PCT

(21) International Application Number:

(22) International Filing Date:

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 97/17432	
C12N 5/14, 15/00, 15/05, 15/09, 15/29, 15/31, 15/64, 15/82, A01G 13/00, A01H 1/00	A1	(43) International Publication Date:	15 May 1997 (15.05.97)	

PCT/US96/18003

6 November 1996 (06.11.96)

(30) Priority Data:			

NO) Priority Data:		
60/007,255	6 November 1995 (06.11.95)	US
08/608,423	28 February 1996 (28.02.96)	US
08/705,484	28 August 1996 (28.08.96)	US

(71) Applicant: WISCONSIN ALUMNI RESEARCH FOUNDA-TION [US/US]; 614 North Walnut Street, Madison, WI 53707-7365 (US).

- (72) Inventors: ENSIGN, Jerald, C.; 1810 North Walnut Street, Madison, WI 53705 (US). BOWEN, David, J.; 5668 Highway A, Oregon, WI 53575 (US). PETELL, James; 1427 Hunters Glen, Zionsville, IN 46077 (US). FATIG, Raymond; 30 Clay Court, Zionsville, IN 46077 (US). SCHOONOVER, Sue; 7142 Marstella, Brownsburg, IN 46112 (US). FFRENCH-CONSTANT, Richard, H.; 1006 University Bay Drive, Madison, WI 53705 (US). ROCHE-LEAU, Thomas, A.; 3100 Buena Vista Street, Madison, WI 53704 (US). BLACKBURN, Michael, B.; 2127 Luann Lane, Madison, WI 53713 (US). HEY, Timothy, D.; 1653 Catalina Way, Zionsville, IN 46077 (US). MERLO, Donald, J.; 11845 Durbin Drive, Carmel, IN 46032 (US). ORR, Gregory, L.; 1028 Saratoga Circle, Indianapolis, IN 46280 (US). ROBERTS, Jean, L.; 26035 State Road 19, Arcadia, IN 46030 (US). STRICKLAND, James, A.; 780 Mt. Zion Road, Lebanon, IN 46052 (US). GUO, Lining; 7 Nelson Circle, Brownsburg, IN 46112 (US). CICHE, Todd, A.; 1609 Chadbourne Avenue, Madison, WI 53705 (US).
- (74) Agent: SEAY, Nicholas, J.; Quarles & Brady, P.O. Box 2113, Madison, WI 53701-2113 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: INSECTICIDAL PROTEIN TOXINS FROM PHOTORHABDUS

(57) Abstract

Proteins from the genus *Photorhabdus* are toxic to insects upon exposure. *Photorhabdus luminescens* (formerly *Xenorhabdus luminescens*) have been found in mammalian clinical samples and as a bacterial symbiont of entomopathogenic nematodes of genus *Heterorhabditis*. These protein toxins can be applied to, or genetically engineered into, insect larvae food and plants for insect control.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	
BB	Barbados	GR	Greece	NL NL	Niger Netherlands
BE	Belgium	HU	Hungary	NO NO	
BF	Burkina Faso	ie.	Ireland	NZ.	Norway
BG	Bulgaria	īī	Italy		New Zealand
BJ	Benin	JР	Japan	PL	Poland
BR	Brazil	KE	Kenya	PT	Portugal
BY	Belarus	KG	Kyrgystan	RO	Romania
CA	Canada	KP		RU	Russian Federation
CF	Central African Republic	N.	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR		SE	Sweden
CH	Switzerland	KZ	Republic of Korea	SG	Singapore
CI	Côte d'Ivoire	u kz	Kazakhstan	SI	Slovenia
CM	Cameroon		Liechtenstein	SK	Slovakia
CN	China	LK	Sri Lanka	SN	Senegal
CS	Czechoslovskia	LR	Liberia	SZ	Swaziland
CZ	Czech Republic	LT	Lithuania	TD	Chad
DE	Germany	LU	Luxembourg	TG	Togo
DK	Denmark	LV	Latvia	TJ	Tajikistan
EE		MC	Monaco	TT	Trinidad and Tobago
	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
PR .	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

INSECTICIDAL PROTEIN TOXINS FROM PHOTORHABDUS

5

10

15

Field of the Invention

The present invention relates to toxins isolated from bacteria and the use of said toxins as insecticides.

20

25

30

35

Background of the Invention

Many insects are widely regarded as pests to homeowners, to picnickers, to gardeners, and to farmers and others whose investments in agricultural products are often destroyed or diminished as a result of insect damage to field crops. Particularly in areas where the growing season is short, significant insect damage can mean the loss of all profits to growers and a dramatic decrease in crop yield. Scarce supply of particular agricultural products invariably results in higher costs to food processors and, then, to the ultimate consumers of food plants and products derived from those plants.

Preventing insect damage to crops and flowers and eliminating the nuisance of insect pests have typically relied on strong organic pesticides and insecticides with broad toxicities. These synthetic products have come under attack by the general population as being too harsh on the environment and on those exposed to such agents. Similarly in non-agricultural settings, homeowners would be satisfied to have insects avoid their homes or outdoor meals without needing to kill the insects.

The extensive use of chemical insecticides has raised environmental and health concerns for farmers, companies that produce the insecticides, government agencies, public interest groups, and the public in general. The development of less intrusive pest management strategies has been spurred along both by societal concern for the environment and by the development of biological tools which exploit mechanisms of insect management. Biological control agents present a promising alternative to chemical insecticides.

Organisms at every evolutionary development level have devised means to enhance their own success and survival. The use of biological molecules as tools of defense and aggression is known throughout the animal and plant kingdoms. In addition, the relatively new tools of the genetic engineer allow modifications to biological insecticides to accomplish particular solutions to particular problems.

10

15

20

25

30

35

One such agent, Bacillus thuringiensis (Bt), is an effective insecticidal agent, and is widely commercially used as such. In fact, the insecticidal agent of the Bt bacterium is a protein which has such limited toxicity, it can be used on human food crops on the day of harvest. To non-targeted organisms, the Bt toxin is a digestible non-toxic protein.

Another known class of biological insect control agents are certain genera of nematodes known to be vectors of transmission for insect-killing bacterial symbionts. Nematodes containing insecticidal bacteria invade insect larvae. The bacteria then kill the larvae. The nematodes reproduce in the larval cadaver. The nematode progeny then eat the cadaver from within. The bacteria-containing nematode progeny thus produced can then invade additional larvae.

In the past, insecticidal nematodes in the Steinernema and Heterorhabditis genera were used as insect control agents. Apparently, each genus of nematode hosts a particular species of bacterium. In nematodes of the Heterorhabditis genus, the symbiotic bacterium is Photorhabdus luminescens.

Although these nematodes are effective insect control agents, it is presently difficult, expensive, and inefficient to produce, maintain, and distribute nematodes for insect control.

It has been known in the art that one may isolate an 40 insecticidal toxin from *Photorhabdus luminescens* that has

activity only when injected into Lepidopteran and Coleopteran insect larvae. This has made it impossible to effectively exploit the insecticidal properties of the nematode or its bacterial symbiont. What would be useful would be a more practical, less labor-intensive wide-area delivery method of an insecticidal toxin which would retain its biological properties after delivery. It would be quite desirous to discover toxins with oral activity produced by the genus *Photorhabdus*. The isolation and use of these toxins are desirous due to efficacious reasons. Until applicants' discoveries, these toxins had not been isolated or characterized.

Summary of the Invention

The native toxins are protein complexes that are produced and secreted by growing bacteria cells of the genus Photorhabdus, of interest are the proteins produced by the species Photorhabdus luminescens. The protein complexes, with a molecular size of approximately 1,000 kDa, can be separated by SDS-PAGE gel

analysis into numerous component proteins. The toxins contain no hemolysin, lipase, type C phospholipase, or nuclease activities. The toxins exhibit significant toxicity upon exposure administration to a number of insects.

The present invention provides an easily administered insecticidal protein as well as the expression of toxin in a heterologous system.

The present invention also provides a method for delivering insecticidal toxins that are functional active and effective against many orders of insects.

Objects, advantages, and features of the present invention will become apparent from the following specification.

Brief Description of the Drawings

Fig. 1 is an illustration of a match of cloned DNA isolates used as a part of sequence genes for the toxin of the present invention.

Fig. 2 is a map of three plasmids used in the sequencing process.

Fig. 3 is a map illustrating the inter-relationship of several partial DNA fragments.

Fig. 4 is an illustration of a homology analysis between the protein sequences of $TcbA_{ii}$ and $TcaB_{ii}$ proteins.

- Fig. 5 is a phenogram of Photorhabdus strains. Relationship of Photorhabdus Strains was defined by rep-PCR. The upper axis of Fig. 5 measures the percentage similarity of strains based on scoring of rep-PCR products (i.e., 0.0 [no similarity] to 1.0 [100% similarity]). At the right axis, the numbers and letters indicate the various strains tested; 14=W-14, 10 Hm=Hm, H9=H9, 7=WX-7, 1=WX-1, 2=WX-2, 88=HP88, NC-1=NC-1, 4=WX-4, 9=WX-9, 8=WX-8, 10=WX-10, WIR=WIR, 3=WX-3, 11=WX-11, 5=WX-5, 6=WX-6, 12=WX-12, x14=WX-14, 15=WX-15, Hb=Hb, B2=B2, 48 through 52=ATCC 43948 through ATCC 43952. Vertical lines separating horizontal lines indicate the degree of relatedness (as read from the extrapolated intersection of the vertical line with the upper axis) between strains or groups of strains at the base of the horizontal lines (e.g., strain W-14 is approximately 60% similar to strains H9 and Hm).
- Fig. 6 is an illustration of the genomic maps of the W-14 Strain.

Detailed Description of the Invention

25 The present inventions are directed to the discovery $c \cdot f$ a unique class of insecticidal protein toxins from the genus Photorhabdus that have oral toxicity against insects. A unique feature of Photorhabdus is its bioluminescence. Photorhabdus may be isolated from a variety of sources. One such source is nematodes, more particularly nematodes of the genus 30 Heterorhabditis. Another such source is from human clinical samples from wounds, see Farmer et al. 1989 J. Clin. Microbiol. 27 pp. 1594-1600. These saprohytic strains are deposited in the American Type Culture Collection (Rockville, MD) ATCC #s 43948. 43949, 43950, 43951, and 43952, and are incorporated herein by 35 reference. It is possible that other sources could harbor Photorhabdus bacteria that produce insecticidal toxins. Such sources in the environment could be either terrestrial or aquatic based.

The genus Photorhabdus is taxonomically defined as a member of the Family Enterobacteriaceae, although it has certain traits atypical of this family. For example, strains of this genus are nitrate reduction negative, yellow and red pigment producing and bioluminescent. This latter trait is otherwise unknown within the Enterobacteriaceae. Photorhabdus has only recently been described as a genus separate from the Xenorhabdus (Boemare et al., 1993 Int. J. Syst. Bacteriol. 43, 249-255). This differentiation is based on DNA-DNA hybridization studies, 10 phenotypic differences (e.g., presence (Photorhabdus) or absence (Xenorhabdus) of catalase and bioluminescence) and the Family of the nematode host (Xenorhabdus; Steinernematidae, Photorhabdus; Heterorhabditidae). Comparative, cellular fatty-acid analyses (Janse et al. 1990, Lett. Appl. Microbiol 10, 131-135; Suzuki et al. 1990, J. Gen. Appl. Microbiol., 36, 393-401) support the 15 separation of Photorhabdus from Xenorhabdus.

In order to establish that the strain collection disclosed herein was comprised of Photorhabdus strains, the strains were characterized based on recognized traits which define 20 Photorhabdus and differentiate it from other Enterobacteriaceae and Xenorhabdus species. (Farmer, 1984 Bergey's Manual of Systemic Bacteriology Vol. 1 pp.510-511; Akhurst and Boemare 1988, J. Gen. Microbiol. 134 pp.1835-1845; Boemare et al. 1993 Int. J. Syst. Bacteriol. 43 pp.249-255, which are incorporated herein by 25 reference). The traits studied were the following: gram stain negative rods, organism size, colony pigmentation, inclusion bodies, presence of catalase, ability to reduce nitrate, bioluminescence, dye uptake, gelatin hydrolysis, growth on selective media, growth temperature, survival under anerobic 30 conditions and motility. Fatty acid analysis was used to confirm that the strains herein all belong to the single genus Photorhabdus.

Currently, the bacterial genus *Photorhabdus* is comprised of a single defined species, *Photorhabdus luminescens* (ATCC Type strain #29999, Poinar et al., 1977, Nematologica 23, 97-102). A variety of related strains have been described in the literature (e.g. Akhurst et al. 1988 J. Gen. Microbiol., 134, 1835-1845; Boemare et al. 1993 Int. J. Syst. Bacteriol. 43 pp. 249-255; Putz et al. 1990, Appl. Environ. Microbiol., 56, 181-186). Numerous

5

10

Photornabdus strains have been characterized herein. Such strains are listed in Table 18 in the Examples. Because there is currently only one species (luminescens) defined within the genus Photornabdus, the luminescens species traits were used to characterize the strains herein. As can be seen in Fig. 5, these strains are quite diverse. It is not unforeseen that in the future there may be other Photornabdus species that will have some of the attributes of the luminescens species as well as some different characteristics that are presently not defined as a trait of Photornabdus luminescens. However, the scope of the invention herein is to any Photornabdus species or strains which produce proteins that have functional activity as insect control agents, regardless of other traits and characteristics.

Furthermore, as is demonstrated herein, the bacteria of the genus Photorhabdus produce proteins that have functional activity as defined herein. Of particular interest are proteins produced by the species Photorhabdus luminescens. The inventions herein should in no way be limited to the strains which are disclosed herein. These strains illustrate for the first time that

20 proteins produced by diverse isolates of Photorhabdus are toxic upon exposure to insects. Thus, included within the inventions described herein are the strains specified herein and any mutants thereof, as well as any strains or species of the genus Photorhabdus that have the functional activity described herein.

25 There are several terms that are used herein that have a

By "functional activity" it is meant herein that the protein toxins function as insect control agents in that the proteins are orally active, or have a toxic effect, or are able to disrupt or deter feeding, which may or may not cause death of the insect. When an insect comes into contact with an effective amount of toxin delivered via transgenic plant expression, formulated protein compositions(s), sprayable protein composition(s), a bait matrix or other delivery system, the results are typically death of the insect, or the insects do not feed upon the source which makes the toxins available to the insects.

particular meaning and are as follows:

The protein toxins discussed herein are typically referred to as "insecticides". By insecticides it is meant herein that the protein toxins have a "functional activity" as further defined herein and are used as insect control agents.

5

10

35

40

By the use of the term "oligonucleotides" it is meant a macromolecule consisting of a short chain of nucleotides of either RNA or DNA. Such length could be at least one nucleotide, but typically are in the range of about 10 to about 12 nucleotides. The determination of the length of the oligonucleotide is well within the skill of an artisan and should not be a limitation herein. Therefore, oligonucleotides may be less than 10 or greater than 12.

By the use of the term "toxic" or "toxicity" as used herein it is meant that the toxins produced by *Photorhabdus* have "functional activity" as defined herein.

By the use of the term "genetic material" herein, it is meant to include all genes, nucleic acid, DNA and RNA.

Fermentation broths from selected strains reported in Table 18 were used to determine the following: breadth of insecticidal toxin production by the Photorhabdus genus, the insecticidal spectrum of these toxins, and to provide source material to purify the toxin complexes. The strains characterized herein have been shown to have oral toxicity against a variety of insect orders. Such insect orders include but are not limited to Coleoptera, Homoptera, Lepidoptera,

30 Diptera, Acarina, Hymenoptera and Dictyoptera.

As with other bacterial toxins, the rate of mutation of the bacteria in a population causes many related toxins slightly different in sequence to exist. Toxins of interest here are those which produce protein complexes toxic to a variety of insects upon exposure, as described herein. Preferably, the toxins are active against Lepidoptera, Coleoptera, Homopotera, Diptera, Hymenoptera, Dictyoptera and Acarina. The inventions herein are intended to capture the protein toxins homologous to protein toxins produced by the strains herein and any derivative

By the use of the term "Photorhabdus toxin" it is meant any protein produced by a Photorhabdus microorganism strain which has functional activity against insects, where the Photorhabdus toxin could be formulated as a sprayable composition, expressed by a transgenic plant, formulated as a bait matrix, delivered via a Baculovirus, or delivered by any other applicable host or delivery system.

strains thereof, as well as any protein toxins produced by Photorhabdus. These homologous proteins may differ in sequence, but do not differ in function from those toxins described herein. Homologous toxins are meant to include protein complexes of between 300 kDa to 2,000 kDa and are comprised of at least $t_{\rm W}$ (2) subunits, where a subunit is a peptide which may or may not be the same as the other subunit. Various protein subunits have been identified and are taught in the Examples herein. Typically, the protein subunits are between about 18 kDa to about 10 230 kDa; between about 160 kDa to about 230 kDa; 100 kDa to 160 kDa; about 80 kDa to about 100 kDa; and about 50 kDa to about 80 kDa.

As discussed above, some Photorhabdus strains can be isolated from nematodes. Some nematodes, elongated cylindrical 15 parasitic worms of the phylum Nematoda, have evolved an ability to exploit insect larvae as a favored growth environment. insect larvae provide a source of food for growing nematodes and an environment in which to reproduce. One dramatic effect that follows invasion of larvae by certain nematodes is larval death. Larval death results from the presence of, in certain nematodes, bacteria that produce an insecticidal toxin which arrests larval growth and inhibits feeding activity.

20

25

30

35

Interestingly, it appears that each genus of insect parasitic nematode hosts a particular species of bacterium, uniquely adapted for symbiotic growth with that nematode. In the interim since this research was initiated, the name of the bacterial genus Xenorhabdus was reclassified into the Xenorhabdus and the Photorhabdus. Bacteria of the genus Photorhabdus are characterized as being symbionts of Heterorhabditus nematodes while Xenorhabdus species are symbionts of the Steinernema species. This change in nomenclature is reflected in this specification, but in no way should a change in nomenclature alter the scope of the inventions described herein.

The peptides and genes that are disclosed herein are named according to the guidelines recently published in the Journal of Bacteriology "Instructions to Authors" p. i-xii (Jan. 1996), which is incorporated herein by reference. The following peptides and genes were isolated from Photorhabdus strain W-14.

Peptide / Gene Nomenclature Toxin complex (Tc)

	Peptide	Gene	Patent
5	Name	Name	Sequence ID#
	tca genomic region		
	TcaA	tcaA	12
	TcaA _{iii}	tcaA	4
10	TcaBi	tcaB	3 (19, 20)
	TcaBii	tcaB	5
	TcaC	tcaC	2
	tcb genomic region		
15	TcbA	t cbA	16
	TcbAi	t <i>cb</i> A	(pro-peptide)
	TcbAii	t cbA	1 (21, 22, 23, 24)
	TcbA _{iii}	tcbA	40
•			
20	tcc genomic region		
	TCCA	t ccA	8
	TCCB	t ccB	7
	tcd genomic region		
25	TcdAi		/mma
4.5	-	tcdA	(pro-peptide)
	TcdAii	tcdA	13, (38, 39
	m = 45 · · · ·	_	17, 18)
	TcdAiii	tcdA	41, (42, 43)
••	TcdB	t cdB	14
30			·

(bracket sequence indicates internal amino acid sequence obtained by tryptic digests)

35 The sequences listed above are grouped by genomic region. The tcbA gene was expressed in E. coli as two protein fragments TcbA and TcbAiii as illustrated in the Examples. It may be beneficial to have proteolytic clippage of some sequences to obtain the higher activity of the toxins for commercial 40 transgenic applications.

The toxins described herein are quite unique in that the toxins have functional activity, which is key to developing an insect management strategy. In developing an insect management 45 strategy, it is possible to delay or circumvent the protein degradation process by injecting a protein directly into an organism, avoiding its digestive tract. In such cases, the protein administered to the organism will retain its function until it is denatured, non-specifically degraded, or eliminated by the immune system in higher organisms. Injection into insects

50

10

15

20

25

30

40

of an insecticidal toxin has potential application only in the laboratory, and then only on large insects which are easily injected. The observation that the insecticidal protein toxins herein described exhibits their toxic activity after oral ingestion or contact with the toxins permits the development of an insect management plan based solely on the ability to incorporate the protein toxins into the insect diet. Such a plan could result in the production of insect baits.

The Photorhabdus toxins may be administered to insects in a purified form. The toxins may also be delivered in amounts from about 1 to about 100 mg / liter of broth. This may vary upon formulation condition, conditions of the inoculum source, techniques for isolation of the toxin, and the like. may be administered as an exudate secretion or cellular protein originally expressed in a heterologous prokaryotic or eukaryotic host. Bacteria are typically the hosts in which proteins are expressed. Eukaryotic hosts could include but are not limited to plants, insects and yeast. Alternatively, the toxins may be produced in bacteria or transgenic plants in the field or in the insect by a baculovirus vector. Typically the toxins will be introduced to the insect by incorporating one or more of the toxins into the insects' feed.

Complete lethality to feeding insects is useful but is not required to achieve useful toxicity. If the insects avoid the toxin or cease feeding, that avoidance will be useful in some applications, even if the effects are sublethal. For example, if insect resistant transgenic crop plants are desired, a reluctance of insects to feed on the plants is as useful as lethal toxicity to the insects since the ultimate objective is protection of the plants rather than killing the insect.

There are many other ways in which toxins can be incorporated into an insect's diet. As an example, it is possible to adulterate the larval food source with the toxic protein by spraying the food with a protein solution, as 35 disclosed herein. Alternatively, the purified protein could be genetically engineered into an otherwise harmless bacterium, which could then be grown in culture, and either applied to the food source or allowed to reside in the soil in an area in which insect eradication was desirable. Also, the protein could be genetically engineered directly into an insect food source. For

instance, the major food source of many insect larvae is plant material.

By incorporating genetic material that encodes the insecticidal properties of the Photorhabdus toxins into the genome of a plant eaten by a particular insect pest, the adult or 5 larvae would die after consuming the food plant. Numerous members of the monocotyledonous and dictyledenous genera have been transformed. Transgenic agronmonic crops as well as fruits and vegetables are of commercial interest. Such crops include 10 but are not limited to maize, rice, soybeans, canola, sunflower, alfalfa, sorghum, wheat, cotton, peanuts, tomatoes, potatoes, and Several techniques exist for introducing foreign genetic material into plant cells, and for obtaining plants that stably maintain and express the introduced gene. Such techniques 15 include acceleration of genetic material coated onto microparticles directly into cells(U.S. Patents 4,945,050 to Cornell and 5,141,131 to DowElanco). Plants may be transformed using Agrobacterium technology, see U.S. Patent 5,177,010 to University of Toledo, 5,104,310 to Texas A&M, European Patent 20 Application 0131624B1, European Patent Applications 120516, 159418B1 and 176,112 to Schilperoot, U.S. Patents 5,149,645, 5,469,976, 5,464,763 and 4,940,838 and 4,693,976 to Schilperoot, European Patent Applications 116718, 290799, 320500 all to MaxPlanck, European Patent Applications 604662 and 627752 to 25 Japan Tobacco, European Patent Applications 0267159, and 0292435 and U.S. Patent 5,231,019 all to Ciba Geigy, U.S. Patents 5,463,174 and 4,762,785 both to Calgene, and U.S. Patents 5,004,863 and 5,159,135 both to Agracetus. Other transformation technology includes whiskers technology, see U.S. Patents 30 5,302,523 and 5,464,765 both to Zeneca. Electroporation technology has also been used to transform plants, see WO 87/06614 to Boyce Thompson Institute, 5,472,869 and 5,384,253 both to Dekalb, WO9209696 and WO9321335 both to PGS. All of these transformation patents and publications are incorporated by 35 reference. In addition to numerous technologies for transforming plants, the type of tissue which is contacted with the foreign genes may vary as well. Such tissue would include but would not be limited to embryogenic tissue, callus tissue type I and II, hypocotyl, meristem, and the like. Almost all plant tissues may

WU 97/1745Z PCT/US96/18003

be transformed during dedifferentiation using appropriate techniques within the skill of an artisan.

Another variable is the choice of a selectable marker. The preference for a particular marker is at the discretion of the artisan, but any of the following selectable markers may be used along with any other gene not listed herein which could function as a selectable marker. Such selectable markers include but are not limited to aminoglycoside phosphotransferase gene of transposon Tn5 (Aph II) which encodes resistance to the antibiotics kanamycin, neomycin and G418, as well as those genes which code for resistance or tolerance to glyphosate; hygromycin; methotrexate; phosphinothricin (bialophos); imidazolinones, sulfonylureas and triazolopyrimidine herbicides, such as chlorosulfuron; bromoxynil, dalapon and the like.

In addition to a selectable marker, it may be desirous to use a reporter gene. In some instances a reporter gene may be used without a selectable marker. Reporter genes are genes which are typically not present or expressed in the recipient organism or tissue. The reporter gene typically encodes for a protein which provides for some phenotypic change or enzymatic property. Examples of such genes are provided in K. Weising et al. Ann. Rev. Genetics, 22, 421 (1988), which is incorporated herein by reference. A preferred reporter gene is the glucuronidase (GUS) gene.

25 Regardless of transformation technique, the gene is preferably incorporated into a gene transfer vector adapted to express the Photorhabdus toxins in the plant cell by including in the vector a plant promoter. In addition to plant promoters, promoters from a variety of sources can be used efficiently in 30 plant cells to express foreign genes. For example, promoters of bacterial origin, such as the octopine synthase promoter, the nopaline synthase promoter, the mannopine synthase promoter; promoters of viral origin, such as the cauliflower mosaic virus (35S and 19S) and the like may be used. Plant promoters include. but are not limited to ribulose-1,6-bisphosphate (RUBP) carboxylase small subunit (ssu), beta-conglycinin promoter. phaseolin promoter, ADH promoter, heat-shock promoters and tissue specific promoters. Promoters may also contain certain enhancer sequence elements that may improve the transcription efficiency. 4() Typical enhancers include but are not limited to Adh-intron 1 and

Adh-intron 6. Constitutive promoters may be used. Constitutive promoters direct continuous gene expression in all cells types and at all times (e.g., actin, ubiquitin, CaMV 35S). Tissue specific promoters are responsible for gene expression in specific cell or tissue types, such as the leaves or seeds (e.g., zein, oleosin, napin, ACP) and these promoters may also be used. Promoters may also be are active during a certain stage of the plants' development as well as active in plant tissues and organs. Examples of such promoters include but are not limited to pollen-specific, embryo specific, corn silk specific, cotton fiber specific, root specific, seed endosperm specific promoters and the like.

10

15

20

30

35

Under certain circumstances it may be desirable to use an inducible promoter. An inducible promoter is responsible for expression of genes in response to a specific signal, such as: physical stimulus (heat shock genes); light (RUBP carboxylase); hormone (Em); metabolites; and stress. Other desirable transcription and translation elements that function in plants may be used. Numerous plant-specific gene transfer vectors are known to the art.

In addition, it is known that to obtain high expression of bacterial genes in plants it is preferred to reengineer the bacterial genes so that they are more efficiently expressed in the cytoplasm of plants. Maize is one such plant where it is preferred to reengineer the bacterial gene(s) prior to transformation to increase the expression level of the toxin in the plant. One reason for the reengineering is the very low G+C content of the native bacterial gene(s) (and consequent skewing towards high A+T content). This results in the generation of sequences mimicking or duplicating plant gene control sequences that are known to be highly A+T rich. The presence of some A+Trich sequences within the DNA of the gene(s) introduced into plants (e.g., TATA box regions normally found in gene promoters) may result in aberrant transcription of the gene(s). On the other hand, the presence of other regulatory sequences residing in the transcribed mRNA (e.g., polyadenylation signal sequences (AAUAAA), or sequences complementary to small nuclear RNAs involved in pre-mRNA splicing) may lead to RNA instability. Therefore, one goal in the design of reengineered bacterial

gene(s), more preferably referred to as plant optimized gene(s), is to generate a DNA sequence having a higher G+C content, and preferably one close to that of plant genes coding for metabolic enzymes. Another goal in the design of the plant optimized gene(s) is to generate a DNA sequence that not only has a higher G+C content, but by modifying the sequence changes, should be made so as to not hinder translation.

An example of a plant that has a high G+C content is maize. The table below illustrates how high the G+C content is in maize.

10 As in maize, it is thought that G+C content in other plants is also high.

Table 1
Compilation of G+C contents of protein coding regions of maize genes

15

Protein Class [®]	Range %G+C	Mean %G+C ^b
Metabolic Enzymes (40)	44.4-75.3	59.0 (8.0)
Storage Proteins		
Group I (23)	46.0-51.9	48.1 (1.3)
Group II (13)	60.4-74.3	67.5 (3.2)
Group I + II (36)	46.0-74.3	55.1 (9.6) ^e
Structural Proteins (18)	48.6-70.5	63.6 (6.7)
Regulatory Proteins (5)	57.2-68.9	62.0 (4.9)
Uncharacterized Proteins (9)	41.5-70.3	64.3 (7.2)
All Proteins (108)	44.4-75.3	60.8 (5.2)

Number of genes in class given in parentheses.

Standard deviations given in parentheses.

Combined groups mean ignored in calculation of overall mean.

²⁰ For the data in Table 1, coding regions of the genes were extracted from GenBank (Release 71) entries, and base compositions were calculated using the MacVector™ program (IBI, New Haven, CT). Intron sequences were ignored in the

calculations. Group I and II storage protein gene sequences were distinguished by their marked difference in base composition.

Due to the plasticity afforded by the redundancy of the genetic code (i.e., some amino acids are specified by more than one codon), evolution of the genomes of different organisms or classes or organisms has resulted in differential usage of redundant codons. This "codon bias" is reflected in the mean base composition of protein coding regions. For example, organisms with relatively low G+C contents utilize codons having A or T in the third position of redundant codons, whereas those having higher G+C contents utilize codons having G or C in the third position. It is thought that the presence of "minor" codons within a gene's mRNA may reduce the absolute translation rate of that mRNA, especially when the relative abundance of the charged tRNA corresponding to the minor codon is low. An extension of this is that the diminution of translation rate by individual minor codons would be at least additive for multiple minor codons. Therefore, mRNAs having high relative contents of minor codons would have correspondingly low translation rates. This rate would be reflected by the synthesis of low levels of the encoded protein.

In order to reengineer the bacterial gene(s), the codon bias of the plant is determined. The codon bias is the statistical codon distribution that the plant uses for coding its proteins. 25 After determining the bias, the percent frequency of the codons in the gene(s) of interest is determined. The primary codons preferred by the plant should be determined as well as the second and third choice of preferred codons. The amino acid sequence of the protein of interest is reverse translated so that the resulting nucleic acid sequence codes for the same protein as the 30 native bacterial gene, but the resulting nucleic acid sequence corresponds to the first preferred codons of the desired plant. The new sequence is analyzed for restriction enzyme sites that might have been created by the modification. The identified 35 sites are further modified by replacing the codons with second or third choice preferred codons. Other sites in the sequence which could affect the transcription or translation of the gene of interest are the exon:intron 5' or 3' junctions, poly A addition signals, or RNA polymerase termination signals. The sequence is

20

further analyzed and modified to reduce the frequency of TA or GC doublets. In addition to the doublets, G or C sequence blocks that have more than about four residues that are the same can affect transcription of the sequence. Therefore, these blocks are also modified by replacing the codons of first or second choice, etc. with the next preferred codon of choice. It is preferred that the plant optimized gene(s) contains about 63% of first choice codons, between about 22% to about 37% second choice codons, and between 15% and 0% third choice codons, wherein the total percentage is 100%. Most preferred the plant optimized gene(s) contain about 63% of first choice codons, at least about 22% second choice codons, about 7.5% third choice codons, and about 7.5% fourth choice codons, wherein the total percentage is The method described above enables one skilled in the art 100%. to modify gene(s) that are foreign to a particular plant so that the genes are optimally expressed in plants. The method is further illustrated in pending provisional application U.S. 60/005,405 filed on October 13, 1995, which is incorporated herein by reference.

10

Thus, in order to design plant optimized gene(s) the amino acid sequence of the toxins are reverse translated into a DNA sequence, utilizing a nonredundant genetic code established from a codon bias table compiled for the gene DNA sequence for the particular plant being transformed. The resulting DNA sequence, which is completely homogeneous in codon usage, is further modified to establish a DNA sequence that, besides having a higher degree of codon diversity, also contains strategically placed restriction enzyme recognition sites, desirable base composition, and a lack of sequences that might interfere with transcription of the gene, or translation of the product mRNA.

It is theorized that bacterial genes may be more easily expressed in plants if the bacterial genes are expressed in the plastids. Thus, it may be possible to express bacterial genes in plants, without optimizing the genes for plant expression, and obtain high express of the protein. See U.S. Patent Nos. 4,762,785; 5,451,513 and 5,545,817, which are incorporated herein by reference.

One of the issues regarding commercial exploiting transgenic plants is resistance management. This is of particular concern with Bacillus thuringiensis toxins. There are numerous companies commercially exploiting Bacillus thuringiensis and there has been much concern about Bt toxins becoming resistant. One strataegy for insect resistant management would be to combine the toxins produced by Photorhabdus with toxins such as Bt, vegetative insect proteins (Ciba Geigy) or other toxins. The combinations could be formulated for a sprayable application or could be molecular combinations. Plants could be transformed with Photorhabdus genes that produce insect toxins and other insect toxin genes such as Bt as with other insect toxin genes such as Bt.

10

25

30

35

European Patent Application 0400246Al describes

transformation of 2 Bt in a plant, which could be any 2 genes.

Another way to produce a transgenic plant that contains more than one insect resistant gene would be to produce two plants, with each plant containing an insect resistant gene. These plants would be backcrossed using traditional plant breeding techniques to produce a plant containing more than one insect resistant gene.

In addition to producing a transformed plant containing plant optimized gene(s), there are other delivery systems where it may be desirable to reengineer the bacterial gene(s). Along the same lines, a genetically engineered, easily isolated protein toxin fusing together both a molecule attractive to insects as a food source and the insecticidal activity of the toxin may be engineered and expressed in bacteria or in eukaryotic cells using standard, well-known techniques. After purification in the laboratory such a toxic agent with "built-in" bait could be packaged inside standard insect trap housings.

Another delivery scheme is the incorporation of the genetic material of toxins into a baculovirus vector. Baculoviruses infect particular insect hosts, including those desirably targeted with the *Photorhabdus* toxins. Infectious baculovirus harboring an expression construct for the *Photorhabdus* toxins could be introduced into areas of insect infestation to thereby intoxicate or poison infected insects.

Transfer of the insecticidal properties requires nucleic acid sequences encoding the coding the amino acid sequences for the *Photorhabdus* toxins integrated into a protein expression vector appropriate to the host in which the vector will reside.

5 One way to obtain a nucleic acid sequence encoding a protein with insecticidal properties is to isolate the native genetic material which produces the toxins from *Photorhabdus*, using information deduced from the toxin's amino acid sequence, large portions of which are set forth below. As described below, methods of purifying the proteins responsible for toxin activity are also disclosed.

Using N-terminal amino acid sequence data, such as set forth below, one can construct oligonucleotides complementary to all, or a section of, the DNA bases that encode the first amino acids of the toxin. These oligonucleotides can be radiolabeled and used as molecular probes to isolate the genetic material from a genomic genetic library built from genetic material isolated from strains of *Photorhabdus*. The genetic library can be cloned in plasmid, cosmid, phage or phagemid vectors. The library could be transformed into *Escherichia coli* and screened for toxin production by the transformed cells using antibodies raised against the toxin or direct assays for insect toxicity.

15

20

25

30

35

40

This approach requires the production of a battery of oligonucleotides, since the degenerate genetic code allows an amino acid to be encoded in the DNA by any of several three-nucleotide combinations. For example, the amino acid arginine can be encoded by nucleic acid triplets CGA, CGC, CGG, CGT, AGA, and AGG. Since one cannot predict which triplet is used at those positions in the toxin gene, one must prepare oligonucleotides with each potential triplet represented. More than one DNA molecule corresponding to a protein subunit may be necessary to construct a sufficient number of oligonucleotide probes to recover all of the protein subunits necessary to achieve oral toxicity.

From the amino acid sequence of the purified protein, genetic materials responsible for the production of toxins can readily be isolated and cloned, in whole or in part, into an expression vector using any of several techniques well-known to one skilled in the art of molecular biology. A typical expression vector is a DNA plasmid, though other transfer means

including, but not limited to, cosmids, phagemids and phage are also envisioned. In addition to features required or desired for plasmid replication, such as an origin of replication and antibiotic resistance or other form of a selectable marker such as the bar gene of Streptomyces hygroscopicus or viridochromogenes, protein expression vectors normally additionally require an expression cassette which incorporates the cis-acting sequences necessary for transcription and translation of the gene of interest. The cis-acting sequences required for expression in prokaryotes differ from those required in eukaryotes and plants.

A eukaryotic expression cassette requires a transcriptional promoter upstream (5') to the gene of interest, a transcriptional termination region such as a poly-A addition site, and a ribosome binding site upstream of the gene of interest's first codon. In bacterial cells, a useful transcriptional promoter that could be included in the vector is the T7 RNA Polymerase-binding promoter. Promoters, as previously described herein, are known to efficiently promote transcription of mRNA. Also upstream from the gene of interest the vector may include a nucleotide sequence encoding a signal sequence known to direct a covalently linked protein to a particular compartment of the host cells such as the cell surface.

Insect viruses, or baculoviruses, are known to infect and 25 adversely affect certain insects. The affect of the viruses on insects is slow, and viruses do not stop the feeding of insects. Thus viruses are not viewed as being useful as insect pest control agents. Combining the Photorhabdus toxins genes into a baculovirus vector could provide an efficient way of transmitting 30 the toxins while increasing the lethality of the virus. addition, since different baculoviruses are specific to different insects, it may be possible to use a particular toxin to selectively target particularly damaging insect pests. A particularly useful vector for the toxins genes is the nuclear 35 polyhedrosis virus. Transfer vectors using this virus have been described and are now the vectors of choice for transferring foreign genes into insects. The virus-toxin gene recombinant may be constructed in an orally transmissible form. Baculoviruses normally infect insect victims through the mid-gut intestinal 40 mucosa. The toxin gene inserted behind a strong viral coat

protein promoter would be expressed and should rapidly kill the infected insect.

In addition to an insect virus or baculovirus or transgenic plant delivery system for the protein toxins of the present invention, the proteins may be encapsulated using Bacillus thuringiensis encapsulation technology such as but not limited to U.S. Patent Nos. 4,695,455; 4,695,462; 4,861,595 which are all incorporated herein by reference. Another delivery system for the protein toxins of the present invention is formulation of the protein into a bait matrix, which could then be used in above and below ground insect bait stations. Examples of such technology include but are not limited to PCT Patent Application WO 93/23998, which is incorporated herein by reference.

10

30

35

40

As is described above, it might become necessary to modify 15 the sequence encoding the protein when expressing it in a nonnative host, since the codon preferences of other hosts may differ from that of Photorhabdus. In such a case, translation may be quite inefficient in a new host unless compensating modifications to the coding sequence are made. Additionally, 20 modifications to the amino acid sequence might be desirable to avoid inhibitory cross-reactivity with proteins of the new host, or to refine the insecticidal properties of the protein in the new host. A genetically modified toxin gene might encode a toxin exhibiting, for example, enhanced or reduced toxicity, altered 25 insect resistance development, altered stability, or modified target species specificity.

In addition to the *Photorhabdus* genes encoding the toxins, the scope of the present invention is intended to include related nucleic acid sequences which encode amino acid biopolymers homologous to the toxin proteins and which retain the toxic effect of the *Photorhabdus* proteins in insect species after oral ingestion.

For instance, the toxins used in the present invention seem to first inhibit larval feeding before death ensues. By manipulating the nucleic acid sequence of *Photorhabdus* toxins or its controlling sequences, genetic engineers placing the toxin gene into plants could modulate its potency or its mode of action to, for example, keep the eating-inhibitory activity while eliminating the absolute toxicity to the larvae. This change could permit the transformed plant to survive until harvest

without having the unnecessarily dramatic effect on the ecosystem of wiping out all target insects. All such modifications of the gene encoding the toxin, or of the protein encoded by the gene, are envisioned to fall within the scope of the present invention.

Other envisioned modifications of the nucleic acid include the addition of targeting sequences to direct the toxin to particular parts of the insect larvae for improving its efficiency.

Strains ATCC 55397, 43948, 43949, 43950, 43951, 43952 have been deposited in the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852 USA. Amino acid and nucleotide sequence data for the W-14 native toxin (ATCC 55397) is presented below. Isolation of the genomic DNA for the toxins from the bacterial hosts is also exemplified herein.

Standard and molecular biology techniques were followed and taught in the specification herein. Additional information may be found in Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, which is incorporated herein by reference.

20

25

5

The following abbreviations are used throughout the Examples:

Tris = tris (hydroxymethyl) amino methane; SDS = sodium dodecyl sulfate; EDTA = ethylenediaminetetraacetic acid, IPTG = isopropylthio-B-galactoside, X-gal = 5-bromo-4-chloro-3-indoyl-B-D-galactoside, CTAB = cetyltrimethylammonium bromide; kbp = kilobase pairs; dATP, dCTP, dCTP, dTTP, I = 2'-deoxynucleoside 5'-triphosphates of adenine, cytosine, guanine, thymine, and inosine, respectively; ATP = adenosine 5' triphosphate.

30

Example 1

Purification of toxin from P. luminescens and Demonstration of toxicity after oral delivery of purified toxin

The insecticidal protein toxin of the present invention was purified from P. luminescens strain W-14, ATCC Accession Number 55397. Stock cultures of P. luminescens were maintained on petri dishes containing 2% Proteose Peptone No. 3 (i.e., PP3, Difco Laboratories, Detroit MI) in 1.5% agar, incubated at 25°C and transferred weekly. Colonies of the primary form of the bacteria were inoculated into 200 ml of PP3 broth supplemented with 0.5%

5

10

15

20

25

30

polyoxyethylene sorbitan mono-stearate (Tween 60, Sigma Chemical Company, St. Louis MO) in a one liter flask. The broth cultures were grown for 72 hours at 30°C on a rotary shaker. The toxin proteins can be recovered from cultures grown in the presence or absence of Tween; however, the absence of Tween can affect the form of the bacteria grown and the profile of proteins produced by the bacteria. In the absence of Tween, a variant shift occurs insofar as the molecular weight of at least one identified toxin subunit shifts from about 200 kDa to about 185 kDa.

The 72 hour cultures were centrifuged at 10,000 x g for 30 minutes to remove cells and debris. The supernatant fraction that contained the insecticidal activity was decanted and brought to 50 mM K₂HPO₄ by adding an appropriate volume of 1.0 M K₂HPO₄. The pH was adjusted to 8.6 by adding potassium hydroxide. This supernatant fraction was then mixed with DEAE-Sephacel (Pharmacia LKB Biotechnology) which had been equilibrated with 50 mM K₂HPO₄. The toxic activity was adsorbed to the DEAE resin. This mixture was then poured into a 2.6 x 40 cm column and washed with 50 mM K₂HPO₄ at room temperature at a flow rate of 30 ml/hr until the effluent reached a steady baseline UV absorbance at 280 nm. The column was then washed with 150 mM KCl until the effluent again reached a steady 280 nm baseline. Finally the column was washed with 300 mM KCl and fractions were collected.

Fractions containing the toxin were pooled and filter sterilized using a 0.2 micron pore membrane filter. The toxin was then concentrated and equilibrated to 100 mM KPO4, pH 6.9, using an ultrafiltration membrane with a molecular weight cutoff of 100 kDa at 4°C (Centriprep 100, Amicon Division-W.R. Grace and Company). A 3 ml sample of the toxin concentrate was applied to the top of a 2.6 x 95 cm Sephacryl S-400 HR gel filtration column (Pharmacia LKB Biotechnology). The eluent buffer was 100 mM KPO4, pH 6.9, which was run at a flow rate of 17 ml/hr, at 4°C. The effluent was monitored at 280 nm.

Fractions were collected and tested for toxic activity.

Toxicity of chromatographic fractions was examined in a biological assay using Manduca sexta larvae. Fractions were either applied directly onto the insect diet (Gypsy moth wheat germ diet, ICN Biochemicals Division - ICN Biomedicals, Inc.) or administered by intrahemocelic injection of a 5 µl sample through the first proleg of 4th or 5th instar larva using a 30 gauge

5

10

15

35

needle. The weight of each larva within a treatment group was recorded at 24 hour intervals. Toxicity was presumed if the insect ceased feeding and died within several days of consuming treated insect diet or if death occurred within 24 hours after injection of a fraction.

The toxic fractions were pooled and concentrated using the Centriprep-100 and were then analyzed by HPLC using a 7.5 mm \times 60 cm TSK-GEL G-4000 SW gel permeation column with 100 mM potassium phosphate, pH 6.9 eluent buffer running at 0.4 ml/min. analysis revealed the toxin protein to be contained within a single sharp peak that eluted from the column with a retention time of approximately 33.6 minutes. This retention time corresponded to an estimated molecular weight of 1,000 kDa. fractions were collected for further purification while fractions not containing this protein were discarded. The peak eluted from the HPLC absorbs UV light at 218 and 280 nm but did not absorb at 405 nm. Absorbance at 405 nm was shown to be an attribute of xenorhabdin antibiotic compounds.

Electrophoresis of the pooled peak fractions in a non-20 denaturing agarose gel (Metaphor Agarose, FMC BioProducts) showed that two protein complexes are present in the peak. material, buffered in 50 mM Tris-HCl, pH 7.0, was separated on a 1.5% agarose stacking gel buffered with 100 mM Tris-HCl at pH 7.0 and 1.9% agarose resolving gel buffered with 200 mM Tris-borate 25 at pH 8.3 under standard buffer conditions (anode buffer 1M Tris-HCl, pH 8.3; cathode buffer 0.025 M Tris, 0.192 M glycine). gels were run at 13 mA constant current at 15°C until the phenol red tracking dye reached the end of the gel. Two protein bands were visualized in the agarose gels using Coomassie brilliant 30 blue staining.

The slower migrating band was referred to as "protein band 1" and faster migrating band was referred to as "protein band 2." The two protein bands were present in approximately equal amounts. The Coomassie stained agarose gels were used as a guide to precisely excise the two protein bands from unstained portions of the gels. The excised pieces containing the protein bands were macerated and a small amount of sterile water was added. a control, a portion of the gel that contained no protein was also excised and treated in the same manner as the gel pieces 40 containing the protein. Protein was recovered from the gel

WU 9//17432 PCT/US96/18003

pieces by electroelution into 100 mM Tris-borate pH 8.3, at 190 volts (constant voltage) for two hours. Alternatively, protein was passively eluted from the gel pieces by adding an equal volume of 50 mM Tris-HCl, pH 7.0, to the gel pieces, then incubating at 30°C for 16 hours. This allowed the protein to diffuse from the gel into the buffer, which was then collected.

Results of insect toxicity tests using HPLC-purified toxin (33.6 min. peak) and agarose gel purified toxin demonstrated toxicity of the extracts. Injection of 1.5 µg of the HPLC 10 purified protein kills within 24 hours. Both protein bands 1 and 2. recovered from agarose gels by passive elution or electroelution, were lethal upon injection. The protein concentration estimated for these samples was less than 50 ng/larva. A comparison of the weight gain and the mortality between the groups of larvae injected with protein bands 1 cr 2 indicate that protein band 1 was more toxic by injection delivery.

15

20

30

35

When HPLC-purified toxin was applied to larval diet at a concentration of 7.5 μ g/larva, it caused a halt in larval weight gain (24 larvae tested). The larvae begin to feed, but after consuming only a very small portion of the toxin treated diet they began to show pathological symptoms induced by the toxin and the larvae cease feeding. The insect frass became discolore; and most larva showed signs of diarrhea. Significant insect mortality resulted when several 5 µg toxin doses were applied to the diet over a 7-10 day period.

Agarose-separated protein band 1 significantly inhibited larval weight gain at a dose of 200 ng/larva. Larvae fed similar concentrations of protein band 2 were not inhibited and gained weight at the same rate as the control larvae. Twelve larvae were fed eluted protein and 45 larvae were fed protein-containing agarose pieces. These two sets of data indicate that protein band I was orally toxic to Manduca sexta. In this experiment it appeared that protein band 2 was not toxic to Manduca sexta.

Further analysis of protein bands 1 and 2 by SDS-PAGE under denaturing conditions showed that each band was composed of several smaller protein subunits. Proteins were visualized by ·Coomassie brilliant blue staining followed by silver staining to achieve maximum sensitivity.

The protein subunits in the two bands were very similar. Protein band 1 contains 8 protein subunits of 25.1, 56.2, 60.8, 65.6, 166, 171, 184 and 208 kDa. Protein band 2 had an identical profile except that the 25.1, 60.8, and 65.6 kDa proteins were not present. The 56.2, 60.8, 65.6, and 184 kDa proteins were present in the complex of protein band 1 at approximately equal concentrations and represent 80% or more of the total protein content of that complex.

follows. The toxin was heat labile in that after being heated to 60°C for 15 minutes it lost its ability to kill or to inhibit weight gain when injected or fed to M. sexta larvae. Assays were designed to detect lipase, type C phospholipase, nuclease or red blood cell hemolysis activities and were performed with purified toxin. None of these activities were present. Antibiotic zone inhibition assays were also done and the purified toxin failed to inhibit growth of Gram-negative or -positive bacteria, yeast or filamentous fungi, indicating that the toxic is not a xenorhabdin antibiotic.

The native HPLC-purified toxin was tested for ability to kill insects other than Manduca sexta. Table 2 lists insects killed by the HPLC-purified P. luminescens toxin in this study.

Table 2
25 Insects Killed by P. luminescens Toxin

	Common Name	Order	Genus and species	Route of Delivery
30	Tobacco horn worm	Lepidoptera	Manduca sexta	Oral and injected
	Mealworm	Coleoptera	Tenebrio molitor	Oral
35	Pharaoh ant	Hymenoptera	Monomorium pharoanis	Oral
	German cockroach	Dictyoptera	Blattella germanica	Oral and injected
40	Mosquito	Diptera	Aedes aegypti	Oral

Example 2 Insecticide Utility

The Photorhabdus luminescens utility and toxicity were 5 further characterized. Photorhabdus luminescens (strain W-14) culture broth was produced as follows. The production medium was 2% Bacto Proteose Peptone* Number 3 (PP3, Difco Laboratories, Detroit, Michigan) in Milli-Q⁶ deionized water. Seed culture flasks consisted of 175 ml medium placed in a 500 ml tribaffred flask with a Delong neck, covered with a Kaput and autoclaved for 20 minutes, T=250°F. Production flasks consisted of 500 mls in a 2.8 liter 500 ml tribaffled flask with a Delong neck, covered by a Shin-etsu silicon foam closure. These were autoclaved for 45 minutes, T=250°F. The seed culture was incubated at 28°C at 150 rpm in a gyrotory shaking incubator with 15 a 2 inch throw. After 16 hours of growth, 1% of the seed culture was placed in the production flask which was allowed to grow for 24 hours before harvest. Production of the toxin appears to be during log phase growth. The microbial broth was transferred to 20 a lL centrifuge bottle and the cellular biomass was pelleted (30minutes at 2500 RPM at 4° C, [R.C.F. = ~1600] HG-4L Rotor RC3 Sorval centrifuge, Dupont, Wilmington, Delaware). The primary broth was chilled at 4°C for 8 - 16 hours and recentrifuged at least 2 hours (conditions above) to further clarify the broth by 25 removal of a putative mucopolysaccharide which precipitated upon standing. (An alternative processing method combined both steps and involved the use of a 16 hour clarification centrifugation, same conditions as above.) This broth was then stored at 4°C prior to bioassay or filtration.

30 Photorhabdus culture broth and protein toxin(s) purified from this broth showed activity (mortality and/or growth inhibition, reduced adult emergence) against a number of insects. More specifically, the activity is seen against corn rootworm (larvae and adult), Colorado potato beetle, and turf grubs, which 35 are members of the insect order Coleoptera. Other members of the Coleoptera include wireworms, pollen beetles, flea beetles, seed beetles and weevils. Activity has also been observed against aster leafhopper, which is a member of the order, Homoptera. Other members of the Homoptera include planthoppers, pear pyslla, apple sucker, scale insects, whiteflies, and spittle bugs, as

40

well as numerous host specific aphid species. The broth and purified fractions are also active against beet armyworm, cabbage looper, black cutworm, tobacco budworm. European corn borer, corn earworm, and codling moth, which are members of the order

5 Lepidoptera. Other typical members of this order are clothes moth, Indian mealmoth, leaf rollers, cabbage worm, cotton bollworm, bagworm, Eastern tent caterpillar, sod webworm, and fall armyworm. Activity is also seen against fruitfly and mosquito larvae, which are members of the order Diptera. Other members of the order Diptera are pea midge, carrot fly, cabbage root fly, turnip root fly, onion fly, crane fly, house fly, and various mosquito species. Activity is seen against carpenter ant and Argentine ant, which are members of the order that also includes fire ants, oderous house ants, and little black ants.

The broth/fraction is useful for reducing populations of insects and were used in a method of inhibiting an insect population. The method may comprise applying to a locus of the insect an effective insect inactivating amount of the active described. Results are reported in Table 3.

15

20 Activity against corn rootworm larvae was tested as follows. Photorhabdus culture broth (filter sterilized, cell-free) or purified HPLC fractions were applied directly to the surface (~1.5 cm²) of 0.25 ml of artificial diet in 30 μ l aliquots following dilution in control medium or 10 mM sodium phosphate 25 buffer, pH 7.0, respectively. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate Diabrotica undecimpunctata howardi (Southern corn rootworm, SCR) hatched from sterilized eggs, with second instar SCR grown on artificial diet or with second instar Diabrotica 30 virgifera virgifera (Western corn rootworm, WCR) reared on corn seedlings grown in Metromix*. Second instar larvae were weighed prior to addition to the diet. The plates were sealed, placed in a humidified growth chamber and maintained at 27°C for the appropriate period (4 days for neonate and adult SCR, 2-5 days for WCR larvae, 7-14 days for second instar SCR). Mortality and weight determinations were scored as indicated. Generally, 16 insects per treatment were used in all studies. mortalities were as follows: neonate larvae, <5%, adult beetles. 5%.

Activity against Colorado potato beetle was tested as follows. Photorhabdus culture broth or control medium was applied to the surface (-2.0 cm^2) of 1.5 ml of standard artificial diet held in the wells of a 24-well tissue culture plate. Each well 5 received 50 μ l of treatment and was allowed to air dry. Individual second instar Colorado potato beetle (Leptinotarsa decemlineata, CPB) larvae were then placed onto the diet and mortality was scored after 4 days. Ten larvae per treatment were used in all studies. Control mortality was 3.3%.

10 Activity against Japanese beetle grubs and beetles was tested as follows. Turf grubs (Popillia japonica, 2-3rd instar) were collected from infested lawns and maintained in the laboratory in soil/peat mixture with carrot slices added as additional diet. Turf beetles were pheromone-trapped locally and 15 maintained in the laboratory in plastic containers with maple leaves as food. Following application of undiluted Photorhabdus culture broth or control medium to corn rootworm artificial diet (30 μ l/1.54 cm², beetles) or carrot slices (larvae), both stages were placed singly in a diet well and observed for any mortality and feeding. In both cases there was a clear reduction in the amount of feeding (and feces production) observed.

20

25

30

35

Activity against mosquito larvae was tested as follows. assay was conducted in a 96-well microtiter plate. Each well contained 200 µl of aqueous solution (Photorhabdus culture broth, control medium or H₂0) and approximately 20, 1-day old larvae (Aedes aegypti). There were 6 wells per treatment. The results were read at 2 hours after infestation and did not change over the three day observation period. No control mortality was seen.

Activity against fruitflies was tested as follows. Purchased Drosophila melanogaster medium was prepared using 50% dry medium and a 50% liquid of either water, control medium or Photorhabdus culture broth. This was accomplished by placing 8.0 ml of dry medium in each of 3 rearing vials per treatment and adding 8.0 ml of the appropriate liquid. Ten late instar Drosophila melanogaster maggots were then added to each vial. The vials were held on a laboratory bench, at room temperature, under fluorescent ceiling lights. Pupal or adult counts were made after 3, 7 and 10 days of exposure. Incorporation of Photorhabdus culture broth into the diet media for fruitfly

maggots caused a slight (17%) but significant reduction in day-10 adult emergence as compared to water and control medium (3% reduction).

Activity against aster leafhopper was tested as follows. The ingestion assay for aster leafhopper (Macrosteles severini) 5 is designed to allow ingestion of the active without other external contact. The reservoir for the active/"food" solution is made by making 2 holes in the center of the bottom portion of a 35 \times 10 mm Petri dish. A 2 inch Parafilm M^{\bullet} square is placed across the top of the dish and secured with an "O" ring. A 1 oz. plastic cup is then infested with approximately 7 leafhoppers and the reservoir is placed on top of the cup, Parafilm down. The test solution is then added to the reservoir through the holes. In tests using undiluted Photorhabdus culture broth, the broth and control medium were dialyzed against water to reduce control 15 mortality. Mortality is reported at day 2 where 26.5% control mortality was seen. In the tests using purified fractions (200 mg protein/ml) a final concentration of 5% sucrose was used in all treatments to improve survivability of the aster leafhoppers. 20 The assay was held in an incubator at 28°C, 70% RH with a 16/8 photoperiod. The assay was graded for mortality at 72 hours. Control mortality was 5.5%.

Activity against Argentine ants was tested as follows. A

1.5 ml aliquot of 100% Photorhabdus culture broth, control medium

or water was pipetted into 2.0 ml clear glass vials. The vials
were plugged with a piece of cotton dental wick that was
moistened with the appropriate treatment. Each vial was placed
into a separate 60x16mm Petri dish with 8 to 12 adult Argentine
ants (Linepithema humile). There were three replicates per

treatment. Bioassay plates were held on a laboratory bench, at
room temperature under fluorescent ceiling lights. Mortality
readings were made after 5 days of exposure. Control mortality
was 24%.

Activity against carpenter ant was tested as follows. Black

35 carpenter ant workers (Camponotus pennsylvanicus) were collected from trees on DowElanco property in Indianapolis, IN. Tests with
Photorhabdus culture broth were performed as follows. Each
plastic bioassay container (7 1/8" x 3") held fifteen workers, a
paper harborage and 10 ml of broth or control media in a plastic

40 shot glass. A cotton wick delivered the treatment to the ants

through a hole in the shot glass lid. All treatments contained 5% sucrose. Bioassays were held in the dark at room temperature and graded at 19 days. Control mortality was 9%. Assays delivering purified fractions utilized artificial ant diet mixed with the treatment (purified fraction or control solution) at a rate of 0.2 ml treatment/2.0 g diet in a plastic test tube. The final protein concentration of the purified fraction was less than 10 µg/g diet. Ten ants per treatment, a water source, harborage and the treated diet were placed in sealed plastic containers and maintained in the dark at 27°C in a humidified incubator. Mortality was scored at day 10. No control mortality was seen.

Activity against various lepidopteran larvae was tested as follows. Photorhabdus culture broth or purified fractions were 15 applied directly to the surface (~1.5 cm²) of 0.25 ml of standard artificial diet in 30 µl aliquots following dilution in control medium or 10 mM sodium phosphate buffer, pH 7.0, respectively. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate larva. European 20 corn borer (Ostrinia nubilalis) and corn earworm (Helicoverpa zea) eggs were supplied from commercial sources and hatched inhouse, whereas beet armyworm (Spodoptera exigua), cabbage looper (Trichoplusia ni), tobacco budworm (Heliothis virescens), codling moth (Laspeyresia pomonella) and black cutworm (Agrotis ipsilon) 25 larvae were supplied internally. Following infestation with larvae, the diet plates were sealed, placed in a humidified growth chamber and maintained in the dark at 27°C for the appropriate period. Mortality and weight determinations were scored at days 5-7 for Photorhabdus culture broth and days 4-7 30 for the purified fraction. Generally, 16 insects per treatment were used in all studies. Control mortality ranged from 4-12.5% for control medium and was less than 10% for phosphate buffer.

5

Table 3

Effect of Photorhabdus luminescens (strain W-14)
Culture Broth and Purified Toxin Fraction on Mortality and Growth
Inhibition of Different Insect Orders/Species

Insect Order/Species	Broth	Broth		Fraction	
	% Mort.	8 G.I.	% Mort.	% G.I.	
COLEOPTERA				 	
Corn Rootworm		†	 	 	
Southern/neonate larva	100	na	100	na	
Southern/2 nd instar	na	38.5	nt	nt	
Southern/adult	45	nt	nt	nt	
Western/2 nd instar	na	35	nt	nt	
Colorado Potato					
Beetle	93	nt	nt	nt	
2 nd instar	}				
Turf Grub	na	a.f.	nt	nt	
3 ^{id} instar	na	a.f.	nt	nt	
adult					
DIPTERA			 		
Fruit Fly (adult	17	nt	nt	nt	
emergence)	100	'na	nt	nt	
Mosquito larvae					
HOMOPTERA					
Aster Leafhopper	96.5	na	100	na	
HYMENOPTERA					
Argentine Ant	75	na	nt	na	
Carpenter Ant	71	па	100	na	
LEPIDOPTERA					
Beet Armyworm	12.5	36	18.75	41.4	
Black Cutworm	nt	nt	0	71.2	
Cabbage Looper	nt	nt	21.9	66.8	
Codling Moth	nt	nt	6.25	45.9	
Corn Earworm	56.3	94.2	97.9	na	
European Corn Borer	96.7	98.4	100	na	
Tobacco Budworm	13.5	52.5	19.4	85.6	

Mort. = mortality, G.I. = growth inhibition,

na = not applicable, nt = not tested, a.f. = anti-feedant

Example 3 Insecticide Utility Upon Soil Application

Photorhabdus luminescens (strain W-14) culture broth was shown to be active against corn rootworm when applied directly to soil or a soil-mix (Metromix*). Activity against neonate SCR and WCR in Metromix was tested as follows (Table 4). The test was run using corn seedlings (United Agriseeds brand CL614) that were germinated in the light on moist filter paper for 6 days. After roots were approximately 3-6 cm long, a single kernel/seedling 10 was planted in a 591 ml clear plastic cup with 50 gm of dry Metromix*. Twenty neonate SCR or WCR were then placed directly on the roots of the seedling and covered with Metromix*. Upon infestation, the seedlings were then drenched with 50 ml total 15 volume of a diluted broth solution. After drenching, the cups were sealed and left at room temperature in the light for 7 days. Afterwards, the seedlings were washed to remove all Metromix* and the roots were excised and weighed. Activity was rated as the percentage of corn root remaining relative to the control plants and as leaf damage induced by feeding. Leaf damage was scored visually and rated as either -, +, ++, or +++, with representing no damage and +++ representing severe damage.

Activity against neonate SCR in soil was tested as follows (Table 5). The test was run using corn seedlings (United 25 Agriseeds brand CL614) that were germinated in the light on moist filter paper for 6 days. After the roots were approximately 3-6 cm long, a single kernel/seedling was planted in a 591 ml clear plastic cup with 150 gm of soil from a field in Lebanon, IN planted the previous year with corn. This soil had not been 30 previously treated with insecticides. Twenty neonate SCR were then placed directly on the roots of the seedling and covered with soil. After infestation, the seedlings were drenched with 50 ml total volume of a diluted broth solution. After drenching, the unsealed cups were incubated in a high relative humidity 35 chamber (80%) at 78°F. Afterwards, the seedlings were washed to remove all soil and the roots were excised and weighed. Activity was rated as the percentage of corn root remaining relative to the control plants and as leaf damage induced by feeding. Leaf damage was scored visually and rated as either -, +, ++, or +++, 40 with - representing no damage and +++ representing severe damage.

20

Table 4

Effect of Photorhabdus luminescens (strain W-14) Culture
Broth on Rootworm Larvae After Post-Infestation Drenching

(Metromix*)

	Treatment	Larvae	Leaf Damage	Root Weight (g)	*
	Southern Corn Roc	tworm			
10	Water	-	-	0.4916 ± 0.023	100
	Medium (2.0% v/v)	-	_	0.4416 ± 0.029	100
	Broth (6.25%v/v)	-	_	0.4641 ± 0.081	100
	Water	+	+++	0.1410 ± 0.006	28.7
15	Media (2.0% v/v)	+	+++	0.1345 ± 0.028	30.4
	Broth (1.56% v/v)	+	-	0.4830 ± 0.031	104
	Western Corn Root	MOLE			
20	Water	_	-	0.4446 ± 0.019	100
	Broth (2.0% v/v)	-	-	0.4069 ± 0.026	100
	Water	+	-	0.2202 ± 0.015	49
25	Broth (2.0% v/v)	+	-	0.3879 ± 0.013	95

Table 5
Effect of Photorhabdus luminescens (strain W-14) Culture Broth on Southern Corn Rootworm Larvae After Post-Infestation Drenching (Soil)

	Treatment	Larvae	Leaf Damage	Root Weight(g)	*
	Water	_	_	0.2148 ± 0.014	100
35	Broth (50% v/v)	- .	-	0.2260 ± 0.016	103
	Water	+	+++	0.0916 ± 0.009	43
	Broth (50% v/v)	+	-	0.2428 ± 0.032	113

Activity of Photorhabdus luminescens (strain W-14) culture broth against second instar turf grubs in Metromix® was observed in tests conducted as follows (Table 6). Approximately 50 gm of dry Metromix® was added to a 591 ml clear plastic cup. The Metromix® was then drenched with 50 ml total volume of a 50% (v/v) diluted Photorhabdus broth solution. The dilution of crude broth was made with water, with 50% broth being prepared by adding 25 ml of crude broth to 25 ml of water for 50 ml total volume. A 1% (w/v) solution of proteose peptone #3 (PP3), which is a 50% dilution of the normal media concentration, was used as a broth control. After drenching, five second instar turf grubs were

placed on the top of the moistened Metromix. Healthy turf grub larvae burrowed rapidly into the Metromix. Those larvae that did not burrow within 1h were removed and replaced with fresh larvae. The cups were sealed and placed in a 28°C incubator, in the dark.

5 After seven days, larvae were removed from the Metromix and scored for mortality. Activity was rated the percentage of mortality relative to control.

Table 6
Effect of Photorhabdus luminescens (strain W-14) Culture Broth on
Turf Grub After Pre-Infestation Drenching (Metromix*)

15	Treatment	Mortality*	Mortality %
.,	Water	7/15	47
20	Control medium (1.0% w/v)	12/19	63
	Broth (50% v/v)	17/20	85

*expressed as a ratio of dead/living larvae

25

Example 4 Insecticide Utility Upon Leaf Application

Activity of Photorhabdus broth against European corn borer was seen when the broth was applied directly to the surface of maize leaves (Table 7). In these assays Photorhabdus broth was diluted 100-fold with culture medium and applied manually to the surface of excised maize leaves at a rate of ~6.0 μl/cm² of leaf surface. The leaves were air dried and cut into equal sized strips approximately 2 x 2 inches. The leaves were rolled, secured with paper clips and placed in 1 oz plastic shot glasses with 0.25 inch of 2% agar on the bottom surface to provide moisture. Twelve neonate European corn borers were then placed onto the rolled leaf and the cup was sealed. After incubation for 5 days at 27°C in the dark, the samples were scored for feeding damage and recovered larvae.

Table 7

Effect of *Photorhabdus luminescens* (strain W-14) Culture Broth on European Corn Borer Larvae Following Pre-Infestation Application to Excised Maize Leaves

Treatment	Leaf Damage	Larvae Recovered	Weight (mg)
Water	Extensive	55/120	0.42 mg
Control Medium	Extensive	40/120	0.50 mg
Broth (1.0% v/v)	Trace	3/120	0.15 mg

10

5

Activity of the culture broth against neonate tobacco budworm (Heliothis virescens) was demonstrated using a leaf dip methodology. Fresh cotton leaves were excised from the plant and leaf disks were cut with an 18.5 mm cork-borer. The disks were individually emersed in control medium (PP3) or Photorhabdus 15 luminescens (strain W-14) culture broth which had been concentrated approximately 10-fold using an Amicon (Beverly, MA), Proflux M12 tangential filtration system with a 10 kDa filter. Excess liquid was removed and a straightened paper clip was placed through the center of the disk. The paper clip was then 20 wedged into a plastic, 1.0 oz shot glass containing approximately 2.0 ml of 1% Agar. This served to suspend the leaf disk above the agar. Following drying of the leaf disk, a single neonate tobacco budworm larva was placed on the disk and the cup was 25 capped. The cups were then sealed in a plastic bag and placed in a darkened, 27°C incubator for 5 days. At this time the remaining larvae and leaf material were weighed to establish a measure of leaf damage (Table 8).

Table 8

Effect of *Photorhabdus luminescens* (Strain W-14) Culture Broth on Tobacco Budworm Neonates in a Cotton-Leaf Dip Assay

35	Treatment	Leaf Disk	Pinal Weights (mg) Larvae
	Control leaves	55.7 ± 1.3	na*
	Control Medium	34.0 ± 2.9	4.3 ± 0.91
	Photorhabdus broth	54.3 ± 1.4	0.0**

* - not applicable, ** - no live larvae found

40

Example 5, Part A Characterization of Toxin Peptide Components

In a subsequent analysis, the toxin protein subunits of the bands isolated as in Example 1 were resolved on a 7% SDS polyacrylamide electrophoresis gel with a ratio of 30:0.8 (acrylamide:BIS-acrylamide). This gel matrix facilitates better resolution of the larger proteins. The gel system used to estimate the Band 1 and Band 2 subunit molecular weights in Example 1 was an 18% gel with a ratio of 38:0.18 (acrylamide:BIS-acrylamide), which allowed for a broader range of size separation, but less resolution of higher molecular weight components.

In this analysis, 10, rather than 8, protein bands were 15 resolved. Table 9 reports the calculated molecular weights of the 10 resolved bands, and directly compares the molecular weights estimated under these conditions to those of the prior example. It is not surprising that additional bands were detected under the different separation conditions used in this 20 example. Variations between the prior and new estimates of molecular weight are also to be expected given the differences in analytical conditions. In the analysis of this example, it is thought that the higher molecular weight estimates are more accurate than in Example 1, as a result of improved resolution. However, these are estimates based on SDS PAGE analysis, which are typically not analytically precise and result in estimates of peptides and which may have been further altered due to post- and co-translational modifications.

Amino acid sequences were determined for the N-terminal portions of five of the 10 resolved peptides. Table 9 correlates the molecular weight of the proteins and the identified sequences. In SEQ ID NO:2, certain analyses suggest that the proline at residue 5 may be an asparagine (asn). In SEQ ID NO:3, certain analyses suggest that the amino acid residues at positions 13 and 14 are both arginine (arg). In SEQ ID NO:4, certain analyses suggest that the amino acid residue at position 6 may be either alanine (ala) or serine (ser). In SEQ ID NO:5, certain analyses suggest that the amino acid residue at position 3 may be aspartic acid (asp).

Table 9

	EXAMPLE 1 ESTIMATE	NEW ESTIMATE*	SEQ. LISTING
	208	200.2 kDa	SEQ ID NO:1
5	184	175.0 kDa	SEQ ID NO:2
	65.6	68.1 kDa	SEQ ID NO:3
	60.8	65.1 kDa	SEQ ID NO:4
	56.2	58.3 kDa	SEQ ID NO:5
	25.1	23.2 kDa	SEQ ID NO:15

10 *New estimates are based on SDS PAGE and are not based on gene sequences. SDS PAGE is not analytically precise.

Example 5, Part B

Characterization of Toxin Peptide Components

15

20

30

35

40

New N-terminal sequence, SEQ ID NO:15, Ala Gln Asp Gly Asn Gln Asp Thr Phe Phe Ser Gly Asn Thr, was obtained by further N-terminal sequencing of peptides isolated from Native HPLC-purified toxin as described in Example 5, Part A, above. This peptide comes from the tcaA gene. The peptide labeled TcaAii, starts at position 254 and goes to position 491, where the TcaAiii peptide starts, SEQ ID NO:4. The estimated size of the peptide based on the gene sequence is 25,240 Da.

25 <u>Example 6</u> Characterization of Toxin Peptide Components

In yet another analysis, the toxin protein complex was reisolated from the *Photorhabdus luminescens* growth medium (after culture without Tween) by performing a 10%-80% ammonium sulfate precipitation followed by an ion exchange chromatography step (Mono Q) and two molecular sizing chromatography steps. These conditions were like those used in Example 1. During the first molecular sizing step, a second biologically active peak was found at about 100 ± 10 kDa. Based upon protein measurements, this fraction was 20-50 fold less active than the larger, or primary, active peak of about 860 ± 100 kDa (native). During this isolation experiment, a smaller active peak of about 325 ± 50 kDa that retained a considerable portion of the starting biological activity was also resolved. It is thought that the 325 kDa peak is related to or derived from the 860 kDa peak.

5

10

15

20

25

30

35

40

A 56 kDa protein was resolved in this analysis. The N-terminal sequence of this protein is presented in SEQ ID NO:6. It is noteworthy that this protein shares significant identity and conservation with SEQ ID NO:5 at the N-terminus, suggesting that the two may be encoded by separate members of a gene family and that the proteins produced by each gene are sufficiently similar to both be operable in the insecticidal toxin complex.

A second, prominent 185 kDa protein was consistently present in amounts comparable to that of protein 3 from Table 9, and may be the same protein or protein fragment. The N-terminal sequence of this 185 kDa protein is shown at SEQ ID NO:7.

Additional N-terminal amino acid sequence data were also obtained from isolated proteins. None of the determined N-terminal sequences appear identical to a protein identified in Table 9. Other proteins were present in isolated preparation. One such protein has an estimated molecular weight of 108 kDa and an N-terminal sequence as shown in SEQ ID NO:8. A second such protein has an estimated molecular weight of 80 kDa and an N-terminal sequence as shown in SEQ ID NO:9.

when the protein material in the approximately 325 kDa active peak was analyzed by size, bands of approximately 51, 31, 28, and 22 kDa were observed. As in all cases in which a molecular weight was determined by analysis of electrophoretic mobility, these molecular weights were subject to error effect; introduced by buffer ionic strength differences, electrophoresis power differences, and the like. One of ordinary skill would understand that definitive molecular weight values cannot be determined using these standard methods and that each was subject to variation. It was hypothesized that proteins of these sizes are degradation products of the larger protein species (of approximately 200 kDa size) that were observed in the larger primary toxin complex.

Finally, several preparations included a protein having the N-terminal sequence shown in SEQ ID NO:10. This sequence was strongly homologous to known chaperonin proteins, accessory proteins known to function in the assembly of large protein complexes. Although the applicants could not ascribe such an assembly function to the protein identified in SEQ ID NO:10, it was consistent with the existence of the described toxin protein complex that such a chaperonin protein could be involved in its

assembly. Moreover, although such proteins have not directly been suggested to have toxic activity, this protein may be important to determining the overall structural nature of the protein toxin, and thus, may contribute to the toxic activity or durability of the complex in vivo after oral delivery.

Subsequent analysis of the stability of the protein toxin complex to proteinase K was undertaken. It was determined that after 24 hour incubation of the complex in the presence of a 10-fold molar excess of proteinase K, activity was virtually eliminated (mortality on oral application dropped to about 5%). These data confirm the proteinaceous nature of the toxin.

The toxic activity was also retained by a dialysis membrane, again confirming the large size of the native toxin complex.

15

20

25

30

40

10

5

Example 7

Isolation, Characterization and Partial Amino Acid Sequencing of Photorhabdus Toxins

Isolation and N-Terminal Amino Acid Sequencing: In a set of experiments conducted in parallel to Examples 5 and 6, ammonium sulfate precipitation of Photorhabdus proteins was performed by adjusting Photorhabdus broth, typically 2-3 liters, to a final concentration of either 10% or 20% by the slow addition of ammonium sulfate crystals. After stirring for 1 hour at 4°C, the material was centrifuged at 12,000 x g for 30 minutes. The supernatant was adjusted to 80% ammonium sulfate, stirred at 4°C for 1 hour, and centrifuged at 12,000 x g for 60 minutes. The pellet was resuspended in one-tenth the volume of 10 mM Na₂·PO₄, pH 7.0 and dialyzed against the same phosphate buffer overnight at 4°C. The dialyzed material was centrifuged at 12,000 x g for 1 hour prior to ion exchange chromatography.

A HR 16/50 Q Sepharose (Pharmacia) anion exchange column was equilibrated with 10 mM Na₂•PO₄, pH 7.0. Centrifuged, dialyzed ammonium sulfate pellet was applied to the Q Sepharose column at a rate of 1.5 ml/min and washed extensively at 3.0 ml/min with equilibration buffer until the optical density (O.D. 280) reached less than 0.100. Next, either a 60 minute NaCl gradient ranging from 0 to 0.5 M at 3 ml/min, or a series of step elutions using 0.1 M, 0.4 M and finally 1.0 NaCl for 60 minutes each was applied to the column. Fractions were pooled and concentrated using a

5

. 10

40

Centriprep 100. Alternatively, proteins could be eluted by a single 0.4 M NaCl wash without prior elution with 0.1 M NaCl.

Two milliliter aliquots of concentrated Q Sepharose samples were loaded at 0.5 ml/min onto a HR 16/50 Superose 12 (Pharmacia) gel filtration column equilibrated with 10 mM Na₂·PO₄, pH 7.0. The column was washed with the same buffer for 240 min at 0.5 ml/min and 2 min samples were collected. The void volume material was collected and concentrated using a Centriprep 100. Two milliliter aliquots of concentrated Superose 12 samples were loaded at 0.5 ml/min onto a HR 16/50 Sepharose 4B-CL (Pharmacia) gel filtration column equilibrated with 10 mM Na₂·PO₄, pH 7.0. The column was washed with the same buffer for 240 min at 0.5 ml/min and 2 min samples were collected.

The excluded protein peak was subjected to a second 15 fractionation by application to a gel filtration column that used a Sepharose CL-4B resin, which separates proteins ranging from ~30 kDa to 1000 kDa. This fraction was resolved into two peaks; a minor peak at the void volume (>1000 kDa) and a major peak which eluted at an apparent molecular weight of about 860 kDa. Over a one week period subsequent samples subjected to gel filtration showed the gradual appearance of a third peak (approximately 325 kDa) that seemed to arise from the major peak, perhaps by limited proteolysis. Bioassays performed on the three peaks showed that the void peak had no activity, while the 860 25 kDa toxin complex fraction was highly active, and the 325 kDa peak was less active, although quite potent. SDS PAGE analysis of Sepharose CL-4B toxin complex peaks from different fermentation productions revealed two distinct peptide patterns, denoted "P" and "S". The two patterns had marked differences in 30 the molecular weights and concentrations of peptide components in their fractions. The "S" pattern, produced most frequently, had 4 high molecular weight peptides (> 150 kDa) while the "P" pattern had 3 high molecular weight peptides. In addition, the "S" peptide fraction was found to have 2-3 fold more activity 35 against European Corn Borer. This shift may be related to variations in protein expression due to age of inoculum and/or other factors based on growth parameters of aged cultures.

Milligram quantities of peak toxin complex fractions determined to be "P" or "S" peptide patterns were subjected to preparative SDS PAGE, and transblotted with TRIS-glycine

10

15

20

25

30

35

(Seprabuff™ to PVDF membranes (ProBlott™, Applied Biosystems) for 3-4 hours. Blots were sent for amino acid analysis and Nterminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. Three peptides in the "S" pattern had unique N-terminal amino acid sequences compared to the sequences 5 identified in the previous example. A 201 kDa (TcdA $_{ii}$) peptide set forth as SEQ ID NO:.13 below shared between 33% amino acid identity and 50% similarity with SEQ ID NO:1 (TcbAii) (Table 10, in Table 10 vertical lines denote amino acid identities and colons indicate conservative amino acid substitutions). A second peptide of 197 kDa, SEQ ID NO:14 (TcdB), had 42% identity and 58% homology with SEQ ID NO:2 (TcaC). Yet a third peptide of 205 kDa was denoted TcdAii. In addition, a limited N-terminal amino acid sequence, SEQ ID NO:16 (TcbA), of a peptide of at least 235 kDa was identical in homology with the amino acid sequence, SEQ ID NO:12, deduced from a cloned gene (tcbA), SEQ ID NO:11, containing a deduced amino acid sequence corresponding to SEQ ID NO:1 (TcbA $_{ii}$). This indicates that the larger 235+ kDa peptide was proteolytically processed to the 201 kDa peptide, $(TcbA_{ii})$, (SEQ ID NO:1) during fermentation, possibly resulting in activation of the molecule. In yet another sequence, the sequence originally reported as SEQ ID NO:5 (TcaBii) reported in Example 5 above, was found to contain an aspartic acid residue (Asp) at the third position rather than glycine (Gly) and two additional amino acids Gly and Asp at the eighth and ninth positions, respectively. In yet two other sequences, SEQ ID NO:2 (TcaC) and SEQ ID NO:3 (TcaB $_{i}$), additional amino acid sequence was obtained. Densitometric quantitation was performed using a sample that was identical to the "S" preparation sent for Nterminal analysis. This analysis showed that the 201 kDa and 197 kDa peptides represent 7.0% and 7.2%, respectively, of the total Coomassie brillant blue stained protein in the "S" pattern and are present in amounts similar to the other abundant peptides. It is speculated that these peptides may represent protein homologs, analogous to the situation found with other bacterial toxins, such as various Cryl Bt toxins. These proteins vary from 40-90% homology at their N-terminal amino acid sequence, which encompasses the toxic fragment.

Internal Amino Acid Sequencing: To facilitate cloning of toxin peptide genes, internal amino acid sequences of selected peptides were obtained as followed. Milligram quantities of peak 2A fractions determined to be "P" or "S" peptide patterns were subjected to preparative SDS PAGE, and transblotted with TRISglycine (Seprabuff™ to PVDF membranes (ProBlott™, Applied Biosystems) for 3-4 hours. Blots were sent for amino acid analysis and N-terminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. Three peptides. referred to as TcbAii (containing SEQ ID NO:1), TcdAii, and TcaBi 10 (containing SEQ ID NO:3) were subjected to trypsin digestion by Harvard MicroChem followed by HPLC chromatography to separate individual peptides. N-terminal amino acid analysis was performed on selected tryptic peptide fragments. Two internal 15 peptides were sequenced for the peptide TcaB₁ (205 kDa peptide) referred to as TcaB_i-PT111 (SEQ ID NO:17) and TcaB_i-PT79 (SEQ ID NO:18). Two internal peptides were sequenced for the peptide TcaB; (68 kDa peptide) referred to as TcaB;-PT158 (SEQ ID NO:19) and TcaB₁-PT108 (SEQ ID NO:20). Four internal peptides were sequenced for the peptide TcbAii (201 kDa peptide) referred to as 20 TCBAII-PT103 (SEQ ID NO:21), TcbAii-PT56 (SEQ ID NO:22), TcbAii-PT81(a) (SEQ ID NO:23), and TcbAii-PT81(b) (SEQ ID NO:24).

Table 10

25 N-Terminal Amino Acid Sequences

40 Example 8

Construction of a cosmid library of Photorhabdus luminescens W-14
genomic DNA and its screening to isolate genes encoding peptides
comprising the toxic protein preparation

As a prerequisite for the production of *Photorhabdus* insect toxic proteins in heterologous hosts, and for other uses, it is necessary to isolate and characterize the genes that encode those

peptides. This objective was pursued in parallel. One approach, described later, was based on the use of monoclonal and polyclonal antibodies raised against the purified toxin which were then used to isolate clones from an expression library. The other approach, described in this example, is based on the use of the N-terminal and internal amino acid sequence data to design degenerate oligonucleotides for use in PCR amplication. Either method can be used to identify DNA clones that contain the peptide-encoding genes so as to permit the isolation of the respective genes, and the determination of their DNA base sequence.

GENOMIC DNA ISOLATION: Photorhabdus luminescens strain W-14 (ATCC accession number 55397) was grown on 2% proteose peptone #3 agar (Difco Laboratories, Detroit, MI) and insecticidal toxin 15 competence was maintained by repeated bioassay after passage, using the method described in Example 1 above. A 50 ml shake culture was produced in a 175 ml baffled flask in 2% proteose peptone #3 medium, grown at 28°C and 150 rpm for approximately 24 hours. 15 ml of this culture was pelleted and frozen in its 20 medium at -20°C until it was thawed for DNA isolation. The thawed culture was centrifuged, (700 \times g, 30 min) and the floating orange mucopolysaccharide material was removed. The remaining cell material was centrifuged (25,000 \times g, 15 min) to pellet the bacterial cells, and the medium was removed and 25 discarded.

Genomic DNA was isolated by an adaptation of the CTAB method described in section 2.4.1 of Current Protocols in Molecular Biology (Ausubel et al. eds. John Wiley & Sons, 1994) [modified to include a salt shock and with all volumes increased 10-fold]. The pelleted bacterial cells were resuspended in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to a final volume of 10 ml, then 12 ml of 5 M NaCl was added; this mixture was centrifuged 20 min at 15,000 x g. The pellet was resuspended in 5.7 ml TE and 300 ml of 10% SDS and 60 ml of 20 mg/ml proteinase K (Gibco BRL Products, Grand Island, NY; in sterile distilled water) were added to the suspension. This mixture was incubated at 37°C for 1 hr; then approximately 10 mg lysozyme (Worthington Biochemical Corp., Freehold, NJ) was added. After an additional 45 min, 1 ml of 5 M NaCl and 800 ml of CTAB/NaCl solution (10% w/v CTAB, 0.7 M

30

35

NaCl) were added. This preparation was incubated 10 min at 65°C, then gently agitated and further incubated and agitated for approximately 20 min to assist clearing of the cellular material. An equal volume of chloroform/isoamyl alcohol solution (24:1, v/v) was added, mixed gently and centrifuged. After two

extractions with an equal volume of PCI (phenol/chloroform/isoamyl alcohol; 50:49:1, v/v/v; equilibrated with 1 M Tris-HCl, pH 8.0; Intermountain Scientific Corporation, Kaysville, UT), the DNA was precipitated with 0.6 volume of

isopropanol. The DNA precipitate was gently removed with a glass rod, washed twice with 70% ethanol, dried, and dissolved in 2 ml STE (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 1 mM EDTA). This preparation contained 2.5 mg/ml DNA, as determined by optical density at 260 nm (i.e., OD260).

The molecular size range of the isolated genomic DNA was evaluated for suitability for library construction. CHEF gel analysis was performed in 1.5% agarose (Seakem® LE, FMC BioProducts, Rockland, ME) gels with 0.5 X TBE buffer (44.5 mM Tris-HCl pH 8.0, 44.5 mM H₂BO₁, 1 mM EDTA) on a BioRad CHEF-DR II apparatus with a Pulsewave 760 Switcher (Bio-Rad Laboratories, Inc., Richmond, CA). The running parameters were: initial A time, 3 sec; final A time, 12 sec; 200 volts; running temperature, 4-18°C; run time, 16.5 hr. Ethidium bromide staining and examination of the gel under ultraviolet light indicated the DNA ranged from 30-250 kbp in size.

CONSTRUCTION OF LIBRARY: A partial Sau3A 1 digest was made of this Photorhabdus genomic DNA preparation. The method was based on section 3.1.3 of Ausubel (supra.). Adaptions included running smaller scale reactions under various conditions until nearly optimal results were achieved. Several scaled-up large reactions with varied conditions were run, the results analyzed on CHEF gels, and only the best large scale preparation was carried forward. In the optimal case, 200 µg of Photorhabdus genomic DNA was incubated with 1.5 units of Sau3A 1 (New England Biolabs, "NEB", Beverly, MA) for 15 min at 37°C in 2 ml total volume of 1X NEB 4 buffer (supplied as 10X by the manufacturer). The reaction was stopped by adding 2 ml of PCI and centrifuging at 8000 x g for 10 min. To the supernatant were added 200 µl of 5 M NaCl plus 6 ml of ice-cold ethanol. This preparation was

30

35

40

chilled for 30 min at -20°C, then centrifuged at 12,000 × g for 15 min. The supernatant was removed and the precipitate was dried in a vacuum oven at 40°C, then resuspended in 400 µl STE. Spectrophotometric assay indicated about 40% recovery of the input DNA. The digested DNA was size fractionated on a sucrose gradient according to section 5.3.2 of CPMB (op. cit.). A 10% to 40% (w/v) linear sucrose gradient was prepared with a gradient maker in Ultra-Clear[™] tubes (Beckman Instruments, Inc., Palo Alto, CA) and the DNA sample was layered on top. After

10 centrifugation, (26,000 rpm, 17 hr, Beckman SW41 rotor, 20°C), fractions (about 750 μ1) were drawn from the top of the gradient and analyzed by CHEF gel electrophoresis (as described earlier). Fractions containing Sau3A 1 fragments in the size range 20-40 kbp were selected and DNA was precipitated by a modification

(amounts of all solutions increased approximately 6.3-fold) of the method in section 5.3.3 of Ausubel (supra.). After overnight precipitation, the DNA was collected by centrifugation (17,000 x g, 15 min), dried, redissolved in TE, pooled into a final volume of 80 μl, and reprecipitated with the addition of 8 μl 3 M sectium

20 acetate and 220 μl ethanol. The pellet collected by centrifugation as above was resuspended in 12 μl TE. Concentration of the DNA was determined by Hoechst 33258 dye (Polysciences, Inc., Warrington, PA) fluorometry in a Hoefer TKO100 fluorimeter (Hoefer Scientific Instruments, San Francisco,

25 CA). Approximately 2.5 μg of the size-fractionated DNA was recovered.

Thirty μg of cosmid pWE15 DNA (Stratagene, La Jolla, CA) was digested to completion with 100 units of restriction enzyme FamH 1 (NEB) in the manufacturer's buffer (final volume of 200 μl ,

30 37°C, 1 hr). The reaction was extracted with 100 μ l of FCI and DNA was precipitated from the aqueous phase by addition of 20 μ l 3M sodium acetate and 550 μ l -20°C absolute ethanol. After 10 min at -70°C, the DNA was collected by centrifugation (17,000 x g, 15 min), dried under vacuum, and dissolved in 180 μ l of 10 mM

35 Tris-HCl, pH 8.0. To this were added 20 μ l of 10X CIP buffe. (100 mM Tris-HCl, pH 8.3; 10 mM ZnCl₂; 10 mM MgCl₂), and 1 μ l (0.25 units) of 1:4 diluted calf intestinal alkaline phosphatase

10

15

(Boehringer Mannheim Corporation, Indianapolis, IN). After 30 min at 37°C, the following additions were made: 2 μl 0.5 M EDTA, pH 3.0; 10 μl 10% SDS; 0.5 μl of 20 mg/ml proteinase K (as above), followed by incubation at 55°C for 30 min. Following sequential extractions with 100 μl of PCI and 100 μl phenol (Intermountain Scientific Corporation, equilibrated with 1 M Tris-HCl, pH 8.0), the dephosphorylated DNA was precipitated by addition of 72 μl of 7.5 M ammonium acetate and 550 μl -20°C ethanol, incubation on ice for 30 min, and centrifugation as above. The pelleted DNA was washed once with 500 μl -20°C 70% ethanol, dried under vacuum, and dissolved in 20 μl of TE buffer.

Ligation of the size-fractionated Sau3A 1 fragments to the BamH 1-digested and phosphatased pWE15 vector was accomplished using T4 ligase (NEB) by a modification (i.e., use of premixed 10X ligation buffer supplied by the manufacturer) of the protocol in section 3.33 of Ausubel. Ligation was carried out overnight in a total volume of 20 μ l at 15°C, followed by storage at -20°C.

Four µl of the cosmid DNA ligation reaction, containing 20 about 1 µg of DNA, was packaged into bacteriophage lambda using a commercial packaging extract (Gigapack III Gold Packaging Extract, Stratagene), following the manufacturer's directions. The packaged preparation was stored at 4°C until use. The packaged cosmid preparation was used to infect Escherichia coli 25 XL1 Blue MR cells (Stratagene) according to the Gigapack III 001d protocols ("Titering the Cosmid Library"), as follows. XL1 Blue MR cells were grown in LB medium (g/L: Bacto-tryptone, 10; Bactoyeast extract, 5; Bacto-agar, 15; NaCl, 5; [Difco Laboratories, Detroit, MI)) containing 0.2% (w/v) maltose plus 10 mM MgSO4, at 30 37°C. After 5 hr growth, cells were pelleted at 700 x g (15 min) and resuspended in 6 ml of 10 mM MgSO4. The culture density was adjusted with 10 mM MgSO4 to OD600 = 0.5. The packaged cosmid library was diluted 1:10 or 1:20 with sterile SM medium (0.1 M NaCl, 10 mM MgSO4 50 mM Tris-HCl pH 7.5, 0.01% w/v gelatin), and 25 μl of the diluted preparation was mixed with 25 μl of the diluted XL1 Blue MR cells. The mixture was incubated at 25°C for 30 min (without shaking), then 200 µl of LB broth was added, and incubation was continued for approximately 1 hr with occasional

gentle shaking. Aliquots (20-40 µl) of this culture were spread on LB agar plates containing 100 mg/l ampicillin (i.e., LB-Anipte) and incubated overnight at 37°C. To store the library without amplification, single colonies were picked and inoculated into individual wells of sterile 96-well microwell plates; each well containing 75 µl of Terrific Broth (TB media: 12 g/l Bactotryptone, 24 g/l Bacto-yeast extract, 0.4% v/v glycerol, 17 mm KH₂PO₄, 72 mM K₂HPO₄) plus 100 mg/l ampicillin (i.e., TB-Amp₁₂₂) and incubated (without shaking) overnight at 37°C. After replicating the 96-well plate into a copy plate, 75 µl/well of filtersterilized TB:glycerol (1:1, v/v; with, or without, 100 mg/l ampicillin) was added to the plate, it was shaken briefly at 100 rpm, 37°C, and then closed with Parafilm (American National Can. Greenwich, CT) and placed in a -70°C freezer for storage. Cupy plates were grown and processed identically to the master plates. A total of 40 such master plates (and their copies) were prepared.

SCREENING OF THE LIBRARY WITH RADIOLABELED DNA PROBES: To 20 prepare colony filters for probing with radioactively labeled probes, ten 96-well plates of the library were thawed at 25°C (bench top at room temperature). A replica plating tool with 95 prongs was used to inoculate a fresh 96-well copy plate containing 75 µl/well of TB-Amp₁₀₀. The copy plate was grown 25 overnight (stationary) at 37°C, then shaken about 30 min at 100 rpm at 37°C. A total of 800 colonies was represented in these copy plates, due to nongrowth of some isolates. The replica tool was used to inoculate duplicate impressions of the 96-well arrays onto Magna NT (MSI, Westboro, MA) nylon membranes (0.45 micron, 30 220 x 250 mm) which had been placed on solid LB-Ampino (100 ml/dish) in Bio-assay plastic dishes (Nunc, 243 x 243 x 18 mm; Curtin Mathison Scientific, Inc., Wood Dale, IL). The colonies were grown on the membranes at 37°C for about 3 hr.

A positive control colony (a bacterial clone containing a 35 GZ4 sequence insert, see below) was grown on a separate Magna NT membrane (Nunc, 0.45 micron, 82 mm circle) on LB medium supplemented with 35 mg/l chloramphenicol (i.e., LB-Camis), and processed alongside the library colony membranes. Bacterial colonies on the membranes were lysed, and the DNA was denatured

and neutralized according to a protocol taken from the Genius™ System User's Guide version 2.0 (Boehringer Mannheim, Indianapolis, IN). Membranes were placed colony side up on filter paper soaked with 0.5 N NaOH plus 1.5 M NaCl for 15 min to 5 denature, and neutralized on filter paper soaked with 1 M Tris-HCl pH 8.0, 1.5 M NaCl for 15 min. After UV-crosslinking using a Stratagene UV Stratalinker set on auto crosslink, the membranes were stored dry at 25°C until use. Membranes were trimmed into strips containing the duplicate impressions of a single 96-well plate, then washed extensively by the method of section 6.4.1 in 10 CPMB (op. cit.): 3 hr at 25°C in 3X SSC, 0.1% (w/v) SDS, followed by 1 hr at 65°C in the same solution, then rinsed in 2X SSC in preparation for the hybridization step (20% SSC = 3 M NaCl, 0.3 M sodium citrate, pH 7.0).

15

Amplification of a specific genomic fragment of a teac wene. Based on the N-terminal amino acid sequence determined for the purified TeaC peptide fraction [disclosed herein as SEQ ID NO:2], a pool of degenerate oligonucleotides (pool S4Psh) was

- synthesized by standard β -cyanoethyl chemistry on an Applied BioSystem ABI394 DNA/RNA Synthesizer (Perkin Elmer, Foster City, CA). The oligonucleotides were deprotected 8 hours at 55°C, dissolved in water, quantitated by spectrophotometric measurement, and diluted for use. This pool corresponds to the
- determined N-terminal amino acid sequence of the TcaC peptide.

 The determined amino acid sequence and the corresponding degenerate DNA sequence are given below, where A, C, G, and T are the standard DNA bases, and I represents inosine:
- Amino Met Gln Asp Ser Pro Glu Val 30 Acid
 - S4Psh 5' ATG CA(A/G) GA(T/C) (T/A)(C/G)(T/A) CCI GA(A/G) GT 3'
- Another set of degenerate oligonucleotides was synthesized (pool P2.3.5R), representing the complement of the coding strand for the determined amino acid sequence of the SEQ ID NO:17:

 Amino

Acid Ala Phe Asn Ile Asp Asp Val

40 Codons 5' GCN TT(T/C) AA(T/C) AT(A/T/C) GA(T/C) GA(T/C) GT 3' P2.3.5R 3'CG(A/C/G/T) AA(A/G) TT(A/G) TA(T/A/G) CT(A/G) CT(A/G) CA 5'

These oligonucleotides were used as primers in Polymerase Chain Reactions (PCR®, Roche Molecular Systems, Branchburg, NJ) to

amplify a specific una tragment from genomic DNA prepared from Photorhabdus strain W-14 (see above). A typical reaction (50 μ 1) contained 125 pmol of each primer pool P2Psh and P2.3.5R, 253 ng of genomic template DNA, 10 nmol each of dATP, dCTP, dGTP, and dTTP, 1X GeneAmp* PCR buffer, and 2.5 units of AmpliTag* DNA polymerase (both from Roche Molecular Systems; 10X GeneAmp buffer is 100 mM Tris-HCl pH 8.3, 500 mM KCl, 0.01% w/v gelatin). Amplifications were performed in a Perkin Elmer Cetus DNA Thermal Cycler (Perkin Elmer, Foster City, CA) using 35 cycles of 94°C 10 (1.0 min), 55°C (2.0 min), 72°C (3.0 min), followed by an extension period of 7.0 min at 72°C. Amplification products were analyzed by electrophoresis through 2% w/v NuSieve 3:1 agarose (FMC BioProducts) in TEA buffer (40 mM Tris-acetate, 2 mM EDTA. pH 8.0). A specific product of estimated size 250 bp was 15 observed amongst numerous other amplification products by ethidium bromide (0.5 μ g/ml) staining of the gel and examination under ultraviolet light.

The region of the gel containing an approximately 250 bp product was excised, and a small plug (0.5 mm dia.) was removed and used to supply template for PCR amplification (40 cycles). The reaction (50 µl) contained the same components as above, minus genomic template DNA. Following amplification, the ends of the fragments were made blunt and were phosphorylated by incubation at 25°C for 20 min with 1 unit of T4 DNA polymerase (NEB), 1 nmol ATP, and 2.15 units of T4 kinase (Pharmacia Biotech Inc., Piscataway, NJ).

20

25

30

DNA fragments were separated from residual primers by electrophoresis through 1% w/v GTG[®] agarose (FMC) in TEA. A gel slice containing fragments of apparent size 250 bp was excised, and the DNA was extracted using a Qiaex kit (Qiagen Inc., Chatsworth, CA).

The extracted DNA fragments were ligated to plasmid vector pBC KS(+) (Stratagene) that had been digested to completion with restriction enzyme Sma 1 and extracted in a manner similar to that described for pWE15 DNA above. A typical ligation reaction (16.3 µl) contained 100 ng of digested pBC KS(+) DNA, 70 ng of 250 bp fragment DNA, 1 nmol [Co(NH₁),]Cl₁, and 3.9 Weiss units of T4 DNA ligase (Collaborative Biomedical Products, Bedford, MA), in 1X ligation buffer (50 mM Tris-HCl, pH 7.4; 10 mM MgCl₂; 10 mM

dithiothreitol; 1 mM spermidine, 1 mM ATP, 100 mg/ml bovine serum albumin). Following overnight incubation at 14°C, the ligated products were transformed into frozen, competent *Escherichia soli* DH5α cells (Gibco BRL) according to the suppliers

- 5 recommendations, and plated on LB-Cam, plates, containing IPT':

 (119 μg/ml) and X-gal (50 μg/ml). Independent white colonies

 were picked, and plasmid DNA was prepared by a modified alkalinelysis/PEG precipitation method (PRISM™ Ready Reaction DyeDeox; ™

 Terminator Cycle Sequencing Kit Protocols; ABI/Perkin Elmer).
- The nucleotide sequence of both strands of the insert DNA was determined, using T7 primers {pBC KS(+) bases 601-623:

 TAAAACGACGGCCAGTGAGCGCG) and LacZ primers {pBC KS(+) bases 792-816: ATGACCATGATTACGCCAAGCGCGC) and protocols supplied with the PRISM™ sequencing kit (ABI/Perkin Elmer). Nonincorporated dye-
- terminator dideoxyribonucleotides were removed by passage through Centri-Sep 100 columns (Princeton Separations, Inc., Adelphia, NJ) according to the manufacturer's instructions. The DNA sequence was obtained by analysis of the samples on an ABI Model 373A DNA Sequencer (ABI/Perkin Elmer). The DNA sequences of two isolates, GZ4 and HB14, were found to be as illustrated in Figure 1.

This sequence illustrates the following features: 1) bases 1-20 represent one of the 64 possible sequences of the S4Psh degenerate oligonucleotides, ii) the sequence of amino acids 1-3 and 6-12 correspond exactly to that determined for the N-terminus of TcaC (disclosed as SEQ ID NO:2), iii) the fourth amino acid encoded is a cysteine residue rather than serine. This difference is encoded within the degeneracy for the serine codons (see above), iv) the fifth amino acid encoded is proline,

25

30

35

corresponding to the TcaC N-terminal sequence given as SEQ ID NO:2, v) bases 257-276 encode one of the 192 possible sequences designed into the degenerate pool, vi) the TGA termination codon introduced at bases 268-270 is the result of complementarity to the degeneracy built into the oligonucleotide pool at the corresponding position, and does not indicate a shortened reading frame for the corresponding gene.

Labeling of a TcaC peptide gene-specific probe. DNA

fragments corresponding to the above 276 bases were amplified (35

cycles) by PCR $^{\circ}$ in a 100 μl reaction volume, using 100 pmol each of P2Psh and P2.3.5R primers, 10 ng of plasmids GZ4 or HB14 as templates, 20 nmol each of dATP, dCTP, dGTP, and dTTP, 5 units of AmpliTAq DNA polymerase, and 1X concentration of GeneAmp buffer, under the same temperature regimes as described above. The amplification products were extracted from a 1% GTG* agarose gel by Qiaex kit and quantitated by fluorometry.

The extracted amplification products from plasmid HB14 template (approximately 400 ng) were split into five aliquots and labeled with $^{31}P\text{-}dCTP$ using the High Prime Labeling Mix (Boehringer Mannheim) according to the manufacturer's instructions. Nonincorporated radioisotope was removed by passage through NucTrap® Probe Purification Columns (Stratagene). according to the supplier's instructions. The specific activity of the labeled DNA product was determined by scintillation 15 counting to be 3.11 \times 10 8 dpm/ μ g. This labeled DNA was used to probe membranes prepared from 800 members of the genomic library.

10

Screening with a TcaC-peptide gene specific probe. radiolabeled HB14 probe was boiled approximately 10 min, then 20 added to "minimal hyb" solution. [Note: The "minimal hyb" method is taken from a CERES protocol; "Restriction Fragment Length Polymorphism Laboratory Manual version 4.0", sections 4-40 and 4-47; CERES/NPI, Salt Lake City, UT. NPI is now defunct, with its successors operating as Linkage Genetics). "Minimal hyb" 25 solution contains 10% w/v PEG (polyethylene glycol, M.W. approx. 8000), 7% w/v SDS; 0.6X SSC, 10 mM sodium phosphate buffer (from a 1M stock containing 95 g/l $NaH_2PO_4 \circ 1H_2O$ and 84.5 g/l $Na_2HPO_4 \bullet 7H_2O)$, 5 mM EDTA, and 100 mg/ml denatured salmon sperm DNA. Membranes were blotted dry briefly then, without 30 prehybridization, 5 strips of membrane were placed in each of 2 plastic boxes containing 75 ml of "minimal hyb" and 2.6 ng/ml of radiolabeled HB14 probe. These were incubated overnight with slow shaking (50 rpm) at 60°C. The filters were washed three times for approximately 10 min each at 25°C in "minimal hyb wash 35 solution" (0.25% SSC, 0.2% SDS), followed by two 30-min washes with slow shaking at 60°C in the same solution. The filters were placed on paper covered with Saran Wrap* (Dow Brands, Indianapolis, IN) in a light-tight autoradiographic cassette and 40 exposed to X-Omat X-ray film (Kodak, Rochester, NY) with two

DuPont Cronex Lightning-Plus C1 enhancers (Sigma Chemical Cc., St. Louis, MO), for 4 hr at -70°C. Upon development (standard photographic procedures), significant signals were evident in both replicates amongst a high background of weaker, more irregular signals. The filters were again washed for about 4 hr at 68°C in "minimal hyb wash solution" and then placed again in the cassettes and film was exposed overnight at -70°C. Twelve possible positives were identified due to strong signals on both of the duplicate 96-well colony impressions. No signal was seen with negative control membranes (colonies of XL1 Blue MR cells containing pWE15), and a very strong signal was seen with positive control membranes (DH5α cells containing the GZ4 isolate of the PCR product) that had been processed concurrently with the experimental samples.

The twelve putative hybridization-positive colonies were retrieved from the frozen 96-well library plates and grown overnight at 37°C on solid LB-Amp₁₀₀ medium. They were then patched (3/plate, plus three negative controls: XL1 Blue MR cells containing the pWE15 vector) onto solid LB-Amp₁₀₀. Two sets of membranes (Nagna NT nylon, 0.45 micron) were prepared for hybridization. The first set was prepared by placing a filter directly onto the colonies on a patch plate, then removing it with adherent bacterial cells, and processing as below. Filters of the second set were placed on plates containing LB-Amp₁₀₀ medium, then inoculated by transferring cells from the patch plates onto the filters. After overnight growth at 37°C, the filters were removed from the plates and processed.

Bacterial cells on the filters were lysed and DNA denatured by placing each filter colony-side-up on a pool (1.0 ml) of 0.5 N NaOH in a plastic plate for 3 min. The filters were blotted dry on a paper towel, then the process was repeated with fresh 0.5 N NaOH. After blotting dry, the filters were neutralized by placing each on a 1.0 ml pool of 1 M Tris-HCl, pH 7.5 for 3 min, blotted dry, and reneutralised with fresh buffer. This was followed by two similar soakings (5 min each) on pools of 0.5 M Tris-HCl pH 7.5 plus 1.5 M NaCl. After blotting dry, the DNA was UV crosslinked to the filter (as above), and the filters were washed (25°C, 100 rpm) in about 100 ml of 3X SSC plus 0.1%(w/v) SDS (4 times, 30 min each with fresh solution for each wash).

solution [5X SSC plus 1% wive each of Ficoll 400 (Pharmacia), polyvinylpyrrolidone (av. M.W. 360,000; Sigma) and bovine serum albumin Fraction V; (Sigma)] for 2 hr at 65°C, 50 rpm. The prehybridization solution was removed, and replaced with the HB14 P-labeled probe that had been saved from the previous hybridization of the library membranes and which had been denatured at 95°C for 5 min. Hybridization was performed at 60°C for 16 hr with shaking at 50 rpm.

Following removal of the labeled probe solution, the

membranes were washed 3 times at 25°C (50 rpm, 15 min) in 3X SSC
(about 150 ml each wash). They were then washed for 3 hr at 68°C
(50 rpm) in 0.25X SSC plus 0.2% SDS (minimal hyb wash solution),
and exposed to X-ray film as described above for 1.5 hr at 25°C
(no enhancer screens). This exposure revealed very strong
hybridization signals to cosmid isolates 22G12, 25A10, 26A5, and
26B10, and a very weak signal with cosmid isolate 8B10. No
signal was seen with the negative control (pWE15) colonies, and a
very strong signal was seen with positive control membranes (DH50
cells containing the GZ4 isolate of the PCR product) that had
been processed concurrently with the experimental samples.

Amplification of a specific genomic fragment of a tcaB gene. Based on the N-terminal amino acid sequence determined for the purified TcaB, peptide fraction (disclosed here as SEQ ID NO:3) a pool of degenerate oligonucleotides (pool P8F) was synthesized as described for peptide TcaC. The determined amino acid sequence and the corresponding degenerate DNA sequence are given below, where A, C, G, and T are the standard DNA bases, and I represents inosine:

30

40

Amino
Acid Leu Phe Thr Gln Thr Leu Lys Glu Ala Arg

P8F 5' TTT ACI CA(A/G) ACI (C/T)TI AAA GAA GCI (A/C)G 3'

(C/T)TI

Another set of degenerate oligonucleotides was synthesized (pool P8.108.3R), representing the complement of the coding strand for the determined amino acid sequence of the $TcaB_1-PT108$ internal peptide (disclosed herein as SEQ ID NO:20):

Amino Acid Met Tyr Tyr Ile Gln Ala Gln Gln

CODONS ATG TA(T/C) TA(T/C) AT(T/C/A) CA(A/G) GC(A/C/G/T) CA(A/G CA(A/G))

BELEGINER 3' AT(A/G) AT(A/G) TA(A/G/T) GT(T/C) CGI GT(T/C) GT 5'

TAC

5

These oligonucleotides were used as primers for PCR using HotStart 50 Tubes (Molecular Bio-Products, Inc., San Diego, CA) to amplify a specific DNA fragment from genomic DNA prepared from Photorhabdus strain W-14 (see above). A typical reaction (50 µl) contained (bottom layer) 25 pmol of each primer pool P8F and P8.108.3R, with 2 nmol each of dATP, dCTP, dGTP, and dTTP, in 1% GeneAmp PCR buffer, and (top layer) 230 ng of genomic template DNA, 8 nmol each of dATP, dCTP, dGTP, and dTTP, and 2.5 units of AmpliTaq DNA polymerase, in 1% GeneAmp PCR buffer.

Amplifications were performed by 35 cycles as described for the TcaC peptide. Amplification products were analyzed by electrophoresis through 0.7% w/v SeaKem LE agarose (FMC) in TEA buffer. A specific product of estimated size 1600 bp was observed.

Four such reactions were pooled, and the amplified DNA was extracted from a 1.0% SeaKem® LE gel by Qiaex kit as described for the TcaC peptide. The extracted DNA was used directly as the template for sequence determination (PRISM® Sequencing Kit) using, the P8F and P8.108.3R primer pools. Each reaction contained about 100 ng template DNA and 25 pmol of one primer pool, and was processed according to standard protocols as described for the TcaC peptide. An analysis of the sequence derived from extension of the P8F primers revealed the short DNA sequence (and encoded amino acid sequence):

30

20

25

GAT GCA TTG NTT GCT $Asp\ Ala\ Leu\ (Val)\ Ala$ which corresponds to a portion of the N-terminal peptide sequence disclosed as SEQ ID NO:3 (TcaBi).

35 Labeling of a TcaBi-peptide gene-specific probe.

Approximately 50 ng of gel-purified TcaB_i DNA fragment was labeled with ^{32}P -dCTP as described above, and nonincorporated radioisotopes were removed by passage through a NICK Column (Pharmacia). The specific activity of the labelled DNA was determined to be 6 x 10° dpm/ μ g. This labeled DNA was used to

probe colony membranes prepared from members of the genomic library that had hybridized to the TcaC-peptide specific probe.

The membranes containing the 12 colonies identified in the TcaC-probe library screen (see above) were stripped of radioactive TcaC-specific label by boiling twice for approximately 30 min each time in 1 liter of 0.1% SSC plus 0.1 % SDS. Removal of radiolabel was checked with a 6 hr film exposure. The stripped membranes were then incubated with the TcaBi peptide-specific probe prepared above. The labeled DNA was denatured by boiling for 10 min, and then added to the filters that had been incubated for 1 hr in 100 ml of "minimal hyb" solution at 60°C. After overnight hybridization at this temperature, the probe solution was removed, and the filters were washed as follows (all in 0.3% SSC plus 0.1% SDS): once for 5 min at 25°C, once for 1 hr at 60°C in fresh solution, and once for 1 hr at 63°C in fresh solution. After 1.5 hr exposure to X-ray film by standard procedures, 4 strongly-hybridizing colonies were observed. These were, as with the TcaC-specific probe, isolates 22G12, 25A10, 26A5, and 26B10.

The same TcaBiprobe solution was diluted with an equal volume (about 100 ml) of "minimal hyb" solution, and then used to screen the membranes containing the 800 members of the genomic library. After hybridization, washing, and exposure to X-ray film as described above, only the four cosmid clones 22G12, 25A10, 26A5, and 26B10, were found to hybridize strongly to this probe.

ISOLATION OF SUBCLONES CONTAINING GENES ENCODING TCAC AND

TCAB; PEPTIDES, AND DETERMINATION OF DNA BASE SEQUENCE THEREOF:

Three hybridization-positive cosmids in strain XL1 Blue MR were grown with shaking overnight (200 rpm) at 30°C in 100 ml TB-Amples. After harvesting the cells by centrifugation, cosmid DNA was prepared using a commercially available kit (BIGprepTM, 5 Prime 3 Prime, Inc., Boulder, CO), following the manufacturer's protocols. Only one cosmid, 26A5, was successfully isolated by this procedure. When digested with restriction enzyme EcoR 1 (NEB) and analyzed by gel electrophoresis, fragments of approximate sizes 14, 10, 8 (vector), 5, 3.3, 2.9, and 1.5 kbp were detected. A second attempt to isolate cosmid DNA from the same three strains (8 ml cultures; TB-Ampleo, 30°C) utilized a

boiling miniprep method (Evans G. and G. Wahl., 1987, "Cosmid vectors for genomic walking and rapid restriction mapping." in Guide to Molecular Cloning Techniques. Meth. Enzymology, vol. 152, S. Berger and A. Kimmel, eds., pgs. 604-610). Only one cosmid, 25A10, was successfully isolated by this method. When digested with restriction enzyme EcoR 1 (NEB) and analyzed by gel electrophoresis, this cosmid showed a fragmentation pattern identical to that previously seen with cosmid 26A5.

A 0.15 μg sample of 26A5 cosmid DNA was used to transform 50 ml of E. coli DH5a cells (Gibco BRL), by the supplier's 10 protocols. A single colony isolate of that strain was inoculated into 4 ml of TB-Amp₁₉₀, and grown for 8 hr at 37°C. Chloramphenicol was added to a final concentration of 225 $\mu g/ml$, incubation was continued for another 24 hr, then cells were 15 harvested by centrifugation and frozen at -20°C. Isolation of the 26A5 cosmid DNA was by a standard alkaline lysis miniprep (Maniatis et al., op. cit., p. 382), modified by increasing all volumes by 50% and with stirring or gentle mixing, rather than vortexing, at every step. After washing the DNA pellet in 70% ethanol, it was dissolved in TE containing 25 $\mu\text{g/ml}$ ribonuclease 20 A (Boehringer Mannheim).

Identification of EcoR 1 fragments hybridizing to GZ4derived and TcaBi - probes. Approximately 0.4 µg of cosmid 25A10 25 (from XL1 Blue MR cells) and about 0.5 µg of cosmid 26A5 (from chloramphenicol-amplified DH5 α cells) were each digested with about 15 units of EcoR 1 (NEB) for 85 min, frozen overnight, then heated at 65°C for five min, and electrophoresed in a 0.7% agarose gel (Seakem LE, 1X TEA, 80 volts, 90 min). The DNA was 30 stained with ethidium bromide as described above, and photographed under ultraviolet light. The EcoR l digest of cosmid 25A10 was a complete digestion, but the sample of cosmid 26A5 was only partially digested under these conditions. The agarose gel containing the DNA fragments was subjected to 35 depurination, denaturation and neutralization, followed by Southern blotting onto a Magna NT nylon membrane, using a high salt (20X SSC) protocol, all as described in section 2.9 of Ausubel et al. (CPMB, op. cit.). The transferred DNA was then UV-crosslinked to the nylon membrane as before.

10

15

20

25

30

35

An TcaC-peptide specific DNA fragment corresponding to the insert of plasmid isolate GZ4 was amplified by PCR $^{\circ}$ in a 100 ml reaction volume as described previously above. The amplification products from three such reactions were pooled and were extracted from a 1% GTG $^{\circ}$ agarose gel by Qiaex kit, as described above, and quantitated by fluorometry. The gel-purified DNA (100 ng) was labeled with 12 P-dCTP using the High Prime Labeling Mix (Boehringer Mannheim) as described above, to a specific activity of 6.34 x 10° dpm/µg.

The ³²P-labeled GZ4 probe was boiled 10 min, then added to "minimal hyb" buffer (at 1 ng/ml), and the Southern blot membrane containing the digested cosmid DNA fragments was added, and incubated for 4 hr at 60°C with gentle shaking at 50 rpm. The membrane was then washed 3 times at 25°C for about 5 min each (minimal hyb wash solution), followed by two washes for 10 min each at 60°C. The blot was exposed to film (with enhancer screens) for about 30 min at -70°C. The GZ4 probe hybridized strongly to the 5.0 kbp (apparent size) EcoR 1 fragment of both these two cosmids, 26A5 and 25A10.

The membrane was stripped of radioactivity by boiling for about 30 min in 0.1X SSC plus 0.1 % SDS, and absence of radiolabel was checked by exposure to film. It was then hybridized at 60°C for 3.5 hours with the (denatured) TcaBi probe in "minimal hyb" buffer previously used for screening the colony membranes (above), washed as described previously, and exposed to film for 40 min at -70°C with two enhancer screens. With both cosmids, the TcaBi probe hybridized lightly with the about 5.0 kbp EcoR 1 fragment, and strongly with a fragment of approximately 2.9 kbp.

The sample of cosmid 26A5 DNA previously described, (from DH5 α cells) was used as the source of DNA from which to subclone the bands of interest. This DNA (2.5 μ g) was digested with about 3 units of EcoR 1 (NEB) in a total volume of 30 μ l for 1.5 hr, to give a partial digest, as confirmed by gel electrophoresis. Ten μ g of pBC KS (+) DNA (Stratagene) were digested for 1.5 hr with 20 units of EcoR 1 in a total volume of 20 μ l, leading to total digestion as confirmed by electrophoresis. Both EcoR 1-cut DNA preparations were diluted to 50 μ l with water, to each an equal volume of PCI was added, the suspension was gently mixed, spun in

a microcentrifuge and the aqueous supernatant was collected. ENA was precipitated by 150 μ l ethanol, and the mixture was placed at -20°C overnight. Following centrifugation and drying, the EcoR 1-digested pBC KS (+) was dissolved in 100 μ 1 TE; the partially digested 26A5 was dissolved in 20 μ l TE. DNA recovery was checked by fluorometry.

In separate reactions, approximately 60 ng of EcoR 1digested pBC KS(+) DNA was ligated with approximately 180 ng or 270 ng of partially digested cosmid 26A5 DNA. Ligations were 10 carried out in a volume of 20 μl at 15°C for 5 hr, using T4 ligase and buffer from New England BioLabs. The ligation mixture, diluted to 100 μl with sterile TE, was used to transform frozen, competent DH5 α cells (Gibco BRL) according to the supplier's instructions. Varying amounts (25-200 μ l) of the transformed cells were plated on freshly prepared solid LB-Cam:s medium with 1 mM IPTG and 50 mg/1 X-gal. Plates were incubated at 37°C about 20 hr, then chilled in the dark for approximately 3 hr to intensify color for insert selection. White colonies were picked onto patch plates of the same composition and incubated overnight at 37°C.

15

20

25

30

35

Two colony lifts of each of the selected patch plates were prepared as follows. After picking white colonies to fresh plates, round Magna NT nylon membranes were pressed onto the patch plates, the membrane was lifted off, and subjected to denaturation, neutralization and UV crosslinking as described above for the library colony membranes. The crosslinked colony lifts were vigorously washed, including gently wiping off the excess cell debris with a tissue. One set was hybridized with the GZ4(TcaC) probe solution described earlier, and the other set was hybridized with the TcaBi probe solution described earlier, according to the 'minimal hyb' protocol, followed by washing and film exposure as described for the library colony membranes.

Colonies showing hybridization signals either only with the GZ4 probe, with both GZ4 and TcaBi probes, or only with the TcaBi probe, were selected for further work and cells were streaked for single colony isolation onto LB-Cam₃₅ media with IPTG and X-gal as before. Approximately 35 single colonies, from 16 different isolates, were picked into liquid LB-Cam15 media and grown

overnight at 37°C; the cells were collected by centrifugation and plasmid DNA was isolated by a standard alkaline lysis miniprep according to Maniatis et al. (op. cit. p. 368). DNA pellets were dissolved in TE + 25 μ g/ml ribonuclease A and DNA concentration was determined by fluorometry. The EcoR 1 digestion pattern was 5 analyzed by gel electrophoresis. The following isolates were picked as useful. Isolate A17.2 contains religated pBC KS(+) only and was used for a (negative) control. Isolates D38.3 and C44.1 each contain only the 2.9 kbp, $TcaB_i$ -hybridizing EcoR 1 fragment inserted into pBC KS(+). These plasmids, named pDAB2000 and pDAB2001, respectively, are illustrated in Fig. 2.

Isolate A35.3 contains only the approximately 5 kbp, GZ4)hybridizing EcoR 1 fragment, inserted into pBC KS(+). This plasmid was named pDAB2002 (also Fig. 2). These isolates provided templates for DNA sequencing.

10

15

20

Plasmids pDAB2000 and pDAB2001 were prepared using the BIGprep $^{\text{TM}}$ kit as before. Cultures (30 ml) were grown overnight in $TB\text{-}Cam_{15}$ to an OD_{600} of 2, then plasmid was isolated according to the manufacturer's directions. DNA pellets were redissolved in 100 µl TE each, and sample integrity was checked by EcoR 1 digestion and gel electrophoretic analysis.

Sequencing reactions were run in duplicate, with one replicate using as template pDAB2000 DNA, and the other replicate using as template pDAB2001 DNA. The reactions were carried out using the dideoxy dye terminator cycle sequencing method, as 25 described above for the sequencing of the GZ4/HB14 DNAs. Initial sequencing runs utilized as primers the LacZ and T7 primers described above, plus primers based on the determined sequence of the TcaB; PCR amplification product (TH1 =

30 ATTGCAGACTGCCAATCGCTTCGG, TH12 = GAGAGTATCCAGACCGCGGATGATCTG).

After alignment and editing of each sequencing output, each was truncated to between 250 to 350 bases, depending on the integrity of the chromatographic data as interpreted by the Perkin Elmer Applied Biosystems Division SeqEd 675 software.

Subsequent sequencing "steps" were made by selecting appropriate 35 sequence for new primers. With a few exceptions, primers (synthesized as described above) were 24 bases in length with a 50% G+C composition. Sequencing by this method was carried out on both strands of the approximately 2.9 kbp EcoR 1 fragment.

To further serve as template for DNA sequencing, plasmid DNA from isolate pDAB2002 was prepared by BIGprepTM kit. Sequencing reactions were performed and analyzed as described above. Initially, a T3 primer (pBS SK (+) bases 774-796:

- 5 CGCGCAATTAACCCTCACTAAAG) and a T7 primer (pBS KS (+) bases 621-643: GCGCGTAATACGACTCACTATAG) were used to prime the sequencing reactions from the flanking vector sequences, reading into the insert DNA. Another set of primers, (GZ4F:
- GTATCGATTACAACGCTGTCACTTCCC; TH13: GGGAAGTGACAGCGTTGTAATCGATAC;

 TH14: ATGTTGGGTGCGTCGGCTAATGGACATAAC; and LW1-204:

 GGGAAGTGACAGCGTTGTAATCGATAC) was made to prime from internal sequences, which were determined previously by degenerate oligonucleotide-mediated sequencing of subcloned TcaC-peptide PCR products. From the data generated during the initial rounds of sequencing, new sets of primers were designed and used to walk the entire length of the ~5 kbp fragment. A total of 55 oligo primers was used, enabling the identification of 4832 total bp of

contiguous sequence.

When the DNA sequence of the EcoR 1 fragment insert of 20 pDAB2002 is combined with part of the determined sequence of the pDAB2000/pDAB2001 isolates, a total contiguous sequence of 6005 bp was generated (disclosed herein as SEQ ID NO:25). When long open reading frames were translated into the corresponding amino acids, the sequence clearly shows the TcaBi N-terminal peptide 25 (disclosed as SEQ ID NO:3), encoded by bases 19-75, immediately following a methionine residue (start of translation). Upstream lies a potential ribosome binding site (bases 1-9), and downstream, at bases 166-228 is encoded the TcaBi-PT158 internal peptide (disclosed herein as SEO ID NO:19). Further downstream, 30 in the same reading frame, at bases 1738-1773, exists a sequence encoding the TcaBi-PT108 internal peptide (disclosed herein as SEQ ID NO:20). Also in the same reading frame, at bases 1897-1923, is encoded the TcaBii N-terminal peptide (disclosed herein as SEQ ID NO:5), and the reading frame continues uninterrupted to 35 a translation termination codon at nucleotides 3586-3588.

The lack of an in-frame stop codon between the end of the sequence encoding $TcaB_i$ -PT108 and the start of the $TcaB_{i\,i}$ encoding region, and the lack of a discernible ribosome binding site immediately upstream of the $TcaB_{i\,i}$ coding region, indicate that

peptides TcaBii and TcaBi are encoded by a single open reading frame of 3567 bp beginning at base pair 16 in SEQ ID NO:25), and are most likely derived from a single primary gene product of 1189 amino acids (131.586 Daltons; disclosed herein as SEQ ID 5 NO:26) by post-translational cleavage. If the amino acid immediately preceding the TcaBii N-terminal peptide represents the C-terminal amino acid of peptide TcaBi, then the predicted mass of TcaBii (627 amino acids) is 70,814 Daltons (disclosed herein as SEQ ID NO:28), somewhat higher than the size observed 10 by SDS-PAGE (68 kDa). This peptide would be encoded by a contiguous stretch of 1881 base pairs (disclosed herein as SEQ ID NO:27). It is thought that the native C-terminus of TcaBi lies somewhat closer to the C-terminus of TcaBi-PT108. The molecular mass of PT108 [3.438 kDa; determined during N-terminal amino acid 15 sequence analysis of this peptide) predicts a size of 30 amino acids. Using the size of this peptide to designate the Cterminus of the TcaBi coding region [Glu at position 604 of SEQ ID NO:28], the derived size of TcaBi is determined to be 604 amino acids or 68,463 Daltons, more in agreement with 20 experimental observations.

Translation of the TcaBii peptide coding region of 1686 base pairs (disclosed herein as SEQ ID NO:29) yields a protein of 562 amino acids (disclosed herein as SEQ ID NO:30) with predicted mass of 60,789 Daltons, which corresponds well with the observed 61 kDa.

25

30

A potential ribosome binding site (bases 3633-3638) is found 48 bp downstream of the stop codon for the *tcaB* open reading frame. At bases 3645-3677 is found a sequence encoding the N-terminus of peptide TcaC, (disclosed as SEQ ID NO.2). The open reading frame initiated by this N-terminal peptide continues uninterrupted to base 6005 (2361 base pairs, disclosed herein as the first 2361 base pairs of SEQ ID NO.31). A gene (*tcaC*) encoding the entire TcaC peptide, (apparent size ~165 kDa; ~1500 amino acids), would comprise about 4500 bp.

Another isolate containing cloned EcoR 1 fragments of cosmid 26A5, E20.6, was also identified by its homology to the previously mentioned GZ4 and TcaBi probes. Agarose gel analysis of EcoR 1 digests of the DNA of the plasmid harbored by this strain (pDAB2004, Fig. 2), revealed insert fragments of estimated

primers designed from the sequence of plasmid pDAB2002 revealed that the 3.3 kbp EcoR 1 fragment of pDAB2004 lies adjacent to the 5 kbp EcoR 1 fragment represented in pDAB2002. The 2361 base pair open reading frame discovered in pDAB2002 continues uninterrupted for another 2094 bases in pDAB2004 [disclosed herein as base pairs 2362 to 4458 of SEQ ID NO:31]. DNA sequence analysis using the parent cosmid 26A5 DNA as template confirmed the continuity of the open reading frame. Altogether, the open reading frame (TcaC SEQ ID NO:31) comprises 4455 base pairs, and encodes a protein (TcaC) of 1485 amino acids [disclosed herein as SEQ ID NO:32]. The calculated molecular size of 166,214 Daltons is consistent with the estimated size of the TcaC peptide (165 kDa), and the derived amino acid sequence matches exactly that disclosed for the TcaC N-terminal sequence [SEQ ID NO:2].

The lack of an amino acid sequence corresponding to SEQ ID NO:17; used to design the degenerate oligonucleotide primer pool in the discovered sequence indicates that the generation of the PCR® products found in isolates GZ4 and HB14, which were used as probes in the initial library screen, were fortuitously generated by reverse-strand priming by one of the primers in the degenerate pool. Further, the derived protein sequence does not include the internal fragment disclosed herein as SEQ ID NO:18. These sequences reveal that plasmid pDAB2004 contains the complete coding region for the TcaC peptide.

Example 9

Screening of the *Photorhabdus* genomic library for genes encoding the TcbAii peptide

30

10

20

25

This example describes a method used to identify DNA clones that contain the $TcbA_{11}$ peptide-encoding genes, the isolation of the gene, and the determination of its partial DNA base sequence.

35 Primers and PCR reactions

The TcbAii polypeptide of the insect active preparation is -206 kDa. The amino acid sequence of the N-terminus of this peptide is disclosed as SEQ ID NO:1. Four pools of degenerate oligonucleotide primers ("Forward primers": TH-4, TH-5, TH-6, and

TH-7) were synthesized to encode a portion of this amino acid sequence, as described in Example 8, and are shown below.

Table 11

.5	Amino									
	Acid	Phe	Ile	Gln	Gly	Tyr	Ser	Asp	Leu	Phe
	TH-4	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	TCI	GA(T/C)	CTI	TT-3'
	TH-5	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)				TT-3'
		5'-TT(T/C)						GA(T/C)		
10	TH-7	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	AG(T/C)	GA(T/C)	TT (A/G)	TT-3'

In addition, a primary ("a") and a secondary ("b") sequence of an internal peptide preparation (TcbAii-PT81) have been determined and are disclosed herein as SEQ ID No:23 and SEQ ID No:24, respectively. Four pools of degenerate oligonucleotides ("Reverse Primers": TH-8, TH-9, TH-10 and TH-11) were similarly designed and synthesized to encode the reverse complement of sequences that encode a portion of the peptide of SEQ ID NO:23, as shown below.

2
_
Φ
-
Ω
ď

Amino

	Авв	TT (G/A) -5'	TT(G/A) -5'	TT(G/A)-5	TT(G/A)-5'
1	Val Ala	CGI	CGI	CGI	CGI
:	Val	CAI	CAI	CAI	CAI
	= = = = = = = = = = = = = = = = = = = =	GT(T/C)	GT(T/C)	GT(T/C)	GT(T/C)
e]n	,	CT(T/C)	CT(T/C)	CT(T/C)	CT(T/C)
Phe		AA(A/G) CT(T/C) GT(T/C) CAI	AA(A/G) CT(T/C) GT(T/C) CAI	TGI TC(G/A) AA(A/G) CT(T/C) GT(T/C) CAI	(x, z, ii(a, g) iGi TC(G/A) AA(A/G) CT(T/C) GT(T/C) CAI
Ser	104	100	AGI	TC (G/A)	TC (G/A)
Thr	15.1	2	5 6	191	151
Leu	GAI	() () () date	(6/4)	745	(5/4) 11
Tyr	AT(A/G) GAI	AT (A/G) TT (A/C)	AT (A/C) CAT	AT (A /C)	
Thr	3.TCI	3.TGI	3'TGI	3.TGI	•
Acid	TH-8	TH-9 3'TGI	TH-10 3'TGI	TH-11 3'TGI	

Sets of these primers were used in PCR* reactions to amplify TcbAii- encoding gene fragments from the genomic Photornabdus luminescens W-14 DNA prepared in Example 6. All PCR reactions were run with the "Hot Start" technique using AmpliWax™ gems and other Perkin Elmer reagents and protocols. Typically, a mixture (total volume 11 μ 1) of MgCl₂, dNTP's, 10X GeneAmp* PCR Buffer II. and the primers were added to tubes containing a single wax bead. [10X GeneAmp' PCR Buffer II is composed of 100 mM Tris-HCl. pH 8.3; and 500 mM KCl.) The tubes were heated to 80° C for 2 minutes and allowed to cool. To the top of the wax seals, a solution containing 10X GeneAmp PCR Buffer II, DNA template, and AmpliTaq DNA polymerase were added. Following melting of the wax seal and mixing of components by thermal cycling, final reaction conditions (volume of 50 μ l) were: 10 mM Tris-HCl, pH 8.3; 50 mH 15 KCl; 2.5 mM MgCl₂; 200 μM each in dATP, dCTP, dGTP, dTTP; 1.25 mM in a single Forward primer pool; 1.25 μM in a single Reverse primer pool, 1.25 units of AmpliTaq DNA polymerase, and 170 ng of template DNA.

The reactions were placed in a thermocycler (as in 20 Example 8) and run with the following program:

Table 13

Temperature	Time	Cycle Repetition	
9 4° C	2 minutes	1X	
94°C	15 seconds		
55-65°C	30 seconds	30X	
72°C	1 minute		
72°C	7 minutes	1X	
15°C	Constant		

A series of amplifications was run at three different annealing temperatures (55°, 60°, 65° C) using the degenerate primer pools. Reactions with annealing at 65°C had no amplification products visible following agarose gel electrophoresis. Reactions having a 60°C annealing regime and containing primers TH-5+TH-10 produced an amplification product that had a mobility corresponding to 2.9 kbp. A lesser amount of 10 the 2.9 kbp product was produced under these conditions with primers TH-7+TH-10. When reactions were annealed at 55°C, these primer pairs produced more of the 2.9 kbp product, and this product was also produced by primer pairs TH-5+TH-8 and TH-5+TH-Additional very faint 2.9 kbp bands were seen in lanes containing amplification products from primer pairs TH-7 plus TH-8, TH-9, TH-10, or TH-11.

To obtain sufficient PCR amplification product for cloning and DNA sequence determination, 10 separate PCR reactions were set up using the primers TH-5+TH-10, and were run using the above conditions with a 55°C annealing temperature. All reactions were pooled and the 2.9 kbp product was purified by Qiaex extraction from an agarose gel as described above.

Additional sequences determined for TcbAii internal peptides are disclosed herein as SEQ ID NO:21 and SEQ ID NO:22. 25 before, degenerate oligonucleotides (Reverse primers TH-17 and TH-18) were made corresponding to the reverse complement of sequences that encode a portion of the amino acid sequence of these peptides.

30 Table 14 From SEQ ID NO:21

Amino Glu Acid Met Thr Gln Asn Ile Gln Glu Pro 35 TH-17 3'-TAC CTT/C TGI GTT/C TTA/G TAI GTT/C GTT/C GG-5'

Table 15

40 From SEQ ID NO:22

15

20

Amino Acid Asn Pro Ile Asn Ile Asn Thr Gly Ile Asp

TH-18 3'-TT(A/G) GGI TAI TT(A/G) TAI TT(A?G) TGI CCI TAI CT(A/G)-5'

Degenerate oligonucleotides TH-18 and TH-17 were used in an amplification experiment with Photorhabdus luminescens W-14 DNA as template and primers TH-4. TH-5. TH-6, or TH-7 as the 5'-(Forward) primers. These reactions amplified products of approximately 4 kbp and 4.5 kbp, respectively. These DNAs were transferred from agarose gels to nylon membranes and hybridized with a "P-labeled probe (as described above) prepared from the 2.9 kbp product amplified by the TH-5+TH10 primer pair. Both the 4 kbp and the 4.5 kbp amplification products hybridized strongly to the 2.9 kbp probe. These results were used to construct a map ordering the TcbAii internal peptide sequences as shown in Fig. 3. Approximate distances between the primers are shown in nucleotides in Fig. 3.

DNA Sequence of the 2.9 kbp TcbAii-encoding fragment 15

Approximately 200 ng of the purified 2.9 kbp fragment (prepared above) was precipitated with ethanol and dissolved in 17 ml of water. One-half of this was used as sequencing template with 25 pmol of the TH-5 pool as primers, the other half was used as template for TH-10 priming. Sequencing reactions were as given in Example 8. No reliable sequence was produced using the TH-10 primer pool; however, reactions with TH-5 primer pool produced the sequence disclosed below:.

- AATCGTGTTG ATCCCTATGC CGNGCCGGGT TCGGTGGAAT CGATGTCCTC ACCGGGGGTT 25 TATTNGAGGG ANTNGTCCCG TGAGGCCAAA AANTGGAATG AAAGAAGTTC AATTINTTAC 51 121
 - CTAGATAAAC GTCGCCCGGN TTTAGAAAGN TTANTGNTCA GCCAGAAAAT TTTGGTTGAG GAAATTCCAC CGNTGGTTCT CTCTATTGAT TNGGGCCTGG CCGGGTTCGA ANNAAAACNA GGAAATNCAC AAGTTGAGGT GATGGNTTTG TNGCNANCTT NTCGTTTAGG TGGGGAGAAA 181 241
 - CCTTNTCANC ACGNTTNIGA AACTGTCCGG GAAATCGTCC ATGANCGTGA NCCAGGNTTN 301

30 361 CGCCATTGG

20

Based on this sequence, a sequencing primer (TH-21, 5'-CCGGGCGACGTTTATCTAGG-3') was designed to reverse complement bases 120-139, and initiate polymerization towards the 5' end (i.e., TH-5 end) of the gel-purified 2.9 kbp TcbAii-encoding PCR fragment. The determined sequence is shown below, and is compared to the biochemically determined N-terminal peptide sequence of TcbAii SEQ ID NO:1.

TobAii 3.9 kbp PCP fragment Sequence Confirmation [Underlined amino acids = encoded by degenerate oligonucleotides:

SEQ ID NO:1 F I 0 3 F Α 5 1 1 2.9 kbp seq GC ATG CAG GGG TAT AGT GAC CTG TTT GGT AAT CGT GCT 0 G Y S D L F G M

From the homology of the derived amino acid sequence to the biochemically determined one, it is clear that the 2.9 kbp PCR fragment represents the *TcbA* coding region. This 2.9 kbp fragment was then used as a hybridization probe to screen the *Photorhabdus W-14* genomic library prepared in Example 8 for cosmids containing the TcbAii-encoding gene.

15

Screening the Photorhabdus cosmid library

The 2.9 kb gel-purified PCR fragment was labeled with 32p using the Boehringer Mannheim High Prime labeling kit as described in Example 8. Filters containing remnants of approximately 800 colonies from the cosmid library were screened 20 as described previously (Example 8), and positive clones were streaked for isolated colonies and rescreened. (8A11, 25G8, and 26D1) gave positive results through several screening and characterization steps. No hybridization of the 25 TcbAii-specific probe was ever observed with any of the four cosmids identified in Example 8, and which contain the tcaB and tcaC genes. DNA from cosmids 8A11, 25G8, and 26D1 was digested with restriction enzymes Bgl 2, EcoR 1 or Hind 3 (either alone or in combination with one another), and the fragments were 30 separated on an agarose gel and transferred to a nylon membrane as described in Example 8. The membrane was hybridized with 'Plabeled probe prepared from the 4.5 kbp fragment (generated by amplification of Photorhabdus genomic DNA with primers TH-5+TH-The patterns generated from cosmid DNAs 8All and 26Dl were identical to those generated with similarly-cut genomic DNA on 35 the same membrane. It is concluded that cosmids 8All and 26Dl are accurate representations of the genomic TcbA_{ii} encoding locus. However, cosmid 25G8 has a single Bgl 2 fragment which is slightly larger than the genomic DNA. This may result from 40 positioning of the insert within the vector.

DNA sequence of the tcbA-encoding gene

The membrane hybridization analysis of cosmid 26D1 revealed that the 4.5 kbp probe hybridized to a single large EcoR 1 fragment (greater than 9 kbp). This fragment was gel purified and ligated into the EcoR 1 site of pBC KS (+) as described in Example 8, to generate plasmid pBC-S1/R1. The partial DNA sequence of the insert DNA of this plasmid was determined by "primer walking" from the flanking vector sequence, using procedures described in Example 8. Further sequence was generated by extension from new oligonucleotides designed from the previously determined sequence. When compared to the determined DNA sequence for the tcbA gene identified by other methods (disclosed herein as SEQ ID NO:11 as described in Example 12 below), complete homology was found to nucleotides 1-272, 319-826, 2578-3036, and 3068-3540 (total bases = 1712). It was concluded that both approaches can be used to identify DNA fragments encoding the TcbAii peptide.

Analysis of the derived amino acid sequence of the tcbA gene.

The sequence of the DNA fragment identified as SEQ ID NO:11 encodes a protein whose derived amino acid sequence is disclosed herein as SEQ ID NO:12. Several features verify the identity of the gene as that encoding the TcbA_{ii} protein. The TcbA_{ii} N-terminal peptide (SEQ ID NO:1; Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala) is encoded as amino acids 88-100. The TcbA_{ii} internal peptide TcbA_{ii}-PT81(a) (SEQ ID NO:23) is encoded as amino acids 1065-1077, and TcbA_{ii}-PT81(b) (SEQ ID NO:24) is encoded as amino acids 1571-1592. Further, the internal peptide TcbA_{ii}-PT56 (SEQ ID NO:22) is encoded as amino acids 1474-1488, and the internal peptide TcbA_{ii}-PT103 (SEQ ID NO:24) is encoded as amino acids 1614-1639. It is obvious that this gene is an authentic clone encoding the TcbA_{ii} peptide as isolated from insecticidal protein preparations of Photorhabdus luminescens strain W-14.

The protein isolated as peptide TcbA_{ii} is derived from cleavage of a longer peptide. Evidence for this is provided by the fact that the nucleotides encoding the TcbA_{ii} N-terminal peptide SEQ ID NO:1 are preceded by 261 bases (encoding 87 N-terminal-proximal amino acids) of a longer open reading frame (SEQ ID NO:11). This reading frame begins with nucleotides that encode the amino acid sequence Met Gln Asn Ser

Let, which corresponds to the n-terminal sequence of the large peptide. TabA, and is disclosed herein as SEQ ID NO:16. It is thought that TabA is the precursor protein for TabAii.

5 Pelationship of tcbA. tcaB and tcaC genes.

The tcaB and tcaC genes are closely linked and may be transcribed as a single mRNA (Example 8). The tcbA gene is borne on cosmids that apparently do not overlap the ones harboring the tcaB and tcaC cluster, since the respective genomic library screens identified different cosmids. However, comparison of the amine sequences encoded by the tcaB and tcaC genes with the tcbA gene reveals a substantial degree of homology. The amine acid conservation (Protein Alignment Mode of MacVector Sequence Analysis Software, scoring matrix pam250, hash value = 2; Kodak Scientific Imaging Systems, Rochester, NY) is shown in Fig. 4. On the score line of each panel in Fig. 4, up carats (^) indicate homology or conservative amine acid changes, and down carats (v) indicate nonhomology.

This analysis shows that the amino acid sequence of the TcbA 20 peptide from residues 1739 to 1894 is highly homologous to amino acids 441 to 603 of the TcaB; peptide (162 of the total 627 amino acids of P8; SEQ ID NO:28). In addition, the sequence of TcbA amino acids 1932 to 2459 is highly homologous to amino acids 12 to 531 of peptide TcaBii (520 of the total 562 amino acids; SEQ 25 ID NO:30). Considering that the TcbA peptide (SEQ ID NO:12) comprises 2505 amino acids, a total of 684 amino acids (27%) at the C-proximal end of it is homologous to the TcaBi or TcaBii peptides, and the homologies are arranged colinear to the arrangement of the putative TcaB preprotein (SEQ ID NO:26). A 30 sizeable gap in the TcbA homology coincides with the junction between the TcaB; and TcaB; portions of the TcaB preprotein. Clearly the TcbA and TcaB gene products are evolutionarily related, and it is proposed that they share some common function(s) in Photorhabdus.

35

Example 10

<u>Characterization of zinc-metalloproteases in Photorhabdus Broth:</u> Protease Inhibition, Classification, and Purification

5 Protease Inhibition and Classification Assays: Protease assays were performed using FITC-casein dissolved in water as substrate (0.08% final assay concentration). Proteolysis reactions were performed at 25°C for 1 h in the appropriate buffer with 25 µl of Photorhabdus broth (150 µl total reaction volume). Samples were also assayed in the presence and absence of dithiothreitol. After incubation, an equal volume of 12% trichloroacetic acid was added to precipitate undigested protein. Following precipitation for 0.5 h and subsequent centrifugation, 100 µl of the supernatant was placed into a 96-well microtiter plate and the pH of the solution was adjusted by addition of an 15 equal volume of 4N NaOH. Proteolysis was then quantitated using a Fluoroskan II fluorometric plate reader at excitation and emission wavelengths of 485 and 538 nm, respectively. Protease activity was tested over a range from pH 5.0-10.0 in 0.5 units 20 increments. The following buffers were used at 50 mM final concentration: sodium acetate (pH 5.0 - 6.5); Tris-HCL (pH 7.0 -8.0); and bis-Tris propane (pH 8.5-10.0). To identify the class of protease(s) observed, crude broth was treated with a variety of protease inhibitors (0.5 μ g/ μ l final concentration) and then examined for protease activity at pH 8.0 using the substrate 25 described above. The protease inhibitors used included E-64 (Ltrans-expoxysaccinylleucylamido(4-,-guanidino)-butane), 3,4 dichloroisocoumarin, Leupeptin, pepstatin, amastatin, ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline.

Protease assays performed over a pH range revealed that indeed protease(s) were present which exhibited maximal activity at ~ pH 8.0 (Table 16). Addition of DTT did not have any effect on protease activity. Crude broth was then treated with a variety of protease inhibitors (Table 17). Treatment of crude broth with the inhibitors described above revealed that 1.10 phenanthroline caused complete inhibition of all protease activity when added at a final concentration of 50 µg, with the IC50 = 5 µg in 100 µl of a 2 mg/ml crude broth solution. These data indicate that the most abundant protease(s) found in the

30

Photornabdus broth are from the zinc-metalloprotease class of enzymes.

**** /// 1704

35

Table 16
5 Effect of pH on the protease activity found in a Day 1 production of Photorhabdus luminescens (strain W-14).

•	рН	Flu. Units ^a Activity ^b	Percent
10	5.0	3013 ± 78	17
	5.5	7994 ± 448	45
15	6.0	12965 ± 483	74
	6.5	14390 ± 1291	82
•	7.0	14386 ± 1287	82
20	7.5	14135 ± 198	80
	8.0	17582 ± 831	100
25	8.5	16183 ± 953	92
	9.0	16795 ± 760	96
20	9 . 5	16279 ± 1022	93
30 -	10.0	15225 ± 210	87

a Flu. Units = Fluorescence Units (Maximum = -28,000; background = ~ 2200).

b. Percent activity relative to the maximum at pH 8.0

WU 9//17452 PCT/US96/18003

Table 17
Effect of different protease inhibitors on the protease activity at pH 8 found in a Day 1 production of Photorhabdus luminescens (strain W-14).

Inhibitor	Corrected Flu. Unitsa	Percent Inhibition
Control	13053	0
E-64	14259	0
1,10 Phenanthroline ^C	15	99
3,4 Dichloroisocoumar	ind 7956	39
Leupeptin	13074	0
Pepstatin ^C	13441	0
Amastatin	12474	4
DMSO Control	12005	8
Methanol Control	12125	7

a. Corrected Flu. Units = Fluorescence Units background(2200 flu. units).

- b. Percent Inhibition relative to protease activity at pH 20-8.0.
 - c. Inhibitors were dissolved in methanol.
 - d. Inhibitors were dissolved in DMSO.

5

The isolation of a zinc-metalloprotease was performed by applying dialyzed 10-80% ammonium sulfate pellet to a Q Sepharose 25 column equilibrated at 50 mM Na₂PO₄, pH 7.0 as described in Example 5 for *Photorhabdus* toxin. After extensive washing, a 0to 0.5 M NaCl gradient was used to elute toxin protein. The majority of biological activity and protein was eluted from 0.15 30 - 0.45 M NaCl. However, it was observed that the majority of proteolytic activity was present in the 0.25-0.35 M NaCl fraction with some activity in the 0.15-0.25 M NaCl fraction. SDS PAGE analysis of the 0.25-0.35 M NaCl fraction showed a major peptide band of approximately 60 kDa. The 0.15-0.25 M NaCl fraction contained a similar 60 kDa band but at lower relative protein concentration. Subsequent gel filtration of this fraction using a Superose 12 HR 16/50 column resulted in a major peak migrating at 57.5 kDa that contained a predominant (> 90% of total stained protein) 58.5 kDa band by SDS PAGE analysis. Additional analysis 40 of this fraction using various protease inhibitors as described above determined that the protease was a zinc-metalloprotease. Nearly all of the protease activity present in Photorhabdus broth at day 1 of fermentation corresponded to the ~58 kDa zincmetalloprotease.

In yet a second isolation of zinc-metalloprotease(s), W-14 Photorhabdus broth grown for three days was taken and protease

TO 2 //1 // 924 EC 1/U 370/18003

activity was visualized using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) laced with gelatin as described in Schmidt, T.M., Bleakley, B. and Nealson, K.M. 1988. SDS running gels (5.5 \times 8 cm) were made with 12.5 % polyacrylamide (40% stock solution of acrylamide/bis-acrylamide; Sigma Chemical Co., St. Louis, MO) into which 0.1% gelatin final concentration (Biorad EIA grade reagent; Richmond CA) was incorporated upon dissolving in water. SDS-stacking gels (1.0 \times 9 cm) were made with 5% polyacrylamide, also laced with 0.1% gelatin. Typically, 2.5 µg of protein to be tested was diluted in 0.03 ml of SDS-PAGE loading buffer without dithiothreitol (DTT) and loaded onto the gel. Proteins were electrophoresed in SDS running buffer (Laemmli, U.K. 1970. Nature 227, 680) at 0° C and at 8 mA. After electrophoresis was complete, the gel was 15 washed for 2 h in 2.5% (v/v) Triton X-100. Gels were then incubated for 1 h at 37 °C in 0.1 M glycine (pH 8.0). After incubation, gels were fixed and stained overnight with 0.1% amido black in methanol-acetic acid- water (30:10:60, vol./vol./vol.; Sigma Chemical Co.). Protease activity was visualized as light 20 areas against a dark, amido black stained background due to proteolysis and subsequent diffusion of incorporated gelatin. At least three distinct bands produced by proteolytic activity at 58-, 41-, and 38 kDa were observed.

Activity assays of the different proteases in W-14 day three 25 culture broth were performed using FITC-casein dissolved in water as substrate (0.02% final assay concentration). Proteolysis experiments were performed at 37 °C for 0-0.5 h in 0.1M Tris-HCl (pH 8.0) with different protein fractions in a total volume of 0.15 ml. Reactions were terminated by addition of an equal 30 volume of 12% trichloroacetic acid (TCA) dissolved in water. After incubation at room temperature for 0.25 h, samples were centrifuged at $10,000 \times g$ for 0.25 h and 0.10 ml aliquots were removed and placed into 96-well microtiter plates. The solution was then neutralized by the addition of an equal volume of 2 11 35 sodium hydroxide, followed by quantitation using a Fluoroskan II fluorometric plate reader with excitation and emission wavelengths of 485 and 538 nm, respectively. Activity measurements were performed using FITC-Casein with different protease concentrations at 37° C for 0-10 min. A unit of

activity was arbitrarily defined as the amount of enzyme needed to produce 1000 fluorescent units/min and specific activity was defined as units/mg of protease.

Inhibition studies were performed using two zincmetalloprotease inhibitors; 1,10 phenanthroline and N-(arhamnopyranosyloxyhydroxyphosphinyl)-Leu-Trp(phosphoramidon) with stock solutions of the inhibitors dissolved in 100% ethanol and water, respectively. Stock concentrations were typically 10 mg/ml and 5 mg/ml for 1,10 phenanthroline and phosphoramidon, respectively, with final concentrations of inhibitor at 0.5-1.0 10 mg/ml per reaction. Treatment of three day W-14 crude broth with 1,10 phenanthroline, an inhibitor of all zinc metalloproteases. resulted in complete elimination of all protease activity while treatment with phosphoramidon, an inhibitor of thermolysin-like proteases (Weaver, L.H., Kester, W.R., and Matthews, B.W. 1977. 15 J. Mol. Biol. 114, 119-132), resulted in ~56% reduction of protease activity. The residual proteolytic activity could not be further reduced with additional phosphoramidon.

The proteases of three day W-14 Photorhabdus broth were purified as follows: 4.0 liters of broth were concentrated using 20 an Amicon spiral ultra filtration cartridge Type S1Y100 attached to an Amicon M-12 filtration device. The flow-through material having native proteins less than 100 kDa in size (3.8 L) was concentrated to 0.375 L using an Amicon spiral ultra filtration cartridge Type S1Y10 attached to an Amicon M-12 filtration 25 device. The retentate material contained proteins ranging in size from 10-100 kDa. This material was loaded onto a Pharmacia HR16/10 column which had been packed with PerSeptive Biosystem (Framington, MA) Poros® 50 HQ strong anion exchange packing that 30 had been equilibrated in 10 mM sodium phosphate buffer (pH 7.0). Proteins were loaded on the column at a flow rate of 5 ml/min, followed by washing unbound protein with buffer until $A_{280} =$ 0.00. Afterwards, proteins were eluted using a NaCl gradient of 0-1.0 M NaCl in 40 min at a flow rate of 7.5 ml/min. Fractions were assayed for protease activity, supra., and active fractions 35 were pooled. Proteolytically active fractions were diluted with 50% (v/v) 10 mM sodium phosphate buffer (pH 7.0) and loaded onto a Pharmacia HR 10/10 Mono Q column equilibrated in 10 mM sodium phosphate. After washing the column with buffer until $A_{280} =$

WO 7//1/434

0.00, proteins were eluted using a NaCl gradient of 0-0.5 M NaCl for 1 h at a flow rate of 2.0 ml/min. Fractions were assayed for protease activity. Those fractions having the greatest amount of phosphoramidon-sensitive protease activity, the phosphoramidon sensitive activity being due to the 41/38 kDa protease, infra., 5 were pooled. These fractions were found to elute at a range of 0.15-0.25 M NaCl. Fractions containing a predominance of phosphoramidon-insensitive protease activity, the 58 kDa protease, were also pooled. These fractions were found to elute at a range of 0.25-0.35 M NaCl. The phosphoramidon-sensitive 10 protease fractions were then concentrated to a final volume of 0.75 ml using a Millipore Ultrafree®-15 centrifugal filter device Biomax-5K NMWL membrane. This material was applied at a flow rate of 0.5 ml/min to a Pharmacia HR 10/30 column that had been packed with Pharmacia Sephadex G-50 equilibrated in 10 mM sodium phosphate buffer (pH 7.0)/ 0.1 M NaCl. Fractions having the maximal phosphoramidon-sensitive protease activity were then pooled and centrifuged over a Millipore Ultrafree®-15 centrifugal filter device Biomax-50K NMWL membrane. Proteolytic activity analysis, supra., indicated this material to have only 20 phosphoramidon-sensitive protease activity. Pooling of the phosphoramidon-insensitive protease, the 58 kDa protein, was followed by concentrating in a Millipore Ultrafree®-15 centrifugal filter device Biomax-50K NMWL membrane and further separation on a Pharmacia Superdex-75 column. Fractions 25 containing the protease were pooled.

Analysis of purified 58- and 41/38 kDa purified proteases revealed that, while both types of protease were completely inhibited with 1,10 phenanthroline, only the 41/38 kDa protease was inhibited with phosphoramidon. Further analysis of crude broth indicated that protease activity of day 1 W-14 broth has 23% of the total protease activity due to the 41/38 kDa protease, increasing to 44% in day three W-14 broth.

30

35

Standard SDS-PAGE analysis for examining protein purity and obtaining amino terminal sequence was performed using 4-20% gradient MiniPlus SepraGels purchased from Integrated Separation Systems (Natick, MA). Proteins to be amino-terminal sequenced were blotted onto PVDF membrane following purification, infra., (ProBlott Membranes; Applied Biosystems, Foster City, CA),

visualized with 0.1% amido black, excised, and sent to Cambridge Prochem; Cambridge, MA, for sequencing.

Deduced amino terminal sequence of the 58- (SEQ ID NO:45) and 41/38 kDa (SEQ ID NO:44) proteases from three day old W-14 broth were DV-GSEKANEKLK (SEQ ID NO: 45) and DSGDDDKVTNTDIHR (SEQ ID NO:44), respectively.

Sequencing of the 41/38 kDa protease revealed several amino termini, each one having an additional amino acid removed by proteolysis. Examination of the primary, secondary, tertiary and quartenary sequences for the 38 and 41 kDa polypeptides allowed for deduction of the sequence shown above and revealed that these two proteases are homologous.

10

20

25

30

35

40

Example 11, Part A

Screening of Photorhabdus Genomic Library via use of Antibodies

for Genes encoding TcbA Peptide

In parallel to the sequencing described above, suitable probing and sequencing was done based on the TcbAii peptide (SEQ ID NO:1). This sequencing was performed by preparing bacterial culture broths and purifying the toxin as described in Examples 1 and 2 above.

Genomic DNA was isolated from the *Photorhabdus luminescens* strain W-14 grown in Grace's insect tissue culture medium. The bacteria were grown in 5 ml of culture medium in a 250 ml Erlenmeyer flask at 28°C and 250 rpm for approximately 24 hours. Bacterial cells from 100 ml of culture medium were pelleted at 5000 x g for 10 minutes. The supernatant was discarded, and the cell pellets then were used for the genomic DNA isolation.

The genomic DNA was isolated using a modification of the CTAB method described in Section 2.4.3 of Ausubel (supra.). The section entitled "Large Scale CsCl prep of bacterial genomic DNA" was followed through step 6. At this point, an additional chloroform/isoamyl alcohol (24:1) extraction was performed followed by a phenol/chloroform/isoamyl (25:24:1) extraction step and a final chloroform/isoamyl/alcohol (24:1) extraction. The DNA was precipitated by the addition of a 0.6 volume of isopropanol. The precipitated DNA was hooked and wound around the end of a bent glass rod, dipped briefly into 70% ethanol as a final wash, and dissolved in 3 ml of TE buffer.

F C 1/ US70/ 1600J

The DNA concentration, estimated by optical density at 280/260 nm, was approximately 2 mg/ml.

15

20

25

30

35

4()

Using this genomic DNA, a library was prepared.

Approximately 50 µg of genomic DNA was partly digested with Sau3

Al. Then NaCl density gradient centrifugation was used to size fractionate the partially digested DNA fragments. Fractions containing DNA fragments with an average size of 12 kb, or larger, as determined by agarose gel electrophoresis, were ligated into the plasmid BluScript, Stratagene, La Jolla,

10 California, and transformed into an $E.\ coli\ DH5\alpha$ or DHB10 strain.

Separately, purified aliquots of the protein were sent to the biotechnology hybridoma center at the University of Wisconsin, Madison for production of monoclonal antibodies to the proteins. The material that was sent was the HPLC purified fraction containing native bands 1 and 2 which had been denatured at 65°C, and 20 µg of which was injected into each of four mice. Stable monoclonal antibody-producing hybridoma cell lines were recovered after spleen cells from unimmunized mouse were fused with a stable myeloma cell line. Monoclonal antibodies were recovered from the hybridomas.

Separately, polyclonal antibodies were created by taking native agarose gel purified band 1 (see Example 1) protein which was then used to immunize a New Zealand white rabbit. The protein was prepared by excising the band from the native agarose gels, briefly heating the gel pieces to 65°C to melt the agarose, and immediately emulsifying with adjuvant. Freund's complete adjuvant was used for the primary immunizations and Freund's incomplete was used for 3 additional injections at monthly intervals. For each injection, approximately 0.2 ml of emulsified band 1, containing 50 to 100 micrograms of protein, was delivered by multiple subcontaneous injections into the back of the rabbit. Serum was obtained 10 days after the final injection and additional bleeds were performed at weekly intervals for 3 weeks. The serum complement was inactivated by heating to 56°C for 15 minutes and then stored at -20°C.

The monoclonal and polyclonal antibodies were then used to screen the genomic library for the expression of antigens which could be detected by the epitope. Positive clones were detected on nitrocellulose filter colony lifts. An immunoblot analysis of the positive clones was undertaken.

An analysis of the clones as defined by both immunoblot and Southern analysis resulted in the tentative identification of five classes of clones.

In the first class of clone was a gene encoding the peptide designated here as TcbAii. Full DNA sequence of this gene (TcbA) was obtained. It is set forth as SEQ ID NO:11. Confirmation that the sequence encodes the internal sequence of SEQ ID NO:1 is demonstrated by the presence of SEQ ID NO:1 at amino acid number 88 from the deduced amino acid sequence created by the open reading frame of SEQ ID NO:11. This can be confirmed by referring to SEQ ID NO:12, which is the deduced amino acid sequence created by SEQ ID NO:11.

10

15

20

25

30

The second class of toxin peptides contains the segments referred to above as TcaBi, TcaBii and TcaC. Following the screening of the library with the polyclonal antisera, this second class of toxin genes was identified by several clones which produced different size proteins, all of which cross-reacted with the polyclonal antibody on an immunoblot and were also found to share DNA homology on a Southern Blot. Sequence comparison revealed that they belonged to the gene complex designated TcaBand TcaC above.

Three other classes of antibody toxin clones were also isolated in the polyclonal screen. These classes produced proteins that cross-react with a polyclonal antibody and also shared DNA homology with the classes as determined by Southern blotting. The classes have been designated Class III, Class IV and Class V. It was also possible to identify monoclonals that cross-reacted with Class I, II, III, and IV. This suggests that all have regions of high protein homology. Thus, it appears that the P. luminescens extracellular protein genes represent a family of genes which are evolutionarily related.

To further pursue the concept that there might be evolutionarily related variations in the toxin peptides contained within this organism, two approaches have been undertaken to examine other strains of *P. luminescens* for the presence of related proteins. This was done both by PCR amplification of genomic DNA and by immunoblot analysis using the polyclonal and monoclonal antibodies.

TU 7//1/934 PC 1/USY0/18003

The results indicate that related proteins are produced by P. luminescens strains WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-3, WX-11, WX-12, WX-15 and W-14.

Example 11, Part B Sequence and analysis of Class III toxin clones - ccc

Further DNA sequencing was performed on plasmids isolated from Class III *E. coli* clones described in Example 11, Part A. The nucleotide sequence was shown to be three closely linked open reading frames at this genomic locus. This locus was designated tcc with the three open reading frames designated tccA SEQ ID NO:56, tccB SEQ ID NO:58 and tccC SEQ ID NO:60 (Fig. 6B).

The deduced amino acid from the tccA open reading frame indicates the gene encodes a protein of 105,459 Da. This protein was designated TccA. The first 12 amino acids of this protein match the N-terminal sequence obtained from a 108 kDa protein, SEQ ID NO:7, previously identified as part of the toxin complex.

The deduced amino acid from the *tccB* open reading frame indicates this gene encodes a protein of 175,716 Da. This protein was designated TccB. The first 11 amino acids of this protein match the N-terminal sequence obtained from a protein with estimated molecular weight of 185 kDa, SEQ ID NO:8.

The deduced amino acid sequence of tccC indicated that this open reading frame encodes a protein of 111,694 Da and the protein product was designated TccC.

Example 12 Characterization of Photorhabdus Strains

30

35

5

10

15

20

25

In order to establish that the collection described herein was comprised of *Photorhabdus* strains, the strains herein were assessed in terms of recognized microbiological traits that are characteristic of *Photorhabdus* and which differentiate it from other *Enterobacteriaceae* and *Xenorhabdus* spp. (Farmer, J.J. 1984. Bergey's Manual of Systemic Bacteriology, vol 1. pp. 510-511. (ed. Kreig N.R. and Holt, J.G.). Williams & Wilkins, Baltimore.; Akhurst and Boemare, 1988, Boemare et al., 1993). These characteristic traits are as follows: Gram's stain negative

rods, organism size of 0.5-2 µm in width and 2-10 µm in length, red/yellow colony pigmentation, presence of crystalline inclusion bodies, presence of catalase, inability to reduce nitrate, presence of bioluminescence, ability to take up dye from growth media, positive for protease production, growth-temperature range below 37°C, survival under anaerobic conditions and positively motile. (Table 18). Reference Escherichia coli, Xenorhabdus and Photorhabdus strains were included in all tests for comparison. The overall results are consistent with all strains being part of the family Enterobacteriaceae and the genus Photorhabdus.

10

A luminometer was used to establish the bioluminescence of each strain and provide a quantitative and relative measurement of light production. For measurement of relative light emitting units, the broths from each strain (cells and media) were measured at three time intervals after inoculation in liquid culture (6, 12, and 24 hr) and compared to background luminosity (uninoculated media and water). Prior to measuring light emission from the various broths, cell density was established by measuring light absorbance (560 nM) in a Gilford Systems (Oberlin, OH) spectrophotometer using a sipper cell. Appropriate 20 dilutions were then made (to normalize optical density to 1.0 unit) before measuring luminosity. Aliquots of the diluted broths were then placed into cuvettes (300 μl each) and read in a Bio-Orbit 1251 Luminometer (Bio-Orbit Oy, Twiku, Finland). The integration period for each sample was 45 seconds. The samples 25 were continuously mixed (spun in baffled cuvettes) while being read to provide oxygen availability. A positive test was determined as being ≥ 5-fold background luminescence (~5-10 units). In addition, colony luminosity was detected with photographic film overlays and visually, after adaptation in a 30 darkroom. The Gram's staining characteristics of each strain were established with a commercial Gram's stain kit (BBL, Cockeysville, MD) used in conjunction with Gram's stain control slides (Fisher Scientific, Pittsburgh, PA). Microscopic 35 evaluation was then performed using a Zeiss microscope (Carl Zeiss, Germany) 100X oil immersion objective lens (with 10X ocular and 2% body magnification). Microscopic examination of individual strains for organism size, cellular description and inclusion bodies (the latter after logarithmic growth) was

performed using wet mount slides (10% ocular, 2% body and 40% objective magnification) with oil immersion and phase contrast microscopy with a micrometer (Akhurst, R.J. and Boemare, N.E. 1990. Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. and Kaya, H.). pp. 75-90. CRC Press, Boca Raton, USA.; Baghdiguian S., Boyer-Giglio M.H., Thaler, J.O., Bonnot G., Boemare N. 1993. Biol. Cell 79, 177-185.). Colony pigmentation was observed after inoculation on Bacto nutrient agar, (Difco Laboratories, Detroit, MI) prepared as per label instructions. Incubation occurred at 28°C and descriptions were produced after 10 5-7 days. To test for the presence of the enzyme catalase, a colony of the test organism was removed on a small plug from a nutrient agar plate and placed into the bottom of a glass test tube. One ml of a household hydrogen peroxide solution was gently 15 added down the side of the tube. A positive reaction was recorded when bubbles of gas (presumptive oxygen) appeared immediately or within 5 seconds. Controls of uninoculated nutrient agar and hydrogen peroxide solution were also examined. To test for nitrate reduction, each culture was inoculated into 20 10 ml of Bacto Nitrate Broth (Difco Laboratories, Detroit, MI). After 24 hours incubation at 28°C, nitrite production was tested by the addition of two drops of sulfanilic acid reagent and two drops of alpha-naphthylamine reagent (see Difco Manual, 10th edition, Difco Laboratories, Detroit, MI, 1984). The generation 25 of a distinct pink or red color indicates the formation of nitrite from nitrate. The ability of each strain to uptake dye from growth media was tested with Bacto MacConkey agar containing the dye neutral red; Bacto Tergitol-7 agar containing the dye bromothymol blue and Bacto EMB Agar containing the dye eosin-Y 30 (agars from Difco Laboratories, Detroit, MI, all prepared according to label instructions). After inoculation on these media, dye uptake was recorded after incubation at 28°C for 5 Growth on these latter media is characteristic for members of the family Enterobacteriaceae. Motility of each strain was 35 tested using a solution of Bacto Motility Test Medium (Difco Laboratories, Detroit, MI) prepared as per label instructions. A butt-stab inoculation was performed with each strain and motility was judged macroscopically by a diffuse zone of growth spreading from the line of inoculum. In many cases, motility was also

observed microscopically from liquid culture under wet mount slides. Biochemical nutrient evaluation for each strain was performed using BBL Enterotube II (Benton, Dickinson, Germany). Product instructions were followed with the exception that incubation was carried out at 28°C for 5 days. Results were consistent with previously cited reports for Photorhabdus. The production of protease was tested by observing hydrolysis of gelatin using Bacto gelatin (Difco Laboratories, Detroit, MI) plates made as per label instructions. Cultures were inoculated and the plates were incubated at 28°C for 5 days. To assess growth at different temperatures, agar plates [2% proteose peptone #3 with two percent Bacto-Agar (Difco, Detroit, MI) in deionized water] were streaked from a common source of inoculum. Plates were sealed with $Nesco^{\oplus}$ film and incubated at 20, 28 and 37°C for up to three weeks. Plates showing no growth at 37°C 15 showed no cell viability after transfer to a 28°C incubator for one week. Oxygen requirements for Photorhabdus strains were tested in the following manner. A butt-stab inoculation into fluid thioglycolate broth medium (Difco, Detroit, MI) was made. The tubes were incubated at room temperature for one week and 20 cultures were then examined for type and extent of growth. The indicator resazurin demonstrates the level of medium oxidation or the aerobiosis zone (Difco Manual, 10th edition, Difco Laboratories, Detroit, MI). Growth zone results obtained for the Photorhabdus strains tested were consistent with those of a facultative anaerobic microorganism.

Table 18 Taxonomic Traits of Photorhabdus Strains

30

Character			,		Tı	ai	ts	Ass	ses	sed*							
Strain	A	В	10	D	E	F	G	Н	I	J	K	L	М	N	To	P	Q
W-14		±	±	rd S	±	=	±	=	<u>+</u>	<u>o</u>	±	Ξ	Ξ	=	=	=	Ι Ξ
WX-1	=	±	±	rd S	±	Ξ	=	±	±	<u>o</u>	±	=	=	=	=	=	Ξ
WX-2	-	<u>+</u>	÷	rd S	=	Ξ	÷	±	±	<u>o</u>	±	±	±	±	Ξ	±	Ξ
WX-3	=	=	±	<u>rd</u> S	÷	=	÷	±	÷	YT	±	<u>+</u>	<u> </u>	<u>±</u>	÷	±	Ξ
WX - 4	•	<u>+</u>	±	<u>rd</u> S	<u>+</u>	-	±	±	÷	YT	±	±	±	÷	+	<u>:</u>	=
WX - 5		÷	<u>+</u>	<u>rd</u> S	<u>-</u>	Ξ	<u>-</u>	<u> </u>	÷	LO	غا	<u>±</u>	±	÷	٤	÷	=

WU 7//1/432 PC 1/US70/18003

	WX-5			<u>+</u>	Ξ	rd S		=	T=	Τ.	=	÷	±	LY	_	±	1		ΞŢ	<u>+</u>	٤	ΤΞ	Ξ
	WX - 7	T=		÷	<u>+</u>	rd		±	İΞ	1	=	±	<u>+</u>	R		<u>+</u>	1 ±	+	-	÷	<u>+</u>	1	=
	WX - 8	Ξ		÷	<u>÷</u>	rd S		<u>+</u>	Ξ	1	: †	٥	<u>+</u>	2		<u>±</u>	+	+	+	≟	<u>+</u>	=	=
	WX-9	=		÷	±	rd S		<u>+</u>	Ξ	†:	+	=	<u>±</u>	YT	-	<u>+</u>	1	4_	\bot	=	<u>-</u>	<u> </u>	=
	WX-10	TE	7	=	Ξ	rd S	-	<u>+</u>	=	<u> </u>	+	+	<u>+</u>	Ro	-	<u> </u>	1 =	-	4	-			L
	WX-11	+ <u>=</u>	\dashv	┵	±	rd	\dashv	±	<u> </u>	1:	4-	<u> </u>	<u> </u>	Ro	4		L	丄	4	4	<u> </u>	<u>+</u>	-
	WX-12	╅	4	<u>+</u>	<u>+</u>	s rd	\dashv	<u> </u>		↓_	╀	4	_		\downarrow	<u>+</u>	<u>+</u>	<u> </u>	4	1	<u> </u>	=	=
	WX-14	1=	4	4	=	S	\downarrow	_	=	<u> </u>	1	4	_	<u>o</u>	\perp	٥	±	Ė]-	-	<u> - </u>	<u>+</u>	-
	WX-15			_	4	rd S	_	_	=	<u></u>	1		-	LR		-	<u>+</u>	±	13	-	<u> </u>	=	Ξ
	Н9	=	+	4	1	<u>rd</u> S		<u> </u>	-	+	=] .	<u>+</u>	LR		<u>+</u>	<u>+</u>	=	1		±	=	=
		=	1-2		_	<u>rd</u> S		-	-	<u>+</u>	=			LY	1.	=	<u>+</u>	±	=	1.	=	╧	듸
	нь		1 2	- -	<u>- </u>	<u>rd</u> S		-	Ξ	<u>+</u>	=	1	-	YT	1	=	÷	±	<u>±</u>	+	+	=	\exists
L	Hm	=	=	: 2	- -	rd S	1		Ξ	<u>+</u>	±	1:	+	ΤY	1:	+	±	±	1 ±	+		-	ᅴ
	HP88	=	=	. ±	_	rd S	13	1.	=	<u>+</u>	±	1 ±	+	LY	+	+	±	<u>+</u>	±	+	\bot	_	
	NC - 1	Ξ	±	1 =	_	cd	1 2	+	+	Ξ	<u>+</u>	1 ±	+	0	1.	4	<u>+</u>	±	÷	1 2	4		
r	W30	1=	1 ±	1 ±	_	:d	1	+	+	<u> </u>	<u>±</u>	1	\bot	YT	1	4	+	=		Ļ.,	4	4	_
	WIR	1=	1:	1 :	T	d	 <u>+</u>	1	4	<u> </u>	<u>-</u>	: ±	L	₹0	╙	4	4	_	<u></u>	=	4		
\vdash	В2	\ -	+	1	<u> s</u>	d	1 ±	_	4	_		_	L		<u> </u>	4	4	<u>- </u>	<u> </u>	Ŀ	1		
\vdash	43948	E	=	L_	S		┞	-	4	1	<u>+</u>	±	E		±	=	-	<u> </u>	<u>+</u>	<u>+</u>	2	: =	-
H	43949		!	=	S		<u> </u>	E		=	<u>+</u>	±	2	2	±	1 2	: .	<u>+</u>	<u>+</u>	<u>+</u>	=	= =	.]
L	43950	=	<u>+</u>	<u>+</u>	S		÷	=]=	-	<u>+</u>	<u>+</u>	2		+	<u> </u>	: [=	+	+	=	TE	
		=	±	<u></u>	<u>F</u>	<u>d</u>	±	Ξ	1	-	=	÷	2		<u>±</u>	÷	1:	=	÷	<u>±</u>	=	† <u>=</u>	1
	13951	-	1+	±	I C	i	±	Ξ	1-		±	<u>±</u>	<u>o</u>		±	1	13	<u>+</u>	≐	<u>+</u>	±	†Ξ	1
	13952	-	÷	÷	ro	- I	<u>±</u>	Ξ	=	+	=	±	0	_	<u>±</u>	1	+	+	=	<u>+</u>	<u>±</u>	Ξ	+
*	- A =	Gram'						Ч.	Ц.		_Ĺ					1	J		- [l	1	1

* - A = Gram's stain, B=Crystaline inclusion bodies, C=Bioluminescence, D=Cell form, E=Motility, F=Nitrate reduction, G=Presence of catalase, H=Gelatin hydrolysis, I=Dye uptake, J=Pigmentation, K=Growth on EMB agar, L=Growth on MacConkey agar, M=Growth on Tergitol-7 agar, N=Facultative anaerobe, O=Growth at 20°C, P=Growth at 28°C, Q=Growth at 37°C, f - +/- = positive or negative for trait, rd=rod, S=sized within Genus descriptors, RO=red-orange, LR = light red, R= red, O= organge, Y= yellow, T= tan, LY= light yellow, YT= yellow tan, and LO= light orange.

Cellular fatty acid analysis is a recognized tool for bacterial characterization at the genus and species level (Tornabene, T.G. 1985. <u>Lipid Analysis and the Relationship to</u>

Chemotaxonomy in Methods in Microbiology, Vol 18, 203-2:4.; Goodfellow, M. and O'Donnell, A.G. 1993. Roots of Bacterial Systematics in Handbook of New Bacterial Systematics (ed. Goodfellow, M. & O'Donnell, A.G.) pp. 3-54. London: Academic Press Ltd.), these references are incorporated herein by reference, and were used to confirm that our collection was related at the genus level. Cultures were shipped to an external, contract laboratory for fatty acid methyl ester analysis (FAME) using a Microbial ID (MIDI, Newark, DE, USA) Microbial Identification System (MIS). The MIS system consists of a Hewlett Packard HP5890A gas chromatograph with a 25mm imes 0.2mm 5% methylphenyl silicone fused silica capillary column. Hydrogen is used as the carrier gas and a flame-ionization detector functions in conjunction with an automatic sampler, integrator and computer. The computer compares the sample fatty acid methyl 15 esters to a microbial fatty acid library and against a calibration mix of known fatty acids. As selected by the contract laboratory, strains were grown for 24 hours at 28 C on trypticase soy agar prior to analysis. Extraction of samples was 20 performed by the contract lab as per standard FAME methodology. There was no direct identification of the strains to any luminescent bacterial group other than Photorhabdus. When the cluster analysis was performed, which compares the fatty acid profiles of a group of isolates, the strain fatty acid profiles 25 were related at the genus level.

The evolutionary diversity of the *Photorhabdus* strains in our collection was measured by analysis of PCR (Polymerase Chain Reaction) mediated genomic fingerprinting using genomic DNA from each strain. This technique is based on families of repetitive DNA sequences present throughout the genome of diverse bacterial species (reviewed by Versalovic, J., Schneider, M., DE Bruijn, F.J. and Lupski, J.R. 1994. Methods Mol. Cell. Biol., 5, 25-40.). Three of these, repetitive extragenic palindromic sequence (REP), enterobacterial repetitive intergenic consensus (ERIC) and the BOX element are thought to play an important role in the organization of the bacterial genome. Genomic organization is believed to be shaped by selection and the differential dispersion of these elements within the genome of closely related bacterial strains can be used to discriminate these strains (e.g.

30

WU 97/1/432 PU1/US96/18003

Louws, F.J., Fulbright, D.W., Stephens, C.T. and DE Bruijn, F.J. 1994. Appl. Environ. Micro. 60, 2286-2295.). Rep-PCR utilizes oligonucleotide primers complementary to these repetitive sequences to amplify the variably sized DNA fragments lying between them. The resulting products are separated by electrophoresis to establish the DNA "fingerprint" for each strain.

To isolate genomic DNA from our strains, cell pellets were resuspended in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to a 10 final volume of 10 ml and 12 ml of 5 M NaCl was then added. This mixture was centrifuged 20 min. at 15,000 x g. The resulting pellet was resuspended in 5.7 ml of TE and 300 µl of 10% SDS and 60 ul 20 mg/ml proteinase K (Gibco BRL Products, Grand Island, NY) were added. This mixture was incubated at 37 °C for 1 hr. 15 approximately 10 mg of lysozyme was then added and the mixture was incubated for an additional 45 min. One milliliter of 5M NaCl and 800 ul of CTAB/NaCl solution (10% w/v CTAB, 0.7 M NaCl) were then added and the mixture was incubated 10 min. at 65°C, gently agitated, then incubated and agitated for an additional 20 min. 20 to aid in clearing of the cellular material. An equal volume of chloroform/isoamyl alcohol solution (24:1, v/v) was added, mixed gently then centrifuged. Two extractions were then performed with an equal volume of phenol/chloroform/isoamyl alcohol (50:49:1). Genomic DNA was precipitated with 0.6 volume of isopropanol. 25 Precipitated DNA was removed with a glass rod, washed twice with 70% ethanol, dried and dissolved in 2 ml of STE (10 mM Tris-HCl pH8.0, 10 mM NaCl, 1 mM EDTA). The DNA was then quantitated by optical density at 260 nm. To perform rep-PCR analysis of Photorhabdus genomic DNA the following primers were used, REP1R-30 I; 5'-IIIICGICGICATCIGGC-3' and REP2-I; 5'-ICGICTTATCIGGCCTAC-3'. PCR was performed using the following 25ul reaction: 7.75 ul H₂O, 2.5 µl 10X LA buffer (PanVera Corp., Madison, WI), 16 µl dNTP mix (2.5 mM each), 1 μ l of each primer at 50 pM/ μ l, 1 μ l DMSO, 1.5 μ l genomic DNA (concentrations ranged from 0.075-0.480 µg/µl) and 35 0.25 µl TaKaRa EX Tag (PanVera Corp., Madison, WI). The PCR amplification was performed in a Perkin Elmer DNA Thermal Cycler (Norwalk, CT) using the following conditions: 95°C/7 min. then 35 cycles of: 94°C/1 min., 44°C/1 min., 65°C/8 min., followed by 15 min. at 65°C. After cycling, the 25 µl reaction was added to 5 µl

of 6% gel loading buffer (0.25% bromophenol blue, 40% w/v sucrose in H2O). A 15x20cm 1%-agarose gel was then run in TBE buffer (0.09 M Tris-borate, 0.002 M EDTA) using 8 ul of each reaction. The gel was run for approximately 16 hours at 45v. Gels were then stained in 20 µg/ml ethidium bromide for 1 hour and destained in TBE buffer for approximately 3 hours. Polaroid® photographs of the gels were then taken under UV illumination.

The presence or absence of bands at specific sizes for each strain was scored from the photographs and entered as a similarity matrix in the numerical taxonomy software program, NTSYS-pc (Exeter Software, Setauket, NY). Controls of E. colistrain HB101 and Xanthomonas oryzae pv. oryzae assayed at the same time produced PCR "fingerprints" corresponding to published reports (Versalovic, J., Koeuth, T. and Lupski, J.R. 1991. Nucleic Acids Res. 19, 6823-6831; Vera Cruz, C.M., Halda-Alija,

- Nucleic Acids Res. 19, 6823-6831; Vera Cruz, C.M., Halda-Alija, L., Louws, F., Skinner, D.Z., George, M.L., Nelson, R.J., DE Bruijn, F.J., Rice, C. and Leach, J.E. 1995. Int. Rice Res. Notes, 20, 23-24.; Vera Cruz, C.M., Ardales, E.Y., Skinner, D.Z., Talag, J., Nelson, R.J., Louws, F.J., Leung, H., Mew, T.W. and
- Leach, J.E. 1996. Phytopathology (in press, respectively). The data from *Photorhabdus* strains were then analyzed with a series of programs within NTSYS-pc; SIMQUAL (Similarity for Qualitative data) to generate a matrix of similarity coefficients (using the Jaccard coefficient) and SAHN (Sequential, Agglomerative,
- Heirarchical and Nested) clustering [using the UPGMA (Unweighted Pair-Group Method with Arithmetic Averages) method] which groups related strains and can be expressed as a phenogram (Figure 5). The COPH (cophenetic values) and MXCOMP (matrix comparison) programs were used to generate a cophenetic value matrix and
- compare the correlation between this and the original matrix upon which the clustering was based. A resulting normalized Mantel statistic (r) was generated which is a measure of the goodness of fit for a cluster analysis (r=0.8-0.9 represents a very good fit). In our case r = 0.919. Therefore, our collection is
- comprised of a diverse group of easily distinguishable strains representative of the *Photorhabdus* genus.

WU 7//1/402 PC 1/U090/1800

Example 13 Insecticidal Utility of Toxin(s) Produced by Various Fhotorhabdus Strains

5 Initial "seed" cultures of the various Photorhabdus strains were produced by inoculating 175 ml of 2% Proteose Peptone #3 (PP3) (Difco Laboratories, Detroit, MI) liquid media with a primary variant subclone in a 500 ml tribaffled flask with a Delong neck, covered with a Kaput. Inoculum for each seed culture 10 was derived from oil-overlay agar slant cultures or plate cultures. After inoculation, these flasks were incubated for 16 hrs at 28°C on a rotary shaker at 150 rpm. These seed cultures were then used as uniform inoculum sources for a given fermentation of each strain. Additionally, overlaying the post-15 log seed culture with sterile mineral oil, adding a sterile magnetic stir bar for future resuspension and storing the culture in the dark, at room temperature provided long-term preservation of inoculum in a toxin-competent state. The production broths were inoculated by adding 1% of the actively growing seed culture to fresh 2% PP3 media (e.g. 1.75 ml per 175 ml fresh media). Production of broths occurred in either 500 ml tribaffled flasks (see above), or 2800 ml baffled, convex bottom flasks (500 ml volume) covered by a silicon foam closure. Production flasks were incubated for 24-48 hrs under the above mentioned 25 conditions. Following incubation, the broths were dispensed into sterile 1 L polyethylene bottles, spun at 2600 x g for 1 hr at 10°C and decanted from the cell and debris pellet. The liquid broth was then vacuum filtered through Whatman GF/D (2.7 uM retention) and GF/B (1.0 uM retention) glass filters to remove 30 debris. Further broth clarification was achieved with a tangential flow microfiltration device (Pall Filtron, Northborough, MA) using a 0.5 µM open-channel filter. When necessary, additional clarification could be obtained by chilling the broth (to 4°C) and centrifuging for several hours at 2600 x g. Following these procedures, the broth was filter sterilized using a 0.2 uM nitrocellulose membrane filter. Sterile broths were then used directly for biological assay, biochemical analysis or concentrated (up to 15-fold) using a 10,000 MW cutoff, MI2 ultra-filtration device (Amicon, Beverly MA) or

centrifugal concentrators (Millipore, Bedford, MA and Pall Filtron, Northborough, MA) with a 10,000 MW pore size. In the case of centrifugal concentrators, the broth was spun at 2000 x g for approximately 2 hr. The 10,000 MW permeate was added to the corresponding retentate to achieve the desired concentration of components greater than 10,000 MW. Heat inactivation of processed broth samples was acheived by heating the samples at $100\,^{\circ}\text{C}$ in a sand-filled heat block for 10 minutes.

5

25

30

35

The broth(s) and toxin complex(es) from different 10 Photorhabdus strains are useful for reducing populations of insects and were used in a method of inhibiting an insect population which comprises applying to a locus of the insect an effective insect inactivating amount of the active described. A demonstration of the breadth of insecticidal activity observed 15 from broths of a selected group of Photorhabdus strains fermented as described above is shown in Table 19. It is possible that additional insecticidal activities could be detected with these strains through increased concentration of the broth or by employing different fermentation methods. Consistent with the 20 activity being associated with a protein, the insecticidal activity of all strains tested was heat labile (see above).

Culture broth(s) from diverse Photorhabdus strains show differential insecticidal activity (mortality and/or growth inhibition, reduced adult emergence) against a number of insects. More specifically, the activity is seen against corn rootworm larvae and boll weevil larvae which are members of the insect order Coleoptera. Other members of the Coleoptera include wireworms, pollen beetles, flea beetles, seed beetles and Colorado potato beetle. Activity is also observed against aster leafhopper and corn plant hopper, which are members of the order Homoptera. Other members of the Homoptera include planthoppers, pear psylla, apple sucker, scale insects, whiteflies, spittle bugs as well as numerous host specific aphid species. The broths and purified toxin complex(es) are also active against tobacco budworm, tobacco hornworm and European corn borer which are members of the order Lepidoptera. Other typical members of this order are beet armyworm, cabbage looper, black cutworm, corn earworm, codling moth, clothes moth, Indian mealmoth, leaf rollers, cabbage worm, cotton bollworm, bagworm, Eastern tent

caterpillar, sod webworm and fall armyworm. Activity is also seen against fruitfly and mosquito larvae which are members of the order Diptera. Other members of the order Diptera are, pea midge, carrot fly, cabbage root fly, turnip root fly, onion fly, crane fly and house fly and various mosquito species. Activity with broth(s) and toxin complex(es) is also seen against twospotted spider mite which is a member of the order Acarina which includes strawberry spider mites, broad mites, citrus red mite, European red mite, pear rust mite and tomato russet mite.

10

15

25

30

35

Activity against corn rootworm larvae was tested as follows. Photorhabdus culture broth(s) (0-15 fold concentrated, filter sterilized), 2% Proteose Peptone #3, purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer , pH 7.0 were applied directly to the surface (about 1.5 cm^2) of artificial diet (Rose, R. I. and McCabe, J. M. (1973). J. Econ. Entomol. 66, (398-400) in 40 μl aliquots. Toxin complex was diluted in 10 mMsodium phosphate buffer, pH 7.0. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate Diabrotica undecimpunctata howardi (Southern corn 20 rootworm, SCR) hatched from surface sterilized eggs. The plates were sealed, placed in a humidified growth chamber and maintained at 27°C for the appropriate period (3-5 days). Mortality and larval weight determinations were then scored. Generally, 16 insects per treatment were used in all studies. Control mortality was generally less than 5%.

Activity against boll weevil (Anthomonas grandis) was tested as follows. Concentrated (1-10 fold) Photorhabdus broths, control medium (2% Proteose Peptone #3), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0 were applied in 60 μ l aliquots to the surface of 0.35 g of artificial diet (Stoneville Yellow lepidopteran diet) and allowed to dry. A single, 12-24 hr boll weevil larva was placed on the diet, and the wells were sealed and held at 25°C, 50% RH for 5 $\,$ days. Mortality and larval weights were then assessed. Control mortality ranged between 0-13%.

Activity against mosquito larvae was tested as follows. assay was conducted in a 96-well microtiter plate. Each well contained 200 ul of aqueous solution (10-fold concentrated Photorhabdus culture broth(s), control medium (2% Proteose

Peptone #3), 10 mM sodium phosphate buffer, toxin complex(es) @ 0.23 mg/ml or H20) and approximately 20, 1-day old larvae (Aedes aegypti). There were 6 wells per treatment. The results were read at 3-4 days after infestation. Control mortality was between 0-20%.

Activity against fruitflies was tested as follows. Purchased Drosophila melanogaster medium was prepared using 50% dry medium and a 50% liquid of either water, control medium (2% Proteose Peptone #3), 10-fold concentrated Photorhabdus culture broth(s), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer , pH 7.0. This was accomplished by placing $4.0\,$ ml of dry medium in each of 3 rearing vials per treatment and adding 4.0 ml of the appropriate liquid. Ten late instar Drosophila melanogaster maggots were then added to each 25 ml 15 vial. The vials were held on a laboratory bench, at room temperature, under fluorescent ceiling lights. Pupal or adult counts were made after 15 days of exposure. Adult emergence as compared to water and control medium (0-16% reduction).

10

Activity against aster leafhopper adults (Macrosteles 20 severini) and corn planthopper nymphs (Peregrinus maidis) was tested with an ingestion assay designed to allow ingestion of the active without other external contact. The reservoir for the active/"food" solution is made by making 2 holes in the center of the bottom portion of a 35X10 mm Petri dish. A 2 inch Parafilm 25 M^{\odot} square is placed across the top of the dish and secured with an "O" ring. A 1 oz. plastic cup is then infested with approximately 7 hoppers and the reservoir is placed on top of the cup, Parafilm down. The test solution is then added to the reservoir through the holes. In tests using 10-fold concentrated 30 Photorhabdus culture broth(s), the broth and control medium (2% Proteose Peptone #3) were dialyzed against 10 mM sodium phosphate buffer, pH 7.0 and sucrose (to 5%) was added to the resulting solution to reduce control mortality. Purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0 was also 35 tested. Mortality is reported at day 3. The assay was held in an incubator at 28°C, 70% RH with a 16/8 photoperiod. The assays were graded for mortality at 72 hours. Control mortality was less than 6%.

Activity against lepidopteran larvae was tested as follows. Concentrated (19-fold) Photorhabdus culture broth(s), control medium (2% Proteose Peptone #3), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0 were applied 5 directly to the surface (~1.5 cm²) of standard artificial lepidopteran diet (Stoneville Yellow diet) in 40 ul aliquots. The diet plates were allowed to air-dry in a sterile flow-hood and each well was infested with a single, neonate larva. European corn borer (Ostrinia nubilalis) and tobacco hornworm (Manduca 10 sexta) eggs were obtained from commercial sources and hatched inhouse, whereas tobacco budworm (Heliothis virescens) larvae were supplied internally. Following infestation with larvae, the diet plates were sealed, placed in a humidified growth chamber and maintained in the dark at 27°C for the appropriate period. 15 Mortality and weight determinations were scored at day 5. Generally, 16 insects per treatment were used in all studies. Control mortality generally ranged from 4-12.5% for control medium and was less than 10% for phosphate buffer.

Activity against two-spotted spider mite (Tetranychus urticae) was determined as follows. Young squash plants were trimmed to a single cotyledon and sprayed to run-off with 10-fold concentrated broth(s), control medium (2% Proteose Peptone #3), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0. After drying, the plants were infested with a mixed population of spider mites and held at lab temperature and humidity for 72 hr. Live mites were then counted to determine levels of control.

Table 19 Observed Insecticidal Spectrum of Broths From Different Photorhabdus Strains

5	Photorhabdus Strain	Sensitive* Insect Species
	WX-1	3**, 4, 5, 6, 7, 8
	WX - 2	2, 4
	WX-3	1, 4
	WX - 4	1, 4
10	WX-5	4
	WX-6	4
	WX-7	3, 4, 5, 6, 7, 8
	WX-8	1, 2, 4
	WX-9	1, 2, 4
15	WX-10	4
	WX-11	1, 2, 4
	WX-12	2, 4, 5, 6, 7, 8
	WX-14	1, 2, 4
	WX-15	1, 2, 4
20	W 30	3, 4, 5, 8
	NC - 1	1, 2, 3, 4, 5, 6, 7, 8, 9
	WIR	2, 3, 5, 6, 7, 8
	НР88	1, 3, 4, 5, 7, 8
	нь	3, 4, 5, 7, 8
25	Hm	1, 2, 3, 4, 5, 7, 8
	н9	1, 2, 3, 4, 5, 6, 7, 8
	W-14	1, 2, 3, 4, 5, 6, 7, 8, 10
	ATCC 43948	4
	ATCC 43949	4
30	ATCC 43950	4
	ATCC 43951	4
	ATCC 43952	4

^{* = ≥ 25%} mortality and/or growth inhibition vs. control
** = 1; Tobacco budworm, 2; European corn borer, 3;
 Tobacco hornworm, 4; Southern corn rootworm, 5; 35 Boll weevil, 5; Mosquito, 7; Fruit Fly, 8; Aster Leafhopper, 9; Corn planthopper, 10; Two-spotted spider mite.

Example 14

Non M-14 Photorhabdus Strains: Purification, Characterization and Activity Spectrum

5 Purification

20

25

30

35

The protocol, as follows, is similar to that developed for the purification of W-14 and was established based on purifying those fractions having the most activity against Southern corn root worm (SCR), as determined in bioassays (see Example 13). Typically, 4-20 L of broth that had been filtered, as described 10 in Example 13, were received and concentrated using an Amicon spiral ultra filtration cartridge Type S1Y100 attached to an Amicon M-12 filtration device. The retentate contained native proteins consisting of molecular sizes greater than 100 kDa. whereas the flow through material contained native proteins less than 100 kDa in size. The majority of the activity against SCR was contained in the 100 kDa retentate. The retentate was then continually diafiltered with 10 mM sodium phosphate (pH = 7.0) until the filtrate reached an A280 < 0.100. Unless otherwise stated, all procedures from this point were performed in buffer as defined by 10 mM sodium phosphate (pH 7.0). The retentate was then concentrated to a final volume of approximately 0.20 L and filtered using a 0.45 mm Nalgene™ Filterware sterile filtration The filtered material was loaded at 7.5 ml/min onto a Pharmacia HR16/10 column which had been packed with PerSeptive Biosystem Poros® 50 HQ strong anion exchange matrix equilibrated in buffer using a PerSeptive Biosystem Sprint® HPLC system. After loading, the column was washed with buffer until an A280 $ilde{ imes}$ 0.100 was achieved. Proteins were then eluted from the column at 2.5 ml/min using buffer with 0.4 M NaCl for 20 min for a total volume of 50 ml. The column was then washed using buffer with 1.0 M NaCl at the same flow rate for an additional 20 min (final volume = 50 ml). Proteins eluted with 0.4 M and 1.0 M NaCl were placed in separate dialysis bags (Spectra/Por® Membrane MWCO: 2.000) and allowed to dialyze overnight at 4° C in 12 L buffer. The majority of the activity against SCR was contained in the 0.4 M fraction. The 0.4 M fraction was further purified by application of 20 ml to a Pharmacia XK 26/100 column that had.

been prepacked with Sepharose CL4B (Pharmacia) using a flow rate

of 0.75 ml/min. Fractions were pooled based on A280 peak profile and concentrated to a final volume of 0.75 ml using a Millipore Ultrafree®-15 centrifugal filter device Biomax-50K NMWL membrane. Protein concentrations were determined using a Biorad Protein Assay Kit with bovine gamma globulin as a standard.

Characterization

10

15

20

25

30

35

The native molecular weight of the SCR toxin complex was determined using a Pharmacia HR 16/50 that had been prepacked with Sepharose CL4B in buffer. The column was then calibrated using proteins of known molecular size thereby allowing for calculation of the toxin approximate native molecular size. As shown in Table 20, the molecular size of the toxin complex ranged from 777 kDa with strain Hb to 1,900 kDa with strain WX-14. The yield of toxin complex also varied, from strain WX-12 producing 0.8 mg/L to strain Hb, which produced 7.0 mg/L.

Proteins found in the toxin complex were examined for individual polypeptide size using SDS-PAGE analysis. Typically, 20 mg protein of the toxin complex from each strain was loaded onto a 2-15% polyacrylamide gel (Integrated Separation Systems) and electrophoresed at 20 mA in Biorad SDS-PAGE buffer. After completion of electrophoresis, the gels were stained overnight in Biorad Coomassie blue R-250 (0.2% in methanol: acetic acid: water; 40:10:40 v/v/v). Subsequently, gels were destained in methanol:acetic acid: water; 40:10:40 (v/v/v). The gels were then rinsed with water for 15 min and scanned using a Molecular Dynamics Personal Laser Densitometer. Lanes were quantitated and molecular sizes were calculated as compared to Biorad high molecular weight standards, which ranged from 200-45 kDa.

Sizes of the individual polypeptides comprising the SCR toxin complex from each strain are listed in Table 21. The sizes of the individual polypeptides ranged from 230 kDa with strain WX-1 to a size of 16 kDa, as seen with strain WX-7. Every strain, with the exception of strain Hb, had polypeptides comprising the toxin complex that were in the 160-230 kDa range, the 100-160 kDa range, and the 50-80 kDa range. These data indicate that the toxin complex may vary in peptide composition and components from strain to strain, however, in all cases the

toxin attributes appears to consist of a large, oligomeric protein complex.

Table 20
Characterization of a Toxin Complex From
Non W-14 Photorhabdus Strains

Strain	Approx. Native	Yield
		Active
	Molecular Wt. ^a	Fraction
		(mg/L) ^b
Н9	972,000	1.8
Нb	777,000	7.0
Hm	1,400,000	1.1
HP88	813,000	2.5
NC1	1,092,000	3.3
WIR	979,000	1.0
WX-1	973,000	0.8
WX-2	951,000	2.2
WX-7	1,000,000	1.5
WX-12	898,000	0.4
WX-14	1,900,000	1.9
W-14	860,000	7.5

a Native molecular weight determined using a Pharmacia HR 16/50 column packed with Sepharose CL4B b Amount of toxin complex recovered from culture broth.

Activity Spectrum

5

10

20

As shown in Table 21, the toxin complexes purified from strains Hm and H9 were tested for activity against a variety of insects, with the toxin complex from strain W-14 for comparison. The assays were performed as described in Example 13. The toxin complex from all three strains exhibited activity against tobacco bud worm, European corn borer, Southern corn root worm, and aster leafhopper. Furthermore, the toxin complex from strains Hm and W-14 also exhibited activity against two-spotted spider mite. In addition, the toxin complex from W-14 exhibited activity against mosquito larvae. These data indicate that the toxin complex, while having similarities in activities between certain orders of insects, can also exhibit differential activities against other orders of insects.

5

Table 21
The Approximate Sizes (in kDa) of Peptides in a Purified

Toxin Complex From Non W-14 Photorhabdus

Н9	НЬ	Hm	HP 88	NC-1	WIR	WX-1	WX-2	WX-7	WX-12	WX-14	M-T1
180	150	170	170	180	170	230	200	200	180	210	190
170	140	140	160	170	160	190	170	180	160	180	180
160	139	100	140	140	120	170	150	110	140	160	170
140	130	81	130	110	110	160	120	87	139	120	160
120	120	72	129	44	89	110	110	75	130	110	150
98	100	68	110	16	79	98	82	43	110	100	
87	98	49	100		74	76	64	33	92	95	130
84	88	46	86		62	58	37	28	87	80	120
79	81	30	81		51	53	30	26	80		110
72	75	22	77		40	41	30	23	73	69	93
68	69	20	73		39	35		22	59	49 41	90 77
60	60	19	60		37	31		21	56	33	
57	57		58		33	28		19	51	2.2	69
52	54		45		30	24		18	37		65
46	49		39		28	22		16			6 3
40	44		35		27	22		10	33		60
37	39				25				32		51
	37				23				26		45
	35				23						40
	,,										33
	 										20

WO 9 //1 /432 PCT/US96/18003

Table 22
Observed Insecticidal Spectrum of a Purified Toxin Complex from
Photorhabdus Strains

5	Photorhabdus Strain Sensitive* Insect Species
10	Hm Toxin Complex 1**, 2, 3, 5, 6, 7, 8 H9 Toxin Complex 1, 2, 3, 6, 7, 8 W-14 Toxin Complex 1, 2, 3, 4, 5, 6, 7, 8
	 = > 25% mortality or growth inhibition = > 25% mortality or growth inhibition
15	<pre>** = 1; Tobacco bud worm, 2; European corn borer, 3; Southern corn root worm, 4; Mosquito, 5; Two-spotted spider mite, 6; Aster Leafhopper, 7; Fruit Fly, 8; Boll Weevil</pre>

<u>Example 15</u>
<u>Sub-Fractionation of Photorhabdus Protein Toxin Complex</u>

20

25

30

35

The Photorhabdus protein toxin complex was isolated as described in Example 14. Next, about 10 mg toxin was applied to a MonoQ 5/5 column equilibrated with 20 mM Tris-HCl, pH 7.0 at a flow rate of lml/min. The column was washed with 20 mM Tris-HCl, pH 7.0 until the optical density at 280 nm returned to baseline absorbance. The proteins bound to the column were eluted with a linear gradient of 0 to 1.0 M NaCl in 20 mM Tris-HCl, pH 7.0 at 1 ml/min for 30 min. One ml fractions were collected and subjected to Southern corn rootworm (SCR) bioassay (see Example 13). Peaks of activity were determined by a series of dilutions of each fraction in SCR bioassays. Two activity peaks against SCR were observed and were named A (eluted at about 0.2-0.3 M NaCl) and B (eluted at 0.3-0.4 M NaCl). Activity peaks A and B were pooled separately and both peaks were further purified using a 3-step procedure described below.

Solid (NH4)2SO4 was added to the above protein fraction to a final concentration of 1.7 M. Proteins were then applied to a phenyl-Superose 5/5 column equilibrated with 1.7 M (NH4)2SO4 in 50 mM potassium phosphate buffer, pH 7 at 1 ml/min. Proteins bound to the column were eluted with a linear gradient of 1.7 M (NH4)2SO4, 0% ethylene glycol, 50 mM potassium phosphate, pH 7.0 to 25% ethylene glycol, 25 mM potassium phosphate, pH 7.0 (no (NH4)2SO4) at 0.5 ml/min. Fractions were dialyzed overnight

against 10 mM sodium phosphate buffer, pH 7.0. Activities in each fraction against SCR were determined by bloassay.

The fractions with the highest activity were pooled and applied to a MonoQ 5/5 column which was equilibrated with 20 mM Tris-HCl, pH 7.0 at 1 ml/min. The proteins bound to the column were eluted at 1 ml/min by a linear gradient of 0 to 1M NaCl in 20 mM Tris-HCl, pH 7.0.

10

15

40

For the final step of purification, the most active fractions above (determined by SCR bioassay) were pooled and subjected to a second phenyl-Superose 5/5/ column. Solid (NH4)2SO4 was added to a final concentration of 1.7 M. The solution was then loaded onto the column equilibrated with 1.7 M (NH4)2SO4 in 50 mM potassium phosphate buffer, pH 7 at lml/min. Proteins bound to the column were eluted with a linear gradient of 1.7 M (NH4)2SO4, 50 mM potassium phosphate, pH 7.0 to 10 mM potassium phosphate, pH 7.0 at 0.5 ml/min. Fractions were dialyzed overnight against 10 mM sodium phosphate buffer, pH 7.0. Activities in each fraction against SCR were determined by bioassay.

The final purified protein by the above 3-step procedure from peak A was named toxin A and the final purified protein from peak B was named toxin B.

Characterization and Amino Acid Sequencing of Toxin A and Toxin B

In SDS-PAGE, both toxin A and toxin B contained two major (>
90% of total Commassie stained protein) peptides: 192 kDa (named
Al and Bl, respectively) and 58 kDa (named A2 and B2,
respectively). Both toxin A and toxin B revealed only one major
band in native PAGE, indicating Al and A2 were subunits of one
protein complex, and Bl and B2 were subunits of one protein
complex. Further, the native molecular weight of both toxin A
and toxin B were determined to be 860 kDa by gel filtration
chromatography. The relative molar concentrations of Al to A2
was judged to be a l to l equivalence as determined by
densiometric analysis of SDS-PAGE gels. Similarly, Bl and B2
peptides were present at the same molar concentration.

Toxin A and toxin B were electrophoresed in 10% SDS-PAGE and transblotted to PVDF membranes. Blots were sent for amino acid analysis and N-terminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. The N-terminal

amino sequence of Bl was determined to be identical to SEQ ID NO:1, the TcbAii region of the tcbA gene (SEQ ID NO:12, position 87 to 99). A unique N-terminal sequence was obtained for peptide B2 (SEQ ID NO:40). The N-terminal amino acid sequence of peptide B2 was identical to the TcbAiii region of the derived amino acid sequence for the tcbA gene (SEQ ID NO:12, position 1935 to 1945). Therefore, the B toxin contained predominantly two peptides, TcbAii and TcbAiii, that were observed to be derived from the same gene product, TcbA.

The N-terminal sequence of A2 (SEQ ID NO:41) was unique in comparison to the TcbA_{iii} peptide and other peptides. The A2 peptide was denoted TcdA_{iii} (see Example 17). SEQ ID NO:6 was determined to be a mixture of amino acid sequences SEQ ID NO:40 and 41.

Peptides Al and A2 were further subjected to internal amino 15 acid sequencing. For internal amino acid sequencing, 10 µg of toxin A was electrophoresized in 10% SDS-PAGE and transblotted to PVDF membrane. After the blot was stained with amido black, peptides Al and A2, denoted TcdAii and TcdAii, respectively, were excised from the blot and sent to Harvard MicroChem and 20 Cambridge ProChem. Peptides were subjected to trypsin digestion followed by HPLC chromatography to separate individual peptides. N-terminal amino acid analysis was performed on selected tryptic peptide fragments. Two internal amino acid sequences of peptide Al (TcdAii-PK71, SEQ ID NO:38 and TcdAii-PK44, SEQ ID NO:39) were 25 found to have significant homologies with deduced amino acid sequences of the TcbAii region of the tcbA gene (SEQ ID NO:12). Similarly, the N-terminal sequence (SEQ ID NO:41) and two internal sequences of peptides A2 (TcdAiii-PK57, SEQ ID NO:42 and 30 TcdAiii-PK20, SEQ ID NO.43) also showed significant homology with deduced amino acid sequences of TcbAiii region of the tcbA gene (SEQ ID NO:12).

In summary of above results, the toxin complex has at least two active protein toxin complexes against SCR; toxin A and toxin B. Toxin A and toxin B are similar in their native and subunits molecular weight, however, their peptide compositions are different. Toxin A contained peptides TcdAii and TcdAiii as the major peptides and the toxin B contains TcbAii and TcbAiii as the major peptides.

Example 16 Cleavage and Activation of TcbA Peptide

5

10

15

20

In the toxin B complex, peptide TcbAii and TcbAiii originate from the single gene product TcbA (Example 15). The processing of TcbA peptide to TcbAii and TcbAiii is presumably by the action of Photorhabdus protease(s), and most likely, the metalloproteases described in Example 10. In some cases, it was noted that when Photorhabdus W-14 broth was processed, TcbA peptide was present in toxin B complex as a major component, in addition to peptides TcbAii and TcbAiii. Identical procedures, described for the purification of toxin B complex (Example 15), were used to enrich peptide TcbA from toxin complex fraction of W-14 broth. The final purified material was analyzed in a 4-20% gradient SDS-PAGE and major peptides were quantified by densitometry. It was determined that TcbA, TcbAii and TcbAiii comprised 58%, 36%, and 6%, respectively, of total protein. The identities of these peptides were confirmed by their respective molecular sizes in SDS-PAGE and Western blot analysis using monospecific antibodies. The native molecular weight of this fraction was determined to be 860 kDa.

The cleavage of TcbA was evaluated by treating the above purified material with purified 38 kDa and 58 kDa W-14 .25 Photorhabdus metalloproteases (Example 10), and Trypsin as a control enzyme (Sigma, MO). The standard reaction consisted 17.5 ug the above purified fraction, 1.5 unit protease, and 0.1 M Tris buffer, pH 8.0 in a total volume of 100 μ l. For the control reaction, protease was omitted. The reaction mixtures were 30 incubated at 37 °C for 90 min. At the end of the reaction, 20 µl was taken and boiled with SDS-PAGE sample buffer immediately for electrophoresis analysis in a 4-20% gradient SDS-PAGE. determined from SDS-PAGE that in both 38 kDa and 58 kDa protease treatments, the amount of peptides TcbAii and TcbAiii increased about 3-fold while the amount of TcbA peptide decreased proportionally (Table 23). The relative reduction and augmentation of selected peptides was confirmed by Western blot analyses. Furthermore, gel filtration of the cleaved material revealed that the native molecular size of the complex remained 40 the same. Upon trypsin treatment, peptides TcbA and TcbAii were

WU 97/17432 PC17US96/18003

nonspecifically digested into small peptides. This indicated that 38 kDa and 58 kDa Photorhabdus proteases can specifically process peptide TcbA into peptides TcbAii and TcbAii. Protease treated and untreated control of the remaining 90 ul reaction mixture were serial diluted with 10 mM sodium phosphate buffer, pH 7.0 and analyzed by SCR bioassay. By comparing activity in several dilution, it was determined that the 38 kDa protease treatment increased SCR insecticidal activity approximately 3 to 4 fold. The growth inhibition of remaining insects in the protease 10 treatment was also more severe than control (Table 23).

Table 23 Conversion and activation of peptide TcbA into peptides TcbAii and TcbAiii by protease treatment.

15		Control	38 kDa protease treatment
-	SO (% of total protein)	58	18
	S1 (% of total protein)	36	64
	S9 (% of total protein)	6	18
-	LD50 (µg protein)	2.1	0.52
20	SCR Weight (mg/insect)*	0.2	0.1

^{*:} an indication of growth inhibition by measuring the average weight of live insect after 5 days on diet in the assay.

Example 17 Screening of the library for a gene encoding the TcdAii Peptide

25

30

The cloning and characterization of a gene encoding the TcdAii peptide, described as SEQ ID NO:17 (internal peptide TcdAii-PT111 N-terminal sequence) and SEQ ID NO:18 (internal peptide TcdAii-PT79 N-terminal sequence) was completed. Two pools of degenerate oligonucleotides, designed to encode the amino acid sequences of SEQ ID NO:17 (Table 24) and SEQ ID NO:18 (Table 25), and the reverse complements of those sequences, were 35 synthesized as described in Example 8. The DNA sequence of the oligonucleotides is given below:

Table 24

Degenerate Oligonucleotide for SEQ ID NO:17

		00		Ser											_		- {
	•	`		\ \		יר ביי				5		(A/C/C/T)				ATT	
	•	,	7		(J/1/C)	(2/4)	440	100	l		ı	₹ (₹/\$)		YY!		₹	
	·^		Ago		GA (1/C)	1	GAT		ことと			T.I. (V)	100	7.7.1		ATC	
	7		F1•		AIII/C/A)		ATT	I	AT(T/C/A)		TO (1 () () () () () () ()	10/0/0/1	ልጥ፣	716	2	AIL	
	,		Nav.	(J/4) (V	7	500	-				(G/A) Tr		70.1		7417/41	ישיר בין שר	
2		940		TY (T/C)		/C/#1 ##/#/C1	17/11/	/U/#/ date (#/U/	77777		(6/1) TC		TCI		ر الح		
-		Ala		NUS . C		12. CC(\\\\)\\\		15' GC(A/C/G/T)			י אנ		7 7 7	2.0	CAG		
P2-PT111		ABLEO ACID		COGODE		F4.3.6.CB		P2.3.5		02 L CO		D2 2 CBT	TWC	20 30 00	24.3A.CD		

Table 25
Degenerate Oligonucleotide for SEQ ID NO:18

		13	Авъ			AAY J		ביי ביי	2 44		AAA ?	
	•	77	Agn		+	ž	_	-	AAT		AAT	
		77	Pro		200		وري	-	CCR	-	MAC	
	4	3	Asn		7 4 4	5	AAT		AAT		ATA	
	٥	1	Val		NIL) L		GTK		ğ	3
	٩	,	Gly		NUC.		χ		<u>ک</u>		RCT	Ę
	1		ren ren		9		YTR		YTR		XAR	2
	9		801		۰		īĊĪ		AGX	200	אנו	7
	2		TOT		ACN		ACY		ACK	Ç	2	MAC
	7	1	171	1	TAY		LAT	Ę	141	۷نامان	110	ATA T
	<u></u>	3	1	į	2 5	2000	415	تسدد	415	VCC	3	_ ဗ္ဗ
ľ	7	110		100	יום	A-W	711	ATM		ATT		ATT
Ī.	→	Pha	}	200	•	<u>م</u>	┪	£	4	ATT	t	A:I-I
		۵		5	ڀٰ	·				'n	ŀ	_
00000	F4-FT/9	Amino	Acid	Codonas		P2.79.2		P2.79.3		P2.79.R.1	D3 708 AB	

C or H = A, According to IUPAC-IUB codes for nucleotides, Y=C or T, N=A, C, G or T, K=G or T, R=A or G, and M=A or G

WU 7//1/434

as described in Example 8, using as forward primers P2.3.6.CB or P2.3.5, and as reverse primers P2.79.R.1 or P2.79R.CB, in all forward/reverse combinations, using Photorhabdus W-14 genomic DNA as template. In another set of reactions, primers P2.79.2 or P2.79.3 were used as forward primers, and P2.3.5R, P2.3.5RI, and P2.3R.CB were used as reverse primers in all forward/reverse combinations. Only in the reactions containing P2.3.6.CB as the forward primers combined with P2.79.R.1 or P2.79R.CB as the reverse primers was a non-artifactual amplified product seen, of estimated size (mobility on agarose gels) of 2500 base pairs. The order of the primers used to obtain this amplification product indicates that the peptide fragment TcdAii-PT111 lies amino-proximal to the peptide fragment TcdAii-PT79.

15 The 2500 bp PCR products were ligated to the plasmid vector pCR™II (Invitrogen, San Diego, CA) according to the supplier's instructions, and the DNA sequences across the ends of the insert fragments of two isolates (HS24 and HS27) were determined using the supplier's recommended primers and the sequencing methods described previously. The sequence of both isolates was the 20 same. New primers were synthesized based on the determined sequence, and used to prime additional sequencing reactions to obtain a total of 2557 bases of the insert [SEQ ID NO:36]. Translation of the partial peptide encoded by SEQ ID No: 36 yields the 845 amino acid sequence disclosed as SEQ ID NO:37. 25 Protein homology analysis of this portion of the $TcdA_{ii}$ peptide fragment reveals substantial amino acid homology (68% similarity; 53% identity) to residues 542 to 1390 of protein TcbA (SEQ ID NO:12]. It is therefore apparent that the gene represented in part by SEQ ID NO:36 produces a protein of similar, but not 30 identical, amino acid sequence as the TcbA protein, and which likely has similar, but not identical biological activity as the TcbA protein.

In yet another instance, a gene encoding the peptides

TcdA_{ii}-PK44 and the TcdA_{ii} 58 kDa N-terminal peptide, described as SEQ ID NO:9 (internal peptide TcdA_{ii}-PK44 sequence), and SEQ ID NO:41(TcdA_{iii} 58 kDa N-terminal peptide sequence) was isolated. Two pools of degenerate oligonucleotides, designed to encode the amino acid sequences described as SEQ ID NO:39 (Table 27) and SEQ

ID NO:41 (Table 26), and the reverse complements of those sequences, were synthesized as described in Example 3, and their DNA sequences.

5

Table 26 Degenerate Oligonucleotide for SEQ ID NO:41

r	_		_	_	_	_	_	_	_	γ-
	67	g g		ر ح	,	<u>ب</u>		٠. مد	3	10x 3.
	1	6		٤	į	B		a Landa	1	ATT
13	7	3		X		K		13	3	5
=	77	Pbe		Ė		Ě		E		g
5	?	191		KE,		Ĕ		É		ģ
0	Ì	Ž.		5		₹	İ	ž		ğ
8	ì	Ħ		Š		¥	I	Ş		8
7		3		YIK		Ķ		RAC		₹
9		Ħ	į	Š	ļ	Į		ž		8
25		Ş		Ę		¥		\{		1655
4	ľ	4	Ę	j	***	3		š		5. TG
m	ŀ		Ş	ž				3		
2		Day.	3	3				2		
1		3	2 VIII	4						
codon #	۰		10 4	1		4.6	A E C.	A4 . 3 . B	4 / 64	74.0.R

Table 27 Degenerate Oligonucleotide for SEQ ID NO:39

Parine Bala	6,								
*	(<u>8</u>)	5	(01)	<u> </u>	(5) (10) (11) (12) (13) (14)	(13)	(14)	(15)	(16)
Codon #	1	2	3	4	2	9	7	æ	0
Amino Acid	Gly	Pro	Val	Glu	Ile	ABD	Thr	Ala	Tla
A1.44.1	S' GGY	CCR	GTK	SA S	ATT	AAT	ACC	CCI	AT 3.
A1.44.1R	5. ATI	ອວອ	GTA	TT.	ATT	TCM	ACY	GGR	<u>ئ</u> ئ
A1.44.2	5 · GGI	100	GTI	GAR	ATY	AAX	ACI	CCI	AT 3.
A1.44.2R	S. ATI	CCI	GTR	TTR	ATY	TCI	ACI	199	٠,٠

Polymerase Chain Reactions (PCR) were performed essentially as described in Example 8, using as forward primers A1.44.1 or A1.44.2, and reverse primers A2.3R or A2.4R, in all forward/reverse combinations, using Photorhabdus W-14 genomic DNA as template. In another set of reactions, primers A2.1 or A2.2 were used as forward primers, and A1.44.1R, and A1.44.2R were used as reverse primers in all forward/reverse combinations. Only in the reactions containing A1.44.1 or A1.44.2 as the forward primers combined with A2.3R as the reverse primer was a non-artifactual amplified product seen, of estimated size (mobility on agarose gels) of 1400 base pairs. The order of the primers used to obtain this amplification product indicates that the peptide fragment TcdAii-PK44 lies amino-proximal to the 58 kDa peptide fragment of TcdAii-

10

30

35

The 1400 bp PCR products were ligated to the plasmid vector pCRMII according to the supplier's instructions. The DNA sequences across the ends of the insert fragments of four isolates were determined using primers similar in sequence to the supplier's recommended primers and using sequencing methods described previously. The nucleic acid sequence of all isolates differed as expected in the regions corresponding to the degenerate primer sequences, but the amino acid sequences deduced from these data were the same as the actual amino acid sequences for the peptides determined previously, (SEQ ID NOS:41 and 39).

Screening of the W-14 genomic cosmid library as described in Example 8 with a radiolabeled probe comprised of the DNA prepared above (SEQ ID NO:36) identified five hybridizing cosmid isolates, namely 17D9, 20B10, 21D2, 27B10, and 26D1. These cosmids were distinct from those previously identified with probes corresponding to the genes described as SEQ ID NO:11 or SEQ ID NO:25. Restriction enzyme analysis and DNA blot hybridizations identified three EcoR I fragments, of approximate sizes 3.7, 3.7, and 1.1 kbp, that span the region comprising the DNA of SEQ ID NO:36. Screening of the W-14 genomic cosmid library using as probe the radiolabeled 1.4 kbp DNA fragment prepared in this example identified the same five cosmids (17D9, 20B10, 21D2, 27B10, and 26D1). DNA blot hybridization to EcoR I-digested cosmid DNAs also showed hybridization to the same subset

WU 7//1/434 PC 1/U390/18003

of EcoR I fragments as seen with the 2.5 kbp TcdAii gene probe. indicating that both fragments are encoded on the genomic DNA.

DNA sequence determination of the cloned EcoR I fragments revealed an uninterrupted reading frame of 7551 base pairs (SEO ID NO:46), encoding a 282.9 kDa protein of 2516 amino acids (SEO ID NO:47). Analysis of the amino acid sequence of this protein revealed all expected internal fragments of peptides TcdAii(SEQ ID NOS:17, 18, 37, 38 and 39) and the TcdAiii peptide N-terminus (SEQ ID NO:41) and all TcdAiii internal peptides (SEQ ID NOS:42 and 43). The peptides isolated and identified as TcdAii and 10 TcdAiii are each products of the open reading frame, denoted tcdA, disclosed as SEQ ID NO:46. Further, SEQ ID NO:47 shows. starting at position 89, the sequence disclosed as SEQ ID NO:13, which is the N-terminal sequence of a peptide of size approximately 201 kDa, indicating that the initial protein produced from SEQ ID No: 46 is processed in a manner similar to that previously disclosed for SEQ ID NO:12. In addition, the protein is further cleaved to generate a product of size 209.2 kDa, encoded by SEQ ID NO:48 and disclosed as SEQ ID NO:49 (TcdAii peptide), and a product of size 63.6 kDa, encoded by SEQ ID NO:50 and disclosed as SEQ ID NO:51 (TcdAiii peptide). Thus, it is thought that the insecticidal activity identified as toxin A (Example 15) derived from the products of SEQ ID NO:46, as exemplified by the full-length protein of 282.9 kDa disclosed as SEQ ID NO:47, is processed to produce the peptides disclosed as SEQ ID NOS:49 and 51. It is thought that the insecticidal activity identified as toxin B (Example 15) derives from the products of SEQ ID NO:11, as exemplified by the 280.5 kDa protein disclosed as SEQ ID NO:12. This protein is proteolytically processed to yield the 207.6 kDa peptide disclosed as SEQ ID NO:53, which is encoded by SEQ ID NO:52, and the 62.9 kDa peptide having N-terminal sequence disclosed as SEQ ID NO:40, and further disclosed as SEQ ID NO:55, which is encoded by SEQ ID NO:54.

15

20

25

30

35

Amino acid sequence comparisons between the proteins disclosed as SEQ ID NO:12 and SEQ ID NO:47 reveal that they have 69% similarity and 54% identity. This high degree of evolutionary relationship is not uniform throughout the entire amino acid sequence of these peptides, but is higher towards the carboxy-terminal end of the proteins, since the peptides

disclosed as SEQ ID NO:51 (derived from SEQ ID NO:47) and SEQ ID NO:55 (derived from SEQ ID NO:12) have 76% similarity and 64% identity.

5

Example 18

Control of European Cornborer-Induced Leaf Damage on Maize Plants by Spray Application of Photorhabdus (Strain W-14) Broth

10 The ability of Photorhabdus toxin(s) to reduce plant damage caused by insect larvae was demonstrated by measuring leaf damage caused by European corn borer (Ostrinia nubilalis) infested onto maize plants treated with Photorhabdus broth. Fermentation broth from Photorhabdus strain W-14 was produced and concentrated approximately 10-fold using ultrafiltration (10,000 MW pore-size) 15 as described in Example 13. The resulting concentrated broth was then filter sterilized using 0.2 micron nitrocellulose membrane filters. A similarly prepared sample of uninoculated 2% proteose peptone #3 was used for control purposes. Maize plants (a 20 DowElanco proprietary inbred line) were grown from seed to vegetative stage 7 or 8 in pots containing a soilless mixture in a greenhouse (27°C day; 22°C night, about 50%RH, 14 hr daylength, watered/fertilized as needed). The test plants were arranged in a randomized complete block design (3 reps/treatment, 25 6 plants/treatment) in a greenhouse with temperature about 22°C day; 18°C night, no artificial light and with partial shading, about 50%RH and watered/fertilized as needed. Treatments (uninoculated media and concentrated Photorhabdus broth) were applied with a syringe sprayer, 2.0 mls applied from directly (about 6 inches) over the whorl and 2.0 additional mls applied in 30 a circular motion from approximately one foot above the whorl. In addition, one group of plants received no treatment. After the treatments had dried (approximately 30 minutes), twelve neonate European corn borer larvae (eggs obtained from commercial 35 sources and hatched in-house) were applied directly to the whorl. After one week, the plants were scored for damage to the leaves using a modified Guthrie Scale (Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., 40 Maddox, D., McPherson, K., Meghji, M. Z., Merlin, E., Rhodes, R.,

WU 7//1/404

Warren, G. W., Wright, M. and Evola, S. V. 1993).

Bio/Technology, 11, 194-195.) and the scores were compared statistically [T-test (LSD) p<0.05 and Tukey's Studentized Range (HSD) Test p<0.1]. The results are shown in Table 28. For reference, a score of 1 represents no damage, a score of 2 represents fine "window pane" damage on the unfurled leaf with no pinhole penetration and a score of 5 represents leaf penetration with elongated lesions and/or mid rib feeding evident on more than three leaves (lesions < 1 inch). These data indicate that broth or other protein containing fractions may confer protection against specific insect pests when delivered in a sprayable formulation or when the gene or derivative thereof, encoding the protein or part thereof, is delivered via a transgenic plant or microbe.

15

35

Table 28

Effect of *Photorhabdus* Culture Broth on European Corn Borer-Induced Leaf Damage on Maize

20	Treatment	Average Guthrie Score
	No Treatment	5.02ª
	Uninoculated me	dium 5 15a

Photorhabdus Broth 2.24b

Means with different letters are statistically different (p<0.05 or p<0.1).

Example 19

Genetic Engineering of Genes for Expression in E. coli

30 Summary of constructions

A series of plasmids were constructed to express the tcbA gene of Photorhabdus W-14 in Escherichia coli. A list of the plasmids is shown in Table 29. A brief description of each construction follows as well as a summary of the E. coli expression data obtained.

Table 29
Expression plasmids for the tcbA gene.

Plasmid	Gene	Vector/Selection	Compartment
pDAB634	tcbA	pBC/Chl	Intracellular
pAcGP67B/ ccbA	ECDA	pAcGP67B/Amp	Baculovirus, secreted
pDAB635	t cbA	pET27b/Kan	Periplasm
pET15-ccbA	CCDA	pET15-tcbA	Intracellular

Abbreviations: Kan=kanamycin, Chl=chloramphenicol, Amp=ampicillin

5

10

Construction of pDAB634

In Example 9, a large EcoR I fragment which hybridizes to the TcbAii probe is described. This fragment was subcloned into pBC (Stratagene, La Jolla CA). Sequence analysis indicates that this fragment is 8816 base pairs. The fragment encodes the *ccbA* gene with the initiating ATG at position 571 and the terminating TAA at position 8086. The fragment therefore carries 570 base pairs of *Photorhabdus* DNA upstream of the ATG and 730 base pairs downstream of the TAA.

15

20

25

30

35

Construction of Plasmid pAcGP67B/tcbA

The tcbA gene was PCR amplified using the following primers; 5' primer (S1Ac51) 5' TTT AAA CCA TGG GAA ACT CAT TAT CAA GCA CTA TC 3' and 3' primer (S1Ac31) 5' TTT AAA GCG GCC GCT TAA CGG ATG GTA TAA CGA ATA TG 3'. PCR was performed using a TaKaRa LA PCR kit from PanVera (Madison, Wisconsin) in the following reaction: 57.5 ml water, 10 ml 10x LA buffer, 16 ml dNTPs (2.5 mM each stock solution), 20 ml each primer at 10 pmoles/ml, 300 ng of the plasmid pDAB634 containing the W-14 tcbA gene and one ml of TaKaRa LA Taq polymerase. The cycling conditions were 98°C/20 sec, 68°C/5 min, 72°C/10 min for 30 cycles. A PCR product of the expected about 7526bp was isolated in a 0.8% agarose gel in TBE (100 mM Tris, 90 mM boric acid, 1 mM EDTA) buffer and purified using a Qiaex II kit from Qiagen (Chatsworth, California). The purified tcbA gene was digested with Nco I and Not I and ligated into the baculovirus transfer vector pAcGP67B (PharMingen (San Diego, California)) and transformed into DH5\alpha E. coli. The tcbA gene was then cut from pAcGP67B and transferred to pET27b to create plasmid pDAB635. A missense mutation in the tcbA gene was repaired in pDAB635.

WU y // 1/432 PC 1/USY0/18003

The repaired tcbA gene contains two changes from the sequence shown in Sequence ID NO:11; an A>G at 212 changing an asparagine 71 to serine 71 and a G-A at 229 changing an alanine 77 to threonine 77. These changes are both upstream of the proposed TcbAii N-terminus.

Construction of pET15-tcbA

10

The tcbA coding region of pDAB635 was transferred to vector pET15b. This was accomplished using shotgun ligations, the DNAs were cut with restriction enzymes Nco I and Xho I. The resulting recombinant is called pET15-tcbA.

Expression of TcbA in E. coli from plasmid pET15-ccbA

Expression of tcbA in E. coli was obtained by modification 15 of the methods previously described by Studier et al. (Studier, F.W., Rosenberg, A., Dunn, J., and Dubendorff, J., (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol., 185: 60-89.). Competent E. coli cells strain BL21(DE3) were transformed with plasmid pET15-tcbA and plated on LB agar 20 containing 100 µg/ml ampicillin and 40 mM glucose. The transformed cells were plated to a density of several hundred isolated colonies/plate. Following overnight incubation at 37°C the cells were scraped from the plates and suspended in LB broth containing 100 μg /ml ampicillin. Typical culture volumes were 25 from 200-500 ml. At time zero, culture densities (OD600) were from 0.05-0.15 depending on the experiment. Cultures were shaken at one of three temperatures (22°C, 30°C or 37°C) until a density of 0.15-0.5 was obtained at which time they were induced with 1 mM isopropylthio- β -galactoside (IPTG). Cultures were incubated 30 at the designated temperature for 4-5 hours and then were transferred to 4°C until processing (12-72 hours).

<u>Purification and characterization of TcbA expressed in E.coli</u> <u>from Plasmid pET15-tcbA.</u>

35 E. coli cultures expressing TcbA peptides were processed as follows. Cells were harvested by centrifugation at $17,000 \times G$ and the media was decanted and saved in a separate container.

The media was concentrated about 8x using the M12 (Amicon, Beverly MA) filtration system and a 100 kD molecular mass cut-off filter. The concentrated media was loaded onto an anion exchange

column and the bound proteins were eluted with 1.0 M NaCl. The 1.0 M NaCl elution peak was found to cause mortality against Southern corn rootworm (SCR) larvae Table 30). The 1.0 M NaCl fraction was dialyzed against 10 mM sodium phosphate buffer pH 7.0, concentrated, and subjected to gel filtration on Sepharose CL-4B (Pharmacia, Piscataway, New Jersey). The region of the CL-4B elution profile corresponding to calculated molecular weight (about 900 kDa) as the native W-14 toxin complex was collected, concentrated and bioassayed against larvae. The collected $900\,$ kDa fraction was found to have insecticidal activity (see Table 30 below), with symptomology similar to that caused by native W-14 toxin complex. This fraction was subjected to Proteinase K and heat treatment, the activity in both cases was either eliminated or reduced, providing evidence that the activity is proteinaceous in nature. In addition, the active fraction tested immunologically positive for the TcbA and TcbAiii peptides in immunoblot analysis when tested with an anti-TcbAiii monoclonal antibody (Table 30).

20

Table 30 Results of Immunoblot and SCR Bioassays.

Fraction	SCR Activi	ty	Immunoblot	Native Size
	% Mortality	% Growth Inhibit.	Peptides Detected	[CL-4B Estimated Size]
TcbA Media 1.0 M	+++	+++	TcbA	
Ion Exchange				
TcbA Media CL-4B	+++	+++	TcbA, TcbA _{iii}	~900 kDa
TcbA Media CL-4B + Proteinase K	++	+++	NT	
TcbA Media CL-4B + heat treatment	-	-	NT	
TcbA Cell Sup CL-4B	-	+++	NT	-900 kD
	l	l	1	

PK = Proteinase K treatment 2 hours; Heat treatment = 100°C for 10 minutes; ND = None Detected; NT = Not Tested. Scoring system for mortality and growth inhibition as compared to control samples; 5-24%="+", 25-49%="++", 50-100%="+++".

The cell pellet was resuspended in 10 mM sodium phosphate buffer, pH=7.0, and lysed by passage through a Bio-Neb^m cell nebulizer (Glas-Col Inc., Terra Haute, IN). The pellets were

separate the cell pellet from the cell supernatant. The supernatant fraction was decanted and filtered through a 0.2 micron filter to remove large particles and subjected to anion exchange chromatography. Bound proteins were eluted with 1.0 M NaCl, dialyzed and concentrated using Biomax^{IM} (Millipore Corp, Bedford, MA) concentrators with a molecular mass cut-off of 50.000 Daltons. The concentrated fraction was subjected to gel filtration chromatography using Sepharose CL-4B beaded matrix. Bioassay data for material prepared in this way is shown in Table 30 and is denoted as "TcbA Cell Sup".

In yet another method to handle large amounts of material, the cell pellets were re-suspended in 10 mM sodium phosphate buffer, pH = 7.0 and thoroughly homogenized by using a Kontes Glass Company (Vineland, NJ) 40 ml tissue grinder. The cellular 15 debris was pelleted by centrifugation at $25,000 \times g$ and the cell supernatant was decanted, passed through a 0.2 micron filter and subjected to anion exchange chromatography using a Pharmacia 10/10 column packed with Poros HQ 50 beads. The bound proteins were eluted by performing a NaCl gradient of 0.0 to 1.0 $\mbox{M}.$ 20 Fractions containing the TcbA protein were combined and concentrated using a 50 kDa concentrator and subjected to gel filtration chromatography using Pharmacia CL-4B beaded matrix. The fractions containing TcbA oligomer, molecular mass of 25 approximately 900 kDa, were collected and subjected to anion exchange chromatography using a Pharmacia Mono Q 10/10 column equilibrated with 20 mM Tris buffer pH = 7.3. A gradient of 0.0to 1.0 M NaCl was used to elute recombinant TcbA protein. Recombinant TcbA eluted from the column at a salt concentration 30 of approximately 0.3-0.4 M NaCl, the same molarity at which native TcbA oligomer is eluted from the Mono Q 10/10 column. The recombinant TcbA fraction was found to cause SCR mortality in bioassay experiments similar to those in Table 30.

10

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	(i) APPLICANT: Ensign, Jerald C Bowen, David J Petell, James Fatig, Paymond Schoonover, Sue ffrench-Constant, Richard Orr, Gregory L Merlo, Donald J
15	Roberts, Jean L Rocheleau, Thomas A Blackburn, Michael B Hey, Timothy D Strickland, James A
20	(ii) TITLE OF HIVENTION: Insecticidal Protein Toxins From Photorhabdus
	(iii) NUMBER OF SEQUENCES: 61
25	(iv) CORRESPONDENCE ADDRESS:(A) ADDRESSEE: Quarles & Brady(B) STREET: 1 South Pinckney Street(C) CITY: Madison
30	(D) STATE: WI (E) COUNTRY: US (F) ZIP: 53703
35	<pre>(V) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30</pre>
40	(Vi) CURRENT APPLICATION DATA:(A) APPLICATION NUMBER:(B) FILING DATE:(C) CLASSIFICATION:
45	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/063,615 (B) FILING DATE: 18-MAY-1993</pre>
50	(Vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/395,497 (B) FILING DATE: 28-FEB-1995
55	(Vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/007,255 (B) FILING DATE: 06-NOV-1995
	(Vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/608,423 (B) FILING DATE: 23-FEB-1996

-115-

```
'vii) PRIOR APPLICATION DATA:
                (A) APPLICATION NUMBER: US 08/705,484
                (B) FILING DATE: 23-AUG-1996
  5
      (viii) ATTORNEY/AGENT INFORMATION:
                (A) NAME: Seay, Nicholas J
                (B) REGISTRATION NUMBER: 27386
                (C) REFERENCE/DOCKET NUMBER: 960296.93804
 10
          (ix) TELECOMMUNICATION INFORMATION:
                (A) TELEPHONE: 608-251-5000
                (B) TELEFAX: 608-251-9166
 15
     (2) INFORMATION FOR SEQ ID NO:1:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 11 amino acids
20
                (B) TYPE: amino acid
                (C) STRANDEDNESS:
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: protein
25
          (v) FRAGMENT TYPE: N-terminal
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
30
         Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn
35
     (2) INFORMATION FOR SEQ ID NO:2:
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 12 amino acids
               (B) TYPE: amino acid
40
               (C) STRANDEDNESS:
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: protein
45
         (v) FRAGMENT TYPE: N-terminal
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
50
         Met Gln Asp Ser Pro Glu Val Ser Ile Thr Thr Trp
     (2) INFORMATION FOR SEQ ID NO:3:
55
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 19 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS:
60
               (D) TOPOLOGY: linear
```

,	WO 97/17432 PCT/US96/18003 (ii) MOLECULE TYPE: protein
	(v) FRAGMENT TYPE: N-terminal
5	
J	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
10	Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu Ala Arg Arg Asp Ala 1 5 10 15
	Leu Val Ala
15	(2) INFORMATION FOR SEQ ID NO:4:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
25	(v) FRAGMENT TYPE: N-terminal
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
30	Ala Ser Pro Leu Ser Thr Ser Glu Leu Thr Ser Lys Leu Asn 1 5 10
35	(2) INFORMATION FOR SEQ ID NO:5:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid
40	(C) STRANDEDNESS: (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
45	(v) FRAGMENT TYPE: N-terminal
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
5 0	Ala Gly Asp Thr Ala Asn Ile Gly Asp 1 5
	(2) INFORMATION FOR SEQ ID NO:6:
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 15 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
60	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein

(V) FRAGMENT TYPE: N-terminal 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: Leu Gly Gly Ala Ala Thr Leu Leu Asp Leu Leu Pro Gin Ile 10 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids 15 (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 20 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: 25 Met Leu Ser Thr Met Glu Lys Gln Leu Asn Glu 1 30 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid 35 (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 40 (v) FRAGMENT TYPE: N-cerminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: 45 Met Asn Leu Ala Ser Pro Leu Ile Ser 1 (2) INFORMATION FOR SEQ ID NO:9: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: 55 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: N-terminal 60

	(MI) SEQUENCE DESCRIPTION: SEQ ID NO:9:
5	Met Ile Asn Leu Asp Ile Asn Glu Gln Asn Lys Ile Met Val Val Ser 1 5 10 15
	(2) INFORMATION FOR SEQ ID NO:10:
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
15	(ii) MOLECULE TYPE: protein
	(v) FRAGMENT TYPE: N-terminal
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
	Ala Ala Lys Asp Val Lys Phe Gly Ser Asp Ala Arg Val Lys Met Leu 1 5 10 15
25	Arg Gly Val Asn 20
30	(2) INFORMATION FOR SEQ ID NO:11:
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7515 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)
4()	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 17515
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
	ATG CAA AAC TCA TTA TCA AGC ACT ATC GAT ACT ATT TGT CAG AAA CTG Met Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln Lys Leu 1 10 15
5 0	CAA TTA ACT TGT CCG GCG GAA ATT GCT TTG TAT CCC TTT GAT ACT TTC 95 Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp Thr Phe 20 25 30
55	CGG GAA AAA ACT CGG GGA ATG GTT AAT TGG GGG GAA GCA AAA CGG ATT 144 Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys Arg Ile 35 40 45
60	TAT GAA ATT GCA CAA GCG GAA CAG GAT AGA AAC CTA CTT CAT GAA AAA 192 Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His Glu Lys 50 55 60
	CGT ATT TTT GCC TAT GCT AAT CCG CTG CTG AAA AAC GCT GTT CGG TTG 240 Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val Arg Leu
	-119-

	é	5					70						7:	5					.	3 6	
5	-	., -	•••	ry G		85	eu (3 I Y	PNe	9 11	le G	90	G1;	, Ty	r Se	er A	sp	Lei	u Ph 5	ıe	283
10		,		1	CT G la A: 00	א אפ	911 I	γĽ	Ald	10	.a. P	ro	GI7	/ Se	r Va	l A	1a 10	Sei	Me	t	336
	TT(Ph	C TO		cg go ro A. 15	CG GO	T T:	AT I	TG eu	ACG Thr 120	GI	A T u L	TG eu	TAC	CG Ar	T GA g Gl 12	u A	CC la	AAJ Lys	A AA S As	C n	384
15	TT(Let	G CA 1 Hi 13		AC AG Sp Se	GC AC	r Se	= 1	TT le 35	TAT Tyr	TA Ty	C C	TA eu	GAT Asp	Lys 140	s Ar	T C	GC rg	CCC Pro	GA As	T P	432
20	TTA Leu 145		A AC a Se	SC TI	`A AT eu Me	G CT t Le 15	u s	GC er	CAG Gln	AA. Lys	A AJ S As	sn :	ATG Met 155	GAT Asp	GA GI	G G	AA Lu	ATT Ile	TT: Se:	•	480
25			- /	u <u>b</u> e	C TC u Se 16	5	п С.	IU ,	Leu	Chi	17	60 Z	Ala	Gly	' Ile	e Gl	u	Th.r 175	L', 9	3	528
30			, -,	18		i ns	p G1	Lu V	vai	185	AS	p M	1et	Leu	Sei	19	o '	Tyr	Arg	1	576
	TTA Leu	AG: Sei	r GG r Gl	, 51	ACA Thi	CC'	Г ТА Э Ту	1 1	AT iis	CAC His	GC Al	T 1 a 1	TAT Tyr	GAA Glu	ACT Thr 205	' 7a	T (GT Arg	GAA Glu	. 6	524
35	ATC Ile	GT1 Val 210		r gad	A CGT	GA:	r cc Pr 21	0 0	GA ly	TTT Phe	CG Ar	T C	AT	TTG Leu 220	TCA Ser	CA Gl	G C	GCA Nla	CCC Pro	÷	i72
40	ATT Ile 225	GTT Val	GCT Ala	GCT Ala	`AAG	Leu 230	I AS	T C P P	ro	GTG Val	AC'	r L	TG eu 35	TTG Leu	GGT Gly	AT	T A e S	GC er	TCC Ser 240	7	20
45	CAT His	ATT	TCC	Pro	GAA Glu 245	reu	TA'	T A	AC '	TTG Leu	CTC Let 250	1 I.	TT (le (GAG Glu	GAG Glu	AT Ile	₽	CG ro 55	GAA Glu	7	68 -
5()	A AA Lys	GAT Asp	GAA Glu	GCC Ala 260	GCG Ala	CTT Leu	GA? Asp	r a: > Ti	nr i	CTT Leu 265	TAT Tyr	· Ai	AA /	ACA Thr	AAC Asn	TT Phe 270	G	GC :	GAT Asp	8	16
	ATT Ile	ACT Thr	ACT Thr 275	nia	CAG Gln	TTA Leu	ATC Met	. ⊳€	cc c er F	CCA Pro	AGT Ser	TA Ty	AT C	-eu	GCC Ala 285	CGC Arg	T	AT '	TAT T yr	8	54
55	GGC (GTC Val 290	TCA Ser	CCG Pro	GAA Glu	GAT Asp	ATT Ile 295	. 41	CC T	AC Yr	GTG Val	AC Th	ir T	ACT Thr	TCA Ser	TTA Leu	T(CA (TAT His	91	.2
6()	GTT (Val (305	GGA Gly	TAT Tyr	AGC Ser	AGT Ser	GAT Asp 310	ATT Ile	CT Le	℃ G nu V	TT al	ATT Ile	CC Pr 31	o L	TG (eu '	GTC Val	GAT Asp	G(ly i	STG /al 20	96	0
65	GGT ; Gly [λλG Jys	ATG Met	AAD UlD	GTA Val 325	GTT Val	CGT Arg	GT Va	Т А 1 Т	nr .	CGA Arg 330	AC Th	A C r P	CA :	rcg Ser	GAT Asp	AA As	n I	AT Yr	100	8

	ACC AGT CAG ACG AAT TAT ATT GAG CTG TAT CCA CAG GGT GGC GAC AAT 1056 Thr Ser Gin Thr Asn Tyr Ile Glu Leu Tyr Pro Gin Gly Gly Asp Asn 340 345 350
5	Tyr Leu Ile Lys Tyr Asn Leu Ser Asn Ser Phe Gly Leu Asp Asp Phe 355 360 365
10	370 375 Asp Gly Ser Ala Asp Trp Thr Glu Ile Ala His
15	395 400
20	
25	AGA TGG CAT AGC GGT AGT TAT AAT TTT GCC GCC GCC AAT TTT AAA ATT 1296 Arg Trp His Ser Gly Ser Tyr Asn Phe Ala Ala Ala Asn Phe Lys Ile 420 425 430
25	GAC CAA TAC TCC CCG AAA GCT TTC CTG CTT AAA ATG AAT AAG GCT ATT 1344 Asp Gln Tyr Ser Pro Lys Ala Phe Leu Leu Lys Met Asn Lys Ala Ile 435 440 445
3()	CGG TTG CTC AAA GCT ACC GGC CTC TCT TTT GCT ACG TTG GAG CGT ATT 1392 Arg Leu Leu Lys Ala Thr Gly Leu Ser Phe Ala Thr Leu Glu Arg Ile 450 460
35	GTT GAT AGT GTT AAT AGC ACC AAA TCC ATC ACG GTT GAG GTA TTA AAC 1440 Val Asp Ser Val Asp Ser Thr Lys Ser Ile Thr Val Glu Val Leu Asp 470 475 480
40	AAG GTT TAT CGG GTA AAA TTC TAT ATT GAT CGT TAT GGC ATC AGT GAA 1488 Lys Val Tyr Arg Val Lys Phe Tyr Ile Asp Arg Tyr Gly Ile Ser Glu 485
45	GAG ACA GCC GCT ATT TTG GCT AAT ATT AAT ATC TCT CAG CAA GCT GTT 1536 Glu Thr Ala Ala Ile Leu Ala Asn Ile Asn Ile Ser Gln Gln Ala Val 500 505 510
43	GGC AAT CAG CTT AGC CAG TTT GAG CAA CTA TTT AAT CAC CCG CCG CTC 1584 Gly Asn Gln Leu Ser Gln Phe Glu Gln Leu Phe Asn His Pro Pro Leu 515 520 525
5 0	AAT GGT ATT CGC TAT GAA ATC AGT GAG GAC AAC TCC AAA CAT CTT CCT 1632 Asn Gly Ile Arg Tyr Glu Ile Ser Glu Asp Asn Ser Lys His Leu Pro 530 540
55	AAT CCT GAT CTG AAC CTT AAA CCA GAC AGT ACC GGT GAT GAT CAA CGC 1580 Asn Pro Asp Leu Asn Leu Lys Pro Asp Ser Thr Gly Asp Asp Gln Arg 555 560
60	AAG GCG GTT TTA AAA CGC GCG TTT CAG GTT AAC GCC AGT GAG TTG TAT 1728 Lys Ala Val Leu Lys Arg Ala Phe Gln Val Asn Ala Ser Glu Leu Tyr 565 570 575
	CAG ATG TTA TTG ATC ACT GAT CGT AAA GAA GAC GGT GTT ATC AAA AAT 1776 Gln Met Leu Ile Thr Asp Arg Lys Glu Asp Gly Val Ile Lys Asn 580 585
65	ARC TTA GAG AAT TTG TCT GAT CTG TAT TTG GTT AGT TTG CTG GCC CAG 1824 Asn Leu Glu Asn Leu Ser Asp Leu Tyr Leu Val Ser Leu Leu Ala Gln

			59	5				50	0				60	5			
5	AT Il	T CA e Hi 61	S AS	C CT n Le	G AC' u Th	r Ile	T GCT e Ala 615	a Gli	A TTO	AA AS	C AT	T TTO e Leo 620	ı Le	G GTG	G AT	T TG' e Cy:	T 1872
10	GG(G1) 62	1. 13	T GG r Gl	C GA	C ACC	AAC Ast 630	n Ile	TATE Tyl	CAC Glr	AT	T ACC Thi	r Asp	GAT Asp	CAA Tiea	TTI Let	A GCG 4 Ala 640	
	AAJ Lys	AT Il	A GT e Va	G GAI 1 Glo	A ACA 1 Thi 645	Leu	TTG Leu	TGC Trp	ATC Ile	ACT Thi 650	Glr	A TGC n Trp	Leu	AAC Lys	ACC Thi	Glr	A 1968 I
15	AA? Lys	TGG Tr	G AC. p Th	A GTM r Val 660	ini	GAC Asp	CTG Leu	TTI Phe	CTG Leu 665	Met	ACC Thr	ACG Thr	GCC Ala	ACT Thr	Tyr	AGC Ser	2016
20	ACC Thr	AC'	T TTA T Let 57!	i iui	CCA Pro	GAA Glu	ATT Ile	AGC Ser 680	Asn	CTC Leu	ACC Thr	GCT Ala	ACG Thr	Leu	TCT Ser	TC? Ser	2064
25	ACT Thr	TTC Let 590	1 HT2	r GGC Gly	AAA Lys	GAG Glu	AGT Ser 695	CTG Leu	ATT Ile	GGG	GAA Glu	GAT Asp 700	Leu	AAA Lys	AGA Arg	GCA Ala	2112
3()	ATG Met 705	Alc	CCT Pro	TGC Cys	TTC Phe	ACT Thr 710	Ser	GCT Ala	TTG Leu	CAT His	TTG Leu 715	Thr	TCT Ser	CAA Gln	GAA Glu	GTT Val 720	
	GCG Ala	TAT Tyr	GAC	CTG Leu	CTG Leu 725	TTG Leu	TGG Trp	ATA Ile	GAC Asp	CAG Gln 730	ATT Ile	CAA Gln	CCG Pro	GCA Ala	CAA Gln 735	ATA Ile	2208
35	ACT Thr	GTT Val	GAT Asp	GGG Gly 740	TTT Phe	TGG Trp	GAA Glu	GAA Glu	GTG Val 745	CAA Gln	ACA Thr	ACA Thr	CCA Pro	ACC Thr 750	AGC Ser	TTG Leu	2256
40	AAG Lys	GTG Val	ATT Ile 755	ACC Thr	TTT Phe	GCT Ala	CAG Gln	GTG Val 760	CTG Leu	GCA Ala	CAA Gln	TTG Leu	AGC Ser 765	CTG Leu	ATC Ile	TAT Tyr	2304
45	CGT Arg	CGT Arg 770	ATT	GGG Gly	TTA Leu	AGT Ser	GAA Glu 775	ACG Thr	GAA Glu	CTG Leu	TCA Ser	CTG Leu 780	ATC Ile	GTG Val	ACT Thr	CAA Gln	2352
50	TCT Ser 785	TCT Ser	CTG Leu	CTA Leu	GTG Val	GCA Ala 790	GGC Gly	AAA Lys	AGC Ser	ATA Ile	CTG Leu 795	GAT Asp	CAC His	GGT Gly	CTG Leu	TTA Leu 800	2400
	ACC Thr	CTG Leu	ATG Met	GCC Ala	TTG Leu 805	GAA Glu	GGT Gly	TTT Phe	CAT His	ACC Thr 810	TGG Trp	GTT Val	AAT Asn	GGC Gly	TTG Leu 815	GGG Gly	2448
55	CAA Gln	CAT His	GCC λla	TCC Ser 820	TTG Leu	ATA Ile	TTG Leu	Ala	GCG Ala 825	TTG Leu	aaa Lys	GAC Asp	Gly	GCC Ala 830	TTG Leu	ACA Thr	2496
60	GTT Val	ACC Thr	CAT Asp 835	GTA Val	GCA Ala	CAA Gln	Ala !	ATG Met 840	AAT Asn	AAG Lys	GAG Glu	Glu	TCT Ser 845	CTC Leu	CTA Leu	CAA Gln	2544
65	Mer	GCA Ala 850	GCT Ala	AAT Asn	CAG Gln	Val (GAG . Glu i 855	AAG (Lys .	GAT (CTA Leu	Thr	AAA Lys 360	CTG Leu	ACC Thr	AGT Ser	TGG Trp	2592

	ACA Thr 865	Gin	ATT Ile	GAC Asp	GCT Ala	ATT Ile 870	Leu	CAA Gln	TGG Trp	TTA Leu	CAG Gln 875	ATG Met	TCT Ser	TCG Ser	GCC Ala	TTG Leu 380	254
5	SCG Ala	GTT Val	TCT Ser	CCA Pro	CTG Leu 885	GAT Asp	CTG Leu	GCA Ala	GGG Gly	ATG Met 890	Met	GCC Ala	CTG Leu	AAA Lys	TAT T;r 895	GGG Gly	268
10	ATA 11e	GAT Asp	CAT His	AAC Asn 300	Tyr	GCT Ala	GCC Ala	TGG Trp	CAA Gin 905	Ala	GCG Ala	GCG Ala	GCT Ala	GCG Ala 910	CTG Leu	ATG Met	273
15	GCT Ala	GAT Asp	CAT His 915	GCT Ala	AAT Asn	CAG Gln	GCA Ala	CAG Gln 920	AAA Lys	AAA Lys	CTG Leu	GAT Asp	GAG Glu 925	ACG Thr	TTC Phe	AGT Ser	2784
20	AAG Lys	GCA Ala 930	Leu	TGT Cys	AAC Asn	TAT Tyr	TAT Tyr 935	ATT	AAT Asn	GCT Ala	GTT Val	GTC Val 940	GAT Asp	AGT Ser	GCT Ala	GCT Ala	2833
	GGA Gly 945	GTA ∵al	CGT Arg	GAT Asp	CGT Arg	AAC Asn 950	GGT Gly	TTA Leu	TAT Tyr	ACC Thr	TAT T;r 955	TTG Leu	CTG Leu	ATT Ile	GAT Asp	AAT Asn 960	2880
25	CAG Gln	GTT Val	TCT Ser	GCC Ala	GAT Asp 965	GTG Val	ATC Ile	ACT Thr	TCA Ser	CGT Arg 970	ATT Ile	GCA Ala	GAA Glu	GCT Ala	ATC Ile 975	GCC Ala	2928
30	GGT Gl;	ATT Ile	CAA Gln	CTG Leu 980	TAC Tyr	GTT Val	AAC Asn	CGG Arg	GCT Ala 985	TTA Leu	AAC Asn	CGA Arg	GAT Asp	GAA Glu 990	GGT Gly	CAG Gln	2976
35	CTT Leu	GCA Ala	TCG Ser 995	GAC Asp	GTT Val	AGT Ser	ACC Thr	CGT Arg 1000	Gln	TTC Phe	TTC Phe	ACT Thr	GAC Asp 1005	Trp	GAA Glu	CGT Arg	3024
4 0	TAC Tyr	AAT Asn 1010	Lys	CGT Arg	TAC Tyr	AGT Ser	ACT Thr 1015	Trp	GCT Ala	GGT Gly	GTC Val	TCT Ser 1020	Glu	CTG Leu	GTC Val	TAT Tyr	3072
	TAT Tyr 1025	Pro	GAA Glu	AAC Asn	TAT Tyr	GTT Val 1030	Asp	CCC Pro	ACT Thr	CAG Gln	CGC Arg 1035	Ile	GGG Gly	CAA Gln	ACC Thr	AAA Lys 1040	
45	ATG Met	ATG Met	GAT Asp	GCG Ala	CTG Leu 1045	Leu	CAA Gln	TCC Ser	ATC Ile	AAC Asn 1050	Gln	AGC Ser	CAG Gln	CTA Leu	AAT Asn 1059		3168
50	GAT Asp	ACG Thr	GTG Val	GAA Glu 1060	Asp	GCT Ala	TTC Phe	AAA Lys	ACT Thr 1065	Tyr	TTG Leu	ACC Thr	AGC Ser	TTT Phe 1070	Glu	CAG Gln	3216
55	GTA Val	GCA Ala	AAT Asn 1075	Leu	AAA Lys	GTA Val	ATT Ile	AGT Ser 1080	Ala	TAC Tyr	CAC His	GAT Asp	AAT Asn 1085	Val	AAT Asn	GTG Val	3264
50	GAT Asp	CAA Gln 1090	Gly	TTA Leu	ACT Thr	TAT Tyr	TTT Phe 1095	Ile	GGT Gly	ATC Ile	GAC Asp	CAA Gln 1100	Ala	GCT Ala	CCG Pro	GGT Gly	3312
	ACG Thr 1105	Ty'r	TAC Tyr	TGG Trp	CGT Arg	AGT Ser 1110	Val	GAT Asp	CAC His	AGC Ser	AAA Lys 1115	Суѕ	GAA Glu	AAT Asn	GGC Gly	AAG Lys 1120	
55	TTT Phe	GCC Ala	GCT Ala	AAT Asn	GCT Ala	TGG Trp	GGT Gly	GAG Glu	TGG Trp	AAT Asn	AAA Lys	ATT Ile	ACC Thr	TGT Cys	GCT Ala	GTC Val	3408

	1125	1130	1135				
5	AAT CCT TGG AAA AAT A'	TO ATC COT CCG GTT GTT TAT	ATG TCC CGC TTA 3456				
	Asn Pro Trp Lys Asn I	le lie Arg Pro Val Val Tyr	Met Ser Arg Leu				
	1140	1145	1150				
10	1155	AG CAG CAA TCA AAG AAA AGT lu Gln Gln Ser Lys Lys Ser 1160	Asp Asp Gly Lys 1165				
,	Thr Thr Ile Tyr Gln Ty	AT AAC TTA AAA CTG GCT CAT yr Asn Leu Lys Leu Ala His 1175 1180	Ile Arg Tyr Asp				
15	dig set tip Ash Thr pr	TA TIT ACT TIT GAT GTG ACA TO Phe Thr Phe Asp Val Thr 190 1195	GAA AAG GTA AAA 3600 Glu Lys Vai Lys 1200				
20	AAT TAC ACG TCG AGT AC	CT GAT GCT GCT GAA TCT TTA	GGG TTG TAT TGT 3648				
	Asn Tyr Thr Ser Ser Th	nr Asp Ala Ala Glu Ser Leu	Gly Leu Tyr Cys				
	1205	1210	1215				
25	ACT GGT TAT CAA GGG GA	NA GAC ACT CTA TTA GTT ATG	TTC TAT TCG ATG 3696				
	Thr Gly Tyr Gln Gly Gl	U ASP Thr Leu Leu Val Met	Phe Tyr Ser Met				
	1220	1225	1230				
30	CAG AGT AGT TAT AGC TCG	C TAT ACC GAT AAT AAT GCG	CCG GTC ACT GGG 374:				
	Gln Ser Ser Tyr Ser Ser	r Tyr Thr Asp Asn Asn Ala	Pro Val Thr Gly				
	1235	1240	1245				
30	CTA TAT ATT TTC GCT GAT Leu Tyr Ile Phe Ala Asi 1250	T ATG TCA TCA GAC AAT ATG p Met Ser Ser Asp Asn Met 1255 1260	Thr Asn Ala Gln				
35	GCA ACT AAC TAT TGG AAT	T AAC AGT TAT CCG CAA TTT (GAT ACT GTG ATG 3840				
	Ala Thr Asn Tyr Trp Asr	n Asn Ser Tyr Pro Gln Phe .	Asp Thr Val Met				
	1265	70 1275	1280				
40	GCA GAT CCG GAT AGC GAC	C AAT AAA AAA GTC ATA ACC 2	AGA AGA GTT AAT 3888				
	Ala Asp Pro Asp Ser Asp	p Asn Lys Lys Val Ile Thr 2	Arg Arg Val Asn				
	1285	1290	1295				
45	AAC CGT TAT GCG GAG GAT	T TAT GAA ATT CCT TCC TCT (GTG ACA AGT AAC 3936				
	Asn Arg Tyr Ala Glu Asp	Tyr Glu Ile Pro Ser Ser (/al Thr Ser Asn				
	1300	1305	1310				
5 0	AGT AAT TAT TCT TGG GGT	GAT CAC AGT TTA ACC ATG C	CTT TAT GGT GGT 3984				
	Ser Asn Tyr Ser Trp Gly	Asp His Ser Leu Thr Met I	Leu Tyr Gly Gly				
	1315	1320	.325				
	AGT GTT CCT AAT ATT ACT Ser Val Pro Asn Ile Thr 1330	TTTT GAA TCG GCG GCA GAA G Phe Glu Ser Ala Ala Glu A 1335 1340	AT TTA AGG CTA 4032 sp Leu Arg Leu				
55	TCT ACC AAT ATG GCA TTG	AGT ATT ATT CAT AAT GGA T	AT GCG GGA ACC 4080				
	Ser Thr Asn Met Ala Leu	Ser Ile Ile His Asn Gly T	Yr Ala Gly Thr				
	1345	0 1355	1360				
60	CGC CGT ATA CAA TGT AAT	CTT ATG AAA CAA TAC GCT T	CA TTA GGT GAT 4128				
	Arg Arg Ile Gln Cys Asn	Leu Met Lys Gln Tyr Ala S	er Leu Gly Asp				
	1365	1370	1375				
65	AAA TTT ATA ATT TAT GAT	TCA TCA TTT GAT GAT GCA A	AC CGT TTT AAT 4176				
	Lys Phe Ile Ile Tyr Asp	Ser Ser Phe Asp Asp Ala A	sn Arg Phe Asn				
	1380	1385	1390				

CTG GTG CCA TTG TTT AAA TTC GGA AAA GAC GAG AAC TCA GAT GAT AGT 4014 Leu Val Pro Leu Phe Lys Phe Gly Lys Asp Glu Asn Ser Asp Asp Ser 1400 1395 ATT TGT ATA TAT AAT GAA AAC COT TOO TOT GAA GAT AAG AAG TGG TAT 42TU Ile Cys Ile Tyr Asn Glu Asn Pro Ser Ser Glu Asp Lys Lys Trp Tyr TTT TCT TCG ARA GAT GAC AAT AAA ACA GCG GAT TAT AAT GGT GGA ACT 432 -Phe Ser Ser Lys Asp Asp Asn Lys Thr Ala Asp Tyr Asn Gly Gly Thr 1430 1435 CAA TGT ATA GAT GCT GGA ACC AGT AAC AAA GAT TTT TAT TAT AAT CTC 436-Gin Cys Ile Asp Ala Gly Thr Ser Asn Lys Asp Phe Tyr Tyr Asn Leu 15 1450 1445 CAG GAG ATT GAA GTA ATT AGT GTT ACT GGT GGG TAT TGG TCG AGT TAT $441 \, \circ$ Gin Glu Ile Glu Val Ile Ser Val Thr Gly Gly Tyr Trp Ser Ser Tyr 1465 1460 20 AAA ATA TCC AAC CCG ATT AAT ATC AAT ACG GGC ATT GAT AGT GCT AAA 4461 Lys Ile Ser Asn Pro Ile Asn Ile Asn Thr Gly Ile Asp Ser Ala Lys 1475 1480 GTA AAA GTC ACC GTA AAA GCG GGT GGT GAC GAT CAA ATC TTT ACT GCT 451: 25 Val Lys Val Thr Val Lys Ala Gly Gly Asp Asp Gln Ile Phe Thr Ala 1490 1495 1500 GAT AAT AGT ACC TAT GTT CCT CAG CAA CCG GCA CCC AGT TTT GAG GAG 4569 30 Asp Asn Ser Thr Tyr Val Pro Gln Gln Pro Ala Pro Ser Phe Glu Glu 1505 1510 1515 ATG ATT TAT CAG TTC AAT AAC CTG ACA ATA GAT TGT AAG AAT TTA AAT 460a Met Ile Tyr Gln Phe Asn Asn Leu Thr Ile Asp Cys Lys Asn Leu Asn 35 1525 TTC ATC GAC AAT CAG GCA CAT ATT GAG ATT GAT TTC ACC GCT ACG GCA 4656 Phe Ile Asp Asn Gln Ala His Ile Glu Ile Asp Phe Thr Ala Thr Ala 1540 1545 40 CAA GAT GGC CGA TTC TTG GGT GCA GAA ACT TTT ATT ATC CCG GTA ACT 4704 Gln Asp Gly Arg Phe Leu Gly Ala Glu Thr Phe Ile Ile Pro Val Thr 1560 AAA AAA GTT CTC GGT ACT GAG AAC GTG ATT GCG TTA TAT AGC GAA AAT 4752 45 Lys Lys Val Leu Gly Thr Glu Asn Val Ile Ala Leu Tyr Ser Glu Asn 1570 1575 AAC GGT GTT CAA TAT ATG CAA ATT GGC GCA TAT CGT ACC CGT TTG AAT 4800 50 Asn Gly Val Gln Tyr Met Gln Ile Gly Ala Tyr Arg Thr Arg Leu Asn 1585 1590 1595 ACG TTA TTC GCT CAA CAG TTG GTT AGC CGT GCT AAT CGT GGC ATT GAT 4848 Thr Leu Phe Ala Gln Gln Leu Val Ser Arg Ala Asn Arg Gly Ile Asp 55 1605 GCA GTG CTC AGT ATG GAA ACT CAG AAT ATT CAG GAA CCG CAA TTA GGA 4896 Ala Vai Leu Ser Met Glu Thr Gln Asn Ile Gln Glu Pro Gln Leu Gly 1620 60 SCG GGC ACA TAT GTG CAG CTT GTG TTG GAT AAA TAT GAT GAG TCT ATT 1944 Ala Gly Thr Tyr Val Gln Leu Val Leu Asp Lys Tyr Asp Glu Ser Ile 1645 CAT GGC ACT AAT AAA AGC TTT GCT ATT GAA TAT GTT GAT ATA TTT AAA 4992 His Gly Thr Asn Lys Ser Phe Ala Ile Glu Tyr Val Asp Ile Phe Lys

WU 7//1/434 PC1/US96/18003

156C 1555 1550 GAG AAC GAT AGT TTT GTG ATT TAT CAA GGA GAA CTT AGC GAA ACA AGT 5940 Glu Asn Asp Ser Phe Val Ile T/r Gln Gly Glu Leu Ser Glu Thr Ser 1675 1670 1665 CAA ACT GTT GTG AAA GTT TTC TTA TCC TAT TTT ATA GAG GCG ACT GGA 5088 Gln Thr Val Val Lys Val Phe Leu Ser Tyr Phe Ile Glu Ala Thr Gly 1690 1685 AAT AAG AAC CAC TTA TGG GTA CGT GCT AAA TAC CAA AAG GAA ACG ACT 5136 Asn Lys Asn His Leu Trp Val Arg Ala Lys Tyr Gln Lys Glu Thr Thr 1700 GAT AAG ATC TTG TTC GAC CGT ACT GAT GAG AAA GAT CCG CAC GGT TGG 5184 15 Asp Lys Ile Leu Phe Asp Arg Thr Asp Glu Lys Asp Pro His Gly Trp 1720 1715 TTT CTC AGC GAC GAT CAC AAG ACC TTT AGT GGT CTC TCT TCC GCA CAG 5232 Phe Leu Ser Asp Asp His Lys Thr Phe Ser Gly Leu Ser Ser Ala Gln 20 1735 1730 GCA TTA AAG AAC GAC AGT GAA CCG ATG GAT TTC TCT GGC GCC AAT GCT 5280 Ala Leu Lys Asn Asp Ser Glu Pro Met Asp Phe Ser Gly Ala Asn Ala 1750 25 CTC TAT TTC TGG GAA CTG TTC TAT TAC ACG CCG ATG ATG ATG GCT CAT 5328 Leu Tyr Phe Trp Glu Leu Phe Tyr Tyr Thr Pro Met Met Ala His 1770 1765 30 CGT TTG TTG CAG GAA CAG AAT TTT GAT GCG GCG AAC CAT TGG TTC CGT 5376 Arg Leu Leu Gln Glu Gln Asn Phe Asp Ala Ala Asn His Trp Phe Arg 1780 1785 TAT GTC TGG AGT CCA TCC GGT TAT ATC GTT GAT GGT AAA ATT GCT ATC 5424 35 Tyr Val Trp Ser Pro Ser Gly Tyr Ile Val Asp Gly Lys Ile Ala Ile 1795 1800 TAC CAC TGG AAC GTG CGA CCG CTG GAA GAA GAC ACC AGT TGG AAT GCA 5472 Tyr His Trp Asn Val Arg Pro Leu Glu Glu Asp Thr Ser Trp Asn Ala 40 1820 1815 1810 CAA CAA CTG GAC TCC ACC GAT CCA GAT GCT GTA GCC CAA GAT GAT CCG 5520 Gin Gin Leu Asp Ser Thr Asp Pro Asp Ala Val Ala Gin Asp Asp Pro 1835 45 1825 1830 ATG CAC TAC AAG GTG GCT ACC TTT ATG GCG ACG TTG GAT CTG CTA ATG 5553 Met His Tyr Lys Val Ala Thr Phe Met Ala Thr Leu Asp Leu Leu Met 1845 50 GCC CGT GGT GAT GCT GCT TAC CGC CAG TTA GAG CGT GAT ACG TTG GCT 5615 Ala Arg Gly Asp Ala Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Ala 1865 GAA GCT AAA ATG TGG TAT ACA CAG GCG CTT AAT CTG TTG GGT GAT GAG 5661 55 Glu Ala Lys Met Trp Tyr Thr Gln Ala Leu Asn Leu Leu Gly Asp Glu 1875 1880 CCA CAA GTG ATG CTG AGT ACG ACT TGG GCT AAT CCA ACA TTG GGT AAT 5712 Pro Gln Val Met Leu Ser Thr Thr Trp Ala Asn Pro Thr Leu Gly Asn 60 1895 1890 GCT GCT TCA AAA ACC ACA CAG CAG GTT CGT CAG CAA GTG CTT ACC CAG 5760 Ala Ala Ser Lys Thr Thr Gln Gln Val Arg Gln Gln Val Leu Thr Gln 1915 65 1910 1305

TTS COT CTC AAT AGO AGG GTA AAA ACC CCG TTG CTA GGA AGA GCC AAT 5808 Leu Arg Leu Ash Ser Arg Val Lys Thr Pro Leu Leu Gly Thr Ala Ash 1925 1930 1935 TCC CTG AGC GCT TTA TTC CTG CCG CAG GAA AAT AGC AAG CTC AAA GGC 5356 Ser Leu Thr Ala Leu Phe Leu Pro Gin Glu Asn Ser Lys Leu Lys Gly 1340 1945 TAC TGG CGG ACA CTG GCG CAG CGT ATG TTT AAT TTA CGT CAT AAT CTG 5904 10 Tyr Trp Arg Thr Leu Ala Gln Arg Met Phe Asn Leu Arg His Asn Leu 1955 1960 TCG ATT GAC GGC CAG CCG CTC TCC TTG CCG CTG TAT GCT AAA CCG GCT 5352 Ser Ile Asp Gly Gln Pro Leu Ser Leu Pro Leu Tyr Ala Lys Pro Ala 15 1970 1975 1980 GAT CCA AAA GCT TTA CTG AGT GCG GCG GTT TCA GCT TCT CAA GGG GGA 6000 Asp Pro Lys Ala Leu Leu Ser Ala Ala Val Ser Ala Ser Gln Gly Gly 1985 1990 1995 20 GCC GAC TTG CCG AAG GCG CCG CTG ACT ATT CAC CGC TTC CCT CAA ATG 6048 Ala Asp Leu Pro Lys Ala Pro Leu Thr Ile His Arg Phe Pro Gln Met 2010 CTA SAA GGG GCA CGG GGC TTG GTT AAC CAG CTT ATA CAG TTC GGT AGT 6096 Leu Glu Gly Ala Arg Gly Leu Val Asn Gln Leu Ile Gln Phe Gly Ser 2020 2025 2030 TCA CTA TTG GGG TAC AGT GAG CGT CAG GAT GCG GAA GCT ATG AGT CAA 6144 30 Ser Leu Leu Gly Tyr Ser Glu Arg Gln Asp Ala Glu Ala Met Ser Gln 2040 CTA CTG CAA ACC CAA GCC AGC GAG TTA ATA CTG ACC AGT ATT CGT ATG 6192 Leu Leu Gln Thr Gln Ala Ser Glu Leu Ile Leu Thr Ser Ile Arg Met 35 2050 CAG GAT AAC CAA TTG GCA GAG CTG GAT TCG GAA AAA ACC GCC TTG CAA 6240 Gin Asp Asn Gin Leu Ala Glu Leu Asp Ser Glu Lys Thr Ala Leu Gin 2055 2070 40 GTC TCT TTA GCT GGA GTG CAA CAA CGG TTT GAC AGC TAT AGC CAA CTG 6288 Val Ser Leu Ala Gly Val Gln Gln Arg Phe Asp Ser Tyr Ser Gln Leu 2085 2095 45 TAT GAG GAG AAC ATC AAC GCA GGT GAG CAG CGA GCG CTG GCG TTA CGC 6336 Tyr Glu Glu Asn Ile Asn Ala Gly Glu Gln Arg Ala Leu Ala Leu Arg 2105 TCA GAA TCT GCT ATT GAG TCT CAG GGA GCG CAG ATT TCC CGT ATG GCA 6384 50 Ser Glu Ser Ala Ile Glu Ser Gln Gly Ala Gln Ile Ser Arg Met Ala 2115 GGC GCG GGT GTT GAT ATG GCA CCA AAT ATC TTC GGC CTG GCT GAT GGC 6432 Gly Ala Gly Val Asp Met Ala Pro Asn Ile Phe Gly Leu Ala Asp Gly 55 2135 GGC ATG CAT TAT GGT GCT ATT GCC TAT GCC ATC GCT GAC GGT ATT GAG 6480 Gly Met His Tyr Gly Ala Ile Ala Tyr Ala Ile Ala Asp Gly Ile Glu 2150 2155 60 TTG AGT GCT TCT GCC AAG ATG GTT GAT GCG GAG AAA GTT GCT CAG TCG 6528 Leu Ser Ala Ser Ala Lys Met Val Asp Ala Glu Lys Val Ala Gln Ser 2165 2170 GAA ATA TAT CGC CGT CGC CGT CAA GAA TGG AAA ATT CAG CGT GAC AAC 6576 Glu Ile Tyr Arg Arg Arg Gln Glu Trp Lys Ile Gln Arg Asp Asn

11 10 2/11/1936 LC 1/02A0/19007

	218	0	2135	2130
5	GCA CAA GCG GAG Ala Glm Ala Glw 2195	: Ile Asn Gln Le	A AAC GCG CAA CTG u Asn Ala Gin Leu 00	GAA TOA OTG TOT 6514 Glu Ser Leu Ser 2205
10	ATT CGC CGT GAA Ile Arg Arg Glu 2210	GCC GCT GAA AT Ala Ala Glu Me 2215	G CAA AAA GAG TAC t Gin Lys Glu Tyr 2220	
	CAA GCT CAG GCG Gln Ala Gln Ala 2225	CAG GCA CAA CT Gln Ala Gln Le 2230	T ACT TTC TTA AGA u Thr Phe Leu Arg 2235	AGC AAA TTC AGT 6720 Ser Lys Phe Ser 2240
15	AAT CAA GCG TTA Asn Gln Ala Leu	TAT AGT TGG TT. Tyr Ser Trp Le 2245	A CGA GGG CGT TTG u Arg Gly Arg Leu 2250	TCA GGT ATT TAT 6768 Ser Gly lie Tyr 2255
20	TTC CAG TTC TAT Phe Gln Phe Tr 226	Asp Leu Ala Va	A TCA CGT TGC CTG L Ser Arg Cys Leu 2265	ATG GCA GAG CAA 6315 Met Ala Glu Gln 2270
25	TCC TAT CAA TGG Ser Tyr Gln Trp 2275	GAA GCT AAT GA' Glu Ala Asn Asp 228	Asn Ser Ile Ser	TTT GTC AAA CCG 6864 Phe Val Lys Pro 2285
30	GGT GCA TGG CAA Gly Ala Trp Gln 2290	GGA ACT TAC GCC Gly Thr Tyr Ala 2295	GGC TTA TTG TGT a Gly Leu Leu Cys 2300	
	ATA CAA AAT CTG Ile Gln Asn Leu 2305	GCA CAA ATG GAA Ala Gln Met Glu 2310	GAG GCA TAT CTG Glu Ala Tyr Leu 2315	AAA TGG GAA TCT 6960 Lys Trp Glu Ser 2320
35	CGC GCT TTG GAA Arg Ala Leu Glu	GTA GAA CGC ACC Val Glu Arg Thr 2325	GGTT TCA TTG GCA Val Ser Leu Ala 2330	GTG GTT TAT GAT 7003 Val Val Tyr Asp 2335
40	TCA CTG GAA GGT Ser Leu Glu Gly 2340	Asn Asp Arg Phe	AAT TTA GCG GAA Asn Leu Ala Glu 2345	CAA ATA CCT GCA 7056 Gln Ile Pro Ala 2350
45	TTA TTG GAT AAG Leu Leu Asp Lys 2355	GGG GAG GGA ACA Gly Glu Gly Thr 236	Ala Gly Thr Lys	GAA AAT GGG TTA 7104 Glu Asn Gly Leu 2365
5 0	TCA TTG GCT AAT Ser Leu Ala Asn 2370	GCT ATC CTG TCA Ala Ile Leu Ser 2375	GCT TCG GTC AAA Ala Ser Val Lys 1 2380	TTG TCC GAC TTG 7152 Leu Ser Asp Leu
,	AAA CTG GGA ACG Lys Leu Gly Thr 2385	GAT TAT CCA GAC Asp Tyr Pro Asp 2390	AGT ATC GTT GGT A Ser Ile Val Gly : 2395	AGC AAC AAG GTT 7200 Ser Asn Lys Val 2400
55	Arg Arg Ile Lys	CAA ATC AGT GTT Gln Ile Ser Val 2405	TCG CTA CCT GCA 1 Ser Leu Pro Ala 1 2410	PTG GTT GGG CCT 7248 Leu Val Gly Pro 2415
60 .	TAT CAG GAT GTT Tyr Gln Asp Val 2420	Gln Ala Met Leu	AGC TAT GGT GGC 2 Ser Tyr Gly Gly 5 2425	AGT ACT CAA TTG 7296 Ser Thr Gln Leu 2430
65	CCG AAA GGT TGT Pro Lys Gly Cys 2435	TCA GCG TTG GCT Ser Ala Leu Ala 244	Val Ser His Gly 7	ACC AAT GAT AGT 7344 Thr Asn Asp Ser 2445

GGT CAG TTC CAG TTG GAT TTC AAT GAC GGC AAA TAC CTG CCA TTT GAA 7392 Gly Gln Phe Gln Leu Asp Phe Asn Asp Gly Lys Tyr Leu Pro Phe Glu 2450 2455 2460

- 5 GGT ATT GCT CTT GAT GAT CAG GGT ACA CTG AAT CTT CAA TTT CCG AAT 7440 Gly Ile Ala Leu Asp Asp Gln Gly Thr Leu Asn Leu Gln Phe Pro Asn 2465 2470 2475 2480
- GCT ACC GAC AAG CAG AAA GCA ATA TTG CAA ACT ATG AGC GAT ATT ATT 7488

 Ala Thr Asp Lys Gln Lys Ala Ile Leu Gln Thr Met Ser Asp Ile Ile
 2485 2490 2495

TTG CAT ATT CGT TAT ACC ATC CGT TAA
Leu His Ile Arg Tyr Thr Ile Arg
2500 2505

7515

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2505 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 25 (ii) MOLECULE TYPE: protein

20

65

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

- 30 Met Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln Lys Leu 1 5 10 15
- Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp Thr Phe 20 25 30
 - Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys Arg Ile
 35 40 45
- Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His Glu Lys 50 55 60
 - Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val Arg Leu 65 70 75 80
- 45 Gly Thr Arg Gln Met Leu Gly Phe Ile Gln Gly Tyr Ser Asp Leu Phe 85 90 95
- Gly Asn Arg Ala Asp Asn Tyr Ala Aia Pro Gly Ser Val Ala Ser Met
 100 105 110
 - Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala Lys Asn 115 120 125
- Leu His Asp Ser Ser Ser Ile Tyr Tyr Leu Asp Lys Arg Arg Pro Asp 130 135 140
 - Leu Ala Ser Leu Met Leu Ser Gln Lys Asn Met Asp Glu Glu Ile Ser 145 150 155 160
- 60 Thr Leu Ala Leu Ser Asn Glu Leu Cys Leu Ala Gly Ile Glu Thr Lys 165 170 175
 - Thr Gly Lys Ser Gln Asp Glu Val Met Asp Met Leu Ser Thr Tyr Arg 180 185 190

WU 9 //1 /432 PC 1/US90/18003

Leu Ser Gly Glu Thr Pro Tyr His His Ala Tyr Glu Thr Val Arg Glu Ile Val His Glu Arg Asp Pro Gly Phe Arg His Leu Ser Gln Ala Pro 5 215 Ile Val Ala Ala Lys Leu Asp Pro Val Thr Leu Leu Gly Ile Ser Ser 10 His Ile Ser Pro Glu Leu Tyr Asn Leu Leu Ile Glu Glu Ile Pro Glu 250 Lys Asp Glu Ala Ala Leu Asp Thr Leu Tyr Lys Thr Asn Phe Gly Asp 15 Ile Thr Thr Ala Gln Leu Met Ser Pro Ser Tyr Leu Ala Arg Tyr Tyr Gly Val Ser Pro Glu Asp Ile Ala Tyr Val Thr Thr Ser Leu Ser His 20 295 Val Gly Tyr Ser Ser Asp Ile Leu Val Ile Pro Leu Val Asp Gly Val 25 Gly Lys Met Glu Val Val Arg Val Thr Arg Thr Pro Ser Asp Asn Tyr Thr Ser Gln Thr Asn Tyr Ile Glu Leu Tyr Pro Gln Gly Gly Asp Asn 30 Tyr Leu Ile Lys Tyr Asn Leu Ser Asn Ser Phe Gly Leu Asp Asp Phe Tyr Leu Gln Tyr Lys Asp Gly Ser Ala Asp Trp Thr Glu Ile Ala His 35 375 Asn Pro Tyr Pro Asp Met Val Ile Asn Gln Lys Tyr Glu Ser Gln Ala 40 Thr Ile Lys Arg Ser Asp Ser Asp Asn Ile Leu Ser Ile Gly Leu Gln Arg Trp His Ser Gly Ser Tyr Asn Phe Ala Ala Ala Asn Phe Lys Ile 45 Asp Gln Tyr Ser Pro Lys Ala Phe Leu Leu Lys Met Asn Lys Ala Ile 440 Arg Leu Leu Lys Ala Thr Gly Leu Ser Phe Ala Thr Leu Glu Arg Ile 50 Val Asp Ser Val Asn Ser Thr Lys Ser Ile Thr Val Glu Val Leu Asn 55 Lys Val Tyr Arg Val Lys Phe Tyr Ile Asp Arg Tyr Gly Ile Ser Glu Glu Thr Ala Ala Ile Leu Ala Asn Ile Asn Ile Ser Gln Gln Ala Val 505 60 Gly Asn Gln Leu Ser Gln Phe Glu Gln Leu Phe Asn His Pro Pro Leu Asn Gly Ile Arg Tyr Glu Ile Ser Glu Asp Asn Ser Lys His Leu Pro 65

	345		Asp	Leu	λsn	Leu 550		Pro	Asp	Ser	Thr 555		Asp	Asp	Gln	Arg 560
5	Lys	λla	Val	Leu	Lys 565		Ala	Phe	Gln	Val 570		Ala	Ser	Glu	Leu 575	Tyr
	Gln	Met	Leu	Leu 580		Thr	Asp	λrg	Lys 585		Asp	Gly	Val	Ile 590	Lys	Asn
10	Asn	Leu	Glu 595	Asn	Leu	Ser	Asp	Leu 600	Tyr	Leu	Val	Ser	Leu 605	Leu	Ala	Gln
15	Ile	His 610		Leu	Thr	Ile	Ala 515	Glu	Leu	Asn	Ile	Leu 620		Val	Ile	Cys
	Gly 625	Tyr	Gly	Asp	Thr	Asn 630	Ile	Tyr	Gln	Ile	Thr 635	Asp	Asp	Asn	Leu	Ala 640
20	Lys	Ile	Val	Glu	Thr 645	Lau	Leu	Trp	Ile	Thr 650	Gln	Trp	Leu	Lys	Thr 655	Gln
	Lys	Trp	Thr	Val 660	Thr	Asp	Leu	Phe	Leu 665	Met	Thr	Thr	Ala	Thr 670	Tyr	Ser
25	Thr	Thr	Leu 675	Thr	Pro	Glu	Ile	Ser 680	Asn	Leu	Thr	Ala	Thr 685	Leu	Ser	Ser
30	Thr	Leu 690	His	Gly	Lys	Glu	Ser 695	Leu	Ile	Gly	Glu	Asp 700	Leu	Lys	Arg	Ala
	Met 705	Ala	Pro	Cys	Phe	Thr 710	Ser	Ala	Leu	His	Leu 715	Thr	Ser	Gln	Glu	Val 720
35	Ala	Tyr	Asp	Leu	Leu 725	Leu	Trp	Ile	Asp	Gln 730	Ile	Gln	Pro	Ala	Gln 735	Ile
	Thr	Val	Asp	Gly 740	Phe	Trp	Glu	Glu	Val 745	Gln	Thr	Thr	Pro	Thr 750	Ser	Leu
40	Lys	Val	Ile 755	Thr	Phe	Ala	Gln	Val 760	Leu	Ala	Gln	Leu	ser 765	Leu	Ile	Tyr
15	Arg	Arg 770	Ile	Gly	Leu	Ser	Glu 775	Thr	Glu	Leu	Ser	Leu 780	Ile	Val	Thr	Gln
	Ser 785	ser	Leu	Leu	Val	Ala 790	Gly	Lys	Ser	Ile	Leu 795	Asp	His	Gly	Leu	Leu 800
50	Thr	Leu	Met	Ala	Leu 805	Glu	Gly	Phe	His	Thr 810	Trp	Val	Asn	Gly	Leu 815	Gly
	Gln	His	Ala	Ser 820	Leu	Ile	Leu	Ala	Ala 825	Leu	Lys	Asp	Gly	Ala 830	Leu	Thr
55	Val	Thr	Asp 835	Val	Ala	Gln	Aia	Met 840	Asn	Lys	Glu	Glu	Ser 845	Leu	Leu	Gln
50	Met	Ala 850	Ala	Asn	Gln	Val	Glu 855	Lys	Asp	Leu	Thr	Lys 860	Leu	Thr	Ser	Trp
,,,	Thr 865	Gln	Ile	Asp	Ala	Ile 870	Leu	Gln	Trp	Lau	Gln 875	Met	Ser	Ser	Ala	Leu 880
55	Ala	Val	Ser	Pro	Leu 885	Asp	Leu	Ala	Gly	Met 890	Met	Ala	Leu	Lys	Tyr 895	Gly

TC 1/10350/18003

	Ile	λsp	His	Asn 900	-	Ala	Ala	Trp	905		Ala	. Ala	Ala	Ala 910		Met
5	Ala	Asp	His 915		Asn	Gln	Ala	Gln 920		Lys	Lau	Asp	Glu 925		Phe	Ser
	Lys	Ala 930		Суѕ	Asn	Tyr	Tyr 935		Asn	Ala	. Val	Val 940		Ser	Ala	Ala
10	Gly 945		Arg	Asp	Arg	Asn 950	-	Leu	Tyr	Thr	Ту·r 955		Leu	Ile	Asp	Asn 960
15	Gln	Val	Ser	Ala	Asp 965		Ile	Thr	Ser	Arg 970		Ala	Glu	Ala	Ile 975	
.,	GJA	Ile	Gln	Leu 980		Val	Asn	Arg	Ala 985		Asn	Arg	Asp	Glu 990		Gln
20	Leu	Ala	Ser 995	Asp	Val	Ser	Thr	Arg 100		Phe	Phe	Thr	Asp 100	-	Glu	Arg
26	Tyr	Asn 101	Lys 0	Arg	Tyr	Sar	Thr 101		Ala	Gly	Val	Ser 102		Leu	Val	Tyr
25	Tyr 1025		Glu	Asn	Tyr	Val 103	-	Pro	Thr	Gln	Arg 103		Gly	Gln	Thr	Lys 1040
30	Met	Met	Asp	Ala	Leu 104		Gln	Ser	Ile	Asn 105		Ser	Gln	Leu	Asn 105	
50	Asp	Thr	Val	Glu 1060		Ala	Phe	Lys	Thr 106	-	Leu	Thr	Ser	Phe 107		Gln
35	Val	Ala	Asn 1075		Lys	Val	Ile	Ser 108		Tyr	His	Asp	Asn 108		Asn	Val
	Asp	Gln 1090	Gly	Leu	Thr	Tyr	Phe 109		Gly	Ile	Asp	Gln 110		Ala	Pro	Gly
40	Thr 1105	-	Tyr	Trp	Arg	Ser 1110		Asp	His	Ser	Lys 111	-	Glu	Asn	Gly	Lys 1120
45	Phe	Ala	Ala	Asn	Ala 1125	_	Gly	Glu	Trp	Asn 1130	_	Ile	Thr	Cys	Ala 113	
	Asn	Pro	Trp	Lys 1140		Ile	Ile	Arg	Pro 114		Val	Tyr	Met	Ser 115		Leu
50	Tyr	Leu	Leu 1155		Leu	Glu	Gln	Gln 1160		Lys	Lys	Ser	Asp 1169	-	Gly	Lys
	Thr	Thr 1170	Ile	Tyr	Gln	Tyr	Asn 1175		Lys	Leu	Ala	His 1180		Arg	Tyr	Asp
55	Gly 1185		Trp	Asn	Thr	Pro 1190		Thr	Phe	Asp	Val 1195		Glu	Lys	Val	Lys 1200
50	Asn	Tyr	Thr	Ser	Ser 1205		Asp	Ala	Ala	Glu 1210		Leu	Gly	Leu	Tyr 1215	
	Thr	Gly	Tyr	Gln 1220		Glu	Asp	Thr	Leu 1225		Val	Met	Phe	Tyr 1230		Met
55	Gln		Ser 1235										Pro		Thr	Gly

Leu Tyr Ile Phe Ala Asp Met Ser Ser Asp Ash Met Thr Ash Ala Sin Ala Thr Asn Tyr Trp Asn Asn Ser Tyr Pro Gln Phe Asp Thr Val Met Ala Asp Pro Asp Ser Asp Asn Lys Lys Val Ile Thr Arg Arg Val Asn Asn Arg Tyr Ala Glu Asp Tyr Glu Ile Pro Ser Ser Val Thr Ser Asn Ser Asn Tyr Ser Trp Gly Asp His Ser Leu Thr Met Leu Tyr Gly Gly Ser Val Pro Asn Ile Thr Phe Glu Ser Ala Ala Glu Asp Leu Arg Leu Ser Thr Asn Met Ala Leu Ser Ile Ile His Asn Gly Tyr Ala Gly Thr Arg Arg Ile Gln Cys Asn Leu Met Lys Gln Tyr Ala Ser Leu Gly Asp Lys Phe Ile Ile Tyr Asp Ser Ser Phe Asp Asp Ala Asn Arg Phe Asn Leu Val Pro Leu Phe Lys Phe Gly Lys Asp Glu Asn Ser Asp Asp Ser Ile Cys Ile Tyr Asn Glu Asn Pro Ser Ser Glu Asp Lys Lys Trp Tyr Phe Ser Ser Lys Asp Asp Asn Lys Thr Ala Asp Tyr Asn Gly Gly Thr Gln Cys Ile Asp Ala Gly Thr Ser Asn Lys Asp Phe Tyr Tyr Asn Leu Gln Glu Ile Glu Val Ile Ser Val Thr Gly Gly Tyr Trp Ser Ser Tyr Lys Ile Ser Asn Pro Ile Asn Ile Asn Thr Gly Ile Asp Ser Ala Lys Val Lys Val Thr Val Lys Ala Gly Gly Asp Asp Gln Ile Phe Thr Ala Asp Asn Ser Thr Tyr Val Pro Gln Gln Pro Ala Pro Ser Phe Glu Glu Met Ile Tyr Gln Phe Asn Asn Leu Thr Ile Asp Cys Lys Asn Leu Asn Phe Ile Asp Asn Gln Ala His Ile Glu Ile Asp Phe Thr Ala Thr Ala Gln Asp Gly Arg Phe Leu Gly Ala Glu Thr Phe Ile Ile Pro Val Thr Lys Lys Val Leu Gly Thr Glu Asn Val Ile Ala Leu Tyr Ser Glu Asn Asn Gly Val Gln Tyr Met Gln Ile Gly Ala Tyr Arg Thr Arg Leu Asn

Thr Leu Phe Ala Gln Gln Leu Val Ser Arg Ala Asn Arg Gly Ile Asp Ala Val Leu Ser Met Glu Thr Gln Asn Ile Gln Glu Pro Gln Leu Gl7 1625 Ala Gly Thr Tyr Val Gln Leu Val Leu Asp Lys Tyr Asp Glu Ser Ile 1640 His Gly Thr Asn Lys Ser Phe Ala Ile Glu Tyr Val Asp Ile Phe Lys 10 1660 Glu Asn Asp Ser Phe Val Ile Tyr Gln Gly Glu Leu Ser Glu Thr Ser 15 1675 Gin Thr Val Val Lys Val Phe Leu Ser Tyr Phe Ile Giu Ala Thr Gly Asn Lys Asn His Leu Trp Val Arg Ala Lys Tyr Gln Lys Glu Thr Thr 20 1705 Asp Lys Ile Leu Phe Asp Arg Thr Asp Glu Lys Asp Pro His Gly Trp 1720 Phe Leu Ser Asp Asp His Lys Thr Phe Ser Gly Leu Ser Ser Ala Gln 25 1735 Ala Leu Lys Asn Asp Ser Glu Pro Met Asp Phe Ser Gly Ala Asn Ala 30 1755 Leu Tyr Phe Trp Glu Leu Phe Tyr Tyr Thr Pro Met Met Ala His 1770 Arg Leu Leu Gln Glu Gln Asn Phe Asp Ala Ala Asn His Trp Phe Arg 35 Tyr Val Trp Ser Pro Ser Gly Tyr Ile Val Asp Gly Lys Ile Ala Ile 1800 40 Tyr His Trp Asn Val Arg Pro Leu Glu Glu Asp Thr Ser Trp Asn Ala 1815 Gin Gin Leu Asp Ser Thr Asp Pro Asp Ala Val Ala Gin Asp Asp Pro 45 1835 Met His Tyr Lys Val Ala Thr Phe Met Ala Thr Leu Asp Leu Leu Met 1850 Ala Arg Gly Asp Ala Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Ala 50 1865 Glu Ala Lys Met Trp Tyr Thr Gln Ala Leu Asn Leu Leu Gly Asp Glu 55 Pro Gin Val Met Leu Ser Thr Thr Trp Ala Asn Pro Thr Leu Gly Asn 1900 Ala Ala Ser Lys Thr Thr Gln Gln Val Arg Gln Gln Val Leu Thr Gln 1910 60 1915 Leu Arg Leu Asn Ser Arg Val Lys Thr Pro Leu Leu Gly Thr Ala Asn 1930 Ser Lau Thr Ala Leu Phe Leu Pro Gin Glu Asn Ser Lys Leu Lys Gly 65 1945 1950

	Tyr Trp Arg Thr Leu Aia Gln Arg Met Phe Asn Leu Arg His Asn Leu 1955 1960 1965
	5er Ile Asp Gly Gln Pro Leu Ser Leu Pro Leu Tyr Ala Lys Pro Ala 1970 1975 1980
	Asp Pro Lys Ala Leu Leu Ser Ala Ala Val Ser Ala Ser Gin Gly Giy 1985 1990 1995 2000
. 1	10 Ala Asp Leu Pro Lys Ala Pro Leu Thr Ile His Arg Phe Pro Gln Met 2005 2010 2015
ı	Leu Glu Gly Ala Arg Gly Leu Val Asn Gln Leu Ile Gln Phe Gly Ser 2020 2025 2030
	Ser Leu Leu Gly Tyr Ser Glu Arg Gln Asp Ala Glu Ala Met Ser Gln 2035 2040 2045
20	2055 2060
	Gln Asp Asn Gln Leu Ala Glu Leu Asp Ser Glu Lys Thr Ala Leu Gln 2065 2070 2075 2080
25	2085 2090 2095
30	
	Ser Glu Ser Ala Ile Glu Ser Gln Gly Ala Gln Ile Ser Arg Met Ala 2115 2120 2125
35	Cly Ala Gly Val Asp Met Ala Pro Asn Ile Phe Gly Leu Ala Asp Gly 2130 2135 2140
40	Cly Met His Tyr Gly Ala Ile Ala Tyr Ala Ile Ala Asp Gly Ile Glu 2150 2155 2160
40	Leu Ser Ala Ser Ala Lys Met Val Asp Ala Glu Lys Val Ala Gln Ser 2165 2170 2175
45	Glu Ile Tyr Arg Arg Arg Gln Glu Trp Lys Ile Gln Arg Asp Asn 2180 2185 2190
	Ala Gln Ala Glu Ile Asn Gln Leu Asn Ala Gln Leu Glu Ser Leu Ser 2195 2200 2205
50	Ile Arg Arg Glu Ala Ala Glu Met Gln Lys Glu Tyr Leu Lys Thr Gln 2210 2220
55	Gin Ala Gin Ala Gin Leu Thr Phe Leu Arg Ser Lys Phe Ser 2225 2230 2235 2240 Asn Gin Ala Leu Th
	Asn Gin Ala Leu Tyr Ser Trp Leu Arg Gly Arg Leu Ser Gly Ile Tyr 2245 2250 2255 Phe Gln Phe Tyr Acr Leu Li
60	Phe Gln Phe Tyr Asp Leu Ala Val Ser Arg Cys Leu Met Ala Glu Gln 2260 2265 2270 Ser Tyr Gln Trp Glu Ala C
	Ser Tyr Gln Trp Glu Ala Asn Asp Asn Ser Ile Ser Phe Val Lys Pro 2275 2280 2285
65	Gly Ala Trp Gln Gly Thr Tyr Ala Gly Leu Leu Cys Gly Glu Ala Leu 2290 2295 2300

	11a 230		Asn	Leu	Ala	Gln 231		Slu	Glu	Ala	T/r 231		L; s	Trp	Glu	Ser 2320
5	Arg	Ala	Leu	Glu	Val 232		λrg	Thr	Val	3er 233		λla	Val	Val	T; r 233	-
	ser	Leu	Glu	Gly 234		λsp	Arg	Phe	Asn 234		Ala	Glu	Gln	11e 235		Ala
10	Leu	Leu	Asp 235		Gly	Glu	Gly	Thr 236		Gly	Thr	Lys	Glu 236		Gly	Leu
15	Ser	Leu 237	Ala O	Asn	Ala	Ile	Leu 237		λla	Ser	Val	Lys 238		Ser	Asp	Leu
.5	Lys 238		Gly	Thr	Asp	Tyr 2390		Asp	Ser	Ile	Val 2399		Ser	Asn	L; s	Val 2400
20	Arg	Arg	Ile	Lys	Gln 2405		Ser	Val	Ser	Leu 2410		Ala	Leu	Val	Gly 2415	
•	Tyr	Gln	Asp	Val 2420		Ala	Met	Leu	Ser 2425	Tyr	Gly	Gly	Ser	Thr 2430		Leu
25	Pro	Lys	Gly 2435		Ser	Ala	Leu	Ala 2440		Ser	His	Gly	Thr 2445		Asp	Ser
30	Gly	Gln 2450	Phe	Gln	Leu	Asp	Phe 2455		Asp	Gly	Lys	Tyr 2460		Pro	Phe	Glu
	Gly 2 46 5	Ile	Ala	Leu	Asp	Asp 2470		Gly	Thr	Leu	Asn 2475		Gln	Phe	Pro	Asn 2480
35	Ala	Thr	Asp	Lys	Gln 2485		Ala	Ile		Gln 2490		Met	Ser	Asp	Ile 2495	
	Leu	His	Ile	Arg 2500	_	Thr	Ile	-	• 2505							
40	(2)	INF	ORMA	TIO	N FO	R SI	EQ I	D NO):13	:						
45		(i	(QUEI A) 1 B) 7 C) 9	LENG Type Stra	TH: : an NDEI	12 nino ONES	amir aci S: s	o a d ing	cids	i					
50		(ii) MC	LEC	JLE	TYPE	E: p	ept i	.de							
) SE													
55		Leu 1	Ile	Gly	Tyr	Asn 5	Asn	Gln	Phe	Ser	Gly 10	Xaa	Ala			
	(2)	INF	ORMA	TION	1 FO	R SE	Q I	D NO	:14:	:						
60		(i)	(QUEN A) L B) T C) S	ENG'	TH: : am	12 a	amin aci	o ac d	ids						

(D) TOPOLOGY: linear

	(ii) MOLECULE TYFE: peptide
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
	Met Gln Asn Ser Gln Thr Phe Ser Val Gly Glu Leu 1 10
10	(2) INFORMATION FOR SEQ ID NO:15:
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
20	(ii) MOLECULE TYPE: peptide
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
25	Ala Gln Asp Gly Asn Gln Asp Thr Phe Phe Ser Gly Asn Thr 1 5 10
	(2) INFORMATION FOR SEQ ID NO:16:
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 5 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
35	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: Met Gln Asn Ser Leu 1 5
	•
45	(2) INFORMATION FOR SEQ ID NO:17: (i) SEQUENCE CHARACTERISTICS:
50	(A) LENGTH: 10 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
	Ala Phe Asn Ile Asp Asp Val Ser Leu Phe 1 5 10
60	

```
(1) INFORMATION FOR SEQ ID NO:13:
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 15 amino acids
  5
                 (B) TYPE: amino acid
                (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
 10
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
          Phe Ile Val Tyr Thr Ser Leu Gly Val Asn Pro Asn Asn Ser Ser Asn
 15
                                           10
      (2) INFORMATION FOR SEQ ID NO:19:
 20
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 21 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
 25
         (ii) MOLECULE TYPE: peptide
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
30
         Ile Ser Asp Leu Val Thr Thr Ser Pro Leu Ser Glu Ala Ile Gly Ser
                                . 10
         Leu Gln Leu Phe Ile
35
                     20
      (2) INFORMATION FOR SEQ ID NO:20:
40
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 12 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
45
         (ii) MOLECULE TYPE: peptide
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
50
         Met Tyr Tyr Ile Gln Ala Gln Gln Leu Leu Gly Pro
55
   (2) INFORMATION FOR SEQ ID NO:21:
         (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 26 amino acids
               (B) TYPE: amino acid
60
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
```

		(ii) MOLECULE TYPE: peptide
5		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
		Gly Ile Asp Ala Val Leu Ser Met Glu Thr Gln Asn Ile Gln Glu Pro 1 5 10 15
10		Gin Leu Gly Ala Gly Thr Tyr Val Gin Leu 20 25
15	(2)	INFORMATION FOR SEQ ID NO:22:
20		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
		Ile Ser Asn Pro Ile Asn Ile Asn Thr Gly Ile Asp Ser Ala Lys 1 5 10 15
30	(2)	INFORMATION FOR SEQ ID NO:23:
35		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
40		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
45		Thr Tyr Leu Thr Ser Phe Glu Gln Val Ala Asn Leu Lys 1 10
	(2)	INFORMATION FOR SEQ ID NO:24:
50		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
55		(ii) MOLECULE TYPE: peptide
60		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
JU		Val Leu Gly Thr Glu Asn Val Ile Ala Leu Tyr Ser Glu Asn Asn Gly

-139-

WO 97/17432	PCT/US96/18003
-------------	----------------

10 15 "al Gln Tyr Met Gln Ile 20 5 (2) INFORMATION FOR SEQ ID NO:25: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 6005 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: (A) NAME/KEY: RBS (B) LOCATION: 1..9 20 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 16..3585 (D) OTHER INFORMATION: /product = "P8" 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: AAGAAGGAAT TGATT ATG TCT GAA TCT TTA TTT ACA CAA ACG TTG AAA GAA 30 Met Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu GCG CGC CGT GAT GCA TTG GTT GCT CAT TAT ATT GCT ACT CAG GTG CCC Ala Arg Arg Asp Ala Leu Val Ala His Tyr Ile Ala Thr Gln Val Pro 35 GCA GAT TTA AAA GAG AGT ATC CAG ACC GCG GAT GAT CTG TAC GAA TAT Ala Asp Leu Lys Glu Ser Ile Gln Thr Ala Asp Asp Leu Tyr Glu Tyr 30 40 CTG TTG CTG GAT ACC AAA ATT AGC GAT CTG GTT ACT ACT TCA CCG CTG Leu Leu Leu Asp Thr Lys Ile Ser Asp Leu Val Thr Thr Ser Pro Leu 45 TCC GAA GCG ATT GGC AGT CTG CAA TTG TTT ATT CAT CGT GCG ATA GAG. 243 Ser Glu Ala Ile Gly Ser Leu Gln Leu Phe Ile His Arg Ala Ile Glu GGC TAT GAC GGC ACG CTG GCA GAC TCA GCA AAA CCC TAT TTT GCC GAT 50 Gly Tyr Asp Gly Thr Leu Ala Asp Ser Ala Lys Pro Tyr Phe Ala Asp GAA CAG TTT TTA TAT AAC TGG GAT AGT TTT AAC CAC CGT TAT AGC ACT Glu Gln Phe Leu Tyr Asn Trp Asp Ser Phe Asn His Arg Tyr Ser Thr 55 95 100 TGG GCT GGC AAG GAA CGG TTG AAA TTC TAT GCC GGG GAT TAT ATT GAT 387 Trp Ala Gly Lys Glu Arg Leu Lys Phe Tyr Ala Gly Asp Tyr Ile Asp 110 115 60 CCA ACA TTG CGA TTG AAT AAG ACC GAG ATA TTT ACC GCA TTT GAA CAA 435

Pro Thr Leu Arg Leu Asn Lys Thr Glu Ile Phe Thr Ala Phe Glu Gin

130

	GGT Gly	ATT Ile	TCT Ser	CAA Gln	GGG G1y 145	ala Lys	TTA Leu	AAA Lys	AGT Ser	GAA Glu 150	TTA Leu	GTC Val	GAA Gļu	TCT Ser	AAA L;;s 155	TTA Leu	433
5	CGT Arg	GAT Asp	TAT Tyr	CTA Leu 160	ATT Ile	AGT Ser	TAT Tyr	GAC Asp	ACT Thr 165	TTA Leu	GCC Ala	ACC Thr	CTT Leu	GAT Asp 170	TAT Tyr	ATT Ile	531
10	ACT Thr	GCC Ala	TGC Cys 175	CAA Gln	GGC Gly	AAA Lys	GAT Asp	AAT Asn 180	AAA Lys	ACC Thr	ATC Ile	TTC Phe	TTT Phe 185	ATT	GGC Gly	CGT Arg	579
15	Thr	Gln 190	Asn	Ala	CCC Pro	Tyr	Ala 195	Phe	Tyr	Trp	Arg	Lys 200	Leu	Thr	Leu	Val	627
20	Thr 205	λsp	Gly	Gly	AAG Lys	Leu 210	Lys	Pro	Asp	Gln	Trp 215	Ser	Glu	Trp	Arg	Ala 220	675
20	Ile	Asn	Ala	Gly	ATT Ile 225	Ser	Glu	Ala	Tyr	Ser 230	Gly	His	Val	Glu	235	Phe	723
25	TGG Trp	GAA Glu	AAT Asn	AAC Asn 240	AAG Lys	CTG Leu	CAC His	ATC Ile	CGT Arg 245	TGG Trp	TTT Phe	ACT Thr	ATC Ile	TCG Ser 250	AAA Lys	GAA Glu	771
30	GAT Asp	AAA Lys	ATA Ile 255	GAT Asp	TTT Phe	GTT Val	TAT Tyr	AAA Lys 260	AAC Asn	ATC Ile	TGG Trp	GTG Val	ATG Met 265	AGT Ser	AGC Ser	GAT Asp	819
35	TAT Tyr	AGC Ser 270	TGG Trp	GCA Ala	TCA Ser	AAG Lys	AAA Lys 275	AAA Lys	ATC	TTG Leu	GAA Glu	CTT Leu 280	TCT Ser	TTT	ACT Thr	GAC Asp	867
40	TAC Tyr 285	AAT Asn	AGA Arg	GTT Val	GGA Gly	GCA Ala 290	ACA Thr	GGA Gly	TCA Ser	TCA Ser	AGC Ser 295	CCG Pro	ACT Thr	GAA Glu	GTA Val	GCT Ala 300	915
40	Ser	Gln	Tyr	Gly	Ser 305	Asp	Ala	Gln	Met	Asn 310	Ile	Ser	Asp	Asp	315		963
45	Val	Leu	Ile	Phe 320	Gln	Asn	Ala	Gly	Gly 325	Ala	Thr	Pro	Ser	330	GIA	Vai	1011
50	ACG Thr	TTA Leu	TGT Cys 335	Tyr	GAC Asp	TCT	GGC	AAC Asn 340	Val	ATT	AAG Lys	AAC Asn	CTA Leu 345	Ser	AG1 Ser	ACA Thr	1059
55	Gly	Ser 350	Ala	Asn	Leu	Ser	Ser 355	Lys	Asp	Tyr	Ala	360	Thr	Lys	Leu	1 Arg	1107
60	Met 365	Cys	His	Gly	Gln	370	Tyt	Asn	Asp	AST	375	Tyr	Cys	Asr	n Pne	380	1155
(A)	CTC Leu	TCT	ATT	AAT AST	ACA Thr	Ile	GA:	TTC Phe	ACC Thr	TCC Ser 390	Tyt	GGC Gly	ACA Thr	TTC Phe	TCA Set	Set	1203
65	GAT Asp	GGA Gly	AAJ Lys	CAP Glr	TTT Phe	ACA Thr	CC?	CC1	TC1	GGT Gly	TCT Ser	GCC Ala	ATT	GAT Asi	r TT/	A CAC 1 His	1251

WU 97/17432 PU1/US90/18003

				400	•				405					410			
5				Tyr	GTA Val				Ala				-	Ser			1299
			Leu		TAT Tyr			Gln									1347
10		Asp			AGT Ser		Pro										1395
15					TTC Phe 465						Met						1443
20					Asp					Tyr					_	_	1491
25					AAT Asn												1539
30	TAT Tyr	TGG Trp 510	Asn	GTG Val	ATG Met	CCA Pro	TTG Leu 515	CAA Gln	CTG Leu	GAT Asp	ACC Thr	GCA Ala 520	TGG Trp	GAT Asp	ACC Thr	ACA Thr	1587
					ACT Thr												1635
35					GCG Ala 545												1683
40	CGA Arg	GGC Gly	GAC Asp	AGC Ser 560	GCT Ala	TAC Tyr	CGT Arg	CAA Gln	CTT Leu 565	GAA Glu	CGC Arg	GAT Asp	ACT Thr	CTA Leu 570	GTC Val	GAA Glu	1731
45					TAC Tyr												1779
50					ACC Thr												1827
					GCC Ala												1875
55					TGG Trp 625												1923
60	GGT Gly	GAT Asp	TTC Phe	TTG Leu 640	CCA Pro	CCG Pro	TAC Tyr	AAC Asn	GAT Asp 645	GTA Val	CTA Leu	CTC Leu	GGT Gly	TAC Tyr 650	TGG Trp	GAT Asp	1971
65	AAA Lys	CTT Leu	GAG Glu 655	TTA Leu	CGC Arg	CTA Leu	TAC Tyr	AAC Asn 660	CTG Leu	CGC Arg	CAC His	Asn	CTG Leu 665	AGT Ser	CTG Leu	GAT Asp	2019

	3G1 G1;	0 0A 0 01 67	n Pr	G CT/ o Leu	A AAT Asr	r cTc	CCA Pro 675	Leu	TAT Tyr	r GCC	ACC A Thr	Pro 680	/al	A GAC	CCC Pro	AAA Lys	. 2057 :
5	ACC Thr 685	Le	G CA u Gl	A CGC n Arç	CAC Glr	CAA Gln 690	Ala	GGA Gly	GGC Gly	GAC	GG1 Gly 695	Thr	GGC Gly	AG1	AGT Ser	CCC Pro 700	
10	GCT Ala	GG Gl;	r GG' / Gly	r caa / Glr	705	Ser	GTT Val	CAG Gln	GGC Gly	TGC Trp 710) Arg	TAT Tyr	Pro	TTA Leu	TTG Leu 715	Val	2153
15	Glu	Arç	J Ala	720	Ser	' Ala	Val	Ser	Leu 725	Leu	Thr	Gln	Phe	730	Asn	Ser	
20	Ļeu	GIT	735	Thr	Leu	Glu	His	740	Asp	Asn	Glu	Lys	Met 745	Thr	Ile	Leu	2259
	TTG Leu	Glr 750	Thr	CAA Gln	CAG Gln	GAA Glu	GCC Ala 755	ATC	CTG Leu	AAA Lys	CAT	CAG Gln 760	CAC	GAT Asp	ATA Ile	CAA Gln	2307
25	CAA Gln 765	AAT Asn	AA1 Asn	CTA Leu	AAA Lys	GGA Gly 770	TTA Leu	CAA Gln	CAC His	AGC Ser	CTG Leu 775	ACC Thr	GCA Ala	TTA Leu	CAG Gln	GCT Ala 780	2355
30	AGC Ser	CGT	GAT Asp	GGC	GAC Asp 785	ACA Thr	TTG Leu	CGG Arg	CAA Gln	AAA Lys 790	CAT His	TAC Tyr	AGC Ser	GAC Asp	CTG Leu 795	ATT Ile	2403
35	AAC	GGT Gly	GGT Gly	CTA Leu 800	TCT Ser	GCG Ala	GCA Ala	GAA Glu	ATC Ile 805	GCC Ala	GGT Gly	CTG Leu	ACA Thr	CTA Leu 810	Arg	AGC Ser	2451
40	ACC Thr	GCC Ala	ATG Met 815	ATT	ACC Thr	AAT Asn	GGC Gly	GTT Val 820	GCA Ala	ACG Thr	GGA Gly	TTG Leu	CTG Leu 825	ATT Ile	GCC Ala	Gly	2499
	GGA Gly	ATC Ile 830	GCC Ala	AAC Asn	GCG Ala	GTA Val	CCT Pro 835	AAC Asn	GTC Val	TTC Phe	GGG Gly	CTG Leu 840	GCT Ala	AAC Asn	GGT Gly	GGA Gly	2547
45	TCG Ser 845	GAA Glu	TGG Trp	GGA Gly	GCG Ala	CCA Pro 850	TTA Leu	ATT Ile	GGC Gly	TCC Ser	GGG Gly 855	CAA Gln	GCA Ala	ACC Thr	CAA Gln	CTT Val 860	2595
50	GGC Gly	GCC Ala	GCC	ATC Ile	CAG Gln 865	GAT Asp	CAG Gln	AGC Ser	GCG Ala	GGC Gly 870	ATT Ile	TCA Ser	G AA Glu	GTG Val	ACA Thr 875	GCA Ala	2643
55	GGC Gly	TAT Tyr	CAG Gln	CGT Arg 880	CGT Arg	CAG Gln	GAA Glu	GAA Glu	TGG Trp 885	GCA Ala	TTG Leu	CAA Gln	CGG Arg	GAT Asp 890	ATT Ile	GCT Ala	2691
60	GAT Asp	AAC Asn	GAA Glu 895	ATA Ile	ACC Thr	CAA Gln	Leu	GAT Asp 900	GCC Ala	CAG Gln	ATA Ile	CAA Gln	AGC Ser 905	CTG Leu	CAA Gln	GAG Glu	2739
	Gln	ATC Ile 910	ACG Thr	ATG Met	GCA la	Gln	AAA Lys 915	CAG Gln	ATC Ile	ACG Thr	CTC Leu	TCT Ser 920	GAA Glu	ACC Thr	GAA Glu	CAA Gln	2787
65	GCG Ala	AAT Asn	GCC Ala	CAA Gln	GCG Ala	ATT Ile	TAT (GAC Asp	CTG Leu	CAA Gln	ACC Thr	ACT Thr	CGT Arg	TTT Phe	ACC Thr	GGG Gly	2835

WU 9 // 1/432 PC 1/US90/180US

	325	930	935 940	
5		Trp Met Ala Gly Arg	CTC TCC GCG CTC TAT TAC Leu Ser Ala Leu Tyr Tyr 955	2333
10			CTC CAG CCA AAA GCC GCA Leu Gln Pro Lys Ala Ala 970	2931
10			GAC AGT CTT TTC CAG GTT Asp Ser Leu Phe Gln Val 935	2979
15			TTA GCA GGA GAA GGT TTA Leu Ala Gly Glu Gly Leu 1000	3027
20			TGG CTT GCA CGT GGT GGT Trp Leu Ala Arg Gly Gly 1015	
25		Ile Arg Thr Val Ser	CTG GAT ACC CTG TTT GGC Leu Asp Thr Leu Phe Gly 1035	3123
30			GTG CTT AAC GGG GAA ACG Val Leu Asn Gly Glu Thr 1050	3171
30	GTA TCT CCA TCC GGT Val Ser Pro Ser Gly 1055	GGC GTC ACT CTG GCG Gly Val Thr Leu Ala 1060	CTG ACA GGG GAT ATC TTC Leu Thr Gly Asp Ile Phe 1065	3219
35			TTG GAT AAC TCT TAC AAC Leu Asp Asn Ser Tyr Asn 1080	3267
40			CGT ATC GCC GTC ACC CTG Arg Ile Ala Val Thr Leu 1095 1100	
45	CCA ACA CTT CTG GGG Pro Thr Leu Leu Gly 1105	Pro Tyr Gln Asp Leu	GAA GCC ACA CTG GTA ATG Glu Ala Thr Leu Val Met 1115	3363
50	GGT GCG GAA ATC GCC Gly Ala Glu Ile Ala 1120	GCC TTA TCA CAC GGT Ala Leu Ser His Gly 1125	GTG AAT GAC GGA GGC CGG Val Asn Asp Gly Gly Arg 1130	3411
			CTG CCT TTT GAA GGT CGA Leu Pro Phe Glu Gly Arg 1145	3459
55			ATT TTC CAT GCG GGT AAA Ile Phe His Ala Gly Lys 1160	3507
60	Glu Gly Thr Gln His	Glu Leu Val Ala Asn	CTG AGT GAC ATC ATT GTG Leu Ser Asp Ile Ile Val 1175 1180	3555
65	CAT CTG AAT TAC ATC His Leu Asn Tyr Iie 1185	Ile Arg Asp Ala *	ATTTCTTTTC TTTGTCGATT	3605

	ACAGGTCCCT	ATCAGGGGCC	TGTTATTAAG	GAGTACTTTA	TSCAGGATTC	ACCAGAAGTA	3665
	TCGATTACAA	CGCTGTCACT	TCCCAAAGGT	GGCGGTGCTA	TCAATGGCAT	GGGAGAAGCA	3725
5	CTGAATGCTG	CCGGCCCTGA	TGGAATGGCC	тесетатете	TGCCATTACC	CCTTTCGACC	3785
	GGCAGAGGGA	CGGCTCCTGG	ATTATCGCTG	ATTTACAGCA	ACAGTGCAGG	TAATGGGCCT	3845
10	TTCGGCATCG	GCTGGCAATG	CGGTGTTATG	TCCATTAGCC	GACGCACCCA	ACATGGCATT	3905
10	CCACAATACG	GTAATGACGA	CACGTTCCTA	TCCCCACAAG	GCGAGGTCAT	GAATATCGCC	3965
	CTGAATGACC	AAGGGCAACC	TGATATCCGT	CAAGACGTTA	AAACGCTGCA	AGGCGTTACC	4025
15	TTGCCAATTT	CCTATACCGT	GACCCGCTAT	CAAGCCCGCC	AGATCCTGGA	TTTCAGTAAA	4085
	ATCGAATACT	GGCAACCTGC	CTCCGGTCAA	GAAGGACGCG	CTTTCTGGCT	GATATCGACA	4145
20	CCGGACGGGC	ATCTACACAT	CTTAGGGAAA	ACCGCGCAGG	CTTGTCTGGC	AAATCCGCAA	4205
20	AATGACCAAC	AAATCGCCCA	GTGGTTGCTG	GAAGAAACTG	TGACGCCAGC	CGGTGAACAT	4265
	GTCAGCTATC	AATATCGAGC	CGAAGATGAA	GCCCATTGTG	ACGACAATGA	AAAAACCGCT	4325
25	CATCCCAATG	TTACCGCACA	GCGCTATCTG	GTACAGGTGA	ACTACAGGCA	ACATCAAACC	4385
	ACAAGCCAGC	CTGTTCGTAC	TGGATAACGC	ACCTCCCGCA	CCGGAAGAGT	GGCTGTTTCA	4445
30	TCTGGTCTTT	GACCACGGTG	AGCGCGTACC	TCACTTCATA	CCGTGCCAAC	ATGGGATGCA	4505
30	GGTACAGCGC	AATGGTCTGT	ACGCCCGGAT	ATCTTCTCTC	GCTATGAATA	TGGTTTTGAA	4565
	GTGCGTACTC	GCCGCTTATG	TCAACAAGTG	CTGATGTTTC	ACCGCACCGC	GCTCATGGCC	4625
35	GGAGAAGCCA	GTACCAATGA	CGCCCCGGAA	CTGGTTGGAC	GCTTAATACT	GGAATATGAC	4685
•	AAAAACGCCA	GCGTCACCAC	GTTGATTACC	ATCCGTCAAT	TAAGCCATGA	ATCGGACGGG	4745
40	AGGCCAGTCA	CCCAGCCACC	ACTAGAACTA	GCCTGGCAAC	GGTTTGATCT	GGAGAAAATC	4805
~~	CCGACATGGC	AACGCTTTGA	CGCACTAGAT	AATTTTAACT	CGCAGCAACG	TTATCAACTG	4865
	GTTGATCTGC	GGGGAGAAGG	GTTGCCAGGT	ATGCTGTATC	AAGATCGAGG	CCCTTCCTCC	4925
45	TATAAAGCTC	CGCAACGTCA	GGAAGACGGA	GACAGCAATG	CCGTCACTTA	CGACAAAATC	4985
	GCCCCACTGC	CTACCCTACC	CAATTTGCAG	GATAATGCCT	CATTGATGGA	TATCAACGGA	5045
50	GACGGCCAAC	TGGATTGGGT	TGTTACCGCC	TCCGGTATTC	GCGGATACCA	TAGTCAGCAA	5105
30	CCCGATGGAA	AGTGGACGCA	CTTTACGCCA	ATCAATGCCT	TGCCCGTGGA	ATATTTTCAT	5165
	CCAAGCATCC	AGTTCGCTGA	CCTTACCGGG	GCAGGCTTAT	CTGATTTAGT	GTTGATCGGG	5225
55	CCGAAAAGCG	TGCGTCTATA	TGCCAACCAG	CGAAACGGCT	GGCGTAAAGG	AGAAGATGTC	5285
	CCCCAATCCA	CAGGTATCAC	сстосстотс	ACAGGGACCG	ATGCCCGCAA	ACTGGTGGCT	5345
60	TTCAGTGATA	TGCTCGGTTC	CGGTCAACAA	CATCTGGTGG	AAATCAAGGG	TAATCGCGTC	5405
(IO	ACCTGTTGGC	CGAATCTAGG	GCATGGCCGT	TTCGGTCAAC	CACTAACTCT	GTCAGGATTT	5465
	AGCCAGCCCG	AAAATAGCTT	CAATCCCGAA	CGCCTGTTTC	TGGCGGATAT	CGACGGCTCC	5525
65	GGCACCACCG	ACCTTATCTA	TGCGCAATCC	GGCTCTTTGC	TCATTTATCT	CAACCAAAGT	5585

WU 7//1/432 PC 1/US76/18003

	GG"	TAAT	CAGT	TTG	ATGC	ccc :	STTG.	TEOF	TA G	GTT	CCA	S AAG	ccc.	TACA	ATT	TGACAAC	5645
	ACT	ricc	CAAC	TTC	AAGT	cgc (CGAT	ATTC:	AG G	GATT.	AGGG/	A TAC	CCA	CTT	GAT	rctgact	5735
5	GT	CCA	CATA	TCG	CGCC	ACA :	rcac	rccc	T TO	STGA	CTG	ר כאס	TGA	CAA	ACC	TGGTTG	5755
	TIC	TAAS	GTAA	TGA	YCYY,	TAA (CCGG	GCG	CA C	ATCA	CACGO	TAC	CATT	ATCG	TAG	TCCGCG	5825
10	CA	ATTC'	TGGT	TGG	ATGA	AAA A	ATŢĀ	CAGCT	רכ אמ	CAA	AGCAG	GC;	TAA	TCC	GGC?	PTGTTAT	5885
	CTC	ccc,	TTTC	CAA	rgca:	TT (GCTA7	rggta	AT AC	CGA	ATTO	AGC	ATG	TAAF	CAGO	CGGCAAC	5945
	CGC	CTC	ACCA.	CTC	AAGT	CAA C	TACA	AGCC	AC GC	CCTC	TGGC	ATC	GTA	LAGA	GCGC	GAATTC	6005
15	(2)	IN	IFORI	ITAN	ON E	FOR	SEQ	ID 1	NO:2	6 :							
20			(i)	SE	(A) (B)	LENO TYP	CHAR GTH: E: a OLOG	119 mino	90 a	mino id		ids					
			(ii)	MO	LECU	ILE :	TYPE	: pr	ote	in							
25			(xi)	SE	QUEN	ICE I	DESC	RIPT	rion	: SE	Q II	D NO	:26	:			
30	Met 1	Ser	Glu	Ser	Leu 5	Phe	Thr	Gln	Thr	Leu 10		Glu	Ala	Arg	Arg 15	Asp	
	Ala	Leu	Val	Ala 20		Tyr	Ile	Ala	Thr 25		Val	Pro	Ala	Asp 30		Lys	
35	Glu	Ser	Ile 35		Thr	Ala	Asp	Asp 40		Tyr	Glu	Tyr	Leu 45		Leu	Asp	
,	Thr	Lys 50		Ser	Asp	Leu	Val 55		Thr	Ser	Pro	Leu 60		Glu	Ala	Ile	
40	Gly 65	Ser	Leu	Gln	Leu	Phe 70		His	Arg	Ala	Ile 75	Glu	Gly	Tyr	Asp	Gly 80	
45	Thr	Leu	Ala	Asp	Ser 85	Ala	Lys	Pro	Tyr	Phe 90	Ala	Asp	Glu	Gln	Phe 95		
	Tyr	Asn	Trp	Asp 100		Phe	Asn	His	Arg 105	Tyr	Ser	Thr	Trp	Ala 110	Gly	Lys	
50	Glu	Arg	Leu 115	Lys	Phe	Tyr	Ala	Gly 120	Asp	Tyr	Ile	Asp	Pro 125	Thr	Leu	Arg	
	Leu	Asn 130	Lys	Thr	Glu	Ile	Phe 135	Thr	Ala	Phe	Glu	Gln 140	Gly	Ile	Ser	Gln	
55	Gly 145	Lys	Leu	Lys	Ser	Glu 150	Leu	Val	Glu	Ser	Lys 155	Leu	Arg	Asp	Tyr	Leu 160	
60					165		Ala			170					175		
	Gly	Lys	Asp	Asn 180	Lys	Thr	Ile	Phe	Phe 185	Ile	Gly	Arg	Thr	Gln 190	Asn	Ala [.]	
65	Pro	Tyr	Ala 195	Phe	Tyr	Trp	Arg	Lys 200	Leu	Thr	Leu	Val	Thr 205	Asp	Gly	Gly	

	L;	ys ! 2	510 San	Ly	s Pi	:0 A:	sp Gl	n T	rp S 15	•r	Glu	ı Tr	p A	rg A 2	1a 20	Ile	≥ As	n A	la	Sly
5	_	le 3 25	er	Sl	ן א ר	a Ty	r Se 23	r G	ly H	İS	Va]	. Gl	u Pi 23	ro P	he	Tr	G G I	u A	sn	Asn 240
. 10						24						25	0					2	55	
					20	•	n Il				200						27	0		
15				2.2			e Le		26							285				
•		•	•				r Se	23	7					3 (00					
20		•					310	,					31	5						320
25						32.						330	,					33	5	
					340	,	Ile			3	45						350)		
30			,	, , ,			Tyr		360	U					3	65				
•		٠,	•				Asn	3/5	•					38	0					
35	,,,,						Ser 390						395						4	100
40						405	Gly					410						41!	5	
				•	420		Leu			42	25						430			
45				•			Gln		440						4	45				
		430	,				Ile	455						460)					
5 0	Phe 465	Leu	V V	al f	Thr	Val	Arg 470	Met	Gln	Th	rc	lu	Gln 475	Arg	T	yr (Slu	Asp		la 80
55						485	Tyr				4	90						495		
	Asn	Gly	G1	n I	eu 600	Ile	Met	Asp	Gly	Se 50	r L 5	ys.	Pro	Arg	Ty		rp 10	Asn	V	al
60	Met	Pro	Le 51	14 G	ln	Leu	Asp	Thr	Ala 520	Tr	p A	sp '	Thr	Thr	G1 52		ro	Ala	Tì	ır
	Thr	,,,						212						540						
65	λla 545	Ile	Ph	e L	eu I	His	Thr 1	Leu	Asp	Le	ı L	eu :	11e 555	Ala	Ar	g G	ly .	Asp	5e 56	

TC 1/U390/18UU3

	Al	a T	yr A	rg S		eu Gl 65	u Ar	g As	r Th	r Le 57		1 31	u Al	a Ly	s Me 57	t Tyr 5
5	T	r I	le G		la Gi 30	ln Gl	n Le	u Le	u Gl [.] 58		o Ar	g Pr	o As	p Ile 596		s Thr
10	Th	r A	sn Ti 59	hr Ti	p Pr	o As	n Pr	0 Th:		u Se	r Ly	s Gl	60 7 71		/ Al	a Ile
• ••	Al	a Th 61	ar Pi	ro Ti	ir Ph	ne Le	61°		r Pro	o Gl	u Va	1 Mei 620		r Phe	e Ala	a Ala
15	Tr 62	p Le 5	eu Se	er Al	a Gl	y Ası 630		r Ala	a Ası	n Ile	e Gl; 639		o Gly	/ Asp	Phe	Leu 540
	Pr	o Pr	(T)	r As	n As 64	p Val	l Let	ı Leu	Gly	7 Tyr 650		Asp	Lys	Leu	655	Leu
20	Ar	g Le	u Ty	r As 66	n Le O	u Arç	y His	S Asn	665		. Leu	Asp	Gly	670		Leu
25	Ası	n Le	u Pr 67	o Le 5	и Ту	r Ala	Thr	680		. Asp	Pro	Lys	685		Gln	Arg
	Glı	1 Gl 69	n Al O	a Gl	y G1;	y Asp	695	Thr	Gly	Ser	Ser	700		Gly	Gly	Gln
30	705	•				710					715					720
	Ser	Al.	a Va	l Se	725	ı Leu S	Thr	Gln	Phe	Gly 730		Ser	Leu	Gln	Thr 735	Thr
35	Leu	Gli	ı Hi:	5 Gl: 740	n Asp	Asn	Glu	Lys	Met 745		Ile	Leu	Leu	Gln 750	Thr	Gln
40	Gln	Glu	755	a Ile	e Leu	Lys	His	Gln 760	His	Asp	Ile	Gln	Gln 765	Asn	Asn	Leu
	Lys	Gly 770	Leu)	ı Glr	His	Ser	Leu 775	Thr	Ala	Leu	Gln	Ala 780	Ser	Arg	Asp	Gly
45	Asp 785	Thr	Leu	Arg	Gln	1 Lys 790	His	Tyr	Ser	Asp	Leu 795	Iļe	Asn	Gly	Gly	Leu 300
4 0					805					810					815	
50				820		Thr			825					830		
55			835			Phe		840					845			
	Ala	Pro 850	Leu	Ile	Gly	Ser	Gly 855	Gln	Ala	Thr	Gln	Val 860	Gly	Ala	Gly	Ile
6()	Gln 365	λsp	Gln	Ser	Ala	Gly 870	Ile	Ser	Glu	Val	Thr 875	Ala	Gly	Tyr	Gln	Arg 880
	Arg	Gln	Glu	Glu	Trp 885	Ala	Leu	Gln		Asp 890	Ile	Ala	Asp		Glu 895	Ile
65	Thr	Gln	Leu	Asp 900	Ala	Gln	Ile		Ser 905	Leu	Gln	Glu		Ile 910	Thr	Met

Ala Gln Lys Gln Ile Thr Leu Ser Glu Thr Glu Gln Ala Asn Ala Gin 920 Ala Ile Tyr Asp Leu Gin Thr Thr Arg Phe Thr Giy Gin Ala Leu Tyr 340 Asn Trp Met Ala Gly Arg Leu Ser Ala Leu Tyr Tyr Gln Met Tyr Asp 10 Ser Thr Leu Pro Ile Cys Leu Gln Pro Lys Ala Ala Leu Val Gln Glu 970 Leu Gly Glu Lys Glu Ser Asp Ser Leu Phe Gln Val Pro Val Trp Asn 15 985 Asp Leu Trp Gln Gly Leu Leu Ala Gly Glu Gly Leu Ser Ser Glu Leu 1000 Gin Lys Leu Asp Ala lie Trp Leu Ala Arg Gly Gly Ile Gly Leu Glu 20 1020 Ala Ile Arg Thr Val Ser Leu Asp Thr Leu Phe Gly Thr Gly Thr Leu 1030 25 1035 Ser Glu Asn Ile Asn Lys Val Leu Asn Gly Glu Thr Val Ser Pro Ser 1050 Gly Gly Val Thr Leu Ala Leu Thr Gly Asp Ile Phe Gin Ala Thr Leu 30 1065 Asp Leu Ser Gln Leu Gly Leu Asp Asn Ser Tyr Asn Leu Gly Asn Glu 1080 35 Lys Lys Arg Arg Ile Lys Arg Ile Ala Val Thr Leu Pro Thr Leu Leu 1100 Gly Pro Tyr Gln Asp Leu Glu Ala Thr Leu Val Met Gly Ala Glu Ile 40 1115 Ala Ala Leu Ser His Gly Val Asn Asp Gly Gly Arg Phe Val Thr Asp 1130 Phe Asn Asp Ser Arg Phe Leu Pro Phe Glu Gly Arg Asp Ala Thr Thr 45 Gly Thr Leu Glu Leu Asn Ile Phe His Ala Gly Lys Glu Gly Thr Gln 1160 His Glu Leu Val Ala Asn Leu Ser Asp Ile Ile Val His Leu Asn Tyr 50 1175

Ile Ile Arg Asp Ala . 1185 1190

55

60

- (2) INFORMATION FOR SEQ ID NO:27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1881 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- 65 (ii) MOLECULE TYPE: DNA (genomic)

WU 7//1/434 LC1/0220/19003

(ix) FEATURE:

5

(A) NAME/KEY: CDS
(B) LOCATION: 1..1881
(D) OTHER INFORMATION: /product= "P8"

10	(xi	i) SEQUEN	ICE DESCR	RIPTION:	SEQ ID	NO:27:	
	ATG TCT Met Ser 1	GAA TCT Glu Ser I	TTA TTT AC Leu Phe Th	CA CAA AG	TTG AA nr Leu Ly 10	A GAA GCG s Glu Ala	CGC CGT GAT 48 Arg Arg Asp 15
15	GCA TTG Ala Leu	GTT GCT C Val Ala F 20	AT TAT AT His Tyr Il	e Ala Th	CT CAG GTO or Gln Va 15	G CCC GCA (1 Pro Ala /	GAT TTA AAA 96 Asp Leu Lys 30
20	GAG AGT Glu Ser	ATC CAG A Ile Gln T 35	CC GCG GA	T GAT CT P Asp Le 40	G TAC GAI u Tyr Gli	A TAT CTG T U Tyr Leu I 45	TTG CTG GAT 144 Leu Leu Asp
25	ACC AAA . Thr Lys . 50	ATT AGC G Ile Ser A	AT CTG GT sp Leu Va 5!	I Thr Th	T TCA CCC r Ser Pro	G CTG TCC G Leu Ser G	GAA GCG ATT 192 Slu Ala Ile
30	GGC AGT (Gly Ser I 65	CTG CAA T Leu Gln L	TG TTT ATT Bu Phe Ile 70	r cat cg' ∍ His Ar	T GCG ATA g Ala Ile 75	GAG GGC T Glu Gly T	AT GAC GGC 240 Yr Asp Gly 80
	ACG CTG C	ara wah se	CA GCA AAA er Ala Lys 85	CCC TAT	TTT GCC Phe Ala 90	GAT GAA C Asp Glu G	AG TTT TTA 288 ln Phe Leu 95
35	TAT AAC T Tyr Asn T	GG GAT AC TP Asp Se 100	T TTT AAC r Phe Asn	CAC CGT His Arg 105	Tyr Ser	ACT TGG GG Thr Trp A	CT GGC AAG 335 la Gly Lys 10
40		TG AAA TI eu Lys Ph 15	C TAT GCC e Tyr Ala	GGG GAT Gly Asp 120	TAT ATT	GAT CCA AC Asp Pro Th	CA TTG CGA 384 or Leu Arg
45	TTG AAT ALL Leu Asn Ly 130	AG ACC GA	G ATA TTT u Ile Phe 135	ACC GCA Thr Ala	TTT GAA Phe Glu	CAA GGT AT Gln Gly II 140	TT TCT CAA 432 .e Ser Gln
50	GGG AAA TT Gly Lys Le 145	TA AAA AG Bu Lys Se	GAA TTA Glu Leu 150	GTC GAA Val Glu	TCT AAA Ser Lys 155	TTA CGT GA Leu Arg As	T TAT CTA: 480 p Tyr Leu 160
	ATT AGT TA	AT GAC ACT T Asp Thi	. nen vis	ACC CTT Thr Leu	GAT TAT Asp Tyr 170	ATT ACT GC	C TGC CAA 528 a Cys Gln 175
55	GGC AAA GA Gly Lys As	T AAT AAA P Asn Lys 180	ACC ATC Thr Ile	TTC TTT Phe Phe 185	ATT GGC	CGT ACA CAG Arg Thr Gli 196	n Asn Ala
60	CCC TAT GC Pro Tyr Al 19	- rue tat	IID WIG	AAA TTA Lys Leu 200	ACT TTA (Thr Leu (GTC ACT GAT Val Thr Asp 205	r GGC GGT 624 o Gly Gly
65	AAG TTG AAJ Lys Leu Lys 210	A CCA GAT s Pro Asp	CAA TGG C Gln Trp S 215	TCA GAG Ser Glu	Trp Arg A	GCA ATT AAT Ala Ile Asn 220	GCC GGG 672 Ala Gly

5	AT1 11e 225	اچت و	T JAG	G GC: L Ala	A TAS	r TC: r Ser 230	: G13	CAT His	r sta : Val	GAG	9 001 4 Pro 235	Phe	To:	GAA Glu	AAT Asr	240 240	1
-	AAC Lys	CTC Leu	G CAG	ATC Ile	CG1 Arg 245	Trp	Phe	ACT Thr	ATC Ile	TC0 Se1 250	r Lys	A GAZ Glu	GAT L Asp	C AAA D Lys	ATA Ile 255	Asp	758
10	TTT Phe	GM Val	TAT Tyr	1 AAA Lys 260	Asr	TATO	TGG Trp	GTG Val	Met 265	Ser	AGC Ser	GAT Asp	TAT Tyr	Ser 270	Trp	GCA Ala	316
15	ser	Lys	275	Lys	Ile	Leu	Glu	Leu 280	Ser	Phe	Thr	Asp	Tyr 285		Arg	Val	
20	GIÀ	290	Thr	Gly	Ser	Ser	Ser 295	Pro	Thr	Glu	Val	Ala 300	Ser	CAA Gln	Tyr	Gly	
25	305	Asp	Ala	Gin	Met	Asn 310	Ile	Ser	Asp	Asp	Gly 315	Thr	Val	CTT Leu	Ile	Phe 320	
	GIN	Asn	Ala	Gly	Gly 325	Ala	Thr	Pro	Ser	Thr 330	Gly	Val	Thr	Leu	Cys 335	Tyr	1008
30	GAC Asp	TCT Ser	GGC	AAC Asn 340	GTG Val	ATT Ile	AAG Lys	AAC Asn	CTA Leu 345	TCT	AGT Ser	ACA Thr	GGA Gly	AGT Ser 350	GCA Ala	AAT Asn	1056
35	Leu	5er	Ser 355	Lys	Asp	Tyr	Ala	Thr 360	Thr	Lys	Leu	Arg	Met 365	Cys	His	Gly	1104
- 40	CAA Gln	AGT Ser 370	TAC Tyr	AAT Asn	GAT Asp	AAT Asn	AAC Asn 375	TAC Tyr	TGC Cys	AAT Asn	TTT Phe	ACA Thr 380	CTC Leu	TCT Ser	ATT Ile	AAT Asn	1152
45	385	116	GIU	Phe	Thr	Ser 390	Tyr	Gly	Thr	Phe	Ser 395	Ser	Asp	Gly	Lys	Gln 400	1200
	Pne	Thr	Pro	Pro	Ser 405	Gly	Ser	Ala	Ile	Asp 410	Leu	His	Leu	Pro	Asn 415	Tyr	1248
50	GTA Val	GAT Asp	Leu	AAC Asn 420	GCG Ala	CTA Leu	TTA Leu	GAT Asp	ATT Ile 425	AGC Ser	CTC Leu	GAT Asp	TCA Ser	CTA Leu 430	CTT Leu	AAT Asn	1296
55	TAT Tyr	GAC Asp	GTT Val 435	CAG Gln	GGG Gly	CAG Gln	Phe	GGC Gly 440	GGA Gly	TCT Ser	AAT Asn	CCG Pro	GTT Val 445	GAT Asp	AAT Asn	TTC Phe	1344
60	Ser	GGT Gly 450	CCC Pro	TAT Tyr	GGT Gly	Ile	TAT Tyr 455	CTA Leu	TGG Trp	GAA Glu	ATC Ile	TTC Phe 460	TTC Phe	CAT His	ATT Ile	CCG Pro	1392
65	TTC Phe :	CTT Leu	GTT Val	ACG Thr	Val	CGT Arg 470	ATG Met	CAA . Gln '	ACC Thr	GAA Glu	CAA Gln 475	CGT Arg	TAC Tyr	GAA Glu	Asp	GCG Ala 480	1440
	GYC '	ACT	TGG	TAC	AAA	TAT .	ATT '	TTC (CGC	AGC	GCC	CCT	TAT	CGC	GAT (GCT	1488

WU 7//1/432 FC 1/U370/18003

Asp Thr Trp Tyr Lys Tyr lie Phe Arg Ser Ala Gly Tyr Arg Asp Ala 430 AAT GGC CAG CTC ATT ATG GAT GGC AGT AAA CCA CGT TAT TGG AAT GTG 1536 5 Asn Gly Gln Leu Ile Met Asp Gly Ser Lys Pro Arg Tyr Trp Asn Val 500 505 ATG CCA TTG CAA CTG GAT ACC GCA TGG GAT ACC ACA CAG CCC GCC ACC 1584 Met Pro Leu Gln Leu Asp Thr Ala Trp Asp Thr Thr Gln Pro Ala Thr 10 ACT GAT CCA GAT GTG ATC GCT ATG GCG GAC CCG ATG CAT TAC AAG CTG 1632 Thr Asp Pro Asp Val Ile Ala Met Ala Asp Pro Met His Tyr Lys Leu 535 15 GCG ATA TTC CTG CAT ACC CTT GAT CTA TTG ATT GCC CGA GGC GAC AGC 1680 Ala Ile Phe Leu His Thr Leu Asp Leu Leu Ile Ala Arg Gly Asp Ser 550 555 20 GCT TAC CGT CAA CTT GAA CGC GAT ACT CTA GTC GAA GCC AAA ATG TAC 1728 Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Val Glu Ala Lys Met Tyr 565 TAC ATT CAG GCA CAA CAG CTA CTG GGA CCG CGC CCT GAT ATC CAT ACC 1776 Tyr Ile Gln Ala Gln Gln Leu Leu Gly Pro Arg Pro Asp Ile His Thr 25 580 ACC AAT ACT TGG CCA AAT CCC ACC TTG AGT AAA GAA GCT GGC GCT ATT 1824 Thr Asn Thr Trp Pro Asn Pro Thr Leu Ser Lys Glu Ala Gly Ala Ile 30 600 GCC ACA CCG ACA TTC CTC AGT TCA CCG GAG GTG ATG ACG TTC GCT GCC 1872 Ala Thr Pro Thr Phe Leu Ser Ser Pro Glu Val Met Thr Phe Ala Ala 610 615 35 TGG CTA AGC 1881 -Trp Leu Ser 625 40 (2) INFORMATION FOR SEQ ID NO:28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 627 amino acids 45 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28: Met Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu Ala Arg Arg Asp 55 Ala Leu Val Ala His Tyr Ile Ala Thr Gln Val Pro Ala Asp Leu Lys Glu Ser Ile Gln Thr Ala Asp Asp Leu Tyr Glu Tyr Leu Leu Leu Asp 60 Thr Lys Ile Ser Asp Leu Val Thr Thr Ser Pro Leu Ser Clu Ala Ile Gly Ser Leu Gln Leu Phe Ile His Arg Ala Ile Glu Gly Tyr Asp Gly

-152-

		65						7	c						75						80
5		hr	Lei	л У	la i	4sp	Ser 85	Al	a L	}.e	Pro	Тy	r Pl	ne 2	la :	Asp	Glu	ı Gi		he 95	Leu
					•							10:	>		er 1			11	0		
10				•						1	.20				le A		125				
	L	eu	130 Ysn	L'y	's T	hr	Glu	Ile	9 Ph 13	ne T	'hr	Ala	. Ph	e G	lu G	1n 40	Gly	11	e Se	er	Gln
15		1y 15	Lys	Le	u L	ys :	Ser	Glu 150	ı Le	u V	al	Glu	Se	r L	ys <u>L</u> 55	eu	Arg	As	p Ty		Leu 160
20						•							1/	U	/r I				17	5	
					•	- 0						182			ly A:			190)		
25										21	,0				u Va		205				-
••									21.	,					g Al 22	20					
30		_						230						23						2	40
35						•	• -						250		s Gl				255	5	
	Phe	∍ V ₆	al	Tyr	Ly 26	s A:	sn I	lle	Trp	Va	1 M	let 65	Ser	Se	r As	рT	yr :	Ser 270	Trp	A	la
40										25	U				r As	2	85				
45									233						A16	0					
45							,	10						315						32	0
5()						J 2	,					•	330		Val				335		
					340						3 4	iż			Thr		3	50			
55			•							200					Arg	36	5				
40			-					3	73						Thr 380						
6()							,,							395	Ser					400)
65	Phe	Thi	Pı	ro i	Pro	Ser 405	G1	y S	er.	Ala	Il	e A	sp 1	Leu	His	Le	u Pr	: O ;	Asn 115	T)' 1	<u>-</u>
	Val	Asp	Le	eu /	Asn	Ala	Le	u L	eu ,	Asp	11	e S	er I	Leu	Asp	Se	r Le	eu L	.eu	Asr	1

0 425 430

Tyr Asp Val Gln Gly Gln Phe Gly Gly Ser Asn Pro Val Asp Asn Fhe 435 440 445

- Ser Gly Pro Tyr Gly Ile Tyr Leu Trp Glu Ile Phe Phe His Ile Pro
 450 455 460
- Phe Leu Val Thr Val Arg Met Gln Thr Glu Gln Arg Tyr Glu Asp Ala
 470 475 430
 - Asp Thr Trp Tyr Lys Tyr Ile Phe Arg Ser Ala Gly Tyr Arg Asp Ala 485 490 495
- 15 Asn Gly Gln Leu Ile Met Asp Gly Ser Lys Pro Arg Tyr Trp Asn Val 500 505 510
- Met Pro Leu Gin Leu Asp Thr Ala Trp Asp Thr Thr Gin Pro Ala Thr 515 520 525
 - Thr Asp Pro Asp Val Ile Ala Met Ala Asp Pro Met His Tyr Lys Leu 530 535 540
- Ala Ile Phe Leu His Thr Leu Asp Leu Leu Ile Ala Arg Gly Asp Ser 545 555 550
 - Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Val Glu Ala Lys Met Tyr 565 575
- 30 Tyr Ile Gln Ala Gln Gln Leu Leu Gly Pro Arg Pro Asp Ile His Thr 580 585 590
- Thr Asn Thr Trp Pro Asn Pro Thr Leu Ser Lys Glu Ala Gly Ala Ile
 595 600 605
 - Ala Thr Pro Thr Phe Leu Ser Ser Pro Glu Val Met Thr Phe Ala Ala 610 615 620
- Trp Leu Ser 40 625

50

- (2) INFORMATION FOR SEQ ID NO:29:
- 45 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1689 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1689
 - (D) OTHER INFORMATION: /product = "S8"
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:
 - GCA GGC GAT ACC GCA AAT ATT GGC GAC GGT GAT TTC TTG CCA CCG TAC 48
 Ala Gly Asp Thr Ala Asn Ile Gly Asp Gly Asp Phe Leu Pro Pro Tyr
 1 5 10

5	.45	.C G.	AT G sp 73	TA CT al Le 2	A ST u Le 0	c sc u Gl;	T TA / T _i	C TS: r Tr:	p As	T AA p Ly 5	A CT s Le	T GA u Gl	G TT u Le	A CG u Ar 3	g Le	A TAC u Tyr	3)·
	AA As	c ct n Le	BU AI	GC CA rg Hi 15	С ДА s As	T CTO	3 AG 1 Se	T CTO T Let 40	u As	T GG p Gl	Τ CA 7 Gl	A CCC	G CT. D Le	u Ası	r cro	G CCA u Pro	\ 144 >
10	CT ^e	נו נו	AT GO T Al	C AC	G CCC	G GT: o Val	As _t	Pro	G AA D Ly:	A AC	C CT	G CA Gli Gli	ı Arç	CAC g Glr	G CAJ n Glr	A GCC n Ala	132
15	GG; G1; 65	/ 61	G GA y As	C GG' p Gl	T AC	A GGC r Gly 70	Ser	T AGT Ser	r cc	G GCT	r GG a Gly 7	/ Gl}	Γ CAJ ⁄ Glr	A GGG	AG1	GTT Val 80	
20	CAC 11D	G GG	C TG y Tr	G CGG	TA1 7 T, 1	Pro	Leu	TTG Leu	GT/	GAA Glu 90	Arç	GCC Ala	CGC Arg	TCT Ser	GCC Ala 95	Val	288
25	AGT Ser	Le	G TT u Le	G ACT Thr 100	GIR	TTC Phe	GGC Gly	AAC Asn	Ser 105	Leu	CAP Glr	ACA Thr	ACC Thr	Leu 110	Glu	CAT His	336
	CAG Gln	GA' As	T AA' P Asi 11	T GAA n Glu 5	LAA Lys	ATG Met	ACG Thr	Ile 120	Leu	TTG Leu	CAC Glr	ACT Thr	CAA Gln 125	Gln	GAA Glu	GCC Ala	384
30	ATC Ile	CTC Let 130	т газ	A CAT 5 His	CAG Gln	CAC	GAT Asp 135	ATA Ile	CAA Gln	CAA Gln	AAT Asn	AAT Asn 140	Leu	AAA Lys	GGA Gly	TTA Leu	432
35	CAA Gln 145	CAC	AGC Ser	CTG Leu	ACC Thr	GCA Ala 150	TTA Leu	CAG Gln	GCT Ala	AGC Ser	CGT Arg 155	Asp	GGC Gly	GAC Asp	ACA Thr	TTG Leu 160	480
40	CGG Arg	CAA Glr	Lys	CAT His	TAC Tyr 165	AGC Ser	GAC Asp	CTG Leu	ATT	AAC Asn 170	GGT Gly	GGT Gly	CTA Leu	TCT Ser	GCG Ala 175	GCA Ala	523
45	GAA Glu	ATC	GCC Ala	GGT Gly 180	CTG Leu	ACA Thr	CTA Leu	CGC Arg	AGC Ser 185	ACC Thr	GCC Ala	ATG Met	ATT	ACC Thr 190	AAT Asn	GGC Gly	-576
	GTT Val	GCA Ala	ACG Thr 195	GGA Gly	TTG Leu	CTG Leu	ATT Ile	GCC Ala 200	GGC Gly	GGA Gly	ATC Ile	GCC Ala	AAC Asn 205	GCG Ala	GTA Val	CCT Pro	624
50	AAC Asn	GTC Val 210	rne	GGG Gly	CTG Leu	Ala	AAC Asn 215	GGT Gly	GGA Gly	TCG Ser	GAA Glu	TGG Trp 220	GGA Gly	GCG Ala	CCA Pro	TTA Leu	672
55	ATT Ile 225	GGC Gly	TCC Ser	GGG Gly	CAA Gln	GCA Ala 230	ACC Thr	CAA Gln	GTT Val	GGC Gly	GCC Ala 235	GGC Gly	ATC Ile	CAG Gln	GAT Asp	CAG Gln 240	720
60	AGC Ser	GCG Ala	GGC Gly	ATT Ile	TCA Ser 245	GAA (Glu	GTG Val	ACA Thr	GCA Ala	GGC Gly 250	TAT Tyr	CAG Gln	CGT Arg	CGT Arg	CAG Gln 255	GAA Glu	768
65	GAA Glu	TGG Trp	GCA Ala	TTG Leu 260	CAA Gln	CGG (GAT Asp	Ile .	GCT Ala 265	GAT Asp	AAC Asn	GAA Glu	ATA Ile	ACC Thr 270	CAA Gln	CTG Leu	31¢
	GAT	GCC	CAG	ATA	CAA	AGC (TG	CAA (GAG	CAA	ATC	ACG	λТG	GCA	CAA	AAA	864

WU Y//1/432 PC17US96/18003

Asp Ala Gin Tie Gin Ser Leu Gin Glu Gin Tie Thr Met Ala Gin Lys CAG ATC ACG CTC TCT GAA ACC GAA CAA GCG AAT GCC CAA GCG ATT TAT 312 Oln Ile Thr Leu Ser Glu Thr Glu Gln Ala Asn Ala Gln Ala Ile Tyr 290 GAC CTG CAA ACC ACT CGT TTT ACC GGG CAG GCA CTG TAT AAC TGG ATG Asp Leu Gln Thr Thr Arg Phe Thr Gly Gln Ala Leu Tyr Asn Trp Met 10 310 GCC GGT CGT CTC TCC GCG CTC TAT TAC CAA ATG TAT GAT TCC ACT CTG 1008 Ala Gly Arg Leu Ser Ala Leu Tyr Tyr Gln Met Tyr Asp Ser Thr Leu 15 CCA ATC TGT CTC CAG CCA AAA GCC GCA TTA GTA CAG GAA TTA GGC GAG 1056 Pro Ile Cys Leu Gln Pro Lys Ala Ala Leu Val Gln Glu Leu Gly Glu 345 AAA GAG AGC GAC AGT CTT TTC CAG GTT CCG GTG TGG AAT GAT CTG TGG 1104 Lys Glu Ser Asp Ser Leu Phe Gln Val Pro Val Trp Asn Asp Leu Trp 360 CAA GGG CTG TTA GCA GGA GAA GGT TTA AGT TCA GAG CTA CAG AAA CTG 1152 Gin Gly Leu Leu Ala Gly Glu Gly Leu Ser Ser Glu Leu Gin Lys Leu 25 375 380 GAT GCC ATC TGG CTT GCA CGT GGT GGT ATT GGG CTA GAA GCC ATC CGC 1200 Asp Ala Ile Trp Leu Ala Arg Gly Gly Ile Gly Leu Glu Ala Ile Arg 30 ACC GTG TCG CTG GAT ACC CTG TTT GGC ACA GGG ACG TTA AGT GAA AAT 1248 Thr Val Ser Leu Asp Thr Leu Phe Gly Thr Gly Thr Leu Ser Glu Asn 405 410 35 ATC AAT AAA GTG CTT AAC GGG GAA ACG GTA TCT CCA TCC GGT GGC GTC 1296 Ile Asn Lys Val Leu Asn Gly Glu Thr Val Ser Pro Ser Gly Gly Val 425 ACT CTG GCG CTG ACA GGG GAT ATC TTC CAA GCA ACA CTG GAT TTG AGT 1344 40 Thr Leu Ala Leu Thr Gly Asp Ile Phe Gln Ala Thr Leu Asp Leu Ser CAG CTA GGT TTG GAT AAC TCT TAC AAC TTG GGT AAC GAG AAG AAA CGT 1392 Gln Leu Gly Leu Asp Asn Ser Tyr Asn Leu Gly Asn Glu Lys Lys Arg 455 CGT ATT AAA CGT ATC GCC GTC ACC CTG CCA ACA CTT CTG GGG CCA TAT 1440 Arg Ile Lys Arg Ile Ala Val Thr Leu Pro Thr Leu Leu Gly Pro Tyr 50 470 475 CAA GAT CTT GAA GCC ACA CTG GTA ATG GGT GCG GAA ATC GCC GCC TTA 1488 Gin Asp Leu Glu Ala Thr Leu Val Met Gly Ala Glu Ile Ala Ala Leu 485 55 TCA CAC GGT GTG AAT GAC GGA GGC CGG TTT GTT ACC GAC TTT AAC GAC 1536 Ser His Gly Val Asn Asp Gly Gly Arg Phe Val Thr Asp Phe Asn Asp 500 AGC CGT TTT CTG CCT TTT GAA GGT CGA GAT GCA ACA ACC GGC ACA CTG 1584 Ser Arg Phe Leu Pro Phe Glu Gly Arg Asp Ala Thr Thr Gly Thr Leu GAG CTC AAT ATT TTC CAT GCG GGT AAA GAG GGA ACG CAA CAC GAG TTG 1632 Glu Leu Asn Ile Phe His Ala Gly Lys Glu Gly Thr Gln His Glu Leu 535 540

60

5	7a. 549 GA0	l Al.	a Asi G TA	n Lei	s AGʻ	r Asp 550	o Ile	C AT	r st: e Va.	G CAT I Hi	T CT: 5 Le: 55		r tag	c ato	C AT	T CGA e Arg Sec	1639
10	(2) IN	FOR	MATI	ON F	OR :	SEQ	ID i	NO:3	0 :							
15			(i)		QUEN (A) (B) (D)	LEMO	STH: E: a	561 mino	am ac	ino id		ds					
20				MO SE							o r	D NO	. 30				
25	Ala 1	Gly				Asn					Asp	Phe			Pro 15		
	Asn	Asp	Val	Leu 20	Leu	Gly	Tyr	Trp	Asp 25		Leu	Glu	Leu	Arg 30		Tyr	
30	Asn	Leu	Arg 35	His	Asn	Leu	Ser	Leu 40		Gly	Gln	Pro	Leu 45		Leu	Pro	
	Leu	Tyr 50	Ala	Thr	Pro	Val	Asp 55	Pro	Lys	Thr	Leu	Gln 60	Arg	Gln	Gln	Ala	
35	65					70					75					80	
40					85					90		Ala			95		
				100					105			Thr		110			
45			115					120				Thr	125				
50		130					135					Asn 140					
30	145					150					155	Asp				160	
55					165					170		Gly			175		
				180					185			Met		190			
6()			195					200				Ala	205				
		210					215					Trp 220	-				
65	Ile	Gly	Ser	Gly	Gln	Ala	Thr	Gln	Val	Gly	Ala	Gly	Ile	Gln	Asp	Gln	

-157-

WU 9//1/432 PCT/US96/18003

	-	225					23	9.0						23	5						246
	5				Ile	- • •						•	250						25	5	Glu
					Leu 260						20)						270)		
10					Ile				•	200						2	85				
15					Leu			٠.	•						30	0					
13	3 (Thr									212						3	20
20												3.	30						33	5	
					Leu (243						3	50			
25					sp s				٠, ر	00						36	5				
30					eu A			.	•						380						
50					rp L	•							3	כצ						4 (00
35						• •						41	U						415		
				-						4	25						4:	30			
40			-	-	eu Th				44	U						445					
45					u As									4	60						
.5					g Il	•							4/	>						48	0
50					u Al. 48	•					•	190						4	95		
	Ser									50	75						51	0			
55	Ser								J20						5	25					
60							,	<i>.</i>						54	0						
	7al . 545		voll	reu	ser	55)	p I O	1e	Ile	Va	1 H	is	Leu 555	As	n T	ŗr	Ile	11		rg 60	
	Asp A	· · a	-																		

(2) INFORMATION FOR SEQ ID NO:31: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4458 base pairs 5 (B) TYPE: nucleic acid (C) STPANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 10 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..4458 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31: ATG CAG GAT TOA COA GAA GTA TOG ATT ACA ACG CTG TOA CTT COO AAA 20 Met Gln Asp Ser Pro Glu Val Ser Ile Thr Thr Leu Ser Leu Pro Lys GGT GGC GGT GCT ATC AAT GGC ATG GGA GAA GCA CTG AAT GCT GCC GGC Gly Gly Gly Ala Ile Asn Gly Met Gly Glu Ala Leu Asn Ala Ala Gl; 25 CCT GAT GGA ATG GCC TCC CTA TCT CTG CCA TTA CCC CTT TCG ACC GGC Pro Asp Gly Met Ala Ser Leu Ser Leu Pro Leu Pro Leu Ser Thr Gly 30 AGA GGG ACG GCT CCT GGA TTA TCG CTG ATT TAC AGC AAC AGT GCA GGT Arg Cly Thr Ala Pro Gly Leu Ser Leu Ile Tyr Ser Asn Ser Ala Gly 55 AAT GGG CCT TTC GGC ATC GGC TGG CAA TGC GGT GTT ATG TCC ATT AGC Asn Gly Pro Phe Gly Ile Gly Trp Gln Cys Gly Val Met Ser Ile Ser CGA CGC ACC CAA CAT GGC ATT CCA CAA TAC GGT AAT GAC GAC ACG TTC Arg Arg Thr Gln His Gly Ile Pro Gln Tyr Gly Asn Asp Asp Thr Phe CTA TCC CCA CAA GGC GAG GTC ATG AAT ATC GCC CTG AAT GAC CAA GGG Leu Ser Pro Gln Gly Glu Val Met Asn Ile Ala Leu Asn Asp Gln Gly 45 105 CAA CCT GAT ATC CGT CAA GAC GTT AAA ACG CTG CAA GGC GTT ACC TTG Gln Pro Asp Ile Arg Gln Asp Val Lys Thr Leu Gln Gly Val Thr Leu 120 5() CCA ATT TCC TAT ACC GTG ACC CGC TAT CAA GCC CGC CAG ATC CTG GAT Pro Ile Ser Tyr Thr Val Thr Arg Tyr Gln Ala Arg Gln Ile Leu Asp 135 55 TTC AGT AAA ATC GAA TAC TGG CAA CCT GCC TCC GGT CAA GAA GGA CGC Phe Ser Lys Ile Glu Tyr Trp Gln Pro Ala Ser Gly Gln Glu Gly Arg 155 GCT TTC TGG CTG ATA TCG ACA CCG GAC GGG CAT CTA CAC ATC TTA GGG Ala Phe Trp Lau Ile Ser Thr Pro Asp Gly His Leu His Ile Leu Gly

AAA ACC GCG CAG GCT TGT CTG GCA AAT CCG CAA AAT GAC CAA CAA ATC 576 Lys Thr Ala Gln Ala Cys Leu Ala Asn Pro Gln Asn Asp Gln Gln Ile

130 135 GCC CAG TGG TTG CTG GAA GAA ACT GTG ACG CCA GCC GGT GAA CAT GTC 624 Ala Gin Trp Leu Leu Glu Giu Thr Val Thr Pro Ala Gly Glu His Val 135 AGC TAT CAA TAT CGA GCC GAA GAT GAA GCC CAT TGT GAC GAC AAT GAA ser Tyr Gln Tyr Arg Ala Glu Asp Glu Ala His Cys Asp Asp Asn Glu 10 AAA ACC GCT CAT CCC AAT GTT ACC GCA CAG CGC TAT CTG GTA CAG GTG Lys Thr Ala His Pro Asn Val Thr Ala Gln Arg Tyr Leu Val Gln Val 230 AAC TAC GGC AAC ATC AAA CCA CAA GCC AGC CTG TTC GTA CTG GAT AAC Asn Tyr Gly Asn Ile Lys Pro Gln Ala Ser Leu Phe Val Leu Asp Asn 245 250 GCA CCT CCC GCA CCG GAA GAG TGG CTG TTT CAT CTG GTC TTT GAC CAC Ala Pro Pro Ala Pro Glu Glu Trp Leu Phe His Leu Val Phe Asp His 20 265 GGT GAG CGC GAT ACC TCA CTT CAT ACC GTG CCA ACA TGG GAT GCA GGT Gly Glu Arg Asp Thr Ser Leu His Thr Val Pro Thr Trp Asp Ala Gly 25 280 285 ACA GCG CAA TGG TCT GTA CGC CCG GAT ATC TTC TCT CGC TAT GAA TAT Thr Ala Gln Trp Ser Val Arg Pro Asp Ile Phe Ser Arg Tyr Glu Tyr 290 295 30 GGT TTT GAA GTG CGT ACT CGC CGC TTA TGT CAA CAA GTG CTG ATG TTT 960 Gly Phe Glu Val Arg Thr Arg Arg Leu Cys Gln Gln Val Leu Met Phe 310 CAC CGC ACC GCG CTC ATG GCC GGA GAA GCC AGT ACC AAT GAC GCC CCG 1008 His Arg Thr Ala Leu Met Ala Gly Glu Ala Ser Thr Asn Asp Ala Pro GAA CTG GTT GGA CGC TTA ATA CTG GAA TAT GAC AAA AAC GCC AGC GTC 1056 Glu Leu Val Gly Arg Leu Ile Leu Glu Tyr Asp Lys Asn Ala Ser Val 40 345 ACC ACG TTG ATT ACC ATC CGT CAA TTA AGC CAT GAA TCG GAC GGG AGG 1104 Thr Thr Leu Ile Thr Ile Arg Gln Leu Ser His Glu Ser Asp Gly Arg 45 355 360 CCA GTC ACC CAG CCA CCA CTA GAA CTA GCC TGG CAA CGG TTT GAT CTG 1152 Pro Val Thr Gln Pro Pro Leu Glu Leu Ala Trp Gln Arg Phe Asp Leu 375 50 GAG AAA ATC CCG ACA TGG CAA CGC TTT GAC GCA CTA GAT AAT TTT AAC 1200 Clu Lys Ile Pro Thr Trp Gln Arg Phe Asp Ala Leu Asp Asn Phe Asn 400 TCG CAG CAA CGT TAT CAA CTG GTT GAT CTG CGG GGA GAA GGG TTG CCA 1248 Ser Gln Gln Arg Tyr Gln Leu Val Asp Leu Arg Gly Glu Gly Leu Pro GGT ATG CTG TAT CAA GAT CGA GGC GCT TGG TGG TAT AAA GCT CCG CAA 1296 Gly Met Leu Tyr Gln Asp Arg Gly Ala Trp Trp Tyr Lys Ala Pro Gln 420 CGT CAG GAA GAC GGA GAC AGC AAT GCC GTC ACT TAC GAC AAA ATC GCC 1344 Arg Gln Glu Asp Gly Asp Ser Asn Ala Val Thr Tyr Asp Lys Ile Ala 440

60

	Pr	OF	7G 00 9u Pi 50	T AI	C CT.	A CC u Pr	0 Asi 15	n Le	G CA u Gl	G GA n As	T AA p As	T GC n Al 46	₃ Se	r Le	TA 2° eM Me	G GA C As	T 133
5	AT 11 46	a Y	AC SC sn Gl	A GA Y Asi	c GG p Gl	C CA y Gli 470	n Le	ı yal	T TG	G GT P Va	T GT 1 Va 47	l Th:	r YI	C TC a Se	c gg r gl	T AT y 11 43	e
10	og Ar	g GI	A TA Y TY	C CA	T AG: 5 Se: 485	r GH	G CAJ n Glr	A CC	C GA	T GG: P Gly 490	Y Ly's	G TG(s Tr	G AC	G CA r Hi	C TT S Ph	e Thi	5 143 C
15	CC: Pro	A AT	C AA e As	T GCC n Ala 500	ı Let	CCC Pro	STO Val	GAJ Glu	TAT 1 Ty: 505	. Phe	CA1	r cca	A AGO Se:	C ATC	e Gli	G TTC	153 •
20	GC1 Als	r GA A As	C CT p Le 51	T ACC u Thr 5	GGG Gly	GCA Ala	GGC Gly	Leu 520	ı Ser	GAT Asp	TT/ Leu	GTC Val	TTC Let 525	ılle	GG(ccc Pro	158
	lys	AG Se 53	r va.	G CGT l Arg	CTA Leu	TAT Tyr	GCC Ala 535	Asn	CAG Gln	CGA Arg	AAC Asn	GGC Gly 540	Trp	G CG1	r AA2 g Lys	A GGA Gly	163.
25	GAA Glu 545	.45	r GTC P Val	CCC Pro	CAA Gln	TCC Ser 550	ACA Thr	GGT	ATC	ACC Thr	CTG Leu 555	Pro	GTC Val	ACA Thr	GGG Gly	ACC Thr 560	
30	GAT Asp	GC0 Ala	C CGC	AAA Lys	CTG Leu 565	GTG Val	GCT Ala	TTC Phe	AGT Ser	GAT Asp 570	Met	CTC Leu	GGT Gly	TCC Ser	GGT Gly 575	Gln	1728
35	CAA Gln	CAT	CTC Lev	GTG Val 580	GAA Glu	ATC Ile	AAG Lys	GGT Gly	AAT Asn 585	CGC Arg	GTC Val	ACC Thr	TGT Cys	TGG Trp 590	Pro	AAT Asn	1776
40	CTA Leu	GGC	CAT His 595	GGC	CGT Arg	TTC Phe	GGT Gly	CAA Gln 600	CCA Pro	CTA Leu	ACT Thr	CTG Leu	TCA Ser 605	Gly	TTT Phe	AGC Ser	1324
-	CAG Gln	CCC Pro 610	GIU	AAT Asn	AGC Ser	TTC Phe	AAT Asn 615	CCC Pro	GAA Glu	CGG Arg	CTG Leu	TTT Phe 620	CTG Leu	GCG Ala	GAT Asp	ATC Ile	1872
45	GAC Asp 625	GGC Gly	TCC Ser	GGC Gly	ACC Thr	Thr	Asp	Leu	Ile	Tyr	Ala	Gln	TCC Ser	GGC	TCT Ser	TTG Leu 640	1920
50	CTC Leu	ATT	TAT Tyr	CTC Leu	AAC Asn 645	CAA Gln	AGT Ser	GGT Gly	AAT Asn	CAG Gln 650	TTT Phe	GAT Asp	GCC Ala	CCG Pro	TTG Leu 655	ACA Thr	1968
55	TTA Leu	GCG Ala	TTG Leu	CCA Pro 660	GAA Glu	GGC Gly	GTA Val	CAA Gln	TTT Phe 665	GAC Asp	AAC Asn	ACT Thr	TGC Cys	CAA Gln 670	CTT Leu	CAA Gln	2015
60	GTC Val	GCC Ala	GAT Asp 675	ATT Ile	CAG Gln	GGA Gly	Leu	GGG Gly 680	ATA Ile	GCC Ala	AGC Ser	TTG Leu	ATT Ile 685	CTG Leu	ACT Thr	GTG Val	2064
	PIO	CAT His 690	ATC Ile	GCG Ala	CCA Pro	Hls	CAC His 695	TGG Trp	CGT Arg	TGT Cys	GAC Asp	CTG Leu 700	TCA Ser	CTG Leu	ACC Thr	AAA Lys	2112
65	CCC	TGG Trp	TTC Leu	TTG	AAT (Asn '	GTA . Val !	ATG . Met .	AAC Asn	AAT Asn	AAC Asn	CGG Ara	GGC Glv	GCA Ala	CAT	CAC	ACG	2160

	705	5				710)				715	5				720	
5						Sər					Leu	GAT Asp				. Gln	2203
10					Gly	_				C7s		CTS Leu			Pro		2256
•••				Trp					Gln			ATC Ile		Gly			2304
15			Ser					Ser				TGG Trp 780	Asp				2352
20												ACA Thr					2400
25												CCG Pro					2448
30	AGC Ser	TGG Trp	TTT Phe	GCC Ala 820	ACC Thr	GGC Gly	ATG Met	GAT Asp	GAA Glu 825	GTA Val	GAC Asp	AGC Ser	CAA Gln	TTA Leu 830	GCT Ala	ACG Thr	2496
	GAA Glu	TAT Tyr	TGG Trp 835	CAG Gln	GCA Ala	GAC Asp	ACG Thr	CAA Gln 840	GCT Ala	TAT Tyr	AGC Ser	GGA Gly	TTT Phe 845	GAA Glu	ACC Thr	CGT Arg	2544
35												CAA Gln 860					2592
40	AAT Asn 865	GAG Glu	ACA Thr	CAA Gln	CGT Arg	AAC Asn 870	TGG Trp	CTG Leu	ACG Thr	CGA Arg	GCG Ala 875	CTT Leu	AAA Lys	GCC	CAA Gln	CTG Leu 880	2640
45												GAT Asp					2688
5 0	CCT Pro	TAT Tyr	ACC Thr	GTC Val 900	AGT Ser	GAA Glu	TCG Ser	CGC Arg	TAT Tyr 905	CAG Gln	GTA Val	CGC Arg	TCT Ser	ATT Ile 910	CCC Pro	GTA Val	2736
	AAT Asn	AAA Lys	GAA Glu 915	ACT Thr	GAA Glu	TTA Leu	TCT Ser	GCC Ala 920	TGG Trp	GTG Val	ACT Thr	GCT Ala	ATT Ile 925	GAA Glu	AAT Asn	Arg	2784
55	Ser	TAC Tyr 930	CAC His	TAT Tyr	GAA Glu	Arg	ATC Ila 935	ATC Ile	ACT Thr	GAC Asp	CCA Pro	CAG Gln 940	TTC Phe	AGC Ser	CAG Gln	AGT Ser	2832
60	ATC Ile 945	AAG Lys	TTG Leu	CAA Gln	Hıs	GAT Asp 950	ATC Ile	TTT Phe	GGT Gly	Gln	TCA Ser 955	CTG Leu	CAA Gln	AGT Ser	GTC Val	GAT Asp 960	2880
65	ATT Ile	GCC Ala	TGG Trp	Pro	CGC Arg 965	CGC Arg	GAA Glu	AAA Lys	Pro	GCA Ala 970	CTG Val	AAT Asn	CCC Pro	TAC Tyr	CCG Pro 975	CCT Pro	2928

	ACT Thr	TTG Leu	205 Pro	GAA Glu 980	ACG Thr	CTA Leu	TTT Phe	GAC Asp	33C 3er 385	AGT Ser	TAT Pyr	SAT Asp	GAT Asp	CAA Gln 990	CAA Gln	TAA Jin	2976
5	CTA Leu	TTA Leu	CGT Arg 995	CTS Leu	GTG Val	AGA	CAA Gln	AAA Lys 100	Asn	AGC Ser	TGG Trp	CAT	CAC His 100	Leu	ACT Thr	GAT Asp	3024
10	96 6 617	GAA Glu 101)	Asn	TGG Trp	CGA Arg	TTA Leu	GGT Gly 101	Leu	CCG Pro	AAT Asn	SCA Ala	CAA Gln 102	Arg	CGT	GAT Asp	GTT Val	3072
15	TAT T/r 1025	Thr					Lys					Gly					3120)
20	ATC Ile	TTG Leu	C TG Leu	AAA Lys	GAT Asp 1045	Asp	GGC	CTG Leu	CTA Leu	GCA Ala 105	Asp	GAA Glu	AAA Lys	GCG Ala	GCC Ala 105	Val	3168
-	TAT Tyr	CTG Leu	GGA Gly	CAA Gln 1060	Gln	CAG Gln	ACG Thr	TTT	TAC Tyr 1065	Thr	GCC Ala	GGT Gly	CAA Gln	GCG Ala 1070	Glu	GTC Val	3216
25	ACT Thr	CTA Leu	GAA Glu 1075	Lys	CCC Pro	ACG Thr	TTA Leu	CAA Gln 1080	Ala	C TG Leu	GTC Val	GCG Ala	TTC Phe 1085	Gln	GAA Glu	ACC Thr	3264
30	GCC . Ala !		Met					Leu					Gly				3312
35	GAG (Glu (1105	CAA Gln	GAG Glu	TTG Leu	AAT Asn	ACC Thr 1110	Ala	CTG Leu	ACA Thr	CAG Gln	GCC Ala 1115	Gly	TAT Tyr	CAG Gln	CAA Gln	GTC Val 1120	
Ю	GCG (Thr					Pro					Arg	3408
	CAA (GGT Gly	TAT Tyr	ACC Thr 1140	qaA	TAC Tyr	GGT Gly	GAC Asp	GCC Ala 1145	Ala	CAG Gln	TTC Phe	TGG Trp	CGG Arg 1150	Pro	CAG Gln	3456
15	GCT (Asn					Gly					Thr			3504
0	ACC C		His					Gln					Ala				3552
5	ACG C Thr C 1185						Tyr					Pro					
60	GAT A					Gln					Leu					Arg	3648
•••	GTA A Val 1		Thr		Arg					Clu					Ala		3596
5	TAT T																

1235 1240 1245 GOA TTA ACC GGC GCA CTC COT STT GCC CAA TGT TTA GTC TAT GCC GTT 3792 Ala Leu Thr Gly Ala Leu Pro Val Ala Gln Cys Leu Val Tyr Ala Val 1250 1255 GAT AGC TGG ATG CCG TCG TTA TCT TTG TCT CAG CTT TCT CAG TCA CAA 3840 Asp Ser Trp Met Pro Ser Leu Ser Leu Ser Gln Leu Ser Gln Ser Gln 1255 1270 1275 10 GAA GAG GCA GAA GCG CTA TGG GCG CAA CTG CGT GCC GCT CAT ATG ATT 3888 Glu Glu Ala Glu Ala Leu Trp Ala Gln Leu Arg Ala Ala His Met Ile 1290 15 ACC GAA GAT GGG AAA GTG TGT GCG TTA AGC GGG AAA CGA GGA ACA AGC 3936 Thr Glu Asp Gly Lys Val Cys Ala Leu Ser Gly Lys Arg Gly Thr Ser 1300 1305 CAT CAG AAC CTG ACG ATT CAA CTT ATT TCG CTA TTG GCA AGT ATT CCC 3984 20 His Gln Asn Leu Thr Ile Gln Leu Ile Ser Leu Leu Ala Ser Ile Pro 1315 1325 CGT TTA CCG CCA CAT GTA CTG GGG ATC ACC ACT GAT CGC TAT GAT AGC 4032 Arg Leu Pro Pro His Val Leu Gly Ile Thr Thr Asp Arg Tyr Asp Ser 25 GAT CCG CAA CAG CAG CAC CAA CAG ACG GTG AGC TTT AGT GAC GGT TTT 4080 Asp Pro Gln Gln His Gln Gln Thr Val Ser Phe Ser Asp Gly Phe 1350 1355 30 GGC CGG TTA CTC CAG AGT TCA GCT CGT CAT GAG TCA GGT GAT GCC TGG 4128 Gly Arg Leu Leu Gln Ser Ser Ala Arg His Glu Ser Gly Asp Ala Trp 1365 35 CAA CGT AAA GAG GAT GGC GGG CTG GTC GTG GAT GCA AAT GGC GTT CTG 4176 Gin Arg Lys Glu Asp Gly Gly Leu Val Val Asp Ala Asn Gly Val Leu 1380 GTC AGT GCC CCT ACA GAC ACC CGA TGG GCC GTT TCC GGT CGC ACA GAA 4224 40 Val Ser Ala Pro Thr Asp Thr Arg Trp Ala Val Ser Gly Arg Thr Glu 1395 1400 1405 TAT GAC GAC AAA GGC CAA CCT GTG CGT ACT TAT CAA CCC TAT TTT CTA 4272 Tyr Asp Asp Lys Gly Gln Pro Val Arg Thr Tyr Gln Pro Tyr Phe Leu 45 1410 AAT GAC TGG CGT TAC GTT AGT GAT GAC AGC GCA CGA GAT GAC CTG TTT 4320 Asn Asp Trp Arg Tyr Val Ser Asp Asp Ser Ala Arg Asp Asp Leu Phe 1430 1435 50 GCC GAT ACC CAC CTT TAT GAT CCA TTG GGA CGG GAA TAC AAA GTC ATC 4368 Ala Asp Thr His Leu Tyr Asp Pro Leu Gly Arg Glu Tyr Lys Val Ile 1445 1450 55 ACT GCT AAG AAA TAT TTG CGA GAA AAG CTG TAC ACC CCG TGG TTT ATT 4416 Thr Ala Lys Lys Tyr Leu Arg Glu Lys Leu Tyr Thr Pro Trp Phe Ile 1460 1465 1470 GTC AGT GAG GAT GAA AAC GAT ACA GCA TCA AGA ACC CCA TAG

(2) INFORMATION FOR SEQ ID NO:32:

1475

60

65

4458

1485

Val Ser Glu Asp Glu Asn Asp Thr Ala Ser Arg Thr Pro

+1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1486 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

5

(ii) MOLECULE TYPE: protein

10			(xi)	SE	QUEN	CE I	DESC	RIPT	CION	: SE	Q I	ои с	: 32 :	}		
10	Met 1		Asp	Ser	Pro 5	Glu	Val	Ser	Ile	Thr 10		Leu	Ser	L⊕u	Pro 15	Lys
15	Gly	Gly	Gly	Ala 20	Ile	Asn	Gly	Met	Gly 25	Glu	Ala	Leu	Asn	Ala 30		Glγ
	Pro	Asp	Gly 35		Ala	Ser	Leu	Ser 40	Leu	Pro	Leu	Pro	Leu 45	Ser	Thr	Gly
20	Arg	Gly 50	Thr	Ala	Pro	Gly	Leu 55	Ser	Leu	Ile	Tyr	Ser 60	Asn	Ser	Ala	Gly
25	Asn 65	Gly	Pro	Phe	Gly	Ile 70	Gly	Trp	Gln	Cys	Gly 75	Val	Met	Ser	Ile	Ser 80
	Arg	Arg	Thr	Gln	His 85	Gly	Ile	Pro	Gln	Tyr 90	Gly	Asn	Asp	Asp	Thr 95	Phe
30	Leu	Ser	Pro	Gln 100	Gly	Glu	Val	Met	Asn 105	Ile	Ala	Leu	Asn	Asp 110	Gln	Gly
	Gln	Pro	Asp 115	Ile	Arg	Gln	Asp	Val 120	Lys	Thr	Leu	Gln	Gly 125	Val	Thr	Leu
35	Pro	Ile 130	Ser	Tyr	Thr	Val	Thr 135	Arg	Tyr	Gln	Ala	Arg 140	Gln	lle	Leu	дsр
40	Phe 145	Ser	Lys	Ile	Glu	Tyr 150	Trp	Gln	Pro	Ala	Ser 155	Gly	Gln	Glu	Gly	Arg 160
••	Ala	Phe	Trp	Leu	Ile 165	Ser	Thr	Pro	Asp	Gly 170	His	Leu	His	Ile	Leu 175	Gly
45	Lys	Thr	Ala	Gln 180	Ala	Cys	Leu	Ala	Asn 185	Pro	Gln	Asn	Asp	Gln 190	Gln	Ile
	Ala	Gln	Trp 195	Leu	Leu	Glu	Glu	Thr 200	Val	Thr	Pro	λla	Gly 205	Glu	H15	Val
50	ser	Tyr 210	Gln	Tyr	Arg	Ala	Glu 215	Asp	Glu	Ala	Hıs	Cys 220	Asp	Asp	Asn	Glu
55	Lys 225	Thr	λla	His	Pro	Asn 230	Val	Thr	Ala	Gln	Arg 235	Tyr	Leu	Val	Gln	Val 240
	Asn	Tyr	Gly	Asn	11e 245	Lys	Pro	Gln	Ala	Ser 250	Leu	Phe	Val	Leu	Asp 255	Asn
60	Ala	Pro	Pro	Ala 260	Pro	Glu	Glu	Trp	Leu 265	Phe	His	Leu	Val	Phe 270	Asp	His
	Gly	Glu	Arg 275	Asp	Thr	Ser	Leu	His 280	Thr	Val	Pro	Thr	Trp 285	Asp	Ala	Gly
65	Thr	Ala	Gln	Trp	Ser	Val	Arg	Pro	Asp	Ile	Phe	Ser	Arg	Tyr	Glu	Tyr

			290						29	5						300)				
5	,	17 I 05	Phe	Glu	ı Va	ıl A	rg 1	hr 10	Ar	g Ai	rg	Leu	а су	's G 3	ln 15	Gln	Va	ıl L	eu M	1et	Phe 320
						3.	25						33	0					3	35	
10					34	U						345						3 9	0		7al
15				227						36	0						369	5			Arg
,,		,	70					•	3/5						3	80					Leu
20	,,						33	, 0						39	5						400
		r Gl				40	כ						410	;					4	15	•
25		y Me			420	'					4	25						13	0		
30		g Gl	•							440	•						445				
30		45	U					4	>>						46	50					-
35	403						4 /	U						479	5					4	180
		Gly				40)						•	490						49	5	
40		Ile		•	,00						50	15						510			
45		yst	21							520						5	25				
43		Ser 530	'					53	5						54	0					_
50	Glu 545						330							555						5	60
	Asp					202						5	70						575	5	
55	Gln)	6 U						585	5					1	590			
6 0	Leu		,	_					0	00						ő	05				
60	Gln	•••						01:	,						620	l			•		
65	Asp 625						טנס						6	335						64	0
	Leu	Ile	Туг	Le	eu A	\sn	Gln	Set	G	ly A	Asn	G	ln F	he	Asp	Al	a F	, ro	Leu	Th	r

		545		65 0	
	Leu Ala L	eu Pro Glu Gl;		Asp Asn Thr Cys	s Cloutou ole
:	5		005		670
			000	Ala Ser Leu Ile 685	5
10				Cys Asp Leu Ser 700	
				Asn Arg Gly Ala 715	720
15	Leu His Ty	r Arg Ser Ser 725	Ala Gln Phe T	Prp Leu Asp Glu	Lys Leu Gln 735
20	Leu Thr Ly	s Ala Gly Lys 740	Ser Pro Ala C 745	ys Tyr Leu Pro	Phe Pro Met
	His Leu Leu 755	Trp Tyr Thr	Glu Ile Gln A	sp Glu Ile Ser 765	Gly Asn Arg
25	Leu Thr Ser 770	Glu Val Asn	Tyr Ser His G	ly Val Trp Asp 780	Gly Lys Glu
	Arg Glu Phe 785	Arg Gly Phe 790	Gly Cys Ile Ly	ys Gln Thr Asp 795	Thr Thr Thr
30	Phe Ser His	Gly Thr Ala 805	Pro Glu Gln Al 81	a Ala Pro Ser 10	
35	Ser Trp Phe	Ala Thr Gly 1820	Met Asp Glu Va 825	l Asp Ser Gln	Leu Ala Thr 830
	Glu Tyr Trp 835	Gln Ala Asp 1	Thr Gln Ala Ty 840	r Ser Gly Phe (Glu Thr Arg
40	Tyr Thr Val 850	Trp Asp His T	Thr Asn Gln Th	r Asp Gln Ala E 860	Phe Thr Pro
	Asn Glu Thr 865	Gln Arg Asn T 870	rp Leu Thr Arg	g Ala Leu Lys o 875	Gly Gln Leu 880
45	Leu Arg Thr	Glu Leu Tyr G 885	ly Leu Asp Gly 890	y Thr Asp Lys G	
50	Pro Tyr Thr	Val Ser Glu S 900	er Arg Tyr Glr 905	n Val Arg Ser I 9	le Pro Val
	Asn Lys Glu 915	Thr Glu Leu Se	er Ala Trp Val 920	. Thr Ala Ile G 925	lu Asn Arg
55	Ser Tyr His '	Tyr Glu Arg II 93	le Ile Thr Asp 35	Pro Gln Phe Se	er Gln Ser
	Ile Lys Leu (945	Cln His Asp Il 950	le Phe Gly Gln	Ser Leu Gln Se	er Val Asp 960
60	Ile Ala Trp F	Pro Arg Arg Gl 965	u Lys Pro Ala 970	Val Asn Pro Ty	
65	Thr Leu Pro G	lu Thr Leu Ph 80	e Asp Ser Ser 985	Tyr Asp Asp Gl	in Gln Gln

Leu Leu Arg Leu Val Arg Gln Lys Asn Ser Trp His His Leu Thr Asp

TC 1/U390/15003

	995	1000	1005
	5	1013	Ala Gln Arg Arg Asp Val 1020
	1030	•	Glu Gly Ile Ser Leu Glu 1035 1040
10	1043	1020	1055
	Tyr Leu Gly Gln Gln Gln 1060	1065	1070
15	1075	1080	1085
20		.033	1100
	Glu Gln Glu Leu Asn Thr A 1105 1110	1	1115
25	Ala Arg Leu Phe Asn Thr A 1125	1130	1135
	Gln Gly Tyr Thr Asp Tyr G 1140	1142	1150
30	Ala Gln Arg Asn Ser Leu L 1155	1100	1165
35	Thr His His Cys Val Ile I 1170 12	le Gln Thr Gln As 175	sp Ala Ala Gly Leu Thr 1180
	Thr Gln Ala His Tyr Asp Ty 1185 1190	r Arg Phe Leu Th	nr Pro Val Gln Leu Thr 195 1200
40	Asp Ile Asn Asp Asn Gln Hi 1205	s Ile Val Thr Le 1210	eu Asp Ala Leu Gly Arg 1215
	Val Thr Thr Ser Arg Phe Tr 1220	p Gly Thr Glu Al 1225	a Gly Gln Ala Ala Gly 1230
45	Tyr Ser Asn Gln Pro Phe Th 1235	r Pro Pro Asp Se 1240	r Val Asp Lys Ala Leu 1245
50	Ala Leu Thr Gly Ala Leu Pro 1250 125	o Val Ala Gln Cy: 55	s Leu Val Tyr Ala Val 1260
	Asp Ser Trp Met Pro Ser Let 1265 1270	ı Ser Leu Ser Glr 127	n Leu Ser Gln Ser Gln 75 1280
55	Glu Glu Ala Glu Ala Leu Tr 1285	1290	1295
	Thr Glu Asp Gly Lys Val Cys	Ala Leu Ser Gly 1305	Lys Arg Gly Thr Ser

6() His Gln Asn Leu Thr Ile Gln Leu Ile Ser Leu Leu Ala Ser Ile Pro 1315 1320 1325

Arg Leu Pro Pro His Val Leu Gly Ile Thr Thr Asp Arg Tyr Asp Ser 1330 1335 1340

Asp Pro Gln Gln Gln His Gln Gln Thr Val Ser Phe Ser Asp Gly Phe

	1345	1350		1355	.140
	Gly Arg L	eu Leu Gln Ser S 1365	Ser Ala Ar	g His Glu Ser G 1370	
		rs Glu Asp Gly 0 1380	ly Leu Va 13	l Val Asp Ala A 85	sn Gly Val Leu 1390
10			1400	_	405
		•	***	g Thr Tyr Gln Pi 1420	
15	1425	1430		Ser Ala Arg As 1435	1440
20		-443		Gly Arg Glu Ty 1450	1455
			140		1470
25	Val Ser Glu 147	Asp Glu Asn As 5	p Thr Ala 1480	Ser Arg Thr Pr	o • 85
30	(2) INFORM	(B) TY (C) ST	ACTERIST NGTH: 3. PE: nucle	ICS: 288 base pairs eic acid SS: double	3
35	(ii)	MOLECULE TYPE	E: DNA	(genomic)	
40	(Xi) ATG GTG ACT Met Val Thr	GTT ATC CAA AAT	*	SEQ ID NO:33 TCA TTT TTA TCA Ser Phe Leu Ser	
45	GAA CAG CCC	CTG CTT GAC GCC	ርርም ጥአጥ	10 CAA AAC GTA TTT Gln Asn Val Phe	15
50	35	ura uta tut bue	40	TCC GTT CCC ACC Ser Val Pro Thr 45	Leu Pro Val
55	50	55	Arg Gin A	GCG CGG CAA CGT Ala Arg Gln Arg 60	Ala Glu Asn
	CTG AAA TCC (Lau Lys Ser)	CTC TAC CGA GCC Leu Tyr Arg Ala 70	TGG CAA T Trp Gln L	TG CGT CAG GAG eu Arg Gln Glu 75	CCG GTT ATT 240 Pro Val Ile 30
60	AAA GGG CTG C Lys Gly Leu !	CT AAA CTT AAC la Lys Leu Asn 85	ren GID 2	CC AAC GTT TCT er Asn Val Ser 90	GTG CTT CAA 238 Val Leu Gin 95
65	GAT GCT TTG C Asp Ala Leu V	TA GAG AAT ATT al Glu Asn Ile	GGC GGT G	AT GGG GAT TTC sp Gly Asp Phe	AGC GAT TTA 336

WU 9//1/432 PU 1/US90/18003

	100	105	116
5	ATG AAC CGT GCC AGT CAA Met Asn Arg Ala Ser Gin 115	TAT GCT GAC GCT GCC Tyr Ala Asp Ala Ala . 120	TOT ATT CAA TOO OTA 384 Ser Ile Gln Ser Leu 125
10		135	Arg Val Ala Lys Asp 140
16	CTG CAT AAA TCA GAT TCC Leu His Lys Ser Asp Ser 145	155	Asn Arg Arg Ala Asp 160
15	CTG AAG CAT CTG ATA TTA Leu Lys Asp Leu Ile Leu 165	170	sn Lys Glu Val Thr 175
20	TCC CTT GAT ATC TTG TTG (Ser Leu Asp Ile Leu Leu , 180	GAT GTG CTA CAA AAA G Asp Val Leu Gin Lys G 185	GC GGT AAA GAT ATT 576 ly Gly Lys Asp Ile 190
25	ACT GAG CTG TCC GGC GCA : Thr Glu Leu Ser Gly Ala 1 195	200	eu Pro Tyr Asp Asp 205
30	CAT CTG TCG CAA ATC GAT THIS Leu Ser Gln Ile Asp S	FCC GCT TTA TCG GCA CA Ser Ala Leu Ser Ala GI 215	In Ala Arg Thr Leu
	AAC GGT GTG TGG AAT ACT T Asn Gly Val Trp Asn Thr L 225 230	TG ACA GAT ACC ACG GO seu Thr Asp Thr Thr Al 235	TA CAA GCG GTT TCA 720 .a Gln Ala Val Ser 240
35	GAA CAA ACC AGT AAT ACG A Glu Gln Thr Ser Asn Thr A 245	AT ACA CGC AAA CTG TT sn Thr Arg Lys Leu Ph 250	C GCT GCC CAA GAT 768 e Ala Ala Gln Asp 255
40	GGT AAT CAA GAT ACA TTT T Gly Asn Gln Asp Thr Phe Pl 260	TT TCC GGA AAC ACT TT he Ser Gly Asn Thr Ph 265	T TAT TTC AAA GCG 816 e Tyr Phe Lys Ala 270
45	GTG GGA TTC AGC GGG CAA CC Val Gly Phe Ser Gly Gln Pr 275	CT ATG GTT TAC CTG TC. TO Met Val Tyr Leu Se: 280	A CAG TAC ACC AGC 864 r Gin Tyr Thr Ser 285
5()	GGG AAC GGC ATT GTC GGC GC Gly Asn Gly Ile Val Gly Al 290	ra oru nen ite viv Cl?	/ Asn Pro Asp Gln
	GCC GCC GCC GCA ATA GTC GC Ala Ala Ala Ile Val Al 305 310	A CCG TTG AAA CTC ACT a Pro Leu Lys Leu Thr 315	TTGG TCA ATG GCA 960 Trp Ser Met Ala 320
55	AAA CAG TGT TAC TAC CTC GT Lys Gln Cys Tyr Tyr Leu Va 325	C GCT CCC GAT GGT ACA 1 Ala Pro Asp Gly Thr 330	ACG ATG GGA GAC 1008 Thr Met Gly Asp
6()	GGT AAT GTT CTG ACC GGC TG Gly Asn Val Leu Thr Gly Cy: 340	T TTC TTA AGA GGC AAC s Phe Leu Arg Gly Asn 345	
65	CCG GAT AAA GAC GGT ATT TM Pro Asp Lys Asp Gly Ile Phe 355	T GCT CAG GTA GCC AAC B Ala Gln Val Ala Asn 360	AAA TCA GGC AGT 1104 Lys Ser Gly Ser 365

															•	C1/05	70/10003
	AC Th	T C2 T G1 37	in Pi	T TI	G CC u Pr	A AG o Se	C TT r Ph	e Hi	T CT s Le	G CC	G GT o Va	C AC 1 Th: 38	r Le	G GA	A CA u Hi	AC AGO .s Sei	1152
5	385	5 AS	я гу	'S AS	b GI	n Ty:	r Ty:	r Le	u Ly	s Th	r Gl: 39	u Gli 5	n Gl	у Ту	r Il	C ACC e Thr 400	•
10	val	l AS	b se	r se	40!	y Gli	n Sei	: Ası	n Tr	P Lys 410	s Ası	n Ala	a Lei	u Va	1 I1 41	_	
15	GIY	111	r Lly	42	p Lys	s G1}	Let	ı Let	1 Let 425	ı Thi	Phe	e Cys	Se	43	p Sei 0	C TCA r Ser	
20	GIY	111	43	5 Th	r Asr	1 Pro) Asp	440	Va]	l Ile	Pro	Pro	Ala 449	a Ilo	e Ası	r GAT n Asp	
	116	450))	r Pro	Pro) Ala	455	Glu	Thr	Leu	Ser	Leu 460	Thr	Pro	Va]	AGT Ser	1392
25	465	GII	, re	ı met	inr	470	Pro	Ala	Pro	Thr	Glu 475	Asp	Asp) Ile	Thi	AAC Asn 480	1440
30	nıs	171	GTA	Pne	485	GIĀ	Ala	Ser	Leu	Arg 490	Ala	Ser	Pro	Leu	Ser 495		1488
35	Sei	GIO	Leu	500	ser	Lys	Leu	Asn	Ser 505	Ile	Asp	Thr	Phe	Cys 510	Glu	AAG Lys	1536
40	1111	Arg	515	ser	Phe	Asn	Gln	Leu 520	Met	Asp	Leu	Thr	Ala 525	Gln	Gln		1584
	17.	530	GIII	ser	AGC Ser	116	Asp 535	Ala	Lys	Ala	Ala	Ser 540	Arg	Tyr	Val	Arg	1632
45	TTT Phe 545	Gly	GAA Glu	ACC Thr	ACC Thr	CCA Pro 550	ACC Thr	CGC Arg	GTC Val	AAT Asn	GTC Val 555	TAC Tyr	GGT Gly	GCC Ala	GCT Ala	TAT Tyr 560	1680
5 0	CTG Leu	AAC Asn	AGC Ser	ACA Thr	CTG Leu 565	GCA Ala	GAC Asp	GCG Ala	GCT Ala	GAT Asp 570	GGT Gly	CAA Gln	TAT Tyr	CTG Leu	TGG Trp 575	ATT Ile	1728
55	GIII	1111	Asp	580	AAG Lys	Ser	Leu	Asn	Phe 585	Thr	Asp	Asp	Thr	Val 590	Val	Ala	1776
60	TTA Leu	GCC Ala	GGT Gly 595	CGC Arg	GCT Ala	GAA Glu	Lys	CTG Leu 600	GTA Val	CGT Arg	TTA Leu	Ser .	TCC Ser 605	CAG Gln	ACC Thr	GGG Gly	1824
	CTA Leu	TCA Ser 610	TTT Phe	GAA Glu	GAA Glu	Leu .	GAC Asp 615	TGG Trp	CTG Leu	ATT Ile	Ala .	AAT (Asn) 620	GCC Ala	AGT Ser	CGT Arg	AGT Ser	1872
65	GTG (CCG Pro	GAC Asp	CAC His	CAC (GAC A	AAA /	ATT (GTG Val	CTG (Leu)	GAT A	AAG (Lys 1	CCG Pro	GTC Val	CTT Leu	GAA Glu	1920

110 2/11/1704

	525		63	o .		÷35	540
5	Ala Lei	G GCA GAO u Ala Glu	TAT GTO Tyr Val	C AGC CT3 l Ser Leu	A AAA CAG I Lys Gln 650	CGC TAT GGG Arg Tyr Gly	CTT GAT GCC 1963 Leu Asp Ala 655
10	Asn Thi	TTT GCC r Phe Ala 660	Thr Phe	ATT AGT Elle Ser	GCA GTA Ala Val 665	AAT CCT TAT Asn Pro Tyr	ACG CCA GAT 2015 Thr Pro Asp 670
	CAG ACA	CCC AGT Pro Ser 675	TTC TAT	GAA ACC Glu Thr 680	Ala Phe	CGC TCT GCC Arg Ser Ala 685	GAC GGT AAT 2064 Asp Gly Asn
15	CAT GTC His Val 690	TIE VIT	CTA GGT Leu Gly	ACA GAG Thr Glu 695	GTG AAA Val Lys	TAT GCA GAA Tyr Ala Glu 700	AAT GAG CAG 2112 Asn Glu Gln
20	GAT GAG Asp Glu 705	TTA GCC Leu Ala	GCC ATA Ala Ile 710	Cys Cys	AAA GCA Lys Ala	TTG GGT GTC Leu Gly Val 715	ACC AGT GAT 2160 Thr Ser Asp 720
25	GAA CTG Glu Leu	CTC CGT Leu Arg	ATT GGT Ile Gly 725	CGC TAT Arg Tyr	TGC TTC Cys Phe 730	GGT AAT GCA Gly Asn Ala	GGC AGT TTT 2208 Gly Ser Phe 735
30	ACC TTG Thr Leu	GAT GAA Asp Glu 740	TAT ACC Tyr Thr	GCC AGT Ala Ser	CAG TTG Gln Leu 745	TAT CGC TTC Tyr Arg Phe	GGC GCC ATT 2256 Gly Ala Ile 7 5 0
	CCC CGT Pro Arg	TTG TTT Leu Phe 755	GGG CTG Gly Leu	ACA TTT Thr Phe 760	GCC CAA Ala Gln	GCC GAA ATT Ala Glu Ile 765	TTA TGG CGT 2304 Leu Trp Arg
35	CTG ATG Leu Met 770	GAA GGC Glu Gly	CIA TAE	GAT ATC Asp Ile. 775	TTA TTG	CAA CAG TTA (Gin Gin Leu (780	GGT CAG GCA 2352 Gly Gln Ala
40	AAA TCC Lys Ser 785	CTG CAA Leu Gln	CCA CTG Pro Leu 790	GCT ATT Ala Ile	Leu Arg 1	CGT ACC GAG (Arg Thr Glu (795	CAG GTG CTG 2400 Gln Val Leu 800
45	GAT TGG . Asp Trp !	Mer Ser	TCC GTA . Ser Val . 305	AAT CTA / Asn Leu :	AGT CTG A Ser Leu 1 810	ACT TAT CTG (Thr Tyr Leu (CAA GGG ATG 2448 Sin Gly Met 815
50	GTA AGT : Val Ser '	ACG CAA 1 Thr Gln 1 820	rgg Agc (rp ser (Gly Thr /	GCC ACC C Ala Thr A B25	GCT GAG ATG 1 Ala Glu Met F 8	TC AAT TTC 2496 he Asn Phe 30
	Dea Gra	AAC GTT 1 Asn Val (835	TGT GAC A	AGC GTG A Ser Val A 840	NAT AGT C	AA GCT GCC A in Ala Ala T 845	CT AAA GAA 2544 hr Lys Glu
55	ACA ATG C Thr Met 3 850	GAT TCG G Asp Ser A	ria ren c	CAG CAG A Gin Gin L 355	AA GTG C	TG CGG GCG C eu Arg Ala L 860	TA AGC GCC 2592 eu Ser Ala
60	GGT TTC C Gly Phe C 865	GGC ATT A	AG AGC A ys Ser A 870	VAT GTG A VSN Val M	et Gly I	TC GTC ACC T le Val Thr P 75	TC TGG CTG 2640 ne Trp Leu 880
65	GAG AAA A Glu Lys I	re int i	TC GGT A le Gly S 85	GT GAT A er Asp A	AT CCT T sn Pro Pl 890	TT ACA TTG Go he Thr Leu A	CA AAC TAC 2688 La Asn Tyr 895

	TOO CAT GAT ATT TAA ACT CTG TTT AGC CAT GAC AAT GCC ACG TTA GAG Trp His Asp Ile Gln Thr Leu Phe Ser His Asp Asn Ala Thr Leu Glu 900 905 910	2794
5	Ser Leu Gln Thr Asp Thr Ser Leu Val Ile Ala Thr Gln Gln Leu Ser 915 920 925	2784
10	930 935 Peu Ser Leu Thr Glu Gln Asp Leu 940	2832
15	945 950 955 960	2880
20	965 970 Ser Arg Phe Lys	2923
25	980 985 990	2976
	995 1000 1005	024
30	1010 1015 Lys Gly Thr Gly Ala Gln Val	072
35	1025 1030 1035 Ser Phe Thr Ser	120
40	1045 Leu Arg Val Gly Gln Arg Leu Asn Val	168
45	1060 Leu Ser Met Met Gin Ala Asp Pro 1070	216
-	GCT GCC GAG AGT AGC GCT TTA TTG GCA TCA GTA GCC CAA AAC TTA AGT 32 Ala Ala Glu Ser Ser Ala Leu Leu Ala Ser Val Ala Glin Asn Leu Ser 1080 1085 GCC GCA ATC AGC AAT CGT CAG TAA	964
5()	Ala Ala Ile Ser Asn Arg Gln · · · 1090 1095	85
55	(2) INFORMATION FOR SEQ ID NO:34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1095 amino acids (B) TYPE: amino acids (C) TOPOLOGY: linear	
60	(ii) MOLECULE TYPE: protein	
65	(XI) SEQUENCE DESCRIPTION: SEQ ID NO:34: Features From To Description 254 267 SEQ ID NO:15 254 492 TCAAii peptide	

WU 9//1/402 PU1/US90/18005

	5	Me 1	it '	Val	Thr	Va.	l Me	t GI	n A	sn	Lys	11	e Se	r Ph O	e L	eu s	er	Gly	Th:	3er
	•	G1	u (Gln	Pro	Leu 20	Leu)	ı As	ρÀ	.la	Gly	Ty 1	Glr	n As	n Va	al P	he	Asp 30	Ile	Ala
!	0	Se	r j	lle	Ser 35	Arg	Ala	Th	r P	he '	Val 40	Gln	Ser	. Va	l Pr		hr .	Leu	Pro	Val
		Lys	5 G	lu 50	Ala	His	Thr	Va.	LT	yr 1 55	Arg	Gln	Ala	Arg	g G1 6	n A: 0	rg :	Ala	Glu	Asn
1:	5	Leu 65	L	ys	Ser	Leu	Tyr	Arç	ı Al	la 1	rp	Gln	Leu	Arg	Gl.		lu I	Pro	Val	
•		Lys	G	ly i	Leu	Ala	Lys 85	Leu	As	n L	.eu	Gln	Ser 90	λsπ	Va.	l Se	r V	/al :	Leu 95	80 Gln
20		/sp	A.	la I	eu	Val 100	Glu	Asn	11	e G	ly	Gly 105	Asp	Gly	λsι	Ph	e S	er i		Leu
25		let	As	n A	rg . 15	Ala	Ser	Gln	Ty	r A	la . 20	Asp	Ala	Ala	Ser	: I1 12	e G		Ser	Ləu
	P	he	Se 13	r P	ro (Sly	Arg	Tyr	Al. 13	a Se	er i	Ala	Leu	Tyr	Arg	Va		la [.ys	Asp
30	L 1	eu 45	Hi	s L	ys S	Ser .	Asp	Ser 150	Se	r Le	ou l	lis	Ile	Asp 155			J Ai	rg A		
	L	eu	Ly	s A:	sp L	eu :	Ile 1 165	Leu	Ser	: G1	u 1	hr (Asn	Lys	. G1		al'	l60 Thr
35	Se	r	Lei	ı As	p I	le 1 80	Leu I	Leu	Asp	Va	1 L			Lys	Gly	Gly		's A	75 sp 1	le
40	Th	r	Glı	ı Le 19	u s	er G	ily a	la	Phe	Ph 20	e P		iet 1	Thr	Leu	Pro	Ту	.90 T As	sp /	sp
	Hi	s !	Leu 210	Se	r G	ln I	le A	sp :	Ser 215		_	eu S	er A	Ala (Gln	205 Ala		g Th	ır L	eu
45	As. 22	n (ly	Va	1 T1	rp A	sn T			Thi	r As	sp T	hr T	hr i	220 Ala	Gln	Al.	a Va	ıls	er
	Gl	u c	iln	Th	r Se	er A	sn T. 45		lsn	Thr	Ar	g L	ys L	:35 .eu £	Phe	Ala	Alá	a Gl	n A	40 sp
50	Gly	/ A	sn	Gli	n As 26	p Ti	hr Pl	he P	he	Ser	G1 26	y As	50 sn T	hr F	he '	Tyr	Ph∈	25 Ly		la
55	Val	G	ly	Phe 275			ly G	ln P	ro	Met 280	Va		yr Le	eu S	er (Gln	270 Tyr		r Se	er
							1 G1	y A		200				la G	ly A	285				
60							e Va	1 A.					's Le	u Ti	00					
						ту	r Le	•) As	5 G1	. >					32	0
65							s r Gl					2.2	U					335	j	
												174-								

				340)				345	5				350)	
5	Pro) Asp) Lys		Gly	Ile	Phe	Ala 360		Val	Ala	Asr	1 Lys 365		Gly	∕ Se
-	Thr	370	Pro	Leu	Pro	Ser	9he		Leu	Pro	Val	Thr 380		Glu	His	S S e
10	Glu 385	Asn	Lys	Asp	Gln	Tyr 390		Leu	Lys	Thr	Glu 395	Gln	Gly	Tyr	Ile	Th 40
			Ser		405					410					415	
15			Lys	420					425					430		
20			Pro 435					440					445			
		450	Ser				455					460				
25	465		Leu			470					175					480
30			Gly		485					490			W4 :	*	495	
30			Leu	500					505					510		
35			Leu 515					520					525			
		530	Gln				535					540				
40	545		Glu			550					555					560
45			Asp		565					570					575	
			Gly	580					585					590		
50			595					600					605			
		610	Phe				615					620				
55	625		Asp Ala			630					635					940
60					645					650					655	
,			Phe	660					665					670		
65			Pro 675					680					685			
	uis	val	Ile	WIG	reu	GIY	Thr	Glu	۸Ŧ	гÃ2	IYr	Ala	Glu	Asn	Glu	GIN

á9i) 695 700 Asp Glu Leu Ala Ala Ile Cys Cys Lys Ala Leu Gly Val Thr Ser Asp 5 Glu Leu Leu Arg Ile Gly Arg Tyr Cys Phe Gly Asn Ala Gly Ser Phe Thr Leu Asp Glu Tyr Thr Ala Ser Gln Leu Tyr Arg Phe Gly Ala Ile 10 745 Pro Arg Leu Phe Gly Leu Thr Phe Ala Gln Ala Glu Ile Leu Trp Arg 15 Leu Met Glu Gly Gly Lys Asp Ile Leu Leu Gln Gln Leu Gly Gln Ala Lys Ser Leu Gln Pro Leu Ala Ile Leu Arg Arg Thr Glu Gln Val Leu 20 Asp Trp Met Ser Ser Val Asn Leu Ser Leu Thr Tyr Leu Gln Gly Met Val Ser Thr Gln Trp Ser Gly Thr Ala Thr Ala Glu Met Phe Asn Phe 25 825 Leu Glu Asn Val Cys Asp Ser Val Asn Ser Gln Ala Ala Thr Lys Glu 30 Thr Met Asp Ser Ala Leu Gln Gln Lys Val Leu Arg Ala Leu Ser Ala Gly Phe Gly Ile Lys Ser Asn Val Met Gly Ile Val Thr Phe Trp Leu 870 35 Glu Lys Ile Thr Ile Gly Ser Asp Asn Pro Phe Thr Leu Ala Asn Tyr 890 Trp His Asp Ile Gln Thr Leu Phe Ser His Asp Asn Ala Thr Leu Glu 40 Ser Leu Gin Thr Asp Thr Ser Leu Val Ile Ala Thr Gin Gin Leu Ser 45 Gln Leu Val Leu Ile Val Lys Trp Leu Ser Leu Thr Glu Gln Asp Leu 935 Gin Leu Leu Thr Thr Tyr Pro Glu Arg Leu Ile Asn Gly Ile Thr Asn 50 Val Pro Val Pro Asn Pro Glu Leu Leu Thr Leu Ser Arg Phe Lys 970 Gln Trp Glu Thr Gln Val Thr Val Ser Arg Asp Glu Ala Met Arg Cys 55 Phe Asp Gln Leu Asn Ala Asn Asp Met Thr Thr Glu Asn Ala Gly Ser 60 Leu Ile Ala Thr Leu Tyr Glu Met Asp Lys Gly Thr Gly Ala Gln Val 1015 Asn Thr Leu Leu Cly Glu Asn Asn Trp Pro Lys Ser Phe Thr Ser 1035 Leu Trp Gln Leu Leu Thr Trp Leu Arg Val Gly Gln Arg Leu Asn Val

					1	045				L	05 Ú				1	555
5	G	ly s	er T	hr Ti	hr L. 060	eu G	ly As	sn L	au La 10	eu s 065	er M	et Me	et G		la As DTO	ip Pro
	A	la A	la G. 10	lu Se 075	er Se	er Al	la Le	eu Le	eu Al 080	la Se	er Va	al Al		ln As 085	in Le	u Ser
10	Al	la Al 10	la I;)90	le Se	er As	in Ar	g G1 109		•							
15	(2	!)	INFC (i)	RMA? SE	QUEN () ()	FOF NCE (A) B)	CHAR LE TY	ACTI NGTI PE:	ERIS H:	TICS 603 no a	ami acid	no a	cid:	s		
20			(ii)			ULE			pro							
			(xi)	SI	EQUE	NCE	DES	CRIF	TIO	N: S	EQ :	ID N	0:35	i :		
25	Pro 1) Le	ı Se	r Thi	r Ser	r Glu	ı Let	Thi	r Se	r Ly:	s Lei	ı Ası	ı Sei	r Ile	Asp 15	Thr
	Phe	e Cys	Glu	1 Lys 20	Thi	Arç	; Leu	ı Sər	Phe 25	ASI	Glr) Let	ı Met	Ası 30		Thr
30	Ala	Glr	Glr 35	s Ser	Туг	Ser	Gln	Ser 40	Ser	Ile	e Asp	Ala	Lys 45		Ala	Ser
35	Arg	T;'r 50	Val	. Arg	Phe	Gly	Glu 55	Thr	Thr	Pro	Thr	Arg 60	Val	Asn	Val	Tyr
	Gly 65	Ala	Ala	Tyr	Leu	Asn 70	Ser	Thr	Leu	Ala	Asp 75	Ala	Ala	Asp	Gly	Gln 30
40	Tyr	Leu	Trp	Ile	Gln 85	Thr	Asp	Gly	Lys	Ser 90	Leu	Asn	Phe	Thr	Asp 95	Asp
	Thr	Val	Val	Ala 100	Leu	Ala	Gly	Arg	Ala 105	Glu	Lys	Leu	Val	Arg 110	Leu	Ser
45	Ser	Gln	Thr 115	Gly	Leu	Ser	Phe	Glu 120	Glu	Leu	Asp	Trp	Leu 125	Ile	Ala	Asn
50	Ala	Ser 130	Arg	Ser	Val	Pro	Asp 135	His	His	Asp	Lys	Ile 140	Val	Leu	Asp	Lys
	Pro 145	Val	Leu	Glu	Ala	Leu 150	Ala	Glu	Туr	Val	Ser 155	Leu	Lys	Gln	λrg	Tyr 160
55	Gly	Ləu	Asp	Ala	Asn 165	Thr	Phe	Ala	Thr	Phe 170	Ile	Ser	Ala	Val	Asn 175	Pro
	Tyr	Thr	Pro	Asp	Gln	Thr	Pro	Ser	Phe	Tyr	Glu	Thr	Ala	Phe	Arg	Ser

Ala Asp Gly Asn His Val Ile Ala Leu Gly Thr Glu Val Lys T/r Ala

200

215

60

65

11.0 3/17/1977 LC 1/102AB/19007

	2.	3 l 2 S	Th.	r Je	er A.	sp G	lu i	.eu 230	La	u Ai	g.	Ile	G1	У А1 23	rg T 15	yr (Cy's	Ph	e G		Asn Asn
5	A.	l a	Gl;	/ Ar	g Pi	he T	hr I 45	.eu	As	p Jl	lu 1	ryr	Th 25	r A1 0	.a 5	er (Sln	Le		/r 55	Arg
	Pl	10	G13	/ Al	a II 26	le P 50	ro A	rg	Let	ı Ph	e 0	31 <i>y</i> 265	Lei	u Th	r Pl	je y	Ala	G1 27		lai	Slu
10	Il	8	Leu	27°	p Ar 5	g L	eu M	et	Glu	Gl 28	у С	ly	Ly	s As	p Il		.eu !85	Le	ı Gl	n (Sln
15		•	290			a Ly			295)					3 0	0					
,	G1 30	u (Sln	Va)	l Le	u As	p T 3	rp 10	Met	Se	r P	ro	Val	. As:	n Le 5	u s	er	Let	Th		yr 20
20	Le	u C	31n	Gly	' Me	t Va 32	1 S	er '	Thr	Gli	a T	rp	Ser 330	Gl	y Th	r A	la	Thr	A1 33		lu
	Me	C P	he	Asn	34	e L e O	u G.	lu .	Asn	Val	3	ys 45	Asp	Se	r Va	1 A	sn	Ser 350		n A	la
25				333		ı Th				360)					3	65				
30		,	/ 0			GI:		3	375						38)					
	Th: 385	P	he	Trp	Leu	Gli	1 Ly 39	s I 0	le	Thr	Il	. 8	Gly	Arg 395		As	n	Pro	Phe		hr 00
35	Leu	A .	la	Asn	Tyr	Tr:	Hi	s A	sp	Ile	Gl	n '	Thr 410	Leu	Phe	e S€	r	His	Asp 415		sn
	Ala	TÌ	ır	Leu	Glu 420	Sez	Le	u G	ln	Thr	As 42	p '	Thr	Ser	Leu	V a		lle 130	Ala	Th	ır
40	Gln	Gl	ln	Leu 435	Ser	Glr	Le	u V	al	Leu 440	11	• 1	/al	Lys	Trp	Va 44		Ser	Leu	Tì	ır
45		•	, 0			Gln		4	22						460						
	Gly 465	11	e '	Thr	Asn	Val	Pro) V	al	Pro	Asi	n E	ro	Glu 475	Leu	Le	u [eu	Thr	Le 48	
50	Ser	Ar	g i	Phe	Lys	Gln 485	Tr	G.	lu '	Thr	Gli	n V 4	al 90	Thr	Val	Se	r A	rg	Asp 495	G1	u
	Ala	Me	t 1	\rg	Cys 500	Phe	Asp	G)	ln i	Leu	Ast 505	1 A	la.	Asn	Asp	Me		hr 10	Thr	Gl	u
55	Asn	Al.	a (ly 15	Ser	Leu	Ile	A A I	la :	Thr 520	Leu	ı T	yr (Glu	Met	As ₁ 525		ys ·	Gly	Th	r
6()	Gly	A1. 530	a G	in '	Val	Asn	Thr	Le 53	eu I	Leu	Leu	G	ly (Glu	Asn 540	Asr	т	rp	Pro	Lys	S
•	Ser 545	Phe	e T	hr s	Ser	Leu	Trp 550	Gl	n L	.eu	Leu	T	hr 1	rp 555	Leu	Arg	, V	al (Sly	G1r 560	
65	λrg	Leu	ı A	sn (/a 1	Gly 565	Ser	Th	rI	hr :	Leu	G. 5'	ly ;	Asn	Leu	Leu	S		1et 575	Met	•

WO 97/17432 PCT/US96/18003

Gln Ala Asp Pro Ala Ala Glu Ser Ser Ala Leu Leu Ala Ser Val Ala 580 585 590

Gln Asn Leu Ser Ala Ala Ile Ser Asn Arg Gln * 595 600

(2) INFORMATION FOR SEQ ID NO:36:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2557 base pairs
 - (B) TYPE: nucleic acid
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

	GAATTCGGCT TGCGTTTAAT ATTGATGATG TCTCGCTCTT CCGCCTGCTT AAAATTACCG	
20	ACCATGATAA TAAAGATGGA AAAATTAAAA ATAACCTAAA GAATCTTTCC AATTTATATA	იე
	TTGGAAAATT ACTGGCAGAT ATTCATCAAT TAACCATTGA TGAACTGGAT TTATTACTGA	120
	TTGCCGTAGG TGAAGGAAAA ACTAATTTAT CCGCTATCAG TGATAAGCAA TTGGCTACCC	130
	TGATCAGAAA ACTCAATACT ATTACCACCT COCTATCAG TGATAAGCAA TTGGCTACCC	240
	TGATCAGAAA ACTCAATACT ATTACCAGCT GGCTACATAC ACAGAAGTGG AGTGTATTCC	300
25	AGCTATTTAT CATGACCTCC ACCAGCTATA ACAAAACGCT AACGCCTGAA ATTAAGAATT	360
	TGCTGGATAC CGTCTACCAC GGTTTACAAG GTTTTGATAA AGACAAAGCA GATTTGCTAC	420
	ATGTCATGGC GCCCTATATT GCGGCCACCT TGCAATTATC ATCGGAAAAT GTCGCCCACT	480
	CGGTACTCCT TTGGGCAGAT AAGTTACAGC CCGGCGACGG CGCAATGACA GCAGAGGGAN	540
	TCTGGGACTG GTTGAATACT AAGTATACGC CGGGTTCATC GGAAGCCGTA GAAACGCAGG	600
30	AACATATCGT TCAGTATTGT CAGGCTCTGG CACAATTGGA AATGGTTTAC CATTCCACCG	660
50	GCATCAACGA AAACGCCTTC CGTCTATTTG TGACAAAACC AGAGATGTTT GGCGCTGCAA	720
	CTGGAGCAGC GCCCGCGCAT GATGCCCTTT CACTGATTAT GCTGACACGT TTTGCGGATT	780
	GGGTGAACGC ACTAGGCGAA AAAGCGTCCT CGGTGCTAGC GGCATTTGAA GCTAACTCGT	840
	TAACGGCAGA ACAACTGGCT GATGCCATGA ATCTTGATGC TAATTTGCTG TTGCAAGCCA	900
26	GTATTCAAGC ACAAAATCAT CAACATCTTC CCCCAGTAAC TCCAGAAAAT GCGTTCTCCT	960
35	GTTGGACATC TATCAATACT ATCCTGCAAT GGGTTAATGT CGCACAACAA TTGAAATGTC	1020
	GCCCCACAGG GCGTTTCCGC TTTGGTCGGG CTGGATTATA TTCAATCAAT GAAAGAGACA	1080
	CCGACCTATG CCCAGTGGGA AAACGCGGCA GGCGTATTAA CCGCCGGGTT GAATTCAACA	1140
	ACAGGCTAAT ACATTACAAC GCTTTTCTGG ATGAATCTCG CAGTGCCGCA TTAAGCACCT	1200
	ACTATATCCG TCAAGTCGCC AAGGCAGCGG CGGCTATTAA AAGCCGTGAT GACTTGTATC	1260
40	AATACTTACT GATTGATAAT CAGGTTTCTG CGGCAATAAA AACCACCGG ATCGCCGAAG	1320
	CCATTGCCAG TATTCAACTG TACGTCAACC GGGCATTGGA AAATGTGGAA GAAAATGCCA	1380
	ATTICGGGGGT TATCAGCCGC CAATTCTTTA TCGACTGGGA CAAATACAAT AAACGCTAC1	1440
	GUACTTGGGC GGGTGTTTCT CAATTAGTTT ACTAGGGGGA ALLGERT	1500
	TGCGTATCGG ACAAACCAAA ATGATGGACG CATTACTGGA ATGACTGGA	1560
45	TAAACGCCGA TACCGTCGAA GATGCCTTTA TCTCTTATCT CACATGCTT	1620
	CTAATCTTAA AGTTATTAGC GCATATCACC ATAATATTAA TAACCATCAA	
	ATTITATOGG ACTOAGTGAA ACTGATGCCC CTCAATATTA TTGCCCCCCC	1680
	GTAAATTCAA CGACGGTAAA TTCGCGGGTA ATGCCTTGCAG TCAATGGGT	1740
	GTCCAATTAA CCCTTATAAA AGCACTATCC GTCCAGTCAT ATATAAA	1800
	THE STREET OF STREET ATTACKTOR COCCTOTATO	1860

WU 7//1/434 PC17US96/18003

	TGGTCTGGTT GGAACAAAAG GAGATCACCA AACAGACAGG AAATAGTAAA GATGGCTATC	1920
	AAACTGAAAC GGATTATCGT TATGAACTAA AATTGGCGCA TATCCGCTAT GATGGCACTT	1000
	GGAATACGCC AATCACCTTT GATGTCAATA AAAAAATATC CGAGCTAAAA CTCGAAAAA	1980
	ATAGAGCGCC CGGACTCTAT TGTGCCGGTT ATCAAGGTGA AGATACGTTG CTGGTCATCT	2100
	J TITATAACCA ACAAGACACA CTAGATAGTT ATAAAAACGC TTCAATGCAA GGACTATATA	2100
	TCTTTGCTGA TATGGCATCC AAAGATATGA CCCCAGAACA GAGCAATGTT TATCGGGATA	
	ATAGCTATCA ACAATTTGAT ACCAATAATG TCAGAAGAGT GAATAACGG TATGGAGAG	2220
	ATTATIGAÇAT TECTTETTEG GTAAGTAGEE GTAAAGACTA TEGTTEGEGA CATTATTAGE	2280
	TCAGCATGGT ATATAACGGA GATATTCCAA CTATCAATTA CAAAGCCGCA TCAAGTGATT	2340
10	AAAAATTTA TATTTCACCA AAATTAAGAA TTATTCATAA TCCATATCA	2400
	GCAATCAATG CAATTTGATG AATAAATATG GCAAACTAGG TGATAAATTTT ATTTT	2460
	CCAGCCTGGG CGTTAATCCG AATAATAAGC CGAATTC	2520
		2557
15	S (2)	
	(2) INFORMATION FOR SEQ ID NO:37: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 845 amino acids	
	(B) TYPE: amino acids	
20	(C) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: protein (partial)</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
25	Ala Phe Asn Ilo Ben North In	
	Ala Phe Asn Ile Asp Asp Val Ser Leu Phe Arg Leu Leu Lys Ile Thr	
	13	
30	Asp His Asp Asn Lys Asp Gly Lys Ile Lys Asn Asn Leu Lys Asn Leu 20 25	
	=- 30	
	Ser Asn Leu Tyr Ile Gly Lys Leu Leu Ala Asp Ile His Gln Leu Thr	
35	13	
	Ile Asp Glu Leu Asp Leu Leu Leu Ile Ala Val Gly Glu Gly Lys Thr 50 60	
40	Asn Leu Ser Ala Ile Ser Asp Lys Gln Leu Ala Thr Leu Ile Arg Lys 75	
40	, 3 80	
	Leu Asn Thr Ile Thr Ser Trp Leu His Thr Gln Lys Trp Ser Val Phe	
	33	
45	Gln Leu Phe Ile Met Thr Ser Thr Ser Tyr Asn Lys Thr Leu Thr Pro	
	110	
	Glu Ile Lys Asn Leu Leu Asp Thr Val Tyr His Gly Leu Gln Gly Phe	
50	*43	
	Asp Lys Asp Lys Ala Asp Leu Leu His Val Met Ala Pro Tyr Ile Ala	
	140	
	Ala Thr Leu Gln Leu Ser Ser Glu Asn Val Ala His Ser Val Leu Leu 145 150 155	
55	160	
	Trp Ala Asp Lys Leu Gln Pro Gly Asp Gly Ala Met Thr Ala Glu Gly 165 170	
	175	
	Phe Trp Asp Trp Leu Asn Thr Lys Tyr Thr Pro Gly Ser Ser Glu Ala	

190	185	10

																1.			
5	5								200	,					209	5		la Gl	
							•							220				he Ar	
10						4.5	•					2	35					la Al. 240	0
1.0											2:	U					25	-	
15										40:	,					27	0	a Phe	
20		_	-					•	. 00						285			n Leu	
							23	,					3	100				s Gln	
25							•					3 1	. >					r Ser 320	
30				•							33(J					33	-	
30										747						350		Ile	
35								٠.	90					3	365			Arg	
							3/3	,					31	80				Ala	
40						,,,						39	•					Arg 400	
45				•	0,5						410						415	Tyr	
		r Le	-	. •					4	25					4	30			
5 0		43:	-					44	U					4	45				
							433						46	0					
55		Ile Ser			•	,,,						475						480	
60	Gly									4	90					•	495		
	Ser		30.	•					יכ	2					5	10			
65	Tyr							520	,					52	5				
				•		~		4		- ^	J.1		Lys	va.	1 1	e S	er	Ala	

A 5- A / A / 3 71W A (WWY)

30	535	540

Tyr His Asp Asn Ile Asn Asn Asp Gln Gly Leu Thr Tyr Phe Ile Gly 550 5 Lau Sar Glu Thr Asp Ala Gly Glu Tyr Tyr Trp Arg Sar Val Asp His Ser Lys Phe Asn Asp Gly Lys Phe Ala Ala Asn Ala Trp Ser Glu Trp 10 His Lys Ile Asp Cys Pro Ile Asn Pro Tyr Lys Ser Thr Ile Arg Pro 15 Val Ile Tyr Lys Ser Arg Leu Tyr Leu Leu Trp Leu Glu Gln Lys Glu Ile Thr Lys Gln Thr Gly Asn Ser Lys Asp Gly Tyr Gln Thr Glu Thr 20 Asp Tyr Arg Tyr Glu Leu Lys Leu Ala His Ile Arg Tyr Asp Gly Thr Trp Asn Thr Pro Ile Thr Phe Asp Val Asn Lys Lys Ile Ser Glu Leu 25 665 Lys Leu Glu Lys Asn Arg Ala Pro Gly Leu Tyr Cys Ala Gly Tyr Gln 30 Gly Glu Asp Thr Leu Leu Val Met Phe Tyr Asn Gln Gln Asp Thr Leu Asp Ser Tyr Lys Asn Ala Ser Met Gln Gly Leu Tyr Ile Phe Ala Asp 35 Met Ala Ser Lys Asp Met Thr Pro Glu Gln Ser Asn Val Tyr Arg Asp Asn Ser Tyr Gln Gln Phe Asp Thr Asn Asn Val Arg Arg Val Asn Asn 40 Arg Tyr Ala Glu Asp Tyr Glu Ile Pro Ser Ser Val Ser Ser Arg Lys Asp Tyr Gly Trp Gly Asp Tyr Tyr Leu Ser Met Val Tyr Asn Gly Asp 770 780 45 Ile Pro Thr Ile Asn Tyr Lys Ala Ala Ser Ser Asp Leu Lys Ile Tyr 795 50 Ile Ser Pro Lys Leu Arg Ile Ile His Asn Gly Tyr Glu Gly Gln Lys 810 Arg Asn Gln Cys Asn Leu Met Asn Lys Tyr Gly Lys Leu Gly Asp Lys 55 Phe Ile Val Tyr Thr Ser Leu Gly Val Asn Pro Asn Asn 840

60 (2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
- 65 (B) TYPE: amino acid

WU 97/17432 PCT/US96/18003

STRANDNESS: single TOPCLCGY: linear (ii) MOLECULAR TYPE: protein 5 (V) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: 10 Arg Tyr Tyr Asn Leu Ser Asp Glu Glu Leu Ser Gln Phe Ile Gly Lys 15 (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDNESS: single (D) TOPOLOGY: linear 25 (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39: Gly Thr Ala Thr Asp Val Ser Gly Pro Val Glu Ile Asn Thr Ala 10 35 Ile Ser Pro Ala Lys (2) INFORMATION FOR SEQ ID NO:40: 40 SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (C) STRANDNESS: single 45 (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40: Ala Asn Ser Leu Tyr Ala Leu Phe Leu Pro Gln 55 INFORMATION FOR SEQ ID NO:41: (2) 60 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14 amino acids

TYPE: amino acid (C) STRANDNESS: single (D) TOPOLOGY: linear 5 (ii) MOLECULAR TYPE: protein (V) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41: 10 Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro Gln 15 (2) INFORMATION FOR SEQ ID NO: 42: SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid 20 (C) STRANDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein 25 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42: 30 Arg Ala Leu Glu Val Glu Arg Thr Val Ser Leu Ala Glu Val Tyr Ala Gly Leu Glu 35 (2) INFORMATION FOR SEQ ID NO:43: SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids 40 TYPE: amino acid (B) (C) STRANDNESS: single (D) TOPOLOGY: linear (ii) MOLECULAR TYPE: protein 45 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43: 50 Ile Arg Glu Asp Tyr Pro Ala Ser Leu Gly Lys 55 (2) INFORMATION FOR SEQ ID NO:44: SEQUENCE CHARACTERISTICS: .(A) LENGTH: 16 amino acids TYPE: amino acid (B) 60 (C) STRANDNESS: single

-184-

(D) TOPOLOGY: linear

(ii) MOLECULAR TYPE: protein (v) FRAGMENT TYPE: N-terminal 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44: Asp Asp Ser Gly Asp Asp Lys Val Thr Asn Thr Asp Ile His 10 Ara 15 INFORMATION FOR SEQ ID NO:45: (2) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid 20 (C) STRANDNESS: single TOPOLOGY: linear (ii) MOLECULAR TYPE: protein 25 (V) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45: 30 Asp Val Xaa Gly Ser Glu Lys Ala Asn Glu Lys Leu Lys INFORMATION FOR SEQ ID NO:46: 35 (i) SEQUENCE CHARACTERISTICS: LENGTH: 7551 base pairs (A) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 40 (ii) MOLECULE TYPE: DNA (genomic) SEQUENCE DESCRIPTION: SEQ ID NO:46 (ccdA): (xi) 45 ATG AAC GAG TCT GTA AAA GAG ATA CCT GAT GTA TTA AAA AGC CAG TGT Met Asn Glu Ser Val Lys Glu Ile Pro Asp Val Leu Lys Ser Gln Cys 10 GGT TTT AAT TGT CTG ACA GAT ATT AGC CAC AGC TCT TTT AAT GAA TTT 50 Gly Phe Asn Cys Leu Thr Asp Ile Ser His Ser Ser Phe Asn Glu Phe CGC CAG CAA GTA TCT GAG CAC CTC TCC TGG TCC GAA ACA CAC GAC TTA Arg Gln Gln Val Ser Glu His Leu Ser Trp Ser Glu Thr His Asp Leu 55 40 TAT CAT GAT GCA CAA CAG GCA CAA AAG GAT AAT CGC CTG TAT GAA GCG Tyr His Asp Ala Cln Gln Ala Gln Lys Asp Asn Arg Leu Tyr Glu Ala 60 CGT ATT CTC AAA CGC GCC AAT CCC CAA TTA CAA AAT GCG GTG CAT CTT 240

Arg Ile Leu Lys Arg Ala Asn Pro Gln Leu Gln Asn Ala Val His Leu

	GCC ATT CTC GCT CCC AAT GCT GAA CTG ATA GGC TAT AAC AAT CAA TTT 288 Ala Ile Leu Ala Pro Asn Ala Glu Leu Ile Gly Tyr Asn Asn Gln Phe 85 90
:	5 AGC GGT AGA GCC AGT CAA TAT GTT GCG CCG GGT ACC GTT TCT TCC ATG 336 Ser Gly Arg Ala Ser Gln Tyr Val Ala Pro Gly Thr Val Ser Ser Met 100 110
10	115 120 Leu Tyr Arg Glu Ala Arg Asn
15	135 140
20	
25	ACA CTC TCT TTG TCC AAT GAG CTG TTA TTG GAA AGC ATT AAA ACT GAA 528 Thr Leu Ser Leu Ser Asn Glu Leu Leu Glu Ser Ile Lys Thr Glu 165 170 175
	TCT AAA CTG GAA AAC TAT ACT AAA GTG ATG GAA ATG CTC TCC ACT TTC 576 Ser Lys Leu Glu Asn Tyr Thr Lys Val Met Glu Met Leu Ser Thr Phe 180 180
30	CGT CCT TCC GGC GCA ACG CCT TAT CAT GAT GCT TAT GAA AAT GTG CGT 624 Arg Pro Ser Gly Ala Thr Pro Tyr His Asp Ala Tyr Glu Asn Val Arg 195 200 205
35	GAA GTT ATC CAG CTA CAA GAT CCT GGA CTT GAG CAA CTC AAT GCA TCA 672 Glu Val Ile Gln Leu Gln Asp Pro Gly Leu Glu Gln Leu Asn Ala Ser 210 220
40	CCG GCA ATT GCC GGG TTG ATG CAT CAA GCC TCC CTA TTG GGT ATT AAC 720 Pro Ala Ile Ala Gly Leu Met His Gln Ala Ser Leu Leu Gly Ile Asn 230 235 240
	GCT TCA ATC TCG CCT GAG CTA TTT AAT ATT CTG ACG GAG GAG ATT ACC 768 Ala Ser Ile Ser Pro Glu Leu Phe Asn Ile Leu Thr Glu Glu Ile Thr 245 250 255
45	GAA GGT AAT GCT GAG GAA CTT TAT AAG AAA AAT TTT GGT AAT ATC GAA 816 Glu Glu Asn Ala Glu Glu Leu Tyr Lys Lys Asn Phe Gly Asn Ile Glu 260 265
5 0	CCG GCC TCA TTG GCT ATG CCG GAA TAC CTT AAA CGT TAT TAT AAT TTA 864 Pro Ala Ser Leu Ala Met Pro Glu Tyr Leu Lys Arg Tyr Tyr Asn Leu 275 280 285
55	AGC GAT GAA GAA CTT AGT CAG TTT ATT GGT AAA GCC AGC AAT TTT GGT 912 Ser Asp Glu Glu Leu Ser Gln Phe Ile Gly Lys Ala Ser Asn Phe Gly 290 295 300
60	CAA CAG GAA TAT AGT AAT AAC CAA CTT ATT ACT CCG GTA GTC AAC AGC 960 Gln Gln Glu Tyr Ser Asn Asn Gln Leu Ile Thr Pro Val Val Asn Ser 310 315 320
	AGT GAT GGC ACG GTT AAG GTA TAT CGG ATC ACC CGC GAA TAT ACA ACC 1008 Ser Asp Gly Thr Val Lys Val Tyr Arg Ile Thr Arg Glu Tyr Thr Thr 325
	AAT GCT TAT CAA ATG GAT GTG GAG CTA TTT CCC TTC GGT GGT GAG AAT 1056 Asn Ala Tyr Gin Met Asp Val Glu Leu Phe Pro Phe Gly Gly Glu Asn 340 345 350
70	TAT CCG TTA GAT TAT AAA TTC AAA AAT TTT TAT AAT GCC TCT TAT TTA 1104 Tyr Arg Leu Asp Tyr Lys Phe Lys Asn Phe Tyr Asn Ala Ser Tyr Leu 355 360 365

	TCC ATC AAG TTA AAT GAT AAA AGA GAA CTT GTT CGA ACT GAA GGC GCT 1152 370 375 Glu Leu Val Arg Thr Glu Gly Ala
	CCT CAA GTC AAT ATA GAA TAC TCC GCA AAT ATC ACA TTA AAT ACC GCT 1200 Pro Gln Val Asn Ile Glu Tyr Ser Ala Asn Ile Thr Leu Asn Thr Ala 390 395
ι	() GAT ATC AGT CAA CCT TTT GAA ATT GGC CTG ACA CGA GTA CTT CCT TCC 1248 ASP Ile Ser Gin Pro Phe Giu Ile Gly Leu Thr Arg Val Leu Pro Ser 410 415
13	420 425 Phe Thr Val Glu Tyr Asn 430
20	440 445
25	
30	AAT CTA CAA CTG GAT ATC AAC ACA GAC GTA TTA GGT AAA GTT TTT CTG 1440 Asn Leu Gln Leu Asp Ile Asn Thr Asp Val Leu Gly Lys Val Phe Leu 470 475 480
30	Thr Lys Tyr Tyr Met Gln Arg Tyr Ala Ile His Ala Glu Thr Ala Leu 485 490 495
35	ATA CTA TGC AAC GCG CCT ATT TCA CAA CGT TCA TAT GAT AAT CAA CCT 1536 Ile Leu Cys Asn Ala Pro Ile Ser Gln Arg Ser Tyr Asp Asn Gln Pro 500 510
40	AGC CAA TTT GAT CGC CTG TTT AAT ACG CCA TTA CTG AAC GGA CAA TAT 1584 Ser Gln Phe Asp Arg Leu Phe Asn Thr Pro Leu Leu Asn Gly Gln Tyr 515 520 525
45	TTT TCT ACC GGC GAT GAG GAG ATT GAT TTA AAT TCA GGT AGC ACC GGC 1632 Phe Ser Thr Gly Asp Glu Glu Ile Asp Leu Asn Ser Gly Ser Thr Gly 530 540 GAT TGG CGA AAA ACC ATA GTT 110 CTT 11
50	GAT TGG CGA AAA ACC ATA CTT AAG CGT GCA TTT AAT ATT GAT GAT GTC 1680 Asp Trp Arg Lys Thr Ile Leu Lys Arg Ala Phe Asn Ile Asp Asp Val 555 560
50	TCG CTC TTC CGC CTG CTT AAA ATT ACC GAC CAT GAT AAT AAA GAT GGA 1728 Ser Leu Phe Arg Leu Leu Lys Ile Thr Asp His Asp Asn Lys Asp Gly 575
55	AAA ATT AAA AAT AAC CTA AAG AAT CTT TCC AAT TTA TAT ATT GGA AAA 1776 Lys Ile Lys Asn Leu Lys Asn Leu Ser Asn Leu Tyr Ile Gly Lys 580 585
60	TTA CTG GCA GAT ATT CAT CAA TTA ACC ATT GAT GAA CTG GAT TTA TTA 1824 Leu Leu Ala Asp Ile His Gln Leu Thr Ile Asp Glu Leu Asp Leu Leu 595 600 605
65	CTG ATT GCC GTA GGT GAA GGA AAA ACT AAT TTA TCC GCT ATC AGT GAT 1372 Leu Ile Ala Val Gly Glu Gly Lys Thr Asn Leu Ser Ala Ile Ser Asp 610 620
70	AAG CAA TTG GCT ACC CTG ATC AGA AAA CTC AAT ACT ATT ACC AGC TGG 1920 Lys Gln Leu Ala Thr Leu Ile Arg Lys Leu Asn Thr Ile Thr Ser Trp 630 640
70	CTA CAT ACA CAG AAG TGG AGT GTA TTC CAG CTA TTT ATC ATG ACC TCC 1968 Leu His Thr Gln Lys Trp Ser Val Phe Gln Leu Phe Ile Met Thr Ser

545 ACC AGC TAT AAC AAA ACG CTA ACG CCT GAA ATT AAG AAT TTG CTG GAT Thr Ser Tyr Asn Lys Thr Leu Thr Pro Glu Ile Lys Asn Leu Leu Asp 5 ACC GTC TAC CAC GGT TTA CAA GGT TTT GAT AAA GAC AAA GCA GAT TTG Thr Val Tyr His Gly Leu Gin Gly Phe Asp Lys Asp Lys Ala Asp Leu 2064 CTA CAT GTC ATG GCG CCC TAT ATT GCG GCC ACC TTG CAA TTA TCA TCG Leu His Val Met Ala Pro Tyr Ile Ala Ala Thr Leu Gln Leu Ser Ser GAA AAT GTC GCC CAC TCG GTA CTC CTT TGG GCA GAT AAG TTA CAG CCC Glu Asn Val Ala His Ser Val Leu Leu Trp Ala Asp Lys Leu Gln Pro GGC GAC GGC GCA ATG ACA GCA GAA AAA TTC TGG GAC TGG TTG AAT ACT Gly Asp Gly Ala Met Thr Ala Glu Lys Phe Trp Asp Trp Leu Asn Thr 20 AAG TAT ACG CCG GGT TCA TCG GAA GCC GTA GAA ACG CAG GAA CAT ATC Lys Tyr Thr Pro Gly Ser Ser Glu Ala Val Glu Thr Gln Glu His Ile 25 GTT CAG TAT TGT CAG GCT CTG GCA CAA TTG GAA ATG GTT TAC CAT TCC Val Gin Tyr Cys Gin Ala Leu Ala Gin Leu Glu Met Val Tyr His Ser ACC GGC ATC AAC GAA AAC GCC TTC CGT CTA TTT GTG ACA AAA CCA GAG Thr Gly Ile Asn Glu Asn Ala Phe Arg Leu Phe Val Thr Lys Pro Glu 2352 ATG TTT GGC GCT GCA ACT GGA GCA GCG CCC GCG CAT GAT GCC CTT TCA Met Phe Gly Ala Ala Thr Gly Ala Ala Pro Ala His Asp Ala Leu Ser CTG ATT ATG CTG ACA CGT TTT GCG GAT TGG GTG AAC GCA CTA GGC GAA Leu Ile Met Leu Thr Arg Phe Ala Asp Trp Val Asn Ala Leu Gly Glu 810 AAA GCG TCC TCG GTG CTA GCG GCA TTT GAA GCT AAC TCG TTA ACG GCA Lys Ala Ser Ser Val Leu Ala Ala Phe Glu Ala Asn Ser Leu Thr Ala 45 GAA CAA CTG GCT GAT GCC ATG AAT CTT GAT GCT AAT TTG CTG TTG CAA Glu Gln Leu Ala Asp Ala Met Asn Leu Asp Ala Asn Leu Leu Cln GCC AGT ATT CAA GCA CAA AAT CAT CAA CAT CTT CCC CCA GTA ACT CCA Ala Ser Ile Gln Ala Gln Asn His Gln His Leu Pro Pro Val Thr Pro 855 GAA AAT GCG TTC TCC TGT TGG ACA TCT ATC AAT ACT ATC CTG CAA TGG Glu Asn Ala Phe Ser Cys Trp Thr Ser Ile Asn Thr Ile Leu Gln Trp GTT AAT GTC GCA CAA CAA TTG AAT GTC GCC CCA CAG GGC GTT TCC GCT 60 Val Asn Val Ala Gln Gln Leu Asn Val Ala Pro Gln Gly Val Ser Ala TTG GTC GGG CTG GAT TAT ATT CAA TCA ATG AAA GAG ACA CCG ACC TAT Leu Val Gly Leu Asp Tyr Ile Gln Ser Met Lys Glu Thr Pro Thr Tyr GCC CAG TGG GAA AAC GCG GCA GGC GTA TTA ACC GCC GGG TTG AAT TCA Ala Gin Trp Glu Asn Ala Ala Gly Val Leu Thr Ala Gly Leu Asn Ser CAA CAG GCT AAT ACA TTA CAC GCT TTT CTG GAT GAA TCT CGC AGT GCC

WU 97/17432 PCT/US96/18003

	Gln Gln Ala Asn Thr Leu His Ala Phe Leu Asp Glu Ser Arg Ser Ala 930 935 940
:	GCA TTA AGC ACC TAC TAT ATC CGT CAA GTC GCC AAG GCA GCG GCG GCT 2880 Ala Leu Ser Thr Tyr Tyr Ile Arg Gln Val Ala Lys Ala Ala Ala Ala 945 950 960
10	970 975
15	
	ATT CAA CTG TAC GTC AAC CGG GCA TTG GAA AAT GTG GAA GAA AAT GCC 3024 Ile Gln Leu Tyr Val Asn Arg Ala Leu Glu Asn Val Glu Glu Asn Ala 995 1000 1005
20	Ash Ser Gly Val Ile Ser Arg Gln Phe Phe Ile Asp Trp Asp Lys Tyr 1010 1015 1020
25	AAT AAA CGC TAC AGC ACT TGG GCG GGT GTT TCT CAA TTA GTT TAC TAC 3120 Asn Lys Arg Tyr Ser Thr Trp Ala Gly Val Ser Gln Leu Val Tyr Tyr 1025 1030 1035 1040
30	CCG GAA AAC TAT ATT GAT CCG ACC ATG CGT ATC GGA CAA ACC AAA ATG 1168 Pro Glu Asn Tyr Ile Asp Pro Thr Met Arg Ile Gly Gln Thr Lys Met 1045 1050 1055
35	ATG GAC GCA TTA CTG CAA TCC GTC AGC CAA AGC CAA TTA AAC GCC GAT 3216 Met Asp Ala Leu Leu Gln Ser Val Ser Gln Ser Gln Leu Asn Ala Asp 1060 1065 1070 ACC GTC GAA GAT GCG TTT ATG GCG TAT
	ACC GTC GAA GAT GCC TTT ATG TCT TAT CTG ACA TCG TTT GAA CAA GTG 3264 Thr Val Glu Asp Ala Phe Met Ser Tyr Leu Thr Ser Phe Glu Gln Val 1075 1080 1085
40	GCT AAT CTT AAA GTT ATT AGC GCA TAT CAC GAT AAT ATT AAT AAC GAT 3312 Ala Asn Leu Lys Val Ile Ser Ala Tyr His Asp Asn Ile Asn Asn Asp 1090 1095 1100
45	CAA GGG CTG ACC TAT TTT ATC GGA CTC AGT GAA ACT GAT GCC GGT GAA 3360 Gln Gly Leu Thr Tyr Phe Ile Gly Leu Ser Glu Thr Asp Ala Gly Glu 1110 1115 1120
50	TAT TAT TGG CGC AGT GTC GAT CAC AGT AAA TTC AAC GAC GGT AAA TTC 3408 Tyr Tyr Trp Arg Ser Val Asp His Ser Lys Phe Asn Asp Gly Lys Phe 1125 1130 1135
55	GCG GCT AAT GCC TGG AGT GAA TGG CAT AAA ATT GAT TGT CCA ATT AAC 3456 Ala Ala Asn Ala Trp Ser Glu Trp His Lys Ile Asp Cys Pro Ile Asn 1140 1145 1150
	CCT TAT AAA AGC ACT ATC CGT CCA GTG ATA TAT AAA TCC CGC CTG TAT 3504 Pro Tyr Lys Ser Thr Ile Arg Pro Val Ile Tyr Lys Ser Arg Leu Tyr 1155 1160 1165
60	CTG CTC TGG TTG GAA CAA AAG GAG ATC ACC AAA CAG ACA GGA AAT AGT 3552 Leu Leu Trp Leu Glu Gln Lys Glu Ile Thr Lys Gln Thr Gly Asn Ser 1170 1180
65	AAA GAT GGC TAT CAA ACT GAA ACG GAT TAT CGT TAT GAA CTA AAA TTG 3600 Lys Asp Gly Tyr Gln Thr Glu Thr Asp Tyr Arg Tyr Glu Leu Lys Leu 1185 1190 1195 1200
70	GCG CAT ATC CGC TAT GAT GGC ACT TGG AAT ACG CCA ATC ACC TTT GAT 3648 Ala His Ile Arg Tyr Asp Gly Thr Trp Asn Thr Pro Ile Thr Phe Asp 1210 1215

LC11032019003

	GTC AAT AAA AAA ATA TCC GAG CTA AAA CTG GAA AAA AAT AGA GCG CCC Val Asn Lys Lys Ile Ser Glu Leu Lys Leu Glu Lys Asn Arg Ala Pro 1220 1225 1230	3636
5	GGA CTC TAT TGT GCC GGT TAT CAA GGT GAA GAT ACG TTG CTG GTG ATG Gly Leu Tyr Cys Ala Gly Tyr Gln Gly Glu Asp Thr Leu Leu Val Met 1235 1240 1245	3744
10	1250 1255 1260	3792
15	CAA GGA CTA TAT ATC TTT GCT GAT ATG GCA TCC AAA GAT ATG ACC CCA Gln Gly Leu Tyr Ile Phe Ala Asp Met Ala Ser Lys Asp Met Thr Pro 1265 1270 1280	3840
20	GAA CAG AGC AAT GTT TAT CGG GAT AAT AGC TAT CAA CAA TTT GAT ACC Glu Gln Ser Asn Val Tyr Arg Asp Asn Ser Tyr Gln Gln Phe Asp Thr 1285 1290 1295	3888
	AAT AAT GTC AGA AGA GTG AAT AAC CGC TAT GCA GAG GAT TAT GAG ATT Asn Asn Val Arg Arg Val Asn Asn Arg Tyr Ala Glu Asp Tyr Glu Ile 1300 1305 1310	3936
25	CCT TCC TCG GTA AGT AGC CGT AAA GAC TAT GGT TGG GGA GAT TAT TAC Pro Ser Ser Val Ser Ser Arg Lys Asp Tyr Gly Trp Gly Asp Tyr Tyr 1315 1320 1325	3984
30	CTC AGC ATG GTA TAT AAC GGA GAT ATT CCA ACT ATC AAT TAC AAA GCC Leu Ser Met Val Tyr Asn Gly Asp Ile Pro Thr Ile Asn Tyr Lys Ala 1330 1335 1340	4032
35	GCA TCA AGT GAT TTA AAA ATC TAT ATC TCA CCA AAA TTA AGA ATT ATT Ala Ser Ser Asp Leu Lys Ile Tyr Ile Ser Pro Lys Leu Arg Ile Ile 1345 .1350 .1355	4080
40	CAT AAT GGA TAT GAA GGA CAG AAG CGC AAT CAA TGC AAT CTG ATG AAT His Asn Gly Tyr Glu Gly Gln Lys Arg Asn Gln Cys Asn Leu Met Asn 1365 1370 1375	4128
	AAA TAT GGC AAA CTA GGT GAT AAA TTT ATT GTT TAT ACT AGC TTG GGG Lys Tyr Gly Lys Leu Gly Asp Lys Phe Ile Val Tyr Thr Ser Leu Gly 1380 1385 1390	4176
45	GTC AAT CCA AAT AAC TCG TCA AAT AAG CTC ATG TTT TAC CCC GTC TAT Val Asn Pro Asn Asn Ser Ser Asn Lys Leu Met Phe Tyr Pro Val Tyr 1395 1400 1405	4224
50	CAA TAT AGC GGA AAC ACC AGT GGA CTC AAT CAA GGG AGA CTA CTA TTC Gln Tyr Ser Gly Asn Thr Ser Gly Leu Asn Gln Gly Arg Leu Leu Phe 1410 1420	4272
55	CAC CGT GAC ACC. ACT TAT CCA TCT AAA GTA GAA GCT TGG ATT CCT GGA His Arg Asp Thr Thr Tyr Pro Ser Lys Val Glu Ala Trp Ile Pro Gly 1425 1430 1435 1440	4320
60	GCA AAA CGT TCT CTA ACC AAC CAA AAT GCC GCC ATT GGT GAT GAT TAT Ala Lys Arg Ser Leu Thr Asn Gln Asn Ala Ala Ile Gly Asp Asp Tyr 1455	4368
	GCT ACA GAC TCT CTG AAT AAA CCG GAT GAT CTT AAG CAA TAT ATC TTT Ala Thr Asp Ser Leu Asn Lys Pro Asp Asp Leu Lys Gln Tyr Ile Phe 1460 1465 1470	4416
65	ATG ACT GAC AGT AAA GGG ACT GCT ACT GAT GTC TCA GGC CCA GTA GAG Met Thr Asp Ser Lys Gly Thr Ala Thr Asp Val Ser Gly Pro Val Glu 1475 1480 1485	1464
70	ATT AAT ACT GCA ATT TCT CCA GCA AAA GTT CAG ATA ATA GTC AAA GCG 411e Asn Thr Ala Ile Ser Pro Ala Lys Val Gln Ile Ile Val Lys Ala 1490 1495 1500	1512

WU 97/17432 PCT/US96/18003

5	1505 1510 The Ala Asp Lys Asp Val Ser Ile Gln 1520	560
10	1525 1530 Phe Asn Ala Leu Glu 1535	608
10	Ile Asp Gly Ser Gly Leu Asn Phe Ile Asn Asn Ser Ala Ser Ile Asp 1540 1545 1550	656
15	1555 1560 1565	704
20	1570 1575 1580	52
25	1585 1590 1595 1600	100
	197 Aig int Arg Leu Ash Thr Leu Phe Ala Arg Gin Leu Val Ala Arg 1605 1610 1615	148
30	GCC ACC GGA ATC GAT ACA ATT CTG AGT ATG GAA ACT CAG AAT ATT 48 Ala Thr Thr Gly Ile Asp Thr Ile Leu Ser Met Glu Thr Gin Asn Ile 1620 1625 1630	96
35	CAG GAA CCG CAG TTA GGC AAA GGT TTC TAT GCT ACG TTC GTG ATA CCT 49 Gln Glu Pro Gln Leu Gly Lys Gly Phe Tyr Ala Thr Phe Val Ile Pro 1635 1640 1645	44
40	CCC TAT AAC CTA TCA ACT CAT GGT GAT GAA CGT TGG TTT AAG CTT TAT 49 Pro Tyr Asn Leu Ser Thr His Gly Asp Glu Arg Trp Phe Lys Leu Tyr 1650 1660	92
45	ATC AAA CAT GTT GTT GAT AAT TCA CAT ATT ATC TAT TCA GGC CAG 500 Ille Lys His Val Val Asp Asn Asn Ser His Ile Ile Tyr Ser Gly Gln 1665 1670 1675 1680	40
	CTA ACA GAT ACA AAT ATA AAC ATC ACA TTA TTT ATT CCT CTT GAT GAT 508 Leu Thr Asp Thr Asn Ile Asn Ile Thr Leu Phe Ile Pro Leu Asp Asp 1685 1690 1695	38
50	CTC CCA TTG AAT CAA GAT TAT CAC GCC AAG GTT TAT ATG ACC TTC AAG 51: Val Pro Leu Asn Gln Asp Tyr His Ala Lys Val Tyr Met Thr Phe Lys 1700 1705 1710	36
55	AAA TCA CCA TCA GAT GGT ACC TGG TGG GGC CCT CAC TTT GTT AGA GAT 518 Lys Ser Pro Ser Asp Gly Thr Trp Trp Gly Pro His Phe Val Arg Asp 1715 1720 1725	34
60	GAT AAA GGA ATA GTA ACA ATA AAC CCT AAA TCC ATT TTG ACC CAT TTT 523 ASP Lys Gly Ile Val Thr Ile Asn Pro Lys Ser Ile Leu Thr His Phe 1730 1740	2
65	GAG AGC GTC AAT GTC CTG AAT AAT ATT AGT AGC GAA CCA ATG GAT TTC 528 Glu Ser Val Asn Val Leu Asn Asn Ile Ser Ser Glu Pro Met Asp Phe 1745 1750 1760	0
	AGC GGC GCT AAC AGC CTC TAT TTC TGG GAA CTG TTC TAC TAT ACC CCG 532 Ser Gly Ala Asn Ser Leu Tyr Phe Trp Glu Leu Phe Tyr Tyr Thr Pro 1765 1770 1775	8
70	ATG CTG GTT GCT CAA CGT TTG CTG CAT GAA CAG AAC TTC GAT GAA GCC 537 Met Leu Val Ala Gln Arg Leu Leu His Glu Gln Asn Phe Asp Glu Ala	ó

	1730	1785	179C
	AAC CGT TGG CTG AAA TAT GTC TGG Asn Arg Trp Leu Lys Tyr Val Trp 1795	180	ATT GTC CAC 5424 Ile Val His 5
	GGC CAG ATT CAG AAC TAC CAG TGG Gly Gln Ile Gln Asn Tyr Gln Trp 1810 10	1820	Leu Glu Asp
ı	ACC AGT TGG AAC AGT GAT CCT TTG (Thr Ser Trp Asn Ser Asp Pro Leu ; 1825 1830	1835	Asp Ala Val
-	Ala Gin His Asp Pro Met His Tyr I 1845	1850	Met Arg Thr 1855
2	_	865	Gln Leu Glu 1870
25	CGA GAT ACA CTC AAC GAA GCG AAG A' Arg Asp Thr Leu Asn Glu Ala Lys M 1875	1885 TEP TYP MEE GIN	Ala Leu His
30		1900	Crp Ser Asp
35	CCA CGA CTA GAC AGA GCC GCG GAT AT Pro Arg Leu Asp Arg Ala Ala Asp Il 1905 1910	1915	la His Asp 1920
	Ser Ala Ile Val Ala Leu Arg Gln As. 1925	1930 THE PEO A	la Pro Leu 1935
40	1940 1940 1940	15 ray Led Phe Led Pi	ro Gln Ile 950
45	1960	. The Ded Ala Gin Ar 1965	g Val Tyr
50		1980	r Leu Pro
55	ATC TAT GCC ACA CCG GCC GAT CCG AAA Ile Tyr Ala Thr Pro Ala Asp Pro Lys 1985	1995	a Ala Val 2000
23	Ala Thr Ser Gln Gly Gly Gly Lys Leu 2005	2010 Gid Ser Phe Met	Ser Leu 2015
60	2020 Leu Glu Asn 2020 2025	203 Tak Arg Gry Met Val	Ser Gln
65	CTC ACC CAG TTC GGC TCC ACG TTA CAA Leu Thr Gln Phe Gly Ser Thr Leu Gln 2035	2045	Gln Asp
70	GCG GAA GCG CTC AAT GCG TTA TTA CAA Ala Glu Ala Leu Asn Ala Leu Leu Gln 2050	AAT CAG GCC GCC GAG Asn Gln Ala Ala Glu 2060	CTG ATA 6192 Leu Ile

TTG ACT AAC CTG AGC ATT CAG GAC AAA ACC ATT GAA GAA TTG GAT GCC 6240

wo	97/17432											P	CT/U	596/18003
	Leu Thr 2065	Asn L	eu Ser	Ile Gi 2070	n Asp	Lys	Thr	11e 207		Glu	Leu	Asp	Ala 2080	
5	GAG AAA Glu Lys	ACG GT Thr Va	TG TTG	Glu Ly	A TCC s Ser	AAA Lys	GCG Ala 209	Gly	GCA Ala	CAA Gln	TCG Ser	CGC Arg 209	Phe	6283
10	GAT AGC Asp Ser	Tyr G	C AAA Y Lys 100	CTG TA Leu Ty	c GAT	GAG Glu 210	Asn	ATC Ile	AAC Asn	GCC Ala	GGT Gly 211	Glu	AAC Asn	5336
15	CAA GCC Gln Ala	ATG AG Met Th 2115	G CTA	CGA GC Arg Al	G TCC a Ser 212	Ala	GCC Ala	GGG Gly	CTT Leu	ACC Thr 212	Thr	GCA Ala	GTT Val	5384
.5	CAG GCA Gln Ala 2130	Ser Ar	T CTG	GCC GG Ala Gl 21	y Ala	GCG Ala	GCT Ala	GAT Asp	CTG Leu 2140	Val	CCT Pro	AAC Asn	ATC Ile	6432
20	TTC GGC Phe Gly 2145	TTT GO	C GGT a Gly	GGC GG Gly Gl 2150	C AGO Y Ser	CGT Arg	TGG Trp	GGG Gly 215	Ala	ATC Ile	GCT Ala	GAG Glu	GCG Ala 2160	6480
25	ACA GGT Thr Gly	TAT GT Tyr Va	G ATG 1 Met 2165	Glu Ph	C TCC e Ser	GCG Ala	AAT Asn 2170	Val	ATG Met	AAC Asn	ACC Thr	GAA Glu 2175	Ala	6528
30	GAT AAA Asp Lys	Ile Se	C CAA r Gln 80	TCT GA Ser Gl	A ACC	TAC Tyr 218	Arg	CGT Arg	CGC Arg	CGT Arg	CAG Gln 2190	Glu	TGG Trp	5576
35	GAG ATC Glu Ile	CAG CG Gln Ar 2195	G AAT g Asn	AAT GC Asn Al	GAA Glu 220	Ala	GAA Glu	TTG Leu	AAG Lys	CAA Gln 220	Ile	GAT Asp	GCT Ala	5624
33	CAG CTC Gln Leu 2210	Lys Se	A CTC r Leu	GCT GT. Ala Va 22	l Arg	CGC Arg	GAA Glu	GCC Ala	GCC Ala 2220	Val	TTG Leu	CAG Gln	AAA Lys	6672
40	ACC AGT Thr Ser 2225	CTG AA Leu Ly	s Thr	CAA CA Gln Gli 2230	A GAA n Glu	CAG Gln	ACC Thr	CAA Gln 2235	Ser	CAA Gln	TTG Leu	GCC Ala	TTC Phe 2240	6720
45	CTG CAA Leu Gln	CGT AA Arg Ly	G TTC s Phe 2245	Ser Ası	CAG Gln	GCG Ala	TTA Leu 2250	Tyr	AAC Asn	TGG Trp	CTG Leu	CGT Arg 2255	GJA	6768
50	CGA CTG Arg Leu	GCG GC Ala Al 22	a Ile	TAC TTO Tyr Pho	CAG Gln	TTC Phe 226	Tyr	GAT Asp	TTG Leu	GCC Ala	GTC Val 2270	Ala	CGT Arg	6816
55	TGC CTG Cys Leu	ATG GC Met Al 2275	A GAA a Glu	CAA GC' Gln Ala	TAC Tyr 228	Arg	TGG Trp	GAA Glu	CTC Leu	AAT Asn 2289	Asp	GAC Asp	TCT Ser	6864
55	GCC CGC Ala Arg 2290	Phe Il	T AAA e Lys	CCG GGG Pro Gly 229	/ Ala	TGG Trp	CAG Gln	GGA Gly	ACC Thr 2300	Tyr	GCC Ala	GGT Gly	CTG Leu	6912
60	CTT GCA Leu Ala 2305	GGT GA Gly Gl	u Thr	TTG ATO Leu Met 2310	CTG Leu	AGT Ser	CTG Leu	GCA Ala 2315	Gln	ATG Met	GAA Glu	GAC Asp	GCT Ala 2320	6960
65	CAT CTG His Leu	AAA CG Lys Ar	C GAT g Asp 2325	Lys Arg	GCA Ala	TTA Leu	GAG Glu 2330	Val	GAA Glu	CGC Arg	ACA Thr	GTA Val 2335	Ser	7008
70	CTG GCC Leu Ala	GAA GT Glu Va 23	l Tyr	GCA GGA Ala Gly	TTA Leu	CCA Pro 2345	Lys	GAT Asp	AAC Asn	GGT Gly	CCA Pro 2350	Phe	TCC Ser	7056

	CTG GCT CAG GAA ATT GAC AAG CTG GTG AGT CAA GGT TCA GGC AGT GCC 7174 Leu Ala Gln Glu Ile Asp Lys Leu Val Ser Gln Gly Ser Gly Ser Ala 2355 2360 2365
5	GGC AGT GGT AAT AAT TTG GCG TTC GGC GCC GGC ACG GAC ACT AAA 7152 Gly Ser Gly Asn Asn Asn Leu Ala Phe Gly Ala Gly Thr Asp Thr Lys 2370 2375 2380
10	ACC TCT TTG CAG GCA TCA GTT TCA TTC GCT GAT TTG AAA ATT CGT GAA 7200 Thr Ser Leu Gln Ala Ser Val Ser Phe Ala Asp Leu Lys Ile Arg Glu 2385 2390 2395 2400
15	GAT TAC CCG GCA TCG CTT GGC AAA ATT CGA CGT ATC AAA CAG ATC AGC 7248 Asp Tyr Pro Ala Ser Leu Gly Lys Ile Arg Arg Ile Lys Gln Ile Ser 2405 2410 2415
20	CTC ACT TTG CCC GCG CTA CTG GGA CCG TAT CAG GAT GTA CAG GCA ATA 7296 Val Thr Leu Pro Ala Leu Leu Gly Pro Tyr Gln Asp Val Gln Ala Ile 2420 2425 2430
	TTG TCT TAC GGC GAT AAA GCC GGA TTA GCT AAC GGC TGT GAA GCG CTG 7344 Leu Ser Tyr Gly Asp Lys Ala Gly Leu Ala Asn Gly Cys Glu Ala Leu 2435 2440 2445
25	GCA GTT TCT CAC GGT ATG AAT GAC AGC GGC CAA TTC CAG CTC GAT TTC 7392 Ala Val Ser His Gly Met Asn Asp Ser Gly Gln Phe Gln Leu Asp Phe 2450 2455 2460
30	AAC GAT GGC AAA TTC CTG CCA TTC GAA GGC ATC GCC ATT GAT CAA GGC 7140 Asn Asp Gly Lys Phe Leu Pro Phe Glu Gly Ile Ala Ile Asp Gln Gly 2465 2470 2475 2480
35	ACG CTG ACA CTG AGC TTC CCA AAT GCA TCT ATG CCG GAG AAA GGT AAA 7488 Thr Leu Thr Leu Ser Phe Pro Asn Ala Ser Met Pro Glu Lys Gly Lys 2485 2490 2495
40	CAA GCC ACT ATG TTA AAA ACC CTG AAC GAT ATC ATT TTG CAT ATT CGC 7536 Gln Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu His Ile Arg 2500 2510
	TAC ACC ATT AAA TAA 7551 Tyr Thr Ile Lys ••• 2516
45	(2) INFORMATION FOR SEQ ID NO:47: (i) SEQUENCE CHARACTERISTICS:
50	 (A) LENGTH: 2516 amino acids (B) TYPE: amino acids (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
55	<pre>(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47 (TcdA): Features From To Description Peptide 1 2516 TcdA proteins Peptide 89 1937 TcdAii peptide</pre>
60	Fragment 89 100 S2 N-terminus (SEQ ID NO:13) Fragment 284 299 (SEQ ID NO:38) Fragment 554 563 (SEQ ID NO:17)
65	Fragment 1080 1092 (SEQ ID NO:23; 12/13) Fragment 1385 1400 (SEQ ID NO:18) Fragment 1478 1497 (SEQ ID NO:39) Fragment 1620 1642 (SEQ ID NO:21; 19/23)
	Fragment 1938 1948 (SEQ ID NO:41) Peptide 1938 2516 TcdA _{lli} peptide
	Fragment 2327 2345 (SEQ ID NO:42) Fragment 2398 2408 (SEQ ID NO:43)

	M	et L	Asr	ı Gl	u Se	er 7.	al L S	;'s G	lu	Ile	Pro	2 As	р Уз	l L	eu Ly	/s S	er	Glr 15	г Суз
5	3	ly	Phe	As	n Cy 20	's Le	∍u T	hr A	sp	Ile	Ser 25	r Hi	s Se	r Se	er Ph	ne A		Glu	Phe
10	Aı	g (Gln	G1 35	n Va	l Se	er G	lu H	is :	L a u 40	Ser	Tr	p Se	r Gl	u Th		is	Asp	Leu
	Ty	r i	His 50	Ası	p Al	a Gl	n G	ln A 5	la (5	Gln	Lys	Ası	P. As.	n Ar 60	g Le	u T	/T	Glu	Ala
15	Ar 65	g 1	lle	Lat	ı Ly:	s Ar	g Al 70	la Ai	en i	Pro	Gln	Leu	4 Gla 75	n As	n Al	a. Va	1	His	Leu 30
	λl	a I	le	Leu	ı Al	a Pr 85	o As	n Al	lac	lu	Leu	11e 90	Gly	y Ty	r As	n As		31n 95	Phe
20	Se	r G	ly	Arg	100	a Se	r Gl	n Ty	r V	'al	Ala 105	Pro	Gly	Th:	r Va	1 Se		Ser	Met
25	Ph	e S	er	Pro 115	Ala	Al.	а Ту	r Le	u 1	hr 20	Glu	Leu	Туг	Arg	Gl:	u Al 5	a i	Arg	Asn
	Le	1 1	is 30	Ala	Ser	Ası	Se	r Va 13	1 T	yr	Tyr	Leu	Asp	Th:	Arg	g Ar	g i	Pro	Asp
30	Let 145	L	ys	Ser	Met	Ala	15	u Se O	r G	ln	Gln	Asn	Met 155	Asp	Ile	9 G1	u L	.eu	Ser 160
	The	· L	eu	Ser	Leu	Ser 165	Ası	n Gl	u L	eu .	Leu	Leu 170	Glu	Ser	Ile	Ly:		hr 75	Glu
35	Ser	L	/S	Leu	Glu 180	Asn	Ту	r Th	r L	/s '	/al 185	Met	Ģlu	Met	Leu	Se:		hr	Phe
40	Arg	Pr	0	Ser 195	Gly	Ala	Thr	Pro	2 T)	/r !	lis	Asp	Ala	Tyr	G1u 205	Ası	ı V	al	Arg
	Glu	Va 21	0	Ile	Gln	i su	Glr	215	Pr	:o C	ly	Leu	Glu	Gln 220	Leu	Asr	ı A	la.	Ser
45	Pro 225	Al	a :	lle	Ala	Gly	Leu 230	Met	: Hi	s C	ln.	Ala	Ser 235	Leu	Leu	Gly	ľ		Asn 240
	Ala	Se	r I	lle	Ser	Pro 245	Glu	Leu	ı Ph	e A	sn	Ile 250	Leu	Thr	Glu	Glu		le '	Thr
50	Glu	Gl	y A	Isn	Ala 260	Glu	Glu	Leu	Ту	r L	ys 1 65	Lys	Asn	Phe	Gly	Asn 270	I	le (Slu
55	Pro	Al.	a 9	er 75	Leu	Ala	Met	Pro	G1 28	u T 0	yr I	Leu	Lys	Arg	Tyr 285	Tyr	As	sn I	.e u
	Ser	As ₁	p G	lu (Glu	Leu	Ser	Gln 295	Ph	e I	le c	ly	Lys	Ala 300	Ser	Asn	Pł	ne (Sly
60	Gln 305	Gli	n G	lu '	Tyr	Ser	Asn 310	Asn	Gl	n L	eu]	le	Thr 315	Pro	Val	Val	As		er 20
	Ser	Ası	G	ly '	Thr	Val 325	Lys	Val	Ty:	r A	rg I	le '	Thr	Arg	Glu	Tyr	Th		'hr
65	Asn	Ala	T	yr (31n 340	Met	Asp	Val	Gli	1 L	eu P 15	he I	Pro	Phe	Gly	Gly 350	Gl	u A	sn
70	Tyr	Arç	7 L	eu / 55	∤sp '	Tyr	Lys	Phe	Ly:	5 As	sn P	he 1	lyr .		Ala 365	Ser	Ty	r L	eu
	Ser	Ile	L	ys I	.eu /	Asn	Asp	Lys	Arç		u L -195		/al /	Arg	Thr	Glu	GI	у А	la

370	375	380

		3,0	•				٠.,	,				,,,,	,			
5	Pro 385		Val	. Asn	Ile	Glu 390		Ser	Ala	Asr	11e 395		Leu	λsπ	Thr	Ala 400
J	Asp	Ile	Ser	Gln	Pro 405		Glu	Ile	Gly	110		Arg	Val	Leu	Pro 415	
10	Gly	Ser	Trp	Ala 420	Tyr	Ala	Ala	Ala	Lys 425		Thr	Val	Glu	G1u 430	Tyr	Asn
	Gln	Tyr	Ser 435		Leu	Leu	Lys	Lau 440		Lys	Ala	Ile	λrg 445		ser	Arg
15	Ala	Thr 450		Leu	Ser	Pro	Thr 455		Leu	Glu	Gly	Ile 460		Arg	Ser	Val
20	Asn 465	Leu	Gln	Leu	Asp	Ile 470	Asn	Thr	Asp	Val	Leu 475	Gly	Lys	Val	Phe	Leu 480
20	Thr	Lys	Tyr	Tyr	Met 485	Gln	Arg	Tyr	Ala	11e 490	His	Ala	Glu	Thr	Ala 495	Leu
25	Ile	Leu	Cys	Asn 500	Ala	Pro	Ile	Ser	Gln 505		Ser	Tyr	Asp	Asn 510	Gln	Pro
	Ser	Gln	Phe 515	Asp	Arg	Leu	Phe	Asn 520	Thr	Pro	Leu	Leu	Asn 525	Gly	Gln	Tyr
30	Phe	Ser 530	Thr	Gly	Asp	Glu	Glu 535	Ile	Asp	Leu	Asn	Ser 540	Gly	Ser	Thr	Gly
35	Asp 545	Trp	Arg	Lys	Thr	Ile 550	Leu	Lys	Arg	Ala	Phe 555	Asn	Ile	Asp	Asp	Val 560
	Ser	Leu	Phe	Arg	Leu 565	Leu	Lys	Ile	Thr	Asp 570	His	Asp	Asn	Lys	Asp 575	Gly
40	Lys	Ile	Lys	Asn 580	Asn	Leu	Lys	Asn	Leu 585	Ser	Asn	Leu	Туr	Ile 590	Gly	Lys
	Leu	Leu	Ala 595	Asp	Ile	His	Gln	Leu 600	Thr	Ile	Asp	Glu	Leu 605	Asp	Leu	Leu
45	Leu	11e 610	Ala	Val	Gly	Glu	Gly 615	Lys	Thr	Asn	Leu	Ser 620	Ala	Ile	Ser	Asp
50	Lys 625	Gln	Leu	Ala	Thr	Leu 630	Ile	Arg	Lys	Leu	Asn 635	Thr	Ile	Thr	Ser	Trp 640
	Leu	His	Thr	Gln	Lys 645	Trp	Ser	Val	Phe	Gln 650	Leu	Phe	Ile	Met	Thr 655	Ser
55	Thr	Ser	Tyr	Asn 660	Lys	Thr	Leu	Thr	Pro 665	Glu	Ile	Ĺys	Asn	Leu 670	Leu	Asp
	Thr	Val	Tyr 675	His	Gly	Leu	Gln	680	Phe	Asp	Lys	Asp	Lys 685	Ala	Asp	Leu
60		His 690	Val	Met	Ala	Pro	Tyr 695	Ile	Ala	Ala	Thr	Leu 700	Gln	Leu	Ser	Ser
65	Glu 705	Asn	Val	Ala	His	Ser 710	Val	Leu	Leu	Trp	Ala 715	Asp	Lys	Leu	Gln	Pro 720
	Gly	ÀSP	Gly	Ala	Met 725	Thr	Ala	Glu	Lys	Phe 730	Trp	Asp	Trp	Leu	Asn 735	Thr
70	Lys	Tyr	Thr	Pro 740	Gly	Ser	Ser	Glu	Ala 745	Val	Glu	Thr	Gln	Glu 750	Hıs	Ile

WU 97/17452 PCT/US96/18003

	∵a.	1 G	ln T	/r ⊆/ 55	's G1	n Al	a L	eu Al ≅a	la G) 50	in L	eu Gl	u Me	t Va 76	1 T ₂ ::	r Hı	s S e r
5	Thi	r G1 77	ly II 0	le As	n Gl	u As	n Al 77	la Ph	e Ar	g La	eu Ph	e Va 78	l Thi	r Lys	s Pr	o Glu
	Met 785	Ph	e Gl	y Al	a Al	a Th 79	r Gl	y Al	a Al	a Pr	79	a His 5	s Asp	Ala	Le.	3er 800
10					80	,				91					815	•
15				02	•				82	>	u Al			830		
			0,5	,				84	U		p Ala		845			
20		0,5	•				90	7			s Leu	860				
	003					870	,				e Asr 875	j				380
25			-		663	,				89	•				895	
30				300					905)	: Lys			910		-
			713	,				920			Thr		925			
35		,,,					335				Asp	940				
40	,4,5					320					Ala 955					960
40					303					970					975	
45				760					985		Ala			990		
			333					100	D		Asn		1005			
50			•				101	•				1020				
<i></i>	Asn 1 1025					1030	,				1035)				1040
55	Pro (1045					1050	כ			;	1055	
60	Met A			1000					1065)				1070		
	Thr V		10/5)				1080)				1085			
65		. 0 3 0					1032					1100				
~	Gln G 1105					1110					1115					120
70	Tyr T	уr	Trp	Arg	Ser '	Val i	Asp	His	Ser	Lys 1130	Phe A	Asn A	Asp C		ys (he

	Ala	Ala	Asn	Ala 114		Ser	Glu	Trp	His 114		Ila	Аsр	Cys	Pro 115		Ası
5	Pro	Tyr	Lys 115		Thr	Ile	Arg	Pro 116		Ile	T/r	Lys	Ser 116		Leu	Ty
10	Lau	Lau 117	Trp	Leu	Glu	Gln	Lys 117		Ile	Thr	Lys	Gln 118		CIA	Asn	Sei
10	Lys		Gly	Tyr	Gln	Thr 119		Thr	Asp	Tyr	Arg 119		Glu	Leu	Lys	Leu 120
15	Ala	His	Ile	Arg	Tyr 120		Gly	Thr	Trp	Asn 121		Pro	Ile	Thr	Phe 121	
	Val	Asn	Lys	Lys 122		Ser	Glu	Leu	Lys 122		Glu	Lys	Asn	Arg 123		Pro
20	Gly	Leu	Tyr 123		Ala	Gly	Tyr	Gln 124		Glu	Asp	Thr	Leu 124		Val	Met
25	Phe	Tyr 125	Asn O	Gln	Gln	Asp	Thr 125		Asp	Ser	T/r	Lys 126		Ala	Ser	Met
	Gln 1265		Leu	Tyr	Ile	Phe 1270		Asp	Met	Ala	Ser 127		Asp	Met	Thr	Pro 128
30	Glu	Gln	Ser	Asn	Val 128		Arg	Asp	Asn	Ser 1290		Gln	Gln	Phe	Asp 129	
	Asn	Asn	Val	Arg 1300		Val	Asn	Asn	Arg 1309		Ala	Glu	Asp	Tyr 131		Ile
35	Pro	Ser	Ser 1319		Ser	Ser	Arg	Lys 1320		Tyr	Gly	Trp	Gly 132		Tyr	Tyr
40	Leu	Ser 1330	Met)	Val	Tyr	Asn	Gly 1335		Ile	Pro	Thr	Ile 1340		Tyr	Lys	Ala
-1 0	Ala 1345		Ser	Asp	Leu	Lys 1350		Tyr	Ile	Ser	Pro 1359		Leu	Arg	Ile	Ile 136
45	His	Asn	Gly	Tyr	Glu 1365		Gln	Lys	Arg	Asn 1370		Cys	Asn	Leu	Met 1379	
	Lys	Tyr	Gly	Lys 1380		Gly	Asp	Lys	Phe 1385		Val	Tyr	Thr	Ser 1390		Gly
50	Val	Asn	Pro 1395		Asn	Ser	Ser	Asn 1400		Leu	Met	Phe	Tyr 1405		Val	Tyr
55	Gln	Tyr 1410		Gly	Asn	Thr	Ser 1415		Leu	Asn	Gln	Gly 1420		Leu	Leu	Phe
,,	His 1425		Asp	Thr	Thr	Tyr 1430		Ser	Lys	Val	Glu 1435		Trp	Ilə	Pro	Gly 144
60	Ala	Lys	Arg	Ser	Leu 1445		Asn	Gln	Asn	Ala 1450		Ile	Gly	Asp	Asp 1455	
	Ala	Thr	Asp	Ser 1460		Asn	Lys	Pro	Asp 1465		Leu	Lys	Gln	Tyr 1470		Phe
55	Met	Thr	Asp 1475		Lys	Gly	Thr	Ala 1480		Asp	Val	Ser	Gly 1485		Val	Glu
7O		Asn 1490	Thr	Ala	Ile		Pro 1495		Lys	Val	Gln	Ile 1500		Val	Lys	Ala
, (,	Gly	Gly	Lys	Glu	Gln	Thr	Phe	Thr	Ala - 10		Lys	Asp	Val	Ser	Ile	Gln

	1505	1510	1515	1525
5		Phe Asp Glu Met 1525	Asn Tyr Gln Phe Asn Al 1530	a Leu Glu 1535
		Gly Leu Asn Phe	Ile Asn Asn Ser Ala Se 1545 15	r Ile Asp 50
10	1333	1560	1303	
	1370	15/5	Lys Val Ser Thr Asp Ass 1580	
15	1303	1590	Ala Gln T/r Met Gln Tr 1595	1600
20		1005	Phe Ala Arg Gln Leu Va. 1610	1615
	1620	1	Leu Ser Met Glu Thr Glr 1625 163 Phe Tyr Ala Thr Phe Val	30
25	1033	1640	1645 asp Glu Arg Trp Phe Lys	
30	Ile Lys His Val	1000	1660 ler His Ile Ile Tyr Ser	
	Leu Thr Asp Thr A	Asn Ile Asn Ile T	1675 hr Leu Phe Ile Pro Leu	1680
35	•	loos Gln Asp Tyr His A	1690 la Lys Val Tyr Met Thr	1695
40			705 171 rp Gly Pro His Phe Val 1725	
	Asp Lys Gly Ile V		ro Lys Ser Ile Leu Thr 1740	His Phe
45	Glu Ser Val Asn V 1745	al Leu Asn Asn II 1750	le Ser Ser Glu Pro Met 1755	Asp Phe 1760
50	Ser Gly Ala Asn S	er Leu Tyr Phe Ti 765	rp Glu Leu Phe Tyr Tyr 1770	Thr Pro 1775
	1760	17	1/3/	0
55	1795	1800	er Pro Ser Gly Tyr Ile 1805	
60	1010	1912	sn Val Arg Pro Leu Leu 1820	
60	102)	1830	p Ser Val Asp Pro Asp 1835	1840
65	10	345	s Val Ser Thr Phe Met 1850	1855
	1900	18	p His Ala Tyr Arg Gln 65 1870 t Trp Tyr Met Gln Ala	•
. 70	1875	1880	1885	Leu His

	Leu	1990		ASP	L, 5	PLO	1895		FLJ	Dea		1900)			•
5	Pro 1905		Leu	Аsp	λrg	داد 1910	Ala	Asp	Ile	Thr	Thr 1915	Sln	Asn	Ala	His	Asp 1920
	Ser	Ala	Ile	Val	Ala 1925	Leu	Arg	Gln	Asn	Ile 1930	Pro	Thr	Pro	λla	Pro 1935	Leu
10	Ser	Leu	Arg	Ser 1940		Asn	Thr	Leu	Thr 1945	Asp	Leu	Phe	Leu	Pro 1950	Gln	Ile
15	Asn	Glu	Val 1955	Met	Met	Asn	Tyr	Trp 1960	Gln)	Thr	Leu	Ala	Gln 1965	Arg	Val	Tyr
13	Asn	Leu 1970	Arg	His	Asn	Leu	Ser 1975	Ile	Asp	Gly	Gln	Pro 1980	Leu)	Tyr	Leu	Pro
20	Ile 1985		Ala	Thr	Pro	Ala 1990	Asp	Pro	Lys	Ala	Leu 1995	Leu	Ser	Ala	Ala	Val 2000
			Ser		2005	5				2010)				2015	1
25	-		Phe	2020)				2025	5				2030)	
30			Gln 2035	5				2040)				2045	•		
J.,		2050					2055	5				2060)			
35	2065	5	Asn			2070)				2075	•				2080
			Thr		2085	;				2090)				2095	•
40			Tyr	2100)				2105	5				2110)	
45			Met 2115	5				2120)				2125)		
		2130					2135	5				2140)			
50	2145	,	Phe			2150)				2155	•				2160
			Tyr		2165	i				2170)				21/5	•
55			Ile	2180)				2185	5				2190)	
60			Gln 2195	5				2200)				2205	•		
		2210					2215	5				2220)			
65	2225	5	Leu			2230)				2235	5				2240
			Arg		2245	5				2250)				2255)
70	Arg	Leu	Ala	Ala 2260		Tyr	Phe	Gln	Phe 2265		ASD	ren	AIG	Val 2270) Ala	Arg

PCT/US96/18003

	Cγs	Leu	227	Ala '5	Glu	Gln	Ala	Tyr 228		Trp	Glu	Leu	Asn 228		Аsp	Ser		
5	Ala	A Arg 229	Phe	lle	Lys	Pro	Gly 229	Ala 5	Trp	Gln	Gly	Thr 230		Ala	Gly	Leu		
10	Leu 230		Gly	Glu	Thr	Leu 231	Met 0	Leu	Ser	Leu	Ala 2319		Met	Glu	Asp	Ala 2320		
•••	His	: Leu	Lys	Arg	Asp 232		Arg	Ala	Leu	Glu 2330		Glu	Arg	Thr	Val 233			
15	Leu	Ala	Glu	Val 234	Tyr 0	Ala	Gly	Leu	Pro 2345	Lys 5	Asp	Asn	Gly	Pro 2350		Ser		
	Leu	Ala	Gln 235	Glu 5	Ile	Asp	Lys	Leu 2360		Ser	Gln	Gly	Ser 2365		Ser	Ala		
20	Gly	Ser 237	Gly 0	Asn	Asn	Asn	Leu 2375	Ala	Phe	Gly	Ala	Gly 2380		λsp	Thr	Lys		
25	Thr 238	Ser 5	Leu	Gln	Ala	Ser 2390	Val	Ser	Phe	Ala	Asp 2395	Leu	Lys	Ile	Arg	Glu 2400		
	Asp	Tyr	Pro	Ala	Ser 2405	Lau	Gly	Lys	Ile	Arg 2410		Ile	Lys	Gln	Ile 2415			
30	Val	Thr	Leu	Pro 2420	Ala	Leu	Leu	Gly	Pro 2425		Gln	Asp	Val	Gln 2430		Ile		
	Leu	Ser	Tyr 243	Gly 5	Asp	Lys	Ala	Gly 2440	Leu)	Ala	Asn		Cys 2445		Ala	Leu		
35	Ala	Val 2450	Ser	His	Gly	Met	Asn 2455		Ser	Gly		Phe 2460		Leu	Asp	Phe		
10	Asn 246	Asp 5	Gly	Lys	Phe	Leu 2470	Pro	Phe	Glu	Gly	Ile 2475		Ile	Asp	Gln	Gly 2480		
•0	Thr	Leu	Thr	Leu	Ser 2485		Pro	Asn		Ser 2490		Pro	Glu	Lys	Gly 2 49 5			
15	Gln	Ala	Thr	Met 2500	Leu	Lys	Thr	Leu	Asn 2505		Ile	Ile	Leu	His 2510		Arg		
	Tyr	Thr	Ile	Lys 2516	;													
50	(2)			MATI SEQU	ENCI	E CH	ARAC LENC	TER TH:	ISTI 55	CS:	base	pai	irs					
5					(B) (C) (D)			NDE	DNES	S: 0	acid doub ar							
		(i	Li)	MOL	ECUI	LE T	YPE:	D	NA (gen	omic)						
0		()	(i)	SEQ	UENC	CE D	ESCR	IPT	ION:	SE	Q ID	NO:	48	(tcc	Mii	coding	region;	:
5	CTG Leu I	ATA Ile	GGC Gly	TAT Tyr	AAC Asn 5	AAT Asn	CAA ' Gln :	TTT Phe	Ser	GGT Gly 10	AGA (Arg)	SCC . Ala :	AGT (Gln	TAT Tyr 15	GTT 48 Val		
	GCG Ala	CCG Pro	Gly	ACC Thr 20	CTT Val	TCT Ser	TCC . Ser i	ATG Met	Phe	TCC Ser	CCC (Pro /	GCC (Ala	TAT Tyr 30	TTG Leu	ACT 96 Thr		

:	GAA CTT TAT CGT GAA GCA CGC AAT TTA CAC GCA AGT GAC TCC GTT TAT 114 Glu Leu Tyr Arg Glu Ala Arg Asn Leu His Ala Ser Asp Ser Val Tyr 35 40 45
	TAT CTG GAT ACC CGC CGC CCA GAT CTC AAA TCA ATG GCG CTC AGT CAG 192 Tyr Leu Asp Thr Arg Arg Pro Asp Leu Lys Ser Met Ala Leu Ser Gln 50 60
1(Gin Asn Met Asp Ile Glu Leu Ser Thr Leu Ser Leu Ser Asn Glu Leu 65 70 75
15	85 90 95
20	105 110
25	CAT GAT GCT TAT GAA AAT GTG CGT GAA GTT ATC CAG CTA CAA GAT CCT 384 His Asp Ala Tyr Glu Asn Val Arg Glu Val Ile Gln Leu Gln Asp Pro 115 120 125
30	GGA CTT GAG CAA CTC AAT GCA TCA CCG GCA ATT GCC GGG TTG ATG CAT 432 Gly Leu Glu Gln Leu Asn Ala Ser Pro Ala Ile Ala Gly Leu Met His 130 135 140
30	Gln Ala Ser Leu Leu Gly Ile Asn Ala Ser Ile Ser Pro Glu Leu Phe 145 150 155 160
35	AAT ATT CTG ACG GAG GAG ATT ACC GAA GGT AAT GCT GAG GAA CTT TAT 528 Asn Ile Leu Thr Glu Glu Ile Thr Glu Gly Asn Ala Glu Glu Leu Tyr 165 170 175
40	AAG AAA AAT TTT GGT AAT ATC GAA CCG GCC TCA TTG GCT ATG CCG GAA 576 Lys Lys Asn Phe Gly Asn Ile Glu Pro Ala Ser Leu Ala Met Pro Glu 180 185 190
45	TAC CTT AAA CGT TAT TAT AAT TTA AGC GAT GAA GAA CTT AGT CAG TTT 624 Tyr Leu Lys Arg Tyr Tyr Asn Leu Ser Asp Glu Glu Leu Ser Gln Phe 200 ATT GGT AAA GCC AGC AAT TTT GGT CAA CAG GAA TAT AGT AAT AAC CAA 672 Lie Gly Lys Ala Ser Asp Pho Cly Cla Cla Cal
50	210 215 220 CTT ATT ACT CCG GTA GTC AAC ACC ACT CAM GGG ACG ACG ACG ACG ACG ACG ACG ACG ACG
	225 230 235 Apr Gly The Val Lys Val Tyr
55	CGG ATC ACC CGC GAA TAT ACA ACC AAT GCT TAT CAA ATG GAT GTG GAG 768 Arg Ile Thr Arg Glu Tyr Thr Thr Asn Ala Tyr Gln Met Asp Val Glu 245 250 255
6()	CTA TTT CCC TTC GGT GGT GAG AAT TAT CGG TTA GAT TAT AAA TTC AAA 816 Leu Phe Pro Phe Gly Gly Glu Asn Tyr Arg Leu Asp Tyr Lys Phe Lys 260 265 270
65	AAT TTT TAT AAT GCC TCT TAT TTA TCC ATC AAG TTA AAT GAT AAA AGA 864 Asn Phe Tyr Asn Ala Ser Tyr Leu Ser Ile Lys Leu Asn Asp Lys Arg 275 280 285
	GAA CTT GTT CGA ACT GAA GGC GCT CCT CAA GTC AAT ATA GAA TAC TCC 912 Glu Leu Val Arg Thr Glu Gly Ala Pro Gln Val Asn Ile Glu Tyr Ser 290 295 300
70	GCA AAT ATC ACA TTA AAT ACC GCT GAT ATC AGT CAA CCT TTT GAA ATT 960 Ala Asn Ile Thr Leu Asn Thr Ala Asp Ile Ser Gln Pro Phe Glu Ile

	305	310	315	320
	3	325	CC GGT TCT TGG GCA TAT OF Gly Ser Trp Ala Tyr 330	GCC GCC GCA 1003 Ala Ala Ala 335
10)	340	C CAA TAC TOT TTT CTG n Gln Tyr Ser Phe Leu 345	Leu Lys Leu 350
15	355	3 6		Pro Thr Ile
	370	375	T AAT CTA CAA CTG GAT l Asn Leu Gln Leu Asp 380	lle Asn Thr
20	385	390	ACT AAA TAT TAT ATG Thr Lys Tyr Tyr Met 395	Gin Arg Tyr 400
25		405	ATA CTA TGC AAC GCG (lle Leu Cys Asn Ala (410	Pro Ila Ser 415
30	4	20		æu Phe Asn 30
	ACG CCA TTA C Thr Pro Leu L 435	TG AAC GGA CAA TAT BU ASN Gly Gln Tyr 440	TTT TCT ACC GGC GAT G Phe Ser Thr Gly Asp G	AG GAG ATT 1344 lu Glu Ile
35	GAT TTA AAT TO Asp Leu Asn So 450	CA GGT AGC ACC GGC or Gly Ser Thr Gly 455	GAT TGG CGA AAA ACC A Asp Trp Arg Lys Thr I 460	TA CTT AAG 1392 le Leu Lys
40	CGT GCA TTT AM Arg Ala Phe As 465	T ATT GAT GAT GTC n lle Asp Asp Val 470	TCG CTC TTC CGC CTG C Ser Leu Phe Arg Leu L 475	TT AAA ATT 1440 au Lys Ile 480
45	ACC GAC CAT GA Thr Asp His As	T AAT AAA GAT GGA p Asn Lys Asp Gly 485	AAA ATT AAA AAT AAC CT Lys Ile Lys Asn Asn Le 490	
50	CTT TCC AAT TT Leu Ser Asn Le 50	^1 -1 -1	TTA CTG GCA GAT ATT CA Leu Leu Ala Asp Ile Hi 505 51	T CAA TTA 1536 s Gln Leu
	ACC ATT GAT GA Thr Ile Asp Glu 515	A CTG GAT TTA TTA 1 Leu Asp Leu Leu 520	CTG ATT GCC GTA GGT GA Leu Ile Ala Val Gly Gl 525	A GGA AAA 1584 u Gly Lys
55	ACT AAT TTA TCC Thr Asn Leu Ser 530	GCT ATC AGT GAT A Ala Ile Ser Asp 1 535	AG CAA TTG GCT ACC CT ys Gln Leu Ala Thr Le	G ATC AGA 1632 u Ile Arg
60	AAA CTC AAT ACT Lys Leu Asn Thr 545	ATT ACC AGC TGG C Ile Thr Ser Trp I 550	TA CAT ACA CAG AAG TGG eu His Thr Gln Lys Tr 555	G AGT GTA 1680 D Ser Val 560
65	TTC CAG CTA TTT Phe Gin Leu Phe	ATC ATG ACC TCC A Ile Met Thr Ser T 565	CC AGC TAT AAC AAA ACC hr Ser Tyr Asn Lys Thr 570	
70	CCT GAA ATT AAG Pro Glu Ile Lys 580	nsp 1	CC GTC TAC CAC GGT TTA hr Val Tyr His Gly Leu 35 590	CAA GGT 1776 Gln Gly
	TTT GAT AAA GAC	AAA GCA GAT TTG C	TA CAT GTC ATG GCG CCC	

	Pt.e	e Asp) Lys	i Asp	Lys	Ala	Asp	Lau 600		His	; ¥al	Met	Ala 605		Tyr	īle	
5			Thr	TTG Leu				Ser					His				1372
10		Trp		GAT Asp			Gln					Ala					1920
15				GAC Asp		Leu					Thr						1963
13	GCC Ala	GTA Val	GAA Glu	ACG Thr 660	CAG Gln	GAA Glu	CAT His	ATC Ile	GTT Val 665	CAG Gln	TAT Tyr	TGT Cys	CAG Gln	GCT Ala 670	CTG Leu	GCA Ala	2016
20	CAA Gln	TTG Leu	GAA Glu 675	Met	GTT Val	TAC Tyr	CAT His	TCC Ser 680	ACC Thr	GGC Gly	ATC Ile	AAC Asn	GAA Glu 685	AAC Asn	GCC Ala	TTC Phe	2064
25	CGT Arg	CTA L e u 690	TTT Phe	GTG Val	ACA Thr	AAA Lys	CCA Pro 695	GAG Glu	ATG Met	TTT Phe	GGC Gly	GCT Ala 700	GCA Ala	ACT Thr	GGA Gly	GCA Ala	2112
30				CAT His													2160
35				AAC Asn													2208
<i>J J</i>				AAC Asn 740													2256
40				AAT Asn													2304
45				CCC Pro													2352
50		Ile		Thr	Ile	Leu	Gln	Trp	Val	Asn		Ala			Leu		2400
55				CAG Gln													2448
<i>J J</i>				GAG Glu 820													2496
რ ()	GTA Val	TTA Leu	ACC Thr 835	GCC Ala	G1y GGG	TTG Leu	Asn	TCA Ser 840	CAA Gln	CAG Gln	GCT Ala	Asn	ACA Thr 845	TTA Leu	CAC H1s	GCT Ala	2544
65	Phe	CTG Leu 850	GAT Asp	GAA Glu	TCT Ser	Arg	AGT Ser 855	GCC Ala	GCA Ala	TTA Leu	Ser	ACC Thr 860	TAC Tyr	ТАТ Туг	ATC Ile	CGT Arg	2592
70	CAA Gln 365	GTC Val	GCC Ala	AAG Lys	Ala	GCG Ala 870	GCG Ala	GCT Ala	ATT Ile	Lys	AGC Ser 875	CGT Arg	GAT Asp	GAC Asp	TTG Leu	TAT Tyr 380	2640

WO 97/17432 PCT/US96/18003

	CAA TAC Gln Tyr	TTA CTG Leu Leu	ATT GAT Ile Asp 385	AAT CAC Asn Glr	GTT TC1 Val Ser 890	: Ala Ala	ATA AAA Ile Lys	ACC ACC 1686 Thr Thr 895
5	Arg Ile	900	VIT IIE	wig pet	905 905	Leu Tyr	Val Asn 910	
10	200 010	915	old old	920	Asn Ser	GIY VAI	Ile Ser 925	
15	930	rre nap	ILD Wah	935	ASN LYS	940	Ser Thr	
20	945	ser gill	950	Tyr Tyr	bro Gin	Asn Tyr 955	Ile Asp	960
25	nec arg	ile Già	965	Lys Met	Met Asp 970	Ala Leu	Leu Gln	975
23	Jer Gin .	980	Leu Asn	Ala Asp	985	Glu Asp	Ala Phe 990	
30	9	95	File GIU	1000	Ala Asn	Leu Lys	Val Ile 1005	
35	1010	SP ASII .	ile Asn .	Asn Asp 1015	Gin Gly	Leu Thr	Tyr Phe	
40	1025	110 1111 /	1030	ary Gru	Tyr Tyr	Trp Arg . 1035	Ser Val	1040
45	201 2,3 1	1	1045	Lys Pne	Ala Ala 1050	Asn Ala '	Trp Ser	1055
40	HIS LYS I	1060	ys Pro .	lle Asn	Pro Tyr 1065	Lys Ser '	Thr Ile . 1070	
50	1	91 Lys 3	er Arg I	1080	Lau Leu	Trp Leu (Glu Gln : 1085	
55	1090	ys GIN 1	nr Gly A	sn Ser : .095	Lys Asp	Gly Tyr (1100	In Thr	
60	1105	ig iyi G	1110	ys Leu /	Ala His	lle Arg 1 1115	Yr Asp (1120
48	TIP AS.L II	1	125	ne Asp \	/al Asn 1 1130	Lys Lys I	le Ser (1135
65	ris red G	1140	sn Arg A	la Pro C	Hy Leu 1 145	ryr Cys λ	la Gly 1 1150	
70	OTA CIG YE	AT ACG T sp Thr L 155	TG CTG G eu Leu V	TG ATG T al Met F 1160	TT TAT ;	Asn Gln G	AA GAC A ln Asp T 165	CA CTA 3504 Thr Leu

WU 9 //1/432 PC 1/USY0/1800

GAT AGT TAT AAA AAC GCT TCA ATG CAA GGA CTA TAT ATC TTT GCT GAT 3552 Asp Ser Tyr Lys Asn Ala Ser Met Gln Gly Leu Tyr Ile Phe Ala Asp ATG GCA TCC AAA GAT ATG ACC CCA GAA CAG AGC AAT GTT TAT CGG GAT 3600 Met Ala Ser Lys Asp Met Thr Pro Glu Gln Ser Asn Val Tyr Arg Asp 10 AAT AGC TAT CAA CAA TYT GAT ACC AAT AAT GTC AGA AGA GTG AAT AAC 3648 Asn Ser Tyr Gln Gln Phe Asp Thr Asn Asn Val Arg Arg Val Asn Asn CGC TAT GCA GAG GAT TAT GAG ATT CCT TCC TCG GTA AGT AGC CGT AAA 3696 Arg Tyr Ala Glu Asp Tyr Glu Ile Pro Ser Ser Val Ser Ser Arg Lys GAC TAT GGT TGG GGA GAT TAT TAC CTC AGC ATG GTA TAT AAC GGA GAT 3744 Asp Tyr Gly Trp Gly Asp Tyr Tyr Leu Ser Met Val Tyr Asn Gly Asp 20 ATT CCA ACT ATC AAT TAC AAA GCC GCA TCA AGT GAT TTA AAA ATC TAT 3792 lie Pro Thr Ile Asn Tyr Lys Ala Ala Ser Ser Asp Leu Lys Ile Tyr ATC TCA CCA AAA TTA AGA ATT ATT CAT AAT GGA TAT GAA GGA CAG AAG 3840 Ile Ser Pro Lys Leu Arg Ile Ile His Asn Gly Tyr Glu Gly Gln Lys 30 CGC AAT CAA TGC AAT CTG ATG AAT AAA TAT GGC AAA CTA GGT GAT AAA 3888 Arg Asn Gln Cys Asn Leu Met Asn Lys Tyr Gly Lys Leu Gly Asp Lys TTT ATT GTT TAT ACT AGC TTG GGG GTC AAT CCA AAT AAC TCG TCA AAT 3936 Phe Ile Val Tyr Thr Ser Leu Gly Val Asn Pro Asn Asn Ser Ser Asn AAG CTC ATG TTT TAC CCC GTC TAT CAA TAT AGC GGA AAC ACC AGT GGA 3984 Lys Leu Met Phe Tyr Pro Val Tyr Gln Tyr Ser Gly Asn Thr Ser Gly 40 CTC AAT CAA GGG AGA CTA CTA TTC CAC CGT GAC ACC ACT TAT CCA TCT 4032 Leu Asn Gln Gly Arg Leu Leu Phe His Arg Asp Thr Thr Tyr Pro Ser 45 AAA GTA GAA GCT TGG ATT CCT GGA GCA AAA CGT TCT CTA ACC AAC CAA 4080 Lys Val Glu Ala Trp Ile Pro Gly Ala Lys Arg Ser Leu Thr Asn Gln AAT GCC GCC ATT GGT GAT GAT TAT GCT ACA GAC TCT CTG AAT AAA CCG 4128 Asn Ala Ala Ile Gly Asp Asp Tyr Ala Thr Asp Ser Leu Asn Lys Pro GAT GAT CTT AAG CAA TAT ATC TTT ATG ACT GAC AGT AAA GGG ACT GCT 4176 55 Asp Asp Leu Lys Gln Tyr Ile Phe Met Thr Asp Ser Lys Gly Thr Ala 1385 ACT GAT GTC TCA GGC CCA GTA GAG ATT AAT ACT GCA ATT TCT CCA GCA 4224 Thr Asp Val Ser Gly Pro Val Glu Ile Asn Thr Ala Ile Ser Pro Ala 60 AAA GTT CAG ATA ATA GTC AAA GCG GGT GGC AAG GAG CAA ACT TTT ACC 4272 Lys Val Gln Ile Ile Val Lys Ala Gly Gly Lys Glu Gln Thr Phe Thr 1420 65 GCA GAT AAA GAT GTC TCC ATT CAG CCA TCA CCT AGC TTT GAT GAA ATG 4320 Ala Asp Lys Asp Val Ser Ile Gln Pro Ser Pro Ser Phe Asp Glu Met AAT TAT CAA TTT AAT GCC CTT GAA ATA GAC GGT TCT GGT CTG AAT TTT 4368 Ash Tir Gln Phe Ash Ala Leu Glu Ile Asp Gly Ser Gly Leu Ash Phe

PCT/US96/18003

1455 1445 1450 ATT AAC AAC TOA GOO AGT ATT GAT GTT ACT TTT ACC GCA TTT GCG GAG 4416 lie Asn Asn Ser Ala Ser Ile Asp Val Thr Phe Thr Ala Phe Ala Glu GAT GGC CGC AAA CTG GGT TAT GAA AGT TTC AGT ATT CCT GTT ACC CTC 4464 Asp Gly Arg Lys Leu Gly Tyr Glu Ser Phe Ser Ile Pro Val Thr Leu 1480 10 AAG GTA AGT ACC GAT AAT GCC CTG ACC CTG CAC CAT AAT GAA AAT GGT 4512 Lys Val Ser Thr Asp Asn Ala Leu Thr Leu His His Asn Glu Asn Gly GCG CAA TAT ATG CAA TGG CAA TCC TAT CGT ACC CGC CTG AAT ACT CTA 4560 Ala Gln Tyr Met Gln Trp Gln Ser Tyr Arg Thr Arg Leu Asn Thr Leu TTT GCC CGC CAG TTG GTT GCA CGC GCC ACC ACC GGA ATC GAT ACA ATT 4608 Phe Ala Arg Gln Leu Val Ala Arg Ala Thr Thr Gly Ile Asp Thr Ile 20 1525 1530 CTG AGT ATG GAA ACT CAG AAT ATT CAG GAA CCG CAG TTA GGC AAA GGT 4656 Leu Ser Met Glu Thr Gln Asn Ile Gln Glu Pro Gln Leu Gly Lys Gly 25 TTC TAT GCT ACG TTC GTG ATA CCT CCC TAT AAC CTA TCA ACT CAT GGT 4704 Phe Tyr Ala Thr Phe Val Ile Pro Pro Tyr Asn Leu Ser Thr His Gly 30 GAT GAA CGT TGG TTT AAG CTT TAT ATC AAA CAT GTT GTT GAT AAT AAT 4752 Asp Glu Arg Trp Phe Lys Leu Tyr Ile Lys His Val Val Asp Asn Asn TCA CAT ATT ATC TAT TCA GGC CAG CTA ACA GAT ACA AAT ATA AAC ATC 4800 Ser His Ile Ile Tyr Ser Gly Gln Leu Thr Asp Thr Asn Ile Asn Ile ACA TTA TTT ATT CCT CTT GAT GAT GTC CCA TTG AAT CAA GAT TAT CAC 4848 Thr Leu Phe Ile Pro Leu Asp Asp Val Pro Leu Asn Gln Asp Tyr His 1610 GCC AAG GTT TAT ATG ACC TTC AAG AAA TCA CCA TCA GAT GGT ACC TGG 4896 Ala Lys Val Tyr Met Thr Phe Lys Lys Ser Pro Ser Asp Gly Thr Trp 45 TGG GGC CCT CAC TTT GTT AGA GAT GAT AAA GGA ATA GTA ACA ATA AAC 4944 Trp Gly Pro His Phe Val Arg Asp Asp Lys Gly Ile Val Thr Ile Asn 1635 50 CCT AAA TCC ATT TTG ACC CAT TTT GAG AGC GTC AAT GTC CTG AAT AAT 4992 Pro Lys Ser Ile Leu Thr His Phe Glu Ser Val Asn Val Leu Asn Asn ATT AGT AGC GAA CCA ATG GAT TTC AGC GGC GCT AAC AGC CTC TAT TTC 5040 55 Ile Ser Ser Glu Pro Met Asp Phe Ser Gly Ala Asn Ser Leu Tyr Phe TGG GAA CTG TTC TAC TAT ACC CCG ATG CTG GTT GCT CAA CGT TTG CTG 5088 Trp Glu Leu Phe Tyr Tyr Thr Pro Met Leu Val Ala Gln Arg Leu Leu CAT GAA CAG AAC TTC GAT GAA GCC AAC CGT TGG CTG AAA TAT GTC TGG 5136 His Glu Gln Asn Phe Asp Glu Ala Asn Arg Trp Leu Lys Tyr Val Trp 65 1705 AGT CCA TCC GGT TAT ATT GTC CAC GGC CAG ATT CAG AAC TAC CAG TGG 5184 Ser Pro Ser Gly Tyr Ile Val His Gly Gln Ile Gln Asn Tyr Gln Trp 70 AAC GTC CGC CCG TTA CTG GAA GAC ACC AGT TGG AAC AGT GAT CCT TTG 5232

	Asn Val		Leu Le	u Glu Ası 1735	p Thr	Ser Trp	Asn Ser 1740	Asp Pro) Leu
5	GAT TCC Asp Ser 1745	GTC GAT Val Asp	CCT GA Pro Asj 17	p Ala Va	A GCA (1 Ala (CAG CAC Gln His 175	Asp Pro	ATG CAC Met His	TAC 5230 Tyr 1760
10					r Leu 3		TTG ATA Leu Ile		
15			Arg Gli				CTC AAC Leu Asn		AAG 5376 Lys
13					: Leu I		GAC AAA Asp Lys 180	Pro Tyr	CTA 5424 Leu
20		Ser Thr					GAC AGA Asp Arg 1820		GAT 5472 Asp
25				His Asp			Val Ala		CAG 5520 Gln 1840
30	AAT ATA Asn Ile			CCT TTA Pro Leu		5547			
35		(A) (B) (C)	UENCE C LENGTH TYPE: STRANI	SEQ ID HARACTE 1: 1849 amino a DEDNESS:	RISTIC amin cids sing	CS: o acid	s		
40	(i	i) MO	LECULE	TYPE:	protei	in			•
45	Fe Pe Fr Fr	atures ptide agment agment	From 1 1 196	To 1849 12 211	Des T S (scription of the second	peptide minus (S NO:38)		•
50	Fr. Fr. Fr.	agment agment agment agment	466 993 1297 1390 1532	1004 1312 1409 1554	(SEQ ID SEQ ID			
55	Leu Ile (Gly Tyr	Asn Asn 5	Gln Phe		ly Arg	Ala Ser	Gln Tyr 15	Val
	Ala Pro	Gly Thr 20	Val Ser	Ser Met	Phe S 25	er Pro	Ala Ala	Tyr Leu 30	Thr
60	Glu Leu '	Tyr Arg 35	Glu Ala	Arg Asn 40	Leu H	is Ala	Ser Asp 45	Ser Val	Tyr
65	Tyr Leu ,	Asp Thr	Arg Arg	Pro Asp 55	Leu L		Met Ala 60	Leu Ser	Gln .
	Gin Asn t		70			75			90
			TIO THE	Thr Glu	C 1		C1 1cm	m	

					85					90					95	
5	7a	l Me	et Gl	u Me	t Le	u Se	r Thi	r Phe	e Ar	g Pro	o Sei	r Gly	/ Al.	a Thi		Tyr
,	ні	s As	P Al	а Ту 5	r Gli	n yei	n Val	l Arg 120	g Gl	u Va.	l Il-	€ Glr	1 Let		ı Ası	Pro
10	Gl	/ Le	u G1	u Gl	n Lei	ı Ası	n Ala 135	s Ser	Pro	o Ala	a Ile	2 Ala 140		/ Lau	Met	His
	Gl:	n Al	a Se	r Le	ı Lev	4 Gly 150	/ Ile	Asn	Ald	a Ser	Ile 155	Ser	Pro	Glu	Leu	Phe 160
15	Ası	ı Iİ	e Le	u Thi	r Glu 165	ı Glu	ıIle	Thr	Glu	Gly 170	/ Asn	Ala	Glu	Glu	Leu 175	
20	Lys	Ly	s As	n Phe 180	∋ Gly)	'Asn	lle	Glu	Pro 185	Ala	Ser	Leu	Ala	Met 190		Glu
	Tyr	Lei	Ly:	s Arg	Tyr	Tyr	Asn	Leu 200	Ser	Asp	Glu	Glu	Leu 205		Gln	Phe
25	Ile	Gly 210	Y Ly:	s Ala	. Ser	Asn	Phe 215	Gly	Gln	Gln	Glu	Tyr 220	Ser	Asn	Asn	Gln
	Leu 225	Ile	Thi	Pro	Val	Val 230	Asn	Ser	Ser	Asp	Gly 235	Thr	Val	Lys	Val	Tyr 240
30	Arg	Ile	Thi	: Arg	Glu 245	Tyr	Thr	Thr	Asn	Ala 250	Tyr	Gln	Met	Asp	Val 255	Glu
35	Leu	Phe	Pro	260	Gly	Gly	Glu	Asn	Tyr 265	Arg	Leu	Asp	Tyr	Lys 270	Phe	Lys
	Asn	Phe	Tyr 275	Asn	Ala	Ser	Tyr	Leu 280	Ser	Ile	Lys	Leu	Asn 285	Asp	Lys	Arg
40	Glu	Leu 290	Val	Arg	Thr	Glu	Gly 295	Ala	Pro	Gln	Val	Asn 300	Ile	Glu	Tyr	Ser
	Ala 305	Asn	Ile	Thr	Leu	Asn 310	Thr	Ala	Asp	Ile	Ser 315	Gln	Pro	Phe	Glu	Ile 320
45	Gly	Leu	Thr	Arg	Val 325	Leu	Pro	Ser	Gly	Ser 330	Trp	Ala	Tyr	Ala	Ala 335	Ala
50	Lys	Phe	Thr	Val 340	Glu	Glu	Tyr	Asn	Gln 345	Tyr	5er	Phe	Leu	Leu 350	Lys	Leu
	Asn	Lys	Ala 355	Ile	Arg	Leu	Ser	Arg 360	Ala	Thr	Glu	Leu	Ser 365	Pro	Thr	Ile
55	Leu	Glu 370	Gly	Ile	Val	Arg	Ser 375	Val	Asn	Leu	Gln	Leu 380	Asp	Ile	Asn	Thr
	Asp 385	Val	Leu	Gly	Lys	Val 390	Phe	Leu	Thr	Lys	Tyr 395	Tyr	Met	Gln	Arg	Tyr 400
50	Ala	Ile	His	Ala	Glu 405	Thr	Ala	Leu	Ile	Leu 410	Cys	Asn	Ala	Pro	Ile 415	Ser
55	Gln	Arg	Ser	Tyr 420	Asp	Asn	Gln	Pro	Ser 425	Gln	Phe	Asp	Arg	Leu 430	Phe	Asn
_	Thr	Pro	Leu 435	Leu	Asn	Gly		Tyr 440	Phe	Ser	Thr		Asp 445	Glu	Glu	Ile
0	Asp	Lau 450	Asn	Ser	Gly	Ser	Thr (Gly	Asp	Trp	Arg	Lys 460	Thr	Ile	Leu	Lys

C1/U37W1000J

	Arg 465	Ala	Phe	Asn	ile	1 10 y sb	Эsр	7al	Ser	Leu	Phe 475	λrg	Leu	Leu	Lys	190 IT÷
5	Thr	Asp	His	Asp	Asn 485	Ly s	Asp	Gly	Lys	Ile 490	Ly s	Asn	λsn	Leu	L;;'s 495	Asn
	Leu	Ser	λsn	Leu 500	Tyr	Ile	Gly	L;;s	Leu 505	Leu	Ala	Asp	Ile	His 510	Gln	Leu
10	Thr	Ile	Asp 515	Glu	Leu	Asp	Leu	Leu 520	Leu	Ile	Ala	Val	Gly 525	Glu	Gly	Lys
	Thr	Asn 530	Leu	Ser	Ala	Ile	Ser 535	Asp	Lys	Gln	Leu	Ala 540	Thr	Leu	Ile	Arg
15	Lys 545	Leu	Asn	Thr	Ile	Thr 550	Ser	Trp	Leu	His	Thr 555	Gln	Lys	Trp	Ser	Val 560
20	Phe	Gln	Leu	Phe	Ile 565	Met	Thr	Ser	Thr	Ser 570	Tyr	Asn	Lys	Thr	Leu 575	Thr
	Pro	Glu	Ile	Lys 580	Asn	Leu	Leu	Asp	Thr 585	Val	Tyr	His	Gly	Leu 590	Gln	Gly
25	Phe	Asp	Lys 595	Asp	Lys	Ala	Asp	Leu 600	Leu	His	Val	Met	Ala 605	Pro	Tyr	Ile
	Ala	Ala 610	Thr	Leu	Gln	Leu	Ser 615	Ser	Glu	Asn	Val	Ala 620	His	Ser	Val	Leu
30	Leu 625	Trp	Ala	Asp	Lys	Leu 630	Gln	Pro	Gly	Asp	Gly 635	Ala	Met	Thr	Ala	Glu 640
35	Lys	Phe	Trp	Asp	Trp 645	Leu	Asn	Thr	Lys	Tyr 650	Thr	Pro	Gly	Ser	Ser 655	Glu
	Ala	Val	Glu	Thr 660	Gln	Glu	His	Ile	Val 665	Gln	Tyr	Cys	Gln	Ala 670	Leu	Ala
40	Gln	Leu	Glu 675	Met	Val	Tyr	His	Ser 680	Thr	Gly	Ile	Asn	Glu 685	Asn	Ala	Phe
16	Arg	Le u 690	Phe	Val	Thr	Lys	Pro 695	Glu	Met	Phe	Gly	Ala 700	Ala	Thr	Gly	Ala
45	705					710					Met 715 Ser					Ala 720 Ala
£()					725					/30	,				,,,,	
50				740					/45	,						Asn
55			755					760					, 0.	,		His
		770					//5	•				780	,			Thr
60	785					790					793	,				800
65					805	i				810	,				01.	
				820	l				82	•				05.	•	Gly
70	7al	Leu	Thr 835	Ala	Gly	Leu	Asr	Ser 840	Glr	n Gli	n Ala	AST	1 Thi 84!	r Leu 5	ı Hıs	; Ala

WU 97/17452 PCT/US96/18003

	Phe	Ĺ∌u 950		Slu	Ser	λrġ	Ser 355	Ala	Ala	Leu	3er	Thr 860	Tyr	Tyr	Ile	Arg
5	Gln 365		Ala	Lys	Ala	Ala 870		Ala	Ile	L';·s	Ser 875	Arg	Asp	Asp	Leu	T, r 330
	Gln	Tyr	Leu	Leu	11e 885	•	λsn	Gln	Val	Ser 890	Ala	λla	Ile	Lys	Thr 895	Thr
10	Arg	Ile	Ala	Glu 900	Ala	Ile	Ala	Sér	Ile 905	Gln	Leu	Tyr	Val	Asn 910	λrg	Ala
15	Leu	Glu	Asn 915	Val	Glu	Glu	Asn	Ala 920	Asn	Ser	Gly	Val	Ile 925	Ser	Arg	Gln
.,	Phe	Phe 930	Ile	Asp	Trp	Asp	Ly's 935	Tyr	Asn	Lys	Arg	Tyr 940	Ser	Thr	Trp	Ala
20	Gly 945	Val	Ser	Gln	Leu	Val 950	Tyr	Tyr	Pro	Glu	Asn 955	Tyr	Ile	Asp	Pro	Thr 960
	Met	λrg	Ile	Gly	Gln 965	Thr	Lys	Met	Met	Asp 970	Ala	Leu	Leu	Gln	Ser 975	Val
25	Ser	Gln	Ser	Gln 980	Leu	Asn	Ala	Asp	Thr 985	Val	Glu	Asp	Ala	Phe 990	Met	Ser
30	T ₂ ·r	Leu	Thr 995	Ser	Phe	Glu	Gln	Val 100		Asn	Leu	Lys	Val 100		Ser	Ala
	Tyr	His 101		Asn	Ile	Asn	Asn 101		Gln	Gly	Leu	Thr 102		Phe	Ile	Gly
35	Leu 1025		Glu	Thr	Asp	Ala 1030		Glu	Tyr	Tyr	Trp 1035		Ser	Val	Asp	His 104
	Ser	Lys	Phe	Asn	Asp 104		Lys	Phe	Ala	Ala 105		Ala	Trp	Ser	Glu 105	
40	His	Lys	Ile	Asp 1060		Pro	Ile	Asn	Pro 1065	-	Lys	Ser	Thr	Ile 1070	_	Pro
1 5	Val	Ile	Tyr 107	Lys 5	Ser	Arg	Leu	Tyr 1080		Leu	Trp	Leu	Glu 1089		Lys	Glu
	Ile	Thr 1090		Gln	Thr	Gly	Asn 1099		Lys	Asp	Gly	Tyr 110		Thr	Glu	Thr
5()	Asp 1105		Arg	Tyr		Leu 1110	-	Leu	Ala		11e		Tyr	Asp	Gly	Thr 112
	Trp	Asn	Thr	Pro	Ile 1125		Phe	Asp	Val	Asn 1130		Lys	Ile	Ser	Glu 1135	
55	Lys	Leu	Glu	Lys 1140		Arg	Ala	Pro	Gly 1145		Tyr	Cys	Ala	Gly 1150		Gin
50	Gly	Glu	Asp 1155	Thr 5	Leu	Leu	Val	Met 1160		Tyr	Asn	Gln	Gln 116		Thr	Leu
	Asp	Ser 1170		Lys	Asn	Ala	Ser 1175		Gln	Gly	Leu	Tyr 1180		Phe	Ala	Asp
55	Met 1185		Ser	Lys	Asp	Met 1190		Pro	Glu	Gln	Ser 1199		Val	Tyr	Arg	Asp 120
	λsn	Ser	Tyr	Gln	Gln 1205		Asp	Thr	Asn	Asn 1210		Arg	Arg	Val	Asn 1215	
70	Arg	Tyr	λla	Glu 1220	-	T _y r	Glu	Ile	Pro 1225		Ser	Val	Ser	Ser 1230		Lys

	Asp Tyr Gly Trp Gly Asp Tyr Tyr Leu Ser Met Val Tyr Ash Gly As 1235 1240 1245	P
5	Ile Pro Thr Ile Asn Tyr Lys Ala Ala Ser Ser Asp Leu Lys Ile Ty 1250 1260	r
10		80
	Arg Asn Gln Cys Asn Leu Met Asn Lys Tyr Gly Lys Leu Gly Asp Ly. 1285 1290 1295	\$
15	Phe Ile Val Tyr Thr Ser Leu Gly Val Asn Pro Asn Asn Ser Ser Asi 1300 1305 1310	n
	Lys Leu Met Phe Tyr Pro Val Tyr Gln Tyr Ser Gly Asn Thr Ser Gly 1315 1320 1325	,
20	Leu Asn Gln Gly Arg Leu Leu Phe His Arg Asp Thr Thr Tyr Pro Ser 1330 1335 1340	:
25	Lys Val Glu Ala Trp Ile Pro Gly Ala Lys Arg Ser Leu Thr Asn Glr 1345 1350 1355 136	0
	Asn Ala Ala Ile Gly Asp Asp Tyr Ala Thr Asp Ser Leu Asn Lys Pro 1365 1370 1375	,
30	Asp Asp Leu Lys Gln Tyr Ile Phe Met Thr Asp Ser Lys Gly Thr Ala 1380 1385 1390	
	Thr Asp Val Ser Gly Pro Val Glu Ile Asn Thr Ala Ile Ser Pro Ala 1395 1400 1405	
35	Lys Val Gln Ile Ile Val Lys Ala Gly Gly Lys Glu Gln Thr Phe Thr 1410 1415 1420	
40	Ala Asp Lys Asp Val Ser Ile Gln Pro Ser Pro Ser Phe Asp Glu Met 1425 1430 1435 144	0
	Asn Tyr Gln Phe Asn Ala Leu Glu Ile Asp Gly Ser Gly Leu Asn Phe 1455 1450 1455	
45	Ile Asn Asn Ser Ala Ser Ile Asp Val Thr Phe Thr Ala Phe Ala Glu 1460 1465 1470	
	Asp Gly Arg Lys Leu Gly Tyr Glu Ser Phe Ser Ile Pro Val Thr Leu 1475 1480 1485	
50	Lys Val Ser Thr Asp Asn Ala Leu Thr Leu His His Asn Glu Asn Gly 1490 1495 1500	
55	Ala Gln Tyr Met Gln Trp Gln Ser Tyr Arg Thr Arg Leu Asn Thr Leu 1505 1510 1515 1520)
	Phe Ala Arg Gln Leu Val Ala Arg Ala Thr Thr Gly Ile Asp Thr Ile 1525 1530 1535	
60	Leu Ser Met Glu Thr Gln Asn Ile Gln Glu Pro Gln Leu Gly Lys Gly 1540 1545 1550	
	Phe Tyr Ala Thr Phe Val Ile Pro Pro Tyr Asn Leu Ser Thr His Gly 1555 1560 1565	
65	Asp Glu Arg Trp Phe Lys Leu Tyr Ile Lys His Val Val Asp Asn Asn 1570 1580	
70	Ser His Ile Ile Tyr Ser Gly Gln Leu Thr Asp Thr Asn Ile Asn Ile 1585 1590 1595 1600	
	Thr Leu Phe Ile Pro Leu Asp Asp Val Pro Leu Asn Gln Asp Tyr His	

					160	5				161	0				161	5			
5	Ala	Lys	; Val	Tyr 162		Thr	Phe	Lys	Lys 162		Pro	Ser	Asp	Gly		Trp			
,	Trp	Gly	Pro 163		Phe	Val	Arg	Asp 164		Lys	Gly	Ile	Val 1649		Ile	Asn			
10	Pro	Lys 165	Ser 0	Ile	Leu	Thr	His 1655		Glu	Ser	Val	Asn 1660		Leu	Asn	Asn			
	Ile lóó	Ser 5	Ser	Glu	Pro	Met 1670		Phe	Ser	Gly	Ala 1675		Ser	Lau	Tyr	Phe 1680)		
15	Trp	Glu	Leu	Phe	Tyr 1685		Thr	Pro	Met	Leu 1690		Ala	Gln	Arg	Leu 1695				
20	His	Glu	Gln	Asn 1700	Phe)	Asp	Glu	Ala	Asn 1705		Trp	Leu	Lys	Tyr 1710		Trp			
20	Ser	Pro	Ser 171	Gly 5	Tyr	Ile	Val	His 1720		Gln	Ile	Gln	Asn 1725		Gln	Trp			
25	Asn	Val 173	Arg 0	Pro	Leu	Leu	Glu 1735	Asp	Thr	Ser	Trp	Asn 1740	ser	Asp	Pro	Lėu			
	Asp 174	Ser 5	Val	Asp	Pro	Asp 1750		Val	Ala	Gln	His 1755		Pro	Met	His	Tyr 1760	1		
30	Lys	Val	Ser	Thr	Phe 1765	Met	Arg	Thr	Leu	Asp 1770		Leu	Ile	Ala	Arg 1775				
35	Asp	His	Ala	Tyr 1780		Gln	Leu	Glu	Arg 1785		Thr	Leu	Asn	Glu 1790		Lys			
<i>.</i>	Met	Trp	Tyr 1795	Met	Gln	Ala		His 1800		Leu	Gly		Lys 1805		Tyr	Leu			
40	Pro	Leu (Šer 0	Thr	Thr		Ser 1815		Pro	Arg	Leu	Asp 1820		Ala	Ala	Asp			
	Ile 1825	Thr	Thr	Gln	Asn	Ala 1830		Asp	Ser		Ile 1835		Ala	Leu	Arg	Gln 1840			
45	Asn	Ile	Pro	Thr	Pro 1845		Pro		Ser 1849										
50	(2)		IFORN	SEQU (A) (B) (C)		E CH GTH: E: n ANDE	ARAC lucl DNE	TER 740 eic SS:	ISTI base acie doul	CS: pa	irs								
55		(:	ii)	MOL	ECUI	LE T	YPE:	D	NA (geno	omic)							
		(:	xi)	SEQ	UENC	E D	ESCF	RIPT	ION:	SE	םו כ	NO:	: 50	(TCC	laii	i cc	ding	regi	or.)
50	TTG Leu i	CGC Arg	AGC Ser	GCT Ala	AAT Asn 5	ACC Thr	CTG Leu	ACT Thr	Asp	CTC Leu 10	TTC Phe	CTG Leu	CCG Pro	Gln	ATC Ile 15	AAT Asn	48		
55			ATG Met					Gln									96		
	CTC	CCT	C 1 T		CTC	T CT	\ mc						m . m	~~~					

	Le	u Ar	g Hi	s àsi	ı Led	ı Sel	: Ile	Asp 40	Gly	; Gl:	n Pro	o Leo	1 Tyr 45	r Lei	ı Pr	o Ile	ŧ
5	ТА' Ту:	T GC T Al 50	a Thi	A CCC	G GCC	GAT Asp	7 333 Pro 55	AAA Lys	GCC	TT:	A CTO	AGC Set 60	GCC Ala	GCC Ala	GT a Val	r gcc l Ala	193
10	AC1 Thi 65	r TC	r CAJ	A GGT n Gly	GGA Gly	GGC Gly 70	: AAG ' Lys	CTA Leu	CCC Pro	GAA Glu	TCA Ser 75	TTT Phe	ATC Met	TCC Ser	CTC Let	TGG Trp 30	240
15	CG1 Arg	TTO Pho	C CCC	G CAC His	ATC Mec 85	CTG Leu	GAA Glu	AAT Asn	GCG	CGC Arg 90	GGC Gly	ATG Met	GTT Val	AGC Ser	CAC Gln 95	CTC Leu	288
13	ACC Thr	Gl:	TTC	GGC Gly 100	Ser	ACG Thr	TTA Leu	CAA Gln	AAT Asn 105	Ile	ATC Ile	GAA Glu	CGT Arg	CAG Glm 110	Asp	GCG Ala	336
20	GAA Glu	GCC Ala	CTC Leu 115	AAT Asn	GCG Ala	TTA Leu	TTA Leu	CAA Gln 120	TAA nek	CAG Gln	GCC Ala	GCC Ala	GAG Glu 125	Leu	ATA Ile	TTG Leu	384
25	ACT Thr	AAC Asn 130	Leu	AGC Ser	ATT Ile	CAG Gln	GAC Asp 135	AAA Lys	ACC Thr	ATT Ile	GAA Glu	GAA Glu 140	Leu	GAT Asp	GCC Ala	GAG Glu	432
30	AAA Lys 145	Thr	GTG Val	TTG Leu	GAA Glu	AAA Lys 150	TCC Ser	AAA Lys	GCG Ala	GGA Gly	GCA Ala 155	CAA Gln	TCG Ser	CGC Arg	TTT Phe	GAT Asp 160	480
35	AGC Ser	TAC Tyr	GGC Gly	AAA Lys	CTG Leu 165	TAC Tyr	GAT Asp	GAG Glu	AAT Asn	ATC Ile 170	AAC Asn	GCC Ala	GGT Gly	GAA Glu	AAC Asn 175	CAA Gln	528
<i>.</i>	GCC Ala	ATG Met	ACG Thr	CTA Leu 180	CGA Arg	GCG Ala	TCC Ser	GCC Ala	GCC Ala 185	GGG Gly	CTT L e u	ACC Thr	ACG Thr	GCA Ala 190	GTT Val	CAG Gln	576
40	GCA Ala	TCC Ser	CGT Arg 195	CTG Leu	GCC Ala	GGT Gly	GCG Ala	GCG Ala 200	GCT Ala	GAT Asp	CTG Leu	GTG Val	CCT Pro 205	AAC Asn	ATC Ile	TTC Phe	624
45	GGC Gly	TTT Phe 210	GCC Ala	GGT Gly	GGC Gly	GGC Gly	AGC Ser 215	CG T Arg	TGG Trp	GGG Gly	GCT Ala	ATC Ile 220	GCT Ala	GAG Glu	GCG Ala	ACA Thr	672
50	GGT Gly 225	ТАТ Туг	GTG Val	ATG Met	GAA Glu	TTC Phe 230	TCC Ser	GCG Ala	AAT Asn	GTT Val	ATG Met 235	AAC Asn	ACC Thr	GAA Glu	GCG Ala	GAT Asp 240	720
55	እእአ Lys	ATT Ile	AGC Ser	CAA Gln	TCT Ser 245	GAA Glu	ACC Thr	TAC Tyr	CGT Arg	CGT Arg 250	CGC Arg	CGT Arg	CAG Gln	GAG Glu	TGG Trp 255	GAG Glu	768
55	ATC Ile	CAG Gln	CGG Arg	AAT Asn 260	AAT Asn	GCC Ala	GAA Glu	Ala	GAA Glu 265	TTG Leu	AAG Lys	CAA Gln	ATC Ile	GAT Asp 270	GCT Ala	CAG Gln	816
60	CTC Leu	AAA Lys	TCA Ser 275	CTC Leu	GCT Ala	GTA Val	Arg a	CGC (Arg (GAA Glu	GCC Ala	GCC Ala	Val	TTG Leu 285	CAG Gln	AAA Lys	ACC Thr	864
65	AGT Ser	CTG Leu 290	AAA Lys	ACC Thr	CAA Gln	Gln (GAA (Glu (295	CAG A	ACC Thr	CAA Gln	Ser	CAA Gln 300	TTG Leu	GCC Ala	TTC Phe	CTG Leu	912
70	CAA Gln 305	CGT Arg	AAG Lys	TTC . Phe	Ser .	AAT (Asn (310	CAG (Gln /	GCG 1	TTA ' Leu '	Tyr .	AAC Asn 315	TGG Trp	CTG Lau	CGT Arg	CGT Gly	CGA Arg 320	960

WU 97/17/452 PCT/US96/18003

CTS GCG GCG ATT TAC TTC CAG TTC TAC GAT TTG GCC GTC GCG CGT TGC 1008 Leu Ala Ala Ile T/r Phe Gin Phe T/r Asp Leu Ala Val Ala Arg C/s CTG ATG GCA GAA CAA GCT TAC CGT TGG GAA CTC AAT GAT GAC TCT GCC 1056 Leu Met Ala Glu Gln Ala Tyr Arg Trp Glu Leu Asn Asp Asp Ser Ala CGC TTC ATT AAA CCG GGC GCC TGG CAG GGA ACC TAT GCC GGT CTG CTT 1104 Arg Phe Ile Lys Pro Gly Ala Trp Gln Gly Thr Tyr Ala Gly Leu Leu GCA GGT GAA ACC TTG ATG CTG AGT CTG GCA CAA ATG GAA GAC GCT CAT 1152 Ala Gly Glu Thr Leu Met Leu Ser Leu Ala Gln Met Glu Asp Ala His 15 CTG AAA CGC GAT AAA CGC GCA TTA GAG GTT GAA CGC ACA GTA TCG CTG 1200 Leu Lys Arg Asp Lys Arg Ala Leu Glu Val Glu Arg Thr Val Ser Leu 20 GCC GAA GTT TAT GCA GGA TTA CCA AAA GAT AAC GGT CCA TTT TCC CTG 1248 Ala Glu Val Tyr Ala Gly Leu Pro Lys Asp Asn Gly Pro Phe Ser Leu GCT CAG GAA ATT GAC AAG CTG GTG AGT CAA GGT TCA GGC AGT GCC GGC 1296 Ala Gln Glu Ile Asp Lys Leu Val Ser Gln Gly Ser Gly Ser Ala Gly 425 AGT GGT AAT AAT TTG GCG TTC GGC GCC GGC ACG GAC ACT AAA ACC 1344 30 Ser Gly Asn Asn Asn Leu Ala Phe Gly Ala Gly Thr Asp Thr Lys Thr 435 TCT TTG CAG GCA TCA GTT TCA TTC GCT GAT TTG AAA ATT CGT GAA GAT 1392 Ser Leu Gln Ala Ser Val Ser Phe Ala Asp Leu Lys Ile Arg Glu Asp 35 TAC CCG GCA TCG CTT GGC AAA ATT CGA CGT ATC AAA CAG ATC AGC GTC 1440 Tyr Pro Ala Ser Leu Gly Lys Ile Arg Arg Ile Lys Gln Ile Ser Val 40 ACT TTG CCC GCG CTA CTG GGA CCG TAT CAG GAT GTA CAG GCA ATA TTG 1488 Thr Leu Pro Ala Leu Leu Gly Pro Tyr Gln Asp Val Gln Ala Ile Leu 45 TCT TAC GGC GAT AAA GCC GGA TTA GCT AAC GGC TGT GAA GCG CTG GCA 1536 Ser Tyr Gly Asp Lys Ala Gly Leu Ala Asn Gly Cys Glu Ala Leu Ala GTT TCT CAC GGT ATG AAT GAC AGC GGC CAA TTC CAG CTC GAT TTC AAC 1584 50 Val Ser His Gly Met Asn Asp Ser Gly Gln Phe Gln Leu Asp Phe Asn GAT GGC AAA TTC CTG CCA TTC GAA GGC ATC GCC ATT GAT CAA GGC ACG 1632 Asp Gly Lys Phe Leu Pro Phe Glu Gly Ile Ala Ile Asp Gln Gly Thr 55 CTG ACA CTG AGC TTC CCA AAT GCA TCT ATG CCG GAG AAA GGT AAA CAA 1680 Leu Thr Leu Ser Phe Pro Asn Ala Ser Met Pro Glu Lys Gly Lys Gln 550 60 GCC ACT ATG TTA AAA ACC CTG AAC GAT ATC ATT TTG CAT ATT CGC TAC 1728 Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu His Ile Arg Tyr 65 ACC ATT AAA TAA Thr Ile Lys · · ·

70 (2) INFORMATION FOR SEQ ID NO:51:

70

Leu Ala Ala Ile Tyr Phe Gln Phe Tyr Asp Leu Ala Val Ala Arg Cys 325 330 325 Leu Met Ala Glu Gln Ala Tyr Arg Trp Glu Leu Asn Asp Asp Ser Ala 340 345 3505 Arg Phe Ile Lys Pro Gly Ala Trp Gin Gly Thr Tyr Ala Gly Leu Leu 355 360 365 Ala Gly Glu Thr Leu Met Leu Ser Leu Ala Gln Met Glu Asp Ala His 370 380 Leu Lys Arg Asp Lys Arg Ala Leu Glu Val Glu Arg Thr Val Ser Leu 385 390 395 400 15 Ala Glu Val Tyr Ala Gly Leu Pro Lys Asp Asn Gly Pro Phe Ser Leu 405 410 415 Ala Gin Glu Ile Asp Lys Leu Val Ser Gln Gly Ser Gly Ser Ala Gly 20 Ser Gly Asn Asn Asn Leu Ala Phe Gly Ala Gly Thr Asp Thr Lys Thr 435 440 445 Ser Leu Gln Ala Ser Val Ser Phe Ala Asp Leu Lys Ile Arg Glu Asp 450 460 Tyr Pro Ala Ser Leu Cly Lys Ile Arg Arg Ile Lys Gln Ile Ser Val 405 470 475 480 30 Thr Leu Pro Ala Leu Leu Gly Pro Tyr Gln Asp Val Gln Ala Ile Leu 485 490 495 Ser Tyr Gly Asp Lys Ala Gly Leu Ala Asn Gly Cys Glu Ala Leu Ala 500 510 35 Val Ser His Gly Met Asn Asp Ser Gly Gln Phe Gln Leu Asp Phe Asn 515 520 525 Asp Gly Lys Phe Leu Pro Phe Glu Gly Ile Ala Ile Asp Gln Gly Thr 530 Leu Thr Leu Ser Phe Pro Asn Ala Ser Met Pro Glu Lys Gly Lys Gln 550 555 5560 45 Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu His Ile Arg Tyr Thr Ile Lys · · · 579 50

- (2) INFORMATION FOR SEQ ID NO:52:
- (i) SEQUENCE CHARACTERISTICS:

55

- (A) LENGTH: 5532 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- 6() (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52 (TcdAiii coding region):
- 65 TTT ATA CAA GGT TAT AGT GAT CTG TTT GGT AAT CGT GCT GAT AAC TAT 48 Phe lle Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala Asp Asn Tyr 1 5 10 15

SEC GCG CCG GGC TCG GTT GCA TCG ATG TTC TCA CCG GCG GCT TAT TTG 96

WU 7//1/432 PC1/US70/10UU3

	Ala	Ala	Pro	517 20	Ser	7al	Ala	Ser	Met 25	Phe	Ser	Pro	Aia	Ala 30	T; r	Lеч	
5	ACG Thr	GAA Glu	TTG Leu 35	TAC Tyr	CGT Arg	GAA Glu	GCC Ala	AAA Lys 40	AAC Asn	TTG Leu	CAT His	GAC Asp	AGC Ser 45	AGC Ser	TCA Ser	ATT Ile	144
10	TAT Tyr	TAC T;r 50	CTA Leu	GAT Asp	AAA Lys	CGT Arg	CGC Arg 55	CCG Pro	GAT Asp	TTA Leu	GCA Ala	AGC Ser 60	TTA Leu	ATG Met	CTC Leu	AGC Ser	192
	CAG Gln 65	AAA Lys	AAT Asn	ATC Met	GAT Asp	GAG Glu 70	GAA Glu	ATT Ile	TCA Ser	ACG Thr	CTG Leu 75	GCT Ala	CTC Leu	TCT Ser	AAT Asn	GAA Glu 80	240
15	TTG Leu	TGC C;;s	CTT Leu	GCC Ala	GGG Gly 85	ATC Ile	GAA Glu	ACA Thr	AAA Lys	ACA Thr 90	GGA Gly	AAA Lys	TCA Ser	CAA Gln	GAT Asp 95	GAA Glu	283
20	GTG Val	ATG Met	GAT Asp	ATG Met 100	TTG Leu	TCA Ser	ACT Thr	TAT Tyr	CGT Arg 105	TTA Leu	AGT Ser	GGA Gly	GAG Glu	ACA Thr 110	CCT Pro	TAT Tyr	336
25	CAT His	CAC His	GCT Ala 115	TAT Tyr	GAA Glu	ACT Thr	GTT Val	CGT Arg 120	GAA Glu	ATC Ile	GTT Val	CAT His	GAA Glu 125	CGT Arg	GAT Asp	CCA Pro	384
30		TTT Phe 130															432
35	CCT Pro 145	GTG Val	ACT Thr	TTG Leu	TTG Leu	GGT Gly 150	ATT	AGC Ser	TCC Ser	CAT His	ATT Ile 155	TCG Ser	CCA Pro	GAA Glu	CTG Leu	TAT Tyr 160	480
JJ	AAC Asn	TTG Leu	CTG Leu	ATT Ile	GAG Glu 165	GAG Glu	ATC Ile	CCG Pro	GAA Glu	AAA Lys 170	GAT Asp	GAA Glu	GCC Ala	GCG Ala	CTT Leu 175	GAT Asp	528
40	ACG Thr	CTT Leu	TAT Tyr	AAA Lys 180	ACA Thr	AAC Asn	TTT Phe	GGC Gly	GAT Asp 185	ATT Ile	ACT Thr	ACT Thr	GCT Ala	CAG Gln 190	TTA Leu	ATG Met	576
45		CCA Pro															624
5 0	GCC Ala	TAC Tyr 210	GTG Val	ACG Thr	ACT Thr	TCA Ser	TTA Leu 215	TCA Ser	CAT His	GTT Val	GGA Gly	TAT Tyr 220	AGC Ser	AGT Ser	GAT Asp	ATT Ile	672
55	CTG Leu 225	GTT Val	ATT Ile	CCG Pro	TTG Leu	GTC Val 230	GAT Asp	GGT Gly	GTG Val	GGT Gly	AAG Lys 235	ATG Met	GAA Glu	GTA Val	GTT Val	CGT Arg 240	720
<i>J J</i>	GTT Val	ACC Thr	CGA Arg	ACA Thr	CCA Pro 245	TCG Ser	GAT Asp	AAT Asn	TAT Tyr	ACC Thr 250	AGT Ser	CAG Gln	ACG Thr	AAT Asn	TAT Tyr 255	ATT Ile	768
60	GAG Glu	CTG Leu	TAT Tyr	CCA Pro 260	CAG Gln	GGT Gly	GGC Gly	GAC Asp	AAT Asn 265	TAT Tyr	TTG Leu	ATC Ile	AAA Lys	TAC Tyr 270	AAT Asn	CTA Leu	816
65	AGC Ser	AAT Asn	AGT Ser 275	TTT Phe	GGT Gly	TTG Leu	GAT Asp	GAT Asp 280	TTT Phe	TAT Tyr	CTG Leu	CAA Gln	TAT Tyr 285	AAA Lys	GAT Asp	GGT Gly	864
7()		GCT Ala 290															912

WO 97/17432 PCT/US96/18003

	ATA Tie 305	AAT Asn	CAA Gln	AAG Lys	TAT Tyr	GAA Glu 310	TCA Ser	CAG Gln	SCG Ala	ACA Thr	ATC Ile 315	AAA Lys	CGT	AGT Ser	gyc Ysb	TCT Ser 320	360
5	3AC Asp	AAT Asn	ATA Ile	CTC Leu	AGT Ser 325	ATA Ile	GGG Gly	TTA Leu	CAA Gln	AGA Arg 330	TGG Trp	CAT His	AGC Ser	GGT Gly	AGT Ser 335	TAT Tyr	1008
10	AAT Asn	TTT Phe	GCC Ala	GCC Ala 340	GCC Ala	AAT Asn	TTT Phe	AAA Lys	ATT Ile 345	GAC Asp	CAA Gln	TAC Tyr	TCC Ser	CCG Pro 350	AAA Lys	GCT Ala	1056
15	TTC Phe	CTG Leu	CTT Leu 355	AAA Lys	ATG Met	አአፐ Asn	AAG Lys	GCT Ala 360	ATT Ile	CGG Arg	TTG Leu	CTC Leu	AAA Lys 365	GCT Ala	ACC Thr	GGC Gly	1104
20													GTT Val				1152
20	AAA Lys 385	TCC Ser	ATC Ile	ACG Thr	GTT Val	GAG Glu 390	GTA Val	TTA Leu	AAC Asn	AAG Lys	GTT Val 395	TAT Tyr	CGG Arg	GTA Val	AAA Lys	TTC Phe 400	1200
25	TAT Tyr	ATT Ile	GAT Asp	CGT Arg	TAT Tyr 405	GGC Gly	ATC Ile	AGT Ser	GAA Glu	GAG Glu 410	ACA Thr	GCC Ala	GCT Ala	ATT Ile	TTG Leu 415	GCT Ala	1248
30	AAT Asn	ATT Ile	AAT Asn	ATC Ile 420	TCT Ser	CAG Gln	CAA Gln	GCT Ala	GTT Val 425	GGC Gly	AAT Asn	CAG Gln	CTT Leu	AGC Ser 430	CAG Gln	TTT Phe	1296
35	GAG Glu	CAA Gln	CTA Leu 435	TTT Phe	AAT Asn	CAC His	CCG Pro	CCG Pro 440	CTC Leu	AAT Asn	GGT Gly	ATT Ile	CGC Arg 445	TAT Tyr	GAA Glu	ATC Ile	1344
. 40	AGT Ser	GAG Glu 450	GAC Asp	AAC Asn	TCC Ser	AAA Lys	CAT His 455	CTT Leu	CCT Pro	AAT Asn	CCT Pro	GAT Asp 460	CTG Leu	AAC Asn	CTT Leu	AAA Lys	1392
40	CCA Pro 465	GAC Asp	AGT Ser	ACC Thr	GGT Gly	GAT Asp 470	GAT Asp	CAA Gln	CGC Arg	AAG Lys	GCG Ala 475	GTT Val	TTA Leu	AAA Lys	CGC Arg	GCG Ala 480	1440
45	TTT Phe	CAG Gln	GTT Val	AAC Asn	GCC Ala 485	AGT Ser	GAG Glu	TTG Leu	TAT Tyr	CAG Gln 490	ATG Met	TTA Leu	TTG Leu	ATC Ile	ACT Thr 495	GAT Asp	1488
50	CGT Arg	AAA Lys	GAA Glu	GAC Asp 500	GGT Gly	GTT Val	ATC Ile	AAA Lys	AAT Asn 505	AAC Asn	TTA Leu	GAG Glu	AAT Asn	TTG Leu 510	TCT Ser	GAT Asp	1536
55	CTG Leu	TAT Tyr	TTG Leu 515	GTT Val	AGT Ser	TTG	CTG Leu	GCC Ala 520	CAG Gln	ATT	CAT His	AAC Asn	CTG Leu 525	ACT Thr	ATT	GCT Ala	1584
60	GAA Glu	TTG Leu 530	AAC Asn	ATT Ile	TTG Leu	TTG Leu	GTG Val 535	ATT Ile	TCT Cys	GGC	TAT Tyr	GGC Gly 540	GAC Asp	ACC Thr	AAC Asn	ATT Ile	1632
00	TAT Tyr 545	CAG Gln	ATT Ile	ACC Thr	GAC Asp	GAT Asp 550	AAT Asn	TTA Leu	GCC Ala	AAA Lys	ATA Ile 555	GTG Val	GAA Glu	ACA Thr	Leu	TTG Leu 560	1680
65	TGG Trp	ATC Ile	ACT Thr	CAA Gln	TGG Trp 565	TTG Leu	AAG Lys	ACC Thr	CAA Gln	AAA Lys 570	TGG Trp	ACA Thr	GTT Val	ACC Thr	GAC Asp 575	CTG Leu	1728
70													ACG Thr				1776

FC 1/U370/10W

5	Ad Se	SC A	sn L	TG A eu T 95	cg go hr Al	T AC La Th	G TTO r Leo	3 TC' 1 Se: 60:	r Se	A AC r Th	T TTO T Let	G CAS	GG G1 60	y Ly	A GA 'S Gl	S. D. S. U.	T 132
	CT Le	u I	TT G le G 10	GG G. ly G	AA GA lu As	T CT p Le	G AAJ u Lys 615	Arq	A GC.	TK K eM E	G GCC t Ala	CCT Pro 620	Cy	C TT s Ph	C AC e Th	T TC r Se	G 187 r
10	62	3 L	eu H.	15 La	iu Th	r Se	r Glr	ı Glu	ı Va.	l Als	635	; Asp	Le	ı Le	u Le	u Tr	0
15	11	e As	sp G.	in II	.e G1 64	n Pro 5) Ala	Glr	ı Ile	€ Thi 650	r Val	Asp	Gl	/ Ph	65	p Glo 5	
20	GI	u Va	il G	in Th	r Th	r Pro	Thr	Ser	665	Lys	: Val	Ile	Thi	676	a Ala	a Glr	
25	Va.	l Le	67	.a G1	n Lei	ı Ser	Leu	Ile 630	Tyr	Arg	Arg	Ile	Gly 685	Leu	ı Sei	r Glu	
70	rnı	69	u Le	u se	r Lei	ı Ile	695	Thr	Gln	Ser	Ser	Leu 700	Leu	(Va)	Ala	a Gly	
30	705	s se	r 11	e Le	u Asp	710	Gly	Leu	Leu	Thr	Leu 715	Met	Ala	. Leu	Glu	Gly 720	
35	PNE	HI	s In	r Tri	725	Asn	GIA	Leu	Gly	Gln 730	His	Ala	Ser	Leu	735	Leu	
40	Ala	Ald	r re	740	Asp	GIĀ	Ala	Leu	Thr 745	Val	Thr	Asp	Val	Ala 750	Gln	Ala	
45	met	ASI	759	S GIU	GIU	Ser	Leu	Leu 760	Gln	Met	Ala	Ala	Asn 765	Gln	Val	Glu	
••	Lys	770) Let	ınr	rys	Leu	775	Ser	Trp	Thr	Gln	11e 780	Asp	Ala	Ile	Leu	2352
50	785	Trp	Leu	i Gin	Met	Ser 790	Ser	Ala	Leu	Ala	Val 795	Ser	Pro	Leu	Аsр	Leu 800	2400
55	Ala	GIA	Met	Met	805	Leu	Lys	Tyr	Gly	Ile 810	Asp	His	Asn	Tyr	Ala 815	Ala	2448
60	11p	Gin	ALA	820	AIA	Ala	Ala	Leu	Met 825	Ala	Asp	His .	Ala	Asn 830	Gln	Ala	2496
65	GIN	Lys	835	Leu	Asp	Glu	Thr i	Phe 840	Ser	Lys	Ala .	Leu (345	Asn	Tyr	Tyr	2544
70	116	350	Ala	Val	Val	Asp	Ser 2 855	Ala A	Ala	Gly '	Val .	Arg / 960	Asp	Arg	Asn	Gly	2592
70	TTA	TAT	ACC	TAT	TTG	CTG .	ATT C	AT :	LAT	CAG (GTT (TCT C	CC (GAT	GTG	ATC	2640

	365		37)			875					350	
5	ACT TCA Thr Ser	CGT ATT Arg Ile	GCA GAI Ala Gli 885	A GCT ATO	c GCC a Ala	GGT Gly 890	ATT Ile	CAA Gln	CTG Leu	TAC Tyr	GTT Val 895	AAC Asn	2688
10	CGG GCT Arg Ala	TTA AAC Leu Asn 900	Arg As	GAA GG Glu Gl	r CAG / Gln 905	CTT L e u	GCA Ala	TCG Ser	GAC Asp	GTT Val 910	AGT Ser	ACC Thr	2736
10	CGT CAG Arg Gln	TTC TTC Phe Phe 915	ACT GAG Thr Asi	TGG GA Trp Glv 920	ı Arg	TAC Tyr	AAT Asn	aaa Lys	CGT Arg 925	TAC Tyr	AGT Ser	ACT Thr	2784
15	TGG GCT Trp Ala 930	GGT GTC Gly Val	TCT GAZ Ser Glu	CTG GTG Leu Va. 935	TAT 1 Tyr	TAT Tyr	CCA Pro	GAA Glu 940	AAC Asn	TAT Tyr	GTT Val	GAT Asp	2832
20	CCC ACT Pro Thr 945	CAG CGC Gln Arg	ATT GGG Ile Gl; 950	Gln Th	C AAA r Lys	ATG Met	ATG Met 955	GAT Asp	GCG Ala	CTG Leu	TTG Leu	CAA Gln 960	2380
25	TCC ATC Ser Ile	AAC CAG Asn Gln	AGC CAC Ser Gli 965	CTA AA' Leu Asi	r GCG n Ala	GAT Asp 970	ACG Thr	GTG Val	GAA Glu	GAT Asp	GCT Ala 975	TTC Phe	2928
30	AAA ACT Lys Thr	TAT TTG Tyr Leu 980	Thr Ser	TTT GAG	G CAG Gln 985	GTA Val	GCA Ala	AAT Asn	CTG Leu	AAA Lys 990	GTA Val	ATT Ile	2976
50	AGT GCT Ser Ala	TAC CAC Tyr His 995	GAT AAT Asp Ast	GTG AA' 1 Val Asi 10	n Val	GAT Asp	CAA Gln	GGA Gly	TTA Leu 1009	Thr	TAT Tyr	TTT Phe	3024
35	ATC GGT Ile Gly 1010	ATC GAC Ile Asp 0	CAA GCA Gln Ala	A GCT CCG A Ala Pro 1015	G GGT	ACG Thr	TAT Tyr	TAC Tyr 1020	Trp	CGT Arg	AGT Ser	GTT Val	3072
40	GAT CAC Asp His 1025	AGC AAA Ser Lys	TGT GAI Cys Glu 101	Asn Gly	AAG Y Lýs	TTT Phe	GCC Ala 1035	Ala	AAT Asn	GCT Ala	TGG Trp	GGT Gly 1040	
45	GAG TGG Glu Trp	AAT AAA Asn Lys	ATT ACC Ile Thi 1045	TGT GC' Cys Al	r GTC a Val	AAT Asn 1050	Pro	TGG Trp	AAA Lys	AAT Asn	ATC Ile 1055	Ile	3168
50	CGT CCG Arg Pro	GTT GTT Val Val 106	Tyr Met	TCC CGG Ser Ar	g Leu	Tyr	Leu	Leu	Trp	CTG Leu 1070	Glu	CAG Gln	3216
50	CAA TCA Gln Ser	AAG AAA Lys Lys 1075	AGT GA	GAT GG Asp Gly	y Lys	ACC Thr	ACG Thr	ATT Ile	TAT Tyr 108	Gln	TAT Tyr	AAC Asn	3254
55 .	TTA AAA Leu Lys 109	CTG GCT Leu Ala 0	CAT AT His Ile	r CGT TAG Arg Ty 1095	c GAC r Asp	GGT Gly	AGT Ser	TGG Trp 1100	Asn	ACA Thr	CCA Pro	TTT Phe	3312
60	ACT TTT Thr Phe 1105	GAT GTG Asp Val	ACA GAI Thr Gli	ı Lys Va	A AAA l Lys	AAT Asn	TAC Tyr 1115	Thr	TCG Ser	AGT Ser	ACT Thr	GAT Asp 1120	
65	GCT GCT Ala Ala	GAA TCT Glu Ser	TTA GGG Leu Gly 1125	TTG TA	T TGT r Cys	ACT Thr 1130	Gly	TAT Tyr	CAA Gln	GGG Gly	GAA Glu 113	Asp	3408
7 0	ACT CTA Thr Leu	TTA GTT Leu Val	Met Ph	TAT TO	G ATG r Met 114	Gln	AGT Ser	AGT Ser	TAT Tyr	AGC Ser 115	Ser	TAT Tyr	3456
,,,	ACC GAT	TAK TAK	GCG CC	GTC AC	T GGG	CTA	TAT	ATT	TTC	GCT	GAT	ATG	3504

. VI U 7/11/17UA F C 1/U 37U/18UU 3

Thr Asp Asn Asn Ala Pro Val Thr Gly Leu Tyr Ile Phe Ala Asp Met TCA TCA GAC AAT ATG ACG AAT GCA CAA GCA ACT AAC TAT TGG AAT AAC 3552 Ser Ser Asp Ash Met Thr Ash Ala Gin Ala Thr Ash Tyr Trp Ash Ash 1175 AGT TAT CCG CAA TTT GAT ACT GTG ATG GCA GAT CCG GAT AGC GAC AAT 3600 Ser Tyr Pro Gin Phe Asp Thr Val Met Ala Asp Pro Asp Ser Asp Asn 10 1190 1195 AAA AAA GTC ATA ACC AGA AGA GTT AAT AAC CGT TAT GCG GAG GAT TAT 3648 Lys Lys Val Ile Thr Arg Arg Val Asn Asn Arg Tyr Ala Glu Asp Tyr 1210 15 GAA ATT CCT TCC TCT GTG ACA AGT AAC AGT AAT TAT TCT TGG GGT GAT 3696 Glu Ile Pro Ser Ser Val Thr Ser Asn Ser Asn Tyr Ser Trp Gly Asp CAC AGT TTA ACC ATG CTT TAT GGT GGT AGT GTT CCT AAT ATT ACT TIT 3744 His Ser Leu Thr Met Leu Tyr Gly Gly Ser Val Pro Asn Ile Thr Phe GAA TCG GCG GCA GAA GAT TTA AGG CTA TCT ACC AAT ATG GCA TTG AGT 3792 25 Glu Ser Ala Ala Glu Asp Leu Arg Leu Ser Thr Asn Met Ala Leu Ser 1260 ATT ATT CAT AAT GGA TAT GCG GGA ACC CGC CGT ATA CAA TGT AAT CTT 3840 Ile Ile His Asn Gly Tyr Ala Gly Thr Arg Arg Ile Gln Cys Asn Leu 1265 1270 1280 30 ATG AAA CAA TAC GCT TCA TTA GGT GAT AAA TTT ATA ATT TAT GAT TCA 3888 Met Lys Gln Tyr Ala Ser Leu Gly Asp Lys Phe Ile Ile Tyr Asp Ser 35 TCA TTT GAT GAT GCA AAC CGT TTT AAT CTG GTG CCA TTG TTT AAA TTC 3936 Ser Phe Asp Asp Ala Asn Arg Phe Asn Leu Val Pro Leu Phe Lys Phe 40 GGA AAA GAC GAG AAC TCA GAT GAT AGT ATT TGT ATA TAT AAT GAA AAC 3984 Gly Lys Asp Glu Asn Ser Asp Asp Ser Ile Cys Ile Tyr Asn Glu Asn 1315 1320 CCT TCC TCT GAA GAT AAG AAG TGG TAT TTT TCT TCG AAA GAT GAC AAT 4032 45 Pro Ser Ser Glu Asp Lys Lys Trp Tyr Phe Ser Ser Lys Asp Asp Asn AAA ACA GCG GAT TAT AAT GGT GGA ACT CAA TGT ATA GAT GCT GGA ACC 4080 Lys Thr Ala Asp Tyr Asn Gly Gly Thr Gln Cys Ile Asp Ala Gly Thr 50 1350 AGT AAC AAA GAT TTT TAT TAT AAT CTC CAG GAG ATT GAA GTA ATT AGT 4128 Ser Asn Lys Asp Phe Tyr Tyr Asn Leu Gln Glu Ile Glu Val Ile Ser 1365 55 GTT ACT GGT GGG TAT TGG TCG AGT TAT AAA ATA TCC AAC CCG ATT AAT 4176 Val Thr Gly Gly Tyr Trp Ser Ser Tyr Lys Ile Ser Asn Pro Ile Asn ATC AAT ACG GGC ATT GAT AGT GCT AAA GTA AAA GTC ACC GTA AAA GCG 4224 Ile Asn Thr Gly Ile Asp Ser Ala Lys Val Lys Val Thr Val Lys Ala 1400 GGT GGT GAC GAT CAA ATC TTT ACT GCT GAT AAT AGT ACC TAT GTT CCT 4272 Gly Gly Asp Asp Gln Ile Phe Thr Ala Asp Asn Ser Thr Tyr Val Pro 65 1415 CAG CAA CCG GCA CCC AGT TTT GAG GAG ATG ATT TAT CAG TTC AAT AAC 4320 Gln Gln Pro Ala Pro Ser Phe Glu Glu Met Ile Tyr Gln Phe Asn Asn 70 1430 1435

PC1/US96/18003

	CTG Leu	ACA Thr	ATA Ile	GAT Asp	TGT Cys 1445	Lys	AAT Asn	TTA Leu	AAT Asn	TTC Phe 1450	He	GAC Asp	AAT Asn	CAG Gln	GCA Ala 1455	H15	4163
5	ATT Ile	GAG Glu	ATT Ile	GAT Asp 1460	Phe	ACC Thr	GCT Ala	ACG Thr	GCA Ala 1469	GIU	GAT Asp	GGC Gly	CGA Arg	TTC Phe 1470	Lau	GGT Gly	1116
10	GCA Ala	GAA Jlu	ACT Thr 1475	Phe	ATT Ile	ATC	CCG Pro	GTA Val 1480	Thr	aaa Lys	AAA Lys	GTT Val	CTC Leu 1485	GIA	ACT Thr	GAG Glu	4464
15	AAC Asn	GTG Val 1490	Ile	GCG Ala	TTA Leu	TAT Tyr	AGC Ser 1495	Glu	AAT Asn	AAC Asn	GGT Gly	GTT Val 1500	Gln	TAT Tyr	ATG Met	CAA Gln	4512
20	ATT Ile 1505	Gly	GCA Ala	TAT Tyr	CGT Arg	ACC Thr 1510	Arg	TTG Leu	AAT Asn	ACG Thr	TTA Leu 1515	Phe	GCT Ala	CAA Gln	CAG Gln	TTG Leu 1520	4560
20	GTT Val	AGC Ser	CGT Arg	GCT Ala	AAT Asn 1525	Arg	GGC Gly	ATT Ile	GAT Asp	GCA Ala 1530	Val	CTC Leu	AGT Ser	ATG Met	GAA Glu 1535	Thr	4608
25	CAG Gln	AAT Asn	ATT Ile	CAG Gln 1540	Glu	CCG Pro	CAA Gln	TTA Leu	GGA Gly 1545	Ala	GGC Gly	ACA Thr	TAT Tyr	GTG Val 1550	GIn	CTT Leu	4656
30	Val	Leu	Asp 1555	Lys	Tyr	Asp	Glu	Ser 156	Ile D	His	Gly	Thr	Asn 1565	Lys 5	Sər	Pne	4704
35	Ala	Ile 1570	Glu)	Tyr	Val	Asp	11e 1575	Phe	Lys	Glu	ASD	1580	Ser	ħue	vai	116	4752
40	Tyr 1585	Gln	Gly	Glu	Leu	Ser 159	Glu D	Thr	Ser	Gln	Thr 159	vai	Val	Lys	vai	1600	
40	TTA Leu	TCC Ser	TAT Tyr	TTT Phe	ATA Ile 1609	Glu	GCG Ala	ACT Thr	GGA Gly	AAT Asn 161	Lys	AAC Asn	CAC His	TTA Leu	TGG Trp 161	vai	4848
45	CGT Arg	GCT Ala	AAA Lys	TAC Tyr 162	Gln	AAG Lys	GAA Glu	ACG Thr	ACT Thr 162	Asp	AAG Lys	ATC Ile	TTG Leu	TTC Phe 163	ASP	CGT Arg	4396
50	ACT Thr	GAT Asp	GAG Glu 163	Lys	GAT Asp	CCG Pro	CAC His	GGT Gly 164	Trp	TTT Phe	CTC Leu	AGC Ser	GAC Asp 164	ASP	CAC His	AAG Lys	4944
55	ACC Thr	TTT Phe 165	Ser	GGT Gly	CTC Leu	TCT Ser	TCC Ser 165	Ala	CAG Gln	GCA Ala	TTA Leu	AAG Lys 166	ASI	GAC Asp	AGT Ser	GAA Glu	4992
60	Pro 166	Met 5	Asp	Phe	Ser	Gly 167	Ala O	Asn	Ala	Lau	167	5	Trp	Glu	, peu	168	U
()()	TAT Tyr	TAC Tyr	ACG Thr	CCG Pro	ATG Met 168	Met	ATG Met	GCT Ala	CAT His	CGT Arg 169	Leu	TTG	CAG Gln	GAA Glu	CAG Gln 169	Mail	5088
65	Phe	λsp	Ala	170	Asn 0	Hıs	Trp	Phe	170	Tyr 5	Vai	Trp	s Ser	171	.0	Gly	
70	TAT Tyr	ATC Ile	GTT Val 171	_Asp	GGT	Lys	ATT	GCT Ala 172	rite	TAC Tyr	H12 CYC	TGG	AAC Asn 172	1 4 4 1	CGA Arg	CCC Pro	; 518÷

	•
	CTG GAA GAA GAC ACC AGT TGG AAT GCA CAA CAA CTG GAC TCC ACC GAT 5131 Leu Glu Glu Asp Thr Ser Trp Asn Ala Gln Gln Leu Asp Ser Thr Asp 1730 1740
5	CCA GAT GCT GTA GCC CAA GAT GAT CCG ATG CAC TAC AAG GTG GCT ACC 5280 Pro Asp Ala Val Ala Gln Asp Asp Pro Met His Tyr Lys Val Ala Thr 1745 1750 1760
10	TTT ATG GCG ACG TTG GAT CTG CTA ATG GCC CGT GGT GAT GCT GCT TAC 5328 Phe Met Ala Thr Leu Asp Leu Leu Met Ala Arg Gly Asp Ala Ala Tyr 1765 1770 1775
15	CGC CAG TTA GAG CGT GAT ACG TTG GCT GAA GCT AAA ATG TGG TAT ACA 5376 Arg Gln Leu Glu Arg Asp Thr Leu Ala Glu Ala Lys Met Trp Tyr Thr 1780 1785 1790
20	CAG GCG CTT AAT CTG TTG GGT GAT GAG CCA CAA GTG ATG CTG AGT ACG 5424 Gln Ala Leu Asn Leu Leu Gly Asp Glu Pro Gln Val Met Leu Ser Thr 1795 1800 1805
25	ACT TGG GCT AAT CCA ACA TTG GGT AAT GCT GCT TCA AAA ACC ACA CAG 5472 Thr Trp Ala Asn Pro Thr Leu Gly Asn Ala Ala Ser Lys Thr Thr Gln 1810 1815 1820
رد	CAG GTT CGT CAG CAA GTG CTT ACC CAG TTG CGT CTC AAT AGC AGG GTA 5520 Gln Val Arg Gln Gln Val Leu Thr Gln Leu Arg Leu Asn Ser Arg Val 1825 1830 1835
30	AAA ACC CCG TTG 5532 Lys Thr Pro Leu 1844
35	(2) INFORMATION FOR SEQ ID NO:53: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1844 amino acids (B) TYPE: amino acids
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein
45	<pre>(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53 (TcbA_{ii}): Features From To Description Peptide 1 1844 TcbA_{ii} peptide</pre>
50	Fragment 1 11 (SEQ ID NO:1) Fragment 978 990 (SEQ ID NO:23) Fragment 1387 1401 (SEQ ID NO:22) Fragment 1484 1505 (SEQ ID NO:24) Fragment 1527 1552 (SEQ ID NO:21)
50	Fragment 1 11 (SEQ ID NO:1) Fragment 978 990 (SEQ ID NO:23) Fragment 1387 1401 (SEQ ID NO:22) Fragment 1484 1505 (SEQ ID NO:24) Fragment 1527 1552 (SEQ ID NO:21) Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala Asp Asn Tyr 1 5
	Fragment 1 11 (SEQ ID NO:1) Fragment 978 990 (SEQ ID NO:23) Fragment 1387 1401 (SEQ ID NO:22) Fragment 1484 1505 (SEQ ID NO:24) Fragment 1527 1552 (SEQ ID NO:21) Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala Asp Asn Tyr 1 1 5 Ala Ala Pro Gly Ser Val Ala Ser Met Phe Ser Pro Ala Ala Tyr Leu 20 25 30
	Fragment 1 11 (SEQ ID NO:1) Fragment 978 990 (SEQ ID NO:23) Fragment 1387 1401 (SEQ ID NO:22) Fragment 1484 1505 (SEQ ID NO:24) Fragment 1527 1552 (SEQ ID NO:21) Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala Asp Asn Tyr 1 10 15 Ala Ala Pro Gly Ser Val Ala Ser Met Phe Ser Pro Ala Ala Tyr Leu 20 25 30 Thr Glu Leu Tyr Arg Glu Ala Lys Asn Leu His Asp Ser Ser Ser Ile 35 40 45
55	Fragment 1 11 (SEQ ID NO:1) Fragment 978 990 (SEQ ID NO:23) Fragment 1387 1401 (SEQ ID NO:22) Fragment 1484 1505 (SEQ ID NO:24) Fragment 1527 1552 (SEQ ID NO:21) Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala Asp Asn Tyr 10 15 15 Ala Ala Pro Gly Ser Val Ala Ser Met Phe Ser Pro Ala Ala Tyr Leu 20 25 30 Thr Glu Leu Tyr Arg Glu Ala Lys Asn Leu His Asp Ser Ser Ser Ile 35 40 Tyr Tyr Leu Asp Lys Arg Arg Pro Asp Leu Ala Ser Leu Met Leu Ser 50 55
55 60	Fragment 1 11 (SEQ ID NO:1) Fragment 978 990 (SEQ ID NO:23) Fragment 1387 1401 (SEQ ID NO:22) Fragment 1484 1505 (SEQ ID NO:24) Fragment 1527 1552 (SEQ ID NO:21) Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala Asp Asn Tyr 1 5 10 15 15 Ala Ala Pro Gly Ser Val Ala Ser Met Phe Ser Pro Ala Ala Tyr Leu 20 25 30 Thr Glu Leu Tyr Arg Glu Ala Lys Asn Leu His Asp Ser Ser Ser Ile 35 40 40 45 Tyr Tyr Leu Asp Lys Arg Arg Pro Asp Leu Ala Ser Leu Met Leu Ser

					85					90					35	
5	Val	Met	Хsр	Met 100	Lau	Ser	Thr	Tyr	Arg 105	Leu	Ser	Gly	Glu	Thr 110	Pro	Тут
,	His	His	Ala 115	Tyr	Glu	Thr	Val	Arg 120	Glu	Ile	Val	His	Glu 125	Arg	Asp	Pro
10	Gly	Phe 130	Arg	His	Leu	Ser	Gln 135	Ala	Pro	Ile	Val	Ala 140	λla	Lys	Leu	Asp
	Pro 145	Val	Thr	Leu	Leu	Gly 150	Ile	Ser	Ser	His	Ile 155	Ser	Pro	Glu	Leu	T, 1
15	Asn	Leu	Leu	Ile	Glu 165	Glu	Ile	Pro	Glu	Lys 170	Asp	Glu	Ala	Ala	Leu 175	Asp
20	Thr	Leu	Tyr	Lys 180	Thr	Asn	Phe	Gly	Asp 185	Ile	Thr	Thr	Ala	Gln 190	Leu	Met
	Ser	Pro	Ser 195	Tyr	Leu	Ala	Arg	Tyr 200	Tyr	Gly	Val	Ser	Pro 205	Glu	Asp	Ile
25	Ala	Tyr 210	Val	Thr	Thr	Ser	Leu 215	Ser	His	Val	Gly	Tyr 220	Ser	Ser	Asp	Ile
	Leu 225	Val	Ile	Pro	Leu	Val 230	Asp	Gly	Val	Gly	Lys 235	Met	Glu	Val	Val	Arg 240
30	Val	Thr	Arg	Thr	Pro 245	Ser	Asp	Asn	Tyr	Thr 250	Ser	Gln	Thr	Asn	Tyr 255	Ile
35	Glu	Leu	Tyr	Pro 260	Gln	Gly	Gly	Asp	Asn 265	Tyr	Leu	Ile	Lys	Tyr 270	Asn	Leu
	Ser	Asn	Ser 275	Phe	Gly	Leu	Asp	Asp 280	Phe	Tyr	Leu	Gln	Tyr 285	Lys	Asp	Gly
40	Ser	Ala 290	Asp	Trp	Thr	Glu	Ile 295	Ala	His	Asn	Pro	Tyr 300	Pro	Asp	Met	Val
	Ile 305	Asn	Gln	Lys	Tyr	Glu 310	Ser	Gln	Ala	Thr	Ile 315	Lys	Arg	Ser	Asp	Ser 320
45	Asp	Asn	Ile	Leu	Ser 325	Ile	Gly	Leu	Gln	Arg 330	Trp	His	Ser	Gly	Ser 335	Туг
50	Asn	Phe	Ala	Ala 340	Ala	Asn	Phe	Lys	Ile 345	Asp	Gln	Tyr	Ser	Pro 350	Lys	Ala
50	Phe	Leu	Leu 355	Lys	Met	Asn	Lys	Ala 360	Ile	Arg	Leu	Leu	Lys 365	Ala	Thr	Gly
55	Leu	Ser 370	Phe	Ala	Thr	Leu	Glu 375	Arg	Ile	Val	Asp	Ser 380	Val	Asn	Ser	Thr
	Lys 385	Ser	Ile	Thr	Val	Glu 390	Val	Leu	Asn	Lys	Val 395	Tyr	Arg	Val	Lys	Ph∈ 400
60	Tyr	Ile	Asp	Arg	Tyr 405	Gly	Ile	Ser	Glu	Glu 410	Thr	Ala	Ala	Ile	Leu 415	Ala
65	Asn	Ile	Asn	11e 420	Ser	Gln	Gln	Ala	Val 425	Gly	Asn	Gln	Leu	Ser 430	Gln	Phe
U	Glu	Gln	Leu 435	Phe	Asn	His	Pro	Pro 440	Leu	Asn	Gly	Ile	Arg 445	Tyr	Glu	Ile
70	Ser	Glu 450	Asp	Asn	Ser	Lys	His 455	Leu	Pro	Asn	Pro	Asp 460	Leu	Asn	Leu	Lys

TU 7//1/934

										1.75	-1-	7.33	i.÷u	L:75	Ara	Ala
	Pro					4:0					-					
5	Phe				485											
	λrg	Lys	Glu	Asp 500	Gly	Val	Ile	Lys	Asn 505	Asn	Leu	Glu	Asn	Leu 510	Ser	Asp
10	Leu	Τ'nr	Leu 515	Val	Ser	Leu	Leu	Ala 520	Gln	Tle	His	Asn	Leu 525	Thr	Ile	Ala
	Glu	Leu 530	Asn	Ile	Leu	Leu	Val 535	Ile	Cys	Gly	T, r	Gly 540	Asp	Thr	Asn	Ile
15	Tyr 545	Gln	Ile	Thr	Asp	Asp 550	Asn	Leu	Ala	Lys	11e 555	Val	Glu	Thr	Leu	Leu 560
20		Ile	Thr	Gln	Trp 565	Leu	Lys	Thr	Gln	Lys 570	Trp	Thr	Val	Thr	Asp 575	Leu
20	Phe	Leu	Met	Thr 580	Thr	Ala	Thr	Tyr	Ser 585	Thr	Thr	Leu	Thr	Pro 590	Glu	Ile
25	Ser	Asn	Leu 595	Thr	Ala	Thr	Leu	Ser 600	Ser	Thr	Leu	His	Gly 605	Lys	Glu	Ser
	Leu	Ile 610		Glu	Asp	Leu	Lys 615	Arg	Ala	Met	Ala	Pro 620	Cys	Phe	Thr	Ser
30	Ala 625	Leu	His	Leu	Thr	Ser 630	Gln	Glu	Val	Ala	Tyr 635	λsp	Leu	Leu	Leu	640
35	Ile	Asp	Gln	Ile	Gln 645	Pro	Ala	Gln	Ile	Thr 650	Val	Asp	Gly	Phe	Trp 655	Glu
	Glu	Val	Gln	Thr	Thr	Pro	Thr	Ser	Leu 665	Lys	Val	Ile	Thr	Phe 670	Ala	Gln
40	Val	Leu	Ala 675	Gln	Leu	Ser	Leu	11e 680	Tyr	Arç) Arg	Ile	685	Leu	Sei	r Glu
	Thr	G1u 690	Leu)	Ser	Leu	Ile	Val 695	Thr	Gln	ser	Ser	700	Let)	ı Val	Ala	a Gly
45	Lys 705		: Ile	. Lau	Asp	His 710	Gly	Leu	Lev	ı Thi	715	Met	Alé	a Lev	Gl	u Gly 720
50	Phe	His	s Thr	Trp	Val 725	Asn	Gly	Leu	Gly	7 Gla	n His O	. Al	a Sei	r Lei	1 Il 73	e Leu S
	Ala	Ala	a Leu	1 Lys	Ast	Gly	Ala	Leu	Th: 74!	r Va 5	1 Thi	r As	p Va	1 Al. 75	a Gl	n Ala
55	Met	: Ası	n Lys 75	s Glu	ı Glu	ı Ser	Lev	1 Let 760	ı Gli	n Me	t Al	a Al	a As: 76	n Gl	n Va	l Glu
	Lys	3 AS	p Le	ı Th	r Ly:	s Le	Th:	r Sei	r Tr	p Th	r Gl	n Il 78	e As O	p Al	a Il	e Leu
60	G1: 78:		p Le	u Gl	n Me	5 Set	r Se	r Al	a Le	u Al	a Va 79	1 Se 5	r Pr	o Le	u As	p Leu 800
65	Al	a Gl	y Me	t Me	t Al. 80	a Lei 5	ı Ly	s Ту	r Gl	y Il 81	e As	p Hı	s As	n T/	r Al	la Ala 15
	Tr	p Gl	n Al	a Al 82	a Al O	a Al	a Al	a Le	u Me 82	t Al	a As	p Hi	s Al	a As	n G! 0	ln Ala
7()	Gl	n Ly	s Ly	s Le 5	u As	p Gl	u Th	r Ph 84	e Se O	r Ly	s Al	a Le	eu Cy 84	's As	n T	/r Tyr

WU 97/17432 PCT/US96/18003

	Ile	Asn 350	Ala	Val	∵al	Аsр	Ser 855	Ala	Ala	Gly	7al	Arg 860	Asp	Arg	Asn	Sly
5	Leu 865	Tyr	Thr	Tyr	Ləu	Le u 370	Ile	λsp	λsn	Gln	Val 875	Ser	Ala	Asp	Val	Ile 330
10	Thr	Ser	Arg	Ilə	Ala 885	Glu	Ala	Ilə	Ala	890	Ila	Gln	Leu	Tyr	Val 895	Asn
10	Arg	Ala	Leu	Asn 900	Arg	Asp	Glu	Gly	Gln 905	Leu	Ala	Ser	Asp	Val 910	Ser	Thr
15	Arg	Gln	Phe 915	Phe	Thr	Asp	Trp	Glu 920	Arg	Tyr	Asn	Lys	Arg 925	Tyr	Ser	Thr
	Trp	Ala 930	Gly	Val	Ser	Glu	Leu 935	Val	Tyr	Tyr	Pro	Glu 940	Asn	Tyr	Val	Asp
20	Pro 945	Thr	Gln	Arg	Ile	Gly 950	Gln	Thr	Lys	Met	Met 955	Asp	Ala	Leu	Leu	Gln 960
25	Ser	Ile	Asn	Gln	Ser 965	Gln	Leu	Asn	Ala	Asp 970	Thr	Val	Glu	Asp	Ala 975	Phe
	Lys	Thr	Tyr	Leu 980	Thr	Ser	Phe	Glu	Gln 985	Val	Ala	Asn	Leu	Lys 990	Val	Ile
30	Ser	Ala	Tyr 995	His	λsp	Asn	Val	Asn 1000		Asp	Gln	Cly	Leu 1009		Туr	Phe
	Ile	Gly 1010		Asp	Gln	Ala	Ala 1015		Gly	Thr	Tyr	Tyr 1020		Arg	Ser	Val
35	Asp 1025	His	Ser	Lys	Cys	Glu 1030		Gly	Lys	Phe	Ala 1035		Asn	Ala	Trp	Gly 1040
40	Glu	Trp	Asn	Lys	11e		Cys	Ala	Val	Asn 1050		Trp	Lys	Asn	Ile 1055	
	Arg	Pro	Val	Val 1060	-	Met	Ser	Arg	Leu 1065	. •	Leu	Leu	Trp	Leu 1070		Gln
45	Gln	Ser	Lys 1075		Ser	Asp	Asp	Gly 1080		Thr	Thr	Ile	Tyr 1085		Tyr	Asn
	Leu	Lys 1090		Ala	His	Ile	Arg 1095		Asp	Gly	Ser	Trp 1100		Thr	Pro	Phe
5 0	Thr 1105	Phe	Asp								Tyr 1115		Ser	Ser	Thr	Asp 1120
55	Ala	Ala	Glu	Ser	Leu 1125		Leu	Tyr	Cys	Thr 1130		Tyr	Gln	Gly	Glu 1135	
	Thr	Leu	Leu	Val 1140		Phe	Tyr	Ser	Met 1145		Ser	Ser	Tyr	Ser 1150		Tyr
60	Thr	Asp	Asn 1155		Ala	Pro	Val	Thr 1160		Leu	Tyr	Tle	Phe 1165		Asp	Met
	Ser	Ser		Asn	Met	Thr	Asn 1175		Gln	Ala	Thr	Asn 1180		Trp	Asn	Asn
		1170)													
65		Tyr		Gln	Phe	Asp 1190		Val	Met	Ala	Asp 1195		Asp	Ser	Asp	Asn 1200
65 70	Ser 1135	Tyr	Pro			1190 Arg)				1199 Arg	5				1200 Tyr

220 1225 1230

				1220	,											
_	His	Ser	Leu 1235		Mec	Leu	Tyr	Gly 1240	Gly	Ser	7al	Pro	Asn 1245	Ile	Thr	Phe
5	Glu	Ser 1250		Ala	Glu	λsp	Leu 1255	Arg	Leu	Ser	Thr	Asn 1260	Met	Ala	Leu	Ser
10	Ile 1265		His	Asn	Gly	T; r 1270	Ala	Gly	Thr	λrg	Arg 1275	lle	Gln	Cys	Asn	Leu 1230
	Met	Lys	Gln	Tyr	Ala 1285		Leu	Gly	Asp	Lys 1290	Phe	Ile	Ile	Tyr	λsp 1295	Ser
15	Ser	Phe	Asp	Asp 1300	Ala)	Asn	Arg	Phe	Asn 1305	Leu	Val	Pro	Leu	Phe 1310	Lys	Phe
30	Gly	Lys	Asp 1315		Asn	Ser	Asp	Asp 1320	Ser	Ile	Cys	Ile	Tyr 1325	Asn	Glu	Asn
2()	Pro	Ser 1330		Glu	Asp		Lys 1335		Tyr	Phe	Ser	Ser 1340	Lys	Asp	Asp	Asn
25	Lys 1349		Ala	Asp	Tyr	Asn 1350	Gly	Gly	Thr	Gln	Cys 1355	Ile	Asp	Ala	Gly	Thr 1360
	Ser	Asn	Lys	Asp	Phe 1365		Tyr	Asn	Leu	Gln 1370	Glu	Ile	Glu	Val	Ile 1375	Ser
30	Val	Thr	Gly	Gly 1380	Tyr)	Trp	Ser	Ser	Tyr 1385	Lys	Ile	Ser	Asn	Pro 1390	Ile	Asn
76	Ile	Asn	Thr 1395		Ile	Asp	Ser	Ala 1400		Val	Lys	Val	Thr 1405	Val	Lys	Ala
35	Gly	Gly 1410		Asp	Gln	Ile	Phe 1415	Thr	Ala	Asp	Asn	Ser 1420	Thr	Tyr	Val	Pro
40	Gln 1425		Pro	Ala	Pro	Ser 1430		Glu	Glu	Met	Ile 1435	Tyr	Gln	Phe	Asn	Asn 1440
	Leu	Thr	Ile	Asp	Cys 1445		Asn	Leu	Asn	Phe 1450	lle	Asp	Asn	Gln	Ala 1455	His
45	Ile	Glu	Ile	Asp 1460	Phe	Thr	Ala	Thr	Ala 1465	Gln	Asp	Gly	Arg	Phe 1470	Leu)	Gly
50	Ala	Glu	Thr 1475		Ile	Ile	Pro	Val 1480	Thr	Lys	Lys	Val	Leu 1485	Gly	Thr	Glu
30	Asn	Val 1490	Ile	Ala	Leu	Tyr	Ser 1495	Glu	Asn	Asn	Gly	Val 1500	Gln	Tyr	Met	Gln
55	Ile 1505		Ala	Tyr	Arg	Thr 1510		Leu	Asn	Thr	Leu 1515	Phe	Ala	Gln	Gln	Leu 1520
	Val	Ser	Arg	Ala	Asn 1525		Gly	Ile	Asp	Ala 1530	Val	Leu	Ser	Met	Glu 1539	Thr
60	Gln	Asn	Ile	Gln 1540	Glu)	Pro	Gln	Leu	Gly 15 4 5	Ala	Gly	Thr	Tyr	Val 1550	Gln)	Leu
65	Val	Leu	Asp 1555		Туr	Asp	Glu	Ser 1560		His	Gly	Thr	Asn 1565	Lys	Ser	Phe
در	Ala	Ile 1570		Tyr	Val	Asp	Ile 1575		Lys	Glu	Asn	Asp 1580	Ser	Phe	Val	Ile
7 0	Tyr 1585	Gln	Gly	Glu	Leu	Ser 1590	Glu	Thr	Ser	Gln	Thr 1595	Val	Val	Lys	Val	Phe 1600

WU 97/17432 PCT/US96/18003

	La	u Ser	г Түз	r Phe	lle 160	Glu 5	Ala	Thr	Gly	Asn 161		Asn	His	Leu	Trp 161				
5	Arg	g Ala	a Lys	s Tyr 162		L; s	Glu	Thr	Thr 162		Lys	Ile	Leu	Phe 163		Arg			
	Thi	r A s I	163	ı Lys 35	λsp	Pro	His	Gly 164	Trp 0	Phe	Leu	Ser	Asp 164		His	Lys			
10	Thi	Phe 165	e Ser 50	r Gly	Leu	Ser	Ser 165	Ala 5	Gln	Ala	Leu	Lys 1660	Asn 0	Asp	Ser	Glu			
15	Pro 166	Met 5	Asp	Phe	Ser	Gly 167	Ala O	Asn	Ala	Leu	Tyr 167		Trp	Glu	Leu	Phe 1680			
13	Tyr	Tyr	Thr	Pro	Met 168	Met 5	Met	Ala	His	Arg 169		Leu	Gln	Glu	Gln 1695				
20	Phe	Asp	Ala	Ala 170	Asn 0	His	Trp	Phe	Arg 170		Val	Trp	Ser	Pro 1710		Gly			
	Tyr	Ile	Val 171	. Asp .5	Gly	Lys	Ile	Ala 172	Ile O	туr	His	Trp	Asn 1725		Arg	Pro			
25	Leu	Glu 173	Glu 0	λsp	Thr	Ser	Trp 1735	Asn	λla	Gln	Gln	Leu 1740		Ser	Thr	Asp			
••	Pro 174	Asp 5	Ala	Val	Ala	Gln 1750	Asp	Asp	Pro	Met	His 175		Lys	Val	Ala	Thr 1760			
30	Phe	Met	Ala	Thr	Leu 1769	Asp	Leu	Leu	Met	Ala 1770		Cly	Asp	Ala	Ala 1775				
35	Arg	Gln	Leu	Glu 1780	Arg	Asp	Thr	Leu	Ala 1789	Glu	Ala	Lys	Met	Trp 1790		Thr			
	Gln	Ala	Leu 179	Asn 5	Leu	Leu	Gly	Asp 1800		Pro	Gln	Val	Met 1805		Ser	Thr			
40	Thr	Trp	Ala O	Asn	Pro	Thr	Leu 1815	Gly	Asn	Ala	Ala	Ser 1820		Thr	Thr	Gln			
4.5	Gln 182	Val 5	Arg	Gln	Gln	Val 1830	Leu	Thr	Gln	Leu	Arg 1835		Asn	Ser	Arg	Val 1840			
45	Lys	Thr	Pro	Leu 1844	l.														
50	(2)			(B)	JENC: LEN TYP	E CH GTH: E: r	ARAC ucl	TER 722 eic	IST: bas aci	CS: e pa d	irs								
55						OLOG				ble									
		(.	ii)	MOL	ECUI	LE T	YPE:	Ď	NA (gen	omic	:)							
60		(:	xi)	SEC	UEN	CE D	ESCF	RIPT	ION:	SE	Q ID	NO:	: 54	(Tcb	Aii	i cod	ling	regio	on;
55	CTA Leu l	GGA Gly	ACA Thr	GCC Ala	AAT Asn 5	TCC Ser	CTG Lau	ACC Thr	GCT Ala	TTA Leu 10	TTC Phe	CTG Leu	CCG Pro	Gln	GAA Glu 15	AAT 4 Asn	8		
در	AGC Ser	λλG Lys	CTC Leu	AAA Lys 20	GGC Gly	TAC Tyr	TGG Trp	Arg	ACA Thr 25	CTG Leu	GCG Ala	CAG Gln	Arg	ATG Met 30	TTT Phe	AAT 9 Asn	ó		

	,,,,,															1037	w 100
	TTA Leu) Arg	CAT His 35	AAT Asn	CTG Leu	TCG Ser	ATT Ile	GAC Asp 40	Sly	CAG Gln	Pro	CTC Leu	TCC Ser 45	TTS Leu	CCG Pro	cŤs Leu	144
5	TAT Tyr	GCT Ala 50	AAA Lys	CCG Pro	GCT Ala	GAT Asp	CCA Pro 55	AAA Lys	GCT Ala	TTA Leu	CTG Leu	AGT Ser 60	GCG Ala	GCG Ala	GTT Val	TCA Ser	192
10	GCT Ala 65	TCT Ser	CAA Gln	GGG Gly	GGA Gly	GCC Ala 70	GAC Asp	TTG Leu	CCG Pro	λλG Lys	GCG Ala 75	CCG Pro	CTG Leu	ACT Thr	ATT	CAC His 80	240
15				CAA Gln													288
20				GGT Gly 100	Ser					Tyr							336
				AGT Ser													384
25				CGT Arg													432
30				TTG													480
35				CAA Gln		Tyr								Glu			528
40				TTA Leu 180													576
,,,	ATT	TCC Ser	CGT Arg 195	ATG Met	GCA Ala	GGC Gly	GCG Ala	GGT Gly 200	GTT Val	GAT Asp	ATG Met	GCA Ala	CCA Pro 205	AAT Asn	ATC Ile	TTC Phe	624
45				GAT Asp													572
50				ATT Ile													720
55	AAA Lys	GTT Val	GCT Ala	CAG Gln	TCG Ser 245	GAA Glu	ATA Ile	TAT Tyr	CGC Arg	CGT Arg 250	CGC Arg	CGT Arg	CAA Gln	GAA Glu	TGG Trp 255	AAA Lys	768
60				GAC Asp 260													816
1,0	CTG Leu	GAA Glu	TCA Ser 275	CTG Leu	TCT Ser	ATT Ile	CGC	CGT Arg 280	GAA Glu	GCC Ala	GCT Ala	GAA Glu	ATG Met 285	CAA Gln	AAA Lys	GAG Glu	864
65				ACC Thr													912
7()				TTC Phe													960

WO 97/17432 PCT/US96/18003

5	-		-	Jly	110	32	5	e CI	חץ ו	e ly	33	p Lei O	u Ala	a Va	l Se	r Arg	g C;/s	
		٠		nia	340)	1 36	. Lyı	. 61	345	5	u Al	a Asr	n Asp	350	n Sei	: Ile	
10	•••	•		355	Lys	, P1(, GI	, VIC	360)	ı GIŞ	/ Thi	Туг	365	Gly	'Leu	ı Leu	
15		3	70	.	710	. Dec	1 116	375	AST	Let	I Ala	i Gir	380	Glu	Glu	Ala	Tyr	
20	385	5		•••	310	261	390	MIA	reu	GIU	va:	. G1u 395	Arg	Thr	Val	Ser	Leu 400	
25					.,.	405	361	Leu	GIU	GIY	410	Asp	Arg	Phe	Asn	Leu 415	λla	1248
20	514		1	. 16	420	WIG	red	reu	Asp	125	GIĀ	Glu	Gly	Thr	Ala 430	Gly	Thr	1296
30	2, 3	7.	4	35	GIY	red	261	Leu	440	ASN	Ala	lie	Leu	Ser 445	Ala	Ser	Val	1344
35	2,3	45	0		veh	Leu	Lys	455	GIĀ	Thr	Asp	Tyr	460	Asp	Ser	Ile	Val	1392
40	465	-		.511	ny s	val	470	Arg	116	Lys	Gin	11e 475	Ser	Val	Ser	Leu	Pro 480	1440
45	A14	Det	. V.	-1	GIÀ	485	TYP	GIN	ASP	Val	Gin 490	Ala	Met	Leu	Ser	Tyr 495	GIA	1488
50	0.,	261		!	500	Leu	PIO	LYS	GIÅ	505	Ser	Ala	Leu	Ala	Val 510	Ser	His	1536
50	91,		51	15	nsp	9 4 I	GIY	GIN	520	GIN	Leu	Asp	Phe	AAT Asn 525	Asp	Gly	Lys	
55	.,.	530	,		rne (GIU	GIY	535	Ala	Leu	Asp	Asp	Gln 540	GGT Gly	Thr	Leu	Asn	
60	747	GIII		16 F	PIO 1	ASN	550	rnr .	ASP	Lys	Gln	Lys 555	Ala	Ile	Leu	Gln	ACT Thr 560	1630
65	ATG Met	AGC Ser	GA As	T A	rie .	ATT Ile 565	TTG (Leu)	CAT . His	ATT	Arg '	TAT Tyr 570	ACC . Thr	Ile .	CGT ' Arg 573	TAA		1722	

(2) INFORMATION FOR SEQ ID NO:55:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 573 amino acids
(B) TYPE: amino acids

70

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

,																
			(xi)	SE	QUE	NCE	DESC	RIP	TION	1: S	EQ I	D NO	0:55	(T	:bAi	ii)
10	Leu l	Gly	Thr	Ala	Asn 5	Ser	Leu	Thr	Ala	Leu 10	Phe	Leu	Pro	Glr	Glu 15	Ası
	ser	Lys	Leu	Lys 20	Gly	Tyr	Trp	Arg	Thr 25	Leu	Ala	Gln	Arg	Met 30	Phe	Ası
15	Leu	Arg	His 35	Asn	Leu	Ser	Ile	Asp 40	Gly	Gln	Pro	Leu	Ser 45	Leu	Pro	Le
20	Tyr	Ala 50	Lys	Pro	Ala	Asp	Pro 55	Lýs	Ala	Leu	Leu	Ser 60	Ala	Ala	Val	Set
_0	Ala 65	Ser	Gln	Gly	Gly	Ala 70	Asp	Leu	Pro	Lys	Ala 75	Pro	Leu	Thr	Ile	His 80
25	λrg	Phe	Pro	Gln	Met 85	Leu	Glu	Gly	Ala	Arg 90	Gly	Leu	Val	Asn	Gln 95	Let
	Ile	Gln	Phe	Gly 100	Ser	Ser	Leu	Leu	Gly 105	Tyr	Ser	Glu	Arg	Gln 110		Alá
30	Glu	Ala	Met 115	Ser	Gln	Leu	Leu	Gln 120	Thr	Gln	Ala	Ser	Glu 125	Leu	Ile	Leu
35	Thr	Ser 130	Ile	Arg	Met	Gln	Asp 135	Asn	Gln	Leu	Ala	Glu 140	Leu	Asp	Ser	Glu
	Lys 145	Thr	Ala	Leu	Gln	Val 150	Ser	Leu	Ala	Gly	Val 155	Gln	Gln	Arg	Phe	λsp 160
40	Ser	Tyr	Ser	Gln	Leu 165	Tyr	Glu	Glu	Asn	Ile 170	Asn	Ala	Gly	Glu	Gln 175	Arg
	Ala	Leu	Ala	Leu 180	Arg	Ser	Glu	Ser	Ala 185	Ile	Glu	Ser	Gln	Gly 190	Ala	Glr
45	Ile	Ser	Arg 195	Met	Ala	Gly	Ala	Gly 200	Val	Asp	Meţ	Ala	Pro 205	Asn	Ile	Phe
50	Gly	Leu 210	Ala	Аsp	Gly	Gly	Met 215	His	Tyr	Gly	Ala	Ile 220	Ala	Tyr	Ala	Ile
	Ala 225	Asp	Gly	Ile	Glu	Leu 230	Ser	Ala	Ser	Ala	Lys 235	Met	Val	Asp	Ala	Glu 240
55	Lys	Val	Ala	Gln	Ser 245	Glu	Ile	Tyr	Arg	Arg 250	Arg	Arg	Gln	Glu	Trp 255	Lys
	Ile	Gln	Arg	Asp 260	Asn	Ala	Gln	Ala	Glu 265	Ile	Asn	Gln	Leu	Asn 270	Ala	Gln
60	Leu	Glu	Ser 275	Leu	Ser	Ile	Arg	Arg 280	Glu	Ala	Ala	Glu	Met 285	Gln	Lys	Glu
65	Tyr	Leu 290	Lys	Thr	Gln	Gln	Ala 295	Gln	Ala	Gln	Ala	Gln 300	Leu	Thr	Phe	Leu
	Arg 305	Ser	Lys	Phe	Ser	Asn 310	Gln	Ala	Leu	Tyr	Ser 315	Trp	Leu	Arg	Gly	Arg 320
70	Leu	Ser	Gly	Ile	Tyr 325	Phe	Gln	Phe	Tyr	Asp 330	Leu	Ala	Val	Ser	Arg 335	Суѕ

PCT/US96/18003

	Lau	Met	Ala	Glu 340	Gln	Ser	Tyr	Gln	Trp 345	Glu	Ala	Asn	Asp	Asn 350	Ser	Ile	
5	Ser	Phe	Val 355	Lys	Pro	Gly	Ala	Trp 360	Gln	Gly	Thr	Tyr	Ala 365	Gly	Leu	Leu	
10	Cys	Gly 370	Glu	Ala	Leu	Ile	Gln 375	Asn	Leu	Ala	Gln	Met 380	Glu	Glu	Ala	Tyr	
10	Leu 385	Lys	Trp	Glu	Ser	Arg 390	Ala	Leu	Glu	Val	Glu 395	Arg	Thr	Val	Ser	Leu 400	
15	Ala	Val	Val	Tyr	Asp 405	Ser	Leu	Glu	Gly	Asn 410	Asp	Arg	Phe	Asn	Leu 415	Ala	
	Glu	Gln	Ile	Pro 420	Ala	Leu	Leu	Asp	Lys 425	Gly	Glu	Gly	Thr	Ala 430	Gly	Thr	
20	Lys	Glu	Asn 435	Gly	Leu	Ser	Leu	Ala 440	Asn	Ala	Ile	Leu	Ser 445	Ala	Ser	Val	
25	Lys	Leu 450	Ser	Asp	Lau	Lys	Leu 155	Gly	Thr	Asp	Tyr	Pro 460	Asp	Ser	Ile	Val	
	Gly 465	Ser	Asn	Lys	Val	Arg 470	Arg	Ile	Lys	Gln	11e 475	Ser	Val	Ser	Leu	Pro 480	
30	Ala	Leu	Val	Gly	Pro 485	Tyr	Gln	Asp	Val	Gln 490	Ala	Met	Leu	Ser	Tyr 495	Gly	
	Gly	Ser	Thr	Gln 500	Leu	Pro	Lys	Gly	Cys 505	Ser	Ala	Leu	Ala	Val 510	Ser	His	
35	Gly	Thr	Asn 515	Asp	Ser	Gly	Gln	Phe 520	Gln	Leu	Asp	Phe	Asn 525	Asp	Gly	Lys	
4 0	Tyr	Leu 530	Pro	Phe	Glu	Gly	Ile 535	Ala	Leu	Asp	Asp	Gln 540	Gly	Thr	Leu	Asn	
••	Leu 545	Gln	Phe	Pro	Asn	Ala 550	Thr	Asp	Lys	Gln	Lys 555	Ala	Ile	Leu	Gln	Thr 560	
15	Met	Ser	Asp	Ile	11e 565	Leu	His	Ile	Arg	Tyr 570	Thr	Ile	Arg 573	•••			
50	(2)	IN (i					ARAC LENC TYPE	TER TH: E: n ANDE	ISTI 28 ucle DNES	CS: 898 eic SS: (base acid doub ar	ì	irs				
55		(i	.i)	MOL	ECU	LE T	YPE:	D	NA (gene	omic	}					
				_		CE D					_						
50																TC CAC	48 16
55																TTT GAT Phe Asp	
	97	GTG :	GTA	CGT	ATG	ccg	CGT	GAG	с ст -23		ATT	CGT	GAG	CAT	CGT	GCT GAT	14

	33 '	/al 7	al A	rg M	let P	ro A	rg G	ilu A	rg P	he I	le A	rg G	ilu H	lis A	rg ?	Ala A	sp	13
5	145		GGG Gly	CGC	AGT Ser	GCT Ala	GAA Glu	AAA Lys	ATG Met	TAT Tyr	GAC Asp	CTG Leu	GCA Ala	GTG Val	GGC Gly	TAT Tyr	GCT Ala	64 192
10	193 65	CAT His	CAG Gln	GTG Val	TTA Leu	CAC His	CAT His	TTT Phe	CGC Arg	CGT Arg	AAT Asn	TCT Ser	CTT L a u	AGT Ser	GAA Glu	GCT Ala	GTT Val	240 30
	241	CAG Gln	TTT Phe	GGC Gly	TTG Leu	AGA Arg	AGT Ser	CCG Pro	TTC Phe	TCC Ser	GTA Val	TCA Ser	GGC Gly	CCG Pro	GAT Asp	TAC Tyr	GCC Ala	288 96
15	289 97	AAT Asn	CAG Gln	TTT Phe	CTT Leu	GAT Asp	GCA Ala	AAC Asn	ACG Thr	GGT Gly	TGG Trp	AAA Lys	GAT Asp	AAA Lys	GCA Ala	CCA Pro	AGT Ser	336 112
20	337 113	GGA Gly	TCA Ser	CCG Pro	GAA Glu	GCC Ala	AAT Asn	GAT Asp	GCG Ala	CCG Pro	GTA Val	GCC Ala	TAT Tyr	CTG Leu	ACT Thr	CAT His	ATT Ile	384 128
25	385 129	TAT Tyr	CAA Gln	TTG Leu	GCC Ala	CTT Leu	GAA Glu	CAG Gln	GAA Glu	AAG Lys	AAT Asn	GGC Gly	GCC Ala	ACT Thr	ACC Thr	ATT Ile	ATG Met	432 144
30	433 145	AAT Asn	ACG Thr	CTG Leu	GCG Ala	GAG Glu	CGT Arg	CGC Arg	CCC Pro	GAT Asp	CTG Leu	GGT Gly	GCT Ala	TTG Leu	TTA Leu	ATT Ile	AAT Asn	480 160
	481 161	GAT Asp	AAA Lys	GCA Ala	ATC Ile	AAT Asn	GAG Glu	GTG Val	ATA Ile	CCG Pro	CAA Gln	TTG Leu	CAG Gln	TTG Leu	GTC Val	AAT Asn	GAA Glu	528 176
35	529 177	ATT Ile	CTG Leu	TCC Ser	AAA Lys	GCT Ala	ATT Ile	CAG Gln	AAG Lys	AAA Lys	CTG Leu	AGT Ser	TTG	ACT Thr	GAT Asp	CTG Leu	GAA Glu	576 192
40	577 193	GCG Ala	GTA Val	AAC Asn	GCC Ala	AGA Arg	CTT Leu	TCC	ACT Thr	ACC	CGT Arg	TAC Tyr	CCG Pro	AAT Asn	AAT Asn	CTG Leu	CCG Pro	62 4 208
45	625 209	TAT Tyr	CAT His	TAT Tyr	GGT Gly	CAT His	CAG Gln	CAG Gln	ATT	CAG Gln	ACA Thr	GCT Ala	CAA Gln	TCG Ser	GTA Val	TTG Leu	GGT Gly	672 224
50	673 225	ACT Thr	ACG Thr	TTG	CAA Gln	GAT Asp	ATC	ACT Thr	TTC	CCA Pro	CAG Gln	ACG Thr	CTG Leu	GAT Asp	CTC	CCG Pro	CAA Gln	720 240
	721 241	AAC Asn	TTC Phe	TGG Trp	GCA Ala	ACA Thr	GCA Ala	AAA Lys	GGA Gly	AAA Lys	CTG Leu	AGC Ser	GAT Asp	ACG Thr	ACT Thi	GCC Ala	AGT Ser	768 256
55	769 257	GCT Ala	TTG	ACC	CGA Arg	CTG Leu	CAA Gln	ATC	ATC Met	GCG Ala	AGT Ser	CAC Glr	TTI Phe	TCG Ser	CCF Pro	A GAG	CAG Gln	816 272
60	817 273	CAG Gln	AAA Lys	ATC	ATT	ACC Thr	GAG	ACT Thi	GTC Val	GGT Gly	CAG	GAT Asp	r TTC	TAT TYI	CAC Gli	CTI n Leu	AAC Asn	864 233
65	865 289	TAT Tyr	GGT	' GAC	AGT Ser	TCC Ser	CTI Leu	C ACT	CTC	CAA L Asr	r AGT Ser	TTO	AGC Sei	GAC Asp	ATO Me	G ACC	ATA : Ile	912 304

FC 1/U390/18003

_	913 305		G AC	T GA' r As _l	T CG	A AC	A AGT	r TTC	AC'	T GT. r Va	A CCC	C CAG	G GT. n Va.	a Ga 1 Gl	A CTO	S AT 1 Me	3 TTS C Leu	960 323
5	961 321	TG:	T TC	A ACT	r GTC	GGA LGly	GGT Gly	TCT Ser	C ACC	G GT	r GTT L Val	C AAC Lys	TC1	C GAT	r aan Päsr	CGT:	G AGT L Ser	1003 336
10	100	9 TC ? 3e	T GO	OT GA	AC AC	G AC	A GC r Al	G AC a Th	G CC	A TI	TT GC	G TA	T GO	SC GC	C CC	C T	TT ATT ne lie	1056 352
15	1057 353	CA Hi	T GC s Al	c GG a Gl	T AA Y Ly	G CC s Pr	G GA	G GC u Al	G AT a Il	T AC e Th	C CT	G AG u Se	T CG r Ar	C AG	T GG	T GO y Al	G GAG	110 4 368
20	1105 369	GC Al	G CA a Hi	T TT s Ph	T GC e Al	T CTO	G ACC	G GT r Va	T AA l As	C AA n As	T CT n Le	G AC u Th	A GA r As	T GA P As	C AA p Ly	G TT s Le	G GAC u Asp	1152 384
25	1153 3 8 5	CG Ar	T AT g Il	T AA e As	C CG	C ACI	A GTO	CGC L Arg	C CT	G CA u Gl	A AA n Ly:	A TG	G CT	G AA u As	T CTO	S CC	T TAT o Tyr	1200 400
	1201 401	GA(G GA	r ar	T GAG ≘ Asi	CTC Leu	TTA Leu	GTC Val	AC' L Th	T TC' r Se:	r GC:	T ATO	G GA' : As _i	r gcc	G GA	A AC.	A GGA r Gly	1248 416
30	1249 417		T ACC	GCC Ala	CTC Leu	TCG Ser	ATG Met	AAC Asn	GAC Asi	AA:	r Acc	CTC Leu	G CG	r Ard J Met	TTC Let	GG,	A GTG / Val	1296 432
35	1297 433	TTC Phe	Lys	CAT His	TAT Tyr	CAG Gln	GCG Ala	AAG Lys	TAT	Gly	CTT Val	`AGC Ser	GC1	AA.	CAP Glr	TT!	C GCT	1344 448
40	1345 449	GGC	TGG	CTG Leu	CGC Arg	GTA Val	GTG Val	GCC Ala	CCC	TTI Phe	GCC Ala	ATT	ACA Thr	CCC	GCA Ala	ACC Thr	CCG Pro	1392 464
45	1393 465	TTT Phe	TTA Leu	GAC Asp	CAA Gln	GTG Val	TTT Phe	AAC Asn	TCC Ser	GTC Val	GGC Gly	ACC Thr	TTT	GAT Asp	ACA Thr	CCC	TTT Phe	1440 480
	1441 481	GTG Val	ATA Ile	GAT Asp	AAT Asn	CAG Gln	GAT Asp	TTT Phe	GTC Val	TAT Tyr	ACA Thr	TTG Leu	ACC Thr	ACC Thr	GGG Gly	GGC Gly	GAT Asp	1483 496
50	1489 497	GGG Gly	GCG Ala	CGT Arg	GTT Val	AAG Lys	CAT His	ATC Ile	AGC Ser	ACG Thr	GCA Ala	CTG Leu	GGC Gly	CTC Leu	AAT Asn	CAT His	CGT Arg	1536 512
55	1537 513	CAG Gln	TTC Phe	CTG Leu	TTA Leu	TTG Leu	GCG Ala	GAT Asp	AAT Asn	ATT Ile	GCC Ala	CGT Arg	CAA Gin	CAG Gln	GGG Gly	AAT Asn	GTC Val	1584 528
60	1585 529	ACG Thr	CAA Gln	AGC Ser	ACA Thr	CTC Leu	AAC Asn	TGT Cys	AAT Asn	CTG Leu	TTT Phe	GTG Val	GTG Val	TCA Ser	GCT Ala	TTC Phe	TAC Tyr	1632 544
65	1633 545	CGT Arg	CTG Leu	GCT Ala	AAT Asn	TTG Leu	GCG Ala	CGC Arg	ACA Thr	TTC Leu	GGG Gly	ATA Ile	AAT Asn	CCA Pro	GAG Glu	TCT Ser	TTC Phe	1530 550
• • •	1681	TCT	GCC	TTG	CTT	GAT	CGA	TTA	GAT	GCA	GGT	ACA	GGC	ATC	GTC	TGG	CAG	1723

	551	cys	s Ald	. Leu	ı Val	Asp) Arg	. Leu	ı Asp) Ala	Gly	Thr	Gly	, Ile	· Val	Trp	o Gin	 .
5	1729 577																	1778 593
10	1777 1824 593 608																	ATT GCT
15	1825 609																CTG Leu	
20	1873 625																TTG Leu	
26	1921 641																GGT Gly	
25	1969 657																GGC Gly	
30	2017 673																CTT Lau	
35	2065 689																ATA Ile	2112 704
40	2113 705			GTG Val														2160 720
4.0	2161 721																	2208 736
45	2209 737			GTG Val														2256 752
50	2257 753	TCA Ser	CTG Leu	CCT Pro	GCG Ala	TTA Leu	TTG Leu	TTG Leu	CGC Arg	TGG Trp	AGT Ser	GGA Gly	C AA Gln	ACA Thr	ACC Thr	TAC Tyr	CAG Gln	2304 763
55	2305 769	TGG Trp	TTG Leu	AGT Ser	GCG Ala	ACT Thr	TGG Trp	GCA Ala	TTG Leu	AAG Lys	GAT Asp	GCC Ala	GTT Val	AAG Lys	ACT Thr	GCC Ala	GCC Ala	2352 784
60	2353 785	GAT Asp	ATT Ile	CCC Pro	GCT Ala	GAC Asp	TAT Tyr	CTG Leu	CGT Arg	CAA Gln	TTA Leu	CGT Arg	GAA Glu	GTG Val	GTA Val	CGC Arg	CGC Arg	2400 300
	2401 301	TCC Ser		TTC Leu														2448 316
65																		

PCT/US96/18003

	2449 317	TTG Leu	CTG Leu	GAC Asp	TAT Tyr	CCA Pro	GCC Ala	TAT Tyr	TTT Phe	GGC Gly	GCT Ala	TCC Ser	GCA Ala	GAA Glu	ACA Thr	. GT(Va)	3 ACC l Thr	2436 532
5				56.			Mec	Leu	lyr	inr	Leu	Ser	Cys	Tyr	Ser	Asp	Leu	348
10	2545 849	TTG Leu	CTC Leu	CAA Gln	ATG Met	GGT Gly	GAA Glu	GCT Ala	GCT Gly	GGT Gly	ACC Thr	GAA Glu	GAT Asp	GAT Asp	GTA Val	CTC	GCC Ala	2592 364
15	2593 865	TAC Tyr	TTA Leu	CGC Arg	ACA Thr	GCT Ala	AAT Asn	GCT Ala	ACC Thr	ACA Thr	CCG Pro	TTC Leu	AGC Ser	CAA Gln	TCT Ser	GAT Asp	GCT Ala	2640 880
20	2641 881	GCA Ala	CAG . Gln '	ACG Thr	TTG Leu	GCA Ala	ACG Thr	CTA Leu	TTG Leu	GGT Gly	TGG Trp	GAG Glu	GTT Val	AAC Asn	GAG Glu	TTG Leu	CAA Gln	2688 396
	2689 897	GCC (GCT : Ala 1	rgg :	rcg (Ser '	GTA '	TTG Leu	GGC Gly	GGG Gly	ATT Ile	GCC Ala	AAA Lys	ACC Thr	ACA Thr	CCG Pro	CAA Gln	CTG Leu	2736 912
25	2737 913	GAT (GCG C Ala L	TT C	CTG (Leu /	GT '	MG Leu (CAA (Gln (CAG (Gln)	GCA Ala	CAG . Gln .	AAC Asn	CAA Gln	ACT Thr	GGT Gly	CTT Leu	GGC Gly	2784 928
30	2785 929	GTT ; Val 1	ACA C	AG C	AA C	AG C	AA (GGC 1	rat (Tyr 1	CTC (Leu)	CTG /	AGT (CGT (GAC . Asp :	AGT :	GAT Asp	TAT Tyr	2832 944
35	2833 945	ACC C	TT T T ue.	GG C	AA A ln s	GC A	CC C	GT C	AG (SCG (CTG C	STG (CCT (GGC (GTA '	rcc Ser	CAT His	2880 960
40	2881 961	GTC A Val L	AG G Ys G	GC A	GT A er A	AC T sn E	GA nd	289 966										
	(2)	INFOR (i)	MATI SEQI	JENC (A)	E CI	iara Len	CTE GTH	RIST : 9	ICS	amin	o ac	cids						
45	r	(ii)	MOI	(B) (C) ECU		TOP	OLO	amin GY: orot	line	cid ea						•		
50	Featur	(xi) es		UEN		ESC	-		: SE Des	crip	D NO	n	(Tc	cA p	pept	ide)	
55		et Asn en Leu							ı Ile	s Se	r Arg	Th:						16
		ıl Val																32 48
60		u Gly																91
	65 Hi	s Gln	Val	Leu	His	His	Phe	Arg	Arg	Asn	Ser	Leu	ı Ser	Glu	ı Ala	. Va	1	30
65	81 CI	n Phe	Gly	Leu	Arg	Ser	Pro	Phe	Ser	Val	. Ser	Gly	' Pro) Asp	Tyr	Al	a	95

	9.	7 Asn C	Sin P	he Le	u Asp	Ala	. Ası	n Thi	r Gl;	/ Trp	Ly:	s As	p Ly	s Al	a Pr	o Ser	111
	113	Gly s	er P	ro Gl	u Ala	Asn	. Asp	Ala	a Pro	⊽al	Ala	а Ту	r Le	u Th	r Hi	s Ile	128
5	129	yr c	in L	eu Al	a Leu	Glu	Glr	ı Glu	ı Lys	Asn	Gly	/ Al.	a Thi	r Th	r Il	e Met	144
	145	Asn T	hr L	eu Al	a Glu	Arg	Arg	Pro	Asp	Leu	Gly	/ A1.	a Le	ı Le	ı 11.	ə Asn	160
14	161	Asp L	ys A.	la Il	e Asn	Glu	Val	Ile	Pro	Gln	Leu	Gli	n Lei	ı Va.	l Ası	n Glu	176
10	177	' Ile L	eu Se	er Lys	s Ala	Ile	Gln	Lys	Lys	Leu	Ser	Lei	ı Thi	: Ası) Le	ı Glu	192
	193	Ala V	al As	in Ala	a Arg	Leu	ser	Thr	Thr	Arg	Туг	Pro	Asr	. Asr	ı Lei	ı Pro	208
15	209	Tyr H	is Ty	r Gly	/ His	Gln	Gln	Ile	Gln	Thr	Ala	Glr	Ser	· Val	Lau	Gly	224
	225	Thr T	hr Le	u Glr	Asp	Ilə	Thr	Leu	Pro	Gln	Thr	Leu	Asp	Leu	Pro	Gln	240
20	241	Asn P	he Tr	p Ala	Thr	Ala	Lys	Gly	Lys	Leu	Ser	Asp	Thr	Thr	Ala	Ser	256
-0	257	Ala L	eu Th	r Arg	Leu	Gln	Ile	Met	Ala	Ser	Gln	Phe	Ser	Pro	Glu	Gln	272
	273	Gin L	ys Il	e Ile	Thr	Glu	Thr	Val	Gly	Gln	Asp	Phe	Tyr	Gln	Leu	Asn	288
25	289	Tyr G	ly As	p Ser	Ser	Leu	Thr	Val	Asn	Ser	Phe	Ser	Asp	Met	Thr	Ile	304
	305	Met Th	nr As	p Arg	Thr	Ser	Leu	Thr	Val	Pro	Gln	Val	Glu	Leu	Met	Leu	320
30	321	Cys Se	r Th	r Val	Gly	Gly	Ser	Thr	Val	Val	Lys	Ser	Asp	Asn	Val	Ser	336
	337	Ser Gl	y As	p Thr	Thr	Ala	Thr	Pro	Phe	Ala	Tyr	Gly	Ala	Arg	Phe	Ile	352
	353	His Al	a Gly	y Lys	Pro	Glu	Ala	Ile	Thr	Leu	Ser	Arg	Ser	Gly	Ala	Glu	368
35	369	Ala Hi	s Pho	a Ala	Leu	Thr	Val	Asn	Asn	Leu	Thr	Asp	Asp	Lys	Leu	Asp	384
	385	Arg Il	e Ası	n Arg	Thr	Val	Arg	Leu	Gln	Lys	Trp	Leu	Asn	Leu	Pro	Tyr	400
40	401	Glu As	p Ile	asp	Leu	Leu	Val	Thr	Ser	Ala	Met	Asp	Ala	Glu	Thr	Gly	416
	417	Asn Th	r Ala	Leu	Ser !	Met .	Asn	Asp	Asn	Thr	Leu	Arg	Met	Leu	Gly	Val	432
	433	Phe Ly	s His	Tyr	Gln .	Ala	Lys	Tyr	Gly	Val	Ser	Ala	Lys	Gln	Phe	Ala	448
45	449	Gly Tr	p Leu	Arg	Val '	Val i	Ala	Pro	Phe	Ala	Ile	Thr	Pro	Ala	Thr	Pro	464
	465	Phe Le	u Asp	Gln	Val 1	Phe i	Asn	Ser	Val	Gly '	Thr	Phe	Asp	Thr	Pro	Phe	480
5 0	481	Val Il	e Asp	Asn	Gln A	Asp 1	Phe	Val	Tyr	Thr	Leu	Thr	Thr	Gly	Gly	Asp	496
	497	Gly Al	a Arg	Val	Lys i	His :	lle	Ser	Thr .	Ala 1	Leu	Gly	Leu	Asn	His	Arg	512
	513	Gln Phe	e Leu	Leu	Leu !	Ala A	Asp .	Asn	Ile .	Ala A	Arg	Gln	Gln	Gly	Asn	Val	528
55	529	Thr Gli															544
•	545	Arg Leu															560
60	561	Cys Ala															576
	577	Gln Leu															592
	593	Leu Ala															608
65	609	Gin Trp	Gln	Gln	Gln H	lis A	ı qa.	.eu C	Slu F	he s	er J	Ala :	Leu	Leu	Leu	Leu	524

WU 97/17452 PCT/US96/18003

	625	Le	u Se	r Ası	p Asr	n Pro	Ile	Ser	Thr	Ser	Gln	Gl;	Thi	: Asp	Asp	Gir	ı Le	eu	÷40
	641					Gln													ó 5 ó
5	÷57					Ser													67.2
	6 73					Trp												-	688
10	689					Gly													764
117	705					Asn													720
	721					Leu													736
15	737					Val													752
	753					Leu													758
20	769					Thr													734
20	785					Asp													300
	301					Gln													816
25	317					Pro													832
	833					Trp													848
30	849					Gly													364
30	865					Ala													830
	881					Ala													896
35	3 97					Val :													912
	913					Arg													928
40	929					Gln (944
40	945					Ser '													960
	961				Ser .		969												
45																			
	(2)	INF	ORM	TIO	N FO	R SE	Q II	D NO	:58	c.									
				1	(A)	L	ENGT	H:	469	8 ba	se	pai	rs						
50				((C)	S	YPE:	DEDI	NESS	: do	oubl	e							
					(D)		OPOL												
		(ii	.) !	MOLE	CULE	TYE	E:	DNA	A (g	enon	nic)								
55		(xi	.) 5	SEOU	ENCE	DES	CRI	PTIC	N - 10	SEO	י מד	VIO - 5	. Ω ()		, ,				
		1 A				A AT													
60		1 M	et L	eu Sa	er Th	r Me	c Gl	u Ly	's Gl	n Le	eu As	in G	lu Se	er G	ag co In Ar	or G	sp	GCG Ala	19 13
	4	9 7~	TG C	ום או	ਾ ເດ	C TA	ው ንሙ		.T. TVT	v n ~ ~	×								
	ī	7 L	eu Va	al Th	nr Gl	y Ty	r Me	t As	n Ph	e Va	l Al	a Pi	CO Th	G Ti	rG AA eu Ly	A GO	sc (STC Val	3.5 3.6
65																			

WU 7//1/432 PC 1/USY0/18003

	97	AGT	GGT	CAG	CCG	GTG	ACG	GTG	GAA	GAT	TTA	TAC	GAA	ТАТ	TTG	CTG	ATT	19
	33	Ser	Gly	Gln	Pro	Val	Thr	Val	Glu	Asp	Leu	Tyr	Glu	Туг	Leu	Leu	Ile	111
5	145	GAC	CCG	GAA	GTG	GCT	GAT	GAG	GTT	GAG	ACG	AGT	CGG	GTA	GCA	CAA	GCG	64
	49	Asp	Pro	Glu	Val	Ala	Asp	Glu	Val	Glu	Thr	Ser	Arg	Val	Ala	Gln	Àla	192
10	193	ATT	GCC	AGC	ATA	CAG	CAA	TAT	ATG	ACT	CGT	CTG	GTC	AAC	GGC	TCT	GAA	90
	65	Ile	Ala	Ser	Ile	Gln	Gln	Ty'r	Mec	Thr	Arg	Leu	Val	Asn	Gly	Ser	Glu	540
15	241	CCG	GGG	CGT	CAG	GCG	ATG	GAG	CCT	TCT	ACA	GCT	AAC	GAA	TGG	CGT	GAT	288
	81	Pro	Gly	Arg	Gln	Ala	Met	Glu	Pro	Ser	Thr	Ala	Asn	Glu	Trp	Arg	Asp	96
	289	AAT	GAT	AAC	CAA	TAT	GCT	ATC	TGG	GCT	GCG	GGG	GCT	GAG	GTT	CGA	AAT	336
	97	Asn	Asp	Asn	Gln	Tyr	Ala	Ile	Trp	Ala	Ala	Gly	Ala	Glu	Val	Arg	Asn	112
20	337	TAC	GCT	GAA	AAC	TAT	ATT	TCA	CCC	ATC	ACC	CGG	CAG	GAA	AAA	AGC	CAT	384
	113	Tyr	Ala	Glu	Asn	Tyr	Ile	Ser	Pro	Ile	Thr	Arg	Gln	Glu	Lys	Ser	His	123
25	385	TAT	TTC	TCG	GAG	CTG	GAG	ACG	ACT	TTA	AAT	CAG	AAT	CGA	CTC	GAT	CCG	432
	129	Tyr	Phe	Ser	Glu	Leu	Glu	Thr	Thr	Leu	Asn	Gln	Asn	Arg	Leu	Asp	Pro	144
30	433	GAT	CGT	GTG	CAG	GAT	GCT	GTT	TTG	GCG	TAT	CTC	AAT	GAG	TTT	GAG	GCA	480
	145	Asp	Arg	Val	Gln	Asp	Ala	Val	Leu	Ala	Tyr	Leu	Asn	Glu	Phe	Glu	Ala	160
35	481	GTG	AGT	AAT	CTA	TAT	GTG	CTC	AGT	GGT	TAT	ATT	AAT	CAG	GAT	AAA	TTT	528
	161	Val	Ser	Asn	Leu	Tyr	Val	Leu	Ser	Gly	Tyr	Ile	Asn	Gln	Asp	Lys	Phe	176
	529	GAC	CAA	GCT	ATC	TAC	TAC	TTT	ATT	GGT	CGC	ACT	ACC	ACT	AAA	CCG	TAT	576
	177	Asp	Gln	Ala	Ile	Tyr	Tyr	Phe	Ile	Gly	Arg	Thr	Thr	Thr	Lys	Pro	Tyr	192
40	577	CGC	TAC	TAC	TGG	CGT	CAG	ATG	GAT	TTG	AGT	AAG	AAC	CGT	CAA	GAT	CCG	62 4
	193	Arg	Tyr	Tyr	Trp	Arg	Gln	Met	Asp	Leu	Ser	Lys	Asn	Arg	Gln	Asp	Pro	208
45	625	GCA	GGG	AAT	CCG	GTG	ACG	CCA	AAT	TGC	TGG	AAT	GAT	TGG	CAG	GAA	ATC	672
	209	Ala	Gly	Asn	Pro	Val	Thr	Pro	Asn	Cys	Trp	Asn	Asp	Trp	Gln	Glu	Ile	224
50	673	ACT	TTG	CCG	CTG	TCT	GGT	GAT	ACG	GTG	CTG	GAG	CAT	ACA	GTT	CGC	CCG	720
	225	Thr	Leu	Pro	Leu	Ser	Gly	Asp	Thr	Val	Leu	Glu	H1s	Thr	Val	Arg	Pro	240
55	721	GTA	TTT	TAT	AAT	GAT	CGA	CTA	TAT	GTG	GCT	TGG	GTT	GAG	CGT	GAC	CCG	768
	241	Val	Phe	Tyr	Asn	Asp	Arg	Leu	Tyr	Val	Ala	Trp	Val	Glu	Arg	Asp	Pro	256
	769	GCA	GTA	CAG	AAG	GAT	GCT	GAC	GGT	AAA	AAC	ATC	GGT	AAA	ACC	CAT	GCC	316
	257	Ala	Val	Gln	Lys	Asp	Ala	Asp	Gly	Lys	Asn	Ile	Gly	Lys	Thr	His	Ala	272
60	817	TAC	AAC	ATA	AAG	TTT	GGT	TAT	AAA	CGT	TAT	GAT	GAT	ACT	TGG	ACA	GCG	364
	273	Tyr	Asn	Ile	Lys	Phe	Gly	Tyr	Lys	Arg	Tyr	Asp	Asp	Thr	Trp	Thr	Ala	233
65	865	CCG	AAT	ACG	ACC	ACG	TTA	ATG	ACA	CAA	CAA	GCA	GGG	GAA	AGT	TCA	GAA	912
	289	Pro	Asn	Thr	Thr	Thr	Leu	Met	Thr	Gln	Gln	Ala	Gly	Glu	Ser	Ser	Glu	304

WO 97/17432 PCT/US96/18003

5	30 91	3 A 5 T	CA C	AG C	GA T	CC A	er L	TG .eu	CTC Leu	AT Il	T GA e As	T GA	ia T	CT : er :	AGC Ser	ACC Th:	C AC	A T	rg : ∍u :	ege Arg	960 320
10	96 32		• •	41 A	AT C	BU L	eu A	14	inr	Thi	r As	p Ph	e S	er 1	le	Asţ) Pr	o Ti	ir c	3lu	336 1909
		9 G. 7 G.1			. .	** A:	HIP.	10	lyr	GIŞ	Ar	j Le	u Me	et L	eu	Gly	Va.	l Ph	e V	'al	1056 352
15	1057 353		.	•••	PT GA		y na	sp (91 Y	ATA	ASI	n Ar	g Ly	's A	sn	Lys	Pro	Va	1 V	al	1104 368
20	1105 369	- 2		- 2 - 3	T CT	u iy	r cy	/S /	4sp	ser	Ala	. Ph	₽ Às	n A	rg	His	Va]	. Le	u A	rg	1152 384
25	1153 385				T AA	s As	II PI	ia r	.eu	P.V.G	Ser	Thi	Ту	r Ai	rg .	Asp	Glu	Th:	r A	sp	1200
30	1201 401 1249					. Le	u GI	n P	ne	Ala	VAI	Туг	As	p Ly	'S	Lys	Tyr	Va.	L I	le	1243 416
35	1249 417 1297 433		-,				. GI	у А	14	Thr	GIU	Asp	Pr	o G1	u į	Asn	Thr	Gly	Tì	(p	1296 432
	433 1345 449			,	, vu.	. vař	וְכּהּי	ם ב	eu ;	Lys	GIN	GIĀ	Th	r Th	rc	Sly	Ala	Tyr	' Va	11	1344
40	1393 465	GGG	GAT	r TT	` ATT	' AAC	CG	r ci	eu :	inr	Len	HIS	TAT	Gl	n 1	hr	Thr	Thr	As	n _	1392 464
45	1441	GAT	TCI	AAC	TCT	GGT	TAT	r GC	is 7 St 1	mc	Phe	GIA	TYI	: As	n A	SP	Leu	Val	T ₂	r	1440
50	481 1489 497	TAT	CTG	GAT	TAC	CAT	GAT	. G1	ly F	Phe	Thr	Trp	Ser	Gly	y A	sn ·	Glu	Gly	Ph	e	1488 496 1536
55	497 1537 513	ATC	AAC	TAC	TAT	CCG	TCT	. ee	y A A T	'AT (Tyr	сст	Thr	Pho	r c	is .	Asn	Ala	11	e	512
60	1585 529	ACG	TGG	GCG	TTA	GAG	CAA	AG.	ут	yr (Gly	Gly	Gly	Ser	. V.	al i	Pro	Asn	G1;	<i>i</i> -	523
	1633	CTG	CTT	GAT	ACT	CTC	CAT	AC'	n c.	10 / ጉጥ 2	ASD ACT	ene Glu	P 7 C	Trp) A.	la i	lle	àla ••••	Pro	-	544 1630
65	- • -	Leu	red	ASP	inr	reu	HIS	Th	r V	al 7	Chr '	Val	Lys	Gly	S€	er 7	Уr	Ile	Ald	1	560

														•				
	1 53 5 6	l IG l Tr	G GA p Gl	A GG u Gl	G GA y Gl	A AC u Th	A CO	T AC	ic ga	т та У ту	T AA r As	T CT n Le	T T	AT AT	T CC e Pr	A GA O As	T GGT p Gly	172a 576
5	1729 571	AC Th	C GT r Va	G TT l Le	G CT	A GA u As	T TC p Tr	G TI	T GA le As	T AA p Ly	A AT s Il	A AA Ə As	T TI n Ph	T GC	T AT a Il	T GG e Gl	T CTT y Leu	1776 592
10	1777 593	AA' Ası	T AAd n Ly:	G CT s Le	r GAG	G TC	T GT r Va	A TT l Ph	T AC	G TC	G CC.	A GA o As	T TG p Tr	G CC p Pr	A AC.	A CT. r Lei	A ACC u Thr	1824 608
15	1825 609	AC?	r ATC	C AAJ B Lys	AAAA ASI	r TTC	C AG	T AA r Ly	A ATG	C GCO	C GA'	T AA	C CG	C AA. g Ly:	A TTO	TA:	r CAG	1372 624
20	1873 625	GA# Glu	A ATO	TAA :	C GCT	GAC Glu	ACC Th:	G GCC	G GA: a Ası	r GG/	CGC Arg	AA(CTN	G TT	r AAJ e Lys	CGT	TAC Tyr	1920 640
20	1921 641	AGT Ser	ACT Thr	CAA Gln	ACT Thr	TTC Phe	GG/	A CT	r Acc	AGC Ser	GGT Gly	GCC Ala	AC'	r TAT	r TCT Ser	ACA Thr	ACT Thr	1968 656
25	1969 657	TAT Tyr	ACT Thr	TTC Leu	TCT	GAG	GCC Ala	G GA1 Asp	r TTC > Phe	TCC Ser	ACT Thr	GAT Asp	CCC Pro	GAC Asp	: AAA Lys	AAC Asn	TAC	2016 672
30	2017 673	CTA Leu	CAG Gln	GTT Val	TGT Cys	TTG	AAT Asn	GTC Val	GTG Val	TGG Trp	GAT Asp	CAT His	TAT Tyr	GAC Asp	CGC Arg	CCG	TCA Ser	2064 688
35	2065 689	GGG Gly	AAA Lys	AAA Lys	GGG Gly	GCT Ala	TAT Tyr	TCT Ser	TGG Trp	GTC Val	AGT Ser	AAG Lys	TCC	TTT Phe	AAC Asn	GTC Val	TAT Tyr	2112 704
40	2113 705	GTT Val	GCG Ala	TTG Leu	CAA Gln	GAT Asp	AGC Ser	AAA Lys	GCT Ala	CCG Pro	GAT Asp	GCC Ala	ATT	CCT Pro	CGA Arg	TTA Leu	GTT Val	2160 720
40	2161 721		CGT Arg	TAC Tyr	GAT Asp	AGT Ser	AAA Lys	CGT Arg	GGT Gly	CTG Leu	GTG Val	CAA Gln	TAT Tyr	CTG Leu	GAC Asp	TTC Phe	TGG Trp	2208 736
45	2209 737	ACC Thr	TCA Ser	TCA Ser	TTA Leu	CCC Pro	GCG Ala	AAA Lys	ACC Thr	CGT Arg	CTT Leu	AAC Asn	ACC Thr	ACC Thr	TTT Phe	GTG Val	CGT Arg	2256 752
50	2257 753	ACT Thr	TTG Leu	ATT Ile	GAG Glu	AAG Lys	GCT Ala	AAT Asn	CTG Leu	GGG Gly	CTG Leu	GAT Asp	AGT Ser	TTG Leu	CTG Leu	GAT Asp	TAC Tyr	2304 768
55	2305 769	ACC Thr	TTG Leu	CAG Gln	GCA Ala	GAT Asp	CCT Pro	TCT Ser	CTG Leu	GAA Glu	GCA Ala	GAT Asp	TTA Leu	GTG Val	ACT Thr	GAC Asp	GGC Gly	2352 784
60	2353 785	AAA Lys	AGC Ser	GAA Glu	CCA Pro	ATG Met	GAC Asp	TTT Phe	AAT Asn	GGT Gly	TCA Ser	AAC Asn	GGT Gly	CTC L e u	TAT Tyr	TTC Phe	TGG Trp	2400 300
· *	2401 301		TTG ' Leu	TTC ' Phe	Phe	CAC (CTG Leu	CCG Pro	TTT Phe	TTG Leu	GTT -	GCT Ala	ACA Thr	CGC Arg	TTT Phe	GCC Ala	AAC Asn	2448 316
65	2449 817	GAA (Glu (CAG (Gln (CAA S	MTT '	TCG (Ser	CCG Pro	GCA Ala	CAA Gln	AAG . Lys	AGT :	MG Leu	CAT H1s	TAC Tyr	ATC Ile	TTT Phe	GAC Asp	2496 332

WO 97/17432 PCT/US96/18003

5	2497 333																GTA Val	348 2544
	2545 349	CGT Arg	CCG	TTG Leu	GTT Val	GAA Glu	GGA Gly	AAC Asn	AGC Ser	GAT Asp	TTG Leu	TCA Ser	CGT Arg	CAT	TTG Leu	GAC Asp	GAT Asp	2592 864
10	2593 865																CAG Gln	890 5640
15	381 2641	AAA Lys	GCG Ala	GTG Val	TTT Phe	ATT Ile	GCC Ala	TAT Tyr	GTC Val	AGT Ser	AAC Asn	CTG Leu	ATT Ile	GCT Ala	CAG Gln	GGA Gly	GAT Asp	2688 396
20	2689 897	ATG Met	TGG Trp	TAT Tyr	CGC Arg	CAA Gln	TTG Leu	ACT Thr	CGT Arg	GAC Asp	GGT Gly	CTG Leu	ACT Thr	CAG Gln	GCC Ala	CGT Arg	GTC Val	2736 912
25	2737 913	TAT Tyr	TAC Tyr	AAT Asn	CTG Leu	GCC Ala	GCT Ala	GAA Glu	TTC Leu	CTA Lau	GGG Gly	CCT Pro	CGT Arg	CCG Pro	GAT Asp	GTA Val	TC3 Ser	2784 928
	2785 929																GGG Gly	2332 944
30	2833 945		AAA Lys															2880 960
35	2881 961		GCT Ala															2923 976
40	2929 977		GAT Asp															2976 992
45	2977 993		TGG Trp															3024 1008
	3025 1009		GTT Val															3072 1024
50	3073 1025																ACG Thr	3120 1040
55	3121 1041		GGC Gly															3153 1056
60	3169 1057		ATG Met															3216 1072
65	3217 1073	GGT Gly	CAG Gln	AAC Asn	CTG Leu	CTT Leu	AGT Ser	TTG Leu	TTG Leu	GAA Glu	CGT Arg	AGC Ser	GAA Glu	CGA Arg	GCC Ala	TGT Cys	CAA Gin	3264 1038

WU 97/11/432 PU1/US96/18003

	3265 1089																I ATC A lie	
5	3313 1105																G GCG I Ala	
10	3361 1121	CTC Leu	CTA Leu	GCT Ala	AGT Ser	CAG	GCT Ala	ACC Thr	GCA Ala	CAP Glr	CAC Glr	cgt Arg	CAT His	' GAC	CAT His	TAT	TAC Tyr	3403 1156
15	3409 1137	ACT Thr	CTG Leu	TAT Tyr	CAG Gln	AAC Asn	AAC Asn	ATC Ile	TCC	AGT Ser	GCG Ala	GAA Glu	CAA Gln	CTG Leu	GTG Val	ATC Met	GAC Asp	3456 1152
	3 457 1153	ACC Thr	CAA Gln	ACG Thr	TCA Ser	GCA Ala	CAA Gln	TCC Ser	CTG Leu	ATT	TCT Ser	TCT Ser	TCC Ser	ACT Thr	Gly	GTA Val	CAA Gln	1149 3201
20	3505 1169	ACT Thr	GCC Ala	AGT Ser	GGG Gly	GCA Ala	CTG Leu	AAA Lys	GTG Val	ATC	CCG	AAT Asn	ATC Ile	TTT Phe	GGT Gly	TTG	GCT Ala	3552 1134
25	3553 1185	GAT Asp	GGC Gly	GGC Gly	TCG Ser	CGC Arg	TAT Tyr	GAA Glu	GGA Gly	GTA Val	ACG Thr	GAA Glu	GCG Ala	ATT	GCC Ala	ATC Ile	GGG Gly	3600 1200
30	3601	TTA	ATG	GCT	GCC	GGA	CAA	GCC	ACC	AGC	GTG	GTG	GCC	GAG	CGT	CTG	GCA	36 4 8
	1201	Leu	Met	Ala	Ala	Gly	Gln	Ala	Thr	Ser	Val	Val	Ala	Glu	Arg	Leu	Ala	1216
35	3649	ACC	ACG	GAG	AAT	TAC	CGC	CGC	CGC	CGT	GAA	GAG	TGG	CAA	ATC	CAA	TAC	3696
	1217	Thr	Thr	Glu	Asn	Tyr	Arg	Arg	Arg	Arg	Glu	Glu	Trp	Gln	Ile	Gln	Tyr	1232
40	3697	CAG	CAG	GCA	CAG	TCT	GAG	GTC	GAC	GCA	TTA	CAG	AAA	CAG	TTG	GAT	GCG	3744
	1233	Gln	Gln	Ala	Gln	Ser	Glu	Val	Asp	Ala	Leu	Gln	Lys	Gln	Leu	Asp	Ala	1248
40	3745	CTG	GCA	GTG	CGC	GAG	AAA	GCA	GCT	CAA	ACT	TCC	CTG	CAA	CAG	GCG	AAG	3792
	1249	Leu	Ala	Val	Arg	Glu	Lys	Ala	Ala	Gln	Thr	Ser	Leu	Gln	Gln	Ala	Lys	1264
45	3793	GCA	CAG	CAG	GTA	CAA	ATT	CGG	ACC	ATG	CTG	ACT	TAC	TTA	ACT	ACT	CGT	3840
	1265	Ala	Gln	Gln	Val	Gln	Ile	Arg	Thr	Met	Leu	Thr	Tyr	Leu	Thr	Thr	Arg	1280
50	3841	TTC	ACC	CAG	GCG	ACT	CTG	TAC	CAG	TGG	C T G	AGT	GGT	CAA	TTA	TCC	GCG	3888
	1281	Phe	Thr	Gln	Ala	Thr	Leu	Tyr	Gln	Trp	Leu	Ser	Gly	Gln	Leu	Ser	Ala	1256
55	3389	TTG	TAT	TAT	CAA	GCG	TAT	GAT	GCC	GTG	GTT	GCT	CTC	TGC	CTC	TCC	GCC	3936
	1297	Leu	Tyr	Tyr	Gln	Ala	Tyr	Asp	Ala	Val	Val	Ala	Leu	Cys	L e u	Ser	Ala	1312
40	3937 1313	CAA	GCT Ala	TGC Cys	TGG Trp	CAG Gln	TAT Tyr	GAA Glu	TTG Leu	GGT Gly	GAT Asp	TAC Tyr	GC T Ala	ACC Thr	ACT Thr	TTT Phe	ATC Ile	3934 1323
6 0	3985	CAG	ACC	GGT .	ACC	TGG	AAC	GAC	CAT	TAC	CGT	GGT	TTG	CAA	GTG	GGG	GAG	4032
	1329	Gln	Thr	Gly	Thr	Trp	Asn	Asp	His	Tyr	Arg	Gly	Leu	Gln	Val	Gly	Glu	1344
65	4033	ACA	CTG	CAA (CTC .	AAT	TTG	CAT	CAG	ATG	GAA	GCG	GCC	TAT	TTA	GTT	CGT	1360
	1345	Thr	Leu	Gln :	Leu .	Asn	Leu	His	Gln	Met	Glu	Ala	Ala	Tyr	Leu	Val	Arg	1360

5	4081 1361													CTA Leu	4128 1376
	4129 1377													GAC Asp	4176 1392
10	4177 1393													TAT Ty'r	4224 1408
15	4225 1409													GGG Gly	4272 1424
20	4273 1425													ATA Ile	1320 1410
25	4321 1441													ACA Thr	4368 1456
20	4369 1457													AGC Ser	4416 1472
30	4417 1473													GAG Glu	4464 1488
35	4465 1489													GCT Ala	4512 1504
40	4513 1505													ATT Ile	4560 1520
45	4561 1521													GCG Ala	4608 1536
	4609 1537			GAT Asp										GGC Gly	4656 1552
50	4657 1553													698 566	
55		NFORI i)		È CH	IARA LEN	CTER GTH:	IST:	ICS:	amir	no a	cids	5			

- (C) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59 (TccB peptide)

65 Features From To Description WU 97/17432 PCT/US96/18003

i 11 SEQ ID NO:7

5	1	Met	Leu	Ser	Thr	Met	Glu	Lys	Gln	Leu	Asn	Glu	Ser	Glm	Arg	Эsр	Ala	1 9
J	17	Leu	Val	Thr	Gly	Tyr	Met	Asn	Phe	Val	Ala	Pro	Thr	Leu	Lys	Gly	Val	32
	3 3	ser	Gly	Gln	Pro	Val	Thr	Val	Glu	Asp	Leu	Tyr	Glu	Tyr	Leu	Leu	Ile	43
10	19	Asp	Pro	Glu	Val	Ala	Asp	Glu	Val	Glu	Thr	Ser	λrg	Val	Ala	Gln	Ala	64
	65	Ile	Ala	Ser	Ile	Gln	Gln	Tyr	Met	Thr	Arg	Leu	Val	Asn	Gly	Ser	Glu	80
15	81	Pro	Gly	Arg	Gln	Ala	Met	Glu	Pro	Ser	Thr	Ala	Asn	Glu	Trp	Arg	Asp	96
15	97	Asn	Asp	Asn	Gln	Tyr	Ala	Ile	Trp	Ala	Ala	Gly	Ala	Glu	Val	Àrg	Asn	112
	113	Tyr	Ala	Glu	Asn	Tyr	Ile	Ser	Pro	Ile	Thr	Arg	Gln	Glu	Lys	Ser	Hls	123
20	129	Tyr	Phe	Ser	Glu	Leu	Glu	Thr	Thr	Ləu	Asn	Gln	Asn	Arg	Leu	Asp	Pro	144
	145	Asp	Arg	Val	Gln	Asp	Ala	Val	Leu	Ala	Tyr	Leu	Asn	Glu	Phe	Glu	Ala	160
25	161	Val	Ser	Asn	Leu	Tyr	Val	Leu	Ser	Gly	Tyr	Ile	Asn	Gln	Asp	Lys	Phe	176
	177	Asp	Gln	Ala	Ile	Tyr	Tyr	Phe	Ile	Gly	Arg	Thr	Thr	Thr	Lys	Pro	T _i 'r	192
	193	Arg	Tyr	Tyr	Trp	Arg	Gln	Met	Asp	Leu	Ser	Lys	Asn	Arg	Gln	Asp	Pro	208
30	209	Ala	Gly	Asn	Pro	Val	Thr	Pro	Asn	Cys	Trp	Asn	Asp	Trp	Gln	Glu	Ile	224
	225	Thr	Leu	Pro	Leu	Ser	Gly	Asp	Thr	Val	Leu	Glu	His	Thr	Val	Arg	Pro	240
35	241	Val	Phe	Tyr	Asn	Asp	Arg	Leu	Tyr	Val	Ala	Trp	Val	Glu	Arg	Asp	Pro	256
	257	Ala	Val	Gln	Lys	Asp	Ala	Asp	Gly	Lys	Asn	Ile	Gly	Lys	Thr	His	Ala	272
	273	Tyr	Asn	Ile	Lys	Phe	Gly	Tyr	Lys	Arg	Tyr	Asp	Asp	Thr	Trp	Thr	Ala	288
40	289	Pro	Asn	Thr	Thr	Thr	Leu	Met	Thr	Gln	Gln	Ala	Gly	Glu	Ser	Ser	Glu	304
	305	Thr	Gln	Arg	Ser	Ser	Leu	Leu	Ile	Asp	Glu	Ser	Ser	Thr	Thr	Leu	Arg	. 20
45	321	Gln	Val	Asn	Leu	Leu	Ala	Thr	Thr	Asp	Phe	Ser	Ile	Asp	Pro	Thr	Glu	336
	337	Glu	Thr	Asp	Ser	Asn	Pro	Tyr	Gly	Arg	Leu	Met	Leu	Gly	Val	Phe	Val	352
	353	Arg	Gln	Phe	Glu	Gly	Asp	Gly	Ala	Asn	Arg	Lys	Asn	Lys	Pro	Val	Val	368
50	369	Tyr	Gly	Tyr	Leu	Tyr	Cys	Asp	Ser	Ala	Phe	Asn	Arg	His	Val	Leu	Arg	384
	385	Pro	Leu	Ser	Lys	Asn	Phe	Leu	Phe	Ser	Thr	Tyr	Arg	Asp	Glu	Thr	Asp	400
55	401	Gly	Gln	Asn	Ser	Leu	Gln	Phe	Ala	Val	Tyr	Asp	Lys	Lys	Tyr	Val	Ile	416
	417	Thr	Lys	Val	Val	Thr	Gly	äla	Thr	Glu	Asp	Pro	Glu	Asn	Thr	Gly	Trp	432
	433	Val	Ser	Lys	Val	Asp	Asp	Leu	Lys	Gln	Gly	Thr	Thr	Gly	Ala	Tyr	Val	448
60	149	Tyr	Ile	Asp	Gln	Asp	Gly	Leu	Thr	Leu	His	Ile	Gln	Thr	Thr	Thr	Asn	191
	465	Gly	Asp	Phe	Ile	Asn	Arg	His	Thr	Phe	Gly	Tyr	Asn	Asp	Leu	Val	Tyr	480
65	481	Asp	Ser	Lys	Ser	Gly	Tyr	Gly	Phe	Thr	Trp	Ser	Gly	Asn	Glu	Gly	Phe	136
-	197	Tyr	Leu	Asp	Tyr	His	Asp	Gly	Asn	Tyr	Tyr	Thr	Phe	His	Asn	Ala	Ile	512
									_									

	513	Ile	Asn	Tyr	Tir	Pro	Ser	Gly	Tir	Gly	Gly	Gly	Ser	Val	Pro	Asn	31;	523
5	529	Thr	Trp	Ala	Leu	Slu	Gln	Arg	Ile	Asn	Glu	Gly	Trp	Ala	Ile	Ala	Pro	244
,	545	Leu	Leu	Asp	Thr	Leu	His	Thr	Val	Thr	Val	Lys	Gly	Ser	T; r	Ile	Ala	560
	561	Trp	Glu	Gly	Glu	Thr	Pro	Thr	Gly	Tyr	Asn	Leu	Tyr	Ile	Pro	Asp	Gly	57 ó
10	5~7	Thr	7al	Leu	Leu	λsp	Trp	Phe	Asp	Lys	Ile	Asn	Phe	Ala	Ile	Gly	Leu	592
	593	Asn	Lys	Leu	Glu	Ser	Val	Phe	Thr	Ser	Pro	Asp	Trp	Pro	Thr	Leu	Thr	608
15	609	Thr	Ile	Lys	Asn	Phe	Ser	Lys	Ile	Ala	Asp	Asn	Àrg	Lys	Phe	Tyr	Gln	954
13	625	Glu	Ile	Asn	Ala	Glu	Thr	Ala	Asp	Gly	Arg	Asn	Leu	Phe	Lys	Arg	Tr	940
	641	Ser	Thr	Gln	Thr	Phe	Gly	Lau	Thr	Ser	Gly	Ala	Thr	Tyr	Ser	Thr	Thr	จ์5จ์
20	657	Tyr	Thr	Leu	Ser	Glu	Ala	Asp	Phe	Ser	Thr	Asp	Pro	Asp	Lys	Asn	Tyr	672
	673	Leu	Gln	Val	Cys	Leu	Asn	Val	Val	Trp	Asp	His	Tyr	Asp	Arg	Pro	Ser	688
25	589	Gly	Lys	Lys	Gly	Ala	Tyr	Ser	Trp	Val	Ser	Lys	Trp	Phe	λsn	Val	Tyr	704
23	705	Val	Ala	Leu	Gln	Asp	Ser	Lys	Ala	Pro	Asp	Ala	Ile	Pro	Arg	Leu	Val	720
	721	Ser	Arg	Tyr	Asp	Ser	Lys	Arg	Gly	Leu	Val	Gln	Tyr	Leu	Asp	Phe	Trp	736
30	737	Thr	Ser	Ser	Leu	Pro	Ala	Lys	Thr	Arg	Leu	Asn	Thr	Thr	Phe	Val	Arg	752
	753	Thr	Leu	Ile	Glu	Lys	Ala	Asn	Leu	Gly	Leu	Asp	Ser	Leu	Leu	Asp	Tyr	768
35	769	Thr	Leu	Gln	Ala	Asp	Pro	Ser	Leu	Glu	Ala	Asp	Leu	Val	Thr	Asp	Gly	764
,,	785	Lys	Ser	Glu	Pro	Met	Asp	Phe	Asn	Gly	Ser	Asn	Gly	Leu	Tyr	Phe	Trp	800
	801	Glu	Leu	Phe	Phe	His	Leu	Pro	Phe	Leu	Val	Ala	Thr	Arg	Phe	Ala	Asn	316
40	817	Glu	Gln	Gln	Phe	Ser	Pro	Ala	Gln	Lys	Ser	Leu	His	Tyr	Ile	Phe	Asp	832
	333	Pro	Ala	Met	Lys	Asn	Lys	Pro	His	Asn	Ala	Pro	Ala	Tyr	Trp	Asn	Val	348
45	849	Arg	Pro	Leu	Val	Glu	Gly	Asn	Ser	Asp	Leu	Ser	Arg	His	Leu	Asp	λsp	364
43	965	Ser	Ile	Asp	Pro	Asp	Thr	Gln	Ala	Tyr	Ala	His	Pro	Val	Ile	Tyr	Gln	880
	881	Lys	Ala	Val	Phe	Ile	Ala	Tyr	Val	Ser	Asn	Leu	Ile	Ala	Gln	Gly	Asp	396
50	897	Met	Trp	Tyr	Arg	Gln	Leu	Thr	Arg	Asp	Gly	Leu	Thr	Gln	Ala	Arg	Val	312
	913	Tyr	Tyr	Asn	Leu	Ala	Ala	Glu	Leu	Leu	Gly	Pro	Arg	Pro	Asp	Val	Ser	928
6.6	929	Leu	Ser	Ser	Île	Trp	Thr	Pro	Gln	Thr	Leu	Asp	Thr	Leu	Ala	Ala	Gly	911
55	945	Gln	Lys	Ala	Val	Leu	Arg	Asp	Phe	Glu	His	Gln	Leu	Ala	Asn	Ser	Аsр	950
	961	Thr	Ala	Leu	Pro	Ala	Leu	Pro	Gly	Arg	Asn	Val	Ser	Tyr	Lau	Lys	Leu	376
60	977	Ala	Asp	Asn	Gly	Tyr	Phe	Asn	Glu	Pro	Leu	Asn	Val	Leu	Met	Leu	Ser	392
	993	His	Trp	Asp	Thr	Leu	Asp	Ala	Arg	Leu	Tyr	Asn	Leu	Arg	Hıs	Asn	Leu	1003
4.5	1009	Thr	Val	λsp	Gly	Lys	Pro	Leu	Ser	Leu	Pro	Leu	Tyr	Ala	Ala	Pro	Val	1024
65	125	Asp	Pro	Val	Ala	Leu	Leu	Ala	Gln	Arg	Ala	Gln	Ser	Gly	Thr	Leu	Thr	1010

1 C1/0370/100

	1041	Asn	Gly	Val	Ser	Gly	äla	Met	Leu	Thr	Val	Pro	Pro	T;r	Arg	Phe	Ser	1056
_	1057	Ala	Met	Leu	Pro	Arg	Ala	T;'r	ser	Ala	Val	Gly	Thr	L a u	Thr	Ser	Phe	1070
5	1073	Gly	Gln	Asn	Leu	Leu	Ser	Leu	Leu	Glu	λrg	ser	Glu	Arg	Ala	C'/s	Gln	1099
	1089	Glu	Glu	Leu	Ala	Gln	Gln	Gln	Leu	Lau	Asp	Met	Ser	Ser	Tyr	Ala	Ile	1104
10	1105	Thr	Leu	Gln	Gln	Gln	Ala	Leu	Asp	Gly	Leu	Ala	Ala	λsp	Arg	L a u	Ala	1120
	1121	Leu	Leu	Ala	Ser	Gln	λla	Thr	Ala	Gln	Gln	Arg	His	Asp	His	Tyr	Tyr	1136
1.5	1137	Thr	Leu	Tyr	Gln	Asn	Asn	Ile	Ser	Ser	Ala	Glu	Gln	Leu	Val	Met	Asp	1152
15	1153	Thr	Gln	Thr	Ser	Ala	Gln	Ser	Leu	Ile	Ser	Ser	Ser	Thr	Gly	Val	Gln	1168
	1169	Thr	Ala	Ser	Gly	Ala	Leu	Lys	Val	Ile	Pro	Asn	Ile	Phe	Gly	Leu	Ala	1134
20	1185	Asp	Gly	Gly	Ser	Arg	Tyr	Glu	Gly	Val	Thr	Glu	Ala	Ile	Ala	Ile	Gly	1200
	1201	Leu	Met	Ala	Ala	Gly	Gln	Ala	Thr	Ser	Val	Val	Ala	Glu	λrg	Leu	Ala	1216
25	1217	Thr	Thr	Glu	Asn	Tyr	Arg	Arg	Arg	Arg	Glu	Glu	Trp	Gln	Il∈	Gln	Tyr	1232
23	1233	Gln	Gln	Ala	Gln	Ser	Glu	Val	Asp	Ala	Leu	Gln	Lys	Gln	Leu	Asp	Ala	1248
	1249	Leu	Ala	Val	Arg	Glu	Lys	Ala	Ala	Gln	Thr	Ser	Leu	Gln	Gln	Ala	Lys	1264
30	1265	λla	Gln	Gln	Val	Gln	Ile	Arg	Thr	Met	Leu	Thr	Tyr	Leu	Thr	Thr	Arg	1280
	1281	Phe	Thr	Gln	Ala	Thr	Leu	Tyr	Gln	Trp	Leu	Ser	Gly	Gln	Leu	Ser	Ala	1296
35	1297	Leu	Tyr	Tyr	Gln	Ala	Tyr	Asp	Ala	Val	Val	Ala	Leu	Cys	Leu	Ser	Ala	1312
33	1313	Gln	Ala	Cys	Trp	Gln	Tyr	Glu	Leu	Gly	Asp	Tyr	Ala	Thr	Thr	Phe	Ile	1328
	1329	Gln	Thr	Gly	Thr	Trp	Asn	Asp	His	туr	Arg	Gly	Leu	Gln	Val	Gly	Glu	1344
40	1345	Thr	Leu	Gln	Leu	Asn	Leu	His	Gln	Met	Glu	Ala	Ala	Tyr	Leu	Val	Arg	1360
	1361	His	Glu	Arg	Arg	Leu	Asn	Val	Ile	Arg	Thr	Val	Ser	Leu	Lys	Ser	Leu	1376
45	1377	Leu	Gly	Asp	Asp	Gly	Phe	Gly	Lys	Leu	Lys	Thr	Glu	Gly	Lys	Val	Asp	1392
43	1393	Phe	Pro	Leu	Ser	Glu	Lys	Leu	Phe	Asp	Asn	Asp	Tyr	Pro	Gly	His	Tyr	1408
	1409	Leu	Arg	Gln	Ile	Lys	Thr	Val	Ser	Val	Thr	Leu	Pro	Thr	Leu	Val	Gly	1424
50	1425	Pro	Tyr	Gln	Asn	Val	Lys	Ala	Thr	Leu	Thr	Gln	Thr	Ser	ser	Ser	Ile	1440
	1441	Leu [.]	Leu	Ala	Ala	Asp	Ile	Asn	Gly	Val	Lys	Arg	Leu	Asn	Asp	Pro	Thr	1456
55	1457	Gly	Lys	Glu	Gly	Asp	Ala	Thr	His	Ila	Val	Thr	Asn	Leu	Arg	Ala	Ser	1472
33	1473	Gln	Gln	Val	Ala	Leu	Ser	Ser	Gly	Ile	Asn	Asp	Ala	Gly	Ser	Phe	Glu	1488
	1489	Leu	Arg	Leu	Glu	Asp	Glu	Arg	Tyr	Leu	Ser	Phe	Glu	Gly	Thr	Gly	Ala	1504
60	1505	Val	Ser	Lys	Trp	Thr	Leu	Asn	Phe	Pro	Arg	Ser	Val	Asp	Glu	His	Ilē	1520
	1521	Asp	Asp	Lys	Thr	Leu	Lys	Ala	Asp	Glu	Met	Gln	Ala	Ala	Leu	Leu	Ala	1536
65	1537	Asn	Met	Asp	Asp	Val	Leu	Val	Gln	Val	His	Tyr	Thr	Ala	Cys	λsp	Gly	1552
1,5	1553	Gly	Ala	Ser	Phe	Ala	Asn	Gln	Val	Lys	Lys	Thr	Leu	Ser	19	65		

WU 97/17432 PCT/US96/18003

	(2)	INFO	RMA'	TION	FOR	SE	Q II	011	: 60									
5		(i)	SE					ERIS										
J					A) B)	LE TV	NGT	H: nuc	3132	2 ba	se p	bair	S					
					2)			DEDN				2						
				(1	D)			OGY:										
10		(55)	s.c.	01.50		mu n	_											
147		(11)	M	OFFC	ULE	TYP	E:	DNA	(ge	nom:	ic)							
		(xi)	S	EQUE	NCE	DES	CRIE	TIO	۷: s	EQ 1	ID N	0:60) (E	ccC)				
15	1	3.77																
	ī	Met	: Se:	r Pro	Sei	r Glu	. Th	r Thi	Le	r ray 1 Twi	r AC	T CAL	A ACC	CC	A AC	A GTO	AGC Ser	18
										,					J 1111	va.	. Ser	10
	49	GTC	: T T	A G21	ר אא יו	r cc(- ~~	יי כייי										
20	17	Val	Lei	AST) Asi	n Arc	Glv	/ Leu	Set	. All	r CG	I GAT	r ATT	r GG1	, Dp.	CAC	CGT Arg	9 á
				·		•					- •••	,	, 116	, (1)	File	: n15	Arg	32
	97	ልጥ	· GT2	እ ጥ ር	· ccc	ccc		P 307									TAT	
2.5	33	Ile	Val	Ile	Gly	Gly	Ası	Thr	ASE	Thr	. CGC	J Val	ACC Thr	CGI	. C.A.C	CAC	TAT	144
25						_	_		-				• • • • •	••••	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	G 11	171	18
	145	GAT	GCC	CGT	י כני		. C4X		ጥልሮ	. ACT							GAT	
	49	Asp	Ala	Arg	Gly	His	Leu	Asn	Tyr	Ser	Ile	ASE	. CCA	Aro	TTC	TAT	GAT Asp	192 64
30									•				• • • • •		Lec	171	rsp	0.4
50	193	GCA	AAG	CAG	GCT	CAT	י אאר	T C 2	CTA	220							CAT	
	65	Ala	Lys	Gln	Ala	Asp	Asn	Ser	Val	Lys	Pro	AAI	Phe	Val	Tro	CAG Gln	CAT His	240 80
										_						U 1		00
35	241	GAT	CTG	GCC	GGT	CAT	GCC	CTG	ccc	ACA	GAG	. ACT	- CT-C	C 3 T			CGT	
	81	Asp	Leu	Ala	Gly	His	Ala	Leu	Arg	Thr	Glu	Ser	Val	Asp	Ala	Glv	Arg	288 95
														·				
	289	ACT	CTT	GĊA	TTG	AAT	GAT	ATT	GAA	GGT	ССТ	י זירני	GTA.	ልጥሮ	AC h	N TVC	AAT	336
40	97	Thr	Val	Ala	Leu	Asn	Asp	Ile	Glu	Gly	Arg	Ser	Val	Met	Thr	Met	Asn	113
	337	GCG	ACC	CCT	GTT	CGT	CAG	ACC	CGT	CGC	TAT	GAA	GGC	AAC	ACC	רדים	CCC	384
45	113	Ala	Thr	Gly	Val	Arg	Gln	Thr	Arg	Arg	Tyr	Glu	Gly	Asn	Thr	Leu	Pro	123
75																		
	385	GGT	CGC	TTG	TTA	TCT	GTG	AGC	GAG	CAA	GTT	TTC	AAC	CAA	GAG	AGT	GCT	432
	129	CJA	Arg	Leu	Leu	Ser	Val	Ser	Glu	Gln	Val	Phe	Asn	Gln	Glu	Ser	Ala	144
50																		
	433	AAA	GTG	ACA	GAG	CGC	TTT	ATC	TGG	GCT	GGG	AAT	ACA	ACC	TCG	GAG	222	430
	145	Lys	Val	Thr	Glu	Arg	Phe	Ile	Trp	Ala	Gly	Asn	Thr	Thr	Ser	Glu	Lys	160
55	481	GAG	TAT	AAC	CTC	TCC	GGT	CTG	TGT	ATA	CGC	CAC	TAC	GAC	ACA	GCG	GGA	528
	161	Glu	Tyr	Asn	Leu	Ser	Gly	Leu	Cys	Ile	Arg	His	Tyr	λsp	Thr	Ala	Gly	176
40	529	GTG	ACC	CGG	TTG	ATG	AGT	CAG	TCA	CTG	GCG	GGC	GCC	ATG	СТА	TCC	CAA	575
60	177	Val	Thr	Arg	Leu	Met	Ser	Gln	Ser	Leu	Ala	Gly	Ala	Met	Leu	Ser	Gln	192
	577	TCT	CAC	CAA	TTG	CTG	GCG	GAA	GGG	CAG	GAG	GCT	AAC	TGG	AGC	GGT	GAC	624
65	193	Ser	His	Gln	Leu	Leu	Ala	Glu	Cly	Gln	Glu	Ala	Asn	Trp	Ser	Gly	Asp	203

TC 1/U370/18003

	625 209																ACA Thr	672 224
5	673 225																GCG Ala	720 240
10	731 241	AAA Lys	GGC	AAT Asn	ATT Ile	CAG Gln	CGT Arg	CTG Leu	GCT Ala	TAT Tyr	GAC Asp	ATT Ile	GCC Ala	GGT Gly	CAG Gln	TTA Leu	aaa Lys	763 256
15	769	GGG	AGT	TGG	TTG	ACG	GTG	AAA	GGC	CAG	AGT	GAA	CAG	GTG	ATT	GTT	AAG	816
	257	Gly	Ser	Trp	Leu	Thr	Val	Lys	Gly	Gln	Ser	Glu	Gln	Val	Ile	Val	Lys	272
20	817	TCC	CTG	AGC	TGG	TCA	GCC	GCA	GGT	CAT	AAA	TTG	CGT	GAA	GAG	CAC	GGT	864
	273	Ser	Leu	Ser	Trp	Ser	Ala	Ala	Gly	His	Lys	Leu	Arg	Glu	Glu	His	Gly	238
	865	AAC	GGC	GTG	GTT	ACG	GAG	TAC	AGT	TAT	GAG	CCG	GAA	ACT	CAA	CGT	CTG	912
	289	Asn	Gly	Val	Val	Thr	Glu	Tyr	Ser	Tyr	Glu	Pro	Glu	Thr	Gln	Arg	Leu	304
25	913	ATA	GGT	ATC	ACC	ACC	CGG	CGT	GCC	GAA	GGG	AGT	CAA	TCA	GGA	GCC	AGA	960
	305	Ile	Gly	Ile	Thr	Thr	Arg	Arg	Ala	Glu	Gly	Ser	Gln	Ser	Gly	Ala	Arg	320
30	961	GTA	TTG	CAG	GAT	CTA	CGC	TAT	AAG	TAT	GAT	CCG	GTG	GGG	AAT	GTT	ATC	1008
	321	Val	Leu	Gln	Asp	Leu	Arg	Tyr	Lys	Tyr	Asp	Pro	Val	Gly	Asn	Val	Ile	336
35	1009	AGT	ATC	CAT	AAT	GAT	GCC	GAA	GCT	ACC	CGC	TTT	TGG	CGT	AAT	CAG	AAA	1056
	337	Ser	Ile	His	Asn	Asp	Ala	Glu	Ala	Thr	Arg	Phe	Trp	Arg	Asn	Gln	Lys	352
40	1057	GTG	GAG	CCG	GAG	AAT	CGC	TAT	GTT	TAT	GAT	TCT	CTG	TAT	CAG	CTT	ATC	1104
	353	Val	Glu	Pro	Glu	Asn	Arg	Tyr	Val	Tyr	Asp	Ser	Leu	Tyr	Gln	Leu	Met	368
15	1105 369					CGT Arg												1152 384
45	1153 385		CCC Pro	TCA Ser	CCC Pro	GTT Val	ATA Ile	CCT Pro	GTT Val	CCT Pro	ACT Thr	GAC Asp	GAC Asp	AGC Ser	ACT Thr	TAT Tyr	ACC Thr	1200 400
50	1201 401		TAC Tyr	CTT Leu	CGT Arg	ACC Thr	TAT Tyr	ACT Thr	ТАТ Туг	GAC Asp	CGT Arg	GCC	GGT Gly	AAT Asn	TTG Leu	GTT Val	CAA Gln	1243 416
55	1249	ATC	CGA	CAC	AGT	TCA	CCC	GCG	ACT	CAA	AAT	AGT	TAC	ACC	ACA	GAT	ATC	1296
	417	Ile	Arg	His	Ser	Ser	Pro	Ala	Thr	Gln	Asn	Ser	Tyr	Thr	Thr	Asp	Ile	432
60	1297 433		GTT Val	TCA Ser	AGC Ser	CGC Arg	AGT Ser	AAC Asn	CGG Arg	GCG Ala	GTA Val	TTG Leu	AGT Ser	ACA Thr	TTA Leu	ACG Thr	ACA Thr	1344
65	1345	GAT	CCA	ACC	CGA	GTG	GAT	GCG	CTA	TTT	GAT	TCC	GGC	GGT	CAT	CAG	aac	1392
	449	Asp	Pro	Thr	Arg	Val	Asp	Ala	Leu	Phe	Asp	Ser	Gly	Gly	His	Gln	Lys	464
113	1393	ATG	TTA	ATA	ccg	GGG	CAA	ААТ	CTG	GAT	TGG	AAT	ATT	ccc	GCT	GAA	TTG	1440

	465	Met	Leu	Ile	Pro	Gly	Gln	Asn	Leu	λsp	Trp	Asn	Ile	λrg	Gly	Slu	Leu	437
5	1441 431																TGG Trp	1438 1438
10	1489 497																CAG Gln	1536 512
	1537 513																GGA Gly	1534 528
15	1585 529																TTG Leu	1632 544
20	1633 545	CAG Gln															TTG Leu	1530 560
25	1681 561																CGC Arg	1723 576
30	1729 577																AGC Ser	1776 592
	1777 593																ACG Thr	1324 608
35	1825 609																ATT Ile	1872 624
40	1873 625																GGC Gly	1920 6 4 0
45	1921 641																ccs Pro	1968 656
50	1969 657				GTG Val												AAC Asn	2016 672
	2017 673																AGA Arg	2064 638
55	2065 689				ACA Thr												GAT Asp	2112 704
60	2113 705				TCC Ser													2160 720
65	2161 721	ATT Ile	GCC Ala	GCC Gly	GGG Gly	λTT Ile	GCG Ala	ATT Ile	GGC Gly	GGT Gly	CTT Leu	GCG Ala	GCT Ala	ACC Thr	ATT Ile	GCC Ala	SCT Ala	2203 736

_	2209 737	ACC Thi	G GC: r Ala	r GGG	GCC Als	G GC' a Ala	r Ard	C CCC	C GTG Va.	C AT	r cro	G GGG	G GT / Val	r GCC L Ala	G GCG A Al.	TC C a Va	A GGC 1 Jly	2256 752
5	2257 753	GC0 Ala	G GGC	ATT	GGC Gly	GCC Ala	TTC Leu	ATC Met	GG!	A TAT	C AAC C Asi	GTC n Val	GGT LGIY	AGC Ser	CTC	CTO Let	G GAA L Glu	2204 763
10	2305 769	AAA Lys	GGC Gly	GGC Gly	GCA Ala	TT:	CTI Leu	GCT Ala	CGA Arg	CTC Leu	GTA Val	Glr Glr	GGG Gly	AAA Lys	TCC Ser	ACC Thi	TTA Leu	2352 784
15	2353 785	GTA Val	CAG Gln	TCG Ser	GCG Ala	GCT Ala	GCC	GCG Ala	GCT Ala	GCC Ala	GGA Gly	GCG Ala	AGT Ser	TCA Ser	GCC Ala	GCC Ala	GCT Ala	2406 300
20	2401 801	TAT Tyr	GGC Gly	GCA Ala	CGG Arg	GCA Ala	CAA Gln	GCT	GTC Val	Gly	GTT Val	GCA Ala	TCA Ser	GCC Ala	GCC Ala	GGG Gly	GCG Ala	2443 316
25	2449 817	GTA Val	ACA Thr	GGG	GCT Ala	GTG Val	GGA Gly	TCA Ser	TGG Trp	ATA Ile	AAT Asn	AAT Asn	GCT Ala	GAT Asp	CGG Arg	GGG Gly	ATT	2496 832
23	2497 833	GGC Gly	GGC Gly	GCT Ala	ATT Ile	GGG Gly	GCC Ala	GGG Gly	AGT Ser	GCG Ala	GTA Val	GGC Gly	ACC Thr	ATT Ile	GAT Asp	ACT Thr	ATG Met	2544 848
30	2545 849	TTA Leu	GGG Gly	ACT Thr	GCC Ala	TCT Ser	ACC Thr	CTT Leu	ACC Thr	CAT His	GAA Glu	GTC Val	GGG Gly	GCA Ala	GCG Ala	GCG Ala	GGT Gly	2592 864
35	2593 865	GGG Gly	GCG Ala	GCG Ala	GGT Gly	GGG Gly	ATG Met	ATC Ile	ACC Thr	GGT Gly	ACG Thr	CAA Gln	GGG Gly	AGT Ser	ACT Thr	CGG Arg	GCA Ala	2640 880
40	2641 881	GGT Gly	ATC Ile	CAT His	GCC Ala	GGT Gly	ATT Ilə	GCC	ACC Thr	TAT Tyr	TAT Tyr	GGC Gly	TCC Ser	TGG Trp	ATT Ile	GGT Gly	TTT Phe	2588 396
45	2689 897		TTA Leu	GAT Asp	GTC Val	GCT Ala	AGT Ser	AAC Asn	CCC Pro	GCC Ala	GGA Gly	CAT His	TTA Leu	GCG Ala	AAT Asn	TAC Tyr	GCA Ala	2735 912
.5	2737 913	GTG Val	GCT Gly	TAT Tyr	GCC Ala	GCT Ala	GGT Gly	TTG Leu	GGT Gly	GCT Ala	GAA Glu	ATG Met	GCT Ala	GTC Val	AAC Asn	AGA Arg	ATA Ile	2784 928
50	2785 929		GCT Gly	GCT Gly	GGA Gly	TTT Phe	TTG Leu	AGT Ser	AGG Arg	CTC Leu	TTA Leu	GGC Gly	CGG Arg	GTT Val	GTC Val	AGC Ser	CCA Pro	2832 944
55	2833 945	TAT (GCC (Ala .	GCC Ala	GGT Gly	TTA Leu	GCC . Ala .	AGA Arg	CAA Gln	TTA Leu	GTA Val	CAT His	TTC Phe	AGT Ser	GTC Val	GCC Ala	AGA Arg	2830 960
60	2881 961	CCT (GTC (Phe	GAG (CCG . Pro	ATA '	TTT . Phe :	AGT (Ser '	GTT Val	CTC	GGC Gly	GGG Gly	CTT (Leu '	GTC Val	GGT Gly	CGT Gly	2928 976
65	2929 977	ATT (GGA A	ACT (GC (CTG (Leu i	CAC /	AGA (Arg \	STG /	ATG (GGA . Gly .	AGA (Arg (GAG . Glu :	AGT 1	rcc . Trp	ATT Ile	TCC Ser	2976 992
.,,	2977	AGA (GCG 1	TTA 2	AGT (SCT (scc o	GT /		GGT 1	ATA (GAT (CAT (STC (SCT (GGC	ATG	3024

WU 97/17452 PCT/US96/18003

							\ 6 .	•	· • 1		••		- 1		lu Mas	
	11	3 Arg	Ala L	eu se	r mla	Ala G	IY Se	er J	ty I	LO AS	ър н.	15 /	al A	13 9	ly Met	1213
5	302 100														TC GCT le Ala	3371 1014
10	307 102														GA GTT rg Val	3120 1540
	312 104	-	TCT T Ser L			-										
15	(2)	INFOR	SEQUE		HARAC	TERI: TH:	STIC:	3 ап	ino	aci	ds.					
20				(B) (C)		: am LOGY										
		(ii)	MOLE	CULE	TYPE:	pro	otei	n								
25		(xi)	_		DESCR			_					-			
		Met Se						•								16 32
30	17 33	Val Le							_			_			_	43
	49	Asp A		•	•		•	•				_			-	ć4
35	65	Ala L					_									80
33	81	Asp Le			-			-					_			ЭĠ
	97	Thr Va	al Ala	Leu i	Asn As	, Ile	Glu	Gly	Arg	Ser	Val	Met	Thr	Met	Asn	112
40	113	Ala Tì	nr Gly	Val A	Arg Gl	n Thr	Arg	Arg	Tyr	Glu	Gly	Asn	Thr	Leu	Pro	128
	129	Gly A	g Leu	Leu :	Ser Va	l Ser	Glu	Gln	Val	Phe	Asn	Gln	Glu	Ser	Ala	144
45	145	Lys V	al Thr	Glu i	Arg Ph	e Ile	Trp	Ala	Gly	Asn	Thr	Thr	Ser	Glu	Lys	150
	161	Glu T	r Asn	Leu :	Ser Gl	y Leu	Cys	Ile	Arg	His	Tyr	Asp	Thr	Ala	Gly	176
50	177	Val Ti	nr Arg	Leu I	Met Se	r Gln	Ser	Leu	Ala	Gly	Ala	Met	Leu	Ser	Gln	192
50	193	Ser H	is Gln	Leu !	Leu Al	a Glu	Gly	Gln	Glu	Ala	Asn	Trp	Ser	Gly	Asp	203
	209	Asp G	lu Thr	Val '	rrp Gl	n Gly	Met	Leu	Ala	Ser	Glu	Val	Tyr	Thr	Thr	224
55	225	Gln S	er Thr	Thr	Asn Al	a Ile	Gly	Ala	Leu	Leu	Thr	Gln	Thr	Аsр	Ala	340
	241	Lys G	ly Asn	Ile	Gln Ar	g Leu	Ala	Tyr	Asp	Ile	Ala	Gly	Gln	Leu	Lys	256
60	257	_	_		Thr Va	-	_									272
	273			-	Ser Al											2 33
	289		•		Thr Gl	_										364
65	305	Ile G	ly Ile	Thr	Thr Ar	g Arg	Ala	Glu	Gly	Ser	Gln	Ser	Gly	Ala	Arg	320

	321 - Val Leu Glin Asp Leu Arg Tyr Lys Tyr Asp Pro Val Gly Ash Val Ile	: . ว ์
5	337 Ser Ile His Asn Asp Ala Glu Ala Thr Arg Phe Trp Arg Asn Gln Lys	352
	353 Val Glu Pro Glu Asn Arg Tyr Val Tyr Asp Ser Leu Tyr Gln Leu Met	368
	369 Ser Ala Thr Gly Arg Glu Met Ala Asn Ile Gly Gln Gln Ser Asn Gln	334
10	335 Lau Pro Ser Pro Val Ile Pro Val Pro Thr Asp Asp Ser Thr Tyr Thr	100
	401 Asn Tyr Leu Arg Thr Tyr Thr Tyr Asp Arg Gly Gly Asn Leu Val Gln	416
15	417 Ile Arg His Ser Ser Pro Ala Thr Gln Asn Ser Tyr Thr Thr Asp Ile	432
	433 Thr Val Ser Ser Arg Ser Asn Arg Ala Val Leu Ser Thr Leu Thr Thr	443
	449 Asp Pro Thr Arg Val Asp Ala Leu Phe Asp Ser Gly Gly His Gln Lys	164
20	465 Met Leu Ile Pro Gly Gln Asn Leu Asp Trp Asn Ile Arg Gly Glu Leu	130
	481 Gln Arg Val Thr Pro Val Ser Arg Glu Asn Ser Ser Asp Ser Glu Trp	495
25	497 Tyr Arg Tyr Ser Ser Asp Cly Met Arg Leu Leu Lys Val Ser Glu Gln	512
	513 Gln Thr Gly Asn Ser Thr Gln Val Gln Arg Val Thr Tyr Leu Pro Gly	528
	529 Leu Glu Leu Arg Thr Thr Gly Val Ala Asp Lys Thr Thr Glu Asp Leu	544
30	545 Gln Val Ile Thr Val Gly Glu Ala Gly Arg Ala Gln Val Arg Val Leu	560
	561 His Trp Glu Ser Gly Lys Pro Thr Asp Ile Asp Asn Asn Gln Val Arg	576
35	577 Tyr Ser Tyr Asp Asn Leu Leu Gly Ser Ser Gln Leu Glu Leu Asp Ser	592
•	593 Glu Gly Gln Ile Leu Ser Gln Glu Glu Tyr Tyr Pro Tyr Gly Gly Thr	608
	609 Ala Ile Trp Ala Ala Arg Asn Gln Thr Glu Ala Ser Tyr Lys Phe Ile	624
40	625 Arg Tyr Ser Gly Lys Glu Arg Asp Ala Thr Gly Leu Tyr Tyr Gly	640
	641 Tyr Arg Tyr Tyr Gln Pro Trp Val Gly Arg Trp Leu Ser Ala Asp Pro	656
45	657 Ala Gly Thr Val Asp Gly Leu Asn Leu Tyr Arg Met Val Arg Asn Asn	672
,,,	673 Pro Ile Thr Leu Thr Asp His Asp Gly Leu Ala Pro Ser Pro Asn Arg	688
	689 Asn Arg Asn Thr Phe Trp Phe Ala Ser Phe Leu Phe Arg Lys Pro Asp	704
50	705 Glu Gly Met Ser Ala Ser Met Arg Arg Gly Gln Lys Ile Gly Arg Ala	720
	721 Ile Ala Gly Gly Ile Ala Ile Gly Gly Leu Ala Ala Thr Ile Ala Ala	736
55	737 Thr Ala Gly Ala Ala Ile Pro Val Ile Leu Gly Val Ala Ala Val Gly	752
33	753 Ala Gly Ile Gly Ala Leu Met Gly Tyr Asn Val Gly Ser Leu Leu Glu	763
	769 Lys Gly Gly Ala Leu Leu Ala arg Lou Val Gla Gla Gla G	734
60	785 Val Gln Ser Ala Ala Gly Ala Ala Gly Ala Ser Ser Ala Ala Ala	300
	801 Tyr Gly Ala Arg Ala Gln Gly Val Gly Val Ala Son Ala Ala	
65	817 Val Thr Gly Ala Val Gly Ser Trn Tle Asn Asn Ala Asa	315
כנו	833 Gly Gly Ala Ile Gly Ala Gly Ser Ala Val Gly The The Ala	332
	254	5 4 3

WU 97/17432 PCT/US96/18003

	943	Leu	Gly	Thr	Ala	3er	Thr	Leu	Thr	His	Slu	Val	Sly	Ala	Ala	Ala	317	: 5 4
5	\$65	Gly	Ala	Ala	Gly	Gly	Met	Ile	Thr	Gly	Thr	Gln	Gly	Ser	Thr	Arg	Ala	35
,	331	Gly	Ile	His	Ala	Gly	Ile	Gly	Thr	Tyr	Trr	Gly	ser	Trp	Ila	Gly	Phe	356
	397	Gly	Leu	Asp	Val	Ala	Ser	Asn	Pro	Ala	Gly	His	Leu	Ala	Asn	Tyr	Ala	913
10	313	7al	Gly	Tyr	Ala	Ala	Gly	Leu	Gly	Ala	Glu	Met	Ala	Val	Asn	Arg	Ile	923
	929	Met	Gly	Gly	Gly	Phe	Leu	Ser	Arg	Leu	Leu	Gly	Arg	Val	Val	Ser	Pro	944
15	945	Tyr	Ala	Ala	Gly	Leu	λla	Arg	Gln	Leu	Val	His	Phe	Ser	۷al	Ala	Arg	960
••	961	Pro	Val	Phe	Glu	Pro	Ile	Phe	ser	Val	Leu	Gly	Gly	Leu	Val	Gly	Gly	976
	977	Ile	Gly	Thr	Gly	Leu	His	Arg	Val	Met	Gly	Arg	Glu	Ser	Trp	Ile	Ser	992
20	993	Arg	Ala	Leu	Ser	Ala	Ala	Gly	Ser	Gly	Ile	Asp	His	Val	Ala	Gly	Met	1008
	1009	Ile	Gly	Asn	Gln	Ile	Arg	Gly	Arg	Val	Leu	Thr	Thr	Thr	Gly	Ile	λla	1024
25	1025	Asn	Ala	Ile	Asp	Tyr	Gly	Thr	Ser	Ala	Val	Gly	Ala	Ala	Arg	Arg	Val	1040
	1641	Phe	Ser	Leu	104	1												

- A composition, comprising an effective amount of a Photorhabdus protein toxin that has functional activity against an insect.
 - 2. The composition of Claim 1, wherein the *Photorhabdus* toxin is produced by a purified culture of *Photorhabdus*, a transgenic plant, Baculovirus, or heterologous microbial host.
 - 3. The composition of Claim 2, wherein the Photorhabdus toxin produced by a purified culture of Photorhabdus luminescens.
- 4. The composition of Claim 2, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated ATCC 55397.
- The composition of Claim 2, wherein the toxin is produced by a purified culture of Photorhabdus luminescens strain designated W-14.
- The composition of Claim 1, wherein the toxin is produced by a purified culture of *Photorhabdus* strain designated WX-1, WX-2, WX-3, WX-4, WX-5, WX6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# 43950, ATCC# 43951, or ATCC# 43952.
- 7. The composition of Claim 2, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens*30 strain designated WX-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# 43950, ATCC# 43951, or ATCC# 43952.
- 35 8. The composition of Claim 1, wherein the toxin is respresented by amino acid sequence is SEQ ID NO:12.
- 9. The composition of Claim 6, wherein the composition is a mixture of one or more toxins produced from purified cultures of the Photorhabdus.

10. The composition of Claim 1 or 6, wherein the insect is of the order Lepidoptera, Coleoptera, Hymenoptera, Diptera, Dictyoptera, Acarina or Homoptera.

5

11. The composition of Claim 1 or 6, wherein the insect species is from order *Coleoptera* and is Southern Corn Rootworm, Western Corn Rootworm, Colorado Potato Beetle, Mealworm, Boll Weevil or Turf Grub.

10

12. The composition of Claim 1 or 6, wherein the insect species is from order *Lepidoptera* and is Beet Armyworm, Black Cutworm, Cabbage Looper, Codling Moth, Corn Earworm, European Corn Borer, Tobacco Hornworm, or Tobacco Budworm.

15

- 13. The composition of Claim 1 or 6, wherein the toxin is formulated as a sprayable insecticide.
- 14. The composition of Claim 1 or Claim 6, wherein the 20 toxin is formulated as a bait matrix and delivered in an above ground or below ground bait station.
- delivering to an insect an effective amount of a protein toxin that has functional activity against an insect, wherein the protein is produced by a purified bacterial culture of the genus *Photorhabdus*.
- 16. The method of Claim 15, wherein the bacterium is a 30 purified culture of *Photorhabdus luminescens*.
 - 17. The method of Claim 15, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated ATCC 55397.

35

18. The method of Claim 16, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated W-14.

- 19. The method of Claim 15, wherein the toxin is produced from a purified culture of *Photorhabdus* strains designated WX-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# ATCC# 43950, ATCC# 43951, or ATCC# 43952.
- 20. The method of Claim 15, wherein the toxin is produced from a purified culture of Photorhabdus luminescens strains designated WX-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# ATCC# 43950, ATCC# 43951, or ATCC# 43952.
- 21. The method of Claim 19, wherein a mixture of one or nor toxins is produced from a purified culture of *Photorhabdus* and said toxins are orally delivered to an insect.
 - 22. The method of Claim 15, wherein the toxin is produced by a prokaryotic host transformed with a gene encoding the toxin.
 - 23. The method of Claim 15, wherein the toxin is produced by a eukaryotic host transformed with a gene encoding the toxin.
- 24. The method of Claim 23, wherein the eukaryotic host is baculovirus.
 - 25. The method of Claim 15 or 19, wherein the insect is of the order Lepidoptera, Coleoptera, Hymenoptera, Diptera, Dictyoptera, Acarina or Homoptera.
 - 26. The method of Claim 15 or 19, wherein the insect species is from order *Coleoptera* and is Southern Corn Rootworm, Western Corn Rootworm, Colorado Potato Beetle, Mealworm, Boll Weevil or Turf Grub.
 - 27. The method of Claim 15 or 19, wherein the insect species is from order Lepidoptera and is Beet Armyworm, Black Cutworm, Cabbage Looper, Codling Moth, Corn Earworm, European Corn Borer, Tobacco Hornworm, or Tobacco Budworm.

40

30

35

PCT/US96/18003

23. The method of Claim 15 or 19, wherein the toxin is formulated as a sprayable insecticide.

- 29. The method of Claim 15 or Claim 19, wherein the toxin is formulated as a bait matrix and delivered in an above ground or below ground bait station.
- 30. A method of isolating a gene coding for a protein subunit, comprising the steps of: constructing at least one RNA or DNA oligonucleotide molecule that corresponds to at least a part of a DNA coding region of an amino acid sequence selected from a group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43, wherein the nucleotide molecule is used to isolate genetic material from Photorhabdus or Photorhabdus luminescens.
- 31. A method for expressing a protein produced by a purified bacterial culture of the genus *Photorhabdus* in a prokaryotic or eukaryotic host in an effective amount so that the protein has functional activity against an insect, wherein the method comprises: constructing a chimeric DNA construct having 5' to 3' a promoter, a DNA sequence encoding a protein, a transcription terminator, and then transferring the chimeric DNA construct into the host.

30

32. The method of Claim 31, wherein the protein has functional activity against insects selected from a group consisting of Coleoptera, Lepidoptera, Diptera, Homoptera, Hymenoptera, Dictyoptera, and Acarina.

35

40

33. The method of Claim 31, wherein the protein encoded by the DNA sequence has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9. SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:14, SEQ

ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:13, SEQ ID NO:12. SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.

5

10

- 34. The method of Claim 31, wherein the protein encoded by the DNA sequence includes the amino acid sequence selected from the group consisting of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:23, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59 and SEQ ID NO:61.
- 35. A chimeric DNA construct, adapted for expression in a prokaryotic or eukaryotic host comprising, 5' to 3' a transcriptional promoter active in the host; a DNA sequence encoding a *Photorhabdus* protein that has functional activity against an insect; and a transcriptional terminator.
- 36. A chimeric DNA construct of Claim 35, wherein the protein encoded by the DNA sequence has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.
- 37. The chimeric DNA construct of Claim 35, wherein the protein encoded by the DNA sequence has an amino acid sequence selected from the group consisting of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, and SEQ ID NO:61.

35

38. The chimeric DNA construct of Claim 35, wherein the DNA sequence encoding the *Photorhabdus luminescens* protein is selected from the group comprising SEQ ID NO:11, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID

WU 9//1/452 PCT/US96/18003

NO:46, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO: 58, and SEQ ID NO:60.

- 39. The chimeric DNA construct of Claim 35, wherein the 5 host is baculovirus.
- 40. An isolated and substantially purified preparation comprising, a DNA molecule capable of encoding an effective amount of a protein that is produced by a bacterium of the genus Photorhabdus and that has functional activity against an insect.
 - 41. The preparation of Claim 40, wherein the bacterium is Photorhabdus luminescens.
- 15
 42. A purified preparation comprising, a protein produced by Photorhabdus or Photorhabdus luminescens having an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.
- 25 43. A purified protein preparation comprising, a protein that has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.
- 35
 44. A purified protein preparation comprising, a protein selected from the group of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, and SEQ ID NO:61.

- 46. A purified protein preparation comprising, a Photorhabdus luminescens protein with at least one subunit having an approximate molecular weight between 18 kDa to about 230 kDa; between about 160 kDa to about 230 kDa; 100 kDa to 160 kDa; about 80 kDa to about 100 kDa; or about 50 kDa to about 80 kDa.
- 47. A purified protein preparation comprising, a

 15 Photorhabdus luminescens protein with at least one subunit having an approximate molecular weight of about 280 kDa.
 - 48. A substantially pure microorganism culture comprising, ATCC 55397.

20

- 49. The culture of Claim 48, wherein the culture is a derivative of ATCC 55397 that produces a protein toxin that has functional activity against an insect.
- 25 50. A substantially pure microorganism culture comprising, H9.
 - 51. A substantially pure microorganism culture comprising, Hb.

- 52. A substantially pure microorganism culture comprising, Hm.
- 53. A substantially pure microorganism culture comprising, 35 HP88.
 - 54. A substantially pure microorganism culture comprising, NC-1.
- 40 55. A substantially pure microorganism culture comprising,

WU 97/17452 PCT/US96/18003

W30.

56. A substantially pure microorganism culture comprising, WIR.

5

57. A transgenic plant comprising in its genome, a chimeric artificial gene construction imbuing the plant with an ability to express an effective amount of a *Photorhabdus* protein that has functional activity against an insect.

10

58. The transgenic plant of Claim 57, wherein the plant is transformed using acceleration of genetic material coated onto microparticles directly into cells, *Agrobacteria*, whiskers, or electroporation techniques

15

- 59. The transgenic plant of Claim 57, wherein the selectable marker is selected from the group consisting of kanamycin, neomycin, glyphosate, hygromycin, methotrexate, phosphinothricin (bialophos), chlorosulfuron, bromoxynil, dalapon and the like.
- 50. The transgenic plant of Claim 57, wherein the promoter is selected from the group consisting of octopine synthase, nopaline synthase, mannopine synthase, 35S, 19S, ribulose-1,6-bisphosphate (RUBP) carboxylase small subunit (ssu), betaconglycinin, phaseolin, alcohol dehydrogenase (ADH), heat-shock, ubiquitin, zein, oleosin, napin, or acyl carier protein (ACP).
- 61. The transgenic plant of Claim 57, wherein embryogenic 30 tissue, callus tissue type I or II, hypocotyl, meristem, or plant tissue during dedifferentiation is used in preparing the transgenic plant.
- 62. The transgenic plant of Claim 57, wherein the chimeric gene is a DNA sequence which encodes a *Photorhabdus* protein that has functional activity against an insect and at least one codon of the gene has been modified so that the codon is a plant preferred codon.

- 63. A method of controlling an insect comprising orally delivering to an insect an effective amount of a protein toxin, wherein the protein is produced by a transgenic plant, which said insect feeds.
- 5
 64. A composition of matter, comprising a purified DNA sequence from a purified bacterial culture from the genus

Photorhabdus.

283 इंध दें \$ **\$** \$ इड इ Ser Ser 888 888 948 884 984 94 202 ME 3 អូ ਹੰ Pro Asp Gly ze ដូម្ហីដូ GTT CCC aly trp 88 88 e e e ž gg 883 88 ACA ACG TGT TCC Thr Thr A to E 553 88 E E 88 GTA TOS CAT AGC Val Ser Asn **ថ្ង** AT Val **3**E gg P2Psh AAT GGC ATG TTA CGG TAC Asn Gly Met GAT TGT CCC CTA ACA GCC Ser 198 Asp Cys Pro ថ្ងូវ **3**8 អូ EQ3 विविश A RE ATS 200 Ala Leu 129 ATG TAC 778 Met S S S t a 58**b** Ile **\$**

FIG. 2

3/8

FIG. 3

TcbA	1740 1750 1760 SSAQALKNDS EPMDFSGANA LYFWELFYYT P	1770 1780 MMMAHRLLO EQNFDAANHW
TcaBi	gs nPvDFsGpyg iYlWEiFfhi P	470 480 ElvtvRmqt EQryedAdtw>
TcbA	1790 1800 1810 FRYVWSPSGY IVDGKIAIYH WNVRPLEEDT SV	1820 1830 MAQQLDST DPDAVAQDDP
TcaBi	490 510 520 ykYifrsaGY ImDGskprY- WNVmPLqlDT aw	530 AdttOpatT DPDviAmaDP>
TcbA	1840 1850 1860 MHYKVATFMA TLDLLMARGD AAYRQLERDT LA	1870 1880 EAKMWYTO ALNLLGDEPO
TcaBi	540 550 560 570 MHYKLAIFIH TLDLLIARGD SAYROLERDT LV	580 EAKMyYiQ AqqLLGprPd>
TcbA	1890 1900 1910 VMLSTTWANP TLGNAASKTT QQVRQQVLTQ LR	1920 1930 LNSRVKTP LLGTANSLTA
TcaBi	600 ihttnTWpNP TLsk>	
TcbA	1940 1950 1960 LFLPQENSKL KGYWRTLAQR MFNLRHNLSI DGQ	1970 1980 QPLSLPLY AKPADPKALL
TcaBii	20 30 40 _FLPpyNdvL 1GYWdkLelR lyNLRHNLS1 I	50 60 CGOPLnLPLY AtPvDPKtLq>
TcbA	1990 2000 2010 SAAVSASQGG ADLPKAPLTI HRFPQMLEGA RGI	2020 2030 WNQLIQF GSSLLGYSER
TcaBii	70 80 90 rqqaggdgtG sapaggqgav qRyPllvErA Rsa	100 110 VslLtQF GnsLqttlEh>
TcbA	2040 2050 2060 QDAEAMSQLL QTQASELILT SIRMQDNQLA ELD	2070 2080 SEKTALO VSLAGVOORF
TcaBii	120 130 140 QDnEkMtiLL QTQqeailkh qhdiQqNnLk gLq	150 160 hslTALQ aSrdGdtlRq>

FIG. 4A

TcbA	209 DSYSQLYEE		00 211 LA LRSESAIES	.0 2120 Q GAQISRMAG	2130 A GVDMAPNIFG
TcaBii	170 khYSdLing -v^^^v-	180 g lsAaEiagI	t LRStamT-t	200 n Gvatglliac	0
TcbA	214 LADGGMHYG		0 216 E LSASAKMVD	0 2170 A EKVAQSEIYF	2180 R RRRQEWKIQR
TcaBii	220 LAnggsewg	230 A pligsgqat ^ vvv^v^^-	240 q vgAgiqdqs ^ ^^^vvv-	250 A gisevtagYo ^ -vv-v^-v^^	260 RRqeEWalQR>
TcbA	2190 DNAQAEINQI		0 2210 R REAAEMQKE	2220 Y LKTQQAQAQA	2230 QLTFLRSKFS
TcaBii	270 DiAdnEItQI ^v^^_^	280 L dAQiqSLqe	290 g itmAqkQiti ^ v-v^^-v-v	300 seTeQAnAQA	310 iydlqttrFt> vv-^vv^^^
TcbA	2240	2250	2260		2280
TcaBii	320 gQALYnWmaG	330 RLSalYyOmy	340 DstlpiCLop	kaalvqEgek	360 eSdSlfqvpv> ^^v^^v^v-
TcbA	2290	2300	2310	2320 RALEVERTVS	2330
TcaBii	370 WndlwqGLLa ^^^v^^v	380 GEgLsseLqk	390 ldaiwLargg	400 igLEaiRTVS v^^^-v^^^	410 LdtlfgtG>
TcbA	2340 NDRFNLAEQI		2360 AGTKKNGLSL	2370 ANAILSASVK	2380 LSDLKLGTDY
TcaBii	tLsEnI	420 nkvLn-GEtv vv^^^ ^^-	430 spsggvtLaL ^v^vvv-^^^	440 tgdIfgAtld	450 LSqLgLdnsY>
TcbA	2390 PDSIVGSNKV	2400 RRIKQISVSL		2420 QAMLSYGGST	2430 QLPKGCSALĄ
TcaBii	460 -nlGneKk	470 RRIKrIaVtL	480 PtLlGPYQD1	490 eAtLvmGaea	500 aLshGvndgg> -^^-^v^-v^
TcbA	2440 VSHGTNDSGQ	2450 FQLDFNDGKY	2460 LPFEGIALDD	2470 QGTLNLQFPN	
TcaBii	510 rfvtdfndsr vvvv^-^^	520 F-LpF-eGrd	530 attgtleLn>		
			·	•	

FIG. 4B

7/8

FIG. 6A

FIG. 6B

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/18003

			<u> </u>	
A. CL IPC(6)	ASSIFICATION OF SUBJECT MATTER :Please See Extra Sheet.			
US CL	:536/23.7, 24.1; 435/172.3, 240.4, 320.1; 800/	205; 47/58		
	to International Patent Classification (IPC) or to	ooth national classification an	d IPC	
	CLDS SEARCHED			
	documentation searched (classification system foll		ls)	
0.3	536/23.7, 24.1; 435/172.3, 240.4, 320.1; 800/2	15; 47/58		
Document	ation searched other than minimum documentation t	the extent that such documen	nts are included	d in the fields searched
Electronic	data base consulted during the international search	(name of data base and, who	ere practicable	s search terms used)
APS, C	ABA, CAPLUS, MEDLINE, GENBANK, BIOSI terms: photorhabdus, xenorhabdus, luminesc	•		
C. DO	CUMENTS CONSIDERED TO BE RELEVAN			
Category*	Citation of document, with indication, when	appropriate, of the relevant	passages	Relevant to claim No.
Υ .	CLARKE et al. Virulence Mecha Strain K122 toward Wax M Invertebrate Pathology. 1995, \ entire document.	oth Larvae. Joi	urnal of	1-64
Y	US 5,039,523 A (PAYNE ET AL. 1-10.	columns	1-64	
Y	US 5,254,799 A (DE GREVE E columns 1-14.	T AL.) 19 Octobe	r ·1993,	1-64
	· .			
Purthe	er documents are listed in the continuation of Box	C. See patent fam.	ilv annex	
A' docs	rial categories of cited documents: meant defining the general state of the art which is not considered to of particular relevance	"T" later document publish	after the inters	ntional filing data or priority on but cited to understand the tion
docu cited	or document published on or after the interactional filing date ment which may throw doubts on priority claim(s) or which is to entablish the publication date of another citation or other all reason (in the publication date of another citation or other	when the document is	mot de considere taken alone	claimed invention cannot be d to involve an inventive step
docu	thank referring to an oral disclaners, use, exhibition or other		t an inventive at	claimed invention cannot be ep when the document is occurrent, such combination art
	most published prior to the interactional filing date but later than riority date chained	"A" document member of (4
ate of the a	ctual completion of the international search	Date of mailing of the inter	national scarc	h report
23 DECEM		2 8 JAN 19	197	
ame and ma Commissions Box PCT Washington, I	iling address of the ISA/US r of Potents and Tredemarks D.C. 20231	Authorized officer THOMAS HAAS	lan a	2/
csimile No.	(703) 305-3230	Telephone No. (703) 30	20196	7

INTERNATIONAL SEARCH REPORT

Į	
	A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):
	C12N 5/14, 15/00, 15/05, 15/09, 15/29, 15/31, 15/64, 15/82; A01G 13/00; A01H 1/00
ĺ	

Form PCT/ISA/210 (extra sheet)(July 1992)*