Physics 78 Midlerm 1	Jeffrey	Shen
Temperature, Themal Expansion, and Ideal Gras Law	1	
otomic mass (molecular mass) [N]: relative masses of atoms/molecules, numerically same as molecular mass Temperature: [C°/F°/K]: how what proods something is Freezing Boiling		M 64
Linear Expansion: [Dl=alo AT [l=lo (1+ d DT)] (oefficient of linear expansion [t] Volume Expansion: [V=lo (1+adT) W. (1+d DT) H	Note fing e hearly diameter	× pards
Boyle's Low Charles's Law Qay-Lussed V & T V AT P & T T T T T T T T T T T T T T T T T	aus Law	<u>,</u>
Ideal Gas Law: PV = n R T & impurature [K] Moles universal gas constant: 8.314 moles engine Moles universal gas constant: 8.314 moles = 1.99 moles Standard Tenparature Pressure (STP): T=273 K P= 1 atm = 101.3 kPa		
Avagadro's number of molecules in one mole $N_A = 6.022 \times 10^{23}$ $PV = n N_A KT = N KT = $	NA RT Na RT	

energy is neded to break attractive forces

19.15

· Heat transfer via:

1) Conduction: hot to cold wa molecular collisions

da = -KA dt dx

Ethermal conductivity constant (specific to metal)

2) Convention: heat flows by mass movement of molecules

3) Radiation: heat by electromagnete waves

Skephon-Boltzmann eg: DE EUATA

emissivity: [0,1] & area of unity object

diarrelation of surface surface Suphan-Boltzmann constant $\theta = 5.67 \times 10^{-8} \frac{W}{m^2 \cdot k^4}$

Sun radiation text: $\frac{\Delta Q}{\Delta t} = (1000 \frac{M}{m^2}) \in A \cos \theta$

Second Law of Thurmodynamics

Efficiency (e): ratio of Work done to heat input

e= N = 1- QL

20.3

Carnot's Engine is an idealized reversible cycle

ab i) expanded isothermally, an added

be 2) expanded advabatically, temperate reduced to TL

ed 3) compressed reothermally, as removed

da 4) compressed adiabatically, temperature raised to TH

$$\frac{Q_L}{Q_B} = \frac{T_L}{T_H}$$

$$\frac{Q_L}{Q_B} = \frac{T_L}{T_H}$$

$$\frac{Q_L}{Q_B} = \frac{T_L}{T_H}$$

$$\frac{1}{2} = \frac{T_L}{T_H}$$

20.4

Coefficient of Performance (COP): heat removed for work done refindgerator

20.5

a state variable, measure of order Intropy [5] is

$$\Delta S = \Delta S_{H} + \Delta S_{L} = -\frac{Q}{T_{HM}} + \frac{Q}{T_{LM}}$$
 for hot > cold, $\Delta S > 0$

$$\Delta S = \frac{Q}{T} = \int_{T_{L}}^{T_{L}} \frac{mcdT}{T} = mc \ln(\frac{T_{L}}{T_{L}})$$

COPIDEN = TI-TI

Entropy of isolated system never decreases.

Second Law of Thermodynamics; Natural Processes tend to move toward

a State of greater disorder

Energy eventually becomes degraded and unavailable to do useful work

& Remember to change T to Kelving

Units/Conversions

Force Newton [N]

Pressure Pascal [Pa]

Enry Joule [J] m2.kg

m2.kg Erergy calone [cal]

 $\frac{I}{S} = \frac{kg \cdot m^2}{83}$ Watt [W] Ponce

[8] Gas constant

 $F = \frac{P}{+}$

101,325 Pa = later = 760 mintly = 14.7 psi

1000 J = 1 KJ , 101.33 J = 1 L'atm

1000 cal = 1 kcal , 1 cal = 4.184 J

745.7 W= Ihp, power = P = W

8.314 mol. K = 1.99 cal mol. K

KE= & mv2 DK+ DU+ DEm+= Q-W