专题 2-5 最值模型之阿氏圆与胡不归

01

题型•解读

知识点梳理

模块一 胡不归模型

【题型1】胡不归模型·已有相关角直接作垂线

【题型 2】胡不归模型·构造相关角再作垂线

【题型 3】胡不归模型·取最值时对其它量进行计算

模块二 阿氏圆模型

【题型 4】点在圆外: 向内取点 (系数小于1)

【题型5】点在圆内:向外取点(系数大于1)

【题型6】一内一外提系数

【题型7】隐圆型阿氏圆

02

满分•技巧

知识点梳理

一、胡不归模型讲解

如图,一动点 P 在直线 MN 外的运动速度为 V_1 ,在直线 MN 上运动的速度为 V_2 ,且 V_1 $< V_2$,A、B 为 定点,点 C 在直线 MN 上,确定点 C 的位置使 $\frac{AC}{V_2}$ + $\frac{BC}{V_1}$ 的值最小.

$$\frac{AC}{V_2} + \frac{BC}{V_1} = \frac{1}{V_1} \left(BC + \frac{V_1}{V_2} AC \right)$$
, 记 $k = \frac{V_1}{V_2}$, 即求 $BC + kAC$ 的最小值.

构造射线 AD 使得 sin ∠DAN=k, CH/AC=k, CH=kAC.

将问题转化为求 BC+CH 最小值,过 B 点作 $BH\perp AD$ 交 MN 于点 C,交 AD 于 H 点,此时 BC+CH 取 到最小值,即 BC+kAC 最小.

二、阿氏圆模型讲解

【模型来源】

所谓阿圆,就是动点到两定点距离之比为定值,那么动点的轨迹就是圆,这个圆,称为阿波罗尼斯圆,简称为阿圆.其本质就是通过构造母子相似,化去比例系数,转化为两定一动将军饮马型求最值,难点在于如何构造母子相似.

【模型建立】

如图 1 所示, $\odot 0$ 的半径为 R, 点 $A \setminus B$ 都在 $\odot 0$ 外 , $P \to O$ 上一动点, 已知 $R = \frac{2}{5}OB$,

连接 PA、PB, 则当" $PA+\frac{2}{5}$ PB"的值最小时, P 点的位置如何确定?

解决办法: 如图 2, 在线段 OB 上截取 OC 使 $OC = \frac{2}{5}R$, 则可说明 $\triangle BPO$ 与 $\triangle PCO$ 相似,则有 $\frac{2}{5}PB$

=PC。故本题求" $PA+\frac{2}{5}$ PB"的最小值可以转化为"PA+PC"的最小值,其中与 A 与 C 为定点,P 为动点,故当 A、P、C 三点共线时,"PA+PC"值最小。

03 核心•题型

模块一 胡不归模型

【题型1】胡不归模型•已有相关角直接作垂线

2023.西安.二模

1. 如图,在菱形 ABCD 中, $\angle ABC = 60^{\circ}$, AD = 6 ,对角线 AC 、 BD 相交于点 O ,点 E 在线段 AC 上,且 AE = 2 ,点 F 为线段 BD 上的一个动点,则 $EF + \frac{1}{2}$ BF 的最小值为 _______.

【答案】 $2\sqrt{3}$

【分析】过 F 作 $FM \perp BC$,由 菱形 ABCD, $\angle ABC = 60^{\circ}$,得到 BD 为 $\angle ABC$ 平分线,求出 $\angle FBM = 30^{\circ}$,在 $Rt_{\triangle}FBM$ 中,利用 30° 角所对的直角边等于斜边的一半,得到 $FM = \frac{1}{2}F$,故 $EF + \frac{1}{2}BF = EF + FM$,求出 EF + FM 的最小值即为所求最小值,当 E、 F 、 M 三点共线时最小,求出即可.

【详解】解: 过F 作 $FM \perp BC$,

: 菱形 ABCD, $\angle ABC = 60^{\circ}$,

 $\therefore \angle FBM = \frac{1}{2} \angle ABC = 30^{\circ}$, AB = BC, 即 $\triangle ABC$ 为等边三角形, $\angle ACM = 60^{\circ}$,

在Rt $\triangle FBM$ 中, $FM = \frac{1}{2}BF$,

$$\therefore EF + \frac{1}{2}BF = EF + FM ,$$

 \therefore 当 E 、 F 、 M 三点共线时, 取得最小值,

$$AE = 2$$
, $AC = AB = BC = 6$,

$$\therefore EC = AC - AE = 6 - 2 = 4$$

在 Rt $\triangle ECM$ 中, $EM = EC \cdot \sin 60^\circ = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$,

则 $EF + \frac{1}{2}BF$ 的最小值为 $2\sqrt{3}$.

故答案为: 2√3.

2023.保定.一模

2. 如图,在矩形 ABCD中,对角线 AC, BD 交于点 O, AB = OB = 3 ,点 M 在线段 AC 上,且 AM = 2 . 点 P 为线段 OB 上的一个动点.

(1) ∠*OBC* = _____°;

(2) $MP + \frac{1}{2}PB$ 的最小值为_____.

【答案】 30 2

【分析】(1) 由矩形的性质得到 OA = OB = OC = OD, $\angle ABC = 90^{\circ}$,又由 AB = OB 得到 $\triangle OAB$ 是等边 三角形,则 $\angle ABO = 60^{\circ}$,即可得到答案;

(2) 过点 P 作 $PE \perp BC$ 于点 E, 过点 M 作 $MF \perp BC$ 于点 F, 证明 $MP + \frac{1}{2}PB = MP + PE \geq MF$, 进一求解 MF 即可得到答案.

【详解】解:(1):"四边形 ABCD 是矩形,

 $\therefore OA = OB = OC = OD, \angle ABC = 90^{\circ},$

AB = OB,

AB = OB = OA

∴ △OAB是等边三角形,

 $\angle ABO = 60^{\circ}$.

 $\angle OBC = \angle ABC - \angle ABO = 90^{\circ} - 60^{\circ} = 30^{\circ}$

故答案为: 30.

(2) 过点 P作 $PE \perp BC$ 于点 E, 过点 M作 $MF \perp BC$ 于点 F,

在Rt△BPE中,

由 (1) 知: ∠PBE = 30°,

$$\therefore PE = \frac{1}{2}PB,$$

$$\therefore MP + \frac{1}{2}PB = MP + PE \ge MF ,$$

在矩形 ABCD中,

$$AC = 2OA = 2OB = 6$$
,

- AM = 2
- $\therefore CM = AC AM = 6 2 = 4$.

在 Rt \triangle CMF 中, \angle MCF = \angle OBC = 30°,

$$\therefore MF = \frac{1}{2}CM = 2,$$

∴
$$MP + \frac{1}{2}PB$$
 的最小值为 2

2023.湘西·中考真题

3. 如图,⊙O 是等边三角形 ABC 的外接圆,其半径为 4. 过点 B 作 $BE \bot AC$ 于点 E,点 P 为线段 BE 上一动点(点 P 不与 B, E 重合),则 $CP + \frac{1}{2}$ BP 的最小值为______.

【答案】6

【分析】过点P作 $PD \perp AB$,连接CO并延长交AB 于点F,连接AO,根据等边三角形的性质和圆内接三角形的性质得到OA = OB = 4, $CF \perp AB$,然后利用含 30° 角直角三角形的性质得到 $OE = \frac{1}{2}OA = 2$,进而求出BE = BO + EO = 6,然后利用 $CP + \frac{1}{2}BP = CP + PD \leq CF$ 代入求解即可.

【详解】如图所示,过点P作 $PD \perp AB$,连接CO并延长交AB于点F,连接AO

- ∵ △ABC是等边三角形, BE ⊥AC
- $\angle ABE = \angle CBE = \frac{1}{2} \angle ABC = 30^{\circ}$
- ∵⊙O 是等边三角形 ABC 的外接圆, 其半径为 4
- $\therefore OA = OB = 4$, $CF \perp AB$,
- $\therefore \angle OBA = \angle OAB = 30^{\circ}$
- \therefore $\angle OAE = \angle OAB = \frac{1}{2} \angle BAC = 30^{\circ}$
- $BE \perp AC$
- $\therefore OE = \frac{1}{2}OA = 2$
- BE = BO + EO = 6
- $PD \perp AB$, $\angle ABE = 30^{\circ}$
- $\therefore PD = \frac{1}{2}PB$
- $\therefore CP + \frac{1}{2}BP = CP + PD \le CF$
- ∴ $CP + \frac{1}{2}BP$ 的最小值为 CF 的长度
- ∵ △ABC 是等边三角形, BE ⊥AC, CF ⊥ AB
- $\therefore CF = BE = 6$
- ∴ $CP + \frac{1}{2}BP$ 的最小值为 6
- 4. 如图,AB = AC, $A(0,\sqrt{15})$,C(1,0),D为射线AO上一点,一动点P从A出发,运动路径为A-D-C,在AD上的速度为 4 个单位/秒,在CD上的速度为 1 个单位/秒,则整个运动时间最少时,D的坐标为_______.

【答案】 $\left(0, \frac{\sqrt{15}}{15}\right)$

【分析】如图,作 $DH \perp AB \uparrow H$, $CM \perp AB \uparrow M$, 交 $AO \uparrow D'$. 运动时间 $t = \frac{AD}{4} + \frac{CD}{1} = \frac{AD}{4} + CD$,由 $\triangle AHD \hookrightarrow \triangle AOB$,推出 $DH = \frac{1}{4}AD$,可得 $\frac{1}{4}AD + CD = CD + DH$,推出当 C, D, H 共线且和 CM 重合时,运动时间最短。

【详解】如图,作 $DH \perp AB \uparrow H$, $CM \perp AB \uparrow M$, $oldsymbol{
id}$, $oldsymbol{
id}$ $oldsymbol{
id}$

: 运动时间
$$t = \frac{AD}{4} + \frac{CD}{1} = \frac{AD}{4} + CD$$
,

$$AB = AC$$
, $AO \perp BC$,

$$BO = OC = 1$$
,

$$A(0,\sqrt{15})$$
, $C(1, 0)$, $AB = AC$, $AO \perp BC$,

$$AB = AC = \sqrt{OA^2 + OB^2} = \sqrt{15 + 1} = 4$$
,

$$\therefore \angle DAH = \angle BAO$$
, $\angle DHA = \angle AOB = 90^{\circ}$,

$$\triangle AHD \hookrightarrow \triangle AOB$$
,

$$\therefore \frac{AD}{AB} = \frac{DH}{OB} ,$$

$$\therefore DH = \frac{1}{4}AD,$$

$$\frac{1}{4}AD + CD = CD + DH ,$$

$$\therefore \frac{1}{2}BC \cdot AO = \frac{1}{2}AB \cdot CM ,$$

$$\therefore CM = \frac{\sqrt{15}}{2},$$

$$\therefore AM = \sqrt{AC^2 - CM^2} = \sqrt{4^2 - \left(\frac{\sqrt{15}}{2}\right)^2} = \frac{7}{2},$$

∴ AD' = 4MD', ⅙ MD' = m, ℳ AD' = 4m,

则有:
$$16m^2 - m^2 = \frac{49}{4}$$

∴
$$m = \frac{7\sqrt{15}}{30}$$
 $\overset{\checkmark}{x} - \frac{7\sqrt{15}}{30}$ (含去),

$$\therefore AD' = \frac{14\sqrt{15}}{15}$$

$$\therefore D\bigg(0,\frac{\sqrt{15}}{15}\bigg)$$

2023·江苏宿迁中考模拟

5. 如图,二次函数 $y = ax^2 + 2ax - 3a$ 与 x 轴交于点 A , B , 对称轴为直线 l , 顶点 C 到 x 轴的距离为 $2\sqrt{3}$. 点 P 为直线 l 上一动点,另一点从 C 出发,先以每秒 2 个单位长度的速度沿 CP 运动到点 P ,再以每秒 1 个单位长度的速度沿 PA 运动到点 A 停止,则时间最短为______秒.

【答案】 $2\sqrt{3}$

【分析】如图,连接AC,BC,作 $AD \perp BC$ 于点D,AD 与EC 交点即为符合题意的点P,可得AB = AC = BC,利用 30° 角所对的直角边等于斜边的一半得到动点运动的时间为 $\frac{CP}{2} + AP$ 解题即可.

【详解】如图,连接 AC,BC ,作 $AD \perp BC$ 于点 D , AD 与 EC 交点即为符合题意的点 P , 令 y=0 ,则 $ax^2+2ax-3a=0$,

解得x = -3或x = 1,

∴A, B两点坐标为(-3,0), (1,0),

AB = 4.

∵A, B两点关于1对称,

AE = BE = 2

:: 顶点 C 到 x 轴的距离为 $2\sqrt{3}$,

AB = AC = BC,

∵ AD,CE 都是 △ABC 的高,

 $AD = CE = 2\sqrt{3}$,

由题意得动点运动的时间为 $\frac{CP}{2}$ +AP,

∵ △ABC 是等边三角形, CE ⊥ AB,

$$\therefore \angle PCD = \frac{1}{2} \angle ACB = 30^{\circ}$$
,

: t t

$$\therefore PD = \frac{1}{2}CP,$$

$$\therefore \frac{1}{2}CP + AP = PD + AP = 2\sqrt{3},$$

显然在1上另取一点P', 连接P'A, P'D,

 $P'A + P'D \ge AD$,

∴当 PA+PD=AD 时,运动时间最短为 $2\sqrt{3}$,

故答案为: $2\sqrt{3}$.

2023·四川自贡·统考中考真题

6. 如图,直线 $y = -\frac{1}{3}x + 2$ 与 x 轴,y 轴分别交于 A,B 两点,点 D 是线段 AB 上一动点,点 H 是直线 $y = -\frac{4}{3}x + 2$ 上的一动点,动点 E(m,0),F(m+3,0),连接 BE,DF,HD. 当 BE + DF 取最小值时,3BH + 5DH 的最小值是 ______.

【答案】 $\frac{39}{2}$

【分析】作出点C(3,-2),作 $CD \perp AB$ 于点 D,交 x 轴于点 F,此时BE+DF 的最小值为CD 的长,利用解直角三角形求得 $F\left(\frac{11}{3},0\right)$,利用待定系数法求得直线CD 的解析式,联立即可求得点 D 的坐标,过点 D 作 $DG \perp y$ 轴于点 G,此时 3BH+5DH 的最小值是 5DG 的长,据此求解即可.

【详解】解: :: 直线 $y = -\frac{1}{3}x + 2$ 与 x 轴, y 轴分别交于 A, B 两点,

 $\therefore B(0.2), A(6.0),$

作点 B 关于 x 轴的对称点 B'(0,-2), 把点 B' 向右平移 3 个单位得到 C(3,-2),

作 $CD \perp AB$ 于点 D, 交 x 轴于点 F, 过点 B' 作 $B'E \parallel CD$ 交 x 轴于点 E, 则四边形 EFCB' 是平行四边形,

此时, BE = B'E = CF,

∴ BE + DF = CF + DF = CD 有最小值,

作 $CP \perp x$ 轴于点P,

P = 2, OP = 3,

- $\angle CFP = \angle AFD$,
- $\angle FCP = \angle FAD$.
- \therefore tan $\angle FCP = \tan \angle FAD$.

$$\therefore \frac{PF}{PC} = \frac{OB}{OA}, \quad \text{PP} \frac{PF}{2} = \frac{2}{6},$$

$$\therefore PF = \frac{2}{3}, \quad \text{M} F\left(\frac{11}{3}, 0\right),$$

设直线 CD 的解析式为 y = kx + b,

∴直线 CD 的解析式为 y = 3x - 11,

联立,
$$\begin{cases} y = 3x - 11 \\ y = -\frac{1}{3}x + 2 \end{cases}$$
 解得
$$\begin{cases} x = \frac{39}{10} \\ y = \frac{7}{10} \end{cases}$$
, 即 $D\left(\frac{39}{10}, \frac{7}{10}\right)$;

过点 D 作 $DG \perp y$ 轴于点 G,

直线 $y = -\frac{4}{3}x + 2$ 与 x 轴的交点为 $Q\left(\frac{3}{2},0\right)$, 则 $BQ = \sqrt{OQ^2 + OB^2} = \frac{5}{2}$,

$$\therefore \sin \angle OBQ = \frac{OQ}{BQ} = \frac{\frac{3}{2}}{\frac{5}{2}} = \frac{3}{5}, \quad \therefore HG = BH \sin \angle GBH = \frac{3}{5} BH,$$

∴
$$3BH + 5DH = 5\left(\frac{3}{5}BH + DH\right) = 5(HG + DH) = 5DG$$

即
$$3BH + 5DH$$
 的最小值是 $5DG = 5 \times \frac{39}{10} = \frac{39}{2}$

2023 • 成都市七中校考

7. 如图,在矩形 ABCD中, AB=4 , AD=8 ,点 E , F 分别在边 AD , BC 上,且 AE=3 ,沿直线 EF 翻折,点 A 的对应点 A' 恰好落在对角线 AC 上,点 B 的对应点为 B' ,点 M 为线段 AA' 上一动点,则 $EM+\frac{\sqrt{5}}{5}A'M$ 的最小值为_____.

【答案】 $\frac{12}{5}$

【分析】过点 M 作 $MN \perp A'E$ 于点 N,作点 E 关于 AC 的对称点 G,连接 MG.由勾股定理求出 AD 的长,根据锐角三角函数的知识可得 $MN = \frac{\sqrt{5}}{5} A'E$,从而可得当 G,M,N 三点共线时 GM + MN 取得最小值,即 $EM + \frac{\sqrt{5}}{5} A'M$ 取得最小值,然后利用锐角三角函数和勾股定理可求出 GN 的长.

【详解】解:如图,过点 M 作 $MN \perp A'E$ 于点 N,作点 E 关于 AC 的对称点 G,连接 MG,则 EM = MG.

由折叠的性质可知, $EF \perp AC$, AE = A'E, $\angle AEF = \angle A'EF$,

∴ ∠DAC = ∠AA'E. ∵四边形 ABCD 是矩形, ∴ CD = AB = 4, ∠D = 90°.

$$AD = \sqrt{AD^2 + CD^2} = 4\sqrt{5}$$

$$\therefore \sin \angle DAC = \frac{CD}{AC} = \frac{\sqrt{5}}{5} , \quad \therefore \sin \angle AA'E = \frac{\sqrt{5}}{5} = \frac{MN}{A'M} , \quad \therefore MN = \frac{\sqrt{5}}{5} A'M ,$$

$$\therefore EM + \frac{\sqrt{5}}{5}A'M = GM + MN,$$

 \therefore 当 G, M, N 三点共线时 GM + MN 取得最小值,即 $EM + \frac{\sqrt{5}}{5}A'M$ 取得最小值,

$$\therefore$$
 $\angle DAC + \angle AEF = 90^{\circ}$, $\angle EGN + \angle A'EF = 90^{\circ}$, \therefore $\angle EGN = \angle DAC$,

$$\therefore \sin \angle EGN = \sin \angle DAC = \frac{\sqrt{5}}{5} = \frac{EN}{GE}.$$

$$\therefore GN = \sqrt{\left(\frac{6\sqrt{5}}{5}\right)^2 - \left(\frac{6}{5}\right)^2} = \frac{12}{5}.$$

即 $EM + \frac{\sqrt{5}}{5}A'M$ 取得最小值是 $\frac{12}{5}$.

【题型 2】胡不归模型•构造相关角再作垂线

8. 如图,在长方形 ABCD中, AB=2 , $AD=2\sqrt{3}$,点 E 在 BC 上,连接 DE ,在点 E 的运动过程中, $BE+\sqrt{2}DE$ 的最小值为_____.

【答案】 $2+2\sqrt{3}/2\sqrt{3}+2$

【分析】在线段 BC 下方作 $\angle CBM$ =45°, 过点 E 作 $EF \perp BM$ 于点 F ,连接 DF ,求出此时的 DF 的长度便可.

【详解】解: :: 四边形 ABCD 是矩形, AB=2, $AD=2\sqrt{3}$,

 $\angle DCE = 90^{\circ}$, CD = AB = 2, $BC = AD = 2\sqrt{3}$,

$$\therefore BE = 2\sqrt{3} - CE ,$$

在线段BC下方作 $\angle CBM=45^{\circ}$,过点E作 $EF \perp BM$ 于点F,连接DF,

$$\therefore EF = \frac{\sqrt{2}}{2}BE ,$$

$$\frac{1}{2} DE + DE = EF + DE \ge DF,$$

当 $D \setminus E \setminus F$ 三点共线时, $\frac{\sqrt{2}}{2}BE+DE=EF+DE=DF$ 的值最小,

此时 $\angle DEC = \angle BEF = 45^{\circ}$,

 $\therefore CE = CD = 2$

:
$$BE = 2\sqrt{3} - 2$$
, $DE = \sqrt{2^2 + 2^2} = 2\sqrt{2}$,

$$\therefore EF = \frac{\sqrt{2}}{2}BE = \sqrt{6} - \sqrt{2} ,$$

$$\therefore \frac{\sqrt{2}}{2}BE + DE$$
 的最小值为: $EF + DE = \sqrt{2} + \sqrt{6}$,

$$\therefore BE + \sqrt{2}DE$$
 的最小值为 $BE + \sqrt{2}DE = \sqrt{2}\left(\frac{\sqrt{2}}{2}BE + DE\right) = 2 + 2\sqrt{3}$

2023.广西二模

9. 如图所示,在 $\triangle ABC$ 中, $\angle A=30^\circ$, M 为线段 AB 上一定点, P 为线段 AC 上一动点. 当点 P 在运动的过程中,满足 $PM+\frac{1}{2}AP$ 的值最小时,则 $\angle APM=$ _____.

【答案】120°

【详解】解: 作 $\angle CAF = \angle CAB$, 过M作 $MD \perp AF$ 交AC于一点即为点P,

 $\angle CAB = 30^{\circ}$,

 $\therefore \angle CAF = \angle CAB = 30^{\circ}$,

$$\therefore$$
 DP = $\frac{1}{2}$ AP,

∴当 $MD \perp AF$ 时 $PM + \frac{1}{2}AP$ 的值最小,

∴ $\triangle ADP$ $\stackrel{\bullet}{\mathbf{P}}$, $\angle APM = 90^{\circ} + 30^{\circ} = 120^{\circ}$,

故答案为120°;

10. 如图, $\angle ACB = 90^{\circ}$,AC = 2,AB = 4,点P为AB上一点,连接PC,则 $PC + \frac{1}{2}PB$ 的最小值

为 _3_.

【答案】3

【解答】解: 作 $\angle ABE = 30^{\circ}$, 过点C作 $CD \perp BE$ 于点D,

则此时 $PC + \frac{1}{2}PB$ 最小,

 $\therefore \angle ACB = 90^{\circ}$, AC = 2, AB = 4,

$$\therefore \sin \angle CBA = \frac{AC}{AB} = \frac{2}{4} = \frac{1}{2}, \quad BC = \sqrt{4^2 - 2^2} = 2\sqrt{3},$$

 $\therefore \angle CBA = 30^{\circ}$,

$$\therefore DP = \frac{1}{2}PB,$$

$$\therefore \angle CBE = 60^{\circ}$$
,

$$\therefore \sin 60^\circ = \frac{DC}{BC} = \frac{CD}{2\sqrt{3}} = \frac{\sqrt{3}}{2} ,$$

解得: DC = 3,

$$\therefore PC + \frac{1}{2}PB = DC = 3.$$

故答案为: 3.

11. 如图, AC 是圆 O 的直径, AC=4, 弧 $BA=120^\circ$, 点 D 是弦 AB 上的一个动点, 那么 $OD+\frac{1}{2}BD$ 的最小值为(

A.
$$\frac{\sqrt{3}}{2}$$

B.
$$\sqrt{3}$$

B.
$$\sqrt{3}$$
 C. $1 + \frac{\sqrt{3}}{2}$ D. $1 + \sqrt{3}$

D.
$$1 + \sqrt{3}$$

【解答】解: $::\widehat{BA}$ 的度数为120°, $::\angle C=60$ °, ::AC 是直径, $::\angle ABC=90$ °,

 $\therefore \angle A = 30^{\circ}$, 作 BK / / CA, $DE \perp BK \neq E$, $OM \perp BK \neq M$, 连接 OB.

: BK / AC, $:: \angle DBE = \angle BAC = 30^{\circ}$, \triangle RtΔDBE \diamondsuit , $DE = \frac{1}{2}BD$,

$$\therefore OD + \frac{1}{2}BD = OD + DE ,$$

根据垂线段最短可知, 当点 E 与 M 重合时, $OD + \frac{1}{2}BD$ 的值最小, 最小值为 OM,

 $\therefore \angle BAO = \angle ABO = 30^{\circ}$,

 $\therefore \angle OBM = 60^{\circ}$,

在 Rt∆OBM 中,

 $\therefore OB = 2$, $\angle OBM = 60^{\circ}$,

 $\therefore OM = OB \cdot \sin 60^{\circ} = \sqrt{3},$

 $\therefore \frac{1}{2}DB + OD$ 的最小值为 $\sqrt{3}$, 故选: B.

12. 如图, 在 $\triangle ABC$ 中, $\angle A=15^{\circ}$, AB=10, P 为 AC 边上的一个动点 (不与 A 、C 重合), 连接 BP,

则 $\frac{\sqrt{2}}{2}AP + PB$ 的最小值是(

- A. $5\sqrt{2}$
- B. $5\sqrt{3}$
- C. $\frac{10\sqrt{3}}{3}$
- D. 8

【答案】B

【解答】解:如图,以AP为斜边在AC下方作等腰 $Rt\Delta ADP$,过B作 $BE \perp AD$ 于E,

 $\therefore \angle PAD = 45^{\circ}$

$$\therefore \sin \angle PAD = \frac{DP}{AP} = \frac{\sqrt{2}}{2} ,$$

$$\therefore DP = \frac{\sqrt{2}}{2}AP,$$

$$\therefore \frac{\sqrt{2}}{2}AP + PB = DP + PB \mp BE,$$

$$\therefore \angle BAC = 15^{\circ}$$

$$\therefore \angle BAD = 60^{\circ}$$

$$\therefore BE = AB\sin 60^\circ = 5\sqrt{3} ,$$

$$\therefore \frac{\sqrt{2}}{2}AP + PB$$
 的最小值为 $5\sqrt{3}$. 故选: B.

13. 如图,在 $Rt\triangle ABC$ 中, $\angle ACB=90^\circ$, $\angle B=30^\circ$,AB=4,点 D、F 分别是边 AB,BC 上的动点,连接 CD,过点 A 作 $AE\bot CD$ 交 BC 于点 E,垂足为 G,连接 GF,则 $GF+\frac{1}{2}FB$ 的最小值是___

【答案】 $\frac{3\sqrt{3}}{2}-1$

【分析】由 $\frac{1}{2}FB$ 联想到给FB 构造含 30° 角的直角三角形,故把 $Rt\triangle ABC$ 补成等边 $\triangle ABP$,过F作资料整理【淘宝店铺: 向阳百分百】

BP 的垂线 FH, $GF+\frac{1}{2}FB=GF+FH$, 易得当 G、F、H 成一直线时, $GF+\frac{1}{2}FB$ 最短, 又由于点 G 为 动点, 易证点 G 在以 AC 为直径的圆上, 求点 G 到 PB 的最短距离即当点 G 在点 O 到 BP 的垂线段上时, GQ 的长度.

【详解】延长 AC 到点 P, 使 CP= AC, 连接 BP, 过点 F 作 $FH \perp BP$ 于点 H, 取 AC 中点 O, 连接 OG, 过点 O 作 $OQ \perp BP$ 于点 Q,

 \therefore $\angle ACB = 90^{\circ}$, $\angle ABC = 30^{\circ}$, AB = 4

- AC = CP = 2, BP = AB = 4
- ∴△ABP 是等边三角形
- ∴ ∠*FBH*= 30°
- ∴ $Rt\triangle FHB$ +, $FH=\frac{1}{2}FB$
- ∴当 G、F、H在同一直线上时,

$$GF + \frac{1}{2}FB = GF + FH = GH$$
 取得最小值

- ∵AE ⊥ CD 于点 G
- $\therefore \angle AGC = 90^{\circ}$
- ∵ O 为 AC 中点

$$\therefore OA = OC = OG = \frac{1}{2}AC$$

- ∴A、C、G三点共圆,圆心为O,即点G在⊙O上运动,
- : 当点 G 运动到 OQ 上时,GH 取得最小值

$$\therefore Rt\triangle OPQ \ \ \ \ \ \ \ \angle P = 60^{\circ}, \ OP = 3, \ \sin \angle P = \frac{OQ}{OP} = \frac{\sqrt{3}}{2}$$

$$\therefore OQ = \frac{\sqrt{3}}{2}OP = \frac{3\sqrt{3}}{2} \therefore GH$$
 最小值为 $\frac{3\sqrt{3}}{2}$ -1

14. 如图, 在 Rt \triangle *ABC* 中, \angle *ACB* = 90°, *AC* = 4, *BC* = 3,点 *D* 是斜边 *AB* 上的动点,则 *CD* + $\frac{\sqrt{2}}{2}$ *AD* 的最小值为______.

【答案】 $\frac{14\sqrt{2}}{5}$

【分析】根据两点之间线段最短画出图形,再根据锐角三角函数及相似三角形判定可知 $\Delta BCE \hookrightarrow \Delta BAC$,最后利用相似三角形的性质及直角三角形的性质即可解答.

【详解】解:过点A做 $\angle BAM = 45^{\circ}$,过点D作 $DH \perp AM$ 于H,过点C作 $CE \perp AB$ 于点E,

$$\therefore DH = AD \cdot \sin \angle DAH = AD \cdot \sin 45^\circ = \frac{\sqrt{2}}{2} AD,$$

$$\therefore CD + \frac{\sqrt{2}}{2}AD = CD + DH,$$

*:两点之间线段最短,

∴当C、D、H共线时, CD+DH的值最小,

即CD+DH的最小值为CH,

【法一:正切和角公式】详情见本专辑 1-3 "12345 模型"

$$\tan\angle CAH = \frac{1+\frac{3}{4}}{1-\frac{3}{4}} = 7$$
,故△AHC 的三边之比为 $1:7:5\sqrt{2}$,则答案为 $\frac{14\sqrt{2}}{5}$

【法二:常规法】

$$\therefore \angle ACB = 90^{\circ}$$
, $AC = 4$, $BC = 3$,

$$\therefore AB = \sqrt{AC^2 + BC^2} = 5,$$

 $: CE \perp AB$.

$$\angle CEB = \angle ACB = 90^{\circ}$$

 $\angle B = \angle B$,

$$\triangle BCE \hookrightarrow \triangle BAC$$

$$\therefore \frac{CE}{AC} = \frac{BE}{BC} = \frac{BC}{AB} = \frac{3}{5},$$

$$\therefore CE = \frac{3}{5} \times 4 = \frac{12}{5}, BE = \frac{3}{5} \times 3 = \frac{9}{5},$$

$$\therefore$$
 $\angle CDE = \angle ADH = 45^{\circ}$, $\therefore DE = CE = \frac{12}{5}$,

:
$$CD = \sqrt{2}CE = \frac{12\sqrt{2}}{5}$$
, $AD = AB - DE - BE = 5 - \frac{12}{5} - \frac{9}{5} = \frac{4}{5}$,

【题型3】胡不归模型•取最值时对其它量进行计算

2023.广东深圳·统考三模

15. 如图, 在 $\triangle ACE$ 中, CA=CE, $\angle CAE=30^{\circ}$, $\bigcirc O$ 经过点 C, 且圆的直径 AB 在线段 AE 上.

- (1) 试说明 CE 是 $\odot O$ 的切线;
- (2) 若 $\triangle ACE$ 中 AE 边上的高为 h,试用含 h 的代数式表示 $\bigcirc O$ 的直径 AB;
- (3)设点 D 是线段 AC 上任意一点(不含端点),连接 OD,当 $\frac{1}{2}$ CD+OD 的最小值为 6 时,求 $\odot O$ 的直径 AB 的长.

【答案】(1) 证明见试题解析; (2) $AB = \frac{4\sqrt{3}}{3}h$; (3) $8\sqrt{3}$.

【详解】解: (1) 连接 OC, 如图 1, ∵CA=CE, ∠CAE=30°,

- $\therefore \angle E = \angle CAE = 30^{\circ}, \angle COE = 2 \angle A = 60^{\circ},$
- $\therefore \angle OCE = 90^{\circ}$,
- ∴ CE 是 ⊙ O 的 切线;

图1

(2) 过点 C 作 CH ⊥ AB 于 H, 连接 OC,

如图 2, 由题可得 CH=h, 在 Rt△OHC 中, CH=OC•sin∠COH,

$$\therefore h = OC \cdot \sin 60^\circ = \frac{\sqrt{3}}{2} OC, \quad \therefore OC = \frac{2h}{\sqrt{3}} = \frac{2\sqrt{3}}{3} h,$$

$$\therefore AB = 2OC = \frac{4\sqrt{3}}{3}h;$$

(3) 作 OF 平分 ∠AOC, 交⊙O 于 F, 连接 AF、CF、DF,

如图 3, 则 $\angle AOF = \angle COF = \frac{1}{2} \angle AOC = \frac{1}{2}$ (180° - 60°) =60°,

- ∵OA=OF=OC, ∴△AOF、△COF 是等边三角形,
- ∴AF=AO=OC=FC, ∴四边形 AOCF 是菱形,
- ∴根据对称性可得 DF=DO, 过点 D 作 $DH\perp OC$ 于 H, $\because OA=OC$, $\therefore \angle OCA=\angle OAC=30^{\circ}$,
- $\therefore DH = DC \cdot \sin \angle DCH = DC \cdot \sin 30^{\circ} = \frac{1}{2}DC,$
- $\therefore \frac{1}{2} CD + OD = DH + FD$.

根据两点之间线段最短可得: 当 F、D、H 三点共线时, DH+FD (即 $\frac{1}{2}$ CD+OD) 最小, 此时 $FH=OF \bullet sin$ $\angle FOH=\frac{\sqrt{3}}{2}$ OF=6,则 $OF=4\sqrt{3}$, $AB=2OF=8\sqrt{3}$,

∴当 $\frac{1}{2}$ CD+OD 的最小值为 6 时, \odot O 的直径 AB 的长为 $8\sqrt{3}$.

- 16. 如图,矩形 ABCD 的对角线 AC, BD 相交于点 O, ΔCOD 关于 CD 的对称图形为 ΔCED .
- (1) 求证: 四边形 OCED 是菱形;
- (2) 连接 AE ,若 AB = 6cm , $BC = \sqrt{5}cm$.
- ①求 sin ∠EAD 的值;

②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s 的速度沿线段OP 匀速运动到点P,再以1.5cm/s 的速度沿线段PA 匀速运动到点A,到达点A后停止运动,当点O沿上述路线运动到点A所需要的时间最短时,求AP的长和点O走完全程所需的时间.

【解答】(1) 证明: ::四边形 ABCD 是矩形.

$$\therefore OD = OB = OC = OA$$

:: ΔEDC 和 ΔODC 关于 CD 对称,

$$\therefore DE = DO$$
, $CE = CO$,

$$\therefore DE = EC = CO = OD$$

:. 四边形 CODE 是菱形。

(2) ①设 AE 交 CD 于 K.

::四边形 CODE 是菱形,

$$\therefore DE / /AC$$
 , $DE = OC = OA$,

$$\therefore \frac{DK}{KC} = \frac{DE}{AC} = \frac{1}{2}$$

$$AB = CD = 6$$

$$\therefore DK = 2$$
, $CK = 4$,

$$\triangle$$
 RtΔADK $+$, $AK = \sqrt{AD^2 + DK^2} = \sqrt{(\sqrt{5})^2 + 2^2} = 3$,

$$\therefore \sin \angle DAE = \frac{DK}{AK} = \frac{2}{3},$$

②作 $PF \perp AD$ 于 F . 易知 $PF = AP \cdot \sin \angle DAE = \frac{2}{3}AP$,

:: 点
$$Q$$
 的运动时间 $t = \frac{OP}{1} + \frac{AP}{\frac{3}{2}} = OP + \frac{2}{3}AP = OP + PF$,

 $:: 3O \times P \times F$ 共线时,OP + PF 的值最小,此时 $OF \neq \Delta ACD$ 的中位线,

:.
$$OF = \frac{1}{2}CD = 3$$
. $AF = \frac{1}{2}AD = \frac{\sqrt{5}}{2}$, $PF = \frac{1}{2}DK = 1$,

$$\therefore AP = \sqrt{(\frac{\sqrt{5}}{2})^2 + 1^2} = \frac{3}{2},$$

 \therefore 当点Q沿上述路线运动到点A所需要的时间最短时,AP的长为 $\frac{3}{2}cm$,点Q走完全程所需的时间为3s.

17. 抛物线 $y = -x^2 + bx + c$ 与 x 轴交于 A 、 B 两点,与 y 轴交于点 C ,且 B(-1,0) , C(0,3) .

- (1) 求抛物线的解析式;
- (2)如图,点D是抛物线的顶点,将抛物线沿CD方向平移,使点D落在点D'处,且DD'=2CD,点M 是平移后所得抛物线上位于D' 左侧的一点,MN //y 轴交直线 OD' 于点N ,连结CN . 当 $\frac{\sqrt{5}}{5}$ D'N+CN 的值最小时,求MN 的长.

【解答】解: (1) $:: y = -x^2 + bx + c$ 经过 B(-1,0), C(0,3),

$$\therefore \begin{cases} c=3 \\ -1-b+c=0 \end{cases}, \quad \text{解得} \begin{cases} b=2 \\ c=3 \end{cases}, \quad \therefore \text{ 抛物线的解析式为 } y=-x^2+2x+3.$$

(2) 如图, 连接 AD', 过点 N 作 $NJ \perp AD'$ 于 J, 过点 C 作 $CT \perp AD'$ 于 T.

: 抛物线
$$y = -x^2 + 2x + 3 = -(x-1)^2 + 4$$
. : 顶点 $D(1,4)$. : $C(0,3)$.

:. 直线 CD 的解析式为 y = x + 3, $CD = \sqrt{2}$,

$$\therefore DD' = 2CD$$
, $\therefore DD' = 2\sqrt{2}$, $CD' = 3\sqrt{2}$, $\therefore D'(3,6)$, $\therefore A(3,0)$,

∴
$$AD' \perp x$$
 $\stackrel{4}{\rightleftharpoons}$, ∴ $OD' = \sqrt{OA^2 + D'A^2} = \sqrt{3^2 + 6^2} = 3\sqrt{5}$,

$$\therefore \sin \angle OD'A = \frac{OA}{OD'} = \frac{\sqrt{5}}{5}, \quad \because CT \perp AD', \quad \therefore CT = 3, \quad \because NJ \perp AD',$$

$$\therefore NJ = ND' \cdot \sin \angle OD'A = \frac{\sqrt{5}}{5}D'N , \quad \therefore \frac{\sqrt{5}}{5}D'N + CN = CN + NJ , \quad \because CN + NJ \overrightarrow{H}CT ,$$

$$\therefore \frac{\sqrt{5}}{5}D'N + CN$$
 形 , $\therefore \frac{\sqrt{5}}{5}D'N + CN$ 的最小值为 3, 此时 N 为 OD' 与 CT 的交点, $\therefore N(1.5,3)$,

:: 平移后抛物线的解析式为 $y = -(x-3)^2 + 6$, MN 平行 Y 轴, 将 x = 1.5 代入抛物线解析式,

$$M(1.5,3.75)$$
 $MN = 0.75$

模块二 阿氏圆模型

【题型 4】点在圆外:向内取点(系数小于1)

18. 如图,已知正方 ABCD 的边长为 6,圆 B 的半径为 3,点 P 是圆 B 上的一个动点,则 $PD - \frac{1}{2}PC$ 的最大值为_____.

【答案】 $\frac{15}{2}$

【分析】当 P 点运动到 BC 边上时,此时 PC=3,根据题意要求构造 $\frac{1}{2}$ PC,在 BC 上取 M 使得此时 $PM=\frac{3}{2}$,则在点 P 运动的任意时刻,均有 $PM=\frac{1}{2}$ PC,从而将问题转化为求 PD-PM 的最大值. 连接 PD,对于 Δ PDM,PD-PM<DM,故当 D、M、P 共线时,PD-PM=DM 为最大值 $\frac{15}{2}$.

资料整理【淘宝店铺: 向阳百分百】

19. 如图,在Rt Δ ABC中, \angle ACB=90°, CB=4, CA=6,圆 C 的半径为 2,点 P 为圆上一动点,连接 AP , BP .

求① $AP + \frac{1}{2}BP$; ② 2AP + BP; ③ $\frac{1}{3}AP + BP$; ④ AP + 3BP 的最小值.

【解答】解: ①取CE的中点D, 连结PD, AD,

$$\therefore CD = 1$$
, $CB = 4$, $CP = 2$, $\therefore \frac{CD}{CP} = \frac{CP}{BC} = \frac{1}{2}$,

$$\therefore \angle PCD = \angle BCP , \quad \therefore \Delta PCD \triangle \Delta BCP , \quad \therefore \frac{PD}{PB} = \frac{CD}{CP} = \frac{1}{2} , \quad \therefore PD = \frac{1}{2}PB ,$$

$$\therefore AP + \frac{1}{2}PB = AP + PD$$
, 当 P 在 AD 上时, $AP + PD$ 最小,

最小值为 AF 的长, $AF = \sqrt{AC^2 + CF^2} = \sqrt{37}$, $AP + \frac{1}{2}BP$ 的最小值为 $\sqrt{37}$,

②
$$: 2AP + BP = 2(AP + \frac{1}{2}BP)$$
, $: 2AP + BP$ 的最小值为 $2\sqrt{37}$,

③在
$$DC$$
 取一点 G , 使 $CG = \frac{1}{3}DC = \frac{2}{3}$

$$\therefore \frac{CG}{PC} = \frac{\frac{2}{3}}{\frac{2}{3}} = \frac{1}{3}, \frac{CP}{AC} = \frac{2}{6} = \frac{1}{3}, \quad \therefore \frac{CG}{PC} = \frac{CP}{AC},$$

$$\therefore \angle ACP = \angle PCG$$
, $\therefore \triangle CGP \circlearrowleft \triangle CPA$, $\therefore \frac{GP}{AP} = \frac{CG}{PC} = \frac{1}{3}$, $\therefore GP = \frac{1}{3}AP$,

∴
$$\frac{1}{3}AP + BP = GP + BP + BP + BG$$
, $\stackrel{\checkmark}{=} P + BG + BG + BG$, $\stackrel{\checkmark}{=} BG + BG + BG + BG$,

$$BG = \sqrt{BC^2 + CG^2} = \sqrt{\frac{148}{9}} = \frac{2\sqrt{37}}{3}$$
, $\therefore \frac{1}{3}AP + BP$ 的最小值为 $\frac{2\sqrt{37}}{3}$,

④:
$$AP + 3BP = 3(\frac{1}{3}AP + BP)$$
, $AP + 3BP$ 的最小值为 $2\sqrt{37}$.

20. 如图,AB 为 $\odot O$ 的直径,AB=2,点 C 与点 D 在 AB 的同侧,且 $AD \perp AB$, $BC \perp AB$,AD=1, BC=3,点 P 是 $\odot O$ 上的一动点,则 $\frac{\sqrt{2}}{2}$ PD+PC 的最小值为_____.

【答案】 $\frac{\sqrt{34}}{2}$

【分析】连接OD,先利用勾股定理求得 $OD = \sqrt{2}$, $\angle AOD = 45^\circ$,在OD上截取 $OI = \frac{\sqrt{2}}{2}$,过I作 $IH \perp AB \uparrow H$, $IG \perp BC \uparrow G$,求得 $BG = IH = \frac{1}{2}$, $IG = BH = \frac{3}{2}$, $CG = \frac{5}{2}$,进而求得 $CI = \frac{\sqrt{34}}{2}$,证资料整理【淘宝店铺: 向阳百分百】

明 $\triangle POI \hookrightarrow \triangle DOP$ 求得 $PI = \frac{\sqrt{2}}{2}PD$, 利用两点之间线段最短得到 $\frac{\sqrt{2}}{2}PD + PC = PI + PC \ge IC$, 当

C、P、I 共线时取等号, 即可求解.

【详解】解: 连接OD, $AB \to OO$ 的直径, AB=2,

∴ OA = OB = 1, ∴ $\triangle Rt \triangle AOD + \bigcirc OA = AD = 1$,

$$\stackrel{\cdot}{\cdot} OD = \sqrt{AD^2 + OA^2} = \sqrt{2}, \quad \angle AOD = 45^\circ,$$

在OD上截取 $OI = \frac{\sqrt{2}}{2}$, 过I作 $IH \perp AB$ 于H, $IG \perp BC$ 于G, 连接 $IP \setminus IC$,

∴四边形 IHBG 是矩形, IH = OH =
$$\frac{\sqrt{2}}{2}$$
 OI = $\frac{1}{2}$,

$$\therefore BG = IH = \frac{1}{2}, \quad IG = BH = OH + OB = \frac{3}{2},$$

$$CG = BC - BG = 3 - \frac{1}{2} = \frac{5}{2}$$
,

在
$$Rt \triangle CIG$$
 中 , $CI = \sqrt{IG^2 + CG^2} = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{5}{2}\right)^2} = \frac{\sqrt{34}}{2}$,

$$\therefore \frac{OI}{OP} = \frac{OP}{OD} = \frac{\sqrt{2}}{2}$$
, $\angle POD$ 是公共角,

 $\therefore \triangle POI \hookrightarrow \triangle DOP$

$$\therefore \frac{PI}{PD} = \frac{OP}{OD} = \frac{\sqrt{2}}{2} , \quad \text{NI} PI = \frac{\sqrt{2}}{2} PD ,$$

$$\therefore \frac{\sqrt{2}}{2} PD + PC = PI + PC \ge IC$$
, 当 C、P、I 共线时取等号,

故
$$\frac{\sqrt{2}}{2}PD + PC$$
的最小值为 $CI = \frac{\sqrt{34}}{2}$,

故答案为:
$$\frac{\sqrt{34}}{2}$$
.

21. 如图,正方形 ABCD 边长为 $2\sqrt{2}$,内切圆 O 上一动点 P,连接 AP、DP,则 $AP+\frac{\sqrt{2}}{2}PD$ 的最小值为_____.

【答案】√5

22. 如图,等边三角形 ABC 边长为 $4\sqrt{3}$,圆 O 是 $\triangle ABC$ 的内切圆,P 是圆 O 上一动点,连接 PB、PC,则 $BP+\frac{1}{2}CP$ 的最小值为______.

【答案】 $\sqrt{21}$

23. 如图,在平面直角坐标系中,M(6, 3),N(10, 0),A(5, 0),点 P 为以 OA 为半径的圆 O 上一动点,则 $PM+\frac{1}{2}PN$ 的最小值为_____

【答案】 $\frac{\sqrt{85}}{2}$

$$\text{$\frac{1}{4}$ON} = \frac{5}{2}$$

$$\text{$\frac{5}{2}$OPB} \sim \Delta ONP$$

$$\therefore PB = \frac{1}{2}PN$$

$$PM + \frac{1}{2}PN \ge BM = \frac{\sqrt{85}}{2}$$

2023·山东烟台·统考中考真题

24. 如图, 抛物线 $y=x^2-6x+5$ 与 x 轴交于 A,B 两点, 与 y 轴交于点 C,AB=4, 以点 B 为圆心, 画 半径为 2 的圆,点 P 为 $\odot B$ 上一个动点,请求出 $PC + \frac{1}{2}PA$ 的最小值.

【答案】√41

【分析】在 AB 上取点 F , 使 BF=1 , 连接 CF , 证得 $\frac{BF}{PB}=\frac{PB}{AB}$, 又 $\angle PBF=\angle ABP$, 得到 $_{\triangle}PBF \hookrightarrow_{\triangle}ABP$,

推出 $PF = \frac{1}{2}PA$,进而得到当点C、P、F 三点共线时, $PC + \frac{1}{2}PA$ 的值最小,即为线段CF的长,利用勾股定理求出CF即可。

【详解】如图, 在AB上取点F, 使BF=1, 连接CF,

PB = 2

$$\therefore \frac{BF}{PB} = \frac{1}{2},$$

$$\therefore \frac{PB}{AB} = \frac{2}{4} = \frac{1}{2},$$

$$\therefore \frac{BF}{PB} = \frac{PB}{AB} ,$$

 $\nearrow : \angle PBF = \angle ABP$,

 $\therefore \triangle PBF \hookrightarrow \triangle ABP$.

$$\therefore \frac{PF}{PA} = \frac{BF}{PB} = \frac{1}{2}, \quad \text{RP } PF = \frac{1}{2}PA,$$

$$\therefore PC + \frac{1}{2}PA = PC + PF \ge CF,$$

∴当点 C、P、F 三点共线时, $PC + \frac{1}{2}PA$ 的值最小,即为线段 CF 的长,

$$C = 5, OF = OB - 1 = 5 - 1 = 4$$

$$CF = \sqrt{OC^2 + OF^2} = \sqrt{5^2 + 4^2} = \sqrt{41}$$

$$\therefore PC + \frac{1}{2}PA$$
 的最小值为 $\sqrt{41}$.

- 25. 如图 1, 抛物线 $y=ax^2+(a+3)x+3$ 与 x 轴交于点 A (4, 0), 与 y 轴交于点 B,点 E 是线段 OA 上的一个动点,过点 E 作 x 轴的垂线交直线 AB 于点 N,交抛物线于点 P,过点 P 作 $PM \perp AB$ 于点 M.
- (1) 求抛物线的函数表达式;

(2) 当
$$\frac{MN}{NE} = \frac{6}{5}$$
时,求点 E 的坐标;

(3)如图 2,在(2)条件下,将线段 OE 绕点 O 逆时针旋转得到 OE',连接 E'A、E'B,求 $E'A+\frac{2}{3}$ E'B 的最小值.

图 2

【答案】(1) : 抛物线 $y=ax^2+(a+3)x+3$ 与 x 轴交于点 A (4, 0)

∴
$$16a+4(a+3)+3=0$$
, 解得 $a=-\frac{3}{4}$

∴ 抛物线的函数表达式为
$$y = -\frac{3}{4}x^2 + \frac{9}{4}x + 3$$

(2)
$$:: A (4, 0), :: OA = 4$$

$$∴y = -\frac{3}{4}x^2 + \frac{9}{4}x + 3, ∴B (0, 3), ∴OB = 3$$

∴
$$AB = \sqrt{3^2 + 4^2} = 5$$

$$\therefore PE \perp OA$$
, $PM \perp AB$, $\therefore \angle PMN = \angle AEN = 90^{\circ}$, $\angle PNM = \angle ANE$

$$\therefore \triangle PMN \hookrightarrow \triangle AEN, \quad \therefore \frac{PN}{AN} = \frac{MN}{NE} = \frac{6}{5}$$

设直线 AB 的函数表达式为 y=kx+b

∴直线
$$AB$$
 的函数表达式为 $y=-\frac{3}{4}x+3$

设
$$E(m, 0)$$
, 则 $P(m, -\frac{3}{4}m^2 + \frac{9}{4}m + 3)$, $N(m, -\frac{3}{4}m + 3)$

$$\therefore PN = -\frac{3}{4}m^2 + \frac{9}{4}m + 3 - (-\frac{3}{4}m + 3) = -\frac{3}{4}m^2 + 3m = -3m(\frac{1}{4}m - 1)$$

$$\therefore$$
 $\angle AEN = \angle AOB = 90^{\circ}, \ \angle NAE = \angle BAO$

$$\therefore \triangle AEN \circ \triangle AOB, \ \therefore \frac{AN}{NE} = \frac{AB}{BO} = \frac{5}{3}$$

$$\therefore AN = \frac{5}{3} NE = \frac{5}{3} (-\frac{3}{4} m + 3) = -\frac{5}{4} m + 5 = -5(\frac{1}{4} m - 1)$$

$$\therefore \frac{-3m(\frac{1}{4}m-1)}{-5(\frac{1}{4}m-1)} = \frac{6}{5}, \ \ \therefore \frac{3m}{5} = \frac{6}{5}$$

$$\therefore 3m=6, \quad \therefore m=2, \quad \therefore E(2, 0)$$

则
$$\triangle OE'D$$
 \hookrightarrow $\triangle OBE'$, $\therefore \frac{E'D}{E'B} = \frac{OD}{OE'} = \frac{OE'}{OB} = \frac{2}{3}$

:.
$$E'D = \frac{2}{3} E'B$$
, $OD = \frac{2}{3} OE' = \frac{4}{3}$

$$\therefore E'A + \frac{2}{3}E'B = E'A + E'D \geqslant AD$$

$$\therefore AD = \sqrt{OA^2 + OD^2} = \frac{4\sqrt{10}}{3}, \ \therefore E'A + \frac{2}{3} E'B \ge \frac{4\sqrt{10}}{3}$$

即
$$E'A + \frac{2}{3}E'B$$
 的最小值为 $\frac{4\sqrt{10}}{3}$

【题型5】点在圆内:向外取点(系数大于1)

26. 如图,在 $\odot O$ 中,点A、点B在 $\odot O$ 上, $\angle AOB = 90^\circ$,OA = 6,点C在OA上,且OC = 2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM + 2DM的最小值为 ________.

【答案】 4√10

【分析】延长OB到T,使得BT = OB,连接MT,CT,利用相似三角形的性质证明MT = 2DM,求CM + 2DM的最小值问题转化为求CM + MT的最小值. 求出CT即可判断.

【详解】解: 延长OB到T, 使得BT = OB, 连接MT, CT.

 $\therefore OM = 6$, OD = DB = 3, OT = 12,

$$\therefore OM^2 = OD \cdot OT$$

$$\therefore \frac{OM}{OD} = \frac{OT}{OM}$$

 $\therefore \angle MOD = \angle TOM$,

 $\therefore \triangle MOD \hookrightarrow \triangle TOM$

$$\therefore \frac{DM}{MT} = \frac{OM}{OT} = \frac{1}{2}$$

 $\therefore MT = 2DM,$

 $:: CM + 2DM = CM + MT \ge CT$,

又: 在Rt $\triangle OCT$ 中, $\angle COT = 90^{\circ}$, OC = 4, OT = 12,

 $\therefore CT = \sqrt{OC^2 + OT^2} = \sqrt{4^2 + 12^2} = 4\sqrt{10},$

 $\therefore CM + 2DM \ge 4\sqrt{10}$,

 $\therefore CM + 2DM$ 的最小值为 $4\sqrt{10}$

27. 如图, $\angle AOB=90^\circ$,OA=OB=1,圆 O 的半径为 $\sqrt{2}$,P 是圆 O 上一动点, $PA+\sqrt{2}PB$ 的最小值为

【答案】√5

点在圆内,反向操作 延长OB至点C,CO=2OB=2 $\frac{OP}{OC} = \frac{OC}{OB} = \sqrt{2} \Rightarrow \Delta OPB \sim \Delta OCP$ $PA+\sqrt{2}PB=PA+PC \geq AC = \sqrt{5}$

28. 已知扇形 *COD* 中,∠*COD*=90° , *OC*=6, *OA*=3, *OB*=5, 点 *P* 是弧 *CD* 上一点, 2*PA*+*PB* 的最小值为_____.

【答案】12

点在圆内,反向操作 延长OA至点E,EO=4OA=12 $\frac{OP}{OE} = \frac{OA}{OP} = \frac{1}{2} \Rightarrow \triangle OPA \sim \triangle OEP$ 2PA+PB=PE+PB \geq BE=13

【题型 6】一内一外提系数

29. 如图,在 $\triangle ABC$ 中, $\angle ABC$ = 90°,AB = 2BC = 6,BD = 1,P 在以B 为圆心 3 为半径的圆上,则 AP + 6PD 的最小值为 __3 $\sqrt{37}$ __.

【解答】解: 在 AB 上取点 E, 使 $BE = \frac{3}{2}$,

$$\therefore AB = 2BC = 6,$$

$$\therefore \frac{BP}{AB} = \frac{BE}{BP} = \frac{1}{2},$$

 $\therefore \angle PBE = \angle ABP$,

 $\therefore \Delta PBE \hookrightarrow \Delta ABP$,

$$\therefore \frac{PE}{PA} = \frac{BP}{AB} = \frac{1}{2},$$

$$\therefore PE = \frac{1}{2}PA,$$

在 BD 延长线上取 BF = 9,

BD = 1

$$\iiint \frac{BF}{PB} = \frac{BP}{BD} = 3,$$

 \mathbf{Z} :: $\angle PBD = \angle FBP$,

 $\therefore \Delta PBD \hookrightarrow \Delta FBP$,

$$\therefore \frac{PF}{PD} = \frac{PB}{BD} = 3,$$

 $\therefore PF = 3PD$

:.
$$PA + 6PD = 2(\frac{1}{2}PA + 3PD) = 2(PE + PF)$$
,

:: 当 P 为 EF 和圆的交点时 PE + PF 最小,即 PA + 6PD 最小,且值为 2EF ,

$$\therefore EF = \sqrt{BE^2 + BF^2} = \sqrt{(\frac{3}{2})^2 + 9^2} = \frac{3\sqrt{37}}{2},$$

 $\therefore PA + 6PD$ 的最小值为 $2EF = 3\sqrt{37}$,

故答案为: 3√37.

30. 如图,正方形 ABCD 边长为 4,L 是 CD 的中点,Y 在 $\odot C$ 上, $|\sqrt{2}LY-YA|$ 的最大值是 __2 $\sqrt{2}$ __,

 $2\sqrt{2}LY + YA$ 的最小值是 $_4\sqrt{10}$ _

$$\therefore CY = CB = 4 , \quad AC = \sqrt{2}BC = 4\sqrt{2} ,$$

$$\therefore \frac{CY}{AC} = \frac{1}{\sqrt{2}}, \quad \frac{OC}{CY} = \sqrt{2},$$

$$\therefore \frac{CY}{AC} = \frac{OC}{CY},$$

$$\therefore \angle YCO = \angle ACY$$
,

$$\therefore \Delta YCO \hookrightarrow \Delta ACY$$
.

$$\therefore \frac{OY}{AY} = \frac{CY}{AC} = \frac{1}{\sqrt{2}},$$

$$\therefore OY = \frac{\sqrt{2}}{2}AY,$$

$$:|LY-OY| \bullet OL$$

$$\therefore |LY - \frac{\sqrt{2}}{2}AY| = |LY - OY| \bullet OL,$$

当L、O、Y在一条直线上时,

$$|LY - OY| = OL = 2$$

(2)延长 CD 至点 H, 使 CH=2CD

显然 $2\sqrt{2}LY = \sqrt{2}HY$, 由(1)可知 $YA = \sqrt{2}YO$

$$\therefore 2\sqrt{2}LY + YA = \sqrt{2}(YH + YO)$$

由勾股定理可得, $YH + YO \ge 2\sqrt{10}$,故 $2\sqrt{2}LY + YA \ge 4\sqrt{10}$.

【题型7】隐圆型阿氏圆

2023·咸阳·三模

31. 如图,在菱形 ABCD中,对角线 AC、BD 相交于点 O,点 E、F 分别是 OD、OC 上的两个动点,且 EF = 4,P 是 EF 的中点,连接 OP、PC、PD,若 AC = 12, BD = 16,则 $PC + \frac{1}{4}PD$ 的最小值为_______.

【答案】 $\frac{\sqrt{145}}{2}$

【分析】在 OD 上取一点 G,使得 $OG = \frac{1}{2}$,连接 PG、 CG . 根据菱形的性质可知 OC = 6,OD = 8,则 $\frac{OG}{OP} = \frac{OP}{OD} = \frac{1}{4}$,结合 $\angle GOP = \angle POD$,可得 $\triangle POG \hookrightarrow \triangle DOP$,利用相似三角形的性质证得 $PG = \frac{1}{4}PD$,根据 $PC + PG \ge CG$ 可知 CG 的长即为 $PC + \frac{1}{4}PD$ 的最小值,利用勾股定理求出 CG 便可解决问题.

【详解】解:如图,在OD上取一点G,使得 $OG = \frac{1}{2}$,连接PG、CG.

∵四边形 ABCD 为菱形, AC=12,BD=16,

$$\therefore OC = \frac{1}{2}AC = 6, \quad OD = \frac{1}{2}BD = 8, \quad AC \perp BD,$$

: EF = 4 , $P \neq EF$ 的中点,

$$\therefore OP = \frac{1}{2}EF = 2,$$

$$\therefore \frac{OG}{OP} = \frac{\frac{1}{2}}{2} = \frac{1}{4}, \frac{OP}{OD} = \frac{2}{8} = \frac{1}{4},$$

 $\angle GOP = \angle POD$,

 $\therefore \triangle POG \hookrightarrow \triangle DOP$,

$$\therefore \frac{GP}{PD} = \frac{1}{4}, \quad \mathbb{P} GP = \frac{1}{4}PD,$$

 $PC + PG \ge CG$.

∴当点 G、P、C 在同一直线上时, $PC + \frac{1}{4}PD$ 取得最小值,

此时
$$PC + \frac{1}{4}PD = PC + PG = CG = \sqrt{OC^2 + OG^2} = \frac{\sqrt{145}}{2}$$

2023·宿迁·三模

32. 如图,在平面直角坐标系中, A(2,0) 、B(0,2) 、C(5,2) 、D(4,4) ,点 P 在第一象限,且 $\angle APB=135^\circ$,则 $\sqrt{2}PD+4PC$ 的最小值为_____.

【答案】6√10

【分析】取一点 $T\left(\frac{\sqrt{2}}{2},0\right)$,以O为圆心,OT为半径作圆,与OD交于点F,连接PF,PC,FC,

首先利用四点共圆证明 OP=2,再利用相似三角形的性质证明 $\sqrt{2}PD=4PF$,推出 $\sqrt{2}PD+4PC=4(PF+4PC)$,根据 $PF+PC \geq FC$,利用两点之间的距离公式,即可求出 FC 的最小值,即可得.

【详解】解:如图所示,取一点 $T\left(\frac{\sqrt{2}}{2},0\right)$,以O为圆心,OT 为半径作圆,与OD交于点F,连接PF,PC,FC ,

A(2,0), B(0,2), D(4,4),

$$OA = OB = 2$$
, $OD = \sqrt{4^2 + 4^2} = 4\sqrt{2}$,

以 O 为圆心, OA 为半径作 OO, 在优弧 AB 上取一点 Q, 连接 QB, QA,

$$\therefore \angle Q = \frac{1}{2} \angle AOB = 45^{\circ}, \quad \angle APB = 135^{\circ},$$

$$\angle Q + \angle APB = 45^{\circ} + 135^{\circ} = 180^{\circ}$$

∴A, P, B, Q四点共圆,

$$\therefore OP = OA = 2$$

$$P = 2$$
, $OF = \frac{\sqrt{2}}{2}$, $OD = 4\sqrt{2}$,

$$\therefore OP^2 = OF \cdot OD$$

$$\therefore \frac{OP}{OF} = \frac{OD}{OP},$$

$$\angle POF = \angle POD$$
,

$$\therefore \triangle POF \hookrightarrow \triangle DOP$$
.

$$\frac{PF}{PD} = \frac{OF}{OP} = \frac{\sqrt{2}}{4},$$

$$\sqrt{2}PD = 4PF$$
,

$$\sqrt{2}PD + 4PC = 4PF + 4PC = 4(PF + PC)$$

过点F作 $FG \perp OA$ 于点G,

$$\therefore D(4,4), \quad OF = \frac{\sqrt{2}}{2},$$

∴点 F 的坐标为
$$\left(\frac{1}{2},\frac{1}{2}\right)$$
,

$$C(5,2)$$
,

$$\therefore FC = \sqrt{\left(5 - \frac{1}{2}\right)^2 + \left(2 - \frac{1}{2}\right)^2} = \frac{3\sqrt{10}}{2}$$

:
$$PF + PC \ge FC$$
, $PP \sqrt{2PD + 4PC} = 4(PF + PC) \ge 4FC = 6\sqrt{10}$,

$$\therefore \sqrt{2}PD + 4PC$$
 的最小值是 $6\sqrt{10}$

33. 如图,在Rt Δ ABC中, \angle ACB=90°, AC=6, BC=8, D 、E 分别是边 BC 、AC 上的两个动点,且 DE=4 , P 是 DE 的中点,连接 PA , PB ,则 $PA+\frac{1}{4}PB$ 的最小值为 _____.

【答案】 $\frac{\sqrt{145}}{2}$

【解答】解:如图,在CB上取一点F,使得 $CF = \frac{1}{2}$,连接PF, AF.

 $\therefore \angle DCE = 90^{\circ}$, DE = 4, DP = PE,

$$\therefore PC = \frac{1}{2}DE = 2,$$

$$\because \frac{CF}{CP} = \frac{1}{4}, \quad \frac{CP}{CB} = \frac{1}{4},$$

$$\therefore \frac{CF}{CP} = \frac{CP}{CB},$$

$$\therefore \angle PCF = \angle BCP$$
,

$$\therefore \Delta PCF \hookrightarrow \Delta BCP$$
,

$$\therefore \frac{PF}{PB} = \frac{CF}{CP} = \frac{1}{4} ,$$

$$\therefore PF = \frac{1}{4}PB ,$$

$$\therefore PA + \frac{1}{4}PB = PA + PF ,$$

:
$$PA + PF \overline{H}AF$$
, $AF = \sqrt{CF^2 + AC^2} = \sqrt{(\frac{1}{2})^2 + 6^2} = \frac{\sqrt{145}}{2}$,

$$\therefore PA + \frac{1}{4}PB \mp \frac{\sqrt{145}}{2} , \quad \therefore PA + \frac{1}{4}PB ~ 的最小值为 \frac{\sqrt{145}}{2}$$

34. 如图,在边长为 6 的正方形 ABCD中,M 为 AB 上一点,且 BM = 2,N 为边 BC 上一动点. 连接 MN,将 ΔBMN 沿 MN 翻折得到 ΔPMN ,点 P 与点 B 对应,连接 PA,PC,则 PA + 2PC 的最小值为

【答案】6√5

【分析】由折叠的性质可得,点 P 在以 M 为圆心,以 2 为半径的圆上,在线段 MA 上取一点 E ,使得 ME=1 , 利 用 相 似 三 角 形 的 性 质 得 到 $PE=\frac{1}{2}PA$, 从 而 得 到 $PA+2PC=2\left(\frac{1}{2}PA+PC\right)=2\left(PE+PC\right)\geq 2CE$,当且仅当 P、C、E 三点共线时,取得最小值 2CE,即可求解。

【详解】解:由题意可得:PM = BM = 2∴点P在以M为圆心,以2为半径的圆上, 在线段MA上取一点E,使得ME = 1,则BE = 3

$$AM = AB - BM = 4$$
, $MP = 2$

$$\therefore \frac{MP}{AM} = \frac{ME}{PM} = \frac{1}{2}$$

$$\angle EMP = \angle PMA$$

$$\therefore \frac{PE}{PA} = \frac{ME}{PM} = \frac{1}{2}$$

$$\therefore PE = \frac{1}{2}PA$$

$$\therefore PA + 2PC = 2\left(\frac{1}{2}PA + PC\right) = 2(PE + PC) \ge 2CE$$

如下图所示,当且仅当P、C、E三点共线时,取得最小值2CE

$$CE = \sqrt{BE^2 + BC^2} = 3\sqrt{5} ,$$

∴
$$PA + 2PC$$
 的最小值为: $6\sqrt{5}$

35. 如图,在平面直角坐标系中, A(2,0) 、 B(0,2) 、 C(4,0) 、 D(3,2) , P 是 ΔAOB 外部的第一象限内一动点,且 $\angle BPA$ = 135° ,则 2PD + PC 的最小值是______.

【答案】 4√2

【解答】解:如图,取一点T(1,0),连接OP,PT,TD,

$$A(2,0)$$
, $B(0,2)$, $C(4,0)$,

$$\therefore OA = OB = 2$$
, $OC = 4$,

以O为圆 $\sim OA$ 为半径作 $\odot O$,在优弧 AB 上取一点Q,连接QB,QA,

$$\therefore \angle Q = \frac{1}{2} \angle AOB = 45^{\circ}$$
, $\angle APB = 135^{\circ}$,

$$\therefore \angle Q + \angle APB = 180^{\circ},$$

$$::A \setminus P \setminus B \setminus Q$$
四点共圆,

$$\therefore OP = OA = 2$$
,

$$:: OP = 2$$
, $OT = 1$, $OC = 4$,

$$\therefore OP^2 = OC \cdot OT,$$

$$\therefore \frac{OP}{OC} = \frac{OT}{OP},$$

$$\therefore \angle POT = \angle POC$$
.

$$\therefore \Delta POT \hookrightarrow \Delta POC$$
,

$$\therefore \frac{PT}{PC} = \frac{OP}{OC} = \frac{1}{2},$$

$$\therefore PT = \frac{1}{2}PC,$$

$$\therefore 2PD + PC = 2(PD + \frac{1}{2}PC) = 2(PD + PT)$$
,

 $\therefore PD + PT \overrightarrow{H}DT$, $DT = \sqrt{2^2 + 2^2} = 2\sqrt{2}$,

 $\therefore 2PD + PC + 4\sqrt{2}$,

 $\therefore 2PD + PC$ 的最小值是 $4\sqrt{2}$