EE150 Signal and System Homework 6

Due on 23: 59, June 4, 2024.

Note:

- Please provide enough calculation process to get full marks.
- Please submit your homework to Blackboard in PDF version.
- It's highly recommended to write every exercise on a single sheet of page.
- Late submissions will have points deducted according to the penalty policy.
- Please use English only to complete the assignment, solutions in Chinese are not allowed.
- Plagiarizer will get zero points.
- The full score of this assignment is 100 points.

Exercise 1. (34pt)

Shown in Figure 1 is a system in which the sampling signal is an impulse train with alternating sign. The Fourier transform of the input signal is as indicated in the figure.

- (a) For $\Delta < \pi/(2\omega_M)$, sketch the Fourier transform of $x_p(t)$ and y(t).
- (b) For $\Delta < \pi/(2\omega_M)$, determine a system that will recover x(t) from $x_p(t)$.
- (c) For $\Delta < \pi/(2\omega_M)$, determine a system that will recover x(t) from y(t).
- (d) What is the *maximum* value of Δ in relation to ω_M for which x(t) can be recovered from either $x_p(t)$ or y(t)?

Figure 1

Exercise 2. (33pt)

In the system in Figure 2, x(t) is sampled with a periodic impulse train, and a reconstructed signal $x_r(t)$ is obtained from the samples by low-pass filtering. The sampling period T is 1ms, and x(t) is a sinusoidal signal of the form $x(t) = \cos(2\pi f_0 t + \theta)$. For each of the following choices of f_0 and θ , determine $x_r(t)$.

Figure 2

- (a) $f_0 = 250Hz$, $\theta = \pi/4$
- (b) $f_0 = 750Hz$, $\theta = \pi/2$
- (c) $f_0 = 500Hz$, $\theta = \pi/2$

Exercise 3. (33pt)

Consider the system in Figure 3. Sketch $X_p(\omega)$ for $-9\pi \le \omega \le 9\pi$ for the following values of ω_0 .

- (i) $\omega_0 = \pi$
- (ii) $\omega_0 = 3\pi$

Figure 3