University of Science Computational Linguistics Center Introduction to Natural Language Processing

Section 2: Formal Languages

Lecturer: Assoc.Prof. Dr. Dinh Dien

Introduction to Formal Languages

- Formal languages are defined with respect to a given alphabet. The alphabet (Σ) is simply a finite set of symbols. E.g.:
- > Σ (English) = [the, a, of, in, am, I, book, teacher, mother, new, read, carry out, fall in love, ...]
- > Σ (Vietnamese) = [của, các, cái, một, là, trong, tôi, mới, sách, giáo viên, mẹ, đọc, thực hiện, cuốn, của đáng tội, ...]
- $\triangleright \Sigma$ (French) = [le, une, de, livre, mère, pomme de terre, ...]
- > Σ (Chinese) = [的, 一, 书, 老师, 妈妈, 本, ...]
- Σ (Japanese) = [の,に,本,お母さん,...]
- > Σ (Korean) = [안,이,그리고,책, 선생님,어머니, ...]

STRING

- A finite sequence of *symbols* is called a *string*.
- The length of a string w is the number of symbols: |w|
- If w is a string $(w \in \Sigma^*)$ and a is a symbol $(a \in \Sigma)$, then x.a (concatenation) will be a string on Σ
- If w,y are strings $(w,y \in \Sigma^*)$, then x,y (concatenation) will be a string on Σ with its length: |xy| = |x| + |y|.
- Ex: Σ (computer language) = $\{0,1\}$: x = "001" is a string on Σ and a = "0" is a symbol of Σ , then xa = "0010" is a new string on Σ . The length: |x| = 3 and |xa| = 4
- But: $b= 2 \not\in \Sigma$, then: xb = 0012 is NOT a string on Σ .

SENTENCE

- x = "Tôi là một giáo_viên" is a sentence on Σ (Vietnamese), and a = "mới" is a word of Σ (Vietnamese), we have a new sentence in Vietnamese: xa = "Tôi là một giáo_viên mới"
- The length: |x| = 4 and |xa| = 5
- But: if b= "new" $\not\in \Sigma$ (Vietnamese), then xb = "Tôi là một giáo_viên new" is NOT a Vietnamese sentence.

LANGUAGE

- Power set: from a given $\Sigma = [0,1]$), we have:
- Σ^0 =[ϵ]: set of 0-symbol strings
- Σ^1 =[0,1]: set of 1-symbol strings
- $\Sigma^2 = [00,01,10,11]$: set of 2-symbol strings
- Σ^3 =[000,001,010,011,100,101,110,111]
- Σ^n : set of n-symbol strings
- Σ^+ : set of n-symbol strings with $n \ge 1$ $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \dots \cup \Sigma^n = [0,1,00,01,10,11,000,001,\dots,111,\dots]$
- Σ^* : set of n-symbol strings with $n \ge 0 = \Sigma^* = \Sigma^0 \cup \Sigma^+$
- The order of strings in the power set: *normalization* or dictionary (alphabet).

LANGUAGE

- In NL, there is no Σ^0 . Why?
- Σ^{1} = {"Cháy!", "Cướp!",...}, {"Fire!", ...} (limited)
- Σ² = { "Tôi đi", "Anh ngủ", "Trời mưa", "Giáo_viên nghiên_cứu", "Sinh_viên thực_hiện",...}, { "It rains", "I go", "You sleep", "Teachers research", "Students carry_out",...} (many)
- Σ^3 , Σ^4 ,... Σ^n : increase exponentially
- Ex: Σ (computer) = {0,1}
- $= > \Sigma^3 = [000, 001, 010, 011, 100, 101, 110, 111]$
- ✓ Only *italic* strings are valid.
- ightharpoonup L = [001, 011, 100] $\subset \Sigma^3 \subset \Sigma^*$

LANGUAGE DEFINITIONS

- DEFINITION OF A LANGUAGE: is a *subset* of Σ^*
- How to determine that *subset*?
- If the number is *limited*, we can *enumerate* them.
- How large is the subset? Limited or Unlimited?
- For $\Sigma = [0,1]$ (its vocabulary has 2 words only)
- Σ^8 : $2^8 = 256$ cases; Σ^{16} : $2^{16} = 65.536$; Σ^{32} : $2^{32} \sim 4.2$ billion. Σ^{64} : $2^{64} \sim 18$ million billion (quintillion) cases.
- The size of this "rice heap" (chess story) is 32 billion m³, approx.12,000 times of the biggest pyramid (Khufu, Egypt)
- Luckily, the number of valid strings (instruction) is small/limited (opcode) => instruction set of CPU.
- But: in other languages ?

LANGUAGE PRINCIPLES

- $\Sigma = [0,1], L_1 = [11,011,101,0101,0110,...], L_1 \subset \Sigma^*$
- L_1 's principle? The number of '1s' is 2.
- L_2 = [11,011,0101,0110,11011,110011,1011111,11011111,...]
- L_2 's principle? The number of '1s' is even.
- L_3 = [01,0101,0110, 010011, 011100, 01110010, 10010101,...]
- L_3 's principle? The number of '1s' = '0s'.
- $\succ L_1, L_2, L_3$: infinite countable sets
- What is the principle of NL?
- > The principles of phonetics/phonology, morphology, grammar(syntax), SEMANTICS, pragmatics,...

NATURAL LANGUAGES

- Σ⁺= ["Tôi là một", "Tôi là một mới", "là giáo_viên một mới sách", "Tôi đọc giáo_viên sách mới", "Tôi đọc sách giáo_viên mới", "Mẹ đọc sách giáo_viên mới", "Đọc mới giáo_viên sách là", "Mẹ mới đọc sách giáo_viên", "của sách một",...]
- Italic sentences: grammatically & semantically correct.
- The number of correct sentences: huge!
- Σ (Vietnamese) ~ 40k words, the avg length~ 20w
- Candidate sentences: 40.000^{20} ; $40.000 > 2^{15}$ (= 32.768) => $40.000^{20} > (2^{15})^{20} = 2^{300} = 2^{30x10} = (10^9)^{10} = (10^{90}) (90 \text{ '0s' !})$
- The number of sand grains on the Earth: 10²¹
- The number of stars in the universe: $7x10^{22}$ (sextillion)

NATURAL LANGUAGES

- Possible Vietnamese sentences: 10⁴⁰
- English (Robert Mannell at Macquarie, Aus): 10⁵⁷⁰
 http://clas.mq.edu.au/speech/infinite_sentences/index.html
- Extremely huge!
- We need another way to determine the subset of NL
- That is: GRAMMAR
- SUBSET = {collection of grammatically correct sentences}

Types of Grammars: Chomsky hierarchy

- 0. UG: $\alpha \to \beta$ with $\beta \in (N \cup \Sigma)^*$ and $\alpha \in (N \cup \Sigma)$ +
- 1. CSG: $\gamma_1 X \gamma_2 \rightarrow \gamma_1 \alpha \gamma_2$ with $X, \alpha, \gamma_1, \gamma_2 \in (N \cup \Sigma) +$
- 2. CFG: $X \to \alpha$ with $X \in \mathbb{N}$, $\alpha \in (\mathbb{N} \cup \Sigma)$ +
- 3. RG: $X \rightarrow a$ and $X \rightarrow aY$ or $X \rightarrow Yb$ with $X, Y \in N$ $a, b \in \Sigma$

DERIVATION

- Let $G(V, \Sigma, P, S)$ be a CFG.
- Let $w_0 = \alpha X\beta$ (the concatenation of α , X and β) and $w_1 = \alpha \gamma\beta$ be strings over Σ .
- If $X \rightarrow \gamma$ is a production of P we say that wI is directly derivable from w0 and we write $w_o => w_I$
- If w_0 , w_1 , ..., w_n are strings over V such that $w_0 => w_1$, $w_1 => w_2$,..., $w_{n-1} => w_n$, then we say that w_n is derivable from w_0 , and write $w_0 => *w_n$
- The sequence of steps used to obtain w_n from w_o is called a derivation.

DEFINITION OF LANGUAGES

- Let $G(V, \Sigma, P, S)$ be a CFG.
- The language generated by G denoted by L(G), is the set of all strings of terminals that are derivable from the start symbol S.
- $L(G) = \{ w | (w \in \Sigma^*) \cap (S = >^* w) \}$

Derivation Order

Consider the following example grammar with 5 productions:

1.
$$S \rightarrow AB$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$

$$4. B \rightarrow Bb$$

3.
$$A \rightarrow \lambda$$

5.
$$B \rightarrow \lambda$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$ 4. $B \rightarrow Bb$ 3. $A \rightarrow \lambda$ 5. $B \rightarrow \lambda$

Leftmost derivation order of string

At each step, we substitute the leftmost variable

1.
$$S \rightarrow AB$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$ 4. $B \rightarrow Bb$

$$A. B \rightarrow Bb$$

3.
$$A \rightarrow \lambda$$

5.
$$B \rightarrow \lambda$$

Rightmost derivation order of string

aab

At each step, we substitute the rightmost variable

1.
$$S \rightarrow AB$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$ 4. $B \rightarrow Bb$

$$A. B \rightarrow Bb$$

3.
$$A \rightarrow \lambda$$

5.
$$B \rightarrow \lambda$$

Leftmost derivation of

Rightmost derivation of

Fall 2006

Costas Busch - RPI

Derivation Trees

Consider the same example grammar:

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda$$

$$B \rightarrow Bb \mid \lambda$$

And a derivation of

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$$

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$$

$$B \rightarrow Bb \mid \lambda$$

yield AB

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$$

$$B \rightarrow Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB$$

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb$$

yield aaABb

 $S \rightarrow AB$

 $A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$

AMBIGUOUS

- ☐ A sentence which can derive more than one parse *tree* is **ambiguous**.
- □ Example: a grammar for arithmetic expressions: ⟨EXPR⟩ →⟨EXPR⟩ + ⟨EXPR⟩ |⟨EXPR⟩ . ⟨EXPR⟩ |(⟨EXPR⟩)| a
- ✓ String: a + a.a.

- A language in which contains at least one ambiguous sentence is ambiguous.
- Give examples of ambiguous sentences in NL?

+Equivalent grammar:

G1 and G2 are equivalent iff L(G1) = L(G2)

+ Recursive:

Given a $G = (N, \Sigma, P, S)$, a non-term X of G is recursive if there are following production rules:

 $X \Rightarrow \alpha X\beta$ with $\alpha, \beta \in (\Sigma \cup N)^*$

If $\alpha = \epsilon$: left recursive

If $\beta = \epsilon$: right recursive

If α , $\beta \neq \epsilon$: middle recursive

Indirect recursive?

Give examples of recursive structures in NL?

+Categorized grammar

Given a grammar $G = (N, \Sigma, T, P, S)$.

T is set of categories of terminals.

$$\Sigma = \cup T_i$$

With $i \neq j$: $T_i \cap T_i = \emptyset$?

Give examples in English, Vietnamese, etc.

+ *CNF* (Chomsky Normal Form):if every production rules in P have following forms:

 $X \rightarrow YZ$ with $X, Y, Z \in N$, or

 $X \rightarrow a$ with $a \in \Sigma$

Can CFG be converted into CNF?

Backus-Naur Form

- (sentence) ::= (noun phrase) (verb phrase)
- (noun phrase) ::= (article) [(adjective)] (noun)
- (verb phrase) ::= (verb) [(adverb)]
- (article) ::= a / the
- (adjective) ::= large | hungry
- (noun) ::= rabbit | mathematician
- **(verb)** ::= eats / hops
- (adverb) ::= quickly / wildly

Square brackets [] mean "optional"

Vertical bars mean "alternatives"

Given a grammar:

$$S ::= NP VP$$

Is that CFG?

Parse: "The old man sat on the chair in the house"

Is that sentence ambiguous?

Derivation tree #1

Derivation tree #2

EARLEY PARSING ALGORITHM

Given a CFG grammar:

$$S \rightarrow NP VP$$

$$S \rightarrow NP VP PP$$

$$NP \rightarrow d NP3$$

$$NP3 \rightarrow a NP3$$

$$NP3 \rightarrow n$$

$$NP3 \rightarrow nPP$$

$$PP \rightarrow p NP2$$

$$NP2 \rightarrow dNP3$$

$$VP \rightarrow v$$

- In which: d (det), a (adj), p (prep), n (noun), v (verb): are terminals
- S, NP, NP3, NP2, VP, PREPS: non-terminal symbols
- Parse the sentence: "The young student sat in the class"
- POS: "The/d young/a student/n sat/v in/p the/d class/n"
- Formally: $w = a_1 a_2 a_3 a_4 a_5 a_6 a_7$
- With: $a_1=d$; $a_2=a$; $a_3=n$; $a_4=v$; $a_5=p$; $a_6=d$; $a_7=n$;

Building the parsing list

- (1) If $S \to \alpha \in P$, then add $[S \to \bullet \alpha, 0]$ into I_0
- Repeat (2) and (3) until no new added-item in I_0
- (2) If $[B \to \gamma \bullet, 0] \in I_0$, then add: $[A \to \alpha B \bullet \beta, 0]$ for all items $[A \to \alpha \bullet B \beta, 0]$ in I_0
- (3) If $[A \rightarrow \alpha \bullet B \beta, 0] \in I_0$, add into I_0 , all items $[B \rightarrow \gamma, 0]$ (if no exist in I_0).

Building the parsing list

- Building the next table: I_j
- (4) For each item $[B \to \alpha \bullet a \beta, i]$ in table I_{j-1} with $a = a_j$, we add item $[B \to \alpha a \bullet \beta, i]$ into table I_j
- Repeat (5) and (6) until no new added-item in I_j.
- (5) If $[A \to \alpha \bullet B\beta, i] \in I_j$, we add into I_j items $[B \to \bullet \gamma, j]$.
- (6)If $[A \to \alpha \bullet, i] \in I_j$, search in I_i for items $[B \to \alpha \bullet A\beta, k]$
- If found, we add item $[B \to \alpha A \bullet \beta, k]$ into table I_i .

- o Table I0:
- \circ S \rightarrow \bullet NP VP, 0
- \circ S \rightarrow \bullet NP VP PP, 0
- \circ NP \rightarrow •d NP3, 0
- Table I1: $(The/a_1=d)$
- \circ NP \rightarrow d \bullet NP3, 0
- \circ NP3 \rightarrow •a NP3, 1
- \circ NP3 \rightarrow \bullet n, 1
- \circ NP3 \rightarrow \bullet n PP, 1
- Table I2 : (young/ $a_2=a$)
- \circ NP3 \rightarrow a \bullet NP3, 1
- \circ NP3 \rightarrow •a NP3, 2
- \circ NP3 \rightarrow \bullet n, 2
- \circ NP3 \rightarrow \bullet n PP, 2

- Table I3 : (student/ $a_3=n$)
- \circ NP3 \rightarrow N \bullet , 2
- \circ NP3 \rightarrow N \bullet PP, 2
- \circ PP \rightarrow \bullet p NP2, 3
- \circ NP3 \rightarrow a NP3•, 1
- \circ NP \rightarrow d NP3•, 0
- \circ S \rightarrow NP \bullet VP, 0
- \circ S \rightarrow NP \bullet VP PP, 0
- \circ VP \rightarrow \bullet v, 3
- Table I4 : $(sat/a_4=v)$
- \circ VP \rightarrow V \bullet , 3
- \circ S \rightarrow NP VP \bullet , 0 *
- \circ S \rightarrow NP VP \bullet PP, 0
- \circ PP \rightarrow \bullet p NP2, 4

- Table I5 : $(in/a_5=p)$
- o PP \rightarrow p \bullet NP2, 4
- \circ NP2 $\rightarrow \bullet$ d NP3, 5
- Table I6: $(the/a_6=d)$
- \circ NP2 \rightarrow d \bullet NP3, 5
- \circ NP3 \rightarrow •a NP3, 6
- \circ NP3 \rightarrow •n, 6
- \circ NP3 \rightarrow \bullet n PP, 6
- Table I7 : $(class/a_7=n)$
- o NP3 \rightarrow n•, 6
- o NP3 \rightarrow n \bullet PP, 6
- \circ PP \rightarrow \bullet p NP2, 7
- \circ NP2 \rightarrow d NP3•, 5
- o PP \rightarrow p NP2 \bullet , 4
- \circ S \rightarrow NP VP PP \bullet , 0 **

ALGORITHM FOR BUILDING THE PARSING TREE

- From list of tables => building the parsing tree
- If $[S \to \alpha \bullet, 0] \not\in I_n$ (last table)=>wrong sentence => no tree
- Else: correct sentence => building the tree:
- Initialize a global variable: k = n (length of w)
- (1) Assign: A = S and $\alpha = X_1 X_2 ... X_m$. From R->L:
- (2) If $X_i \in \Sigma$, k---
- (3) If $X_i \in \mathbb{N}$, find item $[X_i \to \gamma \bullet, r]$ in table I_k
- (4) Assign $A=X_i$ and $\gamma = X_1X_2...X_m$.
- (5) Repeat from (2) until k=0

SYNTAX TREE

- Homework: using above-mentioned grammar to:
- parse the sentence: "An old man sat on the new chair in the house"
- If Ok => draw the parsing tree.
- Else: modify the grammar to accept that sentence.
- Note: avoid "flip-flop" phenomenon.