0	$tower(n) = \int 2^{tower(n-1)} if n > 0$
) $\frac{1}{1}$ if $n=0$
	For integers K20 and j21 we define function AKG) a
	ACKERMANN'S FUNCTION:
	(jti if k=0
	$A_{i}(i) = $
	$A_{k-1} (j) if k \ge 1 $
	Suppose A3cj) > tower(j); Then by induction we need to
	prove A3 (j+1) > tower (j+1) · Consider j=1
	$A_3(j+1) = A_2^{j+2} (j+1)$ } from e eq * @ }
	Considering fi(x) = f(f(f(f(x)
	$= A_2 (A_2^{j+1} (j+1))$
	- M2 CM2 () +17)
-	$> A_2(A_2^{j+1}(j))$
	-

V
$A_2 (A_2^{j+1}(j)) = A_2(A_3(j))$
A3 (j+1) > A2 (A3 (j))
From eqn (1) and (2)
A3(j+1) > A2 (hower (j)) - 3
Based on ACKERMANN'S FUNCTION;
$A_2(j) = 2^{j+1}(j+1)-1$
$A_{2}(j) < 2^{j}(j) - 1$ for $(j \ge 1)$ — ④
Substituting above in eqn 3 we get;
A3 (j+1) > 2 tower(j) $\begin{cases} considering j = bower(j) in eq^{n} \end{cases}$
from eqn (1);
$A_3(j+1) > tower(j+1)$
when j=1 = > A3-(j) > tower(j)
By above statement we can say that our assumption that A3 (j) > tower(j) is correct. Hence proved.

2 (a) $\phi = \sum_{nodes} \chi_n depth(n)$
1) Make- Set:
Consider simple and made of the matter and the
Consider single new node x. So Make set (x) operation will create node x with depth and rank af zero (0)
Potential Change Offinal = 0
As initially their didn't exist potential change of x
$\therefore \phi \text{ initial } = 0$
: Amortized Cost = Actual cost + Ofinal - Oinitial
= O(1) + O
. Amortized cost = 0(1)
(i) Find - Set:
Find-set (x) operation will yetum the root of the set
with path compression making the in path node
pointing to root directly
noot node nout node
Find set (n) & O
depth path compression
$\xrightarrow{\chi \delta \delta \delta}$
d'u
As d = depth of the node
: Actual cust = O(d)
The depth of all in path nodes will be decreased and sex
to 1 as all are directed to root node.

2 1	$1d = -O(n) O(d) \rightarrow O(n)$ elements will have
	Change in depth
-	· Amorlized Cost = O(d) - O(n) O(d)
<u>(iii)</u>	nion
bo	nunion operation we just need to change the sinters. We need to do Link operation Union (x,y) = onle (x,y). Considering trees A,B > Link (A,B) = Union (A,B)
	: Actual cost = O(1) - just change or pointers
d ot	resider two trees A and B. Suppose we do link peration on these trees. Then without the loss of enerality, A turns out parent for B if we connect the B to A. There will be no change in depth of A. As B is the child of A therefore depth of nodes in B will having be increased by 1. Therefore for n nodes it will take O(n)
	-: Amortized cost = Artual cost + AD = O(1) + O(n) + n modes in x trees.
	:. Amortized cost = OCh)

-

ϕ (b) $\phi = \sum_{\text{node } x} \text{ height (x)}$
(i) Make set
Consider single new node x. So Malce set (x) operation
will create node & with height and rank of zero (o).
→ Pfinal = 0
As a didn't exist before
ϕ initial = 0
Amortized Cost = Actual Cost + ΔΦ
Amorhized cost = 0(1) + 0 = 0(1)
(1i) find - ser
Find-set(n) operation will return the root of the set
with path compression making the in path node
pulnting to 2001- directly
G findset (n) Oroot
path compression 2000
μ δ
h = height of the node
· n o o
: Actual cost = OCh)
Find set (12) morration will decrease the height of subtree

V
(2) △0 = -0(logn)
: Amortized cost = O(h) - O(log n)
= 0(log n)
(iii) Union
For union operation we just need to change the pointers.
We need to do link operation Union (A,B) = Link (A,B)
: Actual cost = O(1) + just change of point
- Consider two trees A and B. Suppose we do Link
operation on these trees. Then without the loss of
generality. A turnout to be parent of B if we connect
tree B to A.
<u>A</u>
→ considering n nodes with height (h)
As the pokenial difference will be 0(h)
as height of new root will increase
•
· Amortized cost = Actual cost + AØ
MINORITED OF 1 - MONEY COL 1 7
:. Amortized cost = O(1) + O(h)

3 Ackermann's Function is defined as A(i,j) for i,j = 1	
$A(1,j) = 2^{j}$ for $j \ge 1$,	
$A(i,1) = A(i-1,2)$ for $i \ge 2$,	
$A(i,j) = A(i-1,A(i,j-1))$ for $i,j \ge 2$	
If $m \ge n \rightarrow 1 \le d(m+n,n) \le d(m,n)$	
: Let a(m,n) = min { i > 1 A(i, Lm n) > logn}	
d -> functional inverse of Ackermann's function	
Number of find operations	
n -> Number of make-set operations	
- Ackerman	
- Ackermannic function has explosive growth. so its	
inverse is added -> a to slower the growth	
If $m \triangleleft (n,n) \leq n \rightarrow \Omega(n)$ bound	
Ef	
# Halving:	
- Except the last and next to last node, we make	
every other node along the find path point to the	
node two past itself.	
Function Finghode (x)	
Define y (local vouloble)	
Assign value of >e to y { y=xe }	_
90 1 2 1	
p(p(ey)) = p(y) then	
y = p(y) = p(p(y)); grandpower+	٠٤
acturn p(y)	
End find node;	_
End Mindhode;	

