Preuves d'algorithmes

Informatique pour tous

Prouver un programme c'est faire deux choses:

Montrer qu'il termine, sans «planter» (pas de boucle infinie, pas de division par 0…)

Prouver un programme c'est faire deux choses:

- Montrer qu'il termine, sans «planter» (pas de boucle infinie, pas de division par 0...)
- Montrer qu'il donne le résultat attendu

Prouver un programme c'est faire deux choses:

- Montrer qu'il termine, sans «planter» (pas de boucle infinie, pas de division par 0...)
- Montrer qu'il donne le résultat attendu, souvent grâce à un invariant de boucle: une propriété vraie initialement, qui reste vraie à chaque itération de boucle et qui montre que l'algorithme renvoie bien le bon résultat.

Prouver un programme c'est faire deux choses:

- Montrer qu'il termine, sans «planter» (pas de boucle infinie, pas de division par 0...)
- Montrer qu'il donne le résultat attendu, souvent grâce à un invariant de boucle: une propriété vraie initialement, qui reste vraie à chaque itération de boucle et qui montre que l'algorithme renvoie bien le bon résultat.

Montrer un invariant de boucle \approx preuve par récurrence.

Preuve de terminaison

Pour montrer qu'une boucle while s'arrête, on trouve en général une quantité en rapport avec les variables du programme:

- qui est un entier positif
- qui décroît strictement à chaque itération

Preuve de terminaison

Pour montrer qu'une boucle while s'arrête, on trouve en général une quantité en rapport avec les variables du programme:

- 1 qui est un entier positif
- qui décroît strictement à chaque itération

Comme il n'existe pas de suite d'entiers positifs $(u_n)_{n\in\mathbb{N}}$ strictement décroissante, la boucle termine.

Preuve de terminaison

Pour montrer qu'une boucle while s'arrête, on trouve en général une quantité en rapport avec les variables du programme:

- 1 qui est un entier positif
- 2 qui décroît strictement à chaque itération

Comme il n'existe pas de suite d'entiers positifs $(u_n)_{n\in\mathbb{N}}$ strictement décroissante, la boucle termine.

(Remarque: une boucle for termine toujours!)

Preuve de correction

Pour montrer qu'une boucle (for ou while) produit le bon résultat, on trouve une propriété P, appelée **invariant de boucle**, telle que:

- P est vraie avant la première itération de boucle
- ② Si P est vraie à la nème itération, P est vraie à l'itération n+1
- Une fois la boucle terminée, P prouve que le résultat est le bon

```
def f(a, b):
q, r = 0, a
while r >= b:
    r = r - b
    q = q + 1
return [q, r]
```

Question

Soient a et b des entiers tels que a \geq b \geq 0.

Est-ce que f(a, b) termine?

```
def f(a, b):
q, r = 0, a
while r >= b:
    r = r - b
    q = q + 1
return [q, r]
```

Question

Deviner à quoi sert la fonction f et le prouver.

Division euclidienne

```
def f(a, b):
q, r = 0, a
while r >= b:
    r = r - b
    q = q + 1
return [q, r]
```

Montrons par récurrence l'invariant de boucle suivant:

$$P$$
: « $a = bq + r$ »

Division euclidienne

```
def f(a, b):
q, r = 0, a
while r >= b:
    r = r - b
    q = q + 1
return [q, r]
```

Montrons par récurrence l'invariant de boucle suivant:

$$P$$
: « $a = bq + r$ »

1 P est vraie initialement car r = a et q = 0.

Division euclidienne

```
def f(a, b):
q, r = 0, a
while r >= b:
    r = r - b
    q = q + 1
return [q, r]
```

Montrons par récurrence l'invariant de boucle suivant:

$$P$$
: « $a = bq + r$ »

- **1** P est vraie initialement car r = a et q = 0.
- 2 Lors d'une itération, on augmente q de 1 et on diminue r de b. Donc bq + r reste le même, ce qui montre que P reste vraie.

```
def f(a, b):
q, r = 0, a
while r >= b:
    r = r - b
    q = q + 1
return [q, r]
```

Question

Deviner à quoi sert la fonction f et le prouver.

```
def f(a, b):
q, r = 0, a
while r >= b:
    r = r - b
    q = q + 1
return [q, r]
```

Question

Deviner à quoi sert la fonction f et le prouver.

Les entiers q et r sont donc tels que a = bq + r et $0 \le r \le b$.

```
def f(a, b):
q, r = 0, a
while r >= b:
    r = r - b
    q = q + 1
return [q, r]
```

Question

Deviner à quoi sert la fonction f et le prouver.

Les entiers q et r sont donc tels que a = bq + r et $0 \le r \le b$. f(a, b) renvoie donc le quotient et le reste de la division euclidienne de a par b.

```
def f(L):
res = L[0]
for i in range(1, len(L)):
    if L[i] > res:
        res = L[i]
return res
```

```
def f(L):
res = L[0]
for i in range(1, len(L)):
    if L[i] > res:
        res = L[i]
return res
```

Question

Est-ce que f (L) termine?

```
def f(L):
res = L[0]
for i in range(1, len(L)):
    if L[i] > res:
        res = L[i]
return res
```

Question

Est-ce que f(L) termine?

Une boucle for termine toujours!

```
def f(L):
res = L[0]
for i in range(1, len(L)):
    if L[i] > res:
        res = L[i]
return res
```

Question

Deviner à quoi sert la fonction f et le prouver.

```
def f(L):
res = L[0]
for i in range(1, len(L)):
    if L[i] > res:
        res = L[i]
return res
```

Question

Deviner à quoi sert la fonction f et le prouver.

On montre par récurrence:

 P_i : « au début de la ième itération de la boucle for, res contient le maximum de L[0], ..., L[i - 1] »

```
def f(L):
res = L[0]
for i in range(1, len(L)):
    if L[i] > res:
        res = L[i]
return res
```

Question

Deviner à quoi sert la fonction f et le prouver.

On montre par récurrence:

 P_i : « au début de la ième itération de la boucle for, res contient le maximum de L[0], ..., L[i - 1] »

L'initialisation et l'hérédité sont facilement vérifiées.

```
def f(a, b):
x, y = a, b
while y != 0:
    x, y = y, x % y
return x
```

Question

- Est-ce que f termine? Pour quelles valeurs de a et b?
- 2 Deviner à quoi sert f et le prouver.

```
def f(a, b):
while a > 0 and b > 0:
    if a % 2 == 0:
        a = a + 1
        b = b - 3
    else:
        a = a - 2
        b = b + 1
return 1
```

Question

Est-ce que f termine? Pour quelles valeurs de a et b?

Question

- Est-ce que f termine?
- 2 Deviner à quoi sert f et le prouver.

```
def f(x, n):
res = x
m = n
while m > 1:
    if m % 2 == 0:
        res = res * res
    else:
        res = x * res * res
    m = m // 2
return res
```

Question

- Est-ce que f termine?
- 2 Deviner à quoi sert f et le prouver.