Curl, Divergence, Green's Theorem

Lecture for 7/7

Curl and Divergence

Consider ∇ as a operator and $\mathbf{F} = \langle A, B, C \rangle$

- Define div F = ∇ ⋅ F = A_x+B_y+C_z
 Define curl F = ∇ x F = ⟨C_y B_z, A_z C_x, B_x A_y⟩
 Only for vector fields on R³

Properties of Curl and Divergence

- Let's see what happens to scalar functions
- Let's see how curl and div interact
- - Consequence: $\nabla \cdot (\nabla \times \mathbf{F})$
 - $\circ \quad \nabla \mathbf{x} \nabla \mathbf{f} = \mathbf{0}$

Green's Theorem General Idea

It's often useful to switch between line and double integrals

- Double to Line: you're reducing number of integrations
- Line to Double: function may be simpler to integrate

But how can we do this? Green's Theorem will tell us

Green's Theorem

Suppose C is a simple closed curve oriented counterclockwise. Suppose

- Further suppose C encloses D
- Further suppose Q_x, P_v are Riemann integrable

Green's Theorem: $\int_C Pdx + Qdy = \iint_D (Q_x - P_y) dA$

Decomposition Principle

- If GT holds on D_1 and D_2 , we can consider $D = D_1 u D_2$
- To find integrals, break D into smaller regions where GT applies

Theorem Derivation

Vector Forms of Green's Theorem

Pretend $\mathbf{F} = \langle P, Q \rangle$ is a vector field in \mathbb{R}^3 , with $\mathbf{F} = \langle P, Q, 0 \rangle$

- $\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} (\nabla \times \mathbf{F}) \cdot \mathbf{e}_{z} dA \text{ where } \mathbf{e}_{z} = (0, 0, 1)$
 - We shall use this later to build Stokes' Theorem
- $\int_{C} (\mathbf{F} \cdot \mathbf{n}) ds = \iint_{D} (\nabla \cdot \mathbf{F}) dA$ where **n** is unit normal to **r**
- We shall use this later to build Divergence Theorem

Practice Problems

Evaluate $\int_C (y^4-2y) dx - (6x-4xy^3) dy$ where C is the rectangle with coordinates (0,0), (6,0), (6,4), (0,4) oriented clockwise

Let C be the triangle with vertices (-3, 0), (0,0), (0,3) oriented clockwise. Verify Green's Theorem for $\int_C (xy^2+x^2) dx + (4x-1) dy$ by computing both the line integral and the corresponding double integral

Find a formula for $\nabla \mathbf{x} (\nabla \mathbf{x} \mathbf{F})$ and justify your claim

Scratchwork