ERA Tutorium 1

Leopold Cario

Termin:

Raum:

Zulip:

Mittwoch 10:00 03.13.010
Donnerstag 12:00 00.08.059

ERA Tutorium - Mi-1000-1 ERA Tutorium - Do-1200-1

Lehrstuhl für Rechnerarchitektur & Parallele Systeme Prof. Dr. Martin Schulz Dominic Prinz Jakob Schäffeler

Lehrstuhl für Design Automation Prof. Dr.-Ing. Robert Wille Stefan Engels Benjamin Hien

Einführung in die Rechnerarchitektur

Wintersemester 2025/2026

Übungsblatt 1: Zahlensysteme

20.10.2025 - 24.10.2025

1 Zahlensysteme

In der Informatik werden Zahlen in der Regel im sog. Stellenwertsystem dargestellt. Der Wert

einer Zahl hängt dabei von der Position der Ziffern ab:
$$3/25 = 5.10^{\circ} + 2.10^{1} + 1.10^{2} + 3.10^{3} = 5.1 + 2.10 + 1.100 + 3.1000$$

$$W = \sum_{i=0}^{n-1} a_{i} \cdot B^{i},$$

$$B = 2: 10110 = 0.2^{\circ} + 1.2^{1} + 1.2^{2} + 0.2^{3} + 1.16 = 2$$

wobei B die Basis, n die Anzahl der Stellen und a_i die i-te Ziffer aus dem Ziffernbereich von 0 bis B-1 ist. Im Alltag ist die Basis meist 10 (Dezimalsystem). Weitere häufig verwendete Stellenwertsysteme sind das Dualsystem (Binärsystem, B=2), das Oktalsystem (B=8) und das Hexadezimalsystem (B=16). 0010 . 1110 . 0110 , = 0×2E6

a) Überlegen Sie sich einen Algorithmus, der beliebig lange Zahlen vom Dezimalsystem in das Binärsystem umwandelt. Testen Sie den Algorithmus mit den Zahlen: (42)₁₀, (100)₁₀ und $(1.000)_{10}$.

$$42:2 = 21$$
 $21:2 = 10$
 $10:2 = 5$
 $5:2 = 2$
 $2:2 = 1$
 $1:2 = 0$

Lösungsvorschlag

a) Hierfür eignet sich beispielsweise die Divisionsmethode 1

$$\Rightarrow (100)_{10} = (110.0100)_2$$

$$\Rightarrow (1.000)_{10} = (11.1110.1000)_2$$

b) Überlegen Sie sich einen Algorithmus, der beliebig lange Zahlen vom Binärsystem in das Dezimalsystem umwandelt. Testen Sie den Algorithmus mit den Zahlen: (1.0101)₂ und $(1110.0011)_2$.

$$(1.0101)_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = (21)_{10}$$
$$(1110.0011)_2 = 2^7 + 2^6 + 2^5 + 2^1 + 2^0 = (227)_{10}$$

c) Lösen Sie mit Hilfe von "Tricks" folgende Umwandlungen:

•
$$(1111.1111)_2 = (?)_{10}$$
 1.0000.0000 - 1 = 2^8 - 1 = 256 - 1 = 255 • $(1.0000.0000)_2 = (?)_{10}$ 7 8 = 256

•
$$(1.0000.0000)_2 = (?)_{10}$$
 7 = 256

•
$$(65)_{10} = (?)_2$$
 $64+1 = 2^6+1 = 1000000 + 1 = 100.0001$

•
$$(1.0000.1001.0010)_2 = (4242)_{10}$$

 $(10.0001.0010.0100)_2 = (?)_{10}$ $(24.7)_2 = 8484$

Multiplikation mit 2° = Linksshift um n Division durch 2° = Rechtsshift um n

- d) Wandeln Sie die folgenden Zahlen vom Binär- ins Hexadezimalsystem bzw. umgekehrt
 - $(1111.1111)_2 = 0x$ FF
 - $(1010.1100.0011)_2 = 0x?AC3$
 - $0x1234 = (?)_2$ Ob1. 0010. 0011. 0100
 - $0xCOFFEE = (?)_2$ 01100.0000.1111.1111.1110.1110

e) (Optional) Schreiben Sie auf die Vorderseite eines Stück Papiers eine Umwandlungsaufgabe (ähnlich zu 1 a-d) und ihre Lösung auf die Rückseite. Tauschen Sie diese Aufgabe mit einem Ihrer Kommilitonen. Überprüfen Sie die Lösung!

2 Arithmetik und negative Zahlen

- a) Die vier Grundrechenarten Addition, Subtraktion, Multiplikation und Division verhalten sich im Binärsystem wie im Dezimalsystem: die einzelnen Ziffern werden stellenweise verarbeitet. Lösen Sie die folgenden Rechenaufgaben (alle Zahlen sind positiv):
 - $(10.1010)_2 + (11.0011)_2 = (?)_2$

• $(11.0011)_2 - (10.1010)_2 = (?)_2$

- $(10.1010)_2 \cdot (11)_2 = (?)_2$
- $(01.1100)_2 : (0100)_2 = (?)_2$

011100:0100 = 111 lediglich positive stellt w

b) Bisher haben wir lediglich positive Zahlen betrachtet. Wie könnten negative Zahlen im Binärsystem dargestellt werden? Vergleichen Sie anhand der Zahl $-(42)_{10}$ die Vor- und Nachteile der Darstellungsarten. Betrachten Sie dazu 8 binäre Stellen.

Art	Beschreibung	Vor-/Nachteil
Vorzeichenbit	Ein extra Bit nur für	⊕ Analog zu Dezimalsystem
	das Vorzeichen	\ominus Doppelte Null
		\ominus neue Arithmetik nötig
Einerkomplement	Alle Bits invertieren	⊕ intuitiv
		\ominus Doppelte Null
		\ominus neue Arithmetik nötig
Zweierkomplement	Einerkomplement +1	⊕ volle Ausnützung des Zahlen-
		raums
		\oplus Arithmetik wieder verwendbar
		\ominus Zahl nicht direkt ablesbar

Variante: Das Zweierkomplement

Beispiel mit 4 Bits:

$$3_{10} = 0011_2$$
 $2_{10} = 0010_2$
 $1_{10} = 0001_2$
 $0_{10} = 0000_2$
 $-1_{10} = \overset{\circ}{1}\overset{\circ}{1}\overset{\circ}{1}\overset{\circ}{0}_2 + 1_2$
 $-2_{10} = \overset{\circ}{1}\overset{\circ}{1}\overset{\circ}{0}\overset{\circ}{0}\overset{\circ}{0} + 1_2$
 \cdots
 $-7_{10} = \overset{\circ}{1}\overset{\circ}{0}\overset{\circ}{0}\overset{\circ}{0}\overset{\circ}{0} + 1_2$
 $-8_{10} = 0111_2 + 1_2$
 $= 1000_2$

D Bits invertieren+1 addieren

 B_{SP} . 8 B:t: $26_{10} = 0001.1010_{2}$ 1110.0101_{2}

> 1110.0101 + 1 1110.01 10

c) Berechnen Sie den Wert des Terms $(0011.0011)_2 - (0010.1010)_2 = (?)_2$ (bekannt aus Aufgabe 2) indem Sie den Subtrahenden negieren und anschließend auf den Minuenden aufaddieren. Verwenden Sie das Zweierkomplement.

- d) Lösen Sie die folgenden Aufgaben, indem Sie die Zahlen zuerst ins Binärsystem mit jeweils 5 binären Stellen umwandeln und dann das Ergebnis im Binärsystem ausrechen. Benutzen Sie das Zweierkomplement. Hinweis: Sie düfen davon ausgehen, dass die Ergebnisse wieder mit 5 binären Stellen darstellbar sind

•
$$(-1) - 1 = (4) + (-1)$$

• $(-2) \cdot (-3)$
• $(-8) : 2$

•
$$(-2) \cdot (-3)$$

•
$$(-8):2$$

$$-1 + (-1) = 11110_{2}$$

$$-1 = 11111 + 121_{2}11 + 10_{1}$$

$$-8:2 = 11100$$

$$-8:2 = 11000$$

$$-8:2 = 11000 : 08010 = 01100 \neq -4$$

$$-1000 = 000$$

$$-0000 = 000$$

Di	visi	on	mi	t B	etr	ã qo	in,	da	na d	h 1	lovze	ichen	ergi	inzen	!
8	: 2	5	_	010) : (DOC	10	=	UU	100	<u> </u>			
			-	00	ว วิก										
				- [20	,									
					- 0	0									
					0	0									
	[00					4 .			,						
-	l UL	10	0)	Ξ	1	110	0	=	- 4						

Typname in C	Bits	Vorzeichen	min	max
char	8	ja	-128	127
unsigned char		nein	0	255
short	16	ja	-32.768	32.767
unsigned short		nein	0	65.535
int	32	ja	-2.147.483.648	2.147.483.647
unsigned int		nein	0	4.294.967.295
long long	64	ja	-9.223.372.036.854.775.808	9.223.372.036.854.775.807
unsigned long long		nein	0	18.446.744.073.709.551.615

3 Zahlenbereiche

Welcher Zahlenbereich kann mit den folgenden Binärformaten dargestellt werden?

• 8-Bit vorzeichenlos (unsigned char)

• 8-Bit vorzeichenbehaftet im Zweierkomplement (char)

• 16-Bit vorzeichenlos (unsigned short)

• 32-Bit vorzeichenbehaftet im Zweierkomplement (int

RISC-V Simulator Einrichtung

In ERA wird zur Simulation eines RISC-V Prozessors QtRvSim – ein Projekt der Tschechischen Technischen Universität – verwendet. Dieser wird ab Woche 2 für die Übungen und Hausaufgaben benötigt. Für die erste Einrichtung folgen Sie bitte den folgenden Schritten:

- 1. Laden Sie sich die passende Installationsdatei für Ihr Betriebssystem herunter: https: //github.com/cvut/qtrvsim/releases/tag/v0.9.8
 - Ubuntu-User können auch folgendes PPA verwenden: ppa:qtrvsimteam/ppa
 - Windows-User benutzen die Datei mit mingw32 im Namen oder verwenden Sie die Web-Version (experimentell): https://comparch.edu.cvut.cz/ qtrvsim/app
- 2. Belassen Sie die Einstellungen wie sie sind: "No pipeline no cache" und klicken Sie auf "Example".
- 3. In der oberen Hälfte sehen Sie die Register inkl. der zugehörigen Mnemonics und Werte.

- 4. Links sehen Sie die auszuführenden Instruktionen. Die Instruktionen eines Programms beginnen wie im RISC-V Ökosystem üblich bei Adresse 0x200.
- 5. Sie können mithilfe der Reiter "Core" und "template.S" zwischen der Prozessor- und Source Code-Ansicht wechseln.
- 6. Klicken Sie auf "Compile Source and update memory" (blauer Pfeil nach unten) um den aktuell ausgewählten Source Code zu kompilieren und zu laden.
- 7. Anschließend können Sie das Programm mit dem Play-Button starten. Als Beispiel wird der Text "Hello world." rechts auf dem Terminal ausgegeben.
- 8. Weitere Beispiele finden Sie hier: https://gitlab.fel.cvut.cz/b35apo/stud-support/-/tree/master/seminaries/qtrvsim
- 9. Tipp: Probieren Sie sich hier aus!

5 Binärarithmetik (Hausaufgabe 01)

5.1 Generelles

Es gibt in ERA lediglich sog. *public-tests*, d.h. Sie sehen direkt, ob Ihre Abgabe richtig ist. Sie haben außerdem bis zum zuvor genannten Zeitpunkt unbegrenzt viele Versuche.

5.2 Aufgabe

Bearbeitung und Abgabe auf https://artemis.tum.de/courses/516 bis Sonntag, den 26.10.2025, 23:59 Uhr.