

Algorithms and Data Structures 2 CS 1501

Spring 2022

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming deadlines:
 - Lab 8 due on 3/25
 - Homework 9 due on 3/28
 - Assignment 2 due on 3/28
 - Lab 9 due on 4/1

Previous Lecture

Prim's and Kruskal's MST algorithms

CourseMIRROR Reflections (most confusing)

- What is the best edge? The one before the vertex or the one after?
- Prims algorithm was very confusing
- Determining the runtime of prims algorithm was confusing
- The method of calculating a low value and num value for a specific vertex of a graph was most confusing. Additionally, the calculation of the MST of a graph was also confusing.
- I thought the algorithm to construct the Prims was a bit confusing
- Still a missing something with articulation point algorithm.
 Hope to have a homework problem to work through
- I was confused about which vertex to check edges from in Prims Algorithm

CourseMIRROR Reflections (most confusing)

- For the non-naïve Prim's algorithm, how are best edge and parent array values determined and then later overwritten?
- Why we multiply 2 in the runtime analysis of Best edge searching for graph implemented by matrix prim's algorithm to find mst
- The order of using prims algorithm
- Finding the minimum edge value for each node in the traversal of the new Prim's algorithm

CourseMIRROR Reflections (most interesting)

- prim algorithm run time
- optimizing Prim's algorithm with the parent and best edge arrays
- That we are able to cut down the runtime by only seeing the best edges
- I found it interesting how Kruskal Algorithm used a priority queue to solve the minimum spanning tree problem
- Tracing through the algorithms
- minimum spanning tree

CourseMIRROR Reflections (most interesting)

- How DFS can find articulation points through the low and num values
- The new articulation point retrieval example was very helpful to go through
- I thought the way you are able to find the lowest cost by such a simple algorithm is interesting
- Kruskals algorithm seems interesting. Want to see more of it next lecture
- The possibilities of prims

Repetitive Minimum Problem

- Input:
 - a (large) dynamic set of data items in the form of
- Output:
 - find a minimum item
- You are implementing an algorithm that repeats this problem
 - examples of such an algorithm?
 - Prim's, Huffman tree construction
- What we cover today applies to the repetitive maximum problem as well

Let's create an ADT!

The Priority Queue ADT

- Primary operations of the PQ:
 - O Insert
 - Find item with highest priority
 - e.g., findMin() or findMax()
 - Remove an item with highest priority
 - e.g., removeMin() or removeMax()
- We mentioned priority queues in building Huffman tries
 - How do we implement these operations?
 - O Simplest approach: arrays

Unsorted array PQ

- Insert:
 - Add new item to the end of the array
 - \bigcirc $\Theta(1)$
- Find:
 - O Search for the highest priority item (e.g., min or max)
 - \bigcirc $\Theta(n)$
- Remove:
 - O Search for the highest priority item and delete
 - \bigcirc $\Theta(n)$
- Runtime for use in Huffman tree generation?

Sorted array PQ

- Insert:
 - O Add new item in appropriate sorted order
 - \bigcirc $\Theta(n)$
- Find:
 - O Return the item at the end of the array
 - \bigcirc $\Theta(1)$
- Remove:
 - O Return and delete the item at the end of the array
 - \bigcirc $\Theta(1)$
- Runtime for use in Huffman tree generation?

Amortized Runtime

Amortized Time

De lete Min n insets A (n) $M = \left(\begin{pmatrix} v_z \end{pmatrix} \right)$ Frontzed Time = $\sum_{i=1}^{n} z_{i} = \left(\left(v_{i} \right) \right)$

So what other options do we have?

- What about a binary search tree?
 - O Insert
 - Average case of $\Theta(\lg n)$, but worst case of $\Theta(n)$
 - O Find
 - Average case of $\Theta(\lg n)$, but worst case of $\Theta(n)$
 - O Remove
 - Average case of $\Theta(\lg n)$, but worst case of $\Theta(n)$
- OK, so in the average case, all operations are $\Theta(\lg n)$
 - No constant time operations
 - \bigcirc Worst case is $\Theta(n)$ for all operations

Is a BST overkill?

- Our find and remove operations only need the highest priority item, not to find/remove any item
 - O Can we take advantage of this to improve our runtime?
 - Yes!

The heap

- A heap is complete binary tree such that for each node T in the tree:
 - O T.item is of a higher priority than T.right_child.item
 - T.item is of a higher priority than T.left_child.item

- It does not matter how T.left_child.item relates to T.right_child.item
 - O This is a relaxation of the approach needed by a BST

The *heap property*

Heap Example

Heap PQ runtimes

- Find is easy
 - O Simply the root of the tree
 - **■** Θ(1)
- Remove and insert are not quite so trivial
 - O The tree is modified and the heap property must be maintained

Heap insert

- Add a new node at the next available leaf
- Push the new node up the tree until it is supporting the heap property

Min heap insert

Heap insert

- Add a new node at the next available leaf
- Push the new node up the tree until it is supporting the heap property

Min heap insert

Heap remove

- Tricky to delete root...
 - So let's simply overwrite the root with the item from the last leaf and delete the last leaf
 - But then the root is violating the heap property...
 - So we push the root down the tree until it is supporting the heap property

Min heap removal

Heap removeMax Example

Heap removeMin Example

Heap runtimes

- Find
 - \bigcirc $\Theta(1)$
- Insert and remove
 - O Height of a complete binary tree is Ig n
 - O At most, upheap and downheap operations traverse the height of the tree
 - \bigcirc Hence, insert and remove are $\Theta(\lg n)$

Heap implementation

- Simply implement tree nodes like for BST
 - This requires overhead for dynamic node allocation
 - Also must follow chains of parent/child relations to traverse the tree
- Note that a heap will be a complete binary tree...
 - O We can easily represent a complete binary tree using an array

Storing a heap in an array

- Number nodes row-wise starting at 0
- Use these numbers as indices in the array
- Now, for node at index i
 - \bigcirc parent(i) = [(i 1) / 2]
 - left_child(i) = 2i + 1
 - O right_child(i) = 2i + 2

For arrays indexed from 0

Heapify Operation

Heapify Example

Heapify Example

HeapSort Pseudo-code

HeapSort (Array a)
- Heapify (a) -

Heap Sort

- Heapify the numbers
 - MAX heap to sort ascending
 - MIN heap to sort descending
- "Remove" the root
 - O Don't actually delete the leaf node
- Consider the heap to be from 0 .. length 1
- Repeat

Heap sort analysis

- Runtime:
 - O Worst case:
 - n log n
- In-place?
 - O Yes
- Stable?
 - O No

Storing Objects in PQ

- What if we want to update an Object?
 - O What is the runtime to find an arbitrary item in a heap?
 - $\Theta(n)$
 - \blacksquare Hence, updating an item in the heap is Θ(n)
 - O Can we improve of this?
 - Back the PQ with something other than a heap?
 - Develop a clever workaround?

Please submit your reflections by using the CourseMIRROR App

If you are having a problem with CourseMIRROR, please send an email to **coursemirror.development@gmail.com**

