Observação: Estes slides não estão ainda redigidos de acordo com as regras do Acordo Ortográfico da Língua Portuguesa de 1990.

Introdução

Funções vectoriais de variável vectorial

Nesta disciplina vamos estudar os conceitos do Cálculo Diferencial e Integral real relacionados com funções vectoriais de variável vectorial (ou, também se diz, de várias variáveis), que são funções do tipo

$$X = (x_1, \dots, x_n) \mapsto \underbrace{\mathbb{R}^m}_{\in \mathbb{R}^m}$$
,

em que A é um subconjunto de \mathbb{R}^n (escreve-se $A \subseteq \mathbb{R}^n$).

Introdução

Casos particulares de funções vectoriais de variável vectorial

Em certos casos particulares, as funções $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$ têm uma designação genérica especial:

- No caso de n=1: uma função $f:A\subseteq\mathbb{R}\to\mathbb{R}^m$ diz-se uma curva. Em geral, considera-se o caso em que A é um intervalo de \mathbb{R} .
- No caso de m=1: $f:A\subseteq \mathbb{R}^n\to \mathbb{R}$ diz-se uma função escalar.
- No caso de n = m: uma função f : A ⊆ Rⁿ → Rⁿ chama-se, em certos contextos, um campo de vectores. Esta terminologia sugere que pensemos em f como sendo uma função de um subconjunto de Rⁿ no espaço vectorial Rⁿ.

Começaremos por estudar as funções do primeiro tipo.

Curvas parametrizadas, funções componentes

Uma curva (parametrizada) em \mathbb{R}^n é uma função

$$\alpha: I \rightarrow \mathbb{R}^n$$

 $t \mapsto \alpha(t) = (\alpha_1(t), \dots, \alpha_n(t))$

onde I é um intervalo não degenerado de $\mathbb R$ (não vazio e não reduzido a um ponto). As funções $\alpha_i:I\to\mathbb R$, $(i=1,\ldots,n)$, chamam-se as $t\mapsto\alpha_i(t)$

funções componentes da curva α .

Exemplo: As funções componentes da curva $\alpha:\mathbb{R}\to\mathbb{R}^2$ dada por $\alpha(t)=(2t,\sin t)$ são

$$lpha_1: \mathbb{R} \ o \ \mathbb{R} \qquad ext{e} \qquad lpha_2: \mathbb{R} \ o \ \mathbb{R}$$
 $t \ \mapsto \ 2t \qquad \qquad t \ \mapsto \ ext{sen} \ t$

Traço

A imagem (ou contradomínio) de uma curva $\alpha:I\to\mathbb{R}^n$ designa-se por traço de $\alpha.$

Pode-se ver a curva α como a descrição do movimento de uma partícula em \mathbb{R}^n durante o intervalo de tempo I: para cada $t \in I$, $\alpha(t)$ representa a posição da partícula no instante de tempo t; e, ao longo do intervalo de tempo I, a partícula percorre todo o traço de α .

Atenção: O traço de uma curva $\alpha:I\to\mathbb{R}$ não é o seu gráfico! O gráfico de α é um subconjunto de $\mathbb{R}\times\mathbb{R}^n\approx\mathbb{R}^{n+1}$.

Exemplos

1. O traço da curva $\alpha:\mathbb{R}\to\mathbb{R}^2$ é a recta em \mathbb{R}^2 de $t\mapsto(t,2t+1)$ equação y=2x+1.

Considerando agora $\beta:[0,1] \to \mathbb{R}^2$, o traço de β está $t \mapsto (t,2t+1)$ contido na mesma recta, mas consiste apenas no segmento de recta que une os pontos (0,1) e (1,3).

2. Mais geralmente, se I é um intervalo de \mathbb{R} e $f:I \to \mathbb{R}$ é uma função, a curva $\alpha:I \to \mathbb{R}^2$ dada por $\alpha(t)=(t,f(t))$ percorre o gráfico de f de tal maneira que, em cada unidade de tempo, a distância horizontal percorrida é de uma unidade.

3. Sendo $a,b\in\mathbb{R}^+$, o traço da curva $\alpha:[0,2\pi]\to\mathbb{R}^2$ dada por $\alpha(t)=(a\cos t,b\sin t)$ é a elipse de equação

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1,$$

percorrida uma vez no sentido directo, a partir do ponto (a,0).

É claro que se a=b, então o traço de α é uma circunferência de raio a.

Exemplos

3. (continuação)

Considere-se agora

$$\beta: [0, 4\pi] \rightarrow \mathbb{R}^2$$

$$t \mapsto (a\cos t, b \sin t)$$

Então β tem o mesmo traço de α , mas é percorrido duas vezes no sentido directo (no dobro do tempo).

Um exemplo de uma curva cujo traço é o mesmo de α , mas percorrido no sentido retrógrado poderá ser $\gamma:[0,2\pi]\to\mathbb{R}^2$ definida por $\gamma(t)=(a\cos(-t),b\,\sin(-t)).$

ightharpoonup As curvas eta e γ dizem-se reparametrizações da curva lpha.

Reparametrizações

Em geral, se $\alpha:I\to\mathbb{R}^n$ é uma curva e $f:J\to I$ é uma função contínua, em que J é um intervalo não degenerado de \mathbb{R} , então a curva

$$\alpha \circ f: J \to \mathbb{R}^n$$

diz-se obtida de α por reparametrização ("substitui-se o parâmetro $t \in I$ pelo parâmetro $x \in J$ ").

Note-se que o traço de $\alpha \circ f$ está sempre contido no traço de α .

▶ Reparametrizar uma curva α corresponde a dar outra maneira de percorrer parte do traço de α .

Exemplos

O traço da curva $\alpha:[0,+\infty[\to\mathbb{R}^2$ definida por $\alpha(t)=t$ (cos t, sen t) é uma espiral, percorrida no sentido directo.

5.

O traço da curva $\alpha: \mathbb{R} \to \mathbb{R}^3$, dada por $\alpha(t) = (\cos t, \sin t, t)$, é uma hélice em \mathbb{R}^3 .

Sejam I um intervalo não degenerado de \mathbb{R} , $\alpha:I\to\mathbb{R}^n$ uma curva cujas funções componentes são α_1,\ldots,α_n e $t_0\in I$.

O limite de $\alpha(t)$ quando t tende para t_0 é, quando existe, o vector de \mathbb{R}^n :

$$\lim_{t\to t_0}\alpha(t)=(\lim_{t\to t_0}\alpha_1(t),\ldots,\lim_{t\to t_0}\alpha_n(t)).$$

Exemplo: Se $\alpha:]0, +\infty[\to \mathbb{R}^3$ é dada por $\alpha(t) = (\frac{\operatorname{sen} t}{t^2+1}, t, \frac{1}{t})$, então

$$\lim_{t\to\pi}\alpha(t)=(\lim_{t\to\pi}\frac{\operatorname{sen} t}{t^2+1},\lim_{t\to\pi}t,\lim_{t\to\pi}\frac{1}{t})=(0,\pi,\frac{1}{\pi}).$$

Continuidade

Seja $\alpha:I\to\mathbb{R}^n$ uma curva e $t_0\in I$.

Diz-se que α é contínua em t_0 se e só se

$$\lim_{t\to t_0}\alpha(t)=\alpha(t_0).$$

A curva α diz-se contínua se e só se é contínua em todos os pontos de I.

Exemplo: A curva $\alpha: \mathbb{R} \to \mathbb{R}^2$ definida por $\alpha(t) = (t^3 + 3, \cos t)$ é contínua, uma vez que, para qualquer $t_0 \in \mathbb{R}$,

$$\lim_{t \to t_0} \alpha(t) = (\lim_{t \to t_0} t^3 + 3, \lim_{t \to t_0} \cos t) = (t_0^3 + 3, \cos t_0) = \alpha(t_0).$$

Continuidade - propriedades

As seguintes propriedades decorrem imediatamente da definição e das correspondentes para funções reais de variável real:

Sejam $\alpha:I\to\mathbb{R}^n$, $\beta:I\to\mathbb{R}^n$, $f:I\to\mathbb{R}$ e $g:J\to I$, em que I e J são intervalos não degenerados de \mathbb{R} .

- α é contínua em $t_0 \in I$ se e só se todas as funções componentes de α são contínuas em t_0 .
- Se α e β são contínuas em $t_0 \in I$, então a curva $\alpha + \beta : I \rightarrow \mathbb{R}^n$ é contínua em t_0 . $t \mapsto \alpha(t) + \beta(t)$
- Se f e α são contínuas em $t_0 \in I$, então a curva $f \cdot \alpha : I \rightarrow \mathbb{R}^n$ é contínua em t_0 . $t \mapsto f(t) \cdot \alpha(t)$
- Se g é contínua em $x_0 \in J$ e α é contínua em $t_0 = g(x_0) \in I$, então a curva $\alpha \circ g : J \to \mathbb{R}^n$ é contínua em x_0 .

Vector velocidade e velocidade escalar

Sejam I um intervalo não degenerado de \mathbb{R} , $\alpha:I\to\mathbb{R}^n$ uma curva cujas funções componentes são α_1,\ldots,α_n e $t_0\in I$.

Diz-se que a curva α é derivável em t_0 se e só se todas as suas funções componentes são deriváveis em t_0 .

Nesse caso, o vector $(\alpha'_1(t_0), \dots, \alpha'_n(t_0))$ diz-se o vector velocidade de α em t_0 e representa-se por $\alpha'(t_0)$:

$$\alpha'(t_0) = (\alpha'_1(t_0), \ldots, \alpha'_n(t_0)).$$

A norma deste vector chama-se a velocidade escalar de α em t_0 e representa-se também por $v(t_0)$:

$$v(t_0) = \|\alpha'(t_0)\|.$$

Velocidade - recta tangente

O ponto t_0 diz-se um ponto regular de α se e só se $\alpha'(t_0) \neq 0$. Caso contrário, t_0 diz-se um ponto singular de α .

No caso de $\alpha'(t_0) \neq 0$, este vector define a direcção da tangente ao traço da curva no ponto $\alpha(t_0)$ e é comum representá-lo aplicado no ponto $\alpha(t_0)$.

A recta tangente ao traço de α no ponto $\alpha(t_0)$ é a recta que passa em $\alpha(t_0)$ e tem a direcção do vector $\alpha'(t_0)$; tem então equação vectorial

$$X = \alpha(t_0) + \lambda \alpha'(t_0), \qquad \lambda \in \mathbb{R}.$$

Curva derivada e vector unitário tangente

Uma curva $\alpha:I\to\mathbb{R}^n$ diz-se derivável se e só se é derivável em todos os pontos de I. Nesse caso, pode-se considerar a curva

$$\alpha': I \to \mathbb{R}^n$$
.
 $t \mapsto \alpha'(t)$

Diz-se que α é de classe c¹ se e só se é derivável e α' é contínua.

Uma curva derivável α é regular se e só se todos os pontos de I são pontos regulares de α . Nesse caso, para $t \in I$ pode-se definir

$$T(t) = \frac{lpha'(t)}{\|lpha'(t)\|}$$
 vector unitário tangente

ou seja, T(t) é o vector unitário com a direcção e sentido do vector velocidade de α em t. Tem-se então, $\alpha'(t) = v(t) T(t)$, para todo o $t \in I$

Velocidade - exemplos

1. A curva $\alpha:[0,2\pi]\to\mathbb{R}^2$ dada por $\alpha(t)=(\cos t, \sin t)$ é derivável, uma vez que as suas funções componentes o são, e $\forall t\in[0,2\pi]$, $\alpha'(t)=(-\sin t,\cos t)$.

Então, $\forall t \in [0, 2\pi]$, $v(t) = \|\alpha'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2} = 1$ i.e., o traço de α é percorrido com velocidade (escalar) constante igual a 1. A curva é regular e é de classe c^1 .

O traço desta curva é a circunferência de centro (0,0) e raio 1 e o vector velocidade $\alpha'(t)$ é sempre ortogonal ao vector de posição do ponto $\alpha(t)$, pois

 $\alpha(t) \,|\, \alpha'(t) = (\cos t, \operatorname{sen} t) \,|\, (-\operatorname{sen} t, \cos t) = 0.$

Velocidade - exemplos

2. A curva $\alpha:[0,+\infty[\to\mathbb{R} \text{ dada por } \alpha(t)=(t-\sin t,1-\cos t)\text{ \'e}$ chamada uma **ciclóide**: corresponde ao movimento de um ponto da circunferência de raio 1 rolando sem deslizar sobre o eixo dos xx, a partir da origem.

Para $t\in [0,+\infty[$, $\alpha'(t)=(1-\cos t,\sin t)$, que é contínua. Logo, α é de classe c^1 . Os pontos da forma $t=2k\pi$, $k\in\mathbb{N}$, são singulares, uma vez que a velocidade se anula nestes pontos. Todos os restantes pontos são regulares. Por exemplo, a recta tangente ao traço de α no ponto $\alpha(\pi)=(\pi,2)$ tem equação vectorial

$$(x,y) = (\pi,2) + \lambda(2,0), \qquad \lambda \in \mathbb{R}.$$

Derivabilidade - propriedades

As seguintes propriedades decorrem imediatamente das já conhecidas para funções reais de variável real:

Sejam $\alpha: I \to \mathbb{R}^n$ e $\beta: I \to \mathbb{R}^n$ curvas em \mathbb{R}^n , $f: I \to \mathbb{R}$ e $g: J \to I$, em que I e J são intervalos não degenerados de \mathbb{R} , e $t_0 \in I$.

• Se α e β são deriváveis em t_0 , então $\alpha+\beta$ é derivável em t_0 e

$$(\alpha + \beta)'(t_0) = \alpha'(t_0) + \beta'(t_0).$$

• Se f e α são deriváveis em t_0 então $f.\alpha$ é derivável em t_0 e

$$(f.\alpha)'(t_0) = f'(t_0) \alpha(t_0) + f(t_0) \alpha'(t_0).$$

Cálculo II (M1003) - 2018/2019 1. 16

Derivabilidade - propriedades

• Se α e β são deriváveis em t_0 , então a curva $\alpha|\beta:I\to\mathbb{R}$ dada por $(\alpha|\beta)(t)=\alpha(t)|\beta(t)$ é derivável em t_0 e

$$(\alpha | \beta)'(t_0) = \alpha'(t_0) | \beta(t_0) + \alpha(t_0) | \beta'(t_0).$$

• Se g é derivável em $x_0 \in J$ e α é derivável em $g(x_0)$, então, $\alpha \circ f$ é derivável em x_0 e

$$(\alpha \circ g)'(x_0) = \alpha'(g(x_0)).g'(x_0).$$

• No caso n=3, se α e β são deriváveis em t_0 , então a curva $\alpha \times \beta : I \to \mathbb{R}^3$ dada por $(\alpha \times \beta)(t) = \alpha(t) \times \beta(t)$ é derivável em t_0 e

$$(\alpha \times \beta)'(t_0) = \alpha'(t_0) \times \beta(t_0) + \alpha(t_0) \times \beta'(t_0).$$

Derivabilidade - propriedades

Observação importante: Se $||\alpha(t)||$ é constante (digamos, $= c \in \mathbb{R}$), então $\forall t \in I$, $\alpha(t) \perp \alpha'(t)$, pois:

$$\forall t \in I, \quad ||\alpha(t)|| = c \Leftrightarrow \forall t \in I, \quad \alpha(t) \, |\, \alpha(t) = c^2$$

$$\Rightarrow \forall t \in I, \quad \alpha'(t) \, |\, \alpha(t) + \alpha(t) \, |\, \alpha'(t) = 0$$

$$\Rightarrow \forall t \in I, \quad 2\alpha'(t) \, |\, \alpha(t) = 0$$

Assim, em particular, como o vector $T(t)=rac{lpha'(t)}{||lpha'(t)||}$ é sempre unitário, então

$$\forall t \in I, \quad T(t) \perp T'(t).$$

Exemplo:

$$\alpha(t) = (\cos t, \sin t) \Rightarrow \forall t \in R, \ ||\alpha(t)|| = 1 \Rightarrow \forall t \in \mathbb{R}, \ \alpha(t) \perp \alpha'(t).$$

Derivabilidade - exemplo

Exemplo: Sejam
$$\alpha:[0,1] \rightarrow \mathbb{R}^n$$
 uma curva, $t \mapsto (\alpha_1(t),\dots,\alpha_n(t))$ $f:[0,1] \rightarrow \mathbb{R}$ e $g:[0,\frac{1}{2}] \rightarrow [0,1]$. $t \mapsto 2t$ $x \mapsto 2x$

A curva $f \cdot \alpha : [0,1] \to \mathbb{R}^n$ é definida por

$$f \cdot \alpha(t) = f(t)\alpha(t) = (2t\alpha_1(t), \dots, 2t\alpha_n(t))$$
 e

$$(f \cdot \alpha)'(t) = (2\alpha_1(t) + 2t\alpha_1'(t), \dots, 2\alpha_n(t) + 2t\alpha_n'(t)).$$

A curva $\alpha \circ g : [0, \frac{1}{2}] \to \mathbb{R}^n$ é a reparametrização de α pela função g, é dada por $\alpha \circ g(x) = \alpha(g(x)) = (\alpha_1(2x), \dots, \alpha_n(2x))$ e

$$(\alpha \circ g)'(x) = \alpha'(g(x)) \cdot g'(x) = 2\alpha'(g(x)).$$

Portanto, $\forall x \in [0, \frac{1}{2}]$, $\|(\alpha \circ g)'(x)\| = 2\|\alpha'(g(x))\|$. Esta reparametrização de α percorre o mesmo traço de α com o dobro da velocidade (e em metade do "tempo").

Comprimento

Seja $\alpha:I\to\mathbb{R}^n$ uma curva regular de classe c^1 .

O comprimento da curva α percorrido entre os instantes t=a e t=b é

$$\int_a^b \|\alpha'(t)\| \ \mathrm{d}t \Big(= \int_a^b v(t) \ \mathrm{d}t \Big).$$

Exemplo: Seja $\alpha: \mathbb{R} \to \mathbb{R}^2$ dada por $\alpha(t) = (e^t \operatorname{sen} t, e^t \operatorname{cos} t)$. Então, $\forall t \in \mathbb{R}, \ \alpha'(t) = e^t (\operatorname{sen} t + \operatorname{cos} t, \operatorname{cos} t - \operatorname{sen} t) \in v(t) = = \|\alpha'(t)\| = e^t \sqrt{(\operatorname{sen} t + \operatorname{cos} t)^2 + (\operatorname{cos} t - \operatorname{sen} t)^2} = \sqrt{2}e^t \neq 0$. Assim, α é uma curva regular de classe \mathbf{c}^1 .

O comprimento da curva percorrido entre os instantes t=0 e t=1 é

$$\int_0^1 v(t) dt = \sqrt{2} [e^t]_0^1 = \sqrt{2} (e-1).$$

Comprimento de arco

Fixemos agora $t_0 \in I$ e consideremos a função que a $t \in I$ associa o comprimento da curva percorrido entre os instantes t_0 e t:

$$\begin{array}{ccc} L:I & \to & \mathbb{R} \\ t & \mapsto & L(t) = \int_{t_0}^t \|\alpha'(u)\| \ du \end{array}.$$

Esta função chama-se a função comprimento de arco da curva α relativamente ao instante inicial t_0 .

Note-se que L depende do instante inicial t_0 escolhido. No entanto, funções comprimento de arco relativamente a instantes iniciais diferentes têm a mesma derivada e portanto diferem apenas de uma constante. De facto, para $t \in I$ tem-se, pelo Teorema Fundamental do Cálculo,

$$L'(t) = \left(\int_{t_0}^t \|\alpha'(u)\| \, \mathrm{d}u\right)' = \|\alpha'(t)\| = v(t).$$

Cálculo II (M1003) - 2018/2019 1. 21

Reparametrização pelo comprimento de arco

Sendo a curva α regular, tem-se $\forall t \in I$, L'(t) = v(t) > 0, e portanto L é injectiva. Seja J = L(I) (notar que J é um intervalo, uma vez que é imagem de um intervalo por uma função contínua). É comum usar a letra s (comprimento de arco) para designar um elemento genérico de J.

Assim, $L:I\to J$ é uma bijecção e portanto admite uma $t\mapsto s=L(t)$ inversa $L^{-1}:J\to I$. A curva $s\mapsto t=L^{-1}(s)$

$$\beta = \alpha \circ L^{-1} : J \to \mathbb{R}^n$$

$$s \mapsto \alpha(L^{-1}(s))$$

diz-se a curva obtida de α por reparametrização pelo comprimento de arco.

Reparametrização pelo comprimento de arco

Para $s \in J$ tem-se

$$\beta'(s) = (\alpha \circ L^{-1})'(s) = \alpha'(L^{-1}(s)).(L^{-1})'(s) = \frac{\alpha'(L^{-1}(s))}{\|\alpha'(L^{-1}(s))\|}.$$

Portanto, $\|\beta'(s)\|=1$, ou seja, a curva obtida de α por reparametrização pelo comprimento de arco é percorrida com uma velocidade escalar constante igual a 1.

Reciprocamente, se $\forall t \in I$, $\|\alpha'(t)\| = 1$, então, fixado $t_0 \in I$,

$$s = L(t) = \int_{t_0}^t \|\alpha'(u)\| du = t - t_0$$

ou seja, o parâmetro t coincide, a menos de soma de uma constante t_0 , com o comprimento de arco s. Diz-se então que α está parametrizada pelo comprimento de arco.

Reparametrização pelo comprimento de arco - exemplo

Exemplo: Considerando novamente $\alpha(t)=(e^t \operatorname{sen} t, e^t \operatorname{cos} t)$, já foi calculada $v(t)=\|\alpha'(t)\|=\sqrt{2}e^t$. Relativamente ao instante inicial $t_0=0$, a função comprimento de arco L é

$$L: \mathbb{R} \to]-\sqrt{2}, +\infty[$$

$$t \mapsto \sqrt{2} \int_0^t e^u du = \sqrt{2}(e^t - 1)$$

е

$$L^{-1}:]-\sqrt{2},+\infty[\rightarrow \mathbb{R} \\ s \mapsto \log(\frac{s}{\sqrt{2}}+1)$$

Reparametrizando α pelo comprimento de arco, obtém-se a curva $\beta = \alpha \circ L^{-1}:]-\sqrt{2}, +\infty[\to \mathbb{R}$ dada por

$$\beta(s) = (\frac{s}{\sqrt{2}} + 1) \big(\text{sen} \big(\log(\frac{s}{\sqrt{2}} + 1) \big), \cos(\log(\frac{s}{\sqrt{2}} + 1)) \big).$$

Fazendo o cálculo, verifica-se que a velocidade escalar de β é, como esperado, sempre igual a 1.

Aceleração, aceleração tangencial e aceleração normal

Seja $\alpha: I \to \mathbb{R}^n$ uma curva c¹ com funções componentes $\alpha_1, \dots, \alpha_n$. Se α' é derivável em $t \in I$, o vector

$$\alpha''(t) = (\alpha_1''(t), \dots, \alpha_n''(t))$$

chama-se a aceleração da curva α em t_0 .

No caso de
$$v(t) \neq 0$$
, pode-se considerar $T(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|}$ e escrever-se $\alpha'(t) = v(t)T(t) \Rightarrow \alpha''(t) = v'(t)T(t) + v(t)T'(t)$.

O vector v'(t)T(t) tem a direcção da tangente ao traço da curva no ponto $\alpha(t)$ e diz-se a aceleração tangencial de α em t; representa-se por $a_T(t)$.

Como já foi visto, $T'(t) \perp T(t)$. Assim, o vector v(t)T'(t) tem direcção ortogonal à tangente e diz-se a aceleração normal de α em t; representa-se por $a_N(t)$.

Aceleração, aceleração tangencial e aceleração normal

Portanto,

$$\alpha''(t) = \underbrace{v'(t)T(t)}_{a_T(t)} + \underbrace{v(t)T'(t)}_{a_N(t)}.$$

$$a_N(t)$$

$$\alpha'''(t)$$

Para calcular $a_T(t)$, pode-se também usar o seguinte:

Derivando
$$v(t) = (\alpha'(t) | \alpha'(t))^{\frac{1}{2}}$$
 resulta que $v'(t) = \frac{\alpha'(t) | \alpha''(t)}{\|\alpha'(t)\|}$ e

$$a_T(t) = \frac{\alpha'(t) | \alpha''(t)}{\|\alpha'(t)\|^2} \alpha'(t).$$

A aceleração normal pode então ser calculada como

$$a_N(t) = \alpha''(t) - a_T(t).$$

Aceleração, aceleração tangencial e aceleração normal - exemplos

1. Se
$$\alpha(t) = (e^t \cos t, e^t \sin t)$$
, tem-se $\alpha'(t) = (e^t (\cos t - \sin t), e^t (\sin t + \cos t))$, $v(t) = \sqrt{2}e^t$ e $\alpha''(t) = (-2e^t \sin t, 2e^t \cos t)$. Então $a_T(t) = v'(t)T(t) = \sqrt{2}e^t \frac{(e^t (\cos t - \sin t), e^t (\sin t + \cos t))}{\sqrt{2}e^t}$ $= (e^t (\cos t - \sin t), e^t (\sin t + \cos t))$ e $a_N(t) = \alpha''(t) - a_T(t) = (e^t (-\cos t - \sin t), e^t (\cos t - \sin t))$.

2. Para a curva
$$\alpha: \mathbb{R} \to \mathbb{R}^3$$
 dada por $\alpha(t) = (1, t, t^2)$, tem-se $\alpha'(t) = (0, 1, 2t)$, $v(t) = \sqrt{1 + 4t^2}$ e $\alpha''(t) = (0, 0, 2)$. Então $a_T(t) = \frac{\alpha'(t)|\alpha''(t)|}{\|\alpha'(t)\|^2}\alpha'(t) = \frac{(0, 1, 2t)|(0, 0, 2)}{1 + 4t^2}(0, 1, 2t) = (0, \frac{4t}{1 + 4t^2}, \frac{8t^2}{1 + 4t^2})$ e $a_N(t) = (0, 0, 2) - (0, \frac{4t}{1 + 4t^2}, \frac{8t^2}{1 + 4t^2}) = (0, -\frac{4t}{1 + 4t}, \frac{2}{1 + 4t^2})$.

Aceleração, aceleração tangencial e aceleração normal - caso particular

No caso de uma curva α ter velocidade escalar constante (i.e., o vector velocidade não varia em comprimento, podendo variar em direcção), a aceleração tangencial é nula e portanto a aceleração normal coincide com a aceleração, pois

$$\forall t \in I, \ v(t) = c, \Rightarrow \forall t \in I, \ v'(t) = 0 \Rightarrow a_T(t) = v'(t)T(t) = 0_{\mathbb{R}^n}.$$

Exemplo:

Seja $\alpha(t)=(\cos t, \sin t),$ $t\in\mathbb{R}.$ Então, $\alpha'(t)=(-\sin t, \cos t)$ e $\forall t\in\mathbb{R},\ v(t)=\|\alpha'(t)\|=1$ (α está parametrizada pelo comprimento de arco). Resulta que os vectores velocidade e aceleração são sempre ortogonais e portanto $\forall t\in\mathbb{R},\ a_T(t)=(0,0)$ e $a_N(t)=\alpha''(t)=(-\cos t, -\sin t)=-\alpha(t).$

Curvatura

Seja $\alpha:I\to\mathbb{R}^n$ uma curva regular duas vezes derivável.

Como $\forall t \in I$, ||T(t)|| = 1, T'(t) dá informação sobre a variação da direcção do vector T(t). A curvatura de α no ponto $\alpha(t)$ é

$$k(t) = \frac{\|T'(t)\|}{v(t)} = \frac{\|a_N(t)\|}{v^2(t)}.$$

Se $k(t) \neq 0$, $\frac{1}{k(t)}$ diz-se o raio de curvatura de α no ponto $\alpha(t)$.

Geometricamente,

k(t) mede o "quão rapidamente se afasta" o traço de α da sua recta tangente no ponto $\alpha(t)$.

Se $k(t) \neq 0$, $\frac{1}{k(t)}$ é o raio da circunferência que "melhor aproxima" o traço de α no ponto $\alpha(t)$.

Nota: Prova-se que a curvatura de α em cada ponto não depende da

Curvatura constante

Curvatura constante igual a zero

Se $\forall t \in I$, k(t) = 0, ou seja, se $\forall t \in I$, $T'(t) = 0_{\mathbb{R}^n}$, isso significa que a direcção do vector T(t) é constante. Facilmente se percebe que o traço de α tem de estar contido numa recta. De facto, prova-se que

O traço de α está contido numa recta sse k(t) é constante nula.

Curvatura constante diferente de zero (de uma curva plana)

Se o traço de α está contido numa circunferência de raio r, então certamente a circunferência que "melhor aproxima" o traço de α em cada ponto é sempre essa mesma. Portanto, a curvatura de α é constante igual a $\frac{1}{r}$. De facto, prova-se que

A curvatura de uma curva plana é constante não nula $(=k_0)$ sse o traço está contido numa circunferência (de raio $\frac{1}{k_0}$).

Cálculo da curvatura - curvas em \mathbb{R}^3

Se $\alpha:I\to\mathbb{R}^3$ é uma curva regular duas vezes derivável e a curvatura k(t) está definida para um certo $t\in I$, então:

$$\alpha'(t) \times \alpha''(t) = v(t)T(t) \times (v'(t)T(t) + v(t)T'(t))$$

$$= v(t)v'(t)\underbrace{T(t) \times T(t)}_{=0} + \underbrace{v^{2}(t)}_{\geq 0} T(t) \times T'(t).$$

Logo, como $T(t) \perp T'(t)$,

$$\|\alpha'(t) \times \alpha''(t)\| = v^2(t) \underbrace{\|T(t)\|}_{=1} \underbrace{\|T'(t)\|}_{=k(t)v(t)} \operatorname{sen} \frac{\pi}{2}$$

donde resulta que

$$k(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{\|\alpha'(t)\|^3}.$$

Cálculo da curvatura - exemplo

Seja $\alpha(t) = (\cos t, \sin t, t)$. Então $\alpha'(t) = (-\sin t, \cos t, 1)$, $\nu(t) = \sqrt{2}$ e $\alpha''(t) = (-\cos t, -\sin t, 0)$. Assim,

$$T(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|} = \frac{1}{\sqrt{2}}(-\sin t, \cos t, 1) \ e \ T'(t) = \frac{1}{\sqrt{2}}(-\cos t, -\sin t, 0).$$

A curvatura é então $k(t) = \frac{\|T'(t)\|}{v(t)} = \frac{1}{\sqrt{2}} = \frac{1}{2}$. (no entanto, o traço de α , que é uma hélice, não está contido numa circunferência!)

Alternativamente, pode-se notar que, como a velocidade escalar é constante, $\alpha'(t) \perp \alpha''(t)$ e portanto

$$k(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{\|\alpha'(t)\|^3} = \frac{\|\alpha'(t)\| \|\alpha''(t)\|}{\|\alpha'(t)\|^3} = \frac{\|\alpha''(t)\|}{\|\alpha'(t)\|^2} = \frac{1}{2}.$$

(ou ainda, pode calcular-se $\alpha'(t) \times \alpha''(t) = (\text{sen } t, -\cos t, 1)$.)

Vector unitário normal

Seja $\alpha: I \to \mathbb{R}^n$ uma curva regular duas vezes derivável.

Para cada $t \in I$, $T'(t) \perp T(t)$ e T'(t) tem a direcção da aceleração normal. Quando $T'(t) \neq 0_{\mathbb{R}^n}$, define-se

$$N(t) = \frac{T'(t)}{\|T'(t)\|} = \frac{a_N(t)}{\|a_N(t)\|}$$
 vector unitário normal

Então $T(t) \perp N(t)$, logo T(t) e N(t) são linearmente independentes.

O plano definido pelo ponto $\alpha(t)$ e pelos vectores T(t) e N(t) (ou por $\alpha'(t)$ e $\alpha''(t)$) isto é, o plano de equação vectorial

$$X = \alpha(t) + \lambda T(t) + \mu N(t), \qquad \lambda, \mu \in \mathbb{R}$$

Triedro de Frenet (curvas em \mathbb{R}^3)

Considere-se agora o caso em que n=3. Se $\alpha:I\to\mathbb{R}^3$ é regular, duas vezes derivável, e $T'(t)\neq 0_{\mathbb{R}^3}$, define-se

$$B(t) = T(t) \times N(t)$$
 vector unitário binormal

Como os vectores T(t) e N(t) são unitários e ortogonais, resulta que (T(t), N(t), B(t)) é uma base ortonormada directa de \mathbb{R}^3 que se diz o Triedro de Frenet de α no instante t. É habitual representar-se esta base aplicada no ponto $\alpha(t)$.

Verifica-se ainda que $\forall t \in I$, $T(t) = N(t) \times B(t)$ e $N(t) = B(t) \times T(t)$.

Fórmulas de Frenet (curvas em \mathbb{R}^3)

As três fórmulas de Frenet, a seguir, fornecem as coordenadas de cada um dos vectores T'(t), N'(t) e B'(t) na base de Frenet $b_F = (T(t), N(t), B(t))$. Exprimem portanto a variação da direcção dos vectores do triedro de Frenet segundo cada uma destas componentes e fornecem importante informação sobre a geometria do traço da curva.

Uma vez que
$$\mathit{N}(t) = rac{T'(t)}{\|T'(t)\|} = rac{T'(t)}{v(t)k(t)}$$
, então

$$T'(t) = v(t)k(t) N(t)$$
 1^a fórmula de Frenet

ou seja,
$$T'(t) = (0, v(t)k(t), 0)_{b_F}$$
.

(Esta notação indica que as coordenadas de T'(t) em b_F são, respectivamente, 0, v(t)k(t), 0: $T'(t) = 0 \cdot T(t) + v(t)k(t) \cdot N(t) + 0 \cdot B(t)$).

Fórmulas de Frenet (curvas em \mathbb{R}^3)

Sendo a base $b_F = (T(t), N(t), B(t))$ ortonormada, as coordenadas de um certo vector nessa base são os produtos escalares desse vector com cada um dos elementos da base.

Como $N'(t) \perp N(t)$ (porque N(t) tem norma constante), ou seja, N'(t)|N(t)=0, então N'(t) pertence ao plano gerado por T(t) e B(t), ou seja, a segunda coordenada de N'(t) em b_F é igual a 0.

Por outro lado, de T(t)|N(t)=0, $\forall t\in I$, resulta T'(t)|N(t)+T(t)|N'(t)=0, logo N'(t)|T(t)=-T'(t)|N(t)=-v(t)k(t),

e está também encontrada a primeira coordenada de N'(t) em b_F .

Fórmulas de Frenet (curvas em \mathbb{R}^3). Torção.

Quanto à coordenada de N'(t) segundo o vector B(t), é dada por N'(t)|B(t).

Chama-se a torção da curva lpha no ponto lpha(t) a

$$\tau(t) = \frac{N'(t)|B(t)}{v(t)}$$

Em conclusão, $N'(t)=(-v(t)k(t),0,v(t) au(t))_{b_F}$, ou seja

$$N'(t) = -v(t)k(t) T(t) + v(t)\tau(t) B(t)$$
 2^a fórmula de Frenet

Fórmulas de Frenet (curvas em \mathbb{R}^3)

Finalmente, de $B(t) = T(t) \times N(t)$, $(t \in I)$, resulta que

$$B'(t) = T'(t) \times N(t) + T(t) \times N'(t)$$

$$= v(t)k(t)\underbrace{N(t) \times N(t)}_{=0} + T(t) \times (-v(t)k(t)T(t) + v(t)\tau(t)B(t))$$

$$= -v(t)k(t)\underbrace{T(t) \times T(t)}_{=0} + v(t)\tau(t)\underbrace{T(t) \times B(t)}_{=-N(t)}$$

$$= -v(t)\tau(t)N(t)$$

portanto, $B'(t)=(0,-v(t) au(t),0)_{b_F}$, ou seja,

$$B'(t) = -v(t)\tau(t) N(t)$$
 3^a Fórmula de Frenet

Fórmulas de Frenet - curvas parametrizadas pelo comprimento de arco

Caso particular: Se a curva está parametrizada pelo comprimento de arco, então v(t) é constante igual a 1 e as fórmulas de Frenet ficam com o seguinte aspecto mais simples:

$$T'(t) = k(t) N(t)$$

 $N'(t) = -k(t) T(t) + \tau(t) B(t)$
 $B'(t) = -\tau(t) N(t)$

Torção - significado geométrico

Seja $\alpha:I\to\mathbb{R}^3$ uma curva regular três vezes derivável tal que T'(t) nunca se anula (ou, o que é equivalente, a curvatura de α não se anula).

A torção $\tau(t)$ de α em $\alpha(t)$ foi definida de forma a que $v(t)\tau(t)$ é a coordenada do vector N'(t) segundo o vector B(t):

$$v(t)\tau(t)=N'(t)\,|\,B(t).$$

▶ Geometricamente, $\tau(t)$ mede o "afastamento" do traço da curva relativamente ao plano osculador, perto do ponto $\alpha(t)$; será positiva quando N(t) varia no sentido de B(t) e será negativa quando N(t) varia no sentido oposto ao de B(t). Pode provar-se que

A curva α é plana se e só se a torção é constante igual a zero.

Nesse caso, o plano osculador é sempre o mesmo: é o plano onde está contido o traço da curva.

Torção - fórmula para o cálculo

Seja ainda α uma curva nas condições consideradas atrás.

Escrevendo os vectores $\alpha'(t)$, $\alpha''(t)$ e $\alpha'''(t)$ como combinação linear dos vectores do triedro de Frenet e usando as propriedades dos produtos escalar e vectorial, pode-se deduzir a seguinte fórmula para o cálculo da torção $\tau(t)$: para $t \in I$,

$$\tau(t) = \frac{(\alpha'(t) \times \alpha''(t)) | \alpha'''(t)}{\|\alpha'(t) \times \alpha''(t)\|^2}$$

Note-se que a torção $\tau(t)$ só está definida quando $k(t) \neq 0$, caso em que $\|\alpha'(t) \times \alpha''(t)\| \neq 0$.

Torção - exemplos

1. O traço da curva $\alpha(t)=(2\cos t,2\sin t,0),\ t\in\mathbb{R}$, é a circunferência de centro (0,0,0) e raio 2 contida no plano z=0.

A curvatura é constante igual a $\frac{1}{2}$ e a torção é constante igual a 0.

2. A hélice $\alpha: \mathbb{R} \to \mathbb{R}^3$ dada por $\alpha(t) = (\cos t, \sin t, t)$ tem torção constante (positiva): para qualquer $t \in \mathbb{R}$,

$$\alpha'(t) = (-\sin t, \cos t, 1), \ \alpha''(t) = (-\cos t, -\sin t, 0) e$$
 $\alpha'''(t) = (\sin t, -\cos t, 0). \ \text{Logo},$

$$\tau(t) = \frac{(\alpha'(t) \times \alpha''(t))}{(\alpha'(t) \times \alpha''(t))}$$

$$\tau(t) = \frac{(\alpha'(t) \times \alpha''(t)) | \alpha'''(t)}{\|\alpha'(t) \times \alpha''(t)\|^2}$$
$$= \frac{(\operatorname{sen} t, -\cos t, 1) | (\operatorname{sen} t, -\cos t, 0)}{2} = \frac{1}{2}.$$

Torção - exemplos

3. Seja α uma curva regular tal que $\alpha'(0)=(2,1,1), \ \alpha''(0)=(4,3,1)$ e $\alpha'''(0)=(-1,0,1).$ Pode-se calcular, sucessivamente,

$$T(0) = \frac{\alpha'(0)}{\|\alpha'(0)\|} = \frac{1}{\sqrt{6}}(2, 1, 1),$$

$$a_{T}(0) = \frac{\alpha'(0)|\alpha''(0)}{\|\alpha'(0)\|^{2}} \alpha'(0) = (4, 2, 2),$$

$$a_{N}(0) = \alpha''(0) - a_{t}(0) = (0, 1, -1),$$

$$N(0) = \frac{a_{N}(0)}{\|a_{N}(0)\|} = \frac{1}{\sqrt{2}}(0, 1, -1),$$

$$B(0) = T(0) \times N(0) = \frac{1}{\sqrt{3}}(-1, 1, 1),$$

$$k(0) = \frac{\|\alpha'(0) \times \alpha''(0)\|}{\|\alpha'(0)\|^{3}} = \frac{\|(-2, 2, 2)\|}{\|(2, 1, 1)\|^{3}} = \frac{2\sqrt{3}}{\sqrt{6}^{3}} = \frac{1}{3\sqrt{2}}$$

3. (continuação)

$$\tau(0) = \frac{(\alpha'(0) \times \alpha''(0)) \mid \alpha'''(0)}{\|\alpha'(0) \times \alpha''(0)\|^2} = \frac{(-2, 2, 2) \mid (-1, 0, 1)}{12} = \frac{1}{3}.$$

As fórmulas de Frenet para o instante t = 0 ficam portanto

$$T'(0) = v(0)k(0) N(0) = \frac{1}{\sqrt{6}}(0, 1, -1)$$

$$N'(0) = -v(0)k(0) T(0) + v(0)\tau(0)B(0)$$

$$= -\frac{1}{3\sqrt{2}}(2, 1, 1) + \frac{2}{3\sqrt{2}}(-1, 1, 1) = \frac{1}{3\sqrt{2}}(-4, 1, 1)$$

$$B'(0) = -v(0)\tau(0) N(0) = -\frac{1}{\sqrt{3}}(0, 1, -1)$$

- 1. Esboce o traco cada uma das seguintes curvas.
 - a) $\alpha: [-2,2] \to \mathbb{R}^2$, $\alpha(t) = (t^2 1, t^2 + 1)$
 - b) $\alpha:]-\frac{\pi}{2}, \frac{\pi}{2}[\rightarrow \mathbb{R}^2, \alpha(t) = (\sec t, \operatorname{tg} t)]$
 - c) $\alpha : [0, 2\pi] \to \mathbb{R}^2$, $\alpha(t) = (\cos t 2, \sin t + 3)$.
- 2. Indique uma parametrização de uma curva cujo traco é:
 - a) a recta de equação x = 1;
 - b) o segmento de recta que une os pontos (-1, 2) e (0, -2);
 - c) a circunferência de equação $(x-a)^2+(y-b)^2=r^2$ (em que $r\in\mathbb{R}^+$);
 - d) a elipse de equação $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (onde $a, b \in \mathbb{R} \setminus \{0\}$);
 - e) o gráfico da função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3 x$.
- 3. (Espiral logarítmica) Considere a curva $\alpha: \mathbb{R} \to \mathbb{R}^2$ definida por $\alpha(t)=(e^{-t}\cos t,e^{-t}\sin t)$. Calcule $\lim_{t\to+\infty}\alpha(t)$ e esboce o traço da curva.
- 4. Para cada uma das seguintes curvas, determine o domínio (entendendo-se aqui como o maior subconjunto de \mathbb{R} no qual a expressão dada tem sentido), os pontos onde a curva é contínua e os pontos onde é derivável:
 - a) $\alpha(t) = (\sqrt{t-1}, \sqrt{2-t})$ b) $\alpha(t) = (|t-1|, \frac{1}{4}, \log t)$
- - c) $\alpha(t) = (\cos t, \sin t, |t|)$.

- 5. Sendo o movimento de uma partícula no plano descrito pela curva $\alpha(t) = \left(3t^2, 9t t^3\right), \ t \in \mathbb{R}, \ \text{determine o mínimo da velocidade escalar e o(s)}$ ponto(s) em que esse valor ocorre.
- 6. Nas seguintes alíneas, a trajectória de um ponto no plano é descrita pelo vector de posição $\alpha(t)$. Determine, em cada caso, a velocidade e a aceleração em cada instante t.

a)
$$lpha(t)=(rac{1}{\sqrt{1+t^2}},\log\left(rac{1}{1+t^2}
ight))$$
, $t\in\mathbb{R}$

b)
$$\alpha(t) = (e^{\sqrt{t^3 + t}}, 2^{-t}), t \in \mathbb{R}^+$$

c)
$$\alpha(t) = (\operatorname{sen} t, \operatorname{tg} t \operatorname{sen} t, \operatorname{tg} t), t \in [0, \frac{\pi}{2}[.$$

- 7. Determine a curva:
 - a) $\alpha: \mathbb{R} \to \mathbb{R}^2$ tal que $\alpha'(t) = (\cos t, 2t)\,, \ t \in \mathbb{R}$ e $\alpha(0) = (0,4)$.
 - b) $\alpha: \mathbb{R}^+ \to \mathbb{R}^2$ tal que $\alpha''(t) = (2t + \sqrt{t}, \frac{1}{t^2})$ e que no instante t = 1 passa na origem com velocidade (1,1).
 - c) $\alpha: \mathbb{R} \to \mathbb{R}^2$ tal que $T(t) = \left(\frac{3}{5}, \frac{4}{5}\right), \ v(t) = 5e^t, \ \forall t \in \mathbb{R}$, e $\alpha(1) = (3e+3, 4e-8)$.
- 8. Determine os pontos em que a tangente ao traço da curva $\alpha: \mathbb{R} \to \mathbb{R}^2$ definida por $\alpha(t) = (6t+1, t^3-2t)$ é perpendicular à recta de equação 3x+5y-8=0.

- 9. Seja $\alpha:]a, b[\to \mathbb{R}^2$ uma curva regular de classe c¹. Mostre que se para $c \in]a, b[$, $\alpha(c)$ é um ponto da curva de abcissa máxima ou mínima então a tangente à curva nesse ponto é vertical.
- 10. Sejam I um intervalo aberto de $\mathbb R$ com $0\in I$, $\alpha:I\to\mathbb R^3$ uma curva de classe c^1 e $v\in\mathbb R^3$. Suponha que $\forall t\in I$, $\alpha'(t)|v=0$ e que $\alpha(0)|v=0$. Mostre que $\forall t\in I$, $\alpha(t)|v=0$.
- 11. a) Uma partícula desloca-se ao longo da parábola $y=\frac{1}{16}x^2$, de tal forma que a segunda componente da velocidade é constante e igual a 8m/s. Determine a primeira componente da velocidade e a aceleração no instante em que a partícula passa pelo ponto (4,1).
 - b) Uma partícula desloca-se no sentido ascendente ao longo da curva $y=\frac{1}{4}x^2$ com uma velocidade escalar constante, igual a 5m/s. Determine a velocidade e a aceleração no ponto (2,1).
- 12. Determine a velocidade, a velocidade escalar em cada instante t e o comprimento total de cada uma das seguintes curvas:

13. Considere as curvas α , β : $\mathbb{R} \to \mathbb{R}^3$ e γ : $\mathbb{R} \to \mathbb{R}^2$ definidas por:

$$\alpha(t) = (2t, 3 \operatorname{sen} t, 3 \operatorname{cos} t), \ \beta(t) = (e^t, e^t \operatorname{sen} t, e^t \operatorname{cos} t) \operatorname{e}$$
$$\gamma(t) = (t^3 + t, 2t^3 + 2t + 1).$$

- a) Determine:
- (i) O comprimento de α percorrido entre os instantes t = a e t = b
- (ii) O comprimento de β percorrido entre os instantes t=0 e $t=2\pi$
- (iii) O comprimento de γ percorrido entre os instantes t=-1 e t=1.
- b) As reparametrizações pelo comprimento de arco relativamente ao instante inicial t=0 de α , β e γ .
- c) uma equação da recta tangente a cada uma das curvas no ponto correspondente a $t=0.\,$
- 14. Parametrize o segmento de recta que une dois pontos $A, B \in \mathbb{R}^n$. Mostre seguidamente que o seu comprimento é igual à distância entre esses pontos.
- 15. Usando uma parametrização adequada da circunferência em \mathbb{R}^2 , de raio r e centro na origem, calcule o seu perímetro.
- 16. Para cada uma das seguintes curvas, esboce o traço e determine as acelerações tangencial e normal em cada instante: a) $\alpha(t) = \left(t, 1 + t^2\right), \ t \in \mathbb{R}$ b) $\beta(t) = (t, \log t), \ t \in \mathbb{R}^+$ c) $\gamma(t) = \left(e^t, e^{-t}\right), \ t \in \mathbb{R}$.

- 17. Seja $\alpha:[0,2\pi]\to\mathbb{R}^2$ definida por $\alpha(t)=(e^t\cos t,e^t\sin t)$. Determine:
 - a) O comprimento total da curva.
 - b) Os pontos da curva onde a tangente é vertical e a aceleração normal nesses pontos.
- 18. Considere a curva $\alpha:]0, \pi[\to \mathbb{R}^2 \text{ dada por } \alpha(t) = (\cot t, \sec^2 t).$
 - a) Prove que $\alpha'(t)$ e $\alpha''(t)$ nunca se anulam.
 - b) Verifique se existe algum valor de t para o qual a aceleração normal seja nula.
- 19. Considere a curva $\alpha:]0, \pi/3[\to \mathbb{R}^2 \text{ dada por } \alpha(\theta) = \text{sen } 3\theta(\cos \theta, \text{sen } \theta).$
 - a) Esboce o traço da curva.
 - b) Determine as coordenadas dos pontos da curva tais que a tangente à curva nesses pontos e o correspondente vector de posição são ortogonais.
 - c) Calcule a aceleração, a aceleração tangencial e a aceleração normal nesses pontos.
- 20. Considere $\alpha : \mathbb{R} \to \mathbb{R}^3$ dada por $\alpha(t) = (e^t \operatorname{sen} t, e^t \operatorname{cos} t, \sqrt{2} e^t)$.
 - a) Determine a função comprimento de arco (com origem em t=0).
 - b) Calcule a aceleração normal e a curvatura de lpha no ponto $t=\pi/2$.
 - c) Determine uma curva $\beta:]-2,+\infty[\to\mathbb{R}^3$ com o mesmo traço de α e velocidade escalar de β é constante igual a 1.

- 21. Considere a curva $\alpha(t)=(\cos t+t\sin t,\sin t-t\cos t),\ t\in]0,+\infty[$. Para cada t, calcule a velocidade, a velocidade escalar, as acelerações tangencial e normal e a curvatura.
- 22. Determine em que ponto é máxima a curvatura de cada uma das seguintes curvas:
 - a) $\alpha: \mathbb{R} \to \mathbb{R}^2$, $\alpha(t) = (t, t^2)$; b) $\beta: \mathbb{R} \to \mathbb{R}^2$, $\alpha(t) = (t, e^t)$;
 - c) $\gamma: \mathbb{R} \to \mathbb{R}^2$, $\gamma(t) = (2 \cos t, \sin t)$.
- 23. Determine T(t) e N(t), para cada uma das seguintes curvas:
 - a) $\alpha(t) = \left(\sqrt{t^2 + 1}, t\right), \ t \in \mathbb{R}$ b) $\beta(t) = \left(t^3 1, -t^2\right), \ t \in \mathbb{R}$.
- 24. Seja $\alpha : \mathbb{R} \to \mathbb{R}^3$ uma curva regular e três vezes derivável tal que $\alpha(0) = (0,0,0), \ \alpha'(0) = (2,1,1), \ \alpha''(0) = (4,3,1) \ e \ \alpha'''(0) = (1,0,1).$
 - a) Determine a aceleração tangencial, a aceleração normal, a curvatura, a torção e o triedro de Frenet em $t=0.\,$
 - b) Determine a recta tangente e o plano osculador à curva no ponto $\alpha(0)$.
- 25. Considere a curva $\alpha: [-\pi/2, \pi/2] \to \mathbb{R}^3$ definida por $\alpha(t) = (\text{sen } 2t, \cos 2t, t)$.
 - a) Determine o comprimento total da curva.
 - b) Para t=0, determine as acelerações tangencial e normal, a curvatura, a torção e o triedro de Frenet.

- 26. Para cada uma das curvas $\alpha: \mathbb{R} \to \mathbb{R}^3$ $t \mapsto (t, t^2, 2t/3)$
 - $eta:\mathbb{R} \to \mathbb{R}^3$, determine, no instante t=0, o triedro de Frenet, $t\mapsto \left(e^t,e^{-t},\sqrt{2}t\right)$ a curvatura e a torcão.
- 27. Considere a curva $\alpha:]0,2] \to \mathbb{R}^3$ definida por $\alpha(t) = (\log t, t, t \log t)$. Para t=1 calcule a velocidade, as acelerações tangencial e normal, a curvatura e a torção.
- 28. Determine o triedro de Frenet, a curvatura e a torção em cada instante de:

$$\alpha: \mathbb{R} \to \mathbb{R}^3, \ \alpha(t) = (\text{sen } 4t, 3t, \cos 4t)$$

 $\beta: \mathbb{R} \to \mathbb{R}^3, \ \beta(t) = (\sqrt{2}t, e^t, e^{-t}).$

- 29. Considere a curva $\alpha: \mathbb{R} \to \mathbb{R}^3$ definida por $\alpha(t) = (\cos t, \cos t, \sqrt{2} \sin t)$.
 - a) Verifique que o traço de α está contido num plano e determine a torção em cada instante.
 - b) Calcule a curvatura em cada instante t. O que pode concluir sobre o traço de α ?
 - c) Determine o triedro de Frenet em cada instante.
 - d) Determine as coordenadas de cada um dos vectores T'(0), N'(0) e B'(0) na base b_F formada pelo triedro no instante t=0.

- 30. Justifique que não existe uma curva $\alpha:\mathbb{R}\to\mathbb{R}^3$, três vezes derivável, tal que, para algum $t\in\mathbb{R},\; B'(t)\,|\, N(t)<0$ e $\tau(t)<0$.
- 31. Seja $\alpha:\mathbb{R}\to\mathbb{R}^3$ uma curva de classe \mathbf{c}^∞ tal que para todo o $t\in\mathbb{R}$, $||\alpha'(t)||=1,\ \tau(t)<0$ e $B(t)=1/\sqrt{2}(\sin t,-\cos t,1).$
 - a) Use as fórmulas de Frenet para determinar a torção e a curvatura de lpha.
 - b) Determine o vector T(t) e a expressão de α sabendo que $\alpha(0) = (1/\sqrt{2}, 0, 0)$.
 - c) Para cada $t\in\mathbb{R}$, determine a equação do plano osculador à curva no ponto lpha(t).
- 32. Deduza a fórmula para o cálculo da torção da página 41.
- 33. Seja $\alpha: I \to \mathbb{R}^n$ uma curva regular de classe c^2 .
 - a) Suponha que existem um ponto $X_0 \in \mathbb{R}^n$, um vector $V_0 \in \mathbb{R}^n \setminus \{0\}$ e uma função $f: I \to \mathbb{R}$ tais que para todo o $t \in I$, $\alpha(t) = X_0 + f(t)V_0$ (isto é, que o traço de α está contido na recta que passa em X_0 e tem a direcção de V_0). Mostre que a curvatura de α é constante igual a zero.
 - b) Reciprocamente, se a curvatura de α é sempre nula, verifique que o vector T(t) é constante (digamos, igual a T_0) e mostre que o traço de α está contido numa recta com a direcção de T_0 .

Fórmulas a serem fornecidas nas provas de avaliação

Fórmula para o cálculo da curvatura

de uma curva $\alpha:I \to \mathbb{R}^3$ regular e duas vezes derivável:

$$k(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{\|\alpha'(t)\|^3}.$$

Fórmula para o cálculo da torção

de uma curva $lpha:I o\mathbb{R}^3$ regular e três vezes derivável tal que $T'(t)
eq 0_{\mathbb{R}^3}$:

$$\tau(t) = \frac{(\alpha'(t) \times \alpha''(t)) | \alpha'''(t)}{\|\alpha'(t) \times \alpha''(t)\|^2}.$$

Fórmulas de Frenet

$$T'(t) = v(t)k(t) N(t)$$

$$N'(t) = -v(t)k(t) T(t) + v(t)\tau(t) B(t)$$

$$B'(t) = -v(t)\tau(t) N(t)$$