Formulaire de trigonométrie

Définition des fonctions sinus, cosinus et tangente

• M est un point du cercle trigonométrique. x est une mesure en radian de l'angle $(\overrightarrow{i}, \overrightarrow{OM})$.

 $\cos(x)$ est l'abscisse de M, $\sin(x)$ est l'ordonnée de M.

• Pour tout réel x, $\cos^2(x) + \sin^2(x) = 1$.

Arcs associés

Tour complet	Angle opposé	Demi-tour
$\cos(x + 2\pi) = \cos(x)$ $\sin(x + 2\pi) = \sin(x)$	$\cos(-x) = \cos(x)$ $\sin(-x) = -\sin(x)$	$\cos(x+\pi) = -\cos(x)$ $\sin(x+\pi) = -\sin(x)$
Angle supplémentaire	Angle complémentaire	Quart de tour direct
$\cos(\pi - x) = -\cos(x)$ $\sin(\pi - x) = \sin(x)$	$\cos\left(\frac{\pi}{2} - x\right) = \sin(x)$ $\sin\left(\frac{\pi}{2} - x\right) = \cos(x)$	$\cos\left(x + \frac{\pi}{2}\right) = -\sin(x)$ $\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$

- La fonction $x \mapsto \sin(x)$ est définie sur \mathbb{R} , 2π -périodique et impaire.
- La fonction $x \mapsto \cos(x)$ est définie sur \mathbb{R} , 2π -périodique et paire.

Formules d'addition

$$\begin{aligned} \cos(\alpha+b) &= \cos(\alpha)\cos(b) - \sin(\alpha)\sin(b) \\ \cos(\alpha-b) &= \cos(\alpha)\cos(b) + \sin(\alpha)\sin(b) \\ \sin(\alpha+b) &= \sin(\alpha)\cos(b) + \cos(\alpha)\sin(b) \\ \sin(\alpha-b) &= \sin(\alpha)\cos(b) - \cos(\alpha)\sin(b) \end{aligned}$$

Formules de duplication

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x) \quad \sin(2x) = 2\sin(x)\cos(x).$$

Formules de linéarisation

$$\cos^2(x) = \frac{1 + \cos(2x)}{2} \quad \sin^2(x) = \frac{1 - \cos(2x)}{2} \quad \sin(x)\cos(x) = \frac{1}{2}\sin(2x).$$

Formules de factorisation

$$1+\cos(x)=2\cos^2\left(\frac{x}{2}\right) \quad 1-\cos(x)=2\sin^2\left(\frac{x}{2}\right).$$

Résolution d'équations

$$\bullet \cos(\alpha) = \cos(b) \text{ si et seulement si } \left\{ \begin{array}{l} \text{ il existe } k \in \mathbb{Z} \text{ tel que } b = \alpha + 2k\pi \\ \text{ ou } \\ \text{ il existe } k \in \mathbb{Z} \text{ tel que } b = -\alpha + 2k\pi \end{array} \right.$$

$$\bullet \sin(\alpha) = \sin(b) \text{ si et seulement si } \left\{ \begin{array}{l} \text{ il existe } k \in \mathbb{Z} \text{ tel que } b = \alpha + 2k\pi \\ \text{ ou } \\ \text{ il existe } k \in \mathbb{Z} \text{ tel que } b = \pi - \alpha + 2k\pi \end{array} \right.$$