$\Omega = [0,1]^2 hvertex_matrix cell_matrixvertex_matrix cell_matrix Example h = 0.5$

$$\begin{array}{l} nodes\hat{T} = [0,1]^2p_i\\ p_i(x_j) = \delta_{ij}, x_j\\ k\{x^iy^j, i, j = 0...k\}2kkk\frac{1}{k}k + 1\\ Remark\\ sf_generatekkmesh_generate\frac{1}{k}(k+1)^2 := n \end{array}$$

 $_{ExampleSF}^{SF}$

 $\begin{array}{l} A_{ij} = a(\phi_i,\phi_j) local see \ also \\ sm_assemble_localhSF \\ hf_eval_poly \\ sf_derivate \\ int_gauss_weights \\ int_gauss \\ (a_{ij})^T Tij \end{array}$

 $\begin{array}{c} \rho \\ \rho mesh_nodesiijjjimesh_nodes \\ rhs_integration \\ mesh_nodesrepmatfhf_eval_poly \\ minimal\ residual\ method\ conjugate\ gradient\ methodu\phi_i u \end{array}$

 $\begin{array}{l} \phi_i u_h \\ hf_eval_solution(x,y) u \\ (x,y) u_h hf_eval_solution(x,y) u_h \\ m_plot_solutionhf_eval_solution u_h \\ hf_vtk m_plot_paraview \\ linear_solver_analytics \\ error_map \\ error_runge_evaluation \\ Evaluation of a Polynomial \\ p(x,y) \in Rhf_eval_polySF \end{array}$

$$\begin{array}{c} Gauss\ quadrature \\ (x_1,...,x_n)^T(w_1,...,w_n)^Tf \end{array}$$

 $meshgridW_1, W_2w_iX, Yx_if(X, Y)$

 $int_gauss_vectorized_int_gauss_vectorized_matrices$ f

repmat

$$A, B, C, D, E, F \in \mathbb{R}^{3 \times 3}M$$

 $\begin{array}{l} A^*A \\ \textit{Vectorization of sm_local_assembly} \\ p_1,...,p_nSMlocal \end{array}$

 $P_i p_i$

 $.*(P_1,...,P_n)^T hf_{-eval_polyrepmat}$

 $P_1^T x y P_i$