Machine Learning Basics

Zhijun Yin, PhD, MS

Assistant Professor of Biomedical Informatics and Computer Science

Vanderbilt University Medical Center

Wednesday, June 14, 2023

A Simple Linear Regression

- Suppose that we want to predict the house price based on the square feet, what should we do?
- We collect 10 records from Zillow to build our knowledge about the relationship between house price and square feet
- While we can easily process the 10 data points within our mind, we plan to build a function to learn about the relationship.

house price = 98.24833 + 0.10977 (square feet)

Probability and Statistics
Mean and variance
Coverance and joint probability
Markov chains
Randomized Breat alcohols

Optimization
Convexity and spareity
Gradient descent and momentum
Stochastic gradient descent
LASSO and 6 versus 82

Linear algebra and **probability/statistics** and **optimization** are the mathematical pillars of machine learning

To construct a function that classifies the training data correctly, so it can generalize to unseen test data

CAMBRIDGE

Machine Learning Pipeline

Feature Engineering

Represent each data point, x, in a dataset / domain, X, with a vector of features/predictors/independent variables

$$x = (x_1, x_2, ..., x_p)$$

Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering.

- Andrew Ng, Machine Learning and AI via Brain simulations

Representation Learning

- Unsupervised learning
- Learn dense representation
- Feed into deep learning models

Curse of Dimensionality

Among 1,000 (x, y) points in which both x and y are normally distributed with a mean of 0 and s.d. $\sigma = 1$, only 6% fall within σ of (x, y) = (1.5, 1.5) (blue circle). However, when the data are projected into a lower dimensionshown by histograms—about 30% of the points (all bins within blue solid lines) are within σ of 1.5. Blue bins in histograms correspond to the blue points.

Manifold Learning

Many machine learning problems seem hopeless if we expect the machine learning algorithm to learn functions with interesting variations across all of \mathbb{R}^n . **Manifold learning** algorithms surmount this obstacle by assuming that most of \mathbb{R}^n consists of invalid inputs, and that interesting inputs occur only along a collection of manifolds containing a small subset of points, with interesting variations in the output of the learned function occurring only along directions that lie on the manifold, or with interesting variations happening only when we move from one manifold to another. Manifold learning was introduced in the case of continuous-valued data and in the unsupervised learning setting, although this probability concentration idea can be generalized to both discrete data and the supervised learning setting: the key assumption remains that probability mass is highly concentrated.

Sparse Models

- "We are drowning in information and starving for knowledge." -Rutherford D. Roger
- A sparse statistical model is one in which only a relatively small number of parameters (or predictors) play an important role.
- The advantages of sparsity are interpretation of the fitted model and computational convenience

Monographs on Statistics and Applied Probability 143

Statistical Learning with Sparsity

The Lasso and Generalizations

Trevor Hastie Robert Tibshirani Martin Wainwright

Dimension Reduction

- Feature selection
- Principal Component Analysis
- t-Distributed Stochastic
 Neighbor Embedding (t-SNE)

Separating data in higher dimension space might be much easier, efficient

Kernel Method (trick)

Underfitting vs. Overfitting

Generalizability

Regularization

Lasso (L1):

Hyperparameter (model complexity) (model selection)

$$J(\beta) = \sum_{i=0}^{N} (y_i - \sum_{j=0}^{P} x_{ij} \beta_j)^2 + \overline{\lambda} \sum_{j=0}^{P} |\beta_j|$$

Ridge (L2):

Parameter (model fitting)

$$J(\beta) = \sum_{i=0}^{N} (y_i - \sum_{j=0}^{P} x_{ij} \beta_j)^2 + \lambda \sum_{j=0}^{P} |\beta_j|^2$$

Loss function Regularization Item

Compare M₁ and M₂ in a Perfect Situation

Compare M_1 and M_2

Can we reply on any single sampled training dataset, say, \mathbb{D}_{17} , to determine which model performs better?

By keeping sampling training dataset \mathbb{D}_i ,

- we can always find \mathbb{D}_m , where M_1 outperforms M_2
- we can always find \mathbb{D}_n , where M_2 outperforms M_1

Which model performs better?

Null Hypothesis (H₀)

- All statistical significance tests start with a null hypothesis
- A statistical significance test measures the strength of evidence that the data sample supplies for or against some proposition of interest
- This proposition is known as a 'null hypothesis'
- It usually relates to there being 'no difference' between groups' or 'no effect' of a treatment

Alternative Hypothesis (H_a)

A statement of what a statistical hypothesis test is set up to establish. For example,

- In clinical trial of new drug, H_a might be the drug has effect, on average, compared to current drug
- In machine learning, H_a might be M_1 outperforms M_2

•
$$H_0$$
: $\mu = k$, H_a : $\mu > k$; H_0 : $\mu = k$, H_a : $\mu < k$; H_0 : $\mu = k$, H_a : $\mu \neq k$

One-sided test

Two-sided test

P-value

- The probability of obtaining the observed data sample if the null hypothesis were true
- Smaller p-values suggest that the null hypothesis is less likely to be true
- We have NOT disproved the null hypothesis; the sample is unlikely BUT NOT IMPOSSIBLE

Level of Significance (α)

It acts like a threshold, and purely for report being significant purpose.

- In (traditional) practice, α is set to be 0.05. A p-value of less than 0.05 is called as significant
- p-value is a probability, there is no sudden changeover from being unlikely to being likely
- It is always best to report the actual p-values

Hypothesis Testing and P-value

The maximal turning point is located at the expected value. Until the grey line for the 95% significance threshold is reached, all values verifying the null hypothesis are between the very unlikely observations

Probability & Statistical Significance Explained

https://steemit.com/steemstem/@aximot/statistical-hypothesistesting-the-lottery-tickets

Type I, II Error and Metrics

		CONDITION determined by "Gold Standard"			
	TOTAL POPULATION	CONDITION POS	CONDITION NEG	PREVALENCE CONDITION POS TOTAL POPULATION	
TEST OUT- COME	TEST POS	True Pos TP	<i>Type I Error</i> False Pos FP	Precision Pos Predictive Value PPV = TP TEST P	False Discovery Rate FDR = FP TEST P
	TEST NEG	<i>Type II Error</i> False Neg FN	True Neg TN	False Omission Rate FOR = <u>FN</u> TEST N	Neg Predictive Value NPV = <u>TN</u> TEST N
	ACCURACY ACC ACC = <u>TP + TN</u> TOT POP	Sensitivity (SN), Recall Total Pos Rate TPR TPR TPR = TP CONDITION POS Miss Rate	Fall-Out False Pos Rate FPR FPR = FP CONDITION NEG Specificity (SPC)	Pos Likelihood Ratio LR + LR + = TPR FPR	Diagnostic Odds Ratio DOR DOR = <u>LR +</u> LR -
		False Neg Rate FNR FNR = FN CONDITION POS	True Neg Rate TNR TNR =TN CONDITION NEG	Neg Likelihood Ratio LR - LR - = <u>TNR</u> FNR	

Type I, II Error and AUC

Area Under the Receiver Operating Characteristics (ROC) Curve

Central Limit Theorem

For large sample sizes, the sampling distribution of means will approximate to normal distribution even if the population distribution is not normal.

X

Sampling distribution of \overline{X} with n = 30

n = 5

https://medium.com/@seema.singh/central-limit-theorem-simplified-46ddefeb13f3

One Sample z-test

Note: the population is normally distributed, and the population variance, σ^2 , is known.

Test Statistic:
$$z = \frac{\bar{x} - M}{\sigma/\sqrt{n}}$$

M: a specified value to be tested

n: the size of the sample

https://online.stat.psu.edu/stat200/book/export/html/146

One Sample z-test

Example: A herd of 1,500 steer was fed a special high-protein grain for a month.

A random sample of 29 (n) were weighed and had gained an average of 6.7 (\bar{x}) pounds. If the standard deviation of weight gain for the entire herd is 7.1 (σ), test the hypothesis that the average weight gain per steer for the month was more than (or not equal to) 5 (M) pounds.

One Sample z-test

- Null hypothesis: H_0 : M = 5
- Alternative hypothesis: H_a : M > 5

$$z = \frac{6.7 - 5}{\frac{7.1}{\sqrt{29}}} = \frac{1.7}{1.318} = 1.289$$

- from scipy.stats import norm
- p = 1 norm.cdf(1.289) = 0.099

One Sample t-test

Note: the population is normally distributed, and the population variance, σ^2 , is unknown.

Test Statistic:
$$t = \frac{\bar{x} - M}{s/\sqrt{n}}$$

M: a specified value to be tested

n: the size of the sample

s: the standard deviation of the sample

https://online.stat.psu.edu/stat200/book/export/html/146

One Sample t-test

"Aren't there enough problems in the world already?"

Example: A professor wants to know if her introductory statistics class has a good grasp of basic math.

Six students are chosen at random from the class and given a math proficiency test. The professor wants the class to be able to score above 70 (M) on the test. The 6 (n) students get scores of 62, 92, 75, 68, 83, and 95. Can the professor have 90 percent confidence ($\alpha = 0.10$) that the mean score for the class on the test would be above 70?

One Sample t-test

- Null hypothesis: H_0 : M = 70
- Alternative hypothesis: H_a : M > 70

$$\bar{x} = \frac{62+92+75+68+83+95}{6} = 79.17; s = 13.17$$

$$z = \frac{79.17 - 70}{\frac{13.17}{\sqrt{6}}} = \frac{9.17}{5.38} = 1.71$$

- from scipy.stats import t
- p = 1 t.cdf(1.71) = 0.074

Two-Sample z-test for Comparing Two Means

Note: two populations is normally distributed, and the population variance, σ_1^2 and σ_2^2 , are known.

Test Statistic:
$$z = \frac{\bar{x}_1 - \bar{x}_2 - \Delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

 Δ : the hypothesized difference between population means (0 if testing for equal means)

Two-Sample t-test for Comparing Two Means

Note: two populations is normally distributed, and the population variances, σ_1^2 and σ_2^2 , are unknown.

Test Statistic:
$$t = \frac{\bar{x}_1 - \bar{x}_2 - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

 Δ : the hypothesized difference between population means (0 if testing for equal means).

The degrees of freedom parameter for looking up the t-value is the smaller of $n_1 - 1$ and $n_2 - 1$.

Paired Difference t-test

<u>Note</u>: a set of paired observation from a normal distribution. Two populations are normally distributed, and the population variances, σ_1^2 and σ_2^2 , are unknown.

Test Statistic:
$$t = \frac{\bar{x} - \Delta}{\frac{s}{\sqrt{n}}}$$

 Δ : the hypothesized difference (0 if testing for equal means)

The degrees of freedom parameter for looking up the t-value is the smaller of n-1.

Bias and Variance

After fitting $N(=1000) M_1$ models,

given a new data point (x_{new}, y_{new}) that never shows up in training dataset,

predict y_{pred} by applying each M_1 on x_{new}

https://www.machinelearningtutorial.net/2017/01/26/the-bias-variance-tradeoff/

K-FOLD STRATEGY

Cross-Validation

Cross-Validation

https://livebook.manning.com/book/machine-learning-for-mortals-mere-and-otherwise/chapter-3/v-4/287

Model Complexity

Prediction Error

Low High

Model Complexity

Reading Materials

Ian Goodfellow, Yoshua Bengio and Aaron Courville,
 Deep Learning. MIT Press, 2016.

Deeplearningbook.org.

Part I: Applied Math and Machine Learning Basics

 Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer, 2006.

Chapter 1 & 2