It has happened. Aliens have arrived. They hail from a planet called Valhalla-23, where the temperature is measured in Valks. These visitors tell you that they have come to solve Earth's global warming crisis*. They offer you a machine that will solve the problem, but they warn you:

- 1. The machine must be set up in Valks.
- 2. If you input a wrong temperature value, you may end up freezing or scorching the Earth.
- 3. No one knows how to transform between Celsius and Valks.

You are tasked with finding a model for solving this problem, so you ask Humans and Valkians to collect temperature readings from several objects. The data are given in the Valhalla23.csv file.

Will you become Earth's savior? Or will you obliterate life?

The choice is yours...

∨ Cargamos y vemos los datos

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
data = pd.read_csv('Valhalla23.csv')
print(data.head())
print("")
print(data.isnull().sum())
\rightarrow
      Celsius Valks
    0 61.4720 -139.740
    1 70.5790 -156.600
    2 -7.3013 73.269
    3 71.3380 -165.420
    4 43.2360 -75.835
    Celsius
               0
    Valks
    dtype: int64
```

En el siguiente recuadro, se creó un gráfico de dispersión de Celsius vs Valks

```
plt.figure(figsize=(10, 6))
```


Inicio de Modelo

Seleccion de valores y su criterio

Tasa de aprendizaje (alpha):

• **Criterio:** Se utiliza validación cruzada (K-Fold) para seleccionar la mejor tasa de aprendizaje.

- Se prueba un rango amplio de valores: alphas = [1, 0.1, 0.01, 0.001, 0.0001, 0.0001]
- La función find_optimal_alpha elige el alpha que produce el menor costo promedio en los pliegues de validación.

Parámetros iniciales (theta):

- Criterio: Inicialización informada basada en estadísticas de los datos (principios estadísticos).
- El sesgo (theta[0]) se inicializa con la media de y_train. Inicializar el sesgo con la media de y_train es una estimación razonable del "punto medio" de los datos en el eje y.
 Esta inicialización ayuda a que el modelo comience con una predicción que está cerca del centro de los datos objetivo, lo que puede acelerar la convergencia.
- El peso (theta[1]) se inicializa con la covarianza entre X e y dividida por la varianza de X. Esta fórmula es la solución analítica para la pendiente en una regresión lineal simple, conocida como el estimador de mínimos cuadrados ordinarios (OLS).

Número de iteraciones:

- Se tiene un máximo de 10,000 iteraciones y un criterio de convergencia.
- La función gradient_descent detiene el entrenamiento si el cambio en el costo entre iteraciones es menor que un umbral (tolerance=1e-6).

División de datos:

- Se implementa manualmente una función train_test_split para dividir los datos.
- Se mantiene la proporción 80% entrenamiento, 20% prueba.
- Se implementa manualmente una validación cruzada (5-fold) para la selección de hiperparámetros mediante la función k_fold_split.

Criterio de convergencia:

- Se añade un criterio de parada basado en la diferencia de costo entre iteraciones.
- Si la diferencia es menor que tolerance (1e-6), el algoritmo se detiene.

Inicialización de la semilla aleatoria:

• Se utiliza np.random.seed(42) para reproducibilidad.

Estas mejoras hacen que el modelo sea más robusto y adaptable a diferentes conjuntos de datos. La selección de hiperparámetros es más sistemática y se basa en el rendimiento real del

modelo en datos de validación, lo que debería resultar en un mejor rendimiento general y una mayor capacidad de generalización.

```
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(42)
# Suponemos que 'data' ya está definido
X = data['Celsius'].values.reshape(-1, 1)
y = data['Valks'].values.reshape(-1, 1)
# Función para dividir los datos en conjuntos de entrenamiento y prueba
def train_test_split(X, y, test_size=0.2, random_state=None):
    if random_state is not None:
        np.random.seed(random state)
    n = len(X)
    n_test = int(n * test_size)
    indices = np.random.permutation(n)
    test indices = indices[:n test]
    train_indices = indices[n_test:]
    return X[train_indices], X[test_indices], y[train_indices], y[test_indices]
# Dividir el conjunto de datos en entrenamiento (80%) y prueba (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_st
# Añadir una columna de unos para el término de sesgo
def add bias(X):
    return np.c_[np.ones((X.shape[0], 1)), X]
X train b = add bias(X train)
X_test_b = add_bias(X_test)
# Inicializar parámetros de manera informada
theta = np.zeros((2, 1))
theta[0] = np.mean(y train)
theta[1] = np.cov(X_train.flatten(), y_train.flatten())[0, 1] / np.var(X_train)
# Función para calcular el costo
def compute_cost(X, y, theta):
    m = len(y)
    predictions = X.dot(theta)
    cost = (1/(2*m)) * np.sum((predictions - y)**2)
    return cost
# Función para realizar el descenso del gradiente
def gradient_descent(X, y, theta, n_iterations, alpha, tolerance=1e-6):
```

```
m = len(y)
    cost_history = []
    theta_history = []
    for it in range(n_iterations):
        prediction = np.dot(X, theta)
        theta = theta - (1/m) * alpha * (X.T.dot((prediction - y)))
        theta_history.append(theta.copy())
        current_cost = compute_cost(X, y, theta)
        cost_history.append(current_cost)
        if it > 0 and abs(cost_history[-1] - cost_history[-2]) < tolerance:
            print(f"Convergencia alcanzada en la iteración {it}")
            break
    return theta, cost_history, theta_history
# Implementación manual de K-Fold Cross Validation
def k_fold_split(X, y, n_splits):
    fold size = len(X) // n splits
    indices = np.arange(len(X))
    np.random.shuffle(indices)
    for i in range(n_splits):
        start = i * fold size
        end = start + fold_size if i < n_splits - 1 else len(X)</pre>
        test indices = indices[start:end]
        train_indices = np.concatenate([indices[:start], indices[end:]])
        yield train_indices, test_indices
# Búsqueda de la tasa de aprendizaje óptima con validación cruzada
def find_optimal_alpha(X, y, alphas, n_iterations, k_folds=5):
    best_alpha = None
    best_score = float('inf')
    for alpha in alphas:
        scores = []
        for train_index, val_index in k_fold_split(X, y, k_folds):
            X_train_fold, X_val_fold = X[train_index], X[val_index]
            y_train_fold, y_val_fold = y[train_index], y[val_index]
            theta_init = np.zeros((2, 1))
            theta_init[0] = np.mean(y_train_fold)
            theta_init[1] = np.cov(X_train_fold.flatten(), y_train_fold.flatten())
            theta, _, _ = gradient_descent(add_bias(X_train_fold), y_train_fold, t
            val_cost = compute_cost(add_bias(X_val_fold), y_val_fold, theta)
            scores.append(val_cost)
        mean score = np.mean(scores)
```

```
if mean_score < best_score:</pre>
            best_score = mean_score
            best_alpha = alpha
    return best_alpha
# Definir un rango más amplio de tasas de aprendizaje para probar
alphas = [1, 0.1, 0.01, 0.001, 0.0001, 0.00001]
n iterations = 10000
optimal_alpha = find_optimal_alpha(X_train, y_train, alphas, n_iterations)
print(f"Tasa de aprendizaje óptima: {optimal alpha}")
# Ejecutar el descenso del gradiente con la tasa de aprendizaje óptima
theta, cost_history, theta_history = gradient_descent(X_train_b, y_train, theta, n
# Predecir usando el conjunto de prueba
y_pred = X_test_b.dot(theta)
# Calcular el costo para el conjunto de prueba
test_cost = compute_cost(X_test_b, y_test, theta)
# Imprimir resultados
print(f"Theta final: {theta.ravel()}")
print(f"Costo final (entrenamiento): {cost_history[-1]}")
print(f"Costo final (prueba): {test cost}")
# Graficar los resultados
plt.figure(figsize=(20, 5))
# Graficar los datos y la línea de regresión
plt.subplot(131)
plt.scatter(X_train, y_train, label='Entrenamiento', color='lightblue')
plt.scatter(X_test, y_test, label='Prueba', color='pink')
plt.plot(X, add_bias(X).dot(theta), color='purple', linewidth=2, label='Regresión'
plt.xlabel('Celsius')
plt.ylabel('Valks')
plt.title('Regresión Lineal')
plt.legend()
# Graficar la evolución del costo
plt.subplot(132)
plt.plot(range(len(cost_history)), cost_history, color='purple')
plt.xlabel('Iteraciones')
plt.ylabel('Costo')
plt.title('Evolución del Costo (Entrenamiento)')
# Graficar predicciones vs valores reales
plt.subplot(133)
plt.scatter(y_test, y_pred, color='lightblue')
```

```
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', lw=2,
plt.xlabel('Valores reales')
plt.ylabel('Predicciones')
plt.title('Predicciones vs Valores Reales (Prueba)')
plt.tight_layout()
plt.show()
```

<ipython-input-14-ed4f9a7a9833>:42: RuntimeWarning: overflow encountered in s
 cost = (1/(2*m)) * np.sum((predictions - y)**2)

<ipython-input-14-ed4f9a7a9833>:59: RuntimeWarning: invalid value encountered
 if it > 0 and abs(cost_history[-1] - cost_history[-2]) < tolerance:</pre>

<ipython-input-14-ed4f9a7a9833>:53: RuntimeWarning: invalid value encountered
theta = theta - (1/m) * alpha * (X.T.dot((prediction - y)))

Tasa de aprendizaje óptima: 0.0001

Theta final: [-22.12014674 -1.75244244]

Costo final (entrenamiento): 1028.5483709805605

Costo final (prueba): 1759.4112119922524

<ipython-input-14-ed4f9a7a9833>:148: UserWarning: color is redundantly define
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--',

