Linear Programming under Martingale Transport Constraint

Gaoyue Guo

October 2, 2023

Abstract

This project is concerned with a computational approach to *linear* programming (LP) problems of martingale transport structure.

1 Introduction

Motivated by the model-independent pricing of exotic options, the martingale optimal transport (MOT) problem has gained significant momentum both for practitioners and academics. More precisely, given two probability distributions μ, ν on \mathbb{R} and a measurable function $c: \mathbb{R}^2 \to \mathbb{R}$, we seek to maximize/minimize the integral

$$\langle c, \mathbb{P} \rangle \quad := \quad \int_{\mathbb{R}^2} \ c(\mathbf{x}, \mathbf{y}) \mathbb{P}(d\mathbf{x}, d\mathbf{y})$$

over the set $\mathcal{M}(\mu, \nu)$ of probability measures \mathbb{P} on \mathbb{R}^2 such that

$$\begin{split} \mathbb{P}[E \times \mathbb{R}] &= \mu[E] \ \text{ and } \ \mathbb{P}[\mathbb{R} \times E] = \nu[E], \qquad \text{for all measurable sets } E \subset \mathbb{R}, \\ &\int_{\mathbb{R}} \ \mathsf{y} \mathbb{P}_{\mathsf{x}}(d\mathsf{y}) = \mathsf{x}, \qquad \text{for } \mu \text{ - a.e. } \mathsf{x} \in \mathbb{R}, \end{split}$$

where $(\mathbb{P}_{\mathsf{x}})_{\mathsf{x}\in\mathbb{R}}$ denotes the disintegration of \mathbb{P} with respect to μ . In financial language, every $\mathbb{P}\in\mathcal{M}(\mu,\nu)$ represents a calibrated market model, and μ , ν describe the initial and final distributions of stock prices. We define the MOT problem as below:

$$\mathsf{S}(\mu,\nu) \left(\text{reps. } \mathsf{I}(\mu,\nu) \right) := \sup_{\mathbb{P} \in \mathcal{M}(\mu,\nu)} \left(\text{reps. } \inf_{\mathbb{P} \in \mathcal{M}(\mu,\nu)} \right) \langle c, \mathbb{P} \rangle.$$
 (1)

Given the importance of MOT problems for applications in mathematical finance, we focus on solving linear programming (LP) problems corresponding to the MOT problem with finitely supported marginal distributions, i.e. μ and ν are two discrete probability distributions given by

$$\mu(d\mathsf{x}) \ = \ \sum_{1 \le i \le m} \alpha_i \delta_{\mathsf{x}^i}(d\mathsf{x}) \quad \text{and} \quad \nu(d\mathsf{y}) \ = \ \sum_{1 \le j \le n} \beta_j \delta_{\mathsf{y}^j}(d\mathsf{y}).$$

Therefore, all the elements $\mathbb{P} \in \mathcal{M}(\mu, \nu)$ are identified by the matrices $(p_{i,j})_{1 \leq i \leq m, 1 \leq j \leq n} \subset \mathbb{R}^{mn}_+$ satisfying

$$\sum_{1 \le k \le n} p_{i,k} = \alpha_i, \quad \text{for } i = 1, \cdots, m,$$

$$\sum_{1 \le k \le n} p_{k,j} = \beta_j, \quad \text{for } j = 1, \cdots, n,$$

$$\sum_{1 \le k \le n} p_{i,k} \mathsf{y}^k = \alpha_i \mathsf{x}^i, \quad \text{for } i = 1, \cdots, m.$$

Without loss of generality, we only deal with the maximization problem.

Assumption 1.

 $\mu(d\mathsf{x})=\sum_{1\leq i\leq m}\alpha_i\delta_{\mathsf{x}^i}(d\mathsf{x})$ and $\nu(d\mathsf{y})=\sum_{1\leq j\leq n}\beta_j\delta_{\mathsf{y}^j}(d\mathsf{y})$ are assumed to satisfy

- $\mu \leq \nu$ and $\mu \neq \nu$;
- $\{\alpha_i\}_{1 < i < m}, \{\beta_j\}_{1 < j < n} \subset (0, \infty).$

2 Computational scheme: iterative Bregman projection

The MOT problem $S(\mu, \nu)$ can be rephrased as the following LP problem:

$$\max_{(p_{i,j})_{1 \le i \le m, 1 \le j \le n}} \sum_{1 \le i \le m, 1 \le j \le n} p_{i,j} c_{i,j}$$
s.t.
$$\sum_{1 \le k \le n} p_{i,k} \left(\text{resp. } \sum_{1 \le k \le m} p_{k,j} \right) = \alpha_i \left(\text{resp. } \beta_j \right), \quad \text{for } i = 1, \dots, m \left(\text{resp. } j = 1, \dots, n \right),$$

$$\sum_{1 \le k \le n} p_{i,k} y^k = \alpha_i x^i, \quad \text{for } i = 1, \dots, m,$$
(2)

where $c_{i,j} := c(\mathsf{x}^i, \mathsf{y}^j)$ for $i = 1, \ldots, m$ and $j = 1, \ldots, n$. (2) is a specific LP problem with mn control variables and 2m + n linear constraints.

We are concerned with solving (2) by adding a regularization term. Fix an arbitrary $\varepsilon > 0$. For any $p \in \mathbb{R}^{mn}_+$, set $E(p) := \sum_{1 \le i \le m, 1 \le j \le n} p_{i,j} c_{i,j}$ and

$$E_{\varepsilon}(p) \ := \ E(p) \ - \ \varepsilon \sum_{1 \leq i \leq m, 1 \leq j \leq n} p_{i,j} \big(\log(p_{i,j}) - 1 \big),$$

where we take the convention $0 \times \log(0) := 0$. Then it follows by definition that $E(p) \leq E_{\varepsilon}(p)$ for all $p \in \mathbb{R}^{mn}_+$. Recall that $M(\mu, \nu)$ is the collection of the matrices satisfying the constrains arising in (2).

Proposition 1.

It holds

$$0 \leq \max_{p \in M(\mu, \nu)} E_{\varepsilon}(p) - \mathsf{S}(\mu, \nu) \leq (\log(mn) + 1)\varepsilon.$$

Define $q \in \mathbb{R}^{mn}_+$ by $q_{i,j} = e^{c_{i,j}/\varepsilon}$, then one has $E_{\varepsilon}(p) := \varepsilon \mathrm{KL}(p|q)$, where

$$\mathrm{KL}(p|q) := \sum_{1 \leq i \leq m, 1 \leq j \leq n} p_{i,j} \left[1 - \log \left(\frac{p_{i,j}}{q_{i,j}} \right) \right].$$

We follow Bregman's idea and separate the linear constraints of $M(\mu, \nu)$. Define by $C_1, C_2, C_3, \ldots, C_{d+2} \subset \mathbb{R}^{mn}_+$ the subsets of matrices $p = (p_{i,j})_{1 \le i \le m, 1 \le j \le n}$:

$$\mathcal{C}_{1} := \left\{ p \in \mathbb{R}^{mn}_{+} : \sum_{1 \leq j \leq n} p_{k,j} = \alpha_{k}, \text{ for } k = 1, \cdots, m \right\}, \\
\mathcal{C}_{2} := \left\{ p \in \mathbb{R}^{mn}_{+} : \sum_{1 \leq i \leq m} p_{i,k} = \beta_{k}, \text{ for } k = 1, \cdots, n \right\}, \\
\mathcal{C}_{2+l} := \left\{ p \in \mathbb{R}^{mn}_{+} : \sum_{1 \leq j \leq n} p_{k,j} y_{j}^{l} = \alpha_{k} x_{k}^{l}, \text{ for } k = 1, \cdots, m \right\},$$

where $l=1,\ldots,d$. Clearly one has $M(\mu,\nu)=\cap_{1\leq k\leq d+2}\mathcal{C}_k$ and

$$\max_{p \in M(\mu, \nu)} E_{\varepsilon}(p) = \varepsilon \max_{p \in \cap_{1 \le k \le d+2} \mathcal{C}_k} \mathrm{KL}(p|q).$$

Notice that $p\mapsto \mathrm{KL}(p|q)$ is strictly concave, then we may apply the iterative Bregman projection as follows. Define the periodic sequence $\{\mathcal{C}_l\}_{l\geq 1}$ by $\mathcal{C}_{l+(d+2)}:=\mathcal{C}_l$ for all $l\geq 1$. Let $p^{(0)}=q$, and set for all $l\geq 1$

$$p^{(l)} := \operatorname{argmax}_{p \in \mathcal{C}_l} \operatorname{KL}(p|p^{(l-1)}).$$
 (3)

Then Bregman's theorem yields the desired convergence.

Theorem 1 (Bregman, 67').

With the above notations, the sequence $\left\{p^{(l)}\right\}_{l\geq 1}$ constructed in (3) is convergent and

$$\lim_{l \to \infty} p^{(l)} = \operatorname{argmax}_{p \in \cap_{1 \le k \le d+2} \mathcal{C}_k} \operatorname{KL}(p|q).$$

During this project, we aim to compute numerically $p^{(l)}$ given $p^{(l-1)}$.