Math 239 Lec 10

Graham Cooper

May 27th, 2015

How many compositions of n are there where each part is odd? (any number of parts)

Define
$$N_{odd} = \{1, 3, 5, 7...\}$$

Let $S = N_{odd} \cup N_{odd} \cup ... = \bigcup_{k>0} N_{odd}^k$

Define the weight function of a composition to be the sum of its parts

$$\Phi_{N_{odd}}(x) = x + x^3 + x^5 + \dots = \frac{x}{1 - x^2}$$

$$\Phi_{N_{odd}^k}(X) = (\Phi_{N_{odd}}(x))^k = (\frac{x}{1 - x^2})^k$$

by product lemma

$$\Phi_S(x) = \sum_{k \ge 0} \Phi_{N_{odd}^k}(x) = \sum_{k \ge 0} (\frac{x}{1 - x^2})^k$$
$$= \frac{1}{1 - \frac{x}{1 - x^2}} = \frac{1 - x^2}{1 - x - x^2}$$

Let
$$A(x) = \sum_{n\geq 0} a + nx^n = \frac{1-x^2}{1-x-x^2}$$

 $[a_n - a_{n-1} - a_{n-2} = 0]n \geq 3$

$$a_0 = 1$$
 $a_1 = 1$ $a_2 = 1$

$$\iff a_n = a_{n-1} + a_{n-1} + a_{n-2}$$
 for $n \ge 3$ Fibbonacci recurence

1,1,1,2,3,5,8,13,21,34... a_0, a_1, a_2 Let S_n be the set of all compositions of

Let S_n be the set of all compositions of n where each part is odd. The recurrence implies that $|S_n| = |S_{n-1}| + |S_{n-2}|$ for $n \ge 3$

Find a bijection between S_n and $S_{n-1} \cup S_{n-2}$

Define f: $S_n \to S_{n-1} \cup S_{n-2}$ where for each $(a_1, ... a_k) \in S_n$

$$f(a_0, ... a_k) =$$

$$(a_1, ... a_k - 1)$$
 if $a_k = 1$

$$(a_1, ... a_{k-1}, a_{k-2})$$
 if $a_k \ge 3 \leftarrow \text{in } S_{n-2}$

The inverse $f^{-1}: S_{n-1} \cup S_{n-2} \to S_n$ where for each $(b_1, ...b_l) \in S_{n-1} \cup S_{n-2}$

$$f^{-1}(b_1...b_l)^{-1} =$$

 $(b_1,...b_l, 1)$ if $b_1 + ... + b_l = n - 1$
 $(b_1,...,b_{l-1},b_{l+2})$ if $b_1 + ...b_l = n - 2$

 \implies f is a bijection

Recusively build S_n based on S_{n-1} and S_{n-2} Add 1 part of 1 to any S_{n-1} Add 2 to the last part of any S_{n-2}

 $S_6 = \{(5,1),\, (1,1,3,1),\, (1,3,1,1),\, (3,1,1,1),\, (1,1,1,1,1,1),\, (3,3),\, (1,5),\, (1,1,1,3)\} \text{ from } S_4$

Binary Strings

A binary string is a sequence of 0's and 1's Terminology:

- The length of a string is the total number of 0's nad 1's in the string
- There is one string of length 0 and that is the empty (null string) " ϵ "
- The concentration of a and b is ab, a = 001, b = 10, ab = 00110
- b is a substring of S if s = abc for some strings a,c (and possibly ϵ)
- A block is a maximal non-empty substring of all 0's or all 1's