Math 582 Intro to Set Theory Lecture 34

Kenneth Harris

kaharri@umich.edu

Department of Mathematics University of Michigan

April 13, 2009

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 34

April 13, 2009 1 / 1

Introduction

Introduction

This lecture is an introduction to the club filter and its closure properties. It corresponds to the material from H+J sections 11.1, 11.2 and the first half of section 11.3. See also the first half of Lectures 29 on using Tukey's Lemma to produce ultrafilters.

Definition: Filter and Ideal

Definition

Let $A \neq \emptyset$.

 $^{\square}$ (Cartan, 1937) A filter on A is a nonempty family $\mathcal{F}\subseteq\mathcal{P}(A)$ satisfying

- (a) $\emptyset \notin \mathcal{F}$,
- (b) If $X, Y \in \mathcal{F}$, then $X \cap Y \in \mathcal{F}$,
- (c) If $X \in \mathcal{F}$ and $X \subseteq Y$, then $X \in \mathcal{F}$.

 \mathbb{G} (Stone, 1934) An ideal on A is a nonempty family $\mathcal{I} \subseteq \mathcal{P}(A)$ satisfying

- (a') $A \notin \mathcal{I}$,
- (b') If $X, Y \in \mathcal{I}$, then $X \cup Y \in \mathcal{I}$,
- (c') If $X \in \mathcal{I}$ and $X \supseteq Y$, then $Y \in \mathcal{I}$.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 34

April 13, 2009

5/1

Filters and Ideals

Filters and Ideals as dual concepts

The concept of ideal is the dual concept to that of filter:

• Replace \emptyset , \cap , \subseteq in (a-c) of the filter definition with A, \cup , \supseteq in (a'-c') of ideal definition.

If $\mathcal{F} \subseteq \mathcal{P}(A)$ is a filter on A, then its dual ideal is obtained by taking complements:

$$\mathcal{I} = \{ A - X \mid X \in \mathcal{F} \}.$$

and dually, starting with an ideal we can form its dual filter.

Example. For κ a cardinal,

$$\mathcal{I}_{\kappa} = \{ X \subseteq \kappa \mid |X| < \kappa \}.$$

is an ideal on κ whose dual filter is

$$\mathcal{F}_{\kappa} = \{ X \subseteq \kappa \mid |A - X| < \kappa \}$$

Filters and Ideals as dual concepts

Definition

 $\ ^{\ }$ A filter $\mathcal F$ on A is κ -complete if $\mathcal F$ is closed under $<\kappa$ intersections of its members:

$$G \subseteq \mathcal{F} \land |G| < \kappa \rightarrow \bigcap G \in \mathcal{F}.$$

 $^{\square}$ An ideal $\mathcal I$ on A is κ -complete if $\mathcal I$ is closed under $<\kappa$ unions of its members:

Example. The ideal \mathcal{I}_{κ} on κ

$$\mathcal{I}_{\kappa} = \{ X \subseteq \kappa \mid |X| < \kappa \}.$$

is κ -complete, but not κ^+ -complete.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 34

April 13, 2009

7/1

Filters and Ideal

Members of an ideal as Insignificant sets

 \square An ideal \mathcal{I} over a set A is often chosen because the members of the ideal are regarded as the "infinitely small" or "insignificant" subsets of A.

For example, the subsets of κ of "small cardinality".

- (a') A itself is NOT insignificant,
- (b') If X and Y is insignificant, then so is their union $X \cup Y$,
- (c') If X is insignificant and $X \supseteq Y$, then Y is also insignificant.

The dual filter \mathcal{F} over a set A can be regarded as the subsets of A which contain "nearly all of A", except for an insignificant part.

Definition: Club sets

Convention. All cardinals κ that we consider in this lecture will be regular and uncountable – unless we explicitly state otherwise.

Definition

- $^{\square}$ A subset $C \subseteq \kappa$ is closed if and only if $\sup C \cap \alpha \in C$ for all $\alpha < \kappa$.
- $^{\square}$ A subset $C \subseteq \kappa$ is unbounded in κ if sup $C = \kappa$.
- $^{\square}$ A subset $C \subseteq \kappa$ is a club in κ if C is closed and unbounded in κ .

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 34

April 13, 2009

10 / 1

Closed Unbounded Sets

Finite Intersection Property

© Clubs have the finite intersection property.

Lemma

If A and B are clubs in κ , then A \cap B is also a club in κ .

It is essential that $cf(\kappa) > \omega$. For example, the following are clubs in \aleph_{ω} with empty intersection:

$$A = \{ \aleph_{2n} \mid n \in \omega \}$$
 $B = \{ \aleph_{2n+1} \mid n \in \omega \}$

The intersection of two closed sets is always closed.

 \square It remains to show that $A \cap B$ is unbounded.

Let $\alpha \in \kappa$. We define an increasing sequence $\langle c_n \mid n \in \omega \rangle$ by recursion, using the fact that A and B are unbounded.

$$c_0$$
 = least in A greater than α .

$$c_{2n}$$
 = least in A greater than c_{2n-1} .

$$c_{2n+1}$$
 = least in *B* greater than c_{2n} .

Let $\gamma = \sup_k c_k$. Since A and B are closed,

$$\sup_{n} c_{2n} = \gamma \in A$$

$$\sup_{n} c_{2n+1} = \gamma \in B$$

$$\sup_{n} c_{2n+1} = \gamma \in B$$

Thus, $\alpha < \gamma \in A \cap B$.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 34

April 13, 2009

Closed Unbounded Sets

The club filter

they generate a filter on κ , the club filter,

$$\mathcal{F}_{\kappa}^{\clubsuit} = \{ X \subseteq \kappa \mid X \supseteq C \text{ for some club } C \supseteq \kappa \}$$

 $\mathcal{F}^{\clubsuit}_{\kappa} \neq \emptyset$ since κ itself is a club. Slightly less trivially

- The set of limit points of κ is a club. Furthermore, if C is any club, the limit points within *C* is a club.
- More generally, if $C \subseteq \kappa$ is an unbounded set, then the set of limit points of C is a club.

(We say α is a limit point of a set of ordinals C if for every $\gamma < \alpha$ there is a $\beta \in C$ with $\gamma < \beta < \alpha$.)

Stronger Closure Property of Club Filter

The club filter satisfies a much stronger closure property then the finite intersection property: it is κ -complete.

Lemma

For each $\lambda < \kappa$ and each family of clubs of κ { $C_{\xi} | \xi < \lambda$ }, the intersection $\bigcap_{\xi < \lambda} C_{\xi}$ is also a club.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 34

April 13, 2009

14/1

Closed Unbounded Sets

Proof

The intersection of any number of closed sets is always closed.

 oxtimes It remains to show that $\bigcap_{\xi<\lambda} C_\xi$ is unbounded.

Let $\alpha \in \kappa$. Construct a sequence $\langle c_{\delta} \mid \delta < \lambda \cdot \omega \rangle$ by transfinite induction. To simplify notation recall that the type of $\omega \times \lambda$ under lexicographic order is $\lambda \cdot \omega$.

By recursion on $\delta=(n,\xi)$ with $\xi<\lambda,\ n<\omega$ (and using C_ξ unbounded)

 $c_{\delta=(n,\xi)} = \text{least in } C_{\xi} \text{ greater than } \alpha \text{ and } c_{\delta'=(n',\xi')} \text{ with } \delta' < \delta.$

Let $\gamma = \sup_{\delta} c_{\delta}$. Since each C_{ξ} is closed and κ is regular

$$\sup_{n\in\omega}c_{\delta=(n,\xi)} = \gamma\in C_{\xi}$$

Thus, $\alpha < \gamma \in \bigcap_{\xi < \lambda} C_{\xi}$.

Normal functions defined

Recall the definition of a normal function from Lecture 20. We now restrict the definition to a regular uncountable cardinal κ .

Definition

Consider a function $f : \kappa \to \kappa$.

- f is order preserving if $\forall \alpha, \beta \in \kappa \ (\alpha < \beta \rightarrow f(\alpha) < f(\beta))$.
- f is continuous if for every limit ordinal $\alpha < \kappa$, $f(\alpha) = \sup\{f(\beta) \mid \beta < \alpha\}.$
- f is normal if f is order preserving and continuous.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 34

April 13, 2009

16 / 1

Closed Unbounded Sets

Normal functions

The next result provides an alternative characterization of clubs as the range of normal functions.

Theorem

A set $C \subseteq \kappa$ is a club in κ if and only if it is the range of a normal function $f : \kappa \to \kappa$.

An immediate corollary is

Corollary

Let $f: \kappa \to \kappa$ be a normal function. Then the set of fixed-points

$$C = \{ \alpha < \kappa \mid f(\alpha) = \alpha \}$$

is a club in κ .

If $f: \kappa \to \kappa$ is a normal function, then $C = \operatorname{ran}(f)$ is clearly a club in κ .

□ Let C ⊆ κ is a club. Define a function f : κ → κ by transfinite recursion

$$f(\alpha) = \text{least member of } C - f[\alpha]$$
.

Since C is unbounded in κ , which is regular, $|C| = \kappa$, so that f is well-defined on κ . Furthermore, f is clearly order-preserving by its definition.

Let $\alpha < \kappa$ be a limit ordinal. Since $f[\alpha] \subseteq C$ and C is closed, $\sup f[\alpha] \in C$. Thus, $f(\alpha) = \sup f[\alpha] = \sup_{\xi < \alpha} f(\xi)$. Hence f is continuous.

Therefore, $f: \kappa \to \kappa$ is normal.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 34

April 13, 2009

18 / 1

Closed Unbounded Sets

More &s

The next result generalizes the previous result that the fixed points of normal functions on κ are clubs.

Definition. We say α is a closure point of a function $f : \kappa \to \kappa$ if $f[\alpha] \subseteq \alpha$ (that is, $f(\xi) < \alpha$ whenever $\xi < \alpha$.)

Lemma

Let $f : \kappa \to \kappa$. Then the set of closure points of f,

$$C = \{ \alpha < \kappa \mid f[\alpha] \subseteq \alpha \},\$$

is a club.

Let

$$C = \{ \alpha < \kappa \mid f[\alpha] \subseteq \alpha \},\$$

Since $f[\alpha] = \bigcup_{\beta < \alpha} f[\beta]$ for any limit ordinal α , C is closed.

It remains to show C is unbounded. Fix $\alpha_0 < \kappa$. Define by recursion an increasing sequence $\langle \alpha_n \mid n \in \omega \rangle$ by

$$\alpha_{n+1}$$
 = least in κ greater than α_n with $f[\alpha_n] \subseteq \alpha_{n+1}$

Since κ is regular, $f[\delta]$ is bounded for each $\delta < \kappa$, so the sequence is well defined. Let

$$\alpha = \sup_{n} \alpha_{n}.$$

Then

$$f[\alpha] = \bigcup_{n} f[\alpha_n] \subseteq \bigcup_{n+1} f[\alpha_{n+1}] = \alpha$$

so that $\alpha \in C$.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 34

April 13, 2009

20 / 1

Closed Unbounded Sets

Diagonal intersection

It is certainly not true that clubs on κ are closed under κ -intersections: let $C_{\alpha} = \kappa - \alpha$, and so

$$\bigcap_{\alpha<\kappa} C_{\alpha}=\emptyset.$$

However, the next lemma provides an extension to κ many clubs.

Lemma

For any κ -sequence of clubs in κ , $\langle C_{\alpha} \mid \alpha < \kappa \rangle$, the diagonal intersection defined by

$$\Delta_{\alpha < \kappa} C_{\alpha} = \{ \gamma \in \kappa \mid \forall \xi < \gamma \left[\gamma \in C_{\xi} \right] \}$$

is a club in κ .

$$C = \Delta_{\alpha < \kappa} C_{\alpha} = \{ \gamma \in \kappa \mid \forall \xi < \gamma [\gamma \in C_{\xi}] \}$$

Show C is closed. Let γ be a limit ordinal. We may assume $C \cap \gamma$ is unbounded below γ , otherwise replace γ by $C \cap \gamma$ and argue as below.

There is a strictly increasing sequence $\langle \gamma_{\xi} | \xi < \mathsf{cf}(\gamma) \rangle$ from C with $\gamma = \sup_{\xi < \mathsf{cf}(\gamma)} \gamma_{\xi}$. Note, by definition, for each $\alpha < \mathsf{cf}(\gamma)$:

$$\gamma_{\xi} \in \bigcap_{eta < \gamma_{\alpha}} C_{eta} \qquad ext{for each } \xi > lpha,$$

so that $\gamma = \sup_{\xi > \alpha} \gamma_{\xi} \in \bigcap_{\beta < \gamma_{\alpha}} C_{\beta}$, as this set is closed. Thus,

$$\gamma \in \bigcap_{lpha < \mathsf{cf}(\gamma)} ig(\bigcap_{eta < \gamma_lpha} oldsymbol{C}_eta ig) \ = \ \bigcap_{\delta < \gamma} oldsymbol{C}_\delta;$$

and so $\gamma \in C$.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 34

Closed Unbounded Sets

Proof - continued

$$C = \Delta_{\alpha < \kappa} C_{\alpha} = \{ \gamma \in \kappa \mid \forall \xi < \gamma [\gamma \in C_{\xi}] \}$$

Show *C* is unbounded. Note that any $\gamma < \kappa$, $\bigcap_{\xi < \gamma} C_{\gamma}$ is a club.

Fix $\alpha_0 \in \kappa$. Define a sequence $\langle \alpha_n | n < \omega \rangle$ by recursion:

$$\alpha_{n+1} = \text{least ordinal in } \bigcap_{\xi < \alpha_n} C_{\xi}.$$

Let $\alpha = \sup_{n} \alpha_n$. Then for each n,

$$\{\alpha_{n+1}, \alpha_{n+2}, \dots\} \subseteq \bigcap_{\xi < \alpha_n} C_{\xi}.$$

so that $\alpha \in \bigcap_{\xi < \alpha_n} C_{\xi}$, as this set is closed. Thus,

$$\alpha \in \bigcap_{n<\omega} \left(\bigcap_{\xi<\alpha_n} C_{\xi}\right) = \bigcap_{\delta<\alpha} C_{\delta};$$

and so $\alpha \in C$.

Kenneth Harris (Math 582)