福建师范大学

2022— 2023 学年第二学期《 高等数学 B》期中考试卷

学院	专业	姓名:	学号
考生类别	J:2022 级相关专业	2023 年 4 月 22	日_上_午_9_点_00_分
试卷类别	」:闭卷	考试时间: 120 分钟	中
一、单	连选题(每小题3分,	共 15 分)	
			$\int_{0}^{a} v f'(v) dv$
1. 如右	图所示,函数 f(x) 在区	[间[0, a]上有连续的导函	∫o ^a xf′(x)dx 函数,则定积分 等
) .		
			C(0,f(a)) $y=f(x)$ $B(a,0)$ X
	曲边梯形 ABOD 的面积 梯形 ABOD 的面积	B. 曲边三角 D. 三角形 A	形 ACD 的面积
			ad himita
2. 反常	$\Re \int_{-\infty}^{+\infty} \frac{1}{x^2 + 2x + 2} dx$ 是	().	
		(于 0 C.发散 I	
	$\begin{cases} x+3y+2z=0\\ 2x-y-10z+3=0 \end{cases}$	0, _{平面π为} 4x-2y+ z-	2 – 0
3. 设直约	€ L 为 (2x-y-102+3-	Ψ 平面 π 为 Ψ 为 Ψ	2-0,则 ().
A.	L平行于平面π	B. 【在平面π上	
C.	L垂直于平面π	D. L 与π相交,但	不垂直
4. 微分	方程	特解形式可设为 ()
A. <i>У</i> *	$= a + x(A\sin 3x + B\cos 3x)$	B. $y^* = x(a + As)$	in3x+Bcos3x)
c <i>y</i> *	$= a + A \sin 3x$	D $y* = a + A\cos 3x$	

5. 旋转曲面
$$\frac{x^2}{2} + \frac{y^2}{2} - \frac{z^2}{3} = 0$$
的旋转轴是().

A. x轴 B. y轴 C. z轴 D. 直线 x = y = z

二、填空题(每小题 3 分, 共 15 分)

1. 已知
$$\int_{-a}^{a} (2x + \arctan x - 1) dx = -4$$
 , 则 $a =$ _______.

2. 设D是以原点为圆心,以R为半径的圆所围成,则在直角坐标系下,其面积元素 (以×为变量) dA=_____

$$\frac{dy}{dx} = P(x)y + Q(x)$$
3. 微分方程 $\frac{dy}{dx}$ 的通解为

- 4. 平面 x+ y+ z+3=0 _{与平面} 2x+2y+2z+3=0 的距离为
- 5. 上半球面 $z=\sqrt{1-x^2-y^2}$ 在 xoy 面的投影为 .

$$\lim_{x\to 0^+} \frac{\int_0^{x^2} \sin x \arctan \sqrt{t} dt}{x^3 \ln(1+x)}$$
.

四、**(8分)**设函数
$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ e^{-x}, & 1 < x \le 2 \end{cases}$$
,求定积分 $\int_2^4 f(x-2)e^{x-2}dx$.

五、(8分)求微分方程 y' = 2y(y) 满足初值条件 y(0) = 1, y(0) = 2 的特解.

六、(8分)求微分方程 У"-4У"+5У-2y=4e^x的通解.

八、(8分)求过点 P₀(-1, 0, 4) 且平行于平面 3x-4y+z-10=0, 又与直线

$$\frac{x+1}{1} = \frac{y-3}{1} = \frac{z}{2}$$
 相交的直线方程.

九、(共16分)应用题

- 1. 求圆 $\rho = 3\cos\theta$ 及心形线 $\rho = 1 + \cos\theta$ 所围图形公共部分的面积.

十、(6分)证明题

设函数
$$f(x)$$
 在 $[0,1]$ 上连续,且 $f(x) > 0$, $F(x) = \int_0^x f(t) dt + \int_1^x \frac{1}{f(t)} dt$, $x \in [0,1]$ 证明: $(1)^F(x) \ge 2$; (2) 方程 $F(x) = 0$ 在区间 $(0,1)$ 有且仅有一个根.