COMPUTACIÓN CIENTÍFICA

PRÁCTICA 2

Instituto de Educación

- 1) Usar el método de bisección para encontrar soluciones con un error menor que 10^{-3} para $x^3 7x^2 + 14x 6 = 0$ en los intervalos [0, 1], [1, 3.2] y [3.2, 4]. Use que x = 3 es raíz de este polinomio para obtener representantes de sus raíces en los que puede confiar hasta 10 cifras decimales $[\rho \le 5 \times 10^{-t}]$. ¿Cuántas iteraciones son necesarias si se quiere aproximar con 3 cifras significativas?
- 2) Aproxime $\sqrt{3}$ de forma correcta hasta 10^{-4} usando el algoritmo de bisección. [Ayuda: considere x^2-3].
- 3) Muestre que $f(x)=x^3+4x^2-10$ tiene una raíz en [1,2]. Cree un código en python que aplique bisección a f en este intervalo y que como output brinde una tabla
- 4) Analizar por qué en el cálculo del punto medio se escogió realizar la cuenta $p = a + \frac{b-a}{2}$ en vez de $\hat{p} = \frac{b+a}{2}$. Considere una máquina con aritmética decimal de dos dígitos. De un ejemplo donde el cálculo de \hat{p} caiga fuera del intervalo original. Por otro lado, de un ujemplo donde se produzca *overflow*. ¿Es posible replicar estos ejemplos en Python?
- 5) Sea $f(x)=(x-1)^{15}$. Explique por qué utilizar como criterio de STOP $f(x_n)<$ TOL no es adecuado para hallar una buena aproximación de la raíz $\alpha=1$. ¿Qué criterio de STOP conviene utilizar?
- 6) ¿Cuánta precisión?
 - a) ¿Cuántos dígitos binarios de precisión se ganan en cada paso del método de bisección?, ¿cuántos dígitos decimales?, ¿cuántos pasos se requieren para cada dígito decimal de precisión?.
 - b) Decida sobre la veracidad de la siguiente frase y justifique. Como $\log_2(10) \approx 3.32$, necesitamos entonces 3.32 pasos de bisección por cada dígito decimal.
- 7) Aplicar el método de bisección para hallar una solución a $x = \cos(x)$ en el intervalo $\left[0, \frac{\pi}{4}\right]$. Comparar con el método Regula Falsi. ¿Cuál converge más rápido? ¿Cuál es la velocidad de convergencia de cada método?
- 8) En el ejercicio 7 investigue en Python los cocientes $\frac{x_{n+1}-\alpha}{x_n-\alpha}$. ¿Puede decir algo acerca del tipo de convergencia?
- 9) Considere la función $g(x) = \sqrt{x}$.
 - a) Caracterice los subitervalos $I \subset [0,1]$ para los cuales g cumple las hipótesis del Teorema del Punto Fijo. Justifique el cumplimiento de las mismas y establezca el punto fijo p al cual converge la sucesión p_n ?
 - b) ¿Qué sucede con la iteración si se escoge $p_0>0$ arbitrariamente cercano a 0? ¿Cómo relaciona esto con el ítem anterior?
 - c) Caracterice los subitervalos $I \subset [0,1]$ para los cuales la iteración de punto fijo no converge. Acompañe desde lo gráfico para cada ítem.
- 10) ¿V o F?

- a) Si $g:[0,1] \to [0,1]$, entonces existe $p \in [0,1]$ tal que g(p) = p.
- b) Si $g:[0,1] \to [0,1]$ es una función continua, entonces existe $p \in [0,1]$ tal que g(p) = p.
- c) Si $g:[0,1] \to [0,1]$ es una función que no es continua, entonces existe $p \in [0,1]$ tal que g(p) = p.
- 11) Demuestre que si p es un punto fijo de una función derivable q, entonces:
 - a) Si |g'(p)| > 1, p es un repulsor, es decir, la sucesión x_n se aleja de p.
 - b) Si |g'(p)| < 1, p es un atractor, es decir, la secesión x_n converge a p.
 - c) ¿Qué sucede si |g'(p)| = 1?. Dar un ejemplo gráfico para cada uno de los ítems anteriores.
- 12) En la demostración del teorema de punto fijo se utiliza que $g:I\to I$. ¿Por qué esto es necesario? Si ahora ya sabemos que g posee un punto fijo en cierto intervalo J, ¿es necesario conseguir un intervalo I tal que $g:I\to I$? Justifique.
- 13) Considere la función $f(x) = -5x^3 + 15x^2 15x + 5$.
 - a) Para cada raíz de f, encuentre un intervalo que la contenga de forma aislada. Demuestre este hecho desde la matemática.
 - b) En relación con el ítem anterior, ¿Qué sucede si aplica el método de Regula Falsi en el intervalo [0.8, 1.3]?
 - c) Utilice bisección en el mismo intervalo. ¿Cómo explica el comportamiento en cada método?
 - d) ¿Es posible hallar la raíz utilizando el método de punto fijo? Argumente en varios niveles: desde lo gráfico haciendo el diagrama de telaraña, desde lo teórico analizando las condiciones de convergencia, y desde lo experimental utilizando Python.
 - e) ¿Qué método resultó más conveniente? Justifique minuciosamente.
- 14) Sea $f(x) = (\frac{1}{5}) \ln(x) + \frac{x}{10} + 1$.
 - a) f posee una única ráiz. Caracterizar todos los pares (a_1,b_1) para los cuales es posible iniciar la sucesión de Regula Falsi de modo tal que resulte convergente. Argumentar desde lo gráfico.
 - b) Considere un par (a_1, b_1) de los hallados en el ítem anterior. ¿Qué sucede si iniciamos el método de la secante con el mismo? ¿Es posible implementar el método de la secante? Graficar y observar que siempre falla.
 - c) ¿Es posible plantear la búsqueda de la raíz, de forma exitosa, mediante el método de punto fijo? Argumente en todos los niveles como en.
- 15) Considere $f(x) = \frac{-(x-2)^{\frac{1}{3}} x}{x} + 1.2$.

- a) f posee una raíz α en el intervalo [0,5]. Caracterizar todos los pares (a_1,b_1) para los cuales es posible iniciar la sucesión de la secante de modo tal que resulte convergente a α . Argumentar desde lo gráfico.
- b) ¿Es posible plantear la búsqueda de la raíz, de forma exitosa, mediante el método de punto fijo? Argumente en todos los niveles.
- 16) Analizar usando el Método de Newton.
 - a) Considere $f(x)=x^3-3x+2$. Compruebe usando Python que la convergencia a la raíz $\alpha=-2$ es cuadrática . Produzca un código que tenga como output una tabla cuyas columnas son n (el número de iteración), p_n , $|x_{n+1}-x_n|$, $E_n=|x-x_n|$, E_{n+1}/E_n y E_{n+1}/E_n^2 . Corra el mismo hasta n=4 comenzando en $x_0=-2.4$.
 - b) $f(x)=x^3-3x+2$ Corra el código hecho en el ítem anterior para investigar la convergencia a la raíz $\alpha=1$ comenzando en $p_0=1.2$. ¿Cómo es la convergencia? Desarrolle.
- 17) Implemente los métodos de bisección, Newton, Regula Falsi y secante para resolver ecuaciones no lineales en una dimensión, y pruebe sus implementaciones encontrando al menos una raíz para cada uno de los siguientes ecuaciones ¿Qué tasa de convergencia se logra en cada caso?
 - a) $x^3 2x 5 = 0$.
 - b) $e^{-x} = x$.
 - c) $x \sin(x) = 1$.
 - d) $x^3 3x^2 + 3x 1 = 0$.
- 18) Muestre que en el método de la secante, conforme avanza la iteración, esta se asemeja a la iteración de Newton.
- 19) Raíces multiples.
 - a) Caracterice un polinomio que posee una raíz de multiplicidad k.
 - b) Vincule la multiplicidad de una raíz en un polinomio, con su derivada. ¿Esta vinculación da lugar a una caracterización?
 - c) Sea f una función lo suficientemente buena. Sin conocer la estructura de f, ¿cómo definiría la noción de ráiz de orden k en x=p para f?
 - d) Probar que si la ecuación f(x) = 0 tiene una raíz de orden k en x = p, entonces existe una función continua h(x) tal que f(x) se puede expresar como el producto $f(x) = (x p)^K h(x)$, donde $h(p) \neq 0$. [Ayuda: Usar Taylor de forma apropiada.]
 - e) ¿Está en condiciones de poner en palabras qué hecho relevante muestra este ejercicio?
- 20) Usar para probar que si f tiene una raíz de orden k en x = p, entonces el método de Newton deja de converger con velocidad cuadrática. ¿Se puede arreglar el método para recuperar dicha velocidad?
- 21) Mejorando Newton

a) Sea α una raíz doble de f. Demuestre que el método de Newton doblemente relajado

$$x_{n+1} = x_n - 2 \tfrac{f(x_n)}{f'}(x_n),$$

- si converge a α , lo hace al menos cuadráticamente. Obtener la condición bajo el cual el orden de convergencia es exactamente 2, y determine el error asintótico constante c en este caso.
- b) ¿Cuál es el enunciado análogo en el caso de una raíz de multiplicidad k?