AML

Unit-2 12 marks

Discuss in detail about Building Hidden markor models for sequential data using Python.

> Markov process: Stochastic model describing sequence of possible events in which the probability of each event depends on the previous state.

(x) $\rightarrow (x_2)$ $\rightarrow (x_3)$ $\rightarrow (x_4)$

> Hidden markov model most important modification to markov process => the actual system states assumes to be unobservable or hidden.

can only obscure the observable Process X.

Important parameters
→ Intial hidden state probability
$ \Pi = [\Pi_0, \Pi_1, \Pi_2 \dots]. $
> Hidden State transition matrix is A.
\rightarrow observable probability $0 = [0_0, 0_1, 0_2]$
> The hmm leaven library - implements
HMM in python.
It gives 3 models
multi minomial Gaussian Gaussian mixtu
water muter padel and forpertant party pater
contains Contains -> most complex
discrete Gaussian
Values die in buted
Value 1
Hom model Hom learn library
A contract something of the state of
def-init- (self, model name = "Gaussian HMM") N-components = 4, Lov-type = diag')
n-components = 4, Lov-type = diag')

In HAM we use Viterbi algorithm. max probability to any path at time t.

- @ Extract the features of Audio signal using
- -> HFCC -> widely used extracting audio signals

Pre-processing

-) braining into Short intervals.

) usually overlapped for continuity

windowing:

each frame is windowed by Hamming/ Hanning.

FFT: Fast fourier transform is applied.

linear freg to non-linear Hel filterbank:

Logarithmic compression compress the signals.

Discrete Cosine transform: is applied.

normalization: hormalised to have zero mean

Feature extraction

Build a spéech recognition model using !!
Hidden markov model.
Ston
Step1 - collection & pre-processing of data
J
Store A HREC.
Step 2: Define HAM topology
Lample orker purification for alleger to a
defining Structure of the midel
defining structure of the model. Probabilities
Step 4: Evaluate. used to find the unknown parameters
61-01-
Use the speech recogni
import numpy as no
0 - 047
import humlearn hum as hum
Loading data set.
train_data = np.load ('train_data". npy)
Define HHH
n-component= 5
model = hm m. Gaussian HHM (n-components =
n-components)
Train data Stock.
model + fit (train-data)

test data test-data = np. load ('test-data · npy) Stock market Prediction using HMM Step 1: Data collection: historical stock Prises, financial > choosing hidden states depending on the complexity. since its stock market we need 2 buil /bear · (up o do um) interest of the many s affile some twaters Stock . ppy

stound more

(5) Speech recognition mechanism for info tainment system > . Both h/w & s/w Step 1: Suitable mic Suitable voice recognition Package Userfriendly UI for uses from mic to s/w (a good software intent recognificon (adjusting Volumes). System response ever handling.

import Speech-Hecog nition as sr r = sr. recogniser() with sr. mic() as source: Print ("Say something") audio = r. listen(source)

U-3 . in a 1 to be dish and

Explain the building conditional Random fields for sequential text data.

Describe the time series and sequential data series with examp.

the sale and

Time series:

- -> Data collected over time, where obs is recorded at regular intervals.
- -> order împ since it must go by time

Step-1 pre processing

Step-2 Choosing model (ARIHA)/(HHH).

Step-3 - Fit the model.

Step 4- Evaluate performance

G: Stock market explain

Sequential data:

- -> obs are. x.
- > mostly NLP pa like Speech recog:
- > 90 baild

Step 1: collection & pre-processing

Step 2: Choose modelling approach.

Step 3: Build the model ...

Step 4: Train Levaluate

Eg: spe andio Speech recognition

esiplai-

() ASSAURANCE OF THE

(dues) witch . V . + o shu

Building CRF for Sequential text data)

CRF are class of probabilistic model used

go to make predictions based on

Sequential data:

A the water wint have

- -> Usually uses NLP.

 Steps
 - D) collection of preprocessing data

 splitting uito words/numbers.

step2: Define the features. they may include current / next / previous words / eetters.

Step 3:

Split into training /test data.

Step 4:

Build using python library 'son Such as pystruct

Step 5:

Evaluate by accuracy, precision, recall 每 & FI-Store