

NUR - Prototyping & Evaluation

High Fidelity Prototyping, Usability evaluation

User interface design - big picture

Prototyping

High fidelity prototyping

High fidelity prototype

Illusion of final visual and interaction design

- look&feel should follow the basic GUI guidelines
 - e.g., MS Windows, iPhone, Mac OS, Android
- usage of target devices
 - e.g., iPhone NOT web app. on desktop PC
- interaction realized in the same way as final implementation
 - e.g., gestures and virtual keyboard for iPhone NOT mouse and PC keyboard
- Application logic <u>not</u> necessarily implemented
 - Wizard of Oz, usage of illustrative data, simulation of the application logic
- Main parts of the application UI application implemented
 - not all parts/details of the applications are prototyped
 - horizontal vs. vertical prototype

What must be done before

User research (D1)

Task analysis, UI modelling (D2)

- HTA, STN

- Low fidelity prototype (D3)
 - not necessary, but recommended
 - e.g., small upgrade of existing system

Catch&Run

GPS based multi-user mobile game

Game description

- GPS game in real environment
- Players are catching each other

- Defined game area
- Three states
 - idler ... waiting for the chase
 - catcher ... catching runner
 - runner ... run out of catcher

Mid-fidelity prototype

- Web applet
- GPS simulator
- Static data
- Simulation of collaboration
- Remote testing
- 99 participants

High-fidelity prototype

- Application running on the mobile device
- Usage of target framework
- Collaboration server implemented
- Field test
- 6 participants
- http://www.youtube.com/w atch?v=zZesDMB7eqs

BTour Guide

Mobile City Tourist Guide

Btour Guide – description

High-fidelity prototype

- Application running on the mobile device
- Target framework used
- BT points implemented (HW+SW)
- No implementation of solutions of "trouble" scenarios

"Trouble" scenarios

Scenario 1

- slow and background download
- necessity for repeat browsing

Scenario 2

- problems with BT point connection signal strength is low, necessity to locate BT point
- waiting for complete download

Scenario 3

- problems with BT point connection connection refusal, BT point is busy
- transparent download, no info to the user

Scenario 4

- download on demand
- problems with BT point connection connection interrupted

"Trouble" scenarios implementation

Simulation of trouble situations

- Special client and server implemented
- Wizard of Oz technique

BEEPER MOBILE

Mobilní systém pro podporu včelařské práce

http://benman.ondramandik.com/beeper-pro-mobilni-zarizeni

From Storyboard to HiFi Prototype

Storyboard

LoFi Prototype

HiFi Prototype

- Rozdělení na akce a zobrazování informací, je nutné přepracovat nebo úplně vypustit.
- Je třeba rozšířit storyboard o tvoření nových včel, tak aby nedošlo k záměně termínu oddělek a smetenec.
- Je nutné znovu navrhnout uživatelské rozhraní pro správu včelařského inventáře.
 - Pracovat pouze s nástavkovým systémem, rámky a polorámky. Odstranit složitý systém nastavování rozměrů.
- Do oblasti léčení včelstev vůbec nevstupovat.
- Produkce medu musí evidovat všechny včelařské produkty.

Storyboards: 11 storyboards

LoFi -> HiFi Prototype

38 screens

LoFi -> HiFi Prototype

Field tests

Intelligent household (i2home)

Intelligent household for elderly

http://www.i2home.org

Intelligent household - description

Intelligent household - description

- Bringing technology closer to elderly people
 - help them to stay with touch with relatives
 - make them less dependent on others
- Make technology easier to use
 - evaluating new interaction methods
- Rapid UI development with UIProtocol
 - from prototype to final application

High-fidelity prototype of TV and household

TV remote control

Somebody is ringing the bell

Now you can talk

Low vs. High fidelity prototype

- LOW FIDELITY
- hours/days to develop
- many alternatives
- no final interaction techniques
- not necessary on target devices
- sketchy look&feel
 - paper/electronic paper

- HIGH FIDELITY
- days/months to develop
- few alternatives (if any)
- final interaction techniques
- on target devices
- final visual and interaction look&feel
 - target framework or testing environment running on target platform with final look&feel

lab tests

lab or field tests

Problems with prototypes

- Skipping deep user requirements analysis (D1)
 - especially low-fid prototypes (very fast and funny)
- User confusion: prototype vs. final project
 - especially high-fid prototypes
- Expensive and time consuming
 - especially high-fid prototypes
 - highly interactive systems
 - real-time response to highly changing environment

Types of prototyping

- Throw away prototyping
 - light-weight
 - short-time usage
- Evolutionary prototyping
 - very robust
 - constantly refined

Product development process

Product development process phases

- Application domain: Personal Weather Forecast
- Development process phases
 - problem analysis
 - user research (ethnography study)
 - user modeling (persona)
 - design
 - sketching
 - prototyping (low-fid, high-fid)
 - engineering
 - programming, manufacturing, assembling
 - testing & evaluation
 - sales

Strictly distinguish design and engineering

In reality it is a bit more complicated

Prototyping as a part of SW dev. process

Waterfall

- in design phase
- not evaluated
- serves as specification
 - rather then text description

Iterative

- in implementation phase
- can be evaluated
- design perceived as a part of implementation
- In fact we can/should do prototyping in every stage continuously
- HOW? The role of evaluation must be revised?

Evaluation

Formative usability evaluation

Evaluation supporting the design process

Summative

at the end of SW design process

Evaluation supporting the design process

Summative

- at the end of SW design process
- Formative [Hix and Hartson, 1993]
 - supports the overall SW design process
 - helps to form solutions to the design problems
 - continuous evaluation
 - strict distinction of Design and Engineering

Usage of prototypes for evaluation

- Analytical evaluation
 - based on simulation
 - GOMS, KLM, CW, HE
- Empirical evaluation
 - user tests
 - prototypes needed

Formative evaluation methods

- Learning from designing prototypes
- Informal user tests of low-fid prototypes
- Laboratory user tests
 - all kinds of prototypes
 - controlled conditions
 - statistical evaluation possible
- Field tests with users
 - high fidelity prototypes
 - some tests can be done only here
 - collaboration
 - intensive interaction with the dynamically changing environment

Performing evaluation

- Focus the evaluation on few specific requirements
 - performance requirements are easy to evaluate
- 1. Usability properties identification (specific requirements)
- 2. Prototype creation
- 3. Experiment design
- 4. Test run and data collection
- 5. Data analysis
- 6. Conclusions and recommendations statement

Performing evaluation - problems

3. Experiment design

- poor choice of task mix => indistinguishable results
- wrong choice of participants => misleading results
 - unaware mixing novice and expert users can seem like design improvement
- accidental changes in the test conditions => insignificant or misleading results
 - large spread of measured values => insignificant results
 - shift of measured values => misleading results

5. Data analysis

- analysis of influence of test conditions on the data measured
- evaluator bias => analysis performed by more evaluators

Evaluation of interactive system

- Do we need prototypes for evaluation?
- YES. Why?
 - user testing needed (empirical evaluation)
 - without prototypes it is impossible

=> Formative evaluation involves prototyping in all stages of the SW design process

Thank for your attention

