SMOS soil moisture data assimilation in the NASA Land Information System: Impact on LSM initialization and NWP forecasts

Clay Blankenship¹, Jonathan Case², Bradley Zavodsky³
¹USRA/NASA-MSFC, ²ENSCO, Inc./NASA-MSFC, ³NASA-MSFC

29th Conference on Hydrology AMS Annual Meeting

6 Jan. 2015, Phoenix, Arizona

Goals

Soil Moisture Data Assimilation

Forecast Challenge

 Available moisture affects humidity, sensible/latent heating, diurnal heating rate, and convection

Objective

- Improve soil moisture estimates for regional NWP applications and situational awareness
 - Improve LIS soil moisture by assimilating satellite retrievals
 - Use LIS output to initialize NWP

Impact of using high-resolution LIS boundary conditions in WRF (rather than NAM fields). From Case et al. 2008

Other Applications

- Drought/Heat Wave Monitoring
- Flood Forecasting
- Streamflow prediction
- Public health

Temperature anomalies

Soil moisture anomalies

Operational SPoRT Land Information System (LIS)

- NASA LIS used to perform long-term integration of Noah Land Surface Model (LSM) updated in real-time
 - Precipitation forcing: NLDAS-2, Multi-Sensor, Multi-Radar (MRMS), and GFS forecast
 - Vegetation coverage/health: Green Vegetation Fraction (GVF) from MODIS (VIIRS 2014)
 - Forecast data allows use of latent observations while retaining their impact on later cycles
- Assimilation of soil moisture should give even more accurate LSM soil moisture fields
- Used for situational awareness and local modeling

SPoRT-LIS Real-time Configurations

- Running Noah LSM at ~3-km resolution with real-time MODIS GVF
- "Operational" Southeast U.S. domain
 - Driven by NLDAS-2/Stage IV precip
 - Data used for both local modeling in WRF/EMS and display in AWIPS II
 - -Used in current LIS assessment
- Experimental CONUS domain
 - –Interest from SPoRT western partners
 - Driven by NLDAS-2/MRMS* precip

Soil Moisture Instruments

Name	AMSR-E	SMOS Soil Moisture and Ocean Salinity	SMAP Soil Moisture Active/Passive		
	AMSRE				
Agency	NASA/JAXA	ESA	NASA		
Launch		2009	Nov. 2014		
Orbit	Polar	Polar	Polar		
Sensor Type	Passive	Passive	Passive	Active	Combined
Frequency	6.9 GHz (C-band)	1.4 GHz (L-band)	1.41 GHz	1.2 GHz	
Resolution	56 km	35-50 km	36 km	3 km	9 km
Accuracy	6 cm ³ /cm ³	4 cm ³ /cm ³	4 cm ³ /cm ³	6 cm ³ /cm ³	4 cm ³ /cm ³

Data Assimilation with EnKF

- Use Ensemble Kalman Filter within LIS to assimilate satellite soil moisture retrievals into the Noah 3.2 LSM
- EnKF combines the model background and observations to make analyses
 - Relative weighting is controlled by the specified observation error and by the ensemble spread
- Implemented EnKF assimilation of SMOS L2 data
 - QC based on model state and data flags for precipitation, RFI, data quality, frozen soil, snow cover, and high vegetation
 - Empirically tuned run-time settings including perturbations, number of ensemble members
 - Bias correction by CDF Matching
 - Capability of implementing landcoverdependent correction.

Assimilating an Observation

Posterior PDF Obs. Likelihood

0.4 Prior PDF

0.2 Prior Ensemble

0

A One-Dimensional Ensemble Kalman Filter:

- Assimilation is 1-D (each grid cell independent). Observations can be spread over several grid cells for high-resolution model runs.
- Planned for use in near-real-time SPoRT LIS

Bias Correction

- Initial tests had large dry bias in observations, so that only extreme rain events had correct sign.
- Discussions with other researchers confirmed need for bias correction

Uncorrected innovations (observations minus model) and increments. Red=dry bias in retrievals.

- Implemented CDF matching correction for SMOS retrievals.
- Assimilating retrievals (not radiances) lets us use established methodology

Bias Correction

CDFs of Soil Moisture Observations

Correction Curves

- LIS can apply point-by-point correction curves. To increase the background dataset size, we are aggregating points by landcover type. We will also explore correction at each point and aggregating by soil type.
- In general, observations are drier than the model but have a higher dynamic range.

Irrigation Case Study

- From U. of Frankfurt-FAO (Ozdogan 2001)
- Test Impact on NWP using coupled LIS-WRF
- Implications for regional climate modeling
 - Impacts of changing landuse, precipitation patterns

Case Study: Irrigation Impact

- Irrigation scenario makes a good case study
 - Forcing data is inaccurate due to irrigation
 - Demonstrate benefit of satellite DA
 - DA impact should also be enhanced in areas with with sparse observation networks (mountainous terrain, underpopulated areas, developing countries, etc.)
- Test impact on NWP using coupled LIS-WRF
 - Validate soil moisture values
 - Examine impact on NWP
 - Verify NWP forecasts
 - Impact on boundary layer for a quiescent day
 - Active convection case
 - Validation over a longer time period
- Implications for regional climate modeling
 - Impacts of changing land-use, precipitation patterns

Current and future plans

- Validate analyses
 - -TAMU North American Soil Moisture Database
- Test Impact of assimilating SMOS retrievals on NWP using coupled runs in NU-WRF
 - Impact on boundary layer for a quiescent day
 - Active convection case
 - -Validation over a longer time period
 - Look at both sensitivity and forecast accuracy
- Assimilate active/passive blended product from SMAP; higher spatial resolution (9 km) should improve local-scale processes

Questions?

