$_{\rm page=b1p2/344}$

1

1. METHODS OF INTEGRATION

In calculus there are essentialy two methods of integration : "change of variables" and "by parts".

1.1. Integration by change of variable (substitution).

Let the indefinite integral

$$I = \int f(x) \ dx$$

to be evaluated.

One makes (tries) the substitution

$$x = u(t) \quad \text{or} \quad t = u^{-1}(x) = v(x)$$

$$I = \int f(x) \ dx = \int f(u(t)).u'(t) \ dt = \int g(t) \ dt$$

If the substitution is properly selected the new integral is more easily integrable than the original one, getting G(t) + c and replacing t by v(x), one has

$$G(t) + c = G(v(x)) + c = F(x) + c$$

Example 1.1. Evaluate

$$I = \int \frac{dx}{(1 - x^2)^{3/2}}$$

Solution 1.1. Since square root is not involved, $1-x^2>0$ follows and the substitution $x=\sin\theta$ may work

$$I = \int \frac{\cos\theta \ d\theta}{(1 - \sin^2\theta)^{3/2}} = \int \frac{\cos\theta \ d\theta}{\cos^3\theta} = \int \sec^2\theta \ d\theta = \tan\theta + c$$

The result is to be written in terms of x. Using the relation $x = sin\theta$ we have

$$I = tan\theta + c = \frac{x}{\sqrt{1 - x^2}} + c$$

Example 1.2. Evaluate

$$I = \int (x^3 - 2x + 3)^{15} (3x^2 - 2) dx$$

sin Triangle¹

SOLUTION 1.2. Observing that, $D(x^3-2x+3)=(3x^2-2)$ the proper substitution is

$$u = (x^3 - 2x + 3)$$
, $du = (3x^2 - 2) dx$

1 of 1

1.1.

Freshman Calculus by Suer & Demir **DRAFT**LATEX by Haluk Bingol http://www.cmpe.boun.edu.tr/bingol October 12, 2016