

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Profesor:

Nombre:	
Carnet:	
Sección:	

Matemáticas I (MA-1111) Septiembre-Diciembre 1985 Tercer examen parcial (40%) Tipo único

Duración: 1 hora y 50 minutos

Pregunta 1. (1 punto cada una)

- a) Halle $\frac{d(sen^{-1}(x))}{dx}$.
- b) Halle la ecuación de la recta tangente a $y = x^2$ en (-2,4).
- c) Si $f(x) = x^3 15x + 9$, hallar $f^{(3)}(0)$.
- d) Si $f(x) = \tan^{-1}(x)$, halle $c \in (0,1)$ que satisfaga el Teorema del Valor Medio.
- e) Halle el rango de $g(x) = tan^{-1}(x) + cotan^{-1}(x)$.
- f) Calcule $\lim_{x\to 0} \frac{\tan(x)-x}{2x^3}$.
- g) Si f(x) = sen(x) + cos(x), halle $f^{(2009)}(\frac{\pi}{4})$.
- h) Si f es derivable y x > 0, calcule $\frac{df(\sqrt{x})}{dx}$.
- i) Si f(g(x))=x y $f'(x) = 1 + f^2(x)$, halle g'(x).
- j) Halle dos funciones elementales estudiadas en el curso que se ajusten a las condiciones de la pregunta i y a su resultado ¿Solo un par de funciones se ajustan?

<u>Pregunta 2.</u> Determine si las siguientes proposiciones son verdaderas o falsas. De ser verdadera una afirmación, justifique por qué, de ser falsa, proporcione un contraejemplo. (2 puntos cada una).

- a) Una función continua en [a,b] es derivable en (a,b).
- b) El hecho de que para f(x) = 2 |2x 1| no exista un valor de $c \in (0,3)$ para el cual se cumpla que f(3) f(0) = f'(c)(3 0) contradice el Teorema del Valor Medio.
- c) El teorema de Rolle puede aplicarse a la función $f(x) = x^2 4$ en el intervalo (-2,2).

Pregunta 3. (3 puntos cada una).

- a) Dada la función inyectiva $f(x) = x\sqrt{x^2 + 1}$, en la cual son conocidos los siguientes datos: $f(1) = \sqrt{2}$, $f(\sqrt{2}) = \sqrt{2}\sqrt{3}$, $f(\sqrt{3}) = 2\sqrt{3}$, $f(\sqrt{6}) = \sqrt{6}\sqrt{7}$. Calcule $(f^{-1})'(\sqrt{6})$.
- b) Halle las ecuaciones de las rectas que pasan por el punto (5,9) y son tangentes a la función $y=x^2$.

- Pregunta 4. (4 puntos cada una). a) Sea $f(x) = \begin{cases} x^2 ax & \text{si } x \leq 2 \\ ax b & \text{si } x > 2 \end{cases}$ halle los valores de las constantes a y b para que f(x)sea diferenciable en todo \mathbb{R} .
 - b) Suponiendo que y es función de x, definida implícitamente por la ecuación $x + \sqrt{xy} + y = 1$, halle $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

Pregunta 5. (5 puntos cada una).

- a) Dada la función $f(x) = \frac{x^4 x^2 + 4x 4}{2x^3 2x^2}$ determine lo siguiente:
- a.1) (1 punto) Dominio;
- a.2) (1 punto) Puntos críticos;
- a.3) (1 punto) Intervalos de crecimiento y decrecimiento;
- a.4) (1 punto) Puntos de inflexión;
- a.5) (1 punto) Intervalos de concavidad.
- b) P es un punto en el primer cuadrante sobre la curva $y = 7 x^2$. Por P se traza una tangente a la curva y sean A y B los puntos en que corta a los ejes coordenados. Hallar la ordenada de P para que el segmento AB sea mínimo.

Pregunta 1.

a)
$$\frac{d(sen^{-1}(x))}{dx} = \frac{1}{\sqrt{1-x^2}}$$

b)
$$y = -4x - 4$$

c)
$$f^{(3)}_{(0)} = 6$$

d)
$$c = \sqrt{\frac{4-\pi}{\pi}}$$

e) Rango(g(x)):
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

f)
$$\lim_{x\to 0} \frac{\tan(x)-x}{2x^3} = \frac{1}{6}$$

g)
$$f^{(2009)}\left(\frac{\pi}{4}\right) = 0$$

h)
$$\frac{\mathrm{df}(\sqrt{x})}{\mathrm{dx}} = \frac{\mathrm{f}'(\sqrt{x})}{2\sqrt{x}}$$

i)
$$g'(x) = \frac{1}{1+x^2}$$

j) f(x)=tan(x); $g(x)=tan^{-1}(x)$. Son las únicas funciones elementales estudiadas en el curso que se ajustan a las condiciones planteadas y a su resultado.

Pregunta 2.

- a) Falso.
- b) Falso.
- c) Verdadero.

Pregunta 3.

a)
$$(f^{-1})'(\sqrt{6}) = \frac{\sqrt{3}}{5}$$

b)
$$L_1 \equiv y = 18x - 81$$
; $L_2 \equiv y = 2x - 1$

Pregunta 4.

a)
$$a = 2$$
; $b = 4$

b)
$$\frac{dy}{dx} = \frac{2x+y-2}{2-x-2y}$$
; $\frac{d^2y}{dx^2} = \frac{\left(2+\left(\frac{2x+y-2}{2-x-2y}\right)\right)(2-x-2y)+(2x+y-2)\left(1+2\left(\frac{2x+y-2}{2-x-2y}\right)\right)}{(2-x-2y)^2}$ *

^{*}En la parte b de la pregunta 4 se despeja \sqrt{xy} de la expresión $x + \sqrt{xy} + y = 1$, obteniéndose: $\sqrt{xy} = 1 - x - y$, y se sustituye esto en la primera derivada.

Pregunta 5.

- a) a. 1) Domf(x): $\mathbb{R} \{0,1\}$.
 - a. 2) No hay puntos singulares ni puntos frontera.

Hay un punto estacionario en x = 2 (punto (2,2)), el cual representa un mínimo local.

No hay mínimos globales, y no hay ningún tipo de máximo.

- a. 3) f(x) es creciente en $(-\infty, 0)$ y en $[2, \infty)$ y decreciente en (0,1) y en (1,2].
- a. 4) No hay puntos de inflexión.
- a. 5) f(x) posee concavidad hacia arriba en todo su dominio.
- b) Sea y_0 la ordenada de P; $y_0 = \frac{49}{8}$