

SFB 1463 – Offshore Megastrukturen

Z01 – DeSiO-Structure

Vortrag:

Leibniz Universität Hannover Institut für Statik und Dynamik Dipl.-Ing. (FH) Christian Hente, M.Sc. Daniel Schuster, M.Sc.

Stand: Mai 2021

Inhaltsverzeichniss

Allgemeines zu DeSiO-Structure

- Eigenschaften
 - Programmiersprache, -philosophie, Compiler, Betriebssystem, Dokumentation

Theoretische Grundlagen

- Entwickelter Mehrkörperformalismus
- Zusatzerläuterungen:
 - direktorbasierte Formulierung, Objektivität und Pfadunabhängigkeit
 - (numerische) Dissipation von hochfrequenten Bewegungen
- Vorteile von DeSiO

Literatur

Anwendung

- Erläuterung der Input- und Output-Dateien
- Einrichten und Kompilieren von DeSiO
 - Windows, Linux, Luis Cluster
- Berechnung von Beispielen
 - Statische Analyse
 - Dynamische Analyse
 - Modalanalyse

Allgemeines

- DeSiO Design and Simulation Framework for Offshore Support Structures
 - Entwickelung am ISD seit 2015 unter Leitung von Cristian G. Gebhardt
 - Strukturmechanische Untersuchung von allgemeinen schwingungsanfälligen Strukturen
 - Multiphysikalisches Berechnungssoftware zur Analyse von flexiblen Mehrkörperstrukturen
 - Verwendung von Methoden auf dem aktuellsten Stand der Forschung
 - Effiziente, objektorientierte Implementierung in Fortran90
 - Compiler + Debugger: Intel Fortran mkl-Libary (Compiler-Unabhängigkeit in Bearbeitung)
 - Ausführbar unter Windows und Linux
 - Programm- und Versionsverwaltung über GitLab
 - Theorie- und Anwendungsdokumentation
 - Im Rahmen des SFBs: Weiterentwicklung mit Anwendung auf Offshore-Windenergieanlagen

modal_solver.f90

Allgemeines

DeSiO - Design and Simulation Framework for Offshore Support Structures

Quelle: C. G. Gebhardt 2013/2014

Allgemeines

DeSiO - Design and Simulation Framework for Offshore Support Structures

- Mehrkörperformalismus für starre und flexible Strukturen
 - Gemischte Formulierung ausgehend vom Hamilton'sches Prinzip
 - Totale Lagrange'sche Betrachtungsweise
 - Starrkörper und Finite Elemente
 - Starrkörper

Nichtlineare Kinematik, Kopplung aller Trägheitsterme

Geometrisch exakter Balken

Moderate Verzerrungen, große Verschiebungen und große Rotationen Volle Biege-Torsionskopplung, Kopplung aller Trägheitsterme

Volumendegenerierte Schale

Große Verzerrungen, große Verschiebungen und Rotationen

Orthotropes Mehrschichtenmodell

Kopplung aller Trägheitsterme

Frei von Looking-Effekten

Ansatzfunktionen im Sinne der effektiven FEM – Lineare Ansatzfunktionen

- Algebraische holonome und nicht-holonome Zwangs- und Nebenbedingungen
- Dissipatives, energie-, impuls- und drallerhaltendes Zeitintegrationsverfahren
- Diverse Analysearten: nichtlinear statisch, nichtlinear dynamisch, Beulanalyse, Modalanalyse

Ausgehend vom Hamilton'schen Prinzip

$$\begin{split} \delta \mathcal{S} &= 0 \\ \mathcal{S} &= \int_{t_1}^{t_2} \left(\mathcal{K}(\boldsymbol{x};t) - [\mathcal{W}(\boldsymbol{v};t) - \mathcal{P}(\boldsymbol{x};t)] + \boldsymbol{\lambda}(t) \cdot \boldsymbol{\mathcal{L}}(\boldsymbol{x};t) + \boldsymbol{v}(t) \cdot [\boldsymbol{l}(\boldsymbol{v};t) - \boldsymbol{l}(\dot{\boldsymbol{x}};t)] \right) \mathrm{d}t \\ &\quad \text{Kinetische Energie} \quad \text{Externe Arbeit} \quad \text{Impulsäquivalenz} \end{split}$$

Einsetzen der direktorbasierten Kinematik der einzelnen Elemente – kontinuierliche schwache Form

$$\delta \mathcal{S} = \int_{\mathcal{B}_0} \left[\delta \boldsymbol{x} \cdot \left[\boldsymbol{f}^{\text{int}}(\boldsymbol{x}, \boldsymbol{v}; t) - \boldsymbol{f}^{\text{ext}}(\boldsymbol{x}; t) + \dot{\boldsymbol{l}}(\boldsymbol{v}; t) + \boldsymbol{H}^T(\boldsymbol{x}; t) \cdot \boldsymbol{\lambda}(t) \right] + \delta \boldsymbol{\lambda} \cdot \boldsymbol{h}(\boldsymbol{x}, \dot{\boldsymbol{x}}; t) + \delta \boldsymbol{v} \cdot \left[\boldsymbol{l}(\boldsymbol{v}; t) - \boldsymbol{l}(\dot{\boldsymbol{x}}; t) \right] \right] d\mathcal{B}_0 = 0$$

Räumliche und zeitliche Diskretisierung: FEM und robustes energie, impuls- und drallerhaltendes Zeitintegrationsverfahren mit geschwindigkeits- und spannungsbasierter numerischer Dissipation

$$\delta \boldsymbol{q}_{n+\frac{1}{2}} \cdot \left[\boldsymbol{f}_{d}^{int}(\boldsymbol{q}_{n+1}, \boldsymbol{q}_{n}, \boldsymbol{s}_{n+1}, \boldsymbol{s}_{n}) - \boldsymbol{f}_{d}^{ext}(\boldsymbol{q}_{n+1}, \boldsymbol{q}_{n}) + \dot{\boldsymbol{l}}_{d}(\boldsymbol{s}_{n+1}, \boldsymbol{s}_{n}) + \boldsymbol{H}_{d}^{T}(\boldsymbol{q}_{n+1}, \boldsymbol{q}_{n}) \cdot \boldsymbol{\lambda}_{n+1} \right] \\ + \delta \boldsymbol{\lambda}_{n+1} \cdot \boldsymbol{h}_{d}(\boldsymbol{q}_{n+1}, \boldsymbol{q}_{n}) + \delta \boldsymbol{s}_{n+\frac{1}{2}} \cdot \left[\boldsymbol{l}_{d}(\boldsymbol{s}_{n+1}, \boldsymbol{s}_{n}) - \boldsymbol{l}_{d}(\boldsymbol{q}_{n+1}, \boldsymbol{q}_{n}) \right] = 0$$

Kinematik von Starrkörper, Balken und Schale in die kontinuierliche schwache Form einsetzen

$$\delta \mathcal{S} = \int_{\mathcal{B}_0} \left[\delta \boldsymbol{x} \cdot \left[\boldsymbol{f}^{\text{int}}(\boldsymbol{x}, \boldsymbol{v}; t) - \boldsymbol{f}^{\text{ext}}(\boldsymbol{x}; t) + \dot{\boldsymbol{l}}(\boldsymbol{v}; t) + \boldsymbol{H}^T(\boldsymbol{x}; t) \cdot \boldsymbol{\lambda}(t) \right] + \delta \boldsymbol{\lambda} \cdot \boldsymbol{h}(\boldsymbol{x}, \dot{\boldsymbol{x}}; t) + \delta \boldsymbol{v} \cdot \left[\boldsymbol{l}(\boldsymbol{v}; t) - \boldsymbol{l}(\dot{\boldsymbol{x}}; t) \right] \right] d\mathcal{B}_0 = 0$$

Starrkörper

$$\boldsymbol{x}(\boldsymbol{\Theta};t) = \bar{\boldsymbol{x}}(t) + \Theta^1 \boldsymbol{d}_1(t) + \Theta^2 \boldsymbol{d}_2(t) + \Theta^3 \boldsymbol{d}_3(t)$$

$\mathcal{B}_0 = \mathcal{B}(0) \qquad \phi_t \circ \phi_0^{-1} \qquad \mathbf{d}_2(t)$ $\mathbf{d}_1(0) \qquad \mathbf{d}_3(0) \qquad \mathbf{i}_3 \qquad \mathbf{i}_1 \qquad \phi_t = \phi(t)$ $\phi_0 = \phi(0) \qquad \phi_t \circ \phi_0^{-1} \qquad \phi_t = \phi(t)$

Balken

$$\boldsymbol{x}(\boldsymbol{\Theta};t) = \bar{\boldsymbol{x}}(\boldsymbol{\Theta}^3;t) + \boldsymbol{\Theta}^1 \boldsymbol{d}_1(\boldsymbol{\Theta}^3;t) + \boldsymbol{\Theta}^2 \boldsymbol{d}_2(\boldsymbol{\Theta}^3;t)$$

Schale

$$\boldsymbol{x}(\boldsymbol{\Theta};t) = \bar{\boldsymbol{x}}(\boldsymbol{\Theta}^1, \boldsymbol{\Theta}^2;t) + \boldsymbol{\Theta}^3 \boldsymbol{d}(\boldsymbol{\Theta}^1, \boldsymbol{\Theta}^2;t)$$

Hamilton'sches Prinzip: Kontinuierliches Gleichgewicht:

$$\delta \mathcal{S} = \int_{\mathcal{B}_0} \left[\delta \boldsymbol{x} \cdot \left[\boldsymbol{f}^{\text{int}}(\boldsymbol{x}, \boldsymbol{v}; t) - \boldsymbol{f}^{\text{ext}}(\boldsymbol{x}; t) + \dot{\boldsymbol{l}}(\boldsymbol{v}; t) + \boldsymbol{H}^T(\boldsymbol{x}; t) \cdot \boldsymbol{\lambda}(t) \right] + \delta \boldsymbol{\lambda} \cdot \boldsymbol{h}(\boldsymbol{x}, \dot{\boldsymbol{x}}; t) + \delta \boldsymbol{v} \cdot \left[\boldsymbol{l}(\boldsymbol{v}; t) - \boldsymbol{l}(\dot{\boldsymbol{x}}; t) \right] \right] d\mathcal{B}_0$$

Diskretes Gleichgewicht zum zeitlichen Mittelpunkt:

$$\delta \boldsymbol{q}_{n+\frac{1}{2}} \cdot \left[\boldsymbol{f}_{d}^{int}(\boldsymbol{q}_{n+1}, \boldsymbol{q}_{n}, \boldsymbol{s}_{n+1}, \boldsymbol{s}_{n}) - \boldsymbol{f}_{d}^{ext}(\boldsymbol{q}_{n+1}, \boldsymbol{q}_{n}) + \dot{\boldsymbol{l}}_{d}(\boldsymbol{s}_{n+1}, \boldsymbol{s}_{n}) + \boldsymbol{H}_{d}^{T}(\boldsymbol{q}_{n+1}, \boldsymbol{q}_{n}) \cdot \boldsymbol{\lambda}_{n+1} \right] + \delta \boldsymbol{\lambda}_{n+1} \cdot \boldsymbol{h}_{d}(\boldsymbol{q}_{n+1}, \boldsymbol{q}_{n}) + \delta \boldsymbol{s}_{n+\frac{1}{2}} \cdot \left[\boldsymbol{l}_{d}(\boldsymbol{s}_{n+1}, \boldsymbol{s}_{n}) - \boldsymbol{l}_{d}(\boldsymbol{q}_{n+1}, \boldsymbol{q}_{n}) \right]$$

Nichtlineare Gleichgewichtskräfte:

$$m{g}_{n+rac{1}{2}} = egin{bmatrix} m{f}_d^{int}(m{q}_{n+1},m{q}_n,m{s}_{n+1},m{s}_n) - m{f}_d^{ext}(m{q}_{n+1},m{q}_n) + \dot{m{l}}_d(m{s}_{n+1},m{s}_n) + m{H}_d^T(m{q}_{n+1},m{q}_n) \cdot m{\lambda}_{n+1} \ m{h}_d(m{q}_{n+1},m{q}_n) \ m{l}_d(m{s}_{n+1},m{s}_n) - m{l}_d(m{q}_{n+1},m{q}_n) \end{bmatrix} = egin{bmatrix} m{0} \ m{0} \ m{0} \ m{0} \end{bmatrix}$$

Linearisierung und Lösung mittels Newton-Verfahren:

$$\boldsymbol{g}_{n+\frac{1}{2}}^{k+1}(\boldsymbol{q},\boldsymbol{\lambda},\boldsymbol{s}) = \begin{bmatrix} \boldsymbol{f}_d^{int}(\boldsymbol{q},\boldsymbol{s}) - \boldsymbol{f}_d^{ext}(\boldsymbol{q}) + \boldsymbol{\dot{l}}_d(\boldsymbol{s}) + \boldsymbol{H}_d^T(\boldsymbol{q}) \cdot \boldsymbol{\lambda} \\ \boldsymbol{l}_d(\boldsymbol{s}) - \boldsymbol{l}_d(\boldsymbol{q}) \end{bmatrix}_{n+1}^k + \begin{bmatrix} \boldsymbol{K}^{int}(\boldsymbol{q},\boldsymbol{s}) + \boldsymbol{K}^{\lambda\lambda}(\boldsymbol{q}) - \boldsymbol{K}^{ext}(\boldsymbol{q}) & \boldsymbol{K}^{qs} & \boldsymbol{H}_d^T(\boldsymbol{q}) \\ \boldsymbol{K}^{sq} & \boldsymbol{K}^{ss}(\boldsymbol{q},\boldsymbol{s}) & \boldsymbol{0} \\ \boldsymbol{H}(\boldsymbol{q}) & \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}_{n+1}^k \cdot \begin{bmatrix} \Delta \boldsymbol{q} \\ \boldsymbol{s} \\ \boldsymbol{\lambda} \end{bmatrix}_{n+1} = \begin{bmatrix} \boldsymbol{q} \\ \boldsymbol{s} \\ \boldsymbol{\lambda} \end{bmatrix}_{n+1}^k + \begin{bmatrix} \Delta \boldsymbol{q} \\ \Delta \boldsymbol{s} \\ \Delta \boldsymbol{\lambda} \end{bmatrix}$$

Daniel Schuster (ISD)

- Direktorbasierte Formulierung
 - Rotationen werden durch die Koordinaten eines Triads beschrieben.
 - Rotationen werden numerisch "exakt" dargestellt
 - Koordinaten der Direktoren als Systemunbekannte
 - Lineare Ansatzfunktionen
 - Additive Aktualisierung des Verschiebungs- und Rotationszustandes
 - Verhindert "Gimbal"-Locking bei großen Rotationen
 - Ermöglicht Beschreibung in der totalen Lagrange'schen Betrachtungsweise
 - Gewährleistet Pfadunabhängigkeit und Objektivität in der totalen Lagrange'schen Betrachtungsweise

- Objektivität und Pfadunabhängigkeit
 - Relevante Eigenschaften für korrekte physikalische Idealisierung
 - Vermeidung von kumulativen Fehlern
 - Additive Aktualisierung des Verschiebungs- und Rotationszustandes
- Objektivität
 - Das Verhalten eines materiellen Punktes ist unabhängig vom Bewegungszustandes des Beobachters.

$$\Pi(oldsymbol{q},\dot{oldsymbol{q}})=\Pi(\hat{oldsymbol{q}},\dot{\hat{oldsymbol{q}}})$$

Gewährleistung am Beispiel des Balkenelements

Längs- und Schubdehnungen

$$oldsymbol{\Gamma} = egin{bmatrix} oldsymbol{\Gamma}^1 \ oldsymbol{\Gamma}^2 \ oldsymbol{\Gamma}^3 \end{bmatrix}, \ \ oldsymbol{\Gamma}^i = oldsymbol{d}_i(t) \cdot oldsymbol{\phi}'(t) - oldsymbol{d}_i t(0) \cdot oldsymbol{\phi}'(0)$$

Anwendung einer affinen Transformation

Längs- und Schubdehnungen nach affiner Transformation

$$\hat{\boldsymbol{\Gamma}}^{i} = \hat{\boldsymbol{d}}_{i}(t) \cdot \hat{\boldsymbol{\phi}}'(t) - \hat{\boldsymbol{d}}_{i}t(0) \cdot \hat{\boldsymbol{\phi}}'(0)$$

$$= \boldsymbol{d}_{i}(t) \cdot \boldsymbol{Q}^{T} \cdot \boldsymbol{Q} \cdot \boldsymbol{\phi}'(t) - \boldsymbol{d}_{i}(0) \cdot \boldsymbol{Q}^{T} \cdot \boldsymbol{Q} \cdot \boldsymbol{\phi}'(0)$$

$$= \boldsymbol{d}_{i}(t) \cdot \boldsymbol{\phi}'(t) - \boldsymbol{d}_{i}(0) \cdot \boldsymbol{\phi}'(0) = \boldsymbol{\Gamma}^{i}$$

- Objektivität und Pfadunabhängigkeit
 - Relevante Eigenschaften für korrekte physikalische Idealisierung
 - Vermeidung von kumulativen Fehlern
 - Additive Aktualisierung des Verschiebungs- und Rotationszustandes
- Pfadunabhängigkeit (konservatives Verhalten)
 - Energiezustand unabhängig vom Pfad

Vergleich: winkelbasiert – direktorbasiert

Load level	$\Delta \theta$	$\Delta \theta$ formulation			\mathbf{d}_i formulation		
$[F_1, F_2, F_3]$	8 el.	16 el.	32 el.	8 el.	16 el.	32 el.	
[0,0,0]	0	0	0	0	0	0	
[-600, 0, 0]	0	0	0	0	0	0	
[-600, 600, 0]	59.1177	59.6527	59.7884	61.3302	60.1177	59.9022	
[-600, 600, 600]	38.1955	38.5701	38.6655	40.0323	38.9342	38.7539	
[0,600,600]	37.1012	37.4262	37.5087	38.3769	37.7264	37.5829	
[0, 0, 600]	-0.3022	-0.0769	0.0190	5.5×10^{-15}	-5.9×10^{-15}	9.5×10^{-15}	
[0,0,0]	-0.5820	-0.1487	0.0374	5.3×10^{-15}	-3.0×10^{-15}	8.2×10^{-15}	

- DeSiO- Abaqus FEA- ANSYS 17.0 • Limit or bifurcation points

- Objektivität und Pfadunabhängigkeit
 - Relevante Eigenschaften für korrekte physikalische Idealisierung
 - Vermeidung von kumulativen Fehlern
 - Additive Aktualisierung des Verschiebungs- und Rotationszustandes
- Pfadunabhängigkeit (konservatives Verhalten)
 - Energiezustand unabhängig vom Pfad

Vergleich: winkelbasiert – direktorbasiert

	Load level	$\Delta \theta$	$\Delta \theta$ formulation			\mathbf{d}_i formulation		
	$[F_1, F_2, F_3]$	8 el.	16 el.	32 el.	8 el.	16 el.	32 el.	
	[0,0,0]	0	0	0	0	0	0	
	[-600, 0, 0]	0	0	0	0	0	0	
-	[-600, 600, 0]	59.1177	59.6527	59.7884	61.3302	60.1177	59.9022	
	[-600, 600, 600]	38.1955	38.5701	38.6655	40.0323	38.9342	38.7539	
	[0,600,600]	37.1012	37.4262	37.5087	38.3769	37.7264	37.5829	
	[0, 0, 600]	-0.3022	-0.0769	0.0190	5.5×10^{-15}	-5.9×10^{-15}	9.5×10^{-15}	
	[0,0,0]	-0.5820	-0.1487	0.0374	5.3×10^{-15}	-3.0×10^{-15}	8.2×10^{-15}	

- DeSiO- Abaqus FEA- ANSYS 17.0 • Limit or bifurcation points

- Dissipatives energie-, impuls- und drallerhaltendes Zeitintegrationsverfahren
 - Erhaltung der Invarianten relevant für korrekte physikalische Abbildung

$$(\delta oldsymbol{s}_{n+rac{1}{2}}, \delta oldsymbol{q}_{n+rac{1}{2}}, \delta oldsymbol{\lambda}_{rac{1}{2}}, oldsymbol{f}^{ext}) = (oldsymbol{0}, oldsymbol{\xi}, \cdot, oldsymbol{0})
ightarrow oldsymbol{I}_{n+1} = oldsymbol{I}_n$$

$$(\delta oldsymbol{s}_{n+rac{1}{2}}, \delta oldsymbol{q}_{n+rac{1}{2}}, \delta oldsymbol{\lambda}_{rac{1}{2}}, oldsymbol{f}^{ext}) = \left(oldsymbol{0}, oldsymbol{\xi} imes oldsymbol{q}_{n+rac{1}{2}}, \cdot, oldsymbol{0}
ight)
ightarrow oldsymbol{j}_{n+1} = oldsymbol{j}_n$$

$$(\delta \boldsymbol{s}_{n+\frac{1}{2}}, \delta \boldsymbol{q}_{n+\frac{1}{2}}, \delta \boldsymbol{\lambda}_{\frac{1}{2}}, \boldsymbol{f}^{ext}) = (\boldsymbol{s}_{n+1} - \boldsymbol{s}_n, \boldsymbol{q}_{n+1} - \boldsymbol{q}_n, \cdot, \boldsymbol{0})$$

$$\rightarrow \mathcal{K}_{n+1} + \mathcal{V}_{n+1} + \mathcal{D}_{\mathcal{K}} + \mathcal{D}_{\mathcal{V}} = \mathcal{K}_n + \mathcal{V}_n$$

- Vermeidung von kumulativen Fehlern
- Numerische Dissipation von unrealen hochfrequenten Schwingungen
- Geschwindigkeits- und Spannungsbasierte Dissipation (z.B. Rayleigh Dämpfung)

Elastischer Balken unter Eigengewicht

Dynamischer Durchschlag

ohne numerischer Dissipation

Literatur

Mehrkörperformalismus

- Gebhardt et al. 2018, Nonlinear dynamics of slender structures: a new object-oriented framework, Computational Mechanics.
- Hente et al. 2019, On the modal analysis of nonlinear beam and shell structures with singular mass and stiffness matrices, Thin-Walled Structures.
- Gebhardt 2019, Robust computational procedures for the nonlinear dynamic analysis of beam and shell structures
- Gebhardt et al. 2020, The Rotating Rigid Body Model Based on a Non-twisting Frame, Journal of Nonlinear Science, Habilitationsschrift.
- Hente et al. 2021, On the static analysis of nonlinear beam and shell structures with singular stiffness matrices due to redundant coordinates, Thin-Walled Structures.

Geometrisch exakter Balken

- Romero 2004, The interpolation of rotations and its application to finite element models of geometrically exact rods, Computational Mechanics.
- Mäkinen 2007, Total Lagrangian Reissner's geometrically exact beam element without singularities, International Journal for Numerical Methods in Engineering.
- Gebhardt et al. 2018, Nonlinear dynamics of slender structures: a new object-oriented framework, Computational Mechanics.
- Auricchio et al. 2008, On the geometrically exact beam model: A consistent, effective and simple derivation from three-dimensional finite-elasticity, International Journal of Solid and Structures.
- Eugster et al. 2013, Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates, International Journal for Numerical Methods in Engineering.
- Gebhardt et al. 2019, Understanding the nonlinear dynamics of beam structures: A principal geodesic analysis approach, Thin-Walled Structures.

Volumendegenerierte Schale

- Bauchau et al. 2002, On the Modeling of Shells in Multibody Dynamics, Multibody System Dynamics.
- Gebhardt et al. 2017, On the nonlinear dynamics of shell structures: Combining a mixed finite element formulation and a robust integration scheme, Thin-Walled Structures.

Objektivität und Pfadunabhängigkeit

Romero et al. 2002, An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics, International Journal for Numerical Methods in Engineering.

Dissipatives, energie-, impuls- und drallerhaltendes Zeitintegrationsverfahren

- Armero, Romero 2001, On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics: Part I: low-order methods for two model problems and nonlinear elastodynamics, Computational Methods in Applied Mechanics.
- Armero, Romero 2001, On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics: Part II: second-order methods, Computational Methods in Applied Mechanics.
- Armero, Romero 2003, Energy-dissipative momentum-conserving time-stepping algorithms for the dynamics of nonlinear Cosserat rods, Computational Mechanics.
- Gebhardt et al. 2020, A new conservative/dissipative time integration scheme for nonlinear mechanical systems, Computational Mechanics.

Ansys/Abaqus:

- Keine Erhaltung der Invarianten, keine Gewährleistung der Objektivität und Pfadunabhängigkeit
- Rotationsbasierte Kinematik
- Updated Lagrange
- Multiplikative Aktualisierung der Rotationen
- Für die meisten nichtlinearen Problemstellungen Fehler nicht relevant

 DeSiO-Structure: Robuste Analyseverfahren und echtzeifähig beim Einsatz von Balkenelemente

Dynamische Analysen

Beispiel 1: Elastischer Balken unter Eigengewicht

DeSiO-

Structure

Dynamische Analysen

Beispiel 2: Kragarm, laminate Schalenstruktur

Dynamische Analysen

Beispiel 3: Dynamischer Durchschlag gekrümmte Schale

Dynamische Analysen

Beispiel 4: Fliegende Hybrid-Struktur

Beispiel 1: Durchschlagsproblem gekrümmter Balken

Beispiel 2: Zusammenfaltbare Ringstruktur

Beispiel 3: Rotorblatt

Beispiel 4: Hybrider Halbrahmen

- Input- und Output-Dateien
 - Textbasierter Input und Output in ASCII-Format
 - Einheitlicher Aufbau der Dateien
 - Benutzerfreundliche Code-Erweiterung für homogene und inhomogene Rand- und Nebenbedingungen sowie konservative und nichtkonservative Lasten
 - Ausgabe aller berechneter Größen möglich
 - Benutzerfreundliche Code-Erweiterung um Ausgabegrößen
 - MatLab- und Python-Funktionen zur graphischen Auswertung
 - ANSYS2DeSiO-Routinen in APDL zur Netzerstellung für Schalenstrukturen
 - In Bearbeitung:
 - Pre-Processor mit GUI-Umgebung für Offshore- und Onshore-WEA
 - Post-Processor in einheitlicher Umgebung (vsl. Schnittstelle zu Paraview)

lame	Änderungsdatum	Тур
■ DeSiO	26.03.2021 12:08	Anwendung
solution_invariants	29.03.2021 17:44	MATLAB Code
solution_lambda	29.03.2021 17:44	MATLAB Code
solution_model	29.03.2021 17:44	MATLAB Code
solution_q	29.03.2021 17:44	MATLAB Code
solution_steps	29.03.2021 17:44	MATLAB Code
solution_t	29.03.2021 17:44	MATLAB Code
solution_v	29.03.2021 17:44	MATLAB Code
🖁 beaminput	16.08.2017 10:19	TXT-Datei
🖁 constraint6to12input	15.08.2017 15:24	TXT-Datei
🔐 constraint12input	15.08.2017 17:10	TXT-Datei
🕍 load12input	15.08.2017 17:10	TXT-Datei
🖁 output	25.03.2021 12:52	TXT-Datei
📓 shellinput	03.11.2017 10:54	TXT-Datei
🔐 simulationinput	16.06.2020 15:13	TXT-Datei

Bezeichnung Input-Datei	Bedeutung der Input-Datei
Analyse-Einstellungen	
simulationinput.txt	Analyse-Einstellungen (Anzahl, Typ, Schwerkraft an/aus)
Starrkörper und Elemente	
rigidbodyinput.txt	Starkörper (Positionen, Massen- und Trägheiten)
beaminput.txt	Geometrisch exakte Balken (Position, Vernetzung, Querschnitt, Trägheit, Material, Dämpfung)
shellinput.txt	Volumendegenerierte Schalen (Position, Vernetzung, Querschnitt, Trägheit, Material, Dämpfung)
spring12input.txt	Federelement an Knoten mit 12 Koordinaten (Federtype, Knotennr., Federkennlinie)
damping12input.txt	Dämpfungselement an Knoten mit 12 Koordinaten (Dämpfungstyp, Knotennr., Dämpfungskennlinie)
pointmass12.txt	Punktmasse für Knoten mit 12 Koordinaten (Starrkörper und Balken)
pointmass6.txt	Punktmasse für Knoten mit 6 Koordinaten (Schale)
Rand- und Nebenbedingungen	
constraint12input.txt	Rand- und Nebenbedingungen für Knoten mit 12 Koordinaten
constraint6input.txt	für Knoten mit 6 Koordinaten
constrain6to12input.txt	zur Kopplung von Knoten mit 6 Koordinaten mit Knoten mit 12 Koordinaten
load12input.txt	Lasten auf Knoten mit 12 Koordinaten
load6input.txt	mit 6 Koordinaten
boundary12input.txt	Inhomogene Lasten, Rand- und Nebenbedingungen auf Knoten mit 12 Koordinaten
boundary6input.txt	mit 12 Koordinaten

Beispiel für Input-Dateien einer hybriden Balken-Schalenstruktur

Beispiel für Input-Dateien einer hybriden Balken-Schalenstruktur

Aufbau und Bedeutung der Input-Dateien

simulationinput.txt

```
!!
!! Filename
$arg0
!! Number of simulations #s
!! -
!! -
$arg1
!! Simulation settings of simulation #s
$ag2
$arg3 arg4 arg5 arg6 arg7 arg8
$arg9
... more simulations
!! Gravity vector
!! -
!! -
$arg10
```

\$Eingabewert	Туре	Bemerkung
arg0	character	Dateiname
arg1	integer	Es können mehrere Simulationen durchgeführt werden. Der Referenzzustand ist der Verformungszustand der vorherigen Simulation.
arg2	character	Simulationsart
arg9	integer	Flag zur Ausgabe von Matrizen in CSR-Format
arg10	3 double	Schwerkraft-Richtungsvektor

\$arg2	Туре	Bemerkung
dynamic character		Nichtlineare transiente Berechnung
arg3	integer	Simulationszeit T [s]
arg4	double	Zeitschritt deltaT [s]
arg5	double	Toleranz für Gleichgewichtsiteration
arg6	integer	Max. Iterationsschritte innerhalb der Gleichgewichtsiteration
arg7	integer	Schwerkraft 0 – an, 1 - aus

\$arg2	Туре	Bemerkung
static	character	Nichtlineare statische Berechnung
arg3	integer	Lastfaktor
arg4 double		Lastschritt (konstant)
arg5 double		Toleranz für Gleichgewichtsiteration
arg6	integer	max. Iterationsschritte innerhalb der Gleichgewichtsiteration
arg7	integer	Schwerkraft 0 – an , 1 - aus

\$arg2	Туре	Bemerkung
static_arc	character	Nichtlineare statische Berechnung mit Pfadnachverfolgung
arg3	integer	Finaler Lastfaktor
arg4	double	Prädiktor-Lastschritt
arg5	double	Toleranz für Gleichgewichtsiteration
arg6	integer	Anzahl der max. Iterationsschritte Gleichgewichtsiteration
arg7	integer	Bogenlängenverfahren 1 – linearisierte Kugel 2 – normale Ebene 3 – Kugel
arg8	integer	gewünschte Gleichgewichts- iterationen 0 – off

\$arg2		Туре	Bemerkung
modal		character	Lineare Modalanalyse
	arg3	integer	Anzahl Eigenfrequenzen
	arg4	double	Toleranz bei der EF-Berechnung
	arg5	double	Untere Grenze der EF, wenn arg7 = 1
	arg6	integer	Obere Grenze der EF, wenn arg7 = 1
	arg7	integer	Eigenwert-Löser 0 – direkter Löser, dichtbesetzte Matrix 1 – direkter Löser, dünnbesetze Matrix

\$arg2	Туре	Bemerkung
buckling	character	Lineare Beulanalyse
arg3 integer		Anzahl Lastfaktoren/Eigenwerte
arg4	double	Toleranz bei der EW-Berechnung
arg5 double		Untere Grenze der EW, wenn arg7 = 1
arg6 integer		Obere Grenze der EW, wenn arg7 = 1
arg7	integer	Eigenwert-Löser 0 – direkter Löser, dichtbesetzte Matrix 1 – direkter Löser, dünnbesetze Matrix

rigidbodyinput.txt

!! Number of rigid bodies / number of body properties

!! -

!! -

\$arg0 \$arg1

!! Coordinates of body

!! -

!! -

\$arg2 \$arg3 \$arg4 \$arg5

!! Properties index of body

!! -

!! -

\$arg6

••

... more rigid bodies

...

!! Properties of index

!! -

!! -

\$arg7 \$arg8 \$arg9 \$arg10 \$arg11 \$arg12 \$arg13 \$arg14 \$arg15 \$arg16

...

... more rigid bodies

...

Туре	Bemerkung
integer	Anzahl der Starrkörper #n
integer	Anzahl von Eigenschaften #e
3 double	Ortsvektor von #n
3 double	Richtungsvektor $oldsymbol{d}_1$ von #n
3 double	Richtungsvektor $oldsymbol{d}_2$ von #n
3 double	Richtungsvektor $m{d}_3$ von #n
integer	Index für Starrkörper-Eigenschaften #e
double	Translatorische Masse m [z.B. kg] von #e
double	Trägheitsmoment I11 [z.B. kgm²] von #e
double	Trägheitsmoment I22 [z.B. kgm²] von #e
double	Trägheitsmoment I33 [z.B. kgm²] von #e
double	Statisches Moment S23 [z.B. kgm²] von #e
double	Statisches Moment S13 [z.B. kgm²] von #e
double	Statisches Moment S3 [z.B. kgm] von #e
double	Statisches Moment S2 [z.B. kgm] von #e
double	Statisches Moment S1 [z.B. kgm] von #e
double	Deviatorisches Moment I12 [z.B. kgm²] von #e
	integer integer 3 double 3 double 3 double integer double

beaminput.txt

!! Number of beam bodies / number of beam properties

!! -

\$arg0 \$arg1

!! Number of nodes / number of elements of beam #1

!! -

!! -

\$arg2 \$arg3

!! Coordinates of beam #1

!! -

!! -

\$arg4 \$arg5 \$arg6 \$arg7

!! Connectivity and cross-section of beam #1

!! -

!! -

\$arg8 \$arg9 \$arg10

... more beams

\$Eingabewert	Туре	Bemerkung	
arg0	integer	Anzahl Balkenkörper #n	
arg1	integer	Anzahl Balken-Eigenschaften #e	
arg2	integer	Anzahl Knoten von #n	
arg3	integer	Anzahl Elemente von #n	
arg4	3 double	Ortsvektor des Elementknoten auf der Balkenmittellinie in #n	
arg5	3 double	Richtungsvektor $oldsymbol{d_1}$ des Elementknoten in #n	
arg6	3 double	Richtungsvektor $oldsymbol{d}_2$ des Elementknotens in #n	
arg7	3 double	Richtungsvektor $m{d}_3$ des Elementknotens in #n	
arg8	integer	Element-Anfangsknoten von Element in #n	
arg9	double	Element-Endknoten von Element in #n	
arg10	double	Index der Balkeneigenschaften #e	

beaminput.txt

!! Cross-section properties of index #1

!! -

!! -

\$arg11 \$arg12 \$arg13 \$arg14 \$arg15 \$arg16 \$arg17 \$arg18 \$arg19 \$arg20 \$arg21 \$arg22 \$arg23 \$arg24 \$arg25 \$arg26 \$arg27

\$arg28 \$arg29

•••

... more cross-section properties

•••

\$Eingabewert	Туре	Bemerkung
arg11	double	Längssteifigkeit EA [z.B. N] von #e
arg12	double	Schubsteifigkeit GA_1 [z.B. N] von #e
arg13	double	Schubsteifigkeit GA_2 [z.B. N] von #e
arg14	double	Biegesteifigkeit EI_1 [z.B. $\mathrm{Nm^2}$] von #e
arg15	double	Biegesteifigkeit EI_2 [z.B. $\mathrm{Nm^2}$] von #e
arg16	double	Torsionssteifigkeit GI_P [z.B. Nm²] von #e
arg17	double	Biege-Schub-Kopplungssteifigkeit ${\it ES}_1$ [z.B. Nm] von #e
arg18	double	Biege-Schub-Kopplungssteifigkeit ES_2 [z.B. Nm] von #
arg19	double	Schub-Biege-Kopplungssteifigkeit GS_1 [z.B. Nm] von #
arg20	double	Schub-Biege-Kopplungssteifigkeit GS_2 [z.B. Nm] von #
arg21	double	Deviationssteifigkeit EI_{12} [z.B. Nm²] von #
arg22	double	Translatorische Massenträgheit $ ho A$ [z.B. kg] von #e
arg23	double	Massenträgheitsmoment $ ho I_1$ [z.B. kgm] von #e
arg24	double	Massenträgheitsmoment $ ho I_2$ [z.B. kgm] von #e
arg25	double	statische Massenträgheit $ ho S_1$ [z.B. kg] von #e
arg26	double	statische Massenträgheit $ ho S_2$ [z.B. kg] von #e
arg27	double	Deviatorisches Massenträgheitsmoment $ ho I_{12}$ [z.B. kgm] von #e
arg28	double	Faktor spannungsbasierte Dissipation [0 1.0] von #e
arg29	double	Faktor geschwindigkeitsbasierte Dissipation [0 1.0] von #e

spring12input.txt
!! Nonlinear springs for nodes with 12 coordinates
!! -
!!
\$arg0 \$arg1
!! Definition of spring-elements
!! - ::
!!-
\$arg2 \$arg3 \$arg4 \$arg5
more springs
:::
!!
!! Spring properties
!! -
!!-
\$arg6
\$arg7 \$arg 8
!!
!! -
!! -
more spring properties

\$Eingabewert	Туре	Bemerkung
arg0	integer	Anzahl Federelemente #n
arg1	integer	Anzahl Federkennlinien #m
arg2	character	Federtyp (s.u.)
arg3	integer	Federknoten (vordefinierter Knoten mit 12 Koordinaten)
arg4	integer	Nummer der Federkennlinie
arg5	3 double	Richtungsvektor des Federelements
arg7	integer	Anzahl der Punkte auf Federkennlinie #m
arg8	2 double	Punktkoordinaten: X (Verschiebung) –Y (Last)

\$arg2	Bemerkung
translatory_global	Wegfeder im globalen KOS
translatory_local	Wegfeder im Knotendirektor-Triad
translatory_inplane	Wegfeder in der Ebene um den Knoten im globalen KOS (geeignet für Bodenfedern)
translatory_corotational	Wegfeder in Verschiebungsrichtung

damping12input.txt
!! Nonlinear damping element for nodes with 12 coordinates !! -
!! \$arg0 \$arg1
!! Definition of damping elements
!! - !! -
\$arg2 \$arg3 \$arg4 \$arg5
more damping elements
 !!
!! Damping properties
!! - !! -
\$arg6
\$arg7 \$arg 8
 !!
!! - !!
!! -
more damping properties

\$Eingabewert	Туре	Bemerkung
arg0	integer	Anzahl Dämpfungselemente #n
arg1	integer	Anzahl Dämpfungskennlinien #m
arg2	character	Dämpfungstyp (s.u.)
arg3	integer	Dämpfungsknoten (vordefinierter Knoten mit 12 Koordinaten)
arg4	integer	Nummer der Dämpfungskennlinie
arg5	3 double	Richtungsvektor des Dämpfungselements
arg7	integer	Anzahl der Punkte auf Dämpfungskennlinie #m
arg8	2 double	Punktkoordinaten: X (Geschwindigkeit) –Y (Last)

\$arg2	Bemerkung
angularvelocity_global	Dämpfung der Rotationsgeschwindigkeit im globalen KOS
angularvelocity_local	Dämpfung der Rotationsgeschwindigkeit im Knotendirektor-Triad


```
shellinput.txt
       !! Material properties
       !! -
       !! -
       $arg9 $arg10 $arg11 $arg12 $arg13 $arg14 $arg15 $arg16 $arg17
       $arg18
       $arg19 $arg20
       ... more material properties
       !! Material sequences
       !! -
       !! -
       $arg21
       $arg22
                    more layers
       $arg23
                    more layers
```

more layers

\$Eingabewert	Туре	Bemerkung
arg9	double	Elastizitätsmodul E_1 [z.B. N/m^2] Material #ma
arg10	double	Elastizitätsmodul E ₂ [z.B. N/m²] Material #ma
arg11	double	Elastizitätsmodul E ₃ [z.B. N/m²] Material #ma
arg12	double	Schubmodul G ₂₃ [z.B. N/m²] Material #ma
arg13	double	Schubmodul G ₁₃ [z.B. N/m²] Material #ma
arg14	double	Schubmodul G ₁₂ [z.B. N/m²] Material #ma
arg15	double	Querkontraktion µ ₂₃ [-] Material #ma
arg16	double	Querkontraktion μ_{13} [-] Material #ma
arg17	double	Querkontraktion μ_{12} [-] Material #ma
arg18	double	Dichte [z.B. kg/m³] Material #ma
arg19	double	Spannungsbasierte Dissipation Material #ma
arg20	double	Geschwindigkeitsbasierte Dissipation Material #ma
arg21	integer	Anzahl von Schichten in Materialsequenz #ms
arg22	integer	Materialeigenschaft #ma in #ms
arg23	double	Schichtdicke [z.B. m] in #ms
arg24	double	Schichtorientierung [°] in #ms

\$arg24

constraint12input.txt

!! Number of constraints for node with 12 coordinates (rigid body and beam)

!! -

!! -

\$arg0

!! Constraints for node with 12 coordinates

!! -

!! -

\$arg1 \$arg2 \$arg3 \$arg4 \$arg5 \$arg6

•••

... Further constraints

•••

\$Eingabewert	Туре	Bemerkung
arg0	integer	Anzahl Zwangsbedingungen
arg1	character	Typ der Zwangsbedingung
arg2	integer	Knoten #1
arg3	integer	Knoten #2
arg4	3 double	Relativposition für Zwangsbedingung am Knoten #1
arg5	3 double	Relativposition für Zwangsbedingung am Knoten #2
arg6	3 double	Richtungsvektor der Relativvektors am Knoten #1

\$arg1	\$arg2 Knoten #1	\$arg3 Knoten #2	\$arg4 phi #1	\$arg5 phi #2	\$arg6 dir	internal	Inhomogenität	Bemerkung
internal	#1	Nein	Nein	Nein	Nein	Nein	Nein	Orthonormalität der Direktoren $oldsymbol{d}_2$ $oldsymbol{d}_1$ $oldsymbol{d}_3$
simplesupport_loca/ - global	#1	Nein	Nein	Nein	Ja	Ja #1	Translation	Loslager
sphericalsupport	#1	Nein	Ja	Ja	Nein	Ja	Nein	Festlager
rigidsupport	#1	Nein	Ja	Ja	Nein	Nein	Nein	Einspannung
rotation_local/-global	#1	Nein	Nein	Nein	Nein	Ja	Rotation	Rotationsachse gesperrt α
sphericaljoint	#1	#2	Ja	Ja	Nein	Ja #1, #2	Nein	Dreiachsige, gelenkige Verbindung
revolutejoint	#1	#2	Ja	Ja	ja	Ja #1, #2	Nein	Zweiachsige, gelenkige Verbindung
rigidconnection	#1	#2	Nein	Nein	Nein	Ja #1	Nein	Starre Verbindung
angularvelocity_local /-global	#1	Nein	Nein	Nein	Ja	Ja	Angularvelocity	Winkelgeschwindigkeit ω

constraint6input.txt

!! Number of constraints for node with 6 coordinates (Shell)

!! -

!! -

\$arg0

!! Constraints for node with 6 coordinates

!! -

!! -

\$arg1 \$arg2 \$arg3 \$arg4 \$arg5 \$arg6

•••

... Further constraints

•••

\$Eingabewert	Туре	Bemerkung
arg0	integer	Anzahl Zwangsbedingungen
arg1	character	Typ der Zwangsbedingung
arg2	integer	Knotennummer #1
arg3	integer	Knotennummer #2
arg4	3 double	Relativposition für Zwangsbedingung am Knoten #1
arg5	3 double	Relativposition für Zwangsbedingung am Knoten #2
arg6	3 double	Richtungsnormale der Schalennormale am Knoten #1

constraint6input.txt

\$arg1	\$arg2 Knoten #1	\$arg3 Knoten #2	\$arg4 phi #1	\$arg5 phi #2	\$arg6 dir	internal	Inhomogenität	Bemerkung
internal	#1	Nein	Nein	Nein	Nein	Nein	Nein	Begrenzung der Schalendicke
simplesupport	#1	Nein	Nein	Nein	Ja	Nein	Translation	Loslager
sphericalsupport	#1	Nein	Nein	Nein	Nein	Nein	Nein	Festlager
revolutesupport	#1	Nein	Nein	Nein	Nein	Nein	Nein	Einspannung
inextensiblerevolutejoint	#1	Nein	Nein	Nein	Nein	Nein	Translation	Starre Verbindung mit Begrenzung der Schalendicken
sphericaljoint	#1	#2	Nein	Nein	Nein	Nein	Nein	Gelenkige Verbindung
revolutejoint	#1	#2	Nein	Nein	Nein	Nein	Nein	Starre Verbindung
layerconnection	#1	#2	Nein	Nein	Nein	Nein	Nein	Schichtverbindung

sphericaljoint

layerconnection

constraint6to12input.txt

!! Number of constraints for connecting node6 and with node12

!! -

!! -

\$arg0

!! Constraints

!! -

!! -

\$arg1 \$arg2 \$arg3

...

... Further constraints

• •

\$Eingabewert	Туре	Bemerkung
arg0	integer	Anzahl Zwangsbedingungen
arg1	character	Typ der Zwangsbedingung
arg2	integer	Knotennummer #1 node12
arg3	integer	Knotennummer #2 node6

\$arg1	\$arg2 Knoten #1	\$arg3 Knoten #2	Bemerkung
softtransition	#1	#2	Verbindung #1+#2, mit Schalenverformung
rigidtransition	#1	#2	Verbindung #1+#2, ohne Schalenverformung

load12input.txt

!! Number of loads for node12

!! -

!! -

\$arg0

!! Loads

!! -

!! -

\$arg1 \$arg2 \$arg3 \$arg4 \$arg5 \$arg6 \$arg7 \$arg8

..

... Further loads

•

\$Eingabewert	Туре	Bemerkung
arg0	integer	Anzahl Lasten
arg1	character	Lastart/ Lastfunktion
arg2	double	Lastintensität [z.B. N]
arg3	double	Lastdauer [z.B. s]
arg4	integer	Knotennummer #1
arg5	3 double	Richtungsvektor räumliche Kräfte
arg6	3 double	Richtungsvektor räumliche Momente
arg7	3 double	Richtungsvektor materielle Kräfte
arg8	3 double	Richtungsvektor materielle Momente

\$arg1	Bemerkung
delta	Stoß
heaviside	Ab Lastdauer konstant, davor null
constant	Konstant
linear	Linear
linear0	Linear bis Lastdauer, danach null
linearC	Linear bis Lastdauer, danach kontant
triangle	Dreiecksverlauf bis Lastdauer, danach null
sinusoidal	Periodisch
square	Konstante bis Lastdauer, danach null
random	Zufallswert
file	Einlesen einer Zeitreihe
	-

load6input.txt

!! Number of loads for node6

!! -

\$arg0

!! Loads

!! -

!! -

\$arg1 \$arg2 \$arg3 \$arg4 \$arg5 \$arg6

... Further loads

\$Eingabewert	Туре	Bemerkung
arg0	integer	Anzahl Lasten
arg1	character	Lastart/ Lastfunktion
arg2	double	Lastintensität [z.B. N]
arg3	double	Lastdauer [z.B. s]
arg4	integer	Knotennummer #1
arg5	3 double	Richtungsvektor räumliche Kräfte
arg6	double	Materiell in Dickenrichtung

Bemerkung	
Stoß	
Ab Lastdauer konstant, davor null	
Konstant	
Linear	
Linear bis Lastdauer, danach null	
Linear bis Lastdauer, danach kontant	
Dreiecksverlauf bis Lastdauer, danach null	
Periodisch	
Konstante bis Lastdauer, danach null	
Zufallswert	
Einlesen einer Zeitreihe	

boundary12input.txt / boundary6input.txt

!! Number of inhomogeneous boundary condition (ibc) for constraints at node12

!! -

!! -

\$arg0

!! Inhomogeneous boundary conditions

!! -

!! -

\$arg1 \$arg2 \$arg3 \$arg4 \$arg5

..

... Further ibc

••

\$Eingabewert	Туре	Bemerkung
arg0	integer	Anzahl ibc
arg1	character	ibc-Art, -Funktion
arg2	double	Intensität [z.B. m, m/s, rad, rad/s]
arg3	double	Dauer [z.B. s]
arg4	integer	Nummer der Zwangsbedingung #n
arg5	character	wenn "file" – "filename.txt", sonst "nofile"

\$arg1	Bemerkung	
delta	Stoß	
heaviside	Ab Lastdauer konstant, davor null	
constant	Konstant	
linear	Linear	
linear0	Linear bis Lastdauer, danach null	
linearC	Linear bis Lastdauer, danach kontant	
triangle	Dreiecksverlauf bis Lastdauer, danach null	
sinusoidal	Periodisch	
square	Konstante bis Lastdauer, danach null	
random	Zufallswert	
file	Einlesen einer Zeitreihe	

Funktionen für äußere Lasten und inhomogene Randbedingungen

Funktion	Bemerkung	
delta	Stoß	
heaviside	Ab Lastdauer konstant, davor null	
constant	Konstant	
linear0	Linear bis Lastdauer, danach null	
linearC	Linear bis Lastdauer, danach kontant	
triangle	Dreiecksverlauf bis Lastdauer, danach null	
sinusoidal	Periodisch	
square	Konstante bis Lastdauer, danach null	
random	Zufallswert	
file	Einlesen einer Zeitreihe	

Aufbau und Bedeutung der Output-Dateien

Output-Datei	Ausgabe von	
\$filename_q.m	Unbekannte Koordinaten Zeile 1 – Gesamt-Simulationsschritt Spalte: (rigid bodies) \overline{x} , d_1 , d_2 , d_3 ,,, (beams) \overline{x} , d_1 , d_2 , d_3 ,,, (shells) \overline{x} , d , E ,,,	
\$filename_v.m	Unbekannte Geschwindigkeitskoordinaten Zeile 1 – Gesamt-Simulationsschritt Spalte: (rigid bodies) \overline{v} , w_1 , w_2 , w_3 ,,, (beams) \overline{v} , w_1 , w_2 , w_3 ,,, (shells) \overline{v} , w ,,,	
\$filename_steps.m	Simulationseigenschaften Zeile 1 – Gesamt-Simulationsschritt Spalte (1) Analyse, (2) Analyseart, (3) Zeit-/Lastschritte, (4) Iterationen in Zeit-/Lastschritt	
\$filename_t.m	Zusammenfassung der Simulationsschritte und -zeiten Zeile 1 – Gesamt-Simulationsschritt Spalte (1) akkumulierte Simulationszeit, (2) Subzeitschritt	
\$filename_invariants.m	Invarianten: Impuls, Drall und Energien Zeile 1 – Gesamt-Simulationsschritt Spalte (1-3) Impulsvektor, (4-6) Drallvektor, (7) kinetische Energie, (8) potentielle Energie, (9) totale Energie	
\$filename_lambda.m	Unbekannte Lagrange-Multiplier Zeile 1 – Gesamt-Simulationsschritt Spalte Lagrange-Multiplier: Reihenfolge: constraints12input.txt, constraints6input.txt, constraints6to12input.txt	
\$filename_model.m	Modell-Zusammenfassung	

Name	Änderungsdatum	Тур
■ DeSiO	26.03.2021 12:08	Anwendung
solution_invariants	29.03.2021 17:44	MATLAB Code
🖺 solution_lambda	29.03.2021 17:44	MATLAB Code
🖺 solution_model	29.03.2021 17:44	MATLAB Code
🖺 solution_q	29.03.2021 17:44	MATLAB Code
Solution_steps	29.03.2021 17:44	MATLAB Code
Solution_t	29.03.2021 17:44	MATLAB Code
🖺 solution_v	29.03.2021 17:44	MATLAB Code
📓 beaminput	16.08.2017 10:19	TXT-Datei
🔐 constraint6to12input	15.08.2017 15:24	TXT-Datei
🔐 constraint12input	15.08.2017 17:10	TXT-Datei
📝 load12input	15.08.2017 17:10	TXT-Datei
🔐 output	25.03.2021 12:52	TXT-Datei
📝 shellinput	03.11.2017 10:54	TXT-Datei
🕍 simulationinput	16.06.2020 15:13	TXT-Datei

- Einrichten von DeSiO-Structure
 - Kompilieren in Windows
 - Intel Fortran-Compiler: Source-Code ausführen mit "compile.bat"
 - Debugging und Compiling in Microsoft Visual Studio möglich

- Ausführen in Windows
 - Zum Installieren von DeSiO mit den Inputdateien, muss die Windows-Installationsdatei ausgeführt werden

DeSiO_setup

Name	Änderungsdatum	Тур	Größe
example	02.05.2021 15:49	Dateiordner	
input_files	02.05.2021 15:49	Dateiordner	
intel_redist	02.05.2021 15:49	Dateiordner	
■ DeSiO	30.04.2021 17:00	Anwendung	2.201 l
DesiO_user_license_Draft	02.05.2021 14:38	Microsoft Word-D	13 I
flicense_intel	02.05.2021 14:41	Microsoft Word-D	52 I
📝 license	02.05.2021 14:38	TXT-Datei	11
mtee mtee	10.06.2020 00:05	Anwendung	19
redisvars_intel64	01.05.2021 18:12	Windows-Batchda	11
🔟 unins000	02.05.2021 15:49	DAT-Datei	27 I
得 unins000	02.05.2021 15:49	Anwendung	2.968 l

- Einrichten von DeSiO-Structure
 - Kompilieren in **Linux** auf dem Luis-Cluster
 - Intel Fortran-Compiler durch Ausführen von "compile_linux.bat"
 - Möglichkeit mit gfortran-Compiler mit Verweis auf Intel-mkl-Library

- Ausführen in **Linux** auf dem Luis-Cluster
 - DeSiO in Arbeitsverzeichnis kopieren
 - Berechnung auf dem user-Cluster-Knoten mit "run_local.sh"
 - Berechnung auf Luis-Cluster-Knoten mit "run cluster.sh"

Achtung:

Linux/

readme.txt beachten

Wir verwenden zurzeit Gleichungslöser der kostenpflichtigen Intel-mkl-Library. Die Umstellung auf unabhängige OpenSource Bibliotheken ist in Bearbeitung

- Beispiele
 - Statische Analyse
 - Eingespannter Träger
 - Halb-Rahmenstruktur
 - Dynamische Analyse
 - 3 Pendelstäbe
 - NREL 5MW-Windenergieanlage
 - Modalanalyse
 - Dynamische Analyse

displacement vs. time of node11

- Statische Analyse: Eingespannter Träger
 - Benötigter Input:
 - simulationinput.txt
 - beaminput.txt
 - constraint12input.txt
 - load12input.txt
 - Materialdaten:
 - E-Modul: $E = 2.1 \cdot 10^{11} N/m^2$
 - Schubmodul: $G = 8.0 \cdot 10^{10} \ N/m^2$
 - Dichte: $\rho = 7.850 \, kg/m^3$
 - Querschnitt: Rohrquerschnitt mit $r_i = 0.06 \, m$ und $r_a = 0.08 \, m$
 - 1 Balkenkörper mit 10 Balkenelemente, 11 Knoten
 - Zwangsbedingungen: rigidsupport, internal, simplesupport_global
 - Last: 1 Biegemoment mit $M = 2.3 \cdot 10^7 Nm$

0.4

time s

0.6

8.0

- Statische Analyse: Halbrahmen
 - Benötigter Input:
 - simulationinput.txt
 - beaminput.txt
 - constraint12input.txt
 - load12input.txt
 - Materialdaten:
 - E-Modul: $E = 7.20 \cdot 10^6 N/m^2$
 - Schubmodul: $G = 2.77 \cdot 10^6 \, N/m^2$
 - Dichte: $\rho = 1.00 \, kg/m^3$

- 2 Balkenkörper mit je 12 Balkenelemente, 2 x 13 Knoten
- Zwangsbedingungen: sphericalsupport, internal, simplesupport_global, rigidconnection
- Last: 1 Kraft mit $F = -1.0 \cdot 10^5 N$

- Dynamische Analyse: 3 Pendelstäbe
 - Benötigter Input:
 - simulationinput.txt
 - beaminput.txt
 - constraint12input.txt
 - load12input.txt
 - boundary12input.txt
 - Materialdaten:
 - E-Modul: $E = 2.10 \cdot 10^{11} N/m^2$
 - Schubmodul: $G = 8.00 \cdot 10^{10} \ N/m^2$
 - Dichte: $\rho = 7.85 \, kg/m^3$
 - Querschnitt: Kreisquerschnitt mit $r_a = 0.1 \, m$ und Kreisringquerschnitt $r_a = 0.1 \, m$, $r_i = 0.08 m$
 - 3 Balkenkörper: (1) 3 Elemente, (2) 7 Elemente, (3) 3 Elemente
 - Zwangsbedingungen: sphericalsupport, internal, revolutejoint, angularvelocity_global
 - Last: Schwerkraft an $g = -9.81 m/s^2$ und Rotationsgeschwindigkeit

Modellierung der NREL 5 MW – Windenergieanlage Gemäß: Jonkman et al. 2009, Technical Report NREL/TP-500-38060: Definition of a 5-MW Reference Wind Turbine for Offshore System Development.

Rotorblatt:

Länge	61,50	m
Gewicht	17.740,00	kg
Massenträgheitsmoment	11.776.047,00	kg m²
Massenschwerpunkt	20,48	m

Nabe und Gondel:

Höhe über GOK	87,60 m
Masse Nabe	56.780,00 kg
Masse Gondel	240.000,00 kg

Nenndrehzahl Rotor	12,10 UpM
Nennzahl Generator	1.173,70 UpM
Trägheitsmoment Generator	534.116,00 kg m ²

Turm:

Höhe	87,60 m
Masse	347.460,00 kg
Massenschwerpunkt	38,23 m

DeSiO-

Structure

- Modellierung einer der Windenergieanlage NREL 5 MW
 - Vereinfachtes Modell bestehend aus
 - Turm 10 Balkenelemente
 - 3 Rotorblätter je 49 Balkenelemente
 - Nabe und Gondel 2 Starrkörper
 - Triebstrang starre Nebenbedingung
 - Einspannung am Turmfuß
 - Benötigter Input:
 - simulationinput.txt
 - rigidbodyinput,.txt
 - beaminput.txt
 - constraint12input.txt
 - internal, rigidconnection, revolutejoint, rigidsupport

- Modalanalyse: Windenergieanlage NREL 5 MW
 - Benötigter Input:
 - simulationinput.txt
 - rigidbodyinput,.txt
 - beaminput.txt
 - constraint12input.txt

Mode	Beschreibung	Frequenz DeSiO [Hz]
1	1. Turm vorn-hinten	0,310
2	1. Turm links-rechts	0,314
3	1. Torsion Antriebsstrangs	0,620*
4	1. Schlagbewegung, 1. asymmetrisch, Blätter	0,673
5	1. Schlagbewegung, 2. asymmetrisch, Blätter	0,681
6	1. Kollektive Schlagbewegung Blätter	0,918
7	1. Kantenbewegung, 1. asymmetrisch, Blätter	1,047
8	1. Kantenbewegung, 2. asymmetrisch, Blätter	1,081
9	2. Schlagbewegung, 1. asymmetrisch, Blätter	1,925
10	2. Schlagbewegung, 2. asymmetrisch, Blätter	1,926

* bei flexiblem Triebstrang (FAST -Berechnung)

- Dynamische Analyse: Windenergieanlage NREL 5 MW
 - Benötigter Input:
 - simulationinput.txt
 - rigidbodyinput,.txt
 - beaminput.txt
 - constraint12input.txt
 - internal, rigidconnection, revolutejoint, rigidsupport, angularvelocity_global

amplitude200.txt

150

200

50

100

time s

-100

-150

Vielen Dank für die Aufmerksamkeit