Positive, Negative, or Neutral: Learning an Expanded Opinion Lexicon from Emoticon-annotated Tweets

International Joint Conference on Artificial Intelligence Buenos Aires, Argentina

Felipe Bravo-Marquez, Eibe Frank, and Bernhard Pfahringer

University of Waikato Computer Science Department

July 31, 2015

Twitter Sentiment Classification

Automatically classify a tweet to classes positive, negative, or neutral.

Approaches

- Most methods rely on opinion lexicons.
- An opinion lexicon is a lists of terms labelled by sentiment.
- They are normally composed of positive and negative words such as happy, wonderful and sad, bad.
- The words used in Twitter include many abbreviations, acronyms, and misspelled words, e.g., IoI, omg, hahaha, #hatemonday which are not covered by most popular lexicons.

A Word-level Classification Model

- We propose a supervised framework for Twitter lexicon expansion from a seed lexicon.
- Each expanded word has a probability distribution, describing how positive, negative, and neutral it is.
- All the entries of the lexicon are associated with a corresponding part-of-speech tag.
- This is useful for word disambiguation e.g., apple can be a company or a fruit.

Methodology

Obtaining Emoticon-annotated Tweets

- We require a collection of tweets with their corresponding polarity labels.
- Tweets can be collected from the Twitter API.
- Tweets exhibiting positive:) and negative: (emoticons are labelled according to the emoticon's polarity.
- We consider two collections of tweets covering multiple topics: The Edinburgh corpus (ED), and the Stanford Sentiment corpus (STS).

	ED	STS
Positive	1,813,705	800,000
Negative	324, 917	800,000
Total	2, 138, 622	1,600,000

Table: Collection statistics

Word-level Attributes

- We calculate three type of word-level features to train the word-level classifier.
- SGD: Are calculated from the weights of a linear support vector machine trained using words as attributes and emoticons as labels.

$$\frac{\lambda}{2}||w||^2 + \sum [1 - y(\mathbf{x}\mathbf{w} + b)]_+. \tag{1}$$

 SO: Are calculated from the point-wise mutual information between the words and the sentiment labels.

$$PMI(w_i, y) = \log_2\left(\frac{Pr(w_i \wedge y)}{Pr(w_i)Pr(y)}\right)$$
 (2)

- POS: We also include the POS-tag of the word as a nominal attribute.
- To create training data for machine learning, all the words matching the seed lexicon are labelled according to the lexicon's polarities.

Feature Visualisation

Figure: SO vs SGD scatterplot.

Word-level Classification Results using RBF SVMs

Weighted AUC				
Dataset	SO	ALL		
ED-Polarity	0.62 ± 0.02	0.65 ± 0.02 ∘		
STS-Polarity	STS-Polarity 0.64 ± 0.02			
Карра				
	Kappa			
Dataset	Kappa SO	ALL		
Dataset ED-Polarity		ALL 0.33 ±0.04 ∘		

Table: World-level classification performance.

Expanded Lexicon

word	POS	label	negative	neutral	positive
alrighty	interjection	positive	0.021	0.087	0.892
boooooo	interjection	negative	0.984	0.013	0.003
Imaoo	interjection	positive	0.19	0.338	0.472
french	adjective	neutral	0.357	0.358	0.285
handsome	adjective	positive	0.007	0.026	0.968
saddest	adjective	negative	0.998	0.002	0
same	adjective	negative	0.604	0.195	0.201
anniversary	common.noun	neutral	0.074	0.586	0.339
tear	common.noun	negative	0.833	0.124	0.044
relaxing	verb	positive	0.064	0.244	0.692
wikipedia	proper.noun	neutral	0.102	0.644	0.254

Table: Expanded words example.

Expanded Lexicon (2)

Figure: Word clouds of positive and negative words using log odds proportions.

Message-level Classification

Weighted AUC					
Dataset	Baseline	ED	STS		
6-coded	0.77 ± 0.03	0.82 ± 0.03 \circ	$0.82 \pm 0.02 \circ$		
Sanders	0.77 ± 0.04	0.83 ± 0.04 \circ	0.84 \pm 0.04 \circ		
SemEval	0.77 ± 0.02	0.81 \pm 0.02 \circ	0.83 \pm 0.02 \circ		

Table: Message-level polarity classification performance.

Discussions

- This method could be used to create domain-specific lexicons.
- It could also be used to study the **dynamics** of opinion-words.
- This method depends on a collection of emoticon-annotated tweets.
- It would be hard to apply to domains where emoticons are not frequently used.
- Source code and lexicons available at http://www.cs.waikato.ac.nz/ml/sa/lex.html.
- Feel free to visit me at poster #88.

Questions?

Thanks for your Attention!

Acknowledgments

- University of Waikato Doctoral Scholarship
- Machine Learning Group at the University of Waikato

