VISoR 重构软件使用说明(0.7.1)

一、整脑重构流程

1 打开 run_visor_reconstruction.bat。

2 点击 Browse, 打开待重构数据中的 Data. visor。

3点击 load 按钮,加载 Data. visor中的原始数据信息。

4 检查窗口中间列表中原始数据的信息是否正确。如果原始数据信息不正确,在 Status 列中会显示 not found。解决方法见"常见问题"。 确认原始数据全部正确后,点击 use dataset。

5 点击左侧栏的 Reconstruction, 进入重构界面

6 点击 setting, 打开设置窗口,可以修改重构参数。点击 load,可以加载已有的重构参数。点击 save,可以保存当前的重构参数。默认参数可以直接用来重构一般的成年小鼠脑。重构参数的说明见"其他"。

重构数据默认存放于原始数据同目录下,如果需要放在其他位置,勾选 Save to different directory,然后点击 Browse,选择保存的位置。

7 点击 start 按钮,开始重构。按照默认参数重构鼠脑,大约需要花费数小时。 完成后, Stop 按钮旁边会显示 Finished。如果显示 Failed,则表示重构失败, 解决方法见"常见问题"。

8 重构完成后,会生成 Reconstruction.visor 文件,重构结果放置于 Reconstruction文件夹中

Reconstruction 目录下,包含以下文件夹:

BrainImage 中存放整脑重构的图像

4.0 文件夹内为图像,格式为 tif 文件序列

SliceImage 存放单张脑片三维图像,每个 tif 图像是一个脑片单通道三维图像

Data (D:) → Users → chao	vu > mouse > THV1-759	> Reconstruction > Slicelmage > 4.0
Data (D.) / Oscis / Cilao	yu / IIIouse / IIIII - 133	r Neconstruction r Succiniage r 4.0

名称 个	修改日期	类型	大小
■ USTC_SY_THY1-759_001_402nm_10X.tif	2020/2/3 21:24	TIF 文件	30,383 KB
■ USTC_SY_THY1-759_001_488nm_10X.tif	2020/2/3 21:52	TIF 文件	23,018 KB
■ USTC_SY_THY1-759_001_552nm_10X.tif	2020/2/3 22:20	TIF 文件	26,037 KB
■ USTC_SY_THY1-759_001_641nm_10X.tif	2020/2/3 20:56	TIF 文件	27,982 KB
■ USTC_SY_THY1-759_002_402nm_10X.tif	2020/2/3 21:24	TIF 文件	45,114 KB
■ USTC_SY_THY1-759_002_488nm_10X.tif	2020/2/3 21:53	TIF 文件	31,679 KB
USTC_SY_THY1-759_002_552nm_10X.tif	2020/2/3 22:20	TIF 文件	28,844 KB
■ USTC_SY_THY1-759_002_641nm_10X.tif	2020/2/3 20:56	TIF 文件	35,671 KB
USTC_SY_THY1-759_003_402nm_10X.tif	2020/2/3 21:24	TIF 文件	49,852 KB
■ USTC_SY_THY1-759_003_488nm_10X.tif	2020/2/3 21:53	TIF 文件	34,794 KB
■ USTC_SY_THY1-759_003_552nm_10X.tif	2020/2/3 22:20	TIF 文件	26,020 KB
USTC_SY_THY1-759_003_641nm_10X.tif	2020/2/3 20:56	TIF 文件	44,637 KB
■ USTC_SY_THY1-759_004_402nm_10X.tif	2020/2/3 21:25	TIF 文件	59,026 KB
USTC_SY_THY1-759_004_488nm_10X.tif	2020/2/3 21:53	TIF 文件	43,737 KB
USTC_SY_THY1-759_004_552nm_10X.tif	2020/2/3 22:21	TIF 文件	30,401 KB
■ USTC_SY_THY1-759_004_641nm_10X.tif	2020/2/3 20:57	TIF 文件	51,623 KB
USTC_SY_THY1-759_005_402nm_10X.tif	2020/2/3 21:25	TIF 文件	74,302 KB
■ USTC_SY_THY1-759_005_488nm_10X.tif	2020/2/3 21:54	TIF 文件	49,429 KB
■ USTC_SY_THY1-759_005_552nm_10X.tif	2020/2/3 22:21	TIF 文件	38,121 KB
■ USTC_SY_THY1-759_005_641nm_10X.tif	2020/2/3 20:57	TIF 文件	60,115 KB
■ USTC_SY_THY1-759_006_402nm_10X.tif	2020/2/3 21:25	TIF 文件	74,791 KB
■ USTC SY THY1-759 006 488nm 10X.tif	2020/2/3 21:54	TIF 文件	51.793 KB

BrainTransform 存放整脑图像与原始图像间的空间变换参数 Projection 存放单张脑片最大值投影图 SliceTransform 存放脑片内的拼接参数 Temp 文件夹存放重构生成的临时文件

二、选定区域生成高分辨率图像流程

1 选定重构区域。在整脑图像(BrainImage)中找到要重构的目标区域,测量该区域的范围(三个坐标轴的最小值和最大值,以像素为单位),再转化为物理坐标(以微米为单位)。具体测量和计算过程如下(以 image j 为例):

(1)打开图像

(2)测量要重构的区域,得到角点的坐标。用鼠标指向顶点,可以在 imagej 主窗口中查看顶点坐标的 x 和 y。z 通过文件名(图像窗口上边栏)确定。此处的区域为(1956, 1505, 1700)和(2138, 1653, 1825)。

(3) 对应的重构区域物理坐标为 像素坐标×像素尺寸, BrainImage 中图像文件夹的名称为该图像的像素尺寸。此处得到的物理坐标为(7824,6020,6800)和(8552,6612,7300)

用其他的图像查看工具(如 Imaris 或 Lychnis)也可以测量区域坐标,但须

注意,如果整脑图像缺少一些脑片,则 z 需要减去 往前数缺少片的数量×片厚度(一般为 300 微米)。比如整脑缺少第 1、2 片,则 z 需要减去 600。

2 在 Data 页面, 打开 Reconstruction. visor, 点击 load, 再点击 use dataset

3 点击左侧栏的 ROI Reconstruction, 切换到区域重构页面

4 将选定的重构区域填入 set top left point 和 set bottom right point 右侧。

5点击 setting, 打开设置窗口, 可以修改重构参数。

5点击 start,开始重构。重构结果会放置于目标文件夹下

三、其他说明 待补充

四、常见问题 待补充