

LIBRARY

POLAROID

JUN 1 2 1997

IL GEUL SURVEY

Digitized by the Internet Archive
in 2012 with funding from
University of Illinois Urbana-Champaign

<http://archive.org/details/seismicreflectio136heig>

S
1.GS
EN 136
c3

Seismic Reflection and Seismic Refraction Surveying in Northeastern Illinois

Paul C. Heigold

ILLINOIS GEOLOGICAL
SURVEY LIBRARY

ENVIRONMENTAL GEOLOGY 136

Department of Energy and Natural Resources
ILLINOIS STATE GEOLOGICAL SURVEY

ILLINOIS STATE GEOLOGICAL SURVEY

3 3051 00005 4738

Seismic Reflection and Seismic Refraction Surveying in Northeastern Illinois

Paul C. Heigold

ILLINOIS GEOLOGICAL
SURVEY LIBRARY

1990

ENVIRONMENTAL GEOLOGY 136

ILLINOIS STATE GEOLOGICAL SURVEY
Morris W. Leighton, Chief

Natural Resources Building
615 East Peabody Drive
Champaign, Illinois 61820

Acknowledgment

Funding for this study was provided by the Department of Energy and Natural Resources (Contract ENR-5).

CONTENTS

Abstract	v
Preface	vi
Part I Seismic Reflection Profiling	
Introduction	3
Geologic Setting	3
Field Techniques and Instrumentation	6
Data Processing	7
Interpretation	9
Dauberman Road Seismic Reflection Line	11
Fermilab Seismic Reflection Line	21
Bristol Seismic Reflection Line	22
Lily Lake Seismic Reflection Line	23
Conclusions	24
References	25
Appendices	26
A Recording Parameters and Processing Sequence of Dauberman Road Seismic Reflection Line	26
B Recording Parameters and Processing Sequence of Fermilab Seismic Reflection Line	27
C Recording Parameters and Processing Sequence of Bristol Seismic Reflection Line	29
D Recording Parameters and Processing Sequence of Lily Lake Seismic Reflection Line	30
Figures	
1 Location of seismic reflection lines	2
2 Stratigraphic column of bedrock units in Northern Illinois	4
3 Regional geologic setting	6
4 Drift thickness map of the study area	7
5 Geologic map of the study area	8
6 Location of key drillholes used to constrain interpretation of seismic reflection sections	9
7 Stratigraphic column and interval velocities from test hole SSC-1	10
8 Stratigraphic column and interval velocities from test hole SSC-2	12
9 Stratigraphic column and interval velocities from test hole SSC-3	13
10 Synthetic seismogram constructed from sonic and density logs	14
11 Interval velocities from deep hole in Du Page County	15
12 Dauberman Road seismic reflection sections	16
13 Fermilab seismic reflection sections	18
14 Bristol seismic reflection sections	19
15 Lily Lake seismic reflection section	20
Part II Seismic Refraction Profiling	
Introduction	33
Seismic Refraction Method	34
Equipment	35
Field Procedures	35
Processing of Seismic Refraction Data	36
Results	36
Summary	37
References	39
Appendix A Results of Seismic Refraction Profiling	40

Figures

1 Index map--location of seismic refraction profiles	33
2 Shot and geophone arrays used with FRAC and SIPT programs	35
3 Bedrock topography map of study area	38

Table

1 Cable length and geophone intervals for estimated depth to bedrock in the study area	34
--	----

Abstract

As part of the Illinois State Geological Survey's comprehensive investigations to locate the most suitable site for construction of the proposed Superconducting Super Collider, approximately 17 miles of high resolution seismic reflection profiling and approximately 80 miles of seismic refraction profiling were performed.

Seismic reflection profiling was used to define the stratigraphy and structural geology of the proposed SSC site. The primary target of this profiling was the dolomite of the Ordovician Galena and Platteville Groups, since the tunnel that would have housed the proposed SSC would have been located in these rocks. In addition, the seismic reflection profiling provides a view of continuous sections of rocks to considerable depths, and thus, detailed information about the rocks of northeastern Illinois unavailable from discrete drill holes.

Seismic refraction profiling was used to examine the geologic framework of near-surface deposits at the proposed SSC site to aid in the construction of the SSC tunnel and the location of its attendant vertical service shafts. The kinds of information provided by this profiling--depth to bedrock (drift thickness) and lithology of both the drift and the bedrock surface--are relevant in many other areas: for example, in other types of construction, evaluation of groundwater, aggregates (crushed stone), and sand and gravel resources, and location of waste disposal sites.

Preface

The seismic exploration, conducted as part of the Illinois State Geological Survey's comprehensive investigation to locate the most suitable site for the construction of the Superconducting Super Collider, was carried out in two parts. The first part consisted of approximately 17 miles of high-resolution seismic reflection profiling. The results of this profiling, together with information gathered from available discrete drill holes, were used to define the stratigraphy and structural geology of the site proposed for the SSC. The primary target of the seismic reflection profiling was the dolomite of the Ordovician Galena and Platteville Groups, since the tunnel housing the proposed SSC would have been located in these strata. The second part consisted of approximately 80 miles of seismic refraction profiling to examine the depth and configuration of the bedrock surface, and the velocities of both the bedrock surface and the superjacent glacial drift from which inferences can be made about the nature of these rocks. These kinds of information were relevant not only to the construction of the SSC tunnel, but also to the location of its attendant vertical service shafts.

The information gathered from the seismic exploration, although particularly relevant to the proposed SSC, was beneficial for all of northeastern Illinois. The seismic reflection profiling provided information applicable to the overall understanding of the stratigraphic and structural relationships in northeastern Illinois. The seismic refraction profiling provided data that were used to improve existing maps of depth to bedrock and bedrock geology, which are used in construction, evaluation of groundwater, aggregate (crushed stone), and sand and gravel resources, and location of waste disposal sites in this part of Illinois.

I Seismic Reflection Profiling

Figure 1 Location of seismic reflection lines.

Introduction

The Illinois State Geological Survey's comprehensive investigations to locate the most suitable site for the construction of the Superconducting Super Collider (SSC), a proton accelerator, included approximately 17 miles of high-resolution seismic reflection profiling at four discrete locations around the proposed ring (fig. 1). Since it was proposed that the SSC be placed in a 10-foot diameter tunnel in dolomites of the Ordovician Galena and Platteville Groups underlying the site, these strata were the primary target of the seismic reflection profiling (fig. 2). In addition to information on Ordovician strata, seismic reflection sections generated at three of the locations contain information about sediments as old as Late Cambrian (Mt. Simon); a section generated at a fourth location contains information about Precambrian-age rocks (fig. 2).

Two of the locations where seismic reflection profiling was done, along Dauberman Road in T38 and 39N, R6E, Kane County and near the Fermi National Accelerator Laboratory in T39N, R9E, Du Page County (fig. 1), were chosen because experimental chambers associated with the SSC were to be sited there. The other two locations, near the town of Bristol in T39N, R7E, Kendall County, and near the town of Lily Lake in T40 and 41N, R7E, Kane County (fig. 1), were chosen to investigate the possibility of faulting. At the Bristol location, small-scale faulting was suspected from the results of previous test drilling and geologic mapping in the area. At the Lily Lake location, large-scale basement faulting had been suggested by McGinnis (1966), on the basis of mainly gravity and magnetic data.

The high-resolution seismic reflection data, gathered by Walker Geophysical Company of Essex, Iowa, proved to be a viable way to address specific stratigraphic and geological structure problems associated with the proposed location of the SSC, and also a way to obtain information about the rocks of northeastern Illinois, unavailable from discrete drill holes.

Geologic Setting

The geologic setting of the area in northeastern Illinois where the high-resolution seismic reflection work was done has been discussed at length in previous geological-geotechnical studies for siting the SSC in Illinois (Kempton et al. 1985; Vaiden et al. 1988). Geologic aspects from these studies pertinent to the acquisition, reduction, and interpretation of the seismic reflection data are discussed briefly in this report.

The study area is located on the Kankakee Arch, a broad positive structure that separates the Michigan and Illinois Basins and connects the Wisconsin Arch to the Cincinnati and Findlay Arches (fig. 3). In the study area the Kankakee Arch plunges gently to the southeast.

Along the four seismic reflection lines, the elevation of the earth's surface varies from about 650 feet to just beyond 1,000 feet above mean sea level. Glacial drift, ranging in thickness from 25 to more than 200 feet (fig. 4) overlies the Paleozoic bedrock surface (fig. 5). At some places the bedrock surface is dissected by valleys that commonly contain thick, coarse-grained sediments that serve as excellent conduits for shallow groundwater supplies. The presence of these valleys and the contained groundwater were important factors to be considered in the location and construction of the proposed SSC tunnel and attendant structures.

Bedrock in the study area consists of Cambrian, Ordovician, and Silurian strata that have a combined thickness of approximately 4,000 feet (fig. 2). The oldest sedimentary rocks in the area belong to the Mt. Simon Sandstone (Upper Cambrian). This poorly sorted, coarse-grained sandstone, which ranges in thickness from 1,400 to 2,600 feet in northeastern Illinois, rests unconformably on Precambrian basement. Other major unconformities occur at the bases of the Ancell Group (Ordovician) and the Silurian, and the bedrock surface (fig. 2). The Upper Ordovician and Silurian formations in northeastern Illinois dip gently eastward into the Michigan Basin, but the Cambrian and older Ordovician formations dip gently and thicken southward toward the Illinois Basin (Buschbach 1964). The bedrock surface of the study area (fig. 5) comprises Silurian carbonates and shales and minor amounts of dolomite of the Maquoketa Group (Upper Ordovician).

Figure 2 Stratigraphic column of bedrock units in Northern Illinois.

(continued in right column of previous page)

Figure 3 Regional geologic setting.

Field Techniques and Instrumentation

Field parameters for the high-resolution seismic reflection profiling were chosen on the basis of calculation, experience, and testing. Since detailed structural and stratigraphic information was required for the construction of the proposed SSC tunnel, close-source and receiver spacing, high common depth-point (CDP) fold, and a fast sample rate for wide-band recording were necessary to obtain good quality data in noisy suburban areas. One line crossed an interstate highway, and all lines ran along heavily traveled roads. The actual field parameters used are summarized in appendixes A, B, C, and D.

Figure 4 Drift thickness map of the study area.

The recording instrument was a Texas Instrument DFSV. Single hydrophone receivers (Mark Products P-44 10 Hz) were placed in shot holes about 10 feet below the water table, generally 10 to 25 feet below the ground surface. The energy source used on three of the lines (Dauberman Road, Bristol, and Fermilab) was a downhole air gun (Bolt Model DHSS 550) equipped with a chamber, 10 in.³, operated at a nominal pressure of 1,800 lbs/in.². The optimum locations for firing the air gun were at the top of the water table or a few feet deeper. On the fourth seismic reflection line (Lily Lake), where information about Precambrian rocks was required, the energy source was 0.33 to 1.00 lbs. of dynamite.

Data Processing

Data processing sequences began with an amplitude spectrum analysis. Since frequencies more than 400 Hz were at least -40dB, the data were resampled from 0.5 to 1.0 milliseconds. Record length was 1.0 second, but on all lines except the Lily Lake line only 0.5 or 0.6 second were processed. On the Lily Lake line, 1.0 second was processed. Initial stacking velocities were derived from available sonic logs. Subsequent stacking velocities were obtained from velocity analysis of the seismic data. The seismic sections were not migrated. Additional information on the data processing is given in appendixes A, B, C, and D.

PENNSYLVANIAN (shale, sandstone, limestone)
 DEVONIAN (shale, sandstone, limestone)
 SILURIAN (undiff.; dolomite)

ORDOVICIAN
 Maquoketa (shale)
 Galena (dolomite)
 Platteville (dolomite)
 Ancell (sandstone)
 Prairie du Chien (sandstone and dolomite)
 CAMBRIAN (undiff.; sandstone and dolomite)

Figure 5 Geologic map of the study area.

Figure 6 Location of key drillholes used to constrain interpretation of seismic reflection sections.

Interpretation

A considerable amount of geologic information is available for the region in which these seismic reflection lines were run. This information includes reports on local and regional studies conducted by the ISGS, graduate student theses, logs and samples of water wells and engineering borings in the ISGS files, and records of subsurface drilling and sampling programs conducted for water resource studies of northeastern Illinois (Kempton et al. 1985; Vaiden et al. 1988). Studies by Buschbach (1964), Willman (1973), Willman and Kolata (1978), Willman et al. (1975), Willman and Frye (1970), Willman (1971), Horberg (1950), Kolata and Graese (1983), Lineback (1979), Piskin and Bergstrom (1967, 1975), and Willman et al. (1967) were particularly useful in interpretation of the seismic reflection sections.

Three 8-inch diameter holes near the Dauberman Road and Fermilab seismic reflection line were included in the test drilling and coring program conducted for siting the SSC in Illinois (fig. 6). The 8-inch diameter was chosen to accommodate sondes used in downhole geophysical logging. Sonic and density logs were particularly important to the interpretation of the seismic reflection sections. Sonic logs from the three 8-inch holes were used to calculate interval velocities (figs. 7,

Figure 7 Stratigraphic column and interval velocities from test hole SSC-1.

8, and 9). The sonic and density logs run in test hole SSC-2 near the Fermilab line were used to construct a synthetic seismogram (fig. 10).

All the large-diameter test holes bottomed out just below the base of the Ancell Group. Holes SSC-1 and SSC-3, near the Dauberman Road line, bottomed out in the Eminence Formation (Upper Cambrian) and Oneota Formation (Lower Ordovician), respectively; SSC-2, near the Fermilab line, bottomed out in the Shakopee Formation (figs. 7, 8, and 9). Because proposed experimental chambers were to be located along Dauberman Road and near Fermilab, the large diameter holes were drilled only to depths necessary to provide information about the tunnel and the experimental chambers.

Velocity and density information useful in interpreting the portions of the seismic reflection sections deeper than the base of the Ancell came from sonic and density logs. These logs were run in 1986 in a deep hole that penetrated basement in Section 9, T39N, R9E, in Du Page County, just a few miles from the north end of the Fermilab seismic reflection line (fig. 11). As mentioned above, the Dauberman Road, Bristol, and Fermilab sections provided information about the rock to the depth of the Mt. Simon Formation (Upper Cambrian), whereas the Lily Lake section provided information to the depth of Precambrian rocks.

On the seismic reflection sections shown in this report (figs. 12, 13, 14, and 15), several reflections were associated with geologic interfaces where large acoustic impedance contrasts are known to exist. The strength, coherence, and continuity of these reflections can vary appreciably for several reasons, many of which are geologically significant. However, given the proximity of the seismic reflection lines in this study, enough of these reflections can be consistently traced across these sections to interpret confidently the salient stratigraphic and structural nature of the geologic formations.

Dauberman Road Seismic Reflection Line

The seismic reflection line along Dauberman Road in T38 and 39, R6E, Kane County, Illinois (figs. 1 and 12) was shot from north to south in three segments, D1, D2, and D3; their lengths were 1.47, 1.82, and 4.68 miles, respectively. Because parts of the segments overlapped, the total line was approximately 7.5 miles long.

Field parameters and the processing sequence for each segment of the Dauberman Road line are given in appendix A. Although the record length for each segment was 1.0 second, only 0.5 second was processed for the segments D1 and D2, and only 0.6 second was processed for segment D3. These section lengths were adequate given the purpose of this line, which was to examine the Ordovician strata in which the experimental chambers were to be constructed. These sections do not contain information about the lower Mt. Simon Formation (Upper Cambrian) or subjacent Precambrian rocks.

Topographic elevation of the earth's surface along the Dauberman Road line, although somewhat irregular, generally decreases from a high of approximately 840 feet above mean sea level near the north end of segment D1 to a low of approximately 700 feet above sea level near the south end of segment D3.

The glacial drift along this line varies in thickness from more than 100 feet to as much as 200 feet (Piskin and Bergstrom 1975). Test holes SSC-1 and SSC-3 near the north and south ends of this line showed glacial drift thicknesses of 140 and 133 feet, respectively. Greater drift thicknesses may be associated with bedrock valleys, which are common in northeastern Illinois.

The bedrock surface along this line is, for the most part, composed of rocks of the Maquoketa Group (Upper Ordovician) and Silurian outliers (Willman et al. 1967); therefore, shales and carbonates can be expected at the bedrock surface. Test holes SSC-1 and SSC-3 encountered Maquoketa dolomite, probably the Ft. Atkinson, at the bedrock surface (Vaiden et al. 1988).

On the Dauberman Road sections, reflections have been identified at the following geologic interfaces, in descending order: bedrock surface, top of the Galena Group (Middle to Upper Ordovician), top of the Ancell Group (Middle Ordovician), base of the Ancell Group, top of the

Figure 8 Stratigraphic column and interval velocities from test hole SSC-2.

Figure 9 Stratigraphic column and interval velocities from test hole SSC-3.

Figure 10 Synthetic seismogram constructed from sonic and density logs.

Franconia Formation (Upper Cambrian), and top of the Lombard Member of the Eau Claire Formation (figs. 1 and 12). No discernible reflections were below 0.4 second. This two-way travel time would correspond to a reflection emanating from a surface below the top of the Mt. Simon Formation (Upper Cambrian). The absence of reflections below 0.4 second possibly was due to a lack of energy provided by the air-gun energy source or, more likely, it was the result of an absence of appreciable vertical impedance contrasts in the Mt. Simon.

The shallow reflection corresponding to the drift-bedrock contact can be traced intermittently across sections D1, D2, and D3. The quality of this reflection is dependent not only on the lithology of the bedrock surface (carbonates and clastics), but also on the amount of weathering on this surface. Between shot points 355 on section D1 and shot point 105 on section D2 (figs. 1 and

Figure 11 Interval velocities from deep hole in Du Page County.

Dauberman No. 1

Dauberman No. 2

Figure 12 Dauberman Road seismic reflection sections.
Dauberman No. 3

Figure 13 Fermilab seismic reflection sections.

Figure 14 Bristol seismic reflection sections.

12) was evidence of a channel cut into the bedrock, although this evidence was disturbed by muting associated with undershooting where the line crossed the East-West Tollway.

The reflection associated with the Maquoketa-Galena contact was consistently the strongest, most coherent, and most continuous of all reflections on sections D1, D2, and D3. This was a result of the sharp contrast between the relatively low acoustic impedance Maquoketa clastics that rest on the relatively high acoustic impedance Galena carbonates. The Maquoketa-Galena contact and Platteville-Ancell Group contact were the two most important targets for the SSC project, because the SSC tunnel was to be constructed in the Galena and Platteville Groups. The reflection associated with the Platteville-Ancell contact could be followed easily across sections D1, D2, and D3 even though it had reverse polarity from, and less strength than, the reflection at the Maquoketa-Galena contact because of a downward decrease in acoustic impedance with less contrast than at the Maquoketa-Galena surface.

Figure 15 Lily Lake seismic reflection section.

Examination of sections D1, D2, and D3 (fig. 12) indicate that the combined thicknesses of the Galena and Platteville Groups do not vary appreciably along the entire length of the Dauberman Road line. This fact is corroborated by the combined thicknesses (332 and 325 feet, respectively) of these groups in test holes SSC-1 and SSC-3 near the ends of this line. A southern component of dip appears to be on the rocks comprising of these groups along the Dauberman Road line. The dip is corroborated by the elevations of the tops (562 and 469 feet above mean sea level, respectively) and bottoms (230 and 144 feet above mean sea level, respectively) of these Groups in test holes SSC-1 and SSC-3. Some of the decrease in elevation of the rocks of the Galena and Platteville Groups between the north and south ends of the Dauberman Road line is the result of a small normal fault, downthrown to the south between shot points 840 and 850 on section D2 (figs. 1 and 12).

The next reflection on sections D1, D2, and D3, in order of increasing two-way travel time, corresponds to the unconformity at the base of the Ancell Group (fig. 2). In the study area, the St. Peter Sandstone may rest unconformably on rocks as young as the Shakopee Dolomite of the Prairie du Chien Group (Lower Ordovician) and as old as the Franconia Sandstone Formation (Upper Cambrian) (Buschbach 1964). Test holes SSC-1 and SSC-3 at the north and south ends of the Dauberman Road line encountered the Eminence Dolomite (Lower Cambrian) and the Oneota Dolomite, respectively, below the St. Peter. The quality of the reflection emanating from this unconformity is inconsistent. In some places, the reflection is strong and coherent, indicating a sharply defined surface where the St. Peter, resting on unweathered carbonates, provides a sizeable acoustic impedance contrast. In other places, where the reflection becomes weak and incoherent, the St. Peter may be resting on rubble and/or formations with similar acoustic properties.

Along the Dauberman Road line, the exact location where rocks of the Prairie du Chien Group terminate on the subjacent Eminence Formation is difficult to determine. However, the northerly dipping reflection at shot point 1350 on section D3 (figs. 1 and 12), which apparently corresponds to the top of the Oneota Formation, together with cycle terminations farther north at shot points 1050 and 920, are indicative of the northernmost extent of the Prairie du Chien Group. Due to the unconformity at its base, the thickness of the Ancell Group in the study area varies. This is also the case along the Dauberman Road line.

Below the sub-St. Peter unconformity were several significant reflections in Cambrian strata. Near 0.220 second at the north end of section D1 (figs. 1 and 12) is a reflection corresponding to the contact between the Potosi Dolomite and the Franconian Sandstone. This reflection, which exhibits negative polarity, can be followed to the south well into section D3 (fig. 12), where it becomes discontinuous. At approximately 0.295 second at the north end of section D1 is a strong reflection that corresponds to the top of the Lombard Dolomite Member of the Eau Claire Formation. This reflection could be followed easily on most of sections D1, D2, and D3, although it diminished in strength near the south end of the section D3 (fig. 12). The top of the Lombard along the Dauberman Road line dips slightly to the south.

In addition to the previously mentioned small normal fault near shot point 850 in section D2 (figs. 1 and 12), a second small normal fault that cuts strata older than the St. Peter appears to be near shot point 610 on section D3 (figs. 1 and 12). The only other structure of significance along the Dauberman Road line occurs between shot point 55 and 155 on Section D2 near the East-West Tollway (figs. 1 and 12), where strata older than the St. Peter appear to have been downwarped significantly prior to deposition of the St. Peter.

Fermilab Seismic Reflection Line

The seismic reflection line at Fermilab in T39N R9E, Du Page County, Illinois (figs. 1 and 13) was shot from north to south in three segments, NAL-1, NAL-2, and NAL-3; lengths were 0.64, 0.43, and 2.08 miles, respectively. Because some segments overlapped, the total length of the line was approximately 3.1 miles.

Field parameters and the processing sequence for each segment of the Fermilab line are given in appendix B. Although the recorded length for each segment was 1.0 second, only 0.5 second was processed for segments NAL-1 and NAL-2 and only 0.6 second for segment NAL-3 (fig. 13). Like section 1 of the Dauberman Road seismic reflection line, the recorded lengths of the Fermilab sections were adequate for the intended purpose of this line, which was to examine the Ordovician strata in which the SSC experimental chambers were to be constructed. Like the Dauberman Road sections, the Fermilab sections do not contain information about the lower Mt. Simon and Precambrian rocks.

Surface elevations along the Fermilab seismic reflection line range from 730 to 750 feet above mean sea level with no discernible trend. Glacial drift thickness varies from 50 to 100 feet (Piskin and Bergstrom 1975). The bedrock surface is composed entirely of Silurian age-rocks (Willman et al. 1975; fig. 5).

The general quality of the seismic reflection data along the Fermilab line is fair. The quality is poor where noise levels from large pumps and compressors in the experimental area of Fermilab adversely affected the data. Reflections from the bedrock surface generally are inconsistent and difficult to follow. Test hole SSC-2 (fig. 6) near the south end of the Fermilab line shows that Silurian dolomite rests directly on Maquoketa Dolomite, and gradually changes to shale at the base of the Maquoketa. With no sharp lithologic break between the Silurian and Ordovician strata and a gradual decrease in seismic velocity through the transition from dolomite to shale within the Maquoketa (fig. 8), a strong reflection is not possible from the top of or within the Maquoketa Group. The reflection corresponding to the Maquoketa-Galena contact, although generally weak, can be followed across sections NAL-1, NAL-2, and NAL-3 (fig. 13). The reflection from the top of the Ancell Group is, for the most part, coherent and consistent. On the basis of information collected from test hole SSC-2, the Fermilab section NAL-3 shows St. Peter resting on Shakopee at the south end of the Fermilab line. The tops of the Franconia, Proviso, and Lombard Dolomite are easy to follow for a short distance, but farther to the south, although strong and coherent for short distances, they become discontinuous and difficult to follow. On section NAL-1 a noteworthy reflection emanates from the contact between the Galesville Sandstone Formation and the Proviso Siltstone Member of the Eau Claire Formation (the top of the Eau Claire). The upper part of the Proviso can be dolomitic (Buschbach 1964). This would be the case along section NAL-1, where a strong acoustic impedance contrast suggests a clastic-carbonate interface between the Galesville Sandstone and the Proviso Siltstone Member.

Along the Fermilab line most of the rocks show a slight southern component of dip. The thickness of the Galena-Platteville Groups, 221 feet in test hole SSC-2 near the south end of segment NAL-3, remains almost constant.

Between shot points 150 and 160 on section NAL-1 (figs. 1 and 13), the reflections associated with the Prairie du Chien Group and the Franconia Formation exhibit evidence of a small reverse fault upthrown on the north. Faulting cannot be traced into the overlying Ancell Group, nor can it be traced into the Franconia Formation for a significant distance. Deeper reflections exhibit evidence of upwarping in the lower strata south of the fault, indicative of a different, but nevertheless, consistent reaction to lateral compressive stresses.

Bristol Seismic Refraction Line

The Bristol seismic reflection line in T37N, R7E, Kendall County, Illinois (figs. 1 and 14) was shot in a north-south direction in two segments, BR-1 and BR-3. The segments are 0.96 and 0.60 mile long, respectively, for a total of 1.56 miles.

Field parameters and the processing sequence for each segment of the Bristol line are given in appendix C. The recorded length for each segment was 1.0 second, but only 0.5 second was processed for segment BR-1 and only 0.6 second for segment BR-3. The Bristol line was used to examine the continuity of the Galena-Platteville rocks in this area. Small-scale faulting in the Galena-Platteville was suspected on the basis of drilling and sampling in nearby test holes. Like the Dauberman Road and Fermilab seismic sections, the Bristol sections only provided informa-

tion about strata as deep as the upper part of the Mt. Simon. Although the same datum and sub-weathering velocity were used in processing the data of seismic sections BR-1 and BR-3 (fig. 14), a correction factor of 0.071 second was added to the datum correction of section BR-1. Thus reflections indicated on the BR-1 section will have two-way travel times, apparently 0.071 second greater than their counterparts in section BR-3.

Topographic relief on the earth's surface is small along the Bristol line, ranging from just over 660 feet to just below 650 feet above mean sea level. The thickness of the glacial drift along the Bristol line varies between 25 and 100 feet (Piskin and Bergstrom 1975). The bedrock surface is composed of carbonates of the Maquoketa Group at the north end of segment BR-1 and shales and carbonates of the Maquoketa Group elsewhere on this line (Willman et al. 1967) (fig. 5).

At a two-way travel time of approximately 0.190 second on seismic reflection section BR-1 (fig. 14), a reflection is interpreted as the top of the Maquoketa. This reflection becomes more coherent and continuous on section BR-3 (fig. 14) to the south where rocks of the Maquoketa Group form the bedrock surface. Between this reflection and the strong reflection associated with the top of the Galena (at about 0.220 second on section BR-1), short, discontinuous reflections, likely associated with the Ft. Atkinson Limestone (Maquoketa Group), can be seen. The reflection associated with the top of the Ancell Group is of lesser quality, but continuous and traceable. The reflection associated with the top of the Ancell Group occurs at about 0.250 second on section BR-1. At about 0.290 second on BR-1 is a reflection corresponding to the top of the Prairie du Chien Group (Ordovician). Rocks as young as the Shakopee Dolomite may form the surface of the unconformity at the top of this group (Buschbach 1964). Other notable reflections on BR-1 are associated with the tops of the Franconia Sandstone (0.330 second) and the Lombard Dolomite Member of the Eau Claire Formation (0.410 second). The reflection seen at about 0.330 second on the section BR-3 may correspond with the top of the Proviso Siltstone Member of the Eau Claire.

All reflections noted above generally are parallel, which is indicative of little or no thickening of strata along this short line. Evidence of a slight southern component of dip is on much of the strata along the Bristol line, but no evidence of faulting exists along the line.

Lily Lake Seismic Reflection Line

The Lily Lake seismic reflection line in T40 and 41N, R7E, Kane County, Illinois was shot in a north-south direction along Highway 47 through the town of Lily Lake (figs. 1 and 15). The line was approximately 4.22 miles long.

Field parameters and the processing sequence for this line are given in appendix D. Significant changes made on the Lily Lake line included dynamite (0.33 to 1.00 lb.) as the energy source and a recorded length of 2.0 seconds. Processing length was 1.0 second, enough time to include information about Precambrian rocks. This line was shot to examine the shallow Ordovician targets associated with the construction of the SSC tunnel and to determine the presence or absence of large-scale basement faulting in this region, which had been suggested by McGinnis (1966) primarily on the basis of interpretations of potential field data. The 1.0-second length of the seismic reflection section LL-1 (fig. 15) was adequate for both purposes.

Surface elevations on the Lily Lake line range from just over 1,010 feet above mean sea level at the northern end to about 880 feet above mean sea level near its southern end. The thickness of the glacial drift under the Lily Lake line is approximately 200 feet (Piskin and Bergstrom 1975). The bedrock surface along this line is composed entirely of rocks belonging to the Maquoketa Group (Willman et al. 1967; fig. 5).

The quality of the seismic reflection data on the Lily Lake line generally is good. Near the top of the LL-1 section (fig. 15), a strong reflection between 0.040 and 0.050 second likely corresponds to the Ft. Atkinson Limestone of the Maquoketa Group (Ordovician). In some places, the Ft. Atkinson Limestone appears to form the bedrock surface. Where it does not, a shallower reflection above it appears to be associated with the bedrock surface, perhaps composed of younger Brainard Formation shales. At 0.070 second is a strong reflection associated with the top of the

Galena. At 0.035 to 0.40 second below the top of the Galena reflection is a weaker but continuous reflection corresponding to the top of the Ancell Group. The parallelism of these latter two reflections indicates the uniform thickness of the Galena-Platteville Group along LL-1. A slight southern component of dip is on rocks of the Galena-Platteville Group on the Lily Lake line. At about 0.165 second at the southern end of section LL-1, a strong reflection is associated with the sub-St. Peter contact. This reflection likely emanates from the St. Peter resting on the Potosi Dolomite, but a deep hole at St. Charles, Illinois, about ten miles east of the southern end of the LL-1 line, encountered the Franconia Sandstone below the St. Peter (Buschbach 1964). Where the reflection from this surface is strong, the Potosi is likely present at the surface of the unconformity. Where the reflection is weak, the Franconia, which has less acoustic impedance than the Potosi, is present, or perhaps the Potosi is present, but with a rubble zone between it and the overlying St. Peter (Buschbach 1964). The very strong reflection at about 0.270 second corresponds to the top of the Lombard Dolomite. Along this line, the Lombard appears to be about 200 feet thick and flat lying. Below the Lombard reflection, the seismic section appears devoid of continuous reflections down to 0.640 seconds. This void corresponds to the predominately clastic rocks of the lower Eau Claire and Mt. Simon Formations. Occasionally, weak, short reflections occur near the base of the Mt. Simon, probably because of weak bedding or zones of especially dense cementation.

The basement surface, indicated by the strong reflection at about 0.640 second, also appears relatively flat lying along the Lily Lake line. Within the basement rocks no evidence of the large-scale basement faulting suggested by McGinnis (1966) exists.

Conclusions

The high-resolution seismic reflection profiling at four discrete locations around the proposed SSC ring proved to be viable in answering questions about the stratigraphy and structural geology at those locations, as well as providing significant insight into the geologic history of northeastern Illinois. The seismic reflection profiling provided considerably more information than previous geological and geotechnical studies, which relied on drill holes and downhole logging.

With the exception of a few interpreted minor faults, carbonate rocks of the Galena and Platteville Groups are relatively flat lying and uniform in thickness and lithology. This consistent stratigraphic relationship was desirable along the Dauberman Road and Fermilab lines (figs. 1, 12, and 13) where the chambers of the proposed SSC were to be located.

The seismic reflection sections near Bristol (figs. 1 and 14) showed no evidence of faulting in the rocks extending from the bedrock surface to the upper Cambrian. The results of previous test drilling and geologic mapping suggested the possibility of small-scale faulting in the Bristol area.

The Lily Lake seismic reflection section (figs. 1 and 15), which showed a strong, continuous reflection at the basement surface and provided information about basement rocks, did not show evidence of large-scale basement faulting interpreted from potential field data by McGinnis (1966).

A downwarping of strata below the St. Peter Sandstone (fig. 12) and a small reverse fault that cuts strata from the top of the Prairie du Chien Group down to the top of the Franconia Sandstone (fig. 13), are indicative of a compressive event across the study area prior to the deposition of the St. Peter.

A zone of small, parallel, high-angle normal faults that extend from the bedrock surface well into the Cambrian strata (fig. 12) is indicative of a tensional event younger than the Silurian Maquoketa rocks comprising the bedrock surface.

The seismic reflection sections were particularly useful in examining the deeper rocks of the study area because of the paucity of deep drill holes. The nature of the unconformable surface at the base of the Ancell Group can be observed on sections from all four seismic reflection lines (figs. 12, 13, 14, and 15). The basement surface on the Lily Lake seismic section (fig. 15) yields a reflection as strong and continuous as anywhere else in the state.

References

- Buschbach, T. C., 1964, Cambrian and Ordovician strata of northeastern Illinois: Illinois State Geological Survey, Report of Investigations 218, 90 p.
- Horberg, L., 1950, Bedrock topography of Illinois: Illinois State Geological Survey Bulletin 73, 111 p.
- Kempton, J. P., R. C. Vaiden, D. R. Kolata, P. B. DuMontelle, M. M. Killey, and R. A. Bauer, 1985, Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: Preliminary geological feasibility report: Illinois State Geological Survey Environmental Geology Notes 111, 63 p.
- Kolata, D. R., and A. M. Graese, 1983, Lithostratigraphy and depositional environments of the Maquoketa Group (Ordovician) in northern Illinois: Illinois State Geological Survey Circular 528, 49 p.
- Lineback, J. A., 1979, Quaternary deposits of Illinois: Illinois State Geological Survey map.
- McGinnis, L. D., 1966, Crustal tectonics and Precambrian basement in northwestern Illinois: Illinois State Geological Report of Investigations 219, 29 p.
- Piskin, K., and R. E. Bergstrom, 1967, Glacial drift in Illinois: Thickness and character: Illinois State Geological Survey Circular 416, 33 p.
- Piskin, K., and R. E. Bergstrom, 1975, Glacial drift in Illinois: Thickness and character: Illinois State Geological Survey Circular 490, 35 p.
- Vaiden, R. C., M. J. Hasek, C. R. Gendron, B. B. Curry, A. M. Graese, and R. A. Bauer, 1988, Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: Results of drilling large-diameter test hole in 1986: Illinois State Environmental Geology Note 124, 58 p.
- Walker, C., Jr., 1988, Shallow seismic profiling for a tunnel site near Chicago, Paper presented at 58th Annual International Meeting and Exhibition: Society of Exploration Geophysics, Anaheim, CA, Oct. 30-Nov. 3, 1988, 9 p.
- Willman, H. B., J. C. Frye, J. A. Simon, K. E. Clegg, D. H. Swann, E. Atherton, C. Collinson, J. A. Lineback, and T. C. Buschbach, 1967, Geologic Map of Illinois: Illinois State Geological Survey.
- Willman, H. B., and J. C. Frye, 1970, Pleistocene stratigraphy of Illinois: Illinois State Geological Survey Circular 94, 204 p.
- Willman, H. B., 1971, A summary of geology in the Chicago area: Illinois State Geological Survey Circular 460, 77 p.
- Willman, H. B., 1973, Rock stratigraphy of the Silurian Systems in northeastern and northwestern Illinois: Illinois State Geological Survey Circular 479, 55 p.
- Willman, H. B., E. Atherton, T. C. Buschbach, C. Collinson, J. C. Frye, M. E. Hopkins, J. A. Lineback, and J. A. Simon, 1975, Handbook of Illinois stratigraphy, Illinois State Geological Survey Bulletin 95, 261 p.
- Willman, H. B., and Kolata, D. R. 1978, The Platteville and Galena Groups in northern Illinois: Illinois State Geological Survey Circular 502, 75 p.

Appendix A Dauberman Road Field Parameters and Processing Sequence

Segment D-1		Segment D-2	
Field Parameters		Field Parameters	
Recording instruments	DFSV	Recording instruments	DFSV
Record length	1.0 sec	Record length	1.0 sec
Sample rate	.5 ms	Sample rate	.5 ms
Tape format	SEGB	Tape format	SEGB
Number of channels	72	Number of channels	72
Energy source	Airgun	Energy source	Airgun
Source interval	27.5 ft	Source interval	27.5 ft
Receiver type	Hydrophone P44	Receiver type	Hydrophone P44
Receivers per group	1	Receivers per group	1
Standard configuration	Split spread	Standard configuration	Split spread
Feet 1017.5-27.5 Sp 27.5-1017.5 feet		Feet 1017.5-27.5 Sp 27.5-1017.5 feet	
Recorded by	Walker Geophysical Co.	Recorded by	Walker Geophysical Co.
Date recorded	12/86-2/87	Date recorded	12/86-2/87
Processing Sequence			
1. Demultiplex and QC display		1. Demultiplex and QC display	
2. Spherical divergence and gain recovery		2. Spherical divergence and gain recovery	
3. Trace editing		3. Trace editing	
4. Deconvolution type: band limited		4. Deconvolution type: band limited	
No. of gates	1	No. of gates	1
Design type	average autocorrelation	Design type	average autocorrelation
Frequency	70-300 Hz	Frequency	70-300 Hz
Operator length	51 ms	Operator length	51 ms
White noise	50% outside 0% inside	White noise	50% outside 0% inside
5. Source and receiver datum correction		5. Source and receiver datum correction	
Datum	830 ft	Datum	floating
VR	6500 ft/sec	VR	6500 ft/sec
6. Common depth point gather		6. Common depth point gather	
7. Velocity analysis via Digicon's Velfan		7. Velocity analysis via Digicon's Velfan	
8. Brute stack		8. Brute stack	
9. Residual static correction		9. Residual static correction	
10. Velocity analysis via Digicon's Velfan		10. Velocity analysis via Digicon's Velfan	
11. Residual static correction		11. Residual static correction	
12. Normal moveout correction		12. Normal moveout correction	
13. Mute		13. Mute	
14. Trace equalization		14. Trace equalization	
15. Common depth point stack 36 fold		15. Common depth point stack 36 fold	
16. Signal to noise enhancement (TAU-P method)		16. Signal to noise enhancement (TAU-P method)	
17. Digital filter type: bandpass		17. Digital filter type: bandpass	
Frequency	Time	Frequency	Time
90-200 Hz	0.000 sec	90-200 Hz	0.000 sec
80-180 Hz	0.250 sec	80-180 Hz	0.250 sec
70-160 Hz	0.500 sec	70-160 Hz	0.500 sec
18. Trace equalization		18. Trace equalization	
19. Film display		19. Final datum correction	
Polarity convention		Datum	830 ft
		VR	6500 ft/sec
20. Film display		20. Film display	
Polarity convention			

All data processing techniques used have maintained the recording polarity.

Normal polarity, a positive number, will be a filled peak; a negative number will be a trough (SEGY standard).

Processed by Digicon Geophysical Corp.

Houston Processing Center

Land Department

Segment D-3	
Recording Parameters	
Field acquisition	Walker Geophysical
Date recorded	Aug. 12-Sept. 28, 1987
Field reel numbers	1-11
No. of shots on line	1105
Recording instruments	DFSV
Recording filter	Low 90 high 512 Hz
Notch	Out
Record length	1 sec
Sample rate	.5 ms
No. of channels	72 (3x24)
Tape format	SEGB
Direction of shooting	N-S
Energy source	Airgun
Receiver	P44 10 Hz
Source interval	22 ft
Group interval	22 ft
Spread	792-22-Sp-22-770

Processing Sequence

1. Demultiplex
2. Minimum phase anti-alias filter application
3. Resample to 1 ms
4. Spherical divergence
5. Display field records
6. Trace editing
7. Source and receiver static correction

Datum	floating
VR	6500 ft/sec
8. Common depth point gather
9. Initial velocity analysis
10. Residual statics application
11. Spectral equalization

Frequency	70-250 Hz
-----------	-----------
12. Velocity analysis
13. Residual statics application

Frequency dependent	
---------------------	--
14. Normal moveout correction
15. Early mute
16. Trace equalization
17. Common depth point stack 36 fold
18. Deconvolution

Type:	band limited
Gap length	5 ms
Frequency	70-250 Hz
White noise	50% outside 0% inside
Design gate	0.40-0.400 sec
19. Signal to noise enhancement
20. Digital filter

Type:	bandpass
Time (sec)	Frequency (Hz)
0.0-0.07	80-240
0.095	80-200
0.350	70-180
0.600	70-140
21. Trace equalization
22. Final datum correction

Datum	830 ft
VR	6500 ft/sec
23. Film display

30 TPI 20 IPS	(1 in = 330 ft)
Polarity convention	

Appendix B Fermilab Parameters and Processing Sequence

Segment NAL-1

Recording Parameters

Field acquisition	Walker Geophysical
Date recorded	Oct. 26-Nov. 28, 1987
Field reel numbers	13,14
No. of shots on line	153
Recording instruments	DFSV
Recording filter	Low 90 high 512 Hz
Notch	Out
Record length	1 sec
Sample rate	.5 ms
No. of channels	72 (3x24)
Tape format	SEGB
Direction of shooting	N-S
Energy source	Airgun
Receiver	P44 10 Hz
Source interval	22 ft
Group interval	22 ft
Spread	792-22-Sp-22-770

Processing Sequence

1. Demultiplex
2. Minimum phase anti-alias filter application
3. Resample to 1 ms
4. Spherical divergence
5. Display field records
6. Trace editing
7. Source and receiver static correction

Datum	700 ft
VR	6500 ft/sec
8. Common depth point gather
9. Initial velocity analysis
10. Residual statics application
11. Spectral equalization

Frequency	70-250 Hz
-----------	-----------
12. Velocity analysis
13. Residual statics application

Frequency dependent	
---------------------	--
14. Normal moveout correction
15. Early mute
16. Trace equalization
17. Common depth point stack 36 fold
18. Deconvolution

Type:	band limited
Gap length	5 ms.
Frequency	70-250 Hz
White noise	100% outside 0% inside
Design gate	0.080-0.400 sec
19. Signal to noise enhancement
20. Digital filter

Type:	bandpass
Time (sec)	Frequency (Hz)
0.0-0.07	80-240
0.095	80-200
0.350	70-180
0.600	70-140
21. Trace equalization
22. Film display

30 TPI 20 IPS	(1 in = 330 ft)
Polarity convention	

Segment NAL-2**Recording Parameters**

Field acquisition Walker Geophysical
 Date recorded Nov. 22, 1987
 Field reel numbers 17
 No. of shots on line 104
 Recording instruments DFSV
 Recording filter Low 90 high 512 Hz
 Notch Out
 Record length 1 sec
 Sample rate .5 ms
 No. of channels 72 (3x24)
 Tape format SEGB
 Direction of shooting NW-SE
 Energy source Airgun
 Receiver P44 10 Hz
 Source interval 22 ft
 Group interval 22 ft
 Spread 792-22-Sp-22-770

Processing Sequence

1. Demultiplex
2. Minimum phase anti-alias filter application
3. Resample to 1 ms
4. Spherical divergence
5. Display field records
6. Trace editing
7. Source and receiver static correction

Datum	730 ft
VR	6500 ft/sec
8. Deconvolution

Type:	Spiking
Design gate	Offset Gate
0	50 ms - 400 ms
1584	310 ms - 500 ms
9. Common depth point gather
10. Initial velocity analysis
11. Residual statics application
12. Secondary velocity analysis
13. Trim statics
14. Final velocity analysis
15. Residual statics application

Frequency dependent

16. Normal moveout correction
17. Early mute
18. Trace equalization
19. Common depth point stack 36 fold
20. Deconvolution

Type:	band limited
Gap length	6 ms
Frequency	70-250 Hz
White noise	100% outside 0% inside
Design gate	0.20-0.340 sec
21. Signal to noise enhancement
22. Digital filter

Type:	bandpass
Time (sec)	Frequency (Hz)
0.0-0.07	80-240
0.095	80-200
0.350	70-180
0.500	70-140
23. Trace equalization
24. Final datum correction

Datum	700 ft
VR	6500 ft/sec
25. Film display

30 TPI 20 IPS (1 in = 330 ft)
Polarity convention

Segment NAL-3**Recording Parameters**

Field acquisition Walker Geophysical
 Date recorded Dec. 5, 1987-Jan. 30, 1988
 Field reel numbers 18-24
 No. of shots on line 494
 Recording instruments DFSV
 Recording filter Low 90 high 512 Hz
 Notch Out
 Record length 1 sec
 Sample rate .5 ms
 No. of channels 72 (3x24) and 96 (4x24)
 Tape format SEGB
 Direction of shooting NNE-SSW
 Energy source Airgun
 Receiver P44 10 Hz
 Source interval 22 ft
 Group interval 22 ft
 72 channel spread 792-22-Sp-22-770
 96 channel spread 1056-22-Sp-22-1056

Processing Sequence

1. Demultiplex
2. Minimum phase anti-alias filter application
3. Resample to 1 ms
4. Spherical divergence
5. Display field records
6. Trace editing
7. Source and receiver static correction

Datum	700 ft
VR	6500 ft/sec
8. Deconvolution

Type:	Spiking
Design gate	Offset Gate
0	50 ms - 400 ms
1584	310 ms - 500 ms
9. Common depth point gather
10. Initial velocity analysis
11. Residual statics application
12. Secondary velocity analysis
13. Trim statics
14. Final velocity analysis
15. Residual statics application

Frequency dependent

16. Normal moveout correction
17. Early mute
18. Trace equalization
19. Common depth point stack 36 & 48 fold
20. Deconvolution

Type:	band limited
Gap length	6 ms
Frequency	70-250 Hz
White noise	100% outside 0% inside
Design gate	0.20-0.340 sec
21. Signal to noise enhancement
22. Digital filter

Type:	bandpass
Time (sec)	Frequency (Hz)
0.0-0.07	80-240
0.095	80-200
0.350	70-180
0.500	70-140
23. Trace equalization
24. Film display

30 TPI 20 IPS (1 in = 330 ft)
Polarity convention

Appendix C Bristol Field Parameters and Processing Sequence

Segment BR-1		Segment BR-3			
Field Parameters		Recording Parameters			
Recording instruments	DFSV	Instruments			
Recording filter	90/36 - 512/72 (Hz/DB/Oct)	Type	DFS V	Sample Interval	.5 ms
Record length	Notch out	Format	SEG B	Record length	1 sec
Sample rate	0.5 sec	Gain control	IFP	Filter	90/36-360/72 Hz
Number of channels	.5 ms	Source			
Energy source	3 x 24	Type	Airgun	Airgun	
Source interval	Airgun	Interval	22 ft	Direction shot	?
Source depth	22 ft	Cable			
Pops/S. P.	9 ft	Channels	72 (3 x 24)	Interval	22 ft
Gun size	3	Geophone type	P44	Geophone Freq	10 Hz
Receiver type	10 C. I.	Array	Inline	Spacing	unknown
Receiver interval	Hydrophone - P44 (10 Hz)	Geophones/stat	unknown		
Receivers per group	22 ft	Processing Sequence			
Standard configuration	1	1. Datum elevation	830 ft		
Direction of shooting	814-220 ft - Sp -220-814 ft	2. Subweathering velocity	6500 ft/sec.		
Recorded by	North to south	3. Date processed	June 1988		
Recorded for	Walker Geophysical Co.	4. Demultiplex			
	Illinois State Geological	5. Shot and trace edit			
Date recorded	Survey	6. Gain recovery			
	May 17-20, 1988	7. Common midpoint sort			
Processing Sequence		8. Datum statics			
Processing length	.5 sec	Correction to floating datum			
Sample rate	1 ms	9. Initial velocity analysis			
1. Demultiplex and QC display		10. Surface consistent residual statics			
2. Resample	.5 to 1 ms	11. Final velocity analysis			
3. Spherical divergence and gain recovery		12. Normal moveout removal			
4. Trace editing		13. Mute			
5. Deconvolution type: band limited		14. Amplitude equalization			
No. of gates	1	15. Datum statics			
Design type	average autocorrelation	Correction to datum			
Frequency	60-320 Hz	16. 3600% stack			
Operator length	51 ms	17. Predictive deconvolution			
White noise	50% outside 0% inside	Operator length	50 ms		
6. Source and receiver datum correction		Prediction lag	10 ms		
Datum	600 ft	Design window	100-500 ms		
VR	6500 ft/sec	18. Signal enhancement			
7. Common depth point gather		19. Wave equation migration			
8. Initial velocity analysis		20. Bandpass filter	80 - 192 Hz		
9. Residual statics		22. Automatic gain control	200 ms		
10. Final velocity analysis		23. Display			
11. Normal moveout correction		20 tr/in	20 in/s		
12. Mute		Polarity	Black peaks are positive		
13. Time variant scaling					
14. Common depth point stack					
15. Datum correction (+71 ms.)					
Datum	830 ft				
VR	6500 ft/sec				
16. Spectral enhancement	60 - 200 Hz				
17. Digital filter type: bandpass					
Frequency	Time				
60-200 Hz	0.0 - 0.5 sec				
18. TAU-P domain signal enhancement					
19. Time variant scaling					

Appendix D Lily Lake Field Parameters and Processing Sequence

Field Parameters

Recording instruments	DFSV
Recording filter	90/36 - 360/72 (Hz/DB/Oct)
Record length	Notch out 2.0 sec
Sample rate	1 ms
Number of channels	56
Energy source	Dynamite
Source interval	55 ft
Source depth	24 ft
Charge size	.33 to 1 lb.
Receiver type	Hydrophone - P44 (10 Hz)
Receiver interval	55 ft
Receivers per group	1
Standard configuration	SP - Ch. #1 - Ch. #5 0 - 55 - 3080 ft
Direction of shooting	North to south
Recorded by	Walker Geophysical Co.
Recorded for	Illinois State Geological Survey
Date recorded	March 16-19, 1986

Processing Sequence

- | | |
|---|-------------------------|
| Processing length | 1 sec |
| Sample rate | 2 ms |
| 1. Demultiplex and QC display | |
| 2. Resample 1 to 2 ms | |
| 3. Spherical divergence and gain recovery | |
| 4. Trace editing | |
| 5. Deconvolution type: band limited | |
| No. of gates | 1 |
| Design type | average autocorrelation |
| Frequency | 70-250 Hz |
| Operator length | 81 ms |
| White noise | 50% outside 0% inside |
| 6. Source and receiver datum correction | |
| Datum | 830 ft |
| VR | 6500 ft/sec |
| 7. Common depth point gather | |
| 8. Initial velocity analysis | |
| 9. Residual statics | |
| 10. Final velocity analysis | |
| 11. Normal moveout correction | |
| 12. Mute | |
| 13. Residual statics | |
| 14. Time variant scaling | |
| 15. Common depth point stack | |
| 16. Spectral enhancement | |
| 50-150 Hz | |
| 17. Digital filter type: bandpass | |
| Frequency | Time |
| 50-150 Hz | 0.0-1.0 sec |
| 18. TAU-P domain signal enhancement | |
| 19. Time variant scaling | |

II Seismic Refraction Profiling

Figure 1 Index map--location of seismic refraction profiles.

Introduction

More than 80 line-miles of seismic refraction data were gathered in Kane, Kendall, Du Page, and Will Counties, Illinois (fig. 1) to define the geologic framework of the near-surface deposits in the proposed site for the Superconducting Super Collider (SSC). The results of this seismic refraction survey provided information relevant not only to the construction of the SSC tunnel and the location of its attendant vertical service shafts, but also to other future construction and to evaluation of groundwater, aggregate (crushed stone), and sand and gravel resources in the region.

The results of the seismic refraction survey include information on compressional wave velocities of the glacial drift and rocks in the bedrock surface (appendix A), which permit inferences to be made concerning the lithologic character of the glacial drift and the bedrock surface. Low velocities of the glacial drift may be indicative of sand and gravel deposits; higher velocities may be indicative of till. In an area where rocks that constitute the bedrock surface have a uniform lithology, lower velocities likely correspond to pronounced weathering and/or fracturing. Fractures in the upper bedrock often serve as conduits for transmitting sizeable quantities of groundwater in this region.

Table 1 Length of cable and geophone intervals for estimated depth to bedrock in the study area.

Cable length (ft)	Geophone interval (ft)	Estimated depth to bedrock (ft)
300	25	<30
600	50	30-150
1200	100	150-300

The results of the seismic refraction survey also include drift thickness or depth-to-bedrock values (appendix A). Together with information from existing discrete drill holes, the depth-to-bedrock values have been used to construct an improved bedrock topography map and delineate buried bedrock valleys. When filled with coarse-grained glacial deposits, the bedrock valleys are often sites of shallow groundwater supplies.

Seismic Refraction Method

In the seismic refraction method, the time between the initiation of seismic waves by an explosion or some other energy source and the first disturbances indicated by a geophone at some measured distances from the energy source (shot point) are observed. The first disturbances or arrivals correspond to the onset of compressional waves, the fastest traveling waves. According to Fermat's principle, the waves that cause the first disturbances are the ones that have traveled the minimum time path between the shot point and the geophones. By observing first arrivals for several shot-to-geophone distances, a time-distance plot can be constructed.

The time-distance plot can be analyzed by comparing the variation of minimum time paths with distance. Deductions can be made about the nature and depth of the elastic discontinuities (velocity discontinuities) required to account for the observed time-distance relationships. Elastic discontinuities then may be interpreted to define the nature, depth, and orientation of geologic units below the earth's surface (Nettleton, 1940).

Successful application of the seismic refraction method requires that the compressional wave velocities of the geologic units of interest increase monotonically with depth. This requirement was met in the SSC study area, where there were essentially three shallow geologic units of interest:

- the so-called weathered layer at the earth's surface, which is generally quite thin and has a relatively low velocity;
- the layer of unconsolidated deposits, consisting of glacial till or sand and gravel, which has a higher velocity; and
- the bedrock, which has a still higher velocity, even where it is weathered and/or fractured.

Difficulties arise using the seismic refraction method when a velocity inversion exists at depth, that is, when a geologic unit has a velocity less than that of the overlying unit. This situation commonly occurs in bedrock valleys where compact glacial tills may overlie the loose, valley-fill sands and gravels.

The low velocity unit is called the hidden layer because it is not apparent on time-distance plots of first arrivals. Straightforward application of analytical interpretive techniques, which assume monotonically increasing velocities with depth, will yield erroneously excessive depths to all elastic discontinuities below the hidden layer. In the case of a bedrock valley containing a unit of thick basal sand and gravel overlain by a compact till unit, the calculated depth to the valley floor will be greater than it is in reality. This means that the thalwegs of such bedrock valleys will be exaggerated and, therefore, more readily discerned; but accurate determination of depth to the valley floor and thickness of the hidden sand and gravel unit requires reference to the nearest drill holes that penetrate bedrock.

* Shotpoint
 △ Geophone

Figure 2 Shot and geophone arrays used with FRAC and SIPT programs

Equipment

Seismic refraction data were acquired using two multichannel signal-enhancement seismographs (EG&G Geometrics models ES-2415F and ES-1225) from the Illinois State Geological Survey. The 24-channel ES-2415F was used for most of the data acquisition. The 12-channel ES-1225, which is lighter and more portable, was used when it was necessary to hand-carry a seismograph to a field site. Mark Products 14 Hz vertical component geophones were used for detecting first arrivals.

Field Procedures

To obtain optimum results from shallow refraction surveying, it is necessary to choose appropriate shot and geophone arrays. These choices depend primarily on the layering parameters (velocities and thicknesses) of the near-surface materials and depth to the lowest refracting interface of interest. It is also important that the shot and geophone arrays are compatible with computer programs for processing and interpreting the data.

In this study, the lowest refracting interface of interest was the glacial drift-bedrock contact. Estimates of the depth to this interface and the layering parameters of the near surface materials were made from drill hole information and results of previous seismic refraction work.

Table 1 summarizes cable length and geophone intervals used for the estimated depth to bedrock throughout the study area.

The computer programs, FRAC and SIPT-1, used for processing and interpreting the data gathered in this survey, were compatible with the shot and geophone arrays shown in figure 2.

Dynamite charges, detonated in holes 4 to 5 feet deep, were the energy sources employed in most of the seismic refraction surveying. The size of the charges ranged from as small as 1/6 pound to as large as 1 pound, depending on the character of the unconsolidated, near-surface deposits and the estimated depth to bedrock. Where utilities and other cultural obstructions prevented the use of dynamite, a self-propelled, drop-hammer, pavement-breaking machine was used as a "thumper" source. Because the thumper does not provide nearly as much energy in a single blow as a dynamite blast, signals from several blows of the thumper had to be stacked before printing a seismic record.

Processing of Seismic Refraction Data

The data processing for the study consisted of assembling seismic refraction information, constructing an accurate index map to show locations of all seismic refraction profiles in the SSC study area (fig. 1), and preparing observed seismic refraction data for input into computer programs. The programs produce the layering parameter (velocity and thickness) solutions, which can be interpreted to define the nature, depth, and orientation of geologic units near the earth's surface.

First-arrival times were picked manually from printed records and plotted against distances from shot points to geophones. The least-squares line segments associated with discrete near-surface geologic units were fitted to the time-distance plots. Intercept times and slopes of the line segments were determined. The inverse of the slope of the line segment passing through the origin is the true velocity of the weathered surficial material. Where the weathered layer is relatively thin compared to geophone spacing, there may be no evidence of the weathered layer on the time-distance plot. In such cases a "true" velocity of 1,500 ft/sec was assigned to the weathered layer. The inverse of the slopes of the other two line segments are apparent velocities of the layer of unconsolidated deposits and the bedrock surface. The relationship of an apparent velocity to the true velocity of a geologic unit depends on the direction and amount of dip on the upper surface of a geologic unit under a seismic refraction profile.

The final step in preparing input to the seismic refraction computer programs, FRAC and SIPT-1, was determining shot point and geophone elevations from 7.5 minute topographic maps.

The FRAC program for inverting seismic refraction data follows a method set forth by Heiland (1940), which assumes that velocity increases monotonically with depth and planar surfaces bound the near-surface geologic units of interest during the seismic refraction profile. Heiland's method requires reverse profiling, that is, first-arrival times from shots placed at both ends of the seismic refraction profile are employed. The input to the program includes shot elevation, intercept times, and velocities associated with both the forward and the reverse shots. As mentioned above, except for the weathered layer, the input velocities are apparent velocities. The output from this program includes depths to the tops of layers corresponding to geologic units under the shot points and the true velocity of each layer.

SIPT-1 (Seismic Interpretation Program Two) was used to process much of the seismic refraction data in this study. The program, originally developed by Scott et al. (1972) to run on mainframe computers, was modified later by Haeni (1986) for microcomputer use.

Like the FRAC program, the algorithm of the SIPT-1 program also assumes velocity increases monotonically with depth; but unlike the FRAC program, the algorithm of the SIPT-1 program assumes all layer boundaries are represented by a series of straight-line segments connected end-to-end beneath geophone locations and extended from one end of the seismic refraction profile to the other.

The SIPT-1 program is based on the delay-time method described by Pakiser and Black (1957), but it also uses an interactive ray-tracing technique developed by Scott et al. (1972) to minimize discrepancies between the measured and computed first-arrival times. The program requires data obtained by overlapping arrays of 12 geophones and locating shots at the ends and offset from the ends of the geophone arrays (fig. 2). The input to the program includes shot locations and elevations, geophone locations and elevations, and first-arrival times. The output from the SIPT-1 program includes true velocity of each layer, depths to the tops of each layer below each geophone along with the corresponding elevation, and ray-tracing data. The SIPT-1 program is especially useful in processing seismic refraction data obtained in regions where the earth's surface and/or the boundaries of the subsurface geologic units are topographically rough.

Results

Results of the seismic refraction survey in the study for the Superconducting Super Collider are given in appendix A. Along with information concerning the locations of the seismic refraction

profile, this appendix includes compressional wave velocities of the weathered layer, the subjacent layer of unconsolidated deposits, and the bedrock surface beneath the profiles. The primary value of the velocity data is that they allow inferences to be made concerning the lithologic character of the near-surface deposits. The velocity data also are valuable in defining those areas where a bedrock surface of a constant lithology has experienced considerable weathering and/or fracturing. Appendix A also includes the elevation of the earth's surface and depths to the top of the layer of unconsolidated deposits and to the bedrock surface beneath the end points of each seismic refraction profile.

As mentioned above, a constant compressional wave velocity of 1,500 ft/sec was assigned to the thin weathered layer at the earth's surface. Velocities associated with the layer of unconsolidated deposits below the weathered layer and above the bedrock surface range from slightly less than 3,000 ft/sec to slightly more than 8,000 ft/sec. Velocities less than 4,500 ft/sec in the unconsolidated deposits commonly correspond to loose sands and gravels, whereas velocities greater than 4,500 ft/sec correspond to glacial tills. Velocities associated with the bedrock surface range from as low as 9,000 ft/sec to more than 20,000 ft/sec. Lower velocities for the bedrock surface correspond to clastic rocks and higher velocities correspond to carbonate rocks. However, weathering and/or fracturing of the bedrock may result in anomalously lower velocities. Some of the lower velocities associated with the intermediate layer of unconsolidated deposits may correspond to materials that make up the weathered layer and some of the higher velocities associated with the intermediate layer may correspond to rocks composing the bedrock surface. In such cases, information gathered from nearby boreholes can often help in assigning velocities to the proper geologic units.

Bedrock surface elevations vary considerably within the study area (fig. 3). Elevations as low as 381 feet and as high as 869 feet above mean sea level have been determined using the seismic refraction data. Glacial drift thickness in excess of 300 feet has been noted.

Summary

More than 80 miles of seismic refraction profiling provided additional information to the database on the near-surface geologic framework of northeastern Illinois. This database is important in solving a number of local and regional geological, hydrological, and engineering problems.

An updated bedrock topography map (fig. 3), which incorporates information gathered in this study, has relevance not only to future construction, but also to the location of shallow groundwater and aggregate resources. Buried bedrock valleys often contain large quantities of sand and gravel; thus, these valleys often serve as conduits for shallow groundwater supplies. The location of these shallow aquifers also is an important consideration in the location of waste disposal sites. The additional information provided by the seismic refraction surveying on depth to bedrock and the nature of both unconsolidated deposits and the bedrock surface (inferred from velocity data) will be useful in siting future sand and gravel pits and quarrying operations.

Figure 3 Bedrock topography map of study area.

Contour interval 50 ft

References

- Dobrin, M. B., 1976, Introduction to geophysical prospecting: McGraw-Hill Book Co., New York, 630 p.
- Haeni, F. P., 1986, Application of seismic refraction methods in groundwater modelling studies in New England: Geophysics, v. 51, pp. 236-249.
- Heiland, C. A., 1968, Geophysical exploration: Hafner Publishing Co., New York, 1013 p.
- Nettleton, L. L., 1940, Geophysical prospecting for oil: McGraw-Hill Book Co., Inc. New York, 444 p.
- Pakiser, L. C., and R. A. Black, 1957, Exploring for ancient channels with the refraction seismograph: Geophysics, v. 22, no. 1, January, pp. 32-47.
- Scott, J. H., B. L. Tibbetts, and R. G. Burdick, 1972, Computer analysis of seismic refraction data: U.S. Bureau of Mines, RI 759S, 99 p.
- Sharma, D. V., 1976, Geophysical methods in geology: Elsevier Publishing Co., 428 p.
- Telford, W. M., L. P. Geldart, R. E. Sheriff, and D. A. Keys, 1976, Applied geophysics: Cambridge University Press, 860 p.

Appendix A Results of Seismic Refraction Profiling

Date	Profile	County	Sec	Twn	Rng	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Trend	Layer 1	Layer 2	Layer 3	Compressional wave velocities (ft./sec.)	Depth to top of layer 2 at endpoints (ft.)	Depth to top of layer 2 at endpoints (ft.)	Surface elevation at endpoints (ft. above MSL)	Bedrock elevation at endpoints (ft. above MSL)	Elev. 1	Elev. 2	7.5 Quad		
6/8/6	10	KANE	34	39N	6E	200SL, 50EL	1500SL, 50EL	1300	S-N	1500	5993	13319	13.8	12.1	133	171	759	765	BIG. ROCK			
6/8/6	11	KANE	34	39N	6E	1000SL, 50EL	2300SL, 50EL	1300	S-N	1500	5993	13319	11.5	15.5	159	116	770	762	BIG. ROCK			
6/8/6	12	KANE	34	39N	6E	2350NL, 50EL	1050NL, 50EL	1300	S-N	1500	6131	12407	9.8	6.8	86.7	84.3	755	755	BIG. ROCK			
6/8/6	13	KANE	34	39N	6E	1350NL, 50EL	50NL, 50EL	1300	S-N	1500	6131	12407	10.4	9.8	90.8	83.0	755	758	BIG. ROCK			
6/8/6	14	KANE	34	*27	39N	6E	350NL, 50EL	900SL, 50EL	1300	S-N	1500	6131	12407	7.4	8.3	82.5	71.3	758	758	BIG. ROCK		
6/8/6	15	KANE	27	39N	6E	1050NL, 50EL	2350SL, 50EL	1300	S-N	1500	7511	13298	6.9	11.1	83.7	99.2	780	785	BIG. ROCK			
6/8/6	16	KANE	27	39N	6E	2450SL, 50EL	3100SL, 50EL	650	S-N	1500	5949	14049	14.4	5.6	56.5	79.8	777	778	BIG. ROCK			
6/8/6	17	KANE	27,*22	39N	6E	800NL, 50EL	500SL, 50EL	1300	S-N	1500	5300	12851	11.1	13.3	80.0	65.0	785	790	BIG. ROCK			
6/8/6	18	KANE	22	39N	6E	150EL, 1400SL	975EL, 2400SL	1300	W-E	1500	5967	13936	7.6	22.4	64.7	22.4	800	790	735	768	BIG. ROCK	
6/8/6	19	KANE	22	39N	6E	650EL, 1900SL	1350EL, 2900SL	1300	W-E	1500	5967	13936	6.0	60.4	58.2	803	795	745	735	BIG. ROCK		
6/8/6	20	KANE	10	39N	6E	138NL, 50EL	1430NL, 50EL	1300	S-N	1500	6082	13812	8.4	4.8	175	167	844	840	669	673	MAPLE PARK	
6/8/6	21	KANE	10	39N	6E	2150SL, 50EL	850SL, 50EL	1300	S-N	1500	5925	14440	10.2	6.1	160	152	824	830	664	678	BIG. ROCK	
6/8/6	22	KANE	10,*15	39N	6E	1250SL, 50EL	50NL, 50EL	1300	S-N	1500	5925	14440	6.0	6.1	157	163	822	825	665	662	BIG. ROCK	
6/8/6	24	KANE	15	39N	6E	600SL, 50EL	1900SL, 50EL	1300	S-N	1500	6068	12664	18.7	10.6	106	132	810	810	704	678	BIG. ROCK	
6/8/6	25	KENDALL	6	37N	7E	1300NL, 25NL	1950NL, 25NL	650	W-E	1500	6210	19904	14.8	12.0	150	171	677	677	506	506	YORKVILLE	
6/8/6	26	KENDALL	6	37N	7E	1750NL, 25NL	2400WL, 25NL	650	W-E	1500	6210	19904	11.2	13.8	176	184	677	677	502	493	AURORA, SOUTH	
6/8/6	27	KANE	33	38N	8E	2950NL, 250SL	3600WL, 2250SL	650	W-E	1500	4975	12507	7.1	17.7	49.3	40.7	635	633	586	592	MAPLE PARK	
6/8/6	28	KANE	33	38N	8E	68WL, 25NL	1368WL, 25NL	1300	W-E	1500	7188	13160	10.5	13.0	141	157	638	630	581	688	MAPLE PARK	
6/8/6	29	KANE	33	38N	8E	1368WL, 25NL	2168WL, 25NL	1300	W-E	1500	6507	13056	7.7	17.4	141	157	845	845	845	845	MAPLE PARK	
6/8/6	30	KANE	11	39N	6E	1868WL, 25NL	3168WL, 25NL	1300	W-E	1500	6478	13247	6.7	8.7	156	111	850	838	694	727	MAPLE PARK	
6/8/6	31	KANE	11	39N	6E	1868WL, 25NL	3168WL, 25NL	1300	W-E	1500	5832	15620	1.6	3.5	167	89.4	842	837	675	748	MAPLE PARK	
6/8/6	32	KANE	11	39N	6E	2585EL, 25NL	1285EL, 25NL	1300	S-N	1500	6092	12980	13.3	14.8	80.5	104	875	868	795	764	MAPLE PARK	
6/8/6	33	KANE	11	39N	6E	1800NL, 1275WL	500NL, 1250WL	1300	S-N	1500	5988	14254	16.2	15.5	108	98.9	884	879	776	779	MAPLE PARK	
6/8/6	34	KANE	36	40N	6E	1750SL, 1275WL	3005SL, 1275WL	1300	S-N	1500	6092	12980	13.9	10.0	77.5	98.7	871	865	794	717	MAPLE PARK	
6/8/6	35	KANE	36	40N	6E	1000NL, 1250WL	200NL, 1250WL	1300	S-N	1500	6092	12980	9.9	10.2	143	161	865	871	722	710	MAPLE PARK	
6/8/6	36	KANE	36	*25	40N	6E	1000NL, 1250WL	200NL, 1250WL	1300	S-N	1500	6092	12980	7.0	7.8	162	170	868	865	706	695	MAPLE PARK
6/8/6	37	KANE	36	*25	40N	6E	600SL, 1250WL	1900SL, 1250WL	1300	S-N	1500	6092	12980	11.1	89.5	879	875	790	785	MAPLE PARK		
6/8/6	38	KANE	25	40N	6E	2250SL, 1250WL	3505SL, 1250WL	1300	S-N	1500	5128	15346	12.2	12.2	118	157	865	873	747	716	MAPLE PARK	
6/8/6	39	KANE	36	40N	6E	1400SL, 1250WL	2700SL, 1250WL	1300	S-N	1500	6328	11719	11.4	8.6	137	154	870	870	733	716	MAPLE PARK	
6/8/6	40	KANE	25	40N	6E	1750SL, 1275WL	3005SL, 1250WL	1300	S-N	1500	6092	12980	11.7	7.1	137	154	870	870	777	735	MAPLE PARK	
6/8/6	41	KANE	25	40N	6E	2200SL, 1250WL	3200SL, 1250WL	1300	S-N	1500	6455	13615	9.4	13.4	136	138	868	873	732	735	MAPLE PARK	
6/8/6	42	KANE	35	40N	6E	1900NL, 2600WL	600NL, 2600WL	1300	S-N	1500	6455	13615	11.9	11.2	161	163	868	881	708	718	MAPLE PARK	
6/8/6	43	KANE	35,*26	40N	6E	1100NL, 2600WL	200SL, 2600WL	1300	S-N	1500	5737	13681	11.8	18.5	149	183	874	887	725	704	ELBURN	
6/8/6	44	KANE	25	40N	6E	1900NL, 50NL	1900NL, 50NL	1300	W-E	1500	5737	13681	11.8	18.5	193	183	874	874	725	704	ELBURN	
6/8/6	45	KANE	25,*24	40N	6E	2650EL, 75NL	1350EL, 100SL	1300	W-E	1500	6047	15077	16.4	24.1	192	206	910	910	718	704	MAPLE PARK	
6/8/6	46	KANE	19	40N	7E	800WL, 200SL	2100WL, 275SL	1300	W-E	1500	6328	11719	11.7	11.7	125	144	846	846	721	702	MAPLE PARK	
6/8/6	47	KANE	2	39N	6E	83SL, 2550WL	1383SL, 2550WL	1300	S-N	1500	6284	13230	10.8	16.0	125	144	846	846	721	702	MAPLE PARK	
6/8/6	48	KANE	2	39N	6E	900SL, 2550WL	2100SL, 2550WL	1300	S-N	1500	6284	13230	11.3	10.1	121	130	846	851	725	721	MAPLE PARK	
6/8/6	49	KANE	2	39N	6E	1900NL, 2550WL	3000NL, 2550WL	1300	S-N	1500	5751	15423	3.2	11.6	150	133	850	865	700	732	MAPLE PARK	
6/8/6	50	KANE	3	38N	6E	881NL, 25EL	2181NL, 25EL	1300	S-N	1500	5886	16482	12.3	7.4	159	153	752	753	593	600	BIG. ROCK	
6/8/6	51	KANE	3	38N	6E	1650NL, 25EL	2950NL, 25EL	1300	S-N	1500	5886	16482	11.7	11.7	150	166	752	751	603	585	BIG. ROCK	
6/8/6	52	KANE	3	38N	6E	34SL, 25EL	3750NL, 25EL	1300	S-N	1500	5886	16482	12.7	20.0	144	148	748	753	604	605	BIG. ROCK	
6/8/6	53	KANE	3	38N	6E	1950SL, 25EL	650SL, 25EL	1300	W-E	1500	5886	16482	8.3	12.1	137	156	745	750	608	594	BIG. ROCK	
6/8/6	54	KANE	11	38N	6E	1358WL, 25SL	1358WL, 25SL	1300	W-E	1500	5369	18765	6.7	13.6	128	132	709	709	581	577	BIG. ROCK	
6/8/6	55	KANE	11	38N	6E	958WL, 25SL	2258WL, 25SL	1300	W-E	1500	5369	18765	12.9	2.5	125	117	709	711	584	594	BIG. ROCK	
6/8/6	56	KANE	11	38N	6E	3195WL, 25SL	4495WL, 25SL	1300	W-E	1500	6093	14124	15.0	14.1	70.8	89.3	709	706	638	617	BIG. ROCK	
6/8/6	57	KANE	11,*12	38N	6E	1275WL, 25SL	1625WL, 20SL	1300	W-E	1500	6093	14124	13.9	16.6	83.2	93.1	706	700	623	607	BIG. ROCK	
6/8/6	58	KANE	2	38N	6E	325WL, 20SL	1625WL, 20WL	1300	W-E	1500	5645	18554	15.0	12.2	159	151	743	741	584	590	BIG. ROCK	
6/8/6	59	KANE	2	38N	6E	1125WL, 20SL	2425WL, 20SL	1300	W-E	1500	5645	18554	7.4	15.0	152	137	740	734	588	597	BIG. ROCK	
6/8/6	60	KANE	35	39N	6E	161WL, 20SL	1461WL, 20SL	1300	W-E	1500	5690	15630	6.6	8.3	156	179	760	760	604	581	BIG. ROCK	
6/8/6	61	KANE	34	39N	6E	65EL, 20SL	1365EL, 20SL	1300	W-E	1500	6294	13636	10.0	6.4	138	162	769	760	631	598	BIG. ROCK	
6/8/6	62	KENDALL	7	37N	7E	100NL, 20EL	1400NL, 20EL	1300	S-N	1500	6615	18046	17.4	7.7	145	167	647	647	594	594	YORKVILLE	
6/8/6	63	KENDALL	4	37N	7E	500WL, 25NL	1150WL, 25NL	650	W-E	1500	5607	12878	6.4	18.2	70.1	18.2	658	657	588	639	YORKVILLE	
6/8/6	64	KENDALL	4	37N	7E	750WL, 25NL	100WL, 25NL	650	W-E	1500	5607	12878	11.6	10.8	44.9	45.8	662	658	617	612	YORKVILLE	
6/8/6	65	KENDALL	5	37N	7E	700EL, 25NL	2000EL, 25NL	1300	S-N	1500	5395	13094	17.9	12.3	106	73.3	670	669	596	596	YORKVILLE	
6/8/6	66	KENDALL	5	37N	7E	1700EL, 25NL	3000EL, 25NL	1300	W-E	1500	5395	13094	20.0	10.5	88.7	95.0	675	669	574	574	YORKVILLE	
6/8/6	67	KENDALL	5	37N	7E	2600WL, 25NL	1300WL, 25NL	1300	W-E	1500	5395	13094	28.4	16.2	92.9	89.5	673	673	580	584	YORKVILLE	

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

Appendix A *continued*

Date	Profile	County	Sec	Twn	Rng	Endpoint 1	Endpoint 2	Endpoint 3	Length of Profile (ft.)	Trend	Compressional wave velocities (ft./sec.)	Layer 1	Layer 2	Layer 3	Surface elevation at endpoints (ft. above MSL)	Bedrock elevation at endpoints (ft. above MSL)	Elev. 1	Elev. 2	7.5 Quad
6/86	68	KENDALL	5	37N	7E	300WL, 25NL	1600WL, 25NL	1300	W-E	1500	5395	13094	23.0	18.9	678	673	585	589	YORKVILLE
6/86	68	KENDALL	5-6	37N	7E	700EL, 25NL	400EL, 25NL	1300	W-E	1500	5395	13094	24.8	24.6	112	103	685	675	YORKVILLE
6/86	70	KENDALL	6	37N	7E	400EL, 25NL	1700EL, 25NL	1300	W-E	1500	5996	16395	29.8	30.8	120	144	677	662	557
6/86	71	KENDALL	6	37N	7E	1500EL, 25NL	2800EL, 25NL	1300	W-E	1500	5996	16395	16.3	23.0	153	139	675	680	522
6/86	72	KENDALL	6	37N	7E	2400EL, 25NL	3700EL, 25NL	1300	W-E	1500	5986	16395	16.1	15.7	151	141	675	675	525
6/86	73	KENDALL	6	37N	7E	1300WL, 25NL	2800WL, 25NL	1300	W-E	1500	5996	16395	13.9	15.5	154	145	675	675	530
6/86	74	KANE	31	38N	7E	25WL, 1125WL	1325WL, 1450WL	1300	S-N	1500	6524	15140	17.1	18.8	125	157	677	679	553
6/86	75	KANE	31	38N	7E	900SL, 1350WL	2150SL, 1650WL	1300	S-N	1500	6524	15140	23.9	20.4	145	159	687	680	542
6/86	76	KANE	31	38N	7E	1900SL, 1600WL	3150SL, 1900WL	1300	S-N	1500	6524	15140	15.9	26.7	154	155	678	682	524
6/86	77	KENDALL	6	37N	7E	50NL, 1300WL	1250NL, 1050WL	1300	S-N	1500	5133	15661	12.0	8.3	135	141	677	677	537
6/86	78	KANE	32	38N	7E	650SL, 300WL	2150SL, 300WL	1300	S-N	1500	6115	13053	15.0	9.7	131	68.2	690	675	559
6/86	79	KANE	32	38N	7E	1700SL, 300WL	2000SL, 300WL	1300	S-N	1500	6115	13053	9.8	11.7	70.7	77.6	675	680	602
6/86	80	KANE	32	38N	7E	2500SL, 300WL	3800SL, 300WL	1300	S-N	1500	6115	13053	13.0	6.6	62.7	113	677	680	614
6/86	81	KANE	31	38N	7E	2600SL, 1750WL	3850SL, 2150WL	1300	S-N	1500	6524	15140	19.3	19.6	154	136	681	685	527
6/86	82	KANE	10	38N	6E	41NL, 25EL	1341NL, 25EL	1300	S-N	1500	5910	19342	8.1	7.5	734	743	620	558	BIG.ROCK
6/86	83	KANE	10	38N	6E	841NL, 25EL	1341NL, 25EL	1300	S-N	1500	6210	19276	15.3	7.9	130	140	709	720	573
6/86	84	KANE	10	38N	6E	1741NL, 25EL	304NL, 25EL	1300	S-N	1500	6210	19276	8.9	7.7	142	150	715	723	573
6/86	85	KANE	10	38N	6E	2541NL, 25EL	3841NL, 25EL	1300	S-N	1500	6210	19276	6.9	9.4	152	723	730	575	BIG.ROCK
6/86	86	KANE	31	38N	6E	190SL, 25EL	660SL, 25EL	1300	S-N	1500	6210	19276	8.5	7.6	155	169	725	737	568
6/86	87	KANE	32,*31	38N	7E	250WL, 600NL	1050EL, 575NL	1300	W-E	1500	5766	13697	9.7	13.2	143	130	688	692	545
6/86	88	KENDALL	1	37N	7E	800EL, 1800NL	275EL, 1425NL	650	W-E	1500	6347	14222	12.3	14.1	63.7	45.3	662	662	598
6/86	89	KANE	31	38N	7E	2200EL, 570NL	900EL, 575NL	1300	W-E	1500	5895	13132	16.5	12.9	51.6	140	688	685	636
6/86	90	KANE	31	38N	7E	775WL, 950NL	3625EL, 575NL	1300	W-E	1500	5854	15322	4.0	12.2	66.4	78.8	693	688	627
6/86	91	KANE	36	38N	6E	2325EL, 560NL	3625EL, 575NL	1300	W-E	1500	6250	13650	15.3	13.8	87.0	104	687	670	600
6/86	92	KANE	22	40N	7E	2450SL, 1300WL	1150SL, 1300WL	1300	S-N	1500	6085	13884	20.0	17.0	259	189	903	898	644
6/86	93	KANE	36	40N	6E	1150EL, 1800SL	520EL, 1800SL	650	W-E	1500	5966	14932	14.2	16.6	109	118	880	880	771
6/86	94	KANE	20	40N	8E	875SL,-1150EL	225SL, 1100EL	650	S-N	1500	5484	13636	4.1	16.9	98.5	68.3	768	760	670
6/86	95	KANE	20	40N	8E	1000SL, 1500EL	325	W-E	1500	5840	17195	17.9	13.1	82.0	69.5	760	755	692	
6/86	96	KENDALL	6	37N	7E	1400WL, 2800SL	2675WL, 2525SL	1300	W-E	1500	5035	12661	38.2	23.6	38.2	118	680	682	642
6/86	97	KENDALL	6	37N	7E	2125WL, 2600SL	3400WL, 2300SL	1300	W-E	1500	5035	12661	20.9	12.6	108	147	680	675	572
6/86	98	KENDALL	6	37N	7E	1675EL, 2200SL	450EL, 1800SL	1300	W-E	1500	6772	16576	15.4	22.3	199	211	662	663	464
6/86	99	KENDALL	5	37N	7E	40WL, 1200SL	1675WL, 1200SL	1300	W-E	1500	5286	13287	13.6	20.6	107	78.1	666	666	599
6/86	100	KENDALL	5	37N	7E	1300WL, 1300SL	2550WL, 900SL	1300	W-E	1500	5286	12327	19.5	11.3	91.3	82.0	665	665	583
6/86	101	KENDALL	5	37N	7E	2150WL, 1050SL	3400WL, 625SL	1300	W-E	1500	5286	12327	11.7	13.4	64.6	63.9	667	663	602
6/86	102	KENDALL	5	37N	7E	1625EL, 560SL	375EL, 125SL	1300	W-E	1500	5286	12876	10.5	16.3	56.0	63.2	662	656	593
6/86	103	KENDALL	5-9	37N	7E	825EL, 307SL	1000WL, 375NL	1300	W-E	1500	5286	12876	5.2	0.2	71.3	72.3	656	585	578
6/86	104	KENDALL	9	37N	7E	1000WL, 375NL	1625WL, 500NL	650	W-E	1500	5180	13292	0.0	4.8	73.3	57.9	660	660	492
6/86	105	KENDALL	9	37N	7E	1450WL, 500NL	2075WL, 700NL	650	W-E	1500	5180	13292	7.2	5.8	46.0	61.9	660	660	598
6/86	106	KENDALL	9	37N	7E	1900WL, 650NL	2550WL, 650NL	650	W-E	1500	5180	13292	9.0	21.2	47.6	34.8	660	660	625
6/86	107	KENDALL	9	37N	7E	2400WL, 780NL	3050WL, 975WL	650	W-E	1500	5180	13292	26.5	12.3	29.1	12.3	660	660	648
6/86	108	KENDALL	11	37N	7E	525WL, 1650SL	1170WL, 1525SL	650	W-E	1500	6406	10321	4.5	9.2	4.5	1.1	650	650	609
6/86	109	KENDALL	11	37N	7E	950WL, 1550SL	1595WL, 1465SL	650	W-E	1500	5791	10900	3.1	6.2	50.7	61.6	652	652	662
6/86	110	KENDALL	11	37N	7E	1325WL, 1510SL	1970WL, 1400SL	650	W-E	1500	5921	13284	6.7	3.3	43.4	47.9	652	652	604
6/86	111	KENDALL	11	37N	7E	1750WL, 1425SL	2395WL, 1325SL	650	W-E	1500	6406	10321	9.2	15.7	23.6	23.7	650	650	626
6/86	112	KENDALL	11	37N	7E	2150WL, 2700SL	2790WL, 2475SL	650	W-E	1500	6406	10321	11.6	14.9	24.6	14.9	650	650	625
6/86	113	KENDALL	10	37N	7E	1950WL, 2800SL	3130WL, 3075SL	650	W-E	1500	5286	13074	4.5	8.6	58.4	31.1	652	652	594
6/86	114	KENDALL	10	37N	7E	1310WL, 3075SL	670WL, 3305SL	650	W-E	1500	5071	10900	3.1	6.2	50.7	61.6	652	652	604
6/86	115	KENDALL	10	37N	7E	670WL, 3350SL	100WL, 3600SL	650	W-E	1500	5921	13284	16.7	3.3	43.4	47.9	652	652	604
6/86	116	KENDALL	9	37N	7E	1400EL, 1250NL	760EL, 1425NL	650	W-E	1500	7541	16366	16.7	7.5	59.3	86.0	660	660	655
6/86	117	KENDALL	10	37N	7E	2150WL, 2700SL	2790WL, 2475SL	650	W-E	1500	7142	14577	8.4	5.6	52.7	57.1	650	650	593
6/86	118	KENDALL	10	37N	7E	2790WL, 2475SL	3430WL, 2225SL	650	W-E	1500	6666	15252	6.2	9.7	53.8	54.8	652	652	598
6/86	119	KENDALL	11	37N	7E	2870WL, 1225SL	3515WL, 1050SL	650	W-E	1500	5882	14398	18.2	13.1	33.9	66.8	650	650	617
6/86	120	KENDALL	11	37N	7E	3515WL, 1050SL	4160WL, 875SL	650	W-E	1500	5618	14560	12.2	9.7	54.4	63.9	650	650	596
6/86	121	KENDALL	13	37N	7E	2000WL, 20NL	2650WL, 20NL	650	W-E	1500	7914	14375	7.2	6.9	48.8	44.3	650	650	606
6/86	122	KENDALL	13	37N	7E	2650WL, 20NL	3300WL, 20NL	650	W-E	1500	7733	13451	6.9	5.4	37.2	23.9	645	645	608

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

ILLINOIS GEOLOGICAL SURVEY LIBRARY

Appendix A *continued*

Date	Profile	County	Sec	Twn	Rng	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Compressional wave velocities (ft./sec.)	Layer 1	Layer 2	Layer 3	Depth to top of layer 2 at endpoints (ft.)	Depth to top of layer 3 at endpoints (ft.)	Surface elevation at endpoints (ft. above MSL)	Bedrock elevation at endpoints (ft. above MSL)	Elev. 1	Elev. 2	Elev. 3
6/88	123	KENDALL	13	37N	7E	3300WL, 20NL	3950WL, 20NL	650	W-E	1500	15532	0	12.7	12.7	650	650	637	637	637
6/88	124	KENDALL	13	37N	7E	675WL, 20NL	675WL, 20NL	650	W-E	1500	15482	0	13.5	14.5	650	650	637	636	636
6/88	125	KENDALL	13	37N	7E	675WL, 20NL	25EL, 20NL	650	W-E	1500	15177	0	14.8	19.4	650	650	635	631	AUORA.SOUTH
6/88	126	KENDALL	13.*18	37N	7E	25EL, 20NL	625WL, 20NL	650	W-E	1500	15784	0	19.1	15.8	650	650	630	634	AUORA.SOUTH
6/88	127	KENDALL	18	37N	8E	625WL, 20NL	1275WL, 20NL	650	W-E	1500	15261	0	15.8	20.5	650	650	634	630	AUORA.SOUTH
6/88	128	KENDALL	18	37N	8E	1275WL, 20NL	1925WL, 20NL	650	W-E	1500	15426	0	17.8	20.3	650	650	632	630	AUORA.SOUTH
6/88	129	KENDALL	18	37N	8E	1925WL, 20NL	2575WL, 20NL	650	W-E	1500	16149	0	20.1	22.0	650	650	630	628	AUORA.SOUTH
6/88	130	KENDALL	18	37N	8E	2575WL, 20NL	3225WL, 75NL	650	W-E	1500	16149	0	21.9	21.4	650	650	628	629	AUORA.SOUTH
6/88	131	KENDALL	18.*17	37N	8E	3225WL, 75NL	400WL, 175NL	650	W-E	1500	16195	0	23.8	13.0	650	650	626	637	AUORA.SOUTH
6/88	132	KENDALL	10	37N	7E	2650NL, 2640WL	2000NL, 2640WL	650	S-N	1500	6734	14015	10.5	9.0	70.9	53.4	653	654	601
6/88	133	KENDALL	10	37N	7E	2640NL, 2640WL	1350NL, 2640WL	650	S-N	1500	12371	8.5	8.1	42.5	53.5	654	655	612	
6/88	134	KENDALL	10	37N	7E	1350NL, 2640WL	700NL, 2640WL	650	S-N	1500	5263	13376	7.8	5.9	52.0	51.2	655	657	603
6/88	135	KENDALL	10	37N	7E	700NL, 2640WL	50NL, 2640WL	650	S-N	1500	5556	12931	9.8	0.0	18.3	76.1	659	639	583
6/88	136	KENDALL	3	37N	7E	160NL, 2640WL	810NL, 2640WL	650	S-N	1500	6250	13192	9.2	11.1	30.7	11.2	660	660	629
6/88	137	KENDALL	3	37N	7E	810NL, 2640WL	460NL, 175NL	650	S-N	1500	6173	13332	6.2	7.7	35.8	37.2	660	660	624
6/88	138	KENDALL	3	37N	7E	1460NL, 2640WL	2110NL, 2640WL	650	S-N	1500	5680	14280	12.3	6.4	89.2	35.2	658	660	623
6/88	139	KENDALL	3	37N	7E	2700NL, 2640WL	3350NL, 2640WL	650	S-N	1500	5839	14185	6.8	3.6	58.8	77.0	660	665	625
6/88	140	KENDALL	3	37N	7E	3350NL, 2640WL	4000NL, 2640WL	650	S-N	1500	5199	12365	2.6	4.9	47.3	30.9	660	657	613
6/88	141	KENDALL	3	37N	7E	4000NL, 2640WL	4650NL, 2640WL	650	S-N	1500	5108	14084	6.3	3.8	61.6	53.7	657	657	603
6/88	142	WILL	6	37N	9E	1200WL, 2640WL	1200WL, 2505L	650	W-E	1500	6329	21889	6.2	164	6.5	179	695	695	523
6/88	143	WILL	6	37N	9E	625WL, 2810SL	1200WL, 2505L	650	W-E	1500	5839	14280	12.3	6.4	89.2	135	692	695	603
6/88	144	WILL	6	37N	9E	25WL, 2675NL	625WL, 2810SL	650	W-E	1500	6242	11906	6.0	12.6	116	108	696	692	584
6/88	145	KENDALL	6.*1	37N	8E	550EL, 2400NL	25WL, 2675NL	650	W-E	1500	6349	13100	6.9	6.4	99.5	106	695	696	596
6/88	146	KENDALL	1	37N	8E	1135EL, 2100NL	550EL, 2400NL	650	W-E	1500	5813	13056	9.3	6.4	52.1	82.3	695	695	612
6/88	147	KANE	31.*30	38N	7E	3000NL, 1375EL	3505NL, 1375EL	650	S-N	1500	5147	15905	7.2	5.1	89.5	11.6	690	690	574
6/88	148	KANE	30	38N	7E	3505NL, 1375EL	1000SL, 1375EL	650	S-N	1500	5324	11086	6.7	7.2	112	87.4	690	698	578
6/88	149	KANE	30	38N	7E	1000SL, 1375EL	1650SL, 1375EL	650	S-N	1500	5988	13241	5.1	7.0	134	130	698	710	564
6/88	150	KENDALL	1	37N	8E	550EL, 2400NL	2525WL, 1800NL	650	W-E	1500	6156	12405	10.3	4.0	77.1	93.0	700	700	623
6/88	151	KENDALL	1	37N	8E	1950WL, 1025NL	3252WL, 1800NL	650	W-E	1500	5532	13150	15.9	10.8	88.2	11.0	692	700	604
6/88	152	KENDALL	1	37N	8E	1350WL, 1025NL	550WL, 1025NL	650	W-E	1500	5814	12152	5.2	18.2	59.5	81.7	692	692	533
6/88	153	KENDALL	12	37N	8E	2100NL, 1400WL	1450NL, 1400WL	650	S-N	1500	5988	15768	4.3	6.0	144	109	720	714	576
6/88	154	KENDALL	12	37N	8E	1450NL, 1400WL	800NL, 1400WL	650	S-N	1500	5714	14627	4.7	4.7	113	103	714	714	611
6/88	155	KANE	29	38N	7E	1300SL, 1350WL	1950SL, 1350WL	650	S-N	1500	6392	13804	14.9	11.6	131	104	700	700	569
6/88	156	KANE	32.*29	38N	7E	2725WL, 1800WL	2755SL, 800WL	650	S-N	1500	6062	15462	7.7	11.5	141	127	695	695	568
6/88	157	KANE	29	38N	7E	1350WL, 750WL	1950WL, 1225NL	650	S-N	1500	5459	15369	13.8	14.8	168	127	695	698	571
6/88	158	KENDALL	1	37N	7E	3950WL, 2200NL	800EL, 1800NL	650	W-E	1500	6090	12625	11.6	12.7	31.9	46.5	660	660	614
6/88	159	KENDALL	1	37N	7E	3950WL, 2505NL	3950WL, 2200NL	650	W-E	1500	5973	12062	10.7	12.4	47.8	30.1	660	660	613
6/88	160	KANE	30	38N	7E	3505NL, 10WL	2000NL, 10EL	650	S-N	1500	5896	20857	8.8	9.5	107	81.1	697	697	591
6/88	161	KANE	30	38N	7E	3000SL, 10WL	950SL, 10WL	650	S-N	1500	6172	15992	6.6	12.4	51.0	74.5	697	697	616
6/88	162	KANE	30	38N	7E	950SL, 10WL	1600SL, 10WL	650	W-E	1500	5925	14723	14.8	11.4	55.0	53.3	700	705	645
6/88	163	KANE	30	38N	7E	3950WL, 2000NL	2250SL, 10WL	650	S-N	1500	6696	15228	10.0	10.4	80.7	48.9	696	696	624
6/88	164	KANE	24.*25	38N	6E	2100NL, 10EL	450SL, 10EL	650	S-N	1500	6013	16354	10.1	13.6	49.2	71.0	704	704	636
6/88	165	KANE	25	38N	6E	850NL, 10EL	2000NL, 10EL	650	S-N	1500	5649	14321	10.0	7.2	39.5	62.4	708	710	669
6/88	166	KANE	23	38N	6E	2150SL, 20EL	2800SL, 20EL	650	S-N	1500	6296	14792	8.7	9.4	43.2	56.8	698	692	635
6/88	167	KENDALL	17	37N	7E	1350EL, 10NL	700EL, 10NL	650	W-E	1500	5590	11735	14.0	0.0	88.1	78.0	640	640	552
6/88	168	KENDALL	17	37N	7E	700EL, 10NL	50EL, 10NL	650	S-N	1500	613253	15250	10.4	5.7	74.4	77.3	640	640	563
6/88	169	KENDALL	16	37N	7E	60WL, 10NL	710WL, 10NL	650	W-E	1500	5345	12493	7.8	10.9	45.2	53.3	640	640	587
6/88	170	KENDALL	16	37N	7E	1360WL, 10NL	710WL, 10NL	650	W-E	1500	5754	14826	10.9	7.0	78.3	60.8	640	640	579
6/88	171	KANE	24.*23	38N	6E	1250NL, 150WL	900NL, 40EL	650	S-N	1500	5922	13022	9.3	8.4	76.1	101	700	700	624
6/88	172	KANE	23	38N	6E	1050NL, 275EL	750NL, 850EL	650	S-N	1500	5922	13022	9.1	10.4	93.5	99.8	700	700	607
6/88	173	KANE	23	38N	6E	750NL, 850EL	475NL, 1450EL	650	W-E	1500	6290	12570	10.4	3.9	86.9	143	700	700	613
6/88	174	KANE	24	38N	6E	200WL, 1500NL	825WL, 1350NL	650	W-E	1500	6118	14014	11.3	7.8	82.6	77.7	700	700	617
6/88	175	KANE	24	38N	6E	625WL, 1400NL	1275WL, 1250NL	650	W-E	1500	6118	14014	12.1	10.2	75.2	82.3	700	700	625
6/88	176	KANE	24	38N	6E	1075EL, 1300NL	1725EL, 1150NL	650	W-E	1500	6118	14014	10.9	13.7	95.6	63.8	700	700	604
6/88	177	KANE	24	38N	6E	1325WL, 1175NL	2175WL, 1025NL	650	W-E	1500	6118	14014	14.0	11.4	64.8	58.0	700	700	635

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

Appendix A *continued*

Date	Profile	County	Twn	Ang.	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Compressional wave velocities (ft./sec.)	Trend	Layer 1	Layer 2	Layer 3	Depth to top of layer 2 at endpoints (ft.)	Depth to top of layer 3 at endpoints (ft.)	Bedrock elevation at endpoints (ft. above MSL)	Elev. 1	Elev. 2	7.5 Quad
8/86	178	KENDALL	12	37N	8E	750SL, 1350WL	1400SL, 1350WL	650	S-N	1500	5626	13723	4.7	6.1	98.8	122	631	AURORA, SOUTH
6/86	179	KENDALL	12	37N	8E	1400SL, 1350WL	2050SL, 1350WL	650	S-N	1500	5633	13612	4.7	4.9	79.2	126	651	AURORA, SOUTH
6/86	180	KENDALL	4	37N	7E	1550WL, 50NL	2200WL, 50NL	650	W-E	1500	4908	12763	2.4	3.2	36.3	34.6	667	YORKVILLE
6/86	181	KENDALL	22	37N	8E	2500NL, 2600EL	1850NL, 2600EL	650	S-N	1500	5943	14778	6.0	12.3	86.1	56.3	598	AURORA, SOUTH
6/86	182	KENDALL	22	37N	8E	1200NL, 2600EL	550NL, 2600EL	650	S-N	1500	5685	15121	7.6	19.6	54.0	74.7	684	AURORA, SOUTH
6/86	183	KENDALL	22	37N	8E	2725EL, 1000SL	2725EL, 1650SL	650	S-N	1500	5514	14186	4.5	9.3	64.5	19.0	678	AURORA, SOUTH
6/86	184	KENDALL	15	37N	8E	2725EL, 1650SL	2725EL, 2300SL	650	S-N	1500	5369	14688	4.5	6.2	53.8	61.7	670	AURORA, SOUTH
6/86	185	KENDALL	15	37N	8E	1500EL, 2550NL	500WL, 2550NL	650	S-N	1500	4819	14755	4.3	10.3	57.7	67.3	670	AURORA, SOUTH
6/86	186	KENDALL	20.*21	37N	8E	900EL, 2550NL	150EL, 2550NL	650	W-E	1500	6482	14622	6.8	12.8	39.8	50.3	660	AURORA, SOUTH
6/86	187	KENDALL	20	37N	8E	1800WL, 2390NL	2400WL, 2700NL	650	W-E	1500	7017	16122	8.7	1.3	41.7	45.0	660	AURORA, SOUTH
6/86	188	KENDALL	24	37N	7E	1950SL, 3200WL	2600SL, 3200WL	650	S-N	1500	5714	15894	21.9	19.2	33.9	49.2	649	YORKVILLE
6/88	189	KENDALL	24	37N	7E	1300SL, 3200WL	1950SL, 3200WL	650	S-N	1500	8097	14969	18.8	22.7	67.6	35.1	650	YORKVILLE
6/86	190	KENDALL	24.*19	37N	7E	200EL, 1850NL	425WL, 1750NL	650	W-E	1500	7661	14336	19.2	29.0	19.2	34.5	655	AURORA, SOUTH
6/86	191	KENDALL	19	37N	8E	428WL, 1750NL	1050WL, 1650NL	650	W-E	1500	7191	14015	33.7	19.1	36.7	34.0	655	AURORA, SOUTH
6/86	192	KENDALL	2	37N	8E	2400WL, 2700NL	3000WL, 2975NL	650	W-E	1500	5369	15243	0.0	2.5	38.8	61.9	685	AURORA, SOUTH
6/86	193	KENDALL	2	37N	8E	1800WL, 2390NL	2400WL, 2700NL	650	W-E	1500	5372	15262	11.7	11.8	32.5	39.8	673	AURORA, SOUTH
6/86	194	KENDALL	3	37N	8E	900EL, 1550NL	250EL, 1650NL	650	W-E	1500	6500	14571	27.3	23.2	38.9	42.8	670	AURORA, SOUTH
6/86	195	KENDALL	3	37N	8E	1550EL, 1550NL	900EL, 1550NL	650	W-E	1500	6897	13458	16.9	16.1	39.5	63.3	668	AURORA, SOUTH
6/86	196	KENDALL	3	37N	8E	2200EL, 1550NL	1550EL, 1550NL	650	W-E	1500	6664	13460	15.2	15.1	49.1	41.3	668	AURORA, SOUTH
6/86	197	KENDALL	3	37N	8E	2850EL, 1550NL	2200EL, 1550NL	650	W-E	1500	6723	14083	9.7	9.2	37.0	38.9	668	AURORA, SOUTH
6/86	198	KENDALL	3	37N	8E	2500EL, 1550NL	2850EL, 1550NL	650	W-E	1500	6451	14358	4.4	10.6	29.4	47.3	670	AURORA, SOUTH
6/86	199	KENDALL	3	37N	8E	4150EL, 1550NL	3500EL, 1550NL	650	W-E	1500	5714	14704	2.6	3.9	37.0	40.6	668	AURORA, SOUTH
6/86	200	KENDALL	9	37N	8E	800EL, 900SL	725EL, 1250SL	650	W-E	1500	6349	12982	8.6	8.5	47.8	36.0	660	AURORA, SOUTH
6/86	201	KENDALL	9.*10	37N	8E	275EL, 1250SL	250WL, 1650SL	650	W-E	1500	6230	17079	8.5	11.4	57.7	46.6	660	AURORA, SOUTH
6/86	202	KENDALL	10	37N	8E	250WL, 1650SL	775WL, 2025SL	650	W-E	1500	6536	15509	11.4	13.3	54.6	42.2	660	AURORA, SOUTH
6/86	203	DUPAGE	19	38N	9E	2120EL, 1075NL	1440EL, 1000NL	650	W-E	1500	5788	15625	14.0	3.7	103	114	722	AURORA, NORTH,*NAPERVILLE
6/86	204	DUPAGE	19	38N	9E	1440EL, 1000NL	910EL, 925NL	650	W-E	1500	5788	15625	21.3	0.0	116	104	730	AURORA, NORTH,*NAPERVILLE
6/86	205	DUPAGE	19	38N	9E	810EL, 925NL	75EL, 850NL	650	W-E	1500	5788	15625	16.4	8.3	112	114	730	AURORA, NORTH,*NAPERVILLE
6/86	206	DUPAGE	19	38N	9E	680NL, 2525WL	40NL, 2450WL	650	S-N	1500	5714	18742	6.1	7.8	85.1	82.7	715	AURORA, NORTH,*NAPERVILLE
6/86	207	DUPAGE	19.*18	38N	9E	40NL, 2450WL	600SL, 2375WL	650	S-N	1500	6822	13866	10.8	4.2	81.9	80.9	730	AURORA, NORTH,*NAPERVILLE
6/86	208	DUPAGE	18	38N	9E	800WL, 1900NL	1450WL, 1910NL	650	W-E	1500	3857	15267	3.2	4.9	67.7	57.1	715	AURORA, NORTH,*NAPERVILLE
6/86	209	DUPAGE	18	38N	9E	1400WL, 1910NL	2050WL, 1920NL	650	W-E	1500	6106	16400	9.0	4.6	75.8	92.7	715	AURORA, NORTH,*NAPERVILLE
6/86	210	DUPAGE	18	38N	9E	3150WL, 2000NL	3750WL, 1750NL	650	W-E	1500	6042	14556	6.6	5.2	97.2	100	725	AURORA, NORTH,*NAPERVILLE
6/86	211	KANE	24	38N	8E	1450NL, 1300EL	800NL, 1300EL	650	S-N	1500	5882	13933	7.0	7.8	107	104	710	AURORA, NORTH,*NAPERVILLE
6/86	212	DUPAGE	32	39N	9E	2600EL, 2450NL	1950EL, 2400NL	650	W-E	1500	4847	16156	12.9	11.6	74.0	74.0	668	AURORA, NORTH,*NAPERVILLE
6/86	213	DUPAGE	32	39N	9E	1950WL, 2475NL	2600EL, 2450NL	650	W-E	1500	5472	16590	12.0	10.4	70.4	104	750	AURORA, NORTH,*NAPERVILLE
6/86	214	DUPAGE	32	39N	9E	1300WL, 2525NL	1950WL, 2475NL	650	W-E	1500	4909	13050	10.4	15.7	79.3	37.4	740	AURORA, NORTH,*NAPERVILLE
6/86	215	DUPAGE	32	39N	9E	2300NL, 1850EL	1680NL, 2075EL	650	S-N	1500	5208	16214	10.8	8.0	82.1	73.8	673	AURORA, NORTH,*NAPERVILLE
6/86	216	DUPAGE	32	39N	9E	1680NL, 2075EL	1100NL, 2325EL	650	S-N	1500	5113	17102	12.4	5.8	67.3	73.8	667	AURORA, NORTH,*NAPERVILLE
6/86	217	DUPAGE	32	39N	9E	1100NL, 2325EL	500NL, 2575EL	650	S-N	1500	5921	15912	7.8	7.6	73.8	74.0	667	AURORA, NORTH,*NAPERVILLE
6/86	218	DUPAGE	32.*29	39N	9E	425NL, 2810EL	1755L, 2850EL	650	S-N	1500	5788	17131	14.6	11.1	52.0	72.8	740	AURORA, NORTH,*NAPERVILLE
6/86	219	DUPAGE	29	39N	9E	1755L, 2860EL	750SL, 3040EL	650	S-N	1500	5628	15105	8.1	14.6	73.1	57.9	740	AURORA, NORTH,*NAPERVILLE
6/86	220	DUPAGE	29	39N	9E	750SL, 3040EL	1350SL, 3425EL	650	S-N	1500	5905	14538	9.1	14.4	43.0	77.7	737	AURORA, NORTH,*NAPERVILLE
6/86	221	DUPAGE	29	39N	9E	1350SL, 3425EL	650	S-N	1500	5899	18555	13.5	1.9	60.8	78.7	734	AURORA, NORTH,*NAPERVILLE	
6/86	222	DUPAGE	29	39N	9E	2000SL, 3475EL	2605SL, 3475EL	650	S-N	1500	5602	14798	5.6	11.6	49.8	66.6	738	AURORA, NORTH,*NAPERVILLE
6/86	223	DUPAGE	29	39N	9E	2650SL, 3475EL	1950NL, 3425EL	650	S-N	1500	4018	15661	3.1	5.7	72.7	74.8	730	AURORA, NORTH,*NAPERVILLE
6/86	224	DUPAGE	29	39N	9E	1950NL, 3425EL	1300NL, 3350EL	650	S-N	1500	5663	14343	9.4	16.2	75.7	91.7	740	AURORA, NORTH,*NAPERVILLE
6/86	225	DUPAGE	20	39N	9E	1150SL, 3125EL	500SL, 3175EL	650	S-N	1500	6110	12820	13.7	12.2	74.3	57.8	741	AURORA, NORTH,*NAPERVILLE
6/86	226	DUPAGE	20.*29	39N	9E	500SL, 3175EL	150NL, 3250EL	650	S-N	1500	4819	15247	10.0	13.3	103	26.4	742	AURORA, NORTH,*NAPERVILLE
6/86	227	DUPAGE	29	39N	9E	1800NL, 3250EL	800NL, 3300EL	650	S-N	1500	4801	13916	2.2	10.3	96.4	67.8	740	AURORA, NORTH,*NAPERVILLE
6/86	228	DUPAGE	29	39N	9E	800NL, 3300EL	1425NL, 3375EL	650	S-N	1500	4533	13445	8.7	3.2	83.7	77.0	740	AURORA, NORTH,*NAPERVILLE
6/86	229	DUPAGE	20	39N	9E	3025EL, 875SL	2410EL, 875SL	650	W-E	1500	5991	18102	12.3	8.3	50.0	85.4	690	AURORA, NORTH,*NAPERVILLE
6/86	230	DUPAGE	20	39N	9E	2410EL, 875SL	1800EL, 625SL	650	W-E	1500	3688	14321	9.0	3.0	66.1	37.1	703	AURORA, NORTH,*NAPERVILLE
6/86	231	DUPAGE	20	39N	9E	1652WL, 1525SL	1075WL, 1900SL	650	W-E	1500	5471	16704	9.7	3.2	103	26.8	743	AURORA, NORTH,*NAPERVILLE
6/86	232	DUPAGE	20	39N	9E	1075WL, 1900SL	500WL, 2250SL	650	W-E	1500	5044	19105	2.8	0.0	130	82.7	750	AURORA, NORTH,*NAPERVILLE

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

Appendix A *continued*

Date	Profile	County	Sec.	Twn.	Rng.	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Compressional wave velocities (ft./sec.)	Layer 1	Layer 2	Layer 3	Depth to top of layer 2 at endpoints (ft.)	Depth to top of layer 3 at endpoints (ft.)	Surface elevation at endpoints (ft. above MSL)	Elev. 1	Elev. 2	Elev. 1	Elev. 2	Bedrock elevation at endpoints (ft. above MSL)	Elev. 1	Elev. 2	7.5 Quad	
6/86	233	DUPAGE	19.*20	39N	9E	40EL, 2600SL	500WL, 2250SL	650	W-E	5044	19105	10.7	7.8	81.2	102	750	745	669	643	NAPERVILLE				
6/86	234	DUPAGE	20	39N	9E	1450SL, 3100EL	2100SL, 3075EL	650	S-N	5221	148662	9.9	8.5	66.1	76.8	740	740	674	663	NAPERVILLE				
6/86	235	DUPAGE	20	39N	9E	2100SL, 3075EL	2750SL, 3150EL	650	S-N	5221	148662	9.9	8.5	66.1	76.8	740	740	674	663	NAPERVILLE				
6/86	236	DUPAGE	20	39N	9E	2750NL, 3150EL	1900NL, 3250EL	650	S-N	5540	166119	3.3	6.7	102	66.9	740	740	68.3	67.3	NAPERVILLE				
6/86	237	DUPAGE	20	39N	9E	1900NL, 3250EL	1275NL, 3480EL	500	S-N	5504	15755	6.4	14.3	48.1	58.3	740	745	692	687	NAPERVILLE				
6/86	238	KANE	5	38N	7E	1820EL, 2600SL	1180EL, 2525SL	650	S-N	5478	17033	7.3	10.0	52.8	75.6	745	745	692	689	NAPERVILLE				
6/88	239	KANE	5	38N	7E	1235EL, 2450SL	675EL, 2400SL	650	W-E	6445	13271	11.5	7.7	151	147	705	705	554	558	SUGARGROVE				
6/86	240	KANE	5.*4	38N	7E	425EL, 2400SL	75WL, 2000SL	650	S-N	500	6473	12706	7.0	6.7	169	182	705	705	53.8	523	SUGARGROVE			
6/88	241	KANE	24	38N	7E	1450WL, 25NL	2075WL, 150NL	650	W-E	1500	5546	17852	7.1	7.4	39.8	155	689	689	649	515	SUGARGROVE			
6/86	242	DUPAGE	20	39N	9E	350NL, 700WL	600NL, 1125WL	650	S-N	5511	16809	10.6	11.2	51.6	80.8	738	738	686	657	NAPERVILLE				
6/86	243	DUPAGE	20	39N	9E	500NL, 1125WL	1150NL, 1275WL	650	S-N	5736	16231	14.1	14.5	64.3	68.4	738	738	674	670	NAPERVILLE				
6/88	244	DUPAGE	20	39N	9E	700WL, 10NL	1350WL, 10NL	650	W-E	1500	5283	19215	6.8	9.9	78.0	80.0	740	740	662	680	NAPERVILLE			
6/86	245	DUPAGE	20	39N	9E	1850WL, 10NL	2500WL, 10NL	650	W-E	1500	5902	16884	10.2	11.3	59.5	79.7	745	744	686	684	NAPERVILLE			
6/86	246	DUPAGE	20	39N	9E	2500WL, 10NL	3150WL, 10NL	650	W-E	1500	5814	16094	15.4	10.5	61.7	87.5	744	744	682	657	NAPERVILLE			
6/86	247	DUPAGE	17	39N	9E	505WL, 850WL	525WL, 650WL	650	S-N	5828	17167	7.9	6.1	36.5	70.8	740	740	704	669	NAPERVILLE				
6/86	248	DUPAGE	17	39N	9E	525SL, 850WL	1030SL, 1050WL	650	S-N	5411	17049	6.1	13.2	45.3	57.7	740	735	695	677	NAPERVILLE				
6/86	249	DUPAGE	17	39N	9E	1030SL, 1050WL	1525SL, 1425WL	650	S-N	5827	16614	6.4	17.9	66.1	48.9	735	734	669	685	NAPERVILLE				
6/86	250	DUPAGE	18	39N	9E	200SL, 25EL	850SL, 25EL	650	S-N	500	4070	15175	11.2	11.5	35.9	40.7	740	735	704	694	NAPERVILLE			
6/86	251	DUPAGE	18	39N	9E	850SL, 25EL	1500SL, 25EL	650	S-N	500	4019	16187	7.3	6.7	54.0	60.9	735	737	681	676	NAPERVILLE			
6/86	252	DUPAGE	18	39N	9E	2130SL, 25EL	1500SL, 25EL	650	S-N	5630	16630	14.3	13.6	61.5	73.1	737	735	676	662	NAPERVILLE				
6/88	253	DUPAGE	18	39N	9E	1500SL, 25EL	2150SL, 25EL	650	S-N	5638	16619	6.6	13.3	66.7	58.8	735	735	670	676	NAPERVILLE				
6/86	254	DUPAGE	19	39N	9E	995EL, 75NL	350EL, 0NL	650	W-E	1500	5491	16476	10.1	12.5	83.9	43.9	738	740	654	656	NAPERVILLE			
6/86	255	DUPAGE	19	39N	9E	1640EL, 150NL	995EL, 75NL	650	W-E	1500	5047	17158	10.1	10.3	59.9	62.3	741	738	681	676	NAPERVILLE			
6/86	256	DUPAGE	19	39N	9E	50EL, 775SL	50EL, 775SL	650	W-E	1500	6682	14985	17.4	12.3	52.3	101	742	745	690	644	NAPERVILLE			
6/86	257	DUPAGE	19	39N	9E	575EL, 350SL	50EL, 775SL	650	W-E	1500	6682	14985	13.5	7.2	83.2	51.6	737	735	676	654	NAPERVILLE			
6/86	258	DUPAGE	18	39N	9E	1250EL, 2450NL	675EL, 2100NL	650	W-E	1500	5208	16675	4.5	9.7	65.8	57.9	738	738	670	680	NAPERVILLE			
6/86	259	KANE	24	38N	8E	1700NL, 2625EL	1050NL, 2625EL	650	S-N	500	5817	12427	9.7	19.0	147	56.8	717	720	570	663	AURORA NORTH			
6/86	260	KANE	25	38N	8E	1750WL, 2675SL	1700WL, 2700SL	650	W-E	1500	4717	15712	7.8	11.0	90.6	87.8	690	685	598	597	AURORA SOUTH			
6/86	261	KANE	25	38N	8E	2400WL, 2700SL	3050WL, 2700SL	650	W-E	1500	4001	17470	3.0	17.4	82.2	68.0	710	710	642	642	AURORA SOUTH			
6/86	262	KANE	25	38N	8E	575EL, 350SL	50EL, 775SL	650	W-E	1500	5658	13108	12.7	3.8	59.4	84.1	695	695	636	611	AURORA SOUTH			
6/86	263	KANE	25	38N	8E	1350EL, 2705SL	700EL, 2700SL	650	W-E	1500	5096	13099	4.1	8.0	45.7	47.0	895	895	649	648	AURORA SOUTH			
6/86	264	DUPAGE	25	38N	8E	700EL, 2700SL	50EL, 2975SL	650	W-E	1500	8273	12830	12.2	10.1	79.3	79.2	695	695	616	616	AURORA SOUTH			
6/86	265	DUPAGE	17	38N	9E	1350WL, 675NL	2000WL, 700NL	650	W-E	1500	6430	17664	9.7	10.1	113	73.0	725	725	617	615	NAPERVILLE			
6/86	266	DUPAGE	7	38N	9E	850EL, 1950NL	200EL, 1950NL	650	W-E	1500	5969	14921	7.8	10.1	64.0	63.0	740	740	676	677	NAPERVILLE			
6/86	267	DUPAGE	7.*8	38N	9E	200EL, 1950NL	450WL, 2000NL	650	W-E	1500	5882	15424	5.4	5.6	68.8	68.0	743	740	680	667	NAPERVILLE			
6/86	268	DUPAGE	5	38N	9E	700WL, 2900SL	1350WL, 2800SL	650	W-E	1500	5882	16874	6.6	8.1	37.9	64.4	730	730	695	666	NAPERVILLE			
6/86	269	DUPAGE	5	38N	9E	50WL, 2975SL	700WL, 2900SL	650	W-E	1500	6514	17036	6.6	6.2	58.7	55.9	735	733	676	677	NAPERVILLE			
6/86	270	DUPAGE	5.*6	38N	9E	600EL, 3050SL	50WL, 2975SL	650	W-E	1500	5225	16118	2.4	7.5	50.6	45.0	730	735	679	680	NAPERVILLE			
6/86	271	DUPAGE	6	38N	9E	1275EL, 3150SL	600EL, 3050SL	650	W-E	1500	5427	15787	4.5	7.2	54.5	60.6	730	730	676	669	NAPERVILLE			
6/88	266	DUPAGE	7	38N	9E	2225WL, 400NL	2875WL, 475NL	650	W-E	1500	5478	16492	5.8	5.6	63.2	73.4	743	740	680	667	NAPERVILLE			
6/88	267	DUPAGE	20	38N	9E	1900NL, 450WL	1425NL, 475WL	650	S-N	5435	16047	15312	6.6	6.8	58.9	52.5	740	740	681	688	NAPERVILLE			
6/86	272	DUPAGE	20	38N	9E	2650NL, 420WL	3300NL, 410WL	650	S-N	500	5767	14927	7.1	4.8	89.6	97.8	720	720	630	622	NAPERVILLE			
6/86	273	DUPAGE	20	38N	9E	600NL, 560WL	1250SL, 350WL	650	S-N	500	5480	14331	6.5	13.2	147	66.5	703	705	556	539	NAPERVILLE			
6/86	274	DUPAGE	20	38N	9E	50SL, 590WL	700SL, 600WL	650	S-N	500	5519	14418	7.0	5.4	110	102	720	715	610	613	NAPERVILLE			
6/86	275	DUPAGE	17	38N	9E	700SL, 600WL	1350SL, 610WL	650	S-N	500	5769	25000	11.3	0.0	67.6	229	720	720	652	492	NAPERVILLE			
6/86	276	DUPAGE	20	38N	9E	800NL, 125WL	1425NL, 475WL	650	S-N	500	5174	15583	7.3	7.9	535	64.4	685	693	632	629	NAPERVILLE			
6/88	277	DUPAGE	20	38N	9E	1300SL, 2200EL	650SL, 2250EL	650	S-N	500	5633	16312	5.8	7.5	11.0	90.5	720	720	610	630	AURORA NORTH			
6/86	279	DUPAGE	20	38N	9E	2650NL, 420WL	0SL, 2300EL	650	S-N	500	5435	18956	9.6	11.7	121	110	700	700	579	580	AURORA NORTH			
6/86	280	DUPAGE	20	38N	9E	1250SL, 2450NL	650NL, 2300EL	650	S-N	500	5530	13449	11.3	11.5	89.9	96.1	710	700	620	604	AURORA NORTH			
6/86	281	DUPAGE	20	38N	9E	600SL, 250WL	50NL, 150WL	650	S-N	500	5983	20288	14.0	15.3	88.3	137	695	703	607	566	NAPERVILLE			
6/86	282	DUPAGE	29.*30	38N	9E	1000SL, 2250WL	400SL, 2050EL	650	S-N	500	6024	14550	6.9	10.2	133	104	690	690	557	576	AURORA SOUTH			

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

Appendix A *continued*

Date	Profile	County	Sec	Twn	Rng	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Compressional wave velocities (ft./sec.)			Depth to top of layer 2 at endpoints (ft.)	Depth to top of layer 3 at endpoints (ft.)	Bedrock elevation at endpoints (ft. above MSL)	Elev. 1	Elev. 2	7.5 Quad
									Trend	Layer 1	Layer 2						
6/8/88	289	KANE	35	38N	8E	825NL, 1650EL	1450NL, 1450EL	650	S-N	1500	5712	12801	8.8	9.9	86.7	136	AURORA, SOUTH
6/8/86	290	KANE	35	38N	8E	700WL, 2475NL	1350WL, 2450NL	650	W-E	1500	5170	14697	7.5	13.0	88.4	29.1	AURORA, SOUTH
6/8/86	291	DUPAGE	20	38N	9E	750NL, 10WL	100NL, 10WL	650	S-N	1500	5096	14630	17.2	9.0	70.6	91.3	NAPERVILLE
6/8/88	292	WILL	6	37N	9E	2305SL, 1800WL	3000SL, 1800WL	650	S-N	1500	5945	13187	12.9	16.1	114	135	AURORA, SOUTH
6/8/88	293	WILL	6	37N	9E	650EL, 2050SL	0EL, 2025SL	650	W-E	1500	6375	13721	11.6	11.8	85.6	82.4	NORMANTOWN
6/8/86	294	WILL	6	37N	9E	2000WL, 2150SL	2650WL, 2125SL	650	W-E	1500	6253	13671	13.1	12.5	113	119	AURORA, SOUTH
6/8/88	295	WILL	5	37N	9E	1303SL, 700WL	1950SL, 700WL	650	S-N	1500	6558	16663	8.5	8.3	77.1	90.2	NORMANTOWN
6/8/86	296	WILL	5	37N	9E	650SL, 700WL	1300SL, 700WL	650	S-N	1500	7018	13330	8.8	9.2	56.7	70.3	NORMANTOWN
6/8/86	297	WILL	4	37N	9E	2000SL, 25WL	2650SL, 25WL	650	S-N	1500	7284	15209	0.0	10.1	89.8	169	NORMANTOWN
6/8/86	298	WILL	4	37N	9E	1305SL, 25WL	2000SL, 25WL	650	S-N	1500	7284	15209	11.8	0.0	76.0	89.4	NORMANTOWN
6/8/86	299	WILL	5	37N	9E	2400SL, 2600WL	3050SL, 2600WL	650	S-N	1500	6303	13677	9.6	0.0	117	126	NORMANTOWN
6/8/86	300	WILL	5	37N	9E	3050SL, 2800WL	3700SL, 2600WL	650	S-N	1500	6303	13677	6.1	0.0	118	69.4	NORMANTOWN
6/8/86	301	WILL	5	37N	9E	3700SL, 2600WL	4350SL, 2600WL	650	S-N	1500	6303	13677	4.7	10.5	72.5	60.1	NORMANTOWN
6/8/86	302	WILL	5	37N	9E	125WL, 2025SL	650	W-E	1500	6391	15789	10.0	10.2	76.5	88.6	NORMANTOWN	
6/8/86	303	WILL	5	37N	9E	1305WL, 1950SL	1360WL, 1950SL	650	W-E	1500	6915	13599	8.1	9.4	81.6	71.5	NORMANTOWN
6/8/86	304	WILL	5	37N	9E	1300WL, 1950SL	2020WL, 2120SL	650	W-E	1500	6915	13599	16.2	10.7	65.6	75.8	NORMANTOWN
6/8/86	305	KANE	3	39N	6E	120SL, 2600WL	1420SL, 2600WL	650	W-E	1500	6111	12584	5.2	2.4	147	140	MAPLE PARK
6/8/86	306	KANE	3	39N	6E	1420SL, 2600WL	2720SL, 2600WL	650	W-E	1500	5915	12602	4.8	4.4	127	133	MAPLE PARK
8/8/86	307	KANE	3	39N	6E	2720SL, 2800WL	4020SL, 2800WL	650	S-N	1500	6131	12083	4.4	9.4	149	77.2	MAPLE PARK
6/8/86	308	KANE	10	39N	6E	2600EL, 25NL	1300EL, 25NL	650	W-E	1500	5632	12322	7.6	3.9	133	126	MAPLE PARK
6/8/86	309	WILL	4	37N	9E	710WL, 1950SL	120EL, 2950NL	650	W-E	1500	6250	15080	12.6	11.6	54.1	47.8	NORMANTOWN
6/8/86	310	WILL	4	37N	9E	1420EL, 2700NL	770EL, 2960NL	650	W-E	1500	7407	16640	17.5	16.2	39.4	73.4	NORMANTOWN
6/8/86	311	WILL	4	37N	9E	2070EL, 2980NL	1420EL, 2970NL	650	W-E	1500	5263	16220	11.7	10.7	40.7	61.5	NORMANTOWN
6/8/86	312	WILL	4	37N	9E	2720EL, 2985NL	2070EL, 2980NL	650	W-E	1500	5882	11933	12.1	10.2	38.6	36.1	NORMANTOWN
6/8/86	313	WILL	4	37N	9E	3370EL, 2990NL	3270EL, 2985NL	650	W-E	1500	6745	14850	16.0	13.1	108	66.1	NORMANTOWN
6/8/86	314	WILL	4	37N	9E	4020EL, 2985NL	3370EL, 2990NL	650	W-E	1500	5939	13835	0.0	9.2	146	108	NORMANTOWN
6/8/86	315	WILL	4	37N	9E	4670EL, 2995NL	4020EL, 2985NL	650	W-E	1500	5939	13835	11.0	0.0	83.5	147	NORMANTOWN
6/8/86	316	WILL	5	37N	9E	1700EL, 2825SL	1050EL, 2625SL	650	W-E	1500	6107	15102	8.7	8.3	120	125	NORMANTOWN
6/8/86	317	WILL	5	37N	9E	1050EL, 2625SL	400EL, 2625SL	650	W-E	1500	6107	16499	0.0	10.6	125	103	NORMANTOWN
6/8/86	318	DUPAGE	32	38N	9E	1650EL, 2600SL	1000EL, 2600SL	650	W-E	1500	6924	16499	16.0	10.7	85.2	101	NORMANTOWN
6/8/86	319	DUPAGE	32	38N	9E	1000EL, 2600SL	350EL, 2600SL	650	W-E	1500	6924	16499	2.5	6.9	101	78.8	NORMANTOWN
6/8/86	320	DUPAGE	33	38N	9E	450EL, 2600SL	1100EL, 2600SL	650	W-E	1500	5263	16761	8.3	9.1	48.5	54.6	NORMANTOWN
6/8/86	321	DUPAGE	33	38N	9E	650WL, 2600SL	650WL, 2600SL	650	W-E	1500	5802	16122	8.4	7.3	73.1	58.3	NORMANTOWN
6/8/86	322	DUPAGE	33	38N	9E	850WL, 2600SL	1300WL, 2600SL	650	W-E	1500	6972	14796	9.8	9.4	52.7	61.3	NORMANTOWN
6/8/86	323	DUPAGE	33	38N	9E	1950WL, 2600SL	1600WL, 2600SL	650	W-E	1500	6468	16479	11.3	7.3	72.8	57.3	NORMANTOWN
6/8/86	324	DUPAGE	33	38N	9E	2600WL, 2600SL	3250WL, 2600SL	650	W-E	1500	8325	14117	14.0	3.0	36.9	87.1	NORMANTOWN
6/8/86	325	WILL	5	37N	9E	2250SL, 2650EL	1600SL, 2650EL	650	S-N	1500	6685	12711	12.6	8.3	113	67.8	NORMANTOWN
6/8/86	326	WILL	6	37N	9E	1550NL, 1800WL	900NL, 1800WL	650	S-N	1500	5419	14931	7.3	10.8	79.8	82.6	NORMANTOWN
6/8/86	327	KANE	35	38N	9E	230SL, 2675EL	1650NL, 2675EL	650	S-N	1500	5275	14220	16.2	13.1	62.0	103	AURORA, SOUTH
6/8/86	328	KANE	26	38N	8E	1750EL, 3350SL	1100EL, 3350SL	650	W-E	1500	5697	15263	9.9	6.2	135	109	AURORA, SOUTH
6/8/86	329	KANE	25	38N	8E	100WL, 1900SL	750WL, 1900SL	650	W-E	1500	5317	13500	12.3	8.3	86.8	104	AURORA, SOUTH
6/8/86	330	KANE	24	38N	8E	2050SL, 2400EL	2700SL, 2400EL	650	S-N	1500	5762	13536	10.3	8.9	128	90.4	AURORA, NORTH
6/8/86	331	DUPAGE	19	38N	9E	2400SL, 200WL	1750SL, 200WL	650	W-E	1500	5966	13077	7.2	7.1	96.6	105	AURORA, NORTH
6/8/86	332	DUPAGE	19	38N	9E	2300SL, 200WL	1100SL, 200WL	650	S-N	1500	5905	17522	9.4	9.3	134	125	AURORA, NORTH
6/8/86	333	KANE	32	40N	7E	175WL, 2505SL	1350WL, 2725SL	1300	W-E	1500	6424	14277	8.1	44.8	148	122	NAPERVILLE
6/8/86	334	KANE	32	40N	7E	1350WL, 2725SL	625WL, 2925SL	1300	W-E	1500	6468	16479	16.4	10.8	119	198	ELBURN
6/8/86	335	KANE	32	40N	7E	2625WL, 2825SL	3900WL, 3100SL	1300	W-E	1500	6468	16479	10.3	8.3	216	201	ELBURN
6/8/86	336	DUPAGE	20.*19	38N	9E	2400SL, 200WL	475EL, 900NL	650	W-E	1500	6234	16696	8.7	6.9	140	128	ELBURN
6/8/86	337	DUPAGE	19	38N	9E	475EL, 900NL	1125EL, 1000NL	650	W-E	1500	6234	16696	7.2	7.1	111	143	ELBURN
6/8/86	338	DUPAGE	19	38N	9E	1125EL, 1000NL	1750EL, 1100NL	650	W-E	1500	6234	16696	9.6	7.6	118	125	AURORA, NORTH; NAPERVILLE
6/8/86	339	KANE	8	39N	7E	100WL, 3000SL	1250WL, 2450SL	1300	W-E	1500	6495	14561	9.4	7.7	130	135	ELBURN'S SUGAR GROVE
6/8/86	340	DUPAGE	19	38N	9E	1750NL, 2900WL	1100NL, 2800WL	650	S-N	1500	5580	15059	14.9	12.2	111	96.3	AURORA, NORTH
6/8/86	341	DUPAGE	19	38N	9E	1600NL, 2500SL	2175NL, 2800WL	650	S-N	1500	5180	19684	8.3	8.0	101	720	AURORA, NORTH
6/8/86	342	DUPAGE	19	38N	9E	1150NL, 2100WL	1750NL, 2150WL	650	S-N	1500	5970	15511	10.4	14.4	106	101	AURORA, NORTH
6/8/86	343	DUPAGE	19	38N	9E	2050NL, 2150WL	2650NL, 2000WL	650	S-N	1500	5305	15261	11.6	10.7	87.5	106	AURORA, NORTH

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

Appendix A *continued*

Date	Profile	County	Sec.	Twn.	Rng.	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Trend	Layer 1	Layer 2	Layer 3	Compressional wave velocities (ft./sec.)	Surface elevation at endpoints (ft. above MSL)	Bedrock elevation at endpoints (ft. above MSL)	7.5 Quad	
6/86	344	KANE	24	38N	8E	2000SL, 2200EL	1350SL, 2200EL	650	S-N	1500	5674	12706	9.5	8.9	129	91.4	AURORA, NORTH
6/86	345	KANE	5	39N	7E	2650WL, 1850NL	1350EL, 2000NL	1300	W-E	1500	6427	13432	13.5	12.5	178	196	ELBURN
6/86	346	KANE	5	39N	7E	2650WL, 1850NL	50EL, 2125NL	1300	W-E	1500	6436	12907	13.7	12.8	200	131	ELBURN
6/86	347	KANE	32	40N	7E	520WL, 1350SL	1820WL, 1350SL	1300	W-E	1500	5915	13903	7.6	5.6	159	177	ELBURN
6/86	348	KANE	15	40N	7E	1600EL, 1550SL	600EL, 1100SL	1300	W-E	1500	5824	13257	17.9	0.0	163	169	ELBURN
6/86	349	KANE	15,*14	40N	7E	600EL, 1100SL	620WL, 600SL	1300	W-E	1500	5824	13257	2.9	7.7	170	161	ELBURN
6/86	350	KANE	14	40N	7E	620WL, 600SL	1840WL, 1250SL	1300	W-E	1500	5824	13257	0.0	11.5	151	151	ELBURN
6/86	351	KANE	15	40N	7E	2050EL, 1650SL	3250WL, 2150SL	1300	W-E	1500	6309	18425	13.1	13.2	235	258	ELBURN
6/86	352	KANE	15,*16	40N	7E	700WL, 2250SL	525EL, 1900SL	1300	W-E	1500	7011	11912	0.0	41.3	171	58.2	ELBURN
6/86	353	KANE	16	40N	7E	525EL, 1800SL	1750EL, 1475SL	1300	W-E	1500	7011	11912	14.0	6.5	185	176	ELBURN
6/86	354	KANE	17	40N	7E	3000EL, 4005L	1675EL, 450SL	1300	W-E	1500	6185	14552	20.9	0.0	190	247	ELBURN
6/86	355	KANE	17	40N	7E	1675EL, 450SL	375EL, 500SL	1300	W-E	1500	6185	14552	7.2	14.4	242	212	ELBURN
6/86	356	KANE	16	40N	7E	1100WL, 700SL	2350WL, 1100SL	1300	W-E	1500	5114	17594	16.3	16.1	201	199	ELBURN
6/86	357	KANE	16	40N	7E	2350WL, 1100SL	3600WL, 1500SL	1300	W-E	1500	4520	11882	12.2	7.0	134	91.7	ELBURN
6/86	358	KANE	17	40N	7E	800WL, 275WL	2125WL, 400SL	1300	W-E	1500	6296	29.4	20.4	206	26.4	ELBURN	
6/86	359	DUPAGE	19,*18	38N	9E	2575WL, 50NL	3225WL, 50SL	650	W-E	1500	5463	16626	13.0	12.4	59.5	88.9	AURORA, NORTH
6/86	360	DUPAGE	19	38N	9E	1100EL, 100NL	450EL, 100NL	650	W-E	1500	5505	15989	7.3	0.0	135	151	NAPERVILLE
6/86	361	DUPAGE	19,*20	38N	9E	450EL, 100NL	200WL, 100NL	650	W-E	1500	5505	15989	0.0	9.3	141	90.8	NAPERVILLE
6/86	362	DUPAGE	19	38N	9E	2825WL, 2450NL	650	W-E	1500	5952	14077	9.3	9.6	99.3	96.5	AURORA, NORTH,*NAPERVILLE	
6/86	363	KANE	33	38N	8E	2400EL, 50NL	450	W-E	1500	6291	12150	13.7	13.0	75.5	66.0	AUROA,SOUTH	
6/86	364	KANE	33	38N	8E	225WL, 2475EL	25NL, 1875EL	650	S-N	16132	12832	13.5	12.1	93.4	79.4	AUROA,SOUTH	
6/86	365	DUPAGE	19	38N	9E	1150EL, 1000NL	500EL, 900NL	650	W-E	1500	5726	17404	6.2	8.9	136	115	NAPERVILLE
6/86	366	DUPAGE	19	38N	9E	3035WL, 1050NL	1150EL, 1000NL	650	W-E	1500	5726	17404	7.2	3.5	132	132	NAPERVILLE
6/86	367	DUPAGE	19	38N	9E	1560NL, 1450EL	1125NL, 1875EL	650	S-N	5931	15777	11.5	10.6	119	117	AUROA,NORTH,*NAPERVILLE	
6/86	368	DUPAGE	19	38N	9E	700EL, 1500NL	50EL, 1500NL	650	W-E	1500	6910	10381	12.4	13.1	102	101	NAPERVILLE
6/86	369	DUPAGE	19	38N	9E	1350EL, 1500NL	700EL, 1500NL	650	W-E	1500	6910	10381	18.1	13.7	73	71	NAPERVILLE
6/86	370	KANE	26	38N	8E	1800SL, 1950EL	2200SL, 1950EL	400	S-N	1500	6544	16667	14.0	9.9	130	66.5	AUROA,SOUTH
6/86	371	KANE	26	38N	8E	2700WL, 2325WL	3350WL, 2275WL	650	W-E	1500	5710	14207	9.0	6.2	81.0	104	AUROA,SOUTH
6/86	372	DUPAGE	19	38N	9E	1950WL, 2500SL	650	W-E	1500	6020	13608	10.4	90.2	90.2	69.4	AUROA,NORTH	
6/86	373	DUPAGE	19	38N	9E	2000SL, 2200WL	2650SL, 2200WL	650	S-N	1500	6046	13818	11.6	13.8	119	66.8	YORKVILLE
6/86	374	KANE	24	38N	8E	375WL, 5SL	1025WL, 5SL	650	W-E	1500	6515	12442	12.1	11.0	124	120	AUROA,NORTH
6/86	375	KANE	24	38N	8E	1300WL, 625SL	1950WL, 625SL	650	W-E	1500	6925	15119	9.8	5.2	38.9	42.4	YORKVILLE
6/86	376	KANE	24	38N	8E	50SL, 2525WL	700WL, 2500WL	650	S-N	1500	5707	13118	5.4	40.0	105	109	AUROA,NORTH
6/86	377	KANE	24	38N	8E	1800WL, 850SL	2400WL, 850SL	650	W-E	1500	5155	12665	22.9	10.1	104	126	YORKVILLE
6/86	378	KANE	25	38N	7E	1800WL, 850SL	2425WL, 1050SL	650	W-E	1500	6250	16834	16.1	11.8	54.7	41.3	AUROA,NORTH
6/86	379	KANE	25	38N	7E	350SL, 2700WL	950SL, 2460WL	650	S-N	1500	5263	15603	9.6	10.4	54.4	33.9	YORKVILLE
6/86	380	KANE	24	38N	8E	2375WL, 1900NL	500WL, 1425NL	650	W-E	1500	5630	14237	20.1	17.3	229	131	YORKVILLE
6/86	381	KANE	24	38N	8E	500WL, 1425NL	750EL, 950NL	650	S-N	1500	7353	13015	12.6	9.0	46.3	40.0	YORKVILLE
6/86	382	KANE	20	39N	8E	1300SL, 2620WL	1950SL, 2700WL	650	W-E	1500	5763	14583	9.7	13.7	49.4	53.9	AUROA,NORTH
6/86	383	KANE	20	39N	8E	1825WL, 1450SL	2450WL, 1250SL	650	W-E	1500	4742	15249	6.7	8.9	53.8	69.1	YORKVILLE
6/86	384	KANE	24	40N	7E	3650EL, 1150NL	2600SL, 325SL	1300	W-E	1500	5839	13488	22.6	27.6	145	119	ELBURN
6/86	385	KANE	24	40N	7E	2100SL, 200NL	675EL, 890NL	1300	W-E	1500	6135	13485	18.5	18.5	150	140	ELBURN
6/86	386	KANE	24	40N	7E	1700WL, 1900NL	500WL, 1425NL	1300	W-E	1500	5839	13486	23.0	6.6	119	153	ELBURN
6/86	387	KANE	24	40N	7E	1950EL, 2550NL	1325EL, 2800NL	650	W-E	1500	4527	10690	20.6	17.5	105	104	ELBURN
6/86	388	KANE	24	40N	7E	1325EL, 3050NL	675EL, 325SL	650	W-E	1500	4742	15249	13.8	37.6	112	67.4	ELBURN
6/86	389	KANE	19	40N	8E	3650EL, 1150NL	1350WL, 750SL	1300	W-E	1500	5837	13486	22.3	17.7	144	128	GENEVA
6/86	390	KANE	30	40N	8E	1800EL, 200NL	675EL, 890NL	1300	W-E	1500	6135	13485	10.4	17.8	103	102	GENEVA
6/86	391	KANE	30,*29	40N	8E	675EL, 890NL	450WL, 1550NL	1300	W-E	1500	13905	0	36.4	40.4	0.0	0.0	GENEVA
6/86	392	KANE	29	40N	8E	600WL, 1650NL	1185WL, 2000NL	650	W-E	1500	5000	14491	25.3	19.4	61.0	59.5	ELBURN
6/86	393	KENDALL	1	37N	8E	1350WL, 750SL	2525WL, 1525NL	1300	W-E	1500	4777	11631	20.0	6.3	113	72.7	ELBURN
6/86	394	VILL	6	37N	9E	500WL, 2900NL	1700WL, 3425NL	1300	W-E	1500	6043	14058	8.0	9.5	116	139	GENEVA
6/86	395	VILL	6	37N	9E	2100SL, 1800WL	800SL, 1800WL	1300	S-N	1500	6049	14304	7.3	9.6	70	70	GENEVA
6/86	396	KANE	35	38N	8E	1200EL, 2300NL	1845EL, 2350NL	650	W-E	1500	5248	16022	6.2	9.1	78.6	88.6	AUROA,SOUTH
6/86	397	KANE	36	38N	8E	0WL, 2200NL	625WL, 2000NL	650	W-E	1500	6929	13578	14.6	1.8	142	119	ELBURN
6/86	398	KANE	36	38N	8E	625WL, 2000NL	1250WL, 1810NL	650	W-E	1500	6929	13578	0.0	13.9	114	109	AUROA,SOUTH

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

Appendix A *continued*

Date	Profile	County	Sec	Twn	Rng	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Compressional wave velocities (ft./sec.)	Trend	Layer 1	Layer 2	Layer 3	Surface elevation at endpoints (ft. above MSL)	Bedrock elevation at endpoints (ft. above MSL)	7.5 Quad
										Elev. 1	Elev. 2	Elev. 1	Elev. 2	Elev. 1	Elev. 2	
6/88 399	KANE	35	38N 8E	3000SL	390EL	2375SL, 175EL	1750SL, 50WL	650	S-N	1500	5042	15412	13.7	61.8	91.2	594
6/86 400	KANE	35.*36	38N 8E	2375SL	175EL	1150SL, 250WL	1200SL, 50WL	650	S-N	1500	5561	12152	15.3	18.2	86.4	643
6/88 401	KANE	36	38N 8E	1750SL	50WL	650	S-N	1500	5786	13622	14.2	19.1	114	100	675	687
6/86 402	KANE	8	39N 8E	2400SL	25EL	1100SL, 25EL	1300	1300	S-N	1500	5195	12078	10.7	13.0	133	575
6/88 403	KANE	8	39N 8E	1500NL	10WL	1300	S-N	1500	5791	14151	0.0	9.2	204	182	796	758
6/86 404	KANE	8	39N 8E	1500NL	10WL	1300	S-N	1500	5791	14151	10.7	0.0	166	201	760	745
6/86 405	KANE	18	39N 8E	1005L	1150EL	1400SL, 1275EL	1300	1300	S-N	1500	5985	14409	6.3	5.1	155	137
6/86 406	KANE	18	39N 8E	1400SL	1275EL	2700SL, 1300EL	1300	1300	S-N	1500	5985	14409	2.4	7.8	143	210
6/88 407	KANE	5	38N 7E	750SL	2250NL	650	W-E	1500	6697	17392	11.8	10.0	201	143	695	552
6/86 408	DUPAGE	18	38N 9E	350EL	450SL	1000EL, 450SL	650	650	W-E	1500	5785	13467	6.5	7.3	131	112
6/86 409	DUPAGE	18	38N 9E	800SL	1150EL	200SL, 1350EL	650	650	S-N	1500	5518	17235	5.3	6.1	127	125
6/86 410	DUPAGE	18.*19	38N 9E	200SL	1350EL	350NL, 1750EL	650	650	S-N	1500	5518	17235	6.9	2.2	90.2	127
6/86 411	KANE	24	38N 8E	1400SL	2300EL	750SL, 2300EL	650	650	S-N	1500	6087	14504	10.5	8.9	77.2	146
6/86 412	DUPAGE	6	38N 9E	40NL	50WL	690NL, 50WL	650	650	S-N	1500	5711	17641	5.0	5.7	68.5	81.5
6/86 413	DUPAGE	6	39N 9E	750NL	50WL	1400NL, 50WL	650	650	S-N	1500	5920	17552	7.7	9.3	68.9	93.5
6/86 414	KANE	33	38N 8E	2050NL	100NL	1400NL, 25NL	650	650	W-E	1500	7974	11497	20.7	12.0	62.6	65.2
6/86 415	KANE	28	38N 8E	750SL	1200WL	200SL, 900WL	650	650	S-N	1500	6452	13100	1.9	9.0	31.9	89.8
6/86 416	KANE	28	38N 8E	800NL	1250WL	1400SL, 1450WL	650	650	S-N	1500	7328	12844	9.7	10.0	90.5	50.4
6/86 417	DUPAGE	6	37N 9E	3450NL	1800WL	2800NL, 1800WL	650	650	S-N	1500	5736	12888	7.7	0.0	127	121
6/86 418	DUPAGE	8	37N 9E	2800NL	1800WL	2150NL, 1800WL	650	650	S-N	1500	5736	12888	1.6	10.9	120	56.7
6/86 419	DUPAGE	8	37N 9E	2150NL	1800WL	1500NL, 1800WL	650	650	S-N	1500	5736	12888	9.9	37.6	64.3	63.8
6/86 420	DUPAGE	6	37N 9E	950NL	1800WL	850NL, 1800WL	650	650	S-N	1500	5736	12888	27.5	13.7	27.5	51.4
6/86 421	DUPAGE	6	37N 9E	850NL	1800WL	200NL, 1800WL	650	650	S-N	1500	5736	12888	11.2	1.7	51.6	64.1
6/86 422	KANE	19	39N 8E	50NL	50WL	1300NL, 850EL	1300	1300	S-N	1500	6946	13890	20.1	6.3	99.6	187
6/86 423	KANE	19	39N 8E	1300NL	850EL	2600NL, 580EL	1300	1300	S-N	1500	6946	43980	18.6	23.8	122	97.4
6/86 424	KENDALL	1	37N 8E	850NL	750WL	675WL, 2000SL	650	650	W-E	1500	5419	13416	20.1	10.1	112	690
6/86 425	KENDALL	1.*36	37N 8E	200NL	750WL	375SL, 625WL	650	650	S-N	1500	5416	13116	0.0	15.7	121	99.7
6/86 426	KANE	36	38N 8E	850NL	375WL	1420SL, 175WL	650	650	S-N	1500	6684	12836	17.4	16.2	92.3	117
6/86 427	DUPAGE	18	38N 9E	1100EL	400SL	1750EL, 400SL	650	650	W-E	1500	6190	14339	12.2	16.2	65.7	144
6/86 428	DUPAGE	18	38N 9E	1100SL	1300EL	1500SL, 1300EL	650	650	S-N	1500	5485	13166	12.3	8.8	86.9	108
6/86 429	DUPAGE	17	38N 9E	650NL	850SL	1300NL, 850SL	650	650	W-E	1500	6016	15666	10.6	18.4	71.0	705
6/86 430	DUPAGE	17	37N 8E	850NL	1000WL	675WL, 2000SL	650	650	W-E	1500	6008	16332	8.0	12.4	153	70.0
6/86 431	KANE	18	38N 8E	0SL	40WL	550SL, 40WL	650	650	S-N	2100	6171	13790	16.7	21.0	90.8	96.6
6/86 432	KANE	18	38N 8E	650SL	40WL	1300SL, 40WL	650	650	S-N	2100	6171	13790	3.2	116	128	680
6/86 433	KANE	18	38N 8E	130SL	40WL	1950SL, 40WL	650	650	S-N	2100	6171	13790	12.6	13.6	67.3	597
6/86 434	KANE	33.*28	38N 8E	10NL	1200WL	250SL, 1750WL	650	650	S-N	2100	6171	12697	15.8	14.2	73.2	596
6/86 435	KENDALL	1	37N 8E	1350WL	750NL	1950WL, 1025NL	650	650	W-E	1500	5924	10399	25.3	16.4	88.7	607
6/86 436	KENDALL	1	37N 8E	1950NL	1025NL	2525WL, 1325NL	650	650	W-E	1500	5475	9997	16.7	20.8	60.2	63.5
6/86 437	WILL	6	37N 9E	1200WL	2250SL	1200WL, 2250SL	650	650	W-E	1500	6595	13432	12.2	13.9	118	585
6/86 438	WILL	6	37N 9E	1200WL	2250SL	625WL, 2810NL	650	650	W-E	1500	5985	13432	9.2	13.6	67.3	595
6/86 439	WILL	8	37N 9E	2100SL	1800WL	1450SL, 1800WL	650	650	S-N	1500	6564	14226	10.8	9.1	125	638
6/86 440	WILL	6	37N 9E	1450SL	1800WL	900SL, 1800WL	650	650	S-N	1500	6564	14226	13.6	10.8	48.4	109
6/86 441	KANE	32	40N 8E	100EL	1050SL	1400EL, 1000SL	1300	1300	W-E	1500	6557	140308	13.9	9.2	158	221
6/86 442	KANE	27	42N 6E	1325SL	1100WL	1800SL, 2200SL	1300	1300	S-N	1500	6557	140308	14.6	17.8	258	790
6/86 443	KANE	21	42N 6E	1250EL	1000SL	2500EL, 700SL	1300	1300	W-E	1500	6780	14673	12.1	10.6	162	532
6/86 444	KANE	18	39N 8E	1250NL	1150EL	1625EL, 700SL	325	325	W-E	1500	5321	6888	10.8	7.6	19.5	680
6/86 445	KANE	27	42N 6E	400WL	1425NL	1700WL, 1425NL	1300	1300	W-E	1500	6407	14091	21.1	21.1	148	927
6/86 446	KANE	27	42N 6E	1600WL	1425NL	2900WL, 1425NL	1300	1300	W-E	1500	6407	14091	17.5	14.6	172	918
6/86 447	KANE	27	42N 6E	1325SL	1100WL	2300SL, 275WL	1300	1300	S-N	1500	6401	14032	16.2	7.3	181	188
6/86 448	KANE	18	39N 8E	1250EL	1250NL	2550EL, 1250NL	1300	1300	W-E	1500	6027	14858	5.7	8.1	198	724
6/86 449	KANE	18	39N 8E	1250NL	1150EL	2500NL, 1300EL	1300	1300	S-N	1500	5737	14660	9.4	13.2	190	861
6/86 450	KANE	9	38N 7E	1050WL	750SL	2100WL, 50NL	1300	1300	W-E	1500	7136	16792	24.6	25.8	171	725
6/86 451	KANE	9	38N 7E	2100WL	50NL	3150WL, 800NL	1300	1300	W-E	1500	7136	16792	24.4	33.5	179	654
6/86 452	DUPAGE	7.*6	39N 9E	500NL	25WL	150SL, 25WL	650	650	S-N	1500	5539	16691	4.6	3.1	87.9	677
6/86 453	DUPAGE	6	39N 9E	150SL	25WL	800SL, 25WL	650	650	S-N	1500	5539	16691	0.0	3.3	95.7	685

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

Appendix A *continued*

Date	Profile	County	Sec	Twn	Rng	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Compressional wave velocities (ft./sec.)	Layer 1	Layer 2	Layer 3	Depth to top of layer 2 at endpoints (ft.)	Depth to top of layer 3 at endpoints (ft.)	Bedrock elevation at endpoints (ft. above MSL)	Elev. 1	Elev. 2	7.5 Quad
6/86 454	DUPAGE	6	39N	9E	800SL, 25WL	1450SL, 25WL	650	S-N	1500	1539	16691	6.5	9.6	78.1	76.9	765	687	688
6/86 455	DUPAGE	6	39N	9E	2000SL, 25WL	2650SL, 25WL	650	S-N	1500	6178	15740	8.1	10.6	76.3	80.9	760	684	679
6/86 456	DUPAGE	6	39N	9E	2650SL, 25WL	3300SL, 25WL	650	S-N	1500	6178	15740	9.7	11.2	81.8	111	760	678	649
6/86 457	DUPAGE	6	39N	9E	100WL, 25NL	750WL, 25NL	650	W-E	1500	5589	16874	9.0	8.8	86.7	54.8	765	678	710
6/86 458	DUPAGE	7	39N	9E	3000WL, 200SL	2450WL, 275SL	650	W-E	1500	5970	17280	16.5	12.7	72.9	73.6	750	677	AUROA,NORTH
6/86 459	DUPAGE	7	39N	9E	500EL, 25SL	1150EL, 100SL	650	W-E	1500	6228	16114	4.8	6.1	52.7	85.6	745	692	NAPERVILLE
6/86 460	DUPAGE	7	39N	9E	1150EL, 100SL	1800EL, 175SL	650	W-E	1500	5882	18104	5.5	8.4	63.0	55.9	743	680	687
6/86 461	KANE	26	38N	8E	1825EL, 3800SL	1200EL, 3575SL	650	W-E	1500	5827	12018	9.5	11.3	117	117	735	728	AUROA,SOUTH
6/86 462	KANE	6	39N	8E	100EL, 1500SL	1400EL, 1500SL	1300	W-E	1500	9023	18382	33.4	12.4	231	355	737	506	408
6/86 463	KANE	13	40N	7E	1075SL, 300WL	1450SL, 625WL	650	W-E	1500	6679	15217	10.1	6.8	225	107	821	596	714
6/86 464	KANE	13	40N	7E	825WL, 1450SL	1875WL, 2200SL	1300	W-E	1500	6439	12873	5.8	6.4	162	137	823	834	ELBURN
6/86 465	KANE	13	40N	7E	2150SL, 1800WL	2400NL, 2450EL	1300	W-E	1500	6504	13684	8.4	9.5	186	155	835	820	649
6/86 466	KANE	13	40N	7E	2450NL, 1650EL	1500NL, 1650EL	1300	W-E	1500	6150	13034	10.0	8.0	142	103	819	792	689
6/86 467	KANE	18	40N	8E	3250EL, 25NL	2050EL, 25NL	1300	W-E	1500	8553	12564	22.6	12.1	120	66.3	779	659	707
6/86 468	KANE	18.*17	39N	8E	1025EL, 2350NL	50WL, 2350NL	1300	W-E	1500	7014	15095	11.3	14.5	344	154.	725	730	AUROA,NORTH
6/86 469	KANE	18.*17	39N	8E	1225EL, 1850SL	75WL, 1875SL	1300	W-E	1500	5988	14279	8.5	14.0	169	166	700	700	531
6/86 470	KANE	19	39N	8E	1325SL, 1300EL	25SL, 1300EL	1300	S-N	1500	6775	13342	20.0	11.6	110	130	730	739	620
6/86 471	KANE	19	39N	8E	1300EL, 625L	650	W-E	1500	6215	11413	14.0	10.4	117	88.6	730	730	613	
6/86 472	KENDALL	1.*2	37N	9E	1740NL, 150WL	1175NL, 625L	650	S-N	1250	3198	1359	6.0	7.0	36.9	49.8	860	680	643
6/86 473	KENDALL	23	38N	7E	2790NL, 1725WL	2125NL, 1800WL	650	S-N	1500	5540	14518	20.9	17.2	83.1	106	710	627	SUGAR,GROVE
6/86 474	KENDALL	23	38N	7E	2175NL, 1800WL	1510NL, 1900WL	650	S-N	1500	5540	14518	15.9	19.5	97.8	100	710	612	SUGAR,GROVE
6/86 475	KENDALL	23	38N	7E	1555NL, 1900WL	925NL, 1975WL	650	S-N	1500	5540	14518	20.0	7.7	90.7	121	710	619	SUGAR,GROVE
6/86 476	KENDALL	23	38N	7E	970NL, 1975WL	340NL, 2050WL	650	S-N	1500	5540	14518	8.4	10.4	124	103	710	586	AUROA,NORTH
6/86 477	KENDALL	23.*14	38N	7E	375NL, 2050WL	250SL, 2110WL	650	S-N	1500	5540	14518	11.9	17.9	96.3	66.0	710	614	644
6/86 478	KANE	14	38N	7E	210SL, 2110WL	6850SL, 2200WL	650	S-N	1500	5540	14518	18.8	16.4	56.6	65.0	710	653	638
6/86 479	KANE	23	38N	7E	3100NL, 1700WL	3720NL, 1610WL	650	S-N	1500	5279	14817	20.3	27.4	113	127	718	605	591
6/86 480	KANE	33	38N	8E	201NL, 2100WL	575NL, 1800WL	650	S-N	1500	6124	12076	13.2	14.7	46.2	75.9	621	577	AUROA,SOUTH
6/86 481	KANE	28	38N	8E	30SL, 2200WL	650NL, 2450WL	650	S-N	1500	4225	12786	3.0	0.4	27.0	79.9	623	596	AUROA,SOUTH
6/86 482	KANE	33	38N	8E	1250NL, 2000WL	650NL, 2225WL	650	S-N	1500	6637	12375	7.0	4.8	11.1	75.1	618	607	543
6/86 483	KANE	33	38N	8E	700NL, 2220WL	50NL, 2425WL	650	S-N	1500	6637	12375	6.2	1.6	81.8	78.1	618	536	540
6/86 484	KANE	28	38N	8E	OSL, 2450WL	6250SL, 2875WL	650	S-N	1500	6637	12375	1.7	1.8	75.0	64.0	618	543	554
6/86 485	KANE	35	38N	8E	2025NL, 350EL	1375NL, 450EL	650	S-N	1500	5495	13789	10.5	8.2	81.9	92.2	680	598	AUROA,SOUTH
6/86 486	KANE	36.*35	38N	8E	150WL, 1400SL	475EL, 1200SL	650	W-E	1500	6198	12395	12.7	11.7	41.0	91.5	670	629	579
6/86 487	KANE	36	38N	8E	300WL, 1450SL	940WL, 1625SL	650	W-E	1500	5964	10917	12.7	12.6	87.5	63.3	670	583	607
6/86 488	KENDALL	2	37N	8E	50SL, 575EL	700SL, 575EL	650	S-N	1500	6158	12520	7.1	8.9	144	97.1	725	581	AUROA,SOUTH
6/86 489	KENDALL	2	37N	8E	650SL, 575EL	1300SL, 575EL	650	S-N	1500	6158	12520	10.8	7.6	103	125	720	617	595
6/86 490	KENDALL	2	37N	8E	1250SL, 575EL	1900SL, 575EL	650	S-N	1500	6158	12520	8.0	10.5	101	123	720	597	AUROA,SOUTH
6/86 491	KENDALL	2	37N	8E	1850SL, 575EL	2500SL, 500WL	650	S-N	1500	5870	14868	9.5	9.0	112	109	700	700	598
6/86 492	DUPAGE	17	38N	9E	725WL, 2475SL	1375WL, 2600SL	650	W-E	1500	5829	13291	9.4	2.8	141	131	720	722	621
6/86 493	DUPAGE	17	38N	9E	1950WL, 2600SL	650WL, 575EL	650	W-E	1500	5829	13281	11.6	10.3	68.8	84.3	720	600	607
6/86 494	DUPAGE	17	38N	9E	2350WL, 2300NL	1725WL, 2450NL	650	W-E	1500	5609	12481	13.8	10.3	85.9	114	720	651	636
6/86 495	DUPAGE	17	38N	9E	1775WL, 2450NL	1150WL, 2500NL	650	W-E	1500	6086	13485	11.3	14.4	100	111	720	620	609
6/86 496	DUPAGE	19	38N	9E	1000SL, 500WL	350SL, 500WL	650	S-N	1500	5870	14868	9.5	9.0	112	109	700	700	598
6/86 497	DUPAGE	19	38N	9E	50WL, 1000SL	700WL, 1000SL	650	W-E	1500	6057	13102	7.0	12.5	107	102	700	700	598
6/86 498	KANE	21	40N	8E	100EL, 2035NL	1400EL, 2035NL	1300	W-E	1500	5898	14134	19.9	36.7	57.6	196	725	667	530
6/86 499	KANE	20.*17	40N	8E	50NL, 25EL	600SL, 25EL	650	S-N	1500	4621	12807	5.1	13.2	89.1	70.9	790	701	719
6/86 500	KANE	17	40N	8E	550SL, 25EL	1200SL, 25EL	650	S-N	1500	4621	12807	13.4	6.4	85.9	114	790	704	677
6/86 501	KANE	26	38N	8E	1800EL, 3050SL	1150EL, 1000SL	550	W-E	1500	5835	12598	10.9	7.2	129	95.0	720	591	625
6/86 502	KANE	26	38N	8E	3350SL, 1800EL	3350SL, 2350EL	650	S-N	1500	5796	10672	5.4	9.2	88.7	119	727	638	608
6/86 503	KANE	26	38N	8E	2700SL, 2350EL	6000WL, 650SL	650	W-E	1500	6012	14545	5.6	10.0	92.5	111	712	620	598
6/86 504	KANE	24	38N	8E	350WL, 650SL	1000WL, 650SL	650	W-E	1500	6540	12143	10.2	20.4	127	128	702	713	575
6/86 505	KANE	24	38N	8E	650SL, 350WL	650SL, 350WL	650	S-N	1500	5826	14288	8.4	15.8	96.0	143	700	700	557
6/86 506	KANE	24.*26	38N	8E	125WL, 150WL	450SL, 450WL	650	S-N	1500	4025	13319	9.6	3.6	65.7	39.7	606	617	559
6/86 507	KANE	26	38N	8E	425SL, 425WL	1000SL, 725WL	650	S-N	1500	2348	11619	6.4	5.2	68.2	101	657	589	556
6/86 508	DUPAGE	18	38N	9E	1525NL, 10EL	2175NL, 10EL	650	S-N	1500	5386	14415	8.8	7.6	109	95.2	720	625	625

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

Appendix A *continued*

Date	Profile	County	Sec	Twn	Ring	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Compressional wave velocities (ft./sec.)	Trend	Layer 1	Layer 2	Layer 3	Surface elevation at endpoints (ft. above MSL)	Bedrock elevation at endpoints (ft. above MSL)	Elev. 1	Elev. 2	7.5 Quad
6/86	509	DUPAGE	18	38N	9E	2125NL, 10EL	2775NL, 10EL	650	S-N	1500	6046	1240	8.7	11.8	711	715	648	
6/86	510	DUPAGE	17	38N	9E	2075NL, 275WL	2725NL, 250WL	650	S-N	1500	5665	1304	26.2	5.6	30.4	147	NAPERVILLE	
6/86	511	DUPAGE	18	38N	9E	640EL, 1500NL	10EL, 1525NL	650	W-E	1500	6205	1434	11.9	10.1	111	105	NAPERVILLE	
6/86	512	DUPAGE	18	38N	9E	125EL, 2450SL	775EL, 2375SL	650	W-E	1500	5714	14492	6.9	7.4	68.3	114	NAPERVILLE	
6/86	513	DUPAGE	17	38N	9E	2600NL, 825WL	1950NL, 875WL	650	S-N	1500	5815	15895	10.2	12.5	129	114	NAPERVILLE	
6/87	514	KANE	28	40N	8E	1200WL, 1900NL	2500WL, 1900NL	1300	W-E	1500	5076	1282	7.2	31.1	102	178	GENEVA	
6/87	515	KANE	28	40N	8E	3000NL, 2300WL	1700NL, 2300WL	1300	S-N	1500	5322	1326	8.7	12.4	171	206	GENEVA	
6/87	516	KANE	28	40N	8E	2700NL, 300WL	1400NL, 450WL	1300	S-N	1500	3499	14960	18.1	2.2	172	85.0	GENEVA	
6/87	517	KANE	34	38N	8E	2400EL, 600NL	1750EL, 600NL	650	W-E	1500	6507	1235	18.7	20.7	90.2	105	AURORA, SOUTH	
6/87	518	KANE	35	38N	8E	950NL, 50WL	300NL, 50WL	550	S-N	1100	5229	2658	12.8	13.0	116	145	AURORA, SOUTH	
6/87	519	DUPAGE	19.*20	38N	9E	150EL, 850NL	500WL, 775NL	650	W-E	1100	5851	14314	5.5	6.7	101	67.6	AURORA, SOUTH	
6/87	520	DUPAGE	20	38N	9E	810WL, 695NL	1275WL, 590NL	650	W-E	1100	5698	16072	6.3	5.4	113	47.2	AURORA, SOUTH	
6/87	521	KANE	27	42N	6E	1050WL, 1900SL	1050WL, 2550SL	650	S-N	1100	6346	2000	9.8	19.5	198	188	HAMPSHIRE	
6/87	522	KENDALL	12	37N	8E	1400WL, 700NL	2050WL, 700NL	650	W-E	1100	6135	12218	7.9	9.4	89.4	81.6	AURORA, SOUTH	
6/87	523	KENDALL	12	37N	8E	2000WL, 700NL	2650WL, 700NL	650	W-E	1100	5693	14559	7.9	8.3	98.6	50.7	AURORA, SOUTH	
6/87	524	KENDALL	2.*1	37N	8E	550EL, 5SL	100WL, 5SL	650	W-E	1100	5922	14516	5.8	10.4	168	113	AURORA, SOUTH	
6/87	525	KENDALL	1	37N	8E	50WL, 5SL	700WL, 5SL	650	W-E	1100	5393	15241	9.4	7.4	125	116	AURORA, SOUTH	
6/87	526	KENDALL	11	37N	8E	1300EL, 5NL	650EL, 5NL	650	W-E	1100	5841	15332	7.5	8.5	140	130	AURORA, SOUTH	
6/87	527	KENDALL	11	37N	8E	1900EL, 5NL	1250EL, 5NL	650	W-E	1100	5841	15332	9.6	7.6	152	136	AURORA, SOUTH	
6/87	528	KANE	10	39N	6E	50NL, 25EL	1350NL, 25EL	1300	S-N	1100	5914	14051	9.8	8.6	141	189	MAPLE PARK	
4/87	529	KANE	10	39N	6E	1250NL, 25EL	2550NL, 25EL	1300	S-N	1100	5914	14051	6.2	7.9	192	158	BIG ROCK, MAPLE PARK	
4/87	532	KANE	10	39N	6E	2875SL, 25EL	1575SL, 25EL	1300	S-N	1100	5914	14051	7.8	6.4	185	153	BIG ROCK, MAPLE PARK	
4/87	533	KANE	10	39N	6E	1675SL, 25EL	3755SL, 25EL	1300	S-N	1100	6014	14117	6.0	8.2	150	156	BIG ROCK, MAPLE PARK	
4/87	534	KANE	10.*15	39N	6E	475SL, 25EL	825NL, 25EL	1300	S-N	1100	6014	14117	6.8	6.7	160	156	BIG ROCK, MAPLE PARK	
4/87	535	KANE	15	39N	6E	725NL, 25EL	2025NL, 25EL	1300	S-N	1100	6014	14117	6.3	7.8	165	165	BIG ROCK, MAPLE PARK	
4/87	536	KANE	15	39N	6E	3550NL, 25EL	4850NL, 25EL	1300	S-N	1100	5762	11996	7.7	5.5	122	117	BIG ROCK, MAPLE PARK	
4/87	537	KANE	15.*22	39N	6E	475NL, 25EL	775NL, 25EL	1300	S-N	1100	5762	11996	6.2	11.1	110	72.5	BIG ROCK, MAPLE PARK	
4/87	538	KANE	22	39N	6E	675NL, 25EL	1325NL, 25EL	650	S-N	1100	5762	11996	9.0	8.3	71.8	107	BIG ROCK, MAPLE PARK	
4/87	539	KANE	22	39N	6E	1275NL, 25EL	1925NL, 25EL	650	S-N	1100	5762	11996	8.1	9.6	104	94.2	BIG ROCK, MAPLE PARK	
4/87	540	KANE	22	39N	6E	1875NL, 25EL	2525NL, 25EL	650	S-N	1100	5762	11996	8.2	7.2	82.4	113	BIG ROCK, MAPLE PARK	
4/87	541	KANE	22	39N	6E	3125NL, 25EL	3125NL, 25EL	1300	S-N	1100	6092	11969	7.1	9.8	163	88.8	BIG ROCK, MAPLE PARK	
4/87	542	KANE	22	39N	6E	3075NL, 25EL	3725NL, 25EL	650	S-N	1100	6092	11969	5.2	8.0	55.1	79.5	BIG ROCK, MAPLE PARK	
4/87	543	KANE	22	39N	6E	4500NL, 25EL	5150NL, 25EL	650	S-N	1100	5911	11937	7.8	10.1	94.7	72.5	BIG ROCK, MAPLE PARK	
4/87	544	KANE	22.*27	39N	6E	5100NL, 25EL	400NL, 25EL	650	S-N	1100	5911	11937	10.9	13.8	71.8	87.0	BIG ROCK, MAPLE PARK	
4/87	545	KANE	27	39N	6E	350NL, 25EL	3102NL, 25EL	650	S-N	1100	5911	11937	10.9	12.2	79.9	84.2	BIG ROCK, MAPLE PARK	
4/87	548	KANE	15	39N	6E	1925NL, 25EL	3125NL, 25EL	1300	S-N	1100	6014	14217	7.8	8.1	165	131	BIG ROCK, MAPLE PARK	
4/87	549	DUPAGE	29	38N	9E	2575WL, 1475NL	2900WL, 1475NL	325	W-E	1100	5041	15660	7.9	8.8	16.3	31.0	BIG ROCK, MAPLE PARK	
4/87	550	KANE	25	38N	7E	1950WL, 875SL	2275WL, 975SL	325	W-E	1100	4597	12897	11.0	9.1	20.2	0.0	BIG ROCK, MAPLE PARK	
4/87	551	KANE	29	38N	8E	2625EL, 2900SL	3275EL, 2900SL	650	W-E	1100	13545	0	14.5	14.8	0.0	BIG ROCK, MAPLE PARK		
4/87	552	KANE	29	38N	8E	3225EL, 2900SL	3875EL, 2975SL	650	W-E	1100	13545	0	11.8	15.1	0.0	BIG ROCK, MAPLE PARK		
4/87	553	KANE	29	38N	8E	3825EL, 2970SL	4775EL, 3075SL	650	W-E	1100	13545	0	12.7	10.1	0.0	BIG ROCK, MAPLE PARK		
4/87	554	KENDALL	2.*35	37N	8E	1300EL, 200NL	1775EL, 80SL	650	W-E	1100	2703	19700	6.5	6.3	31.0	50.5	AURORA, SOUTH	
4/87	555	KANE	35	38N	8E	1735EL, 50NL	2300EL, 350SL	650	W-E	1100	15213	0	14.7	20.2	0.0	AURORA, SOUTH		
4/87	556	KANE	35	38N	8E	225EL, 320SL	2850EL, 600SL	650	W-E	1100	15982	0	18.7	8.9	0.0	AURORA, SOUTH		
4/87	557	KANE	35	38N	8E	2810EL, 575SL	3400EL, 865SL	650	W-E	1100	15687	0	14.2	16.3	0.0	AURORA, SOUTH		
4/87	558	KANE	35	38N	8E	3316EL, 850SL	3900EL, 1125SL	650	W-E	1100	14476	0	12.2	11.8	0.0	AURORA, SOUTH		
4/87	559	KENDALL	2	37N	8E	925EL, 350NL	400EL, 820NL	650	W-E	1100	5747	14224	10.7	5.8	30.6	70.5	AURORA, SOUTH	
4/87	560	KANE	24	38N	7E	750WL, 850NL	320WL, 375NL	650	S-N	1100	12831	0	12.2	7.4	26.4	SUGAR GROVE		
4/87	561	KANE	29	38N	8E	2300EL, 2900SL	1650EL, 2925SL	650	W-E	1100	13529	0	13.3	12.7	0.0	AURORA, SOUTH		
5/87	562	KANE	29	38N	8E	3500SL, 2600WL	4150SL, 2600WL	650	S-N	1100	6030	15694	10.6	9.3	29.3	96.2	AURORA, SOUTH	
5/87	563	KANE	29	38N	8E	4100SL, 2600WL	4750SL, 2600WL	650	S-N	1100	5137	19054	8.2	8.5	102	82.4	AURORA, SOUTH	
5/87	564	KANE	29	38N	8E	2600WL, 10NL	1950WL, 10NL	650	W-E	1100	6113	1235	11.4	13.2	137	72.9	AURORA, NORTH	
5/87	565	KANE	29	38N	8E	2000WL, 10NL	1350WL, 10NL	650	W-E	1100	5814	12662	10.5	12.0	103	59.7	AURORA, NORTH	
5/87	566	KANE	29	38N	8E	1250WL, 10NL	600WL, 10NL	650	W-E	1100	3306	12522	2.5	5.0	49.3	59.8	AURORA, NORTH	
5/87	567	KANE	19	38N	8E	1450NL, 25EL	2100NL, 25EL	650	S-N	1100	2857	14234	3.5	2.0	45.9	31.8	AURORA, NORTH	

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

Appendix A *continued*

Date	Profile	County	Sec.	Twn.	Ring	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Compressional wave velocities (ft./sec.)	Layer 1	Layer 2	Layer 3	Depth to top of layer 2 at endpoints (ft.)	Depth to top of layer 3 at endpoints (ft.)	Surface elevation at endpoints (ft. above MSL)	Bedrock elevation at endpoints (ft. above MSL)	7.5 Quad
5/87	568	KANE	19	38N	8E	2050NL, 25EL	2700NL, 25EL	650	S-N	1100	6250	10173	10.1	6.1	33.9	32.9	AUROA,NORTH
5/87	569	KANE	19	38N	8E	700NL, 25EL	50NL, 25EL	650	S-N	1100	5294	16729	2.1	5.4	118	75.1	AUROA,NORTH
5/87	570	KANE	17	38N	8E	10SL, 10WL	610SL, 10WL	600	S-N	1100	5611	14103	4.0	7.8	80.7	45.8	AUROA,NORTH
5/87	571	KANE	18	38N	8E	1150SL, 2300EL	600SL, 2600EL	650	S-N	1100	7071	16401	9.3	11.4	69.1	99.3	AUROA,NORTH
5/87	572	KENDALL	1	37N	8E	150WL, 1750NL	500WL, 1950NL	650	S-N	1100	5544	14438	15.0	15.8	93.6	89.4	AUROA,SOUTH
5/87	573	KANE	10	39N	6E	650NL, 25EL	1950NL, 25EL	1300	S-N	1100	6071	13414	15.5	5.0	154	19.0	BIG,ROCK,*MAPLE,PARK
5/87	574	KANE	15	39N	6E	1325NL, 25EL	2625NL, 40EL	1300	S-N	1100	6494	15527	5.1	12.6	156	195	BIG,ROCK
5/87	575	KENDALL	1	37N	8E	475WL, 2280NL	825WL, 2810NL	650	S-N	1100	5544	14438	12.8	17.1	59.9	68.3	AUROA,SOUTH
5/87	576	KENDALL	1	37N	8E	600WL, 2730NL	1150WL, 3280NL	650	S-N	1100	5544	14438	9.0	13.1	100	58.9	AUROA,SOUTH
5/87	577	KENDALL	1	37N	8E	1125WL, 3240NL	1475WL, 3790NL	650	S-N	1100	5548	14427	9.3	8.4	55.1	94.9	AUROA,SOUTH
5/87	578	KENDALL	1	37N	8E	1450WL, 3750NL	1800WL, 4300NL	650	S-N	1100	5548	14427	10.8	9.4	70.9	55.2	AUROA,SOUTH
5/87	579	KENDALL	1	37N	8E	1775WL, 4260NL	2125WL, 4810NL	650	S-N	1100	5548	14427	12.6	11.1	85.0	67.9	AUROA,SOUTH
5/87	580	KENDALL	1	37N	8E	2100WL, 4770NL	2450WL, 5320NL	650	S-N	1100	5548	14427	13.1	13.2	85.0	82.8	AUROA,SOUTH
5/87	581	KANE	24	38N	7E	1050NL, 875WL	1700NL, 775WL	650	S-N	1100	7060	14283	10.1	8.2	85.1	156	SUGAR,GROVE
5/87	582	KANE	24	38N	7E	1650NL, 780WL	2300NL, 700WL	650	S-N	1100	7504	12246	12.7	8.7	135	85.8	SUGAR,GROVE
5/87	583	KANE	24	38N	7E	2050SL, 875WL	2700SL, 675WL	650	S-N	1100	6709	13861	12.4	7.0	105	53.8	SUGAR,GROVE
5/87	584	KANE	24	38N	7E	1450SL, 950WL	2100SL, 870WL	650	S-N	1100	6522	14067	7.6	6.5	28.6	77.6	SUGAR,GROVE
5/87	585	KANE	25	38N	7E	4125SL, 1225WL	4700SL, 950WL	650	S-N	1100	12960	0	9.2	8.1	0.0	SUGAR,GROVE	
5/87	586	KANE	25	38N	7E	2750SL, 1900WL	3370SL, 1650WL	650	S-N	1500	14492	0	13.3	18.5	0.0	SUGAR,GROVE	
5/87	587	KANE	25	38N	7E	2800SL, 1875WL	2200SL, 2100WL	650	S-N	1500	1492	0	20.7	14.1	0.0	SUGAR,GROVE	
5/87	588	KANE	25	38N	7E	2420WL, 1050SL	2100WL, 925SL	325	S-N	1500	6144	15306	10.8	14.7	57.9	33.8	SUGAR,GROVE
5/87	589	KANE	25	38N	7E	2120WL, 930SL	1830WL, 855SL	650	S-N	1500	6144	15306	14.1	6.3	62.2	59.6	SUGAR,GROVE
5/87	590	KANE	24	38N	7E	1000WL, 1100NL	1450WL, 1500NL	650	W-E	1500	6460	13339	21.7	10.2	93.8	113	SUGAR,GROVE
5/87	591	KANE	24	38N	7E	1400WL, 1525NL	1825WL, 2000NL	650	W-E	1500	7777	16521	4.5	18.0	135	125	SUGAR,GROVE
5/87	592	KANE	23	38N	7E	1600WL, 1200SL	2100WL, 750SL	650	W-E	1500	1492	0	17.6	14.3	102	86.3	SUGAR,GROVE
5/87	593	KANE	23	38N	7E	2100WL, 750SL	2600WL, 350SL	650	W-E	1500	4987	12008	21.4	15.8	92.3	123	SUGAR,GROVE
5/87	594	KANE	23	38N	7E	2500WL, 400SL	3125WL, 225SL	650	W-E	1500	4987	12008	14.6	16.1	124	83.5	SUGAR,GROVE
5/87	595	KANE	23	38N	7E	1650WL, 2400SL	1010WL, 2500SL	650	W-E	1500	6460	13339	21.7	10.2	58.0	101	SUGAR,GROVE
5/87	596	KANE	23	38N	7E	3010WL, 2850L	3725WL, 56SL	650	W-E	1500	4040	14383	11.8	14.4	78.5	74.0	SUGAR,GROVE
5/87	597	KANE	24	38N	7E	1400WL, 1525NL	1825WL, 2000NL	550	S-N	1100	13475	0	12.7	12.6	0.0	SUGAR,GROVE	
5/87	598	KANE	23	38N	7E	2100WL, 750SL	2600WL, 350SL	325	S-N	1100	15537	0	8.8	8.4	0.0	SUGAR,GROVE	
5/87	599	KANE	10	38N	8E	925SL, 1500WL	600SL, 1700WL	325	S-N	1500	15781	0	13.6	14.1	0.0	SUGAR,GROVE	
5/87	600	KANE	20	38N	8E	2550WL, 450SL	1950WL, 450SL	600	W-E	1500	6489	21341	10.8	10.2	151	145	SUGAR,GROVE
5/87	601	KANE	20	38N	8E	1930WL, 450SL	1930WL, 1100SL	650	S-N	1500	5843	17143	4.4	7.5	184	43.5	SUGAR,GROVE
5/87	602	KANE	20	38N	8E	3450SL, 2650EL	2900SL, 2625EL	550	S-N	1100	13475	0	12.7	12.6	0.0	SUGAR,GROVE	
5/87	603	KANE	19	38N	8E	2450WL, 1025NL	3000WL, 700NL	650	S-N	1100	6043	14672	7.5	6.8	54.4	124	SUGAR,GROVE
5/87	604	KANE	19	38N	8E	925SL, 1500WL	530NL, 2400EL	650	S-N	1100	6325	14818	6.1	9.1	103	89.4	SUGAR,GROVE
5/87	605	KANE	19	38N	8E	1200NL, 1775EL	1780NL, 2050EL	650	S-N	1100	6231	15367	8.5	8.9	55.5	107	SUGAR,GROVE
5/87	606	KANE	19	38N	8E	2225EL, 2275NL	2875EL, 2275NL	650	W-E	1500	7294	22786	19.7	10.5	86.0	219	SUGAR,GROVE
5/87	607	KANE	19	38N	8E	1550EL, 10NL	900EL, 10NL	650	W-E	1500	6250	14807	6.9	5.2	66.6	18.2	AUROA,SOUTH
5/87	608	KANE	19	38N	8E	2125EL	1350NL, 2200EL	650	S-N	1100	14672	0	6.0	6.0	0.0	AUROA,NORTH	
5/87	609	KANE	19	38N	8E	1005L, 2550EL	530NL, 2400EL	650	S-N	1500	6034	14504	9.0	4.9	63.3	54.6	AUROA,NORTH
5/87	610	KANE	13	38N	7E	1125SL, 2375WL	600SL, 2500WL	650	S-N	1500	7238	15869	10.6	18.8	127	28.1	AUROA,NORTH
5/87	611	KANE	14	38N	7E	1425SL, 1820EL	800SL, 1890EL	650	S-N	1500	7603	14664	9.2	13.5	52.8	41.0	AUROA,NORTH
5/87	612	KANE	22	40N	8E	1755SL, 1150WL	825SL, 1500WL	650	S-N	1500	6863	14897	11.7	10.9	51.2	69.4	AUROA,NORTH
5/87	613	KANE	22	40N	8E	900WL, 800NL	1525WL, 900NL	650	W-E	1500	1454	0	10.4	60.7	67.6	AUROA,NORTH	
5/87	614	KANE	22	40N	8E	3000NL, 3800EL	3650NL, 3750EL	650	S-N	1500	6034	14504	9.0	4.9	63.3	54.6	AUROA,NORTH
5/87	615	KANE	22	40N	8E	2700NL, 550WL	2100NL, 800WL	650	S-N	1500	6057	11374	13.4	14.3	96.0	92.8	AUROA,NORTH
5/87	616	KANE	22	40N	8E	1700NL, 950WL	1100NL, 1225WL	650	S-N	1500	6234	11614	4.7	5.8	82.9	94.9	AUROA,NORTH
5/87	617	KANE	24	38N	8E	1175WL, 2175SL	1525WL, 2175SL	325	W-E	1500	5890	0	8.5	11.7	0.0	GENEVA	
5/87	618	KANE	23	38N	8E	900WL, 800NL	1525WL, 900NL	650	W-E	1500	15434	0	25.5	17.6	0.0	GENEVA	
5/87	619	KANE	13	38N	7E	2575SL, 1800WL	900SL, 2800EL	650	S-N	1500	6098	15013	11.4	12.5	43.5	80.3	GENEVA
5/87	620	KANE	13	38N	7E	3175WL, 400SL	3815WL, 300SL	650	W-E	1500	6554	14232	13.3	4.4	81.4	95.3	GENEVA
5/87	621	KANE	13	38N	7E	1700NL, 2700WL	1050NL, 2700WL	650	S-N	1500	4934	15070	5.5	12.9	45.4	69.4	GENEVA
5/87	622	KANE	13	38N	7E	1100NL, 2700WL	450NL, 2700WL	650	S-N	1500	4934	15070	13.5	14.5	65.1	59.7	GENEVA

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

Appendix A *continued*

Date	Profile	County	Sec	Twn	Rng	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Compressional wave velocities (ft./sec.)	Trend	Layer 1	Layer 2	Layer 3	Surface elevation at endpoints (ft. above MSL)	Bedrock elevation at endpoints (ft. above MSL)	Elev. 1	Elev. 2	7.5 Quad
6/87	623	KANE	12	38N	7E	505SL, 2675WL	1150SL, 2700WL	650	S-N	1500	698	14253	14.6	10.9	43.8	48.2	641	637
6/87	624	KANE	12	38N	7E	1100SL, 2700WL	1750SL, 2700WL	650	S-N	1500	6684	15541	8.9	9.5	59.2	39.8	685	645
7/67	625	KANE	28	38N	8E	875SL, 900WL	1525SL, 925WL	650	S-N	1500	5277	17256	13.9	11.1	118	99.0	660	545
7/67	626	KANE	12	38N	7E	2275SL, 2720WL	2775SL, 3175WL	650	S-N	1500	5986	15413	12.8	8.5	54.9	59.2	690	645
7/67	627	KANE	12	38N	7E	2740SL, 3140WL	3200SL, 3575WL	650	S-N	1500	5988	15413	10.2	12.1	58.6	45.7	680	631
7/67	628	KANE	12	38N	7E	4000WL, 1275NL	4575WL, 1550NL	650	W-E	1500	9041	14855	5.8	8.1	61.4	57.9	680	617
7/67	629	KANE	12	38N	7E	4540WL, 1525NL	5110WL, 1825NL	650	W-E	1500	9041	14855	8.2	14.1	56.8	41.3	675	639
7/67	630	KANE	19	38N	8E	2625NL, 2150EL	1975NL, 2150EL	650	S-N	1500	6598	12899	8.5	13.2	126	91.3	685	685
7/67	631	KENDALL	12	37N	8E	2600SL, 1375WL	1950SL, 1375WL	650	S-N	1500	5816	13448	11.3	7.2	117	122	725	603
7/67	632	KENDALL	12	37N	6E	3000SL, 1375WL	1350SL, 1375WL	650	S-N	1500	5816	13448	7.5	12.5	87.0	124	730	608
7/67	633	KENDALL	12	37N	8E	1400SL, 1375WL	750SL, 1375WL	650	S-N	1500	5816	13448	6.9	7.2	104	103	730	627
7/67	634	KENDALL	12	37N	8E	2550SL, 1375WL	3200SL, 1375WL	650	S-N	1500	5914	13843	9.5	8.7	152	118	725	608
7/67	635	KENDALL	12	37N	8E	3150SL, 1375WL	3800SL, 1375WL	650	S-N	1500	5914	13843	6.7	8.1	122	110	720	598
7/67	636	KENDALL	12	37N	8E	3750SL, 1375WL	4400SL, 1375WL	650	W-E	1500	5914	13843	6.7	6.4	112	103	720	619
7/67	637	KANE	19	38N	8E	2150EL, 2825NL	1500EL, 2825NL	650	W-E	1500	6916	17857	15.1	14.7	129	166	685	520
7/67	638	KANE	19	38N	8E	1400EL, 2825NL	850EL, 2825NL	650	W-E	1500	5587	18838	12.3	118	131	690	572	559
7/67	639	KANE	19	38N	8E	1975SL, 375EL	1325SL, 375EL	650	S-N	1500	7167	15371	16.1	16.4	150	152	725	574
7/67	640	KANE	19	38N	8E	1025SL, 1150EL	3755SL, 1150EL	650	S-N	1500	6806	13846	14.9	14.9	64.0	64.5	690	626
7/67	641	KANE	19	38N	8E	775SL, 1120EL	7755SL, 470EL	650	W-E	1500	6471	14626	13.7	9.0	97.5	77.8	690	593
9/67	642	KANE	19	38N	8E	3200WL, 2275NL	3850WL, 2295NL	650	W-E	1500	6638	14085	10.5	13.6	103	93.8	688	596
7/67	643	KANE	19	38N	8E	850SL, 375EL	1500SL, 375EL	650	S-N	1500	6526	11732	9.7	13.6	147	102	690	543
7/67	644	KANE	30	38N	8E	1750SL, 1150EL	8250NL, 1750EL	650	S-N	1500	6548	13273	19.0	11.5	45.8	49.4	690	540
7/67	645	KANE	30	38N	8E	1125EL, 4000SL	475EL, 4000SL	650	W-E	1500	7588	14236	14.8	16.5	82.3	40.2	680	598
7/67	646	KANE	36	38N	8E	1250WL, 1810NL	1875WL, 1625NL	650	W-E	1500	5419	15097	4.0	7.0	50.2	47.8	685	635
7/67	647	KANE	36	38N	8E	1830WL, 1640NL	2425WL, 1450NL	650	W-E	1500	5197	29765	11.1	11.4	66.5	120	685	619
7/67	648	KANE	36	38N	8E	2390WL, 1470NL	3000WL, 1300NL	650	W-E	1500	5197	29765	8.2	11.5	121	109	690	569
8/67	649	KANE	32	40N	7E	1800NL, 1275EL	500NL, 1275EL	1300	S-N	1500	6389	13185	8.6	10.6	254	145	910	856
8/67	650	KANE	32	40N	7E	600NL, 1275EL	700SL, 1275EL	1300	S-N	1500	6389	13185	11.5	9.4	145	155	885	840
8/67	651	KANE	36	38N	8E	1125EL, 4000SL	475EL, 4000SL	1300	S-N	1500	6389	13185	8.3	8.2	163	144	885	840
8/67	652	KANE	36	38N	8E	850EL, 1255L	265WL, 525NL	1300	W-E	1500	6545	12190	11.9	12.0	227	205	930	905
8/67	653	KANE	29	40N	7E	180WL, 450NL	1275WL, 1150NL	1300	W-E	1500	6545	12190	7.9	17.3	203	243	905	702
8/67	654	KANE	29	40N	7E	1200WL, 1600NL	2400WL, 1650NL	1300	W-E	1500	6545	12190	10.6	12.6	248	172	930	682
8/67	655	KANE	31	40N	7E	1400NL, 20EL	100NL, 20EL	1300	S-N	1500	6455	13820	12.2	15.4	187	157	900	713
8/67	656	KANE	31,*30	40N	7E	200NL, 20EL	1100SL, 20EL	1300	S-N	1500	6455	13820	15.9	13.2	138	191	905	767
8/67	657	KANE	30	40N	7E	850EL, 1255L	720NL, 1100EL	1300	S-N	1500	6587	11321	7.1	14.9	235	132	910	778
8/67	658	KANE	29	40N	7E	2300WL, 1600NL	3475WL, 2120NL	1300	W-E	1500	7748	9060	7.9	23.1	220	238	925	706
8/67	659	KANE	29,*26	40N	7E	275EL, 2650SL	950WL, 2200SL	1300	W-E	1500	6495	13467	8.3	16.0	230	238	935	705
8/67	660	KANE	35	38N	8E	1050EL, 2300NL	410EL, 2225NL	650	W-E	1500	5383	16856	6.9	10.9	106	73.1	690	584
8/67	661	KANE	36	38N	8E	2955WL, 1305NL	3600WL, 1110NL	650	W-E	1500	5197	29765	12.2	13.2	106	107	690	585
8/67	662	KANE	35	38N	8E	1300EL, 2300NL	1948EL, 2350NL	650	W-E	1500	4731	13396	0.0	6.2	14.9	235	690	621
8/67	663	KANE	35	38N	8E	1898EL, 2350NL	2546EL, 2400NL	650	W-E	1500	4731	13396	7.3	3.4	59.5	66.7	690	631
8/67	664	KANE	35	38N	8E	2496EL, 2400NL	3144EL, 2450NL	650	W-E	1500	4731	13396	7.7	9.0	62.9	57.4	690	627
8/67	665	KANE	24	38N	8E	675WL, 2175SL	1325WL, 2175SL	650	W-E	1500	5586	16088	11.1	10.0	103	121	720	715
8/67	666	KANE	24	38N	8E	2885WL, 2000WL	4755WL, 2900WL	650	S-N	1500	5483	13828	10.8	123	119	715	798	584
8/67	667	KANE	29	38N	8E	1275EL, 3475SL	625EL, 3475SL	650	S-N	1500	5830	13782	17.9	18.9	91.8	99.8	660	578
9/67	668	KANE	14	40N	8E	1500WL, 900SL	2125WL, 725SL	650	W-E	1500	15630	0	11.4	12.4	0.0	716	705	703
9/67	669	KANE	14	40N	8E	725WL, 1380SL	1175WL, 1050SL	550	W-E	1500	5982	12621	28.6	23.6	85.1	103	710	714
9/67	670	KANE	15	40N	8E	1220EL, 1500SL	675EL, 1600SL	650	W-E	1500	5688	12273	15.9	22.2	102	112	700	598
9/67	671	KANE	15	40N	8E	873EL, 2975SL	225EL, 2900SL	650	W-E	1500	4445	8055	17.1	14.7	141	80.1	782	772
9/67	672	KANE	15	40N	8E	2600SL, 700EL	3240SL, 850EL	650	S-N	1500	3983	10479	5.4	16.2	122	134	776	655
9/67	673	KANE	14	40N	8E	950WL, 2000SL	1675WL, 1800SL	650	W-E	1500	3644	11450	14.3	8.7	118	99.3	764	664
9/67	674	KANE	14	40N	8E	375WL, 2150SL	1000WL, 1980SL	650	W-E	1500	3644	11450	9.9	24.7	130	759	763	633
9/67	675	KANE	29	38N	8E	3500SL, 10EL	4150SL, 10EL	850	S-N	1500	10756	19765	13.4	26.7	65.9	628	694	594
9/67	676	KANE	29	38N	8E	725NL, 10EL	660WL, 750NL	650	S-N	1500	9766	20473	20.4	17.2	73.6	76.5	659	601
9/67	677	KANE	28	38N	8E	10WL, 750NL	660WL, 750NL	650	W-E	1500	14233	18890	21.4	14.0	66.0	594	660	600

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

Appendix A *continued*

Date	Profile	County	Sec	Twn	Rng	Endpoint 1	Endpoint 2	Length of Profile (ft.)	Compressional wave velocities (ft./sec.)	Layer 1	Layer 2	Layer 3	Depth to top of layer 3 at endpoints (ft.)	Surface elevation at endpoints (ft. above MSL)	Bedrock elevation at endpoints (ft. above MSL)
										Elev. 1	Elev. 2	Elev. 1	Elev. 2	Elev. 1	Elev. 2
9/87	678	KANE	28	38N	8E	2100SL, 1225WL	2675SL, 1575WL	650	S-N	1500	12919	0	10.8	8.3	0.0
9/87	679	KANE	28	38N	8E	1875SL, 300WL	2400SL, 600WL	600	S-N	1500	11905	7.9	10.5	53.5	639
9/87	680	KANE	28	38N	8E	2300SL, 950WL	2850SL, 1300WL	650	S-N	1500	12015	19996	11.1	13.4	640
9/87	681	KANE	28	38N	8E	1780SL, 750WL	2150SL, 975WL	450	S-N	1500	11560	19523	9.2	13.4	647
9/87	682	KANE	16,*15	40N	8E	2100NL, 400EL	2100NL, 900WL	1300	W-E	1500	3200	13365	2.0	2.1	84.3
9/87	683	KANE	15	40N	8E	2730NL, 800WL	2100NL, 900WL	650	S-N	1500	8172	13067	70.3	62.0	91.1
9/87	684	KANE	15	40N	8E	3300NL, 700WL	2680NL, 800WL	650	S-N	1500	8172	13067	54.5	66.0	750
9/87	686	KANE	22	40N	8E	635NL, 300WL	0NL, 400WL	650	S-N	1500	6059	11766	45.9	35.4	648
9/87	687	KANE	22	40N	8E	1630NL, 120WL	1000NL, 225WL	650	S-N	1500	6308	13231	55.7	24.8	645
9/87	688	KANE	21,*22	40N	8E	525EL, 1500NL	120WL, 1630NL	650	W-E	1500	6041	11928	39.3	42.3	647
9/87	689	KANE	21,*22	40N	8E	425EL, 1000NL	225WL, 1000NL	650	W-E	1500	5024	15.9	17.6	109	750
9/87	690	KANE	19	38N	8E	100WL, 850NL	745WL, 940NL	650	W-E	1500	6963	13843	9.4	7.0	750
9/87	691	KANE	19	38N	8E	695WL, 930NL	1340WL, 1025NL	650	W-E	1500	6963	13843	8.9	14.3	740
9/87	692	KANE	19	38N	8E	1290WL, 1015NL	1935WL, 1110NL	650	W-E	1500	6963	13843	12.1	10.5	605
9/87	693	KANE	19	38N	8E	200WL, 2150NL	650WL, 2175NL	650	W-E	1500	6600	17127	10.8	11.4	648
9/87	694	KANE	19	38N	8E	800WL, 2175NL	1450WL, 2200NL	650	W-E	1500	6600	17127	11.0	18.5	640
9/87	695	KANE	19	38N	8E	1400WL, 2200NL	2050WL, 2200NL	650	W-E	1500	6600	17127	15.1	10.4	650
9/87	696	KANE	19	38N	8E	2000WL, 2225NL	2650WL, 2250NL	650	W-E	1500	6638	14085	9.0	4.8	680
9/87	697	KANE	19	38N	8E	3250WL, 2250NL	650WL, 2275NL	650	W-E	1500	6638	13843	7.5	9.7	683
9/87	698	KANE	15	40N	8E	920WL, 1775SL	1570WL, 1750SL	650	W-E	1500	5470	10422	46.8	41.0	685
9/87	699	KANE	15	40N	8E	1750SL, 1250WL	2400SL, 1265WL	650	S-N	1500	6140	10835	52.1	60.4	680
9/87	700	KANE	15	40N	8E	2350SL, 1265WL	3000SL, 1280WL	650	S-N	1500	6140	10835	60.7	99.9	683
9/87	701	KANE	21,*22	40N	8E	425EL, 1000NL	225WL, 1100NL	650	W-E	1500	5394	13341	33.5	22.4	685
9/87	702	KANE	21,*22	40N	8E	1150EL, 1250NL	150WL, 1300NL	1300	W-E	1500	6172	13265	28.6	17.2	683
9/87	703	KANE	21,*22	40N	8E	525EL, 1775NL	125WL, 1800NL	650	W-E	1500	6288	11675	29.7	38.5	688
9/87	704	KANE	21,*16	40N	8E	475NL, 720EL	175SL, 620EL	650	S-N	1500	7539	11210	40.9	55.0	92.9
9/87	705	KANE	18,*15	40N	8E	650EL, 1830SL	1300WL, 1820SL	1300	W-E	1500	4618	12730	3.3	30.3	93.0
9/87	706	KANE	15	40N	8E	2230SL, 2025EL	2875SL, 1880EL	650	S-N	1500	6556	14150	14.3	21.7	93.1
9/87	707	KANE	20	38N	8E	3525SL, 425EL	4175SL, 425EL	650	S-N	1500	7618	19728	20.9	15.7	93.2
9/87	708	KANE	29	38N	8E	500EL, 4150SL	1150EL, 4150SL	650	W-E	1500	8184	21206	13.8	17.2	93.3
9/87	709	KANE	29	38N	8E	1300EL, 4160SL	1950EL, 4170SL	650	W-E	1500	5731	16505	12.2	20.3	93.4
9/87	710	KANE	29	38N	8E	3525SL, 1975EL	4175SL, 1985EL	650	S-N	1500	5323	17845	14.9	11.9	93.5
9/87	711	KANE	29	38N	8E	4175SL, 1965EL	4825SL, 1955EL	650	S-N	1500	5340	16093	6.5	12.0	93.6
9/87	712	KANE	20	38N	8E	20SL, 1880EL	670SL, 1890EL	600	S-N	0	0	0	0.0	0.0	0
9/87	713	KANE	34	38N	8E	350NL, 725WL	995NL, 625WL	650	S-N	1500	6401	13838	9.4	13.6	93.7
9/87	714	KANE	34	38N	8E	1050NL, 1000WL	1700NL, 1030WL	650	S-N	1500	5607	15744	21.1	19.5	93.8
9/87	715	KANE	34	38N	8E	350NL, 1500WL	995NL, 1400WL	650	S-N	1500	6341	13874	86.0	88.9	93.9
9/87	716	KANE	34	38N	8E	175NL, 1600WL	470SL, 1700WL	650	S-N	1500	6938	14769	16.0	19.1	94.0
9/87	717	KANE	34,*27	38N	8E	2235SL, 2010WL	870SL, 2110WL	650	S-N	1500	5970	14820	18.1	20.1	94.1
9/87	718	KANE	27	38N	8E	1950NL, 2350EL	1300NL, 2350EL	650	S-N	1500	5520	16141	22.9	18.3	94.2
9/87	720	KANE	34	38N	8E	650	0	0	0	0	0	0	0	0	0

Coordinates of endpoints, depths to layers beneath endpoints, surface elevations and bedrock elevations are in accordance with trend of profile convention W-E and S-N.

HECKMAN
BINDERY INC.

JUN 97

Bound To Please® N. MANCHESTER,
INDIANA 46962

