EE-559 - Deep learning

9.2. Autoencoders

François Fleuret

https://fleuret.org/ee559/

Mon Feb 18 13:36:19 UTC 2019

This modeling consists of finding "meaningful degrees of freedom" that describe the signal, and are of lesser dimension.

Original space ${\mathcal X}$

Original space ${\mathcal X}$

Regarding synthesis, we saw that deep feed-forward architectures exhibit good generative properties, which motivates their use explicitly for that purpose.

Autoencoders

A proper autoencoder has to capture a "good" parametrization of the signal, and in particular the statistical dependencies between the signal components.

$$\mathbb{E}_{X\sim q}\Big[\|X-g\circ f(X)\|^2\Big]\simeq 0.$$

$$\mathbb{E}_{X\sim q}\Big[\|X-g\circ f(X)\|^2\Big]\simeq 0.$$

Given two parametrized mappings $f(\cdot; w)$ and $g(\cdot; w)$, training consists of minimizing an empirical estimate of that loss

$$\hat{w}_f, \hat{w}_g = \underset{w_f, w_g}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^N \|x_n - g(f(x_n; w_f); w_g)\|^2.$$

$$\mathbb{E}_{X\sim q}\Big[\|X-g\circ f(X)\|^2\Big]\simeq 0.$$

Given two parametrized mappings $f(\cdot; w)$ and $g(\cdot; w)$, training consists of minimizing an empirical estimate of that loss

$$\hat{w}_f, \hat{w}_g = \underset{w_f, w_g}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^N \|x_n - g(f(x_n; w_f); w_g)\|^2.$$

A simple example of such an autoencoder would be with both f and g linear, in which case the optimal solution is given by PCA.

$$\mathbb{E}_{X\sim q}\Big[\|X-g\circ f(X)\|^2\Big]\simeq 0.$$

Given two parametrized mappings $f(\cdot; w)$ and $g(\cdot; w)$, training consists of minimizing an empirical estimate of that loss

$$\hat{w}_f, \hat{w}_g = \underset{w_f, w_g}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^N \|x_n - g(f(x_n; w_f); w_g)\|^2.$$

A simple example of such an autoencoder would be with both f and g linear, in which case the optimal solution is given by PCA. Better results can be achieved with more sophisticated classes of mappings, in particular deep architectures.

7 / 20

Deep Autoencoders

A deep autoencoder combines an encoder composed of convolutional layers, with a decoder composed of the reciprocal transposed convolution layers. E.g. for MNIST:

```
AutoEncoder (
  (encoder): Sequential (
    (0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
    (1): ReLU (inplace)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
    (3): ReLU (inplace)
    (4): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
    (5): ReLU (inplace)
    (6): Conv2d(32, 32, kernel size=(3, 3), stride=(2, 2))
    (7): ReLU (inplace)
    (8): Conv2d(32, 8, kernel size=(4, 4), stride=(1, 1))
  (decoder): Sequential (
    (0): ConvTranspose2d(8, 32, kernel size=(4, 4), stride=(1, 1))
    (1): ReLU (inplace)
    (2): ConvTranspose2d(32, 32, kernel size=(3, 3), stride=(2, 2))
    (3): ReLU (inplace)
    (4): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
    (5): ReLU (inplace)
    (6): ConvTranspose2d(32, 32, kernel size=(5, 5), stride=(1, 1))
    (7): ReLU (inplace)
    (8): ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1))
```

Encoder

Tensor sizes / operations

Decoder

Tensor sizes / operations

$8 \times 1 \times 1$	
nn.ConvTranspose2d(8, 32, kernel_size=4, stride=1)	×1
32×4×4	4
nn.ConvTranspose2d(32, 32, kernel_size=3, stride=2)	×4
$32 \times 9 \times 9$	$\stackrel{\longrightarrow}{\longleftrightarrow}$
nn.ConvTranspose2d(32, 32, kernel_size=4, stride=2)	×9
$32 \times 20 \times 20$	4
nn.ConvTranspose2d(32, 32, kernel_size=5, stride=1)	×20
$32 \times 24 \times 24$	5
nn.ConvTranspose2d(32, 1, kernel_size=5, stride=1)	×24
1×28×28	5

Training is achieved with quadratic loss and Adam

```
model = AutoEncoder(nb_channels, embedding_dim)
model.to(device)
optimizer = optim.Adam(model.parameters(), lr = 1e-3)
for epoch in range(args.nb_epochs):
    for input, _ in iter(train_loader):
        input = input.to(device)
        z = model.encode(input)
        output = model.decode(z)
        loss = 0.5 * (output - input).pow(2).sum() / input.size(0)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
```

$$g \circ f(X)$$
 (CNN, $d = 2$)

$$g \circ f(X)$$
 (PCA, $d = 2$)

$$g \circ f(X)$$
 (CNN, $d = 4$)

$$g \circ f(X)$$
 (PCA, $d = 4$)

$$g \circ f(X)$$
 (CNN, $d = 8$)

$$g \circ f(X)$$
 (PCA, $d = 8$)

$$g \circ f(X)$$
 (CNN, $d = 16$)

$$g \circ f(X)$$
 (PCA, $d = 16$)

$$g \circ f(X)$$
 (CNN, $d = 32$)

$$g \circ f(X)$$
 (PCA, $d = 32$)

$$\forall x, x' \in \mathcal{X}^2, \ \alpha \in [0, 1], \ \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).$$

$$\forall x, x' \in \mathcal{X}^2, \ \alpha \in [0, 1], \ \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).$$

$$\forall x, x' \in \mathcal{X}^2, \ \alpha \in [0, 1], \ \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).$$

$$\forall x, x' \in \mathcal{X}^2, \ \alpha \in [0, 1], \ \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).$$

PCA interpolation (d = 32)

Autoencoder interpolation (d = 8)

Autoencoder interpolation (d = 32)

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

Autoencoder sampling (d = 8)

Autoencoder sampling (d = 16)

Autoencoder sampling (d = 32)

These results are unsatisfying, because the density model used on the latent space ${\mathscr F}$ is too simple and inadequate.

Building a "good" model amounts to our original problem of modeling an empirical distribution, although it may now be in a lower dimension space.

References

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value

decomposition. <u>Biological Cybernetics</u>, 59(4):291–294, 1988.
 G. E. Hinton and R. S. Zemel. Autoencoders, minimum description length and helmholtz free energy. In Neural Information Processing Systems (NIPS), pages 3–10, 1994.