

Relations and Functions

Dipam Sen (Fun Planet)

Cartesian Product of Two Sets

The set of ordered pairs of all possible combinations from both sets.

$$A = \{a, b\}$$

$$B = \{1, 2\}$$

$$A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$$

• Ordered Pair is a pair of elements in which the order of elements matter.

$$(a_1, a_2) = (b_1, b_2)$$
 if $a_1 = b_1$ and $a_2 = b_2$

• $n(A \times B) = n(A) \times n(B)$

Relation

A Relation from set A to set B is a relationship between the first and second element in $A \times B$. It is a **subset of** $A \times B$.

$$A = \{1, 2, 3\}$$

$$B = \{a, b, c\}$$

$$R_{AB} = \{(1, a), (2, b), (3, c)\}$$

$$P = \{a, b, c\}$$

$$Q = \{\text{Ali, Bhanu, Binoy, Chandra, Divya}\}$$

$$R_{PQ} = \{(x, y) : x \text{ is the first letter of } y\}$$

$$R = \{(a, \text{Ali}), (b, \text{Bhanu}), (b, \text{Binoy}), (c, \text{Chandra})\}$$

Figure 1: Visual Representation of a Relation

Some Important Terms

Image: The second element in an ordered pair is the image of the first element. (Chandra is the image of C)

Domain: The set of all first elements in the relation. $(D = \{a, b, c\})$

Range: The set of all second elements in the relation. $(R = \{Ali, Bhanu, Binoy, Chandra\})$

Codomain: The entire second set of the relation. ($C = \{Ali, Bhanu, Binoy, Chandra, Divya\}$)

Functions

A function is a special kind of relation from set A to B, such that:

- Every element in set A has an image in set B
- Every element in set A has only one image

Figure 2: Some Examples of Functions

Real Function: A function where both domain and range are R or its subsets.

Some Important Functions

Identity Function

$$f: R \to R; f(x) = x$$

Domain = R
Range = R

Constant Function

$$f: R \to R; f(x) = c$$

Domain = R
Range = $\{c\}$

Polynomial Function

$$f: R \to R; f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$f(x) = x^2$$
Domain = R
Range = R^+

$$f(x) = \frac{1}{x}$$

Domain = $R - \{0\}$
Range = $R - \{0\}$

$$f(x) = |x|$$

Domain = R
Range = $[0, \infty)$

Sigmum:
$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

$$Domain = R$$

$$Range = \{-1, 0, 1\}$$

Algebra of Real Functions

$$\begin{cases}
f: X \to R \\
g: X \to R
\end{cases} X \subset R$$

Addition

$$(f+g)(x) = f(x) + g(x)$$

Subtraction

$$(f-g)(x) = f(x) - g(x)$$

Multiplication by a Scalar

$$(f \times \alpha)(x) = f(x) \times \alpha$$

Multiplication

$$(f \times g)(x) = f(x) \times g(x)$$

Quotient

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$