

Fully Homomorphic Encryption

Shai Halevi - IBM Research

Based Mostly on [van-Dijk, Gentry,_Halevi, Vaikuntanathan, EC 2010]

Somewhat Homomorphic Encryption

Motivating Application: Simple Keyword Search

- Storing an encrypted file F on a remote server
- Later send keyword w to server, get answer, determine whether F contains w
 - Trivially: server returns the entire encrypted file
 - We want: answer length independent of |F|

Claim: to do this, sufficient to evaluate low-degree polynomials on encrypted data

degree ~ security parameter

Protocol for keywork-search

- ▶ File is encrypted bit by bit, E(F₁) E(F₂) ... E(Ft)
- Word has s bits w₁w₂...w_s
- For i=1,2,...,t-s+1, server computes the bit $c_i = \prod_{j=1}^{s} (1+w_j + F_{i+j-1}) \mod 2$
 - $c_i = 1$ if w appears at position i, else $c_i = 0$
 - Each c_i is a degree-s polynomial in the F_i's
 - Trick from [Smolansky'93] to get degree-n polynomials, error-probability 2⁻ⁿ
- Return n random subset-sums of the c_i's (mod 2) to client
 - Still degree-n, another 2⁻ⁿ error

Computing low-degree polynomials on ciphertexts

- Want an encryption scheme (Gen, Enc, Dec)
 - Say, symmetric bit-by-bit encryption
 - Semantically secure, E(0)≈E(1)
- Another procedure: Eval(f, C₁,...C_t)
 - f is a binary polynomial in t variables, degree \leq n
 - Represented as arithmetic circuit
 - The C_i's are ciphertexts
- For any such f, and any $C_i = Enc(x_i)$ it holds that $Dec(Eval(f, C_1,...,C_t)) = f(x_1,...,x_t)$
 - Also |Eval(f,...)| does not depend on the "size" of f (i.e., # of vars or # of monomials, circuit-size)
 - That's called "compactness"

A Simple SHE Scheme

- Shared secret key: odd number p
- To encrypt a bit m:
 - Choose at random small r, large q
 Output c = pq + 2r + m

Noise much smaller than p

- Ciphertext is close to a multiple of p
- m = LSB of distance to nearest multiple of p

To decrypt c:

```
Output m = (c mod p) mod 2
```

```
= c - p \cdot [[c/p]] \mod 2
```

$$= c - [[c/p]] \mod 2$$

LSB(c) XOR LSB([[c/p]])

[[c/p]] is rounding of the rational c/p to nearest integer

Why is this homomorphic?

Basically because:

 If you add or multiply two near-multiples of p, you get another near multiple of p...

Why is this homomorphic?

$$c_1 = q_1p + 2r_1 + m_1$$
, $c_2 = q_2p + 2r_2 + m_2$

Distance to nearest multiple of p

$$c_1+c_2=(q_1+q_2)p+2(r_1+r_2)+(m_1+m_2)$$

• $2(r_1+r_2)+(m_1+m_2)$ still much smaller than p

$$\rightarrow c_1 + c_2 \mod p = 2(r_1 + r_2) + (m_1 + m_2)$$

$$c_1 \times c_2 = (c_1q_2+q_1c_2-q_1q_2)p + 2(2r_1r_2+r_1m_2+m_1r_2) + m_1m_2$$

- $2(2r_1r_2+...)$ still smaller than p
- $\rightarrow c_1 x c_2 \mod p = 2(2r_1r_2+...)+m_1m_2$

Why is this homomorphic?

- $c_1 = q_1p + 2r_1 + m_1, ..., c_t = q_tp + 2r_t + m_t$
- Let f be a multivariate poly with integer coefficients (sequence of +'s and x's)
- Let $c = \text{Eval}(f, c_1, ..., c_t) = f(c_1, ..., c_t)$ Suppose this noise is much smaller than p

•
$$f(c_1, ..., c_t) = \frac{f(m_1+2r_1, ..., m_t+2r_t)}{f(m_1, ..., m_t)} + qp$$

 \rightarrow (c mod p) mod 2 = f(m₁, ..., m_t)

That's what we want!

How homomorphic is this?

- Can keep adding and multiplying until the "noise term" grows larger than p/2
 - Noise doubles on addition, squares on multiplication
 - Multiplying d ciphertexts → noise of size ~2^{dn}
- We choose $r \sim 2^n$, $p \sim 2^{n^2}$ (and $q \sim 2^{n^5}$)
 - Can compute polynomials of degree ~n before the noise grows too large

Keeping it small

- Ciphertext size grows with degree of f
 - Also (slowly) with # of terms
- Publish one "noiseless integer", N = pq
 - In the symmetric setting, include N with the secret key and with every ciphertext
 - For technical reasons: q is odd, the q_i's for encryption are chosen from [q] rather than [2^{n⁵}]
- Ciphertext arithmetic mod N
 - →Ciphertext-size remains always the same

Public Key Encryption

Rothblum'11: Any homomorphic and compact symmetric encryption (wrt class *C* including linear functions), can be turned into public key

- Still homomorphic and compact wrt essentially the same class of functions C
- Public key: N random bits $r=(r_1...r_N)$ and their symmetric encryption $c_i=Enc_{sk}(r_i)$
 - N larger than size of evaluated ciphertext
- NewEnc_{pk} (b): Choose random s s.t. <s,r>=b, use Eval to get c*=Enc_{sk} (<s,r>)
 - \bigcirc Note that s \rightarrow c* is shrinking

Security

- The approximate-GCD problem:
 - Input: integers w₀, w₁,..., w_{t,}
 - Chosen as $w_0 = q_0 p$, $w_i = q_i p + r_i$ (p and q_0 are odd)
 - $p \in \{0,P\}, q_i \in \{0,Q\}, r_i \in \{0,R\} \text{ (with } R << P << Q)$
 - Task: find p
- Thm: If we can distinguish Enc(0)/Enc(1) for some p, then we can find that p
 - Roughly: the LSB of r_i is a "hard core bit"
- → If approx-GCD is hard then scheme is secure
- (Later: Is approx-GCD hard?)

Hard-core-bit theorem

A. The approximate-GCD problem:

- Input: $w_0 = q_0 p$, $\{w_i = q_i p + r_i\}$
 - $p \in \{0,P], q_i \in \{0,Q], r_i \in \{0,R] \text{ (with } R << P << Q)$
- Task: find p

B. The cryptosystem

- Input: : $N = q_0 p$, $\{c_j = q_j p + r_j$, LSB (r_j) , c = qp + 2r + m
 - $p \in \{0,P], q_i \in \{0,Q], r_i \in \{0,R'\}$ (with R' << P << Q)
- Task: distinguish m=0 from m=1

Thm: Solving B → solving A

small caveat: R smaller than R'

Proof outline

- ▶ Input: $w_0 = q_0 p$, $\{w_i = q_i p + r_i\}$
- Use the w_i's to form the c_j's and c
 - This is where we need R'>R
- Amplify the distinguishing advantage
 - From any noticeable ε to almost 1
- Use reliable distinguisher to learn q₀
 - Using the binary GCD procedure
- Finally $p = w_0/q_0$

From $\{w_i\}$ to $\{c_j, LSB(r_j)\}$

- We have $w_i = q_i p + r_i$, need $x_j = q_j' p + 2r_j'$
 - Then we can add the LSBs to get $c_j = x_j + m_j$
- ► Set $N=w_0$, $x_j=2(subsetSum\{w_i\}+\rho_j)$ mod N
 - The ρ_i 's are random < R'
- Correctness:
 - SubsetSum $\{r_i\}+\rho_j$ distributed almost identically to ρ_j
 - Since R'>R by a super-polynomial factor
 - 2×SubsetSum{q_i} mod q₀ is almost random in [q₀]

Amplify distinguishing advantage

- ▶ Given any integer z=qp+r, with r<R:</p>
 - Set $c = [z + m + 2(\rho + subsetSum\{w_i\})] \mod N$
 - For random ρ <R', random bit m
- c is nearly a random ciphertext for m+LSB(r)
 - Same reason as for the c_j's
- ightharpoonup c mod p mod 2 = r+m mod 2
 - A guess for c mod p mod 2 → vote for r mod 2
- Choose many random c's, take majority
- Noticeable advantage
 Reliably computing r mod 2

Binary-GCD

Reliable distinguisher

\rightarrow learning q_0

 \rightarrow z/2=sp+r/2 \rightarrow floor(z/2) =

sp+floor(r/2)

- From any z=qp+r (r<R') can get r mod 2
 - Note: z = q+r mod 2 (since p is odd)
 - So $(q \mod 2) = (r \mod 2) \oplus (z \mod 2)$

• Given z_1 , z_2 , both near multiples of pz = (2s)p + r

- Get $b_i := q_i \mod 2$, if $z_1 < z_2$ swap the m
- If $b_1=b_2=1$, set $z_1:=z_1-z_2$, $b_1:=b_1-b_2$
- - At least one of the b_i's must be zero now
- For any $b_i=0$ set $z_i := floor(z_i/2)$
 - $new-q_i = old-q_i/2$
- Repeat until one z_i is zero, output the other

Reliable distinguisher

The odd part of the GCD

- $z_i=q_ip+r_i$, i=1,2, $z':=OurBinaryGCD(z_1,z_2)$
 - Then $z' = GCD*(q_1,q_2) \cdot p + r'$
 - For random q,q', $Pr[GCD(q,q')=1] \sim 0.6$
- Try (say) z':= OurBinaryGCD(w₀,w₁)
 - Hope that $z'=1 \cdot p+r$
 - Else try again with OurBinaryGCD(z',w2), etc.
- Then run OurBinaryGCD(w₀,z')
 - The b₁ bits spell out the bits of q₀
- Once you learn q_0 , $p=w_0/q_0$

Is Approximate-GCD Hard?

- Several lattice-based approaches for solving approximate-GCD
 - Approximate-GCD is related to Simultaneous Diophantine Approximation (SDA)
 - Studied in [Hawgrave-Graham01]
 - We considered some extensions of his attacks
- All run out of steam when $|q_i| > |p|^2$
 - In our case $|p| \sim n^2$, $|q_i| \sim n^5 >> |p|^2$

Relation to SDA

- $\mathbf{w}_0 = \mathbf{q}_0 \mathbf{p}, \, \mathbf{w}_i = \mathbf{q}_i \mathbf{p} + \mathbf{r}_i \, (\mathbf{r}_i << \mathbf{p} << \mathbf{q}_i)$
 - $y_i = w_i/w_0 = (q_i p + r_i)/q_0 p = (q_i + \epsilon_i)/q_0$
 - $\varepsilon_i = r_i/p << 1$
 - y₁, y₂, ... is an instance of SDA
 - q_0 is a denominator that approximates all y_i 's
- Try to use Lagarias'es algorithm to solve
 - Find q_0 , then $p=w_0/q_0$

Lagarias'es SDA algorithm

- Consider the rows of this matrix B:
 - They span dim-(t+1) lattice
- $(q_0,q_1,...,q_t) \times B$ is short
 - 1st entry: $q_0R < Q \cdot R$
 - ith entry (i>1): $q_0(q_ip+r_i)-q_i(q_0p)=q_0r_i$
 - · Less than Q-R in absolute value
 - \rightarrow Total size less than Q-R- \sqrt{t}
 - vs. size ~Q-P (or more) for basis vectors
- Hopefully we can find it with a lattice-reduction algorithm (LLL or variants)

Will this algorithm succeed?

- Is $(q_0,q_1,...,q_t) \times B$ the shortest in the lattice?
 - Is it shorter than $\sqrt{t \cdot det(B)^{1/t+1}}$? Minkowski bound
 - det(B) is small-ish (due to R in the corner)
 - Need $((QP)^tR)^{1/t+1} > QR$
 - $\Leftrightarrow t+1 > (log Q + log P log R) / (log P log R)$ $\sim log Q/log P$
- $\begin{pmatrix}
 \mathbf{R} \mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_t \\
 -\mathbf{w}_0 \\
 -\mathbf{w}_0 \\
 \dots \\
 -\mathbf{w}_0
 \end{pmatrix}$

- ▶ $\log Q = \omega(\log^2 P)$ → need $t=\omega(\log P)$
- Quality of LLL & co. degrades with t
 - Find vectors of size ~ 2^{εt}-shortest
 - $t=\omega(\log P) \rightarrow 2^{\epsilon t} \cdot QR > \det(B)^{1/t+1}$
 - Contemporary lattice reduction not strong enough

Why this algorithm fails

Conclusions for Part I

- A Simple Scheme that supports computing low-degree polynomials on encrypted data
 - Any fixed polynomial degree can be done
 - To get degree-d, ciphertext size must be $\omega(nd^2)$
- Already can be used in applications
 - E.g., the keyword-match example
- Next we turn it into a fully-homomorphic scheme

Part II

Fully Homomorphic Encryption

So far, can evaluate low-degree polynomials

...

 $f(X_1, X_2, ..., X_t)$

So far, can evaluate low-degree polynomials

*X*₂

...

X_t

$$f(x_1, x_2, ..., x_t)$$

- Can eval $y=f(x_1,x_2,...,x_n)$ when x_i 's are "fresh"
- But y is "evaluated ciphertext"
 - Can still be decrypted
 - But eval Q(y) has too much noise

So far, can evaluate low-degree polynomials

*X*₁

*X*₂

• • •

X_t

 $f(X_1, X_2, ..., X_t)$

- Bootstrapping to handle higher degrees:
- For a ciphertext c, consider $D_c(sk) = Dec_{sk}(c)$
 - Hope: $D_c(*)$ has a low degree in sk
 - Then so are

$$Ac_1,c_2(sk) = \mathsf{Dec}_{sk}(c_1) + \mathsf{Dec}_{sk}(c_2)$$

and
$$Mc_1,c_2(sk) = \mathsf{Dec}_{sk}(c_1) \times \mathsf{Dec}_{sk}(c_2)$$

Include in the public key also $Enc_{nk}(sk)$

 SK_n

Homomorphic computation applied only to the "fresh" encryption of sk

 SK_1

 sk_2

- Fix a scheme (Gen, Enc, Dec, Eval)
- For a class F of functions, denote
 - $C_F = \{ \text{ Eval}(f, c_1, ..., c_t) : f \in F, c_i \in \text{Enc}(0/1) \}$
 - Encrypt some t bits and evaluate on them some f∈F
- Scheme bootstrappable if exists F for which:
 - Eval "works" for F
 - $\forall f \in F, c_i \in Enc(x_i), Dec(Eval(f,c_1,...,c_t)) = f(x_1,...,x_t)$
 - Decryption + add/mult in F
 - $\forall c_1, c_2 \in C_F$, $A_{c_1,c_2}(sk)$, $M_{c_1,c_2}(sk) \in F$

Thm: Circular secure

& Boostrappable

→ Homomorphic for any func.

Is our SHE Bootstrappable?

- ▶ $Dec_p(c) = LSB(c) \oplus LSB([[c/p]])$
 - We have $|c| \sim n^5$, $|p| \sim n^2$

c/p, rounded to nearest integer

- Naïvely computing [[c/p]] takes degree >n⁵
- Our scheme only supports degree ~ n
- Need to "squash the decryption circuit" in order to get a bootstrappable scheme
 - Similar techniques to [Gentry 09]

How to "Simplify" Decryption?

- Add to public key another "hint" about sk
 - Hint should not break secrecy of encryption
- With hint, ciphertext can be publically post-processed, leaving less work for Dec
- Idea is used in server-aided cryptography.

How to "simplify" decryption?

Old decryption algorithm

New approach

Hint in pub key lets anyone <u>post-process</u> the ciphertext, leaving less work for <u>Dec</u>*

The New Scheme

- Old secret key is the integer p
- Add to public key many "real numbers"
 - $d_1, d_2, ..., d_t \in [0,2]$ (with precision of $\sim |c|$ bits)
 - \exists sparse S for which $\Sigma_{i \in S} d_i = 1/p \mod 2$
- Post Processing: $\psi_i = c \times d_i \mod 2$, i=1,...,t
 - New ciphertext is $\mathbf{c}^* = (\mathbf{c}, \psi_1, \psi_2, ..., \psi_i)$
- New secret key is char. vector of S $(\sigma_1,...,\sigma_t)$
 - $\sigma_i = 1$ if $i \in S$, $\sigma_i = 0$ otherwise
 - $c/p = c x(\sum \sigma_i d_i) = \sum \sigma_i \Psi_i \mod 2$

$$Dec^*(c^*) = c - [[\Sigma_i \sigma_i \Psi_i]] \mod 2$$

How to Add Numbers?

$$b_{j} \in \{0,1\}$$

► $Dec^*_{\sigma}(c^*) = LSB(c) \oplus LSB([[\Sigma_i \sigma_i \psi_i]])$

a _{1,0}	a _{1,-1}	 a _{1,1-p}	a _{1,-p}	
a _{2,0}	a _{2,-1}	 a _{2,1-p}	a _{2,-p}	
a _{3,0}	a _{3,-1}	 a _{3,1-p}	a _{3,-p}	\
a _{t,0}	a _{t,-1}	 a _{t,1-p}	a _{t,-p}	

The a_i 's in binary: each $a_{i,i}$ is either σ_i or 0

Grade-school addition

• What is the degree of $b(\sigma_1,...,\sigma_t)$?

$C_{1,0}$	C _{1,-1}	 C _{1,1-p}		Carry Bits
a _{1,0}	a _{1,-1}	 a _{1,1-p}	a _{1,-p}	
a _{2,0}	a _{2,-1}	 a _{2,1-p}	a _{2,-p}	
a _{3,0}	a _{3,-1}	 a _{3,1-p}	a _{3,-p}	
a _{t,0}	a _{t,-1}	 a _{t,1-p}	a _{t,-p}	Result Bit
			b _n	

$$c_{1,0}c_{1,-1}...c_{1,1-p}b_{-p}$$

= HammingWeight(Colum_{-p}) mod 2^{p+1}

C_2	n C _{2,}	-1			
C_1	$_{0}$ $C_{1,.}$	-1	C _{1,1-p}		
a_1	_{,0} a _{1,}	-1	a _{1,1-p}	a _{1,-p}	
a_2	_{,0} a _{2,}	-1	a _{2,1-p}	a _{2,-p}	
a_3	_{,0} a _{3,}	-1	a _{3,1-p}	a _{3,-p}	
a _{t,}	₀ a _{t,-}	.1	a _{t,1-p}	a _{t,-p}	

 $c_{2,0}c_{2,-1}...c_{2,2-p}b_{1-p}$

= HammingWeight(Column_{1-p}) mod 2^p

 b_{1-p}

 $\mathbf{p}^{-\mathbf{p}}$

C _{p,0}				
	• • •			
C _{2,0}	C _{2,-1}			
C _{1,0}	C _{1,-1}	 C _{1,1-p}		
a _{1,0}	a _{1,-1}	 a _{1,1-p}	a _{1,-p}	
a _{2,0}	a _{2,-1}	 a _{2,1-p}	a _{2,-p}	
a _{3,0}	a _{3,-1}	 a _{3,1-p}	a _{3,-p}	
a _{t,0}	a _{t,-1}	 a _{t,1-p}	a _{t,-p}	
	b ₋₁	 b _{1-p}	b _{-p}	

$$c_{p,0}b_{-1} =$$
HamWeight(Col₋₁)
mod 4

C _{p,0}					
					ſ
C _{2,0}	C _{2,-1}				
C _{1,0}	C _{1,-1}		C _{1,1-p}		
a _{1,0}	a _{1,-1}		a _{1,1-p}	a _{1,-p}	
a _{2,0}	a _{2,-1}	•••	a _{2,1-p}	a _{2,-p}	L
a _{3,0}	a _{3,-1}	•••	a _{3,1-p}	a _{3,-p}	
		•••			
a _{t,0}	a _{t,-1}		a _{t,1-p}	a _{t,-p}	
b	b ₋₁	• • • •	b_{1-p}	b_{-p}	

Express c_{i,j}'s as polynomials in the a_{i,i}'s

Small Detour: Elementary Symmetric Polynomials

- ▶ Binary Vector $x = (x_1, ..., x_u) \in \{0,1\}^u$
- $e_k(x) = deg-k$ elementary symmetric polynomial
 - Sum of all products of k bits (u-choose-k terms)
- Dynamic programming to evaluate in time O(ku)

•
$$e_i(x_1...x_j) = e_{i-1}(x_1...x_{j-1})x_i + e_i(x_1...x_{j-1})$$
 (for $i \le j$)

	Λ	X ₁	X_1, X_2		x_1x_{u-1}	x_1x_u
e _o	1	1	1		1	1
e ₁	0					
•••				$e_i(x_1x_j)$		
e _k	0					

The Hamming Weight

Thm: For a vector
$$\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_u) \in \{0,1\}^u$$
, i'th bit of $\mathbf{W} = \mathbf{H}\mathbf{W}(\mathbf{x})$ is $\mathbf{e}_2\mathbf{i}(\mathbf{x})$ mod 2

- Observe $e_{2i}(x) = (W \text{ choose } 2^i)$
- Need to show: i'th bit of W=(W choose 2ⁱ) mod 2
- ▶ Say $2^k \le W < 2^{k+1}$ (bit k is MSB of W), show:
 - For i < k, (W choose 2^i)=(W- 2^k choose 2^i) mod 2
 - For i=k, (W choose 2^k)=(W- 2^k choose 2^k)+1 mod 2

Then by induction over W

- Clearly holds for W=0
- By above, if holds for W-2^k
 then holds also for W

The Hamming Weight

• Use identity
$$\binom{W}{2^i} = \sum_{j=0}^{2^i} \binom{W-2^k}{j} \binom{2^k}{2^i-j}$$
 (*)

- For r=0 or $r=2^k$ we have $(2^k$ choose r)=1
- For $0 < r < 2^k$ we have $(2^k$ choose $r) = 0 \mod 2$

- i<k: The only nonzero term in (*) is j=2ⁱ
- i=k: The only nonzero terms in (*) are j=0 and j=2^k

1	Bar-lian University	
Del	t. of Computer Science	е

Carry Bits

n	put	Bits
	-	

C _{4,0}				D
c _{3,0}	C _{3,-1}			
C _{2,0}	C _{2,-1}	C _{2,-2}		
C _{1,0}	C _{1,-1}	C _{1,-2}	C _{1,-3}	
a _{1,0}	a _{1,-1}	a _{1,-2}	a _{1,-3}	a _{1,-4}
a _{2,0}	a _{2,-1}	a _{2,-2}	a _{2,-3}	a _{2,-4}
$a_{t,0}$	a _{t,-1}	a _{t,-2}	a _{t,-3}	a _{t,-4}

b

Goal:

compute the degree of the polynomial **b**(a_{i,i}'s)

					Bar-IIan Universit
e ₁₆ (.) e ₈ ()	e ₄ ()	e ₂ ()		
deg=:	l deg=1	deg=1	deg=1	deg=1	
deg=:	1 deg=1	deg=1	deg=1	deg=1	
deg=	l deg=1	deg=1	deg=1	deg=1	

				_	Bar-Ilan Un
				Ľ	ept. of Comp
e ₈ ()	e ₄ ()	e ₂ ()			
deg=16	deg=8	deg=4	deg=2		
deg=1	deg=1	deg=1	deg=1	deg=1	
deg=1	deg=1	deg=1	deg=1	deg=1	
deg=1	deg=1	deg=1	deg=1	deg=1	

of the state of th
Bar-Ilan University
ept. of Computer Science

				_	Bar-I
					Dept. of
e ₄ ()	e ₂ ()				
deg=9	deg=5	deg=3			
deg=16	deg=8	deg=4	deg=2		
deg=1	deg=1	deg=1	deg=1	deg=1	
deg=1	deg=1	deg=1	deg=1	deg=1	
	•••			•••	
deg=1	deg=1	deg=1	deg=1	deg=1	

o creelleuce	
Bar-Ilan University	
Pept. of Computer Science	•

e ₂ ()				Dep
deg=9	deg=7			
deg=9	deg=5	deg=3		
deg=16	deg=8	deg=4	deg=2	
deg=1	deg=1	deg=1	deg=1	deg=1
deg=1	deg=1	deg=1	deg=1	deg=1
deg=1	deg=1	deg=1	deg=1	deg=1

radition of the contract of th
Bar-Ilan University
ept. of Computer Science

deg=15				De
deg=9	deg=7			
deg=9	deg=5	deg=3		
deg=16	deg=8	deg=4	deg=2	
deg=1	deg=1	deg=1	deg=1	deg=1
deg=1	deg=1	deg=1	deg=1	deg=1
deg=1	deg=1	deg=1	deg=1	deg=1

$$deg(b) = 16$$

Claim: with p bits of precision, deg($b(a_{i,i})$) $\leq 2^p$

Our Decryption Algorithm

$$b_{k} \in \{0,1\}$$

▶ $Dec^*_{\sigma}(c^*) = LSB(c) \oplus LSB([[Σ_i \sigma_i \psi_i]])$

a _{1,0}	a _{1,-1}		a _{1,1-p}	a _{1,-p}	
a _{2,0}	a _{2,-1}	•••	a _{2,1-p}	a _{2,-p}	
a _{3,0}	a _{3,-1}		a _{3,1-p}	a _{3,-p}	
a _{t,0}	a _{t,-1}	•••	a _{t,1-p}	a _{t,-p})

$$a_i \in [0,2]$$

The a_i 's in binary: each $a_{i,j}$ is either σ_i or 0

b

- \rightarrow degree(b) = 2^p
 - We can only handle degree ~ n
 - Need to work with low precision,
 p ~ log n

Lowering the Precision

- Parameters ensure "noise" < p/2</p>
 - For degree-2n polynomials with $< 2^{n^2}$ terms (say)
 - With |r|=n, need $|p|\sim 3n^2$
- What if we want a somewhat smaller noise?
 - Say that we want the noise to be < p/2n
 - Instead of $|p| \sim 3n^2$, set $|p| \sim 3n^2 + \log n$
 - Makes essentially no difference
- Claim: c has noise < p/2n & sparse subset size ≤ n-1
 - enough to keep precision of log n bits for the ψ_i's

Lowering the Precision

<u>Claim</u>: $|S| \le n-1$ & c/p within 1/2n from integer

 \rightarrow enough to keep log n bits for the ψ_i 's

<u>Proof</u>: ϕ_i = rounding of ψ_i to log n bits

$$\begin{array}{c|c} \circ & |\varphi_i - \psi_i| \leq 1/2n \ \hline \bullet \ \sigma_i \varphi_i = \int \sigma_i \Psi_i & \text{if } \sigma_i \!\!=\!\! 0 \\ \sigma_i \Psi_i \pm 1/2n & \text{if } \sigma_i \!\!=\!\! 1 \end{array}$$

$$\rightarrow |\Sigma \sigma_i \phi_i - \Sigma \sigma_i \Psi_i| \le |S|/2n \le (n-1)/2n$$

 $\Sigma \sigma_i \Psi_i = c/p$, within 1/2n of an integer

- ⇒ $\Sigma \sigma_i \phi_i$ within 1/2n+(n-1)/2n=1/2 of the same integer
- \rightarrow $[[\Sigma \sigma_i \phi_i]] = [[\Sigma \sigma_i \Psi_i]]$

QED

Bootstrappable, at last

a _{1,0}	a _{1,-1}	 a _{1,-log n}
a _{2,0}	a _{2,-1}	 a _{2,-log n}
a _{3,0}	a _{3,-1}	 a _{3,-log n}

a _{t,0}	a _{t,-1}	 a _{t,-log n}

$$\overrightarrow{a_i} \in [0,2]$$

 \setminus The a_i 's in binary: each $a_{i,i}$ is either σ_i or 0

- ▶ degree(Dec $^*_{c^*}(\sigma)$) ≤ n
 - \rightarrow degree($M_{c_1}*c_2*(\sigma)$) $\leq 2n$
- Our scheme can do this!!!

b

Putting Things Together

- Add to public key $d_1,d_2,...,d_t \in [0,2]$
 - ∘ \exists sparse S for which $\Sigma_{i \in S} d_i = 1/p \mod 2$
- New secret key is $(\sigma_1,...,\sigma_t)$, char. vector of S
- Also add to public key $u_i = Enc(\sigma_i)$, i=1,2,...,t
- Hopefully, scheme remains secure
 - Security with d_i's relies on hardness of "sparse subset sum"
 - Same arguments of hardness as for the approximate-GCD problem
 - Security with u_i's relies on "circular security" (just praying, really)

Computing on Ciphertexts

- ▶ To "multiply" c_1 , c_2 (both with noise < p/2n)
 - Evaluate $M_{c_1,c_2}(*)$ on the ciphertexts $u_1,u_2,...,u_t$
 - This is a degree-2n polynomial
 - Result is new c, with noise <p/2n
 - Can keep computing on it
- Same thing for "adding" c_1 , c_2
- Can evaluate any function

Ciphertext Distribution

- May want evaluated ciphertexts to have the same distribution as freshly encrypted ones
 - Currently they have more noise
- To do this, add n more bits to p
 - "Raw evaluated ciphertext" have noise < p/2ⁿ
- After encryption/evaluation, add noise ~ p/2n
 - Note: DOES NOT more noise to Enc(σ) in public key
- Evaluated, fresh ciphertexts now have the same noise
 - Can show that distributions are statistically close

Conclusions

- Constructed a fully-homomorphic (public key) encryption scheme
- Underlying somewhat-homomorphic scheme relies on hardness of approximate-GCD
- Resulting scheme relies also on hardness of sparse-subset-sum and circular security
- Ciphertext size is ~ n⁵ bits
- Public key has ~ n¹⁰ bits