Package 'fitDTVARMx'

July 23, 2024
Title Fit the Discrete-Time Vector Autoregressive Model
Version 0.0.0.9000
Description Fit the discrete-time vector autoregressive model using the 'OpenMx' package.
<pre>URL https://github.com/jeksterslab/fitDTVARMx,</pre>
https://jeksterslab.github.io/fitDTVARMx/
<pre>BugReports https://github.com/jeksterslab/fitDTVARMx/issues</pre>
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
VignetteBuilder knitr
Depends R ($>= 3.0.0$), OpenMx
Imports stats
Suggests knitr, rmarkdown, testthat, simStateSpace
RoxygenNote 7.3.2
NeedsCompilation no
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>
Contents
coef.fitdtvaridmx
coef.fitdtvarmx
FitDTVARIDMx
FitDTVARMx
print.fitdtvaridmx
print.fitdtvarmx
summary.fitdtvarmx
vcov.fitdtvaridmx
yeav fiddingray

2 coef.fitdtvarmx

Index 14

coef.fitdtvaridmx Parameter Estimates

Description

Parameter Estimates

Usage

```
## S3 method for class 'fitdtvaridmx'
coef(object, alpha = FALSE, psi = FALSE, theta = FALSE, ...)
```

Arguments

object	Object of class fitdtvaridmx.
alpha	Logical. If alpha = TRUE, include estimates of the alpha vector, if available. If alpha = FALSE, exclude estimates of the alpha vector.
psi	Logical. If psi = TRUE, include estimates of the psi matrix, if available. If psi = FALSE, exclude estimates of the psi matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a list of vectors of parameter estimates.

Author(s)

Ivan Jacob Agaloos Pesigan

Parameter Estimates	f.fitdtvarmx Paramete	r Estimatas	,	
-arameier Esiimai	TITULVANIIX Parameio	r Estimai	es	ies

Description

Parameter Estimates

Usage

```
## S3 method for class 'fitdtvarmx'
coef(object, alpha = FALSE, psi = FALSE, theta = FALSE, ...)
```

Arguments

object	Object of class fitdtvarmx.
alpha	Logical. If alpha = TRUE, include estimates of the alpha vector, if available. If alpha = FALSE, exclude estimates of the alpha vector.
psi	Logical. If psi = TRUE, include estimates of the psi matrix, if available. If psi = FALSE, exclude estimates of the psi matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a vector of parameter estimates.

Author(s)

Ivan Jacob Agaloos Pesigan

FitDTVARIDMx

Fit the First-Order Discrete-Time Vector Autoregressive Model by ID

Description

Fit the First-Order Discrete-Time Vector Autoregressive Model by ID

Usage

```
FitDTVARIDMx(
  data,
  observed,
  id,
  alpha_fixed = TRUE,
  alpha_start = NULL,
  alpha_lbound = NULL,
  alpha_ubound = NULL,
  beta_start = NULL,
  beta_lbound = NULL,
  beta_ubound = NULL,
  psi_diag = TRUE,
  psi_start = NULL,
  psi_lbound = NULL,
  psi_ubound = NULL,
  theta_fixed = TRUE,
  theta_start = NULL,
  theta_lbound = NULL,
  theta_ubound = NULL,
```

```
mu0_fixed = TRUE,
 mu0_start = NULL,
 mu0_1bound = NULL,
 mu0\_ubound = NULL,
  sigma0_fixed = TRUE,
  sigma0_diag = TRUE,
  sigma0_start = NULL,
  sigma0_lbound = NULL,
  sigma0_ubound = NULL,
  try = 1000,
  ncores = NULL
)
```

Arguments

data	Data frame. A data frame object of data for potentially multiple subjects that contain a column of subject ID numbers (i.e., an ID variable), and at least one column of observed values.
observed	Character vector. A vector of character strings of the names of the observed variables in the data.
id	Character string. A character string of the name of the ID variable in the data.
alpha_fixed	Logical. If alpha_fixed = TRUE, the dynamic model intercept vector alpha is fixed at zero. If alpha_fixed = FALSE, the dynamic model intercept vector alpha is estimated.
alpha_start	Optional starting values for alpha. If alpha_fixed = TRUE, alpha_start will be used as fixed values. If alpha_fixed = FALSE, alpha_start will be used as starting values.
alpha_lbound	Optional lower bound for alpha. Ignored if alpha_fixed = TRUE.
alpha_ubound	Optional upper bound for alpha. Ignored if alpha_fixed = TRUE.

beta_start Numeric matrix. Optional starting values for beta. beta_lbound Numeric matrix. Optional lower bound for beta. Numeric matrix. Optional upper bound for beta. beta_ubound Logical. If psi_diag = TRUE, psi is a diagonal matrix. psi_diag Numeric matrix. Optional starting values for psi. psi_start Numeric matrix. Optional lower bound for psi. psi_lbound

psi_ubound Optional upper bound for psi.

theta_fixed Logical. If theta_fixed = TRUE, the measurement error matrix theta is fixed to

zero. If theta_fixed = FALSE, estimate the diagonal measurement error matrix

Optional starting values for theta. Ignored if theta_fixed = TRUE. theta_start theta_lbound Optional lower bound for theta. Ignored if theta_fixed = TRUE. theta_ubound Optional upper bound for theta. Ignored if theta_fixed = TRUE.

mu0_fixed Logical. If mu0_fixed = TRUE, initial mean vector mu0 is fixed. If mu0_fixed =

FALSE, initial mean vector mu0 is estimated.

mu0_start	Optional starting values for mu0. If mu0_fixed = TRUE, mu0_start will be used as fixed values. If mu0_fixed = FALSE, mu0_start will be used as starting values.
mu0_lbound	Optional lower bound for mu0. Ignored if mu0_fixed = TRUE.
mu0_ubound	Optional upper bound for mu0. Ignored if mu0_fixed = TRUE.
sigma0_fixed	Logical. If sigma0_fixed = TRUE, initial mean vector sigma0 is fixed. If sigma0_fixed = FALSE, initial mean vector sigma0 is estimated.
sigma0_diag	Logical. If sigma@_diag = TRUE, sigma@ is a diagonal matrix.
sigma0_start	Optional starting values for sigma0. If sigma0_fixed = TRUE, sigma0_start will be used as fixed values. If sigma0_fixed = FALSE, sigma0_start will be used as starting values.
sigma0_lbound	Optional lower bound for sigma0. Ignored if sigma0_fixed = TRUE.
sigma0_ubound	Optional upper bound for sigma0. Ignored if sigma0_fixed = TRUE.
try	Positive integer. Number of extra optimization tries.
ncores	Positive integer. Number of cores to use.

Value

Returns an object of class fitdtvaridmx which is a list with the following elements:

call Function call.

args List of function arguments.

fun Function used ("FitDTVARIDMx").

output A list of fitted OpenMx models.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Hunter, M. D. (2017). State space modeling in an open source, modular, structural equation modeling environment. *Structural Equation Modeling: A Multidisciplinary Journal*, 25(2), 307–324. doi:10.1080/10705511.2017.1369354

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika*, 81(2), 535–549. doi:10.1007/s1133601494358

See Also

Other DTVAR Functions: FitDTVARMx()

Examples

```
## Not run:
# Generate data using the simStateSpace package-----
set.seed(42)
beta_mu <- matrix(</pre>
 data = c(
   0.7, 0.5, -0.1,
   0.0, 0.6, 0.4,
   0, 0, 0.5
 ),
 nrow = 3
beta_sigma <- diag(3 * 3)</pre>
beta <- simStateSpace::SimBetaN(</pre>
 n = 5,
 beta = beta_mu,
 vcov_beta_vec_l = t(chol(beta_sigma))
)
sim <- simStateSpace::SimSSMVARIVary(</pre>
 n = 5,
 time = 100,
 mu0 = list(rep(x = 0, times = 3)),
 sigma0_l = list(t(chol(diag(3)))),
 alpha = list(rep(x = 0, times = 3)),
 beta = beta,
 psi_l = list(t(chol(diag(3))))
)
data <- as.data.frame(sim)</pre>
# Fit the model------
library(fitDTVARMx)
fit <- FitDTVARIDMx(</pre>
 data = data,
 observed = c("y1", "y2", "y3"),
 id = "id"
print(fit)
summary(fit)
coef(fit)
vcov(fit)
## End(Not run)
```

FitDTVARMx

Fit the First-Order Discrete-Time Vector Autoregressive Model

Description

Fit the First-Order Discrete-Time Vector Autoregressive Model

Usage

```
FitDTVARMx(
  data,
  observed,
  id,
  alpha_fixed = TRUE,
  alpha_start = NULL,
  alpha_lbound = NULL,
  alpha_ubound = NULL,
  beta_start = NULL,
  beta_lbound = NULL,
  beta_ubound = NULL,
  psi_diag = TRUE,
  psi_start = NULL,
  psi_lbound = NULL,
  psi_ubound = NULL,
  theta_fixed = TRUE,
  theta_start = NULL,
  theta_lbound = NULL,
  theta_ubound = NULL,
 mu0_fixed = TRUE,
 mu0_start = NULL,
 mu0_lbound = NULL,
 mu0\_ubound = NULL,
  sigma0_fixed = TRUE,
  sigma0_diag = TRUE,
  sigma0_start = NULL,
  sigma0_lbound = NULL,
  sigma0_ubound = NULL,
  try = 1000,
 ncores = NULL
)
```

Arguments

data	Data frame. A data frame object of data for potentially multiple subjects that contain a column of subject ID numbers (i.e., an ID variable), and at least one column of observed values.
observed	Character vector. A vector of character strings of the names of the observed variables in the data.
id	Character string. A character string of the name of the ID variable in the data.
alpha_fixed	Logical. If alpha_fixed = TRUE, the dynamic model intercept vector alpha is fixed at zero. If alpha_fixed = FALSE, the dynamic model intercept vector alpha is estimated.
alpha_start	Optional starting values for alpha. If alpha_fixed = TRUE, alpha_start will be used as fixed values. If alpha_fixed = FALSE, alpha_start will be used as

starting values.

alpha_lbound	Optional lower bound for alpha. Ignored if alpha_fixed = TRUE.
alpha_ubound	Optional upper bound for alpha. Ignored if alpha_fixed = TRUE.
beta_start	Numeric matrix. Optional starting values for beta.
beta_lbound	Numeric matrix. Optional lower bound for beta.
beta_ubound	Numeric matrix. Optional upper bound for beta.
psi_diag	Logical. If psi_diag = TRUE, psi is a diagonal matrix.
psi_start	Numeric matrix. Optional starting values for psi.
psi_lbound	Numeric matrix. Optional lower bound for psi.
psi_ubound	Optional upper bound for psi.
theta_fixed	Logical. If theta_fixed = TRUE, the measurement error matrix theta is fixed to zero. If theta_fixed = FALSE, estimate the diagonal measurement error matrix theta.
theta_start	Optional starting values for theta. Ignored if theta_fixed = TRUE.
theta_lbound	Optional lower bound for theta. Ignored if theta_fixed = TRUE.
theta_ubound	Optional upper bound for theta. Ignored if theta_fixed = TRUE.
mu0_fixed	Logical. If mu0_fixed = TRUE, initial mean vector mu0 is fixed. If mu0_fixed = FALSE, initial mean vector mu0 is estimated.
mu0_start	Optional starting values for mu0. If mu0_fixed = TRUE, mu0_start will be used as fixed values. If mu0_fixed = FALSE, mu0_start will be used as starting values.
mu0_lbound	Optional lower bound for mu0. Ignored if mu0_fixed = TRUE.
mu0_ubound	Optional upper bound for mu0. Ignored if mu0_fixed = TRUE.
sigma0_fixed	Logical. If sigma0_fixed = TRUE, initial mean vector sigma0 is fixed. If sigma0_fixed = FALSE, initial mean vector sigma0 is estimated.
sigma0_diag	Logical. If sigma@_diag = TRUE, sigma@ is a diagonal matrix.
sigma0_start	Optional starting values for sigma0. If sigma0_fixed = TRUE, sigma0_start will be used as fixed values. If sigma0_fixed = FALSE, sigma0_start will be used as starting values.
sigma0_lbound	Optional lower bound for sigma0. Ignored if sigma0_fixed = TRUE.
sigma0_ubound	Optional upper bound for sigma0. Ignored if sigma0_fixed = TRUE.
try	Positive integer. Number of extra optimization tries.
ncores	Positive integer. Number of cores to use.

Value

Returns an object of class fitdtvarmx which is a list with the following elements:

call Function call.

args List of function arguments.

fun Function used ("FitDTVARMx").

output A fitted OpenMx model.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Hunter, M. D. (2017). State space modeling in an open source, modular, structural equation modeling environment. *Structural Equation Modeling: A Multidisciplinary Journal*, 25(2), 307–324. doi:10.1080/10705511.2017.1369354

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika*, 81(2), 535–549. doi:10.1007/s1133601494358

See Also

Other DTVAR Functions: FitDTVARIDMx()

Examples

```
## Not run:
# Generate data using the simStateSpace package-----
set.seed(42)
sim <- simStateSpace::SimSSMVARFixed(</pre>
 n = 5,
 time = 100,
 mu0 = rep(x = 0, times = 3),
 sigma0_l = t(chol(diag(3))),
 alpha = rep(x = 0, times = 3),
 beta = matrix(
   data = c(
     0.7, 0.5, -0.1,
     0.0, 0.6, 0.4,
     0, 0, 0.5
   ),
   nrow = 3
 ),
 psi_l = t(chol(diag(3)))
)
data <- as.data.frame(sim)</pre>
# Fit the model-------
library(fitDTVARMx)
fit <- FitDTVARMx(</pre>
 data = data,
 observed = c("y1", "y2", "y3"),
 id = "id"
print(fit)
summary(fit)
coef(fit)
vcov(fit)
```

10 print.fitdtvarmx

```
## End(Not run)
```

print.fitdtvaridmx

Print Method for Object of Class fitdtvaridmx

Description

Print Method for Object of Class fitdtvaridmx

Usage

```
## S3 method for class 'fitdtvaridmx'
print(x, means = TRUE, ...)
```

Arguments

x an object of class fitdtvaridmx.

means Logical. If means = TRUE, return means. Otherwise, the function returns raw

estimates.

... further arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

print.fitdtvarmx

Print Method for Object of Class fitdtvarmx

Description

Print Method for Object of Class fitdtvarmx

Usage

```
## S3 method for class 'fitdtvarmx'
print(x, ...)
```

Arguments

x an object of class fitdtvarmx.

... further arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

summary.fitdtvaridmx 11

summary.fitdtvaridmx Summary Method for Object of Class fitdtvaridmx

Description

Summary Method for Object of Class fitdtvaridmx

Usage

```
## S3 method for class 'fitdtvaridmx'
summary(object, means = TRUE, ...)
```

Arguments

object an object of class fitdtvaridmx.

means Logical. If means = TRUE, return means. Otherwise, the function returns raw

estimates.

... further arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

summary.fitdtvarmx Summary Method for Object of Class fitdtvarmx

Description

Summary Method for Object of Class fitdtvarmx

Usage

```
## S3 method for class 'fitdtvarmx'
summary(object, ...)
```

Arguments

object an object of class fitdtvarmx.
... further arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

12 vcov.fitdtvarmx

	C: 4 J4.	ا ا
VCOV	titatv	aridmx

Sampling Covariance Matrix of the Parameter Estimates

Description

Sampling Covariance Matrix of the Parameter Estimates

Usage

```
## S3 method for class 'fitdtvaridmx'
vcov(object, alpha = FALSE, psi = FALSE, theta = FALSE, ...)
```

Arguments

object	Object of class fitdtvaridmx.
alpha	Logical. If alpha = TRUE, include estimates of the alpha vector, if available. If alpha = FALSE, exclude estimates of the alpha vector.
psi	Logical. If psi = TRUE, include estimates of the psi matrix, if available. If psi = FALSE, exclude estimates of the psi matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a list of sampling variance-covariance matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

VCOV	fitdtvarmy	

Sampling Covariance Matrix of the Parameter Estimates

Description

Sampling Covariance Matrix of the Parameter Estimates

Usage

```
## S3 method for class 'fitdtvarmx'
vcov(object, alpha = FALSE, psi = FALSE, theta = FALSE, ...)
```

vcov.fitdtvarmx 13

Arguments

object	Object of class fitdtvarmx.
alpha	Logical. If alpha = TRUE, include estimates of the alpha vector, if available. If alpha = FALSE, exclude estimates of the alpha vector.
psi	Logical. If psi = TRUE, include estimates of the psi matrix, if available. If psi = FALSE, exclude estimates of the psi matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a list of sampling variance-covariance matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

Index

```
* DTVAR Functions
    FitDTVARIDMx, 3
    FitDTVARMx, 6
* fitDTVARMx
    FitDTVARIDMx, 3
    FitDTVARMx, 6
* fit
    FitDTVARIDMx, 3
    FitDTVARMx, 6
* methods
    coef.fitdtvaridmx, 2
    coef.fitdtvarmx, 2
    print.fitdtvaridmx, 10
    print.fitdtvarmx, 10
    summary.fitdtvaridmx, 11
    summary.fitdtvarmx, 11
    vcov.fitdtvaridmx, 12
    vcov.fitdtvarmx, 12
coef.fitdtvaridmx, 2
coef.fitdtvarmx, 2
FitDTVARIDMx, 3, 9
FitDTVARMx, 5, 6
print.fitdtvaridmx, 10
print.fitdtvarmx, 10
summary.fitdtvaridmx, 11
summary.fitdtvarmx, 11
vcov.fitdtvaridmx, 12
vcov.fitdtvarmx, 12
```