EECS4312 Lab 6

Skyler Layne (cse23170cse.yorku.ca)

November 5, 2015

Revisions

Date	Revision	Description	
4 November 2015	1.0	Initial specification of system, R/E- de-	
		scriptions, and function table.	
5 November 2015	2.0	Fixed function table to include bounds on	
		'i'.	

Contents

1	System Introduction	3
2	E/R Descriptions2.1 Requirement Descriptions	4 4
3	List of Variables 3.1 Controlled Variables	5 5
4	Car Function Table	6

EECS4312 Report1

Figure 1: Reference design.

1 System Introduction

The Entry/Exit of the parking lot is a single lane passage. By controlling the indicators, the program ensures that only one car can pass through the Entry/Exit so as to prevent a car accident between entering and leaving cars.

2 E/R Descriptions

2.1 Requirement Descriptions

REQ1	The controller will allow only one car within the passage at a time.	By monitoring sensors the system will ensure both gates will not be open at the same time.	
REQ2	A car wishing to park will have	If both sensors are on, the enter-	
	priority over the cars which want to leave.	ing gate will open.	

2.2 Environment Descriptions

ENV1	The sensors can only ever read ON or OFF.	Only 2 states for each sensor.
ENV2	The actuators can only ever be	Can only ever indicate either 2
	GO or STOP.	states.

EECS4312 Report1 5

3 List of Variables

3.1 Controlled Variables

Each of the controlled variables represents an ACTUATOR which has two states; either STOP or GO.

Name	Description
X1	Car entering sensor. ON when a car passes through the sense.
X2	Car leaving sensor. ON when a car passes through the sense.

3.2 Monitored Variables

Each of the monitored variables represents an SENSOR which has two states; either ON or OFF.

Name	Description
Y1	Car entering indicator, indicates GO when a car would like to enter.
Y2	Car leaving indicator, indicates GO when a car would like to leave.

4 Car Function Table

The function table presents a variable 'i' in DTIME which captures the value of both, the sensors and actuators, at each DTIME step.

			Y1	Y2
i = 0			y1(i) = go	y2(i) = stop
	x1(i) = on AND x2(i) = on		y1(i) = go	y2(i) = stop
i >0	x1(i) = off AND x2(i) = on	y1(i-1) = stop AND y2(i-1) $= stop$	y1(i) = stop	y2(i) = go
		NOT (y1(i-1) = stop AND y2(i-1) = stop)	y1(i) = stop	y2(i) = stop
		y1(i-1) = stop AND y2(i-1) $= stop$	y1(i) = go	y2(i) = stop
		NOT (y1(i-1) = stop AND y2(i-1) = stop)	y1(i) = stop	y2(i) = stop
	x1(i) = off AND x2(i) = off		y1(i) = go	y2(i) = stop