Introduction Overview

Datasets for

Classification
Datasets Table
Examples

Results

Conclusions and Future Work

Conclusions

. .

A Comparison of Neuromorphic Classification Tasks

John J. M. Reynolds¹, James S. Plank¹, Catherine D. Schuman², Grant R. Bruer¹, Adam W. Disney¹, Mark E. Dean¹, Garrett S. Rose¹

Oak Ridge National Labs

07/24/2018

What's the premise?

Introduction

Overview Models

Datasets for Classification Datasets Table Examples

Results

Conclusions and Future Work

Conclusion

Reference

- Neural networks are reaching dizzying levels of success
- Researchers often compelled to try a "neuromorphic approach"
- How can the appropriate model be chosen?

Premise

 We compared different approaches from the viewpoint of a layperson, as it can often be unclear as to which model is most appropriate.

Models

Introduction Overview

Datasets for Classification Datasets Table Examples

Results

Conclusions and Future Work

Conclusion

Name	Software	Neural Network	Training	
Perceptron	TENN-Lab	Feed Forward	Back-propagation	
MLP	Keras / TensorFlow	Feed Forward	Back-propagation	
Conv	Keras / TensorFlow	Feed Forward	Back-propagation	
LSTM	Keras / TensorFlow	Nodes with recurrency	Back-propagation	
EONS	TENN-Lab / NIDA	Spiking, Recurrent	Evolutionary Optimization	
Reservoir	TENN-Lab / NIDA	Spiking, Recurrent + Perceptron	Random + Back-propagation	

Models - Perceptron

Introduction

Models

Datasets for Classification Datasets Table Examples

Results

Conclusions and Future Work

Conclusions

D 6

 By Mat the w at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=23766733

Models - Multilayer perceptron

Introduction Overview

Datasets for Classification Datasets Table Examples

Results

Conclusions and Future Work

Conclusion

Figure 1: This is an example multilayer perceptron.

Models - Convolutional net

Introduction Overview

Datasets for Classification Datasets Table Examples

Results

Conclusions and Future Work

Conclusion

References

Figure 2: This is a diagram of LeNet-5; the canonical example of a simple convolutional deep learning model.

 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998.

Models - Long short-term memory

Introduction Overview

Datasets for Classification Datasets Table Examples

Results

Conclusions and Future Work

Conclusion

References

Figure 3: This is an example diagram of the long short-term memory model. It's a recurrent artificial neural network.

By François Deloche - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=60149410

Models - EONS

Results

and Future

Figure 4: This diagram demonstrates the work flow of the Evolutionary Optimization of Neuromorphic Systems (EONS) model.

Models - Reservoir

Introduction Overview

Datasets for Classification Datasets Table Examples

Results

Conclusions and Future Work

Conclusion

Figure 5: Depicted above is the reservoir computing paradigm outlined in our paper. In this work, the reservoir is spiking, thus following the liquid state machine theoretical framework.

Datasets Intro

Introduction

Models

Datasets foi Classificatio

Datasets Tab

Results

Results

Conclusions and Future Work

Conclusion

Reference

- Datasets with different characteristics were chosen
- Some are static classification
- Others are spatio-temporal

Takeaway

 The datasets were chosen to highlight different aspects of the models being compared.

Datasets

Introduction Overview Models

Datasets for Classification

Datasets Table Examples

Results

Conclusions and Future Work

Name	r	С	Classes	Training Data Points	Testing Data Points	N (Time Steps)	M (Output Window)
Iris	4	1	3	75	75	440	330
WBC	9	1	2	560	139	440	330
Pima	8	1	2	615	153	440	330
Radio	2	128	2	667	166	1400	1200
EEG	1	4097	2	160	40	4100	4000
TIMIT	13	48	2	2000	200	500	450

Example Samples

Introduction Overview

Datasets for Classification Datasets Table

Results

Conclusions and Future Work

Conclusion

. .

 The top figure is an example EEG. The bottom right is of MFCC vectors composing an 'iy' phoneme. The bottom left plots 8PSK vs. GPSK from the radio dataset.

Results Intro

Introduction

Models

Datasets for Classification Datasets Table

Results

Conclusions and Future Work

Conclusions

- We can draw some conclusions from the empirical data
- The models aren't optimized, so results could be improved

Results Table

Introduction Overview Models

Datasets for Classification Datasets Table Examples

Results

Conclusions and Future Work Conclusions

Model / Data	Iris	WBC	Pima	Radio	EEG	TIMIT
Perceptron	97.38	48.40	67.54	50.70	54.05	77.57
MLP	95.33	94.71	68.37	80.53	48.25	83.73
Conv	96.13	96.45	67.70	93.95	99.00	85.20
LSTM	96.67	95.71	79.22	83.64	45.00	83.40
EONS	98.66	99.28	78.57	71.00	99.00	83.00
Reservoir	93.33	96.47	79.22	73.00	98.00	85.00

Sizes Table

Introduction Overview

Datasets for Classification Datasets Table

Results

Conclusions and Future Work

Conclusion

Model / Data	Iris N S	WBC N S	Pima N S	Radio N S	EEG N S	TIMIT N S
Perceptron	7 12	11 18	10 16	258 512	4099 8194	
MLP	199 8835	203 9090	202 9026	450 24898	4291 270722	818 48450
Conv	775 30019	2678 31042		12278 805652	876547 202562	28006 3530652
LSTM	99 21091	98 21058	98 21058	98 21186	98 21058	98 27074
EONS	74 164	22 166	38 173	26 103	8 30	39 246
Reservoir	200 300	200 600	200 600	200 300	200 (7) 900 (14)	200 (53) 1000 (140)

Accuracy

Introduction Overview

Datasets for Classification Datasets Table Examples

Results

Conclusions and Future Work

Conclusio

Network Sizes

Introduction

Models

Datasets for Classification Datasets Table

Reculte

Conclusions and Future Work

Conclusio

Conclusions

Introduction

Models

Datasets for Classification Datasets Tabl Examples

Results

Conclusions and Future Work

Conclusions

. .

Accuracy

No clear winner across all tasks in terms of accuracy

Size Weight and Power (SWaP)

• Spiking approaches seemingly produce orders of magnitude smaller networks.

Future Work

Introduction

Models

Datasets for Classification Datasets Table Examples

Results

Conclusions and Future Work

Conclusions

Reference

Datasets

- Larger datasets
- More classes
- Control Applications

Timings

 Training and testing times need to be recorded and compared in both qualitative and quantitative manners.

References

Introduction Overview

Datasets for Classification Datasets Table Examples

Results

Conclusions and Future Work

Conclusion

Reference

John J. M. Reynolds, James S. Plank, Catherine D. Schuman, and Grant R. Bruer, Adam W. Disney, Mark E. Dean, Garrett S. Rose. 2018. A Comparison of Neuromorphic Classification Tasks. In ICONS 2018: International Conference on Neuromorphic Systems, July 23-26, 2018, Knoxville, TN, USA. ACM, New York, NY, USA, 8 pages. - in press

 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998.