CS 465

AES

Tim van der Horst Last Updated: 22 June, 2007

Programming Lab #1

- Implement AES
 - o Use FIPS 197 as guide
 - Everything in this tutorial but in more detail
 - Pseudocode
 - 20 pages of complete, step by step debugging information

Finite Fields

- AES uses the finite field GF(2⁸)
 - $b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0$ $b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0$
- Byte notation for the element: x⁶ + x⁵ + x + 1
 - $0 \quad 0x^7 + 1x^6 + 1x^5 + 0x^4 + 0x^3 + 0x^2 + 1x + 1$
 - {01100011} binary
 - {63} hex
- Has its own arithmetic operations
 - Addition
 - Multiplication

Finite Field Arithmetic

- Addition (XOR)
 - $(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2$
 - {01010111} ⊕ {10000011} = {11010100}
 - \circ {57} \oplus {83} = {d4}
- Multiplication is tricky

Finite Field Multiplication (•)

These cancel out

$$(x^6 + x^4 + x^2 + x + 1)(x^7 + x + 1) =$$

$$x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1$$

$$= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

and

$$x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$
 modulo $(x^8 + x^4 + x^3 + x + 1)$
= $x^7 + x^6 + 1$.

Irreducible Polynomial

Efficient Finite Field Multiply

- There's a better way
 - xtime() very efficiently multiplies its input by {02}
- Multiplication by higher powers can be accomplished through repeat application of xtime()

Efficient Finite Field Multiply

```
Example: {57} • {13}
    \{57\} \cdot \{02\} = xtime(\{57\}) = \{ae\}
    \{57\} \cdot \{04\} = xtime(\{ae\}) = \{47\}
    \{57\} \cdot \{08\} = xtime(\{47\}) = \{8e\}
    \{57\} \cdot \{10\} = xtime(\{8e\}) = \{07\}
\{57\} \bullet \{13\} = \{57\} \bullet (\{01\} \oplus \{02\} \oplus \{10\})
                  = \{57\} \cdot (\{01\} \oplus \{02\} \oplus \{10\})
                  = ({57} • {01}) ( ({57} • {02}) (+ ({57} • {10}))
                  = {57} + {ae} + {07}
```

 $= \{fe\}$

AES Parameters

- Nb Number of columns in the State
 - o For AES, Nb = 4
- Nk Number of 32-bit words in the Key
 - o For AES, Nk = 4, 6, or 8
- Nr Number of rounds (function of Nb and Nk)
 - o For AES, Nr = 10, 12, or 14

AES methods

- Convert to state array
- Transformations (and their inverses)
 - AddRoundKey
 - SubBytes
 - ShiftRows
 - MixColumns
- Key Expansion

Convert to State Array

Input block:

Inner Workings

See Flash demo URL on course Lectures pages