Package 'R2ROC'

June 23, 2023

Title AUC Statistics			
Version 0.0.0.9000			
Description AUC statistic for significance test. Variance and covariance of AUC values used to assess the 95% CI and p-value of the AUC difference for both nested and non-nested model.			
<pre>license `use_mit_license()`, `use_gpl3_license()` or friends to pick a license</pre>			
Encoding UTF-8			
Roxygen list(markdown = TRUE)			
RoxygenNote 7.1.2			
auc_diff auc_var olkin_auc1 olkin_auc12 olkin_auc12_1 olkin_auc12_13 olkin_auc12_3 olkin_auc12_34 olkin_auc1_2			
ndex			
auc_diff auc_diff function			

Description

This function estimates $var(AUC(y\sim x[,v1]) - AUC(y\sim x[,v2]))$ where AUC is the Area Under ROC curve of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 can be multiple values between 1 - M, see Arguments below)

Usage

```
auc_diff(dat, v1, v2, nv, kv)
```

2 auc_var

Arguments

dat	N by $(M+1)$ matrix having variables in the order of cbind (y,x)
v1	This can be set as $v1=c(1)$ or $v1=c(1,2)$
v2	This can be set as $v2=c(2)$, $v2=c(3)$, $v2=c(1,3)$ or $v2=c(3,4)$
nv	Sample size
kv	Population prevalence

Value

This function will estimate significant difference between two PRS (either dependent or independent and joint or single). To get the test statistics for the difference between $AUC(y\sim x[,v1])$ and $AUC(y\sim x[,v2])$. (here we define $AUC1=AUC(y\sim x[,v1])$) and $AUC2=AUC(y\sim x[,v2])$)). The outputs are listed as follows.

```
AUC differences between AUC1 and AUC2
mean_diff
                 Variances of AUC differences
var
upper_diff
                 Upper value of the differences
lower_diff
                 Upper value of the differences
                 two tailed P-value for significant difference between AUC1 and AUC2
p_one_tail
                 tailed P-value for significant difference
heller_p
                 P-value based on Heller's test for significant difference
heller_upper_diff
                 Upper limit of 95% CI for the difference basedon Heller's test
heller_lower_diff
                 Lower limit of 95% CI for the difference basedon Heller's test
```

```
auc var auc var function
```

Description

This function estimates $var(AUC(y\sim x[,v1]))$ where AUC is the Area Under ROC curve of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 indicates the ith column in the x matrix (v1 can be multiple values between 1 - M, see Arguments below)

Usage

```
auc_var(dat, v1, nv, kv)
```

Arguments

C	lat	N by (M+1) matrix having variables in the order of cbind(y,x)
V	71	This can be set as $v1=c(1)$, $v1=c(1,2)$ or possibly with more values
r	ıv	Sample size
k	V	Population prevalence

olkin_auc1 3

Value

This function will test the null hypothesis for AUC. To get the test statistics for AUC($y\sim x[,v1]$). The outputs are listed as follows.

auc AUC

var Variance of AUC

upper_auc Upper limit of 95% CI for AUC lower_auc Lower limit of 95% CI for AUC

olkin_auc1 olkin_auc1 function

Description

olkin_auc1 function

Usage

```
olkin_auc1(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin_auc12 olkin_auc12 function

Description

olkin_auc12 function

Usage

```
olkin_auc12(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

4 olkin_auc12_13

olkin_auc12_1

olkin_auc12_1 function

Description

```
olkin_auc12_1 function
```

Usage

```
olkin_auc12_1(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin_auc12_13 olkin_auc12_13 function

Description

```
olkin_auc12_13 function
```

Usage

```
olkin_auc12_13(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

olkin_auc12_3

olkin_auc12_3

olkin_auc12_3 function

Description

```
olkin_auc12_3 function
```

Usage

```
olkin_auc12_3 (omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

```
olkin_auc12_34 olkin_auc12_34 function
```

Description

```
olkin_auc12_34 function
```

Usage

```
olkin_auc12_34(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

olkin_auc1_2

olkin_auc1_2

olkin_auc1_2 function

Description

```
olkin_auc1_2 function
```

Usage

```
olkin_auc1_2(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

Index

```
*Topic R2
   auc\_diff, 1
   auc_var, 2
*Topic information
   auc_diff, 1
   auc_var, 2
*Topic matrix
   auc\_diff, 1
   auc_var, 2
*Topic source
   olkin_auc1, 3
   olkin_auc12,3
   olkin_auc12_1,4
   olkin_auc12_13,4
   olkin_auc12_3,5
   olkin_auc12_34,5
   olkin_auc1_2,6
*Topic variance
   auc_diff, 1
   auc_var, 2
auc_diff, 1
auc_var, 2
olkin_auc1,3
olkin_auc12,3
olkin_auc12_1,4
olkin_auc12_13,4
olkin_auc12_3,5
olkin_auc12_34,5
olkin_auc1_2,6
```