

AL/EQ-TR-1993-0002 EPA/600/R-94/214b

AD-A286 808

DEMONSTRATION OF SPLIT-FLOW VENTILATION AND RECIRCULATION AS FLOW-REDUCTION METHODS IN AN AIR FORCE PAINT SPRAY BOOTH

Volume 2.

S. Hughes, J. Ayer, R. Sutay

ARMSTRONG LABORATORY ENVIRONICS DIRECTORATE AL/EQS-OL 139 Barnes Drive, Suite 2 Tyndall AFB FL 32403-5323

Acurex Environmental Corporation
555 Clyde Avenue
P.O. Box 7044
Mountain View, CA 94039

US EPA/AEERL
MD-61
Research Triangle Park NC 27711

July 1994

Final Technical Report for Period February 1991 - October 1992

Approved for public release; distribution unlimited.

95-01376

AIR FORCE MATERIEL COMMAND TYNDALL AIR FORCE BASE, FLORIDA 32403-532<u>3</u>

95 510 001

LABORATORY

RMSTRONG

NOTICES

This report was prepared as an a account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any employees, nor any of their contractors, subcontractors, or their employees, make any warranty. express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor, or subcontractor thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor, or subcontractor thereof.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation, or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed by the Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS), where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

JOSEPH D. WANDER, PhD

Technical Area Manager, Air Pollution Control Technology Chief Scientist, Environics Directorate

EDWARD N. COPPOLA, Maj., USAF

Chief, Environmental Compliance Division

MICHAEL G. KATONA, PhD

michael & Katona

heil J. Lamb. NEIL J. LAMB, Col, USAF, BSC Director, Environics Directorate

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the rists needed, and completing and reviewing the collection of information. Send commission regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Atlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED 940727 Final, 910215 to 921009 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Demonstration of Split-flow Ventilation and Recirculation as Contract 68-D2-0063 Flow-reduction Methods in an Air Force Paint Spray Booth Work Assignment 0/002 Valum C Program element 63723F 6. AUTHOR(S) Project 2103 S. Hughes and J. Ayer; R. Sutay, CIH (Section VI) Task 70 Work unit accession 97 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING ORGANIZATION REPORT NUMBER Acurex Environmental Corporation 555 Clyde Avenue FR-93-115 P.O. Box 7044 Mountain View, CA 94039 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER U.S. EPA Armstrong Laboratory AEERL **Environics Directorate** AL/EQ-TR-1993-0002 MD-61 AL/EQS-OL Research Triangle Park, NC 27711 139 Barnes Drive, Suite 2 EPA/600/R-94/214b Tyndail AFB, FL 32403-5323 11. SUPPLEMENTARY NOTES 1. Responsible individual: Joseph D. Wander, (904) 283-6240 2. Office symbol: AL/EQS-OL 3. Availability of report is specified on inside front cover. 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Max'mum 200 words) During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and inside and outside the respirator in the painter's breathing zone (BZ). The resulting data were analyzed and used to design a modified ventilation system that (1) separates a portion of the exhaust exiting the lower portion of the booth, which contains a concentration of toxic pollutants greater than the average at the exhaust plane (split-flow); and (2) provides an option to return the flow from the upper portion of the exhaust to the intake plenum for mixing with fresh air and recirculation through the booth After critical review by cognizant Air Force offices, and an experimental demonstration showing that a flame ionization detector monitoring the air entering the booth is able to detect excursions above the equivalent exposure limit for the solvents in the paint, the exhaust

duct was reconfigured for split-flow and recirculating ventilation. A volunteer painter was briefed on the increased risk of exposure during recirculation, and on the purposes and possible benefits of this study. He then signed an informed consent form before participating in the recirculation tests. A series of tests generally equivalent to the baseline series was conducted during split-flow and

Air pollution, emission recirculation, paint spra	control technology, exhaust ay booth, ventilation		15. NUMBER OF PAGES Vol. I, 132; Vol. II, 179 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	18. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

SECURITY CLASSIFICATION OF THIS PAGE

recirculating ventilation, and three tests were performed during only split-flow ventilation. Data from the two sets of tests show that pollutants concentrate toward the bottom of the booth during ordinary painting operations; that local processes associated with circulation near the paint spray gun contribute far more to the net exposure to the painter than do toxic pollutants in the recirculated air stream; and that, under well-ventilated conditions, including split-flow and recirculation of a large fraction of the exhaust air, equivalent exposures to airborne toxic pollutants (calculated as the sum of 8-hour, timeweighted concentrations of toxicants divided by their respective Permissible Exposure Limits) should not exceed 0.25 in the intake air. An economic analysis of costs to implement thermal or catalytic incineration, with and without flow reduction by split-flow and recirculating technologies, projects substantial savings, such that the payback periods for inclusion of flow-reduction technology during installation of the control device are about 1 year. The recirculation of air in the paint spray booth did not result in an increase in air contaminants that would exceed the capability of proper respiratory protectior.. The magnitude of the incremental increase in exposure derives primarily from particulates in the recirculated air. This is defined by the particulate removal efficiency of the particulate controls, which can be compromised by improper maintenance. However, with proper design, installation, and maintenance, the increment to risk is normally less than the round-off errors in the calculation of net jobrelated risk. Because the cost benefit is obtained at an increase of risk of exposure to painters, the acceptability of this cost-benefit tradeoff will have to be resolved by industrial hydiene functions at both policy and local levels before this advance can be implemented at Air Force installations.

SUMMARY

A. OBJECTIVE

The objective of this program was to demonstrate that split-flow and recirculating ventilation, individually and in combination, are safe and cost-effective methods of reducing paint spray booth exhaust flow rates to lower the costs both of conditioning intake air and of controlling volatile organic compound (VOC) emissions in exhaust air.

B. BACKGROUND

This study was part of an extended program of investigations into the cost and efficacy of innovative approaches for bringing U.S. Air Force industrial operations into compliance with current and anticipated air pollution environmental standards. Adequate ventilation of paint spray booths requires the movement of large quantities of air, which are slightly contaminated during passage through the booth. Air exhausted from this process requires decontamination, which, although technically achievable at operating flow rates, can be prohibitively expensive. Because emission-control costs depend on the volume of exhaust air being treated, considerable savings can be realized through the application of an acceptable flow-reduction method.

A first principle of industrial hygiene is to employ engineering controls to their limit before invoking personal protection. In dealing with exposures to airborne toxics, the mainstay engineering device is enhancement of ventilation. However, increased ventilation creates enormous volumes of slightly contaminated air, which must be treated before discharge and, in many situations, the cost of such treatment is excessive. In such circumstances, a judgment must be made about the relative cost in increased exposure compared to the economic benefit in decreased operating cost. The goal of this study was to provide experimental data to support the development of a general Air Force position and objective criteria for local decisions about the acceptability of using flow-reduction methods in paint spray booths, based on local health-risk/cost-benefit considerations.

C. SCOPE

This study comprised two sets of experimental measurements in Booth 2, Building 845, Travis Air Force Base (AFB), California, plus the results of an ancillary effort conducted at Research Triangle Institute (RTI) to verify experimentally that the flame ionization detector (FID) used in the ventilation control loop is within its linear response range at the equivalent exposure limit for the mixture of solvents present in the mixed topcoat. The first set of experimental measurements was a baseline characterization of the distribution of toxic pollutants at the exhaust face and in the exhaust duct of Booth 2. These data, the RTI results, and the test plan for the second set of tests were reviewed by HQ AFLC/SGBE before approval was given to proceed with the recirculation tests. The test plan and engineering drawings were reviewed by the Fire Department, Safety Office, and Civil Engineering Office at Travis AFB and approved before implementation. For the second set of tests, the ductwork in Booth 2 was reconfigured to separate exhaust streams from the top and bottom of the booth (split-flow) and to return the upper exhaust stream to the intake plenum for recirculation through the booth. The volunteer painter was briefed and signed an informed consent form before participating in the study. During separate painting sessions, several sets of concentration measurements were made of VOCs, particulates, heavy metals, and isocyanates. Equivalent exposures (E_m) were calculated from these data, and projections of E_m were made for a range of recirculation ratios, together

with an economic analysis of the corresponding costs to install flow reduction technology and apply VOC emission control devices.

D. METHODOLOGY

Per standard Travis AFB policy, painters in Booth 2 wear a protective jump suit, a separate hood, and an airline respirator. To determine exposure concentrations, sampling was performed simultaneously inside and outside the respirator, at 24 locations at the exhaust face, in the exhaust ducts, and, during the second set of tests, at three locations at the face of each of the two intake filters. To determine environmental contributions to the load of pollutants, background air samples were collected at the back of the booth prior to the release of any paintderived materials. Standard sampling methods used were National Institute of Occupational Safety and Health (NIOSH) Method 1300 (integrated measurement of individual organic species), Bay Area Air Quality Management District (BAAQMD) Method ST-7 and U.S. Environmental Protection Agency (EPA) Method 25A (continuous measurement of total organic concentration). Occupational Safety and Health Administration (OSHA) Method 42 (filter faces and ducts) and NIOSH Method 5521 (painter and ducts) (isocyanates), EPA Method 5 and NIOSH Method 500 (particulate), and EPA Draft Multiple Metals and NIOSH Method 7300 (metals). Paint usage was determined by weighing the gun after each filling and at the end of each painting session. The percent volatile content of the paint was determined gravimetrically, as percent weight loss to evaporation. Airflows were measured with an anemometer (American Conference of Governmental Industrial Hygienists [ACGIH]) in the booth and with a pitot tube (EPA 2) in the exhaust ducts. Painting start and stop times were recorded manually by an observer, stationed at the rear of the booth, who also noted the dimensions and locations of workpieces painted, coatings applied, and other details. Projections of equivalent exposures at different recirculation ratios were calculated by a Lotus 1-2-3 program written at U.S. EPA-Air and Energy Engineering Research Laboratory (AEERL).

E. TEST DESCRIPTION

In both test series, representative workpieces were prepared and coated according to normal operating procedures. During each such painting run, measurements were made of one of the four pollutant classes using the methods specified in Section D. A typical painting session lasted 30 to 90 minutes, and included postpainting cleaning of the paint spray gun with methyl ethyl ketone (MEK) and tidying up of the area. In general, two sets of tests were accomplished during an 8-hour shift, corresponding to a typical workday. A complete series of blood chemistry parameters was determined for the painter at the conclusion of the testing.

F. RESULTS

Concentrations of airborne toxic pollutants are recorded in the tables of the report. Strontium chromate occurs as the major contaminant during primer coating and was the largest contributing factor to the E_m . Organic exposures were minor during all painting exercises, except that high isocyanate exposure occurred outside, but not inside, the painter's respirator during topcoat application inside a comfort pallet (caused by airflow restrictions in the closed space, and unrelated to the mode of ventilation in the booth). The newly constructed recirculation duct was a source of several metals. These metals were included in E_m calculations, but the concentrations are expected to decrease after the newly constructed surfaces are blown clean. Contributions to E_m from recirculation are significantly less than the Air Force criterion of 0.25 imposed by HQ AFLC/SGBE for these tests, and much less, in

general, than the contribution from the painting process. The painter showed no evidence of overexposure during the posttest medical evaluation.

G. CONCLUSIONS

Data support the prediction that workplace exposure levels during recirculation of paint spray booth exhausts, especially combined with split-flow extraction of the pollutant-enriched lower portion of the exhaust stream, can be maintained less than an arbitrarily selected criterion (here, $E_m = 0.25$). Flow splitting as a technology is only marginally effective; however, in combination with recirculation, it acts to lower the concentrations in the recirculated stream at a given rate of recirculation. Computational projection of E_m to larger recirculation rates, and interpolation of results of an earlier economic analysis of scale-related costs to decontaminate exhaust air, indicate that available cost savings allow projected payback periods on the order of 1 year for thermal or catalytic incineration.

H. RECOMMENDATIONS

Improvements should be examined to augment or replace present-generation filter and water particulate control systems. Concurrently, or when the improved technologies satisfy local standards, a combination of flow reduction and VOC control should be implemented in an area of intense regulatory pressure as the definitive prototype. A standardized set of criteria should be established to guide site selection, design, installation, and maintenance.

Acces	on For				
DTIC	ounced	d 0			
By Distrib	ution /				
Availability Codes					
Dist A-	Avait and Specia				

PREFACE

This final report was prepared by Acurex Environmental Corporation, 555 Clyde Avenue, Mountain View, CA 94043, under Contract No. 68-D2-0063, for the U.S. Environmental Protection Agency (EPA), Air and Energy Engineering Research Laboratory (AEERL), and the Armstrong Laboratory Environics Directorate (AL/EQ), 139 Barnes Drive, Tyndall Air Force Base (AFB) FL 32403-5323. The industrial hygiene evaluation was performed by Clayton Environmental Consultants, 1252 Quarry Lake, Pleasanton, CA 94566.

This report describes measurements of background concentrations of airborne toxic pollutants in Booth 2, Building 845, Travis AFB, CA; design and construction of modifications to the booth ventilation system; measurements of airborne toxic pollutants in the modified booth during split-flow and concurrent split-flow and recirculating ventilation; and a projective analysis of equivalent personnel exposures and net costs to operate flow reduction and emission control systems at varying recirculation ratios. The work was performed between February 1991 and September 1992. The Air Force project officer was Dr. Joseph D. Wander. EPA project managers were Charles H. Darvin and Jamie K. Whitfield.

indispensable cooperation and support were provided by a number of Air Force functions. Ted Liston (60 EMS/MAEFP) provided facilities in Building 845 and practical advice; Terry Kirkbride (60 EMS/MAEFP) and Mark Sandy (60 ABG/EM) managed coordination with cognizant Travis functions and solicited volunteer painters; Sgt. Bill Fleming and Bill Harrison painted during the baseline and split-flow tests, respectively; Richard Smith painted during the recirculating ventilation tests; TSgt. Haugen (DGMC/SGPM) saw to the posttest evaluation of Mr. Smith and secured his release of the test results; Det 6 AL/SAO, Brooks AFB TX, performed metals and isocyanate analyses; Major John Seibert, Det 6 AL/EHI and the designee of Col. Bruce Poitrast, AL/OE-CA, was an active contributor to discussions of baseline data and the test plan for the recirculation tests; Col. Phil Brown, HQ AFLC/SGBE, accepted responsibility for authorizing the performance of the recirculation tests, after several iterative discussions of these baseline results plus data and conclusions from experimental verification of the capability of flame ionization detector (FID) technology to reliably detect equivalent exposure limit of a complex (specified) mixture of paint solvents. Major Steve Bakalyar, AL/OEMI, offered constructive suggestions and contributed to the final version of this document.

TABLE OF CONTENTS

Section	Titl●	Page
	APPENDIX D - BOOTH MODIFICATION DESIGN AND	
	CONSTRUCTION PACKAGE	1
	APPENDIX E — ORGANIC DESORPTION STUDY	25
	APPENDIX F - REDUCED DATA FOR THE BASELINE TEST	
	SERIES	30
	APPENDIX G REDUCED DATA FOR THE POSTMODIFICATION	
	TEST SERIES	47
	APPENDIX H - QUALITY ASSURANCE/QUALITY CONTROL	
	EVALUATION	158
	APPENDIX I — ECONOMIC CALCULATIONS	
	APPENDIX J - EXAMPLE CALCULATION WORKSHEET FOR	
	PERCENT RECIRCULATION VERSUS PERCENT	
	PARTICULATE REMOVAL EFFICIENCY	. 168

APPENDIX D

BOOTH MODIFICATION DESIGN AND CONSTRUCTION PACKAGE

The booth modifications are illustrated in the accompanying schematics and described briefly below.

A. DUCT MODIFICATIONS

Downstream of the existing exhaust blower (exhaust fan 1) a 48-inch-diameter sheetmetal tee was installed in the existing duct. Two motor-operated, 48-inch-diameter air dampers were installed on the exhaust ports of the tee (dampers 1 and 2). Damper 2 was installed on the downstream side of the tee and between the tee and the continuation of the existing 48-inch-diameter duct. It controls the flow of exhausted gases to the atmosphere outside the building. Damper 1 was installed on the branch side of the tee and controls the flow of exhausted gases to the inlet duct for recirculation. A new 48-inch-diameter sheetmetal duct was installed between damper 1 and the existing fresh air supply duct.

Control of the two damper air motors is regulated by Analysis Safety Valve (ASV)-1 (ASCO Model 834911), a four-way dual solenoid valve, which allows plant air to flow to or vent from the air motors according to the feedback control system (discussed below). In the event of power loss, the solenoid valve fails to the fail-safe mode, *i.e.*, the single-pass position, which closes damper 1 and opens damper 2, thus diverting all exhaust gases to the atmosphere outside the building.

In addition to modifications to the existing ducts, a new 30-inch-diameter axial blower and duct was installed to vent the lower chamber of the plenum.

B. FEEDBACK CONTROL SYSTEM

A failsafe damper interlock control system was designed to respond to an instantaneous emission peak exceeding the STEL action level and to a 60-second emission level at or above the TLV.

The interlock system (see drawings 8380E100 and 8380E101) was equipped with the following features:

- Total unburned hydrocarbon (TUHC) analyzer (Ratfisch Instruments type RS 55CA heated total hydrocarbon analyzer FID) (ASE-1/AST-1).
- Failsafe controls (ASA-1/ASV-1):
 - An instantaneous interlock to begin single-pass operation when STEL concentration action level is exceeded.
 - An adjustable timer (set at 5 minutes) to ensure single-pass operation for a predetermined time after STEL or TLV interlock activation, prior to converting back into the recirculation configuration.

- An adjustable timer (set at 60 seconds) to delay operation of the TLV concentration interlock for 1 minute while continuing monitoring operations. If, after 1 minute, the concentration is still above TLV, the system initiates the singlepass mode.
- An indicator light to indicate that the 60-second TLV concentration timer is "on."
- An interlock to convert the system to single-pass mode if the hydrocarbon analyzer power is turned off or its flame goes out.
- A solenoid valve wired and plumbed to return to the single-pass operation mode whenever there is a power loss.

C. PERMIT VARIANCES

At the start of this study, the paint booth was operational and permitted for use in the single-pass mode. In conversations with the Bay Area Air Quality Management District (BAAQMD), it was determined that a new permit to operate the booth after modification was unnecessary; a notification letter to BAAQMD in advance of the modification sufficed.

Process and Instrumentation Diagram
Travis AFB Building 845
Paintbooth No. 2 Prior to Modification

Lower Exhaust Pienum Chamber Transition Piece and Exhaust Duct Isometric for Travis AFB Building 845 Paintbooth No. 2

Process and Instrumentation Diagram
Travis AFB Building 845
Paintbooth No. 2 After to Modification

SHERGEING BOLISHOUGH A 6 8 MOVER BOTH CAMPERS INTO POSITION FOR NORMAL RE TROULATION OPERATION (THE SWITCH SHEDE THE CONTROL BOX (SEE DRAWING SERETIO) IS SET IN THE AR POSITION)

SOLENOID A ENERGIZED & SOLENOID B DE-ENERGIZED, DAMPER 1 & DAMPER 2 IN PLOATING POSITION

EMERGIZING BOLLENOID A & DE : EMERGIZING BOLLENOID B ALLOWS MANUAL MOVEMENT OF THE DAMMER BLADES (THE SMITCH INSIDE THE CONTROL BOX (SEE DRAWING ASSISTED) IS SET IN THE S POSITION.)

SOLENGID B ENERGIZED & SOLENGID A DE-ENERGIZED, DAMPER 1 & DAMPER 2 LOCKED IN FORTION EMERGENG SCLENCO B & DE-EMERGENG SCLENCO A LOCKS THE DAMPER BLADES AT WHATEVER POSITION THEY ARE IN (THE SMITCH BISDE THE CONTROL BOX (SEE DRAWNO SOMEIST) IS SET IN THE AS POSITION)

SOLENCISS A & B DE-ENERGIZED, DAMPER 2 OPENS & DAMPER 1 CLOSES

DE-ENERGIZHO BOLINOIDE À à B MOYES BOTH DAMPERS ATTE POSITION TO CLOSE THE RECORDILATION LOOP AND DUMP ALL WAPORS TO THE ATMOSPHERE (THE SWITCH DAMPE THE CONTROL BOX (SEE DOLINOIS SANGENS) IS SET IN THE AS POSITION)

ASCO 834911

Position Diagrams of Damper Control 4-Way Solenoid Valve ASV-1 Describing Various Energized and De-energized Positions and the Effect on Dampers No. 1 and No. 2

7 (The reverse of this page is blank)

Ξ

ç

-

_>-~-

٠._

1

.: -.

.

٠.-

2

(The reverse of this page is blank)

APPENDIX E ORGANIC DESORPTION STUDY

Mid-Pacific Environmental Laboratory, Inc. 625B Clyde Avenue Mountain View, CA 94043 (415) 964-0844 FAX (415) 961-7113

June 4, 1991

Ms. Jackie Ayer Acurex Engineers 555 Clyde Avenue Mountain View, CA 94043

Ms. Ayer:

Here are the NIOSH 1300 information I promised you. Our final report to you has all been corrected for desorption efficiency. The desorption efficiency study was performed at three levels approximately 100ug, 700ug, and 1400ug per tube. The MDL study was performed using the same amount as level I of the desorption efficiency study. The correction factor used in calculating your NIOSH 1300 is slighly different from this set I am sending to you. The only difference is that I had normalized all recovery greater than 100 percent to 100%. This set I am sending you has was not been normalized for recovery greater than 100 percent. There is only about 0.1 to 0.6 percent difference between the numbers. If you want your reports revise using the new correction factor please let me know.

Sorry this took so long. I hope this did not cause you any inconvenience with your project.

Sincerely.

2/0/83

Daniel Mew.

GC Section Manager

Mid-Pacific Environmental Laboratory Inc.

National Express Laboratory

recycled paper

MID-PACIFIC ENVIRONMENTAL LABORATORY
Instrument ID: 3400-2 (DB624 60m column)

Date: 4/25/91

Description Efficiency Study - Level 1

Page 2

	Extract					Average
	conc.	A1	λ2	λ 3	λ4	Rec.
MEK	37.00	104.82	104.57	104.99	104.18	104.64
ETHYLACETATE	35.00	103.64	103.55	103.29	101.56	103.01
2-BUTANOL	38.00	101.60	99.80	101.38	99.92	100.67
N-BUTANOL	33.00	93.65	92.62	93.33	93.04	93.16
METHOXYACETONE	19.00	49.37	49.11	48.08	49.52	49.02
ETHOXYETHANOL	28.00	21.35	21.59	23.88	22.33	22.29
MIBK1	31.00	104.61	103.58	103.50	102.03	103.43
TOLUENE	34.00	103.57	102.63	102.51	101.11	102.46
BUTYLACETATE	26.00	105.15	104.17	104.05	103.08	104.11
ETHYLBENZENE	34.00	105.76	104.81	104.31	103.47	104.59
M & P XYLENE	34.00	98.47	134.76	119.45	129.22	120.48
PMGE ACETATE	38.00	105.00	104.47	103.52	102.90	103.97
O-XYLENE	35.00	101.18	101.46	101.42	100.65	101.18
2-EOE ACETATE	38.00	106.95	106.23	100.73	105.04	104.74
2-MOE ETHER	38.00	66.66	69.15	71.00	66.08	68.22

Desorption Efficiency Study - Level 2

	Extract	D1	D 2	22	D4 4	Average
	conc.	B1	B2	B3	B4 %	Rec.
MEK	185.00	101.28	92.99	99.24	100.94	98.63
ETHYLACETATE	175.00	100.77	92.15	98.52	99.73	97.79
2-BUTANOL	190.00	97.92	89.68	95.49	97.36	95.13
N-BUTANOL	165.00	96.04	87.79	94.12	95.48	93.30
METHOXYACETONE	95.00	82.71	74.71	80.82	82.38	80.1
ETHOXYETHANOL	140.00	65.70	58.65	63.85	65.98	63.5
MIBK1	155.00	99.92	91.01	97.57	98.80	96.8
TOLUENE	170.00	99.48	90.54	97.04	98.25	96.3
BUTYL ACETATE	130.00	101.05	91.88	98.33	99.45	97.6
ETHYLBENZENE	170.00	100.37	91.55	97.85	99.15	97.2
M & P XYLENE	170.00	108.54	89.66	95.80	97.12	97.7
PMGE ACETATE	190.00	99.14	90.21	96.58	97.81	95.9
O-XYLENE	175.00	96.08	87.66	93.62	94.92	93.0
2-EOE ACETATE	190.00	98.93	90.42	96.43	97.79	95.8
2-MOE ETHER	190.00	76.16	68.80	73.87	75.16	73.5

Page 3

Desorption Efficiency Study - Level 3

	Extract					Average
·	conc.	C1	C2	C3	C4 &	Rec.
MEK	370.00	99.69	100.85	99.40	98.23	99.54
ETHYLACETATE	350.00	98.78	99.88	98.82	97.82	98.83
2-BUTANOL	380.00	96.79	97.87	96.51	95.40	96.64
N-BUTANOL	330.00	95.38	96.61	95.10	94.27	95.34
METHOXYACETONE	190.00	85.83	87.10	85.60	84.97	85.88
ETHOXYETHANOL	280.00	81.10	78.81	77.96	77.52	78.85
MIBK1	310.00	98.84	99.33	97.67	96.82	98.17
TOLUENE	340.00	98.12	98.74	97.00	95.95	97.45
BUTYLACETATE	260.00	99.14	99.86	98.49	97.85	98.83
ETHYLBENZENE	340.00	98.08	98.78	97.52	96.81	97.80
M & P XYLENE	340.00	97.76	97.40	96.17	95.46	96.70
PMGE ACETATE	380.00	97.26	97.89	96.73	95.99	96.97
O-XYLENE	350.00	93.79	94.46	93.37	92.72	93.59
2-EOE ACETATE	380.00	96.97	97.90	96.79	96.07	96.93
2-MOE ETHER	380.00	79.70	79.86	79.62	79.61	79.70

Average Desorption Efficiencies (percent)

	Level 1	Level 2	Level 3	Average
MEK	104.64	98.61	99.54	100.93
ETHYLACETATE	103.01	97.79	98.83	99.88
2-BUTANOL	100.67	95.11	96.64	97.48
N-BUTANCL	93.16	93.36	95.34	93.95
METHOXYACETONE	49.02	80.16	85.88	71.69
ETHOXYETHANOL	22.29	63.54	78.85	54.89
MIBK1	103.43	96.82	98.17	99.47
TOLUENE	102.46	96.33	97.45	98.74
BUTYLACETATE	104.11	97.68	98.83	100.21
ETHYLBENZENE	104.59	97.23	97.80	99.87
M & P XYLENE	120.48	97.78	96.70	104.98
PMGE ACETATE	103.97	95.94	96.97	98.96
O-XYLENE	101.18	93.07	93.59	95.94
2-EOE ACETATE	104.74	95.89	96.93	99.19
2-MOE ETHER	68.22	73.50	79.70	73.81

MID-PACIFIC ENVIRONMENTAL LABORATORY Instrument ID: 3400-2 (DB624 60m column) Date: 4/25/91

MDL Study (4/25/91)

				14	שחד שרמכ	27 (16/62/4) Approx	116/67						
			6 1 1 1 1 1 1	(† † † †	• • • • •		. X	Extract	Mean	STD	Ext. MDL	RDL	POL
	A1	75	K 3	¥	AS	yę	LX.	conc.	(n3/wr)	(n-1)	(nd/wr)	(ug/m])	(ug/tube)
	0000	90 00	ŀ	32 85	18. AS	37.75	37.66	37.00	38,39	0.49	1.53	S	20
MEK Parity 1 and 1 and	36.70	36.03	36.35	35.54	35,31	35.03	35.17	35.00	35.67	0.54	1.68	s	20
ETHILACEIATE	30.67	30.00		20.00	37.42	37.10	37.08	38.00	37.80	0.63	1.97	S	20
Z-BUIANOL	1000	30.75		00000	20.17	20.00	29.70	33.00	30,39	0.47	1.46	S	50
N-BUTANOL	20.30	50.00		200	70	80	9.17	19.00	9.25	0.17	0.54	10	4
METHOXI ACETONS	, r	7.0	*T.	7.5	40.4	7.20	6.50	28.00	6.38	0.44	1.40	01	4
ETROAI ETRANOL	22.60			31.63	31.44	30.88	30.95	31.00	31.65	0.60	1.87	ស	20
ALBAI	36.33			34.38	34.15	33.54	33.69	34.00	34.39	0.63	1.99	71	Φ
TOTOENE	33.66	20.00		26.80	26.49	26.16	26.17	26.00	26.73	0.47	1.47	r.	20
BULLIACEIALE	30 20			35.18	34.75	34.20	34.26	34.00	35.06	0.68	2.14	~	œ
ETHILDENZEND	20.00			49.64	40.38	42,09	44.29	34.00	41.52	4.06	12.76*	~	œ
A K F AILEND	7			20.05	18.74	38.29	38.33	38,00	39.06	0.63	1.99	S	20
PMGE ACETATE	24.70			26. 25	24 K2	34.29	34.34	35.00	34.98	0.55	1.73	7	∞
O-XILENE	79.00		0000	20.05	27.61	37.78	X 0 0 0	38.00	39.01	1.34	4.22	10	40
2-EOE ACETATE	# O · O #		96.00	***	100	77.00	900	900	26.06	0	2,52	10	40
2-MOE ETHER	25.33		70.98	11.67	75.40	07./7	20.03	20.00					
	1												

* Bad calibration curve for MEP-Xylene.

RDL = Reporting limit based on instrument sensitivity and MDL study.

APPENDIX F REDUCED DATA FOR THE BASELINE TEST SERIES

				# .	67.7 29.88	P=29.92 "Hg T=68 °F	5 a							
Sample Sample	-			Volume	, m. c.	- (A)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		2-Birtanni	-	č	o-But and	
Date Number 18 April 67 18 April 62 18 April 67 19 April 67 19 April 67	Smoled	Sampled Flowrate Col	lected	l asse			u sama				- -			
	(min)	((/min)		= =	(ug/tube)	(mg/m3)	(ug/tube)	((Sm/gm)	5	(ng/tube)	(Em)(m3)	(ug/tate)	:	(mg/m³)
April	9.0	1.633	0.0	0.00 ×	2	- 4/M	2	N/A	v	21 <	N/A	< 21	•	M/A
	96.99	1.315	2.38	86.72 x	3	0.553484	92	< 0.230618	v	> 12	0.242149	٠ 21	v	0.242149
	9.0	1.468	9.0	0.00 x <	8	- W/₩	< 20 ·	- N/A -	•	v	N/A	× 2	•	€,
70 110 to 01 to	26.00	1.371	104.20	1 104.12 x	22	0.259326	22 •	< 0.192093	v	•	0.201698	×	•	0.201698
5 18 April 65	78.00	1.399	109.12	109.04 x	3	1.467376	22	< 0.183422	Ų	v	0.192593	×	v	0.192593
6 [18 April 44	77.00	1.426	109.80	109.72 x	120	1.093717	· 02 • ×	< 0.182286	•	21 <	0.191400		v	0.191400
7 [18 April 57	7.00	1.371	105.57	105.49 x	3	0.369717	, 22 ,	c 0.189596	v	21 <	0.199078	₩ •	v	0.199078
8 18 April 55	9.09	1.361	82.86	82.80 x	8	0.350257	ž v	c 0.241556	v	- - - - -	0.253634	×	•	0.253634
9 18 April 49	20.00	1.012	z. 2.	78.88 x	3	8.621201	22	0.253564	v	- Z	0.266242	*	٧	0.266242
10 18 April 64	8.0	1.018	8.	× 00.00	23	- <x< td=""><td>200</td><td>- W/W</td><td>v</td><td>71 ×</td><td>E/X</td><td>⊼ ;</td><td>~</td><td>K/A</td></x<>	200	- W/W	v	71 ×	E/X	⊼ ;	~	K/A
11 18 Aprili 46	76.00	1.313	2.8	1 99.71 x	23	0.832403	Ŕ	0.200579	•	- - -	0.210608	~	٧	0.210608
12 18 April 50	45.00	1.284	57.78	1 57.74 x	\$	1.125622 [Ř	c 0.346406	v	× 12	0.363727	⊼ ~	٧	0.363727
13 16 April 42	3.8	1.355	4.07	× 90.7	2,5	34.46684	Ř	c 4.923634	v	× 2	5.170026	~	v	5.170026
14 18 April 59	4.89	1.35	103.95	103.87 x	5	10.59015	Ř	0.192548	•	- - - - - - - -	0.202175	~	v	0.202173
15 18 April 45	76.00	0.9%	2.66	x 09.22	3	2.203852	Ř	< 0.275481	•	- - - - -	0.289255	×	٧	0.289255
16 18 April 51	3.8	 \$	102.68	102.60 x	5	1.656963	Ř	< 0.194939	•	2	0.204686	⊼ ~	٧	0.204686
18 April	7.00	1.331	102.49	102.41 x	500	14.64726	Ř *	< 0.1952%	•	> 12	0.205061	₩ ₩	~	0.205061
18 18 April 41	7.8	1.317	101.41	101.33 x	1800	17.76356	2	< 0.197372	•	717	0.207241	×	~	0.207241
19 18 April 58	76.00	1.09	83.45	1 83.38 x	3 <u>5</u>	4.197455	Ř V	c 0.239654	v	× 2	0.251847	ا	v	0.251847
20 18 April 56	8.8	1.322	\$1.06	> × 20.66	ž	0.201869	Ř *	c 0.201869	•	7	0.211963	₹	Y	0.211963
21 18 April 53	28.00	1.309	102.10	102.02 x	100 00 1	10.78182	200	< 0.196033	•	2	0.205834	≂ ~	v	0.205834
22 18 April 60	4.8	1.319	101.56	101.48 x	240	5.320987	2	< 0.197073	•	> 12	0.206927	× 2	٧	0.206927
=	76.90	1.318	100.17	100.09 x	140	1.398727	2	< 0.199818	v	7	0.209609	₹ •	v	0.209809
2	3.8	1.276	8.8	95.63 x	82	1.254883	æ •	< 0.209147	•	21 ×	0.219604	₩ *	•	0.21%0 <u>4</u>
	3	0.027	5	1 71.32 x	900	2.804100 1	8	- 0.280410	v	21 <	0.294430	2	¥	0.294430
	3 2	¥ 6	9	29 09	991	2,297813	8	< 0.287226	•	> 12	0.301587	21	v	0.301587
119 40-11	8	28	105.14	105.06 x	8	0.265558	200	< 0.190372 (v	> 12	0.199891	× 21	v	0.199891
118 April	91.00	1.265	\$.9	194.80 x	2300	50.95909	2	< 0.192298	•	21 	0.201913	* 21	٧	0.201913
118 April	8.0	•	9.0	0.00 ×	2	× × ×		- W/W -	•	51 ~	- E E		•	N/A

	18 April, 1991	17:17	18.33
Travis AFB			

.⊁•

				<u> </u>	Methoxyacetone	etone	_	Ethoxyethenol		4-Retny	ıl-Z-Pent	4-Hethyl-Z-Pentanone(HIBK)		Toluene		•	שחואו ארבושוב	בופוב
18 April 67 6	Site Location		Sample	. .	a/tube)	(£m/gm)		ug/tube)	(Emg/m3)	: 3	(tube)	(Em/gm)		ug/tube)	(mg/m3)	3	(ug/tube)	(Em/gm)
18 April 62 6 56 0.65772 6 73 0.64715 6 20 0.1516 6 6 2 6 18 April 52 6 56 0.51552 6 73 0.0714 6 75 0.77237 6 10 10 10 10 10 10 10	-	118 April	29	*		M/A	•	3.4	K/A	•	> 02	N/A	<u>×</u>	8.2 <	N/A		Ř	€ 2
18 April 57 56 C 1978 77 C 10 C	٠ ~	118 April	3	<u>,</u>		0.645732	٧	K	0.841757	٧	8	0.230618	<u>.</u>	8.2 <	0.094553	v	8	0.230618
18 April 52 < 56 < 0.513582 < 73 < 0.701141 75 0.720351 0 0.246400 < 20 < 0.183422 < 8.2 < 18 April 52 < 56 < 0.513582 < 73 < 0.666400 < 20 < 0.18226 < 8.2 < 18 April 64 < 56 < 0.510401 < 73 < 0.66344 < 20 < 0.18226 < 8.2 < 18 April 64 < 56 < 0.510401 < 73 < 0.66344 < 20 < 0.18226 < 8.2 < 17 18 April 64 < 56 < 0.510401 < 73 < 0.66344 < 20 < 0.18226 < 8.2 < 17 18 April 64 < 56 < 0.54023 < 73 < 0.66344 < 20 < 0.46471 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064971 < 8.2 < < 1.064972 < 1.000 < 1.06497 < 8.2 < < 1.064972 < 1.000 < 1.064971 < 1.000 < 1.06497 < 1.000 < 1.06497 < 1.000 < 1.064971 < 1.000 < 1.06497 < 1.000 < 1.06497 < 1.000 < 1.06497 < 1.000 < 1.06497 < 1.000 < 1.06497 < 1.000 < 1.06497 < 1.000 < 1.06497 < 1.000 < 1.06497 < 1.000 < 1.06497 < 1.000 < 1.06497 < 1.000 < 1.06497 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 < 1.000 <	M	118 April		<u> </u>	*	₹	٧	ĸ	N/A	٧	20	N/A	v	8.2 <	N/A	•	ž	K/A
18 April 65 < 56 < 0.513581 < 75 < 0.660400 < 20 < 0.182422 < 8.2 < 6.25 < 12.0401 < 75 < 0.660400 < 20 < 0.182462 < 8.2 < 6.25 < 12.0401 < 75 < 0.665344 < 20 < 0.182266 < 8.2 < 6.25 < 12.0401 < 75 < 0.665344 < 20 < 0.182266 < 8.2 < 6.25 < 12.0401 < 75 < 0.665344 < 20 < 0.182266 < 8.2 < 6.2	•	18 April	. 23	·	3	0.537862	~	Ķ	0.701141		ĸ	0.720351	_	2	0.096046	v	2	0.192093
18 April 44 < 56 < 0.510401 < 73 < 0.665344 < 20 < 0.102266 < 0.20226 < 0.510401 < 73 < 0.665344 < 20 < 0.102266 < 0.202392 17	•	118 April	S	<u> </u>	*	0.513581		ž	0.669490	•	82	0.183422	<u> </u>	8.2 <	0.075203	•	8	0.183422
18 April 57 < 56 < 0.57536 < 73 < 0.692036 130 1.232392 17	•	118 April	3	<u> </u>	× 92	0.510401	•	3	0.665344	٧	2	0.182286	<u>*</u>	8.2 <	0.074737	•	ž	0.182285
18 April 55 C	~	118 Apr 11	25	. <u>~</u>	*	0.530676	٧	Ķ	0.692036		130	1.232392		11	0.161159		23	0.265438
18 April 6.9 < 56 < 0.709981 < 73 < 0.925511 . · · · · · · N A < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2 < 6.2	•0	18 April	. X	<u>~</u>	8	0.676358	٧	3,	0.631681		110	1.328561	_	\$	0.229478		ĸ	0.374412
18 April 64 < 56 N/A < 73 N/A < 20 N/A < 6.2 6	•	118 April	9	<u> </u>	%	0.709981	٧	73 \$	0.925511		*	1.064971	<u> </u>	8.2 <	0.103961	•	ž	0.253564
18 April 46 < 56 < 0.561621 400	• •	118 April	8	<u> </u>	8	N/A	٧	Ķ	× × ×	٧	2	N/A/A	<u>*</u>	8.2 <	_ ₩,	•	ž	∀ ×
18 April 50 < 56 < 0.590939 < 73 < 1.264385 50	=		3	<u> </u>	*	0.561621		90,7	4.011582		8	0.501447	_	5	1.002895	•	2	0.200579
18 April 42 4 56 13.78673 4 73 17.97199 120 29.54300 14 18 April 59 4 56 0.539135 4 73 0.702801 350 3.369593 35 3.369593 35 120	12		8	<u>*</u>	*	0.969939	v	ž	1.264385		300	5.196102	_	**	0.658173		2	1.385627
18 April 59 < 56 < 0.5399135 < 73 < 0.702801 350 3.369593 335 3369593 335 3369593 335 3369593 335 3369593 335 3369593 335 3369593 335 3369593 335 3369593 336 3369593 336 3369593 336 3369593 336 336 3369593 336 336 3369593 336 336 3369593 336 336 3369593 336 336 3369593 336 33	. 2	118 April	7	<u> </u>	*	13.78673	٧	ĸ	17.97199		120	29.54300	_	*	3.446684		2	5.416218
18 April 45 4	*		8	. ~	*	0.539135	٧	ĸ	0.702601		350	3.369593	_	×	0.336959		ઝ	0.596899
18 April 51 < 56 < 0.545829 < 73 < 0.771528 980 9.552023 120 12	: \$2		3	<u> </u>	*	0.771348	٧	Ķ	1.005507		990	12.25892		5	1.377407		82	3.168037
18 April 64	*	=	2	-	*	0.545829	٧	ž	0.711528		8	9.552623	_	2	1.169635		5 60	2.534210
18 April 41 4	17	2	3	<u>~</u>	*	0.546831	٧	ķ	0.712833		550	5.370663		5 7	0.566360		10	1.074132
18 April 58 < 56 < 0.671592 < 73 < 0.675469 1600 19.18836 180	*	118 April	5	<u> </u>		0.552644	٧	73 <	0.720411		1000	9.868644	_	5	1.085550		ຊີ	2.269788
18 April 56 < 56 < 0.565235 < 73 < 0.736824 < 20 < 0.201869 < 8.2 < 18 April 53 < 56 < 0.548993 < 73 < 0.715521 170 1.666282 16 18 April 60 < 56 < 0.551806 < 73 < 0.719318 150 1.478052 16 18 April 69 < 56 < 0.555400 < 73 < 0.729336 < 760 7.593090 91 18 April 64 < 56 < 0.585612 < 73 < 0.763397 620 6.483563 74 18 April 61 < 56 < 0.585612 < 73 < 1.023498 < 52 0.729068 < 8.2 < 18 April 64 < 56 < 0.585612 < 73 < 1.048377 850 12.20713 100 18 April 65 < 56 < 0.533043 < 73 < 1.048377 350 < 0.190372 < 8.2 < 18 April 54 < 56 < 0.533043 < 73 < 0.701889 1200 11.53790 130 18 April 54 < 56 < 0.533043 < 73 < 0.701889 1200 11.53790 < 8.2 < 18 April 54 < 56 < 0.418 < 73 < 0.701889 < 70 < 0.190372 < 8.2 < 18 April 54 < 56 < 0.586455 < 73 < 0.701889 < 70 < 0.190372 < 8.2 < 18 April 54 < 56 < 0.586455 < 73 < 0.701889 < 70 < 0.190372 < 8.2 < 18 April < 70 < 0.701889 < 70 < 0.190372 < 8.2 < 18 April < 70 < 0.701889 < 70 < 0.190372 < 8.2 < 18 April < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889 < 70 < 0.701889	2	158 April	3	<u> </u>		0.671592	٧	ķ	0.875469		1600	19.18836		\$	2.158691		9	4.797092
18 April 53 < 56 < 0.548093 < 73 < 0.715521 170 1.646282 16 16 18 April 60 < 56 < 0.551006 < 73 < 0.719318 150 1.478052 16 16 18 April 69 < 56 < 0.555400 < 73 < 0.729336 20 20 20 20 20 20 20 2	: R	118 April	*	<u> </u>		0.565235	٧	ķ	0.736824	٧	ž	0.201869	<u>*</u>	8.2 <	0.082766	¥	2	0.201869
18 April 60 < 56 < 0.551006 < 73 < 0.719318 150 1.478052 16	2 2	118 April	. IS	<u> </u>		0.548893	٧.	ĸ	0.715521		£	1.666282	_	4	0.156826		2	0.254843
18 April 69 < 56 < 0.559490 < 73 < 0.729356 , 760 7.593090 91	2	118 April	8	<u> </u>	*	0.551806	٧	ĸ	0.719318		150	1.478052	_	4	0.157658		æ	0.305464
	2	118 Apr [1	\$	<u> </u>	*	0.559490	٧	Ķ	0.729336	4	92	7.593090	-	2	0.909172		8	1.996181
	* *	118 Apr11	3	<u>×</u>		0.585612	v	ĸ	0.763387	•	Q 2 3	6.483563	_	2	0.773844		3	1.673177
18 April 63 < 56 < 0.804234 < 73 < 1.046377 650 12.20713 100 18 April 64 < 56 < 0.533043 < 73 < 0.694859 < 20 < 0.190372 < 6.2 < 11.84 April 54 < 56 < 0.538435 < 73 < 0.701889 1200 11.53790 130 13 April 54 < 56 < 0.41	unticate) 10	118 April 1	5			9.785148		ĸ	1.023496		25	0.729066	<u> </u>	6.2 <	0.114968	•	ž	0.280410
18 April 66 < 56 < 0.533043 < 73 < 0.694859 < 20 < 0.190372 < 8.2 < 18 April 54 < 56 < 0.538435 < 73 < 0.701889 1200 11.53790 130	uplicate) 15	118 April	. 2	<u> </u>		0.804234		Ķ	1.048377		850	12.20713	_	\$	1.436133		22	3.303106
18 April 54 < 56 < 0.538435 < 73 < 0.701889 1200 11.53790 130 11.54790 120 130 1	Painter LM	118 April	* *	<u>~</u>		0.533043	٧	ĸ	0.694859	٧	8	0.190372	<u>×</u>	-	0.078052	~	2	0.190372
12 A	Painter Off	118 April	*	<u> </u>	*	0.538435		ĸ	0.701889		1200	11.53790	-	130	1.249940		2,20	2.596029
	Blank	113 April	\ \	<u> </u>	%	₩		73.0	N/A	٧		N/A	<u>×</u>	8.2 <	- €	٧	8	K K

Painter UH = Underneath painter respirator hood. Painter OH = Outside painter respirator hood.

	18 April, 1991	17:17	18:22
Travis AFB	Date:	Start Time:	Stop Time:

(ugy/tabe) (ugy/t					Ethylbenzene	zene	_	Total Xylenes	enes	۵ ;	PMGE Acetate	tate	<u>-</u>	2-Ethoxyethyl Acetate	Acetate	' -	Hethoxye	2-Methoxyethyl Ether	
18 April 67 6. 8.2 c N/A 6. 8.2 c N/A 6. 20 c N/A 6. 41 c N/A 6. 54 c 14 c N/A 6. 54 c 14 c N/A 6. 54 c 14	Site Location		Mark Market	:	(ug/tube)	(Em/gm)	. 3 	g/tube)	(Em/gm)	3	(ag)	(mg/m3)		(ug/tube)	(mg/m3)		ug/tube)	:	
18 42 1	-	118 April	67	٧			•		N/A	v		W/A	<u>×</u>	× 13	ΝΆ	<u>*</u>		:	. H
18 April 57 6 8.2 < 0.077250 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.070775 6 8.2 < 0.0707	7	118 fortt	- 88	*		0.094553	~		0.094553	v	8	0.230618	<u> ~</u>	> 13	0.472768	<u>~</u>	×	0.622670	0.553484
18 April 57 6.2 ¢ 0.07878 ¢ 6.2 ¢ 0.07878 ¢ 20 ¢ 0.19598 ¢ 41 ¢ 0.19598 ¢ 45 ¢ 0.19598 ¢ 41 ¢ 0.1959 ¢ 41 ¢ 0.19598 ¢ 41 ¢	m		1 27	~		N/A	٧	8.2 <	×××	•	٧	¥/¥	· •	> 17	N/A	<u> </u>	54.	K/W	Y/H
18 April 65 < 8.2 < 0.077203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.075203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.077203 < 8.2 < 0.0772	*	118 April:	22	٧		0.078758	٧	8.2 <	0.078758	v	٧	0.192093	<u>*</u>	¥ 13	0.393791	· •	×	0.518652	1.07724
18 April 57 < 8.2 < 0.077735 < 8.2 < 0.0707735 < 20 < 0.0182206 < 41 < 0.3150407 < 54 < 118 April 57 < 8.2 < 0.077735 < 20 < 0.0189599 < 41 < 0.3150407 < 54 < 118 April 57 < 8.2 < 0.077735 < 20 < 0.0189599 < 41 < 0.3150407 < 54 < 118 April 57 < 8.2 < 0.0199403 < 20 < 0.0199599 < 41 < 0.0199407 < 54 < 118 April 59 < 8.2 < 0.0199403 < 20 < 0.019959 < 41 < 0.0199407 < 54 < 118 April < 64 < 8.2 < 0.0199403 < 8.2 < 0.0199403 < 20 < 0.024556 < 41 < 0.0199407 < 54 < 118 April < 64 < 8.2 < 0.0199403 < 8.2 < 0.0199403 < 20 < 0.024556 < 41 < 0.0199407 < 54 < 118 April < 64 < 8.2 < 0.0199404 < 20 < 0.024540 < 41 < 0.0191147 < 54 < 118 April < 64 < 8.2 < 0.0199404 < 8.2 < 0.0199404 < 20 < 0.024540 < 41 < 0.0191147 < 54 < 118 April < 64 < 8.2 < 0.0199404 < 8.2 < 0.0199404 < 20 < 0.0195404 < 41 < 0.0191148 < 54 < 118 April < 59 < 8.2 < 0.0199404 < 8.2 < 0.0199404 < 20 < 0.0195404 < 41 < 0.0199404 < 54 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404 < 62 < 0.0199404	•		- 65	~		0.075203	٧	8.2 <	0.075203	•	ž	0.183422	<u> </u>	* 13	0.376015	<u>~</u>	×	0.495239	1.467376
18 April 57 < 8.2 < 0.07735 < 8.2 < 0.077735 < 8.2 < 0.077735 < 8.2 < 0.077735 < 8.2 < 0.099038 < 8.2 < 0.19999 < 41 < 0.549519 < 55 < 118 April 55 < 8.2 < 0.1099038 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.103961 < 8.2 < 0.113626 < 8.2 < 0.113626 < 8.2 < 0.113626 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113621 < 8.2 < 0.113622 < 8.2 < 0.113622 < 8.2 < 0.113622 < 8.2 < 0.113622 < 8.2 < 0.113622 < 8.2 < 0.113622 < 8.2 < 0.1		118 April	_ _ _	*		0.074737	•	8.2 <	0.074737	٧	8	0.182286	<u>~</u>	* 17	0.373686	<u>~</u>	×	0.492172	1.093717
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	118 April	57	~	8.2 <	0.077735	~	6.2 <	0.077735	v	8	0.189598	<u> </u>	* 17	0.308677	<u>~</u>	×	0.511917	2.028706
18 April 64 6	•	118 April:		v	8.2 <	0.099038	•	8.2 <	0.099038	•	8	0.241556	٧	¥ 1.4	0.495191	<u>~</u>	×	0.652203	2.282710
18 April 64 < 8.2 < 0.08227 < 8.2 < 0.08227 < 20 < 0.200579 < 41 < 0.41187 < 54 < 118 April 46 < 8.2 < 0.08227 < 8.2 < 0.08227 < 20 < 0.200579 < 41 < 0.41187 < 54 < 118 April 46 < 8.2 < 0.08227 < 20 < 0.200579 < 41 < 0.41187 < 54 < 118 April 46 < 8.2 < 0.08227 < 20 < 0.200579 < 41 < 0.41187 < 54 < 118 April 42 < 8.2 < 0.07094 < 8.2 < 0.042057 < 20 < 0.200579 < 41 < 0.041187 < 54 < 118 April 42 < 8.2 < 0.07094 < 8.2 < 0.07094 < 8.2 < 0.07094 < 8.2 < 0.07094 < 8.2 < 0.07094 < 8.2 < 0.07094 < 8.2 < 0.07094 < 8.2 < 0.07094 < 8.2 < 0.07094 < 8.2 < 0.07094 < 8.2 < 0.07094 < 8.2 < 0.09007 < 20 < 0.19229 < 41 < 0.29402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39402 < 54 < 0.39	•		- 63	•	8.2 <	0.103961	•	8.2 <	0.103961	•	× 8	0.253564	~	÷	0.519807	<u>~</u>	×	0.684624	9.636173
18 April 56 < 8.2 < 0.062237 < 8.2 < 0.062237 < 8.2 < 0.062237 < 8.2 < 0.020379 < 41 < 0.071134 < 54 < 14 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 18 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.07101344 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0710134 < 54 < 0.0	2	118 April	_ _ _	~	8.2 <		٧	3.2 <	K/A	•		N/A	٧	*	¥/N	<u>~</u>	X	SZ	N/A
18 April 50 < 8.2 < 0.142026 < 8.2 < 0.142026 < 20 < 0.344666 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54 < 41 < 0.710134 < 54	F		**	Y	8.2 <	0.062237	٧	8.2 <	0.062237	•	v	0.2005.0	٧	*	0.411187	<u>~</u>	×	0.541563	2.537325
18 April 42 < 8.2 < 2.018772 < 8.2 < 2.018772 < 8.2 < 2.018772 < 8.2 < 2.018772 < 8.2 < 0.079946 < 8.2 < 0.079944 < 8.2 < 0.079944 < 8.2 < 0.079944 < 8.2 < 0.079944 < 8.2 < 0.079944 < 8.2 < 0.079945 < 8.2 < 0.0799473 < 8.2 < 0.0799473 < 8.2 < 0.0799473 < 8.2 < 0.0799473 < 8.2 < 0.0799473 < 8.2 < 0.0799473 < 8.2 < 0.0799473 < 8.2 < 0.0799473 < 8.2 < 0.0799473 < 8.2 < 0.0799473 < 8.2 < 0.0993470 < 8.2 < 0.0993470 < 8.2 < 0.099349 < 8.1 < 0.404644 < 8.2 < 0.099349 < 8.1 < 0.404644 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 < 8.2 < 0.099349 <	12	118 April	<u>s</u>	~	8.2 <	0.142026	•		0.142026	•		0.346406	~	*	0.710134	<u>~</u>	×	0.935298	8.365725
18 April 59 < 8.2 < 0.079944 < 8.2 < 0.0179944 < 20 < 0.19248 < 41 < 0.394723 < 54 < 18 April 45 < 8.2 < 0.112947 < 8.2 < 0.112947 < 20 < 0.17548 < 41 < 0.54477 < 54 < 18 April 45 < 8.2 < 0.112947 < 8.2 < 0.112947 < 20 < 0.17548 < 41 < 0.54477 < 54 < 18 April 51 < 8.2 < 0.079925 < 9.6 0.093570 < 20 < 0.194939 < 41 < 0.400338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 < 54 < 6.000338 <	£ .		- 23	~	8.2 <	2.018772	Y	8.2 <	2.018772	•	8	4.923834	٧	* 57	10.09386	<u>~</u>	×	13.29435	72.87275
18 April 45 4	*	18 April	- 88	٧	8.2 <	0.078944	•	8.2 <	0.078944	•		0.192548	٧	¥	0.394723	<u>~</u>	K	0.519880	14.89360
18 April 51 < 8.2 < 0.079925 < 9.6		2	- 45	~	8.2 <	0.112947	•	8.2 <	0.112947	v	× 8	0.275481	٧	* 5	0.564737	<u>×</u>	×	0.743800	19.00622
18 April 66 < 8.2 < 0.000071 < 8.2 < 0.090071 < 20 < 0.195296 < 41 < 0.400358 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 14 < 0.40414 < 54 < 18 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 54 < 0.400414 < 64 < 64 < 64 < 64 < 64 < 64 < 64		2	1 52	٧	8.2 <	0.079925		9.6	0.093570	•	× 8	0.194939	٧	> 15	0.399625	<u>~</u>	×	0.526335	15.00642
18 April 41 4 8.2 < 0.000722 4 0.000722 4 0.000722 4 0.0197372 4 1 0.040444 4 54 6 1	_	118 April	 	~	8.2 <	0.000071	~	-	0.000071	•	8	0.195296	٧	* 5	0.400358	<u>~</u>	×	0.527301	21.65842
18 April 56 < 8.2 < 0.096340 < 8.2 < 0.029634 < 41 < 0.491701 < 54 < 18 April 56 < 8.2 < 0.096340 < 8.2 < 0.062766 < 54 < 0.239654 < 41 < 0.491701 < 54 < 18 April 56 < 8.2 < 0.062766 < 8.2 < 0.062766 < 8.2 < 0.062766 < 8.2 < 0.060373 < 41 < 0.401699 < 84 < 19 April < 8.2 < 0.060373 < 8.2 < 0.060373 < 41 < 0.401609 < 84 < 41 < 0.401609 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.401600 < 84 < 41 < 0.4016000 < 84 < 41 < 0.4016000 < 84 < 41 < 0.4016000 < 84 < 41 < 0.4016000 < 84 < 41 < 0.4016000 < 84 < 41 < 0.4016000 < 84 < 41 < 0.4016000 < 84 < 41 < 0.4016000 < 84 < 41 < 0.4016000 < 84 < 4 < 0.4016000 < 84 < 41 < 0.4016000 < 84 < 41 < 0.4016000 < 84 < 41 < 0.40160000 < 84 < 41 < 0.401600000 < 84 < 41 < 0.4016000000 < 84 < 41 < 0.40160000000000000000000000000000000000	\$	18 April	- 2	•	8.2 <	0.000922	•	8.2 <	0.000922	•	~	0.197372	y	> 17	0.404614	<u>~</u>	×	0.532906	30.98754
18 April 56 < 8.2 < 0.002766 < 8.2 < 0.002766 < 20 < 0.201669 82	4		-	•	8.2 <	0.096340	~	8.2 <	0.098340	•	v	0.239854	٧	* 17	0.491701	<u>×</u>	×	0.647607	30.34160
18 April 53 < 6.2 < 0.000373 < 6.2 < 0.000373 < 20 < 0.196033 < 41 < 0.601868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.001868 < 54 < 0.0	R		-×	~	8.2 <	0.082766	•	8.2 <	0.062766	•	~	0.201869		æ	0.827666	<u>~</u>	×	0.545048	0.827666
18 April 60 < 8.2 < 0.080900 < 8.2 < 0.080900 < 20 < 0.197073 < 41 < 0.080000 < 54 < 18 < 18 < 18 < 18 < 19 < 18 < 18 < 18 < 18 < 18 < 18 < 18 <	. 22		53	~	8.2 <	0.080373	٧	8.2 <	0.060373	•	× 8	0.196033	٧	* 13	0.401868	<u>~</u>	×	6926250	12.85978
18 April 69 <	8		<u>8</u>	~		0.00000	v	8.2 <	0.060600	v	~	0.197073	٧	* 13	0.404000	<u>~</u>	×	0.532098	7.262162
18 April 48 < 8.2 < 0.065750 < 8.2 < 10.065750 < 2.0 < 0.209147 < 41 < 0.428751 < 54 < 1	ี่	116 April	- \$	•	8.2 <	0.061925	•	8.2 <	0.061925 j	v	8	0.199618	٧	*	0.409627	<u> </u>	×	0.539509	11.89917
	_		- -	٧	8.2 <	0.065750	•	8.2 <	D.065750	v	٧	0.209147	~	* 17	0.428751	<u>~</u>	*	0.564697	10.18546
18 April 61 < 6.2 < 0.114968 < 20 < 0.280410 < 41 < 0.574640 < 54 < 14 0.574640 < 54 < 14 0.574640 < 54 < 14 0.574640 < 54 < 14 0.574640 < 54 < 14 0.574640 < 54 < 14 0.574640 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14 0.57461 < 54 < 14		-	_	_		_			_			_	_			_			
18 April 63 < 8.2 < 0.11762 < 8.2 < 0.11762 < 20 < 0.287226 < 41 < 0.580814 < 54 < 118 April 66 < 8.2 < 0.078052 < 20 < 0.190372 < 41 < 0.390263 < 54 < 118 April 54 < 8.2 < 0.078842 9.6 0.092303 < 20 < 0.192296 < 41 < 0.394211 < 54 < 118 April 71 < 8.2 < N/A < 8.2 < N/A < 8.2 < N/A < 50 < 118 April < 41 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 < 54 < 11 < 0.194211 <	uplicate) 10	118 April	- 64	~	8.2 <	0.114968	•		0.114968	•	~	0.280410	٧	7	0.574840	<u>~</u>			3.533166
18 April 66		18 April	 	•	8.2 <	0.117762	•		0.117762	•	~	0.287226	٧	> 17	0.588814	<u>~</u>	×	0.775511	19.24418
18 April 54 6.2 < 0.078842 9.6 0.092303 20 < 0.192296 41 < 0.394211 54 < 11	_	118 April	 	•		0.078052	•		0.078052	•	¥	0.190372	٧	* 17	0.390263	<u>~</u>	×	0.514005	0.285558
18 April 71	_	18 April	_ x	•	8.2 <	0.078842		9.6	0.092303	•	~	0.192298	•	¥ 14	0.394211	<u>~</u>	×	0.519205	66.34297
				~	8.2 <	- ≪	v	8,2 <	- 4/x	•	٧	- ∀\x	•	* 17	K.¥	<u>×</u>	×	N/A	X/A

Painter UH = Underneath painter respirater hood. Painter OH = Outside painter respirator hood.

					, i												
			Ethox)	Ethoxyethanol		6-Het	hyl-2-Pents	4-Methyl-2-Pentanone(MIBK)	•	Toluene			Butyl Acetate	tate	:	Ethylbenzene	zene
Site Location	Date	Marger	(ug/tube)		(mg/m3)	. =	(ug/tube)	(mg/m3)	` ` ;	(ug/tube)	(mg/m3)		(ug/tube)	(mg/m3)		(ug/tube)	(Fmg/m3)
,	•	- ; _					:		,	•			\$	7,60			5
_		2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	v .	00.0	v	> 92 S	0.214	•	9.7 9.7 9.7	90.0		, S		<u> </u>	, ,	3 5
7		는 유	. Z	×	0.90	v	\$ \$2 \$	0.248	v	8.2 <	201.0	~	₹ 8	0.40	٠.	7.0	0.102
m		- 13 - 13	, ,	~	1.937	٧	<u>ج</u>	0.531	•	8.2 <	0.218	v	₹:	0.551	v .	7 .0	7.0
•	18 April	- Fi	, ,	×	0,73		5	1.651		N;	0.237		7	44.0	v ·	7.0	0.00
*		5	ν̈́	×	0.70	٧	× &	0.1% -	٧	8.2 <	0.000	v	%	0.1%	٧.	2.8	9 6
•		- х	'	×	0.713		*	0.234	٧	9.2 <	0.080	٧	× R:	C :	٠,	7.0	3 8
7	2	28		~	.73		150	1.557		% ;	0.239	_	S , (٧ ،	v v	9.0
60 (2 9	21	v 1	v .	20.767		Š.	9 6	,	3	200	١	, 3 6	32.5	, v		9 0
•	2 :	3 9	· F	v			} §	1 400	,) Y	224	,	, 2 %	376	· ¥	8.2 <	0.115
2 :		÷ p	· F	, <u>,</u>	1		3 5	007.5		; K	0.773		3	1.482	v	8.2 <	90.0
		\ =	; K	, v	8		3	4.850		\$	0.718		52	1.325	٧	6.2 <	6.0
! !	*	28		· •	0.765		320	3.264		12	0.337		3	697.0	¥	8.2 <	9.0
14	20	2	, K	×	9.73		450	799.7		.	0.673		5	1.347	v	8.2 <	0.065
.	2	R	.7	Y	1.007		100	16.527		150	2.254		22	4.306	<u>×</u>	9. 5	0.12
9	2	22	7	Y	P. 0		1400	16.793		5	2.008		8	4.227	v	V (0.087
17	2	**	<u>۲</u>	×	0.748		ş	3.074		37	0.379		8	0.615	v	9.2 ×	9.5
2	2	&	, , , , , , , , , , , , , , , , , , ,	×	0.765		930	9.760		£	1.152		210	2.199	v	8.2 <	8.5
5	2	33	~	~	0.80	:	2300 **	28.025	_	310	3.77		663	8.042	×	8.2 ×	0.0
2	=	*	*	¥	92.0		2000	21.808		9 82	3.053		23	6.215	<u> </u>	8.2	80.0
7		2	V	V	152		2	1.748		2	2.13		X	0.257	٧	8.2 <	8
2 :		2		· v	0.757		9	3,111		3	957.0		2	0.830	٧.	8.2 <	8
3 %	=	1		· •	0.780		2	8.440		110	1.13		220	2.350	٧	8.2 <	0.068
12	5 52	-	, K	; K	0.797		710	7.75		8	1.092		8	2.185	v	8.2 <	9.0
		:	F.	,			Ş	- 12		*	177		::	0.482	~	8.2 <	0.12
(משנוכפנה) ומונה			- F	/ \ } •	3		2 5	17 710		5	3		310	4.881	•	8.2 <	0.12
(Duplicate) 13	2 :		~ F	, ,	376	:	3 2	057 00	_ ^	2 5	8		9	7.622	٧	8.2 <	0.142
Petrice G	18 Apr	= ;	· ·	, 2 F	607	; '	38	25.430	,	3:			2		. ,		8
						١			۰			•	2	O. 64.	~	2.0	5.5

Painter UH = Underneath painter respirator hood. Painter OH = Outside painter respirator hood.

	Travis AFB		HSO:	MIOSH 1300, Organics	ganics																
	Date: Start Time: Stop Time:	18 April, 10:02 11:02	<u>\$</u>		Booth: T=61.3 P=29.88	STP P=29.92 "Hg T=68 "F	ğ														
				1 2	Semple Semple Semple	Volume Collected		2-Butanone (MEK)	EC	w	Ethyl Acetate	ate.	-5-	2-Butanol		-c	n-Butanol		Het	Methoxyacetone	ŧ
∽ •	Site Location	Date	Mumber	(min)	Number (min) (1/min)	:) 	(vg/tube) (a	(mg/m3)	3	(ug/tube)	(mg/m3)	(ug/tube)		(mg/m3)	(ug/tube)	(mg/m3)	<u> </u>	(ug/tube)	•	(mg/m3)
	-	18 April	*	0.09	1.543	93.6	×	20 <	0.214	V	\$00	0.214	v	21 <	727	7	٧	765	·	,	60 V
	~	=	8	\$1.0	1.305	80.5	V	50 ×	0.248	٧	200	0.248	v	21 ×	0.261	7		792		200	8
	P O	2	ħ	26.0	1.433	37.7	××	× 2	0.531	v	<u>د</u>	0.531	•	× 15	0.557	×	٧	0.557	v	× ×	7.486
	•	2	<u> </u>	9. 2.	1.369	8	×		0.392	•	٠ ج	0.206	•	21 <	0.217	21	٧	1.217	v	× %	0.578
	'n	2	9	0.K	35	102.9	×	\$	0.631	•	× 8	2.0	•	21 <	0.204	۰ 21	·	0.204	v	26 <	0.544
	•	2 :	KQ :	2.0	1.426	102.4	×		0.273	v	× 8	0.195	v	21 <	0.205	< 21	_		v	× ×	0.547
	~ (2 :	2	e:		3	×		0.457	v	2	0.208	v	<u>~</u>	0.218	۲ 2	•	.218	v	% ^	0.581
		2	2	0.00	Ž.	2.5	×		0.641	v	2	0.210	·	21 <	0.221	₩ •	•	-22	U	× ×	0.588
	• ;	2 9	1	e :	1.147	21.5	×	350	4.310	•	>	0.246	v	21 <	0.23	× 21	•	0.23 -	v	× ×	0.69
	2;	2	2	0.2	196.0	_	×		0.960	•	?	0.280	v	~ :	0.2%	≂: ~	٠ پ	ž.		8	0.78
	= {	2	× :	51	1.515	_	×		1.165	•	×	0.212	~	~ :	0.222		•	8	v	8	0.593
	2;	2 :	22	8 I	6/2-1	9.6		;	500	~	٠ 2	0.221	v	٠ ت	0.232	۰ ا	~	22	v	× ×	0.618
	2;	2	8	0.27	340	R	×		19.382	v	X	0.70	•	× ~	0.254	⊼ •	~	-214		× ×	0.57
	*	2	<u>ہ</u>	D. C	*				5.491	•	2	- 201	v	<u>ہ</u>	0.218	٠ 2	•	.218	v	× %	0.580
	\$	2	2	9.0 P	* ·		×		3.155	~	× ຂ	0.300	v	2 <	0.316	₩ •	~	.316	U	*	0.841
	9	2	2	\$	1.356	8	×		2.853	•	<u>২</u>	0.211	•	21 <	0.222	× 21	-	<u>.</u>	v	26 <	0.592
5	11	2	2	2.0	*		×		21.519	¥	× ۾	0.205	•	<u>۲</u>	0.215	۲ ۲	•	.215	v	× ×	0.574
1 5	₽ :	2	R	2.0	1.311	8	×		14.663	v	2	0.200	•	2.	0.220	۰ 2	•	8	v	× %	0.587
	4	2	S	67.0	1.211				6.580	v	٠ ৯	0.244	•	21 <	952.0	× 2	•	ķ	v	× %	0.682
	Ri	2	*	0.05	1.314			430	669.	•	ž R	0.218	•	<u>۲</u>	0.229	~	•	<u>.</u>	v	ž	0.611
	7	2	2	2.0	1.317		×	25	9.460	•	ž	0.206	v	<u>۲</u>	9.216	٠ 22	•	.216	J	2	0.576
	2	₽	8	2.0	1.324	8	×	2	26.	v	× &	0.207	•	21 <	0.218	52 •	•	.218	J	ž	0.581
	N:	2	24	R	1.322		×	130 0	1.923	v	٠ ۾	0.214	v	2 ×	0.224	د 2	•	727	u	Š	0.596
	*	18 April	>	e 2	<u>.</u>		×	150	83.	v	2	0.218	•	~ 12	0.229	د 21	•	83.		× ×	0.612
_	Durolicate) 10	0 18 April	12	71.0	0.93	99	*		2.046		110	1.607		× .	202		•	2		٠ خ	818.0
	(Duplicate) 15 18		5	0.69	0.91				3.149	v	2	0.315	v	· ~	0.331	7				· •	2
	Painter UN	18 April	Ξ	74.0	1.297				_	•	200	9,346	v	×	*	7	•	×		· ·	0.07
	Painter Off	18 April	×	63.0	1.3	82.8	٧	× 02	5	v	20.	0.241		21 <	0.233	× 22	G V	0.23		8	0.676
	ž	118 April	유 -	0:0	• -	0.0	v		- Y/H	•	2	W/X		2	~ ∀ %	2	=	·	u	2	K/X

Painter UH = Underneath painter respirator hood. Painter OH = Outside painter respirator hood.

			2	otel X	Total Xylenes	_	PMGE Acetate	tate	2-Ethoxyethyl Acetate	Acetate	2-Hethoxyet	2-Methoxyethyl Ether	. نو	Totals
Site Location	Dete	Number (ug/tube)	3	(cpg)	(Em/gm)	. J	(ug/tube)	(mg/n3)	(ug/tube)	(Em/gm)	(ug/tube)	De) (mg/m3)	 	(Em/gm)
•		7					8	0.214	* 17	827.0	٧	_ V	0.577	< 4.171059
- ^	18 April	\$ 8	, ,		0.102	· •	ž	0.248	× 13	0.509	•	_		< 4.850909
m		. E	· •	8.2	< 0.218	<u> </u>	R	0.531	× 17 ×	1.088	•	•		< 10.36439
*	18 April	2	٧	8.2	< 0.085	٧	২	0.206	* 17 *	0.423	•	•	0.557	2.723539
10	18 Apr !!	9	٧	8.2	0.080	· 	元 2	ج ا	5 · ·	0.398	٠,		0.30	0.037473
4 0	18 April	8.0	۰,	N C	90.0	· ·	3 5	200	* * *	\$27.0		, ,	3	2.656532
~ «	12 4	3 =	· <u>·</u>		, Age 2	· •	28	0.210	5	0.431	•	v	0.567	4.369796
•	13 Apr [12	, ,	8.2	• 0.101	٧	٠ 8	0.246	> 17 >	0.505	•	•	0.665	5.134591
5	18 April	2	٧	8.2	< 0.115	<u> </u>	원	0.280	× 11 ×	0.574	•	•	8	2.939335
=	18 April	32	٧	8.2	< 0.067	•	2	0.212	× 5	0.434	v	v	2/2	8.820479
12	18 April	2	<u> </u>	8.2	0.091	<u>~</u>	ਨ :	0.221	× 13	0.453	•	y 1	85.0	7. 453463
₽ :		8	<u> </u>	2.2	7	<u> </u>	38	200	· ·	V.7.	, ,	, ,	0 %	12, 1739
* *		5 2	<u> </u>	7 7	0760	· \	2 5	200	7 17	0.616		· •	0.811	26.98433
<u>.</u> ≯		2 8		2 €	0.211	· •	28	0.211	× 13	0.433	v	•	0.571	24.09114
2.5		, 2	_		\$0.00 \$	~	₹	0.205	V 15	0.420	v	•	0.553	25.58659
#		2		6.6	0.104	٧	× R	0.209	× 13 ×	0.429	v	v	× ×	27.65873
2		*		K	0.402	٧	8	0.244	× 13	0.500	V	~	929	46.82553
8		*		8	0.316	<u> </u>	₹	0.218	× 13	0.447	v	~	66.	36.08141
*		2	٧	8.2	A0.00 ×	<u>~</u>	2	902.0	, the state of the	0.422	V	~	55	11.00099
22		2	v	8.2	A 0.065	<u> </u>	ম	0.207	` .	527.0	v	v	3	6.367650
K		37	_	2		٧	ž	0.214	× 53	0.438	v	v	24	13.99500
*	16 April	2	<u> </u>	8.2	•	٧	Ř	0.218	× 55	877.0	V	v	85	12.67067
00 (1000)	•	ţ	,	~	6 420	_	8	0.292	• 13	0.599	·	•	0.789	6.151232
Thister 15			<u>,</u>	; <u>×</u>		v	8	0.315	× 13	9,646	v	v	85	27.56300
Deinter III 18 1				ā		· •	R	0.346	× 13	0.710	٧	% × %	0.935	58.64045
Peinter Of	1	: ¥	٠		,	•	8	170 0	7 17	807 0	,		-	A D 878780
			,		,	,	3	143.0	,	****	,	,	_	

Painter UH = Underneath painter respirator hood. Painter OH = Outside painter respirator hood.

800th: \$1P T= 67.7 P=29.92 #Hg P= 29.88 T=68 °F

									Volume					
	•	_			Time	Sample	Sample		Collected	2-Butan	2-Butanone (NEK)		Ethyl Acetate	tate
Site Location	- -	Dake	Namole Referen	ACUREX # !	(min)	(cc/min)	(L/min)			(ug/tube)	(mg/m3)		ug/tube)	(mg/m3)
	-		-		 	<u> </u>					•	_	1 1 6 4 4 4 4	
Exhaust Duct, 10:30 [16 April	10:30	16 April	- Z	12993	36.00	1066.00	1.066	38.38	38.35	57	1.48646	·	8	0.521560
Exhaust Duct, 14:45 [16 April	14:45	116 Aprili	*	28	8.8	. <u>=</u>	1.067	57.62	57.57	67		<u>~</u>	8	0.347380
Exhaust Duct, Blank 17 April	Blank	117 Apr 11	*	888	6.8	0.000	0	9.0	00.00	× 2 ×		<u>×</u>	8	× V
Exhaust Duct, 10:00	10:00	117 April	*	£	99	1059.000	1.059	63.54	63.49	20		<u>×</u>	2	_
Exhaust Duct, 16:00 17 April	16:00	117 April	- - -	12994	90.09	1009.000	1.039	£.39	. 65.29	> 02 >	< 0.306326	<u>~</u>	8	0.306326
Exhaust Duct, 4pm Dup 17 April	90	17 April	**	1099	8.99	1053.00	1.053	63.18	63.13	20 >	< 0.316799	<u>~</u>	2	0.316799
Exhaust Duct, 11:00 18 April	11:00	118 April	- 40F	2363	53.88		1.026	X.X	24.34	22	1.435507	<u>~</u>	2	0.368078
Exhaust Duct, 17:00 18 April	17:00	118 April	ĕ	12015	60.00	_	1.027	61.62	61.57	5	2.760967	<u>~</u>	8	0.324819
Exhaust Duct,	11:30	119 Apr 11	755	11050	53.00	991.00	_	52.52	52.48	82	4.362403	<u>×</u>	ž	0.381078
Exhaust Duct, 15:00 19 April	15:00	119 Apr 11	77.	12995	42.00		_	41.62	41.59	240	5.770617	<u>×</u>	ž	0.480884

		2-Butanol			n-Butanol	7	<u>.</u>	Methoxyacetone	etone	Etho	Ethoxyethanol		4-Hethyl	-2-Penta	[4-Hethyl-2-Pentanone(HIBK)]
Site Location Date (ug/tube; (mg/m3)	onte -	(ug/tube)	(ug/tube) (mg/m3)	3	(ug/tube) (mg/m3	(ug/tube) (mg/m3)	3	(ug/tube) (mg/m3	(ug/tube) (mg/m3)	()	(ug/tube) (mg/m	(ug/tube) (mg/m3)	1 2 3	(ug/tube) (mg/m3	(mg/m3)
		• • • • • • • • • • • • • • • • • • •	1	•			_			* • • • • •		_			_
Exhaust Duct, 10:30 16 April <	16 April		21 < 0.547638	¥	21 <	21 < 0.547638	<u> </u>	*	56 < 1.460368	•	3 4	73 < 1.903694	•	8	0.521560
Exhaust Duct, 14:45 16 April <	116 April		21 < 0.364749	•	> 12	21 < 0.364749	v	%	0.972666	•	73 1	73 < 1.267939		210	3.647498
Exhaust Duct, Blank (17 April	17 April	•	21 < N/A	•	> 12	K/A	<u> </u>	%	×××××××××××××××××××××××××××××××××××××	•	73 <	N/A	•	8	N/A
Exhaust Duct, 10:00 17 April <	117 April	•	< 0.330754	•	> 12	0.330754	v	% *	0.862012	•	73 < 1	1.149766		r	1.48471
Exhaust Duct, 16:00 17 April	117 April	v	21 < 0.321643	~	> 12	0.321643	v	% •	0.657714	v	73 < 1	73 < 1.118092		3	0.735184
Exhaust Duct,4pm Dup i7 April	177 April		21 < 0.532639	•	> 12	21 < 0.332639	<u> </u>	3	56 < 0.887038	•	73 < 1	7156317		2	1.298377
Exhaust fret, 11:00 [18 April <	18 April		21 < 0.36662	•	> 12	21 < 0.396462	~	%	56 < 1.030620	•	73 ^ 1	73 < 1.343467		952	4.232905
Exhaust Duct, 77:00 18 April <	18 April		21 < 0.341060	•	21 ×	0.341060	· ·	× ×	56 < 0.909495	•	73 < 1	73 < 1.185591		8	2.923376
Exhaust Duct, 11:30 [19 April <	119 April		21 < 0.400132	•	21 ×	21 < 0.400132	<u>~</u>	*	56 < 1.067019	•	73 < 1	73 < 1.390936		8	1.905392
Exhaust Duct, 15:00 19 April <	119 April		21 < 0.504929	•	21 ×	21 < 0.504929	<u>*</u>	ž	56 < 1.346477	•	7 . 1	73 < 1.755229		8	2.067304

Site Location Date (ug/tube) (<u> </u>	_	Toluene	•		Butyl Acetate	tate		Ethylbenzene)zene		Total Xylenes	enes		PMGE Acetate	state	
2: 0.547636 < 20 < 0.521560 < 8.2 < 0.213839 < 8.2 < 0.213839 < 20 < 20 < 20 < 20 < 20 < 20 < 20 <	Site Location	- Dete	<u>: ਤ</u>	ag/tube)	(Em/gm)		ng/tube)	(mg/m3)	; z 	ag/tube)	(mg/m3)		(ug/tube)	(mg/m3)	. . .	ug/tube)	(mg/m3)	
2: 0.547636 < 20 < 0.521560 < 8.2 < 0.213639 < 8.2 < 0.142426 < 20 < 0.503702 < 20 < 0.920559 < 8.2 < 0.142426 < 8.2 < 0.142426 < 20 < 20 < 20 < 20 < 20 < 20 < 20 <	• • • • • • • • • • • • • • • • • • •	_	-			_	•				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	1 4 1 1 1 1	 	_		 	
29 0.503702 53 0.920559 < 8.2 < 0.142426 < 8.2 < 0.142426 < 20 < 1/4	Exhaust Duct, 10:3	0 16 Apri		23	0.547638	٧	2	0.521560	Y	8.2 <	0.213839	<u> </u>	8.2 <	0.213639	<u> ~</u>	8	0.521560	
< 8.2 < N/A < 20 < N/B < 8.2 < N/A < 8.2 < N/B < 20 < 1.29151 < 20 < 1.29151 < 20 < 1.29151 < 20 < 1.29151 < 20 < 1.29151 < 20 < 1.29151 < 20 < 1.29151 < 20 < 1.291593 < 8.2 < 0.12593 < 8.2 < 0.12593 < 20 < 1.29151 < 20 < 1.29159 < 8.2 < 0.12593 < 8.2 < 0.12593 < 20 < 1.29159 < 8.2 < 0.12593 < 8.2 < 0.129151 < 20 < 1.29159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.20159 < 1.201	Exhaust Duct, 14:4	5 [16 Apri	_	&	0.503702			0.920559	•	8.2 <	0.142426	<u>×</u>	8.2 <	0.142426	<u>~</u>	ž	0.347380	_
27 0.42526	Exhaust Duct, Blam	k 17 Apri	<u>~</u>		N/N	٧	82	€ /X	•	8.2 <	N/N	<u> </u>	8.2 <	M/A	<u>×</u>	8	¥X	_
10 0.153163 < 20 < 0.306326 < 8.2 < 0.125993 < 8.2 < 0.125993 < 20 < 0.153679 < 8.2 < 0.129887 < 8.2 < 0.129887 < 20 < 0.316799 < 8.2 < 0.129887 < 8.2 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129888 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129887 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.1298888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.12988 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0.129888 < 20 < 0	Exhaust Duct, 10:0	0 17 April	_		0.42526		77	0.330754	٧	8.2 <	0.129151	<u>~</u>	8.2 <	0.129151	<u>~</u>	Ř	0.315004	_
17 0.269279 < 20 < 0.316799 < 8.2 < 0.129887 < 8.2 < 0.129887 < 20 < 0.316799 < 8.2 < 0.150912 < 8.2 < 0.150912 < 20 < 80 < 8.2 < 0.150912 < 80 < 80 < 9.150912 < 80 < 80 < 9.150912 < 80 < 80 < 9.150912 < 80 < 90 < 90 < 90 < 90 < 90 < 90 < 90	Exhaust Duct, 16:0	0 (17 Apri	_	2	0.153163	٧	8	0.306326	•	8.2 <	0.125593	<u>×</u>	8.2 <	0.125593	<u>~</u>	8	0.306326	_
35 0.644137 61 1.122640 6. 8.2 < 0.150912 6. 20 < 1.122640 6. 2.2 < 0.150912 6. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.122640 7. 20 < 1.1226400 7. 20 < 1.1226400 7. 20 < 1.1226400 7. 20 < 1.1226400 7. 20 < 1.1226400	Exhaust Duct, 4pm D	40/17 Apri	_	11	0.269279	~	8	0.316799	٧	8.2 <	0.129687	<u>×</u>	8.2 <	0.129687	<u>~</u>	8	0.316799	
21 0.341060 39 0.633396 6.2 < 0.133176 6.2 < 0.133176 6.2 < 0.133176 6.2 < 0.133176 6.2 < 0.134701 27 0.514456 6.2 < 0.156242 6.2 < 0.156242 6.2 < 0.156242 6.2 < 0.156242 6.2 < 0.156242 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.197162 6.2 < 0.19716	Exhaust Duct, 11:0	0 18 April	_	ĸ	0.644137		5	1.122640	v	8.2 <	0.150912	<u>×</u>	8.2 <	0.150912	<u>~</u>	ž	0.368078	_
13 0.247701 27 0.514456 4 8.2 < 0.156242 4 8.2 < 0.156242 4 20 <	Exhaust Duct, 17:0	0 18 Apri		2	0.341060		8	0.633396	•	8.2 <	0.133176	<u>×</u>	8.2 <	0.133176	<u>~</u>	8	0.324819	_
11 0.264486 24 0.577061 4 8.2 < 0.197162 4 8.2 < 0.197162 4 20 <	Exhaust Duct, 11:3	0 19 Apri	_	Ð	0.247701		12	0.514456	•	8.2 <	0.156242	<u>×</u>	8.2 <	0.156242	<u>×</u>	ž	0.381078	_
	Exhaust Duct, 15:0	0 19 Apri	_	=	0.264486		*	0.577061	•	8.2 <	0.197162	<u>×</u>	8.2 <	0.197162	<u>×</u>	Ř	0.480684	_

			<u>.</u>	Z-Ethoxyethyl Acetate	Accidic	•	2-methodyetnyt ether	,	
Site Location	<u>8</u>	Date		(ug/tube) (mg/m3)	(mg/m3)		(ug/tube) (mg/m3)	(mg/m3)	Totals
•			i _	•					
Exhaust Duct, 10:30 16 April	10:35	116 April	<u>×</u>	* 13	41 < 1.069198	٧	×	54 < 1.408212	2.04
Exhaust Duct, 14:45 16 April	14:45	116 April	<u>×</u>	* 14	11 < 0.712130	~	×	0.937928	5.87
Exhaust Duct,	al ank	Blank 17 April	<u>×</u>	* 13 *	11 < N/A	٧	×	- W	€ ×
Exhaust Duct, 10:00	10:00	117 April	<u>×</u>	* 13	1 < 0.645759	v	×	0.850512	5.84
Exhaust Duct, 16:00 17 April	16:00	117 April	<u> </u>	* 13	11 < 0.627969	٧	×	0.827062	0.89
Exhaust Duct, 4pm Dup 17 April	3	117 April	<u>×</u>	* 17	11 < 0.649438	•	×	0.855358	1.57
Exhaust Duct, 11:00 [18 April	1:8	118 April	٧	* 5	11 < 0.754561	٧	×	0.993812	7.44
Exhaust Duct, 17:00 [18 April	17:00	118 April	V	* 17	11 < 0.665880	v	×	0.877013	6.65
Exhaust Duct, 11:30 19 April	11:30	119 April	<u> </u>	* 13	11 < 0.781210	٧	×	1.028912	7.05
Exhaust Durt, 15:06 (19 April	15:00	119 April	v	× 14	41 < 0.985813	٧	*	1,298389	8.68

Travis AFB NIOSH 500 Particulate

Date: 16 April 1991 STP Booth: Start Time: 14:48 P=29.92 "Hg T=

 Start Time:
 14:48
 P=29.92 "Hg
 T=
 66.6

 Stop Time:
 15:48
 T=68 *F
 P=
 29.87

							Volume			
	İ		1 1	Time	Sample	Vo1 ume	Collected	Weight	Weight) 1
			Sample	Sampled	Flowrate	Collected	@ STP	Gain	Gain	
Site Lucation	(Date	Number	(min)	(1/min)	(1)	(1)	(g)	(mg)	(mg/m3)
	: i				 I	 I	 1			
1	16	April	12	65.00	3.1	201.50	 201.70	 0.0001 6	0.2	0.793
2	16	April	15	54.00	3.02	163.08	•	0.00000	0.0	0.000
3	16	April	3	63.00	3.13	197.19	•	0.00014	0.1	
4	16	April	8	62.00	3.093	191.77	•	0.00000	0.0	
5	16	April	11	65.00	3.094	201.11	201.31	0.00009	0.1	
6	16	April	19	63.00	3.098	195.17	195.37	0.0000	0.0	0.000
7	15	April	13	64.00	2.961	189.50	:	0.00055	0.6	2.899
8	16	April	14	62.00	3.133	194.25	194.44	0.00047	0.5	2.417
9	16	April	17	63.00	3.056	192.53	192.72	0.00021	0.2	1.090
10	16	April	16	63.00	3.059	192.72	192.91	0.00076	0.8	3.940
11	16	April	18	63.00	3.033	191.08	191.27	0.00311	3.1	16.260
12	16	April	4	62.00	3.074	190.59	190.78	0.00118	1.2	6.185
13	16	April	5	63.00	3.074	193.66	193.85	0.0008	0.8	4.127
14	16	April	9	63.60	3.068	193.28	193.47	0.00291	2.9	15.041
15	16	April	39	63.00	3.016	190.01	190.20	0.00691	6.9	36.331
16	16	April	33	62.00	3.062	189.84	190.03	0.00526	5.3	27.680
17	16	April	1 1	63.00	3.079	193.98	194.17	0.0143	14.3	73.648
18	16	April	37	64.00	3.077	196.93	197.12	0.00662	6.6	33.583
19	16	April	27	63.00	3.077	193.85	194.04	0.00435	4.4	22.418
20	16	April	30	62.00	3.098	192.08	192.27	0.00465	4.7	24.185
21	16	April	6	63.00	3.023	190.45	190.64	0.0002	0.2	1.049
22	16	April	2	63.00	3.076	193.79	193.98	0.00088	0.9	4.537
23	16	April	32	63.00	3.054	192.40	192.59	0.00533	5.4	27.935
24	16	April	36	62.00	3.107	192.63	192.82	0.00201	2.0	10.424
Painter Od	16	April	25	0.00	3.064	0.00	0.00	0.00000	0.0	N/A
Painter UH	16	April	24	63.00	3.086	194.42	194.61	0.00000	0.0	0.000
(Duplicate) 10	16	April	10	63.00	3.199	201.54	201.74	•	0.7	
(Duplicate) 15	16	April	35		3.178	0.00	0.00	0.00046	0.5	
		April	7	0.00	1 0	0.00	0.00	0.00000	0.0	
	Ì	•	i i		İ	İ	0.00	1	0.0	
Exhaust Duct	16	April	i i		1.067	0.00	*	İ	0.0	

Painter OH = Outside painter respirator hood. Painter UH = Underneath painter respirator hood. Travis AFB NIOSH 500 Particulate

Date: 17 April 1991 STP Booth:

 Start Time:
 16:05
 P=29.92 "Hig
 T=
 68

 Stop Time:
 17:18
 T=68 *F
 P=
 29.93

Volume.

							AOIMME			
			1	Time	Sample	Volume	Collected	Weight	Veight	
	1		Sample	Sampled	Flowrate	Collected	# STP	Gain	Gain	
Site Location	[ate	Number	(min)	(1/min)	(1)	(1)	(g)	(mg)	(mg/m3)
	1		1			}	1	1		
	•	April	40	84.00	3.052	256.37	256.45	0.00003	0.0	0.117
		April	58	70.00	3.01	210.70	210.77	0.00000	0.0 *	-
		April	22	83.00	3.036	252.15	252.24	0.00000	0.0 *	0.000
4	17	April	34	82.00	3.102	254.36	254.45	0.00000	0.0 *	0.000
5	17	April	52	84.00	2.87	241.08	241.16	0.00008	0.1	0.332
6	17	April	46	82.00	3.096	253.87	253.96	0.00000	0.0 *	0.000
7	17	April	29	83.00	2.964	246.01	246.09	0.00000	0.0 *	0.000
8	17	April	23	82.00	3.102	254.36	254.45	0.00042	0.4	1.651
9	17	April	43	83.00	3.045	252.74	252.82	0.00018	0.2	0.712
10	17	April	59	83.00	3.039	252.24	252.32	0.0000	0.0 *	0.000
11	17	April	45	82.00	3.02	247.64	247.72	0.00095] 1.0	3.835
12	17	April	20	82.00	3.036	248.95	249.04	0.00042	0.4	1.687
13	17	April	31	82.00	3.041	249.36	249.45	0.00978	0.8	3.127
14	17	April	38	82.00	3.038	249.12	249.20	0.00179	1.8	7.183
	-	April	48	82.00	2.963	242.97	243.05	0.00012	0.1	0.494
16	17	April	49	82.00	3.043	249.53	249.61	0.00219	2.2	8.774
	•	April	42	83.00	3.045	252.74	252.82	0.00218	2.2	8.623
		April	44	83.00	3.071	254.89	254.98	0.00522	5.2	20.472
		April	41	82.00	1	249.94	250.02	0.00635	6.3	25.398
		April	53	82.00	3.084	252.89	•	0.00357	3.6	14.112
		April	51	82.00	3.012	246.98	1	0.00044	0.4	1.781
		April	55	82.00	3.062	:	I	0.00065	0.7	2.588
	1	April	j 47	82.00	3.026	248.13	1	0.00115	1.2	4.633
	•	April	21	82.00	3.05	:		0.00072	0.7	2.878
Painter OH		April	50	78.00	3.008	234.62	234.70	0.00085	0.9	3.622
Painter Uli	•	April	57	78.00	3.036	236.81	:	0.00000	0.0	0.000
(Ouplicate) 10			66	82.00	3.16	:	:	0.00044	0.4	
(Duplicate) 15	:	•	54	82.00	3.144	257.81	257.89	0.0024	2.4	
,	1		"		i	j	0.00	j	0.0	
Blank	117	April	i	0.00	ì	0.00	0.00	ì	0.0	
Exhaust Duct	2	April	i	60.00	1.053	63.18	63.20	İ	0.0	
Exh. Duct Dup	•	•	i	60.00	1.089	65.34	•	i	0.0	•
-Ann dade out	1 ~ '	100	1	1 22.22	,	,				•

Painter OH = Outside painter respirator hood. Painter UH = Underneath painter respirator hood.

	Travis AFB	N10Sh 7300	8	Hetals												
		16 April,	<u>3</u>			STP		Booth:					1	•		
	Start Time:	10:45				P±29.92 "¥	<u>5</u>			Paint		11	erneath p	ainter	respirato	r nood.
Time Sample Volume Collected STP Lead Since Strontium Collected Standard Standard Collected STP Lead Since Strontium Collected STP Lead Standard Collected STP Lead STP Lead STP Collected STP Collected STP Lead STP Collected STP Collected STP Collected STP Collected STP Collected STP Collected STP Collected STP ST		11:25				1=68 °F				Paint		П	side paın	ter res	pirator h	. poo
Sample Sample Volume Collected 3 TP Lead Line Lin							Volume									
Semples Semples Flowerise Collected a STP Lead		_	_	Time		Volume	Collected					_		_		_
Option State			Semple	Sampled	Flourate	Collected	a STP	Lead	_	Zinc		-	Strontium	_	Chromium	_
1, 2, 2, 0, 1, 0, 2, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 2, 2, 3, 1, 1, 2, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	Site Location	Date	Number		((/min)	3	(3)	aldwes/8n		Mas/gu		J/m3	ug/sample	ng/m3 ∣	ug/sample	ug/m3
25 100 100 110 6.61 100 110 6.61 100 6.77 110 6.61 100 6.77 100 110 110 6.61 100 11		_	_		_				_	-						_
26 46,00 2,983 137,22 138,43 1,5 10,500 1,135 9,137 1,135 9,137 1,135 9,1	-	16 April	_	52.00	3.075	159.90	161.78	1.5 4	72.6	 		9.27	1.07	6.61	0.57	3.52
43 52.00 3.025 157.30 159.15 1.5 9.43 4.15 9.44 1.5 9.45 1.5 9.45 1.5 9.45 1.5 9.40 1.5	7	36 April	_	00.94	2.963	137.22	136.83		•			10.80	1.32	9.51	0.33	2.38
32 56.00 3.085 17.5 6.65 1.5 6.65 1.5 6.65 1.5 6.65 1.5 6.65 1.5 6.65 1.5 6.67 1.5 6.67 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.13 1.65 1.13 1.13 1.65 1.13 1.65 1.13 1.65 1.13 1.65 1.13 </td <th>m</th> <th>16 April</th> <td>£3</td> <td>52.00</td> <td>3.025</td> <td>157.30</td> <td>159.15</td> <td>1.5 4</td> <td>6.43</td> <td></td> <td>رة د</td> <td>9.43</td> <td>5.49</td> <td>15.65</td> <td>1.23</td> <td>7.73</td>	m	16 April	£3	52.00	3.025	157.30	159.15	1.5 4	6.43		رة د	9.43	5.49	15.65	1.23	7.73
17. 17.	4	16 April	_	28.90	3.062	171.47	173.49	1.5 4	8.65			8.65	2.60	14.99	0.77	4.44
34 54.00 1.00 1.00 4 1.5 8.00 5.11 30.44 1.20 35 55.00 1.004 176.77 184.56 4 1.5 9.46 1.15 8.00 1.50 9.70 1.20 9.70 </th <th></th> <th>16 April</th> <th></th> <th>53.00</th> <th>3.109</th> <th>154.78</th> <th>166.71</th> <th>× 1.5 ×</th> <th>8.6</th> <th></th> <th>ار</th> <th>9.00</th> <th>2.2</th> <th>13.50</th> <th>1.73</th> <th>10.38</th>		16 April		53.00	3.109	154.78	166.71	× 1.5 ×	8.6		ار	9.00	2.2	13.50	1.73	10.38
35 53.00 2.997 (45.72) (48.78) (4.28)	•	16 April	×	24.00	3.005	166.59	168.55	1.5	8.8		رة م	8.8	5.13	30.44	1.20	7.12
36 59.00 3.044 179.60 181.71 < 1.5 < 9.70 < 1.5 < 9.70 15.11 97.66 97.01 9.21 36 51.00 2.996 132.90 135.40 < 1.5 < 9.70 < 1.5 < 9.70 15.11 97.66 7.67 38 54.00 2.996 132.90 135.40 < 1.5 < 9.70 < 1.5 < 9.70 3.51 3.52 </td <th>•</th> <th>16 April</th> <td>8</td> <td>53.00</td> <td>1 2.957</td> <td>156.72</td> <td>158.56</td> <td>× 1.5 ×</td> <td>9.46</td> <td>·-</td> <td>الا</td> <td>9.46</td> <td>13.80</td> <td>87.03</td> <td>3.27</td> <td>52.16</td>	•	16 April	8	53.00	1 2.957	156.72	158.56	× 1.5 ×	9.46	·-	الا	9.46	13.80	87.03	3.27	52.16
49 51,00 2,996 152,90 154,69 < 1,5 < 9,70 < 1,5 < 9,70 15.11 97.66 7.67 38 54,00 2,997 160,65 162,54 < 1,5 < 9,70 < 1,5 < 9,70 5.69 35.01 2.77 25 58,00 2,997 176,27 < 1,5 < 9,70 < 1,5 < 9,70 32.73 18.66 17.86 17.86 17.87 18.67	••	16 April		29.00	3.044	179.60	181.71	1.5	8.26		٠ ا	8.26	17.64	97.08	9.21	50.69
35 54,00 2.975 160.66 162.54 1.5 9.78 1.5 9.79 2.21 3.69 35.01 2.27 3.50 2.97 35.11 360.26 35.22 35.22 35.21 360.26 35.22 35.22 35.21 360.26 35.22 36.26 35.21 360.26 35.22 36.26 35.21 36.26 35.21 36.26 35.21 36.26 35.21 36.26 35.21 36.26 36.37 36.32 </td <th>•</th> <th>116 April</th> <td></td> <td>51.00</td> <td>2.9%</td> <td>152.90</td> <td>154.69</td> <td>1.5 <</td> <td>2.0</td> <td>÷</td> <td>> 5:</td> <td>P.70</td> <td>15.11</td> <td>97.68</td> <td>7.67</td> <td>49.58</td>	•	116 April		51.00	2.9%	152.90	154.69	1.5 <	2.0	÷	> 5 :	P.70	15.11	97.68	7.67	49.58
65 51.00 2.968 151.37 153.15 1.5 9.79 1.5 9.79 1.5 9.79 1.5 9.79 1.5 9.70 1.5 9.70 1.5 9.70 1.5 9.50 2.50 2.50 2.50 1.5 9.70 1.5 9.50 1.5 9.70 1.5	5	16 April	_	8.7	2.975	160.65	162.54	1.5 4	2.2	·	v	9.23	5.69	35.01	2.27	13.97
25 88.00 3.009 174.52 176.57 4.15 9.50 4.15 9.50 5.50 5.50 156.40 166.40 166.20 1	=	16 April:		51.00	2.968	151.37	153.15	1.5 <	8.9		> S	6.79	52.11	340.26	29.52	192.76
8 \$2.00 3.001 196.05 197.09 < 1.5 < 9.50 < 1.5 < 9.50 2.005 198.42 160.28 < 1.5 < 9.36 < 1.5 < 9.36 28.00 176.70 198.42 160.28 < 1.5 < 9.36 < 1.5 < 9.36 28.00 176.70 176.28 < 1.5 < 9.30 < 1.5 < 9.30 176.50 177.20	12	16 Apr11		8.8	3.009	174.52	176.57	1.5 <	8.50	- ·	, 5	8.50	32.75	185.48	18.18	102.96
44 53.00 2.986 156.42 162.26 1.5 9.36 4.5 9.56 1.5 9.10 146.40 867.95 81.86 81.87 81.86 81.87 </td <th>13</th> <th>16 April</th> <td>•</td> <td>52.00</td> <td>3.001</td> <td>156.05</td> <td>157.89</td> <td>1.5 4</td> <td>9.50</td> <td></td> <td></td> <td>9.50</td> <td>25.05</td> <td>158.66</td> <td>13.26</td> <td>83.98</td>	13	16 April	•	52.00	3.001	156.05	157.89	1.5 4	9.50			9.50	25.05	158.66	13.26	83.98
24 56,00 2,91 146,40	*	16 April	_	53.00	2.960	156.42	160.25	1.5 <	9.36		× 5	9.36	28.00	174.70	18.73	116.98
10 52.00 2.969 172.20 174.23 < 1.5 < 9.46 < 1.5 < 9.46 59.65 377.31 33.72 156.78 156.62 < 1.5 < 9.46 < 59.46 59.65 377.31 33.72 156.78 156.62 < 1.5 < 9.46 < 1.5 < 9.46 < 1.5 < 9.46 59.65 377.31 33.72 156.78 156.62 < 1.5 < 9.47 147.50 902.02 89.73 156.60 3.018 169.01 170.99 < 1.5 < 9.17 < 1.5 < 9.17 167.50 902.02 89.73 165.50 170.20 170.20 996.87 105.50 122.50 123.50 681.68 123.50 681.68 123.50 681.68 123.50	15	116 April	_	8.8	16.5	162.96	164.87	1.5 <	9.10	<u>-</u>	S <	9.10	146.40	887.95	81.86	496.50
10 \$2.00 3.015 156.78	16	16 April	_	58.00	2.969	172.20	174.23	1.5 <	8.61	<u>~</u>	.	8.61	106.20	609.55	67.50	387.43
54.00 2.993 161.62 163.52 < 11.5 < 9.17 < 11.5 < 9.17 < 11.5 < 9.17 < 11.5 < 9.07 170.30 996.87 105.50 10	17	16 April	2	22.00	3.015	156.78	158.62	1.5 4	9.6		× 5	9.46	59.85	377.31	33.72	212.58
45 56.00 3.018 169.01 170.39 < 1.5 < 8.77 < 1.5 < 8.77 < 1.5 < 8.77 < 1.5 < 8.28 < 1.5 < 8.28 170.30 641.64 812.00 481.07 < 1.5 < 8.28 < 1.5 < 8.28 < 1.5 < 8.28 123.50 641.64 812.00 481.07 < 1.5 < 10.36 < 1.5 < 10.36 123.50 641.64 812.00 42.07 42.00 3.018 162.97 164.89 < 1.5 < 9.10 < 1.5 < 9.10 15.36 90.29 525.42 47.10 41.5 < 8.73 < 9.15 15.36 90.29 525.42 47.10 41.5 < 8.73 < 1.5 < 8.73 43.50 3.018 177.13 179.21 < 1.5 < 8.37 < 1.5 < 8.37 43.58 243.17 25.43 47.10 42.80 23.17 23.43 43.58 243.17 25.43 43.58 243.17 25.43 43.58 243.17 25.43 43.58 243.17 25.43 43.58 243.17 25.43 24.80 2.00	\$	16 April		24.00	2.993	161.62	163.52	1.5 <	9.17	·-,	Y 5	9.17	147.50	902.02	89.73	548.74
27 59.00 3.035 179.07 181.17 < 1.5 < 8.28 < 1.5 < 8.26 123.50 641.68 812.00 44.77 < 1.5 < 10.36 < 1.5 < 10.36 21.80 150.58 12.62 12.	19	16 April	_	26.90	3.018	169.01	170.99	1.5 <	8.77	<u>-</u>	× 5	8.77	170.80	996.87	105.50	616.98
69 48.00 2.981 143.09 144.77 < 11.5 < 10.36 < 10.36 21.80 150.58 12.62 12.62 43.64 42.55 43.65 4	2	16 April		00.65	3.035	179.07	181.17	< 1.5 <	8.28	<u>-</u>	v	8.28	123.50	681.68	812.00	4482.00
42 54.00 3.016 162.97 164.89 < 1.5 < 9.10 < 1.5 < 9.10 15.86 96.19 6.36 41 56.00 3.033 169.85 171.84 < 1.5 < 8.37 < 1.5 < 8.73 90.29 555.42 47.10 41 56.00 3.054 177.13 179.21 < 1.5 < 8.37 < 1.5 < 8.37 < 1.5 < 8.37 43.56 243.17 25.43 48 53.00 3.177 166.36 170.36 < 1.5 < 8.80 < 1.5 < 8.80 10.14 59.52 6.41 1 52.00 3.126 162.55 164.46 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 13.63 113.76 92.86 28 36.00 3.022 106.79 110.07 < 1.5 < 13.63 < 1.5 < 13.63 13.37 121.47 6.96 33 31.00 2.993 92.78 93.87 < 1.5 < 15.96 < 1.5 < 15.96 27.18 289.54	12	_	_	68.00	2.981	143.09	144.77	1.5 <	10.36	-	•	10.36	21.80	150.58	12.62	87.17
67 56.00 3.033 169.85 177.84 < 1.5 < 8.73 < 1.5 < 8.73 90.29 525.42 47.10 41 56.00 3.054 177.13 179.21 < 1.5 < 8.37 < 1.5 < 8.37 < 1.5 < 8.37 < 3.56 43 53.00 3.177 166.38 170.36 < 1.5 < 8.80 < 1.5 < 8.80 10.14 59.52 6.41 1 52.00 3.126 162.55 164.46 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 1.5 < 1.5 < 9.12 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5	22	16 April	_	24.00	3.018	162.97	164.89	< 1.5 <	9.10	<u>-</u> -	Ŋ,	9.10	15.36	8.3	6.3 6	₹.57
48 53.00 3.054 177.13 179.21 < 1.5 < 8.37 < 1.5 < 8.37 < 1.5 < 8.37 < 1.5 < 8.37 < 1.5 < 8.37 < 1.5 < 8.37 < 1.5 < 8.37 < 1.5 < 8.30 10.14 59.52 6.41 1 52.00 3.126 162.55 164.46 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 < 1.5 <	2	<u>\$</u>		28.00	3.033	169.85	171.84	1.5 4	E.73	<u>-</u>	, V	8.73	80.29	525.42	47.10	274.09
48 53.00 3.177 166.38 170.36 < 1.5 < 8.80 < 1.5 < 8.80 < 1.5 < 8.80 10.14 59.52 6.41 1 52.00 3.126 162.55 166.46 < 1.5 < 9.12 < 1.5 < 9.12 < 1.5 < 9.12 163.50 119.76 92.66 28 36.00 3.022 100.79 110.07 < 1.5 < 13.63 < 1.5 < 13.63 13.37 121.47 6.96 33 31.00 2.993 92.78 93.87 < 1.5 < 15.90 < 1.5 < 15.90 27.18 289.54	%	116 April	5	58.00	3.054	177.13	179.21	1.5 <	8.37	<u>~</u>	× 5	8.37	43.58	243.17	25.43	141.90
1 52.00 3.126 162.55 164.46 < 1.5 < 9.12 < 1.5 < 9.12 163.50 115.76 92.66	(Buplicate)10	16 April	3	53.00	3.177	166.38	170.36	1.5 <	9.80	<u>-</u>	× 5	8.80	10.14	59.52	6.41	37.63
28 36.00 3.022 108.79 110.07 < 11.5 < 13.63 < 13.63 < 13.63 13.37 121.47 6.96 < 1.5 < 13.63 31.37 121.47 6.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 27.18 289.54 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 27.18 289.54 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96 < 1.5 < 15.96	(Duplicate) 15	16 April	-	52.00	3.126	162.55	164.46	< 1.5 <	9.12	<u>.</u>	× 5	9.12	183.50	1115.76	95.88	564.73
33 31.00 2.993 92.78 93.67 < 1.5 < 15.98 < 1.5 < 15.98 27.18 289.54	Painter UN	16 April	_	36.00	3.022	106.79	110.07	1.5 <	13.63	<u>·</u>	y	13.63	13.37	121.47	6.96	63.23
7 0.00 0 0.00 0.00 0 1.5 c N/H 1 < 1.5 c N/H 1 1.43 N/H 1 0.20 1 36.00 1.055 431 <8 8.7 8 8.7 54.46, 59 38.67		16 April		31.00	2.993	92.78	93.87	1.5 ×	15.98	<u>-</u>	•	15.98	27.18	289.54	£6.0.	176.09
1 36.00 1.055 4 421 68 87 1 68 87 1 54.46 59 1 38.67	Blank	16 April	~	0.00	0	0.00	8.0	1.5 <	*	- 1.	·	_ ·	1.43	- %	0.20	 §
	4]		2			1.0	97	8.7	0/		6.7	Su.uf.		38.67	ו ל
		<u> </u>		} } 	}		<u>.</u>	0		- -		- -	•	•		

Travis AFB

Isocyanates

Date:

19 April. 1991

Start Time: 11:26

Stop Time: 12:26

STP: Booth:

T = 64.3P=29.92 "Hg

P= 29.8 T=68 °F

Val	· me

						Volume		
	ļ		Time	Sample	Volume.	Collected	HMDI	HMCI
	1	Sample	Sampled	Flowrate	Collected	# STP	per Filter	Concentration
Site Location	Date	Number	(min)	(1/min)	(1)	(1)	(ug)	(ug/m3)
1	19 April	8	66.0	3.082	203	205	< 1.0	4.9
2	19 April	6	55.0	3.314	182	183	< 1.0	< 5.5
3	19 April	2	65.0	3.048	198	199	< 1.0	< 5.0
4	19 April	4	64.0	3.115	199	200	< 1.0	< 5.0
5	19 April	20	66.0	3.069	203	204	< 1.0	< 4.9
6	19 April	14	31.0	3.144	201	202	< 1.0	< 4.9
7	19 April	7	64.0	3.015	193	194	< 1.0	< 5.2
8	19 April	13	61.0	3.094	189	190	< 1.0	< 5.3
9	19 April	22	65.0	3.160	205	207	< 1.0	< 4.8
10	19 April	23	64.0	3.069	196	198	< 1.0	< 5.1
11	19 April	51	64.0	3.158	202	203	< 1.0	< 4.9
12	19 April	43	63.0	3.112	196	197	< 1.0	< 5.1
13	19 April	15	65.0	3.125	203	204	< 1.0	< 4.9
14	19 April	5	64.0	3.149	202	203	< 1.0	< 4.9
15	19 April	59	64.0	3.167	203	204	1.3	6.4
16	19 April	58	63.0	3.119	196	198	1.0	5.1
17	19 April	34	65.0	3.136	204	205	< 1.0	< 4.9
18	19 April	18	64.0	3.120	200	201	1.5	7.5
19	19 April	19	64.0	3.131	200	202	2.5	12.4
20	19 April	9	63.0	3.162	199	200	2.2	11.0
21	19 April	21	65.0	3.120	203	204	< 1.0	< 4.9
22	19 April	25	64.0	3.151	202	203	< 1.0	< 4.9
23	19 April	1 1	64.0	3.118	200	201	< 1.0	< 5.0
	19 April	35	63.0	3.136	198	199	< 1.0	< 5.0
Exhaust Duct	19 April	1 10	55.0	3.172	174	175	< 1.0	< 5.7
(Duplicate) 10		j 11	64.0	3.127	200	201	< 1.0	< 5.0
(Duplicate) 15		24	64.0	3.156	202	203	1.6	7.9
Painter UH	19 April	54	65.0	:	203	204	< 1.0	< 4.9
Painter OH	19 April	41	65.0	:	202	203	< 1.0	< 4.9
Blank	19 April	16	0.0	:	N/A	N/A	< 1.0	i N/A i
• • • • • • • • • • • • • • • • • • • •		i	i	İ	i	i	İ	j j
Exhaust Duct	19 April	Tube	53.0	0.991	53	53	1	1

Painter UH = Underneath painter respirator hood. Painter OH = Outside painter respirator hood.

Travis AFB

Isocyanates

Date:

19 April, 1991

Start Time: 15:15 Stop Time: 16:00

Booth: STP

T= 65.6 P=29.92 "Hg P= 29.88 T=68 °F

						Volume		
	1		Time	Sample	Volume	Collected	HMDI	HMDI
	1	Sample	Sampled	Flowrate	Collected	● STP	per Filter	Concentration
Site Location	Date	Number	(min)	(7/min)	į (1)	(1)	(ug)	(ug/m3)
	1	 I	 	 }		i		1
1	19 April	26	49.0	3.105	152	153	< 1.0	< 6.6
2	19 April	17	40.0	3.341	134	134	< 1.0	< 7.5
3	19 April	29	47.0	3.012	142	142	< 1.0	< 7.0
4	19 April	39	46.0	3.041	140	140	< 1.0	< 7.1
5	19 April	45	48.0	3.057	147	147	< 1.0	< 6.8
6	19 April	57	47.0	3.133	147	148	< 1.0	< 6.8
7	19 April	53	47.0	3.019	142	142	< 1.0	< 7.0
8	19 April	31	45.0	3.103	140	140	< 1.0	< 7.1
9	19 April	46	48.0	3.132	150	151	< 1.0	< 6.6
10	19 April	48	47.0	3.044	143	144	< 1.0	< 7.0
11	19 April	30	47.0	3.035	143	143	< 1.0	< 7.0
12	19 April	37	46.0	3.116	143	144	< 1.0	< 7.0
13	19 April	12	47.0	3.118	147	147	< 1.0	< 6.8
14	19 April	47	47.0	3.143	148	148	< 1.0	< 6.7
15	19 April	32	46.0	3.176	146	147	1.2	8.2
16	19 April	33	46.0	3.155	145	146	< 1.0	< 6.9
17	19 April	38	47.0	3.128	147	147	< 1.0	< 6.8
18	19 April	42	47.0	3.133	147	148	< 1.0	< 6.8
19	19 April	40	47.0	3.120	147	147	2.8	19.0
20	19 April	52	45.0	3.159	142	143	< 1.0	< 7.0
21	19 April	3	47.0	3.109	146	147	< 1.0	< 6.8
22	19 April	55	47.0	3.150	148	149	< 1.0	< 6.7
23	19 April	28	46.0	3.131	144	144	< 1.0	< 6.9
24	19 April	49	46.0	3.128	144	144	< 1.0	< 6.9
Exhaust Duct	19 April	36	42.0	3.159	133	133	< 1.0	< 7.5
Exh. Duct Dup.	19 April	44	42.0	3.129	131	132	< 1.0	< 7.6
Exh. Duct Blnk	19 April	27	42.0	N/A	N/A	N/A	< 1.0	N/A
(Duplicate) 10	19 April	70	47.0	3.130	147	148	< 1:0	< 6.8
(Duplicate) 15	19 April	50	46.0	3.168	146	146	1.3	3.9
Painter UH	19 April		48.0	3.098	149	149	< 1.0	< 6.7
Painter OH	19 April	71	48.0	3.185	153	153	< 1.0	< 6.5
Blank	19 April	56	0.0	N/A	N/A	N/A	< 1.0	N/A
	İ	İ	İ		1	1	1	1
Exhaust Duct	19 April	Charcoal	42.0	0.991	42	42	1	1
	1	Tuber	1	1	1	1	1	-

Painter UH = Underneath painter respirator hood. Painter OH = Outside painter respirator hood.

APPENDIX G

REDUCED DATA FOR THE POSTMODIFICATION TEST SERIES

	ENES	72.7	27	פינ	ק	27	2.2	קי	덛	.	, 12.5	ه د د	ב קב	2 7	ם. ז	8.7.	₽	7.9	5	9 7	<u> </u>	3.8	포	모	.	펻.	ō.	י פ	<u> </u>	9	2
0F 2	E XYLENE: (ug)	- 1				= 1	- 5	. 12	_	_	- (- =	N	E	_	5		- =	_		_	-	=	_		c 6	. =	=
PAGE 1 (ETHYL BENZEN (ug)	27	2 2	2	2	27	2 2	2	멸	밑	2	27	2 2	3.5	<u> </u>	2	2	멸.	5.	2 3	2 2	힏	2	2	5.	ב פ	2	2	2 2	2	2
-	BUTYL ACETATE (ug)	24	32	Ę	2	32	38	38	31	72	B :	4. r	2 2	2 2	35	112	2	မ္တ	23	5 C	2	덛	핕	52	82	57	5	28	77 Pu	23	p
GRAY TOPCOAT	TOLUENE (ug)	200	6 7	2	8	æ 8	ñ &	105	115	145	72. 72.	551	200	100	110	364	5	208	26.	100	5	146	'n	51	95	2	ud ud	9:	7	43	밑
PPINER, GI RAMP	M18K (43)	186	180	- Pu	163	175	33.	5 4 5	787	239	490	Ž,	25.2	7	1878	2459	þ	65	213	100	12	1386	2	1616	1365	1594	nd	138)	377	2
LT GREEN AUXILIARY	NEK (ug)	142	3 5	1 p	1117	170	3 6	177	315	732	671	//	2	211	113	295	Ē	547	130	7. E	nd.	27	2	119	142	117	ا 2	76	2 2 2	282	235
PAINT: 08JECT:	RUN TIME (min)	88	3 62	33	B	8	3 23	38	23	63	8	38	38	38	38	63	83	83	23	3 2	88	63	63	ß	63	63	83	2	38	38	63
1TS 8485	POST-CAL (ml/min)	1009	752	, E	305	1015	100	1076	928	1017	282	1961	795	7031	97	1006	1042	995	836	FC 2	706	1003	981	1006	1068	926	1018	1015	1003	1036	1098
S AFB BOOTH TES K PROJECT	PRE-CAL (ml/min)	1012	1000	1001	1024	1016	1010	1025	1010	1010	1030	1024	1025	750	742	1016	1025	984	820	292	838	1017	1000	1029	1031	1018	1010	1020	1010	1021	1036
TRAVIS PAINT (ACUREX	PUMP #	28	25	13	5	۲;	7 6	32	33	20	52	Ξ'	æ æ	200	33	30	36	න	- → l	n Ξ	9	18	17	ဖ	7	m	33	32	31	37	;2
4 0	ACUREX SAMPLE 4	30043384	30043043	0469870	043586	SJ045483	900433800 90747182	13788	5182	,0461&2	90047384	500439840	900450849	90040364 00047566	90044182	90044768	90046586	90047887	90044364	90044586	900479880	90048788	900490889	90049162	90649483	90049556	90048152	90048384	90048546	90027786	900275
ORGANICS 06-16-92 NIOSH 13C	ACUREX TUBE #	6-4 E	. <u>.</u> .	ت د	2	2:	* 6.	:3 7	- :	56	g :	81	æ g	88	3	13	82	2	53	ې ۵	3 5	61	12	m	92	21	6	17	7 5		33
TEST: DATE: METHOD:	GRID LOC		7 m	•	. 45	9	~ œ	(C)	2	I	15	22	25	32	5 E	**	15	16		20 5	32	P over	P under	Y 1	×	34	9	58	38 THRE RIM	FXHAIIST	RECIRC

占	3) 3)		
8N & LJI LJL	XYLENES (mg/M3)		
)F 2 TALS: TALS:	ETHYL BENZENE (mg/H3)		
PAGE 2 OF D E INITI Q A INITI	BUTYL ACETATE (mg/M3)	**************************************	
	TOLUENE (mg/M3)	1	
	MIBK (mg/M3)	0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	MEK (mg/N3)		
	AVG FLOW (L/MIN)	1. 121 1. 121 1. 121 1. 121 1. 122 1. 123 1.	
	ACUREX SAMPLE #	90044384 90045384 90045384 90045386 90045386 90045386 90045388 90045388 90045384 90045384 90045384 9004458	
ORGANICS #1 06-16-92 NIOSH 1300	ACUREX TUBE #	252221 252221 252221 252221 252221 252221 252221 252221 252221 252221 252221 252221 252221 252221 252221 252221 252221 252221 252	
DATE: 0	GRID LOC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

D E INITIALS:BN & LJL Q A INITIALS:LJL	1	Field Blank NDL NDL	1.4	3.3	2.9	3.3 W 1.1		MAPLE EXTANST MICT: 0.7
ESIS T 8485	EXMAUST GRID	3 1.2	7 1.5	11 2.3 12	% 5.5 %	55 • 400.		CRID NOL: 0.0114 mg/340PLE
TRAVIS AFB PAINT BOOTN TESTS ACUREX PROJECT 8485	EXHA	2 1.2	6 1.3	ot	22	14 5.7	1 8 2.0	UNITS: MEMO
		1 1.2	2	9.1	23 2.1	13 2.4	7.1	PRINER, GRAY TOP UNI
ORGANICS #1 DATE: 06-16-92 METHOD: NIOSH 1300	GRID CHARLES - LOLUERE	Painter Over 2.3 Painter Under	INCET CRID A	1.3	*: 8	<u></u>		MINT TYPE: LT GREEK PRINER, CRAY TOP UNITS: MG/1G

D E INITIALS:BN & LJL Q A INITIALS:LJL	Field Blank	1M.ET GR10 8	ਵੱ • `	87 87	¥ 0.3		EXMANST DUCT: 0.8 RECIRC PUET: < NOL
20	9	**************************************	12 0.9	24 0.9	3 <u>1</u>	30 * HD[
IN TESTS OJECT 8485 EXMAIST GRID	3 0.3	7 0.4	1.1	ង	51 20:	19 0.6	CRID FOL: 0.0116 Mg/SAMPLE PAINTER FOL: 0.0116 Mg/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACINEX PROJECT 8485 EXHAIST GR	4.0	9	10 0.5	22 0.8	14 1.8	18 0.5	UNITS: MA/NG OSIM TAX:710 Mg/NG
	1 0.6 2		9.5	21 0.7	13 0.8	17 0.5	
ORGANICS #1 DATE: 06-16-92 WETWOD: MIGSM 1300 GRID CMART 4 - BUTYL ACETATE	Painter Over < MDL Painter Under < MDL	INLET GRID A	٠٠ ٠٠	% %	*3 #		PAINT TYPE: LT CREEK PRINER, CRAY TOP UNITS: MA/NG

INCET CRID B Field Blank < FDL D E INITIALS: DN & LJL Q A INITIALS: LJL ĕ ¤` # ₹ EXMUST PLCT: < HDL RECIRC DUCT: < FOL 4 6 6 GRID NOL: 0.0117 mg/samle PAINTER IDL: 0.0117 mg/saple * Ē 12 . **e**e ਡੂ ਨ 로 유 * 表 <u>,</u> 즉 7 . . 2, 10, ٠ 5 = **`** 5 <u>۾</u> 찬 <u>,</u> 즉 EXHAUST CRID TEAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8465 DEIM TAM: 435 Mg/MS 2 • 101 Ř 5 <u>,</u> **ĕ** °3 * , ĕ 후 <u>,</u> 즉 PAINT TYPE: LT GREEN PRINER, GRAY TOP UNITS: MG/MG ₽ ¥ ; ĕ * E ٠ ق ಿ. ಕ Š GLECT: AKILIAN RAP GRID CHART 5 - ETHYL BENZENE INCET CRID A *********** Painter Under < NOL Painter Over < NOL ORGANICS #1 DATE: 06-16-92 NETNOD: #105N 1300 ¥, **ĕ** ಕ ಸ ಶ ಸ

F 2	XYLENES (ug)	25555555555555555555555555555555555555	
PAGE 1 OF	ETHYL BENZENE (ug)		
ΑΤ	BUTYL ACETATE (ug)	nd de 13	
VAY TOPCO/ Toms	TOLUENE (ug)	77 77 77 77 77 77 77 77 77 77 77 77 77	
RIMER, GF Ramp Bott	MIBK (ug)	156 156 166 178 178 178 178 178 178 178 178 178 178	
LT GREEN PRIMER, GRAY TOPCOAT AUXILIARY RANP BOTTOMS	MEK (ug)	209 204 204 204 204 204 204 228 228 228 228 228 228 228 228 228 22	
PAINT: 1 0BJECT: A	RUN TIME (min)	57: 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
TS 8485	POST-CAL (ml/min)	1018 1078 1176 1176 1176 1068 1068 1068 1067 1186 1186 1187 1187 1187 1187 1188 1188	
TRAVIS AFB PAIMT BOOTH TESTS ACUREX PROJECT 8485	PRE-CAL (ml/min)	1033 1033 1031 1031 1036 1036 1037 1039 1039 1039 1039 1039 1039 1039 1039	
TRAVIS PAINT B ACUREX	PUMP #	25.25.25.25.25.25.25.25.25.25.25.25.25.2	
0 AN 2	ACUREX SAMPLE #	90040788 90040788 900413820 900431820 90043182 90042384 90042182 90041384 90051384 90051384 90051384 90051384 90051388 90051388 90051388 90051388 90051388 90051388 90051388 90051388 90051388 90051388 9005188 9005188 90050887 90050887 90050887 90050887 90050887 90050887 90050887 90050887 90050887 90050887 90050887 90050887 90050887 90050887 90050887	
ORGANICS #2 06-17-92 AM NIOSH 1300	ACUREX TUBE #	E14 114 E172 4 4 8 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
DATE: 0 METHOD: N	GRID LOC	10 10 10 110 111 112 113 114 114 114 115 116 117 118 118 118 119 119 118 118 118 118 118	

002	ORGANICS #2 06-17-92 AM NIOSH 1300	#2 AM 00						9 9 9 8	E 2 OF 3 INITIAL INITIAL	2 ALS: ALS:	_	88 48 – j	נין ו ואר
ACUREX Tube #	చ*	ACUREX SAMPLE #	AVG FLDY (L/MIN)	MEK (mg/H3)		MIBK (mg/H3)	TOLUENE (mg/M3)		BUTYL ACETATE (mg/M3)	ETHYL BENZENE (mg/H3)	ENE FRE	XYLENES (mg/H3)	INES
	13		1.026	3.3		1.6	1.0	-	0.0 6.4	× ×	로로	VV	펄펄
	911		1.057	no samp	0	samp]eno	_	e 10	sample				sample
•	₽ :	900509&10	1.134	no samplen - Mij	o *	sampleno : Moi) Composition of the control of the	<u>و</u> د	Semple:	eno sa	sample:	eno s:	sample KOL
-	4	90042182	1.029			1.7	,	`	0.3	· •	겉	v	를
	35	9004994500	1.095	~	φ,	0.	5.0	_ }	9.0	¥ ;	달.	v (<u> </u>
_	5 5 5	90051182		no samp	s eno s		chures of	E _	sample 0.6		Samp: C.	2 V 2 V	Sample NOT
	44			· •	مه د				0.5	v	占	v	ğ
	\$		1.050	Ġ	~	5.3	ລີ.		0.1	y	물 :	v	를 달
	89	90051384	1.119	ĸ,	→ c	- .	~;-		, o	V 1	<u> </u>	V (달 달
	42		1.059	i.ur	ກຸດ	, r 0 0	-i ~		-	V V	ď Ç	, ,	į
•	200		1.037	no same	oleno s	sampler	Dunes of	eno	samp}e	no sa	samp]en	۰	sample
,	117		1.054	no same	Jeno s	sampler	eno samp	9	samp]e	Sa Sa	samp] eno	S	al diag
	31	•	1.072	, 	œ,	80.6	w)		<u>.</u> .	<u>v</u>	걸	·	달
	112	90042788	0.632	w w	o c	10.3	ก๋น	~~	-, c -; c	v	<u> </u>	v v	Į,
	2:	90052/88	7.0.1	ń:	ء د	1.5 5.5	•		1.7	/ \	<u> </u>	, ,	d e
_	73	90000050	1.100 8.30	<u> </u>	j «			. ~	-	/ V	į	, v	4
•	32	90041788	1.111	m	į	4.7	2		0.8	₹	占	V	힏
	38	900429830	0.950	no same	eno	sampler	eno samp	eno	sample	eno sa	sampleno		sample
	45	90050847	0.915	57.9	o,	7.4	~ં			X. V	펕,		휵,
	22	S00519820	1.081	no same	samplenos	samp] eno		e	samp en	0	samplen	0	sample
	4		1.049	≓'	ı,	6.9	20 20 3	· `		V '	P \$	v (į
	2		1.045	5 -	٧ 	بر م	Ž -	٧ _	Ę <	V 1	₫ē	7	¥ §
	3		1.062	-		` `	- 4	` ~	2	/ \	₹ <u>=</u>	, ,	4 =
	9	90040384	1.043	- -	,	ַ בַּ	, ,	′ ~	, , ,	, v		, ,	
	2 %		1.050	•	i -		·		4	v		v	
	37	90052384	0.38	' ₹	٧ :	를	₽	. •	2	×	章	v	흑
	100	90052586	1.161	로 *	v	를	를 *	٧	를	v	럴	v	흑
	36	90026687	1.055	N)	ဆ	4.9	eri.		6.0	X . '	4	v	₫:
	33	90026889	1.066	~		9.2			0.5	v	<u> </u>	v	ਛੂ

1EST: CREAMICS (RZ DATE: 06-17-92 AN WETHGD: MICSM 1300		TRAVIS AFB PAINT BOOTH (ESTS ACUREX PROJECT 8485	ESTS :T 8485		D E INITIALS: DN & LJL G A INITIALS: LJL	ורו הוו זי הוו
CRID CHART 1 - MEK		EXHA	EXHAUST GRID		-	
Painter Over 11.5 Painter Under 0.2	-	ν 8	3 no sample	And semple	1	
IMET CRID A	ž ,	ð L.	. 9.	80 00 10 10 10 10 10 10 10 10 10 10 10 10	<u> </u>	INLET GRID 1
<u>r</u>	e .	10 4.6	11 6.7	12 5.4		*2 !
ž a	2 13	22 2.4	73 70 sample	% ro sample		ğ Ö
	E aŭ	7. 9.8.	t5 11.3	16 13.3		
7 ;	7. 3.3	37 87 94 94	91.9	2 2		호 유ˇ
 PAINT TYPE: LT GREE GBJECT: AMILIN	PAINT TYPE: LT GREEN PRINER, GRAY TOP UNITS: MG/45 GRACET: AMILIARY RAPP BOTTORS OSEN THA:590 Mg/4	P URITS: MANG GENA THA:590 PAYNS	MER, GRAY TOP UNITS: MEANS GRID NOL: 0.0115 KG/SAMPLE	115 sg/sumle 115 sg/sumle	EXMANST BU	G: 5.8

TEST: ORGANICS #2 BATE: 06-17-92 AM METHOD: NIOSH 1500		TRAVIS AFB PAINT BOOTN TESTS ACUREN PROJECT 8485	TESTS CT 6485		D E INÍTIALS:BH & LJL Q A INITIALS:LJL	17. # C7.
GRID CHART 2 - NIBK	_	EXM	EXMAUST GRID		-	
Painter Over 6.9 Painter Under	9.	2 2.4	3 no sample	on sample		
IMET GRID A		.	4.0	e lores or		INLET CRID
7:1	e.	10 3.5	11 5.3	12 4.1		5.5
ਰੂ ਨ	21 2.8	8 8	23 no sample	24 no sample		ਦੂ 8 `
% 9.1	13 5.8	44 10.3 11.5	55 7.7	16 5.4		že #
	17 4.7	18 no sample	. 4.7 4.7	9)dines 82		
PAINT TYPE: LT GREEN PRINER, GRAY TO OBJECT: AUXILIARY DAMP BOTTONS	: 🕿	UNITS: mg/KS OSHA TUA:205 mg/KG	GRID HOL: 0.0095 mg/swite Painter Hol: 0.0095 mg/swite	GRID HOL: 0.0095 mg/samle HTER HOL: 0.0095 mg/samle	EXMANST DU RECIRC DU	6.9 2.6

TRAVIS AFB PAINT BOOTH TESTS Q A INITIALS: BM & LJL ACUREX PROJECT 8485 EXNAUST GRID	1.0 2 3 4 to sample no sample	5 6 7 8 S ** ** ** ** ** ** ** ** ** ** ** ** *	9 1.9 10 11 2.8 12 2.2	21 22 23 24 1.8 3.0 no sample no sample 28 × 104.	13 14 15 16 2.8 3.2 5.6 4.8 2.8	- 100 ×
TEST: ORGANICS #2 DATE: 06-17-92 AN METHOD: NIOSH 1300 GRID CHART 3 - TOLUENE	Painter Over 3.8 Painter Under < #BL	INCET GRID A	٠. ٠.	7 9 %	, s	

IMET CAID & 9.0 6:0 0.5 D E INITIALS:DN & LJL Q A INITIALS:LJL ਰ ਨ = EXHAUST DUCT: RECINC DUCT: EXWALST GRID Semple Se o sample 24 30 semple , ro semple 0.7 - GRID MOL: 0.0116 mg/SAMPLE PAINTER ML: 0.0116 mg/SAPPLE 2 2 3 no sample 23 70 sample 9.6 . = \$ 2 PAINT BOOTH TESTS ACUREX PROJECT 8485 16 70 Semple COJECT: METALIAKY NAPP BOTTOMS OSMA TMA:710 mg/MS 4.0 0.3 0.5 **6**. PAINT TYPE: LT GREEN PRINER, GRAY TOP UNITS: ME/MS 2 * × ~ 9.0 6.3 1.0 9.0 0.3 **=** 2 GRID CHART 4 - BUTYL ACETATE Painter Over INET ORID A Painter Under < NOL TEST: ORGANICS #2 DATE: 06-17-92 AM METHOD: NIOSN 1300 6.3 0.3 ಶ ಶ A \$

		TEST: ORGANICS #2 DATE: 06-17-92 AN NETHOD: MICSH 1300		TRAVIS AFB PAINT BOOTN TESTS ACINEX PROJECT 8485	ESTS :T 8465		P E INITIALS: DN & LJL Q A INITIALS: LA
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		ETHYL BENZEI		EXCHA	UST CRID		-
21	21		.	2 • Di.	3 ro sample	o sample	
21	11	V 9		ğ •	,	8 no sample	IN EL C
21	23 no sample no sample 15 (10 (10 (10 (10 (10 (10 (10 (10 (10 (10	5	, ğ	5 5	# ¥ ¥	12 • 10L	ĕ • *
13 14 15 16	15 16 16 10 c 10 c 10 c 10 c 10 c 10 c 10	ğ	₫ ⊼ `	2 2	23 no sample	s sende	₹ **
16 19 c 101 no sample < 101	te < YOL TO Sample CRID POL: 0.0117 mg/savelE EXHAUST Bu	ě	≈ <u>,</u>	₹ * *	15 50 10	16 • 101	g A
	CRID NOS: 0.0117 mg/sample Exmals? Bu			16 no sample	۶. ق	28 To sample	

D E INITIALS:UM & LJL Q A INITIALS:LJL			INLET GRID B	ē.	z z	g A		ECONNECT BUCT: < NOL RECINC DUCT: < NOL
4		4 no sample	no sample	12 < 100.	26 no sample	76. J. J. J. J. J. J. J. J. J. J. J. J. J. J	20 no sample	
STS 8485	EXHAUST GRID	v or season	, 101	1. 4.90.	23 no semple	15 • 00.	19 • 20.	GRID NOL: 0.0368 mg/SAMPLE PAINTER NOL: 0.0368 mg/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8485	EXX	2 × 10L	100 v	0. ₫	19 * 25	4 ,	18 ro sample	P UNITS: mg/M3 OSMA TUA:435 mg/M3
	2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- ğ	. ·	ě	22 	13 404	17 , 104	LT GREEN PRINCH, GLAY TOP UNITS: MG/MG AMKILIARY RAPP BOTTORS GSHA THA:435 MG/MS
TEST: CRGANICS 4/2 CATE: C6-17-92 AN WETHOD: NICSN 1300 GRID CHART 6 - XYLENES		Painter Over < NOL Painter Under < NOL	INCT CA10 A		5 <u>6</u> 5	s *		

ACUREX ACUREX PALMI BOOTH TESTS ACUREX ACUREX PROJECT 6488 ACUREX ACUREX PROJECT 6488 ACUREX ACUREX PROJECT 6488 135 90081344 21 1068 135 90082545 1 1143 135 90082748 14 631 105 90082748 14 631 105 90082748 14 631 106 90085142 24 1070 107 90085142 24 1070 108 90085142 24 1070 108 90085142 24 1070 108 90085142 24 1070 118 90085142 15 1094 118 90085142 17 1096 118 90085144 17 1096 118 90085148 15 1146 114 90085148 15 1146 114 90085148 15 1156 115 90085148 15 1167 114 90085148 15 1167 115 90085148 15 1167 115 90085148 15 1078 117 90085148 15 1078 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056 118 90085148 15 1056
ACUREX ACUREX PRE-CAL POST-CAL RUM TIME TUBE # SAMPLE # PUMP #(mi/min) (mi/min) (min
TOTAL TOTA
ACUREX ACUREX PROJECT TUBE # SAMPLE # PUMP # [m] / min] 135 90082344 21 11668 135 90082344 21 11668 136 90082344 22 11150 106 90082344 24 1070 107 90082344 26 11034 136 90082343 10 11094 137 90082343 10 11094 138 90084344 22 11018 139 90082343 10 11094 130 90082344 22 11018 131 90081342 24 1078 132 90082344 15 11146 141 90083344 6 11121 95 90084344 16 947 142 90083344 16 11067 148 90084548 13 1056 149 90083548 13 1056 141 90083548 13 1056 143 90083548 13 1056 144 90083548 13 1056 144 90083548 13 1056 144 90083548 13 1056 147 90080548 17 1067 148 90080548 17 1067 148 90080548 17 1067 138 90080548 17 1067 138 90080548 17 1048 128 90080548 17 1048 129 90080548 17 1048 129 90080548 17 1048 128 90080548 17 1048
ACUREX ACUREX TUBE # SAMPLE # SAMPLE # SAMPLE # SAMPLE # SAMPLE # 149 90081344 132 90082545 132 90082728 96 900829430 100 90085182 100 90085344 134 90081342 134 90081342 134 90085344 142 90085344 142 90085344 142 90085344 142 90085344 142 90085344 142 90085344 142 90085344 142 90085344 142 90085344 142 90085344 142 90085344 143 90085344 143 90085344 143 90085344 143 90085348 139 90085344 143 90085344 143 90085348 139 90085243 139 90085244 139
ACURE # ACURE # 13.50
ACUREX 13-5-17-92 13-5
23.33.34.34.35.35.35.35.35.35.35.35.35.35.35.35.35.

	XYLENES (mg/M3)	eno sample eno sample
BN & LJL LJL	ETHYL BENZENE (mg/M3)	
	BUTYL ACETATE (mg/M3)	2.2.2.2.3.1.4
PAGE 2 OF 2 D E INITIALS: Q A INITIALS:	TOLUENE (mg/M3)	eno sampleno sempleno
200	MIBK (mg/M3)	Sample Sa
	MEK (mg/M3)	Samplen Samplen Samplen Samplen Samplen Samplen Samplen Samplen 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.
	AVG FLOW (L/MIN)	1. 1525 no 1. 1525 no
## 0 75 0	ACUREX SAMPLE #	149 900813&4 135 900825&6 132 900825&6 18 900825&6 18 900825&6 10 900836&4 10 900836&4 10 900836&2 13 900831&2 13 900831&2 14 900835&6 14 900835&6 14 900835&6 14 900835&6 14 900835&6 14 900835&6 14 900835&6 14 900835&6 14 900835&6 14 900835&6 14 900835&6 14 900835&6 14 900835&6 14 900835&6 15 900836&7 10 900836&7 10 900805&6 13 900807&7 10 900805&6 13 900807&7 10 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4 14 900803&4
ORGANICS #: 06-17-92 PI NIOSH 1300	ACUREX TUBE #	0864NI 0864NI 0864NI 0864NI 0864NI 0864NI 0864NI 0864NI 0864NI 0864NI 0864NI
TEST: ORGA DATE: 06-	ACI GRID LOC TU	10 10 10 10 10 10 10 10 10 10 10 10 10 1

INLET CRID & SS semple 5.7 4.9 D E INITIALS: DN & LJL Q A INITIALS: LJL 23.7 RECIRC DUCT: < NO. Ħ EXHAUST DUCT: EXHAUST GRID 6 no semple 12 70 sample 20 no semple 1.0 23.9 28.7 GRID NOL: 0.0115 mg/SAMPLE PAINTER NOL: 0.0115 mg/SAPLE 2 × 19 108.3 12.6 3.6 23.2 46.2 , 5 = Ŋ \$ PAINT BOOTH TESTS ACUREX PROJECT 8485 2 no semple OSMA THA:590 ME/NG 16.2 15.6 2.1 13.1 13.3 UNITS: MANS 2 8 * 2 S 70 semple 8.0 16.3 9.9 13.4 + ₹ 2 * OBJECT: NETAL & MODO BOX PAINT TYPE: LT CREEN PRINER ********** Painter Under no sample INLET ORID A Painter Over 2.7 TEST: ORGANICS #3 DATE: 06-17-92 PM NETHOD: NIOSH 1300 GRID CHART 1 - NEK 7.6 2.6 7.2 Ā 8 ≤

D E INITIALS:DU & LJL Q A INITIALS:LJL			INET CRID B	*	20 semble 20 sem	. S.		EXAMIST BUCT: 14.1 RECIRC BUCT: 12.8
20		to sample	80 85.	12 no sample	24 13.1	16 1.5	20 30 sample	
S1S 8495	EXHAUST GRID	3 < 10 L	7 8.4	1.91	18.7	1.2	9. 8.	CRID MOL: 0.0095 MG/SANFLE PAINTER MOL: 0.0095 MG/SANFLE
TRAVIS AFB PAINT BOOTH TESTS ACHEK PROJECT 8485	EXMAU	2 no sample	9 7.9	10 20.6	2 25.5	74 28.0	8. 9.9	UNITS: ME/NS CSIM TM:205 ME/NS
		1 6.5	8 es	2.6	21 6.8	13 18.1	17.	
TEST: ORGANICS #3 DATE: 06-17-92 PN ETXOD: NIOSN 1300 RIO CNART 2 - NIBK	3 3 0 0 0 2 2 2 2 3 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Painter Over 4.7 Painter Under no ample	IMET CRIBA	4. 4.	9; 8	3		PAINT VYPE: LT GREEN PRINER OBJECT: NETAL & MOD BOX

-----IMET CRID B 9 8 8 8 0.3 0.3 D E INITIALS:DU & LJL Q A INITIALS:LJL = ¥ 異な EXMANST BUCT: RECINC DUCT: EXMANST GRID on semple 12 To sample 95 80 80 80 6.3 .. GRID MDL: 0.0114 mg/SAMPLE PAINTER NOL: 0.0114 ME/SAPPLE × 2 0.5 9.0 0.5 3.6 Š <u>^</u> F Ŋ 2 \$ PAINT BOOTH TESTS ACUREX PROJECT 8485 2 no semple CENA TIAN: 375 ME/AG 9.0 0.7 9.0 0.2 UNITS: ME/NG Ě 2 * Ø 2 5 no sample 9.9 0.5 ت ق Š Š ħ COLECT: HETAL & VOOD BOX PAINT TYPE: LT GREEN PRINER GRID CHART 3 - TOLUENE Painter Over INCET GRID A Painter Under no sample *********** TEST: ORGANICS #3 DATE: 06-17-92 PM NETHOD: NIOSH 1300 ਰ ਨ ` ₹ * **ĕ** ' ≥

D E INITIALS: BN & LJL Q A INITIALS: LJL			INLET GRID	<u>ğ</u>	82 es	로 # `		EXIMUST BUCT: < NOL	RECIRC DUCT: < PDL
90		 -						EXHAU	RECTI
		to sample	8 • • • • • • • • • • • • • • • • • • •	12 no sample	90 *2 *	16 • 100.	20 no semple	GRID MOL: 0.0117 mg/SWPLE	0117 mg/sAMPLE
TESTS 27 8485	EXNAUST GRID	, , <u>6</u>	7 * *61.	ğ = *	<u>ទី</u> ស ំ	₹,` <u>5</u>	\$	CRID MOL: 0.	PAINTER MOL: 0.0117 mg/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8485		2 no sample	1© >	10 1 0	, <u>, , , , , , , , , , , , , , , , , , </u>	\$.	85 ↓ E	UNITS: mg/MG	OSNA TUA:435 mg/1G
		9	s semple	9	21	ů,	17 , 10L	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
TEST: ORGANICS #3 DATE: 06-17-92 PM NETHOD: NIOSN 1300	GRID CHART 5 - ETNYL BENZENE	Painter Over < MOL Painter Under no sample	INET AND A	77 × 100 ×	700 %	<u>ਵ</u> ੇ *		PAINT TYPE: LT GREEN PRINER	COLECT: WETAL & NOOD BOX

RID CHART 6 - XYLENES PRINTER OVER		EXHA	EXHAUST GRID		
< NOL Painter Under no sample	- × × × × × × × × × × × × × × × × × × ×	2 no semple	104 > E	o sample	·
IN ET CRID A	5 no semple	9 • • • • • • • • • • • • • • • • • • •	7 101	8 × 401.	IMLET GRID
	ž.	10 6.4	11 0.3	12 ro sample	ਵੱ *
ĕ	₩ ¥ ₩	22 1.0	23 ° • <u>6</u> 6	₩ *	73 sample
ē 	± ₹	₹ *	15 • 160	16 • MOL	
	17	87 ***	9, 101.	20 no sample	

	S)																																					
~	XYLENES (ug)	2	7	₹.	2	2	2	Pu	2 2	2	2	1	7	ָרְיבָי בּי	27	2	2	2	멸	2	ם	2	Ē	þ	멑	2	P	힏	ק	20	'n	2	2	2	P	2	P	5	2
PAGE 1 OF	ETHYL BENZENE (ug)	þu	ī	2	2	2	2	72	2	2	2	7	2 7	27	2 7	5.	5	5	P	믿	겉	멑	2	Þ	pu	뎔	5	덛	힏	ק	P	ď	þ	рu	DG.	2	힏	2	힏
_	BUTYL ACETATE (ug)	120		₽.	2	2	13	2	2	2	22	7	7	ş ⊇	3 .	٠	B	5	ᄝ	34	32	힏	덛	2	힏	Þ	16	힏	멸	P	Tou L	Ы	Ē	밑	9	<u> </u>	덜	14	둳
	TOLUENE (ug)	P	7	₹.	2	B	ğ	þ	2	2	2	2	2 2	27	27	5.	2	5	멸	Ē	멑	힏	ם	Pi	둳	PE	달	힏	2	nd	ag.		힏	힏	5	2	멸	<u> 1</u>	72
PRIMER	MIBK (ug)	P	7	3	5	2	2	2		2	2 2	? ?	2	7	27	<u>.</u>	13	54	ᄝ	돧	덜	52	26	20	힏	111	멸	132	פ	72	Ď	Pu	10	þ	ba	2		23	Ę
T GREEN P	MEK (ug)	þ		₹.	5	g	31	33		1		1 5	201	3	8	2 ;	7	117	75	20	S	128	200	106	3 6	420	455	421	ף	2	pu	48	45	20	20	42	35	199	76
PAINT: L	RUN TIME (min)	9	•	٠.	-	Ģ	30	53	9	· C	ğ	38	2 0	3 6	2	26	53	53	53	22	6 2	82	30	30	53	53	30	82	0	28	0	53	82	83	25	28	53	31	ස
TS 8485	POST-CAL (ml/min)	1080	1120	0711	1082	1060	878	1043	1002	1033	1027	700	בונים ר מונים ר	0101	670T	//01	1046	1029	1046	1082	1043	1037	1078	1014	530	1053	1046	874	1027	1040	1065	1056	1046	1019	915	996	1033	1049	1028
TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 84	PRE-CAL PUMP #(ml/min)	1055	1071	100	1089	1060	890	1053	1001	1023	500	1080	1000	5701	1001	500 T	1053	1036	1042	1060	1050	1077	1089	1066	800	1022	1033	876	1020	1044	1054	1057	1021	1002	935	878	1025	1009	1030
TRAVIS PAINT E ACUREX	PUMP ≰	-	70	* 0	22	18	'n	32	ď	_	ی د	<u>~</u>	3 a	0 6	ពួះ	1	17	3	37	7	21	2	6	1	7	52	11	9 2	33	77	30	(17)	33	27	16	8	23	36	္ဌာ
# 0	ACUREX SAMPLE #	900867888	OURESE 70		9006/344	90087546	90087788	900879890	90088182	90088384	90088516	90008718	000000000000000000000000000000000000000	300003830	Z#189008	20000	930909410	90091182	90091384	900893&e1	90092162	900894872	90089546	90089788	0063668006	90090182	90092384	96/90384	90090586	90037849	900380	90086182	90086384	90086586	90091586	90091788	900919620	90027488	900279880
ORGANICS 06/18/92 NIOSH 130	ACUREX Tube #				791	178	171	133	173				154	100	007				151	167	127	170	203	152	130							177	191	179	168	157	158	95.	159
TEST: OF DATE: OF METHOD: N	GRID LOC	1		.	7	*	'n	ع	,	. oc	σ	• 5	2 ~	15	71	77	22	83	5 7	13	13 DUP	14	15	16	17	18	18 DUP	13	23	P Over	P under	4	8	æ.	18	2	88	EXHAUST	RECIRC

BN & LJL LJL	XYLENES (ug/M3)	no sample	를 를 ~ ~	Ø	를 달 오 오 오	, ŭ		를 * '	E S	ĝ	۰ چ	- 1 95	~ 전	로 *	₹ •		<u> </u>	<u>.</u>	년 *	주	를 를 V V	co samole	€	۱Ä.	- - -	를 *	₹ • •	2 2 2 3	· 로	호로 호로
ALS:	ETHYL BERZENE (ug/M3)	กอรสสอายาอ	₹ • •	Ś	₹ • •	Ţ		<u></u>		9	를 알	오	₹ ₹	운		<u> </u>	₹ 3	€	/ 是 /	₹ •	₹ • •	no samole) (FOI v	no sampleno	를 *	로 오 ·	₹ • ·	, ∧	٠ چ	호 호 호 호 호 호 호 호 호 호 호 호 5 5 7 7 7 7 7 7
PAGE 2 OF 2 D E INITIALS Q A INITIALS	BUTYL ACETATE (ug/M3)	no sempleno	2 2	ß	, Š.O.			, ,		1,0	1.0	얼 ·	٠ ق	운 *	→ •	- - - -		·	₩	۰ قر	, S.S.	eno samole	→ 100 ×	no sampleno	₹ •	를 *	₽ ₽	, v	<u>.</u>	~ 한 산
	TOLUENE (ug/M3)	no sampleno	ਵ ਼	eno sampleno	로 로 로	, w		듯	1 3 3 4 4 7 4 7 7 7 7 7 7 7 7 7 7	9	를 ~	, 즉	₹	를 *	를 * '			를 오	JGH >	로 *	를 달 V V	י השנה	9	no sample	ĕ	주 :	≓ ⊊	1 5	를 *	₹ ₹ •
	MIBK (ug/N3)	no sample	₹ ₹ •	no sample	호 호 v v	eno sampleno	eno sampleno	를 달 * '	, E	- - -	글 ~	4.0	9.0	를 *	₹ •	_° €		6.5	₩	3.7		J.C	v	93	₹ •	₩ ₩	₹ ₹	₽ ₽ •	를 달 *	. 1.8 . ₩DL
	MEK (Ng/N3)	no sample	€€	no sample	7.5	1.3 noszmanie	_	-:-	- C		1.2	2.3	3.9		*	•	 	3.6	4.9	14.0	14.6	10.01	•	no sampleno	1.6	u) !	`. •	, 12 -	1.2	6.2 2.5
	AVG FLOW (L/MIN)		1.086	_	0.884			1.018	200	1.035	1.083	1.050	1.033	7	1.071	750	1.03	. 040	0.665	1.038	040				1.057	1.049	1.011	0.973	1.029	1.029 1.029
* 0	ACUREX SAMPLE #	900867888	90087384	90087586	90087748	90068182	90088384	90088586	90086780	90089182	90090788	500909810	90091142	90091384	900893881	20032182	9000348/2	90089788	0063668006	90090182	90092384	4000000	90037849	900380	90086142	900863&4	90086546	90091340	900919820	900274&± 900279&80
ORGAHICS #4 C6/18/92 NIÚSH 1300	ACUREX Tube #	72	721	178	171	173	121	163	184	166	ın	160	153	151	/9!	/21	202	152	130	155	69	3 2	176	175F	133	<u>.</u>	5	8 12	158	156
TEST: 0 DATE: 0 NETHOD: N	GRID LOC		Nω	4	S U	7	&	ຜາ <u>ເ</u>	2=	12	21	22	23	72	13	13 UU :	4 7.	19	17		18 DUP	25	P over	P under	Ι	2 8	€ 0	5 65	8	EXHAUST RECIRC

-		ACUREX PROJECT 8485	ACUREX PROJECT 8485			D A INITIALSELJL
		93	EXMANST CRID		<u>-</u>	
Painter Over 1 4 MDL	no sample	ب		t no sample		
INCET CRID A S	5.	6 1.3	7 no sample	e prime ou	<u>i</u>	ERET SEL
9.	:	10 2.1	11 3.6	12 2.3		ਵ ਵ
24 1.5	1.2	22	23 3.9	% 2.5		8 1.5
<u>. </u>	2.4 1.6	2	15 6.2	36 3.4		#
	•; •	81 4.4. 6.41	19 16.6	28 To seeple		r C
PAINT TYPE: LT GREEK PRINER OBJECT: LADDERS	MER LEIT	UNITS: mg/M3 OSHA TIA:590 mg/H3	CRID FDL: 0.0115 MG/SAMPLE Painter FDL: 0.0115 Mg/sample	GRID FDL: 0.0115 MG/3AMPLE INTER FDL: 0.0115 Mg/3AMPLE	i Exmanst ou Rectric ou	CT: 6.2 CT: 2.5

O E INITIALS:BH & LJL O A INITIALS:LJL	-		IMET GRID 8	10 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	ž R	g m		EXMANST DUCT: 1.8 RECIRC DUCT: < NOL
	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 no sample	or sample	12 • • • • • • • • • • • • • • • • • • •	24 of .	36 9.6	20 no sample	
ES1S T 8465	EXMAUST GRID	3 2 00 3 00 1 00 1 00 1 00 1 00 1 00 1 00 1	7 no semple	11 0.6	23 0.8	1.7	5.2	GRID MOL: 0.0095 mg/SAMPLE PAINTER MOL: 0.0095 mg/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8485		2 * 8 DL	7 0. 9	10 20 20	7.0 7.0	₹. 8.	16 3.7 < PDL	UNITS: MUNTS OBIN TAN:205 MUNS
		no sample	ر د د	~ Š	21 A 104	₽ * * • * *	71 AE.	2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
TEST: ORGANICS #4 DATE: 06/18/92 ETHOD: NIOSH 1300 RID CHART 2 - NIIK		Painter Over < #01. Painter Under no semple	INCET GRID A	12°	Z *	5		PAINT TYPE: LT GREEN PRINER GOLECT: LADOERS

D E INITIALS:UN & LJL O A INITIALS:LJL		INCT GRID B	# Y	ă a `	g a		ECONNECT BLCT: < 194. RECIRC BLCT: < 186.
6 0	no sample	8 no semple	چ د د	ق خ	ž,	9 pdage 62 20 25	
\$15 8465	EXMANST CATO 3 4 FOL	7 no semple	≠ *	2	53 • 26	\$	CRID FOL: 0.0114 mg/50PLE PAINTER FOL: 0.0114 mg/50PLE
TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8465	EXMAN	9°	5	23	¥,	. , . 	UNITS: mg/46 OSIA TAN:375 mg/48
	1 no semple		ğ	ر م م	5 , 5 ,	14 × 191	
TEST: ORGANICS PA DATE: 06/18/92 METHOD: MIOSM 1300 DRID CHART 3 - TOLUENE	Painter Over	INCET GRID A	ă ă	<u>ಕ</u> ನ`	ē s		PALINT TYPE: LT GREEN PRINER GOLECT: LADOERS

D E INITIALS:BN & 1.JL Q A INITIALS:LJL		INET CAID E	ž Ž	794 × 400 ×	₹ a`		EDMALIST DUCT: 0.4 RECIRC DUCT: < FOL
. •	to sample	o semple	12 1.0	% • • • • • • • • • • • • • • • • • • •		no sample	
. 9465	EXMANST GRID 3 < PDL	7 no sample	11 Jæ	ਸ <u>ਵ</u> ਹ	15 • 20.	19 ^ #01.	CRID NDL: 0.0116 mg/swell
TRAVIS AFB PAINT BOOTH TESTS ACINEX PROJECT 8485	EXNAL 2 < MDL	, 5	10 10		≠ °	18 4 PDL 0.5	UNITS: mg/NS OSMA TM:710 mg/NS
	- en	\$ 0.5	9 0.7	21 1.0	# #:	* <u>.</u>	
TEST: ORGANICS #4 DATE: 06/18/92 NETHOD: NIOSH 1300 GRIO CHART 4 - BUTYL ACETATE	Painter Over • MDL Painter Under no sample	INET CENTER	ē ≤`	<u>ਰ</u> ਨ	₫ a`		PAINT TYPE: LT GREEN PRINER GRACT: LADDERS

D E INITIALS:ON & LJL Q A INITIALS:LJL			INLET GRID	# ·	ਡੂੰ ਨ	ਵੱ * 		EXMANST DUCT: < NA.
	•	no semple	9 6 8 8	12 , 19L	ಕ ಸ	≇ ≯ *	SS rrs semple	
ESTS 7 8465	EXMANST CRID	۳ • •	7 no semple	₽*	z,	₹ ₹		GRID MOL: 0.0117 MAJSANPLE PAINTER MOL: 0.0117 MAJSANPLE
TRAVIS AFB PAINT BOUTH TESTS ACUREN PROJECT 8485	Ethe	2 .ee. 3	.	26 *	, k	¥, ĕ	35 A 25 A 20 A 20 A 20 A 20 A 20 A 20 A 20 A 20	UNITS: MANG DEM TANKAS MANG
	<u>.</u>	n angle	~ Ž			25 26 26 26	₽,	
TEST: ORGANICS #6 DATE: 06/18/92 NETNO: NIOSH 1300	CALID CHART 5 - ETHYL BENZENE	Painter Over < MDL Painter Under no scaple	INET CRIB A	₹	ಸ ಸ`	≓ si		PAINT TYPE: LT GREEN PRINES GRUECT: LAGGERS

D E INITIALS:BN & LJL Q A INITIALS:LJL			INET SE	*, E	g g	로 유 *		FIGHAUST BUCTS & MOL. RECIRC BUCTS & MOL.
60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	no sample	s sample	12 • 10	% **	56 	elopaes on	
:51S : 8485	EXHAUST GRID	3 < 101	7 no sample	19 *	23 26	₹ <u>₹</u>	. 2 <u>.</u>	GRID MDL: 0.0368 mg/SAMPLE PAINTER MDL: 0.0368 mg/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACUREN PROJECT 8485	EXHA	, ioi , ioi	1	5 J	23 • 186	7, 10	65 , , 104 104 104 104	UNITS: MG/MG OSIA TAX:435 Mg/MG
		1 no sample		<u> </u>	24 PDF	# , , EE	19. ×	
TEST: ORGANICS #6 DATE: 06/18/92 WETHOD: NIOSH 1500		Painter Over < IDI Painter Under no sample	INCET GRID A	# ,	ಸ ಸ	₫ A*		PAINT TYPE: LT GREEN PRIMER COLECT: LADGERS

N.	rLENES (ug)	25 25 25 25 25 25 25 25 25 25 25 25 25 2
PAGE 1 OF 3	ETHYL BENZENE X' (ug)	55555555 5 555555555555555555555555555
_	BUTYL ACETATE (ug)	55 111 141 158 168 168 173 173 173 173 173 173 173 173 173 173
	TOLUENE (ug)	MD 102 102 102 103 103 103 103 103 103 103 103 103 103
COAT NLLET	MIBK (ug)	MD 415 415 415 609 552 552 330 1176 1176 1176 1176 1176 1177 1177 117
AHITE TOPCOAT COMFORT PALLET	MEK (ug)	MD 76 MD 76 MD 76 103 103 103 104 104 104 104 105 105 105 105 105 105 105 105
PAINT: VOBJECT: 0	RUN TIME (min)	උපසුසු - සුසුසු සිසිසිසිය සිසිසි සිසිසිසිසිසිසිසිසිසිසි
TS 8485	POST-CAL (m]/min)	1045 1073 1073 1073 1074 1073 1073 1073 1073 1073 1073 1073 1073
AFB BOOTH TESTS PROJECT 848	PRE-CAL (ml/min)	1056 1056 1011 1017 1011 1011 1011 1023 1023 1023 1023 1023
TRAVIS AFB PAINT BOOTI ACUREX PRO	PUMP #	644488401149748 4511190011119001114948818111191119111911191119119119119119119
24 O	ACUREX Sample #	90094384 90094384 90094384 90094384 90095386 90095386 9009586 9009586 9009586 9009788 900978
ORGANICS 06-23-92 NIOSH 13(ACUREX TUBE #	1986 1986 1986 1986 1986 1987 1987 1987 1987 1987 1987 1987 1988 1987 1987
DATE: 0 DATE: 0 METHOD: N	GRID LOC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

BN & LJL LJL	XYLENES (mg/M3)	Color Colo
: 2 ALS: ALS:	ETHYL BENZENE (mg/M3)	Sample Sa
PAGE 2 OF 2 D E INITIAL Q A INITIAL	BUTYL ACETATE (mg/M3)	# 1
	TOLUENE (mg/M3)	Sample of the control
	MIBK (mg/H3)	Samp Samp
	MEK (mg/N3)	no sampleno sampleno sampleno
	AVG FLOW (L/MIN)	1.024 1.025
%¥2 2¥2	ACUREX SAMPLE #	90094344 90094344 90094344 90094344 90094344 90095344 90095344 90095346 90095346 90095346 90097364 90097366
ORGANICS #5 06-23-92 PM NIOSH 1300	ACUREX TUBE #	211 190 190 190 190 230 230 230 230 230 230 230 230 230 23
TEST: 0 DATE: 0 METHOD: N	GRID LOC	12 0 10 10 10 10 10 10 10 10 10 10 10 10 1

14 1.0	DATE: 06-23-92 PM WETHOD: NIOSH 1300 GRID CHART 1 - NEK Painter Over no sample Painter Under 8.6	- s - s - jo	ACUREX PRO ACUREX PRO	TRAVIS AFB PAINT BOOTH TESTS ACINEX PROJECT 8465 EXMAIST CRID 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2	<u>r</u>	÷.	A MITALS: LAL Q A MITALS: LAL C Field BL	Field Blank
21 1.2 10 2.3 11 3.8 12 3.1 2.2 2.2 2.2 2.3 11 3.8 no sample 11.4 2.2 3.3 2.5 7.0 no sample 11.3 14 3.5 15 9.1 16 4.7 7.0 no sample 11.3 16 6.3 19 0.7 7.0 no sample 11.3 16 6.3 19 0.7 7.0 no sample 11.3 16 6.3 19.0 15.6 no sample 11.3 15.6 no sam	14 1.0	2 5 5 5	•	.	F	• • • • • • • • • • • • • • • • • • •		<u> </u>	INCET CRID 8
13 1.4 22 3.3 23 7.0 no sample 13 1.3 14 3.5 19 9.1 16 4.7 17 16 6.3 19 5.6 no sample		4 2.2 2.2		ž.		e j	12 3.1 no sample		
13 14 5.5 16 4.7 17 9.1 16 4.7 17 18 6.3 19 5.6 no sample		-		:		e,	opera ou		
17 16 19 20 20 mps on 15.6 no sample 4.9 4.9				S 3	•	N-			
17 18 19 20 20 mo sample 6.3 15.6 no sample 4.9	1								
		17 no sample		m e-		•	9 8 8		
CONTRACTOR CONTRACTOR	DEJECT: CONFORT PALLET		OSHA THA:590 ME/IG		LINTER M	H.: 0.0115	PAINTER IDL: 0.0115 my/while	RECINC SUCT:	. 6.2

6.8 9.5 12.8 19.2 22.8 22.8 15.2	TRAVIS AFB PALINT BOOTH TESTS ACUREX PROJECT 8465 EXMAUST GAID 1	D E INITIALS:BN & LJL Q A INITIALS:LJL	Field Blank < MDL	9.6	12 12.9 5.3 24 no sample 28 6.8	16 13.0 WB 3.7	20 no sample	LYSAMPLE EXMANST DUCT: 6.4
	5	VIS AFB NI BOOTH TESTS NEX PROJECT 8485 EXHAUST GATD	8.0		. 11 12.8 23 19.2	15 26.2 . 22.8	19 15.2	BANS GRID MDL: 0.0095 mg/sAMPLE

D E INITIALS:DN & LJL Q A INFTIALS:LJL		Field Blank < MDL	IMET GRID B	2	2	# · ·	•	CT: 1.2 CT: 1.6
O E INITIA O A INITIA	-							EXMANST BU RECIRC BU
		.	7.1	12 2.3 no sample	25 mple	76 2.3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	GRID IDL: 0.0114 mg/SAMPLE
STS 8485	EXMAUST GRID	5. 4.2	7 1.6	11 2.2	ត្ត ស	55 8.6 4.0	19 2.7	GRID MOL: 0.0114 mg/SAMPLE PAINTER MOL: 0.0114 mg/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 6485		2 no sample	6 1.7	10 3.0	3.7	16 3.2	8.E.	UC115: mg/M3 nswa tua:375 ms/M3
		1 no semple	s no scaple	e 0 e	21 1.2	ਏ ਹੈ:	17 no sample	• • • • • • • • • • • • • • • • • • •
TEST: DREAMICS #5 DATE: 06-23-92 PM WETHOD: MICSM 1300 GRID CHART 3 - TOLLENE	_		IMET GRID A	4. 8.	24 1.2	<u>.</u>		PAINT TYPE: WHITE TOPCOAT

D E INITIALS: BN & LJL D A INITIALS: LJL	Field Blank < MDL	IMET	<u>:</u>	7. R	;; 8		EXMAIST DUCT: 1.7 RECIRC DUCT: 2.5
2	:			·			EXHAUS
	4.1.5	2.4	12 3.3 no sample	24 no ample	3.£	e parties ou 02	GRID MDL: 0.0116 mg/SAMPLE NTER MDL: 0.0116 mg/SAMPLE
15 0485 1 GRID	κ, «ο	7 2.5	3.3	ສ 5.5	15 5.7 6.2	4.1	CRID MDL: 0.0116 mg/SAMPLE PAINTER MDL: 0.0116 mg/SAMPLE
TRAVIS AFB PAINT BOOTN TESTS ACUREX PROJECT 8485 EXMAUST GRID	2 no sample	6 2.5	10 4.7	22 2.6	4. 8.	87.2.7.2.3.7.2.3	1 20
	1 no sexple	5 no sample	9 1.2 7.7	1.6	1.9	17 10 sample	.T UNITS: MQ/M3 ET OSHA TNA:710 Mg/M
TEST: CACANICS #5 DATE: 06-23-92 PM METHOD: NIOSH 1300 GRID CHART 4 - BUTYL ACETATE	Painter Over no sample Painter Under 17.3	«	*, ē	% 1.5	<u>;</u>		PAINT TYPE: UNITE TOPCOAT OBJECT: CONFORT PALLET

INCET CRID O Field Blank < FDL D E INITIALS: DH & LJL Q A INITIALS: LJL 호 호 호 호 호 = ¥ € ₽ 8 EXMAST DUCT: < NOL RECIRC DUCT: < NOL EXMANST GRID 12 A MOL TO SEMPLE ol 10 semple 02 26 TO SANTÁ® GRID NOL: 0.0117 mg/SAPPLE PAINTER NOL: 0.0117 Mg/SAUPLE <u>Š</u> , 5 5 ^ ₹ 23 10 10 = ***** , 5 , , 5 Ā TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8465 ħ 2 no semple DENA THA: 435 mg/RS ਕੂ ਲ ≠ * ^ 호 = , , ≦ § UNITS: MA/IG ₽ **Ž** t ro septe S no seaple 17 10 seeple ti Δ<u>α</u> ¥ OBJECT: CORPORT PALLET PAINT TYPE: WITE TOPCOAT GRID CHART 5 - ETHYL BENZEME INCET ORID A *************** Painter Under Painter Over no sample TEST: ORGANICS #5 DATE: 06-25-92 PM METMOD: NIOSH 1300 हूं इ و خ م * , ğ

********** INLET GRID B Field Blank < MDL D E INTTIALS:DN & LJL Q A INITIALS:LJL 를 8 8 요 호텔 보 = ¥ EXMANST DUCT: < FOL RECIRC DUCT: < 10L 9) 19 **200** 19 **200** 0.2 ro sample % emple 0.5 GRID NOL: 0.0368 mg/SANFLE PAINTER NOL: 0.0368 mg/SAMPLE Š , 5 7 2 0.2 0.0 0.0 0.3 9.3 , 5 , 현 EXMAIST CRID Į \$ <u>\$</u> N TRAVIS AFB PAINT BOOTH TESTS AQUREX PROJECT 8485 2 To sample DENA TUA:435 mg/NS 0.3 .. = , , € € UKITS: Mg/IG <u>,</u> 2 7 Ø 1 To temple s seeple 17 no sample ნ <u>,</u> გ GALECT: CONFORT PALLET PAINT TYPE: UNITE TOPCOAT CALLO CHART 6 - XYLENES ************* Painter Under Painter Over no sample TEST: CRGANICS #5 CATE: 06-23-92 PM NETHOD: NICH 1300 IMET ONTO A a <u>ĕ</u> <u>ت</u> م \$

0F 2	E XYLENES (ug)		
PAGE 1 (ETHYL BENZENE (ug)		9 9 9 9
	BUTYL ACETATE (ug)	245 265 163 303 303 303 303 303 303 303 303 303 3	323 307
Aī	TOLUENE (ug)	• - 	123 28 28 28 28
RAY TOPCOAT NE	MIBK (ug)	850 850 850 1047 1165 11107 1165 1165 1165 1165 1165 1165 1165 116	ND 1112 1112 1061
GUNSHIP GRAY C141 ENGINE	MEK (ug)	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ND 42 39
PAINT: 08JECT:	RUN TIME (min)	288228282882882882828 26228868682556	2525
STS 8485	POST-CAL (ml/min)	1047 1047 1048 1048 1048 1048 1049 1049 1049 1049 1049 1049 1049 1049	1022 1012
AFB BOOTH TES PROJECT	PRE-CAL (ml/min)	1057 1058 1058 1058 1058 1058 1058 1058 1058	1056 1027
TRAVIS PAINT E ACUREX	PUMP	85 22 20 11 12 20 27 12 20 27 11 12 20 27	37 38
¥₹ ₀	ACUREX	្រុសស្រីស្រីស្រីស្រីស្រីស្រីស្រីស្រីស្រីស្រ	
ORGANICS 06-30-92 NIOSH 130	ACUREX TUBE #	242 242 242 253 263 263 263 263 263 263 263 263 263 26	245 245 265
DATE: 1	GRID LOC	3 00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F BLANK EXHAUST RECIRC

PAGE 2 OF 2 D E INITIALS: BN & LJL Q A INITIALS: LJL BUTVI FTHVI

XYLENES (mg/K3)	6.0	1.1	0.7		0.0	1.0	 	2.5	0	1.2	0.1) 	1.0		0.8	0.0	no sample	9.0	no sample	호 달	۰.00 م.00	no samole	0.7		\ e	. .	1.3	
ETHYL BENZENE (mg/M3)	· 호텔	^ ₹ 0.2	2	₹ ₹	0.0	교 ·	9.5	9.0	를 등 •	0.2	7.0°	₹ ₹ ₹	0.2		0.2	· 동	no sample	7.0 ×	no sample	· 오		no sample	ਹ • •	₹ •	200	JQ.	0.5 ************************************	!
BUTYL ACETATE (mg/M3)	3.6	3.6	2.9	4 4	4.7	4	a, o	ຸ ຕຸ	4.4	9	4 .0		3.9	11 1	9	3.4	no sample	0 m	eno sample	0.5	3.2	no samole	2.6	3.0		, 10 , 10	ເນີ ເນີ ເນື້ອນ	1
TOLUENE (mg/K3)	0.7	 0 6.8	9.0	9.00	 	0.7	0.0	1.0	1.3	9.0	9.6	2.1	8.0	6.0	0.7	6.0	no sample) - -	no sample	5.9	-i c	o samole	0.7	<u>.</u>	0.0	1.9	6 , 6	1
MIBK (mg/M3)	12.6 13.5	12.5 14.5	2.	15.1	16.9	13.7	18.4 34.8	32.0	14.3	17.1	16.7	15.6	13.3	21.6 39.9	14.4	11.5	io samplei	19.5	97	1.7	 	o samolei	Θ	ο, c	× ×		18.8	,,,,
MEK (mg/M3)	0.7	1.2	0.0	1.0	1.5	0.7	9.0	2.0	2.0	. 8.	6. 6.		6.0	1.3	. 69	0.7	o sampler	7.7	o sampleno	₹	 	o samoler	0.6	-	o c	* #DL *	0.7	:
AVG FLOW (L/MIN)	1.052 1.036	0.983 1.078	25	1.034	1.07		1.045	1.050	0.930	3	1.062	- 1.00 -		 25 25 25 25 25 25 25 25 25 25 25 25 25	1.071	1.038	1.040	1.022	1.112 n	0.990	1.028	1.071	1.048	1.052		1.000	1.039	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ACUREX	90099941000 90100162	90100384 90100586	90100748	901003410 90101142	90101344	90101788	901019820	90102788	901023 84	90104546	90104788	901049450	90102546	901029630	90103364	90103546	90103748	901039 64 0	9002978394	900393	900395	9003998400	90079687	900798	9008005995	900596	90029283	25-1111
ACUREX TUBE #	88	249 241	7	<u> </u>	2 68	88	259	7.5	8 3	99	3 5	260	69	8 7	j æ	22	267	263	3 5	89F	266F	2	8	2668	246	868	245	1
GRID LOC	1 2	3 DUP	•	റ ധ	~ •	o <i>o</i> n	25	11 DU	215	22	22 DUP	3 Z	13	*	15	===	18	61 62 62 62 63 63 63 63 63 63 63 63 63 63 63 63 63	P over	P under	*	2A DUP	3A	8	8 8	F BLANK	EXHAUST	1000

TEST: ORGANICS 46 DATE: 06-30-92 PN METHOD: MIGGH 1300			PAIR	TRAVIS AFB Paint Booth Tests Acinex Project 8485	STS BABS				D E INITIALS:UN & LJL Q A INITIALS:LJL	18:01 E	5
GRID CHART 1 - NEK	•			EXHAU	EXIMAIST GRID				•		
Painter Over ne sample Painter Under	-	0.7	~	0.7	m	2.1.	•	0.1		Field Blank < PDL	Field Blank • PDL
INET ORID A	•	9	•	3	-	2	40	1.2		INET CAID D	INCET CRID B
.	•	7.	2	6.9	=	2.6 2.0	2	2.0		=	*:
x =	<u> </u>		8	9 ÷	B	9.1	×	î, Ş		R	9.6
	5	•;	*	13	ħ	4.7	2	1.6			
? #	<u>-</u>				•					R	0.5
		1.e	≅ §	16 no sample	2	17.7	R	2.3			
PAINT TYPE: QUISHIP GRAY TOPCOAT	TACOMET		UNITS: BUJAGE	D/18	GE 10	CRID NOL: 0.0115 mg/50PLE PAINTER NOL: 0.0115 mg/50PLE	3 3		I EXMANST NU RECINC OU		0.7
WEELS 570 Engine				!							

DATE: 06-30-92 PM METNOD: N108H 1300		PAINT BOOTH TESTS ACUREK PROJECT 8485	TESTS ECT 8485		Q A IMITALS: LJL	
CRID CHARL Z - RICK		EXMANST GRID	EXMANST GRID	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Painter Over no sample Painter Under	1 12.6	2 13.5	3 12.5 14.5	10.1		Field Blank < MDL
INEET GRID A	5 15.1	6 16.7	7 16.9	15.2	<u>:</u>	IMET GRID 6
# 1:.1	13.7	10 18.4	± ¥ 8.6	12 14.3		9.6
25. 9.6 7. 9.6	7. %	22 17.1 16.7	23.2	15.6		23 8.2
Ā	13.15.3	14. 21.6	15 39.9	36 14.4		a R
:	17 11.5	ejárje ou 91	19 19.5	20 12.6		
PAINT TYPE: QUESTIP GRAY TOPCOAT	PCDAT 08	COST UNITS: ME/IG CSMA TAN:205 ME/IG	3	CRID MOL: 0.0095 mg/sample	I EXMANST DU RECIRC GU	CT: 13.8 CT: 18.3

			PAR PAR PAR	TRAVIS AFB Paikt Booth Tests Acinex Project 8485	1818 1 8485				D E INITIALS:DN & LJL O A INITIALS:LJL	ž1
GRID CHART 3 - TOLLERG	<u>:</u>			EXA	EXNAUST GRID	6 6 6 8 1 1	• • • • • •	1	-	
Painter Over no sample Painter Under 5.9		7.0	~	8.0	'n	5.0	•	9.6	P	Field Blank
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•		•	6.0	~	0.7	• .	0.5		INET GRID B
¥	•	7.0	5	6 .	=	1.0.	. 2	£.	*	.
2 E	2		8	4.0	ĸ	. E.	*	2.1	8	•
ž:	5	•	#	6.6	₽.	:	2	6.7	# 	7.0
	- 1	:	2 8	76 70 semple	\$	7.0	2	2	,	
PAINT TYPE: GANNIP GRAY TOPCOAT OBJECT: C141 EINSINE	 IOPCOAT		UNITS: ME/NG OCHA TUM:375 ME/NG	mm/16 175 mm/16	PAINTE	CRID MDL: 0.0114 mg/340PLE PAINTER MDL: 0.0114 mg/340PLE	1114 mg/8		EXAMPT SUCT: RECINC BUCT:	0.6

	13 3.9 14 6.2 15 11.1 16 3.8	10 5.4 11 9.9 12 22 22 22 24 24 24 24 24 24 24 24 24 24	INCET CRID A 5.4 6 4.8 7 4.4 8 4.3	Pointer Over 1 2 3 4 2.9 no sample 1 3.6 2.9 5.9 5.6 4.1 6.5 6.5	3.6 2 3.9 3.6 4.1 4.4 8 4.1 12 4.6 19 5.4 15 11.1 16 3.9 3.8 8.3 8.4 15 11.1 16 3.9 16 17.1 16
--	------------------------------	---	------------------------------------	--	--

•••••• INLET GRID 6 Field Blank < NOL 0.2 0.3 D E INITIALS:BN & LJL Q A INITIALS:LJL = ` ₫ RECINC DUCT: < NO. 8 R EXMUST DUCT: EXMANST GRID 0.7 0.2 GRID HOL: 0.0117 mg/somile PAINTER NOL: 0.0117 mg/SAUPLE 전 유 ˇ <u>추</u> 12 . **8**0. 전 * 2 0.2 **→ B**PL 0.2 0.2 ນຸ ອັ 0.5 0.5 F \$ 2 PAINT BOOTH TESTS ACUREX PROJECT 8485 ta no semple DSHA THA: 435 mg/HS 9.5 22.0 0.3 * Ř UNITS: ME/NS **4** 2 Ø * 9.5 (17 < 30L (21 MEL Š Š , 5 PAINT TYPE: GLASSIP GRAT TOPCOMT p COLECT: C'AS ENGINE GRID CHART 5 - ETHTL BENZENE Painter Under < NGL Painter Over no sample FEST: ORGANICS #6 DATE: 06-30-92 FM NETHOD: NIOSH 1300 IMET ONTO A , i ਵ ਕ ` ¥ ×

DATE: 06-30-92 PM METHOD: BLOSH 1300 GRID CHART 6 - XYLENES			PAINT BOOTH TESTS ACUREX PROJECT 8485	ESTS T 8485			O A INITIALS:LJL
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EXM	EXHAUST CRID			
Painter Over no sample Painter Under	-	5.	2 0.9	m	9.r.	4 0,7	Field Blank
INLET ORID A	<u> </u>	3	:	•	6.	8 1.0	INET CRID B
:	•	97	10 1.3	=	22.3	12 1.0	ā.
	7	7	22 11.2 1.6	n	1.7	₫ %	8
N.	5	0.	44 4.5	₹	2.5	5 8.0	, o
	4	6.0	16 no sample	2	8.0	62 0.7	
	TOPCOAT	\$11 5	: mg/K3	5	CR10 PDL: 0.0368 mg/5APPLE	D MDL: 0.0368 mg/SAMPLE (EXMANST BUCT: 1.3

TEST: DATE: METHOD:	SINGLE P. 07-01-92 NIOSH 130	ASS ORGANICS AN1 00	v	TRAVIS AF PAINT BOO ACUREX PR	RAVIS AFB AINT BOOTH TESTS CUREX PROJECT 846	S	PAINT: OBJECT:	GUNSHIP GRAY C141 ENGINE	ZAY TOPCOAT IE		PAGE 1 OF	2
GRID LOC	ACUREX TUBE #	ACUREX SAMPLE #	PUMP #	PRE-CAL F(ml/min)	POST-CAL (ml/min)	RUN TIME (min)	KEK (ug)	M18K (ug)	TOL YENE (ug)	BUTYL ACETATE (ug)	ETHYL BENZENE (ug)	XYLENES (ug)
-2	321 322		28	1056 1051	1022 1036	67	윤윤	5 5	무요	N 36	모오	22
3 pup	248	9007998928 90131988	3 8 3	1048	1003	67 67		159 181	NO 17	% 55:	2 2	22
→ t0	15 85 85 85 85 85 85 85 85 85 85 85 85 85 8		18 18 18 18 18 18 18 18 18 18 18 18 18 1	1034	1004	88 67	223	135 148	5 :	3 55	당오!	29:
9 ~ (888 888 888	901055&6 901057&8	:::::	997 1005	1021	899	36 26 36	297 379	9 99	125	229	75 29
20 GV	908 908	901059660 90128667	30	1043	1051	2 C	, OX	ND 231	₹ 13	S/ ON	22	22
201	291	90128889	31		1021 971	67 67	1 33	312 896	ND 24	99 321	MD 13	MD 87
11 DUP	293	90132041	56.5		1051	198	46	1053	26 MD	372	15 MD	M 94
12	244	90131041	32	•	972	3~;	; ; 2	2	; 2	9	2	2
22 22 94P	29 4 302	90131213	19 7		1048	28	5 S	301	9	103	22	39
	4	90131465	នដ		957	88 8	39	958	56 W	363	12	66 J
£13	315	90129465	24.5		1020	868	; ; 2	98	27	Q.	2	.
15	88	9012964/ 90129849	22		99/ 1023	2 69	9. 9. 9.	3/0 841	9	267	11 11	200
15 DUP	307	90132445	21.5	1029	1042	8 8 8	27.88	986 231	13 NO	323 69		190 N
223	289		3	1006	1032	<u>(0</u>	2	382	33	ON ON		29
9	363 298		i s	1004	696	88	258	353	29	87	229	229
202	300		₹. 4	1053	1052 989	L9 19	65 28	176 215	KG 27	55 129	15	NO 17
P under	253	900329	22	1020	970	79	29	25	35	30	15 NO	25
¥ % ?	281F		ဗိုင္တင္	1006	1044	62	229	299	1	223	25	25
18 18	\$62 782		35	1033 958	1001	67	22	운	2	22	2	22
88	88F 318	900383 900384&5	9~	1036 997	1020 964	88	문문	윤	22	99	22	22
EXHAUST SPLIT	304	9002878308 900309826	37	1029 1020	1014	63	20 18	222	MO 13	74	22	<u> </u>

TEST: SINGLE PASS ORGANICS DATE: 07-01-92 AMI METHOD: NIOSH 1300

								a)																						4.	
BN & LJL LJL	XYLENES (mg/M3)		₽	~ v	i €	₩	50.4 50.4	o sample	, 즉 -	. e.	JOK V	를 *	를 를 * `	, 5		호 호	4. c	2.0	, 즉	, 10 10	로 :	₹ ₩ •	, 5 6		₹	로 달	₹ •	를 : •	v ∨	o sample	* *
	ETHYL BENZENE (mg/M3)	달 달 * *	즉	· ·	₩ ₩	₽	^ ^ 독록	o sampler	₹ •	0.5	S	주	₹ ₹ •	, 2 2 3	5	를 알	٠ آو د	9.0	즉	· 달	를 ?	를 를 * `	, J.c	0.5	· MDL	로: •	₹ ¥	₹ •	₹ ₹ ₹	o samplen	호 호
AGE 2 OF E INITIV A INITIV	BUTYL ACETATE (mg/M3)	, 10.5 * 10.5	0.5	9.9 9.9	80	5.	6.7	c sampler	- 0	, c.	1.6	달. *		- LC	1.6	~ 전.	- °	. ⊿	.0	₹	0 ,	~; c	ο <i>σ</i>	S.S.	년 *	로 달		를 알		o samplen	1.1
-66	70LUENE (mg/M3)	로 로 로	0.5	주 주		로 얼	~ ~	o samplen	₹ •	. 4.	로 *	주 년	2.0 R0.7	10	₹	4.0	2.5	, E	, <u>1</u> 0.	0.5	를	₹ ₹ • •	, Ž	6.5	7 <u>9</u> 2 •	로 달	₹ •	<u> </u>	₹ ₹ ₹	samplen	• MDi. 2
	MIBK (mg/M3)	1.0 * MOL	2.3	2.e 9.t	2:2	4.4	3.7	o samplen	4 5 2 8	15.8	4.6	년 왕 •	4 4	14.3	6.4	→ t	. č	16.2	3.2	1.2	က္မ	n n	, c	· 호	. ★DL	교 오 •	를 *	ב ב ב	를 로 오	samplenc	3.7
	MEK (mg/N3)	주 등	0.5	?.°	0.5	e. 0	4 4	o samplen	۳,۰	. 0	0.5	를 달 •		9	0.5	호 주	7 0 5 C	9 0	0	, 증	0.5		7. 4	Q	JQ.	로 :	<u> </u>	1 2 2 3	독 로	samplen	000
	AVG FLOW (L/MIN)	1.039	1.0395	1.022	1.013	1.0035	1.013 6.991	1.047 n	1.0365	1.0595	1.018	0.979	1 043	0.9855	1.0055	1.026	1.002	1.0355	1.0485	1.019	1.0385	1.9835	0.998	0.995	1.0185	1.025	1.038	1,9785	0.9805	0	1.0215 1.0065
AHI 10	ACUREX SAMPLE #	900389896 900529830	9007994928	90131988	90105384	901055&6	90105788 901059860	90128687	90128889	90132081	2:	Ξ:	90131283	-	90131687	90129485	9017308/ 00120880	90132485	90130081	90130283	90130485	2013008/	90032788	900329	900349862	900363	900354	900365882	90038485 90038485		900287&308 900309&26
31MGLE 753 07-01-92 A NIOSH 1300	ACUREX TUBE #	321 322		248	6 82	303	230 230 230	302	2 <u>8</u> 2	293	312	762	294 202	200	320	315		307	308	583	323	867	3 20	253F	311			252	318		304
DATE: 0 DATE: 0 METHOD: N	GRID LOC	7	m	a DNP	·w	φ.	~ 00	on :	10	11 DUP	12	ដ	22 ZZ		72	53	- I	15 0119	16	17	82	5 6	7	P under	14	₹3	¥£	18	38	F BLANK	EXHAUST SPL IT

D E INITIALSEMA & LJL Q A INITIALSELJL		Field Blank no sample	INLET CRID B	15 16	ē ĸ	#	₹	EXMUST DACT: 0.3 HE PASS DUCT: 0.3
<u>a</u> g	# # # # # # # # # # # # # # # # # # #	4 0.3	4,0	12 0.5	24 0.5	36 4.0	60 6.9	CRID PDL: 0.0115 mg/sample Exxaust Duct: Painter PDL: 0.0115 mg/sample single pass Duct:
rests ct 848 5	EXNAUST GRID	3 0.2 0.2	2 0.4	11 0.7 0.6	83 9.6	0.0 0.0	19 3.9	GRID NOL: 0.0 PAINTER NOL: 0.0
TRAVIS AFB PAINT BOOTH TESTS ACINEX PROJECT 8465	EXW	2 • 10 F	6 0.3	10 0.3	22 0.3 9.3	14 0.3	18 0.5	UNITS: Mg/MS Osna Tua:590 mg/m3
		,	5 0.2	9 on	,	^ಪ ್ಗ ಡ್ಲ	Ĕ È	
TEST: S.P. ORGANICS DATE: UT-01-92 ANT METHOD: NICSH 1300 GRID CHART 1 - MEX		Painter Over 0.4 Painter Under	INCET CRID A	₹ ₫	ర్ న	s	ž	PAINT TYPE: GUNSHIP GRAY TOPCCAT OBJECT: C141 ENGINE

D E :NITIALS:BN & LJL O A INITIALS:LJL		Field Blank no semple	INLET GRID 8	₽ `	हुं ह	ã A		EXMAST DUCT: 3.4
		4.9	8 3.4	12 4.6	24 4.9	3.2	\$2 5.5	GRID NOL: 0.0075 AB/SAMPLE (
ESTS 27 8485	EXMAUST GRID	ы 2,2, 2,6,4	7.8.7	2; 23 6 6	23 14.3	15 12.2 14.0	19 5.3	CRID NOL: 0.
TRAVIS AFB PAINT BOOTH TESTS ACINEX PROJECT 8485	EXW	2 < 101	9.4	10 4.5	7: 7 22	14 5.5	18 3.3	UNITS: MAJAG
		0,4	5 2.2	o no sample .	21 • PDL	5. 4.	17 1.2	
TEST: S.P. DRGMICS DATE: 07-01-92 AH METHOD: MICSH 1306 GRID CHART 2 - NIBK		Painter Over 3.2 Painter Under < HDL	INET GRID A	ĕ	79 *	ā s		PAINT TYPE: QUISHIP GRAY TOPCOAT

Field Blank no sample	INET OR 10	1 1 1 1 1 1 1 1 1 1	호 # *	uct: < 16.2
				EXIMALST OUCT:
4 0.2	8 • 50 • 105	15 45 25 45 26 49	₽ ₽ 2 8	114 mg/sample 114 mg/sample \$11
13 0.2 × 100	7	± 52	₹, ₹ ,	GRID MDL: 0.0114 Mg/SAMPLE EXMAINT DUCT: G.:
EXIMAL 2 < MDL	10# > 9	10 4 10 1 2 4 10 1 2 4 10 1 2 4 10 1 2 4 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	74 0.2 4 18 18 18 18 18 18 18 18 18 18 18 18 18	TOPCOAT UNITS: mg/MG GRED MOL: 0.0114 mg/sAMPLE (
- 	5 - 30	9 no sample 21 . 100L	ti 0.4 17	TOPCOAT UNI
Painter Over 0.4	IMET CRID A	ž ž Š s	₽ ¥	PAINT TYPE:GUNSHIP GRAY TOPCOAT OBJECT: C141 ENGINE
	EXMANST CRID 1	FXNAUST GRID 1 < MDL	5 (10) (11) (12) (12) (13) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	1

D E INITIALS:DW & LJL O A INITIALS:LJL		Field Blank no sample	INCET ORID	₽ `	75 75	ਰ *		UCT: 1.1
D E INITI O A INITI	-		····					CRID FOL: 0.0116 FE/SAMPLE EXHAUST BUCT: PAINTER FOL: 0.0116 FE/SAMPLE SINGLE PASS BUCT:
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.6	1.2	7.	1.6	0.	9.0	TOPCOAT UNITS: mg/MG CRID MOL: 0.0116 mg/SAMPLE SING
		•	•	12	*	\$	R	CRID NOL: 0.0116 mg/34NPLE NTER NOL: 0.0116 mg/34NPLE
	•	0.5	9:	5.5 9.5	5.4	e.e.	1.5	ID MOL: C
TESTS ECT 8485	EXNAUST GRID	m	•	=	ĸ	ž.	\$	PAINT
TRAVIS AFB PAINT BOOTH TESTS ACIMEX PROJECT 8485	ĒX	Ē	£.	7	4:0	7:	6.0	SH/gam Of
APT		N	•	5	8	‡	6	UNITS: mg/m3 OSNA TMA:710 mg/m3
		6.5	9.0	o sample	ੂ ਦ	ੁੱ ਦ	Ž.	- 15
	1	,-	•	• \$	⊼ `	± ,	<u> </u>	TOPCOAT
S ACETATÉ	-							- 5#]P GRAY 1 ENGINE
TEST: S.P. ORGANICS DATE: 07-01-92 AN1 METNOD: NIOSH 1300 GRID CHART 4 - BUTYL ACETATE	6 6 6 6 6 6 6 6 6 8	Painter Over 1.9 Painter Under 0.5	INCET GRID A	ĕ	ě	ğ		PAINT TYPE:GLMSHIP GRAY TOPCOAT GBJECT: C141 ENGINE
ST: S.P. TE: 07-0 20: M103 CHART 4		Pein Pein	INCE	* * * * * * * * * * * * * * * * * * *	สั	*		1 N N N N N N N N N N N N N N N N N N N
TE DA METAN								

************ INCT CRID B Field Blank no sample D E INITIALS:BN & LJL Q A INITIALS:LJL 異な 전 지 * = ` ₹ EXHAUST DUCT: < NDC. PAINTER NOL: 0.0117 mg/sowice single pass duct: < NOL EXMANST GRID GRID NOL: 0.0117 mg/somle ਰੂ ਲ * **Š** 12 • 189. ਰ ਨ * *, ₹ . 0.2 0.2 0.7 9.5 \$ **,** * * * * E F Ŋ * TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8485 OSMA TIM:435 Mg/MG 2 **2 2 3 3 3** 5 <u>,</u> UNITS: ME/MS Š , 5 ㅊ 호 9 no sample 21 • 10L تة بق , ₹ Š <u>,</u> PAINT TYPE: GUISHIP GRAY TOPCOAT GRID CHART 5 - ETHYL DENZENE OBJECT: C141 ENGINE TEST: S.P. ORGANICS DATE: 07-01-92 ANT METHOD: NIOSH 1300 INLET GRID A Painter Under 0.2 Painter Over 0.2 ಶ ನ 절 주 ^{*}

1	- S	:	GRID		
1		ĕ	*****************		
9 cm, 6 cm, 7 0.4 8 cm, 7 cm, 11 1.3 12 21 22 cm, 11 1.3 cm, 21 cm, 22 cm, 23 1.5 24 (13 cm, 14 0.4 15 1.0 cm, 17 17 18 19 20	S & & E			, mb.	Field Blank no sample
21 22 23 1.3 (* 101 1 1.3 (* 101 1 1.3 (* 101 1 1.3 (* 101 1 1.3 (* 101 1 1 1.3 (* 101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• 5	Š	7 0.4	80 V	IMET CATO
13 (10) (10) (10) (10) (10) (10) (10) (10)		_ ₫ _•	μ. W.W.	12 < 10L	= <u>,</u>
13 14 0.4 15 1.0 16 1.0 10.1 10.1 10.1 10.1 10.1 10.	ישני 3	연호 	•	24 < 100	2 x *
18 19 rot < rot <	39		ts 1.0 · 2.7 ·	16 × 1001	로 유 *
		ĕ		₩ *	

DATE:	PARTICULATE 06-19-92 AM	ATE #1		TRAVIS AFE	RAVIS AFB AINT BOOTH TESTS	¥	PAINT: OBJECT:	WHITE TOPCOAT	COAT		90	INITIALS: INITIALS:	16.1 1.31		
		•	•	NUMER T	ביים ביים	2									
5	ACUREX	***************************************		ME-CAL	POST - CAL	RUN TIME	(RAW DATA, PRE #1	I, BALANCE PRE #2	ACCURACY POST #11	0.0001) POST #2	AVG FLOW		PRE AVG POST AVG	PART UT	PARTICULATE
	\$ <u>:</u>);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		(1)					(T) 11 T				
	20007		8	3024	28 20 20 20 20 20 20 20 20 20 20 20 20 20	75	0.0132	0.0132	0.0132	0.0132	90.0	0.0132	0.0132	0.000	1
2	820006	_	4	202	3017	75	0.0128	0.0127	0.0127	0.0127	W. Q45	0.0128	0.0127	0.000	ğ •
m	620006		*	3024	3113	75	0.0116	0.0116	0.0116	0.0116	3.069	0.0116	0.0116	0.000	<u> </u>
*	90008	*	8	3000	3066	7	0.0118	0.0118	0.0118	0.0118	3.076	0.0118	0.0118	0.000	7 9
~	900081	2	ĸ	30,5	3000	25	0.0125	0.0125	0.0126	0.0126	3.023	0.0125	0.0126	0.0001	8.0
9	900082	3	7	3042	3126	32	0.0130	0.0130	0.0132	0.0132	3.084	0.0130	0.0132	0.0002	2.0
7	900063	8	2	3073	3012	17	0.0126	0.0126	0.0126	0.0125	3.64	0.9126	0.0125	0.000	ر 19
•	790006	Σ.	^	3066	3048	75	0.0121	0.0121	0.0120	0.0121	3.057	0.0121	0.0120	0.000	7 01 >
•	90008		R	3057	2962	75	0.0119	0.0120	0.0125	0.0125	3.010	0.0119	0.0125	9000.0	4.7
2	990006		2	202	3003	75	0.0128	0.0128	0.0129	0.0133	3.81	0.0128	0.0130	0.0002	1.6
Ξ	790006	**	8	3069	383	42	0.0132	0.0131	0.0131	0.0131	3.016	0.0131	0.9131	0.000	₽
12	890006		12	3027	3066	42	0.0132	0.0132	0.0132	0.0132	3.058	0.0132	0.0132	0.000) 10! >
2	60006		×	3015	£	2	0.0128	0.0128	0.0135	0.01%	3.003	0.0128	0.01%	9,000	6.4
2	060006		22	3003	3135	37	0.0133	0.0133	0.0135	0.0135	3.069	0.0133	0.0135	0.0002	1.8
K)	160006		2	30%	3045	7	0.0125	0.0125	0.0123	0.0126	3.030	0.0125	0.0123	0.000	<u>,</u>
*	900092		٥	3018	3027	\$	0.0125	0.0124	0.0124	0.0125	3.023	0.0125	0.0124	0.000	Ž
13	900093		F	8	3045	7	0.0125	5.0125	0.0136	0.0136	3.068	0.0125	0.0136	0.0011	6.7
13 P	360006		Ŋ	2	3129	45	0.0126	0.0125	0.0135	0.0136	3.102	0.0125	0.0135	0.0010	7.7
*	\$0009		•	3036	2	75	0.0136	0.0135	0.0140	0.0140	W.036	0.0135	0.0140	0.0003	ъ, с
₹	960006		M	3027	3036	75	0.0125	0.0124	0.0126	0.0125	3.047	0.0124	0.0123	0.0001	P
2	260006		•	3062	Š	75	0.0115	0.0115	0.0115	0.0115	S. C.	9.013	0.013		ğ.
₽\$	960006	3 5	2	8	\$ \$ \$ \$	25	25.0	1210.0	2.016.0	24.0	25	35		3 6	9.5
			R ~	3	9	12	0.0123	0.0123	0.0126	0.0126	3,033	0.0123	0.0126	0.0003	2.3
			ĸ	3003	999	2	0.0115	0.0116	0.0120	0.0119	3.032	0.0115	0.0119	0000	3.1
: 8	900102		F	3058	3122	2	0.9125	0.0124	0.0125	0.0126	3.065	0.0124	0.0126	0.0002	1.5
1	900137		8	3065	3008	17	9.0120	0.0120	0.0171	0.0170	3.038	0.0120	0.017	0.0051	61.0
- Lander			7	3042	3000	77	0.0128	0.0128	0.0128	0.0128	3.021	0.0128	0.0128	0000) •
*	120006		7	300	3107	77	0.0122	0.0122	0.0122	0.0122	3.061	0.0122	0.0122	9,000	
র	220006		\$	3027	3018	24	0.0118	0.0118	0.0118	0.0119	3.023	0.0118	0.0116	0.000	<u>,</u>
Ā	\$2000		2	3006	2963	45	0.0119	0.0120	0.0119	0.0120	2.83	0.0120	0.0120	0.000	1
*	\$1000		M	3645	3054	Ş	0.0117	0.0117	0.0117	0.0118	3.035	6.0117	0.0117	9000	ਰ •
2	900075		₽	ž	KK	7	0.0132	0.0133	0.0132	0.0132	3.051	0.0132	0.0132	0.000	<u>.</u>
黑			2	3056	3012	~	0.0124	0.0124	0.0123	0.0124	3.018	0.0124	0.0123	888	ਵ •
EXMANST											D (D (5		
PFCIPC											•	0	0	00000	

D E INITIALS: BN & LJL O A INITIALS: LJL		·	INCT GID	ğ • '	ĕ R [*]	ĕ A`		EXMANST BUCT:no sample RECIRC BUCT:no sample
<u> </u>		10; •	8 * MOL	12	700 ° %	, 5	5.1 5.5	
ESTS :T 8485	EXHAUST GRIT!	5 6 PDL	7 NOL	** **	ੁ ਰੂ ਸ਼	15 0.8	19 3.1	GRID PDL: 0.1 mg/SAMPLE Painter PDL: 0.1 mg/sample
TRAVIS AFB PAINT BOOTN TESTS ACUREX PROJECT 8485	EXE	2 * MDL	6 2.0	10 1.6	22 1.8	3.9	18 7.0 2.3	UKITS: mg/M3 OSH4, TUA: 40 mg/M3
	1 1 1 1 1 1 1 1 1 1 1 1 1	104 >	80 80	6 4.7	21 .	13 8.7 7.7	17 8.6	n n
TEST: PARTICULATE #1 DATE: 06-19-92 AN METHOD: NIGSN 500 GRID CHART - PARTICULATE				ĕ *	ਜੂ ਨ	ğ s		PAINT TIPE: UNITE TOPCOAT CRUCT: LABOCHS

TEST: DATE: METMOD:	PARTICULATE 06-19-92 PM RIOSH 500	ATE #2 PH 0	TRAVIS AFB PAINT BOOT ACUREX PRO	TRAVIS AFB PAINT BOOTH TESTS ACLIREX PROJECT 8485	æ	PAINT: OBJECT:	LT GREEN BOASER	PRIMER		0 0 7 H	INITIALS: I	בן דון רון רון		
OK 10 COC	ACUREX SAMPLE #	FILTER # PURP #	PRE-CAL (ml/min)	POST-CAL 1) (ml/min)	RUM TIME (min)	PRE #1	PRE #2 (g)	POST #1	POST #2 (g)	AVG FLOV	PRE AVG POST AVG	POST AVG (g)	PART LIT (9)	PART UT PARTICULA (g) (mg/H3)
	900109	92	3039	3054	8	0.0123	0.0123	0.0122	0.0123	3.032	0.0123	0.0122	0.0000	Š
~	900110	<u>%</u> !				0.0123		0.0123	0.0122	3.07	25.0	7710.0	38	
M) ·	900111	5 1				27.0.0		1710.0	0.0122	22	2710.0	0.0122		
•		2	_			20.0		0.0	0.0117	1 101	25.0	214		
^		<u>5</u> 2	-			25.5	0.0135	717	210	10.6	0.015	0.0116	000	0.8
0 1		ğ				0.0128		0.0129	0.0129	3.097	0.0128	0.0123	0.00	0
- 65	_	× 2				0.0131		0.0133	0.0133	3.126	0.0131	0.0133	0.0005	1.7
•	_					0.0116		0.0118	0.0118	3.017	0.0116	0.0118	0.0002	1.7
. 5		8				0.0115	0.0115	0.0123	0.0123	3.071	0.0115	0.0123	0.0006	91
-	900119					0.0131		0.0139	0.0138	3.152	0.0131	9.63	0.000	S:
12	900120	ž				0.0119		0.0126	9710.0	197.5	9110.0	97.50	0.000	9,0
23	900121	ē				8.0.0	5.5			5.011 CEO #	25	2 5 2 5 3 5		9.0
77	271006					7212		20.0	0.0138	X-033	0.0126	0.0138	0.0012	10.4
7 E		. 8				0.015	0.0115	0.0124	0.0124	3.030	0.0115	0.0124	0.000	7.6
	900124	<u>\$</u>				0.0127		0.0136	0.0136	3.062	0.0128	0.0136	9.000	6.9
<u> </u>		2	_			0.0125		0.0127	0.0127	3.054	0.93	0.0127	0.0002	1.7
7	900126					0.0124	0.0124	0.0133	0.0133	8	0.0124	0.0155	686	6.6
₩	900127	S :				¥ 10.0		20.0	2410.0	5.01.	\$ \$ 6 5 6	2570		. 4
₽ ‡	2000 2000 2000 2000 2000 2000 2000 200	× \$				5	2510.0	0.0139	0.0139	2.997	0.0138	0.0139	000	6.0
	900120 900130	<u> </u>				0.0122		0.0125	0.0125	2.990	0.0122	0.0123	0.0003	5.6
5		苕				0.0120	0.0119	0.0119	0.0120	3.054	0.0119	0.0120	0.00	6.5
2		\$	_			5.03		9.0136	0.0137	4	0.0124	0.0.0	200.0	9.0 0.0
8	900138		····			0.0131	1510.0	6.0133	0.0152	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	20.0	25.0		À Z
-		31				25.00 26.00		× 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	X 5	4 014	, K	K		_
¥.		\$ \$						0.0116	0.0116	X-0.X	0.015	0.01	000	<u>,</u>
5 2 2		3 2				0.012		0.0124	0.0124	3.136	0.0123	0.0124	0.000	, 5
		12				0.0126		0.0126	0.0125	3.090	6.0125	0.0125	9.000	Ž
=	200108	2	-		•	0.0135	0.0134	0.0136	0.01%	W.064	0.0135	0.0135	0000	2 !
7					\$	0.0124		0.0124	0.0123	3.074	22.0.0	25.0		, ,
Ħ	900100	5				0.0123	0.0121	0.030	3.5	500	20.0			? •
F BLAKK			2		2	אנוט.ט		2610.0	- C. C. D.	36	3 5			
EXMANST	_									0.00	900	0.003	0.00	10 E

O E INITIALS: BN & LAL O A INITIALS: LAL	Field Blank < MDL	25 25 25 25 25 25 25 25 25 25 25 25 25 2	ě	g n	£2 #		EXPANST BUCT:no sample RECIRC BUCT:no sample
80	7 9 • 7		12 5.6	24 6.9	36 8.3	26 50.0	
STS 8465	EXMANST (R.10 3 < MDL	7 0.8	11 2.5	23 10.4 7.6	7.5	19 6.5	CRID FOL: 0.1 ma/sample PAINTER FOL: 0.1 ma/sample
TRAVIS AFB PAINT BOOTN TESTS ACUREX PROJECT 8485	EXIMAL STANK	ð 8.0	10 6.9	6; 22	4. 7.9	18 2.6	UNITS: ME/IG OSMA TLAR: 77 ME/IG
	- POL	ر ق	1.7	21 2.6	t. 1.7	17 0.9	
TEST: PARTICULATE 42 DATE: 06-19-92 PM TMOD: MIOSH 503 D CHART - PARTICULATE	Painter Over C.9 Painter Under	IMET G210 A	ž v	를 를 전 전	ğ		PAINT TYPE: LT GREEN PRINER GRUECT: BOASER

TEST:	PARTICUL	2	TRAVIS AFE	AVIS AFB		PAINT:	RED NZOBASE		# JANITE TOPCOAT	0 E 1	INITIALS:	777 7 18		
WETHOD:	005 HS01N		ACUREX P	UREX PROJECT 8485	₩.		_			K		5		
307 GIND	ACUREX SAMPLE #	FILTER # PUMP #	PRE-CAL (ml/min)	POST-CAL (ml/min)	RUN TINE (min)	PRE #1 (9)	PRE #2 (g)	POST #1 (9)	POST #2 (g)	AVG FLOW	AVG FLOW PRE AVG PCST AVG	PCST AVG (g)	PART 147 (9)	PART UT PARTICULATE (g) (mg/H3)
-	900006			1	2	0.0126	0.0126	0.0126	0.0127	3.995	0.0126	0.0126	0.0000	₩ 0.
7	600006		9706		2	0.0124		0.0123	0.0123	3.035	6.0123	0.0123	0.000	, <u>101</u> ,
m	900010				7	0.0133	0.0133	0.0134	0.0134	3.044	0.0133	C.01%	0.0001	0.5
*	110004				ĸ	0.0125		0.0127	0.0127	3.041	0.0125	£.0127	0.000	6.0
.	900012				2	0.0124		0.0125	0.0124	3.053	0.0124	0.0125	0.000	0.5
91	900013		12 3030		21	0.0133	6	0.0133	0.01%		0.0133	0.0133	900	<u>,</u>
~	900014			•	:	0.0151	0.0151	0.0133	25.0	5.048	0.0151	X		
0	41000			•	3	0.0	_	250	270.0	1.03	0.010	C. 012		
10	900017				! K	0.0122	0	0.0126	0.0126	3.048	0.0122	0.0126	0.0004	1.0
-	810006				22	0.0139		0.0140	0.0139	3.014	0.0135	0, 0139	0.0004	#. #0
12					\$\$	0.0134		0.0139	0.0139	3.039	0.0134	0.3139	0.0005	3. C
2				•	ĸ	0.0122	_	0.0124	0.0124	3.059	0.0122	0.0124	0.0002	6.0
22					-	0.0123		0.0123	0.0122	3.093	0.0123	0.0122	0.000	. . .
	220006				2	0.0117		0.0129	0.0130	3.002 3.003	0.0117	0.0129	0.0012	2.5
2	900032				31	0.0136		0.0142	0.0142	, 20 10 10 10 10 10 10 10 10 10 10 10 10 10	0.0135	0.0142	0.000	X.5
55	\$20006				21	0.0135		10.0	0.014	3.047	0.0135	20.0		- 1
E.	\$0005¢				21	0.012 0.012 0.012 0.012	5.0.0 5.0.0	6.6155	0.0155		0.013	0.0135	96	?-
ž į	Cana				22	2 2 2		0.01	0.0140	20.5	9.0	0710	9 6	7.0
	90000				: 5	0.0127	0.0126	0.0131	0.0131	3.077	0.0127	0.0131	000	-
17	900058					0.0132		0.0132	0.0133	3.086	6.0132	0.0132	0,000	4
\$					2	0.0/28		0.0.41	0.0141	3.010	0.0128	0.0141	0.0013	0. 9
4	900030				21	0.0116		0.0132	0.0132	3.091	0.0116	0.0132	5.00	2.2
2					21	0.0720		0.013	75.0		20.0	X:0.0	25.0	9.5
- OV3F					Rf	0.0128		5.5	20.0	2.720	9.5	2010.0		-
				_	2 8	3,75			, X	ROY	25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000	Š
<u> </u>					2 £			200	0.0121	X 027	93	A 0131		Š
24 04.0	900009				28	0.0126		0.0126	0.0128	3.052	0.018	0.0128	0000	70.
×	900009				R	0.0126		0.0125	0.0125	3.026	6.0125	0.0123	0.9000	ĕ
=	200006				\$	0.038		0.0130	0.0129	3.014	0.013	0.013	0.000	ğ
5 7 8	70000	7 07	55 355	95 82 82 82 82 82 82 82 82 82 82 82 82 82	\$ 9	86.9 87.5 87.5	0.02 2.23 2.23	6.93 5.55 X	6.01% 176		6.9 2.2 2.2	25.0	98	ğ Ç V
EYMANET				_	\$			5	;	000	•		0.000	no semple
RECIRC								٠		0.00	0	•		no semple

D E INITIALS: ON & LJL O A INITIALS: LJL		# G126 1	ĕ • *	ë ≅	Ř Ř		EXMANST BUCT:no sample RECIRC BUCT:no sample
80	6.0	8 0.5	12 3.0	7.7 %	3. 8.1	5.6	CRID ADL: 0.1 mg/SAMPLE PAINTER HDL: 0.1 mg/SAMPLE
TRAVIS AFB PATRY BOOTH TESTS ACUMEN PROJECT 8485	EXMANST GRID 3 0.5	7 0.5	11 1.8	8 8.8 8.8 8.8	15 7.0	19 7.2	
TRAVIS AFI PAIRT BODI ACMEX PRE		ě	10 1.8	, pp.	3.1 3.1	8t 6.0	CHITS: MG/MG OSHA THA: 77 Mg/MG
	.	\$ 0.5	- 40F	21 0.9	13 2.3	17 × 101.	RED KZORASE & UNITE TOPCOAT UNITS: BOUSER & LADDERS OSHATUM:
TEST: PARTICUATE 43 DATE: 06-22-92 AN METHOD: MIDSH 500 CRID CHART - PARTICUATE	Painter Over 13.1 Painter Under	IRET GRID A	A HOL	79 YS	, ,		PAINT TYPE: RED KZORA OBJECT: BOASER

TEST: DATE:	PARTI 06-24	# # # # # # # # # # # # # # # # # # #		TRAVIS AFE	TRAVIS AFB PAINT BOOTH TESTS	ļ	PAINT: OBJECT:	BLUE MATERBASED COMFORT PALLET	RBASED		9 6	INITIALS: INITIALS:	151 # E		
	NIOSN 500	_		ACUREX P	ACUREX PROJECT 8485	Σ.									
GRID LOC	ACUREX SAMPLE #	FILTER # PUMP	** 9:	FRE-CAL (ml/min)	POST-CAL (ml/min)	RUN TINE (min)	PRE #1 (g)	PRE #2 (g)	POST #1 (g)	POST #2 (g)	AVG FLOW (L/MIN)	PRE AVG	POST AVG (g)	PART LIT I	PARTICULA (mg/H3)
-	900040	18	2			8	0.0122	:	0.0122	0.0122	3.041	0.0122	0.0122	0000	<u>5</u>
2	900041	165	7			2	0.0132		0.0132	0.0132	3.014	0.0132	0.0132	0.000	10. V
٣	200065	75	~			ž	0.0122		0.0123	0.0124	2.989	0.0121	0.0124	0,0003	1.9
4	900043	*	37			2	0.0115		9.0121	0.0120	3.047	0.0115	0.0121	0.000	2.8
2	900044	<u>26</u>	2			5	0.0125		0.0125	0.0126	3,039	6.0125	0.0125	0.000	jQi v
•	900045	2	19			2	0.0125	0.0125	0.0127	0.0127	3.074		0.0127	c.0005	
2	9,0006	77	ጽ			2	0.0119		0.0129	0.0128	3.063		0.0128	0.000	4.2
••	290006	5	37			2	0.0117		0.0127	0.0127	3.065	6.0117	0.0127	0.0010	4.6
	990006	<u>2</u>	•	36,2		2	0.0130	0.0130	2.01%	0.0135	3.042		0.0134	0.0004	1.9
2	650006	28	7	3000		2	0.0130	0.0130	0.01%	0.01%	2.976		0.01%	0.0004	1.9
2	900050	210	3	3048		2	0.0123	0.0122	0.0133	0.0133	3.047		0.0133	0.0011	5.2
=	900051	*	•	22		2	0.0126	0.0126	0.0148	0.0149	3.058		0.0148	0.0022	10.3
		154	<u>.</u>	3068		R	0.0133	0.0133	0.0151	0.0150	3.026		0.0151	0.0018	8.5
12 gg	900053	1 30	F	3045		2	0.0118	0.0118	0.0133	0.0134	3.054	0.0118	0.0133	9.0015	2.0
7		<u>\$</u>	X	3051		Ri	0.0131	0.0130	0.0135	0.0134	3.04		0.0135	0.000	2.3
2		137	모:	3003		Ri	0.0119	0.0119	0.0129	0.0129	3.00		0.0129	0.0010	9.4
N:		R!	2	3027		Ri	0.0118	0.0118	0.0141	0.0142	3.050		0.0142	0.0024	11.2
*	900062	13	= :	2662		T	6.0126	0.0125	0.0151	0.0151	3.021		0.0151	0.0026	12.1
<u> </u>	900054	37	2:	2		Ri	0.0122	0.0122	0.0126	0.0126	3.005		0.0126	9000	6 .
*	900055	₽;	2	3027		R	0.0124	0.0124	0.0132	0.0131	3.020		0.0132	0000	eo M
15		KG	2	0000		Ri	0.0125	0.0124	0.0142	0.0141	3.620		0.0141	0.0017	9
35 SE	20005	*	* 0 {	200		F 1	0.0124	0.0124	0.0139	0.0139	3.070		0.0139	0.0015	6.9
<u>.</u>	80003	è	₹"	2018		2;	0.017	5.63	0.0155	0.0135	3.5		0.0135	0.0018	۲: د د د د د د د د د د د د د د د د د د د
~ ~		<u> </u>	~ \$	202	Š	3	22.0.0	20.0	0.00	0.0213	3.003		0.0100		
18 010		, <u>5</u>	7-	2074		? .	0.0121	U.0121	0.0129	0.0	280		0.0	0.000	e e
•	290006	8	χ.	3003		2	0.0122	0.0122	0.0147	0.0147	3.011		0.0147	0.0025	11.9
8		126	23	3073		R	0.0124	0.0124	0.0152	0.0152	3.074		0.0152	0.0028	13.0
P Over		5	2	3006		\$	0.0121	0.0121	0.0150	0.0150	2.99		0.0150	0.0020	14.0
P under		118	3	3069		\$	0.0133	0.0133	0.0132	0.0132	3.042		0.0132	0.000	ğ
	_	£	_	2968		2	0.0120	0.0121	0.0121	0.0121	2.967		0.0121	0.000	<u>d</u>
র	900034	44	5	3057		\$	0.0117	0.01	0.0118	0.0118	3.059		0.0118	0.0001	0.5
¥	900035	131	m	3039		\$	0.0133	0.0133	0.0133	0.0133	3.020		0.0133	0.000	ğ •
=	900036	<u>\$</u>	2	202		\$	0.0123	0.0122	0.0123	0.0123	3.052	0.0123	0.0123	0.000	ğ •
2	200037	3	ĸ	22		\$	0.0129	0.0129	0.0125	0.0129	3.061	0.0129	0.0129	0.000	<u>ş</u>
2		<u>R</u>	7	ğ		\$	0.0130	0.0130	0.0131	0.0139	3.04 4.04	0.0130	0.0130	0.000	, 5
20 13.	•	₹	12	8		\$	0.0121	0.0121	0.0121	6.0120	X.005	6.0121	0.0121	0.000	호 •
F BLANK		13	2			\$	0.0122	0.0122	0.0122	0.0122	3.000	0.0122	0.0122		, 5
EXHAUST											5	88	88	888	2

O E INITIALS: BW & LJL O A INITIALS: LJL	Field Blank	INCET GRID	ਵ * 	70 77	<u>ਵ</u> ੱਦ # * *	······································	ECHAUST DUCT: < FOL RECIRC GUCT: < FOL
0 0 M 4	5. 80.	9.	12 8.5 7.0	12.1	6 6.5	% t3.0	
B TH TESTS OJECT 8485 EXHANST GRID	2 × 1.9 4 2.8	7 4.2	11 10.3	а 11.2	5. 6.6 6.9	11.9	CRID PDL: 0.1 mg/SAMPLE PAINTER PDL: 0.1 mg/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACLIREK PROJECT 8485 EXHAUST GR	2 < 10! >	6.0	10 5.2	z z	8.8 8.9	6 2,2 3,6 6,6	UNITS: ME/NG OSHA TUA: 77 ML/NG
	2	\$	¢	23	13 . 1.9	17 21.6	WISO
TEST: PARTICULATE #4 DATE: 06-24-92 AN NETNOO: MIOSH 500 GRID CNART - PARTICULATE	1	INET GRID A	ĕ ≤ *	24 e.5	g s		PAINT TIPE: BLUE MATERIANSED COLECT: CONFORT PALLET

TEST: DATE: METHGO:	PARTICULATE 06-29-92 PM HIOSH 500	F.E.	TRAVIS AFB PAINT BOOT ACUREX PRO	TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8465	10	PAINT: OBJECT:	LT GREEN PRINER GEC PANELS	Y INER		0 0 A 1	INITIALS: INITIALS:	וזן וזן		
201 (11)	ACUREX SAMPLE #	FILTER # PUMP #	PRE-CAL (ml/min)	POST-CAL (ml/min)	RUN TIME (min)	PRE #1 (9)	PRE #2 (g)	POST #1 (9)	POST #2 (g)	AVG FLOW (L/MIN)	PRE AVG POST AVG	POST AVG (g)	PART UT (g)	PART WT PARTICULATE (g) (mg/H3)
•	900151	301			\$	0.0122	0.0122	0.0123	0.0123	3.022	0.0122	0.0123	0.0001	0.5
- ^	900157	šķ.			8	0.0126	0.0527	0.0127	0.0126	2.017	0.6127	0.0127	0.000	<u>d</u>
, pr	900153				8	0.0130	0.0129	0.0129	0.0129	×.009	6.0130	0.0129	0.000	<u>ĕ</u>
•	900154				3	0.0117	0.0117	0.0117	0.0117	% %	0.0117	0.0117	0.000	₹ •
. 10	900155				3	0.0131	0.0132	0.0131	0.0131	3.073	0.0131	0.0131	0000	ਵ ਵ ਦ
•	900156	135			8	0.0128	0.0128	0.0127	0.0127	3.068	6.0128	0.0127	9000	2 9
400 9	900157	3			S :	0.0129	0.0129	0.0128	0.0129	3.019	6.01.00 6.01.00	6.0.0		ر م
2	7 900158				3	0.0133	0.0132	0.0133	0.0155	20.5	25.0.0	20.0		•
•••	900159				8	86.5	0.0155	0.0150	0.0135	25.06	0.00	0.0133		į
o (900160				8 9	0.0122	0.0123	25.0	27.00	3	0.0124	0.0124		50
2;	19000	87			8 4	20.0	20.0	\$ 500 C	\$ 5000 5000 5000 5000 5000 5000 5000 500	1.00	0.013	0.0136	000	0.5
<u> </u>		3 5			8 \$	7210	0.0127	0.0127	0.0127	3.027	0.0127	0.0127	0000) (10)
7.5					35	0.0	0.0125	0.0125	0.0125	3,069	0.0	0.0125	0.000	ğ.
					3	0.0130	0.0130	0.0131	0.0131	3.005	0,0130	0.0131	0.0001	0.5
12	Ī				3	0.0119	0.0119	0.0122	0.0122	766.3	0.0119	0.0122	0.003	5.5
. 2	_				શુ	0.0117	0.0117	0.0118	0.0118	2.967	0.0117	0.0118	0.0001	
.	_	122			8	0.0134	0.0134	0.0135	0.01%	3.029	5.0 5.0 5.0	1 55		ر اور
7	_	181			9	0.0128	0.0128	6.01		750.4	9.0.6			9.4
₹	51006 51006	167			8 9	25.5	25.5	20.00	10.00	6,00	35	0.0121	000	0.5
3 5		3:			85		0.0121	0.0127	5 2177	1 N	0.0121	0.6122	000	0.5
.		<u> </u>	₹\$ ₹₹		3	0.0133	0.0133	200	8.9135	3.045	0.0133	0.0134	0.000	0.5
		112			\$	0.0131	0.0131	¥10.0	6月17年	3.061	0.0151	0.0133	0.0002	- ·
: X		8			8	0.0128	0.0129	0.03	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.033	0.017	85		
and 02		121			\$!	0.0153	9.93	0.0132	おいいない	C (6)	9,013	2000		, .
-	400341	ις; (>	0.50	0.00	0.00	7200	900	950	0.0		ē
- 1206		3:			85	0.0126	7210	0.0127	0.00	1	0.0127	5.0127	0.000	Q
~ ~		922			3	250	0.0120	0.0119	0.0119	100	0.9123	0.0119	0000	10
52	4 900145	35			29	0.0127	0.0127	0.0126	0.0125	ない。	6,0127	0.0126	0.0003	<u>ğ</u>
₹ #		=			3	0.0124	0.0124	0.0124	0.0124	2.99£	3,952	0.0124	0.000	<u>ē</u>
120 25		197	4 2975	7997	29	0.0139	0.0138	0.0138	0.0130	2.930		9.0	0000	E 5
					3	0.0125	0.0125	0.0125	0.6125	2.0.5	0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			į į
Ā	900150	5	æ ~∶		3	9.6	8.6	25	350	7.7.	24.25 26.25 26.25	25.0		
F BLANK			•		8		2.0.0) 	•	000	9	0000	0.000	eldmes on
EKMUST	- .	,								0.00	0.000	0000	0.000	no sample

D E INITIALS: DW & LJL Q A INITIALS: LJL	-	Field Blank 0.5	INLET CRID &	2 2	₹ 8	g a		EXISAUST DUCT: no sample RECIRC DUCT: no sample
		,	₹ •	12 • 10 (24 0.5	16 0.5	20 0.5 * 70L	ng/sample ng/sample
ESTS :T 8485	EXHAUST GAID	100 × .	7 0.5	11 0.5	1.5	₹ . *:	49 1.6	GRID MOL: 0.1 mg/3ARPLE Painter Mol: 0.1 mg/3AMPLE
TRAVIS AFB PAINT 900TH TESTS ACHEN PROJECT 8485	EXKA	2 < 70L	⊒ ; • ` ` •	10 0.5	22 0.5	14 1.0	8 6.9	UNITS: FIZAMG OSIA TIA: 77 Mg/RG
		1 0.5	\$ * #BL	• • •	21 < NDL	13 ABA	17 0.5	WISD
TEST: PARTICULATE #5 DATE: 06-29-92 PM METHOD: WIOSH 500 GRID CHART - PARTICULATE	<u>:</u>	Fainter Over 0.5 Painter Under c 100 c	INCE CRID A	ઇ	త్త న	ē s		PAINT TYPE: LT GREEN PRINER OBJECT: GEC PANELS

TEST: DATE:	SINGLE 07-01-9 MIOSH	PARTICULATE	#1 TRAVI PAINT ACURE	TRAVIS AFB PAINT BOOTN TESTS ACINEX PROJECT 8485	\$871 S.	PAINT: 0	PAINT: PRIMER & GRAY TOP OBJECT: RAMP & GEC PANELS	& GRAY TOPCOAT	T X	0 E IN	INSTIALS: INITIALS:	1		
					}									
5	ACLINEX S.L. 2015	# OH 16 4 11112	PRE-CAL	IL POST-CAL	RUM TIME	(RALL DATA, PRE #1	PRE #2	ACCURACY POST #1	0.0001) POST #2	AVG FLOV	PRE AVG POST AVG	POST AVG	PART UT	PARTICULATE
							•	•	•	Carried States				
-	900165	3	¥;	3009	3	0.0133	0.0133	0.0133	0.0133	3.021	0.0133	0.0133	0.000	10
2	900186	213		_		0.0128	0.0128	0.0128	0.0128	3.021	0.0128	0.0128	0000	₹
	900187	3				0.0132	0.0132	0.0132	0.0133	2.963	0.0132	0.0132	0000	Š
₹	900214	\$				0.0116	0.0116	0.0116	0.0116	3.012	0.0116	0.0116	0000	, 101.
*	900188	ĸ				0.0126	0.0127	0.0127	0.0127	2.986	0.0126	0.0127	0.0001	6.5
•	900189	₹2				0.0127	0.0127	0.0128	0.0127	2.997	0.0127	0.0128	0.0001	0.5
•	900190	2				0.0123	0.0123	0.0124	0.0124	2.963	0.0123	0.0124	0.0001	0.5
2	161006	~		3006		0.0121	0.0121	0.0122	0.0122	3.000	0.0121	0.0122	0.0001	0.5
•	900192	3				0.0132	0.0131	0.0132	0.0132	3.015	0.0131	0.0132	0.0001	0.5
0	900193	117				0.0121	0.0121	0.0123	0.0124	3.032	0.0121	0.0124	0.0003	1.6
5	2007	玄				0.0123	0.0124	0.0128	0.0128	2.84	0.0123	0.0128	0.0005	2.7
	85.58	*				0.0117	0.0117	0.0123	0.0123	3.012	0.0117	0.0123	9000.0	3.5
=		187				0.0123	0.0123	0.0123	0.0123	2.976	0.0123	0.0123	0.000	를 *
12	900196	11				0.0127	0.0126	0.0130	0.0129	3.023	0.0127	0.0129	0.0002	
2		127				0.0133	0.0133	0.0136	0.0135	3.012	0.0133	0.0136	0.0003	9.1
		5				0.0133	0.0133	0.0140	0.0139	5.88	0.0133	0.0139	9000	3.3
22 25	900212	25				0.0127	0.0127	0.0130	0.0129	2.950	©.0127	0.0130	0.0003	1.6
ສ	900199	፯				0.0126	0.0126	0.0135	0.0135	2.84	6.0126	0.0135	0.000	6.9
*	900200	<u>\$</u>				0.0131	0.0131	0.0134	0.0133	3.016	0.0131	0.034	0.0003	1.6
5	900201					0.0128	0.0128	0.0132	0.0132	2.997	0.0128	0.0132	0.000	2.2
*	900202	107				0.0136	0.0135	0.0153	0.0153	2.977	0.0135	0.0153	0.0018	æ.
	900203	ድ				0.0125	0.0125	0.0140	0.0140	3.011	9.9125	0.0140	0.0015	8 .2
₹	900210	ź				0.0120	9.0120	0.0134	0.01%	3.00 9.00	0.0120	6 .01%	0.0014	7.5
\$	900204	3				0.0121	0.0122	0.0125	0.0124	2.9% 2.9%	0.0121	0.0124	0.0003	1.6
17	900205	75				0.0133	0.0133	0.0153	0.0152	3.00	0.0133	0.0152	0.0019	10.2
5	90000	7.		-		0.0126	0.0126	0.0148	0.0149	2.976	0.0126	0.0148	0.0022	11.7
\$		•				0.0117	0.0116	0.0137	0.0137	3.027	9.0117	0.0137	0.0020	10.7
2		æ,				0.0127	0.0127	0.0137	0.0137	3.063	2.0127	0.0137	0.0010	2.5
-	•			_		0.0124	0.0125	0.0123	0.0123	2.84	0.0123	0.0123	0000	<u>ě</u>
P LEIGHT		3 2			3:	0.0127	0.0127	0.0127	0.0127	3.024	0.0127	0.0127	0000	2
≠		<u>\$</u>				6.0129	0.0129	0.0130	0.0129	2.98	0.0129	47L0.0	0000	Ĕ.
న		3				6.0125	0.0124	0.0124	0.0124	3.014	0.0124	0.0124	0.000	즉
A		2		-		0.0120	0.0120	6.0120	6.0120	2.931	0.0120	0.0120	0.000	* ē
=	900180	==				0.01%	0.0133	0.01%	0.0133	3.014	0.0134	0.0133	0000	٠ ق
2		147				0.0124	0.0124	0.0124	0.9123	2.980	0.0124	20.0123	000	2
i		<u>\$</u>				0. 0122	0.0122	0.0122	1210.0	8 2 2 2	0.0122	2.0.0		Ž
F BLANK?										38				
EXMUST										38				
KELIKE										3				

D & INITIALS: BH & LJL D A INITIALS: LJL			INCET GRID B	6 6 6 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8	*,		g R		g ,	EXHAUST BUCT:no sample RECIRC BUCT:no sample
w <		6.5		5.0		12 1.1	25 1.6	. t . t	2°. 8°.	_ "
STS 8465	EKWAUST GRID	4	,	7 0.5		11 3.2 • 10L	\$; n	15 8.2 7.5	19 10.7	TOPCOAT UNITS: mg/MS ORIB FOL: 0.1 mg/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACIMEX PROJECT 8485	EXHAD	10H > 2		6 0.5		10 2.7	22 3,3 1,6	44 9.8	16 11.7	UNITS: MA/MS
NTE #1		<u></u>		s 0.5		•	21 1.6	13 2.2	17 10.2	AY TOPCOAT UN
TEST: SINGLE PASS PARTICULATE #1 DATE: 07-01-92 ANZ NETNOD: NIOSN 500 RID CHART - PARTICULATE	Painter Over	< NO. Painter Under < NO.	INET GRID A		₹		ಕ ಸ	- <u> </u>	ಕ ಸ	PAINT TYPE: PRINER & GRAY TOPCOAT

TEST: S DATE: 0 METHOD: N	S.P. PARTIC 07-01-92 PH HIOSH 500	PARTICULATE #2 1-92 PN 1 500		TRAVIS AFE PAINT BOOT ACINEX PRO	TRAVIS AFB PAINT BOOTH TESTS ACIREX PROJECT 8485	×	PAINT: COJECT:	SEA.	TOPCOAT PIPES & TABLE		9 6 11 12 13 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	INITIALS: INITIALS:	77.75 8		
	ACUREX SAUPLE #	FILTER #	95	PRE-CAL (ml/min)	POST-CAL (ml/min)	RUM TIME (min)	PRE #1 (g)	(B)	POST #1 (9)	POST #2 (g)	AVG FLOW (L/MIN)	PRE AVG (g)	AVG FLOU PRE AVG POST AVG (L/MIK) (9) (9)	PART UT (8)	PART UT PARTICULA (g) (mg/H3)
-	OUCUUD	076	5	3012		29	0.0119	0.0121	0.0120	0.0120	2.993	0.0120	•	0.000	<u>5</u>
۰,	900218	214	\ *	2		\$	0.0128		0.0127	0.0127	3,005	0.0128	0.0127	0.000	ě
۲		2,20	2			3 \$	0 0110		0110	0110	3.076	0.0110		0000	
Ì'	9000	ŝ				3 3	2.5		77.00	7210	200	2000		0000	-
n	17004	Ĝ	2 ;	2		8 \$,	77.0	20.00	100	2000			•
•	900218	3	2			8	ואוטים	,	0.0.0	20.0	20.0				
'n	900219	ā	=	3033		3	7210.0		0.0131	0.0151	2.001	0.01		0.0002	- ·
φ	900220	952	,-			3	0.0124	_	2.0.0	0.0125	3.60	0.0124	0.012		6.0
~	900221	2	43			3	0.0129	•	0.0131	0.0131	2.963	0.03%		0.0002	o-
•	900222	219	8 2			3	0.0120	•	0.0122	0.0122	2.938	0.0120	0.0122	0.0002	0.1
0	9000233	Ž	2			3	0.0134	0	0.0137	0.0137	3.039	0.0134	0.0137	0.0003	1.5
, 5	90005	2	2			3	0.0129	0.0129	0.0137	0.0136	3.068	0.0129	0.0137	9000.0	M.B.
2 =	X2000	k	: 8			\$	0.0133		0.0144	0.0144	2.955	0.0134	9.03	C.0010	5.0
- 0	90000	35	; 5			\$	0.0132	_	0.0138	0.0139	2.8	0.0132	0.0138	9000	3.0
	900027	ž	85			5	0.0121	0.0124	0.0128	0.0128	3.013	0.0122	0.0128	9000.0	2.5
} 7	9000	7	2 %			3	20.0	_	0.0132	0.0131	2.969	0.0127	0.0131	0.000	2.0
;;	00000	717	`			5	0.0122		0.0131	9,0131	2.966	0.0121	0.0131	0.0010	2.0
1 2	52,000					\$	0.0117	-	0.0124	5,012	3.011	0.0117	0.0124	0.0007	3.4
3 5	0000		'			3	0.0119		0.0133	0.0132	2.88	0.0119	0.0133	4100.0	6.9
3	C1.CU00		3			3	0.0132		0.0139	0.0139	3.026	0.0132	6.0139	0.0007	3.4
<u> </u>	900233		H			3	0.0131	•	6.01%	0.0135	2.958	0.0131	6,01% X	0.0003	
2	900234		•			3	0.0124		0.0136	0.0136	3.014	0.0123	0.0136	0.0013	6.3
¥	900235		13			3	0.0129	-	0.0144	0.014	2.973	6.0128	0.0144	0.9016	7.9
2	900236		X			\$	0.0132	•	0.0143	0.0143	2.972	0.0129	0.0143	3.0014	0 , 1
•	900237		R			3	0.0123	•	0.0131	0.0131	2.98	C,0124	0.0131	0.0007	N.
1	900238		17			29	0.0129	0	0.0136	0.0137	2.8	0.0128	0.0137	0.000	4.5
9	900239		2			19	0.0123	•	0.0140	0.0139	3.027	0.0123	0.0140	0.0017	4.6
2	072006		\$			3	0.0120	0.0120	0.0335	0.01%	3.030	0.0120	0.0135	0.0015	7.3
2	900241		*			3	7.0127		0.0136	0.0136	3.042	0.0128	0.0136	9000	e,
	672000		25			3	0.0131		0.0153	0.01%	3.63	0.5132	0.0153	0.0021	70.7
į	900250	22	\$	7162	0962	29	2710.0	0.0123	6.0129	0.0129	2.977	0.0123	0.0129	000	M.0
7	900242		Ħ			67	0.0113		6.0115	0.017	2.929	25.0	0.0174		Ž
2	900266		×			29	0.0126		6.0126	0.0125	2.83	0.0128	0.0125	0000	Ž
ş	57000		\$			29	0.0128		0.0127	0.0127	2.98 2.88	0.0128	0.0127		₹ •
=	900246		₽			3	0.0123		0.0124	0.0123	3.012	0.0124	0.0123	0000	Ž
8	900247		2			3	0.0119		0.0118	0.0117	8	9110	0.6118		
R	200248		2			3	0.0117		0.0117	0.0117	200		4.017 6.017		•
LAK?											3 8				
EXMALIST											8		0.000	9000	
본											•				

O A INITIALS: LAL		Field Blank	IMET GRID	<u>ē</u>	R .	g A		EXMANST BUCT:ne sample
		6.	0.1	3.0	3.4	9.5 3.5	3.9	w
		•	6 0	5	*	\$	R	UNITS: ME/TS GRID MOL: 0.1 ME/SAMPLE
		0,1	9.	5.0	•;	6:2	7.3	ë
PAINT BOOTN TESTS ACUNEX PROJECT 8465	EXHAUST GRID	m	•	` =	n	\$	2	2
EX 78001	Ä	<u> </u>	0.5	9.	2.4 6.4	6. X	:	£ ,
AGE		~ ~	•	2	8	*	.	UNITS: MAJAS
								UNITS: ME/M3
		â	0.0	1.5	2.0	.	6.5	
		•	*	•	⊼	p	1	
w	<u>.</u>						 	PAINT TIPE: GAY TOPOOAT
E TENT	-	5 1						A N
DATE: 07-01-97 PM METHOD: MIOSM 500 GRID CHART - PARTICULATE		Painter Over 10.2 Painter Under 3.0	INET GOD A	ĕ ×	Ĭ	₫ お`		PAINT TIPE: GAV
		2 2	3	3	ā	M		Į.

TEST: DATE: METHOD:	METALS 06-22-1 N10SH	300 P.H		TRAVIS A PAINT BO ACUREX PI	TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8485	νc	PAINT: OBJECT:	LT GREEN PRINER CONFORT PALLET	PRIMER ALLET		0 E	INITIALS: INITIALS:	ដ		
CR19 LOC	ACUREX	BASE # SAMPLE #	# PURP #	PRE-CAL (ml/min)	POST-CAL (ml/min)	RUM TIME (min)	(EA)	21MC (ug)	STRONT JUN (ug)	CHRONIUM (ug)	AVG FLOW (L/KIN)	LEAD (UB/N3)	Z1MC (Ug/N3)	STRONT (UM (UQ/NG)	CHRCHIUM (ug/M3)
-		P EX921067		3045	3039	> 29	0.07	0.80	0.80	0.57	3.042	JQ:	5.6	5.6	4.0
~ *	1 2	5 EX921065	5 5		982	35		8:	1.72	7.5	2.8	<u>ج</u> ز	۲- ۱	12.5	6
7		5 EX921070			88	3		27	15.55	77.4	2.036		70.K	115.5	9 F
·		EX921071		•	8	33	, CO	57.0	2.37	35	2.00		-	17.2	9
•		EX921072	-		3151	**	0.07	0.72	90.9	3,64	3.15		, 6	42.3	X
~		I EX921073			3003	* 9	0.075	1.29	16.11	9.50	2.993	5	7.6	117.0	\$
•••		5 EX921074			2959	* 97	0.075	0.69	24.92	14.68	2.973	₹	2.0	181.9	107.2
۰,		EX921075			9962 62	× 1.9	0.0 K	2.6	2.3	3.5	2.86	연 *	4.6	41.2	2.5
2;	~ }	5 EX921076			3057	> <u>/</u> 5	60.0	87.0	7. 7.	14.37	3.0%	E	4.6	171.3	101
= 2	ijŘ.	1 EXC21077				V 27	٠ د د	8 5	ر ا ا	5. 6 8. 5	, , , , , , , , , , , , , , , , , , ,		7.9	23.5	. 35.6 135.6
12 DUP	==	S EX921091			200	3	Kara	29.0	57.57	2	9		4	416.8	77.7
•) EX921067			3171	× 13	0.07	1.28	8.12	, S	3.13	.	8.8	55.2	×
2		P EX921088			3042	> 15	0.073	0.73	26.12	15.81	3.00	<u>e</u>	5.3	184.8	111.8
X)		EX921089			3021	3 ;	0.07	0.62	59.14	36.16	3.02	로 당	4.5	42.6	290.5
≾∶		EX921090	**		2 2	>	%	8. 8.x	2.0	3.7 3.7	3.112	•	- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	62.6	
2 7	= X	FX921000				35	1 K	95.0	60.12	2	88	- <u>-</u>	- - - -	200	126.0
*		EX921061			8	3	0.03	3	33.16	2	2.972		;;	262.6	162.9
₹ \$		FX921092			3012	3:	0.0%	0.41	30.65	18.41	3.62	<u>ئ</u>	5.9	219.9	132.2
2		EX921082				3:	0.6 2.6 3.5	7.	8: 2:	27.	8	Ĕ i	3.5	\$12.0 22.0	307.2
≥ ⊊		EXYZ 1065			355	\$ \ \$!?		, , , ,	2.27 2.24	, E	35	4 •	4 H	7.05	- o
200		Ex921065		••••	3123	3	0.7	0.51	7.2	\$ 3 3 3 3	3.18	-	9	577.7	3,5.8
		EX921086			3027	3:	o. 2	0.41	142.46	3 .	3.724	0.7	5.9	1024.1	280.1
P Over		Ex921127			8	ž.	0.0 Ki	0.62	51.22	30.21 12.02	8.	#	9. 4.	382.0	23.3
		92112636			7/62	\$3:	5	4.0	6.78	4.26	2.8	Ž į	7.7	S.	31.8
≱ ₹		5.0021051		-,,	2106	35	٠. د ا	74-0		5. T	5.5	ž į	D. Y	E i	? •
5 #				•••	Š	. v	, K	7 5 C		25	38				
=				•	202	3	0.07	97.0	× 25.0	8	8	.	, K		5
R					3250	55 ^	0.07	3.0	0.30	1.86	3.187	<u>,</u>	4.5	<u>1</u>	13.0
					000 M	3	0.0 7	7.0	0.45	\$. \$.		1 1 2 1	N.	M.	2.8
	212	EX921279				R;	۲) و	, c	8 :5	32.28	8	k i		28.5	8
				•	K	R	6.673	8	76.41	9.0	0.00		o semple	160.5 To samplen	/o. 1
LOCATION		SAPLES	MITRIC	FILTER	INPINCER	SAIPLE (CU FI)	156 (55)	2 (S)	STRONT IUM (UB)	CHECONTURY (CUE)	24 (35)		ZIRC 1	STRONTIUM (CUR/NG)	CHECKIUM (US/NS)
				•					*********						
EXMAIST RECTRC		EX921376 EX921380	EX921377 EX921381	EX921378	EX921379 EX921395	25.25 25.25 25.25	2.5	32.05 133	15.85 15.4	4.7. 84.7.	3.86	호 - - -	%% %%	11.1	::3 -:-
								1	;	:	3	į	•	;	•
						EX921377 <	, 6 , 5	5.5 6.7		72	38	1 1 2 2 3	7.7	0 P	• •
					FILTER	EX921378 <	2.5	1.2	32	2	. 98	ě	Š	0.8	1.5

TEST: METALS #1 DATE: 06-22-92 PM METMOD: MIOSM 7300	TRAVIS AFB PAINT BOOTH TESTS ACINEX PROJECT 8485	N TESTS LJECT 848	₹ 2	PAINT: OBJECT:	LT GREEN PRIMER COMFORT PALLET	NER LLET		0 E II	D E INITIALS: LUL Q A INITIALS:	ž		
ACUREX BASE PURP # (ml/min) (ml/min) (min)	PRE-CAL P (ml/min) (OST-CAL ml/min)	RUN TIME (min)	LEAD CES	ZINC STRONTIUM CHRONIUM ENG FLOW LEAD ZIN (UG) (UG) (L/MIN) (UG/MG) (UG)	STRONT IUN (US)	CHRONIUM (ug)	CL/MERS	LEAD (Ug/N3)	21KC (ug/R3)	STRONT (UM (UB/NE)	ZINC STRONTIUM CHRONIUM (ug/N3) (ug/N3)
	_	P) NGER	IMPINGER EX921379 < 0.5	i	×	. 0.2	12.00	1.0%	ĕ	22.8	ğ.	10.9
	RECIRC	ACETONE	EX921380 <	5.2	₹.	E.	5.40	1.336	9	10.8	3.8	3.9
	•	FILTER	FILTER EX921394 2.5	2.5	8 22 5	. . .	64: 88:	, 35.	. e .		1.2	31.7

D E INITIALS: LJL O A INITIALS: CO	• • • • • • • • • • • • • • • • • • • •	70E *	INLET CRID	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26 1.6 23 A.B.C.	35 × 35 × 35 × 35 × 35 × 35 × 35 × 35 ×	8 0.7	/SAPLE EXMIST BUCT: < NO.
ESTS :1 6465		10 ×	7 MA >	11 • #DL	23 Feb.	₹, 26	1.0	ORID NOL: 0.075 ULYSAPLE
TRAVIS AFB PAINT BOOTH TESTS ACIMEX PROJECT 8485	EXMAUST GRID	19. ×	70E > 9	10 • • • • • • • • • • • • • • • • • • •	7 9. 22.	7, 18	18 < FDL	en.
		,	S •	6 *	₫ %	13 1.0	17 • 36 .	MITS: up/IG
TEST: NETALS #1 DATE: 06-22-92 PH NETMOD: NIOSH 7300 GRID CHART 1 - LEAD	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Painter Over	IMET CRID A	₫ ≾`	a ·	ă ă		MILT TIPE: LT GRESS PRINER

TEST: NETALS #1 DATE: 06-22-92 PM NETHOD: NICSH 7300		TRA	TRAVIS AFB PAINT BOOTH TESTS ACMEX PROJECT 8485	11S 8485			D E INITIALS: LJL 9 A INITIALS:	15: LJL 15:	•	
RID CHART 2 - ZINC										
			EXMAUS	EXMAUST GRID						
Painter Over 4.6 5.1 2nd Painter Under 3.4 5.1 2nd	5.6	~	7.7	m	10.2	•	 			
INET CRID A	5 3.3	•	0°5	~	4.4	•••	5.0	<u> </u>	르	INCET GRID
9. K					•				=	eņ Sī
	9 7.6	2	m m	=	6.2	12	3.5			
ş, \$	2. 6.8	z	8 .	B	4.5	*	21.1	-	8	5.4
s s	13 16.0	7	ج. د.	₹	2.9	5	3.2		*	r,
	17 4.0	8	3.6	\$	3.6	8	6.5			
PAINT TYPE: LT GREEK PRINER	R UNITS: ug/MG	UN/NG	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8	GRID FOL: 0.3 US/SAPPLE	975/B	-	 Ecomust Buct:	::3	29.2
CALECT: CONFORT PALLET		OSHA TUA: 1000 UE/IG		PAIKTER	PAINTER NOL: 0.3 UL/SAPPLE		4	MICINC DUCT:	Ë	8.0

TEST: WETALS #1 (ATE: 06-22-92 PM ME'MOD: NIOSH 7300		TRAVIS AFB PAINT MOOTH TESTS ACHEX PROJECT 8485	1ESTS ECT 8485	O E INITIALS: LJL O A INITIALS:		6
ALL CHARLS - STRUCTION			EXMAUST GRID			
	1 5.6	2 12.5	3 82.3	115.6		
INCET CATO A	5 17.2	6 42.3	117.0	8 181.9	<u>!</u>	IMET GRID B
	41.2	16 171.3	11 227.5	12 4 16.8		ë,
T T	21 55.2	27	27.55.4 25.6	24 4R.9		₫ 8 °
Ē s	₹ \$	** 202.1	15 242.6 219.9	16 512.0		S M
	# 8.2	at 11°.3	57.7	28 1625.1		
MINT TIVE: LT GREEN PRINER GALECT: CONFORT PALLET	R URITS: UB/MS GENA THR: 77 UB/MS	ug/18 77 ug/15	ORID MOL: 0.3 LE/SAUPLE PAINTER NOL: 0.3 LE/SAUPLE		EDMANT BUCT: NECINC BUCT:	ECT: 16.6

5 10.9 6 25.4 7 69.0 8 107.2 9 25.2 10 101.1 11 135.8 12 244.8 21 34.4 2 111.8 23 60.2 2 291.1 13 52.8 14 170.3 15 12.2 1 307.2 17 24.1 18 71.9 19 345.8 20 589.1	DATE: 06-22-92 PM THOD: NIOSH 7300		PAINT BOUTH TESTS ACINEX PROJECT 8485	rests 27 848 5	12 4 6	a a initials:	6
5 10.9 6 25.4 7 66.0 8 107.2 9 25.2 10 11.1 1135.8 244.8 21 34.4 22 111.2 23 260.2 24 291.1 13 22.8 14 170.3 15 122.9 16 307.2 17 24.1 18 71.9 19 345.8 29 595.1			AUG	WST GRIC		•	
5 10.9 6 25.4 7 69.0 8 107.2 9 25.2 10 101.1 11 135.8 12 69.0 21 34.4 22 111.2 23 24.8 13 52.8 14 170.3 15 142.9 16 307.2 17 24.1 18 71.9 19 345.8 20 589.1	Painter Over 225.3 306.9 2nd 308.9 2nd 71.8 76.1 2nd	• •	e 0	!	→ 78.1		
21 2.2 10 101.1 115.8 12.00.2 24.08 21 34.4 22 111.2 23 20.2 24.01.1 34.4 22 111.2 23 20.2 24.01.1 13 52.8 14.03 15 142.9 16 307.2 34.5 20.99.1	INET ONTO A		3 3.4	69.0			
13 52.8 11.8 25 26.2 24 291.1 25 26.2 24 291.1 25 25.8 14 170.3 152.9 152.2 357.2 25 25.1 25.1 25.1 25.1 25.1 25.1 25.1			10 101.1	11	12 < 10: 24.8		ਦ •
13 52.8 14 170.3 142.9 15 307.2 38 132.2 307.2 38	a v		22 111.£	23 260.2	۶۶ ۲۰۱۳		15.0
245.8 19 20	ହୁଁ *		14 170.3		16 307.2		
		7		19 345.8	20 5 99.1		

STATE Page MECAL POST-CAL RAN TIPE LED CAS	ENGE PRE-CAL POST-CAL SAMPLE # (ml./min) (ml./m	UBJECT: SPLITTERS								
Second 15 1906 1904 1905 1906 1905 1907	EV921097 15 3006 3054 EV921099 13 3066 3129 EV921099 13 3066 3129 EV921101 34 3038 EV921102 34 3038 EV921103 19 3021 EV921104 4 3036 EV921105 11 3045 EV921105 11 3045 EV921106 6 3045 EV921107 30 3006 EV921107 30 3006 EV921107 30 3006 EV921108 14 3039 EV921111 1 3039 EV921112 1 3039 EV921113 1 3039 EV921113 1 3039 EV921114 1 3039 EV921115 1 3039 EV9		211C (cg)	STRONT IUM (ug)	CHROMIUM (UD)	AVG FLON	LEAD (ug/N3)	Z1NC (Ug/N3)		CHECHION (UB/N3)
13 13 13 13 13 13 14 15 15 15 15 15 15 15	EX921096 40 3045 3021 EX921096 13 3066 3129 EX921101 31 3003 2991 EX921102 34 3036 2991 EX921103 31 3003 2991 EX921104 4 3045 3005 EX921105 11 3045 3005 EX921106 6 3042 3006 EX921106 12 3006 EX921107 30 3006 EX921107 10 3009 EX921111 1 3039 3042 EX921111 1 3039 3042 EX921112 8 3066 3042 EX921113 7 3006 EX921114 1 3039 3042 EX921115 1 3039 3042 EX921115 1 3039 3042 EX921115 1 3039 3042 EX921115 1 3039 3042 EX921115 1 3039 3042 EX921115 1 3039 3042 EX921115 1 3039 3042 EX921115 1 3039 3042 EX921115 1 3039 3042 EX921115 1 3039 3042 EX921115 1 3039 3042 EX921115 1 3033 3033 EX921129 2 3042 EX921129 2 3042 EX921129 3 3042 EX921129 3 3042 EX921129 3 3042 EX921129 3 3043 EX921129 3 3043 EX921129 3 3043 EX921129 3 3043 EX921129 3 3043 EX921129 3 3043 EX921129 3 3043 EX921129 3 3043 EX921129 3 3043 EX921129 3 3043 EX921129 3 3043 EXP2129 3 304	•	¥.0	0.72	0.57	3.030	<u>5</u>	1.7	3.6	2.9
Figure 13 3066 504 6.007 6.55 6.56 6.50 6.	EX921009 13 3066 3129 EX92100 25 3018 3021 EX921101 34 3036 2940 EX921102 34 3036 2940 EX921103 19 3021 3006 EX921104 4 3036 3045 EX921105 11 3045 3006 EX921106 3 3006 2945 EX921107 30 3006 2945 EX921107 30 3006 2945 EX921107 30 3006 2945 EX921107 30 3006 2945 EX921108 24 3036 3042 EX921109 20 3006 3042 EX921116 13 3036 3042 EX921117 14 3039 3043 EX921116 14 3036 3042 EX921116 14 3036 3042 EX921117 16 3072	°	0.20	1.23	9.0	3.033	<u>\$</u>	2.5	6.1	4.2
ENGINION	EXP27100 25 3016 30.2 EXP27101 31 3033 22980 EXP27102 34 3036 22980 EXP27103 19 3021 3006 EXP27105 4 3036 3005 EXP27105 4 3036 3005 EXP27106 4 3006 22985 EXP27106 24 3039 3119 EXP27106 10 30 3006 EXP27107 30 3006 22985 EXP27109 20 3006 22985 EXP27112 1 3039 3001 EXP27112 1 3039 3001 EXP27112 1 3039 3001 EXP27112 1 3039 3001 EXP27113 7 3020 3001 EXP27113 7 3020 3001 EXP27114 1 3039 3001 EXP27115 1 3039 3001 EXP27116 1 3039 3001 EXP27117 1 3039 3001 EXP27117 1 3039 3001 EXP27117 1 3039 3001 EXP27118 16 3006 3001 EXP27118 16 3006 3001 EXP27118 16 3001 EXP27118 16 3001 EXP27118 16 3001 EXP27118 16 3001 EXP27118 16 3001 EXP27118 16 3001 EXP27118 16 3001 EXP27118 16 3001 EXP27118 16 3001 EXP27118 16 3001 EXP27118 16 3001 EXP27118 16 3001 EXP27118 10 3001 EXP2718 10 3001 EXP2718 10 3001 EXP2718 10 3001 EXP2718 10 3001 EXP2718 10	۰ ۷	0.45	1.58	- 3	3.0%	년 •	2.3	0.9	M. 1
ENCRYTHON 31 3003	EXP27101 31 3003 2900 EXP27102 34 3036 2991 EXP27103 19 3021 EXP27105 4 3036 3006 EXP27106 6 3042 EXP27107 30 3006 EXP27107 30 3006 EXP27107 30 3006 EXP27110 10 3042 EXP27110 10 3042 EXP27110 10 3042 EXP27111 1 3039 3042 EXP27111 1 3039 3042 EXP27111 1 3039 3042 EXP27111 1 3039 3042 EXP27111 1 3039 3042 EXP27112 8 3066 3018 EXP27113 21 3039 3003 EXP27113 21 3039 3003 EXP27112 21 3039 3003 EXP27112 21 3039 3003 EXP27112 21 3039 3003 EXP27112 31 3039 3003 EXP27112 31 3039 3003 EXP27112 31 3039 3003 EXP27112 31 3039 EXP27112 31 3039 EXP27113 21 3039 EXP27113 31 3042 EXP27113 31 3042 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27113 31 3043 EXP27134 EXP27134 EXP271345 EXP27134 EXP271345 EXP27134 ACETORE EXP27134 EXP271345 EXP27134 ACETORE EXP27134 EXP271345	~	-	10.23	6.44	3.050	Ž	7.4	50.8	32.0
ENGINE 19 1023 2091 65 < 0.077 2.12 3.86 5.337 3.014 6701 2.8 8.4	EXP21102 34 3036 2991 EXP21103 19 3021 3006 EXP21106 4 3045 3015 EXP21106 6 3045 3015 EXP21106 6 3042 3006 EXP21106 10 3045 3006 EXP21107 30 3006 2005 EXP21108 24 3039 3119 EXP21111 1 3039 3041 EXP21112 8 3042 3042 EXP21113 7 3020 3042 EXP21113 7 3020 3042 EXP21114 1 3039 3042 EXP21115 14 3031 3042 EXP21116 14 3031 3042 EXP21117 14 3021 3129 EXP21118 16 3072 3129 EXP21119 15 3042 3042 EXP21119 15 3042 EXP21119 16 3072 3129 EXP21119 16 3072 3129 EXP21119 17 3069 3042 EXP21129 21 3069 EXP21129 22 3019 3069 EXP21129 22 3019 3069 EXP21129 22 3019 3069 EXP21129 22 3019 3069 EXP21129 22 3019 3069 EXP21129 22 3019 3069 EXP21129 22 3019 3069 EXP21129 24 3069 EXP21129 27 3069 EXP21129 2	~	-	27.44	17.02	2.85	, Š	4.5	139.0	2.98
Fig. 21 19 19 19 19 19 19 19	EXP21103 19 3021 3006 EXP21104 4 3036 3045 EXP21105 11 3045 3090 EXP21106 6 3045 3000 EXP21107 30 3005 2995 EXP21108 12 3039 30119 EXP21109 20 3063 3042 EXP21111 1 3039 30119 EXP21112 8 3066 3042 EXP21113 7 3039 3042 EXP21113 7 3039 3042 EXP21114 42 3039 3042 EXP21115 16 3039 3042 EXP21115 16 3039 3042 EXP21116 17 3039 3043 EXP21117 16 3031 3043 EXP21118 16 3072 3124 EXP21119 33 3063 3043 EXP21119 34 3064 3013 EXP21129 25 3042 EXP21129 27 3064 EXP21129 28 3051 EXP21129 29 3051 EXP21129 29 3051 EXP21129 29 3051 EXP21129 29 3051 EXP21129 29 3051 EXP21129 29 3051 EXP21129 29 3051 EXP21129 27 3018 EXP21129 29 3051 EXP21129 27 3018 EXP21129 27 3018 EXP21129 27 3018 EXP21129 27 3051 EXP21129 27 3051 EXP21129 27 3051 EXP21129 27 3051 EXP21129 27 3051 EXP21129 27 3051 EXP21129 27 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 3051 EXP21129 30 30 30 30 30 30 30 30 30 30 30 30 30	~	-	<u>.</u>	1.10	3.014	Ž	2.8	9.4	2.6
ENGINE 1 3065 3015 565 0.077 2.12 38.6 2.13 3.105 0.6 1.15 3.105 0.6 0.15 0	EXP21104 4 5036 3015 EXP21106 6 11 3045 EXP21106 13 3042 EXP21106 24 3036 EXP2110 13 3036 EXP2110 13 3036 EXP21111 13 3045 EXP21111 13 3045 EXP21112 13 3036 EXP21113 1 3039 EXP21113 1 3039 EXP21113 1 3039 EXP21113 1 3039 EXP21113 1 3039 EXP21113 1 3039 EXP21113 1 3039 EXP21114 42 3033 EXP21115 1 3039 EXP21115 1 3039 EXP21116 1 3039 EXP21117 1 18 3033 EXP21117 1 18 3033 EXP21118 1 16 3033 EXP21118 1 16 3033 EXP21118 1 16 3033 EXP21118 1 16 3033 EXP21118 1 16 3033 EXP2112	~	-	98.6	6.03	3.014	1	2.5	9.63	20°3
Colored Color Co	EXP21105 11 3045 3088 EXP21106 6 3042 3006 2005 2005 3006 3007 300 3006 3007 300 3007 300 3007 300 3007 3007		~	38.88	23.37	3.026	7.0	10.6	154.6	117.0
EVERY Color Colo	EXP21106 6 3042 3000 EXP21107 24 3039 EXP21108 24 3039 EXP21108 10 3039 EXP21108 10 3039 EXP21110 10 3039 EXP21111 1 3039 EXP21111 1 3039 EXP21112 8 3066 EXP21113 7 3020 EXP21113 7 3020 EXP21115 14 3039 EXP21115 14 3033 EXP21115 14 3033 EXP21115 14 3033 EXP21115 14 3033 EXP21116 14 3033 EXP21117 14 3033 EXP21118 16 3072 EXP21118 16 3072 EXP21118 16 3072 EXP21121 21 3033 EXP21121 21 3033 EXP21121 21 3033 EXP21122 25 3042 EXP21123 25 3042 EXP21124 35 3066 EXP21129 25 3051 EXP21129 27 3066 EXP2112		•	21.02	12.75	3.067	9.0	8.8	103.9	63.0
ERGYTHOU SO STORE SEC. 0.077 0.71 0.71 0.72 0.74 0.70 0.70 0.70 0.70 0.70 0.70 0.70	EXP21107 30 3006 2295 EXP21106 10 3039 3119 EXP2110 10 3039 3042 EXP2110 10 3039 3042 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2111 1 3039 3043 EXP2112 21 3043 3043 EXP2112 21 3043 3043 EXP2112 32 3043 3043 EXP2112 34 3043 3043 EXP2112 34 3043 EXP2112 34 3043 EXP2112 34 3043 EXP2112 34 3043 EXP2112 34 3043 EXP2112 34 3043 EXP2112 34 3043 EXP2112 34 3043 EXP2112 34 3043 EXP2112 35 3043 EXP2112 36 3043 EXP2112 36 3043 EXP2112 36 3043 EXP2112 36 3043 EXP2112 37 3043 EXP2112 36 3043 EXP2112 37 3043 EXP2	,		8 77	25.78	3.021	4	3.2	225.2	129.3
ENZYTION 28 3009 5119 66 0.077 1.08 147.92 87.44 3.077 4.01 1.10 1.10 1.10 1.10 1.10 1.10 1.10	EXP21107 24 3039 3119 EXP21108 20 3063 3062 EXP21111 1 3039 3091 EXP21112 8 3066 3064 EXP21112 8 3066 3064 EXP21113 7 3020 3065 EXP21115 7 3020 3065 EXP21115 7 3020 3065 EXP21115 16 3072 3069 EXP21116 16 3072 3018 EXP21119 33 3063 3018 EXP21119 33 3063 3018 EXP21120 41 3021 3018 EXP21121 21 3030 3003 EXP21122 36 3062 3063 EXP21123 23 3063 3063 EXP21124 33 3063 3063 EXP21126 35 3068 3065 EXP21127 43 3060 3064 EXP21128 26 2991 3066 EXP21129 27 3069 EXP21129 27 3069 EXP21129 27 3068 EXP2129 27 3068 EXP2129 27 3068 EXP2129 27 3068 EXP2129 27 3068 EXP2129 27 3068 EX	, ,	ë	R7 C7	21.41	8		M	6757	260.0
ERFORMED 200 3047 5045 66 0.075 0.02 82.74 46.74 5.057 670. 51.1 10.1 10.1 10.1 10.1 10.1 10.1 10	EXYZITUS 24 3037 3117 EXYZITUS 26 3043 3041 EXYZITUS 10 3039 3041 EXYZITUS 10 3039 3042 EXYZITUS 10 3039 3042 EXYZITUS 10 3039 3042 EXYZITUS 14 3042 3043 EXYZITUS 14 3042 3043 EXYZITUS 14 3042 3043 EXYZITUS 15 3043 3003 EXYZITUS 16 3072 3129 EXYZITUS 16 3072 3129 EXYZITUS 17 3043 3003 EXYZITUS 18 3042 3043 EXYZITUS 18 3042 3043 EXYZITUS 18 3043 3003 EXYZITUS 18 3043 3003 EXYZITUS 18 3043 3003 EXYZITUS 18 3044 EXYZITUS 18 3044 EXYZITUS 19 3044 EXYZITUS 19 3044 EXYZITUS 10 3044	, ,		4.7 00	77 77	2		, w	27.0	1 127
ENGINE 1 3039 3094 66 0.077 0.13 10.07	EXYZ1109	,	- 6	27.			2	:	7 017	241 0
ENGZITIC 19 3039 3040 67 0.077 0.74 79.00 59.46 1.00 70.4 1.5 1.00 64.0 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	EXPORTITIO 13 3030 3070 5070 5070 5070 5070 5070 507	,	•	12 18 18		2.032		- <	45.2	3
ENGRITH 1 30.05 50.05 67.4 60.07 67.4 77.00 77.55 50.05 60.01 50.05 50	EXPECTIVE 1 3039 3008 EXPECTIVE 2 3066 3049 EXPECTIVE 42 3069 3042 EXPECTIVE 42 3069 3042 EXPECTIVE 14 3033 3003 EXPECTIVE 14 3033 3003 EXPECTIVE 16 3072 3013 EXPECTIVE 16 3072 3013 EXPECTIVE 16 3072 3013 EXPECTIVE 16 3072 3013 EXPECTIVE 17 3021 3013 EXPECTIVE 17 3021 3013 EXPECTIVE 17 3021 3013 EXPECTIVE 17 3021 3013 EXPECTIVE 17 3021 3013 EXPECTIVE 17 3021 3013 EXPECTIVE 17 3021 3013 EXPECTIVE 17 3021 3021 EXPECTIVE 17 3021 3021 EXPECTIVE 17 3021 3021 EXPECTIVE 17 3021 3021 EXPECTIVE 17 3021 3021 EXPECTIVE 17 3021 3021 EXPECTIVE 17 3021 3021 EXPECTIVE 17 3021 3021 EXPECTIVE 17 30	.	> (e 8	8:5	3	į ·	•	1007	
ENGYTITE 8 3066 5049 667 6.075 0.54 175.30 142.75 5.056 7 101. 370 755.1 185.0 101. 370 5.050 145.2 14	EXP21112 8 3066 3069 EXP21113 7 3020 3069 EXP21115 5 3072 3036 EXP21115 16 3033 3043 EXP21117 18 3063 3043 EXP21117 18 3063 3043 EXP21117 18 3063 3063 EXP21118 16 3072 3129 EXP21121 21 3063 3063 EXP21121 21 3063 3063 EXP21121 21 3063 3063 EXP21121 22 3043 EXP21121 22 3046 EXP21121 22 3046 EXP21123 23 3063 3063 EXP21124 32 3060 2063 EXP21125 36 2063 EXP21126 29 3061 3063 EXP21127 36 2063 EXP21128 27 3066 2063 EXP21129 29 3061 3063 EXP21129 29 3061 3063 EXP21129 29 3061 3063 EXP21129 29 3061 3063 EXP21129 20 3061 3063 EXP21129 20 3061 3063 EXP21129 20 3061 3063 EXP21129 20 3061 3063 EXP21129 20 3061 3063 EXP21129 20 3061 3063 EXP21129 20 3061 3063 EXP21129 20 3061 3063 EXP21129 20 3061 3063 EXP21129 20 3061 3063 EXP21129 21 3061 3063 EXP21129 22 EXP21385 EXP21385 EXP21387 EXP21387 EXP21385 EXP21387 EXP21387 EXP21385 EXP21387 EXP21387 ACETORE	-	D 1	8 8	24.45	9	9		2.75	66.
ENGYTI13 7 3020 3034 664 0.075 0.78 158.50 55.22 5.056 0.001 2.5 453.7 19.50 55.22 5.056 0.001 2.5 453.7 19.50 55.22 5.056 0.001 2.5 453.7 19.50 55.22 5.056 0.001 2.5 453.7 19.50 55.22 5.056 0.001 2.5 453.7 19.50 55.22 5.056 0.001 2.5 453.7 19.50 55.22 5.056 0.001 2.5 453.7 19.50 55.22 5.056 0.001 2.5 453.7 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	EN921113 7 3020 3036 EN921114 42 3069 3042 EN921115 5 3069 3042 EN921116 14 3033 3003 EN921119 33 3063 3013 EN921119 33 3063 3013 EN921121 21 3030 3033 EN921122 21 3030 3003 EN921123 22 3013 EN921123 23 3036 3224 EN921123 23 3036 3224 EN921124 32 3013 3026 EN921125 35 3036 3027 EN921056 43 3060 2063 EN921129 25 3013 3026 EN921129 25 3013 3026 EN921129 25 3013 EN921129 20 3026 EN921129 3026 EN921129 3026 EN921129 3026 EN921129 3026 EN921120 3026	~	0	2.5	705.72	5.03	Ž :	•		
ENGYPTINE 42 3069 3364 66 < 0.075 0.66 30.85 55.22 5.056 < 1001 5.3 453.7	EN921116 42 3069 3642 EN921116 14 3033 3033 EN921116 14 3033 3033 EN921116 16 3072 3018 EN921119 18 3066 3018 EN921120 41 3021 3018 EN921121 21 3030 3003 EN921122 36 3042 3065 EN921123 23 3031 3023 EN921124 33 3042 3066 EN921125 35 3042 3066 EN921125 35 3045 EN921127 35 3051 EN921095 12 3018 3090 EN921096 20 3051 EN921096 20 3051 EN921097 30 3054 EN921097 30 3054 EN921127 9 3018 EN921127 9 3018 EN921381 EN921383 EN921382 EN921383 EN921383 EN921383 EN921384 EN921385 EN921385 EN921385 EN921386 EN921387 EN921386 EN921387 EN921386 EN921387 EN921387 EN921387 EN921387 EN921387 EN921387 EN921387 EN921387 EN921387 EN921387 EN921387 EN921387 EN921387 EN921387 ENPANALST ENPA	v	ö	156.90	8.2	3.028	2	m.	£!	473.2
ENGINE 1	EXP21115 5 3072 3036 EXP21116 14 3033 EXP21117 16 3073 EXP21117 16 3073 EXP21117 16 3073 EXP21118 16 3077 EXP21119 33 3063 3033 EXP21121 21 3021 EXP21121 23 3042 EXP21121 23 3042 EXP21122 36 3042 EXP21123 23 3043 EXP21124 32 3046 EXP21125 35 3051 EXP21056 25 2991 EXP21096 25 2995 EXP21096 25 2995 EXP21096 25 2995 EXP21096 25 2995 EXP21096 25 2995 EXP21129 27 3018 EXP21129 29 3024 EXP21129 29 3024 EXP21129 29 3024 EXP21129 29 3024 EXP21129 29 3024 EXP21129 27 3018 EXP21129 29 3024 EXP21129 27 3018 EXP21129 29 3024 EXP21129 27 3018 EXP21129 27 30	v	-	9.5 8.5	55.22	3.056	<u>,</u>	2.5	453.7	273.8
Fig21116 14 3033 3003 66 < 0.075 0.68 80.82 51.56 5.018 cmt 5.4 465.7	EXP21116 14 3033 3003 EXP21117 16 3033 3003 EXP21118 16 3072 33129 EXP21121 21 3023 3033 EXP21121 21 3030 3031 EXP21122 36 3042 3033 EXP21123 22 3036 EXP21123 23 3036 EXP21123 23 3036 EXP21123 23 3036 EXP21123 25 3036 EXP21123 25 3036 EXP21123 25 3036 EXP21123 25 3036 EXP21123 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 25 3036 EXP21129 27 3036 EXP21129	v	-	33.16	19.91	3.054	Ž	3.3	1 5.5	8
EWZ1171 18 3066 3018 66 0.075 3.14 91.05 51.96 5.002 4.00 3.50	EXPZ1117 18 3066 3018 EXPZ1119 13 3063 3018 EXPZ1119 13 3063 3012 EXPZ1120 41 3021 EXPZ1121 21 3030 3003 EXPZ1122 36 3042 3042 EXPZ1122 35 3046 3224 EXPZ1123 23 3046 3224 EXPZ1124 35 3049 3046 EXPZ1125 35 3051 3027 EXPZ1126 43 3069 3054 EXPZ1095 43 3060 3054 EXPZ1096 26 2903 EXPZ1129 27 3060 3054 EXPZ1129 27 3060 3054 EXPZ1129 27 3060 3054 EXPZ1129 27 3060 3054 EXPZ1129 27 3060 3054 EXPZ1129 27 3060 3054 EXPZ1129 27 3060 3054 EXPZ1129 27 3060 3054 EXPZ1129 27 3060 3054 EXPZ1129 27 3060 3054 EXPZ1129 27 3018 3059 EXPZ1129 37 3060 3054 EXPZ1129 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 3060 2063 EXPZ1120 27 306	~	•	80.82	45.36	3.018	1	4.6	465.7	227.7
EVECTION 16 3072 3152 66 0.004 0.74 111.80 66.04 3.101 0.4 3.6 3.66.3	EK921118 16 3072 3129 EK921119 15 3063 3063 EK921120 21 3063 EK921121 21 3063 EK921122 36 3062 EK921123 23 3063 EK921124 32 3063 EK921125 35 3065 EK921125 35 3065 EK921125 36 2991 EK921129 27 3066 EK921129 27 3	v	3.14	2.5	51.98	3.062	1	15.6	453.5	258.8
EVECTION 13	EK921119 33 3063 3063 EK921119 30 41 3021 3063 5063 5063 5063 5063 5063 5063 5063		7.0	36.	2.2	3.101	4.0	3.6	346.3	313.0
ENZZ1122 21 3020 3003 66 < 0.075 1.44 74.6 41.82 3.017 < 10.1	EN921120 41 3021 3018 EN921121 21 3030 3003 EN921122 36 3042 3045 EN921123 23 3036 3224 EN921123 23 3036 3224 EN921123 25 3019 EN921125 35 3051 3026 EN921054 43 3060 2963 EN921095 26 2963 2963 EN921096 26 2963 2963 EN921129 29 3024 2963 EN921129 29 3024 2963 EN921129 29 3024 2963 EN921129 29 3024 2963 EN921129 29 3024 2963 EN921129 29 3024 2963 EN921271 9 4024 EN921371 FILTER IMPINGER EN921373 EN921383 EN921385 EN921365 EN921387 EN921416 EN921417	¥	98.0	122.56	68.46	3.068	<u>,</u>	4.4	206	340.3
ENCRITY ENCRIT	EX921121 21 3030 3003 EX921122 36 3042 EX921122 36 3042 EX921123 23 3036 EX921124 35 3015 EX921126 35 3015 EX921093 26 2991 EX921095 3 3050 EX921095 3 3060 EX921095 3 3060 EX921095 3 3060 EX921095 3 3060 EX921128 12 3018 EX921128 27 3036 EX921129 27 3036 EX921121 9 EX921121 FILTER IMPINGER EX921322 EX921333 EX921346 EX921322 EX921333 EX921345 EX921323	· •	0.53	8.72	5.07	3.017	₹		43.8	8.5
ENCYTICE 36 3042 3066 66 < 0.075 7.53 101.06 56.86 3.054 < 10.4 37.4 501.4 ENCYTICE 35 3056 66 < 0.075 0.53 101.06 56.86 3.054 < 10.4 3.0 442.8 ENCYTICE 35 3056 66 < 0.075 0.58 101.06 5.30 3.059 < 10.4 3.0 442.8 ENCYTICE 35 3051 3027 65 < 0.075 0.58 0.30 2.079 < 10.6 5.00 3.0 1066.5 ENCYTICE 35 3051 3027 65 < 0.075 0.58 0.30 2.079 < 10.1 1066.5 ENCYTICE 35 3050 2066 65 < 0.075 0.42 < 0.30 2.097 < 10.1 1.0 4.01 ENCYTICE 35 3050 2065 65 < 0.075 0.42 < 0.30 2.097 < 10.1 1.0 4.01 ENCYTICE 35 3050 2065 65 < 0.075 0.42 < 0.30 2.097 < 10.1 1.0 4.01 ENCYTICE 35 3050 2065 65 < 0.075 0.42 < 0.30 2.097 < 10.1 1.0 4.01 ENCYTICE 35 3050 2065 65 < 0.075 0.42 < 0.30 2.097 < 10.1 1.0 4.01 ENCYTICE 27 3050 2065 65 < 0.075 0.42 < 0.30 < 0.30 2.097 < 10.1 1.0 4.01 ENCYTICE 37 3050 2065 65 < 0.075 0.42 < 0.30 < 0.30 2.097 < 10.1 1.0 4.01 ENCYTICE 37 3050 2065 65 < 0.075 0.42 < 0.30 < 0.30 < 0.30 2.097 < 10.1 1.0 4.01 ENCYTICE 37 3050 2065 65 < 0.075 0.42 < 0.30 < 0.30 2.097 < 10.1 1.0 4.01 ENCYTICE 37 3050 2065 60 0.075 0.42 < 0.30 0.30 2.097 < 10.1 1.0 4.01 ENCYTICE 37 3050 2065 65 < 0.075 0.42 < 0.30 0.30 2.097 < 10.1 1.0 4.01 ENCYTICE 37 3050 2065 65 < 0.075 0.42 < 0.30 0.30 2.097 < 10.1 1.0 4.0 1.1 1.0 4.0 1.1 1.0 4.0 1.1 1.0 4.0 1.1 1.0 4.0 1.1 1.0 4.0 1.1 1.0 4.0 1.1 1.1 1.0 4.0 1.1 1.1 1.0 4.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	EN921122 36 3042 3066 EN921123 23 3036 3224 EN921125 35 3036 3224 EN921025 35 3051 3027 EN921026 43 3060 3054 EN921036 25 2995 EN921036 27 3036 2995 EN921129 27 3036 2965 EN921129 27 3036 2963 EN921129 27 3036 2963 EN921129 27 3036 2963 EN921129 27 3036 2963 EN921320 EN921383 EN921385 EN921385 EN921385 EN921387 EN921385 EN921386 EN921387 EN921385	·	-	74.46	41.82	3.017	10		374.0	210.1
EV221125 23 3036 3224 66 0.085 0.63 91.47 50.81 3.130 0.4 3.0 442.8 EV221125 23 3036 3224 65 0.011 1.77 206.86 118.34 2.979 0.6 9.1 1068.5 EV221125 23 3019 2042 65 < 0.075 0.38 6.10 2.09 < 0.05 0.30 2.979 < 0.6 9.1 1068.5 EV221035 25 2043 1006 65 < 0.075 0.38 6.10 2.09 < 0.30 2.999 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.01 1.00 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01 1.09 < 0.01	ENYZ1125 23 3036 3224 ENYZ1125 23 3036 3224 ENYZ1125 35 3019 2942 ENYZ1093 26 2991 3027 ENYZ1094 43 3060 2965 ENYZ1096 26 2965 2965 ENYZ1096 26 2965 2965 ENYZ1129 29 3034 2962 ENYZ1129 29 3034 2963 ENYZ1129 29 3034 2963 ENYZ1129 29 3034 2963 ENYZ1129 29 3034 2963 ENYZ1271 9 3036 2963 ENYZ1327 27 3036 2963 ENYZ1327 ENYZ1343 ENYZ1346 ENYZ1345 ENYZ1345 ENYZ1345 ENYZ1345 ENYZ1346 ENYZ1345 ENYZ1345	, ,		5	8	76	9		501.4	282.1
ENG21125 35 3051 3027 655 0.11 1.77 206.06 118.34 2.979 0.6 9.1 1066.5 ENG21125 35 3051 3027 655 0.017 0.35 8.16 4.62 3.099 < NOL	ENSZ1125 35 3015 2942 ENSZ1125 35 3051 3027 ENSZ1034 43 3060 3054 ENSZ1034 43 3060 3054 ENSZ1034 12 3018 3059 ENSZ1036 26 2965 2965 ENSZ1129 29 3024 2962 ENSZ1129 27 3018 3090 ENSZ1129 27 3018 3090 ENSZ1129 27 3018 2962 ENSZ1271 9 3024 2962 ENSZ1271 6 ILLTER IMPINGER ENSZ1371 8 ENSZ1345 ENSZ1345 ENSZ1345 ENSZ1345 ENSZ1345 ENSZ1345 ENSZ1345 ENSZ1345	,		27.10	50.81	3, 130	7.0		442.8	266.0
ENGYING 35 MIN STATE 65 0.075 0.39 E.16 4.82 3.099 c.001 2.0 41.3 ENGYING 58 0.075 0.39 C.30 c.30 2.999 c.001 1.9 c.001 ENGYING 55 c.0.075 0.38 c.0.30 c.30 2.999 c.001 1.9 c.001 ENGYING 55 c.0.075 0.42 c.0.30 c.30 2.999 c.001 1.9 c.001 ENGYING 25 2905 2905 c.0.075 0.42 c.0.30 c.30 2.997 c.001 2.2 c.001 c.0.30 2.997 c.001 2.2 c.001 c.0.30 2.997 c.001 2.2 c.001 c.0.30 2.997 c.001 2.2 c.001 c.0.30 2.997 c.001 2.2 c.001 c.0.30 2.997 c.001 1.2 c.0.30 2.997 c.001 1.2 c.0.30 c.0.30 2.997 c.001 1.2 c.0.30 c.0.30 2.997 c.001 1.2 c.0.30 c.0.30 2.997 c.001 1.2 c.0.30 c.0.30 2.997 c.001 1.2 c.0.30 c.0.30 2.997 c.001 1.2 c.0.30 c.0.30 2.997 c.001 1.2 c.0.30 c.0.30 2.997 c.001 1.2 c.0.30 c.0.30 2.997 c.001 1.2 c.0.30 c.0.30 c.0.30 2.997 c.001 1.2 c.0.30 c	ENYZ1124 3.7 3013 CTVR ENYZ1125 3.6 2991 3002 ENYZ1095 4.3 3660 3054 ENYZ1096 2.6 2995 3054 ENYZ1096 2.6 2905 2905 ENYZ1129 2.7 3018 3090 ENYZ1129 2.7 3018 3090 ENYZ1129 2.7 3018 3090 ENYZ1129 2.7 3018 3090 ENYZ1120 2.7 3018 3090 ENYZ1271 9 3024 2903 ENYZ1371 9 ENYZ1385 ENYZ1385 ENYZ1385 ENYZ1385 ENYZ1385 ENYZ1385 ENYZ1385 ENYZ1385 ENYZ1385 ENYZ1387 ENYZ1385 ENYZ1385 ENYZ1387 ENYZ1385 ENYZ1Z1385 ENYZ1Z1		•	7	72 25	8	4	0	1068.5	611.3
EMPORTORS 25 2991 3006 65 < 0.075 0.81 < 0.30 < 0.30 2.999 < NOL 1:9 < NOL 1:9921093 EMPORTORS 25 2991 3006 65 < 0.075 0.81 < 0.30 < 0.30 2.977 < NOL 1:9 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:99 < NOL 1:9	EN921095 25 2991 3006 EN921096 43 3060 3054 EN921096 26 2905 EN921129 29 3024 2963 EN921129 29 3024 2963 EN921129 29 3024 2963 EN921129 29 3024 2963 EN921271 9 3024 2963 EN921271 9 5021366 EN921371 FILTER INPINGER EN921385 EN921385 EN921385 EN921386 EN921385 EN921385	,	92	3,4	2	010	ē	2.0	£.13	26.4
EMYZIONS 4.29 EXPLICITE REPRESENTATION CHRONIUM SAMPLE LEAD 2.15 (10.16) (1.26)	ENYZ1093 4.58 5060 2965 ENYZ1094 4.59 3060 2965 ENYZ1096 2.6 2965 2965 2965 ENYZ1096	, ,		25	5	8		0		ē
ENYZIONE SE 2000 2005 65 < 0.075 0.42 < 0.30 < 0.30 2.973 < 101	ENYZ1075 4.3 3000 2002 ENYZ1076 2.6 2905 2905 ENYZ1128 12 3018 3090 ENYZ1129 2.9 3024 2962 ENYZ1127 2.7 3036 2903 ENYZ1127 9 3024 2962 ENYZ1271 9 3024 2962 ENYZ1271 6 ENYZ1385 ENYZ1385 ENYZ1362 ENYZ1385 ENYZ1385 ENYZ1365 ENYZ1385 ENYZ1385 ENYZ1365 ENYZ1387 ENYZ1385 ENYZ1365 ENYZ1385	, ,			5	1 67		¥-1	9	
ENYZIONE 25 2005 26 0.075 0.36 < 0.30 < 0.36 2.977 < 0.01 172.9 < 0.01 ENYZIONE 12	EXYZ1025 2 2000 27900 EXYZ1026 12 3018 3090 EXYZ1129 27 3018 3090 EXYZ1129 27 3018 3090 EXYZ1120 27 3018 3090 EXYZ1120 27 3018 3090 EXYZ1120 EXYZ1305 EXYZ13	, ,	6		5	6	į	2 2		
ENGELION	ENGZ1036 20 2703 2703 2703 2703 2703 2703 2703 2	, ,	•		5	2 077	Š	22.0	9	
EMYZI 25 25 3024 2062 65 4 0.075 0.41 0.36 0.32 2.993 4 PDL 2.1 1.9 EMYZI 27 27 3034 2003 65 4 0.075 0.32 0.33 7 0.28 3.010 4 PDL 1.6 1.7 EMYZI 27 9 3024 2003 65 4 0.075 0.32 0.33 7 0.28 3.010 4 PDL 1.6 1.7 SAMPLE SAMPLE LEAD ZINC STRONTIUM CHRONIUM CHRONIUM SAMPLE LEAD ZINC STRONTIUM CHRONIUM CH	ENYZILZB 12 3024 2962 ENZZILZP 27 3036 2963 ENZZIZZT 9 3036 2963 SAMPLES 3040 ENZZIZZT 3065 ENZZIZZT 101 FILTER INPINGER ENZZIZZ ENZZIZZT ENZZIZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	,			25	3		1		
ENGELLA 27 3036 2963 65 4 0.075 0.32 0.33 7 0.28 3.010 < NOL 1.6 1.7 ENGELLA 27 3036 20.30 5.010 < NOL 1.6 1.7 ENGELLA 27 3036 20.30 5.010 < NOL 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	EXP21129 27 3436 27963 EXP21271 9 3436 27963 SAMPLES ACCTOME MITRIC FILTER IMPLINGER EXP21342 EXP21343 EXP21345 EXP21345 EXP21345 EXP21441 EXP21346 EXP21347 EXP21415 EXPANSE ACCTOME	, ,		72.0	5	8	5	-	0	1.6
EMPLES SAMPLE	EM921271 9 5435 CTGS SAMPLES ACCTONE NITRIC FILTER IMPINGER EN921346 EX921343 EN921416 EX921417 EX921386 EX921387 EX921416 EX921417	۲ ،			, c	1.010		9-1	1-7	1
SAMPLES ACETONE NITRIC FILTER IMPINGER (CU FT) (ug) (ug) (ug) (ug) (HS) (ug/MS	SAMPLES ACETOME NITRIC FILTER IMPINGER EN921342 EN921343 EN921345 EN921346 EN921343 EN921416 EN921417 EXMANST ACETOME NITRIC	, ,		- P. C.	30	9	4.0 ×	-	< 1.5	< 1.5
EXP21363 EXP21365 EXP21365 CO. FT) (ug) (ug) (ug) (UG) (ug/NS)	MITRIC FILTER IMPINGER EXP21363 EXP21364 EXP21365 EXP21367 EXP21416 EXP21417 EXMAUST ACETONE	,	•							
EXPZISOS EXPZISOS (CU FT) (LOG	MITRIC FILTER INPINGER EXP21363 EXP21364 EXP21365 EXP21367 EXP21416 EXP21417 EXMAUST ACETONE		1					-		
EXYZ1383 EXYZ1384 EXYZ1385 39.20 0 65.6 13.13 30.06 1.109 < NOL 77.2 11.8 EXYZ1387 EXYZ1384 EXYZ1385 2.5 0.53.9 10.75 40.6 1.156 < NOL 46.6 9.3 1.25 EXYMALST ACETOME EXYZ1382 < 2.5 5.6 8.4 5.4 1.109 < NOL 5.0 7.6 1.109 < NOL 11.6 5.4 1.109 < NOL 11.6 5.4 1.109 < NOL 11.6 5.4 1.109 < NOL 0.8 1.4 0.8 1.1 0.9 1.1 0.9 1.1 0.1 0.8 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.8 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.8 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.8 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.8 1.1 0.9 1.1 0.9 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	EX921363 EX921364 EX921365 EX921367 EX921416 EX921417 EXMAUST ACETONE		(E)			(33)	(S/4)	(Mg/JG)		(UB/NB)
ENG21367 ENG21416 ENG21417 40.84 0 53.9 10.75 40.6 1,136 < NOL 40.6 7.3 EXMANST ACETONE ENG21362 < 2.5 5.6 8.4 5.4 1,109 < NOL 5.0 7.6 HITRIC ENG21364 < 2.5 < 1.25 0.93 1,28 1,109 < NOL 40L 12.6 3.4 FILTER ENG21364 < 2.5 < 1.25 0.93 1,28 1,109 < NOL 40L 0.8	EXYZ1367 EXYZ1416 EXYZ1417 EXMAST ACETONE MITRIC	39.20		13.13	8.8	1.109	, 10 10	77.2	15.6	27.1
ACETOME ENV21382 < 2.5 5.6 8.4 5.4 1.109 < MOL 5.0 7.6 MITRIC ENV21383 < 0.5 14 3.8 6.40 1.109 < MOL 12.6 3.4 FILTER ENV21364 < 2.5 < 1.25 0.93 1.28 1.109 < MOL 0.08	ACETONE	4 0. 8 4		10.73	9.9	<u>8</u>		9	?	23.1
MITRIC ENGZISGS 0.5 14 5.8 6.40 1.109 < NOL 12.0 5.4 FILTER ENGZISG4 2.5 < 1.25 0.93 1.28 1.109 < NOL 0.6	MITRIC	21362 < 2.5	5.6	4.6	5.4		9		7.6	4.0
EX921364 < 2.5 < 1.25 < 1.20 1.10 × MML VIOL		21383 < 0.5	*		 0	<u> </u>	2 i	9.2	1 6	
		21384 < 2.5	. 1.8	2.93	9:	2	2		•	. ¥

	CHRONTUM (ug/N3)	4.2. E
	STPONTIUM CHRONIUM (Ug/N3)	₩.4.0.0
	2! %C (ug/N3)	9.4 17.3 • #0L 19.9
D E INITIALS: Q A INITIALS:	LEAD (ug/NG)	
# 4 # 4	AVG FLOV (L/MIN)	<u> </u>
	CHROMEON ANG FLOW LEAD (Ug/NG)	4.9 18.00 1.7
RIMER	STRONT (UR (Ug)	4.2 5.7 0.85 4.0.2
PAINT: LT GREEN PRINER OBJECT: SPLITTERS	21NC (49)	5.5 % 5.5 %
ECT: 1	90	ភពព ភពភាព ភ
4 <u>8</u>	CEAD Cug	None
1 0	RUN TIME (min)	EX921386 < EX921387 < EX921416 < EX921417 <
B ITH TESTS OJECT 848	-CAL POST-CAL RUN TIME /min) (mi/min) (min)	ACETONE INTRIC FILTER
TRAVIS AFB PAINT BOOTH TESTS ACINEX PROJECT 8485	PRE-CAL (al/min)	RECIRC
	ACUMEN BASE PURP # PRE-	
26 26 20 26 26 26	DASE F SAMPLE	
TEST: NETALS 42 DATE: 06-24-92 PM ETHOD: NIOSH 7300	CUREX	
EST: #	5 201 F 201	
	2	

00		FIELD BLANK < 0.4	14.67 6810 9	** , g	g r	절 # [*]		XMAUST BUCT: < FBL. RECIKC BUCT: < FBL.
D E INITIALS: Q A INITIALS:			* ;				7.0	<u> </u>
65	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	•	12 * 15 !	₩ *	35 Age -	8	GRID MDL: 0.075 vg/SAMPLE PAINTER MDL: 0.075 vg/SAMPLE
TESTS ECT 8485	(3 * 3 0 * 3 0	4.0	₽*	ස දූ	15 0.4	ë, . ₫	CRID FDA.: PAINTER FDA:
TRAVIS AFE PAINT BOOTH TESTS ACUREN PROJECT 8485	EXMAUST GRID	2 * 90; * 90;	* 5	70 	22 0.4	₹ ₹ *	ā, 2	/#S UB/#G
	• • • • • • • • • • • • • • • • • • •	- - 10:	\$ \$	9 •	21 < FDL	₹, 16	17 . FBL	R UNITS: UNJAG USHA TAM: 50 UNJAG
~ ₹8 2	_		<					TERS PRINCE
TEST: NETALS #2 DATE: 06-24-92 PM METMOD: MIOSH 7360 RID CHART 1 - LEMD		Painter Over 0.6 Painter Under	IR ET SEID A	* , .	₹ *	•	Š	PAIRT TIPE: LT G

Fainter Under 2.0 INLET GRID A 1.9	1.7 2 2.8 9 3.2 4 0 3.2	2 9 2	7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	3 3 7 7 11 23 23 23	· · · · · · · · · · · · · · · · · · ·	s 27 %	8. 8. 1. 8. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	<u>i </u>	FIELD BLANK 1.8 INLET GRID B 1.7
2.2 120.9 ININ	13 3.3 17 2.9 R UNITS: USAMB		-	\$ \$ \$	15 3.6 16 4.4 19 37.4 20 3.0 CRID NOL: 0.3 ug/sample	9! 92 Hawes/8n	3 9	EXMANST DUCT:	2.1 W 1.6 UCT: 77.2

TRAVIS AFB PAINT BOOTH TESTS ACMEX PROJECT 8485	EXIMALST GRID	1 3.6 6.1 3 50.8 4 139.0 FIELD DLAWK	5 8.4 6 7 8 103.9 8 103.9	9 225.2 10 11 127.9 12 410.7	21 22 23 24 152.3 482.3 846.0 453.7 28	13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	17 18 19 19 20 442.8
TEST: METALS #2 DATE: 06-24-92 PM METHOD: MICSH 7300 RID CHART 3 - STRONTIUM		78 72. 7. 72. 7. 72.	INLET GRID A	ž,	ਰ ਨ	ਵੇਂ ਤ	

00		¥	INLET GRID &	16 A 30L	2,1	g A		ECMANST DUCT: 27.1 RECINC DUCT: 35.1
D E INITIALS: Q A INITIALS:		66.2	8 63.0	12 241.9	273.8	16 340.3	26.0	
ESTS F 8485	EXHAUST GRID	32.0	117.0	11 431.3	23 501.4 473.2	15 313.0	19 282.1	GRID IDL: 0.3 ug/SAMPLE Painter HDL: 0.3 ug/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8485	EXHA	2 5.3 5.3	6 30.3	10 260.0	22 289.6	14 227.7 258.8	18 210.1	Silvinos So univos
		2.9	2. 5.6	\$ 129.3	21 86.5	. 80.8 	7 25.5	UNITS: OSIA TUA:
TEST: NETALS #2 DATE: 06-24-92 PH NETHOD: VIOSH 7300 PID CMART & - CHRONIUM		Painter Over 611.3 Painter Under 26.4	INCET CRID A	ž Ž	ಕ ನ	ē:		

TEST: DATE: METHOD:	NETALS #3 06-25-92 AM1 NIOSH 7300	5 AH1		TRAVIS AFE PAINT BOOT ACUREX PRO	IVIS AFB INT BOOTH TESTS INEX PROJECT 8485		PAINT: OBJECT:	LT GREEN PRIMER BRAKE PARTS, MUSS,		RAFF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	INITIALS: INITIALS:	5		
CRID LOC	ACUREX SAMPLE #	EASE SAMPLE #	PURP #	PRE-CAL (ml/min)	POST-CAL (ml/min)	RUN TIME (min)	LEAD (543)	ZINC (mg)	STRONTIUM (ug)	CHRONIUM (ug)	AVG FLOW (L/MIN)	LEAD (ug/AG)	ZINC (ug/N3)	STRONT [UN (ug/N3)	CHRONIUM (ug/N3)
-	38		×	2981	8962	58	1.610	8.°E	1.61	1.32	2.975	9.3	23.1	9.3	7.7
~	3	EX921209	2	3000	2000	S	099.0	2.56 2.56	8.0	C	200	3.7	7.5	2.6	년 일 *
M ~	A :	EX921210	₽ ;	3033		Ŕ 5	2 £	8. Q	2.16 2.26		5.022 2.002	75.4 3.15	725.4	12.8 2.7	10.9 2.5
* "	<u> </u>		38	200		, F	220	7.87	2 7	12	3.014	5 6	X	16.0	1.7
~	3 5	EX921213	13	8	3024	× 22	0.03	1.65	3.57	ž	300.0	; ਵ	9.5	28.5	32.3
~	:3	EX921214	1	3068	3015	× 28	0.07	1.92	5.3	5.01	3.032	Ž	10.9	32.6	28.5
7 BP		EX921215	R	202	3027	3	0.091	1.65	6.4	8:8	3.029	0.5	4.6	27.8	17.1
40 (27	EX921216	2;	<u> </u>	X X	50 °	0.0	8.	7 ·	2.7	2.83	0.4 7.4	4.5 7.7	7.7	15.0 6.0
` E		EX921217	*		85	, <u>, , , , , , , , , , , , , , , , , , </u>	0.0	9.0	8	25.55	3.017	9 6	12.0	17.1	7
2 ==		EX921219	3	28	200	2	0.00	2.7	26.65	5.8	3.065	:	15.7	149.9	86
2		EX921220	R	3008	3057	2	0.076	1.38	12.36	8.2	3.073	7.0	7.7	4.00	66.3
₩.		EX921221	~;	X	8	20.	0.0 20.0 10.0	ë.	16.97	13.20	2.973		=======================================	8.5	9.92
25		EX921222	2 5	202	9535	×	5 C K	6.7	ŠX	5.5 8.5	, r	Ž Š	÷.~	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	, X
3%		EXOC1226	¥.	\$ &		, ,	S C	2.5	12.56	7.48	2.95	<u> </u>	1.0	20.22	5.5
2 25		EX921225	` *	28	303	* *	0.07	15.62	18.03	10.65	3.053	Ě	2.88	101.8	60.2
		EX921226	R '	3036	3035	%	C.0.	1.36	24.39	14.72	3.036	<u>ਵ</u>		5.5 5.5	83.6 9.6
₩.		Ex921227	•••	K S	3042	× 65	6.07	28.2	2.50	۶. ۲.	5.53	× 5 -	1. 2	32.5	16. 14. 14. 0
* *		EX921228	- 5			Š	 	, P	×5.5	, <u>.</u> .		· •	17.4	0.671	9
5 25		EX921230	; 7.	3054	3007	, s	0.03	7.32	26.88	16.17	3.016	ê	41.9	153.7	92.5
4		EX921231	=	98 20	1162	8 65	0.07	3.6	19.68	7.5	2.979	후 6	E. 6	112.0	5.5
₽ (EX921232	*		Ž	% 5	86	65	8. S	S. 2	50.0 50.0 50.0	ے د در م	9. F	6. 5 5. 5	2,07
? ₹		Ex921234	2 €		88 8 8	8 5	0.03	3.7	19.73	: : :	2.938	, Š	21.6	115.2	\$
S See		EX921269	R	200	2	22	0,100	3.32	19.18	1.5	2.985	9.0	19.5	112.7	61.9
• under		EX921270	ĸ	99	88 82 82 82	%! *	C.03	2.5	S.	7.	 	ĕ:	4. F	Ž į	40 Y
≠ ?		EX921201	35		Ž	75	5.5	26	S.K.	į	200	0 2 2			? •
2 2 2		EX921203	5 •	8	203	.5	22.0	0.08	, K.O	, C	3.02	1.5	5.1	1	<u>\$</u>
		1 EX921204	1	3012	2821	27	2.3	28.7	0.73 A	K.	2.93	2.5	16.9	를 •	2
=	ઝ ફે	Ex921205	5	202	3012 2022	<u> </u>				o e C K	2.5 2.5 2.5 2.5 2.5 3.5 3.5	5 ¥	 4 %		
5,5	<u> </u>	EXYZ 1200	2 •			23	2.880	8	, K	i S	2.978	17. 5 ki	8	, é	੍ਰ ਵ
F BLANK	K	EX921278	**		<u> </u>	Z	0.330	8.	0.32 <	6.7	3.000	1.9	11.4	6.	< 4.3
LOCATION		SAMPLES ACETONE	MITRIC	FILTER	IPP INCER	3 E	9 (E) (E)	2 (B) (CE)	STROKT IUN (LG)		3 (5)	(m/16)	21MC (ug/NG)	(ug/NG)	
EXMAUST		EX921388 EX921392	EX921389 EX921393	EX921390 EX921348	EX921391 EX921349	38.08 37.31	2. 0 7.	12.3 120.5	5.9 5.7	8.55 88.7	 	< 80. 13.7	11.4	5.5	6 %
				i			•	١	•	•		į		,	*
				EXMAUST	ACETONE MITRIC FILTER	EX921388 < EX921389 < EX921390 <	yoy Nivin			2.2.9 4.2.0	i SKK	, , , ,	, , , , ,	, , , , , , , , , , , , , , , , , , ,	
					IN THE REAL	EXFZ1591 <	c:	7.7	7.0	•		į	3		3

	CHRONIUM (ug/KS)	2.8 68.2 13.0 * #0(
	STRONTIEN CHRONIUM (ug/NS) (ug/NS)	8.3 4.3 5.3 7.3 8.3 8.3 8.3
5	21NC (ug/N3)	25.23 25.23 26.23
D E INITIALS: Q A INITIALS:	(ug/IG)	<u> </u>
9 G	AVG FLOW	50. 50. 50. 50. 50.
4	CURCHIUM AVG FLOW (Ug) (3 13.7 0.2
INER , NUBS, R	(ug)	4.2.6 0.5.0 .2.0
LT GREEN PRINER BRAKE PARTS, NUBS, RANP	Z1MC 8 (00)	ស ^អ លីង្គ
PAINT: OBJECT:	(E)	82.5.0 0.5.5
7 2	RUM TIME (min)	EX921392 < EX921348 < EX921348 <
RAVIS AFB AINT BOOTH TESTS CUREX PROJECT 8485	RE-CAL POST-CAL RUM TIME BL/Min) (ml/min) (min)	ACETONE HITRIC FILTER IMPIGGER
TRAVIS AN PAINT BOX ACUREX PI	PRE-CAL (ml/min)	RECIRC
5 #3 -92 AM1 7300	CRID LOC SAMPLE # SAMPLE # PUMP # P	
TEST: NETALS #3 DATE: 06-25-92 ANI ETHOD: NIOSH 7300	ACURE)	
TES! DATI	9 9 9	

D E INITIALS: LJL G A INITIALS: O	-		# # # # # # # # # # # # # # # # # # #		15.8	# 17.3		EXHAUST DUCT: < NOL. RECISC DUCT: 13.7
		4 21.4	6 0.7	12 0.4	호호 호 호 *	5	20 * 10f	s ug/same
		12	7 < PDL 0.5	1.1	2	15 • FDL	19 0.5	GRID FOL: 0.075 LE/SAFLE PAINTER FOL: 0.075 LE/SAFLE
Travis afb Paint Booth Tests Acirex Project 8485	EXMAST GRID	3.7	3 € •	10 0.5	2 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	* 1.2	18 8.5	UNITS: UB/N3 OSNA TUA: 50 UB/NG
TRAV PAIN ACIR		1 9.3	8 0.5	9.0	۶; د	**************************************	17 < 10L	15, 73 0
TEST: NETALS #3 DATE: 06-25-92 ANT NETHOD: NIOSH 7300 GRID CHART 1 - LEAD			RID A		\$ 3.9 7.7	5° ,		

D E INITIALS: LJL 9 a initials: 0		Field Blank 11.4	14E7 42:10 B		28. 28.6	6. 83		EXMANST DUCT: 11.4 RECIRC DUCT: 114.1
& G		4 24.9	8 23.4	12 7.7	24 14.0 86.2	41.9	21.6	
	EXMAUST GRID	3 152.4	7 0.01 4.9	11 15.7	23 8.2	15.77	19 32.3	CAID NOL: 0.3 US/SAMPLE PAINTER NOL: 0.3 US/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACINEX PROJECT 8485	EXIMA	2 16.5	ه. و.	10 176.0	22 10.7	14 27.1	16 27.8	UNITS: ug/NG OSHA TLA1: 1000 ug/
TRAV PAIN ACUR		1 23.1	5 23.7	e 8,4	21 11.3	13.7.7	17 31.9	18, DAP
TEST: METALS #3 DATE: 06-25-92 A#1 METHOD: NIOSH 7300 GRID CHART 2 - 21MC		Painter Over 19.5 Painter Under 14.6	INCET GRID A	 Si	لا 11.3 5.1	¥ 6.9		PAINT TYPE: LT CREEN PRINER OBJECT: BRAKE PARTS, NUBS, RAPP

D E INITIALS: L.A. Q A INITIALS: 0		Field Blank	INCET CRID B		Ą Š	ē A		EXMANST DACT: 5.5 RECIRC DACT: 5.4
		4 14.2	» X	12 69.4	72.8 72.8 101.8	153.7	2.81	D MOL: 0.3 UQ/SAOPLE R MOL: 0.3 Ug/SAOPLE
	EXMAUST CRITE	3 12.8	7 32.6 27.8	11 149.9	23 146.2	15	19 402.4	CRID NOL: 0.3 LE/SUPPLE PAINTER NOL: 0.3 LE/SUPPLE
PAINT BOOTH TESTS ACUREX PROJECT 8485	EXMA	5.6	5 20.5	1.771	22 28.7	14 zm.1	18 231.6	743 18/18
TRANI PAINI ACURI		9.3	5 16.9	6 6.2	21 %.4	13 138.5 135.8	17	DN_pu 1118: WAT ALSO, 201
TEST: METALS #3 DATE: 06-25-92 ANT METHOD: NIOSH 7500 GRID CHART 3 - STRORTIUM		Painter Over 112.7 Painter Under < NDL	INCET GRID A		1	Ĕ A	-	PAINT TYPE: LT GREEN PRIMER UNITS: 44/15 COJECT: BRACE PARTS, BUBS, OSHA TAN: 77 48/15

FT 7.7 2 < 1001 3 10.9 10.9 11.7 6 32.3 7 28.5 17.1 9 42.9 10 134.4 11 89.4 15.1 189.4 15 91.4 15 91.4	4 15.2	
5 11.7 6 32.3 7 28.5 11.7 134.4 11 89.4 21 76.6 22 154.8 23 86.8 13 85.6 146.9 15 91.4	4 15.2	
21 6 32.3 7 111 9 42.9 10 134.4 111 111 111 111 111 111 111 111 111		Field Blank
25.0 10 111 111 111 111 111 111 111 111 11		IMEY GID
13 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	12 46.3	9
13 14 15.9 15 165.9 15.0 165.9 15.0 165.9 15.0 165.9 15.0 165.9 15.0 165	24 42.9 60.2	, j , j , j
	16 92.5	₽ *
17 18 19 240.3	% 69.7	
PAINT TYPE: LT GREEK PRINER UNITS: UL/AS		EXHAUST DUCT: 6.0

TEST: DATE: METHOD:	NETALS #4 06-26-92 AM1 NIOSN 7300	#6 2 AM1 300		TRAVIS AFI PAINT BOO ACUREX PR	RAVIS AFB Aint Booth Tests Curex Project 6465	1 0	PAINT: OBJECT:	LT GREEN PRINEN THRUST REVERSER	Priner Verser		7 C C C C C C C C C C C C C C C C C C C	INITIALS: I	171 7 18		
361 Q126	ACUREX SAIPLE 1	w.	7. e. s.	PRE-CAL (ml/min)	POST-CAL (ml/min)	RUM 11ME (min)	(E.B)	21 NC (00)	STRONT TUN (ug)	CHRONIUM (Ug)	AVG FLOW (L/MIN)	LEAD (UQ/N3)	21MC (ug/NS)	STRONTIUM (ug/NS)	CHRONIUM (ug/N3)
-	75.		5	1762	2002	<i>"</i>	0.075	97.0	1.1	0.71	2.937	ğ	2.1	6.4	3.1
~	₹2	_	2	& 2 2 2	3012	200	0.07	7.6	4.71	8.2	3.021	ج ق	4.3	19.5	12.0
M •	<u> </u>		20	200	3657	8:	C.	2 5	97:92 97:92	16.83 2.43	88	₹ ¥	3.4	116.3	58.7 7.7
e u	S &		2 =			- R	Ç	. . .	2.7	8.9 9	88		- 0	143.2	<u> </u>
n v e	¥	EX921247	2	200		· ·	(C)	1.1	. E.	21.73	3.020	를 한	9.4	131.0	2.0
5	in		*	2962	3018	7	0.075	1.08	17.43	10.42	3.003	<u> </u>	4.4	7.7	42.8
	2	_	13	3027	S	*	0.07	0.52	83.54	92.65	3.039	ğ	2.1	339.4	202.1
e e (E ;		3,	25	200	v ,	6.0 K	9.9	20. C.	5.52	3.067	ğ ;	3.2	24.3 1.3	2.6 6.6 6.6
`	ĭ	EXYCION 1	٥,3			, 6 2	0.100	2.5	3	E S	g	9	9.0	36.5	226.5
: ; =	흈		2	200	2012	2	0.110	0.52	167.79	8.8	3.026	5.0	2.1	693.2	60.1
= 8	ઝ		2	X X	3003	5	0.1	9.6	17.75 2.75	\$ 2	8.3	0.5	5.6	73.	439.3
2;	₹ 3	521283 521283	3 4		3107	8 18	6 6 8 8	S. 6	14.55 A 4.55	8 ±	3.052	, ,	9. c	<u>.</u> 2	518.7 127.5
32	• ≱		· 5		1	2 2	60.0	2.5	12.61	77.22	2.977	4		54.9	8
នេះ	ħ		1	321	38	2	0.12	0.57	97.102	14.36	3.062	0.5	2.3	822.6	6.99
*	ţ.		X :	S	206	81	÷.	8. 6.	180.78 55.28	\$ 5	3.93	0. 2.	Ž:		7.83
2:	23		≃ \$	Š		2 K		Z, K	2.4.5		35	* * > <	2	3.5	ķ
<u> </u>	<u> </u>		22	28	82.62	2 2	0.19	2	8	117.51	2.976	9		90	487.5
2	ă		12	200	2015	8	6.69		145.74	5.0	2.997	7.0	1.6	95	354.7
4	<u>\$</u>		-;	30%	8	v Ri	S.	\$;	S :	4; 88	¥.	Ž,	6.7		7.7
	23	E E E E E E E E E E E E E E E E E E E	2 1	ž	25	25		8.3	19:13	32	36.5		1.7	9.0	14.0
2	2		<u> </u>	3	20,5	8	8	1.1	707.2	2.3	8	4.0	. .	5.5	26.3
R	Ē		\$	8	3018	5	0.17	1.2	114.36	66.21	3.014	P. 0	 0.	5.83	27.2
4	=	EX921276	*	3		:	8		157.58	2.5	8	- - - -	•	676.4 66.4	372.5
5	15 F	2 EX921277	3 8		ŝ	45	5 E	S. S.		2 Z	3		K	- A	
¥ 8	Z.		X;	Ž	8	4:	6.07	12.	3	0.42	3,033	â	5.3	1.6	1.8
A	ス	262	∽	99	2008	11	0.0X	2.74	0.32	9.30 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3	2.93	Š.	÷.	4.4	
=	3	263	25	38 5		* *	0.0 X	6.	. 0.52	6.51	2.975 2.975	Ž -	4. E	2.5 2.5	2.3
5,5	<u> </u>	26	= 5	35	30 15	26	8	8	22	27	3.012	É	4.7	2.3	-
Z.	₹ 3		1		1	Ř	0.073	3.58	. 0.36 ×	9.30	8	< 0.3	15.1	< 1.3	< 1.3
		SAPPLES				SMALE	LEMO	2111	STRONTIUM	5	SMELE	931		-	
LOCATION		ACETORE	HITRIC	FILTER	INPINCER	(Q. F1)	3	(E)	Ĵ	3	<u> </u>	(E/IS)	(E/3)	(ee/10)	(m/10)
EXHAUST RECIRC		E1921447 E1921455	E1921448	EN921449	EX921450 EX921458	3.3 8.3	90	X.33	16.8 14.06	21.58	30.	<u> </u>	18.7	12.3	15.8 33.0
				EXMAST	144	EX921447 <	2.5	5.2	10.6	4)	1.367	Ĕ	3.8	7.8	5.0
					FILTER	EX921449	- 24 - 24	įΣ.	• •	7.85 7.00	29	1	.	7.7	9.1.
						- X4:76.73	 	2	7.0	3	Ř	į	7.61	į	.

NETALS #4 06-26-92 AN1 NIOSH 7300	TRAVIS A PAINT BO ACINEX P	TRAVIS AFB PAINT BOOTK TESTS ACHESY PROJECT SABS		MINT: COJECT:	LT GREEN PRINER THRUST REVENSER	EVERSER		2 4 2 4 3 4 4 5 4 5 5	D E INITIALS: IN & LAL Q A INITIALS:	7 7		
ACINEY BASE & PURP & (PRE-CAL (ml/min)	NE-CAL POST-CAL GUN TINE Int/min) (al/min) (min)	GLAN TIPE (min)	(E.00	263 263 263	STRONTIUM (ug)		CHRONIUM AVG FLOW LEAD (UB/NS)	LEAD (Ug/NS)	21KC (ug/NS)	STRONT I UN (UG/M3)	CHRONIUM (ug/NS)
	RECIRC	ACETONE MITRIC FILTER	EN921455 < EN921456 < EN921457 < EN921457 <	20 690	_ =¤ ^ស ន	9.6 9.70 5.70	3.6 26.00 1.4 12.00	***	<u> </u>	8.4 19.2 * 10. 15.3	2.8 7.4 9.6 7.4	19.8 9.1.1 9.2

D E INITIALS: BN & LJL Q A INITIALS: 0		Field Blank c 0.3	IMET GRID B	ě	\$7.0 \$7.0	g A		EXMANST DUCT: < FOL
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,	6 70 10	12 0.4	% 0.5	35 9.6	& 6.7	GRID MDL: 0.075 UB/SAMPLE INTER MDL: 0.075 UB/SAMPLE
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7 < HDL	11 0.5 0.5	ស 2.9	6.	91 4.0	GRID MDL: 0.075 UL/SAMPLE PAINTER MDL: 0.075 UL/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACINEK PROJECT 8465	EXHAUST CRID	2 < 10L	9 9 9	10 7.0	7° 0°¢	14 0.3	18 0.3 4 PDC	D 743
TRAVIS PATUT ACURE)		- 10e >	د <u>چ</u>	70 6	22	13 0.4	77	R UNITS: 44/MS R 061A TW: 50 44/MS
TEST: NETALS #4 DATE: 06-26-92 ANT NETHOD: NIOSH 7300 ARID CHART 1 - LEAD		Painter Over 0.4 Painter Under 4 MDL	18.ET G210 A	Ę	i a	ž s		MINT TYPE: LT GREEN PRINER OBJECT: THAUST REVERSER

D E INITIALS: BU R LJL Q A INITIALS: 0	4 4.1 Field Blank 15.1	3.2 INLET GRID E	2.0	1.6 W	9.0	N.E EXMANST DUCT: 16.7
S EXMANST GRID	3.4	7 2.1	2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	15 7.6	4.5 20	CRID FOL: 0.3 ug/SAFPLE
TRAVIS AFB PAINT BOOTH TESTS ACUREX PAUJECT 8485	2 4.3 3	4 44 44	10 8.6 22 2.1	*,	18 2.8 1.7	Sh/gu
	2.5	84 9;	21 1.8	13 13.9	2.9	LT GREEN PRIMER UNITS:
TEST: METALS #4 DATE: 06-26-92 AM1 METHOD: MIOSH 7300 GRID CHART 2 - 21MC	Painter Over 1.6 Painter Under 1.7	INLET CRID A	ກ ສ	\$ \$		PAINT TYPE: LT GREEN

-----INCET CATO S Field Blank < 1.3 2.3 D E INITIALS: BN & LJL Q A INITIALS: 0 2.5 2.3 12.3 10.6 8 8 EXHAUST BUCT: RECIRC DUCT: 12 551.1 740.1 20 468.5 163.2 291.3 68.0 GRID NOL: 0.3 US/SAPPLE PAINTER IDL: 0.3 UG/SAIPLE 2 23 622.6 15 650.4 116.3 339.4 \$3.2 7.23.7 EXIGNUST GRID = PAINT BOOTH TESTS ACUREX PROJECT 8485 10 386.5 22 514.9 14 511.5 19.5 記. 7.7. 25.8 8.0 **5** ~ CASAN THE: 77 MAYES WITS: 6.4 31.2 166.3 2.1 2.08 2 1 ĸ ħ COLECT: THRUST REVERSER PAIST TIPE: LT GREEN PRINER GRID CHART 3 - STRONTIUM Painter Over 676.4 INLET GRID A TEST: NETALS #4
DATE: 06-26-92 AN1
NETHOD: NIGSH 7300 Painter Under 69.7 2.7 7.6 7: న Ħ ≤

TEST: METALS 46 DATE: 06-26-92 AN1 METHOD: MICSH 7300	TR. PA.	TRAVIS AFB PAINT BOOTH TESTS ACIMEX PROJECT 8485			D E INITIALS: 96 % LJL Q A INITIALS:	LS: 38	٠ 10 10
RID CHART 4 - CHRONIUM		EXIA	EXHAUST CAID		-		
Painter Over 392.5 Painter Under 41.7		2 12.0	. 9	4 107.6		Field #	Field Blank < 1.3
IMET GRID A	2 18.8	6 91.0 42.8	7 202.1	176.6		# #	9 9 9 9 9
22		10 28.5	11 400.1 439.3	12 318.7			2.3
24 1.8	127.5	22 289.1	23 466.9	24 428.7		Ø	1.9
¥.	13 48.4	75 296.9	15 487.5	16 354.7		R	1.8
·	17 17.2	18 114.2 114.0	19 256.3				
PAINT TYPE: LT GREEN PRINER OBJECT: THIUST REVENERR	UNITS: OBIA TIA:	Shum Shum	GRID FOL: 0.3 UE/SAMPLE PAINTER FOL: 0.3 UE/SAMPLE	GRID HOL: 0.3 UE/SAMPLE INTER HOL: 0.3 UE/SAMPLE	EXIMANT DUCT:		15.8 33.0

TEST: DATE: METHOD:		4	deducted	TRAVIS AFB PAINT BOOT ACUREX PRO	IVIS AFB NT BOOTH TESTS NEX PROJECT 8485	ıσ		PAINT: OBJECT:	GUNSHIP GRAY POLY IMRUSI REVERSER	NY POLY Erser			0 E	INITIALS: INITIALS:	5
301 0189	ACUREX	"	# PURP #	PRE-CAL (ml/min)	POST-CAL (ml/min)	RUM TIME (min)	LEAD (ug)	Z1NC (ng)	STRONTIUM (ug)	CHRONIUM (ug)	AVG FLOW	LEAD (ug/N3)	ZINC ((ug/N3)	STRONT (UR (ug/N3)	CHRONTUM (ug/K3)
-	<u>6</u>				3060	38	0.07	0.92	c 0.30 c	9.30	3.032	<u>.</u>	9.4	Q	9
N #	75.	FX921136				84	٠ د د	4 5	*	3,5	20. K	ğ <u>.</u>		E	Ž .
n •	8 5					8 29	0.03	3		2 2	3.026	, ¢	1	4 5	
· rv	21.5	1 EX921141				3	0.07	97.0	< 0.30 ×	9.30	3.014	Š	2.3	.	<u>1</u> 01
	Ž	EX921				38	0.075	0	< 0.30 ×	S. 0	3.033	, 101 101	ě	6	, 5
9 9	₹ .	EX921				3 :	0.0 7	87.0	× 0.30 ×	9.30	50 50 50 50 50 50 50 50 50 50 50 50 50 5	Ž	7.7	호 :	ਰ •
~ «	<u> </u>	7 EX921144 1 EY021145				83		2.5	× × × × × × × × × × × × × × × × × × ×	3,5	2.5	Š .	1.7		Ž (
00	2	E192				8.8	. C.O.O.			2 2	3.017	, Š	2.7	Į į	1
, 5		EX921				8	0.975	0.62	< 0.30 ×	9.30	3.065	É	 	<u></u>	<u></u>
#		EX921				3:	() ()	6	> Sign	<u>ج</u>	3.97	e i	, e	٠ و	<u>څ</u> .
25	<u>इ</u>	26				83	5 G	, 5 0 0		78	2.5 2.5 2.5) ·		
:8		52				33	C 0.0	3	× 25.0	8	300	<u>.</u>	2.4	.	_
n		EX62				3:	0.0	2.0	× 0.30 ×	S.	3.012	2	8. K	<u>و</u>	호 •
24						3 33	0.0 C K	3 5	>	R. S	3.035	ğ ;	ė.	₹ ₹	Ž Š
5 ≒		5 EX921155				8.8	0.075	0.57	· Y S S S S S S S S S S S S S S S S S S	33	. S. S.	ਰ ਹੁੰ	2.9	, 수 전 전	, , E
. t		EN92				38	0.07	0.33	0.30	97.0	3.041	Š	4.6	Ş	1.8
≯ !		EX921				\$6	C 1	7.5	×	2.0	2.38	ğ ;	2.8 2.8	ğ ;	
≥\$		FXX21136				83	5 C	6.0		8 5	52	5	, «		°.
<u> </u>		525				33	0.0 K	2.18		, X	3.07	호	10.7	, E	
		EX921				> <u>/</u> 9	0.07	9.66	× 0.30 ×	S.	3.015	₹ •	3.	<u>ě</u>	, <u>1</u>
	23	B EX921162				× 29	0.0 C K	8.0	8. e	R.D.	%. %. %. %.	Ĕ ;	M M M	قرر	- r v: r
		_				8) (C	7	9	8	2.83	1	10.	Ē	ě
Ś		_				· • • • • • • • • • • • • • • • • • • •	0.075	14.0	· 0.30 ·	8	3.014	ē	2.0	Š	<u>چ</u>
**				_		× 19	5.03	E.	> 0°.30 >	9.30 S.30	2.97	Ž.	e &	<u>ě</u>	2
# =		5 EX921133	* *			83	9 C	3 K	>	R 8	3.033 6.43		4.0	Ž Š	
. (5)	•					33	6.03 K	2	- × 25.0	8	2.0	<u> </u>	3.0	ê	5
牌	187					8	5.07	0.42	< 0.30 <	S.	2.977			<u>څ</u>	Į,
BLAMK											888				
LOCATION		SAMPLES	S HITRIC	FILTER	INPINCER		2 29				3 8				
EXMAUST RECIRC	: : :	EX921451 EX921459	EX921452 9 EX921460	EX921453 EX921461	EX92145£ EX921462	49.30 44.26	98	51.4 49.6	0.0 0.3 8%	58 1.13	<u> </u>	, 6.4	36.8 36.6 6.6	0.7	12.0 24.6
				EXHAUST	ACETONE	EX921451 <	2.5	24.0	0.93	2.0	.3	Š	17.2	0.7	0.8
					MITRIC	EX921452 <	2.5 2.5	- M	< 0.5 0.5	8.9 8.9 8.9	<u> </u>	å å	0.6 0.0	호 호	1.4
						EX921454 <	0.5	8	< 0.2	13.00	1.395	2	15.8	19	6 .4

TEST: METALS #5 DATE: 06-26-92 AM2 METHOD: NIOSN 7300 Mon paint time deducted	TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8485	PAINT: OBJECT:	CLAISHIP CRAY POLI THRUST REVERSER	AY POLY Erser		w <	D E INITIALS: Q A INITIALS:	3
ACUREN BASE GRID LOC SAMPLE # PUMP #	PRE-CAL POST-CAL RUM TIME LEAD (md/min) (ml/min) (ug)	6 21NC 9) (ug)	STRONT IUM (ug)	CHROHIUM AVG FLOW	LEAD (UB/N3)	Z1MC (UB/NG)	STRONTIUM CI (ug/N3) (u	CHRCHTUN (ug/H3)
	RECIRC ACETONE EX921459 < NITHIC EX921460 < 0, FILTER EX921461 < 0.	2.5 13 0.5 7.6 < 2.5 < 1.25 < 0.5	0.58	3.2 1.23 7.60 1.23 1.03 1.23 1.23 1.23	* * * * * * * * * * * * * * * * * * *	10.6 4.1.8 7.52 7.52	5 5 5 5	6.4 6.4 8.5

O A INITIALS: 0		TOU V	S (MD).	12 < *BC	R Z	35 Ag.	19 20 4	GRID MOL: 0.075 UQ/SOPPLE EXIMIST DICT:
PAIÚT BOOTN TESTS ACUREX PROJECT 8485	EXMANST CRID	2 (FDL 3 (FDL	101 > 101 > 101 >	10 11 11 × 101 ×	22 23 4.301 4.00L	14 15 14 15 × 160.	16 19 19 × 1804.	
DATE: 06-26-92 AM2 NETHOD: N105% 7300 Non Jint time deducted GRID CHART 1 - 1,EAD	<u></u>	Fainter Over 1 c #0L Painte ster c #85 c #	डू	ě	2, 2,	ž Š	17 .00	PAINT TYPE: GUISHIP GRAY POLY UNITS: UN

TVAVIS AFB FAINT BOOTN TESTS Q A INITIALS: ACUREX PROJECT 8465	EXMAUST GRID	3 4 4 101 < 101 (4 101	0 11 12 12 < 161. < 161. < 161.	23 24 < 101	4 15 16 16 4 10L	4 FDL 4 FDL
TEST: NETALS #5 DATE: 06-26-92 ANZ NETHOD: #105H 7300 AC Non paint time deducted RID CNART 3 - STROWTIUM		1 × 10t ×	1 NLET CRIB A 5 6 6 4 70L 6	- 101	24 22 22 4 10L 22 4 10L 4 4 10L 4 10	12 14 Y	17 18

D E INITIALS: LJL Q A INITIALS:		70. •	S * MOL	12 1.1	101 Y 23 101 Y 25 101	2.1 2.1 88	28 - 86. 1.5	GRID FOL: 0.3 LE/SAPPLE EXHAUST DUCT:
TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8485	EXMAUST GRID	3 vol. 3	7	11	23 40L 40L	. 15 1.8 1.8	s 19 1.7 < 10.7	•
T A A A A A A A A A A A A A A A A A A A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 × 2 × 2	9 101 >	9 10 4 FBL 4	22 Tall .	13 18 18 1	2.8	OLY UNITS: US/MS
TEST: WETALS #5 DATE: 06-26-92 AMZ METW.D: MIOSM 7503 RIP GANAT 4 - CHRONIUM		Painter Over 3.5 Painter Under	IMET GRID A	<u>ğ</u> •	70 12	ş	§	PAINT TYPE: GUNSHIP GRAY POLY UNITS: ug/16

X	101 (ug/16)	ŝ	Ž Ž	101	5	호 :	E	Z				ğ	Š	, 10 ,	<u>۽</u>	Ž	<u>.</u>	Ž į				Š	5	Ž		9.6		, é	Š	Ž	, , E E	e temps	16.9 17.3
D & by: Q A by:	AVG FLOW (L/MIN)	0.924	1.019		0.962	8	0.961	0.978		200	1.022	250	0.963	1.019	0.997	1.019	8	200	5.5		 	0	0.993	1.9%	1.045	×		926	736.0	666.0	8	0.00	1.002
COAT	2 G	9	9	2	2	2	£	2	2 !	2 9	2	9	9	2	9	2	2	2 !	2 !	R S	2 9	2 9	2	2	2	<u>•</u> "	Í	2	=	9	2 2		9 O 8 O
UNITE TOPCOAT CONFORT PALLET 24-Sep	MUN TIME (min)	3	2	3	8	3:	3	3:	3	35	3 2	8	3	3	8	3	3	3:	\$:	35	3 3	3	8	3	3	25	29	2	\$	S :	¥ 23		22
PAINT: OBJECT: Printed:	POST-CAL (ml/min)	926	1058	1000	8	1018	226	7	S	8	į	ş	2	5 55	1015	1045	8	101	2	֭֚֭֚֚֚֚֚֚֚֚֚֚֚֓֞֝֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֓֓֓֓֓֓֓֓		Ş	8	35	5	3	38	2	3	8	38		g č
FB OTH TESTS	ME-CAL (ml/min)	126	26	1 000	726	8	\$5	5	8	83	8	3	£	1001	8	2	8	£1		S §	<u>§</u> §	8	8	8	707	Ě	8	2	8	3	3	1	33
TRAVIS AFB PAINT BOOTH	F. 40.	5	13	4	R	H:	12	R	R:	ŭ \$	2 5	2		=	z	•	X	3,	7	Q \$	*	٠.	17	~	N:	2;	₹"	7.5	×	2	58	}	AF
ES #1 MM 106M 5521	DASE SAMPLE # 1	EX920714	EX920715	EX920716	EX920717	EX920718	EX920719	EX920720	EX920721	2702012	57070K3	EX020725	EX920739	EX920726	EX920727	EX920728	EXF20729	EX920730	EX920751	EX920732	EXVZ0730	75/02613	EX920735	EX920736	EX920737	EXF20051		6162619	EX920710	EX920711	EX920712		EX920049
150CYANATES # 06-23-92 AM 0SNA 42/N10SN	ACUMEX FILTER #	4	7	•	•	*	R	•	5	2	n 66	1	X	R	2	2	_	8	Ŋ	ñ	K	38	Ä	×	8	100	8:	28	R	F	X X	;	900 900 900 900 900 900
TEST: CATE: METMOD:	GR10 10C	-	7	m	•	~	•	~	10 (,	2 =	- 2	12 04	2	8	ສ	z	T	*			2 1	1 2	19	2	Light Control		<u> </u>	A	#	7 1 57	FOLKE	EKWALST I

D A INITIALS:		1 6.	S + NOL	25 AS AS A A A A A A A A A A A A A A A A	100 × 100 × 91	19 20 40L
TESTS	EXMANST GRID	<u>ឆ្នី</u> ស	, ,	ĕ ĕ ∵ %`	₹ , ,	19 × 100.
PAINT BOOTH TESTS	۵	2 < HDL	₫ *	를 릴 오 ' 2 '	≠ *	18 . 10c.
		- - 10	ر ق	\$ \$ * \$ *	13 • 80¢	75
DATE: 06-25-92 AM ETHOD: OSHA 42/NIOSH 5521 IID CHART 4 - NDI	inter Over	278.6 Painter Under 3.4	INLET GRID A	⊉ ≅	ă s	PAINT TYPE: WHITE TOPCOAT

2	2	
171 24-Sep	101 (Ug/N3)	ĔĠĔĠĔĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ
DE by: QA by: Printed:	AVG FLOW	0.956 0.956 0.956 0.966
	<u> </u>	
TOPCOAT PARTS & RAPP N TESTS	RUM TIME (min)	**************************************
MATTE BRAKE KT BOOT	POST-CAL (ml/min)	2001 2001 2001 2000 2001 2000 2000 2000
PAINT: OBJECT: AFB PAI	PRE-CAL (ml/min)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	* 454	いじさのののから、しによりのならないはいことが、これである。これである。
ANATES #2 -92 AN2 42/N105N 5521	BASE SAPLE #	E1970665 E1970665 E1970665 E1970665 E1970666 E1970669 E1970669 E1970699
150C7 06-25 05:1A	ACUREX FILTER #	es conditions of the state of t
TEST: DATE: WETHOD:	201 9125	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

A INITIALS: 0 printed: 26-Sep	Field Blank 7.6 Howinel value	IMLET CRID &	•	ਰ * ਲ *		32.9 IPPINGER RECIRC DUCT: < NDL_CASSETTE
. G	ē,	9 •	19 19 19 19 19 19 19 19 19 19 19 19 19 1	, 35 , 16	-	. ug/sample
STS	EXMALST GRID 3 < MDL	70. 70. 70. 70.	프	찬 , 즉	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	PAINTER NOL: 0.05 UG/SAMPLE
PAINT BOOTH TESTS	EXNA 2 < 10L	,	5 , 25 , 155 , 156	14 12.6	16 < 100. < 100. UNITS: UB/113	CCHA THA: 40 ME/IS
	-	, , , ,	₹ ₹ * 7,	£ , , ₫ ₫	17 < 19L	
1252 189					E TOPCOAT	E PARTS &
DATE: 06-25-92 ANZ NETROD: 05M 42 & HIOSH RID CHART 3 - NEI	Painter Over 43.9 Painter Under 3.0	ERET GRID A	ಕ ≚ ನ	털 털 * #*	PAINT TYPE: WHITE TOPCOAT	CAMETY MAKE PARTS & BARD

TEST: DATE: METHOD:	150CYANATES #3 06-25-92 PH 0SNA 42 & NIOSN	TES #3 PM & NIOSN 5521	- -	TRAVIS AFB Paint Boot Acurex pro	TRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8463	M)	PAINT: OBJECT:	CAMEL CRAY AIR SPLITTERS	ERS		9 6	INTTALS: INTTALS:	3
CATO LOC	ACUREX FILTER#	BASE SAMPLE # PUMP	*	PRE-CAL (ml/min)	POST-CAL (ml/min)	RUN TIME (min)	101 (gg)	9 §	<u>§</u>	AVG FLOW (L/MIN)	TD1 (Ug/R3)	101 (0g/R3)	HD1 (ug/H3)
-	ĸ	. –	ħ	1014	1018	Х.	욮	ş	£	1.016	ě	jār V	<u>ē</u>
~	t	_	12	973	826	58	£	皇	₽	0.9755	<u>و</u>	Š	, MOL
₩	1	_	8	100 200	101 1	25	ş	율	윤	1.0085	ğ.	Š	ğ.
•	12	_	*	1017	1029	58	윺	유	윺	1.023) 101 V	<u>ē</u>	₩ •
5	ž	•••	ñ	5	1001	25	£	유	윺	1.0005	ĕ	₫ •	년 *
•	3	_	2	1003	8	8	2	₽:	윺	-	₹	, 10 10	
9 9	& :	_,	, _,	Š	500	S	을 !	₽!	9 !	1.008	2	1	₹ •
~•	31		- 5	F 8	88	2	€ 9	2 9	₽ 9	0.000	2 3	2	
10 3	25	EXVZUS44	2:	72.5		Ž.	9 9	2 9	2 9	76.0		ē :	
•	, K	_	2 8		101	2 5	2 5	2 5	2 5	20.0	Ž Š	į į	E
?=	35		4	500	120	8	£	2	<u> </u>	1.0985	<u></u>	, 5	, <u>,</u>
= 25	28		2	1036	1067	2	2	₽	욮	1.0515	Š	€	10
12	æ	_	7	ş	\$	26	£	₽	ð	0.9575	<u>.</u>	ě	<u>1</u> 01
21	2	_	2	1048	1066	8	8	2	2	1.047	Ž.	, <u>e</u>	Š
2	16	_	2	900	<u>5</u>	3	요 :	2	9	8.	ਦ	년 *	Q
X ?	E {		2)	25	526	8	2 9	2 9	9 9	1.059	₹	2 (E (
5 :	88	EXYZUSOU	Q t	2 5		2	5 5	3 1	2 £	555	Ž Š	į į	ž į
<u>.</u> ≠	נים בי		1	<u> </u>		8 5	2 9	2 9	2 9	200			ž Ē
7 DE	\$		~	10,	1017	2	£	9	2	1.0155	Š	2	<u>5</u>
ħ	26	_	2	1026	1024	2	유	2	2	1.025	1	로 •	Į V
5	8	_	X !	22	<u>5</u>	8	₽!	9 !	2	£.5	Š	2	Ž ;
<u>~</u> •	5 5	EX920535	30	25	£	25	2 9	2 9	2	45.0 5710 -	Ž	Z Z	ا ا ا
<u> </u>	28	_	ķ	1 5 5 5	5	3	2	2	9	2900	호	Ž	Š
R	8		3	8	8	25	2	2	2	0.92	<u>ě</u>	ğ •	ğ •
-	0054 imp		R	1016	1022	57	£	9	- (1.019	₹ •	2	17.2
- Cader	9055 1	EX920055	3,	35	<u> </u>	> 5	2 9	2 9	9	1.0615 2005	E S		֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓
≦	3 \$	_	ļ	\$ 5	35	2	2 £	2 5	2	2	į į		Š
5,5	ŘΚ	_	M	K	8	25	2	2	2	0.9905	į į	, Š	į į
=	*		2	8	8	22	2	2	£	0.937	<u>ج</u>	<u>ē</u>	, <u>101</u>
R	2	-	2	1015	1000	1 2	2	9	£	1.0115	ਰ ਵ	E	ਰ •
**	Ę	EX920566	•	8	226	8	2	2	2		ē	- ED-	
F BLANK		ENGLISE	r	QE UT	•	2	ś	£	•	_			
EXMENS!		ENGONETA	P	8	8	52	2 9	2 9	2 9	8.5			Ž
EVILLIE C	_	EYOZUM\$7	 	1075	1050	ξ.	2	2	5.0	1.048	Š	ğ	
RECIPC 1	39 imp	EX920039	R	1069	300	2	2	2	0.5	1.0775	10	9	3.6

O E INITIALS: 0 Q A INITIALS: 0		14 ET 98 10	្តី ខ	ਕੂ ਲ *	
20	10e > **	7 0 8	75	16 • • • • • • • • • • • • • • • • • • •	100 ¥
B TESTS OJECT 8463	₩ *	7 * 101	₽₽ ₽ ₽ ₽ ₽ ₽	55 50 10	• • • • • • • • • • • • • • • • • • •
TRAVIS AFB PAINT BOOTH TESTS ACINEX PROJECT 8463	2 × 40.	₫₫ * *	5 . 25 5 . 5 5 . 5	결절 # * *	18 10.4
	<u>ē</u>		₫ ቒ • ਨ`	ti g	; ē
TEST: ISOCYMATES #3 DATE: 06-25-92 PM METHOD: OSHA 42 & HIGSH 5521 GRID CHART 3 - NDI	Painter Over 17.2 Painter Under 3.5	8 3	. s	§ ×	

D E INITIALS: LJL Q A INITIALS:		18.ET 6210	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 <u>9</u> 80 	8 `		EXMANST DUCT: < NDL CASSETTE 19.0 INPINGER RECIRC DUCT: < NDL CASSETTE
	, < MOL	e •	12 • 40L	₫ %	36 2€	₹ 8 ° °	UE/SAUTE
B TH TESTS QJECT 8463 Exnalst grid		9	= *	2 2 €	12.7	19 6.2	GRID MOL: 0.5 UB/SAMPLE PAIRTER MOL: 0.05 UG/SAMPLE
TRAVIS AFB PAINT BOOTH TESTS ACIMEX PROJECT 8463 EXHAIST GR	2	, , , , , , ,	01 01 01	\$ \$	4. 6.1		!
	1 * 100.	د ق ق	9 °	21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13	÷ , ق	(981018
TEST: ISOCYANATES #4 DATE: 76-30-92 ANI NETHOD: OSHA 42 & NIOSH 5521 SRID GART 4 - NDI	Painter Over 16.5 Painter Under < PDL	INLET GRIB A	10H v	ਬੁੱ ਨੂੰ	s '	į	PAINT TYPE: DANK GRAY TOPCOAT OBJECT: GEC PANELS (PLANE

Mote: The field (solution) blank for MIOSM 5521 (used on the painter and duct samples) contained 0.2 ug, or a nominal 3.3 ug,NG for a 60 minute test at 1 liter/min. The sample levels here are calculated in terms of actual volume and time.

TEST: IS DATE: OR NETHOD: OR	ISOCYANATES #5 06-30-92 ANZ OSIA 42 & NIOSH	TES #5 AMC # NIOS#	15521	TRAVIS AFE PAINT BOOT ACUREX PRO	FRAVIS AFB PAINT BOOTH TESTS ACUREX PROJECT 8463	12	PAINT: OBJECT:	PRINER PLANE ENGINE	3		0 G	INITIALS: INITIALS:	i
•		1		į	2		Ē	Š	Š	200	Ē	Š	Ĩ
SERIO LOC SE	SAMPLE #	SAMPLE	* 100	(m(/min)	(ml/min)	(min)	<u> </u>	E	3	CL/MIN)	(ug/N3)	(Ug/IG)	(ug/IG)
-	116	Ex920610				*	9	9	9	1.019	Š	Š	, 10 10 10
~	5		3			*	2	9	2	1.0125	<u>,</u>	٠ و	₩
) pr	9	EX9206				23	9	2	£	156.0	ž	19	₹ •
3 DEP	107	EX920613				52	£	2	2	1.061	<u>,</u>	₹ •	19
	124					57	2	2	£	0.948	Ž	ĕ	1
· L 1	13					*	2	9	2	1.055	<u>,</u> ĕ	1	1
•	121	_	_			2	9	2	2	1.0005	<u>,</u>	₽	를 *
~	\$	_	_			ጵ	유	9	2	0.9505	Š.	를 •	1
40	115	_				*	2	2	2	0.9945	e	2	를 *
•	22	_				\$	2	2	2	- - - - - - - - - - - - - - - - - - -	e	2	ē
5	14	_	_			*	2	2	9	9,48	로 *	2	
=	돐	_				: \$	2	9	2	1.028	.	2	
7	<u>\$</u>	_				%	2	9	2	86.	Ž ;		2
2	2	_				2	9 !	2 !	2 9		Ž į		Ž į
	\$	_				2	2	2	2	£;	Ž į		Ž
2 2	첫	_				<u></u>	2 :	2 !	2 1	35			
X:	5	•				2:		2 !	2 9	90.	į		į į
*	2	-				2:	2 9	2 !	2 9	2000	į į		į į
:	2	-				82	2 9	9 9	2 9	2 K			
Z :	2					83	2 9	2 9	3 5				
2;		-				RD	2 5	2 9	2 5	1 0245			
2 ;	2	EXYZUES				. 3	2 9	2 9	2	0335		Ē	ē
17 110	2 <u>5</u>					25	2	2	2	1.0305	Š	₹	<u>5</u>
: :	=					2	2	2	2	0.9845	<u>ě</u>	, 5	1
5	13	_				X	2	9	2	0.9785	e	Ž	بر م
R	118	-	_			22	2	2	2		Ž	2	ğ'
P Over	2	_				2	2	2 !	2.0	_			0.4
- Cader		-				82	2 1	2 9	ץ נ	•	į į		
≰.;	8					22	2 9	2 9	2 5		E E		
5.	2					RJ	2 5	9	2	K 8	<u> </u>	2	E
	= ₹					23	2	2	9	1.0005	4	2	Š.
2 1	3 🗧	0,0000	_			838	2	2	9	1.012	5	×	5
3 #	=======================================	•				2	2	2	2	996.0	<u>,</u>	* 5	, 5
		_				3	£	2	2		.	* E	Ž
EXHAUST 1	5					2	2	2	0.2	•	Ž	Q	7
EXH I dup	2	5002613				2	2	9 !	2.0	_	Š ;	Ž į	P
RECIRC C	<u> </u>			21 22 23	8	25	2 1	2 9	₽,	5.00 5.00 5.00 5.00			¥ ~
	45.10	ENVE				×	Ē	3		``.			;

O E INTIALS: LJL O A INITIALS:		Field Blank < MDL	IMET CRID B	# `	ē R	<u>ਕ</u> ਸ਼*		EXMANST BACT: 4.1 INPINGER EXMANST BACT BAP: 3.6 INPINGER RECIRC BACT: < NO. CASSETTE 3.9 INPINGER
		10t > 7		12	78 v 101 × 101		_	
IES1S CT 8463	EXMAUST GRID	2	, 18	# . # . #	ਭੂ ਨ	₹, 4	45 *	CRID FDL: 0.5 LE/SAUPLE PAINTER FDL: 0.05 LE/SAUPLE
HANLS AFB PAINT BOOTH TESTS ACUREX PROJECT 2463	EXM	2 • 101		10 • #DL	\$2 \$2 \$4	75 101 101	18 10L	UNITS: ug/NS OSIA TIA: 40 ug/NS
		- • •	ر ق	, ă	2 2	13 JG A	≠ * *	3 8
TEST TANCHMISS TO DATE: 06-30-92 ANZ METHOD: 05NA 42 & NIOSH 5521 GRID CHART 3 - NDI	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Painter Over 3.6 Painter Under 3.6	IMET CRID A	₫ ≤*	و خ م	ē s		PAINT TYPE: PRINER OBJECT: PLANE ENGINE

it contain isocyamates, however, the field (solution) blank for HIDSH 5521 (used on the painter and duct samples) ug, or a nominal 3.3 ug/KS for a 60 minute test at 1 liter/min. The level seen on the painter and duct samples me 0.2 ug/sample calcualted in terms of the volume sampled. Note: Primer does not contained 0.2 u here is the sam

APPENDIX H

QUALITY ASSURANCE/QUALITY CONTROL EVALUATION

A number of quality assurance/quality control (QA/QC) procedures were followed to assess the quality of the reported data. The data quality objectives (DQOs) are listed in Table H-1. The DQOs, defined in terms of measurement accuracy, precision, and completeness, were originally outlined in the Quality Assurance Project Plan (Reference 1). In response to the EPA QA review (Reference 2), the DQOs were subsequently revised and submitted in the Acurex Environmental letter dated 6 May 1992 (Reference 3). The high variability of normal booth operations causes difficulty in establishing DQOs.

A. ASSESSMENT OF OVERALL DATA QUALITY

The DQO results are presented in Table H-2. Nearly all DQOs were achieved. Some objectives, for the integrated sampling, were not met for side-by-side duplicate samples taken at specific sampling locations. The variability detected from side-by-side duplicate analyses was due to sample orientation. Great effort was expended to ensure that the duplicate VOC, particulate, isocyanates, and metals sample systems had identical orientations. However, some samplers shifted slightly during painting.

1. Precision

To ensure data precision, air flow rate anemometer measurements at the booth exhaust and intake faces were obtained following each test. Duplicate anemometer measurements were taken at one randomly selected grid site per test. Split-flow duct flow rate measurements were taken according to EPA Method 2 prior to each sampling event. A duplicate measurement was taken every 2 days. Due to cyclonic flow patterns in the recirculation duct, it was not possible to measure the flow rate of the recirculated airstream using EPA Method 2. Therefore, the precision is undefinable.

To assess the precision of CEM sampling, the periodic zero, span, and reference gas response results were compared.

To assess precision of the integrated pollutant concentration measurements in the booth, duplicate samples were collected during each sampling event. Because sample collection occurred under dynamic operating conditions, a side-by-side sampling strategy was adopted to generate the required duplicates. The side-by-side samples were located and oriented as close to identically as possible, but under normal booth operating conditions the sampling system often shifted during the test. For this reason, the RPD at specific sampling locations was observed to be as high as 100 percent. However, when averaged over all the duplicate samples, the precision RPD DQO was met for each pollutant category.

Side-by-side duplicate samples were also collected in the Integrated duct organic and isocyanate sampling events. Precision for EPA Method 5 and the Draft Multiple Metals trains could not be assessed because setting up side-by-side duplicate sampling trains was not possible.

TABLE H-1. DATA QUALITY OBJECTIVES.

Measurement Parameter	Measurement Method	Precision (RPD)	Accuracy (% Recovery)	Completeness (%)
Volume Flow				
Exhaust and intake faces	ACGIH Anemometer	20	±40	90
Ventilation ducts	EPA Method 2	20	±10	90
Particulate				
Exhaust and intake faces and painter	NIOSH 500	35	NM•,b	90
Ventilation ducts	EPA Method 5	NMc	NM ^c	90
Metals			•	
Exhaust and intake faces and painter	NIOSH 7300	35	±30	90
Ventilation ducts	Draft EPA Multiple Metals	NM⁴	±30	90
Organics				
Integrated	NIOSH 1300	35	±30	90
Continuous	EPA Method 25A BAAQMD ST-7	20 20	±20 ±20	90 90
Isocyanates		1		
Exhaust and intake faces and painter	OSHA 42	35	±30	90
Ventilation ducts	NIOSH 5521	35	±30	90
Paints			1	
% Volatile	Grab sample, wt. loss on drying	20	±20	90
Usage rate	Observation, gravimetric analysis	NM°	NM⁴	90
Density	Grab sample, wt/voi analysis	20	±20	90

^aNM = Not measured; not measurable.

^bMethod states that the bias is not significant.

^cThe primary error source is non-isokineticity. The isoldneticity objective is 90 to 110 percent.

^dPrecision (as relative standard deviation) listed in the method ranges between 10 and 25 percent. $^{\circ}$ Not definable. Estimated at ± 50 percent.

TABLE H-2 DATA QUALITY RESULTS.

Measurement Parameter	Measurement Method	Precision (RPD)	Accuracy (% Recovery)	Completeness (%)
Volume Flow				
Exhaust and intake faces	ACGIH Anemometer	5	NM ^{a,b}	95
Exhaust duct	EPA Method 2	5	±2	95
Recirculation duct	EPA Method 2	NMp	NMp	NM ^b
Particulate				
Exhaust and intake faces and painter	NIOSH 500	32	NMc	90
Ventilation ducts	EPA Method 5	NMd	NM ^d	90
Metals				
Exhaust and intake faces and painter	NIOSH 7300	23	±15	90
Ventilation ducts	Draft EPA Multiple Metals	NM ^a	±20	90
Organics				
Integrated	NIOSH 1300	24	±30	86
Continuous	EPA Method 25A BAAQMD ST-7	10 10	±10 ±10	90 90
Isocyanates		İ	İ	
Exhaust and intake faces and painter	OSHA 42	10	NM ^f	95
Ventilation ducts	NIOSH 5521	10	±18	90
Paints			-	
% Volatile	Grab sample, wt. loss on drying	5	±13	100
Usage rate	Observation, gravimetric analysis	NWa	NMg	90
Density	Grab sample, wt/vol analysis	2	±9	100

^aNM = Not measured; not measurable.

^bFlow rate is not measurable due to cyclonic flow patterns in the duct.

^oMethod status that the bias is not significant.

^dThe primary error source is non-isoldneticity. The isoldneticity objective is 90 to 110 percent.

Precision (as relative standard deviation) listed in the method ranges between 10 and 25 percent. Spike analysis not conducted.

⁹Not definable. Estimated at ±50 percent.

To assess precision of the paint percent volatile and density measurements, duplicate samples were collected and analyzed. The paint usage rate was determined gravimetrically. There is no practical method for assessing the precision or accuracy of this measurement.

2. Accuracy

Due to cyclonic flow patterns in the recirculation duct, the relative accuracy of the air flow rate measurements in the booth was not quantifiable. The accuracy of the measurement of the split-flow duct flow rate according to EPA Method 2 was established using calibrated standard pitot tubes.

To measure accuracy of the continuous organic concentration measurement, a midrange standard reference gas that was not a zero or span gas was used. A solvent mass balance calculation provided an additional means of measuring accuracy, by comparing the quantity of solvent released into the booth to the quantity measured by the continuous monitors in the exhaust streams.

Accuracy of the metals sampling at the exhaust and intake faces was measured through the spike and recovery of filter samples according to NIOSH 7300. NIOSH 1300 sampling accuracy was measured through the spike and recovery analysis of unused sample tubes. The spike compounds and concentrations were selected based on the paint solvents measured in the charcoal tubes. Spike and recovery analyses of particulate samples were not possible. For the exhaust and intake faces and the painter, accuracy for particulate sampling was not measurable. For the ventilation ducts, particulate measurement was also not measurable because the primary error source is non-isokineticity. The isokineticity objective is 90 to 110 percent.

OSHA Method 42 was followed in the analysis of isocyanate compounds obtained at the exhaust face and in the vicinity of the painter. The method does not call for spike and recovery samples, and such were therefore not performed. Instead, isocyanates standards were tracked to watch for instrument drift, loss of column performance, and other errors. In addition, four standards for each analyte were run at both the beginning and end of each analytical run. For NIOSH 5521, the laboratory obtained percent recovery data by spiking samples with urea.

To assess the accuracy of the paint percent volatile and density measurements, published values from MSDSs for these parameters were obtained from manufacturers and compared to the analytical results. Usage rate accuracy was not measurable.

3. Completeness

The 90-percent completeness DQO was selected based on the successful completion of similar projects in the past involving paint spray booth emissions sampling and evaluation. A completeness level of 90 percent ensured that sufficient valid data of known quality were collected to evaluate project success. A completeness of 90 percent was achieved in all of the sampling events, with the exception of the integrated organic sampling, in which an 85-percent completeness was achieved, rather than the projected 90-percent, due to the malfunction of the pumps used in the NIOSH 1300 sampling procedures.

B. QUALITATIVE DATA QUALITY OBJECTIVES

The painting operations in the booth were highly variable and non-repetitious. Therefore, a primary concern was that the samples collected be representative of typical operations. For this reason, sampling occurred over a 3-week period.

Careful scheduling with the paint spray booth operator was required for the successful completion of this project. Acurex Environmental coordinated with the Travis AFB personnel to ensure that there was a sufficiently large workpiece backlog for each test series. Acurex Environmental also endeavored to ensure that a representative sample of each typical workpiece was evaluated.

C. REFERENCES

- 1. Hughes, S. E. and Ayer, J., <u>Category III Quality Assurance Project Plan (QAPP)</u>, Acurex Environmental Corporation, Mountain View, California, prepared for U.S. Environmental Protection Agency, EPA Contract No. 68-D1-0146, Work Assignment 0/004, AEERL, Research Triangle Park, NC, March 1992.
- 2. EPA Quality Assurance Review of the Category III QAPP, EPA Contract No. 68-D1-0146, Work Assignment 0/004, April 1992.
- Hughes, S. E. and Wolbach, C. D., Response to EPA Quality Assurance Review, May 6, 1992.

APPENDIX I ECONOMIC CALCULATIONS

SUMMARY TABLE

Costs for Incineration Devices with 35% heat recovery (Thousands of dollars)

	i	1			(2000)
	Flowrate	Thermal Incinerati	Ition	Catalytic Incineratio	LOI.
Percent Recirc	dscfm	Capital Cost	Annual O&M Cost	Capital Cost Annual O&M Cost	ual O&M Cost
0	30000	\$392	\$383	\$550	\$297
. 20	15000	\$387	\$232	\$471	\$192
75	7500	\$333	\$147	\$368	\$127
06	3000		\$91	\$270	\$81

Economic Evaluation

ASSUMPTIONS

Capital cost for recirc/split-flow modification:

\$60,000

VOC concentration in the exhaust increases linearly as the % recirc increases

Net heat of combustion of volatile compounds is approximately

Exhaust Siream Characteristics

3000 Btu/scf

content	(Btu/lb)	0.41	0.81	1.62	0.3 4.06
heat	(Stu/scf)	0.03	90.0	0.12	0.3
[voc]	(mdd)	10	20	40	100
		% recirc	0	50	75

Calcs. in the manual are based on April 1988 dollars. Convert to August 1992 \$ with the following CE Equipment Indices: All calculations based on "Control Technologies for Hazardous Air Pollutants", EPA/625/6-91/014, June 1991. 369.4 390.8 Apr. 1988 CE Equipment Index: Aug. 1992 CE Equipment Index:

Assume 10 year equipment lifetime and 10% annual interest rate.

40 hrs/wk	\$3.30 per 1000 cf	\$14.00 per hour	0.81 Btu/lb
50 wks/vr	\$0.06 per kWh	15000 dscfm	77 F
Operating hours	Methane fuel cost Electricity cost	O&M labor cost Flowrate	Heat Content Exhaust Temp.

Economic Evaluation

SAMPLE THERMAL INCINERATION CALCULATION

recovery]			\$146,414 8 in. H2O	44511 kWh/yr	\$2,626	\$1,750	\$263	\$3,500
[the spreadsheet calcs are set for 0, 35, 50, OR 70% heat recovery]	scfm .	ANNUAL OPERATING COSTS DIRECT	Methane Fuel Cost Pressure Drop	Electricity usage	Electricity costs	Oper. Labor Costs	Supervisory costs	Maintenance labor and mat'i costs
[the spreadsheet calc	369.7 15369.7		\$162,627 \$191,900	\$308,960	\$326,858	\$60,000	\$386,858	
98% 35% 0.253 Btu/lb-F 610 F 1600 F	Supplemental fuel (methane) requirements Total flow		Triermal incinerator capital cost (Apr. 1988 \$) Purchased EquipmAPITAL COSTS	Capital Cost (Apr. 1988\$)	2 dollars:	nodify duct	TOTAL CAPITAL COST	
Destruction Eff. Heat Recovery Air Heat Cap (Cp) Temp. into Incin Combust. temp	Supplemental fuel (m	·	Thermal incinerator capital cost (Purchased EquipmAPITAL COSTS)	Total Thermal Incin. Capital Cost	Convert to Aug. 1992 dollars:	Include the cost to modify duct	TOTALC	

\$3,308 \$7,737 \$3,869 \$3,869 \$62,981 \$232,447

> Administrative Property taxes Insurance

Overhead

Capital Recovery
TOTAL ANNUAL OPER. COSTS

SAMPLE CATALYTIC INCINERATION CALCULATION

Catalytic Incinerator capital cost (Apr. 1988 \$) \$204,694 Purchased EquiprrAPITAL COSTS \$204,694 Total Incin. Capital Cost (Apr. 1988) \$ \$241,538 Total Incin. Capital Cost (Apr. 1988) \$ \$241,538 Fressure Drop \$411,405 Electricity usage Electricity usage Electricity usage Electricity costs Catalyst isplacement cost Oper. Labor Costs Space Velocity 40,000 (1/hr) Catalyst Bed Size 22.83 cu ft Overfread Precious metal cost \$3,000 per cu ft Administrative Property taxes Incine Tope (1, 1) (1, 1	l emp at catalyst inlet Temp at catalyst outlet Temp after heat recovery Supplemental fuel (methane) requirements	997 F 1000 400 quirements Total flow	221.9 15221.9	sofm scfm	
tor capital cost (Apr. 1988 \$) \$294,694 TAPITAL COSTS al Cost (Apr. 1988\$) \$388,877 1992 dollars: \$411,405 O modify duct \$60,000 AL CAPITAL COST 40,000 (1/hr) 22.83 cu ft catalyst life \$3,000 per cu ft				ANNUAL OPERATING COSTS	
#APITAL COSTS al Cost (Apr. 1988\$) self-self-self-self-self-self-self-self-	vtic Incinerator capital cost (A	r. 1988 \$)	\$204,694	DSECT	
ai Cost (Apr. 1986\$) \$388,877 1992 dollars: \$411,405 to mcdify cluct \$60,000 AL CAPITAL COST \$471,405 22.83 cu ft catalyst life \$3,000 per cu ft	assed EquipmAPITAL COSTS	•	\$241,538	Methane Fivel Cost	\$87,863
1992 dollars: \$411,405 O modify cluct \$60,000 AL CAPITAL COST \$471,405 40,000 (1/hr) 22.83 cu ft catalyst life \$3,000 per cu ft	æ	•	\$388,877	Pressure Drop	10 in. H2O
AL CAPITAL COST \$60,000 AL CAPITAL COST \$471,405 40,000 (1/hr) 22.83 cu ft catalyst life \$3,000 per cu ft		•	\$411,405	Electricity usage	55103 kWh/yr
AL CAPITAL COST 40,000 (1/hr) 22.83 cu ft catalyst life \$3,000 per cu ft	de the cost to modify duct		\$60,000	Electricity costs	\$3,251
40,000 (1/hr) 22.83 cu ft catalyst life 53,000 per cu ft	TOTAL CAPITAL COST		\$471,405	Catalyst replacement cost	\$39,469
40,000 (1/hr) 22.83 cu ft catalyst life \$3,000 per cu ft				Oper. Labor Costs	\$1,750
40,000 (1/hr) 22.83 cu ft catalyst life \$3,000 per cu ft				Supervisory costs	\$263
22.83 cu ft catalyst life \$3,000 per cu ft	se Velocity	40,000 (1/hr)		Maintenance labor and mat'l costs	\$3,500
\$3,600 per cu ft	lyst Bed Size	22.83 cu ft		NDIRECT	
\$3,600 per cu ft	ime a 2-year catalyst life			Overfiead	\$3,308
	ious metal cost	\$3,000 per co	#	Administrative	\$9,428
Capital Recovery		•		Property taxes	\$4,714
Capital Recovery				Insurance	\$4,714
STOCK CORP. INTERESTINATION OF THE PROPERTY OF				Capital Recovery	\$34,118
				TOTAL ANNUAL OPER, COSTS	\$192,377

APPENDIX J

EXAMPLE CALCULATION WORKSHEET FOR PERCENT RECIRCULATION VERSUS PERCENT PARTICULATE REMOVAL EFFICIENCY

PROJECTED POLLUTANT LEVELS WITH RECIRCULATION

This calculation assumes no split-flow.

% REMOVAL OF STRONTIUM CHROMATE

85

% REMOVAL OF ISOCYANATES:

85

RECIRCULATION RATE = 87.4%

This worksheet compares results to the TWA Em, not to the STEL

COMPOUNDS

	DETECTED LEVEL W/O RECIPC. mg/m3	Current 8-hour TWA PEL or TLV mg/m3	PROJECTED LEVEL mg/m3	Booth Em Calculation (dimensionless)
ORGANICS VS. Em	•			
VOC1:	•	•		
MEK	5.80	590	*46	0.08
VOC2:				
MIBK	4.20	205	33	0.16
VOC3: TOLUENE	0.04	400	_	
VOC4:	0.64	188	5	0.03
N-BUTYL ACETATE	1.10	710	9	0.01
VOC5:	0	710	9	0.01
XYLENES	0.11	434	1	0.00
VOC6:			•	•.••
ETHYL ACETATE	0.26	1400	2	0.00
VOC7:				
2-BUTANOL	0.28	305	2	0.01
			ORGANIC Em	0.29
METAL Em CALCULATIONS	•		Г	14-1-1
STRONT CHROMATE as Cr	0.0063	0.05		Metal Em
OTHER CHICKINIC AS OF	0.0063	0.05	0.050	
ISOCYANATE Em CALCULA	TIONS		ſ	HDI Em
HDI	0.000570	0.034	0.005	0.13
			•	