Further, the vertices in any component of $T \setminus \{k\}$ are either all positive, all negative or all zero. It follows that the subgraph of T induced by the zero vertices is connected. The proof of the second part is similar to the one given for (i).

8.4 Bounds for Algebraic Connectivity

The following representation for the second smallest eigenvalue of a symmetric matrix will be used. It is easily derived from the spectral theorem.

Lemma 8.15 Let A be a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_{n-1} \ge \lambda_n$. Let u be an eigenvector of A corresponding to λ_n . Then

$$\lambda_{n-1} = \min\left\{\frac{x'Ax}{x'x}\right\},\,$$

where the minimum is taken over all nonzero vectors x, orthogonal to u.

We introduce some notation. Let G be a connected graph with $V(G) = \{1, \ldots, n\}$. If $i, j \in V(G)$, then as usual the distance between i and j, denoted d(i, j), is defined to be the length (that is, the number of edges) in the shortest (ij)-path. We set d(i, i) = 0, $i = 1, \ldots, n$. If $V_1, V_2 \subset V(G)$ are nonempty sets then define

$$d(V_1, V_2) = \min\{d(i, j) : i \in V_1, j \in V_2\}.$$

If $V_1 = \{i\}$ we write $d(V_1, V_2)$ as $d(i, V_2)$.

Theorem 8.16 Let G be a connected graph with $V(G) = \{1, ..., n\}$. Let V_1 and V_2 be nonempty disjoint subsets of V(G), and let G_1 and G_2 be the subgraphs induced by V_1 and V_2 , respectively. Let L be the Laplacian of G and μ the algebraic connectivity. Then

$$\mu \le \frac{1}{d(V_1, V_2)^2} \left(\frac{1}{|V_1|} + \frac{1}{|V_2|} \right) (|E(G)| - |E(G_1)| - |E(G_2)|).$$

Proof Let

$$g(i) = \frac{1}{|V_1|} - \frac{1}{d(V_1, V_2)} \left(\frac{1}{|V_1|} + \frac{1}{|V_2|} \right) \min\{d(i, V_1), d(V_1, V_2)\},\$$

 $i=1,\ldots,n.$ Note that if $i\in V_1$ then $g(i)=\frac{1}{|V_1|}$, and if $i\in V_2$ then $g(i)=-\frac{1}{|V_2|}$. Also, if $i\sim j$ then $|d(i,V_1)-d(j,V_2)|\leq 1$ and hence

$$|g(i) - g(j)| \le \frac{1}{d(V_1, V_2)} \left(\frac{1}{|V_1|} + \frac{1}{|V_2|} \right).$$
 (8.12)