Theoretische Informatik I

Übungsblatt 2: Relationen

Duale Hochschule Baden-Württemberg – Lörrach Studiengang Informatik – TIF21

 $\Delta, \; \delta - \mathrm{Delta}$

 $E, \ \epsilon - \mathrm{Epsilon}$

 $Z,\,\zeta-\mathrm{Zeta}$

1. In dieser Aufgabe sei

$$M := \{1, 2, 3, 4, 5\}.$$

Welche Eigenschaften hat

$$R := \{(1,2), (1,4), (2,4), (3,2), (3,4), (3,5), (5,2), (5,3), (5,4)\}$$

als Relation auf M?

Lösung:

R ist

- nicht reflexiv (da $(1,1) \notin R$),
- nicht symmetrisch (da $(1,2) \in R$, aber $(2,1) \notin R$),
- nicht antisymmetrisch (da $(3,5) \in R$ und $(5,3) \in R$, aber $3 \neq 5$),
- nicht transitiv (da $(3,5) \in R$ und $(5,3) \in R$, aber $(3,3) \notin R$),
- nicht total (da $(1,3) \notin R$ und $(3,1) \notin R$),

als Relation auf M.

2. In dieser Aufgabe sei

$$M := \{1, 2, 3, 4\}.$$

(a) Geben Sie eine Relation R_1 über der Menge M an, die genau 5 Elemente enthält.

Lösung:

Wir können

$$R_1 := \{(1,1), (1,3), (3,1), (4,1), (4,4)\}$$

verwenden.

(b) Geben Sie eine Relation R_2 über der Menge M an, die reflexiv ist und die genau 7 Elemente enthält.

Lösung:

Wir können

$$R_2:=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,4)\}$$

verwenden.

(c) Geben Sie eine Relation ${\cal R}_3$ über der Menge Man, die symmetrisch ist und die genau 7 Elemente enthält.

Lösung:

Wir können

$$R_3 := \{(1,2), (2,1), (1,4), (3,3), (3,4), (4,1), (4,3)\}$$

verwenden.

(d) Geben Sie eine Relation R_4 über der Menge M an, die antisymmetrisch ist und die genau 9 Elemente enthält.

Lösung:

Wir können

$$R_4:=\{(1,1),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,4),(4,4)\}$$

verwenden.

(e) Geben Sie eine Relation R_5 über der Menge ${\cal M}$ an, die transitiv ist und die genau 10 Elemente enthält.

Lösung:

Wir können

$$R_5 := \{(1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,3), (3,4), (4,3), (4,4)\}$$

verwenden.

(f) Geben Sie eine Relation R_6 über der Menge M an, die total ist und die genau 12 Elemente enthält.

Lösung:

Wir können

$$R_6 := \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,1), (3,4), (4,2), (4,4)\}$$

Seite 2 von 4

verwenden.

3. In dieser Aufgabe sei

$$R := \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid \exists z \in \mathbb{N} : y = z \cdot x\}.$$

(a) Geben Sie 3 Elemente aus $\mathbb{N} \times \mathbb{N}$ an, die in R enthalten sind.

Lösung:

Es gilt $(54, 54) \in R$, $(1, 713) \in R$, $(17, 221) \in R$.

(b) Geben Sie 3 Elemente aus $\mathbb{N} \times \mathbb{N}$ an, die nicht in R enthalten sind.

Lösung:

Es gilt $(53, 54) \notin R$, $(8, 4) \notin R$, $(17, 220) \notin R$.

(c) Zeigen oder widerlegen Sie: R ist eine Halbordnung auf \mathbb{N} .

Lösung:

Wir wollen zeigen, dass R eine Halbordnung auf $\mathbb N$ ist.

Dazu müssen wir die Reflexivität, Antisymmetrie und Transitivität zeigen.

• Wir wollen zeigen, dass R reflexiv ist. Also müssen wir zeigen, dass für alle $m \in \mathbb{N}$ gilt: $(m, m) \in R$.

Sei $a \in \mathbb{N}$.

Wir müssen zeigen: $(a, a) \in R$.

Also zu zeigen: $\exists b \in \mathbb{N} \text{ mit } a = b \cdot a$.

Es gilt $1 \in \mathbb{N}$ und $a = 1 \cdot a$, also $\exists b \in \mathbb{N}$ mit $a = b \cdot a$, nämlich b = 1.

Also gilt nach Definition $(a, a) \in R$.

Damit haben wir gezeigt, dass für alle $m \in \mathbb{N}$ gilt: $(m, m) \in R$.

Damit ist R reflexiv.

- Wir wollen zeigen, dass R antisymmetrisch ist.

Also müssen wir zeigen, dass für alle $m_1,m_2\in\mathbb{N}\,$ gilt:

aus $(m_1, m_2) \in R$ und $(m_2, m_1) \in R$ folgt, dass $m_1 = m_2$.

Seien $a, b \in \mathbb{N}$.

Wir müssen zeigen: aus $(a, b) \in R$ und $(b, a) \in R$ folgt, dass a = b.

- 1. Fall: Es gilt nicht $((a,b) \in R \text{ und } (b,a) \in R)$.

Dann gilt: aus $(a,b) \in R$ und $(b,a) \in R$ folgt, dass a = b.

-2. Fall: Es gilt $(a,b) \in R$ und $(b,a) \in R$.

Dann müssen wir zeigen, dass a = b gilt.

Aus $(a, b) \in R$ folgt $\exists c_1 \in \mathbb{N} \text{ mit } b = c_1 \cdot a$ (1).

 $\text{Aus } (b,a) \in R \text{ folgt } \exists c_2 \in \mathbb{N} \text{ mit } a = c_2 \cdot b \text{ (2)}.$

Setzen wir ein, so erhalten wir $a \stackrel{(2)}{=} c_2 \cdot b \stackrel{(1)}{=} c_2 \cdot (c_1 \cdot a) = (c_2 \cdot c_1) \cdot a,$

also $a = (c_2 \cdot c_1) \cdot a$.

Wenn wir durch a teilen (das dürfen wir, da $a\neq 0$), erhalten wir $1=c_2\cdot c_1$. Da $c_1,c_2\in\mathbb{N}$ gilt, muss $c_1=c_2=1$ gelten.

Damit gilt $a \stackrel{(2)}{=} c_2 \cdot b = 1 \cdot b = b$.

Also gilt a = b.

In beiden Fällen gilt also: aus $(a, b) \in R$ und $(b, a) \in R$ folgt, dass a = b.

Damit haben wir gezeigt, dass für alle $m_1, m_2 \in \mathbb{N}$ gilt:

aus $(m_1, m_2) \in R$ und $(m_2, m_1) \in R$ folgt, dass $m_1 = m_2$.

Damit ist R antisymmetrisch.

• Wir wollen zeigen, dass R transitiv ist.

Also müssen wir zeigen, dass für alle $m_1,m_2,m_3\in\mathbb{N}$ gilt:

aus $(m_1, m_2) \in R$ und $(m_2, m_3) \in R$ folgt, dass $(m_1, m_3) \in R$.

Seien $a, b, c \in \mathbb{N}$.

Wir müssen zeigen: aus $(a,b) \in R$ und $(b,c) \in R$ folgt, dass $(a,c) \in R$.

- -1. Fall: Es gilt nicht $((a,b) \in R \text{ und } (b,c) \in R)$. Dann gilt: aus $(a,b) \in R \text{ und } (b,c) \in R \text{ folgt, dass } (a,c) \in R$.
- -2. Fall: Es gilt $(a,b) \in R$ und $(b,c) \in R$.

Dann müssen wir zeigen, dass $(a, c) \in R$ gilt.

Aus $(a,b) \in R$ folgt $\exists d_1 \in \mathbb{N} \text{ mit } b = d_1 \cdot a$ (1).

 $\text{Aus } (b,c) \in R \text{ folgt } \exists d_2 \in \mathbb{N} \text{ mit } c = d_2 \cdot b \text{ (2)}.$

Wir müssen zeigen: $\exists d_3 \in \mathbb{N} \text{ mit } c = d_3 \cdot a$.

Setzen wir ein, so erhalten wir $c \overset{(2)}{=} d_2 \cdot b \overset{(1)}{=} d_2 \cdot (d_1 \cdot a) = (d_2 \cdot d_1) \cdot a,$ also $c = (d_2 \cdot d_1) \cdot a.$

Da $d_1, d_2 \in \mathbb{N}$ gilt, gilt außerdem $d_2 \cdot d_1 \in \mathbb{N}$.

Also $\exists d_3 \in \mathbb{N} \text{ mit } c = d_3 \cdot a$, nämlich $d_3 = d_2 \cdot d_1$.

Also gilt $(a, c) \in R$.

In beiden Fällen gilt also: aus $(a, b) \in R$ und $(b, c) \in R$ folgt, dass $(a, c) \in R$.

Damit haben wir gezeigt, dass für alle $m_1,m_2,m_3\in\mathbb{N}\,$ gilt:

aus $(m_1, m_2) \in R$ und $(m_2, m_3) \in R$ folgt, dass $(m_1, m_3) \in R$.

Damit ist R transitiv.

(d) Zeigen oder widerlegen Sie: R ist eine Totalordnung auf \mathbb{N} .

Lösung:

Nach der Definition einer Totalordnung muss zusätzlich zu den Eigenschaften einer Halbordnung noch Totalität gelten.

Wir wollen widerlegen, dass R total ist.

Also müssen wir zeigen, dass nicht für alle $m_1, m_2 \in \mathbb{N}$ gilt:

 $(m_1, m_2) \in R \text{ oder } (m_2, m_1) \in R.$

• Annahme: $(2,3) \in R$.

Dann gilt nach Definition von $R: \exists a_1 \in \mathbb{N} \text{ mit } 3 = a_1 \cdot 2.$

Dann gilt $a_1 = \frac{3}{2}$, also Widerspruch, da $a_1 \in \mathbb{N}$.

Damit gilt $(2,3) \notin R$.

• Annahme: $(3,2) \in R$.

Dann gilt nach Definition von $R: \exists a_2 \in \mathbb{N} \text{ mit } 2 = a_2 \cdot 3.$

Dann gilt $a_2 = \frac{2}{3}$, also Widerspruch, da $a_2 \in \mathbb{N}$.

Damit gilt $(3,2) \notin R$.

Also gilt $(2,3) \notin R$ und $(3,2) \notin R$.

Damit haben wir gezeigt, dass nicht für alle $m_1, m_2 \in \mathbb{N}$ gilt:

 $(m_1, m_2) \in R \text{ oder } (m_2, m_1) \in R.$

Damit ist R nicht total.

Also ist die Totalität verletzt und damit ist R keine Totalordnung auf \mathbb{N} .