107

Introduction to Hypothesis Tests (Sections 4.1-4.4)

Does drinking beer make you more attractive to mosquitos?

Beer Consumption Malaria Mosquitoes

Human Attractiveness to

Thierry Lefèvre¹*, Louis-Clément Gouagna^{2,3}, Kounbobr Roch Dabiré^{3,4}, Eric Elguero¹, Didier Fontenille², François Renaud¹, Carlo Costantini^{2,5}, Frédéric Thomas^{1,6}

1 Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, Montpellier, France, 2 Caractérisation et Contrôle des Populations de Vecteurs, IRD/UR 016, Montpellier, France, 3 Institut de Recherche en Science de la Santé, Bobo-Dioulasso, Burkina Faso, 4 Laboratoire de Parasitologie et d'Entomologie Médicale, Centre Muraz, Bobo-Dioulasso, Burkina Faso, 5 Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroun, 6 Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada

Abstract

Background: Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi field conditions in Burkina Faso.

Background

"Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi field conditions in Burkina Faso."

Methodology

- Study performed in Burkina Faso, Africa
- 25 volunteers consumed a liter of beer
- 18 volunteers consumed a liter of water
- Attractiveness of mosquitos to volunteer tested before and after consumption
- Mosquitos released and caught in traps as they approached the volunteers

Your Turn

Is this an experiment or an observational study?

Е	Beer		Wa	ter
27	26	24	21	12
19	28	29	19	24
20	20	21	13	24
20	27	21	22	21
23	19	18	15	19
17	25	27	22	18
21	31	20	15	16
24	24		22	23
31	28		20	20

Your Turn

- What's the parameter in this situation?
- What's the statistic?

Your Turn

- Is a mean difference of 4.4 mosquitos enough evidence that beer consumption increases human attractiveness to mosquitos? Or was this due to random chance?
- If not, why?
- How could this be determined?

Logic of hypothesis testing

Framework

- 1. Formulate two competing hypotheses
- 2. Calculate a statistic summarizing the relevant information to the claims
- 3. Look at the behavior of the statistic assuming that the "initial claim" is true
- 4. Compare the observed statistic to the distribution created in step 3 to determine whether it is "extreme"

E	3eer		Water
27	26	24	21 12
19	28	29	19 24
20	20	21	13 24
20	27	21	22 21
23	19	18	15 19
17	25	27	22 18
21	31	20	15 16
24	24		22 23
31	28		20 20

E	3eer		Water
27	26	24	21 12
19	28	29	19 24
20	20	21	13 24
20	27	21	22 21
23	19	18	15 19
17	25	27	22 18
21	31	20	15 16
24	24		22 23
31	28		20 20

E	Beer	1	Wa	ter
27	21	20	13	24
20	20	24	19	15
19	22	31	28	23
26	16	22	21	18
25	21	20	19	24
23	18	15	27	24
22	12	29	20	21
27	24		21	20
17	28		31	19

Е	Beer			Wa	ter
21	19	19		19	31
21	24	17		20	28
24	16	15		23	15
29	24	20		21	18
20	24	22		23	13
25	28	18		21	19
26	20	27		22	24
12	27			31	20
20	21			27	22

E	Beer		Wa	ter
24	28	23	20	27
13	22	21	24	21
19	15	21	20	27
16	31	23	18	20
27	15	25	26	20
19	22	18	21	19
20	31	24	21	28
17	12		24	19
24	20		29	22

Compare the observed to behavior under the null hypothesis

Radomization (i.e. permutation) tests

E	Beer		Water	
27	26	24	21 12	
19	28	29	19 24	
20	20	21	13 24	
20	27	21	Diff: 4.4	
23	19	18	15 19	
17	25	27	22 18	
21	31	20	15 16	
24	24		22 23	
31	28		20 20	

Mean: 23.6

Mean: 19.2

E	3eer			Wa	ter
27	21	20		13	24
20	20	24		19	15
19	22	31		28	23
26	16	22	Diff: 0.5	21	18
25	21	20	DIII. U.3	19	24
23	18	15		27	24
22	12	29		20	21
27	24			21	20
17	28			31	19

Mean: 22

Mean: 21.5

E	3eer			Wa	ter
21	19	19		19	31
21	24	17		20	28
24	16	15		23	15
29	24	20	Diff: -0.5	21	18
20	24	22	DIII. - 0.3	23	13
25	28	18		21	19
26	20	27		22	24
12	27			31	20
20	21			27	22

Mean: 21.6

Mean: 22.1

E	3eer			Wa	ter
24	28	23		20	27
13	22	21		24	21
19	15	21		20	27
16	31	23	Diff: -1.4	18	20
27	15	25	DIII 1.4	26	20
19	22	18		21	19
20	31	24		21	28
17	12			24	19
24	20			29	22

Mean: 21.2

Mean: 22.6

