Fundamentals of Electric Circuits Chapter 5

Overview

- In this chapter, the operation amplifier will be introduced.
- The basic function of this useful device will be discussed.
- Examples of amplifier circuits that may be constructed from the operation amplifier will be covered.
- Instrumentation amplifiers will also be discussed.

Operational Amplifier

- Typically called 'Op Amp' for short
- It acts like a voltage controlled voltage source
- In combination with other elements it can be made into other dependent sources
- It performs mathematical operations on analog signals

Operational Amplifier II

- The op amp is capable of many math operations, such as addition, subtraction, multiplication, differentiation, and integration
- There are five terminals found on all op-amps
 - The inverting input
 - The noninverting input
 - The output
 - The positive and negative power supplies
 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Balance \Box 1 8 No connection Inverting input 2 \bigcirc 6 Output Inverting input \Box 3 6 \Box Output \bigcirc 4 1 5 \bigcirc Balance \bigcirc Offset Null

Powering an Op-amp

- As an active element, the op-amp requires a power source
- Often in circuit diagrams the power supply terminals are obscured
- It is taken for granted that they must be connected
- Most op-amps use two voltage sources, with a ground reference between them
- This gives a positive and negative supply voltage

Output Voltage

 The voltage output of an op-amp is proportional to the difference between the noninverting and inverting inputs

$$v_o = Av_d = A(v_2 - v_1)$$

- Here, A is called the open loop gain
- Ideally it is infinite
- In real devices, it is still high: 10⁵ to 10⁸ volts/volt

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

TABLE 5.1

Typical ranges for op amp parameters.

Parameter	Typical range	Ideal values
Open-loop gain, A	10 ⁵ to 10 ⁸	∞
Input resistance, R_i	$10^{5} \text{ to } 10^{13} \Omega$	$\Omega \infty$
Output resistance, R_o	10 to 100Ω	$\Omega\Omega$
Supply voltage, V_{CC}	5 to 24 V	

Feedback

- Op-amps take on an expanded functional ability with the use of feedback
- The idea is that the output of the op-amp is fed back into the inverting terminal
- Depending on what elements this signal passes through the gain and behavior of the op-amp changes
- Feedback to the inverting terminal is called "negative feedback"
- Positive feedback would lead to oscillations

Voltage Saturation

- As an ideal source, the output voltage would be unlimited
- In reality, one cannot expect the output to exceed the supply voltages
- When an output should exceed the possible voltage range, the output remains at either the maximum or minimum supply voltage
- This is called saturation
- Outputs between these limiting voltages are referred to as the linear region

Ideal Op Amp

- We give certain attributes to the ideal op-amp
- As mentioned before, it will have an infinite open-loop gain
- The resistance of the two inputs will also be infinite
- This means it will not affect any node it is attached to
- It is also given zero output impedance
- From Thevenin's theorem one can see that this means it is load independent

Inverting Amplifier

- The first useful op-amp circuit that we will consider is the inverting amplifier
- Here the noninverting input is grounded
- The inverting terminal is connected to the output via a feedback resistor, R_f
- The input is also connected to the inverting terminal via another resistor, R₁

Inverting Amplifier III

• This can be rearranged to show the relationship between the input and output voltages R_{α}

$$v_o = -\frac{K_f}{R_1} v_i$$

- From this one can see that:
 - The gain is the ratio of the feedback resistor and
 R₁
 - The polarity of the output is the reverse of the input, thus the name "inverting" amplifier

Equivalent Circuit

- The inverting amplifier's equivalent circuit is shown here
- Note that it has a finite input resistance
- It is also a good candidate for making a current-to-voltage converter

Non-Inverting Amplifier

- Another important op-amp circuit is the noninverting amplifier
- The basic configuration of the amplifier is the same as the inverting amplifier
- Except that the input and the ground are switched

Non-inverting Amplifier II

- Note that the gain here is positive, thus the amplifier is noninverting
- Also note that this amplifier retains the infinite input impedance of the op-amp
- One aspect of this amplifier's gain is that it can never go below 1.
- One could replace the feedback resistor with a wire and disconnect the ground and the gain would still be 1
- This configuration is called a voltage follower or a unity gain amplifier
- It is good for separating two circuits while allowing a signal to pass through.

Encuentre la ganancia

• Encuentre Vo e lo

• Encontrar io

• Encontrar v_0 cuando $v_s = 2 V$

