MSDM 5058 Information Science Assignment 4 (due 20th April, 2023)

Submit your assignment solution on canvas. You may discuss with others or seek help from your TA, but should not directly copy from others. Otherwise, it will be considered as plagiarism.

(1) Stationary ARMA processes

The following time series is an AR(2) process, given by

$$(1 - 1.1B + 0.18B^{2})Y_{t} = \varepsilon_{t}$$

$$E[\varepsilon_{t}, \varepsilon_{\tau}] = \begin{cases} 1, & \text{for } t = \tau, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Is it covariance stationary? Why? (Refer to p.26 of the lecture on Time Series in Complex Systems).
- (b) If so, calculate its auto-covariance functions. (*Refer to p.36 of the lecture on Time Series in Complex Systems*).

(2) Linear Regression Models

You have a dataset and you want to perform a unit root test on this dataset. You run the following regression, where the numbers in parenthesis are the standard deviations (σ). Assume that the dataset has a large enough number of data points, i.e., $N \to \infty$.

$$\Delta X_t = 0.51(0.29) - 0.11(0.04)X_{t-1} - 0.39(0.09)\Delta X_{t-1} - 0.32(0.09)\Delta X_{t-2} - 0.22(0.10)\Delta X_{t-3} + 0.07(0.11)\Delta X_{t-4}.$$
 (1)

- (a) What is the t-statistic on the lagged term X_{t-1} . Compare this to the ADF statistic, at what significance level can you reject the null hypothesis? (Refer to the table at the end of this problem set.)
- (b) Now you want to forecast ΔX_t by using the following three regression models,

$$\Delta X_t = 0.002(0.014) - 0.31(0.10)\Delta X_{t-1}, \qquad (2)$$

$$\Delta X_t = 0.021(0.158) - 0.46(0.10)\Delta X_{t-1} - 0.39(0.11)\Delta X_{t-2} - 0.25(0.08)\Delta X_{t-3} + 0.03(0.07)\Delta X_{t-4}, \qquad (3)$$

$$\Delta X_t = 1.279(0.57) - 0.51(0.10)\Delta X_{t-1} - 0.44(0.11)\Delta X_{t-2} - 0.30(0.09)\Delta X_{t-3} + 0.02(0.08)\Delta X_{t-4} - 0.16(0.07)Y_{t-1}.$$
(4)

where Y is an independent variable. At what significance level can you reject the

null hypothesis for Y? (Compare this with a t distribution table).

(c) You are provided the following information on X_t for the next 5 time steps.

t	Y_t	X_t	ΔX_t
1	7.7	0.8	0.0
2	7.9	4.3	3.5
3	7.7	2.9	-1.4
4	7.0	1.3	-1.5
5	6.8	2.1	0.8

For each of the three models, calculate the predicted values for $\Delta X_{t=5}$. What is the forecast error in each of the three models?

(3) Fourier Transform of Impulses

In this question, you will learn about the Fourier Transform of impulses. Let us begin by considering a Gaussian impulse. (*Use the notations of Fourier Transform in the lecture, p.57.*)

- (a) Given the following Gaussian impulse, $f(t) = ce^{-b(t-t_0)^2}$, where t is the time variable. What is its Fourier Transform? What is the Fourier Transform of this impulse look like?
- (b) A Dirac delta function $\delta(x)$ has the property that,

$$\delta(x) = \begin{cases} 0, & x \neq 0, \\ \infty, & x = 0, \end{cases}$$

with the additional feature that

$$\int_{-\infty}^{\infty} \delta(x) dx = 1$$

Let us approximate a Dirac delta impulse $\delta(t-t_0)$ by using the Gaussian impulse above, where $c=\frac{1}{\sqrt{2\pi\sigma^2}}$ and $b=\frac{1}{2\sigma^2}$, so that $\int_{-\infty}^{\infty}ce^{-b(t-t_0)^2}dt=1$. The Dirac

delta impulse can be approximated by letting $\sigma \to 0$. From the result of (a), what is the Fourier Transform of a Dirac delta impulse. Comment on your result.

(c) Next, we consider some impulses that have temporal power law decay. Let us begin by considering a step function as follows.

$$f(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}.$$

If you naively perform the Fourier Transform, you will get something that is undefined. Instead, let us begin by considering the following function,

$$f(t) = \begin{cases} e^{-\alpha t}, & t \ge 0 \\ 0, & t < 0 \end{cases}.$$

Fourier Transform the above function and let $\alpha \to 0$ to get the Fourier Transform of the Dirac delta impulse. What is its Fourier Transform now? (**Note that the discontinuity at t = 0 will give a delta function in $f(\omega)$.) What is its power spectral distribution function? Comment on your result.

(d) Now, let us add another step function, but this time is a negative step function, so that the step function now becomes,

$$f(t) = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases}.$$

Again use the approximate as in c), what do you get for the Fourier Transform of this new step function?

(e) Use the result in (d) to obtain the Fourier Transform of f(t) = 1/t, |t| and $1/t^2$, $-\infty \le t \le \infty$. (Hint: For f(t) = 1/t, start from its inverse Fourier Transform and redefine the parameters in the integral, $t \to -\omega$, $\omega \to t'$.)

Augmented Fuller-Dickey Table:

Significance level	0.01	0.025	0.05	0.10			
Sample Size T	The	The τ statistic: No Constant or Time Trend ($a_0 = a_2 = 0$)					
25	-2.65	-2.26	-1.95	-1.60			
50	-2.62	-2.25	-1.95	-1.61			
100	-2.60	-2.24	-1.95	-1.61			
250	-2.58	-2.24	-1.95	-1.62			
300	-2.58	-2.23	-1.95	-1.62			
∞	-2.58	-2.23	-1.95	-1.62			
	The	The τ_{μ} statistic: Constant but No Time Trend $(a_2 = 0)$					
25	-3.75	-3.33	-2.99	-2.62			
50	-3.59	-3.22	-2.93	-2.60			
100	-3.50	-3.17	-2.89	-2.59			
250	-3.45	-3.14	-2.88	-2.58			
500	-3.44	-3.13	-2.87	-2.57			
∞	-3.42	-3.12	-2.86	-2.57			
		The τ_{τ} statistic: Constant + Time Trend					
25	-4.38	-3.95	-3.60	-3.24			
50	-4.15	-3.80	-3.50	-3.18			
100	-4.05	-3.73	-3.45	-3.15			
250	-3.99	-3.69	-3.43	-3.13			
500	-3.97	-3.67	-3.42	-3.13			
∞	-3.96	-3.67	-3.41	-3.12			

Source: The table is reproduced from Fuller (1996).