Exhibit B

Pharmacokinetics

SECOND EDITION, REVISED AND EXPANDED

Milo Gibaldi

University of Washington School of Pharmacy Seattle, Washington

Donald Perrier

School of Pharmacy University of Arizona Tucson, Arizona

MARCEL DEKKER, INC.

New York · Basel

Determination of Cmax and tmax

Mathematical relationships can be developed to estimate the time at which a peak plasma concentration of drug should be observed and the maximum plasma concentration at this time following first-order input into the body. Expanding Eq. (1.94) yields

$$C = \frac{k_a F X_0}{V(k_b - K)} e^{-Kt} - \frac{k_a F X_0}{V(k_b - K)} e^{-k_a t}$$
(1.102)

which when differentiated with respect to time gives

$$\frac{dC}{dt} = \frac{k_a^2 F X_0}{V(k_a - K)} e^{-k_a t} - \frac{k_a K F X_0}{V(k_a - K)} e^{-Kt}$$
(1.103)

When the plasma concentration reaches a maximum (C_{max}) at time t_{max} , dC/dt=0. Therefore,

$$\frac{k_a^2 F X_0}{V(k_B - K)} e^{-k_B t_{max}} = \frac{k_a K F X_0}{V(k_B - K)} e^{-Kt_{max}}$$
(1.104)

which reduces to

$$\frac{k}{K} = \frac{e^{-Kt}_{max}}{e^{-k} t_{max}}$$
 (1.105)

Taking the logarithm of both sides of Eq. (1.105) and solving for $t_{\mbox{\scriptsize max}}$ yields

$$t_{\text{max}} = \frac{2.303}{k_{\text{n}} - K} \log \frac{k_{\text{a}}}{K}$$
 (1.106)

For a given drug, as the absorption rate constant increases, the time required for the maximum plasma concentration to be reached decreases.

The maximum plasma concentration is described by substituting t_{max} for t in Eq. (1.94):

$$C_{\max} = \frac{k_a F X_0}{V(k_a - K)} \left(e^{-Kt_{\max}} - e^{-k_a t_{\max}} \right)$$
 (1.107)

However, a simpler expression can be obtained. From (1.105) it can be shown that

$$e^{-k} a^{t} max = \frac{K}{k_{p}} e^{-Kt} max$$
 (1.108)

Substituting for e-katmax, according to (1.108), in (1.107) yields

$$C_{\text{max}} = \frac{k_{a}^{FX} r_{0}}{V(k_{o} - K)} \frac{k_{a} - K}{k_{o}} e^{-Kt_{\text{max}}}$$
(1.109)

which is readily simplified to

$$C_{\max} = \frac{FX_0}{V} e^{-Kt_{\max}}$$
 (1.110)

The values of C_{max} and t_{max} under the special circumstance when k_a = K is of mathematical interest and will be considered briefly. Under these conditions, Eq. (1.92) can be written as

$$\overline{X} = \frac{KFX_0}{(s+K)^2}$$
 (1.111)

Hence

$$X = KFX_0 te^{-Kt}$$
 (1.112)

$$C = \frac{KFX_0 te^{-Kt}}{V}$$
 (1.113)

and

$$\log C = \log \frac{KFX_0 t}{V} - \frac{Kt}{2.303}$$
 (1.114)

Equation (1.114) indicates that when k_a = K, a semilogarithmic plot of C versus t will contain no linear segments.

Differentiating Eq. (1.113) with respect to time yields

$$\frac{dC}{dt} = \frac{KFX_0}{V} e^{-Kt} - \frac{K^2FX_0}{V} te^{-Kt}$$
 (1.115)

At t_{max} , $C = C_{max}$ and dC/dt = 0. Therefore,

$$\frac{\text{KFX}_0}{V} e^{-\text{Kt}_{\text{max}}} = \frac{\text{K}^2 \text{FX}_0}{V} t_{\text{max}} e^{-\text{Kt}_{\text{max}}}$$
 (1.116)