Instituto Te	cnológico de Costa Rica		
Escuela de l	ngeniería Electrónica		
EL-2207 Elementos Activos		Total de Puntos:	40
Profesores:	Dr. Ing. Juan José Montero Rodríguez Dr. Ing. Alfonso Chacón Rodríguez	Puntos obtenidos:	
	M.Sc. Ing. Aníbal Ruiz Barquero	Porcentaje:	
Ing. Edgar Solera Bolaños II Semestre 2019		Nota:	
Segundo E	xamen Parcial		
21 de octu	bre de 2019		
Nombre:		Carné:	

Instrucciones Generales:

- Resuelva el examen en forma ordenada y clara.
- No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.
- Si trabaja con lápiz, debe encerrar en recuadro su respuesta final con lapicero.
- El uso de lapicero rojo **no** está permitido.
- El uso del teléfono celular no es permitido. Este tipo de dispositivos debe permanecer **total**mente apagado durante el examen.
- No se permite el uso de calculadora programable.
- Únicamente se atenderán dudas de forma.
- El instructivo de examen debe ser devuelto junto con su solución.
- El examen es una prueba individual.
- El no cumplimiento de los puntos anteriores equivale a una nota igual a cero en el ejercicio correspondiente o en el examen.
- Esta prueba tiene una duración de 3 horas, a partir de su hora de inicio.

Firma:		

Problema 1	de 10
Problema 2	de 10
Problema 3	de 10
Problema 4	de 10

Problemas

Problema 1 Polarización

10 Pts

En la Figura 1.1 se muestra un circuito utilizado para amplificar una señal específica, con un punto de operación definido por su polarización en corriente directa. Con instrumentos de medición se logró determinar que la ganancia de corriente en región activa directa (β_{F_1}) de Q_1 es de 110; además se ha estimado que $\beta_{F_2} = 0.5\beta_{F_1}$ para Q_2 . El fabricante de ambos transistores bipolares asegura lo siguiente:

- La corriente de saturación en inversa I_s es igual tanto para NPN como para PNP, aproximadamente $9 \times 10^{-16} A$.
- El modo de fallo tanto del NPN como para PNP, es actuar como un corto circuito.

Figura 1.1: Circuito de polarización de un transistor prop

Con la información suministrada y considerando una tensión de Early excesivamente alta, resuelva lo siguiente:

- 1.1. Considerando la relación de β entre colector y emisor, calcule los valores más aproximados para $V_{BE_1}, I_{C_1}, I_{B_1}, V_{CE_1}, V_{EB_2}, I_{C_2}, I_{B_2}, yV_{EC_2}$. 8 Pts
- 1.2. La región en la cuál operan tanto Q_1 como Q_2 .
- 1.3. La región en la cuál opera Q_2 ante un fallo de Q_1 , recalcule el punto de operación de ser necesario (Puntaje extra).

3 Pts

Figura 2.1: Circuito Del Problema 2

- 2.1. Dibuje el modelo de pequeña señal del circuito de la figura 2.1. Considere que $V_A \neq \infty$, incluya las capacitancias parásitas $C\pi$ y $C\mu$, cuyos valores son 346.16 pF y 2.23 fF. La resistencia r_o tiene un valor de 100 $k\Omega$, la resistencia r_π tiene un valor de 2.5 k Ω y la corriente de colector I_C es de 1.8 mA.
- 2.2. Explique que es la frecuencia de transición o tránsito (f_t) .
- 2.3. Encuentra la frecuencia de tránsito considerando que la capacitancia $C_{VEB} = 15.5 \ fF$ y el valor de $\tau_f = 5 \ ns$.

Problema 3 Modelo de pequeña señal

10 Pts

El transistor BJT mostrado en la figura está conectado como diodo. Utilizando el modelo π de pequeña señal, calcule la impedancia vista hacia la terminal del emisor.

Figura 3.1: Circuito para el problema 3.

Para la solución del problema debe seguir los siguientes pasos:

- 3.1. Dibuje el modelo equivalente de pequeña señal, considerando que el transistor presenta efecto Early.
- 3.2. Conecte una fuente de prueba v_x en la terminal del emisor y encuentre la corriente i_x resolviendo por LVK y LCK según considere necesario.
- 3.3. Escriba la ecuación de la impedancia vista hacia el emisor.

2 Pts

El transistor del circuito de la figura se encuentra en la región activa reversa. Utilizando el modelo de Ebers-Moll simplificado, encuentre el punto de operación del circuito. Los parámetros del transistor son $I_{CS}=2\times 10^{-15}~A,~\beta_R=3$. Las resistencias son $R_1=16~k\Omega$ y $R_2=12~k\Omega$. La tensión de alimentación es $V_{CC}=1.8~V$.

- 4.1. Redibuje el circuito con el modelo de Ebers-Moll simplificado para la zona activa reversa, utilizando un equivalente de Thévenin para R_1 y R_2 . Calcule V_{THV} y R_{THV} .
- 4.2. Utilizando las ecuaciones de Ebers-Moll determine la magnitud y el signo de las corrientes de colector, base y emisor: I_C , I_B e I_E .