生命的起源与演化

生命的起源

神创论? 自然发生论?

生命的化学进化假说

- 生命小分子的非生物合成
- 小分子连接成为大分子
- 大分子聚集成滴,形成前生物
- 遗传系统的建立,有可能是RNA主导的

真核细胞的起源: 核被膜的生成(和内质网, 细胞膜相近, 可能是细胞膜内陷); 内共生(线粒体, 叶绿体是吞了别的生命没有消化掉)

多细胞生物的起源:细胞聚集成细胞团,细胞相互作用,分化,生成生殖细胞

地球的生命史

- 地球的年龄46亿年
- 最古老的岩石, 最早的生命迹象38亿年
- 最早的细胞35亿年
- 真核细胞19-20亿年
- 后生生物6-7亿年
- 维管植物登陆4亿年
- 哺乳动物2.1-2.5亿年
- 人类500-700万年

蓝藻对地球环境的影响

- 积累氧气,导致真核生物后生生物的起源
- 形成臭氧层, 后生生物登陆
- 尽在叠层石, 固定二氧化碳, 气温下降, 包是液态水

演化的机制

达尔文的自然选择学说

- 遗传与变异
- 繁殖过剩
- 生存竞争
- 自然选择和适者生存

现代综合论

- 用群体遗传学解释达尔文学说
- 选择作用的对象是种群
- 同地域同物种全体成员构成一个种群,全部个体的全部基因成为基因库
- 适者留下较多的后代,种群基因库的组成改变
- 基因频率的改变就是进化

hardy-weinberg定律: 满足下面的条件, 基因的频率每代中保持不变

- 种群足够大
- 个体随机交配
- 没有突变
- 没有新基因加入
- 没有自然选择

种群小: 出现遗传漂变(小的随机事件影响很大); 定殖者/奠基者效应(迁出一个小种群, 小种群里面基因频率很随机); 瓶颈效应(突然发生事件, 某种性状全死了)

不随机交配: 择偶行为

基因流动: 人种融合

自然选择: 概念基因频率, 桦尺蠖, 筛掉一边/中间/两边

小进化 / 大进化

小进化: 物种之类的改变, 种内的性状维持或变异的规律

大进化: 物种之上的分类在时间尺度上的变化过程; 多是间断平衡的, 物种爆发 / 集群绝灭; 幸者生存而不是适者生存, 可能有深层的演化机制, 大进化不是小进化的叠加

发育与演化

- 重演: 在胚胎发育过程中重复进化过程
- 异时异速: 生殖细胞和体细胞发育异时, 幼态持续
- 大突变导致新器官产生: Hox基因(肋骨), 神经棘细胞(产生新细胞类型)

分子演化的中性学说: 大多数突变是中性的, 生物的进化是中性突变随机漂变的结果, 和选择无关.

同一个分子的演化速度相同, 和物种的进化速率无关(两个物种分别进化, 总进化时间是2T)

人类的起源与演化

现代人,智人,物种历史约20万年.

狭义定义: 人亚科, 现代人和已经灭绝的物种(早期人类)

广义定义: 人科(现代智人, 红毛猩猩2, 大猩猩2, 黑猩猩, 倭猩猩, 和灭绝的所有人科物种)

- 灵长目 人猿超科
 - 。 长臂猿科
 - 。 大猩猩
 - o 大猿科: 猩猩, 大猩猩, 黑猩猩
 - 。 人科: 所有古人类和现代人

颅骨大孔人在下方, 猩猩在后方; 人和黑猩猩由最近的共同祖先进化而来

人类的演化历程

- 南方古猿: 最早的人类
- 早期人属成员

- 。 能人
- 。 匠人
- 。 直立人
- 智人

南方古猿: 距今400-100万年

- 是多分支的早期人科成员的总称
- 脑容量小,约500cc,骨骼特征接近猿
- 纤细型南猿, 完全直立, 头骨纤细; lucy
- 粗壮型南猿,头骨颌骨强壮有力

600-700万年前, 人类起源; 发现了600-700万年的厄罗宁人, 萨赫勒人, 接近人猿分界点; 直立行走开始于400万年前, 但是脑量增加不早于200万年.

能人(200-175万年): 最早的人属化石; 脑量680cc, 能制造工具

直立人(175-25万年): 爪哇人(1000cc), 北京人; 身高1.5m, 脑量1000cc, 直立行走, 可能由语言能力

智人(60万年-): 早期海德堡人和尼安德特人, 晚期智人

尼安德特人

- 广泛分布于欧洲西亚
- 脑容量稍大, 身高相近略强壮
- 由丧葬习俗,能制作各类工具

晚期智人: 克罗马农人; 金牛山人(28万年, 有原始和进步的特征); 山顶洞人

人类是分支进化模式, 同期存在多种人科成员, 只有智人生存至今

多起源论: 200万年前走出非洲, 各自进化, 种群间有基因交流; 现代人同时进化

单起源论: 200万年前走出非洲, 4-5万年第二次走出非洲, 取代土著人, 演变成为现代人

生命多样性

共有200万种,植物50万,动物150万

生物分类

- 形态学依据: 外部形态, 解刨结构, 系统发生
- 分子生物学反应: 免疫交叉反应, 同源生物大分子序列的同源性

物种

互交繁殖的自然群体, 和其他群体生殖隔离, 占据特定的生态位; 生殖隔离有

- 合子前隔离: 生态隔离, 行为隔离, 时间隔离, 器质性隔离
- 合子后隔离: 发育失败, 后代夭折或不育

物种的命名: 家犬(藏獒, 哈巴狗); 甘蓝(芥兰, 西兰花); 红薯(旋花科, 牵牛花)

属名(首字母大写斜体)+种名(斜体), Homo sapiens

生物分界

三域六界

- 古核生物
- 原核生物
- 真核生物
 - 。 原生生物
 - ο 植物
 - o 动物
 - o 真菌
- 原核生物: 细胞壁是肽聚糖; 环状DNA, 有质粒; RNA聚合酶在体外转录; 有操纵子, 没有内含子; 起始氨基酸是甲酰甲硫氨酸
- 古核生物: 细胞壁是蛋白质或假肽聚糖; 环状DNA, 有质粒, 形成类染色质的结构; 具有操纵子结构; mRNA5'和 16s rRNA 3'互补, 起始氨基酸是甲硫氨酸
- 真核生物: 细胞壁多糖, 几丁质; 线性DNA, 具有染色质结构; 转录因子帮助识别启动子; 有内含子; 起始氨基酸是甲硫氨酸

病毒

一种准生命, 只能寄生于活细胞.

(通常一种)核酸和蛋白质的复合体; 衣壳 + 核酸 -> 核衣壳; 有的再加一层囊膜(从细胞出芽的时候带出来的); 大小介于 10-300nm之间; 光镜看不到, 不能人工培养, 对抗生素不敏感

- 真病毒: DNA或RNA与组成的核酸-蛋白质复合体
- 类病毒: 感染性的RNA构成, 只有20余种

按照宿主分类: 动物病毒, 植物病毒, 细菌病毒(噬菌体)

按核酸分类

- DNA病毒
 - o 单链: 细小病毒科(腺病毒相关病毒,必须有腺病毒先来才能感染)
 - o 双链
 - 有囊膜: 孢疹(起泡), 痘病毒(天花)
 - 无囊膜: 多瘤病毒, 腺病毒, T噬菌体
- RNA病毒
 - 。 双链: 呼肠孤病毒(呼吸道, 肠道, 孤儿病毒(只有它一个))
 - o 单链逆转录: HIV, 肿瘤病毒
 - o 单链
 - 正链: 黄热病毒
 - 负链: 麻疹, 流感, ebola
 - 有囊膜: 黄热, 狂犬, 麻疹, 腮腺炎, ebola
 - 无囊膜: 流感病毒, 脊髓灰质炎病毒, TMV

宿主专一性, 识别特异性的受体

阮粒

只有蛋白质; PrP^c 和 PrP^{sc} (突变型, 溶解性差, 还能让别人也变成 β 折叠, 抗酶解, 聚集多了神经细胞死了, 就扩散到别的细胞里)

真细菌界

- 细菌
 - 细菌: 霍乱(和G蛋白结合, 不能水解GTP, 一直有活性, 排Na水分), 炭疽, 鼠疫, 伤寒, 破伤风
 - o 放线菌: 结核(结核分岐杆菌), 白喉
 - 。 支原体: 类胸膜肺炎
 - 。 衣原体: 沙眼
 - 。 立克次氏体: 斑疹伤寒

细菌长1个微米左右, 形态可分为球菌, 杆菌, 螺旋菌

革兰氏染色法

用结晶紫染色, 乙醇洗, 番红染色

如果是紫色的, 就是革兰氏阳性菌, 细胞壁是肽聚糖很厚, 可以用青霉素移植细胞壁生成; 金黄色葡萄球菌, 炭疽杆菌是红/黄色的, 细胞壁很薄, 青霉素就不行; 大肠杆菌

古细菌界: 极端环境下生存, 土壤里面也会有

真菌界

绝大部分多细胞生物, 是强大的分解者, 最早登陆的生物, 通过腐生, 寄生, 共生等异养方式摄取原料; 分泌水解酶, 分解大分子, 吸入体内.

- 大多数是多细胞
- 能有性生殖或无性繁殖,产生孢子
- 由菌丝构成
- 有细胞壁和细胞核,没有叶绿素
- 细胞壁主要是几丁质

可以无性生殖, 孢子 - 菌丝 - 顶端孢子囊

也可以有性繁殖,两个菌丝分别是不同的交配型,融合在一起,先是两个细胞核,核融合立刻减数分裂,形成孢子

- 子囊菌: 酵母, 冬虫夏草; 孢子在子囊(一小条)里面
- 担子菌: 蘑菇, 木耳, 伞菌下面的褶里面有担子生成的担孢子 担子核融合之后减数分裂; 大部分细胞是n/n+n

地衣门: 子囊菌和绿藻或蓝藻的共生体

植物界

- 低等植物
 - 藻类植物(绿藻, 金藻, 褐藻, 红藻, 甲藻, 裸藻)
- 高等植物(有胚植物, 受精卵先在母体发育)
 - 苔藓植物门: 苔纲 / 藓纲
 - o 维管植物
 - 蕨类植物
 - 种子植物(裸子/被子(双子叶/单子叶))

苔藓植物门

苔和藓形态不同, 但是生殖方式相似; 世代交替? 单倍体和二倍体交替出现; 孢蒴长孢子(单倍体), 萌发叫配子体(因为能产生配子, 有丝分裂产生), 末端分化, 精子器/*精卵器, 受精变成合子, 合子发育成孢蒴(孢子体, 二倍体, 它会减数分裂:孢子减数分裂); 就有单倍体世代和二倍体世代

- 孢子: 进行无性生殖的细胞, 可以单独发育成一个新个体, 一般单细胞
- 配子: 进行有性生殖产生的性细胞, 不能单独发育成一个个体, 合子才能
- 孢子体: 合子发育而来的, 2n
- 配子体: 孢子发育而来的, n

减数分裂的类型

- 配子减数分裂: 检出分裂产生配子; 后生动物
- 孢子减数分裂: 减数分裂产生孢子, 孢子有丝分裂形成配子体, 配子体产生配子; 植物
- 合子减数分裂: 合子形成之后立刻减数分裂形成孢子, 孢子产生新的世代; 真菌

维管植物

维管: 木质部(木材), 韧皮部(树皮的内部, 疏导有机物质), 中间有形成层; 单子叶植物就没有形成层(小麦玉米水稻), 长不大

蕨类植物门

真蕨: 叶片上张孢子囊, 叫孢子叶, 发育成熟后破裂, 孢子散出, 萌发长出原叶体, 成熟之后一部分产生精子, 一部分卵子, 结合, 受精卵萌发长出孢子体; 孢子体世代发达了, 配子和孢子都能独立生存

裸子植物亚门

苏铁松柏银杏买麻藤(按照进化分类,越向后和被子植物亲缘越近)

没有花, 胚珠种子没有果皮是裸露的, 不形成果实

裸子植物专门有叶片生成孢子, 孢子叶聚集成球, 胚珠只是贴在孢子叶上, 心皮没有和上, 生活史不讲.

被子植物门

- 有真正的的花
- 有雌蕊, 由心皮组成, 特化成子房花柱和柱头; 胚珠在子房内
- 双受精
- 有果实, 子房壁发育成果皮

减数分裂产生孢子, 雄配子体分裂变成两个或三个细胞, 雌配子体产生大孢子, 有丝分裂到8个细胞, 一个卵细胞, 剩下7个, 3反足1中央(两个细胞融合, 两个极核)2助; 受精, 花粉管发育, 两个精子进去, 一个和卵细胞受精成合子发育成胚, 另一个和中央细胞受精形成胚乳; 合子放到种子里, 种下去就发育成孢子体

双子叶植物纲	主要的科	代表植物
	木兰科	玉兰、紫玉兰、含笑、鹅掌楸
	毛茛科	毛茛、乌头、黄连、
	桑科	桑、榕树、无花果、构树、菠萝蜜、见血封喉
	山毛榉科	栓皮栎、柞栎、板栗
	石竹科	石竹、香石竹、太子参
	锦葵科	陆地棉、洋麻、木槿
	葫芦科	黄瓜、香瓜、南瓜、冬瓜、西瓜、丝瓜、苦瓜、罗汉果、纹股兰
	杨柳科	各种杨树和柳树
	十字花科	大白菜、油菜、萝卜、荠菜、松蓝(板蓝根)、紫罗兰
	普薇科	蓄薇、玫瑰、珍珠梅、月季、草莓、梨、苹果、山楂、枇杷、桃、李、梅、杏
	蝶形花科	大豆、豌豆、扁豆、蚕豆、花生、甘草、槐、合欢
	大戟科	一品红、蓖麻、大戟、油桐、橡胶、木薯、巴豆
	葡萄科	葡萄、爬山虎、
	芸香科	相枯、柠檬、橙、柚、花椒
	全形科	胡萝卜、茴香、芹菜、芫荽、柴胡、白芷、当归、防风
	茄科	茄、马铃薯、番茄、枸杞、辣椒、曼陀罗、烟草、颜茄
	唇形科	益母草、薄荷、留兰香、藿香、草石鳖 (宝塔菜) 、串红
	桔梗科	枯梗、克参
	菊科	向日葵、雪莲、艾蒿、菊花、苍耳、蒲公英、莴苣、
单子叶植物纲	泽泻科	慈姑、泽沔
	棕榈科	棕榈、椰子、蒲葵
	禾本科	毛竹、小麦、水稻、高粱、玉米
	姜科	姜、砂仁
	百合科	百合、山丹、韭菜、蒜、葱、洋葱、郁金香、风信子、玉簪、
	兰科	各种兰花、天麻

原生动物亚界

- 肉鞭动物门
 - 。 肉足虫亚门: 放射虫, 变形虫, 有孔虫
 - 。 鞭毛虫亚门
 - 直鞭毛虫纲: 眼虫, 衣藻, 团藻
 - 动鞭毛虫纲: 锥虫, 利什曼原虫
- 顶复合器门(全部寄生): 疟原虫(在蚊子肠道结合, 再到蚊子唾液里面, 先侵染肝细胞, 再侵染红细胞, 释放的毒素 影响体温调节)
- 微孢子虫门(全部寄生): 寄生于节肢动物
- 纤毛虫门: 草履虫, 四膜虫

后生动物亚界

侧生动物

没有组织分化, 或是演化的盲端

里面的是胃层,外面的是体层. 原肠形成的时候内胚层翻进去又翻出来,走了一圈; 胃层由外胚层发育而来.

刺胞动物门

有组织分化,辐射对称,只有两个胚层;水螅,海葵,水母.

由刺细胞, 是鞭毛的特化, 弹出来刺别人

扁形动物门

- 两侧对称, 由前后腹背的区别
- 有三个胚层, 但是没有体腔
- 由器官和系统的分化

涡虫纲, 再生能力强; 吸虫纲, 雌雄终生在一起; 绦虫纲, 寄生在消化道

线虫动物门

三胚层, 假体腔, 只有体壁中胚层没有脏壁中胚层, 肠道只有单层上皮, 中间是体腔液

软体动物门

真体腔, 但是不分节. 原口动物, 动物第二大类群; 蜗牛, 贝类, 章鱼, 墨鱼

环节动物门

- 出现分节现象
- 出现真体腔
- 具有闭管循环系统

节肢动物门

分节, 是无脊椎进化的最高峰, 最大的进化类别

• 身体分节, 异律分节(不同节不一样)

- 有几丁质的外骨骼, 蜕皮现象
- 有关节的附肢
- 开管式循环系统

昆虫

- 几丁质外壳
- 头胸腹三部分
- 三对足
- 头部有触角和口器
- 两对翅(多数)
- 鞘翅目: 各种甲虫
- 鳞翅目: 蛾子, 蝴蝶
- 膜翅目: 蜂, 蚂蚁
- 双翅目: 苍蝇, 蚊子
- 直翅目: 蝗虫

变态

- 无变态: 衣鱼
- 不完全变态
 - 。 渐变态: 卵 若虫 成虫, 蝗虫, 蟋蟀; 生活习惯没大差别
 - 半变态: 卵 稚虫 成虫, 蜻蜓; 生活习惯不一样
- 完全变态: 卵 幼虫 蛹 成虫; 蚕, 蝶, 蚊

棘皮动物门

- 出现中胚层起源的内骨骼, 包被在外胚层的表皮下
- 后口动物
- 真体腔由肠腔囊方式发育而成
- 幼体两侧对称, 成体五幅对称
- 幼虫阶段和半索动物相似,是向着脊索动物进化的无脊椎动物

无柄亚门: 海星纲, 海蛇尾纲, 海胆纲, 海参纲

有柄亚门: 海百合纲

脊索动物门

最高级的类群

- 有脊索
- 背神经管
- 鰕裂
- 心脏在腹面, 闭管式循环
- 肛后尾

原索动物: 尾索动物(脊索在后半部, 变态之后扔掉了); 头索动物(文昌鱼, 脊索贯穿)

脊椎动物

- 神经发达
- 脊柱代替脊索

• 陆生的发展了肺呼吸

脊椎动物的分类

- 圆口纲: 七鳃鳗
- 软骨鱼纲: 骨骼为软骨, 鳃裂在体表, 体表被楯鳞; 鲨鱼
- 硬骨鱼纲: 内骨骼是硬骨, 一般有鳔, 鳃裂有骨质鳃盖保护, 体外受精
 - o 总鳍鱼亚纲: 矛尾鱼
 - 。 肺鱼亚纲: 干涸时可用肺呼吸, 两心室
 - 辐鳍鱼亚纲: 现存大多数鱼类, 鲟(软骨硬骨之间, 中轴是脊索)
- 两栖纲
- 爬行纲: 有鳞片, 羊膜卵, 适应陆地生活

- 鸟纲: 恒定体温, 完全双循环, 双重呼吸
- 哺乳纲: 最高等的类群, 发达的神经系统, 感觉器官运动装置内脏器官
 - 。 原兽亚纲: 卵生; 鸭嘴兽
 - 。 后兽亚纲: 有带, 胎生, 无胎盘; 大袋鼠
 - 真兽亚纲: 有胎盘(胎盘亚纲), 大部分(95%)哺乳类, 乳腺发达, 体温高恒定(37°C), 大脑皮层发达
 - 食虫目(刺猬) / 翼手目(蝙蝠) / 灵长目 / 兔形目 / 啮齿目(*鼠) / 鲸目 / 食肉目 / 长鼻目(象) / 奇蹄目 (马) / 偶蹄目(牛,猪)