FCC RF Test Report

APPLICANT : BLU Products, Inc.

EQUIPMENT: Mobile phone

BRAND NAME : BLU

MODEL NAME : DASH L4 LTE

FCC ID : YHLBLUDAHL4LTE

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Sep. 21, 2007 and testing was completed on Oct. 20, 2017. We, Sporton International (Shenzhen) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Shenzhen) Inc., the test report shall not be reproduced except in full.

Brit Shih

TESTING

NVLAP LAB CODE 600156-0

Approved by: Eric Shih / Manager

Sporton International (Shenzhen) Inc.

1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan Shenzhen City Guangdong Province 518055 China

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 1 of 36
Report Issued Date : Nov. 06, 2017

Report No.: FR792112B

Report Version : Rev. 01

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3		
SU	MMAF	RY OF TEST RESULT	4		
1	GENERAL DESCRIPTION				
-		Applicant			
	1.1 1.2	Manufacturer			
	1.3	Product Feature of Equipment Under Test			
	1.4	Product Specification of Equipment Under Test			
	1.5	Modification of EUT			
	1.6	Testing Location			
	1.7	Applicable Standards			
2		CONFIGURATION OF EQUIPMENT UNDER TEST			
	2.1	Descriptions of Test Mode	7		
	2.2	Test Mode	8		
	2.3	Connection Diagram of Test System	g		
	2.4	Support Unit used in test configuration and system	10		
	2.5	EUT Operation Test Setup	10		
	2.6	Measurement Results Explanation Example	11		
3	TEST	RESULT	12		
	3.1	6dB Bandwidth Measurement	12		
	3.2	Peak Output Power Measurement	15		
	3.3	Power Spectral Density Measurement	16		
	3.4	Conducted Band Edges and Spurious Emission Measurement	21		
	3.5	Radiated Band Edges and Spurious Emission Measurement	26		
	3.6	AC Conducted Emission Measurement	30		
	3.7	Antenna Requirements	34		
4	LIST	OF MEASURING EQUIPMENT	35		
5	UNC	ERTAINTY OF EVALUATION	36		

APPENDIX A. CONDUCTED TEST RESULTS

APPENDIX B. RADIATED SPURIOUS EMISSION

APPENDIX C. DUTY CYCLE PLOTS

APPENDIX D. SETUP PHOTOGRAPHS

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 2 of 36

Report No.: FR792112B

Report Issued Date: Nov. 06, 2017

Report Version : Rev. 01

REVISION HISTORY

Report No.: FR792112B

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR792112B	Rev. 01	Initial issue of report	Nov. 06, 2017

 Sporton International (Shenzhen) Inc.
 Page Number
 : 3 of 36

 TEL: +86-755-8637-9589
 Report Issued Date
 : Nov. 06, 2017

 FAX: +86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID : YHLBLUDAHL4LTE Report Template No.: BU5-FR15CBT4.0 Version 2.0

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	B Bandwidth ≥ 0.5MHz		-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5 15.247(d)		Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 1.72 dB at 7320.000 MHz
3.6 15.207		AC Conducted Emission	15.207(a)	Pass	Under limit 12.67 dB at 0.200 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01
Report Template No.: BU5-FR15CBT4.0 Version 2.0

: 4 of 36

Page Number

Report No.: FR792112B

General Description 1

1.1 Applicant

BLU Products, Inc.

10814 NW 33rd St # 100 Doral, FL 33172

1.2 Manufacturer

BLU Products, Inc.

10814 NW 33rd St # 100 Doral, FL 33172

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile phone			
Brand Name	BLU			
Model Name	DASH L4 LTE			
FCC ID	YHLBLUDAHL4LTE			
	GSM/GPRS/EGPRS/WCDMA/HSPA/DC-HSDPA			
EUT cumparts Badica application	/HSPA+/LTE			
EUT supports Radios application	WLAN2.4GHz 802.11b/g/n HT20/HT40			
	Bluetooth v3.0+EDR/ Bluetooth v4.0LE			
	Conducted: 351812051127705/351812051127713			
IMEI Code	Conduction: 351812051127622/351812051127630			
	Radiation: 351812051127648/351812051127655			
HW Version	4041-MB-V1.1			
SW Version	BLU_D0050_V7.0.01.00_GENERIC_170911-0959			
EUT Stage	Production Unit			

Report No.: FR792112B

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	6.12 dBm (0.0041 W)			
Antenna Type / Gain	PIFA Antenna with gain -2.66 dBi			
Type of Modulation	Bluetooth LE : GFSK			

Sporton International (Shenzhen) Inc. Page Number : 5 of 36 TEL: +86-755-8637-9589 Report Issued Date: Nov. 06, 2017 FAX: +86-755-8637-9595 : Rev. 01 Report Version

FCC ID: YHLBLUDAHL4LTE Report Template No.: BU5-FR15CBT4.0 Version 2.0

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by National Voluntary Laboratory Accreditation Program (NVLAP code: 600156-0) and the FCC designation No. are CN5018 and CN5019.

Report No.: FR792112B

FCC Test Firm Registration No.

577730

Test Site	Sporton International (Shenzhen) Inc.				
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan Shenzhen City Guangdong Province 518055 China TEL: +86-755-8637-9589 FAX: +86-755-8637-9595				
Test Site No.	Sporton Site No.		FCC Test Firm Registration No.		
	TH01-SZ	CO01-SZ	251505		
Test Site	Sporton International (Shenzhen) Inc.				
	No. 3 Bldg the third floor of south, Shahe River west, Fengzeyuan Warehouse,				
Test Site Location	Nanshan District Shenzhen City Guangdong Province 518055 China				
	TEL: +86-755-3320-2398				

Note: The test site complies with ANSI C63.4 2014 requirement.

Sporton Site No.

03CH04-SZ

1.7 Applicable Standards

Test Site No.

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

 Sporton International (Shenzhen) Inc.
 Page Number
 : 6 of 36

 TEL: +86-755-8637-9589
 Report Issued Date
 : Nov. 06, 2017

 FAX: +86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID: YHLBLUDAHL4LTE Report Template No.: BU5-FR15CBT4.0 Version 2.0

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

The RF output power was recorded in the following table:

	I Frequency	Bluetooth LE RF Output Power
Channel		Data Rate / Modulation
Chaminer		GFSK
		1Mbps
Ch00	2402MHz	5.75 dBm
Ch19	2440MHz	5.81 dBm
Ch39	2480MHz	6.12 dBm

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.
- b. AC power line Conducted Emission was tested under maximum output power.

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 7 of 36
Report Issued Date : Nov. 06, 2017

Report No.: FR792112B

Report Version : Rev. 01
Report Template No.: BU5-FR15CBT4.0 Version 2.0

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Report No.: FR792112B

Summary table of Test Cases					
Test Item	Data Rate / Modulation				
rest item	Bluetooth LE / GFSK				
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
ics	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
AC	Made 1 : CSM1000 Idle Diveteeth Link W/ AN Link LISD Cable (Charging from				
Conducted	Mode 1 : GSM1900 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from				
Emission	Adapter) + Earphone + SIM1				
Remark: For	Remark: For Radiated TCs, The tests were performed with Adapter, Earphone and USB Cable.				

 Sporton International (Shenzhen) Inc.
 Page Number
 : 8 of 36

 TEL: +86-755-8637-9589
 Report Issued Date
 : Nov. 06, 2017

 FAX: +86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID : YHLBLUDAHL4LTE Report Template No.: BU5-FR15CBT4.0 Version 2.0

2.3 Connection Diagram of Test System

<Bluetooth LE Tx Mode>

<AC Conducted Emission Mode>

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01
Report Template No.: BU5-FR15CBT4.0 Version 2.0

: 9 of 36

Page Number

Report No.: FR792112B

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord	
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m	
2.	WLAN AP	D-Link	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m	
	Notebook	ook Lenovo	E540	FCC DoC	N/A	Shielded cable	
3.						DC O/P 1.8 m	
Э.						Unshielded AC	
						I/P cable1.2 m	
4	Bluetooth	SAMSUNG E0-MG900	F00 D=0	N/A	N/A		
4.	Earphone	SAMSUNG	IEU-IVIG900	FCC DoC	IIV/A	IV/A	
5.	Earphone	Apple	MC690ZP/A	N/A	Unshielded,1.6m	N/A	

2.5 EUT Operation Test Setup

For Bluetooth LE function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 10 of 36
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No.: FR792112B

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5.0 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 5.0 + 10 = 15.0 (dB)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 11 of 36

Report Issued Date : Nov. 06, 2017

Report Version : Rev. 01

Report No.: FR792112B

Report Version : Rev. 01
Report Template No.: BU5-FR15CBT4.0 Version 2.0

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR792112B

- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

 Sporton International (Shenzhen) Inc.
 Page Number
 : 12 of 36

 TEL: +86-755-8637-9589
 Report Issued Date
 : Nov. 06, 2017

 FAX: +86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID : YHLBLUDAHL4LTE Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.1.5 Test Result of 6dB Bandwidth

Test data refer to Appendix A.

6 dB Bandwidth Plot on Channel 00

Report No.: FR792112B

Date: 20.0CT.2017 11:34:27

6 dB Bandwidth Plot on Channel 19

Date: 20.0CT.2017 11:37:03

 Sporton International (Shenzhen) Inc.
 Page Number
 : 13 of 36

 TEL: +86-755-8637-9589
 Report Issued Date
 : Nov. 06, 2017

 FAX: +86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID : YHLBLUDAHL4LTE Report Template No.: BU5-FR15CBT4.0 Version 2.0

6 dB Bandwidth Plot on Channel 39

Date: 20.0CT.2017 11:39:52

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 14 of 36
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No.: FR792112B

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Report No.: FR792112B

3.2.2 **Measuring Instruments**

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 **Test Procedures**

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Measure the conducted output power and record the results in the test report. 4.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Test data refers to Appendix A.

Sporton International (Shenzhen) Inc. Page Number : 15 of 36 TEL: +86-755-8637-9589 Report Issued Date: Nov. 06, 2017 FAX: +86-755-8637-9595 Report Version : Rev. 01

FCC ID: YHLBLUDAHL4LTE Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

Report No.: FR792112B

3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

 Sporton International (Shenzhen) Inc.
 Page Number
 : 16 of 36

 TEL: +86-755-8637-9589
 Report Issued Date
 : Nov. 06, 2017

 FAX: +86-755-8637-9595
 Report Version
 : Rev. 01

 FCC ID: YHLBLUDAHL4LTE
 Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.3.5 Test Result of Power Spectral Density

Test data refers to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

Date: 20.0CT.2017 11:35:02

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 17 of 36

Report Issued Date : Nov. 06, 2017

Report Version : Rev. 01

Report No.: FR792112B

PSD 100kHz Plot on Channel 19

Date: 20.0CT.2017 11:37:44

PSD 100kHz Plot on Channel 39

Date: 20.0CT.2017 11:40:31

Sporton International (Shenzhen) Inc. TEL: +86-755-8637-9589

FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 18 of 36
Report Issued Date : Nov. 06, 2017

: Rev. 01

Report No.: FR792112B

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Report Version

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00

Date: 20.0CT.2017 11:34:41

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 19 of 36
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No.: FR792112B

PSD 3kHz Plot on Channel 19

Date: 20.0CT.2017 11:37:31

PSD 3kHz Plot on Channel 39

Date: 20.0CT.2017 11:40:22

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 20 of 36 Report Issued Date : Nov. 06, 2017

Report No.: FR792112B

Report Version : Rev. 01

3.4 Conducted Band Edges and Spurious Emission Measurement

Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

Report No.: FR792112B

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Test Setup 3.4.4

Sporton International (Shenzhen) Inc. Page Number : 21 of 36 TEL: +86-755-8637-9589 Report Issued Date: Nov. 06, 2017 FAX: +86-755-8637-9595 Report Version : Rev. 01

FCC ID: YHLBLUDAHL4LTE Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.4.5 Test Result of Conducted Band Edges Plots

Low Band Edge Plot on Channel 00

Date: 20.0CT.2017 11:35:24

High Band Edge Plot on Channel 39

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 22 of 36
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No.: FR792112B

3.4.6 Test Result of Conducted Spurious Emission Plots

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 23 of 36
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01
Report Template No.: BU5-FR15CBT4.0 Version 2.0

Report No.: FR792112B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 20.0CT.2017 11:37:55

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 20.0CT.2017 11:38:03

Sporton International (Shenzhen) Inc. TEL: +86-755-8637-9589

FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 24 of 36
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No.: FR792112B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 20.0CT.2017 11:41:02

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 20.0CT.2017 11:41:11

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 25 of 36
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No.: FR792112B

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

Sporton International (Shenzhen) Inc. TEL: +86-755-8637-9589

FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 26 of 36 Report Issued Date : Nov. 06, 2017

: Rev. 01

Report No.: FR792112B

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Report Version

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR792112B

- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

 Sporton International (Shenzhen) Inc.
 Page Number
 : 27 of 36

 TEL: +86-755-8637-9589
 Report Issued Date
 : Nov. 06, 2017

 FAX: +86-755-8637-9595
 Report Version
 : Rev. 01

 FCC ID: YHLBLUDAHL4LTE
 Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 28 of 36 Report Issued Date : Nov. 06, 2017

Report No.: FR792112B

Report Version : Rev. 01

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.5.7 Duty Cycle

Please refer to Appendix C.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Report No.: FR792112B

Report Version : Rev. 01
Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Sporton International (Shenzhen) Inc. TEL: +86-755-8637-9589

FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 30 of 36
Report Issued Date : Nov. 06, 2017

Report No.: FR792112B

Report Version : Rev. 01

3.6.4 Test Setup

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 31 of 36
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No.: FR792112B

3.6.5 Test Result of AC Conducted Emission

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 32 of 36
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No.: FR792112B

Test Mode : Mode 1			Temperature :		22~25 ℃			
Test Engineer :	Peng Wang		Relative Humidity :		50~55%			
Test Voltage :	120Vac / 60Hz		Phase :		Neutra	I		
Function Type :	GSM1900 Idle Adapter) + Earp			LAN Link	+ USE	3 Cable (Cha	rging from	
100 Level (dBuV) Date: 2017-10-11								
90								
80								
70						FCC 4FC OD		
60						FCC 15C_QP		
50						FCC 15C_AVG		
40	And a	4				M		
	V] Y [Y]\\ \	They ray months	MARKET A PROPERTY.	MAN		/12*		
30	3 7 1 1 1 1 1 1 1	9 300	AND IN THE SA I	1 7.7	-	The state of the s		
20								
10								
0.1	5 .2 .5	1	2	5	10	20 30		
			Frequency (MHz)				
Site	: CO01-SZ n: FCC 15C QP LI	SN 20170907	N NEUTRAL					
Condition	ree ree_gr m	.511_20170307_	NEOTICE					
Mode	: Mode 1	,						
IMEI	: 3518120511276	0ver Li		LISN (Cable			
	Freq Level			Factor	Loss R	emark		
	MHz dBuV	dB d	lBuV dBuV	dB	dB			
1	0.18 28.72	-25.78 54	.50 18.40	0.03	10.29 A	verage		
2			.50 32.30		10.29 g			
3	0.23 24.75	-27.86 52	.61 14.50	0.03	10.22 A	verage		
4		-25.06 62			10.22 Ç			
5		-28.79 46			10.18 A	_		
6 7 *		-26.79 56			10.18 Ç			
8		-16.50 46 -18.20 56	.00 19.30 .00 27.60		10.18 A 10.18 G	_		
9		-23.30 46			10.16 Q			
10			.00 24.61		10.15 g	_		
11			.00 9.30		10.54 A			
12			.00 22.00		10.54 Ç	_		
I								

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 33 of 36
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No. : FR792112B

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : 34 of 36
Report Issued Date : Nov. 06, 2017

Report No.: FR792112B

Report Version : Rev. 01
Report Template No.: BU5-FR15CBT4.0 Version 2.0

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	9kHz~40GHz	Apr. 20, 2017	Oct. 20, 2017	Apr. 19, 2018	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Jan. 06, 2017	Oct. 20, 2017	Jan. 05, 2018	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Jan. 06, 2017	Oct. 20, 2017	Jan. 05, 2018	Conducted (TH01-SZ)
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz	Apr. 20, 2017	Oct. 09, 2017	Apr. 19, 2018	Radiation (03CH04-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Apr. 20, 2017	Oct. 09, 2017	Apr. 19, 2018	Radiation (03CH04-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 14, 2017	Oct. 09, 2017	May 13, 2018	Radiation (03CH04-SZ)
Bilog Antenna	TeseQ	CBL6111D	41909	30MHz~1GHz	May 16, 2017	Oct. 09, 2017	May 15, 2018	Radiation (03CH04-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-147 4	1GHz~18GHz	Jan. 12, 2017	Oct. 09, 2017	Jan. 11, 2018	Radiation (03CH04-SZ)
Horn Antenna	SCHWARZBE CK	BBHA9170	9170#679	15GHz~40GHz	May 17, 2017	Oct. 09, 2017	May 16, 2018	Radiation (03CH04-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 11, 2016	Oct. 09, 2017	Oct. 10, 2017	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1989346	1GHz~18GHz	Jul. 27, 2017	Oct. 09, 2017	Jul. 26, 2018	Radiation (03CH04-SZ)
Amplifier	Agilent Technologies	83017A	MY532701 56	500MHz~26.5G Hz	Apr. 20, 2017	Oct. 09, 2017	Apr. 19, 2018	Radiation (03CH04-SZ)
AC Power Source	Chroma	61601	N/A	N/A	NCR	Oct. 09, 2017	NCR	Radiation (03CH04-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Oct. 09, 2017	NCR	Radiation (03CH04-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Oct. 09, 2017	NCR	Radiation (03CH04-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jan. 06, 2017	Oct. 11, 2017	Jan. 05, 2018	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Jan. 05, 2017	Oct. 11, 2017	Jan. 04, 2018	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	MessTec	3816/2SH	00103892	9kHz~30MHz	Jan. 05, 2017	Oct. 11, 2017	Jan. 04, 2018	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 19, 2017	Oct. 11, 2017	Jul. 18, 2018	Conduction (CO01-SZ)

Report No.: FR792112B

NCR: No Calibration Required

 Sporton International (Shenzhen) Inc.
 Page Number
 : 35 of 36

 TEL: +86-755-8637-9589
 Report Issued Date: Nov. 06, 2017

 FAX: +86-755-8637-9595
 Report Version: Rev. 01

FCC ID : YHLBLUDAHL4LTE Report Template No.: BU5-FR15CBT4.0 Version 2.0

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	2.5dB

Report No.: FR792112B

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.1dB
of 95% (U = 2Uc(y))	******

<u>Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)</u>

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.0UB

<u>Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)</u>

<u> </u>	<u> </u>
leasuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.1dB

 Sporton International (Shenzhen) Inc.
 Page Number
 : 36 of 36

 TEL: +86-755-8637-9589
 Report Issued Date
 : Nov. 06, 2017

 FAX: +86-755-8637-9595
 Report Version
 : Rev. 01

 FCC ID: YHLBLUDAHL4LTE
 Report Template No.: BU5-FR15CBT4.0 Version 2.0

Appendix A. Conducted Test Results

Report No.: FR792112B

 Sporton International (Shenzhen) Inc.
 Page Number
 : A1 of A1

 TEL: +86-755-8637-9589
 Report Issued Date
 : Nov. 06, 2017

 FAX: +86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID : YHLBLUDAHL4LTE Report Template No.: BU5-FR15CBT4.0 Version 1.0

Report Number : FR792112B

Bluetooth Low Energy

Test Engineer:	Rain Wang	Temperature:	24~26	°C
Test Date:	2017/10/20	Relative Humidity:	50~53	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	N⊤x	CH.	Freq. 99% Occupied BW (MHz)		6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.03	0.71	0.50	Pass
BLE	1Mbps	1	19	2440	1.03	0.70	0.50	Pass
BLE	1Mbps	1	39	2480	1.02	0.70	0.50	Pass

TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	Power DG Limit (dBi)		EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	5.75	30.00	-2.66	3.09	36.00	Pass
BLE	1Mbps	1	19	2440	5.81	30.00	-2.66	3.15	36.00	Pass
BLE	1Mbps	1	39	2480	6.12	30.00	-2.66	3.46	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

Mo	d.	Data Rate	N⊤x	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
BL	E	1Mbps	1	0	2402	2.19	5.47
BL	E	1Mbps	1	19	2440	2.19	5.55
BL	E	1Mbps	1	39	2480	2.19	5.83

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	(dBm DG (dBi)		Pass/Fail
BLE	1Mbps	1	0	2402	4.93	-9.82	-2.66	8.00	Pass
BLE	1Mbps	1	19	2440	4.90	-9.87	-2.66	8.00	Pass
BLE	1Mbps	1	39	2480	5.36	-9.43	-2.66	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Appendix B. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

		_		_					_				
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant		Peak	Pol.
		/ 		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	4100
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		2348.85	41.78	-32.22	74	43.15	27.24	4.72	33.33	265	44	Р	Н
		2389.905	31.54	-22.46	54	32.65	27.43	4.78	33.32	265	44	Α	Н
BLE	*	2402	94.01	-	-	95.12	27.43	4.78	33.32	265	44	Р	Н
CH 00	*	2402	93.45	-	-	94.56	27.43	4.78	33.32	265	44	Α	Н
2402MHz		2380.14	40.75	-33.25	74	41.99	27.37	4.72	33.33	130	99	Р	٧
2402111112		2383.08	31.71	-22.29	54	32.95	27.37	4.72	33.33	130	99	Α	٧
	*	2402	94.27	-	-	95.38	27.43	4.78	33.32	130	99	Р	٧
	*	2402	93.8	-	-	94.91	27.43	4.78	33.32	130	99	Α	٧
		2327.64	41.8	-32.2	74	43.29	27.18	4.66	33.33	265	44	Р	Н
		2388.54	31.82	-22.18	54	32.94	27.43	4.78	33.33	265	44	Α	Н
	*	2440	94.25	-	-	95.13	27.61	4.82	33.31	265	44	Р	Н
	*	2440	93.75	-	-	94.63	27.61	4.82	33.31	265	44	Α	Н
		2488.1	42.59	-31.41	74	43.25	27.8	4.85	33.31	265	44	Р	Н
BLE		2494.4	32.14	-21.86	54	32.79	27.8	4.85	33.3	265	44	Α	Н
CH 19 2440MHz		2363.34	41.25	-32.75	74	42.56	27.3	4.72	33.33	100	79	Р	٧
244UIVIM2		2388.82	31.52	-22.48	54	32.64	27.43	4.78	33.33	100	79	Α	٧
	*	2440	94.6	-	-	95.48	27.61	4.82	33.31	100	79	Р	٧
	*	2440	94.03	-	-	94.91	27.61	4.82	33.31	100	79	Α	V
		2490.2	41.44	-32.56	74	42.1	27.8	4.85	33.31	100	79	Р	V
		2492.09	32.1	-21.9	54	32.75	27.8	4.85	33.3	100	79	Α	V

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : B1 of B6
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No.: FR792112B

	1			T					1	T	1	1	
	*	2480	94.41	-	-	95.13	27.74	4.85	33.31	289	41	Р	Н
	*	2480	94.04	-	-	94.76	27.74	4.85	33.31	289	41	Α	Н
		2483.6	41.87	-32.13	74	42.59	27.74	4.85	33.31	289	41	Р	Н
BLE		2483.52	37.26	-16.74	54	37.98	27.74	4.85	33.31	289	41	Α	Н
CH 39 2480MHz	*	2480	95.28	-	-	96	27.74	4.85	33.31	100	79	Р	V
2400WITIZ	*	2480	94.77	-	-	95.49	27.74	4.85	33.31	100	79	Α	٧
		2485.12	41.68	-32.32	74	42.4	27.74	4.85	33.31	100	79	Р	٧
		2483.52	37.38	-16.62	54	38.1	27.74	4.85	33.31	100	79	Α	V
Remark	1. No	o other spurious	s found.										
	2. Al	I results are PA	SS against I	Peak and	Average lim	it line.							

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : B2 of B6
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01
Report Template No.: BU5-FR15CBT4.0 Version 2.0

Report No.: FR792112B

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
BLE CH 00 2402MHz		4804	40.66	-33.34	74	60.31	31.44	5.55	56.64	152	360	Р	Н
		4804	41	-33	74	60.65	31.44	5.55	56.64	152	360	Р	٧
		4880	40.1	-33.9	74	59.75	31.61	5.65	56.91	151	360	Р	Н
		7320	55.89	-18.11	74	70.3	36.19	7.26	57.86	151	360	Р	Н
BLE		7320	51.24	-2.76	54	65.65	36.19	7.26	57.86	100	71	Α	Н
CH 19 2440MHz		4880	40.39	-33.61	74	60.04	31.61	5.65	56.91	151	360	Р	V
2440WITIZ		7320	56.82	-17.18	74	71.23	36.19	7.26	57.86	151	360	Р	V
		7320	52.28	-1.72	54	66.69	36.19	7.26	57.86	100	291	Α	٧
		4960	39.39	-34.61	74	57.86	31.82	5.96	56.25	148	360	Р	Н
		7440	52.51	-21.49	74	66.78	36.34	7.17	57.78	148	360	Р	Н
BLE		7440	49.77	-4.23	54	64.04	36.34	7.17	57.78	100	71	Α	Н
CH 39 2480MHz		4960	40.08	-33.92	74	58.55	31.82	5.96	56.25	148	360	Р	V
248UMHZ		7440	52.31	-21.69	74	66.58	36.34	7.17	57.78	148	360	Р	٧
		7440	49.51	-4.49	54	63.78	36.34	7.17	57.78	151	154	Α	٧

Remark

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : B3 of B6
Report Issued Date : Nov. 06, 2017

Report No.: FR792112B

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30.97	25.98	-14.02	40	32.97	24.52	0.27	31.78	100	321	Р	Н
		107.6	24.03	-19.47	43.5	37.76	16.73	1.09	31.55	-	-	Р	Н
		424.79	23.81	-22.19	46	31.5	21.3	2.23	31.22	-	-	Р	Н
		676.02	28.5	-17.5	46	31.38	25.46	2.88	31.22	-	-	Р	Н
0.4011-		836.07	29.84	-16.16	46	30.25	27.61	3.23	31.25	-	-	Р	Н
2.4GHz BLE		967.02	31.88	-22.12	54	30.61	29.04	3.5	31.27	-	-	Р	Н
LF		30.97	25	-15	40	31.99	24.52	0.27	31.78	-	-	Р	V
<u>-</u> 1		100.81	22.72	-20.78	43.5	36.71	16.53	1.06	31.58	-	-	Р	V
		149.31	21.99	-21.51	43.5	34.18	17.97	1.26	31.42	-	-	Р	V
		523.73	25.96	-20.04	46	30.98	23.66	2.49	31.17	-	-	Р	V
		829.28	29.6	-16.4	46	30.13	27.51	3.21	31.25	-	-	Р	V
		881.66	31.31	-14.69	46	31.06	28.18	3.34	31.27	100	214	Р	٧
Remark	No other spurious found. All results are PASS against limit line.												
	Z. All	100dito die 17	oo agamst ii	iiiii iiiic.									

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : B4 of B6
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No. : FR792112B

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Sporton International (Shenzhen) Inc.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : B5 of B6
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No. : FR792112B

A calculation example for radiated spurious emission is shown as below:

Report No.: FR792112B

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Sporton International (Shenzhen) Inc.Page Number: B6 of B6TEL: +86-755-8637-9589Report Issued Date: Nov. 06, 2017FAX: +86-755-8637-9595Report Version: Rev. 01FCC ID: YHLBLUDAHL4LTEReport Template No.: BU5-FR15CBT4.0 Version 2.0

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth v4.0 LE	60.37	0.380	2.632	3KHz

Bluetooth v4.0 LE

Sporton International (Shenzhen) Inc. TEL: +86-755-8637-9589

FAX: +86-755-8637-9595 FCC ID: YHLBLUDAHL4LTE Page Number : C1 of C1
Report Issued Date : Nov. 06, 2017
Report Version : Rev. 01

Report No.: FR792112B