

GPC510 - Well logging

भारतीय प्रौद्योगिकी

(भारतीय खनि विद्यापीठ)

संस्थान

Semester - Winter 2025; Lecture-3

Partha Pratim Mandal **Assistant Professor Department of Applied Geophysics**

E: partham@iitism.ac.in

TEACHING OUTLINE

Week 1/2

Tutorial 1 – Introduction, teaching overview, and assessment

Tutorial 2 – Well log definition, history, log format, types, units

<u>Tutorial 3</u> – Borehole effects, environmental impacts

AGENDA

- Tool geometry
- Borehole effects
- Speed of the logging tool
- Environments

DIGITAL LOG FORMAT - LAS

```
~Version Information
                          2.0: CWLS log ASCII Standard Version 2.00
                          NO: One line per depth step
WRAP.
~Well Information Block
#MNEM.UNIT
                                                      Information
STRT.M
                         2211.0192
                                                     :START
STOP.M
                         3529,1268
                                                     :STOP
STEP.M
                                                     :STEP
                           0.1524
NULL.
                          -999.25
                                                     :NULL VALUE
COMP.
             Woodside Energy LTD
                                                     :Company
WELL.
              Pluto-3ST1
                                                     :Well Name
FLD .
              Pluto
                                                     :Field
LOC .
              WA-350-P
                                                     :Field Location
PROV.
                                                     :Province
CNTY.
              Atwood Eagle
                                                     :County or Rig name
STATE.
                                                      :State
CTRY.
              Australia
                                                     :Country
DATE.
                                                     :Log Date
SRVC.
              Schlumberger
                                                     :Service company
UWI .
              W002813
                                                     :Unique Well ID
API .
                                                     :APT Number
NATI.
                                                     :Nation
              Australia
STAT.
              Western Australia
                                                     :State
FL1 .
             X = 307 534.2 \text{ mE}
                                                     :Field Loc. 1 / Northing
FL2 .
             Y = 7 797 210.8 mN
                                                     :Field Loc. 2 / Easting
LATI.
             019 54' 43.000" S
                                                     :Latitude
LONG.
              115 09' 40.820" E
                                                     :Longitude
PD .
                                                     :Perm. Datum
EPD .M
                                                     :Elevation Perm. Datum
EDF .M
                    22.4
                                                     :Elevation DF (wrt EPD)
EGL .M
              -584.59998
                                                     :Elevation GL (wrt EPD)
ELZ .M
                   22.4
                                                     :Elev. Log Zero (wrt EPD)
APD .M
                    22.4
                                                     :Above Perm. Datum
LMF .
                                                     :Log measured from
                                                     :Drill measured from
OS1 .
              FMI-HNGS-MSIP
                                                     :Other Services Ln 1
052 .
             MDT-CMR
                                                     :Other Services Ln 2
053 .
             FMI-MSIP
                                                     :Other Services In 3
054 .
             VSI / MDT-FMI
                                                     :Other Services Ln 4
OSS .
             MSCT / CST
                                                     :Other Services In 5
TD .M
~Curve Information
#MNEM .UNIT
                          API CODE Curve Description
#-----
DEPT
                      00 001 00 00: 0 Depth
DF
        . N
                     00 000 00 00: 1 Uncalibrated Downhole Force {F13.4}
                     00 000 00 00: 2 HRDD HiRes Density Standoff {F13.4}
DSO8
       .IN
EHGR
      .GAPI
                     00 000 00 00: 3 HiRes Gamma-Ray {F13.4}
                     70 280 00 01: 4 HRCC Cal. Caliper (F13.4)
                      45 356 01 01: 5 HRDD Density Correction (F13.4)
                      00 000 00 00: 6 HRDD Photoelectric Factor Correction (F13.4)
HTNP
        .V/V
                     00 000 00 00: 7 HiRes Thermal Neutron Porosity (F13.4)
NPHI
        .V/V
                      42 890 01 01: 8 Thermal Neutron Porosity (Ratio Method) {F13.4}
PEF8
                     00 000 00 00: 9 HRDD High Resolution Formation Photoelectric Factor (F13.4)
```

- ~V contains the version and wrap mode information
- · ~W contains the well identification information
- · ~C contains log curve information
- · ~P contains well parameters and constants
- · ~O contains additional information such as comments
- ~A contains the log data

BOREHOLE EFFECTS

DRILLING MUD

- Influence of the drilling mud on log response depends upon:
- A: Diameter of the wellbore

	Borehole Size—Min.	Borehole Size—Max.
Resistivity		
Platform Express* AIT* Array Induction Imager Tool (AIT-H)	9½ in. [24.13 cm]	20 in. [50.80 cm]
Powered Caliper Device (PCD-B)	7 in. [17.78 cm]	25 in. [63.50 cm]
Neutron porosity		
Platform Express Highly Integrated Gamma Ray Neutron Sonde (HGNS)	15 in. [38.10 cm]	22 in. [55.88 cm]
Compensated Neutron Tool (CNT-H)	14 in. [25.56 cm]	22 in. [55.88 cm]
Density		
Litho-Density* tool (LDT-D)	14 in. [25.56 cm]	30 in. [76.20 cm]
Platform Express High-Resolution Mechanical Sonde (HRMS)	16 in. [40.64 cm]	28 in. [71.12 cm]
Sonic		
Digital Sonic Logging Tool (DSLT)	14 in. [35.56 cm]	30 in. [76.20 cm]
DSI* Dipole Shear Sonic Imager	14 in. [35.56 cm]	20 in. [50.80 cm]
Sampling		
MDT tool with MRLH-AA	7½ in. [19.05 cm]	19 in. [48.26 cm]
MSCT with shoe extender	5½ in. [13.97 cm]	19 in. [48.26 cm]
Seismic		
CSI Combinable Seismic Imager	7 in. [17.78 cm]	22 in. [55.88 cm]

DRILLING MUD

- B: Type of mud and density
- Two categories of mud:
- Water-based
- Oil-based
- For oil-based mud acoustic signal propagation is poor and non conduct of electric current
- Water-based mud with added salinity affects electric property measurements and hydrogen index
- Mud density influences absorption of gamma rays

INVASION

- Main functions of the drilling mud are:
- 1. Cooling down of drill bit
- Avoid borehole collapse
- Prevent blow-out
- 4. Allow flow of cuttings to the surface
- Mud density depends upon formation pressure to make a safer drilling scenario [ranges from 1 to 2.4 g/cm³]

INVASION

- Mud is kept slightly higher than formation pressure, which causes mud to infiltrate porous and permeable beds
- Solid particles in the mud are slightly larger than pores, therefore only liquid content can invade
- Mud cake will form during drilling wherever mud filtrate infiltrates. Therefore, with time an impermeable membrane form which prevents further invasion
- Mud-filtrate displaces some of the interacting formation fluids.
- Following factors define the depth of invasion (i) porosity (ii) permeability (iii) water loss factor of mud (iv) pressure difference

INVASION

CASING & CEMENT

- Casing followed by cementing is required for a safer well bore design.
- Design of casing is the beyond the scope of this unit
- Casing and cement prevent certain logging measurements (resistivity)
- Nuclear measurement can be done

FLUID MOBILITY

- Saturation ratio of pore volume occupied by fluid to the total pore volume
- Invasion can be used as an indicator of mobility of the reservoir fluids
- We need to derive saturations from invaded S_{xo} and virgin zones S_w
- $POI = \emptyset (S_{x0} S_w)$, producible oil index (POI) can be act as an indicator of recoverable hydrocarbon
- Recoverability factor is defined as $f = \frac{(S_{x0} S_w)}{(1 S_w)}$

 S_w = water saturation

LOGGING SPEED

- The speed of the logging tools are not same
- Natural and radio-active phenomena are random in nature, therefore necessary to accumulate count data over a period of time and compute the average to obtain a representative reading.
- Sufficient period of time to obtain a reading is required. It referred as "Time constant" (TC)
- Other factors such as uniformity of cable tension and risk of damage of pad type equipment are also considered

Recommended maximum logging speeds.

Survey	Maximum logging speed	
	(ft/min)	(m/min)
SP	100	30
Induction	100	30
Laterolog	50	15
Microlaterolog	35	10
Neutron) TC = 2 sec	30	9
$ \begin{array}{ccc} GR & & TC = 3 \text{ sec} \\ Density & TC = 4 \text{ sec} \end{array} $	20	6
Density TC = 4 sec	15	4.5
Sonic	70	20
Amplitude	35	10

WORKING ENVIRONMENTS

- Subsurface pressure (~10 MPa/km) and temperature (~25 -30 °c /km) normally increase with depth
- Logging companies provide operating conditions of the tools. Beyond that scenario, it is not recommend to run any of those logs

Example of a particular tool's environment specification

Environmental specifications	
Max. vibration, g_n [m/s ²]	20 [200] (G _{rms} random, 5 to 1,000 Hz)
Max. shock, g_n [m/s ²]	500 [5,000]
Max. temperature, degF [degC]	302 [150], 350 [175] ^{§§}
Max. working pressure, psi [MPa]	25,000 [172]
Mud sand content, %	1

END OF LECTURE

