Doppler-Effekt

Steven Becker und Stefan Grisad

21. Oktober 2016 WS 2016/2017

1 Auswertung

1.1 Bestimmung der Relativeschwindigkeit

In diesem Teil des Versuches wird bestimmt, mit welcher Geschwindigkeit der vom Synchronmotor angetrieben Wagen sich befindet. Dazu wurde für jede Getriebestufe, eine Messreihe mit n=5 Messwerten aufgenommen. Die Messdaten wurden in **Tabelle** 1 aufgelistet.

Um die Geschwindigkeit zu berechnen, wurde das Gesetz $v=\frac{s}{t}$ genutzt. Dabei wurde der Weg s auf $13\cdot 10^{-2}$ gemessen mit einer Fehlerabschätzung von $\pm 1\cdot 10^{-3}$. Der Mittelwert der Zeitintervalle t wurde mit der Formel

$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i$$

bestimmt. Durch Anwendung von

$$\bar{\sigma}_{\bar{t}} = \sqrt{\frac{1}{n(n-1)}\sum_{i=1}^n (t_i - \bar{t})^2}$$

konnte die Abweichung des Mittelwertes angeben werden. Die Tabelle mit den gemessen Werten befindet sich im Anhang des Protokolls.

1.2 Ruhefrequenzmessung

In diesem Versuch sollte die Größe ν_0 bestimmt werden. Diese Größe wurde mittels $\nu_0=t*N$ bestimmt. Dabei sei t der festgelegte Messzeitraum und N die gemessene Anzahl an Phasendurchläufen.

Es ergibt sich folgende Frequenz:

Hier Tabelle einfügen

1.3 Bestimmung der Wellenlänge

Für die Berechnung der Wellenlänge wurde immer der Abstand von zwei Phasen gemessen. Damit ergaben sich, verschiedene Wellenlängen von den dann der Mittelwert berechnet wurde:

Wert der Wellenlänge einfügen

1.4 Ermittlung der Schallgeschwindigkeit

Die Schallgeschwindigkeit wurde mit dem Zusammenhang

$$c = \lambda \nu \tag{1}$$

,
bestimmt. Dieser ist gültig bei einer Messung in Luft und bei Raumtemperatur. Dabei wurde für ν der Mittelwert der Ruhefrequenz eingesetzt. Aus der Theorie sei zu vermuten, dass es ein Unterschied ν_s und ν_e gibt. Doch im Versuch ist eine relevante Differenz nicht festzustellen. Denn bei der Betrachtung der Reihenenwticklung von **Hier Formmelnummer einfügen**, wird deutlich, dass die quadratischen Terme schon so klein sind, dass sie nicht mehr in das Gewicht fallen. Ein Ziel des Versuches war es die Größe $\zeta = \frac{v_0}{c} = \frac{1}{\lambda}$ zu bestimmen. Durch Verwendung der gemittelten Wellenlänge ergibt sich:

Wert einfügen

1.5 Messung des Dopplereffekts 1

Die durch den Dopplereffekt eintretende Frequenzänderung, wurde mit $\Delta \nu = \nu_0 - \nu_l$ berechnet. Hierbei sein ν_l die gemessenen Werte, die im Anhang eingesehen werden können. Es ergab sich für die verschiedenen Geschwindigkeiten folgender Zusammenhang:

Hier Tabbelle einfügen

Des Weiteren befindet sich im Anhang die grafische Auftragung von v zu Δv . Die oben erwähnte Größe ζ sollte dabei ungefähr der Steigung der Ausgleichsgeraden der Messwerte betragen. Mittels der aus Regressionsrechnung genutzte Gleichung

$$m = \frac{\bar{xy} - \bar{x}\bar{y}}{\bar{x^2} - \bar{x}^2}$$

und dem dazugehörigen Fehler

$$o_m = \sqrt{\frac{\sigma^2}{N(\bar{x^2} - \bar{x}^2)}}$$

ergibt sich für die Steigung der Wert:

Den nochmal mit zusamengefassten Bereichen berechnen

1.6 Messung des Dopplereffekts - Schwebungsmethode

Der Doppler-Effekt sollte auch einmal mit der Schwebungsmethode bestimmt werden. Dabei wurden folgende Werte für die Frequenzänderung bestimmt:

Tabelle einfügen

Des Weitern ist im Anhang noch ein Plot von v zu $\Delta \nu$ zu finden. Auch hier ist es sinnvoll die Steigung der Ausgleichsgerade, mit Regressionsrechnung, zu bestimmen, um sie anschließend mit dem Faktor ζ zu vergleichen. Nach der Regressionsrechnung ergibt sich:

1.7 Students-t-Faktor