Anagram Trees

Steffan Christ Sølvsten

Wordrow

wordrow.io

get_game(�a);

Reason: (1.) Simple backend (2.) Small file size

Contents

```
Motivation
   Wordrow
Anagrams
Binary Anatree
   contains(x)
   anagrams(x)
   subanagrams(x)
   insert(x)
Multi-valued Anatree
Letter Ordering
```

Contents

```
Motivation
Anagrams
Binary Anatree
Multi-valued Anatree
```

Consider an alphabet $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_k\}$ and words x, y, ... from a language $L \subseteq \Sigma^*$.

Definition (Rohit Parikh, 1961)

The Parikh vector of a word $x \in \Sigma^*$ is $\Psi(x) \triangleq \langle |\sigma_1|, |\sigma_2|, \dots, |\sigma_k| \rangle$.

For
$$\Sigma = \{a, b, c\}$$
, $\Psi(abb) = \langle 1, 2, 0 \rangle$ and $\Psi(abab) = \Psi(abba) = \langle 2, 2, 0 \rangle$.

Consider an alphabet $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_k\}$ and words x, y, ... from a language $L \subseteq \Sigma^*$.

Definition (Rohit Parikh, 1961)

The Parikh vector of a word $x \in \Sigma^*$ is $\Psi(x) \triangleq \langle |\sigma_1|, |\sigma_2|, \dots, |\sigma_k| \rangle$.

Example

For $\Sigma = \{a, b, c\}$, $\Psi(abb) = \langle 1, 2, 0 \rangle$ and $\Psi(abab) = \Psi(abba) = \langle 2, 2, 0 \rangle$.

Theorem (Rohit Parikh, 1961)

Given a Context-Free Language, $L \subseteq \Sigma^*$, one can efficiently construct the set of all Parikh vectors. One can use this to identify that $x \in \Sigma^*$ cannot be in the language.

More Details: cs.umu.se/kurser/TDBC92/VT06/final/3.pdf

Consider an alphabet $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_k\}$ and words x, y, ... from a language $L \subseteq \Sigma^*$.

Definition (Rohit Parikh, 1961)

The Parikh vector of a word $x \in \Sigma^*$ is $\Psi(x) \triangleq \langle |\sigma_1|, |\sigma_2|, \dots, |\sigma_k| \rangle$.

For
$$\Sigma = \{a, b, c\}$$
, $\Psi(abb) = \langle 1, 2, 0 \rangle$ and $\Psi(abab) = \Psi(abba) = \langle 2, 2, 0 \rangle$.

Consider an alphabet $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_k\}$ and words x, y, \dots from a language $L \subset \Sigma^*$.

Definition (Rohit Parikh, 1961)

The Parikh vector of a word $x \in \Sigma^*$ is $\Psi(x) \triangleq \langle |\sigma_1|, |\sigma_2|, \ldots, |\sigma_{\nu}| \rangle$.

Example

For $\Sigma = \{a, b, c\}$, $\Psi(abb) = \langle 1, 2, 0 \rangle$ and $\Psi(abab) = \Psi(abba) = \langle 2, 2, 0 \rangle$.

Definition (Anagram)

 $x, y \in \Sigma^*$ are anagrams if $\Psi(x) = \Psi(y)$.

Definition (Subanagram) $x \in \Sigma^*$ is a *subanagram* of $y \in \Sigma^*$ if $\Psi(x) \leq \Psi(y)$.

Lemma

Given $x, y \in \Sigma^n$, one can compute whether $\Psi(x) = \Psi(y)$ in $\mathcal{O}(n + |\Sigma|)$ time.

Lemma

Given $x, y \in \Sigma^*$, one can compute whether $\Psi(x) \leq \Psi(y)$ in $\mathcal{O}(|x| + |y| + |\Sigma|)$ time.

Proof.

Lemma

Given $x, y \in \Sigma^n$, one can compute whether $\Psi(x) = \Psi(y)$ in $\mathcal{O}(n + |\Sigma|)$ time.

Lemma

Given $x, y \in \Sigma^*$, one can compute whether $\Psi(x) \leq \Psi(y)$ in $\mathcal{O}(|x| + |y| + |\Sigma|)$ time.

Proof.

Compute the Parikh vectors similar to the first half of Counting Sort.

Example

Counting the number of a's, b's, and c's in aba and aab both yield (2,1,0).

Lemma

Given $x, y \in \Sigma^n$, computing whether $\Psi(x) = \Psi(y)$ takes $\mathcal{O}(\operatorname{sort}(n))$ time.

Proof.

Lemma

Given $x, y \in \Sigma^n$, computing whether $\Psi(x) = \Psi(y)$ takes $\mathcal{O}(sort(n))$ time.

Proof.

Sort words x and y in $\mathcal{O}(\operatorname{sort}(n))$ time. Then, check whether they now are the very same word in $\mathcal{O}(n)$ time.

$$x = b$$
 a a $x = c$ a b $y = a$ b a $y = a$ b a

Lemma

Given $x, y \in \Sigma^n$, computing whether $\Psi(x) = \Psi(y)$ takes $\mathcal{O}(sort(n))$ time.

Proof.

Sort words x and y in $\mathcal{O}(\operatorname{sort}(n))$ time. Then, check whether they now are the very same word in $\mathcal{O}(n)$ time.

$$x = a a b$$
 $x = c a b$

Lemma

Given $x, y \in \Sigma^n$, computing whether $\Psi(x) = \Psi(y)$ takes $\mathcal{O}(sort(n))$ time.

Proof.

Sort words x and y in $\mathcal{O}(\operatorname{sort}(n))$ time. Then, check whether they now are the very same word in $\mathcal{O}(n)$ time.

$$x = \underline{a}$$
 a b $x = c$ a b $y = \underline{a}$ a b $y = a$ b a

Lemma

Given $x, y \in \Sigma^n$, computing whether $\Psi(x) = \Psi(y)$ takes $\mathcal{O}(sort(n))$ time.

Proof.

Sort words x and y in $\mathcal{O}(\operatorname{sort}(n))$ time. Then, check whether they now are the very same word in $\mathcal{O}(n)$ time.

$$x = a \underline{a} b$$
 $x = c a b$
 $y = a a b$ $y = a b a$

Lemma

Given $x, y \in \Sigma^n$, computing whether $\Psi(x) = \Psi(y)$ takes $\mathcal{O}(sort(n))$ time.

Proof.

Sort words x and y in $\mathcal{O}(\operatorname{sort}(n))$ time. Then, check whether they now are the very same word in $\mathcal{O}(n)$ time.

$$x = a \quad a \quad \underline{b}$$
 $x = c \quad a \quad b$
 $y = a \quad a \quad \underline{b}$ $y = a \quad b \quad a$

Lemma

Given $x, y \in \Sigma^n$, computing whether $\Psi(x) = \Psi(y)$ takes $\mathcal{O}(sort(n))$ time.

Proof.

Sort words x and y in $\mathcal{O}(\operatorname{sort}(n))$ time. Then, check whether they now are the very same word in $\mathcal{O}(n)$ time.

$$x = a \quad a \quad b$$

 $y = a \quad a \quad b$

$$x = c \quad a \quad b$$

$$y = a \quad b \quad a$$

Lemma

Given $x, y \in \Sigma^n$, computing whether $\Psi(x) = \Psi(y)$ takes $\mathcal{O}(sort(n))$ time.

Proof.

Sort words x and y in $\mathcal{O}(\operatorname{sort}(n))$ time. Then, check whether they now are the very same word in $\mathcal{O}(n)$ time.

Lemma

Given $x, y \in \Sigma^n$, computing whether $\Psi(x) = \Psi(y)$ takes $\mathcal{O}(sort(n))$ time.

Proof.

Sort words x and y in $\mathcal{O}(\operatorname{sort}(n))$ time. Then, check whether they now are the very same word in $\mathcal{O}(n)$ time.

Example

Lemma

Given $x, y \in \Sigma^n$, computing whether $\Psi(x) = \Psi(y)$ takes $\mathcal{O}(sort(n))$ time.

Proof.

Sort words x and y in $\mathcal{O}(\operatorname{sort}(n))$ time. Then, check whether they now are the very same word in $\mathcal{O}(n)$ time.

Example

Lemma

Given $x, y \in \Sigma^n$, computing whether $\Psi(x) = \Psi(y)$ takes $\mathcal{O}(\operatorname{sort}(n))$ time.

Proof.

Sort words x and y in $\mathcal{O}(\operatorname{sort}(n))$ time. Then, check whether they now are the very same word in $\mathcal{O}(n)$ time.

Example

$$x = a \quad a \quad b$$

 $y = a \quad a \quad b$
 $x = a \quad b \quad c$
 $y = a \quad a \quad b$

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

$$x = \underline{a} \quad b \qquad \qquad x = c \quad a$$

 $y = \underline{a} \quad a \quad b \qquad \qquad y = a \quad b \quad a$

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

$$x = a \quad \underline{b}$$
 $x = c \quad a$ $y = a \quad \underline{a} \quad b$ $y = a \quad b \quad a$

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

$$x = a \quad \underline{b}$$
 $x = c \quad a$ $y = a \quad b \quad a$

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

Example

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

Example

$$x = a b$$

 $y = a a b$
 $x = a c$
 $y = a a b$

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

Example

$$x = a \quad b$$

 $y = a \quad a \quad b$
 $x = \underline{a} \quad c$
 $y = \underline{a} \quad a \quad b$

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

Example

$$x = a b$$

 $y = a a b$
 $y = a \underline{a} b$

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

Example

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

Example

Lemma

Given $x, y \in \Sigma^*$, checking $\Psi(x) \leq \Psi(y)$ takes $\mathcal{O}(\mathsf{sort}(|x|) + \mathsf{sort}(|y|))$ time.

Proof.

Again, sort words x and y. Now, match each symbol of x with ones in y; skip symbols of y if x is "ahead".

Example

Contents

```
Motivation
Anagrams
Binary Anatree
   contains(x)
   anagrams(x)
   subanagrams(x)
   insert(x)
Multi-valued Anatree
```

Anatree

Given an alphabet, Σ , and an ordering on its symbols, $<:\Sigma\times\Sigma\to\{\top,\bot\}$, the *Anatree* data structure manages a set of words $L\subseteq\Sigma^*$ on which one can do

Operation	
insert(x)	$\mathcal{O}(sort(x) + \Sigma)$
delete(x)	
contains(x)	$\mathcal{O}(sort(x) + \Sigma)$
anagrams(x)	$\mathcal{O}(sort(x) + \Sigma + \mathcal{T})$
subanagrams(x)	$\mathcal{O}(sort(x) + min(\mathit{N}_Tree, 2^{ x } \cdot \Sigma) + \mathcal{T})$

where N_{Tree} is the size of the Anagram tree and $\mathcal T$ is the output size.

Anatree

 $L = \{\Lambda, a, ba, ca, aba, baa\}$

```
contains(x):
    n := find(root, sort(x), 0)
    return n ≠ NIL & n.contains(x)
find(n, x', i):
```


 $L = \{\Lambda, a, ba, ca, aba, baa\}$

```
contains(x):
  n := find(root, sort(x), 0)
  return n \neq NIL \& n.contains(x)
find(n, x', i):
  if x'[i] = n.char
```

return find(n.true, x', i+1)


```
contains(x):
  n := find(root, sort(x), 0)
  return n \neq NIL \& n.contains(x)
find(n, x', i):
  if x'[i] > n.char
    return find(n.false, x', i)
  if x'[i] = n.char
    return find(n.true, x', i+1)
```



```
contains(x):
  n := find(root, sort(x), 0)
  return n \neq NIL \& n.contains(x)
find(n, x', i):
  if x'[i] > n.char
    return find(n.false, x', i)
  if x'[i] = n.char
    return find(n.true, x', i+1)
```



```
contains(x):
  n := find(root, sort(x), 0)
  return n \neq NIL \& n.contains(x)
find(n, x', i):
  if i = x'.length
    return n
  if x'[i] > n.char
    return find(n.false, x', i)
  if x'[i] = n.char
    return find(n.true, x', i+1)
```

Anatree.contains(ba) = Yes


```
contains(x):
  n := find(root, sort(x), 0)
  return n \neq NIL \& n.contains(x)
find(n, x', i):
  if i = x'.length
    return n
  if x'[i] > n.char
    return find(n.false, x', i)
  if x'[i] = n.char
```

return find(n.true, x', i+1)


```
contains(x):
  n := find(root, sort(x), 0)
  return n \neq NIL \& n.contains(x)
find(n, x', i):
  if i = x'.length
    return n
  if x'[i] > n.char
    return find(n.false, x', i)
  if x'[i] = n.char
```

return find(n.true, x', i+1)


```
contains(x):
  n := find(root, sort(x), 0)
  return n \neq NIL \& n.contains(x)
find(n, x', i):
  if i = x'.length
    return n
  if x'[i] > n.char
    return find(n.false, x', i)
  if x'[i] = n.char
    return find(n.true, x', i+1)
```



```
contains(x):
  n := find(root, sort(x), 0)
  return n \neq NIL \& n.contains(x)
find(n, x', i):
  if i = x'.length
    return n
  if x'[i] > n.char
    return find(n.false, x', i)
  if x'[i] = n.char
    return find(n.true, x', i+1)
```



```
contains(x):
  n := find(root, sort(x), 0)
  return n \neq NIL \& n.contains(x)
find(n, x', i):
  if i = x'.length
    return n
  if x'[i] > n.char
    return find(n.false, x', i)
  if x'[i] = n.char
    return find(n.true, x', i+1)
```



```
contains(x):
  n := find(root, sort(x), 0)
  return n \neq NIL \& n.contains(x)
find(n, x', i):
  if i = x'.length
    return n
  if x'[i] < n.char
    return NII.
  if x'[i] > n.char
    return find(n.false, x', i)
  if x'[i] = n.char
    return find(n.true, x', i+1)
```

Anatree.contains(aca) = No


```
contains(x):
  n := find(root, sort(x), 0)
  return n \neq NIL \& n.contains(x)
find(n, x', i):
  if i = x'.length
    return n
  if x'[i] < n.char
    return NII.
  if x'[i] > n.char
    return find(n.false, x', i)
  if x'[i] = n.char
    return find(n.true, x', i+1)
```

Anatree.contains(...)

 $L = \{\Lambda, a, ba, ca, aba, baa\}$

Lemma

find(n, sort(x), i) runs in $\mathcal{O}(\operatorname{sort}(|\mathsf{x}|) + |\mathsf{\Sigma}|)$ time.

Proof.

 $\mathcal{O}(1)$ time is spent per node. At most |x| high edges and $|\Sigma|$ low edges are traversed, meaning at most $|x| + |\Sigma|$ nodes are visited.

On top of this, add the $\mathcal{O}(\operatorname{sort}(|x|))$ time to sort x into x'.

Anatree.contains(...)

 $L = \{\Lambda, a, ba, ca, aba, baa\}$

Lemma find(n, sort(x), i) runs in $\mathcal{O}(sort(|x|) + |\Sigma|)$ time.

Proof. $\mathcal{O}(1)$ time is spent per node...

Corollary contains (x) runs in $\mathcal{O}(\operatorname{sort}(|x|) + |\Sigma|)$ time.

${\bf An atree.} {\tt anagrams} \, (\ldots)$

 $L = \{\Lambda, a, ba, ca, aba, baa\}$

anagrams(x):

n := find(root, sort(x), 0)
if n ≠ NIL
 output words in n

Corollary

anagrams (x) runs in $\mathcal{O}(\operatorname{sort}(|x|) + |\Sigma| + T)$ time.

Proof.

It takes $\mathcal{O}(\operatorname{sort}(|x|) + |\Sigma|)$ time to find n and then another $\mathcal{O}(T)$ time to output its content.

Anatree.subanagrams(a) =

subanagrams(x):
 subanagrams'(root, sort(x), 0)


```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
```



```
L = \{\Lambda, a, ba, ca, aba, baa\}
```

```
subanagrams(x):
   subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
   output words in n
```

```
if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
    subanagrams'(n.true, x', i+1)
```



```
L = \{\Lambda, a, ba, ca, aba, baa\}
```

```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
```

```
if x'[i] = n.char:
   subanagrams'(n.false, x', i+1)
   subanagrams'(n.true, x', i+1)
```



```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
  if i = x'.length:
    return
  if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
```

subanagrams'(n.true, x', i+1)


```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
  if i = x'.length:
    return
  if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
    subanagrams'(n.true, x', i+1)
```

Anatree.subanagrams(abb) =


```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
  if i = x'.length:
    return
  if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
    subanagrams'(n.true, x', i+1)
```



```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
  if i = x'.length:
    return
 if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
```

subanagrams'(n.true, x', i+1)


```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
  if i = x'.length:
    return
  if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
    subanagrams'(n.true, x', i+1)
```



```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
  if i = x'.length:
    return
  if x'[i] > n.char:
    subanagrams'(n.false, x', i)
  if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
    subanagrams'(n.true, x', i+1)
```



```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
  if i = x'.length:
    return
  if x'[i] > n.char:
    subanagrams'(n.false, x', i)
  if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
    subanagrams'(n.true, x', i+1)
```



```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
  while x'[i] < n.char:
    i++
  if i = x'.length:
    return
  if x'[i] > n.char:
    subanagrams'(n.false, x', i)
  if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
    subanagrams'(n.true, x', i+1)
```



```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
  while x'[i] < n.char:
    i++
  if i = x'.length:
    return
  if x'[i] > n.char:
    subanagrams'(n.false, x', i)
  if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
    subanagrams'(n.true, x', i+1)
```



```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
  while x'[i] < n.char:
    i++
  if i = x'.length:
    return
  if x'[i] > n.char:
    subanagrams'(n.false, x', i)
  if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
    subanagrams'(n.true, x', i+1)
```



```
subanagrams(x):
  subanagrams'(root, sort(x), 0)
subanagrams'(n, x', i):
  output words in n
  if n.char = \infty:
    return
  while x'[i] < n.char:
    i++
  if i = x'.length:
    return
  if x'[i] > n.char:
    subanagrams'(n.false, x', i)
  if x'[i] = n.char:
    subanagrams'(n.false, x', i+1)
    subanagrams'(n.true, x', i+1)
```

Anatree.subanagrams(...)

$L = \{\Lambda, a, ba, ca, aba, baa\}$

Lemma

For $N = \sum_{i=1}^{k} |x_i|$, the anatree has size, N_{tree} , at most N.

Anatree.subanagrams(...)

 $L = \{\Lambda, a, ba, ca, aba, baa\}$

Lemma

For $N = \sum_{i=1}^{k} |x_i|$, the anatree has size, N_{tree} , at most N.

Theorem

 $subanagrams(x) runs in \\ \mathcal{O}(sort(|x|) + min(N_{tree}, 2^{|x|} \cdot |\Sigma|) + T) \\ time.$

Proof.

It takes $\mathcal{O}(\operatorname{sort}(|x|))$ time to sort x and another $\mathcal{O}(T)$ to write the output.

For every match, the recursion splits in two. Each of these $2^{|x|}$ matches have $|\Sigma|$ or fewer mismatches.

Anatree.keys(...)

Definition

The subset L' of $L \subseteq \Sigma^*$ is a set of keys w.r.t. Ψ if for all $x, y \in L'$ then $\Psi(x) \neq \Psi(y)$.

 $\textbf{Anatree}.\texttt{keys}(\dots)$

Definition

The subset L' of $L \subseteq \Sigma^*$ is a set of keys w.r.t. Ψ if for all $x, y \in L'$ then $\Psi(x) \neq \Psi(y)$.

Theorem

keys(length) runs in $\mathcal{O}(\min(N_{tree}, 2^{length} \cdot |\Sigma|) + T)$ time.

Proof.

Left as an exercise to the reader...

```
insert(x):
   root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
```

{

 ∞

```
insert(x):
  root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
  if i = x'.length:
    n.insert(x)
```

 $\{\Lambda\}$

 ∞

```
insert(x):
  root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
  if i = x'.length:
    n.insert(x)
```

 $\{\Lambda\}$

 ∞

return n


```
insert(x):
  root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
  if i = x'.length:
      n.insert(x)
  else if n.char = \infty:
      n = node{ char: x'[i], false: \infty, true: \infty}
      n.true = insert'(n.true, x', i+1, x)
```



```
insert(x):
  root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
  if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node{ char: x'[i], false: \infty, true: \infty} }
  n.true = insert'(n.true, x', i+1, x)
```



```
insert(x):
  root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
  if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node{ char: x'[i], false: \infty, true: \infty} }
  n.true = insert'(n.true, x', i+1, x)
```



```
insert(x):
  root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
  if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node{ char: x'[i], false: \infty, true: \infty} }
  n.true = insert'(n.true, x', i+1, x)
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
```

```
else if x'[i] == m.char:
   n.true = insert'(n.true, x', i+1, x)
return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
   n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
```

```
else if x'[i] == m.char:
   n.true = insert'(n.true, x', i+1, x)
return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
```

```
else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
```

```
else if x'[i] == m.char:
   n.true = insert'(n.true, x', i+1, x)
return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
 else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
 else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
 else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
 else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
 else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
 else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x'. i+1. x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x'. i+1. x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x'. i+1. x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x'. i+1. x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
 else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
 else if x'[i] > m.char:
    n.false = insert'(n.false, x', i, x)
  else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
 else if x'[i] > m.char:
    n.false = insert'(n.false, x', i, x)
  else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
 else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
  else if x'[i] > m.char:
    n.false = insert'(n.false, x', i, x)
  else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```



```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
  else if x'[i] > m.char:
    n.false = insert'(n.false, x', i, x)
  else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```

Anatree.insert(...)


```
insert(x):
 root = insert'(root, sort(x), 0, x)
insert'(n, x', i, x):
 if i = x'.length:
    n.insert(x)
  else if n.char = \infty:
    n = node\{ char: x'[i], false: \infty, true: \infty \}
    n.true = insert'(n.true, x', i+1, x)
  else if x'[i] < m.char:</pre>
    n' = node\{ char: x'[i], false: n, true: \infty \}
    move n.words into n'.words
    n'.true = insert'(n'.true, x', i+1, x)
    return n'
  else if x'[i] > m.char:
    n.false = insert'(n.false, x', i, x)
  else if x'[i] == m.char:
    n.true = insert'(n.true, x', i+1, x)
 return n
```

Anatree.insert(...)

Theorem

insert(x) runs in $\mathcal{O}(sort(|x|) + \Sigma)$ time.

Proof.

Similar argument as for find(n, x', i).

Anatree.insert(...)

Theorem

insert(x) runs in $\mathcal{O}(sort(|x|) + \Sigma)$ time.

Proof.

Similar argument as for find(n, x', i).

Corollary

For $N = \sum_{i=1}^{k} |x_i|$, insert (x_1, x_2, \ldots, x_k) requires $\mathcal{O}(\operatorname{sort}(N) + k \cdot |\Sigma|)$ time.

Proof.

Follows from complexity of insert(x_i) and sort distributes over + in \mathcal{O} -notation:

$$\mathcal{O}(\operatorname{sort}(N_1) + \operatorname{sort}(N_2)) = \mathcal{O}(\operatorname{sort}(N_1 + N_2))$$

Theorem
$$delete(x)$$
 runs in $\mathcal{O}(sort(|x|) + |\Sigma|)$ time.

Proof.

Left as an exercise to the reader...

Anatree

		Dictionary		Anatree			
		# Words	# Symbols	Size	#Keys	insert (s)	subanagrams (s)
+	DK	32863	177308	62687	8513	12.62	1.05
	DE	23587	127562	55047	8201	9.46	0.88
	ΕN	40804	218342	75697	11741	10.62	1.43
	ES	39650	219776	56103	7502	8.45	0.89

Contents

```
Motivation
Anagrams
Binary Anatree
Multi-valued Anatree
```

Multi-valued Anatree

Contents

```
Motivation
Anagrams
Binary Anatree
Multi-valued Anatree
Letter Ordering
```

Letter Ordering

Letter Ordering

$$f(x,y,z) \equiv \neg((x \land y) \oplus z)$$

$$f(x,y,z) \equiv \neg((x \land y) \oplus z)$$

Used in the context of:

- Model Checking
- Compilers
- Game Solving

$$f(x,y,z) \equiv \neg((x \wedge y) \oplus z)$$

Used in the context of:

- Model Checking
- Compilers
- Game Solving

Features of BDDs:

- (Often) Smaller than Formula/Set
- Operation Complexity depends on BDD Size
- Size depends on Variable Ordering

Steffan Christ Sølvsten

≤ soelvsten@cs.au.dk

Wordrow

github.com/ssoelvsten/wordrow

Anatree

github.com/ssoelvsten/anatree

