Question Number	Scheme	Marks	
8 (a)	(i) $AB = OB - OA = \mathbf{b} - \mathbf{a}$	M1A1	
	(ii) $OM = OA + \frac{1}{2}AB = \frac{1}{2}(\mathbf{a} + \mathbf{b})$	M1A1	
(b)	(iii) $PM = PA + AM = \frac{2}{5}\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) = \frac{1}{2}\mathbf{b} - \frac{1}{10}\mathbf{a}$	M1A1	(6)
	$OP + \lambda PM = OX$	M1	
	$\frac{3}{5}\mathbf{a} + \lambda \left(\frac{1}{2}\mathbf{b} - \frac{1}{10}\mathbf{a}\right) = \mu \mathbf{b}$	A1	
	$\frac{3}{5} = \frac{\lambda}{10} \qquad \lambda = 6$ $\mu = \frac{1}{2}\lambda = 3$		
	$\mu = \frac{1}{2}\lambda = 3$	M1	
(c)	$\therefore OX = 3\mathbf{b}$	A1	(4)
	area $\triangle OAM = \frac{1}{2}$ area $\triangle OAB$		
	area $\triangle OAB = \frac{1}{3}$ area $\triangle OAX$	M1	
	∴ area $\triangle OAM = \frac{1}{2} \times \frac{1}{3}$ area $\triangle OAX = \frac{1}{6}$ area $\triangle OAX$	M1	
	ratio =1:6	A1	(3) [13]