1 Recurrence Relations and Generating Functions

Method 1 (How to solve for a recurrence relation.). 1. Given a recurrence relation a_n

- 2. Plug into generating function A(x) series $A(x) = \sum_{n=0}^{\infty} a_n x^n$ and expand
- 3. Break up into things that are A(x) on the right
- 4. Solve for A(x)'s generating function
- 5. Rational Function to the right, break up with partial fractions
- 6. replace the known generating functions with their series
- 7. match coefficients

Method 2 (Finding path recurrence relations.). Determine the first choices you have. These should be distinct and independent.

Identity 1 (Series Multiplication).

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{n=0}^{k} a_n b_{n-k}\right) x^n$$

Identity 2 (Taking Power of Series).

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)^k = \sum_{n=0}^{\infty} \left(\sum_{\substack{i_1,\dots,i_k \ge 0\\i_1+\dots+i_k=n}} a_{i_1} \dots a_{i_k}\right) x^n$$

Method 3 (Lookout for Singularities). If you have 2 solutions of c(x), lookout for singularities caused by x in the denominator.

Generating Function 1 (Catalan Numbers). How many paths above the diagonal to get from (0,0) to (n,n) with steps of (1,0) and (0,1)? The answer c_n has generating function:

$$C(x) = \sum_{n=0}^{\infty} c_n x^n = \frac{1 - \sqrt{1 - 4x}}{2x}$$

and satisfies the relationship $xC(x)^2 - C(x) + 1 = 0$. We rejected the positive solution because of $C(x) \to \infty$ at $x \to 0^+$.

The closed form of the sequence is

$$c_n = \frac{1}{n+1} \binom{2n}{n}.$$

Generating Function 2 (The Bell Numbers). Let the sequence b_n be the number of set partitions of n, and $B(x) = \sum_{n=0}^{\infty} b_n \frac{x^n}{n!}$.

$$b_{n+1} = \sum_{k=0}^{n} \binom{n}{k} b_{n-k}$$

and

$$B'(x) = B(x)e^x$$

with $B(0) = b_0 = 1$. Solving this with: $B(x) = e^{e^x - 1}$. The recurrence relation has a closed form

$$b_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$$

Generating Function 3 (The Bells Numbers into k Sets). Let $b_{n,k}$ be the number of set partitions of n into k sets. Then $b_{n+1,k} = b_{n,k-1} + b_{n,k}k$.

$$B(x,y) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} b_{n,k} y^{k} \right) \frac{x^{n}}{n!}$$
$$B(x,1) = e^{e^{x}} e^{-1}$$

comes from the original Bell numbers. Satisfies $B_x = yB + yB_y$ and

$$B(x,y) = e^{ye^x}e^{-y}$$

Generating Function 4 (Cards and Hands). Let C_n be the set of cards with weights n so

$$C(x) = \sum_{n=1}^{\infty} |C_n| \frac{x^n}{n!}$$

and where H_n is the set of hands with weight n

$$\sum_{n=0}^{\infty} \sum_{h \in H_n} y^{\# \text{ of cards in hand } h} \frac{x^n}{n!} = e^{yC(x)}$$

and

$$|C_n| = (n-1)!$$

so that

$$C(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = \ln\left(\frac{1}{1-x}\right).$$

Theorem 1.1 (The Exponential Formula).

$$\sum_{n=0}^{\infty} \left(\sum_{\sigma \in S_n} y^{\# \text{ of cycles in } \sigma} \right) \frac{x^n}{n!} = e^{y \ln \left(\frac{1}{1-x} \right)}$$

Example 1 (Finding the Expectation Value of Cycles in a Permutation of n).

$$\frac{\partial}{\partial y} \left(e^{y \ln\left(\frac{1}{1-x}\right)} \right) \Big|_{y=1} = \ln\left(\frac{1}{1-x}\right) e^{y \ln\left(\frac{1}{1-x}\right)} \Big|_{y=1}$$

$$= \frac{1}{1-x} \ln\left(\frac{1}{1-x}\right)$$

$$= \left(\sum_{n=0}^{\infty} x^n\right) \left(\sum_{n=1}^{\infty} \frac{x^n}{n}\right)$$

$$= \sum_{n=0}^{\infty} \sum_{k=1}^{n} \frac{1}{k} x^n.$$

The average number of cycles in a permutation of n will be:

$$\sum_{k=1}^{n} \frac{1}{k}.$$

Example 2 (How many permutation of n will have only even-sized cycles).

$$\sum_{n=0}^{\infty} (\# \text{ of } \sigma \in S_n \text{ with only even cycles}) \frac{x^n}{n!} = e^{\sum_{n=1}^{\infty} |C_{2n}|} \frac{x^{2n}}{2n!}$$

$$= e^{\sum_{n=1}^{\infty} \frac{x^{2n}}{2n}}$$

$$= e^{\frac{1}{2} \sum_{n=1}^{\infty} \frac{(x^2)^n}{n}}$$

$$= e^{\frac{1}{2} \ln \left(\frac{1}{1-x^2}\right)}$$

$$= \frac{1}{\sqrt{1-x^2}}$$

$$= (1-x)^{-1/2}$$

$$= \sum_{n=0}^{\infty} {\binom{-1/2}{k}} (-x^2)^k.$$

 $Matching\ coefficients$

$$\begin{cases} (2k)! \binom{-1/2}{k} (-1)^k & \text{if } n = 2k \\ 0 & \text{otherwise} \end{cases}$$

Example 3 (The Number of Labeled Graphs of n). # of labeled graphs on n vertices =

 $2^{\binom{n}{2}}$. Then $|C_n| = 2^{\binom{n}{2}}$ so that

$$\sum_{n=0}^{\infty} 2^{\binom{n}{2}} \frac{x^n}{n!} = e^{C(x)} = e^{\sum_{n=1}^{\infty} |C_n|} \frac{x^n}{n!}$$

taking the natural logarithm of both sides

$$C(x) = \ln \left(\sum_{n=0}^{\infty} 2^{\binom{n}{2}} \frac{x^n}{n!} \right)$$

Example 4 (How Many 2-regular graphs on vertices are there?). 2-regular graphs every node has degree 2. So $|C_n| = 0$ for n = 1, 2 and $|C_n| = \frac{(n-1)!}{2}$ for $n \geq 3$. This is because of cycle representations of the graph, is just $|S_{n-1}|$ since these are transpositions, we over-count by 2 however. Finally

$$\sum_{n=0}^{\infty} (\# \text{ of 2-regular graphs on } n \frac{x^n}{n!} = e^{\sum_{n=1}^{\infty} |C_n|} \frac{x^n}{n!}$$

$$= e^{\sum_{n=3}^{\infty} \frac{(n-1)!}{2} \frac{x^n}{n!}}$$

$$= e^{\frac{1}{2} (\ln \left(\frac{1}{1-x}\right) - x - \frac{x^2}{4})}$$

$$= \frac{e^{-x - \frac{x^2}{4}}}{\sqrt{1-x}}$$

2 Asymptotics

Definition 1.

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \ dx$$

for $\alpha > 0$.

Theorem 2.1.

$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$$

for $\alpha > 0$.

Corollary 2.1.1.

$$\Gamma(n) = (n-1)!$$

for $n \in \mathbb{Z}^+$.

Identity 3.

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

Definition 2 (Asymptotics).

$$a_n \ b_n \iff \lim_{n \to \infty} \frac{a_n}{b_n} = 1$$

Theorem 2.2 (Stirling's Approximation).

$$\Gamma(n+1) \sqrt{2\pi n} \frac{n^n}{e^n}$$

Identity 4.

$$\sqrt{2\pi} = \int_{-\infty}^{+\infty} e^{-x^2/2} dx$$

Theorem 2.3.

$$(-1)^n \binom{-\alpha}{n} = \binom{n+\alpha-1}{n} \ \frac{n^{\alpha-1}}{\Gamma(\alpha)}$$

Corollary 2.3.1. If $0 < \beta < \alpha$, then

$$\lim_{n \to \infty} \frac{\binom{-\beta}{n}}{\binom{-\alpha}{n}} = 0.$$

Theorem 2.4. Let b_n have generating function

$$g(x) = \frac{1}{(1-x)^{\alpha}} + \frac{C_1}{(1-x)^{\alpha-1}} + \frac{C_2}{(1-x)^{\alpha-2}} + \dots + \frac{C_k}{(1-x)^{\alpha-k}}$$

with $\alpha > k$. Then $b_n \frac{n^{\alpha - 1}}{\Gamma(\alpha)}$.

Identity 5.

$$\int_0^1 x^{\alpha - 1} (1 - x)^n dx = \frac{n!}{\alpha(\alpha + 1) \dots (\alpha + n)}$$

Identity 6.

$$\Gamma(\alpha) = \lim_{n \to \infty} \frac{n^{\alpha}(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n)}$$

Corollary 2.4.1. Let b_n have generating function

$$g(x) = \frac{C}{(R-x)^{\alpha}} + \frac{C_1}{(R-x)^{\alpha-1}} + \ldots + \frac{C_k}{(R-x)^{\alpha-k}}$$

with $\alpha > k$. Then

$$b_n \frac{Cn^{\alpha-1}}{R^{n+\alpha}\Gamma(\alpha)}$$

3 Singularities

Definition 3 (Singularity and Analytic). A complex valued function is analytic at x_0 if $f(x) = \sum_{n=0}^{\infty} a_n(x-x_0)^n$ for all $|x-x_0| < \epsilon$ for some $\epsilon > 0$, otherwise f(x) has a singularity at x_0 .

Example 5 (Singularities and Analyticity). • e^x , $\sin(x)$, $x^6 - 3x + 1$ have no singularities, their derivatives are smooth on all of $\mathbb R$

- $\frac{x}{(x-2)(x-3)^2}$ has singularities at x=2,3 because their derivatives are not smooth in any neighborhood of 2 or 3
- $\sqrt{4-x^2}$ has singularities at $x=\pm 2$ since it's derivative doesn't exist at these points
- $\frac{1}{1-\sin(x)}$ has singularities at $x=\frac{\pi}{2}+2k\pi$ for all $k\in\mathbb{Z}$

Example 6 (Removing Singularities). • To remove the singularity of $g(x) = \frac{x}{(x-2)(x-3)^2}$ at x=2, we'll multiply by (2-x). $\lim_{x\to 2} (2-x)g(x) = \lim_{x\to 2} \frac{-x}{(x-3)^2}$, this limit exists because of L'Hopitals rule.

 $h(x) = \frac{1}{1 - \sin(x)}$

$$\lim_{x \to \pi/2} \left(\frac{\pi}{2} - x\right) h(x) = \lim_{x \to \pi/2} \frac{\frac{\pi}{2} - x}{1 - \sin(x)}$$
$$= \lim_{x \to \pi/2} \frac{-1}{-\cos(x)} = \infty$$

but

$$\lim_{x \to \pi/2} \left(\frac{\pi}{2} - x\right)^2 h(x) = \lim_{x \to \pi/2} \frac{\left(\frac{\pi}{2} - x\right)^2}{1 - \sin(x)}$$

$$= \lim_{x \to \pi/2} \frac{-2\left(\frac{\pi}{2} - x\right)}{-\cos(x)}$$

$$= \lim_{x \to \pi/2} \frac{-2(-1)}{\sin(x)}$$

Theorem 3.1. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ if there's a > 0 such that

• $(R-x)^{\alpha}$ is analytic at all x_0 with $|x_0| < R'$ for some R' > R, and

•
$$\lim_{x \to R} ((R-x)^{\alpha} f(x)) = C$$
 for $C \neq 0, \infty, -\infty$,

then

$$a_n \frac{n^{\alpha-1}}{\Gamma(\alpha)R^{n+\alpha}}.$$

Note that (1) will ensure that we can remove singularities at R' that the new singularity will be greater than R', (2) not multiplying by an unnecessarily large power.

Theorem 3.2 (The Asymptotic Theorem). If $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and

- $(R-x)^{\alpha}f(x)$ is analytic for $|x_0| > R$
- $C = \lim_{x \to R} (R x)^{\alpha} f(x)$ isn't $0, \pm \infty$,

then

$$a_n \frac{Cn^{\alpha-1}}{\Gamma(\alpha)R^{n+\alpha}}$$

Example 7 (Using the Asymptotic Theorem). $A(x) = \frac{1}{(1-3x)(1+2x)} = \sum_{n=0}^{\infty} a_n x^n$. We found that $a_n = \frac{1}{3} \left(3^{n+1} + (-1)^n 2^{n+1} \right)$.

We can remove the singularities with $x = \frac{-1}{2}, \frac{1}{3}$ with $\alpha = 1$:

$$\lim_{x \to \frac{1}{3}} \left(\frac{1}{3} - x\right) A(x) = \lim_{x \to \frac{1}{3}} \frac{1}{3(1+2x)} = \frac{1}{5}.$$

 $By\ the\ asymptotic\ theorem$

$$a_n \frac{1}{5} \frac{n^0}{\Gamma(1)_{\frac{n}{2n+1}}} = \frac{3^{n+1}}{5}$$

Example 8 (Approximating the Probability of a Permutation of n has no cycle of length 1).

$$\sum_{n=0}^{\infty} (\#\sigma \text{ with no 1 cycles}) \frac{x^n}{n!} = e^{\sum_{n=2}^{\infty} \frac{x^n}{n}} = \frac{1}{1-x} e^{-x}.$$

We can find an asymptotic relationship by noting that R = 1 is a singularity nearest to 0, so that

$$C = \lim_{x \to 1} (1 - x) \frac{e^{-x}}{1 - x} = e^{-1}.$$

Meaning $C = e^{-1}$, $\alpha = 1$, R = 1 giving us

$$a_n \frac{e^{-1}n^{1-1}}{\Gamma(1)1^{n+1}} = \frac{1}{e}$$

Example 9 (When The Asmyptotic Theorem Fails to Work). With $\frac{1}{\sqrt{1-x^2}}$ the singularities are equally space from 0, meaning there is no nearest singularity. So we actually cannot apply the asymptotic theorem here.

4 Permutation Statistics

Definition 4 (Permutation Statistic). A permutation statistic is simply a function $s: S_n \to \mathbb{R}$. Let $\sigma = \sigma_1 \dots \sigma_n \in S_n$, then

- 1. (# of Descents) $des(\sigma) = (# \text{ of indicies } i \text{ with } \sigma_i > \sigma_{i+1})$
- 2. (Exceedences) $exc(\sigma) = (\# \text{ with } \sigma_i > 1)$
- 3. (Inversions) $inv(\sigma) = (\#i < j \text{ with } \sigma_i > \sigma_j)$
- 4. (Major Index) $maj(\sigma) = \sum_{i \text{ with } \sigma_i > \sigma_{i+1}} i.$

Theorem 4.1. Descents (#i with $\sigma_i > \sigma_{i+1}$) and excedences (#i with $\sigma_i > i$) are equidistributed.

Definition 5 (Q-Analogeue).

$$[n]_q = 1 + q + q^2 + \ldots + q^{n-1} = \frac{1 - q^n}{1 - q}$$

 $[n]_q! = [n]_q \cdot [n-1]_q \cdot \ldots \cdot [1]_q$

 $\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$

Theorem 4.2. $[n]_q! = \sum_{\sigma \in S_n} q^{inv(\sigma)} = \sum_{\sigma \in S_n} q^{maj(\sigma)}$ can be shown with a bijection $\phi: S_n \to S_n$ such that $inv(\sigma) = maj(\phi(\sigma))$.

Definition 6 (Rearrangements). $R(0^k, 1^{n-k})$ is the set of rearrangements of k 0's and n-k, 1's.

Theorem 4.3.

$$\sum_{r \in R(0^k, 1^{n-k})} q^{inv(r)} = \begin{bmatrix} n \\ k \end{bmatrix}_q$$

Corollary 4.3.1. $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is a polynomial in q

5 Integer Partitions

Definition 7. An integer partition is a strictly decreasing list of integers which sum to n. The $\max(\lambda)$ is the largest number appearing in the list, $l(\lambda)$ is the length of the list. λ' is the conjugate that is obtained by transposing rows with columns in a young tableaux.

Theorem 5.1.

$$\sum_{\lambda \vdash n} q^{l(\lambda)} = \sum_{\lambda \vdash n} q^{\max(\lambda)}$$

, shows that $l(\lambda) = \max(\lambda')$.

Theorem 5.2.

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \sum_{\substack{\lambda \text{ with } l(\lambda) \le k \\ and \max(\lambda}}$$

This is how many Young Diagrams that can fit into a box of dimension k (height) and n - k (width).

Theorem 5.3.

$${\binom{n+1}{k}}_q = \sum_{j=0}^n q^{k-j} {\binom{n-j}{k-j}}_q = \sum_{j=0}^n q^{k-j} {\binom{n-j}{n-k}}$$

Theorem 5.4.

$$\begin{bmatrix} n \\ k \end{bmatrix}_q \begin{bmatrix} k \\ m \end{bmatrix}_q = \begin{bmatrix} n \\ m \end{bmatrix}_q \begin{bmatrix} n-m \\ k-m \end{bmatrix}_q$$

6 Generating Functions for Integer Partitions

Theorem 6.1.

$$\sum_{n=0}^{\infty} \left(\sum_{\substack{\lambda \vdash n \\ l(\lambda) \le k}} y^{l(\lambda)} \right) x^n = \frac{1}{(1 - yx)(1 - yx^2) \dots (1 - yx^n)} = \prod_{i=1}^n \frac{1}{1 - yx^i}$$

Theorem 6.2.

$$\prod_{i=1}^{\infty} \frac{1}{1 - yx^i} = \sum_{n=0}^{\infty} \frac{y^n x^n}{(1 - x)(1 - x^2)\dots(1 - x^n)}$$

Theorem 6.3.

$$\prod_{i=1}^{\infty} \frac{1}{1-x^i} = \sum_{n=0}^{\infty} \frac{x^{n^2}}{(1-x)\dots(1-x^n)(1-x)\dots(1-x^n)}$$

the left-hand side is the generating function for all integer partitions of n, the right-hand side is the generating function for # of cells in Young Diagram.

Theorem 6.4.

$$\sum_{n=0}^{\infty} (\#\lambda \vdash n \text{ with distinct parts}) x^n = \prod_{n=1}^{\infty} (1+x^n) = \prod_{n=1}^{\infty} \frac{1}{1-x^{2n-1}} = \sum_{n=0}^{\infty} (\#\lambda \vdash n \text{ with only odd parts }) x^n$$

Definition 8 (A Pentagonal Number). $\frac{k(3k-1)}{2}$

Theorem 6.5.

$$\prod_{n=1}^{\infty} (1 - x^n) = \sum_{k \in \mathbb{Z}} (-1)^k x^{k(3k-1)/2}$$

Corollary 6.5.1.

$$\prod_{i=1}^{\infty} \frac{1}{1-x^i} = \sum_{n=0}^{\infty} p(n)x^n = \sum_{k \in \mathbb{Z}} (-1)^k x^{k(3k-1)/2}$$

Identity 7.

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \dots$$

where we're subtracting the pentagonal numbers and the sign pattern repeats as seen above

Theorem 6.6. The coefficient of y^k in

$$\prod_{n=0}^{\infty} (1 + yx^n) \prod_{n=1}^{\infty} \left(1 + \frac{x^n}{y} \right)$$

is
$$x^{k(k-1)/2} \prod_{i=1}^{\infty} \frac{1}{1-x^i}$$

Theorem 6.7 (Jacobi's Triple Product Identity).

$$\sum_{k \in \mathbb{Z}} y^k x^{k(k-1)/2} = \prod_{i=1}^{\infty} (1 - x^i) \prod_{n=0}^{\infty} (1 + yx^n) \prod_{n=1}^{\infty} \left(1 + \frac{x^n}{y} \right)$$
$$= (1 + y) \prod_{n=1}^{\infty} (1 - x^n) (1 + yx^n) \left(1 + \frac{x^n}{y} \right)$$

Theorem 6.8.

$$\prod_{i=1}^{\infty} (1-x^i)^3 = \sum_{k=0}^{\infty} (-1)^k (2k+1) x^{k(k+1)/2}$$

Theorem 6.9 (Fermat's Little Theorem). Let p be prime,

$$a^p \equiv_p a$$

for $a \in \mathbb{Z}^+$

Corollary 6.9.1 (Freshman's Dream).

$$(a_1 + \ldots + a_k)^p \equiv_p (a_1 + \ldots + a_k) \equiv_p (a_1^p + \ldots + a_k^p)$$

Theorem 6.10. $p(n) = \#\lambda \vdash n$, then $p(5n - 1) \equiv_5 0$

Example 10 (Ramunajan Congruence).

$$\sum_{n=1}^{\infty} p(n-1)x^n = x \prod_{n=1}^{\infty} \frac{1}{1-x^n}$$

$$= x \prod_{i=1}^{\infty} (1-x^i)^4 \prod_{i=1}^{\infty} \frac{1}{(1-x^i)^5}$$

$$\equiv_5 F(x) \prod_{n=1}^{\infty} \frac{1}{1-x^{5n}}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k p\left(\frac{n-k}{5}\right)\right) x^n$$

we need to show $p(5n-1) \equiv_5 \sum_{k=0}^{5n} a_k p\left(\frac{5n-k}{5}\right)$ thus we need to show $a_k \equiv_5 0$ when k|5.

$$F(x) = x \prod_{n=1}^{\infty} (1 - x^n) \prod_{n=1}^{\infty} (1 - x^n)^2$$
$$= \sum_{n=0}^{\infty} \sum_{k \in \mathbb{Z}} (-1)^{n+k} (2n+1) x^{k(3k-1)/2 + \binom{n+1}{2} + 1}$$

by calculating $k(3k-1)/2 + \binom{n+1}{2} + 1$ for values modulo 5, we find only 1 0 at n=2 and k=1.

7 Bijection Machine

Method 4. $f: A \to B$ swaps the A_i diseases listed in D for B_i diseases, $\alpha: A \to A$ by adding/removing the smallest index i from D, $\beta: B \to B$ is defined by adding/removing the smallest index i from D. In this order repeat α, f, β, f^{-1} until we have no B.

8 Tableaux and Symmetric Functions

Definition 9. A tableaux of shape $\lambda \vdash n$ is a filling of the Young diagram of λ with elements in $\{1, \ldots, N\}$ (here N >> n).

• Row constant if the rows of T are constant

- Row nondecreasing if the rows of T are nondecreasing read left to right
- Row increasing similar to above
- Column strict if T is row nondecreasing and column increasing

Finally the weight of a Tableaux is defined to be $w(T) = \prod_{c \in \mathcal{T}} x_{\#inc}$ where c is an entry in the tableaux.

Definition 10 (Class of Symmetric Function). • The power symmetric polynomial $P_{\lambda}(x_1, \dots, x_N) \equiv \sum_{Row\ Constant\ T\ of\ shape\ \lambda} w(T)$

- The homogeneous symmetric polynomial $h_{\lambda}(x_1, \dots, x_N) \equiv \sum_{Row \ nondecreasing \ Tableaux \ T \ of \ shape \ \lambda} w(T)$
- The elementary symmetric polynomial $e_{\lambda}(x_1, \dots, x_N) \equiv \sum_{\text{Row increasing tableaux T of shape λ}} w(T)$
- The Schur polynomial $s_{\lambda}(x_1, \dots, x_N) = \sum_{Column \ strict \ T \ of \ shape \ \lambda} w(T)$

Definition 11 (Symmetric Functions). A polynomial f in x_1, \ldots, x_N is a symmetric polynomial/function if

$$f(x_1,\ldots,x_N)=f(x_{\sigma(1)},\ldots,x_{\sigma(N)})$$

for all $\sigma \in S_n$.

Theorem 8.1.

$$s_{\lambda}(x_1, \dots, x_N) = \sum_{Column \ strict \ T \ of \ shape \ \lambda} w(T)$$

is a symmetric polynomial.

Definition 12 (The Monomial Symmetric Polynomial).

$$m_{\lambda}(x_1,\ldots,x_N) - \sum_{\sigma \in S_n} x_{\sigma(1)}^{\lambda_1} x_{\sigma(2)}^{\lambda_2} \ldots x_{\sigma(N)}^{\lambda_N}$$

where $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_N)$ and possibly contains 0's. These will be the smallest symmetric polynomials that contain the monomial $x_1^{\lambda_1} x_2^{\lambda_2} \dots x_N^{\lambda_N}$

Theorem 8.2. The set Λ_n of all symmetric polynomials of degree n has a basis that is $\{m_{\lambda} : \lambda \vdash n\}$.

Corollary 8.2.1. $\dim(\Lambda_n) = p(n)$

Definition 13 (0,1 Matrices). Let $\mathbb{Z}_2 M_{\mu,\lambda}$ be the # of 0,1 matrices of row sum μ and column sum λ .

Identity 8. • $h_{(\lambda_1,...,\lambda_N)} = h_{\lambda_1} \dots h_{\lambda_N}$

- $\bullet \ e_{(\lambda_1,\ldots,\lambda_N)} = e_{\lambda_1} \ldots e_{\lambda_N}$
- $\bullet \ p_{(\lambda_1,\ldots,\lambda_N)} = p_{\lambda_1}\ldots p_{\lambda_N}$

Theorem 8.3. The coefficients of m_{λ} in e_{μ} is $\mathbb{Z}_2 M_{\mu,\lambda}$.

Corollary 8.3.1. $\{e_{\lambda} : \lambda \vdash n\}$ is a basis of the vector space Λ_n .

Definition 14. Let $B_{\lambda,\mu}$ be the set of all Brick Tabloids of content λ and shape μ . These are fillings of Young diagrams of μ with horizontal bricks of shape contained in λ .

Theorem 8.4.

$$h_{\mu} = \sum_{\lambda \vdash n} (-1)^{n-l(\lambda)} |B_{\lambda,\mu}| e_{\lambda}$$

Method 5 (Sign-Reversing Involution). Take an object with shape μ and content λ filling each brick with a strictly increasing sequence. Scan from top to bottom, left to right, to find if we can combine two bricks. Fixed points will all have length 1 and only weakly decreasing sequence in rows

9 Generating Functions for Symmetric Polynomials

Generating Function 5.

$$E(t) = \sum_{n=0}^{\infty} e_n(x_1, \dots, x_N) t^n = \prod_{i=1}^{N} (1 + x_i t)$$

Generating Function 6.

$$H(t) = \sum_{n=0}^{\infty} h_n(x_1, \dots, x_N) t^n = \prod_{i=1}^{N} \frac{1}{1 - x_i t}$$

Theorem 9.1.

$$E(t) = \frac{1}{H(-t)}$$

Method 6 (Sign-Reversing Involution). Take a 2-tuple of strictly increasing row of k cells in the first entry, and n-k sized row of a weakly decreasing sequence. Define the involution to simply move the largest cell in the first to the right. Fixed points only occur when n=0. Done.

10 Ring Homomorphisms

Definition 15 (Ring Homomorphism). A ring R is a set with operations +, -, * that satisfies linearity in addition and $\phi(ab) = \phi(a)\phi(b)$.

Theorem 10.1. If $\phi: \Lambda \to \mathbb{Q}[x]$ is a ring homomorphism defined by $\phi(1) = 1$ and $\phi(e_n) = (-1)^{n-1} \frac{(x-1)^{n-1}}{n!}$ for all $n \ge 1$, then $\phi(n!h_n) = \sum_{\sigma \in S_n} x^{des(\sigma)}$.

Theorem 10.2.

$$\sum_{n=0}^{\infty} \left(\sum_{\sigma \in S_n} x^{des(\sigma)} \right) \frac{e^n}{n!} = \frac{x-1}{x - e^{t(x-1)}}$$

Definition 16 (Word). A word of length n with letters $\{1, ..., k\}$ is a finite sequence with $w_k \in \{1, ..., k\}$. Let $\{1, ..., k\}^n$ denote the set of all words with length n.

Theorem 10.3. If
$$\phi(e_n) = (-1)^{n+1} \binom{k}{n} (x-1)^{n-1}$$
, then $\phi(h_n) = \sum_{w \in \{1,...,k\}^n} x^{des(w)}$

11 Polya's Enumeration Theorem

Definition 17 (Cycle Index Polynomial). The cycle index polynomial $Z_G = \frac{1}{|G|} \sum_{\sigma \in G} p_{\lambda(\sigma)}$ where that is the power symmetric polynomial.

Definition 18 (Coloring). Is a function $f: \{1, ..., n\} \to \{1, 2, ...\}$. The weight of the coloring $w(f) \equiv \prod_{i=1}^{\infty} x_i^{|f^{-1}\{i\}|}$, that is $|f^{-1}(\{i\})|$ is the number of times the color i was used

Definition 19 (Coloring Polynomial).

$$F_G = \sum_{equivalence\ class\ of\ [f]} w(f),$$

where the equivalence classes are determined by what we consider to be an equivalent coloring.

Theorem 11.1.

$$Z_G = F_G$$

Example 11 (Using Polya's Enumeration Theorem). How many ways can we color the vertices of a cube? What if 2 vertices are red and 2 are black?

 $Z_{D_4} = \frac{1}{8}(p_1^4 + 2p_1^2p_2 + 3p_2^2 + 2p_4) = F_{D_4} \text{ with } p_n = (x_1^n + x_2^n + \ldots + x_N^n) \text{ if } we \text{ take } x_i = 1 \text{ we get}$

$$\frac{1}{8}(N^6 + 2N^3 + 3N^2 + 2N)$$

total colorings for N colors. To find how many are red, black, then find the coefficient of $x_1^2x_2^2$ after expanding out each term in the cycle index polynomial.