

CBB Workshop

How to create a "table 1" and produce publication-ready figures in R

Thursday 23 May 2024, 13:00 – 16:00

KI Center for Bioinformatics and Biostatistics (CBB)

Carsten Daub director

Hannes Hagström co-director

Ghada Nouairia bioinformatician

Tassos Damdimopoulos bioinformatician

cbb@ki.se

CBB drop-in:

NEO Protein

Thursdays 13:00 – 15:00

Henrike Häbel biostatistician

Rickard Strandberg biostatistician

Davide Valentini biostatistician

Michael Ingre biostatistician

Laura Vossen Engblom biostatistician

23 May 2024 Laura Vossen Engblom

Agenda

13:15 – 14:00 Part 1: how to create a table 1 (baseline characteristics)

14:00 – 14:30 Coffee break

14:30 – 16:00 Part 2: data visualization using ggplot2

Course materials

- https://github.com/cbb-ki/Workshops
 - → Save to your **local** harddisk
- Open the script "CBB_table1_ggplot.R"
- On line 37, change the directory
- Run line 1 40:
 - → Install R packages
 - → Load R packages
 - → Read in the data

Laura Vossen Engblom 23 May 2024

Example

TABLE 1. Demographics and Baseline Characteristics

		Cilofexor 100 mg (n = 22)	Cilofexor 30 mg (n = 20)	Placebo (n = 10)	Total (n = 52)
Demographics	Age (years)	43 (36, 47)	46 (35, 57)	39 (33, 52)	43 (35, 52)
	Male, n (%)	11 (50%)	14 (70%)	5 (50%)	30 (58%)
	White, n (%)	17 (77%)	15 (75%)	7 (70%)	39 (75%)
	Diabetes, n (%)	6 (27%)	2 (10%)	1 (10%)	9 (17%)
	Weight (kg)	73.5 (67.5, 89.1)	79.8 (68.4, 95.9)	82.2 (63.0, 83.3)	77.9 (67.4, 88.6)
	BMI (kg/m²)	25.8 (23.2, 30.3)	25.9 (22.8, 29.9)	25.8 (23.9, 29.6)	25.8 (23.2, 29.9)
	IBD, n (%)	13 (59%)	11 (55%)	7 (70%)	31 (60%)
	UDCA, n (%)	10 (46%)	9 (45%)	5 (50%)	24 (46%)
biochemistry	ALP (U/L)	350 (312, 387)	344 (271, 460)	380 (265, 547)	348 (288, 439)
	ALP (× ULN)	2.87 (2.45, 3.51)	2.73 (2.15, 3.74)	3.31 (2.05, 4.33)	2.78 (2.29, 3.66)
	GGT (U/L)	305 (192, 542)	564 (255, 910)	377 (224, 622)	423 (203, 628)
	Total bilirubin (mg/dL)	0.6 (0.5, 1.1)	0.8 (0.6, 1.0)	0.7 (0.5, 1.0)	
	ALT (U/L)	110 (83, 156)	119 (60, 197)	197) 77 (59, 123) 109 (63, 156	109 (63, 156)
	ALT (× ULN)	2.90 (1.92, 4.46)	2.90 (1.92, 4.46) 3.01 (1.74, 4.81) 2.01 (1.60, 2.86) 2	2.67 (1.70, 4.12)	
	AST (U/L)	67 (52, 98)	75 (44, 104)	59 (47, 76)	64 (47, 99)
	AST (× ULN)	1.92 (1.49, 2.87)	1.92 (1.49, 2.87) 2.11 (1.29, 2.90) 1.3	1.74 (1.31, 2.10)	1.83 (1.34, 2.78)
	Albumin (g/dL)	4.4 (4.2, 4.5)	4.5 (4.2, 4.7)	4.6 (4.2, 4.7)	4.4 (4.2, 4.7)
rosis and	ELF	9.26 (8.73, 9.66)	9.77 (9.26, 10.31)	9.09 (8.87, 9.60)	9.38 (8.91, 9.88)
inflammation	FihroTest	0 20 (0 27 D 44)	0.47 (0.30 0.57)	0.34 (0.23 0.51)	0.40 (0.28 0.51)

Laura Vossen Engblom 23 May 2024 5

The caffeine dataset

In the experiment, 100 participants were given either green tea or coffee, in doses of either 1 or 5 servings. They performed a cognitive test where higher scores indicate better performance. Dataset from bookdown.org

Let's get started...

Take home messages

- Free HarvardX course "Data science: R basics"
- Package websites: cheat sheets, vignettes, tutorials
- R command to create a table 1: tbl summary (my.data)
- ggplot2 breaks up graphs into semantic components
 - → Same logic in most R visualization packages

Laura Vossen Engblom 23 May 2024

Can chatGPT do this?

Internal behavior of the code is unknown

Thank you for attending!

Namn Efternamn 23 maj 20**29**

Why learn R?

- Free
- Latest statistical and bioinformatical methods
- All-in-one
- Reproducible
- Better statistical understanding

Free HarvardX course "Data science: R basics"