Biology and nutrients

- Spatial and temporal patterns of biological production, respiration, and associated tracers
- Stoichiometric ratios for biological processes
- Fluxes of organic matter in the upper ocean

Annual Mean Nitrate distribution

World Ocean Atlas Climatology

Contour Interval=5

Annual nitrate [umol/kg] at the surface (one-degree grid)

Annual Mean Phosphate distribution

World Ocean Atlas Climatology

Contour Interval=0.25

Annual phosphate [umol/kg] at the surface (one-degree grid)

Oceanic distributions of nutrients and carbon are linked!

How do physics and biology combine to yield these cross sections?

What would happen if we turned off biology?

In 5 years?

At equilibrium?

What would happen if we turned off biology?

In 5 years?

At equilibrium?

In 5 years?

At equilibrium?

Global mean NO_3^- is ~31 $\mu mol~kg^{-1}$

Sarmiento and Gruber (2006)

CO₂ + H₂O + nutrients (N, P, trace)

300

Jul-15

Photosynthesis

→

Organic matter + O₂

Respiration

Given:

■ G = 4 m d⁻¹

• $\rho = 1000 \text{ kg m}^{-3}$

Case I: No Biological production, what do you expect the [O2]_{ML} to be?

Case 2: Using observed [O2], what do you calculate for a biological production rate?

Jan-16

Sample	Time (days)	SST (°C)	[O ₂] _{sat} (μmol kg ⁻¹)	MLD (m)	Case 1 - [O ₂] _{ML} (μmol kg ⁻¹)	Case 2 – [O2] _{ML} (μmol kg ⁻¹)	F _{bio} (mmol m ⁻² O ₂ d ⁻¹)
1	0	15	250	70	250	250	
2	10	21	220	20	?	320	?
3	20	27	200	20	?	240	?

12024

The Redfield or "RKR" Equation (A Model)

The mean elemental ratio of marine organic particles is given as:

$$P:N:C = 1:16:106$$

■ The average ocean photosynthesis (forward) and aerobic (O_2) respiration (reverse) is written as:

106 CO₂ + 16 HNO₃ + H₃PO₄ + 122 H₂O + trace elements (e.g. Fe, Zn, Mn...) →
$$(CH_2O)_{106}(NH_3)_{16}(H_3PO_4)$$
 + 138 O₂

Reduction half reactions:

$$CO_2 + 4H^+ + 4e^- \rightarrow CH_2O + H_2O$$

 $NO_3^- + 9H^+ + 8e^- \rightarrow NH_3 + 3H_2O$

Oxidation half reaction:

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$

- From plankton tows
- O_2 production was estimated theoretically, assuming I mol of O_2 released for every atom of carbon converted into biomass and 2 moles of O_2 for every atom of nitrogen.
- Assumes all OM is carbohydrates (and represents OM as an average "molecule")

Actual ratios of C/N/P/O vary considerably

C – Carbohydrates

P – Proteins

L - Lipids

C – Carbohydrates

P – Proteins

L - Lipids

Redfield

Modified RKR using actual stoichiometry of plankton:

Biological production: limitations

$$CO_2 + N + P + H_2O \stackrel{P}{\rightleftharpoons} Organic matter + O_2$$

"inorganic nutrients": N, P and Si

They are also called "biolimiting elements" -- Why?

- 1. Small reservoir size in oceans
- 2. Fast turnover time
- 3. Required for many kinds of biological activity

Winter Mean Nitrate distribution

World Ocean Atlas Climatology

Contour Interval=5

Winter (Jan.-Mar.) nitrate [umol/kg] at the surface (one-degree grid)

World Ocean Atlas Climatology

Contour Interval=5

Summer (Jul.-Sep.) nitrate [umol/kg] at the surface (one-degree grid)

Biological production: limitations

$$CO_2 + N + P + H_2O \stackrel{P}{\rightleftharpoons} Organic matter + O_2$$

"inorganic nutrients": N, P and Si – macronutrient limitation

Biological production: limitations

$$CO_2 + N + P + H_2O \stackrel{P}{\rightleftharpoons} Organic matter + O_2$$

"inorganic nutrients": N, P and Si – macronutrient limitation

Trace metal needs:

Fe (photosynthesis, uptake of NH₄⁺, N₂ fixation)

Mn (phtoynthesis)

Zn (carbonic anhydrase, enzyme that catalyses HCO₃⁻ to CO₂)

Cu, Co, Ni

Can be limiting: High-Nutrient, Low Chlorophyll regions (HNLC)

What happens to that primary production?

What happens to that primary production?

- Primary production: autotrophic production
- Net primary production: PP minus respiration by autotrophs
- Net community production: PP minus all respiration (auto and heterotrophic)
- Annual net community production: The amount of organic matter that is produced but is removed from contact with the upper ocean on time scales > lyr

Dissolved vs. Particulate: Operational definition

Emerson and Hedges 2008

The Martin Curve: How much OM sinks out of the upper ocean?

- Carbon leaving upper ocean is a mix of soft (OM) and hard parts (silica and calcium carbonate shells)
- ~6% of carbon leaving upper ocean is CaCO₃
- SiO₂ is often ~2x the CaCO₃
- Weights down OM, also can protect from grazing

Apparent Oxygen Utilization:

$$AOU = [O_2]_{sat} - [O_2]_{measured}$$

Oxygen Utilization Rate:

OUR = AOU/t

Apparent Oxygen Utilization:

$$AOU = [O_2]_{sat} - [O_2]_{measured}$$

Oxygen Utilization Rate:

OUR = AOU/t

Why does OUR decrease with depth?

■ Most of the organic matter that crosses 100m is respired by 200m (1/e remains at ~165 m)

 Most of the organic matter that crosses 100m is respired by 200m (1/e remains at ~165 m) Why does OUR decrease with depth?

IPCC AR6 WG1 Ch. 5

IPCC AR6 WG1 Ch. 5

Units: Pg C yr 1

Atmospheric increase: 5

Emissions (FF and Land use): 11

Ocean uptake: 2.5

-0.6 Natural outgassing +
 2.5 anthropogenic uptake
 = 1.9 Contemporary
 Ocean uptake

IPCC AR6 WG1 Ch. 5

IPCC AR6 WG1 Ch. 5

Units: Pg C yr 1

■ Bio pump (ANCP): ~13

Solubility pump: 264 down, 275 up

- Biological carbon export is ~5-10% the magnitude of the solubility pump
 - Significant uncertainty in control / response to changes
 - Provides an avenue for long-term burial
- Sediment: 0.2
- Does biological carbon pump contribute to ocean's uptake of anthropogenic carbon?

IPCC AR6 WG1 Ch. 5

Box models: two boxes

What are the mass balance equations in the upper ocean? What about the deep ocean?

Box models: two boxes

What are the mass balance equations in the upper ocean?
What about the deep ocean?

Given:

 $[PO_4^{3-}]_{deep} = 2.2 \mu mol/kg$

 $[PO_4^{3-}]_{surface} = 1.0 \mu mol/kg$

 $[\mbox{O}_{2}]_{surface}\mbox{=}$ 275 $\mu\mbox{mol/kg}$ (the saturation value)

P:N:C:O₂ ratio in particles is 1:16:106:-154

All particles are respired in the deep ocean.

 $F_{SD} = 1.26 \times 10^{15} \text{ m}^3 \text{ yr}^{-1}$, what is the particle flux of phosphate and carbon?

Box models: three boxes

Mass balance equations for three boxes?