Table 1: Endogenous

Variable	₽TEX	Description
U	U	Utility function
UC	UC	Marginal utility of consumption
UH	UH	Marginal utility of labor
LAMBDA	λ	Stochastic discount factor
R	R	Risk free interest rate
RK	R^K	Return on capital
С	C	Consumption
W	W	Real wage
Н	H	Hours
Y	Y	Output
K	K	Capital
I	I	Investment
Α	A	Technology
G	G	Government spending
tax	T	Tax
X	X	Gross investment growth rate
Q	Q	Tobin s Q
Z1	Z_{1}	Tobin s Q - auxiliary variable
KY	$\frac{K}{\overline{Y}}$	Capital output ratio in steady state
IY	$rac{ar{I}}{ar{V}}$	Investment output ratio in steady state
CY	$\frac{\bar{K}}{\bar{Y}}$ $\frac{I}{\bar{Y}}$ $\frac{C}{\bar{Y}}$	Consumption output ratio in steady state
RR	\vec{RR}	Risk free interest rate - deviation from the steady state
YY	YY	Output - deviation from the steady state
CC	CC	Consumption - deviation from the steady state
HH	HH	Hours - deviation from the steady state
WW	WW	Real wage - deviation from the steady state
II	II	Investment - deviation from the steady state
KK	KK	Capital - deviation from the steady state

Table 2: Exogenous

Variable	L TEX	Description
epsA	ϵ^A	Labor augmenting shock
epsG	ϵ^G	Government spending shock

Table 3: Parameters

Variable	ĿŒX	Description
varrho	ρ	Weight on Leisure in utility
chii	χ	Habit Parameter
alp	α	Labor share
betta	β	Discount factor
delta	δ	Capital depreciation
${\tt sigma_c}$	σ_C	Inverse of the elasticity of substitution
${\tt rhoA}$	$ ho_A$	Persistence of labor augmentig shock
${\tt rhoG}$	$ ho_G$	Persistence of government spending shock
sigma	σ	Shock scaling parameter
phiX	ϕ^X	Investment Adjustment costs
${\tt H_bar}$	$ar{H}$	Steady state hours
$A_{\mathtt{bar}}$	\bar{A}	Steady state technology
су	$rac{ar{C}}{ar{Y}}$	Consumption output ratio in steady state
iy	$rac{ar{C}}{ar{Y}}$ $rac{ar{I}}{ar{Y}}$ $rac{ar{G}}{ar{V}}$	Investment output ratio in steady state
gу	$rac{ar{G}}{Y}$	Government output ratio

Table 4: Parameter Values

Parameter	Value	Description
ϱ	0.684	Weight on Leisure in utility
χ	0.500	Habit Parameter
α	0.700	Labor share
β	0.990	Discount factor
δ	0.020	Capital depreciation
σ_C	2.000	Inverse of the elasticity of substitution
$ ho_A$	0.750	Persistence of labor augmentig shock
$ ho_G$	0.750	Persistence of government spending shock
σ	1.000	Shock scaling parameter
ϕ^X	2.000	Investment Adjustment costs
$ar{H}$	0.350	Steady state hours
$ar{A}$	1.000	Steady state technology
$rac{ar{C}}{ar{V}}$	0.600	Consumption output ratio in steady state
$\frac{\overline{I}}{\overline{V}}$	0.200	Investment output ratio in steady state
$\frac{\frac{\bar{C}}{Y}}{\frac{I}{Y}}$ $\frac{G}{Y}$	0.200	Government output ratio

$$U_t = \frac{\left((C_t - \chi C_{t-1})^{1-\varrho} (1 - H_t)^{\varrho} \right)^{1-\sigma_C} - 1}{1 - \sigma_C} \tag{1}$$

$$UC_t = (1 - \varrho) (C_t - \chi C_{t-1})^{(1-\varrho)(1-\sigma_C)-1} (1 - H_t)^{\varrho(1-\sigma_C)}$$
(2)

$$UH_t = (-\varrho) \left(C_t - \chi C_{t-1} \right)^{(1-\varrho)(1-\sigma_C)} \left(1 - H_t \right)^{\varrho(1-\sigma_C)-1}$$
(3)

$$UC_t = \beta R_t UC_{t+1} \tag{4}$$

$$\frac{(-UH_t)}{UC_t} = W_t \tag{5}$$

$$Y_t = (H_t A_t)^{\alpha} K_{t-1}^{1-\alpha}$$
 (6)

$$\frac{Y_t \,\alpha}{H_t} = W_t \tag{7}$$

$$Y_t = C_t + G_t + I_t \tag{8}$$

$$K_{t} = I_{t} \left(1 - \phi^{X} \left(X_{t} - 1 \right)^{2} \right) + K_{t-1} \left(1 - \delta \right)$$
(9)

$$X_t = \frac{I_t}{I_{t-1}} \tag{10}$$

$$\lambda_t = \frac{UC_t \,\beta}{UC_{t-1}} \tag{11}$$

$$Z1_t = \lambda_t \ (X_t - 1) \ 2 \phi^X X_t^2 Q_t \tag{12}$$

$$Q_t \left(1 - \phi^X (X_t - 1)^2 - (X_t - 1) \phi^X 2 X_t\right) + Z 1_{t+1} = 1$$
(13)

$$R^{K}_{t} = \frac{\frac{Y_{t}(1-\alpha)}{K_{t-1}} + (1-\delta) Q_{t}}{Q_{t-1}}$$
(14)

$$\lambda_{t+1} R^{K}_{t+1} = R_t \lambda_{t+1} \tag{15}$$

$$G_t = H_t W_t T_t \tag{16}$$

$$\log(A_t) - \log((\bar{A})) = \rho_A \left(\log(A_{t-1}) - \log((\bar{A}))\right) + \sigma \epsilon^A_t$$
(17)

$$\log(G_t) - \log((\bar{G})) = \rho_G(\log(G_{t-1}) - \log((\bar{G}))) + \sigma \epsilon^G_t$$
(18)

$$YY_t = \frac{Y_t}{(\bar{Y})} \tag{19}$$

$$KK_t = \frac{K_t}{(\bar{K})} \tag{20}$$

$$II_t = \frac{I_t}{(\bar{I})} \tag{21}$$

$$CC_t = \frac{C_t}{(\bar{C})} \tag{22}$$

$$WW_t = \frac{W_t}{(\bar{W})} \tag{23}$$

$$HH_t = \frac{H_t}{(\bar{H})} \tag{24}$$

$$RR_t = \frac{R_t}{(\bar{R})} \tag{25}$$

$$\frac{\bar{K}}{\bar{Y}_t} = \frac{K_t}{Y_t} \tag{26}$$

$$\frac{\bar{I}}{\bar{Y}_t} = \frac{I_t}{Y_t} \tag{27}$$

$$\frac{\bar{C}}{\bar{Y}_t} = \frac{C_t}{Y_t} \tag{28}$$

$$U = \frac{\left((C - C\chi)^{1-\varrho} (1 - H)^{\varrho} \right)^{1-\sigma_C} - 1}{1 - \sigma_C}$$
 (29)

$$UC = (1 - \varrho) (C - C\chi)^{(1-\varrho)(1-\sigma_C)-1} (1 - H)^{\varrho(1-\sigma_C)}$$
(30)

$$UH = (-\varrho) (C - C\chi)^{(1-\varrho)(1-\sigma_C)} (1 - H)^{\varrho(1-\sigma_C)-1}$$
(31)

$$UC = UC \beta R \tag{32}$$

$$\frac{(-UH)}{UC} = W \tag{33}$$

$$Y = (HA)^{\alpha} K^{1-\alpha} \tag{34}$$

$$\frac{Y\alpha}{H} = W \tag{35}$$

$$Y = C + G + I \tag{36}$$

$$K = I \left(1 - \phi^X (X - 1)^2 \right) + K (1 - \delta)$$
(37)

$$X = 1 \tag{38}$$

$$\lambda = \beta \tag{39}$$

$$Z1 = \lambda \ (X - 1) \ 2 \phi^X X^2 Q \tag{40}$$

$$Z1 + Q \left(1 - \phi^X (X - 1)^2 - (X - 1) \phi^X 2X\right) = 1$$
(41)

$$R^{K} = \frac{\frac{Y(1-\alpha)}{K} + (1-\delta) Q}{Q}$$
 (42)

$$\lambda R^K = R \lambda \tag{43}$$

$$G = HWT \tag{44}$$

$$\log(A) - \log((A)) = (\log(A) - \log((A))) \rho_A + \sigma \epsilon^A$$
(45)

$$\log(G) - \log((G)) = (\log(G) - \log((G))) \rho_G + \sigma \epsilon^G$$
(46)

$$YY = \frac{Y}{(Y)} \tag{47}$$

$$KK = \frac{K}{(K)} \tag{48}$$

$$II = \frac{I}{(I)} \tag{49}$$

$$CC = \frac{C}{(C)} \tag{50}$$

$$WW = \frac{W}{(W)} \tag{51}$$

$$HH = \frac{H}{(H)} \tag{52}$$

$$RR = \frac{R}{(R)} \tag{53}$$

$$\frac{\bar{K}}{\bar{Y}} = \frac{K}{Y} \tag{54}$$

$$\frac{\bar{I}}{\bar{Y}} = \frac{I}{Y} \tag{55}$$

$$\frac{\bar{C}}{\bar{Y}} = \frac{C}{Y} \tag{56}$$