Definitions

Theory

Chain rule (antiderivative version). Let u be a differentiable function on its domain, and suppose f is continuous on the range of u. Suppose F(x) is an antiderivative of f(x). Then F(u(x)) is an antiderivative of f(u(x))u'(x): i.e.,

$$\int f(u(x))u'(x) dx = F(u(x)) + C.$$

Alternatively, letting u = u(x) we have

$$\int f(u(x))u'(x) dx = \int f(u) du.$$

Comment. Before seeing how to correctly use the chain rule (antiderivative version) to compute indefinite integrals, it is worthwhile noting a tempting, but *incorrect* method: namely, if F(x) is an antiderivative of f(x) it is not in general true that F(u(x)) is an antiderivative of f(u(x)). Indeed, the chain rule tells us that F(u(x)) is an antiderivative of f(u(x))u'(x).

Procedures

Substitution technique (indefinite integrals). We wish to compute $\int f(x) dx$.

1. Pick a differentiable substitution function u = u(x). Set

$$u = u(x) \tag{1}$$

$$du = u'(x) dx (2)$$

2. Algebraically manipulate equations (1) and (2) to find a function q such that

$$f(x) dx = g(u) du$$
.

By the chain rule (antiderivative form) we have

$$\int f(x) \, dx = \int g(u) \, du.$$

3. If possible, find an antiderivative G of g. Then F(x) = G(u(x)) is an antiderivative of f(x): i.e.,

$$\int f(x) \, dx = G(u(x)) + C$$

Comment. There is no such thing as a *correct* or *incorrect* substitution, and you are encouraged to be creative with your choice of substitution u(x). Instead think of a substitution as either *helpful* or *not helpful* (or possibly *somewhat helpful*). The success of a particular choice of u(x) depends on two factors:

- 1. Can you algebraically find a function g such that f(x) = g(u(x))u'(x)?
- 2. Having found a suitable g, can you find an antiderivative G of g?

Substitution technique (definite integrals). We wish to compute the definite integral $\int_a^b f(x) dx$ using a substitution u = u(x). We can proceed in two different ways.

- 1. **Two-step method**. First find an antiderivative F(x) of f(x) using the substitution method for indefinite integrals, then use the FTC to compute $\int_a^b f(x) dx = F(b) F(a)$.
- 2. **Streamlined method**. Find the g such that f(x) dx = g(u) du (as with indefinite integral substitution) then convert the original definite integral into a new definite integral with respect to u by also changing the limits of integration:

$$\int_{x=a}^{x=b} f(x) \, dx = \int_{u=u(a)}^{u=u(b)} g(u) \, du.$$

Examples

1. More or less obvious substitutions. Use the substitution technique to compute the following indefinite integrals.

(a)
$$\int x^2 \sqrt{x^3 + 1} \, dx$$

(b)
$$\int -\sin t \sqrt{\cos t} \, dt$$

(c)
$$\int \frac{\sin(\sqrt{u})}{\sqrt{u}} \, du$$

2. **Less obvious substitutions**. Use the substitution technique to compute the following indefinite integrals.

(a)
$$\int \frac{x}{\sqrt{x+1}} \, dx$$

(b)
$$\int (1+\sqrt{t})^{100} dt$$

3. Substitution with definite integrals. Use the substitution technique to compute the following definite integrals. You may use either the two-step or streamlined method.

(a)
$$\int_{\pi}^{2\pi} \cos^2(x) \sin x \, dx$$

(b)
$$\int_{1}^{2} \sqrt{s^8 + s^6} \, ds$$