Digital Signal Processing, 3. kursusgang, ESD5 og IV5-elektro Opgaver

- 1) Givet overføringsfunktionen for et analogt filter $H(s) = \frac{2}{(s+1)(s+3)}$.
 - a) Bestem overføringsfunktionen H(z) for det tilsvarende digitale filter under anvendelse af den bilineære transformation. Det oplyses, at T=0.1s. Udregningen foretages med "papir og blyant", og kan eventuelt efterfølgende verificeres med Matlab-funktionen "bilinear".
 - b) Plot $|H(j\Omega)|$ og $|H(e^{j\omega})|$. Sammenlign og diskuter ligheder og forskelle.
- 2) Et 1. ordens LP-filter er givet ved $H(s) = \frac{\Omega_c}{s + \Omega_c}$.
 - a) Bestem overføringsfunktionen H(z), når det oplyses, at knækfrekvensen for det digitale filter ønskes ved $\omega_c=\frac{\pi}{4}\,rad$. Transformationen foretages vha. den bilineære transformation og med sampleperioden T.
 - b) Undersøg om 3dB frekvensen for det digitale filter ligger ved den ønskede frekvens.
- 3) Overføringsfunktionen for et 1. ordens Butterworth HP-filter er $H(s) = \frac{s}{s + \Omega_c}$.
 - a) Under anvendelse af den bilineære transformation ønskes der konstrueret et digitalt filter H(z), som har sin 3dB frekvens beliggende ved 30Hz. Sampleperioden er $\frac{1}{150}s$.
 - b) Plot amplitude-responsen $|H(e^{j\omega})|$ og afgør, om det digitale filter har forstærkning $\frac{1}{\sqrt{2}}$ ved den ønskede frekvens.
 - c) Opstil differens-ligningen for det digitale filter.