6- ESPAÇOS VETORIAIS EUCLIDIANOS

6.1- PRODUTO INTERNO EM ESPAÇOS VETORIAIS

Def.: É uma função de $V \times V$ em IR que a todo par de vetores $(u, v) \in V \times V$ associa um número real, indicado por u.v ou $\langle u, v \rangle$, tal que as seguintes propriedades sejam verificadas:

- i) $u \cdot v = v \cdot u$
- *ii*) $u \cdot (v + w) = u \cdot v + u \cdot w$
- iii) (αu). $v = \alpha .(u.v)$
- iv) $u \cdot u \ge 0$ e $u \cdot u = 0 \Leftrightarrow u = 0$

Exemplos:

1- Verifique se no espaço vetorial IR^2 , a função que associa $u = (x_1, y_1)$ e $v = (x_2, y_2)$ ao número real $u.v = 3x_1x_2 + 4y_1y_2$ é um produto interno.

2- Verifique se os vetores $u = (x_1, y_1, z_1)$ e $v = (x_2, y_2, z_2)$ do IR^3 , definem o produto interno usual no IR^3 .

3- Sejam $V = P_2$, $p = a_2x^2 + a_1x + a_0$ e $q = b_2x^2 + b_1x + b_0$ vetores quaisquer de P2. Verifique se a fórmula $p.q = a_2b^2 + a_1b^1 + a_0b_0$ define um produto interno em P_2 .

Curso de Álgebra Linear Prof^a Mara Freire

4- Verifique se o número $u.v = 2x_1x_2 + y_1^2y_2^2$ sendo $u = (x_1, y_1)$ e $v = (x_2, y_2)$ define um produto interno no IR^2 .

5- Uma fábrica produz um determinado componente eletrônico. Devido a variações na linha de produção, qualidade de material etc., verifica-se que os componentes não têm todos a mesma durabilidade. Fazendo-se experiências com relação ao número de horas de uso efetivo, obtém-se a seguinte tabela que relaciona durabilidade com a respectiva probabilidade. Qual a durabilidade média dos componentes?

Durabilidade/h	2000	2500	2700	3000
Probabilidade	1/3	1/5	1/5	4/15

Exercícios

1- Em relação ao produto interno usual do IR^2 , calcular u.v sendo dados:

a)
$$u = (-3, 4)$$
 e $v = (5, -2)$

b)
$$u = (6, -1)$$
 e $v = (1/2, 0)$

c)
$$u = (2, 3)$$
 e $v = (0, 0)$

- 2- Para os mesmos vetores do exercício anterior, calcular u.v em relação ao produto interno do exemplo1 dado por $u.v = 3x_1x_2 + 4y_1y_2$:
- 3- Considere o IR^3 munido do produto interno usual. Sendo $v_1 = (1, 2, -3)$, $v_2 = (3, -1, -1)$ e $v_3 = (2, -2, 0)$ do IR^3 , determine u tal que $u.v_1 = 4$, $u.v_2 = 6$ e $u.v_3 = 2$.
- 4- Seja $V = \{f:[0, 1] \to IR; f \text{ e continua}\}$ o espaço vetorial munido do produto interno se $f.g = \int_0^1 f(t)g(t) dt$. Determinar $h_1.h_2$ e $h_1.h_1$, tais que $h_1, h_2 \in V$ e $h_1(t) = t$ e $h_2(t) = t^2$.

RESPOSTAS

1- a) -23; b) 7; c) 0. 2- a) -77; b) 25; c) 0. 3- u = (3, 2, 1). 4- a) 1/4 e b) 1/3.