# Notes and Results for Chapter 7b

## Benjamin Klimko

April 3, 2018

## Problem 7.11

See below for several density versus position plots for various times. Note that the initial cosine wave becomes more like a sawtooth wave.





## Problem 7.12

#### **a**)

In the plot below you can see that the perturbation (which begins at the far left of the plot) moves forward (e.g. towards the right) for light traffic ( $\rho_0 = \rho_m/4$ ).



### **b**)

The plot below shows how the perturbation begins at the far right of the plot and then moves backwards for heavy traffic ( $\rho_0 = 3\rho_m/2$ ). Physically, this result means that the backup stays in the same spot. This shows that as a driver approaches the perturbation, she slows down and then speeds back up upon leaving the perturbation.



 $\mathbf{c})$ 

When the density is half of the maximum density it can be seen in the graph below that the perturbation does not move much at all; after 10 seconds the perturbation had drifted less than 50 feet and becomes slightly distorted.



#### Problem 7.8

**a**)

Given that  $x_c(t)$  is the position of a given car, we know that

$$\frac{dx_c(t)}{dt} = v(\rho(x_c(t), t))$$

where

$$\rho(x,t) = \begin{cases} \rho_m & x \le -v_m t \\ \frac{1}{2} \left( 1 - \frac{x}{v_m t} \right) \rho_m & -v_m t < x < v_m t \\ 0 & x \ge v_m t \end{cases}$$

and

$$v(\rho) = (1 - \rho/\rho_m)$$

From this we can find that

$$v(\rho(x,t)) = \begin{cases} 0 & x \le -v_m t \\ \frac{v_m}{2} + \frac{x}{2t} & -v_m t < x < v_m t \\ v_m & x \ge v_m t \end{cases}$$

Upon inspection we can see that when  $t < -x/v_m$  the velocity is 0 and so the position of a given car,  $x_c$ , will be the initial position  $x_c(0)$ . For the other solution component we have the equation

$$\frac{dx(t)}{dt} - \frac{x}{2t} = \frac{v_m}{2} \tag{1}$$

and know that an equation of the form  $at - b\sqrt{t}$  should be a solution. We can test this by plugging in:

$$a - \frac{b}{2\sqrt{t}} - \frac{1}{2t} \left( at - b\sqrt{t} \right)$$
$$= a - \frac{b}{2\sqrt{t}} - \left( \frac{a}{2} - \frac{b}{2\sqrt{t}} \right)$$
$$= \frac{a}{2}$$

This aligns with Equation 1, which also equals a constant over 2; this shows that

$$x_c(t) = \begin{cases} x_c(0) & t < -x_c(0)/v_m \\ v_m t - 2\sqrt{-x_c(0)v_m t} & t > -x_c(0)/v_m \end{cases}$$

**b**)

See below for the plot with both numerical solution (red) and analytic solution (green). Note that the analytic solution appears "offset" from the numerical solution.



 $\mathbf{c})$ 

See below for a graph of the time taken to reach the intersection as a function of starting position as well as the derived analytic solution,  $t=\frac{-4x_c(0)}{v_m}$ . Note that the analytic solution produces higher values than the numeric solution.

