Стилтьеса. Вычислите (в терминах функции φ) значения μ_{φ} на всевозможных интервалах, полуинтервалах, отрезках и одноточечных множествах.
- 8.7. Докажите σ -аддитивность меры Лебега-Стилтьеса на алгебре подмножеств отрезка [a,b], порожденной отрезками [a, t] $(a < t \le b)$.
- **8.8.** Для каждого из следующих функционалов f на пространстве C[-1,1] опишите соответствующую меру $\mu \in M[-1,1]$ и функцию ограниченной вариации $\varphi \in BV_0[-1,1]$. Вычислите вариацию $V_{-1}^1(\varphi)$ и убедитесь, что она равна ||f||.
- 1) f(x) = x(-1); 2) f(x) = x(-1/2) + 2x(0) + 3x(1/2); 3) f(x) = x(-1/2) x(1/2); 4) $f(x) = \int_{-1}^{1} tx(t) dt;$ 5) $f(x) = \int_{-\varepsilon}^{\varepsilon} x(t) dt;$ 6) $f(x) = x(-1) 2\int_{-1}^{1} x(t) dt + 3x(0).$
- **8.9.** Пусть (X,μ) пространство с мерой. Зафиксируем $f \in L^1(X,\mu)$ и обозначим через ν_f комплексную меру с плотностью f относительно μ . Докажите, что $\|\nu_f\| = \|f\|_1$.
- **8.10.** Для каждых $\lambda=(\lambda_0,\ldots,\lambda_{n-1})\in\mathbb{K}^n$ и $\mu\in M[a,b]$ обозначим через $F_{\lambda,\mu}$ линейный функционал на пространстве $C^n[a,b]$, заданный формулой

$$F_{\lambda,\mu}(f) = \sum_{k=0}^{n-1} \lambda_k f^{(k)}(a) + \int_a^b f^{(n)} d\mu.$$

Докажите, что $(\lambda, \mu) \mapsto F_{\lambda, \mu}$ — топологический изоморфизм между $\mathbb{K}^n \oplus M[a, b]$ и $C^n[a, b]^*$.

- **8.11-b** (представляющие меры). Пусть $K \subset \mathbb{C}$ компакт и $\mathscr{A}(K)$ подалгебра в C(K), состоящая из функций, голоморфных во внутренности K и непрерывных на K.
- 1) Пусть $z_0 \in K$. Докажите, что существует вероятностная борелевская мера μ на ∂K , такая, что для каждой функции $f \in A$ справедлива формула $f(z_0) = \int_{\partial K} f \, d\mu$.
- **2)** (мера Пуассона). Найдите меру μ из п. 1 в явном виде для случая, когда $K = \{z \in \mathbb{C} : |z| \leqslant 1\}$ — замкнутый единичный круг. (Указание: в этом случае μ абсолютно непрерывна относительно меры Лебега на окружности; найдите явную формулу для ее плотности.)
- 3) Докажите, что для круга K мера Пуассона из п. 2 это единственная вероятностная борелевская мера, удовлетворяющая условиям п. 1. (Указание: можно воспользоваться теоремой Вейерштрасса, согласно которой любая непрерывная функция f на $[-\pi,\pi]$, удовлетворяющая условию $f(-\pi) = f(\pi)$, равномерно аппроксимируется тригонометрическими многочленами.)