

June 29. IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Honorable Assistant Commissioner for Patents Washington, D.C. 20231

S I R:

Transmitted herewith for filing are the specification and claims patent application of:

Wayne A. Hendrickson et al.	_ for
Inventor(s)	
CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR	
Title of Invention	
Also enclosed are:	
\underline{X} 85 sheet(s) ofinformal \underline{X} formal drawings.	
X A power of attorney	
An assignment of the invention to	
A Preliminary Amendment	

CLAIMS AS FILED. LESS ANY CLAIMS CANCELLED BY AMENDMENT

X Oath or d	\underline{x} Oath or declaration of Applicant(s). (unsigned)								
X A power of attorney									
A power of attorney An assignment of the invention to									
A Preliminary Amendment									
X A verified statement to establish small entity status under 37 C.F.R. §1.9 and §1.27. (unsigned)									
The filing fee is calculated as follows:									
CLAIMS AS FILED. LESS ANY CLAIMS CANCELLED BY AMENDMENT									
				RATE		FEE			
	NUMBER FILED		NUMBER EXTRA*		SMALL ENTITY	OTHER ENTITY		SMALL ENTITY	OTHER ENTITY
Total Claims	47 –20	=	27	x	\$ 9.00	\$18.00	*	\$ _{243.00}	\$
Independent Claims	4 ~3	-	1	x	\$39.00	\$78.00	=	\$ 9.00	\$
Multiple Dependent Claims Presented: Yes \underline{X} No \$130.00 \$260.00 = \$0					\$				
*If the differ						BASIC FEE		\$ 345	\$ 690
less than zero, enter "0" in Col. 2					TOTAL FEE		\$ 627.00	\$	

Applicants: Wayne A. Hendrickson et al.

U.S. Serial No.: Not Yet Known

Filed: June 29, 2000

Arry first

Letter of Transmittal Page 2

X A check in the amount of \$ 627.00 to cover the filing fee. Please charge Deposit Account No. _____ in the amount of X The Commissioner is hereby authorized to charge any additional fees which may be required in connection with the following or credit any over-payment to Account No. 03-3125: X Filing fees under 37 C.F.R. §1.16. X Patent application processing fees under 37 C.F.R. §1.17. The issue fee set in 37 C.F.R. \$1.18 at or before mailing of the Notice of Allowance, pursuant to 37 C.F.R. §1.311(b). Three copies of this sheet are enclosed. The line took the time A certified copy of previously filed foreign application No. filed in Applicant(s) hereby claim priority based upon this aforementioned foreign application under 35 U.S.C. §119. Other (identify) Express Mail Certificate of Mailing bearing no. El 807 507 584 US dated June 29, 2000, a loose set of that the figures (85 sheets), paper copy of Sequence Listing, CRF of Sequence Listing, and Statement in Accordance.

Respectfully submitted,

June 29, 2000

John P. White

Registration No. 28,678
Attorney for Applicants
Cooper & Dunham LLP
1185 Avenue of the Americas
New York, New York 10036

(212) 278-0400

Applicant or Patentee: Wayne A. Hendrickson et al.
Serial or Patent No.: Not Yet Known Attorney's Docket No: 50950/JPW/EMW Filed or Issued: Herewith Title of Invention or Patent: CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY STATUS UNDER 37 C.F.R. §1.9(f) AND §1,27(d) - NONPROFIT ORGANIZATION I hereby declare that I am an official empowered to act on behalf of the nonprofit organization identified below: Name of Organization: The Trustees of Columbia University in the City of New York West 116th Street and Broadway Address of Organization: New York, New York 10027 TYPE OF ORGANIZATION: UNIVERSITY OR OTHER INSTITUTION OF HIGHER EDUCATION TAX EXEMPT UNDER INTERNAL REVENUE SERVICE CODE 26 U.S.C. §§501(a) and 501(c)(3) NONPROFIT SCIENTIFIC OR EDUCATIONAL UNDER STATUTE OF STATE OF THE UNITED STATES OF AMERICA NAME OF STATE: CITATION OF STATUTE: WOULD QUALIFY AS TAX EXEMPT UNDER INTERNAL REVENUE SERVICE CODE 26 U.S.C. §§501(a) and 501(c)(3) IF LOCATED IN THE UNITED STATES OF AMERICA WOULD QUALIFY AS NONPROFIT SCIENTIFIC OR EDUCATIONAL UNDER STATUTE OF STATE

I hereby declare that rights under contract or law have been conveyed to and remain with the nonprofit organization with regard to the above identified invention.

If the rights held by the nonprofit organization are not exclusive each individual, concern, or organization known to have rights to the invention is listed below and no rights to the invention are held by any person, other than the inventor, who could not qualify as a small business concern under 37 C.F.R. §1.9(d)* or a nonprofit organization under 37 C.F.R. 1.9(e)*

^aNOTE: Separate verified statements are required from each person, concern, or organization having rights to the invention averring to their status as small entities. 37 C.F.R. §1.27.

Name:	N/A		
Address			
	Individual	Small Business Concern	Nonprofit Organization

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. 37 C.F.R. §1.28(b)*.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. §1001, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

Name of Person Signing: _	
Title In Organization:	Executive Director, Columbia Innovation Enterprise
	th Street - Suite 363 New York, New York 10027
Signature:	
Date Of Signature:	

Barseg

. 127

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants

Wayne A. Hendrickson et al.

U.S. Serial No.:

Not Yet Known

Filed

Herewith

For

CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL

FACTOR

1185 Avenue of the Americas New York, New York 10036 June 29, 2000

Assistant Commissioner for Patents Washington, D.C. 20231

Box: Patent Application

EXPRESS MAIL CERTIFICATE OF MAILING FOR ABOVE-IDENTIFIED APPLICATION

"Express Mail" mailing label number: __EJ 807 507 584 US Date of Deposit: __June 29, 2000 I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. §1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Printed Name:

Migoteth M. Wuchowski ELIZABETH M. WIETKOWSKI

Respectfully submitted,

John P. White

Registration No. 28,678 Attorney for Applicants

Cooper & Dunham LLP

1185 Avenue of the Americas New York, New York 10036

(212) 278-0400

that the state and the state of the state of

Application for United States Tetters Patent

To all whom it may concern:

Be it known that we, Wayne A. Hendrickson, Xuliang Jiang, Keith E. Langley, Rashid Syed and Yueh-Rong Ann Hsu

have invented certain new and useful improvements in

CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR

of which the following is a full, clear and exact description.

CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR

Throughout this application, various references are referred to within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citation for these references may be found at the end of this application, preceding the claims.

Field of the Invention

This invention relates to stem cell factor (SCF) analogs, analogs, and related such compositions containing compositions. In another aspect, the present invention relates to nucleic acids encoding the present analogs or related nucleic acids, related host cells and vectors. In another aspect, the invention relates to computer programs and apparatuses for expressing the dimensional structure of SCF and analogs thereof. another aspect, the invention relates to methods for related analogs and SCF rationally designing In yet another aspect, the present compositions. invention relates to methods for treatment using the present SCF analogs.

Stem cell factor (SCF) is an early-acting hematopoietic

is dimeric and occurs in soluble and membrane-bound

dimerization of its receptor, Kit. Kit is a receptor

platelet-derived growth factor (PDGF) and to those for

to

transduces signals by ligand-mediated

the

receptors

cytokine which elicits multiple biological effects.

related

Ιt

kinase

forms.

tvrosine

10

5

30

vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), macrophage colony-stimulating factor (M-CSF) and Flt-3 ligand. The kinase portions of these receptors are closely related and their ligand-binding portions all comprise immunoglobulin-like (Ig) repeats, although these vary widely in sequence and also in Determined here is the crystal structure of number. selenomethionyl soluble human SCF at 2.2 Å resolution by multiwavelength anomalous diffraction (MAD) phasing. SCF has the characteristic helical cytokine topology, but the structure is unique apart from core portions. symmetric 'head-to-head' association. has a Potential Kit-binding sites on the SCF dimer surface are located. A superposition of this dimer onto VEGF in its complex with the Flt-1 receptor places the binding sites on SCF in positions of topographical and electrostatic complementarity with the Kit counterparts of Flt-1. Similar models can be made for the complex of PDGF with its receptor and FGF-heparin.

INTRODUCTION

Stem cell factor (SCF) is an early-acting hematopoietic

25

30

cytokine that binds at the cell surface to its receptor, Kit, whereby it produces other biological effects in addition to those on hematopoiesis (see reviews by Galli et al., 1994; Lev et al., 1994; Besmer et al., 1997; SCF, which is produced by various Broudy, 1997). fibroblast-type cells including bone marrow stromal cells, has also been called Kit ligand (KL), mast-cell growth factor (MGF), and steel factor. The biochemistry and molecular biology that identified SCF and Kit as a ligand-receptor pair were preceded by an array of elegant animal biology studies that anticipated the underlying mechanisms responsible for the genetics molecular Mice with mutations in the Sl locus (Russell, 1979). (gene for SCF) or in the dominant-spotting W locus (ckit, the gene for Kit) show complex phenotypes that include macrocytic anemia, sterility from a deficiency of germ cells, lack of coat pigmentation (white spotting of the skin from absences of pigment cells) and mast cell deficiency. Kit mutations in man are responsible for the autosomal dominant congenital pigmentation disorder, piebaldism. Consistent with these phenotypes, in the last 10 years, a host of in vitro and in vivo experiments have clearly established Kit-mediated roles for SCF in early stages of hematopoiesis, in gametogenesis, in melanocyte cell mast and in and function proliferation proliferation, maturation and activation; (Galli et al., 1994, Lev et al., 1994, Besmer et al., 1997; Broudy, 1997). SCF has potential therapeutic applications in the treatment of anemias, boosting the mobilization of hematopoietic stem/ progenitor cells to the peripheral blood for harvest and transplantation, and in increasing the efficiency of gene transduction for gene therapy (Galli et al., 1994, McNiece and Briddell, 1995, Glaspy, 1996, Broudy, 1997).

5

10

Note that the condition and the condition of the conditio

25

30

SCF is expressed as membrane-associated forms of either 248 or 220 amino acid residues (Galli et al., 1994, Lev et al., 1994, Besmer et al., 1997, Broudy, 1997) forms are a consequence of alternative mRNA splicing that Exon 6 encodes a includes or excludes exon 6. proteolytic cleavage site such that soluble SCF^{1-165} is released from the 248 amino-acid precursor. 166-189 represent a tether to the membrane, residues 190-221 represent a hydrophobic transmembrane segment, and residues 222-248 represent a cytoplasmic domain. 220 amino acid residue form lacks the cleavage site and tends to remain membrane-bound. Soluble SCF exists as a non-covalently associated dimer (Arakawa et al., 1991). Each SCF monomer contains two intra-chain disulfide bridges, Cys4-Cys 89 and Cys43-Cys138 (Langley et al, The N-terminal 141 residues of SCF have been identified as a functional core, SCF^{1-141} , that includes the dimer interface and portions that bind and activate the receptor Kit (Langley et al., 1994).

It has been proposed that SCF is a member of the helical cytokine structural superfamily characterized by a double-crossover four-helix bundle topology (Bazan, 1991). Three-dimensional structures are known for many of the family members and, from a comparison of the structures and sequences, the members have been classified into three subgroups (Sprang and Bazan, 1993):

short-chain, long-chain and interferon-like.

The superfamily is highly divergent. Among five short-chain helical cytokines of known structure, sequence identity levels rarely exceed 20% and fewer than half of the residues constitute (41%-48%) a common framework of the fold with r.m.s. deviations ranging from 1.7 Å to 2.9Å for the 61 C_{α} positions in common. Furthermore, many identical residues adopt different side various structures. conformations in the chain Nevertheless, sequence patterns do persist from the secondary structure and SCF has been proposed to be a short-chain helical cytokine (Bazan, 1991; Rozwarski et al., 1994).

Most helical cytokines signal through members of the hematopoietic cytokine receptor superfamily, which are without intrinsic kinase activity (Heldin, 1995). SCF, in contrast, signals through a class III receptor tyrosine kinase (i.e. Kit). This class of kinases also includes the receptors for platelet-derived growth factor (PDGF), (M-CSF), factor colony-stimulating macrophage colony-stimulating factor granulocyte-macrophage (GM-CSF), and Flt-3 ligand, and it is related to class V receptor tyrosine kinases (Flt-1, Flt-1/KDR and Flt-4) for vascular endothelial growth factors (VEGFs) (Fantl et al., 1993; Heldin, 1995; Rousset et al., 1995). receptors in these classes have 'split' kinase domains intracellularly and multiple immunoglobulin(Ig)-like domains extracellularly.

Note that the same that the tent to be the tent to the

10

5

25

New Jewn 1962, with Unit of the little of th

10

25

30

The structures of PDGF (Oefner et al., 1992), M-CSF (Pandit et al., 1992), and VEGF (Muller et al., 1997), have all been determined by X-ray crystallography, as has the complex of VEGF with domain 2 of its receptor, Flt-1 (Wiesmann et al., 1997).

The ligands for the class III and class V receptors are all dimeric. As is the case for other ligands, SCF initiates signal transduction by dimerization of its receptor, Kit and the two juxtaposed receptors undergo tyrosine autophosphorylation (Heldin, 1995; Broudy, 1997), which initiates downstream intracellular signaling.

Here reported is the crystal structure of the core fragment of recombinant human stem cell factor, SCF¹⁻¹⁴¹, as determined at 2.2 Å resolution from multiwavelength anomalous diffraction (MAD) measurements. Incorporating data from mutagenesis and other structure-function studies, located were putative receptor-binding sites on the surface of the symmetric SCF dimer. From a comparison of these results with the structural and functional data for the related ligand-receptor systems, the complex of SCF with the receptor Kit is modeled and suggests a similar mode of association between other class III and class V receptors and their ligands.

Human SCF can be obtained and purified from a number of sources. SCF has been isolated from the rat and the mouse. Using the amino acid sequence of SCF protein isolated from the rat, the nucleic acid sequence encoding

the rat protein sequence was obtained from a rat cDNA library and then was cloned. The cloned nucleic acid encoding rat SCF was used to isolate, by hybridization, the nucleic acid molecule encoding human SCF from a human cDNA library. The development of recombinant DNA technology, see, for instance, U.S. Patent 4,810,643 (Souza) incorporated herein by reference, has enabled the production of commercial scale quantities of SCF in glycosylated form as a product of eukaryotic host cell expression, and of SCF in non-glycosylated form as a product of prokaryotic host cell expression.

SUMMARY OF THE INVENTION

dimensional structure of The three SCF has determined herein to the atomic level. From this threedimensional structure. forecast with one can now substantial certainty how changes in the composition of a SCF molecule may result in structural changes. correlated characteristics may be structural biological activity to design and produce SCF analogs.

This invention provides a computer based method for preparing a stem cell factor (SCF) analog comprising the steps of: (a) providing computer expression of the three dimensional structure of an SCF molecule using its crystal structure; (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration; (c) preparing an SCF molecule having an alteration at said at least one selected site; and (d) optionally, testing the SCF molecule for a desired characteristic.

This invention also provides an isolated SCF analog prepared according to the above-described computer based method for preparing a stem cell factor (SCF) analog comprising the steps of: (a) providing computer expression of the three dimensional structure of an SCF molecule using its crystal structure; (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration; (c) preparing a SCF molecule having an alteration at said at least one selected site; and (d) optionally, testing the SCF

10

5

25

25

30

molecule for a desired characteristic. In an embodiment the above-described SCF analog binds to SCF receptor, Kit. As used herein SCF receptor and "Kit" are used interchangeably to reflect the varied nomenclature used in the art.

This invention provides a composition comprising an isolated SCF analog prepared according to the above-described computer based method for preparing a stem cell factor (SCF) analog comprising the steps of: (a) providing computer expression of the three dimensional structure of an SCF molecule using its crystal structure; (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration; (c) preparing a SCF molecule having an alteration at said at least one selected site; and (d) optionally, testing the SCF molecule for a desired characteristic, effective to treat a subject and a pharmaceutically acceptable carrier.

This invention provides a method of treating a subject comprising administration of an isolated SCF analog prepared by the above-described computer based method for preparing a stem cell factor (SCF) analog comprising the steps of: (a) providing computer expression of the three dimensional structure of an SCF molecule using its crystal structure; (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration; (c) preparing a SCF molecule having an alteration at said at least one selected site; and (d) optionally, testing the SCF molecule for a

This invention provides a method for designing a compound

desired characteristic.

(drug) capable of binding to the receptor of stem cell comprising the steps of: Kit, (SCF), factor determining a receptor binding site on the SCF based on three dimensional structure of SCF orpolypeptide capable of binding the receptor; and b) designing a compound comprising an entity that binds the SCF receptor. Accordingly, the designed compound is an SCF ligand analog, since a portion or part of the compound, "the entity", mimics the portion of SCF that binds to the SCF receptor, Kit. In step (a), and infra, the receptor binding site may be determined from atomic coordinates computed from X-ray diffraction data of a crystal comprising a polypeptide having an amino acid

sequence portion of SCF capable of binding the receptor.

This invention provides a compound designed by the above-described method for designing a compound capable of binding to the receptor site of stem cell factor (SCF), Kit, comprising the steps of: a) determining a receptor binding site, on the SCF based on the atomic coordinates computed from X-ray diffraction data of a crystal comprising a polypeptide having an amino acid sequence portion of SCF capable of binding a ligand; and b) designing a compound comprising an entity that binds the SCF receptor. As used herein, the entity, i,.e. the portion, of the designed compound fits the ligand binding site on the SCF receptor.

10

5

25

This invention provides a method of treating a subject comprising administration of a compound designed by the above-described method for designing a compound capable of binding to the SCF receptor site.

This invention also provides a method of stimulating the production of hematopoietic calls in a subject comprising administering an isolated stem cell factor (SCF) analog or SCF ligand analogs to the subject.

This invention provides an isolated stem cell factor (SCF) molecule, which is an altered SCF, comprising any portion of amino acids 1-165 of a human SCF polypeptide, optionally comprising an N-terminal methionine before amino acid residue 1, wherein the polypeptide has an amino acid sequence portion of SCF capable of binding to the SCF receptor, Kit. Amino acid residue 1 of SCF is E, glutamic acid.

BRIEF DESCRIPTION OF THE FIGURES

Figures 1A-1C. Representative electron-density distributions in SCF. (Fig. 1A) MAD-phased experimental map calculated at 2.3 Å resolution. (Fig. 1B) The experimental map after four-fold averaging. (Fig. 1C) The current $2F_{\circ}$ - F_{\circ} map superimposed with the model refined at 2.2 Å resolution. Each map is contoured at 1.0 σ . Figures were drawn by the program O (Jones et al., 1991).

Figures 2A-2B. Overall structure of an SCF dimer. (Fig. 2A) Ribbon diagram. (Fig. 2B) C_{α} stereodiagram of the AB dimer. Figures were drawn using the program SETOR (Evans, 1993).

Structure-based sequence alignment of SCF Figure 3. with other short-chain helical cytokines of human species. The dots denote gaps. M-CSF, IL-4, GM-CSF, IL-2 and IL-5 were structure through with SCF aligned using structural superposition (Hendrickson, 1979) and O (Jones et al., 1991). C_{α} atoms were included if within 3.0 Å of their counterparts after three least superposition and at consecutive such residues are found in the The secondary structure fragment.

Many 1979 (1971, 2013) (1971)

10

5

25

10

25

30

elements were assigned according to the output of the PROCHECK program (Laskowski et al., 1993) except the helix assignment for residues 35-38, which was identified of the hydrogen-bond inspection Secondary structures are shown pattern. in yellow with filled boxes referring to α -helices, half-filled boxes to 3_{10} -helices and arrows to β -strands. The solvent accessibility of the SCF dimer indicated for each residue by an open fractional if the solvent circle accessibility is >0.4, a half-filled circle if it is 0.1-0.4, and a filled circle if it is <0.1. Residues at the SCF dimer interface are identified by stars, and the N-linked glycosylation sites by red Ys above the Asn residues.

Figures 4A-4B. Comparison of SCF dimer (shades of green) and M-CSF dimer (shades of brown). (Fig. 4A) View as in Figure 2. (Fig. 4B) View perpendicular to Fig. 4A, along the diad axis of M-CSF. Symmetry axes are shown as lines in Fig. 4A and dots in Fig. 4B. SCF dimer of is subunit When one superimposed onto a subunit of the M-CSF dimer, the other subunits are translated by 3.8 Å with a rotation of 4.7° to each other. Figures were generated using the program GRASP (Nicholls et al., 1991).

10

25

30

Sequence alignments of SCF from human, mouse, rat and dog. (Anderson et al., 1990; Huang et al., 1990; Martin et al. 1990; Shull et al., 1992) The residues that are conserved in human and dog but different from rat and mouse are shadowed in yellow. Five regions of divergent sequence are identified (Roman numerals) Dots denote gaps, and dashes indicate residues identical to the human residues.

Figures 6A-6C.

Figure 5.

(worm structures) - receptor Ligand (yellow structures) models. 6A) VEGF-Flt-1. (Fig. 6B) SCF-Kit. (Fig. 6C) PDGF-{DGF receptor. The used, without any modification, to approximate the receptor models. Receptor models are presented as The ligand models yellow surfaces. models. worm presented as Background portions are colored light blue for one monomer and green for receptor-interacting t.he other: residues identified from sitemutagenesis experiments directed [VEGF (Muller et al., 1997), PDGF (Fenstermaker et al., 1993)] other experimental data (SCF; see infra) arecolored magenta. Figures were drawn by the program GRASP (Nicholls et al., 1991).

10

25

30

Figures 7A-7C. Electrostatic and carbohydrate surfaces of SCF and homology-modeled receptor Kit. (Fig. 7A) Electrostatic surface of SCF and worm of D2D3(Kit). (Fig. 7B) Electrostatic surface of Kit and worm of SCF. (Fig. 8C) Negative potential is colored red and positive potential, blue, with greatest saturations at -10 and +10kT, respectively. Carbohydrate moieties are CPK models represented by β -D-N-acetylglucose (green for SCF moieties and yellow for potential Figures were drawn by the moieties. program GRASP (Nicholls et al., 1991).

- Figure 8. X-ray crystallographic coordinates of truncated stem cell factor molecule comprising amino acids 1-141 of a human SCF polypeptide.
- Figure 9. Suggested renaming of the waters of the X-ray crystallographic coordinates set forth in Figure 8.

Figure 10. Design for a double-headed SCF ligand analog. (10A) General model (10B) Embodiment of the ligand head as an oligopeptide. The compound is the conjugation of a linker molecule with two ligand-head molecules. Each ligand head

10

Man 1971 the same and the first the same that the same tha

25

30

is composed of up to three functional moieties, F_1 , F_2 and F_3 , which serve to mimic receptor-binding sites on the surface of SCF. Each ligand head also contains a conjugation moiety, F_{L} , endowed with chemical reactivity for conjugation with a reactive group at the end of the linker molecule. The capping moiety, F_{C} , at each end of the linker molecule is endowed with chemical reactivity for conjugation with the conjugation moiety ligand head. from the Double-headed molecules of this structure can have the property of binding to the SCF receptor, Kit, in such a way as to dimerize the receptor molecules and thereby lead to Kit activation in a manner analogous to the natural activity of SCF.

Ligand heads can be designed in at least four ways. (1) Ligand heads can be synthesized as oligopeptides wherein the functional moieties (F_1, F_2, F_3) the SCF from sequence elements polypeptide; (2) The functional moieties (F_1, F_2, F_3) on such a ligand head can be selected by bacteriophage display for optimal receptor binding; (3) Chemical mimetics of the functional moieties and in an active connecting segments oligopeptide can be substituted for the respective moieties and segments; or (4)

10

25

30

An appropriate chemical framework (scaffold) of connecting segments can be designed to present functional moieties (F_1, F_2, F_3) which can be selected by combinatorial chemistry for optimal receptor binding from a library chemical moieties complementary receptor-binding sites on the surface of SCF.

When an oligopeptide embodiment of a linker head is designed in accord with option (1) it can have a sequence wherein F_1 corresponds to a segment from within the N-terminal region of SCF, residues 1-10; F_2 corresponds to a segment from within residues 79-95 (mainly located on the α C helix); F_3 is a segment from the C-terminal end of α D, near residue 127; F_L is a cysteine residue; and X_n , X_m , and X_p are connecting-peptide segments, composed from appropriate linker residues such as alanine, glycine, serine or proline, and wherein n=0-5, m=0-5 and p=3-8 residues, respectively.

Linkers can be designed from an organic polymer such as polyethylene glycol $H[OCH_2CH_2]_nOH$, where n=10-20 may suffice to separate the heads appropriately, wherein a reactive capping moiety, F_c , is appended at each end. The capping moiety may be a thiol reactive group, such as N-ethyl

maleimide, designed to bond covalently to the conjugation moiety, $F_{\scriptscriptstyle L}$, on the ligand head, wherein $F_{\scriptscriptstyle L}$ may be cysteine residue or another thiol-containing group.

DETAILED DESCRIPTION OF THE INVENTION

The present determination of the three-dimensional structure to the atomic level is the most complete analysis to date, and provides important information to those wishing to design and prepare SCF analogs. For example, from the present three dimensional structural analysis, precise areas of hydrophobicity and hydrophilicity have been determined.

Relative hydrophobicity is important because it directly relates to the stability of the molecule. Generally, biological molecules, found in aqueous environments, are externally hydrophilic and internally hydrophobic; in law of thermodynamics accordance with the second provides, this is the lowest energy state and provides for stability. Although one could have speculated that SCF's internal core would be hydrophobic, and the outer areas would be hydrophilic, one would have had no way of knowing specific hydrophobic or hydrophilic areas. of knowledge of areas presently provided the with forecast hydrophobicity/-philicity, one mav substantial certainty which changes to the SCF molecule will affect the overall structure of the molecule.

25

5

10

Name from the sum that the first from the from the first from the

As a general rule, one may use knowledge of the geography of the hydrophobic and hydrophilic regions to design analogs in which the overall SCF structure is not changed, but change does affect biological activity ("biological activity" being used here in its broadest sense to denote function). One may correlate biological

activity to structure. If the structure is not changed,

and the mutation has no effect on biological activity, then the mutation has no biological function. If, however, the structure is not changed and the mutation does affect biological activity, then the residue (or atom) is essential to at least one biological function. Some of the present working examples were designed to provide no change in overall structure, yet have a change

in biological function.

10

A wall first that the last will the last that the last the last that the last that the last that the last that the last the last

5

Based on the correlation of structure to biological activity, one aspect of the present invention relates to These analogs are molecules which have SCF analogs. more, fewer, different or modified amino acid residues from the SCF amino acid sequence. The modifications may be by addition, substitution, or deletion of one or more The modification may include the amino acid residues. addition or substitution of analogs of the amino acids themselves, such as peptidomimetics or amino acids with altered moieties such as altered side groups. used as a basis for comparison may be of human, animal or recombinant nucleic acid-technology origin (although the working examples disclosed herein are based on the recombinant production of the 141 amino acid species of N-terminal SCF, optionally having an extra methionine residue). The analogs may possess functions different from natural human SCF molecule, or may exhibit the same functions, or varying degrees of the same For example, the analogs may be designed to functions. have a higher or lower biological activity, have a longer shelf-life or a decrease in stability, be easier to

25

10

N facility from the facility f

25

30

formulate, or more difficult to combine with other ingredients. The analogs may bind receptor but elicit no biological activity and may therefore be useful as an antagonist against SCF effect (as, for example, in the overproduction of SCF). From time to time herein the present analogs are referred to as proteins or peptides for convenience, but contemplated herein are other types of molecules, such as peptidomimetics or chemically modified peptides.

In embodiment, the present invention relates to related compositions containing a SCF analog as an active ingredient. The term, "related composition," as used herein, is meant to denote a composition which may be analog identity of the SCF obtained once the ascertained (such as a SCF analog labeled with a detectable label or pharmaceutical composition). considered a related composition are chemically modified versions of the SCF analog, such as those having attached at least one polyethylene glycol molecule.

For example, one may prepare a SCF analog to which a detectable label is attached, such as a fluorescent, chemiluminescent or radioactive molecule.

Another example is a pharmaceutical composition which may be formulated by known techniques using known materials, see, e.g., Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, Pennsylvania 18042) which are herein incorporated by 1435-1712, Generally, the formulation will depend on a

5

25

30

variety of factors such as administration, stability, production concerns and other factors. The SCF analog may administered by injection or bv pulmonary be administration via inhalation. Enteric dosage forms may also be available for the present SCF analog compositions, and therefore oral administration may be effective. SCF analogs may be inserted into liposomes or other microcarriers for delivery, and may be formulated in gels or other compositions for sustained release. Although preferred compositions will vary depending on the use to which the composition will be put, generally, for SCF analogs having at least one of the biological activities of natural SCF, preferred pharmaceutical compositions are those prepared for subcutaneous injection or for pulmonary administration via inhalation, although the particular formulations for each type of administration will depend on the characteristics of the analog.

Another example of related composition is a receptor for the present analog. As used herein, the term "receptor" indicates a moiety which selectively binds to the present analog molecule. For example, antibodies, or fragments thereof, or "recombinant antibodies" (see Huse et al., Science 246:1275 (1989)) may be used as receptors. Selective binding does not mean only specific binding (although binding-specific receptors are encompassed herein), but rather that the binding is not a random event. Receptors may be on the cell surface or intra- or extra-cellular, and may act to effectuate, inhibit or localize the biological activity of the present analogs.

Receptor binding may also be a triggering mechanism for

30

a cascade of activity indirectly related to the analog itself. Also contemplated herein are nucleic acids, vectors containing such nucleic acids and host cells containing such nucleic acids which encode such SCF analogs.

Another example of a related composition is a SCF analog.

Another example of a related composition is a SCF analog with a chemical moiety attached. Generally, chemical alter biological activity modification may or may alter other of а protein, antigenicity characteristics, and these factors will be taken into account by a skilled practitioner. As noted above, one example of such chemical moiety is polyethylene glycol. Modification may include the addition of one or more hydrophilic or hydrophobic polymer molecules, fatty acid molecules, or polysaccharide molecules. Examples of modifiers include polyethylene glycol, chemical DI-poly(amino acids), glycols, alklpolvethylene polyvinylpyrrolidone, polyvinyl alcohol, pyran copolymer, acetic acid/acylation, proprionic acid, palmitic acid, lecithin, stearic acid, dextran, carboxymethyl cellulose, pullulan, or agarose. See, Francis, Focus on Growth Factors 3: 4-10 (May 1992) (published by Mediscript, Mountview Court, Friern Barnet Lane, London N20 OLD, UK). Also, chemical modification may include an additional protein or portion thereof, use of a cytotoxic agent, or an antibody.

In another embodiment, the present invention relates to nucleic acids encoding such analogs. The nucleic acids

10

C. I for the first stars and the first star than the first star that the first star than the first star th

25

30

may be DNAs or RNAs or derivatives thereof, and will typically be cloned and expressed on a vector, such as a phage or plasmid containing appropriate regulatory The nucleic acids may be labeled (such as sequences. using a radioactive, chemiluminescent, or fluorescent diagnostic or prognostic purposes, label) for example. The nucleic acid sequence may be optimized for including codons preferred expression, such as The nucleic acid bacterial expression. complementary strand, and modifications thereof which do not prevent encoding of the desired analog are here contemplated.

In another embodiment, the present invention relates to host cells containing the above nucleic acids encoding the present analogs. Host cells may be eukaryotic or prokaryotic, and expression systems may include extra steps relating to the attachment (or prevention) of sugar groups (glycosylation), proper folding of the molecule, the addition or deletion of leader sequences or other factors incident to recombinant expression.

In further embodiment the present invention relates to antisense nucleic acids which act to prevent or modify the type or amount of expression of such nucleic acid sequences. These may be prepared by known methods.

In another embodiment of the present invention, the nucleic acids encoding a present analog may be used for gene therapy purposes, for example, by placing a vector containing the analog-encoding sequence into a recipient

so the nucleic acid itself is expressed inside the recipient who is in need of the analog composition. The vector may first be placed in a carrier, such as a cell, and then the carrier placed into the recipient. Such expression may be localized or systemic. Other carriers include non-naturally occurring carriers, such as liposomes or other microcarriers or particles, which may act to mediate gene transfer into a recipient.

The present invention also provides for computer programs for the expression (such as visual display) of the SCF or analog three dimensional structure, and further, a computer program which expresses the identity of each constituent of an SCF molecule and the precise location within the overall structure of that constituent, down to the atomic level. Set forth below is one example of such There are many currently available computer program. programs for the expression of the three dimensional Generally, these programs structure of a molecule. provide for inputting of the coordinates for the three dimensional structure of a molecule (i.e., for example, a numerical assignment for each atom of an SCF molecule along an x, y, and z axis), means to express (such as visually display) such coordinates, means to alter such coordinates and means to express an image of a molecule having such altered coordinates. One may program crystallographic information, i.e., the coordinates of the location of the atoms of an SCF molecule in three dimensional space, wherein such coordinates have been obtained from crystallographic analysis of said SCF molecule, into such programs to generate a computer

10

5

25

10

25

30

program for the expression (such as visual display) of the SCF three dimensional structure. Also provided, therefore, is a computer program for the expression of SCF analog three dimensional structure. Preferred is the computer program Insight II, version 4, available from Biosym, San Diego, California, with the coordinates as set forth in Figure 8 input. Preferred expression means is on a Silicon Graphics 320 VGX computer, with Crystal Eyes glasses (also available from Silicon Graphics), which allows one to view the SCF molecule or its analog stereoscopically. The above-listed computer programs are only examples, and the use of such programs in the claimed methods is not limited thereto, as one of skill may use any other computer program that provides the desired three dimensional expression. Alternatively, the present SCF crystallographic coordinates and diffraction data are also deposited in the Protein Data Bank, Chemistry Department, Rutgers University, New Jersey, USA [formerly at Brookhaven National Laboratory, Upton, NY 11972]. One may use these data in preparing a different computer program for expression of the three dimensional analog thereof. molecule or SCF of а Therefore, another aspect of the present invention is a computer program for the expression of the three dimensional structure of a SCF molecule. Also provided is said computer program for visual display of the three dimensional structure of an SCF molecule; and further, said program having means for altering such visual Apparatus useful for expression of such display. computer program, particularly for the visual display of the computer image of said three dimensional structure of

an SCF molecule or analog thereof is also therefore here provided, as well as means for preparing said computer program and apparatus.

5

10

North grill (1972, 1973) (2011) [173] [174] [175

25

30

The computer program is useful for preparation of SCF analogs because one may select specific sites on the SCF molecule for alteration and readily ascertain the effect the alteration will have on the overall structure of the SCF molecule. Selection of said site for alteration will depend on the desired biological characteristic of the SCF analog. If one were to randomly change said SCF molecule there would be substitutions, additions or deletions, and even more analogs having multiple changes. By viewing the three dimensional structure wherein said structure is correlated with the composition of the molecule, the selection for sites for alteration is no longer a random event, but sites for alteration may be determined rationally.

Identity of the three dimensional structure of SCF, including the placement of each constituent down to the atomic level has now yielded information regarding which moieties are necessary to maintain the overall structure of the SCF molecule. One may therefore select whether to maintain the overall structure of the SCF molecule when preparing an SCF analog of the present invention, or whether (and how) to change the overall structure of the SCF molecule when preparing a SCF analog of the present Optionally, once one has prepared such invention. one may test such analog for a analoq, characteristic.

10

25

30

One may, for example, seek to maintain the overall possessed by а non-altered natural recombinant SCF molecule. The overall structure is presented in Figures 2A-2B, and is described in more detail below. Maintenance of the overall structure may ensure receptor binding, a necessary characteristic for an analog possessing the biologic capabilities of natural SCF (if no receptor binding, signal transduction does not result from the presence of the analog). contemplated that one class of SCF analogs will possess the three dimensional core structure of a natural or recombinant (non-altered) SCF molecule, yet possess different characteristics, such as an increased ability to selectively stimulate neutrophils. Another class of SCF analogs are those with a different overall structure which diminishes the ability of an SCF analog molecule to bind to a SCF receptor, Kit, and possesses a diminished ability to selectively stimulate hematopoiesis, non-altered natural compared to example, as recombinant SCF.

For example, it is now known which moieties within the internal regions of the SCF molecule are hydrophobic, and, correspondingly, which moieties on the external portion of the SCF molecule are hydrophilic. Without knowledge of the overall three dimensional structure, preferably to the atomic level as provided herein, one could not forecast which alterations within this hydrophobic internal area would result in a change in the overall structural conformation of the molecule. An

10

New party place and their party party place party plac

25

30

overall structural change could result in a functional change, such as lack of receptor binding, for example, and therefore, diminishment of biological activity as found in non-altered SCF. Another class of SCF analogs therefore SCF analogs which possess the hydrophobicity as (non-altered) natural or recombinant More particularly, another class of SCF analogs possesses the same hydrophobic moieties within the four helical bundle of its internal core as those hydrophobic moieties possessed by (non-altered) natural recombinant SCF yet have a composition different from said non-altered natural or recombinant SCF.

Another example relates to external loops which are structures which connect the internal core (helices) of the SCF molecule. From the three dimensional structure -- including information regarding the spatial location of the amino acid residues -- one may forecast that certain changes in certain loops will not result in overall conformational changes.

Therefore, another class of SCF analogs provided herein is that having an altered external loop but possessing the same overall structure as (non-altered) natural or recombinant SCF. More particularly, another class of SCF analogs provided herein are those having an altered external loop, said loop being selected from the loops discussed infra. More particularly, said loops, are altered to increase the half life of the molecule by stabilizing said loops. Such stabilization may be by connecting all or a portion of said loop(s) to a portion

of an alpha helical bundle found in the core of a SCF (or analog) molecule. Such connection may be via beta sheet, salt bridge, disulfide bonds, hydrophobic interaction or other connecting means available to those skilled in the art, wherein such connecting means serves to stabilize said external loop or loops.

Additionally, such external loops may be the site(s) for chemical modification because in (non-altered) natural or recombinant SCF such loops are relatively flexible and tend not to interfere with receptor binding. Thus, there would be additional room for a chemical moiety to be directly attached (or indirectly attached via another chemical moiety which serves as a chemical connecting The chemical moiety may be selected from a variety of moieties available for modification of one or more function of an SCF molecule. For example, external loop may provide sites for the addition of one or more polymer which serves to increase serum half-life, glycol molecule. polyethylene а polyethylene glycol molecule(s) may be added wherein said loop is altered to include additional lysines which have reactive side groups to which polyethylene glycol moieties are capable of attaching. Other classes of chemical moieties may also be attached to one or more loops, including but not limited to other external biologically active molecules, such as receptors, other therapeutic proteins (such as other hematopoietic factors which would engender a hybrid molecule), or cytotoxic agents (such as diphtheria toxin). This list is of course not complete; one skilled in the art possessed of

10

5

25

the desired chemical moiety will have the means to effect attachment of said desired moiety to the desired external loop. Therefore, another class of the present SCF analogs includes those with at least one alteration in an external loop wherein said alteration provides for the addition of a chemical moiety such as at least one polyethylene glycol molecule.

Deletions, such as deletions of sites recognized by proteins for degradation of the molecule, may also be This provides loops. external effectual in the alternative means for increasing half-life of a molecule otherwise having the SCF receptor binding and signal ability to the (e.g., transduction capabilities selectively stimulate hematopoiesis). Therefore, another class of the present SCF analogs includes those with at least one alteration in an external loop wherein said alteration decreases the turnover of said analog by proteases. One may prepare an abbreviated SCF molecule by deleting a portion of the amino acid residues found in any of the the external loops (discussed infra), said abbreviated SCF molecule may have additional advantages in preparation or in biological function.

Another example relates to the relative charges between amino acid residues which are in proximity to each other. As noted above, the SCF molecule contains a relatively tightly packed four helical bundle. Some of the faces on the helices face other helices. At the point (such as a residue) where a helix faces another helix, the two amino acid moieties which face each other may have the same

25

5

10

charge, and thus tend to repel each other, which lends

instability to the overall molecule. This may be eliminated by changing the charge (to an opposite charge or a neutral charge) of one or both of the amino acid moieties so that there is no repelling. Therefore, another class of SCF analogs includes those SCF analogs having been altered to modify instability due to surface interactions, such as electron charge location.

The present invention provides methods for designing SCF analogs and related compositions and the products of those methods. The end products of the methods may be the SCF analogs as defined above or related compositions. For instance, the examples disclosed herein demonstrate (a) the effects of changes in the constituents (i.e., chemical moieties) of the SCF molecule on the SCF structure and (b) the effects of changes in structure on biological function.

Accordingly, therefore, the present invention provides a computer based method for preparing a stem cell factor (SCF) analog comprising the steps of: (a) providing computer expression of the three dimensional structure of of an SCF molecule using its crystal structure; (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration; (c) preparing an SCF molecule having an alteration at said one said selected site; and (d) optionally, testing the SCF molecule for a desired characteristic. The SCF molecule of step (a) may be naturally occurring wild type SCF or any portion or fragment thereof which is capable

5

25

of binding to SCF receptor.

5

10

25

30

embodiment of the above-described method the computer expression allows for display of the amino acids of the SCF molecule. In another embodiment of the method the computer expression allows for display of each atom of the SCF molecule. In a further embodiment of the method the SCF molecule is a native or a selenomethionyl SCF. In another embodiment of the method the site on the SCF molecule for alteration is a receptor binding site on the surface of the SCF molecule. In a further embodiment of the method the receptor binding site comprises amino 79-85. The SCF molecule acid residues recombinant human SCF or a wild type naturally occurring human SCF. SCF wild type and recombinant may also be of other sources such as but not limited to rat or mouse. In an embodiment of the above-described method, the atomic coordinates of the crystal structure are set forth in Figure 8. In another embodiment the SCF analog comprises a polypeptide having an amino acid sequence portion of SCF capable of binding a receptor and having the overall three-dimensional conformation as shown in Figures 2A-2B, wherein the three-dimensional conformation is: a) antiparallel, double-cross over 4-alpha helical bundle with left hand twist; and b) overall dimensions of approximately 85 Å x 30 Å x 20 Å. In an embodiment the SCF analog comprises electron density distributions as set forth in Figures 1A, 1B, and 1C. In a further embodiment the SCF molecule is a native SCF selenomethionyl SCF.

In an embodiment the site on the SCF molecule for

alteration is a receptor binding site on the surface of the SCF molecule or a non-receptor site of the SCF.

Alteration of a non-receptor binding site will result in a designed SCF analog that binds to the SCF receptor but is less active such that such an analog may be used for blocking activity of the SCF.

In another embodiment the receptor binding site comprises approximately amino acid residues 79-95.

This invention provides an isolated SCF analog prepared according to the above-described method. In an embodiment the isolated SCF analog which binds to SCF receptor, Kit. In another embodiment the isolated SCF analog has an alteration in at least one atom of the atomic coordinates of the crystal structure set forth in Figure 8. In a further embodiment the SCF analog comprises a polypeptide having an amino acid sequence portion of SCF capable of and having the overall threebinding a receptor dimensional conformation as shown in Figures 2A-2B, wherein the three-dimensional conformation is: a) antiparallel, double-cross over 4-alpha helical bundle with left hand twist; and b) overall dimensions of approximately 85 Å \times 30 Å \times 20 Å. In an embodiment the SCF analog comprises electron density distributions altered from those set forth in Figures 1A, 1B, and 1C.

This invention provides a composition comprising an isolated SCF analog prepared according to the above-described method effective to treat a subject and a

10

5

25

30

5

pharmaceutically acceptable carrier. In an embodiment of composition, the isolated SCF the analog alteration in at least one atom of the atomic coordinates of the crystal structure set forth in Figure 8. In another embodiment the isolated SCF analog comprises a polypeptide having an amino acid sequence portion of SCF capable of binding a receptor and having the overall three-dimensional conformation as shown in Figures 2A-2B, or an alteration thereof, wherein the three-dimensional conformation is: a) anti-parallel, double-cross over 4alpha helical bundle with a left hand twist; and b) overall dimensions of approximately 85 $\hbox{\AA}$ x 30 $\hbox{Å}$ x 20 $\hbox{Å}$. In a further embodiment the isolated SCF analog comprises electron density distributions as set forth in Figures 1A, 1B, and 1C. In an embodiment the isolated SCF analog comprises a native SCF1-165, a recombinant selenomethionyl SCF1-141, or a recombinant selenomethionyl SCF1-165.

Any of the aforementioned SCF analogs may optionally have before the first N-terminal amino acid residue a methionine at position"-1".

In an embodiment of the composition the site on the isolated SCF molecule for alteration is a receptor binding site on the surface of the SCF molecule. In a further embodiment the receptor binding site comprises approximately amino acid residues 79-95.

This invention provides a method of treating a subject having a disorder requiring SCF comprising administration

5

30

a composition comprising an isolated SCF analog prepared by the method of preparing a SCF analog or a compound designed by the method of designing a compound capable of binding to the SCF receptor as described infra. In an embodiment the subject has a blood disorder. In another embodiment the disorder which the subject has is anemia, myeloproliferative disorder, neoplasia, nerve damage, infertility, intestinal damage, a pigmentation disorder, or immunodeficiency. In an embodiment the administration of the isolated SCF analog is for ex vivo or in vivro production of peripheral blood progenitors, ex vivo or in vivro stem cell expansion, ex vivo or in vitro growth of epithelial cells, ex vivo or in vitro growth of stromal cells, ex vivo or in vitro dendritic cell stimulation, and in vivo cell mobilization. In an embodiment the isolated SCF analog is administered orally or by any other routes described infra. In an embodiment the isolated SCF analog has an alteration in at least one atom of the atomic coordinates of the crystal structure set forth in Figure 8. In a further embodiment the comprises a native SCF1-165 or a isolated SCF analog another SCF1-141. Ιn selenomethionyl recombinant embodiment the site on the isolated SCF molecule for alteration is a receptor binding site on the surface of the SCF molecule. In a further embodiment the receptor binding site comprises approximately amino acid residues isolated SCF analog embodiment the an 79-95. In comprises a native or recombinant SCF1-165 orrecombinant selenomethionyl SCF1-141. As used herein throughout SCF receptor is Kit.

This invention provides a method for designing a compound capable of binding to the stem cell factor (SCF) receptor site of comprising the steps of: a) determining a binding site for the SCF receptor on the SCF based on the three-dimensional structure of SCF or an SCF polypeptide or portion/fragment thereof, atomic coordinates computed from X-ray diffraction data of a crystal comprising a polypeptide having an amino acid sequence portion of SCF capable of binding the receptor; and b) designing a compound comprising an entity that binds the SCF receptor. The designed compound mimics, i.e. is a copy or simulation of the overall portion of SCF that binds to SCF receptor, Kit.

In an embodiment the design of the compound of step (b) is determined by shape complementarity or by estimated interaction energy. In another embodiment the designed compound fits an SCF receptor binding site on SCF receptor as shown in Figure 6. In a further embodiment the designed compound fits an SCF receptor binding site on SCF receptor as shown in Figures 7A or 7B. In an embodiment the designed compound has an alteration in at least one atom of the atomic coordinates of the crystal forth in Figure 8. In yet another structure set embodiment the designed compound is a double-headed SCF ligand analog having the structure set forth in Figure In a still further embodiment each ligand head of the double-headed SCF ligand analog is an oligopeptide having the structure set forth in Figure 10B. designed compound comprises two conjugated ligands having a linker between the two ligands.

Hard Will file, and the file in the second state of the second sta

20

10

5

25

The first fi

25

30

In an embodiment, the ooligopeptide comprises a sequence, wherein functional moiety F_1 corresponds to a segment of amino acid residues from within N-terminal residues 1-10 of SCF, functional moiety F2 corresponds to a segment of amino acid residues from within residues 79-95 of SCF, and functional moiety F3 corresponds to a segment of amino acid residues located within three amino acid residues of amino acid residue 127, wherein F_1 , F_2 , and F_3 are connected by connecting peptide segements X_n , X_m , and X_p , respectively, wherein n=0-5, m=0-5 and p=3-8 amino acid residues, respectively, and the conjugation moiety \textbf{F}_{L} is a cysteine residue.

A functional moiety is defined as en entity that has a particular binding property, i.e. it mimics receptorbinding sites on the surface of SCF, i.e. the ligand portion of SCF.

The amino acid residues located within 3 amino acid residues of amino acid residue 127 may be located within 3 residues in either direction of residue 127. In further embodiments the amino acid residues may be from 4 to 10 amino acid residues in either direction of amino acid residue 127.

In another embodiment of the above-described method the functional moieties F_1 , F_2 , and F_3 on the ligand heads have been selected by bacterial phage display for optimal an embodiment the functional receptor binding. In moieties and connecting peptide segments of an active oligopeptide ligand head are replaced by chemical

25

30

5

mimetics. In another embodiment an appropriate chemical scaffold of connecting segments has been designed to comprise (present) functional moieties F_1 , F_2 and F_{13} which have been selected by combinatorial chemistry for optimal receptor binding from a library of chemical moieties complementary to receptor-binding sites on the surface of SCF. In an embodiment the linker comprises an organic polymer having two ends capped at each end by a reactive capping moiety, Fc, which react covalently with the conjugation moiety, $F_{\text{\tiny L}}$, on the ligand head. In an embodiment the organic polymer is polyethyleneglycol (PEG) comprising the structure $H[OCH_2CH_2]_nOH$, wherein n is 10-20. In an embodiment the capping moiety, F_c , is a thiol-reactive group such as N-ethyl maleimide. In an embodiment the conjugating moiety, F_{τ} , is a thiol containing group such as cysteine.

This invention provides a compound designed by the method of claim 32.

A composition comprising the compound designed by the above described method and a pharmaceutically acceptable carrier. In an embodiment the compound comprises an isolated SCF analog, whose alteration site is a receptor-binding site on the surface of the altered SCF molecule. In another embodiment the composition comprises a double-headed receptor SCF ligand analog having the structure set forth in Figure 10A. In an embodiment each ligand head of the double-headed SCF ligand analog is an oligopeptide having the structure set forth in Figure 10B.

5

25

30

In another embodiment the ooligopeptide comprises a sequence, wherein functional moiety F_1 corresponds to a segment of amino acid residues from within N-terminal residues 1-10 of SCF, functional moiety F2 corresponds to a segment of amino acid residues from within residues 79-95 of SCF, and functional moiety $F_{\scriptscriptstyle 3}$ corresponds to a segment of amino acid residues located within three amino acid residues of amino acid residue 127, wherein F_1 , F_2 , and F_3 are connected by connecting peptide segements X_n , X_m , and X_p , respectively, wherein n=0-5, m=0-5 and p=3-8 amino acid residues, respectively, and the conjugation moiety F_L is a cysteine residue. In a further embodiment the functional moieties F_1 , F_2 , and F_3 on the ligand heads have been selected by bacterial phage display for optimal receptor binding. In an embodiment the moieties and connecting peptide segments of an active oligopeptide ligand head are replaced by chemical mimetics. In another embodiment an appropriate chemical scaffold of connecting segments has been designed to comprise (present) functional moieties F_1 , F_2 , and F_3 , which have been selected by combinatorial chemistry for optimal receptor binding from a library of chemical moieties complementary to receptor-binding sites on the In another embodiment the linker surface of SCF. comprises an organic polymer having two ends capped at each end by a reactive capping moiety, F_c , which react covalently with the conjugation moiety, F_{L} , on the ligand In a further embodiment the organic polymer is head. structure (PEG) comprising the polyethyleneglycol $H[OCH_2CH_2]_nOH$, wherein n is 10-20. In another embodiment the capping moiety, $F_{\rm c}$, is a thiol-reactive group such as N-ethyl maleimide. In an embodiment the conjugating moiety, $F_{\text{\tiny L}}$, is a thiol containing group such as cysteine.

5

10

25

30

This invention provides a method of treating a subject comprising administration of a compound designed by the above described method. In an embodiment the subject has a blood disorder. In a further embodiment the blood disorder is anemia or immunodeficiency. In an embodiment the compound is administered orally or any other routes. In an embodiment the compound is an isolated SCF analog. In another embodiment the compound comprises an isolated SCF analog, whose alteration site is a receptor binding site on the surface of the altered SCF molecule. In composition embodiment of the method the comprises a double-headed receptor SCF ligand analog having the structure set forth in Figure 10A. In an embodiment each ligand head of the double-headed SCF ligand analog is an oligopeptide having the structure set another embodiment 10B. In Figure ooligopeptide comprises a sequence, wherein functional moiety F_1 corresponds to a segment of amino acid residues from within N-terminal residues 1-10 of SCF, functional moiety F_2 corresponds to a segment of amino acid residues from within residues 79-95 of SCF, and functional moiety ${\tt F_3}$ corresponds to a segment of amino acid residues located within three amino acid residues of amino acid residue 127, wherein F_1 , F_2 , and F_3 are connected by connecting peptide segements $X_{n},\ X_{m},\ \text{and}\ X_{p},\ \text{respectively,}\ \text{wherein}$ n=0-5, m=0-5 and p=3-8 amino acid residues, respectively, and the conjugation moiety $\boldsymbol{F}_{\!\scriptscriptstyle L}$ is a cysteine residue. In a further embodiment the functional moieties $F_{\text{1}},\ F_{\text{2}},\ \text{and}\ F_{\text{3}}$

10

25

30

on the ligand heads have been selected by bacterial phage display for optimal receptor binding. In an embodiment the functional moieties and connecting peptide segments of an active oligopeptide ligand head are replaced by chemical mimetics. In another embodiment an appropriate scaffold of connecting segments has been chemical designed to comprise (present) functional moieties F_1 , F_2 , and F3, which have been selected by combinatorial chemistry for optimal receptor binding from a library of chemical moieties complementary to receptor-binding sites on the surface of SCF. In another embodiment the linker comprises an organic polymer having two ends capped at each end by a reactive capping moiety, Fc, which react covalently with the conjugation moiety, $F_{\scriptscriptstyle \rm L}$, on the ligand In a further embodiment the organic polymer is comprising the polyethyleneglycol (PEG) ${\rm H}\left[{\rm OCH_2CH_2}\right]_{\rm n}{\rm OH}$, wherein n is 10-20. In another embodiment the capping moiety, F_c , is a thiol-reactive group such as N-ethyl maleimide. In an embodiment the conjugating moiety, F_L , is a thiol containing group such as cysteine.

This invention provides a method of stimulating the production of hematopoietic cells in a subject comprising administering an isolated stem cell factor (SCF) analog. In an embodiment isolated stem cell factor (SCF) analog is prepared by the method of claim 1 or designed by the above described method. In another embodiment the administration is oral or any other route. In an embodiment the isolated SCF analog has an alteration in at least one atom of the atomic coordinates of the crystal structure as set forth in Figure 8. In another

10

25

embodiment the isolated SCF analog comprises amino acid residues of native or recombinant SCF1-165 or amino acid residues of a recombinant selenomethionyl SCF1-141. In an embodiment of this method the isolated SCF analog, comprises an isolated altered SCF molecule, whose alteration site is a receptor binding site on the surface of the altered SCF molecule. In another embodiment of the above-described the compound comprises an isolated SCF analog, whose alteration site is a receptor-binding site on the surface of the altered SCF molecule. In another embodiment of said method the composition comprises a double-headed receptor SCF ligand analog having the structure set forth in Figure 10A. In an embodiment each ligand head of the double-headed SCF ligand analog is an oligopeptide having the structure set forth in Figure 10B. In another embodiment the ooligopeptide comprises a sequence, wherein functional moiety corresponds to a segment of amino acid residues from within N-terminal residues 1-10 of SCF, functional moiety F_2 corresponds to a segment of amino acid residues from within residues 79-95 of SCF, and functional moiety $F_{\rm 3}$ corresponds to a segment of amino acid residues located within three amino acid residues of amino acid residue 127, wherein F_1 , $\boldsymbol{F}_2\text{,}$ and \boldsymbol{F}_3 are connected by connecting peptide segements $\boldsymbol{X}_n\text{,}$ X_m , and X_p , respectively, wherein n=0-5, m=0-5 and p=3-8 amino acid residues, respectively, and the conjugation moiety $\boldsymbol{F}_{\!\scriptscriptstyle L}$ is a cysteine residue. In a further embodiment the functional moieties F_1 , F_2 , and F_3 on the ligand heads have been selected by bacterial phage display for optimal receptor binding. In an embodiment the functional moieties

10

25

30

and connecting peptide segments of an active oligopeptide ligand head are replaced by chemical mimetics. In another embodiment an appropriate chemical scaffold of connecting segments has been designed to comprise (present) functional moieties F_1 , F_2 , and F_3 which have been selected by combinatorial chemistry for optimal receptor binding from a library of chemical moieties complementary to receptor-binding sites on the surface of SCF. another embodiment the linker comprises an organic polymer having two ends capped at each end by a reactive capping moiety, Fc, which react covalently with the conjugation moiety, F1, on the ligand head. In a further embodiment the organic polymer is polyethyleneglycol (PEG) comprising the structure $H[OCH_2CH_2]_nOH$, wherein n is In another embodiment the capping moiety, F_{c} , is a thiol-reactive group such as N-ethyl maleimide. In an embodiment the conjugating moiety, $F_{\scriptscriptstyle L}$, is a containing group such as cysteine.

This invention provides an isolated stem cell factor (SCF) molecule, which is an altered SCF, comprising any portion of amino acids 1-165 of a human SCF polypeptide, optionally comprising an N-terminal methionine before amino acid residue 1, wherein the polypeptide has an amino acid sequence portion of SCF capable of binding to the SCF receptor. In an embodiment of the altered isolated stem cell factor molecule an alteration is selected from the group consisting of deletion, insertion and substitution of at least one amino acid residue from the naturally occurring amino acid sequence of SCF.

10

Part 1 for the control of the contro

25

30

In a further embodiment an alteration is a truncated SCF comprising amino acids 1-141 of a human SCF polypeptide, optionally comprising an N-terminal methionine before amino acid residue 1, E. In another embodiment the threealtered from the atomic structure is dimensional coordinates are set forth in Figure 8. In yet another embodiment the electron density distribution map is altered from the atomic coordinates are set forth in Figures 1A, 1B, or 1C. In a still further embodiment the substitution of at least one amino acid residue is selected from the group consisting of SCF(Y26C) disulfide-linked dimer, SCF(D25C), SCF(K62C), SCF(K78N, N81K), SCF(R117A, I118A), SCF(E92A, S95A), and SCF(D124A, embodiment the overall another In K127D). dimensional conformation of the stem cell factor molecule has an altered three-dimensional structure of the $\alpha C\!-\!\beta 2$ loop.

This invention provides a pharmaceutical composition comprising the above described altered isolated SCF molecule and a pharmaceutically acceptable carrier. In an embodiment the altered SCF molecule molecule is a hybrid molecule of the altered stem cell factor molecule and a second protein or fragment thereof. As used herein, an SCF hybrid molecule is defined as a molecule wherein analog SCF is combined with with part or all of another protein such as another cytokine or another protein, which for example, effects signal transduction via entry through the cell through a SCF-SCF receptor transport mechanism. In an embodiment the alteration of the $\alpha C-\beta 2$ loop is a change in length of the amino acid sequence of

the $\alpha C-\beta 2$ loop by a deletion or an insertion of at least one amino acid residue or a change in at least one amino acid residue from the naturally occurring amino acid residue(s) of the $\alpha C-\beta 2$ loop. In another embodiment the change in said at least one amino acid residue from the naturally occurring amino acid residue(s) is selected from the group consisting of SCF(Y26C) disulfide-linked dimer, SCF(D25C), SCF(K62C), SCF(K78N, N81K), SCF(R117A, I118A), SCF(E92A, S95A), and SCF(D124A, K127D).

Generally, for design of drugs as described in the above-described methods, certain changes are known to have certain structural effects. For example, deleting one cysteine could result in the unfolding of a molecule which is, in its unaltered state, is normally folded via a disulfide bridge. There are other known methods for adding, deleting or substituting amino acids in order to change the function of a protein.

The atomic coordinates may be determined in the above-described method by multiwave anomalous diffraction (MAD) measurements, but is not limited htereto, since any means determined suitable by one of skill in the art may also be used.

25

5

10

This invention will be better understood from the Experimental Details which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.

MATERIALS AND METHODS

25

30

5

SCF Expression, purification and analyses

Human SCF^{1-141} was expressed recombinantly in E. coli as described previously (Langley et al., 1994). expression of SeMet SCF1-141, the expression vector was transfected into the methionine auxotrophic E. coli Fermentation was carried out at 30°C in 8 strain FM5. liters of minimal medium consisting of ammonium sulfate (10 g/liter), glucose (5 g/liter), methionine (0.125 q/liter), phosphate salts, magnesium, citric acid, trace metals, and vitamins. When an OD_{600} of 3-5 was reached, a feed medium was added that consisted of the following components in a total volume of 1 liter: 100 g of ammonium sulfate, 450 g of glucose, 2 g of methionine, magnesium, trace metals, and vitamins. At an OD600 of 12.4, induction medium (one liter containing 100 g of ammonium sulfate, 300 g of glucose, and selenomethionine) was added and fermentation proceeded at 30°C. Five hours later (at an OD600 of approximately 16), the temperature was raised to 42°C to induce SCF expression and additional selenomethionine (1 Cells were harvested 4 hours after the added. temperature shift (OD₆₀₀ of approximately 16). SCF¹⁻¹⁴¹ expression was estimated as 0.5 g/liter. Both SeMetSCF 141 were purified with and modifications to previously described procedures (Langley al., 1992, 1994). Both retain the initiating et

methionine (or SeMet) residue [position (-1)] (Langley et al., 1994). N-terminal amino acid sequencing was performed as described (Lu et al., 1991). About 90% SeMet was present in SeMetSCF¹⁻¹⁴¹ at each of the Met positions, based on amino acid analysis and N-terminal sequencing results (i.e. lack of recovery of Met residues for SeMetSCF¹⁻¹⁴¹ in comparison with SCF¹⁻¹⁴¹, data not shown).

Crystallization

Crystals were obtained by the use of hanging drop vapor diffusion method under aerobic conditions. The initial crystals were grown by mixing 1 μ l of protein solution [44 mg/ml for SCF^{1-141} or 38 mg/ml for $SeMet\ SCF^{1-141}$) in 10 mM sodium phosphate pH 6.5, 80 mM NaCl] with 1 μ l crystallization reservoir solution. The crystallization reservoir solution included 25% (w/w) PEG 400, 240 mM $CaCl_2$, 100 mM HEPES pH 7.4 for SCF^{1-141} , and 22% PEG400, 220 mM $CaCl_2$, 100 mM HEPES pH 7.2 and 5-10 mM dithiothreitol Crystallization trays were for SeMetSCF¹⁻¹⁴¹. incubated at 20° C and crystals reached full size in approximately 3 days with typical dimensions of 0.5×0.2 imes 0.2 mm. Microseeding and lower concentrations of DTT solution (2 mM) wre needed to reproduce SeMetSCF $^{1-141}$ crystals subsequently. An extant SeMetSCF1-141 crystal was washed with its reservoir solution and then crushed to produce microseeds, which were stored in 50 μl of a stabilizing solution of 32% (w/w) PEG400, 260 mM CaCl₂, 100 mM HEPES (pH 7.4) at room temperature. For microseeding experiments, the seed stock was diluted by 10-10,000-fold with crystallization reservoir solution. A 1 μ l aliquot of this prepared precipitant was mixed with 1 μl of the

New persons and the season of the season of

5

10

25

protein solution to make the droplet. The crystal for MAD phasing was grown from a crystallization reservoir solution containing 2 mM DTT concentration.

Diffraction measurements

X-ray diffraction data from SCF1-141 crystals were recorded on two Hamlin-Xuong area detectors at 293K at a home source. The data were integrated using the UCSD software package and scaled using AGROVATA and ROTAVATA implemented in CCP4 suite (CCP4, 1994). The MAD experiments for SeMetSCF1-141 were conducted at the X4A synchrotron beam line of Brookhaven National Laboratory using Fuji image plates. A single crystal was frozen at 110K using paratone-N (Exxon) as a cryoprotectant. MAD data were collected at four wavelengths (before the edge, at the SeK edge, at the peak and after the peak) in The $SeMetSCF^{1-141}$ oscillations of 1.3-1.5° without overlap. crystal was oriented such that b-axis was parallel to the oscillation axis and a mirror geometry was used during data collection. The MAD data were processed using DENZO and Scalepack (Otwinowski, 1993; Gewirth, 1995) (Table I).

-20-

MAD data collection and phasing statistics. Table I.

<u>Wavelength(Å)</u>	ı	ouidue <u>comptee</u> <u>reflections</u>	ections			
λ1=0.9919 λ2=0.9793 λ3=0.9791 λ4=0.9686	<pre>(pre-edge) (inflection) (peak) (remote)</pre>	65,810 65,759 65,665 65,689	95.1 95.0 94.9	ਜੋਜੇਜਜ	18.4 16.7 15.2 16.0	6.7 8.7 7.6
Anomalous	diffraction	ratios (20) - 2.6 Å) ^b			
	1	72	λ3	λ4	f' (e)	£"(e)
λ1	0.035	0.051	0.042	0.035	-4.0	.00
УЗ		0.052	0.033	0.051	-10.3	ω
УЗ			0.070 (0.031)	0.041	.8	5.6
λ4				0.055	-3.9	3.8
MAD phasing (25	- 2.6	Å) c				
$R(\circ F_T) =$		$R(\circ F_A) = 0.39$	$= \langle (\Phi \nabla) \nabla \rangle$	> = 41.6°		$\langle \sigma(\Delta\Phi) \rangle = 18.7^{\circ}$

15

10

Ŋ

-51-

MAD data collection and phasing statistics. Table I continued.

Bijvoet-related reflections. Rsym = 100 x $\Sigma_{\rm hkl}$ $\Sigma_{\scriptscriptstyle 1}$ $|I_{\scriptscriptstyle 1}$ - <I> $|/\Sigma_{\rm hkl}\Sigma_{\scriptscriptstyle 1}I_{\scriptscriptstyle 1}$, where $I_{\scriptscriptstyle 1}$ is the ith ^b Anomalous diffraction ratios = $<\Delta|F|^2>$ */ $<|F|^2>$ *, where $\Delta|F|$ is the absolute value of the distinguish Bijvoet (diagonal elements) or dispersive difference (off-diagonal elements), respectively. measurement of reflection hkl and $\langle I \rangle$ is the weighted mean of all measurements of I. (not mmm) to 222 group determined by point Values in parentheses are for centric data.

from all the atoms. $^\circ F_{\lambda}$ is the structure factor due to normal scattering from the anomalous scatterers only, and $\Delta\Phi$ is the phase difference between ${}^\circ F_r$ and ${}^\circ F_h$. $\Delta(\Delta\Phi)$ is the difference ° R = Σ_{hcl} Σ_{i} | F $_{i}$ | F $_{i}$ $_{i}$ $_{i}$ $_{i}$ $_{i}$ the structure factor due to normal scattering between two independent determinations of $\Delta\Phi$.

Ŋ

Molecular replacement attempts

Structure determination by the molecular replacement method was attempted for the home source data set. The MERLOT (Fitzgerald, 1988) and AmoRe (CCP4, 1994) programs were used with various four-helix bundle structures as search models, and a good rotation solution was obtained. The rotation solution agreed well with the orientation of helical bundles (approximately along the b-axis of unit cell) that was deduced from native Patterson maps. Dissimilarities among the helical cytokines and the multiplicity of subunits (four) hampered detection of any significant translational function peaks.

Phase evaluation

The processed MAD data were passed through the MADSYS (Hendrickson, 1985). programs Algebraic and probabilistic MAD phasing procedures (Hendrickson, 1985; Pahler et al., 1990) were applied for phase determination (Table II). Selenium sites were located by HASSP program (CCP4, 1994) in F_A Patterson and difference Fourier maps and refined by MADSYS programs. The choice of enantiomer was determined by comparison of the electron density maps computed from the two enantiomorphic selenium structures to maximum Bragg spacings of 2.6 Å. The phases were improved by 4-fold non-crystallographic symmetry (NCS) averaging. The rotation-translation matrices of the NCS axes were determined by TOSS (Hendrickson, 1979) from the selenium sites and subsequently refined by LSQRHO (W.A. Hendrickson, unpublished) and RAVE (Kleywegt and Jones, 1994), and the averaging procedure by DM (CCP4, 1994).

120

5

10

25

Model building and refinement

5

10

20

25

The initial model of SeMetSCF1-141 was built into the averaged map at 2.3 Å by using program O (Jones et al., The model includes 98 core residues for each of the four molecules in an asymmetric unit. The remote wavelength after the SeK peak was used for the refinement with the Bijvoet difference applied to Se scattering factors. The R-value for this model, before any refinement, was 42.1% in the resolution range of 10.0 -NCS restraints were applied during the initial rounds of refinements. After several iterations of least square and simulated annealing refinement with X-PLOR (Brunger et al., 1987) and manual rebuilding against SIGMAA (Read, 1986) and 2 F₀ - F₀ maps, crystallographic R-value is 19.9% for the current model (Table III). The sites of Ca^{2+} ions, a component of the crystallization medium, were located from a Bijvoet difference Patterson map at the remote wavelength before the SeK edge. The SCF1-141 model was obtained by subjecting the refined $SeMetSCF^{1-141}$ model to refinement against the area-detector data set from the SCF1-141 crystal using the XPLOR program (Brünger et al., 1987). The atomic coordinates have been deposited in the Brookhaven Protein Data Bank with accession code 1scf.

	Table II. Lattice and Refinement Statistics	nement Statistics	
		SeMeSCF ¹⁻¹⁴¹ (A4)	Native
	Lattice		
	Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁
വ	Cell constants (a,b,c)(Å)	71.8, 82.6, 88.2	73.0, 84.7, 88.8
	$Z_{ m a}$	4	4
	Refinement ^b		
	Resolution range (Å)	20.0 - 2.2	8.0 - 3.3
	Completeness (%)	96.6	98.6
10	Unique reflections°	49851	7990
	$R-value^d$ ($ F >2G$)(%)	19.9	20.8
	R (%)	24.2	27.3
	Revm f (%)	5.6	15.2
	Model parameter		
15	Total non-H atoms	3804	3502
	Total residues	448	447
	Total water molecules	264	0
	Total metal ions	8	0
	rms bond length/angle	0.016/2.5°	0.017 / 3.0°
20	Average <i>B</i> -factor $(\mathring{\mathbf{A}}^2)$	32.1	18.7
	main-chain rms B (bond, angle)	1e) (\mathring{A}^2) 1.2/1.6	1.9/2.2
		(\mathring{A}^2)	3.0/3.3
	^a Z _a : number of molecules in	in the asymmetric unit.	

bThe reflection data higher that the resolution range were not included in the refinement due to poor $R_{\mbox{\tiny \rm Sym}}$ in these resolution shells.

 $^{^\}circ$ Unique reflections are determined by point group 222 for the SeMetSCF¹⁻¹⁴¹ dataset to distinguish Bijvoet-related reflections and by point group mmm for native dataset.

 $^{^{}d}R$ -value = $\Sigma_{\text{nkl}} | |F_{\circ}| - |F_{c}| | / \Sigma_{\text{nkl}} |F_{\circ}|$.

-55-

Table II. continued Lattice and Refinement Statistics

eA subset of the data (6%) was excluded from the refinement and used for the free R-value calculation.

 $^{\rm f}$ $\rm R_{\rm sym}$ for SeMetSCF^1-141 data set was calculated in the resolution range of 25-2.2 Å and for the SCF1-141 data set in the resolution range of 13-3.3 $\mbox{\normalfont{$\lambda$}}$.

10

S

Structure analysis

5

10

25

Solvent accessibilities were defined as compared with the corresponding Gly-X-Gly peptide (Shrake and Rupley, 1973) calculated by XPLOR (Brunger *et al.*, 1987). Structural superimpositions were performed based on a-carbon atoms alone. The coordinates were taken from the Brookhaven Data Bank with entry codes: M-CSF, 1hmc (Pandit et al., 1992); IL-4, 1rcb (Wlodawer et al., 1992); GM-CSF, 1gmf (Diederichs et al., 1991) IL-2, 3ink (McKay, 1992); IL-5, 1hul (Milburn et al., 1993). Initial segments of equivalence between two structures were defined according to equivalent secondary structure These structures were then superimposed using program TOSS (Hendrickson, 1979) and the number of equivalent atoms were extended using Lsq imp command in program O (Jones et al., 1991). A cutoff distance of 3.0 Å and at least three residues in a consecutive fragment were used as the criteria of defining equivalent atom Different initial equivalent segments did give results in the structural alignment, different Rozwarski et al observed in their study (Rozwarski et In this study, several initial sets of al., 1994). equivalent segments for each alignment were tried and the one that generated in the greatest number of equivalent atoms after the Lsq imp extension was retained.

RESULTS AND DISCUSSION

Structure determination

Both native and selenomethionyl (SeMet) human SCF1-141 were expressed as recombinant proteins in E. coli (Langley et al., 1994). Crystals grew in space group P2,2,2, with four SCF subunits and 39% solvent in the asymmetric unit. The attempts to solve the crystal structure of SCF1-141 by molecular replacement from other cytokine models gave good rotation solutions, but no significant translation function peaks. Experimental phases for SeMetSCF1-141 were then evaluated in a multiwavelength anomalous diffraction (MAD) experiment. Four-wavelength data were measured from a single, frozen SeMetSCF1-141 crystal and analyzed with MADSYS (Hendrickson, 1985). Twelve selenium sites were found in four congruent sets that proved to be associated with the respective SCF subunits in the A MAD-phased electron-density map calculated at 2.3Å resolution (Figure 1A) and improved by molecular averaging (Figure 1B) and refinement (Figure 1C).

refined at 2.2Å resolution to an R-value of 0.199 (|F| > 2σ) with stereochemical ideality typified by the r.m.s. deviation from bond ideality of 0.016Å. There are no residues in energetically disfavored regions of the Ramachandran plot. This model for SeMetSCF¹⁻¹⁴¹ has 3804 non-hydrogen atoms from 448 amino acid residues, 264 water molecules, three Ca^{\star} ions and one polyethylene

glycol (PEG) moiety. All four polypeptide chains

An atomic model was fitted to the experimental maps and

10

5

25

10

20

25

30

(designated A, B, C, and D) are sufficiently disordered before residue 11 to preclude modeling of this portion, and none of them is fully ordered through to the end. Specifically, A92-103, B130-136, B139-141, C127-141, and D91-103 and D128-141 are all disordered. This disorder is such that, of the eight disulfide bridges, only two are seen. To test whether the reducing agent used to crystallize $SeMetSCF^{1-141}$ (see Materials and Methods) might have broken these bonds and caused the disorder, the native SCF¹⁻¹⁴¹ structure which crystallized without reducing agent was also refined. The two crystals are nearly isomorphous (differences are due to temperature at data collection), and the two structures show the same pattern of order-disorder.

Structure of SCF

The four independent SCF subunits in the crystal are similar but distinctive, and identification of the AB and CD pairs as the molecular dimers is unmistakable. None of the SCF monomer copies is complete, but each flexible portion except for the N-terminus is stabilized by lattice contacts to another monomer. Thus, through the combination of chains A and B there are images for all but residues 1-10, and the position of Cys89 to which Cys 4 must bridge, determines the approximate course of this disordered segment. The overall structure of this composite SCF dimer is shown in Figure 2A and the C_{α} backbone for the actual AB dimer is drawn in stereo in Figure 2B. Topologically, SCF structure is similar to other short-chain helical cytokines (Rozwarski et al.,

1994) with a core of four helices (αA , αB , αC and αD) and two beta strands, β 1 between α A and α B and β 2 between α C Apart from the tight $\beta 2-\alpha D$ connection, however, the segments outside these core elements are unique in conformation if not in length. In particular, there is an additional one-turn helix, $\alpha B'$, between $\beta 1$ and αB , there is an exceptional hairpin loop between αB and αC at the dimer interface, and there is another extra one-turn helix, $\alpha D'$, in the C-terminal extension. The bounds of secondary-structure elements are given in Figure 3.

10

120

25

30

The core SCF dimer has its subunits arranged in a head-to-head manner with the opposed four-helix bundle axes nearly coincident (Figure 2). This gives the molecule an elongated shape, ~ 85Å x 30Å x 20Å. Approximately 855 \mathring{A}^2 of surface area is buried from each protomer into the dimer interface. The interface is dominated by contacts from the C-terminal end of αA and the $\alpha A-\beta 1$ connection of one monomer to the $\alpha B-\alpha C$ loop of the other monomer (Figure 2), and the reciprocal pair is related by an approximate dyad axis of symmetry. have rotational symmetry operators actual 176.3° components οf and translational respectively, for the AB dimer and 177.4° and 0.04° Å for two dimers thereby deviate dimer. The the significantly and similarly (with A matched to C and B matched to D) from true 2-fold symmetry. Nevertheless, interatomic contacts at the interface since symmetric, it is presumed that thses deviations reflect flexibility rather than inherent asymmetry.

Then the r.m.s. deviation for the C_{α} positions in common between the two dimers is 0.80 Å (208 C_{α} atoms) is comparable to that of pairwise comparisons among the four independent molecules (from 0.57 Å to 0.94 Å for 103 C_{α} atoms). If D alone is superimposed onto B, a rotation of 2.1° brings A and C into optimal superposition. In the contrary match-up, with D onto A, a rotation of 6.7° is needed to superimpose B and C.

10

5

The crystal structure is compatible with solution biochemistry. Consistent with the relative rates of in vitro oxidation of methionyl residues (Hsu et al. 1996), Met36 and Met48 are buried in the hydrophobic core whereas Met27 is solvent accessible. Furthermore, as predicted on the basis of fluorescence spectroscopy studies (Arakawa et al., 1991), Trp41 is buried within the hydrophobic core.

25

30

Natural SCF and Chinese hamster ovary(CHO) cell-expressed recombinant SCF are heavily glycosylated by both N-linked and O-linked carbohydrates. All four potential N-linked sites are in the SCF¹⁻¹⁶⁵ are in the SCF¹⁻¹⁴¹ portion that has been crystallized (Langley et al., 1992; Lu et al., 1992). Although the recombinant proteins expressed in bacteria are non-glycosylated, both human and rat SCF expressed in E. coli and then refolded in vitro have native structures, as judged by biophysical methods and in vitro biopotency assays (Arakawa et al., 1991; Langley et al., 1992). The crystal structure of the recombinant SCF in this study is compatible with the glycosylation pattern found for SCF expressed from mammalian cells.

Thus, the potential site at Asn72, which ìs unglycosylated in both human and rat natural SCF expressed from mammaliam cells, is buried in the dimer interface, whereas the site at Asn120, which is fully glycosylated in both species, is accessible in the atomic model. Other sites (Asn65 in both human and rat, human Asn93 and rat Asn109) are glycosylated in some molecules but not others. These sites are also accessible in the atomic model. Asn93 is located in the highly flexible region between αC and $\beta 2$, and its side chain is disordered.

5

10

25

30

Although natural SCF is a noncovalently associated dimer, recombinant human SCF produced in E. coli can fold alternatively in vitro into a covalently-linked dimer. Cys4-Cys89' and Cys43-Cys138' These dimers have intermolecular disulfide bonds (Lu et al., 1996). disulfide-linked and natural non-covalently associated SCF dimers are similar with regard to biochemical and biophysical properties, biopotency and receptor-binding affinity. The disulfide-linked SCF is also biologically active with higher biopotency in supporting growth of hematopoietic cell line and stimulating hematopoietic cell colony formation but slightly lower binding affinity to c-Kit than the noncovalently associated dimer. It was proposed that the disulfide-linked dimer arises from a double-swap of αA and αD helices between the monomers (Lu et al., 1996). The crystal structure of SCF, however, suggests that a single-swap at the $\alpha B - \alpha C$ loop near residue 68 is more likely.

Comparison with other short-chain helical cytokines

5

10

25

Although SCF has the characteristic features of short-chain helical cytokines, as among other members, both sequence and structure are highly divergent. anything, SCF resembles the others less than they resemble one another (Table III). The comparison in this study of SCF with other short-chain helical cytokine [granulocyte-macrophage colony-stimulsting fasctor (GM-CSF) (Diederichs et al., 1991), , M-CSF (Pandit e al., 1992), interleukin (IL)-2 (McKay, 1992), IL-4 (Wlodaver et al., 1992) , and IL-5 (Milburn et al., 1993)] shows greatest structural similarity with M-CSF or IL-4, but even here fewer than half of the residues can be superimposed (Table III). Sequence similarities are essentially random. A structure-based sequence alignment (Figure 3) of SCF with other short-chain helical cytokines has pairwise identities ranging from 6.7% to 18.8% (Table III) and not even a single residue in SCF is conserved in all the others. Moreover, the best alignment presented in Figure 3 is only valid for the specified criteria herein, and it differs somewhat from that given by Rozwarski et al. (Rozwarski et al., 1994). Indeed, because of variability in the core structures in this divergent superfamily, a self-consistent pairwise alignment of the family members has not been able to be achieved. Nevertheless, the core elements are remarkably similar in structure.

short-chain helical and sequence comparisons of Structural Table III. cytokines.

	SCF	M-CSF	IL-4	GM-CSF	IL-2	IL-5
SCF		14.1	12.7	12.5 (23.5)	18.8 (16.4)	6.7 (21.1)
M-CSF	64 (1.755)		14.8 (18.9)	13.8 (18.3)	17.5 (17.1)	10.5 (18.6)
Il-4	63 (1.578)	54 (1.820)		26.6 (25.0)	14.5 (22.2)	18.9
GM-CSF	48 (1.632)	58 (1.814)	64 (1.559)		9.8 (26.0)	20.4 (14.7)
IL-2	48 (1.700)	57 (1.581)	69 (1.330)	61 (1.482)		14.5 (22.2)
IL-5	45 (1.695)	38 (1.721)	53 (1.324)	49 (1.334)	62 (1.371)	

comparisons are given as the maximum number of equivalent $lpha ext{-carbon}$ atoms between two short-chain helical cytokines, and the r.m.s. deviation (Å), (in Structural comparisons and sequence comparisons between the short-chain helical cytokines are given in the lower and upper triangles, respectively. Structural parentheses). Sequence comparisons are given as the percentage of sequence identity from sequence alignment based on structural superimposition, and that based on the sequence alignment from BESTFIT program of the GCG package (in

Ŋ

Structural and sequence comparisons of short-chain helical Table III. continued cytokines.

The latter alignment is based only on maximizing the percentage of identity, similarities and length of the matching sequences, and the sequences submitted to the BESTFIT program were restricted within the region as defined in the PDB files, including the disordered residues. With the advantage of the relatively large number of independent data points (15 pairs), the correlation between sequence structural alignment, the correlation coefficient (C) between structural deviation and sequence identity is -0.21 and the student's t probability (P) is 0.44, suggesting restriction of structural alignment, however, ${\cal C}$ is-0.30 and P 0.28, indicating that the structure-based sequence identity and structural deviation are weakly connected as also observed in another highly diverged protein family, hemoglobin; Aronson et) analyzed. Without any restriction little correlation between a specific sequence and the tertiary fold. similarity and structural deviation was parentheses).

10

Company of the second state of the second se

25

30

Core portions aside, SCF differs markedly from other short-chain helical cytokines, as indeed they differ from one another (Figure 3; Rozwarski et al., 1994)). First, helix αA of SCF is unusually shortened at its N-terminus. Its disordered extension must deviate toward αC , as in M-CSF but not in the others, by virtue of the Cys4-Cys89' disulfide bridge in common with M-CSF. Secondly, the conformation of the $\alpha A-\beta 1$ connection is distinctive as required for the dimer interface, and the $\beta 1-\alpha B$ connection uniquely has $\alpha B'$. Again at the dimer interface, the $\alpha B - \alpha C$ loop extends out distinctively along the dyad axis. Thirdly, the unusually long $\alpha C-\beta 2$ loop of SCF is both highly flexible (only one ordered copy) and with a path of its own when ordered. Finally, the C-terminal extension after αD compares only to that of M-CSF, and then only in its general direction of exit out past αB and the β - strands.

Among the short-chain helical cytokines, SCF is most closely related to M-CSF. These two have similarities in gene structure, alternative splicing, proteolytic maturation, disulfide bridging, dimer assembly, and receptor type (these similarities also extend to the Flt-3igand; Lyman and Jacobsen, 1998). Despite negligible sequence identity, an alignment and secondary structure prediction prompted by these relationships (Bazan, 1991) fits the actual

10

25

30

structure amazingly well, except for shifts in αB and in the $\alpha C-\beta 2$ loop. Here reality confounds logic; unexpectedly, comparable glycosylation sites (Asn120 in SCF and Asn122 in M-CSF) are displaced by one helical turn and comparable disulfide bridges (Cys43-Cys138' in SCF and Cys48-Cys139' in M-CSF) are not superimposible structurally (Figure 4).

Both were roughly correct in secondary-structure prediction for helices αA and αC , but substantial misplacements were made for helices αB and αD and strand $\beta 2$. In the study of Rozwarski et al. (Rozwarski et al., 1994), the alignment for αB is incorrect by a shift of 14 residues and that for $\beta 2$ and αD by a shift of 7 residues. Bazan's earlier sequence alignment (Bazan, 1991) fits to the structural alignment herein amazingly well, except for a shift of one residue for αB and a three-residue gap in the $\alpha C-\beta 2$ loop.

Comparison with other cytokine dimers

Helical cytokines dimerize in various ways (Sprang and Bazan, 1993). Among the five dimeric helical cytokines for which crystal structures have been described [M-CSF, IL-5, ciliary neurotrophic factor (CNTF), interferon-y (IFN-y) and IL-10], only IFN-y and IL-10 are similar These latter two have a 'tip-to-tip' dimers. packing with helix axes approximately perpendicular. Otherwise, the only salient

25

30

feature in common is having the subunits oriented with bundle axes aligned in parallel and helix dipoles positioned to compensate. There is 'head-to-head' packing of the four-helix bundles in M-CSF, 'tail-to-tail' packing in IL-5, and 'side-to-side' packing in CNTF. Moreover, IFN-y, IL-10 and IL-5 are all interdigitated dimers with helices swapped between subunits. Thus, although SCF relates most closely to M-CSF, the dimer structure could not be deduced readily beforehand.

SCF in keeping with its relationship to M-CSF, is a non-interdigitated 'head-to-head' dimer (Figure The two interfaces between promoters are completely different, however. One $\alpha A-\beta 1$ loop of M-CSF is situated between the $\alpha A-\beta 1$ and $\alpha B-\alpha C$ loops of the other protomer, whereas in SCF each $\alpha A-\beta 1$ loop interacts only with $\alpha B-\alpha C$ loop of the partner. This staggered mode of M-CSF dimerization (Figure 4B) is dictated by the position of the Cys31-Cys31' intermolecular disulfide bond in M-CSF. The dyad axes are similarly oriented in the two cases (perpendicular to the bundle axis and parallel to the $\alpha A - \alpha D$ and $\alpha B - \alpha C$ helix planes), but whereas the dyad axis in SCF nearly intersects the bundle axis, that in M-CSF is offset toward the $\alpha A-\alpha D$ helix pair (Figure 4). Thus, when one protomer of an SCF dimer is superimposed onto one from M-CSF, the superimposition of the two mates requires a translation of 3.8 Å but a rotation of only 4.7°.

25

30

Location of the binding site for the receptor Kit SCF binds with high affinity (nM range) to its receptor (Philo et al., 1996; Broudy, 1997)). Various structure-function studies and analyses help to define residues of SCF that may be involved in this binding. These studies include mutagenesis experiments, immunochemical mapping, comparative ligand-receptor inter-species of analyses analyses of glycosylation. interactions, and Residues thereby implicated in receptor binding can then be mapped onto the surface of SCF as defined Although a precise by the crystal structure. definition of the receptor-binding site on SCF will require direct structural information on complex of SCF with the Kit receptor, this mapping of the binding site provides a crude picture that is useful when coupled with information on Kit and related receptors.

From studies of truncation and point mutants, (1994) demonstrated that et al Langley N-terminal residues 1-4 and 1-10 and the Cys4-Cys89 disulfide bond are required for receptor binding Cys43-Cys138 the that bioactivity, and disulfide bond and C-terminal residues past 127 are not required for receptor binding but may have some roles in cell proliferation activity. Moreover, alterations at Asn10 and Asn11 brought about by chemical isomerization or by mutagenesis have positive or negative effects depending on the substitution (Hsu et al., 1998). A quadruple

10

25

30

mutant of SCF (Arg121Asn, Asp124Asn, Lys127Asp and Asp128Lys) was found to be defective in bioactivity (Matous et al., 1996). The molecular cause of this deficiency may be specific to Lys127 or due to indirect electrostatic effects. Arg121 and Asp124 are adjacent to the main N-linked glycosylation site, which is not involved in binding (see infra), and Asp128 is absent in the 1-127 truncation mutant full receptor-binding activity retains that (Langley et al., 1994). Moreover, a study of humanmurine SCF chimeras narrowed the important receptor recognition epitopes to within residues 1 to 35 and 79 to 97 (Matous et al., 1996), and the epitope of a neutralizing antibody was mapped to the region of residues 60-95 (Mendiaz et al., 1996) and 79-97 (Matous et al., 1996).

Although SCF molecules from different mammalian species are very similar (>75% identity), there are substantial differences in inter-species receptor activation. Human SCF activates murine Kit very poorly, rodent SCF has only slightly lower potency than human SCF in binding/activating human Kit (Martin et al., 1990; Lev et al., 1992), and canine SCF activates human Kit slightly better than human SCF does itself (K.E. Lang, unpublished data). It is likely that the receptor-binding regions involve residues that are different between man and mouse but conserved between man and dog. These residues can be classified into five groups in the sequence (Figure 5). Most residues in group III are buried

25

30

and those in group II are close to the dimer interface. The residues in groups III (45-58) are buried and those in group II (24-34) are close to the dimer interface. The results in groups I (1-15), IV (80-117) and and V (130-140) are more likely to be involved in direct receptor binding.

natural and heavy glycosylation of cell-derived recombinant SCFs sheds light on the question whether residues in vicinity of αD , the equivalent of the major receptor binding site in GH, are involved in receptor binding. expressed in CHO cells is approximately 30% by 1991) al., (Arakawa et glycosylation site is at Asn120 (Langley et al., 1992). Glycosylation at this site, which is near the center of the αD helix, does not appear to influence biological activity; therefore, the area around this residue cannot be involved in receptor Glycosylation of human SCF at either Asn65 or Asn93 lowers the biological activity approximately 10-fold; therefore, these residues may be near but not directly at the binding site.

Taken together, these observations indicate that the receptor-binding site may include residues from the first few N-terminal residues, the 79-95 region (mainly located on αC helix) and the C-terminal end of αD (around 127). These regions are contiguous on the SCF surface in the atomic model provided herein. The putative receptor-binding site of M-CSF

was mapped to a similar region (Taylor et al., 1994).

Structural characteristics of SCF-Kit and related ligand-receptor complexes

Kit, the receptor for SCF, is a class III receptor tyrosine kinase. This class, which includes the receptors for PDGF and M-CSF, is also closely related to the class IV receptors for FGF and the class V receptors for VEGF, Flt-3 ligand and KDR (Fantl et al., 1993). The ligand-binding portions composed receptors are all these of immunoglobulin(Ig)-like domains and the kinase domains all include kinase insert sequences. three classes are distinguished by the number of Ig repeats (five for class III, three for class IV and seven for class V) and by the length of kinase insert, which corresponds to an excursion between two helices of the kinase structure. These Ig-like transduction similar signal share receptors chromosomal localization and pathways, organization (Rousset et al., 1995), but their ligands come with completely unrelated topologies as typified by VEGF (cystine knot) on the one hand, (helical SCF and Flt-3 ligand versus M-CSF, cytokine) on the other. Even receptors of the same class have unrelated ligands; thus both SCF and PDGF use class III receptors and VEGF anf Flt-3 The amino acid ligand use class V receptors. sequences of the ligands are extremely dissimilar

5

25

even when the fold is the same, as for PDGF vs. VEGF (25% identity) and M-CSF vs SCF (14% identity).

5

10

25

30

Although Iq-like receptors have very similar kinase portions (70% amino acid sequence identity between III and V) and about 50% identity for III or V with Iq-like domains are dissimilar IV) their sequence both between repeats within a molecule and also at comparable positions between different receptors. (Rousset et al., 1995) Nevertheless, of receptor-ligand features the are there and class V interaction that the class III receptors have in common. First, for every studied example, the ligand binding function has been localized to the first three Ig-like domains and, where defined, to domains D2 and D3 specifically (Heidaran et al., 1990; Blechman et al., 1993; Lev et al., 1993; Wang et al., 1993; Davis-Symyth et al., 1996; Barleon et al., 1997). Secondly, the ligands for all of these receptors are functional as dimers; M-CSF, VEGF and PDGF are covalently ligand Flt-3 while SCF and dimers. In each case, non-covalently linked dimers. signaling occurs through ligand-mediated receptor oligomerization (Heldin, 1995). For SCF-Kit, it has been shown directly by biophysical methods that complexes containing toe SCF subunits and two Kit extracellular domain molecules can form in solution (Philo et al., 1996). The genetic organization of these receptor genes has the placements and phases

10

25

30

of introns in common (Agnes et al., 1997) and the extracellular domains can be recognized from sequence motifs as telokin-like, I-set members of the Ig superfamily (Bateman and Chothia, 1995; Harpaz and Chothia, 1994).

The structure of domain D2 of Flt-1 receptor in complex with VEGF (Wiesmann et al., 1997) provides a template for ligand interactions with PDGF-related receptors. Wiesmann et al. (1997) modeled the interaction of VEGF with D1D2D3D4(Flt-1) and discussed the likelihood that other ligand complexes with class III and class V receptors may be similar. In lightof the structure of SCF and the identified location of receptor-binding sites, the SCF-Kit complex is modeled herein.

The D2(Flt-1) domain is similar in structure to telokin, as predicted (Harpaz and Chothia, 1994), and thereby also to both domains in the structure of vascular cell adhesion molecule (VCAM)-1 (Jones et al., 1995). To test the validity of VCAM-1 as a model for D2D3(Flt-1) and D2D3 (Kit), used herein was a prediction-based threading program (Fisher and Eisenberg, 1996) to thread the sequences of the Ig-like domains of Flt-1 and Kit into the telokin and VCAM-1 structures. Fits were achieved with moderate to very high confidence of similarity. The resulting structure-based sequence alignment of D2D3(Kit) with the VCAM-1 template (five gaps) has a continuous domain boundary, and residues Cys151

and Cys183 in D2(Kit) are positioned properly to make an additional disulfide bridge between strands C and F.

Characteristics of the SCF-Kit interaction

Although it has been suggested (Matous et al., 1996; Mendiaz et al., 1996) that SCF may interact with its receptor in a manner analogous to the ligand-receptor interactions of another helical cytokine, growth hormone (de Vos et al., 1992), an alternative mode of interaction can be contemplated similarities among given the tyrosine-kinase receptors described above. If these similarities extend to the signaling interaction, the structure of the complex of VEGF with domain D2 of Flt-1 (Wiesmann et al., 1997) should provide a template for the interaction despite the disparate structures of the ligands.

To test this hypothesis next constructed was a model of the VEGF-D2D3(Flt-1) receptor complex from a rigid-body superposition of VEGF (Muller et al., 1997) and VCAM-1 such as to mimic the reported VEGF- D2(Flt-1) structure (Wiesmann et al., 1997). Then, keeping the dyad-symmetric receptor pair fixed, VEGF was successively replaced with the other Ig-like receptors ligands of known three-dimensional structure: PDGF (Oefner et al., 1992), M-CSF (Pandit et al., 1992), and SCF (this work). Each was placed on the dyad axis and

5

25

10

25

30

positioned to optimize contacts between the VEGF-binding site on the receptor and the putative receptor-binding regions of the ligands. Remarkably, these disparate dimeric ligands have similar spacings between binding sites and a satisfactory fit is possible for each (Figure 6). Also constructed were simple homology models of the various receptors with changes in the backbone only to accommodate insertions and deletions. The model for SCF with D2D3(Kit) shows а striking electrostatic complementarity between a highly negative binding surface on SCF and a positive and surface on Kit (Figures 7**A** 7B). glycosylation sites on both molecules are also compatible with unimpeded interaction.

The Kit receptor is activated by both soluble and membrane-bound forms of SCF, and signaling from the membrane-bound form appears to be have in vivo roles (se Lyman and Jacobsen, 1998). Moreover, as in the case of Flt-1 (Barleon et al., 1997), the D4(Kit) may be involved in inter-receptor contacts in the signaling dimer (Blechman et al., 1995) [although this proposal for Kit has been questioned (Philo et al., 1996; Lemmon et al., 1997)]. The model constructed herein for the SCF-Kit complex is compatible with these properties (Figure 7A and 7B). The C-termini of the SCF dimer are directed oppositely from those of Kit, as would be appropriate for a cell-cell contact, and the receptor units cross naturally at D4. It is

noteworthy that the ligands of other Ig-like receptors also have membrane-bound forms (M-CSF and Flt-3 ligand) or are typically complexed to the extracellular matrix (Kawasaki and Ladner, 1990; Lyman and Jacobsen, 1998).

The ligand-receptor structures that are suggested herein for the Iq-like kinase receptors remarkable. Despite marked differences in ligand structure as typified by VEGF(cystine knot), SCF (helical cytokine) and FGF (beta trefoil), the geometrical configurations of receptor binding sites on these ligands are alike. Coupled with features in common among the receptors and in their of ligand-receptor biology, similar mode Iq-like subfamily of interaction across the receptor tyrosine kinases seems plausible.

SECOND SERIES OF EXPERIMENTS

Based on the X-ray crystallographic structure of SCF, several analogs were made and their biological activities were measured and compared to that of SCF wild type.

Analogs	Biological Activity (Approximate, compared to wild type SCF)
SCF(Y26C) disulfide linke	er 2 to 3 fold higher
SCF (D25C)	100 fold lower
SCF(K62C)	7 fold lower

These analogs were designed based on the structure of the dimer interface of SCF, which is a noncovalent dimer. Leu22, Pro23, Lys24, Asp25, Tyr26, Lys62 and Phe63 are in the dimer surface. The side chains of Leu22, Pro23, Tyr26, and Phe63 reside in the buried center of the dimerization site and are involved in hydrophobic interactions. hydrophilic side chains of Lys24, Asp25 and Lys62 from each monomer residue in the solvent accessible surface, and are involved in ionic interactions. By replacing Tyr26 with Cys, [SCF(Y26C)], it was anticipated that a dimer covalently linked by a disulfide bond between the C26 residue of each monomer would form because the distance between the β carbons of the two Cys26 rresidues would be less than 3Å.

5

10

25

<u>Analogs</u>	Biological Activity (Approximate, compared to wild type SCF)
SCF(K78N, N81K)	3 fold lower
SCF(R117A, I118A)	10 fold lower
SCF(E92A, S95A)	no change
SCF(D124A, K127D)	no change

These analogs were designed based on the assumption that there may be two distinct receptor binding sites, per monomer, as with growth hormone. One site would be on the face between helix A and helix C, and the other site would be on the face between helix A and helix D.

References

Agnes, F., et al. (1997) Genomic organization of the extracellular coding region of the human FGFR4 and FLT4 genes: Evolution of the genes encoding receptor tyrosine kinases with immunoglobulin-like domains. J. Mol. Evol., 45, 45-49.

Anderson, D. M., et al. (1990) Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. *Cell*, **63**, 235-243.

Andre, C., et al. (1992) Genomic organization of the human c-kit gene: Evolution of the receptor tyrosine kinase subclass III. Oncogene, 7, 685-691.

Arakawa, T., et al. (1992) Molecular weights of glycosylated and nonglycosylated forms of recombinant human stem cell factor determined by low-angle laser scattering. *Analytical Biochem.*, 203, 52-57.

Arakawa, T., et al. (1991) Glycosylated and unglycosylated recombinant-derived human stem cell factor are dimeric and have extensive regular secondary structure. J. Biol. Chem., 266, 18942-18948.

Aronson, H.-E. G., et al. (1994) Quantification of tertiary structural conservation despite primary

5

10

25

30

25

sequence drift in the globin fold. *Prot. Sci.*, 3, 1706-1711.

Barleon, B., et al. (1997) Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor flt-1. *J. Biol. Chem.*, **272**, 10382-10388.

Bateman, A. and Chothia, C. (1995) Outline structures for the extracellular domains of the fibroblast growth factor receptors. *Nature Structural Biology*, **2**, 1068-1074.

Bazan, J. F. (1991) Genetic and structural homology of stem cell factor and macrophage colony-stimulating factor. *Cell*, **65**, 9-10.

Bella, J., et al. (1998) The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. *Proc. Natl. Acad. Sci. USA*, **95**, 4140-4145.

Besmer, P. (1997) Kit-ligand-stem cell factor. In Garland, J.M., Quesenberry, P.J. and Hilton, D.J. (eds), Colony-Stimulating Factors: Molecular and Cellular Biology, 2nd edn., Marcel Dekker, Inc., New York, NY, PP. 369-404.

Blechman, J. M., et al. (1993) Soluble c-kit

25

Davis-Symyth, T., et al. (1996) The second immunoglubulin-like domain of the VEGF tyrosine

proteins and antireceptor monoclonal antibodies confine the binding site of the stem cell factor.

J. Biol. Chem., 268, 4399-4406.

Blechman, J. M., et al. (1995) The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction. *Cell*, **80**, 103-113.

Broudy, V. C. (1997) Stem cell factor and hematopoiesis. *Blood*, **90**, 1345-1364.

Brünger, A. T., et al. (1987) Crystallographic R-factor refinement by molecular dynamics. Science, 235, 458-460.

Casasnovas, J. M., et al. (1997) Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. *Nature*, **387**, 312-315.

Casasnovas, J. M., et al. (1998) A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. *Proc. Natl. Acad. Sci. USA*, **95**, 4134-4139.

Collaborative Computational Project Number 4 (1994)
The CCP4 suite: programs for protein crystallography. Acta Crystallogr., D, 50, 252-270.

25

30

kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. $\it EMBO$ $\it J., 15, 4919-4927.$

de Vos, A. M., et al. (1992) Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. *Science*, **255**, 306-312.

Diederichs, K., et al. (1991) Novel fold and putative receptor binding site of granulocyte-macrophage colony-stimulating factor. *Science*, **254**, 1779-1782.

DiGabriele, A. D., et al. (1998) Structure of a heparin-linked biologically active dimer of fibroblast growth factor. *Nature*, **393**, 812-817.

DiMario, J., et al. (1989) Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. *Science*, **244**, 688-690.

Ealick, S. E., et al. (1991) Three-dimensional structure of recombinant human interferon-gamma. Science, 252, 698-702.

Evans, S. V. (1993) SETOR: Hardware lighted three dimensional solid model representations of macromolecules. J. Mol. Graphics, 11, 134-138.

Fantl, W. J., et al. (1993) Signalling by receptor tyrosine kinases. Annu. Rev. Biochem., 62, 453-481.

30

25

Fenstermaker et al., (1993) A cationic region of the platelet-derived growth factor (PDGF) A-chain (Arg159-Lys160nLys161) is required for receptor binding and mitogenic activity of the PDGF-AA homodimer., J. Biol. Chem., 268, 10482-10489.

Fisher, D. and Eisenberg, D. (1996) Fold recognition using sequence-derived predictions. *Prot. Sci.*, **5**, 947-955.

Fitzgerald, P. M. D. (1988) MERLOT, an integrated package of computer programs for the determination of crystal structures by molecular replacement. *J. Appl. Crystallogr.*, **21**, 273-278.

Flanagan, J. G. and Leder, P. (1990) The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. *Cell*, **63**, 185-194.

Fukuda, N., et al. (1997) Role of long-form PDGF A-chain in the growth of vascular smooth muscle cells from spontaneously hypertensive rats. Am. J. Hypertens., 10(10 Pt 1), 1117-1124.

Galli, S. J., et al. (1994) The kit ligand, stem cell factor. Adv. Immunol., 55, 1-96.

Gewirth, D. (1995) *The HKL Manual*. Yale University, New Haven, Connecticut.

Glaspy, J. (1996) Clinical applications of stem

5

cell factor. Curr. Opin. Hematol., 3, 223-229.

Harpaz, Y. and Chothia, C. (1994) Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. Mol. Biol., 238, 528-539.

Heidaran, M. A., et al. (1990) Chimeric alpha- and beta-platelet-derived growth factor (PDGF) receptors define three immunoglobulin-like domains of the alpha-PDGF receptor that determine PDGF-AA binding specificity. J. Biol. Chem., 265, 18741-18744.

Heldin, C.-H. (1995) Dimerization of cell surface receptors in signal transduction. *Cell*, **80**, 213-223.

Hendrickson, W. A. (1979) Transformations to optimize the superposition of similar structures. Acta Cryst, A, 35, 158-163.

Hendrickson, W. A. et al. (1985) Direct phase determination based on anomalous scattering.

Methods Enzymology, 115, 41-55.

Houck, K. A., et al. (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol., 5,

25

30

Hsu, Y.-R., et al. (1996) In vitro methionine oxidation of Escherichia coli-derived human stem cell factor: effects on molecular structure, biological activity, and dimerization. Protein Sci., 5, 1165-1173.

Hsu, Y.-R., et al. (1998) Selective deamidation of recombinant human stem cell factor during in vitro aging: isolation and characterization of the aspartyl and isoaspartyl homodimers and heterodimers. Biochemistry, 37, 2251-2262.

Huang, E., et al. (1990) The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the product of the $\ensuremath{\mathtt{W}}$ locus, Cell, 63, 225-233.

Jones, D. T., et al. (1992) A new approach to protein fold recognition. Nature, 358, 86-89.

Jones, E. Y., et al. (1995) Crystal structure of integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 angstroms resolution. Nature, **373**, 539-544.

Jones, T. A. (1992) a, yaap, asap, @#*? A set of averaging programs, In S. Bailey, Hubbard, R. & Waller, D. (ed.) Molecular Replacement, Proceedings

10

of the CCP4 Study Weekend, Daresbury Laboratory, Warrington, UK, pp. 92-105.

Jones, T. A., et al. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. *Acta Crystallogr.*, A, 47, 110-119.

Kawasaki, E. S. and Ladner, M. B. (1990) Molecular biology of macrophage colony-stimulating factor. Immunol. Ser., 49, 155-176.

Kelvenbach, C. G., et al. (1991) Densimetric determination of carbohydrate content in glycoproteins. J. Biochem. Biophys Methods, 23, 295-300.

Kleywegt, G. J. and Jones, T. A. (1994) Halloween ...masks and bones. In Bailey, S. Hubbard, R., and Waller, D. (eds), From First Map to Final Model, Proceedings of the CCP4 Study Weekend. Daresbury Laboratory, Warrington, UK, pp 59-66.

Koths, K. (1997) Structure-function studies on human macrophage colony-stimulating factor. *Mol. Reprod. Dev.*, **46**, 31-37.

Langley, K. E., et al. (1992) Purification and characterization of soluble forms of human and rat stem cell factor recombinantly expressed by Escherichia Coli and by Chinese hamster ovary

25

25

30

cells. Arch. Biochem. Biophys., 295, 21-28.

Langley, K. E., et al. (1994) Properties of variant forms of human stem cell factor recombinantly expressed in *Escherichia coli*. Arch. Biochem. Biophys., 311, 55-61.

Laskowski, R. A., et al. (1993) PROCHECK: a program to check stereochemical quality of protein structures. J. Appl. Crystallogr., 26, 283-291.

Lemmon, M.A., et al. (1997) Kit receptor dimerization is driven by bivalent of stem cell factor, J. Biol. Chem., 272, 6311-6317.

Lev, S., et al., (1992) Dimerization and activation of the Kit receptor by monovalent and bivalent binding of the stem cell factor. *J. Biol. Chem.*, **267**, 15970-15977.

Lev, S., et al., (1993) Interspecies molecular chimeras of Kit help define the binding site of the stem cell factor. *Mol. Cell. Biol.*, **13**, 2224-2234.

Lev, S., et al., (1994) Steel factor and *c-kit* protooncogene: genetic lessons in sugnal transduction, *Crit. Rev. Oncog.*, **5**, 141-168.

Lu, H. S., et al., (1991) Amino acid sequence and post-translational modification of stem cell factor isolated from buffalo rat liver cell-conditioned

25

30

medium. J. Biol. Chem., 266, 8102-8107.

Lu, H. S., et al., (1992) Post-translational processing of membrane-associated recombinant human stem cell factor expressed in Chinese hamster ovary cells. Arch. Biochem. Biophys., 298, 150-158.

Lu, H. S., et al., (1996) Isolation and characterization of a disulfide-linked human stem cell factor dimer. J. Biol. Chem., 271, 11309-11316.

Lyman, S.D, and Jacobsen, S.E.W. (1998) c-Kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities, Blood, **91**, 1101-1134.

Martin, F. H., et al., (1990) Primary structure and functional expression of rat and human stem cell factor DNAs. *Cell*, **63**, 203-211.

Matous, J. V., et al., (1996) Structure-function relationships of stem cell factor: an analysis based on a series of human-murine SCF chimera and the mapping of a neutralizing monoclonal antibody. Blood, 88, 437-444.

McDonald, N. Q., et al., (1995) Crystal structure of dimeric human ciliary neurotrophic factor determined by MAD phasing. *EMBO J.*, **14**, 2689-2699.

McKay, D.B. (1992) Unraveling the structure of IL-2, Science, 257, 412-413.

McNiece, I. K. and Briddell, R. A. (1995) Stem cell factor. J. Leukoc. Biol., 57, 14-22.

Mendiaz, E. A., et al. (1996) Epitope mapping and immunoneutralization of recombinant human stem cell factor. Eur. J. Biochem., 239, 842-849.

Milburn, M. V., et al. (1993) A novel dimer configuration revealed by the crystal structure at 2.4 Å resolution of human interleukin-5. *Nature*, 363, 172-176.

Muller, Y. A., et al. (1997) Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. USA, 94, 7192-7197.

Neufeld, G., et al. (1994) Vascular endothelial growth factor and its receptors. *Prog. Growth Factor Res.*, **5**, 89-97.

Nicholls, A., et al. (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. *Proteins*, 11, 281-296.

Oefner, C., et al. (1992) Crystal structure of human platelet-derived growth factor BB. EMBO J.,

25

11, 3921-3926.

Otwinowski, Z. (1993) Oscillation data reduction program, In N.I.L. Sawyer, and S. Bailey (eds.) Data Collection and Processing, Science and Engineering Research Council, Warrington, UK, Vol. pp. 55-62.

Pähler, A., et al., (1990) A probability representation for phase information from multiwavelength anomalous dispersion. *Acta Cryst*, A, 46, 537-540.

Pandit, J., et al., (1992) Three-dimensional structure of dimeric huam recombinant macrophage colony-stimulating factor. *Science*, **258**, 1358-1362.

Philo, J. S., et al., (1996) Human stem cell factor dimer forms a complex with two molecules of the extracellular domain of its receptor, Kit. J. Biol. Chem., 271, 6895-6902.

Qiu, F., et al., (1988) Primary structure of c-kit: relationship with the CSF-1/PDGF receptor kinase family-oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J., 7, 1003-1011.

Raines, E.W. and Ross, R. (1992) Compartmentalization of PDGF on extracellular binding sites dependent on exon-6-encoded

Read, R. J. (1986) Improved Fourier coefficients

for maps using phases from partial structures with

errors. Acta Crystallogr, A, 42, 140-149.

sequences. J. Cell Biol., 116, 533-543.

Rousset, D., et al., (1995) Molecular evolution of the genes encoding receptor tyrosine kinase with immunoglobulinlike domains. *J. Mol. Evol.*, **41**, 421-430.

Rozwarski, D. A., et al., (1994) Structural comparisons among the short-chain helical cytokines. Structure, 2, 159-173.

Russell, E.S. (1979) Hereditary anemias of the mouse: a review for geneticists. Adv. Genet., 20, 357-459.

Shrake, A. and Rupley, J. A. (1973) Environment and exposure to solvent of protein atoms: lysozyme and insulin. J. Mol. Biol., 79, 351-371.

Shull, R.M. et al., (1992) Canine stem cell factor (c-kit ligand) supports the survival of hematopoietic progenitors in long-term canine marro

Stanley, E. R. and Guilbert, L. J. (1981) Methods for the purification, assay, characterization and target cell binding of a colony stimulating factor (CSF-1). J. Immunol. Methods, 42, 253-284.

Sprang, S.R. and Bazan J.F. (1993) Cytokine structural taxonomy and mechanisms of receptor engagement, Curr. Opin. Struct. Biol., 3, 815-827.

Stein, J., et al. (1990) Direct stimulation of cells expressing receptors for macrophage colony-stimulating factor (CSF-1) by a plasma membrane-bound precursor of human CSF-1. Blood, 76, 1308-1314.

Tan, K., et al., (1998) The structure of immunoglobulin superfamily domains 1 and 2 of MAdCAM-1 reveals novel features important for integrin recognition. Structure, 6, 793-801.

Taylor, E. W., et al., (1994) Structure-function studies on recombinant human macrophage colony-stimulating factor (M-CSF). *J. Biol. Chem.*, **269**, 31171-31177.

Toksoz, D., et al., (1992) Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. *Proc. Natl. Acad. Sci. USA*, **89**, 7350-7354.

Wang, J. H., et al., (1995) The crystal structure of an N-terminal two-domain fragment of vascular cell adhesion molecule 1 (VCAM-1): a cyclic peptide based on the domain 1 C-D loop can inhibit

5

10

25

VCAM-1-alpha 4 integrin interaction. Proc. Natl. Acad. Sci. USA, 92, 5714-5718.

Wang, Z., et al., (1993) Identification of the ligand-binding regions in the macrophage colony-stimulating factor receptor extracellular domain. *Mol. Cell. Biol.*, **13**, 5348-5359.

Wiesmann, C., et al., (1997) Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. *Cell*, **91**, 695-704.

Wlodawer, A., et al., (1992) Crystal structure of human recombinant interleukin-4 at 2.25 Å, FEBS Lett., 309, 59-64.

Zdanov, A., et al., (1995) Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon gamma. Structure, 3, 591-601.

Zimmer, Y., et al., (1993) Multiple structural elements determine lignad binding of fibroblast growth factor receptors: Evidence that both Ig domain 2 and 3 define receptor specificity. *J. Biol. Chem.*, **268**, 7899-7903.

10

5

What is claimed is:

- 1. A computer based method for preparing a stem cell factor (SCF) analog comprising the steps of:
 - (a) providing computer expression of the three dimensional structure of an SCF molecule using its crystal structure;
 - (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration;
 - (c) preparing a SCF molecule having an alteration at said at least one selected site; and
 - (d) optionally, testing the SCF molecule for a desired characteristic.
- 2. The method of claim 1, wherein the SCF analog comprises a polypeptide having an amino acid sequence portion of SCF capable of binding a receptor and having the overall three-dimensional conformation as shown in Figures 2A-2B, wherein the three-dimensional conformation is:
 - a) anti-parallel, double-cross over 4-alpha helical bundle with a left hand twist; and
 - b) overall dimensions of approximately 85 Å \times 30 Å \times 20 Å.
- 3. The method of claim 1, wherein the SCF analog

5

10

Part Hard from a first first in the first first from the first fro

25

comprises electron density distributions as set forth in Figures 1A, 1B, and 1C.

- 4. The method of claim 1 wherein the SCF molecule is a native SCF or a selenomethionyl SCF.
- 5. The method of claim 1 wherein the site on the SCF molecule for alteration is a receptor binding site on the surface of the SCF molecule or a non-receptor site of the SCF.
- 6. The method of claim 5, wherein the receptor binding site comprises approximately amino acid residues 79-95.
- 7. An isolated SCF analog prepared according to the method of claim 1.
- 8. The isolated SCF analog of claim 7, wherein the SCF analog comprises a polypeptide having an amino acid sequence portion of SCF capable of binding a receptor and having the overall three-dimensional conformation as shown in Figures 2A-2B, wherein the three-dimensional conformation is:
 - a) anti-parallel, double-cross over 4-alpha helical bundle with a left hand twist; and
 - b) overall dimensions of approximately 85 Å \times 30 Å \times 20 Å..

10. A composition comprising an isolated SCF analog prepared according to the method of claim 1 effective to treat a subject and a pharmaceutically acceptable carrier.

10

11. A method of treating a subject having a disorder requiring SCF comprising administration of a composition comprising an isolated SCF analog prepared by the method of claim 1 or a compound designed by the method of claim 32.

12. The method of claim 11, wherein the subject has a blood disorder.

25

13. The method of claim 12, wherein the disorder which the subject has is anemia, myeloproliferative disorder, neoplasia, nerve damage, infertility, intestinal damage, a pigmentation disorder, or immunodeficiency.

30

14. The method of claim 11, wherein the administration of the isolated SCF analog is for ex vivo or in vivro production of peripheral blood progenitors, ex vivo or in vivro stem cell expansion, ex vivo or in vitro

growth of epithelial cells, ex vivo or in vitro growth of stromal cells, ex vivo or in vitro dendritic cell stimulation, and in vivo cell mobilization.

5

A method for designing a compound capable of 15. binding to the stem cell factor (SCF) receptor site of comprising the steps of:

10

determining a binding site for the SCF a) receptor on the SCF based on the threedimensional structure of SCF or an SCF polypeptide or portion/fragment thereof, atomic coordinates computed from X-ray diffraction data of a crystal comprising a polypeptide having an amino acid sequence portion of SCF capable of binding the receptor; and

designing a compound comprising b) an entity that binds the SCF receptor.

25

The method of claim 15, wherein the design of 16. the compound of step (b) is determined by estimated complementarity or by shape interaction energy.

The method of claim 15, wherein the designed 17. compound fits an SCF receptor binding site on SCF receptor as shown in Figure 6.

30

The method of claim 15, wherein the designed 18. compound fits an SCF receptor binding site on SCF receptor as shown in Figures 7A or 7B.

19. The method of claim 15, wherein the designed compound is a double-headed SCF ligand analog having the structure set forth in Figure 10A.

20. The method of claim 19, wherein each ligand head of the double-headed SCF ligand analog is an oligopeptide having the structure set forth in Figure 10B.

20, wherein method claim of 21. ooligopeptide comprises a sequence, wherein functional moiety F_1 corresponds to a segment of amino acid residues from within N-terminal residues 1-10 of SCF, functional moiety F_2 corresponds to a segment of amino acid residues from within residues 79-95 of SCF, and functional moiety F_3 corresponds to a segment of amino acid residues located within three amino acid residues of amino acid residue 127, wherein F_1 , F_2 , and F_3 are connected by connecting peptide segements \boldsymbol{X}_{n} , X_m , and X_p , respectively, wherein n=0-5, m=0-5 and p=3-8 amino acid residues, respectively, and the conjugation moiety ${\tt F_L}$ is a cysteine residue.

22. The method of claim 21, wherein the functional moieties F_1 , F_2 , and F_3 on the ligand heads have been selected by bacterial phage display

5

10

Note that the first and the first that the first th

25

for optimal receptor binding.

23. The method of claim 21, wherein the functional moieties and connecting peptide segments of an active oligopeptide ligand head are replaced by chemical mimetics.

- 24. The method of claim 15, wherein an appropriate chemical scaffold of connecting segments has been designed to comprise (present) functional moieties F_1 , F_2 , and F_3 , which have been selected by combinatorial chemistry for optimal receptor binding from a library of chemical moieties complementary to receptor-binding sites on the surface of SCF.
- 25. The method of claim 15, wherein the linker comprises an organic polymer having two ends capped at each end by a reactive capping moiety, F_c , which react covalently with the conjugation moiety, F_L , on the ligand head.
- 26. The method of claim 25, wherein the organic polymer is polyethyleneglycol (PEG) comprising the structure $H[OCH_2CH_2]_nOH$, wherein n is 10-20.
- 27. The method of claim 25, wherein the capping moiety, F_c , is a thiol-reactive group such as N-ethyl maleimide.

5

10

Note that the time and the first that the time that the first that

25

- 20
- 25

36. A method of stimulating the production of hematopoietic cells in a subject comprising administering an isolated stem cell factor

- 28. The method of claim 15, wherein the conjugating moiety, $F_{\scriptscriptstyle L}$, is a thiol containing group such as cysteine.
- 29. A compound designed by the method of claim 15.
- 30. A composition comprising the compound designed by the method of claim 15 and a pharmaceutically acceptable carrier.
- 31. The compound of claim 30, wherein the compound comprises an isolated SCF analog, whose alteration site is a receptor-binding site on the surface of the altered SCF molecule.
- 32. A method of treating a subject comprising administration of a compound designed by the method of claim 32.
- 33. The method of claim 32, wherein the subject has a blood disorder.
- 34. The method of claim 33, wherein the blood disorder is anemia or immunodeficiency.
- 35. The method of claim 32, wherein the compound is an isolated SCF analog.

- 37. The method of claim 36, wherein isolated stem cell factor (SCF) analog is prepared by the method of claim 1 or designed by the method of claim 32.
- 38. The method of claim 37, wherein the isolated SCF analog comprises amino acid residues of native or recombinant SCF1-165 or amino acid residues of a recombinant selenomethionyl SCF1-141.
- 39. An isolated stem cell factor (SCF) molecule, which is an altered SCF, comprising any portion of amino acids 1-165 of a human SCF polypeptide, optionally comprising an N-terminal methionine before amino acid residue 1, wherein the polypeptide has an amino acid sequence portion of SCF capable of binding to the SCF receptor.
- 40. The altered isolated stem cell factor molecule of claim 39, wherein an alteration is selected from the group consisting of deletion, insertion and substitution of at least one amino acid residue from the naturally occurring amino acid sequence of SCF.
- 41. The altered isolated stem cell factor molecule of claim 40, wherein an alteration is a

30

truncated SCF comprising amino acids 1-141 of a human SCF polypeptide, optionally comprising an N-terminal methionine before amino acid residue 1.

- 42. The altered isolated stem cell factor molecule of claim 40, wherein the substitution of at least one amino acid residue is selected from the group consisting of SCF(Y26C) disulfidelinked dimer, SCF(D25C), SCF(K62C), SCF(K78N, N81K), SCF(R117A, I118A), SCF(E92A, S95A), and SCF(D124A, K127D).
- 43. A stem cell factor molecule of claim 40, wherein the overall three-dimensional conformation of the stem cell factor molecule has an altered three-dimensional structure of the αC - $\beta 2$ loop.
- 44. A pharmaceutical composition comprising the altered isolated SCF molecule of claim 39 and a pharmaceutically acceptable carrier.
- 45. A stem cell factor molecule of claim 39, wherein the molecule is a hybrid molecule of the altered stem cell factor molecule and a second protein or fragment thereof.
- 46. A stem cell factor molecule of claim 39, wherein the alteration of the $\alpha C-\beta 2$ loop is a change in length of the amino acid sequence of

the $\alpha C-\beta 2$ loop by a deletion or an insertion of at least one amino acid residue or a change in at least one amino acid residue from the naturally occurring amino acid residue(s) of the $\alpha C-\beta 2$ loop.

47. The altered isolated stem cell factor molecule of claim 46, wherein the change in said at least one amino acid residue from the naturally occurring amino acid residue(s) is selected from the group consisting of SCF(Y26C) disulfide-linked dimer, SCF(D25C), SCF(K62C), SCF(K78N, N81K), SCF(R117A, I118A), SCF(E92A, S95A), and SCF(D124A, K127D).

CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR

ABSTRACT OF THE DISCLOSURE

This invention provides a computer based method for preparing stem cell factor (SCF) comprising the steps of: (a) providing computer expression of the three dimensional structure of an SCF molecule using its crystal structure; selecting from the computer expression of step (a) least one site on the SCF molecule alteration; (c) preparing a SCF molecule having an alteration at said at least one selected site; and (d) optionally, testing the SCF molecule for a invention characteristic. This desired ligand analogs provides SCF analogs and SCF prepared according to the above-described method. Compositions comprising SCF analogs or SCF ligand analogs prepared according to the above-described effective to treat а subject method pharmaceutically acceptable carrier are provided, as are methods of treating a subject comprising pharmaceutical compositions of administration comprising the prepared SCF analogs and SCF ligand analogs prepared by the described methods. This invention also provides methods for designing compounds capable of binding to the SCF receptor site and compounds designed by the above-descibed methods.

10

10 20 40 50 60 Math Water 10 10 Math Water Math Wa	HKCDITILOEITKVILNSLIEG. KTLCT. HLYYTÖLFAASKNH <u>TEKRITECRAATVILROFYSHHE</u> KDTRCLGAT APARSPSPSTOPWEHYWA <u>LOBARRIIJNI</u> SRDT <u>AAEK</u> WEVISEMFDLQEPTCLGTHIELYKGGLR.	Aptriculorelianomitingtin. Nyknpk i t rigiteketinekatelikhilocieeeliketininao. Ipteiptemiyketlali. Sthrtlita. Netiripypyhknholotreeipogigtiesopyggg	70 80 90 100 110 120 130 140 140	PNAIALVONDELSLANKSCFTKDYEEHDKAGVRUPYPOLILLEKKKKKVFNETKWILLEF	AQOFBRIKGLIBELERILARNI MUTLAJILNSCPVKEANOGTIJENFILERIKKTIHREKYSKICSS	BKONFHLADREDELENTINGTALERIOSETTFINGRYADETATHWENLARMITTFCOBILISTLY TOPELFKINGSLIKKYIDGOKKKGEERRIHWOFLITYLGEFLOVMINJEWIIES
SCF	CMCSF	ILS	SCF	MCSF	LL4 GMCSF	IL2 IL5

4/85

Figure 5

the state of the s

6/85


```
HEADER
          GROWTH FACTOR
                                                              1SCF
          HUMAN RECOMBINANT STEM CELL FACTOR
TITLE
         MOL_ID: 1;
COMPND
COMPND
         2 MOLECULE: STEM CELL FACTOR;
         3 CHAIN: A, B, C, D;
COMPND
        4 SYNONYM: SCF, SL, MGF, MAST CELL GROWTH FACTOR;
COMPND
        5 ENGINEERED: YES;
COMPND
COMPND
         6 BIOLOGICAL UNIT: DIMER
         MOL ID: 1;
SOURCE
        2 ORGANISM SCIENTIFIC: HOMO SAPIENS;
SOURCE
SOURCE
         3 ORGANISM COMMON: HUMAN;
         4 EXPRESSION_SYSTEM: NULL
SOURCE
         HUMAN STEM CELL FACTOR, STEEL FACTOR, KIT LIGAND, MAST CELL
KEYWDS
         2 GROWTH FACTOR
KEYWDS
EXPDTA
          X-RAY DIFFRACTION
         X.JIANG, O.GUREL, K.E.LANGLEY, W.A.HENDRICKSON
AUTHOR
          AUTH
                   X.JIANG, O.GUREL, K.E.LANGLEY, W.A.HENDRICKSON
JRNL
JRNL
            TITL
                   CRYSTAL STRUCTURE OF RECOMBINANT HUMAN STEM CELL
JRNL
            TITL 2 FACTOR
JRNL
            REF
                   TO BE PUBLISHED
            REFN
JRNL
                                                                  0353
REMARK
         1
REMARK
REMARK
         2 RESOLUTION. 2.2 ANGSTROMS.
REMARK
         3 REFINEMENT.
REMARK
REMARK
            PROGRAM
                        : X-PLOR 3.1
REMARK
            AUTHORS
                        : BRUNGER
REMARK
REMARK
        3 DATA USED IN REFINEMENT.
           RESOLUTION RANGE HIGH (ANGSTROMS) : 2.2
REMARK
            RESOLUTION RANGE LOW (ANGSTROMS) : 20.0
REMARK
            DATA CUTOFF
REMARK
        3
                                    (SIGMA(F)): 2
            DATA CUTOFF HIGH
REMARK
                                    (ABS(F)): 100000
                                      (ABS(F)) : 0.1
REMARK
        3
            DATA CUTOFF LOW
             COMPLETENESS (WORKING+TEST) (%): 96.6
         3
REMARK
            NUMBER OF REFLECTIONS
REMARK
REMARK
        3
           FIT TO DATA USED IN REFINEMENT.
REMARK
         3
REMARK
            CROSS-VALIDATION METHOD
                                             : THROUGHOUT
            FREE R VALUE TEST SET SELECTION : RANDOM
REMARK
        3
REMARK
            R VALUE
                              (WORKING SET) : 0.199
            FREE R VALUE
REMARK
        3
                                              : 0.242
                                         (%): 6.0
REMARK
            FREE R VALUE TEST SET SIZE
REMARK
        3
            FREE R VALUE TEST SET COUNT
                                             : 3016
            ESTIMATED ERROR OF FREE R VALUE : 0.0044
REMARK
        3
REMARK
        3
REMARK
           FIT IN THE HIGHEST RESOLUTION BIN.
REMARK
            TOTAL NUMBER OF BINS USED
                                                : 10
                                             (A) : 2.0
            BIN RESOLUTION RANGE HIGH
REMARK
        3
            BIN RESOLUTION RANGE LOW
REMARK
        3
                                             (A) : 2.28
            BIN COMPLETENESS (WORKING+TEST) (%): 97.0
REMARK
        3
            REFLECTIONS IN BIN
                                (WORKING SET)
REMARK
        3
REMARK
            BIN R VALUE
                                   (WORKING SET): 0.3159
            BIN FREE R VALUE
REMARK
        3
                                                 : 0.3450
            BIN FREE R VALUE TEST SET SIZE (%): 6.4
REMARK
        3
            BIN FREE R VALUE TEST SET COUNT
REMARK
        3
                                                 : 302
            ESTIMATED ERROR OF BIN FREE R VALUE : 0.0198
REMARK
       3
REMARK
        3 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
REMARK
```

REMARK

```
REMARK
               PROTEIN ATOMS
                                            : 3517
               NUCLEIC ACID ATOMS
                                           : 0
REMARK
               HETEROGEN ATOMS
REMARK
                                            : 19
REMARK
               SOLVENT ATOMS
                                             : 264
REMARK
REMARK
              B VALUES.
              FROM WILSON PLOT (A**2): 38.5
MEAN B VALUE (OVERALL, A**2): 32.1
REMARK
           3
REMARK
               OVERALL ANISOTROPIC B VALUE.
REMARK
                B11 (A**2) : NULL
B22 (A**2) : NULL
REMARK
REMARK
           3
                B33 (A**2) : NULL
REMARK
                B12 (A**2) : NULL
B13 (A**2) : NULL
B23 (A**2) : NULL
REMARK
          3
REMARK
           3
REMARK
REMARK
           3
REMARK
              ESTIMATED COORDINATE ERROR.
              ESD FROM LUZZATI PLOT
REMARK
                                                  (A) : NULL
REMARK
               ESD FROM SIGMAA
                                                  (A) : NULL
REMARK
          3
               LOW RESOLUTION CUTOFF
                                                 (A) : NULL
REMARK
REMARK
          3
              CROSS-VALIDATED ESTIMATED COORDINATE ERROR.
REMARK
          3
               ESD FROM C-V LUZZATI PLOT
                                                (A) : NULL
REMARK
               ESD FROM C-V SIGMAA
                                                  (A) : NULL
REMARK
          3
REMARK
          3
              RMS DEVIATIONS FROM IDEAL VALUES.
              BOND LENGTHS
REMARK
          3
                                          (A) : 0.016
(DEGREES) : 2.5
REMARK
               BOND ANGLES
REMARK
               DIHEDRAL ANGLES
                                           (DEGREES): 22.8
          3
               IMPROPER ANGLES
                                           (DEGREES) : 2.05
REMARK
REMARK
          3
REMARK
              ISOTROPIC THERMAL MODEL : RESTRAINED
REMARK
          3
REMARK
          3
              ISOTROPIC THERMAL FACTOR RESTRAINTS.
                                                           RMS
                                                                     STGMA
                                                 (A**2) : 1.2
REMARK
              MAIN-CHAIN BOND
          3
                                                                   ; 1.5
                                                  (A**2) : 1.6
               MAIN-CHAIN ANGLE
REMARK
          3
                                                                   ; 2.0
                                                  (A**2): 2.1; 2.0
(A**2): 2.4; 2.5
REMARK
          3
               SIDE-CHAIN BOND
               SIDE-CHAIN ANGLE
REMARK
          3
REMARK
REMARK
          3
              NCS MODEL : RESTRAINTS
REMARK
REMARK
              NCS RESTRAINTS.
                                                             RMS SIGMA/WEIGHT
               GROUP 1 POSITIONAL
GROUP 1 B-FACTOR
                                                  (A) : NULL ; NULL
REMARK
REMARK
                                                 (A**2) : NULL ; NULL
REMARK
             PARAMETER FILE 1 : PARAM19_MOD.PRO
PARAMETER FILE 2 : PARAM19.SOL
PARAMETER FILE 3 : HETEROPARAM19.PAR
TOPOLOGY FILE 1 : TOPH19_MOD.PRO
TOPOLOGY FILE 2 : TOPH19.SOL
TOPOLOGY FILE 3 : HETERO.TOP
REMARK
REMARK
REMARK
REMARK
REMARK
          3
REMARK
REMARK
REMARK
             OTHER REFINEMENT REMARKS: REFINEMENT WAS PERFORMED WITH
             ANOMALOUS ON; PARAM19 MOD.PRO AND TOPH19 MOD.PRO ARE MODIFIED PARAMETER AND TOPOLOGY FILES OF PARAM19.PRO AND
REMARK
REMARK
              TOPH19.PRO, RESPECTIVELY, FOR SELENOMETHIONYL PROTEINS.
REMARK
REMARK
             NCS RESTRAINTS WERE APPLIED ONLY DURING THE INITIAL
REMARK
             REFINEMENT.
REMARK
          4 1SCF COMPLIES WITH FORMAT V. 2.3,
```

```
REMARK
        6 THE FOLLOWING RESIDUES ARE DISORDERED IN THE STRUCTURE:
REMARK
         6 A1-10; A92-103; B1-10; B130-136; B139-141; C1-10; C92-103;
REMARK
REMARK
          6 C127-141; D1-10; D91-103; D128-141
REMARK
         7 THE SIDE CHAINS OF THE FOLLOWING RESIDUES ARE DISORDERED IN
REMARK
         7 THE STRUCTURE: All-13, A91, Al27, Al33, Bl1, Bl3, B93, B96-97,
REMARK
         7 B103,B128,B137,C11,C13,C39,D11,D13,D90,D106,D127
REMARK
REMARK
         8 LYS A 91 IS LAST RESIDUE BEFORE GAP, PHE B 129 IS LAST
8 RESIDUE BEFORE GAP, LYS C 91 IS LAST RESIDUE BEFORE GAP,
REMARK
REMARK
        8 PHE C 126 IS LAST RESIDUE BEFORE GAP, VAL D 90 IS LAST
REMARK
         8 RESIDUE BEFORE GAP.
REMARK
REMARK 200
REMARK 200 EXPERIMENTAL DETAILS
REMARK 200 EXPERIMENT TYPE
                                              : X-RAY DIFFRACTION
REMARK 200
             DATE OF DATA COLLECTION
REMARK 200
             TEMPERATURE (KELVIN): 110
REMARK 200
             PH
                                               : 7.4
             NUMBER OF CRYSTALS USED
REMARK 200
REMARK 200
REMARK 200
             SYNCHROTRON
                                        (Y/N) : Y
REMARK 200
             RADIATION SOURCE
                                              : NSLS
             BEAMLINE
REMARK 200
                                              : X4A
             X-RAY GENERATOR MODEL
                                              : NULL
REMARK 200
             MONOCHROMATIC OR LAUE
REMARK 200
                                        (M/L) : M
             WAVELENGTH OR RANGE
REMARK 200
                                        (A) : 0.986
REMARK 200
REMARK 200
             MONOCHROMATOR
                                              : SILICON CRYSTAL
             OPTICS
                                              : MIRRORS
REMARK 200
REMARK 200
REMARK 200
                                              : IMAGE PLATE
            DETECTOR TYPE
             DETECTOR MANUFACTURER
                                               : FUJI
REMARK 200
             INTENSITY-INTEGRATION SOFTWARE : DENSO
REMARK 200
            DATA SCALING SOFTWARE
                                              : SCALEPACK
REMARK 200
REMARK 200 NUMBER OF UNIQUE REFLECTIONS : 65689
REMARK 200 RESOLUTION RANGE HIGH
REMARK 200 RESOLUTION RANGE LOW
                                         (A) : 2.0
(A) : 25
REMARK 200 REJECTION CRITERIA (SIGMA(I)): -3
REMARK 200
REMARK 200 OVERALL.
REMARK 200 COMPLETENESS FOR RANGE
                                          (%): 94.9
REMARK 200 DATA REDUNDANCY
                                              : 2.75
REMARK 200 R MERGE
REMARK 200 R SYM
                                          (I) : NULL
                                          (I) : 0.056
REMARK 200 <1/SIGMA(I) > FOR THE DATA SET : 15.3
REMARK 200
REMARK 200 IN THE HIGHEST RESOLUTION SHELL.
REMARK 200 HIGHEST RESOLUTION SHELL, RANGE HIGH (A) : 2.0
REMARK 200 HIGHEST RESOLUTION SHELL, RANGE LOW
                                                     (A): 2.07
REMARK 200 COMPLETENESS FOR SHELL
REMARK 200 DATA REDUNDANCY IN SHELL
                                         (%) : 72
                                               : 2.23
REMARK 200 R MERGE FOR SHELL
                                          (I) : NULL
REMARK 200 R SYM FOR SHELL
                                         (I) : 0.581
REMARK 200
            <I/SIGMA(I) > FOR SHELL
REMARK 200
REMARK 200 DIFFRACTION PROTOCOL: NULL
REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MAD
REMARK 200 SOFTWARE USED: MADLSQ
REMARK 200 STARTING MODEL: NULL
```

```
REMARK 200
 REMARK 200 REMARK: NULL
 REMARK 280
 REMARK 280 CRYSTAL
REMARK 280 SOLVENT CONTENT, VS (%): NULL REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): NULL
REMARK 280
 REMARK 280 CRYSTALLIZATION CONDITIONS: PROTEIN WAS CRYSTALLIZED FROM
REMARK 280 22% PEG 400, 220 MM CACL2, 100 MM HEPES, PH 7.4 AND 5MM
REMARK 280 DTT IN 20 DEGREE ROOM
REMARK 290
REMARK 290 CRYSTALLOGRAPHIC SYMMETRY
REMARK 290 SYMMETRY OPERATORS FOR SPACE GROUP: P 21 21 21
REMARK 290
REMARK 290
                   SYMOP
                            SYMMETRY
REMARK 290
                  MMMMMM
                            OPERATOR
REMARK 290
                    1555
                            X,Y,Z
                    2555
REMARK 290
                            1/2-X, -Y, 1/2+Z
REMARK 290
                    3555
                            -X,1/2+Y,1/2-Z
REMARK 290
                    4555
                            1/2+X, 1/2-Y, -Z
REMARK 290
REMARK 290
                 WHERE NNN -> OPERATOR NUMBER
REMARK 290
                         MMM -> TRANSLATION VECTOR
REMARK 290
REMARK 290 CRYSTALLOGRAPHIC SYMMETRY TRANSFORMATIONS
REMARK 290 THE FOLLOWING TRANSFORMATIONS OPERATE ON THE ATOM/HETATM REMARK 290 RECORDS IN THIS ENTRY TO PRODUCE CRYSTALLOGRAPHICALLY
REMARK 290 RELATED MOLECULES.
              SMTRY1 1 1.000000 0.000000 0.000000
SMTRY2 1 0.000000 1.000000 0.000000
SMTRY3 1 0.000000 0.000000 1.000000
REMARK 290
                                                                        0.00000
REMARK 290
REMARK 290
REMARK 290
               SMTRY1 2 -1.000000 0.000000 0.000000
                                                                      35.90922
               SMTRY2 2 0.000000 -1.000000 0.000000
SMTRY3 2 0.000000 0.000000 1.000000
REMARK 290
                                                                        0.00000
REMARK 290
                                                                      44.09560
REMARK 290
               SMTRY1 3 -1.000000 0.000000 0.000000
                                                                       0.00000
               SMTRY2 3 0.000000 1.000000 0.000000
SMTRY3 3 0.000000 0.000000 -1.000000
SMTRY1 4 1.000000 0.000000 0.000000
REMARK 290
                                                                      41.27456
REMARK 290
                                                                      44.09560
REMARK 290
                                                                      35.90922
               SMTRY2 4 0.000000 -1.000000 0.000000
SMTRY3 4 0.000000 0.000000 -1.000000
REMARK 290
                                                                      41.27456
REMARK 290
               SMTRY3
                                                                       0.00000
REMARK 290
REMARK 290 REMARK: NULL
REMARK 295
REMARK 295 NON-CRYSTALLOGRAPHIC SYMMETRY
REMARK 295 THE TRANSFORMATIONS PRESENTED ON THE MTRIX RECORDS BELOW
REMARK 295 DESCRIBE NON-CRYSTALLOGRAPHIC RELATIONSHIPS AMONG ATOMS
REMARK 295 IN THIS ENTRY. APPLYING THE APPROPRIATE MTRIX
REMARK 295 TRANSFORMATION TO THE RESIDUES LISTED FIRST WILL YIELD
REMARK 295 APPROXIMATE COORDINATES FOR THE RESIDUES LISTED SECOND.
REMARK 295 CHAIN IDENTIFIERS GIVEN AS "?" REFER TO CHAINS FOR WHICH
REMARK 295 ATOMS ARE NOT FOUND IN THIS ENTRY.
REMARK 295
REMARK 295
                             APPLIED TO
                                                     TRANSFORMED TO
REMARK 295
               TRANSFORM CHAIN RESIDUES
                                                     CHAIN RESIDUES
                                                                            RMSD
REMARK 295
               SSS
             M 1
M 2
M 3
M 4
M 5
REMARK 295
                                         91
                            В
                                 11 ..
                                                                            1.020
REMARK 295
                            Α
                                 11 ..
11 ..
                                          91
                                                            11 ..
                                                     С
                                                                    91
                                                                           1.677
                                                     A
REMARK 295
                            D
                                          91
                                                           11 ..
                                                                    91
                                                                            1.926
                                                                           0.620
REMARK 295
                            C
                                 11 ..
                                          91
                                                          11 ..
                                                                    91
REMARK 295
                                 11 .. 91
                                                           11 .. 91
```

REMARK 500

12/85

```
REMARK 295
               M 6
                           D
                                11 ..
                                       91
                                                       11 .. 91
                                                                      1.810
REMARK 295
                               11 ..
                                       91
                                                       11 ...
                                                               91
                                                                      0.898
REMARK 295
REMARK 295
               WHERE SSS -> COLUMNS 8-10 OF MTRIX RECORDS
REMARK 295
REMARK 295 REMARK:
REMARK 295 TRANSFORMATION RELATES CHAIN B TO CHAIN A; INCLUDING
REMARK 295
            RESIDUES 11-90 AND 104-126.
REMARK 295 TRANSFORMATION RELATES CHAIN C TO CHAIN A; INCLUDING
REMARK 295
            RESIDUES 11-90 AND 104-126.
REMARK 295 TRANSFORMATION RELATES CHAIN D TO CHAIN A; INCLUDING
REMARK 295
             RESIDUES 11-90 AND 104-126.
REMARK 295 TRANSFORMATION RELATES CHAIN C TO CHAIN B; INCLUDING
REMARK 295
            RESIDUES 11-90 AND 104-126.
REMARK 295 TRANSFORMATION RELATES CHAIN D TO CHAIN B; INCLUDING
REMARK 295
             RESIDUES 11-90 AND 104-126.
REMARK 295 TRANSFORMATION RELATES CHAIN D TO CHAIN C; INCLUDING
REMARK 295
            RESIDUES 11-90 AND 104-126.
REMARK 295 TRANSFORMATION RELATES CHAIN CD DIMER TO CHAIN AB DIMER:
            INCLUDING RESIDUES A11-91, A104-126, B11-B90, B104-127,
REMARK 295
REMARK 295
             C11-91, C104-126, D11-90, D104-127
REMARK 470
REMARK 470 MISSING ATOM
REMARK 470 THE FOLLOWING RESIDUES HAVE MISSING ATOMS (M=MODEL NUMBER:
REMARK 470 RES=RESIDUE NAME; C=CHAIN IDENTIFIER; SSEQ=SEQUENCE NUMBER;
REMARK 470 I=INSERTION CODE):
              M RES CSSEQI ATOMS
REMARK 470
                ASN A 11
VAL A 12
LYS A 13
REMARK 470
                                   OD1
                                         ND2
                              CG
REMARK 470
                              CG1
                                   CG2
REMARK 470
                                   CD
                                         CE
                                              NZ
                              CG
REMARK 470
                LYS A 91
                              CG
                                    CD
                                         CE
                                              NZ
REMARK 470
                LYS A 127
                              CG
                                    CD
                                         CE
                                              NZ
                SER A 133
REMARK 470
                              OG
REMARK 470
                ASN B 11
                              CG
                                   OD1
                                         ND2
REMARK 470
                LYS B
                       13
                              CG
                                   CD
                                         CE
                                              N7.
                ASN B
REMARK 470
                       93
                              CG
                                   OD1
                                         ND2
REMARK 470
                LYS B
                       96
                              CG
                                   CD
                                         CE
                                              NZ
                ASP B
                       97
REMARK 470
                              CG
                                   OD1
                                         OD2
REMARK 470
                LYS B 103
                              CG
                                   CD
                                         CE
                                              NZ
REMARK 470
               ASP B 128
                              CG
                                   OD1
                                         OD2
REMARK 470
                ASP B 137
                              CG
                                   OD1
                                         OD2
                ASN C
REMARK 470
                       11
                              CG
                                   OD1
                                         ND2
                LYS C
REMARK 470
                       13
                              CG
                                   CD
                                         CE
                                              NZ
REMARK 470
                LEU C
                       39
                              CG
                                   CD1
                                         CD2
REMARK 470
                ASN D
                       11
                              CG
                                   OD1
                                         ND2
REMARK 470
                LYS D
                       13
                              CG
                                   CD
                                         CE
                                              NZ
REMARK 470
                VAL D
                       90
                              CG1
                                   CG2
REMARK 470
                GLU D 106
                                         OE1
                                              OE<sub>2</sub>
                              CG
                                   CD
                LYS D 127
REMARK 470
                              CG
                                   CD
                                         CE
REMARK 500
REMARK 500 GEOMETRY AND STEREOCHEMISTRY
REMARK 500 SUBTOPIC: CLOSE CONTACTS
REMARK 500
REMARK 500 THE FOLLOWING ATOMS THAT ARE RELATED BY CRYSTALLOGRAPHIC
REMARK 500 SYMMETRY ARE IN CLOSE CONTACT. AN ATOM LOCATED WITHIN 0.15
REMARK 500 ANGSTROMS OF A SYMMETRY RELATED ATOM IS ASSUMED TO BE ON A
REMARK 500 SPECIAL POSITION AND IS, THEREFORE, LISTED IN REMARK 375 REMARK 500 INSTEAD OF REMARK 500. ATOMS WITH NON-BLANK ALTERNATE
REMARK 500 LOCATION INDICATORS ARE NOT INCLUDED IN THE CALCULATIONS.
```

```
REMARK 500 DISTANCE CUTOFF:
     REMARK 500 2.2 ANGSTROMS FOR CONTACTS NOT INVOLVING HYDROGEN ATOMS
     REMARK 500 1.6 ANGSTROMS FOR CONTACTS INVOLVING HYDROGEN ATOMS
    REMARK 500
     REMARK 500
                                                   ATM1 RES C SSEQI
                                                                                                                                         ATM2 RES C SSEQI SSYMOP
                                                                                                                                                                                                                                                               DISTANCE
                                                                                                                                                                  VAL A
     REMARK 500
                                                   CA CA
                                                                                                         1021
                                                                                                                                          0
                                                                                                                                                                                                 139
                                                                                                                                                                                                                                 3655
                                                                                                                                                                                                                                                                       2.18
    REMARK 500
    REMARK 500 REMARK: NULL
    REMARK 600
    REMARK 600 HETEROGEN
    REMARK 600 1PE: ONLY PART OF THE PEG400 CHAIN IS ORDERED IN THE
    REMARK 600
                                                  STRUCTURE.
REMARK 999 SEQUENCE
REMARK 999 SEQUENCE
REMARK 999 1SCF A SWS P21583 1 - 35 NOT IN ATOMS LIST
REMARK 999 1SCF A SWS P21583 167 - 273 NOT IN ATOMS LIST
REMARK 999 1SCF B SWS P21583 1 - 35 NOT IN ATOMS LIST
REMARK 999 1SCF B SWS P21583 164 - 273 NOT IN ATOMS LIST
REMARK 999 1SCF C SWS P21583 1 - 35 NOT IN ATOMS LIST
REMARK 999 1SCF C SWS P21583 152 - 273 NOT IN ATOMS LIST
REMARK 999 1SCF C SWS P21583 152 - 273 NOT IN ATOMS LIST
REMARK 999 1SCF D SWS P21583 1 - 35 NOT IN ATOMS LIST
REMARK 999 1SCF D SWS P21583 153 - 273 NOT IN ATOMS LIST
REMARK 999 1SCF D SWS P21583 153 - 273 NOT IN ATOMS LIST
REMARK 999 1SCF D SWS P21583 SCF HUMAN 36 116
DBREF 1SCF A 11 91 SWS P21583 SCF HUMAN 36 154
DBREF 1SCF B 137 138 SWS P21583 SCF HUMAN 36 154
DBREF 1SCF B 137 138 SWS P21583 SCF HUMAN 36 116
DBREF 1SCF C 11 91 SWS P21583 SCF HUMAN 36 116
DBREF 1SCF C 104 126 SWS P21583 SCF HUMAN 36 116
DBREF 1SCF C 104 126 SWS P21583 SCF HUMAN 36 116
DBREF 1SCF D 11 90 SWS P21583 SCF HUMAN 36 115
DBREF 1SCF D 11 90 SWS P21583 SCF HUMAN 36 115
DBREF 1SCF D 11 90 SWS P21583 SCF HUMAN 36 115
DBREF 1SCF D 104 127 SWS P21583 SCF HUMAN 36 115
DBREF 1SCF D 104 127 SWS P21583 SCF HUMAN 129 151
DBREF 1SCF D 104 127 SWS P21583 SCF HUMAN 129 151
DBREF 1SCF D 104 127 SWS P21583 SCF HUMAN 129 152
    REMARK 999
DBREF 1SCF D 11 90 SWS P21583 SCF
DBREF 1SCF D 104 127 SWS P21583 SCF
SEQADV 1SCF MSE A 27 SWS P21583 MET
SEQADV 1SCF MSE A 36 SWS P21583 MET
SEQADV 1SCF MSE A 48 SWS P21583 MET
SEQADV 1SCF A SWS P21583 GLU
SEQADV 1SCF A SWS P21583 SER
SEQADV 1SCF A SWS P21583 LYS
SEQADV 1SCF A SWS P21583 LYS
SEQADV 1SCF A SWS P21583 LEU
SEQADV 1SCF A SWS P21583 LEU
SEQADV 1SCF A SWS P21583 LYS
SEQADV 1SCF S SWS P21583 LYS
                                                                                                                                                                                             52 MODIFIED
                                                                                                                                                                                             61 MODIFIED
                                                                                                                                                                                         73 MODIFIED
                                                                                                                                                                                   117 GAP IN PDB ENTRY
118 GAP IN PDB ENTRY
                                                                                                                                                                SER 119 GAP IN PDB ENTRY
                                                                                                                                                                                        120 GAP IN PDB ENTRY
121 GAP IN PDB ENTRY
                                                                                                                                                                                        122 GAP IN PDB ENTRY
                                                                                                                                                                                        123 GAP IN PDB ENTRY
                                                                                                                                                                                   124 GAP IN PDB ENTRY
125 GAP IN PDB ENTRY
                                                                                                                                                                SER 126 GAP IN PDB ENTRY
                                                                                                                                                                                        127 GAP IN PDB ENTRY
128 GAP IN PDB ENTRY

        SEQADV
        1SCF
        A
        SWS
        P21583
        LYS

        SEQADV
        1SCF
        MSE
        B
        27
        SWS
        P21583
        MET

        SEQADV
        1SCF
        MSE
        B
        36
        SWS
        P21583
        MET

        SEQADV
        1SCF
        B
        SWS
        P21583
        VAL

        SEQADV
        1SCF
        B
        SWS
        P21583
        VAL

        SEQADV
        1SCF
        B
        SWS
        P21583
        ALA

        SEQADV
        1SCF
        B
        SWS
        P21583
        SER

        SEQADV
        1SCF
        B
        SWS
        P21583
        THR

        SEQADV
        1SCF
        B
        SWS
        P21583
        SER

                                                                                                                                                                                       52 MODIFIED
                                                                                                                                                                                          61 MODIFIED
                                                                                                                                                                                      73 MODIFIED
                                                                                                                                                                VAL 155 GAP IN PDB ENTRY
                                                                                                                                                              VAL 156 GAP IN PDB ENTRY
                                                                                                                                                                                       157 GAP IN PDB ENTRY
158 GAP IN PDB ENTRY
                                                                                                                                                                                        159 GAP IN PDB ENTRY
                                                                                                                                                                                        160 GAP IN PDB ENTRY
161 GAP IN PDB ENTRY
  SEQADV 1SCF B SWS P21583 SER
SEQADV 1SCF MSE C 27 SWS P21583 MET
                                                                                                                                                                                       52 MODIFIED
                                                                                                                                                                                     61 MODIFIED
  SEQADV 1SCF MSE C
SEQADV 1SCF MSE C
                                                                          36 SWS P21583
48 SWS P21583
                                                                                                                                                                MET
                                                                                                                                                               MET
                                                                                                                                                                                          73 MODIFIED
                                                                                               SWS P21583 MET
SWS P21583 GLU
  SEQADV 1SCF C
                                                                                                                                                                                117 GAP IN PDB ENTRY
   SEQADV 1SCF
                                                                                                  SWS P21583
                                                                                                                                                              ASN 118 GAP IN PDB ENTRY
```

```
SEQADV 1SCF
                         SWS P21583
                                         SER
                                                119 GAP IN PDB ENTRY
                 C
SEOADV 1SCF
                         SWS
                              P21583
                                         SER
                                                120 GAP IN PDB ENTRY
SEQADV 1SCF
                         SWS
                               P21583
                                         LYS
                                                121 GAP IN PDB ENTRY
SEQADV 1SCF
SEQADV 1SCF
                 C
                         SWS
                               P21583
                                         ASP
                                                122 GAP IN PDB ENTRY
                 С
                         SWS
                              P21583
                                         LEU
                                                123 GAP
                                                        IN PDB ENTRY
SEQADV 1SCF
                         SWS
                 С
                              P21583
                                         LYS
                                                124 GAP IN PDB ENTRY
SEQADV 1SCF
                C
                         SWS
                              P21583
                                         LYS
                                                125 GAP IN PDB ENTRY
SEOADV 1SCF
                 C
                         SWS
                               P21583
                                         SER
                                                126 GAP IN PDB ENTRY
SEQADV 1SCF
                 С
                         SWS
                               P21583
                                         PHE
                                                127 GAP IN PDB ENTRY
SEQADV 1SCF
                         SWS
                               P21583
                                         LYS
                                                128 GAP IN PDB ENTRY
                     27 SWS
36 SWS
SEQADV 1SCF MSE D
                               P21583
                                         MET
                                                52 MODIFIED
SEQADV 1SCF MSE D
                              P21583
                                         MET
                                                 61 MODIFIED
SEOADV 1SCF MSE D
                     48 SWS
                              P21583
                                         MET
                                                73 MODIFIED
SEQADV 1SCF
                         SWS
                              P21583
                 D
                                         LYS
                                                116 GAP IN PDB ENTRY
SEQADV 1SCF
                         SWS
                               P21583
                                                117 GAP IN PDB ENTRY
                 D
                                         GLU
SEQADV 1SCF
                              P21583
                         SWS
                D
                                         ASN
                                                118 GAP IN PDB ENTRY
SEQADV 1SCF
               D
                         SWS
                              P21583
                                         SER
                                                119 GAP IN PDB ENTRY
               D
D
D
SEQADV 1SCF
SEQADV 1SCF
                         SWS
                              P21583
                                         SER
                                                120 GAP IN PDB ENTRY
                         SWS
                               P21583
                                         LYS
                                                121 GAP IN PDB ENTRY
SEQADV 1SCF
                         SWS
                              P21583
                                         ASP
                                                122 GAP IN PDB ENTRY
             D
SEQADV 1SCF
                         SWS
                              P21583
                                         LEU
                                                123 GAP IN PDB ENTRY
SEQADV 1SCF
SEQADV 1SCF
               D
D
                               P21583
                                                124 GAP IN PDB ENTRY
                         SWS
                                         LYS
                         SWS
                              P21583
                                         LYS
                                                125 GAP IN PDB ENTRY
SEOADV 1SCF
               D
                         SWS
                              P21583
                                                126 GAP IN PDB ENTRY
                                         SER
              D
D
SEQADV 1SCF
                         SWS
                                         PHE
                              P21583
                                                127 GAP IN PDB ENTRY
SEQADV 1SCF
                         SWS
                              P21583
                                         LYS
                                                128 GAP IN PDB ENTRY
         1 A 273
                   MET LYS LYS THR GLN THR TRP ILE LEU THR CYS ILE TYR LEU GLN LEU LEU PHE ASN PRO LEU VAL LYS THR GLU
SEORES
         2 A 273
SEQRES
                    GLY ILE CYS ARG ASN ARG VAL THR ASN ASN VAL LYS ASP
VAL THR LYS LEU VAL ALA ASN LEU PRO LYS ASP TYR MSE
SEQRES
         3 A
              273
              273
SEORES
         4 A
SEQRES
         5 A
              273
                    ILE THR LEU LYS TYR VAL PRO GLY MSE ASP VAL LEU PRO
SEORES
         6 A
              273
                    SER HIS CYS TRP
                                     ILE SER GLU MSE VAL
                                                          VAL GLN LEU SER
              273
                    ASP SER LEU
         7 A
                                THR ASP
SEQRES
                                         LEU LEU ASP
                                                      LYS
                                                          PHE SER ASN
                                                                       ILE
SEQRES
         8 A
              273
                    SER GLU GLY LEU SER ASN TYR SER ILE
                                                          ILE ASP LYS LEU
SEQRES
                    VAL ASN ILE VAL ASP ASP LEU VAL GLU CYS VAL LYS GLU
         9 A
              273
SEQRES
        10 A
              273
                    ASN SER SER LYS ASP
                                         LEU LYS LYS SER
                                                          PHE LYS SER PRO
SEORES
              273
                    GLU PRO ARG LEU PHE THR PRO GLU GLU PHE PHE ARG
        11 A
                                                                       ILE
SEQRES
                    PHE ASN ARG SER ILE ASP ALA PHE LYS ASP PHE VAL VAL
              273
        12 A
SEQRES
        13 A
              273
                    ALA SER GLU
                                THR SER ASP CYS VAL VAL
                                                          SER SER THR LEU
                    SER PRO GLU LYS ASP SER ARG VAL SER VAL THR LYS
SEQRES
        14 A
              273
                                                                       PRO
SEQRES
        15 A
              273
                    PHE MET LEU PRO PRO VAL ALA ALA SER SER LEU ARG ASN
SEQRES
              273
                    ASP SER SER SER SER ASN ARG LYS ALA LYS ASN PRO PRO
        16 A
        17 A
                    GLY ASP SER SER LEU HIS TRP ALA ALA MET
SEQRES
              273
                                                              ALA LEU
                                                                       PRO
SEORES
        18 A
              273
                   ALA LEU PHE SER LEU ILE ILE GLY PHE ALA PHE GLY ALA
SEQRES
                   LEU TYR TRP LYS LYS ARG GLN PRO SER LEU THR ARG ALA
        19 A
              273
SEQRES
        20 A
              273
                    VAL GLU ASN ILE GLN ILE ASN GLU GLU
                                                          ASP ASN GLU
                                                                       ILE
SEQRES
                    SER MET LEU GLN GLU LYS GLU ARG GLU PHE GLN GLU
        21 A
              273
                                                                       VAL
SEQRES
                   MET LYS LYS THR GLN THR TRP ILE LEU THR CYS
        1 B
              273
                                                                   ILE TYR
SEORES
         2 B
              273
                   LEU GLN LEU LEU PHE ASN PRO LEU VAL LYS THR GLU
                    GLY ILE CYS ARG ASN ARG VAL THR ASN ASN
              273
SEQRES
         3 B
                                                              VAL LYS
                                                                       ASP
                    VAL THR LYS LEU VAL ALA ASN LEU PRO LYS ASP TYR MSE
SEQRES
              273
SEQRES
                                     TYR VAL PRO GLY MSE ASP VAL LEU PRO
         5 B
              273
                    ILE THR LEU LYS
                   SER HIS CYS
SEQRES
         6 B
              273
                                TRP
                                     ILE SER GLU MSE VAL
                                                          VAL GLN LEU SER
SEORES
         7 B
              273
                   ASP SER LEU THR ASP LEU LEU ASP LYS PHE SER ASN ILE
SEQRES
                    SER GLU GLY LEU SER ASN TYR SER ILE ILE ASP LYS LEU
         8 B
              273
                    VAL ASN ILE VAL ASP ASP LEU VAL GLU CYS VAL LYS GLU
SEQRES
         9 B
              273
                   ASN SER SER LYS ASP LEU LYS LYS SER PHE LYS SER PRO
SEORES
        10 B
              273
                    GLU PRO ARG LEU PHE THR PRO GLU GLU PHE PHE ARG ILE
SEORES
        11 B
              273
SEORES
        12 B
              273
                   PHE ASN ARG
                                SER ILE ASP ALA PHE LYS ASP PHE VAL VAL
SEQRES
        13 B
              273
                   ALA SER GLU THR SER ASP CYS VAL VAL SER SER THR LEU
```

ď.

a

N

41

15/85

```
SER PRO GLU LYS ASP SER ARG VAL SER VAL THR LYS PRO
               273
SEQRES
        14 B
SEQRES
        15 B
               273
                    PHE MET LEU PRO PRO VAL ALA ALA
                                                      SER SER LEU ARG
SEQRES
        16 B
               273
                    ASP
                         SER
                             SER SER
                                     SER
                                          ASN ARG LYS
                                                      ALA
                                                           LYS
                                                               ASN
                                                                        PRO
                                                                   PRO
               273
SEORES
        17
           В
                    GLY ASP SER SER LEU HIS
                                              TRP ALA
                                                      ALA MET
                                                               ALA
                                                                   LEU
                                                                        PRO
               273
                    ALA LEU PHE SER
                                     LEU ILE ILE GLY
                                                      PHE
SEORES
        18
           В
                                                           ALA PHE GLY
                                                                        ALA
               273
                    LEU TYR TRP LYS
                                     LYS ARG GLN PRO
                                                      SER
                                                           LEU
                                                               THR ARG ALA
SEQRES
        19
           В
               273
                    VAL
                         GLU ASN
                                 ILE
                                     GLN
                                          ILE ASN
                                                  \operatorname{GLU}
                                                       GLU
                                                           ASP
                                                               ASN
SEORES
        20
           В
                                                                    GLU
                                                                        ILE
               273
                    SER MET LEU
                                 GLN
                                     GLU
                                          LYS
                                              GLU ARG
                                                      GLU
                                                           PHE GLN
                                                                        VAL
           В
                                                                   GLU
SEQRES
        21
SEORES
         1
               273
                    MET LYS LYS THR GLN THR TRP ILE LEU
                                                           THR CYS
                                                                    ILE
                                                                        TYR
SEQRES
                            LEU
                                              ASN
                                                  PRO
           CCCC
               273
                    LEU
                         GLN
                                 LEU
                                     LEU
                                          PHE
                                                      LEU
                                                           VAL LYS
         2
                                                                    THR
                                                                        GLU
                                                  THR ASN
               273
                         ILE CYS
                                 ARG ASN ARG VAL
SEQRES
         3
                    GLY
                                                           ASN
                                                               VAL
                                                                    LYS
                                                                        ASP
               273
                                          ALA ASN LEU
                                                               ASP TYR MSE
         4
                    VAL
                         THR LYS
                                 LEU
                                     VAL
                                                      PRO
                                                           LYS
SEQRES
                                          VAL PRO GLY
               273
                    ILE THR LEU LYS
                                     TYR
                                                      MSE
SEORES
         5
                                                           ASP
                                                               VAL LEU PRO
SEQRES
         6
           C
               273
                    SER HIS
                             CYS
                                 TRP
                                     ILE
                                          SER
                                              GLU MSE
                                                       VAL
                                                           VAL
                                                               GLN LEU
                                                                        SER
                                 THR
               273
                    ASP
                        SER LEU
                                     ASP
                                          LEU
                                              LEU ASP
                                                       LYS
                                                           PHE
                                                               SER ASN
SEQRES
         7
           C
                                                                        ILE
           C
SEQRES
         8
               273
                    SER GLU GLY
                                 LEU
                                     SER
                                          ASN TYR
                                                  SER
                                                       ILE
                                                           ILE
                                                               ASP
                                                                   LYS
                                                                        LEU
                    VAL ASN
                            ILE
                                 VAL
                                     ASP
                                          ASP LEU VAL GLU
               273
                                                           CYS
                                                               VAL LYS GLU
SEQRES
         9
           C
                                                                    SER
SEQRES
        10
               273
                    ASN SER
                             SER
                                 LYS
                                     ASP
                                          LEU LYS LYS
                                                      SER
                                                           PHE
                                                               LYS
                                                                        PRO
               273
                    GLU PRO ARG LEU
                                     PHE
                                          THR PRO GLU
                                                       GLU
                                                           PHE
                                                               PHE ARG
                                                                        ILE
SEQRES
        11
           C
               273
                    PHE ASN ARG SER
                                     ILE ASP ALA PHE
SEORES
        12
                                                      LYS
                                                           ASP
                                                               PHE VAL
                                                                        VAL
SEQRES
               273
                    ALA
                        SER
                             GLU
                                 THR
                                     SER
                                         ASP
                                              CYS
                                                  VAL
                                                       VAL
                                                           SER
                                                               SER
                                                                    THR
                                                                        LEU
        13
                                         SER ARG VAL SER
               273
                    SER PRO GLU
                                                           VAL
                                 LYS
                                     ASP
SEORES
        14
                                                               THR LYS
                                                                        PRO
           C
               273
                    PHE MET LEU PRO PRO VAL ALA ALA SER
                                                           SER
SEQRES
        15
                                                               LEU ARG
                                                                        ASN
                                     SER ASN
                                              ARG LYS ALA
                    ASP SER SER SER
                                                           LYS ASN PRO
SEQRES
        16
               273
                                                                        PRO
           C
SEQRES
               273
                    GLY ASP
                             SER
                                 SER
                                     LEU HIS
                                              TRP ALA
                                                       ALA
                                                           MET
                                                               ALA
                                                                        PRO
        17
                                                                    LEU
               273
                    ALA LEU PHE
                                 SER
                                     LEU ILE
                                              ILE GLY
                                                       PHE
                                                           ALA PHE GLY ALA
SEQRES
        18
                                     LYS ARG GLN PRO
                                                           LEU
               273
                    LEU TYR TRP
                                 LYS
SEQRES
        19
                                                       SER
                                                               THR ARG ALA
           С
               273
                    VAL
                        GLU
                             ASN
                                 ILE
                                     GLN
                                          ILE
                                              ASN
                                                  GLU
                                                       GLU
                                                           ASP
                                                               ASN
SEQRES
        20
                                                                    GLU
                                                                        ILE
           C
               273
                    SER MET LEU
                                 GLN
                                     GLU
                                          LYS
                                              GLU ARG
                                                       GLU
                                                           PHE
                                                               GLN GLU
                                                                        VAL
SEQRES
        21
                    MET LYS LYS
                                 THR
                                     GLN
                                          THR TRP ILE
                                                       LEU
SEORES
           D
               273
                                                           THR CYS
                                                                    ILE
                                                                        TYR
         1
         2
                    LEU
                        GLN LEU
                                 LEU
                                     LEU
                                          PHE
                                              ASN PRO
                                                       LEU
                                                           VAL LYS
SEQRES
           D
               273
                                                                    THR
                                                                        GLU
               273
                    GLY ILE CYS
                                 ARG
                                     ASN ARG VAL THR ASN
                                                           ASN
                                                               VAL LYS
           D
                                                                        ASP
SEQRES
         3
               273
         4 D
                    VAL THR LYS
                                 LEU
                                     VAL ALA ASN LEU PRO
                                                           LYS ASP TYR
                                                                        MSE
SEQRES
         5 D
               273
                    ILE
                        THR LEU
                                 LYS
                                     TYR
                                          VAL PRO
                                                  GLY
                                                       MSE
                                                           ASP
                                                                VAL LEU
                                                                        PRO
SEQRES
                            CYS
                                         SER GLU MSE
               273
                    SER HIS
                                 TRP
                                     ILE
                                                       VAL
                                                           VAL
SEQRES
         6
           D
                                                               GLN
                                                                    LEU
                                                                        SER
               273
                    ASP SER LEU
                                 THR ASP LEU LEU ASP
                                                       LYS
                                                           PHE
SEQRES
         7 D
                                                               SER ASN
                                                                        ILE
                                     SER ASN
                                              TYR SER ILE
               273
                    SER GLU GLY
                                 LEU
                                                           ILE
                                                               ASP LYS
                                                                        LEU
SEQRES
         8 D
               273
                    VAL
                        ASN
                             ILE
                                 VAL
                                     ASP
                                         ASP LEU
                                                  VAL
                                                       GLU
                                                           CYS
                                                               VAL
                                                                        GLU
SEORES
         9
           D
                                                                    LYS
               273
                    ASN SER SER
                                 LYS
                                     ASP
                                          LEU
                                              LYS LYS
                                                       SER
                                                           PHE
                                                               LYS SER
                                                                        PRO
        10
           D
SEQRES
                    GLU PRO ARG
                                     PHE
                                          THR PRO GLU GLU
SEORES
        11
           D
               273
                                 LEU
                                                           PHE PHE ARG
                                                                        ILE
SEQRES
                        ASN
                                     ILE
                                          ASP
                                              ALA
                                                  PHE
                                                       LYS
        12 D
               273
                    PHE
                            ARG
                                 SER
                                                           ASP
                                                                PHE
                                                                    VAL
                                                                        VAL
                        SER GLU
                                 THR
                                     SER ASP
                                              CYS
                                                  VAL
                                                       VAT.
                                                           SER
               273
                    ALA
                                                               SER
                                                                    THR
SEQRES
        13
           D
                                                                        LEU
               273
                    SER
                        PRO GLU
                                 LYS
                                     ASP
                                          SER ARG VAL SER
                                                           VAL
SEORES
        14
           D
                                                                THR LYS
                                                                        PRO
               273
                    PHE
                        MET
                             LEU
                                 PRO
                                     PRO
                                          VAL ALA ALA
                                                       SER
                                                           SER
                                                               LEU
                                                                    ARG
                                                                        ASN
SEQRES
           D
        15
SEORES
           D
               273
                    ASP
                        SER
                            SER
                                 SER
                                     SER ASN ARG
                                                  LYS
                                                       ALA
                                                           LYS
                                                                ASN
                                                                    PRO
                                                                        PRO
        16
               273
                    GLY ASP
                                     LEU HIS
                                              TRP ALA ALA
        17
           D
                             SER
                                 SER
                                                           MET
                                                                ALA
                                                                    LEU PRO
SEQRES
                    ALA LEU
                             PHE
                                 SER
                                     LEU
                                         TLE
                                              ILE
                                                  GLY PHE
               273
                                                           A.TA
                                                                PHE GLY
SEQRES
        18 D
                                                                        ALA
SEQRES
        19 D
               273
                    LEU
                        TYR
                             TRP
                                 LYS
                                     LYS
                                         ARG
                                              GLN
                                                  PRO
                                                       SER
                                                           LEU
                                                                THR
                                                                    ARG
                                                                        ALA
                    VAL
                        GLU ASN
                                 ILE
                                     GLN ILE ASN GLU GLU ASP ASN GLU
               273
SEORES
        20 D
                                                                        ILE
               273
                    SER MET LEU GLN GLU LYS GLU ARG GLU PHE GLN
SEORES
        21 D
MODRES 1SCF MSE A
                               SELENOMETHIONINE
                     27
                         MET
                               SELENOMETHIONINE
       1SCF MSE A
                     36
                         MET
MODRES
       1SCF MSE A
                     48
                         MET
                               SELENOMETHIONINE
MODRES
MODRES 1SCF MSE B
                     27
                         MET
                               SELENOMETHIONINE
                     36
                         MET
                               SELENOMETHIONINE
       1SCF
            MSE
                В
MODRES
                               SELENOMETHIONINE
       1SCF MSE B
                     48
                         MET
MODRES
                               SELENOMETHIONINE
                         MET
       1SCF MSE C
                     27
MODRES
MODRES 1SCF MSE
                     36
                         MET
                               SELENOMETHIONINE
                C
                     48
                         MET
                               SELENOMETHIONINE
       1SCF MSE
                 C
                         MET
                               SELENOMETHIONINE
MODRES 1SCF MSE D
```

```
MODRES 1SCF MSE D
                           MET
                                 SELENOMETHIONINE
                       36
MODRES 1SCF MSE D
                       48
                           MET
                                 SELENOMETHIONINE
HET
        MSE
              Α
                 27
                            8
HET
        MSE
              Α
                 36
                            8
HET
        MSE
                            8
              Α
                 48
        MSE
              В
                 27
                            8
HET
HET
        MSE
              В
                 36
                            8
        MSE
                            8
HET
              В
                 48
HET
        MSE
              С
                 27
                           8
        MSE
              C
HET
                 36
                           8
        MSE
              С
HET
                 48
                           8
        MSE
             D
HET
                 27
             D
                 36
HET
        MSE
                           8
HET
        MSE
              D
                 48
                           8
HET
         CA
               1021
                           1
HET
         CA
               1022
                           1
         CA
               1023
HET
                           1
HET
        1PE
                          16
HETNAM
            MSE SELENOMETHIONINE
             CA CALCIUM ION
HETNAM
HETNAM
            1PE POLYETHYLENE GLYCOL
            1PE PEG400
HETSYN
                      3 (C5 H11 N1 O2 SE1)
FORMUL
          1
             MSE
FORMUL
          2
             MSE
                     3 (C5 H11 N1 O2 SE1)
          3
                     3 (C5 H11 N1 O2 SE1)
             MSE
FORMUL
FORMUL
             MSE
                     3 (C5 H11 N1 O2 SE1)
          5
              CA
                     3 (CA1 2+)
FORMUL
FORMUL
          6
             1PE
                     C10 H22 O6
FORMUL
          7
             HOH
                     *264 (H2 O1)
              1 VAL A
HELIX
          1
                          12
                              ASN A
                                        21
                                            1
                                                                                     10
HELIX
          2
               2 SER A
                          41
                              CYS A
                                        43
                                            5
                                                                                     3
               3 SER A
                          46
                              LYS A
HELIX
          3
                                        62
                                                                                     17
                          72
HELIX
               4 ASN A
                              CYS A
                                        89
                                                                                     18
HELIX
          5
               5
                PRO A
                         112
                              LYS
                                   A
                                       127
                                            1
                                                                                     16
          6
               6
                VAL B
                              ASN B
HELIX
                          12
                                        21
                                            1
                                                                                     10
HELIX
          7
               7
                SER B
                          41
                              CYS B
                                        43
                                                                                     3
          8
              8 SER B
                          46
                              LYS B
                                            5
HELIX
                                        62
                                                                                     17
                ASN B
                          72
HELIX
          9
              9
                              GLU B
                                        92
                                            1
                                                                                     21
         10
             10 PRO B
                              LYS B
HELIX
                         112
                                      127
                                                                                     16
             11 VAL C
                              ASN C
HELIX
         11
                          12
                                       21
                                            1
                                                                                     10
HELIX
         12
             12
                SER C
                          41
                              LYS C
                                                                                     22
HELIX
         13
             13 ASN C
                          72
                              VAL C
                                       90
                                            1
                                                                                     19
             14 PRO C
                              ASP C
HELIX
         14
                         112
                                      124
                                            1
                                                                                     13
                VAL D
                              ASN D
HELIX
         15
             15
                         12
                                       21
                                            1
                                                                                     10
HELIX
         16
             16
                SER D
                          41
                              CYS D
                                        43
                                            5
                                                                                      3
         17
             17
                SER D
                          46
                              LYS D
HELIX
                                        62
                                                                                     17
         18
             18 ASN D
                         72
                              CYS D
                                       89
HELIX
                                            1
                                                                                     18
HELIX
         19
             19
                PRO D
                        112
                              ALA D
                                      125
                                            1
                                                                                     14
SHEET
              Α
                2 THR A 29
                               LYS A
                                       31
          1
              A 2 PRO A 107
                               LEU A 109
SHEET
                                           -1
                                                   ARG A 108
                                                                    LEU A
                                                                            30
          1
              B 2
                   THR B
                               LYS B
                                            0
SHEET
                           29
                                       31
                2 PRO B 107
                               LEU B 109
                                               Ν
                                                   ARG B 108
          2
              В
SHEET
                                           -1
                                                                 0
                                                                    LEU B
                                                                             30
              C 2
                  THR C
                           29
                               LYS C
                                       31
SHEET
          2
              С
                2
                  PRO C 107
                               LEU C 109
                                               N
                                                   ARG C 108
                                                                    LEU C
SHEET
                                           -1
                                                                 0
                                                                             30
                2
SHEET
          1
              D
                   THR D
                           29
                               LYS D
                                      31
                                            0
                               LEU D 109 -1
SHEET
          2
              D 2 PRO D 107
                                               N
                                                   ARG D 108
                                                                 0
                                                                    LEU D
                                                                            30
                            CYS A
          1 CYS A
SSBOND
                     43
                                    138
                     43
                            CYS B
SSBOND
            CYS B
                                    138
                   MSE A
                           27
                                                 C
                                                     TYR A
                                                             26
LINK
              N
              C
                   MSE A
                           27
                                                 N
                                                      ILE A
LINK
```

```
LINK
                  MSE A
              N
                          36
                                                  GLY A
LINK
              С
                  MSE A
                          36
                                                  ASP A
LINK
              N
                  MSE A
                          48
                                              C
                                                  GLU A
                                                          47
LINK
              С
                  MSE A
                          48
                                                  VAL A
                                                          49
LINK
              N
                  MSE B
                          27
                                                  TYR B
                                                          26
              C
                                              N
                  MSE B
LINK
                          27
                                                  ILE B
              N
                  MSE B
                                              C
LINK
                          36
                                                  GLY B
                                                          35
              С
                  MSE B
                                              N
                          36
LINK
                                                  ASP B
                                                          37
LINK
              N
                  MSE B
                          48
                                              C
                                                  GLU B
                                                          47
                                              N
              С
                  MSE B
                          48
LINK
                                                  VAL B
                                                          49
LINK
              N
                  MSE C
                          27
                                              С
                                                  TYR C
                                                          26
              C
                  MSE C
                                              NC
                                                  ILE C
LINK
                          27
                                                          28
                  MSE C
                                                  GLY C
LINK
              N
                          36
                                                          35
LINK
              C
                  MSE C
                          36
                                              N
                                                  ASP C
                                                          37
                  MSE C
                                              C
              N
                          48
                                                  GLU C
LINK
                                                          47
LINK
              C
                  MSE C
                          48
                                              N
                                                  VAL C
                                                          49
             N
                  MSE D
                                              C
                                                  TYR D
                          27
LINK
                                                          26
              С
LINK
                  MSE D
                          27
                                              N
                                                  ILE D
                                                          28
             N
                  MSE D
                          36
                                              C
                                                  GLY D
LINK
                                                          35
              С
                                              N
LINK
                  MSE D
                          36
                                                  ASP D
                                                          37
LINK
             N
                  MSE D
                          48
                                              C
                                                  GLU D
                                                          47
             С
                  MSE D
                                              N
LINK
                          48
                                                  VAL D
                                                          49
             CA
                      1021
                                              0
LINK
                   CA
                                                  HOH
                                                        1024
             CA
                   CA
                                              0
LINK
                       1021
                                                  HOH
                                                        1025
LINK
             CA
                   CA
                       1023
                                              0
                                                  HOH
                                                        1027
LINK
             CA
                   CA
                       1023
                                              0
                                                  HOH
                                                        1028
             CA
                                              0
                   CA
                       1023
                                                  HOH
LINK
                                                        1029
CISPEP
         1 SER A
                   104
                           PRO A 105
CRYST1
         71.820
                   82.550
                             88.190 90.00
                                             90.00
                                                    90.00 P 21 21 21
                      0.000000
             1.000000
                                  0.000000
                                                   0.00000
ORIGX1
             0.000000
                       1.000000
                                  0.000000
ORIGX2
                                                   0.00000
                       0.000000
                                  1.000000
            0.000000
                                                   0.00000
ORIGX3
SCALE1
             0.013924
                       0.000000
                                  0.000000
                                                   0.00000
SCALE2
            0.000000
                       0.012114
                                  0.000000
                                                   0.00000
SCALE3
            0.000000
                       0.000000
                                  0.011339
                                                   0.00000
MTRIX1
            0.915300
                       0.368400
                                  0.162800
                                                 -10.34380
            0.357100 -0.929200
                                  0.095000
                                                  35.55670
MTRIX2
         1
MTRIX3
            0.186300 -0.028800 -0.982100
                                                  43.17570
                                                               1
MTRIX1
         2 -0.935658 -0.315827 -0.157471
                                                  63.79985
MTRIX2
           -0.265278
                      0.923709 -0.276386
                                                  17.94411
           0.232747 -0.216829 -0.948058
MTRIX3
                                                  63.68074
         3 -0.994700 0.088300 -0.051700
                                                  54.54720
MTRIX1
MTRIX2
           -0.094000 -0.988400
                                 0.119100
                                                  48.88150
MTRIX3
         3 -0.040600
                      0.123400
                                 0.991500
                                                 -20.54390
MTRIX1
         4
           -0.991100
                      0.100500 -0.087800
                                                  55.16840
MTRIX2
         4 -0.117800 -0.968000
                                 0.221700
                                                  45.07210
                                                               1
MTRIX3
         4
           -0.062700
                      0.230100
                                  0.971100
                                                 -21.92400
MTRIX1
           -0.951900 -0.248300
                                 0.179700
                                                  52.26270
           -0.277100 0.947600 -0.158800
                                                  13.33780
MTRIX2
                                                               1
MTRIX3
           -0.130900 -0.200900 -0.970800
                                                  74.41510
MTRIX1
         6
            0.984200
                      0.147100 -0.098100
                                                   0.55340
MTRIX2
         6
            0.142600 -0.988400 -0.052100
                                                  52.60730
MTRIX3
         6
           -0.104600
                      0.037300 -0.993800
                                                  86.74100
           -0.955400 -0.244200
                                 0.166100
                                                  52.84290
MTRIX1
         7
           -0.269500
                      0.950900 -0.152200
MTRIX2
                                                  12.52990
                                                   73.76110
MTRIX3
         7 -0.120800 -0.190100 -0.974300
MOTA
            N
                  ASN A 11
                                  10.232
                                            3.110
                                                   20.636
MOTA
          2
             CA
                  ASN A
                         11
                                   9.176
                                            3.892
                                                    19.994
                                                            1.00 59.79
             С
                                   9.647
ATOM
          3
                  ASN A
                         11
                                            5.204
                                                    19.309
                                                            1.00 59.52
                                   9.661
                                            6.288
                                                   19.910
MOTA
                  ASN A
                                                            1.00 59.97
```

ATOM	5	CB	ASN A	11	8.113	4.228	21.038	1.00 60.46
MOTA	6	N	VAL A	12	10.013	5.143	18.009	1.00 57.40
ATOM	7	CA	VAL A	12	10.715	6.225	17.309	1.00 53.71
ATOM	8	C	VAL A	12	9.844	7.387	16.820	1.00 50.84
ATOM	9	Ö	VAL A	12	10.343	8.268	16.130	1.00 50.84
ATOM	10	CB	VAL A	12	11.541	5.657	16.126	1.00 51.46
ATOM	11	N	LYS A	13	8.543	7.490	17.147	
MOTA	12	CA	LYS A	13	7.721	8.640	16.756	1.00 49.07
ATOM	13	C	LYS A	13	8.114	9.879	17.542	1.00 44.35
ATOM	14	Õ	LYS A	13	8.271	10.995		1.00 42.88
ATOM	15	CB	LYS A	13	6.258	8.378	17.007	1.00 41.79
ATOM	16	N	ASP A	14	8.283		17.093	1.00 44.76
ATOM	17	CA	ASP A	14	8.609	9.557 10.545	18.839	1.00 38.29
ATOM	18	C	ASP A	14	10.068		19.818	1.00 35.56
ATOM	19	Ö	ASP A	14	10.389	10.894	19.718	1.00 32.01
ATOM	20	CB	ASP A	14	8.151	12.060	19.896	1.00 30.80
ATOM	21	CG	ASP A	14		10.072	21.200	1.00 38.77
ATOM	22		ASP A	14	6.725	10.518	21.630	1.00 43.77
ATOM	23		ASP A	14	6.046	11.324	20.969	1.00 45.53
ATOM	24	N N	VAL A	15	6.269	10.057	22.680	1.00 47.33
ATOM	25	CA	VAL A	15	10.939 12.335	9.938	19.360	1.00 28.31
ATOM	26	C	VAL A	15		10.224	19.089	1.00 27.35
			VAL A	15	12.510	11.219	17.959	1.00 29.06
ATOM	27 28	O	VAL A		13.265	12.166	18.138	1.00 32.49
ATOM	29	CB	VAL A	15	13.191	8.976	18.792	1.00 26.33
MOTA				15	14.623	9.347	18.405	1.00 20.32
ATOM	30	CG2	VAL A	15	13.215	8.064	20.008	1.00 24.37
MOTA	31	N	THR A	16	11.858	11.085	16.807	1.00 28.42
MOTA	32	CA	THR A	16	11.968	12.085	15.758	1.00 27.97
MOTA	33	C	THR A	16	11.386	13.413	16.208	1.00 25.43
MOTA	34	O CB	THR A	16	12.020	14.418	15.905	1.00 25.82
ATOM	35	CB	THR A	16	11.357	11.646	14.385	1.00 27.70
MOTA	36	OG1	THR A	16	9.959	11.529	14.588	1.00 32.27
ATOM	37	CG2	THR A	16	11.931	10.335	13.912	1.00 25.71
ATOM ATOM	38 39	N CA	LYS A LYS A	17 17	10.243 9.701	13.459	16.928	1.00 24.83
	40	CA	LYS A	17		14.698	17.482	1.00 23.60
ATOM ATOM	41	0	LYS A	17	10.659	15.401	18.410	1.00 21.54
ATOM	42	CB	LYS A	17	10.756	16.624	18.373	1.00 23.88
ATOM	43	CG	LYS A	17	8.365	14.488	18.206	1.00 27.08
ATOM	44	CD	LYS A	17	7.291	14.120	17.198	1.00 34.84
ATOM	45	CE	LYS A	17	5.881 4.800	14.040	17.781	1.00 40.64
ATOM	46	NZ	LYS A	17	4.607	13.911 12.559	16.665	1.00 45.98
ATOM	47	N N	LEU A	18	11.417	14.646	16.140 19.212	1.00 48.58
ATOM	48	CA	LEU A	18	12.377	15.207	20.151	1.00 19.73
ATOM	49	C	LEU A	18	13.544	15.778	19.401	1.00 17.98
ATOM	50		LEU A	18	13.813	16.959	19.523	1.00 17.55
ATOM	51	-	LEU A	18	12.875	14.144	21.121	1.00 17.68 1.00 17.63
ATOM	52		LEU A	18	13.850	14.582	22.216	1.00 17.83
ATOM	53		LEU A	18	13.278	15.668	23.080	
ATOM	54		LEU A	18	14.253	13.389	23.032	
ATOM	55		VAL A	19	14.189	14.952	18.577	1.00 14.40
ATOM	56		VAL A	19	15.187	15.421		1.00 18.35
ATOM	57		VAL A	19	14.757	16.628	17.628 16.824	1.00 19.40
ATOM	58		VAL A	19	15.533	17.562		1.00 18.97
ATOM	59		VAL A	19	15.668	14.325	16.711	1.00 22.36
ATOM	60		VAL A	19	16.675	14.325	16.729 15.708	1.00 18.19
ATOM	61		VAL A	19	16.422	13.390	17.612	1.00 20.68
ATOM	62		ALA A	20	13.530	16.732	16.366	1.00 19.91
ATOM	63		ALA A	20	13.105	17.946	15.719	1.00 18.27 1.00 17.82
ATOM	64		ALA A	20	12.923	19.074	16.711	1.00 17.82
		-			,		-0.711	2.00 10.90

Figure 8-12

ATOM	65	0	ALA A	20	12.977	20.244	16.352	1.00 20.70
ATOM	66	CB	ALA A	20	11.777	17.661	15.059	1.00 20.70
ATOM	67	N	ASN A	21	12.677	18.787	17.979	
ATOM	68	CA	ASN A	21	12.450	19.852	18.933	
ATOM	69	C	ASN A	21	13.695	20.161	19.771	1.00 20.73
MOTA	70	Ö	ASN A	21	13.627	20.161		1.00 20.34
ATOM	71	CB	ASN A	21		19.456	20.741	1.00 21.05
MOTA	72	CG			11.235		19.751	1.00 20.84
MOTA	73		ASN A	21	10.409	20.664	20.103	1.00 21.87
			ASN A	21	10.157	21.501	19.250	1.00 20.51
MOTA	74	ND2		21	9.983	20.853	21.359	1.00 25.03
MOTA	75	N	LEU A	22	14.851	19.615	19.399	1.00 18.22
ATOM	76	CA	LEU A	22	16.129	19.924	20.000	1.00 17.27
ATOM	77	C	LEU A	22	17.023	20.733	19.051	1.00 19.37
ATOM	78	0	LEU A	22	17.001	20.468	17.851	1.00 19.69
MOTA	79	CB	LEU A	22	16.856	18.631	20.432	1.00 16.17
ATOM	80	CG	LEU A	22	16.342	17.790	21.598	1.00 14.77
ATOM	81	CD1		22	17.058	16.447	21.768	1.00 14.07
MOTA	82	CD2	LEU A	22	16.463	18.606	22.862	1.00 11.82
MOTA	83	N	PRO A	23	17.833	21.728	19.457	1.00 19.42
MOTA	84	CA	PRO A	23	18.655	22.511	18.537	1.00 19.17
ATOM	85	C	PRO A	23	19.694	21.621	17.878	1.00 20.53
MOTA	86	0	PRO A	23	20.318	20.832	18.575	1.00 21.23
MOTA	87	CB	PRO A	23	19.341	23.488	19.459	1.00 18.21
MOTA	88	CG	PRO A	23	18.549	23.480	20.755	1.00 16.10
MOTA	89	$^{\rm CD}$	PRO A	23	18.206	22.015	20.846	1.00 17.73
ATOM	90	N	LYS A	24	19.959	21.716	16.571	1.00 23.65
MOTA	91	CA	LYS A	24	20.937	20.852	15.866	1.00 27.23
ATOM	92	С	LYS A	24	22.388	20.847	16.370	1.00 25.36
ATOM	93	Ō	LYS A	24	23.179	19.918	16.149	1.00 25.16
ATOM	94	CB	LYS A	24	20.931	21.150	14.332	1.00 29.02
ATOM	95	CG	LYS A	24	19.550	20.939	13.680	1.00 36.19
ATOM	96	CD	LYS A	24	19.557	21.512	12.245	1.00 43.22
ATOM	97	CE	LYS A	24	18.207	21.800	11.585	1.00 42.88
ATOM	98	NZ	LYS A	24	18.433	22.694	10.448	1.00 48.02
ATOM	99	N	ASP A	25	22.712	21.900	17.110	1.00 46.02
ATOM	100	CA	ASP A	25	24.060	22.087	17.653	1.00 28.70
MOTA	101	C	ASP A	25	24.209	22.024	19.180	1.00 26.70
ATOM	102	Ö	ASP A	25	25.225	22.386	19.785	1.00 20.91
MOTA	103	СВ	ASP A	25	24.551	23.433	17.144	1.00 27.43
ATOM	104	CG	ASP A	25	23.780	24.615	17.684	
ATOM	105		ASP A	25	22.556	24.529	17.847	
MOTA	106	OD2		25	24.421	25.638		1.00 34.74
ATOM	107	N N	TYR A	26	23.122	21.605	17.933	1.00 37.53
ATOM	108	CA	TYR A	26	23.122	21.289	19.808	1.00 24.09
		CA	TYR A				21.189	1.00 20.96
ATOM	109			26	23.821	19.937	21.246	1.00 20.04
ATOM	110	0	TYR A	26	23.282	18.951	20.780	1.00 22.61
ATOM	111	CB	TYR A	26	21.759	21.239	21.710	1.00 20.00
ATOM	112	CG	TYR A	26	21.728	20.927	23.199	1.00 23.05
MOTA	113	CD1	TYR A	26	22.430	21.764	24.039	1.00 20.56
MOTA	114		TYR A	26	21.015	19.843	23.683	1.00 22.87
MOTA	115	CE1		26	22.421	21.541	25.376	1.00 23.76
MOTA	116	CE2	TYR A	26	20.993	19.629	25.047	1.00 22.41
MOTA	117	CZ	TYR A	26	21.693	20.493	25.877	1.00 23.68
MOTA	118	OH	TYR A	26	21.661	20.353	27.259	1.00 22.67
HETATM	119	N	MSE A	27	25.003	19.890	21.809	1.00 21.07
HETATM	120	CA	MSE A	27	25.716	18.643	22.008	1.00 21.95
HETATM	121	С	MSE A	27	25.325	17.906	23.296	1.00 23.63
HETATM	122	0	MSE A	27	25.089	18.481	24.371	1.00 22.77
HETATM	123	CB	MSE A	27	27.201	18.955	22.055	1.00 27.32
HETATM	124	CG	MSE A	27	27.695	19.788	20.866	1.00 28.96

Figure 8-13

7.7.7.7.7.7.7.7.7.7.4.	705	C.E.	MOT N	0.77	27 227		10 004	
HETATM	125	SE	MSE A	27	27.207	18.877	19.234	1.00 37.24
HETATM	126	CE	MSE A	27	28.489	17.511	19.371	1.00 26.83
ATOM	127	N	ILE A	28	25.250	16.576	23.165	1.00 22.91
ATOM	128	CA	ILE A	28	24.860	15.666	24.240	1.00 21.29
MOTA	129	C	ILE A	28	26.030	14.713	24.494	1.00 21.02
MOTA	130	0_	ILE A	28	26.530	14.075	23.571	1.00 20.97
ATOM	131	CB	ILE A	28	23.550	14.901	23.870	1.00 19.78
MOTA	132	CG1		28	22.372	15.818	23.534	1.00 17.37
ATOM	133	CG2		28	23.147	14.006	25.006	1.00 18.93
MOTA	134	CD1		28	21.207	15.120	22.805	1.00 16.08
ATOM	135	N	THR A	29	26.492	14.597	25.744	1.00 20.17
MOTA	136	CA	THR A	29	27.592	13.727	26.087	1.00 20.16
MOTA	137	C	THR A	29	27.065	12.315	26.319	1.00 20.21
MOTA	138	0	THR A	29	26.051	12.081	26.988	1.00 19.29
ATOM	139	CB	THR A	29	28.269	14.295	27.333	1.00 21.22
ATOM	140	OG1	THR A	29	28.515	15.655	27.048	1.00 24.08
MOTA	141	CG2	THR A	29	29.593	13.644	27.634	1.00 23.19
MOTA	142	N	LEU A	30	27.767	11.369	25.708	1.00 18.56
ATOM	143	CA	LEU A	30	27.462	9.976	25.862	1.00 17.76
ATOM	144	С	LEU A	30	28.824	9.351	25.959	1.00 18.41
ATOM	145	0	LEU A	30	29.738	9.774	25.283	1.00 20.72
ATOM	146	CB	LEU A	30	26.649	9.396	24.642	1.00 19.78
ATOM	147	CG	LEU A	30	26.350	7.884	24.473	1.00 14.53
ATOM	148	CD1	LEU A	30	25.475	7.478	25.601	1.00 18.04
MOTA	149	CD2	LEU A	30	25.629	7.525	23.205	1.00 14.92
MOTA	150	N	LYS A	31	28.984	8.378	26.833	1.00 18.64
MOTA	151	CA	LYS A	31	30.176	7.575	26.918	1.00 20.71
MOTA	152	С	LYS A	31	29.940	6.417	25.999	1.00 21.51
MOTA	153	0	LYS A	31	28.966	5.701	26.170	1.00 23.02
ATOM	154	CB	LYS A	31	30.411	7.009	28.295	1.00 19.63
MOTA	155	CG	LYS A	31	30.788	8.066	29.309	1.00 25.85
MOTA	156	CD	LYS A	31	31.154	7.355	30.605	1.00 29.83
MOTA	157	CE	LYS A	31	31.652	8.305	31.675	1.00 32.89
ATOM	158	NZ	LYS A	31	32.116	7.506	32.799	1.00 39.63,
MOTA	159	N	TYR A	32	30.845	6.219	25.034	1.00 24.83
ATOM	160	CA	TYR A	32	30.565	5.424	23.844	1.00 22.31
ATOM	161	С	TYR A	32	31.607	4.359	23.767	1.00 19.55
MOTA	162	0	TYR A	32	32.759	4.667	23.946	1.00 22.18
ATOM	163	CB	TYR A	32	30.569	6.367	22.640	1.00 25.12
ATOM	164	CG	TYR A	32	30.557	5.725	21.262	1.00 27.46
ATOM	165	CD1	TYR A	32	31.790	5.449	20.689	1.00 26.41
ATOM	166	CD2	TYR A	32	29.369	5.437	20.613	1.00 26.10
ATOM	167	CE1	TYR A	32	31.871	4.860	19.452	1.00 27.56
ATOM	168	CE2	TYR A	32	29.462	4.854	19.356	1.00 29.60
ATOM	169	CZ	TYR A	32	30.710	4.589	18.787	1.00 28.41
MOTA	170	OH	TYR A	32	30.844	4.087	17.501	1.00 32.61
MOTA	171	N	VAL A	33	31.217	3.108	23.604	1.00 20.21
MOTA	172	CA	VAL A	33	32.138	2.022	23.453	1.00 22.23
ATOM	173	C	VAL A	33	32.829	2.212	22.110	1.00 24.20
ATOM	174	0	VAL A	33	32.156	2.231	21.078	1.00 24.76
ATOM	175	CB	VAL A	33	31.400	0.676	23.549	1.00 23.11
ATOM	176	CG1	VAL A	33	32.297	-0.537	23.309	1.00 22.36
MOTA	177	CG2	VAL A	33	30.857	0.535	24.951	1.00 25.26
MOTA	178	N	PRO A	34	34.158	2.380	22.078	1.00 25.19
MOTA	179	CA	PRO A	34	34.921	2.477	20.834	1.00 27.43
MOTA	180	C	PRO A	34	34.727	1.263	19.907	1.00 27.77
MOTA	181	0	PRO A	34	34.907	0.101	20.291	1.00 27.65
MOTA	182	CB	PRO A	34	36.381	2.586	21.335	1.00 29.54
MOTA	183	CG	PRO A	34	36.224	3.056	22.773	1.00 26.93
ATOM	184	CD	PRO A	34	35.043	2.269	23.245	1.00 23.54

 \mathbf{S}

Figure 8-14

MOTA	185	N	GLY	Α	35	34.312	1.550	18.666	1.00 28.92
MOTA	186	CA	GLY	Α	35	34.175	0.517	17.650	1.00 28.59
ATOM	187	C	GLY		35	32.886	-0.277	17.715	1.00 28.76
ATOM	188	Ö	GLY		35	32.743	-1.224	16.957	1.00 29.41
HETATM	189	N	MSE		36	31.923	0.064	18.569	1.00 27.95
HETATM	190	CA	MSE		36	30.612	-0.561	18.587	1.00 27.55
						29.809			
HETATM	191	C	MSE		36		-0.477	17.276	1.00 28.45
HETATM	192	0	MSE		36	28.824	-1.189	17.098	1.00 26.26
HETATM	193	CB	MSE		36	29.774	0.036	19.739	1.00 32.71
HETATM	194	CG	MSE	A	36	29.232	1.427	19.485	1.00 34.05
HETATM	195	SE	MSE	A	36	27.946	2.252	20.676	1.00 36.59
HETATM	196	CE	MSE	Α	36	26.309	1.728	19.841	1.00 26.94
ATOM	197	N	ASP	Α	37	30.212	0.393	16.338	1.00 30.42
ATOM	198	CA	ASP	Α	37	29.736	0.418	14.935	1.00 30.74
ATOM	199	С	ASP		37	30.051	-0.794	14.038	1.00 27.32
ATOM	200	Õ	ASP		37	29.344	-1.054	13.064	1.00 28.97
MOTA	201	CB	ASP		37	30.200	1.716	14.234	1.00 33.15
ATOM	202	CG	ASP		37	31.706	1.960	14.294	1.00 35.22
			ASP		37	32.230	2.247	15.374	1.00 33.22
ATOM	203				37	32.369	1.875	13.275	
ATOM	204		ASP						
ATOM	205	N	VAL		38	31.054	-1.584	14.381	1.00 23.11
MOTA	206	CA	VAL		38	31.471	-2.713	13.566	1.00 23.69
MOTA	207	C	VAL		38	31.568	-4.045	14.389	1.00 26.12
MOTA	208	0	VAL		38	31.649	-5.172	13.882	1.00 27.25
MOTA	209	CB	VAL	Α	38	32.741	-2.089	12.936	1.00 19.85
MOTA	210	CG1	VAL	A	38	34.023	-2.366	13.647	1.00 16.55
ATOM	211	CG2	VAL	Α	38	32.825	-2.379	11.512	1.00 19.54
MOTA	212	N	LEU	A	39	31.464	-3.968	15.728	1.00 26.26
MOTA	213	CA	LEU	Α	39	31.505	-5.113	16.640	1.00 26.07
MOTA	214	С	LEU	Α	39	30.149	-5.788	16.888	1.00 25.48
ATOM	215	0	LEU	Α	39	29.130	-5,109	16.842	1.00 23.47
ATOM	216	CB	LEU	Α	39	32.061	-4.671	18.014	1.00 25.49
ATOM	217	CG	LEU	Α	39	33.515	-4.307	18.156	1.00 27.97
MOTA	218	CD1	LEU	Α	39	33.729	-3.645	19.510	1.00 30.79
ATOM	219	CD2			39	34.399	-5.522	17.940	1.00 23.69
ATOM	220	N	PRO		40	30.017	-7.086	17.192	1.00 25.65
ATOM	221	CA	PRO		40	28.734	-7.665	17.563	1.00 27.77
ATOM	222	C	PRO		40	28.061	-7.004	18.792	1.00 27.59
ATOM	223	Õ	PRO		40	28.710	-6.411	19.658	1.00 26.55
MOTA	224	СB	PRO		40	29.102	-9.122	17.683	1.00 27.41
	225	CG	PRO		40	30.584	-9.150	18.015	1.00 26.93
ATOM	226	CD	PRO		40	31.076	-8.082	17.099	1.00 26.35
MOTA		N	SER		41	26.724	-7.026	18.830	1.00 20.33
MOTA	227					26.003	-6.235	19.806	1.00 27.40
ATOM	228	CA	SER		41	26.288	-6.707	21.202	
ATOM	229	C	SER		41				
MOTA	230	0_	SER		41	26.451	-5.903	22.097	1.00 29.20
MOTA	231	CB	SER		41	24.540	-6.240	19.558	1.00 23.46
ATOM	232	OG	SER		41	24.074	-7.559	19.691	1.00 25.42
MOTA	233	N	HIS		42	26.526	-8.007	21.355	1.00 29.95
ATOM	234	CA	HIS		42	26.853	-8.594	22.636	1.00 30.32
MOTA	235	C	HIS		42	28.076	-7.971	23.312	1.00 29.42
MOTA	236	0	HIS	A	42	28.270	-8.138	24.524	1.00 28.56
MOTA	237	CB	HIS		42	27.008	-10.109	22.451	1.00 35.10
MOTA	238	CG	HIS	Α	42	28.387	-10.616	21.997	1.00 39.36
MOTA	239		HIS		42	29.424	-10.993	22.752	1.00 43.05
MOTA	240	CD2	HIS	Α	42	28.829	-10.644	20.694	1.00 42.30
MOTA	241	CE1	HIS	Α	42	30.472	-11.198	21.971	1.00 42.05
ATOM	242		HIS		42	30.103	-10.969	20.735	1.00 41.31
ATOM	243	N	CYS		43	28.888	-7.246	22.533	1.00 26.69
ATOM	244	CA	CYS		43	30.112	-6.657	23.037	1.00 29.55
						-		•	

 $\tt nonconnection of the contraction of the contrac$

Figure 8-15

MOTA	245	С	CYS A	43	29.916	-5.341	23.766	1.00 29.31
ATOM	246	0	CYS A	43	30.779	-4.912	24.512	1.00 31.36
ATOM	247	CB	CYS A		31.140	-6.395	21.915	1.00 31.15
ATOM	248	SG	CYS A		31.674	-7.929	21.120	1.00 35.60
MOTA	249	N	TRP A		28.813	-4.637	23.555	1.00 28.24
MOTA	250	CA	TRP A		28.704	-3.240	23.952	1.00 25.54
MOTA	251	С	TRP A		27.331	-2.947	24.498	1.00 25.35
MOTA	252	0	TRP A	44	27.173	-1.924	25.113	1.00 28.50
ATOM	253	CB	TRP A	44	28.965	-2.299	22.746	1.00 22.52
MOTA	254	CG	TRP A	44	28.207	-2.626	21.450	1.00 20.09
ATOM	255	CD1	TRP A	44	28.851	-3.316	20.455	1.00 19.03
MOTA	256	CD2	TRP A		26.890	-2.326	21.142	1.00 20.02
ATOM	257	NE1	TRP A		27.948	-3.464	19.527	1.00 20.48
ATOM	258	CE2	TRP A		26.791	-2.877	19.882	1.00 19.41
ATOM	259	CE3	TRP A		25.841	-1.609	21.652	1.00 18.83
		CZ2	TRP A		25.665	-2.678	19.127	1.00 16.33
ATOM	260							
MOTA	261	CZ3	TRP A		24.711	-1.431	20.910	1.00 16.81
MOTA	262	CH2	TRP A		24.617	-1.962	19.653	1.00 17.88
MOTA	263	N	ILE A		26.328	-3.786	24.275	1.00 27.39
MOTA	264	CA	ILE A		24.934	-3.500	24.540	1.00 28.48
ATOM	265	C	ILE A	45	24.666	-3.370	26.025	1.00 29.97
MOTA	266	0	ILE A	45	23.770	-2.622	26.389	1.00 31.30
ATOM	267	CB	ILE A	45	24.055	-4.601	23.904	1.00 28.39
ATOM	268	CG1	ILE A	45	22.603	-4.220	23.795	1.00 28.24
ATOM	269	CG2	ILE A		24.152	-5.926	24.668	1.00 28.54
MOTA	270	CD1	ILE A		22.371	-2.868	23.098	1.00 30.38
ATOM	271	N	SER A		25.408	-4.044	26.900	1.00 30.95
ATOM	272	CA	SER A		25.200	-3.897	28.337	1.00 32.47
	273	C	SER A		25.677	-2.546	28.844	1.00 32.47
ATOM		0	SER A		24.974	-1.880	29.597	1.00 30.88
ATOM	274							
MOTA	275	CB	SER A		25.899	-5.016	29.106	1.00 35.61
MOTA	276	OG	SER A		25.387	-6.311	28.746	1.00 43.59
MOTA	277	N	GLU A		26.840	-2.123	28.370	1.00 28.57
MOTA	278	CA	GLU A		27.355	-0.823	28.680	1.00 28.90
MOTA	279	С	GLU A		26.567	0.306	28.090	1.00 27.44
MOTA	280	0	GLU A		26.383	1.323	28.735	1.00 28.17
ATOM	281	CB	GLU A	47	28.791	-0.702	28.244	1.00 30.74
ATOM	282	CG	GLU A	. 47	29.439	0.554	28.818	1.00 34.60
ATOM	283	CD	GLU A	47	29.550	0.665	30.351	1.00 37.52
ATOM	284	OE1	GLU A	47	28.998	-0.153	31.107	1.00 37.54
MOTA	285	OE2	GLU A		30.208	1.607	30.800	1.00 38.33
HETATM	286	N	MSE A		26.073	0.098	26.879	1.00 27.89
HETATM	287	CA	MSE A		25.327	1.113	26.154	1.00 28.18
HETATM	288	C	MSE A		23.945	1.421	26.667	1.00 26.21
HETATM	289	Õ	MSE A		23.580	2.578	26.606	1.00 27.02
		CB	MSE A		25.309	0.882	24.637	1.00 29.23
HETATM	290				26.739	1.048	24.095	1.00 28.12
HETATM	291	CG	MSE A					
HETATM		SE	MSE A		27.685	2.655	24.690	1.00 35.61
HETATM	293	CE	MSE A		26.476	3.857	23.743	1.00 22.58
MOTA	294	N	VAL A		23.147	0.491	27.195	1.00 27.65
MOTA	295	CA	VAL A	49	21.882	0.875	27.814	1.00 27.43
MOTA	296	C	VAL A		22.017	1.680	29.115	1.00 27.42
MOTA	297	0	VAL A	49	21.224	2.595	29.394	1.00 27.48
MOTA	298	CB	VAL A	49	20.884	-0.284	27.907	1.00 27.18
ATOM	299		VAL A	49	20.438	-0.478	26.452	1.00 27.08
MOTA	300	CG2	VAL A		21.421	-1.534	28.610	1.00 23.66
ATOM	301	N	VAL A		23.100	1.370	29.847	1.00 26.26
ATOM	302	CA	VAL A		23.469	2.060	31.068	1.00 24.75
ATOM	303	C	VAL A		23.964	3.431	30.716	1.00 25.57
MOTA	304	Õ	VAL A		23.485	4.384	31.320	1.00 28.77
211 011		-					-	

Figure 8-16

ATOM	305	CB	VAL A	50	24.545	1.307	31.812	1.00 24.44
ATOM	306	CG1	VAL A	50	25.062	2.106	32.969	1.00 23.79
ATOM	307	CG2	VAL A	50	23.952	0.040	32.382	1.00 24.17
ATOM	308	N	GLN A	51	24.888	3.551	29.758	1.00 22.88
ATOM	309	CA	GLN A	51	25.315	4.841	29.294	
								1.00 18.59
MOTA	310	C	GLN A	51	24.226	5.698	28.700	1.00 18.17
MOTA	311	0	GLN A	51	24.223	6.904	28.948	1.00 20.05
MOTA	312	CB	GLN A	51	26.474	4.707	28.320	1.00 21.19
MOTA	313	CG	GLN A	51	27.676	4.059	28.934	1.00 17.37
MOTA	314	CD	GLN A	51	28.072	4.720	30.240	1.00 21.56
ATOM	315	OE1	GLN A	51	27.879	5.913	30.476	1.00 23.67
MOTA	316	NE2	GLN A	51	28.662	3.969	31.152	1.00 22.77
MOTA	317	N	LEU A	52	23.291	5.106	27.959	1.00 15.38
ATOM	318	CA	LEU A	52	22.210	5.850	27.374	1.00 16.72
ATOM	319	C	LEU A	52	21.199	6.284	28.411	1.00 18.34
ATOM	320	0	LEU A	52	20.676	7.387	28.382	
ATOM	321	CB	LEU A	52	21.533	5.006	26.309	1.00 15.91
ATOM	322	CG	LEU A	52	22.207	5.059	24.928	1.00 17.11
MOTA	323	CD1	LEU A	52	21.807	3.849	24.155	1.00 14.42
ATOM	324	CD2	LEU A	52	21.886	6.330	24.184	1.00 12.26
MOTA	325	N	SER A	53	20.932	5.433	29.378	1.00 20.83
ATOM	326	CA	SER A	53	20.098	5.806	30.505	1.00 23.79
MOTA	327	C	SER A	53	20.716	6.966	31.295	1.00 24.20
MOTA	328	0	SER A	53	19.977	7.897	31.624	1.00 26.42
ATOM	329	CB	SER A	53	19.917	4.605	31.403	1.00 23.71
ATOM	330	0G	SER A	53	19.285	5.024	32.601	1.00 30.23
ATOM	331	N	ASP A	54	22.043	6.977	31.559	1.00 23.25
ATOM	332	CA	ASP A	54	22.687	8.036	32.308	
					22.659	9.325		
ATOM	333	C	ASP A	54			31.572	1.00 19.02
ATOM	334	0	ASP A	54	22.303	10.358	32.142	1.00 20.41
MOTA	335	CB	ASP A	54	24.114	7.682	32.740	1.00 25.54
MOTA	336	CG	ASP A	54	24.207	6.579	33.815	1.00 31.33
MOTA	337		ASP A	54	23.185	5.965	34.178	1.00 36.02
MOTA	338	OD2	ASP A	54	25.318	6.318	34.307	1.00 32.62
MOTA	339	N	SER A	55	22.962	9.286	30.291	1.00 16.79
ATOM	340	CA	SER A	55	22.857	10.514	29.541	1.00 17.42
ATOM	341	C	SER A	55	21.454	11.096	29.425	1.00 16.81
ATOM	342	0	SER A	55	21.293	12.318	29.474	1.00 17.95
ATOM	343	CB	SER A	55	23.511	10.378	28.150	1.00 18.91
ATOM	344	OG	SER A	55	24.863	9.936	28.237	1.00 22.06
ATOM	345	N	LEU A	56	20.439	10.249	29.243	1.00 17.01
ATOM	346		LEU A	56	19.073	10.726	29.162	1.00 17.01
ATOM	347		LEU A	56	18.518	11.188	30.514	1.00 17.99
	348		LEU A	56	17.800	12.186	30.575	
ATOM								1.00 18.82
ATOM	349		LEU A	56	18.130	9.712	28.505	1.00 17.68
ATOM	350		LEU A	56	18.061	9.584	26.983	1.00 18.44
ATOM	351		LEU A	56	17.381	8.280	26.613	1.00 19.03
MOTA	352	CD2	LEU A	56	17.392	10.764	26.321	1.00 16.39
ATOM	353	N	THR A	57	18.835	10.532	31.616	1.00 18.45
MOTA	354	CA	THR A	57	18.376	11.005	32.911	1.00 21.42
ATOM	355		THR A	57	18.975	12.383	33.205	1.00 21.42
ATOM	356		THR A	57	18.263	13.287	33.640	1.00 21.53
ATOM	357		THR A	57	18.680	9.942	33.948	1.00 18.39
ATOM	358		THR A	5 <i>7</i>	18.055	8.791	33.418	1.00 20.01
ATOM	359		THR A	57	17.980	10.190	35.253	1.00 23.58
			ASP A		20.245	12.587	32.819	
MOTA	360			58				1.00 23.66
ATOM	361		ASP A	58	20.908	13.867	32.971	1.00 24.99
MOTA	362		ASP A	58	20.269	14.969	32.162	1.00 23.11
ATOM	363		ASP A	58	20.243	16.133	32.567	1.00 22.89
ATOM	364	CB	ASP A	58	22.410	13.766	32.646	1.00 33.60

Figure 8-17

ATOM	365	CG	ASP A	¥ 58	23.101	15.151	32.595	1.00 41.66
ATOM	366		ASP F		23.500	15.636	33.666	1.00 45.37
ATOM	367		ASP A		23.204	15.764	31.502	1.00 43.30
	368	N	LEU A		19.762	14.614	30.994	1.00 21.38
MOTA		CA	LEU A		19.106	15.568	30.124	1.00 19.63
ATOM	369				17.857	16.179	30.719	1.00 20.35
MOTA	370	C	LEU A					1.00 20.33
MOTA	371	0	LEU A		17.522	17.321	30.413	
MOTA	372	CB	LEU A		18.751	14.826	28.859	1.00 19.31
MOTA	373	CG	LEU A		19.006	15.498	27.551	1.00 18.41
MOTA	374		LEU P		20.161	16.496	27.615	1.00 16.32
MOTA	375	CD2	LEU A		19.225	14.401	26.555	1.00 17.59
MOTA	376	N .	LEU A		17.163	15.410	31.587	1.00 21.63
ATOM	377	CA	LEU A	4 60	15.930	15.857	32.216	1.00 20.55
MOTA	378	C	LEU A	4 60	16.133	17.147	32.974	1.00 22.32
MOTA	379	0	LEU A	4 60	15.264	18.016	32.929	1.00 23.28
MOTA	380	CB	LEU A	4 60	15.389	14.796	33.145	1.00 17.67
ATOM	381	CG	LEU A	4 60	14.680	13.601	32.538	1.00 14.57
MOTA	382	CD1	LEU A	4 60	14.293	12.641	33.643	1.00 12.83
ATOM	383	CD2	LEU A	4 60	13.462	14.048	31.847	1.00 8.22
MOTA	384	N	ASP A	4 61	17.338	17.285	33.558	1.00 22.42
ATOM	385	CA	ASP A		17.805	18.483	34.247	1.00 22.10
ATOM	386	C	ASP A		17.810	19.768	33.433	1.00 20.08
MOTA	387	ō	ASP A		17.841	20.870	33.974	1.00 20.02
MOTA	388	CB	ASP A		19.203	18.169	34.753	1.00 28.60
MOTA	389	CG	ASP A		19.803	19.159	35.750	1.00 34.29
MOTA	390		ASP A		19.459	19.073	36.931	1.00 40.97
ATOM	391	OD2	ASP A		20.616	20.006	35.356	1.00 37.85
MOTA	392	N	LYS A		17.721	19.693	32.105	1.00 19.76
	393	CA	LYS F		17.839	20.862	31.245	1.00 16.53
MOTA	394	C	LYS A		16.485	21.335	30.770	1.00 16.75
MOTA	395	Õ	LYS A		16.388	22.383	30.130	1.00 17.62
ATOM ATOM	396	CB	LYS A		18.684	20.529	30.020	1.00 18.65
	397	CG	LYS A		19.986	19.755	30.233	1.00 16.80
MOTA	398	CD	LYS F		20.808	20.483	31.276	1.00 18.07
ATOM	399	CE	LYS F		22.135	19.776	31.535	1.00 23.34
MOTA		NZ	LYS F		22.088	18.331	31.330	1.00 28.06
MOTA	400	N	PHE A		15.400	20.605	31.068	1.00 16.40
MOTA	401				14.086	20.979	30.586	1.00 16.93
MOTA	402	CA	PHE A		13.110	21.140	31.730	1.00 10.33
MOTA	403	C	PHE A		13.110	20.626	32.826	1.00 17.40
ATOM	404	0	PHE A		13.294	19.942	29.574	1.00 17.30
MOTA	405	CB	PHE A			19.850	28.325	1.00 13.08
MOTA	406	CG	PHE A		14.424 14.261	20.767	27.317	1.00 13.59
MOTA	407		PHE A		15.410	18.888	28.252	1.00 13.00
MOTA	408		PHE A		15.126		26.252	1.00 10.99
ATOM	409		PHE A			20.740		
MOTA	410	CE2	PHE A		16.305	18.889	27.207	
MOTA	411	CZ	PHE A		16.150	19.832	26.229	1.00 10.95 1.00 19.14
MOTA	412	N	SER A		12.031	21.843	31.444	
MOTA	413	CA	SER A		10.993	22.080	32.407	1.00 21.71
MOTA	414	C	SER A		9.832	21.125	32.198	1.00 22.87
MOTA	415	0_	SER F		9.431	20.758	31.098	1.00 24.09
MOTA	416	CB	SER A		10.533	23.508	32.261	1.00 22.47
MOTA	417	OG	SER A		9.408	23.881	33.049	1.00 29.46
ATOM	418	N	ASN A		9.298	20.809	33.363	1.00 23.97
ATOM	419	CA	ASN A		8.233	19.855	33.608	1.00 29.13
MOTA	420	С	ASN A		6.899	20.530	33.390	1.00 31.34
ATOM	421	0	ASN A		5.883	19.858	33.203	1.00 35.27
MOTA	422	CB	ASN A		8.309	19.551	35.119	1.00 30.43
ATOM	423	CG	ASN A		8.097	18.117	35.514	1.00 33.16
MOTA	424	OD1	ASN A	A 65	7.488	17.258	34.873	1.00 41.60

25/85

Figure 8-18

MOTA	425	ND2	ASN A	65	8.641	17.823	36.656	1.00 34.77
MOTA	426	N	ILE A	66	6.892	21.862	33.561	1.00 32.62
MOTA	427	CA	ILE A	66	5.708	22.691	33.384	1.00 33.83
ATOM	428	С	ILE A	66	5.681	23.071	31.918	1.00 35.58
ATOM	429	0	ILE A	66	6.450	23.910	31.431	1.00 36.08
ATOM	430	CB	ILE A	66	5.752	24.000	34.223	1.00 33.21
MOTA	431	CG1	ILE A	66	6.162	23.831	35.672	1.00 33.50
	432	CG2	ILE A	66	4.416	24.708	34.158	1.00 31.21
MOTA			ILE A	66	5.330	22.784	36.415	1.00 32.37
MOTA	433	CD1			4.782	22.424	31.201	1.00 37.23
MOTA	434	N	SER A	67		22.650	29.771	1.00 40.50
MOTA	435	CA	SER A	67	4.669			
MOTA	436	С	SER A	67	3.358	22.008	29.327	1.00 42.07
MOTA	437	0	SER A	67	3.073	20.841	29.622	1.00 43.86
MOTA	438	CB	SER A	67	5.892	21.985	29.075	1.00 40.62
ATOM	439	OG	SER A	67	6.244	22.539	27.815	1.00 36.76
ATOM	440	N	GLU A	68	2.502	22.765	28.648	1.00 44.40
ATOM	441	CA	GLU A	68	1.317	22.183	28.023	1.00 46.43
ATOM	442	С	GLU A	68	1.777	21.448	26.758	1.00 46.20
ATOM	443	0	GLU A	68	2.874	21.690	26.234	1.00 47.39
ATOM	444	CB	GLU A	68	0.364	23.301	27.637	1.00 49.01
ATOM	445	CG	GLU A	68	-1.051	22.858	27.256	1.00 53.42
	446	CD	GLU A	68	-2.066	23.229	28.324	1.00 56.12
ATOM	447	OE1	GLU A	68	-2.255	22.391	29.223	1.00 58.37
ATOM			GLU A	68	-2.634	24.342	28.250	1.00 56.09
ATOM	448	OE2	GLY A		0.957	20.523	26.262	1.00 45.44
ATOM	449	N		69		19.834	25.021	1.00 43.44
MOTA	450	CA	GLY A	69	1.228		25.021	1.00 42.33
MOTA	451	C	GLY A	69	2.561	19.130		
MOTA	452	0	GLY A	69	2.944	18.429	25.963	1.00 43.42
MOTA	453	N	LEU A	70	3.245	19.412	23.927	1.00 42.01
MOTA	454	CA	LEU A	70	4.567	18.856	23.634	1.00 40.66
ATOM	455	С	LEU A	70	5.570	19.283	24.688	1.00 37.48
MOTA	456	0	LEU A	70	5.769	20.477	24.916	1.00 39.56
ATOM	457	CB	LEU A	70	5.069	19.339	22.221	1.00 42.73
MOTA	458	CG	LEU A	70	6.365	18.753	21.553	1.00 43.68
ATOM	459	CD1	LEU A	70	6.429	17.212	21.539	1.00 40.99
ATOM	460	CD2	LEU A	70	6.506	19.318	20.134	1.00 42.81
ATOM	461	N	SER A	71	6.203	18.289	25.301	1.00 32.14
ATOM	462	CA	SER A	71	7.187	18.514	26.330	1.00 24.30
ATOM	463	C	SER A	71	8.394	17.653	26.032	1.00 20.06
ATOM	464	ō	SER A	71	8.282	16.449	25.900	1.00 21.51
ATOM	465	ČВ	SER A	71	6.519	18.160	27.653	1.00 21.80
ATOM	466	OG	SER A	71	7.393	18.171	28.756	1.00 17.14
	467	N	ASN A	72	9.573	18.208	25.883	1.00 18.83
ATOM		CA	ASN A	72	10.787	17.419	25.827	1.00 16.99
MOTA	468		ASN A	72	11.079	16.692	27.083	1.00 15.54
MOTA	469	C			11.566	15.578	26.997	1.00 16.64
MOTA	470	0	ASN A	72	11.982	18.277	25.558	1.00 20.15
MOTA	471	CB	ASN A	72		18.839	24.158	1.00 23.44
ATOM	472	CG	ASN A	72	11.916			1.00 25.44
ATOM	473		ASN A	72	11.109	18.421	23.317	
MOTA	474		ASN A	72	12.780	19.812	23.894	1.00 24.59
MOTA	475	N	TYR A	73	10.823	17.309	28.239	1.00 15.06
MOTA	476	CA	TYR A	73	10.835	16.579	29.507	1.00 15.26
ATOM	477	C	TYR A	73	9.986	15.319	29.443	1.00 15.85
MOTA	478	0	TYR A	73	10.538	14.262	29.740	1.00 18.32
MOTA	479	CB	TYR A	73	10.315	17.410	30.733	1.00 12.75
MOTA	480	CG	TYR A	73	10.760	16.862	32.082	1.00 10.27
ATOM	481	CD1		73	11.940	17.306	32.624	1.00 11.84
ATOM	482	CD2	TYR A	73	9.993	15.928	32.769	1.00 14.03
ATOM	483	CE1	TYR A	73	12.364	16.827	33.839	1.00 12.67
MOTA	484	CE2		73	10.412	15.419	33.979	1.00 10.24
7-1 OV-1	-01							

 \mathbf{n}

Figure 8-19

								24 402	7 00 74 00
MOTA	485	CZ	TYR A		73	11.592	15.891	34.491	1.00 14.02
ATOM	486	OH	TYR A	A.	73	12.042	15.429	35.703	1.00 14.54
MOTA	487	N	SER A	A	74	8.682	15.323	29.087	1.00 18.48
ATOM	488	CA	SER A	A.	74	7.947	14.076	29.034	1.00 18.74
ATOM	489	C	SER A	A	74	8.429	13.074	28.017	1.00 18.80
ATOM	490	ō	SER A		74	8.430	11.882	28.327	1.00 18.69
	491	CB	SER A	-	74	6.434	14.228	29.002	1.00 21.96
MOTA	492	OG	SER A	-	74	5.847	15.278	28.253	1.00 30.65
ATOM			ILE A	-	75	8.928	13.522	26.849	1.00 18.95
ATOM	493	N			75 75	9.481	12.602	25.855	1.00 17.82
MOTA	494	CA	ILE A			10.689	11.896	26.422	1.00 17.12
MOTA	495	C	ILE A		75 75	10.679	10.688	26.557	1.00 18.03
MOTA	496	0_	ILE A		75 75			24.460	1.00 20.42
MOTA	497	CB	ILE A		75	9.750	13.298		1.00 20.42
MOTA	498	CG1	ILE A		75	8.440	13.885	23.860	
MOTA	499	CG2	ILE A		75	10.327	12.283	23.471	1.00 17.30
MOTA	500	CD1	ILE 2		75	8.582	14.604	22.508	1.00 23.08
MOTA	501	N	ILE A	A	76	11.698	12.625	26.857	1.00 18.46
MOTA	502	CA	ILE A	A	76	12.916	12.070	27.436	1.00 19.33
MOTA	503	C	ILE A	Α	76	12.622	11.116	28.592	1.00 19.01
ATOM	504	Ō	ILE A	Α	76	13.199	10.040	28.714	1.00 20.65
MOTA	505	CB	ILE A		76	13.816	13.253	27.900	1.00 18.88
ATOM	506	CG1	ILE A		76	14.239	14.216	26.789	1.00 17.98
	507	CG2	ILE A		76	15.057	12.732	28.600	1.00 20.53
MOTA			ILE A		76	14.950	15.500	27.300	1.00 15.54
ATOM	508		ASP A		77	11.643	11.474	29.412	1.00 19.90
MOTA	509	N			77 77	11.226	10.682	30.562	1.00 19.93
MOTA	510	CA	ASP A		77	10.627	9.341	30.177	1.00 21.32
MOTA	511	C	ASP A			10.832	8.318	30.830	1.00 21.41
MOTA	512	0_	ASP .		77		11.524	31.263	1.00 21.00
ATOM	513	CB	ASP		77	10.189		32.390	1.00 23.32
MOTA	514	CG	ASP .		77	9.506	10.808	33.204	1.00 26.02
MOTA	515		ASP .		77	10.211	10.249		
MOTA	516	OD2	ASP .		77	8.283	10.750	32.419	1.00 24.74
MOTA	517	N	LYS .		78	9.835	9.312	29.101	1.00 23.41
MOTA	518	CA	LYS .	A	78	9.385	8.038	28.606	1.00 23.09
MOTA	519	C	LYS .	A	78	10.529	7.247	27.975	1.00 24.61
MOTA	520	0	LYS .	A	78	10.518	6.000	28.021	1.00 26.85
MOTA	521	CB	LYS .	Α	78	8.267	8.237	27.656	1.00 25.84
MOTA	522	CG	LYS .	Α	78	7.024	8.643	28.403	1.00 29.26
MOTA	523	CD	LYS .	Α	78	5.882	8.766	27.362	1.00 40.97
MOTA	524	CE	LYS .	Α	78	6.119	9.815	26.221	1.00 43.91
ATOM	525	NZ	LYS	Α	78	5.056	9.792	25.229	1.00 48.24
ATOM	526	N	LEU		79	11.559	7.936	27.437	1.00 22.19
MOTA	527	CA	LEU		79	12.718	7.253	26.865	1.00 18.09
MOTA	528	C	LEU		79	13.577	6.757	27.968	1.00 16.82
	529	ŏ	LEU		79	14.146	5.692	27.806	1.00 17.74
MOTA	530	CB	LEU		79	13.580	8.147	25.986	1.00 16.97
ATOM		CG	LEU		79	12.928	8.748	24.768	1.00 15.98
MOTA	531		LEU		79	13.984	9.540	24.058	1.00 16.93
MOTA	532				79	12.264	7.721	23.857	1.00 14.76
MOTA	533	CD2				13.609	7.460	29.101	1.00 16.48
MOTA	534	N	VAL		80	14.352	6.994	30.249	1.00 13.79
MOTA	535	CA	VAL		80	13.697	5.725	30.731	1.00 14.44
MOTA	536	C	VAL		80		4.763	31.022	1.00 14.81
MOTA	537	0	VAL		80	14.385	8.054	31.331	1.00 17.12
MOTA	538	CB	VAL		80	14.382		32.631	1.00 17.12
MOTA	539	CG1	VAL	A	80	14.937	7.490		1.00 17.65
MOTA	540		VAL		80	15.307	9.189	30.910	
MOTA	541	N	ASN		81	12.383	5.633	30.743	1.00 16.27
MOTA	542	CA	ASN		81	11.696	4.398	31.081	1.00 18.71
MOTA	543	С	ASN		81	11.852	3.174	30.176	1.00 21.49
ATOM	544	0	ASN	Α	81	11.945	2.060	30.691	1.00 22.57
-3									

Figure 8-20

		an	2 (3)	2	0.1	10.244	4.707	31.191	1.00 20.64
MOTA	545	CB	ASN .		81		5.574	32.402	1.00 20.04
MOTA	546	CG	ASN .		81	9.968			1.00 22.00
MOTA	547		ASN A		81	10.652	5.475	33.422	
MOTA	548	ND2	ASN .		81	8.941	6.409	32.322	1.00 21.76
MOTA	549	N	ILE		82	11.898	3.339	28.846	1.00 21.86
MOTA	550	CA	ILE .		82	12.226	2.270	27.917	1.00 23.02
ATOM	551	С	ILE :	A ·	82	13.602	1.742	28.112	1.00 23.67
ATOM	552	0	ILE 2	A ·	82	13.728	0.536	28.067	1.00 26.85
ATOM	553	CB	ILE :	Α.	82	12.089	2.768	26.497	1.00 22.79
ATOM	554	CG1	ILE .	Α.	82	10.613	2.757	26.220	1.00 23.80
ATOM	555	CG2			82	12.854	1.951	25.474	1.00 21.98
ATOM	556		ILE .		82	10.321	3.659	25.020	1.00 27.18
	557	N	VAL .		83	14.619	2.586	28.254	1.00 25.82
MOTA	558	CA	VAL .		83	15.996	2.104	28.338	1.00 27.82
MOTA	559	C	VAL .		83	16.212	1.471	29.706	1.00 30.01
MOTA		0	VAL .		83	16.995	0.522	29.796	1.00 32.08
ATOM	560		VAL		83	17.139	3.137	28.252	1.00 26.25
ATOM	561	CB			83	18.343	2.445	27.683	1.00 28.68
MOTA	562		VAL .			16.883	4.437	27.569	1.00 28.99
ATOM	563	CG2	VAL .		83	15.602	1.983	30.789	1.00 30.99
ATOM	564	N	ASP .		84		1.384	32.123	1.00 34.08
ATOM	565	CA	ASP .		84	15.711		32.275	1.00 34.30
MOTA	566	C	ASP .		84	15.125	-0.013		
MOTA	567	0	ASP .		84	15.666	-0.816	33.035	1.00 35.01
MOTA	568	CB	ASP .		84	15.148	2.331	33.189	1.00 37.32
MOTA	569	CG	ASP .		84	15.909	3.664	33.316	1.00 42.03
MOTA	570	OD1	ASP .		84	16.907	3.865	32.621	1.00 43.39
MOTA	571	OD2	ASP .		84	15.496	4.523	34.107	1.00 44.86
ATOM	572	N	ASP .	A	85	14.055	-0.335	31.524	1.00 35.79
MOTA	573	CA	ASP .		85	13.554	-1.707	31.332	1.00 37.15
MOTA	574	С	ASP .		85	14.655	-2.665	30.860	1.00 34.71
ATOM	575	0	ASP .	Α	85	14.777	-3.800	31.308	1.00 33.69
MOTA	576	CB	ASP .	A	85	12.434	-1.780	30.233	1.00 42.27
ATOM	577	CG	ASP .	Α	85	11.023	-1.216	30.474	1.00 46.16
ATOM	578	OD1	ASP .	Α	85	10.747	-0.756	31.587	1.00 46.14
ATOM	579	OD2	ASP .	Α	85	10.197	-1.234	29.539	1.00 50.79
MOTA	580	N	LEU .		86	15.437	-2.164	29.904	1.00 33.83
ATOM	581	CA	LEU		86	16.527	-2.886	29.288	1.00 33.71
ATOM	582	C	LEU .		86	17.747	-2.959	30.177	1.00 34.12
ATOM	583	ŏ	LEU		86	18.440	-3.965	30.083	1.00 34.86
ATOM	584	CB	LEU		86	16.907	-2.260	27.948	1.00 31.87
MOTA	585	CG	LEU		86	15.878	-2.198	26.829	1.00 30.75
ATOM	586		LEU		86	16.383	-1.351	25.699	1.00 30.54
ATOM	587		LEU		86	15.521	-3.581	26.349	1.00 29.51
	588	N	VAL		87	18.033	-1.973	31.039	1.00 33.89
ATOM	589	CA	VAL		87	19.121	-2.074	32.009	1.00 35.56
ATOM	590	C	VAL		87	18.933	-3.223	33.039	1.00 40.73
ATOM	591	0	VAL		87	19.889	-3.890	33.493	1.00 42.23
MOTA		CB	VAL		87	19.239	-0.695	32.614	1.00 31.60
ATOM	592		VAL		87	20.272	-0.634	33.703	1.00 33.57
MOTA	593					19.680	0.253	31.537	1.00 29.91
ATOM	594		VAL		87	17.645	-3.484	33.340	1.00 44.00
ATOM	595	N	GLU		88	17.191	-4.563	34.217	1.00 47.21
ATOM	596	CA	GLU		88	17.191	-5.918	33.542	1.00 48.21
ATOM	597	C	GLU		88		-6.909	34.169	1.00 47.84
ATOM	598	0	GLU		88	17.359 15.868	-4.200	34.109	1.00 49.05
MOTA	599	CB	GLU		88		-2.952	35.772	1.00 45.05
MOTA	600	CG	GLU		88	15.877	-3.020	36.976	1.00 52.05
MOTA	601	CD	GLU		88	16.809	-3.858	37.861	1.00 55.01
MOTA	602	OE1			88	16.608		37.020	1.00 54.23
MOTA	603	OE2			88	17.744	-2.221	32.311	1.00 50.79
MOTA	604	N	CYS	A	89	16.475	-6.018	J2.J11	1.00 30.79

 \mathbf{r}

Figure 8-21

								24 522	1 00 54 51
ATOM	605	CA	CYS .		89	16.489	-7.244	31.503	1.00 54.51
ATOM	606	С	CYS .		89	17.952	-7.703	31.459	1.00 55.09
ATOM	607	0	CYS .	A	89	18.231	-8.791	31.961	1.00 57.42
ATOM	608	CB	CYS .	Α	89	15.903	-6.972	30.078	1.00 57.17
ATOM	609	SG	CYS .	A	89	15.060	-8.280	29.096	1.00 64.80
ATOM	610	N	VAL .	Α	90	18.890	-6.838	31.002	1.00 55.69
ATOM	611	CA	VAL		90	20.357	-7.027	31.060	1.00 55.91
ATOM	612	C	VAL		90	20.906	-7.397	32.450	1.00 57.84
	613	0	VAL		90	22.014	-7.924	32.546	1.00 58.27
ATOM			VAL .		90	21.074	-5.738	30.480	1.00 53.45
ATOM	614	CB				22.542	-5.564	30.824	1.00 52.76
MOTA	615		VAL .		90			28.978	1.00 50.05
MOTA	616		VAL		90	20.965	-5.689		
MOTA	617	N	LYS		91	20.212	-7.128	33.558	1.00 59.29
MOTA	618	CA	LYS		91	20.556	-7.785	34.810	1.00 62.11
MOTA	619	C	LYS	Α	91	19.865	-9.163	34.996	1.00 63.85
ATOM	620	0	LYS	Α	91	20.517	-10.061	35.533	1.00 66.48
ATOM	621	CB	LYS	Α	91	20.305	-6.837	35.993	1.00 61.39
ATOM	622	N	SER	A	104	36.757	4.074	31.300	1.00 64.71
MOTA	623	CA	SER			36.147	4.043	29.974	1.00 64.00
ATOM	624	C	SER			34.723	3.416	29.904	1.00 61.57
	625	Õ	SER			34.321	2.749	30.871	1.00 62.78
MOTA		CB	SER			37.147	3.441	28.919	1.00 65.90
ATOM	626					38.150	4.399	28.533	1.00 67.30
ATOM	627	OG	SER				3.576	28.842	1.00 57.26
ATOM	628	N	PRO			33.891			
MOTA	629	CA	PRO			34.173	4.332	27.635	1.00 53.19
ATOM	630	С	PRO			34.452	5.801	27.827	1.00 51.76
ATOM	631	0	PRO			34.107	6.397	28.848	1.00 53.30
ATOM	632	CB	PRO	Α	105	32.968	4.091	26.813	1.00 51.85
ATOM	633	CG	PRO	Α	105	31.869	3.765	27.755	1.00 53.45
MOTA	634	CD	PRO	Α	105	32.618	2.880	28.698	1.00 55.74
ATOM	635	N	GLU	Α	106	35.242	6.296	26.875	1.00 50.80
ATOM	636	CA	GLU	Α	106	35.584	7.700	26.790	1.00 47.97
ATOM	637	C	GLU			34.332	8.435	26.350	1.00 44.14
ATOM	638	ŏ	GLU			33.684	8.006	25.400	1.00 42.91
ATOM	639	CB	GLU			36.796	7.970	25.858	1.00 51.71
	640	CG	GLU			36.873	7.196	24.509	1.00 57.13
MOTA		CD	GLU			38.045	6.192	24.389	1.00 60.78
ATOM	641		GLU			38.141	5.251	25.189	1.00 61.59
MOTA	642	OE1				38.874	6.338	23.482	1.00 63.52
ATOM	643	OE2	GLU				9.481	27.092	1.00 41.02
ATOM	644	N	PRO			33.936		26.770	1.00 41.02
MOTA	645	CA	PRO			32.846	10.386		
MOTA	646	С	PRO			33.069	11.190	25.517	1.00 37.93
MOTA	647	0	PRO			34.148	11.749	25.271	1.00 40.00
MOTA	648	CB	PRO	Α	107	32.764	11.292	27.970	1.00 39.85
MOTA	649	CG	PRO	Α	107	34.162	11.290	28.542	1.00 40.91
MOTA	650	CD	PRO	Α	107	34.522	9.832	28.384	1.00 41.30
ATOM	651	N	ARG	Α	108	32.000	11.208	24.724	1.00 35.40
ATOM	652	CA	ARG	Α	108	32.006	11.864	23.436	1.00 33.34
ATOM	653	C	ARG			30.766	12.722	23.318	1.00 29.75
	654	Õ	ARG			29.727	12.347	23.867	1.00 29.55
ATOM	655	CB	ARG			32.102	10.859	22.297	1.00 35.14
MOTA			ARG			33.480	10.219	22.313	1.00 39.55
MOTA	656	CG	ARG			33.734	9.386	21.057	1.00 44.05
ATOM	657	CD					8.324	21.284	1.00 45.36
ATOM	658	NE	ARG			34.715	7.376	20.373	1.00 45.38
MOTA	659	CZ	ARG			34.965		19.142	1.00 45.18
MOTA	660		ARG			34.481	7.446	17.142	
MOTA	661	NH2	ARG			35.679		20.712	1.00 46.89
MOTA	662	N	LEU	Α	109	30.932	13.877	22.650	1.00 26.42
MOTA	663	CA	LEU			29.833		22.334	1.00 25.17
ATOM	664	C	LEU	Α	109	29.126	14.453	21.020	1.00 25.96

Figure 8-22

MOTA	665	0	LEU	A 1	L09	29.774	14.229	20.002	1.00 26.43
ATOM	666	CB	LEU	Δ 1	109	30.316	16.182	22.280	1.00 24.30
MOTA	667	CG	LEU			31.003	16.770	23.483	1.00 25.72
ATOM	668	CD1	LEU	A 1	L09	31.426	18.185	23.137	1.00 26.28
MOTA	669	CD2	LEU	A 1	109	30.097	16.820	24.677	1.00 25.67
		N	PHE			27.794	14.427	20.988	1.00 24.52
ATOM	670								
ATOM	671	CA	PHE	A 1	L10	27.019	14.004	19.822	1.00 22.36
ATOM	672	C	PHE	A 1	L10	25.996	15.079	19.586	1.00 21.47
ATOM	673	0	PHE	Δ 1	110	25.618	15.777	20.525	1.00 21.05
							12.725	20.075	
MOTA	674	CB	PHE			26.227			
MOTA	675	CG	PHE	A 1	110	27.133	11.561	20.318	1.00 23.01
ATOM	676	CD1	PHE	A 1	L10	27.676	10.892	19.238	1.00 24.43
ATOM	677		PHE			27.506	11.243	21.597	1.00 21.68
			PHE			28.614	9.897	19.463	1.00 24.92
MOTA	678								
MOTA	679	CE2	$_{ m PHE}$	A 1	110	28.460	10.282	21.798	1.00 22.08
ATOM	680	CZ	PHE	A 1	110	29.017	9.597	20.746	1.00 23.51
ATOM	681	N	THR			25.557	15.239	18.339	1.00 20.40
MOTA	682	CA	THR			24.422	16.102	18.047	1.00 19.58
ATOM	683	С	THR	A 1	111	23.175	15.367	18.473	1.00 15.81
ATOM	684	0	THR	A 1	L11	23.239	14.150	18.603	1.00 18.63
ATOM	685	CB	THR			24.305	16.421	16.578	1.00 19.96
MOTA	686	OG1	THR			24.145	15.178	15.907	1.00 21.91
MOTA	687	CG2	THR	A 1	111	25.487	17.252	16.118	1.00 23.08
ATOM	688	N	PRO	A 1	L12	22.030	15.982	18.688	1.00 15.89
MOTA	689	CA	PRO			20.783	15.254	18.984	1.00 16.41
							14.089	18.025	1.00 17.10
MOTA	690	C	PRO			20.500			
MOTA	691	0	PRO	A 1	112	20.329	12.954	18.431	1.00 18.32
ATOM	692	CB	PRO	A 1	L12	19.794	16.375	18.870	1.00 13.89
ATOM	693	CG	PRO	Δ 1	112	20.581	17.559	19.386	1.00 14.36
							17.424	18.685	
MOTA	694	CD	PRO			21.876			
MOTA	695	N	GLU			20.564	14.321	16.728	1.00 20.22
MOTA	696	CA	GLU	A 1	L13	20.393	13.303	15.737	1.00 24.11
MOTA	697	С	GLU	A 1	113	21.371	12.143	15.864	1.00 24.55
							10.982	15.866	1.00 25.38
MOTA	698	0_	GLU			20.963			
ATOM	699	CB	GLU	A l	L13	20.539	13.991	14.420	1.00 29.66
ATOM	700	CG	${ t GLU}$	A 1	L 1 3	20.432	13.029	13.250	1.00 41.26
ATOM	701	CD	GLU	A 1	113	21.253	13.476	12.042	1.00 49.84
	702		GLU .			22.475	13.694	12.197	1.00 52.84
ATOM									
ATOM	703	OE2	GLU			20.662	13.586	10.949	1.00 55.78
ATOM	704	N	GLU	A 1	L14	22.663	12.384	16.033	1.00 24.48
MOTA	705	CA	GLU	A 1	114	23.594	11.291	16.198	1.00 22.26
ATOM	706	C	GLU			23.398	10.486	17.471	1.00 22.80
ATOM	707	0_	GLU .			23.564	9.256	17.494	1.00 23.87
MOTA	708	CB	GLU	A 1	114	24.979	11857	16.198	1.00 26.15
MOTA	709	CG	GLU .	A 1	114	25.362	12.534	14.897	1.00 32.62
ATOM	710	CD	GLU			26.719	13.225	15.002	1.00 38.61
		OE1				26.860	14.093	15.867	1.00 41.67
MOTA	711		GLU						
MOTA	712	OE2	GLU .	A 1	114	27.646	12.893	14.242	1.00 42.28
ATOM	713	N	PHE	A 1	115	23.035	11.181	18.558	1.00 21.59
MOTA	714	CA	PHE	A 1	15	22.812	10.544	19.850	1.00 19.30
		C	PHE			21.601	9.645	19.667	1.00 17.06
MOTA	715								
MOTA	716	0	PHE			21.555	8.527	20.165	1.00 17.46
ATOM	717	CB	PHE .	A 1	.15	22.586	11.623	20.972	1.00 16.68
ATOM	718	CG	PHE			22.148	11.018	22.298	1.00 13.67
	719		PHE			20.820	10.679	22.520	1.00 15.42
ATOM									
MOTA	720		PHE			23.081	10.752	23.261	1.00 15.56
ATOM	721	CE1	PHE	A 1	L15	20.412	10.003	23.650	1.00 16.48
ATOM	722		PHE			22.674	10.136	24.429	1.00 17.36
	723	CZ	PHE			21.351	9.750	24.617	1.00 18.29
ATOM									
MOTA	724	N	PHE	Αl	ГТР	20.581	10.135	18.981	1.00 18.67

 \mathbf{z}

Figure 8-23

						10 000	7 00 70 57
ATOM	725	CA	PHE A 116	19.401	9.327	18.860	1.00 18.51
ATOM	726	С	PHE A 116	19.510	8.196	17.854	1.00 22.03
ATOM	727	0	PHE A 116	18.768	7.213	17.892	1.00 22.83
ATOM	728	CB	PHE A 116	18.204	10.195	18.687	1.00 19.13
ATOM	729	CG	PHE A 116	17.735	10.764	20.021	1.00 19.41
	730	CD1	PHE A 116	17.159	9.924	20.952	1.00 19.08
MOTA		CD2	PHE A 116	17.991	12.079	20.343	1.00 19.60
MOTA	731			16.911	10.381	22.214	1.00 18.67
ATOM	732	CE1	PHE A 116	17.747	12.528	21.619	1.00 21.95
MOTA	733	CE2	PHE A 116			22.550	1.00 21.33
MOTA	734	CZ	PHE A 116	17.218	11.674		
MOTA	735	N	ARG A 117	20.510	8.249	16.986	1.00 22.43
MOTA	736	CA	ARG A 117	20.822	7.134	16.123	1.00 21.98
ATOM	737	С	ARG A 117	21.453	6.076	16.971	1.00 19.70
ATOM	738	0	ARG A 117	21.039	4.946	16.841	1.00 22.56
ATOM	739	СВ	ARG A 117	21.769	7.623	15.052	1.00 27.63
	740	CG	ARG A 117	22.329	6.596	14.082	1.00 36.33
MOTA	741	CD	ARG A 117	23.135	7.255	12.971	1.00 43.02
MOTA		-	ARG A 117	22.296	8.207	12.239	1.00 49.61
MOTA	742	NE		22.704	9.468	12.008	1.00 54.02
MOTA	743	CZ	ARG A 117		9.867	12.474	1.00 53.58
MOTA	744	NH1	ARG A 117	23.915		11.313	1.00 53.56
MOTA	745	NH2	ARG A 117	21.899	10.314		
ATOM	746	N	ILE A 118	22.394	6.348	17.874	1.00 19.56
ATOM	747	CA	ILE A 118	22.944	5.328	18.746	1.00 18.66
MOTA	748	С	ILE A 118	21.888	4.776	19.673	1.00 19.62
MOTA	749	0	ILE A 118	21.887	3.579	19.933	1.00 21.23
MOTA	750	CB	ILE A 118	24.054	5.970	19.533	1.00 21.60
ATOM	751	CG1	ILE A 118	25.121	6.479	18.593	1.00 22.63
	752	CG2	ILE A 118	24.665	5.002	20.534	1.00 22.20
ATOM	753	CD1	ILE A 118	26.178	7.330	19.285	1.00 23.90
ATOM		N	PHE A 119	20.971	5.619	20.180	1.00 20.06
ATOM	754		PHE A 119	19.827	5.124	20.943	1.00 21.07
ATOM	755	CA	PHE A 119	18.940	4.182	20.141	1.00 21.06
MOTA	756	C		18.720	3.075	20.600	1.00 22.31
MOTA	757	0_	PHE A 119		6.253	21.590	1.00 18.55
MOTA	758	CB	PHE A 119	19.001	5.856	22.342	1.00 18.55
MOTA	759	CG	PHE A 119	17.726		21.673	1.00 17.37
MOTA	760	CD1	PHE A 119	16.517	5.708		
MOTA	761	CD2	PHE A 119	17.736	5.715	23.718	1.00 21.09
MOTA	762		PHE A 119	15.348	5.439	22.351	1.00 16.37
MOTA	763	CE2	PHE A 119	16.555	5.448	24.404	1.00 19.97
ATOM	764	CZ	PHE A 119	15.369	5.311	23.721	1.00 19.81
MOTA	765	N	ASN A 120	18.426	4.507	18.957	1.00 22.51
MOTA	766	CA	ASN A 120	17.567	3.577	18.222	1.00 23.92
ATOM	767	C	ASN A 120	18.284	2.316	17.841	1.00 25.82
ATOM	768	ŏ	ASN A 120	17.653	1.274	17.841	1.00 26.73
	769	СВ	ASN A 120	16.912	4.179	16.996	1.00 20.96
MOTA	770	CG	ASN A 120	15.857	5.195	17.377	1.00 24.90
ATOM			ASN A 120	14.852	4.877	18.020	1.00 30.44
ATOM	771		ASN A 120	16.044	6.458	17.023	1.00 26.09
ATOM	772			19.605	2.390	17.632	1.00 29.29
MOTA	773	N	ARG A 121			17.314	1.00 32.15
MOTA	774	CA	ARG A 121	20.447	1.234	18.503	1.00 32.13
MOTA	775	C	ARG A 121	20.686	0.283		1.00 32.13
MOTA	776	0	ARG A 121	20.652	-0.949	18.369	
MOTA	777	CB	ARG A 121	21.752	1.846	16.891	1.00 36.26
ATOM	778	CG	ARG A 121	22.606	0.988	16.001	1.00 42.80
MOTA	779	CD	ARG A 121	24.066	1.304	16.288	1.00 45.46
MOTA	780	NE	ARG A 121	24.730	0.026	16.469	1.00 49.59
MOTA	781	CZ	ARG A 121	25.603	-0.473	15.599	1.00 47.62
ATOM	782		ARG A 121	26.106	0.291	14.622	1.00 50.56
ATOM	783	NHO	ARG A 121	25.907	-1.764	15.692	1.00 41.39
	784	N	SER A 122	20.925	0.856	19.695	1.00 29.65
MOTA	,04		3				

опоопопри простительной простит

Figure 8-24

ATOM	785	CA	SER A	122	20.981	0.077	20.908	1.00 27.73
ATOM	786	С	SER A	122	19.643	-0.555	21.201	1.00 27.23
ATOM	787	ō	SER A		19.603	-1.652	21.716	1.00 28.27
		CB	SER A		21.388	0.942	22.071	1.00 25.31
MOTA	788					1.543	21.726	1.00 25.19
MOTA	789	OG	SER A		22.619			
MOTA	790	Ň	ILE A		18.530	0.087	20.884	1.00 29.27
MOTA	791	CA	ILE A	123	17.210	-0.453	21.140	1.00 31.25
MOTA	792	C	ILE A	123	16.972	-1.618	20.207	1.00 32.43
ATOM	793	0	ILE A	123	16.522	-2.672	20.637	1.00 32.75
MOTA	794	CB	ILE A		16.129	0.661	20.973	1.00 33.20
	795	CG1	ILE A		16.103	1.685	22.130	1.00 35.29
MOTA		CG2	ILE A		14.739	0.181	20.629	1.00 33.87
MOTA	796				16.243	1.313	23.627	1.00 32.91
MOTA	797		ILE A					
MOTA	798	N	ASP A		17.325	-1.466	18.937	1.00 35.41
MOTA	799	CA	ASP A	124	17.064	-2.502	17.973	1.00 38.41
MOTA	800	С	ASP A	124	17.902	-3.728	18.170	1.00 38.55
MOTA	801	0	ASP A	124	17.386	-4.820	17.960	1.00 39.71
ATOM	802	CB	ASP A	124	17.074	-1.951	16.562	1.00 43.19
ATOM	803	CG	ASP A		15.763	-1.179	16.387	1.00 51.27
	804	OD1	ASP A		14.700	-1.790	16.620	1.00 56.07
MOTA			ASP A		15.784	0.020	16.039	1.00 54.65
MOTA	805	OD2				-3.546	18.739	1.00 37.63
MOTA	806	N	ALA A		19.102			
MOTA	807	CA	ALA A		20.039	-4.621	18.983	1.00 37.10
MOTA	808	C	ALA A	125	19.555	-5.682	19.944	1.00 39.02
MOTA	809	0	ALA A	125	20.250	-6.667	20.151	1.00 40.94
MOTA	810	CB	ALA A	125	21.321	-4.035	19.500	1.00 35.16
ATOM	811	N	PHE A	126	18.374	-5.538	20.549	1.00 41.54
ATOM	812	CA	PHE A	126	17.774	-6.599	21.363	1.00 45.13
ATOM	813	C	PHE A		16.837	-7.482	20.578	1.00 47.39
ATOM	814	ŏ	PHE A		16.711	-8.660	20.900	1.00 48.19
MOTA	815	CB	PHE A		16.971	-6.099	22.571	1.00 45.19
		CG	PHE A		17.791	-5.456	23.683	1.00 44.53
MOTA	816		PHE A		18.239	-4.150	23.568	1.00 43.63
ATOM	817	CD1	PHE A		18.073	-6.184	24.815	1.00 44.69
MOTA	818	CD2			18.960	-3.565	24.576	1.00 41.80
MOTA	819	CE1	PHE A			-5.597	25.822	1.00 43.70
MOTA	820	CE2	PHE A		18.800			1.00 43.70
MOTA	821	CZ	PHE A		19.238	-4.295	25.700	
MOTA	822	N	LYS A		16.128	-6.898	19.600	1.00 50.61
MOTA	823	CA	LYS A	127	15.283	-7.656	18.679	1.00 53.56
MOTA	824	C	LYS A	127	16.149	-8.640	17.856	1.00 55.43
MOTA	825	0	LYS A	127	16.038	-9.876	17.922	1.00 57.14
MOTA	826	CB	LYS A	127	14.546	-6.638	17.764	1.00 51.56
ATOM	827	N	ASP A	128	17.077	-8.036	17.105	1.00 57.96
MOTA	828	CA	ASP A	128	18.105	-8.734	16.356	1.00 59.25
ATOM	829	C	ASP A		19.292	-9.249	17.190	1.00 59.16
ATOM	830	Õ	ASP A		20.461	-8.894	17.008	1.00 58.89
	831	СВ	ASP A		18.492	-7.915	15.062	1.00 61.00
MOTA		CG	ASP A		18.868	-6.421	15.036	1.00 61.70
MOTA	832				20.024	-6.078	15.330	1.00 63.63
MOTA	833		ASP A				14.667	1.00 61.66
MOTA	834		ASP A		18.015	-5.603	18.118	1.00 59.49
MOTA	835	N	PHE A	129		-10.151		
MOTA	836	CA	PHE A	129	19.969	-10.719	19.002	1.00 61.20
MOTA	837	C	PHE A		20.411	-12.103	18.503	1.00 61.55
MOTA	838	0	PHE A	129	19.596	-12.979	18.179	1.00 61.67
MOTA	839	CB	PHE A	129	19.410	-10.801	20.440	1.00 64.40
ATOM	840	CG	PHE A	129	20.326	-10.282	21.561	1.00 67.62
ATOM	841		PHE A		21.642	-10.721	21.686	1.00 68.55
ATOM	842		PHE A		19.847	-9.338	22.473	1.00 69.51
ATOM	843		PHE A			-10.192	22.672	1.00 68.84
ATOM	844		PHE A		20.665	-8.823	23.472	1.00 68.79
VIOU	511	J 						

Figure 8-25

MOTA	845	CZ	PHE	Α	129	21.976	-9.245	23.561	1.00 69.80
ATOM	846	N	VAL	Α	130		-12.294	18.417	1.00 60.68
ATOM	847	CA	VAL	Α	130		-13.577	18.041	1.00 60.72
ATOM	848	C	VAL	A	130		-13.949	19.040	1.00 59.57
ATOM	849	0	VAL	Α	130	24.157	-13.076	19.597	1.00 58.08
ATOM	850	CB	VAL	Α	130	22.937	-13.560	16.582	1.00 60.98
ATOM	851	CG1	VAL	Α	130	23.051	-15.001	16.068	1.00 60.93
MOTA	852	CG2	VAL	Α	130	22.229	-12.635	15.579	1.00 58.32
ATOM	853	N	VAL			23.635	-15.277	19.213	1.00 57.03
ATOM	854	CA	VAL	Α	131	24.634	-15.872	20.101	1.00 54.98
ATOM	855	C	VAL			26.059	-15.336	19.950	1.00 53.17
ATOM	856	ō	VAL			26.547	-15.173	18.839	1.00 51.72
ATOM	857	CB	VAL			24.563	-17.411	19.950	1.00 55.34
ATOM	858	CG1	VAL			25.611	-18.162	20.780	1.00 55.30
MOTA	859	CG2	VAL			23.145	-17.893	20.297	1.00 54.41
MOTA	860	N	ALA			26.660	-15.027	21.117	1.00 52.91
MOTA	861	CA	ALA			28.022	-14.512	21.293	1.00 52.69
	862	C	ALA			29.161	-15.433	20.860	1.00 53.47
MOTA	863	Õ	ALA			30.250	-15.019	20.445	1.00 52.96
MOTA	864	CB	ALA			28.268	-14.176	22.771	1.00 48.84
ATOM		N	SER			28.899		21.000	1.00 55.81
ATOM	865 866	CA	SER			29.812		20.533	1.00 58.09
MOTA		C	SER			29.744		19.005	1.00 59.46
ATOM	867	0	SER			30.726	-18.259	18.343	1.00 61.98
MOTA	868		SER			29.348		21.161	1.00 59.31
MOTA	869	CB	GLU			28.556	-17.536	18.469	1.00 58.84
MOTA	870	N	GLU			28.251		17.031	1.00 57.10
ATOM	871	CA	GLU			28.550		16.298	1.00 54.08
ATOM	872	C	GLU			28.319		15.094	1.00 50.66
ATOM	873	O	GLU			26.768		16.761	1.00 58.33
ATOM	874	CB CG	GLU			26.269		17.121	1.00 61.93
MOTA	875	CD	GLU			24.955		16.436	1.00 65.28
MOTA	876 877		GLU			24.056		16.294	1.00 64.83
ATOM	878	OE2				24.853		16.034	1.00 68.18
MOTA	879	N	THR			28.999		16.988	1.00 52.70
MOTA	880	CA	THR			29.366		16.291	1.00 51.61
ATOM		C	THR			30.896		16.192	1.00 51.35
MOTA	881 882	0	THR			31.549		15.580	1.00 52.93
MOTA		CB	THR			28.621		16.830	1.00 49.31
MOTA	883	OG1	THR			29.039		18.171	1.00 49.65
ATOM	884	CG2	THR			27.108		16.767	1.00 48.16
ATOM	885	N N	SER			31.473		16.825	1.00 50.88
MOTA	886	CA	SER			32.885		16.714	1.00 49.48
ATOM	887	C	SER			33.422		18.121	1.00 47.44
ATOM	888	0	SER			32.624		19.056	1.00 46.14
ATOM	889 890	CB	SER		136	32.966		15.767	1.00 50.00
ATOM	891	OG	SER			32.146		14.615	1.00 52.41
ATOM	892	N	ASP			34.760		18.314	1.00 44.90
ATOM	893	CA	ASP			35.366		19.566	1.00 40.01
ATOM		C	ASP			35.037		19.850	1.00 36.45
MOTA	894		ASP	ν -	137	34.105		19.228	1.00 35.34
MOTA	895	O CB			137	36.879		19.641	1.00 40.10
ATOM	896				137	37.915		18.783	1.00 44.69
ATOM	897	CG	ASP			37.617		18.252	1.00 46.41
ATOM	898		ASP			39.056		18.648	1.00 46.87
MOTA	899	N			138	35.702		20.741	1.00 32.95
MOTA	900	CA.			138	35.263		21.014	1.00 31.28
MOTA	901	CA			138	36.31		20.838	1.00 30.73
MOTA	902	0			138	36.233		21.414	1.00 31.32
ATOM	903 904	CB			138	34.557		22.361	1.00 32.08
MOTA	90 4	CD	C11						

Figure 8-26

MOTA	905	SG	CYS A 1	.38	32.988	-8.777	22.463	1.00 37.40
ATOM	906	N	VAL A 1	.39	37.258	-7.242	19.954	1.00 30.63
ATOM	907	CA	VAL A 1	.39	38.333	-6.318	19.599	1.00 29.74
MOTA	908	C	VAL A 1	.39	38.151	-5.898	18.168	1.00 28.81
	909	Õ	VAL A 1		37.830	-6.734	17.342	1.00 27.95
MOTA		CB	VAL A 1		39.769	-6.915	19.600	1.00 28.99
ATOM	910				40.717	-5.884	20.195	1.00 29.64
MOTA	911	CG1	VAL A 1		39.889	-8.307	20.143	1.00 26.32
ATOM	912	CG2			38.424	-4.646	17.840	1.00 31.00
MOTA	913	N	VAL A 1			-4.247	16.459	1.00 34.50
MOTA	914	CA	VAL A 1		38.442		16.020	1.00 34.50
ATOM	915	С	VAL A 1		39.899	-4.167		1.00 30.04
MOTA	916	0	VAL A 1	L 4 0	40.406	-5.059	15.323	
MOTA	917	CB	VAL A	L 4 0	37.758	-2.914	16.217	1.00 36.55
MOTA	918	CG1	VAL A	L40	37.417	-2.900	14.747	1.00 36.42
ATOM	919	CG2	VAL A	L40	36.594	-2.569	17.119	1.00 34.81
ATOM	920	N	SER A	L 41	40.566	-3.136	16.529	1.00 37.83
ATOM	921	CA	SER A	L41	41.905	-2.682	16.123	1.00 41.81
MOTA	922	C	SER A		41.936	-1.563	15.056	1.00 42.37
	923	Õ	SER A		43.035	-1.174	14.685	1.00 43.60
MOTA	924	CB	SER A		42.986	-3.811	15.889	1.00 42.08
MOTA		OG	SER A		43.175	-4.693	17.008	1.00 38.01
MOTA	925	OG	SER A		13.1.5			
TER	927	3.7	ASN B	11	2.666	37.382	21.946	1.00 65.93
MOTA	928	N			1.945	36.256	22.556	1.00 66.50
MOTA	929	CA	ASN B	11	2.726	35.510	23.658	1.00 66.17
MOTA	930	C	ASN B	11	3.559	34.641	23.372	1.00 66.24
MOTA	931	0	ASN B	11		35.204	21.515	1.00 66.50
MOTA	932	CB	ASN B	11	1.488		24.934	1.00 65.43
MOTA	933	N	VAL B	12	2.404	35.814		1.00 62.92
MOTA	934	ca	VAL B	12	3.197	35.450	26.131	1.00 62.92
MOTA	935	С	VAL B	12	3.195	33.985	26.631	
MOTA	936	0	VAL B	12	4.143	33.547	27.294	1.00 59.00
MOTA	937	CB	VAL B	12	2.780	36.430	27.299	1.00 64.35
MOTA	938	CG1	VAL B	12	1.408	36.086	27.935	1.00 63.94
MOTA	939	CG2	VAL B	12	3.908	36.621	28.318	1.00 63.41
ATOM	940	N	LYS B	13	2.125	33.208	26.374	1.00 56.82
ATOM	941	CA	LYS B	13	2.071	31.821	26.800	1.00 51.85
ATOM	942	C	LYS B	13	3.021	31.001	25.927	1.00 48.88
MOTA	943	0	LYS B	13	3.595	30.003	26.380	1.00 49.33
ATOM	944	CB	LYS B	13	0.640	31.283	26.675	1.00 52.25
MOTA	945	N	ASP B	14	3.258	31.456	24.684	1.00 44.12
ATOM	946	CA	ASP B	14	4.169	30.783	23.770	1.00 37.71
ATOM	947	C	ASP B	14	5.662	30.978	24.040	1.00 31.42
	948	Ö	ASP B	14	6.413	30.026	23.895	1.00 30.29
MOTA	949	CB	ASP B	14	3.763	31.113	22.326	1.00 40.87
MOTA	950	CG	ASP B	14	2.497	30.409	21.803	1.00 44.08
ATOM			ASP B	14	1.832	29.636	22.531	1.00 44.87
MOTA	951		ASP B	14	2.192	30.662	20.631	1.00 45.27
MOTA	952		VAL B	15	6.165	32.130	24.468	1.00 25.72
MOTA	953	N			7.545	32.234	24.906	1.00 24.93
MOTA	954	CA		15 15	7.872	31.357	26.112	1.00 26.84
MOTA	955	C	VAL B	15	8.935	30.739	26.124	1.00 29.81
MOTA	956	0	VAL B	15		33.670	25.178	1.00 22.45
MOTA	957	CB	VAL B	15	7.914	33.803	25.722	1.00 18.01
MOTA	958	CG:	L VAL B	15	9.335	34.435	23.895	1.00 21.89
MOTA	959		2 VAL B	15	7.730		27.104	1.00 27.60
MOTA	960	N	THR B	16	6.962	31.275		
MOTA	961	CA	THR B	16	7.040	30.393		
MOTA	962	C	THR B	16	7.191	28.905		
MOTA	963	0	THR B	16	8.063	28.227		
MOTA	964		THR B	16	5.797	30.649		
MOTA	965	OG:	1 THR B	16	5.967	31.920	29.887	1.00 30.85

 \mathbf{n}

Figure 8-27

MOTA	966	CG2	THR B	16		5.605	29.577	30.304	1.00 29.47
ATOM	967	N	LYS B	17		6.385	28.387	26.979	1.00 24.02
ATOM	968	CA	LYS B	17		6.508	27.042	26.455	1.00 25.48
MOTA	969	С	LYS B	17		7.776	26.845	25.607	1.00 22.72
MOTA	970	0	LYS B	17		8.397	25.806	25.690	1.00 22.89
ATOM	971	CB	LYS B	17		5.235	26.851	25.662	1.00 29.47
ATOM	972	CG	LYS B	17		5.047	25.479	25.076	1.00 36.80
MOTA	973	CD	LYS B	17		3.820	25.460	24.129	1.00 40.47
ATOM	974	CE	LYS B	17		3.432	24.008	23.742	1.00 42.23
MOTA	975	NZ	LYS B	17		4.518	23.260	23.099	1.00 40.28
ATOM	976	N	LEU B	18		8.223	27.840	24.836	1.00 21.80
MOTA	977	CA	LEU B	18		9.489	27.797	24.148	1.00 19.84
ATOM	978	С	LEU B	18	1	10.608	27.757	25.151	1.00 19.53
ATOM	979	0	LEU B	18	1	1.425	26.868	24.985	1.00 22.71
ATOM	980	CB	LEU B	18		9.660	28.989	23.206	1.00 17.63
ATOM	981	CG	LEU B	18]	LO.954	29.148	22.479	1.00 13.25
ATOM	982	CD1	LEU B	18	1	L1.216	27.956	21.627	1.00 16.15
MOTA	983	CD2	LEU E	18		LO.895	30.338	21.606	1.00 13.19
ATOM	984	N	VAL E	19		L0.670	28.606	26.187	1.00 17.49
MOTA	985	CA	VAL E	19		L1.713	28.547	27.193	1.00 15.59
MOTA	986	C	VAL E	19		L1.708	27.199	27.912	1.00 16.76
MOTA	987	0	VAL E	19		12.763	26.598	28.121	1.00 18.54
MOTA	988	CB	VAL E	3 19		11.587	29.741	28.170	1.00 15.79
ATOM	989	CG1	VAL E			12.566	29.662	29.308	1.00 13.19
ATOM	990	CG2	VAL E			11.922	31.014	27.489	1.00 12.62
MOTA	991	И	ALA E			10.533	26.655	28.232	1.00 17.26 1.00 17.20
MOTA	992	CA	ALA E			10.415	25.384	28.918	1.00 17.20
MOTA	993	C	ALA E			10.866	24.235 23.166	28.075 28.578	1.00 20.20
MOTA	994	0_	ALA E		•	11.185 8.972	25.064	29.185	1.00 18.25
ATOM	995	CB	ALA E			10.854	24.390	26.763	1.00 22.32
ATOM	996	N	ASN E			11.373	23.351	25.920	1.00 21.93
ATOM	997	CA	ASN E			12.711	23.661	25.314	1.00 21.34
ATOM	998	С О	ASN I			13.114	22.930	24.441	1.00 23.28
ATOM	999 1000	CB	ASN E			10.378	23.022	24.873	1.00 26.17
MOTA	1000	CG	ASN I			9.256	22.250	25.531	1.00 31.77
MOTA MOTA	1001		ASN I			9.352	21.054	25.813	1.00 30.41
ATOM	1002		ASN I			8.168	22.955	25.820	1.00 34.22
ATOM	1003	N	LEU I			13.455	24.675	25.727	1.00 20.84
ATOM	1005	CA	LEU I			14.825	24.880	25.285	1.00 18.95
ATOM	1006	C	LEU I			15.754	24.358	26.359	1.00 19.14
ATOM	1007	Ō	LEU I	B 22		15.428	24.560	27.526	1.00 19.71
ATOM	1008	CB	LEU I	B 22		15.097	26.380	25.022	1.00 17.41
ATOM	1009	CG	LEU I	B 22		14.510	27.035	23.750	1.00 15.79
MOTA	1010	CD1	LEU !	B 22		14.718	28.544	23.724	1.00 13.61
MOTA	1011	CD2	LEU 1	B 22		15.120	26.381	22.517	1.00 14.80
MOTA	1012	N	PRO I	В 23		16.903	23.701	26.091	1.00 18.35
ATOM	1013	CA	PRO 1	B 23		17.831	23.260	27.130	1.00 17.51
MOTA	1014	C	PRO 1	B 23		18.329	24.418	28.008	1.00 17.87
MOTA	1015	0	PRO 1			18.703	25.449	27.473	1.00 18.03
ATOM	1016	CB	PRO :			18.908	22.619	26.307	1.00 13.87
MOTA	1017	CG	PRO :			18.299	22.223	25.002	1.00 12.84 1.00 14.01
MOTA	1018	CD	PRO			17.457	23.421	24.762 29.347	1.00 14.01
ATOM	1019	N	LYS			18.327	24.340	30.226	1.00 18.87
MOTA	1020	CA	LYS			18.756	25.441 25.930	30.226	1.00 21.98
MOTA	1021	C	LYS			20.207	25.930	30.039	1.00 21.61
MOTA	1022	0	LYS			20.567	25.044	31.703	1.00 23.68
MOTA	1023	CB	LYS			18.456 16.956	25.044	32.077	1.00 29.69
MOTA	1024	CG	LYS			16.544	24.407	33.429	1.00 34.88
MOTA	1025	CD	LYS	24 ب		_U.J-T	,		

Figure 8-28

		~-		_					
MOTA	1026	CE	LYS	В	24	15.010	24.526	33.777	1.00 39.45
ATOM	1027	NZ	LYS	В	24	14.493	23.773	34.927	1.00 41.87
ATOM	1028	N	ASP		25	21.040	25.044	29.503	1.00 19.08
MOTA	1029	CA	ASP		25	22.440	25.350	29.263	1.00 20.79
MOTA	1030	C	ASP	В	25	22.758	25.601	27.789	1.00 19.77
MOTA	1031	0	ASP	В	25	23.907	25.469	27.373	1.00 20.06
ATOM	1032	CB	ASP	R	25	23.305	24.190	29.796	1.00 17.87
							22.836		
MOTA	1033	CG	ASP		25	23.063		29.175	
ATOM	1034	OD1	ASP	В	25	21.975	22.598	28.651	1.00 22.64
ATOM	1035	OD2	ASP	В	25	23.964	21.991	29.214	1.00 24.79
MOTA	1036	N	TYR	В	26	21.753	25.866	26.950	1.00 19.06
	1037	CA	TYR		26	21.990	26.130	25.542	
MOTA									
MOTA	1038	С	TYR		26	22.027	27.652	25.358	1.00 18.82
MOTA	1039	0	TYR	В	26	21.066	28.358	25.655	1.00 19.57
MOTA	1040	CB	TYR	В	26	20.900	25.477	24.712	1.00 16.23
ATOM	1041	CG	TYR		26	21.007	25.766	23.228	1.00 19.16
MOTA	1042	CD1	TYR		26	22.034	25.216	22.492	1.00 20.33
ATOM	1043	CD2	TYR	В	26	20.097	26.629	22.632	1.00 19.21
MOTA	1044	CE1	TYR	В	26	22.125	25.531	21.150	1.00 19.71
MOTA	1045	CE2	TYR	B	26	20.180	26.936	21.294	1.00 18.86
		CZ	TYR		26	21.184	26.356	20.565	1.00 21.21
MOTA	1046								
MOTA	1047	OH	TYR		26	21.209	26.560	19.204	1.00 23.57
HETATM	1048	N	MSE	В	27	23.136	28.207	24.891	1.00 18.02
HETATM	1049	CA	MSE	В	27	23.249	29.645	24.886	1.00 20.01
HETATM		C	MSE		27	22.894	30.253	23.553	1.00 20.43
HETATM		0_	MSE		27	23.319	29.791	22.493	1.00 22.74
HETATM		CB	MSE		27	24.648	30.070	25.309	1.00 21.80
HETATM	1053	ÇG	MSE	В	27	25.179	29.494	26.646	1.00 24.25
HETATM	1054	SE	MSE	В	27	24.219	29.995	28.260	1.00 30.76
HETATM		CE	MSE		27	24.936	31.691	28.317	1.00 17.91
			ILE			22.071	31.294	23.642	1.00 21.17
MOTA	1056	N			28				
MOTA	1057	CA	ILE		28	21.690	32.092	22.507	1.00 20.03
MOTA	1058	C	ILE	В	28	22.501	33.383	22.470	1.00 20.64
ATOM	1059	0	ILE	В	28	22.545	34.162	23.403	1.00 19.83
MOTA	1060	CB	ILE		28	20.168	32.289	22.522	1.00 19.56
ATOM	1061	CG1	ILE		28	19.489	30.935	22.719	1.00 14.81
MOTA	1062	CG2	ILE		28	19.653	32.893	21.195	1.00 17.30
MOTA	1063	CD1	ILE	В	28	17.993	31.054	22.978	1.00 14.38
MOTA	1064	N	THR	В	29	23.235	33.585	21.364	1.00 22.56
MOTA	1065	CA	THR		29	24.048	34.777	21.117	1.00 21.92
					29		35.926	20.723	1.00 21.18
MOTA	1066	C	THR			23.167			
MOTA	1067	0	THR		29	22.235	35.744	19.926	1.00 24.05
ATOM	1068	CB	THR	В	29	25.003	34.540	19.949	1.00 24.32
MOTA	1069	OG1	THR	В	29	25.751	33.393	20.310	1.00 26.19
ATOM	1070	CG2	THR		29	25.901	35.743	19.657	1.00 23.45
			LEU		30	23.485	37.110	21.229	1.00 19.18
MOTA	1071	N							
MOTA	1072	CA	LEU	В	30	22.694	38.278	20.928	1.00 19.42
ATOM	1073	С	LEU	В	30	23.612	39.444	21.123	1.00 20.84
MOTA	1074	0	LEU	В	30	24.251	39.604	22.155	1.00 22.59
	1075	CB	LEU		30	21.486	38.458	21,822	1.00 16.57
MOTA								21.692	
MOTA	1076	CG	LEU		30	20.712	39.739		1.00 17.65
ATOM	1077		LEU		30	19.907	39.690	20.405	1.00 15.54
MOTA	1078	CD2	LEU	В	30	19.875	40.004	22.946	1.00 14.12
ATOM	1079	N	LYS		31	23.641	40.271	20.085	1.00 21.41
	1080	CA	LYS		31	24.340	41.533	20.142	1.00 22.33
MOTA									
MOTA	1081	C	LYS		31	23.462	42.478	20.918	1.00 21.90
MOTA	1082	0	LYS		31	22.714	43.295	20.370	1.00 24.57
MOTA	1083	CB	LYS	В	31	24.642	42.093	18.754	1.00 21.18
MOTA	1084	CG	LYS	В	31	25.844	41.479	18.111	1.00 21.89
MOTA	1085	CD	LYS	В	31	25.551	41.360	16.647	1.00 29.30
ATOM	1000	CD		_					J

Figure 8-29

MOTA	1086	CE	LYS I	3 31	26.741	40.957	15.808	1.00 31.29
MOTA	1087	NZ	LYS I		27.628	42.105	15.688	1.00 39.41
	1088	N	TYR I		23.572	42.299	22.227	1.00 21.32
ATOM	1089	CA	TYR I		22.800	43.101	23.138	1.00 19.60
MOTA			TYR I		23.198	44.586	22.981	1.00 19.96
ATOM	1090	C			24.384	44.940	22.977	1.00 19.90
MOTA	1091	0	TYR I			42.513	24.532	1.00 20.37
ATOM	1092	CB	TYR I		23.094			
MOTA	1093	CG	TYR I		22.621	43.373	25.710	1.00 17.26
ATOM	1094	CD1	TYR I		21.298	43.297	26.107	1.00 15.20
MOTA	1095	CD2	TYR I		23.490	44.280	26.299	1.00 14.00
MOTA	1096	CE1	TYR I		20.851	44.149	27.086	1.00 13.12
MOTA	1097	CE2	TYR I		23.013	45.166	27.227	1.00 14.39
MOTA	1098	CZ	TYR I		21.702	45.070	27.606	1.00 13.82
MOTA	1099	OH	TYR I		21.213	45.916	28.560	1.00 18.31
MOTA	1100	N	VAL I		22.179	45.455	22.873	1.00 19.13
MOTA	1101	CA	VAL I		22.376	46.889	22.818	1.00 19.34
MOTA	1102	С	VAL I	3 33	22.478	47.489	24.223	1.00 22.86
MOTA	1103	0	VAL I	3 33	21.487	47.535	24.979	1.00 23.26
MOTA	1104	CB	VAL I	3 3 3	21.220	47.609	22.071	1.00 18.33
MOTA	1105	CG1	VAL I	3 3 3	21.607	49.014	21.732	1.00 17.72
MOTA	1106	CG2	VAL I	3 33	20.868	46.933	20.772	1.00 18.88
ATOM	1107	N	PRO I	3 3 4	23.669	48.022	24.556	1.00 23.14
ATOM	1108	CA	PRO I	3 34	23.950	48.685	25.814	1.00 25.98
ATOM	1109	С	PRO E	3 3 4	22.991	49.844	26.052	1.00 27.87
ATOM	1110	0	PRO E	3 34	22.782	50.697	25.173	1.00 28.20
ATOM	1111	CB	PRO I		25.355	49.247	25.629	1.00 24.52
ATOM	1112	CG	PRO I		25.947	48.454	24.514	1.00 23.81
ATOM	1113	CD	PRO I		24.761	48.256	23.617	1.00 23.96
ATOM	1114	N	GLY I		22.428	49.854	27.265	1.00 27.60
ATOM	1115	CA	GLY I		21.544	50.919	27.694	1.00 26.85
MOTA	1116	C	GLY I		20.103	50.509	27.809	1.00 26.95
ATOM	1117	Õ	GLY I		19.314	51.234	28.392	1.00 27.06
HETATM		N	MSE I		19.736	49.361	27.277	1.00 27.66
	1119	CA	MSE I		18.444	48.762	27.502	1.00 31.16
HETATM		C	MSE I		17.873	48.948	28.920	1.00 33.96
HETATM		Õ	MSE E		16.708	49.315	29.138	1.00 34.27
HETATM		CB	MSE I		18.679	47.299	27.225	1.00 34.63
HETATM	1123	CG	MSE E		17.921	46.622	26.126	1.00 37.69
	1124	SE	MSE I		16.954	45.030	26.682	1.00 48.87
HETATM HETATM		CE	MSE E		16.692	45.161	28.580	1.00 40.22
		N	ASP I		18.753	48.712	29.902	1.00 35.95
ATOM	1126	CA	ASP I		18.421	48.828	31.303	1.00 37.28
MOTA	1127	C	ASP I		18.228	50.272	31.758	1.00 38.57
MOTA	1128	0	ASP I		17.189	50.545	32.368	1.00 42.23
ATOM	1129		ASP I		19.407	48.058	32.203	1.00 38.21
ATOM	1130	CB			20.907	48.280	32.005	1.00 42.18
MOTA	1131	CG	ASP I			49.092	31.150	1.00 44.69
MOTA	1132		ASP E		21.288		32.708	1.00 43.60
MOTA	1133		ASP I		21.709	47.641		
MOTA	1134	N	VAL I		19.111	51.237	31.458	1.00 36.46
MOTA	1135	CA	VAL I		18.974	52.585	32.008	1.00 34.42
MOTA	1136	C	VAL E		18.360	53.701	31.150	1.00 35.48
ATOM	1137	0_	VAL I		17.844	54.706	31.662	1.00 35.46
MOTA	1138	CB	VAL I		20.314	53.047	32.623	1.00 33.96
MOTA	1139		VAL I		20.656	52.110	33.757	1.00 33.39
MOTA	1140		VAL I		21.452	53.127	31.638	1.00 30.40
MOTA	1141	N	LEU E		18.466	53.536	29.826	1.00 34.58
MOTA	1142	CA	LEU E		18.173	54.590	28.859	1.00 33.84
MOTA	1143	C	LEU E		16.770	54.521	28.304	1.00 34.39
ATOM	1144	0	LEU I		16.234	53.407	28.274	1.00 37.21
MOTA	1145	CB	LEU E	3 39	19.106	54.513	27.672	1.00 31.59

Figure 8-30

MOTA	1146	CG	LEU E	3 3 9	20.516	54.934	27.836	1.00 30.49
MOTA	1147	CD1			21.233	54.571	26.544	1.00 30.11
MOTA	1148	CD2	LEU E		20.556	56.416	28.187	1.00 28.81
ATOM	1149	N	PRO E	3 40	16.124	55.613	27.821	1.00 33.22
MOTA	1150	CA	PRO E	3 40	14.743	55.564	27.336	1.00 32.18
MOTA	1151	С	PRO E	3 40	14.595	54.656	26.104	1.00 31.61
ATOM	1152	Õ	PRO E		15.515	54.575	25.295	1.00 32.07
ATOM	1153	CB	PRO E		14.498	57.028	27.054	1.00 31.41
ATOM	1154	CG	PRO E		15.395	57.749	28.027	1.00 32.72
MOTA	1155	CD	PRO E	3 40	16.655	56.977	27.813	1.00 33.34
MOTA	1156	N	SER E	3 41	13.487	53.949	25.885	1.00 31.04
MOTA	1157	CA	SER E	3 41	13.422	52.973	24.819	1.00 32.48
ATOM	1158	C	SER E		13.785	53.436	23.428	1.00 32.31
ATOM	1159	0_	SER E		14.301	52.651	22.638	1.00 30.86
MOTA	1160	CB	SER E		12.119	52.197	24.820	1.00 34.06
MOTA	1161	OG	SER E	3 41	10.984	53.037	24.872	1.00 39.11
ATOM	1162	N	HIS E	3 42	13.622	54.747	23.191	1.00 34.63
MOTA	1163	CA	HIS E	3 42	13.911	55.363	21.888	1.00 36.02
ATOM	1164	C	HIS E		15.396	55.300	21.511	1.00 36.52
	1165	Ö	HIS E		15.780	55.228	20.327	1.00 34.40
MOTA								
ATOM	1166	CB	HIS E		13.316	56.805	21.755	1.00 34.27
MOTA	1167	CG	HIS E	3 42	13.946	57.935	22.576	1.00 34.59
MOTA	1168	ND1	HIS E	42	13.588	58.408	23.772	1.00 36.14
MOTA	1169	CD2	HIS E	42	15.013	58.687	22.154	1.00 32.00
ATOM	1170		HIS E		14.381	59.396	24.117	1.00 32.43
ATOM	1171	NE2			15.227	59.539	23.124	1.00 35.02
		N	CYS E		16.177	55.249	22.615	1.00 35.02
MOTA	1172							
MOTA	1173	CA	CYS E		17.627	55.122	22.565	1.00 35.90
ATOM	1174	С	CYS E		18.176	53.799	22.054	1.00 32.86
MOTA	1175	0	CYS E	43	19.347	53.782	21.649	1.00 33.40
MOTA	1176	CB	CYS E	43	18.339	55.448	23.910	1.00 40.38
MOTA	1177	SG	CYS E	43	18.099	57.127	24.542	1.00 45.68
ATOM	1178	N	TRP E		17.380	52.707	22.075	1.00 29.25
ATOM	1179	CA	TRP E		17.913	51.374	21.831	1.00 25.51
			TRP E		17.009			
MOTA	1180	C				50.463	21.066	1.00 24.22
MOTA	1181	0_	TRP E		17.544	49.594	20.406	1.00 26.02
ATOM	1182	CB	TRP E		18.375	50.661	23.113	1.00 21.99
MOTA	1183	CG	TRP E	44	17.351	50.644	24.234	1.00 20.34
MOTA	1184	CD1	TRP E	44	17.361	51.632	25.183	1.00 18.11
ATOM	1185	CD2	TRP E	44	16.297	49.745	24.363	1.00 19.23
ATOM	1186	NE1	TRP E		16.293	51.390	25.908	1.00 19.12
ATOM	1187	CE2	TRP E		15.635	50.281	25.471	1.00 18.20
							23.795	
MOTA	1188	CE3	TRP E		15.892	48.551		1.00 15.22
MOTA	1189	CZ2	TRP E		14.532	49.622	26.000	1.00 14.99
ATOM	1190	CZ3	TRP E	44	14.805	47.897	24.324	1.00 13.45
MOTA	1191	CH2	TRP E	44	14.130	48.434	25.405	1.00 15.50
MOTA	1192	N	ILE B	45	15.680	50.626	21.096	1.00 24.85
MOTA	1193	CA	ILE B	45	14.726	49.656	20.539	1.00 25.50
ATOM	1194	C	ILE E		14.926	49.254	19.094	1.00 26.34
			ILE B		14.724	48.086	18.762	1.00 28.11
MOTA	1195	0						
MOTA	1196	CB	ILE B		13.231	50.055	20.773	1.00 26.28
MOTA	1197		ILE B		12.358	48.838	20.592	1.00 24.31
MOTA	1198	CG2	ILE B		12.716	51.206	19.885	1.00 25.51
ATOM	1199	CD1	ILE E	45	12.688	47.633	21.486	1.00 19.41
MOTA	1200	N	SER E		15.336	50.233	18.274	1.00 28.06
MOTA	1201	CA	SER B		15.623	50.071	16.851	1.00 28.67
MOTA	1202	C	SER E		16.739	49.059	16.553	1.00 27.51
							15.773	
ATOM	1203	0	SER E		16.558	48.113		1.00 26.90
MOTA	1204	CB	SER E		15.933	51.472	16.250	1.00 28.71
MOTA	1205	OG	SER E	46	16.259	51.414	14.871	1.00 31.35

Figure 8-31

MOTA	1206	N	GLU	В	47	17.902	49.210	17.203	1.00	26.77	N
MOTA	1207	CA	GLU	В	47	18.910	48.173	17.142	1.00		C
ATOM	1208	C	GLU	В	47	18.555	46.912	17.906	1.00	23.80	С
ATOM	1209	0	GLU	В	47	19.011	45.850	17.513	1.00	24.85	0
MOTA	1210	CB	GLU	В	47	20.209	48.703	17.683	1.00	30.36	С
MOTA	1211	CG	GLU	В	47	21.460	47.909	17.269	1.00	31.64	C
MOTA	1212	CD	GLU	В	47	21.718	47.840	15.774	1.00		C
MOTA	1213		GLU	В	47	21.267	48.726	15.034	1.00	32.82	0
ATOM	1214	OE2	GLU		47	22.391	46.892	15.366	1.00		0
HETATM		N	MSE		48	17.739	46.958	18.958	1.00		N
HETATM		CA	MSE		48	17.401	45.755	19.709	1.00		C
HETATM		C	MSE		48	16.511	44.916	18.837	1.00		C
HETATM		0	MSE		48	16.819	43.732	18.731	1.00		0
HETATM		CB	MSE		48	16.783	46.061	21.080	1.00		C
HETATM		CG	MSE		48	16.875	44.981	22.173	1.00		C
HETATM		SE	MSE		48	18.597	44.203	22.615	1.00		SE
HETATM		CE	MSE		48	17.982	42.661	21.922	1.00		C
MOTA	1223	N	VAL		49	15.506	45.445	18.110	1.00		И
MOTA	1224	CA	VAL		49	14.661	44.597 43.973	17.276	1.00		C
MOTA	1225	C	VAL		49	15.387		16.098		20.18	C
MOTA	1226	O	VAL		49	15.120 13.351	42.815 45.252	15.780 16.813		22.62 23.22	0
ATOM	1227 1228	CB	VAL		49 49	12.455	45.562	17.992		24.62	C
ATOM			VAL		49	13.551	46.527	16.025		23.30	C
MOTA	1229 1230	N CG2	VAL		50	16.363	44.655	15.484		19.52	N
MOTA MOTA	1231	CA	VAL		50	17.179	44.087	14.408		19.02	C
ATOM	1232	C	VAL		50	18.005	42.916	14.897		19.73	č
ATOM	1233	Õ	VAL		50	18.091	41.872	14.232		19.76	Õ
MOTA	1234	СВ	VAL		50	18.110	45.171	13.808		18.29	Č
MOTA	1235		VAL		50	19.181	44.607	12.925		16.52	Č
MOTA	1236		VAL		50	17.290	46.136	13.024		18.74	Č
MOTA	1237	N	GLN		51	18.617	43.151	16.064	1.00	17.95	N
ATOM	1238	CA	GLN	В	51	19.447	42.130	16.677	1.00	18.39	C
ATOM	1239	C	GLN	В	51	18.645	40.938	17.084	1.00	16.66	C
MOTA	1240	0	GLN	В	51	19.056	39.827	16.830	1.00	18.39	0
MOTA	1241	CB	GLN	В	51	20.264	42.655	17.851	1.00	18.87	C
MOTA	1242	CG	GLN	В	51	21.265	43.713	17.440	1.00	18.55	C
MOTA	1243	CD	GLN	В	51	22.253	43.283	16.370		23.83	C
MOTA	1244		GLN		51	22.400	42.141	15.918		23.92	0
ATOM	1245		GLN		51	23.019	44.265	15.958		27.04	N
MOTA	1246	N	LEU		52	17.481	41.149	17.652		16.16	N
MOTA	1247	CA	LEU		52	16.615	40.053	18.010		17.66	C
MOTA	1248	C	LEU		52	16.106	39.302 38.080	16.810		18.23	C
MOTA	1249	O	LEU		52	16.012		16.844 18.771		18.09	0
MOTA	1250	CB	LEU		52	15.412	40.576 40.840	20.232		19.12 20.87	C
ATOM	1251	CG	LEU		52	15.665	41.767	20.232		20.47	C
MOTA	1252		LEU		52 52	14.609 15.692	39.553	21.037		21.69	C
MOTA	1253 1254	N N	SER		53	15.797	40.014	15.717		20.42	И
MOTA MOTA	1255	CA	SER		53	15.410	39.376	14.469		18.47	C
	1256	C	SER		53	16.491	38.428	13.973		18.27	Ċ
MOTA MOTA	1257	0	SER		53	16.259	37.257	13.692		17.53	õ
MOTA	1258	CB	SER		53	15.188	40.496	13.523		21.19	Č
MOTA	1259	OG	SER		53	14.858	39.866	12.317		22.45	ŏ
MOTA	1260	N	ASP		54	17.729	38.892	13.962		21.01	Ŋ
ATOM	1261	CA	ASP		54	18.811	38.060	13.483		25.15	Ĉ
ATOM	1262	C	ASP		54	19.040	36.841	14.339		24.43	č
ATOM	1263	Ö	ASP		54	19.279	35.764	13.782	1.00	24.72	Ō
ATOM	1264	CB	ASP		54	20.170	38.731	13.462		32.20	C
MOTA	1265	CG	ASP		54	20.366	40.017	12.671	1.00	44.10	C

Figure 8-32

MOTA	1266	OD1	ASP E	3 54	19.508	40.411	11.838	1.00 48.06
MOTA	1267		ASP E		21.429	40.630	12.924	1.00 50.40
ATOM	1268	N	SER E		19.025	37.009	15.674	1.00 21.94
MOTA	1269	CA	SER E		19.197	35.872	16.589	1.00 21.29
	1270	C	SER E		18.036	34.884	16.516	1.00 19.86
MOTA						33.675	16.567	1.00 20.94
ATOM	1271	0	SER E		18.259			
MOTA	1272	CB	SER E		19.356	36.295	18.052	1.00 18.68
MOTA	1273	OG	SER E		20.384	37.208	18.406	1.00 18.26
MOTA	1274	N	LEU E		16.789	35.362	16.374	1.00 20.32
MOTA	1275	CA	LEU E	56	15.647	34.453	16.343	1.00 20.44
MOTA	1276	С	LEU E	56	15.628	33.735	15.025	1.00 21.16
ATOM	1277	0	LEU E	56	15.299	32.552	14.968	1.00 20.64
MOTA	1278	CB	LEU E	56	14.335	35.169	16.568	1.00 19.08
MOTA	1279	CG	LEU B	56	13.967	35.545	17.993	1.00 19.76
MOTA	1280	CD1	LEU B	56	12.809	36.497	18.033	1.00 18.12
ATOM	1281		LEU E		13.621	34.308	18.773	1.00 17.63
MOTA	1282	N	THR E		16.081	34.451	13.984	1.00 22.55
	1283	CA	THR E		16.144	33.901	12.624	1.00 23.77
ATOM		C	THR E		17.169	32.775	12.599	1.00 25.31
MOTA	1284				16.904	31.674	12.109	1.00 28.36
MOTA	1285	0	THR E					
MOTA	1286	CB	THR B		16.420	35.019	11.581	1.00 22.83
MOTA	1287		THR B		15.245	35.800	11.520	1.00 20.28
MOTA	1288	CG2	THR B		16.608	34.496	10.209	1.00 22.98
MOTA	1289	N	ASP B		18.331	32.975	13.229	1.00 27.29
MOTA	1290	CA	ASP B	58	19.328	31.934	13.394	1.00 25.16
MOTA	1291	С	ASP B	58	18.874	30.781	14.238	1.00 22.74
MOTA	1292	0	ASP B	58	19.128	29.640	13.909	1.00 20.50
MOTA	1293	CB	ASP B	58	20.510	32.549	14.059	1.00 32.90
MOTA	1294	CG	ASP B	58	21.367	33.343	13.098	1.00 40.22
ATOM	1295	OD1	ASP B	58	21.635	32.807	11.999	1.00 47.28
MOTA	1296		ASP B		21.780	34.468	13.458	1.00 42.79
MOTA	1297	N	LEU B		18.174	31.090	15.328	1.00 22.88
MOTA	1298	CA	LEU B		17.597	30.066	16.166	1.00 22.01
MOTA	1299	C	LEU B		16.596	29.206	15.391	1.00 22.75
ATOM	1300	õ	LEU B		16.642	27.981	15.498	1.00 24.25
ATOM	1301	CB	LEU B		16.984	30.711	17.389	1.00 21.26
	1302	CG	LEU B		16.544	29.703	18.408	1.00 21.05
MOTA			LEU B		17.733	28.955	19.020	1.00 20.13
MOTA	1303				15.718	30.419	19.413	1.00 20.68
MOTA	1304		LEU B					
MOTA	1305	N	LEU B		15.729	29.754	14.537	1.00 22.30
MOTA	1306	CA	LEU B		14.838	28.912	13.776	1.00 21.18
ATOM	1307	С	LEU B		15.559	27.884	12.897	1.00 24.69
MOTA	1308	0	LEU B		15.084	26.761	12.702	1.00 27.59
MOTA	1309	CB	LEU B		13.949	29.829	12.982	1.00 20.34
MOTA	1310	CG	LEU B		12.805	29.256	12.208	1.00 15.11
MOTA	1311	CD1	LEU B	60	11.775	28.689	13.124	1.00 14.00
MOTA	1312	CD2	LEU B	60	12.216	30.351	11.405	1.00 15.62
ATOM	1313	N	ASP B	61	16.768	28.142	12.405	1.00 28.19
MOTA	1314	CA	ASP B	61	17.425	27.134	11.587	1.00 31.01
MOTA	1315	С	ASP B	61	17.898	25.925	12.380	1.00 30.42
MOTA	1316	0	ASP B		18.293	24.903	11.836	1.00 30.78
ATOM	1317	CB	ASP B		18.486	27.766	10.638	1.00 40.38
MOTA	1318	CG	ASP B		20.011	27.910	10.913	1.00 49.60
ATOM	1319		ASP B		20.632	27.086	11.630	1.00 52.10
	1320		ASP B		20.602	28.852	10.340	1.00 54.11
ATOM	1321	N	LYS B		17.841	26.032	13.706	1.00 29.72
MOTA			LYS B	62	18.282	24.972	14.586	1.00 25.72
MOTA	1322	CA			17.227	23.920	14.754	1.00 26.40
MOTA	1323	C	LYS B			22.835	15.224	1.00 28.40
MOTA	1324	0	LYS E		17.553		15.224	1.00 25.89
ATOM	1325	CB	LYS B	62	18.655	25.534	10.903	1.00 43.03

Figure 8-33

MOTA	1326	CG	LYS	B 6	2	19.	865	26.451	15.996	1.00	24.99	
ATOM	1327	CD	LYS	B 6	2	21.	053	25.810	15.308	1.00	26.66	
MOTA	1328	CE	LYS			22.	198	26.806	15.251	1.00		
MOTA	1329	NZ	LYS			21.		27.957	14.431	1.00	34.52	
MOTA	1330	N	PHE			15.		24.225	14.389	1.00	26.48	
MOTA	1331	CA	PHE	B 6	3	14.	862	23.316	14.568	1.00	29.27	
MOTA	1332	C	PHE	B 6	3	14.	293	22.916	13.220	1.00	31.78	
ATOM	1333	0	PHE	B 6	3	14.	573	23.581	12.227	1.00	34.39	
MOTA	1334	CB	PHE	B 6	3	13.	744	23.920	15.427		24.13	
MOTA	1335	CG	PHE		3	14.	261	24.236	16.809	1.00	23.83	
MOTA	1336	CD1	PHE			14.	269	23.261	17.761	1.00	20.94	
MOTA	1337	CD2	PHE	B 6	3	14.	811	25.488	17.066	1.00	25.00	
MOTA	1338	CE1	PHE	B 6.	3	14.	872	23.535	18.964	1.00	23.54	
MOTA	1339	CE2	PHE	B 6	3	15.		25.741	18.263	1.00	22.33	
ATOM	1340	CZ	PHE	B 6	3	15.	467	24.752	19.211	1.00	21.46	
MOTA	1341	N	SER	B 6	4	13.	565	21.791	13.203	1.00	35.96	
MOTA	1342	CA	SER	B 6	4	12.	847	21.251	12.047	1.00	41.24	
MOTA	1343	C	SER	B 6	4	11.	362	21.237	12.401	1.00	44.87	
MOTA	1344	0	SER	B 6	4	11.	045	21.210	13.593	1.00	45.47	
MOTA	1345	CB	SER	B 6	4	13.	299	19.810	11.723	1.00	39.81	
ATOM	1346	OG	SER	B 6	4	14.	690	19.659	11.441	1.00	41.15	
MOTA	1347	N	ASN	B 6	5	10.	393	21.257	11.464	1.00	50.28	
MOTA	1348	CA	ASN	B 6	5	8.	980	21.293	11.878	1.00	53.31	
MOTA	1349	С	ASN :	B 6	5	8.	304	19.970	12.291	1.00	53.88	
MOTA	1350	0	ASN	B 6	5	8.	619	18.877	11.815	1.00	53.27	
MOTA	1351	CB	ASN	B 6	5	8.	137	22.121	10.899	1.00	55.21	
ATOM	1352	CG	ASN	B 6	5	6.	847	22.674	11.525	1.00	58.28	
ATOM	1353		ASN	B 6	5	5.	829	22.845	10.846	1.00	62.80	
MOTA	1354	ND2	ASN			6.	802	22.997	12.821	1.00	58.83	
ATOM	1355	N	ILE :	B 6	6	7.	402	20.111	13.274	1.00	55.78	
MOTA	1356	CA	ILE		6	6.	604	19.028	13.857	1.00	58.20	
ATOM	1357	C	ILE :		6	5.	128	19.413	13.732	1.00	59.99	
ATOM	1358	0	ILE		6	4.	679	20.439	14.266	1.00	59.98	
ATOM	1359	CB	ILE :			6.	916	18.864	15.373	1.00	58.00	
MOTA	1360	CG1	ILE :		6	8.	393	18.635	15.673	1.00	56.77	
MOTA	1361	CG2	ILE :		6	6.	119	17.713	15.950	1.00	58.43	
MOTA	1362	CD1	ILE :			8.	729	18.733	17.169	1.00	53.61	
MOTA	1363	N	SER .				387	18.545	13.027	1.00	62.59	
ATOM	1364	CA	SER			2.	945	18.687	12.803	1.00	65.18	
MOTA	1365	C	SER :			2.	049	18.114	13.935	1.00	66.39	
MOTA	1366	0	SER :		7	1.	110	17.339	13.725	1.00	68.18	
MOTA	1367	CB	SER :			2.	632	18.133	11.385	1.00	65.71	
MOTA	1368	OG	SER I		7	3.	288	16.912	10.995	1.00	67.79	
ATOM	1369	N	GLU :	B 6	8	2.	307	18.549	15.184	1.00	66.59	
ATOM	1370	CA	GLU :		8	1.	793	17.929	16.415	1.00	65.52	
MOTA	1371	С	GLU :	B 68	8	Ο.	895	18.865	17.238	1.00	66.78	
MOTA	1372	0	GLU :		8	-0.	333	18.715	17.307	1.00	67.15	
MOTA	1373	CB	GLU :			2.	977	17.471	17.301	1.00	66.40	
MOTA	1374	CG	GLU :			2.	568	17.163	18.743	1.00	67.84	
ATOM	1375	CD	GLU :				745	16.736	19.622		69.12	
ATOM	1376		GLU :			4.	931	16.661	19.119	1.00	70.46	
MOTA	1377		GLU :				552	16.451	20.865		71.34	
MOTA	1378	N	GLY :				582	19.807	17.897		65.16	
ATOM	1379	CA	GLY :				015	20.935	18.626		63.26	
MOTA	1380	C	GLY :				019	22.049	18.382		60.63	
MOTA	1381	Õ	GLY :				666	22.081	17.308		60.82	
ATOM	1382	N	LEU :				179	22.963	19.355		57.50	
ATOM	1383	CA	LEU :				254	23.950	19.225		53.07	
MOTA	1384	C	LEU				610	23.233	19.244		50.38	
ATOM	1385	Õ	LEU :				879	22.324	20.040		53.95	
* 7 T O 1 1		-					-					

Figure 8-34

ATOM	1386	CB	LEU	В	70	3.243	25.033	20.295	1.00 52.74
ATOM	1387	CG	LEU	в.	70	2.243	26.184	20.332	1.00 54.01
ATOM	1388	CD1	LEU	в :	70	2.326	26.991	19.014	1.00 54.05
MOTA	1389	CD2	LEU	В '	70	0.834	25.683	20.698	1.00 55.75
ATOM	1390	N	SER	В	71	5.437	23.543	18.271	1.00 43.22
MOTA	1391	CA	SER	В '	71	6.788	23.107	18.347	1.00 37.10
MOTA	1392	С	SER		71	7.676	24.348	18.452	1.00 35.41
MOTA	1393	0	SER	В '	71	7.223	25.469	18.195	1.00 34.32
MOTA	1394	CB	SER		71	7.030	22.242	17.147	1.00 36.36
MOTA	1395	OG	SER		71	6.753	22.899	15.934	1.00 36.82
MOTA	1396	И	ASN		72	8.946	24.206	18.876	1.00 33.26
MOTA	1397	CA	ASN		72	9.888	25.327	18.974	1.00 28.70
MOTA	1398	C	ASN		72 72	10.013	26.017	17.631	1.00 25.92
MOTA	1399	0	ASN		72 72	10.086	27.234 24.862	17.591	1.00 25.46
MOTA	1400	CB	ASN		72 72	11.281	24.062	19.462 20.880	1.00 28.21 1.00 26.47
ATOM	1401	CG	ASN ASN		72 72	11.365 10.592	24.232	21.764	1.00 25.38
ATOM	1402		ASN		72 72	12.284	23.373	21.764	1.00 25.56
MOTA	1403	N N	TYR		73	9.968	25.221	16.547	1.00 26.29
MOTA	1404 1405	CA	TYR		73	9.940	25.723	15.179	1.00 26.54
ATOM ATOM	1405	CA	TYR		73 73	8.760	26.639	14.993	1.00 23.80
MOTA	1407	Ö	TYR		73	8.967	27.809	14.726	1.00 27.19
MOTA	1407	CB	TYR .		73	9.881	24.631	14.075	1.00 28.15
MOTA	1409	CG	TYR		73	10.162	25.129	12.647	1.00 28.60
MOTA	1410	CD1	TYR		73	9.210	25.828	11.901	1.00 29.58
MOTA	1411	CD2	TYR		73	11.426	24.929	12.122	1.00 30.26
ATOM	1412	CE1	TYR		73	9.566	26.391	10.690	1.00 29.50
MOTA	1413	CE2	TYR	B :	73	11.783	25.467	10.898	1.00 31.02
MOTA	1414	CZ	TYR	B	73	10.855	26.215	10.209	1.00 32.38
MOTA	1415	OH	TYR	В :	73	11.245	26.802	9.014	1.00 36.91
MOTA	1416	N	SER	B '	74	7.535	26.185	15.145	1.00 23.20
MOTA	1417	CA	SER		74	6.402	27.077	15.028	1.00 24.27
MOTA	1418	C	SER		74	6.449	28.270	15.935	1.00 23.26
ATOM	1419	0	SER		74	6.039	29.360	15.572	1.00 25.85
MOTA	1420	CB	SER		74	5.156	26.342	15.357	1.00 25.27
ATOM	1421	OG	SER :		74 7-	5.173	25.254	14.460	1.00 32.42
ATOM	1422	N	ILE		75 75	6.958	28.120 29.248	17.146 18.057	1.00 25.08 1.00 23.59
ATOM	1423	CA	ILE		75 75	6.913 7.908		17.620	1.00 23.59
ATOM	1424 1425	С 0	ILE		75	7.509	31.437	17.520	1.00 21.19
ATOM ATOM	1425	CB	ILE		75	7.150	28.785	19.482	1.00 23.07
ATOM	1427	CG1	ILE		, 5 75	5.984	27.956	19.962	1.00 23.49
ATOM	1428	CG2	ILE		75	7.272	29.985	20.397	1.00 22.81
ATOM	1429	CD1	ILE		75	6.254	27.309	21.343	1.00 21.59
ATOM	1430	N	ILE		76	9.149	29.881	17.347	1.00 21.79
ATOM	1431	CA	ILE		76	10.226	30.789	16.994	1.00 22.16
ATOM	1432	C	ILE		76	9.830	31.465	15.705	1.00 23.36
ATOM	1433	0	ILE	в	76	9.898	32.679	15.673	1.00 26.09
MOTA	1434	CB	ILE :	в	76	11.611	30.123	16.831	1.00 21.17
MOTA	1435	CG1	ILE :	B '	76	12.075			1.00 19.74
MOTA	1436	CG2	ILE	в 1	76	12.661	31.169	16.489	1.00 18.62
MOTA	1437	CD1	ILE :		76	13.143	28.388	17.846	1.00 17.66
MOTA	1438	И	ASP		77	9.353	30.734	14.702	1.00 23.97
MOTA	1439	CA	ASP		77	8.866	31.293	13.456	1.00 25.97
MOTA	1440	C	ASP		77	7.856	32.411	13.657	1.00 26.70
MOTA	1441	0	ASP		77	8.065	33.525	13.187	1.00 28.84
MOTA	1442	CB	ASP		77	8.223	30.179	12.680	1.00 28.57
MOTA	1443	CG	ASP		77	8.018	30.507	11.212	1.00 32.25
MOTA	1444		ASP		77	8.957	31.036	10.598	1.00 34.07
ATOM	1445	OD2	ASP	ದ `	77	6.927	30.224	10.704	1.00 32.50

Figure 8-35

MOTA	1446	N	LYS B	78	6.797	32.211	14.443	1.00 28,77
MOTA	1447	CA	LYS B	78	5.891	33.285	14.868	1.00 28.31
MOTA	1448	C	LYS B	78	6.596	34.463	15.571	1.00 26.90
ATOM	1449	0	LYS B	78	6.221	35.629	15.449	1.00 26.22
MOTA	1450	CB	LYS B	78	4.861	32.589	15.762	1.00 32.30
MOTA	1451	CG	LYS B	78	3.767	33.491	16.290	1.00 41.29
MOTA	1452	CD	LYS B	78	2.746	32.676	17.100	1.00 49.72
MOTA	1453	CE	LYS B	78	1.564	33,546	17.666	1.00 53.37
MOTA	1454	NZ	LYS B	78	0.551	32.773	18.406	1.00 54.23
MOTA	1455	N	LEU B	79	7.663	34.218	16.330	1.00 25.35
MOTA	1456	CA	LEU B	79	8.352	35,299	17.007	1.00 23.52
MOTA	1457	C	LEU B	79	9.151	36.141	16.063	1.00 22.42
ATOM	1458	0	LEU B	79	9.249	37.348	16.219	1.00 20.72
MOTA	1459	CB	LEU B	79	9.292	34.752	18.074	1.00 23.66
MOTA	1460	CG	LEU B	79	8.739	33.917	19.241	1.00 21.39
ATOM	1461	CD1	LEU B	79	9.823	33.698	20.260	1.00 17.54
ATOM	1462	CD2	LEU B	79	7.579	34.608	19.911	1.00 21.67
MOTA	1463	N	VAL B	80	9.727	35.426	15.094	1.00 25.43
ATOM	1464	CA	VAL B	80	10.474	35,983	13.952	1.00 25.77
ATOM	1465	С	VAL B	80	9.566	36.918	13.200	1.00 25.42
ATOM	1466	0	VAL B	80	9.948	38.052	12.971	1.00 26.43
ATOM	1467	CB	VAL B	80	10.989	34.920	12.949	1.00 24.61
ATOM	1468	CG1	VAL B	80	11.693	35.588	11.801	1.00 26.74
ATOM	1469	CG2	VAL B	80	12.018	33.999	13.521	1.00 24.19
ATOM	1470	N	ASN B	81	8.352	36.466	12.893	1.00 27.82
MOTA	1471	CA	ASN B	81	7.420	37.299	12.163	1.00 29.77
MOTA	1472	С	ASN B	81	6.999	38.527	12.964	1.00 29.38
MOTA	1473	0	ASN B	81	6.937	39.593	12.377	1.00 32.14
MOTA	1474	CB	ASN B	81	6.221	36.505	11.562	1.00 31.24
ATOM	1475	CG	ASN B	81	6.543	35.379	10.564	1.00 33.72
MOTA	1476	OD1		81	7.608	35.271	9.962	1.00 34.16
MOTA	1477	ND2	ASN B	81	5.614	34.454	10.332	1.00 37.55
MOTA	1478	N	ILE B	82	6.761	38.515	14.283	1.00 30.06
MOTA	1479	CA	ILE B	82	6.418	39.713	15.057	1.00 27.77
ATOM	1480	C	ILE B	82	7.591	40.672	15.019	1.00 28.50
MOTA	1481	0	ILE B	82	7.388	41.866	14.826	1.00 30.63
MOTA	1482	CB	ILE B	82	6.164	39.318	16.534	1.00 27.91
MOTA	1483	CG1	ILE B	82	4.880	38.557	16.625	1.00 29.24
ATOM	1484	CG2	ILE B	82	6.192	40.458	17.555	1.00 23.22
MOTA	1485	CD1	ILE B	82	4.796	37.771	17.958	1.00 33.77
ATOM	1486	N	VAL B	83	8.833	40.218 41.192	15.222 15.413	1.00 28.54
ATOM	1487	CA	VAL B	83 83	9.884 10.348	41.752	14.061	1.00 28.60
MOTA	1488	C	VAL B	83	10.348	42.878	13.989	1.00 32.57 1.00 32.81
ATOM	1489	O CB	VAL B	83	10.049	40.632	16.338	1.00 32.81
MOTA	1490		VAL B	83	11.972	39.760	15.644	1.00 26.41
MOTA	1491	CG1 CG2	VAL B	83	11.609	41.742	17.144	1.00 25.82
MOTA	1492 1493	N N	ASP B	84	10.153	40.975	12.980	1.00 23.02
MOTA	1493	CA	ASP B	84	10.383	41.446	11.632	1.00 33.00
MOTA		CA	ASP B	84	9.332	42.450	11.205	1.00 34.79
MOTA	1495	0	ASP B	84	9.665	43.271	10.357	1.00 34.02
MOTA	1496 1497	CB	ASP B	84	10.391	40.329	10.557	1.00 30.49
MOTA	1497	CG	ASP B	84	11.732	39.649	10.403	1.00 37.40
ATOM	1498		ASP B	84	12.767	40.242	10.726	1.00 41.65
MOTA	1500		ASP B	84	11.746	38.524	9.895	1.00 45.89
ATOM ATOM	1501	N N	ASP B	85	8.101	42.430	11.753	1.00 43.03
ATOM	1502	CA	ASP B	85	7.134	43.501	11.551	1.00 32.67
ATOM	1502	CA	ASP B	85	7.527	44.753	12.304	1.00 32.67
ATOM	1503	Õ	ASP B	85	7.290	45.876	11.852	1.00 30.78
ATOM	1505	CB	ASP B	85	5.689	43.092	11.967	1.00 36.31
					-,			· · · ·

Figure 8-36

ATOM	1506	CG	ASP B	85	4.984	42.012	11.146	1.00 36.50
ATOM	1507		ASP B	85	5.491	41.708	10.065	1.00 34.52
ATOM	1508	OD2		85	3.945	41.485	11,574	1.00 37.36
MOTA	1509	N	LEU B	86	8.151	44.567	13.473	1.00 31.94
MOTA	1510	CA	LEU B	86	8.695	45.686	14.241	1.00 29.00
ATOM	1511	C	LEU B	86	9.945	46.335	13.646	1.00 27.01
-			LEU B	86	10.158	47.536	13.788	1.00 27.01
ATOM	1512	0			8.888	45.242	15.703	
ATOM	1513	CB	LEU B	86				1.00 29.72
MOTA	1514	CG	LEU B	86	7.630	44.973	16.544	1.00 29.69
ATOM	1515		LEU B	86	7.934	44.246	17.825	1.00 29.68
MOTA	1516	CD2	LEU B	86	6.938	46.265	16.914	1.00 29.39
ATOM	1517	N	VAL B	87	10.774	45.550	12.962	1.00 26.28
ATOM	1518	CA	VAL B	87	11.895	46.068	12.214	1.00 29.27
MOTA	1519	C	VAL B	87	11.333	47.009	11.163	1.00 32.65
MOTA	1520	0_	VAL B	87	11.721	48.175	11.164	1.00 35.43
MOTA	1521	CB	VAL B	87	12.725	44.966	11.523	1.00 28.93
MOTA	1522	CG1	VAL B	87	13.789	45.570	10.630	1.00 25.59
ATOM	1523	CG2	VAL B	87	13.417	44.036	12.521	1.00 30.50
ATOM	1524	N	GLU B	88	10.392	46.534	10.325	1.00 34.28
MOTA	1525	CA	GLU B	88	9.820	47.291	9.217	1.00 34.18
MOTA	1526	C	GLU B	88	9.201	48.582	9.702	1.00 34.90
MOTA	1527	0	GLU B	88	9.505	49.640	9.178	1.00 35.08
MOTA	1528	CB	GLU B	88	8.789	46.446	8.468	1.00 34.62
MOTA	1529	CG	GLU B	88	9.361	45.233	7.725	1.00 35.13
ATOM	1530	CD	GLU B	88	8.360	44.218	7.145	1.00 37.81
MOTA	1531	OE1	GLU B	88	7.241	44.088	7.653	1.00 39.42
MOTA	1532	OE2	GLU B	88	8.696	43.539	6.176	1.00 38.59
MOTA	1533	N	CYS B	89	8.402	48.520	10.754	1.00 37.74
MOTA	1534	CA	CYS B	89	7.803	49.680	11.378	1.00 41.43
MOTA	1535	С	CYS B	89	8.798	50.685	11.934	1.00 43.62
MOTA	1536	0	CYS B	89	8.578	51.896	11.896	1.00 44.63
MOTA	1537	CB	CYS B	89	6.875	49.166	12.472	1.00 43.51
MOTA	1538	SG	CYS B	89	6.538	50.326	13.821	1.00 52.54
MOTA	1539	N	VAL B	90	9.907	50.205	12.473	1.00 45.45
MOTA	1540	CA	VAL B	90	10.919	51.096	13.007	1.00 48.36
ATOM	1541	C	VAL B	90	11.787	51.723	11.909	1.00 49.57
MOTA	1542	0	VAL B	90	12.399	52.768	12.121	1.00 50.61
MOTA	1543	CB	VAL B	90	11.681	50.331	14.107	1.00 48.77
MOTA	1544	CG1	VAL B	90	12.903	51.039	14.582	1.00 51.24
MOTA	1545	CG2	VAL B	90	10.793	50.256	15.316	1.00 48.76
MOTA	1546	N	LYS B	91	11.834	51.181	10.695	1.00 50.84
MOTA	1547	CA	LYS B	91	12.492	51.870	9.600	1.00 52.46
MOTA	1548	C	LYS B	91	11.615	52.881	8.847	1.00 53.71
MOTA	1549	0	LYS B	91	12.139	53.730	8.127	1.00 52.07
MOTA	1550	CB	LYS B	91	13.135	50.840	8.721	1.00 54.00
MOTA	1551	CG	LYS B	91	14.290	50.209	9.508	1.00 59.12
MOTA	1552	CD	LYS B	91	14.955	49.089	8.690	1.00 63.16
ATOM	1553	CE	LYS B	91	16.176	48.420	9.367	1.00 66.55
MOTA	1554	NZ	LYS B	91	16.631	47.252	8.605	1.00 68.43
MOTA	1555	N	GLU B	92	10.283	52.858	9.066	1.00 56.63
MOTA	1556	CA	GLU B	92	9.333	53.861	8.565	1.00 59.16
MOTA	1557	C	GLU B	92	9.366	55.130	9.381	1.00 60.82
MOTA	1558	0	GLU B	92	9.635	56.189	8.802	1.00 61.59
MOTA	1559	CB	GLU B	92	7.852	53.434	8.599	1.00 60.60
ATOM	1560	CG	GLU B	92	7.388	52.228	7.784	1.00 63.20
MOTA	1561	CD	GLU B	92	7.621	52.275	6.273	1.00 66.00
MOTA	1562	OE1	GLU B	92	7.843	53.369	5.709	1.00 65.65
MOTA	1563	OE2	GLU B	92	7.564	51.187	5.667	1.00 67.41
MOTA	1564	N	ASN B	93	9.061	54.977	10.698	1.00 62.57
MOTA	1565	CA	ASN B	93	9.063	56.041	11.714	1.00 64.84

Figure 8-37

MOTA	1566	С	ASN B	93	10.247	56.971	11.593	1.00 65.46
MOTA	1567	0	ASN B	93	11.368	56.721	12.018	1.00 65.03
ATOM	1568	CB	ASN B	93	9.069	55.511	13.153	1.00 63.55
ATOM	1569	N	SER B	94	9.868	58.041	10.904	1.00 68.52
ATOM	1570	CA	SER B	94	10.773	58.985	10.254	1.00 70.87
ATOM	1571	C	SER B	94	11.391	60.076	11.141	1.00 71.17
ATOM	1572	Ō	SER B	94	12.292	60.821	10.689	1.00 72.46
ATOM	1573	СB	SER B	94	10.028	59.573	9.039	1.00 71.38
ATOM	1574	ŌĠ	SER B	94	8.711	60.001	9.407	1.00 73.36
ATOM	1575	N	SER B	95	10.923	60.135	12.415	1.00 68.97
ATOM	1576	CA	SER B	95	11.564	60.953	13.424	1.00 68.06
	1577	C	SER B	95	13.040	60.572	13.473	1.00 67.28
ATOM ATOM	1578	Õ	SER B	95	13.457	59.458	13.839	1.00 64.89
	1579	СВ	SER B	95	10.932	60.795	14.794	1.00 68.06
ATOM ATOM	1580	OG	SER B	95	11.441	61.800	15.670	1.00 69.36
	1581	N	LYS B	96	13.755	61.565	12.916	1.00 66.92
ATOM	1582	CA	LYS B	96	15.199	61.518	12.771	1.00 67.27
ATOM		CA	LYS B	96	15.848	60.974	14.056	1.00 66.10
MOTA	1583	0	LYS B	96	16.615	59.996	14.014	1.00 64.46
MOTA	1584	CB	LYS B	96	15.699	62.948	12.478	1.00 67.07
ATOM	1585		ASP B	97	15.289	61.560	15.147	1.00 64.54
MOTA	1586	N	ASP B	97	15.657	61.369	16.562	1.00 62.82
ATOM	1587	CA	ASP B	97	15.739	59.968	17.239	1.00 60.00
MOTA	1588	C	ASP B	97	16.792	59.674	17.852	1.00 59.90
MOTA	1589	O CB	ASP B	97	14.689	62.230	17.394	1.00 63.85
MOTA	1590		LEU B	98	14.638	59.137	17.174	1.00 53.63
MOTA	1591	N CA	LEU B	98	14.641	57.690	17.447	1.00 33.07
MOTA	1592 1593	CA	LEU B	98	15.837	57.135	16.728	1.00 40.32
MOTA	1594	0	LEU B	98	15.868	57.109	15.497	1.00 40.32
MOTA	1595	СВ	LEU B	98	13.389	56.996	16.916	1.00 41.21
ATOM	1596	CG	LEU B	98	13.251	55.479	17.095	1.00 40.48
MOTA	1597	CD1	LEU B	98	11.904	55.030	17.695	1.00 39.61
MOTA	1598	CD2	LEU B	98	13.519	54.787	15.784	1.00 37.90
MOTA	1599	N	LYS B	99	16.815	56.840	17.593	1.00 36.84
MOTA	1600	CA	LYS B	99	18.171	56.457	17.229	1.00 35.08
MOTA	1601	C	LYS B	99	18.141	55.218	16.365	1.00 34.40
MOTA	1602	Õ	LYS B	99	17.600	54.164	16.712	1.00 34.91
MOTA	1603	CB	LYS B	99	19.028	56.193	18.485	1.00 35.16
MOTA	1604	CG	LYS B	99	20.550	56.058	18.286	1.00 37.24
MOTA	1605	CD	LYS B	99	21.314	55.641	19.556	1.00 36.33
MOTA	1605	CE	LYS B	99	22.817	55.994	19.594	1.00 38.98
MOTA MOTA	1607	NZ	LYS B	99	23.617	55.657	18.428	1.00 38.67
ATOM	1608	N	LYS B	100	18.689	55.387	15.174	1.00 34.28
MOTA	1609	CA	LYS B	100	18.726	54.285	14.232	1.00 34.35
MOTA	1610	C	LYS B	100	20.147	53.964	13.811	1.00 31.26
ATOM	1611	Õ	LYS B	100	20.368	52.917	13.224	1.00 32.09
ATOM	1612	CB	LYS B	100	17.832	54.592	13.044	1.00 36.01
ATOM	1613	CG	LYS B	100	16.335	54.635	13.349	1.00 38.72
ATOM	1614	CD	LYS B	100	15.782	55.851	12.617	1.00 43.22
ATOM	1615	CE		100	14.290	55.723	12.370	1.00 43.50
ATOM	1616	NZ	LYS B		13.982	55.990	10.969	1.00 43.57
ATOM	1617	N	SER B		21.120	54.814	14.159	1.00 29.00
ATOM	1618	CA	SER B		22.529	54.614	13.871	1.00 28.55
ATOM	1619	C	SER B		23.351	54.047	15.032	1.00 28.24
ATOM	1620	Õ	SER B		23.732	54.783	15.943	1.00 31.98
ATOM	1621	СВ	SER B		23.049	55.977	13.473	1.00 27.88
ATOM	1622	OG	SER B		24.459	55.979	13.457	1.00 27.09
ATOM	1623	И	PHE B		23.680	52.766	15.077	1.00 27.56
ATOM	1624	CA	PHE B		24.364	52.184	16.230	1.00 27.12
ATOM	1625	C	PHE B		25.620	51.495	15.755	1.00 28.99
21011		_			:			

Figure 8-38

ATOM	1626	0	PHE B	102	25.613	51.001	14.627	1.00 28.31
MOTA	1627	CB	PHE B	102	23.538	51.127	16.945	1.00 22.35
MOTA	1628	CG	PHE B	102	22.247	51.672	17.462	1.00 20.73
MOTA	1629	CD1	PHE B		21.206	51.877	16.608	1.00 22.70
MOTA	1630	CD2	PHE B		22.105	51.932	18.801	1.00 24.01
ATOM	1631	CE1	PHE B		20.007	52.325	17.098	1.00 23.86
ATOM	1632	CE2	PHE B		20.892	52.343	19.295	1.00 23.54
	1633	CZ	PHE B		19.837	52.536	18.435	
MOTA			LYS B					1.00 23.17
MOTA	1634	N			26.691	51.459	16.575	1.00 30.21
MOTA	1635	CA	LYS B		27.823	50.595	16.284	1.00 30.86
ATOM	1636	C	LYS B		27.374	49.171	16.550	1.00 32.14
ATOM	1637	0	LYS B		26.583	48.957	17.472	1.00 33.74
MOTA	1638	CB	LYS B		28.965	50.952	17.200	1.00 32.77
MOTA	1639	N	SER B	104	27.788	48.202	15.720	1.00 32.95
MOTA	1640	CA	SER B	104	27.284	46.825	15.805	1.00 33.85
ATOM	1641	С	SER B	104	27.695	46.249	17.145	1.00 31.14
ATOM	1642	0	SER B	104	28.891	46.121	17.418	1.00 32.16
MOTA	1643	CB	SER B	104	27.812	45,908	14.692	1.00 36.29
MOTA	1644	OG	SER B	104	28.690	46.589	13.784	1.00 44.97
MOTA	1645	N	PRO B		26.737	45.950	18.023	1.00 28.62
ATOM	1646	CA	PRO B		27.026	45.601	19.393	1.00 27.39
ATOM	1647	C	PRO B		27.816	44.315	19.472	1.00 26.85
ATOM	1648	õ	PRO B		27.947	43.532	18.527	1.00 29.04
	1649	CB	PRO B		25.668	45.476	19.982	1.00 26.67
MOTA			PRO B	105	24.803	46.313	19.104	
MOTA	1650	CG						
MOTA	1651	CD	PRO B		25.308	45.910	17.747	1.00 26.48
ATOM	1652	N	GLU B		28.426	44.160	20.628	1.00 27.12
ATOM	1653	CA	GLU B	106	29.240	42.982	20.897	1.00 27.97
MOTA	1654	C	GLU B	106	28.299	41.806	21.172	1.00 25.13
MOTA	1655	0_	GLU B		27.294	41.966	21.870	1.00 21.99
MOTA	1656	CB	GLU B		30.140	43.258	22.105	1.00 30.05
MOTA	1657	CG	GLU B	106	31.418	42.451	22.220	1.00 35.47
ATOM	1658	CD	GLU B	106	32.045	42.483	23.613	1.00 40.01
MOTA	1659	OE1	GLU B	106	32.162	43.570	24.198	1.00 41.10
ATOM	1660	OE2	GLU B	106	32.431	41.409	24.102	1.00 42.35
MOTA	1661	N	PRO B	107	28.564	40.640	20.578	1.00 23.74
MOTA	1662	CA	PRO B	107	27.806	39.423	20.817	1.00 24.07
MOTA	1663	С	PRO B	107	27.906	38.967	22.264	1.00 22.95
MOTA	1664	0	PRO B	107	28.989	38.920	22.832	1.00 24.47
ATOM	1665	CB	PRO B	107	28.437	38.439	19.837	1.00 24.75
ATOM	1666	CG	PRO B	107	28.949	39.309	18.715	1.00 25.17
MOTA	1667	CD	PRO B	107	29.556	40.448	19.512	1.00 24.46
MOTA	1668	N	ARG B	108	26.765	38.677	22.884	1.00 22.39
ATOM	1669	CA	ARG B	108	26.684	38.164	24.239	1.00 20.57
ATOM	1670	C	ARG B	108	25.904	36.865	24.227	1.00 17.43
ATOM	1671	0	ARG B	108	24.954	36.685	23.488	1.00 17.22
ATOM	1672	CB	ARG B	108	26.064	39.155	25.256	1.00 20.10
MOTA	1673	CG	ARG B	108	27.007	40.157	25.848	1.00 21.68
ATOM	1674	CD	ARG B	108	26.321	41.144	26.778	1.00 25.69
ATOM	1675	NE	ARG B	108	25.859	40.576	28.047	1.00 27.65
		CZ		108	25.517	41.345	29.084	1.00 27.83
ATOM	1676		ARG B	108		42.653		
MOTA					25.637	40.819	29.004	1.00 26.98
MOTA	1678		ARG B	108	25.031		30.217	1.00 27.28
MOTA	1679	N	LEU B	109	26.320	35.964	25.078	1.00 16.44
MOTA	1680	CA	LEU B	109	25.649	34.700	25.242	1.00 19.58
ATOM	1681		LEU B	109	24.667	34.827	26.384	1.00 19.57
ATOM	1682	0		109	24.963	35.423	27.418	1.00 21.90
MOTA	1683		LEU B		26.626	33.555	25.533	1.00 18.89
MOTA	1684		LEU B		27.661	33.129	24.491	1.00 20.14
MOTA	1685	CD1	LEU B	109	28.673	32.188	25.119	1.00 18.71

Figure 8-39

MOTA	1686	CD2	LEU B	109	26.985	32.436	23.316	1.00 22.74
MOTA	1687	N	PHE B		23.477	34.293	26.119	1.00 19.30
	1688	CA	PHE B		22.372	34.322	27.050	1.00 18.85
ATOM								
ATOM	1689	C	PHE B		21.748	32.939	27.188	1.00 19.38
ATOM	1690	0	PHE B		21.676	32.205	26.207	1.00 18.43
MOTA	1691	CB	PHE B	110	21.312	35.298	26.553	1.00 17.38
MOTA	1692	CG	PHE B	110	21.743	36.756	26.567	1.00 19.20
MOTA	1693	CD1	PHE B	110	21.733	37.487	27.744	1.00 20.10
MOTA	1694	CD2	PHE B	110	22.198	37.350	25.408	1.00 19.07
ATOM	1695	CE1	PHE B		22.211	38.788	27.755	1.00 19.86
	1696	CE2	PHE B		22.643	38.650	25.436	1.00 15.79
ATOM					22.659	39.367	26.596	
MOTA	1697	CZ	PHE B	110				1.00 17.86
MOTA	1698	N	THR B	111	21.246	32.547	28.376	1.00 18.40
MOTA	1699	CA	THR B	111	20.431	31.336	28.505	1.00 14.95
MOTA	1700	C	THR B	111	19.077	31.537	27.823	1.00 14.86
MOTA	1701	0	THR B	111	18.720	32.705	27.696	1.00 18.62
ATOM	1702	CB	THR B	111	20.254	30.986	30.016	1.00 10.83
MOTA	1703	OG1	THR B	111	19.440	32.008	30.536	1.00 14.68
ATOM	1704	CG2	THR B		21.520	31.006	30.845	1.00 11.33
	1705	N	PRO B		18.205	30.602	27.418	1.00 14.14
MOTA			PRO B		16.903	30.899	26.832	1.00 12.85
ATOM	1706	CA						
MOTA	1707	C	PRO B		16.055	31.789	27.714	1.00 15.00
ATOM	1708	0	PRO B		15.351	32.679	27.268	1.00 16.67
MOTA	1709	CB	PRO B		16.297	29.536	26.730	1.00 13.18
MOTA	1710	CG	PRO B	112	17.459	28.689	26.406	1.00 11.71
MOTA	1711	CD	PRO B	112	18.482	29.179	27.402	1.00 12.63
MOTA	1712	N	GLU B	113	16.103	31.597	29.015	1.00 17.42
MOTA	1713	CA	GLU B	113	15.375	32.431	29.945	1.00 19.68
ATOM	1714	C	GLU B	113	15.802	33.888	29.901	1.00 18.59
ATOM	1715	ō	GLU B		14.931	34.751	29.885	1.00 21.48
	1716	CB	GLU B		15.546	31.841	31.328	1.00 22.92
MOTA				113	14.984	32.707	32.439	1.00 32.95
ATOM	1717	CG					33.770	1.00 32.93
MOTA	1718	CD	GLU B		15.763	32.704		
ATOM	1719	OE1		113	16.869	33.281	33.900	1.00 41.39
ATOM	1720	OE2	GLU B		15.193	32.144	34.712	1.00 44.90
MOTA	1721	N	GLU B		17.096	34.210	29.885	1.00 18.49
MOTA	1722	CA	GLU B	114	17.601	35.576	29.760	1.00 17.43
MOTA	1723	C	GLU B	114	17.321	36.289	28.451	1.00 16.60
MOTA	1724	0	GLU B	114	16.910	37.449	28.404	1.00 19.48
ATOM	1725	CB	GLU B	114	19.090	35.543	29.980	1.00 19.55
ATOM	1726	CG	GLU B	114	19.486	35.319	31.442	1.00 23.40
MOTA	1727	CD	GLU B		20.962	35.034	31.718	1.00 25.98
ATOM	1728	OE1		114	21.730	34.826	30.765	1.00 25.41
MOTA	1729	OE2	GLU B	114	21.322	34.982	32.906	1.00 28.77
			PHE B		17.507	35.551	27.379	1.00 14.86
MOTA	1730	N				35.998	26.023	1.00 14.86
MOTA	1731	CA		115	17.212			
ATOM	1732	C	PHE B	115	15.776	36.422	25.843	1.00 14.74
MOTA	1733	0	PHE B	115	15.474	37.469	25.295	1.00 16.04
MOTA	1734	CB	PHE B		17.513	34.865	25.012	1.00 14.37
MOTA	1735	CG	PHE B	115	17.384	35.323	23.572	1.00 16.76
MOTA	1736	CD1	PHE B	115	18.400	36.062	22.990	1.00 15.08
ATOM	1737		PHE B		16.217	35.063	22.881	1.00 16.51
ATOM	1738		PHE B		18.169	36.611	21.755	1.00 15.92
MOTA	1739		PHE B		16.024	35.579	21.619	1.00 13.36
	1740	CZ	PHE B		16.994	36.364	21.079	1.00 14.28
MOTA			PHE B			35.549	26.284	1.00 15.61
MOTA	1741	N			14.897		26.264	1.00 15.81
MOTA	1742	CA	PHE B		13.497	35.810		
MOTA	1743	C	PHE B		12.918	36.798	27.125	1.00 16.92
ATOM	1744	0	PHE B		11.842	37.326	26.862	1.00 18.97
MOTA	1745	CB	PHE B	116	12.759	34.499	26.111	1.00 16.90

Figure 8-40

MOTA	1746	CG	PHE	В	116	12.962	33.796	24.776	1.00 16.87
MOTA	1747	CD1	PHE	В			34.278	23.639	1.00 16.00
MOTA	1748	CD2	PHE	В	116	13.830	32.714	24.689	1.00 17.13
ATOM	1749	CE1	PHE :	В	116	12.558	33.654	22.429	1.00 17.64
MOTA	1750	CE2	PHE	В	116	14.079	32.114	23.482	1.00 16.31
MOTA	1751	CZ	PHE	В	116	13.427	32.582	22.349	1.00 17.77
MOTA	1752	N	ARG	В	117	13.629	37.094	28.208	1.00 17.01
MOTA	1753	CA	ARG	В	117	13.292	38.189	29.085	1.00 18.94
ATOM	1754	C	ARG			13.636	39.492	28.388	1.00 20.76
MOTA	1755	Ō	ARG				40.526	28.561	1.00 21.80
ATOM	1756	CB	ARG			14.124	38.043	30.361	1.00 22.28
ATOM	1757	CG	ARG				39.003	31.538	1.00 29.21
ATOM	1758	CD	ARG			13.292	38.359	32.834	1.00 35.23
ATOM	1759	NE	ARG				37.253	33.357	1.00 37.19
MOTA	1760	CZ	ARG				37.373	33.616	1.00 42.10
ATOM	1761		ARG				38.568	33.647	1.00 45.58
ATOM			ARG				36.268	33.794	1.00 43.18
MOTA	1763	N	ILE				39.453	27.596	1.00 20.97
ATOM	1764	CA	ILE				40.588	26.807	1.00 18.77
ATOM	1765	C	ILE				40.799	25.662	1.00 20.54
	1766	Ö	ILE :				41.896	25.487	1.00 20.34
ATOM	1767	CB	ILE :				40.364	26.385	1.00 20.49
ATOM		CG1	ILE :				40.504	27.587	1.00 10.90
MOTA	1768		ILE :				41.347	25.310	1.00 12.82
MOTA	1769	CG2 CD1					40.271	27.253	1.00 13.77
ATOM	1770		ILE :						
MOTA	1771	N	PHE :			13.817	39.736	24.922 23.864	1.00 22.16
ATOM	1772	CA	PHE :			12.840 11.528	39.717		1.00 23.96
ATOM	1773	C	PHE :			10.934	40.271	24.356	1.00 26.51
ATOM	1774	O	PHE			12.660	41.093 38.299	23.674 23.364	1.00 29.24 1.00 22.84
ATOM	1775	CB	PHE :			11.555	38.173	22.327	1.00 22.84
ATOM	1776	CG				11.811	38.512	21.006	1.00 24.68
ATOM	1777	CD1	PHE			10.271	37.803	22.727	1.00 25.69
ATOM	1778		PHE :				38.539		
ATOM	1779		PHE :			10.748		20.122	1.00 25.07
ATOM	1780		PHE :				37.831	21.844	1.00 24.69
MOTA	1781	CZ	PHE :			9.465	38.212	20.539	1.00 25.22
MOTA		N	ASN :			11.076	39.898	25.540	1.00 29.22
ATOM	1783	CA	ASN :			9.863	40.470	26.094	1.00 31.04
ATOM	1784	C	ASN :			9.953	41.939	26.499 26.204	1.00 32.79
ATOM	1785	0	ASN :			9.018 9.343	42.684	27.253	1.00 34.41
ATOM	1786	CB	ASN :			9.343 8.856	38.301	26.738	1.00 29.44
ATOM	1787	CG	ASN :			8.264	38.216	25.651	1.00 33.04 1.00 32.93
ATOM	1788		ASN .			9.110	37.237	27.508	1.00 32.93
ATOM							42.436		
ATOM	1790	N	ARG			11.018 11.117		27.140	1.00 32.47
ATOM	1791	CA	ARG				43.849	27.465	1.00 30.92
ATOM	1792	C	ARG			11.067	44.709	26.204	1.00 29.78
MOTA	1793	0	ARG :		121	10.444	45.760	26.207	1.00 28.95
ATOM	1794	CB	ARG :			12.391	44.075	28.271	1.00 33.61
MOTA			ARG :			12.655	45.523	28.664	1.00 41.90
ATOM	1796		ARG :			11.463	46.261	29.336	1.00 48.78
MOTA	1797		ARG :			11.048	47.453	28.567	1.00 55.93
MOTA		CZ	ARG :			11.568	48.694	28.762	1.00 59.13
MOTA			ARG :			12.543	48.894	29.659	1.00 60.86
MOTA	1800		ARG :			11.124	49.767	28.074	1.00 60.62
ATOM	1801	N	SER			11.680	44.225	25.121	1.00 29.04
MOTA	1802	CA	SER :			11.818	44.920	23.854	1.00 27.66
MOTA	1803	C	SER !			10.512	45.006	23.126	1.00 29.01
MOTA	1804	0	SER			10.198	46.085	22.634	1.00 30.77
MOTA	1805	CB	SER	В	122	12.808	44.195	22.954	1.00 24.91

Figure 8-41

MOTA	1806	OG	SER E	122	14.125	44.237	23.464	1.00 21.03
ATOM	1807	N	ILE E	123	9.765	43.896	23.061	1.00 30.73
								1.00 33.96
MOTA	1808	CA	ILE E		8.427	43.886	22.488	
ATOM	1809	C	ILE E	123	7.513	44.857	23.232	1.00 38.09
MOTA	1810	0	ILE E	123	6.743	45.579	22.610	1.00 38.61
ATOM	1811	CB	ILE E	123	7.863	42.445	22.513	1.00 33.36
		CG1	ILE E		8.567	41.492	21.559	1.00 33.77
ATOM	1812							
MOTA	1813	CG2	ILE E		6.385	42.334	22.276	1.00 35.01
MOTA	1814	CD1	ILE E	123	8.539	41.729	20.058	1.00 31.14
MOTA	1815	N	ASP E	124	7.638	44.925	24.562	1.00 42.48
ATOM	1816	CA	ASP E	124	6.868	45.809	25.424	1.00 45.69
			ASP E		7.347	47.237	25.404	1.00 45.68
MOTA	1817	C						
MOTA	1818	0	ASP E		6.592	48.118	25.836	1.00 46.88
MOTA	1819	CB	ASP E	124	6.915	45.381	26.912	1.00 50.45
MOTA	1820	CG	ASP E	124	6.483	43.950	27.274	1.00 56.00
ATOM	1821	CDI	ASP E	124	5.766	43.310	26.481	1.00 61.21
	1822		ASP E		6.883	43.461	28.344	1.00 56.72
ATOM								
MOTA	1823	N	ALA E		8.599	47.461	24.970	1.00 46.60
MOTA	1824	CA	ALA E	125	9.190	48.801	24.903	1.00 47.64
MOTA	1825	C	ALA E	125	8.420	49.664	23.926	1.00 48.60
ATOM	1826	Ó	ALA E	125	8.412	50.882	24.081	1.00 48.65
	1827	CB	ALA E		10.643	48.781	24.422	1.00 46.01
ATOM								
ATOM	1828	N	PHE E		7.752	49.014	22.960	1.00 50.56
MOTA	1829	CA	PHE E		6.834	49.695	22.055	1.00 54.13
ATOM	1830	C	PHE E	126	5.525	50.182	22.688	1.00 57.79
MOTA	1831	0	PHE E	126	5.141	51.334	22.460	1.00 59.99
ATOM	1832	CB	PHE E		6.538	48.850	20.810	1.00 51.52
	1833	CG	PHE E		7.721	48.691	19.873	1.00 49.43
MOTA								
MOTA	1834		PHE E		8.650	47.685	20.086	1.00 48.93
MOTA	1835		PHE E		7.872	49.550	18.804	1.00 48.24
MOTA	1836	CE1	PHE E	126	9.721	47.531	19.226	1.00 47.28
ATOM	1837	CE2	PHE E	126	8.960	49.402	17.969	1.00 46.11
ATOM	1838	CZ	PHE E	126	9.882	48.401	18.174	1.00 45.91
	1839	Ŋ	LYS E		4.843	49.346	23.505	1.00 61.28
ATOM			LYS E		3.558	49.636	24.178	1.00 62.20
MOTA	1840	CA						
MOTA	1841	C	LYS E		3.454	50.906	25.026	1.00 62.03
MOTA	1842	0	LYS E		2.394	51.539	25.092	1.00 61.71
MOTA	1843	CB	LYS E		3.115	48.458	25.090	1.00 64.81
MOTA	1844	CG	LYS E	127	2.463	47.185	24.502	1.00 65.92
ATOM	1845	CD	LYS E		2.082	46.311	25.702	1.00 67.81
		CE	LYS E		2.369	44.834	25.433	1.00 69.44
MOTA	1846							1.00 68.14
MOTA	1847	NZ	LYS E		2.594	44.129	26.691	
ATOM	1848	N	ASP E		4.561	51.200	25.719	1.00 62.76
ATOM	1849	CA	ASP E	128	4.736	52.380	26.554	1.00 62.70
MOTA	1850	C	ASP E	128	5.573	53.412	25.794	1.00 63.56
MOTA	1851	0	ASP E	128	6.638	53.838	26.251	1.00 64.23
		ČВ	ASP E		5.480	51.925	27.833	1.00 62.32
ATOM	1852						24.587	
MOTA	1853	N	PHE E		5.128	53.802		
MOTA	1854	CA	PHE E		5.813	54.828	23.801	1.00 65.58
MOTA	1855	C	PHE E	129	5.172	56.224	23.900	1.00 66.25
MOTA	1856	0	PHE E		4.145	56.473	23.258	1.00 67.17
ATOM	1857	CB	PHE E		5.971	54.368	22.338	1.00 64.56
			PHE E		7.424	54.230	21.907	1.00 63.61
MOTA	1858	CG					21.634	
MOTA	1859		PHE E		8.187	55.356		1.00 64.45
MOTA	1860		PHE E		7.979	52.977	21.775	1.00 62.93
MOTA	1861	CE1	PHE E	129	9.503	55.219	21.235	1.00 64.07
ATOM	1862		PHE E		9.291	52.837	21.378	1.00 63.56
MOTA	1863	CZ	PHE E		10.048	53.959	21.111	1.00 64.70
ATOM	1864	N	ASP E		17.272	62.584	24.623	1.00 55.18
			ASP E		18.560	63.025	24.106	1.00 54.96
MOTA	1865	CA	MOF E	1 13/	10.500	05.025	24.100	2.00 04.00

Figure 8-42

MOTA	1866	С	ASP B	137	19.597	61.931	23.769	1.00 55.95
MOTA	1867	0	ASP B	137	20.291	62.026	22.743	1.00 55.11
MOTA	1868	CB		137	19.180	63.952	25.136	1.00 53.99
	1869	N	CYS B		19.669	60.900	24.656	1.00 55.99
MOTA	1870	CA		138	20.594	59.741	24.665	1.00 55.50
MOTA	1871	C		138	22.065	59.964	25.031	1.00 55.10
MOTA		0	CYS B	138	22.723	58.973	25.357	1.00 55.77
MOTA	1872	CB	CYS B	138	20.486	58.822	23.416	1.00 53.55
MOTA	1873		CYS B	138	18.766	58.362	23.058	1.00 53.01
MOTA	1874	SG	CYS B	138	201.00			
TER	1876	NT.	ASN C	11	51.574	13.978	45.345	1.00 51.40
ATOM	1877	N	ASN C	11	50.150	14.075	45.169	1.00 50.61
ATOM	1878	CA	ASN C	11	49.636	15.080	46.231	1.00 51.75
ATOM	1879	C	ASN C	11	49.446	16.244	45.828	1.00 52.28
MOTA	1880	0	ASN C	11	49.486	12.671	45.271	1.00 48.14
MOTA	1881	CB			49.577	14.664	47.548	1.00 49.74
MOTA	1882	N	VAL C		48.941	15.269	48.771	1.00 46.17
MOTA	1883	CA	VAL C	12	49.317	16.681	49.255	1.00 43.47
MOTA	1884	C	VAL C	12	48.526	17.397	49.868	1.00 42.02
MOTA	1885	0	VAL C	12		14.271	50.044	1.00 47.02
MOTA	1886	CB	VAL C		49.032	14.042	50.561	1.00 46.01
MOTA	1887	CG1			50.479	14.662	51.233	1.00 44.78
MOTA	1888	CG2			48.129	17.052	49.054	1.00 43.09
MOTA	1889	N	LYS C		50.588	18.424	49.218	1.00 39.49
MOTA	1890	CA	LYS C		51.082	19.321	48.180	1.00 36.49
MOTA	1891	С	LYS C		50.370	20.435	48.472	1.00 35.14
MOTA	1892	0	LYS C		49.910	18.424	48.986	1.00 37.77
MOTA	1893	CB	LYS C		52.643	18.776	46.951	1.00 33.25
MOTA	1894	N	ASP C		50.231	19.456	45.898	1.00 27.29
MOTA	1895	CA	ASP C		49.522	19.456	45.991	1.00 27.23
MOTA	1896	C	ASP C		48.042		45.602	1.00 20.53
MOTA	1897	0	ASP C		47.408	20.205	44.565	1.00 20.33
MOTA	1898	CB	ASP C		50.101	19.142	44.288	1.00 35.88
MOTA	1899	CG	ASP C		51.439	19.856	45.155	1.00 33.80
MOTA	1900	OD1			52.043	20.514	43.143	1.00 37.00
MOTA	1901	OD2			51.890	19.755 18.202	46.526	1.00 15.89
MOTA	1902	N	VAL		47.447	18.270	46.962	1.00 16.75
MOTA	1903	CA	VAL C		46.073	19.433	47.938	1.00 17.73
MOTA	1904	C	VAL		45.796	20.167	47.775	1.00 18.15
MOTA	1905	0	VAL		44.821	16.905	47.548	1.00 17.03
MOTA	1906	CB	VAL		45.653	16.920	48.161	1.00 15.16
MOTA	1907	CG1			44.266	15.889	46.430	1.00 17.49
ATOM	1908	CG2			45.656	19.692	48.910	1.00 17.16
MOTA	1909	N	THR		46.659 46.513	20.824	49.806	1.00 16.51
MOTA	1910	CA	THR		46.660	22.151	49.096	1.00 15.07
MOTA	1911	C	THR		45.901	23.049	49.418	1.00 16.99
MOTA	1912	0	THR		47.533	20.674	51.000	1.00 17.35
MOTA	1913	CB	THR		47.059	19.546	51.734	1.00 19.10
MOTA	1914	OG1			47.615	21.868	51.934	1.00 11.74
MOTA	1915	CG2	-			22.381	48.160	1.00 13.81
MOTA	1916	N	LYS		47.562	23.602	47.390	1.00 15.88
MOTA	1917	CA	LYS		47.496 46.197	23.789	46.541	1.00 16.97
MOTA	1918	C	LYS		45.608	24.877		1.00 17.88
MOTA	1919	0	LYS		48.702	23.598		1.00 18.13
MOTA	1920	CB	LYS		50.006	23.615		1.00 21.24
MOTA	1921	CG	LYS			23.441		
MOTA	1922	CD	LYS		51.103	23.537		
MOTA	1923	CE	LYS		52.486	_		
MOTA	1924	NZ	LYS		52.730			
MOTA	1925	N	LEU		45.682			
MOTA	1926	CA	LEU	C 18	44.454	22.704		

Figure 8-43

ATOM	1927	С	LEU	C	18	43.333	23.111	46.047	1.00 10.78
ATOM	1928	Õ	LEU		18	42.612	24.032	45.691	1.00 16.08
	1929	CB	LEU		18	44.129	21.412	44.609	1.00 12.69
ATOM			LEU		18	42.973	21.312	43.632	
MOTA	1930	CG							
ATOM	1931		LEU		18	43.151	22.220	42.429	1.00 9.04
ATOM	1932		LEU		18	42.864	19.875	43.248	1.00 15.11
MOTA	1933	N	VAL		19	43.155	22.484	47.210	1.00 11.81
MOTA	1934	CA	VAL	C	19	42.092	22.868	48.138	1.00 12.12
MOTA	1935	C	VAL	C	19	42.159	24.359	48.569	1.00 13.12
ATOM	1936	0	VAL	C	19	41.144	25.056	48.607	1.00 14.59
MOTA	1937	CB	VAL	С	19	42.041	21.868	49.328	1.00 12.63
MOTA	1938	CG1			19	40.984	22.267	50.328	1.00 11.49
MOTA	1939	CG2	VAL		19	41.661	20.496	48.835	1.00 12.48
		N	ALA		20	43.362	24.909	48.821	1.00 13.02
ATOM	1940		ALA		20	43.532	26.278	49.252	1.00 13.02
MOTA	1941	CA							
MOTA	1942	C	ALA		20	43.254	27.224	48.126	1.00 11.25
MOTA	1943	0	ALA		20	42.888	28.357	48.344	1.00 14.74
ATOM	1944	CB	ALA		20	44.975	26.452	49.635	1.00 10.68
ATOM	1945	N	ASN ·	C	21	43.461	26.757	46.895	1.00 15.11
ATOM	1946	CA	ASN	C	21	43.197	27.471	45.648	1.00 13.34
MOTA	1947	C	ASN	C	21	41.898	27.107	44.949	1.00 13.09
ATOM	1948	0	ASN	C	21	41.663	27.533	43.815	1.00 18.62
ATOM	1949	CB	ASN	C	21	44.318	27.149	44.717	1.00 12.84
ATOM	1950	CG	ASN		21	45.401	28.151	44.755	1.00 12.42
ATOM	1951		ASN		21	45.277	29.229	45.315	1.00 14.66
ATOM	1952		ASN		21	46.503	27.827	44.131	1.00 12.99
	1953	N	LEU		22	41.041	26.311	45.536	1.00 12.25
ATOM		CA	LEU		22	39.691	26.194	45.063	1.00 12.28
MOTA	1954		LEU		22	38.831	27.012	45.972	1.00 12.25
MOTA	1955	C						47.126	1.00 12.03
ATOM	1956	0	LEU		22	39.216	27.109		
ATOM	1957	CB	LEU		22	39.202	24.755	45.039	1.00 10.06
MOTA	1958	CG	LEU		22	39.745	23.906	43.936	1.00 9.08
MOTA	1959	CD1	LEU (22	39.380	22.464	44.120	1.00 8.06
ATOM	1960	CD2	LEU	C	22	39.124	24.394	42.666	1.00 11.26
MOTA	1961	N	PRO (C	23	37.706	27.649	45.629	1.00 12.49
MOTA	1962	CA	PRO		23	36.902	28.384	46.592	1.00 12.26
MOTA	1963	C	PRO	C	23	36.214	27,457	47.604	1.00 13.42
MOTA	1964	0	PRO	C	23	35.695	26.416	47.220	1.00 13.22
ATOM	1965	CB	PRO	C	23	35.923	29.108	45.681	1.00 13.14
MOTA	1966	CG	PRO ·	С	23	36.407	29.009	44.237	1.00 9.94
ATOM	1967	CD	PRO		23	37.094	27,667	44.292	1.00 12.73
ATOM	1968	N		Č	24	36.216	27.796	48.898	1.00 13.54
ATOM	1969	CA	LYS		24	35.515	27.039	49.919	1.00 17.03
	1970	C	LYS		24	34.053	26.703	49.596	1.00 17.41
ATOM		Ö	LYS		24	33.500	25.693	50.011	1.00 15.96
MOTA	1971		LYS		24	35.591	27.845	51.228	1.00 17.76
MOTA	1972	CB					27.585	51.896	1.00 22.90
ATOM	1973	CG		C	24	36.918			
MOTA	1974	CD	LYS		24	37.423	28.782	52.700	1.00 24.73
MOTA	1975	CE	LYS	C	24	38.893	28.608	53.191	1.00 25.32
ATOM	1976	NZ	LYS		24	39.427	29.914	53.578	1.00 27.67
MOTA	1977	N	ASP		25	33.380	27.526	48.807	1.00 20.45
MOTA	1978	CA	ASP		25	31.969	27.349	48.579	1.00 20.93
MOTA	1979	С	ASP	C	25	31.690	26.924	47.164	1.00 19.35
MOTA	1980	0	ASP	C	25	30.617	27.146	46.603	1.00 21.38
ATOM	1981	CB	ASP		25	31.316	28.665	48.909	1.00 23.07
ATOM	1982	CG	ASP		25	31.726	29.820	48.014	1.00 28.48
MOTA	1983		ASP		25	32.736	29.755	47.329	1.00 29.48
ATOM	1984		ASP		25	31.018	30.829	48.006	1.00 35.37
	1985	N	TYR		26	32.684	26.330	46.570	1.00 17.08
ATOM		CA	TYR		26	32.486	25.784	45.270	1.00 18.09
MOTA	1986	CA	111	_	20	22.400	20.704		

 \mathbf{c}

Figure 8-44

MOTA	1987	С	TYR	С	26	32.066	24.352	45.473	1.00 20.16
MOTA	1988	ō	TYR		26	32.672	23.586	46.210	1.00 20.74
ATOM	1989	CB	TYR		26	33.787	25.925	44.505	1.00 18.65
ATOM	1990	CG	TYR		26	33.779	25.389	43.087	1.00 15.43
ATOM	1991		TYR		26	32.863	25.870	42.180	1.00 14.28
ATOM	1992	CD2	TYR		26	34.687	24.394	42.740	1.00 18.66
ATOM	1993	CE1	TYR		26	32.828	25.305	40.916	1.00 18.89
MOTA	1994	CE2	TYR		26	34.680	23.853	41.457	1.00 18.57
MOTA	1995	CZ	TYR		26	33.736	24.325	40.567	1.00 17.94
MOTA	1996	OH	TYR		26	33.702	23.844	39.293	1.00 20.05
HETATM		N	MSE		27	30.992	23.977	44.806	1.00 22.38
HETATM		CA	MSE		27	30.472	22.643	44.960	1.00 23.82
HETATM		C	MSE		27	30.902	21.790	43.796	1.00 23.07
HETATM		ō	MSE		27	30.675	22.180	42.659	1.00 22.78
HETATM		CB	MSE		27	28.966	22.685	45.023	1.00 27.76
HETATM		CG	MSE		27	28.476	23.440	46.222	1.00 33.28
HETATM		SE	MSE		27	29.250	22.864	47.919	1.00 47.63
HETATM		CE	MSE		27	28.807	24.413	48.975	1.00.42.81
ATOM	2005	N	ILE		28	31.514	20.637	44.127	1.00 23.36
MOTA	2006	CA	ILE		28	31.890	19.552	43.196	1.00 24.49
ATOM	2007	C	ILE		28	30.924	18.334	43.195	1.00 25.21
ATOM	2008	0	ILE		28	30.568	17.795	44.237	1.00 24.49
ATOM	2009	CB	ILE		28	33.364	19.075	43.497	1.00 21.68
ATOM	2010	CG1	ILE	C	28	34.379	20.215	43.453	1.00 19.99
ATOM	2011	CG2	ILE		28	33.796	18.049	42.485	1.00 19.57
MOTA	2012	CD1	ILE	C	28	35.761	19.859	43.991	1.00 18.85
ATOM	2013	N	THR	C	29	30.508	17.846	42.017	1.00 26.46
ATOM	2014	CA	THR	C	29	29.637	16.688	41.888	1.00 26.80
MOTA	2015	С	THR		29	30.388	15.361	41.957	1.00 27.21
MOTA	2016	0	THR		29	31.299	15.084	41.182	1.00 26.27
MOTA	2017	CB	THR		29	28.824	16.736	40.580	1.00 25.22
ATOM	2018	OG1			29	28.137	17.962	40.566	1.00 28.05
MOTA	2019	CG2	THR		29	27.773	15.659	40.545	1.00 26.26
ATOM	2020	N	LEU		30	29.980	14.498	42.878	1.00 27.91 1.00 29.69
MOTA	2021	CA	LEU		30	30.519 29.354	13.157 12.189	42.943 43.168	1.00 25.05
ATOM	2022	C	LEU		30 30	28.542	12.163	44.080	1.00 31.34
ATOM	2023	O CB	LEU		30	31.578	13.070	44.051	1.00 30.33
ATOM ATOM	2025	CG	LEU		30	32.157	11.727	44.434	1.00 23.15
MOTA	2026		LEU		30	32.879	11.106	43.274	1.00 22.85
ATOM	2027		LEU		30	33.110	11.943	45.570	1.00 25.04
ATOM	2028	N	LYS		31	29.246	11.172	42.300	1.00 34.65
ATOM	2029	CA	LYS		31	28.335	10.045	42.513	1.00 36.49
MOTA	2030	C	LYS		31	28.910	9.150	43.620	1.00 36.03
MOTA	2031	0	LYS	C	31	29.741	8.287	43.370	1.00 36.42
MOTA	2032	CB	LYS		31	28.121	9.241	41.218	1.00 36.56
MOTA	2033	CG	LYS	C	31	27.475	9.966	40.056	1.00 39.42
MOTA	2034	CD	LYS		31	26.867	8.902	39.121	1.00 47.68
ATOM	2035	CE	LYS	С	31	25.930	9.427	37.990	1.00 51.31
ATOM	2036	NZ	LYS		31	24.859	8.496	37.602	1.00 51.86
MOTA	2037	N	TYR		32	28.514	9.411	44.868	1.00 38.89
MOTA	2038	CA	TYR		32	29.122	8.846	46.081	1.00 40.86
MOTA	2039	C	TYR		32	28.594	7.437	46.265	1.00 43.51
MOTA	2040	0	TYR		32	27.425	7.204	45.953	1.00 45.02
MOTA	2041	CB	TYR		32	28.707	9.747	47.229	1.00 37.67
ATOM	2042	CG	TYR		32	29.138	9.317	48.610	1.00 41.48
MOTA	2043		TYR		32	30.459	9.438	48.984	1.00 43.11
MOTA	2044		TYR		32	28.190	8.877	49.536 50.302	1.00 43.18 1.00 44.55
ATOM	2045		TYR		32	30.812	9.172	50.302	1.00 44.55
ATOM	2046	CE2	TYR	_	32	28.542	8.584	30.04/	1.00 44.03

 $\mathbf{n}_{\mathbf{O}}$

Figure 8-45

ATOM 2046 0H TYR C 32 29.862 8.758 51.230 1.00 45.88 ATOM 2048 0H TYR C 33 30.238 8.549 52.557 1.00 49.38 ATOM 2050 CA VAI C 33 29.391 6.459 46.718 1.00 46.10 ATOM 2050 CA VAI C 33 28.866 5.097 46.885 1.00 46.10 ATOM 2051 C VAI C 33 28.866 5.097 46.885 1.00 48.63 ATOM 2051 C VAI C 33 28.866 5.097 46.885 1.00 48.63 ATOM 2052 O VAI C 33 29.088 5.086 49.265 1.00 49.02 ATOM 2054 CGI VAI C 33 29.088 5.086 49.265 1.00 49.02 ATOM 2054 CGI VAI C 33 29.390 4.000 46.501 1.00 49.02 ATOM 2055 CGI VAI C 33 29.390 2.594 46.823 1.00 50.53 ATOM 2056 N FRO C 34 27.026 4.602 45.001 1.00 49.02 ATOM 2056 N FRO C 34 27.026 4.695 49.834 1.00 55.66 ATOM 2058 C PRO C 34 27.026 4.695 49.834 1.00 55.66 ATOM 2058 C PRO C 34 27.126 25.68 50.448 1.00 59.22 ATOM 2050 C BRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2050 C BRO C 34 24.701 4.825 48.139 1.00 51.80 ATOM 2061 CG PRO C 34 24.701 4.825 48.139 1.00 51.80 ATOM 2062 CD PRO C 34 24.701 4.825 48.139 1.00 51.80 ATOM 2063 N GLY C 35 29.632 3.746 49.549 1.00 54.96 ATOM 2066 CB PRO C 34 26.002 4.428 47.456 1.00 51.80 ATOM 2066 CB PRO C 34 26.002 4.428 47.456 1.00 51.80 ATOM 2066 CB CD FRO C 35 29.632 3.744 55.2925 1.00 62.88 ATOM 2066 C GLY C 35 29.632 3.746 52.925 1.00 62.88 ATOM 2066 C GLY C 35 29.632 3.746 52.925 1.00 62.88 ATOM 2066 C GLY C 35 29.632 3.745 52.242 1.00 64.01 HETATH 2067 N MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATH 2070 C MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATH 2070 C MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATH 2070 C MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATH 2071 CB MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATH 2071 CB MSE C 36 32.945 4.485 52.836 1.00 66.73 ATOM 2075 C ASP C 37 33.149 5.583 55.061 1.00 65.51 ATOM 2077 C ASP C 37 33.2478 6.867 55.589 1.00 65.93 ATOM 2076 C ASP C 37 33.2478 6.867 55.589 1.00 65.93 ATOM 2076 C ASP C 37 33.2478 6.867 55.589 1.00 65.93 ATOM 2080 CG ASP C 37 33.2478 6.867 55.589 1.00 65.94 ATOM 2080 CG ASP C 37 33.2478 6.867 55.589 1.00 65.94 ATOM 2097 C BN C 40 33.399 7.035 55.661 1.00 66.73 ATOM 2097 C BN C 40 33.399 7.03											
ATOM 2048 OF TYR C 32 30.238 8.549 52.557 1.00 49.38 ATOM 2049 N VAI C 33 29.391 6.459 46.718 1.00 46.10 ATOM 2051 C VAI C 33 28.323 4.935 46.718 1.00 46.10 ATOM 2051 C VAI C 33 28.323 4.935 48.307 1.00 50.48 ATOM 2051 C VAI C 33 29.088 5.086 49.265 1.00 49.75 ATOM 2053 CB VAI C 33 29.908 4.000 46.501 1.00 49.75 ATOM 2053 CB VAI C 33 29.908 4.000 46.501 1.00 49.75 ATOM 2054 CB VAI C 33 29.908 4.000 46.501 1.00 49.75 ATOM 2055 CG VAI C 33 29.908 4.000 46.501 1.00 49.75 ATOM 2055 CG VAI C 33 30.216 4.072 45.014 1.00 47.63 ATOM 2056 N PRO C 34 27.006 4.682 48.505 1.00 53.28 ATOM 2056 C PRO C 34 27.006 4.682 48.505 1.00 53.28 ATOM 2056 C PRO C 34 27.426 2.584 50.44 1.00 55.66 ATOM 2056 C PRO C 34 27.426 2.588 50.448 1.00 59.22 ATOM 2050 C BRO C 34 24.701 4.825 48.139 1.00 50.88 ATOM 2061 CB PRO C 34 24.701 4.285 48.139 1.00 51.80 ATOM 2063 N GLY C 35 29.527 3.7445 49.549 1.00 54.96 ATOM 2063 N GLY C 35 29.552 2.077 52.214 1.00 54.86 ATOM 2065 C GLY C 35 29.522 2.077 52.214 1.00 54.00 ATOM 2065 C GLY C 35 29.632 3.7445 52.925 1.00 60.51 ATOM 2066 C GLY C 35 29.632 3.7456 52.457 1.00 64.01 HETATM 2067 N MSE C 36 30.521 4.420 52.301 1.00 60.51 HETATM 2069 C MSE C 36 32.945 4.485 52.935 1.00 60.51 HETATM 2069 C MSE C 36 32.945 4.485 52.935 1.00 60.51 HETATM 2070 C MSE C 36 32.945 4.485 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 32.945 4.485 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 32.115 4.485 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 32.115 4.485 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 32.115 4.485 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 32.115 4.485 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 32.115 4.485 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 32.115 5.63 53.863 1.00 66.73 ATOM 2076 C ASP C 37 33.149 5.563 55.661 1.00 64.77 HETATM 2071 CB MSE C 36 32.115 5.638 55.061 1.00 65.51 55.15 ATOM 2070 C MSE C 37 33.2478 6.867 55.589 1.00 65.03 ATOM 2080 CG ASP C 37 33.2478 6.867 55.589 1.00 65.94 ATOM 2080 CG ASP C 37 33.2478 6.867 55.589 1.00 65.93 ATOM 2080 CG ASP C 37 33.2478 6.867 55.589 1.00 65.93 ATOM 2080 CG ASP	ATOM	2047	CZ	TYR	C	32	29	.862	8.758	51.230	1.00 45.88
ATOM 2050 CA VAL C 33 28,891 6,459 46,718 1.00 46,10 ATOM 2050 CA VAL C 33 28,866 5.097 46,885 1.00 48,63 ATOM 2052 O VAL C 33 28,823 4,935 48,307 1.00 50,48 ATOM 2052 O VAL C 33 29,900 4.000 46,501 1.00 49,75 ATOM 2054 CG1 VAL C 33 29,900 4.000 46,501 1.00 49,02 ATOM 2054 CG1 VAL C 33 29,900 4.000 46,501 1.00 49,02 ATOM 2055 CG2 VAL C 33 30,216 4.072 45,014 1.00 47,63 ATOM 2056 N PRO C 34 27,006 4.682 48,505 1.00 57,53 ATOM 2058 C PRO C 34 27,006 4.682 48,505 1.00 53,28 ATOM 2058 C PRO C 34 27,126 2.568 50,448 1.00 55,66 ATOM 2058 C PRO C 34 27,126 2.568 50,448 1.00 59,22 ATOM 2059 O PRO C 34 24,701 4.825 48,139 1.00 51,86 ATOM 2061 CG PRO C 34 24,701 4.825 48,139 1.00 51,80 ATOM 2062 CD PRO C 34 24,701 4.825 48,139 1.00 51,80 ATOM 2063 N GLY C 35 29,852 20,777 52,214 1.00 60,51 ATOM 2066 C GLY C 35 29,852 20,777 52,214 1.00 60,51 ATOM 2066 C GLY C 35 29,852 20,777 52,214 1.00 64,01 ATOM 2066 C GLY C 35 29,852 20,777 52,214 1.00 64,01 ATOM 2066 C GLY C 35 29,852 20,777 52,214 1.00 64,01 ATOM 2066 C GLY C 35 29,852 20,777 52,214 1.00 64,01 ATOM 2066 C GLY C 36 30,521 4.240 52,301 1.00 62,92 ATOM 2066 C GLY C 36 30,521 4.240 52,301 1.00 62,92 ATOM 2067 C MSE C 36 30,521 4.240 52,301 1.00 62,92 ATOM 2077 C MSE C 36 32,945 4.485 52,836 1.00 61,03 ATOM 2077 C GMSE C 36 32,145 4.481 50,531 1.00 61,03 ATOM 2077 C GMSE C 36 32,145 4.481 56,132 50,531 1.00 61,03 ATOM 2077 C GMSE C 36 33,147 6.879 51,881 1.00 61,18 ATOM 2077 C						32	30	. 238	8.549		1.00 49.38
ATOM 2050 CA VAL C 33 28.866 5.097 46.865 1.00 48.63 ATOM 2051 C VAL C 33 28.323 4.935 48.307 1.00 50.48 ATOM 2052 O VAL C 33 28.908 5.086 49.265 1.00 49.75 ATOM 2053 CB VAL C 33 29.908 5.086 49.265 1.00 49.75 ATOM 2053 CB VAL C 33 29.909 4.000 46.501 1.00 49.75 ATOM 2054 CG1 VAL C 33 29.390 2.594 46.823 1.00 50.53 ATOM 2055 CG2 VAL C 33 30.216 4.072 45.014 1.00 47.63 ATOM 2056 N PRO C 34 27.006 4.682 48.505 1.00 53.28 ATOM 2058 C PRO C 34 27.006 4.682 48.505 1.00 55.66 ATOM 2058 C PRO C 34 27.121 3.734 50.767 1.00 53.28 ATOM 2058 C PRO C 34 27.426 5.68 50.448 1.00 57.66 ATOM 2056 C PRO C 34 27.426 4.695 49.894 1.00 55.66 ATOM 2056 C PRO C 34 24.701 4.825 48.39 1.00 55.66 ATOM 2061 CG PRO C 34 24.701 4.825 48.39 1.00 55.89 ATOM 2060 CB PRO C 34 24.701 4.825 48.39 1.00 55.80 ATOM 2061 CG PRO C 34 24.701 4.825 48.39 1.00 51.80 ATOM 2063 N GLY C 35 28.527 545 4.399 51.850 1.00 60.51 ATOM 2064 CA GLY C 35 28.627 3.744 52.925 1.00 62.88 ATOM 2066 O GLY C 35 28.627 3.744 52.925 1.00 63.14 ATOM 2066 O GLY C 35 29.632 3.266 52.457 1.00 63.14 ATOM 2066 O GLY C 35 29.632 3.266 52.457 1.00 63.14 ATOM 2066 O GLY C 35 29.852 2.077 52.214 1.00 64.01 HETATM 2067 N MSE C 36 31.881 3.970 51.881 1.00 63.09 HETATM 2069 C MSE C 36 31.881 3.970 51.881 1.00 63.09 HETATM 2069 C MSE C 36 31.881 3.970 51.881 1.00 63.09 HETATM 2070 O MSE C 36 34.448 4.357 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 66.50 3.09 HETATM 2070 C MSE C 36 34.31.81 3.970 51.881 1.00 63.09 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 66.50 3.09 HETATM 2070 C MSE C 36 34.31.81 3.970 6.879 49.401 1.00 64.01 HETATM 2071 CB MSE C 36 34.31.81 3.970 6.879 49.401 1.00 64.05 HETATM 2070 C MSE C 36 36.31.81 3.970 6.879 49.401 1.00 66.50 3.09 HETATM 2070 C MSE C 36 36.31.81 3.970 6.879 49.401 1.00 66.55 HETATM 2070 C MSE C 37 33.419 5.885 5.061 1.00 66.73 ATOM 2076 C A SP C 37 33.419 5.885 5.061 1.00 66.74 ATOM 2080 C A SP C 37 33.419 5.885 5.061 1.00 66.74 ATOM 2080 C MSE C 37 33.419 5.895											
ATOM 2051 C VAL C 33 28.323 4.935 48.307 1.00 50.48 ATOM 2052 O VAL C 33 29.900 4.000 46.501 1.00 49.02 ATOM 2054 CG1 VAL C 33 29.900 4.000 46.501 1.00 49.02 ATOM 2054 CG1 VAL C 33 29.900 4.000 46.501 1.00 49.02 ATOM 2054 CG1 VAL C 33 329.900 2.594 46.823 1.00 50.53 ATOM 2055 CG2 VAL C 33 30.216 4.072 45.014 1.00 47.63 ATOM 2056 N PRO C 34 26.0385 4.695 49.834 1.00 53.28 ATOM 2057 CA PRO C 34 26.385 4.695 49.834 1.00 53.28 ATOM 2059 O PRO C 34 26.385 4.695 49.834 1.00 53.28 ATOM 2059 O PRO C 34 27.121 3.734 50.767 1.00 58.89 ATOM 2060 CB PRO C 34 27.121 3.734 59.549 1.00 54.96 ATOM 2061 CG PRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2061 CG PRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2062 CD PRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2062 CD PRO C 34 26.002 4.428 47.456 1.00 51.80 ATOM 2064 CA GLY C 35 28.272 3.744 52.925 1.00 60.51 ATOM 2066 O GLY C 35 22.8272 3.744 52.925 1.00 60.51 ATOM 2066 O GLY C 35 29.852 2.077 52.214 1.00 64.01 HETATM 2068 CA MSE C 36 30.521 4.240 52.301 1.00 62.92 HETATM 2069 C MSE C 36 32.495 4.495 52.826 52.457 1.00 63.14 ATOM 2066 O GLY C 35 29.852 2.077 52.214 1.00 64.01 HETATM 2070 O MSE C 36 32.495 4.495 52.836 1.00 64.07 HETATM 2070 O MSE C 36 32.495 4.495 52.836 1.00 66.03 HETATM 2070 C MSE C 36 32.495 4.495 52.899 1.00 66.03 HETATM 2070 C MSE C 36 32.495 4.495 52.899 1.00 66.03 HETATM 2071 CE MSE C 36 32.495 4.495 52.899 1.00 66.03 HETATM 2072 CG MSE C 36 32.495 4.495 52.899 1.00 66.03 HETATM 2072 CG MSE C 36 32.495 4.495 52.899 1.00 66.03 HETATM 2072 CG MSE C 36 32.495 4.495 52.899 1.00 66.03 HETATM 2072 CG MSE C 36 32.495 4.495 52.899 1.00 66.03 HETATM 2072 CG MSE C 36 32.495 4.495 52.899 1.00 66.03 HETATM 2072 CG MSE C 36 32.495 4.495 52.899 1.00 66.03 HETATM 2072 CG MSE C 36 32.495 4.495 52.899 1.00 66.03 HETATM 2072 CG MSE C 36 32.495 4.495 52.899 1.00 66.03 HETATM 2072 CG MSE C 37 32.496 52.495 52.495 52.495 1.00 66.03 HETATM 2072 CG MSE C 36 32.495 52.495 52.495 52.495 52.495 52.495 52.495 52.495 52.495 52.495 52.495 52.495 52.495 52.495 52.495 52.495 52.495 52.495											
ATOM 2053 CB VAL C 33 29.088 5.086 49.265 1.00 49.75 ATOM 2053 CB VAL C 33 29.390 4.000 46.501 1.00 49.02 ATOM 2055 CG2 VAL C 33 29.390 2.594 46.823 1.00 50.53 ATOM 2055 CG2 VAL C 33 30.29.390 2.594 46.823 1.00 50.53 ATOM 2055 CG2 VAL C 33 30.29.390 2.594 46.823 1.00 50.53 ATOM 2056 N PRO C 34 27.006 4.682 48.505 1.00 63.28 ATOM 2058 C PRO C 34 26.385 4.695 49.834 1.00 55.66 ATOM 2058 C PRO C 34 26.385 4.695 49.834 1.00 55.66 ATOM 2058 C PRO C 34 27.121 3.734 50.767 1.00 58.89 ATOM 2060 CB PRO C 34 27.121 3.734 50.767 1.00 58.89 ATOM 2061 CC PRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2062 CD PRO C 34 24.701 4.825 48.139 1.00 51.80 ATOM 2063 N GLY C 35 27.545 4.399 51.850 1.00 61.51 ATOM 2064 CA GLY C 35 28.272 3.744 52.925 1.00 62.88 ATOM 2065 C GLY C 35 29.632 3.266 52.457 1.00 63.14 ATOM 2066 O GLY C 35 29.632 3.266 52.457 1.00 63.14 ATOM 2067 N MSE C 36 31.881 3.970 51.881 1.00 63.09 HETATM 2069 C MSE C 36 31.881 3.970 51.881 1.00 63.09 HETATM 2069 C MSE C 36 34.244 4.485 52.836 1.00 64.01 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 62.92 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 66.50 3.09 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 66.50 3.09 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 66.50 3.09 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 66.50 3.09 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 66.50 3.09 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 66.50 3.09 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 66.50 3.09 HETATM 2072 CG MSE C 36 34.448 4.357 52.599 1.00 66.50 3.09 HETATM 2073 SE MSE C 36 34.148 4.357 52.599 1.00 66.055 1.53 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 60.55 1.53 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 66.73 ATOM 2078 O ASP C 37 33.149 5.583 55.061 1.00 66.73 ATOM 2078 O ASP C 37 33.149 5.583 55.061 1.00 66.74 ATOM 2080 CG ASP C 37 33.419 5.583 55.061 1.00 67.41 ATOM 2080 CG ASP C 37 33.419 5.585 55.89 1.00 66.85 ATOM 2080 CG ASP C 37 33.419 5.585 55.89 1.00 66.83 ATOM 2080 CG ASP C 37 33.419 5.585 55.89 1.00 66.75 ATOM 2080 N ALEU											
ATOM 2053 CB VAL C 33 29,900 4.000 46.501 1.00 49.02 ATOM 2054 CGI VAL C 33 29.900 2.594 46.501 1.00 49.02 ATOM 2055 CG2 VAL C 33 29.900 2.594 46.823 1.00 50.53 ATOM 2055 CG2 VAL C 33 29.900 2.594 46.823 1.00 50.53 ATOM 2055 N PRO C 34 27.006 4.682 48.501 1.00 53.28 ATOM 2057 CA PRO C 34 26.385 4.695 49.834 1.00 55.66 ATOM 2059 O PRO C 34 27.426 2.568 50.448 1.00 55.66 ATOM 2059 O PRO C 34 27.426 2.568 50.448 1.00 59.22 ATOM 2050 CB PRO C 34 27.426 2.568 50.448 1.00 59.22 ATOM 2050 CB PRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2051 CG PRO C 34 24.701 4.825 48.139 1.00 51.86 ATOM 2061 CG PRO C 34 24.701 4.825 48.139 1.00 51.86 ATOM 2063 N GLY C 35 27.545 4.399 51.850 1.00 60.51 ATOM 2064 CA GLY C 35 28.272 3.744 52.925 1.00 62.88 ATOM 2065 C GLY C 35 29.852 2.077 52.214 1.00 64.01 HETATM 2068 CA MSE C 36 30.521 4.240 52.301 1.00 62.92 HETATM 2068 CA MSE C 36 31.881 3.970 51.881 1.00 63.14 HETATM 2070 O MSE C 36 32.4448 4.357 52.599 1.00 62.92 HETATM 2070 C MSE C 36 34.148 4.357 52.599 1.00 66.77 HETATM 2070 C MSE C 36 34.148 4.357 52.599 1.00 66.77 HETATM 2071 CB MSE C 36 34.148 4.357 52.599 1.00 66.77 HETATM 2072 CG MSE C 36 34.148 4.357 52.599 1.00 66.77 HETATM 2073 SE MSE C 36 34.148 4.357 52.599 1.00 66.77 HETATM 2073 CG MSE C 36 34.148 4.357 52.599 1.00 66.77 HETATM 2073 CG MSE C 36 34.148 4.357 52.599 1.00 66.77 HETATM 2073 CG MSE C 36 34.148 4.357 52.599 1.00 66.77 HETATM 2070 C MSE C 37 33.149 5.583 55.061 1.00 66.75 ATOM 2075 N MSE C 37 33.149 5.583 55.061 1.00 66.77 ATOM 2075 C ASP C 37 32.478 6.885 50.51 1.00 66.55 HETATM 2072 CG MSE C 37 33.149 5.583 55.061 1.00 66.75 ATOM 2075 C ASP C 37 32.478 6.885 50.51 1.00 66.75 ATOM 2075 C ASP C 37 32.478 6.885 50.51 1.00 66.75 ATOM 2075 C ASP C 37 32.478 6.885 50.51 1.00 66.75 ATOM 2075 C ASP C 37 33.149 5.583 55.061 1.00 66.75 ATOM 2075 C ASP C 37 30.657 7.058 57.057 1.00 77.69 ATOM 2080 CG ASP C 37 30.657 7.058 57.057 1.00 77.69 ATOM 2080 CG ASP C 37 30.657 7.058 57.057 1.00 66.75 ATOM 2080 CG ASP C 37 30.657 7.058 57.057 1.00 66.55 ATOM 2090 N LEU C 39 3											
ATOM 2055 CG1 VAL C 33 30.216 4.072 45.014 1.00 50.53 ATOM 2055 CG2 VAL C 33 30.216 4.072 45.014 1.00 47.63 ATOM 2055 N PRO C 34 27.006 4.682 48.505 1.00 53.28 ATOM 2057 CA PRO C 34 27.026 4.682 48.505 1.00 53.28 ATOM 2058 C PRO C 34 27.426 2.568 50.448 1.00 59.22 ATOM 2058 C PRO C 34 27.426 2.568 50.448 1.00 59.22 ATOM 2050 O PRO C 34 27.426 2.568 50.448 1.00 59.22 ATOM 2050 C BRO C 34 24.701 4.825 48.139 1.00 54.96 ATOM 2051 CG PRO C 34 24.701 4.825 48.139 1.00 51.80 ATOM 2062 CD PRO C 34 26.002 4.428 47.456 1.00 51.86 ATOM 2063 N GLY C 35 27.545 4.399 51.850 1.00 60.51 ATOM 2064 CA GLY C 35 29.632 3.266 52.457 1.00 63.14 ATOM 2066 C GLY C 35 29.632 3.266 52.457 1.00 63.14 ATOM 2066 C GLY C 35 29.632 3.266 52.457 1.00 63.14 ATOM 2068 CA MSE C 36 30.521 4.240 52.301 1.00 62.92 HETATM 2069 C MSE C 36 30.521 4.240 52.301 1.00 62.92 HETATM 2069 C MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATM 2070 C MSE C 36 32.945 4.485 52.836 1.00 66.55 HETATM 2070 C MSE C 36 32.945 4.485 52.836 1.00 66.55 HETATM 2071 CB MSE C 36 32.945 4.485 52.836 1.00 66.55 HETATM 2071 CB MSE C 36 31.873 6.068 50.551 1.00 65.53 HETATM 2071 CB MSE C 36 32.457 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 32.457 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 32.457 52.599 1.00 66.53 ATOM 2075 N MSE C 36 32.457 52.599 1.00 66.55 HETATM 2071 CB MSE C 36 32.457 52.599 1.00 66.73 ATOM 2075 CA MSP C 37 32.430 5.163 53.850.61 1.00 66.55 ATOM 2070 C MSE C 37 32.430 5.163 53.850.61 1.00 66.73 ATOM 2075 CA MSP C 37 32.430 5.163 53.850.61 1.00 66.73 ATOM 2070 C MSE C 37 32.430 5.163 53.850.61 1.00 66.73 ATOM 2070 C A MSP C 37 32.430 5.163 53.850.61 1.00 66.73 ATOM 2070 C A MSP C 37 32.478 6.867 55.589 1.00 66.73 ATOM 2080 CG ASP C 37 32.478 6.867 55.589 1.00 66.73 ATOM 2080 CG ASP C 37 32.478 6.867 55.589 1.00 66.73 ATOM 2080 CG ASP C 37 32.478 6.867 55.589 1.00 66.73 ATOM 2080 CG ASP C 37 32.478 6.867 55.589 1.00 66.73 ATOM 2080 CG ASP C 37 32.478 6.867 55.589 1.00 66.73 ATOM 2080 CG ASP C 37 32.478 6.868 54.329 1.00 61.36 ATOM 2080 CG ASP C 37 32.486 32.495 54		_									
ATOM 2055 CG2 VALC 33 30.216 4.072 45.014 1.00 47.63 ATOM 2056 N PRO C 34 27.006 4.682 48.505 1.00 53.28 ATOM 2057 CA PRO C 34 26.385 4.695 49.834 1.00 55.66 ATOM 2058 O PRO C 34 27.121 3.734 50.767 1.00 58.89 ATOM 2059 O PRO C 34 27.426 2.568 50.448 1.00 59.22 ATOM 2060 CB PRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2061 CG PRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2061 CG PRO C 34 24.701 4.825 48.139 1.00 51.80 ATOM 2062 CD PRO C 34 24.701 4.825 48.139 1.00 51.80 ATOM 2062 CD PRO C 34 24.701 4.825 48.139 1.00 51.80 ATOM 2063 N GLY C 35 27.545 4.399 51.850 1.00 60.51 ATOM 2064 CA GLY C 35 28.272 3.744 52.925 1.00 62.88 ATOM 2065 C GLY C 35 29.852 2.077 52.214 1.00 60.51 ATOM 2066 C GLY C 35 29.852 2.077 52.214 1.00 64.01 HETATM 2067 N MSE C 36 30.521 4.240 52.301 1.00 62.99 HETATM 2068 CA MSE C 36 31.881 3.970 51.881 1.00 63.09 HETATM 2069 C MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATM 2070 O MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATM 2070 C MSE C 36 32.115 4.582 50.531 1.00 62.61 HETATM 2071 CB MSE C 36 32.115 4.582 50.531 1.00 66.05 HETATM 2073 SE MSE C 36 33.277 6.879 49.401 1.00 66.05 HETATM 2073 SE MSE C 36 33.277 6.879 49.401 1.00 66.05 HETATM 2074 CE MSE C 36 33.277 6.879 49.401 1.00 66.05 HETATM 2070 C MSE C 36 33.277 6.879 49.401 1.00 66.05 HETATM 2070 C MSE C 36 33.277 6.879 49.401 1.00 66.55 HETATM 2070 C MSE C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2070 C MSE C 37 33.2430 5.163 53.863 1.00 66.73 ATOM 2070 C ASP C 37 33.2430 5.163 53.863 1.00 66.75 ATOM 2070 C ASP C 37 33.2430 5.163 53.863 1.00 66.75 ATOM 2070 C ASP C 37 33.2430 5.163 53.863 1.00 66.75 ATOM 2080 CD ASP C 37 33.2430 5.163 53.863 1.00 66.75 ATOM 2070 C ASP C 37 33.2430 5.163 53.863 1.00 66.75 ATOM 2080 CD ASP C 37 33.2430 5.163 53.863 1.00 66.75 ATOM 2080 CD ASP C 37 33.2430 5.163 53.863 1.00 66.75 ATOM 2080 CD ASP C 37 33.2478 6.879 49.401 1.00 61.18 ATOM 2080 CD ASP C 37 33.2478 6.879 49.401 1.00 61.18 ATOM 2080 CD ASP C 37 33.2478 6.879 59.599 1.00 60.55 ATOM 2080 CD ASP C 37 33.2478 6.879 59.599 1.00 60.55 ATOM 2080 CD A											
ATOM 2056 N											
ATOM											
ATOM 2058 C PRO C 34 27.121 3.734 50.767 1.00 58.89 ATOM 2059 O PRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2060 CB PRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2061 CG PRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2062 CD PRO C 34 24.701 4.825 48.139 1.00 51.86 ATOM 2063 N GLY C 35 27.545 4.399 51.850 1.00 60.51 ATOM 2064 CA GLY C 35 28.272 3.744 52.925 1.00 62.88 ATOM 2066 C GLY C 35 28.272 3.744 52.925 1.00 62.88 ATOM 2066 O GLY C 35 29.632 3.266 52.457 1.00 63.14 ATOM 2066 O GLY C 35 29.852 2.077 52.214 1.00 63.14 HETATM 2067 N MSE C 36 30.521 4.240 52.301 1.00 63.09 HETATM 2066 C MSE C 36 31.881 3.970 51.881 1.00 63.09 HETATM 2070 C MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATM 2070 C MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATM 2070 C MSE C 36 32.945 4.485 52.836 1.00 62.61 HETATM 2071 C MSE C 36 32.115 4.582 50.531 1.00 62.61 HETATM 2072 CG MSE C 36 31.973 6.688 50.551 1.00 62.61 HETATM 2073 SE MSE C 36 31.973 6.688 50.551 1.00 60.55 HETATM 2074 CE MSE C 36 32.430 5.163 53.863 1.00 66.73 ATOM 2075 N ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2075 N ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2078 C ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2079 C ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2079 C ASP C 37 33.149 5.583 55.061 1.00 67.81 ATOM 2079 C BASP C 37 33.149 5.583 55.061 1.00 67.81 ATOM 2080 C ASP C 37 33.149 5.583 55.061 1.00 67.81 ATOM 2080 C ASP C 37 33.149 5.583 55.061 1.00 67.21 ATOM 2080 C ASP C 37 33.149 5.583 55.061 1.00 67.21 ATOM 2080 C ASP C 37 33.149 5.583 55.061 1.00 67.21 ATOM 2080 C ASP C 37 33.149 5.583 55.061 1.00 67.21 ATOM 2080 C ASP C 37 30.143 6.558 5.589 1.00 69.00 67.34 ATOM 2080 C ASP C 37 30.143 6.558 5.599 1.00 67.27 ATOM 2080 C ASP C 37 30.143 6.558 5.599 1.00 67.27 ATOM 2080 C ASP C 37 30.657 7.058 57.097 1.00 67.25 ATOM 2080 C ASP C 37 30.657 7.058 57.097 1.00 65.59 ATOM 2080 C C VAL C 38 33.400 0.521 56.564 1.00 66.33 ATOM 2080 C C VAL C 38 33.400 0.521 56.564 1.00 66.33 ATOM 2090 C E VAL C 38 33.400 0.521 5											
ATOM 2059 O PRO C 34 27, 426 2.568 50.448 1.00 59.22 ATOM 2060 CB PRO C 34 24.936 4.297 49.549 1.00 54.96 ATOM 2061 CG PRO C 34 24.701 4.825 48.139 1.00 51.80 ATOM 2062 CD PRO C 34 26.002 4.428 47.456 1.00 51.80 ATOM 2063 N GLY C 35 27.545 4.399 51.850 1.00 60.51 ATOM 2064 CA GLY C 35 28.272 3.744 52.925 1.00 62.88 ATOM 2066 C GLY C 35 29.632 3.766 52.457 1.00 62.88 ATOM 2066 C GLY C 35 29.852 2.077 52.214 1.00 64.01 HETATM 2067 N MSE C 36 30.521 4.240 52.301 1.00 62.92 HETATM 2068 CA MSE C 36 31.881 3.970 51.881 1.00 63.09 HETATM 2069 C MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATM 2070 O MSE C 36 32.155 4.555 5.599 1.00 62.61 HETATM 2071 CB MSE C 36 32.155 4.552 5.599 1.00 65.03 HETATM 2072 CG MSE C 36 32.155 4.552 5.599 1.00 65.03 HETATM 2073 SE MSE C 36 33.277 6.879 49.401 1.00 66.75 HETATM 2073 SE MSE C 36 33.277 6.879 49.401 1.00 66.75 ATOM 2075 N ASP C 37 33.149 5.583 55.061 1.00 66.73 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 66.73 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 66.73 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 66.73 ATOM 2078 O ASP C 37 33.149 5.583 55.061 1.00 66.73 ATOM 2078 O ASP C 37 33.149 5.583 55.061 1.00 66.73 ATOM 2078 O ASP C 37 33.149 5.583 55.061 1.00 66.73 ATOM 2078 O ASP C 37 33.149 5.583 55.061 1.00 66.85 ATOM 2080 CG ASP C 37 33.149 5.583 55.061 1.00 66.85 ATOM 2080 CG ASP C 37 33.149 5.583 55.061 1.00 66.85 ATOM 2080 CG ASP C 37 33.149 5.583 55.061 1.00 66.85 ATOM 2080 CG ASP C 37 33.149 5.583 55.061 1.00 66.85 ATOM 2080 CG ASP C 37 33.149 5.583 55.061 1.00 66.85 ATOM 2080 CG ASP C 37 33.149 5.583 55.061 1.00 66.85 ATOM 2080 CG ASP C 37 33.149 5.583 55.061 1.00 66.85 ATOM 2080 CG ASP C 37 33.149 5.586 5.589 1.00 69.00 ATOM 2080 CG ASP C 37 33.149 5.583 55.061 1.00 66.85 ATOM 2080 CG ASP C 37 33.149 5.586 5.589 1.00 69.00 66.73 ATOM 2080 CG ASP C 37 33.143 6.586 5.589 1.00 66.85 ATOM 2080 CG ASP C 37 33.140 5.586 5.589 1.00 66.85 ATOM 2080 CG ASP C 37 33.140 5.586 5.589 1.00 66.85 ATOM 2080 CG ASP C 37 33.143 6.586 5.589 1.00 66.85 ATOM 2080 CG ASP C 37 33.143 6											
ATOM 2060 CB PRO C 34											
ATOM 2061 CG PRO C 34											
ATOM 2062 CD PRO C 34											
ATOM 2063 N GLY C 35											
ATOM 2064 CA GLY C 35											
ATOM 2065 C GLY C 35											
ATOM 2066 C GLY C 35											
HETATM 2067 N MSE C 36 30.521 4.240 52.301 1.00 62.92 HETATM 2068 CA MSE C 36 31.881 3.970 51.881 1.00 63.09 HETATM 2070 C MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATM 2070 O MSE C 36 32.945 4.485 52.836 1.00 65.03 HETATM 2071 CB MSE C 36 32.115 4.582 50.531 1.00 62.61 HETATM 2072 CG MSE C 36 32.115 4.582 50.531 1.00 62.61 HETATM 2073 SE MSE C 36 31.973 6.068 50.551 1.00 60.55 HETATM 2074 CE MSE C 36 34.541 7.346 50.777 1.00 55.15 ATOM 2075 N ASP C 37 32.430 5.163 53.863 1.00 66.73 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2079 CB ASP C 37 32.478 6.867 55.589 1.00 69.00 ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 69.00 ATOM 2081 ODL ASP C 37 30.982 6.808 55.935 1.00 69.00 ATOM 2081 ODL ASP C 37 30.657 7.058 57.097 1.00 70.25 ATOM 2084 CA VAL C 38 32.224 3.593 56.068 1.00 67.94 ATOM 2084 CA VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 CG VAL C 38 32.395 1.200 56.170 1.00 63.05 ATOM 2088 CGL VAL C 38 33.340 0.521 56.581 1.00 63.05 ATOM 2089 CCZ VAL C 38 33.340 0.521 56.581 1.00 63.05 ATOM 2089 CCZ VAL C 38 33.340 0.521 56.581 1.00 63.05 ATOM 2089 CCZ VAL C 38 33.340 0.521 56.581 1.00 63.05 ATOM 2089 CCZ VAL C 38 33.340 0.521 56.581 1.00 63.05 ATOM 2089 CCZ VAL C 38 33.340 0.521 56.581 1.00 63.05 ATOM 2089 CCZ VAL C 38 33.340 0.521 56.581 1.00 63.05 ATOM 2089 CCZ VAL C 38 33.340 0.521 56.581 1.00 63.05 ATOM 2089 CCZ VAL C 38 33.340 0.521 56.581 1.00 63.05 ATOM 2089 CCZ VAL C 38 30.694 2.475 57.631 1.00 63.23 ATOM 2089 CCZ VAL C 38 30.995 3.097 58.990 1.00 61.39 ATOM 2089 CCZ VAL C 38 30.694 2.475 57.631 1.00 63.23 ATOM 2089 CCZ VAL C 38 30.694 2.475 57.631 1.00 63.24 ATOM 2089 CCZ VAL C 38 30.995 3.097 58.990 1.00 61.39 ATOM 2089 CCZ VAL C 38 30.995 3.097 58.990 1.00 61.57 ATOM 2099 C LEU C 39 31.130 0.449 53.078 1.00 62.77 ATOM 2099 C PRO C 40 35.608 3.183 5.163 50.798 1.00 60.74 ATOM 2099 C PRO C 40 35.608 50.795 50.798 1.00 60.74 ATOM 2099 C PRO C 40 35.668 50.799 50.798 1.00 60.74 ATOM 2090 C SER C 41 37.271 -1.553 49.600 1.00 66.71											
HETATM 2068 CA MSE C 36 31.881 3.970 51.881 1.00 63.09 HETATM 2069 C MSE C 36 32.945 4.485 22.836 1.00 64.77 HETATM 2070 O MSE C 36 34.148 4.357 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 32.115 4.582 50.531 1.00 62.61 HETATM 2072 CG MSE C 36 32.115 4.582 50.531 1.00 62.61 HETATM 2073 SE MSE C 36 31.973 6.068 50.551 1.00 60.55 HETATM 2073 SE MSE C 36 33.277 6.879 49.401 1.00 61.18 HETATM 2074 CE MSE C 36 34.541 7.346 50.777 1.00 55.15 ATOM 2075 N ASP C 37 32.430 5.163 53.863 1.00 66.73 ATOM 2075 N ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2078 O ASP C 37 33.215 4.481 56.132 1.00 66.85 ATOM 2078 O ASP C 37 33.215 4.481 56.132 1.00 67.21 ATOM 2079 CB ASP C 37 30.982 6.808 55.957 1.00 67.21 ATOM 2080 CG ASP C 37 30.982 6.808 55.957 1.00 67.21 ATOM 2080 CG ASP C 37 30.982 6.808 55.951 1.00 69.80 ATOM 2080 CG ASP C 37 30.143 6.538 55.061 1.00 69.81 ATOM 2083 N VAL C 38 32.295 1.00 70.25 ATOM 2083 N VAL C 38 32.295 1.00 70.25 ATOM 2084 CA VAL C 38 32.395 1.00 66.70 1.00 68.33 ATOM 2087 CB VAL C 38 32.395 1.00 66.70 1.00 68.33 ATOM 2087 CB VAL C 38 32.395 1.00 66.70 1.00 68.33 ATOM 2087 CB VAL C 38 33.340 0.521 56.584 1.00 68.33 ATOM 2089 CG2 VAL C 38 30.694 2.475 57.631 1.00 68.33 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2099 CR LEU C 39 31.700 0.861 55.059 1.00 62.73 ATOM 2099 CR LEU C 39 31.700 0.861 55.059 1.00 62.73 ATOM 2099 CR LEU C 39 31.700 0.861 55.059 1.00 62.73 ATOM 2099 CR LEU C 39 31.700 0.861 55.059 1.00 62.73 ATOM 2099 CR LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2099 CR LEU C 39 31.100 -0.449 53.078 1.00 62.74 ATOM 2099 CR LEU C 39 31.100 -0.449 53.078 1.00 62.74 ATOM 2099 CR LEU C 39 31.100 -0.449 53.078 1.00 62.74 ATOM 2099 CR PRO C 40 35.183 -1.629 51.418 1.00 57.52 ATOM 2099 CR PRO C 40 35.866 -3.179 53.713 1.00 60.55 ATOM 2099 CR PRO C 40 35.861 -3.179 53.762 1.00 60.55 ATOM 2099 CR PRO C 40 35.861 -3.179 53.763 1.00 60.55 ATOM 2099 CR PRO C 40 35.866 -3.179 53.763 1.00 60.55 ATOM 2099 CR PRO C 40 35.866 -3.179 53.799 1.0											
HETATM 2069 C MSE C 36 32.945 4.485 52.836 1.00 64.77 HETATM 2070 O MSE C 36 34.148 4.357 52.599 1.00 65.03 HERTATM 2071 CB MSE C 36 32.115 4.582 50.531 1.00 62.61 HETATM 2073 SE MSE C 36 32.115 4.582 50.531 1.00 60.55 HETATM 2073 SE MSE C 36 33.277 6.879 49.401 1.00 61.18 HETATM 2074 CE MSE C 36 34.541 7.346 50.777 1.00 55.15 ATOM 2075 N ASP C 37 32.430 5.163 53.863 1.00 66.73 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2079 CB ASP C 37 33.2478 6.867 55.589 1.00 66.85 ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 70.25 ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 70.25 ATOM 2080 CG ASP C 37 30.657 7.058 57.097 1.00 67.21 ATOM 2082 OD2 ASP C 37 30.657 7.058 57.097 1.00 69.81 ATOM 2082 OD2 ASP C 37 30.657 7.058 57.097 1.00 67.89 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.291 2.461 56.960 1.00 65.94 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 CG VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2088 CGI VAL C 38 33.340 0.521 56.564 1.00 62.73 ATOM 2088 CGI VAL C 38 33.340 0.521 56.564 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 62.73 ATOM 2090 N LEU C 39 31.797 -0.365 54.328 1.00 62.73 ATOM 2091 CA LEU C 39 31.790 0.861 55.052 1.00 62.77 ATOM 2092 C LEU C 39 31.487 -0.412 53.952 1.00 62.77 ATOM 2094 CB LEU C 39 31.497 -0.365 54.328 1.00 63.23 ATOM 2097 C PRO C 40 35.868 -1.719 53.762 1.00 62.77 ATOM 2099 CB PRO C 40 35.868 -1.719 53.762 1.00 60.55 ATOM 2099 CB PRO C 40 35.868 -1.719 53.762 1.00 60.55 ATOM 2099 CB PRO C 40 35.868 -1.719 53.762 1.00 60.55 ATOM 2099 CB PRO C 40 35.868 -1.719 53.762 1.00 60.55 ATOM 2099 CB PRO C 40 35.868 -1.719 53.762 1.00 60.55 ATOM 2090 CB PRO C 40 35.868 -1.719 53.762 1.00 60.55 ATOM 2090 CB PRO C 40 35.866 -1.719 53.709 1.00 60.55 ATOM 2090											
HETATM 2070 O MSE C 36 34.148 4.357 52.599 1.00 65.03 HETATM 2071 CB MSE C 36 32.115 4.582 50.531 1.00 62.61 HETATM 2072 CG MSE C 36 31.973 6.068 50.551 1.00 60.55 HETATM 2073 SE MSE C 36 33.277 6.879 49.401 1.00 61.18 HETATM 2073 CC MSE C 36 33.277 6.879 49.401 1.00 61.18 HETATM 2073 N ASP C 37 32.430 5.163 53.863 1.00 66.73 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 66.85 ATOM 2077 C ASP C 37 33.149 5.583 55.061 1.00 66.85 ATOM 2078 O ASP C 37 33.215 4.481 56.132 1.00 66.85 ATOM 2078 O ASP C 37 32.478 6.867 55.589 1.00 69.00 ATOM 2080 CG ASP C 37 32.478 6.867 55.589 1.00 69.00 ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 70.25 ATOM 2081 OD1 ASP C 37 30.657 7.058 55.061 1.00 67.21 ATOM 2082 OD2 ASP C 37 30.657 7.058 55.061 1.00 69.81 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2085 C VAL C 38 32.291 2.461 56.960 1.00 64.55 ATOM 2085 C VAL C 38 32.395 1.00 65.94 ATOM 2086 O VAL C 38 32.395 1.00 65.594 ATOM 2088 CG1 VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 30.694 2.475 57.631 1.00 63.23 ATOM 2088 CG1 VAL C 38 30.915 3.097 58.990 1.00 64.32 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 64.32 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2090 CA LEU C 39 31.700 0.861 55.059 1.00 63.23 ATOM 2091 CA LEU C 39 31.700 0.861 55.059 1.00 63.23 ATOM 2092 C LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2099 CB LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2099 CB PRO C 40 35.608 -1.179 53.761 1.00 63.55 ATOM 2099 CB PRO C 40 35.608 -1.179 53.761 1.00 63.55 ATOM 2099 CB PRO C 40 35.608 -1.179 53.761 1.00 63.55 ATOM 2099 CB PRO C 40 35.608 -1.179 53.761 1.00 65.55 ATOM 2099 CB PRO C 40 35.608 -1.179 53.761 1.00 65.55 ATOM 2099 CB PRO C 40 35.608 -1.179 53.761 1.00 65.55 ATOM 2099 CB PRO C 40 35.608 -1.179 55.0798 1.00 60.55 ATOM 2090 CB PRO C 40 35.608 -1.179 55.0798 1.00 60.55 ATOM 2090 CB PRO C 40 35.608 -1.179 5											
HETATM 2071 CB MSE C 36 32.115 4.582 50.531 1.00 62.61 HETATM 2072 CG MSE C 36 31.973 6.068 50.551 1.00 60.55 HETATM 2073 SE MSE C 36 33.277 6.879 49.401 1.00 61.18 HETATM 2074 CE MSE C 36 33.277 6.879 49.401 1.00 61.18 HETATM 2074 CE MSE C 36 34.541 7.346 50.777 1.00 55.15 ATOM 2075 N ASP C 37 32.430 5.163 53.863 1.00 66.73 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.215 4.481 56.132 1.00 66.85 ATOM 2078 O ASP C 37 34.130 4.393 56.957 1.00 67.21 ATOM 2079 CB ASP C 37 32.478 6.867 55.589 1.00 69.00 ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 70.25 ATOM 2081 ODI ASP C 37 30.982 6.808 55.935 1.00 69.80 ATOM 2082 OD2 ASP C 37 30.143 6.538 55.061 1.00 69.81 ATOM 2082 OD2 ASP C 37 30.143 6.538 55.061 1.00 69.81 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 69.94 ATOM 2084 CA VAL C 38 32.224 3.593 56.068 1.00 64.55 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 64.55 ATOM 2086 O VAL C 38 33.340 0.521 56.584 1.00 63.05 ATOM 2087 CB VAL C 38 33.340 0.521 56.584 1.00 63.05 ATOM 2088 CGI VAL C 38 30.915 5.097 58.990 1.00 63.05 ATOM 2089 CG2 VAL C 38 30.915 5.097 58.990 1.00 63.05 ATOM 2090 N LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2090 N LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2099 CB LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2099 CB CA C 40 35.608 -1.719 53.761 1.00 65.57 ATOM 2099 CB PRO C 40 35.608 -1.719 53.761 1.00 65.57 ATOM 2099 CB PRO C 40 35.608 -1.719 53.761 1.00 65.57 ATOM 2099 CB PRO C 40 35.860 -1.719 53.761 1.00 65.57 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2090 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2090 C											
HETATM 2072 CG MSE C 36 31.973 6.068 50.551 1.00 60.55 HETATM 2073 SE MSE C 36 33.277 6.879 49.401 1.00 61.18 HETATM 2074 CE MSE C 36 33.277 6.879 49.401 1.00 61.18 HETATM 2074 CE MSE C 36 34.541 7.346 50.777 1.00 55.15 ATOM 2075 N ASP C 37 32.430 5.163 53.863 1.00 66.73 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.215 4.481 56.132 1.00 66.85 ATOM 2078 O ASP C 37 32.478 6.867 55.589 1.00 67.21 ATOM 2079 CB ASP C 37 32.478 6.867 55.589 1.00 67.21 ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 70.25 ATOM 2081 ODI ASP C 37 30.657 7.058 57.097 1.00 70.25 ATOM 2082 OD2 ASP C 37 30.657 7.058 57.097 1.00 71.69 ATOM 2083 N VAL C 38 32.291 2.461 56.960 1.00 64.55 ATOM 2084 CA VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 66.94 ATOM 2086 O VAL C 38 32.395 1.200 56.170 1.00 63.05 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2089 CG2 VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 62.73 ATOM 2091 CA LEU C 39 31.700 0.861 55.059 1.00 63.23 ATOM 2093 O LEU C 39 31.907 -0.365 54.328 1.00 62.57 ATOM 2095 N PRO C 40 35.608 -1.719 53.761 1.00 63.24 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 63.25 ATOM 2099 CB PRO C 40 35.608 -1.719 53.761 1.00 69.55 ATOM 2099 CB PRO C 40 35.608 -1.719 53.761 1.00 69.55 ATOM 2099 CB PRO C 40 35.608 -1.719 53.761 1.00 69.55 ATOM 2099 CB PRO C 40 35.608 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00											
HETATM 2073 SE MSE C 36 33.277 6.879 49.401 1.00 61.18 HETATM 2074 CE MSE C 36 34.541 7.346 50.777 1.00 55.15 ATOM 2076 CA ASP C 37 32.430 5.163 53.863 1.00 66.73 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2078 O ASP C 37 34.130 4.393 56.957 1.00 67.21 ATOM 2079 CB ASP C 37 34.130 4.393 56.957 1.00 67.21 ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 70.25 ATOM 2080 CG ASP C 37 30.143 6.538 55.061 1.00 69.00 ATOM 2081 ODI ASP C 37 30.143 6.538 55.061 1.00 69.81 ATOM 2082 OD2 ASP C 37 30.657 7.058 57.097 1.00 71.69 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.091 2.461 56.960 1.00 64.55 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 O VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2087 CB VAL C 38 33.340 0.521 56.584 1.00 68.33 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2089 CG2 VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2089 CG2 VAL C 38 30.995 3.097 58.990 1.00 64.32 ATOM 2089 CG2 VAL C 38 30.995 3.097 58.990 1.00 64.32 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 63.23 ATOM 2090 CA LEU C 39 31.700 0.861 55.059 1.00 63.23 ATOM 2091 CA LEU C 39 31.700 0.861 55.059 1.00 63.23 ATOM 2092 C LEU C 39 31.997 -0.365 54.328 1.00 63.24 ATOM 2093 C LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2095 N PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -1.719 53.4960 1.00 60.55 ATOM 2090 CB PRO C 40 35.866 -1.719 53.4960 1.00 60.55 ATOM 2090 CB PRO C											
HETATM 2074 CE MSE C 36 34.541 7.346 50.777 1.00 55.15 ATOM 2075 N ASP C 37 32.430 5.163 53.863 1.00 66.73 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.215 4.481 56.132 1.00 66.85 ATOM 2078 O ASP C 37 34.130 4.393 56.957 1.00 67.21 ATOM 2078 O ASP C 37 34.130 4.393 56.957 1.00 67.21 ATOM 2080 CG ASP C 37 30.982 6.808 55.589 1.00 69.00 ATOM 2081 OD1 ASP C 37 30.143 6.558 55.061 1.00 69.81 ATOM 2082 OD2 ASP C 37 30.143 6.558 55.061 1.00 69.81 ATOM 2082 OD2 ASP C 37 30.143 6.558 55.061 1.00 69.81 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.091 2.461 56.960 1.00 64.55 ATOM 2085 C VAL C 38 32.091 2.461 56.960 1.00 64.55 ATOM 2086 C VAL C 38 32.395 1.200 56.170 1.00 64.55 ATOM 2086 C VAL C 38 33.340 0.521 56.584 1.00 68.33 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.907 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 31.907 -0.365 54.328 1.00 63.23 ATOM 2093 O LEU C 39 31.907 -0.365 54.328 1.00 63.23 ATOM 2093 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2094 CB LEU C 39 31.907 -0.365 54.328 1.00 63.24 ATOM 2095 N PRO C 40 34.161 -1.578 54.066 1.00 61.57 ATOM 2099 C PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2099 C PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 52.111 1.00 56.39 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.5861 -3.170 52.111 1.00 56.39 ATOM 2099 CB PRO C 40 35.5861 -3.170 52.111 1.00 56.39 ATOM 2099 CB PRO C 40 35.5861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.5861 -3.170 52.111 1.00 56.39 ATOM 2099 CB PRO C 40 35.5861 -3.170 52.111 1.00 56.39 ATOM 2099 CB PRO C 40 35.5861 -3.170 52.111 1.00 56.39 ATOM 2090 CB PRO C 40 35.5861 -3.170 50.795 1.00 60.55 ATOM 2090 CB P											
ATOM 2075 N ASP C 37 32.430 5.163 53.863 1.00 66.73 ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.215 4.481 56.132 1.00 66.85 ATOM 2078 O ASP C 37 34.130 4.393 56.957 1.00 67.21 ATOM 2079 CB ASP C 37 32.478 6.867 55.589 1.00 69.00 ATOM 2080 CG ASP C 37 30.982 6.808 55.061 1.00 69.81 ATOM 2081 ODL ASP C 37 30.982 6.808 55.061 1.00 69.81 ATOM 2082 OD2 ASP C 37 30.657 7.058 57.097 1.00 71.69 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 O VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2088 CG1 VAL C 38 30.694 2.475 57.631 1.00 68.33 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 64.32 ATOM 2090 N LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2093 O LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2094 CB LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 62.77 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2099 CB PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2099 CB PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2102 N SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2103 CA SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2076 CA ASP C 37 33.149 5.583 55.061 1.00 67.41 ATOM 2077 C ASP C 37 33.215 4.481 56.132 1.00 66.85 ATOM 2078 O ASP C 37 34.130 4.393 56.957 1.00 67.21 ATOM 2079 CB ASP C 37 32.478 6.867 55.589 1.00 69.00 ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 70.25 ATOM 2081 OD1 ASP C 37 30.143 6.538 55.061 1.00 69.81 ATOM 2082 OD2 ASP C 37 30.143 6.538 55.061 1.00 69.81 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 O VAL C 38 33.340 0.521 56.584 1.00 63.05 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 64.32 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 64.32 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 62.73 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2094 CB LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2095 N PRO C 40 34.084 0.647 53.713 1.00 63.24 ATOM 2095 N PRO C 40 34.084 0.647 53.713 1.00 63.24 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 65.74 ATOM 2097 C PRO C 40 35.860 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 C SER C 41 37.779 -0.735 50.798 1.00 56.58											
ATOM 2077 C ASP C 37 33.215 4.481 56.132 1.00 66.85 ATOM 2078 O ASP C 37 34.130 4.393 56.957 1.00 67.21 ATOM 2079 CB ASP C 37 32.478 6.867 55.589 1.00 69.00 ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 70.25 ATOM 2081 OD1 ASP C 37 30.143 6.538 55.061 1.00 69.81 ATOM 2082 OD2 ASP C 37 30.657 7.058 57.097 1.00 71.69 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.291 2.461 56.960 1.00 64.55 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 O VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2089 CG2 VAL C 38 30.991 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2093 O LEU C 39 31.30 -0.449 53.713 1.00 62.74 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.661 -1.578 54.006 1.00 57.52 ATOM 2099 CB PRO C 40 35.608 -1.719 53.761 1.00 57.52 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.74 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.75 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.863 -3.770 54.123 1.00 60.75 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.75 ATOM 2099 CB PRO C 40 35.863 53.762 1.00 60.75 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.75 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.75 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.779 -0.735 50.798 1.00 56.41 ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.777 -0.735 50.798 1.00 56.41 ATOM 2105 O SER C 41 37.777 -0.735 50.798 1.00 56.58											
ATOM 2078 O ASP C 37 34.130 4.393 56.957 1.00 67.21 ATOM 2079 CB ASP C 37 32.478 6.867 55.589 1.00 69.00 ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 70.25 ATOM 2081 ODI ASP C 37 30.143 6.538 55.935 1.00 70.25 ATOM 2082 OD2 ASP C 37 30.143 6.538 55.061 1.00 69.81 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.091 2.461 56.960 1.00 64.55 ATOM 2085 C VAL C 38 32.395 1.20 56.170 1.00 65.94 ATOM 2086 O VAL C 38 32.395 1.20 56.170 1.00 65.94 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CGI VAL C 38 29.960 1.135 57.787 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 62.73 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 34.084 0.647 53.713 1.00 62.74 ATOM 2095 N PRO C 40 34.084 0.647 53.761 1.00 62.74 ATOM 2097 C PRO C 40 35.608 -1.719 53.7661 1.00 59.74 ATOM 2099 CB PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -3.170 53.762 1.00 60.55 ATOM 2099 CB PRO C 40 35.668 -1.719 53.762 1.00 60.55 ATOM 2099 CB PRO C 40 34.550 -3.863 53.762 1.00 60.55 ATOM 2009 CB PRO C 40 34.550 -3.863 53.762 1.00 60.55 ATOM 2100 CG PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.271 -1.553 49.602 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2079 CB ASP C 37 32.478 6.867 55.589 1.00 69.00 ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 70.25 ATOM 2081 OD1 ASP C 37 30.143 6.538 55.061 1.00 69.81 ATOM 2082 OD2 ASP C 37 30.657 7.058 57.097 1.00 71.69 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.091 2.461 56.960 1.00 64.55 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 O VAL C 38 32.395 1.200 56.170 1.00 66.33 ATOM 2087 CB VAL C 38 33.340 0.521 56.584 1.00 68.33 ATOM 2088 CG1 VAL C 38 30.915 3.097 58.990 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2095 N PRO C 40 34.084 0.647 53.713 1.00 62.74 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 62.74 ATOM 2097 C PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -3.170 53.762 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 53.762 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 53.762 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 53.762 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 53.762 1.00 60.55 ATOM 2090 CB PRO C 40 35.861 -3.170 53.762 1.00 60.55 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.271 -1.553 49.602 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2080 CG ASP C 37 30.982 6.808 55.935 1.00 70.25 ATOM 2081 OD1 ASP C 37 30.143 6.538 55.061 1.00 69.81 ATOM 2082 OD2 ASP C 37 30.657 7.058 57.097 1.00 71.69 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.091 2.461 56.960 1.00 64.55 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 O VAL C 38 33.340 0.521 56.584 1.00 68.33 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 64.32 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 62.74 ATOM 2097 C PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -3.170 54.128 1.00 57.52 ATOM 2099 CB PRO C 40 35.861 -3.170 54.128 1.00 54.10 ATOM 2099 CB PRO C 40 34.550 -3.863 53.762 1.00 60.55 ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.55 ATOM 2101 CD PRO C 40 37.779 -0.735 50.798 1.00 56.77 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.271 -1.553 49.602 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.78											
ATOM 2081 OD1 ASP C 37 30.143 6.538 55.061 1.00 69.81 ATOM 2082 OD2 ASP C 37 30.657 7.058 57.097 1.00 71.69 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.391 2.461 56.960 1.00 64.55 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 O VAL C 38 33.340 0.521 56.584 1.00 68.33 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 29.960 1.135 57.787 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2090 CG PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2090 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 33.546 -2.868 54.329 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 66.57 ATOM 2102 N SER C 41 37.272 -1.553 49.602 1.00 56.41 ATOM 2103 CA SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2082 OD2 ASP C 37 30.657 7.058 57.097 1.00 71.69 ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.091 2.461 56.960 1.00 64.55 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 O VAL C 38 33.340 0.521 56.584 1.00 68.33 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2097 C PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2099 CB PRO C 40 33.546 -2.868 54.329 1.00 60.55 ATOM 2100 CG PRO C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2101 CD PRO C 41 37.282 -1.110 52.111 1.00 56.58 ATOM 2103 CA SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2083 N VAL C 38 32.224 3.593 56.068 1.00 65.94 ATOM 2084 CA VAL C 38 32.091 2.461 56.960 1.00 64.55 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 O VAL C 38 33.340 0.521 56.584 1.00 68.33 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 29.960 1.135 57.787 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2097 C PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2098 O PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 33.546 -2.868 54.329 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 60.74 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2084 CA VAL C 38 32.091 2.461 56.960 1.00 64.55 ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 O VAL C 38 33.340 0.521 56.584 1.00 68.33 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 29.960 1.135 57.787 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 63.24 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 57.52 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 33.546 -2.868 54.329 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.272 -0.735 50.798 1.00 56.39 ATOM 2103 CA SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2085 C VAL C 38 32.395 1.200 56.170 1.00 65.94 ATOM 2086 O VAL C 38 33.340 0.521 56.584 1.00 68.33 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 29.960 1.135 57.787 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2092 C LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2093 O LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2098 O PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 33.546 -2.868 53.762 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.272 -1.553 49.602 1.00 56.39 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2086 O VAL C 38 33.340 0.521 56.584 1.00 68.33 ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 29.960 1.135 57.787 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 57.52 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 33.546 -2.868 54.329 1.00 60.55 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2087 CB VAL C 38 30.694 2.475 57.631 1.00 63.05 ATOM 2088 CG1 VAL C 38 29.960 1.135 57.787 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 36.009 -1.462 52.318 1.00 57.52 ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 54.10 ATOM 2090 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 33.546 -2.868 54.329 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.277 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2088 CG1 VAL C 38 29.960 1.135 57.787 1.00 62.73 ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 36.009 -1.462 52.318 1.00 57.52 ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 54.10 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2104 C SER C 41 37.277 -0.735 50.798 1.00 56.58											
ATOM 2089 CG2 VAL C 38 30.915 3.097 58.990 1.00 61.39 ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2098 O PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.277 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2090 N LEU C 39 31.700 0.861 55.059 1.00 64.32 ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 36.009 -1.462 52.318 1.00 57.52 ATOM 2098 O PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2099 CB PRO C 40 34.550 -3.863 53.762 1.00 60.55 ATOM 2100 CG PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2101 CD PRO C 40 37.282 -1.110 52.111 1.00 56.39 ATOM 2102 N SER C 41 37.279 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2091 CA LEU C 39 31.997 -0.365 54.328 1.00 63.23 ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 36.009 -1.462 52.318 1.00 57.52 ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 57.52 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.55 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2092 C LEU C 39 33.487 -0.412 53.952 1.00 62.57 ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 36.009 -1.462 52.318 1.00 57.52 ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 54.10 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.277 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2093 O LEU C 39 34.084 0.647 53.713 1.00 63.24 ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 36.009 -1.462 52.318 1.00 57.52 ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 54.10 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.277 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2094 CB LEU C 39 31.130 -0.449 53.078 1.00 62.74 ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 36.009 -1.462 52.318 1.00 57.52 ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 54.10 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.58											
ATOM 2095 N PRO C 40 34.161 -1.578 54.006 1.00 61.57 ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 36.009 -1.462 52.318 1.00 57.52 ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 54.10 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2096 CA PRO C 40 35.608 -1.719 53.761 1.00 59.74 ATOM 2097 C PRO C 40 36.009 -1.462 52.318 1.00 57.52 ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 54.10 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2097 C PRO C 40 36.009 -1.462 52.318 1.00 57.52 ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 54.10 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2098 O PRO C 40 35.183 -1.629 51.418 1.00 54.10 ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2099 CB PRO C 40 35.861 -3.170 54.123 1.00 60.55 ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2100 CG PRO C 40 34.550 -3.863 53.762 1.00 60.74 ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2101 CD PRO C 40 33.546 -2.868 54.329 1.00 61.16 ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2102 N SER C 41 37.282 -1.110 52.111 1.00 56.39 ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2103 CA SER C 41 37.779 -0.735 50.798 1.00 56.77 ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2104 C SER C 41 37.271 -1.553 49.602 1.00 56.41 ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2105 O SER C 41 36.627 -0.992 48.727 1.00 56.58											
ATOM 2106 CB SER C 41 39.292 -0.643 50.831 1.00 57.36											
	MOTA	2T06	CB	SEK	C	. ∓ T	33	. 434	-0.543	20.031	1.00 37.30

 $\begin{array}{c} \texttt{CONTRUCTORDUCT$

Figure 8-46

MOTA	2107	OG	SER	C	41	39.964	-1.877	50.695	1.00 60.69
MOTA	2108	N	HIS	C	42	37.404	-2,882	49.580	1.00 56.11
ATOM	2109	CA	HIS	C	42	36.947	-3.739	48.482	1.00 56.80
ATOM	2110	С	HIS	C	42	35.473	-3.664	48.079	1.00 56.34
MOTA	2111	0	HIS	C	42	35.062	-4.139	47.007	1.00 55.64
MOTA	2112	CB	HIS		42	37.301	-5.217	48.795	1.00 60.78
ATOM	2113	CG	HIS		42	36.205	-6.095	49.445	1.00 63.24
MOTA	2114		HIS		42	35.894	-6.211	50.736	1.00 63.50
ATOM	2115		HIS		42	35.244	-6.788	48.711	1.00 63.78
MOTA	2116		HIS		42	34.762	-6.882	50.802	1.00 64.65
ATOM	2117		HIS		42	34.371	-7.201	49.584	1.00 64.49
MOTA	2118	N	CYS		43	34.669	-3.175	49.027	1.00 56.27
ATOM	2119	CA	CYS		43	33.239	-3.012	48.806	1.00 56.25
MOTA	2120	C	CYS		43	32.953	-1.871	47.844	1.00 54.69
ATOM	2121	Õ	CYS		43	32.104	-2.006	46.959	1.00 56.17
ATOM	2122	CB	CYS		43	32.488	-2.787	50.120	1.00 57.47
	2123	SG	CYS		43	31.647	-4.253	50.786	1.00 60.51
MOTA	2123	N	TRP		44	33.695	-0.766	47.973	1.00 51.41
MOTA		CA	TRP		44	33.338	0.464	47.287	1.00 31.41
ATOM	2125		TRP		44	34.349	0.946		
ATOM	2126	C	TRP		44	33.969	1.593	46.300	1.00 46.08
MOTA	2127	O						45.341	1.00 46.29 1.00 47.09
ATOM	2128	CB	TRP		44	33.089 34.199	1.587	48.271 49.301	
ATOM	2129	CG	TRP		44		1.801		1.00 46.63
ATOM	2130		TRP		44	34.221	1.046	50.444	1.00 47.77
ATOM	2131	CD2	TRP	<u>C</u>	44	35.261	2.660	49.225	1.00 45.55
ATOM	2132		TRP		44	35.307	1.419	51.078	1.00 47.46
ATOM	2133		TRP		44	35.948	2.361	50.389	1.00 44.86
ATOM	2134	CE3			44	35.723	3.640	48.403	1.00 42.70
MOTA	2135	CZ2	TRP		44	37.122	2.956	50.754	1.00 43.79
MOTA	2136		TRP		44	36.886	4.263	48.782	1.00 43.82
ATOM	2137		TRP		44	37.597	3.925	49.920	1.00 42.91
ATOM	2138	N	ILE		45 45	35.615	0.635 1.252	46.539	1.00 45.14
MOTA	2139	CA	ILE		45	36.735		45.851	1.00 47.08
MOTA	2140	C	ILE		45 45	36.657	1.198	44.329	1.00 47.61 1.00 48.87
ATOM	2141	O	ILE		45	36.955 38.085	2.157 0.681	43.619 46.427	1.00 48.87
ATOM	2142	CB							
MOTA	2143		ILE		45	39.316	1.515	46.123	1.00 46.35
MOTA	2144	CG2	ILE		45	38.420	-0.723 2.995	45.905	1.00 50.05
ATOM	2145		ILE		45	39.180		46.462	1.00 43.72
ATOM	2146	N	SER		46	36.158	0.077	43.850	1.00 47.61
MOTA	2147	CA	SER		46	36.069 35.166	-0.245 0.685	42.437 41.595	1.00 48.09
MOTA	2148	C	SER		46 46	35.598	1.186	40.555	1.00 47.26 1.00 46.49
ATOM	2149	0	SER SER		46	35.688	-1.728	42.427	1.00 40.49
ATOM	2150	CB			46	35.093	-2.219	43.664	1.00 50.90
MOTA	2151	OG N	SER GLU		47	33.932	0.997	42.039	1.00 34.24
ATOM	2152	N C2	GLU		47		2.037	41.430	1.00 45.80
ATOM	2153	CA	GLU		47	33.095 33.599	3.449	41.776	1.00 43.94
ATOM	2154	C			47		4.348	40.947	1.00 43.82
MOTA	2155	0	GLU			33.532			
MOTA	2156	CB	GLU		47	31.602		41.831	
MOTA	2157	CG	GLU		47	30.478	2.752	41.246	1.00 52.00
ATOM	2158	CD	GLU		47	29.748	2.394	39.936	1.00 54.16
MOTA	2159		GLU		47	28.894	1.494	39.926	1.00 57.21
MOTA	2160		GLU		47	29.989	3.052	38.922	1.00 54.36
HETATM		N	MSE		48	34.170	3.670	42.967	1.00 43.01
HETATM		CA	MSE		48	34.601	4.979	43.448	1.00 40.77
HETATM		C	MSE		48	35.795	5.538	42.724	1.00 37.10
HETATM		0	MSE		48	35.799	6.739	42.563	1.00 39.16
HETATM		CB	MSE		48	34.926	4.968	44.927	1.00 43.83
HETATM	2166	CG	MSE	C	48	34.667	6.334	45.551	1.00 49.60

Figure 8-47

HETATM			MSE		48	32.809	6.850	45.340	1.00 57.46	SE
HETATM	2168	CE	MSE		48	32.917	8.464	46.266	1.00 52.90	C
MOTA	2169	N	VAL	C	49	36.793	4.773	42.266	1.00 34.29	N
MOTA	2170	CA	VAL	C	49	37.855	5.271	41.388	1.00 30.22	C
MOTA	2171	C	VAL	C	49	37.372	5.680	39.997	1.00 31.03	С
MOTA	2172	0	VAL	С	49	37.936	6.572	39.365	1.00 30.17	0
MOTA	2173	CB	VAL	С	49	39.021	4.288	41.268	1.00 27.65	C
MOTA	2174	CG1	VAL	C	49	39.719	4.131	42.581	1.00 27.80	C
MOTA	2175	CG2	VAL	C	49	38.591	2.924	40.828	1.00 27.38	Ĉ
ATOM	2176	N	VAL	C	50	36.319	5.056	39.478	1.00 29.68	N
MOTA	2177	CA	LAV	С	50	35.727	5.548	38.255	1.00 29.53	Ċ
MOTA	2178	C	VAL		50	34.932	6.806	38.559	1.00 28.57	č
MOTA	2179	0	VAL	С	50	35.069	7.755	37.800	1.00 30.41	Õ
ATOM	2180	CB	VAL		50	34.904	4.446	37.554	1.00 30.06	č
ATOM	2181		VAL		50	34.026	4.900	36.371	1.00 28.50	č
MOTA	2182		VAL		50	35.916	3.457	37.070	1.00 29.52	č
MOTA	2183	N	GLN		51	34.147	6.917	39.639	1.00 28.05	Ŋ
ATOM	2184	CA	GLN		51	33.421	8.148	39.945	1.00 27.55	C
ATOM	2185	C	GLN		51	34.267	9.336	40.379	1.00 26.77	č
MOTA	2186	Õ	GLN		51	33.957	10.480	40.061	1.00 27.78	0
MOTA	2187	CB	GLN		51	32.276	7.962	40.944	1.00 27.70	Ç
ATOM	2188	CG	GLN		51	31.142	7.029	40.503	1.00 31.66	G
ATOM	2189	CD	GLN		51	30.518	7.274	39.121	1.00 35.14	G
MOTA	2190		GLN		51	30.531	8.353	38.510	1.00 33.14	0
		NE2	GLN		51	29.945	6.214	38.566	1.00 34.34	
MOTA	2191 2192		LEU		52	35.349	9.130	41.113	1.00 36.11	N
MOTA	2192	N CA	LEU		52	36.290	10.188	41.316	1.00 24.84	N
ATOM			LEU		52	36.914		40.004		C
MOTA	2194	C	LEU		52	37.061	10.560 11.752		1.00 25.82	C
ATOM	2195	O			52	37.349	9.754	39.750	1.00 26.91 1.00 25.92	0
ATOM	2196	CB CG	LEU		52	36.831	9.701	42.251 43.653	1.00 23.92	C
ATOM	2197 2198		LEU		52		9.090			C
ATOM			LEU		52	37.880 36.473	11.078	44.510	1.00 27.86 1.00 27.93	C
MOTA	2199		SER		53	37.211	9.566	44.141 39.148		C
ATOM	2200	N CA	SER		53	37.788	9.790	37.838	1.00 27.18 1.00 24.69	И
ATOM	2201	CA	SER		53	36.859	10.558	36.918	1.00 24.69	C C
ATOM		0	SER		53	37.336	11.388	36.166	1.00 26.00	
MOTA	2203				53	38.172		37.198		0
MOTA	2204	CB	SER SER		53	38.902	8.499 8.772	36.019	1.00 25.64 1.00 24.45	C
ATOM	2205	OG N			54	35.544	10.421			0
ATOM	2206	N	ASP			34.743		36.932	1.00 27.50	N
ATOM	2207	CA	ASP		54 54		11.292	36.113	1.00 29.13	C
MOTA	2208	C	ASP ASP		54	34.719 34.826	12.679 13.616	36.663 35.906	1.00 27.20 1.00 30.75	C
ATOM	2209	O CF			54		10.874	36.099	1.00 35.74	
MOTA	2210	CB	ASP		54 54	33.314	9.521	35.502	1.00 33.74	C
MOTA	2211	CG	ASP		54	33.056	9.016	34.694		C
ATOM	2212		ASP			33.871			1.00 44.80	0
ATOM	2213		ASP		54 55	31.996 34.554	8.988 12.829	35.876	1.00 47.24 1.00 26.41	0
MOTA	2214	N	SER				14.119	37.966		N
MOTA	2215	CA	SER		55	34.470		38.610	1.00 23.34	C
MOTA	2216	C	SER		55	35.676	14.964	38.382	1.00 19.99	C
ATOM	2217	0	SER		55	35.544	16.157	38.175	1.00 20.42	0
MOTA	2218	CB	SER		55	34.306	13.948	40.105	1.00 24.40	C
MOTA	2219	OG	SER		55	33.079	13.321	40.431	1.00 24.29	0
MOTA	2220	N	LEU		56	36.837	14.338	38.432	1.00 19.40	N
ATOM	2221	CA	LEU		56	38.082	15.062	38.245	1.00 21.98	C
MOTA	2222	C	LEU		56	38.333	15.488	36.797	1.00 23.22	C
MOTA	2223	O	LEU		56	38.922	16.543	36.512	1.00 21.76	0
MOTA	2224	CB	LEU		56	39.301	14.271	38.793	1.00 21.06	C
ATOM	2225	CG	LEU		56	39.614	14.342	40.291	1.00 19.56	C
MOTA	2226	CD1	LEU	Ü	56	40.647	13.313	40.678	1.00 18.16	C

Figure 8-48

ATOM	2227	CD2	LEU C	56	40.132	15.717	40.651	1.00 16.61
ATOM	2228	N	THR C	57	37.873	14.624	35.881	1.00 25.77
	2229	CA	THR C	57	37.991	14.906	34.462	1.00 28.23
ATOM		C	THR C	5 <i>7</i>	37.020	16.004	34.104	1.00 28.03
MOTA	2230			57	37.390	16.908	33.364	1.00 31.55
MOTA	2231	0	THR C			13.669	33.596	1.00 30.08
MOTA	2232	CB	THR C	57	37.813			1.00 32.28
ATOM	2233	OG1		57	38.904	12.849	33.972	
MOTA	2234	CG2	THR C	57	38.044	13.945	32.109	1.00 33.98
ATOM	2235	N	ASP C	58	35.831	16.009	34.675	1.00 26.77
ATOM	2236	CA	ASP C	58	34.940	17.120	34.486	1.00 29.31
MOTA	2237	C	ASP C	58	35.387	18.422	35.173	1.00 28.49
ATOM	2238	Ö	ASP C	58	35.241	19.515	34.614	1.00 29.44
	2239	CB	ASP C	58	33.489	16.679	34.870	1.00 36.00
MOTA		CG	ASP C	58	32.849	15.532	34.032	1.00 40.53
MOTA	2240		ASP C	58	33.503	14.924	33.151	1.00 41.90
MOTA	2241			58	31.673	15.229	34.294	1.00 42.29
MOTA	2242	OD2				18.350	36.383	1.00 26.07
MOTA	2243	N	LEU C	59	35.964		37.074	1.00 21.52
ATOM	2244	CA	LEU C	59	36.486	19.508		1.00 21.32
MOTA	2245	С	LEU C	59	37.611	20.115	36.285	
MOTA	2246	0	LEU C	59	37.748	21.317	36.312	1.00 20.31
ATOM	2247	CB	LEU C	59	37.028	19.118	38.444	1.00 19.27
ATOM	2248	CG	LEU C	59	37.519	20.223	39.377	1.00 18.52
MOTA	2249	CD1	LEU C	59	36.411	21.181	39.805	1.00 14.85
MOTA	2250	CD2	LEU C	59	38.147	19.538	40.574	1.00 18.90
MOTA	2251	N	LEU C	60	38.399	19.348	35.553	1.00 19.17
	2252	CA	LEU C	60	39.549	19.854	34.840	1.00 20.10
ATOM	2253	C	LEU C	60	39.173	20.833	33.766	1.00 22.23
ATOM		õ	LEU C	60	39.912	21.768	33.474	1.00 24.00
ATOM	2254	CB	LEU C	60	40.290	18.718	34.206	1.00 18.56
MOTA	2255	CG	LEU C	60	41.582	19.115	33.520	1.00 19.76
MOTA	2256	CD1		60	42.638	19.404	34.561	1.00 17.43
MOTA	2257	-		60	42.018	18.002	32.555	1.00 20.53
MOTA	2258	CD2			37.984	20.629	33.214	1.00 25.53
MOTA	2259	N	ASP C	61	37.471	21.478	32.157	1.00 27.32
MOTA	2260	CA	ASP C	61		22.809	32.666	1.00 24.92
MOTA	2261	C	ASP C	61	36.950	23.738	31.883	1.00 26.04
MOTA	2262	0	ASP C	61	36.768		31.389	1.00 35.92
MOTA	2263	CB	ASP C	61	36.365	20.729	30.759	1.00 35.52
MOTA	2264	CG	ASP C	61	36.753	19.367		
MOTA	2265	OD1	ASP C	61	37.808	19.241	30.086	
MOTA	2266	OD2	ASP C	61	35.970	18.414	30.956	1.00 49.47
MOTA	2267	N	LYS C	62	36.733	22.956	33.979	1.00 22.12
MOTA	2268	CA	LYS C	62	36.379	24.234	34.559	1.00 18.62
ATOM	2269	С	LYS C	62	37.603	25.082	34.727	1.00 17.52
ATOM	2270	0	LYS C	62	37.491	26.205	35.176	1.00 19.68
MOTA	2271	СВ	LYS C	62	35.718	24.064	35.888	1.00 17.21
ATOM	2272	CG	LYS C	62	34.590	23.048	35.893	1.00 20.59
MOTA	2273	CD	LYS C	62	33.552	23.302	34.802	1.00 23.94
	2274	CE	LYS C	62	32.302	22.398	34.907	1.00 27.69
MOTA	2275	NZ	LYS C		32.621	20.990	35.112	1.00 33.53
MOTA			PHE C	63	38.792	24.629	34.385	1.00 16.95
MOTA	2276	N	PHE C	63	39.980	25.398	34.650	1.00 18.75
ATOM	2277	CA			40.714	25.584	33.363	1.00 20.52
ATOM	2278	C	PHE C	63	40.714	24.894	32.375	1.00 22.83
MOTA	2279	0	PHE C	63	40.491	24.728		1.00 16.49
MOTA	2280	CB	PHE C	63		24.720		
MOTA	2281	CG	PHE C	63	40.280			
MOTA	2282	CD:		63	40.413	25.931		
MOTA	2283	CD:		63	39.475	23.764		
MOTA	2284	CE:		63	39.717	26.070		
MOTA	2285	CE:		63	38.742	23.932		
ATOM	2286	CZ	PHE C	63	38.864	25.086	39.487	1.00 11.00

Figure 8-49

ATOM	2287	N	SER C	64	41.606	26.540	33.393	1.00 22.26
ATOM	2288	CA	SER C	64	42.458	26.748	32.268	1.00 25.03
ATOM	2289	С	SER C	64	43.928	26.724	32.651	1.00 27.32
ATOM	2290	Ö	SER C	64	44.339	27.274	33.668	1.00 29.54
MOTA	2291	СB	SER C	64	41.951	28.036	31.682	1.00 27.42
	2292	OG	SER C	64	42.936	28.782	30.987	1.00 33.90
MOTA		N	ASN C	65	44.750	26.056	31.838	1.00 29.09
MOTA	2293		ASN C	65	46.183	25.967	32.048	1.00 29.94
MOTA	2294	CA		65	46.912	27.280	31.894	1.00 31.16
MOTA	2295	C	ASN C		46.482	28.228	31.252	1.00 32.15
MOTA	2296	0	ASN C	65		24.950	31.088	1.00 31.52
MOTA	2297	CB	ASN C	65	46.770		31.558	1.00 31.32
MOTA	2298	CG	ASN C	65	48.076	24.325		
MOTA	2299	OD1		65	48.626	24.591	32.636	1.00 30.12
MOTA	2300	ND2	ASN C	65	48.554	23.457	30.676	1.00 32.43
MOTA	2301	N	ILE C	66	48.053	27.328	32.558	1.00 34.70
ATOM	2302	CA	ILE C	66	48.822	28.549	32.743	1.00 38.02
ATOM	2303	С	ILE C	66	50.279	28.139	32.567	1.00 39.89
MOTA	2304	0	ILE C	66	50.733	27.095	33.077	1.00 40.56
ATOM	2305	CB	ILE C	66	48.560	29.130	34.181	1.00 37.96
ATOM	2306	CG1		66	47.097	29.513	34.381	1.00 37.79
ATOM	2307	CG2		66	49.443	30.334	34.443	1.00 37.53
	2308	CD1		66	46.677	29.759	35.833	1.00 39.98
MOTA	2309	N	SER C	67	50.960	29.038	31.828	1.00 41.75
MOTA		CA	SER C	67	52.349	28.856	31.397	1.00 44.33
MOTA	2310		SER C	67	53.320	28.647	32.536	1.00 44.00
MOTA	2311	C		67	54.160	27.762	32.527	1.00 44.13
MOTA	2312	O	SER C	67	52.833	30.063	30.588	1.00 45.04
MOTA	2313	CB	SER C		52.984	31.250	31.372	1.00 50.12
MOTA	2314	OG	SER C	67	53.150	29.510	33.517	1.00 46.29
MOTA	2315	N	GLU C	68		29.520	34.702	1.00 49.75
ATOM	2316	CA	GLU C	68	53.969	29.731	36.043	1.00 48.90
MOTA	2317	С	GLU C	68	53.215		36.267	1.00 49.09
MOTA	2318	0	GLU C	68	52.374	30.624	34.479	1.00 53.81
MOTA	2319	CB	GLU C	68	55.066	30.581		1.00 59.46
MOTA	2320	CG	GLU C	68	56.220	30.174	33.547	1.00 53.46
MOTA	2321	CD	GLU C	68	57.364	29.378	34.192	
MOTA	2322	OE1		68	57.165	28.736	35.239	
MOTA	2323	OE2		68	58.477	29.413	33.642	
MOTA	2324	N	GLY C	69	53.643	28.896	36.995	1.00 46.18
MOTA	2325	CA	GLY C	69	52.938	28.734	38.244	1.00 41.09
ATOM	2326	C	GLY C	69	52.252	27.398	38.142	1.00 37.69
ATOM	2327	0	GLY C	69	51.845	26.975	37.057	1.00 38.22
ATOM	2328	N	LEU C	70	52.181	26.712	39.279	1.00 34.58
ATOM	2329	CA	LEU C	70	51.394	25.484	39.399	1.00 30.54
MOTA	2330	С	LEU C	70	49.895	25.821	39.513	1.00 28.30
MOTA	2331	0	LEU C	70	49.411	26.367	40.513	1.00 29.19
ATOM	2332	CB	LEU C	70	51.895	24.714	40.615	1.00 28.69
MOTA	2333	CG	LEU C	70	51.380	23.328	40.950	1.00 27.08
ATOM	2334	CD	L LEU C	70	51.749	22.340	39.816	1.00 26.63
ATOM	2335	CD	LEU C	70	51.914	22.939	42.329	1.00 22.67
	2336	N	SER C	71	49.173	25.536	38.430	1.00 23.37
ATOM	2337	CA	SER C	71	47.795	25.909	38.342	1.00 18.79
ATOM	2338	C	SER C	71	46.961	24.732	38.737	1.00 14.59
MOTA	2339	Ö	SER C	71	47.420	23.616	38.830	1.00 13.92
MOTA		CB	SER C	71	47.499	26.362	36.929	1.00 19.04
MOTA	2340		SER C	71	47.794	25.282		1.00 21.34
MOTA	2341	OG	ASN C	72	45.691	25.004		1.00 15.21
ATOM	2342	N		72	44.712	24.002		
ATOM	2343	CA	ASN C		44.712	23.023		
MOTA	2344	C	ASN C	72	44.330	21.836		
MOTA	2345	0	ASN C	72	43.395	24.668		
MOTA	2346	CB	ASN C	72	43.333	24.000	. 22.027	

 \mathbf{n}

Figure 8-50

									1 00 16 00
ATOM	2347	CG	ASN (72	43.443	25.398	40.958	1.00 16.98
MOTA	2348				72	44.439	25.399	41.698	1.00 15.50
MOTA	2349	ND2	ASN (72	42.348	26.051	41.315	1.00 16.58
ATOM	2350	N	TYR (73	44.626	23.493	36.878	1.00 17.45
MOTA	2351	CA	TYR (C '	73	44.546	22.649	35.715	1.00 16.35
ATOM	2352	С	TYR (C	73	45.628	21.603	35.846	1.00 16.88
MOTA	2353	0	TYR (C '	73	45.388	20.407	35.803	1.00 18.90
MOTA	2354	CB	TYR (C '	73	44.797	23.540	34.503	1.00 14.79
MOTA	2355	CG	TYR	C '	73	44.618	22.779	33.215	1.00 18.01
MOTA	2356	CD1	TYR	C '	73	45.649	22.000	32.745	1.00 18.75
MOTA	2357	CD2	TYR	C	73	43.428	22.809	32.544	1.00 17.80
MOTA	2358	CE1	TYR	С	73	45.507	21.189	31.632	1.00 23.12
ATOM	2359	CE2	TYR	C	73	43.282	22.000	31.424	1.00 23.77
MOTA	2360	CZ	TYR		73	44.300	21.160	30.987	1.00 22.85
MOTA	2361	OH	TYR		73	44.105	20.242	29.959	1.00 27.47
MOTA	2362	N	SER		74	46.846	22.071	36.054	1.00 19.27
MOTA	2363	CA	SER		74	48.037	21.234	36.196	1.00 18.80
MOTA	2364	C	SER	C	74	47.939	20.205	37.316	1.00 18.49
ATOM	2365	Ö	SER		74	48.192	19.026	37.062	1.00 18.14
ATOM	2366	СB	SER	Ċ	74	49.160	22.197	36.410	1.00 19.97
ATOM	2367	ŌĠ	SER		74	50.345	21.552	36.749	1.00 27.05
MOTA	2368	Ŋ	ILE		75	47.536	20.603	38.532	1.00 17.15
MOTA	2369	CA			75	47.360	19.670	39.640	1.00 15.78
MOTA	2370	C	ILE		75	46.266	18.688	39.303	1.00 15.56
MOTA	2371	ŏ	ILE		75	46.392	17.487	39.540	1.00 15.90
ATOM	2372	СB	ILE		75	47.004	20.373	40.994	1.00 14.47
ATOM	2373	CG1	ILE		75	48.069	21.396	41.311	1.00 15.08
ATOM	2374	CG2	ILE		75	46.847	19.406	42.151	1.00 9.44
ATOM	2375	CD1	ILE		75	47.662	22.494	42.334	1.00 16.06
ATOM	2376	N	ILE		76	45.174	19.165	38.739	1.00 15.87
ATOM	2377	CA	ILE		76	44.072	18.254	38.540	1.00 16.45
MOTA	2378	C	ILE		76	44.423	17.278	37.416	1.00 18.42
ATOM	2379	Ö	ILE		76	44.047	16.107	37.479	1.00 21.96
MOTA	2380	CB	ILE		76	42.777	19.029	38.276	1.00 16.99
ATOM	2381	CG1	ILE		76	42.407	20.014	39.366	1.00 18.36
ATOM	2382	CG2	ILE		76	41.661	18.026	38.294	1.00 18.72
ATOM	2383	CD1	ILE	C	76	41.376	21.090	38.981	1.00 13.71
ATOM	2384	N		С	77	45.169	17.686	36.395	1.00 19.28
MOTA	2385	CA		С	77	45.673	16.806	35.340	1.00 20.35
MOTA	2386	C		C	77	46.477	15.616	35.867	1.00 18.75
ATOM	2387	0	ASP	С	77	46.259	14.474	35.483	1.00 20.55
ATOM	2388	CB	ASP	C	77	46.528	17.679	34.388	1.00 23.72
ATOM	2389	ĊG	ASP	C	77	46.796	17.143	32.984	1.00 27.17
ATOM	2390	OD1	ASP	C	77	46.195	16.148	32.611	1.00 29.11
ATOM	2391	OD2		C	77	47.586	17.723	32.239	1.00 31.91
ATOM	2392	N		С	78	47.401	15.826	36.791	1.00 18.00
MOTA	2393	CA	LYS	C	78	48.064	14.729	37.494	1.00 19.18
ATOM	2394	С	LYS	C	78	47.114	13.802	38.229	1.00 16.84
MOTA	2395	0	LYS	C	78	47.200	12.586	38.170	1.00 18.34
MOTA	2396	CB	LYS	С	78	49.017	15.288	38.533	1.00 21.80
MOTA	2397	CG	LYS	С	78	50.492	15.453	38.249	1.00 26.26
MOTA	2398	CD	LYS	C	78	50.799	16.212	36.977	1.00 33.33
MOTA	2399	CE	LYS		78	51.977	17.190	37.154	1.00 36.36
MOTA	2400	NZ	LYS		78	51.538	18.516	37.592	1.00 40.57
MOTA	2401	N	LEU		79	46.160	14.358	38.937	1.00 17.71
MOTA	2402	CA	LEU		79	45.282	13.528	39.739	1.00 19.39
MOTA	2403	C	LEU		79	44.465	12.641	38.836	1.00 19.34
ATOM	2404	ō	LEU	С	79	44.358	11.479	39.161	1.00 22.92
ATOM	2405	CB	LEU		79	44.412	14.342	40.708	1.00 15.20
MOTA	2406	CG	LEU		79	45.179	15.238	41.695	1.00 14.54

Figure 8-51

MOTA	2407	CD1	LEU	С	79	44.276	15.934	42.683	1.00 15.95	С
MOTA	2408	CD2	LEU	C	79	46.119	14.401	42.497	1.00 14.50	C
MOTA	2409	N	VAL	C	80	43.974	13.115	37.694	1.00 20.79	N
MOTA	2410	CA	VAL	С	80	43.210	12.349	36.719	1.00 19.75	C
MOTA	2411	С	VAL	C	80	44.068	11.231	36.229	1.00 20.92	Ċ
MOTA	2412	0	VAL		80	43.583	10.133	36.160	1.00 19.45	ō
ATOM	2413	CB	VAL	С	80	42.850	13.201	35.502	1.00 20.41	Ċ
ATOM	2414	CG1	VAL		80	42.103	12.364	34.477	1.00 22.80	č
ATOM	2415	CG2	VAL		80	41.915	14.311	35.902	1.00 19.35	č
MOTA	2416	N	ASN		81	45.344	11.472	35.936	1.00 24.00	N
MOTA	2417	CA	ASN		81	46.215	10.435	35.447	1.00 24.32	C
MOTA	2418	C	ASN		81	46.460	9.366	36.474	1.00 25.83	C
MOTA	2419	Õ	ASN		81	46.405	8.188	36.168	1.00 23.03	0
	2420	CB	ASN		81	47.505	11.049	35.027	1.00 25.29	c
ATOM	2421	CG	ASN		81	47.389	11.689	33.658	1.00 23.29	
MOTA			ASN		81	47.347	10.977	32.667		C
ATOM	2422	OD1							1.00 30.37	0
ATOM	2423		ASN		81	47.387	13.000	33.477	1.00 27.47	N
ATOM	2424	N	ILE		82	46.690	9.750	37.714	1.00 27.31	N
ATOM	2425	CA	ILE		82	46.839	8.819	38.814	1.00 27.48	C
ATOM	2426	C	ILE		82	45.586	7.971	39.042	1.00 29.22	C
MOTA	2427	0	ILE	C	82	45.705	6.766	39.266	1.00 32.26	0
MOTA	2428	CB	ILE	C	82	47.228	9.685	40.022	1.00 26.77	C
ATOM	2429	CG1	ILE	C	82	48.662	10.131	39.852	1.00 24.85	
MOTA	2430	CG2	ILE		82	47.046	8.977	41.344	1.00 26.49	C
ATOM	2431	CD1		C	82	49.159	11.193	40.833	1.00 24.34	C
MOTA	2432	N	VAL		83	44.371	8.547	38.968	1.00 30.80	N
MOTA	2433	CA	VAL		83	43.099	7.834	39.209	1.00 29.90	C
MOTA	2434	C	VAL		83	42.793	6.906	38.019	1.00 30.67	C
MOTA	2435	0_	VAL		83	42.229	5.824	38.195	1.00 29.90	0
MOTA	2436	CB	VAL		83	41.888	8.816	39.455	1.00 27.23	c
MOTA	2437		VAL		83	40.651	8.141	39.973	1.00 28.89	C
MOTA	2438	CG2	VAL		83	42.154	9.759	40.558	1.00 28.33	C
MOTA	2439	N		C	84	43.174	7.298	36.797	1.00 31.05	N
ATOM	2440	CA	ASP		84	42.971	6.473	35.629	1.00 31.24	C
MOTA	2441	C	ASP		84	43.761	5.196	35.686	1.00 32.41	Č
ATOM	2442	0	ASP		84	43.233	4.156	35.291	1.00 32.47	0
MOTA	2443	CB	ASP		84	43.296	7.192	34.350	1.00 31.90	C
MOTA	2444	CG	ASP		84	42.233	8.181	33.899	1.00 36.65	C
MOTA	2445		ASP		84	41.105	8.177	34.417	1.00 37.73	0
MOTA	2446		ASP		84	42.537	8.969	33.000	1.00 40.83	0
ATOM	2447	N		C	85	44.988	5.287	36.202	1.00 31.95	N
MOTA	2448	CA	ASP		85	45.770	4.128	36.589	1.00 34.69	C
ATOM	2449	С		C	85	45.189	3.114	37.564	1.00 34.70	Ç
MOTA	2450	0	ASP		85	45.464	1.921	37.471	1.00 34.86	0
MOTA	2451	CB	ASP		85	47.030	4.593	37.248	1.00 37.43	C
MOTA	2452	CG		С	85	48.101	5.028	36.290	1.00 41.26	C
MOTA	2453		ASP	C	85	47.860	4.978	35.077	1.00 45.93	0
MOTA	2454	OD2	ASP	С	85	49.169	5.423	36.776	1.00 43.39	0
MOTA	2455	N	LEU	С	86	44.445	3.587	38.552	1.00 34.35	N
ATOM	2456	CA	LEU		86	43.783	2.717	39.498	1.00 34.80	C
MOTA	2457	С	LEU		86	42.525	2.164	38.889	1.00 34.98	C
MOTA	2458	0	LEU		86	42.117	1.094	39.288	1.00 36.02	0
MOTA	2459	CB	LEU		86	43.443	3.508	40.735	1.00 35.24	C
MOTA	2460	CG	LEU	C	86	44.591	4.321	41.331	1.00 37.43	C
MOTA	2461	CD1	LEU	C	86	44.052	5.240	42.407	1.00 38.91	. C
MOTA	2462	CD2	LEU	C	86	45.728	3.422	41.825	1.00 37.75	C
MOTA	2463	N	VAL	C	87	41.886	2.866	37.939	1.00 37.37	
MOTA	2464	CA	VAL	С	87	40.748	2.365	37.175	1.00 38.56	_
ATOM	2465	C	VAL	С	87	41.236	1.205	36.320	1.00 41.43	
ATOM	2466	0	VAL	С	87	40.621	0.154	36.337	1.00 43.44	

Figure 8-52

MOTA	2467	CB	VAL C	87	40.167	3.478	36.302	1.00 36.61
				87	39.054			
MOTA	2468		VAL C			2.945	35.450	1.00 37.46
MOTA	2469	CG2	VAL C	87	39.592	4.584	37.139	1.00 35.39
MOTA	2470	N	GLU C	88	42.356	1.329	35.613	1.00 45.33
MOTA	2471	CA	GLU C	88	42.933	0.237	34.842	1.00 50.04
	2472	C	GLU C	88	43.480	-0.856	35.761	1.00 52.28
MOTA								
ATOM	2473	0	GLU C	88	43.503	-2.015	35.374	1.00 53.46
MOTA	2474	CB	GLU C	88	44.048	0.728	33.869	1.00 52.22
MOTA	2475	CG	GLU C	88	43.776	1.785	32.749	1.00 56.99
MOTA	2476	CD	GLU C	88	42.784	1.451	31.610	1.00 62.14
					42.853	0.348		
MOTA	2477		GLU C	88			31.046	1.00 66.19
MOTA	2478	OE2	GLU C	88	41.926	2.286	31.266	1.00 62.89
MOTA	2479	N	CYS C	89	43.930	-0.535	36.982	1.00 55.77
ATOM	2480	CA	CYS C	89	44.471	-1.508	37.936	1.00 58.72
ATOM	2481	C	CYS C	89	43.372	-2.333	38.578	1.00 60.22
			CYS C	89	43.624	-3.464	39.000	1.00 61.13
MOTA	2482	0_						
MOTA	2483	CB	CYS C	89	45.285	-0.819	39.048	1.00 59.69
MOTA	2484	SG	CYS C	89	46.103	-1.924	40.239	1.00 65.48
MOTA	2485	N	VAL C	90	42.159	-1.749	38.657	1.00 61.71
ATOM	2486	CA	VAL C	90	40.963	-2.396	39.210	1.00 62.70
	2487	C	VAL C	90	40.453	-3.516	38.278	1.00 64.64
MOTA								
MOTA	2488	0	VAL C	90	40.010	-4.562	38.779	1.00 65.07
ATOM	2489	CB	VAL C	90	39.934	-1.260	39.622	1.00 60.49
ATOM	2490	CG1	VAL C	90	38.477	-1.428	39.231	1.00 58.30
ATOM	2491	CG2	VAL C	90	40.023	-1.060	41.125	1.00 58.40
ATOM	2492	N	LYS C	91	40.591	-3.348	36.938	1.00 66.41
	2493	CA	LYS C	91	40.281	-4.402	35.971	1.00 68.79
ATOM								
MOTA	2494	C	LYS C	91	41.219	-5.638	36.092	1.00 70.22
MOTA	2495	0	LYS C	91	40.715	-6.728	36.404	1.00 72.46
MOTA	2496	CB	LYS C	91	40.233	-3.836	34.530	1.00 68.55
MOTA	2497	CG	LYS C	91	39.560	-4.821	33.535	1.00 71.09
ATOM	2498	CD	LYS C	91	39.779	-4.534	32.028	1.00 71.78
ATOM	2499	CE	LYS C	91	39.128	-3.245	31.514	1.00 70.74
		NZ	LYS C	91	39.730	-2.834	30.259	1.00 70.64
ATOM	2500							
MOTA	2501	N	SER C		25.399	2.470	38.962	1.00 56.13
MOTA	2502	CA	SER C		25.444	3.921	38.739	1.00 55.65
MOTA	2503	C	SER C	104	24.850	4.688	39.939	1.00 52.95
MOTA	2504	0	SER C	104	23.647	4.968	39.947	1.00 53.89
MOTA	2505	CB	SER C	104	24.797	4.326	37.337	1.00 57.16
MOTA	2506	ŌĠ	SER C		23.517	3.792	36.940	1.00 56.67
			PRO C		25.618	5.024	41.000	1.00 49.29
ATOM	2507	N						
MOTA	2508	CA	PRO C		25.119	5.676	42.224	1.00 46.42
ATOM	2509	С	PRO C		24.631	7.146	42.171	1.00 44.43
MOTA	2510	0	PRO C	105	24.768	7.791	41.134	1.00 42.75
MOTA	2511	CB	PRO C	105	26.265	5.445	43.181	1.00 45.66
ATOM	2512	CG	PRO C		27.467	5.523	42.277	1.00 46.43
			PRO C		27.036	4.706	41.089	1.00 47.56
MOTA	2513	CD						
MOTA	2514	N	GLU C		24.023	7.707	43.240	1.00 44.38
MOTA	2515	CA	GLU C		23.436	9.055	43.238	1.00 43.85
ATOM	2516	С	GLU C	106	24.414	10.202	43.420	1.00 42.61
ATOM	2517	0	GLU C		25.293	10.113	44.289	1.00 42.69
ATOM	2518	CB	GLU C		22.321	9.281	44.289	1.00 45.50
			GLU C		20.936	8.664	44.035	1.00 46.22
MOTA	2519	CG						
MOTA	2520	CD	GLU C		20.404	8.761	42.607	1.00 45.82
MOTA	2521		GLU C		20.257	9.861	42.067	1.00 41.34
MOTA	2522	OE2	GLU C	106	20.152	7.699	42.032	1.00 48.83
ATOM	2523	N	PRO C		24.254	11.291	42.632	1.00 41.36
ATOM	2524	CA	PRO C		25.096	12.486	42.637	1.00 39.50
			PRO C		24.873	13.318	43.850	1.00 38.28
ATOM	2525	C						1.00 38.28
MOTA	2526	0	PRO C	10/	23.767	13.685	44.226	1.00 39.34

Figure 8-53

MOTA	2527	CB	PRO (107	24.680	13.288	41.434	1.00 40.28
			PRO					
ATOM	2528	CG			24.151	12.214	40.519	1.00 42.95
ATOM	2529	CD	PRO (23.353	11.358	41.490	1.00 41.93
ATOM	2530	N	ARG (26.012	13.570	44.436	1.00 35.97
MOTA	2531	CA	ARG (108	26.055	14.439	45.561	1.00 35.65
MOTA	2532	C	ARG (108	26.953	15.609	45.219	1.00 34.88
ATOM	2533	0	ARG (27.707	15.585	44.244	1.00 35.60
	2534	СВ	ARG		26.617	13.701	46.756	1.00 39.40
ATOM			ARG		25.710	12.742	47.530	
MOTA	2535	CG						1.00 44.75
MOTA	2536	CD	ARG (25.959	12.906	49.053	1.00 48.86
MOTA	2537	NE	ARG (25.401	11.801	49.824	1.00 52.47
ATOM	2538	CZ	ARG (108	25.920	11.400	50.988	1.00 54.55
ATOM	2539	NH1	ARG (108	26.919	12.095	51.582	1.00 55.13
ATOM	2540	NH2	ARG (108	25.427	10.267	51.532	1.00 54.84
MOTA	2541	N	LEU (26.850	16.651	46.046	1.00 32.80
		CA	LEU		27.686	17.851	45.949	1.00 31.31
MOTA	2542							
ATOM	2543	C	LEU (28.544	17.984	47.198	1.00 27.53
ATOM	2544	0	LEU (28.058	17.849	48.335	1.00 29.28
ATOM	2545	CB	LEU (26.876	19.173	45.813	1.00 30.72
MOTA	2546	CG	LEU (25.837	19.411	44.752	1.00 29.60
MOTA	2547	CD1	LEU (109	25.143	20.697	45.150	1.00 31.86
ATOM	2548		LEU (26.433	19.432	43.347	1.00 30.24
ATOM	2549	N	PHE (29.841	18.247	46.995	1.00 24.61
ATOM	2550	CA		110	30.784	18.289	48.116	1.00 20.67
	2551	C	PHE		31.579	19.548	48.013	1.00 17.66
ATOM			PHE		31.746	20.049	46.924	1.00 17.00
MOTA	2552	0						
MOTA	2553	CB	PHE (31.721	17.098	48.021	1.00 23.08
MOTA	2554	CG	PHE (31.049	15.733	48.163	1.00 22.91
MOTA	2555		PHE (30.793	15.226	49.426	1.00 20.89
ATOM	2556	CD2			30.737	15.008	47.024	1.00 23.49
MOTA	2557		PHE (30.269	13.969	49.565	1.00 21.28
MOTA	2558	CE2	PHE (110	30.186	13.751	47.178	1.00 24.67
MOTA	2559	CZ	PHE (: 110	29.974	13.233	48.444	1.00 24.36
MOTA	2560	N	THR C	: 111	32.071	20.116	49.084	1.00 17.78
ATOM	2561	CA	THR C	: 111	32.961	21.249	48.978	1.00 18.25
ATOM	2562	C	THR C	: 111	34.337	20.763	48.509	1.00 21.30
ATOM	2563	0	THR C	111	34.518	19.547	48.617	1.00 26.22
MOTA	2564	CB	THR C		33.057	21.895	50.359	1.00 19.78
MOTA	2565	OG1			33.780	20.989	51.199	1.00 19.58
	2566	CG2	THR C		31.663	22.215	50.913	1.00 18.93
MOTA		N	PRO C		35.360	21.512	48.024	1.00 19.29
ATOM	2567							
ATOM	2568	CA	PRO C		36.675	20.962	47.729	1.00 18.39
MOTA	2569	C	PRO C		37.225	20.086	48.855	1.00 21.30
MOTA	2570	0	PRO C		37.605	18.953	48.611	1.00 22.05
MOTA	2571	CB	PRO C		37.455	22.226	47.520	1.00 18.00
MOTA	2572	CG	PRO C		36.455	23.100	46.801	1.00 16.59
MOTA	2573	CD	PRO C		35.265	22.919	47.660	1.00 14.34
ATOM	2574	N	GLU C		37.221	20.521	50.119	1.00 22.83
MOTA	2575	CA	GLU C	113	37.717	19.735	51.235	1.00 24.32
MOTA	2576	С	GLU C	: 113	37.046	18.394	51.408	1.00 23.52
MOTA	2577	Ō	GLU C	113	37.729	17.385	51.549	1.00 23.92
ATOM	2578	CB	GLU C		37.496	20.463	52.524	1.00 27.24
ATOM	2579	CG	GLU C		38.700	20.955	53.281	1.00 35.37
MOTA	2580	CD	GLU C		38.282	21.200	54.724	1.00 39.80
			GLU C		37.915	20.230	55.387	1.00 39.80
MOTA	2581							
MOTA	2582		GLU (38.296	22.339	55.182	1.00 41.53
MOTA	2583	N	GLU C		35.712	18.350	51.386	1.00 23.35
MOTA	2584	CA	GLU C		34.968	17.107	51.535	1.00 23.29
MOTA	2585	С	GLU C		35.168	16.200	50.344	1.00 22.72
MOTA	2586	0	GLU C	114	35.160	14.981	50.518	1.00 23.79

Figure 8-54

ATOM	2587	CB	GLU C	114	33.470	17.344	51.622	1.00 26.84
	2588	CG	GLU C		32.974	18.114	52.849	1.00 31.67
MOTA								
MOTA	2589	CD	GLU C		31.578	18.736	52.701	1.00 37.47
MOTA	2590	OE1	GLU C		30.884	18.533	51.681	1.00 35.31
MOTA	2591	OE2	GLU C	114	31.202	19.468	53.633	1.00 40.13
MOTA	2592	N	PHE C	115	35.320	16.775	49.143	1.00 20.03
MOTA	2593	CA	PHE C		35.606	15.979	47.971	1.00 18.15
	2594	C		115	36.997	15.397	48.157	1.00 17.33
ATOM								
MOTA	2595	0_		115	37.214	14.205	48.013	1.00 18.05
ATOM	2596	CB		115	35.524	16.833	46.705	1.00 15.90
MOTA	2597	CG	PHE C	115	35.825	16.063	45.429	1.00 17.09
MOTA	2598	CD1	PHE C	115	34.861	15.299	44.845	1.00 16.21
MOTA	2599	CD2	PHE C	115	37.094	16.093	44.890	1.00 18.64
ATOM	2600		PHE C	115	35.193	14.558	43.744	1.00 19.14
ATOM	2601	CE2	PHE C		37.425	15.336	43.795	1.00 18.76
			PHE C		36.463	14.570	43.217	
MOTA	2602	CZ						
MOTA	2603	N	PHE C		38.010	16.167	48.509	1.00 19.36
ATOM	2604	CA	PHE C		39.361	15.618	48.454	1.00 17.90
MOTA	2605	C	PHE C	116	39.621	14.678	49.623	1.00 18.24
MOTA	2606	0	PHE C	116	40.505	13.855	49.549	1.00 19.98
ATOM	2607	CB	PHE C	116	40.376	16.744	48.162	1.00 16.33
ATOM	2608	CG		116	40.442	17.170	46.679	1.00 15.27
ATOM	2609	CD1		116	41.052	16.328	45.753	1.00 14.80
	_				39.806			
MOTA	2610	CD2		116		18.324	46.240	1.00 12.85
MOTA	2611	CE1		116	40.967	16.602	44.409	1.00 12.34
ATOM	2612	CE2	PHE C	116	39.715	18.569	44.885	1.00 14.12
MOTA	2613	CZ	PHE C	116	40.289	17.711	43.980	1.00 10.60
MOTA	2614	N	ARG C	117	38.755	14.664	50.641	1.00 20.78
MOTA	2615	CA	ARG C	117	38.796	13.751	51.770	1.00 21.33
ATOM	2616	C	ARG C	117	38.412	12.368	51.308	1.00 20.46
MOTA	2617	0	ARG C	117	39.076	11.405	51.639	1.00 21.70
ATOM	2618	CB	ARG C		37.823	14.244	52.840	1.00 21.70
MOTA	2619	CG		117	37.838	13.513	54.177	1.00 27.63
ATOM	2620	CD	ARG C		36.826	14.115	55.165	1.00 29.36
	2621	NE	ARG C	117	37.230	15.464	55.616	1.00 32.11
ATOM		CZ	ARG C	117	36.411	16.535	55.565	1.00 32.11
ATOM	2622		ARG C	117	35.179	16.464	55.047	
MOTA	2623							1.00 32.61
ATOM	2624	NH2		117	36.836	17.701	56.025	1.00 30.98
MOTA	2625	N		118	37.342	12.263	50.540	1.00 21.91
MOTA	2626	CA	ILE C	118	36.897	11.031	49.882	1.00 22.55
MOTA	2627	C	ILE C	118	37.944	10.504	48.890	1.00 23.60
ATOM	2628	0	ILE C	118	38.254	9.316	48.853	1.00 24.72
ATOM	2629	CB	ILE C	118	35.527	11.358	49.213	1.00 22.47
MOTA	2630	CG1	ILE C	118	34.467	11.506	50.293	1.00 21.67
MOTA	2631	CG2	ILE C	118	35.117	10.338	48.161	1.00 21.48
ATOM	2632	CD1	ILE C	118	33.164	12.169	49.825	1.00 21.12
ATOM	2633	N	PHE C	119	38.544	11.402	48.103	1.00 23.86
ATOM	2634	CA	PHE C	119	39.633	11.098	47.186	1.00 22.73
ATOM	2635	C	PHE C		40.816	10.488	47.916	1.00 24.24
			PHE C		4	9.416		
ATOM	2636	0						
ATOM	2637	CB	PHE C		40.038	12.357	46.426	1.00 15.88
MOTA	2638	CG	PHE C		41.297	12.224	45.624	1.00 15.30
MOTA	2639		PHE C		41.231	11.724	44.354	1.00 15.03
ATOM	2640		PHE C		42.495	12.639	46.172	1.00 12.85
MOTA	2641	CE1	PHE C	119	42.412	11.623	43.653	1.00 15.97
MOTA	2642	CE2	PHE C	119	43.675	12.526	45,473	1.00 15.16
MOTA	2643	CZ	PHE C		43.630	12.003	44.206	1.00 16.33
ATOM	2644	N	ASN C		41.396	11.145	48.936	1.00 26.61
ATOM	2645	CA	ASN C		42.511	10.621	49,728	1.00 27.10
MOTA	2646	Ċ.	ASN C		42.225	9.301	50.400	1.00 28.31
111 014		-			· 			

Figure 8-55

MOTA	2647	0	ASN	С	120	43.0	81	8.433	50.3	76	1.00	28.63	3	0
ATOM	2648	СВ	ASN			42.9	59	11.590	50.78			24.50		C
ATOM	2649	CG	ASN		120	43.8		12.659	50.2		1.00	27.34	1	С
ATOM	2650		ASN			43.8		13.757	50.76		1.00	32.20	5	Ó
ATOM	2651		ASN			44.6	28	12.420	49.16	69	1.00	29.64	4	N
MOTA	2652	N	ARG			41.0	17	9.136	50.94	47	1.00	30.8	0	N
MOTA	2653	CA	ARG			40.5		7.862	51.4			35.4		C
ATOM	2654	C			121	40.5		6.767	50.3			36.4		Č
MOTA	2655	õ	ARG			40.8		5.616	50.6			38.5		ŏ
ATOM	2656	СB	ARG			39.2		8.108	52.1			37.6		Č
ATOM	2657	CG			121	38.5		6.865	52.6			42.2		Ĉ
MOTA	2658	CD			121	37.2		7.194	53.3			47.8		Č
MOTA	2659	NE			121	36.3		6.001	53.5			51.7		Ň
MOTA	2660	CZ	ARG			36.7		4.912	54.2	33		55.3		C
MOTA	2661		ARG			38.0		4.799	54.7			57.1		N
MOTA	2662		ARG			35.9	28	3.904	54.4			55.3		N
ATOM	2663	N			122	40.1		7.089	49.1		1.00	36.4	9	N
ATOM	2664	CA	SER			40.2		6.177	47.9		1.00	36.4	4	С
ATOM	2665	C			122	41.6		5.723	47.5	29	1.00	37.8	5	С
MOTA	2666	0	SER			41.8	74	4.556	47.2	35	1.00	39.2	3	0
MOTA	2667	CB	SER			39.6	13	6.814	46.7	88	1.00	34.5	8	С
ATOM	2668	ŌĠ	SER			38.2		7.132	47.1		1.00	34.4	7	0
ATOM	2669	N	ILE			42.6	38	6.599	47.4	09	1.00	38.8	5	N
ATOM	2670	CA	ILE			43.9	49	6.180	46.9	85	1.00	43.1	1	С
ATOM	2671	С	ILE	С	123	44.5	89	5.456	48.1	57	1.00	46.1	8	С
ATOM	2672	0	ILE	C	123	45.4	49	4.614	47.9	37	1.00	47.6	9	0
MOTA	2673	CB	ILE	С	123	44.8	43	7.378	46.5	05	1.00	42.6	5	С
MOTA	2674	CG1	ILE	C	123	44.1	47	8.410	45.5	99	1.00	38.3	8	С
ATOM	2675	CG2	ILE	С	123	46.1	46	6.866	45.8	72	1.00	43.0	9	C
MOTA	2676	CD1	ILE	С	123	43.2	42	7.872	44.4	89	1.00	35.8	0	Ç
MOTA	2677	N	ASP			44.2	06	5.755	49.4	02		50.6		N
MOTA	2678	CA	ASP			44.8	05	5.095	50.5	64	1.00	54.8	5	С
MOTA	2679	C	ASP	C	124	44.1		3.730	50.8			54.2		C
MOTA	2680	0	ASP	C	124	44.7		2.898	51.5			54.5		0
ATOM	2681	CB			124	44.7		5.989	51.8			59.4		C
MOTA	2682	CG	ASP			45.7		7.151	51.9			63.3		С
MOTA	2683		ASP			45.9		7.919	50.9			63.4		0
MOTA	2684	OD2	ASP			46.4		7.295	52.9			66.9		0
MOTA	2685	N			125	43.0		3.460	50.2			54.5		N
MOTA	2686	CA			125	42.4		2.137	50.3			56.9		C
MOTA	2687	C	ALA			43.1		1.108	49.4			58.8		C
MOTA	2688	0	ALA			42.6		0.022	49.1			59.4		0
MOTA	2689	CB	ALA			40.9		2.263	49.8			56.0		C
MOTA	2690	N			126	44.3		1.552	48.9			60.8		N
MOTA	2691	CA			126	45.4		0.793	48.3			62.8		C
MOTA	2692	C			126	46.6		0.603	49.2			64.9		C
MOTA	2693	0			126	47.8		0.492	48.7			65.8		0
MOTA	2694	CB			126	45.7		1.476	46.8			60.1		C
MOTA.	2695	CG			126	44.6		1.419	45.7			57.5		C
MOTA	2696		PHE			43.5		2.334 0.421	45.7 44.8			56.0 56.9		C
MOTA	2697		PHE			44.6			44.8			52.2		C
MOTA	2698		PHE			42.5 43.6		2.227 0.319	44.0			54.4		C
MOTA	2699					42.5		1.208	43.8			52.9		C
ATOM	2700	CZ			126 126	44.0	, 5	1.200	-3.0	,02	1.00	22.3	,	L
TER	2702	N	ASN		11	47.7	74	44.287	38.6	26	1 00	52.7	7	N
MOTA	2703 2704	CA	ASN		11	46.4		43.904	38.2			53.0		C
MOTA	2704	CA	ASN		11	46.3		43.039	36.9			52.0		C
ATOM ATOM	2705	0	ASN		11	46.6		41.852	37.1			53.3		ō
ATOM	2707	CB	ASN		11	45.4		45.136	38.1			52.3		C
AION	2,0,	<u>ر</u> ب		_										_

Figure 8-56

MOTA	2708	N	VAL D	12	46.135	43.551	35.763	1.00 49.81
ATOM	2709	CA	VAL D	12	45.936	42.823	34.490	1.00 45.10
			VAL D	12		41.529		
MOTA	2710	C			46.697		34.194	1.00 40.73
MOTA	2711	0	VAL D	12	46.109	40.477	33.958	1.00 39.20
ATOM	2712	CB	VAL D	12	46.118	43.863	33.336	1.00 46.99
ATOM	2713	CG1	VAL D	12	46.377	43.229	31.966	1.00 47.11
MOTA	2714	CG2	VAL D	12	44.888	44.784	33.225	1.00 46.26
ATOM	2715	N	LYS D	13	48.014	41.610	34.165	1.00 37.97
MOTA	2716	CA	LYS D	13	48.844	40.432	34.132	1.00 36.45
MOTA	2717	C	LYS D	13	48.402	39.322	35.117	1.00 36.18
ATOM	2718	0	LYS D	13	48.194	38.166	34.709	1.00 37.38
MOTA	2719	CB	LYS D	13	50.258	40.905	34.451	1.00 35.89
ATOM	2720	N	ASP D	14	48.190	39.643	36.410	1.00 33.96
ATOM	2721	CA	ASP D	14	47.703	38.684	37.372	1.00 29.22
	2722	C	ASP D	14	46.220	38.409	37.305	1.00 25.55
MOTA	_			14	45.799	37.316		
MOTA	2723	0	ASP D				37.647	1.00 25.36
MOTA	2724	CB	ASP D	14	48.158	39.126	38.726	1.00 33.71
MOTA	2725	CG	ASP D	14	49.573	38.623	39.084	1.00 41.45
ATOM	2726	OD1	ASP D	14	50.178	37.858	38.316	1.00 45.64
MOTA	2727	OD2	ASP D	14	50.083	38.981	40.161	1.00 44.73
ATOM	2728	N	VAL D	15	45.421	39.347	36.809	1.00 22.15
	2729	CA	VAL D	15	44.000	39.173	36.672	1.00 19.73
ATOM			VAL D		43.683	38.044	35.731	
ATOM	2730	C		15				
MOTA	2731	0	VAL D	15	42.825	37.217	36.016	1.00 23.37
MOTA	2732	CB	VAL D	15	43.294	40.462	36.234	1.00 18.49
MOTA	2733	CGI	VAL D	15	41.883	40.238	35.684	1.00 17.31
ATOM	2734	CG2	VAL D	15	43.093	41.327	37.450	1.00 17.77
ATOM	2735	N	THR D	16	44.387	37.974	34.623	1.00 22.81
ATOM	2736	CA	THR D	16	44.166	36.943	33.605	1.00 24.47
ATOM	2737	C	THR D	16	44.517	35.513	34.082	1.00 21.91
			THR D	16	43.904	34.526	33.676	1.00 20.78
ATOM	2738	0						
MOTA	2739	CB	THR D	16	44.991	37.520	32.381	1.00 26.36
MOTA	2740	OG1	THR D	16	44.076	38.310	31.630	1.00 28.31
MOTA	2741	CG2	THR D	16	45.721	36.529	31.530	1.00 28.93
ATOM	2742	N	LYS D	17	45.470	35.415	35.016	1.00 20.72
MOTA	2743	CA	LYS D	17	45.958	34.179	35.596	1.00 20.21
ATOM	2744	С	LYS D	17	45.019	33.719	36.683	1.00 18.63
ATOM	2745	Ō	LYS D	17	44.754	32.526	36.783	1.00 21.04
ATOM	2746	СВ	LYS D	17	47.277	34.522	36.207	1.00 24.75
	2747	CG	LYS D	17	48.163	33.373	36.590	1.00 29.44
MOTA					49.365	33.928	37.347	
ATOM	2748	CD	LYS D	17				1.00 32.96
MOTA	2749	CE	LYS D	17	50.423	34.474	36.422	1.00 36.20
ATOM	2750	NZ	LYS D	17	51.313	35.272	37.230	1.00 39.87
MOTA	2751	N	LEU D	18	44.483	34.656	37.468	1.00 16.11
MOTA	2752	CA	LEU D	18	43.391	34.389	38.362	1.00 13.77
MOTA	2753	C	LEU D	18	42.158	33.926	37.636	1.00 14.10
ATOM	2754	0	LEU D	18	41.662	32.898	38.072	1.00 17.61
ATOM	2755	CB	LEU D	18	43.070	35.599	39.180	1.00 14.87
		CG	LEU D	18	42.103	35.485	40.362	1.00 15.58
MOTA	2756							
MOTA	2757		LEU D	18	42.567	34.568	41.470	1.00 11.31
MOTA	2758		LEU D	18	41.872	36.849	40.952	1.00 15.28
ATOM	2759	N	VAL D	19	41.617	34.544	36.561	1.00 15.42
MOTA	2760	CA	VAL D	19	40.479	34.034	35.786	1.00 13.39
MOTA	2761	С	VAL D	19	40.704	32.587	35.385	1.00 14.30
ATOM	2762	Õ	VAL D	19	39.824	31.744	35.542	1.00 13.93
	2763	CB	VAL D	19	40.251	34.838	34.489	1.00 14.39
ATOM			VAL D	19	39.059	34.330	33.694	1.00 11.41
MOTA	2764						34.797	
MOTA	2765	CG2	VAL D	19	39.913	36.255		1.00 12.80
MOTA	2766	N	ALA D	20	41.911	32.288	34.876	1.00 14.50
MOTA	2767	CA	ALA D	20	42.319	30.924	34.543	1.00 15.90

Figure 8-57

MOTA	2768	С	ALA D	20	42.340	29.894	35.680	1.00 16.27
		ō	ALA D	20	42.153	28.697	35.464	1.00 14.91
MOTA	2769			20	43.719	30.983	33.946	1.00 16.48
ATOM	2770	CB	ALA D				36.914	1.00 16.20
MOTA	2771	N	ASN D	21	42.543	30.396		
MOTA	2772	CA	ASN D	21	42.665	29.549	38.081	1.00 14.59
MOTA	2773	C	ASN D	21	41.408	29.513	38.923	1.00 15.22
		Ö	ASN D	21	41.343	28.894	39.982	1.00 14.76
MOTA	2774			21	43.863	30.085	38.853	1.00 15.31
MOTA	2775	CB	ASN D		44.760	29.000	39.360	1.00 12.22
MOTA	2776	CG	ASN D	21			38.669	1.00 15.31
MOTA	2777	OD1	ASN D	21	45.002	28.023		
MOTA	2778	ND2	ASN D	21	45.313	29.122	40.545	1.00 14.81
ATOM	2779	N	LEU D	22	40.364	30.201	38.493	1.00 15.62
	2780	CA	LEU D	22	39.069	30.126	39.157	1.00 15.32
MOTA		C	LEU D	22	38.172	29.241	38.319	1.00 15.81
MOTA	2781			22	38.337	29.289	37.109	1.00 18.22
MOTA	2782	0	LEU D			31.498	39.326	1.00 11.04
MOTA	2783	CB	LEU D	22	38.470			1.00 10.12
MOTA	2784	ÇG	LEU D	22	39.203	32.454	40.210	
ATOM	2785	CD1	LEU D	22	38.580	33.801	40.004	1.00 11.85
MOTA	2786	CD2	LEU D	22	39.108	32.071	41.671	1.00 10.74
		N	PRO D	23	37.246	28.422	38.825	1.00 16.11
MOTA	2787			23	36.365	27.588	38.004	1.00 15.30
MOTA	2788	CA	PRO D		35.533	28.456	37.064	1.00 16.55
MOTA	2789	С	PRO D	23			37.502	1.00 18.78
MOTA	2790	0	PRO D	23	35.044	29.485		1.00 14.03
MOTA	2791	CB	PRO D	23	35.474	26.944	39.027	
MOTA	2792	CG	PRO D	23	36.252	27.043	40.317	1.00 16.22
ATOM	2793	CD	PRO D	23	36.854	28.409	40.228	1.00 15.04
	2794	N	LYS D	24	35.319	28.105	35.785	1.00 19.22
ATOM		CA	LYS D	24	34.492	28.864	34.822	1.00 19.57
MOTA	2795		LYS D	24	33.027	28.975	35.241	1.00 18.94
MOTA	2796	C			32.381	29.956	34.910	1.00 22.65
MOTA	2797	0	LYS D	24		28.214	33.425	1.00 20.25
MOTA	2798	CB	LYS D	24	34.575			1.00 19.83
MOTA	2799	CG	LYS D	24	35.853	28.425	32.655	
ATOM	2800	CD	LYS D	24	36.049	27.261	31.683	1.00 20.33
MOTA	2801	CE	LYS D	24	37.542	27.297	31.291	1.00 25.04
MOTA	2802	NZ	LYS D	24	38.019	26.084	30.623	1.00 27.36
		N	ASP D	25	32.490	28.011	36.007	1.00 20.97
MOTA	2803		ASP D	25	31.146	27.984	36.585	1.00 20.24
ATOM	2804	CA			31.084	28.420	38.037	1.00 20.26
MOTA	2805	C	ASP D	25	30.092	28.177	38.714	1.00 24.64
MOTA	2806	0	ASP D	25		26.555	36.502	1.00 21.95
ATOM	2807	CB	ASP D	25	30.557		37.333	1.00 26.54
MOTA	2808	CG	ASP D	25	31.274	25.501		
MOTA	2809	OD:	L ASP D	25	32.429	25.721	37.693	
MOTA	2810	OD2	ASP D	25	30.697	24.445	37.616	1.00 29.75
MOTA	2811	N	TYR D	26	32.109	29.038	38.591	1.00 19.65
		CA	TYR D	26	31.978	29.716	39.865	1.00 19.99
MOTA	2812		TYR D	26	31.327	31.078	39.666	1.00 20.55
ATOM	2813	C		26	31.837	31.882	38.892	1.00 23.24
MOTA	2814	0_	TYR D			29.886	40.446	1.00 18.93
MOTA	2815	CB	TYR D	26	33.388		41.844	1.00 18.30
MOTA	2816	CG	TYR D	26	33.487	30.459		1.00 17.48
MOTA	2817	CD:	l TYR D	26	32.718	29.938	42.855	
ATOM	2818	CD:	2 TYR D	26	34.309	31.538	42.057	1.00 19.75
	2819	CE:		26	32.689	30.542	44.078	1.00 17.10
MOTA		CE:		26	34.304	32.124	43.291	
MOTA	2820		TYR D	26	33.494	31.613	44.276	
MOTA	2821	CZ		26	33.553		45.538	
MOTA	2822	OH	TYR D		30.240			
HETAT	M 2823	N	MSE D	27				
HETAT	M 2824	CA			29.563			
HETAT	M 2825	С	MSE D	27	29.972			
HETAT	M 2826	0	MSE D	27	29.844			
нетът	M 2827	CB	MSE D	27	28.030	32.478	40.470	1.00 25.00
111111111								

Figure 8-58

HETATM	2828	CG	MSE I		27.3			39.361	1.00 27.34
HETATM	2829	SE	MSE I	27	28.0	05 31	953	37.549	1.00 33.76
HETATM	2830	CE	MSE I	27	27.1	46 33	.538	37.334	1.00 29.16
ATOM	2831	N	ILE I	28	30.5	03 34	.700	41.191	1.00 18.26
ATOM	2832	CA	ILE I	28	30.8	38 35		42.127	1.00 18.98
ATOM	2833	C	ILE I		29.6	68 36	.703	42.239	1.00 19.61
ATOM	2834	ō	ILE I		29.1	.51 37		41.196	1.00 22.18
ATOM	2835	CB	ILE I		32.1	.36 36	.421	41.662	1.00 15.61
ATOM	2836	CG1	ILE I		33.2		.398	41.469	1.00 12.73
ATOM	2837	CG2	ILE I		32.5		7.471	42.693	1.00 15.00
ATOM	2838	CD1	ILE I		34.4		.969	40.818	1.00 10.07
	2839	N	THR I		29.1		7.105	43.433	1.00 20.30
MOTA	2840	CA	THR I		28.1		3.118	43.587	1.00 18.55
MOTA	2841	C	THR I		28.7		514	43.593	1.00 18.51
ATOM		0	THR I		29.6		757	44.305	1.00 20.24
MOTA	2842	CB	THR I		27.2		7.915	44.853	1.00 18.42
MOTA	2843	OG1	THR I		26.7		5.570	44.817	1.00 20.41
MOTA	2844		THR I		25.9		3.747	44.836	1.00 16.39
MOTA	2845	CG2			28.2		.455	42.785	1.00 18.52
ATOM	2846	N	LEU I		28.6		L.845	42.783	1.00 17.78
MOTA	2847	CA	LEU I		27.3		2.598	42.724	1.00 17.70
ATOM	2848	C	LEU I		26.4		2.245	41.946	1.00 19.98
ATOM	2849	0			29.3		2.149	41.505	1.00 18.28
MOTA	2850	CB	LEU I		29.3		3.557	41.154	1.00 15.52
MOTA	2851	CG	LEU !		30.7		1.170	42.241	1.00 15.62
MOTA	2852	CD1	LEU !				3.522	39.879	1.00 13.02
MOTA	2853	CD2	LEU I		30.7 27.3			43.560	1.00 20.05
MOTA	2854	N	LYS !		26.0		3.613	43.409	1.00 20.05
MOTA	2855	CA	LYS I				1.522 5.564	42.354	1.00 21.33
MOTA	2856	C	LYS I		26.4 27.2			42.561	1.00 23.40
MOTA	2857	0_	LYS				5.470	44.722	1.00 23.30
MOTA	2858	CB	LYS I		25.7		5.148	45.766	1.00 21.22
MOTA	2859	CG	LYS !		25.3		1.109	46.976	1.00 28.13
MOTA	2860	CD	LYS		24.		4.814	48.182	1.00 28.13
MOTA	2861	CE	LYS :		24.5		3.890	49.293	1.00 29.07
MOTA	2862	NZ	LYS :		23.9		4.617		1.00 34.24
MOTA	2863	N	TYR		25.8		5.356	41.172 39.925	1.00 25.01
ATOM	2864	CA	TYR :		26.2		5.004	39.752	1.00 25.00
MOTA	2865	C	TYR :		25.3		7.248		1.00 20.33
MOTA	2866	0_	TYR :		24.		7.293	40.046	
MOTA	2867	CB	TYR		26.0		4.978	38.778	1.00 25.42 1.00 24.15
MOTA	2868	CG	TYR		26.3		5.465	37.336 36.728	1.00 24.15
MOTA	2869	CD1	TYR		27.4		5.460	36.720	1.00 22.29
MOTA	2870	CD2	TYR		25.0		5.915 5.961	35.459	1.00 24.06
MOTA	2871	CE1	TYR		27.		6.427	35.409	1.00 25.00
MOTA	2872	CE2	TYR					34.822	1.00 25.00
MOTA	2873	CZ	TYR				6.458	33.558	1.00 26.48
MOTA	2874	OH	TYR		26.		7.012 8.297	39.333	1.00 28.52
ATOM	2875	N	VAL		26.				1.00 28.52
MOTA	2876	CA	VAL		25.		9.613	39.093	
ATOM	2877	C	VAL		24.		9.634	37.670	1.00 27.14 1.00 28.15
MOTA	2878	0	VAL				9.693	36.750	
MOTA	2879	CB	VAL				0.724	39.288	
MOTA	2880	CG1					2.066	38.921	1.00 25.83
MOTA	2881	CG2					0.758	40.755	1.00 25.22 1.00 27.51
MOTA	2882	N	PRO				9.548	37.434	
MOTA	2883	CA	PRO				9.608	36.105	1.00 28.26
MOTA	2884	C	PRO				0.909	35.413	1.00 31.20 1.00 32.62
MOTA	2885	0	PRO				1.980	36.012	
MOTA	2886	CB	PRO				9.574	36.407 37.750	1.00 27.82 1.00 29.77
MOTA	2887	CG	PRO	D 34	21.	323 4·	8.866	37.750	1.00 23.11

 \circ

Figure 8-59

MOTA	2888	CD	PRO I			22.668 23.756	49.494 50.780	38.488 34.117	1.00 27.97 1.00 32.89
MOTA	2889	N	GLY I			24.265	51.891	33.338	1.00 34.68
ATOM	2890	CA	GLY :			25.749	52.065	33.438	1.00 34.91
MOTA	2891 2892	C 0	GLY :			26.271	53.066	32.991	1.00 38.32
ATOM HETATM		N	MSE :			26.456	51.105	33.995	1.00 36.03
HETATM		CA	MSE :			27.910	51.084	34.060	1.00 38.11
HETATM		C	MSE			28.634	51.193	32.726	1.00 38.57
HETATM		Ö	MSE		6	29.741	51.717	32.594	1.00 39.99
HETATM		CB	MSE	D 3	6	28.255	49.744	34.622	1.00 41.60
HETATM	2898	CG	MSE	D 3	6	28.972	49.795	35.911	1.00 45.00
HETATM	2899	SE	MSE		6	30.412	48.532	35.745	1.00 54.90
HETATM	2900	CE	MSE		6	30.966	48.492	33.897	1.00 45.21
MOTA	2901	N	ASP		7	27.956	50.571	31.760	1.00 39.01
MOTA	2902	CA	ASP		7	28.357	50.446	30.370 29.525	1.00 37.84 1.00 37.29
MOTA	2903	C	ASP		7	28.125	51.687 52.169	28.896	1.00 37.23
ATOM	2904	O	ASP		7 7	29.067 27.725	49.194	29.760	1.00 37.35
MOTA	2905	CB CG	ASP ASP		7	26.258	48.854	30.083	1.00 40.62
ATOM	2906 2907		ASP		, 7	25.560	49.672	30.709	1.00 39.43
ATOM ATOM	2908		ASP		7	25.813	47.752	29.705	1.00 41.13
MOTA	2909	N	VAL		8	26.930	52.266	29.525	1.00 36.85
MOTA	2910	CA	VAL		8	26.665	53.462	28.719	1.00 38.43
ATOM	2911	C	VAL		8	27.021	54.828	29.311	1.00 39.02
ATOM	2912	0	VAL	D 3	8	27.395	55.748	28.581	1.00 39.83
MOTA	2913	CB	VAL		8	25.212	53.466	28.171	1.00 36.76
MOTA	2914	CG1			8	25.086	52.227	27.356	1.00 36.24
MOTA	2915	CG2	VAL		8	24.081	53.482	29.175	1.00 36.31
MOTA	2916	N	LEU		9	26.886	54.965	30.641 31.341	1.00 39.92 1.00 38.96
MOTA	2917	CA	LEU		9 .	27.031 28.495	56.231 56.624	31.625	1.00 38.90
MOTA	2918	C	LEU LEU		9 9	29.397	55.777	31.589	1.00 40.82
MOTA	2919	O CB	LEU		9	26.208	56.247	32.637	1.00 35.81
ATOM ATOM	2920 2921	CG	LEU		9	24.706	56.030	32.689	1.00 34.18
ATOM	2922	CD1			9	24.285	56.206	34.141	1.00 33.76
ATOM	2923	CD2	LEU		9	23.900	56.980	31.827	1.00 31.66
MOTA	2924	N	PRO	D 4	0	28.807	57.926	31.852	1.00 44.17
MOTA	2925	CA	PRO		. 0	30.141	58.383	32.244	1.00 44.44
MOTA	2926	С	PRO		.0	30.420	58.032	33.699	1.00 42.47
MOTA	2927	0	PRO		.0	29.550	58.003	34.562	1.00 42.05
ATOM	2928	CB	PRO		.0	30.115	59.908 60.256	32.011 32.263	1.00 45.14 1.00 45.10
ATOM	2929	CG	PRO		.0	28.674 27.934	59.092	31.603	1.00 46.22
ATOM	2930	CD	PRO SER		: 0 : 1	31.694	57.749	33.906	1.00 42.00
MOTA	2931 2932	N CA	SER		1	32.266	57.360	35.166	1.00 39.50
ATOM	2932	CA	SER		1	31.724	58.115	36.365	1.00 38.61
MOTA MOTA	2934	Õ	SER		1	31.345	57.439	37.303	1.00 38.99
ATOM	2935	CB	SER		1	33.760	57.491	35.009	1.00 40.43
ATOM	2936	OG	SER		1	34.204	56.814	33.824	1.00 45.16
ATOM	2937	N	HIS	D 4	2	31.550		36.396	
ATOM	2938	CA	HIS		2	31.018	60.127	37.567	1.00 36.99
MOTA	2939	C	HIS		2	29.633	59.685	38.068	1.00 38.51 1.00 39.73
MOTA	2940	0_	HIS		2	29.219	59.978	39.190 37.328	1.00 39.73
MOTA	2941	CB	HIS		2	31.062	61.646 62.146	36.370	1.00 34.40
ATOM	2942	CG	HIS HIS		12 12	29.988 30.070	62.275	35.063	1.00 35.82
MOTA	2943	GD J ND T	HIS	א מ	12	28.694	62.443	36.749	1.00 36.22
ATOM	2944 2945		HIS		12	28.872	62.607	34.629	1.00 35.92
MOTA MOTA	2945		HIS		12	28.050	62.680	35.644	1.00 37.56
MOTA	2947	N	CYS		13	28.848	58.974	37.261	1.00 40.38

Figure 8-60

MOTA	2948	CA	CYS	D	43	27.521	58.516	37.662	1.00 4	40.95
ATOM	2949	C	CYS	ח	43	27.545	57.165	38.394	1.00	38 66
MOTA	2950	0	CYS	ע	43	26.556	56.769	39.027	1.00	38.58
MOTA	2951	CB	CYS	D	43	26.561	58.489	36.426	1.00 4	43.16
		SG	CYS		43	25.889	60.126	35.971	1.00	
ATOM	2952									
ATOM	2953	N	TRP	D	44	28.677	56.450	38.300	1.00	34.96
MOTA	2954	CA	TRP	ח	44	28.763	55.094	38.789	1.00	32 27
								39.486		
MOTA	2955	С	TRP		44 .	30.055	54.754		1.00	
MOTA	2956	0	TRP	D	44	30.010	53.891	40.349	1.00	34.30
	2957	CB	TRP	ח	44	28.502	54.045	37.688	1.00	29 74
ATOM										
MOTA	2958	CG	TRP	ע	44	29.428	54.039	36.479	1.00	25.62
ATOM	2959	CD1	TRP	D	44	29.034	54.689	35.340	1.00	24.56
		CD2	TRP		44	30.636	53.392	36.360	1.00	
ATOM	2960									
MOTA	2961	NE1	TRP	D	44	30.006	54.462	34.497	1.00	26.57
MOTA	2962	CE2	TRP	D	44	30.972	53.705	35.046	1.00	25.16
					44	31.442	52.536	37.072	1.00	
MOTA	2963	CE3	TRP							
MOTA	2964	CZ2	\mathtt{TRP}	D	44	32.119	53.210	34.446	1.00	23.57
ATOM	2965	CZ3	TRP	D	44	32.600	52.058	36.490	1.00	21.72
								35.194		
MOTA	2966	CH2	TRP		44	32.956	52.395		1.00	
MOTA	2967	N	$_{ m ILE}$	D	45	31.191	55.378	39.216	1.00	31.34
	2968	CA	ILE	ח	45	32.444	54.851	39.687	1.00	34 23
MOTA										
MOTA	2969	C	ILE	ע	45	32.627	54.719	41.206	1.00	
ATOM	2970	0	ILE	D	45	33.222	53.726	41.618	1.00	36.05
	2971	CB	ILE		45	33.586	55.584	38.980	1.00	35 62
MOTA										
MOTA	2972	CG1			45	34.959	54.917	39.068	1.00	36.05
MOTA	2973	CG2	ILE	D	45	33.716	56.959	39.592	1.00	37.86
	2974	CD1			45	35.020	53.482	38.545	1.00	
MOTA										
MOTA	2975	N	SER	ט	46	32.100	55.591	42.080	1.00	
MOTA	2976	CA	SER	D	46	32.421	55.538	43.500	1.00	35.85
			SER		46	31.651	54.443	44.213	1.00	
MOTA	2977	C								
MOTA	2978	0	SER	D	46	32.169	53.858	45.165	1.00	38.41
MOTA	2979	CB	SER	D	46	32.165	56.852	44.223	1.00	36.96
						30.786	57.005	44.534	1.00	
MOTA	2980	OG	SER		46					
ATOM	2981	N	GLU	D	47	30.419	54.185	43.770	1.00	33.93
MOTA	2982	CA	GLU	D	47	29.656	53.051	44.230	1.00	32.65
			GLU		47	30.197	51.773	43.648		31.56
ATOM	2983	C								
MOTA	2984	0	GLU	D	47	30.216	50.761	44.339	1.00	31.25
MOTA	2985	CB	GLU	D	47	28.206	53.193	43.842	1.00	36.42
	2986	ĊĠ	GLU		47	27.306	51.989	44.164		45.32
MOTA										
MOTA	2987	CD	GLU	D	47	26.964	51.716	45.628	1.00	48.90
MOTA	2988	OE1	GLU	D	47	27.839	51.323	46.399	1.00	52.24
	2989		GLU		47	25.797	51.872	45.995		52.95
ATOM										
HETATM	2990	N	MSE		48	30.646	51.788	42.398		30.45
HETATM	2991	CA	MSE	D	48	31.189	50.592	41.798	1.00	31.67
HETATM		C	MSE		48	32.499	50.155	42.444	1.00	30.88
HEIMIN	2332									
HETATM		0	MSE	ע	48	32.694	48.961	42.577		33.46
HETATM	2994	CB	MSE	D	48	31.394	50.777	40.342	1.00	32.74
HETATM		CG	MSE		48	31.510	49.459	39.632	1 00	36.29
HETATM	2996	SE	MSE	D	48	29.910	48.366	39.787	1.00	47.34
HETATM	2997	CE	MSE	D	48	30.895	46.927	39.264	1.00	38.75
		N	VAL		49	33.433	50.984	42.904		30.60
MOTA	2998									
MOTA	2999	CA	VAL		49	34.605	50.504	43.671		29.47
MOTA	3000	C	VAL	D	49	34.285	50.012	45.074	1.00	27.89
		Ö	VAL		49	34.967	49.128	45.596	1 00	27.63
MOTA	3001									
MOTA	3002	CB	VAL		49	35.828	51.488	43.781		30.38
MOTA	3003	CG1	VAL	D	49	36.552	51.617	42.439	1.00	30.57
			VAL		49	35.440	52.863	44.340		30.43
MOTA	3004									
MOTA	3005	N	VAL		50	33.263	50.622	45.679		25.21
ATOM	3006	CA	VAL	D	50	32.754	50.149	46.945	1.00	24.70
	3007	C	VAL		50	32.153	48.745	46.832	1.00	24.08
MOTA	3007	_	ر به	ט	20	22.123	10.,10	-0.002		

Figure 8-61

MOTA MOTA	3008 3009	O CB	VAL I	50	32.438 31.757	51.172	47.699 47.504	1.00 25.08 1.00 24.15
MOTA MOTA	3010 3011	CG1 CG2	VAL I		30.945 32.484		48.650 47.974	1.00 24.85 1.00 21.01
ATOM	3012	N	GLN I		31.343		45.796	1.00 22.06
ATOM	3013	CA	GLN I		30.807		45.522	1.00 22.13
MOTA	3014	С	GLN I		31.810		45.123	1.00 20.89
MOTA	3015	0	GLN I		31.663		45.479	1.00 21.33
MOTA	3016	CB	GLN I		29.719		44.484	1.00 24.57
ATOM	3017	CG CD	GLN I		28.496 27.936		45.018 46.304	1.00 26.12 1.00 26.75
ATOM ATOM	3018 3019	OE1	GLN I		28.128		46.616	1.00 25.54
MOTA	3020	NE2	GLN I		27.234		47.088	1.00 26.23
ATOM	3021	N	LEU I	52	32.839	46.544	44.423	1.00 19.69
MOTA	3022	CA	LEU I		33.966		44.057	1.00 20.34
ATOM	3023	C	LEU I		34.831		45.250	1.00 20.47
MOTA	3024	0	LEU I		35.199		45.356	1.00 23.75
ATOM	3025	CB CG	LEU I		34.866 34.402		42.976 41.509	1.00 19.72 1.00 18.02
ATOM ATOM	3026 3027	CD1	LEU I		35.404		40.807	1.00 14.47
ATOM	3028	CD2	LEU I		34.217		40.844	1.00 14.93
MOTA	3029	N	SER I		35.178	46.294	46.165	1.00 21.36
MOTA	3030	CA	SER I		35.913		47.377	1.00 22.45
MOTA	3031	C	SER I		35.173		48.166	1.00 22.70
MOTA	3032	0	SER I		35.770		48.565 48.233	1.00 24.55 1.00 25.43
ATOM	3033	CB OG	SER I		36.117 36.882		49.410	1.00 25.43
MOTA MOTA	3034 3035	N	ASP I		33.852		48.286	1.00 32.17
ATOM	3036	CA	ASP I		33.021		49.030	1.00 25.51
ATOM	3037	C	ASP I		33.119	42.633	48.500	1.00 22.56
MOTA	3038	0	ASP I		33.390		49.250	1.00 22.33
MOTA	3039	CB	ASP I		31.565		48.963	1.00 32.00
MOTA	3040	CG	ASP I		30.624 30.117		50.019 49.841	1.00 42.23 1.00 45.21
MOTA MOTA	3041 3042	OD1 OD2	ASP I		30.364		51.018	1.00 49.21
ATOM	3043	N	SER I		32.943		47.192	1.00 19.99
MOTA	3044	CA	SER I		32.933		46.504	1.00 16.42
MOTA	3045	С	SER I		34.279		46.521	1.00 14.71
MOTA	3046	0	SER I		34.395		46.693	1.00 15.83
ATOM	3047	CB	SER I		32.503		45.066 44.886	1.00 16.29 1.00 19.97
ATOM	3048	OG N	SER I		31.170 35.296		46.315	1.00 15.85
MOTA MOTA	3049 3050	CA	LEU I		36.638		46.345	1.00 17.57
MOTA	3051	C	LEU I		37.034	40.485	47.744	1.00 17.75
MOTA	3052	0	LEU I	56	37.782	39.527	47.863	1.00 19.01
MOTA	3053	CB	LEU I		37.619		45.848	1.00 17.61
MOTA	3054	CG	LEU I		37.813		44.344	1.00 21.27
MOTA	3055	CD1	LEU I		38.577 38.540		44.141 43.687	1.00 19.96 1.00 16.32
ATOM	3056	CD2 N	THR I		36.540		48.803	1.00 10.32
ATOM ATOM	3057 3058	CA	THR I		36.864		50.189	1.00 17.97
ATOM	3059	C	THR I		36.126		50.566	1.00 18.20
MOTA	3060	0	THR I		36.674		51.266	1.00 20.89
MOTA	3061	CB	THR I		36.521		51.099	1.00 19.37
MOTA	3062	OG1			37.503		50.741	1.00 20.91
MOTA	3063	CG2			36.778 34.924		52.575 50.085	1.00 26.13 1.00 18.03
MOTA MOTA	3064 3065	N CA	ASP I		34.293		50.220	1.00 18.76
ATOM	3066	C	ASP I		34.958	37.009	49.397	1.00 20.46
MOTA	3067	ŏ	ASP I		35.043		49.865	1.00 20.47

Figure 8-62

				_		20 252	20 100	40 503	
MOTA	3068	CB	ASP D			32.859	38.102	49.791	1.00 21.24
MOTA	3069	CG	ASP D	5	8	32.043	39.157	50.517	1.00 26.19
ATOM	3070	OD1	ASP D	5	8	32.458	39.665	51.572	1.00 26.83
MOTA	3071		ASP D			30.970	39.481	49.993	1.00 30.50
MOTA	3072	N	LEU D			35.449	37.324	48.197	1.00 19.65
ATOM	3073	CA	LEU D	5	59	36.099	36.331	47.383	1.00 18.09
ATOM	3074	C	LEU D	- 5	59	37.345	35.878	48.090	1.00 19.12
ATOM	3075	ō	LEU D			37.553	34.694	48.251	1.00 23.04
					-	36.392	36.893	46.028	1.00 16.75
MOTA	3076	CB	LEU D						
ATOM	3077	CG	LEU D			36.808	35.864	45.048	1.00 17.14
ATOM	3078	CD1	LEU D	5	9	35.714	34.823	44.909	1.00 16.41
ATOM	3079	CD2	LEU D	5	59	37.209	36.546	43.769	1.00 16.93
ATOM	3080	N	LEU D	6	0	38.132	36.764	48.667	1.00 21.47
ATOM	3081	CA	LEU D		0	39.332	36.428	49.431	1.00 22.73
		C	LEU D		50	39.173	35.401	50.564	1.00 24.38
MOTA	3082						34.626	50.853	1.00 25.12
MOTA	3083	0	LEU D		50	40.084			
MOTA	3084	CB	LEU D		50	39.852	37.726	50.017	1.00 21.70
MOTA	3085	CG	LEU D	6	50	41.196	37.710	50.670	1.00 23.77
MOTA	3086	CD1	LEU D	6	50	42.256	37.514	49.598	1.00 22.63
ATOM	3087		LEU D		50	41.446	38.985	51.425	1.00 24.99
			ASP D		51	38.005	35.386	51.224	1.00 26.63
MOTA	3088	N							
MOTA	3089	CA	ASP D		51	37.705	34.524	52.363	1.00 25.59
MOTA	3090	C	ASP D		51	37.428	33.112	51.872	1.00 22.43
MOTA	3091	0	ASP D	6	51	37.373	32.161	52.646	1.00 23.39
ATOM	3092	CB	ASP D	6	51	36.497	35.146	53.120	1.00 33.33
ATOM	3093	CG	ASP D		51	35.889	34.390	54.325	1.00 40.36
	3094		ASP D		51	36.478	34.403	55.424	1.00 44.78
MOTA						34.807	33.794	54.169	1.00 43.10
ATOM	3095		ASP D		51				
MOTA	3096	N	LYS D		52	37.289	32.899	50.575	1.00 17.94
ATOM	3097	CA	LYS D		52	37.048	31.574	50.058	1.00 13.29
MOTA	3098	С	LYS D	6	52	38.344	30.855	49.757	1.00 12.68
ATOM	3099	0	LYS D	6	52	38.308	29.692	49.387	1.00 15.69
ATOM	3100	CB	LYS D		52	36.292	31.712	48.771	1.00 13.99
	3101	CG	LYS D		52	35.036	32.517	48.890	1.00 16.25
MOTA					52	34.086	31.871	49.870	1.00 21.21
MOTA	3102	CD	LYS D						
MOTA	3103	CE	LYS D		52	32.997	32.898	50.166	1.00 23.50
MOTA	3104	NZ	LYS D) 6	52	32.319	33.267	48.937	1.00 30.45
MOTA	3105	N	PHE D) 6	53	39.504	31.504	49.885	1.00 12.18
MOTA	3106	CA	PHE D) 6	53	40.797	30.938	49.594	1.00 13.29
ATOM	3107	C	PHE D		53	41.659	30.965	50.837	1.00 16.38
	3108	Ö	PHE D		53	41.401	31.701	51.798	1.00 16.40
ATOM			PHE D		53	41.495	31.773	48.552	1.00 11.01
MOTA	3109	CB					31.641	47.229	1.00 13.33
MOTA	3110	CG	PHE D		53	40.776			
MOTA	3111	CD1	PHE D		53	40.917	30.478	46.491	1.00 11.26
MOTA	3112	CD2	PHE D) 6	53	39.904	32.635	46.823	1.00 13.18
ATOM	3113	CE1	PHE I) 6	53	40.140	30.299	45.367	1.00 9.84
ATOM	3114	CE2	PHE D) 6	53	39.126	32.436	45.690	1.00 13.90
ATOM	3115	CZ	PHE I		53	39.251	31.264	44.964	1.00 10.53
					54	42.725	30.164	50.773	1.00 16.82
MOTA	3116	N	SER I				30.208	51.822	1.00 16.74
MOTA	3117	CA	SER L		54	43.703			
MOTA	3118	C	SER I) 6	54	45.123	30.230	51.275	1.00 16.89
MOTA	3119	0	SER I) 6	5 4	45.377	29.918	50.120	1.00 16.97
ATOM	3120	CB	SER I) 6	54	43.430	29.068	52.849	1.00 18.93
MOTA	3121	OG	SER I		54	44.080	27.847	52.508	1.00 28.24
		N	ASN I		65	46.080	30.661	52.095	1.00 16.96
ATOM	3122					47.479	30.684	51.746	1.00 15.98
MOTA	3123	CA	ASN I		65 65				
MOTA	3124	Ç	ASN I		65	48.027	29.319	51.496	1.00 15.15
MOTA	3125	0	ASN I		65	47.472	28.362	52.000	1.00 17.07
ATOM	3126	CB	ASN I) (65	48.341	31.398	52.774	1.00 17.48
ATOM	3127	CG	ASN I) (65	48.232	32.904	52.684	1.00 19.71

Figure 8-63

ATOM 3	3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143	ND2 N CA C O CB CG1 CG2 CD1	ASN ILE ILE ILE ILE ILE SER SER SER SER SER GLU		65 66 66 66 66 66 67 67 67 67 67 68 68	48.695 47.621 49.077 49.778 51.232 51.633 49.594 50.149 48.115 50.081 52.041 53.442 54.305 55.250 54.084 53.971 53.981 54.755	33.551 33.560 29.253 28.029 28.235 29.383 27.623 28.660 27.329 28.086 27.187 27.347 28.078 28.779 26.006 27.139 27.968 28.626	51.752 53.640 50.672 50.363 50.711 50.813 48.869 47.906 46.478 50.853 51.233 50.214 50.552 51.543 50.419 48.942 47.914	1.00 25.73 1.00 22.21 1.00 15.61 1.00 16.53 1.00 16.49 1.00 16.19 1.00 16.66 1.00 12.63 1.00 18.10 1.00 23.17 1.00 23.34 1.00 25.92 1.00 30.06 1.00 25.32 1.00 27.08
	3146	C	GLU		68	54.045	28.401	46.597	1.00 25.08
		0_	GLU		68	53.391	27.373	46.403	1.00 24.26
	3148	CB	GLU		68 68	56.190 56.711	28.061 27.081	47.921 46.883	1.00 30.32 1.00 40.98
	3149 3150	CG CD	GLU		68	56.009	25.744	46.778	1.00 46.80
			GLU		68	55.947	24.998	47.773	1.00 50.12
			GLU		68	55.508	25.470	45.676	1.00 52.68
		N	GLY		69	54.121	29.389 29.192	45.723 44.320	1.00 23.65
	315 4 3155	CA C	GLY GLY		69 69	53.784 52.580	30.012	44.320	1.00 24.95 1.00 23.05
	3156	0	GLY		69	52.270	30.941	44.691	1.00 24.04
		N	LEU		70	51.883	29.667	42.870	1.00 22.75
	3158	CA	LEU		70	50.768	30.474	42.415	1.00 23.31
	3159	C	LEU		70 70	49.618 49.170	30.380 29.262	43.412 43.689	1.00 21.85 1.00 23.27
	3160 3161	O CB	LEU		70	50.307	29.902	41.114	1.00 23.27
	3162	CG	LEU		70	49.652	30.850	40.145	1.00 22.31
ATOM 3	3163		LEU		70	49.073	29.925	39.088	1.00 24.98
	3164		LEU		70	48.576	31.722	40.710	1.00 21.90
	3165	N CA	SER SER		71 71	49.143	31.526 31.561	43.918 44.977	1.00 19.05 1.00 16.36
	3166 3167	CA	SER		71	47.008	32.518	44.667	1.00 15.90
	3168	ō	SER		71	47.262	33.701	44.521	1.00 18.19
	3169	CB	SER		71	48.747	32.015	46.298	1.00 15.26
	3170	OG	SER		71	47.822	32.217	47.360	1.00 16.34
	3171 3172	N CA	asn asn		72 72	45.757 44.604	32.053 32.871	44.598 44.335	1.00 17.24 1.00 14.30
	3172	C	ASN		72	44.451	33.836	45.493	1.00 16.33
	3174	ō	ASN		72	44.170	35.023	45.286	1.00 16.94
	3175	CB	ASN		72	43.399	31.967	44.208	1.00 14.51
	3176	CG	ASN		72	43.311	31.102 31.156	42.953	1.00 14.36
	3177		ASN ASN		72 72	44.170 42.291	30.261	42.089 42.779	1.00 15.41 1.00 14.10
	3178 3179	N	TYR		73	44.711	33.348	46.720	1.00 16.70
	3180	CA	TYR		73	44.709	34.222	47.893	1.00 17.86
	3181	C	TYR		73	45.580	35.466	47.698	1.00 17.22
	3182	0	TYR		73	45.047 45.171	36.559 33.479	47.813 49.182	1.00 19.51 1.00 15.83
	3183 3184	CB CG	TYR TYR		73 73	45.171	34.331	50.421	1.00 15.83
	3185	CD1	TYR		73	43.755	34.297	51.064	1.00 13.95
	3186	CD2	TYR		73	45.932	35.212	50.823	1.00 14.63
ATOM 3	3187	CE1	TYR	D	73	43.474	35.184	52.080	1.00 15.34

Figure 8-64

MOTA	3188	CE2	TYR D	73	45.663	36.140	51.814	1.00 15.34
	3189	CZ	TYR D	73	44.430	36.108	52.407	1.00 16.30
MOTA								
ATOM	3190	OH	TYR D	73	44.123	37.051	53.334	1.00 22.01
MOTA	3191	N	SER D	74	46.888	35.357	47.402	1.00 18.57
ATOM	3192	CA	SER D	74	47.786	36.498	47.221	1.00 17.90
MOTA	3193	С	SER D	74	47.420	37.417	46.121	1.00 16.44
MOTA	3194	0	SER D	74	47.636	38.600	46.291	1.00 18.01
MOTA	3195	CB	SER D	74	49.180	36.125	46.829	1.00 18.93
	3196	ŌĠ	SER D	74	49.623	35.176	47.760	1.00 25.77
MOTA								
MOTA	3197	N	ILE D	75	46.890	36.866	45.027	1.00 16.68
ATOM	3198	CA	ILE D	75	46.470	37.645	43.893	1.00 16.88
MOTA	3199	C	ILE D	75	45.256	38.493	44.244	1.00 16.78
	3200	ŏ	ILE D	75	45.237	39.693	43.968	1.00 20.42
MOTA								
MOTA	3201	CB	ILE D	75	46.184	36.709	42.711	1.00 16.41
MOTA	3202	CG1	ILE D	75	47.380	35.898	42.295	1.00 16.78
MOTA	3203	CG2	ILE D	75	45.861	37.615	41.567	1.00 16.46
MOTA	3204	CD1	ILE D	75	47.146	34.967	41.097	1.00 19.66
				76	44.230	37.936	44.901	1.00 18.21
MOTA	3205	N	ILE D					
MOTA	3206	CA	ILE D	76	43.023	38.678	45.220	1.00 15.41
MOTA	3207	С	ILE D	76	43.340	39.669	46.286	1.00 17.60
ATOM	3208	0	ILE D	76	42.870	40.796	46.215	1.00 20.17
				76	41.941	37.743	45.711	1.00 16.42
MOTA	3209	CB	ILE D					
MOTA	3210	CG1	ILE D	76	41.615	36.789	44.588	1.00 14.92
MOTA	3211	CG2	ILE D	76	40.696	38.481	46.200	1.00 11.21
ATOM	3212	CD1	ILE D	76	40.745	35.613	45.055	1.00 13.69
			ASP D	77	44.162	39.271	47.248	1.00 19.35
MOTA	3213	N						
ATOM	3214	CA	ASP D	77	44.561	40.150	48.321	1.00 21.77
ATOM	3215	С	ASP D	77	45.248	41.436	47.858	1.00 22.56
MOTA	3216	0	ASP D	77	44.924	42.515	48.376	1.00 22.07
ATOM	3217	CB	ASP D	77	45.433	39.385	49.282	1.00 24.17
				77	45.713	40.148	50.571	1.00 28.55
MOTA	3218	CG	ASP D					
MOTA	3219		ASP D	77	44.842	40.889	51.067	1.00 33.63
MOTA	3220	QD2	ASP D	77	46.822	39.988	51.073	1.00 28.53
MOTA	3221	N	LYS D	78	46.139	41.344	46.851	1.00 22.27
	3222	CA	LYS D	78	46.692	42.534	46.222	1.00 21.32
MOTA								1.00 19.56
MOTA	3223	С	LYS D	· 78	45.654	43.318	45.471	
MOTA	3224	0	LYS D	78	45.786	44.524	45.417	1.00 22.75
MOTA	3225	CB	LYS D	78	47.807	42.270	45.230	1.00 23.87
ATOM	3226	ĊĠ	LYS D	78	49.036	41.600	45.795	1.00 30.71
			LYS D	78	50.269	41.917	44.947	1.00 37.30
MOTA	3227	CD						
MOTA	3228	CE	LYS D	78	51.317	40.799	45.004	1.00 40.34
ATOM	3229	NZ	LYS D	78	50.843	39.671	44.214	1.00 44.85
ATOM	3230	N	LEU D	79	44.634	42.714	44.882	1.00 18.00
ATOM	3231	CA	LEU D	79	43.570	43.462	44.247	1.00 16.42
			LEU D	79	42.696	44.124	45.273	1.00 18.98
MOTA	3232	C						
MOTA	3233	0	LEU D	79	42.215	45.218	45.035	1.00 21.86
MOTA	3234	CB	LEU D	79	42.687	42.543	43.451	1.00 13.71
ATOM	3235	CG	LEU D	79	43.383	41.746	42.358	1.00 13.81
		CD1		79	42.294	41.091	41.522	1.00 14.16
ATOM	3236							
MOTA	3237		LEU D	79	44.240	42.627	41.462	1.00 11.49
MOTA	3238	N	VAL D	80	42.438	43.524	46.430	1.00 19.01
ATOM	3239	CA	VAL D	80	41.624	44.124	47.462	1.00 20.11
ATOM	3240	C	VAL D	80	42.369	45.343	47.920	1.00 21.57
					41.759	46.389	47.987	1.00 25.14
MOTA	3241	0_	VAL D	80				
ATOM	3242	CB	VAL D	80	41.480	43.093	48.603	1.00 22.94
ATOM	3243	CG1	VAL D	80	40.920	43.647	49.896	1.00 25.85
ATOM	3244	CG2		80	40.511	42.003	48.246	1.00 20.39
ATOM	3245	N	ASN D	81	43.678	45.313	48.167	1.00 24.08
						46.498	48.626	1.00 23.59
MOTA	3246	CA	ASN D	81	44.375			
MOTA	3247	C	ASN D	81	44.363	47.632	47.620	1.00 26.17

Figure 8-65

ATOM ATOM	3248 3249	O CB	ASN D	81 81	44.334 45.761	48.756 46.180	48.114 49.097	1.00 28.26 1.00 21.14
MOTA	3250	CG	ASN D	81	45.684	45.257	50.278	1.00 23.73
MOTA	3251	OD1	ASN D	81	44.871	45.422	51.175	1.00 31.16
ATOM	3252	ND2	ASN D	81	46.490	44.231	50.357	1.00 25.26
ATOM	3253	N	ILE D	82	44.340	47.414	46.280	1.00 25.02
ATOM	3254 3255	CA C	ILE D	82 82	44.088	48.469	45.268	1.00 25.82
ATOM ATOM	3256	0	ILE D	82 82	42.671 42.512	49.103 50.323	45.287 45.196	1.00 25.89 1.00 25.87
ATOM	3257	CB	ILE D	82	44.444	48.002	43.847	1.00 23.87
ATOM	3258	CG1	ILE D	82	45.885	47.557	43.751	1.00 25.26
ATOM	3259	CG2	ILE D	82	44.317	49.150	42.894	1.00 23.94
ATOM	3260	CD1	ILE D	82	46.185	46.717	42.500	1.00 24.24
MOTA	3261	N	VAL D	83	41.595	48.324	45.443	1.00 27.50
ATOM	3262	CA	VAL D	83	40.240	48.859	45.486	1.00 27.69
ATOM	3263	C	VAL D	83	40.017	49.556	46.841	1.00 30.42
ATOM	3264 3265	O CB	VAL D	83 83	39.190 39.230	50.454 47.758	46.938	1.00 29.44
MOTA MOTA	3266	CG1	VAL D	83	37.910	48.384	45.201 44.868	1.00 23.07 1.00 24.95
MOTA	3267	CG2	VAL D	83	39.634	47.000	43.979	1.00 24.93
ATOM	3268	N	ASP D	84	40.772	49.192	47.892	1.00 32.89
ATOM	3269	CA	ASP D	84	40.753	49.840	49.206	1.00 35.85
MOTA	3270	С	ASP D	84	41.361	51.238	49.084	1.00 35.75
MOTA	3271	0	ASP D	84	40.779	52.212	49.557	1.00 35.62
MOTA	3272	CB	ASP D	84	41.531	49.029	50.294	1.00 39.03
MOTA	3273	CG OD1	ASP D	84	40.827	48.006	51.221	1.00 41.67
ATOM ATOM	3274 3275		ASP D	84 84	39.593 41.536	47.858 47.352	51.172 52.008	1.00 43.23 1.00 43.54
ATOM	3276	N	ASP D	85	42.500	51.382	48.417	1.00 45.34
ATOM	3277	CA	ASP D	85	43.039	52.689	48.095	1.00 39.54
ATOM	3278	C	ASP D	85	42.055	53.620	47.372	1.00 40.48
MOTA	3279	0	ASP D	85	41.712	54.706	47.853	1.00 42.05
MOTA	3280	CB	ASP D	85	44.343	52.540	47.287	1.00 41.18
MOTA	3281	CG	ASP D	85	45.534	51.871	48.001	1.00 43.42
MOTA	3282 3283	OD1 OD2	ASP D	85 85	45.537 46.465	51.723 51.488	49.243 47.276	1.00 41.35
ATOM ATOM	3284	N N	LEU D	86	41.518	53.157	46.238	1.00 42.78 1.00 41.90
ATOM	3285	CA	LEU D	86	40.526	53.903	45.456	1.00 39.57
ATOM	3286	C	LEU D	86	39.249	54.172	46.203	1.00 38.81
MOTA	3287	0	LEU D	86	38.614	55.176	45.924	1.00 40.16
MOTA	3288	CB	LEU D	86	40.142	53.164	44.191	1.00 36.00
MOTA	3289	CG	LEU D	86	41.234	52.732	43.251	1.00 34.91
MOTA	3290	CD1	LEU D	86 86	40.618	52.075	42.047	1.00 33.95
ATOM ATOM	3291 3292	CD2 N	LEU D	86 87	42.096 38.840	53.907 53.303	42.858 47.125	1.00 32.40 1.00 40.82
ATOM	3293	CA	VAL D	87	37.680	53.589	47.123	1.00 40.82
ATOM	3294	C	VAL D	87	37.965	54.754	48.933	1.00 47.95
MOTA	3295	0	VAL D	87	37.085	55.580	49.176	1.00 49.04
MOTA	3296	CB	VAL D	87	37.191	52.311	48.682	1.00 42.48
MOTA	3297		VAL D	87	36.094	52.685	49.647	1.00 43.30
MOTA	3298		VAL D	87	36.572	51.285	47.749	1.00 39.59
ATOM	3299	N CA	GLU D	88	39.185 39.548	54.862 55.935	49.472 50.387	1.00 51.32
ATOM ATOM	3300 3301	CA	GLU D	88 88	39.807	57.235	49.672	1.00 55.88 1.00 57.32
ATOM	3302	0	GLU D	88	39.717	58.303	50.291	1.00 57.32
ATOM	3303	CB	GLU D	88	40.786	55.627	51.225	1.00 57.84
MOTA	3304	CG	GLU D	88	40.534	54.935	52.572	1.00 61.46
MOTA	3305	CD	GLU D	88	41.737	54.106	53.056	1.00 65.66
MOTA	3306	OE1		88	42.872	54.610	53.000	1.00 65.91
MOTA	3307	OE2	GLU D	88	41.543	52.947	53.479	1.00 68.20

Figure 8-66

ATOM	3308	N	CYS D	89	40.147	57.130	48.382	1.00	57.61
				89	40.273	58.307	47.528	1.00	
MOTA	3309	CA	CYS D						
MOTA	3310	С	CYS D	89	38.895	58.970	47.344		58.39
MOTA	3311	0	CYS D	89	38.791	60.197	47.378	1.00	
ATOM	3312	CB	CYS D	89	40.931	57.880	46.221	1.00	57.54
MOTA	3313	SG	CYS D	89	41.341	59.181	45.038	1.00	58.90
				90	37.809	58.179	47.271		58.70
MOTA	3314	N	VAL D						
MOTA	3315	CA	VAL D	90	36.453	58.684	47.150	1.00	
MOTA	3316	C	VAL D	90	35.871	59.210	48.484		61.73
ATOM	3317	0	VAL D	90	34.680	59.004	48.763	1.00	62.80
ATOM	3318	CB	VAL D	90	35.602	57.544	46.539	1.00	58.55
ATOM	3319	N		104	20.665	52.244	45.909	1.00	56.19
	3320	CA	SER D	104	21.629	51.156	45.958	1.00	
ATOM				104	21.476	50.204	44.750	1.00	
MOTA	3321	C	SER D			50.365	43.954	1.00	
MOTA	3322	0	SER D	104	20.519				
MOTA	3323	CB	SER D	104	21.454	50.421	47.297	1.00	
MOTA	3324	OG	SER D	104	22.506	49.503	47.610	1.00	56.37
MOTA	3325	N	PRO D	105	22.446	49.277	44.526	1.00	45.68
MOTA	3326	CA	PRO D	105	22.366	48.292	43.470	1.00	41.30
		C	PRO D	105	22.138	46.887	43.955		37.99
MOTA	3327					46.478	45.049		38.93
MOTA	3328	0	PRO D		22.529				
MOTA	3329	CB	PRO D		23.661	48.481	42.741	1.00	
ATOM	3330	CG	PRO D	105	24.631	48.664	43.862	1.00	
ATOM	3331	CD	PRO D	105	23.856	49.476	44.863	1.00	42.72
MOTA	3332	N	GLU D	106	21.459	46.177	43.075	1.00	33.70
MOTA	3333	CA	GLU D	106	20.971	44.880	43.417	1.00	32.02
		C	GLU D	106	21.976	43.812	43.085		32.36
MOTA	3334				22.715	43.942	42.111		32.37
MOTA	3335	0_	GLU D	106					32.57
MOTA	3336	CB		106	19.734	44.553	42.624		
MOTA	3337	N	PRO D	107	22.006	42.732	43.886		32.45
MOTA	3338	CA	PRO D	107	22.855	41.549	43.686	1.00	31.86
ATOM	3339	С	PRO D	107	22.724	40.845	42.340	1.00	29.45
ATOM	3340	0	PRO D	107	21.623	40.491	41.911	1.00	29.62
ATOM	3341	CB	PRO D	107	22.403	40.614	44.801	1.00	32.83
		CG	PRO D	107	22.040	41.574	45.904		34.59
MOTA	3342				21.299	42.658	45.165		31.98
ATOM	3343	CD	PRO D	107			41.745		27.04
MOTA	3344	N	ARG D	108	23.893	40.580			
MOTA	3345	CA	ARG D	108	23.966	39.882	40.479	1.00	24.37
MOTA	3346	С	ARG D	108	25.090	38.834	40.442	1.00	22.83
MOTA	3347	0	ARG D	108	26.084	39.002	41.124	1.00	21.26
ATOM	3348	CB	ARG D	108	24.090	40.981	39.431	1.00	27.20
ATOM	3349	CG	ARG D	108	23.924	40.490	38.015	1.00	32.52
	3350	CD	ARG D	108	23.488	41.587	37.061	1.00	35.27
ATOM			ARG D	108	23.846	41.160	35.712		38.19
MOTA	3351	NE	-			41.872	34.627		38.97
ATOM	3352	CZ	ARG D	108	23.536				
ATOM	3353	NH1	ARG D	108	22.798	43.008	34.720		34.64
MOTA	3354	NH2	ARG D	108	23.995	41.398	33.454		39.61
MOTA	3355	N	LEU D	109	24.984	37.734	39.681	1.00	21.95
ATOM	3356	CA	LEU D	109	25.996	36.697	39.565	1.00	20.44
ATOM	3357	C	LEU D		26.760	36.756	38.265	1.00	18.72
	3358		LEU D		26.191	36.725	37.175	1.00	19.50
MOTA		0			25.392	35.304	39.657		21.02
MOTA	3359	CB	LEU D						23.43
MOTA	3360	CG	LEU D		24.434	34.885	40.779		
ATOM	3361	CD1			24.170	33.404	40.648		24.08
ATOM	3362	CD2			24.939	35.187	42.193		25.25
ATOM	3363	N	PHE D	110	28.080	36.753	38.437		17.94
MOTA	3364	CA	PHE D		29.031	36.804	37.333		17.25
	3365	C	PHE D		30.013	35.649	37.346	1.00	16.87
MOTA			PHE D		30.417	35.198	38.404		19.49
MOTA	3366	0	THE D	110	29.848	38.070	37.366		16.08
ATOM	3367	CB	PHE D	T T O	29.040	20.070	2		

 \mathbf{n}

Figure 8-67

MOTA	3368	CG	PHE D	110	28.993	39.305	37.265	1.00 18.38
MOTA	3369	CD1	PHE D	110	28.573	39.743	36.029	1.00 19.11
MOTA	3370	CD2	PHE D	110	28.633	39.977	38.408	1.00 16.78
MOTA	3371	CE1			27.802	40.874	35.946	1.00 16.73
MOTA	3372	CE2			27.850	41.103	38.321	1.00 18.17
MOTA	3373	CZ	PHE D		27.445	41.553	37.081	1.00 21.53
MOTA	3374	N	THR D		30.425	35.107	36.216	1.00 15.24
MOTA	3375	CA	THR D	111	31.539	34.192	36.176	1.00 14.72
MOTA	3376	С	THR D	111	32.811	34.994	36.443	1.00 12.40
MOTA	3377	0	THR D	111	32.752	36.218	36.400	1.00 13.27
MOTA	3378	CB	THR D	111	31.579	33.435	34.828	1.00 17.12
MOTA	3379	OG1	THR D		31.630	34.415	33.809	1.00 17.68
ATOM	3380	CG2	THR D		30.451	32.446	34.621	1.00 14.81
	3381	N	PRO D		33.974	34.412	36.757	1.00 12.31
MOTA		CA	PRO D		35.219	35.126	36.935	
ATOM	3382							1.00 11.10
MOTA	3383	C	PRO D		35.594	36.046	35.783	1.00 14.02
MOTA	3384	0	PRO D		35.884	37.215	36.011	1.00 13.17
ATOM	3385	CB	PRO D		36.189	33.965	37.074	1.00 9.39
ATOM	3386	CG	PRO D	112	35.413	32.952	37.854	1.00 7.72
MOTA	3387	CD	PRO D	112	34.151	32.972	37.061	1.00 11.01
MOTA	3388	N	GLU D	113	35,611	35.572	34.517	1.00 16.22
MOTA	3389	CA	GLU D	113	35.905	36.456	33.395	1.00 16.17
ATOM	3390	С	GLU D	113	35.026	37.679	33.272	1.00 13.99
MOTA	3391	ō	GLU D		35.508	38.761	32.985	1.00 15.09
MOTA	3392	CB	GLU D		35.913	35.703	32.092	1.00 17.91
MOTA	3393	CG	GLU D		34.636	34.985	31.713	1.00 19.43
	3394	CD	GLU D		34.621	34.539	30.277	1.00 22.34
MOTA					35.652	34.599	29.608	
MOTA	3395	OE1						1.00 23.91
MOTA	3396	OE2			33.558	34.139	29.810	1.00 24.64
MOTA	3397	N	GLU D		33.747	37.539	33.559	1.00 14.85
MOTA	3398	CA	GLU D		32.837	38.649	33.596	1.00 15.81
ATOM	3399	С	GLU D		33.063	39.567	34.769	1.00 15.50
MOTA	3400	0	GLU D		33.085	40.783	34.557	1.00 15.87
MOTA	3401	CB			31.402	38.208	33.707	1.00 19.13
ATOM	3402	CG	GLU D	114	30.883	37.422	32.539	1.00 21.49
MOTA	3403	CD	GLU D	114	29.605	36.642	32.816	1.00 24.09
MOTA	3404	OE1	GLU D	114	29.017	36.697	33.897	1.00 26.51
MOTA	3405	OE2	GLU D	114	29.185	35.937	31.907	1.00 29.29
MOTA	3406	N	PHE D		33.204	39.041	35.990	1.00 13.99
ATOM	3407	CA	PHE D		33.464	39.892	37.125	1.00 12.83
ATOM	3408	C	PHE D		34.753	40.667	36.905	1.00 13.21
MOTA	3409	Ö	PHE D		34.827	41.855	37.193	1.00 14.99
	3410	CB	PHE D		33.650	39.018	38.359	1.00 10.89
MOTA			PHE D		33.982	39.867	39.569	1.00 10.83
ATOM	3411	CG						·
MOTA	3412		PHE D		32.951	40.361	40.344	1.00 12.60
ATOM	3413				35.296	40.133	39.917	1.00 14.96
MOTA	3414		PHE D		33.251	41.093	41.480	1.00 12.59
ATOM	3415				35.605	40.892	41.033	1.00 13.04
MOTA	3416	CZ	PHE D		34.560	41.373	41.810	1.00 14.57
MOTA	3417	N	PHE D	116	35.833	40.025	36.477	1.00 15.07
MOTA	3418	CA	PHE D	116	37.102	40.718	36.297	1.00 13.94
ATOM	3419	C	PHE D	116	37.181	41.563	35.036	1.00 15.79
MOTA	3420	0	PHE D	116	38.014	42.455	34.965	1.00 16.79
MOTA	3421	CB	PHE D		38.273	39.775	36.373	1.00 13.55
ATOM	3422	CG	PHE D		38.548	39.261	37.759	1.00 10.27
MOTA	3423		PHE D		39.105	40.100	38.692	1.00 12.82
MOTA	3424		PHE D		38.143	37.990	38.132	1.00 11.47
MOTA	3425		PHE D		39.169	39.689	40.025	1.00 14.46
MOTA	3425		PHE D		38.216	37.584	39.457	1.00 10.67
		CZ	PHE D		38.709	38.439	40.407	1.00 10.07
MOTA	3427	C4	Enc D	**0	30.703	20.423	±0.±0/	1.00 11.00

Figure 8-68

ATOM	3428	N	ARG D	117	36.361	41.405	34.011	1.00 16.57
ATOM	3429	CA	ARG D	117	36.293	42.421	32.990	1.00 20.64
ATOM	3430	C	ARG D		35.668	43.700	33.548	1.00 20.04
ATOM	3431	0	ARG D		36.089	44.803	33.174	1.00 23.89
MOTA	3432	CB	ARG D	117	35.446	41.879	31.860	1.00 26.52
MOTA	3433	CG	ARG D	117	35.518	42.709	30.598	1.00 31.58
MOTA	3434	CD	ARG D		34.496	42.146	29.640	1.00 35.05
MOTA	3435	NE	ARG D		34.394	43.021	28.483	1.00 38.58
MOTA	3436	CZ	ARG D		33.828	42.656	27.326	1.00 37.56
MOTA	3437	NH1	ARG D	117	33.169	41.506	27.170	1.00 33.95
MOTA	3438	NH2	ARG D	117	34.002	43.473	26.286	1.00 37.95
		N	ILE D		34.656	43.594		
MOTA	3439						34.445	1.00 22.03
MOTA	3440	CA	ILE D		34.052	44.753	35.121	1.00 19.63
MOTA	3441	C	ILE D	118	35.047	45.368	36.086	1.00 19.88
MOTA	3442	0	ILE D	118	35.183	46.586	36.085	1.00 23.21
MOTA	3443	CB	ILE D	118	32.781	44.357	35.874	1.00 20.68
	3444	CG1			31.691	43.843	34.951	1.00 19.48
MOTA								
MOTA	3445	CG2	ILE D		32.255	45.562	36.619	1.00 20.52
MOTA	3446	CD1	ILE D	118	30.567	43.143	35.727	1.00 18.63
MOTA	3447	N	PHE D	119	35.741	44.577	36.908	1.00 16.07
ATOM	3448	CA	PHE D	119	36.853	45.059	37.683	1.00 15.72
ATOM	3449	C	PHE D		37.853	45.894	36.880	1.00 17.75
ATOM	3450	0	PHE D		38.208	47.006	37.267	1.00 20.22
ATOM	3451	CB	PHE D		37.545	43.866	38.359	1.00 12.02
MOTA	3452	CG	PHE D	119	38.822	44.222	39.100	1.00 13.89
ATOM	3453	CD1	PHE D	119	38.760	44.766	40.389	1.00 14.47
ATOM	3454	CD2			40.057	44.030	38.492	1.00 10.48
			PHE D		39.944	45.148	41.032	
ATOM	3455							
MOTA	3456	CE2			41.219	44.387	39.149	1.00 10.95
ATOM	3457	CZ	PHE D		41.163	44.965	40.405	1.00 10.47
ATOM	3458	N	ASN D	120	38.349	45.343	35.779	1.00 18.18
ATOM	3459	CA	ASN D	120	39.325	45.994	34.955	1.00 18.15
ATOM	3460	С	ASN D	120	38.709	47.263	34.387	1.00 20.79
ATOM	3461	ō	ASN D		39.348	48.303	34.408	1.00 22.36
		CB	ASN D		39.805	45.078	33.812	1.00 18.05
ATOM	3462							
ATOM	3463	CG	ASN D	120	40.849	44.026	34.137	1.00 17.71
ATOM	3464	OD1	ASN D	120	41.770	44.210	34.918	1.00 21.36
ATOM	3465	ND2	ASN D	120	40.765	42.860	33.538	1.00 17.03
MOTA	3466	N	ARG D	121	37.463	47.256	33.941	1.00 22.71
ATOM	3467	CA	ARG D		36.824	48.438	33.431	1.00 24.59
	3468	C	ARG D		36.703	49.523	34.494	1.00 27.41
MOTA								
MOTA	3469	0_	ARG D		36.971	50.683	34.192	1.00 30.49
MOTA	3470	CB	ARG D		35.468	47.993	32.953	1.00 26.42
MOTA	3471	CG	ARG D	121	34.608	49.156	32.549	1.00 33.46
MOTA	3472	CD	ARG D	121	34.760	49.641	31.105	1.00 37.32
MOTA	3473	NE	ARG D	121	34.149	50.962	30.882	1.00 39.99
MOTA	3474	CZ	ARG D		32.836	51.217	31.020	1.00 39.01
MOTA	3475	NH1			31.955	50.306	31.426	1.00 37.27
MOTA	3476	NH2	ARG D		32.392	52.439	30.747	1.00 40.47
MOTA	3477	N	SER D	122	36.364	49.186	35.754	1.00 28.07
MOTA	3478	CA	SER D	122	36.147	50.153	36.820	1.00 24.66
ATOM	3479	C	SER D		37.455	50.758	37.250	1.00 25.38
MOTA	3480	Õ	SER D		37.536	51.971	37.401	1.00 24.85
MOTA	3481	CB	SER D		35.452	49.505	37.983	1.00 20.76
MOTA	3482	OG	SER D		34.236	48.886	37.591	1.00 19.10
MOTA	3483	N	ILE D	123	38.513	49.954	37.389	1.00 28.58
MOTA	3484	CA	ILE D	123	39.853	50.468	37.718	1.00 31.03
ATOM	3485	C	ILE D		40.396	51.464	36.684	1.00 33.54
MOTA	3486	Ö	ILE D		40.998	52.471	37.040	1.00 33.54
					40.821	49.267	38.041	
MOTA	3487	CB	ILE D	143	40.021	49.40/	30.041	1.00 31.69

 \mathbf{c}

ATOM	3488	CG1	TLE	D 123	40.899	48,877	39.544	1.00 30.91	С
ATOM	3489			D 123	42.262	49.504	37.583	1.00 31.27	Ċ
MOTA	3490			D 123	39.609	48.826	40.377	1.00 31.19	č
ATOM	3491	N		D 124	40.123	51,244	35.395	1.00 36.80	N
MOTA	3492	CA		D 124	40.562	52.125	34.333	1.00 38.72	C
MOTA	3493	C		D 124	39.846	53.455	34.353	1.00 30.72	C
MOTA	3494	Ö		D 124	40.487	54.491	34.186	1.00 39.18	0
MOTA	3495	CB		D 124	40.383	51.461	32.981	1.00 39.94	C
ATOM	3496	CG		D 124	40.847	52.342	31.828	1.00 47.69	C
ATOM	3497			D 124	42.058	52.554	31.646	1.00 47.89	0
MOTA	3498			D 124	39.972	52.837	31.116	1.00 50.62	0
ATOM	3499	N ODZ		D 125	38.538	53.440	34.590	1.00 31.18	Ŋ
MOTA	3500	CA		D 125	37.731	54.649	34.586	1.00 39.43	C
ATOM	3501	C		D 125	38.028	55.640	35.712	1.00 41.04	C
ATOM	3502	Ö		D 125	37.580	56.792	35.729	1.00 46.63	0
MOTA	3502	CB		D 125	36.289	54.232	34.688	1.00 37.89	Č
ATOM	3504	N		D 126	38.795	55.189	36.693	1.00 37.89	N
ATOM	3505	CA		D 126	39.342	56.063	37.709	1.00 52.08	C
	3506	CA		D 126	40.409	57.058	37.208	1.00 55.06	C
MOTA	3507	0		D 126	40.531	58.167	37.751	1.00 57.33	0
ATOM				D 126	39.877	55.182	38.838	1.00 51.90	c.
ATOM	3508	CB		D 126	39.154	55.489	40.124	1.00 50.92	
ATOM ATOM	3509	CG		D 126	39.155	56.780	40.620	1.00 50.92	C
	3510			D 126	38.437	54.505	40.745	1.00 50.11	c
ATOM	3511			D 126	38.390	57.105	41.721	1.00 50.11	c
MOTA	3512 3513			D 126	37.688	54.827	41.851	1.00 52.08	c
MOTA	3514	CEZ		D 126	37.653	56.117	42.336	1.00 53.64	C
ATOM	3515	N		D 127	41.187	56.667	36.177	1.00 56.75	Ŋ
ATOM ATOM	3516	CA		D 127	42.055	57.566	35.420	1.00 57.29	C
ATOM	3517	C		D 127	41.257	58.229	34.273	1.00 57.29	C
ATOM	3518	Ö		D 127	41.376	57.826	33.098	1.00 60.03	Õ
ATOM	3519	CB		D 127	43.225	56.735	34.882	1.00 56.61	C
TER	3521	CD		D 127	43.223	30.733	34.002	1.00 00.01	C
HETATM		CD	CA	1021	34.563	32.796	27.927	1.00 28.47	CA
HETATM		CA	CA	1022	29.874	41.216	51.866	1.00 42.93	CA
HETATM			CA	1023	46.453	8.630	31.415	1.00 34.99	CA
HETATM			1PE	1	18.016	39.096	31.870	1.00 54.04	0
HETATM			1PE	1	19.233	39.467	31.241	1.00 52.50	Č
HETATM			1PE	1	20.344	39.764	32,285	1.00 52.87	Č
HETATM			1PE	1	21.455	40.455	31.657	1.00 50.81	ō
HETATM			1PE	1	21.887	42.392	30.182	1.00 41.29	Ĉ
HETATM			1PE	1	20.971	41.737	31.213	1.00 45.45	Č
HETATM			1PE	1	23.085	42.870	30.757	1.00 37.80	ō
HETATM			1PE	1	24.265	44.731	31.534	1.00 39.00	C
HETATM			1PE	1	22.866	44.120	31.391	1.00 35.49	C
HETATM			1PE	1	25.158	43.676	31.917	1.00 39.07	0
HETATM			1PE	1	27.396	42.942	31.976	1.00 36.51	C
HETATM			1PE	1	26.476	44.138	32.222	1.00 37.63	C
HETATM			1PE	1	26.797	41.817	32.602	1.00 37.94	0
HETATM			1PE	1	28.795	40.537	32.878	1.00 44.86	C
HETATM			1PE	1	27.405	40.589	32.251	1.00 38.90	С
HETATM		OH7		1	29.817	40.999	31.987	1.00 53.59	0
HETATM		0	нон	1024	36.890	32.430	27.721	1.00 24.58	0
HETATM		0	HOH	1025	35.049	30.934	29.322	1.00 27.97	0
HETATM		0	HOH	1026	31.347	42.865	52.839	1.00 31.45	0
HETATM		0	HOH	1027	44.819	10.251	32.056	1.00 31.08	0
HETATM		Ō	HOH	1028	47.508	7.695	33.365	1.00 35.15	0
HETATM		0	HOH	1029	48.695	9.256	30.957	1.00 29.22	0
HETATM		0	HOH	1105	33.704	13.935	20.986	1.00 32.21	0
	3548	0	HOH	1106	22.707	17.800	13.006	1.00 51.74	0
URIBIN									

HETATM	3549	0	HOH	1107	25.58	9 22.952	23.068	1.00 38.86	0
HETATM	3550	0	HOH	1108	20.41	0 17.104	15.299	1.00 29.07	ō
HETATM	3551	0	HOH	1109	26.76	8.355	29.315	1.00 19.21	0
HETATM	3552	0	HOH	1110	25.74	4 13.365	30.461	1.00 32.06	0
HETATM	3553	0	HOH	1111	27.53		32.848	1.00 38.65	0
HETATM	3554	0	HOH	1112	18.24	5 18.266	16.629	1.00 28.39	0
HETATM	3555	0	HOH	1113	23.26	0 14.366	29.164	1.00 21.00	0
HETATM	3556	0	HOH	1114	15.11	6 22.225	22.815	1.00 19.32	0
HETATM	3557	0	HOH	1115	15.03	3 21.355	35.696	1.00 38.95	0
HETATM	3558	0	HOH	1116	20.65	1 6.306	35.427	1.00 25.08	0
HETATM	3559	0	HOH	1117	15.26	7 18.912	37.475	1.00 41.62	0
HETATM	3560	0	HOH	1118	13.69	3 14.872	13.312	1.00 29.91	0
HETATM		0	HOH	1119	10.25		28.411	1.00 19.75	0
HETATM		0	HOH	1120	17.03		35.599	1.00 32.81	0
HETATM		0	HOH	1121	6.05		31.202	1.00 21.61	0
HETATM	3564	0	HOH	1122	4.99		24.993	1.00 33.94	0
HETATM		0	HOH	1123	0.91		30.618	1.00 37.91	0
HETATM		0	HOH	1124	5.90		30.408	1.00 46.39	0
HETATM		0	HOH	1125	6.55		30.508	1.00 37.39	. 0
HETATM		0	HOH	1126	8.03		28.006	1.00 43.67	0
HETATM	3569	0	HOH	1127	5.75		33.445	1.00 43.48	0
HETATM		0	HOH	1128	44.05		36.277	1.00 22.42	0
HETATM		0	HOH	1129	34.42		20.635	1.00 57.58	0
HETATM		0	HOH	1130	50.21		34.211	1.00 31.74	0
HETATM		0	HOH	1132	22.45		39.519	1.00 46.16	0
HETATM		0	нон	1133	13.24		8.764	1.00 63.66	0
HETATM		0	НОН	1134	34.02		54.154	1.00 48.71	0
HETATM		0	HOH	1135	46.50		53.506	1.00 25.80	0
HETATM		0	HOH	1136	14.86		7.810	1.00 46.95	0
HETATM		0	HOH	1138	37.97		53.726	1.00 41.75	0
HETATM		0	HOH	1139	10.51		30.508	1.00 54.06	0
HETATM		0	HOH	1140	21.92		36.769	1.00 27.65	0
HETATM		0	НОН	1141	9.65		31.085	1.00 36.52	0
HETATM		0	HOH	1142	35.55		31.455	1.00 33.05	0
HETATM		0	нон	1143	52.33		47.975	1.00 42.15	0
HETATM		0	HOH	1144	32.91		23.494	1.00 40.84	0
HETATM		0	HOH	1145	29.54		24.434 29.823	1.00 44.50	0
HETATM		0	HOH	1146	26.18 39.06		33.085	1.00 34.71 1.00 53.70	0
HETATM		0	HOH HOH	1147 1148	34.97		52.427	1.00 33.70	0
HETATM		0	нон	1149	59.82		48.580	1.00 40.12	0
HETATM HETATM		Ö	нон	1150	28.41		47.673	1.00 44.44	Ö
HETATM		Ö	HOH	1151	25.45		32.960	1.00 35.88	Ö
HETATM		0	нон	1152	41.87		53.350	1.00 51.54	Ö
HETATM		Ö	HOH	1153	45.97		29.654	1.00 48.44	ő
HETATM		Ö	HOH	1154	16.37		15.198	1.00 26.92	ő
HETATM		Ö	нон	1156	2.90		9.710	1.00 33.50	ő
HETATM		Ö	нон	1157	27.95		52.054	1.00 42.09	ő
HETATM		Ö	нон	1158	18.67		31.947	1.00 31.92	ő
HETATM		Õ	нон	1160	31.09		39.837	1.00 22.54	ō
HETATM		Ö	HOH	1161	24.55		13.911	1.00 39.92	ō
HETATM		Ö	HOH	1162	19.32		39.555	1.00 49.64	ō
HETATM		Ö	HOH	1163	14.46		32.747	1.00 33.62	ō
HETATM		ŏ	HOH	1164	42.33		31.684	1.00 25.02	ŏ
HETATM		Ö	HOH	1165	26.64		34.853	1.00 25.40	ŏ
HETATM		Ö	HOH	1166	41.71		52.537	1.00 54.23	ō
HETATM		Ö	нон	1167	11.79		8.564	1.00 42.64	Ō
HETATM		ō	нон	1169	39.69		29.775	1.00 46.55	Ō
HETATM		ō	HOH	1170	25.51		13.390	1.00 29.39	0
HETATM		ō	HOH	1172	15.63		9.410	1.00 35.98	0
		_							

HETATM	3609	0	HOH	1173	26.042	53.508	19.228	1.00	35.35	0
HETATM		Ō	HOH	1174	16.723	43.317	9.437	1.00	70.54	0
HETATM		Ö	нон	1175	11.039	27.202	31.989		35.23	Ō
HETATM		Ö	нон	1176	26.492	54.880	14.660		45.35	ō
HETATM		Ö	HOH	1177	48.739	5.603	40.080		46.72	Õ
HETATM		0	нон	1179	38.452	10.611	56.410		33.18	Ö
					25.173	41.020	50.981		37.80	0
HETATM		0	HOH	1180	26.009	21.500	26.306		37.33	0
HETATM		0	HOH	1181						
HETATM		0	HOH	1185	32.901	61.354	32.974		47.36	0
HETATM		0	нон	1186	49.199	44.404	48.616		55.72	0
HETATM		0	HOH	1187	28.401	31.064	46.621		25.46	0
HETATM	3620	0	HOH	1189	50.488	34.252	43.662		27.11	0
HETATM	3621	0	HOH	1190	25.015	38.231	32.413		46.20	0
HETATM	3622	0	HOH	1191	13.328	45.647	6.880		50.19	0
HETATM	3623	0	HOH	1192	9.102	28.582	30.815		28.84	0
HETATM	3624	0	HOH	1194	16.216	53.125	18.778	1.00	20.19	0
HETATM	3625	0	HOH	1195	48.924	37.778	50.511	1.00	41.81	0
HETATM	3626	0	HOH	1196	29.151	29.120	42.414	1.00	25.51	0
HETATM	3627	0	HOH	1197	10.760	56.327	24.871	1.00	25.61	0
HETATM	3628	0	HOH	1198	19.161	31.540	33.429	1.00	41.50	0
HETATM		0	HOH	1201	31.584	19.545	39.778	1.00	41.14	0
HETATM		Ô	HOH	1202	31.499	33.130	31.243	1.00	30.94	0
HETATM		0	нон	1203	33.475	31.251	32.729	1.00	30.16	0
HETATM		ō	нон	1204	25.323	26.251	24.066	1.00	29.38	0
HETATM		ŏ	нон	1205	18.912	50.780	14.345	1.00	28.88	0
HETATM		Ö	НОН	1206	28.562	46.055	22.818	1.00	37.71	0
HETATM		Ö	НОН	1207	31.212	15.396	37.505		38.29	0
HETATM		Ö	HOH	1208	21.188	13.368	44.376		22.37	0
HETATM		Õ	HOH	1209	17.682	38.715	10.160		31.02	0
HETATM		Õ	HOH	1210	50.214	11.867	37.111		50.09	ō
HETATM		0	HOH	1212	28.768	41.646	47.276		22.25	ō
HETATM		Ö	HOH	1214	49.993	18.233	34.806		44.55	0
HETATM		Ö	HOH	1215	32.815	34.522	46.504		35.13	ō
HETATM		0	HOH	1216	39.893	28.328	41.896		12.01	ō
HETATM		Ö	HOH	1217	15.338	26.949	28.916		11.70	ō
		0	HOH	1218	35.548	32.617	33.681		18.33	ō
HETATM		0	HOH	1219	39.368	28.656	34.414		16.49	ŏ
HETATM			HOH	1220	10.631	22.205	16.485		23.48	ŏ
HETATM		0			38.404	33.931	29.548		20.31	ŏ
HETATM		0	HOH	1221	29.170	43.940	45.652		17.85	ŏ
HETATM		0	HOH	1222	16.493	28.977	30.383		19.55	ŏ
HETATM		0	HOH	1223	50.201	26.750	43.278		23.76	ŏ
HETATM		0	HOH	1224	38.642	25.017	49.298		24.48	ŏ
HETATM		0	HOH	1225	22.132	37.260	38.648		21.90	õ
HETATM		0	HOH	1226	39.985	27.256	49.971		19.31	ŏ
HETATM		0	HOH	1227			41.727		24.34	Ö
HETATM		0	HOH	1228	46.680	26.589	47.582		25.33	ŏ
HETATM		0	НОН	1229	45.783	30.693				ő
HETATM		0	НОН	1230	37.132	23.521	50.764 31.269		25.39 22.37	ŏ
HETATM		0	HOH	1231	37.666	45.416				0
HETATM		_		1232	12.017	34.217				-
HETATM		0	HOH	1233	26.995	45.967	27.617		23.52	0
HETATM		0	HOH	1234	26.536	25.536	28.250		29.21	0
HETATM		0	HOH	1235	25.412	37.399	29.161		27.51	0
HETATM		0	HOH	1236	37.339	31.390	35.413		25.38	0
HETATM	3663	0	HOH	1237	49.870	32.179	49.678		25.92	0
HETATM	3664	0	HOH	1238	22.061	39.616	17.387		15.04	0
HETATM	3665	0	HOH	1239	14.228	24.366	29.787		22.47	0
HETATM		0	HOH	1240	23.022	47.566	29.327		39.50	0
HETATM		0	HOH	1241	21.098	32.679	17.559		35.09	0
HETATM		0	HOH	1242	23.864	37.449	16.707	1.00	37.28	0

Figure 8-72

HETATM 3669 O HOH 1243 32.934 17.639 38.491 1.00 30.00 HETATM 3670 O HOH 1245 40.219 10.507 54.210 1.00 27.25 HETATM 3671 O HOH 1245 40.219 10.507 54.210 1.00 22.36 HETATM 3673 O HOH 1247 22.701 31.034 19.118 1.00 26.32 HETATM 3673 O HOH 1247 22.701 31.034 19.118 1.00 26.32 HETATM 3675 O HOH 1249 27.308 27.122 38.575 1.00 29.42 HETATM 3676 O HOH 1250 41.664 63.03 31.018 1.00 29.42 HETATM 3677 O HOM 1251 27.841 34.202 44.699 1.00 37.98 HETATM 3677 O HOM 1251 27.841 34.202 44.699 1.00 37.98 HETATM 3679 O HOM 1253 28.946 26.204 44.699 1.00 37.98 HETATM 3678 O HOM 1253 28.946 26.204 44.699 1.00 37.98 HETATM 3680 O HOM 1254 52.894 25.886 44.095 1.00 33.52 HETATM 3681 O HOM 1256 48.804 2.432 50.876 1.00 36.59 HETATM 3683 O HOM 1257 51.244 18.531 40.805 1.00 33.51 HETATM 3680 O HOM 1256 48.804 2.432 50.876 1.00 36.59 HETATM 3686 O HOM 1260 49.903 39.828 48.137 1.00 47.77 HETATM 3688 O HOM 1262 32.871 29.567 30.088 1.00 39.72 HETATM 3689 O HOM 1264 13.550 26.049 31.905 1.00 33.45 HETATM 3699 O HOM 1264 13.550 26.049 31.905 1.00 33.45 HETATM 3699 O HOM 1264 13.550 26.049 31.905 1.00 33.45 HETATM 3699 O HOM 1264 13.690 31.947 31.432 1.00 34.794 HETATM 3699 O HOM 1264 13.690 31.947 31.432 1.00 34.794 HETATM 3699 O HOM 1269 26.086 7.425 31.507 1.00 39.58 HETATM 3699 O HOM 1269 26.086 7.425 31.507 1.00 39.58 HETATM 3699 O HOM 1269 26.086 7.425 31.507 1.00 39.58 HETATM 3699 O HOM 1269 26.086 7.425 31.507 1.00 39.58 HETATM 3699 O HOM 1269 26.086 7.425 31.507 1.00 39.58 HETATM 3699 O HOM 1269 26.086 7.425 31.507 1.00 39.58 HETATM 3699 O HOM 1269 26.086 7.425 31.507 1.00 39.58 HETATM 3700 O HOM 1279 28.994 26.086 31.995 31.00 39.58 HETATM 3700 O HOM 1279 33.226 33.45									
HETATM 3670 0 HOH 1245 40.219 10.507 54.210 1.00 42.36 HETATM 3672 0 HOH 1245 40.219 10.507 54.210 1.00 42.36 HETATM 3673 0 HOH 1246 20.198 57.839 14.584 1.00 26.12 HETATM 3673 0 HOH 1247 22.701 31.034 19.118 1.00 26.32 HETATM 3674 0 HOH 1248 27.308 27.122 38.575 1.00 29.98 HETATM 3675 0 HOH 1259 27.308 27.122 38.575 1.00 29.98 HETATM 3676 0 HOH 1250 41.664 46.630 31.018 1.00 29.42 HETATM 3677 0 HOH 1251 27.841 34.202 44.699 1.00 37.98 HETATM 3678 0 HOH 1252 28.946 26.643 37.95 21.00 51.94 HETATM 3678 0 HOH 1252 28.946 26.643 43.795 23.560 1.00 23.03 HETATM 3680 0 HOH 1254 52.894 25.886 44.095 1.00 33.52 HETATM 3680 0 HOH 1255 42.339 26.613 55.952 1.00 36.97 HETATM 3683 0 HOH 1256 48.804 24.432 50.876 1.00 36.59 HETATM 3683 0 HOH 1257 51.244 18.531 40.805 1.00 33.51 HETATM 3685 0 HOH 1256 48.804 24.32 50.876 1.00 36.59 HETATM 3686 0 HOH 1266 49.903 39.828 48.137 1.00 44.77 HETATM 3687 0 HOH 1262 32.871 29.567 30.088 10.00 37.72 HETATM 3689 0 HOH 1266 49.903 39.828 48.137 1.00 44.77 HETATM 3689 0 HOH 1266 49.903 39.828 48.137 1.00 44.77 HETATM 3689 0 HOH 1266 49.903 39.828 48.137 1.00 37.61 HETATM 3689 0 HOH 1266 43.850 26.90 31.956 1.00 33.45 HETATM 3689 0 HOH 1267 48.809 31.948 31.75 1.00 37.61 HETATM 3689 0 HOH 1268 32.871 29.567 30.088 1.00 39.72 HETATM 3689 0 HOH 1269 26.086 74.425 31.507 1.00 39.58 HETATM 3699 0 HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3699 0 HOH 1274 28.901 24.308 41.027 1.00 47.94 HETATM 3699 0 HOH 1274 28.901 24.308 41.027 1.00 47.94 HETATM 3699 0 HOH 1274 28.901 24.308 41.007 1.00 49.62 HETATM 3699 0 HOH 1274 28.901 24.308 41.007 1.00 49.95 HETATM 3699 0 HOH 1274 28.901 24.308 41.007 1.00 49.95 HETATM 3699 0 HOH 1274 28.901 24.308 41.007 1.00 49.95 HETATM 3699 0 HOH 1274 28.901 24.308 41.007 1.00 49.95 HETATM 3699 0 HOH 1274 28.901 24.308 41.007 1.00 49.95 HETATM 3709 0 HOH 1280 49.903 39.828 48.137 1.00 47.94 HETATM 3709 0 HOH 1280 49.903 39.808 49.108 1.00 49.95 HETATM 3709 0 HOH 1280 49.903 49.309 59.548 1.00 59.73 HETATM 3709 0 HOH 1280 49.903 49.309 59.548 1.00 59.73 HETATM	HETATM 3669	о н	OH 124	3 32	.934 17	.639 3	8.491	1.00	30.00
HETATM 3671 O HOH 1246 20.199 57.839 14.584 1.00 26.32 HETATM 3673 O HOH 1247 22.701 31.034 19.118 1.00 26.32 HETATM 3673 O HOH 1247 22.701 31.034 19.118 1.00 26.32 HETATM 3675 O HOH 1248 50.529 25.000 51.117 1.00 16.36 HETATM 3675 O HOH 1249 27.308 27.122 38.575 1.00 29.98 HETATM 3676 O HOH 1250 41.664 46.630 31.018 1.00 29.42 HETATM 3677 O HOH 1251 27.841 34.202 44.699 1.00 37.98 HETATM 3678 O HOH 1251 27.841 34.202 44.699 1.00 37.98 HETATM 3678 O HOH 1252 28.946 26.204 44.341 1.00 25.303 HETATM 3678 O HOH 1255 22.8946 26.204 44.341 1.00 37.98 HETATM 3680 O HOH 1255 42.339 26.613 55.952 1.00 36.97 HETATM 3681 O HOH 1255 42.339 26.613 55.952 1.00 36.97 HETATM 3683 O HOH 1257 51.244 18.531 40.805 1.00 33.51 HETATM 3680 O HOH 1260 49.903 39.828 88.137 1.00 44.77 HETATM 3686 O HOH 1261 45.720 4.638 32.384 1.00 54.41 HETATM 3688 O HOH 1261 45.720 4.638 32.384 1.00 54.41 HETATM 3688 O HOH 1263 32.891 59.567 30.088 1.00 39.72 HETATM 3689 O HOH 1266 10.689 31.547 31.905 1.00 33.45 HETATM 3689 O HOH 1266 10.689 31.547 31.905 1.00 33.45 HETATM 3690 O HOH 1266 10.689 31.547 31.905 1.00 33.45 HETATM 3690 O HOH 1266 10.689 31.547 31.905 1.00 37.61 HETATM 3690 O HOH 1267 42.8901 24.308 41.00 54.41 HETATM 3690 O HOH 1267 45.609 -2.608 7.425 31.507 1.00 37.61 HETATM 3690 O HOH 1274 22.022 54.673 22.853 1.00 37.03 HETATM 3690 O HOH 1274 22.022 54.673 32.851 1.00 37.03 HETATM 3690 O HOH 1274 22.022 54.673 32.851 1.00 37.03 HETATM 3690 O HOH 1274 22.022 54.673 32.851 1.00 37.03 4.65 HETATM 3690 O HOH 1274 22.022 54.673 32.851 1.00 37.03 4.65 HETATM 3690 O HOH 1274 22.025 54.673 32.853 1.00 37.03 34.55 HETATM 3690 O HOH 1280 7.95 65.039 7.70 31.10 37.03 1.00 49.62 HETATM 3690 O HOH 1280 7.95 65.039 7.70 31.10 37.03 1.00 49.62 HETATM 3700 O HOH 1280 7.95 65.039 7.70 31.10 37.03 1.00 49.62 HETATM 3700 O HOH 1284 32.873 32.805 32.805 32.805 32.00 32.00 43.00 43.95 HETATM 3700 O HOH 1284 32.873 32.805									
HETATM 3673 O NCH 1246 20.198 57.839 14.584 1.00 26.12 HETATM 3675 O NCH 1247 22.701 31.034 19.118 1.00 26.32 HETATM 3675 O NCH 1248 50.529 25.000 51.117 1.00 16.36 HETATM 3675 O NCH 1249 27.308 27.122 38.575 1.00 29.98 HETATM 3676 O NCH 1250 41.664 46.630 31.018 1.00 29.42 HETATM 3677 O NCH 1251 27.841 34.202 44.699 1.00 37.98 HETATM 3678 O NCH 1252 28.946 26.204 44.341 1.00 51.94 HETATM 3680 O NCH 1253 26.643 43.795 23.560 1.00 23.03 HETATM 3680 O NCH 1254 52.899 25.886 44.095 1.00 33.52 HETATM 3680 O NCH 1255 42.339 26.613 55.952 1.00 36.97 HETATM 3680 O NCH 1256 48.804 2.432 50.876 1.00 36.59 HETATM 3683 O NCH 1256 48.804 2.432 50.876 1.00 36.59 HETATM 3685 O NCH 1260 49.903 39.828 48.137 1.00 44.77 HETATM 3685 O NCH 1261 45.720 4.638 23.84 1.00 54.41 HETATM 3680 O NCH 1262 32.871 29.567 30.088 1.00 33.51 HETATM 3680 O NCH 1262 32.871 29.567 30.088 1.00 39.72 HETATM 3680 O NCH 1266 49.903 39.828 48.137 1.00 44.77 HETATM 3680 O NCH 1266 49.903 39.828 48.137 1.00 44.77 HETATM 3680 O NCH 1266 49.903 39.828 48.137 1.00 44.77 HETATM 3680 O NCH 1266 32.871 29.567 30.088 1.00 39.72 HETATM 3680 O NCH 1266 32.871 29.567 30.088 1.00 39.72 HETATM 3680 O NCH 1266 32.871 29.567 30.088 1.00 39.72 HETATM 3689 O NCH 1264 13.550 26.049 31.905 1.00 33.45 HETATM 3699 O NCH 1274 22.022 54.673 22.853 1.00 37.03 HETATM 3699 O NCH 1276 45.609 -2.697 31.603 1.00 49.95 HETATM 3699 O NCH 1279 21.970 8.818 8.330 1.00 47.94 HETATM 3699 O NCH 1280 49.903 49.828 49.837 1.00 47.79 HETATM 3700 O NCH 1280 49.903 59.856 1.00 39.78 HETATM 3700 O NCH 1280 34.675 64.090 77.31 1.00 37.73 HETATM 3700 O NCH 1280 34.675 64.090 77.31 1.00 37.03 HETATM 3700 O NCH 1280 34.675 64.000 77.31 1.00 49.95 HETATM 3700 O NCH 1280 34.675 64.000 77.31 1.00 49.95 HETATM 3700 O NCH 1280 34.675 64.000 77.31 1.00 49.95 HETATM 3700 O NCH 1280 34.675 64.000 77.31 1.00 49.95 HETATM 3700 O NCH 1280 34.675 64.000 77.31 1.00 49.95 HETATM 3700 O NCH 1280 34.675 64.000 77.31 1.00 49.95 HETATM 3700 O NCH 1289 30.900 77.865 30.000 77.31 1.00 47.79 HETATM 3700 O NCH 1280 34.									
HETATM 3673 O HOH 1248 50.529 25.000 51.117 1.00 16.36 HETATM 3675 O HOH 1249 27.308 27.122 38.575 1.00 29.98 HETATM 3676 O HOH 1250 41.664 46.630 31.018 1.00 29.42 HETATM 3677 O HOH 1251 27.841 34.202 44.699 1.00 37.98 HETATM 3678 O HOH 1252 28.946 26.204 44.31 1.00 37.98 HETATM 3678 O HOH 1253 26.643 34.795 23.560 1.00 23.03 HETATM 3680 O HOH 1253 26.643 43.795 23.560 1.00 23.03 HETATM 3681 O HOH 1255 42.339 26.613 55.952 1.00 36.597 HETATM 3682 O HOH 1255 42.339 26.613 55.952 1.00 36.597 HETATM 3683 O HOH 1257 51.244 18.51 40.805 1.00 33.51 HETATM 3683 O HOH 1257 51.244 18.51 40.805 1.00 33.51 HETATM 3686 O HOH 1260 49.903 39.828 48.137 1.00 44.77 HETATM 3686 O HOH 1263 23.871 29.567 30.088 1.00 39.72 HETATM 3688 O HOH 1263 23.890 51.918 23.175 1.00 37.761 HETATM 3688 O HOH 1263 23.890 51.918 23.175 1.00 37.761 HETATM 3689 O HOH 1266 10.689 31.547 31.432 1.00 44.77 HETATM 3690 O HOH 1277 22.02 54.673 22.853 1.00 33.55 HETATM 3699 O HOH 1277 28.690 31.905 1.00 33.45 HETATM 3699 O HOH 1277 22.02 54.673 22.853 1.00 39.58 HETATM 3699 O HOH 1277 28.901 31.547 31.432 1.00 44.99 HETATM 3699 O HOH 1277 28.901 31.547 31.432 1.00 44.99 HETATM 3699 O HOH 1277 9.649 26.708 34.475 1.00 39.58 HETATM 3699 O HOH 1276 45.609 -2.679 31.603 1.00 39.58 HETATM 3699 O HOH 1276 45.609 -2.679 31.603 1.00 39.58 HETATM 3699 O HOH 1276 45.609 -2.679 31.603 1.00 49.62 HETATM 3699 O HOH 1288 12.842 17.025 12.641 1.00 55.41 HETATM 3700 O HOH 1288 12.842 17.025 12.641 1.00 55.13 HETATM 3701 O HOH 1288 34.457 19.302 17.031 1.00 55.41 HETATM 3701 O HOH 1288 34.457 19.302 17.031 1.00 36.09 HETATM 3701 O HOH 1288 34.457 19.302 17.031 1.00 37.73 HETATM 3701 O HOH 1288 34.457 19.302 17.031 1.00 37.73 HETATM 3701 O HOH 1288 34.457 19.302 17.031 1.00 37.73 HETATM 3701 O HOH 1288 34.457 19.302 17.031 1.00 37.73 HETATM 3701 O HOH 1288 34.457 19.302 17.031 1.00 37.73 HETATM 3701 O HOH 1294 28.370 17.055 1.32 1.00 37.73 HETATM 3701 O HOH 1303 41.649 18.859 37.856 18.00 37.73 HETATM 3702 O HOH 1313 41.549 18.549 18.549 18.549 18.549 18.549 18.549 18.5		о н	OH 124	6 20					
HETATM 3675 O HOH 1248 50.529 25.000 51.117 1.00 16.36 HETATM 3675 O HOH 1250 41.664 46.630 31.018 1.00 29.98 HETATM 3676 O HOH 1251 27.841 34.202 44.699 1.00 37.98 HETATM 3677 O HOH 1251 27.841 34.202 44.699 1.00 37.98 HETATM 3678 O HOH 1252 28.946 26.204 44.341 1.00 51.94 HETATM 3678 O HOH 1253 26.643 43.795 23.560 1.00 23.03 HETATM 3680 O HOH 1254 52.894 25.886 44.055 1.00 33.52 HETATM 3681 O HOH 1255 42.339 26.613 55.952 1.00 36.59 HETATM 3682 O HOH 1255 42.339 26.613 55.952 1.00 36.59 HETATM 3683 O HOH 1256 48.804 2.432 50.876 1.00 33.51 HETATM 3688 O HOH 1260 49.903 39.28 48.137 1.00 44.77 HETATM 3688 O HOH 1261 45.720 4.638 32.384 1.00 54.41 HETATM 3688 O HOH 1262 32.871 29.557 30.088 1.00 33.51 HETATM 3688 O HOH 1262 32.871 29.557 30.088 1.00 33.45 HETATM 3689 O HOH 1264 13.550 26.049 31.955 1.00 37.61 HETATM 3689 O HOH 1264 13.550 26.049 31.955 1.00 37.61 HETATM 3689 O HOH 1269 26.086 77.425 31.432 1.00 47.94 HETATM 3690 O HOH 1274 28.901 24.308 41.027 1.00 47.94 HETATM 3691 O HOH 1277 9.649 26.708 34.475 1.00 37.03 HETATM 3690 O HOH 1277 9.649 26.708 34.475 1.00 37.03 HETATM 3690 O HOH 1277 9.649 26.708 34.475 1.00 37.03 HETATM 3690 O HOH 1279 21.970 8.818 36.303 1.00 45.69 HETATM 3690 O HOH 1280 7.956 56.039 27.031 1.00 45.69 HETATM 3699 O HOH 1288 34.457 1.902 57.031 1.00 45.69 HETATM 3699 O HOH 1288 34.457 1.902 57.031 1.00 45.69 HETATM 3699 O HOH 1288 34.457 1.902 57.555 1.00 37.73 HETATM 3700 O HOH 1288 34.457 1.902 57.555 1.00 37.73 HETATM 3700 O HOH 1288 34.457 1.902 57.555 1.00 37.73 HETATM 3700 O HOH 1288 34.457 1.902 57.555 1.00 37.73 HETATM 3700 O HOH 1288 34.457 1.902 57.555 1.00 37.73 HETATM 3701 O HOH 1288 34.457 1.902 57.555 1.00 37.73 HETATM 3700 O HOH 1289 28.546 31.433 38.00 1.00 49.55 HETATM 3700 O HOH 1289 30.910 54.312 27.471 1.00 48.06 HETATM 3701 O HOH 1288 34.457 1.902 55.555 1.00 37.73 HETATM 3701 O HOH 1299 26.506 37.92 55.731 1.00 37.73 HETATM 3700 O HOH 1299 26.506 48.354 47.555 1.00 37.73 HETATM 3700 O HOH 1299 26.506 48.354 47.555 1.00 37.73 HETATM 3700 O HOH 1321 41.551									
HETATM 3675 O HOH 1249 27.308 27.122 38.575 1.00 29.42 HETATM 3677 O HOH 1251 41.664 46.50 31.018 1.00 29.42 HETATM 3677 O HOH 1251 27.841 34.202 44.699 1.00 37.98 HETATM 3678 O HOH 1252 28.946 28.204 44.091 1.00 51.94 HETATM 3678 O HOH 1253 26.643 43.795 23.560 1.00 23.03 HETATM 3680 O HOH 1255 42.399 25.886 44.095 1.00 33.52 HETATM 3681 O HOH 1255 42.399 26.613 55.952 1.00 33.597 HETATM 3682 O HOH 1255 42.399 26.613 55.952 1.00 33.51 HETATM 3683 O HOH 1257 51.244 18.51 40.805 1.00 33.51 HETATM 3683 O HOH 12661 45.720 4.638 32.384 1.00 44.77 HETATM 3686 O HOH 12661 45.720 4.638 32.384 1.00 39.72 HETATM 3686 O HOH 1262 32.871 29.557 30.088 1.00 39.72 HETATM 3687 O HOH 1263 23.890 51.938 48.137 1.00 44.77 HETATM 3689 O HOH 1264 10.689 31.547 30.088 1.00 39.72 HETATM 3689 O HOH 1266 10.689 31.547 31.432 1.00 47.94 HETATM 3693 O HOH 1274 28.901 24.38 31.507 1.00 33.58 HETATM 3690 O HOH 1274 28.901 24.308 41.007 39.58 HETATM 3693 O HOH 1274 28.901 24.308 41.007 1.00 39.58 HETATM 3693 O HOH 1277 9.649 26.086 7.425 31.507 1.00 39.58 HETATM 3699 O HOH 1277 9.649 26.086 7.425 31.603 1.00 45.69 HETATM 3699 O HOH 1277 9.649 26.090 31.905 1.00 37.03 9.58 HETATM 3699 O HOH 1277 9.649 26.090 31.607 1.00 39.58 HETATM 3699 O HOH 1277 9.649 26.090 31.607 1.00 49.62 HETATM 3699 O HOH 1279 21.970 8.818 36.303 1.00 45.69 HETATM 3699 O HOH 1280 7.956 56.099 21.000 30.602 HETATM 3699 O HOH 1280 7.956 56.099 21.000 30.602 HETATM 3699 O HOH 1280 7.956 56.099 21.000 30.602 HETATM 3701 O HOH 1280 7.956 56.099 22.677 31.603 1.00 45.69 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.97 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.97 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.97 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.97 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3701 O HOH 1293 23.056 24.854 47.655 1.00 52.03 HETATM 3701 O HOH 1298 29.203 30.910 54.312 27.471 1.00 48.06 HETATM 3701 O HOH 1298 29.203 30.910 54.312 27.471 1.00 48.06 HETATM 3701 O HOH 1300 46.687 28.337 39.00 54.115 1.00 37									
HETATM 3677 C									
HETATM 3678 O HOH 1251 27.841 34.202 44.699 1.00 37.98 HETATM 3678 O HOH 1252 28.946 26.204 44.341 1.00 51.94 HETATM 3680 O HOH 1254 52.894 25.886 44.095 1.00 33.52 HETATM 3681 O HOH 1255 42.339 26.613 55.952 1.00 33.52 HETATM 3682 O HOH 1255 42.339 26.613 55.952 1.00 33.57 HETATM 3683 O HOH 1255 42.339 26.613 55.952 1.00 33.57 HETATM 3683 O HOH 1257 51.244 18.51 40.805 1.00 33.51 HETATM 3683 O HOH 1260 49.903 39.828 48.137 1.00 44.77 HETATM 3686 O HOH 1261 45.720 4.683 32.384 1.00 54.41 HETATM 3686 O HOH 1262 32.871 29.567 30.088 1.00 39.72 HETATM 3688 O HOH 1263 23.890 51.98 23.175 1.00 37.61 HETATM 3689 O HOH 1264 13.550 26.049 31.905 1.00 33.45 HETATM 3689 O HOH 1266 10.689 31.547 31.432 1.00 47.94 HETATM 3691 O HOH 1269 26.086 77.425 31.507 1.00 39.58 HETATM 3692 O HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3695 O HOH 1277 9.649 26.089 31.603 71.00 49.62 HETATM 3694 O HOH 1277 9.649 26.089 31.003 31.00 49.62 HETATM 3695 O HOH 1277 9.649 26.089 31.003 31.00 49.62 HETATM 3699 O HOH 1278 21.970 8.818 36.303 1.00 49.62 HETATM 3699 O HOH 1279 21.970 8.818 36.303 1.00 49.55 HETATM 3699 O HOH 1280 7.956 56.099 27.031 1.00 55.41 HETATM 3699 O HOH 1280 7.956 56.099 27.031 1.00 55.41 HETATM 3699 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3699 O HOH 1288 34.457 19.302 55.855 1.00 47.89 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.89 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.89 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.89 HETATM 3700 O HOH 1289 30.910 54.312 27.471 1.00 48.06 HETATM 3701 O HOH 1299 30.910 54.312 27.471 1.00 48.06 HETATM 3701 O HOH 1299 30.910 54.312 27.471 1.00 48.06 HETATM 3701 O HOH 1299 30.910 54.312 27.471 1.00 48.06 HETATM 3701 O HOH 1303 41.624 1.272 27.661 1.00 52.03 HETATM 3701 O HOH 1308 43.375 33.196 54.115 1.00 39.18 HETATM 3701 O HOH 1310 48.667 64.010 47.159 1.00 47.97 HETATM 3701 O HOH 1308 43.375 33.196 54.115 1.00 39.18 HETATM 3702 O HOH 1310 48.676 30.913 34.475 1.00 39.18 HETATM 3703 O HOH 1310 48.676 30.913 34.475 1.00 39.18 HETATM 3703 O HOH 1									
HETATM 3679 O HOH 1253 28.946 26.204 44.341 1.00 51.94 HETATM 3680 O HOH 1253 42.339 26.633 43.795 23.560 1.00 23.03 HETATM 3680 O HOH 1255 42.339 26.63.3 55.952 1.00 36.597 HETATM 3682 O HOH 1255 42.339 26.63.3 55.952 1.00 36.597 HETATM 3682 O HOH 1256 48.804 2.432 50.876 1.00 36.597 HETATM 3683 O HOH 1257 51.244 18.531 40.805 1.00 33.51 HETATM 3685 O HOH 1260 49.903 39.828 48.137 1.00 44.77 HETATM 3685 O HOH 1261 45.720 4.638 32.384 1.00 54.41 HETATM 3685 O HOH 1262 32.871 29.567 30.088 1.00 39.72 HETATM 3686 O HOH 1262 32.871 29.567 30.088 1.00 39.72 HETATM 3688 O HOH 1264 13.550 26.049 31.905 1.00 37.61 HETATM 3689 O HOH 1266 10.689 31.547 31.432 1.00 47.94 HETATM 3699 O HOH 1265 10.689 31.547 31.432 1.00 47.94 HETATM 3699 O HOH 1276 42.8901 24.308 41.007 1.00 37.63 HETATM 3699 O HOH 1277 20.22 54.673 22.853 1.00 37.03 HETATM 3699 O HOH 1277 428.901 24.308 41.027 1.00 41.39 HETATM 3699 O HOH 1277 9.649 26.708 34.475 1.00 36.02 HETATM 3699 O HOH 1277 9.649 26.708 34.475 1.00 36.02 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 45.69 HETATM 3699 O HOH 1277 9.649 26.708 34.475 1.00 36.02 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 45.69 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 49.62 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 49.95 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 49.95 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 49.95 HETATM 3700 O HOH 1288 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1288 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1288 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3707 O HOH 1293 23.058 27.656 32.358 1.00 47.93 HETATM 3700 O HOH 1294 28.377 27.865 32.772 1.00 37.03 HETATM 3700 O HOH 1294 28.377 27.865 32.772 1.00 37.03 HETATM 3700 O HOH 1294 28.377 27.865 32.572 1.00 37.03 HETATM 3700 O HOH 1294 28.377 27.865 32.572 1.00 37.03 HETATM 3700 O HOH 1294 28.377 27.865 32.774 1.00 48.06 HETATM 3710 O HOH 1300 6.687 28.387 29.99 34.484 1.00 64.38 HETAT									
HETATM 3680 0 HOH 1254 52.894 25.886 44.095 1.00 33.52 HETATM 3681 0 HOH 1255 42.339 26.613 55.952 1.00 36.97 HETATM 3682 0 HOH 1257 51.244 18.531 40.805 1.00 33.51 HETATM 3683 0 HOH 1257 51.244 18.531 40.805 1.00 33.51 HETATM 3684 0 HOH 1260 49.903 39.828 48.137 1.00 44.77 HETATM 3686 0 HOH 1261 45.720 4.638 32.84 10.00 39.72 HETATM 3686 0 HOH 1262 32.871 29.567 30.088 1.00 39.72 HETATM 3688 0 HOH 1263 23.890 51.918 23.175 1.00 37.61 HETATM 3688 0 HOH 1264 13.550 26.049 31.905 1.00 33.45 HETATM 3689 0 HOH 1265 10.689 31.547 31.432 1.00 47.94 HETATM 3690 0 HOH 1269 26.086 -7.425 31.507 1.00 39.58 HETATM 3690 0 HOH 1274 28.901 24.308 41.027 1.00 39.58 HETATM 3690 0 HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3694 0 HOH 1276 45.609 -2.697 31.603 1.00 49.62 HETATM 3699 0 HOH 1276 45.609 -2.697 31.603 1.00 45.69 HETATM 3699 0 HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3699 0 HOH 1280 7.956 56.039 27.031 1.00 55.13 HETATM 3699 0 HOH 1280 7.956 56.039 27.031 1.00 55.13 HETATM 3699 0 HOH 1280 7.956 56.039 27.031 1.00 55.13 HETATM 3699 0 HOH 1288 44.57 1.00 55.13 HETATM 3701 0 HOH 1288 34.57 1.00 55.41 HETATM 3701 0 HOH 1288 34.57 1.00 55.23 HETATM 3703 0 HOH 1288 34.57 1.00 55.41 HETATM 3703 0 HOH 1292 23.091 54.332 27.471 1.00 47.97 HETATM 3701 0 HOH 1288 34.57 1.00 55.23 HETATM 3703 0 HOH 1292 23.091 54.332 27.471 1.00 47.97 HETATM 3701 0 HOH 1288 34.57 1.00 55.23 HETATM 3701 0 HOH 1292 33.20 60.645 39.548 1.00 47.71 HETATM 3701 0 HOH 1293 23.058 27.656 32.358 1.00 45.02 HETATM 3701 0 HOH 1294 28.576 32.358 1.00 37.03 HETATM 3701 0 HOH 1295 27.851 13.033 47.051 1.00 39.38 HETATM 3701 0 HOH 1294 28.577 27.665 1.00 39.38 HETATM 3701 0 HOH 1295 27.855 1.00 39.38 HETATM 3701 0 HOH 1294 28.577 27.655 1.00 39.38 HETATM 3701 0 HOH 1293 23.058 27.656 32.358 1.00 45.00 HETATM 3701 0 HOH 1294 28.577 27.655 1.00 39.38 HETATM 3701 0 HOH 1300 6.687 28.371 27.661 1.00 61.55 HETATM 3701 0 HOH 1310 48.767 36.872 27.661 1.00 47.72 HETATM 3703 0 HOH 1311 0.0897 25.344 11.00 39.38 HETATM 3701 0 HOH 1310 48.767 36.872 37.050 30									
HETATM 3680									
HETATM 3681 O HOH 1255 42.339 26.613 55.952 1.00 36.97 HETATM 3683 O HOH 1256 48.804 2.432 50.876 1.00 33.51 HETATM 3684 O HOH 1260 49.903 39.828 48.137 1.00 44.77 HETATM 3685 O HOH 1261 45.720 4.638 32.384 1.00 54.41 HETATM 3686 O HOH 1262 32.871 29.567 30.088 1.00 39.72 HETATM 3686 O HOH 1262 32.871 29.567 30.088 1.00 37.61 HETATM 3688 O HOH 1264 13.550 26.049 31.905 1.00 37.61 HETATM 3689 O HOH 1265 10.689 31.547 31.432 1.00 47.94 HETATM 3690 O HOH 1265 10.689 31.547 31.432 1.00 37.94 HETATM 3691 O HOH 1274 28.901 24.308 41.027 1.00 39.58 HETATM 3690 O HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3695 O HOH 1276 45.609 -2.697 31.603 1.00 49.62 HETATM 3695 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3698 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 47.97 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 47.97 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 49.62 HETATM 3699 O HOH 1280 7.956 56.039 27.031 1.00 49.95 HETATM 3700 O HOH 1286 34.675 64.010 47.159 1.00 47.97 HETATM 3701 O HOH 1288 34.577 13.02 51.855 1.00 47.97 HETATM 3701 O HOH 1288 34.577 13.02 51.855 1.00 47.97 HETATM 3703 O HOH 1292 33.20 66.645 39.548 1.00 47.71 HETATM 3703 O HOH 1293 23.058 27.656 32.358 1.00 47.73 HETATM 3701 O HOH 1288 34.577 13.02 51.855 1.00 47.97 HETATM 3701 O HOH 1294 28.377 27.865 25.772 1.00 39.38 HETATM 3701 O HOH 1294 28.377 27.865 25.772 1.00 39.38 HETATM 3701 O HOH 1295 17.851 13.033 47.051 1.00 39.38 HETATM 3701 O HOH 1294 28.377 27.865 25.772 1.00 39.38 HETATM 3701 O HOH 1295 17.851 13.033 47.423 1.00 47.73 HETATM 3701 O HOH 1295 17.851 13.033 47.423 1.00 47.73 HETATM 3701 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3701 O HOH 1294 28.377 27.865 25.72 1.00 37.92 HETATM 3701 O HOH 1300 48.667 36.878 37.423 1.00 52.78 HETATM 3701 O HOH 1300 48.676 36.974 42.151 30.03 37.423 1.00 52.78 HETATM 3701 O HOH 1300 48.667 36.974 47.90 47.80 HETATM 3711 O HOH 1300 48.767 36.883 37.423 1.00 52.78 HETATM 3712 O HOH				-					
HETATM 3682 O HOH 1257 51.244 18.531 40.805 1.00 36.59 HETATM 3683 O HOH 1260 49.903 39.828 46.137 1.00 44.77 HETATM 3685 O HOH 1261 45.720 4.638 32.384 1.00 54.41 HETATM 3686 O HOH 1262 23.871 29.567 30.088 1.00 39.72 HETATM 3688 O HOH 1263 23.890 51.918 23.175 1.00 37.61 HETATM 3688 O HOH 1264 13.550 26.049 31.905 1.00 33.45 HETATM 3688 O HOH 1266 10.689 31.547 31.432 1.00 47.94 HETATM 3690 O HOH 1269 26.086 -7.425 31.507 1.00 37.61 HETATM 3691 O HOH 1271 22.022 54.673 22.853 1.00 37.03 HETATM 3693 O HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3693 O HOH 1276 45.609 -2.697 31.603 1.00 49.62 HETATM 3695 O HOH 1277 9.649 26.708 34.475 1.00 36.02 HETATM 3695 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3698 O HOH 1288 7.956 56.039 27.031 1.00 55.13 HETATM 3698 O HOH 1288 7.956 56.039 27.031 1.00 49.95 HETATM 3699 O HOH 1288 34.457 19.302 55.855 1.00 47.97 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.97 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.97 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3700 O HOH 1289 28.546 31.433 28.564 1.00 29.94 HETATM 3700 O HOH 1289 28.546 31.433 28.564 1.00 29.94 HETATM 3700 O HOH 1289 28.546 31.433 32.5654 1.00 47.15 HETATM 3708 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3708 O HOH 1299 22.3058 27.656 32.358 1.00 37.73 HETATM 3708 O HOH 1299 22.435 24.151 33.420 1.00 39.38 HETATM 3708 O HOH 1299 22.435 24.151 33.420 1.00 39.38 HETATM 3708 O HOH 1299 22.435 24.151 33.420 1.00 39.38 HETATM 3701 O HOH 1299 22.435 24.151 33.042 1.00 39.38 HETATM 3701 O HOH 1299 22.435 24.151 30.03 47.051 1.00 37.73 HETATM 3701 O HOH 1299 29.292 20.833 37.425 1.00 37.73 HETATM 3701 O HOH 1299 27.435 24.151 30.03 47.051 1.00 37.73 HETATM 3701 O HOH 1310 48.767 36.362 55.067 1.00 37.73 HETATM 3701 O HOH 1310 48.767 36.362 55.067 1.00 39.38 HETATM 3710 O HOH 1310 48.767 36.362 55.067 1.00 39.38 HETATM 3713 O HOH 1310 48.767 36.362 55.067 1.00 39.18 HETATM 3715 O HOH 1310 48.767 36.362 55.007 1.00 39.18 HETATM 3715 O HOH 1311 41.524 42.527 42.531 1.00 39.18 HE									
HETATM 3683 O HOH 1257 51.244 18.531 40.805 1.00 33.51 HETATM 3684 O HOH 1260 49.903 39.828 48.137 1.00 44.77 HETATM 3685 O HOH 1261 45.720 4.638 32.384 1.00 54.41 HETATM 3686 O HOH 1262 32.871 29.567 30.088 1.00 39.72 HETATM 3687 O HOH 1263 32.871 29.567 30.088 1.00 37.61 HETATM 3688 O HOH 1266 10.689 31.547 31.432 1.00 37.61 HETATM 3689 O HOH 1266 10.689 31.547 31.432 1.00 37.61 HETATM 3689 O HOH 1266 10.689 31.547 31.432 1.00 37.63 HETATM 3690 O HOH 1271 22.022 54.673 22.853 1.00 37.03 HETATM 3691 O HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3692 O HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3693 O HOH 1277 9.649 26.708 34.475 1.00 49.62 HETATM 3695 O HOH 1277 9.649 26.708 34.475 1.00 49.62 HETATM 3695 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3697 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3699 O HOH 1288 12.862 44.437 3.810 1.00 49.95 HETATM 3699 O HOH 1288 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1288 34.675 64.010 47.159 1.00 47.98 HETATM 3700 O HOH 1288 34.675 64.010 47.159 1.00 47.88 HETATM 3700 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3700 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3700 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3700 O HOH 1299 22.936 60.645 39.548 1.00 47.88 HETATM 3700 O HOH 1299 22.936 60.645 39.548 1.00 47.88 HETATM 3700 O HOH 1299 22.945 63.422 7.471 1.00 48.06 HETATM 3700 O HOH 1299 22.945 63.422 7.471 1.00 48.06 HETATM 3701 O HOH 1299 22.837 27.856 25.772 1.00 37.73 HETATM 3703 O HOH 1299 22.942 28.846 27.656 32.358 1.00 47.71 HETATM 3700 O HOH 1299 22.948 28.347 27.865 25.772 1.00 37.73 HETATM 3700 O HOH 1299 22.948 28.347 27.866 25.772 1.00 37.73 HETATM 3700 O HOH 1299 26.196 40.554 47.655 1.00 49.98 HETATM 3700 O HOH 1300 6.687 28.384 34.20 1.00 39.38 HETATM 3700 O HOH 1310 48.767 36.362 55.067 1.00 39.88 HETATM 3715 O HOH 1311 6.897 52.932 4.841 1.00 47.71 HETATM 3715 O HOH 1310 48.767 36.362 55.067 1.00 39.89 HETATM 3715 O HOH 1311 6.897 65.977 42.203 1.00 47.92 HETATM 3716 O HOH 1311 6.897 65.977 42.203 1.00 46.38 HETA									
HETATM 3685 O HOH 1261 45.720 4.638 32.384 1.00 44.77 HETATM 3686 O HOH 1261 45.720 4.638 32.384 1.00 39.72 HETATM 3686 O HOH 1262 32.871 29.567 30.088 1.00 39.72 HETATM 3688 O HOH 1264 13.550 26.049 31.905 1.00 37.61 HETATM 3688 O HOH 1266 10.689 31.547 31.432 1.00 47.94 HETATM 3690 O HOH 1269 26.086 -7.425 31.507 1.00 37.03 HETATM 3691 O HOH 1271 22.022 54.673 22.853 1.00 37.03 HETATM 3693 O HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3693 O HOH 1276 45.609 -2.697 31.603 1.00 49.62 HETATM 3695 O HOH 1277 9.649 26.708 34.475 1.00 37.03 HETATM 3695 O HOH 1277 9.649 36.038 34.007 1.00 49.62 HETATM 3695 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3698 O HOH 1281 15.342 17.025 12.461 1.00 55.13 HETATM 3698 O HOH 1284 12.862 44.437 3.810 1.00 49.95 HETATM 3699 O HOH 1288 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1288 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.98 HETATM 3700 O HOH 1289 28.546 31.433 28.564 1.00 29.94 HETATM 3700 O HOH 1289 28.546 31.433 28.564 1.00 52.03 HETATM 3700 O HOH 1289 28.546 31.433 28.564 1.00 52.03 HETATM 3700 O HOH 1291 33.220 60.645 39.548 1.00 47.01 HETATM 3700 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3700 O HOH 1292 30.910 54.312 27.471 1.00 39.38 HETATM 3700 O HOH 1299 28.546 31.433 38.420 1.00 39.38 HETATM 3700 O HOH 1299 29.292 20.833 37.423 1.00 52.78 HETATM 3700 O HOH 1299 29.292 20.833 37.420 1.00 39.38 HETATM 3700 O HOH 1299 29.292 20.833 37.420 1.00 39.38 HETATM 3700 O HOH 1299 29.292 20.833 37.420 1.00 39.38 HETATM 3710 O HOH 1300 6.687 28.384 34.227 1.00 47.03 HETATM 3710 O HOH 1300 6.687 28.384 38.247 1.00 47.73 HETATM 3710 O HOH 1301 48.767 36.362 55.067 1.00 39.38 HETATM 3710 O HOH 1300 6.687 28.384 38.247 1.00 45.71 HETATM 3710 O HOH 1310 48.767 36.362 55.067 1.00 39.18 HETATM 3710 O HOH 1310 48.767 36.565 53.067 1.00 39.18 HETATM 3710 O HOH 1311 49.566 27.837 34.825 1.00 40.91 HETATM 3710 O HOH 1310 48.767 36.565 53.067 1.00 39.18 HETATM 3710 O HOH 1311 41.659 27.837 34.825 1.00 40.91 HETATM 3720 O HOH 13									
HETATM 3685 O HOH 1261 45.720 4.638 32.384 1.00 54.41 HETATM 3686 O HOH 1262 32.871 29.567 30.088 1.00 39.72 HETATM 3687 O HOH 1263 23.890 51.918 23.175 1.00 37.61 HETATM 3688 O HOH 1264 13.550 26.049 31.905 1.00 33.45 HETATM 3699 O HOH 1266 10.689 31.547 31.432 1.00 47.94 HETATM 3699 O HOH 1276 26.086 -7.425 31.507 1.00 39.58 HETATM 3691 O HOH 1271 22.022 54.673 22.853 1.00 37.03 HETATM 3692 O HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3693 O HOH 1276 45.609 -2.697 31.603 1.00 49.62 HETATM 3694 O HOH 1277 9.649 26.708 34.475 1.00 36.02 HETATM 3695 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3696 O HOH 1281 15.342 17.025 12.461 1.00 55.13 HETATM 3699 O HOH 1284 12.862 44.437 3.810 1.00 49.95 HETATM 3699 O HOH 1288 34.675 64.010 47.159 1.00 49.99 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.97 HETATM 3701 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3702 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3706 O HOH 1299 23.910 54.312 27.471 1.00 47.159 HETATM 3707 O HOH 1299 23.058 27.656 32.358 1.00 45.02 HETATM 3708 O HOH 1299 23.058 27.656 32.358 1.00 45.02 HETATM 3700 O HOH 1299 23.058 27.656 32.358 1.00 45.02 HETATM 3701 O HOH 1299 23.058 27.656 32.358 1.00 47.71 HETATM 3703 O HOH 1299 26.196 40.554 47.055 1.00 37.73 HETATM 3706 O HOH 1299 26.196 40.554 47.655 1.00 37.73 HETATM 3707 O HOH 1299 26.196 40.554 47.655 1.00 37.73 HETATM 3708 O HOH 1299 26.196 40.554 47.655 1.00 37.73 HETATM 3701 O HOH 1295 17.851 13.033 37.051 1.00 45.71 HETATM 3703 O HOH 1295 17.851 13.033 37.051 1.00 47.80 HETATM 3701 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3701 O HOH 1308 43.375 24.151 33.420 1.00 39.38 HETATM 3701 O HOH 1308 41.624 1.272 27.661 1.00 61.55 HETATM 3702 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3703 O HOH 1312 41.531 54.883 30.082 1.00 39.38 HETATM 3713 O HOH 1313 41.531 54.883 30.082 1.00 39.38 HETATM 3715 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3722 O HOH 1312 41.531 54.883 30.082 1.00 39.98 HETATM 3723 O HOH									
HETATM 3686 O HOH 1262 32.871 29.557 30.088 1.00 39.772 HETATM 3688 O HOH 1264 13.550 26.049 31.905 1.00 37.61 HETATM 3688 O HOH 12664 13.550 26.049 31.905 1.00 37.61 HETATM 3689 O HOH 12666 10.689 31.547 31.432 1.00 47.94 HETATM 3690 O HOH 1271 22.022 54.673 22.853 1.00 37.03 HETATM 3691 O HOH 1271 22.022 54.673 22.853 1.00 37.03 HETATM 3692 O HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3693 O HOH 1276 45.609 -2.697 31.603 1.00 49.62 HETATM 3695 O HOH 1277 9.649 26.708 34.475 1.00 36.02 HETATM 3695 O HOH 1279 21.970 8.818 36.303 1.00 45.69 HETATM 3695 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3699 O HOH 1281 15.342 17.025 12.461 1.00 55.13 HETATM 3699 O HOH 1284 28.862 44.437 3.810 1.00 49.95 HETATM 3699 O HOH 1284 31.862 44.437 3.810 1.00 49.95 HETATM 3699 O HOH 1284 31.862 44.437 3.810 1.00 47.97 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3701 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3703 O HOH 1293 23.058 27.656 32.358 1.00 29.94 HETATM 3703 O HOH 1293 23.058 27.656 39.586 1.00 47.71 HETATM 3700 O HOH 1293 23.058 27.656 32.358 1.00 52.03 HETATM 3700 O HOH 1293 23.058 27.656 32.358 1.00 52.03 HETATM 3700 O HOH 1294 28.377 27.865 52.772 1.00 37.73 HETATM 3700 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3700 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3701 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3701 O HOH 1298 26.196 40.554 47.655 1.00 52.83 HETATM 3701 O HOH 1300 48.664 52.577 HETATM 3701 O HOH 1300 48.665 54.9544 48.41 1.00 47.00 37.93 HETATM 3701 O HOH 1311 0.897 25.934 24.841 1.00 47.00 37.73 HETATM 3700 O HOH 1298 26.196 40.554 47.655 1.00 52.78 HETATM 3701 O HOH 1310 48.767 54.885 33.196 54.115 1.00 34.68 HETATM 3711 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3712 O HOH 1312 41.531 54.883 30.082 1.00 37.93 HETATM 3713 O HOH 1312 41.531 54.883 30.082 1.00 37.93 HETATM 3713 O HOH 1314 0.897 25.934 24.841 1.00 47.80 HETATM 3712 O HOH 1312 41.531 54.883 30.082 1.00 37.93 HETATM 3722 O HO									
HETATM 3688 O HOH 1264 13.550 26.049 31.905 1.00 37.61 HETATM 3689 O HOH 1266 10.689 31.557 31.432 1.00 47.94 HETATM 3699 O HOH 1269 26.086 -7.425 31.507 1.00 39.58 HETATM 3691 O HOH 1271 22.022 54.673 22.853 1.00 47.93 HETATM 3692 O HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3693 O HOH 1276 45.609 -2.697 31.603 1.00 49.62 HETATM 3694 O HOH 1277 9.649 26.708 34.475 1.00 36.02 HETATM 3695 O HOH 1279 21.970 8.818 36.303 1.00 45.69 HETATM 3696 O HOH 1280 7.956 56.039 27.031 1.00 55.13 HETATM 3698 O HOH 1281 15.342 17.025 12.461 1.00 55.13 HETATM 3698 O HOH 1284 12.862 44.437 3.810 1.00 49.95 HETATM 3698 O HOH 1284 12.862 44.437 3.810 1.00 49.95 HETATM 3699 O HOH 1284 12.862 44.437 3.810 1.00 49.95 HETATM 3700 O HOH 1287 41.049 11.857 30.681 1.00 29.94 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.97 HETATM 3700 O HOH 1289 28.546 31.433 28.564 1.00 29.94 HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3706 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3706 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3706 O HOH 1292 23.0910 54.312 27.471 1.00 48.06 HETATM 3706 O HOH 1293 23.058 27.656 32.358 1.00 47.73 HETATM 3706 O HOH 1293 23.058 27.656 32.358 1.00 47.73 HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 52.03 HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1295 22.435 24.151 33.420 1.00 39.38 HETATM 3701 O HOH 1295 17.851 13.033 37.423 1.00 52.78 HETATM 3701 O HOH 1295 22.435 24.151 33.420 1.00 39.38 HETATM 3701 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3701 O HOH 1303 41.624 1.272 27.661 1.00 53.05 1.00 47.80 HETATM 3701 O HOH 1303 41.624 1.272 27.661 1.00 39.38 HETATM 3701 O HOH 1303 41.624 1.272 27.661 1.00 39.38 HETATM 3701 O HOH 1303 41.624 1.272 27.661 1.00 39.38 HETATM 3701 O HOH 1303 41.624 1.272 27.661 1.00 39.38 HETATM 3711 O HOH 1301 48.767 33.196 54.115 1.00 37.73 1.00 37.73 HETATM 3712 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3713 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3713 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HE									
HETATM 3688 O HOH 1264 13.550 26.049 31.905 1.00 33.45 HETATM 3699 O HOH 1269 26.086 -7.425 31.507 1.00 39.58 HETATM 3691 O HOH 1271 22.022 54.673 22.853 1.00 37.03 HETATM 3692 O HOH 1271 22.022 54.673 22.853 1.00 37.03 HETATM 3693 O HOH 1276 45.609 -2.697 31.603 1.00 49.62 HETATM 3694 O HOH 1277 9.649 26.708 34.475 1.00 36.02 HETATM 3695 O HOH 1279 21.970 8.818 36.303 1.00 49.62 HETATM 3695 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3699 O HOH 1281 15.342 17.025 12.461 1.00 55.13 HETATM 3699 O HOH 1284 12.862 44.437 3.810 1.00 49.95 HETATM 3699 O HOH 1286 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.87 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3703 O HOH 1289 28.546 31.433 28.564 1.00 47.15 HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 29.94 HETATM 3703 O HOH 1293 28.546 31.433 28.564 1.00 47.15 HETATM 3703 O HOH 1293 23.058 27.656 32.358 1.00 47.88 HETATM 3705 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3705 O HOH 1293 23.058 27.655 32.358 1.00 47.88 HETATM 3705 O HOH 1293 23.058 27.656 32.358 1.00 47.08 HETATM 3705 O HOH 1293 23.058 27.656 32.358 1.00 47.03 1.43 HETATM 3705 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3705 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3705 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3705 O HOH 1295 17.851 13.033 47.051 1.00 39.38 HETATM 3705 O HOH 1299 26.196 40.554 47.655 1.00 52.03 HETATM 3705 O HOH 1299 26.196 40.554 47.655 1.00 52.78 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.78 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.78 HETATM 3711 O HOH 1300 48.767 36.362 33.090 54.312 27.471 1.00 45.71 HETATM 3712 O HOH 1308 43.375 33.196 54.115 1.00 31.43 HETATM 3713 O HOH 1316 19.469 15.072 46.862 1.00 47.80 HETATM 3713 O HOH 1315 32.370 19.055 31.177 1.00 47.80 HETATM 3714 O HOH 1316 19.469 15.072 46.62 1.00 47.80 HETATM 3715 O HOH 1316 19.469 15.072 46.62 1.00 47.80 HETATM 3712 O HOH 1316 19.469 15.072 46.62 1.00 47.80 HETATM 3712 O HOH 1316 19.469 15.072 46.62 1.00 47.80									
HETATM 3689 O HOH 1266									
HETATM 3690 O HOH 1269 26.086 -7.425 31.507 1.00 39.58 HETATM 3691 O HOH 1271 22.022 54.673 22.853 1.00 37.03 HETATM 3692 O HOH 1276 45.609 -2.697 31.603 1.00 49.62 HETATM 3693 O HOH 1277 90.649 26.708 34.475 1.00 36.02 HETATM 3695 O HOH 1279 21.970 8.818 36.303 1.00 45.69 HETATM 3696 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3697 O HOH 1281 15.342 17.025 12.461 1.00 55.13 HETATM 3698 O HOH 1284 12.862 44.437 3.810 1.00 49.95 HETATM 3699 O HOH 1286 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3703 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3703 O HOH 1293 23.058 27.656 23.358 1.00 45.02 HETATM 3704 O HOH 1293 23.058 27.656 23.358 1.00 45.02 HETATM 3705 O HOH 1293 23.058 27.656 23.358 1.00 45.02 HETATM 3706 O HOH 1299 26.196 40.554 39.548 1.00 37.73 HETATM 3707 O HOH 1299 28.377 27.865 25.772 1.00 37.73 HETATM 3703 O HOH 1299 28.377 27.865 25.772 1.00 37.73 HETATM 3703 O HOH 1299 28.377 27.865 25.772 1.00 37.73 HETATM 3703 O HOH 1299 28.377 27.865 25.772 1.00 37.73 HETATM 3703 O HOH 1299 26.196 40.554 47.655 1.00 45.28 HETATM 3705 O HOH 1299 26.196 40.554 47.655 1.00 52.78 HETATM 3701 O HOH 1298 28.377 27.865 25.772 1.00 37.73 HETATM 3703 O HOH 1299 26.196 40.554 47.655 1.00 52.78 HETATM 3710 O HOH 1298 29.292 20.833 37.420 1.00 52.78 HETATM 3711 O HOH 1300 6.887 28.384 49.108 1.00 52.78 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3713 O HOH 1310 48.767 36.362 53.067 1.00 37.92 HETATM 3713 O HOH 1311 0.887 25.934 4.841 1.00 47.80 HETATM 3713 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3713 O HOH 1310 48.767 36.362 53.067 1.00 37.92 HETATM 3713 O HOH 1311 0.887 25.934 4.841 1.00 47.80 HETATM 3713 O HOH 1312 41.531 54.883 30.062 1.00 37.92 HETATM 3713 O HOH 1316 19.469 15.072 4.881 1.00 37.92 HETATM 3720 O HOH 1312 41.531 54.883 30.062 1.00 37.92 HETATM 3720 O HOH 1312 41.531 54.883 30.062 1.00 37.92 HETATM 3721 O HOH 132									
HETATM 3691 O HOH 1271 22.022 54.673 22.853 1.00 37.03 HETATM 3692 O HOH 1274 28.901 24.308 41.027 1.00 41.39 HETATM 3693 O HOH 1276 45.609 -2.697 31.603 1.00 49.62 HETATM 3695 O HOH 1277 9.649 26.708 34.475 1.00 36.02 HETATM 3695 O HOH 1280 7.956 56.039 27.031 1.00 45.69 HETATM 3696 O HOH 1280 7.956 56.039 27.031 1.00 45.69 HETATM 3697 O HOH 1281 15.342 17.025 12.461 1.00 55.41 HETATM 3699 O HOH 1286 34.675 64.010 47.159 1.00 47.97 HETATM 3699 O HOH 1286 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1287 41.049 11.857 30.681 1.00 29.94 HETATM 3701 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3703 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3704 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3705 O HOH 1293 23.058 27.656 32.358 1.00 45.02 HETATM 3705 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3708 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3708 O HOH 1297 22.435 24.151 33.420 1.00 39.38 HETATM 3701 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.78 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 52.78 HETATM 3712 O HOH 1308 43.375 33.196 54.115 1.00 33.38 HETATM 3713 O HOH 1308 43.375 33.196 54.115 1.00 33.88 HETATM 3713 O HOH 1308 43.375 33.196 54.115 1.00 33.18 HETATM 3715 O HOH 1310 48.767 36.362 53.067 1.00 37.73 HETATM 3715 O HOH 1310 48.767 36.362 53.067 1.00 37.72 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 37.92 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 37.92 HETATM 3719 O HOH 1316 19.469 15.072 45.662 1.00 46.16 HETATM 3713 O HOH 1316 19.469 15.072 45.662 1.00 46.16 HETATM 3713 O HOH 1316 19.469 15.072 45.662 1.00 46.16 HETATM 3713 O HOH 1316 19.469 15.072 45.662 1.00 46.38 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.077 42.203 1.00 39.18 HETATM 3722 O HOH 1316 19.469 15.077 42.203 1.00 43.71 HETATM 3725 O HOH 1322 29.076 56.977 42.203 1.00 43.71 HETATM 3725 O H									
HETATM 3692 O HOH 1276									
HETATM 3693 O HOH 1276									
HETATM 3694 O HOH 1277 9.649 26.708 34.475 1.00 36.02 HETATM 3695 O HOH 1279 21.970 8.818 36.303 1.00 45.69 HETATM 3696 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3697 O HOH 1281 15.342 17.025 12.461 1.00 55.41 HETATM 3698 O HOH 1284 12.862 44.437 3.810 1.00 49.95 HETATM 3699 O HOH 1286 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1287 41.049 11.857 30.681 1.00 29.94 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3702 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3705 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3705 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3705 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3706 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3700 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1306 24.865 48.368 49.108 1.00 53.05 HETATM 3715 O HOH 1309 24.941 16.106 28.105 1.00 37.92 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 37.92 HETATM 3718 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3718 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3718 O HOH 1311 0.897 25.934 4841 1.00 43.71 HETATM 3720 O HOH 1311 0.897 25.934 4841 1.00 43.71 HETATM 3720 O HOH 1311 0.897 25.934 4841 1.00 43.71 HETATM 3720 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3720 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3720 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3725 O HOH 1330 41.316 20.071 29.055 1.00 39.18 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3725 O HOH 1333 40.23 1.9903 45.162 47.256 1.00 50.15 HETATM 3725 O HOH 1333 40.23 1.9903 45.162 47.256 1.00 50.15									
HETATM 3695 O HOH 1279									
HETATM 3696 O HOH 1280 7.956 56.039 27.031 1.00 55.41 HETATM 3698 O HOH 1281 12.862 44.437 3.810 1.00 49.95 HETATM 3698 O HOH 1286 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1287 41.049 11.857 30.681 1.00 29.94 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3702 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3703 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3705 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3705 O HOH 1293 23.058 27.656 32.358 1.00 45.02 HETATM 3706 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1297 22.435 24.151 33.420 1.00 39.38 HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3716 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3716 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3715 O HOH 1311 0.897 25.934 24.841 1.00 37.92 HETATM 3716 O HOH 1311 0.897 25.934 24.841 1.00 37.92 HETATM 3716 O HOH 1311 0.897 25.934 24.841 1.00 37.92 HETATM 3718 O HOH 1311 0.897 25.934 24.841 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 37.92 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1322 29.076 56.977 42.203 1.00 39.18 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 39.86 HETATM 3725 O HOH 1332 19.903 45.162 47.256 1.00 50.15 HETATM 3725 O HOH 1332 19.903 45.162 47.256 1.00 50.15 HETATM 3725 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 19.903 45.162 47.256 1.00 52.33									
HETATM 3697 O HOH 1281 15.342 17.025 12.461 1.00 55.13 HETATM 3698 O HOH 1284 12.862 44.437 3.810 1.00 49.95 HETATM 3699 O HOH 1286 34.675 64.010 47.159 1.00 47.97 HETATM 3700 O HOH 1287 41.049 11.857 30.681 1.00 29.94 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3702 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3704 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3705 O HOH 1293 23.058 27.656 32.358 1.00 45.02 HETATM 3706 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3708 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3713 O HOH 1300 6.687 28.384 34.247 1.00 53.05 HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3716 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1308 43.375 33.196 54.115 1.00 37.72 HETATM 3715 O HOH 1308 43.375 33.196 54.115 1.00 37.92 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3718 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3718 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3718 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1316 19.469 15.072 45.662 1.00 43.71 HETATM 3720 O HOH 1315 32.370 19.055 31.177 1.00 39.11 HETATM 3720 O HOH 1321 10.144 48.737 45.662 1.00 39.86 HETATM 3722 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3722 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 39.86 HETATM 3725 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3725 O HOH 1333 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 40.238 40.238 39.062 1.00 41.11									
HETATM 3698 O HOH 1284 12.862 44.437 3.810 1.00 49.95 HETATM 3699 O HOH 1286 34.675 64.010 47.159 1.00 47.97 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3702 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3704 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3705 O HOH 1293 23.058 27.656 32.358 1.00 45.02 HETATM 3706 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3713 O HOH 1308 43.375 33.196 47.051 1.00 31.45 HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 39.38 HETATM 3715 O HOH 1308 43.375 33.196 54.115 1.00 39.18 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3710 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3718 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3720 O HOH 1321 10.144 48.734 5.731 1.00 39.18 HETATM 3720 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3720 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3720 O HOH 1321 10.144 48.734 5.731 1.00 39.86 HETATM 3721 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3722 O HOH 1322 19.903 45.162 47.256 1.00 50.15 HETATM 3725 O HOH 1332 19.903 45.162 47.256 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3699 O HOH 1286									
HETATM 3700 O HOH 1287 41.049 11.857 30.681 1.00 29.94 HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3702 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3705 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3706 O HOH 1293 23.058 27.656 32.358 1.00 45.02 HETATM 3706 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1297 22.435 24.151 33.420 1.00 39.38 HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1306 6.687 28.384 34.247 1.00 45.71 HETATM 3713 O HOH 1306 24.865 48.368 49.108 1.00 53.05 HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3718 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3718 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3718 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3720 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3720 O HOH 1321 10.144 48.734 5.731 1.00 39.18 HETATM 3720 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3725 O HOH 1332 19.903 45.162 47.256 1.00 59.15 HETATM 3726 O HOH 1331 10.00 41.316 10.00 56.42 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 59.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 59.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 59.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 50.15									
HETATM 3701 O HOH 1288 34.457 19.302 55.855 1.00 47.88 HETATM 3702 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3704 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3705 O HOH 1293 23.058 27.656 32.358 1.00 45.02 HETATM 3706 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1297 22.435 24.151 33.420 1.00 39.38 HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1309 24.865 48.368 49.108 1.00 53.05 HETATM 3715 O HOH 1310 48.767 36.362 28.105 1.00 27.22 HETATM 3718 O HOH 1310 48.767 36.362 28.30 1.00 39.18 HETATM 3718 O HOH 1310 48.767 36.362 28.30 1.00 39.18 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1315 19.469 15.072 45.662 1.00 48.16 HETATM 3720 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3720 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 48.16 HETATM 3723 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3702 O HOH 1289 28.546 31.433 28.564 1.00 47.71 HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3704 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3705 O HOH 1293 23.058 27.656 32.358 1.00 45.02 HETATM 3706 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1297 22.435 24.151 33.420 1.00 39.38 HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.78 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3718 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3719 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3720 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3720 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3720 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3720 O HOH 1312 41.531 54.883 30.082 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1332 49.272 8.091 54.610 1.00 56.42 HETATM 3726 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3703 O HOH 1291 33.220 60.645 39.548 1.00 52.03 HETATM 3704 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3705 O HOH 1293 23.058 27.656 32.358 1.00 45.02 HETATM 3706 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1297 22.435 24.151 33.420 1.00 39.38 HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3711 O HOH 1300 46.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1306 24.865 48.368 49.108 1.00 53.05 HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1308 43.375 33.196 54.115 1.00 39.18 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3718 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3718 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3719 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1322 29.076 56.977 42.203 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 39.11 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 52.33 HETATM 3726 O HOH 1331 19.903 45.162 47.256 1.00 52.33 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33									
HETATM 3704 O HOH 1292 30.910 54.312 27.471 1.00 48.06 HETATM 3705 O HOH 1293 23.058 27.656 32.358 1.00 45.02 HETATM 3706 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1297 22.435 24.151 33.420 1.00 39.38 HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1306 24.865 48.368 49.108 1.00 53.05 HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1309 24.941 16.106 28.105 1.00 27.22 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3719 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3705 O HOH 1293 23.058 27.656 32.358 1.00 45.02 HETATM 3706 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1297 22.435 24.151 33.420 1.00 39.38 HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1306 24.865 48.368 49.108 1.00 53.05 HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1309 24.941 16.106 28.105 1.00 27.22 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3725 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3706 O HOH 1294 28.377 27.865 25.772 1.00 37.73 HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1297 22.435 24.151 33.420 1.00 39.38 HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1306 24.865 48.368 49.108 1.00 53.05 HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1309 24.941 16.106 28.105 1.00 27.22 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3720 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3724 O HOH 1320 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33									
HETATM 3707 O HOH 1295 17.851 13.033 47.051 1.00 31.43 HETATM 3708 O HOH 1297 22.435 24.151 33.420 1.00 39.38 HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1306 24.865 48.368 49.108 1.00 53.05 HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1309 24.941 16.106 28.105 1.00 27.22 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3720 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3725 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 50.15									
HETATM 3708 O HOH 1297									
HETATM 3709 O HOH 1298 29.292 20.833 37.423 1.00 52.78 HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1309 24.941 16.106 28.105 1.00 27.22 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3725 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33									
HETATM 3710 O HOH 1299 26.196 40.554 47.655 1.00 52.83 HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1306 24.865 48.368 49.108 1.00 53.05 HETATM 3714 O HOH 1309 24.941 16.106 28.105 1.00 27.22 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33									
HETATM 3711 O HOH 1300 6.687 28.384 34.247 1.00 45.71 HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1306 24.865 48.368 49.108 1.00 53.05 HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33									
HETATM 3712 O HOH 1303 41.624 1.272 27.661 1.00 61.55 HETATM 3713 O HOH 1306 24.865 48.368 49.108 1.00 53.05 HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1310 48.767 36.362 53.067 1.00 27.22 HETATM 3716 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3725 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1332 19.903 45.162 47.256 1.00 52.33									
HETATM 3713 O HOH 1306									
HETATM 3714 O HOH 1308 43.375 33.196 54.115 1.00 34.68 HETATM 3715 O HOH 1309 24.941 16.106 28.105 1.00 27.22 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3715 O HOH 1309 24.941 16.106 28.105 1.00 27.22 HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3725 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3716 O HOH 1310 48.767 36.362 53.067 1.00 39.18 HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3717 O HOH 1311 0.897 25.934 24.841 1.00 47.80 HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3718 O HOH 1312 41.531 54.883 30.082 1.00 37.92 HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3719 O HOH 1315 32.370 19.055 31.177 1.00 43.71 HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3720 O HOH 1316 19.469 15.072 45.662 1.00 48.16 HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3721 O HOH 1321 10.144 48.734 5.731 1.00 39.11 HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3722 O HOH 1322 29.076 56.977 42.203 1.00 46.38 HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3723 O HOH 1326 42.727 8.091 54.610 1.00 56.42 HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3724 O HOH 1330 41.316 20.071 29.052 1.00 39.86 HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3725 O HOH 1331 16.596 27.837 34.825 1.00 50.15 HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3726 O HOH 1332 19.903 45.162 47.256 1.00 52.33 HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3727 O HOH 1333 40.238 -8.133 39.062 1.00 41.11									
HETATM 3728 O HOH 1335 32.007 37.168 46.170 1.00 43.84									
	HETATM 3728	O H	он 133	5 32	.007 37	.168 4	6.170	1.00	43.84

Figure 8-73

HETATM	3729	0	HOH	1337	8.866	32.982	29.638	1.00 51.57	
HETATM		0	HOH	1339	35.650	46.023	29.211	1.00 40.99	
HETATM		0	HOH	1340	52.825	32.335	38.756	1.00 50.57	
HETATM		0	HOH	1341	36.938	51.807	31.314	1.00 45.30	
HETATM		0	HOH	1342	18.790	42.705	33.580	1.00 43.47	
HETATM		Ō	HOH	1344	22.819	36.661	11.619	1.00 46.70	
HETATM		0	HOH	1345	19.465	28.669	34.714	1.00 39.89	
HETATM		0	HOH	1347	40.179	23.790	53.530	1.00 47.43	
HETATM		0	HOH	1353	3.487	36.484	13.806	1.00 40.41	
HETATM		0	HOH	1360	31.223	4.884	34.089	1.00 30.96	
HETATM		Ō	нон	1361	19.647	3.819	14.444	1.00 26.16	
HETATM		ŏ	НОН	1364	12.171	-3.712	34.829	1.00 52.07	
HETATM		Ö	нон	1366	14.715	10.503	15.414	1.00 47.98	
HETATM		Ö	нон	1370	3.284	18.073	30.684	1.00 39.22	
HETATM		Ö	нон	1371	16.114	12.267	13.222	1.00 41.79	
HETATM		ŏ	HOH	1374	26.710 .		28.570	1.00 46.72	
HETATM		Ö	нон	1376	13.842	2.095	17.391	1.00 51.23	
HETATM		ŏ	нон	1377	23.624	18.176	26.993	1.00 46.55	
HETATM		Ö	нон	1378	17.679	9.897	14.906	1.00 29.42	
HETATM		Õ	нон	1380	21.173	-2.881	15.825	1.00 44.25	
HETATM		Ö	нон	1381	25.990	6.184	14.411	1.00 40.98	
HETATM		Ö	нон	1382	25.475	8.938	15.031	1.00 40.93	
HETATM		Ö	нон	1384	27.045	17.549	12.911	1.00 44.46	
HETATM		ŏ	нон	1387	15.174	-5.506	13.111	1.00 43.09	
HETATM		Ö	нон	1388	3.093	25.580	28.841	1.00 47.33	
HETATM		ŏ	нон	1389	43.833	14.822	32.665	1.00 30.09	
HETATM		Ö	нон	1390	27.283	3.257	16.277	1.00 28.50	
HETATM		ō	HOH	1391	31.590	8.583	17.790	1.00 31.43	
HETATM		ō	нон	1392	28.183	8.699	15.618	1.00 37.69	
HETATM		Ō	HOH	1393	24.599	3.854	15.072	1.00 40.30	
HETATM		Ō	HOH	1404	39.148	30.436	32.035	1.00 17.64	
HETATM		0	HOH	1405	0.837	22.245	22.324	1.00 55.83	
HETATM		0	HOH	1406	29.799	34.134	27.910	1.00 28.75	
HETATM		0	HOH	1407	18.445	6.222	44.059	1.00 53.71	
HETATM		0	HOH	1409	30.392	39.323	25.039	1.00 34.89	
HETATM		0	HOH	1410	18.490	9.793	47.086	1.00 48.51	
HETATM	3765	0	HOH	1411	13.220	32.748	8.629	1.00 49.26	
HETATM		0	HOH	1412	49.361	20.100	32.438	1.00 43.65	
HETATM		0	HOH	1414	51.855	33.864	41.242	1.00 64.26	
HETATM		0	HOH	1418	47.727	41.100	41.717	1.00 35.47	
HETATM		0	HOH	1419	24.466	54.548	43.747	1.00 53.28	
METATM		0	HOH	1420	5.934	30.983	8.318	1.00 45.39	
HETATM	3771	0	HOH	1421	32.399	-4.433	42.259	1.00 41.31	
HETATM		0	HOH	1422	3.024	40.996	27.927	1.00 42.40	
HETATM	3773	0	HOH	1424	36.321	-0.489	35.913	1.00 41.12	
HETATM	3774	0	HOH	1428	16.200	42.165	4.789	1.00 62.98	
HETATM	3775	0	HOH	1429	4.930	40.213	24.269	1.00 53.41	
HETATM	3776	0	HOH	1430	7.506	9.248	13.243	1.00 51.74	
HETATM	3777	0	HOH	1434	16.093	51.978	11.936	1.00 39.24	
HETATM	3778	0	HOH	1437	32.063	21.866	31.547	1.00 49.87	
HETATM	3779	0	HOH	1438	54.621	26.247	29.147	1.00 48.62	
HETATM	3780	0	HOH	1440	4.318	19.369	8.919	1.00 47.53	
HETATM	3781	0	HOH	1441	5.136	2.358	29.831	1.00 44.25	
HETATM	3782	0	HOH	1443	2.076	24.174	15.211	1.00 53.91	
METATM		0	HOH	1444	15.474	42.729	30.690	1.00 38.63	
HETATM		0	HOH	1446	34.955	9.442	53.656	1.00 51.40	
METATM		0	HOH	1447	28.597	17.387	31.041	1.00 40.53	
HETATM		0	HOH	1454	34.884	-9.534	12.912	1.00 33.84	
HETATM		0	HOH	1455	56.971	31.610	49.136	1.00 44.36	
HETATM	3788	0	HOH	1456	29.676	11.548	53.175	1.00 41.64	

Figure 8-74

22.556

50.467

24.604

25.441 39.709

34.731

44.323

30.194

12.185

46.713 47.217 35.996 1.00 51.75

12.871

32.228

26.249

45.236

19.993

16.482

36.529

28.355

28.523

45.229

2.224 34.335 1.00 56.22

42.425 48.375 34.242 1.00 50.42

5.349

1.00 35.99

1.00 55.24

1.00 44.57

1.00 46.40

1.00 53.27

1.00 43.72

1.00 61.41

1.00 33.89 1.00 30.44

1.00 37.21

1.00 37.81

1.00 44.08

1.00 40.11

3.172

42.572 42.347 52.583

0.573 13.064 16.484

6.260

-9.866

49.608

-9.399

28.232

37.583

-0.768

6.167 47.337

22.806 17.220

9.926 24.411

0

HETATM	3789	0	нон	1457
HETATM	3790	0	HOH	1458
HETATM	3791	0	HOH	1459
HETATM	3792	0	HOH	1461
HETATM	3793	0	HOH	1462
HETATM	3794	0	HOH	1463
HETATM	3795	0	HOH	1464
HETATM	3796	0	HOH	1466
HETATM	3797	0	HOH	1506
HETATM	3798	0	НОН	1507
HETATM	3799	0	НОН	1509
HETATM	3800	0	нон	1515
HETATM	3801	0	HOH	1518 1519
HETATM	3802	0	HOH HOH	1519
HETATM	3803 3804	0	HOH	1523
HETATM	109	108	110	119
CONECT	119	109	120	
CONECT	120	119	121	123
CONECT	121	120	122	127
CONECT	122	121		
CONECT	123	120	124	
CONECT	124	123	125	
CONECT	125	124	126	
CONECT	126	125		
CONECT	127	121	128	
CONECT	187	186	188	189
CONECT	189	187	190 191	193
CONECT CONECT	190 191	189 190	192	197
CONECT	191	191	132	137
CONECT	193	190	194	
CONECT	194	193	195	
CONECT	195	194	196	
CONECT	196	195		
CONECT	197	191	198	
CONECT	248	247	905	
CONECT	279	278	280	286
CONECT	286	279	287	290
CONECT	287	286 287	288 289	294
CONECT	288 289	288	203	234
CONECT	290	287	291	
CONECT	291	290	292	
CONECT	292	291	293	
CONECT	293	292		
CONECT	294	288	295	
CONECT	905	248	904	
CONECT	1038	1037	1039	1048
CONECT	1048	1038	1049	
CONECT	1049	1048	1050	1052
CONECT	1050	1049	1051	1056
CONECT	1051	1050	1057	
CONECT		1049 1052	1053 1054	
CONECT		1052	1054	
CONECT		1054	1000	
CONECT		1050	1057	
CONECT		1115		1118
CONECT		1116		
		-		

```
CONECT 1119 1118 1120 1122
CONECT 1120 1119 1121 1126
CONECT 1121 1120
CONECT 1122 1119 1123
CONECT 1123 1122 1124
CONECT 1124 1123 1125
CONECT 1125 1124
CONECT 1126 1120 1127
CONECT 1177 1176 1874
CONECT 1208 1207 1209 1215
CONECT 1215 1208 1216
CONECT 1216 1215 1217 1219
CONECT 1217 1216 1218 1223
CONECT 1218 1217
CONECT 1219 1216 1220
CONECT 1220 1219 1221
CONECT 1221 1220 1222
CONECT 1222 1221
CONECT 1223 1217 1224
CONECT 1874 1177 1873
CONECT 1987 1986 1988 1997
CONECT 1997 1987 1998
CONECT 1998 1997 1999 2001
CONECT 1999 1998 2000 2005
CONECT 2000 1999
CONECT 2001 1998 2002
CONECT 2002 2001 2003
CONECT 2003 2002 2004
CONECT 2004 2003
CONECT 2005 1999 2006
CONECT 2065 2064 2066 2067
CONECT 2067 2065 2068
CONECT 2068 2067 2069 2071
CONECT 2069 2068 2070 2075
CONECT 2070 2069
CONECT 2071 2068 2072
CONECT 2072 2071 2073
CONECT 2073 2072 2074
CONECT 2074 2073
CONECT 2075 2069 2076
CONECT 2154 2153 2155 2161
CONECT 2161 2154 2162
CONECT 2162 2161 2163 2165
CONECT 2163 2162 2164 2169
CONECT 2164 2163
CONECT 2165 2162 2166
CONECT 2166 2165 2167
CONECT 2167 2166 2168
CONECT 2168 2167
CONECT 2169 2163 2170
CONECT 2813 2812 2814 2823
CONECT 2823 2813 2824
CONECT 2824 2823 2825 2827
CONECT 2825 2824 2826 2831
CONECT 2826 2825
CONECT 2827 2824 2828
CONECT 2828 2827 2829
CONECT 2829 2828 2830
CONECT 2830 2829
CONECT 2831 2825 2832
```

```
CONECT 2891 2890 2892 2893
CONECT 2893 2891 2894
CONECT 2894 2893 2895 2897
CONECT 2895 2894 2896 2901
CONECT 2896 2895
CONECT 2897 2894 2898
CONECT 2898 2897 2899
CONECT 2899 2898 2900
CONECT 2900 2899
CONECT 2901 2895 2902
CONECT 2983 2982 2984 2990
CONECT 2990 2983 2991
CONECT 2991 2990 2992 2994
CONECT 2992 2991 2993 2998
CONECT 2993 2992
CONECT 2994 2991 2995
CONECT 2995 2994 2996
CONECT 2996 2995 2997
CONECT 2997 2996
CONECT 2998 2992 2999
CONECT 3522 3541 3542
CONECT 3524 3544 3545 3546
CONECT 3525 3526
CONECT 3526 3525 3527
CONECT 3527 3526 3528
CONECT 3528 3527 3530
CONECT 3529 3530 3531
CONECT 3530 3528 3529
CONECT 3531 3529 3533
CONECT 3532 3533 3534
CONECT 3533 3531 3532
CONECT 3534 3532 3536
CONECT 3535 3536 3537
CONECT 3536 3534 3535
CONECT 3537 3535 3539
CONECT 3538 3539 3540
CONECT 3539 3537
CONECT 3540 3538
CONECT 3541 3522
CONECT 3542 3522
CONECT 3544 3524
CONECT 3545 3524
CONECT 3546 3524
MASTER
                301
                               16
                                      19
                                              8
                                                     0
                                                            0
                                                                  27 3796
                                                                                 4 147
                                                                                             84
END
```

Figure 9

submitted: HETATM 4233 HETATM 4234 HETATM 4236 HETATM 4238 HETATM 4239 HETATM 4240	00000	НОН НОН НОН НОН НОН	1021 1021 1022 1023 1023 1023	36.890 35.049 31.347 44.819 47.508 48.695	32.430 30.934 42.865 10.251 7.695 9.256	27.721 29.322 52.839 32.056 33.365 30.957	1.00	24.58 27.97 31.45 31.08 35.15 29.22
to this: HETATM 4233 HETATM 4234 HETATM 4236 HETATM 4238 HETATM 4239 HETATM 4240	000000	HOH HOH HOH HOH HOH	1021 1022 1023 1024 1025 1026	36.890 35.049 31.347 44.819 47.508 48.695	32.430 30.934 42.865 10.251 7.695 9.256	27.721 29.322 52.839 32.056 33.365 30.957	1.00 1.00 1.00 1.00 1.00	27.97 31.45
The LINKs as LINK LINK LINK LINK LINK LINK LINK	CA CA CA CA CA	CA CA CA CA	1021 1021 1023 1023 1023		00000	HOH 102 HOH 102 HOH 102 HOH 102	25 27 28	

Figure 10

A. General model

B. Embodiment of the ligand head as an oligopeptide

$$F_1$$
 - X_n - $F_L(\mbox{\sc Cys})$ - X_m - F_2 - X_p - F_3

DECLARATION AND POWER OF ATTORNEY

As a below-named inventor. I hereby declare that:

My residence, post office address, and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

the specification of we icheck one)	hich:				
	<u> </u>	is attached her	eto.		
	<u> </u>	was filed on	June 29, 2000		as
	Applica	nion Serial No		 	
	and wa	s amended	·		
	•			(ıf appı	icable)
Including the claims. I acknowledge the dut to be material to pate I hereby claim foreign 365(b) of any foreign liternational Application I have also to	as amende y to disclosentability a n priority be gn application which dentified be	ed by any amend se to the U.S. Po is defined in Tit. inents under Titl ion(s) for paten h designated a lelow any foreign	stand the contents of the diment referred to above the diment and Trademark Of the 37. Code of Federal Let 35. United States Code to rinventor's certificated the states one country other application for patente fore that of the earlies	ffice all informa Regulations, Se de, Section 119 tie, or Section 2 ter than the Unit or inventor's d	anon known to me ction 1.56. (a)-(d) or Section 1.65(a) of any PCT instead States, listed ternificate, or PCT
Prior Foreign Applic	canon(s)			Priority	v Claimed
<u>Number</u>	<u>Co</u>	<u>untrv</u>	Filing Date	<u>Yes</u>	<u>No</u>
N/A					

-				******	

Declaration and Power of Attorne	Page 2	
hereby claim the benefit under rovisional application(s) listed b		ection 119(e) of any United Sta
Provisional Application No.	Filing Date	<u>Status</u>
N/A		
n any such prior Application in t Tode, Section 112, I acknowledge t Il information known to me to b egulations, Section 1.56, which be	tion discloses and claims subject the manner provided by the first point the manner provided by the first point duty to disclose to the United Some material to patentability as decame available between the filing conal filing date of this application filing Date	aragraph of Title 35. United Sto States Patent and Trademark Off fined in Title 37, Code of Fede date(s) of such prior Application
N/A		

And I hereby appoint

John P. White (Reg. No. 28,678); Christopher C. Dunham (Reg. No. 22,031); Norman H. Zivin (Reg. No. 25,385); Jay H. Maioli (Reg. No. 27,213); William E. Pelton (Reg. No. 25,702); Robert D. Katz (Reg. No. 30,141); Peter J. Phillips (Reg. No. 29,691); Wendy E. Miller (Reg. No. 35,615); Richard S. Milner (Reg. No. 33,970); Robert T. Maldonado (Reg. 38,232); Paul Teng (40,837); Richard F. Jaworski (Reg. No. 33,515); Elizabeth M. Wieckowski (Reg. No. 42,226); Pedro C. Fernandez (Reg. No. 41,741); Gary J. Gershik (Reg. No. 39,992); Jane M. Love (Reg. No. 42,812); Spencer H. Schneider (Reg. No. 45,923) and Raymond A. Diperna (Reg. No. 44,063).

and each of them, all c/o Cooper & Dunham LLP. 1185 Avenue of the Americas, New York, New York 10036, my attorneys, each with full power of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to receive the patent, to transact all business in the Patent and Trademark Office connected therewith and to file any International Applications which are based thereon under the provisions of the Patent Cooperation Treaty.

Please address all communications.	and direct all	selephone calls	recarding this	application to
Please aggress all communications.	unu ulrect all	telephone cuits,	regulating inis	upplication to

John P. White, Esq.	Reg. No. 28,678	
Cooper & Dunham LLP		
1185 Avenue of the Americas		
New York, New York 10036		
Tel. (212) 278-0400		

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon

Full name of sole or	Marma A Handricks	on
hrst joint inventor	wayne A. Hendrick	
Inventor's signature_		
Citizenship		Date of signature
Residence		
Posi Office Address		
Full name of joint		
inventor (if any)	Xuliang Jiang	
Inventor's signature_		
Citizenship		Daie of signature
Residence		
Post Office Address_		
Full name of joint inventor (if any)	Keith E. Langley	
Inventor's signature_		
Citizenship		Date of signature
Residence		
Post Office Address_		

Declaration and Power	Page 4	
Full name of joint inventor (if any)	Rashid Syed	
Inventor's signature		
Citizenship	Date of signature	
Residence		
Post Office Address		
Full name of joint inventor (if any)	Yueh-Rong Ann Hsu	
Inventor's signature		
Citizenship	Date of signature	
Residence		
Post Office Address		
_		
Full name of joint inventor (if any)		
Inventor's signature		
Citizenship	Date of signature	
Residence		
Post Office Address		

SEQUENCE LISTING

- <110> Hendrickson, Wayne A Jiang, Xuliang Langley, Keith E Syed, Rashid Hsu, Yueh-Rong Ann
- <120> CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR
- <130> 50950/JPW/EMW
- <140> NOT YET KNOWN
- <141> 2000-06-29
- <160> 10
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 141
- <212> PRT
- <213> human
- <400> 1
- Glu Gly Ile Cys Arg Asn Arg Val Thr Asn Asn Val Lys Asp Val Thr 1 5 10 15
- Lys Leu Val Ala Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr
 20 25 30
- Val Pro Gly Met Asp Val Leu Pro Ser His Gln Trp Ile Ser Glu Met 35 40 45
- Val Val Gln Leu Ser Asp Ser Leu Thr Asp Leu Leu Asp Lys Phe Ser 50 55 60
- Asn Ile Ser Glu Gly Leu Ser Asn Tyr Ser Ile Ile Asp Lys Leu Val 65 70 . 75 80
- Asn Ile Val Asp Asp Leu Val Glu Cys Val Lys Glu Asn Ser Ser Lys 85 90 95
- Asp Leu Lys Lys Ser Phe Lys Ser Pro Glu Pro Arg Leu Phe Thr Pro 100 105 110

Glu Glu Phe Phe Arg Ile Phe Asn Arg Ser Ile Asp Ala Phe Lys Asp 115 120 125

Phe Val Val Ala Ser Glu Thr Ser Asp Cys Val Val Ser 130 135 140

<210> 2

<211> 150

<212> PRT

<213> human

<400> 2

Glu Glu Val Ser Glu Tyr Cys Ser His Met Ile Gly Ser Gly His Leu
1 5 10 15

Gln Ser Leu Gln Arg Leu Ile Asp Ser Gln Met Glu Thr Ser Cys Gln
20 25 30

Ile Thr Phe Glu Phe Val Asp Gln Glu Gln Leu Lys Asp Pro Val Cys
35 40 45

Tyr Leu Lys Lys Ala Phe Leu Leu Val Gln Asp Ile Met Glu Asp Thr 50 55 60

Met Arg Phe Arg Asp Asn Thr Pro Asn Ala Ile Ala Ile Val Gln Leu 65 70 75 80

Gln Glu Leu Ser Leu Arg Leu Lys Ser Cys Phe Thr Lys Asp Tyr Glu 85 90 95

Glu His Asp Lys Ala Cys Val Arg Thr Phe Tyr Glu Thr Pro Leu Gln
100 105 110

Leu Leu Glu Lys Val Lys Asn Val Phe Asn Glu Thr Lys Asn Leu Leu 115 120 125

Asp Lys Asp Trp Asn Ile Phe Ser Lys Asn Cys Asn Asn Ser Phe Ala 130 135 140

Glu Cys Ser Ser Gln Gly 145 150

<210> 3

<211> 129

<212> PRT

<213> human

<400> 3

His Lys Cys Asp Ile Thr Leu Gln Glu Ile Ile Lys Thr Leu Asn Ser 1 5 10 15

Leu Thr Glu Gln Lys Thr Leu Cys Thr Glu Leu Thr Val Thr Asp Ile 20 25 30

Phe Ala Ala Ser Lys Asn Thr Thr Glu Lys Glu Thr Phe Cys Arg Ala 35 40 45

Ala Thr Val Leu Arg Gln Phe Tyr Ser His His Glu Lys Asp Thr Arg 50 55 60

Cys Leu Gly Ala Thr Ala Gln Gln Phe His Arg His Lys Gln Leu Ile 65 70 75 80

Arg Phe Leu Lys Arg Leu Asp Arg Asn Leu Trp Gly Leu Ala Gly Leu 85 90 95

Asn Ser Cys Pro Val Lys Glu Ala Asn Gln Ser Thr Leu Glu Asn Phe 100 105 110

Leu Glu Arg Leu Lys Thr Ile Met Arg Glu Lys Tyr Ser Lys Cys Ser 115 120 125

Ser

<210> 4

<211> 127

<212> PRT

<213> human

<400> 4

Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His Val 1 5 10 15

Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp Thr 20 25 30

Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe Asp 35 40 45

Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys Gln 50 55 60

Gly Leu Arg Gly Ser Leu Thr Lys Ile Lys Gly Pro Leu Thr Met Met 65 70 75 80

Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser Cys 85 90 95

Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys Asp 100 105 110

Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu 115 120 125

<210> 5

<211> 132

<212> PRT

<213> human

<400> 5

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His 1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys
20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Tyr Met Pro Lys Lys 35 40 45

Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys Pro
50 55 60

Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu Arg 65 70 75 80

Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu Lys 85 90 95

Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala Thr 100 105 110

Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Cys Gln Ser Ile Ile 115 120 125

Ser Thr Leu Thr 130

<210> 6

```
<211> 115
<212> PRT
<213> human
<400> 6
Ile Pro Thr Glu Ile Pro Thr Ser Ala Leu Val Lys Glu Thr Leu Ala
Leu Leu Ser Thr His Arg Thr Leu Leu Ile Ala Asn Glu Thr Leu Arg
                                 25
Ile Pro Val Pro Val His Lys Asn His Gln Leu Cys Thr Glu Glu Ile
                                                  45
                              40
         35
Phe Gln Gly Ile Gly Thr Leu Glu Ser Gln Thr Val Gln Gly Gly Thr
                                              60
                          55
     50
Val Glu Arg Leu Phe Lys Asn Leu Ser Leu Ile Lys Lys Tyr Ile Asp
                                          75
                      70
 65
Gly Gln Lys Lys Lys Cys Gly Glu Glu Arg Arg Arg Val Asn Gln Phe
                                      90
                  85
Leu Asp Tyr Leu Gln Glu Phe Leu Gly Val Met Asn Thr Glu Trp Ile
                                 105
             100
Ile Glu Ser
        115
<210> 7
 <211> 164
 <212> PRT
 <213> human
 <400> 7
 Glu Gly Ile Cys Arg Asn Arg Val Thr Asn Asn Val Lys Asp Val Thr
                                                           15
                   5
                                       10
 Lys Leu Val Ala Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr
                                   25
              20
 Val Pro Gly Met Asp Val Leu Pro Ser His Cys Trp Ile Ser Glu Met
```

40

55

Val Val Gln Leu Ser Asp Ser Leu Thr Asp Leu Leu Asp Lys Phe Ser

60

35

Asn Ile Ser Glu Gly Leu Ser Asn Tyr Ser Ile Ile Asp Lys Leu Val 65 70 75 80

Asn Ile Val Asp Asp Leu Val Glu Cys Val Lys Glu Asn Ser Ser Lys 85 90 95

Asp Leu Lys Lys Ser Phe Lys Ser Pro Glu Pro Arg Leu Phe Thr Pro 100 105 110

Glu Glu Phe Phe Arg Ile Phe Asn Arg Ser Ile Asp Ala Phe Lys Asp 115 120 125

Phe Val Val Ala Ser Glu Thr Ser Asp Cys Val Val Ser Ser Thr Leu 130 135 140

Ser Pro Glu Lys Asp Ser Arg Val Ser Val Thr Lys Pro Phe Met Leu 145 150 155 160

Pro Pro Val Ala

<210> 8

<211> 164

<212> PRT

<213> MOUSE

<400> 8

Lys Glu Ile Cys Gly Asn Pro Val Thr Asp Asn Val Lys Asp Ile Thr

Lys Leu Val Ala Asn Leu Pro Asn Asp Tyr Met Ile Thr Leu Asn Tyr 20 25 30

Val Ala Gly Met Asp Val Leu Pro Ser His Cys Trp Leu Arg Asp Met 35 40 45

Val Ile Gln Leu Ser Leu Ser Leu Thr Thr Leu Leu Asp Lys Phe Ser 50 55

Asn Ile Ser Glu Gly Leu Ser Asn Tyr Ser Ile Ile Asp Lys Leu Gly 65 70 75

Lys Ile Val Asp Asp Leu Val Leu Cys Met Glu Glu Asn Ala Pro Lys 85 90 95

Asn Ile Lys Glu Ser Pro Lys Arg Pro Glu Thr Arg Ser Phe Thr Pro 100 105 110 Glu Glu Phe Phe Ser Ile Phe Asn Arg Ser Ile Asp Ala Phe Lys Asp 115 120 125

Phe Met Val Ala Ser Asp Thr Ser Asp Cys Val Leu Ser Ser Thr Leu 130 135 140

Ser Pro Glu Lys Asp Ser Arg Val Ser Val Thr Lys Pro Phe Met Leu 145 150 155 160

Pro Pro Val Ala

<210> 9

<211> 164

<212> PRT

<213> rat

<400> 9

Gln Glu Ile Cys Arg Asn Pro Val Thr Asp Asn Val Lys Asp Ile Thr 1 5 10 15

Lys Leu Val Ala Asn Leu Pro Asn Asp Tyr Met Ile Thr Leu Asn Tyr 20 25 30

Val Ala Gly Met Asp Val Leu Pro Ser His Cys Trp Leu Arg Asp Met 35 40 45

Val Thr His Leu Ser Val Ser Leu Thr Thr Leu Leu Asp Lys Phe Ser 50 55 60

Asn Ile Ser Glu Gly Leu Ser Asn Tyr Ser Ile Ile Asp Lys Leu Gly 65 70 75 80

Lys Ile Val Asp Asp Leu Val Ala Cys Met Glu Glu Asn Ala Pro Lys 85 90 95

Asn Val Lys Glu Ser Leu Lys Lys Pro Glu Thr Arg Asn Phe Thr Pro 100 105 110

Glu Glu Phe Phe Ser Ile Phe Asn Arg Ser Ile Asp Ala Phe Lys Asp 115 120 125

Phe Met Val Ala Ser Asp Thr Ser Asp Cys Val Leu Ser Ser Thr Leu 130 135 140

Ser Pro Glu Lys Asp Ser Arg Val Ser Val Thr Lys Pro Phe Met Leu

Pro Pro Val Ala

<210> 10

<211> 165

<212> PRT

<213> DOG

<400> 10

Lys Gly Ile Cys Gly Lys Arg Val Thr Asp Asn Val Lys Asp Val Thr 1 5 10 15

Lys Leu Val Ala Asn Leu Pro Lys Asp Tyr Lys Ile Ala Leu Lys Tyr 20 25 30

Val Pro Gly Met Asp Val Leu Pro Ser His Cys Trp Ile Ser Val Met
35 40 45

Val Glu Gln Leu Ser Val Ser Leu Thr Asp Leu Leu Asp Lys Phe Ser 50 55 60

Asn Ile Ser Glu Gly Leu Ser Asn Tyr Ser Ile Ile Asp Lys Leu Val 65 70 75 80

Lys Ile Val Asp Asp Leu Val Glu Cys Thr Glu Gly Tyr Ser Phe Glu 85 90 95

Asn Val Lys Lys Ala Pro Lys Ser Pro Glu Leu Arg Leu Phe Thr Pro 100 105 110

Glu Glu Phe Phe Arg Ile Phe Asn Arg Ser Ile Asp Ala Phe Lys Asp

Phe Glu Thr Val Ala Ser Lys Ser Ser Glu Cys Val Val Ser Ser Thr 130 135 140

Leu Ser Pro Asp Lys Asp Ser Arg Val Ser Val Thr Lys Pro Phe Met 145 150 155 160

Leu Pro Pro Val Ala