University of Central Florida School of Computer Science COT 4210 Fall 2004

Prof. Rene Peralta T1

1. Prove the following by induction

$$2\sum_{i=1}^{n} i = n(n+1)$$

for all $n \geq 1$.

- 2. For each part, give a relation on the set $A = \{1, 2, 3\}$ that satisfies the condition.
 - (a) Reflexive and symmetric but not transitive
 - (b) Reflexive and transitive but not symmetric
 - (c) Transitive and symmetric but not reflexive
- 3. Answer true or false and briefly justify your answer.
 - (a) The set of finite subsets of the natural numbers is countably infinite
 - (b) Every graph with five nodes must have either a complete subgraph of size three or an independent set ¹ of size three.
 - (c) All bipartite graphs must have an even number of vertices.
 - (d) $10^{93} \equiv_{11} 10$.
 - (e) Suppose there exists an island where if you pick any set of two horses, they have the same color. Then in this island all horses have the same color.
 - (f) If $x \in \{1, 2, 3, 4\}$ then there exists y such that $xy \equiv_5 1$.
 - (g) If $x \in \{1, 2, 3, 4, 5\}$ then there exists y such that $xy \equiv_6 1$.

¹An independent set is a set of vertices with no edges between them.