

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina - Probabilidade e Estatística Gabarito da AP1 1° semestre de 2010

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

1ª questão – São apresentados a seguir, os resultados de uma pesquisa aplicada aos funcionários do setor de contabilidade de uma determinada empresa, contendo dados sobre a (i) escolaridade; (ii) sexo; (iii) idade; (iv) tempo de empresa; (v) salário (em salários mínimos) e a relação entre o salário e o número de cartões de crédito:

Sexo	Freqüência relativa	Escolaridade	Freqüência relativa
	(fi)		(fi)
M	0,57	Fundamental	0,29
F	0,43	Médio	0,42
		Superior	0,29

Idade	Freqüência relativa	Anos de empresa	Freqüência relativa
	(fi)	_	(fi)
20 30 30 4 0	0,29	1 - 5	0,21
30 -40	0,42	5 - 10	0,50
40 -50	0,29	10 15	0,29
		'	

Salário	Não tem cartões de crédito	Tem um cartão de crédito	Tem mais de um cartão de crédito	
Menos 10 S.M.	250	80	20	
De [10 a 20) S.M.	100	200	40	
De (20 a 30] S.M.	60	50	100	
Mais de 30 S.M.	10	30	60	

Pede-se:

a) (1,0 ponto) Classifique cada uma das variáveis dos itens (i) a (iv).

Resposta:

- (i) Escolaridade: qualitativa ordinal;
- (ii) sexo: qualitativa nominal;
- (iii) idade (em anos): quantitativa discreta;
- (iv) tempo de empresa (em anos): quantitativa discreta;
- (v) salário: quantitativa discreta.
- b) (2,0 pontos) Calcule a média aritmética, variância e desvio padrão daqueles que têm pelo menos um cartão de crédito e verifique, também neste caso, a faixa de salário onde se encontram a moda e a mediana (utilize o ponto médio, de cada faixa, para encontrar a média e a variância dos salários desta empresa).

Resposta:

Assumimos para cada faixa salarial, a média da faixa correspondente e assumimos para a última faixa, a média de 35 S.M.

Tem pelo menos 1 cartão: soma de quem tem um cartão com quem tem mais de um cartão.

Renda	Núm. Médio de S.M. em cada faixa (A)	Tem pelo menos um cartão(C)	(A) x (C)	Média (méd)	(C) x (A-med)^2
Menos 10 S.M.	5 S.M.	100	500,00	18,97SM	19.516,09
De [10 a 20) S.M.	15 S.M.	240	3.600,00	18,97SM	3.782,62
De (20 a 30] S.M.	25 S.M.	150	3.750,00	18,97SM	5.454,14
Mais de 30 S.M.	35 S.M.	90	3.150,00	18,97SM	23.126,48
Total		580	11.000,00	18,97SM	51.879,33

- Média de quem tem pelo menos um cartão = (11.000,00) / (580) = 18,97 S.M.
- Faixa de salário onde se encontra a moda de quem tem pelo menos um cartão: [10 a 20) S.M.
- Faixa de salário onde se encontra a mediana de quem tem pelo menos um cartão: [10 a 20) S.M.
- Variância de quem tem pelo menos um cartão =(5.1879,33) / (580)= 89,45 S.M.
- Desvio Padrão de guem tem pelo menos um cartão = 9,46 S.M.
- c) (1,0 ponto) Mostre o que acontecerá com a média, a variância e o desvio padrão da variável salário, se cada funcionário receber uma gratificação fixa com o valor de "c" reais.

Analisando as fórmulas:

Para a média:

$$\bar{x}_{abs(Salario+c)} = \frac{\sum_{i=1}^n x_i + c}{n} = \frac{\sum_{i=1}^n x_i + n \times c}{n} = \frac{\sum_{i=1}^n x_i}{n} + c = \bar{x}_{abs(Salario)} + c$$

Para a variância:

$$\begin{aligned} var_{obs(Salario+c)} &= \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs(Salario+c)})^2 = \frac{1}{n} \sum_{i=1}^{n} [(x_i + c) - (\bar{x}_{obs(Salario)} + c)]^2 \\ var_{obs(Salario+c)} &= \frac{1}{n} \sum_{i=1}^{n} (x_i + c - \bar{x}_{obs(Salario)} + c)^2 = \frac{1}{n} \sum_{i=1}^{n} [(x_i - \bar{x}_{obs(Salario)})]^2 \end{aligned}$$

Logo variância e desvio padrão permanecem inalterados.

A questão também pode ser feita, fazendo-se os cálculos e chegando-se a mesma conclusão

 2^a questão (2,0 pontos) - Considere 3 fábricas, F_1 , F_2 , F_3 , que produzem guardachuvas em lotes semanais de 200, 300 e 350, guarda-chuvas respectivamente. Uma empresa compra guarda-chuvas dessas 3 fábricas para revender. Ao chegar nessa

empresa todos os guarda-chuvas são colocados no mesmo lugar, não se podendo mais identificar, qual guarda-chuva veio de que fábrica. Suponha que a probabilidade de se encontrar guarda-chuvas defeituosos em cada uma das fábricas seja de 4%, 10% e 7%, respectivamente. Selecionando-se um desses guarda-chuvas ao acaso, determine a probabilidade dele:

a) ser defeituoso, sabendo que o guarda-chuva foi fabricado na fábrica F₂;

Resposta:

$$P(Def | F_2) = 0.1 = 10\%$$

b) ser da fábrica F2, sabendo que o guarda-chuva é defeituoso.

Resposta:

$$P(Def) = P(Def|F_1) * P(F_1) + P(Def|F_2) * P(F_2) + P(Def|F_3) * P(F_3)$$

$$P(Def) = \left\{0.04 * \frac{200}{850} + 0.1 * \frac{300}{850} + 0.07 * \frac{350}{850}\right\} = 0.073$$

$$P(F_2|Def) = \frac{P(Def|F_2) * P(F_2)}{P(Def)} = 0.1 * \frac{0.353}{0.073} = 0.48$$

OBS.: Essa questão será corrigida de tal forma que não prejudique a quem fez como estava inicialmente no gabarito da AD

3ª questão (1,0 pontos) – Márcio e João jogam 120 partidas de xadrez, das quais João ganha 60, Márcio ganha 40 e 20 terminam empatadas. Márcio e João concordam em jogar 3 partidas. Determine a probabilidade de Márcio e João ganharem alternadamente.

Resposta:

Dados do problema:

Probabilidade do evento empate =
$$\frac{20}{120}$$
 = 0,1667

Probabilidade do evento João ganhar =
$$\frac{60}{120}$$
 = 0,5

Probabilidade do evento Marcio ganhar =
$$\frac{40}{120}$$
 = 0,3333

A probabilidade de ocorrer vencedores alternados, isto é, João vence a primeira e terceira e Marcio a segunda partida ou Marcio vence a primeira e a terceira e João vence a segunda. O evento ganhar alternadamente é definido como evento A. Assim temos:

$$p(A) = p(Macio I Joao I Marcio) + p(Joao I Marcio I Joao)$$

$$p(A) = \left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{3}\right) + \left(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{2}\right)$$

$$p(A) = \frac{5}{36}$$

$$p(A) = 0,1389$$

4ª questão (1,0 ponto) – Em uma determinada rodovia há uma média de 2 acidentes para cada 100km. Qual a probabilidade de que em 250 km ocorram pelo menos 3 acidentes?

Resposta:

X: número de acidentes por \(\beta \) Km (Poisson)

$$\beta = 250 \rightarrow \lambda = 250 * 0.02 = 5$$

$$P(X \ge 3) = 1 - P(X < 3) = 1 - \{P(X = 0) + P(X = 1) + P(X = 2)\} =$$

$$=1-\left\{\frac{e^{-5}\cdot e^{0}}{0!}+\frac{e^{-5}\cdot e^{1}}{1!}+\frac{e^{-5}\cdot e^{2}}{2!}\right\}=1-\left\{0,0067+0,0337+0,0842\right\}=0,8753$$

5ª questão (2,0 ponto) – Um pote contém 30 biscoitos, 12 deles sabor morango e 18 sabores chocolate. 9 biscoitos são selecionados ao acaso. Seja X o número de biscoitos sabor chocolate retirados na amostra (dentre os 9 selecionados). Calcule qual a probabilidade de X ser igual a 4 quando:

 a) A amostragem é feita com reposição, ou seja, cada biscoito é selecionado e depois recolocado no pote.

Resposta:

Temos, N = 30 (tamanho da população = quantidade de biscoitos no pote), n = 9 (tamanho da amostra), X = número de biscoitos de chocolate na amostra, <math>p = 18/30 (proporção de biscoitos de chocolate no pote).

Se a amostragem é com reposição:

$$P(X = x) = {9 \choose x} (0.6)^{x} (0.4)^{9-x}$$

E, portanto, para X=4 temos:

$$P(X = 4) = {9 \choose 4} (0.6)^4 (0.4)^5 = (126)(0.1296)(0.01024) = 0.1672 = 16.72\%$$

b) A amostragem é feita sem reposição, ou seja, cada biscoito selecionado não retorna ou pote.

Resposta:

Novamente, N=30 (tamanho da população = quantidade de biscoitos no pote), n=9 (tamanho da amostra), X= número de biscoitos de chocolate na amostra, p=18/30 (proporção de biscoitos de chocolate no pote). Sendo a amostragem sem reposição:

$$P(X = x) = \frac{\binom{18}{x}\binom{12}{9-x}}{\binom{30}{9}}$$

E, portanto, para X=4 temos:

$$P(X=4) = \frac{\binom{18}{4}\binom{12}{5}}{\binom{30}{9}} = \frac{2423520}{1802700900} = 0.001344 = 0.1344\%$$