考研数学线性代数强化讲义(数一)

主讲: 张宇

张宇:新东方在线名师,博士,全国著名考研数学辅导专家,教育部"国家精品课程建设骨干教师",全国畅销书《高等数学 18 讲》、《考研数学题源探析经典 1000 题》作者,高等教育出版社《全国硕士研究生入学统一考试数学考试参考书(大纲解析)》编者之一,2007 年斯洛文尼亚全球可持续发展大会受邀专家(发表 15 分钟主旨演讲).首创"题源教学法",对考研数学的知识结构和体系有全新的解读,对考研数学的命题与复习思路有极强的把握和预测能力,让学生轻松高效夺取高分.

欢迎使用新东方在线电子教材

koolearn

新东方在线

www.koolearn.com

目 录

第一讲	行列式		1
第二讲	矩阵	电	8
第三讲	向量组与方程组	<i>f</i> , –	17
第四讲	特征值与二次型	教	26

第一讲 行列式

综述

- 1. 行列式的定义与性质: 几何法、逆序法、展开法、性质
- 2. 行列式的计算: 3、4 阶; n 阶 (n>4)

消0化三角形、消0降阶、拆项、加边、范氏、数归&递推

一、行列式的三种定义与性质

1. 几何法定义

重要结论:

- (1) n 阶行列式由 n 个 n 维向量拼成,其结果为以这 n 个向量为邻边的 n 维图形的体积.
- (2) 行列式由向量组成!
- (3) $\left|A\right|_{n\times n} \neq 0 \Leftrightarrow$ n 个 n 维向量线性无关;

 $|A|_{n \times n} = 0 \Leftrightarrow n \uparrow n$ 维向量线性相关.

(4)7 大性质(习惯上写列向量
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
)

1)
$$\left|\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}\right| = \begin{vmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{vmatrix}$$

2)
$$\left|\alpha_1, \dots, \alpha_{i-1}, 0, \alpha_{i+1}, \dots, \alpha_n\right| = 0$$

3)
$$\left|\alpha_1, \dots, \alpha_i, \dots, k\alpha_i, \dots, \alpha_n\right| = 0$$

4)
$$|\alpha_1, \dots, \alpha_i + \beta_i, \dots, \alpha_n| = |\alpha_1, \dots, \alpha_i, \dots, \alpha_n| + |\alpha_1, \dots, \beta_i, \dots, \alpha_n|$$

5) (互換)
$$\left|\alpha_{1}, \dots, \alpha_{i}, \dots, \alpha_{j}, \dots, \alpha_{n}\right| = -\left|\alpha_{1}, \dots, \alpha_{j}, \dots, \alpha_{i}, \dots, \alpha_{n}\right|$$

6) (倍乘)
$$k|\alpha_1,\dots,\alpha_i,\dots,\alpha_n| = |\alpha_1,\dots,k\alpha_i,\dots,\alpha_n|$$

新东方

7)(倍加)
$$\left|\alpha_1, \dots, \alpha_i, \dots, \alpha_j, \dots, \alpha_n\right| = \left|\alpha_1, \dots, \alpha_i, \dots, \alpha_j + k\alpha_i, \dots, \alpha_n\right|$$

【例 1】设
$$\alpha_1, \alpha_2, \alpha_3, \beta, \gamma$$
均为 4 维列向量,且 $|\gamma, \alpha_1, \alpha_2, \alpha_3| = 2$, $|\alpha_1, \beta + \gamma, \alpha_2, \alpha_3| = 3$,则 $|\alpha_1, \alpha_2, \alpha_3, 5\beta| =$ ______.

【例 2】任给 4 维列向量
$$\alpha_1, \alpha_2, \alpha_3, \alpha_4$$
,则 $|\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1| = _______$

【例 3】设
$$a$$
, b , c 为已知常数, $\left|A\right|_{n\times n}=a$, $\left|A\atop \beta^T\atop b\right|=0$, β 为 n 维列向量,则
$$\left|A\atop \beta^T\atop c\right|=---$$
 2. 逆序法定义

$$\begin{vmatrix} A & \beta \\ \beta^T & c \end{vmatrix} = \underline{\qquad}$$

2. 逆序法定义

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j_1 j_2 \cdots j_n} (-1)^{\sigma(j_1 j_2 \cdots j_n)} a_{1j_1} a_{2j_2} \cdots a_{nj_n}$$

①展开后有 n! 项; ②每项是取自不同行,不同列的 n 个元素的乘积; ③行下标顺排后,每 项前乘以 $(-1)^{\sigma(j_1j_2\cdots j_n)}$

注: $\sigma(j_1j_2\cdots j_n)$: $j_1j_2\cdots j_n$ 的逆序数.

【例1】展开后,

 $a_{12}a_{23}a_{31}a_{45}a_{54}a_{66}$ 前添_____号.

 $a_{45}a_{16}a_{53}a_{22}a_{64}a_{31}$ 前添_____号.

【例 2】
$$\sigma(1,2,3,\dots,n) =$$
________, $\sigma(n,n-1,\dots,3,2,1) =$ _______.

【例 3】求
$$f(x) = \begin{vmatrix} x & 2x & 1 & 0 \\ 1 & x & 2 & 3 \\ 2 & 3 & x & 2 \\ 1 & 1 & 2 & x \end{vmatrix}$$
的 x^4 、 x^3 的系数.

- 3. 展开式法定义 $|A| = |a_{ij}|_{n \times n}$
- ①余子式 M_{ii}
- ②代数余子式 $A_{ij} = (-1)^{i+j} M_{ij}$
- ③展开公式

$$|A| =$$
 $\begin{cases} a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} & (按第i行展开) \\ a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} & (按第j列展开) \end{cases}$

【例 2】设
$$D_4 = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & -2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{vmatrix}$$
,则第 4 行各元素余子式之和为_____.

【例 3】设 D_4 的某行元素全为 2,且 D_4 =3,则 $\sum_{i=1}^4 \sum_{j=1}^4 A_{ij} = _____.$

二、行列式的计算

关键——研究行列式中元素的分布规律

1. 3、4 阶——用好性质, 出 0, 展开式

【例1】设
$$\begin{vmatrix} 3-\lambda & -1 & 1 \\ -1 & 5-\lambda & -1 \\ 1 & -1 & 3-\lambda \end{vmatrix} = 0$$
,求 λ .

2. n 阶的计算

(1) 消0化三角形法

【例】
$$D_n = \begin{vmatrix} a_1 - x & a_2 & \cdots & a_n \\ a_1 & a_2 - x & \cdots & a_n \\ \vdots & \vdots & & \vdots \\ a_1 & a_2 & \cdots & a_n - x \end{vmatrix}$$

【注】重要公式:
$$D_n = \begin{vmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & a \end{vmatrix} = [a + (n-1)b](a-b)^{n-1}$$

(2) 消0展开降阶法

【例】
$$D_n = \begin{vmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 1 & 2 & \cdots & n-1 \\ 3 & 2 & 1 & \cdots & n-2 \\ \vdots & \vdots & \vdots & & \vdots \\ n & n-1 & n-2 & \cdots & 1 \end{vmatrix}$$

(3) 拆项法

【例】
$$D_n = \begin{vmatrix} x_1+1 & x_1+2 & \cdots & x_1+n \\ x_2+1 & x_2+2 & \cdots & x_2+n \\ \vdots & \vdots & & \vdots \\ x_n+1 & x_n+2 & \cdots & x_n+n \end{vmatrix}, n \ge 2.$$

(4) 加边法

【例】设
$$a_1a_2\cdots a_n\neq 0$$
,求 $D_n=\begin{vmatrix} 1+a_1 & 1 & \cdots & 1\\ 2 & 2+a_2 & \cdots & 2\\ \vdots & \vdots & & \vdots\\ n & n & \cdots & n+a_n \end{vmatrix}.$

(5) 范德蒙行列式

$$V_{n} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & \vdots & & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & \cdots & x_{n}^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} (x_{j} - x_{i})$$

 $V_n \neq 0 \iff x_i \neq x_j, i \neq j$

【例1】
$$\begin{vmatrix} b+c & a+c & a+b \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

【例 2】设
$$a$$
, b , c , d 互不相等,证明: $D_4 = \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{vmatrix} = 0$ 的充要条件为

a+b+c+d=0.

(6) 数学归纳法&递推法

综述:

- 1) 第一数学归纳法: ①验 n=1 成立; ②设 n=k 成立; ③证 n=k+1 成立.
- 2) 第二数学归纳法: ①验 n=1, 2 成立; ②设 n<k 成立; ③证 n=k 成立.

新东方

网络课堂电子教材系列

【例 1】
$$D_n = \begin{vmatrix} a+b & ab & 0 & \cdots & 0 & 0 \\ 1 & a+b & ab & \cdots & 0 & 0 \\ 0 & 1 & a+b & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a+b & ab \\ 0 & 0 & 0 & \cdots & 1 & a+b \end{vmatrix}$$

www.koolearn.com 网络课堂电子教材系列

第二讲 矩阵

综述

- ①定义与基本运算
- ②伴随矩阵 A^*
- ③可逆矩阵 A^{-1}
- ④初等矩阵
- ⑤求 A^{-1}
- ⑥矩阵方程
- ⑦分块矩阵

一、定义与基本运算

1. 定义 由 n 个 m 维列向量
$$\alpha_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}$, ..., $\alpha_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$

$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

若m=n, 称为n阶矩(方)阵.

- 2. 基本运算
- 1) 加法 $A + B = (a_{ij} + b_{ij})_{m \times n}$

要求:矩阵同型(对应加)

2) 数乘
$$kA = (ka_{ii})_{m \times n}$$

$$1^0$$
每一个 $a_{ij} \times k$

$$2^0$$
 若 $A_{n\times n}$, $|kA| = k^n |A|$

3) 乘法
$$A_{m \times s} B_{s \times n} = (c_{ii})_{m \times n} = C_{m \times n}$$

 $1^0 A$ 的列数=B 的行数,才可乘.

新东大

m 网络课堂电子数

其中 $c_{ij} = a_{i1}b_{1j} + \cdots + a_{is}b_{sj}$.

【注】① $|A_{n\times n}B_{n\times n}| = |A||B|$

- ②|A+B|不一定等于|A|+|B|
- ③ $A \neq B$ 推不出 $|A| \neq |B|$
- ④ $A \neq 0$ 推不出 $|A| \neq 0$
- ⑤ AB 不一定等于 BA
- ⑥ AB = 0推不出 A = 0 或 B = 0
- ⑦ AB = AC, $A \neq 0$ 推不出 B = C;

$$AB = AC$$
, $|A| \neq 0 \Rightarrow B = C$.

- 3. 重要矩阵及运算
- ①零矩阵 **O**_{m×n}

②单位矩阵
$$E_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

③数量矩阵
$$kE_n = \begin{pmatrix} k & 0 & \cdots & 0 \\ 0 & k & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & k \end{pmatrix}$$

 $\forall A_{n \times n}, \quad A \cdot kE = kE \cdot A.$

④对角阵
$$\Lambda = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$

⑤对称阵 $\Leftrightarrow A^T = A \Leftrightarrow a_{ii} = a_{ii}$

⑥反对称阵
$$\Leftrightarrow A^T = -A \Leftrightarrow \begin{cases} a_{ii} = 0 \\ a_{ij} = -a_{ji} (i \neq j) \end{cases}$$

www.koolearn.com 网络课堂电子教材系列

⑦正交矩阵

1)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \Rightarrow A^{T} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

$$1^{0}|A| = |A^{T}|; \ 2^{0}(A^{T})^{T} = A; \ 3^{0}(kA)^{T} = kA^{T}; \ 4^{0}(A+B)^{T} = A^{T} + B^{T}; \ 5^{0}(AB)^{T} = B^{T}A^{T}$$

2)
$$A_{n \times n}$$
 是正交阵 $\Leftrightarrow AA^T = A^T A = E$

A为正交阵 \Rightarrow A由标准正交基组成.

【例 1】设
$$A = \begin{pmatrix} 1 & 2 & -1 \\ -2 & -4 & 2 \\ 3 & 6 & -3 \end{pmatrix}$$
,则 $A^n = \underline{\qquad}$

【例 2】设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$
, 求 A^n .

【例 3】
$$A_{n\times n}$$
,证明: $\forall x = (a_1, a_2, \dots, a_n)^T$, $x^T A x = 0 \Leftrightarrow A$ 为反对称矩阵.

www.koolearn.com 网络果堂电子教材系

【例 4】设A、B均为n阶正交阵, $\left|A\right|+\left|B\right|=0$,证明: $\left|A+B\right|=0$.

二、伴随矩阵 A^*

1. 定义

①
$$A \Rightarrow A_{ij}$$
 ② $A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$, A 的伴随矩阵.

$$AA^* = A^*A = |A|E$$

若
$$|A| \neq 0$$
, A 可逆,则 $A^{-1} = \frac{1}{|A|}A^*$.

2. 重要结论

当|A|≠0时,(A可逆)

$$(4)(A^{-1})^* = (A^*)^{-1}$$

【例 1】
$$A_{3\times 3}$$
 为正交阵, $a_{ij}=A_{ij}$, $a_{33}=-1$, $AB=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, 求 B .

【例 2】 $A_{n\times n}$, 证明: (E-A)与 $(E+A)^*$ 可交换.

三、可逆矩阵 A-1

- 1. 定义 $A_{n\times n}$, $B_{n\times n}$, 若AB=E, 则A、B可逆, 且 $A^{-1}=B$, $B^{-1}=A$, AB=BA.
- 2. 性质

①
$$(A^{-1})^{-1} = A$$
; ② $k \neq 0$, $(kA)^{-1} = \frac{1}{k}A^{-1}$; ③ A 、 B 可逆,则 AB 可逆,且 $(AB)^{-1} = B^{-1}A^{-1}$;

$$(4)(A^T)^{-1} = (A^{-1})^T; (5)|A^{-1}| = \frac{1}{|A|}$$

【注】
$$\begin{cases} (A+B)^{-1} \neq A^{-1} + B^{-1} \\ (A+B)^* \neq A^* + B^* \\ (A+B)^T \neq A^T + B^T \end{cases}$$

【例 1】 $A_{n\times n}$, $A^2-3A+2E=0$,证明: $A \cdot A+2E$ 均可逆,并求 A^{-1} , $(A+2E)^{-1}$

【例 2】 A_n , B_n 均可逆, $A^{-1}+B^{-1}$ 可逆,证明A+B可逆,并求 $(A+B)^{-1}$.

四、初等矩阵

1. 定义 E_n 经过一次初等变换得到的矩阵,叫初等矩阵.

 E_{ii} : 互换初等矩阵

 $E_i(k)$: 倍乘初等矩阵

 $E_{ij}(k)$: 行——第i行×k+第j行

列——第
$$i$$
列× k +第 i 列

2. 重要结论

$$(1)[E_i(k)]^{-1} = E_i(\frac{1}{k}), \quad E_{ij}^{-1} = E_{ij}, \quad [E_{ij}(k)]^{-1} = E_{ij}(-k)$$

②"左行右列"定理

初等阵P左(右)乘A得PA(AP),就是对A作了一次与P完全相同的初等行(列)变

【例】设 $A_{3\times 3}$ 可逆,交换A的第 1、2 列得到B,则 B^* 可由()互换得到.

- (A) A*的第1、2列 (B) A*的第1、2行
- (C) $-A^*$ 的第 1、2 列 (D) $-A^*$ 的第 1、2 行

五、求 A-1

①定义法

若AB = E, A_n , B_n , 则 $A^{-1} = B$, $B^{-1} = A$.

②
$$A^*$$
 法 $A^{-1} = \frac{1}{|A|} A^*$

【例 1】
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,求 A^{-1} .

【例 2】求
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
的逆矩阵 A^{-1} .

③初等行变换法

$$(A|E)$$
行变换 $(E|A^{-1})$

【例】
$$A = \begin{pmatrix} 0 & 2 & -1 \\ 1 & 1 & 2 \\ -1 & -1 & -1 \end{pmatrix}$$
, 求 A^{-1} .

六、矩阵方程

- 1. 定义: 含未知矩阵的方程
- 2. 基本形式
- (1) AX = B; (2) XA = B; (3) AXB = C.
- 3. 解法

(1)
$$A$$
或 A 与 B 可逆,① $\Rightarrow X = A^{-1}B$; ② $\Rightarrow X = BA^{-1}$; ③ $\Rightarrow X = A^{-1}CB^{-1}$

(2) A不可逆,如① AX = B,用解方程组的思想:

$$A(\xi_1, \xi_2, \dots, \xi_n) = (\beta_1, \beta_2, \dots, \beta_n) \Rightarrow$$

$$A\xi_i = \beta_i (i = 1, 2, \dots, n) \Longrightarrow$$

解出 ξ_i ,得 $X=(\xi_1,\xi_2,\dots,\xi_n)$

- (3) 有时,设 $X = (x_{ij})_{m \times n}$,代入方程 \Rightarrow 以 x_{ij} 为未知的方程组,求之.——特定系数法
- (4) 勿忘"化简先行"

【例 1】设
$$A^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -3 & 0 & 8 \end{pmatrix}$$
, $ABA^{-1} = BA^{-1} + 3E$,求 B .

【例 2】
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $AX + E = A^2 + X$, 求 X .

七、分块矩阵

1. 定义 用若干纵、横线将一个矩阵分成若干小块,称这些小块为子矩阵,将子矩阵看作 原矩阵的元素,就得分块矩阵.

【注】进行加、减、乘、转置时,将子矩阵当作普通矩阵的元素看待,不必陌生.

2. 基本运算

①加法: 同型、分法相同

$$\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} + \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix} = \begin{pmatrix} A_1 + B_1 & A_2 + B_2 \\ A_3 + B_3 & A_4 + B_4 \end{pmatrix}$$

②数乘
$$k \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} kA & kB \\ kC & kD \end{pmatrix}$$

③乘法: 左列分法=右行分法, 且可加

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} X & Y \\ Z & W \end{pmatrix} = \begin{pmatrix} AX + BZ & AY + BW \\ CX + DZ & CY + DW \end{pmatrix}$$

如:
$$A_{n \times n}$$
 可逆, $\alpha_{n \times 1}$, b 常数, $P = \begin{pmatrix} E & 0 \\ -\alpha^T A^* |A| & |A| \end{pmatrix}$, $Q = \begin{pmatrix} A & \alpha \\ \alpha^T & b \end{pmatrix}$,求 PQ

④转置:
$$A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \Rightarrow A^T = \begin{pmatrix} A_1 & A_3 \\ A_2 & A_4 \end{pmatrix}$$

3. 重要结论

②1)
$$A_i$$
 可逆,则 $A = \begin{pmatrix} A_1 & & & & \\ & A_2 & & & \\ & & & \ddots & \\ & & & & A_s \end{pmatrix}$ 可逆,且 $A^{-1} = \begin{pmatrix} A_1^{-1} & & & & \\ & A_2^{-1} & & & \\ & & & \ddots & \\ & & & & A_s^{-1} \end{pmatrix}$;

$$A_i$$
可逆,则 $A = \begin{pmatrix} & & & & A_1 \\ & & & A_2 \\ & & \ddots & & \\ A_s & & & \end{pmatrix}$ 可逆,且 $A^{-1} = \begin{pmatrix} & & & & A_s^{-1} \\ & & & \ddots & \\ & & A_2^{-1} & & \\ A_1^{-1} & & & \end{pmatrix}$.

2)
$$B$$
、 C 可逆, $\Rightarrow A = \begin{pmatrix} B & D \\ O & C \end{pmatrix}$ 可逆,且 $A^{-1} = \begin{pmatrix} B^{-1} & -B^{-1}DC^{-1} \\ O & C^{-1} \end{pmatrix}$.

$$A = \begin{pmatrix} B & O \\ D & C \end{pmatrix}$$
可逆,且 $A^{-1} = \begin{pmatrix} B^{-1} & O \\ -C^{-1}DB^{-1} & C^{-1} \end{pmatrix}$;

$$A = \begin{pmatrix} O & B \\ C & D \end{pmatrix}$$
可逆,且 $A^{-1} = \begin{pmatrix} O & C^{-1} \\ B^{-1} & -B^{-1}DC^{-1} \end{pmatrix}$.

1)
$$\begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = \begin{vmatrix} A & O \\ O & B \end{vmatrix} = |A||B|$$

2)
$$\begin{vmatrix} C & A \\ B & O \end{vmatrix} = \begin{vmatrix} O & A \\ B & C \end{vmatrix} = \begin{vmatrix} O & A \\ B & O \end{vmatrix} = (-1)^{nm} |A| |B|$$

3)
$$A$$
可逆, $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A||D - CA^{-1}B|;$

$$D$$
可逆, $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |D||A - BD^{-1}C|$

【例】求
$$D_n = \begin{bmatrix} 0 & 1 & 2 & \cdots & n \\ 1 & 1 & & \cdots & \\ 2 & & 2 & \cdots & \\ \vdots & \vdots & \vdots & & \vdots \\ n & & & \cdots & n \end{bmatrix}$$

第三讲 向量组与方程组

综述

- ①线性相关性
- ②线性表出
- ③极大无关组与秩
- ④等价向量组
- ⑤齐次方程组
- ⑥非齐次方程组
- ⑦秩的等式与不等式

一、线性相关性

- 1. 定义
- ① \exists 一组不全为 0 的数 x_1, x_2, \cdots, x_s ,使得 $x_1\alpha_1 + x_2\alpha_2 + \cdots + x_s\alpha_s = 0$ 成立.称 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关.

$$\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_s) < s$$

②若 $x_1\alpha_1 + x_2\alpha_2 + \cdots + x_s\alpha_s = 0$ 成立,必使 $x_1 = x_2 = \cdots = x_s = 0$,称 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关.

$$\Leftrightarrow$$
 $(\alpha_1, \alpha_2, \dots, \alpha_s)$ $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_s \end{pmatrix} = 0$ 只有零解.

$$\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_s) = s$$

2. 重要结论

①设*m* 个 *n* 维向量

$$1^0 m = n$$
,用行列式
$$\begin{cases} |\alpha_1, \alpha_2, \cdots, \alpha_n| = 0 \Leftrightarrow \text{相关} \\ |\alpha_1, \alpha_2, \cdots, \alpha_n| \neq 0 \Leftrightarrow \text{无关} \end{cases}$$

 $2^0 m > n$, 必相关.

 $3^0 m < n$, (具体数字型), 用化行阶梯型阵, 看秩.

- ②1)部分相关⇒整体相关
- 2)整体无关⇒部分无关
- 3) 原来相关⇒缩短相关
- 4) 原来无关⇒延长无关

【例】
$$\alpha_1 = \begin{pmatrix} 3 \\ 1 \\ 7 \\ 0 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 9 \\ 0 \\ 6 \\ 6 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -8 \\ 0 \\ -11 \\ 5 \\ 6 \end{pmatrix}$, 判断向量组的线性相关性.

【例 1】设 n 维 $(n \ge 3)$ $\alpha_1 = (a, a, \dots, a, b)^T$, $\alpha_2 = (a, a, \dots, b, a)^T$, ...,

 $\alpha_n = (b, a, \dots, a, a)^T$, $ab \neq 0$, $\exists r(\alpha_1, \alpha_2, \dots, \alpha_n) = n-1$, $\exists a \in A$

【例 2】 $A_{n\times n}$, α 是n 维列向量,若 $A^{m-1}\alpha\neq 0$, $A^m\alpha=0$,证明: $\alpha,A\alpha,A^2\alpha,\cdots,A^{m-1}\alpha$ 线性无关.

新东方在

二、线性表出

- 1. 定义
- ① \exists 一组数 x_1, \dots, x_s ,使 $\beta = x_1\alpha_1 + \dots + x_s\alpha_s$ 成立.称 β 可由 $\alpha_1, \dots, \alpha_s$ 线性表出(示).

$$\Leftrightarrow (\alpha_1, \alpha_2, \dots, \alpha_s)$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_s \end{pmatrix} = \beta 有解$$

$$\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_s) = r(\alpha_1, \alpha_2, \dots, \alpha_s, \beta)$$

②不习任何一组数 x_1, x_2, \cdots, x_s ,使 $\beta = x_1\alpha_1 + x_2\alpha_2 + \cdots + x_s\alpha_s$ 成立.称 β 不可由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表出(示).

$$\Leftrightarrow (\alpha_1, \alpha_2, \dots, \alpha_s) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_s \end{pmatrix} = \beta \, \mathbb{R} \mathbb{H}.$$

- 2. 重要结论
- ①若 $\alpha_1, \dots, \alpha_s$ 线性无关,但 $\alpha_1, \dots, \alpha_s, \beta$ 线性相关,则 β 可由 $\alpha_1, \dots, \alpha_s$ 唯一表示.
- ②若 β_1, \dots, β_s 可由 $\alpha_1, \dots, \alpha_t$ 表出,且s > t,则 β_1, \dots, β_s 必相关.
- ③若 β_1, \dots, β_s 可由 $\alpha_1, \dots, \alpha_t$ 表出,且 β_1, \dots, β_s 线性无关,则 $s \le t$.
- 【例】设 $\alpha_1, \cdots, \alpha_s$ 线性相关, $\alpha_2, \cdots, \alpha_{s+1}$ 线性无关,
- (I) α_1 能否由 $\alpha_2, \dots, \alpha_s$ 表出? (II) α_{s+1} 能否由 $\alpha_1, \dots, \alpha_s$ 表出?

三、极大无关组与秩

1. 定义 若 α_{i_1} , α_{i_2} ,… α_{i_r} 满足: 1^0 取自 α_1 , α_2 ,… α_s ; 2^0 线性无关; $3^0\alpha_1$, α_2 ,… α_s 中 $\forall \alpha_i$

均可由 $\alpha_{i_1},\alpha_{i_2},\cdots\alpha_{i_r}$ 线性表示.则称 $\alpha_{i_1},\alpha_{i_2},\cdots\alpha_{i_r}$ 是 $\alpha_1,\alpha_2,\cdots\alpha_s$ 的一个极大线性无关组,且 $\mathfrak{K}(\alpha_1,\alpha_2,\cdots\alpha_s)=r\,.$

2. 重要结论

若 A 经过初等行变换化为 B,则 A 的列向量组与 B 的列向量组有相同的线性相关性,即 $A = (\alpha_1, \alpha_2, \cdots \alpha_s)$ 行 $B = (\beta_1, \beta_2, \cdots \beta_s)$

$$x_1\alpha_1 + x_2\alpha_2 + \dots + x_s\alpha_s = 0 = x_1\beta_1 + x_2\beta_2 + \dots + x_s\beta_s = 0 = 0$$

【例 1】设 $\alpha_1 = (1,1,1,0)^T$, $\alpha_2 = (1,1,0,0)^T$, $\alpha_3 = (3,3,2,0)^T$, $\alpha_4 = (1,0,0,0)^T$ $\alpha_5 = (3,2,1,0)^T$,求其极大无关组与秩.

四、等价向量组

1. 定义

(I)
$$\alpha_1, \alpha_2, \cdots \alpha_s$$
, (II) $\beta_1, \beta_2, \cdots \beta_t$,

则(Ⅰ)与(Ⅱ)等价⇔(Ⅰ)与(Ⅱ)可互相线性表出.

2. 重要结论

(I) 与 (II) 等价 ⇔ r (I) =r (II) 且可单方表出.

$$\Leftrightarrow$$
r ([) =r ([[) =r ([| [[]]).

(II)
$$\beta_1 = \begin{pmatrix} 2 \\ b+5 \\ -2 \\ 4 \end{pmatrix}$$
, $\beta_2 = \begin{pmatrix} 3 \\ 7 \\ a-4 \\ 7-a \end{pmatrix}$, $\beta_3 = \begin{pmatrix} 1 \\ 2b+4 \\ -1 \\ 2 \end{pmatrix}$

①a, b取何值时, r(I) = r(II), 且(I), (II)等价.

②a, b取何值时, r(I) = r(II), 但(I), (II) 不等价.

五、齐次方程组AX = 0

1. 解的判定

AX = 0 只有零解 $\Leftrightarrow r(A) = n$;

AX = 0有非零解 $\Leftrightarrow r(A) < n$ (未知数个数 n)

2. 基础解系 ⇔ 无穷多解的一个极大无关组.

定义:设 $\xi_1, \xi_2, \dots, \xi_s$ 满足: $1^0 \in AX = 0$ 的解; 2^0 线性无关; $3^0 s = n - r(A)$

【例 1】求
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = 0 \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 0 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = 0 \end{cases}$$
 的通解.

为一人不会

主电子教材系

【例 2】 $A_{n\times n}$, $M_{11}\neq 0$, 求 AX=0 的通解.

六、非齐次方程组 $AX = \beta$

1. 解的判定

$$AX = \beta \mathbb{E}$$
 $\Rightarrow r(A) + 1 = r(A | \beta) \Rightarrow r(A) \neq r(A | \beta) ;$

$$AX = \beta$$
有唯一解 $\Leftrightarrow r(A) = r(A|\beta) = n$;

$$AX = \beta$$
 有无穷多解 $\Leftrightarrow r(A) = r(A|\beta) < n$

2. 解法

 1^0 求 AX = 0 的通解;

 2^0 求 $AX = \beta$ 的一个特解

非齐次通解=齐次通解+非齐次特解

【例】求
$$\begin{cases} x_1 + x_2 - 2x_4 = -6 \\ 4x_1 - x_2 - x_3 - x_4 = 1 \text{ 的通解}. \\ 3x_1 - x_2 - x_3 = 3 \end{cases}$$

七、秩的等式与不等式

1. 定义: 对 $A_{m \times n}$, $\exists k$ 阶子式 $\neq 0$, $\forall k+1$ 阶子式= $0 \Rightarrow r(A)=k$

- 2. 重要结论
- (1) 关于 A 本身
- 1) $A_{m \times n}$, $0 \le r(A) \le \min\{m, n\}$
- 2) $r(kA) = r(A), k \neq 0$
- 3) $r(A) = r(A^T) = r(AA^T) = r(A^TA)$

证明:

4) $A_{n \times n}$, $r(A^n) = r(A^{n+1})$

(2) 关于A, B, C,, 拼起来, 不运算

5)
$$\max \left\{ r(A), r(B) \right\} \le \left\{ r(A \mid B) \atop r(\frac{A}{B}) \right\} \le r(A) + r(B)$$

6)
$$r(A) + r(B) \le r \begin{pmatrix} A & O \\ C & B \end{pmatrix} \le r(A) + r(B) + r(C)$$

- (3) A + B
- 7) $r(A+B) \le r(A) + r(B)$

- (4) *AB*
- 8) $A_{m \times n}$, $B_{n \times s}$, $r(A) = n \Rightarrow r(AB) = r(B)$

9) $r(A)+r(B)-n \le r(AB) \le \min\{r(A),r(B)\}$

- (5) *A**
- 10) $r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(n) = n 1, \\ 0, & r(A) < n 1 \end{cases}$

向量空间(数一)

1. 对向量空间V

若 $\alpha_1, \cdots, \alpha_r$: 1^0 取自V; 2^0 线性无关; 3^0V 的任 $-\alpha$ 均可由它们表出.

 $\Rightarrow \alpha_1, \dots, \alpha_r$ 叫 V 的一个基.

且 $\alpha = k_1\alpha_1 + \cdots + k_r\alpha_r$, k_1, \cdots, k_r 叫 α 在这个基下的坐标. (唯一)

2. 设 $\alpha_1, \dots, \alpha_n$, β_1, \dots, β_n 为 R^n 的两个基,且 $(\alpha_1, \dots, \alpha_n)C = (\beta_1, \dots, \beta_n)$,称C为

 $(\alpha_1, \cdots, \alpha_n)$ 到 $(\beta_1, \cdots, \beta_n)$ 的过渡矩阵. (C可逆)

【例】设
$$\alpha_1=\begin{pmatrix}1\\0\\1\end{pmatrix},\quad \alpha_2=\begin{pmatrix}1\\1\\-1\end{pmatrix},\quad \alpha_3=\begin{pmatrix}1\\-1\\1\end{pmatrix},$$

$$\beta_1 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \quad \beta_2 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \quad \beta_3 = \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix}$$

是 R^3 的两个基.

- (I) 求 $(\alpha_1, \alpha_2, \alpha_3)$ 到 $(\beta_1, \beta_2, \beta_3)$ 的过渡阵C;
- (II) 求 $\eta = (1,0,-1)^T$ 在 $(\beta_1,\beta_2,\beta_3)$ 下的坐标;
- (III) 已知 ξ 在 $(\beta_1,\beta_2,\beta_3)$ 下的坐标为(1,2,0),求 ξ 在 $(\alpha_1,\alpha_2,\alpha_3)$ 下的坐标.

www.koolearn.com

第四讲 特征值与二次型

综述

知识结构:

 1° 3 可逆矩阵 C, 使得 $C^{-1}AC = B \Rightarrow A \sim B$

 2° 3 可逆矩阵 D,使得 $D^{-1}AD = \Lambda \Rightarrow A \sim \Lambda$

 3° 日正交矩阵 P,使得 $P^{-1}AP = \Lambda \Rightarrow A \sim \Lambda$

$$4^{\circ} f = X^{T} A X \underline{X} = \underline{PY} (PY)^{T} A (PY) = Y^{T} P^{T} A P Y = Y^{T} \Lambda Y$$

一、 $A_{n\times n}$ 的特征值与特征向量

1. 定义

 $A_{n\times n}$, $\xi_{n\times 1}\neq 0$, λ 为常数,若 $A\xi=\lambda\xi$, 则称 λ 为 A 的特征值, ξ 为 A 的属于 λ 的特征自量.

2. 性质

- 3. 求法
- ①定义法

A	aA + bE	A^k	f(A)	A^{-1}	A^*	$P^{-1}AP$
λ	$a\lambda + b$	λ^k	$f(\lambda)$	1/λ	$ A /\lambda$	λ
ζ	ξ	ζ	ζ	ξ	ξ 5!	$P^{-1} \xi$

【例】
$$A_{3\times 3}$$
, $A^2-3A-4E=0$, $|A|=-1$,则 $|A^*+A^{-1}|=$ ______.

②特征方程法

$$A\xi = \lambda \xi$$
, $\xi \neq 0 \Rightarrow \lambda \xi - A\xi = 0 \Rightarrow (\lambda E - A)\xi = 0 \Rightarrow (\lambda E - A)X = 0$ 有非零解

⇒
$$|\lambda E - A| = 0$$
 ⇒ $\lambda_1, \lambda_2, \dots, \lambda_n$ (重根按重数计)

$$解(\lambda_i E - A)X = 0 \Rightarrow \xi_i$$
 (属于 λ_i 的), $i = 1, \dots, n$

【例 1】设
$$A = \begin{pmatrix} 3 & 1 & -7 \\ 0 & 2 & 4 \\ 0 & 0 & 6 \end{pmatrix}$$
, 求 A 的特征值与特征向量.

【例 2】求
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
的特征值与特征向量.

二、 $A \sim B$ 与 $A \sim \Lambda$

1. A相似于B

- (1) 定义: ∃可逆矩阵 C, 使得 $C^{-1}AC = B \Rightarrow A \sim B$
- (2) 性质

$$A \sim B \Rightarrow 1$$
) $r(A) = r(B)$; 2) $|A| = |B|$; 3) $|\lambda E - A| = |\lambda E - B|$; 4) $tr(A) = tr(B)$; 5)

$$A^m \sim B^m$$
; 6) $f(A) \sim f(B)$;

7)
$$A^{-1}$$
, $B^{-1}\exists$, $A^{-1} \sim B^{-1}$, $f(A^{-1}) \sim f(B^{-1})$, $A^* \sim B^*$, $f(A^*) \sim f(B^*)$

2.
$$A \sim \Lambda$$

(1) 定义: ∃可逆矩阵 D, 使得 $D^{-1}AD = \Lambda \Rightarrow A \sim \Lambda$

重要结论: $A \sim \Lambda \Leftrightarrow A \in \mathbb{R}$ 个线性无关的特征向量.

- (2) 重要结论
- 1) 普通矩阵 A

 $\lambda_1 \neq \lambda_2 \Rightarrow \xi_1 \in \xi_2$ 无关;

 $\lambda_1 = \lambda_2 \Rightarrow \xi_1 = \xi_2$ 相关性不确定.

2) 实对称矩阵 A ($a_{ij} = a_{ji}$)

 $\lambda_1 \neq \lambda_2 \Rightarrow \xi_1 \perp \xi_2 \ (\mathbb{E}\overline{\Sigma});$

 $\lambda_1 = \lambda_2 \Rightarrow \xi_1 = \xi_2$ 正交或不正交,但一定是线性无关的.

- (3) **A~**Λ的判别法
- 1) 两个充分条件

A有n个不同的特征值 $\lambda_i \Rightarrow A \sim \Lambda$.

A为实对称矩阵 ⇒ $A \sim \Lambda$.

2) 两个充要条件

A有n个线性无关的特征向量 ⇔ A ~ Λ .

 $n_i = n - r(\lambda_i E - A)$, $\lambda_i \ni n_i \equiv \mathbb{R} \iff A \sim \Lambda$.

【例 1】判别
$$A = \begin{pmatrix} 1 & 6 & 8 \\ 0 & 7 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
是否可以相似对角化?

【例 2】判别
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 是否可以相似对角化?

【例 3】判别
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$$
 是否可以相似对角化?

【例 4】判别
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -3 & -3 & -3 \end{pmatrix}$$
 是否可以相似对角化?

- 3. *A~B*的判别法
- 1) $A_{n\times n}$, $B_{n\times n}$, A实对称,则 $A\sim\Lambda$, $B\sim\Lambda$, $A\sim B$.
- 2) $A_{n \times n}$, $B_{n \times n}$, A, B均可对角化, $\lambda_A = \lambda_B \Rightarrow A \sim B$
- 3) $A_{n\times n}$ 对称, $B_{n\times n}$ 对称, $\lambda_A = \lambda_B \Longrightarrow A \sim B$

【例】证明:
$$A_n = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$
与 $B_n = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 2 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & n \end{pmatrix}$ 相似.

三、二次型化标准形

1. 二次型及其矩阵表示

$$f(x_1, x_2, \dots, x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n$$

机东方在线

$$+a_{22}x_2^2 + 2a_{23}x_2x_3 + \dots + 2a_{2n}x_2x_n$$

$$+a_{nn}x_n^2$$

$$= X^{T}AX = \begin{pmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$$

【例】
$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$$

- 2. 化二次型为标准形
- (1) 理论

1)
$$f = \cdots = d_1 x_1^2 + \cdots + d_n x_n^2$$
, d_i 为实数

标准形

$$f = \cdots = x_1^2 + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2$$

规范形

注: p ——正惯性指数; q ——负惯性指数

2)
$$f = X^T A X \underline{X} = P \underline{Y} Y^T \Lambda Y$$
 (P 正交矩阵)

$$f = X^T A X \underline{X} = \underline{CY}(\underline{CY})^T A(\underline{CY})$$
 (C 可逆矩阵)

合同: \exists 可逆矩阵C, 使得 $C^TAC = B$, 称A合同于B.

(2) 配方法

从左,找一个系数 $\neq 0$ 的 x_i^2 ,将所有含 x_i 的项集中在一起,配完全平方,接着,如法炮制, 直到每一项都完全平方.

【例】
$$f = 2x_1^2 - 4x_1x_2 + x_2^2 - 4x_2x_3$$

(3) 正交变换法

【例】
$$f = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$
 化标准形,并写出正交阵 P .

【注】施密特正交化 α_1 α_2 α_3

 $\Leftrightarrow \beta_1 = \alpha_1$,

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1,$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2.$$

- 3. f 的正定性
- (1) 定义: $\forall x \neq 0$, $f = X^T A X > 0$, 叫 f 正定.
- (2) 必要条件: A 正定 \Rightarrow 1) $a_{ii} > 0$; 2) |A| > 0; 3) $A^{T} = A$.
- (3) 充要条件:

f 正定 ⇔ A 正定

- $\Leftrightarrow A^{-1}$ 正定
- $\Leftrightarrow \forall x \neq 0, f = X^T A X > 0$
- $\Leftrightarrow \lambda_i > 0$
- $\Leftrightarrow p = n$
- ⇔顺序主子式均大于零
- \Leftrightarrow 3可逆矩阵D,使 $A = D^TD$ (A合同于E)

【例】设 $f = X^T A X$,则f正定的充要条件是()

- (A) A^* 正定 (B) A^{-1} 正定 (C) q = 0 (D) $\exists C$, 使 $A = C^T C$

4. 矩阵的等价、相似、合同

 $1^{\circ}A$ 、 B 同型 A、 B 等价 $\Leftrightarrow r(A) = r(B)$

 $2^{\circ}A$ 、B同阶 A、B相似 \Leftrightarrow 3可逆矩阵C, 使得 $C^{-1}AC=B$

 $3^{\circ}A$ 、B对称 A、B合同 $\Leftrightarrow p$ 、q相同

【例 1】 当
$$k$$
 取何值时, $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & k \end{pmatrix}$ 与 $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 3 & 3 \end{pmatrix}$ 等价?

【例 2】 当
$$k$$
 取何值时, $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & k \end{pmatrix}$ 与 $B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{pmatrix}$ 相似?

【例 3】 当
$$k$$
 取何值时, $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & k \end{pmatrix}$ 与 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ 合同?

www.koolearn.com