

Ingeniería de Software I

Facultad de Ingeniería y Tecnología Informática Ingeniería Informática

Análisis de Sistemas: Análisis & Diseño Estructurado (DFD-DD)

> Lic. Pedro Brest Año 2020

Objetivos

- → Que el alumno comprenda la importancia del uso, creación de DFD lógicos y físico, para la descripción gráfica de movimientos de datos, por personas y sistemas de una organización.
- → Que el alumno la utilice como herramienta para la comprensión del sistema que está analizando y por ende, luego diseñar.
- → Comprender el uso de los Diccionarios de Datos para el análisis de sistemas y la relación con DFD.

La Metodología de Análisis Estructurado de Sistemas

La metodología de Análisis de Sistemas:

El modelo Ambiental y el de comportamiento:

El modelo ambiental, es la frontera entre el sistema y el resto del mundo.

El modelo de comportamiento, DFD, DER, DD, DC : Interacción en el ambiente que lo rodea

Los Modelos Lógicos y Físicos:

Que funciones se automatizarán y cuales seguirán manuales. implementación

Convención para los DFD:

- → Entidad: Persona, Departamento, Organización o máquina, sistema: EXTERNA (nombre en sustantivo).
- → Las Flechas: Representan el movimiento de los datos de un punto a otro, la Flecha apunta hacia el destino. Llevan un nombre único.
- → Proceso: es el trabajo que realiza el sistema, representa el cambio o procesamiento que se hacen sobre los datos, de un proceso sale un flujo de datos distinto que el de entrada, Se los numera y se les da un nombre que representa la acción: Crear, modificar, calcular, etc. Al Primero de nivel "0" se le pone el nombre del sistema
- → Almacén de Datos: representa el almacenamiento de datos, ya sea manual o electrónico, se denominan con un sustantivo y debe ser único + un ID del tipo D1, D2, etc.

Pasos para construir un DFD: Top-Down

El primer diagrama que modelamos es el Diagrama de Contexto, que contiene todas las Entidades externas, los flujos de datos que entran al sistema y los que salen

- → Una sola burbuja
- → Todos los flujos de datos que recibe
- → Todos los flujos de datos que produce
- → Todas las Entidades (personas organizaciones y sistemas) con los que se comunica.

Pasos para construir un DFD: Top-Down

1 Hacer una lista de las actividades de la organización y con ella determinar:

- → Entidades Externas.
- → Flujos de Datos.
- → Procesos.
- → Almacenes de datos.

3 Dibujar el Diagrama 0:

- → Entidades Externas.
- → Flujos de Datos entrantes y salientes.
- → Procesos a nivel general

5 Verificar los posibles erroes y asegurarse que los identificadores de procesos y los flujos de datos sean correctos.

2 Crear el Diagrama de Contexto (DC):

- → Entidades Externas.
- → Flujos de Datos entrantes y salientes.
- → Proceso 0 con el nombre del Sistema.

4 Crear los Diagramas hijos de cada Proceso del Diagrama 0.

6 Desarrollar los DFD físicos a partir de los DFD Lógicos.

7 Particionar el DFD Físico mediante agrupación de partes del diagrama para facilitar la programación y la implementación

Pasos para construir un DFD: Reglas a tener en cuenta

Un proceso debe recibir al menos, un flujo de datos entrante, y debe crear por lo menos un flujo de datos saliente. En el diagrama de Nivel O no incluir mas de 9 procesos

Un Almacén de Datos debe estar conectado, al menos con un proceso. NO a una Entidad

Un DFD debe tener al menos un proceso y NO puede haber objetos independientes o conectados a si mismos.

Las Entidades externas NO deben conectarse entre sí. Si lo hicieran, esa comunicación no pertenece al sistema, por lo tanto, al DFD

Pasos para construir un DFD: Diagrama de Nivel 0

Para Expandir el DC, nos preguntamos:

¿Qué sucede con los datos de los flujos de datos? Buscamos Procesos

¿Qué se hace con esos datos? ¿se archivan' ¿Se hace algún cálculo' ¿Tiene almacenes de datos realcionados?

Pasos para construir un DFD: Lógicos y Físicos

Lógico::

se enfocan en el funcionamiento de la organización y en la manera que ésta opera con los procesos, es decir sólo describe los eventos.

Físico:

se enfocan en la implementación, incluyendo el hardware, el software, los archivos y personas involucradas en el sistema, es decir es una descripción asertiva del sistema.

Pasos para construir un DFD: Tablas CRUD

Actividad	Cliente	Artículo	Pedido	Detalle del pedido
Inicio de sesión del cliente	R			
Información sobre un artículo		R		
Selección de un artículo		R	С	C
Pasar a pagar el pedido	U	U	U	R
Agregar cuenta	С			
Agregar artículo		С		
Cerrar cuenta del cliente	D			
Quitar artículo obsoleto		D		
Cambiar demografía del cliente	RU			
Cambiar pedido del cliente	RU	RU	RU	CRUD
Información sobre el pedido	R	R	R	R

Contenido::

Las tablas CRUD se utilizan para identificar o representar en que parte suceden las creaciones, lecturas, actualizaciones o eliminación de registros en las tablas maestras del sistema

Pasos para construir un DFD: Ejemplo de DFD (DC)

Pasos para construir un DFD: Ejemplo de DFD (hijo)

El Diccionario de Datos

Diccionario de Datos

Es el referente de consulta sobre todos los flujos de datos del sistema que analizamos Compila y coordina los términos de los datos.

Explica qué significa cada término o atributo de un Almacén de datos. Nos Permite:

- Establecer las reglas de consistencia de los datos, es decir qué se puede y qué no se puede almacenar y de qué manera en cada atributo ó término.
- Eliminar la redundancia.
- Determinar el contenido de los datos almacenados.
- De qué manera una estructura de datos se relaciona con otra estructura

Estructura de datos: AGRUPACIÓN DE ATRIBUTOS DE IGUAL FAMILIARIDAD Ej: Maestro de Proveedores, Maestro de Estudiantes, Cabecera de Factura, etc..

Diccionario de Datos

Recopilamos información: Del contenido de los Flujos de Datos

De los procesos (Entradas y Salidas).

De los Almacenes de Datos.

Por lo tanto tendremos:

- DD de Flujos de Datos.
- DD de Estructuras de Datos.
- DD de Elementos de Datos.
- DD de los Almacenes de Datos.

Diccionario de Datos: Flujo de Datos

Recopilamos información: Del contenido de los Flujos de Datos

Qué debemos recopilar:

- Un Identificador unívoco.
- Un Nombre con el que se muestra en los DFD.
- Una breve descripción de su contenido.
- El origen y el destino.
- Un indicador de Tipo de Flujo: Registros Completo, Archivo, Pantalla, Informe, Formulario.
- Un Determinador si es de uso interno (entre procesos)
- El nombre de la estructura de datos que los agrupa dentro de ese flujo.
- El Volumen por unidad de tiempo: P/E: 100Reg/hora.
- Observaciones.

Diccionario de Datos: Estructura de Datos

Se establece una convención para identificar los elementos que componen una estructura, se utilizan símbolos algebraicos

Qué significan las convenciones:

- "=" significa que contiene a o está compuesto de
- "+" significa "Y".
- "{ }" significa que hay elementos repetitivos y puede haber más de un grupo de elementos repetitivos.
- "[]" representa una situación excluyente, es decir "either/or", cualquiera u otro pero no ambos.
- "()" Representa a elementos opcionales, se dejan en blanco, con O si fueran numéricos..

Ejemplo:
Dirección = Calle +
Numero +
(Departamento) +
(Piso) +
Ciudad +
CP +
Provincia +
(País)

Hay Lógicas y física: en las físicas se agregan elementos adicionales y que son necesarios para la implementación: Campos clave para acceder al registo.

Diccionario de Datos: Elementos de Datos

Al igual que la estructura, cada elemento debe ser descripto y esa descripción debe contener los siguientes atributos:

Atributos de la Estructura:

- Un identificador único
- Nombre del elemento (aquí se puede utilizar una convención de Nombres para todos los elementos)
- Un Alias
- Una descripción corta del elemento.
- Si es Base o Derivado: Base: es el que se ingresa por pantalla, Derivado: resultado de un cálculo o de otra manera.
- La longitud
- El tipo de dato: si es numérico, de fecha, Bit, etc, como se muestra en la tabla de tipos.
- Formato de entrada y de representación, como se muestra en la tabla de formatos
- Si tuviera, criterios de validación
- Si tuviera, algún valor predeterminado
- Comentarios sobre el elemento.

Diccionario de Datos: Elementos de Datos

Tabla de Tipos de Datos:

Tipo de Dato	Significado
Bit	Un Valor de 0 o 1; T o F
Char, varchar, text	Cualquier Carácter Alfanumérico
Datetime, Smalldatetame	Datos de Fecha y hora
Decimal, Numerico	Datos numéricos con precisión hasta el digito menos significativo,
	con una parte entera y una decimal.
Float, Real	Valores de punto flotante que contiene un valor decimal aproximado
Int, Smallint, Tinyint	Sólo datos enteros
Currency, Money,	Números monetarios con precisión de 4 dígitos decimales
Smallmoney	
Binary, Varbinary, Image	Cadenas binarias (sonido, imágenes, video)
Cursor, Timestamp,	Valores únicos de una base de datos
uniqueidentifier	
Autonumber	Valor incremental automático

Diccionario de Datos: Elementos de Datos

Tabla de Formatos:

Carácter de Formato	Significado
X	Se puede introducir o visualizar cualquier carácter
9	Se pueden ingresar o ver sólo números
Z	Ver los 0 de la izquierda como espacios
J	Inserta comas al ver números
	Inserta punto al ver números
/	Inserta barras diagonales al ver un numero
-	Inserta un guion corto al visualizar un número.
V	Indica una posición decimal (cuando no se incluye el punto decimal)

Diccionario de Datos: Almacén de Datos

Se deben crear almacenes de datos para todas las entidades que se utilizan en el sistema y dentro del DD con las siguientes características:

• Identificador único por Ejemplo D1, D16, etc.

Nombre descriptivo y único: Estudiantes

Un alias: Maestro de Estudiantes.

- Una Descripción corta del almacén de datos
- El tipo de archivo (Computadora, Manual)
- Formato (BD, Indexado, secuencial, directo).
- Un número máximo y promedio de registros en el archivo y crecimiento anual esperado (*)
- La clave primaria y las claves secundarias.

MUCHAS GRACIAS