GRAFOS:

-Euleriano

Teorema 6.5.1. Sea G un grafo conexo. Entonces G es un grafo de Euler si, y sólo si, el grado de cada vértice es par.

-Hamiltoniano

Teorema 6.6.1. Sea G un grafo con n vértices.

- 1. Si el número de lados es mayor o igual que $\frac{1}{2}(n-1)(n-2)+2$, entonces el grafo es hamiltoniano.
- 2. Si $n \ge 3$ y para cada par de vértices no adyacentes se verifica que $gr(v) + gr(w) \ge n$, entonces G es un grafo de Hamilton.

-Bipartido

Teorema 6.7.1. Sea G = (V, E) un grafo. Entonces G es bipartido si, y sólo si, G no contiene ciclos de longitud impar.

-Plano:

Teorema 6.8.2 (Kuratowski). Sea G un grafo. Entonces G es plano si, y sólo si, ningún subgrafo suyo puede contraerse a K_5 ni a $K_{3,3}$.

-COLORACIÓN:

En general, se tiene que
$$p(K_n, x) = x(x-1)\cdots(x-n+1)$$
.

Si G es un grafo cuyas componentes conexas son G_1, G_2, \ldots, G_m entonces $p(G, x) = p(G_1, x) \cdot p(G_2, x) \cdot \cdots \cdot p(G_m, x)$.

Teorema 6.9.1. Sea G un grafo, y u y v dos vértices advacentes. Sea e el lado que los une. Entonces $p(G_e, x) = p(G, x) + p(G'_e, x)$.

-ÁRBOLES:

Corolario 6.10.1. Sea G un grafo conexo con n vértices. Entonces G es un árbol si, y sólo si, G tiene n-1 lados.

Teorema 3.3 El número de árboles etiquetados con n vértices es n^{n-2} .

LÓGICA PROPOSICIONAL

α	β	$\alpha \vee \beta$	$\alpha \wedge \beta$	$\alpha \to \beta$	$\alpha \leftrightarrow \beta$	$\neg \alpha$
0	0	0	0	1	1	1
0	1	1	0	1	0	1
1	0	1	0	0	0	0
1	1	1	1	1	1	0

$$I(\alpha \lor \beta) = I(\alpha) + I(\beta) + I(\alpha) \cdot I(\beta)$$

$$I(\alpha \land \beta) = I(\alpha) \cdot I(\beta)$$

$$I(\alpha \to \beta) = 1 + I(\alpha) + I(\alpha) \cdot I(\beta)$$

$$I(\alpha \leftrightarrow \beta) = 1 + I(\alpha) + I(\beta)$$

$$I(\neg \alpha) = 1 + I(\alpha)$$

- 1. α es una tautología si para cualquier interpretación I se tiene que $I(\alpha) = 1$.
- 2. α es satisfacible si existe al menos una interpretación I para la que $I(\alpha) = 1$.
- 3. α es refutable si existe al menos una interpretación I para la que $I(\alpha) = 0$.
- 4. α es contradicción si para cualquier interpretación I se tiene que $I(\alpha) = 0$.
- 5. α es contingente si es satisfacible y refutable.

Teorema 2.4.1. . Sea Γ un conjunto de fórmulas y α otra fórmula. Son equivalentes:

- 1. $\Gamma \vDash \alpha$
- 2. $\Gamma \cup \{\neg \alpha\}$ es insatisfacible.
- 3. Para cualquier interpretación I, se tiene que $[\prod_{\gamma \in \Gamma} I(\gamma)](1 + I(\alpha)) = 0$

Teorema 2.4.2 (Teorema de la Deducción).

Sea Γ un conjunto de fórmulas (que podría ser vacío) de un lenguaje proposicional, y α , β , otras dos fórmulas. Entonces las siguientes afirmaciones son equivalentes:

- 1. $\Gamma \vDash \alpha \rightarrow \beta$
- 2. $\Gamma \cup \{\alpha\} \models \beta$

1. Son equivalentes:

$$\Gamma \vDash \alpha \rightarrow \beta$$
.

$$\Gamma \cup \{\alpha\} \vDash \beta$$
.

$$\Gamma \cup \{\alpha, \neg \beta\}$$
 es insatisfacible.

$$\Gamma \cup \{\neg \beta\} \vDash \neg \alpha.$$

2. Son equivalentes:

$$\Gamma \vDash \alpha \vee \beta$$
.

$$\Gamma \cup \{\neg \alpha\} \vDash \beta.$$

$$\Gamma \cup \{\neg \beta\} \vDash \alpha.$$

$$\Gamma \cup \{\neg \alpha, \neg \beta\}$$
 es insatisfacible.

3. Son equivalentes:

$$\Gamma \vDash \alpha \land \beta.$$

$$\Gamma \vDash \alpha \ y \ \Gamma \vDash \beta.$$

$$\Gamma \cup \{\neg \alpha\}$$
y $\Gamma \cup \{\neg \beta\}$ son insatisfacibles.

4. Son equivalentes:

$$\Gamma \vDash \alpha \leftrightarrow \beta$$
.

$$\Gamma \vDash \alpha \rightarrow \beta \text{ y } \Gamma \vDash \beta \rightarrow \alpha.$$

$$\Gamma \cup \{\alpha\} \vDash \beta \ y \ \Gamma \cup \{\beta\} \vDash \alpha.$$

$$\Gamma \cup \{\alpha, \neg \beta\}$$
 y $\Gamma \cup \{\neg \alpha, \beta\}$ son insatisfacibles.

Teorema 2.6.2. Sean α , β , γ tres fórmulas en un lenguaje proposicional. Entonces

$$\{\alpha \vee \beta, \neg \alpha \vee \gamma\} \vDash \beta \vee \gamma$$