

deeplearning.ai

RNNs and Vanishing Gradients

Outline

- Backprop through time
- RNNs and vanishing/exploding gradients
- Solutions

RNNs: Advantages

- Captures dependencies within a short range
- Takes up less RAM than other n-gram models

RNNs: Disadvantages

- Struggles to capture long term dependencies
- Prone to vanishing or exploding gradients

RNN Basic Structure

She kicked the ball right into the _____

Learnable parameters

goal

Backpropagation through time

$$W_x$$
 Same at every step W_b

$$\frac{\partial L}{\partial W_h} \propto \sum_{1 \le k \le t} \left(\prod_{t \ge i > k} \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W_h}$$

Gradient is proportional to a sum of partial derivative products

Backpropagation through time

Length of the product proportional to how far **k** is from **t**

$$\frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial h_{t-2}} \frac{\partial h_{t-2}}{\partial h_{t-3}} \frac{\partial h_{t-3}}{\partial h_{t-4}} \frac{\partial h_{t-4}}{\partial h_{t-5}} \frac{\partial h_{t-5}}{\partial h_{t-6}} \frac{\partial h_{t-6}}{\partial h_{t-7}} \frac{\partial h_{t-7}}{\partial h_{t-8}} \frac{\partial h_{t-8}}{\partial h_{t-9}} \frac{\partial h_{t-9}}{\partial h_{t-10}} \frac{\partial h_{t-10}}{\partial W_h}$$

Contribution of hidden state **t-10**

Backpropagation through time

Length of the product proportional to how far **k** is from **t**

Partial derivatives < 1

Contribution goes to 0

Vanishing Gradient

Partial derivatives > 1

Contribution goes to infinity

Exploding Gradient

Solving for vanishing or exploding gradients

Identity RNN with ReLU activation $\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} -1 \longrightarrow 0$

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

- Gradient clipping 32 --- 25

Skip connections

deeplearning.ai

Introduction to LSTMs

Outline

- Meet the Long short-term memory unit!
- LSTM architecture
- Applications

LSTMs: a memorable solution

- Learns when to remember and when to forget
- Basic anatomy:
 - A cell state
 - A hidden state
 - Multiple gates

Gates allow gradients to avoid vanishing and exploding

LSTMs: Based on previous understanding

Gates

Starting point with some irrelevant information

Cell and Hidden States

Discard anything irrelevant

Add important new information

Produce output

Gates in LSTM

- 1. Forget Gate:
- information that is no longer important
- 2. Input Gate: information to be stored
- 3. Output Gate: information to use at

current step

Applications of LSTMs

Next-character prediction

Chatbots

Music composition

Image captioning

Speech recognition

Summary

- LSTMs offer a solution to vanishing gradients
- Typical LSTMs have a cell and three gates:
 - Forget gate
 - Input gate
 - Output gate

deeplearning.ai

LSTM Architecture

Gates in LSTM

- **1. Forget Gate:** information that is no longer important
- 2. Input Gate: information to be stored
- 3. Output Gate: information to use at current step

Candidate Cell State

New Cell State

New Cell state

Add information from the candidate cell state using the forget and input gates

New Hidden State

New Hidden State

Select information from the new cell state using the output gate

The **Tanh** activation could be omitted

Summary

- LSTMs use a series of gates to decide which information to keep:
 - Forget gate decides what to keep
 - Input gate decides what to add
 - Output gate decides what the next hidden state will be

deeplearning.ai

Introduction to Named Entity Recognition

What is Named Entity Recognition?

- Locates and extracts predefined entities from text
- Places, organizations, names, time and dates

Types of Entities

Thailand: Geographical

Google: Organization

Indian: Geopolitical

More Types of Entities

December: Time Indicator

Egyptian statue: Artifact

Barack Obama: Person

Example of a labeled sentence

Applications of NER systems

- Search engine efficiency
- Recommendation engines
- Customer service
- Automatic trading

deeplearning.ai

Training NERs: Data Processing

Outline

- Convert words and entity classes into arrays
- Token padding
- Create a data generator

Processing data for NERs

- Assign each class a number
- Assign each word a number

Token padding

For LSTMs, all sequences need to be the same size.

- Set sequence length to a certain number
- Use the <PAD> token to fill empty spaces

Training the NER

- 1. Create a tensor for each input and its corresponding number
- 2. Put them in a batch → 64, 128, 256, 512 ...
- 3. Feed it into an LSTM unit
- 4. Run the output through a dense layer
- 5. Predict using a log softmax over K classes

Training the NER

Layers in TensorFlow

```
model = tf.keras.Sequential([
    tf.keras.layers.Embedding(),
    tf.keras.layers.LSTM(),
    tf.keras.layers.Dense(),
])
```

Summary

- Convert words and entities into same-length numerical arrays
- Train in batches for faster processing
- Run the output through a final layer and activation

deeplearning.ai

Computing Accuracy

Evaluating the model

- 1. Pass test set through the model
- 2. Get arg max across the prediction array
- 3. Mask padded tokens
- 4. Compare outputs against test labels

Evaluating the model in Python

```
def masked_accuracy(y_true, y_pred):
    mask = ...
    y_pred_class = tf.math.argmax(y_pred, axis=-1)
    matches_true_pred = tf.equal(y_true, y_pred_class)
    matches_true_pred *= mask
    masked_acc = tf.reduce_sum(acc) / tf.reduce_sum(mask)
    return masked_acc
```

Summary

- If padding tokens, remember to mask them when computing accuracy
- Coding assignment!