A Study of Gradient Boosting

Minh Ngo and Ian DeLano
University of Florida
STA 4241 Final Project

Why Predictive Modeling?

- Predictive modeling helps with data-driven decisions in business, finance, and more.
- Real-world data is messy & noisy- models need to balance accuracy, flexibility, and interpretability
- Goal: Create models that can generalize well on unseen data
- Many predictive models available:
 - Linear models, SVMs, k-NN, Random Forests, etc...
 - But today, we'll focus on Decision Trees and how to boost them.

Why Decision Trees?

- Very common and interpretable ML model.
- Can handle classification and regression tasks.
- Simple and easy to use.
- But... comes with limitations:
 - Prone to overfitting.
 - Weak as a stand alone model, high variance.

This is where **Gradient Boosting** comes in.

Why Gradient Boosting?

- Decision trees underperform on complex datasets.
- Gradient Boosting improves on decision trees:
 - Build an series of weak learners (trees).
 - Each tree learns from the errors of the previous one.
 - Iterative training enables learning from mistakes.

★ Advantages

- > Better accuracy
- More generalization
- Captures nonlinearity and feature interactions

Project Overview

- Goal: Understand gradient boosting and how improves on decision trees.
- Dataset: Wine Quality Dataset (Kaggle)
 - Features: pH, alcohol, acidity, sulfate, etc.
 - Target: Quality score (0-10)
- Modeling Tasks:
 - Regression on continuous quality score
 - Classification to predict discrete quality class
- Compare Models' Performance:
 - Gradient Boosting (XGBoost) vs Single Decision Tree

	А	В	С	D	E	F	G	Н	-1	J	K	L	M
1	fixed acid	volatile ac	citric acid	residual s	chlorides	free sulfu	total sulfu	density	pH	sulphates	alcohol	quality	Id
2	7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4		5 0
3	7.8	0.88	0	2.6	0.098	25	67	0.9968	3.2	0.68	9.8		5 1
4	7.8	0.76	0.04	2.3	0.092	15	54	0.997	3.26	0.65	9.8		5 2
5	11.2	0.28	0.56	1.9	0.075	17	60	0.998	3.16	0.58	9.8		6 3
6	7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4		5 4
7	7.4	0.66	0	1.8	0.075	13	40	0.9978	3.51	0.56	9.4		5 5
8	7.9	0.6	0.06	1.6	0.069	15	59	0.9964	3.3	0.46	9.4		5 6
9	7.3	0.65	0	1.2	0.065	15	21	0.9946	3.39	0.47	10		7 7

The Additive Model

- Framework
 - Ensemble method
 - Sequentially combining weak learns for powerful model
 - Each model corrects errors of previous one
 - Minimizes a loss function
- Contrasts models like Random forest that is parallel in nature
- Additive Model Formula:
 - Creates new model at iteration m
 - Adds new weak learner from previous iteration

$$F_m(x) = F_{m-1}(x) + h_m(x)$$

Weak Learner

- At each iteration of the model, we train a new weak learner $h_m(x)$.
- This is done by training $h_m(x)$ to fit the "residuals" of the loss function:

$$h_m(x) = \arg\min_{h} \sum_{i=1}^{n} L(y_i, F_{m-1}(x_i) + h(x_i))$$

The chosen loss function L is used to guide each learner.

Loss Functions

- Loss functions are used as a guide
- For regression problems, we often use squared error:

$$L(y_i, \hat{y}_i) = (y_i - \hat{y}_i)^2$$

For classification, log loss is commonly used:

$$L(y_i, \hat{p}_i) = -\log \hat{p}_{i, y_i}$$

- At each step, the new model is trained to reduce this loss by focusing on the parts the current model is getting wrong.
- In practice, this means the new model is trained on the negative gradient.

Final Formula

- Caution must be brought to fitting new weak learners
 - Adding new trees too aggressively can cause overfitting.
- A learning rate(η) is employed to adjust with smaller and safer steps.
- Additive formula becomes:

$$F_m(x) = F_{m-1}(x) + \eta \cdot h_m(x)$$

- Encourages steadier improvements:
 - \circ Smaller η Requires more trees and longer computation time.
 - Typically leads to stronger final performance.

Gradient Boosting Algorithm

- Putting it all together you have the Gradient Boosting Algorithm
- 1. Initialize: $F_0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(y_i, \gamma)$
- 2. For m=1 to M:
 - (a) Compute pseudo-residuals: $r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$
 - (b) Fit weak learner $h_m(x)$ to $\{x_i, r_{im}\}$.
 - (c) Update model: $F_m(x) = F_{m-1}(x) + \eta \cdot h_m(x)$
- 3. **Return:** Final model $F_M(x)$

- Pseudo-residuals are a computation of a negative gradient.
- → Weak learner is trained on pseudo-residuals to approximate the negative gradient.
 - Model is updated by adding the weak learner using a fixed learning rate eta.

Implementation and Data Collection

Red Wine Quality Dataset Used

- Contains roughly 1600 samples, 11 features
- Wine quality score as target

Preprocessing

- Removed non-predictive columns such as ID.
- Split into feature matrix X (input) and label vector Y (target quality score)
- Applied standard scaling to features for consistency.

Modeling Tasks

- Regression: Predict continuous quality score.
- Classification: Predict categorical quality class (3-8)

Algorithms Used

- Decision Tree as a baseline.
- XGBoost for Gradient Boosting
 - Tuned with GridSearchCV, 3-fold cross-validation

Regression Results: XGBoost vs Decision Tree

- Metrics used to evaluate performance:
 - Root Mean Squared Error (RMSE)
 - o R-Squared (R²)
- Decision Tree Regressor (depth = 5)
 - \circ RMSE = 0.7103, R² = 0.1324
- XGBoost Regressor
 - \circ Untuned: RMSE = 0.5848, R² = 0.4013
 - \circ Tuned: RMSE = 0.5782, R^2 = 0.4251
- Summary:
 - XGBoost outperforms decision trees on both error and fit.
 - Improved generalization and error minimization
 - Tuning offers improved performance, although marginal.

Results - Feature Importance

Figure 1: Feature Importance Comparison Between Models

Classification Results: Decision Tree vs XGBoost

- Setup
 - Converted continuous wine scores into discrete classes (3-8)
 - Extrema had lack of available data
 - Performanced measured by accuracy.
- Decision Tree Classifier
 - 59.38% accuracy
- XGBoost Classifier
 - Untuned
 - 68.12% accuracy
 - Tuned (via GridSearchCV cross-validation)
 - 69.43% accuracy
- Summary:
 - XGBoost outperforms base model, tuning shows marginal improvement.

Results - Classification Limitation

- Further Inspection of Data:
 - Found majority of scores clustered between 5-7
 - Sparsity in extreme classes
- Found model overfitting to dominant classes
- As shown in Histogram:
 - The imbalanced labels skewed model performance
 - Thus limiting generalization

(a) Distribution of Wine Quality Classes

Results - Confusion Matrix

- Imbalance further shown with a confusion matrix
 - Caused over-prediction of common labels
 - High misclassification rate for underrepresented classes
- This highlights that classifier can be weak in cases of class imbalances
- Limitations of model to not predict entire range of classes

(b) Confusion Matrix for XGBoost Classifier

Conclusion

- We found that Gradient Boosting via XGBoost, consistently outperformed decision trees in both regression and classification.
- Our study demonstrated significant improvements in generalization and predictive power, even with minimal tuning.
- Gradient Boostings' sequential approach, proved to be a flexible and powerful modeling strategy compared to single decision trees.
- There were limitations in regards to class imbalances where minority classes were often misclassified.
- Gradient Boosting stands to be a reliable, scalable, and extremely effective technique for predictive modeling tasks with the input of structured data.

References

- [1] Analytics Vidhya. (2021). Gradient Boosting Algorithm: A Complete Guide for Beginners. Retrieved from https://www.analyticsvidhya.com/blog/2021/09/gradient-boosting-algorithm-a-completeguide-for-beginners/h-what-is-a-gradien t-boosting-algorithm
- [2] Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The Elements of Statistical Learning (2nd ed.). New
- York: Springer. Chapter 10: Boosting and Additive Trees, pp. 337–384. ISBN: 978-0-387-84857-0.
- [3] IBM. (n.d.). What is Gradient Descent? IBM Think. Retrieved from
- https://www.ibm.com/think/topics/gradient-descent
- [4] GeeksforGeeks. ML Gradient Boosting. Retrieved from https://www.geeksforgeeks.org/ml-gradientboosting/
- [5] Friedman, J. H. (February 1999). Evaluation of Predictive Models in Imbalanced Classification Tasks.
- Retrieved from https://web.archive.org/web/20191101082737/http://statweb.stanford.edu/ jhf/ftp/trebst.pdf
- [6] Yasser H. (2018). Wine Quality Dataset. Retrieved from https://www.kaggle.com/datasets/yasserh/winequality-dataset

Home About us Work Contact

Questions?

