농식품 빅데이터 인공지능 기본과정

목표

- ① 인공지능으로 어떤 문제를 해결할 수 있는지 이해한다.
- ② 파이썬 기초지식을 습득하고, 데이터를 다룰 수 있다.
- ③ 머신 러닝의 큰 그림을 이해하고, 기본 모델링을 수행할 수 있다.

과정 진행

1일차 2일차 3**일차** 4일차 5일차 √ 인공지능 개요 ✓ Python 기초③ ✓ 머신러닝 기초② ✓ 머신러닝 기초③ ✓ Python 기초② ■ 인공지능 개요 ■데이터 자료형 : List ■가설수립 ■회귀분석 ■시각화 ■ 최신 기술동향 Dictionary ■ 탐색적 데이터 분석 ■ 가락시장 농산물 가 ■ 데이터 준비 격 예측 ■ 다양한 인공지능 서 ■ Pandas Dataframe ✓ 머신러닝 기초① 비스/도구 ■ 농산물 입고량 대비 ■ 머신러닝 프로세스 가격 분석 ■머신러닝 코딩 무작 정 따라하기 ✓ Python 기초① ■개발환경 ■ 기초 중의 기초! ■ 반복문, 조건문

1. 인공지능 개요

순서

- ✓ AI의 최신 기술 동향
- ✓ AI의 기본 개념과 비즈니스 적용
- ✓ 다양한 AI 서비스와 도구들
- ✓ 클라우드 도구를 활용한 AI 실습
- ✓ 그러면 우리에게 무엇이 필요한가?

[AI의 최신 기술 동향]

인공지능과 관련된 용어들

1. Machine Learning(**기계학습**)

기본적인 규칙만 주어진 상태에서 입력 받은 정보를 활용해 스스로 학습

2. Artificial Neural Network(**인공 신경망**)

인간의 뉴런 구조를 본떠 만든 기계 학습 모델

3. Deep Learning(**旨러닝**)

입력과 출력 사이에 있는 인공 뉴런들을 여러 개 층층히 쌓고 연결한 인공신경망 기법을 주로 다루는 연구

4. Cognitive Computing(인지컴퓨팅)

기계학습을 이용하여 특정한 인지적 과제(시각, 청각 등)를 해결할 수 있는 프로그램 또는 솔루션

5. Neuromorphic Computing(뉴로모픽 컴퓨팅)

인공신경망을 하드웨어적으로 구현한 것

인공지능과 로봇

- ✓ 인공지능과 로봇을 혼동, 혼용
 - 인공지능 : 어떤 정보를 받아서 해석하여 결과를 출력하는 등 정보처리의 문제
 - 로봇 : 어떤 부위의 구동기를 제어해서 어떤 식으로 시스템을 물리적으로 제어할 것인가와 같은 하드웨어 차원의 문제
- ✓ 알파고처럼 컴퓨터 안에서만 돌아가는 인공지능과, 단순 알고리즘과 제어 프로그램에 의해 움직이는 협업로봇이 존재하듯이 이들은 서로 긴밀하게 묶여 있는 분야가 아니고 상호보완의 관계

Weak AI vs Strong AI

유용한 도구로써 설계된 인공지능

인간의 지능을 모방한 인공지능

인공지능? 머신러닝? 딥러닝?

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

출처 : https://www.nvidia.com/

Digital Transformation? Al Transformation!

Digital Transformation, Al Transformation

IBM 아빈드 크리슈나 최고경영자

- ✓ 모든 기업, <u>AI **기업 돼야**</u>...코로나로 디지털 전환 가속
- ✓ AI는 혁신의 통찰력과 전문성을 확장할 수 있는 유일한 방법
- ✓ 그는 디지털 전환을 주도하는 두 가지 주요 동력으로 **하이브리드 클라우드**와 <u>Al</u>를 꼽았다.

인공지능 분야 시장 성장

- ✓ 2016년 약 US\$ 32.2억이었던 세계 인공지능 시장 규모는, 기하급수적으로 성장하여 2025년 US\$ 898.5억을 기록할 것으로 전망됨.
- ✓ Deloitte가 2019년 1월 CES(Consumer Electronics Show)에서 발표한 설문조사 결과
 - IT 자동화, 품질관리, 정보보안, 예측분석, 고객관리 등의 분야에 인공지능 기술이 접목되고 있음.

Hype Cycle for Artificial Intelligence, 2020

Time

Democratization of Artificial Intelligence

✓ AI의 민주화

- AI가 더 이상 전문가의 독점적인 주제가 아님을 의미
- 더 많은 사람들에게 AI 가치를 제공하여 다음 단계로 나아갈 것.
 - 고객, 비즈니스 파트너, 비즈니스 임원, 영업 사원, 조립 라인 작업자, 애플리케이션 개발자 및 IT 운영 전문가 등

✔엔터프라이즈 급 AI 플랫폼 구축

- 더 많은 사용자를 지원하기 위해 필요.
- 이를 구축 운영하는 AI팀 빌딩

Industrialization of AI platforms

✓ AI 플랫폼의 산업화

- AI의 재사용 성, 확장 성 및 안전성을 가능하게 하여 채택 및 성장을 가속화
- 최근 Gartner 설문 조사에 따르면 CEO가 AI 프로젝트를 주도하고 있으며 AI 채택과 AI 솔루션에 대한 투자가 가속화되고 있다고 함.
- AI 솔루션이 발전하게 됨에 따라 조직은 많은 것을 배우고 실수를 줄이게 될 것
- 그러나 AI 솔루션을 채택하게 됨에 따라, <u>딥 페이크</u> 및 AI 보안과 같은 새로운 이슈가 발생할 것

과거의 Data Driven, 미래의 Data Driven

근거 지식 + 경험

주체

사람

데이터 (+ 지식 + 경험)

사람

빅데이터 (+ 지식 + 경험)

인공지능

초 연결 사회, 무엇을 연결하는 것인가?

- **✓비 대면**을 선호하는 사회
- ✓ 인터넷으로의 연결은 더욱 가속화.
- ✓ 사람과 사람 뿐만 아니라,
 가전기기와 사람, 공장과 사람
- ✓ 5G는 **연결 속도**를 향상시킴.
- ✓ 그러나, Pear to Pear 연결이 아니라, 중앙에 '**클라우드**'가 자리잡음.
- ✓ 그리고 이 연결을 통해 흐르는 것은, 데이터!

몇가지 고민해야 할 질문들

- ✓ 앞으로 어떤 일을 AI가 가져가게 될 것인가?
- ✓ 나는 AI를 활용하여 어떻게 일하게 될까?
- ✓ 나는 지금 어떤 역량을 갖춰야 할 것인가?

[인공지능의 기본 개념과 비즈니스 적용]

인공지능이 해결하는 대표적인 문제들

질문1: A일까? B일까? (분류 알고리즘)

- ❖ 이 타이어를 1000km안에 교체해야 할까?
- ❖ 더 많은 고객을 끌어들이기 위해서 5000원 쿠폰과 25%할인 중 무엇이 더 효과적일까?

질문2: 정상일까? (이상검출 알고리즘)

- ❖ 이 자동차의 압력게이지가 정상일까?
- ❖ 네트워크 부하를 모니터링 하는 중에, 현재 부하 정도면 정상인가?
- ❖ 오늘 기온이 정상인가?

질문3 : 얼마나 많이? (회귀분석 알고리즘)

- ❖ 내일 온도는 얼마나 될까?
- ❖ 4분기 매출액은 얼마나 될까?

질문4: 어떻게 구분할까? (클러스터링)

❖ 상품을 어떻게 분류하면 매출이 향 상될까?

질문5 : 지금 어떤 행동을 해야 하지? (강화학습 알고리즘)

- ❖ [온도조절시스템] 현재 실내/실외 온 도를 측정하고, 온도를 조절할지 말지 결정
- ❖ [자율주행차] 신호등 노란불에서 브 레이크를 밟을 것인가? 액셀을 밟을 것인가?

사례①: 판매량 예측

✔유통점 판매량 예측 프로젝트

- 매장에서의 발주 정확도를 높이기 위해
- 6개 매장 200개 상품의 일별 수요량을 예측
- 딥러닝을 이용한 알고리즘 개발

✓ 현장에서의 문제

- 발주 권한을 가지고 있는 지점장들의 반발...
- 그래서, 인공지능 알고리즘과 지점장들 간의 [발주 정확도] 배틀 제안.
- 결과는?

인공지능의 예측 정확도 **73%**

지점장들의 예측 정확도 **42%**

사례②: 정수기 렌탈 비정상 계약 예측

✓ 문제점

- 비정상 계약:계약후,월 납입금연체,정수기/공기청정기는 중고나라에 되팔아 현금화
- 회사에 꽤 큰 손실을 가져옴

✓해결책

- 고객정보와 과거 계약 패턴 분석
- 사전에 비정상 계약에 대해 예측하고, 계약 거절하도록

✓ 현장에서의 문제

온수 정수

KPI: 계약 체결건수, 금액 KPI : 계약 유지율

[인공지능 서비스와 도구들]

서비스:데이터 시각화

✓ [한스 고슬링의 Gapminder] https://www.gapminder.org/tools

서비스: 이미지에서 Context 추출하기

- ✓ Cocodataset
 - 사진 내용을 문장으로 표현 :
 - http://cocodataset.org/#explore
 - 크롬에서는 잘 안됩니다. Edge 브라우저로 접속해 봅시다.

large yellow and white cat sitting in a suitcase.
a cat is laying on top of a suitcase on some clothes
an orange cat sitting on top of a piece of luggage.
there is a cat sitting on top of a small luggage
a brown cat is sitting in a black suitcase.

서비스: 이미지에서 Context 추출하기

서비스: 이미지에서 Context 추출하기

- a man sitting on a couch with a laptop in a living room.
- a living scene is depicted with a man sitting on a couch.
- a lone man sits on a living room couch with a laptop while watching tv.
- a living room with blue furniture and a flat screen tv.
- a person sitting the couch with a laptop in a living room.

서비스: 사진에서 감정상태 추출하기

✓ FACE API

■ 얼굴인식: https://azure.microsoft.com/ko-kr/services/cognitive-services/face/

서비스 : 사진에서 감정상태 추출하기

✓ FACE API

이미지 URL

👶 찾아보기

제출

검색 모델:

detection_02 V

서비스 : 사진에서 감정상태 추출하기

✓ 인터넷 혹은 개인 사진을 업로드하면, 감정상태를 추출할 수

있습니다.

빅데이터 분석 도구 소개

Data 분석 언어

R의 장점

- ✓ 수 많은 패키지(12000여개)
- ✓ 풍부한 통계 분석 함수와 정보 제공.

Python의 장점

- ✓ 쉬운(?) 개발 언어.
- ✓ Tensorflow! (딥러닝!)
- ✓ 현재 가장 많이 사용

R & R studio

Python & Anaconda & Google Colaboratory

Azure ML Studio

✓ 블록코딩처럼 모듈을 연결하여 머신러닝을 수행할 수 있도록 도와주는 웹 기반 도구

Azure ML Studio

Teachable Machine

✔이미지 분류, 음성인식, 동작 감지 등을 손쉽게 학습시키고 모델을 활용할 수 있는 도구

Teachable Machine

Train a computer to recognize your own images, sounds, & poses.

A fast, easy way to create machine learning models for your sites, apps, and more - no expertise or coding required.

Teachable Machine

✔데이터 준비 > 모델링 > 예측

Power BI

- ✓ 데이터를 바탕으로 신속한 의사 결정을 할 수 있도록
- ✓ 손쉽게 데이터를 연결하고, 모델링 및 탐색하여
- ✓ 시각적 보고서를 만들 수 있는 도구

[클라우드 도구를 활용한 인공지능]

[Azure ML Studio] Demo

데이터 모델링 Flow

- ① 준비된 데이터 : Samples / Import Data
- ② 데이터 분할 : Split Data
- ③ 학습:
 - Regression / Classification
 - Train Model
- ④ 예측 : Score Model
- ⑤ 평가: Evaluate Model

순서와 Key word를 외웁시다!

②데이터 분할

✔데이터 셋 분리

- Case ① : 학습할 때
 - Train Set : 알고리즘을 이용해서 모델을 생성
 - Test Set : 모델 성능 검증
- Case ② : 실전에서 주로 사용
 - Validation Set : 모델 성능 검증
 - Test Set : 모델 최종 평가

②데이터 분할: Split Data

- ✓ Input node : 준비된 데이터셋
- ✓ Output node
 - ① : fraction of rows in the first node 세팅 비율 → 보통 Training Set
 - ② : ① 빼고 나머지 → 보통 Test Set

③학습 : Train Model

- ✓ 변수 지정
 - Label, Target, 목표변수, Output...
 - Feature, 통제변수, 조작변수, 변수, Input
- ✓ 알고리즘 선택

④예측 : Score Model

- ✓ 학습한 모델 + Test Set을 이용하여
- ✓예측하기

Scored Labels	Scored Probabilities
, 1	.addl
1	0.888216
1	0.915083
1	0.789747
0	0.442174
1	0.538212
0	0.276142
1	0.900617
1	0.953611
1	0.91833
1	0.555966
1	0.902345

⑤평가: Evaluate Model

✓ 예측한 결과와 실제 결과 비교하여 평가하기

[Teachable Machine] 실습

- ✓ https://teachablemachine.withgoogle.com/train 에 접속
- ✓ [Image Project] 선택

New Project

Open an existing project from a file.

Image Project

Teach based on images, from files or your webcam.

Audio Project

Teach based on one-second-long sounds, from files or your microphone.

Pose Project

Teach based on images, from files or your webcam.

- ✔ Class 1, Class 2 이름을 변경
- ✔ Class 1 안의 Webcam 버튼을 누른다.

- ✓ 웃는 표정을 짓고, Hold to Record 버튼 클릭
- ✓ 또 다른 웃는 표정을 지으며 샘플을 적어도 20개 이상 만든다.

✓ Class 2의 Webcam을 클릭하고, 이번에는 우는/슬픈 표정의 샘플을 저장한다.

✓ Training 버튼을 클릭하면, 학습(모델링)이 진행됩니다.

- ✓모델을 테스트 합니다.
- ✓ 웃는 표정과 우는 표정을 지을 때, 어떻게 분류하는지 확인합니다.

실습①: 이미지 분류

- ✓ 여러분 스스로 아이디어를 내서 이미지 분류하는 실습을 직접 진행해 봅니다.
- **√** 예
 - 바나나가 덜 익은 것, 잘 익은 것, 썩은 것을 분류하기
 - 아빠와 엄마의 얼굴을 학습하고, 자녀들이 누구를 더 닮았는지 비교해보기.
 - 얼굴의 감정상태 분류하기(행복, 화남, 무표정, 슬픔 ...)

실습②: 소리 분류하기(Optional)

- ✓ 여러분 스스로 아이디어를 내서 소리 분류하는 실습을 직접 진행해 봅니다.
- **√** 예
 - 몇가지 명령어를 학습시키고, 분류하기 → Arduino와 연계하여 장치를 만들 수 있다.