5.11 Taylor's Formula

Theorem 5.11.1. (Taylor's Formula) For each nice function $g:[0,1] \to \mathbb{R}$ and $m \in \mathbb{N}$, we have

$$g(1) - g(0) = \sum_{k=1}^{m-1} \frac{g^{(k)}(0)}{k!} + \frac{g^{(m)}(c)}{m!}$$
 for some $c \in (0, 1)$

and

$$g(1) - g(0) - \sum_{k=1}^{m-1} \frac{g^{(k)}(0)}{k!} = \int_0^1 \int_0^{t_1} \cdots \int_0^{t_{m-1}} g^{(m)}(t_m) dt_m dt_{m-1} \cdots dt_1$$

Proof. If m = 1, then the proof is trivial by MVT and FTC.

Suppose the Theorem hold true for m, we prove the Theorem hold true for m+1.

We first prove

$$g(1) - g(0) - \sum_{k=1}^{m} \frac{g^{(k)}(0)}{k!} = \int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{m}} g^{(m+1)}(t_{m+1}) dt_{m+1} \cdots dt_{1}$$

By induction hypothesis,

$$g(1) - g(0) - \sum_{k=1}^{m} \frac{g^{(k)}(0)}{k!} = g(1) - g(0) - \sum_{k=1}^{m-1} \frac{g^{(k)}(0)}{k!} - \frac{g^{(m)}(0)}{m!}$$

$$= \int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{m-1}} g^{(m)}(t_{m}) dt_{m} dt_{m-1} \cdots dt_{1} - \frac{g^{(m)}(0)}{m!}$$

$$= \int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{m-1}} \left(g^{(m)}(t_{m}) - g^{(m)}(0) \right) dt_{m} dt_{m-1} \cdots dt_{1}$$

$$\stackrel{\text{FTC}}{=} \int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{m-1}} \int_{0}^{t_{m}} g^{(m+1)}(t_{m+1}) dt_{m+1} dt_{m} dt_{m-1} \cdots dt_{1} \text{ (done)}$$

We now prove

$$g(1) - g(0) - \sum_{k=1}^{m} \frac{g^{(k)}(0)}{k!} = \frac{g^{(m+1)}(c)}{(m+1)!}$$

By induction hypothesis,

$$g(1) - g(0) - \sum_{k=1}^{m} \frac{g^{(k)}(0)}{k!} = \int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{m}} g^{(m+1)}(t_{m+1}) dt_{m+1} \cdots dt_{1}$$

$$\stackrel{\text{Fubini}}{=} \int_{0}^{1} \int_{t_{m+1}}^{1} \int_{t_{m+1}}^{t_{1}} \cdots \int_{t_{m+1}}^{1} g^{(m+1)}(t_{m+1}) dt_{m} \cdots dt_{1} dt_{m+1}$$

$$= \int_{0}^{1} g^{(m+1)}(t_{m+1}) \int_{t_{m+1}}^{1} \int_{t_{m+1}}^{t_{1}} \cdots \int_{t_{m+1}}^{t_{m-1}} dt_{m} \cdots dt_{1} dt_{m+1}$$

$$= \int_{0}^{1} g^{(m+1)}(t_{m+1}) F(t_{m+1}) dt_{m+1}$$

$$\stackrel{\text{MVT}}{=} g^{(m+1)}(c) \int_{0}^{1} F(t_{m+1}) dt_{m+1} = \frac{g^{(m+1)}(c)}{(m+1)!} \text{ (done)}$$

Theorem 5.11.2. (Taylor's Formula) Given $f: \mathbb{R}^n \to \mathbb{R}$ such that $f \in \mathcal{C}^m(S)$ for some $S \stackrel{\text{open,convex}}{=} \mathbb{R}^n$, for each $a, b \in S$, if we define $g: [0,1] \to \mathbb{R}$ by

$$g(t) \triangleq f(a + (b - a)t)$$

then there exists $\theta \in (0,1)$ such that

$$f(b) - f(a) = \sum_{k=1}^{m-1} \frac{1}{k!} f^{(k)}(a; b - a) + \frac{1}{m!} f^{(m)}(g(\theta); b - a)$$

Proof. Observe

$$f(b) - f(a) = g(1) - g(0)$$

$$= \sum_{k=1}^{m-1} \frac{1}{k!} g^{(k)}(0) + g^m(\theta) \text{ for some } \theta$$

The problem can now be reduced into proving

$$g^{(k)}(t) = f^{(k)}(g(t); b - a)$$
 for all $k \in \{1, \dots, m\}$

We prove by induction, for base case, compute

$$g'(t) = \sum_{k=1}^{n} [(\partial_k f)(a + (b - a)t)] \cdot (b - a)_k$$

= $f'(a; b - a)$
120

Suppose

$$g^{(k)}(t) = f^{(k)}(g(t); b - a)$$

$$= \sum_{j_1, \dots, j_k \in \{1, \dots, n\}} \left[\left[(\partial_{j_1, \dots, j_k} f) \left(a + (b - a) \mathbf{i} \right) \right] \cdot \prod_{i=1}^k (b - a)_{j_i} \right]$$

This give us

$$g^{(k+1)}(t) = \sum_{j_1,\dots,j_k \in \{1,\dots,n\}} \frac{d}{dt} \Big[[(\partial_{j_1,\dots,j_k} f) (a + (b-a)t)] \cdot \prod_{i=1}^k (b-a)_{j_i} \Big]$$

$$= \sum_{j_1,\dots,j_k \in \{1,\dots,n\}} \Big[\Big[\frac{d}{dt} (\partial_{j_1,\dots,j_k} f) (a + (b-a)t) \Big] \cdot \prod_{i=1}^k (b-a)_{j_i} \Big]$$

$$= \sum_{j_1,\dots,j_k \in \{1,\dots,n\}} \Big[\Big[\sum_{j_{k+1} \in \{1,\dots,n\}} (\partial_{j_1,\dots,j_k,j_{k+1}} f) (a + (b-a)t) \cdot (b-a)_{j_{k+1}} \Big] \cdot \prod_{i=1}^k (b-a)_{j_i} \Big]$$

$$= \sum_{j_1,\dots,j_k,j_{k+1} \in \{1,\dots,n\}} \Big[\Big[(\partial_{j_1,\dots,j_k,j_{k+1}} f) (a + (b-a)t) \Big] \cdot \prod_{i=1}^{k+1} (b-a)_{j_i} \Big]$$

$$= f^{(k+1)}(g(t); b-a)$$

Note that our definition is

$$f^{(k)}(z;c) = \sum_{j_1,\dots,j_k \in \{1,\dots,n\}} \left[\left[\partial_{j_1,\dots,j_k} f(z) \right] \cdot \prod_{i=1}^k (c)_{j_i} \right]$$

When k = 1, then

$$f^{1}(z;c) = \sum_{j=1}^{n} \partial_{j} f(z) \cdot c_{j} = \nabla f(z) \cdot c = df_{z}(c)$$

5.12 Fourier Stuff

Definition 5.12.1. (Definition of Trigonometric Polynomials) By a trigonometric polynomials, we mean a function $P : \mathbb{R} \to \mathbb{C}$ of the form

$$P(x) = a_0 + \sum_{n=1}^{N} (a_n \cos nx + b_n \sin nx)$$
 where a_n, b_n are complex numbers

Note that

$$P(x) = \sum_{-N}^{N} c_n e^{inx}$$
 where $c_n = \frac{a_n}{2} + \frac{b_n}{2i}$ and $c_{-n} = \frac{a_n}{2} - \frac{b_n}{2i}$ for each $n \in \mathbb{N}$

Definition 5.12.2. (Definition of inner products and norms) Given a function f, g defined on $[-\pi, \pi]$, we say

$$\langle f, g \rangle \triangleq \frac{1}{2\pi} \int_{-\pi}^{\pi} f \overline{g} dx$$

and

$$||f||_2 \triangleq \sqrt{\langle f, f \rangle}$$

It is clear that $\{e^{inx}\}_{n\in\mathbb{Z}}$ is orthonormal in $L^2(\mu)$. From now, we will write $\phi_n \triangleq e^{inx}$.

Definition 5.12.3. (Definition of Fourier coefficients) For each $n \in \mathbb{Z}$, the *n*-th Fourier coefficients of f is

$$c_n \triangleq \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx = \langle f, \phi_n \rangle$$

and we write

$$s_N(f) = \sum_{-N}^{N} c_n e^{inx} = \sum_{-N}^{N} c_n \phi_n$$

Theorem 5.12.4. (Special-case of Riesz-Fischer's Theorem) If f is Riemann-integrable on $[-\pi, \pi]$, then

$$\lim_{N \to \infty} ||f - s_N||_2 = 0$$

Theorem 5.12.5. (Parseval's Identity) Suppose f, g are Riemann-integrable and $f \sim c_n$ and $g \sim \gamma_n$. We have

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f \overline{g} dx = \sum_{-\infty}^{\infty} c_n \overline{\gamma_n}$$