

Chap 3. Magnetic Aspect

· Circuit theory / Field theory

3.1 전자기장 요약

• Maxwell Equation:

$$\nabla \cdot \mathbf{B} = 0; \qquad \oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$$

$$\nabla \times \mathbf{H} = \mathbf{J}; \qquad \oint_{c} \mathbf{H} \cdot d\mathbf{l} = I$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}; \qquad \oint_{C} \mathbf{E} \cdot d\mathbf{l} = -\iint_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$

• Current Continuity:

$$\nabla \cdot \mathbf{J} = 0; \qquad \iint_{S} \mathbf{J} \cdot d\mathbf{S} = 0$$

KVL / KCL

• Faraday's Law:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\oint_{c} \mathbf{E} \cdot d\mathbf{l} = -\iint_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$

$$e = -\frac{d\phi}{dt}$$
 or $-\frac{d\lambda}{dt}$

$$\phi = \iint_{S} \mathbf{B} \cdot d\mathbf{S}$$

$$\lambda = N\phi$$

Motional emf =
$$\oint_c (\mathbf{U} \times \mathbf{B}) \cdot d\mathbf{I}$$

$$= BlU$$

<u>3.2 자기장과 자력</u>

$\cdot I \rightarrow H \rightarrow F$

$$d\mathbf{H} = \frac{Id\mathbf{l} \times \widehat{a}_R}{4\pi R^2}$$
$$\mathbf{H} = \int \frac{Id\mathbf{l} \times \widehat{a}_R}{4\pi R^2}$$

$$d\mathbf{F} = Id\mathbf{I} \times \mathbf{B}$$

$$F = BIL$$

$$\mathbf{B} = \mu \mathbf{H}$$

$$\mu_0 = 4 \times 10^{-7} \, \mathrm{H/m}$$

$$\phi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$$

$$= \mathbf{B} \cdot \mathbf{S} = BS \cos \theta$$

< Ex 3.2.1> B=0.8T, L=2m, I=10A,
$$\Theta$$
=30° \rightarrow F=?

< Ex 3.2.2> B=0.5T, L=20cm
$$\rightarrow$$
 Φ =?

$$\phi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$$
$$= \mathbf{B} \cdot \mathbf{S} = BS \cos \theta$$

<u>3.3 기자력</u>

Magneto-Motive Force (mmf) / Electro-Motive Force (emf)

$$mmf = \oint \mathbf{H} \cdot d\mathbf{l} = IN$$

$$Vm = Rm \cdot \Phi \qquad \phi = \frac{\mathbf{F}}{\mathbf{R}}$$

$$Rm = \frac{L}{\mu S}$$

$$mmf = N \cdot I = H \cdot L = Rm \cdot \Phi$$

$$emf = \int E \cdot dl = Ve$$

$$Ve = Re \cdot I \qquad I = \frac{Ve}{Re}$$

$$Re = \frac{L}{\sigma S}$$

<u>3.4 자성체</u>

- Magnetic Materials :
 - Diamagnetic / Paramagnetic / Ferromagnetic , Super-paramagnetic / Ferrimagnetic
 - Magnetic Saturation (Linear / Nonlinear), Magnetic Hysteresis
 - Isotropic / Anisotropic
 - Ferrofluidic (Magnetic Fluid)
 - Curie Temperature

Trade Name	Saturation Flux Density (T)	Maximum Relative Permeability (× 10³)	Electrical Resistivity (ohm-meter \times 10 ⁻⁶)	Curie Temperature (°C)
Carpenter				
Silicon core iron	2-2.1	4–5	0.25-0.60	800
Electrical iron	2.15	2.2-5.5	0.10	760
430F solenoid quality	1.47	1.1-1.6	0.60	671
High-permeability 49	1.6	30-120	0.48	450
Hy mu 80	0.78	70–75	0.58	460
Hiperco 27	2.36	2.8	0.19	925
Silectron	1.97	10–20	0.50	732
2 V Permendur	2.30	8	0.40	932
Monimax	1.45	40–100	0.65	398
Deltamax	1.60	100-200	0.45	499
4-79 Molybdenum permalloy	0.80	100–400	0.55	454
Ferrite	0.22-0.45	0.16–10	$(0.1 \times 10^6) - (10 \times 10^6)$	135–500

- Permeability , Magnetic Saturation , B-H Curve :
 - μ_init, μ_max, μ_2.0
 - DC curve / AC curve (60Hz)

$$\mathbf{B} = \mu \mathbf{H}$$
 $\mu = \mu_r \mu_0$ $\mu_0 = 4\pi \times 10^{-7} \text{ henry/meter} = 1.257 \times 10^{-6} \text{ H/m}$

$$B = \frac{aH}{1 + bH}$$

$$B = \frac{a_0 + a_1H + a_2H^2 + \cdots}{1 + b_1H + b_2H^2 + \cdots}$$

$$H = [k_1 \exp(k_2B^2) + k_3] B$$

표 3.4.2 • 일부 물질의 투자율과 유형

Material	Classification	Relative Permeability, μ_{r}
Bismuth	diamagnetic	0.99983
Silver	diamagnetic	0.99998
Lead	diamagnetic	0.999983
Copper	diamagnetic	0.999991
Water	diamagnetic	0.999991
Vacuum	nonmagnetic	1
Air	paramagnetic	1.0000004
Aluminum	paramagnetic	1.00002
Palladium	paramagnetic	1.0008
2-81 Permalloy powder (2 Mo, 81 Ni, Iron)	super-paramagnetic	130
Cobalt	ferromagnetic	250
Nickel	ferromagnetic	600
Ferroxcube 3 (Mn-Zn-ferrite powder)	ferrimagnetic	1,500
Ferrites	ferrimagnetic	160~10,000
Mild steel (0.2 C)	ferromagnetic	2,000
Iron (0.2 impurity)	ferromagnetic	5,000
Silicon iron (4 Si)	ferromagnetic	7,000
78 Permalloy (78.5 Ni)	ferromagnetic	100,000
Mumetal (75 Ni, 5 Cu, 2 Cr)	ferromagnetic	100,000
Purified iron (0.05 impurity)	ferromagnetic	200,000
Superalloy (5 Mo, 79 Ni)	ferromagnetic	1,000,000

- Magnetic Hysteresis Curve :
 - Bs , Br , Hc , S , S*
 - Major loop / Minor Loop / History dependent tracer
 - Hysteresis Loss, Steinmetz
 - Magnetic energy, Permanent Magnet

- Magnetization / Demagnetization
- Degaussing / Deperming

<u>3.5 자기회로</u>

	Electric Circuit	Unit	Magnetic Circuit	Unit
Driving force	emf (V)	v	mmf (F)	At
Response	current (I)	A	flux (ϕ)	Wb
Impedance	resistance (R)	Ω	reluctance (R)	1/H
Equivalent circuit	+		φ + R - F = φR	
Field intensity relationship	$\oint \mathbf{E} \cdot d\mathbf{l} = V$	v	$\oint \mathbf{H} \cdot d\mathbf{l} = I$	A
Potential difference	V = IR	v	$\mathbf{F} = \phi \mathbf{R}$	At
Other relations	$J = \frac{I}{A} = \frac{V}{AR} = \frac{El}{A(\rho l/A)}$ $= \frac{E}{\rho} = \sigma E$ or $E = \rho J = J/\sigma$, where J is the current density, ρ is the resistivity, and σ is the conductivity	A/m^2 $\Omega \cdot m$ $1/(\Omega \cdot m)$	$B = \frac{\phi}{A} = \frac{F}{AR} = \frac{Hl}{A(l/\mu A)}$ $= \mu H = H/\nu$ or $H = B/\mu = \nu B$, where B is the flux density, μ is the permeability, and ν is the reluctivity	T or Wb/m² H/m m/H
Admittance	conductance $G = 1/R$	S	permeance P = 1/R	Н

$N \cdot I = H \cdot L = Rm \cdot \Phi$

<Ex 3.5.1> A=10mm2, L=20cm, μ r=500 → (a) Rm=?, (b) Φ, B=?

<Ex 3.5.2> USS 변압기, <u>Φ → NI ?</u> 적층율 0.94, B_H curve, Φ = 1mWb → I=??

'usan National University

Lab. of Applied ElectroMagnetics

<Ex 3.5.3> Ex 3.5.2 : NI → Φ?

<Ex 3.5.4> 2개의 병렬공극:

<Ex 3.5.5> Ex 3.5.4: 철심 B-H curve: B in each leg =?

그림 P3-7

그림 P3-8

그림 P3-14

그림 P3-18

그림 P3-13

25 cm 25 cm 30 0.50 cm cm 그림 P3-15

그림 P3-12

그림 P3-16

그림 P3-19

그림 P3-32

그림 P3-20

Fringing, Leakage :

Pusan National University

Lab. of Applied ElectroMagnetics

q-axis

q-axis

3.6 AC 자기회로

• 유도기전력:

$$N \cdot I = H \cdot L = Rm \cdot \Phi$$

$$i(t) = I_m \sin(\omega t)$$

$$\phi(t) = \frac{\text{mmf}}{\mathbf{R}} = \frac{Ni(t)}{\mathbf{R}} = \frac{NI_m \sin(\omega t)}{\mathbf{R}} = \phi_m \sin(\omega t)$$

$$\phi_m = \frac{NI_m}{\mathbf{R}}$$

$$\lambda(t) = N\phi(t) = N\phi_m \sin(\omega t)$$

$$e = \frac{d\lambda(t)}{dt} = \frac{d}{dt} \left(N\phi_m \sin(\omega t) \right) = \omega N\phi_m \cos(\omega t) = \underline{\omega N\phi_m \sin(\omega t + 90^\circ)} = Em \sin(\omega t + 90^\circ)$$

• 유도기전력, rms :

$$E = \frac{\omega N \phi_m}{\sqrt{2}} = \frac{2\pi f N \phi_m}{\sqrt{2}} = 4.44N \phi_m \mathbf{f}$$

・ 철손(Iron Loss) = 히스테리시스 손실(Hysteresis Loss) + 와전류 손실(Eddy Current Loss) $P_{_h}$ per cycle = $\operatorname{Vol} \oint H \, dB$

$$P_{h} = k_{h} \cdot \text{Vol} \cdot f \cdot B_{m}^{n}$$

$$(\propto f \cdot B_{m}^{n})$$

$$P_{e} = k_{e} \cdot \text{Vol} \cdot f^{2} \cdot \tau^{2} B_{m}^{2}$$

$$(\propto f^{2} \cdot B_{m}^{2})$$

<Ex 3.6.1> 사각단면 도넛 코어의 히스테리시스 손실:

- b. 모든 방향으로 코어의 크기가 2배씩 커졌을 때, 히스테리시스 손실은 어떻게 달라지는가?
- c. 코어의 적층 두께를 원래 두께의 반으로 줄였다. 측적 계수는 동일하게 1이라고 가정하면 이러한 변화가 히스테리시스 손실에는 어떤 영향을 주는가?
- d. 코어가 50 Hz에서 동작할 경우 히스테리시스 손실은 어떻게 변화하는지 계산하시오.

$$P_h = k_h \cdot \text{Vol} \cdot f \cdot B_m^n$$

b.
$$\propto V$$
 d. $\propto f$

<Ex 3.6.2> f=50Hz, B=0.8T → 철손 1000W : Ph=?, Pe=? f=75Hz, // → 철손 1800W : Ph=?, Pe=?

$$P = af + bf2$$
 , $P/f = a + bf$, $a = ?/b = ?$, $Ph \& Pe$

3.7 에너지 저<u>장</u>

• Magnetic Energy, Energy Density:

$$w_{m} = \frac{1}{2} \mathbf{B} \cdot \mathbf{H}$$

$$W_{m} = \frac{1}{2} \int_{\text{Vol}} \mathbf{B} \cdot \mathbf{H} \, dv$$

$$w_m = \frac{1}{2}BH = \frac{1}{2}\frac{B^2}{\mu} = \frac{1}{2}\frac{B^2}{\mu_r\mu_0}$$

• Air gap Energy:
$$W_{m \text{ air}} = \frac{1}{2} \left(\frac{B_g^2}{\mu_0} \right) \text{Vol} = \frac{1}{2} \mathbf{F} \phi = \frac{1}{2} \mathbf{R} \phi^2 = \frac{1}{2} i \lambda$$

Ex3.5.2.:

$$W_{m \text{ air}} = \frac{1}{2} \left(\frac{B_g^2}{\mu_0} \right) \text{Vol} = 1.995 \text{ J}$$

W_air =
$$\frac{1}{2}$$
 F_gap Φ = 1.995 J

W_iron =
$$\frac{1}{2}$$
 F_iron Φ = 0.1 J (!!)

• Magnetizing Energy:

- Manetic Energy :
$$W_m = \text{Vol} \int_0^B H \, dB = \int_0^{\lambda} i(\lambda) \, d\lambda = \int_0^{\phi} \mathbf{F}(\phi) d\phi$$

- Co-Energy:
$$W'_{m} = \operatorname{Vol} \int_{0}^{H} B \, dH = \int_{0}^{i} \lambda(i) \, di = \int_{0}^{F} \phi(\mathbf{F}) \, d\mathbf{F}$$

$$W'_m + W_m = \text{Vol} \cdot BH = \lambda i = \phi \mathbf{F}$$

Magnetic Force:

$$dW_m = \frac{1}{2} \left(\mathbf{B} \cdot \mathbf{H} \right) dv$$

$$dv = A dg$$

$$dW_m = \frac{1}{2} BH dv = \frac{1}{2} BHA dg = \frac{1}{2} \left(\frac{B^2}{\mu_0}\right) A dg$$

Definition : $dW = \mathbf{F} \cdot d\mathbf{l} = F dg$

 $dW_m = dW$

$$\frac{1}{2} \left(\frac{B^2}{\mu_0} \right) A \, dg = F \, dg$$

Which gives: $F = \frac{1}{2} \left(\frac{B^2}{\mu_0} \right) A$

$$F = \frac{1}{2} \left(\frac{B^2}{\mu_0} \right) A$$

$$F_{\text{total}} = 2\left(\frac{1}{2}\right)\left(\frac{B^2}{\mu_0}\right)A = \left(\frac{B^2}{\mu_0}\right)A$$

<Ex 3.7.1> Iron ring : L=10 m, A=20cm2, N=100, B=0.8T → W=0.102 J

• 자기 부상 열차

Magnetic Force:

$$dW_m = \frac{1}{2} (\mathbf{B} \cdot \mathbf{H}) dv = \frac{1}{2} BH dv = \frac{1}{2} BHA dg = \frac{1}{2} \left(\frac{B^2}{\mu_0} \right) A dg$$

$$dW = \mathbf{F} \cdot d\mathbf{l} = F dg$$

$$\frac{1}{2} \left(\frac{B^2}{\mu_0} \right) A \, dg = F \, dg \qquad F = \frac{1}{2} \left(\frac{B^2}{\mu_0} \right) A$$

$$F = \frac{1}{2} \left(\frac{B^2}{\mu_0} \right) A$$

Total force on the bar:
$$F_{\text{total}} = 2\left(\frac{1}{2}\right)\left(\frac{B^2}{\mu_0}\right)A = \left(\frac{B^2}{\mu_0}\right)A$$

<Ex 3.7.1> Iron ring : L=10 m, A=20cm2, N=100, B=0.8T → W=0.102 J

@ 자기 부상멸사의 부상력 (Lifting France)

$$\int H \cdot d\vec{l} = NI$$

$$H \cdot d\vec{l} = NI$$

$$H \cdot d\vec{l} = NI$$

$$H \cdot d\vec{l} = NI$$

$$NI = \frac{Be}{Uc} \cdot l_c + \frac{Bg}{Uo} \cdot l_g \simeq Bg(\frac{l_c}{Uc} + \frac{l_g}{Uo}) \quad (: B_g \simeq Bc)$$

$$\therefore B_g = \frac{NI}{Uv \cdot U_o} = \frac{uv \cdot U_o \cdot NI}{l_c + uv \cdot l_g}$$

Florce
$$H = \int \frac{B^2}{2\mu_0} ds \simeq \frac{B^2}{2\mu_0} \cdot S$$

$$= \frac{S}{2\mu_0} \cdot \left(\frac{\mu_r \mu_0 \cdot NI}{l_c + \mu_r \cdot l_g} \right)^2 = \frac{\mu_0 \cdot S}{2} \cdot \left(\frac{\mu_r \cdot NI}{l_c + \mu_r \cdot l_g} \right)^2$$

3.8 AC exitation & L

• $I \rightarrow \Phi \rightarrow \text{self Induction L}$:

$$L = \frac{\lambda}{i} = \frac{N\phi}{i} = \frac{N^2}{\mathbf{R}} = N^2\mathbf{P}$$

$$W_{m} = \frac{1}{2}i\lambda = \frac{Li^{2}}{2}$$

• $I \rightarrow \Phi \rightarrow$ mutual Induction M :

$$L_{11} = \frac{\lambda_{11}}{i_1}$$
 $L_{21} = \frac{\lambda_{21}}{i_1}$

$$L_{12} = \frac{\lambda_{12}}{i_2}$$

$$L_{22} = \frac{\lambda_{22}}{i_2}$$

$I \rightarrow \Phi \rightarrow L/M \rightarrow v$:

$$\lambda_{1} = \lambda_{11} + \lambda_{12} = L_{11}i_{1} + L_{12}i_{2} = L_{11}i_{1} + Mi_{2}$$

$$\lambda_{2} = \lambda_{21} + \lambda_{22} = L_{21}i_{1} + L_{22}i_{2} = Mi_{1} + L_{22}i_{2}$$

$$\nu_{1} = p\lambda_{1} = \frac{d\lambda_{1}}{dt} = L_{11}\frac{di_{1}}{dt} + M\frac{di_{2}}{dt}$$

$$\nu_{2} = p\lambda_{2} = \frac{d\lambda_{2}}{dt} = M\frac{di_{1}}{dt} + L_{22}\frac{di_{2}}{dt}$$

• If non-linear :
$$\lambda_1 = f_1(i_1,i_2)$$

$$\lambda_2 = f_2(i_1,i_2)$$

Leakage flux :
$$\phi_{l1} = \phi_{11} - \phi_{21}$$

$$\boldsymbol{\phi}_{\scriptscriptstyle 12} = \boldsymbol{\phi}_{\scriptscriptstyle 22} - \boldsymbol{\phi}_{\scriptscriptstyle 12}$$

• 결합계수 :
$$k=\sqrt{k_1k_2}, \qquad k_1=\phi_{21}/\phi_{11}$$
 $(0~1)$ $k_2=\phi_{12}/\phi_{22}$

mutual Induction M :

$$M = L_{12} = L_{21} = k \sqrt{L_{11}L_{22}}$$

Energy, Inductance:

$$W_{m} = \frac{i_{1}\lambda_{1}}{2} + \frac{i_{2}\lambda_{2}}{2}$$

$$W_{m} = \frac{1}{2}L_{11}i_{1}^{2} + Mi_{1}i_{2} + \frac{1}{2}L_{22}i_{2}^{2}$$

• If multi:
$$W_m = \sum_{j=1}^n \sum_{k=1}^n \frac{1}{2} L_{jk} i_j i_k$$

$$\nu_{1} = \frac{d\lambda_{1}}{dt} = L_{11}\frac{di_{1}}{dt} + M\frac{di_{2}}{dt}$$

$$\nu_{2} = \frac{d\lambda_{2}}{dt} = M\frac{di_{1}}{dt} + L_{22}\frac{di_{2}}{dt}$$

$$W_{m} = \frac{1}{2}L_{11}i_{1}^{2} + Mi_{1}i_{2} + \frac{1}{2}L_{22}i_{2}^{2}$$

Equivalent circuit:

그림 3.8.5 • AC 여자 코일 의 등가회로.

$$X_{m} = \frac{E}{I} = \omega L_{m}$$

그림 3.8.6 · 철손이 있는 AC 여자 코일의 그림 3.8.7 · AC 여자 코일의 전체 등가회로. 등가회로.

$$P_h = k_h \cdot \text{Vol} \cdot f \cdot B_m^n$$

$$P_e = k_e \cdot \text{Vol} \cdot f^2 \cdot \tau^2 B_m^2$$

- ΧI
- Xm
- Ri

00000 Xm

<Ex 3.8.1> Cast Steel, B-H curve, B=1.1T \rightarrow I, Ls, LI

<u>3.9 영구자석 응용</u>

- Permanent Magnet: Iron base magnet, Ferrite, AlNiCo, Rare Earth Magnet(NdFeB, SmCo)
- Magnetizing, Demagnetizing
- Hysteresis Characteristics, Energy Product

- Magnetizing , Demagnetizing
- Permeance , Load line, Bg
- Major loop, Minor loop,
- **Recoil line , Recoil Permeability**

Material (Trade name)		Residual Flux Density B _r (T)	Coercive Force H _c (kA/m)	Maximum Energy product (kJ/m³)	Average Recoil Permeablility $(H/m \times 10^{-6})$
Cast alnico	5	1.28	51	44	2.1
	5-7	1.34	58	60	1.9
	6	1.05	62	31	5.0
Sintered alnico	5	1.09	49	31	2.0
	6	0.94	64	23	5.0
Cunife		0.55	42	11	1.7
Indox	1	0.22	145	8	1.15
	2	0.29	193	14	1.15
	3	0.335	187	21	1.1
	4	0.255	183	12	1.1
Rare-earth-cobalt	18	0.87	637	143	1.05
Incor	16	0.81	629	127	1.05
36% Cobalt steel		1.04	18	8	10

• How many B?

Magnetic Permeance :

$$N \cdot I = H \cdot L = Rm \cdot \Phi$$

$$\sum HL=0$$

$$H_{d}l_{m}=H_{g}l_{g}$$

- f: 철심의 자기저항 보정계수 (1.1~1.5)

$$HdLm = fHgLg = fBgLg/\mu o$$
 $l_m = \frac{fB_gl_g}{\mu_0H_d}$

- F: 누설계수 (1.2~60)

$$\Phi = BdAm = FBgAg$$

$$A_{m} = \frac{FB_{g}A_{g}}{B_{J}}$$

$$V_{m} = A_{m} l_{m} = \frac{f F B_{g}^{2} V_{g}}{\mu_{0} B_{d} H_{d}}$$

$$P_{c} = \frac{B_{d}}{H_{d}} = \frac{F}{f} \cdot \frac{l_{m}}{A_{m}} \cdot \frac{A_{g}}{l_{g}} \cdot \mu_{0}$$

<Ex 3.9.1> 영구자석 크기결정 : B=0.5T → Am=?, Lm=?

<Ex 3.9.2> 영구자석 크기결정 : 도넛모양의 AlNiCo, for BHmax → Lg=?

그림 P3-4

그림 P3-7

그림 P3-8

그림 P3-10

그림 P3-14

그림 P3-16

그림 P3-19

그림 P3-32

그림 P3-20

