Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра информационных технологий автоматизированных систем

Отчет по лабораторной работе №4 «МЕТОДЫ И ПРОЦЕДУРЫ ПРИНЯТИЯ РЕШЕНИЙ ПРИ МНРОГИХ КРИТЕРИЯХ»
Вариант №5

Выполнил: Ст. Гр. 820601 Шведов А.Р. Проверила: Протченко Е.В.

Цель работы:

- изучение методов и процедур многокритериального выбора альтернатив;
- изучение применения методов многокритериального выбора альтернатив для анализа и выбора управленческих решений.

Задание:

Выбирается место для строительства металлургического предприятия. Характеристики мест, предлагаемых для строительства следующие.

Место	M1	M2	M3	M4	M5	M6
Близость к источникам	совсем	близко	далеко	совсем	близко (немно-	среднее
сырья	близко			близко	го дальше, чем	расстоя-
					для М2)	ние
Близость к потребителям	далеко	среднее	близко	очень	далеко	совсем
		расстоя-		далеко		близко
	24 6	ние				
Затраты на подготовку к	2,5	4	3	2	3	3,5
строительству, млн)	
ден.ед.						

Важность критериев оценивается двумя экспертами.

По мнению первого эксперта, наиболее важный критерий - затраты на подготовку к строительству; менее важный - близость к источникам сырья, еще немного менее важный - близость к потребителям.

По мнению второго эксперта, наиболее важный критерий - близость к источникам сырья, немного менее важный - затраты на подготовку к строительству, значительно менее важный - близость к потребителям.

Ход работы

1. Методика экспресс-анализа альтернатив

Оценки по качественным критериям выражаются по пятибалльной шкале ("отлично", "хорошо", "удовлетворительно", "плохо", "очень плохо"), а затем выполняется переход к числовым оценкам с использованием **шкалы Харрингтона**. При этом оценке "отлично" соответствуют числовые оценки от 0,8 до 1; "хорошо" - от 0,63 до 0,8; "удовлетворительно" - от 0,37 до 0,63; "плохо" - от 0,2 до 0,37; "очень плохо" - от 0 до 0,2. Числовая оценка выставляется человеком: экспертом или лицом, принимающим решения (ЛПР).

Принцип работы методики: для каждой альтернативы находится худшая оценка (из всех оценок данной альтернативы по критериям, используемым в задаче). Выбираются альтернативы, худшая оценка которых *не ниже* некоторой пороговой величины.

Выберем множество Парето. Сравним альтернативы М1 и М2. По критериям "затраты" и "близость к сырью" альтернатива М1 лучше, чем М2; по критерию "близость к потребителям" М2 лучше, чем М1. Таким образом, ни одну из альтернатив исключить нельзя, так как по некоторым критериям лучше одна, а по другим — другая.

Аналогично сравниваются остальные альтернативы. В ходе сравнения исключается альтернатива М5.

Обозначим оценки альтернатив по критериям как X_{ij} , i=1,...,M, j=1,...,N. Безразмерные оценки альтернатив P_{ij} , i=1,...,M, j=1,...,N, находятся следующим образом:

Для критериев, подлежащих минимизации, из оценок по данному критерию выбирается минимальная, и она делится на все оценки альтернатив по данному критерию:

$$P_{ij} = \frac{min_j X_{ii}}{X_{ij}}$$

Для качественных (словесных) критериев выполняется переход к числовым оценкам по шкале Харрингтона.

	M1	M2	M3	M4	M6
К1	1	0,7	0,25	0,9	0,53
К2	0,3	0,47	0,72	0,1	1
К3	0,8	0,5	0,67	1	0,57

Для каждой альтернативы находится минимальная оценка, т.е. худшая из оценок данной альтернативы по всем критериям:

$$P_i = min_iP_{ij}$$

	M1	M2	M3	M4	M6
P	0,3	0,47	0,25	0,1	0,53

Выбирается пороговое значение минимальной оценки P_0 . Эта величина назначается ЛПР или экспертом из субъективных соображений, например, в зависимости от количества альтернатив, которые требуется отобрать для дальнейшего анализа.

Пусть в данной задаче назначено P_0 =0,29.

Выбирается множество альтернатив, для которых $P_j > P_0$. Таким образом, для дальнейшего анализа отбираются альтернативы, у которых все оценки (в том числе худшая) не ниже предельной величины P_0 .

В данной задаче отбираются альтернативы М1, М2, М6.

2. Методика скаляризации векторных оценок

Оценки альтернатив приводятся к безразмерному виду, как и в методике экспресс-анализа альтернатив.

	M1	M2	M6	

K1	1	0,7	0,53
К2	0,3	0,47	1
К3	0,8	0,5	0,57

Определяются веса (оценки важности) критериев. В рассматриваемой методике веса находятся *на основе разброса оценок*. Веса определяются в следующем порядке:

- определяются средние оценки по каждому критерию:

$$\overline{P_1} = (1 + 0.7 + 0.53)/3 = 0.74$$
 $\overline{P_2} = 0.59$
 $\overline{P_3} = 0.78$

- величины разброса по каждому критерию:

$$R_1 = 0.23$$

 $R_2 = 0.46$

$$R_3 = 0.19$$

находится сумма величин разброса

$$R = R_1 + R_2 + R_3 = 0.23 + 0.46 + 0.19 = 0.88$$

- находятся веса критериев, отражающие разброс оценок

$$W_i = R_i/R$$
,
 $W_1 = 0.26$, $W_1 = 0.52$, $W_1 = 0.22$

Находятся взвешенные оценки альтернатив (путем деления весов критериев на оценки по соответствующим критериям): $E_{ij} = W_i / P_{ij}$

Взвешенные оценки для данного примера

	M1	M2	M6
K1	0,26	0,37	0,49
К2	1,73	1,1	0,52
К3	0,22	0,35	0,31

Чем большие значения принимают безразмерные оценки P_{ij} , тем меньше значения взвешенных оценок. Таким образом, чем *меньше* взвешенные оценки, тем *лучше* альтернатива.

Определяются комплексные оценки альтернатив (суммы взвешенных оценок):

$$E_j = \sum_{i=1}^{M} E_{ij},$$

$$E_1 = 0.26 + 1.73 + 0.22 = 2.21$$
; $E_2 = 0.37 + 1.1 + 0.35 = 1.82$; $E_3 = 0.49 + 0.52 + 0.31 = 1.32$

Чем меньше комплексная оценка, тем лучше альтернатива. Таким образом, в данном примере лучшим является вариант K3; несколько худший вариант – K2, еще хуже – K1.

3. Методика сравнительной оценки двух альтернатив по степени доминирования

1. Выполняется ранжирование критериев по важности: наиболее важный критерий получает ранг 1, следующий по важности - 2, и т.д. Если какие-либо критерии близки по важности, им рекомендуется назначать одинаковые ранги.

Пусть в данной задаче критериям назначены следующие ранги: R 1=2, R2=3, R3=1.

2. Выполняется переход от рангов к весам критериев. Веса находятся следующим образом: из всех рангов выбирается максимальный (в данном примере он равен 4), к нему прибавляется единица, и из полученного числа вычитаются ранги:

$$V_i = max_i(R_i) + 1 - R_i;$$

Для данной задачи веса критериев следующие: V_1 =3+1-2=4; V_2 =3+1-3=2; V_3 =3+1-1=3.

3. Находятся отношения оценок альтернатив (степени доминирования) путем деления большей оценки по каждому критерию на меньшую:

$$S_i = \max(X_{i1}, X_{i2}) / \min(X_{i1}, X_{i2}),$$

Для данной задачи S_1 =0.7/0.53=1,32; S_2 =1/0.47=2.13; S_3 =4/3.5=1.14;

4. Находятся скорректированные степени доминирования альтернатив путем возведения степеней доминирования в степени, равные весам критериев: $C_i = S_i^{Vi}$,

Таким образом учитывается важность критериев: чем больше вес критерия, тем больше соответствующая степень доминирования будет влиять на окончательную оценку

$$C_1=1,32^2=1.74; C_2=2.13^1=2.13; C_3=1.48^3=1.48;$$

5. Для каждой из сравниваемых альтернатив находится оценка ее доминирования над другой альтернативой. Эта оценка вычисляется как произведение скорректированных степеней доминирования по всем критериям, по которым данная альтернатива лучше другой.

В данном примере M2 лучше проекта M3 по критерию C_1 . Оценка доминирования проекта П1 над П2 находится следующим образом: D_1 = C_1 = 1,74.

Проект M3 лучше, чем проект M2, по критериям C_2 , C_3 . Оценка доминирования M3 над M1: $D_2 = C_2 * C_3 = 3,15$.

6. Находится обобщенная оценка доминирования:

$$D = D_1 / D_2 = 0.55$$

D<1, то вторая альтернатива превосходит первую. Таким образом, проект M_6 лучше, чем M_2 .