8.5 - 8.6

Inclusion-Exclusion and Its Application

☐ The principle of Inclusion-exclusion

$$|A \cup B| = |A| + |B| - |A \cap B|$$

☐ For the union of three finite sets:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

[Example 1] Suppose that there are 1807 freshmen at your school. Of these, 453 are taking a course in computer science, 567 are taking a course in mathematics, and 299 are taking courses in both computer science and mathematics. How many are not taking a course either in computer science or in mathematics?

Solution:

To find the number of freshmen who are not taking a course in either mathematics or computer science, subtract the number that are taking a course in either of these subjects from the total number of freshmen.

$$|A \cup B| = |A| + |B| - |A \cap B| = 453 + 567 - 299 = 721$$

Consequently, there are 1807 - 721 = 1086 freshmen who are not taking a course in computer science or mathematics.

Example 2 How many positive integers not exceeding 1000 that are not divisible by 5, 6 or 8?

Solution:

U: the set of positive integers not exceeding 1000

A: the set of positive integers not exceeding 1000 that are divisible by 5,

B: the set of positive integers not exceeding 1000 that are divisible by 6,

C: the set of positive integers not exceeding 1000 that are divisible by 8.

$$\begin{aligned} \left| \overline{A} \cap \overline{B} \cap \overline{C} \right| &= \left| U \right| - \left| A \cup B \cup C \right| \\ &= \left| U \right| - \left(\left| A \right| + \left| B \right| + \left| C \right| - \left| A \cap B \right| - \left| A \cap C \right| - \left| B \cap C \right| + \left| A \cap B \cap C \right| \\ &= 1000 - \left(\left| \frac{1000}{5} \right| + \left| \frac{1000}{6} \right| + \left| \frac{1000}{8} \right| - \left| \frac{1000}{5 \times 6} \right| - \left| \frac{1000}{6 \times 4} \right| - \left| \frac{1000}{5 \times 8} \right| + \left| \frac{1000}{5 \times 6 \times 4} \right| \right) \\ &= 600 \end{aligned}$$

Example 3 How many permutations of the 26 letters of the English alphabet do not contain any of the strings *fish*, *rat* or *bird*?

Solution:

U: the set of permutations of the 26 letters

A: the set of permutations of the 26 letters containing fish,

B: the set of permutations of the 26 letters containing rat,

C: the set of permutations of the 26 letters containing bird.

$$|\overline{A} \cap \overline{B} \cap \overline{C}| = |U| - |A \cup B \cup C|$$

$$= |U| - (|A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

$$= 26! - (23! + 24! + 23! - 21! - 0 - 0 - 0)$$

The Principle of inclusion-exclusion

\Box The formula for the number of elements in the union of *n* finite sets:

$$|A_1 \cup A_2 \cup ... \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| + ... + (-1)^{n-1} |A_1 \cap A_2 \cap ... \cap A_n|$$

- 1. There are $2^n 1$ terms in this formula.
- 2. How to prove?

An element in the union is counted exactly once by the right-hand side of the equation.

$$\mid A_{1} \cup A_{2} \cup ... \cup A_{n} \mid = \sum_{i=1}^{n} \mid A_{i} \mid -\sum_{1 \leq i < j \leq n} \mid A_{i} \cap A_{j} \mid +\sum_{1 \leq i < j < k \leq n} \mid A_{i} \cap A_{j} \cap A_{k} \mid +... + (-1)^{n-1} \mid A_{1} \cap A_{2} \cap ... \cap A_{n} \mid A_{n} \mid A_{n} \cap A_{n} \mid A_{n$$

Proof:

Suppose that a is an element of exactly r of the sets

$$A_1, A_2, L_n, A_n$$
 where $1 \le r \le n$.

This element is counted C(r,1) times by $\sum_{i=1}^{n} |A_i|$.

This element is counted C(r,2) times by $\sum_{1 \le i < j \le n} |A_i \cap A_j|$.

. . .

Thus, it is counted exactly

$$C(r,1) - C(r,2) + C(r,3) - ... + (-1)^{r-1}C(r,r) = 1$$

Why ? Since $(-1+1)^r = 0$

An alternative form of inclusion-exclusion

 \checkmark to solve problems that ask for the number of elements in a set that have none of n properties.

$$P_1, P_2, ..., P_n$$

Let A_i be the subset containing the elements that have property P_i .

 $N(P_1P_2...P_k)$: The number of elements with all properties $P_1, P_2, ..., P_k$.

It follows that

$$N(P_1P_2...P_k) = |A_1 \cap A_2 \cap ... \cap A_k|$$

 $N(P_1'P_2'...P_n')$: The number of elements with none of the properties $P_1, P_2,...,P_n$.

From the inclusion-exclusion principle, we see that

$$N(P_1'P_2'...P_n') = N - |A_1 \cup A_2... \cup A_n| = N - \sum_{1 \le i \le n} N(P_i) + \sum_{1 \le i < j \le n} N(P_iP_j) + ... + (-1)^n N(P_1P_2...P_n)$$

Example 4 How many solutions does $x_1 + x_2 + x_3 = 13$ have, where x_i are nonnegative integers with $x_i < 6, i = 1, 2, 3$?

Solution:

Let a solution has property P_1 is $x_1 \ge 6$, property P_2 is $x_2 \ge 6$, property P_3 is $x_3 \ge 6$.

The number of solutions is

$$N(P_1'P_2'P_3') = N - N(P_1) - N(P_2) - N(P_3) + N(P_1P_2) + N(P_1P_3) + N(P_2P_3) - N(P_1P_2P_3)$$

$$C(3-1+13,13) \quad N(P_i) = C(3-1+7,7) \quad N(P_iP_j) = C(3-1+1,1) \quad N(P_1P_2P_3) = 0$$

Example 5 Find the number of primes not exceeding a specified positive integer. Take 100 for example.

Solution:

- **♦** A composite integer is divisible by a prime not exceeding its square root.
 - Composite integer not exceeding 100 must have a prime factor not exceeding 10.
 - Since the only primes less than 10 are 2,3,5,7, the primes not exceeding 100 are these four primes and the positive integers greater than 1 and not exceeding 100 that are divisible by none of 2,3,5,7.

- P_1 : the property that an integer is divisible by 2
- P_2 : the property that an integer is divisible by 3
- P_3 : the property that an integer is divisible by 5
- P_{\perp} : the property that an integer is divisible by 7

The number of primes not exceeding positive integer 100 is

$$4 + N(P_1'P_2'P_3'P_4')$$

$$= 4 + N - N(P_{1}) - N(P_{2}) - N(P_{3}) - N(P_{4}) + N(P_{1}P_{2}) + N(P_{1}P_{3}) + N(P_{1}P_{4})$$

$$+ N(P_{2}P_{3}) + N(P_{2}P_{4}) + N(P_{3}P_{4}) - N(P_{1}P_{2}P_{3}) - N(P_{1}P_{2}P_{4}) - N(P_{1}P_{3}P_{4}) - N(P_{2}P_{3}P_{4}) + N(P_{1}P_{2}P_{3}P_{4})$$

$$= 25$$

$$[100/(2\times3\times5)]$$

 $\lfloor 100/(2\times3\times5\times7) \rfloor$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

The number of onto functions

Theorem 1: Let *m* and *n* be positive integers with $m \ge n$. Then, there are

$$n^{m} - C(n,1)(n-1)^{m} + C(n,2)(n-2)^{m} - ... + (-1)^{n-1}C(n,n-1) \cdot 1^{m}$$

onto functions from a set with m elements to a set with n elements.

Proof:

$$A = \{a_1, a_2, ..., a_m\}$$
 $B = \{b_1, b_2, ..., b_n\}$

Let P_i be the property that b_i is not in the range of the function, respectively.

Note that a function is onto if and only if it has none of the properties $P_i(i=1,2,...,n)$.

By the principle of inclusion-exclusion, it follows that the number of onto functions is

Problem:

S(m,n): the number of ways to distribute m distinguishable objects into n indistinguishable boxes so that no boxes is empty

the number of ways to partition the set with m elements into n nonempty and disjoint subsets.

S(m,n) n!: the number of onto functions from a set with m elements to a set with n elements

Application:

- Assign m different jobs to n different employees if every employee is assigned at least one job.
- ◆ Distribute m different toys to n different children such that each child gets at least one toy.

Derangements

Definition: A derangement is a permutation of objects that leaves no object in the original position.

Example:

The permutation of 21453 is a derangement of 12345 because no number is left in its original position. But 21543 is not a derangement of 12345, because 4 is in its original position.

Derangements

Theorem 2: The number of derangements of a set with n elements is

$$D_n = n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right]$$

Proof:

Let a permutation have property P_i if it fixes element i.

The number of derangements is the number of permutation having none of the properties P_i for i=1, 2, ..., n, namely

$$\begin{split} D_n &= N(P_1'P_2'...P_n') \\ &= N - \sum_{1 \le i \le n} N(P_i) + \sum_{1 \le i < j \le n} N(P_iP_j) + ... + (-1)^n N(P_1P_2...P_n) \\ &= n! - C(n,1)(n-1)! + C(n,2)(n-2)! - C(n,3)(n-3)! + ... + (-1)^n \times C(n,n)(n-n)! \\ &= n! - \frac{n!}{1!(n-1)!} \times (n-1)! + \frac{n!}{2!(n-2)!} \times (n-2)! - \frac{n!}{3!(n-3)!} \times (n-3)! + ... + (-1)^n \frac{n!}{n!(n-n)!} \times (n-n)! \\ &= n! \cdot (1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + ... + (-1)^n \frac{1}{n!}) \end{split}$$

Homework:

SE: P. 557 7, 12

P. 564 6, 11, 16

EE: P. 584 7, 14

P. 591 6, 11, 16