Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Resources Conservation Service

Washington Water Supply Outlook Report June 1, 2005

NRCS Natural Resources Conservation Service June 1, 2005 -Snowpack, Precipitation and Reservoir Conditions at a Glance

Water Supply Outlook Reports and Federal - State – Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

Local Natural Resources Conservation Service Field Office

or Scott Pattee Water Supply Specialist Natural Resources Conservation Service 2021 E. College Way, Suite 214 Mt. Vernon, WA 98273-2873 (360) 428-7684

or Kelly Sprute Public Affairs Specialist Natural Resources Conservation Service 1835 Black Lake Blvd. SW, Suite D Olympia, WA 98512-5623 (360) 704-7789

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all of its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require an alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue SW, Washington DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an Equal Opportunity provider and employer.

Washington Water Supply Outlook

June 2005

General Outlook

What a year to remember, certainly one for the record books. Records set over 30 years ago and thought to be unbreakable fell by the way side during this unprecedented year of low snowpack, precipitation and runoff. Current conditions don't appear to be so grim with nearly full reservoirs, seasonally normal or above normal rainfall and forecasts for continued normal to above normal climatic conditions. However, as summer progresses we will begin to see the effects of record low snowpack leading to record low streamflows and lowering reservoir levels. All but two basins set record low snowpack levels at sometime or another this season while summer streamflows are predicted to set new record lows on 16 eastside and 3 westside streams, including the Okanogan, Wenatchee, Yakima, Olympic Peninsula and North Puget Sound areas. Though municipal and hydroelectric uses appear to be ok, recreation, irrigation and fisheries will most likely endure the worst suffrages this season. This will be the last published report for this season. Up to date mountain weather data is available year round at the various NRCS Snow Survey and Water Supply web sites.

Snowpack

The June 1 statewide SNOTEL readings fell dramatically from last month to only 4% of average. Many basins are now snow free which is 1-2 months earlier than normal. Currently and historically very few manual readings are available for June 1 making it very difficult to compare current and past data. At this time of year SNOTEL is about our only hope, however SNOTEL wasn't available in 1977 so making June 1 comparisons is sketchy at best. Maximum snow cover in Washington was at Paradise Park SNOTEL near Mt. Rainer, with water content of 5.5 inches. This site would normally have 61.6 inches of water content on June 1 and normally would not completely melt out until sometime in August. Remaining snowpack in most of the basins listed below is located at sites that are actually in neighboring states or Canada.

BASIN	PERCENT OF	LAST	YEAR	PERCENT	OF	AVERAGE
Chalenna	2.2				7 7	
Spokane					13	
Pend Oreille			• • • • • • • • • • • • • • • • • • • •		29	
Okanogan					13	
Methow					0	
Conconully Lake					0	
Wenatchee	31				6	
Chelan					3	
Upper Yakima					0	
Lower Yakima	0				0	
Ahtanum Creek	0				0	
Walla Walla	0				0	
Lower Snake	30				22	
Cowlitz	8				6	
Lewis	0				0	
White	0				0	
Green					0	
Cedar	0				0	
Snoqualmie	0				0	
Skykomish	0				0	
Skagit	0				0	
Baker	N/	Α			N/A	
Nooksack	0				0	
Olympic Peninsula	0				0	

Precipitation

During the month of May, the National Weather Service and Natural Resources Conservation Service climate stations reported precipitation totals ranging from 96% to 225% of average in Washington river basins. The highest percent of average in the state was at Leavenworth, WA which reported 455% of average for a total of 3.87 inches. The average for this site is .85 inches for May. Bunchgrass Meadows SNOTEL reported the least at only 81% of normal. The wettest spot in the state was reported at Sheep Canyon SNOTEL in the Lewis River Basin with a May accumulation of 13.4 inches. Basin averages for the water year remain below average with the Olympic Peninsula reporting the highest at 87% and the Upper Yakima River Basin with the lowest at 66% of average.

RIVER	MAY	WATER YEAR
BASIN	PERCENT OF AVERAGE	PERCENT OF AVERAGE
Spokane	124	79
Colville-Pend Oreille .	96	76
Okanogan-Methow	111	75
Wenatchee-Chelan	200	72
Upper Yakima	160	66
Lower Yakima	177	67
Walla Walla	155	67
Lower Snake	162	
Cowlitz-Lewis	146	70
White-Green-Puyallup	136	
Central Puget Sound	123	79
North Puget Sound	112	81
Olympic Peninsula		

Reservoir

Seasonal reservoir levels in Washington vary greatly due to specific watershed management practices required in preparation for irrigation season, fisheries management, power generation and flood control. Reservoir storage in the Yakima Basin was 632,000-acre feet, 87% of average for the Upper Reaches and 231,000-acre feet, 113% of average for Rimrock and Bumping Lakes. Storage at the Okanogan reservoirs was 76% of average for June 1. The power generation reservoirs included the following: Coeur d'Alene Lake, 234,000 acre feet, 86% of average and 98% of capacity; Chelan Lake, 672,000-acre feet, 142% of average and 99% of capacity; and the Skagit River reservoirs at 124% of average and 93% of capacity.

S

BASIN	PERCENT OF CA	PACITY	CURRENT	STORAGE AS
			PERCENT	OF AVERAGI
Spokane				
Colville-Pend Oreil	le N/	A		N/A
Okanogan-Methow	6	8		76
Wenatchee-Chelan		9		142
Upper Yakima	7	6		87
Lower Yakima	10	0		113
North Puget Sound .	9	3		124

Streamflow

Most forecasts for summer streamflows are slightly higher than last months predictions however there are still many low flow records forecasted to be set. June forecasts vary from 78% of average for the Columbia River at Birchbank to 23% of average for Kachess Lake inflow in the Upper Yakima basin. June-September forecasts for some Western Washington streams include the Cedar River near Cedar Falls, 56%; Green River, 58%; and Skagit River, 52%. Some Eastern Washington streams include the Yakima River near Parker, 25%: Wenatchee River at Plain, 35%; and Spokane River near Post Falls, 49%. Volumetric forecasts are developed using current, historic and average snowpack, precipitation and streamflow data collected and coordinated by organizations cooperating with NRCS.

Statewide May streamflows were mostly below average due to early snowmelt runoff which mostly occurred last month along with reservoir management practices that are holding water for later use. The Kettle River near Laurier had the highest reported flows with 100% of average. The Yakima River at Kiona with 39% of average was the lowest in the state. Other streamflows were the following percentage of average: the Cowlitz at Castle Rock, 85%; the Spokane at Spokane, 49%; the Columbia below Rock Island Dam, 83%; and the Cle Elum near Roslyn, 49%.

BASIN	PERCENT OF AVERAGE
	(50 PERCENT CHANCE OF EXCEEDENCE)
Spokane Colville-Pend Oreille Okanogan-Methow Wenatchee-Chelan Upper Yakima Lower Yakima Walla Walla Lower Snake Cowlitz-Lewis White-Green-Puyallup Central Puget Sound North Puget Sound	44-78 24-59 44-77 23-33 25-46 41-73 54-65 46-77 58-69 53-59 52-70
Olympic Peninsula	
STREAM	PERCENT OF AVERAGE MAY STREAMFLOWS
Pend Oreille Below Box Canyon Kettle at Laurier Columbia at Birchbank Spokane at Long Lake Similkameen at Nighthawk Okanogan at Tonasket Methow at Pateros Chelan at Chelan Wenatchee at Pashastin Yakima at Cle Elum Yakima at Parker Naches at Naches Grande Ronde at Troy Snake below Lower Granite Dam SF Walla Walla near Milton Freewat Columbia River at The Dalles Lewis at Ariel Cowlitz below Mayfield Dam Skagit at Concrete	100 97 51 52 52 61 78 62 44 42 51 92 77 51 92 77

For more information contact your local Natural Resources Conservation Service office.

BASIN SUMMARY OF SNOW COURSE DATA

JUNE 2005

SNOW COURSE	ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1971-00	SNOW COURSE	ELEVATION	DATE	SNOW DEPTE	WATER CONTENT	LAST YEAR	AVERA 1971-
ALPINE MEADOWS SN	TL 3500	6/01/05	0	.0	15.0	31.4	MOSQUITO RDG	SNOTEL 5200	6/01/05	0	.0	3.2	11
BADGER PASS SNOTE	6900	6/01/05	12	5.6	19.2	22.9	MOUNT BLUM	AM 5800	6/01/05		.0E	31.0	
BARKER LAKES SNOTE		6/01/05	36	12.1	8.2	9.5		SNOTEL 4050	6/01/05	0	.0	1.5	7
BASIN CREEK SNOTE	7180	6/01/05	0	.0	.3	4.1	MT. KOBAU	CAN. 5500	5/30/05	0	. 0		5
BEAVER PASS SNOTE	3680	6/01/05	0	.0	3.8			SNOTEL 3150	6/01/05	0	.0	. 0	
	N. 5510	5/31/05	0	.0		8.0	MOUNT GARDNER		6/01/05	0	. 0	. 0	
BLACK PINE SNOTEL	7100	6/01/05	0	.0	.0	1.9	N.F. ELK CR SN		6/01/05	0	.0	. 0	
BLACKWALL PEAK CA	N. 6370	6/01/05		.0E	10.6		NEVADA RIDGE S		6/01/05	0	. 0	. 0	3
BLEWETT PASS#2SNOT	TEL 4270	6/01/05	0	.0	.0	.0	NEZ PERCE CMP		6/01/05	0	.0	. 0	
BRENDA MINE CA	N. 4450	6/01/05		.0E		2.7	NOISY BASIN SN		6/01/05	17	8.8	22.7	30
BUMPING RIDGE SNOT	TEL 4600	6/01/05	0	.0	.0	11.6	NORTH FORK JOC	KO 6330	5/27/05	31	15.1	8.6	
BUNCEGRASS MDWSNO	TEL 5000	6/01/05	0	.0	. 0	9.7	OLALLIE MDWS	SNOTEL 3960	6/01/05	0	.0	11.7	3:
BURNT MOUNTAIN PIL	4200	6/01/05	0	. 0	.0		PARADISE PARK	SNOTEL 5500	6/01/05		5.5	55.2	6:
CAYUSE PASS	5300	6/01/05		5.6			PARK CK RIDGE	SNOTEL 4600	6/01/05	0	. 0	.0	1
COMBINATION SNOTE	5600	6/01/05	0	.0	. 0	.0	PETERSON MDW SI	NOTEL 7200	6/01/05	0	.0	.0	2
COPPER BOTTOM SNOT	TEL 5200	6/01/05	0	.0	.0	.0	PIGTAIL PEAK	SNOTEL 5900	6/01/05		1.8	31.9	39
CORRAL PASS SNOT	EL 6000	6/01/05	0	.0	20.3	23.1	PIKE CREEK SNO	TEL 5930	6/01/05	0	.0	.0	
COUGAR MTN. SNOT	EL 3200	6/01/05	0	.0	.0	1.5	POPE RIDGE	SNOTEL 3540	6/01/05	0	. 0	.0	
DALY CREEK SNOTEL	5780	6/01/05	0	.0	.0	.0	POTATO HILL	SNOTEL 4500	6/01/05	0	. 0	.0	
DISCOVERY BASIN	7050	5/31/05	0	.0	.2	2.4	QUARTZ PEAK	SNOTEL 4700	6/01/05	0	. 0	. 0	
	AM 3800	6/01/05		.0E	21.0			SNOTEL 4780	6/01/05	0	.0	5.0	2
DUNGENESS SNOT		6/01/05	0	. 0	.0			SNOTEL 1900	6/01/05	0	. 0	.0	
	AM 5200	6/01/05		.0E	55.0		ROCKER PEAK SNO		6/01/05	21	7.8	11.3	1
ELBOW LAKE SNOT		6/01/05	0	.0	.0	19.8	SADDLE MIN SNO		6/01/05	11	2.8	10.1	1
EMERY CREEK SNOTEL		6/01/05	ō	.0	.0	.0		SNOTEL 4500	6/01/05		.0	.0	
	N. 5800	6/04/05	34	18.1	25.2	37.8		SNOTEL 4200	6/01/05	ō	.0	.0	
FISH LAKE SNOT		6/01/05	0	.0	.0	7.5		SNOTEL 6170	6/01/05	ň	.0	.3	1
FLATTOP MIN SNOTEL		6/01/05	31	14.4	25.2	36.5	SCHREIBERS MDW		6/01/05		. 0E	20.0	•
FROHNER MDWS SNOTE		6/01/05	0	.0		.7	SENTINEL BT SNO		6/01/05	0	.0	.0	
GRAVE CRK SNOTEL	4300	6/01/05	ő	.0	.0	.0		SNOTEL 4050	6/01/05	ő	.0	6.1	13
GREEN LAKE SNOTEL		6/01/05	0	.0	. 0	6.6		SNOTEL 3200	6/01/05	0	.0	.0	•
GROUSE CAMP SNOT		6/01/05	0	.0	.0	.2	SILVER STAR MT		5/30/05	15	8.4		1
HAND CREEK SNOTEL	5030	6/01/05	0	.0	.0	.0	SKALKAHO SNOTE		6/01/05	13	.0	10.0	1
HARTS PASS SNOT			0							0		.0	
HELL ROARING DIVID		6/01/05	0	.0	7.2	29.2	SKOOKUM CREEK S		6/01/05	0	. 0		
		5/30/05	4	2.0	13.9	10.8	SOURDOUGH GULCE		6/01/05	0	.0	.0	
		6/01/05	0	.0	.0	1.2		SNOTEL 3400	6/01/05	0	.0	.0	
EOODOO BASIN SNOTE		6/01/05	31	14.3	20.9	28.4		SNOTEL 3100	6/01/05	_	.0	.0	
HUCKLEBERRY SNOT HUMBOLDT GLCH SNOT		6/01/05	0	.0	.0		SPRUCE SPRINGS		6/01/05	0	.0	.0	2
JUNE LAKE SNOT		6/01/05	0	.0	.0	.0	STAHL PEAK SNOT		6/01/05	35	19.2	19.3	1
		6/01/05	0	.0	.0	10.1	STAMPEDE PASS S		6/01/05	0	.0	6.0	
KRAFT CREEK SNOTEL		6/01/05	0	.0	.0	.0		SNOTEL 4070	6/01/05	0	.0	.0	
LOLO PASS SNOT		6/01/05	0	.0	.0	4.9		SNOTEL 5540	6/01/05	0	.0	.0	1
LONE PINE SNOT		6/01/05	0	.0	16.8	18.4		SNOTEL 4000	6/01/05	0	.0	.0	
LOOKOUT SNOT		6/01/05	0	.0	.0	8.0		SNOTEL 4200	6/01/05	0	.0	.0	
LOST HORSE SNOT		6/01/05	0	.0	.0	.2	TINKHAM CREEK S		6/01/05	0	. 0	.0	
LOST LAKE SNOT		6/01/05		9.3	25.5	41.5		SNOTEL 5530	6/01/05	0	.0	.0	
LUBRECHT SNOTEL	4680	6/01/05	0	.0	.0	. 0		SNOTEL 5310	6/01/05	0	. 0	.0	
LYMAN LAKE SNOT		6/01/05		3.8	12.1	50.8	TV MOUNTAIN	6800	5/27/05	3	1.4	.0	
MEADOWS PASS SNOT		6/01/05	0	.0	.0	.9	TWELVEMILE SNOT		6/01/05	0	. 0	.0	
M F NOOKSACK SNOT		6/01/05	0	.0	49.9		TWIN LAKES SNOT		6/01/05	0	. 0	7.3	2
MICA CREEK SNOT		6/01/05	0	. 0	.0	.0	UPPER WHEELER S		6/01/05	0	.0	.0	
MINERS RIDGE SNOT		6/01/05	0	.0	19.0	42.5	WARM SPRINGS SM		6/01/05	25	9.1	17.2	1
MISSION CREEK CA		6/01/05		2.5E	11.5	13.0	WATSON LAKES	AM 4500	6/01/05		.OE	33.0	
MORRISSEY RIDGE CA		6/01/05		. 0E			WATERHOLE S	SNOTEL 5000	6/01/05	0	.0	10.1	
MORSE LAKE SNOT	EL 5400	6/01/05	0	. 0	15.0	33.6	WELLS CREEK S	NOTEL 4200	6/01/05	0	.0	.0	
MOSES MTN SNOT	EL 4800	6/01/05	0	. 0	.0	.1	WHITE PASS ES S	NOTEL 4500	6/01/05	0	.0	.0	5
							WHITE ROCKS MTN	CAN. 7200	6/01/05		.0E		7

Natural Resources Conservation Service

Washington State Snow, Water and Climate Services

Program Contacts

RL "Gus" Hughbanks State Conservationist Spokane State Office W. 316 Boone Ave., Suite 450 Spokane, WA 99201-2348 phone: 509-323-2961 fax: 509-323-2979 gus.hughbanks@wa.usda.gov

Scott Pattee
Water Supply Specialist
Washington Snow Survey Office
2021 E. College Way, Suite 214
Mount Vernon, WA 98273-2873
phone: 360-428-7684

fax: 360-424-6172 scott.pattee@wa.usda.gov

Jon Lea
DCO Supervisor
Oregon Data Collection Office
101 SW Main St, Suite 1300
Portland, OR 97204
Phone: 503-414-3267
Fax: 503-414-3277
jon.lea@or.usda.gov

James Marron
Resource Conservationist
National Water and Climate Center
101 SW Main St., Suite 1600
Portland, OR 97204-3224
phone: 503-414-3047
fax: 503-414-3101
imarron@wcc.nrcs.usda.gov

Helpful Internet Addresses

NRCS Snow Survey and Climate Services Homepages

Washington:

http://www.wa.nrcs.usda.gov/snow

Oregon:

http://www.or.nrcs.usda.gov/snow

Idaho:

http://www.id.nrcs.usda.gov/snow

National Water and Climate Center (NWCC): http://www.wcc.nrcs.usda.gov

NWCC Anonymous FTP Server: ftp.wcc.nrcs.usda.gov

USDA-NRCS Agency Homepages

Washington:

http://www.wa.nrcs.usda.gov/nrcs

NRCS National: http://www.nrcs.usda.gov

Spokane River Basin

*Based on selected stations

The June 1 forecasts for summer runoff within the Spokane River Basin are 49% of average near Post Falls and 59% at Long Lake. The Chamokane River near Long Lake forecasted to have 77% of average flows for the June-August period. The forecast is based on a basin snowpack that is 13% of average and precipitation that is 79% of average for the water year. Precipitation for May was at 124% of average. Streamflow on the Spokane River at Long Lake was 51% of average for May. June 1 storage in Coeur d'Alene Lake was 234,000-acre feet, 86% of average and 98% of capacity. Snowpack at Quartz Peak SNOTEL site melted out over a month early, the earliest since records began in 1988. Average temperatures in the Spokane basin were 3 degree above normal May and 3 degrees above for the water year.

Spokane River Basin

SPOKANE RIVER BASIN

Streamfl	.ow	Forecasts	-	June	1,	2005

		<<=====	<pre><<===== Drier ===== Future Conditions ====== Wetter ====>></pre>							
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of Ex 50 (1000AF)	-	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)		
SPOKANE near Post Falls (2)	JUN-SEP JUN-JUL	276 215	338 271	380	49 46	465 395	595 515	775 675		
SPOKANE at Long Lake (2)	JUN-JUL JUN-SEP	329 482	401 564	450 620	54 59	540 715	675 860	840 1060		
CHAMOKANE CREEK near Long Lake	JUL-AUG	2.3	2.5	2.7	77	2.8	3.1	3.5		

Reservoir Sto	SPOKANE RIVER BASIN prage (1000 AF) - End	SPOKANE RIVER BASIN Watershed Snowpack Analysis - June 1, 2005						
Reservoir	Usable Capacity	*** Usa This Year	ble Stora Last Year	ge ***	Watershed	Number of Data Sites		ear as % of r Average
COEUR D'ALENE	238.5	233.5	228.5	270.4	SPOKANE RIVER	8	32	13
					NEWMAN LAKE	1	0	0

* 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) The value is natural volume actual volume may be affected by upstream water management.

Colville - Pend Oreille River Basins

*Based on selected stations

The June – September average forecast for the Kettle River streamflow is 69%, Colville at Kettle Falls is 44%, and Priest River near the town of Priest River is 51%. May streamflow was 68% of average on the Pend Oreille River, 97% on the Columbia at the International Boundary and 100% on the Kettle River. June 1 snow cover was 29% of average in the Pend Oreille River Basin. No snowpack data was available for the Kettle River Basin. Bunchgrass Meadows SNOTEL site melted out on 5/21, about 1 month early. Normally Bunchgrass would still have 9.7 inches of water equivalent on June 1. Precipitation during May was 96% of average, bringing the year-to-date precipitation to 76% of average. Average temperatures were 3-4 degrees above normal for May and 3 degrees above for the water year.

Colville - Pend Oreille River Basins

Streamflow Forecasts - June 1, 2005

		<<=====	Drier ====	== Future Con	ditions ==	===== Wetter	====>>	
Forecast Point	Forecast		========	= Chance Of Ex	ceeding * =	.========	=======	
	Period	90%	70%	50		30%	10%	30-Yr Avg
		(1000AF)	(1000AF)		(% AVG.)	(1000AF)	(1000AF)	(1000AF
PEND OREILLE Lake Inflow (2)	JUN-JUL	2120	2870	========== 3380	55	3890	4640	6120
ZNO GRZIZZZ Zane Intiem (2)	JUN-SEP	2890	3720	4280	59	4840	5670	7280
PRIEST near Priest River (1,2)	JUN-JUL	111	128	 139	48	163	215	290
	JUN-SEP	138	160	175	51	205	265	345
END OREILLE bl Box Canyon (2)	JUN-JUL	2525	3052	3410	55	4060	5020	6190
	JUN-SEP	3377	3933	4310	59	4960	5920	7370
OLVILLE at Kettle Falls	JUN-SEP	13.5	17.9	21	44	28	38	48
	JUN-JUL	8.8	12.3	14.7	42	20	29	35
ETTLE near Laurier	JUN-SEP	410	530	610	69	690	810	880
	JUN-JUL	380	475	540	69	605	705	780
OLUMBIA at Birchbank (1,2)	JUN-JUL	13579	15725	16700	76	17675	19820	22000
	JUN-SEP	19924	22658	23900	78	25140	27880	30600
OLUMBIA at Grand Coulee Dm (1,2)	JUN-SEP	25525	29359	31100	77	32840	36670	40300
	JUN-JUL	18025	21171	22600	75	24030	27180	30200
					ا 			========

	PEND OREILLE RIVER je (1000 AF) - End	COLVILLE - PEND OREILLE RIVER BASINS Watershed Snowpack Analysis - June 1, 2005						
Reservoir	Usable Capacity	*** Usabl This Year	le Storage Last Year	*** Avg	Watershed	Number of Data Sites		r as % of ======= Average
ROOSEVELT		NO REPORT		=====	COLVILLE RIVER	0	0	0
BANKS		NO REPORT	r		PEND OREILLE RIVER	8	0	0
					KETTLE RIVER	1	0	0

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Okanogan - Methow River Basins

*Based on selected stations

Summer runoff average forecast for the Okanogan River at Malott is 24%, Methow River is 29% and Salmon Creek is 25%. The Similkameen River is forecasted at 25% of normal flows. June 1 snow cover on the Okanogan was 13% of average; Omak Creek and the Methow were melted out, setting a new low June 1 snowpack record. May precipitation in the Okanogan-Methow was 111% of average, with precipitation for the water year at 75% of average. May streamflow for the Methow River was 61% of average, 52% for the Okanogan River and 52% for the Similkameen. The only reported snow remaining is in the headwaters of the Okanogan. Combined storage in the Conconully Reservoirs was 16,000-acre feet, which is 68% of capacity and 76% of the June 1 average. Temperatures were 2-3 degrees above normal for May and 2 degrees above normal for the water year.

Okanogan - Methow River Basins

Streamflow Forecasts - June 1, 2005

		<<====== 	Drier ====	== Future Cor	nditions ==	==== Wetter	====>>	
Forecast Point	Forecast			= Chance Of Ex	ceeding * =			
	Period	90% (1000AF)	70% (1000AF)	(1000AF))% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
SIMILKAMEEN near Nighthawk (1)	JUN-JUL JUN-SEP	127 161	154 190	172 210	23 25	252 290	422 465	735 835
OKANOGAN near Tonasket (1)	JUN-JUL JUN-SEP	147 190	181 232	205 260	24 25	305 375	515 615	860 1050
OKANOGAN at Malott (1)	JUN-JUL JUN-SEP	193 253	200 260	205 265	23 24	225 285	275 335	894 1085
Calmon Creek nr Conconully	JUN-JUL JUN-SEP	0.0 0.1	0.8	2.0 2.5	23 25	3.6 4.5	6.9 8.4	· 8.9 9.9
OATS COULEE CREEK nr Loomis	JUN-JUL JUN-SEP	3.8.	6.5 8.1	8.4 10.0	55 59	11.8 13.2	16.8 17.9	15.3 16.9
eaver Creek blw SF nr Twisp	JUN-SEP JUN-JUL	1.3	1.9	2.4	38 34	3.6 3.0	5.4 4.7	6.3 5.3
ETHOW RIVER near Pateros	JUN-SEP JUN-JUL	125 100	146 115	160 126	29 26	210 167	280 228	560 490

	- METHOW RIVER BE e (1000 AF) - End				OKANOGAN - Watershed Snowp	METHOW RIVER : ack Analysis -		005
Reservoir	Usable Capacity	*** Usable Storage This Last Year Year		e *** Avg	Watershed	Number of Data Sites	This Year as % of ======= Last Yr Average	
SALMON LAKE	10.5	7.8		9.7	OKANOGAN RIVER	2	0	0
CONCONULLY RESERVOIR	13.0	8.2		11.4	OMAK CREEK	1	0	0
					SANPOIL RIVER	0	0	0
				,	SIMILKAMEEN RIVER	0	0	0
					TOATS COULEE CREEK	0	0	0
					CONCONULLY LAKE	1	0	0
					METHOW RIVER	3	0	0

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

Wenatchee - Chelan River Basins

*Based on selected stations

Precipitation during May was 200% of average in the basin and 72% for the year-to-date. Runoff for Entiat River is forecast to be 32% of average for the summer. The June-September average forecast for Chelan River is 38%, Wenatchee River at Plain is 35%, Stehekin River is 41% and Icicle Creek natural flow is 51%. Stehekin, Chelan, Entiat and Wenatchee rivers are all expected to hit record low flows this summer. Stemilt and Squilchuck creeks are all forecasted to have below average flows this year as well. May average streamflows on the Chelan River were 78% and on the Wenatchee River 62%. June 1 snowpack in the Wenatchee-Chelan river basins had melted at all sites except Lyman Lake which stood at only 7%. Reservoir storage in Lake Chelan was 672,000-acre feet, 142% of June 1 average and 99% of capacity. Temperatures were 2-3 degrees above normal for May and 2 degrees above normal for the water year.

Wenatchee - Chelan River Basins

Streamflow Forecasts - June 1, 2005

		<<=====	Drier ====	== Future Co	nditions ==	===== Wetter	====>>	
Forecast Point	Forecast			= Chance Of E	xceeding * =			
	Period	90% (1000AF)	70% (1000AF)	(1000AF)	0% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg (1000AF)
CHELAN RIVER near Chelan	JUN-SEP	219	255	280	38	345	440	730
	JUN-JUL	173	204	225	38	280	365	590
STEHEKIN near STEHEKIN	JUN-SEP	175	202	220	41	265	330	535
	JUN-JUL	123	143	157	38	193	245	410
ENTIAT RIVER nr Ardenvoir	JUN-SEP	42	45	47	32	53	63	149
	JUN-JUL	35	37	39	31	44	52	127
WENATCHEE at Plain	JUN-JUL	161	184	200	35	245	310	575
	JUN-SEP	192	220	240	35	295	380	695
STEMILT CK nr Wenatchee (miner's in)	MAY-SEP	34	41	45	33	58	78	138
ICICLE CREEK near Leavenworth	JUN-SEP	81	93	101	51	117	141	199
	JUN-JUL	67	78	85	49	100	123	172
COLUMBIA R. bl Rock Island Dam (2)	JUN-SEP	27864	31220	33500	77	35780	39140	43500
	JUN-JUL	18964	22320	24600	75	26880	30240	33000

	age (1000 AF) - End				WENATCHEE Watershed Snown	- CHELAN RIVER back Analysis -		005
Reservoir	Usable Capacity	*** Usa This Year	ble Stora Last Year	ge ***	Watershed	Number of Data Sites	This Yea	r as % of ====== Average
CHELAN LAKE	676.1	672.2		473.0	CHELAN LAKE BASIN	4	11	3
					ENTIAT RIVER	1	0	0
					WENATCHEE RIVER	6	31	6
					STEMILT CREEK	1	0	0
					COLOCKUM CREEK	1	0	0

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Upper Yakima River Basin

*Based on selected stations

June 1 reservoir storage for the Upper Yakima reservoirs was 632,000-acre feet, 87% of average. Forecasts for the Yakima River at Cle Elum are 32% of average (a new record low) and the Teanaway River near Cle Elum is at 32%. Lake inflows are all forecasted to be near that same range, setting new record low flows, this summer. May streamflows within the basin were Yakima near Cle Elum at 44% and Cle Elum River near Roslyn at 49%. Snowpack had melted at all measuring sites prior to June 1. Precipitation was 160% of average for May and 66% year-to-date for water. Volume forecasts for the Yakima Basin are for natural flow. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Upper Yakima River Basin

Streamflow Forecasts - June 1, 2005

							========	
		<<=====	Drier ====	== Future Co	onditions ==	===== Wetter	====>>	
Forecast Point	Forecast			= Chance Of E	Exceeding * :		======	
	Period	90% (1000AF)	70% (1000AF)	(1000AF)	50% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
KEECHELUS LAKE INFLOW	JUN-JUL	7.8	10.1	11.7	25	18.0	27	47
	JUN-SEP	12.2	15.4	17.5	30	25	36	59
KACHESS LAKE INFLOW	JUN-JUL	4.4	5.4	6.1	14	11.0	18.1	43
	JUN-SEP	8.3	10.2	11.5	23	17.1	25	51
CLE ELUM LAKE INFLOW	JUN-JUL	39	46	50	26	67	91	192
	JUN-SEP	59	68	75 	33	95	124	230
YAKIMA at Cle Elum	JUN-JUL	68	81	90	27	125	174	340
	JUN-SEP	103	122	135	32	177	232	420
TEANAWAY near Cle Elum	JUN-JUL	4.6	7.1	8.8	24	15.8	26	37
	JUN-SEP	7.2	10.4	12.6	32	19.4	29	40

	PER YAKIMA RIVER BAS rage (1000 AF) - End				UPPER Y Watershed Snowp	AKIMA RIVER BA ack Analysis -		2005
Reservoir	Usable Capacity	*** Usa This Year	able Stora Last Year	ge ***	Watershed	Number of Data Sites		ar as % of Average
KEECHELUS	157.8	97.9		140.5	UPPER YAKIMA RIVER		0	0
KACHESS	239.0	165.3		207.6				
CLE ELUM	436.9	368.8		379.3				

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Lower Yakima River Basin

*Based on selected stations

May average streamflows within the basin were: Yakima River near Parker, 42%; Naches River near Naches, 51%; and Yakima River at Kiona, 39%. June 1 reservoir storage for Bumping and Rimrock reservoirs was 231,000-acre feet, 113% of average. Forecast averages for Yakima River near Parker are 25%; American River near Nile, 30%; Ahtanum Creek, 31%; and Klickitat River near Glenwood, 67%. American River, Rimrock, the Naches and the Yakima are all expected to set record low natural flows this summer. Snowpack was completely melted prior to June 1. Precipitation was 177% of average for May and 67% year-to-date for water. Temperatures were 3 degrees above normal for May and 2 degrees above average for the water year. Volume forecasts for Yakima Basin are for natural flow. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Lower Yakima River Basin

Streamflow Forecasts - June 1, 2005

		<<=====	Drier ====	== Future Co	nditions ==:	==== Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E: 50 (1000AF)	0%	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
BUMPING LAKE INFLOW	JUN-SEP JUN-JUL	14.6 10.9	18.4	21 16.3	29	30 24	43 36	72 61
AMERICAN RIVER near Nile	JUN-SEP JUN-JUL	15.0 11.5	17.2 13.3	18.7 14.6	30 27	24 19.2	31 26	63 54
RIMROCK LAKE INFLOW	JUN-SEP JUN-JUL	37 23	42 26	45 28	31 27	55 36	69 47	144 105
NACHES near Naches	JUN-SEP JUN-JUL	99 70	117 83	130 92	32	169 124	227 171	410 330
AHTANUM CREEK at Union Gap	JUN-SEP JUN-JUL	2.6	3.4 2.2	3.9 2.6	31	5.7 4.1	8.2	12.8 10.8
YAKIMA near Parker	JUN-SEP JUN-JUL	166 110	201 134	225 150	25 21	320 227	460 342	900 715
KLICKITAT near Glenwood	JUN-JUN JUN-SEP	11.6 19.4	17.8 29	22 36	50 46	26 42	32 52	4.4 7.8

LOWER YAKIN Reservoir Storage (100	MA RIVER BAS				LOWER YAKIMA RIVER BASIN Watershed Snowpack Analysis - June 1, 2005					
Reservoir	Usable Capacity		ole Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	This Year as % of			
BUMPING LAKE	33.7	33.6		30.4						
RIMROCK	198.0	197.7		173.5						
		=======				=======================================	=======================================			

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Walla Walla River Basin

*Based on selected stations

May precipitation was 155% of average, maintaining the year-to-date precipitation at 67% of average. Snowpack in the basin was melted prior to the first of the month. Streamflow forecasts are 41% of average for Mill Creek and 73% for the SF Walla Walla near Milton-Freewater. May streamflow was 65% of average for the Walla River. Average temperatures were 2 degrees above normal for May and 2 degrees above average for the water year.

Walla Walla River Basin

						==========	========	=========
	Str	eamflow	Forecas	ts - June	2005			
		<<=====	======================================	=== Future (Conditions ==	===== Wetter	=====>>	
Forecast Point	Forecast Period	======= 90% (1000AF)	70% (1000AF)	= Chance Of	Exceeding * = 50% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
MILL CREEK at Walla Walla	MAY-SEP MAY-JUL	2.4	3.2 2.9	3.7	41 38	5.0 4.7	6.9	9.0 8.9
SF WALLA WALLA near Milton-Freewater	JUN-JUL JUN-SEP	9.0 19.1	10.7 22	11.9	62 73	13.8 27	16.6 30	19.2 33
WALLA WALLA Reservoir Storage (1000				======================================		LA WALLA RIVE owpack Analys		1, 2005
Reservoir	Usable Capacity	*** Usabl This Year	e Storage * Last Year A		rshed	Numbe of Data Si	====	Year as % of Yr Average
		========		WALL	A WALLA RIVER	2	0	0

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Lower Snake River Basin

*Based on selected stations

The June - September forecast is for 45% for Clearwater River at Spalding. The Snake and Grande Ronde rivers can expect summer flows to be about 65% and 59% of normal respectively. May precipitation was 162% of average, bringing the year-to-date precipitation to 83% of average. June 1 snowpack readings averaged 22% of normal. May streamflow was 77% of average for Snake River below Lower Granite Dam and 92% for Grande Ronde River near Troy. Average temperatures were 2 degrees above normal for May and 2 degrees above normal for the water year.

Lower Snake River Basin

Streamflow Forecasts - June 1, 2005

(1000AF) (
(1000AF) (1000AF) (1000AF) (1000AF) (1000AF) (1000AF) (GRANDE RONDE at Troy (1)	Forecast ====================================	=====
GRANDE RONDE at Troy (1) JUN-JUL 129 219 260 55 301 390 JUN-SEP 178 286 335 59 384 492 CLEARWATER at Spalding (1,2) JUN-JUL 1047 1317 1500 51 1860 2650	Period 90% 70% 50% 30%	10% 30-Yr Av
JUN-SEP 178 286 335 59 384 492 CLEARWATER at Spalding (1,2) JUN-JUL 1047 1317 1500 51 1860 2650	(1000AF) (1000AF) (1000AF) (% AVG.) (1000AF)	1000AF) (1000A
CLEARWATER at Spalding (1,2) JUN-JUL 1047 1317 1500 51 1860 2650	.) JUN-JUL 129 219 260 55 301	390 47
	JUN-SEP 178 286 335 59 384	492 56
JUN-SEP 1311 1620 1830 54 2220 3070	(1,2) JUN-JUL 1047 1317 1500 51 1860	2650 296
	JUN-SEP 1311 1620 1830 54 2220	3070 337
SNAKE blw Lower Granite Dam (1,2)	Dam (1,2) JUN-JUL 4533 5645 6150 66 6655	7770 934
JUN-SEP 5757 7169 7810 66 8450 9860	JUN-SEP 5757 7169 7810 66 8450	9860 1190

Reservoir Storage	(1000 AF) - End	of May			Watersh	ed Snowpack A	nalysis -	June 1, 2	005
Reservoir	Usable Capacity	*** Usab This Year	le Storage Last Year	e *** Avg	 Watershed		Number of ta Sites	=======	ar as % of
					LOWER SNAKE,	GRANDE RONDE	9	30	22

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Cowlitz - Lewis River Basins

*Based on selected stations

Forecasts for June – September streamflows within the basin are Lewis River at Ariel, 62% and Cowlitz River at Castle Rock, 77% of average. The Columbia at The Dalles is forecasted to have 68% of average flows this summer. May average streamflow for Cowlitz River was 79% and 82% for Lewis River. The Columbia River at The Dalles was 81% of average. May precipitation was 146% of average and the water-year average was 70%. June 1 snow cover for Cowlitz River was 6%, and Lewis River snow was all melted. Average temperatures were 3 degrees above normal during May and 2 degrees above normal throughout the water year.

Cowlitz - Lewis River Basins

Streamflow Forecasts - June 1, 2005

=======================================								
		<<=====	Drier ====	== Future Co	onditions ===	==== Wetter	====>>	
Forecast Point	Forecast Period	 ======= 90% (1000AF)	70% (1000AF)	5	Exceeding * == 50% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
LEWIS at Ariel (2)	JUN-JUL JUN-SEP	139 214	181 265	210	62 62	239 335	279 385	338
COWLITZ R. bl Mayfield Dam (2)	JUN-SEP	84	364	680	73	995	1460	938
COWLITZ R. at Castle Rock (2)	JUN-SEP	63	562	965	77	1370	1960	1259
KLICKITAT near Glenwood	JUN-JUN JUN-SEP	11.6 19.4	17.8 29	22 36	50 46	26 42	32 52	44 78
COLUMBIA R. at The Dalles (2)	JUN-SEP JUN-JUL	27845 19344	34666 25034	39300 28900	68 66	43930 32770	50750 38460	57800 43800
COWLITZ - LET Reservoir Storage (100					COWLITZ Watershed Sno	Z - LEWIS RIV Dwpack Analys		., 2005

Reservoir	r Storage (1000 AF) - End	of May			Watershed Sno	wpack Analysis -	June 1,	2005
Reservoir	Usable Capacity	*** Usa This Year	ble Storag Last Year	je *** Avg	Watershed	Number of Data Sites		ar as % of
					LEWIS RIVER	3	0	0
					COWLITZ RIVER	5	8	6

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

White - Green River Basins

*Based on selected stations

Summer runoff is forecast to be 58% of normal for the Green River below Howard Hanson Dam and 69% for the White River near Buckley. Snowpack was completely melted at all sites in all three basins by June 1. Corral Pass SNOTEL, at an elevation of 6,000 feet, would normally still have about 23 inches of water and wouldn't melt until sometime in July. May precipitation was 136% of average, bringing the water year-to-date to 72% of average for the basins. Average temperatures in the area were 3-4 degrees above normal for May and 2 degrees above normal for the water-year.

White - Green - Puyallup River Basins

Streamflow Forecasts - June 1, 2005

		<<=====	Drier ====	== Future C	onditions ==	===== Wetter	====>>	
Forecast Point	Forecast	======		Chance Of	Exceeding * =	==========	======	
	Period	90% (1000AF)	70% (1000AF)		50% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
WHITE near Buckley (1,2)	JUN-JUL JUN-SEP	94 152	128 195	143 215	65 69	158 235	192 280	220 313
GREEN below Howard Hanson (1,2)	JUN-JUL JUN-SEP	7.4 24	27 47	36 57	49 58	45 67	65 90	73 99
WHITE - GREEN - Reservoir Storage (10			========			======= EEN - PUYALLU owpack Analys		
Reservoir	Usable		e Storage *		rshed	Numbe		Year as % of

Last Yr Average 0 GREEN RIVER 0 PUYALLUP RIVER

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Central Puget Sound River Basins

*Based on selected stations

Forecast for spring and summer flows are: 56% for Cedar River near Cedar Falls; 53% for Rex River; 54% for South Fork of the Tolt River; and 59% for Cedar River at Cedar Falls. Basin-wide precipitation for May was 123% of average, bringing water-year-to-date to 79% of average. Snow cover within all watersheds in the basin had melted prior to June 1. Temperatures were 3-4 degrees above average for May and 2 degrees above normal for the water-year.

Central Puget Sound River Basins

Streamflow Forecasts - June 1, 2005

	=========	<<====== <<======	Drier ====	== Future Co	nditions ==	===== Wetter	=====>>	: ==== ======
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)		xceeding * = 0% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
CEDAR near Cedar Falls	JUN-JUL JUN-SEP	5.2 5.8	11.6	16.0	59 56	20 25	26 33	27 34
REX near Cedar Falls	JUN-JUL JUN-SEP	0.2	2.1	4.1	50 53	6.1 8.1	9.0 11.7	8.2 10.8
CEDAR RIVER at Cedar Falls	JUN-JUL JUN-SEP	2.1 5.4	6.8 8.3	10.0	55 59	13.0 12.3	18.0 15.6	18.2 17.5
SOUTH FORK TOLT near Index	JUN-JUL JUN-SEP	1.8	2.8	3.5	57 54	4.2 5.2	5.2 6.3	6.1 8.3

CENTRAL PUGET SOUND RIVER BASINS Reservoir Storage (1000 AF) - End of May				CENTRAL PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - June 1, 2005				
Reservoir	Usable Capacity	*** Usa This Year	ble Storage Last Year	*** Avg	Watershed	Number of Data Sites		ar as % of Average
=======================================			========		CEDAR RIVER	4	0	0
					TOLT RIVER	2	0	0
					SNOQUALMIE RIVER	4	0	0
					SKYKOMISH RIVER	2	0	0

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

North Puget Sound River Basins

*Based on selected stations

Forecast for Skagit River streamflow at Newhalem is 52% of average for the spring and summer period. May streamflow in Skagit River was 66% of average. Other forecast points included the Baker River at 67% (a new record low) and Thunder Creek at 70% of average (second lowest on record). Basin-wide precipitation for May was 112% of average, bringing water-year-to-date to 81% of average. Snowpack reports from SNOTEL had shown melt out, in both the Skagit and Nooksack rivers, prior to June 1. Attempts to conduct manual snow surveys at higher elevations had not been successful due to weather conditions. It is estimated that there is some snow left above 5000 feet but without verification it's difficult to say how much. June 1 Skagit River reservoir storage was 124% of average and 93% of capacity. Average temperatures for May were 3 degrees above normal for the basin and 2 degree above average for the water year.

North Puget Sound River Basins

Streamflow Forecasts - June 1, 2005

		<<=====	Drier ====	== Future Co	onditions =:	===== Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E 5 (1000AF)	Exceeding * : 0% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
THUNDER CREEK near Newhalem	JUN-JUL JUN-SEP	87 151	100 168	109	69 70		131 207	158 257
SKAGIT at Newhalem (2)	JUN-JUL JUN-SEP	360 550	455 655	520 725	49 52	585 795	680 900	1054 1407
BAKER RIVER near Concrete	JUN-JUL JUN-SEP	263 435	291 450	310 460	67 67	329 470	357 485	465 687

	NORTH PUGET SOUND RIVER BASINS Reservoir Storage (1000 AF) - End of May					NORTH PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - June 1, 2005				
Reservoir	Usable Capacity		ble Stora Last Year	age *** Avg	Watershed	Number of Data Sites		r as % of ======= Average		
ROSS	1404.1	1306.1		1031.4	SKAGIT RIVER	3	0	0		
DIABLO RESERVOIR	90.6	83.5		86.9	BAKER RIVER	0	0	0		
					NOOKSACK RIVER	1	0	0		

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) The value is natural volume actual volume may be affected by upstream water management.

Olympic Peninsula River Basins

*Based on selected stations

Forecasted average runoff for streamflow in the Dungeness River and Elwha River basins is 60% and 49%, respectively, which are record or near record low flows for both rivers. Big Quilcene and Wynoochee rivers should expect below average runoff this summer as well. May precipitation was 225% of average. Precipitation has accumulated at 87% of average for the water year. May precipitation at Quillayute was 5.87 inches. The thirty-year average for May is 5.51 inches. Olympic Peninsula snowpack had melted prior to June 1. Temperatures were 4 degrees above average for May and 1-2 degrees above average for the water year.

Olympic Peninsula River Basins

Streamflow Forecasts - June 1, 2005								
Forecast Point	Period 90% 70% 50% 30% 10%						30-Yr Avg.	
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
DUNGENESS near Sequim	JUN-SEP JUN-JUL	47 30	54 35	59 38	60 54	64 41	71 46	99 71
ELWHA near Port Angeles	JUN-SEP JUN-JUL	115 78	136 94	150 105	49 47	164 116	185 132	306 222

	OLYMPIC PENINSULA RIVER BASINS Reservoir Storage (1000 AF) - End of May				OLYMPIC PENINSULA RIVER BASINS Watershed Snowpack Analysis - June 1, 2005				
Reservoir		Usable *** Usable Storage *** Capacity This Last Year Year Avg		Watershed	Number of Data Sites		r as % of Average		
						OLYMPIC PENINSULA	1	0	0

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

GLACIER PAGE 2005

North Cascades National Park Glacier Monitoring Program

The National Park Service began monitoring glaciers in North Cascades National Park in 1993 and Mount Rainier glaciers in 2002 (see the Mount Rainier Glacier Page). Goals for this program and additional data can be found at North Cascades National Park home page at http://www.nps.gov/noca/massbalance.htm or contact Jon_Riedel@nps.gov or

Rob_Burrows@nps.gov.

The four glaciers monitored are located at the headwaters of four watersheds, each with large hydroelectric operations (Figure 1). The glaciers represent a range in elevation from 8800 to 5600 feet, and a range in climatic conditions from maritime to continental. Methods include three visits annually to each glacier to measure winter accumulation and summer melt. Measurements are taken at a series of points down the centerline of each glacier (Table 1), and then integrated across the entire glacier surface to determine mass balance for the entire glacier. Figure 2 shows that 2004 was a negative net balance year adding to the strongly negative trend of the last 5 years. A summary report of the mass balance data is in progress.

Glacier 'Lake'

Figure 1. Glaciers monitored in North Cascades N.P.S. Complex.

Table 1.		Average	2005	2005
	'Elevation	Accumulation	Accumulation	Percent of
Glacier:	(feet)	(inches W.E.)	(inches W.E.)	Average
Noisy	Entire Glacier	120	75	63
Creek	6060	127	86	68
Density=	6050	129	86	66
0.43	5900	116	66	57
@ 5900 ft	5790	111	62	56
4/21/05	5640	111	72	65
Silver	Entire Glacier	91	52	57
Density=	8410	113	70	61
0.46	7870	97	37	38
@ 7130 ft	7540	114	59	52
4/21/05	7130	62	44	72
N. Klawatti	Entire Glacier	114	63	55
Density=	7650	118	69	58
0.36	7270	120	68	57
@6890'	6890	120	70	58
4/21/05	6420	103	61	60
	6120	93	38	41
Sandalee	Entire Glacier	117	78	67
Density=	7350	110	68	62
0.43	7110	120	80	69
7350'	6860	111	82	74
4/20/05	6530	127	94	74

Table 1 presents this spring's provisional winter accumulation data, along with average values and percent of the 13-year average. The 2005 snow depths were measured between April 20 and 21 on the four glaciers. Ice layers and cold temperatures within the snowpack made probing difficult on the upper Silver Glacier. These data are tentative and will be revised after a July visit. Snow densities at Noisy, Silver, and Sandalee glaciers are averages of samples from the wall of snow pits. The density at the midelevation of North Klawatti Glacier is bulk density from a snow core sample. Densities are in fraction of water density.

Estimates of glacial contribution to runoff for four watersheds are based on the mass balance measurements and GIS analyses to determine glacier area within 165 ft (50-meter) elevation bands (Table 2). Glaciers reduce the variation of flow in these watersheds by providing melt water from firm and ice during summer drought in dry/warm years and by storing water in excess snowpack during wet/cool years. Glacial contribution to stream flow in these watersheds varies by as much as 100% annually. Magnitude of glacial contribution to streamflow is large, but varies by the amount of glacial cover in each watershed. Thunder Creek is 13% glacierized; Baker River, 3%; Stehekin River, 6%; and Ross Lake, 0.9% (Post and others, 1971; Granshaw, 2002).

The glacierized area of a watershed primarily dictates the glacier contribution on runoff. However, the relative importance of glacial contribution to streamflow also generally increases from west to east. For example, glaciers annually contribute a higher percentage of meltwater to streamflow in the Stehekin watershed than in the Baker, despite the fact that the Baker is more highly glacierized. This is due to lower snowfall east of the hydrologic crest of the North Cascades. In this below average accumulation year, similar to 2004, we anticipate that glacier contribution to summer runoff will be above average, particularly because of the very low snowpack at elevations below the glaciers.

		May-September Runoff (thousands acre-feet)				Percent Glacial Runoff to Total Summer Runoff		
	Mean	2004	minimum	maximum	2004	minimum	maximum	
Noisy Creek Glacier	1.5	1.7	1.1	1.9				
Baker River Watershed	69	78	50	87	10	6	15	
North Klawatti Glacier	4.0	4.2	2.8	4.8				
Thunder Creek Watershed	95	105	72	119	34	21	40	
Sandalee Glacier	0.5	0.5	0.4	0.6				
Stehekin River Watershed	70	78	52	88	13	5	15	
Silver Glacier	1.0	1.0	0.7	1.2				
Ross Lake Watershed	64	71	47	81	N/A	N/A	N/A	

Table 2. Glacial contribution to summer stream flow (May 1 to Sept. 30) for four watersheds. Runoff units are thousands of acre-feet. Data from 1993-2004 except the Sandalee Glacier and Stehekin River Watershed (1995-2004).

MOUNT RAINIER GLACIER PAGE 2005

This year the National Park Service continues to monitor mass balance on Mount Rainier glaciers. The program includes field measurements of snow depth and density and snow and ice melt on Nisqually and Emmons Glaciers; annual photography; and 10-year remapping of the glaciers below 10,000 feet. This program is a cooperative venture between Mount Rainier National Park and North Cascades National Park.

Between April 7 and May 10 we measured bulk density of the snowpack, probed snow depths, and placed ablation stakes on the Nisqually and Emmons glaciers below 10,000 feet. Accumulation on the south side of the mountain (Muir Snowfield and Nisqually Glacier) shows an increasing trend with elevation to ~7150 feet and decreasing trend above (Table 1). Accumulation on Emmons Glacier generally increases with altitude to the ceiling of our spring measurements at ~9500 feet (Table 1). Nearby SNOTEL sites (Morse Lake, Corral Pass, and Paradise) indicate glacier measurements were taken near

Figure 1. Glacier cover of Mount Rainier, monitored glaciers, and measurement locations on Muir Snowfield, Emmons, and Nisqually Glaciers

the time of maximum snowpack at these sites. Total winter accumulation on the lower glaciers (below ~7000 feet) is very low. Note the relatively low density snow at 6500 feet on Emmons Glacier and 5740 feet on Nisqually indicating relatively recent deposition of much of the snow depth. Snow from mid-March to the time of measurement was important portion of the total this year. Ablation stakes were placed at 7150, 6150, and 5740 feet on Nisqually Glacier, at 9910 and 8640 feet on the Muir Snowfield, and at 9450, 9200, 6500, 5600, and 5160 feet on Emmons Glacier. We will return in mid June to check ablation stakes, re-probe snow depths, and collect snow depth and density data from 10,000 feet to the summit. We expect further snow accumulation until ~mid June on the upper mountain. On a fall visit (late September/early October) we will record final ablation measurements from the stakes below 10,000 feet. For more information contact Jon_Riedel @nps.gov or Rob_Burrows@nps.gov.

Table 1	Elevation	Accumulation	(inches w.e.)
	feet	2004	2005
	9450	74	126*
	9200	74	105*
	7300	63	na
Emmons	6500	65	27
Glacier	5625	48	25
	5590	36	32
	5160	32	9
	9910	89	59
	8640	92	70
Muir	7150	167	79
Snowfield	6150	98	49
and	6150	83	33
Nisqually	5740	67	13
Glacier	5280	74	na
	5120**	72	34
* Possible	over estim	ate due to probe	e penetration

into underlying firn layers.

Table 1. Accumulation on Mount Rainier Glaciers, Spring 2004 and 2005. Determined from probing snow depth at 1 to 11 points on each elevation contour. Provisional Data.

> Table 2. 2005 spring snow density measured on Mt. Rainier. Although the density was measured a month apart on the upper and lower Emmons Glacier we believe this represents the density at near maximum snow accumulation at each point. Provisional Data.

Glacier	Snow Density	Altitude (feet)	Snow Depth (inches)	Date
Emmons	0.43	9450	292	5/5/05
Inter	0.50	6000	155	5/4/05
Emmons	0.33	6500	72	4/7/05
Emmons	0.43	5625	42	4/7/05
Muir Snowfield	0.35	9920	163	4/27/05
Nisqually	0.47	7150	157	4/28/05
Nisqually	0.35	5740	28	4/28/05
Paradise SNOTEL	0.56	5120	61	4/30/05

^{**} Paradise SNOTEL site.

Mount Rainier Glacier Monitoring 2004 Summary

The 2004 Water Year of glacier monitoring on Mount Rainier was extremely productive and provided interesting results and new insights about Emmons and Nisqually Glaciers. Seven visits each were made to the glaciers between March 30 and October 1 to assess the accumulation (winter balance, b_w) and ablation of snow, firn and ice (summer balance, b_s) at selected points. Winter balance was measured on lower Emmons Glacier on March 30 and near Camp Schurman, mid glacier, on May 2. Winter balance was measured both on the lower Nisqually and Muir Snowfield on April 8. We believe the maximum bw on the mid to upper Nisqually and Muir Snowfield occurs earlier than the

same altitude range on the Emmons Glacier because of the south facing aspect of Nisqually. However, this date was likely a bit earlier than the maximum because the Paradise SNOTEL registered maximum SWE on April 27. Snow depth was measured above 10,000 feet on the upper Emmons Glacier on June 16 along with snow density in the summit crater and at 9500 feet near Camp Schurman.

Summer balance data (b_s) versus altitude are fitted piecewise with a cubic polynomial and exponential function and is extrapolated to the upper mountain. Surface ablation losses based on this function are added to the average snow depth from June 16 at each location to find estimates for total winter snow depth. Winter balance (b_w) is the product of snow density (linear relationship with altitude) and total winter snow depth. Winter balance vs. altitude are also piecewise fits for both Emmons and Nisqually Glaciers (Figures 2 and 3). Because of the difficult access to upper Nisqually glacier no data were collected above 10,000 feet on the glacier proper however data collected on the upper Ingraham and Emmons glaciers are assumed to be representative of upper Nisqually.

Summer balance magnitude and melt rates on lower Emmons and Nisqually Glaciers were measured in two distinct zones; bare ice and debris covered ice (Figure 2 &3). The debris is thick enough that it has a significant insulating effect thus reducing ablation by 10-40% compared to bare ice at the same altitude. At steep ice faces within the debris covered zone, the debris forms a thin veneer and melting is enhanced

The end result of these seasonal measurements is the net balance, b_n , which is the sum of b_w and b_s . Table 3 shows glacier-wide b_w , b_s , and b_n for both glaciers. These values are the result of integrating the altitude-balance functions (or fits) discussed above with 10 meter altitude bands on each glacier. The 2004 Water Year was less negative for glaciers at Mt. Rainier than those in the North Cascades. At Mount Rainier, Emmons

Glacier	Balance (inches w.e.)	error	Measurement Date				
Emmons	b _w =	59	8	March 30 and May 2				
	b _s =	-91	26	October 1				
	b _n =	-31	28					
Nisqually	b _w =	85	15	April 8				
	b _s =	-126	34	October 1				
	b _n =	-41	31					
Table 3. P.	Table 3. Provisional glacier-wide balances for Water Year 2004							

Glacier lost an average of 7500 acre-feet of water across the surface and Nisqually lost an average of 5700 acre-feet. All data presented here are provisional.

Issued by

Released by

Bruce Knight

Chief

Natural Resources Conservation Service

U.S. Department of Agriculture

R.L. "Gus" Hughbanks
State Conservationist

Natural Resources Conservation Service

Spokane, Washington

The Following Organizations Cooperate with the Natural Resources Conservation Service in Snow Survey Work*:

Canada Ministry of Sustainable Resources

Snow Survey, River Forecast Centre, Victoria, British Columbia

State Washington State Department of Ecology

Washington State Department of Natural Resources

Federal Department of the Army

Corps of Engineers

U.S. Department of Agriculture

Forest Service

U.S. Department of Commerce

NOAA, National Weather Service

U.S. Department of Interior

Bonneville Power Administration

Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs

Local City of Tacoma

City of Seattle

Chelan County P.U.D.

Pacific Power and Light Company

Puget Sound Power and Light Company

Washington Water Power Company

Snohomish County P.U.D. Colville Confederated Tribes

Spokane County

Yakama Indian Nation

Whatcom County

Pierce County

Private Okanogan Irrigation District

Wenatchee Heights Irrigation District

Newman Lake Homeowners Association

Whitestone Reclamation District

09 0 9827

MOUNT VERNON, WA

Washington Snow Survey Office 2021 E. College Way, Suite 214 Mount Vernon, WA 98273-2873

FOR OFFICIAL USE ONLY

U.SDA NATIONAL AG. LIBRARY CURRENT SERIAL RECORDS **ROOM 002** 10301 BALTIMORE AVE.

Washington **Water Supply Outlook Report**

Natural Resources Conservation Service Mount Vernon, WA

