1 Rappels

Définition. On rappelle que la *bissectrice* d'un angle est la demi-droite issue de son sommet et le partageant en deux angles égaux.

Exercice 1. Construire un angle \widehat{AOB} de mesure 103^o et un angle \widehat{AOC} de mesure 69^o à l'intérieur de celui-ci.

Construire un angle \widehat{AOD} adjacent à \widehat{AOB} de mesure 34° .

Comparer la différence entre \widehat{DOB} et \widehat{DOC} et celle entre \widehat{AOB} et \widehat{AOC} . Ce résultat dépend-il des mesures choisies?

Exercice 2. Construire deux angles adjacents \widehat{AOB} et \widehat{BOC} mesurant respectivement 68^o et 42^o .

Construire leurs bissectrices [OM) et [ON).

Mesurer l'angle \widehat{MON} et le comparer à l'angle \widehat{AOC} .

Exercice 3. Deux angles \widehat{AOB} et \widehat{BOC} sont adjacents et [OM) est la bissectrice de l'angle \widehat{BOC} .

- 1. Construire la figure sachant que $\widehat{AOB}=60^o$ et $\widehat{AOC}=110^o$. Calculer la mesure de l'angle \widehat{AOM} .
- 2. Si $\widehat{AOB} = \alpha$ et $\widehat{AOC} = \beta$, montrer que $\widehat{AOM} = \frac{1}{2}(\alpha + \beta)$.

Exercice 4. Les angles \widehat{AOB} et \widehat{AOC} sont adjacents et [OM) est la bissectrice de l'angle \widehat{BOC} .

- 1. Effectuer la construction de ces angles en prenant $\widehat{AOB} = 52^{o}$ et $\widehat{AOC} = 108^{o}$. Mener [OM) et calculer la mesure de l'angle \widehat{AOM} .
- 2. On suppose $\widehat{AOB} = \alpha$ et $\widehat{AOC} = \beta$ avec $\beta > \alpha$. Montrer que $\widehat{AOM} = \frac{1}{2}(\beta \alpha)$.

Exercice 5. Soient [OM) et [ON) les bissectrices des angles adjacents \widehat{AOB} et \widehat{AOC} .

- 1. Construire la figure pour $\widehat{AOB} = 72^o$ et $\widehat{AOC} = 48^o$. Calculer les mesures des angles \widehat{BOC} et \widehat{MON} . Comparer ces mesures.
- 2. Si $\widehat{AOB} = \alpha$ et $\widehat{AOC} = \beta$, montrer que $\widehat{BOC} = \alpha + \beta$ et $\widehat{MON} = \frac{1}{2}(\alpha + \beta)$.

Exercice 6. On considère deux angles adjacents \widehat{AOB} et \widehat{BOC} . Soient [OM) et [ON) les bissectrices des angles \widehat{AOB} et \widehat{AOC} .

1. On donne $\widehat{AOB} = 60^{\circ}$ et $\widehat{AOC} = 108^{\circ}$. Construire la figure et calculer les mesures des angles \widehat{BOC} et \widehat{MON} . Comparer ces deux mesures.

2. On suppose $\widehat{AOB} = \alpha$ et $\widehat{AOC} = \beta$, montrer que $\widehat{MON} = \frac{1}{2}\widehat{BOC} = \frac{1}{2}(\beta - \alpha)$.

Exercice 7. Les bissectrices [OM) et [ON) des angles non-adjacents \widehat{AOB} et \widehat{AOC} font un angle de 36^o et l'angle \widehat{AOB} mesure 64^o .

- 1. Construire la figure et calculer les angles \widehat{AOM} , \widehat{AON} et \widehat{AOC} .
- 2. Comparer les angles \widehat{BOC} et \widehat{MON} . En est-il toujours ainsi?

Exercice 8. On considère deux angles adjacents \widehat{AOB} et \widehat{AOC} dont les bissectrices [OM) et [ON) font un angle de 84^o .

- 1. Sachant que l'angle \widehat{AOC} vaut 118^o , construire la figure et calculer les mesures des angles \widehat{AON} , \widehat{AOM} et \widehat{AOB} .
- 2. Comparer les angles \widehat{MON} et \widehat{BOC} . Généraliser.

Exercice 9. 1. Construire trois angles successivement adjacents : $\widehat{AOB} = 32^{o}$, $\widehat{BOC} = 72^{o}$, et $\widehat{COD} = 48^{o}$, puis les bissectrices [OM), [ON), [OP) et [OQ) des angles \widehat{AOB} , \widehat{AOC} , \widehat{BOD} et \widehat{COD} .

- 2. Calculer les angles \widehat{MON} et \widehat{POQ} . Comparer ces angles à l'angle \widehat{BOC} .
- 3. Montrer que les angles \widehat{MOQ} et \widehat{NOP} ont la même bissectrice.

Exercice 10. 1. Construire un angle \widehat{AOB} de 60° , sa bissectrice [Ox), puis les angles droits \widehat{AOC} et \widehat{BOD} adjacents à l'angle \widehat{AOB} et enfin les bissectrices [Oy), [Oz) et [Ou) des angles \widehat{AOC} , \widehat{BOD} , et \widehat{COD} .

- 2. Calculer la valeur des angles \widehat{COD} , \widehat{xOy} , et \widehat{xOz} . Montrer que [Ox) est la bissectrice de l'angle \widehat{yOz} .
- 3. Calculer les mesures des angles \widehat{yOu} , \widehat{zOu} , et \widehat{xOu} . Que peut-on dire des demi-droites [Ox) et [Ou]?

2 Angles opposés par le sommet

Exercice 11. On considère dans cet ordre 4 demi-droites [OA), [OB), [OC) et [OD).

- 1. Sachant que $\widehat{AOB} = \widehat{COD} = 35^o$ et $\widehat{BOC} = 48^o$, construire les quatre demi-droites. Calculer et comparer les angles \widehat{AOC} et \widehat{BOD} .
- 2. Soit [OM) la bissectrice de l'angle \widehat{BOC} . Montrer que [OM) est également la bissectrice de l'angle \widehat{AOD} .

Exercice 12. Autour d'un point O sont construits cinq angles successivement adjacents \widehat{AOB} , \widehat{BOC} , \widehat{COD} , \widehat{DOE} , et \widehat{EOA} recouvrant tout le plan. Ces angles vérifient les relations :

$$\widehat{BOC} = 2\widehat{AOB}; \widehat{COD} = \widehat{AOB} + \widehat{BOC}; \quad \widehat{DOE} = 2\widehat{BOC}; \quad \widehat{EOA} = \widehat{BOC} + \widehat{COD}.$$

- 1. Calculer la mesure en degrés de chacun de ces angles.
- 2. Calculer l'angle des bissectrices des angles \widehat{AOB} et \widehat{DOE} .

3 Angles alternes-internes

Définition. Étant données deux droites (d_1) et (d_2) coupées par une troisième droite (Δ) , on dit que deux angles sont *correspondants* si :

- Ils sont situés du même côté de la droite (Δ)
- Ils ont pour sommet chacun un des deux points d'intersection de (Δ) avec (d_1) et (d_2) .
- Exactement un des deux angles est entre (d_1) et (d_2) .

Exercice 13. Faire une figure illustrant la définition précédente.

Montrer que si deux angles sont correspondants, alors le premier angle est alterne-interne avec l'angle opposé par le sommet au second angle.

En déduire que deux angles correspondants sont de même mesure si, et seulement si, les droites (d_1) et (d_2) sont parallèles.

Exercice 14. On considère un quadrilatère ABCD tel que les angles de deux sommets consécutifs soient toujours supplémentaires.

- 1. Faire une figure avec $\widehat{ABC} = \widehat{ADC} = \widehat{60^o}$, $\widehat{BAD} = \widehat{BCD} = 120^o$, AB = 4 cm, et AC = 5 cm. Que constate-t-on?
- 2. En utilisant l'exercice précédent, montrer que les droites (AB) et (CD) sont parallèles.
- 3. Montrer que ABCD est un parallélogramme.

Exercice 15. On considère un quadrilatère ABCD dont on trace la diagonale [AC]. On suppose que cette diagonale forme des angles \widehat{BAC} et \widehat{DCA} égaux. Que peut-on dire des droites (AB) et (CD)?

4 Angles du triangle

Exercice 16. On considère un triangle ABC isocèle en A avec $\widehat{BAC} = 124^{\circ}$.

- 1. Faire une figure
- 2. Calculer les trois angles du triangle.
- 3. Vérifier sur la figure.

Exercice 17. On considère un triangle ABC isocèle en B avec $\widehat{BAC} = 124^{\circ}$.

- 1. Faire une figure
- 2. Calculer les trois angles du triangle.
- 3. Vérifier sur la figure.

Exercice 18. On considère un triangle ABC rectangle en A avec $\widehat{ABC} = 37^{\circ}$.

- 1. Faire une figure
- 2. Calculer les trois angles du triangle.
- 3. Vérifier sur la figure.

Exercice 19. On considère un quadrilatère ABCD avec $\widehat{ABD} = 37^{\circ}, \widehat{BDC} = 57^{\circ}$ $\widehat{DAB} = 50^{\circ}$ et $\widehat{ABC} = 80^{\circ}$.

- 1. Faire une figure.
- 2. Calculer les trois angles du triangle ABD, puis du triangle CBD.
- 3. Vérifier sur la figure. Que peut-on dire des quatre angles du quadrilatère ABCD?

Exercice 20. On considère un quadrilatère ABCD avec $\widehat{ABD} = \widehat{BDC} = 40^{\circ}$, $\widehat{DAB} = 90^{\circ}$ et $\widehat{ABC} = 90^{\circ}$.

- 1. Faire une figure.
- 2. Calculer les trois angles du triangle ABD, puis du triangle CBD.
- 3. Vérifier sur la figure. Que peut-on dire du quadrilatère ABCD?

Exercice 21. On considère un pentagone régulier ABCDE. On admet qu'il existe un point O situé à la même distance de tous les sommets de cet hexagone.

- 1. Que dire des angles \widehat{AOB} , \widehat{BOC} , \widehat{COD} , \widehat{DOE} , et \widehat{EOA} ?
- 2. En déduire la valeur de l'angle \widehat{AOB} .
- 3. En déduire la valeur des autres angles du triangle AOB.
- 4. Compléter : « Les angles d'un pentagone régulier mesurent tous ...°. »

Exercice 22. On considère un hexagone régulier ABCDEF. On admet qu'il existe un point O situé à la même distance de tous les sommets de cet hexagone.

1. Que dire des angles \widehat{AOB} , \widehat{BOC} , \widehat{COD} , \widehat{DOE} , \widehat{EOF} et \widehat{FOA} ?

- 2. En déduire la valeur de l'angle \widehat{AOB} .
- 3. En déduire la valeur des autres angles du triangle AOB.
- 4. Compléter : « Les angles d'un hexagone régulier mesurent tous ...°. »
- 5. Que dire des six triangles AOB, BOC, COD, DOE, EOF et FOA? En déduire une construction facile de l'hexagone régulier à la règle et au compas.