FCT/Unesp – Presidente Prudente Departamento de Matemática e Computação

Fundamentos de Visualização Parte 2

Prof. Danilo Medeiros Eler danilo.eler@unesp.br

Sumário

- Parte 1
 - Símbolos Gráficos
 - Oito Variáveis Visuais

- Parte 2
 - Taxonomia

- A Taxonomia é um meio para classificar e agrupar objetos similares, além de também definir relacionamentos
- Na visualização, podemos focar na taxonomia para dados, técnicas de visualização, tarefas e métodos de interação
- Existem muitas taxonomias propostas para a visualização
 - Focaremos nas de Keller e Keller; de Shneiderman; e de Keim

- Keller e Keller (1994) classificaram as técnicas de visualização com base nos tipos de dados que são analisados e nas tarefas do usuário
- De acordo com o tipo de dados são classificados como
 - Escalar
 - Nominal
 - Direcional (ou campo direcional)
 - Forma
 - Posição
 - Objeto ou região espacialmente estendida

- Keller e Keller também definiram algumas tarefas que o usuário pode estar interessado em realizar
 - Identificação
 - Estabelece características para reconhecer um objeto
 - Localização
 - Verificar a posição de um objeto
 - Distinção
 - Reconhecer e distinguir objetos
 - Categorização
 - Dividir objetos em classes

- Keller e Keller também definiram algumas tarefas que o usuário pode estar interessado em realizar
 - Agrupamento
 - Agrupar objetos similares
 - Ranqueamento
 - Associar objetos por uma ordem ou posição relativa
 - Comparação
 - Notar similaridade e diferenças

- Keller e Keller também definiram algumas tarefas que o usuário pode estar interessado em realizar
 - Associação
 - Unir em um relacionamento o que pode ser de um mesmo tipo
 - Correlação
 - Estabelecer uma conexão direta entre os dados
- Com base nessa taxonomia, os autores categorizaram mais de 100 técnicas

- Uma estratégia similar foi proposta por Shneiderman (1996)
- Sua lista para os tipos de dados é um pouco diferente de Keller e Keller e inclui mais tipos
 - Unidimensional
 - Itens organizados de maneira sequencial
 - Textos, números, programas de computador
 - Tarefas envolvem consultas e visualização de itens com certos atributos ou com todos

Bidimensionais

- Cada item da coleção cobre uma área
- Mapas geográficos, folhas de jornal
- Tarefas envolvem encontrar itens adjacentes, caminhos, filtros e detalhes sobre os itens

Tridimensional

- Itens com volume ou algum relacionamento complexo com outros itens
- Objetos do mundo real, corpo humano, prédios, volumes, modelos 3D
- Tarefas envolvem compreender a posição e orientação de objetos e resolver problemas de oclusão para melhorar tal compreensão

Temporal

- Dados que possuem um tempo de início e término
- Gerenciamento de projetos, series temporais, eletrocardiogramas
- Tarefas incluem encontrar eventos antes, depois ou durantes um período de tempo ou um momento específico

Multidimensional

- Itens com n atributos formando um espaço ndimensional
- A maioria dos conjuntos de dados relacionais
- Tarefas incluem encontrar padrões, grupos, correlações entre pares de atributos, outliers, entre outras

Árvore

- Itens com alguma ligação para um item pai (com exceção da raiz)
- Hierarquias e estruturas em árvore
- As principais tarefas estão relacionadas às propriedades estruturais dos itens e das ligações
 - Quantos níveis tem a árvore?
 - Quantos filhos um item possui?
 - Quantos itens estão no mesmo nível?

Rede

- Relacionamentos que não podem ser representados como árvores
- Relacionamento entre instâncias, redes sociais, redes de computadores
- Tarefas são aplicadas às ligações e aos itens, tais como, medidas sobre os nós, caminho mais curto ou de menor custo

- Shneiderman (1996) também observou as tarefas que os usuários realizavam para tentar extrair conhecimento dos dados
 - Visão Geral
 - Zoom
 - Filtro
 - Detalhes sob demanda
 - Relacionar
 - História
 - Extrair

Visão Geral

Obter uma visão geral de todo o conjunto de

dados

- Zoom
 - Aproximar (zoom in) itens de interesse para obter mais detalhes

Filtro

 Filtrar itens não interessantes para reduzir o tamanho do espaço de busca do usuário

- Detalhes sob Demanda
 - Selecionar um item ou grupos e obter detalhes quando necessário

Detalhes sob Demanda

- Relacionar
 - Visualizar relacionamento entre itens

Relacionar

- História
 - Manter um histórico e permitir retroceder (undo), refazer e refinar um processo de exploração

Extrair

- Extrair itens ou dados em um formato que poderia facilitar outras tarefas
- Por exemplo
 - Permitir extração de um relacionamento de uma ferramentas de visualização de redes sociais, para ser explorada por outra ferramenta
 - Exportar dados no formato csv

- Shneiderman sugere que um sistema de visualização eficiente deveria permitir a maioria ou todas essas tarefas de uma maneira simples
- Information-seeking mantra de Shneiderman
 - overview first
 - zoom and filter
 - details-on-demand

- Keim (2002) elaborou um esquema de classificação para sistemas de visualização com base em
 - Tipos de dados
 - Métodos de interação
 - Técnicas de visualização
- A principal diferença com a proposta de Shneiderman é a classificação para as técnicas de visualização

- Classificação dos tipos de dados
 - Unidimensional
 - Dados temporais, preço de ações
 - Bidimensional
 - Mapas, gráficos
 - Multidimensional
 - Tabelas de bancos de dados, planilhas

- Classificação dos tipos de dados
 - Texto e hipertexto
 - Documentos, web
 - Hierarquias e grafos
 - Redes, hierarquias, sistemas dinâmicos
 - Algoritmos e Software
 - Software, memória, trechos de execução

- Classificação das técnicas de interação e de distorção
 - Projeção dinâmica
 - Filtro interativo
 - Zoom interativo
 - Distorção interativa
 - Linking and brushing interativo

Projeção Dinâmica

- Filtro Interativo
 - Seleção direta ou por consulta para filtrar elementos e grupos
 - O restante da visualização não é afetada

Filtro Interativo

A filter finds only one city (San Francisco) with a high score

A missing data lens shows that attribute values are missing for many cities. Cities with missing data are marked with an 'X'.

- Zoom Interativo
 - Não está relacionamento somente com aproximação

- Distorção Interativa
 - Exibir detalhes de porções específicas da visualização, enquanto o usuário não perde a visão geral
 - Layouts radial e hiperbólico

Distorção Interativa

- Linking and brushing interativo
 - Esse tipo de interação tem o objetivo de combinar diferentes técnicas
 - Há muitas maneiras de visualizar um conjunto de dados
 - Algumas técnicas possuem pontos fortes e fracos, ou destacam partes específicas para a análise
 - Itens selecionados em uma visualização são destacados nas outras, permitindo detectar dependências e correlações
 - Múltiplas visões coordenadas ou Linked Views

Linking and brushing interativo

- Linking and brushing interativo
 - Múltiplas visões coordenadas

- Foram propostas cinco classes para classificar as técnicas de visualização
 - Displays 2D/3D padrão
 - Gráficos de barra, gráficos de linhas
 - Displays Geometricamente Transformados
 - Coordenadas paralelas, projeções multidimensionais
 - Displays Iconográficos
 - Faces de Chernoff, stick figures, star icons

- Foram propostas cinco classes para classificar as técnicas de visualização
 - Display Denso de Pixels
 - Padrões recursivos, segmento de círculos
 - Displays Empilhados
 - Eixos hierárquicos, worlds-within-worlds, treemaps

Referências

- Ward, M., Grinstein, G. G., Keim, D.
 - Interactive data visualization foundations, techniques, and applications. Natick, Mass., A K Peters, 2010.
 - Capítulo 4
- Keller e Keller
 - Peter R. Keller and Mary M. Keller. Visual Cues:
 Pratical Data Visualization. Los Alamitos, CA: IEEE
 Computer Society Press, 1994

Referências

Shneiderman

 Ben Shneiderman. The eyes have it: a task by data type taxonomy for information visualization. In Proceedings of the 1996 IEEE Symposium on Visual Languages, pp. 336-343. Washington, DC: IEEE Computer Society, 1996

Keim

 Daniel A. Keim. Information Visualization and Visual Data Mining. IEEE Transactions on Visualization and Computer Graphics, 8:1 (2002), 1-8

Referências

- Aulas de visualização da wiki.icmc.usp.br
 - Prof. Dr. Fernando Paulovich (ICMC/USP)
 - Profa. Dra. Maria Cristina Ferreira de Oliveira (ICMC/USP)
 - Profa. Dra. Rosane Minghim (ICMC/USP)

