General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL MEMORANDUM

REPORT NO. 53916

SOLAR FLOW PARAMETERS

By Klaus Schocken Space Sciences Laboratory

September 16, 1969

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

N70-37452

(ACCESSION NUMBER)

(PAGES)

(NASA CR OR TMX OR AD NUMBER)

(CODE)

(CODE)

(CATEGORY)

MSFC - Form 3190 (September 1968)

SOLAR FLOW PARAMETERS

 $\mathbf{B}\mathbf{y}$

Klaus Schocken

George C. Marshall Space Flight Center Huntsville, Alabama

SPACE SCIENCES LABORATORY
RESEARCH AND DEVELOPMENT OPERATIONS

INTERNAL NOTE-IN-SSL-T-68-4

Changed to TM X-53916, September 16, 1969

SOLAR FLOW PARAMETERS

 $\mathbf{B}\mathbf{y}$

Klaus Schocken

George C. Marshall Space Flight Center Huntsville, Alabama

ABSTRACT

The solar plasma is assumed to be a fully ionized mixture of two species. Nine important nondimensional parameters are obtained from the fundamental equations of plasma flow. Some thermodynamic properties of the solar plasma are presented in tables which are based on a solar model computed by R. L. Sears.

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	1
II.	TYPICAL PHYSICAL QUANTITIES	2
III.	CHARACTERISTIC VELOCITIES, FREQUENCIES, AND LENGTHS	10
IV.	NONDIMENSIONAL PARAMETERS OF SOLAR DYNAMICS	14
BIBLI	OGRAPHY	20
	LIST OF TABLES	
Table	Title	Page
I.	Solar Model for Age 4.5 x 10 ⁹ Years	3
II.	Thermal Parameters of the Solar Plasma	6
III.	Characteristic Velocities, Frequencies, and Lengths	11
IV.	Nondimensional Parameters for the Solar Plasma	19

LIST OF SYMBOLS

Symbol Velocity of sound a Radiation density constant $^{\mathrm{a}}\mathbf{r}$ Friction coefficient α $\vec{\mathbf{B}}$ Magnetic induction C_{V} Specific heat at constant pressure \mathbf{C} Specific heat at constant volume Velocity of light c $\overrightarrow{\mathbf{D}}$ Electric induction $\mathbf{D}_{\mathbf{d}}$ Coefficient of diffusion D_r Diffusion coefficient of radiation d Molecular diameter δ Thickness of the viscous boundary layer $\overline{\mathbf{E}}$ Electric field strength Electron charge Total energy of the plasma per unit mass Total energy of the electron gas per unit volume e_1

Symbol ϵ Dielectric constant Energy generation of process (AB), energy m⁻¹ ϵ (AB) Total energy rate of the electron gas per unit volume ϵ_{1} $\vec{\mathbf{F}}_{\mathbf{e}}$ Electromagnetic force $\vec{\mathbf{F}}_{\mathbf{g}}$ Gravitational force Froude number Characteristic velocity G Gravitation constant Ratio of specific heats Y \overrightarrow{H} Magnetic field strength $\vec{\mathbf{j}}$ Electric current density $\bar{\mathbf{K}}$ Flux of matter k Coefficient of heat conductivity Mass absorption coefficient Luminosity of sphere of radius R L L_r Luminosity of sphere of radius r l Length

Characteristic length

lo

Symbol

D	Debye length
$^{\ell}$ f	Mean free path
1	Larmor radius
le	Larmor radius for the electron
$^{\ell}$ lp	Larmor radius for the proton
M	Mass within sphere of radius R
$^{ m M}_{ m r}$	Mass within sphere of radius r
m	Mean mass of a particle in the plasma
m _e	Mass of the electron
m_{p}	Mass of the proton
μ	Apparent molecular weight of the plasma
$^{\mu}{ m e}$	Magnetic permeability
$\mu_{\mathbf{v}}$	Coefficient of viscosity
n	Number of density of the plasma
n ₁	Number density of the electron gas
$^{ u}$ h	Magnetic viscosity
$^{\omega}\mathbf{c}$	Cyclotron angular frequency
ω _{ce}	Cyclotron frequency of the electron

Symbol

$^{\omega}_{\mathbf{cp}}$	Cyclotron frequency of the proton
$^{\omega}{}_{ m e}$	Electrical decay angular frequency
$\omega_{\mathbf{f}}$	Friction angular frequency
$\omega_{\mathbf{p}}$	Plasma angular frequency
$^{ m P}_{ m r}$	Prandtl number
p	Pressure of the solar plasma
\mathbf{p}_0	Average pressure of the sun
$\dot{\mathbf{p}}_{\mathbf{r}}$	Radiation pressure
$\mathbf{p_1}$	Pressure of the electron gas
$\mathbf{p}_{\mathbf{t}}$	Total pressure, p + p _r
$\Pi_{\mathbf{i}}$	Nondimensional parameters
\vec{Q}	Heat flux in the plasma
\overrightarrow{Q}_1	Energy flux due to heat in the electron gas
q	Concentration
R	Radius of sphere
Ra	Boltzmann's constant
R_{e}	Reynolds number
R _c	Relativity parameter

Symbol R_E Electrical field parameter R_h Magnetic pressure number R_{σ} Magnetic Reynolds number Gas constant of the plasma, Rp Radius of sphere, $0 \le r \le R$ \mathbf{r} Density of the solar plasma ρ Characteristic density ρ_0 Electric charge density \mathbf{S} Collision cross section s_c Schmidt number Electrical conductivity \mathbf{T} Temperature of the solar plasma T_0 Average temperature of the sun T_1 Temperature of the electron gas Time

Characteristic time

Stress tensor of the plasma

Stress tensor of the electron gas

 t_0

 τ_1

LIST OF SYMBOLS (Concluded)

Symbol

 $\begin{array}{lll} \overrightarrow{u} & & \text{Flow velocity of the ions} \\ \overrightarrow{u}_1 & & \text{Flow velocity of the electrons} \\ < u > & \text{Average thermal velocity} \\ u_s & & \text{Flow velocity at the boundary layer} \\ V_h & & \text{Alfven velocity} \\ X & & \text{Fractional abundance by mass of hydrogen} \\ Y & & \text{Fractional abundance by mass of helium} \\ Z & & \text{Fractional abundance by mass of heavy elements} \\ \end{array}$

SOLAR FLOW PARAMETERS

 $\mathbf{B}\mathbf{y}$

Klaus Schocken

SUMMARY

The solar plasma is assumed to be a fully ionized mixture of two species. Nine important nondimensional parameters are obtained from the fundamental equations of plasma flow. Some thermodynamic properties of the solar plasma are presented in tables which are based on a solar model computed by R. L. Sears.

INTRODUCTION

The solar plasma is assumed to be a fully ionized mixture of two species. Nondimensional parameters are obtained from the following fundamental equations which describe the plasma flow:

$$p = R_{p} \rho T$$

$$p_{1} = R_{a} n_{1} T_{1}$$

$$\frac{\partial \rho}{\partial t} + \nabla (\rho \vec{u}) = 0$$

$$\rho \frac{d\vec{u}}{dt} = -\nabla p_{t} + \nabla \tau + \vec{F}_{e} + \vec{F}_{g}$$

$$\rho \frac{de}{dt} = -\nabla (\vec{u} p_{t}) + \nabla (\vec{u} \tau) + \nabla \vec{Q}$$

$$\frac{\partial e_{1}}{\partial t} + \nabla [e_{1} \vec{u}_{1} - (\vec{u}_{1} \tau_{1}) - \vec{Q}_{1}] = \epsilon_{1}$$

$$\nabla \times \overrightarrow{\mathbf{H}} = \overrightarrow{\mathbf{J}} + \frac{\partial \epsilon \overrightarrow{\mathbf{E}}}{\partial \mathbf{t}}$$

$$\nabla \times \overrightarrow{\mathbf{E}} = -\frac{\partial \mu_{\mathbf{e}} \overrightarrow{\mathbf{H}}}{\partial \mathbf{t}}$$

$$\frac{\partial \rho_{\mathbf{e}}}{\partial \mathbf{t}} + \nabla \cdot \overrightarrow{\mathbf{J}} = 0$$

$$\overrightarrow{\mathbf{J}} = \sigma (\overrightarrow{\mathbf{E}} + \mu_{\mathbf{e}} \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{H}}) \rho_{\mathbf{e}} \overrightarrow{\mathbf{u}}$$

The solar model adopted for the computations is shown in Table I. It was published in this form by B. Stroemgren and was computed by R. L. Sears by an evolutionary model sequence for M=M, covering the age range between 0 and 4.5×10^9 years. The opacities used are those of Keller and Meyerott, and the energy generation is taken according to Reeves.

It is intended to present the properties of the solar plasma in tables. Because the computed values were obtained by extreme extrapolations, all values given after Table I need corroboration.

II. TYPICAL PHYSICAL QUANTITIES

The following quantities, which characterize solar plasma dynamics, can be introduced into the preceding plasma equations.

1. Length (ℓ_0), which characterizes the dimension of the flow field. All distances may be expressed in terms of ℓ_0 . For the sun, the length

$$\ell_0 = 10^7 \text{ m}$$

may be used.

TABLE I. SOLAR MODEL FOR AGE 4.5 \times $10^9~YEARS$

$\frac{M}{M}$	r	Т	ρ	L	€ (p-p)	€(CN)	К	Х
	m	° K	kg m	watts	watts kg ⁻¹	watts kg-1	m ² kg ⁻¹	1
	109	106	103	1026	10-4	10-4	10-1	
0.0	0.00	15.7	158	0.00	15.9	1.6	1.09	0.36
0.05	0.06	13.8	103	1.30	10.0	0.13	1.32	0.52
0.1	0.08	12.8	83	2.13	6.8	0.023	1.48	0.58
0.2	0.10	11.3	59	3.09	3.3	0.001	1.78	0.65
0.3	0.13	10.1	43	3.55	1.6	0.000	2.09	0.68
0.4	0.15	9.0	31.5	3.77	0.7	0.000	2.42	0.69
0.5	0.17	8.1	22.4	3.86	0.3	0.000	2.79	0.70
0.6	0.20	7.1	15.2	3.90	0.06	0.000	3.2	0.70
0.7	0.23	6.2	9.4	3.90	0.02	0.000	3.8	0.71
0.8	0.26	5. 1	5.0	3.90	0.00	0.000	4.5	0.71
0.9	0.32	3.9	1.84	3.90	0.00	0.000	6.0	0.71
0.95	0.38	3.0	0.74	3.90	0.00	0.000	7.4	0.71
0.99	0.48	1.73	0.117	3.90	0.00	0.000	9.6	0.71
0.99955	0.62	0.66	0.0063	3.90	0.00	0.000	_	0.71

2. Characteristic velocity (ϕ). Velocities of 6 x 10² m sec⁻¹ occur in sunspots, and of 9 x 10² m sec⁻¹ in the solar granulation. The velocity of sound may be used as characteristic velocity at 7.1 x 10⁶ °K:

$$\phi = 4 \cdot 10^5 \text{ m sec}^{-1}$$
.

3. Time (t_0) , which characterizes the interval considered. The travel time for sound waves may be taken as value t_0 :

$$t_0 = \frac{\ell_0}{\phi} = 25 \text{ sec}$$

All phenomena of a time scale much smaller than 10^{-2} m \sec^{-1} should be neglected.

4. Number density of the solar plasma n. It is obtained from the equation

$$\rho = \mathbf{m} \cdot \mathbf{n}$$

Substituting the densities given in Table I, the values in Table II are obtained.

5. Apparent molecular weight of the plasma, μ , which is obtained with sufficient accuracy from the equation

$$\mu = \frac{1}{2X + \frac{3}{4} Y + \frac{1}{2} Z}$$

yielding

$$\mu = 0.614$$

$$m = 1.01912 \cdot 10^{-27} \text{ kg}$$

6. Temperature of the plasma. The typical temperature T_0 may differ greatly for various flow problems. It may be taken as the average temperature which is with sufficient accuracy:

$$T_0 = 7.1 \times 10^6 \cdot K$$

7. The typical pressure p_0 may also differ greatly for various flow problems. Using the values of Table I, the pressures obtained by the ideal gas equation are given in Table II. As characteristic pressure may be taken the value for T_0

$$p_0 = 1.46 \times 10^{15} \text{ kg m}^{-1} \text{ sec}^{-2}$$
.

8. Boltzmann's constant R_a , which characterizes the gas constant of the plasma:

$$R_a = 1.38046 \text{ x } 10^{-23} \text{ joule deg}^{-1}$$
 $R_b = \frac{R_a}{m} = 1.35456 \text{ x } 10^4 \text{ joule kg}^{-1} \text{ deg}^{-1}$

9. Coefficient of viscosity $\mu_{_{\mbox{V}}}$, which characterizes the viscous stress of the plasma. The values of $\mu_{_{\mbox{V}}}$, $\ell_{_{\mbox{f}}}$, <u>, and S, as functions of the solar temperature, are derived from the following expressions of the kinetic theory:

$$\mu_{V} = \frac{5\pi}{32} \quad n \quad m \quad \ell_{p} < u >$$

$$\ell_{f} = \frac{1}{\sqrt{2} n S}$$

$$< u > = \sqrt{\frac{8R_{a}T}{\pi m}}$$

$$S = 0.8 \left(\frac{e^{2}}{4\Pi \epsilon R_{a}T}\right)^{2} \ell n \left(\frac{12\pi \epsilon R_{a}T}{e^{2}} \sqrt{\frac{\epsilon R_{a}T}{n_{1}e^{2}}}\right).$$

TABLE II. THERMAL PARAMETERS OF THE SOLAR PLASMA

T	n	р	S	f f	< u >	$^{\mu}v$	D _d	k	Dr	σ	α
• K	m ⁻³	kg m ⁻¹ sec ⁻²	m²	m	m sec-1	kg m ⁻¹ sec ⁻¹	m ² sec ⁻¹	kg m sec ⁻³ deg	kg m sec ⁻³ deg	ohm-1 m-1	kg m ⁻³ sec ⁻¹
106	1030	1013	10-23	10-9	105		10-3	105	1010	10 ⁶	1016
15.7	155. 04	6720	0.40622	1. 12275	7.35901	64. 08259	0.48841	32.55695	6.79411	13. 28822	4642.8
13.8	101.07	3850	0.52818	1.32459	6.89936	46.20688	0.54014	23.47195	5. 84445	10. 90077	2405. 2
12.8	81.44	2878	0.61327	1.41578	6.64468	38.32696	0.55565	19.45753	5.16187	9.74870	1746.2
11.3	57.89	1806	0.78403	1.55794	6.24322	28.16805	0.57490	14.31022	4.15413	8. 11516	1059.9
10.1	42.19	1176	0.97916	1.71168	5.90242	21. 32349	0.59706	10.83144	3.46631	6. 87375	664.64
9.0	30. 91	763	1.22832	1.86241	5.57174	16.04577	0.61330	8.15055	2.89147	5.80419	422, 49
8.1	21.98	492	1.55242	2.07228	5.25308	11.96978	0.66088	6.24555	2.57111	4. 93757	251.12
7.1	14.915	292	1.97754	2.39738	4.94878	8. 85220	0.70103	4.49556	2.22484	4.05904	140.67
6.2	9.224	158	2.61487	2.93168	4.62450	6.25598	0.80130	3.17783	2.01735	3. 28500	66.475
5. 1	4.906	69	3.88406	3.71084	4.19425	3. 81987	0.91969	1.94607	1.78256	2.43845	25, 335
3.9	1.805	19.44	6.78564	5.77321	3.66777	1.91202	1.25124	0.97132	1.62458	1.59616	5, 2389
3.0	0.726	6.02	11.62163	8.38072	3.21684	0.97914	1.59304	0.49735	1.49079	1.06261	1. 2732
1.73	0.1148	0.548	35. 66943	17.26820	2.44283	0.24226	2.49238	0.12303	1. 39379	0. 45590	0. 0742
0.66	0.00618	0.001126	245.8719	46. 535	1.50883	0.021708	4.14902	0.01103	-	0.10708	0.0009

They are given in Table II.

10. Nonelectric forces, such as the gravitational force. The constant of gravitation equals

$$G = 6.668 \times 10^{-11} \text{ kg}^{-1} \text{ m}^3 \text{ sec}^{-2}$$

The surface gravity of the sun is

$$g = 2.7398 \times 10^2 \text{ m sec}^{-2}$$

11. Specific heat at constant volume $\mathbf{C}_{\mathbf{V}}$, which characterizes the internal energy of the plasma. For a monatomic gas:

$$C_{v} = \frac{3}{2} \cdot \frac{R_{a}}{m}$$

After substitution of the previous values, this equation yields:

$$C_{V} = 2.03184 \cdot 10^{4} \text{ joule kg}^{-1} \text{ deg}^{-1}$$
 .

12. Coefficient of diffusion D_d . Due to the temperature and pressure differences, the molecules in the solar plasma diffuse from regions of high to regions of low concentration, according to the equation

$$\vec{K} = -D_d \nabla q$$
.

In the kinetic theory, the value of D_d is given by the expression:

$$D_{d} = 1.204 \frac{\mu_{v}}{\rho}$$

The values are contained in Table II.

13. Coefficient of heat conductivity k, which characterizes the heat conduction of the solar plasma. To a monatomic gas with smooth spherically symmetrical molecules applies the relation:

$$k = \frac{75\pi}{128} n R_a \ell_f < u > = \frac{5}{2} \mu_v C_v$$
.

Substitution of the previously given values yields the results contained in Table II.

14. Radiation constant a_r, which characterizes both the radiation pressure and the radiation energy. Its value is

$$a_r = 7.5641 \times 10^{-16} \text{ joule m}^{-3} \text{ kg}^{-4}$$
.

15. Diffusion coefficient of radiation $\mathbf{D_r}$, which characterizes the radiation flux. It is given by the relation:

$$D_{\mathbf{r}} = \frac{4}{3} \frac{a_{\mathbf{r}} c \mathbf{T}^3}{\kappa \rho}.$$

After substitution of the previously given values, the results contained in Table II are obtained.

16. Magnetic induction B. The general magnetic induction near the sun's pole equals

$$B = 1 \text{ gauss} = 10^{-4} \text{ weber m}^{-2}$$
.

17. Electric field strength E. The typical value of the electric field strength is rather arbitrary; for the solar plasma it may be taken as 0.

18. The electron charge e. Its value is

$$e = 1.60207 \times 10^{-19} \text{ coulomb}$$

19. Magnetic permeability $\mu_{\rm e}$. The characteristic value for the solar plasma may be taken as the value in free space.

$$\mu_{\rm e} = 4\pi \cdot 10^{-7} \text{ kg} \text{ m coul}^{-2}$$

20. Dielectric constant ϵ . The characteristic value for the solar plasma may be taken as the one in free space.

$$\epsilon = \frac{1}{36\pi} \cdot 10^{-9} \text{ kg}^{-1} \text{ m}^{-3} \text{ sec}^2 \text{ coul}^2$$

21. Electrical conductivity σ . The conductivity of a completely ionized plasma with a single-charged ions is determined by the relations:

$$\sigma = \frac{0.591 (\pi \epsilon)^2 (R_a T)^{3/2}}{m_e^{1/2} e^2 \ln \left(\frac{h}{b}\right)}$$

$$h = \sqrt{\frac{\epsilon R_a T}{n_1 e^2}}$$

$$b = \frac{e^2}{12\pi \epsilon R_a T}$$

Substituting the previously given values, the results contained in Table II are obtained.

22. Friction coefficient α , which characterizes the effect of the viscous forces on the electromagnetic force. It is given by the relation

$$\alpha = \frac{n^2 e^2}{\sigma} .$$

Substituting the previously given values, the results contained in Table II are obtained.

These 22 quantities may be used to characterize the solar plasma. The values in Table II, which belong to $T_0 = 7.1 \times 10^6$ K, may be selected as characteristic values.

III. CHARACTERISTIC VELOCITIES, FREQUENCIES, AND LENGTHS

Some velocities, frequencies, and lengths may be derived from the 22 characteristic quantities which will be useful in obtaining nondimensional parameters later.

1. Velocity of light:

$$c = \frac{1}{\sqrt{\epsilon \mu_e}} = 2.99793 \cdot 10^8 \text{ m sec}^{-1}$$
.

2. Velocity of sound:

$$a = \sqrt{\gamma R_p T}$$
.

Substituting $\gamma = \frac{5}{3}$ and the previously given values, the results contained in Table III are obtained.

TABLE III. CHARACTERISTIC VELOCITIES, FREQUENCIES, AND LENGTHS

Т	a	v _h	$\omega_{ m p}$	$^{\omega}{ m e}$	$\omega_{ extbf{f}}$	l D	ℓle	lp lp
°K	m sec ⁻¹	m sec ⁻¹	sec-1	sec-1	sec ⁻¹	m	m	m
106	105	10-3	10 ¹⁵	1017	1013	10-11	10-2	
15.7	5.95351	0, 22442	21.01457	15.02864	29.3841	2.19448	3.38481	62. 18324
13.8	5.58166	0.27796	16.96712	12.32850	23.3510	2.54820	3.17340	58. 29934
12.8	5.37562	0.30964	15. 23065	11.02553	21.0393	2.73395	3.05626	56. 14729
11.3	5.05083	0.36726	12.84103	9.17804	17.9653	3.04678	2.87160	52, 75492
10.1	4.77512	0.43019	10.96229	7.77404	15.4578	3.37411	2.71485	49.87518
9.0	4.50759	0.50262	9.38311	6.56439	13.4120	3.72114	2, 56275	47. 08089
8.1	4.27628	0.59603	7.91244	5.58461	11.2107	4.18632	2.43124	44.66490
7.1	4.00362	0.72355	6.51790	4.59067	9.2546	4.75797	2.27622	41.81702
6.2	3.74127	0.92009	5. 12571	3.71525	7.0700	5.65380	2.12706	39.07683
5.1	3.39320	1.26157	3.73817	2.75783	5.0670	7.03113	1.92917	35.44130
3.9	2.96726	2.07969	2.26742	1.80522	2.8480	10. 13673	1.68701	30. 99244
3.0	2.60246	3.27923	1.43809	1.20179	1.7208	14.01834	1.47960	27.18218
1.73	1.97627	8.24674	0.57184	0.51561	0.63419	26.77049	1.12359	20.64175
0.66	1.22066	35. 54052	0.13268	0.12110	0.14528	71. 26577	0.69399	12.74955

11

3. Velocity of the Alfvén wave:

$$V_h = \frac{B}{\sqrt{\mu_e \rho}}$$
 .

Substituting the previously given values, the results contained in Table III are obtained.

4. The plasma frequency:

$$\omega_{\rm p} = {\rm e} \sqrt{\frac{{\rm n}}{{\rm m}\,\epsilon}}$$
.

It is the frequency of oscillation caused by the electric field above. Substituting the previously given values, the results contained in Table III are obtained.

5. The cyclotron frequency:

$$\omega_{\rm c} = \frac{\rm eB}{\rm m}$$
 .

It is equal to the angular frequency with which particles of mass, m, and charge, e, gyrate in a cyclotron. Substituting the previously given values, it becomes for the electron

$$\omega_{\mathrm{ce}}^{}$$
 = 1.75889 · 10 $^{7}~\mathrm{sec^{-1}}$,

and for the proton

$$\omega_{\rm cp} = 9.57414 \cdot 10^3 \, {\rm sec^{-1}}$$
 .

6. The electrical decay frequency:

$$\omega_{\rm e} = \frac{\rm J}{\rm D} = \frac{\sigma}{\epsilon}$$
 .

It prescribes the rate of electrical energy converted into joule heat. Substituting the previously given values, the results contained in Table III are obtained.

7. The friction frequency:

$$\omega_{\mathbf{f}} = \frac{\alpha}{\mathbf{m}\mathbf{n}}$$
.

It is the frequency of the oscillation if the force of friction is the only external force. Substituting the previously given values, the results contained in Table III are obtained.

8. The Debye length:

$$\ell_{\rm D} = \sqrt{\frac{R_{\rm a}T\epsilon}{n~{\rm e}^2}} .$$

It is a measure of the distance over which an excess electrical charge may be appreciably different from zero. Substituting the previously given values, the results contained in Table III are obtained. Since the Debye length is very small, the solar plasma tends toward electrical neutrality, and

$$\rho_{\mathbf{e}} = 0$$

is a good approximation.

9. The mean free path:

$$\ell_{\mathbf{f}} = 1.255 \sqrt{\gamma} \frac{\mu_{\mathbf{v}}}{a \rho} .$$

Substituting
$$\gamma = \frac{5}{3}$$
:

$$\ell_{f} = 1.6202 \frac{\mu_{\mathbf{v}}}{a \rho} .$$

It is a measure of distance travelled between collisions of neutral particles. Since the typical length of the flow field is much larger than the mean free path, the continuum theory can be applied. Substituting the previous by given values, results are obtained which are approximately 1.7 percent lower than those given in Table II.

10. The Larmor radius:

$$\ell_1 = \frac{a}{\omega_c}$$
.

It is a measure of the radius of the helical path of a charged particle in a magnetic field. Substituting the previously given values, the results for the electron ℓ and the proton ℓ are contained in Table III.

IV. NONDIMENSIONAL PARAMETERS OF SOLAR DYNAMICS

The nondimensional parameters which characterize the flow of a fully ionized plasma are obtained by dimensional analysis from the 22 physical quantities given in Chapter II. In the system of units adopted, there are five independent fundamental units: mass, time, length, electrical charge, and temperature. Then by the π -theorem of dimensional analysis, 17 non-dimensional parameters may be formed. The following five fundamental units are suggested:

$$\ell_0 = 10^7 \text{ m}$$

$$\rho_0 = 15.2 \text{ x } 10^3 \text{ kg m}^{-3}$$

$$t_0 = 25 \text{ sec}$$

$$e = 1.60207 \text{ x } 10^{-19} \text{ coulomb}$$

$$T_0 = 7.1 \text{ x } 10^6 \text{ ° K}$$

Nondimensional parameters of all other quantities listed in Chapter II are then derived in terms of these fundamental units. They will be denoted as $\Pi_{\bf i}$.

1. The nondimensional parameter for the velocity:

$$\Pi_1 = \frac{u t_0}{\ell_0}$$

2. The nondimensional parameter for the pressure:

$$\Pi_2 = \frac{p}{\frac{\rho u^2}{2}}$$

3. The ratio of specific heats:

$$\Pi_3 = \gamma = \frac{C_p}{C_v}$$
.

For a monatomic gas, $\gamma = \frac{5}{3}$; for a diatomic, $\gamma = \frac{7}{5}$.

4. The Mach number:

$$\Pi_4 = M = \frac{u}{a} .$$

5. The Reynolds number:

$$\Pi_5 = R_e = \frac{\rho u \ell_0}{\mu_v} .$$

6. The Prandtl number:

$$\Pi_6 = P_r = \frac{\mu_v^C p}{k}$$
.

7. The Froude number:

$$\Pi_7 = \mathbf{F}_{\mathbf{r}} = \frac{\mathbf{u}^2}{\mathbf{g}\ell_0} \quad .$$

8. The Schmidt number:

$$\Pi_8 = S_c = \frac{\mu_v}{\rho D_d}$$
.

9. The relativity parameter:

$$\Pi_9 = R_C = \frac{u^2}{c^2}$$
.

10. The electric decay parameter:

$$\Pi_{10} = t_0 \omega_e = t_0 \frac{\sigma}{\epsilon} .$$

11. The plasma frequency parameter:

$$\Pi_{11} = t_0 \omega_p = t_0 e \sqrt{\frac{n}{m \epsilon}}$$
.

12. The frictional frequency parameter:

$$\Pi_{12} = \mathbf{t_0} \ \omega_{\mathbf{f}} = \mathbf{t_0} \ \frac{\alpha}{m \, \mathbf{n}} \ .$$

13. The electrical frequency parameter:

$$\Pi_{13} = R_E = \frac{E}{\mu_e u H} .$$

14. The magnetic pressure number:

$$\Pi_{14} = R_h = \frac{V_h^2}{u^2} = \frac{\mu_e H^2}{\rho u^2}$$
.

15. The magnetic Reynolds number:

$$\Pi_{15} = R_{\sigma} = u \ell_{0} \sigma \mu_{e} = \frac{u \ell_{0}}{\nu_{h}}$$

$$\nu_{h} = \frac{1}{\sigma \mu_{e}} .$$

16. The radiation pressure parameter:

$$\Pi_{16} = \frac{D_r a_r}{k} = \frac{a_r T^4}{3p}$$
.

17. The radiation flux parameter:

$$\Pi_{17} = \frac{P_r a_r}{k} T^3 .$$

Solar plasma dynamics is characterized by the following conditions:

$$\Pi_1 \geq 1$$

$$R_E = 0$$

$$R_C \ll 1$$

The following nine parameters have considerable influence on the flow problems:

$$\Pi_2$$
, γ , M , R_e , P_r , R_h , R_σ , Π_{16} , Π_{17} .

The remaining five are unimportant parameters which may be neglected:

$$F_r$$
, S_c , Π_{10} , Π_{11} , Π_{12} .

Substituting the previously given values and < u > for u, the results for the important nondimensional parameters are given in Table IV.

TABLE IV. NONDIMENSIONAL PARAMETERS FOR THE SOLAR PLASMA

Т	Π_2	$\Pi_4 = \mathbf{M}$	$\Pi_5 = R_e$	$\Pi_6 = P_r$	$\Pi_{14} = R_h$	$\Pi_{15} = \mathbf{R}_{\sigma}$	Π_{16}	Π_{17}
° K								
10 ⁶			1015	10-5	10-18	1012	10-4	109
15.7	1.57020	1.23629	18.14422	6.66665	0.092968	122. 9054	4.55927	61.08643
13.8	1.57034	1.23613	15.37975	6.66662	0.16230	94.51396	4.75031	49.49811
12.8	1.57044	1.23618	14.39899	6.66665	0.21712	81.40802	4.70343	42.08294
11.3	1.57022	1.23625	13.07692	6.66663	0.34595	63.67585	4.55262	31.68306
10.1	1.57008	1.23606	11.90246	6.66666	0.53122	50. 98328	4.46213	24.94033
9.0	1.57072	1.23608	10.93820	6.66665	0.81376	40.63901	4.30799	19. 56215
8.1	1.57230	1.23606	9.62969	6.66666	1.27153	32.79854	4.41205	16.54864
7.1	1.56950	1.23581	8.49755	6.66666	2.13860	25. 23698	4.38851	13.39822
6.2	1.57188	1.23609	6.94862	6.66663	3.95842	19.09039	4.71601	11.44414
5.1	1.56936	1.23590	5.49010	6.66660	9.04970	12.85043	4.94422	9, 21922
3.9	1.57048	1.23618	3.52957	6.66667	32.1456	7.35740	6.00106	7.50464
3.0	1.57238	1.23605	2.43119	6.66665	103.92	4.29539	6.78507	6.12174
1.73	1.57048	1.23580	1.17980	6.66665	1140.2	1.39919	8.24270	4.43693
0.66	1.57016	1.23608	0.43785	6.66534	55484	0.20303	8.49485	_

BIBLIOGRAPHY

Chapman, S.; and Cowling, T. G.: The Mathematical Theory of Non-Uniform Gases. Cambridge, 1960, University Press.

Pai, I.: Magnetogasdynamics and Plasma Dynamics. Vienna, 1962, Springer.

Allen, C. W.: Astrophysical Quantities. London 1963, Athlone Press.

Stroemgren, B. (L. H. Aller and D. B. McLaughlin, ed.): Stellar Structure. University of Chicago Press, Chicago and London, 1965.

Kalikhman, L. E.: Magnetogasdynamics. Philadelphia and London, 1967, W. B. Saunders.

March 15, 1968

IN-SSL-T-68-4

APPROVAL

SOLAR FLOW PARAMETERS

By Klaus Schocken

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC's Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

Gerhard B. Heller ERHARD B. HELLER

Chief, Space Thermophysics Division