§ 30. Образ и ядро линейного оператора

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Определения образа и ядра

Определение

Пусть $\mathcal{A}-$ линейный оператор в векторном пространстве V. Образом оператора \mathcal{A} называется множество всех векторов $\mathbf{y}\in V$ таких, что $\mathcal{A}(\mathbf{x})=\mathbf{y}$ для некоторого $\mathbf{x}\in V$. Ядром оператора \mathcal{A} называется множество всех векторов $\mathbf{x}\in V$ таких, что $\mathcal{A}(\mathbf{x})=\mathbf{0}$. Образ оператора \mathcal{A} обозначается через $\mathrm{Im}\,\mathcal{A}$, а его ядро — через $\mathrm{Ker}\,\mathcal{A}$.

- Образ линейного оператора это аналог известного из школьного курса понятия области изменения функции.
- Каждое из множеств $\operatorname{Im} \mathcal{A}$ и $\operatorname{Ker} \mathcal{A}$ непусто. Для первого из них это очевидно, а для второго вытекает из того, что $\mathcal{A}(\mathbf{0}) = \mathbf{0}$ (см. § 29).

Замечание об образе и ядре

Пусть V — векторное пространство над полем F, а \mathcal{A} — линейный оператор в V. Образ и ядро оператора A являются подпространствами в V. Если $P = \{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$ — базис пространства V, то подпространство $\operatorname{Im} A$ порождается векторами $\mathcal{A}(\mathbf{p}_1),\ \mathcal{A}(\mathbf{p}_2),\ \ldots,\ \mathcal{A}(\mathbf{p}_n).$

Доказательство. Пусть $\mathbf{y}_1, \mathbf{y}_2 \in \operatorname{Im} A$, а $t \in F$. Тогда существуют векторы $\mathbf{x}_1, \mathbf{x}_2 \in V$ такие, что $\mathcal{A}(\mathbf{x}_1) = \mathbf{y}_1$ и $\mathcal{A}(\mathbf{x}_2) = \mathbf{y}_2$. Следовательно,

$$y_1+y_2=\mathcal{A}(x_1)+\mathcal{A}(x_2)=\mathcal{A}(x_1+x_2)\quad\text{if}\quad ty_1=t\mathcal{A}(x_1)=\mathcal{A}(tx_1).$$

 \exists то означает, что $\mathsf{y}_1+\mathsf{y}_2, \mathsf{t}\mathsf{y}_1\in\mathsf{Im}\,\mathcal{A}$, и потому $\mathsf{Im}\,\mathcal{A}-$ подпространство в V. Далее, пусть $\mathbf{x}_1, \mathbf{x}_2 \in \operatorname{\mathsf{Ker}} \mathcal{A}$, а t- вновь произвольный скаляр. Тогда

$$A(x_1 + x_2) = A(x_1) + A(x_2) = \mathbf{0} + \mathbf{0} = \mathbf{0}$$
 in $A(tx_1) = tA(x_1) = t \cdot \mathbf{0} = \mathbf{0}$.

 \exists то означает, что $\mathbf{x}_1+\mathbf{x}_2, t\mathbf{x}_1 \in \mathsf{Ker}\,\mathcal{A}$, и потому $\mathsf{Ker}\,\mathcal{A}$ — подпространство в V. Если $\mathbf{x} \in V$ и (x_1, x_2, \dots, x_n) — координаты вектора \mathbf{x} в базисе P, то

$$\mathcal{A}(\mathbf{x}) = \mathcal{A}(x_1\mathbf{p}_1 + x_2\mathbf{p}_2 + \cdots x_n\mathbf{p}_n) = x_1\mathcal{A}(\mathbf{p}_1) + x_2\mathcal{A}(\mathbf{p}_2) + \cdots + x_n\mathcal{A}_n(\mathbf{p}_n).$$

Следовательно, $\operatorname{Im} \mathcal{A} \subseteq \langle \mathcal{A}(\mathbf{p}_1), \mathcal{A}(\mathbf{p}_2), \dots, \mathcal{A}(\mathbf{p}_n) \rangle$. Обратное включение очевидно, поскольку $\mathcal{A}(\mathbf{p}_i) \in \operatorname{Im} \mathcal{A}$ для всякого $i = 1, 2, \dots, n$. Следовательно, $\operatorname{Im} \mathcal{A} = \langle \mathcal{A}(\mathbf{p}_1), \mathcal{A}(\mathbf{p}_2), \dots, \mathcal{A}(\mathbf{p}_n) \rangle$.

Ранг и дефект линейного оператора (1)

Замечание об образе и ядре позволяет говорить о размерности и базисе образа и ядра оператора ${\cal A}.$

Определение

Размерность образа линейного оператора ${\cal A}$ называется рангом ${\cal A}$ и обозначается через $r({\cal A})$, а размерность ядра оператора ${\cal A}$ называется дефектом ${\cal A}$ и обозначается через $d({\cal A})$.

Замечание о ранге линейного оператора

Пусть V- векторное пространство, $\mathcal{A}-$ линейный оператор в V, а P- базис пространства V. Тогда ранг оператора \mathcal{A} равен рангу матрицы A_{P} .

Доказательство. Из замечания об образе и ядре и определения матрицы линейного оператора в базисе вытекает, что пространство $\operatorname{Im} A$ порождается векторами-столбцами матрицы A_P . Следовательно, ранг оператора равен рангу этой матрицы по столбцам.

Ранг и дефект линейного оператора (2)

Теорема о ранге и дефекте

Пусть V — векторное пространство, а ${\cal A}$ — линейный оператор в V. Тогда сумма ранга и дефекта оператора ${\cal A}$ равна размерности пространства V.

Доказательство. Пусть $\mathbf{x} \in V$. Ясно, что $\mathbf{x} \in \operatorname{Ker} \mathcal{A}$ тогда и только тогда, когда $A_P[\mathbf{x}]_P = [\mathcal{A}(\mathbf{x})]_P = O$, где O — нулевой столбец. Иными словами, пространство $\operatorname{Ker} \mathcal{A}$ совпадает с пространством решений однородной системы линейных уравнений $A_P[\mathbf{x}]_P = O$. Положим $r = r(A_P)$. В силу теоремы о размерности пространства решений однородной системы (см. § 28) $d(\mathcal{A}) = \dim \operatorname{Ker} \mathcal{A} = n - r$. Учитывая замечание о ранге линейного оператора, получаем, что $r(\mathcal{A}) + d(\mathcal{A}) = r + (n - r) = n$.

Алгоритм нахождения базиса и размерности образа

Пусть \mathcal{A} — линейный оператор в пространстве V, а A — матрица этого оператора в некотором базисе. Из замечания об образе и ядре и определения матрицы линейного оператора в базисе вытекает, что пространство $\operatorname{Im} \mathcal{A}$ совпадает с пространством, порожденным векторами-столбцами матрицы A или, что то же самое, с пространством, порожденным векторами-строками матрицы A^{\top} . Учитывая алгоритм нахождения базиса подпространства, изложенный в § 24, мы получаем следующий

Алгоритм нахождения базиса и размерности образа линейного оператора

Пусть V- векторное пространство над полем $F,\,P=\{\mathbf{p_1},\mathbf{p_2},\ldots,\mathbf{p_n}\}-$ базис пространства V, а A- матрица оператора $\mathcal A$ в базисе P. Чтобы найти базис подпространства $\mathrm{Im}\,\mathcal A$, надо привести к ступенчатому виду матрицу $A^{\top}.$ В ненулевых строках полученной матрицы будут записаны координаты базисных векторов пространства $\mathrm{Im}\,\mathcal A$ в базисе P, а число этих строк равно размерности пространства $\mathrm{Im}\,\mathcal A$.

О нахождении базиса и размерности ядра

Из доказательства теоремы о ранге и дефекте вытекает, что базис ядра линейного оператора $\mathcal{A}-$ это фундаментальная система решений однородной системы линейных уравнений, основная матрица которой есть матрица этого оператора в некотором базисе. Алгоритм нахождения фундаментальной системы решений однородной системы линейных уравнений указан в § 28. Поэтому нет необходимости в том, чтобы специально формулировать алгоритм нахождения базиса и размерности ядра линейного оператора.

Алгоритм Чуркина

Приведем еще один алгоритм нахождения базисов и размерностей образа и ядра оператора \mathcal{A} . Его преимуществом является то, что он позволяет найти базисы образа и ядра *одновременно*. Кроме того, этот алгоритм будет существенно использоваться в дальнейшем при решении более сложных задач. Алгоритм найден сравнительно недавно (в 1991 г.), его автором является новосибирский математик В. А. Чуркин.

Алгоритм Чуркина

Пусть V- векторное пространство над полем $F,\ P=\{\mathbf{p}_1,\mathbf{p}_2,\dots,\mathbf{p}_n\}-$ базис пространства V, а A- матрица оператора $\mathcal A$ в базисе P. Запишем матрицу $B=(E\mid A^\top)$ размера $n\times 2n.$ Элементарными преобразованиями всей этой матрицы (без использования перестановки столбцов) приведем ее правую часть к ступенчатому виду. Полученную матрицу обозначим через $C=(C_1\mid C_2)$, где C_2- ступенчатая матрица, полученная на месте матрицы A^\top . Тогда:

- (i) ненулевые строки матрицы C_2 содержат координаты базисных векторов пространства $\operatorname{Im} \mathcal{A}$ в базисе P;
- (ii) строки матрицы C_1 , продолжениями которых в матрице C_2 являются нулевые строки, содержат координаты базисных векторов пространства $\operatorname{Ker} A$ в базисе P.

Обоснование алгоритма Чуркина (1)

Утверждение (i) немедленно вытекает из описанного ранее алгоритма нахождения базиса образа и того факта, что в процессе преобразований левая и правая части матрицы не «перемешиваются». Обоснуем утверждение (ii). Для всякого $i=1,2,\ldots,m$ вектор \mathbf{p}_i имеет в базисе P координаты $(0,\ldots,0,1,0,\ldots,0)$, где 1 стоит на i-м месте. Поэтому можно считать, что единичная матрица, стоящая в левой части матрицы B, есть матрица, в которой по строкам записаны координаты векторов $\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n$ в базисе P. Вспоминая определение матрицы B стоят координаты вектора $\mathcal{A}(\mathbf{p}_i)$ в базисе P. Итак, i-ю строку матрицы B можно записать в виде $\left(\left[\mathbf{p}_i \right]_P^\top \middle| \left[\mathcal{A}(\mathbf{p}_i) \right]_P^\top \right)$, т.е. в виде

$$\left(\left[\mathbf{v} \right]_{P}^{\top} \middle| \left[\mathcal{A}(\mathbf{v}) \right]_{P}^{\top} \right), \tag{1}$$

где ${f v}={f p}_i$. При элементарных преобразованиях матрицы мы будем получать строки вида

$$\Big(\sum_{j=1}^n \lambda_j [\mathbf{p}_j]_P^\top \ \bigg| \ \sum_{j=1}^n \lambda_j \big[\mathcal{A}(\mathbf{p}_j) \big]_P^\top \Big).$$

Обоснование алгоритма Чуркина (2)

Преобразуем левую и правую части строки такого вида:

$$\sum_{j=1}^{n} \lambda_{j} [\mathbf{p}_{j}]_{P}^{\top} = \left[\sum_{j=1}^{n} \lambda_{j} \mathbf{p}_{j}\right]_{P}^{\top},$$

$$\sum_{j=1}^{n} \lambda_{j} [\mathcal{A}(\mathbf{p}_{j})]_{P}^{\top} = \sum_{j=1}^{n} [\lambda_{j} \mathcal{A}(\mathbf{p}_{j})]_{P}^{\top} =$$

$$= \sum_{j=1}^{n} [\mathcal{A}(\lambda_{j} \mathbf{p}_{j})]_{P}^{\top} = \mathcal{A}\left(\sum_{j=1}^{n} ([\lambda_{j} \mathbf{p}_{j}]_{P}^{\top})\right).$$

Сравнивая полученные выражения, мы видим, что после элементарных преобразований мы вновь получаем строки вида (1). Поэтому строки матрицы C_1 , продолжения которых в C_2 являются нулевыми, суть строки координат векторов из пространства $\operatorname{Ker} \mathcal{A}$ в базисе P. Матрица C_1 получена с помощью элементарных преобразований из единичной матрицы. Поскольку элементарные преобразования не меняют ранга матрицы, $r(C_1) = r(E) = n$. В частности, система всех строк матрицы C_1 линейно независима. Тогда ее подсистема, состоящая из тех строк, продолжения которых в C_2 являются нулевыми, также линейно независима (см. лемму о подсистеме линейно независимой системы векторов в § 22).

Обоснование алгоритма Чуркина (3)

Учитывая теорему о ранге и дефекте, получаем, что число этих строк равно

$$n - r(A_P^T) = n - r(A_P) = n - r(A) = d(A) = \dim \operatorname{Ker} A.$$

В силу замечания о базисах n-мерного пространства (см. § 23) они образуют базис пространства $\operatorname{Ker} \mathcal{A}$. Это завершает обоснование алгоритма Чуркина.

Автоморфность линейного оператора (1)

Как уже отмечалось в § 29, линейный оператор является эндоморфизмом векторного пространства. Следующее утверждение показывает, когда этот эндоморфизм является автоморфизмом.

Критерий автоморфности линейного оператора

Для линейного оператора ${\cal A}$ в векторном пространстве V следующие условия эквивалентны:

- 1) \mathcal{A} автоморфизм пространства V;
- (2a) $\mathcal{A}-$ сюръективное отображение из V на себя;
- 26) Im A = V;
- 2B) $r(A) = \dim V$;
- 3a) \mathcal{A} инъективное отображение из V в себя;
- 36) Ker $A = \{0\}$;
- 3B) d(A) = 0;
- 4а) матрица оператора $\mathcal A$ в произвольном базисе невырождена;
- 46) матрица оператора A в некотором базисе невырождена.

Автоморфность линейного оператора (2)

Доказательство. Эквивалентность условий 2a) и 2б) очевидна, а условия 26) и 2в) эквивалентны в силу определения ранга оператора.

Условия 36) и 3в) эквивалентны в силу определения дефекта оператора. Докажем эквивалентность условий 3а) и 36).

3а) \Longrightarrow 3б). Если оператор $\mathcal A$ инъективен, то $\mathcal A(\mathbf x) \neq \mathbf 0$ для любого ненулевого вектора $\mathbf x \in V$, и потому $\operatorname{Ker} \mathcal A = \{\mathbf 0\}$.

36) \Longrightarrow 3a). Пусть Ker $\mathcal{A}=\{\mathbf{0}\}$. Предположим, что $\mathcal{A}(\mathbf{x})=\mathcal{A}(\mathbf{y})$ для некоторых $\mathbf{x},\mathbf{y}\in V$. Тогда $\mathcal{A}(\mathbf{x}-\mathbf{y})=\mathcal{A}(\mathbf{x})-\mathcal{A}(\mathbf{y})=\mathbf{0}$, и потому $\mathbf{x}-\mathbf{y}\in \text{Ker }\mathcal{A}$. Следовательно, $\mathbf{x}-\mathbf{y}=\mathbf{0}$, т. е. $\mathbf{x}=\mathbf{y}$. Это означает, что оператор \mathcal{A} инъективен.

Из теоремы о ранге и дефекте вытекает эквивалентность условий 2в) и 3в). С учетом сказанного выше, мы доказали эквивалентность условий 2а)-2в) и 3а)-3в).

Импликация $1) \Longrightarrow 2a$) очевидна. В силу эквивалентности условий 2a) и 3a), импликация $2a) \Longrightarrow 1$) эквивалентна тому, что из одновременного выполнения условий 2a) и 3a) вытекает 1), а это следует из определений автоморфизма и линейного оператора. Это доказывает, что условие 1) эквивалентно условиям 2a)-2b) и 3a)-3b).

Автоморфность линейного оператора (3)

Импликация 4а) ⇒ 4б) очевидна.

46) \Longrightarrow 4a). Пусть A и B — матрицы оператора $\mathcal A$ в двух разных базисах и $|A| \neq 0$. Тогда существует невырожденная квадратная матрица T такая, что $B = T^{-1}AT$. Следовательно, $|B| = |T^{-1}AT| = |T^{-1}| \cdot |A| \cdot |T| \neq 0$.

Для завершения доказательства достаточно убедиться, например, в эквивалентности условий 2в) и 4а).

- 2в) \Longrightarrow 4a). Пусть $\mathcal{A}-$ автоморфизм пространства V, а A- матрица оператора \mathcal{A} в некотором базисе. По условию $r(\mathcal{A})=\dim V$, а согласно замечанию о ранге линейного оператора $r(\mathcal{A})=r(A)$. Итак, $r(A)=\dim V$, т.е. ранг матрицы A совпадает с ее порядком. В частности, ранг A по минорам равен порядку матрицы A. Следовательно, $|A|\neq 0$, т.е. матрица A невырождена.
- 4a) \Longrightarrow 2в). Пусть A- матрица оператора $\mathcal A$ в некотором базисе. По условию $|A| \neq 0$. Следовательно, ранг A по минорам равен порядку матрицы A. Иными словами, $r(A) = \dim V$. Учитывая замечание о ранге линейного оператора, получаем, что $r(\mathcal A) = \dim V$.