Math 415 - Lecture 13 Basis and Dimension

Wednesday September 23rd 2015

Textbook reading: Chapter 2.3

Suggested practice exercises: Chapter 2.3 Exercise 1, 2, 3, 5, 6, 9, 11, 16, 19, 20, 22, 27.

Suggested practice exercises: Chapter 2.3 Exercise 1, 2, 3, 5, 6, 9, 11, 16, 19, 20, 22, 27.

Khan Academy video: Introduction to Linear Independence, More on linear independence, Span and Linear Independence Example, Basis of a Subspace

Textbook reading: Chapter 2.3

Suggested practice exercises: Chapter 2.3 Exercise 1, 2, 3, 5, 6, 9, 11, 16, 19, 20, 22, 27.

Khan Academy video: Introduction to Linear Independence, More on linear independence, Span and Linear Independence Example, Basis of a Subspace

Strang lecture: Independence, Basis, and Dimension

* Rooms:

- Exam 1 (7-8:15 pm Tuesday September 29):
- Rooms:
 - 213 Gregory Hall: AD3, ADG, ADU

- Exam 1 (7-8:15 pm Tuesday September 29):
- Rooms:
 - 213 Gregory Hall: AD3, ADG, ADU
 - 151 Loomis: ADC, ADD, ADL, ADM

- Exam 1 (7-8:15 pm Tuesday September 29):
- Rooms:
 - 213 Gregory Hall: AD3, ADG, ADU
 - 151 Loomis: ADC, ADD, ADL, ADM
 - 100 Gregory Hall: ADE, ADF, ADN, ADO

- Exam 1 (7-8:15 pm Tuesday September 29):
- Rooms:
 - 213 Gregory Hall: AD3, ADG, ADU
 - 151 Loomis: ADC, ADD, ADL, ADM
 - 100 Gregory Hall: ADE, ADF, ADN, ADO
 - 66 Library: ADH, ADP, ADQ, ADX

- * Exam 1 (7-8:15 pm Tuesday September 29):
- * Rooms:
 - 213 Gregory Hall: AD3, ADG, ADU
 - 151 Loomis: ADC, ADD, ADL, ADM
 - 100 Gregory Hall: ADE, ADF, ADN, ADO
 - 66 Library: ADH, ADP, ADQ, ADX
 - 141 Loomis: AD1, AD2, ADS, ADT, ADW, ADZ

- * Exam 1 (7-8:15 pm Tuesday September 29):
- * Rooms:
 - 213 Gregory Hall: AD3, ADG, ADU
 - 151 Loomis: ADC, ADD, ADL, ADM
 - 100 Gregory Hall: ADE, ADF, ADN, ADO
 - 66 Library: ADH, ADP, ADQ, ADX
 - 141 Loomis: AD1, AD2, ADS, ADT, ADW, ADZ
 - 100 MSEB: AD4, ADV, ADY, ADI, ADR

- * Exam 1 (7-8:15 pm Tuesday September 29):
- * Rooms:
 - 213 Gregory Hall: AD3, ADG, ADU
 - 151 Loomis: ADC, ADD, ADL, ADM
 - 100 Gregory Hall: ADE, ADF, ADN, ADO
 - 66 Library: ADH, ADP, ADQ, ADX
 - 141 Loomis: AD1, AD2, ADS, ADT, ADW, ADZ
 - 100 MSEB: AD4, ADV, ADY, ADI, ADR
 - 150 ASL: ADA, ADB, ADJ, ADK

- * Rooms:
 - 213 Gregory Hall: AD3, ADG, ADU
 - 151 Loomis: ADC, ADD, ADL, ADM
 - 100 Gregory Hall: ADE, ADF, ADN, ADO
 - 66 Library: ADH, ADP, ADQ, ADX
 - 141 Loomis: AD1, AD2, ADS, ADT, ADW, ADZ
 - 100 MSEB: AD4, ADV, ADY, ADI, ADR
 - 150 ASL: ADA, ADB, ADJ, ADK

* Conflicts: You should have signed up for a conflict exam by now.

- * Rooms:
 - 213 Gregory Hall: AD3, ADG, ADU
 - 151 Loomis: ADC, ADD, ADL, ADM
 - 100 Gregory Hall: ADE, ADF, ADN, ADO
 - 66 Library: ADH, ADP, ADQ, ADX
 - 141 Loomis: AD1, AD2, ADS, ADT, ADW, ADZ
 - 100 MSEB: AD4, ADV, ADY, ADI, ADR
 - 150 ASL: ADA, ADB, ADJ, ADK

- Conflicts: You should have signed up for a conflict exam by now.
- * No Discussion Sections next week.

- * Exam 1 (7-8:15 pm Tuesday September 29):
- * Rooms:
 - 213 Gregory Hall: AD3, ADG, ADU
 - 151 Loomis: ADC, ADD, ADL, ADM
 - 100 Gregory Hall: ADE, ADF, ADN, ADO
 - 66 Library: ADH, ADP, ADQ, ADX
 - 141 Loomis: AD1, AD2, ADS, ADT, ADW, ADZ
 - 100 MSEB: AD4, ADV, ADY, ADI, ADR
 - 150 ASL: ADA, ADB, ADJ, ADK

- * Conflicts: You should have signed up for a conflict exam by now.
- * No Discussion Sections next week.
- * No Class on Wednesday next week.

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_p\mathbf{v_p} = \mathbf{0},$$

Shrinking and Exanding Sets of Vectors

Review

 \bullet Vectors $\textbf{v}_1, \dots, \textbf{v}_p$ are linearly Dependent if

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_p\mathbf{v_p} = \mathbf{0},$$

Shrinking and Exanding Sets of Vectors

- and not all the coefficients are zero.
- The columns of A are linearly **IN**dependent

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_p\mathbf{v_p} = \mathbf{0},$$

- and not all the coefficients are zero.
- The columns of A are linearly INdependent
 ⇔ each column of A contains a pivot

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_p\mathbf{v_p} = \mathbf{0},$$

- and not all the coefficients are zero.
- The columns of A are linearly INdependent
 - \iff each column of A contains a pivot
 - \iff there are no free variables for $A\mathbf{x} = \mathbf{0}$.

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_p\mathbf{v_p} = \mathbf{0},$$

- The columns of A are linearly INdependent
 each column of A contains a pivot
 there are no free variables for Ax = 0.
- Are the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3 \end{bmatrix}$ independent?

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_p\mathbf{v_p} = \mathbf{0},$$

- The columns of A are linearly INdependent
 each column of A contains a pivot
 there are no free variables for Ax = 0.
- Are the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3 \end{bmatrix}$ independent?

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix} \longrightarrow$$

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_p\mathbf{v_p} = \mathbf{0},$$

- The columns of A are linearly INdependent
 each column of A contains a pivot
 there are no free variables for Ax = 0.
- Are the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3 \end{bmatrix}$ independent?

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{bmatrix} \longrightarrow$$

Review

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_p\mathbf{v_p} = \mathbf{0},$$

- The columns of A are linearly **IN**dependent \iff each column of A contains a pivot \iff there are no free variables for $A\mathbf{x} = \mathbf{0}$.
- Are the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\2 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3 \end{bmatrix}$ independent?

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_p\mathbf{v_p} = \mathbf{0},$$

and not all the coefficients are zero.

- The columns of A are linearly INdependent
 each column of A contains a pivot
 there are no free variables for Ax = 0.
- Are the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3 \end{bmatrix}$ independent?

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

So no, they are dependent! (Coeff's for instance $x_3 = 1, x_2 = -2, x_1 = 3$)

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_p\mathbf{v_p} = \mathbf{0},$$

and not all the coefficients are zero.

- The columns of A are linearly INdependent
 each column of A contains a pivot
 there are no free variables for Ax = 0.
- Are the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3 \end{bmatrix}$ independent?

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

So no, they are dependent! (Coeff's for instance $x_3 = 1, x_2 = -2, x_1 = 3$)

• Any set of 11 vectors in \mathbb{R}^{10} is linearly dependent. Why?

Definition

In a list of vectors $(\mathbf{v_1},\ldots,\mathbf{v_p})$ in a vector space V we call $\mathbf{v_k}$ redundant if v_k is a linear combination of the previous vectors. In this case $\mathrm{Span}(\mathbf{v_1},\mathbf{v_2},\ldots,\mathbf{v_{k-1}},\mathbf{v_k})=\mathrm{Span}(\mathbf{v_1},\mathbf{v_2},\ldots,\mathbf{v_{k-1}})$, i.e., you can delete the redundant vector and get the same span.

Definition

In a list of vectors $(\mathbf{v}_1,\ldots,\mathbf{v}_p)$ in a vector space V we call \mathbf{v}_k redundant if v_k is a linear combination of the previous vectors. In this case $\mathrm{Span}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_{k-1},\mathbf{v}_k)=\mathrm{Span}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_{k-1})$, i.e., you can delete the redundant vector and get the same span.

Example

Let
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$.

Definition

In a list of vectors $(\mathbf{v_1}, \dots, \mathbf{v_p})$ in a vector space V we call $\mathbf{v_k}$ redundant if v_k is a linear combination of the previous vectors. In this case $\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k-1}, \mathbf{v}_k) = \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k-1})$, i.e., you can delete the redundant vector and get the same span.

Example

Let
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$. Are there redunant vectors?

Definition

In a list of vectors $(\mathbf{v}_1,\ldots,\mathbf{v}_p)$ in a vector space V we call \mathbf{v}_k redundant if v_k is a linear combination of the previous vectors. In this case $\mathrm{Span}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_{k-1},\mathbf{v}_k)=\mathrm{Span}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_{k-1})$, i.e., you can delete the redundant vector and get the same span.

Example

Let
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$. Are there redunant vectors?

Solution

Since $\mathbf{v_3} = \mathbf{v_1} + \mathbf{v_2}$, $\mathbf{v_3}$ is redundant and $\mathrm{Span}(\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}) = \mathrm{Span}(\mathbf{v_1}, \mathbf{v_2})$.

Definition

In a list of vectors $(\mathbf{v_1},\ldots,\mathbf{v_p})$ in a vector space V we call $\mathbf{v_k}$ redundant if v_k is a linear combination of the previous vectors. In this case $\operatorname{Span}(\mathbf{v_1},\mathbf{v_2},\ldots,\mathbf{v_{k-1}},\mathbf{v_k}) = \operatorname{Span}(\mathbf{v_1},\mathbf{v_2},\ldots,\mathbf{v_{k-1}})$, i.e., you can delete the redundant vector and get the same span.

Example

Let
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$. Are there redunant vectors?

Solution

Since $\mathbf{v_3} = \mathbf{v_1} + \mathbf{v_2}$, $\mathbf{v_3}$ is redundant and $\mathrm{Span}(\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}) = \mathrm{Span}(\mathbf{v_1}, \mathbf{v_2})$.

Today we are going to study sets of vectors without redundant elements.

A Basis of a Vector Space

A Basis of a Vector Space

Definition

Review

A set of vectors $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ in V is a **basis** of V if

Shrinking and Exanding Sets of Vectors

- $V = \operatorname{Span} \{ \mathbf{v_1}, \dots, \mathbf{v_p} \}$, and
- the vectors $\mathbf{v_1}, \dots, \mathbf{v_p}$ are linearly independent.

A Basis of a Vector Space

Definition

A set of vectors $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ in V is a **basis** of V if

- $V = \operatorname{Span} \{ \mathbf{v_1}, \dots, \mathbf{v_n} \}$, and
- the vectors $\mathbf{v_1}, \dots, \mathbf{v_p}$ are linearly independent.

Fact: $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ in V is a basis of V if and only if every vector **w** in V can be uniquely expressed as $\mathbf{w} = c_1 \mathbf{v_1} + \cdots + c_p \mathbf{v_p}$.

Shrinking and Exanding Sets of Vectors

Definition

Review

A set of vectors $\{v_1, \dots, v_p\}$ in V is a **basis** of V if

- $V = \operatorname{Span} \{ \mathbf{v_1}, \dots, \mathbf{v_n} \}$, and
- the vectors $\mathbf{v_1}, \dots, \mathbf{v_p}$ are linearly independent.

Fact: $\{v_1, \dots, v_n\}$ in V is a basis of V if and only if every vector **w** in V can be uniquely expressed as $\mathbf{w} = c_1 \mathbf{v_1} + \cdots + c_p \mathbf{v_p}$.

Shrinking and Exanding Sets of Vectors

Fact: A basis is a *minimal spanning set*: the elements of the basis span V but you cannot delete any of these elements and still get all of V.

Definition

A set of vectors $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ in V is a **basis** of V if

- ullet $V = \operatorname{\mathsf{Span}}\left\{\mathbf{v_1}, \dots, \mathbf{v_p}
 ight\}, \ \mathsf{and}$
- the vectors $\mathbf{v_1}, \dots, \mathbf{v_p}$ are linearly independent.

Fact: $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ in V is a basis of V if and only if every vector \mathbf{w} in V can be uniquely expressed as $\mathbf{w} = c_1 \mathbf{v_1} + \dots + c_p \mathbf{v_p}$.

Fact: A basis is a *minimal spanning set*: the elements of the basis span V but you cannot delete any of these elements and still get all of V. There are no redundant vectors.

Example

Review

Let
$$\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ is a

Shrinking and Exanding Sets of Vectors

basis of \mathbb{R}^3 . (It is called the **standard basis**.)

Example

Let
$$\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ is a

basis of \mathbb{R}^3 . (It is called the **standard basis**.)

Solution

• Clearly, Span $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\} = \mathbb{R}^3$.

Example

Review

Let
$$\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ is a

Shrinking and Exanding Sets of Vectors

basis of \mathbb{R}^3 . (It is called the **standard basis**.)

- Clearly, Span $\{e_1, e_2, e_3\} = \mathbb{R}^3$.
- $\{e_1, e_2, e_3\}$ are independent, because

Example

Let
$$\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ is a

basis of \mathbb{R}^3 . (It is called the **standard basis**.)

Solution

- Clearly, Span $\{e_1, e_2, e_3\} = \mathbb{R}^3$.
- $\{e_1, e_2, e_3\}$ are independent, because $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ has a pivot

in each column, no free variables.

Example

Let
$$\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ is a

basis of \mathbb{R}^3 . (It is called the **standard basis**.)

Solution

- Clearly, Span $\{e_1, e_2, e_3\} = \mathbb{R}^3$.
- $\{e_1, e_2, e_3\}$ are independent, because $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ has a pivot in each column, no free variables. Note that we can not delete

one of e_1, e_2, e_3 and still get all of \mathbb{R}^3 .

Definition

V is said to have **dimension** p if it has a basis consisting of pvectors.

Shrinking and Exanding Sets of Vectors

Definition

V is said to have **dimension** p if it has a basis consisting of pvectors.

This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors.

Definition

Review

V is said to have **dimension** p if it has a basis consisting of pvectors.

Shrinking and Exanding Sets of Vectors

This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors.

Why? (Think of
$$V = \mathbb{R}^3$$
.)

Definition

V is said to have **dimension** p if it has a basis consisting of p vectors.

This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors.

Why? (Think of
$$V = \mathbb{R}^3$$
.)

A basis of \mathbb{R}^3 cannot have more than 3 vectors, because any set of 4 or more vectors in \mathbb{R}^3 is linearly dependent.

Review

A Basis of a Vector Space

Definition

V is said to have **dimension** p if it has a basis consisting of p vectors.

Shrinking and Exanding Sets of Vectors

This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors.

Why? (Think of $V = \mathbb{R}^3$.)

A basis of \mathbb{R}^3 cannot have more than 3 vectors, because any set of 4 or more vectors in \mathbb{R}^3 is linearly dependent.

A basis of \mathbb{R}^3 cannot have less than 3 vectors,because 2 vectors span at most a plane.

Definition

Review

V is said to have **dimension** p if it has a basis consisting of p vectors.

Shrinking and Exanding Sets of Vectors

This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors.

Why? (Think of $V = \mathbb{R}^3$.)

A basis of \mathbb{R}^3 cannot have more than 3 vectors, because any set of 4 or more vectors in \mathbb{R}^3 is linearly dependent.

A basis of \mathbb{R}^3 cannot have less than 3 vectors, because 2 vectors span at most a plane. (Challenge: can you think of an argument that is more "rigorous"?)

Example

 \mathbb{R}^3 has dimension 3.

Example

 \mathbb{R}^3 has dimension 3.

Example

Review

 \mathbb{R}^3 has dimension 3.

Indeed, the standard basis

$$\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

Shrinking and Exanding Sets of Vectors

has three elements.

Example

Review

 \mathbb{R}^3 has dimension 3.

Indeed, the standard basis

$$\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

Shrinking and Exanding Sets of Vectors

has three elements.

Likewise, \mathbb{R}^n has dimension n.

Example

Not all vectors spaces have a finite basis. For instance, the vector space of all polynomials has infinite dimension.

Shrinking and Exanding Sets of Vectors

Example

Review

Not all vectors spaces have a finite basis. For instance, the vector space of all polynomials has infinite dimension.

Shrinking and Exanding Sets of Vectors

Its standard basis is $1, t, t^2, t^3, ...$ Why?

Example

Not all vectors spaces have a finite basis. For instance, the vector space of all polynomials has *infinite dimension*.

Its standard basis is $1, t, t^2, t^3, \dots$ Why?

Solution

This is indeed a basis, because any polynomial can be written as a unique linear combination:

$$p(t) = a_0 + a_1 t + \cdots + a_n t^n$$

for some n.

Recall that vectors in V form a **basis** of V if • They span V.

- They span V.
- They are linearly independent.

- They span V.
- They are linearly independent.

- They span V.
- They are linearly independent.

These are two conditions.

Recall that vectors in V form a **basis** of V if

- They span V.
- They are linearly independent.

These are two conditions. If we know the dimension of V, we only need to check one of these two conditions:

Suppose that V has dimension d.

- A set of d vectors in V are a basis if they span V.
- A set of d vectors in V are a basis if they are linearly independent.

Why?

Suppose that V has dimension d.

- A set of d vectors in V are a basis if they span V.
- A set of d vectors in V are a basis if they are linearly independent.

Why?

Suppose that V has dimension d.

- A set of d vectors in V are a basis if they span V.
- A set of d vectors in V are a basis if they are linearly independent.

Why?

Suppose that V has dimension d.

- A set of d vectors in V are a basis if they span V.
- A set of d vectors in V are a basis if they are linearly independent.

Why?

Solution

• If the d vectors were not independent, then d-1 of them would still span V. In the end, we would find a basis of less than d vectors.

Suppose that V has dimension d.

- A set of d vectors in V are a basis if they span V.
- A set of d vectors in V are a basis if they are linearly
- A set of d vectors in V are a basis if they are linearly independent.

Why?

- If the d vectors were not independent, then d-1 of them would still span V. In the end, we would find a basis of less than d vectors.
- If the d vectors would not span V, then we could add another vector to the set and have d+1 independent ones.

Suppose that V has dimension d.

- A set of d vectors in V are a basis if they span V.
- A set of d vectors in V are a basis if they are linearly
- A set of d vectors in V are a basis if they are linearly independent.

Why?

- If the d vectors were not independent, then d-1 of them would still span V. In the end, we would find a basis of less than d vectors.
- If the d vectors would not span V, then we could add another vector to the set and have d+1 independent ones.

Suppose that V has dimension d.

- A set of d vectors in V are a basis if they span V.
- A set of d vectors in V are a basis if they are linearly
- A set of d vectors in V are a basis if they are linearly independent.

Why?

- If the d vectors were not independent, then d-1 of them would still span V. In the end, we would find a basis of less than d vectors.
- If the d vectors would not span V, then we could add another vector to the set and have d+1 independent ones.

Shrinking and Exanding Sets of Vectors

A Basis of a Vector Space

Example

Review

Are the following sets a basis for \mathbb{R}^3 ?

(a)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

Example

Review

Are the following sets a basis for \mathbb{R}^3 ?

Shrinking and Exanding Sets of Vectors

$$(a) \ \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

$$\text{(b) } \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} \right\}$$

Example

Review

Are the following sets a basis for \mathbb{R}^3 ?

Shrinking and Exanding Sets of Vectors

(a)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

$$\text{(b) } \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} -1\\2\\0 \end{bmatrix} \right\}$$

Solution

(a) No, the set has less than 3 elements.

Example

Review

Are the following sets a basis for \mathbb{R}^3 ?

Shrinking and Exanding Sets of Vectors

(a)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

$$\text{(b) } \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} \right\}$$

Solution

- (a) No, the set has less than 3 elements.
- (b) No, the set has more than 3 elements.

A Basis of a Vector Space

Example

$$(c) \ \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}.$$

Example

Review

(c)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}$$
. Is this a basis?

Shrinking and Exanding Sets of Vectors

Example

(c)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}$$
. Is this a basis?

Solution

(c) The set has 3 elements. Hence, it is a basis if and only if the vectors are independent.

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \longrightarrow$$

Example

(c)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}$$
. Is this a basis?

Solution

(c) The set has 3 elements. Hence, it is a basis if and only if the vectors are independent.

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 1 & 3 \end{bmatrix} \longrightarrow$$

A Basis of a Vector Space

Example

(c)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}$$
. Is this a basis?

Solution

(c) The set has 3 elements. Hence, it is a basis if and only if the vectors are independent.

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 1 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 5 \end{bmatrix}$$

Since each column contains a pivot, the three vectors are independent. Hence, this is a basis for \mathbb{R}^3 .

Example

Review

Let P_2 be the space of polynomials of degree at most 2.

Shrinking and Exanding Sets of Vectors

- What is the dimension of P_2 ?
- Is $\{t, 1-t, 1+t-t^2\}$ a basis of P_2 ?

Example

Let P_2 be the space of polynomials of degree at most 2.

- What is the dimension of P_2 ?
- Is $\{t, 1-t, 1+t-t^2\}$ a basis of P_2 ?

Solution

• The standard basis for P_2 is $\{1, t, t^2\}$.

Example

Review

Let P_2 be the space of polynomials of degree at most 2.

- What is the dimension of P_2 ?
- Is $\{t, 1-t, 1+t-t^2\}$ a basis of P_2 ?

Solution

• The standard basis for P_2 is $\{1, t, t^2\}$. This is indeed a basis because every polynomial

$$a_0 + a_1 t + a_2 t^2$$

Shrinking and Exanding Sets of Vectors

can clearly be written as a linear combination of $1, t, t^2$ in a unique way.

Example

Let P_2 be the space of polynomials of degree at most 2.

- What is the dimension of P_2 ?
- Is $\{t, 1-t, 1+t-t^2\}$ a basis of P_2 ?

Solution

• The standard basis for P_2 is $\{1, t, t^2\}$. This is indeed a basis because every polynomial

$$a_0 + a_1 t + a_2 t^2$$

can clearly be written as a linear combination of 1, t, t^2 in a unique way.

Hence, P_2 has dimension 3.

• The set $\{t, 1-t, 1+t-t^2\}$ has 3 elements.

Review

• The set $\{t, 1-t, 1+t-t^2\}$ has 3 elements. Hence, it is a basis if and only if the three polynomials are linearly independent.

Shrinking and Exanding Sets of Vectors

• The set $\{t, 1-t, 1+t-t^2\}$ has 3 elements. Hence, it is a basis if and only if the three polynomials are linearly independent.

We need to check whether

$$x_1t + x_2(1-t) + x_3(1+t-t^2) = 0$$

has only the trivial solution $x_1 = x_2 = x_3 = 0$.

• The set $\{t, 1-t, 1+t-t^2\}$ has 3 elements. Hence, it is a basis if and only if the three polynomials are linearly independent.

We need to check whether

$$x_1t + x_2(1-t) + x_3(1+t-t^2) = 0$$

has only the trivial solution $x_1 = x_2 = x_3 = 0$. We get the equations

$$\begin{aligned}
 x_2 + x_3 &= 0 \\
 x_1 - x_2 + x_3 &= 0 \\
 -x_3 &= 0
 \end{aligned}$$

which clearly only have the trivial solution. (If you don't see it, solve the system!)

Review

• The set $\{t, 1-t, 1+t-t^2\}$ has 3 elements. Hence, it is a basis if and only if the three polynomials are linearly independent.

We need to check whether

$$x_1t + x_2(1-t) + x_3(1+t-t^2) = 0$$

has only the trivial solution $x_1 = x_2 = x_3 = 0$. We get the equations

$$\begin{aligned}
 x_2 + x_3 &= 0 \\
 x_1 - x_2 + x_3 &= 0 \\
 -x_3 &= 0
 \end{aligned}$$

which clearly only have the trivial solution. (If you don't see it, solve the system!)

Hence, $\{t, 1-t, 1+t-t^2\}$ is a basis of P_2 .

We can find a basis for $V = \operatorname{Span} \{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ by discarding, if necessary, some of the vectors in the spanning set.

Example

Produce a basis of \mathbb{R}^2 from the vectors

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Example

Produce a basis of \mathbb{R}^2 from the vectors

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution

Here, we notice that $\mathbf{v_2} = -2\mathbf{v_1}$.

Example

Produce a basis of \mathbb{R}^2 from the vectors

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution

Here, we notice that $\mathbf{v_2} = -2\mathbf{v_1}$.

The remaining vectors $\{\mathbf{v_1}, \mathbf{v_3}\}$ are a basis for \mathbb{R}^2 , because the two vectors are clearly linearly independent.

Example

Produce a basis of \mathbb{R}^2 from the vector

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Solution

Example

Produce a basis of \mathbb{R}^2 from the vector

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Solution

 $\mathbf{v_1}$ is independent.

Example

Review

Produce a basis of \mathbb{R}^2 from the vector

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Shrinking and Exanding Sets of Vectors

Solution

 $\mathbf{v_1}$ is independent. But is does not span \mathbb{R}^2 .

Example

Produce a basis of \mathbb{R}^2 from the vector

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Solution

 ${f v_1}$ is independent. But is does not span $\mathbb{R}^2.$ For instance ${f v_2}=egin{bmatrix}0\\1\end{bmatrix}$ is not in the span of ${f v_1}.$

Example

Produce a basis of \mathbb{R}^2 from the vector

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Solution

 $\mathbf{v_1}$ is independent. But is does not span \mathbb{R}^2 . For instance $\mathbf{v_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is not in the span of v_1 . Let's add it!

Example

Produce a basis of \mathbb{R}^2 from the vector

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Solution

 $\mathbf{v_1}$ is independent. But is does not span \mathbb{R}^2 . For instance $\mathbf{v_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is not in the span of v_1 . Let's add it! Then $Span(v_1, v_2)$ is all of \mathbb{R}^2 and we found a basis.

Example

Subspaces of \mathbb{R}^3 can have dimension 0, 1, 2, or 3.

Example

Subspaces of \mathbb{R}^3 can have dimension 0, 1, 2, or 3.

• The only 0-dimensional subspace is $\{0\}$.

Example

Review

Subspaces of \mathbb{R}^3 can have dimension 0, 1, 2, or 3.

- The only 0-dimensional subspace is $\{0\}$.
- A 1-dimensional subspace is of the form Span $\{v\}$ where $v \neq 0$.

These subspaces are lines through the origin.

Example

Review

Subspaces of \mathbb{R}^3 can have dimension 0, 1, 2, or 3.

- The only 0-dimensional subspace is $\{0\}$.
- A 1-dimensional subspace is of the form Span $\{v\}$ where $v \neq 0$.

These subspaces are lines through the origin.

A 2-dimensional subspace is of the form Span {v, w} where v and w are not multiples of each other.
 These subspaces are planes through the origin.

Example

Review

Subspaces of \mathbb{R}^3 can have dimension 0, 1, 2, or 3.

- The only 0-dimensional subspace is $\{0\}$.
- A 1-dimensional subspace is of the form Span $\{v\}$ where $v \neq 0$.

These subspaces are lines through the origin.

- A 2-dimensional subspace is of the form Span {v, w} where v and w are not multiples of each other.
 These subspaces are planes through the origin.
- The only 3-dimensional subspace is \mathbb{R}^3 itself.

True or false?

1. Suppose that V has dimension n. Then any set in V containing more than n vectors must be linearly dependent.

True or false?

1. Suppose that V has dimension n. Then any set in V containing more than n vectors must be linearly dependent. True.

- 1. Suppose that V has dimension n. Then any set in V containing more than *n* vectors must be linearly dependent. True.
- 2. The space P_n of polynomials of degree at most n has dimension n+1.

- 1. Suppose that V has dimension n. Then any set in V containing more than *n* vectors must be linearly dependent. True.
- 2. The space P_n of polynomials of degree at most n has dimension n+1. True.

- 1. Suppose that V has dimension n. Then any set in V containing more than *n* vectors must be linearly dependent. True.
- 2. The space P_n of polynomials of degree at most n has dimension n+1. True. A basis is $\{1, t, t^2, \dots, t^n\}$.

- 1. Suppose that V has dimension n. Then any set in V containing more than *n* vectors must be linearly dependent. True.
- 2. The space P_n of polynomials of degree at most n has dimension n+1. True. A basis is $\{1, t, t^2, \dots, t^n\}$.
- 3. The vector space of functions $f: \mathbb{R} \to \mathbb{R}$ is infinite-dimensional.

- 1. Suppose that V has dimension n. Then any set in V containing more than *n* vectors must be linearly dependent. True.
- 2. The space P_n of polynomials of degree at most n has dimension n+1. True. A basis is $\{1, t, t^2, \dots, t^n\}$.
- 3. The vector space of functions $f: \mathbb{R} \to \mathbb{R}$ is infinite-dimensional. True.

- 1. Suppose that V has dimension n. Then any set in V containing more than *n* vectors must be linearly dependent. True.
- 2. The space P_n of polynomials of degree at most n has dimension n+1. True. A basis is $\{1, t, t^2, \dots, t^n\}$.
- 3. The vector space of functions $f: \mathbb{R} \to \mathbb{R}$ is infinite-dimensional. True. A still-infinite-dimensional subspace are the polynomials.

- 1. Suppose that V has dimension n. Then any set in V containing more than *n* vectors must be linearly dependent. True.
- 2. The space P_n of polynomials of degree at most n has dimension n+1. True. A basis is $\{1, t, t^2, \dots, t^n\}$.
- 3. The vector space of functions $f: \mathbb{R} \to \mathbb{R}$ is infinite-dimensional. True. A still-infinite-dimensional subspace are the polynomials.
- 4. Consider $V = \text{Span} \{ \mathbf{v_1}, \dots, \mathbf{v_p} \}$. If one of the vectors, say $\mathbf{v_k}$, in the spanning set is a linear combination of the remaining ones, then the remaining vectors still span V.

- Suppose that V has dimension n. Then any set in V containing more than n vectors must be linearly dependent.
 True.
- The space P_n of polynomials of degree at most n has dimension n + 1.
 True. A basis is {1, t, t²,...,tⁿ}.
- The vector space of functions f: R→ R is infinite-dimensional.
 True. A still-infinite-dimensional subspace are the polynomials.
- 4. Consider $V = \operatorname{Span} \{\mathbf{v_1}, \dots, \mathbf{v_p}\}$. If one of the vectors, say $\mathbf{v_k}$, in the spanning set is a linear combination of the remaining ones, then the remaining vectors still span V.

- 1. Suppose that V has dimension n. Then any set in V containing more than *n* vectors must be linearly dependent. True.
- 2. The space P_n of polynomials of degree at most n has dimension n+1. True. A basis is $\{1, t, t^2, \dots, t^n\}$.
- 3. The vector space of functions $f: \mathbb{R} \to \mathbb{R}$ is infinite-dimensional. True. A still-infinite-dimensional subspace are the polynomials.
- 4. Consider $V = \text{Span} \{ \mathbf{v_1}, \dots, \mathbf{v_p} \}$. If one of the vectors, say $\mathbf{v_k}$, in the spanning set is a linear combination of the remaining ones, then the remaining vectors still span V. True. $\mathbf{v}_{\mathbf{k}}$ is not adding anything new.