0.1 Indukcyjność

Indukcyjność określa zdolność obwodu do wytwarzania strumienia pola magnetycznego φ powstającego w wyniku przepływu przez obwód prądu elektrycznego I. Jednostką indukcyjności jest henr $(H = \frac{kg \cdot m^2}{A^2 \cdot c^2})$.

Na rysunku powyżej przedstawiono dwie cewki umieszczone blisko, które mogą oddziaływać na siebie wzajemnie. Pole magnetyczne wytworzone w jednej cewce przenika całkowicie lub częściowo przez drugą cewkę. Załóżmy, że prąd o natężeniu i_1 w cewce pierwszej (o N_1 zwojach) wytwarza w niej strumień indukcji pola magnetycznego ϕ_{11} . Część tego strumienia ϕ_{1g} przecina drugą cewkę (o N_2 zwojach), pozostała część strumienia ϕ_{1s} - zwana strumieniem rozproszenia zamyka się dokoła cewki (1) w taki sposób, że linie indukcji nie obejmują cewki (2). Całkowity strumień wytwarzany przez cewkę (1) jest więc sumą dwóch składowych $\phi_{11} = \phi_{1g} + \phi_{1s}$ (wzor 1).

Indukcyjność własna oraz wzajemna

Stosunek strumienia magnetycznego skojarzonego z danym uzwojeniem do prądu, który wywołuje ten strumień, nazywamy indukcyjnością własną uzwojenia $L_1 = \frac{N_1 \cdot \phi_{11}}{i_1}$ (wzor 2). Strumień magnetyczny ϕ_{1g} (czyli strumień przez cewkę drugą, ale związany z prądem w cewce pierw-

szej) sprzęga się z N_2 zwojami cewki drugiej.

Indukcyjność wzajemną cewki pierwszej z cewką drugą można wyrazić zależnością $M_{12} = \frac{N_2 \phi_{1g}}{i_1}$ (wzor 3). Analogicznie dla drugiej cewki $L_2 = \frac{N_2 \cdot \phi_{22}}{i_2}$ oraz $M_{21} = \frac{N_1 \phi_{2g}}{i_2}$ (wzory 4). Z podstawowych praw elektromagnetyzmu wynika, że indukcyjności wzajemne M_{12}, M_{21} są zawsze takie

same $M = M_{12} = M21$. Gdzie wielkość M nazywamy indukcyjnością wzajemną dwóch cewek.

Rozkład całkowitego strumienia magnetycznego na strumień główny i strumień rozproszenia jest punktem wyjścia do określenia indukcyjności głównej L_{1g} i indukcyjności rozproszenia L_{1s} jest punktem wyjścia do określenia indukcyjności głównej L_{1g} i indukcyjności rozproszenia L_{1s}

$$L_{1g} = \frac{N_1 \phi_{1g}}{i_1}$$

$$L_{1s} = \frac{N_1 \phi_{1s}}{i_1}$$

$$Wykorzystując wzory (1) - (4) można wykazać, że:$$

$$L_1 = L_{1g} + L_{1s}$$

$$L_2 = L_{2g} + L_{2s}$$

$$M = \sqrt{L_{1g}L_{2g}}$$
 (0.1)

Więc indukcyjność wzajemna jest średnią geometryczną obu indukcyjności głównych. Oznaczmy współczynnik sprzężenia obu cewek jako k wtedy $M = k\sqrt{L_1L_2}$.

Indukcyjność wzajemna cewek powietrznych (bez rdzenia magnetycznego) zależy od:

- 1. kształtu geometrycznego cewek
- 2. wzajemnego usytuowania cewek

3. liczby zwojów

Gdy przestrzeń otaczającą cewki wypełnimy, przynajmniej częściowo, substancją magnetyczną o przenikalności względnej $\mu_r >> 1$ wtedy strumienie pola magnetycznego i w konsekwencji wartości indukcyjności ulegają zwiększeniu.