

<u>Unit 2 Nonlinear Classification,</u> <u>Linear regression, Collaborative</u>

<u>Course</u> > <u>Filtering (2 weeks)</u>

5. Linear Regression and

> Homework 3 > Regularization

5. Linear Regression and Regularization

In this question, we will investigate the fitting of linear regression.

5. (a)

1/2 points (graded)

For each of the datasets below, provide a simple feature mapping ϕ such that the transformed data $(\phi(x^{(i)}), y^{(i)})$ would be well modeled by linear regression.

Which feature mapping ϕ is appropriate for the above model?

 $\bullet \exp(x) \checkmark$

 $\log(x)$

 x^2

 \sqrt{x}

Which feature mapping ϕ is appropriate for the above model? 这里我理解他妈错了x轴是什么,x轴就是原来的x,y是被mapping过的x 要把x map到和y能有linear关系

 $\quad \quad \circ \ \phi\left(x\right) = x + \mathrm{sign}\left(x\right)$

$$\circ \phi(x) = x - \operatorname{sign}(x) \checkmark$$

$$\phi(x) = x \cdot \operatorname{sign}(x)$$

$$\bullet$$
 $\phi(x) = x/\mathrm{sign}(x) \times$

Solution:

- In both figures the data seem to follow a non-linear pattern so they would not be fit well by a linear model.
- We can, however, use a non-linear transformation $\phi(x)$ so that, in the new feature space, a linear model produces a good fit.
- In the 1st plot, the data seem to roughly follow $y=e^x$, so an exponential transformation, $\phi\left(x\right)=e^x$, would yield $\left(\phi\left(x^{(i)}\right),y^{(i)}\right)$ that could be fit well by linear regression.
- In the 2nd plot, the observations appear to be generated by the discontinuous function y = x sign(x) (where sign(x) = x / |x|), so if we let $\phi(x) = x \text{sign}(x)$, an observation $y^{(i)}$ should be more easily modeled by a linear function of $\phi(x^{(i)})$, which will be found by linear regression.
- The results of the transformations are plotted below.

Submit

You have used 2 of 2 attempts

• Answers are displayed within the problem

5. (b)

2.0/2 points (graded)

Consider fitting a ℓ_2 -regularized linear regression model to data $(x^{(1)},y^{(1)}),\ldots,(x^{(n)},y^{(n)})$ where $x^{(t)},y^{(t)}\in\mathbb{R}$ are scalar values for each $t=1,\ldots,n$. To fit the parameters of this model, one solves

$$\min_{ heta \in \mathbb{R}, \; heta_0 \in \mathbb{R}} L\left(heta, heta_0
ight)$$

where

$$L\left(heta, heta_0
ight) = \sum_{t=1}^n \left(y^{(t)} - heta x^{(t)} - heta_0
ight)^2 \; + \; \lambda heta^2$$

Here $\lambda \geq 0$ is a pre-specified fixed constant, so your solutions below should be expressed as functions of λ and the data. This model is typically referred to as **ridge regression** .

Write down an expression for the gradient of the above objective function in terms of θ .

Important: If needed, please enter $\sum_{t=1}^{n} (...)$ as a function sum_t(...), including the parentheses. Enter $x^{(t)}$ and $y^{(t)}$ as x^{t} and y^{t}, respectively.

$$\frac{\partial L}{\partial \theta} = \boxed{\text{sum_t(-2*x^{t})*(y^{t} - theta*x^{t} - theta_0)) + 2*lambda}}$$

Answer: $2*lambda*theta - 2*sum_t((y^{t} - theta*x^{t} - theta_0)*x^{t})$

Write down an expression for the gradient of the above objective function in terms of θ_0 .

$$\frac{\partial L}{\partial \theta_0} = \begin{bmatrix} \text{sum_t(-2*(y^{t} - theta*x^{t} - theta_0))} \end{bmatrix}$$
 Answer: -2*sum_t(y^{t} - theta*x^{t} - theta_0)

STANDARD NOTATION

Solution:

- ullet The gradient is a two-dimensional vector $abla L = \left[rac{\partial L}{\partial heta_0}, rac{\partial L}{\partial heta}
 ight]$, where
- $ullet rac{\partial L}{\partial heta_0} = -2 \sum_{t=1}^n \left(y^{(t)} heta x^{(t)} heta_0
 ight)$
- $ullet rac{\partial L}{\partial heta} = 2 \lambda heta 2 \sum_{t=1}^n \left(y^{(t)} heta x^{(t)} heta_0
 ight) x^{(t)}$

Submit

You have used 1 of 5 attempts

Answers are displayed within the problem

5. (c)

2.0/2 points (graded)

Find the closed form expression for θ_0 and θ which solves the ridge regression minimization above.

Assume heta is fixed, write down an expression for the optimal $\hat{ heta}_0$ in terms of $heta, x^{(t)}, y^{(t)}, n$.

Important: If needed, please enter $\sum_{t=1}^{n} (...)$ as a function $sum_t(...)$, including the parentheses. Enter $x^{(t)}$ and $y^{(t)}$ as $x^{(t)}$ and $y^{(t)}$, respectively.

$$\hat{\theta}_0 = \int (\text{sum_t}(y^{t} - \text{theta*x^{t}}))/n$$
 \checkmark Answer: 1/n * sum_t(y^{t} - theta*x^{t})

Write down an expression for the optimal $\hat{\theta}$. To simplify your expression, use $\bar{x} = \frac{1}{n} \sum_{t=1}^n x^{(t)}$. Your answer should be in terms of $x^{(t)}, y^{(t)}, \lambda$ and \bar{x} only.

Important: If needed, please enter $\sum_{t=1}^{n} (...)$ as a function sum_t(...), including the parentheses. Enter $x^{(t)}$ and $y^{(t)}$ as x^{t} and y^{t}, respectively. Enter \bar{x} as barx.

$$\hat{\theta} = \left[(\operatorname{sum}_t(x^{t})^*y^{t}) - \operatorname{barx*sum}_t(y^{t})) / (\operatorname{sum}_t((x^{t})^2)^+) \right]$$

Answer: $(x^{t} - barx)*y^{t}) / (lambda + sum_t(x^{t} * (x^{t} - barx)))$

Now after the optimal $\hat{ heta}$ is obtained, you can use it to compute the optimal $\hat{ heta}_0$

Solution:

To find the $heta, heta_0$ which minimize L, we note that because this objective function is convex, any point where $\nabla L(heta_0, heta) = 0$ is a global minimum. Thus, we set the gradient equal to zero and solve for $heta, heta_0$ to find the minimizers:

$$egin{aligned} rac{\partial}{\partial heta_0} &= -2 \sum_{t=1}^n \left(y^{(t)} - heta x^{(t)} - heta_0
ight) = -2 \sum_{t=1}^n \left(y^{(t)} - heta x^{(t)}
ight) + 2 \sum_{t=1}^n heta_0 = 0 \ \implies &-2n heta_0 = -2 \sum_{t=1}^n \left(y^{(t)} - heta x^{(t)}
ight) &\implies & heta_0 = rac{1}{n} \sum_{t=1}^n \left(y^{(t)} - heta x^{(t)}
ight) \ rac{\partial}{\partial heta} &= 2 \lambda heta - 2 \sum_{t=1}^n \left(y^{(t)} - heta x^{(t)} - heta_0
ight) x^{(t)} \ &= 2 \lambda heta - 2 \sum_{t=1}^n \left(y^{(t)} - heta x^{(t)} - \left[rac{1}{n} \sum_{s=1}^n \left(y^{(s)} - heta x^{(s)}
ight)
ight]
ight) \cdot x^{(t)} = 0 \end{aligned}$$

$$\implies \; \lambda heta - \sum_{t=1}^n x^{(t)} y^{(t)} + heta \sum_{t=1}^n {x^{(t)}}^2 + rac{1}{n} \sum_{t=1}^n \sum_{s=1}^n \left(y^{(s)} - heta x^{(s)}
ight) x^{(t)} = 0$$

$$\implies \lambda \theta - \sum_{t=1}^{n} x^{(t)} y^{(t)} + \theta \sum_{t=1}^{n} x^{(t)^{2}} + \frac{1}{n} \sum_{t=1}^{n} \sum_{s=1}^{n} y^{(s)} x^{(t)} - \frac{1}{n} \theta \sum_{t=1}^{n} \sum_{s=1}^{n} x^{(s)} x^{(t)} = 0$$

$$\implies \hat{\theta} = \frac{\sum_{t=1}^{n} x^{(t)} y^{(t)} - \frac{1}{n} \sum_{t=1}^{n} \sum_{s=1}^{n} y^{(s)} x^{(t)}}{\lambda + \sum_{t=1}^{n} x^{(t)^{2}} - \frac{1}{n} \sum_{t=1}^{n} \sum_{s=1}^{n} x^{(s)} x^{(t)}} \text{ is the value of } \theta \text{ which minimizes } L(\theta_{0}, \theta).$$

Note that if we define $ar{x}=rac{1}{n}\sum_{t=1}^n x^{(t)}$, then we can rewrite the above expression in a nicer form:

$$\hat{ heta} = rac{\sum_{t=1}^{n} \left(x^{(t)} - ar{x}
ight)y^{(t)}}{\lambda + \sum_{t=1}^{n} x^{(t)} \left(x^{(t)} - ar{x}
ight)}$$

In other words, adding an unpenalized bias is equivalent to training on a centered dataset.

Finally, we can plug this value of $\hat{\theta}$ back into expression $\hat{\theta}_0 = \frac{1}{n} \sum_{t=1}^n \left(y^{(t)} - \theta x^{(t)} \right)$ to find the corresponding $\hat{\theta}_0$ which together with $\hat{\theta}$ minimizes L.

Submit

You have used 2 of 5 attempts

1 Answers are displayed within the problem

Discussion

Show Discussion

Topic: Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks):Homework 3 / 5. Linear Regression and Regularization

© All Rights Reserved