## dabl

Automatic ML with a human in the loop

#### Andreas Müller

Associate Research Scientist Columbia University Scikit-learn Technical Committee









#### A real world ML workflow



#### ML with sklearn & pandas

```
import pandas as pd
import seaborn as sns
data = pd.read_csv("adult.csv", index_col=0)
cols = data.columns[data.dtypes != object].tolist() + ['income']
df = data.loc[:, cols].melt("income")
g = sns.FacetGrid(df, col='variable', hue='income',
                           sharey=False, sharex=False, col wrap=3)
g = g.map(sns.kdeplot, "value", shade=True)
g.axes[0].legend()
                                      variable = age
                                                        variable = education-num
                                                                             variable = capital-gain
                                                    1.2
                               0.035
                                                                       0.00008
                                             <=50K
                                            >50K
                                                    1.0
                               0.030
                                                                       0.00006
                               0.025
                                                    0.8
                               0.020
                                                    0.6
                                                                       0.00004
                               0.015
                                                    0.4
                               0.010
                                                                       0.00002
                                                    0.2
                               0.005
                                                                       0.00000
                               0.000
                                             80 100
                                                                              25000 50000 75000100000
                                    variable = capital-loss
                                                        variable = hours-per-week
                              0.0012
                                                    0.4
                              0.0010
                                                    0.3
                              0.0008
                              0.0006
                                                    0.2
                              0.0004
                                                    0.1
                              0.0002
                              0.0000
                                  0 1000 2000 3000 4000
                                                          25
                                                             50
                                                                 75
```

value

value

#### ML with sklearn & pandas

```
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.model selection import GridSearchCV
from sklearn.linear model import LogisticRegression
categorical columns = data features.dtypes == object
cont pipe = Pipeline([('scaler', StandardScaler()),
                      ('imputer', SimpleImputer(strategy='median', add indicator=True))])
cat pipe = Pipeline([('ohe', OneHotEncoder(handle unknown='ignore')),
                     ('imputer', SimpleImputer(strategy='most frequent', add indicator=True))])
pre = ColumnTransformer([('categorical', cat pipe, categorical columns),
                         ('continuous', cont pipe, ~categorical columns),
                        1)
model = Pipeline([('preprocessing', pre), ('clf', LogisticRegression())])
param grid = {'clf C': np.logspace(-3, 3, 7)}
grid search = GridSearchCV(model, param grid=param grid)
grid search.fit(X train, y train)
```

#### Current Automatic ML frameworks

#### Example

This will run for one hour and should result in an accuracy above 0.98.

# A NEW HOPE

data analysis baseline library A NEW HOPE



# Data cleaning & preprocessing

```
import dabl
ames_df = dabl.datasets.load_ames()
ames_df.head()
```

|   | Order | PID       | MS<br>SubClass | MS<br>Zoning | Lot<br>Frontage | Lot<br>Area | Street | Alley | Lot<br>Shape | Land<br>Contour | Pool<br>Area | Pool<br>QC | Fence | Misc<br>Feature |       |   |      |    | Sale<br>Condition |
|---|-------|-----------|----------------|--------------|-----------------|-------------|--------|-------|--------------|-----------------|--------------|------------|-------|-----------------|-------|---|------|----|-------------------|
| 0 | 1     | 526301100 | 20             | RL           |                 | 31770       | Pave   | NaN   | IR1          | Lvl             | <br>0        | NaN        | NaN   | NaN             | 0     | 5 | 2010 | WD | Norma             |
| 1 | 2     | 526350040 | 20             | RH           | 80.0            | 11622       | Pave   | NaN   | Reg          | Lvl             | <br>0        | NaN        | MnPrv | NaN             | 0     | 6 | 2010 | WD | Norma             |
| 2 | 3     | 526351010 | 20             | RL           | 81.0            | 14267       | Pave   | NaN   | IR1          | Lvl             | <br>0        | NaN        | NaN   | Gar2            | 12500 | 6 | 2010 | WD | Norma             |
| 3 | 4     | 526353030 | 20             | RL           | 93.0            | 11160       | Pave   | NaN   | Reg          | Lvl             | <br>0        | NaN        | NaN   | NaN             | 0     | 4 | 2010 | WD | Norma             |
| 4 | 5     | 527105010 | 60             | RL           | 74.0            | 13830       | Pave   | NaN   | IR1          | Lvl             | <br>0        | NaN        | MnPrv | NaN             | 0     | 3 | 2010 | WD | Norma             |

5 rows × 82 columns

```
clean df = dabl.clean(ames df, verbose=2)
```

```
Detected feature types:
```

11 float, 28 int, 43 object, 0 date, 0 other

Interpreted as:

continuous 23
dirty\_float 0
low\_card\_int 6
categorical 40
date 0
free\_string 0
useless 13
dtype: int64

WARN dropped useless columns: ['Order', 'Street', 'Utilities', 'Land Slope', 'Condition 2', 'Roof Matl', 'Heating', 'Low Qual Fin SF', 'Kitchen AbvGr', 'Garage Cond', '3Ssn Porch', 'Pool Area', 'Misc Val']

#### dabl.clean

- Detect types (can overwrite)
- Detect Missing / rare values
- Detect ordinal vs categorical
- Detect near-constant
- Detect index



data = pd.read\_csv("adult.csv", index\_col=0)
plot(data, 'income', scatter\_alpha=.1)



80

<=50K

>50K

## Univariate plots



#### **Mosaic Plots**



#### Mosaic Plots



#### Pairwise Plots



## Principal Component Analysis



## Linear Discriminant Analysis



#### Preprocessing

```
X, y = ames df.drop('SalePrice', axis=1), ames df.SalePrice
ep = EasyPreprocessor().fit(X, y)
/home/andy/checkout/dabl/dabl/preprocessing.py:258: UserWarning: Discarding near-constant
'Land Slope', 'Condition 2', 'Roof Matl', 'Heating', 'Low Qual Fin SF', 'Kitchen AbvGr',
rea', 'Misc Val']
  near constant.index[near constant].tolist()))
ep.ct
ColumnTransformer(n jobs=None, remainder='drop', sparse threshold=0.1,
                  transformer weights=None,
                  transformers=[('continuous',
                                 Pipeline(memory=None,
                                          steps=[('simpleimputer',
                                                   SimpleImputer(add indicator=False,
                                                                 copy=True,
                                                                 fill value=None,
                                                                 missing values=nan,
                                                                 strategy='median',
                                                                 verbose=0)),
                                                  ('standardscaler',
                                                  StandardScaler(copy=True,
                                                                  with mean=True,
                                                                  with std=True))],...
```

#### Simple Prototypes

- Dummy Models
- Naive Bayes
- Stumps
- Linear Models

```
from dabl import SimpleClassifier
                                                               Either X, y
data = pd.read csv("adult.csv", index col=0)
                                                               Or dataframe, target col
SimpleClassifier().fit(data, target col='income') ←
/home/andy/checkout/dabl/dabl/preprocessing.py:258: UserWarning: Discarding near-constant featur
  near constant.index[near constant].tolist()))
Running DummyClassifier(strategy='prior')
accuracy: 0.759 average precision: 0.241 fl macro: 0.432 recall macro: 0.500 roc auc: 0.500
=== new best DummyClassifier(strategy='prior') (using recall macro):
accuracy: 0.759 average precision: 0.241 fl macro: 0.432 recall macro: 0.500 roc auc: 0.500
Running GaussianNB()
accuracy: 0.407 average precision: 0.288 fl macro: 0.405 recall macro: 0.605 roc auc: 0.607
=== new best GaussianNB() (using recall macro):
accuracy: 0.407 average precision: 0.288 fl macro: 0.405 recall macro: 0.605 roc auc: 0.607
Running MultinomialNB()
accuracy: 0.831 average precision: 0.773 fl macro: 0.787 recall macro: 0.815 roc auc: 0.908
=== new best MultinomialNB() (using recall macro):
accuracy: 0.831 average precision: 0.773 fl macro: 0.787 recall macro: 0.815 roc auc: 0.908
Running DecisionTreeClassifier(class weight='balanced', max depth=1)
accuracy: 0.710 average precision: 0.417 fl macro: 0.682 recall macro: 0.759 roc auc: 0.759
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5)
accuracy: 0.784 average precision: 0.711 fl macro: 0.750 recall macro: 0.811 roc auc: 0.894
Running DecisionTreeClassifier(class weight='balanced', min impurity decrease=0.01)
accuracy: 0.718 average precision: 0.561 fl macro: 0.693 recall macro: 0.779 roc auc: 0.848
Running LogisticRegression(C=0.1, class weight='balanced')
accuracy: 0.819 average precision: 0.789 fl macro: 0.783 recall macro: 0.832 roc auc: 0.915
=== new best LogisticRegression(C=0.1, class weight='balanced') (using recall macro):
accuracy: 0.819 average precision: 0.789 fl macro: 0.783 recall macro: 0.832 roc auc: 0.915
```

#### **Automatic Model Search**

### **Complex Models**

- More Linear Models
- Random forest
- Gradient boosting
- Kernel methods



### Side note: HistGradientBoosting



### Successive Halving

- Given n configuration and budget B
- pick  $\eta=2$  or  $\eta=3$  (wording follows 2)
- Each iteration, keep best halve of configurations

#### Successive Halving (Finite horizon)

**input**: Budget B, and n arms where  $\ell_{i,k}$  denotes the kth loss from the ith arm, maximum size R,  $\eta \geq 2$  ( $\eta = 3$  by default).

Initialize:  $S_0 = [n], s = \min\{t \in \mathbb{N} : nR(t+1)\eta^{-t} \leq B, t \leq \log_{\eta}(\min\{R, n\})\}.$ 

For k = 0, 1, ..., s

Set  $n_k = \lfloor n\eta^{-k} \rfloor$ ,  $r_k = \lfloor R\eta^{k-s} \rfloor$ 

Pull each arm in  $S_k$  for  $r_k$  times.

Keep the best  $\lfloor n\eta^{-(k+1)} \rfloor$  arms in terms of the  $r_k$ th observed loss as  $S_{k+1}$ .

**Output**:  $\hat{i}, \ell_{\hat{i},R}$  where  $\hat{i} = \arg\min_{i \in S_{s+1}} \ell_{i,R}$ 

## Successive Halving Illustrated



#### Portfolio creation

- Run Hyper-parameter optimization across models on large benchmark suite (OpenML-CC18)
- Evaluate all final models across all datasets
- Greedily create portfolio of best-performing, diverse models
- "Practical Automated Machine Learning
- for the AutoML Challenge 2018" Feurer et. al.

#### **Model Explanation**

```
from sklearn.model_selection import train_test_split
df_train, df_test = train_test_split(data)
ac = AnyClassifier().fit(df_train, target_col='target')
```

```
import dabl
dabl.explain(ac, X_val=df_test, target_col='target')
```

#### Metrics



### Coefficients / Feature importances



#### Permutation Importance





#### Partial Dependence Plots



#### **Future Goals**

Time sensitive portfolios

Model compression
 / building explainable models

Better model inspection

#### O'REILLY'



Andreas C. Müller & Sarah Guido



amueller.github.io



@amuellerml



@amueller



andreas.mueller @columbia.com