An Improved Belief Propagation Method for Dynamic Collage

Yingzhen Yang, Yichen Wei, Chunxiao Liu, Qunsheng Peng, Yasuyuki Matsushita

Microsoft Research Asia Zhejiang University

Outline

- Introduction
- Related work
- Problem description
- Algorithm
- System overview
- Experiments and discussion

Photo collage

- Photo collage creates a compact and plausible summary of several photos in a canvas.
- Three requirements
 - Visual Information Maximization
 - Blank Space Minimization
 - Single Photo Visibility
- Allows unimportant part of each photo to be occluded.
- Only the salient and informative part of each photo can be visible on the canvas, so the finite canvas space is sufficiently utilized.

An example of photo collage

Drawback of photo collage

- The scalability of photo collage is limited.
- It is not acceptable to show hundreds of photos in a limited canvas.
- Providing a desirable way for users to view a large amount of photos is challenging.

Dynamic collage

- Allows dynamic change of photo collage.
- New photos are added into canvas, old photos are removed out of canvas.
- The layout of photos is adjusted in a local and incremental manner to maintain visual continuity.

- Advantages of dynamic collage
 - The scalability is significantly extended while maintaining the advantage of photo collage.
 - Users can browse large photo collections by dynamic collage.

Introduction- photo browsing using dynamic collage

Butterfly Demo

Related work

Collage

[CVPR'06]

Picture collage

- Salience Maximization
- Blank Space Minimization
- Salience Ratio Balance
- [ACM Trans. Graph'06] Auto-collage
 - produce a dense and seamless collage
- Belief Propagation
 - [Int. J. Comput. Vis.06]
 - Efficient belief propagation for early vision
 - Belief propagation is useful for many computer vision problems

Problem description

- Formulation of dynamic collage
 - Given N photos $\{I_i\}_{i=1}^N$ and their importance map $\{A_i\}_{i=1}^N$, dynamic collage aims to find their optimal states $X = \{x_i\}_{i=1}^N$ to maximize the visible information in canvas through object function minimization using belief propagation.
 - For each photo I_i , it has state $x_i = (t_i, \theta_i, l_i)$, t_i is its center coordinates, θ_i is its orientation angle and $l_i \in \{1, 2, ...N\}$ is its layer which determines its display order.
 - We compute a importance map for each photo, so each pixel of the photo has a importance value indicating the amount of information it has.

- Three Stage Optimization
 - In order to reduce the label size in BP, we divide the optimization process into three stages, which optimizes the central coordinates, orientation angle and layer respectively.
 - When optimizing one component of the state, we treat the other two components as constant.

Center Coordinates Optimization

Object function to minimize information loss and blank area

$$E(X) = M(X) + \sum_{i} O(x_i; X_{N(i)}) + \sum_{i=1}^{N} B_i(x_i)$$
 (1)

M(X) is the blank area in canvas

 $O(x_i; X_{N(i)})$ is the information loss of photo I_i due to occlusion by other photos. $X_{N(i)}$ is the set of photos which can occlude I_i $B_i(x_i)$ is the information loss of photo I_i due to out of canvas

- We restrict the movable range of each photo to a neighborhood of its initial position so as to maintain visual continuity.
- (1) is a high order object function, so we construct factor graph model to apply belief propagation.

Factor Graph Model

- The state of each photo is represented as factor node and the potential function is represented as factor node.
- The movable ranges of all photos form the solution space of the central coordinates optimization problem.

Approximate Message Computing

- Computing the messages for high order potential function requires searching the solution space of all variable nodes simultaneously, so the complexity is exponential.
- Develop an approximate method of message computing.
- The center coordinates only varies in a neighborhood.
- We search the solution space of all nodes in order. When we search the solution space of one node, we treat the states of other nodes as constant.
- Therefore the complexity is reduced to quadratic.

Comparison between factor graph and pariwise Markov Random Field

- Orientation Angle Optimization
 - Assign each photo an orientation angle to further increase the visible information.
 - We pre-defined five discrete angles.

$$\{n\theta\}_{n=-2}^2 \quad \theta = 5^\circ$$

Run BP to optimize the object function to minimize information loss due to occlusion as before.

Layer Optimization

- Construct a directed graph according to pairwise display order for all photos in canvas.
- Use topological sort algorithm on this directed graph to determine the display order of all photos, and assign layers to them accordingly.

- Combine the three optimization stages
 - We run the three optimization stages in order as an integral optimization cycle.
 - Two-scale acceleration
 - In coarse level, we define a large movable region for all photos, and only do center coordinates optimization.
 - In fine level, we define a small movable region for all photos, and do the whole optimization cycle.

System Overview

Four modules

 Saliency computation module, scheduler module, optimization module and rending module.

Experiment

- □ In a 1024 x 768 canvas, the two-scale method costs 0.8s averagely to form a photo collage for 12 photos with a size of 300x 300.
- Efficient enough to render real-time photo browsing.

Experiment

■ Flower Demo

Discussion

- Dynamic collage allows dynamic change of photo collage so users can browse large photo collection via it.
- Dynamic collage enables real time photo browsing by the efficient two-scale acceleration method while maintaining the visual continuity when the canvas is updated.

Limitation and future work

- Perform multiple optimization cycles, so the displacement of some photos may be large and visual continuity is hard to maintain for these photos.
- Further confine the movable region for specific photos with semantic information.
- Combine the lifetime of photo into the object function to render a spatio-temporal dynamic collage.