Definition 1. A uniform space $\langle X, \mathcal{D} \rangle$ is a set X paired with a filter \mathcal{D} (called its uniformity) of relations (called **entourages**) on X such that for each entourage $D \in \mathcal{D}$:

- D is reflexive, i.e., the diagonal $\Delta \subseteq D$.
- Its inverse $D^{-1} = \{ \langle y, x \rangle : \langle x, y \rangle \in D \} \in \mathcal{D}$.
- There exists $\frac{1}{2}D \in \mathcal{D}$ such that

$$2(\frac{1}{2}D) = \frac{1}{2}D \circ \frac{1}{2}D = \{\langle x,z \rangle : \exists y(\langle x,y \rangle, \langle y,z \rangle \in \frac{1}{2}D)\} \subseteq D$$

Note that since \mathcal{D} is a filter, for each $D \in \mathcal{D}$, the symmetric relation $D \cap D^{-1} \in \mathcal{D}$.

Proposition 2. For each $D \in \mathcal{D}$ and $n < \omega$ there exists $\frac{1}{2^{n+1}}D \in \mathcal{D}$ such that

$$2(\frac{1}{2^{n+1}}D) = \frac{1}{2^{n+1}}D \circ \frac{1}{2^{n+1}}D \subseteq \frac{1}{2^n}D$$

and if $2E \subseteq \frac{1}{2^n}D$, then $E \subseteq \frac{1}{2^{n+1}}D$.

Definition 3. For an entourage $D \in \mathcal{D}$, let $D[x] = \{y : (x,y) \in D\}$ be the D-neighborhood of x. The uniform topology for a uniform space $\langle X, \mathcal{D} \rangle$ is generated by the base $\{D[x] : x \in X, D \in \mathcal{D}\}$.

Theorem 4. A space X is uniformizable (its topology is the uniform topology for some uniformity) if and only if X is completely regular $(T_{3\frac{1}{3}})$.

Proposition 5. If X is a uniform space, then for all $x \in X$ and symmetric entourages D:

$$x \in \frac{1}{2}D[y] \text{ and } y \in \frac{1}{2}D[z] \Rightarrow x \in D[z]$$

and

$$\frac{1}{2}D[x]\subseteq\overline{\frac{1}{2}D[x]}\subseteq D[x]$$

Proof. The first is by definition of $\frac{1}{2}D$.

If $z \in \overline{\frac{1}{2}D[x]}$, it follows that there is $y \in \overline{\frac{1}{2}D[x]} \cap \overline{\frac{1}{2}D[z]}$ since $\overline{\frac{1}{2}D[z]}$ is an open neighborhood of z. Thus $(x,z) \in D \Rightarrow z \in D[x] \Rightarrow \overline{\frac{1}{2}D[x]} \subseteq D[x]$.

Definition 6. For a uniform space X, Bell's proximity game proceeds as follows.

In round 0, \mathscr{D} chooses an entourage D_0 , followed by \mathscr{P} choosing a point $p_0 \in X$.

In round n+1, \mathscr{D} chooses an entourage $D_{n+1} \subseteq D_n$, followed by \mathscr{P} choosing a point $p_{n+1} \in 4D_n[p_n]$.

Player \mathscr{D} wins if either $\bigcap_{n<\omega} 4D_n[p_n] = \emptyset$ or $\langle p_0, p_1, \ldots \rangle$ converges.

proximity.tex - Updated on March 8, 2014

Definition 7. For a uniform space X, the simplified proximal game $Prox_{D,P}(X)$ can be defined as follows:

In round 0, \mathscr{D} chooses a symmetric entourage D_0 , followed by \mathscr{P} choosing a point $p_0 \in X$.

In round n+1, \mathscr{D} chooses a symmetric entourage D_{n+1} , followed by \mathscr{P} choosing a point $p_{n+1} \in \left(\bigcap_{m \leq n} D_m\right)[p_n]$.

Player
$$\mathscr{D}$$
 wins if either $\bigcap_{n<\omega}\left(\bigcap_{m\leq n}D_m\right)[p_n]=\emptyset$ or $\langle p_0,p_1,\ldots\rangle$ converges.

Theorem 8. \mathscr{D} has a winning perfect-information strategy in Bell's game if and only if $\mathscr{D} \uparrow Prox_{D,P}(X)$.

Proof. Let σ be a winning perfect information strategy for \mathscr{D} in Bell's game. We define a perfect information strategy τ in the simplified game to yield symmetric entourages $\tau(p \upharpoonright n) = \sigma(p \upharpoonright n) \cap (\sigma(p \upharpoonright n))^{-1}$ for all partial attacks $p \upharpoonright n$. Note that $\tau(p \upharpoonright n) = \bigcap_{m \le n} \tau(p \upharpoonright m)$.

If p attacks τ in the simplified game, $p(n+1) \in \left(\bigcap_{m \leq n} \tau(p \upharpoonright m)\right)[p(n)] = \tau(p \upharpoonright n)[p(n)] \subseteq \sigma(p \upharpoonright n)[p(n)] \subseteq 4\sigma(p \upharpoonright n)[p(n)]$, so p attacks σ in Bell's game. Thus either p converges, or

$$\emptyset = \bigcap_{n < \omega} 4\sigma(p \upharpoonright n)[p(n)] \supseteq \bigcap_{n < \omega} \tau(p \upharpoonright n)[p(n)] = \bigcap_{n < \omega} \left(\bigcap_{m \le n} \tau(p \upharpoonright n)\right)[p(n)]$$

For the other direction, let σ be a winning perfect information strategy for \mathscr{D} in the simplified game such that $\sigma(p \upharpoonright n) = \bigcap_{m \leq n} \sigma(p \upharpoonright m)$. Define the perfect information strategy τ in Bell's Game such that $4\tau(p \upharpoonright n) \subseteq \sigma(p \upharpoonright n)$ and $\tau(p \upharpoonright n) = \bigcap_{m \leq n} \tau(p \upharpoonright m)$ for all partial attacks $p \upharpoonright n$.

If p attacks τ in Bell's game, $p(n) \in 4\tau(p \upharpoonright n) \subseteq \sigma(p \upharpoonright n) = \bigcap_{m \le n} \sigma(p \upharpoonright m)$, so p attacks σ in the simplified game. Thus either p converges, or

$$\emptyset = \bigcap_{n < \omega} \left(\bigcap_{m \le n} \sigma(p \upharpoonright n) \right) [p(n)] = \bigcap_{n < \omega} \sigma(p \upharpoonright n) [p(n)] \supseteq \bigcap_{n < \omega} 4\tau(p \upharpoonright n) [p(n)] \supseteq \bigcap_{n < \omega} \tau(p \upharpoonright n) [p(n)]$$

Proposition 9. \mathscr{P} has a winning perfect-information strategy in Bell's game if and only if $\mathscr{P} \uparrow Prox_{D,P}(X)$.

Proof. Similar to the previous.
$$\Box$$

Definition 10. A uniform space is **proximal** if $\mathcal{D} \uparrow Prox_{D,P}(X)$.

Definition 11. For a space X and a point $x \in X$, the W-convergence-game $Con_{O,P}(X,x)$ proceeds as follows.

In round 0, \mathscr{O} chooses a neighborhood U_n of x, followed by \mathscr{P} choosing a point $p_n \in \bigcap_{m \leq n} U_m$.

Player \mathcal{O} wins if $\langle p_0, p_1, \ldots \rangle$ converges.

Definition 12. A space is W if $\mathcal{O} \uparrow Con_{O,P}(X,x)$ for all $x \in X$.

Definition 13. For each finite tuple (m_0, \ldots, m_{n-1}) , we define the k-tactical fog-of-war

$$T_k(\langle m_0,\ldots,m_{n-1}\rangle) = \langle m_{n-k},\ldots,m_{n-1}\rangle$$

and the k-Marköv fog-of-war

$$M_k(\langle m_0, \dots, m_{n-1} \rangle) = \langle \langle m_{n-k}, \dots, m_{n-1} \rangle, n \rangle$$

So $P \uparrow G$ if and only if there exists a winning strategy for P of the form $\sigma \circ T_k$, and $P \uparrow G$ if and only if there exists a winning strategy of the form $\sigma \circ M_k$.

Theorem 14. For all $x \in X$:

- $\mathscr{D} \uparrow Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow Con_{O,P}(X,x)$
- $\bullet \ \mathscr{D} \ {\underset{2k-tact}{\uparrow}} \ Prox_{D,P}(X) \Rightarrow \mathscr{O} \ {\underset{k-tact}{\uparrow}} \ Con_{O,P}(X,x)$
- $\mathscr{D} \underset{2k-mark}{\uparrow} Prox_{D,P}(X) \Rightarrow \mathscr{O} \underset{k-mark}{\uparrow} Con_{O,P}(X,x)$

Proof. Let σ witness $\mathscr{D} \underset{2k\text{-tact}}{\uparrow} Prox_{D,P}(X)$ (resp. $\mathscr{D} \underset{2k\text{-mark}}{\uparrow} Prox_{D,P}(X), \mathscr{D} \uparrow Prox_{D,P}(X)$). We define the k-tactical (resp. k-Marköv, perfect info) strategy τ such that

$$\tau \circ L_k(p) = \sigma \circ L_{2k}(\langle x, p(0), \dots, x, p(|p|-1)\rangle)[x] \cap \sigma \circ L_{2k}(\langle x, p(0), \dots, x, p(|p|-1), x\rangle)[x]$$

where L_{2k} is the 2k-tactical fog-of-war (resp. 2k-Marköv fog-of-war, identity) and L_k is the k-tactical fog-of-war (resp. k-Marköv fog-of-war, identity).

Let p attack τ . Consider the attack q against the winning strategy σ such that q(2n) = x and q(2n+1) = p(n), and let $D_n = \sigma \circ L_{2k}(q)$ and $E_n = \bigcap_{m \leq n} D_n$.

Certainly, $x \in E_{2n}[x] = E_{2n}[q(2n)]$ for any $n < \omega$. Note also for any $n < \omega$ that

$$p(n) \in \bigcap_{m \le n} \tau \circ L_k(p \upharpoonright n)$$

$$= \bigcap_{m \le n} (\sigma \circ L_{2k}(\langle x, p(0), \dots, x, p(m-1) \rangle)[x] \cap \sigma \circ L_{2k}(\langle x, p(0), \dots, x, p(m-1), x \rangle)[x])$$

$$= \bigcap_{m \le n} (D_{2m}[x] \cap D_{2m+1}[x]) = \bigcap_{m \le 2m+1} D_m[x] = E_{2m+1}[x]$$

so by the symmetry of E_{2n+1} , $x \in E_{2n+1}[p(n)] = E_{2n+1}[q(2n+1)]$. Thus $x \in \bigcap_{n < \omega} E_n[q(n)] \neq \emptyset$, and since σ is a winning strategy, the attack q converges. Since q(2n) = x, q must converge to x. Thus its subsequence p converges to x, and τ is a winning strategy in $Con_{O,P}(X,x)$.

Corollary 15. For all $x \in X$:

•
$$\mathscr{D} \underset{k\text{-tact}}{\uparrow} Prox_{D,P}(X) \Rightarrow \mathscr{O} \underset{k\text{-tact}}{\uparrow} Con_{O,P}(X,x)$$

$$\bullet \ \mathscr{D} \underset{k\text{-}mark}{\uparrow} Prox_{D,P}(X) \Rightarrow \mathscr{O} \underset{k\text{-}mark}{\uparrow} Con_{O,P}(X,x)$$

Corollary 16. All proximal spaces are W-spaces.

Theorem 17. Let $X \cup \{\infty\}$ be a uniformizable space such that X is discrete. Then

•
$$\mathscr{O} \uparrow Con_{O,P}(X \cup \{\infty\}, \infty) \Rightarrow \mathscr{D} \uparrow Prox_{D,P}(X \cup \{\infty\})$$

•
$$\mathscr{O} \underset{k\text{-}tact}{\uparrow} Con_{O,P}(X \cup \{\infty\}, \infty) \Rightarrow \mathscr{D} \underset{k\text{-}tact}{\uparrow} Prox_{D,P}(X \cup \{\infty\})$$

•
$$\mathscr{O} \underset{k-mark}{\uparrow} Con_{O,P}(X \cup \{\infty\}, \infty) \Rightarrow \mathscr{D} \underset{k-mark}{\uparrow} Prox_{D,P}(X \cup \{\infty\})$$

Proof. Note that the topology on $X \cup \{\infty\}$ is induced by the uniformity with equivalence relation entourages $D(U) = \Delta \cup U^2$ for each open neighborhood U of ∞ .

Let σ witness $\mathscr{D} \uparrow Con_{O,P}(X \cap \{\infty\}, \infty)$ (resp. $\mathscr{D} \uparrow Con_{O,P}(X \cap \{\infty\}, \infty)$), $\mathscr{D} \uparrow Con_{O,P}(X \cap \{\infty\}, \infty)$). We define the k-tactical (resp. k-Marköv, perfect info) strategy τ such that

$$\tau \circ L(p) = D(\sigma \circ L(p))$$

where L is the k-tactical fog-of-war (resp. k-Marköv fog-of-war, identity).

Let
$$p \in (X \cup \{\infty\})^{\omega}$$
 attack τ such that $\bigcap_{n < \omega} \tau(p \upharpoonright n)[p(n)] \neq \emptyset$.

If $\infty \in \bigcap_{n < \omega} \tau(p \upharpoonright n)[p(n)]$, it follows that p is an attack on σ . Since σ is a winning strategy, it follows that q and its subsequence p must coverge to ∞ .

Otherwise, $\infty \notin \tau(p \upharpoonright N)[p(N)]$ for some $N < \omega$, and then $\tau(p \upharpoonright N)[p(N)] = \{p(N)\}$ implies $p \to p(N)$.

Thus
$$\tau \circ L$$
 is a winning strategy.

Corollary 18. Let $X \cup \{\infty\}$ be a uniformizable space such that X is discrete. Then

- $\mathscr{O} \uparrow Con_{O,P}(X \cup \{\infty\}, \infty) \Leftrightarrow \mathscr{D} \uparrow Prox_{D,P}(X \cup \{\infty\})$
- $\mathscr{O} \underset{k\text{-}tact}{\uparrow} Con_{O,P}(X \cup \{\infty\}, \infty) \Leftrightarrow \mathscr{D} \underset{k\text{-}tact}{\uparrow} Prox_{D,P}(X \cup \{\infty\})$
- $\mathscr{O} \underset{k-mark}{\uparrow} Con_{O,P}(X \cup \{\infty\}, \infty) \Leftrightarrow \mathscr{D} \underset{k-mark}{\uparrow} Prox_{D,P}(X \cup \{\infty\})$

Proposition 19. For any $x \in X$ and $k \ge 1$,

- $\mathscr{O} \underset{k\text{-}tact}{\uparrow} Con_{O,P}(X,x) \Leftrightarrow \mathscr{O} \underset{tact}{\uparrow} Con_{O,P}(X,x)$
- $\bullet \ \ \mathscr{O} \underset{k-mark}{\uparrow} Con_{O,P}(X,x) \Leftrightarrow \mathscr{O} \underset{mark}{\uparrow} Con_{O,P}(X,x)$

Proof. If σ witnesses $\mathcal{O} \underset{k\text{-tact}}{\uparrow} Con_{O,P}(X,x)$, let $\tau(\emptyset) = \sigma(\emptyset)$ and

$$\tau(\langle q \rangle) = \bigcap_{i < k} \sigma(\langle \underbrace{x, \dots, x}_{k-i-1}, q, \underbrace{x, \dots, x}_{i} \rangle)$$

This is easily verified to be a winning strategy. The proof for $\mathcal{O} \uparrow Con_{O,P}(X,x)$ is analogous.

Corollary 20. Let $X \cup \{\infty\}$ be a uniformizable space such that X is discrete, and $k \geq 1$. Then

- $\mathscr{D} \underset{k\text{-}tact}{\uparrow} Prox_{D,P}(X \cup \{\infty\}) \Leftrightarrow O \underset{tact}{\uparrow} Prox_{D,P}(X \cup \{\infty\})$
- $\mathscr{D} \underset{k-mark}{\uparrow} Prox_{D,P}(X \cup \{\infty\}) \Leftrightarrow O \underset{mark}{\uparrow} Prox_{D,P}(X \cup \{\infty\})$

Proposition 21. For any uniform space X,

- $\mathscr{O} \underset{k\text{-tact}}{\uparrow} Prox_{D,P}(X) \Leftrightarrow \mathscr{O} \underset{2\text{-tact}}{\uparrow} Prox_{D,P}(X)$
- $\bullet \ \mathscr{O} \underset{k-mark}{\uparrow} Prox_{D,P}(X) \Leftrightarrow \mathscr{O} \underset{2-mark}{\uparrow} Prox_{D,P}(X)$

Proof. If σ witnesses $\mathscr{O} \uparrow_{k\text{-tact}} Con_{O,P}(X,x)$, let $\tau(\emptyset) = \sigma(\emptyset)$ and

$$\tau(\langle q \rangle) = \bigcap_{i < k} \sigma(\langle \underbrace{q, \dots, q}_{i} \rangle)$$

proximity.tex - Updated on March 8, 2014

$$\tau(\langle q, q' \rangle) = \bigcap_{i < k} \sigma(\langle \underbrace{q, \dots, q}_{k-i}, \underbrace{q', \dots, q'}_{i} \rangle)$$

This is easily verified to be a winning strategy. The proof for $\mathscr{O} \uparrow_{k\text{-mark}} Con_{O,P}(X,x)$ is analogous. \Box

Definition 22. The absolute proximal game $aProx_{D,P}(X)$ is analogous to $Prox_{D,P}(X)$, except \mathscr{D} may only win if p converges.

Definition 23. A uniformly locally compact space is a uniformizable space with a uniformly compact entourage M where $\overline{M[x]}$ is compact for all x.

Theorem 24. For any uniformly locally compact space X, $\mathscr{D} \uparrow Prox_{D,P}(X) \Leftrightarrow \mathscr{D} \uparrow aProx_{D,P}(X)$

Proof. Let M be a uniformly locally compact entourage. Let σ witness $\mathscr{D} \uparrow Prox_{D,P}(X)$ such that $\sigma(a) \subseteq M$ always (so $\overline{\sigma(a)[x]} \subseteq \overline{M[x]}$ is compact), and $a \supseteq b$ implies $\sigma(a) \subseteq \frac{1}{4}\sigma(b)$.

Let $\tau(p \upharpoonright n) = \frac{1}{2}\sigma(p \upharpoonright n)$. If p attacks τ in $aProx_{D,P}(X)$, then

$$p(n+1) \in \tau(p \upharpoonright n)[p(n)] = \frac{1}{2}\sigma(p \upharpoonright n)[p(n)]$$

and for

$$x \in \overline{\sigma(p \upharpoonright (n+1))[p(n+1)]} \subseteq \overline{\frac{1}{4}\sigma(p \upharpoonright n)[p(n+1)]} \subseteq \frac{1}{2}\sigma(p \upharpoonright n)[p(n+1)]$$

we can conclude $x \in \sigma(p \upharpoonright n)[p(n)]$. Thus

$$\sigma(p \upharpoonright (n+1))[p(n+1)] \subseteq \overline{\sigma(p \upharpoonright (n+1))[p(n+1)]} \subseteq \sigma(p \upharpoonright n)[p(n)]$$

Finally, note that p attacks the winning strategy σ in $Prox_{D,P}(X)$, but since the intersection of a chain of nonempty compact sets is nonempty:

$$\bigcap_{n<\omega}\sigma(p\upharpoonright n)[p(n)]=\bigcap_{n<\omega}\overline{\sigma(p\upharpoonright n)[p(n)]}\neq\emptyset$$

We conclude that p converges.

Corollary 25. A uniformaly locally compact space X is proximal if and only if $\mathscr{D} \uparrow aProx_{D,P}(X)$.

Theorem 26. For any uniformly locally compact proximal space X, $\mathscr{O} \uparrow Clus_{O,P}(X,H)$ for all compact $H \subseteq X$.

Proof. Let σ witness $\mathscr{D} \uparrow aProx_{D,P}(X)$ such that $p \supseteq q$ implies $\sigma(p) \subseteq \frac{1}{4}\sigma(q)$.

Let o(t) be the subsequence of t consisting of its odd-indexed terms.

We define $T(\emptyset)$, etc. as follows:

- Let $\emptyset \in T(\emptyset)$.
- Choose $m_{\emptyset} < \omega$, $h_{\emptyset,i} \in H$ for $i < m_{\emptyset}$, and $h_{\emptyset,i,j} \in H \cap \frac{1}{4}\sigma(\emptyset)[h_{\emptyset,i}]$ for $i, j < m_{\emptyset}$ such that

$$\{\frac{1}{4}\sigma(\emptyset)[h_{\emptyset,i}] : i < m_{\emptyset}\}$$

is a cover for H and such that for each $i < m_{\emptyset}$

$$\{\frac{1}{4}\sigma(\langle h_{\emptyset,i}\rangle)[h_{\emptyset,i,j}] : j < m_{\emptyset}\}$$

is a cover for $H \cap \overline{\frac{1}{4}\sigma(\emptyset)[h_{\emptyset,i}]}$.

• Let $\langle i \rangle \in T(\emptyset)$, $\langle i, h_{\emptyset,i} \rangle \in T(\emptyset)$, and $\langle i, h_{\emptyset,i}, j \rangle \in T(\emptyset)$ for $i, j < m_{\emptyset}$.

Suppose T(a), etc. are defined. We then define $T(a \land \langle x \rangle)$, etc. for

$$x \in \bigcup_{s \cap \langle i, h_{s,i}, j \rangle \in \max(T(a))} \frac{1}{4} \sigma(o(s) \cap \langle h_{s,i} \rangle) [h_{s,i,j}]$$

as follows:

- Let $T(a) \subseteq T(a^{\widehat{}}\langle x \rangle)$.
- Choose $t = s^{\widehat{}}\langle i, h_{s,i}, j, x \rangle$ such that $s^{\widehat{}}\langle i, h_{s,i}, j \rangle \in \max(T(a))$ and $x \in \frac{1}{4}\sigma(o(s)^{\widehat{}}\langle h_{s,i}\rangle)[h_{s,i,j}]$.
- Note that, assuming $o(s) \cap \langle h_{s,i} \rangle$ is a legal partial attack against σ , then

$$x \in \frac{1}{4}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}] \subseteq \frac{1}{4}\sigma(o(s))[h_{s,i,j}]$$

and

$$h_{s,i,j} \in \overline{\frac{1}{4}\sigma(o(s))[h_{s,i}]} \subseteq \frac{1}{2}\sigma(o(s))[h_{s,i}]$$

implies

$$x \in \sigma(o(s))[h_{s,i}]$$

and thus $o(s)^{\hat{}}\langle h_{s,i}, x \rangle = o(t)$ is a legal partial attack against σ .

• Choose $m_t < \omega$, $h_{t,k} \in H \cap \frac{1}{4}\sigma(o(s) \cap \langle h_{s,i} \rangle)[h_{s,i,j}]$ for $k < m_t$, and $h_{t,k,l} \in H \cap \frac{1}{4}\sigma(t)[h_{t,k}]$ for $k, l < m_t$ such that

$$\{\frac{1}{4}\sigma(o(t))[h_{t,k}]: k < m_t\}$$

is a cover for $H \cap \frac{1}{4}\sigma(o(s)^{\hat{}}(h_{s,i}))[h_{s,i,j}]$ and such that for each $k < m_t$

$$\{\frac{1}{4}\sigma(o(t)^{\frown}\langle h_{t,k}\rangle)[h_{t,i,j}]: l < m_t\}$$

is a cover for $H \cap \frac{1}{4}\sigma(o(t))[h_{t,k}]$.

• Note that, assuming o(t) is a legal partial attack against σ , then

$$h_{t,k} \in \overline{\frac{1}{4}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}]} \subseteq \frac{1}{2}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}]$$

and

$$x \in \frac{1}{4}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}]$$

implies

$$h_{t,k} \in \sigma(o(s) \widehat{\ } \langle h_{s,i} \rangle)[x]$$

and thus $o(t)^{\sim}\langle h_{t,k}\rangle$ is a legal partial attack against σ .

- Let $t \in T(a^{\ }\langle x \rangle)$, $t^{\ }\langle k \rangle \in T(a^{\ }\langle x \rangle)$, $t^{\ }\langle k, h_{t,k} \rangle \in T(a^{\ }\langle x \rangle)$, and $t^{\ }\langle k, h_{t,k}, l \rangle \in T(a^{\ }\langle x \rangle)$ for $k, l < m_t$.
- Note that assuming

$$\{\frac{1}{4}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}]: s^{\frown}\langle i, h_{s,i}, j\rangle \in \max(T(a))\}$$

covers H, then since

$$\{\frac{1}{4}\sigma(o(t)^{\frown}\langle h_{t,k}\rangle)[h_{t,k,l}]: s^{\frown}\langle i, h_{s,i}, j, x, k, h_{t,k}, l\rangle \in \max(T(a^{\frown}\langle x\rangle)) \setminus \max(T(a))\}$$

covers $H \cap \frac{1}{4}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}]$, we have that

$$\{\frac{1}{4}\sigma(o(t)^{\frown}\langle h_{t,k}\rangle)[h_{t,k,l}]:t^{\frown}\langle k,h_{t,k},l\rangle\in\max(T(a^{\frown}\langle x\rangle))\}$$

covers H.

With this we may define the perfect information strategy τ for \mathscr{O} in $Con_{O,P}(X,H)$ such that:

$$\tau(p \upharpoonright n) = \bigcup_{s \cap \langle i, h_{s,i}, j \rangle \in \max(T(p \upharpoonright n))} \frac{1}{4} \sigma(o(s) \cap \langle h_{s,i} \rangle) [h_{s,i,j}]$$

If p attacks τ , then it follows that $T(p \upharpoonright n)$ is defined for all $n < \omega$, so let $T(p) = \bigcup_{n < \omega} T(p \upharpoonright n)$. We note T(p) is an infinite tree with finite levels:

- \emptyset has exactly m_{\emptyset} successors $\langle i \rangle$.
- $s^{\hat{}}\langle i\rangle$ has exactly one successor $t^{\hat{}}\langle i, h_{s,i}\rangle$
- $s^{\widehat{}}\langle i, h_{s,i}\rangle$ has exactly m_s successors $t^{\widehat{}}\langle i, h_{s,i}, j\rangle$
- $s \cap \langle i, h_{s,i}, j \rangle$ has either no successors or exactly one successor $t \cap \langle i, h_{s,i}, j, x \rangle$

•	$t = s^{\frown}$	$\langle i, h_{s,i}, j \rangle$	$j, x \rangle$ has	exactly	m_t	successors	t^{\frown}	$\langle k$	\rangle
---	------------------	---------------------------------	--------------------	---------	-------	------------	--------------	-------------	-----------

Let $q' = \langle i_0, h_0, j_0, x_0, i_1, h_1, j_1, x_1, \ldots \rangle$ correspond to this infinite branch in T(p), and let $q = o(q') = \langle h_0, x_0, h_1, x_1, \ldots \rangle$. Note that by the construction of T(p), q is an attack on the winning strategy σ in $aProx_{D,P}(X)$, so it must converge. Since every other term of q is in H, it must converge to H. Then since q is a subsequence of p, p must cluster at H. \square

Corollary 27. For any uniformly locally compact proximal space, $\mathcal{O} \uparrow Con_{O,P}(X,H)$ for all compact $H \subseteq X$.

Proof. $\mathscr{O} \uparrow Con_{O,P}(X,H)$ if and only if $\mathscr{O} \uparrow Clus_{O,P}(X,H)$.

Corollary 28. A compact uniform space X is Corson compact if and only if it is proximal.

Proof. A characterization of Corson compact is having a W-set diagonal. If X is proximal compact, then X^2 is proximal compact, and its compact diagonal is a W-set.

Theorem 29. $\mathscr{O} \uparrow_{pre} Con_{O,P}(X,H)$ if and only if there exists a countable base around H.

Proof. Let $\{U_n : n < \omega\}$ be a countable base around H. We define the predetermined strategy $\sigma(n) = \bigcap_{m \leq n} U_m$. Let p attack $\sigma(n)$ - then if U is any neighborhood of H, we may choose $H \subseteq U_m \subseteq U$, and note that $\sigma(n) \subseteq U_m$ for $n \geq m$, and thus $p(n) \in U_m \subseteq U$ for all $n \geq m$. Thus σ is a winning strategy.

For the other direction, suppose there does not exist a countable base around H, and let $\sigma(n)$ be an arbitrary predetermined strategy. Since $\{\bigcap_{m\leq n}\sigma(m):n<\omega\}$ is not a countable base around H, we may choose an open set U around H such that $\bigcap_{m\leq n}\sigma(m)\not\subseteq U$ for all $n<\omega$. We may easily verify that if $p(n)\in\bigcap_{m\leq n}\sigma(m)\setminus U$ for all $n<\omega$, then p is a successful counterattack to σ .

Corollary 30. X is first countable if and only if $\mathscr{O} \underset{pre}{\uparrow} Con_{O,P}(X,x)$ for all $x \in X$

Corollary 31. $\mathcal{D} \uparrow_{pre} Prox_{D,P}(X)$ implies X is first countable.

Definition 32. Scattered Eberlein compact spaces are known as **strong Eberlein compact** spaces.

Theorem 33 (folklore). Scattered compact first-countable spaces are metrizable.

Corollary 34. If X is scattered compact and $\mathcal{O} \uparrow_{pre} Con_{O,P}(X,x)$ for all $x \in X$ (or $\mathcal{D} \uparrow_{pre} Prox_{D,P}(X)$), then X is metrizable.

Example 35. $\mathscr{D} \bigwedge_{\text{pre}} Prox_{D,P}(\omega_1^*)$

Proof. There does not exist a countable base around ∞ , so $\mathscr{O} \bigwedge_{\text{pre}} Con_{O,P}(X,\omega_1)$.

Example 36. $\mathscr{O} \underset{\text{tact}}{\uparrow} Con_{O,P}(\kappa^*, \infty)$ and $\mathscr{D} \underset{\text{tact}}{\uparrow} Prox_{D,P}(\kappa^*)$ for all cardinals κ

Proof. For $Con_{O,P}(\kappa^*,\infty)$, let $\sigma()=\sigma(\infty)=\kappa^*$ and $\sigma(x)=\kappa^*\setminus\{x\}$ otherwise. \square

Theorem 37. If H is a closed subset of X, then $\mathscr{D} \uparrow_{limit} Prox_{D,P}(X) \Rightarrow \mathscr{D} \uparrow_{limit} Prox_{D,P}(H)$ where \uparrow_{limit} is any of \uparrow , \uparrow_{k-tact} , or \uparrow_{k-mark} .

Proof. Let $\sigma \circ L$ witness $\mathscr{D} \uparrow_{\text{limit}} Prox_{D,P}(X)$. We define $\tau \circ L$ for \mathscr{D} in $Prox_{D,P}(H)$ as follows:

$$\tau \circ L(p \upharpoonright n) = \sigma \circ L(p \upharpoonright n) \cap H^2$$

Let p attack $\tau \circ L$. p also attacks the winning strategy $\sigma \circ L$, so either

$$\bigcap_{n<\omega}\left(\bigcap_{m\leq n}\tau\circ L(p\upharpoonright n)\right)[p(n)]\subseteq\bigcap_{n<\omega}\left(\bigcap_{m\leq n}\sigma\circ L(p\upharpoonright n)\right)[p(n)]=\emptyset$$

or p converges in X, and thus converges in H.

Theorem 38. If $\mathscr{D} \uparrow_{\underset{limit}{limit}} Prox_{D,P}(X_i)$ for $i < \omega$, then $\mathscr{D} \uparrow_{\underset{limit}{limit}} Prox_{D,P}(\prod_{i < \omega} X_i)$, where $\uparrow_{\underset{limit}{limit}} is \ either \uparrow \ or \ \uparrow_{\underset{k-mark}{l}}$.

Proof. A subbase for $\prod_{i<\omega} X_i$ is

$$\{\pi_i^{-1}(D): i < \omega, D \in \mathcal{D}_i\}$$

where π_i is the natural projection from $\left(\prod_{i<\omega}X_i\right)^2$ onto X_i^2 . (See Bell.)

For
$$p \in (\prod_{i < \omega} X_i)^{\omega}$$
, let $p_i \in X_i^{\omega}$ such that $p_i(n) = p(n)(i)$.

Let $\sigma_i \circ L$ witness $\mathscr{D} \uparrow \underset{\text{limit}}{\uparrow} Prox_{D,P}(X_i)$ for $i < \omega$, and assume without loss of generality that $\sigma_i \circ L$ always yields X_i^2 before round i.

Then we define the strategy $\tau \circ L$ for \mathscr{D} in $Prox_{D,P}(\prod_{i<\omega} X_i)$ as follows:

$$\tau \circ L(p \upharpoonright n) = \bigcap_{i \le n} \pi_i^{-1}(\sigma_i \circ L(p_i \upharpoonright n))$$

Let p attack $\tau \circ L$. If $\bigcap_{n < \omega} \left(\bigcap_{m \le n} \sigma_i(p_i \upharpoonright n) \right) [p_i(n)] = \emptyset$ for any $i < \omega$, it easily follows that $\bigcap_{n < \omega} \left(\bigcap_{m \le n} \tau(p \upharpoonright n) \right) [p(n)] = \emptyset$.

Otherwise, we assume that for each $i < \omega$, p_i converges to some $x_i \in X_i$. Thus p converges to $x = \langle x_0, x_1, \ldots \rangle$.

Note: I expect I should be able to do some clever things assuming $S(\kappa, \omega, \omega)$ to get a similar result for sigma products of dimension κ .

proximity.tex - Updated on March 8, 2014

Example 39.
$$\mathscr{D} \underset{\text{mark}}{\uparrow} Prox_{D,P}((\kappa^*)^{\omega})$$

Proof.
$$\mathscr{D} \uparrow_{\text{tact}} Prox_{D,P}(\kappa^*) + \text{previous result}$$

Theorem 40. For any predetermined absolutely proximal space X, $\mathscr{O} \uparrow_{pre} Con_{O,P}(X,H)$ for all compact $H \subseteq X$.

Proof. Let $\sigma(n)$ be a winning predetermined strategy for \mathscr{D} in the absolutely proximal game such that $\sigma(n+1) \subseteq \frac{1}{4}\sigma(n)$. For a given tree T, let $\max(T)$ denote its maximal nodes.

First we define $T(0) \subseteq \omega^{\leq 2}$.

- Let $\emptyset \in T(0)$.
- Choose $m_{\emptyset} < \omega$, $h_{\langle i \rangle} \in H$ for $i < m_{\emptyset}$, and $h_{\langle i,j \rangle} \in H \cap \overline{\frac{1}{4}\sigma(0)[h_{\langle i \rangle}]}$ for $i,j < m_{\emptyset}$ such that

$$\left\{ \frac{1}{4}\sigma(0)[h_{\langle i\rangle}] : i < m_{\emptyset} \right\}$$

is a cover for H and such that for each $i < m_{\emptyset}$

$$\left\{ \frac{1}{4}\sigma(1)[h_{\langle i,j\rangle}] : j < m_{\emptyset} \right\}$$

is a cover for $H \cap \overline{\frac{1}{4}\sigma(0)[h_{\langle i\rangle}]}$.

• Let $\langle i \rangle$ and $\langle i, j \rangle$ be in T(0) for $i, j < m_{\emptyset}$.

Now suppose $T(n) \subseteq \omega^{\leq 2n+2}$ is defined. We then define $T(n+1) \subseteq \omega^{\leq 2n+4}$ as follows:

- Let $T(n) \subseteq T(n+1)$.
- For each $t \in \max(T(n))$, choose $m_t < \omega$, $h_{t \cap \langle i \rangle} \in H \cap \frac{1}{4}\sigma(2n+2)[h_t]$ for $i < m_t$, and $h_{t \cap \langle i,j \rangle} \in H \cap \frac{1}{4}\sigma(2n+3)[h_{t \cap \langle i \rangle}]$ for $i,j < m_t$ such that

$$\left\{ \frac{1}{4}\sigma(2n+2)[h_{t} \cap \langle i \rangle] : i < m_t \right\}$$

is a cover for $H \cap \overline{\frac{1}{4}\sigma(2n+1)[h_t]}$ and such that for each $i < m_t$

$$\left\{ \frac{1}{4}\sigma(2n+3)[h_{t} \cap \langle i,j \rangle] : i < m_t \right\}$$

is a cover for $H \cap \overline{\frac{1}{4}\sigma(2n+2)[h_{t^{\frown}\langle i\rangle}]}$.

• For each $t \in \max(T(n))$ and each $i, j < m_t$, put $t \cap \langle i \rangle$ and $t \cap \langle i, j \rangle$ in T(n+1).

We now define the predetermined strategy τ for $\mathscr O$ in $Clus_{O,P}(X,H)$ such that:

$$\tau(n) = \bigcup_{t \in \max(T(n))} \frac{1}{4} \sigma(2n+1)[h_t]$$

In order for τ to be a legal strategy, we must show that $\tau(n)$ contains H. For n=0,

$$\tau(0) = \bigcup_{i,j < m_{\emptyset}} \frac{1}{4} \sigma(1) [h_{\langle i,j \rangle}]$$

Since $\left\{\frac{1}{4}\sigma(1)[h_{\langle i,j\rangle}]: j < m_{\emptyset}\right\}$ is a cover for $H \cap \overline{\frac{1}{4}\sigma(0)[h_{\langle i\rangle}]}$, and since $\left\{\frac{1}{4}\sigma(0)[h_{\langle i\rangle}]: i < m_{\emptyset}\right\}$ is a cover for H, $\tau(0)$ must contain H. A similar argument follows for $\tau(n)$.

Let p be an attack against τ such that $p(n) \in \bigcap_{m \le n} \tau(m)$. If we can construct an attack q against σ which shares a subsequence with p, then p must cluster. To find such a q, we construct a new tree T'.

We begin by setting

$$T'(0) = \{s : s \le \langle i, h_{\langle i \rangle}, j \rangle \text{ for } i, j < m_{\emptyset} \}$$

Since

$$p(0) \in \frac{1}{4}\sigma(1)[h_{\langle i,j\rangle}]$$

for some $i, j < m_{\emptyset}$, we may find $t \in \max(T'(0))$ such that $p(0) \in \frac{1}{4}\sigma(|o(t)|)[h_{e(t)}]$.

Assume that T'(n) is defined such that there is some $t \in \max(T'(n))$ where $p(n) \in \frac{1}{4}\sigma(|o(t)|)[h_{e(t)}]$. Then let

$$T'(n+1) = T'(n) \cup \{s : s \le t \widehat{\ } \langle p(n), i, h_{e(t) \widehat{\ } \langle i \rangle}, j \rangle \text{ for } i, j < m_{e(t)} \}$$

Note that

$$p(n+1) \in \bigcap_{m \le n+1} \tau(m) = \bigcap_{m \le n+1} \left(\bigcup_{t \in \max(T(m))} \frac{1}{4} \sigma(2m+1)[h_t] \right)$$

(Need details on why there is some t in $\max(T'(n+1))$ such that $p(n+1) \in \frac{1}{4}\sigma(|o(t)|)[h_{e(t)}]$.)

(Follow this up with choosing an infinite branch $q' \in T'$, and showing that q = o(q') is an attack on σ similar to perfect info result.)

Example 41. Let $X = I \times 2$ be the Alexandrov double interval. Then $\mathscr{D} \uparrow_{\text{pre}} Prox_{D,P}(X)$, but $\mathscr{D} \uparrow_{\text{mark}} Prox_{D,P}(X)$.

Proof. We assume that the uniformity on X is given by entourages

$$D(\epsilon, F) = \{ \langle x, 0 \rangle, \langle y, 0 \rangle : |x - y| < \epsilon \} \cup \{ \langle x, 1 \rangle, \langle y, 0 \rangle : |x - y| < \epsilon \lor x \not\in F \}$$
$$\cup \{ \langle x, 0 \rangle, \langle y, 1 \rangle : |x - y| < \epsilon \lor y \not\in F \} \cup \{ \langle x, 1 \rangle, \langle y, 1 \rangle : x = y \}$$

That is, points are $D(\epsilon, F)$ -close if they are the same point, or the first coordinates are within ϵ of each other while neither second coordinate is in F.

Suppose \mathscr{D} had a predetermined winning strategy $\sigma(n) = D(\epsilon_n, F_n)$. Then \mathscr{P} can choose $x \notin \bigcup_{n < \omega} F_n$, and play $\langle x, 1 \rangle$ during even rounds, and $\langle x_{2n+1}, 0 \rangle$ where $|x - x_{2n+1}| < \epsilon_{2n}$ during odd rounds, preventing convergence.

However, assume \mathscr{D} uses the Marköv strategy $\sigma(x,n)=D(2^{-n},\{x\})$. If \mathscr{P} repeats a point of the form $\langle x,1\rangle$, then since $D(2^{-n},\{x\})[\langle x,1\rangle]=\{\langle x,1\rangle\}$, \mathscr{P} must repeat $\langle x,1\rangle$ for the rest of the game, and \mathscr{D} wins. Otherwise, \mathscr{P} cannot repeat points played in $I\times\{1\}$, and as the first coordinates form a Cauchy sequence and converge to some z, any open set about $\langle z,0\rangle$ contains all but finitely many points of \mathscr{P} 's sequence, and \mathscr{D} wins.

Theorem 42. For any uniformly locally compact space X, $\mathscr{Q} \uparrow_{pre} Prox_{D,P}(X) \Leftrightarrow \mathscr{Q} \uparrow_{pre} aProx_{D,P}(X)$

Proof. Let M be a uniformly locally compact entourage. Let σ witness $\mathscr{D} \uparrow \underset{\text{pre}}{\uparrow} Prox_{D,P}(X)$ such that $\sigma(n) \subseteq M$ always (so $\overline{\sigma(a)[x]} \subseteq \overline{M[x]}$ is compact), $\sigma(n+1) \subseteq \frac{1}{4}\sigma(n)$.

Let $\tau(n) = \frac{1}{2}\sigma(n)$. If p attacks τ in $aProx_{D,P}(X)$, then

$$p(n+1) \in \tau(n)[p(n)] = \frac{1}{2}\sigma(n)[p(n)]$$

and for

$$x \in \overline{\sigma(n+1)[p(n+1)]} \subseteq \overline{\frac{1}{4}\sigma(n)[p(n+1)]} \subseteq \frac{1}{2}\sigma(n)[p(n+1)]$$

we can conclude $x \in \sigma(n)[p(n)]$. Thus

$$\sigma(n+1)[p(n+1)] \subseteq \overline{\sigma(n+1)[p(n+1)]} \subseteq \sigma(n)[p(n)]$$

Finally, note that p attacks the winning strategy σ in $Prox_{D,P}(X)$, but since the intersection of a chain of nonempty compact sets is nonempty:

$$\bigcap_{n<\omega}\sigma(n)[p(n)]=\bigcap_{n<\omega}\overline{\sigma(n)[p(n)]}\neq\emptyset$$

We conclude that p converges.

Proposition 43. If $\mathscr{D} \uparrow_{pre} Prox_{D,P}(X)$, then X has a G_{δ} diagonal.

Proof. If $\mathscr{D} \uparrow_{\text{pre}} Prox_{D,P}(X)$ with strategy σ , then consider $\langle x,y \rangle \in \bigcap_{n<\omega} \sigma(n)$. It follows that $\langle x,y,x,y,\ldots \rangle$ attacks σ , and $\{x,y\} \subseteq \bigcap_{n<\omega} \sigma(n)[x] \cap \bigcap_{n<\omega} \sigma(n)[y] \neq 0$ so it must converge, and x=y. Thus $\bigcap_{n<\omega} \sigma(n) = \Delta$ is G_{δ} .

Example 44. The Sorgenfrey line S has a G_{δ} diagonal but $\mathscr{P} \uparrow Prox_{D,P}(S)$.

Corollary 45. For X with uniformity \mathbb{D} inducing the compact Hausdorff topology τ , the following are equivalent:

- (a) $\mathscr{D} \uparrow_{pre} Prox_{D,P}(X)$
- (b) $\mathscr{D} \uparrow_{pre} aProx_{D,P}(X)$
- (c) X has a G_{δ} diagonal
- (d) \mathbb{D} is metrizable
- (e) τ is metrizable

Proof. For compact Hausdorff spaces, it is well known that there is exactly one uniformity inducing the topology. Thus $(d) \Leftrightarrow (e)$. Since X is uniformly locally compact, $(a) \Leftrightarrow (b)$. Also, compact spaces with a G_{δ} diagonal are metrizable, so $(c) \Rightarrow (e)$. Bell noted $(d) \Rightarrow (a)$ for arbitrary uniform spaces, and the previous proposition shows $(a) \Rightarrow (c)$.

Theorem 46. A uniformly locally compact space with a G_{δ} diagonal is metrizable.

Proof. Based on several folklore results.

Uniformly locally compact implies the topological sum of σ -compact spaces implies paracompact. Locally compact plus G_{δ} diagonal implies locally metrizable. Locally metrizable plus paracompact characterizes metrizable.

Corollary 47. If X is uniformly locally compact, then $\mathscr{D} \uparrow_{pre} Prox_{D,P}(X)$ implies X's topology is metrizable.

Example 48. Let R be the Michael Line. Then $\mathscr{P} \uparrow Prox_{D,P}(X)$.

Proof. During round 0, \mathscr{P} may choose m(0)=0 and p(0)=1, and during round n+1, \mathscr{P} may choose m(n+1)>m(n) and $p(n+1)=p(n)+\frac{1}{10^{m(n+1)}}$ such that p is a legal attack.

It follows that p "converges" to $x = \sum_{n < \omega} \frac{1}{10^{m(n)}}$, except x is an irrational number composed of 1s separated by strings of 0s of strictly increasing size.

Example 49. Let κ be an uncountable regular cardinal with a ladder topology:

- All successor ordinals are isolated.
- Strictly increasing sequences (ladders) $L_{\alpha}: \omega \to \alpha$ are defined for each limit ordinal α such that L_{α} converges to α in the order topology, and each limit α is given neighborhoods of the form $\{\alpha\} \cup \{L_{\alpha}(n): n \geq m\}$.

Then $\mathscr{P} \uparrow Prox_{D,P}(\kappa^*)$ where κ^* is its one-point compactification.

Proof. It is possible that there are ω -many successor ordinals of κ which are not part of any ladder. In this case, it is easy to see that \mathscr{P} may legally play a sequence within these in any order and prevent convergence, even to ∞ . Otherwise we may assume that every successor ordinal is in some ladder, for if only finitely many ordinals are outside any ladder, \mathscr{D} may isolate them in her initial partition, forcing \mathscr{P} to converge if she ever attempts to make a move with any of them.

Entrouges of κ^* are then of the form D(F,n), where $F \in [\kappa^L]^{<\omega}$ and $n < \omega$. D(F,n) partitions κ^* such that ∞ 's part is the complement of the ladders leading to points in F. Each of those ladders is then partitioned by isolating the first n rungs of the ladder, and leaving the top of the ladder leading to a point in F as a whole part. (It's possible that the tops of some ladders might overlap, so they must be considered the same part, but this could be prevented by \mathscr{D} by increasing n a sufficient amount to separate all the finite limits in F if desired.)

 \mathscr{P} 's strategy involves first choosing two disjoint stationary subsets S_0, T_0 of κ^L . During round 0, \mathscr{P} 's move partitions ladders leading to limit ordinals in $F_0 \in [\kappa^L]^{<\omega}$. Let $S_0' = S_0 \setminus F_0$ and $T_0' = T_0 \setminus F_0$, and observe that both are still stationary sets as only finitely many ordinals were removed.

For \mathscr{P} 's initial move, she may apply the pressing down lemma to the sets S'_0, T'_0 and the function $f_i(\alpha) = L_{\alpha}(i)$ for $i < \omega$ sufficiently large to identify stationary subsets S_1, T_1 of S'_0, T'_0 such that $f_i(\alpha) = s_0$ for $\alpha \in S_1$, $f_i(\alpha) = t_0$ for $\alpha \in T_1$, and s_0, t_0 are not in the range of L_{α} for $\alpha \in F_0$.

 \mathscr{P} chooses s_0 as her initial move.

During round n+1, we assume that the disjoint stationary sets S_{n+1}, T_{n+1} were defined in the previous round. \mathscr{D} 's move in this round again partitions ladders leading to limit ordinals in $F_{n+1} \in [\kappa^L]^{<\omega}$. Let $S'_{n+1} = S_{n+1} \setminus F_{n+1}$ and $T'_{n+1} = T_{n+1} \setminus F_{n+1}$.

 \mathscr{P} then applies the pressing down lemma to the sets S'_{n+1}, T'_{n+1} and the function $f_i(\alpha) = L_{\alpha}(i)$ for $n < i < \omega$ sufficiently large to identify stationary subsets S_{n+2}, T_{n+2} of S'_{n+1}, T'_{n+1} such that $f_i(\alpha) = s_{n+1}$ for $\alpha \in S_{n+2}$, $f_i(\alpha) = t_{n+1}$ for $\alpha \in T_{n+2}$, and s_{n+1}, t_{n+1} are not in the range of L_{α} for $\alpha \in F_{n+1}$.

If n+1 is even, \mathscr{P} chooses s_{n+1} as her move; otherwise, she chooses t_{n+1} .

All choices of s_n, t_n by \mathscr{P} were within the partition containing ∞ , and no choice was repeated infinitely often, so s_n and t_n must converge. (Need to disprove that either could converge to ∞ , or could they? That would happen if $\bigcap_{n<\omega} S_n = \emptyset$ or $\bigcap_{n<\omega} T_n = \emptyset$.)