Advanced Statistics DS2003 (BDS-4A) Lecture 21

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science, FAST
10 May, 2022

Previous Lecture

- Revision of Linear Regression
 - Sum of squares for x and y
 - Sum of products for x, y
- Least squares regression model
 - Residuals sum to zero, and the line always passes through (\bar{x}, \bar{y})

Today

- More in detail workings of multiple linear regression
 - Calculating the slopes for each independent variable $(X_1, X_2, ..., X_n)$
 - Calculating the intercept (b₀)
- Preference for no multicollinearity
 - We don't want correlation between different explanatory (independent) variables
 - We want to witness a correlation between explanatory variables with the response (dependent) variable

$$SP_{xy}$$
 ("sum of products") = $\sum (x_i - \overline{x})(y_i - \overline{y})$ | $\begin{cases} sample \\ covariance \end{cases} = \begin{cases} SP_{xy} \\ cov(x_i,y) \end{cases}$

$$\hat{\beta}_{o} = \vec{Y} - \hat{\beta}_{s} \vec{X}$$
; $\hat{\beta}_{i} = \frac{SP_{xy}}{SB_{xx}} = \frac{Cov(x,y)}{Var(x)}$

For least squares regression:

, The residuels sum to 0 (\(\size = 0 \)

→ The line passes thru (x, y)

Multiple Regression - a statistical measure that attempt to determine the strength of the relationship between 1. dependent variable (or response var, often devoted by y), & a series of other changing variables (also known as explanatory or independent variables).

Y =quantity demanded of a commodity $Y = f(x_1, x_2)$. $Y = f(x_1, x_2)$.

$$b_{s} = \left(\sum \chi_{s}^{2} \right) \left(\sum \chi_{i} y \right) - \left(\sum \chi_{i} \chi_{s} \right) \left(\sum \chi_{i} y \right) - \left(\sum \chi_{i} \chi_{s} \right)^{2}$$

$$b_{\perp} = \left(\sum_{x_{i}}^{x_{i}}\right)\left(\sum_{x_{i}}^{x_{i}}\right) - \left(\sum_{x_{i}}$$

Y = Bo + Paxa + Paxa + Tui) X2 = Consumer income I y we assume a linear

10/5/2022 (01)

relationship bow Y , X, X2

$$\Sigma x_1 y = \Sigma X_1 y - \frac{(\Sigma x_1)(\Sigma y)}{N}$$

$$\Sigma x^r \lambda = \Sigma x^r \lambda - (\overline{\Sigma x^r})(\overline{\Sigma} \lambda)$$

Example: Multiple Linear Regression

	Y (Quantity Dona ded)	X1 (Price)	X= (Incor	ne X1.4 X2.4 X1.X2 X1.2 X2 X2
	100	5	1000	500 100,000 5,000 1 40000
	75	7	600	10000
1	80	6	1200	100
1	70	6	500	100 25 2
	50	8	300	400 15,000 2,400 4 250,000
	65	7	400	455 26,000 2,800 1 160,000
1	90	5	1300	450 112 (20) 6.500 1
	100	4	1100	400 110,000 4,400 4 9
(m)	110	3	1300	230 143 mm 3 and 2 10,000 -
	60	9	300	540 18 00 12 200
	800	60	8000	4500 705 40 40
	0-	6	800	450 705,000 4,210 30 1,580,000 -3
$b_0 = 111.8 \qquad Y = b_0 + b_1 X_1 + b_2 X_2 = 111.8 - 7.19 X_1 + 0.014 X_2$ $b_1 = -7.18$ $b_2 = 6.014$				

Useful Links

- Statistics 101: Multiple Linear Regression, The Very Basics
 - https://www.youtube.com/watch?v=dQNpSa-bq4M
- What is Multiple Regression | numerical explanation AND interpretation of Multiple regression (English and Urdu)
 - https://www.youtube.com/watch?v=iCENCX60JpY
- Example:
 - http://faculty.cas.usf.edu/mbrannick/regression/Part3/Reg2.html

Sources

• openintro.org/os (Chapter 9, Section 9.1)