DISCRETE STRUCTURES Lecture 1. Propositional logic and equivalence

Bui Anh Tuan

Advanced Program in Computer Science

Fall, 2018

Contents

- Propositional logic
 - Proposition
 - Compound proposition
 - Truth table
 - Conjunction, Disjunction,...
 - Converse, Inverse, Contrapositive,...
- Propositional equivalence

- ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Page

Review

Construct the truth table of the compound propositions:

$$(p \oplus q) \land \neg r \to p$$

Precedence of Logical Operators

Operators	Precedence
7	1
\wedge	2
V	3
\rightarrow	4
\leftrightarrow	5

Logical Equivalence

Definition 2.1

The propositions p and q are logically equivalent if they have the same truth tables. We also write $p \equiv q$.

Example 2.2

Using truth table, prove that the below propositions are logically equivalence.

$$\neg p \lor q \text{ and } p \to q$$

Tautology and Contradiction

Definition 2.3

- A tautology (denoted by T) is a compound proposition that is always true.
- A contradiction (denoted by F) is a compound proposition that is always false.

Thus p and q are logical equivalent if and only if $p \leftrightarrow q$ is a tautology.

Table: Truth tables for $p \land \neg p$ and $p \lor \neg p$

p	$\neg p$	$p \wedge \neg p$
Т	F	F
F	Т	F

p	$\neg p$	$p \vee \neg p$
T	F	T
F	T	Т

Then, $p \wedge \neg p$ is a contradiction and $p \vee \neg p$ is tautology.

Tautology and Contradiction

Example 2.4

Check if the following is tautology or contradiction:

De Morgan's Laws

De Morgan's Law 1

The compound propositions $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

De Morgan's Law 2

The compound propositions $\neg(p \land q)$ and $\neg p \lor \neg q$ are logically equivalent.

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

Example 2.5

Using De Morgan's laws to find the negation of the following sentences:

- a) Jan is rich and happy.
- b) Mei walks or takes the bus to class.

Logical Equivalences

Equivalence	Name
$p \wedge T \equiv p$	Identity laws
$p \lor F \equiv p$	
$p \vee T \equiv T$	Domination laws
$p \wedge F \equiv F$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double Negation law
$p \vee \neg p \equiv T$	Negation laws
$p \land \neg p \equiv F$	

Logical Equivalences (continued)

Equivalence	Name
$p \vee q \equiv q \vee q$	Commutative laws
$p \wedge q \equiv q \wedge q$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \land q) \land r \equiv p \land (q \land r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	

Logical Equivalences Involving Implications

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p \text{ (contrapositive)}$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

Logical Equivalences Involving Bi-Implications

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$
$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Disjunctive Normal Form

Definition 2.6

A compound proposition is said to be in disjunctive normal form if it is a disjunction of conjunctions of the variables or their negations.

Example 2.7

The compound proposition

$$(p \land q \land r) \lor (\neg p \land q \neg r) \lor (\neg p \land \neg q \land r)$$

Page

Logical Equivalences

Question: How to prove two propositions are equivalent?

Two methods:

- Using truth tables:
 - Not good for long formula
- Using the logical equivalences
 - The preferred method.

Logically Equivalences

Example 2.8

Show that
$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

- Using the truth table
- Using the logical equivalences

$$\begin{array}{ll} (p \to r) \lor (q \to r) & \equiv (\neg p \lor r) \lor (\neg q \lor r) & \text{Implication} \\ & \equiv \neg p \lor r \neg q \lor r & \text{Associative law} \\ & \equiv \neg p \lor \neg q \lor r \lor r & \text{Commutative law} \\ & \equiv (\neg p \lor \neg q) \lor (r \lor r) & \text{Associative law} \\ & \equiv \neg (p \land q) \lor r & \text{De Morgan and Idempotent} \\ & \equiv (p \land q) \to r \end{array}$$

4□ > 4□ > 4□ > 4□ > 4□ > 900

Exercises

- Show that $(\neg p \to r) \land (q \to r)$ and $(p \to q) \to r$ are logically equivalent.
- ② Show that $(p \wedge q) \to r$ and $(p \to r) \wedge (q \to r)$ are not logically equivalent.

