

The invention claimed is:

1. 1. A method comprising:
 2. sending a control packet from a first endpoint of a tunnel through the
 3. tunnel to a second endpoint of the tunnel; and
 4. waiting at the first endpoint for a responsive control packet through the
 5. tunnel from the second endpoint before sending packets other than a control
 6. packet through the tunnel.
1. 2. The method of claim 1 wherein the tunnel is a secure tunnel.
1. 3. The method of claim 2 wherein the tunnel uses the IPSec security
2. protocol suite.
 1. 4. The method of claim 3 wherein the tunnel uses ESP in tunnel mode.
 1. 5. The method of claim 1 wherein the tunnel traverses at least one
 2. network address translator (NAT).
 1. 6. The method of claim 5 wherein the first endpoint is a client and the
 2. second endpoint is a server.
 1. 7. The method of claim 5 wherein the NAT implements VPN Masquerade.
 1. 8. The method of claim 1 wherein the control packet is an ICMP echo
 2. request packet and the responsive control packet is an ICMP echo reply packet.
 1. 9. The method of claim 3 wherein the tunnel is defined by an epoch, the
 2. epoch comprising one security association (SA) in each direction, each SA
 3. having a negotiated limited lifetime and defining the use of the ESP protocol in
 4. tunnel mode with negotiated authentication and/or encryption keys and with a
 5. security parameters index (SPI) chosen by the SA's destination.
 1. 10. The method of claim 9 wherein before the end of tunnel's lifetime the
 2. endpoints establish a new tunnel between them.

1 11. The method of claim 10 wherein a designated endpoint has
2 responsibility for establishing the new tunnel and ignores requests initiated by
3 the other endpoint to establish a new tunnel.

1 12. The method of claim 1 wherein the second endpoint waits for a
2 packet from the first endpoint through the tunnel before using the tunnel to send
3 any packets.

1 13. The method of claim 1 wherein if the first endpoint does not receive
2 any packets through the tunnel for a predetermined time interval then the first
3 endpoint sends through the tunnel a control packet to the second endpoint.

1 14. The method of claim 13 wherein if the first endpoint sends through
2 the tunnel to the second endpoint a predetermined maximum number of control
3 packets without receiving any packets through the tunnel then the first endpoint
4 establishes a new tunnel to the second endpoint.

1 15. The method of claim 10 wherein if an endpoint is unable to complete
2 the establishment of a new tunnel before a predetermined time limit then that
3 endpoint abandons establishment of that tunnel and starts establishing a new
4 tunnel.

1 16. The method of claim 15 wherein if an endpoint successively fails to
2 establish a new tunnel for more than a predetermined maximum number of times
3 then that endpoint closes the connection currently being used to establish
4 tunnels with the other endpoint and opens another such connection.

1 17. The method of claim 16 wherein the connection used to establish
2 tunnels between the endpoints is an IKE session.

1 18. A computer readable media tangibly embodying a program of
2 instructions executable by a computer to perform a method, the method
3 comprising:

4 sending a control packet from a first endpoint of a tunnel through the
5 tunnel to a second endpoint of the tunnel; and

6 waiting at the first endpoint for a responsive control packet through the
7 tunnel from the second endpoint before sending packets other than a control
8 packet through the tunnel.

1 19. The computer readable media of claim 18 where in the method the
2 tunnel is a secure tunnel.

1 20. The computer readable media of claim 19 where in the method the
2 tunnel uses the IPSec security protocol suite.

1 21. The computer readable media of claim 20 where in the method the
2 tunnel uses ESP in tunnel mode.

1 22. The computer readable media of claim 18 where in the method the
2 tunnel traverses at least one network address translator (NAT).

1 23. The computer readable media of claim 22 where in the method the
2 first endpoint is a client and the second endpoint is a server.

1 24. The computer readable media of claim 22 where in the method the
2 NAT implements VPN Masquerade.

1 25. The computer readable media of claim 18 where in the method the
2 control packet is an ICMP echo request packet and the responsive control
3 packet is an ICMP echo reply packet.

1 26. The computer readable media of claim 20 where in the method the
2 tunnel is defined by an epoch, the epoch comprising one security association
3 (SA) in each direction, each SA having a negotiated limited lifetime and defining
4 the use of the ESP protocol in tunnel mode with negotiated authentication and/or
5 encryption keys and with a security parameters index (SPI) chosen by the SA's
6 destination.

1 27. The computer readable media of claim 26 where in the method before
2 the end of tunnel's lifetime the endpoints establish a new tunnel between them.

1 28. The computer readable media of claim 27 where in the method a
2 designated endpoint has responsibility for establishing the new tunnel and
3 ignores requests initiated by the other endpoint to establish a new tunnel.

1 29. The computer readable media of claim 18 where in the method the
2 second endpoint waits for a packet from the first endpoint through the tunnel
3 before using the tunnel to send any packets.

1 30. The computer readable media of claim 18 where in the method if the
2 first endpoint does not receive any packets through the tunnel for a
3 predetermined time interval then the first endpoint sends through the tunnel a
4 control packet to the second endpoint.

1 31. The computer readable media of claim 30 where in the method if the
2 first endpoint sends through the tunnel to the second endpoint a predetermined
3 maximum number of control packets without receiving any packets through the
4 tunnel then the first endpoint establishes a new tunnel to the second endpoint.

1 32. The computer readable media of claim 27 where in the method if an
2 endpoint is unable to complete the establishment of a new tunnel before a
3 predetermined time limit then that endpoint abandons establishment of that
4 tunnel and starts establishing a new tunnel.

1 33. The computer readable media of claim 32 where in the method if an
2 endpoint successively fails to establish a new tunnel for more than a
3 predetermined maximum number of times then that endpoint closes the
4 connection currently being used to establish tunnels with the other endpoint and
5 opens another such connection.

1 34. The computer readable media of claim 33 where in the method the
2 connection used to establish tunnels between the endpoints is an IKE session.