4. Fitting a GLM in R

Goals

The goals of this chapter are as follows

- 1) Overview Non-Life insurance pricing
- 2) Overview Generalized Linear Models
- 3) Fit a glm in R (used for Pricing in Non-Life)

Non-Life Insurance Pricing (1/2)

Classical statistical approach for non-life insurance pricing: Let

- R.v. N describing the number of claims,
- \triangleright r.v. Z_k describing the individual claim sizes,
- ► R.v. S describing the total claim amount

$$S = Z_1 + ... + Z_N = \sum_{k=1}^{N} Z_k$$

Model Assumptions:

- (1) N is a discrete r.v. which only takes positive values.
- (2) $Z_1, ..., Z_N$ are independent and i.i.d.
- (3) N and $(Z_1, ..., Z_N)$ are independent

Non-Life Insurance Pricing (2/2)

From the model assumptions follows the following decomposition:

$$\mathsf{E}[\mathsf{S}] = \mathsf{E}[\mathsf{N}] * \mathsf{E}[Z_1],$$

Hence for the modeling of the **pure risk premium E[S]** we can treat the (expected) number of claims E[N] and the (expected) individual claim sized $E[Z_1]$ separately.

Generalized Linear Models (1/4)

Response Y_i obeying:

$$f(y) = c\left(y, \frac{\varphi}{v_i}\right) \exp\left(\frac{y\Theta_i - a(\Theta_i)}{\varphi/v_i}\right)$$
 from the EDF

Linear score (or predictor):

$$score_i = score(x_i) = x_i^T \beta$$

Expected response $\mu_i = \mu(x_i)$:

$$a'(\Theta_i) = \mu_i$$

$$g(\mu_i) = score_i, \ \mu_i = g^{-1}(score_i)$$

$$g \in \{ln, logit, ...\}$$

The monotonic link function g is specified by the actuary.

Generalized Linear Models (2/4)

- Hence for every GLM the actuary needs to choose:
 - a) The GLM distribution (Normal, Poisson, Gamma, Binomial,...)
 - b) The Link function g (how the mean related to the $score_i$)
- \blacktriangleright The parameter β is estimated by Maximum Likelihood Estimation (MLE).

Generalized Linear Models (3/4)

- Let us look at the Poisson GLM concretely:
 - Let λ be the expected (claims) frequency $\lambda>0$ and a volume v>0. v measures the exposure (for example in yearly units).
 - b) The distribution of the response follows a Poisson distribution

$$N \sim Poi(\lambda v)$$
, i.e. $P[N = k] = \exp(-\lambda v) \frac{(\lambda v)^k}{k!}$ and $E[N] = \lambda v$

- The expected frequency λ should allow to incorporate structural differences (heterogeneity) between different risks, i.e. $x = (x_1, ..., x_d)$, so $\lambda = \lambda(x)$.
- d) The Link function g (how the mean related to $score_i$) is log, i.e.

$$\log(\lambda(x)v) = score(x_i) = x^T \beta$$

Generalized Linear Models (4/4)

- ► There is much more on GLM's, see the corresponding literature for further details.
- ▶ Let us see how a Poisson GLM can be fitted in R for non-life insurance pricing.