Avocado Classification and Price Prediction

Emily Ubbelohde

Avocado Advocates

Gather Sales from GrocersQuantities of each individual PLU and Bags sold

Organic and Conventional

Predict Prices
For each type of avocado in each region

Partner with Local Farmers
To entice them to grow avocados

Data and Workflow

- O1 Gather Data from Hass Avocado Board
- **02** Build and Tune Classification Model
- Use Classification Model to populate Type
- **04** Build and Tune Price Prediction Model

Avocado Classification Baseline

KNN Confusion Matrix for N = 1

Score on Validation Set:

99.36%

Avocado Classification Final Model

Modeling using XGBoost

Score on Validation Set:

99.78%

Avocado Classification Using XGBoost

Most Important Features

- Qty. Sold XL Bags
- Qty. Sold 4046 Units
- Total Units Sold

Data and Workflow

- O1 Gather Data from Hass Avocado Board
- **02** Build and Tune Classification Model
- Use Classification Model to populate Type
- **04** Build and Tune Price Prediction Model

Avocado Price Prediction

Random Forest

The best model was a Random Forest that contained all features

Most Important Features

- Type Prediction
- Qty. 4225 Units Sold
- Qty. 4046 Units Sold

Score on Validation Data

 $R^2 = .848$

Conclusions

Most Important Features

- Qty. Sold XL Bags
- Qty. Sold 4046 Units

- Type Prediction
- Qty. 4225 Units Sold
- Qty. 4046 Units Sold

 $R^2 = .927$

Random Forests was the best model for Price Prediction

Future Work

Continue to gather more data and reevaluate both models for accuracy

Add coordinates to location data

Build an interactive dashboard for price prediction

