

IME OBJETIVO 2

Turma IME-ITA 2023

2023

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A}=6.02\cdot 10^{23}\,{\rm mol}^{-1}$ Constante de Faraday, $F=96\,500\,{\rm C\,mol}^{-1}$
- Carga elementar, $e=1.6\cdot 10^{-19}\,\mathrm{C}$
- Constante de Planck, $h=6.6\cdot 10^{-34}\,\mathrm{m^2\,kg\,s^{-1}}$ Constante de Rydberg, $\mathcal{R}=1.1\cdot 10^7\,\mathrm{m^{-1}}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$ Velocidade da luz no vácuo, $c=3\cdot 10^8~{\rm m~s^{-1}}$
- Constante dos gases, $R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$

Definições

- Composição do ar atmosférico: $79\%~N_2$ e $21\%~O_2$

Aproximações Numéricas

•
$$\sqrt{2} = 1.4$$

•
$$\sqrt{2} = 1.4$$
 • $\sqrt{3} = 1.7$ • $\sqrt{5} = 2.2$ • $\log 2 = 0.3$ • $\log 3 = 0.5$ • $\ln 10 = 2.3$

•
$$\sqrt{5} = 2.2$$

•
$$\log 2 = 0.3$$

•
$$\log 3 = 0.5$$

•
$$\ln 10 = 2.3$$

Tabela Periódica

Elemento Químico	Número Atômico	Massa Molar $(g \operatorname{mol}^{-1})$		Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$
Н	1	1,01	Na	11	22,99
С	6	12,01	Mg	12	24,31
Ν	7	14,01	S	16	32,06
0	8	16,00	CI	17	$35,\!45$

31ª QUESTÃO Valor: 1,00

Um reator é carregado com $60\,\mathrm{g}$ de grafite e $112\,\mathrm{L}$ de oxigênio em CNTP. A mistura é ignitada e todo grafite é convertido em CO e CO_2 .

O processo ocorre em temperatura contante e a pressão total no reator aumentou em 20% após o final da reação.

Assinale a alternativa que mais se aproxima da pressão parcial de CO_2 ao final da reação.

Considere as seguintes proposições sobre a estrutura molecular.

- 1. As moléculas CF_4 e XeF_4 são apolares, entretanto, o SF_4 é polar.
- 2. As moléculas NF_3 e ClF_3 são polares, entretanto, o BF_3 é apolar.
- 3. Na molécula ${
 m SF}_6$ todas as ligações possuem o mesmo comprimento, entretanto, no ${
 m PF}_5$ duas liações são mais longas que as outras.
- 4. Existem dois isômeros com fórmula molecular PF₃Cl₂, sendo que um desses possui momento de dipolo nao nulo.

Assinale a alternativa que relaciona as proposições corretas.

- A()1
- B()2
- C() 2 e 3
- **D**() 1, 2 e 3
- E() 1, 2, 3 e 4

33ª QUESTÃO Valor: 1,00

Um reator é carregado com certa pressão amônia em 25 °C e o equilíbrio é estabelecido:

$$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g) \quad K = 5.4 \cdot 10^5$$

Quando o equilíbrio é atingido, 50% da quantidade de amônia adicionada sofre decomposição.

Assinale a alternativa que mais se aproxima da pressão inicial de amônia carregada no reator.

- **A** () 0,2 Torr
- **B**() 0,4 Torr
- **C** () 0,8 Torr
- **D** () 1,6 Torr
- **E**() 3,2 Torr

34ª QUESTÃO Valor: 1,00

O composto ${\bf X},\,{\rm C}_5{\rm H}_9{\rm Br},\,$ não reage com bromo ou com permanganato de potássio diluído. O tratamento de ${\bf X}$ com potassa alcoólica leva à formação de um único composto, Y. Diferente de X, Y descora a água de bromo e muda a cor de uma solução de permanganato de violeta para marrom. A reação de Y com gás hidrogênio e platila forma metilciclobutano. Quando Y é tratado com ozônio seguido de zinco metálico, é formado o composto Z, C₅H₈O₂.

Cinco estruturas foram propostas para o composto X

Estrutura 1

Estrutura 2

Estrutura 3

Estrutura 4

Estrutura 5

Assinale a alternativa com a estrutura do composto X.

- A() Estrutura 1
- **B**() Estrutura 2 **C**() Estrutura 3
- **D**() Estrutura 4
- E() Estrutura 5

35ª QUESTÃO

Valor: 1,00

Considere as proposições.

- 1. A energia de ligação na molécula NO é maior que no íon NO⁺.
- 2. A energia de ligação na molécula CO é maior que no íon CO⁺.
- 3. A molécula O_2 tem maior energia de ligação que os íons O_2^- e O_2^+ .
- 4. A ligação dupla C=C no eteno tem o dobro da energia da ligação simples C-C no etano.

Assinale a alternativa que mais se aproxima das proposições corretas.

- A() 1 e 2
- **B**() 1 e 4
- C() 2 e 4
- **D**() 1, 2 e 4 **E**() 1, 2, 3 e 4

36ª QUESTÃO

Valor: 1,00

Considere a transformação a seguir.

Assinale a alternativa com uma rota de síntese correta para essa transformação.

- **A**() 1. BH₃, THF; 2. H₂O₂, NaOH; 3. NaC≡CH; 4. H₂, Pd-CaCO₃; 5. O₃; 6. DMS.
- **B**() 1. BH₃, THF; 2. H₂O₂, NaOH; 3. HCl; 4. NaC \equiv CH; 5. O₃; 6. DMS.
- \mathbf{C} () 1. HBr, ROOR; 2. NaC \equiv CH; 3. BH₃, THF; 4. H₂O₂, NaOH.
- \mathbf{D} () 1. HBr, ROOR; 2. NaC \equiv CH; 3. NaC \equiv CH; 4. H₂, Pd-CaCO₃; 5. O₃; 6. DMS.
- **E**() 1. HBr, ROOR; 2. NaC \equiv CH; 3. NaC \equiv CH; 4. O₃; 5. DMS; 6. H₂, Pd-CaCO₃.

37ª QUESTÃO

Valor: 1,00

oi

38ª QUESTÃO

Valor: 1,00

oi

39ª QUESTÃO

Valor: 1,00

oi

40° QUESTÃO Valor: 1,00

A digestão de $0.15\,\mathrm{g}$ de uma amostra de um composto que contém fósforo em uma mistura de $\mathrm{HNO_3}$ e $\mathrm{H_2SO_4}$ resulta na formação de $\mathrm{CO_2}$, $\mathrm{H_2O}$ e $\mathrm{H_3PO_4}$. A adição de molibdato de amônio produz um sólido cuja composição é $(\mathrm{NH_4})_3\mathrm{PO_4} \cdot 12\,\mathrm{MoO_3}$. Esse precipitado foi filtrado, lavado, e dissolvido em $50\,\mathrm{mL}$ de $\mathrm{NaOH}~0.2\,\mathrm{mol}~\mathrm{L}^{-1}$:

$$(NH_4)_3PO_4 \cdot 12 MoO_3(s) + OH^-(aq) \longrightarrow HPO_4{}^{2-}(aq) + MoO_4{}^{2-}(aq) + H_2O(l) + NH_3(g)$$

Ao final da reação, a solução foi aquecida para remover o excesso de $\rm NH_3$. O excesso de $\rm NaOH$ foi titulado com $11\,\rm mL$ de $\rm HCl~0,2\,mol~L^{-1}$.

Assinale a alternativa que mais se aproxima da fração mássica de fósforo na amostra.

- **A**() 3,1%
- **B**() 6,2%
- ${f C}$ () $9{,}3\%$
- **D**() 12,4%
- **E**() 15,5%