CURS 2 SERII DE NUMERE REALE

A) NOTIUNI GENERALE Sirului de numere reale $(x_n)_{n\in\mathbb{N}}$ i se asociaza sirul $(s_n)_{n\in\mathbb{N}}$, unde $s_n=x_1+x_2$ $x_2 + \dots + x_n \ \forall n \in \mathbb{N}.$

Definitia 1. a) Perechea de siruri $((x_n)_{n\in\mathbb{N}}, (s_n)_{n\in\mathbb{N}})$, notata $\sum_{n=0}^{\infty} x_n$, se numeste seria de numere reale asociata sirului $(x_n)_{n\in\mathbb{N}}$.

- b) x_n se numeste termenul general de rang n al seriei $\sum_{n=0}^{\infty} x_n$.
- c) s_n se numeste suma partiala de rang n a seriei $\sum_{n=0}^{\infty} x_n$.

Definitia 2. a) Seria de numere reale $\sum_{n=0}^{\infty} x_n$ se numeste convergenta daca sirul de numere reale $(s_n)_{n\in\mathbb{N}}$ este convergent.

- b) Seria de numere reale $\sum_{n=0}^{\infty} x_n$ se numeste divergenta daca sirul de numere reale $(s_n)_{n\in\mathbb{N}}$ este divergent.
- c) Seria de numere reale $\sum\limits_{n=0}^{\infty}x_n$ are suma in $\overline{\mathbb{R}}$ daca sirul de numere reale $(s_n)_{n\in\mathbb{N}}$ are limita in $\overline{\mathbb{R}}$. In acest caz, suma seriei este egala cu $\lim_{n\to\infty} s_n$.

Notatie.
$$\sum_{n=0}^{\infty} x_n = \lim_{n \to \infty} s_n.$$

d) Seria de numere reale $\sum_{n=0}^{\infty} x_n$ este absolut convergenta daca seria de numere reale $\sum_{n=0}^{\infty} |x_n|$ este convergenta.

Teorema 1. Se considera seria de numere reale $\sum_{n=0}^{\infty} x_n$ convergenta. Atunci $\exists \lim_{n \to \infty} x_n = 0.$

Demonstratie. Seria $\sum_{n=0}^{\infty} x_n$ este convergenta, rezulta ca sirul $(s_n)_{n\in\mathbb{N}}$ este convergent.

$$\lim_{n \to \infty} s_n = s \in \mathbb{R}.$$

$$x_n = s_n - s_{n-1} \ \forall n \in \mathbb{N}.$$

Diferenta a doua siruri convergente este sir convergent. Obtinem ca sirul $(x_n)_{n\in\mathbb{N}}$ este convergent si

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} (s_n - s_{n-1}) = s - s = 0.$$

Corolar. Fie sirul de numere reale $(x_n)_{n\in\mathbb{N}}$ astfel incat $\exists \lim_{n\to\infty} x_n \neq 0$ sau $\nexists \lim_{n \to \infty} x_n.$ Atunci seria de numere reale $\sum_{n=0}^{\infty} x_n$ este divergenta.

Observatie. Reciproca Teoremei 1 este falsa.

Sirul $x_n = \frac{1}{n}, n \in \mathbb{N}^*$ are limita 0, dar seria de numere reale $\sum_{n=1}^{\infty} \frac{1}{n}$ este

Criteriul lui Cauchy pentru serii de numere reale. a) Seria de numere reale $\begin{array}{l} \sum\limits_{n=0}^{\infty}x_n \text{ este convergenta daca si numai daca } \forall \varepsilon>0 \\ \exists n_\varepsilon \in \mathbb{N} \text{ } astfel \text{ } incat \text{ } \left|\sum\limits_{k=n}^{n+p}x_k\right| < \varepsilon \\ \forall n \geq n_\varepsilon, \forall p \in \mathbb{N}. \end{array}$

b) Seria de numere reale $\sum_{n=0}^{\infty} x_n$ este absolut convergenta daca si numai daca $\forall \varepsilon > 0 \exists n_\varepsilon \in \mathbb{N} \ astfel \ incat \ \sum_{k=n}^{n+p} |x_k| < \varepsilon \forall n \geq n_\varepsilon, \forall p \in \mathbb{N}.$

Teorema 2. Orice serie de numere reale $\sum_{n=0}^{\infty} x_n$ absolut convergenta este convergenta.

Observatie. Reciproca Teoremei 2 este falsa.

Seria de numere reale $\sum\limits_{n=1}^{\infty}\frac{(-1)^n}{n}$ convergenta, dar nu este absolut convergenta.

Definitia 3. Seria de numere reale $\sum_{n=0}^{\infty} x_n$ se numeste semiconvergenta daca este serie convergenta, dar nu este serie absolut convergenta.

Criteriul lui Abel pentru serii de numere reale. Se considera sirurile de numere reale $(x_n)_{n\in\mathbb{N}}$ si $(y_n)_{n\in\mathbb{N}}$ cu urmatoarele proprietati: a) $x_{n+1} \leq x_n \forall n \in \mathbb{N}$ si $\lim_{n \to \infty} x_n = 0$

- b) sirul de numere reale $\left(\sum_{k=0}^{n} y_{k}\right)_{n \in \mathbb{N}}$ este marginit.

Atunci seria de numere reale $\sum_{n=0}^{\infty} x_n y_n$ este convergenta.

Exemplu. Seria de numere reale $\sum\limits_{n=1}^{\infty}\frac{\cos n}{n}$ este convergenta.

$$\frac{\cos n}{n} = \frac{1}{n} \cdot \cos n$$

Notam $x_n = \frac{1}{n}$ si $y_n = \cos n$. Sirul $(x_n)_{n \in \mathbb{N}^*}$ este descrescator cu limita 0.

$$\sum_{k=1}^{n} y_k = \cos 1 + \cos 2 + \dots + n = \frac{\cos \frac{n+1}{2} \cdot \sin \frac{n}{2}}{\sin \frac{1}{2}}$$

$$\left| \sum_{k=1}^{n} y_k \right| \le \frac{1}{\left| \sin \frac{1}{2} \right|} \forall n \in \mathbb{N}^*$$

Sirul
$$\left(\sum_{k=1}^{n} y_k\right)_{n \in \mathbb{N}^*}$$
 este marginit.

Conform criteriului lui Abel, seria $\sum_{n=1}^{\infty} x_n y_n = \sum_{n=1}^{\infty} \frac{\cos n}{n}$ este convergenta.

Criteriul lui Dirichlet pentru serii de numere reale. Se considera sirurile de numere reale $(x_n)_{n\in\mathbb{N}}$ si $(y_n)_{n\in\mathbb{N}}$ cu urmatoarele proprietati:

- a) sirul $(x_n)_{n\in\mathbb{N}}$ este monoton si marginit
- b) seria de numere reale $\sum_{n=0}^{\infty} y_n$ este convergenta.

Atunci seria de numere reale $\sum_{n=0}^{\infty} x_n y_n$ este convergenta.

Criteriul lui Leibniz pentru serii alternate de numere reale. Fie $(x_n)_{n\in\mathbb{N}}$ un sir descrescator de numere reale pozitive pentru care

 $\exists \lim_{n\to\infty} x_n = 0. \text{ Atunci seriile de numere reale } \sum_{n=0}^{\infty} (-1)^n \, x_n \text{ si } \sum_{n=0}^{\infty} (-1)^{n+1} \, x_n \text{ sunt convergente.}$

Exemplu. Seria de numere reale $\sum\limits_{n=1}^{\infty}\frac{(-1)^n}{n}$ este convergenta.

Alegem sirul $x_n = \frac{1}{n}, n \in \mathbb{N}^*$.

$$\lim_{n \to \infty} x_n = 0$$

$$x_{n+1} < x_n \forall n \in \mathbb{N}^*$$

Aplicam criteriul lui Leibniz si obtinem ca seria $\sum_{n=1}^{\infty} (-1)^n x_n$ este conver-

B) Serii de numere reale cu termeni pozitivi

Se considera sirul $(x_n)_{n\in\mathbb{N}}$ din \mathbb{R}_+ . Seria de numere reale $\sum\limits_{n=0}^{\infty}x_n$ este absolut convergenta daca si numai daca este serie convergenta.

Teorema 3. Se considera o serie de numere reale pozitive $\sum_{n=0}^{\infty} x_n$. Sunt adevarate urmatoarele afirmatii:

- a) Sirul sumelor partiale $(s_n)_{n\in\mathbb{N}}$ este crescator si marginit inferior de 0.
- b) Seria de numere reale $\sum_{n=0}^{\infty} x_n$ este convergenta daca si numai daca sirul sumelor partiale $(s_n)_{n\in\mathbb{N}}$ este marginit superior. In plus, $\sum_{n=0}^{\infty} x_n = \sup_{n\in\mathbb{N}} s_n$.
- c) Seria de numere reale $\sum_{n=0}^{\infty} x_n$ poate fi convergenta sau divergenta, cu suma

Criteriul raportului pentru serii de numere reale. Fie $\sum_{n=0}^{\infty} x_n$ o serie cu termeni pozitivi astfel ca $\exists \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = l \in \overline{\mathbb{R}}.$ Daca l < 1, atunci seria este convergenta.

Daca l > 1, atunci seria este divergenta.

Criteriul radicalului pentru serii de numere reale. Fie $\sum_{n=0}^{\infty} x_n$ o serie cu termeni pozitivi astfel ca $\exists \lim_{n \to \infty} \sqrt[n]{x_n} {=} l \in \overline{\mathbb{R}}.$

Daca l < 1, atunci seria este convergenta.

Daca l > 1, atunci seria este divergenta.

 $Criteriul \ lui \ Raabe-Duhamel.$ Fie $\sum\limits_{n=0}^{\infty} x_n$ o serie cu termeni pozitivi pentru

care $\exists \lim_{n \to \infty} n\left(\frac{x_n}{x_{n+1}} - 1\right) = l \in \overline{\mathbb{R}}.$

Daca l < 1, atunci seria este divergenta.

Daca l > 1, atunci seria este convergenta.

Criteriul condensarii al lui Cauchy. Se considera un sir de numere reale $(x_n)_{n\in\mathbb{N}}$ descrescator cu $\lim_{n\to\infty}x_n=0$. Atunci seriile de numere reale $\sum_{n=0}^{\infty}x_n$ si

 $\sum_{n=0}^{\infty} 2^n x_{2^n}$ au aceiasi natura.

Exemplu. Seria de numere reale $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ este divergenta.

Notam $x_n = \frac{1}{n \ln n}, n \in \mathbb{N}^*$. Sirul $(x_n)_{n \in \mathbb{N}^*}$ este descrescator cu limita 0. Aplicam criteriul de condensare al lui Cauchy si rezulta ca seriile de numere reale $\sum_{n=1}^{\infty} x_n$ si $\sum_{n=1}^{\infty} 2^n x_{2^n}$ au aceiasi natura.

$$\sum_{n=1}^{\infty} 2^n x_{2^n} = \sum_{n=1}^{\infty} \frac{2^n}{2^n \ln 2^n} = \frac{1}{\ln 2} \sum_{n=1}^{\infty} \frac{1}{n}$$

Seria $\sum_{n=1}^{\infty} \frac{1}{n}$ este caz particular al seriei armonice cu $\alpha = 1$, asadar aceasta este divergenta.

Rezulta ca seria $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ este divergenta.

Criteriul de comparatie cu inegalitati. Fie $\sum\limits_{n=0}^{\infty}x_n$ si $\sum\limits_{n=0}^{\infty}y_n$ doua serii cu termeni pozitivi pentru care exista n_0 astfel incat $x_n \leq y_n \ \forall n \geq n_0$.

a) Daca seria $\sum\limits_{n=0}^{\infty}y_n$ este convergenta, atunci seria $\sum\limits_{n=0}^{\infty}x_n$ este convergenta.

- b) Daca seria $\sum_{n=0}^{\infty} x_n$ este divergenta, atunci seria $\sum_{n=0}^{\infty} y_n$ este divergenta.

Criteriul de comparatie cu limite. Fie $\sum_{n=0}^{\infty} x_n$ si $\sum_{n=0}^{\infty} y_n$ doua serii cu termeni pozitivi pentru care exista $\lim_{n\to\infty}\frac{x_n}{y_n}=l\in\overline{\mathbb{R}}$.

a) Daca $l\in(0,+\infty)$, atunci seriile au aceiasi natura.

- b) Daca l=0 si seria $\sum\limits_{n=0}^{\infty}y_n$ este convergenta, atunci seria $\sum\limits_{n=0}^{\infty}x_n$ este convergenta.

c) Daca $l=+\infty$ si seria $\sum\limits_{n=0}^{\infty}y_n$ este divergenta, atunci seria $\sum\limits_{n=0}^{\infty}x_n$ este

divergenta. EXEMPLE DE SERII DE NUMERE REALE REMARCABILE 1) Seria armonica $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}},\alpha\in\mathbb{R}$

Seria $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}}$ este convergenta daca si numai daca $\alpha>1$. Seria $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}}$ este divergenta daca si numai daca $\alpha\leq1$.

2) Seria putere $\sum\limits_{n=0}^{\infty}a^{n},a\in\mathbb{R}$

Seria $\sum_{n=1}^{\infty} a^n$ este absolut convergenta daca si numai daca $a \in (-1,1)$.

Seria $\sum_{n=1}^{n=1} a^n$ este divergenta daca si numai daca $a \in (-\infty, -1] \cup [1, +\infty)$.

3) Seria exponentiala $\sum\limits_{n=0}^{\infty}\frac{a^n}{n!}, a\in\mathbb{R}$

Seria $\sum_{n=0}^{\infty} \frac{a^n}{n!}$ este absolut convergenta $\forall a \in \mathbb{R}$.