Productivity in Analogical Change

Constantine Lignos

Computer and Information Science
Institute for Research in Cognitive Science
University of Pennsylvania

Manchester and Salford New Researchers Forum in Linguistics, 11/3/2012

Introduction: A case for modeling

Why model language change?

- Change happens
 - Unfortunately, or luckily, no language is tyrannically consistent. All grammars leak. (Sapir, 1921)
- Modeling forces us to build a mechanistic explanation of how
- Advances in child data availability and acquisition modeling allow for explicit models

Analogical change

- Analogical change: learning process causes a generalization to spread from one set of forms to others
- Generalization's domain narrows (Kiparsky, 1993):
 - 1. Applies to phrase
 - 2. Applies to phrase and word
 - 3. Applies to stem, phrase, and word
- Change under discussion: postnasal plosive deletion
 - $b/g \rightarrow \emptyset / N_{]_{\sigma}} (N = homorganic nasal) (Borowsky, 1993)$
 - Ex.: sing: sing *sing, sing-er: sina *singa, finger: finga *fina
 - (Tricky cases in comparatives that retain /g/: younger, longer, stronger)

Still allowed in novel forms

Modeling goals

- Build the simplest model that can help us understand the conditions required for change
- Model change as multi-generational acquisition: what generalization would each successive generation learn?

The productivity criterion

Productivity and generalization (Yang, 2005)

- What makes a worthwhile generalization? Real-time processing criterion
- A rule R can tolerate M exceptions if treating them as exceptions leads to an lower expected processing time than just memorizing everything

Exception lookup

```
IF form == x THEN x'
ELSE IF form == y THEN y'
ELSE IF form == z THEN z'
...
else DEFAULT

N-M participants
```

Mathematically:

- N- # of items that meet structural description of rule
- M- # of items that meet structural description of rule but are exceptions
- Criterion: M < N / In(N) assuming a Zipfian world (see Yang 2005 for proof)

Wide applications

- Productivity reigns (Yang et al., 2012)
 - Paradigmatic gaps, no-default systems, overregularization

The phenomenon

Stratal-cyclic models

- We see overapplication in cases like sin.in and lon.if
- On surface, /g/ not in coda \rightarrow evidence of earlier application (Bermúdez-Otero, 2011):

```
[sɪŋg][ɪŋg]
[sɪŋ][ɪŋ]
sɪŋ.ɪŋ
```

- Under stratal-cyclic models (e.g., Lexical Phonology, Stratal OT):
 - Morphological and phonological operations are interleaved
 - Phonological processes can apply at several levels/strata:
 - Stem, word, phrase

The change (Bermúdez-Otero, 2011)

	Stage				
	0	1	2	3	
elo ng ate	ŋg	ŋg	ŋg	ŋg	
prolo ng -er	ŋg	ŋg	ŋg	ŋ	
prolo ng it	ŋg	ŋg	ŋ	ŋ	
$prolong \parallel$	ŋg	ŋ	ŋ	ŋ	
	Step 1 Step 2				

Modeling results

Simulation

- Assembled all US English CHILDES data, transcribed using CMUDict
 - 2.8 million tokens in total
- Goal of simulation is to evaluate whether productivity can explain progression of change
- Hypotheses:
 - Step 1: level of ambiguity between **phrase/word** levels...
 - Step 2: level of ambiguity between word/stem levels...
 - ...are high enough that reanalysis will occur

Step 1

Innovation at the word level:

iiiiovation at the	vvoid icvci.		
	phrase-level /g/- deletion (conservative)	word-level /g/- deletion (innovative)	
$[_{PL}[_{WL} \sin g - er]]$	g	g	
$[_{PL}[_{WL} \sin g] [_{WL} aloud]]$	\boldsymbol{g}	\varnothing	
$[_{PL}[_{WL} \sin g]]$	Ø	Ø	

- If this change is to proceed, number of exceptions to a word-level deletion rule must not exceed tolerance
- Source of apparent exceptions is resyllabification preventing deletion

First problem: counting types and tokens

- Productivity is traditionally computed over types, unique words in the input
- However, in this case we see variation in tokens; each occurrence of sing can be different
- Some baseline strategies from dealing with this:
 - Conservative: a word type is an exception if it ever doesn't participate
 - Aggressive: a word type is a participant if it ever participates
 - Cautious: only count types that are completely consistent, e.g. always participate or never participate

Syllabification, I thought we were friends

 Unrestricted phrase level resyllabification prevents a productive generalization:

	Participants	Exceptions	Tolerance
Conservative	378	821	169
Aggressive	1002	197	169
Cautious	378	197	90

But do we have evidence of restrictions?

A closer look at Elphinston's formal register

- "Upon solemn occasions [...] if either feebly commence the word following" (formal register):
 - sin[g] aloud, prolon[g] it, stron[g] and mighty, sprin[g] eternal
 - Given as equivalent to word/stem level cases
- "But in different words it must indeed be a very strong, though not an impossible articulation, which expresses a final g before an initial I or r"
 - youn[g] Leander, lon[g] repose
- Analysis:
 - Always require "feeble" (unstressed) following syllable
 - Potential restriction to creating onset, not maximizing

Restricted phrase-level resyllabification

With both stress and no-maximization restrictions:

	Participants	Exceptions	Tolerance
Conservative	378	671	150
Aggressive	1002	147	163
Cautious	378	147	83

 Summary: restrictions on phrase-level resyllabification were essential to change proceeding

Step 2

Innovation at the stem level:

	word-level /g/- deletion (conservative)	stem-level /g/- deletion (innovative)	
$[_{PL}[_{WL}[_{SL}sing]-er]]$	g	Ø	
$[_{PL}[_{WL}[_{SL}sing]][_{WL}aloud]]$	\varnothing	\varnothing	
$[_{\text{Pl}} [_{\text{Wl}} [_{\text{Sl}} \sin g]]]$	Ø	Ø	

- If this change is to proceed, number of exceptions to a stem-level deletion rule must not exceed tolerance
- Source of apparent exceptions is suffixed stems

Step 2

Easy transition, no matter how you count:

	Participants	Exceptions	Tolerance
Conservative	1074	77	163
Aggressive	1083	68	163
Cautious	1074	68	162

- M far below tolerance predicts that word level application without stem level will be unstable and rapidly change
 - Consistent with no account of a stable period

Predictions

- In languages with more aggressive phrase level resyllabification, processes will have difficulty moving from phrase to word level
- In languages with fewer bare stems surfacing, processes will not progress to the stem level at all
 - Dutch final coda devoicing (Booij, 1997), Spanish nominals (Bermúdez-Otero, in press)
- Further test cases needed: phrase level and word level rules that stay where they are

Conclusions

- Gives first mechanistic account of how such a change can proceed
- Predicts that languages with different levels of domain ambiguity and different syllabification restrictions will allow different changes
- For this change to have happened, the learner must have relatively eager to reanalyze
- Future work needed to explore:
 - Learner's strategy regarding conflicting information for given word types: frequency?
 - Validity of predictions for other languages

Acknowledgments

- Many thanks to:
 - Gene Buckley
 - Ricardo Bermúdez-Otero
 - Charles Yang

Slides available at:

http://www.seas.upenn.edu/~lignos

Backup slides

(13)	<u>level</u>	deletion?	<u>elongate</u>	prolonging	prolong it	<u>prolong</u>	
a.	Stage 0: Early Modern English						
	SL WL PL	no no no	[i:.lɒŋ.geɪt] [i:.lɒŋ.geɪt] [i:.lɒŋ.geɪt]	[gngl.ead] [gngl.ead] [gngl.nal.ead] [gngl.nal.ead]	[t][gnal.erd] [t][gnal.erd] [t][gnal.erd]	[gnal.erd] [gnal.erd] [gnal.erd]	
b.	Stage	1: Elphinston's forma	al register				
	SL WL PL	no no yes	[i:.lɒŋ.geɪt] [i:.lɒŋ.geɪt] [i:.lɒŋ.geɪt]	[gns.pal.erd] [gus.bal.erd] [gus.bal.erd]	[t][gnal.erd] [t][gnal.erd] [t][gnal.erd]	[gnal.erd] [gnal.erd] [ğnal.erd]	
c.	Stage 2: Elphinston's casual register						
	SL WL PL	no yes yes (vacuously)	[i:.lɒŋ.geɪt] [i:.lɒŋ.geɪt] [i:.lɒŋ.geɪt]	[gns.lpg] [gnsl.erd] [brs.lpg] [gnsl.erd]	[tt][gnal.erd] [tt][gnal.erd] [tt][gnal.erd]	[gnal.erd] [fanglerd]	
d.	Stage 3: present-day RP						
	SL WL PL	yes yes (vacuously) yes (vacuously)	[i:.lɒŋ.geɪt] [i:.lɒŋ.geɪt] [i:.lɒŋ.geɪt]	[n.al.erd] [alg] [bre-grapherd] [bre-grapherd]	[t][ndl.erd][tt]	[pal.erd] [bal.erd]	
Produ	ctivity	y in Analogical (Change - C. Li	ignos	11/3/12		

Productivity in Analogical Change - C. Lignos

11/3/12

27

Cost of storing exceptions (Yang, 2005)

