Introducción, conceptos fundamentales y "como funciona por dentro"

¿Qué es y para que sirve?

Compara la distribución de una variable continua normal en dos o más poblaciones (niveles o categorías)

Pruebas de contraste para dos o más grupos independientes (ANOVA entre sujetos): un factor completamente aleatorizado.

Ejemplo de problema a resolver:

Se quiere estudiar la abundancia en tres zonas pesqueras, una de las cuales tiene cierto nivel de protección (pesquera).

Se espera que comparando los valores de esta zona con la de otras dos con parecidas características el hecho resultará evidente.

Hipótesis:

 H_0 : No existen diferencias entre las k zonas

 H_1 : Hipótesis nula no cierta (al menos alguna zona es diferente al resto)

 H_0 : No existen diferencias entre los k niveles

H₁: La hipótesis nula no es cierta

Hipótesis nula: (todas las medias poblacionales de los "k" grupos son iguales)

H0: $\mu 1 = \mu 2 = \mu 3... = \mu a = \mu$

Hipótesis alternativa: (al menos una media poblacional difiere)

H1: No es cierto H0

- Parte de un conjunto de observaciones muestrales
- *K* niveles o categorías

Supongamos un universo de notas de 9 alumnos

de 3 grupos distintos

Grupo 1	Grupo 2	Grupo 3
5	5	5
5	5	5
5	5	5

No hay diferencia ENTRE grupos Ni DENTRO de los grupos

$$X_{i,j} = \mu$$

Supongamos que aplicamos un método de enseñanza (*factor*)

que afecta:

Grupo 1	Grupo 2	Grupo 3
5+1=6	5 +2 =7	5 +0 =5
5+1=6	5 +2 =7	5 +0 =5
5+1=6	5 +2 =7	5 +0 =5

$$X_{i,j} = \mu + \alpha_i$$

Donde $\alpha_i = \{1,2,0\}$ efecto del factor

El factor influye en establecer diferencias ENTRE grupos Pero NO DENTRO

Por razones ALEATORIAS algunos alumnos rinden mas que otros

Grupo 1	Grupo 2	Grupo 3		
5+1 -1 = 5	5+2 <mark>+2</mark> = 9	5+0 +3 = 8		
5+1 <mark>-2</mark> = 4	5+2 +0 = 7	5+0 +4 = 9		
5+1 +0 = 6	5+2 +1 = 8	5+0+0 = 5		

$$X_{i,j} = \mu + \alpha_i + \varepsilon_{i,j}$$

Donde $\mathcal{E}_{i,j} = \{-1, -2, 0, 2, 0, 1, 3, 4, 0\}$ efecto aleatoriedad

La ALEATORIEDAD influye en la variabilidad DENTRO de los grupos

Grupo 1		Grupo 2		Grupo 3			
5+1-1	5	5+2 <mark>+2</mark> =	9	5+0 <mark>+3</mark> =	8		
5+1-2	= 4	5+2 +0	= 7	5+0+4 =	:0		
5+1+0	- 6	5+2+1=	8	5+0 <mark>+0</mark> =	= 5		
X_{1} = .	5	$X_2 = 8$	8	$X_{3.} = 7.$	33	$X_{} = 6.78$	3
							1

Calculamos las medias por grupo y la media global

Grupo 1	Grupo 2	Grupo 3	
5	9	8	
4	7	9	
6	8	5	
$X_{1}=5$	$X_{2.} = 8$	$X_{3.} = 7.33$	X.= 6.78

Para calcular el efecto aleatorio: medimos las diferencias DENTRO

$$\sum \sum \left(X_{ij} - \overline{X}_{..} \right)^{2} = \left(\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}_{i.} \right)^{2} + \sum_{i=1}^{k} n_{i} \left(X_{i.} - \overline{X}_{..} \right)^{2} \right)$$

Grupo 1	Grupo 2	Grupo 3	
5	9	8	
4	7	9	
6	8	5	
$X_{1}=5$	X ₂ . ₹8	$X_{3} = 7.33$	$X_{}=6.78$

Para calcular el efecto del factor: medimos las diferencias ENTRE

$$\sum \sum_{i=1}^{k} \left(X_{ij} - \overline{X}_{..} \right)^{2} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}_{i.} \right)^{2} + \left(\sum_{i=1}^{k} n_{i} \left(X_{i.} - \overline{X}_{..} \right)^{2} \right)^{2}$$

Tenemos dos tipos de variabilidad:

- ENTRE grupos (debida al factor)
- DENTRO grupos (debida a la aleatoriedad)

Para poder afirmar que el factor produce efectos:

La variabilidad ENTRE grupos debe ser significativamente grande respecto a la DENTRO grupos

Generalizando ...

	1	2	Niveles del factor	k
1	X _{1,1}	X _{2,1}	•••	X _{k,1}
2	X _{1,2}	X _{2,2}	$X_{i,j}$	X _{k,2}
j	X _{1,j}	X _{2,j}		$X_{k,j}$
n	X _{1,n1}	X _{2,n2}	***	$X_{k,nk}$

$$i = 1,2,3,...,k$$
 $j = 1,2,3,..., n_k$ (no balanceado)

Media al nivel i del factor = $(1/n_i) \sum_{j=1} X_{i,j}$

Media general = $(1/N) \sum X_{i,j}$ Siendo N = $\sum n_i$

$$X_{i,j} = \mu + \alpha_i + \varepsilon_{i,j}$$

Asumiendo las hipótesis previas:

$$H_0$$
: $a_1 = \alpha_2 = ... = a_k$

O bien si consideramos $Xi_{j} = \mu + \alpha i$

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

Se quiere comprobar la NO INFLUENCIA del factor Q

Todas las muestras proceden de la misma población

$$H_0$$
: $\mu_1 = \mu_2 = \dots = \mu_k$
 H_1 : Al menos una igualdad no es cierta

Según la Hipótesis fijada
 modelo probabilístico
 NO se rechaza H₀ sí y solo sí:

$$F = \frac{\frac{Q_E}{k-1}}{\frac{Q_D}{n-k}} \le F_{k-1,n-k,\alpha}$$

Análisis de la varianza de un factor:

Análisis de la varianza de un factor:

Construcción del estadístico de contraste:

MC_{ENTRE} / MC_{DENTRO} sigue una distribución F

Si el $F_{calc} > F_{crit}$ para (a-1) y a(n-1) g.l., se <u>rechaza</u> H_0 :

al menos una de las medias X_i es significativamente diferente de las demás

Fuentes de variación	Sumas de cuadrados	G.L.	Cuadrados Medios	F	Signif.
ENTRE	$Q_E = \sum_{i=1}^k n_i (\overline{X}_{i.} - \overline{X}_{})^2$	k–1	$Q_E/k-1=S_E^2$	$F = \frac{Q_E}{\frac{k-1}{Q_D}}$	P-valor
DENTRO	$Q_{D} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (X_{ij} - \overline{X}_{i.})^{2} = \sum_{i=1}^{k} (n-1)S_{i}^{2}$	n–k	$Q_D / n - k = S_D^2$		
TOTAL	$Q = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X}_{} \right)$	n–1	$Q/n-1=S^2$		

Hipótesis necesarias para realizar un ANOVA

- a) Normalidad de la respuesta en cada nivel
- b) Homogeneidad de las varianzas
- c) Independencia de los valores obtenidos

Homogeneidad de varianzas:

Cuando varianzas ≠, se incrementa el error Tipo I

Homogeneidad de varianzas:

Test de heterogeneidad de varianzas:

Bartlett -> high alfa, sensible a NO normalidad Levene -> es una ANOVA para VAR. Asume var iguales!! Scheffe -> insensible a NO normalidad, pero no lo recomnieda ... Hartley ->problema cuando 1 var es pequeña.... ... etc.

Test de Cochran
$$C = \frac{\text{mayor } s_i^2}{\sum s_i^2}$$

La distribución C para a (tratamientos) y (n-1) g.l. ha sido tabulada

Si C_{obs} < C_{c} , aceptamos la H_0 de homogeneidad de varianzas

Conteos (o datos que siguen una dist. de Poisson) $\rightarrow \sqrt{(X + 1)}$

Ratios, tasas, concentraciones, etc. \rightarrow log (X) o log (X + 1)

Porcentajes y proporciones \rightarrow sen⁻¹ \sqrt{X} (= arcsen X)

Transformación de datos

- Útil para eliminar heterogeneidad de la varianza.
- Sólo es efectivo si la media tiene una relación constante con la varianza.
- La transformación debe ser monotónica.
- Deben mantenerse las medias en el mismo orden.
- La transformación debe utilizarse únicamente para evitar el problema de heterogeneidad de la varianza.
- Transformaciones sistemáticas son perjudiciales.

Transformación de datos

Raíz cuadrada

- Poblaciones que siguen una **distribución de Poisson**: medias y varianzas son iguales
- Frecuencias o recuentos por unidad de tiempo o superficie.
- Principalmente con abundancias muy pequeñas.

Transformación de datos

- Muestreos con valores muy altos: medias mayores y varianza mucho mayores.
- Datos distribuidos log-normal
- Medidas de tasas, concentraciones, relaciones,...
- Ej: Relación entre el número de presas comida por depredador, cantidad de clorofila por peso algal,...
- Independiente del tipo de logaritmo usado.
- Sumar una constante (1) para aplicar logaritmos por los valores que son 0.
- Problema en valores muy pequeños: solo cuando son mayores de 10.

log (X+1)

Transformación de datos

- Porcentajes y proporciones
- Distribución Binomial.
- Ej. Porcentaje de cobertura de *Posidonia*

Transformación de datos

logit transformation

- Transforma los valores de **porcentajes** desde ∞ hasta + ∞
- \bullet La transformación de arcoseno limita los valores desde 0 hasta $~\pi$ / 2 radianes (0 hasta 90 °) .

$$(1/2) \log ((p / 1-p))$$

Si la transformación de datos no es posible

- Situaciones biológicas que presentan varianzas heterogéneas: gran agrupación de organismos.
- Cuando son experimentos bien replicados: el análisis de la varianza es suficientemente robusto.
- Experimentos grandes y balanceados.
- La validez del test y probabilidades asociadas con la distribución de la F ratio no se ven muy afectadas.

Si la transformación de datos no soluciona la Heterogeneidad

- •Si se acepta la Ho no existe problema.
- •Si se rechaza debe ser un Ω menor (0.01): así se evita error tipo I.

Utilizar un test **no paramétrico**no soluciona el problema de
heterogeneidad de
varianzas
(debemos intentar **explicar** dicha heterogeneidad)

Si se acepta H_0 (p > 0,05), no hay problema

Si se rechaza H_0 , considerar $\alpha_c = 0.01$

Utilizar un test no paramétrico (p.ej. Kruskal-Wallis) no soluciona el problema

Normalidad de los datos

El análisis de la varianza es suficientemente robusto a las desviaciones de la normalidad (Glass et al. 1972, Harwell et al. 1992, Lix et al. 1996)*, sobre todo cuando:

- hay un gran número de tratamientos y / o réplicas;
- los datos están equilibrados.

Las transformaciones a menudo corrigen el apuntamiento, <u>pero cuidado</u> cuando existe <u>homogeneidad de varianzas</u>.

(*) References

Glass, G.V., P.D. Peckham, and J.R. Sanders. 1972. Consequences of failure to meet assumptions underlying fixed effects analyses of variance and covariance. Rev. Educ. Res. 42: 237-288.

Harwell, M.R., E.N. Rubinstein, W.S. Hayes, and C.C. Olds. 1992. Summarizing Monte Carlo results in methodological research: the one- and two-factor fixed effects ANOVA cases. J. Educ. Stat. 17: 315-339.

Lix, L.M., J.C. Keselman, and H.J. Keselman. 1996. Consequences of assumption violations revisited: Aquantitative review of alternatives to the one-way analysis of variance F test. Rev. Educ. Res. 66: 579-619.

Schmider, Emanuel; Ziegler, Matthias; Danay, Erik; Beyer, Luzi; Bühner, Markus. 2010. Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption.

Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, Vol 6(4), 2010, 147-151. doi: 10.1027/1614-2241/a000016

Resumen del problema de la FALTA de independencia de datos

No independencia DENTRO de los tratamientos

No independencia ENTRE los tratamientos

Correlación positiva

 $\sigma^2_{\rm e}$ dentro de las muestras

es subestimado

F ratio excesivo

Incremento del error Tipo I

Diferencias sin importancia

son detectadas

 σ^2_e entre de las muestras

es subestimado

F ratio muy pequeno

Incremento del error Tipo II

Diferencias reales no

son detectadas

Correlación negativa

 σ^2_e dentro de las muestras

es sobreestimado

F ratio demasiado pequeno

Incremento del error Tipo II

Diferencias reales no

son detectadas

 $\sigma_{\rm e}^2$ entre de las muestras

es sobreestimado

F ratio excesivo

Incremento del error Tipo I

Diferencias sin importancia

son detectadas

Normalidad de los datos

El análisis de la varianza es suficientemente robusto a las desviaciones de la normalidad (Glass et al. 1972, Harwell et al. 1992, Lix et al. 1996)*, sobre todo cuando:

- hay un gran número de tratamientos y / o réplicas;
- los datos están equilibrados.

Las transformaciones a menudo corrigen el apuntamiento, <u>pero cuidado</u> cuando existe <u>homogeneidad de varianzas</u>.

(*) References

Glass, G.V., P.D. Peckham, and J.R. Sanders. 1972. Consequences of failure to meet assumptions underlying fixed effects analyses of variance and covariance. Rev. Educ. Res. 42: 237-288.

Harwell, M.R., E.N. Rubinstein, W.S. Hayes, and C.C. Olds. 1992. Summarizing Monte Carlo results in methodological research: the one- and two-factor fixed effects ANOVA cases. J. Educ. Stat. 17: 315-339.

Lix, L.M., J.C. Keselman, and H.J. Keselman. 1996. Consequences of assumption violations revisited: Aquantitative review of alternatives to the one-way analysis of variance F test. Rev. Educ. Res. 66: 579-619.

Schmider, Emanuel; Ziegler, Matthias; Danay, Erik; Beyer, Luzi; Bühner, Markus. 2010. Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption.

Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, Vol 6(4), 2010, 147-151. doi: 10.1027/1614-2241/a000016

Análisis a posteriori

Dos tipos de definición de H_A

a priori (antes de realizar el experimento)

a posteriori (no propongo alternativas hasta haber realizado el experimento)

Ejemplo de comparación a priori:

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

$$H_A$$
: $\mu_3 > \mu_1$; $\mu_3 > \mu_2$; $\mu_3 > \mu_4$

Los tests a priori son más potentes, pero están sometidos a mayor riesgo de error

Ej: Dunn Sidak

Tests a posteriori

- Comparan todos los posibles pares de medias entre sí, de tal modo que definen la alternativa a la H₀
- Únicamente podrá definirse una H_A sin ambigüedad en el caso de que se los distintos tratamientos se reúnan en grupos tales que:
 - 1. no haya diferencias entre las medias dentro de un grupo, y
 - 2. cada media en un grupo difiere de todas las medias del otro grupo
- Uno de los tests más utilizados es el de Student-Newman-Keuls (SNK)
- Otros tests utilizables:

Scheffe

Tukey

LSD

Bonferroni

... etc.

Fundamentos de ANOVA

Tests *a posteriori*

Test SNK:

Ejemplo: 5 hábitats (a = 5)

7 réplicas por hábitat (n = 7)

<u>Hábitat</u>	a	b	С	d	е	
Media	6,4	7,1	3,8	2,6	4,1	
S^2	2,18	0,67	1,77	1,35	2,06	

Fuente de var.	SC	gl	MC	F	Р	
Entre	99,26	4	24,82	15,38	***	
Dentro	48,18	30	1,60			
Total	147,44	34				

Fundamentos de ANOVA

Tests *a posteriori*

 $ET = \sqrt{(MC_{DENTRO} / n)} = \sqrt{(1,60 / 7)} = 0,48$

Test SNK:

 $Q_{ij} = X_i - X_j$ / ET está tabulado para H_0 verdadera

Rango	1	2	3	4	5		test SNK
Medias	2,6	3,8	4,1	6,4	7,1	g	Q D=QxET
Comparaciones	5-14,5 4-13,8 3-11,5 2-1 1,2	5-23,3 4-22,6 3-20,3	⁵⁻³ 3,0 ⁴⁻³ 2,3	⁵⁻⁴ 0,7			5 4,10 1,97 4 3,84 1,84 3 3,49 1,68 2 2,89 1,39
						·	$\alpha = 0.05$ gl = 30

Tests *a posteriori*

$$ET = \sqrt{(MC_{DENTRO} / n)} = \sqrt{(1,60 / 7)} = 0,48$$

Test SNK:

 $Q_{ij} = X_i - X_j$ / ET está tabulado para H_0 verdadera

Rango	1	2	3	4	5		test	SNK
Medias	2,6	3,8	4,1	6,4	7,1	g	Q	D=QxET
Comparaciones	5-1 4,5 * 4-1 3,8 * 3-11,5 2-11,2	5-2 3,3 * 4-2 2,6 * 3-20,3	⁵⁻³ 3,0* 4-32,3*	5-4 0,7			5 4 3 2	4,101,973,841,843,491,682,891,39
Si (X _i	$-X_j$) > D,	la diferenc	cia es sign	ificativa ((*)	·		x = 0.05 $y = 30$

$$5 > 1$$
 $5 > 2$ $5 > 3$ $5 = 4$
 $4 > 1$ $4 > 2$ $4 > 3$ $5 = 4 > 3 = 2 = 1$
 $3 = 1$ $3 = 2$

2 = 1 Hay 2 Subconjuntos Homogéneos

— .			-	
LACTO	2	poste	$ri\alpha i$	-1
15212	а	UUSUC	ונאוו	•
. 000	-	P 0010		•

Test SNK:

Un resultado tal que:

5 4 3 2 1

¿Hay Subconjuntos Homogéneos?

... no resulta lógico (no hay una H_A identificable)!!

Tests *a posteriori*

Presentación de resultados

```
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = datos$ABUND ~ factor(datos$ZONA))

$`factor(datos$ZONA)`
diff lwr upr p adj
2-1 5.462963 -93.32526 104.25118 0.9906082
3-1 -35.685185 -134.47340 63.10303 0.6696206
3-2 -41.148148 -139.93637 57.64007 0.5871203
```

95% family-wise confidence level

FACTOR	Df	Sum Sq	Mean Sq	F (respecto del F		P-valor
				Residual)	(correcto)	
Zona	2	0.12705	0.063526	11.5056	8.0627	4.614·10 ⁻⁵
Sitio	9	0.07091	0.007879	1.4269	1.3167	0.1929
Localidad	24	0.14361	0.005984	1.0837	1.0837	0.3832
Residuals	72	0.39754	0.005521			

Tabla 3. Resultados del Test de ANOVA.

			Intervalo de Confianza al 95%		
Factor	Diferencias entre medias	Sig.	Límite inferior	Límite	
N-C	-0.05000828	0.0153165	-0.091921467	-0.008095102	
S-C	0.03346132	0.1430502	-0.008451861	0.075374504	
S-N	0.08346961	0.0000281	0.041556424	0.125382788	

Tabla 4. Resultados del Test de Tukey.

Test a posteriori

H₀ no se rechaza (Test no significativo)

Se rechaza H₀ (Test significativo)

95% family-wise confidence level

95% family-wise confidence level

Test a posteriori

Test a posteriori

TukeyHSD(aov(PADINA~Zona*Profundidad))

Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = PADINA ~ Zona * Profundidad)

\$Zona

diff lwr upr p adj N-C -2.314815 -12.03046 7.400825 0.8395177 S-C -4.259259 -13.97490 5.456381 0.5544780

S-N -1.944444 -11.66008 7.771196 0.8838268

\$Profundidad

diff lwr upr p adj 2-1 -17.22222 -23.84418 -10.60026 8e-07

\$`Zona:Profundidad`

diff lwr upr p adj
N:1-C:1 -6.666667 -23.42123 10.087898 0.8603058
S:1-C:1 -5.740741 -22.49530 11.013823 0.9209766
C:2-C:1 -21.111111 -37.86568 -4.356547 0.0049711
N:2-C:1 -19.074074 -35.82864 -2.319510 0.0156529
S:2-C:1 -23.888889 -40.64345 -7.134325 0.0008761
S:1-N:1 0.925926 -15.82864 17.680490 0.9999854
C:2-N:1 -14.444444 -31.19901 2.310120 0.1341259
N:2-N:1 -12.407407 -29.16197 4.347157 0.2740355

S:2-N:1 -17.222222 -33.97679 -0.467658 0.0400863

95% family-wise confidence level

