Machine Learning Foundations

(機器學習基石)

Lecture 9: Linear Regression

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?

Lecture 8: Noise and Error

learning can happen with target distribution $P(y|\mathbf{x})$ and low E_{in} w.r.t. err

3 How Can Machines Learn?

Lecture 9: Linear Regression

- Linear Regression Problem
- Linear Regression Algorithm
- Generalization Issue
- Linear Regression for Binary Classification
- 4 How Can Machines Learn Better?

Credit Limit Problem

 $\mathcal{Y} = \mathbb{R}$: regression

Linear Regression Hypothesis

age	23 years
annual salary	NTD 1,000,000
year in job	0.5 year
current debt	200,000

• For $\mathbf{x} = (x_0, x_1, x_2, \dots, x_d)$ 'features of customer', approximate the desired credit limit with a weighted sum:

$$y \approx \sum_{i=0}^d \mathbf{w}_i x_i$$

• linear regression hypothesis: $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

 $h(\mathbf{x})$: like perceptron, but without the sign

sign(Σwx)

Illustration of Linear Regression

linear regression:
find lines/hyperplanes with small residuals

minimize

The Error Measure

popular/historical error measure:

squared error
$$err(\hat{y}, y) = (\hat{y} - y)^2$$

in-sample

$$E_{\text{in}}(\mathbf{h})$$

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\underbrace{h(\mathbf{x}_n)}_{\mathbf{w}^T \mathbf{x}_n} - y_n)^2$$

out-of-sample

$$E_{\text{out}}(\mathbf{w}) = \underbrace{\mathcal{E}_{(\mathbf{x},y) \sim P}(\mathbf{w}^T \mathbf{x} - y)^2}_{\uparrow}$$

We may have noise.

next: how to minimize $E_{in}(\mathbf{w})$?

Consider using linear regression hypothesis $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ to predict the credit limit of customers \mathbf{x} . Which feature below shall have a positive weight in a **good** hypothesis for the task?

- birth month
- 2 monthly income
- 3 current debt
- number of credit cards owned

Consider using linear regression hypothesis $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ to predict the credit limit of customers \mathbf{x} . Which feature below shall have a positive weight in a **good** hypothesis for the task?

- birth month
- 2 monthly income
- 3 current debt
- umber of credit cards owned

Reference Answer: 2

Customers with higher monthly income should naturally be given a higher credit limit, which is captured by the positive weight on the 'monthly income' feature.

Matrix Form of $E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - y_{n})^{2} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n}^{T} \mathbf{w} - y_{n})^{2}$$

$$= \frac{1}{N} \left\| \begin{array}{c} \mathbf{x}_{1}^{T} \mathbf{w} - y_{1} \\ \mathbf{x}_{2}^{T} \mathbf{w} - y_{2} \\ \dots \\ \mathbf{x}_{N}^{T} \mathbf{w} - y_{N} \end{array} \right\|^{2}$$

$$= \frac{1}{N} \left\| \begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \dots \\ --\mathbf{x}_{N}^{T} - - \end{bmatrix} \mathbf{w} - \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{N} \end{bmatrix} \right\|^{2}$$

$$= \frac{1}{N} \left\| \underbrace{\mathbf{x}}_{N \times d+1} \underbrace{\mathbf{w}}_{d+1 \times 1} - \underbrace{\mathbf{y}}_{N \times 1} \right\|^{2}$$

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

- E_{in}(w): continuous, differentiable, convex
- necessary condition of 'best' w

—not possible to 'roll down'

task: find \mathbf{w}_{LIN} such that $\nabla E_{in}(\mathbf{w}_{LIN}) = \mathbf{0}$

LIN: linear regression

The Gradient $\nabla E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = \frac{1}{N} \left(\mathbf{w}^T \underbrace{\mathbf{X}^T \mathbf{X}}_{\mathbf{A}} \mathbf{w} - 2 \mathbf{w}^T \underbrace{\mathbf{X}^T \mathbf{y}}_{\mathbf{b}} + \underbrace{\mathbf{y}^T \mathbf{y}}_{\mathbf{c}} \right)$$

one w only

$$E_{in}(w) = \frac{1}{N} \left(aw^2 - 2bw + c \right)$$

$$\nabla E_{in}(w) = \frac{1}{N} \left(2aw - 2b \right)$$
simple! :-)

vector w

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \left(\mathbf{w}^T \mathbf{A} \mathbf{w} - 2 \mathbf{w}^T \mathbf{b} + c \right)$$

$$\nabla E_{\rm in}(\mathbf{w}) = \frac{1}{N} (2\mathbf{A}\mathbf{w} - 2\mathbf{b})$$

similar (derived by definition)

A is a symmetric matrix.

$$\nabla E_{\mathsf{in}}(\mathbf{w}) = \frac{2}{N} \left(\mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{w} - \mathbf{X}^\mathsf{T} \mathbf{y} \right)$$

Optimal Linear Regression Weights

task: find
$$\mathbf{w}_{LIN}$$
 such that $\frac{2}{N} \left(\mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y} \right) = \nabla E_{in}(\mathbf{w}) = \mathbf{0}$

First scenario:

invertible $X^T X_{(d+1, d+1)} \leftarrow X_{(N, d+1)}$

easy! unique solution

$$\mathbf{w}_{LIN} = \underbrace{\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}}_{pseudo-inverse} \mathbf{y}$$

• often the case because $N \gg d + 1$

Second scenario:

singular X^TX

- · many optimal solutions
- one of the solutions

$$\mathbf{w}_{\mathsf{LIN}} = \mathbf{X}^{\dagger} \mathbf{y}$$

by defining X^{\dagger} in other ways

practical suggestion:

 $\label{eq:well-implemented} \text{use } \frac{\text{well-implemented}}{\text{instead of } \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T} \\ \text{for numerical stability when } \frac{1}{\mathbf{almost-singular}} \\$

Linear Regression Algorithm

1 from \mathcal{D} , construct input matrix \mathbf{X} and output vector \mathbf{y} by

$$X = \underbrace{\begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \cdots \\ --\mathbf{x}_{N}^{T} - - \end{bmatrix}}_{N \times (d+1)} \quad \mathbf{y} = \underbrace{\begin{bmatrix} y_{1} \\ y_{2} \\ \cdots \\ y_{N} \end{bmatrix}}_{N \times 1}$$

- 2 calculate pseudo-inverse X^{\dagger} $(d+1)\times N$
- 3 return $\underbrace{\mathbf{w}_{LIN}}_{(d+1)\times 1} = \mathbf{X}^{\dagger}\mathbf{y}$

simple and efficient with good † routine

After getting \mathbf{w}_{LIN} , we can calculate the predictions $\hat{y}_n = \mathbf{w}_{LIN}^T \mathbf{x}_n$. If all \hat{y}_n are collected in a vector $\hat{\mathbf{y}}$ similar to how we form \mathbf{y} , what is the matrix formula of $\hat{\mathbf{y}}$?

- **1** y
- $2 XX^T y$
- 3 XX[†]y
- $\mathbf{4} \mathbf{X} \mathbf{X}^{\dagger} \mathbf{X} \mathbf{X}^{T} \mathbf{y}$

After getting \mathbf{w}_{LIN} , we can calculate the predictions $\hat{y}_n = \mathbf{w}_{LIN}^T \mathbf{x}_n$. If all \hat{y}_n are collected in a vector $\hat{\mathbf{y}}$ similar to how we form \mathbf{y} , what is the matrix formula of $\hat{\mathbf{y}}$?

- **1** y
- $2 XX^T y$
- 3 XX[†]y
- $\mathbf{4} \mathbf{X} \mathbf{X}^{\dagger} \mathbf{X} \mathbf{X}^{T} \mathbf{y}$

Reference Answer: (3)

Note that $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}_{LIN}$. Then, a simple substitution of \mathbf{w}_{LIN} reveals the answer.

Is Linear Regression a 'Learning Algorithm'?

$$\mathbf{w}_{\mathsf{LIN}} = \mathbf{X}^{\dagger} \mathbf{y}$$

No!

- analytic (closed-form) solution, 'instantaneous'
- not improving E_{in} nor E_{out} iteratively

Yes!

- good E_{in}?yes, optimal!
- good E_{out}?
 yes, finite d_{VC} like perceptrons
- improving iteratively?
 somewhat, within an iterative pseudo-inverse routine

Conclusion:

if $E_{out}(\mathbf{w}_{LIN})$ is good, learning 'happened'!

Benefit of Analytic Solution: 'Simpler-than-VC' Guarantee

$$\overline{E_{\text{in}}} = \underbrace{\mathcal{E}}_{\mathcal{D} \sim P^N} \Big\{ E_{\text{in}}(\mathbf{w}_{\text{LIN}} \text{ w.r.t. } \mathcal{D}) \Big\} \overset{\text{to be shown}}{=} \text{noise level} \cdot \Big(1 - \frac{d+1}{N} \Big)$$

$$E_{\text{in}}(\mathbf{w}_{\text{LIN}}) = \frac{1}{N} \|\mathbf{y} - \underbrace{\hat{\mathbf{y}}}_{\text{predictions}} \|^2 = \frac{1}{N} \|\mathbf{y} - \mathbf{X} \underbrace{\mathbf{X}^{\dagger} \mathbf{y}}_{\mathbf{w}_{\text{LIN}}} \|^2$$

$$= \frac{1}{N} \|(\underbrace{\mathbf{I}}_{\text{identity}} - \mathbf{X} \mathbf{X}^{\dagger}) \mathbf{y} \|^2$$

call XX^{\dagger} the hat matrix H because it puts \wedge on y

Geometric View of Hat Matrix

in \mathbb{R}^N

- $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}_{LIN}$ within the span of X columns
- $\mathbf{y} \hat{\mathbf{y}}$ smallest: $\mathbf{y} \hat{\mathbf{y}} \perp \mathbf{span}$
- H: project \mathbf{y} to $\hat{\mathbf{y}} \in \mathbf{span}$
- I H: transform y to y $\hat{y} \perp span$

claim: trace(I - H) = N - (d + 1). Why? :-)

An Illustrative 'Proof'

- if y comes from some ideal $f(X) \in \text{span}$ plus **noise**
- **noise** transformed by I H to be $y \hat{y}$

$$\begin{split} E_{\text{in}}(\mathbf{w}_{\text{LIN}}) &= \frac{1}{N} \|\mathbf{y} - \hat{\mathbf{y}}\|^2 &= \frac{1}{N} \|(\mathbf{I} - \mathbf{H}) \mathbf{noise}\|^2 \\ &= \frac{1}{N} (N - (d+1)) \|\mathbf{noise}\|^2 \end{split}$$

$$\overline{E_{\text{in}}} = \text{noise level} \cdot \left(1 - \frac{d+1}{N}\right)$$

$$\overline{E_{\text{out}}} = \text{noise level} \cdot \left(1 + \frac{d+1}{N}\right) \text{(complicated!)}$$

The Learning Curve

$$\overline{E_{\text{out}}} = \text{noise level} \cdot \left(1 + \frac{d+1}{N}\right)$$

 $\overline{E_{\text{in}}} = \text{noise level} \cdot \left(1 - \frac{d+1}{N}\right)$

- both converge to σ^2 (**noise** level) for $N \to \infty$
- expected generalization error: ^{2(d+1)}/_N
 —similar to worst-case guarantee from VC

linear regression (LinReg): learning 'happened'!

Which of the following property about H is not true?

- 1 H is symmetric
- $2 H^2 = H$ (double projection = single one)
- (3) $(I H)^2 = I H$ (double residual transform = single one)
- none of the above

Which of the following property about H is not true?

- 1 H is symmetric
- $2 H^2 = H$ (double projection = single one)
- (3) $(I H)^2 = I H$ (double residual transform = single one)
- 4 none of the above

Reference Answer: (4)

You can conclude that (2) and (3) are true by their physical meanings! :-)

Linear Classification vs. Linear Regression

Linear Classification

$$\mathcal{Y} = \{-1, +1\}$$

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

$$\operatorname{err}(\hat{y}, y) = [\hat{y} \neq y]$$

NP-hard to solve in general

Linear Regression

$$\mathcal{Y} = \mathbb{R}$$

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

$$\operatorname{err}(\hat{y}, y) = (\hat{y} - y)^2$$

efficient analytic solution

 $\{-1,+1\}\subset\mathbb{R}$: linear regression for classification? Can we treat $\{-1,+1\}$ as real numbers and apply linear regression on classification problem?

- \bigcirc run LinReg on binary classification data \mathcal{D} (efficient)
- 2 return $g(\mathbf{x}) = \text{sign}(\mathbf{w}_{\text{LIN}}^T \mathbf{x})$

but explanation of this heuristic?

Relation of Two Errors

$$\operatorname{err}_{0/1} = \llbracket \operatorname{sign}(\mathbf{w}^T \mathbf{x}) \neq y \rrbracket \quad \operatorname{err}_{\operatorname{sqr}} = \left(\mathbf{w}^T \mathbf{x} - y\right)^2$$

$$\operatorname{err}_{\mathsf{sqr}} = \left(\mathbf{w}^\mathsf{T}\mathbf{x} - y\right)^2$$

$$err_{0/1} \leq err_{sqr}$$

Linear Regression for Binary Classification

$$err_{0/1} \le err_{sqr}$$

```
classification E_{\text{out}}(\mathbf{w}) \stackrel{\text{VC}}{\leq} \text{ classification } E_{\text{in}}(\mathbf{w}) + \sqrt{\dots}
\leq \text{ regression } E_{\text{in}}(\mathbf{w}) + \sqrt{\dots}
```

- (loose) upper bound errsqr as err to approximate err0/1
- trade bound tightness for efficiency

w_{LIN}: useful baseline classifier, or as <u>initial PLA/pocket vector</u> w₀

Which of the following functions are upper bounds of the pointwise 0/1 error $\|\operatorname{sign}(\mathbf{w}^T\mathbf{x}) \neq y\|$ for $y \in \{-1, +1\}$?

- $\mathbf{0} \exp(-y\mathbf{w}^T\mathbf{x})$
- **2** $\max(0, 1 y \mathbf{w}^T \mathbf{x})$
- 4 all of the above

Which of the following functions are upper bounds of the pointwise 0/1 error $\llbracket \text{sign}(\mathbf{w}^T\mathbf{x}) \neq y \rrbracket$ for $y \in \{-1, +1\}$?

- $\mathbf{0} \exp(-y\mathbf{w}^T\mathbf{x})$
- **2** $\max(0, 1 y \mathbf{w}^T \mathbf{x})$
- 3 $\log_2(1 + \exp(-y\mathbf{w}^T\mathbf{x}))$
- 4 all of the above

Reference Answer: 4

Plot the curves and you'll see. Thus, all three can be used for binary classification. In fact, <u>all</u> three functions connect to very important algorithms in machine learning and we will discuss one of them soon in the next lecture.

Stay tuned.:-)

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?

Lecture 8: Noise and Error

3 How Can Machines Learn?

Lecture 9: Linear Regression

- Linear Regression Problem
 use hyperplanes to approximate real values
- Linear Regression Algorithm
 analytic solution with pseudo-inverse
- Generalization Issue

$$E_{\rm out} - E_{\rm in} \approx \frac{2(d+1)}{N}$$
 on average

- Linear Regression for Binary Classification
 - 0/1 error \leq squared error
- next: binary classification, regression, and then?
- 4 How Can Machines Learn Better?