Confidence Interval for μ (Known Population σ)

Wir suchen den μ , und wissen die Standardabweichung der Population σ

$$\left[\bar{X}_{(n)} - u_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \, \bar{X}_{(n)} + u_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

Falls wir ein Sample haben, können wir den z Test nutzen. Wenn nicht, müssen wir die Formel so schreiben

```
1 library(TeachingDemos)
2 sample <- c(8, 9, 10, 13, 14, 16, 17, 20, 21)
3 sample_mean <- mean(sample)
4 pop_sd <- 2.8
5 alpha <- 0.05
6 q <- qnorm(1 - (alpha / 2))
7 n <- length(sample)
8 L <- sample_mean - q * (pop_sd / sqrt(n))
9 U <- sample_mean + q * (pop_sd / sqrt(n))
10 z.test(x = sample, stdev = pop_sd, alternative = "two.sided",
11 conf.level = 1-alpha)$conf.int</pre>
```

nur Upper oder Lower

Wir müssen alpha nicht mehr teilen, da sich die Prozente 1 auf eine Seite konzentrieren

Umformungen

 $\bar{X}_{(n)}$: Für den Sample Mean $\bar{X}_{(n)}$ Umstellen

$$\bar{X}_{(n)} = \frac{\text{obere Grenze} + \text{untere Grenze}}{2}$$

sample_mean_umgestellt <- (L + U) / 2

 $u_{1-\frac{\alpha}{2}}$: Für Quantile der Normalverteilung Umformen Aus der Intervalllänge:

$$u_{1-\frac{\alpha}{2}} = \frac{\text{Intervalllänge} \cdot \sqrt{n}}{2 \cdot \sigma}$$

Aus der oberen Grenze:

$$u_{1-\frac{\alpha}{2}} = \frac{\text{obere Grenze} - \bar{X}_{(n)}}{\frac{\sigma}{\sqrt{n}}}$$

Aus der unteren Grenze:

$$u_{1-\frac{\alpha}{2}} = \frac{\bar{X}_{(n)} - \text{untere Grenze}}{\frac{\sigma}{\sqrt{n}}}$$

 σ : Für die Standardabweichung σ

Aus der oberen Grenze:

$$\sigma = \frac{\left(\text{obere Grenze} - \bar{X}_{(n)}\right) \cdot \sqrt{n}}{u_{1 - \frac{\alpha}{2}}}$$

Aus der unteren Grenze:

$$\sigma = \frac{\left(\bar{X}_{(n)} - \text{untere Grenze}\right) \cdot \sqrt{n}}{u_{1-\frac{\alpha}{2}}}$$

pop_sd_umgestellt <- ((U - sample_mean) * sqrt(n
)) / qnorm(1 - (alpha / 2))
pop_sd_umgestellt <- ((sample_mean - L) * sqrt(n
)) / qnorm(1 - (alpha / 2))</pre>

n: Für die Stichprobengröße n

Aus der oberen Grenze:

$$n = \left(\frac{\sigma \cdot u_{1-\frac{\alpha}{2}}}{\text{obere Grenze} - \bar{X}_{(n)}}\right)^2$$

Aus der unteren Grenze:

$$n = \left(\frac{\sigma \cdot u_{1-\frac{\alpha}{2}}}{\bar{X}_{(n)} - \text{untere Grenze}}\right)^2$$

n_umgestellt <- round(((pop_sd * q) / (U sample_mean))^2)
n_umgestellt <- round(((pop_sd * q) / (
 sample_mean - L))^2)</pre>

(MOE): Mit Margin of Error

$$MOE = u_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

$$n = \left(\frac{u_{1-\frac{\alpha}{2}} \cdot \sigma}{MOE}\right)^2$$

moe <- qnorm(1 - alpha / 2) * (pop_sd / sqrt(n))
n_aus_moe <- round(((q * pop_sd) / moe)^2)</pre>

 α : Für das Signifikanzniveau α

$$\alpha = 2 \cdot \left(1 - \Phi(u_{1-\frac{\alpha}{2}})\right)$$

alpha_umgestellt <- 2 * (1 - pnorm(qnorm(1 - (
 alpha / 2))))</pre>

Intervalllänge: Formel für die Intervalllänge MOE = U - L

Intervalllänge =
$$2 \cdot E = 2 \cdot u_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

intervallleange <- 2 * qnorm(1 - (alpha / 2)) *
 (sample_sd / sqrt(n))</pre>

MOE mit Intervalllänge

$$E = u_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

Confidence Interval for μ (Unknown Population σ)

Wir suchen den μ , und wissen die Standardabweichung des Samples $S_{(n)}$

$$\left[\bar{X}_{(n)} - t_{1-\frac{\alpha}{2},n-1} \cdot \frac{S_{(n)}}{\sqrt{n}}, \, \bar{X}_{(n)} + t_{1-\frac{\alpha}{2},n-1} \cdot \frac{S_{(n)}}{\sqrt{n}} \right]$$

Falls wir ein Sample haben, können wir den t-Test nutzen:

nur Upper oder Lower

Wir müssen alpha nicht mehr teilen, da sich die Prozente ¹ auf eine Seite konzentrieren

```
L_alleine <- sample_mean - qt(1 - alpha, n - 1)
    * (sample_sd / sqrt(n))
U_alleine <- sample_mean + qt(1 - alpha, n - 1)
    * (sample_sd / sqrt(n))</pre>
```

Umformungen

 $\bar{X}_{(n)}$: Für den Sample Mean $\bar{X}_{(n)}$ Umstellen

$$\bar{X}_{(n)} = \frac{\text{obere Grenze} + \text{untere Grenze}}{2}$$

sample_mean_umgestellt <- (L + U) / 2

 $t_{1-\frac{\alpha}{2},n-1}$: Für Quantile der t-Verteilung $t_{1-\frac{\alpha}{2},n-1}$ Aus der Intervalllänge:

$$t_{1-\frac{\alpha}{2},n-1} = \frac{\text{Intervalllänge} \cdot \sqrt{n}}{2 \cdot s}$$

Aus der oberen Grenze:

$$t_{1-\frac{\alpha}{2},n-1} = \frac{\text{obere Grenze} - \bar{X}_{(n)}}{\frac{S_{(n)}}{\sqrt{n}}}$$

Aus der unteren Grenze:

$$t_{1-\frac{\alpha}{2},n-1} = \frac{\bar{X}_{(n)} - \text{untere Grenze}}{\frac{S_{(n)}}{\sqrt{n}}}$$

 $S_{(n)}$: Für die Sample Standardabweichung $S_{(n)}$ Aus der oberen Grenze:

$$S_{(n)} = \frac{\left(\text{obere Grenze} - \bar{X}_{(n)}\right) \cdot \sqrt{n}}{t_{1-\frac{\alpha}{n},n-1}}$$

Aus der unteren Grenze:

$$S_{(n)} = \frac{\left(\bar{X}_{(n)} - \text{untere Grenze}\right) \cdot \sqrt{n}}{t_{1-\frac{\alpha}{2},n-1}}$$

sample_sd_umgestellt_1 <- (U - sample_mean) * (
 sqrt(n)) / t
sample_sd_umgestellt_2 <- (sample_mean - L) * (
 sqrt(n)) / t</pre>

n: Für die Stichprobengröße n

Aus der oberen Grenze:

$$n = \left(\frac{S_{(n)} \cdot t_{1-\frac{\alpha}{2},n-1}}{\text{obere Grenze} - \bar{X}_{(n)}}\right)^2$$

Aus der unteren Grenze:

$$n = \left(\frac{S_{(n)} \cdot t_{1 - \frac{\alpha}{2}, n - 1}}{\bar{X}_{(n)} - \text{untere Grenze}}\right)^2$$

(MOE): Mit Margin of Error

$$MOE = t_{1-\frac{\alpha}{2},n-1} \cdot \frac{S_{(n)}}{\sqrt{n}}$$

$$n = \left(\frac{t_{1-\frac{\alpha}{2},n-1} \cdot S_{(n)}}{MOE}\right)^2$$

 α : Für das Signifikanzniveau α

$$\alpha = 2 \cdot \left(1 - \Phi\left(t_{1 - \frac{\alpha}{2}, n-1}\right)\right)$$

1 alpha_umgestellt <- 2 * (1 - pt(qt(1 - (alpha /
2), df = n - 1), df = n-1))</pre>

Intervalllänge: Formel für die Intervalllänge Intervalllänge = U - L

Intervalllänge = $2 \cdot MOE = 2 \cdot t_{1-\frac{\alpha}{2},n-1} \cdot \frac{S_{(n)}}{\sqrt{n}}$

intervalllaenge <- 2 * qt(1 - (alpha / 2), df =
 n - 1) * (sample_sd / sqrt(n))</pre>

MOE mit Intervalllänge

$$MOE = \frac{\text{Intervalllänge}}{2} = t_{1-\frac{\alpha}{2},n-1} \cdot \frac{S_{(n)}}{\sqrt{n}}$$

moe_aus_intervalllaenge <- intervalllaenge / 2</pre>

Confidence interval for σ^2 , mean μ_0 known:

Wir suchen die Variance σ^2 , und kennen den mean des Samples μ

$$\left[\frac{Q_{(n)}}{\chi_{n;1-\frac{\alpha}{2}}^2}, \frac{Q_{(n)}}{\chi_{n;\frac{\alpha}{2}}^2}\right] \quad \text{with} \quad Q_{(n)} = \sum_{i=1}^n (X_i - \mu_0)^2$$

Wir brauchen ein Sample oder einen Wert für $Q_{(n)}$.

```
1 sample <- c(247.4, 249.0, 248.5, ..., 249.4)
2 mean <- 250
3 alpha <- 0.05
4 n <- length(sample) #20
5 qn <- sum((sample - mean)^2)
6 L_var <- qn / (qchisq(1 - (alpha / 2),n))
7 U_var <- qn / qchisq(alpha / 2, n)</pre>
```

Confidence interval for σ^2 , mean μ_0 UNKNOWN:

Wir suchen die Variance σ^2 , und kennen den mean des Samples μ NICHT

$$\left[\frac{(n-1)S_{(n)}^2}{\chi_{n-1;1-\frac{\alpha}{2}}^2}, \frac{(n-1)S_{(n)}^2}{\chi_{n-1;\frac{\alpha}{2}}^2}\right]$$

Wir brauchen N und Sample sd. Geht auch ohne Sample.

```
1 sample <- c(247.4, 249.0, 248.5, ..., 249.4)
2 alpha <- 0.05
3 sample_sd <- sd(sample)
4 n <- length(sample) #20
5 b <- (n - 1) * sample_sd^2
L_var <- b / qchisq(1 - (alpha / 2), n-1)
7 U_var <- b / qchisq(alpha / 2, n - 1)
8 sigma.test(x = sample, conf.level = 1 - alpha, alternative = 'two.sided')</pre>
```

Confidence Interval for \hat{p} (Proportion)(Stichprobenanteil)

We are estimating \hat{p} , the sample proportion

$$\begin{split} \left[\hat{p} - u_{1 - \frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}, \, \hat{p} + u_{1 - \frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \right] \\ \hat{p} = \frac{probability \cdot n}{n} \end{split}$$

```
1  prob <- 0.7
2  alpha <- 0.05
3  n <- 250
4  p_hut <- (prob*n)/n
5  q <- qnorm(1-(alpha/2))
6  L <- p_hut - q * sqrt((p_hut * (1-p_hut))/n)
7  U <- p_hut + q * sqrt((p_hut * (1-p_hut))/n)
8  binom.test(x=0.7 * n, n=n, conf.level = 1-alpha, alternative = "two.sided")$conf.int
9  #[0.6431948, 0.7568052]</pre>
```

wir sind uns zu 95% sicher, dass zwischen 64% und 75% der Wähler ja gestimmt haben.

Nur obere oder untere Grenze berechnen:

Hier teilen wir α nicht mehr, da sich die Prozente auf eine 1 Seite konzentrieren:

Umformungen

 \hat{p} : Solving for \hat{p}

$$\hat{p} = \frac{\text{upper limit} + \text{lower limit}}{2}$$

1 p_hut <- (L + U) / 2

$u_{1-\frac{\alpha}{2}}$: Für Quantile der Normalverteilung Umformen

Aus der Intervalllänge:

$$u_{1-\frac{\alpha}{2}} = \frac{\text{Intervalllänge} \cdot \sqrt{n}}{2 \cdot \sqrt{\hat{p}(1-\hat{p})}}$$

Aus der oberen Grenze:

$$u_{1-\frac{\alpha}{2}} = \frac{\text{obere Grenze} - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}$$

Aus der unteren Grenze:

$$u_{1-\frac{\alpha}{2}} = \frac{\hat{p} - \text{untere Grenze}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}$$

MOE (Margin of Error):

$$MOE = u_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$MOE = \frac{Intervall\ddot{a}nge}{2}$$
 moe <- q * (sqrt(p_hut * (1 - p_hut) / n)) moe_2 <- leange / 2

Intervalllänge:

Intervalllänge =
$$2 \cdot u_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Intervalllänge = U - L