Genetic Algorithms and Genetic Programming

Overview

- 1. Genetics Review
- 2. General Genetic Algorithm
- 3. Implementation Examples

Genetics Review

An 'organism' or 'individual' is a form of life such as a plant or animal. Chromosomes carry biological information or characteristics of an individual. During reproduction, there is several things that happen to form the child individuals. There is a 'crossing over' where genetic material is exchanged and there is a small, random chance of a mutation. 'Natual selection' is the process by which organisms with traits that are better suited to their environment reproduce in higher numbers, increasing the prescense of those traits.

In a Genetic Algorithm (GA), 'individuals' are canidate solutions. Each solution has 'chromosomes' or a unique identifier that represents its corresponding canidate solution. 'Natural selection' occurs through a fitness function that determines the overall fitness of the canidate solution. 'Crossing over' happens by exchanging information between the identifier for the solution. 'Mutations' happen by a bitflip, or some other change to the information representing a solution.

General Genetic Algorithm

```
Algorithm 1 Generic Genetic Algorithm
i = 0 \qquad \qquad \triangleright \text{ Generation counter}
initialize population P_0 \qquad \qquad \triangleright \text{ Decide on sample size; } n
\mathbf{repeat}
Evaluate fitness of each indivitual in population P_i; \qquad \triangleright \text{ Fitness function, } f(x_i)
Select individuals for reproduction based on fitness;
Perform crossover and mutation on the selected individuals;
i + +;
\mathbf{until} \text{ terminal condition is met }; \qquad \triangleright \text{ A certain number of generations or average fitness}
```

The probability of selecting a sample, x_i for reproduction, with n being the sample size, is defined by:

$$P(x_i) = \frac{f(x_i)}{\sum_{j=1}^n f(x_j)}$$

Implementation Example

Suppose we have this fitness function and the goal is to maximize it.

$$f(x) = \sin\left(\frac{x\pi}{256}\right)$$
 with the interval $0 \le x \le 255$ & $x \in \mathbb{Z}$.

We can represent canidate solutions with 8 bits; a byte. Since the goal is to maximize this function, and the values are locked between 0-1, we will just use the value of the function to represent fitness for a canidate solution.

The first step is to select a population size, which will be 8. Then, to randomly select individuals from the population, we will generate random numbers in our interval, 0-255.

Table 1: Normed Fitness

x	Representation	f(x)	Normed $f(x)$	Cumulative $f(x)$
189	10111101	.733	.144	.144
216	11011000	.471	.093	.237
99	01100011	.937	.184	.421
236	11101100	.243	.048	.469
174	10101110	.845	.166	.635
74	00100011	.788	.155	.790
35	00100011	.416	.082	.872
53	00110101	.650	.128	1.000

To start selecting samples, find each sample's *Cumulative Normed Fitness* which will allow for selection using a random number generator between 0-1. The *Cumulative Normed Fitness* should always add up to 1.0, after normalizing fitness.

$$\sum_{i=1}^{n} P(x_i) = 1.0$$

Probability of selection using Cumulative Norm

To select an individual, generate a random number between 0-1. Then find the two numbers that surround your selection. The individual who is being represented by the larger of the two is selected for reproduction.

Table 2: Parent-Child Crossover Table

Selected Numbers	Parent	Children	
$3 \cdots 6$		011 101 11	
$3 \cdots 6$	0 0 1 1 0 1 0 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$1 \cdots 5$		$1 \parallel 1 1 1 0 \parallel 0 0 1$	
$1\cdots 5$	0 1 1 1 0 $ $ 1 1 1 1	0 0 1 0 1 1 0 1	

In this example, two random numbers between zero and the bitsize are chosen, and the two parents exchange the bits between the two selected points.

Table 3: Mutation Table

Individual	Mutation	New x
01110111	0 1 1 0 0 1 1 1	103
00100001	00100001	33
11110001	11110000	240
0 0 1 0 1 1 0 1	0 1 1 0 1 1 0 1	109

Each individual has a very low percentage to mutate. For this example, a bit flip will be used as a mutation. After mutation occurs, the newly generated individuals are the 'next generation' and the reproduction process starts again.