Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Priority Queues

Priority Queues

- Define priority queue ADT
- Implement a priority queue with an unsorted and sorted lists
- Explain Heap data structure
- Implement a priority queue with a heap
- Analyze heap-based priority queues
- Sorting with a priority queue

- Hierarchical data structure that consists of **nodes** with a **parentchild relation**
- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

- Subtree: tree consisting of a node and its descendants
- A tree is ordered if there is a meaningful linear order among the children of each node
- Tree ADT
 - We use positions to abstract nodes
 - Tree interface for trees where nodes can have any number of children
 - parent
 - children
 - numCHildren

- isInternal
- isExternal
- isRoot
- isEmpty
- Iterator
- position
- AbstractTree Base Class implements:
 - isInternal
 - isExternal
 - isRoot
 - isEmpty

Tree Traversal

- a preorder traversal of a tree T, the root of T is visited first and then the subtrees rooted at its children are traversed recursively
- postorder traversal of a tree it recursively traverses the subtrees rooted at the children of the root first, and then visits the root

Binary Trees

- Each internal node has at most two children (exactly two for proper binary trees)
- The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Applications
 - arithmetic expressions
 - decision processes
 - searching

BinaryTree ADT

- BinaryTree interface extends the Tree interface and adds three methods:
 - position left(p)
 - position right(p)
 - position sibling(p)
- AbstractBinaryTree Base
 Class extends AbstractTree
 and implement BinaryTree
- Implements:
 - sibling
 - numChildren
 - children

Binary Trees

- inorder traversal a node is visited after its left subtree and before its right subtree
- Implementing Trees
 - Using a linked structure
 - A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
 - Node objects implements the Position ADT

Linked Structure for Binary Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- Node objects implements the Position ADT
- LinkedBinaryTree class
 - Inner Node class
 - Two instance variables: root and size
 - Updating operations

Priority Queue ADT

- FIFO principle used by queues does not suffice – priorities must come into play
- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority Queue ADT
 - insert(k, v) inserts an entry with key k and value v
 - removeMin() removes and returns the entry with smallest key, or null if the the priority queue is empty

- Additional methods
 - min() returns, but does not remove, an entry with smallest key, or null if the the priority queue is empty
 - size()
 - isEmpty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Example

A sequence of priority queue methods:

Method	Return Value	Priority Queue Contents
insert(5,A)		{ (5,A) }
insert(9,C)		{ (5,A), (9,C) }
insert(3,B)		{ (3,B), (5,A), (9,C) }
min()	(3,B)	{ (3,B), (5,A), (9,C) }
removeMin()	(3,B)	{ (5,A), (9,C) }
insert(7,D)		{ (5,A), (7,D), (9,C) }
removeMin()	(5,A)	{ (7,D), (9,C) }
removeMin()	(7,D)	{ (9,C) }
removeMin()	(9,C)	{ }
removeMin()	null	{ }
isEmpty()	true	{ }

Total Order Relations

- Keys in a priority
 queue can be
 arbitrary objects on
 which an order is
 defined
- Two distinct entries in a priority queue can have the same key

- Mathematical concept of total order relation ≤
 - Comparability property: either $x \le y$ or $y \le x$
 - Antisymmetric property: $x \le y$ and $y \le x \Rightarrow x = y$
 - **Transitive** property: $x \le y$ and $y \le z \Rightarrow x \le z$

Entry ADT

- An entry in a priority queue is simply a key-value pair
- Priority queues store entries to allow for efficient insertion and removal based on keys
- Methods:
 - getKey: returns the key for this entry
 - getValue: returns the value associated with this entry

```
As a Java interface:
    /**
    * Interface for a key-value
    * pair entry
    **/
    public interface Entry<K,V>
    {
        K getKey();
        V getValue();
```

Comparator ADT

- A comparator encapsulates
 the action of comparing two
 objects according to a given
 total order relation
- A generic priority queue uses an auxiliary comparator
- The comparator is external to the keys being compared
- When the priority queue needs to compare two keys, it uses its comparator

- Primary method of the **Comparator** ADT
- compare(x, y): returns an
 integer i such that
 - i < 0 if a < b,</p>
 - i = 0 if a = b
 - i > 0 if a > b
 - An error occurs if a and b cannot be compared.

Example Comparator

 As a concrete example, Code Fragment 9.3 defines a comparator that evaluates strings based on their length (rather than their natural lexicographic order):

```
public class StringLengthComparator implements Comparator < String > {
    /** Compares two strings according to their lengths. */
    public int compare(String a, String b) {
        if (a.length() < b.length()) return -1;
        else if (a.length() == b.length()) return 0;
        else return 1;
    }
}</pre>
```

Code Fragment 9.3: A comparator that evaluates strings based on their lengths.

The AbstractPriorityQueue Base Class

- The base class provides four means of support:
 - a PQEntry class as a concrete implementation of the entry interface
 - an instance variable *comp* for a general Comparator and a protected method, *compare*(a, b), that makes use of the comparator.
 - a boolean *checkKey* method that verifies that a given key is appropriate for use with the comparator
 - an *isEmpty* implementation based upon the abstract *size()* method.

Sequence-based Priority Queue

Implementation with an unsorted list

- Performance:
 - insert takes O(1) time
 since we can insert the
 item at the beginning or
 end of the sequence
 - removeMin and min take
 O(n) time since we have
 to traverse the entire
 sequence to find the
 smallest key

Implementation with a sorted list

- Performance:
 - insert takes *O*(*n*) time since we have to find the place where to insert the item
 - removeMin and min take
 O(1) time, since the smallest key is at the beginning

Unsorted List Implementation

```
/** An implementation of a priority queue with an unsorted list. */
    public class UnsortedPriorityQueue<K,V> extends AbstractPriorityQueue<K,V> {
      /** primary collection of priority queue entries */
      private PositionalList<Entry<K,V>> list = new LinkedPositionalList<>();
6
      /** Creates an empty priority queue based on the natural ordering of its keys. */
      public UnsortedPriorityQueue() { super(); }
      /** Creates an empty priority queue using the given comparator to order keys. */
      public UnsortedPriorityQueue(Comparator<K> comp) { super(comp); }
10
      /** Returns the Position of an entry having minimal key. */
11
      private Position<Entry<K,V>> findMin() { // only called when nonempty
12
        Position<Entry<K,V>> small = list.first();
13
        for (Position<Entry<K,V>> walk : list.positions())
14
          if (compare(walk.getElement(), small.getElement()) < 0)
15
            small = walk; // found an even smaller key
16
        return small;
17
18
19
```

Unsorted List Implementation, 2

```
/** Inserts a key-value pair and returns the entry created. */
20
      public Entry<K,V> insert(K key, V value) throws IllegalArgumentException {
21
        checkKey(key); // auxiliary key-checking method (could throw exception)
        Entry < K, V > newest = new PQEntry < > (key, value);
23
        list.addLast(newest);
24
25
        return newest;
26
27
28
      /** Returns (but does not remove) an entry with minimal key. */
      public Entry<K,V> min() {
29
        if (list.isEmpty()) return null;
30
        return findMin().getElement();
31
32
33
34
      /** Removes and returns an entry with minimal key. */
35
      public Entry<K,V> removeMin() {
        if (list.isEmpty()) return null;
36
37
        return list.remove(findMin());
38
39
40
      /** Returns the number of items in the priority queue. */
      public int size() { return list.size(); }
41
42
```

Sorted List Implementation

```
/** An implementation of a priority queue with a sorted list. */
    public class SortedPriorityQueue<K,V> extends AbstractPriorityQueue<K,V> {
      /** primary collection of priority queue entries */
      private PositionalList<Entry<K,V>> list = new LinkedPositionalList<>();
      /** Creates an empty priority queue based on the natural ordering of its keys. */
      public SortedPriorityQueue() { super(); }
      /** Creates an empty priority queue using the given comparator to order keys. */
9
      public SortedPriorityQueue(Comparator<K> comp) { super(comp); }
10
11
      /** Inserts a key-value pair and returns the entry created. */
12
      public Entry<K,V> insert(K key, V value) throws IllegalArgumentException {
        checkKey(key); // auxiliary key-checking method (could throw exception)
13
        Entry < K,V > newest = new PQEntry < > (key, value);
14
15
        Position<Entry<K,V>> walk = list.last();
        // walk backward, looking for smaller key
16
        while (walk != null && compare(newest, walk.getElement()) < 0)
17
18
          walk = list.before(walk);
19
        if (walk == null)
20
          list.addFirst(newest);
                                                        / new key is smallest
21
        else
22
          list.addAfter(walk, newest);
                                                      // newest goes after walk
23
        return newest:
24
```

Sorted List Implementation, 2

```
/** Returns (but does not remove) an entry with minimal key. */
26
      public Entry<K,V> min() {
27
        if (list.isEmpty()) return null;
28
        return list.first().getElement();
29
30
31
32
      /** Removes and returns an entry with minimal key. */
      public Entry<K,V> removeMin() {
33
        if (list.isEmpty()) return null;
34
        return list.remove(list.first());
35
36
37
38
      /** Returns the number of items in the priority queue. */
      public int size() { return list.size(); }
39
40
```

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Heaps

Recall Priority Queue ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority Queue ADT
 - insert(k, v) inserts an entry with key k and value v
 - removeMin() removes and returns the entry with smallest key

- Additional methods
 - min() returns, but does not remove, an entry with smallest key
 - size()
 - isEmpty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Heaps

- A heap is a binary tree
 storing keys at its nodes
 and satisfying the following
 properties:
- Heap-Order: for every internal node v other than the root,
 key(v) ≥ key(parent(v))
- Complete Binary Tree: let h be
 the height of the heap
 - for i = 0, ..., h 1, there are 2^i nodes of depth i
 - at depth h 1, the internal nodes are to the left of the external nodes

- The two nodes in level 2 are in the two leftmost possible positions at that level.
- The last node of a heap is the rightmost node of maximum depth

Height of a Heap

- □ Theorem: A heap storing n keys has height $O(\log n)$ Proof: (we apply the complete binary tree property)
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth i = 0, ..., h-1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node

Insertion into a Heap

- Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z
 (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

Upheap

- ullet After the insertion of a new key k, the heap-order property may be violated
- Algorithm upheap restores the heap-order property by swapping
 k along an upward path from the insertion node
- floor **Upheap** terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- □ Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

Removal from a Heap

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by
 swapping key k along a downward path from the root
- floor **Downheap** terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k

□ Since a heap has height $O(\log n)$, **downheap** runs in $O(\log n)$

time

Updating the Last Node

- □ The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal

Array-based Heap Implementation

- We can represent a heap with n keys by means of an array of length n
- For the node at rank i
 - the left child is at rank 2*i* + 1
 - the right child is at rank 2i + 2
- Links between nodes are not explicitly stored
- Operation add corresponds to inserting at rank n + 1
- Operation remove_min
 corresponds to removing at rank n
- Yields in-place heap-sort

 2	5	6	9	7
0	1	2	3	4

Java Implementation

```
/** An implementation of a priority queue using an array-based heap. */
    public class HeapPriorityQueue<K,V> extends AbstractPriorityQueue<K,V> {
      /** primary collection of priority queue entries */
      protected ArrayList<Entry<K,V>> heap = new ArrayList<>();
      /** Creates an empty priority queue based on the natural ordering of its keys. */
      public HeapPriorityQueue() { super(); }
      /** Creates an empty priority queue using the given comparator to order keys. */
      public HeapPriorityQueue(Comparator<K> comp) { super(comp); }
      // protected utilities
      protected int parent(int j) { return (j-1) / 2; }
                                                               // truncating division
10
      protected int left(int j) { return 2*j + 1; }
11
      protected int right(int j) { return 2*j + 2; }
12
      protected boolean hasLeft(int j) { return left(j) < heap.size(); }</pre>
13
14
      protected boolean hasRight(int j) { return right(j) < heap.size(); }</pre>
      /** Exchanges the entries at indices i and j of the array list. */
15
      protected void swap(int i, int j) {
16
        Entry\langle K, V \rangle temp = heap.get(i);
17
        heap.set(i, heap.get(j));
18
        heap.set(j, temp);
19
20
      /** Moves the entry at index j higher, if necessary, to restore the heap property. */
21
      protected void upheap(int j) {
        while (j > 0) {
                                    // continue until reaching root (or break statement)
23
          int p = parent(j);
24
          if (compare(heap.get(j), heap.get(p)) >= 0) break; // heap property verified
25
26
          swap(j, p);
                                                   // continue from the parent's location
          j = p;
28
29
```

Java Implementation, 2

```
/** Moves the entry at index j lower, if necessary, to restore the heap property. */
30
31
      protected void downheap(int j) {
32
        while (hasLeft(j)) {
                                              // continue to bottom (or break statement)
          int leftIndex = left(j);
33
          int smallChildIndex = leftIndex;
                                                       // although right may be smaller
34
35
          if (hasRight(j)) {
               int rightIndex = right(i);
36
37
               if (compare(heap.get(leftIndex), heap.get(rightIndex)) > 0)
                 smallChildIndex = rightIndex; // right child is smaller
38
39
          if (compare(heap.get(smallChildIndex), heap.get(j)) \geq 0)
40
41
             break:
                                                       // heap property has been restored
          swap(j, smallChildIndex);
42
          j = smallChildIndex;
                                                       // continue at position of the child
43
44
45
46
      // public methods
      /** Returns the number of items in the priority queue. */
      public int size() { return heap.size(); }
      /** Returns (but does not remove) an entry with minimal key (if any). */
50
51
      public Entry<K,V> min() {
        if (heap.isEmpty()) return null;
52
53
        return heap.get(0);
54
```

Java Implementation, 3

```
/** Inserts a key-value pair and returns the entry created. */
55
      public Entry<K,V> insert(K key, V value) throws IllegalArgumentException {
56
        checkKey(key); // auxiliary key-checking method (could throw exception)
57
        Entry < K, V > newest = new PQEntry < > (key, value);
58
59
        heap.add(newest);
                                                     // add to the end of the list
        upheap(heap.size() -1);
                                                      // upheap newly added entry
60
61
        return newest;
62
      /** Removes and returns an entry with minimal key (if any). */
63
      public Entry<K,V> removeMin() {
64
        if (heap.isEmpty()) return null;
65
66
        Entry\langle K, V \rangle answer = heap.get(0);
        swap(0, heap.size() - 1);
67
                                                      // put minimum item at the end
        heap.remove(heap.size() -1);
                                                      // and remove it from the list;
68
        downheap(0);
                                                      // then fix new root
69
70
        return answer;
72
```

Merging Two Heaps

- We are given two two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heaporder property

Bottom-up Heap Construction

- We can construct a heap storing n given keys in using a bottom-up construction with log n phases
- □ In phase *i*, pairs of heaps with 2ⁱ −1 keys are merged into heaps with 2ⁱ⁺¹−1 keys (2ⁱ −1 + 2ⁱ −1 + 1)

Example (contd.)

Example (end)

Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n)
- \Box Thus, bottom-up heap construction runs in O(n) time
- Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort

Priority Queue Sorting

- We can use a priority queue to sort a list of comparable elements
 - 1. Insert the elements one by one with a series of insert operations
 - 2. Remove the elements in sorted order with a series of removeMin operations
- The running time of this sorting method depends on the priority queue implementation

```
Algorithm PQ-Sort(S, C)
    Input list S, comparator C for the
    elements of S
    Output list S sorted in increasing
    order according to C
    P \leftarrow priority queue with
         comparator C
    while \neg S.isEmpty ()
         e \leftarrow S.remove(S.first())
         P.insert(e,\emptyset)
    while ¬P.isEmpty()
         e \leftarrow P.removeMin().getKey()
```

S.addLast(e)

Selection-Sort

- Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence
- Running time of Selection-sort:
 - 1. Inserting the elements into the priority queue with n insert operations takes O(n) time
 - 2. Removing the elements in sorted order from the priority queue with *n* removeMin operations takes time proportional to

$$1 + 2 + \ldots + n$$

 \Box Selection-sort runs in $O(n^2)$ time

Selection-Sort Example

Input:	Sequence S (7,4,8,2,5,3,9)	Priority Queue P ()
Phase 1 (a) (b)	(4,8,2,5,3,9) (8,2,5,3,9)	(7) (7,4)
(g)	O	(7,4,8,2,5,3,9)
Phase 2 (a) (b) (c) (d) (e) (f) (g)	(2) (2,3) (2,3,4) (2,3,4,5) (2,3,4,5,7) (2,3,4,5,7,8) (2,3,4,5,7,8,9)	(7,4,8,5,3,9) (7,4,8,5,9) (7,8,5,9) (7,8,9) (8,9) (9)

Insertion-Sort

- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence
- Running time of Insertion-sort:
 - 1. Inserting the elements into the priority queue with *n* insert operations takes time proportional to

$$1 + 2 + ... + n$$

- 2. Removing the elements in sorted order from the priority queue with a series of n removeMin operations takes O(n) time
- □ Insertion-sort runs in $O(n^2)$ time

Insertion-Sort Example

	Sequence S	Priority queue P
Input:	(7,4,8,2,5,3,9)	0
Phase 1	(402520)	
(a) (b)	(4,8,2,5,3,9) (8,2,5,3,9)	(7) (4 ₂ 7)
(c)	(2,5,3,9)	(4,7,8)
(d)	(5,3,9)	(2,4,7,8)
(e)	(3,9)	(2,4,5,7,8)
(f)	(9)	(2,3,4,5,7,8)
(g)	O	(2,3,4,5,7,8,9)
Phase 2		
(a)	(2)	(3,4,5,7,8,9)
(b)	(2,3)	(4,5,7,8,9)
 (g)	 (2,3,4,5,7,8,9)	0

In-place Insertion-Sort

- Instead of using an external data structure, we can implement selection-sort and insertion-sort in-place
- A portion of the input sequence itself serves as the priority queue
- For in-place insertion-sort
 - We keep sorted the initial portion of the sequence
 - We can use swaps instead of modifying the sequence

Recall PQ Sorting

- We use a priority queue
 - Insert the elements with a series of insert operations
 - Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: O(n²) time
 - Sorted sequence gives insertion-sort: O(n²) time
- Can we do better?

Algorithm PQ-Sort(S, C)

Input sequence *S*, comparator *C* for the elements of *S*

Output sequence *S* sorted in increasing order according to *C*

 $P \leftarrow$ priority queue with comparator C

while $\neg S.isEmpty$ ()

 $e \leftarrow S.remove(S. first())$

P.insert (e, e)

while $\neg P.isEmpty()$

 $e \leftarrow P.removeMin().getKey()$

S.addLast(e)

Heap-Sort

- Consider a priority
 queue with n items
 implemented by means
 of a heap
 - the space used is O(n)
 - methods insert and removeMin take O(log n) time
 - methods size, isEmpty,
 and min take time O(1)
 time

- u Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort