Phylogenetic Multi-Lingual Dependency Parsing (NAACL 2019)

Zhao Li 2019.6.12

Figure 1: A possible phylogenetic tree for languages in the Slavic family.

Motivation

- Languages evolve and diverge over time. Their evolutionary history is often depicted in the shape of a phylogenetic tree.
- Assuming parsing models are representations of their languages grammars, their evolution should follow a structure similar to that of the phylogenetic tree.

Contribution

- Make use of the phylogenetic tree to guide the learning of multi-lingual dependency parsers leveraging languages structural similarities.
- Experiments show that phylogenetic training is beneficial to low resourced languages and to well furnished languages families.
- Phylogenetic training is able to perform zero-shot parsing of previously unseen languages.

Phylogenetic Hypothesis

- Assume that the grammar of the last common ancestor is a good approximation of those languages grammars.
- Issues with this assumption: 1. A language grammar can be very different from its ancestor one from two millennia earlier. 2. A lot of languages have only started to be recorded very recently thus lacking historical data all together.
- Solution: Use all the data from descendent languages to represent an ancestor language.

Neural Model

$$\mathbf{w}_i = \mathbf{pos}_i \oplus \mathbf{morph}_i \oplus \mathbf{char}_i$$
.

$$\mathbf{morph}_i = \sum_{m \in morph_i} \mathbf{m}_m.$$

Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin

$$\mathbf{c}_i = forward(\mathbf{w}_1, ..., \mathbf{w}_i) \oplus backward(\mathbf{w}_i, ..., \mathbf{w}_l).$$

$$s_{ij} = \max_{l} s_{ijl} = \max_{l} (\mathbf{L}_2 \cdot [\mathbf{L}_1 \cdot (\hat{\mathbf{c}}_i \oplus \mathbf{c}_j)]^+)_l.$$

$$\begin{split} loss(x) &= \sum_{w_i} \Big[\sum_{\substack{j' \neq j \\ j' \neq i}} \max(0, s_{ij'} - s_{ij} + 1)^2 \\ &+ \sum_{l' \neq l} \max(0, s_{ijl'} - s_{ijl} + 1)^2 \Big] \end{split}$$

Figure 3: Neural network architecture for edge scoring. The contextualised representation of the governor (eat) and the dependent (Cats) are concatenated and passed through a rectified linear layer and a final plain linear layer to get a vector of label scores.

$$\mathcal{L} = \{l_1, l_2, ..., l_{n_l}\}$$

$$\mathcal{P} = \{p_1, p_2, ..., p_{n_p}\}$$

Let \mathcal{T} be a tree over $\mathcal{L}^* = \mathcal{L} \cup \mathcal{P}$

notation p > l

language $l \in \mathcal{L}$,

a set of n annotated examples \mathcal{D}_l .

proto- language $p \in \mathcal{P}$ set $\mathcal{D}_p =$

 $\bigcup_{p>l} \mathcal{D}_l$ as the union of its descendent sets.

 The main idea behind phylogenetic training is to initialize a new model with the model of its parent, thus effectively sharing information between languages and letting models diverged and specialize over time.

Data: a train set \mathcal{D}_l and a dev set \mathcal{D}'_l per language, a tree \mathcal{T} , two sampling sizes k, k' and a maximum number of reboot r

Result: a model θ per node in \mathcal{T} begin

```
Instantiate empty queue Q
Q.push(\mathcal{T}.root)
while Q is not empty do
     l = Q.pop()
      if l = \mathcal{T}.root then
           initialize \boldsymbol{\theta}_{\mathcal{T},root}^{0} randomly
      else
         oldsymbol{	heta}_l^0 = oldsymbol{	heta}_{l.parent}
      reboot = 0, i = 1, a_0 = 0
      while reboot < r do
            oldsymbol{	heta}_l^i = train(oldsymbol{	heta}_l^{i-1}, \mathcal{D}_l, k)
            a_i = test(\boldsymbol{\theta}_l^i, \mathcal{D}_l', k')
            if a_i \leq a_{i-1} then
                 reboot += 1
            else
               reboot = 0, i += 1
     oldsymbol{	heta}_l = oldsymbol{	heta}_l^i
      for c in l.children do
```

Algorithm 1: Phylogenetic training procedure.

Q.push(c)

How to sample sentences?

- Sampling sentences uniformly across languages is not a viable option for the size of datasets varies a lot across languages and that they do not correlate with how close a language is to its ancestor.
- In this work, at a given inner node, we decided to sample uniformly at random over branches spanning from this node, then uniformly at random over languages and then uniformly at random over sentences.
- It boils down to flattening the subtree below an inner node to have a maximum depth of 2.

Figure 1: A possible phylogenetic tree for languages in the Slavic family.

Zero-Shot Parsing

- Phylogenetic training procedure provides a model for each inner node of the tree and thus each intermediary grammar.
- If one were to bring a new language with its position in the tree, then we can use the pretrained model of its direct ancestor as an initialization instead of learning a new model from scratch.

	Phylogenetic		Independent	
	UAS	LAS	UAS	LAS
ar nuyad	74.81	70.32	75.07	71.08
cop	85.51	79.28	86.03	80.15
he ¹	81.89	75.36	81.59	75.57
bxr [19]	48.72	30.68	37.88	18.09
eu	76.81	69.51	78.61	72.76
af	85.15	80.94	85.44	81.66
da	78.50	72.50	79.16	74.13
de gsd	80.37	73.54	79.48	72.37
en ewt	79.25	74.34	79.27	74.66
got	77.83	71.54	79.91	74.33
nb	84.62	78.78	83.82	78.09
nl alpino	77.19	68.55	76.52	68.40
nn nynorsk	82.39	76.44	82.58	77.32
_ <u>sv_talbanken</u>	<u>80.46</u>	74.62	81.17	_75.47
be	80.18	74.11	78.09	72.76
bg	86.01	79.16	86.40	79.79
cs pdt	79.78	71.71	77.45	69.88
cu	82.98	77.19	83.31	78.32
hr	81.70	74.73	81.05	73.95
hsb [23]	74.24	66.01	58.59	50.37
lt	61.42	50.88	56.35	46.14
ly	78.39	70.14	76.69	68.89
pl lfg	92.88	88.53	91.07	86.49
ru syntagrus	77.91	72.72	77.33	72.85
sk	84.91	79.17	79.09	73.20
sl ssj	87.15	83.43	88.39	85.21
Sr	85.85	79.86	86.17	80.47
_ <u>uk</u>	78.16	<u>73.50</u>	74.96	70.91
ca	84.67	78.81	85.69	80.11
es ancora	85.11	79.52	85.61	80.18
fr gsd fro	84.35 82.32	77.59 74.24	84.21 78.91	77.94 69.95
	83.80	78.06	83.60	77.63
gl [600] treegal it isdt	87.03	81.67	87.10	82.27
la proiel	66.25	58.88	65.07	57.80
pt bosque	84.93	79.37	84.90	79.83
ro rrt	79.83	70.46	79.93	70.88
- TO TIT	_ <u> </u>	_/ _ /	17.73	70.00

Multi-Task Learning

_ <u>10_11</u> t	_ <i>[</i>].0 <u>.</u> 0_	_/ _ /	17.73_	_/_0.00
fa	78.76	72.95	79.93	74.07
hi hdtb	89.32	82.89	88.75	82.60
kmr [20]	69.08	59.64	54.77	45.07
mr	78.65	68.97	76.60	64.04
_ <u>ur </u>	<u>84.32 </u>	77.02	84.82	_78.19
el	86.44	83.30	86.88	83.96
grc proiel	73.82	67.88	71.68	_66.05
ga [566]	<u> 75.91</u>	67.54	76.20	_67.72
hy [50]	65.03	51.76	59.27	46.67
id gsd	81.08	74.97	80.83	74.69
ja gsd	91.22	87.31	91.40	87.37
ko kaist	73.38	68.35	74.23	69.81
kk [31]	70.82	55.42	62.81	44.59
tr imst	59.64	50.66	59.00	50.54
_ug	66.33	48.20	63.66	46.07
et	75.32	68.13	73.91	66.96
fi ftb	78.05	72.20	74.66	68.22
hu	79.51	72.88	80.15	74.31
sme [2257]	80.13	76.40	78.34	74.25
ta	75.05	66.94	76.19	67.93
te	88.88	74.24	87.01	72.05
vi	65.59	61.15	66.02	61.74
zh	80.36	74.79	80.14	74.52
Avg	80.05	73.35	79.47	73.02
Avg No Dev	70.97	60.69	63.93	53.05

Table 1: Parsing results for languages with a training set for phylogenetic models and independent models. The training set size of languages without a developpement set are reported in brackets.

Zero-Shot Parsing

Lang	Model	UAS	LAS
am	Semitic	57.27	26.25
_ <u>b</u> r	_Celtic*	61.36	_43.89
_ <u>fo_</u>	North-Germanic	<u>52.40</u>	46.52
sa	Indic	56.18	40.46
kpv lattice	Finno-Permiac*	65.16	52.11
_pcm	World	60.43	43.80
th	World	29.14	17.61
_tl	Austronesian*	70.89	50.38
wbp	World	87.67	65.66
_yo _	World	56.16	37.51
_yue	Sino-Tibetan*	41.68	25.02
Avg		58.04	40.83

Table 2: Accuracy of languages without a training set.