A Linear Algorithm for the Hyper-Wiener Index of Chemical Trees

Roberto Aringhieri

Dipartimento di Informatica, Università di Pisa, Corso Italia 40, 56125 Pisa, Italy

Pierre Hansen*

GERAD - École des Hautes Études Commerciales, 3000, chemin de la Côte-Sainte-Catherine, Montréal, Canada, H3T 2A7

Federico Malucelli

Dipartimento di Elettronica, Politecnico di Milano, Via Ponzio 34/5 20133 Milano, Italy

Received November 7, 2000

An algorithm with a complexity linear in the number of vertices is proposed for the computation of the Hyper-Wiener index of chemical trees. This complexity is the best possible. Computational experience for alkanes is reported.

1. INTRODUCTION

The Hyper-Wiener index (*WW*) is a generalization, due to Randić, ¹ of the much studied Wiener index (*W*) or graph invariant.²⁻⁴ Recall that W is defined as the sum of distances between pairs of vertices of the graph under study. Let T = (V,E) denote a tree, i.e., a connected and acyclic graph. Let $e = \{i, j\}$ denote an edge of T connecting the adjacent vertices i and j. Removal of e from T gives two subtrees $T_i = (V_i,E_i)$ and $T_j = (V_j,E_j)$ with $|V_i|$ and $|V_j|$ vertices, respectively, such that $1 \le |V_i| \le n-1$, $1 \le |V_j| \le n-1$ and $|V_i| + |V_j| = n$ (n = |V|). Then, as already noted by Wiener

$$W(T) = \sum_{e} |V_i||V_j| \tag{1}$$

where the sum is over all edges of T. This leads to an algorithm for W which has an O(n), i.e., linear and the best possible, complexity.

Randić generalizes W to WW by considering paths p instead of edges e in (1): let i and j denote the endpoints of a path p in T. Removing all edges of p from T yields a forest, i.e., a set of subtrees of T, possibly reduced to single points. Let T_i and T_j denote the subtrees (or trees for short) containing vertices i and j, respectively. Let $p = p_{ij}$ denote the path that has endpoints i and j. Then, by definition

$$WW(T) = \sum_{p} |V_i||V_j| \tag{2}$$

where the sum is over all paths of T.

The purpose of the present paper⁵ is to show that (2) can be exploited as (1), but in a more complex way, to obtain an O(n) algorithm for WW in chemical trees, i.e., trees with a maximum degree less than or equal to 4. Extension to

general trees is straightforward. Computational experience for alkanes with up to 25 vertices is also reported.

Before turning to this new algorithm we briefly review literature on WW.

The Hyper-Wiener index was defined by Randić using the Wiener matrix.^{6,7} This matrix contains the values $|V_i||V_j|$ as defined above as its $(i,j)^{th}$ components and is a useful source of graph invariants.

Klein et al.⁸ provide an interesting interpretation of WW(T): they show that

$$WW(T) = \frac{1}{2} \left[\sum_{i < j} d_{ij}^2 + \sum_{i < j} d_{ij} \right]$$
 (3)

$$= \frac{1}{2} \sum_{i < j} d_{ij}^2 + \frac{1}{2} W(T) \tag{4}$$

Thus the Hyper-Wiener index is proportional to the Wiener index plus the sum of squared distances between pairs of vertices. Gutman et al.⁹ study general trees with extremal WW index. Their main result is the following

$$WW(S_n) \le WW(T) \le WW(P_n)$$
 (5)

where S_n and P_n denote respectively the star and the path or chain with n vertices. Moreover, if $T \neq S_n$, $T \neq P_n$, and $n \geq 5$

$$WW(S_n) \le WW(T) \le WW(P_n) \tag{6}$$

Hyper-Wiener indices of particular families of trees have been studied by several authors.^{10–12} Only one paper¹³ presents a detailed description of an algorithm for computing WW(T) and its complexity is in $O(n^2)$.

Four extensions of the concept of Hyper-Wiener index to cyclic graph have been proposed by three groups of authors. $^{8,14-16}$

^{*} Corresponding author phone: (514)340-6053 ext. 5675; e-mail: pierreh@crt umontreal ca

Figure 1. Good numeration of a tree.

Comparisons with other indices for the cyclic and acyclic cases are numerous.16-21

2. A NEW ALGORITHM FOR WW

The algorithm is based upon the following reformulation of eq 2:

$$WW = \sum_{p} |V_i||V_j| = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} |V_i||V_j|$$
 (7)

$$= \sum_{i=1}^{n-1} |V_i| \sum_{j=i+1}^{n} |V_j| \tag{8}$$

or setting

$$M_i = \sum_{j=i+1}^n |V_j| \tag{9}$$

$$WW = \sum_{i=1}^{n-1} |V_i| M_i \tag{10}$$

The linearity of the computation of WW depends on the fact that, for a given i, M_i can be computed recursively in constant time, knowing the values of the M_j , j > i. Equation 7 expresses that all paths in T can be enumerated without repetition by considering all possible initial vertices i and terminal vertices j eq 8 exploits the fact that for a given ithe number of vertices in the subtree containing i obtained when removing the path p_{ij} is independent of j. There is a slight abuse of notation in these equations, as the $|V_i|$, $|V_i|$ depend on the path from i to j. This will he taken care of below.

A first step is to compute values of $|V_i|$ and $|V_i|$ for all edges, as done when computing W. To this effect, we renumber the vertices and orient the edges (i.e., transform them into arcs) in such a way that in the directed tree T =(V,U) obtained there is always an oriented path from any vertex i to vertex n and

$$(i,j) \in U \Longrightarrow i < j$$

i.e., any arc goes from a vertex with a lower index to a vertex with a higher one. The resulting tree is a reversed arborescence.22 Such a numbering of vertices is called a good numeration and is always possible for trees.²³ An easy way to obtain a good numeration of the vertices of T is to set k = n and perform a depth-first search of the tree, ²⁴ beginning at a pendant vertex and each time an unlabeled vertex is reached assigning it label k and reducing k by 1.

Example 1. Consider the tree of Figure 1a with 8 vertices, initially indexed in any way. Applying the good numeration procedure yields the indexed directed tree of Figure 1b.

Table 1. Computation of the $|V_i|$, $|V'_i|$ and W

i	$ V_i $	$ V_i' $	$ V_i imes V_i' $
1	1	7	7
2	1	7	7
3	1	7	7
4	4	4	16
5	5	3	15
6	1	7	7
7	7	1	7
			W = 66

Rules followed for good numeration are given next.

Algorithm CN. 1. Given a tree T, described by lists of neighbors of each vertex, select a pendant vertex, label it n, and set k = n - 1;

- 2. If the currently visited vertex has one or several unlabeled neighbors, choose one and go there, label it k, and reduce k by 1;
- 3. If the currently visited vertex has no unlabeled neighbor, backtrack to the neighbor from which it was first reached; if this vertex is the first one considered (labeled n) stop; otherwise return to 2.

An optional tie-breaking rule is to choose first the unlabeled neighbor of the currently visited vertex with smallest degree (as done in Example 1). An alternate stopping rule would be to interrupt the algorithm as soon as a vertex has received label 1.

A more precise, Pascal-like description of the algorithm good numeration is given in Box 1.

```
Box 1: Good Numeration algorithm:
Input: T=(V,E); Output: Label;
begin
   Let S be an empty stack;
   for each u in V do Visited(u):=false;
   Let u s.t. Degree(u)=1;
   Label(u):=n; Next:=n-1; Visited(u):=true;
   for each v in Adjacent(u) do Push(v,S);
   while S is not empty do
   begin
      u:=Pop(S); Label(u):=Next; Next:=Next-1;
      Visited(u):=true;
      for each v in Adjacent(u) s.t. not Visited(u)
      do Push(v,S);
   end;
end.
```

Let us now consider any arc (i,j) of T; to avoid ambiguity we note the cardinality of the second subtree obtained after its removal by $|V_i|$. Each arc of T can be viewed as indexed by the index of its initial vertex. So the i in $|V_i|$ then refers to the ith arc.

The following recursive formula allows computation of the $|V_i|$ and $|V_i'|$:

$$|V_i| = 1 + \sum_{k:(k,i)\in U} |V_k| \tag{11}$$

$$|V_i'| = n - |V_i| \tag{12}$$

Equation 11 expresses that $|V_i|$ is equal to 1 plus the cardinalities $|V_k|$ of the (at most 3) subtrees obtained by deletion of an arc incident with i which is not the ith one.

Example 1 (Continued). Applying eqs 11 and 12 for i = 1,2,...,7 to the tree of Figure 1b gives the results of Table 1, and the value W = 66 of its Wiener index.

Table 2. Computation of the N_i

i	N_i	i	N_i	i	N_i
1	1	4	7	6	1
2	1	5	12	7	16
3	1				

Edge-labels computations can be done by applying good numeration and then formulas (11) and (12) in order of increasing indices of i. However, one may observe that $|V_i|$ and $|V_i'|$ do not depend on orientation of arcs. An alternate and slightly more general way of performing edge-labels computations is to consider the undirected tree T=(V,E) and computes the $|V_i|$ and $|V_i'|$ recursively for pendant vertices, removing pendant edges. Rules are then the following.

Algorithm EL. 1. Given a tree T = (V,E) give to all its vertices i a value $t_i = 1$;

- 2. Consider all pendant vertices of T; for each such vertex: set $|V_i| = t_i$, add t_i to the value t_j of the adjacent vertex j of i, and remove edge (i,j) from E;
 - 3. If *E* is nonempty return to 2; otherwise stop.

A Pascal-like description of the algorithm edge-labels computation which computes the $|V_i|$ and $|V'_i|$ is given in Box 2.

Box 2: Edge Labels Computation algorithm:
Input: T=(V,E); Output: |V(i)| and |V'(i)| for (i,j) in E.
begin
 for each i in V do t(i):=1;
 repeat
 for each (i,j) in E s.t. Degree(i)=1 do
 begin
 |V(i)|:=t(i); |V'(i)|:=n-t(i);
 E:=E \ {(i,j)};
 t(j):=t(j)+|V(i)|
 end
 until E is empty
end.

Another preliminary computation is the sum N_i of the $|V_j|$ for all vertices j in a subtree T_i . It is performed with the following recursive formula

$$N_i = 1 + \sum_{k:(k,i)\in U} (|V_k| + N_k)$$
 (13)

In this equation

$$1 + \sum_{k:(k,i)\in U} |V_k| = |V_i| \tag{14}$$

and is added to the sum of $|V_j|$ for all subtrees T_k obtained by deletion of an arc incident with i and not the ith one.

Example 1 (Continued). Applying eq 13 for i = 1,2,...,7 to the tree of Figure 1b gives the results of Table 2.

We can now describe the recursion for the computation of the M_i , which is central to our algorithm. The general case is illustrated in Figure 2.

Assume the M_j have been computed for all j > i and one wishes to compute M_i , where i is the initial vertex of arc (i,l); there are at most two subtrees T_k and $T_{k'}$ such that

Figure 2. General case for computation of M_i .

Table 3. Computation of the M_i and WW

i	l	k	M_l	$ V_i' $	N_k	M_i	$ V_i $	$ V_i \times M_i $
7	8	-	0	1	0	1	7	7
6	7	-	1	7	0	8	1	8
5	7	6	1	3	1	5	5	25
4	5	-	5	4	0	9	4	36
3	4	-	9	7	0	16	1	16
2	4	3	9	7	1	17	1	17
1	4	2,3	9	7	1,1	18	1	18
								WW = 127

 $i \neq k,k', (k,l) \in U$, and $(k',l) \in U$, and one subtree T_q such that $(l,q) \in U$.

A path p_{ij} beginning at i may either description

- (i) end in l; then $|V_i| = |V_i'|$;
- (ii) end within the subtree T_q ; then $|V_j|$ is taken into account in M_l ;
- (iii) end within T_k (or $T_{k'}$); then $|V_j|$ is taken into account in N_k (or $N_{k'}$).

Note that, due to good numeration, case (iii) is only possible if k > i (or k' > i), which implies j > i for all $j \in V_k$ (or $j \in V_k$).

We therefore have the recursive formula:

$$M_{i} = M_{l} + |V'_{i}| + \sum_{k:(k,l) \in U, k > i} N_{k}$$
 (15)

Example 1 (End). Applying eq 15 for i = 7, 6, ..., 1 to the tree of Figure 1b gives the results of Table 3 and the value WW = 127 of the Hyper-Wiener index.

To summarize, the new algorithm for the Hyper-Wiener index consists of the following steps:

Algorithm LWW. 1. Apply good numeration to label the vertices of *T* and orient its edges;

- 2. Compute $|V_i|$ and $|V'_i|$ for i = 1, 2, ..., n 1 by eqs 11 and 12;
 - 3. Compute N_i for i = 1, 2, ..., n 1 by eq 13;
 - 4. Compute M_i for i = n 1, ..., 1 by eq 15;
 - 5. Compute WW by eq 10.

Theorem 1. Algorithm LWW computes the Hyper-Wiener index WW(T) of a chemical tree T in O(n) time.

Proof. Correctness of the algorithm follows from the reformulation (7)—(10) of the definition of WW and justifications of the various recursions given above. The O(n) complexity is due to the fact that depth-first search is linear in n, the recursions of eqs 11, 13, and 15 take constant time per application, i.e., O(n) in all, as does eq 10. A lower bound of $\Omega(n)$ is due to the size of the input. So algorithm LWW is O(n) and is the best possible.

A Pascal-like description of the algorithm LWW is given in Box 3.

Table 4. Computing Time in msec

I abic	4. Companing	Time in misc		
n	codes	time	av time	% for WW comput.
14	1858	40	0.0215	25.0
15	4347	110	0.0230	20.0
16	10359	240	0.0232	20.8
17	24894	640	0.0261	24.6
18	60523	1670	0.0274	26.8
19	148284	4250	0.0283	24.8
20	366319	11070	0.0304	23.4
21	910726	29250	0.0322	24.5
22	2278658	77010	0.0337	24.3
23	5731580	202500	0.0353	24.6
24	14490245	533900	0.0387	24.9
25	36797588	1421100	0.0387	24.8

```
Box 3: LWW algorithm:
Input: T=(V,E); Output: WW.
begin
   for each i in V do
   begin
      M(i):=0; Maux(i):=0; visited(i):=false
   end:
   curr:=n-1; precnod:=n; visited(n):=true;
   visited(n-1):=true;M(curr):=1;
   while (curr not equal to 1) do
   begin
      if {u in Adjacent(curr):
            visited(u)=false and u<curr} is not empty
      then begin
         prec:=curr; curr:=u;
         M(curr):=M(prec)+Maux(prec)+V'(curr)
      end else begin
         temp:=curr; curr:=prec; prec:=temp;
         Maux(curr):=Maux(curr)+Maux(prec)+V(curr)
      end
   end:
  WW:=0;
  for i:= 1 to n-1 do WW:=WW + (V(i) M(i));
end.
```

Remark 1. As mentioned above, algorithm LWW is readily extended to the case of general trees T. Theorem 1 still holds, i.e., the complexity is still O(n). To show this, the proof must be amended by using amortized complexity arguments: while the computation of one value of $|V_i|$, N_i or M_i by eqs 11, 13, or 15 can then take O(n) time, the time required to compute them for all i is in O(n), and not $O(n^2)$, as it is in all three cases proportional to the number of edges, and hence of vertices, of T.

3. COMPUTATIONAL RESULTS

Algorithm LWW was coded in C++ and applied to the computation of WW for all chemical trees with $n \le 25$. The results were obtained by using a file of numerical N-tuple codes^{26,27} obtained following the rules described in Kvasnicka and Pospichal²⁹ and implemented and tested by Aringhieri.²⁸ Actually, the reported computational results are obtained on a Linux Pentium III 600 MHz computer with 128 MB RAM memory.

Computing times are presented in Table 4. Total computing times augmented rapidly as the number of alkanes grows exponentially with n. Average computing times per molecule are represented in Figure 3 and are clearly linear in n. Using linear regression we obtain

$$t = -0.00124848 + 0.00158881n$$

Figure 3. Average computing time per molecule.

Table 5. Statistical Indices for WW

n	max	min	μ	σ
5	35	22	28.3	5.3
6	70	44	54.6	9.2
7	126	69	91.8	16.3
8	210	97	142.4	27.4
9	330	149	211.2	40.9
10	495	204	299.8	59.2
11	715	262	409.9	82.5
12	1001	344	546.0	111.5
13	1365	429	709.0	146.4
14	1820	517	903.1	188.9
15	2380	629	1130.2	238.6
16	3060	744	1393.6	297.3
17	3876	862	1695.3	364.9
18	4845	1049	2038.9	442.8
19	5985	1239	2426.5	531.1
20	7315	1432	2861.3	631.2
21	8855	1649	3345.9	743.2
22	10626	1869	3883.0	868.3
23	12650	2092	4475.6	1007.0
24	14950	2339	5126.4	1160.2
25	17550	2589	5838.1	1328.6

Figure 4. A Bethe graph (a) and an incomplete Bethe graph (b).

with $R^2 = 0.9945$. The last column reports the percentage of time spent for computing the WW values; the remaining time is used to read the code from the file, to translate the code into a tree and for its good numeration.

Ranges of WW, means, and standard deviation as functions of n are given in Table 5. We note that both maximum and minimum codes occurred once. As shown by Gutman et al.,9 trees with maximum WW index are paths. Those with minimum WW index are Bethe graphs (see Figure 4a), i.e., complete ternary trees except for the fact that the root has degree 4, or incomplete Bethe graphs (see Figure 4b) in which there are some missing vertices at the last level. Note that such graphs correspond in a sense to imposition of a constraint of maximum degree equal to 4 to a star. They

Table 6. Distributions of WW Values: n = 13, ..., 25

								n					
intervals	13	14	15	16	17	18	19	20	21	22	23	24	25
1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	0	0	1	3	11	29	65	181
5	0	1	2	3	8	29	60	154	406	1042	2615	6655	17412
6	4	8	22	51	125	302	745	1831	4594	11457	28849	72623	185221
7	18	38	85	212	503	1211	2980	7348	18271	45312	114054	288117	727193
8	37	86	200	480	1154	2792	6795	16686	40976	102807	257920	652629	1652515
9	58	139	328	771	1814	4450	10839	26927	67065	167142	420463	1061994	2694119
10	77	182	415	982	2408	5784	14350	35010	87316	218747	551021	1391587	3532177
11	84	196	465	1121	2651	6513	15854	39578	98824	246733	622222	1573337	3996246
12	90	200	472	1139	2752	6676	16347	40543	100297	251259	630523	1599780	4076522
13	81	198	460	1058	2599	6273	15371	37767	94150	237669	595617	1506480	3825934
14	73	164	384	960	2271	5537	13566	33863	84082	209273	529643	1336265	3396203
15	65	148	345	817	1922	4715	11707	28532	70987	178800	449143	1134087	2880795
16	52	110	284	640	1621	3897	9461	23426	58876	145895	366072	929834	2358674
17	40	103	213	540	1244	3147	7573	18939	46495	116107	293695	739335	1878659
18	31	80	174	418	983	2432	5928	14660	35970	91198	227942	576531	1460729
19	25	52	142	307	770	1796	4600	11058	27931	68904	174199	439285	1115613
20	21	42	105	243	590	1377	3448	8341	20890	52199	130440	330026	839644
21	14	30	69	188	419	1029	2418	6287	15361	38700	96839	244540	618857
22	9	28	51	132	317	764	1866	4589	11402	28047	70957	178595	452540
23	7	17	42	85	238	537	1331	3244	8074	20334	51133	129089	327263
24	4	10	33	62	163	402	951	2347	5845	14648	36473	92391	233831
25	4	9	15	50	99	285	651	1661	4098	10225	25816	65265	165423
26	8	17	41	100	242	575	1443	3257	8813	22149	55915	141915	361837

Figure 5. Distribution of WW values for n = 15.

appear frequently in mathematical chemistry. For instance, Bytautas and Klein³⁰ show that they have minimum diameter.

Further results in the distribution of WW values are given in Table 6 in which, for each n from 13 to 25, the number of values within each of 26 intervals is given; these intervals are defined as follows:

$$(\min, \mu - 3\sigma], (\mu - 3\sigma, \mu - 2.75\sigma], ..., (\mu + 3\sigma, \max)$$

a diagram of the distribution for n = 15 is presented in Figure 5. Distributions for other values of n have similar shapes: the mode is slightly to the left of the mean and there is strong right-side skewness.

4. CONCLUSION

A new algorithm, with a complexity linear in n, is proposed for computing the Hyper-Wiener index of chemical trees. This algorithm being fast, it allows finding such values for large sets of molecules, and hence computing precisely various statistics on the distribution of WW values.

The algorithm can be extended in several ways. First, as already noted, it applies also to general trees while still having a complexity in O(n). Then, it might be used to obtain a linear algorithm for computing WW values for benzenoids,³¹ using the isometric embedding techniques of Klavzar.^{32–34} Another direction of research would be to try to extend the algorithm to tackle the case of unicyclic, or possibly bicyclic, graphs without augmenting its complexity.

REFERENCES AND NOTES

- (1) Randić, M.; Guo, X.; Oxley, T.; Krishnapriyan, H. Wiener Matrix: Source of Novel Matrix Invariants. *J. Chem. Inf. Comput. Sci.* **1993**, 33, 709–716.
- (2) Wiener, H. Correlation of Heats of Isomerization and Differences in Heats of Vaporization of Isomers among the Paraffin Hydrocarbons. J. Am. Chem. Soc. 1947, 69, 2636–2638.
- (3) Wiener, H. Structural Determination of Paraffin Boiling Points. *J. Am. Chem. Soc.* **1947**, *69*, 17–20.
- (4) Nikolić, S.; Trinajstić, N.; Mihalić, Z. The Wiener Index: Developments and Applications. Croat. Chim. Acta 1995, 68, 105–129.
- (5) A preliminary version of this paper was presented at the Discrete Mathematical Chemistry Workshop, Rutgers University, March 23– 25, 1998.
- (6) Randić, M. Novel Molecular Descriptor for Structure-Property Studies. Chem. Phys. Lett. 1993, 211, 478-483.
- (7) Randić, M.; Guo, X.; Oxley, T.; Krishnapriyan, H.; Naylor, L. Wiener Matrix Invariants. J. Chem. Inf. Comput. Sci. 1994, 34, 261–367.
- (8) Klein, D. J.; Lukovits, I.; Gutman, I. On the definition of the Hyper-Wiener Index for Cycle-Containing Structures. Commun. Math. Chem. (MATCH) 1995, 35, 50-52.
- (9) Gutman, I.; Linert, W.; Lukovits, I.; Dobrynin, A. Trees with Extremal Hyper-Wiener Index: Mathematical Basis and Chemical Applications. J. Chem. Inf. Comput. Sci. 1997, 37, 349–354.
- (10) Diudea, M. V.; Parv, B. Molecular Topology. 25. Hyper-Wiener index of dendrimers. J. Chem. Inf. Comput. Sci. 1995, 25, 1015–1018.
- (11) Lukovits, I. Formulas for the Hyper-Wiener Index of Trees. J. Chem. Inf. Comput. Sci. 1994, 34, 1079–1081.
- (12) Lukovits, I. A note on a Formula for the Hyper-Wiener Index of Some Trees. Comput. Chem. 1995, 19, 27–31.
- (13) Linert, W.; Renz, F.; Kleestorfer, K.; Lukovits, I. An Algorithm for the Computation of the Hyper-Wiener Index for the Characterization and Discrimination of Branched Acyclic Molecules. *Comput. Chem.* 1995, 19, 395–401.

- (14) Lukovits, I.; Linert, W. A Novel Definition of the Hyper-Wiener Index for Cycles. *J. Chem. Inf. Comput. Sci.* 1994, *34*, 899–902.
 (15) Diudea, M. V. Wiener and Hyper-Wiener Numbers in a Single Matrix.
- (15) Diudea, M. V. Wiener and Hyper-Wiener Numbers in a Single Matrix. J. Chem. Inf. Comput. Sci. 1996, 36, 833–836.
- (16) Diudea, M. V. Walk Numbers ^eW_M: Wiener-Type Numbers of Higher Rank. J. Chem. Inf. Comput. Sci. 1996, 36, 535-540.
- (17) Diudea, M. V. Indices of Reciprocal Properties of Harary Indices. J. Chem. Inf. Comput. Sci. 1997, 37, 292–299.
- (18) Diudea, M. V.; Katona, G.; Minailiuc, O. M.; Parv, B. Molecular Topology. 24. Wiener and Hyper-Wiener Indices in Spiro-Graphs. *Russ. Chem. Bull.* 1995, 44, 1606–1611.
- (19) Linert, W.; Kleestorfer, K.; Renz, F.; Lukovits, I. Description of Cyclic and Branched-Acyclic Hydrocarbons by variant of the Hyper-Wiener Index. J. Mol. Struct. (THEOCHEM) 1995, 337, 121–127.
- (20) Linert, W.; Lukovits, I. Formulas for the Hyper-Wiener and Hyper-Detour Indices of Fused Bicyclic Structures. Commun. Math. Chem. (MATCH) 1997, 35.
- (21) Zhu, H. Y.; Klein, D. J.; Lukovits, I. Extensions of the Wiener Number. J. Chem. Inf. Comput. Sci. 1996, 36, 420–428.
- (22) Berge, C. Graphes et Hypergraphes; Dunod: Paris, 1970.
- (23) Ahuja, R. K.; Magnanti, T. L.; Orlin, J. B. Network Flows. Theory, Algorithms, and Applications; Prentice Hall: Englewood Cliffs, NJ, 1993.
- (24) Aho, A. V.; Hopcroft, J. E.; Ullman, J. D. *Data Structures and Algorithms*; Prentice Hall: Addison-Wesley: 1983.
- (25) Available on line via anonymous ftp at ftp.di.unipi.it/pub/project/ orgroup/aringhie/freealkanes.zip.
- (26) Read, R. C. The Coding of Various Kind of Unlabeled Trees. In Graph Theory and Computing; Academic Press: New York, 1972; pp 153– 182

- (27) Hansen, P.; Jaumard, B.; Lebatteux, C.; Zheng, M. Coding Chemical Trees with the Centered N-Tuple Code. J. Chem. Inf. Comput. Sci. 1994, 34, 782-790.
- (28) Aringhieri, R. Metodi dell'Ottimizzazione Combinatoria applicati alla Chimica: L'Eumerazione ed il Calcolo del Numero di Hyper-Wiener di Molecole di Alcano. *Tesi di Laurea*; Dipartimento di Informatica, Università di Pisa, 1996.
- (29) Kvasnicka, V.; Pospichal, J., Constructive Enumeration of Acyclic Molecules. Collect. Czech. Chem. Commun. 1991, 56, 1777– 1802.
- (30) Bytautas, L.; Klein, D. J. Alkane Isomer Combinatorics: Stereostructure Enumeration and Graph-Invariant and Molecular-Property distributions. J. Chem. Inf. Comput. Sci. 1999, 39, 803–818.
- (31) Klavzar, S. Private Communication at the Discrete Mathematical Chemistry Workshop; Rutgers University, March 23–25, 1998.
- (32) Chepoi, V.; Klavzar, S. The Wiener Index and the Szeged Index of Benzenoid System in Linear Time. J. Chem. Inf. Comput. Sci. 1997, 37, 752–755.
- (33) Klavzar, S. Application of Isometric Embeddings to Chemical Graphs. In *Discrete Mathematical Chemistry*; Hansen, P., Fowler, P., Zheng, M., Eds.; *DIMACS Series on Discrete Mathematics and Theoretical Computer Science*; 2000; Vol. 51, pp 249–259.
- (34) Klavzar, S.; Zigert, P.; Gutman, I. An Algorithm for the Calculation of the Hyper-Wiener Index of Benzenoid Hydrocarbons. *Comput. Chem.* **2000**, *24*, 229–233.

CI0001536