Reply to Office Action of March 15, 2006

Amendments to the claims

This listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims

- 1. (cancelled)
- 2. (cancelled)
- 3. (withdrawn) A compound of claim 1, wherein R¹ is

4. (withdrawn) A compound of claim 1, wherein R¹ is

Appl. No. 10/666,192 Amdt. dated June 15, 2006 Reply to Office Action of March 15, 2006

5. (withdrawn) A compound of claim 1, wherein R¹ is

6. (withdrawn) A compound of claim 1, wherein R¹ is

Appl. No. 10/666,192 Amdt. dated June 15, 2006

From-

Reply to Office Action of March 15, 2006

7. (withdrawn) A compound of claim 1, wherein R¹ is

8. (withdrawn) A compound of claim 1, wherein R¹ is

9. (currently amended) A compound of claim $\frac{1}{4}$, wherein s is one to two; R^3 is hydrogen or (C_1-C_6) alkyl; R^4 is hydrogen, (C_1-C_6) alkyl, perhalo (C_1-C_6) alkyl, phenyl, (C_1-C_6) alkyl-S- (C_1-C_6) al

Appl. No. 10/666,192 Amdt. dated June 15, 2006

Reply to Office Action of March 15, 2006

C₆)alkyl-, (C₃-C₁₀)heteroaryl, (C₃-C₁₀)cycloalkyl, aminoalkyl, amino(C=O)-, (C₁-C₆)alkyl-(C=O)-NH-(C₁-C₆)alkyl, or (C₁-C₆)alkyl-NH-(C=O)-(C₁-C₆)alkyl; and R⁶ is H, (C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, (C₁-C₆)alkyl-(SO₂)-(C₁-C₆)alkyl, (C₁-C₆)alkyl-(SO₂)-NH-(C₁-C₆)alkyl, (C₁-C₆)alkyl-NH-(SO₂)-(C₁-C₆)alkyl, (C₁-C₆)alkyl-(C=O)-(C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, (C₁-C₆)alkyl-NH-(C=O)-(C₁-C₆)alkyl, (C₁-C₆)alkyl-(C=O)-NH-(C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl-NH-(C=O)-(C₃-C₁₀)cycloalkyl, or (C₃-C₁₀)cycloalkyl-NH-(C=O)-(C₃-C₁₀)cycloalkyl.

- 10. (original) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
- 11. (withdrawn) A method of preventing or treating a TGF-related disease state in an animal or human comprising the step of administering a therapeutically effective amount of a compound of claim 1 to the animal or human suffering from the TGF-related disease state.
- 12. (withdrawn) A method of claim 11, wherein said TGF-related disease state is selected from the group consisting of cancer, glomerulonephritis, diabetic nephropathy, hepatic fibrosis, pulmonary fibrosis, intimal hyperplasia and restenosis, scleroderma, and dermal scarring.
- 13. (new) A compound selected from the group consisting of:
 - 1 -Methyl-6-[5-(6-methyl-pyridin-2-yl)-1H-imidazol-4-yl]-1H-benzotriazole;
 - 6-[5-(6-Methyl-pyridin-2-yl)-1H-imidazol-4-yl]-1H-benzotriazole;
 - 2-Methyl-5-[5-(6-methyl-pyridin-2-yl)-1H-imidazol-4-yl]-2H-benzotriazole;
 - 2-Methyl-5-[2-methyl-5-(6-methyl-pyridin-2-yl)-lH-imidazol-4-yl]-2H-benzotriazole;
 - 6-[2-tert-Buty1-5-(6-methyl-pyridin-2-y1)-1H-imidazol-4-yl]-1H-benzotriazole;
- 1 -Methyl-6-[5-(6-methyl-pyridin-2-yl)-2-tifluoromethyl-1H-imidazol-4-yl]-1H-benzotriazole;
 - 6-[2-Methyl-5-(6-methyl-pyridin-2-yl)-1H-imidazo]-4-yl]-1H-benzotriazole:
 - 1 -Methyl-6-[2-methyl-5-(6-methyl-pyridin-2-y1)-1H-imidazol-4-yl]-1H-benzotriazole;
 - 1 -Methyl-6-(2-methyl-5-pyridin-2-yl-1H-imidazol-4-yl)-1H-benzotriazole;

Amdt. dated June 15, 2006

Reply to Office Action of March 15, 2006

1-Methy1-6-[5-(6-methyl-pyridin-2-yl)-1H-imidazol-4-yl]-1H-benzotriazole;

5-[2-(2-Benzo[1,3]dioxol-5-yl-1-methyl-ethyl)-5-(6-methyl-pyridin-2-yl)-1H-imidazol-4-yl]-2-methyl-2H-benzotriazole;

2-Methyl-5-[5-(6-methyl-pyridin-2-yl)-2-(2-methylsulfanyl-ethyl)-1H-imidazol-4-yl]-2H-benzotiazole;

2-Methyl-5-[5-(6-methyl-pyridin-2-yl)-2-thiazol-2-y1-1H-imidazol-4-yl]-2H-benzotriazole;

6-[2-Cyclopropyl-5-(6-methyl-pyridin-2-yl)-1H-imidazol-4-yl]-1-methyl-1H-benzotriazole:

5-[2-Cyclopropyl-5-(6-methyl-pyridin-2-yl)-1H-imidazol-4-yl]-2-methyl-2H-benzotriazole;

6-[2-Cyclopropyl-5-(6-methyl-pyridin-2-y1)-1H-imidazol-4-yl]-quinoxaline;

[4-(2-Methyl-2H-benzotriazol-5-yl)-5-(6-methyl-pyridin-2-yl)-1H-imidazol-2-yl]-methanol; and

4-(2-Methyl-2H-benzotriazol-5-yl)-5-(6-methyl-pyridin-2-yl)-1H-imidazole-2-carboxylic acid amide.

14. (new) A compound of formula (Ia):

$$\mathbb{R}^{1}$$
 \mathbb{R}^{4}
 \mathbb{R}^{3}
 \mathbb{R}^{3}
 \mathbb{R}^{3}
 \mathbb{R}^{4}
 \mathbb{R}^{4}
 \mathbb{R}^{3}

Appl. No. 10/666,192 Amdt. dated June 15, 2006

Reply to Office Action of March 15, 2006

or a pharmaceutically acceptable salt, prodrug, tautomer, hydrate, or solvate thereof, wherein:

R¹ is a benzotriazole selected from

wherein said benzotriazole can optionally be further independently substituted with at least one moiety independently selected from the group consisting of: carbonyl, halo, halo(C1-C6)alkyl, perhalo(C_1 - C_6)alkyl, perhalo(C_1 - C_6)alkoxy, (C_1 - C_6)alkyl, (C_2 - C_6)alkylvl, (C_2 - C_6)alkylvl, hydroxy, oxo, mercapto, (C1-C6)alkylthio, (C1-C6)alkoxy, (C5-C10)aryl, (C5-C10)heteroaryl, (C5- C_{10}) aryloxy, (C_5-C_{10}) heteroaryloxy, (C_5-C_{10}) ar (C_1-C_6) alkyl, (C_5-C_{10}) heterar (C_1-C_6) alkl, (C_5-C_{10}) C₁₀)ar(C₁-C₆)alkoxy, (C₅-C₁₀)heteroar(C₁-C₆)alkoxy, HO-(C=O)-, ester, amido, ether, amino. $amino(C_1-C_6)alkyl, (C_1-C_6)alkylamino(C_1-C_6)alkyl, di(C_1-C_6)alkylamino(C_1-C_6)alkyl, (C_5-alkyl, di(C_1-C_6)alkyl, di(C_1-C_6)al$ C₁₀)heterocyclyl(C₁-C₆)alkyl, (C₁-C₆)alkyl- and di(C₁-C₆)alkylamino, cyano, nitro, carbamoyl, (C₁-C₆)alkylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylaminocarbonyl, di(C₁-C₆)alkylaminocarbonyl, (C₅-C₁₀)arylcarbonyl, (C₅-C₁₀)aryloxycarbonyl, (C₁-C₆)alkylsulfonyl, and (C_5-C_{10}) ary sulfonyl;

wherein R^{2a} is selected from the group consisting of carbonyl and carboxyl, or R^{2a} is selected from the group consisting of (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₁₀)cycloalkyl, (C₅-C₁₀)aryl, (C₁-C₆)alkylaryl, amino, (C₂-C₆)acid, (C₁-C₆)ester, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclyl, (C₁-C₆)alkoxy, nitro, halo, hydroxyl, (C₁-C₆)alkoxy(C₁-C₆) ester; each of which may be optionally substituted by at least one moiety independently selected from the group consisting of halo, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, perhalo(C1-C6)alkyl, phenyl, (C3-C10)cycloalkyl, (C5-C10)heteroaryl, (C5-C10)heterocyclic, formyl, NC-, (C1-C6)alkyl-(C=O)-, phenyl-(C=O)-, HO-(C=O)-, (C1-C6)alkyl-O-(C=O)-, (C1-C6)-, (C C_6)alkyl-NH-(C=O)-, ((C_1 - C_6)alkyl)₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-[((C_1 - C_6)alkyl)-N]- Amdt. dated June 15, 2006

Reply to Office Action of March 15, 2006

(C=O)-, O₂N-, amino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂-amino, (C₁-C₆)alkyl-(C=O)-NH-, (C₁-C₆)alkyl-(C=O)-[((C₁-C₆)alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-[((C₁-C₆)alkyl)-N]-, H₂N-(C=O)-NH-, (C₁-C₆)alkyl-HN-(C=O)-NH-, ((C₁-C₆)alkyl)₂N-(C=O)-NH-, (C₁-C₆)alkyl-N]-, phenyl-HN-(C=O)-[((C₁-C₆)alkyl)-N]-, phenyl-HN-(C=O)-[((C₁-C₆)alkyl)-N]-, phenyl-HN-(C=O)-[((C₁-C₆)alkyl)-N]-, (phenyl)₂N-(C=O)-[((C₁-C₆)alkyl)-N]-, phenyl-O-(C=O)-NH-, (C₁-C₆)alkyl-O-(C=O)-[((C₁-C₆)alkyl)-N]-, phenyl-O-(C=O)-NH-, phenyl-O-(C=O)-[(alkyl)-N]-, (C₁-C₆)alkyl-SO₂NH-, phenyl-SO₂NH-, (C₁-C₆)alkyl-SO₂-, phenyl-SO₂-, hydroxy, (C₁-C₆)alkoxy, perhalo(C₁-C₆)alkoxy, phenoxy, (C₁-C₆)alkyl-(C=O)-O-, (C₁-C₆)alkyl-O-, phenyl-(C=O)-O-, H₂N-(C=O)-O-, (C₁-C₆)alkyl-HN-(C=O)-O-, ((C₁-C₆)alkyl)₂N-(C=O)-O-, phenyl-HN-(C=O)-O-, and (phenyl)₂N-(C=O)-O-;

each R^3 is independently selected from the group consisting of hydrogen and halo, or R^3 is independently selected from the group consisting of halo(C_1 - C_6)alkyl, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_5 - C_{10})heteroaryl, (C_5 - C_{10})heterocyclic, (C_3 - C_{10})cycloalkyl, hydroxy, (C_1 - C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, phenoxy, (C_5 - C_{10})heteroaryl-O-, (C_5 - C_{10})heterocyclic-O-, (C_3 - C_{10})cycloalkyl-O-, (C_1 - C_6)alkyl-S-, (C_1 - C_6)alkyl-SO₂-, (C_1 - C_6)alkyl-NH-SO₂-, O₂N-, NC-, amino, Ph(CH₂)₁₋₆HN-, (C_1 - C_6)alkyl HN-, (C_1 - C_6)alkyl-NH-, amino(C_1 - C_6)alkyl-SO₂-NH-, amino(C_1 - C_6)alkyl-(C_1 - C_6)alkyl-N]-, (C_1 - C_6)alkyl-N]-, (C_1 - C_6)alkyl-N]-, (C_1 - C_6)alkyl-NH-(C_1 - C_1

s is an integer from one to five;

R⁴ is independently selected from the group consisting of halo, or

 R^4 is independently selected from the group consisting of halo(C_1 - C_6)alkyl, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_5 - C_{10})heteroaryl, (C_5 -

Amdt. dated June 15, 2006

Reply to Office Action of March 15, 2006

C₁₀)heterocyclic, (C₃-C₁₀)cycloalkyl, hydroxy, (C₁-C₆)alkoxy, perhalo(C₁-C₆)alkoxy, phenoxy, (C_5-C_{10}) heteroaryl-O-, (C_5-C_{10}) heterocyclic-O-, (C_3-C_{10}) cycloalkyl-O-, (C_1-C_6) alkyl-S-, (C_1-C_6) C₆)alkyl-S-(C₁-C₆)alkyl-, (C₁-C₆)alkyl-SO₂-, (C₁-C₆)alkyl-NH-SO₂-, O₂N-, NC-, amino, aminoalkyl, Ph(CH₂)₁₋₆HN-, (C₁-C₆)alkylHN-, (C₁-C₆)alkylamino, [(C₁-C₆)alkyl]₂-amino, (C₁- C_6)alkyl- SO_2 -NH-, aminoC=O)-, amino O_2S -, (C_1-C_6) alkyl-(C=O)-NH-, (C_1-C_6) alkyl-(C=O)- $((C_1-C_6)alkyl)-N-$, phenyl-(C=O)-NH-, phenyl- $(C=O)-[((C_1-C_6)alkyl)-N]-$, $(C_1-C_6)alkyl-(C=O)-$, phenyl-(C=O)-, (C₅-C₁₀)heteroaryl-(C=O)-, (C₅-C₁₀)heterocyclic-(C=O)-, (C₃-C₁₀)cycloalkyl-(C=O)-, HO-(C=O)-, (C₁-C₆)alkyl-O-(C=O)-, H₂N(C=O)-, (C₁-C₆)alkyl-NH-(C=O)-, ((C₁-C₆)alkyl-NH-(C=O)-, ((C₁-C₆)alky C_6)alkyl)₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-[((C_1 - C_6)alkyl)-N]-(C=O)-, (C_5 - C_{10})heteroaryl-NH-(C=O)-, (C₅-C₁₀)heterocyclic-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)-, $(C_1-C_6)alkyl-(C=O)-O-$, $(C_1-C_6)alkyl-(C=O)-NH-(C_1-C_6)alkyl$, $(C_1-C_6)alkyl-NH-(C=O)-(C_1-C_6)alkyl$ C₆)alkyl, and (C₁-C₆)alkyl-(C=O)-(C₁-C₆)alkyl, each of which may be optionally substituted by at least one moiety independently selected from the group consisting of (C1-C6)alkyl, (C1- C_6)alkoxy, halo(C_1 - C_6)alkyl, halo, H_2N_7 , NC_7 , HO_7 , $Ph(CH_2)_{1-6}HN_7$, $(C_1-C_6)alkylHN_7$, $(C_5-C_6)alkylHN_7$ C₁₀)heteroaryl and (C₅-C₁₀)heterocyclyl;

7346222928

R⁶ is selected from the group consisting of (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclic, (C₃-C₁₀)cycloalkyl, (C₁-C₆)alkyl-(SO₂)-, (C₁- C_6)alkyl- (SO_2) - $(C_1$ - C_6)alkyl, phenyl- (SO_2) , H_2 N- (SO_2) -, $(C_1$ - C_6)alkyl-NH- (SO_2) -, $(C_1$ - C_6)alkyl- $(SO_2)-NH-(C_1-C_6)$ alkyl, (C_1-C_6) alkyl- $NH-(SO_2)-(C_1-C_6)$ alkyl, $((C_1-C_6)$ alkyl)₂ $N-(SO_2)-$, phenyl-NH- (SO_2) -, (phenyl)₂N- (SO_2) -, (C₁-C₆)alkyl-(C=O)-, (C₁-C₆)alkyl-(C=O)- (C_1-C_6) alkyl, phenyl-(C=O)-, (C₅-C₁₀)heteroaryl-(C=O)-, (C₅-C₁₀)heterocyclic-(C=O)-, (C₃-C₁₀)cycloalkyl-(C=O)-, (C₃-C₁₀)cycloalkyl-(C=O)-(C₃-C₁₀)cycloalkyl, (C₁-C₆)alkyl-O-(C=O)-, (C₅-C₁₀)heterocyclic-O-(C=O)-, (C_3-C_{10}) cycloalkyl-O-(C=O)-, $H_2N-(C=O)$ -, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl- $NH-(C=O)-(C_1-C_6)alkyl, (C_1-C_6)alkyl-(C=O)-NH-(C_1-C_6)alkyl, phenyl-NH-(C=O)-, (C_5-C_6)alkyl, (C_1-C_6)alkyl, (C_1-C_6)alkyl-(C=O)-NH-(C_1-C_6)alkyl, phenyl-NH-(C=O)-, (C_5-C_6)alkyl, (C_1-C_6)alkyl-(C=O)-NH-(C_1-C_6)alkyl, phenyl-NH-(C=O)-, (C_5-C_6)alkyl-(C=O)-NH-(C_1-C_6)alkyl-(C=O)-, (C_5-C_6)alkyl-(C=O)-, (C_5-C_6)alkyl-(C_5$ C₁₀)heteroaryl-NH-(C=O)-, (C₅-C₁₀)heterocyclic-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)-, (C_3-C_{10}) cycloalkyl-NH-(C=O)- (C_3-C_{10}) cycloalkyl, (C_3-C_{10}) cycloalkyl-(C=O)-NH- (C_3-C_{10}) C_{10}) cycloalkyl, $((C_1-C_6)alkyl)_2N-(C=O)-$, $(phenyl)_2N-(C=O)-$, (C=O)-, (C=O)-, (C=O)- (C_5-C_{10}) heteroaryl- $((C_1-C_6)$ alkyl)-N]-(C=O)- (C_5-C_{10}) heterocyclic- $((C_1-C_6)$ alkyl)-N]-(C=O)- (C_5-C_{10}) and (C_3-C_{10}) cycloalkyl- $[((C_1-C_6)alkyl)-N]-(C=O)$, each of which may be optionally substituted by at least one moiety independently selected from the group consisting of halo, (C_1-C_6) alkyl,

Appl. No. 10/666,192 Amdt. dated June 15, 2006 Reply to Office Action of March 15, 2006

(C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, phenyl, benzyl, (C₅-C₁₀)heterocyclic, (C₅-C₁₀)heteroaryl, (C₁-C₆)alkyl-SO₂-, formyl, NC-, (C₁-C₆)alkyl-(C=O)-, (C₃-C₁₀)cycloalkyl-(C=O)-, phenyl-(C=O)-, (C₅-C₁₀)heterocyclic-(C=O)-, (C₅-C₁₀)heterocyclic-O-, (C₁-C₆)alkyl-O-(C=O)-, (C₃-C₁₀)cycloalkyl-O-(C=O)-, (C₅-C₁₀)heterocyclic-O-, (C₁-C₆)alkyl-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)-, phenyl-NH-(C=O)-, (C₅-C₁₀)heterocyclic-NH-(C=O)-, (C₅-C₁₀)heterocyclic-NH-(C=O)-, (C₅-C₁₀)heteroaryl-NH-(C=O)-, ((C₁-C₆)alkyl)₂-N-(C=O)-, phenyl-((C₁-C₆)alkyl)₂-N-(C=O)-, phenyl-((C₁-C₆)alkyl)₂-N-(C=O)-, (C₅-C₁₀)heteroaryl-O-, (C₁-C₆)alkyl-(C=O)-O-, (C₃-C₁₀)cycloalkyl-(C=O)-O-, (C₅-C₁₀)heterocyclic-(C=O)-O-, (C₅-C₁₀)heteroaryl-(C=O)-O-, (C₅-C₁₀)heteroaryl-(C=O)-O-, (C₅-C₁₀)heteroaryl-(C=O)-NH-, (C₅-C₁₀)heterocyclic-(C=O)-NH-, (C₅-C₁₀)heterocyclic-(C=O)-NH-, (C₅-C₁₀)heterocyclic-(C=O)-NH-, (C₅-C₁₀)heterocyclic-(C=O)-NH-, (C₅-C₁₀)heteroaryl-(C=O)-NH-, (C₅-C₁₀)heteroaryl-(C=O)-NH-, (C₅-C₁₀)heteroaryl-(C=O)-NH-, (C₅-C₁₀)heteroaryl-(C=O)-NH-, (C₅-C₁₀)heteroaryl-SO₂NH-, (C₅-C₁₀)heterocyclic-SO₂NH- and (C₅-C₁₀)heteroaryl-SO₂NH-; wherein the phenyl-SO₂NH-; for the phenyl-SO₂NH-; for the phenyl-SO₂NH-, (C₅-C₁₀)heterocyclic-SO₂NH- and (C₅-C₁₀)heteroaryl-SO₂NH-;

wherein the phenyl or heteroaryl moiety of a R^6 substituent is optionally further substituted with at least one radical independently selected from the group consisting of (C_1-C_6) alkoxy, perfluoro (C_1-C_6) alkyl and perfluoro (C_1-C_6) alkoxy.

15. (new) A compound according to claim 14 wherein R¹ can optionally be independently substituted with zero to two moieties independently selected from the group consisting of halo(C₁-C₆)alkyl, perhalo(C₁-C₆)alkyl, perhalo(C₁-C₆)alkoxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₅-C₁₀)ar(C₁-C₆)alkoxy, (C₅-C₁₀)heteroar(C₁-C₆)alkoxy, amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, di(C₁-C₆)alkylamino(C₁-C₆)alkyl, and (C₅-C₁₀)heterocyclyl(C₁-C₆)alkyl.

)