You are given a binary string s of length n.

Let's define d_i as the number whose decimal representation is $s_i s_{i+1}$ (possibly, with a leading zero).

We define f(s) to be the sum of all the valid d_i . In other words, $f(s) = \sum\limits_{i=1}^{n-1} d_i$.

For example, for the string s = 1011:

- $d_1 = 10$ (ten);
- $d_2 = 01$ (one)
- d₃ = 11 (eleven);
- f(s) = 10 + 01 + 11 = 22.

In one operation you can swap any two adjacent elements of the string. Find the minimum value of f(s) that can be achieved if at most k operations are allowed.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^5$). Description of the test cases follows.

First line of each test case contains two integers n and k ($2 \le n \le 10^5$, $0 \le k \le 10^9$) — the length of the string and the maximum number of operations allowed.

The second line of each test case contains the binary string s of length n, consisting of only zeros and ones.

It is also given that sum of n over all the test cases doesn't exceed 10^5 .

Output

For each test case, print the minimum value of f(s) you can obtain with at most k operations.

Sample 1

Input	сору		Output	сору
3 4 0		21 22		
1010 7 1		12		
0010100				
5 2 00110				

Note

- For the first example, you can't do any operation so the optimal string is s itself. f(s) =
 f(1010) = 10 + 01 + 10 = 21.
- For the second example, one of the optimal strings you can obtain is "0011000". The string has
 an f value of 22.
- For the third example, one of the optimal strings you can obtain is "00011". The string has an f value of 12.