Drivers of compound extremes in the Southern Ocean

Joel Wong, Matthias Münnich, Nicolas Gruber

Extremes in the vertical column

Extremes in the vertical column

Southern Ocean model hindcast

ROMS-BEC, daily output (1980-2019)

0.25° resolution, Upper 300m column

Extreme event thresholds

Extreme type	Variable	Percentile threshold
Marine heatwave (MHW)	T	> 95 th
Ocean acidity extreme (OAX)	[H ⁺]	> 95 th

Compound Extreme	≥ 50m of MHW and OAX extreme

Wong, et al., AGU Advances (2024)

Frequent MHW-OAX in the Antarctic zone

High frequency in **Antarctic zone**

Lower frequencies in the **Subantarctic** and **Northern zones**

Highest anomalies in the Ross and Bellingshausen Seas

Temperature anomaly +2.4 °C

pH anomaly -0.8

(In 2019, compared to 1980 conditions)

Antarctic krill growth rates decline from $3-4^{\circ}C$

(Atkinson et al., 2006; Brown et al., 2010)

Largest MHW-OAX in the Southern Ocean

Larger and more intense extremes in the **Antarctic zone**Extremes occupy the **Antarctic Marine Protected Areas**

Large events are also long (more than 500 days)

Surface compounded MHW and OAX

Surface MHW and subsurface OAX

Cluster 4Surface MHW and subsurface OAX in the **Northern zone**

Surface MHW and subsurface OAX

- 1. Heat gained from the atmosphere (36%) and ocean (64%)
 - Surface heat flux was not anomalous
- 2. Increased primary production
 - Increased POC export and CO₂ uptake
- 3. Remineralisation in the subsurface drives acidity
 - 70% increase in [H⁺] driven by ↑ DIC

MHW induced at the surface

Temperature-induced productivity at the surface drives subsurface acidity

DIC – Dissolved Inorganic Carbon POC – Particulate Organic Carbon

Deep MHW and OAX in the Antarctic zone

Cluster 2

Deep MHW and OAX in the Antarctic zone

Deep MHW and OAX in the Antarctic zone

- 1. Pycnocline depth is anomalously shoaled
- 2. Increase in $[H^+]$ driven by \uparrow DIC and \uparrow Temp
 - Less than 2% ↑DIC and ↑ Temp from surface fluxes
- 3. No anomaly in primary production
- 4. Associated with positive SAM and La Niña
 - Up to 2.2x increase in extreme area

Upwelling of warm and acidic Circumpolar Deep Water (CDW)*

Acidity is not biologically driven

Stronger westerlies drive northward transport †

CDW – Circumpolar Deep Water DIC – Dissolved Inorganic Carbon SAM – Southern Annular Mode * Morrison et al. (2015) † Wang et al. (2023)

Conclusion

• High frequency of MHW + OAX in the Antarctic zone

Conclusion

- High frequency of MHW + OAX in the Antarctic Zone
- Largest and longest events in Antarctic MPAs

Conclusion

- High frequency of MHW + OAX in the Antarctic Zone
- Largest and longest events in Antarctic MPAs
- Surface MHW drive OAX by modulating primary production

Appendix

Methods: Fixed and moving baselines

Methods: Clustering CCX by vertical structure

Methods: Choosing the number of clusters

SSE – Sum of Squared Error VRC – Variance Ratio Criterion

Step 1: Quantitative criteria:

Minimise SSE (blue), while maximising VRC (red)

Step 2: Comparison of cluster characteristics

Are there multiple clusters with similar characteristics?

Step 3: Comparison of underlying drivers

Does changing the number of clusters change the conclusions?

Results: Southern Ocean CCX Clusters

Results: Diagnosing drivers of CCX

Contributions of temperature, DIC, and total Alk to the anomaly in H+ during CCX events

$$\Delta H^{+} = \frac{\partial H^{+}}{\partial T} \Delta T + \frac{\partial H^{+}}{\partial C} \Delta C + \frac{\partial H^{+}}{\partial A} \Delta A + \dots$$

Results: Diagnosing drivers of CCX

Logistic regression

Of CCX (True) and non-CCX events (False), on anomalies in model and forcing variables

$$logit(p) = ln \frac{p}{1 - p} = \beta_0 + \beta_1 X$$

$$OR = \exp \beta_1$$

Results: CCX clusters of largest events

SI: Southern Ocean Mean State

2256 <u>H</u>
2217 <u>H</u>
2178

2420 E 2405 E

SI: Southern Ocean Overturning

