

Basic Rotations

- Rotation about X $R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\theta & -S\theta \\ 0 & S\theta & C\theta \end{bmatrix}$
- Rotation about Y $R_{y}(\theta) = \begin{bmatrix} C\theta & 0 & S\theta \\ 0 & 1 & 0 \\ -S\theta & 0 & C\theta \end{bmatrix}$
- Rotation about Z $R_z(\theta) = \begin{bmatrix} C\theta & -S\theta & 0 \\ S\theta & C\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Test exercise

- Start with a frame {B} coincident with a known reference frame {A}.
 Give the rotation matrix which accomplishes the following rotations of {B}:
 - 1. rotate about $j_A \ (Y_A)$ by an angle 30 degrees
 - 2. rotate about i_A (X_A) by an angle 45 degrees

$$R_{45,X}R_{30,Y} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c45 & -s45 \\ 0 & s45 & c45 \end{bmatrix} \begin{bmatrix} c30 & 0 & s30 \\ 0 & 1 & 0 \\ -s30 & 0 & c30 \end{bmatrix}$$

• A frame {B} is located as follows: initially coincident with a frame {A}. We rotate {B} about Z_B by θ degrees and then we rotate the resulting frame about X_B by ϕ degrees

$$R_{\theta,z}R_{\phi,x} = \begin{bmatrix} c\theta & -s\theta & 0 \\ s\theta & c\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\phi & -s\phi \\ 0 & s\phi & c\phi \end{bmatrix}$$

Hand-in solutions for this exercise on Moodle

How do we generalize this?

Answer: Use the Denavit-Hartenberg formalism

Three steps:

- Put out joint coordinate systems (using a certain procedure)
- Determine DH parameters:
 - Link parameters (link lenght, twist angle)
 - Link offset
 - Joint angle
- Insert into DH-equation

Affixing frames to joints

1. Identify the joint axes and draw lines along them.

For step 2 through 5 below consider two of these neighbouring lines (at axes i-1 and i):

- Identify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point where the common perpendicular meets the i-1th axis, assign the link frame origin.
- 3. Assign Z_{i-1} pointing along the direction of axis i-1.
- 4. Assign X_{i-1} pointing along the common perpendicular, or if the axes intersect, assign X_{i-1} to be normal to the plane containing the two axes.
- 5. Assign Y_{i-1} to complete a right-hand coordinate system.
- 6. Assign {0} to match {1} when the joint variable is zero. For {N} choose an origin location and X_N direction freely, but generally so as to cause as many link parameters as possible to become zero.

Link transformation

$$\begin{split} & \stackrel{i-1}{}_{i}T = \stackrel{i-1}{}_{R}T \cdot \stackrel{R}{}_{Q}T \cdot \stackrel{P}{}_{P}T \cdot \stackrel{P}{}_{P}T \\ & = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha_{i-1} & -s\alpha_{i-1} & 0 \\ 0 & s\alpha_{i-1} & c\alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i-1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & 0 \\ s\theta_{i} & c\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ & = \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & a_{i-1} \\ s\theta_{i}s\alpha_{i-1} & c\theta_{i}c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1}d_{i} \\ s\theta_{i}s\alpha_{i-1} & c\theta_{i}s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Denavit Hartenberg Parameters

 $\alpha_{i\text{--}1}$ = the angle between $Z_{i\text{--}1}$ to Z_{i} measured about $X_{i\text{--}1}$

 a_{i-1} = the distance from Z_{i-1} to Z_i measured along X_{i-1}

 d_i = the distance from X_{i-1} to X_i measured along Z_i

 θ_i = the angle between X_{i-1} to X_i measured about Z_i

i	\mathbf{u}_i	\mathbf{a}_{i-1}	\mathbf{d}_i	$\boldsymbol{\theta}_i$
1	0	0	0	θ_I
2	0	L1	0	θ_2
3	0	12	0	θ

Link transformation

$$\begin{split} & \stackrel{i-1}{}_{i}T = \stackrel{i-1}{}_{R}T \cdot \stackrel{R}{}_{Q}T \cdot \stackrel{R}{}_{P}T \cdot \stackrel{P}{}_{I}T \\ & = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha_{i-1} & -s\alpha_{i-1} & 0 \\ 0 & s\alpha_{i-1} & c\alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i-1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & 0 \\ s\theta_{i} & c\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & a_{i-1} \\ s\theta_{i}c\alpha_{i-1} & c\theta_{i}c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1}d_{i} \\ s\theta_{i}s\alpha_{i-1} & c\theta_{i}s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1}d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{N}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T {}_{4}^{3}T \dots {}_{N}^{N-1}T$$

Exercises I

1. For the two robots in the figures below, derive Denavit-Hartenberg parameters, generate the forward kinematics and test with MatLab.

Exercises II

 For the robot in the figure, derive Denavit-Hartenberg parameters and implement in Matlab.

