Table 1: AUROC of the MLCAUSALITY and KANGCI on the Lorenz-96 dataset.

	Models	AUROC				
		p = 10, F = 10 T = 1000	p = 40, F = 40 T = 1000	p = 40, F = 40 T = 500		
			1 1000			
	MLCAUSALITY	0.812 ± 0.032	0.679 ± 0.051	0.523 ± 0.054		
	KANGCI	1.0 ± 0.000	0.991 ± 0.003	0.966 ± 0.015		

Table 2: AUROC of the MLCAUSALITY and KANGCI on the Dream-3 dataset, T=966, p=100

Models			AUROC		
	Ecoli-1	Ecoli-2	Yeast-1	Yeast-2	Yeast-3
MLCAUSALITY KANGCI	0.492 0.758	0.486 0.680	$0.510 \\ 0.667$	$0.523 \\ 0.552$	$0.496 \\ 0.562$

Table 3: AUROC of the MLCAUSALITY and KANGCI on the Dream-4 dataset, T=210, p=100

Models			AUROC		
	Gene-1	Gene-2	Gene-3	Gene-4	Gene-5
MLCAUSALITY KANGCI	$0.512 \\ 0.747$	$0.518 \\ 0.591$	$0.495 \\ 0.602$	$0.502 \\ 0.613$	$0.501 \\ 0.601$

Table 4: AUROC of the MLCAUSALITY and KANGCI on the VAR dataset.

	AUROC				
Models	p = 10, T = 1000	p = 10, T = 1000	p=10, T=1000		
	sparsity = 0.2	sparsity = 0.3	sparsity = 0.2		
	lag = 3	lag = 3	lag = 5		
MLCAUSALITY	0.852±0.006	0.834±0.009	0.817±0.011		
KANGCI	1.0 ± 0.000	0.993 ± 0.003	1.0±0.000		

Table 5: AUROC of the MLCAUSALITY and KANGCI on the fMRI Bold signal $\,$

Models			AUROC		
11104015	Sim-1	Sim-2	Sim-3	Sim-4	Sim-5
MLCAUSALITY	$0.598{\scriptstyle\pm0.04}$	$0.601{\scriptstyle\pm0.03}$	$0.655{\scriptstyle\pm0.03}$	$0.599{\scriptstyle\pm0.01}$	$0.623{\scriptstyle\pm0.04}$
KANGCI	0.809 ± 0.08	0.838 ± 0.03	0.875 ± 0.02	0.902 ± 0.02	0.856 ± 0.05
	Sim-6	Sim-7	Sim-8	Sim-9	Sim-10
MLCAUSALITY	$0.604{\scriptstyle\pm0.03}$	0.617 ± 0.03	$0.622{\scriptstyle\pm0.04}$	0.553 ± 0.03	$0.641{\scriptstyle\pm0.04}$
KANGCI	$0.922{\scriptstyle\pm0.02}$	0.895 ± 0.04	0.763 ± 0.08	0.824 ± 0.08	0.780 ± 0.07
	Sim-11	Sim-12	Sim-13	Sim-14	Sim-15
MLCAUSALITY	0.603 ± 0.03	0.596 ± 0.02	0.575 ± 0.04	0.599 ± 0.03	0.588 ± 0.05
KANGCI	$0.823{\scriptstyle\pm0.03}$	0.847 ± 0.03	0.749 ± 0.08	$0.788{\scriptstyle\pm0.08}$	$0.736{\scriptstyle\pm0.08}$
	Sim-16	Sim-17	Sim-18	Sim-19	Sim-20
MLCAUSALITY	$0.581{\scriptstyle\pm0.02}$	0.577 ± 0.03	0.497 ± 0.04	0.512 ± 0.06	0.511 ± 0.05
KANGCI	$0.721{\scriptstyle\pm0.09}$	0.853 ± 0.03	0.806 ± 0.06	$0.872{\scriptstyle\pm0.03}$	$0.909{\scriptstyle\pm0.03}$
	Sim-21	Sim-22	Sim-23	Sim-24	Sim-25
MLCAUSALITY	0.697 ± 0.07	0.606 ± 0.05	0.620 ± 0.06	0.552 ± 0.05	0.608 ± 0.04
KANGCI	$0.805{\scriptstyle\pm0.07}$	0.811 ± 0.06	0.664 ± 0.08	$0.560{\scriptstyle\pm0.09}$	$0.742{\scriptstyle\pm0.08}$
	Sim-26	Sim-27	Sim-28		
MLCAUSALITY	$0.574{\scriptstyle\pm0.03}$	0.573 ± 0.02	0.592 ± 0.06		
KANGCI	$0.702{\scriptstyle\pm0.09}$	$0.736{\scriptstyle\pm0.08}$	0.809 ± 0.07		

Table 6: Sensitivity analysis of tuning the threshold in fusion algorithm on Dream-3 $\underline{dataset}$.

Dataset			Thre	shold		
	0.01	0.05	0.10	0.15	0.20	0.25
Ecoli-1	0.756	0.757	0.758	0.760	0.761	0.761
Ecoli-2	0.677	0.680	0.681	0.683	0.677	0.677
Yeast-1	0.667	0.667	0.667	0.667	0.667	0.667
Yeast-2	0.549	0.552	0.552	0.552	0.552	0.546
Yeast-3	0.512	0.512	0.512	0.512	0.512	0.512
	0.30	0.35	0.40	0.45	0.50	
Ecoli-1	0.759	0.755	0.745	0.734	0.734	
Ecoli-2	0.676	0.675	0.663	0.652	0.641	
Yeast-1	0.667	0.667	0.667	0.667	0.667	
Yeast-2	0.543	0.542	0.535	0.533	0.521	
Yeast-3	0.562	0.562	0.562	0.562	0.562	