$$\psi \colon E^* \times E \longrightarrow k$$
$$(\lambda, x) \longmapsto \lambda(x)$$

2.

3. Écrivons t comme somme de $\ell(t)$ tenseurs simples :

$$t = \sum_{i=1}^{\ell(t)} \lambda_i \otimes x_i$$
, avec $\lambda_i \in E^*$ et $x_i \in E$ pour $1 \le i \le \ell(t)$ Soit $z \in \ker \varphi(t)$.

Alors
$$\sum_{i=1}^{\ell(t)} \lambda_i(z) x_i = 0$$

Alors
$$\sum_{i=1}^{\ell(t)} \lambda_i(z) x_i = 0$$

Or les $(x_i)_{1 \le i \le \ell(t)}$ sont libres.

Sinon, un des e_i est une combinaison linéaire des autres. Supposons sans perdre de généralité que ce soit x_1 . Alors il existe $\mu_2, \ldots, \mu_{\ell(t)}$ des scalaires tels que $x_1 = \sum_{i=2}^{\ell(t)} \mu_i x_i$.

$$\begin{split} t &= \sum_{i=1}^{\ell(t)} \lambda_i \otimes x_i \\ &= \lambda_1 \otimes \left(\sum_{i=2}^{\ell(t)} \mu_i x_i \right) + \sum_{i=2}^{\ell(t)} \lambda_i \otimes x_i \\ &= \sum_{i=2}^{\ell(t)} (\lambda_i + \mu_i \lambda_1) \otimes x_i \quad \text{par bilin\'earit\'e de } \otimes \end{split}$$

Ainsi on peut écrire t comme somme de $\ell(t)-1$ vecteurs simples : contradiciton.

Tous les $\lambda_i(z)$ sont donc nuls.

Donc
$$\ker \varphi(t)\subseteq \bigcap_{i=1}^{\ell(t)}\ker \lambda_i$$

De plus on a l'inclusion réciproque :

En effet, si $z \in \bigcap_{i=1}^{\ell(t)} \ker \lambda_i$, on a

$$\varphi(t)(z) = \sum_{i=1}^{\ell(t)} \lambda_i(z) x_i$$
$$= \sum_{i=1}^{\ell(t)} 0$$
$$= 0$$

On en conclut que $\ker \varphi(t) = \bigcap_{i=1}^{\ell(t)} \ker \lambda_i$, puis l'égalité des dimensions.

Or les λ_i sont libres, d'après le même argument que pour les x_i , donc dim $\bigcap \ker \lambda_i = n - \ell(t)$

Ainsi, en appliquant le théorème du rang à $\varphi(t)$, on obtient $g \varphi(t) = \ell(t)$