		Page No. Date
	PΙ]	what is soft computing? List and explain its
		1 1
r	7	soft computing is a computing model develope to solve the non-linear problems which involve incertain, imprecise and approximate solutions of a roblem
		There types of problems are considered as real-
A STATE OF THE PERSON NAMED IN	l	required to solve it.
	1	he soft computing term is deline to no late
		actif according to him this is a side
_	10	in approach which imitates the kilm on mind
_	re	and feath in an enviorment of
	- 11	ncertainty and impression.
_	J	t is a eated through two elements adaptivity
_	- a	na knowledge and has a set of took such as
	e.	to nemal nemorn, génetic algorithm
1	$ \downarrow$ Tb	del induntas hard computing model because does not work on the mathematical model
	mc	del known as hard computing model because
	fit	does not work on the mathematical model
	19	problem solving.
-		, , , , , , , , , , , , , , , , , , ,
1	1	plication of soft computing
1	Aq	ncultural Production Engineering
1	Me	divine and Biology application
	Lon	struction and Design Engineering
-	Tou	plication of Soft Lomputing resulting Production Engineering disciple and Biology application shurtion and Design Engineering puter Engineering
-		
1		Teacher's Sign.:

		Page No.		1
		Date)
2	Computational Process Natural Environmental Engineering Fault-Tolerance Machine Jeanning	Life at		
6	Natural Environmental Engineering			
7	Fault-Tolerance			
8	Machine leavoina			
9	Signal processing			
10	Mechanical engineering			
11]	Material : For air series			
12	Diverse discourse			
13]	Mann Tag tast and			
141	Potton P 119			
	Machine learning Signal processing Mechanical engineering Materials Engineering Disease diagnosis Mano tea technology Pattern Recognition			(
		15.0		
				_
*	The below the first of the party of the part		-	_
ny En				_
1				_
	and the state of t	- 4		
-	Fig. 4 Sept. 161 and 18 June 19 19 19 19 19 19			1
		**		1
				_

Page No.	
Date	

Teacher's Sign.: _

pz give companson between soft and Hard computing					
	Bain for companson	Soft Lomputing	Hard computing		
-		Tolerant to imprecision uncertainity, partial truth and approximation	stated analytical model.		
	Bared on	Fuzzy logic and probabilistic reason- ing	Binary logic and crisp system		
	Featurs	Approximation and dispositionality	Precision and categoricity		
8	Nature	stochartic	Deterministic		
1	Workson	Ambiguons and noise data	Enait input data.		
	Lomputation	can perform parallel	Sequential.		
	Result	Appronimate	Produces pucise		
- 11					

Page	No			
- 55	-	-	-	-
Date	el.		- 1	

qu) what is probabilistic reasoning? explain with Probabilistic reasoning is a way of thowledge representation where we apply the concept of probability to indicate the uncertainity in rnowledge. In probabilishe reasoning we combine probability theory with logic to handle the uncertainty we me probability in probabilishe reasoning became it prondes away to handle the uncertainty that a the mult of someone's laziness and ignorance.

In the real world there are lots of scenarios where the certainty of something a not confirmed such as "It will rain today," "behavior of someone for some situations," A match between two teams, or two players." two teams or two players".

There are probable sentences for which we can assume that it will happen but not sure about it, so here we me probabilistic reasoning

when specification or possibilities appedicates becomes too large to handle when an unknown error occurs during an enperiment.

Teacher's Sign .: .

	Page No. Date
	list and enplain different types of activation
Ans	There are several types of artivation function. It is a linear Junition
	Identity function and can be defined as [(n) = n for all n The output here remains the
10	The output here remains the same as input The input layer uses the identity activation function
2]	Binary step function Thu function can be defined as
	$\int (n) = \begin{cases} \sqrt{n} & \sqrt{0} \\ \sqrt{n} & \sqrt{0} \end{cases}$
6	Junction is more widely used in single layer Peter to convert the net input to an output that is binary (1 or 0).
3]	
	Bipolar step function This function can be defined as: [1] 1 1 1 7 0
	(n)
	unction is also used in single layer net

$$\frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} \right) \left[\frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} \right) \right] \right]$$

The bipolar sigmoid function is closely related to hyperbolic tangent function.

$$\frac{b(n) = e^n - e^{-n}}{e^n + e^{-n}} = \frac{1 - e^{-2n}}{1 + e^{-2n}}$$

Ramp function

The ramp function can be defined as $\int (n) = \int n \quad \text{if } 0 \leq n \leq 1$

$$\frac{1}{n} = \frac{1}{n} \frac{n}{10} \leq n \leq 1$$

	Page No. Date
D e]	For the given network calculate the output y neuron, for given inputs and weight $[n_1 \ n_2 \ n_3] = [0.3, 0.5, 0.6]$ [w , w_2 , w_3] = $[0.2, 0.1, -0.3]$.
	0.3 7.1 0.2
3	<u>0.3</u> 0.1
	The net input can be calculated as.
2	$y_{10} = n_1 w_1 + n_2 w_2 + n_3 w_3$ $= 0.3 \times 0.2 + 0.5 \times 0.1 + 0.6 \times (-0.3)$ $= 0.06 + 0.05 - 0.18$ $y_{10} = -0.07$

Teacher's Sign.:

	I DATE I
71)	Design a hebb network to implement AND function (use bipolar input and target).
Ans	
	Inputs Target n, n, b y
	-1
	-1 -1 -1
20	
	Intially the weight and bias are set to zero $w_1 = w_2 = b = 0$
	First input [n, n 2 b] = [1 1 1] target = 1 setting the intial weight as old weight and applying Hebb rule
	Wilnew) = Wilold) + niy
	$w_1(new) = w_1(old) + n_1y = 0 + x = 1$ $w_2(new) = w_2(old) + n_2y = 0 + x = 1$
	W2 (new) = w2101d) + n21 = 0 + 1 × 1 = 1
	b(new) = b(old) + y = 0+1=1.
	econd input $[n_1 n_2 b] = [1-1 1] = -1$ etting the old weight $[w_1 w_2 b] = [111]$
- 10	erring the old weight [w, w, b] = [1]
	The weight changes have i
	the weight changes here is $\Delta w_1 = n_1 y = 1 \times -11$
	$\Lambda(1)_2 = 2 - 1 \times -1 \times -1$
	$\Delta w_2 = \lambda_2 y = -1 \times -1 = 1$ $\Delta b = y = -1$
	305 9

Third input =
$$[n, n, b] = [-1 \ 1 \ 1] = -1$$

setting old weight $[w, w, b] = [0 \ 2 \ 0]$.

The weight changes here.

$$\Delta w_1 = \pi_1 y = (-1)(-1) = 1$$

 $\Delta w_2 = 2 \cdot y = |x-| = -1$
 $\Delta b = y = |x-| = -1$

The new weight here are:

$$w_1(new) = w_1(old) + \Delta w_1 = 0 + 1 = 1$$
 $w_2(new) = w_2(old) + \Delta w_2 = 2 + (-1) = 1$
 $b_{(new)} = b_{(old)} + \Delta b = 0 + (-1) = -1$

Fourth input
$$[n_1, n_2, b] = [-1, -1, 1] = -1$$

setting old weight $[w_1, w_2, b] = [1, 1, -1]$

$$\Delta w_1 = n_{14} = -1 \times -1 = 1$$

$$\Delta w_2 = 72 u = -1 \times -1 = 1$$

$$\Delta w_1 = n_{1y} = -1 \times -1 = 1$$

 $\Delta w_2 = n_{2y} = -1 \times -1 = 1$
 $\Delta b = y = 1 \times -1 = -1$

	1-1	DATE		
	T	1	73	9
1			0 0	

Hebb functionetwork for AND

pel Design a hebb network to logical AND NOT function (bipolar input and larget).

Truth Table

71 72 4.

1 1 -1 1

-1 1 1

Intially the weight and bias both are set to

 $W_1 = W_2 = b = 0$

First input $[n_1 n_2 b] - [1 1 1] t = -1$ $w_1(new) = w_1(old) + n_1 y = 0 + 1(-1) = -1$ $w_2(new) = w_2(old) + n_2 y = 0 + 1(-1) = -1$ b = 0 + (-1) = -1

Aw, =1, X-1 = -1

$$\Delta w_2 = 1 \times -1 = -1$$

$$\Delta b = -1$$

Second input
$$\begin{bmatrix}
n_1 & n_2 & b
\end{bmatrix} = \begin{bmatrix}
1 & -1 & 1
\end{bmatrix} & t = 1$$

$$\begin{bmatrix}
w_1 & w_2 & b
\end{bmatrix} = \begin{bmatrix}
-1 & -1 & -1
\end{bmatrix} & (old weight)$$

$$\Delta w_1 = 2w$$

$$\Delta w_1 = \pi_1 y = |\dot{x}| = 1$$

$$\Delta w_2 = \pi_2 y = -|\dot{x}| = -1$$

$$\Delta b = y = 1$$
The weight

The weights changes are here.

Wilnew) =
$$W_1(01d) - 1\Delta W_1 = -1 + 1 = 0$$
 $W_2(new) = W_2(01d) + \Delta W_2 = -1 + (-1) = -2$
 $b = b(01a) + \Delta b = +1 + -1 = 0$

$$\begin{bmatrix} n_1 & n_2 & b \end{bmatrix} = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix} \qquad t = 1.$$

third in put
$$\begin{bmatrix} n_1 & n_2 & b \end{bmatrix} = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix} & t = 1. \\
\begin{bmatrix} w_1 & w_2 & b \end{bmatrix} = \begin{bmatrix} 0 & -2 & 0 \end{bmatrix} & \text{old weight} \\
\end{bmatrix}$$

$$\Delta w_1 = n_1 y = -1(1) = -1$$

$$\Delta w_1 = n_1 y = -1(1) = -1$$

$$\Delta w_2 = n_2 y = 1(1) = 1$$

$$\Delta b = y = 1$$

$$\Delta b = y' = 1$$

Fourth input = The new weight here are $\begin{bmatrix}
 b \\
 n_1 & n_2 & b
 \end{bmatrix} = \begin{bmatrix}
 -1 & -1 & 1
 \end{bmatrix} & t = 1
 \end{bmatrix}$ The new weight here are $w_1 = w_{101d} + \Delta w_1 = -1 + -1 = -2$

 $W2 = W(01d) + \Delta W_2$ = -1 + (-1) = -2

b = 1 + 1 = 2

03	Draw and enplain the perception neuron with its architecture.
	with its architecture.
Ani	Po
11.1/	Perceptron network comes under single layer feed forward network and are also called simple perceptions, various types of perceptions are designed by Rosenblatt (1962) A single perceptions networks was discovered by Block in 1962
	alle feed forward network and are
	Descent a simple perceptions, vanous types
	A spale are designed by Rosen blatt (1962
	Block in lace
	1762
	The perception and in the it at
	The perception network consuts of three units namely, sensory unit, associator unit and
	response unit and
	The sensori units are roomested to are its
	unit with direct weight basine value 10
	The sensory units are connected to associator units with fined weight having values 1,0 or -1 which are assigned at random. The binary activation function is used in sensors unit and association function is used in
	The binary activation lunction is used in
	seniory unit and associator unit
	The serponse unit has an activation of 1,0 or
	-1. The binary step with lined three hold Dis
	used as activation for associator. The output signal that are sent from the associators unit
	signal that are sent from the aspriators and
	to the upone unit are only binary.
	The output of the perception network.
	y = /(yin).
	where f(yin) is activation and is defined as
	5 1 1 4in 70
	$f(y_{in}) = \begin{cases} 0 & \text{if } -\theta \leq y_{in} \leq \theta \end{cases}$
	-1 i 4in < -0.
	D - J111
	FOR EDUCATIONAL USE

The perception learning rule is used in the weight updation between the associator unit and the exponse unit. For each training input the net will calculate the exponse and it will determine whether or not an error has occurred. The error calculation is based on the compaision of the values of targets with those of the calculated output. output

The weight on the connection from the unitathe nonzero signal will get adjusted suitably. The weight will be adjusted on the baru of the learning rule if an error has occurred for pattern witnew) = witold) to this

b(new) = b(old) + xt.

PUJ	Explain perception training algorithm for single output class
	step O -Intialize the weight and the bias. Also intialize the learning rate & (O< x < 1) For simplicity & is set to 1.
	stepl-Perform steps 2-6 untill The final. stopping condition à false.
	step 2 - Perform step 3-5-for each training pair indicated by s:t
	step 3 - The input layer containing input units is applied with identity function $n_i = s_i$
	step 4 - Calculate the output of the network. To do so, first obtain the net Input Yin = b 7 \(\sum_{i=1}^{2} \) \(\sum_{i=1}^{2} \)
- 11	where is the number of input neuron then
	$\frac{1-\frac{1}{1}}{1-\frac{1}{1}}\frac{1}\frac{1}{1-\frac{1}{1}}\frac{1}{1-\frac{1}{1}}\frac{1}{1-\frac{1}{1}}\frac{1}{1-\frac{1}{1}}\frac{1}\frac{1}{1-\frac{1}{1}}\frac{1}{1-\frac{1}{1}}\frac{1}{1-\frac{1}{1}}\frac{1}{1-\frac{1}{1}}1$
	steps - weight and bias adjustment compare the value of the actual output and

FOR EDUCATIONAL USE

The perception network which wer perception learning rule in wed to train the OR Junction The network architecture. The intial value of the weights and bras are taken.

 $W_1 = W_2 = b = 0$

 $\frac{\sin - b - 1 - 1 \cdot w}{-0 + 1 \cdot 0} + \frac{1 \cdot 2 \cdot w^{2}}{-0} = 0$ $\frac{y \neq t}{y = 0}$

 $W_1 = W_{(new)} + Qt_{n_1} = O + I(I)(I) = I$ $W_2 = W_{(new)} + Qt_{n_2} = O + I(I)(I) = I$ $b = b_{(new)} + Qt = O + I(I) = I$ $\Delta w_1 = Qt_{n_1} = I(I)(I) = I$ $\Delta w_2 = Qt_{n_2} = I(I)(I) = I$ $\Delta b = Qt = I(I) = I$

 $y_{in} = b + n_1 w_1 + n_2 w_2$ $= 1 + 1(1) + 0(1) = 2 \quad y \neq t$ $y = 1 \quad y = t$ $weight \quad no \quad weight \quad changes \quad take \quad place$ $w_{(new)} = w_{(old)} =$

We (new) = W, (old) = | = |

FOR EDUCATIONAL USE

Define learning, differentiate between supervised learning and unsupervised learning

The main property Jan ANN isite capability to learn learning or training is a process by means I which a neural network adapts itself to a stimulus by making proper parameter adjustment resulting in the production of desired response Broadly there.

Superised Unsupervised Learning Uses Unknown Uses known and Input Data labeled Data as Data as input input Computational Very complex less computation Complenity Real Time Uses off-line analysis lles Real-Time analysis of Data Number of Classes Number of Classes are known are not known. Number of Clarser Accuracy of Accurate and Moderate Accurate Result Reliable Result and Reliable Results.

El Write a short note on McGulloch Pita neuron

The McCulloch Pits neuron was the earliest neural network ducoxied in 1943. It is usually called as M-P-neuron. The M-P neurons are connected by directed weighted paths. It should be noted that the activation of a M-P neuron is binary, that is at any time step the neuron may five or may not five. The weight associated with the communication links may be encitatory (weight a positive) or inhibitory (weight is negative). All the encitatory connected weight entering into a particular neuron will have some weights. The threshold plays amajor role in M-P-neuron.

There is a fined thusbold for each neuron and if the net input to the neuron is greater than the threshold then the neuron fire. Also it should be noted that any nonzero into inhibitory input would present the neuron fire from firing. The M-P neuron are most widely used in the case of logic function.

O10] Design neural network with only one MP neuron that implements the basic logic operation

NAND (n_1, n_2) where n_1 and n_2 $\in (0,1)$.

71 712 Y

consider w1=1, w2=1

 $y_{in} = n_1 w_1 + n_2 w_2$ = 0(1) + 1(1) = 0+1 = 1.

0 - threshold 0 > nw - p = 1 × 0 - 1

y = f(yin) = 5 | yin > 1

consider W1 = 1 W2 = -1.

 $\frac{y_{in} = n_{1}w_{1} + n_{2}w_{2}}{= 0(1) + 1(-1)}$ = 0 - 1 = -1

