

General Description

The AP3407/A is a 1.4MHz fixed frequency, current mode, PWM synchronous buck (step-down) DC-DC converter, capable of driving a 1.2A load with high efficiency, excellent line and load regulation. The device integrates synchronous P-channel and N-channel power MOSFET switches with low on-resistance. It is ideal for powering portable equipment that runs from a single Li-ion battery.

A standard series of inductors are available from several different manufacturers optimized for use with the AP3407/A. This feature greatly simplifies the design of switch-mode power supplies.

The AP3407/A is available in SOT-23-5 package.

Features

- Input Voltage Range: 2.5V to 5.5V
- Output Voltage: 0.6V to V_{IN}
- ADJ Output
- Fixed 1.4MHz Frequency
- High Efficiency up to 95%
- Output Current: 1.2A
- Current Mode Control
- 100% Duty Cycle in Dropout
- Built-in Over Current Protection
- Built-in Short Circuit Protection
- Built-in Thermal Shutdown Protection
- Built-in UVLO Function
- Built-in Soft-start

Applications

- Datacom
- Portable Device
- Smart Phone

Figure 1. Package Type of AP3407/A

Pin Configuration

K Package (SOT-23-5)

Figure 2. Pin Configuration of AP3407/A (Top View)

Pin Description

Pin Number		Pin Name	Europhian		
AP3407	AP3407A	Fin Name	Function		
1	3	EN	Control input pin. Forcing this pin above 1.5V enables the IC. Forcing this pin below 0.4V shuts down the IC. When the IC is in shutdown mode, all functions are disabled to decrease the supply current below 1.2A		
2	2	GND	Ground pin		
3	5	SW	Power switch output pin. Inductor connection to drain of the internal PFET and NFET switches		
4	1	VIN	Supply input pin. Bypass to GND with a 4.7μF or greater ceramic capacitor		
5	4	FB	This is the feedback pin of the device. Connect this directly to the output if the fixed output voltage vers is used. For the adjustable version an external resist divider is connected to this pin.		

Functional Block Diagram

Figure 3. Functional Block Diagram of AP3407/A

Ordering Information

Package	Temperature	Part Number	Marking ID	Packing Type	
8	Range	Green	Green		
SOT-23-5	-40 to 85°C	AP3407KTR-G1	GJA	Tape & Reel	
301-23-3		AP3407AKTR-G1	GJB	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Input Voltage	V _{IN}	-0.3 to 6.0	V
Feedback Voltage	V_{FB}	-0.3 to $V_{IN} + 0.3$	V
EN Pin Voltage	V_{EN}	-0.3 to V _{IN} +0.3	V
SW Pin Voltage	V_{SW}	-0.3 to V _{IN} +0.3	V
Thermal Resistance	$\theta_{ m JA}$	265	°C/W
Operating Junction Temperature	T_{J}	125	°C
Storage Temperature	T_{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	$T_{ m LEAD}$	260	°C

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	$V_{\rm IN}$	2.5	5.5	V
Maximum Output Current	I _{OUT (MAX)}	1.2		A
Operating Ambient Temperature	T_{A}	-40	85	°C

Electrical Characteristics

 $V_{IN} = V_{DD} = V_{PVDD} = 3.3V$, $T_A = 25$ °C, unless otherwise specified.

Parameters	Symbol	Conditions	Min	Тур	Max	Unit
Input Voltage	V _{IN}		2.5		5.5	V
Quiescent Current	I_Q	V _{FB} =0.65V		62	100	μΑ
Shutdown Supply Current	I_{STBY}	V _{EN} =GND		0.1	1	μΑ
Reference Voltage	V_{REF}	For Adjustable Output Voltage	0.588	0.6	0.612	V
Feedback Bias Current	I_{FB}	$V_{FB} = V_{IN}$	-0.1		0.1	μΑ
Output Voltage Accuracy	ΔV_{OUT}		-2		2	%
PMOSFET R _{ON}	R _{DS(ON)_P}	$I_{SW} = 200 \text{mA}$		0.28		Ω
NMOSFET R _{ON}	$R_{DS(ON)_N}$	$I_{SW} = -200 \text{mA}$		0.25		Ω
Switch Current Limit	I_{LIM}	V _{FB} =0.55V	1.5	2.0		A
EN Pin Threshold	V_{H}		1.5			V
EN FIII THIESHOID	$V_{\rm L}$				0.4	
UVLO Threshold	V _{UVLO}	V _{DD} Rising		2.3		V
UVLO Hysteresis	V_{HYS}			0.2		V
Oscillator Frequency	$f_{ m OSC}$		1.12	1.40	1.68	MHz
Max. Duty Cycle	D_{MAX}	V _{FB} =0V	100			%
Min. Duty Cycle	$\mathrm{D}_{\mathrm{MIN}}$	V _{FB} =6.5V			0	70
N-MOS SW Leakage Current		V _{IN} =3.3V, V _{SW} =3.3V		0.1		μΑ
Soft-start Time	t			1		ms
Thermal Shutdown	T_{OTSD}			160		°C
Thermal Shutdown Hysteresis	T_{HYS}			20		°C

Typical Performance Characteristics

Figure 4. Efficiency vs. Output Current

Figure 5. Efficiency vs. Input Voltage

Figure 6. Output Voltage vs. Output Current

Figure 7. Frequency vs. Input Voltage

Typical Performance Characteristics (Continued)

0.62 0.61 (S) 0.60 0.59 0.59 0.58 0.57 -40 0 40 80 120 160 Temperature (°C)

Figure 8. Frequency vs. Temperature

Figure 9. Feedback Voltage vs. Temperature

Figure 10. OCP Current Limit vs. Temperature

Figure 11. $R_{DS\;(ON)_UP}$ vs. Temperature

Typical Performance Characteristics (Continued)

Figure 12. R_{DS (ON)_LOW} vs. Temperature

Typical Application

Figure 13. Typical Application of AP3407/A

Mechanical Dimensions

SOT-23-5 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788