Exercice 272:

Soit $n \in \mathbb{N}^*$.

- a) Soit $M \in GL_n(\mathbb{R})$. Montrer que M s'écrit de façon unique OS où $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$.
- b) Montrer que l'ensemble $\mathrm{GL}_n^+(\mathbb{R})$ est connexe par arcs.
- a) Analyse: On suppose qu'il existe $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$ tel que M = OS.

 ${}^{t}M\overline{M} = {}^{t}(OS)OS = {}^{t}S {}^{t}OOS = S^{2}.$

 ${}^tMM \in \mathcal{S}_n(\mathbb{R}) \text{ et } M \in \mathrm{GL}_n(\mathbb{R}), \text{ donc } \forall X \in \mathbb{R}^n \setminus \{0\}, \ {}^tX \, {}^tMMX = {}^t(MX)MX > 0 \text{ donc } \ {}^tMM \in \mathcal{S}_n^{++}(\mathbb{R}).$

 tMM et S sont symétriques réeles et commutent donc il existe $P \in \mathrm{GL}_n(\mathbb{R}), \lambda_1, \ldots, \lambda_n, \in \mathbb{R}_+^*$ et $\mu_1, \ldots, \mu_n, \in \mathbb{R}_+^*$

tels que
$$P^{t}MMP^{-1} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
 et $PSP^{-1} = \begin{pmatrix} \mu_1 & & \\ & \ddots & \\ & & \mu_n \end{pmatrix}$.

Or $S^2 = {}^t MM$ donc $PS^2 P^{-1} = P {}^t MMP^{-1}$ donc $\forall i \in [1, n] \sqrt{\lambda_i} = \mu_i$.

On note L l'unique polynôme interpolateur de Lagrange tel que $\forall i \in [1, n] L(\lambda_i) = \sqrt{\lambda_i}$. Donc $L({}^tMM) = S$ ainsi S est unique.

On obtient ainsi $O = MS^{-1}$.

Synthèse : On pose $S = L({}^tMM)$ par théorème spéctral il existe $P \in \mathcal{O}_n(\mathbb{R})$ tel que

$${}^{t}P^{t}MMP = \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix}$$

Donc
$${}^tPSP = \begin{pmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{pmatrix}$$
 donc $S^2 = {}^tMM$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$.

On note $O = MS^{-1}$, $O^{t}O = MS^{-1}{}^{t}(MS^{-1}) = M({}^{t}MM)^{-1}{}^{t}M = I_{n}$. Donc $O \in \mathcal{O}_{n}(\mathbb{R})$.

b) Soit $A, B \in GL_n^+(\mathbb{R})$.

Par pivot de Gauss, il existe $T_1, \ldots, T_k \in \mathrm{GL}_n(\mathbb{R})$ des matrices de transpositions tel que

$$A = \prod_{i=1}^{k} T_i \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & \det A \end{pmatrix}$$

On pose
$$\gamma:[0,1]\to\mathcal{M}_n(\mathbb{R}), t\mapsto \prod\limits_{i=1}^k(T_i+t(I_n-T_i))\begin{pmatrix}1&&&&\\&\ddots&&&\\&&1&\\&&&\det A+t(1-\det A)\end{pmatrix}.\ \forall t\in[0,1], \forall i\in\{0,1\}$$

 $[\![1,k]\!], T_i + t(I_n - T_i)$ est triangulaire avec des coefficients diagonaux égaux à 1. Donc $T_i + t(I_n - T_i) \in \mathrm{GL}_n(\mathbb{R})$. De plus

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & \det A + t(1 - \det A) \end{pmatrix} \in \mathrm{GL}_n(\mathbb{R})$$

Donc $\forall t \in [0,1], \gamma(t) \in \mathrm{GL}_n(\mathbb{R})$ et $\gamma(0) = A$ et $\gamma(1) = I_n$.

De plus, γ est continue, donc il existe un chemin reliant chaque matrice de $\mathrm{GL}_n(\mathbb{R})$.

Donc $GL_n(R)$ est connexe par arcs.