SECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 18.01.2021

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : MATH F342

Course Title : DIFFERENTIAL GEOMETRY
Instructor-in-Charge : PRADIPKUMAR H. KESKAR
Instructor(s) : PRADIPKUMAR H. KESKAR
Tutorial/Practical Instructors: PRADIPKUMAR H. KESKAR

1. Course Description:

The course studies geometric objects like curves and surfaces in the 3- dimensional space. Topics include plane and space curves, Serret-Frenet frame and curvature and torsion of curves, global properties of curves, first and second fundamental forms of surfaces, normal, principal and Gaussian curvatures of surfaces, Gauss' Theorema Egregium and geodesics on surfaces.

2. Scope and Objective of the Course:

The objective of this course is to provide a systematic exposition of the essential concepts of modern differential geometry, and an understanding and appreciation for the intrinsic beauty of these concepts, as well as their deep relationships to computer and physical Sciences. The under current is to generalize and reinforce the classical subject in a modern way.

3. Text Books:

Somasundaram, D – Differential Geometry A First Course, Narosa Publishing House (2005)

4. Reference Books:

- 1. Pressley, A Elementary Differential Geometry, 2nd Edition(Corrected Print), Springer (2012)
- 2. Gray A, Abbena E, Salamon S Modern differential geometry of curves and surfaces with MATHEMATICA, 3rd Edition, CRC Press (2006)
- 3. Oprea, J Differential Geometry and Its Applications, Mathematical Association of America (2007)
- 4. Bär, Christian Elementary Differential Geometry, 1st South Asian edition, Cambridge University Press (2011)

5. Course Plan:

Module Number	Lecture session	Reference	Learning Outcome
1. Theory of Space Curves	L 1-3 Space curve, Parametrization, Arc Length, Tangent & Osculating Plane, Normal, Binormal. L 4-5 Curvature, Torsion, Behavior of curve at a point L 6-8 Contact between curve and surfaces, Osculating circle and sphere, Spherical curvatures, Involutes and Evolutes.	1.1-1.6 Sec. 2.1, 2.3 of R1. 1.10-1.13	Examining the curves in space and surface along with tangent, normal, curvature, asymptotes.

2 E' 4	L 0 11 D	2126	D
2. First Fundamental	L 9-11 Representation of surface,	2.1-2.6	Parameterization of
Fundamental	Curves, Tangent plane and surface normal	2.7-2.9	curves and the
FOIIII	L 12-13: General Surfaces of		properties of surfaces.
	Revolution, Helicoid, First		
	Fundamental Form		
	i undamentar i orm		
	L 14-17: Direction Coefficients,	2.10-2.14	
	Families of Curves, Orthogonal		
	Trajectories, Isometric		
	Correspondence		
	1		
3. Geodesics on a	L18-19: Geodesics and their	3.1-3.3	Canonical geodesic
Surface	differential equation, Canonical		equations and its normal
	geodesic equations		properties
	L20-22: Geodesics and its normal	3.4-3.7	
	properties, Existence Theorem		
	properties, Existence Theorem		
	L23-24: Geodesics Parallel. Geodesics	3.8-3.10	
	Polar Coordinates and curvatures.		
	L25-27: Gauss-Bonnet Theorem,	3.11-3.13	
	Gaussian Curvatures, Surface of		
	constant curvature		
4. Second	L28-29: Second Fundamental Form,	4.1-4.4	Maximum and
Fundamental	Classification of points, Principle		minimum curvatures
Form	curvatures.		along a given direction.
	L30-31: Lines of curvature, Dupin	4.5-4.7	
	indicatrix, Developable surfaces		
	1		
	L32-33: Developable with space	4.8-4.10	
	curves, Minimal surfaces,		
	L34-35: Ruled Surfaces, Three		
	Fundamental Form	4.11-4.12	
	1 dildamentar I omi	4.11-4.12	
5. Fundamental	L36-37: Tensor equation, Gauss	5.1-5.3	Fundamental Equation
Equation of	Equations		of surface, Gauss
Surface Theory	I 29 20: Wain contact Matrice		equations.
	L38-39: Weingarten Matrix,	5.4-5.5	
	Mainardi-Coddazzi equation	22.2	
	L40-41: Parallel surfaces,	5.6-5.7	
	Fundamental Existence theorem		

6. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of component (Close Book/ Open Book)
Mid-Semester Test		30	TBA	•
Comprehensive Examination	2 hrs	40	To be announced	
In Class quizzes	20 min each	20	The best of 2 quizzes	
Assignment	To be informed	10	To be announced (refer NALANDA)	

7. Chamber Consultation Hour: To be announced in class

8. Notices: NALANDA website

9. Make-up Policy: No make ups for in class quizzes, buffer quizzes will be given instead. For mid-semester and comprehensive examinations, make up will be provided only in genuine cases when permission is granted in advance.

10. Note (if any): Practice Problems will be assigned periodically. They must be worked out to understand the subject. Students are expected to consult the Reference books as advised in the class room.

Instructor-in-charge Course No. : MATH F342