TEAM REFERENCE UNIVERSIDAD DE LA HABANA: UH TOP

ICPC World Finals 2021

Team Members: Lázaro Raúl Iglesias Vera, David Manuel García Aguilera, Denis Gómez Cruz

Contents		3.11. Gomory Hu Tree	14
1. Data Structures	9	4. Math	14
	2	4.1. Bitwise transform	15
1.1. Convex Hull Trick	2	4.2. Simplex	15
1.2. Order Statistics	2	4.3. Number theoretic transform	16
1.3. Treap	2	4.4. Gauss	16
1.4. PST	3	4.5. Hungarian	16
2. Geometry	4	4.6. Integrate	17
2.1. Antipodal Points	4	4.7. NTT with arbitrary mod	17
2.2. Basics Complex	4	4.8. Interpolation	18
2.3. Circle	5	5. Number Theory	18
2.4. Closest pair Points	5	5.1. Diophantine Equation	18
2.5. Contains	6	5.2. Miller Rabin	18
2.6. Line Segment Intersections	6	5.3. Pollard Rho	18
2.7. Minkowski	7	5.4. Chinese Remainder Theorem	19
2.8. Rectangle union	7	5.5. Discrete Logarithm	19
2.9. Polygon Area	7	5.6. Discrete Roots	
2.10. Mass Center	8	5.7. Modular Arithmetics	19 19
2.11. Convex Cut	8		
2.12. Convex Hull	8	5.8. Primitive Root	20
2.13. Polygon Width	8	6. String	20
2.14. Semiplane Intersection	8	6.1. Suffix Array	21
3. Graph	9	6.2. Aho-Corasick	21
3.1. Articulation Points	9	6.3. Manacher	21
3.2. Bipartite Matching	9	6.4. Z Algorithm	22
3.3. Centroid Decomposition	10	6.5. Suffix Tree	22
3.4. Dinic	10	6.6. Maximal Suffix	22
3.5. Eulerian graph	11	6.7. Minimum Rotation	22
3.6. Heavy light decomposition	12	7. Useful	23
3.7. Min Cost Flow	12	7.1. Random	23
3.8. 2-SAT	13	7.2. Launch Json	23
3.9. Strongly connected components	13	7.3. Tasks Json	23
3.10. Virtual tree	14	8. Tips	23
9.10. VII (UAI) (ICE	14	I	

1. Data Structures

1.1. Convex Hull Trick.

```
template<typename T>
T cross(complex<T> a, complex<T> b) { return imag(conj(a) * b); }
template<typename T>
T dot(complex<T> a, complex<T> b) { return real(conj(a) * b); }
struct __Query { static bool query; };
bool __Query::query = false;
template<typename T>
struct Point{
      complex<T> p;
      mutable function<const complex<T>*()> succ;
      bool operator<(const Point &rhs) const{</pre>
            const complex<T> &q = rhs.p;
            if (!__Query::query) {
                  if (real(p) != real(q))
                        return real(p) < real(q);</pre>
                  return imag(p) < imag(q);</pre>
            const complex<T> *s = succ();
            if (!s) return false;
            return dot(p - *s, q) < 0;
template<typename T, int turn>
struct half_hull : public set<Point<T>>{
      using set<Point<T>>::begin;
      using set<Point<T>>::insert;
      using set<Point<T>>::end;
      using set<Point<T>>::lower_bound;
      using set<Point<T>>::empty;
      using set<Point<T>>::erase;
      using typename set<Point<T>>::iterator;
      complex<T> extreme(const complex<T> &p) const{
            assert(!empty() && turn * imag(p) >= 0);
            __Query::query = true;
            auto pos = lower_bound(Point<T>{p});
            __Query::query = false;
```

1.2. Order Statistics.

1.3. **Treap.**

```
// capacity MUST be correct if you use new_node
template<class node, bool persistent, int capacity = 0>
struct treap{
   inline int size(node *u) { return u ? u->nod.sz : 0; }
   inline void push(node *u) {
      if (u->lazy()) {
         if (u->l) u->l = clone(u->l), u->l->apply(u->lazy);
      }
}
```

```
assert (pos != end());
            return pos->p;
      void insert(const complex<T> &p) {
            auto y = insert(Point<T>{p}).first;
            if (y == end()) return;
            y->succ = [=] { return next(y) == end() ? nullptr : &next(y)->p; };
            if (bad(y)) { erase(y); return; }
            while (y != begin() && bad(prev(y))) erase(prev(y));
            while (next(y) != end() && bad(next(y))) erase(next(y));
private:
      bool bad(iterator v) {
            if (y == begin() || y == end())
                  return false;
            auto x = prev(y), z = next(y);
            if (z == end())
                  return false:
            return cross(y->p - x->p, z->p - x->p) * turn >= 0;
};
template<typename T>
struct convex_hull_trick{
      void insert(const complex<T> &p) {
            lower_hull.insert(p);
            upper_hull.insert(p);
      complex<T> extreme(const complex<T> &p) const{
            if (std::imag(p) < 0)
                  return lower_hull.extreme(p);
            return upper_hull.extreme(p);
private:
      half_hull<T, +1> upper_hull;
      half_hull<T, -1> lower_hull;
};
```

```
if (u->r) u->nod = node::merge(u->nod, u->r->nod);
      return u;
// split for the kth first elements
pair<node*, node*> split(node* u, int k) {
      if (!u) return { u, u };
      u = clone(u); push(u);
      if (size(u->1) >= k) {
            auto s = split(u->1, k);
            u->1 = s.second;
            return { s.first, update(u) };
      auto s = split(u->r, k - size(u->l) - 1);
      u->r = s.first;
      return { update(u), s.second };
node* merge(node *u, node *v) {
      if (!u || !v) return u ? u : v;
      if (u->prio > v->prio) {
            u = clone(u); push(u);
            u \rightarrow r = merge(u \rightarrow r, v);
            return update(u);
      }
      v = clone(v); push(v);
      v->1 = merge(u, v->1);
      return update(v);
node* kth(node *u, int k) {
      while (u \&\& size(u->1) + 1 != k) {
            push (u);
            if (size (u->1) >= k) u = u->1;
            else k -= size(u->1) + 1, u = u->r;
      return u;
int less (node *u, const typename node::key container &ky) {
      int 1 = 0;
      while (u) {
            if (u->key < ky) 1 += size(u->1) + 1, u = u->r;
            else u = u \rightarrow 1;
      }
```

1.4. **PST**.

```
#define MAXP (11) (2e6 + 5)
/// up to change
typedef int T;
struct node{ int 1, r;T v; };
node pool[MAXP];
int actual;
int next(){
    actual++;
    return actual;
}
struct pst{
    vector<int> versions;
    int n;
    pst() : n(0) {}
    pst(int n) : n(n) {}
    pst(vector<T> &a) : n(a.size()) { versions.push_back(build(0, n - 1, a)); }
```

```
return 1;
      /*int pos(node *u) // require parents (set parent to NULL
      in update and fix child->p) {
            int r = size(u->1);
            while (u->p != NULL)  {
                  if (u->p->r == u)
                        r += size(u->p->1) + 1;
                  u = u - > p;
            return r;
      ]*/
      node* clone(node *u) {return !persistent ? u : new_node(*u);}
      vector<node> nodes;
      treap() { nodes.reserve(capacity); }
      node* new_node(node u) {nodes.emplace_back(u);return &nodes.back();}
};
struct node{
      struct key_container{int x;} key;
      struct node_container{ int sz;
            node_container(const key_container &k = {}) : sz(1) {}
      } nod;
      struct lazy_container{ int add;
            bool operator()() { return add != 0; }
            lazy_container(int add = 0) : add(add) {}
      } lazy;
      static node_container merge(const node_container &lhs,
                                                 const node_container &rhs) {
            node_container x;
            x.sz = lhs.sz + rhs.sz;
            return x;
      void apply(const lazy_container &p){
            key.x += p.add; lazy.add += p.add;
      node *1, *r;
      int prio;
      node(const key_container &x) : key(x), nod(x) {
            1 = r = NULL; prio = randint(0, 1'000'000);
};
```

```
T merge(T v1, T v2) { /* up to code*/ }
void up(int p, T v) { /* up to code*/ }
int build(int 1, int r, vector<T> &a) {
   int ans = next();
   if (1 == r) {
      pool[ans].v = a[1];
      return ans;
   }
   int mid = (1 + r) >> 1;
   pool[ans].l = build(1, mid, a);
   pool[ans].r = build(mid + 1, r, a);
   pool[ans].v = merge(pool[pool[ans].l].v, pool[pool[ans].r].v);
   return ans;
}
int build(int 1, int r, T *a) {
   int ans = next();
```

```
if (1 == r) {
      pool[ans].v = a[1];
      return ans:
   int mid = (1 + r) >> 1;
   pool(ans).l = build(l, mid, a);
   pool[ans].r = build(mid + 1, r, a);
   pool[ans].v = merge(pool[pool[ans].1].v, pool[pool[ans].r].v);
   return ans;
int clone(int p) {
   int ans = next();
   pool[ans].1 = pool[p].1;
   pool[ans].r = pool[p].r;
   pool[ans].v = pool[p].v;
   return ans;
void update(int ver, int pos, T v) {
   versions.push_back(update(versions[ver], 0, n - 1, pos, v));
void update(int pos, T v) {
   versions.push_back(update(versions.back(), 0, n - 1, pos, v));
```

```
int update(int p, int 1, int r, int pos, T v) {
      p = clone(p);
      if (r == 1) {
         up(p, v);
         return p;
      int mid = (1 + r) >> 1;
      if (pos <= mid) pool[p].1 = update(pool[p].1, 1, mid, pos, v);</pre>
      else pool[p].r = update(pool[p].r, mid + 1, r, pos, v);
      pool[p].v = merge(pool[pool[p].1].v, pool[pool[p].r].v);
      return p;
   T query(int t, int 1, int r) { return query(versions[t], 0, n - 1, 1, r); }
   T query(int p, int l, int r, int L, int R) {
      if (L <= 1 && r <= R) return pool[p].v;</pre>
      int mid = (1 + r) >> 1;
      if (R <= mid) return query(pool[p].1, 1, mid, L, R);</pre>
      if (L > mid) return query(pool[p].r, mid + 1, r, L, R);
      return merge (query (pool[p].1, 1, mid, L, R),
                query(pool[p].r, mid + 1, r, L, R));
};
```

2. Geometry

2.1. Antipodal Points.

2.2. Basics Complex.

```
typedef complex<double> point;
typedef vector<point> polygon;
#define NEXT(i) (((i) + 1) % n)
struct circle { point p; double r; };
struct line { point p, q; };
using segment = line;
const double eps = 1e-9;
// fix comparations on doubles with this two functions
int sign(double x) { return x < -eps ? -1 : x > eps; }
int dblcmp(double x, double y) { return sign(x - y); }
double dot(point a, point b) { return real(conj(a) * b); }
double cross(point a, point b) { return imag(conj(a) * b); }
double area2(point a, point b, point c) { return cross(b - a, c - a); } // cross
// where is c with respect to a->b
```

```
int ccw(point a, point b, point c) {
    b == a; c -= a;
    if (cross(b, c) > 0) return +1; // counter clockwise
    if (cross(b, c) < 0) return -1; // clockwise
    if (dot(b, c) < 0) return +2; // c--a--b on line
    if (dot(b, b) < dot(c, c)) return -2; // a--b--c on line
    return 0;
}
namespace std{
    bool operator<(point a, point b) {
        if (a.real() != b.real())
            return a.real() < b.real();
        return a.imag() < b.imag();
}</pre>
```

```
// returns the angle abc (\cos(x) = Va * Vb / |Va| * |Vb|)
double angle(point a, point b, point c) {
  a -= b, c -= b;
  double ang = (double)dot(a, c) / (sqrtl(norm(a)) * sqrtl(norm(c)));
  return acos (max (min (ang, 1.0), -1.0));
// contrary clock side direction
pair<double, double > rotate(double x, double y, double ang) {
      ang = (acos(-1.0) * ang) / 180.0;
      return { x * cos(ang) - y * sin(ang), x * sin(ang) + y * cos(ang) };
// contrary clock side direction
point rotate(point x, ld ang) {
      ang = (acos(-1.0) * ang) / 180.0;
      return x * polar(1.0, ang); //ang in radians...
2.3. Circle.
```

```
// circle-circle intersection
vector<point> intersect(circle C, circle D) {
      double d = abs(C.p - D.p);
      if (sign(d - C.r - D.r) > 0) return {}; // too far
      if (sign(d - abs(C.r - D.r)) < 0) return {}; // too close</pre>
      double a = (C.r*C.r - D.r*D.r + d*d) / (2*d);
      double h = sqrt(C.r*C.r - a*a);
      point v = (D.p - C.p) / d;
      if (sign(h) == 0) return {C.p + v*a}; // touch
      return {C.p + v*a + point(0,1)*v*h, // intersect
                  C.p + v*a - point (0,1)*v*h;
// circle-line intersection
vector<point> intersect(line L, circle C){
      point u = L.p - L.q, v = L.p - C.p;
      double a = dot(u, u), b = dot(u, v), c = dot(v, v) - C.r*C.r;
      double det = b*b - a*c;
      if (sign(det) < 0) return {}; // no solution</pre>
      if (sign(det) == 0) return {L.p - b/a*u}; // touch
      return {L.p + (-b + sqrt(det))/a*u,
                  L.p + (-b - sqrt(det))/a*u;
// circle tangents through point
vector<point> tangent (point p, circle C) {
      double sin2 = C.r*C.r/norm(p - C.p);
      if (sign(1 - sin2) < 0) return {};</pre>
      if (sign(1 - sin2) == 0) return {p};
      point z(sqrt(1 - sin2), sqrt(sin2));
      return \{p + (C.p - p) * conj(z), p + (C.p - p) * z\};
bool incircle (point a, point b, point c, point p) {
      a -= p; b -= p; c -= p;
```

2.4. Closest pair Points.

```
double closest_pair_points(vector<point> &P) {
      auto cmp = [] (point a, point b) {
            return make pair(a.imag(), a.real())
                        < make_pair(b.imag(), b.real());};
      int n = P.size();
      sort(P.begin(), P.end());
```

```
int qua(point x) {
      if (x.real() > 0 && x.imag() >= 0) return 0;
      if (x.real() <= 0 && x.imag() > 0) return 1;
      if (x.real() < 0 && x.imag() <= 0) return 2;</pre>
      return 3:
// assert((0, 0) not in v)
sort(v.begin(), v.end(), [](const point &x, const point &y){
      int qx = qua(x);
      int qy = qua(y);
      if (qx != qy) return qx < qy;
      //if (cross(x, y) == 0) return norm(x) < norm(y);
      return cross(x, y) > 0;
});
```

```
return norm(a) * cross(b, c)
                  + norm(b) * cross(c, a)
                  + norm(c) * cross(a, b) >= 0;
                  // < : inside, = cocircular, > outside
point three_point_circle(point a, point b, point c) {
      point x = 1.0 / conj(b - a), y = 1.0 / conj(c - a);
      return (y - x) / (conj(x) * y - x * conj(y)) + a;
// Get the center of the circle with minimum ratio that enclose all points
circle min_enclosing_circle(vector<point> P) {
      int n = P.size();
      shuffle(P.begin(), P.end(), random_device());
      double r = 0.0; point p = P[0];
      for (int i = 1; i < n; ++i)
            if (dblcmp(abs(P[i] - p), r) > 0){
                  r = abs(P[0] - P[i]) * 0.5;
                  p = (P[0] + P[i]) * 0.5;
                  for (int j = 1; j < i; ++j)
                        if (dblcmp(abs(P[j] - p), r) > 0){
                              r = abs(P[i] - P[j]) * 0.5;
                              p = (P[i] + P[j]) * 0.5;
                              for (int k = 0; k < j; ++k)
                                    if (dblcmp(abs(P[k] - p), r) > 0){
                                          p=three_point_circle(P[i],P[j],P[k]);
                                          r = abs(p - P[i]);
      return {r, p};
```

```
set<point, decltype(cmp) > S(cmp);
const double oo = 1e9; // adjust
double ans = oo;
for (int i = 0, ptr = 0; i < n; ++i) {</pre>
      while (ptr < i \&\& abs(P[i].real() - P[ptr].real()) >= ans)
            S.erase(P[ptr++]);
```

```
auto lo = S.lower_bound(point(-oo, P[i].imag() - ans - eps));
auto hi = S.upper_bound(point(-oo, P[i].imag() + ans + eps));
for (decltype(lo) it = lo; it != hi; ++it)
    ans = min(ans, abs(P[i] - *it));
```

2.5. Contains.

```
// Determine the position of a point relative to a polygon.
// (1) General Polygon
// (2) Convex Polygon
enum { OUT, ON, IN };
int contains(const polygon &P, const point &p) {
  bool in = false;
  for (int i = 0, n = P.size(); i < n; ++i) {</pre>
      point a = P[i] - p, b = P[NEXT(i)] - p;
      if (imag(a) > imag(b)) swap(a, b);
      if (imag(a) <= 0 && 0 < imag(b))</pre>
         if (cross(a, b) < 0) in = !in;
      if (cross(a, b) == 0 && dot(a, b) <= 0)</pre>
         return ON;
   return in ? IN : OUT;
struct convex_container{
  polygon pol;
   // Polygon MUST be in counter clockwise order
   convex_container(polygon p) : pol(p){
      int pos = 0;
      for (int i = 1; i < p.size(); ++i)</pre>
```

2.6. Line Segment Intersections.

```
bool intersectLL(const line &1, const line &m) {
      return abs(cross(1.q - 1.p, m.q - m.p)) > eps || // non-parallel
                  abs(cross(l.g - l.p, m.p - l.p)) < eps; // same line
bool intersectLS(const line &1, const segment &s) {
      return cross(l.q - l.p, s.p - l.p) * // s[0] is left of l
                  cross(1.q - 1.p, s.q - 1.p) < eps; // s[1] is right of 1
bool intersectLP(const line &1, const point &p) {
      return abs(cross(l.q - p, l.p - p)) < eps;
bool intersectSS(const segment &s, const segment &t) {
      return ccw(s.p, s.q, t.p) * ccw(s.p, s.q, t.q) <= 0
                  && ccw(t.p, t.q, s.p) * ccw(t.p, t.q, s.q) <= 0;
bool intersectSP(const segment &s, const point &p) {
      return abs(s.p - p) + abs(s.q - p) - abs(s.q - s.p) < eps;
      // triangle inequality
      return min(real(s.p), real(s.q)) <= real(p)</pre>
                  && real(p) \leq max(real(s.p), real(s.q))
                  && min(imag(s.p), imag(s.q)) \le imag(p)
                  && imag(p) \le max(imag(s.p), imag(s.q))
                  && cross(s.p - p, s.q - p) == 0;
point projection(const line &1, const point &p) {
      double t = dot(p - 1.p, 1.p - 1.q) / norm(1.p - 1.q);
      return 1.p + t * (1.p - 1.q);
```

```
S.insert(P[i]);
}
return ans;
}
```

```
if (p[i].imag() < p[pos].imag() ||</pre>
            (p[i].imag() == p[pos].imag() && p[i].real() < p[pos].real()))
      rotate(pol.begin(), pol.begin() + pos, pol.end());
  bool contains (point p) {
      point c = pol[0];
      if (p.imag() < c.imag() \mid | cross(pol.back() - c, p - c) > 0)
         return false;
      int lo = 1, hi = pol.size() - 1;
      while (lo + 1 < hi) {
         int m = (1o + hi) / 2;
         if (cross(pol[m] - c, p - c) >= 0) lo = m;
         else hi = m;
      return abs(cross(c, pol[lo], pol[lo + 1]))
            - abs(cross(p, c, pol[lo]))
               - abs(cross(p, c, pol[lo + 1]))
                  - abs(cross(p, pol[lo], pol[lo + 1])) == 0;
};
```

```
point reflection (const line &1, const point &p) {
      return p + 2.0 * (projection(1, p) - p);
double distanceLP(const line &1, const point &p) {
      return abs(p - projection(l, p));
double distanceLL(const line &1, const line &m) {
      return intersectLL(1, m) ? 0 : distanceLP(1, m.p);
double distanceLS(const line &1, const line &s) {
      if (intersectLS(1, s)) return 0;
      return min(distanceLP(l, s.p), distanceLP(l, s.q));
double distanceSP(const segment &s, const point &p) {
      const point r = projection(s, p);
      if (intersectSP(s, r)) return abs(r - p);
      return min(abs(s.p - p), abs(s.q - p));
double distanceSS(const segment &s, const segment &t) {
      if (intersectSS(s, t)) return 0;
      return min(min(distanceSP(s, t.p), distanceSP(s, t.q)),
                  min(distanceSP(t, s.p), distanceSP(t, s.q)));
point crosspoint (const line &1, const line &m) {
      double A = cross(1.q - 1.p, m.q - m.p);
      double B = cross(1.q - 1.p, 1.q - m.p);
```

```
- -
```

2.7. Minkowski.

```
// The sum of Minkowski of two sets A and B is the set C =
// { a + b : a e A,b e B }. // each element in a set is a vector
// It can be proven that if A and B are convex polygons then C
// will also be a convex polygon.
// Minkowski sum of two convex polygons. O(n + m)
// Note: Polygons MUST be counterclockwise
polygon minkowski (const polygon &ps, const polygon &qs) {
    vector<point> rs;
    int i = distance(ps.begin(), min_element(ps.begin(), ps.end()));
    int j = distance(qs.begin(), min_element(qs.begin(), qs.end()));
    do{
```

2.8. Rectangle union.

```
// Note: Rectangle contains coordinates of two opposite corners (xl <=xh, yl <=yh)
// Complexity: O(n log n)
typedef long long 11;
struct rectangle{ ll xl, yl, xh, yh;};
11 rectangle_area(vector<rectangle> &rs) {
      vector<11> ys; // coordinate compression
      for (auto r : rs) { ys.push_back(r.yl); ys.push_back(r.yh); }
      sort(ys.begin(), ys.end());
      ys.erase(unique(ys.begin(), ys.end()), ys.end());
      int n = ys.size(); // measure tree
      vector<11> C(8 * n), A(8 * n);
      function<void(int, int, int, int, int, int) > aux =
                  [&] (int a, int b, int c, int 1, int r, int k) {
                        if ((a = max(a,1)) >= (b = min(b,r))) return;
                        if (a == 1 && b == r) C[k] += c;
                              aux(a, b, c, 1, (1+r)/2, 2*k+1);
                              aux(a, b, c, (1+r)/2, r, 2*k+2);
                        if (C[k]) A[k] = ys[r] - ys[l];
```

2.9. Polygon Area.

```
//Double of the signed area of a polygon
double area2(const polygon &P) {
    double A = 0;
    for (int i = 0, n = P.size(); i < n; ++i)</pre>
```

```
fraction y = (-12.c - 12.a * x) / 12.b;
    return {x, y};
}

11.a = 11.a / 11.b * 12.b;
11.c = 11.c / 11.b * 12.b;
11.b = 12.b;
line 13 = {11.a - 12.a, 0, 11.c - 12.c};
if(13.a == 0) return {oo, oo};
fraction x = -13.c / 13.a;
fraction y = (-12.c - 12.a * x) / 12.b;
return {x, y};
}
```

```
rs.emplace_back(ps[i] + qs[j]);
int in = i + 1, jn = j + 1;
if (in == ps.size()) in = 0;
if (jn == qs.size()) jn = 0;
int s = sign(cross(ps[i] - ps[in], qs[j] - qs[jn]));
if (s >= 0) i = in;
if (s <= 0) j = jn;
}
while (rs[0] != ps[i] + qs[j]);
return rs;
}</pre>
```

```
else A[k] = A[2*k+1] + A[2*k+2];
            };
struct event{ ll x, l, h, c;}; // plane sweep
vector<event> es:
for (auto r : rs) {
      int 1 = lower_bound(ys.begin(), ys.end(), r.yl) - ys.begin();
      int h = lower_bound(ys.begin(), ys.end(), r.yh) - ys.begin();
      es.push_back({ r.xl, l, h, +1 });
      es.push_back({ r.xh, 1, h, -1 });
sort(es.begin(), es.end(), [](event a, event b)
            {return a.x != b.x ? a.x < b.x : a.c > b.c;});
11 \text{ area} = 0, \text{ prev} = 0;
for (auto &e : es) {
      area += (e.x - prev) * A[0];
      prev = e.x;
      aux(e.1, e.h, e.c, 0, n, 0);
return area;
```

```
A += cross(P[i], P[NEXT(i)]);
return A;
```

// Complexity:

// Expected running time: O(n)

// O(n**2)

2.10. Mass Center.

```
/*
     Centroid of a (possibly nonconvex) polygon
     Coordinates must be listed in a cw or ccw.

Tested: SPOJ STONE
     Complexity: O(n)
*/
point centroid(const polygon &P)
```

2.11. Convex Cut.

```
// Cut a convex polygon by a line and
// return the part to the left of the line
// Complexity: O(n)
polygon convex_cut(const polygon &P, const line &l) {
    polygon Q;
    for (int i = 0, n = P.size(); i < n; ++i) {
        point A = P[i], B = P[(i + 1) % n];
}</pre>
```

2.12. Convex Hull.

```
vector<point> convex_hull(vector<point> v) {
    int n = v.size(), k = 0;
    vector<point> ch(2 * n);
    sort(v.begin(), v.end(), cmp);

for (ll i = k = 0; i < n; ch[k++] = v[i++])
    while (k > 1 && cross(ch[k - 2], ch[k - 1], v[i]) <= 0) --k;</pre>
```

2.13. Polygon Width.

```
// Compute the width (minimum) of a convex polygon
// Complexity: O(n)
const int oo = le9; // adjust
double check(int a, int b, int c, int d, const polygon &P){
    for (int i = 0; i < 4 && a != c; ++i) {
        if (i == 1) swap(a, b);
        else swap(c, d);
    }
    if (a == c) { // a admits a support line parallel to bd double A = abs(area2(P[a], P[b], P[d]));
        // double of the triangle area double base = abs(P[b] - P[d]);
        // base of the triangle abd
        return A / base;
}</pre>
```

2.14. Semiplane Intersection.

```
// Check whether there is a point in the intersection of // several semi-planes. If p lies in the border of some // semiplane it is considered to belong to the semiplane.
```

```
point c(0, 0);
      double scale = 3.0 * area2(P); // area2 = 2 * polygon_area
      for (int i = 0, n = P.size(); i < n; ++i)</pre>
            int j = NEXT(i);
            c = c + (P[i] + P[j]) * (cross(P[i], P[j]));
      return c / scale;
            if (ccw(l.p, l.q, A) != -1) Q.push_back(A);
            if (ccw(1.p, 1.q, A) * ccw(1.p, 1.q, B) < 0)</pre>
                  Q.push_back(crosspoint((line){ A, B }, 1));
      return Q;
   for (ll i = n - 2, t = k; i >= 0; ch[k++] = v[i--])
      while (k > t \&\& cross(ch[k - 2], ch[k - 1], v[i]) \le 0) --k;
   ch.resize(k - (k > 1));
      return ch;
      return oo;
double polygon_width(const polygon &P) {
      if (P.size() < 3)
            return 0;
      auto pairs = antipodal(P);
      double best = oo;
      int n = pairs.size();
      for (int i = 0; i < n; ++i) {</pre>
            double tmp = check(pairs[i].first, pairs[i].second,
                        pairs[NEXT(i)].first, pairs[NEXT(i)].second, P);
            best = min(best, tmp);
      return best;
```

```
9
```

```
bool intersect(vector<line> semiplane) {
  function<bool(line&,point&)> side = [](line &1, point &p){
      // IMPORTANT: point p belongs to semiplane defined by 1
      // iff p it's clockwise respect to directed segment <1.p, 1.q>
      // i.e. (non negative cross product)
      return cross ( 1.q - 1.p, p - 1.p ) >= 0;
  };
   function<bool(line&, line&, point&)> crosspoint = []
   (const line &1, const line &m, point &x) {
      double A = cross(l.q - l.p, m.q - m.p);
      double B = cross(1.q - 1.p, 1.q - m.p);
      if (abs(A) < eps) return false;</pre>
      x = m.p + B / A * (m.q - m.p);
      return true;
  int n = (int)semiplane.size();
  random_shuffle(semiplane.begin(), semiplane.end());
  point cent(0, 1e9);
  for (int i = 0; i < n; ++i) {</pre>
     line &S = semiplane[i];
      if (side(S, cent)) continue;
     point d = S.q - S.p; d /= abs(d);
     point A = S.p - d * 1e8, B = S.p + d * 1e8;
      for (int j = 0; j < i; ++j) {
```

3. Graph

3.1. Articulation Points.

```
void tarjan(const vector<vector<int>> &adj) {
   int n = adj.size(), t;
   vector<int> num(n), low(n), S;
   vector<bool> arts(n);
   vector<pair<int, int>> bridges;
   vector<vector<int>> comps; // biconnected components
   function<void(int, int)> dfs = [&](int u, int p) {
      num[u] = low[u] = ++t;
      S.push_back(u);
      for (int v : adj[u])
            if (!num[v]) {
            dfs(v, u);
            low[u] = min(low[u], low[v]);
            if (num[u] <= low[v]) {</pre>
```

3.2. Bipartite Matching.

```
// Bipartite Matching
// Complexity: O(E sqrt V)
// ** using only dfs marking visited nodes and cleaning
// them in bfs(in O(1)) might be faster **
struct hopcroft_karp{
   int n, m;
   vector<vector<int>> adj;
   vector<iint> mu, mv, level, que;
   // u is matched with mu[u] and v with mv[v], -1 if no match
   hopcroft_karp(int n, int m) : n(n), m(m), adj(n),
```

```
point x;
     line &T = semiplane[j];
     if (crosspoint(T, S, x)){
        int cnt = 0;
         if (!side(T, A)){
            A = x:
            cnt++;
         if (!side(T, B)){
           B = x;
            cnt++;
         if (cnt == 2)
            return false;
     else
         if (!side(T, A)) return false;
   if (imag(B) > imag(A)) swap(A, B);
   cent = A;
return true;
```

```
mu(n, -1), mv(m, -1), level(n), que(n) {}
void add_edge(int u, int v) { adj[u].push_back(v); }
void bfs() {
    int qf = 0, qt = 0;
    for (int u = 0; u < n; ++u) {
        if (mu[u] == -1) que[qt++] = u, level[u] = 0;
        else level[u] = -1;
    }
    for (; qf < qt; ++qf) {
        int u = que[qf];</pre>
```

3.3. Centroid Decomposition.

```
vector<int> g[MAXN], nodes;
bool mk[MAXN]; //marks centroid taken before
int sz[MAXN], mx[MAXN];
void dfs1(int u, int p) {
    sz[u] = 1;
    nodes.push_back(u);
    for (auto v : g[u])
        if (!mk[v]) {
            dfs1(v, u);
            sz[u] += sz[v];
            mx[u] = max(sz[v], mx[u]);
    }
}
void dfs2(int u, int p) {
    nodes.push_back(u);
    for (auto v : g[u])
        if (!mk[v]) dfs2(v, u);
}
```

3.4. Dinic.

```
// Maximum Flow
// Complexity: O(n^2 * m) faster in most cases
// O(\min(n^2(2/3), m^2(1/2)) * m) in networks with unit capacities
// O(n^{(1/2)} * m) in bipartite networks
// ** be careful if lb(flow with lower bound) with flow_type **
template <typename C, typename R = C, bool lb = false>
struct dinic{
      typedef C flow_type;
      typedef R result_type;
      static const flow type oo = std::numeric limits<flow type>::max();
      struct edge{
            int src, dst, rev;
            flow_type cap, flow;
            edge(int src, int dst, int rev, flow_type cap,
                  flow_type flow) : src(src), dst(dst), rev(rev),
                                             cap(cap), flow(flow) {}
      dinic(int n) : adj(n + 2 * lb), que(n + 2 * lb),
```

```
void solve(int u) {
    dfs1(u, -1);
    int cent = -1, cant = nodes.size() / 2;
    for (auto v : nodes) {
        if (cent == -1 && sz[v] >= cant && mx[v] <= cant) cent = v;
        sz[v] = mx[v] = 0;
    }
    nodes.clear();
    mk[cent] = 1;
    for (auto v : g[cent]) {
        if (mk[v]) continue;
        dfs2(v, cent);
        for (auto y : nodes) ;
        nodes.clear();
    }
    for (auto v : g[cent]) if (!mk[v]) solve(v);
}</pre>
```

```
level(n + 2 * lb), edge_pos(n + 2 * lb) \{\}
int add_edge(int src, int dst, flow_type cap,
                  flow_type rcap = 0) { // if lb rcap is low
     adj[src].emplace_back(src, dst, (int)adj[dst].size(),
                                      cap, 1b ? rcap : 0);
     if (src == dst) adj[src].back().rev++;
     adj[dst].emplace_back(dst, src,
                                      (int)adj[src].size() - 1,
                                      lb ? 0 : rcap, 0);
      return (int)adj[src].size() - 1 - (src == dst);
inline bool side_of_S(int u) { return level[u] == -1; }
result_type max_flow(int source, int sink) {
     result_type flow = 0;
     while (true) {
            int front = 0, back = 0;
            std::fill(level.begin(), level.end(), -1);
            for (level[que[back++] = sink] = 0;
```

```
front < back && level[source] == -1;++front) {</pre>
            int u = que[front];
            for (const edge &e : adj[u])
                  if (level[e.dst] == -1
                        && rev(e).flow < rev(e).cap)
                        level[que[back++] = e.dst] = 1 + level[u];
      if (level[source] == -1) break;
      std::fill(edge_pos.begin(), edge_pos.end(), 0);
      std::function<flow_type(int, flow_type)> find_path
                                     = [&] (int from, flow_type res) {
            if (from == sink) return res;
            for (int &ept = edge_pos[from];
                   ept < (int)adj[from].size();++ept){</pre>
                  edge &e = adj[from][ept];
                  if (e.flow == e.cap
                     || level[e.dst] + 1 != level[from]) continue;
                  flow_type push
                     = find_path(e.dst, std::min(res, e.cap - e.flow));
                  if (push > 0) {
                        e.flow += push;
                        rev(e).flow -= push;
                        if (e.flow == e.cap) ++ept;
                        return push;
            return static_cast<flow_type>(0);
      for (flow_type f; (f = find_path(source, oo)) > 0;) flow += f;
return flow;
```

3.5. Eulerian graph.

```
// Euler path undirected (path to use once all edges)
// the degree of all nodes must be even (euler cycle)
// or only exists two odd nodes (euler path)
vector<int> euler_path(const vector<vector<pair<int, int>>> &G, int s = 0) {
      int n = G.size(), odd = 0, m = 0;
      for (int i = 0; i < n; ++i) {</pre>
            odd += G[i].size() & 1;
            m += G[i].size();
      vector<int> path;
      if (odd == 0 || (odd == 2 && (G[s].size() & 1) == 1)){
            vector<int> pos(n);
            vector<bool> mark(m / 2);
            function<void(int)> visit = [&](int u){
                  for (int v, id; pos[u] < G[u].size(); ){</pre>
                        tie(v, id) = G[u][pos[u]++];
                        if (!mark[id]){
                              mark[id] = true;
                              visit(v);
                  path.push_back(u);
            };
            visit(s);
            reverse(path.begin(), path.end());
            if (path.size() != m / 2 + 1) path.clear();
```

```
result_type max_flow_lb(int source, int sink) {
            int n = adj.size() - 2;
            vector<flow_type> delta(n + 2);
            for (int u = 0; u < n; ++u)
                  for (auto &e : adj[u]) {
                        delta[u] -= e.flow;
                        delta[e.dst] += e.flow;
            result type sum = 0;
            int s = n, t = n + 1;
            for (int u = 0; u < n; ++u) {
                  if (delta[u] > 0) {
                        add_edge(s, u, delta[u], 0);
                        sum += delta[u];
                  else if (delta[u] < 0) add_edge(u, t, -delta[u], 0);</pre>
            add_edge(sink, source, oo, 0);
            if (max_flow(s, t) != sum) return -1; // no solution
            result_type flow = adj[sink].back().flow;
            adj[sink].pop_back();
            adj[source].pop_back();
            return flow + max_flow(source, sink);
      std::vector<std::vector<edge>> adj;
private:
      std::vector<int> que;
      std::vector<int> level;
      std::vector<int> edge_pos;
      inline edge &rev(const edge &e) {return adj[e.dst][e.rev];}
};
      return path;
// Euler path directed (path to use once all edges)
// the in-degree - out-degree == 0 for all nodes (euler cycle)
// or only exists two nodes with |in-degree - out-degree| == 1 (euler path)
vector<int> euler_path(vector<vector<int>> G, int s = 0) {
      int n = G.size(), m = 0;
      vector<int> deg(n);
      for (int u = 0; u < n; ++u) {
            m += G[u].size();
            for (auto v : G[u])
                  --deg[v]; // in-deg
            deg[u] += G[u].size(); // out-deg
      vector<int> path;
      int k = n - count(deg.begin(), deg.end(), 0);
      if (k == 0 || (k == 2 && deg[s] == 1)){
            function<void(int) > visit = [&](int u){
                  while (!G[u].empty()) {
                        int v = G[u].back();
                        G[u].pop_back();
                        visit(v);
```

path.push_back(u);

```
};
visit(s);
reverse(path.begin(), path.end());
```

3.6. Heavy light decomposition.

```
struct heavy_light{
      int heavy[MAXN], root[MAXN], depth[MAXN];
      int pos[MAXN], ipos[MAXN], parent[MAXN],n;
      int dfs(int s, int f, vector<int> *G) {
            parent[s] = f, heavy[s] = -1;
            int size = 1, maxSubtree = 0;
            for (auto u : G[s])
                  if (u != f) {
                        depth[u] = depth[s] + 1;
                        int subtree = dfs(u, s, G);
                        if (subtree > maxSubtree)
                              heavy[s] = u, maxSubtree = subtree;
                        size += subtree;
            return size;
      void go(vector<int> *G, int _n) {
            n = n;
            int ROOT = 0;
            depth[ROOT] = 0;
            dfs(ROOT, -1, G);
            vector<pii> nodes;
            for (int i = 0; i < n; i++)</pre>
                  if (parent[i] == -1 || heavy[parent[i]] != i)
                        nodes.push_back(pii(depth[i], i));
            sort(all(nodes));
```

3.7. Min Cost Flow.

```
// Maximum flow of minimum cost with potentials
// Complexity: O(min(m^2 n log n, m log n flow))
\label{eq:typename} \texttt{T, typename } \texttt{C} \ = \ \texttt{T} \gt
struct min_cost_flow{
      struct edge{
            int src, dst;
            T cap, flow;
            C cost;
            int rev;
      };
      int n:
      vector<vector<edge>> adj;
      min_cost_flow(int n) : n(n), adj(n) {}
      void add_edge(int src, int dst, T cap, C cost){
            adj[src].push_back({src, dst, cap, 0, cost,
                (int)adj[dst].size()});
            if (src == dst) adj[src].back().rev++;
            adj[dst].push_back({dst, src, 0, 0, -cost,
                   (int)adj[src].size() - 1});
      const C oo = numeric_limits<C>::max();
      vector<C> dist, pot;
      vector<edge*> prev;
```

```
if (path.size() != m + 1) path.clear();
}
return path;
}
```

```
for (int ii = 0, currentPos = 0; ii < nodes.size(); ++ii) {</pre>
                  int i = nodes[ii].s;
                  for (int u = i; u != -1; u = heavy[u], currentPos++) {
                         root[u] = i, pos[u] = currentPos, ipos[currentPos] = u;
      int lca(int u, int v, ST<T> &st) {
            int ans = oo;
            for (; root[u] != root[v]; v = parent[root[v]]){
                  if (depth[root[u]] > depth[root[v]]) swap(u, v);
                  ans = min(ans,
                         st.operation(1, 0, n - 1, pos[root[v]], pos[v]));
            if (depth[u] > depth[v]) swap(u, v);
            ans = min(ans, st.operation(1, 0, n - 1, pos[u], pos[v]));
            return ans; // LCA at u
      // The kth node (0 indexed) in the path from (u to root)
      int go_up(int u, int k){
            for (; pos[u] - pos[root[u]] < k; u = parent[root[u]])</pre>
                  k \rightarrow pos[u] - pos[root[u]] + 1;
            return ipos[pos[u] - k];
};
```

```
vector<T> curflow;
void bellman_ford(int s, int t){
      pot.assign(n, oo);
      pot[s] = 0;
      for (int it = 0, change = true; it < n && change; ++it) {</pre>
            change = false;
            for (int u = 0; u < n; ++u) if (pot[u] != oo) {</pre>
                         for (auto &e : adj[u])
                               if (e.flow < e.cap</pre>
                                     && pot[e.dst] > pot[u] + e.cost) {
                                     pot[e.dst] = pot[u] + e.cost;
                                     change = true;
bool dijkstra(int s, int t) {
      dist.assign(n, oo);
      prev.assign(n, nullptr);
      dist[s] = 0;
      curflow[s] = numeric_limits<T>::max();
      using pci = pair<C, int>;
      priority_queue<pci, vector<pci>, greater<pci>> pq;
```

```
pq.push({ 0, s });
      while (!pq.empty()) {
            C d; int u;
            tie(d, u) = pq.top();
            pq.pop();
            if (d != dist[u]) continue;
            for (auto &e : adj[u])
                  if (e.flow < e.cap && dist[e.dst] > dist[u]
                        + e.cost + pot[u] - pot[e.dst]) {
                        dist[e.dst] = dist[u] + e.cost
                                     + pot[u] - pot[e.dst];
                        prev[e.dst] = &e;
                        curflow[e.dst] = min(curflow[u], e.cap - e.flow);
                        pq.push({ dist[e.dst], e.dst });
      return dist[t] < oo;</pre>
pair<T, C> max_flow(int s, int t, bool neg_edges = true) {
```

3.8. **2-SAT.**

```
struct satisfiability_twosat{
      satisfiability_twosat(int n) : n(n), imp(2 * n) {}
      inline int neg(int u) const { return ~u; }
      inline void add_implication(int u, int v) {
            if (u == v) return;
            imp[u+n].emplace_back(v+n);
            imp[~v+n].emplace_back(~u+n);
      inline void add_clause(int u, int v) { add_implication(neg(u), v); }
      vector<bool> solve() const{
            vector<int> S, B, I(2 * n);
            function<void(int, int&)> dfs = [&](int u, int &t){
                  B.push_back(I[u] = S.size());
                  S.push_back(u);
                  for (int v : imp[u])
                        if (!I[v]) dfs(v, t);
                        else while (I[v] < B.back()) B.pop_back();</pre>
```

3.9. Strongly connected components.

```
// returns which nodes that belong to each scc
vector<vector<int>>> strongly_connected_components(const vector<vector<int>>> &g) {
    int n = g.size();
    vector<vector<int>>> scc;
    vector<vector<int>>> B, I(n, -1);
    function.void(int)> dfs = [&](int u) {
        B.push_back(I[u] = S.size());
        S.push_back(u);
        for (int v : g[u]) {
            if (!~I[v]) dfs(v);
            else while (I[v] < B.back()) B.pop_back();
        }
        if (I[u] == B.back()) {</pre>
```

```
T flow = 0;
            C cost = 0;
            curflow.assign(n, 0);
            if (neq_edges) bellman_ford(s, t);
            else pot.assign(n, 0);
            while (dijkstra(s, t)) {
                  for (int u = 0; u < n; ++u)</pre>
                         if (dist[u] < oo) pot[u] += dist[u];</pre>
                  T delta = curflow[t];
                   flow += delta;
                   for (edge *e = prev[t]; e != nullptr; e = prev[e->src]) {
                         e->flow += delta;
                         adj[e->dst][e->rev].flow -= delta;
                         cost += delta * e->cost;
            return {flow, cost};
};
```

```
scc.push_back({});
    B.pop_back();
    while (I[u] < (int)S.size()) {
        scc.back().push_back(S.back());
        I[S.back()] = n + scc.size();
        S.pop_back();
    }
};
for (int u = 0; u < n; ++u) if (!~I[u]) dfs(u);
return scc;
}</pre>
```

3.10. Virtual tree.

```
// Compute the lca of two nodes and the distance
// between them
// Compress a subset of k nodes into a tree with
// the same structure
// Notes: mp are only necessary for compress
// after compress every node u is mapped
// to mp[u]
// Complexity: O(n log n) build, O(1) lca,
// O(k log k) compress
struct virtual_tree{
      vector<int> tour, depth, pos, mp;
      vector<vector<int>> table;
      virtual_tree(vector<vector<int>> &adj) {
            pos = mp = vector<int>(adj.size());
            function < void (int, int, int) > dfs
                  = [&] (int u, int p, int d) {
                  pos[u] = tour.size();
                  tour.push_back(u);
                  depth.push_back(d);
                  for (int v : adj[u])
                        if (v != p) {
                              dfs(v, u, d+1);
                              tour.push_back(u);
                              depth.push_back(d);
            };
            dfs(0, -1, 0);
            int t = tour.size(), lg = __lg(t);
            table.resize(lg+1, vector<int>(t));
            iota(table[0].begin(), table[0].end(), 0);
            for (int j = 0; j < lg; ++j)
                  for (int i = 0; i + (1 << (j+1)) <= t; ++i)
                        table[j+1][i] = argmin(table[j][i],
                              table[j][i+(1<<j)]);
      inline int argmin(int i, int j)
      { return depth[i] < depth[j] ? i : j; }
```

3.11. Gomory Hu Tree.

```
// Gomory-Hu tree
// Complexity: O(n-1) max-flow call
template<typename flow_type>
struct edge{
    int src, dst;
    flow_type cap;
};
template<typename flow_type>
vector<edge<flow_type>> gomory_hu(dinic<flow_type> &adj) {
    int n = adj.n;
```

```
inline int lca(int u, int v) {
            int i = pos[u], j = pos[v];
            if (i > j) swap(i, j);
            int 1 = __lg(j - i);
            return i == j ? u : tour[argmin(table[1][i],
                  table[1][j-(1<<1)])];
      inline int dist(int u, int v){
            return depth[pos[u]] + depth[pos[v]] - 2*depth[pos[lca(u, v)]];
      vector<vector<pair<int, int>>> compress(vector<int> &a) {
            auto cmp = [&](const int &x, const int &y)
            { return pos[x] < pos[y]; };
            auto c = a;
            sort(c.begin(), c.end(), cmp);
            for (int i = 1, sz = c.size(); i < sz; ++i)</pre>
                  c.push_back(lca(c[i-1], c[i]));
            sort(c.begin(), c.end(), cmp);
            c.erase(unique(c.begin(), c.end()), c.end());
            vector<vector<pair<int, int>>> g(c.size());
            vector<int> s;
            // u become mp[u]
            for (auto &u : c) {
                  mp[u] = &u-&c[0];
                  while (!s.empty() && lca(s.back(), u) != s.back())
                        s.pop_back();
                  if (!s.emptv()){
                        int d = dist(s.back(), u);
                        g[mp[s.back()]].push_back({ mp[u], d });
                        g[mp[u]].push_back({ mp[s.back()], d });
                  s.push_back(u);
            return g;
};
      vector<edge<flow_type>> tree;
      vector<int> parent(n);
      for (int u = 1; u < n; ++u) {</pre>
```

4.1. Bitwise transform.

```
// Notes: if you use mod make sure 0 <= a[i], b[i] < mod when you call convolve
enum bit_op { AND, OR, XOR };
namespace bitwise_transform{
      template<int P, typename T>
      inline void add(T &x, T y){
            x += y;
            if (P != 0 \&\& x >= P) x -= P;
      template<br/>bit op B, int P, bool inv = false, typename T>
      void transform(T a[], int n){
            for (int len = 1; len < n; len <<= 1)</pre>
                  for (int i = 0; i < n; i += len << 1)</pre>
                         for (int j = i; j < i + len; ++j) {</pre>
                               T u = a[j], v = a[j + len];
                               if (B == AND) add<P>(a[j], inv ? P-v : v);
                               if (B == OR) add<P>(a[j + len], inv ? P-u : u);
                               if (B == XOR)
                                      add < P > (a[j], v),
                                      add<P>(a[j + len] = u, P-v);
            if (B == XOR && inv) {
                  int in = pow_mod(n, P-2, P);
```

4.2. Simplex.

```
// Description:
// Solve a canonical LP:
// min. c x
    s.t. A x \le b
// x >= 0
const double eps = 1e-9, oo = numeric_limits<double>::infinity();
typedef vector<double> vec;
typedef vector<vec> mat;
double simplexMethodPD(mat &A, vec &b, vec &c) {
      int n = c.size(), m = b.size();
      mat T(m + 1, vec(n + m + 1));
      vector<int> base(n + m), row(m);
      for (int j = 0; j < m; ++j) {
            for (int i = 0; i < n; ++i) T[j][i] = A[j][i];</pre>
            T[j][n + j] = 1;
            base[row[j] = n + j] = 1;
            T[j][n + m] = b[j];
      for (int i = 0; i < n; ++i) T[m][i] = c[i];</pre>
      while (1) {
            int p = 0, q = 0;
            for (int i = 0; i < n + m; ++i)
                  if (T[m][i] <= T[m][p]) p = i;</pre>
            for (int j = 0; j < m; ++j)
                  if (T[j][n + m] \le T[q][n + m]) q = j;
            double t = min(T[m][p], T[q][n + m]);
            if (t >= -eps) {
                  vec x(n);
                  for (int i = 0; i < m; ++i)
                        if (row[i] < n) x[row[i]] = T[i][n + m];</pre>
                  // x is the solution
                  return -T[m][n + m]; // optimal
            if (t < T[q][n + m]){</pre>
```

```
for (int i = 0; i < n; ++i) {</pre>
                  if (P == 0) a[i] /= n;
                  else a[i] = (ll)a[i] * in % P;
template <br/>bit_op B, int P = 0, typename T>
vector<T> convolve(vector<T> a, vector<T> b) {
      int n = max(a.size(), b.size()), sz = 1;
      while (sz < n) sz <<= 1;
      a.resize(sz);
     b.resize(sz);
      transform<B, P>(a.data(), sz);
      transform < B, P > (b.data(), sz);
      for (int i = 0; i < sz; ++i) {</pre>
            if (P == 0) a[i] *= b[i];
            else a[i] = (ll)a[i] * b[i] % P;
      transform<B, P, true>(a.data(), sz);
      return a;
```

```
// tight on c -> primal update
            for (int j = 0; j < m; ++j)
                  if (T[j][p] >= eps)
                        if (T[j][p] * (T[q][n + m] - t)
                                    >= T[q][p] * (T[j][n + m] - t))
                              q = j;
            if (T[q][p] <= eps) return oo; // primal infeasible</pre>
     else{
            // tight on b -> dual update
            for (int i = 0; i < n + m + 1; ++i)
                  T[q][i] = -T[q][i];
            for (int i = 0; i < n + m; ++i)
                  if (T[q][i] >= eps)
                        if (T[q][i] * (T[m][p] - t)
                              >= T[q][p] * (T[m][i] - t))
                              p = i;
            if (T[q][p] <= eps) return -oo; // dual infeasible</pre>
     for (int i = 0; i < m + n + 1; ++i)
            if (i != p) T[q][i] /= T[q][p];
     T[q][p] = 1; // pivot(q, p)
     base[p] = 1;
     base[row[q]] = 0;
     row[q] = p;
     for (int j = 0; j < m + 1; ++j) if (j != q) {
                  double alpha = T[j][p];
                  for (int i = 0; i < n + m + 1; ++i)</pre>
                        T[j][i] -= T[q][i] * alpha;
return oo;
```

4.3. Number theoretic transform.

```
// Notes: mod = 2**k * c + 1 should be prime, k \ge max_degree
namespace ntt{
      const int mod = 998244353;
      const int root = 5; // primitive root of mod
      int base = 1;
      vector<int> roots:
      void ensure_base(int nbase) {
            if (nbase <= base) return;</pre>
            roots.resize(nbase);
             for (int mh = base; mh << 1 <= nbase; mh <<= 1) {</pre>
                   int wm = pow_mod(root, (mod - 1) / (mh << 1), mod);</pre>
                   roots[mh] = 1;
                   for (int i = 1; i < mh; ++i)</pre>
                         roots[i + mh] = (ll)roots[i + mh - 1] * wm % mod;
            base = nbase;
      void fft(int a[], int n, int sign) {
            ensure_base(n);
             for (int i = 1, j = 0; i < n - 1; ++i) {</pre>
                   for (int k = n >> 1; (j ^= k) < k; k >>= 1);
                   if (i < j) swap(a[i], a[j]);</pre>
            for (int m, mh = 1; (m = mh << 1) <= n; mh = m)</pre>
                   for (int i = 0; i < n; i += m)</pre>
```

4.4. Gauss.

```
const int oo = 0x3f3f3f3f3f;
const double eps = 1e-9;
int gauss(vector<vector<double>> a, vector<double> &ans) {
      int n = (int) a.size();
      int m = (int) a[0].size() - 1;
      vector<int> where (m, -1);
      for (int col = 0, row = 0; col < m && row < n; ++col) {</pre>
            int sel = row;
             for (int i = row; i < n; ++i)</pre>
                   if (abs(a[i][col]) > abs(a[sel][col])) sel = i;
            if (abs(a[sel][col]) < eps) continue;</pre>
             for (int i = col; i <= m; ++i) swap(a[sel][i], a[row][i]);</pre>
            where[col] = row;
             for (int i = 0; i < n; ++i) if (i != row) {</pre>
                          double c = a[i][col] / a[row][col];
                          for (int j = col; j <= m; ++j)</pre>
```

4.5. Hungarian.

```
// max weight matching
template<typename T>
T hungarian(const vector<vector<T>> &a) {
    int n = a.size(), m = a[0].size(), p, q; // n <= m
    vector<T> fx(n, numeric_limits<T>::min()), fy(m, 0);
    vector<int> x(n, -1), y(m, -1);
    for (int i = 0; i < n; ++i)
        for (int j = 0; j < m; ++j) fx[i] = max(fx[i], a[i][j]);
    for (int i = 0; i < n;) {</pre>
```

```
for (int j = i; j < i + mh; ++j) {
                        int y = (ll)a[j + mh] * roots[j - i + mh] % mod;
                        if ((a[j + mh] = a[j] - y) < 0) a[j + mh] += mod;
                        if ((a[j] += y) >= mod) a[j] -= mod;
     if (sign < 0) {
            int inv = pow_mod(n, mod - 2, mod);
            for (int i = 0; i < n; ++i) a[i] = (ll)a[i] * inv % mod;</pre>
            reverse (a + 1, a + n);
vector<int> convolve(vector<int> x, vector<int> y) {
     int n = x.size() + y.size() - 1, sz = 1;
     while (sz < n) sz <<= 1;
     x.resize(sz);
     y.resize(sz);
     fft(x.data(), sz, +1);
     fft(y.data(), sz, +1);
     for (int i = 0; i < sz; ++i)
           x[i] = (ll)x[i] * y[i] % mod;
     fft(x.data(), sz, -1);
     x.resize(n);
     return x;
```

```
vector<int> t(m, -1), s(n + 1, i);
for (p = q = 0; p <= q && x[i] < 0; ++p)
    for (int k = s[p], j = 0; j < m && x[i] < 0; ++j)
        // be careful with comparison on doubles
        if (fx[k] + fy[j] == a[k][j] && t[j] < 0) {
            s[++q] = y[j], t[j] = k;
            if (s[q] < 0) for (p = j; p >= 0; j = p)
            y[j] = k = t[j], p = x[k], x[k] = j;
}
```

4.6. Integrate.

```
// Numerical Integration (Adaptive Gauss--Lobatto formula)
// Description:
// Gauss--Lobatto formula is a numerical integrator
// that is exact for polynomials of degree <= 2n+1.
// Adaptive Gauss--Lobatto recursively decomposes the
// domain and computes integral by using G-L formula.
// Complexity:
// O(#pieces) for a piecewise polynomials.
// In general, it converges in O(1/n^6) for smooth functions.
// For (possibly) non-smooth functions, this is the best integrator.
template <class F>
double integrate(F f, double lo, double hi, double eps = 1e-9) {
    const double th = eps / 1e-14; // (= eps / machine_epsilon)
    function<double(double, double, double, double, int)> rec =
    [&] (double x0, double x6, double y0, double y6, int d) {
```

4.7. NTT with arbitrary mod.

```
// Notes: fft core function doesn't normalize when
// call it with sign=-1, you must do it be yourself,
// implementing your own point is much faster
// ** #define double ld if you have precision issues
// (probably for n around 5e5) **
namespace fft{
      typedef complex<double> point;
      // n must be a power of 2, sign must be +1 or -1
      void fft_core(point a[], int n, int sign = +1) {
            const double theta = 8 * sign
                        * atan(static_cast<point::value_type>(1.0)) / n;
            for (int i = 0, j = 1; j < n - 1; ++j) {
                  for (int k = n >> 1; k > (i ^= k); k >>= 1);
                  if (j < i) swap(a[i], a[j]);</pre>
            for (int m, mh = 1; (m = mh << 1) <= n; mh = m)</pre>
                  for (int i = 0, irev = 0; i < n; i += m) {</pre>
                        point w = exp(point(0, theta * irev));
                        for (int k = n >> 2; k > (irev ^= k); k >>= 1);
                        for (int j = i; j < mh + i; ++j) {</pre>
                              int k = j + mh; point x = a[j] - a[k];
                               a[j] += a[k]; a[k] = w * x;
      vector<point> convolve(vector<point> &a, vector<point> &b) {
            int n = a.size(), m = b.size(); int sum = n + m;
            while (sum != (sum & -sum)) sum += (sum & -sum);
            while (a.size() < sum) a.push_back(point(0, 0));</pre>
            while (b.size() < sum) b.push_back(point(0, 0));</pre>
            fft_core(a.data(), a.size(), 1);
```

```
else ++i;
T ret = 0:
for (int i = 0; i < n; ++i) ret += a[i][x[i]];</pre>
return ret:
      const double a = sqrt(2.0 / 3.0), b = 1.0 / sqrt(5.0);
      double x3 = (x0 + x6) / 2, y3 = f(x3), h = (x6 - x0) / 2;
      double x1 = x3 - a * h, x2 = x3 - b * h, x4 = x3 + b * h, x5 = x3 + a * h;
      double y1 = f(x1), y2 = f(x2), y4 = f(x4), y5 = f(x5);
      double I1 = (y0 + y6 + 5 * (y2 + y4)) * (h / 6);
      double I2 = (77*(y0+y6)+432*(y1+y5)+625*(y2+y4)+672*y3)*(h/1470);
      if (x3 + h == x3 | | d > 50) return 0.0;
      if (d > 4 && th + (I1 - I2) == th) return I2; // avoid degeneracy
      return (double) (rec(x0, x1, y0, y1, d + 1) + rec(x1, x2, y1, y2, d + 1)
                         + \operatorname{rec}(x2, x3, y2, y3, d + 1) + \operatorname{rec}(x3, x4, y3, y4, d + 1)
                         + rec(x4, x5, y4, y5, d + 1) + rec(x5, x6, y5, y6, d + 1));
return rec(lo, hi, f(lo), f(hi), 0);
      fft_core(b.data(), b.size(), 1);
      vector<point> res(sum);
      for (int i = 0; i < sum; i++) res[i] = a[i] * b[i];</pre>
      fft_core(res.data(), res.size(), -1);
      for(auto &p : res) p /= res.size();
      return res;
// \mod < 2^31
vector<int> convolve(const vector<int> &a,const vector<int> &b,int mod) {
      int n = a.size() + b.size() - 1;
      for (int k : \{1, 2, 4, 8, 16\}) n = (n >> k); ++n;
      vector<point> pa(n), pb(n);
      for (int i = 0; i < n; ++i) {</pre>
            if (i < a.size())
                  pa[i] = point(a[i] >> 15, a[i] & ((1 << 15) - 1));
            if (i < b.size())
                  pb[i] = point(b[i] >> 15, b[i] & ((1 << 15) - 1));
      fft_core(pa.data(), n, +1);
      fft_core(pb.data(), n, +1);
      vector<point> c(n), d(n);
      for (int i = 0; i < n; ++i) {</pre>
            int j = (n - i) & (n - 1);
            point u = (pa[i] + conj(pa[j])) * point(0.5, +0.0);
            point v = (pa[i] - conj(pa[j])) * point(0.0, -0.5);
            point x = (pb[i] + conj(pb[j])) * point(0.5, +0.0);
            point y = (pb[i] - conj(pb[j])) * point(0.0, -0.5);
            c[i] = u * (x + y * point(0, 1));
            d[i] = v * (x + y * point(0, 1));
            c[i] /= n;
            d[i] /= n;
```

```
}
fft_core(c.data(), n, -1);
fft_core(d.data(), n, -1);
vector<int> ans(a.size() + b.size() - 1);
for (int i = 0; i < (int)ans.size(); ++i) {
    int u = llround(real(c[i])) % mod;
    int v = llround(imag(c[i])) % mod;
    int x = llround(real(d[i])) % mod;</pre>
```

4.8. Interpolation.

```
res[i] += y[k] * temp[i];
swap(last, temp[i]);
temp[i] -= last * x[k];
}
return res;
}
```

5. Number Theory

5.1. Diophantine Equation.

```
// returns (d, x, y) such that d = gcd(a, b) = ax + by
ll extended_euclid(ll a, ll b, ll &x, ll &y) {
    if (b == 0) { x = 1, y = 0; return a; }
    ll r = extended_euclid(b, a % b, y, x);
    y -= a / b * x;
    return r;
}
```

5.2. Miller Rabin.

```
bool witness(ll a, ll s, ll d, ll n) {
    ll x = pow(a, d, n);
    if (x == 1 || x == n - 1) return 0;
    for (int i = 0; i < s - 1; i++) {
            x = mul(x, x, n);
            if (x == 1) return 1;
            if (x == n - 1) return 0;
    }
    return 1;
}
bool miller_rabin(ll n) {</pre>
```

5.3. Pollard Rho.

```
// return not trivial divisor of n
11 pollard_rho(l1 n) {
    if (!(n & 1)) return 2;
    while (1) {
        11 x = (11) rand() % n, y = x;
        11 c = rand() % n;
        if (c == 0 || c == 2) c = 1;
        for (int i = 1, k = 2;; i++) {
            x = mul(x, x, n);
    }
}
```

```
// returns (x, y) such that c = ax + by
pair<11, 11> diophantine_equation(11 a, 11 b, 11 c) {
    11 g, x, y; g = extended_euclid(a, b, x, y);
    11 k = 0; // k e Z
    return { x * c / g + (k * b / g), y * c / g - (k * a / g) };
}
```

```
if (x >= c) x -= c;
else x += n - c;
if (x == n) x = 0;
if (x == 0) x = n - 1;
else x--;
11 d = __gcd(x > y ? x - y : y - x, n);
if (d == n) break;
if (d != 1) return d;
if (i == k) { y = x, k <<= 1; }</pre>
```

```
}
```

5.4. Chinese Remainder Theorem.

```
// return min x such that x % m[i] == a[i]

ll chinese_remainder_theorem(vector<ll> a, vector<ll> m) {
    int n = a.size();
    ll s = 1, t, ans = 0, p, q;
    for (auto i : m) s *= i;
    for (int i = 0; i < n; i++) {
        t = s / m[i];
        extended_euclid(t, m[i], p, q);
        ans = (ans + t * p * a[i]) % s;
    }
    if (ans < 0) ans += s;
    return ans;
}

// solve a * x = b (M)
ll linear_congruence(ll a, ll b, ll M) {
    return chinese_remainder_theorem(vector<ll> (1, b * pow(a, euler_phi(M)-1, M) % M), vector<ll>(1, M));
```

5.5. Discrete Logarithm.

```
11 dlog(l1 a, l1 b, l1 M) {
    map<l1, l1> _hash;
    l1 n = euler_phi(M), k = sqrt(n)+10;
    for(l1 i = 0, t = 1; i < k; ++i) {
        _hash[t] = i;
        t = mul(t, a, M);
    }</pre>
```

5.6. Discrete Roots.

5.7. Modular Arithmetics.

```
typedef long long 11;
typedef vector<11> vec;
typedef vector<vec> mat;
// inverse of 1, 2, ..., n mod P in O(n) (P must be prime)
vector<11> inverses(int n, int P){
```

```
return 0;
}
```

```
}
// Solve x=ai(mod mi), for any i and j, (mi,mj)|ai-aj
// Return (x0,M) M=[ml..mn]. All solutions are x=x0+t*M
// Note: be carful with the overflow in the multiplication
pair<ll, ll> linear_congruences(const vector<ll> &a, const vector<ll> &m){
    int n = a.size();
    ll u = a[0], v = m[0], p, q;
    for (int i = 1; i < n; ++i){
        ll r = gcd(v, m[i], p, q), t = v;
        if ((a[i] - u) % r) return {-1, 0}; // no solution
        v = v / r * m[i];
        u = ((a[i] - u) / r * p * t + u) % v;
    }
    if (u < 0) u += v;
    return {u, v};
}
</pre>
```

```
11 c = pow(a, n - k, M);
for(11 i = 0; i * k < n; i++) {
        if(_hash.find(b) != _hash.end()) return i * k + _hash[b];
        b = mul(b, c, M);
}
return -1;
}</pre>
```

```
vector<ll> inv(n + 1, 1);
for (int i = 2; i <= n; ++i)
    inv[i] = inv[P % i] * (P - P / i) % P;
return inv;</pre>
```

```
template <typename T, typename U>
T pow_mod(T a, U b, int mod) {
     T r = 1:
      for (; b > 0; b >>= 1) {
            if (b & 1) r = (11)r * a % mod;
            a = (11)a * a % mod;
      return r;
11 inv(ll b, ll M) {
      11 u = 1, x = 0, s = b, t = M;
      while (s) {
            11 q = t / s;
            swap(x -= u * q, u);
            swap(t -= s * q, s);
      return (x \% = M) >= 0 ? x : (x + M);
// solve a x == b \pmod{M} (sol iff (a, m) | b same as (a, m) | (b, m))
ll div(ll a, ll b, ll M) {
      11 u = 1, x = 0, s = a, t = M;
      while (s){
            11 q = t / s;
            swap(x -= u * q, u);
            swap(t -= s * q, s);
      if (b % t) return -1; // infeasible
```

5.8. Primitive Root.

```
// only prime and p>2, O(sqrt(p))
ll primitive_root(ll p){
      auto v = prime_divisors(p - 1);
      for (ll q = 1;; q++) {
           bool ok = 1;
            for (auto d : v)
                  if (pow(q, (p-1) / d, p) == 1) {
                        ok = 0;
                        break;
            if (ok) return g;
// Note: Only 2, 4, p^n, 2p^n have primitive roots
ll primitive_root(ll m) {
      if (m == 1) return 0;
      if (m == 2) return 1;
      if (m == 4) return 3;
      auto pr = primes(0, sqrt(m) + 1); // fix upper bound
     11 t = m;
      if (!(t & 1)) t >>= 1;
      for (ll p : pr) {
            if (p > t) break;
            if (t % p) continue;
                  t /= p;
            while (t % p == 0);
```

```
return (x < 0 ? (x + M) : x) * (b / t) % M;
// assume: M is prime (singular ==>
mat inv(mat A, ll M) {
      int n = A.size();
      mat B(n, vec(n));
      for (int i = 0; i < n; ++i) B[i][i] = 1;</pre>
      for (int i = 0; i < n; ++i) {
            int j = i;
            while (j < n && A[j][i] == 0) ++j;
            if (j == n) return {};
            swap(A[i], A[j]);
            swap(B[i], B[j]);
            11 inv = div(1, A[i][i], M);
            for (int k = i; k < n; ++k) A[i][k] = A[i][k] * inv % M;</pre>
            for (int k = 0; k < n; ++k) B[i][k] = B[i][k] * inv % M;
            for (int j = 0; j < n; ++j) {</pre>
                  if (i == j || A[j][i] == 0) continue;
                  11 cor = A[j][i];
                  for (int k = i; k < n; ++k)
                        A[j][k] = (A[j][k] - cor * A[i][k] % M + M) % M;
                  for (int k = 0; k < n; ++k)
                         B[j][k] = (B[j][k] - cor * B[i][k] % M + M) % M;
      return B;
            if (t > 1 || p == 2) return 0;
      11 x = euler_phi(m), y = x, n = 0;
      vector<11> f(32);
      for (ll p : pr) {
            if (p > y) break;
            if (y % p) continue;
                  y /= p;
            while (y % p == 0);
            f[n++] = p;
      if (y > 1) f[n++] = y;
      for (11 i = 1; i < m; ++i) {</pre>
            if (__gcd(i, m) > 1) continue;
            bool flag = 1;
            for (11 j = 0; j < n; ++j) {
                  if (pow(i, x / f[j], m) == 1) {
                         flag = 0;
                         break;
```

if (flag) return i;

return 0;

6.1. Suffix Array.

```
// Notes: The suffix starting in |S| is always the lowest
// and have lcp 0 with the next suffix.
// lcp[i] is the longest common prefix between
// the suffix in sa[i] and sa[i-1]
struct suffix_array{
     int n:
     vector<int> sa, lcp, rank;
     template<typename RAIter>
     suffix array(const RAIter &bq, const RAIter &nd, int alp = 256)
            : n(nd - bg + 1), sa(n), lcp(n), rank(n) {
           vector<int> ws(max(n, alp));
           auto &x = lcp, &y = rank;
           copy(bg, nd, x.begin());
           iota(sa.begin(), sa.end(), 0);
            for (int j = 0, p = 0; p < n; j = max(1, j * 2), alp = p) {
                  p = j, iota(y.begin(), y.end(), n - j);
```

6.2. Aho-Corasick.

```
struct aho_corasick{
     static const int alpha = 26;
     vector<array<int, alpha>> go;
     vector<int> fail, endpos;
     aho_corasick() { add_node(); }
     int add_string(const string &str) {
           int e = 0;
            for (char c : str) {
                 if (!go[e][c-'a']){
                        int nn = add_node();
                        go[e][c-'a'] = nn;
                  e = go[e][c-'a'];
            ++endpos[e];
            return e;
     void build(){
            queue<int> que;
            for (int c = 0; c < alpha; ++c)
                 if (go[0][c]) que.push(go[0][c]);
```

6.3. Manacher.

```
for (; !que.empty(); que.pop()){
                  int e = que.front();
                  int f = fail[e];
                  for (int c = 0; c < alpha; ++c)
                        if (!go[e][c]) go[e][c] = go[f][c];
                        else {
                               fail[go[e][c]] = go[f][c];
                              endpos[go[e][c]] += endpos[go[f][c]];
                              que.push(go[e][c]);
private:
      int add_node(){
            int pos = go.size();
            go.emplace_back(array<int, alpha>());
            fail.emplace_back(0);
            endpos.emplace_back(0);
            return pos;
};
```

6.4. Z Algorithm.

```
// z[i] = length of the longest common prefix of s and s[i..n]
vector<int> zfunction(const string &s) {
   int n = s.length();
   vector<int> z(n, n);
   for (int i = 1, g = 0, f; i < n; ++i)
        if (i < g && z[i - f] != g - i) z[i] = min(z[i - f], g - i);</pre>
```

6.5. Suffix Tree.

```
template <typename charT, typename Container>
struct suffix tree{
      vector<charT> s;
      vector<Container> next;
      vector<int> spos, len, link;
      int node, pos, last;
      suffix_tree() { make_node(0), node = pos = 0; }
      int make_node(int p, int 1 = 2e9){
            spos.push_back(p);
            len.push_back(1);
            link.push_back(0);
            next.emplace_back();
            return spos.size() - 1;
      void extend(charT c){
            for (s.push_back(c), ++pos, last = 0; pos > 0;) {
                  int n = s.size();
                  while (pos > len[next[node][s[n - pos]]])
                        node = next[node][s[n - pos]], pos -= len[node];
                  charT edge = s[n - pos];
                  int v = next[node][edge];
                  charT t = s[spos[v] + pos - 1];
```

6.6. Maximal Suffix.

6.7. Minimum Rotation.

```
// minimum lexicographical rotation
int minimum_rotation(const string &s) {
   int n = s.length(), i = 0, j = 1, k = 0;
   while (i + k < 2 * n && j + k < 2 * n) {
      char a = i + k < n ? s[i + k] : s[i + k - n];
      char b = j + k < n ? s[j + k] : s[j + k - n];
   if (a > b) {
      i += k + 1;
```

```
else {
                  for (q = max(q, i), f = i; q < n && s[q] == s[q - f]; ++q);
                  z[i] = q - f;
      return z;
                  if (v == 0) {
                        v = make_node(n - pos);
                        link[last] = node;
                        last = 0;
                  else if (t == c) { link[last] = node; return; }
                  else{
                        int u = make_node(spos[v], pos - 1);
                        next[u][c] = spos.size(), make_node(n - 1);
                        next[u][t] = v;
                        spos[v] += pos - 1;
                        len[v] -= pos - 1;
                        v = last = link[last] = u;
                  next[node][edge] = v;
                  if (node == 0) --pos;
                  else node = link[node];
      int get_len(int p) { return p == 0 ? 0 :
                               min(len[p], (int)s.size() - spos[p]); }
};
                  j = i + 1;
            else j += k + 1;
      return i;
                  k = 0;
                  if (i <= j) i = j + 1;
            else if (a < b) \{ j += k + 1; k = 0; if <math>(j <= i) j = i + 1; \}
            else ++k;
      return min(i, j);
```

7. Useful

7.1. Random.

```
mt19937 rng(chrono::high_resolution_clock::now().time_since_epoch().count());
                                                                                              static T randint(T lo, T hi) { return uniform_int_distribution<T>(lo, hi)(rng); }
template<typename T>
7.2. Launch Json.
                                                                                                       "MIMode": "qdb",
   "version": "0.2.0",
                                                                                                       "setupCommands": [
   "configurations": [
                                                                                                              "description": "Enable_pretty-printing_for_gdb",
         "name": "(gdb)_Launch",
                                                                                                             "text": "-enable-pretty-printing",
                                                                                                             "ignoreFailures": true
         "type": "cppdbg",
         "request": "launch",
         "program": "${fileDirname}/sol",
                                                                                                       ],
         "args": ["<", "${fileDirname}/test.in"],
                                                                                                       "preLaunchTask": "Build_active_file"
         "stopAtEntry": false,
         "cwd": "${workspaceFolder}",
         "environment": [],
         "console": "externalTerminal",
7.3. Tasks Json.
                                                                                                       "-Wall",
   "version": "2.0.0",
                                                                                                       "-D_GLIBCXX_DEBUG",
                                                                                                       "-D GLIBCXX DEBUG PEDANTIC",
   "tasks": [{
      "type": "shell",
                                                                                                       "${file}",
      "label": "Build active file",
                                                                                                       "-0",
      "command": "/usr/bin/g++",
                                                                                                       "${fileDirname}/sol"
      "args": [
         "-fdiagnostics-color=always",
                                                                                                 } ]
         "-std=c++17",
         "-g3",
```

8. Tips

Mobius Inversion: $g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d), \sum_{d|n} \mu(d) = [n == 1], \sum_{d|n} phi(n) = n$

Vertex Cover: Sea el grafo bipartito G(L, R). Sea M un matching máximo de G. Busco un corte mínimo. Un cubrimiento mínimo son los extremos de las aristas cortadas que no son s ni t. Sea $U = \{x \in L : x \text{ no pertenece al matching } M\}$. Sea $Z = \{x : x \text{ es alcanzable desde } U \text{ siguiendo algun camino alternante}\}$. Un vertex cover de G es $VC = (L - Z)U(R \cap Z)$. |VC| = |M|.

Maximum Independent Set: $MIS = VC^c$. |MIS| = n - |M|.

Edge Cover: Sea el grafo bipartito G(L, R). Sea M un matching máximo de G. EC = M + (1 arista incidente en cada vértice que no cubra el matching máximo).|EC| = n - |M|.

Mínima descomposición en cadenas: Duplicar los nodos y colocar las aristas con su correspondiente. Obtener el matching máximo. Reconstruir usando las aristas del matching máximo.

Máxima anticadena: Duplicar los nodos y colocar las aristas con su correspondiente. Obtenemos un cubrimiento por nodos del grafo. Tomamos los nodos que no tienen ninguna copia en el cubrimiento.

Unive	rsidad o	le la Ha	abana:	UH '	Тор																	24
Theoretical Computer Science Cheat Sheet Series	$\sum_{n=0}^{n} i = \frac{n(n+1)}{2}, \sum_{n=0}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}, \sum_{n=0}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$	i=1 $i=1$ $j=1$ In general:	$\sum_{i=1}^{m} i^m = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{m} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^m \right) \right]$	$\sum_{n=1}^{n-1} i^m = \frac{1}{m+1} \sum_{m=1}^{m} {m+1 \choose k} B_k n^{m+1-k}.$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$=\frac{1}{1-c},$	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{n} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$	Harmonic series: $H = \sum_{H} \frac{n}{n} = \sum_{i=1}^{n} \frac{n}{n} (n+1)_{H} = n(n-1)$	•	$\sum_{i=1} H_i = (n+1)H_n - n, \sum_{i=1} {n \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$	$a = \frac{n!}{(n-k)!k!},$ 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n,$ 3. $\binom{n}{k}$	$4. \ \begin{pmatrix} k \end{pmatrix} = \frac{1}{k} \binom{n}{k-1}, \qquad 5. \ \begin{pmatrix} k \end{pmatrix} = \binom{n}{k} + \binom{k-1}{k-1}, \\ 6. \ \begin{pmatrix} n \\ m \end{pmatrix} \binom{m}{k} = \binom{n}{k}, \qquad 7. \ \sum_{k} \binom{r+k}{k} = \binom{r+n+1}{n}, $		10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{l} = \binom{n}{l} = 1$, 12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,		$\begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}, 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \left(\frac{1}{n} \right)$	$\binom{n}{n-1-k}$, $24. \left\langle \binom{n}{k} \right\rangle = (k+1) \left\langle \binom{n-1}{k} \right\rangle + (n-k) \left\langle \binom{n-1}{k-1} \right\rangle$,	$\binom{n}{1} = 2^n - n - 1,$ 27. $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$	29. $\binom{n}{m} = \sum_{k=0}^{m} \binom{n+1}{k} (m+1-k)^n (-1)^k$, 30. $m! \binom{n}{m} = \sum_{k=0}^{n} \binom{n}{k} \binom{k}{n-m}$,	32. $\left\langle \binom{n}{0} \right\rangle = 1,$ 33. $\left\langle \binom{n}{n} \right\rangle = 0$ for $n \neq 0,$		37. ${n+1 \brace m+1} = \sum_{k} {n \choose k} {k \brack m} = \sum_{k=0}^{n} {k \brack m} (m+1)^{n-k},$
Theoretical Definitions	$f(n) = O(g(n))$ iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0.$	$f(n) = \Omega(g(n))$ iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0.$	$f(n) = \Theta(g(n))$ iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$f(n) = o(g(n))$ iff $\lim_{n \to \infty} f(n)/g(n) = 0$.	$\lim_{n \to \infty} a_n = a \qquad \text{iff } \forall \epsilon > 0, \ \exists n_0 \text{ such that} $ $ a_n - a < \epsilon, \ \forall n \ge n_0.$	$\sup S \qquad \qquad \text{least } b \in \mathbb{R} \text{ such that } b \geq s,$ $\forall s \in S.$	$\inf S \qquad \text{greatest } b \in \mathbb{R} \text{ such that } b \le s, \ \forall s \in S.$	$ \liminf_{n \to \infty} a_n \qquad \lim_{n \to \infty} \inf\{a_i \mid i \ge n, i \in \mathbb{N}\}. $	$\limsup_{n \to \infty} a_n \qquad \lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	($\binom{n}{k}$) Combinations: Size k subsets of a size n set.	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$\langle {n \atop k} \rangle$ 1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	$\binom{n}{k}$ 2nd order Eulerian numbers. C_n Catalan Numbers: Binary trees with $n+1$ vertices.	14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!,$ 15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_n$		$ \rangle = \left\langle {n \atop n-1} \right\rangle = 1,$	25. $\begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$ 26. $\begin{pmatrix} r \\ r \end{pmatrix}$	28. $x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n},$ 29. $\left\langle {n \atop m} \right\rangle = \sum_{k=0}^m$	31. $\binom{n}{m} = \sum_{k=0}^{n} \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!$	34. $\left\langle \left\langle {n\atop k} \right\rangle \right\rangle = (k+1) \left\langle \left\langle {n-1\atop k} \right\rangle \right\rangle + (2n-1-k) \left\langle \left\langle {n-1\atop k-1} \right\rangle \right\rangle$	36. $ \left\{ \begin{array}{l} x \\ x-n \end{array} \right\} = \sum_{k=0}^{n} \left\langle \left\langle \begin{array}{l} n \\ k \end{array} \right\rangle \left\langle \left\langle x+n-1-k \right\rangle, \\ 2n \end{array} \right\rangle, $

		Identities Cont.	Trees
•	38.	38. $\begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{n-k} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix},$ 39. $\begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{2n},$	
	40.	$ \binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k}, $ 41. $\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, $	
	42.	$ {m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k}, $ 43. ${m+n+1 \brack m} = \sum_{k=0}^{m} k(n+k) {n+k \brack k}, $	
	44.	$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \textbf{45.} \ (n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \text{for } n \ge m,$	$d_1,\dots,d_n\colon$ $\sum_{i=1}^n 2^{-d_i}\le 1,$
	46.	$ \binom{n}{n-m} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, 47. \begin{bmatrix} n \\ n-m \end{bmatrix} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, $	ති
	48.	48. $ {n \brace \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \brace \ell} {n-k \brack \ell} {n \choose k}, \qquad \textbf{49.} \begin{bmatrix} n \\ \ell+m \end{bmatrix} {\ell+m \brack \ell} = \sum_{k} {k \brack \ell} \begin{bmatrix} n-k \end{bmatrix} {n \choose k}. $	

Theoretical Computer Science Cheat Sheet

$a \ge 1, b > 1$	$=O(n^{\log_b a - \epsilon})$
Master method: $T(n) = aT(n/b) + f(n),$	If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \le cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two.

Let
$$t_i = \log_2 T_i$$
. Then we have $t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

Summing factors (example): Consider which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$ the following recurrence

$$T(n) = 3T(n/2) + n, \quad T(1) = 1.$$

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m = T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$.

Summing the right side we get
$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let
$$c = \frac{3}{2}$$
. Then we have
$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n (c^{\log_2 n} - 1)$$

$$= 2n(c^{(k-1)\log_c n})$$
$$= 2n^k - 2n,$$

$$=2n^{\kappa}-2n,$$
 and so $T(n)=3n^{k}-2n.$ Full history re-

currences can often be changed to limited history ones (example): Consider $T_i = 1 + \sum_{j=0} T_j, \quad T_0 = 1.$

$$T_{i+1} = 1 + \sum_{j=0}^{t} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

And so $T_{i+1} = 2T_i = 2^{i+1}$. $=T_i$.

Generating functions:

- 2. Sum both sides over all i for 1. Multiply both sides of the equawhich the equation is valid. tion by x^i .
- Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
 - 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:
$$\sum_{i\geq 0} g_{i+1} x^i = \sum_{i\geq 0} 2g_i x^i + \sum_{i\geq 0} x^i.$$

We choose $G(x) = \sum_{i \ge 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify:
$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$
 Solve for $G(x)$:

$$G(x) = \frac{x}{(1-x)(1-2x)}$$

Expand this using partial fractions: $\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$

$$G(x) = x \left(\frac{\frac{2}{1 - 2x}}{1 - 2x} - \frac{1}{1 - x} \right)$$
$$= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$$
$$= \sum_{i \ge 0} (2^{i+1} - 1) x^{i+1}.$$

So
$$g_i = 2^i - 1$$