

Curso: CIÊNCIA DA COMPUTAÇÃO									
Disciplina: Circuitos Lógicos e	Turma: CC2M	Data:	Nota: 1) 1	Rubrica do					
Digitais		06/06/2023	2)3	Coordenador					
Avaliação: 2º Bimestre	Semestre:	Valor:	3/0/2	3					
	2023/1	10 (dez) ¹	4)210	2/1/2/					
Professor: Gilberto Costa Drumond Sousa									
Nome: Lucas Covino Lovo	70								
Leia as instruções abaixo antes de ir		1		/ (yolf)					
L ela as instrucces abaixo antes de li	niciar a prova.			· //					

- ⇒ Leia atentamente as questões antes de respondê-las;
- ⇒ Todas as questões deverão ser respondidas com CANETA azul ou preta;
- ⇒ Prova a lápis não tem direito à revisão;
- ⇒ As questões objetivas rasuradas serão consideradas nulas;
- ⇒ Desligue o celular, não consulte material, colegas ou fontes de qualquer outra natureza. Evite que sua prova seja recolhida pelo professor por atitudes indevidas.
- ⇒ PROVA SEM CONSULTA E INDIVIDUAL.

Boa Prova!

1) Questão estilo ENADE. (1 ponto)

Analise as afirmativas seguintes circuitos lógicos, e depois marque a alternativa correta.

 I – Os sistemas computacionais em sua maioria utilizam a representação de complemento de dois para tratar os números com sinal. 🗸 > bit mais significative

II- Na representação por complemento de dois, o MSB indica se um número é positivo ou negativo, mas a forma de representar seu módulo depende se este é positivo ou negativo. imes

III - A subtração de números com sinal é mais facilmente realizada usando a representação sinal magnitude.

IV - Não há possibilidade de overflow ao somarmos um número positivo a um negativo, se ambos estão no formato de complemento de dois.

É correto apenas o que se afirma em:

(a) I, II, III

့ (b) I, III e IV

(c) III e IV

-(d)-II-e-IIL

- 2) (3 pontos)
 - a) Dois números binários na representação de complemento de dois precisam ser somados. Dado que A = 01111 e B = 10110, obtenha a soma S = A + B e seu equivalente decimal.
 - b) Um sistema digital utiliza 5 bits (A₄A₃A₂A₁A₀) na representação de seus números, usando o complemento de 2, sendo A₄ o bit de sinal. Sejam os números X=01110 e Y=01100. Obtenha a soma S=X+Y e a diferença D=X-Y. Confira suas respostas, realizando estas operações usando os decimais equivalentes. Faça uma análise do que ocorreu. Ambos os resultados são válidos?
 - c) Um sistema digital utiliza 5 bits (A₄A₃A₂A₁A₀) na representação de seus números. Num certo momento, tem-se A₄A₃A₂A₁A₀ = 10101. Diga seu equivalente decimal, se: a.1) Este número for entendido como sendo sem sinal; a.2) Ele for interpretado na representação por complemento de dois.

b)
$$\chi = 0.1110_2 = 14_{10}$$

 $y = 0.1100_2 = 12_{10}$
 $y = 1.0011$
 $y = 1.0011$
 $y = 1.0011$
 $y = 1.0011$
 $y = 1.0011$

$$S = 0.1110 \\
+ 0.1100 \\
\hline
1.1010$$

$$O = 0.1110 \\
+ 10100 \\
\hline
1.00010$$

Sa=110102 | Da=1000102

S10=2610 | D10=210

R: Os resultados em binário
não são válidos. Há um over
Slow que deve ser desconsiderado no D. E o binário da

$$\begin{array}{c} C) \quad \chi = 10101_{2} \\ 01010 \\ & + 1 \\ \hline 01011_{2} = 1+2+8 = 11 \end{array}$$

X cm complemento de 2: -1110

3) (2 pontos). 0/2

Observe as figuras (a) e (b) a seguir. Responda de forma objetiva:

a) Qual o cuidado que se deve ter ao usar o circuito da figura (a), para garantir o seu correto funcionamento? Se não há nenhuma entrada ativa, o que aparece em O₁O₀?

An não deve ser mudado, ele é o "terra", além de ser um circuito

b) Diga o nome (ou função) de cada circuito representado em cada figura. Se conectarmos os pinos O₀ a A e O₁ à B, e se ativarmos a tecla A₂, o que ocorre com as saídas O₀ e O₁ do circuito (a) e O₀ a O₃ do circuito (b)?

4) (2 pontos) 🤰

Considere a figura (a) abaixo, e depois leve em conta as entradas mostradas na figura (b)

a) As entradas SET e RESET são ativas no modo ALTO ou BAIXO? baixo

b) Cite o nome (ou classificação) do circuito da figura (a); E um latch Seito portas NAND

c) Se as entradas mostradas na figura (b) forem aplicadas ao circuito da letra (a), considerando que o estado inicial da saída normal Q é BAIXO, desenhe <u>na figura (b)</u> o sinal da saída Q até o instante final. Use uma régua, e esteja atento às transições dos sinais.

5) (2 pontos)

Considere o circuito da figura a seguir.

a) Diga para que ele é utilizado, diga seu nome e o significado de cada variável de entrada e

de entrada eles carregom a um valor de bit cada um. S e Cout es carregom a um valor de bit cada um. S e Cout esquesta e valor dobit (mais rig.) do caquesta e o Cout o valor à diveita (o "resto").

b) Construa sua tabela verdade, relacionando todas as entradas e as saídas numa única tabela disponibilizada mais abaixo.

A	В	CIN	S	Солт
0	0	0	0 ·	0
0	0	1	1 '	0
0	1	0	1.	0
0	1	1	0、	1.
1	0	0	1	0
1	0	1	0`	1
7	1	0	0 ′	1
1	1	1	1.	1, 1