PosNet:

A Convolutional Network for Real-Time 6-DOF Camera Relocalization

Computer Vision & Augmented Reality 연구실 학부연구생 강 준 구



### Contents

- Overview
- Dataset
- Architecture
- Conclusion





#### Overview

Use CNN to regress the camera position and angle



Input Image 224x224 RGB image



CNN



### Robust to nuisance variables



Reference image



Different scales



occlusions



Illumination changes



Different seasons

# Experimental results



## Experimental results

#### details and results

|                  | # Frames |      | Spatial        | SCoRe Forest | Dist. to Conv.    |              | _             |
|------------------|----------|------|----------------|--------------|-------------------|--------------|---------------|
| Scene            | Train    | Test | Extent (m)     | (Uses RGB-D) | Nearest Neighbour | PoseNet      | Dense PoseNet |
| King's College   | 1220     | 343  | 140 x 40m      | N/A          | 3.34m, 5.92°      | 1.92m, 5.40° | 1.66m, 4.86°  |
| Street           | 3015     | 2923 | 500 x 100m     | N/A          | 1.95m, 9.02°      | 3.67m, 6.50° | 2.96m, 6.00°  |
| Old Hospital     | 895      | 182  | 50 x 40m       | N/A          | 5.38m, 9.02°      | 2.31m, 5.38° | 2.62m, 4.90°  |
| Shop Façade      | 231      | 103  | 35 x 25m       | N/A          | 2.10m, 10.4°      | 1.46m, 8.08° | 1.41m, 7.18°  |
| St Mary's Church | 1487     | 530  | 80 x 60m       | N/A          | 4.48m, 11.3°      | 2.65m, 8.48° | 2.45m, 7.96°  |
| Chess            | 4000     | 2000 | 3 x 2 x 1m     | 0.03m, 0.66° | 0.41m, 11.2°      | 0.32m, 8.12° | 0.32m, 6.60°  |
| Fire             | 2000     | 2000 | 2.5 x 1 x 1m   | 0.05m, 1.50° | 0.54m, 15.5°      | 0.47m, 14.4° | 0.47m, 14.0°  |
| Heads            | 1000     | 1000 | 2 x 0.5 x 1m   | 0.06m, 5.50° | 0.28m, 14.0°      | 0.29m, 12.0° | 0.30m, 12.2°  |
| Office           | 6000     | 4000 | 2.5 x 2 x 1.5m | 0.04m, 0.78° | 0.49m, 12.0°      | 0.48m, 7.68° | 0.48m, 7.24°  |
| Pumpkin          | 4000     | 2000 | 2.5 x 2 x 1m   | 0.04m, 0.68° | 0.58m, 12.1°      | 0.47m, 8.42° | 0.49m, 8.12°  |
| Red Kitchen      | 7000     | 5000 | 4 x 3 x 1.5m   | 0.04m, 0.76° | 0.58m, 11.3°      | 0.59m, 8.64° | 0.58m, 8.34°  |
| Stairs           | 2000     | 1000 | 2.5 x 2 x 1.5m | 0.32m, 1.32° | 0.56m, 15.4°      | 0.47m, 13.8° | 0.48m, 13.1°  |

2021-12-02

### Network

- GoogLeNet
  - ▶ The softmax layers were removed
    - > -> a pose vector of 7-dimensions
      - □ Position (3) and orientation (4)



#### Architecture

- $\rightarrow p=[x,q]$ 
  - p: a pose vector relative to an arbitrary global reference frame
    - ▶ x : 3D camera position
    - q : Orientation represented by quaternion



#### Loss Function

Learning location and orientation

$$loss(I) = \left\| \hat{\mathbf{x}} - \mathbf{x} \right\|_2 + \beta \left\| \hat{\mathbf{q}} - \frac{\mathbf{q}}{\|\mathbf{q}\|} \right\|_2$$

Description Description Description Description Description and Optimal Beta given by ratio between expected error of position and Optimal Beta given by ratio between expected error of position and Optimal Beta given by ratio between expected error of position and Optimal Beta given by ratio between expected error of position and Optimal Beta given by ratio between expected error of position and Optimal Beta given by ratio between expected error of position and Optimal Beta given by ratio between expected error of position and Optimal Beta given by ratio between expected error of position and Optimal Beta given by ratio between expected error of position and Optimal Beta given by ratio between expected error of position and Optimal Beta given by ratio between expected error of position and Optimal Beta given by ratio between expected error of position and Optimal Beta given by the properties of the Properties of Properties of



#### Parameter

- Training
  - SGD optimization
    - ▶ Learning rate : 10^-5, Momentum : 0.9
  - ▶ Batch size 75
  - Nvidia Titan graphics card training

### Review

Estimate the 3D position and orientation of the camera, given a single monocular image taken from a large previously explored area



## Summary

#### Conclusion

- ▶ PoseNet is an end-to-end 6DOF pos regression convnet
- 5ms run-time, 50MB total storage space
- Robust to lighting, weather, dynamic objects
- Poor positioning accuracy

## Question

- ▶ 왜 q에서 |q|분모로 나눠주는가? Unit length?
- ▶ 왜 position과 orientation 두개를 학습시키기 어려운가?