Introduction to Blockchain Technologies

Unit 3

Cryptocurrencies

Cryptographic Hash Functions-Cryptography Basics and Concepts-Introduction to Bitcoin-Bitcoin Network and Payments-Bitcoin clients and APIs-Alternative Coins

Cryptographic Hash Functions

1. What

- A function that takes in any amount of data, converts it to a fixed-size string of characters (called a hash)
- If even one character is changed, one gets a completely different hash
- Similar to a digital fingerprint-unique, impossible to reverse-engineer back into the original data
- Not only does it compress the data, also makes it tamper-proof

2. How Cryptographic Hash Functions Work/Are Used in Blockchain

- a. For Block Integrity
 - In blockchain, each block has a hash of the previous block embedded in it. This creates a chain of blocks that are cryptographically linked.
 - Changing one block, tampers with the whole sequence

b. For Transaction Security

- When one sends cryptocurrency, transaction data is hashed and then added to a block.
- The hash guarantees that the transaction details like the amount and the recipient cannot be altered.
- If altered, the hash changes, and the network immediately knows something has been messed with.

c. For Proof of Work

- In Proof of Work systems, cryptographic hash functions are what miners are solving to add new blocks to the blockchain.
- Miners are in a race to find a has that fits certain criteria.
- The first one to solve it gets to add the block and collect the reward.

• This concept makes blockchain secure, but that is also why PoW is a very energy hungry process. Solving these puzzles requires a lot of computational power, and that makes the system very hard to hack

3. Importance of Cryptographic Hash Functions

- Are the bedrock of blockchain's security and integrity. Without it, blockchain
 would be no better than a regular database, vulnerable to the usual hacks and
 fraud.
- Hash functions make sure that the data on a blockchain is unchangeable and trustworthy.
- Apart from blockchain, hash functions are also used for securing passwords, verifying digital signatures, and ensuring data has not been tampered with.

Cryptography: Basics and Concepts

1. What

- Science of encoding information so that only the intended recipient can decode it.
- Also about proving identity, ensuring data integrity, and enabling secure communicatio

2. Encryption and Decryption

a. Encryption

- Process of converting plaintext into ciphertext using an algorithm and a key
- Strength of encryption depends on the complexity of the algorithm and the secrecy of the key.

Types of encryption

Symmetric Encryption

- → Same key is used for both encryption and decryption.
- → Fast and efficient, but has the downside of both parties needing to have the same key. One would need to find a secure way to share the key without anyone else getting their hands on it.

Asymmetric Encryption

- → Uses both a public key (anyone can see) and a private key (only recipient holds and uses it to decrypt the data)
- → Eliminates the need to share a secret key beforehand

b. Decryption

Converting the ciphertext back into plaintext using a corresponding key

3. Other Concepts

- a. Hashing- A process that takes input data and produces a fixed size string of characters, which is a unique representation of the data. Used for verifying data integrity, if even a single bit of the input data changes, the resulting hash will become completely different, making it easy to detect tampering.
- b. Digital Signatures-Meant to serve as proof that a document was created by the intended individual and hasn't been altered since/isn't from an imposter. These signatures are created using a combination of hashing and symmetric key encryption.
- c. Public Key Infrastructure (PKI)- a framwork that makes asymmetric encryption and digital signatures work on a large scale. It is a system of digital certificates, certificate authorities and other registration authorities that verify and communicate the identify of individuals/entities involved in digital communications. PKI is the foundation for SSL/TLS, which are the protocols that keep web browsing secure. PKI is also a fundamental part of blockchain technology.

Introduction to Bitcoin

1. What

- First decentralized cryptocurrency
- Not answerable to banks/government/middlemen
- Money for the people, by the people managed by a global network of computers all working together to maintain the Bitcoin blockchain
- Has a public, unchangeable ledger of every Bitcoin transaction ever made

2. Features of Bitcoin

- Bitcoin doesn't require trust
- Traditional financial systems rely on banks and institutions to keep everything running securely.
- Bitcoin replaces that with cryptographic proof and decentralized consensus.
- Peer to peer cash network that is controlled by code
- Has a limited supply- 21 million bitcoins will only ever exist- a number that is hard-coded into the system

- Every 4 years, the reward for mining new blocks is cut by half- process is called halving- this makes Bitcoin increasingly scarce over time.
- Secure, transparent and irreversible transaction- once a transaction is done, it cannot be altered or undone.
- No one has to be trusted to use Bitcoin, one only needs to trust the network and the code.

3. Origins of Bitcoin

- Invented by Satoshi Nakamoto, introduced in a whitepaper 'Bitcoin: A Peer to Peer Electronic Cash System'
- Came in 2009 following the 2008 financial crisis
- Initially a fringe idea, something that only tech geeks and libertarians were interested in.
- Currently has a trillion dollar market cap

4. Working of Bitcoin

- Runs on blockchain technology, which is a chain of blocks, each containing transaction data.
- Each block is linked to the one before it, creating an unbreakable chain that records every transaction ever made.
- This blockchain is maintained by a decentralized network of miners- people who use powerful computers to validate transactions and add them to the blockchain in exchange for newly minted bitcoins.
- This process is called mining- keeps Bitcoin secure and decentralized.

5. Why Bitcoin is Important

- Bitcoins offers a model where the financial system is open, decentralized and accessible to anyone with an internet connection
- Bitcoin is a hedge against inflation and government overreach. It is a way to store value outside the traditional financial system.
- Provides a means for financial inclusion, giving people in unbanked regions access to the global economy.
- Has been the catalyst for thousands of other cryptocurrencies
- Have forced governments and financial institutions to rethink their approach to digital money
- Can be used as a store of value, a medium of exchange, or a speculative asset

Bitcoin Networks and Payment

1. About the Bitcoin Network

- A decentralized network
- Powered by thousands of nodes- computers running the Bitcoin software- that work together to validate transactions and secure the network
- These nodes maintain the Bitcoin blockchain, and the public ledger that records every transaction ever made
- Since the Bitcoin network is decentralized, it is nearly impossible to take down
- To disrupt Bitcoin, every single node would have to be taken down simultaneously, which is practically impossible
- Network is very resilient compared to traditional systems

2. Mining and Consensus in the Bitcoin Network

Backbone of the Bitcoin network: Consensus mechanism called Proof of Work (PoW).

Role of Miners: Specialized nodes compete to solve complex mathematical puzzles.

- The first to solve the puzzle adds the next block to the blockchain.
- Miners are rewarded with newly minted bitcoins for their efforts.

Consensus and Security:

- Mining ensures the network is secure and decentralized.
- The network is trustless—no need to trust a single entity, as the decentralized network guarantees system integrity.

Decentralization:

- No single authority verifies transactions.
- Miners work together to reach consensus on the state of the blockchain.

3. Features of Payments on the Bitcoin Network

a. Bitcoin Payments: Fast, Secure, and Global

- Traditional finance is slow, expensive, and involves intermediaries for cross-border payments.
- Bitcoin allows for fast, global payments at a fraction of the cost.
- With Bitcoin, you can send money to anyone in the world in minutes.

b. How Payments Work

- Sending a Bitcoin payment broadcasts a message to the network to verify that the sender has enough funds.
- Once confirmed by the network, the transaction is added to the blockchain, and the recipient receives the funds.
- Bitcoin payments are irreversible—no chargebacks or disputes, making finality both a strength and a challenge.

c. Global and Borderless

- Bitcoin operates without traditional banking systems and borders, allowing for direct, fast, and cheap transactions.
- It's a game-changer for unbanked or underbanked populations.
- Anyone with a smartphone and an internet connection can participate in the global economy without needing a bank account.
- This level of financial inclusion is unmatched by traditional financial systems.

4. Impacts of Bitcoin on Traditional Payments

- Bitcoin's payment system challenges the centralized systems traditionally used for financial transactions.
- Demonstrates that a decentralized, peer-to-peer network can be just as efficient, if not more so, than centralized systems.

Disintermediation

- One of Bitcoin's most disruptive features is disintermediation, the removal of intermediaries such as banks, payment processors, and card networks.
- Traditional finance involves multiple intermediaries, each adding friction, costs, and potential failure points to transactions.
- Bitcoin transactions are peer-to-peer, reducing costs, speeding up transactions, and lowering the risk of fraud by eliminating middlemen.

Challenges and Opportunities

- Bitcoin's volatility limits its effectiveness as a stable store of value for everyday transactions.
- Transaction fees can fluctuate, sometimes spiking during periods of high network activity.
- Scalability is another concern—Bitcoin can only process a limited number of transactions per second, which could pose a bottleneck as adoption increases.
- However, these challenges also present opportunities. Solutions such as the Lightning Network, a second-layer protocol, are being developed to improve Bitcoin's transaction capacity, reduce fees, and enhance scalability, making the system more efficient and user-friendly as it evolves.

Bitcoin Clients and APIs

1. Types of Bitcoin Clients

Full Nodes

- Full nodes download the entire Bitcoin blockchain and independently verify every transaction.
- They are considered the gold standard for security and privacy, as they do not rely on third parties.

- Full nodes require significant resources—storage, bandwidth, and computing power.
- Ideal for users who prioritize full control over their transactions, but the resource demands are a drawback.

Lightweight Clients

- Lightweight clients do not download the entire blockchain but instead focus on essential parts, making them faster and less resource-intensive.
- They rely on full nodes for verification, which involves placing some trust in the network.
- The main benefit is convenience, especially for mobile device users, as they offer a good balance between functionality and resource efficiency.

Mobile and Web Wallets

- Mobile and web wallets are user-friendly applications that make Bitcoin accessible to the masses.
- These wallets are easy to use but often rely on third-party services for network interaction.
- While they offer less security compared to full or lightweight clients, they are preferred for quick, everyday transactions due to their simplicity and convenience.

2. APIs for Developers

- APIs (Application Programming Interfaces) are tools that allow developers to create new services on top of the Bitcoin network.
- They are essential in expanding Bitcoin from niche technology to a global financial system.

Wallet APIs

- Wallet APIs enable developers to create and manage Bitcoin wallets programmatically.
- Functions include generating addresses, sending/receiving transactions, and checking balances.
- Businesses can easily integrate Bitcoin into their operations, from small shops to large e-commerce platforms, with minimal complexity.

Blockchain APIs

- Blockchain APIs provide direct access to the entire Bitcoin blockchain.
- These APIs allow developers to query transaction histories, track specific transactions, and build custom analytics tools.
- They are critical for services requiring detailed insights into Bitcoin activity, such as block explorers and crypto exchanges.

Payment Gateway APIs

• Payment gateway APIs handle Bitcoin commerce by managing processes like converting Bitcoin to local currencies and processing payments.

• They simplify Bitcoin transactions, making it as easy to accept Bitcoin as traditional credit card payments.

Exchange APIs

- Exchange APIs offer access to market data, allowing users to buy and sell orders.
- They enable complex trading strategies and are vital for building trading bots or portfolio management tools.
- Exchange APIs serve as the backbone for traders by streamlining interactions with market data.

3. Importance of Bitcoin Clients and APIs

- Without bitcoin clients, the average person would not be able to use Bitcoin
- Without the APIS, the developers would not be able to build the tools and services that make Bitcoin useful.

Alternative Coins

1. What

- Altcoins refer to any cryptocurrency that is not Bitcoin.
- Bitcoin is likened to the first revolutionary product (e.g., the iPhone), which spurred the creation of numerous alternatives.
- Altcoins emerged due to Bitcoin's success, with some aiming to improve on Bitcoin's model, while others pursue entirely different goals.
- Altcoins vary significantly, ranging from well-known ones like Ethereum and Litecoin to lesser-known niche coins.
- Each altcoin offers distinct features, use cases, and communities.

2. Why do Altcoins exist?

- Altcoins focus on innovation and competition.
- Bitcoin was the first cryptocurrency but has limitations (e.g., it's slow, energy-intensive, and less flexible).
- Altcoins aim to address these issues or cater to niche markets.

Improving on Bitcoin

- Some altcoins improve on Bitcoin's flaws.
- **Litecoin**: Faster, more efficient, shorter block times, and different hashing algorithm.
- **Bitcoin Cash**: Created to handle more transactions by increasing block size.

New Use Cases

• Other altcoins serve different purposes rather than competing with Bitcoin.

•

- Ethereum: A platform for decentralized applications (dApps) using smart contracts. Focuses on computing, not just currency.
- **Ripple (XRP)**: Aimed at fast, low-cost international money transfers, used by banks rather than the general public.

3. Altcoin Landscape

The altcoin space is diverse, dynamic, and chaotic, with thousands of coins, including legitimate innovations and scams.

Ethereum and Smart Contracts

- Ethereum is the leading altcoin, introducing smart contracts (self-executing contracts with predefined terms).
- It has enabled decentralized finance (DeFi) and non-fungible tokens (NFTs), creating an entire ecosystem of blockchain innovation.

Stablecoins

- Stablecoins are pegged to stable assets (e.g., USD), providing less volatility than typical cryptocurrencies.
- Useful for everyday transactions and as protection against market volatility.
- Tether (USDT) is the most well-known stablecoin, but there are others.

DeFi Tokens

- Decentralized Finance (DeFi) is a major trend built mostly on altcoins.
- DeFi platforms like Uniswap (UNI) and Aave (AAVE) use tokens for decentralized exchanges and financial services without relying on traditional banks.
- DeFi tokens are increasingly popular as alternatives for financial interactions.

4. Risks and Rewards of Altcoin

Altcoin Investment

- High risk, high reward.
- More volatile and less regulated than Bitcoin.
- Susceptible to scams and rapid price changes.

Opportunities

- Altcoins offer early entry into game-changing technologies.
- Innovation in consensus, privacy, and new use cases.
- A space for experimentation.