

DHAANISH AHMED COLLEGE OF ENGINEERING

Dhaanish Nagar, Padappai, Chennai – 601301 Approved By AICTE, New Delhi, Affiliated to Anna University, Chennai. www.dhaanish.in

Name	:		
Dept. / Year / Sec	<u>:</u>		
Subject Code & Name	·		
Register No	•		

DHAANISH AHMED COLLEGE OF ENGINEERING

This is to certify that, this a Bonafide Record Work done by

Dhaanish Nagar, Padappai, Chennai - 601301

BONAFIDE CERTIFICATE

Mr./Ms			
Year	Semester	Register	No
Department of			in the
			during the
academic year	2023 - 2024		
Signature			Signature
Lab-In-Char	ge	H	Head of the Department
Submitted for the Anna University practical Examination held on			

Signature of Internal Examiner with Date Signature of External Examiner with Date

INDEX

S. No	Date	Assignment	Page No.	Marks	Staff Sign
1		Working with Numpy Arrays			
2		Basic plots using Matplotlib			
3		Working with Pandas data frames			
4		Frequency distributions, averages and variability			
5		Normal Curves, Correlation and scatter plots, correlation coefficient			
6		Regression			
7		Z-Test			
8		T-Test			
9		ANOVA			
10		Building and Validating linear models			

Ex. No.:1

Date:

Working with Numpy Arrays

Aim:

To write a python program to create an array using numpy package.

Algorithm:

Step1: Start

Step2: Import numpy package.

Step3: Create a list and assign values to it.

Step4: Create array using numpy.

Step5: Display array values.

Step6: Stop

Program:

```
list = [1,2,3,4]
```

sample = np.array(list)

import numpy as np

print("created list %s"% list)

print("Numpy array in python %s"% sample)

print("Creating new list of array\n")

new = np.array([(1,2,3),(4,5,6)])

print('Squre Root of {}'.format(new))

print(np.sqrt(new))

Output:

created list [1, 2, 3, 4]

Numpy array in python [1 2 3 4]

Creating new list of array

Squre Root of [[1 2 3]

[4 5 6]]

[[1. 1.41421356 1.73205081]

[2. 2.23606798 2.44948974]]

Result:

Ex. No. 2

Date:

Basic plots using Matplotlib

Aim:

To write a python program to make a basic plots by using matplotlib.

Algorithm:

Step1: Start

Step2: Import matplotlib package.

Step3: Create a basic variables x and y.

Step4: Assign x and y with a common values.

Step5: Plot the points and display.

Step6: Stop

Program:

import matplotlib.pyplot as plt

import numpy as np

import math

Sample data

$$x = [1, 2, 3, 4, 5]$$

$$y = [2, 4, 1, 5, 3]$$

Create a figure1 and axis

plt.subplot(1,2,1)

plt.xlabel('x-axis')

plt.ylabel('y-axis')

plt.title('simple line plot')

```
plt.plot(x,y)

# Create a figure2 and axis

plt.subplot(1,2,2)

x=np.arange(0,(math.pi)*2,0.05)

y=np.sin(x)

plt.plot(x,y)

plt.xlabel('angle')

plt.ylabel('sine')

plt.title('sine curve')

# Show the plot

plt.show()
```

DACE Cuanding lectrocopy

Output:

Result:

Ex. No. 3

Date:

Working with Pandas data frames

Aim:

To write a python program to create a data frames by using Pandas package.

Algorithm:

```
Step1: Start
```

Step2: Import pandas package.

Step3: Create a variable and assign some dictionary data values to it.

Step4: By using DataFrame() function create a data frame.

Step5: Display the data set values.

Step6: Stop

Program:

(i) Pandas data frames

```
import pandas as pd
```

```
data = {'Word':['happy','apple','blue','gloomy'],
```

'Meaning':['happy','fruit','color','sad']}

df = pd.DataFrame(data)

print(df)

(ii) Reading CSV files with pandas

Creating a csv file by using notepad or any other text editor.

Save the file as any-name.csv.

import pandas as pd

df = pd.read csv(' any-name.csv ')

```
print(df.head())
      print(df.tail())
      print(df.info())
Output:
       sample - Notepad
      File Edit Format View Help
      Name, Age
      Jai, 19
      Kumar, 20
      Sanjay,18
      Maya, 19
      Priya,21
      Geetha, 18
      (i)
      Word Meaning
      0 happy happy
      1 apple fruit
      2 blue color
      3 gloomy sad
      (ii)
      Name Age
      0 Jai 19
      1 Kumar 20
      2 Sanjay 18
      3 Maya 19
```

	4 Priya 21	
	Name Age	
	1 Kumar 20	
	2 Sanjay 18	
	3 Maya 19	
	4 Priya 21	
	5 Geetha 18	
	<class 'pandas.core.frame.dataframe'=""></class>	
	RangeIndex: 6 entries, 0 to 5	
	Data columns (total 2 columns):	
	# Column Non-Null Count Dtype	
Resul	lt:	
	Thus, the Program has been successfully executed and the output is verified.	

Ex. No.: 4

Date:

Frequency distributions, averages and variability

Aim:

To write a python program to find frequency distributions, averages and variability.

Algorithm:

Step1: Start

Step2: Import numpy package.

Step3: Import pandas package.

Step4: Assign data to created variables.

Step5: Solve the values and display.

Step6: Stop

Program:

```
import numpy as np
import pandas as pd
list = [2,4,4,4,5,5,7,9]
data={'Grade':['A','A','A','B','B','B','B','C','D','D'],
   'Age':[18,18,18,19,19,20,18,18,19,19],
   'Gender':['M','M','F','F','F','M','M','F','M','F']}
df = pd.DataFrame(data)
print(df)
print(list)
```

print('Average :',np.average(list))

print('Variance :',np.var(list))

print('Standard Deviation :',np.std(list))

Output:

Grade Age Gender

- 0 A 18 M
- 1 A 18 M
- 2A18F
- 3 B 19 F
- 4 B 19 F
- 5 B 20 M
- 6 B 18 M
- 7 C 18 F
- 8 D 19 M
- 9 D 19 F

Find frequency of each letter grade

col_0 count

Grade

- A 3
- B 4
- C 1
- D 2

Fiding average, variance, standard deviation for

[2, 4, 4, 4, 5, 5, 7, 9]

Average: 5.0

Variance : 4.0	TOPAC
Standard Deviation: 2.0	Cutivating learner
Result: Thus, the Program has been successfully executed and the output is verified.	1
Thus, the Program has been successfully executed and the output is verifice	**

Ex. No.: 5

Date:

Normal Curves, Correlation and scatter plots, correlation coefficient

Aim:

To write a python program to calculate correlation, correlation coefficient and normal curves.

Algorithm:

Step1: Start

Step2: Import required librery

Step3: Make normal curves and calculate correlation.

Step4: Collect sample data to calculate correlation coefficient.

Step5: Assign the datas to x and y variable.

Step6: Plot the points.

Step7: Display the graphs (i),(ii)and(iii).

Step8: Stop

Program:

(i) Plotting normal distribution

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import norm

x = np.arange(-3,3,0.001)

plt.plot(x,norm.pdf(x,0,1))

plt.show()

(ii) Plot multiple normal distributions

```
import numpy as np
       import matplotlib.pyplot as plt
       from scipy.stats import norm
       x = np.arange(-5,5,0.001)
       plt.plot(x,norm.pdf(x,0,1),'--',label='\mu:0, \sigma:1')
       plt.plot(x,norm.pdf(x,0,1.5),'-.',label='\mu:0, \sigma:1.5')
       plt.plot(x,norm.pdf(x,0,2),'-',label='\mu:0, \sigma:2')
       plt.legend()
       plt.show()
(iii) Plotting a scatter plot
       import numpy as np
       import matplotlib.pyplot as plt
       x,y,scale = np.random.randn(3,50)
       fig,ax = plt.subplots()
       ax.scatter(x=x,y=y,c=scale,s=np.abs(scale)*500)
       ax.set(title='Scatter plot')
       plt.show()
(vi) Calculation of the Pearson's correlation between two variables
       from numpy.random import randn
       from numpy.random import seed
       from scipy.stats import pearsonr
       #seed random number generator
       seed(1)
       #data
```

data1 = 20*randn(1000) +100

#calculate pearson's correlation

corr,_=pearsonr(data1,data2)

print('Pearson correlation: %.3f' % corr)

Output:

Result:

Ex. No.: 6 Date: Regression Aim: To write a python program calculate regression. Algorithm: Step1: Start Step2: Import numpy and matplotlib. Step3: Create a function coef(x,y) and calculate cross-deviation and deviation about x Step4: And calculate regression coefficients. Step5: Derive predicted response vector to Step6: Create plot_regression_line(x,y,b) to plot values. Step7: Plot the values and display. Step8: Stop Program: import numpy as np import matplotlib.pyplot as plt def estimate_coef(x,y): #No.of points n=np.size(x)#mean of x and y vector $m_x = np.mean(x)$

#calculating cross-deviation and deviation about x

m_y=np.mean(y)

```
SS_xy=np.sum(y*x) - n*m_y*m_x
SS xx=np.sum(x*x) - n*m x*m x
#calculation regression coefficients
b 1=SS xy/SS xx
b_0=m_y - b_1 * m_x
return (b 0, b 1)
def plot regression line(x,y,b):
#plotting actual points as scatter plots
plt.scatter(x,y,color='m', marker='o',s=30)
#predicted response vector
y pred=b[0] + b[1]*x
#plotting the regression line
plt.plot(x,y pred,color='g')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
def main():
#data
x=np.array([0,1,2,3,4,5,6,7,8,9])
y=np.array([1,3,2,5,7,8,8,9,10,12])
#estimation coefficients
b=estimate\_coef(x,y)
print("Estimated coefficients:\nb_0 = \{\} \nb_1 = \{\} \
#plotting regression line
```


plot_regression_line(x,y,b)
if name == ' main ':

Output:

main()

Estimated coefficients:

 $b_0 = 1.2363636363636363$

 $b_1 = 1.1696969696969697$

Result:

Ex. No. 7

Date:

Z-Test

Aim:

To write a python program to make a Z-test.

Algorithm:

Step1: Start

Step2: Import ztest from statsmodels.stats.weightstats.

Step3: Collecting IQ datas of 20 patients.

Step4: Assigning those values to data.

Step5: Display ztest(data,value=100).

Step6: Collects data from city A and B.

Step7: Display ztest(cityA,cityB,value=0)

Step8: Stop

Program:

```
from statsmodels.stats.weightstats import ztest as ztest
```

#enter IQ level for 20 patients

data=[88,92,94,94,96,97,97,97,99,99,105,109,109,110,112,112,113,114,115]

#perform one sample z-test

print('Z-Test I')

print(ztest(data, value=100))

cityA=[78,89,92,94,94,96,97,97,97,99,99,105,109,110,112,112,113,114,115]

cityB = [88,89,92,92,94,94,96,97,97,97,99,99,105,109,110,112,113,114,115]

print('\nZ-Test II')

print(ztest(cityA,cityB,value=0)) **Output:** Z-Test I (1.378696666763784, 0.1679882976520375)Z-Test II (0.16977083200593462, 0.8651903665846945)**Result:**

Ex. No.: 8 Date: **T-Test** Aim: To write a python program to make a T-test. Algorithm: Step1: Start Step2: Import numpy and scipy. Step3: Calculate standard deviation. Step4: Assign standard deviation value to var x. Step5: Calculate variance to get std Step6: Assign variance to var y. Step7: By using stats module calculated standard deviation, p and t. Step8: Stop Program: import numpy as np from scipy import stats N = 10#Gaussian distributed data with mean=2 and var=1 x=np.random.rand(N)+2#Gaussian distributed data with mean=0 and var=1 y=np.random.randn(N)

#calculating standard deviation

#calculating variance to get std

print('p = '+str(pval2))

```
var_x = x.var(ddof=1)
var y = y.var(ddof=1)
#standard deviation
SD = np.sqrt((var x + var y) / 2)
print('Standard Deviation =',SD)
#Calculating the T-Statistics
tval = (x.mean() - y.mean()) / (SD * np.sqrt(2/N))
#compaing with critical T-Value
#Degrees of freedom
dof=2*N-2
#p-value after compaison with the T-Statistics
pval = 1-stats.t.cdf(tval,df=dof)
print('t = '+str(tval))
print('p = '+str(2*pval))
#Cross checking using the internal function from scipy package
tval2,pval2 = stats.ttest ind(x,y)
print('t = '+str(tval2))
```


Output:

Standard Deviation = 0.7194173256540722

t = 7.307006005934893

p = 8.687336403578882e-07

t = 7.307006005934891

p = 8.68733640421676e-07

Result:

Ex. No. 9

Date:

ANOVA

Aim:

To write a python program to make a Anova analysis.

Algorithm:

Step1: Start

Step2: Import required library.

Step3: Import seaborn to customize style.

Step4: Import csv dataset named Diet Dataset.csv

Step5: Display CSV file data.

Step6: Display header datas in CSV file.

Step7: Plot x and y which are mata-data age and pdf.

Step8: Stop

Program:

import pandas as pd

import matplotlib.pyplot as plt

import statsmodels.api as sm

from statsmodels.formula.api import ols

import seaborn as sns

import numpy as np

import pandas.tseries

plt.style.use('fivethirtyeight')

mydata=pd.read csv('Diet Dataset.csv')

```
print(mydata.head())
       print('\nThe total number of rows in the dataset:',mydata.size)
       print('\n',mydata.gender.unique())
       print(mydata[mydata.gender==' '])
       f,ax=plt.subplots(figsize=(11,9))
       plt.title('Weight Distributions among Sample')
       plt.ylabel('pdf')
       sns.distplot(mydata.age)
       plt.show()
Output:
       person gender age height
       0 23 34 344
       1 32 45 233
       2\ 2\ 0\ 23\ 234
       3 3 0 34 345
       4 22 0 23 344
       The total number of rows in the dataset: 20
       ['0' ']
       person gender age height
       0 23 34 344
       1 32 45 233
```


Result:

Ex. No.: 10

Date:

Building and Validating linear models

Aim:

To write a python program to building and validating linear models.

Algorithm:

Step1: Start

Step2: From pandas import read csv, autocorrelation_plot and DataFrame.

Step3: Import statsmodels.tsa.arima_model.

Step4: Import a dataset from csv.csv file.

Step5: Create a function parser() to calculate date-time.

Step6: Read csv.csv file and assign the data to series variable.

Step7: Display series.

Step8: Plot series.

Step9:Display graph.

Step10: Stop

Program:

from pandas import read csv

from matplotlib import pyplot

from pandas.plotting import autocorrelation plot

from pandas import DataFrame

from statsmodels.tsa.arima_model import ARIMA

#Importing Data

def parser(x):

```
return datetime.strptine('198"+x, "W-%a')
series = read_csv("csv.csv")#, header=0, index_col=0, squeeze=True)
print(series.head())
#ploting in series
series.plot()
#autocorrelation
pyplot.figure()
autocorrelation_plot(series)
pyplot.show()
```

Output:

Age Cost

0 12 12121

1 12 2423

2 22 234234

3 3 23324

4 23 232422

Result: