ST IGNATIUS COLLEGE RIVERVIEW

ASSESSMENT TASK 4

TRIAL HSC EXAMINATION

YEAR 12

2009

EXTENSION 2

Time allowed: 3 hours (+ 5 minutes reading time)

Instructions to Candidates

- Attempt all questions
- There are eight questions. All questions are of equal value.
- Show all necessary working. Full marks may not be awarded for careless or poorly arranged work.
- The questions are not necessarily arranged in order of difficulty. Candidates are advised to read the whole paper carefully at the start of the examination.
- Board approved calculators and templates may be used.
- Each question must be returned in a *separate* writing booklet marked Q1, Q2 etc
- Each booklet must have your name.

(a) If w=1+2i and z=2-3i, express in the form a+bi;

(i) $w\overline{z}$ 2

(ii) $\frac{w}{z}$.

(b) Solve for z where $z \in C$: $z^2 + 2iz + 2 = 0$.

(c) Form a monic quadratic equation whose roots are 4i and (3+i).

(d) Graph the region in the argand diagram which simultaneously satisfies $1 \le |z-i| \le 2$ and $\text{Im}(z) \ge 0$. Mark all intercepts.

(e) Suppose that $z=1+\sqrt{3}i$ and $w=(\cos\theta+i\sin\theta)z$, where $-\pi \le \theta \le \pi$.

(i) Find the argument of z.

(ii) Given that w is purely imaginary and Im(w) > 0, find the exact value of:

 $(\alpha) \theta$

 $(\beta) \arg(z+w)$

- (a) (i) Show that (2+i) is a root of the equation $2z^3 5z^2 2z + 15 = 0$.
 - (ii) Find the other roots. 2
- (b) If α, β and γ are the roots of the equation $x^3 + mx + n = 0$, find in terms of m and n a cubic equation in 'x' with roots $\alpha + \beta \gamma$, $\beta + \gamma \alpha$, $\gamma + \alpha \beta$.
- (c) If α, β and γ are the roots of the equation $2y^3 y + 4 = 0$, evaluate:
 - (i) $\alpha^3 + \beta^3 + \gamma^3$
 - (ii) $\alpha^4 + \beta^4 + \gamma^4$
- (d) Find the value of t so that the equation $5x^5 3x^3 + t = 0$ has two equal positive roots.

(a) Find the indefinite integrals:

(i)
$$\int \frac{\sec^2(\ln x)}{x} dx$$
 [1]

(ii)
$$\int \frac{1}{\sqrt{x^2 - 6x}} dx$$
 [2]

(iii)
$$\int \frac{1}{\sqrt{6x-x^2}} dx$$
 [2]

(b) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{5 - 4\cos x}$ [4]

(c) (i) If
$$U_m = \int_0^1 (1-x^2)^{\frac{m}{2}} dx$$
, where m is a positive integer, show that
$$U_m = \frac{m}{m+1} U_{m-2}.$$
 [4]

(ii) Hence evaluate
$$U_5$$
. [2]

(a) Let $f(x)=x^3-3x^2-x+3$. On separate diagrams, and without using calculus, sketch the following curves. Scale should be clearly indicated.

$$(i) y = f(x) [1]$$

(ii)
$$y = |f(x)|$$
 [1]

(iii)
$$y = f(|x|)$$
 [2]

(iv)
$$y = \sqrt{f(x)}$$
 [2]

$$(v) \sqrt{y} = f(x) [2]$$

$$(vi) y = tan^{-1} f(x) [2]$$

(vii)
$$y = e^{f(x)}$$
 [2]

(b) For
$$f(x) = \frac{1}{4x - 5 - x^2}$$
 prove that $-1 \le f(x) < 0$. [3]

(a) For what values of k does the equation $\frac{x^2}{6-k} + \frac{y^2}{k-2} = 1$ represent:

(b) For the hyperbola $16x^2 - 9y^2 = 144$, find:

- (iii) the equations of the asymptotes. [1]
- (c) (i) Prove that the equation of the chord joining the points $P\left(ct_1, \frac{c}{t_1}\right)$ and $Q\left(ct_2, \frac{c}{t_2}\right)$ on the curve $xy = c^2$ is $x + t_1t_2y = c\left(t_1 + t_2\right)$.
 - (ii) If the chord PQ in part (i) is a normal at P, prove that $1+t_1^3t_2=0$. [2]
- (d) Consider the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b with a point $P(a\cos\theta, b\sin\theta)$ on it.
 - (i) Derive the equation of the tangent at P. [2]
 - (ii) If this tangent, the directrix and the major axis are concurrent on the positive side of the x axis, prove that $\theta = \cos^{-1} \left(\frac{\sqrt{a^2 b^2}}{a} \right)$.

The solution for each of the parts (a) to (c) in this question should contain a neatly labelled diagram(s).

- (a) Using the method of cylindrical shells find the volume of the solid formed [5] when the region bounded by the curve $y = 2x^2 + 1$ and the x-axis between x = 0 and x = 2 is rotated about the y-axis.
- (b) The base of a solid is a region enclosed by the circle $x^2 + y^2 = 4$. Any cross section of the solid formed by a plane perpendicular to the x-axis is an equilateral triangle. Find the exact volume of the solid.
- (c) The curve $y = \sin x$ is rotated about the line y = 1. Use a slicing technique [5] to find the volume of the solid of revolution formed by the portion from x = 0 to $x = \frac{\pi}{2}$.

- (a) A particle falls from rest, and there is an air resistance of $\frac{v^2}{10}$ per unit of mass, when its velocity is v metres per sec. Taking acceleration due to gravity as 10 metres per \sec^2 ;
 - (i) show why the acceleration is given by $\ddot{x}=10-\frac{v^2}{10}$. [2]
 - (ii) Find an expression for time in terms of velocity. [3]
 - (iii) Find an expression for velocity in terms of position x metres. [2]
 - (iv) What is the terminal or maximum velocity of the particle? [1]
 - (v) Find in exact form, the ratio of the times it takes the particle to attain [3] $\frac{1}{2}$ and $\frac{1}{5}$ of its terminal velocity.
- (b) A 4kg mass, attached by a light inelastic string of length 60cm long to a fixed point, describes a horizontal circle at uniform angular velocity. [4]

Calculate the maximum number of revolutions per second that the pendulum will be able to complete if, for safety reasons, the greatest tension allowable in the string is 400 Newtons.

- (a) (i) Show that if $\theta = \tan^{-1} x + \tan^{-1} y$, then $\tan \theta = \frac{x+y}{1-xy}$ [2]
 - (ii) If $\phi = \tan^{-1} x + \tan^{-1} y + \tan^{-1} z$, find an expression for $\tan \phi$ in terms of x, y and z.

 Deduce that if $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$ then xy + yz + zx = 1.
- (b) (i) Using the binomial theorem expand $\left(1+\frac{1}{n}\right)^k$. [1]
 - (ii) Given that $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$, prove that e can also be written as $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$
- Show that $\frac{1}{n!} < \frac{1}{2^{n-1}}$ for all positive integral values $n \ge 3$, without the use of proof by Induction.
- (d) Given that $x^m \times y^n = (x+y)^{m+n}$, prove that $\frac{dy}{dx} = \frac{y}{x}$. [4]

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0