Resumen Análisis Matemático II (R-122) Licenciatura en Ciencias de la Computación

Iker M. Canut 2020

- \square a < b, partición de [a, b]: colección finita de puntos $P = \{t_0, ..., t_n\}$ de $[a, b]/a = t_0 < ... < t_n = b$. $\Box f: [a,b] \to \mathbb{R} \text{ acotada, } m_i = \inf\{f(x): t_{i-1} \le x \le t_i\} \text{ y } M_i = \sup\{f(x): t_{i-1} \le x \le t_i\}:$ Suma inferior de f para $P, L(f,P) = \sum_{i=1}^n (t_i - t_{i-1}) m_i$, y superior a $U(f,P) = \sum_{i=1}^n (t_i - t_{i-1}) M_i$. ■ f acotada en [a,b], P,Q particiones $/P \subset Q \Rightarrow L(f,P) \leq L(f,Q) \wedge U(f,P) \geq U(f,Q)$. ■ f acotada no negativa en [a, b], P_1 , P_2 particiones $\Rightarrow L(f, P_1) \leq U(f, P_2)$. \Box f acotada en [a,b] y sea $P_{[a,b]}$ el conjunto de todas las particiones, f es **integrable** en [a,b] si: $\sup\{L(f,P):P\in P_{[a,b]}\}=\inf\{U(f,P):P\in P_{[a,b]}\}=I. \text{ Luego, }I\text{ se denomina integral }\int_a^bf(x)dx.$ \square f integrable no negativa, $R(f) = \{(x,y) : a \le x \le b, 0 \le y \le f(x)\}$, entonces la integral es el **área**. ■ f acotada $\Rightarrow f$ integrable $\iff \forall \epsilon > 0 \; \exists P_{\epsilon}/U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon$. Luego, $L(f, P_{\epsilon}) \leq I \leq U(f, P_{\epsilon})$. $\blacksquare f$ continua en $[a,b] \Rightarrow f$ es integrable en [a,b]. $\blacksquare a < c < b, f \text{ integrable en } [a, b] \iff f \text{ integrable en } [a, c] \text{ y } [c, b]. \text{ Además, } \int_a^b = \int_a^c + \int_c^b dt$ $\blacksquare \int_a^a = 0 \land b < a, \int_a^b = -\int_b^a.$ ■ f integrable en [a,b] ⇒ cf integrable en [a,b] ∧ $\int_a^b cf(x)dx = c\int_a^b f(x)dx$. ■ f, g integrables en $[a, b] \Rightarrow f + g$ integrable en $[a, b] \land \int_a^b (f + g)(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$. ■ f integrable en [a, b], g acotada en $[a, b] / g(x) = f(x) \forall x \in [a, b]$ salvo para un número finito de puntos $\Rightarrow g$ integrable en $[a,b] \land \int_a^b g(x)dx = \int_a^b f(x)dx$. ■ f integrable en [a,b], $m \le f(x) \le M$, $\forall x \in [a,b] \Rightarrow m(b-a) \le \int_a^b f(x) dx \le M(b-a)$. ■ f integrable en [a,b], F definida en [a,b] como $F(x) = \int_a^x f(t)dt$, entonces F es continua sobre [a,b]. ■ f integrable en [a,b], $F(x) = \int_a^x f(t)dt$, f es continua en $c \in [a,b] \Rightarrow F$ derivable en c y F'(c) = f(c). ■ f continua en [a,b] y $f = g' \Rightarrow \int_a^b f(t)dt = g(b) - g(a)$. ■ f integrable en [a,b] y $f = g' \Rightarrow \int_a^b f(t)dt = g(b) - g(a)$. $\Box x > 0$, logaritmo natural $\ln(x) = \int_1^x \frac{1}{t} dt$. $\blacksquare \ln(xy) = \ln(x) + \ln(y), \ \ln(x^n) = n \ln(x), \ \ln(\frac{x}{y}) = \ln(x) - \ln(y).$ \square función exponencial $\exp : \mathbb{R} \to \mathbb{R}^+, \exp = \ln^{-1}$ $\blacksquare \exp'(x) = \exp(x), \exp(x+y) = \exp(x) \cdot \exp(y).$ \square $e = \exp(1)$, es decir, $\ln(e) = \int_1^e \frac{1}{t} dt = 1$ $\blacksquare \exp(rx) = \exp(x)^r$. $\Box e^x = \exp(x).$ $\Box \ a > 0, \ a^x = e^{x \ln(a)}.$ $\blacksquare a > 0, (a^x)^y = a^{xy}, a^1 = a, a^{x+y} = a^x \cdot a^y.$ $\Box a > 0$, logaritmo en base a a la función inversa de la función a^x . Es decir, $\log_a(x) = y \iff a^y = x$. $\blacksquare f'(x) = f(x) \Rightarrow \exists c/f(x) = ce^x.$ \blacksquare lím $_{x\to\infty}\frac{e^x}{x^n}=\infty$. Es decir, crece más rápido que cualquier potencia.
- Integración por Partes: Sean f, g funciones derivables tales que f' y g' son continuas en un entorno abierto que contenga a [a, b], entonces $\int_a^b f(x)g'(x)dx = f(x)g(x)|_a^b \int_a^b f'(x)g(x)dx$.
- **Fórmula de Sustitución**: Sean f, g' funciones continuas, entonces $\int_{g(a)}^{g(b)} f(u) du = \int_a^b f(g(x)) g'(x) dx$.

- Single Linear Factors: $Q(x) = (a_1x + b_1) \cdots (a_k + b_k) \Rightarrow \frac{P(x)}{Q(x)} = \frac{A_1}{a_1x + b_1} + \cdots + \frac{A_k}{a_kx + b_k}$.

 Repeated Linear Factors: $Q(x) = (a_1x + b_1)^r \Rightarrow \frac{P(x)}{Q(x)} = \frac{A_1}{a_1x + b_1} + \cdots + \frac{A_r}{a_1x + b_1}^r$.

 Single Irreducible Quadratics: $Q(x) = (a_1x + b_1)^r \Rightarrow \frac{P(x)}{Q(x)} = \frac{A_1}{a_1x + b_1} + \cdots + \frac{A_r}{a_1x + b_1}^r$.

 Repeated Irreducible Quadratics: $Q(x) = (a_1x + b_1)^r \Rightarrow \frac{P(x)}{Q(x)} = \frac{A_1x + B_1}{a_1x + b_1} + \cdots + \frac{A_rx + B_r}{(a_1x + b_1)^r}$.

- L'Hôpital: $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0/\exists \lim_{x\to a} \frac{f'(x)}{g'(x)}$ o es $\pm \infty \Rightarrow \lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$
- También vale para $\lim_{x\to a^{\pm}} o$ bien $\lim_{x\to \pm\infty} f(x) = \lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$, $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = l \Rightarrow \lim_{x\to\infty} \frac{f(x)}{g(x)} = l$.
- $\blacksquare f$ derivable en $E(x_0, \delta)$ y alcanza un extremo local, entonces $f'(x_0) = 0$.
- f derivable en (a,b) y f'(x) > 0 $\forall x \in (a,b) \Rightarrow f$ es creciente en (a,b). Si f'(x) < 0, f es decreciente.
- $\blacksquare f$ dos veces derivable en $E(a,\delta)$, f'(a)=0. Si $f''(a)>0 \Rightarrow$ mínimo local. Si $f''(a)<0 \Rightarrow$ máximo local.
- $\blacksquare f$ dos veces derivable en a. Si hay mínimo local en $a \Rightarrow f''(a) \ge 0$. Si hay máximo local en $a \Rightarrow f''(a) \le 0$.
- \Box f es **convexa** en un intervalo I si $\forall a, x, b \in I, a < x < b$ se verifica $\frac{f(x) f(a)}{x a} < \frac{f(b) f(a)}{b a}$.
- \Box f es **concava** en un intervalo I si $\forall a, x, b \in I, a < x < b$ se verifica $\frac{f(x) f(a)}{x a} > \frac{f(b) f(a)}{b a}$.
- \blacksquare f derivable en I. Luego, f es convexa $\iff \forall a \in I$ la grafica de f queda por encima de la recta tangente por (a, f(a)), excepto en (a, f(a)).
- \blacksquare f derivable en I. Luego, f es concava $\iff \forall a \in I$ la grafica de f queda por debajo de la recta tangente por (a, f(a)), excepto en (a, f(a)).
- \blacksquare f derivable en I. Entonces f convexa \iff f' creciente, y f concava \iff f' decreciente.
- $\blacksquare f$ derivable dos veces en I, si $f''(x) > 0 \Rightarrow$ convexa, y si $f''(x) < 0 \Rightarrow$ concava.
- ☐ En un **punto de inflexión** hay un cambio de concavidad.

- $\blacksquare r = \sqrt{x^2 + y^2}$, $\tan \theta = \frac{y}{x}$, $x = r \cdot \cos \theta$, $y = r \cdot \sin \theta$
- Sea R la región definida por una curva cerrada dada en coordenadas polares: Area $(R) = \frac{1}{2} \int_a^b f^2(\theta) d\theta$.
- Sea $f:[a,b] \to \mathbb{R}_0^+$ integrable y sea C el cuerpo que se obtiene de rotar la región bajo la gráfica de f alrededor del eje x, $Vol(C) = \pi \int_a^b f^2(x) dx$.
- Sea $f:[a,b] \to \mathbb{R}_0^+$ integrable, con $0 \le a < b$, y sea C el cuerpo de revolución que se obtiene de hacer girar la región bajo la gráfica de una función f alrededor del eje y, $Vol(C) = 2\pi \int_a^b x f(x) dx$.
- Sea $f:[a,b] \to \mathbb{R}$ derivable con derivada continua y sea c la curva dada por la gráfica de f, $l(c) = \int_a^b \sqrt{f'(x)^2 + 1} dx$. Si está dada por ecuaciones paramétricas, $l(c) = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} dt$.

- \Box f integrable en [a,x] para cada x>a, si $\lim_{x\to\infty}\int_a^b f(t)dt=I$, lo denominamos **integral impropia** de f en $[a,+\infty)$. Luego, $\int_a^\infty f(t)dt=I$. Si I es $\pm\infty$ decimos que es **divergente**.
- $\blacksquare \int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{0} f(x)dx + \int_{0}^{\infty} f(x)dx.$
- \blacksquare Si $\exists \lim_{x\to\infty} f(x)$, una condición necesaria para que exista la integral impropia, es $\lim_{x\to\infty} f(x) = 0$.
- \blacksquare Sea f integrable en [x,b] para a < x < b, tal que f tiene una asintota vertical en x = a, si $\lim_{x\to a^+} \int_x^a f(t)dt = I$, denominamos a este limite integral impropia de f en (a,b].
- Si a < c < b y f tiene asintota vertical en x = c, si existen las integrales impropias de f en [a, c) y (c, b], denominamos integral impropia de f en (a, b) a $\int_a^b f(x)dx = \int_c^c f(x)dx = \int_c^b f(x)dx$

- \square Sea f n-veces derivable en a, se denomina **Polinomio de Taylor** de grado n para f en a al polinomio $P_{n,a}(x) = a_0 + a_1(x-a) + \dots + a_n(x-a)^n$, donde $a_k = \frac{f^{(k)}(a)}{k!}$, $0 \le k \le n$. \blacksquare Es el único polinomio de grado n tal que $p^{(k)}(a) = f^{(k)}(a)$. $\lim_{x \to a} \frac{f(x) - P_{n,a}(x)}{(x-a)^n} = 0$
- $\blacksquare f$ n-veces derivable en $a, f'(a) = \cdots = f^{(n-1)}(a) = 0, f^{(n)}(a) \neq 0, n$ par y $f^{(n)}(a) > 0$ tiene un mínimo local en a. Si n par y $f^{(n)}(a) < 0$, tiene un máximo local. Si n impar, no es un extremo local.
- \square Dos funciones son iguales hasta el orden n en a si $\lim_{x\to a} \frac{f(x)-g(x)}{(x-a)^n}=0$
- \blacksquare Si f y g son iguales hasta el orden n, son iguales hasta $k \leq n$.
- $\blacksquare P, Q$ polinomios en (x-a), grado $\leq n$, si $P \neq Q$ son iguales hasta el orden n en a, entonces P=Q.
- f n derivable en a, p(x) polinomio en (x-a) de grado $\leq n$, igual a f hasta n en a, entonces $p = P_{n,a}$. $\square R_{n,a}(x) = \int_a^x \frac{f^{(n+1)}(t)}{n!} (x-t)^n dt = \frac{f^{(n+1)}(t)}{n!} (x-t)^t (x-a) = \frac{f^{(n+1)}(t)}{(n+1)!} (x-a)^{n+1}$. Para algún $t \in (a,x)$.

 \square producto interno: $\langle v, w \rangle = x_1 y_+ \cdots + x_n y_n = \sum_{k=1}^n x_k y_k$. \Box norma: $||v|| = \sqrt{< v, v>} = \sqrt{\sum_{k=1}^n x_k^2}$ \Box distancia: $d(v, w) = ||v - w|| = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$ $\blacksquare \ \langle au,v\rangle = \langle u,av\rangle = a\langle u,v\rangle, \langle a+v,w\rangle = \langle a,w\rangle + \langle v,w\rangle, \langle u,v\rangle = \langle v,u\rangle, \langle v,v\rangle \geq 0.$ $||v|| \ge 0, ||av|| = |a|||v||, ||v+w|| \ge ||v|| + ||w||, |\langle v, w \rangle| \le ||v|| ||w||$ $\blacksquare d(u,v) = d(v,u), d(u,v) \ge 0, d(u,w) \le d(u,v) + d(v,w)$ $\square u_0 \in \mathbb{R}^n, r > 0$, definimos **bola** como $B_r(u_0) = \{v \in \mathbb{R}^n : d(v, v_0 < r)\}$. Un subconjunto es **abierto** si para cada $u \in A$ existe r > 0 tal que $B_r(u) \subset A$. Es **cerrado** si su complemento es abierto. u es un punto de acumulación si $\forall \epsilon > 0, B_{\epsilon}(u) - \{u\}$ interseca a A. La clausura es el conjunto \overline{A} formado por A y todos sus puntos de acumulación. $\blacksquare \lim_{x \to a} f(u) = L \iff 0 < ||u - a|| < \delta \Rightarrow ||f(u) - L|| < \epsilon.$ $\blacksquare f$ es continua en a si f está definida en a y $\lim_{u\to a} f(u) = f(a)$. \square Es **lineal** si A(x+y) = A(x) + A(y) y $A(\lambda x) = \lambda A(x)$. ■ Sea $f:D\subset \mathbb{R}^n\to\mathbb{R}^m$ y sean $f_i=p_i\circ f:D\to\mathbb{R}^m$ sus funciones componentes, entonces f es continua en $u_0 \iff$ todas sus funciones componentes f_i son continuas en u_0 . $\blacksquare \lim_{u \to a} f(u) = L, L > 0 \Rightarrow \exists \delta > 0/0 < ||u - a|| < \delta \Rightarrow f(u) > 0.$ \square Sea $f:U\subset\mathbb{R}^n\to\mathbb{R}$, se denomina **conjunto de nivel** del valor k al conjunto de los puntos $x\in U$ f(x) = k. Si k = 2 se denomina curva de nivel, si k = 3 se denomina superficie de nivel. \square Una curva α es derivable en t_0 si existe $\alpha'(t_0) = \lim_{h \to 0} \frac{\alpha(t_0+h)-t_0}{h}$ ■ La derivada existe \iff existen las derivadas $\alpha_i'(t_0) \ \forall i \in [1, n]$. \blacksquare Si α' es continua, decimos que es de clase C^1 . $\blacksquare (\alpha + \beta)'(t_0) = \alpha'(t_0) + \beta'(t_0), (c\alpha)'(t_0) = c'(t_0)\alpha(t_0) + c(t_0)\alpha'(t_0)$ $\blacksquare \langle \alpha, \beta \rangle = \langle \alpha'(t_0), \beta(t_0) \rangle + \langle \alpha(t_0), \beta'(t_0) \rangle, \, |\alpha|(t_0) = \frac{\langle \alpha(t_0), \alpha'(t_0) \rangle}{|\alpha(t_0)|}.$ $\blacksquare \gamma: I \to J$ derivable en $a \in I$, $\alpha: J \to \mathbb{R}^n$ curva derivable en $b = \gamma(a)$, entonces $\alpha \circ \gamma$ es derivable ne $a y (\alpha \circ \gamma)'(a) = \gamma'(a)\alpha'(b)$. \square i-esima derivada parcial: $\frac{df}{dx_i}(a) = \lim_{t\to 0} \frac{f(a_1,\dots a_i+te_i,\dots,a_n)-f(a)}{t} = \lim_{t\to 0} \frac{f(a+te_1)-f(a)}{t}$. \blacksquare La existencia de las n derivadas parciales en un punto no asegura la continuidad de la función. Si todas las derivadas parciales son continuas, es C^1 . \blacksquare Es diferenciable si existen las derivadas parciales y para todo $v=(v_1,...,v_n), f(a+v)-f(a)=$ $\sum_{i=1}^{n} \frac{df}{dx_i}(a) \cdot v_i + r(v), \text{ donde } \lim_{|v| \to 0} \frac{r(v)}{|v|} = 0.$ $\blacksquare \text{ Toda función diferenciable en el punto } a \text{ es continua en ese punto.}$ \blacksquare Toda función de clase C^1 es diferenciable. Toda clase C^1 es continua. \square El **gradiente** es un vector: $gradf(a) = (\frac{df}{dx_1}, ..., \frac{df}{dx_n})$. \Box La **derivada direccional** en a por v es $\frac{df}{dv}(a) = \lim_{t\to 0} \frac{f(a+tv)-f(a)}{t}$ ■ Sea $f: U \to \mathbb{R}$ diferenciable en U, con $a \in U$, dado v, si $\lambda: (-\delta, \delta) \to U$ curva diferenciable tal que $\lambda(0) = a, \lambda'(0) = v, \text{ entonces } (f \circ \lambda)'(0) = \langle gradf(a), v \rangle = \frac{df}{dv}(a) = \sum_{i=1}^{n} \frac{df}{dx_i}(a)v_i.$ ■ El gradiente apunta en la dirección en la cual la función es creciente, y es ortogonal al conjunto de nivel que pasa por a.

 \square Definimos **punto critico** de f en a si grad f(a) = 0.

■ Toda funcion diferenciable es continua.