

Computational Intelligence

Subject8: Fuzzy Logic and Inference

Instructor: Ali Tourani

A.Tourani1991@gmail.Com

Agenda

- Classical logic
- Multi-valued logic
- Fuzzy logic
- Linguistic hedges
- Fuzzy inference

- "Liar Paradox" in philosophy and logic
 - David: "I said in my alarm, Every man is a liar!"
 - ▶ If true, then David also is lying because he is a man!
 - ▶ If he too is lying, the statement consequently is not true!

Find the true statement and get a free beer!

The statement in the right box is true.

The statement in the left box is false.

Important concepts

Title	Description	
Logic	Concluding based on some statements/propositions	
Proposition	A statement than can be true or false	
Propositional Logic	The logic based on a combination of several propositions	
Logic Variable	The variable introducing a proposition	
Logic Function	The function operating on one/several LV(s)	

Primitive

- ▶ Performs a logical operation
- Samples: OR, NOT, AND, Implication, etc.
- ► **Functional completeness**: a set of operators which can be used to express all possible truth tables by combining its members

Propositional Formula

▶ A type of syntactic formula which is well formed and has a truth value

$$(A \ and \ B) \ or \ (C \ and \ D) \rightarrow E$$

Tautology

▶ A formula or assertion that is <u>true</u> in every possible interpretation

Contradiction

▶ A formula or assertion that is <u>false</u> in every possible interpretation

а	b	$(a \rightarrow b)$	$(a \land (a \rightarrow b))$	$(a \land (a \rightarrow b)) \rightarrow b$	
0	0	1	0	1	
0	1	1	0	1	
1	0	0	0	1	
1	1	1	1	1	

Tautology

Boolean Algebra

Law/Theorem	Law of Addition	Law of Multiplication
Identity Law	x + 0 = x	$x \cdot 1 = x$
Complement Law	x + x' = 1	$x \cdot x' = 0$
Idempotent Law	x + x = x	$x \cdot x = x$
Dominant Law	x + 1 = 1	$x \cdot 0 = 0$
Involution Law	(x')' = x	
Commutative Law	x + y = y + x	$x \cdot y = y \cdot x$
Associative Law	x+(y+z) = (x+y)+z	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$
Distributive Law	$x \cdot (y+z) = x \cdot y+x \cdot z$	$x+y\cdot z = (x+y)\cdot (x+z)$
Demorgan's Law	$(x+y)' = x' \cdot y'$	$(x \cdot y)' = x' + y'$
Absorption Law	$x + (x \cdot y) = x$	$x \cdot (x + y) = x$

Set Theory

Identity	Name
$A \cup \emptyset = A$ $A \cap U = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Isomorphism

► If there are equivalent concepts in different systems

Operator	Propositional Logic	Boolean Algebra	Set Theory
Union	U	+	V
Intersection	Λ	•	٨
Empty set	Ø	o	o
Subsequence	⊆	≤	→

Propositions, Subjects, and Predicates

Iran is in the north-west of Asia

Subject

Predicate

The predicate

- Must contain a verb
- Applies on the subject
- ► Is a characteristic/set indicator function

Subject is the person Predicate indicates or thing performing the action the action performed by the subject Contains the verb, Usually a noun, pronoun or noun objects, and other phrase elements Usually precedes Usually comes the predicate after the subject Pediaa.com

- Predicate other properties
 - Extendable for more than one variable

X is a student of the class.

X = { Mohammadi, Rezaee, Alizadeh}

Extendable using existential and universal quantifiers

$$\exists x \ P(x) = \bigvee P(x) \qquad \text{"there exists", "there is at least one", or "for some"}$$

$$\forall x \ P(x) = \bigwedge P(x)$$
 "given any" or "for all"

Predicate Logic

Covers more concepts, including:

- ► Constants, like "Ali" or 100
- ► Variables, like x and y
- Predicates
- Universal and existential quantifiers
- Functions to describe objects

Inference

 $(a \to b) \equiv (-a \lor b)$

Modus Ponens

$$P \rightarrow Q$$

P

Q

Modus Tollens

$$P \rightarrow Q$$

-Q

-P

Chain Rule

$$P \rightarrow Q$$

 $Q \rightarrow R$

 $P \rightarrow R$

If it is Tuesday, I will go to the gym Today is Tuesday So, I will go to the gym If it is Tuesday, I will go to the gym Today I didn't go to the gym So, it is not Tuesday If it is Tuesday, I will go to the gym If I go to the gym, I will see Joe So, If it is Tuesday, I will see Joe

Multi-valued Logic

- Classical Logic has two outcomes: true or false
- Based on the Heisenberg's uncertainty principle
- ► Three-valued logic:
 - Including: True, False, and Unsure

Multi-valued Logic

Three-valued logic

(F, false; U, unknown; T, true)

Multi-valued Logic

Multi-valued logic by Lukasiewicz

Members have a degree of truth

$$T_n = \{0, \frac{1}{n-1}, \frac{2}{n-1}, \dots, \frac{n-2}{n-1}, 1\}$$

Lukasiewicz Isomorphism

- ► Multi-valued logic → Fuzzy set
- ▶ Binary-valued element → Crisp set

Daniele Mundici

Advanced
Łukasiewicz
calculus
and MV-algebras

Here, instead of true/false, the membership degrees are used

Different types of propositions

- Unconditional and unqualified
- Unconditional and qualified
- Conditional and unqualified
- Conditional and qualified

Unconditional and unqualified

The temperature is very high today

 $P: \mu \text{ is } F$

P = a fuzzy preposition

 $\mu = a \ variable \ of \ a \ universal \ set \ V$

 $\mathbf{F} = a fuzzy set on V$

$$T(P) = F(v)$$

T(P) = the degree of truth of P

F(v) = the membership grade of F

Unconditional and unqualified

Unconditional and qualified

The possibility of rain is 20%, which is ignorable!

 $P: \mu \text{ is } F \text{ is } S$

P = a fuzzy preposition

 $\mu = a \ variable \ of \ a \ universal \ set \ V$

 $\mathbf{F} = a fuzzy set on V$

S = a fuzzy truth qualifier

$$T(P) = S(F(v))$$

T(P) = the degree of truth of P

F(v) = the membership grade of F

Unconditional and qualified

Joe is 25, which makes him suitable for the job!

$$v = 25$$

F(25) = 0.8 in highly suitable

$$F(25) = 0.9$$
 in suitable

Unconditional and qualified

Unconditional and qualified

Conditional and unqualified

If the temperature is low, then the speed of the fan is high!

P: *if X is A*, *then Y is B*

P = a fuzzy preposition

X&Y = variables of universal sets

A&B = fuzzy sets on X and Y

$$R(x, y) = \gamma[A(x), B(y)]$$

$$R(x,y) = a fuzzy set on X * Y$$

Conditional and unqualified

• Consider these two Fuzzy numbers with a relation as γ :

$$A = \frac{0.1}{x_1} + \frac{0.8}{x_2} + \frac{1}{x_3} \qquad B = \frac{0.5}{y_1} + \frac{1}{y_2} \qquad \gamma[A(x), B(y)] = \min(1, 1 - a + b)$$

Thus:

$$R(x,y) = \gamma[A(x),B(y)] = \frac{1}{x_1y_1} + \frac{1}{x_1y_2} + \frac{0.7}{x_2y_1} + \frac{1}{x_2y_2} + \frac{0.5}{x_3y_1} + \frac{1}{x_3y_2}$$

$$min(1, 1-(0.1)+0.5)$$
 for x1 and y1 = 1

$$min(1, 1-(0.8)+0.5)$$
 for x1 and y1 = 1

Conditional and qualified

A combination of the previous methods ...

If the temperature is low, then "the fan speed becomes 25rpm" is a good choice!

If Joe is young, then "his age is 20" is a true sentence!

Linguistic Hedges

How to extend the propositions?

- Using some simple tools, called LH
 - Allows speakers and writers to signal caution, or probability
 - ► Samples: Very, more, less, often, rather, etc.

Joe likes to do the job himself

Joe often likes to do the job himself

Joe often likes to do most of the jobs himself

Linguistic Hedges

Important notes:

- ► LHs can be applied on Fuzzy sets, not Crisp sets
 - ► Sample: The line is too straight !?!?
- Use "power" for some words like "often" or "very"
- Use "Square root" for some words like "sometimes" or "little"

The temperature is very high today

$$v = 32 \rightarrow F(32) = 0.8 \rightarrow T(P) = 0.8$$
 Very high $T(P) = 0.8^2 = 0.64$ Very high $T(P) = \sqrt{0.8} = 0.89$ A little high

Based on the Classical sets inference rules

$$(a \to b) \equiv (-a \lor b)$$

Modus Ponens

$$P \rightarrow Q$$

P

Q

Modus Tollens

$$P \rightarrow Q$$

-Q

-P

Chain Rule

$$P \rightarrow Q$$

 $Q \rightarrow R$

 $P \rightarrow R$

If it is Tuesday, I will go to the gym Today is Tuesday So, I will go to the gym If it is Tuesday, I will go to the gym Today I didn't go to the gym So, it is not Tuesday If it is Tuesday, I will go to the gym If I go to the gym, I will see Joe So, If it is Tuesday, I will see Joe

Modus Ponens (Classical)

- ▶ **Rule:** if *P* is true, then *Q* is concluded
- ▶ **Phases:** observation and conclusion
- No new knowledge is produced (exact inference)

If Joe passes the exam, he will get the job *Observation:* Joe passed the exam *Conclusion:* He will get the job

Modus Ponens (Fuzzy)

▶ **Rule:** if *P* is true, then *Q* is concluded

▶ **Phases:** observation and conclusion

New knowledge is produced

► The outcome is not definite (approximate inference)

if X is A then Y is B
X is A'

 $\overline{Y is B'}$

If Joe study hard, he will get a good score *Observation:* Joe studies very hard *Conclusion:* He will get a great score

Modus Tollens (Classical)

- ▶ **Rule:** if *P* is true, then *Q* is concluded
- ▶ **Phases:** observation and conclusion
- No new knowledge is produced (exact inference)

 $P \Rightarrow Q$ -Q -P

If Joe passes the exam, he will get the job *Observation:* Joe didn't get a good job *Conclusion:* He didn't pass the exam

Modus Tollens (Fuzzy)

- ▶ **Rule:** if *P* is true, then *Q* is concluded
- ▶ **Phases:** observation and conclusion
- New knowledge is produced
 - ► The outcome is not definite (approximate inference)
- To calculate A' we need:
 - ▶ The relation between *X* and *Y*
 - \blacktriangleright The value of B'

 $A'(y) = \sup \min[B'(y), R(x, y)]$ $R(x, y): \gamma(A(x), B(y))$

if X is A then Y is B Y is not B'

X is not A'

Modus Tollens (Fuzzy)

$$A = \frac{0.5}{x_1} + \frac{1}{x_2} + \frac{0.6}{x_3} \qquad B = \frac{1}{y_1} + \frac{0.4}{y_2}$$

$$B = \frac{1}{y_1} + \frac{0.4}{y_2}$$

$$R = \frac{1}{x_1 y_1} + \frac{0.9}{x_1 y_2} + \frac{1}{x_2 y_1} + \frac{0.4}{x_2 y_2} + \frac{1}{x_3 y_2} + \frac{0.8}{x_3 y_2}$$

$$B' = \frac{0.9}{y_1} + \frac{0.7}{y_2}$$

$A'(y) = \sup \min[B'(y), R(x, y)]$:

$$A'(x_1) = \sup \min[B'(y), R(x_1, y)] = \max [\min(0.9, 1), \min(0.7, 0.9)] = 0.9$$

 $A'(x_2) = \sup \min[B'(y), R(x_2, y)] = \max [\min(0.9, 1), \min(0.7, 0.4)] = 0.9$
 $A'(x_3) = \sup \min[B'(y), R(x_3, y)] = \max [\min(0.9, 1), \min(0.7, 0.8)] = 0.9$

$$A'^{(y)} = \frac{0.9}{x_1} + \frac{0.9}{x_2} + \frac{0.9}{x_3}$$

Chain Rule (Classical)

- Several rules connected together
- Conclusion can be met using other statements

If Joe passes the exam, he will get the job
If Joe has a good job, he can buy a car
Conclusion: If Joe passes the exam, he can buy a car

Chain Rule (Fuzzy)

- Several rules connected together
- ► There are three relations for all Fuzzy sets

if X is A then Y is B if Y is B then Z is C

if X is A then Z is C

$$R1(x,y)$$
: $\gamma(A(x),B(y))$

$$R2(y,z)$$
: $\gamma(B(y),C(z))$

$$R3(x,z): \gamma(A(x),C(z)) = \sup \min[R1(x,y),R2(x,y)]$$

Chain Rule (Fuzzy)

For instance, if:
$$A = \frac{0.5}{x_1} + \frac{1}{x_2} + \frac{0.6}{x_3}$$
 $B = \frac{1}{y_1} + \frac{0.4}{y_2}$ $C = \frac{0.2}{z_1} + \frac{1}{z_2}$

And *J* defines the relations:
$$J(a,b) = \begin{cases} 1 & \text{if } a \leq b \\ b & \text{if } a > b \end{cases}$$

▶ We will have:

What's Next?

Fuzzy Controllers

Questions?

