BT2101 Week 6 Some Tips

Model Prediction 1. Regression 2. Decision Tree 3. Support Vector Machine 4. Naive Bayes Classifier 5. Neural Network More..... Train data Labeled input Untrained Model Labeled output

Labeled input

Predictive

Model

Predicted output

Labeled output

performance

TESTING

Test data

Labeled

data

Model Prediction

Performance of Binary Classifier

- Problems of Accuracy/Error metrics:
- Example: Cancer Detection
 - Class 1 (Positive): Having cancer
 - Class 0 (Negative): Being Healthy
- What if your model misclassified all the "Class 1" cases but correctly classified all the "Class 0" cases?
- ♦ Your model accuracy is 97%, but do you think this is a good model?

Performance of Binary Classifier

• Confusion Matrix:

	Predicted: NO	Predicted: YES
Actual: NO	TN = ??	FP = ??
Actual: YES	FN = ??	TP = ??

Sensitivity (or Recall, TPR) = $TP \div (TP+FN)$ Precision (or PPR, PPV) = $TP \div (TP+FP)$

4			
	True Positive	TP/P	The proportion of
	Rate		positive instances that
	or Hit Rate		are correctly classified as
	or Recall		positive
	or Sensitivity or		
	TP Rate		
Ī	False Positive	FP/N	The proportion of
	Rate		negative instances that
	or False Alarm		are erroneously classified
	Rate		as positive
	or FP Rate		
Ī	False Negative	FN/P	The proportion of
	Rate		positive instances that
	or FN Rate		are erroneously classified
			as negative $= 1 - \text{True}$
			Positive Rate
H			

True Negative	TN/N	The proportion of
Rate		negative instances that
or Specificity		are correctly classified as
or TN Rate		negative
Precision	TP/(TP+FP)	Proportion of instances
or Positive		classified as positive that
Predictive Value		are really positive
F1 Score	$(2 \times \text{Precision} \times \text{Recall})$	A measure that combines
	/(Precision + Recall)	Precision and Recall
Accuracy or	(TP + TN)/(P + N)	The proportion of
Predictive		instances that are
Accuracy		correctly classified
Error Rate	(FP + FN)/(P + N)	The proportion of
		instances that are
		incorrectly classified

Sensitivity v.s. Precision

Sensitivity (or Recall, TPR) = $TP \div (TP + FN)$

Precision (or PPR, PPV) = $TP \div (TP + FP)$

Do you care more about **FN** or **FP**?

Case I: New HIV Test Method

	Predicted: NO	Predicted: YES
Actual: NO	TN=900	FP=o
Actual: YES	FN=90	TP=10

- 1000 people: 100 are real HIV patients, 900 are healthy people
- Accuracy = (900+10)/1000=91%
- Sensitivity = 10/(10+90) = 10% •
- Precision = 1/(1+0) = 100%
- ♥ FN in HIV test kills people!

Case II: Advertising Target on Credit Card Users

	Predicted: NO	Predicted: YES
Actual: NO	TN=909	FP=81
Actual: YES	FN=1	TP=9

- 1000 people: 10 are really interested in, 900 are not interested at all
- Accuracy=(909+9)/1000=91.8%
- Sensitivity = 9/(9+1) = 90%
- Precision = 9/(9+81) = 10% •
- **♥** FP in advertising target wastes money!

Overfit

Bias-Variance Tradeoff

Bias-Variance Tradeoff:
$$\mathrm{E}\left[\left(y-\hat{f}\left(x\right)\right)^{2}\right]=\left(\mathrm{Bias}\left[\hat{f}\left(x\right)\right]\right)^{2}+\mathrm{Var}\left[\hat{f}\left(x\right)\right]+\sigma^{2}$$

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff

Regression

• Problems:

• Example:

If you include more and more features/variables, your model will perform well on train data, but "overfit"

Regression

• Problems:

• Exclusive-OR:

Underfit And Overfit

☐ Finding a single model that performs well on prediction is not so easy.

☐ Data Scientists focus more on overfit issue.

Overfit

- How to control overfit issue:
 - Cross-Validation
 - Feature Selection
 - Pruning in decision tree (e.g., early stopping)
 - Ensemble Learning methods (e.g., random forest, boosting)
 - Dropout in deep learning and neural network
 - More...

Feature Selection

Feature Selection Methods:

- Brute-Force
 - Use simple logic or domain knowledge
- Filter method
 - correlations between feature X and output y
 - chi-square test, etc.
- Wrapper method
 - Sequential Feature Selection (e.g., stepwise regression)
- Embedded method
 - decision tree

Cross Validation

• K-Fold Cross Validation (e.g., K=10)

- Model Evaluation
- Model Comparison
- Model Tuning

$$E = \frac{1}{10} \sum_{i=1}^{10} E_i$$
 $K = 3: \approx 70/30 \text{ split};$ $K = 5: = 80/20 \text{ split};$ $K = 10: = 90/10 \text{ split}$

Ensemble learning

"Can a set of weak learners be combined to create a stronger learner?" *Kearns and Valiant (1988)*

Yes! Schapire (1990)

Ensemble Learning Method

Amazing impact: • simple approach • widely used in industry • wins most Kaggle competitions

Learn from not just one learner/model but a set of base learners/models, and **combine** their predictions for the unseen instances using some **aggregation methods** (e.g., taking average, majority voting, logistic regression, etc.)

A set of weak models are combined to create a strong model

Ensemble Method

Parallel Learning

Bagging (Bootstrapping Aggregation)

Random Forest

Stacking: Combination of different-type base models

Sequential Learning (Error-Based or Residual-Based)

Adaboost (Adaptive Boosting): Increase weights on misclassified data

Gradient Boosting: Fit base models on residuals

XGBoost: An extension from Gradient Boosting

Ensemble Method

Thank You!