# MODEL ASSESSMENT

Dr. Aric LaBarr
Institute for Advanced Analytics

# COMPARING MODELS

## Purpose of Modeling

- Statistical models are created for two different purposes estimation and prediction.
  - Estimation: Quantifying the expected change in response associated with predictors (relationships).
  - Prediction: Use the model to predict new response.
- Won't necessarily agree!

### Deviance/Likelihood Measures

- AIC and BIC approximate out-of-sample prediction error by applying a penalty for model complexity:
  - AIC crude, large-sample approximation of leave-one-out cross-validation.
  - BIC favors smaller models/penalizes model complexity more.
- Lower values "better" than higher.
- No amount of lower is "better" enough.
- May not always agree, but neither is necessarily better.

### Deviance/Likelihood Measures

- Number of "pseudo"- $R^2$  quantities for logistic regression.
- Higher values indicate "better" model.
- Generalized / Nagelkerke R<sup>2</sup> how much better than intercept only model?
- Unlike linear regression, there is no interpretation on these.



$$R_G^2 = 1 - \left(\frac{L_0}{L_1}\right)^{\frac{2}{n}}$$

### Deviance and Likelihood Measures

```
AIC (logit.model)

[1] 1287.964

BIC (logit.model)

[1] 1394.86

PseudoR2 (logit.model, which = "Nagelkerke")

Nagelkerke 0.7075796
```



# ASSESSING PREDICTIVE POWER

## What is a Good Logistic Model?

- Logistic regression is a model for probability of an event NOT the occurrence of an event.
- Logistic regression can be a classification model as well.
- Good model should reflect both of these, but importance of one over the other depends on the problem.

### Discrimination vs. Calibration

- Discrimination ability to separate the events from the non-events. How good is model at distinguishing the 1's from the 0's.
- Calibration how well predicted probabilities agree with the actual frequency of the outcomes. Are predicted probabilities systematically too low/high?
- May not agree with each other!



## ASSESSING PREDICTIVE POWER

**Probability Based Metrics** 

### Coefficient of Discrimination

- Want model to assign a higher probability to events and lower probability to non-events.
- Coefficient of discrimination (or discrimination slope) is the difference in average predicted probability between 1's and 0's:

$$D = \bar{\hat{p}}_1 - \bar{\hat{p}}_0$$

Able to compare with histograms as well.

### Discrimination Slope

# Discrimination Slope





### Rank-order Statistics

- How well does the model order predictions?
- Concordance: for a pair of subjects with and without the event, the one with the event had the higher predicted probability.
- Discordance: for a pair of subjects with and without the event, the one with the event had the lower predicted probability.
- **Tied:** for a pair of subjects with and without the event, they both have the **same** predicted probability.

### Concordance

- Interpretation For all possible (1,0) pairs, the model assigned the higher predicted probability to the observation with the event concordance% of the time.
- Common metrics based on concordance:

• c-statistic: 
$$c = Concordance \% + \frac{1}{2} Tied \%$$

• Somers' D (Gini): 
$$D_{xy} = 2c - 1$$

• Kendall's 
$$\tau_a$$
: 
$$\tau_a = \frac{\# concordant - \# discordant}{\left(\frac{n(n-1)}{2}\right)}$$

### Rank-order Statistics – R



# ASSESSING PREDICTIVE POWER

Classification Based Metrics

### Classification

- Want model to correctly classify events and non-events.
- Classification forces the model to predict  $\hat{y}_i = 1$  or  $\hat{y}_i = 0$  based on whether the predicted probability exceeds some threshold for example,  $\hat{y}_i = 1$  if  $\hat{p}_i > 0.5$ .
- Strict classification-based measures completely discard any information about the actual quality of the model's predicted probabilities.

# Logistic Discrimination





### Classification Table



## ASSESSING PREDICTIVE POWER

Sensitivity vs. Specificity

## Sensitivity / Recall



## Specificity



## 1 – Specificity



# Classification Changes with Cut-off



|                 | <u>^</u>              |           |            |
|-----------------|-----------------------|-----------|------------|
| <u>response</u> | $\hat{\underline{P}}$ | cutoff=.5 | cutoff=.25 |
| 0               | .32                   | 0         | 1          |
| 1               | .40                   | 0         | 1          |
| 1               | .92                   | 1         | 1          |
| 0               | .06                   | 0         | 0          |
| 1               | .52                   | 1         | 1          |
| 1               | .39                   | 0         | 1          |
| 1               | .22                   | 0         | 0          |
| 0               | .17                   | 0         | 0          |
| 0               | .13                   | 0         | 0          |
| :               | :                     | :         |            |
| 1               | .75                   | 1         | 1          |
|                 |                       |           |            |

# Classification Changes with Cut-off



|                 | ^        |           |            |
|-----------------|----------|-----------|------------|
| <u>response</u> | <u>P</u> | cutoff=.5 | cutoff=.25 |
| 0               | .32      | 0         | 1          |
| 1               | .40      | 0         | 1          |
| 1               | .92      | 1         | 1          |
| 0               | .06      | 0         | 0          |
| 1               | .52      | 1         | 1          |
| 1               | .39      | 0         | 1          |
| 1               | .22      | 0         | 0          |
| 0               | .17      | 0         | 0          |
| 0               | .13      | 0         | 0          |
| :               | :        | :         | :          |
| 1               | .75      | 1         | 1          |
| SUCCESS         | RATE     | = 70%     | 80%        |

### **Best Cut-off?**

- Always consider the cost of false positives and false negatives when doing classification.
- When **NOT** considering costs, many different techniques to "optimal" cut-off.
- Youden J statistic (or Youden's index):

$$J = \text{sensitivity} + \text{specificity} - 1$$

• "Optimal" – false positives and false negatives are weighed equally, so select cut-off that produces highest Youden *J* statistic.

### Classification Table

#### Youden Index

```
library(ROCit)

logit_meas <- measureit(train$p_hat, train$Bonus, measure = c("ACC", "SENS",
"SPEC"))

print(logit_meas)</pre>
```

Prints out metrics (Cutoff, Depth, TP, FP, TN, FN, and ones listed above) for every possible cut-off!

Output not shown here.

### **ROC Curve**



- ROC curve plots TPR vs. FPR for a grid of thresholds.
- Area under the curve (AUC or AUROC) summarizes the overall quality of ROC curve – equivalent to c-statistic.
- Want high sensitivity and high specificity.

### Area Under the ROC Curve

$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



### Area Under the ROC Curve

$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



### Area Under the ROC Curve

$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



### **ROC Curve**

```
logit_roc <- rocit(train$Bonus, train$p_hat)
plot(logit_roc)</pre>
```



### **ROC Curve**

```
plot(logit_roc) $optimal
```



J = sensitivity + specificity - 1

#### **ROC Curve**

summary(logit\_roc)

```
Method used: empirical
Number of positive(s): 840
Number of negatives(s): 1211
Area under curve: 0.9428
```

$$AUC = \% Concordant + \frac{1}{2}(\% Tied)$$



# ASSESSING PREDICTIVE POWER

**KS Statistic** 

### K-S Statistic

- Very popular measure in banking and finance industries.
- The Two-Sample K-S statistic can determine if there is a difference between two cumulative distribution functions.
- Has a corresponding hypothesis test, with **D test statistic** (used for model comparison), and p-value.



### K-S Statistic or Youden?

D test statistic is used for model comparison.

```
D = \max(TPR - FPR)
= \max(Sensitivity + Specificity - 1)
= \max(Youden J)
```

Mathematically equivalent to Youden's J statistic.

### **Best Cut-off?**

- Always consider the cost of false positives and false negatives when doing classification.
- When NOT considering costs, many different techniques to "optimal" cut-off.
- KS statistic D (maximum difference between TPR and FPR):

$$D = \max_{depth} (TPR - FPR)$$

• "Optimal" – select cut-off that produces highest *D* statistic (same as Youden's).

### K-S Statistic

```
ksplot(logit_roc)
ksplot(logit_roc)$`KS Stat`
[1] 0.7352326
ksplot(logit_roc)$`KS Cutoff`
[1] 0.4229724
```



### K-S Statistic





## ASSESSING PREDICTIVE POWER

Precision vs. Recall

## Sensitivity / Recall



### Precision



### **Best Cut-off?**

- Always consider the cost of false positives and false negatives when doing classification.
- When NOT considering costs, many different techniques to "optimal" cut-off.
- *F*<sub>1</sub> **score** (precision-recall version of Youden's Index):

$$F_1 = 2 \left( \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \right)$$

• "Optimal" – precision and recall are weighed equally, so select cut-off that produces highest  $F_1$  score.

## Precision, Recall, $F_1$

```
library(ROCit)

logit_meas <- measureit(train$p_hat, train$Bonus, measure = c("PREC", "REC",
"FSCR"))

fscore_table <- data.frame(Cutoff = logit_meas$Cutoff, FScore = logit_meas$FSCR)
head(arrange(fscore_table, desc(FScore)), n = 1)</pre>
```

```
Cutoff FScore 1 0.4229724 0.8423423
```

Optimal cut-off that maximizes F1-score

DOES NOT TYPICALLY MATCH YOUDEN CUT-OFF

#### **Precision & Lift**

- Common calculation in marketing.
- Great for interpretation around validity of model ranking / classifying observations correctly.

$$Lift = PPV/\pi_1$$

- The top <u>depth</u>% of your customers, based on predicted probability, you get <u>lift</u> times as many responses compared to targeting a random sample of <u>depth</u>% of your customers.
- Best seen through an example!

```
logit_lift <- gainstable(logit_roc)
print(logit_lift)</pre>
```

|    | Bucket | Obs | CObs | Depth | Resp | CResp | RespRate | CRespRate | CCapRate | Lift  | CLift |
|----|--------|-----|------|-------|------|-------|----------|-----------|----------|-------|-------|
| 1  | 1      | 205 | 205  | 0.1   | 200  | 200   | 0.976    | 0.976     | 0.238    | 2.382 | 2.382 |
| 2  | 2      | 205 | 410  | 0.2   | 190  | 390   | 0.927    | 0.951     | 0.464    | 2.263 | 2.323 |
| 3  | 3      | 205 | 615  | 0.3   | 167  | 557   | 0.815    | 0.906     | 0.663    | 1.989 | 2.211 |
| 4  | 4      | 205 | 820  | 0.4   | 134  | 691   | 0.654    | 0.843     | 0.823    | 1.596 | 2.058 |
| 5  | 5      | 206 | 1026 | 0.5   | 92   | 783   | 0.447    | 0.763     | 0.932    | 1.090 | 1.863 |
| 6  | 6      | 205 | 1231 | 0.6   | 42   | 825   | 0.205    | 0.670     | 0.982    | 0.500 | 1.636 |
| 7  | 7      | 205 | 1436 | 0.7   | 12   | 837   | 0.059    | 0.583     | 0.996    | 0.143 | 1.423 |
| 8  | 8      | 205 | 1641 | 0.8   | 1    | 838   | 0.005    | 0.511     | 0.998    | 0.012 | 1.247 |
| 9  | 9      | 205 | 1846 | 0.9   | 2    | 840   | 0.010    | 0.455     | 1.000    | 0.024 | 1.111 |
| 10 | 10     | 205 | 2051 | 1.0   | 0    | 840   | 0.000    | 0.410     | 1.000    | 0.000 | 1.000 |

```
logit_lift <- gainstable(logit_roc)
print(logit_lift)</pre>
```

| 1  |    | Obs<br>205 | CObs<br>205 | Depth 0.1 | Resp<br>200 | CResp<br>200 | RespRate 0.976 | CRespRate 0.976 | _     | Lift<br>2.382 |       |
|----|----|------------|-------------|-----------|-------------|--------------|----------------|-----------------|-------|---------------|-------|
| 2  | 2  | 205        | 410         | 0.2       | 190         | 390          | 0.927          | 0.951           | 0.464 | 2.263         | 2.323 |
| 3  | 3  | 205        | 615         | 0.3       | 167         | 557          | 0.815          | 0.906           | 0.663 | 1.989         | 2.211 |
| 4  | 4  | 205        | 820         | 0.4       | 134         | 691          | 0.654          | 0.843           | 0.823 | 1.596         | 2.058 |
| 5  | 5  | 206        | 1026        | 0.5       | 92          | 783          | 0.447          | 0.763           | 0.932 | 1.090         | 1.863 |
| 6  | 6  | 205        | 1231        | 0.6       | 42          | 825          | 0.205          | 0.670           | 0.982 | 0.500         | 1.636 |
| 7  | 7  | 205        | 1436        | 0.7       | 12          | 837          | 0.059          | 0.583           | 0.996 | 0.143         | 1.423 |
| 8  | 8  | 205        | 1641        | 0.8       | 1           | 838          | 0.005          | 0.511           | 0.998 | 0.012         | 1.247 |
| 9  | 9  | 205        | 1846        | 0.9       | 2           | 840          | 0.010          | 0.455           | 1.000 | 0.024         | 1.111 |
| 1( | 10 | 205        | 2051        | 1.0       | 0           | 840          | 0.000          | 0.410           | 1.000 | 0.000         | 1.000 |

```
logit_lift <- gainstable(logit_roc)
print(logit_lift)</pre>
```

|    | Bucket | Obs | CObs | Depth | Resp | CResp | RespRate | CRespRate | CCapRate | Lift  | CLift |
|----|--------|-----|------|-------|------|-------|----------|-----------|----------|-------|-------|
| 1  | 1      | 205 | 205  | 0.1   | 200  | 200   | 0.976    | 0.976     | 0.238    | 2.382 | 2.382 |
| 2  | 2      | 205 | 410  | 0.2   | 190  | 390   | 0.927    | 0.951     | 0.464    | 2.263 | 2.323 |
| 3  | 3      | 205 | 615  | 0.3   | 167  | 557   | 0.815    | 0.906     | 0.663    | 1.989 | 2.211 |
| 4  | 4      | 205 | 820  | 0.4   | 134  | 691   | 0.654    | 0.843     | 0.823    | 1.596 | 2.058 |
| 5  | 5      | 206 | 1026 | 0.5   | 92   | 783   | 0.447    | 0.763     | 0.932    | 1.090 | 1.863 |
| 6  | 6      | 205 | 1231 | 0.6   | 42   | 825   | 0.205    | 0.670     | 0.982    | 0.500 | 1.636 |
| 7  | 7      | 205 | 1436 | 0.7   | 12   | 837   | 0.059    | 0.583     | 0/996    | 0.143 | 1.423 |
| 8  | 8      | 205 | 1641 | 0.8   | 1    | 838   | 0.005    | 0.511     | 0.998    | 0.012 | 1.247 |
| 9  | 9      | 205 | 1846 | 0.9   | 2    | 840   | 0.010    | 0.455     | 1.000    | 0.024 | 1.111 |
| 10 | 10     | 205 | 2051 | 1.0   | 0    | 840   | 0.000    | 0.410     | 1.000    | 0.000 | 1.000 |



## Response Rate Chart



```
logit_lift <- gainstable(logit_roc)
print(logit_lift)</pre>
```

|    | Bucket | Obs | CObs | Depth | Resp | CResp | RespRate | CRespRate | CCapRate | Lift  | CLift |
|----|--------|-----|------|-------|------|-------|----------|-----------|----------|-------|-------|
| 1  | 1      | 205 | 205  | 0.1   | 200  | 200   | 0.976    | 0.976     | 0.238    | 2.382 | 2.382 |
| 2  | 2      | 205 | 410  | 0.2   | 190  | 390   | 0.927    | 0.951     | 0.464    | 2.263 | 2.323 |
| 3  | 3      | 205 | 615  | 0.3   | 167  | 557   | 0.815    | 0.906     | 0.663    | 1.989 | 2.211 |
| 4  | 4      | 205 | 820  | 0.4   | 134  | 691   | 0.654    | 0.843     | 0.823    | 1.596 | 2.058 |
| 5  | 5      | 206 | 1026 | 0.5   | 92   | 783   | 0.447    | 0.763     | 0.932    | 1.090 | 1.863 |
| 6  | 6      | 205 | 1231 | 0.6   | 42   | 825   | 0.205    | 0.670     | 0.982    | 0.500 | 1.636 |
| 7  | 7      | 205 | 1436 | 0.7   | 12   | 837   | 0.059    | 0.583     | 0.996    | 0.143 | 1.423 |
| 8  | 8      | 205 | 1641 | 0.8   | 1    | 838   | 0.005    | 0.511     | 0.998    | 0.012 | 1.247 |
| 9  | 9      | 205 | 1846 | 0.9   | 2    | 840   | 0.010    | 0.455     | 1.000    | 0.024 | 1.111 |
| 10 | 10     | 205 | 2051 | 1.0   | 0    | 840   | 0.000    | 0.410     | 1.000    | 0.000 | 1.000 |

## Cumulative Capture Rate Chart (Gain Chart)





## ASSESSING PREDICTIVE POWER

Accuracy vs. Error

## Accuracy



$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

## Accuracy



## Misclassification (Error) Rate



$$Error = rac{FP + FN}{n}$$

## Accuracy and Error

- Accuracy and error can be easily fooled so careful focusing only on them.
- If your data has 10% events and 90% non-events, you can have a 90% accurate model by guessing non-events for **every** observation.
- There is more to model building than simply maximizing overall classification accuracy.
- Good numbers to report, but not necessarily to choose models on.

## Closing Thoughts on Classification

- Classification is a decision that is extraneous to statistical modeling.
- Although logistic regression tends to work well in classification, it is a
   probability model and does not output 1's and 0's.
- Classification assumes cost for each individual is the same.
  - Useful for groups.
  - Careful about single observation decisions.

