PART - 1

Importing necessary libraries

```
In [205]:
```

```
import pandas as pd
import numpy as np
import requests
from bs4 import BeautifulSoup
```

Making a request to the website

```
In [206]:
```

```
source = requests.get('https://www.worldometers.info/coronavirus/')
```

Creating a beautiful soup object

```
In [207]:
```

```
soup = BeautifulSoup(source.content, features= 'html.parser')
```

Scraping the information step by step

1. Identifying the required table:

```
In [208]:
```

```
table = soup.find(id = "main_table_countries_today")
```

1. get the information row wise since there doesnt seem to be unique class for each column.

```
In [209]:
```

```
thead = table.find('thead')
```

```
In [210]:
```

```
th = thead.find_all('th')
```

1. Get the tbodies and from there extract info about each row

```
In [211]:
tbody = table.find('tbody')

In [212]:
row_info = tbody.find_all('tr')

In [213]:
row_info = row_info[8:]
```

1. By inspecting we understand the required columns as: 1,2,4,12,14

In [214]:

```
def create df(x):
  This function takes in the beautiful soup object of the table body and returns the da
taframe with required information
  #creating a disctionary to store the required values row wise:
  dic = {
      'country' : [],
      'cases': [],
      'deaths': [],
      'tests' : [],
      'population':[]
  }
  #loop to find all the column values:
  for row in x:
    r = row.find_all('td')
    #country name:
    dic['country'].append(r[1].text)
    #total cases:
    a = r[2].text.strip()
    if a == 'N/A' or a == '':
      dic['cases'].append(None)
    else:
      dic['cases'].append(int(a.replace(',','')))
    #total deaths:
    a = r[4].text.strip()
    if a == 'N/A' or a == '':
      dic['deaths'].append(None)
    else:
      dic['deaths'].append(int(a.replace(',','')))
    #total test:
    a = r[12].text.strip()
    if a == 'N/A' or a ==
      dic['tests'].append(None)
    else:
      dic['tests'].append(int(a.replace(',','')))
    #population:
    a = r[14].text.strip()
    if a == 'N/A' or a =='':
      dic['population'].append(None)
    else:
      dic['population'].append(int(a.replace(',','')))
  return pd.DataFrame(dic)
```

1. Creating the dataframe

In [215]:

```
data_df = create_df(row_info)
print(data_df.head())
   country
               cases
                         deaths
                                        tests
                                                 population
0
      USA
           105020461
                     1142981.0 1.163387e+09 3.348053e+08
1
    India
                       530762.0 9.179870e+08
                                               1.406632e+09
            44685257
2
   France
            39595964
                       164791.0 2.714902e+08
                                               6.558452e+07
3
  Germany
            38043874
                       167491.0 1.223324e+08 8.388360e+07
    Brazil
            36987682
                       698047.0 6.377617e+07
                                               2.153536e+08
```

1. setting country as the index

In [216]:

```
data_df = data_df.set_index('country')
print(data_df.head())
```

	cases	deaths	tests	population
country				
USA	105020461	1142981.0	1.163387e+09	3.348053e+08
India	44685257	530762.0	9.179870e+08	1.406632e+09
France	39595964	164791.0	2.714902e+08	6.558452e+07
Germany	38043874	167491.0	1.223324e+08	8.388360e+07
Brazil	36987682	698047.0	6.377617e+07	2.153536e+08

1. Dropping the columns with null values:

```
In [217]:
```

```
data_df = data_df.dropna()
```

In [218]:

```
print(data_df.shape)
```

(212, 4)

In [219]:

```
data_df.isnull().sum()
```

Out[219]:

```
cases      0
deaths      0
tests      0
population      0
dtype: int64
```

As we can see, we have dropped all the null columns.

1. Converting the object types to integer

```
In [220]:
```

```
data_df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 212 entries, USA to China
Data columns (total 4 columns):
                Non-Null Count Dtype
    Column
                -----
                                ----
0
    cases
                212 non-null
                                int64
                212 non-null
                                float64
1
    deaths
2
    tests
                212 non-null
                                float64
    population 212 non-null
                                float64
3
dtypes: float64(3), int64(1)
memory usage: 8.3+ KB
In [221]:
data df.deaths = data df.deaths.astype(int)
data_df.tests = data_df.tests.astype(int)
data_df.population = data_df.population.astype(int)
/usr/local/lib/python3.8/dist-packages/pandas/core/generic.py:5516: Settin
gWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
 self[name] = value
```

```
In [222]:
data df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 212 entries, USA to China
Data columns (total 4 columns):
#
    Column
                Non-Null Count Dtype
    _____
                _____
0
    cases
                212 non-null
                                int64
1
    deaths
                212 non-null
                                int64
2
    tests
                212 non-null
                                int64
    population 212 non-null
 3
                                int64
dtypes: int64(4)
memory usage: 8.3+ KB
```

1. total deaths = 0 / total tests = 0

In [223]:

```
data_df[(data_df.tests ==0) | (data_df.deaths == 0)]
```

Out[223]:

cases deaths tests population

country

This is becasue while creating the dataframe itself i have taken care of those cases.

1. Tests per case:

In [224]:

```
data_df['test_per_case'] = data_df.tests/data_df.cases
```

```
<ipython-input-224-198cee0852a8>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copydata_df['test_per_case'] = data_df.tests/data_df.cases

In [225]:

```
data_df.head()
```

Out[225]:

	cases	deaths	tests	population	test_per_case
country					
USA	105020461	1142981	1163387226	334805269	11.077720
India	44685257	530762	917986992	1406631776	20.543397
France	39595964	164791	271490188	65584518	6.856512
Germany	38043874	167491	122332384	83883596	3.215561
Brazil	36987682	698047	63776166	215353593	1.724254

1. sorting the table:

In [226]:

```
#descending order:
data_df = data_df.sort_values(by = ['test_per_case'],ascending = False)
```

In [227]:

print(data_df.head(20))

	cases	deaths	tests	population	test_per_case
country					
China	503302	5272	160000000	1448471400	317.900585
UAE	1051336	2348	199104417	10081785	189.382288
Turks and Caicos	6551	38	611527	39741	93.348649
Oman	399449	4628	25000000	5323993	62.586213
Bermuda	18791	159	1026742	61939	54.640094
Saudi Arabia	829041	9606	45121063	35844909	54.425611
Rwanda	133170	1468	5959042	13600464	44.747631
Denmark	3174758	8237	129185732	5834950	40.691521
Bhutan	62611	21	2303734	787941	36.794397
Austria	5871234	21825	211273524	9066710	35.984518
Spain	13755956	119186	471036328	46719142	34.242355
Sierra Leone	7760	126	259958	8306436	33.499742
Gabon	48981	306	1621909	2331533	33.113023
Tonga	16801	13	535009	107749	31.843878
Yemen	11945	2159	329592	31154867	27.592465
Hong Kong	2882553	13445	76127725	7604299	26.409827
Gibraltar	20420	111	534283	33704	26.164691
Niger	9931	312	254538	26083660	25.630651
Chad	7675	194	191341	17413580	24.930423
Mali	32946	743	794233	21473764	24.107115

In [228]:

#ascending order:
print(data_df.sort_values(by = ['test_per_case']).head(20))

	cases	deaths	tests	population	test_per_ca	
se						
country						
S. Korea	30458857	33887	15804065	51329899	0.5188	
66						
Algeria	271428	6881	230861	45350148	0.8505	
42						
New Caledonia	79871	314	98964	290915	1.2390	
48						
Brazil	36987682	698047	63776166	215353593	1.7242	
54						
Antigua and Barbuda	9106	146	18901	99509	2.0756	
64						
Vanuatu	12014	14	24976	321832	2.0789	
08						
Slovenia	1326367	7067	2834333	2078034	2.1369	
15						
Macao	3513	121	7850	667490	2.2345	
57						
Bolivia	1192246	22362	2705422	11992656	2.2691	
81						
Micronesia	23671	60	54967	117489	2.3221	
24						
Eritrea	10189	103	23693	3662244	2.3253	
51						
Syria	57463	3164	146269	19364809	2.5454	
47	44550	20	20426	25547	0 5040	
Caribbean Netherlands	11668	38	30126	26647	2.5819	
33	276025	225	74 770 4	445424	2 5020	
Brunei	276825	225	717784	445431	2.5929	
16	7420046	222050	40540260	424562772	2 6267	
Mexico	7430816	332850	19519260	131562772	2.6267	
99	7025	2	10600	17571	2 0020	
Cook Islands	7025	2	19690	17571	2.8028	
47	22426046	74000	0.4500050	425504030	2 0554	
Japan	33136016	71923	94608068	125584838	2.8551	
43	1056570	26000	2002402	10112261	2 0472	
Ecuador	1056578	36008	3082403	18113361	2.9173	
45	02227	1 400	240007	506034	2 0207	
Suriname	82227	1400	240907	596831	2.9297	
80	0001731	22002	25004425	17011447	2 0242	
Netherlands	8591721	22992	25984435	17211447	3.0243	
57						

Conclusion:

The country with the highest test per case is china and the country with the lowest test per case is north korea. It does not look like that the test_per_Case has any kind of effect in preventing the deaths, but lets plot some graphs to investigate this clearly.

In [229]:

```
df_low = data_df.sort_values(by = ['test_per_case']).head(20)
df_low['death_ratio'] = df_low.deaths/df_low.population
df_low
```

Out[229]:

	cases	deaths	tests	population	test_per_case	death_ratio
country						
S. Korea	30458857	33887	15804065	51329899	0.518866	0.000660
Algeria	271428	6881	230861	45350148	0.850542	0.000152
New Caledonia	79871	314	98964	290915	1.239048	0.001079
Brazil	36987682	698047	63776166	215353593	1.724254	0.003241
Antigua and Barbuda	9106	146	18901	99509	2.075664	0.001467
Vanuatu	12014	14	24976	321832	2.078908	0.000044
Slovenia	1326367	7067	2834333	2078034	2.136915	0.003401
Масао	3513	121	7850	667490	2.234557	0.000181
Bolivia	1192246	22362	2705422	11992656	2.269181	0.001865
Micronesia	23671	60	54967	117489	2.322124	0.000511
Eritrea	10189	103	23693	3662244	2.325351	0.000028
Syria	57463	3164	146269	19364809	2.545447	0.000163
Caribbean Netherlands	11668	38	30126	26647	2.581933	0.001426
Brunei	276825	225	717784	445431	2.592916	0.000505
Mexico	7430816	332850	19519260	131562772	2.626799	0.002530
Cook Islands	7025	2	19690	17571	2.802847	0.000114
Japan	33136016	71923	94608068	125584838	2.855143	0.000573
Ecuador	1056578	36008	3082403	18113361	2.917345	0.001988
Suriname	82227	1400	240907	596831	2.929780	0.002346
Netherlands	8591721	22992	25984435	17211447	3.024357	0.001336

In [230]:

```
df_high = data_df.sort_values(by = ['test_per_case'], ascending = False).head(20)
df_high['death_ratio'] = df_high.deaths/df_high.population
df_high
```

Out[230]:

	cases	deaths	tests	population	test_per_case	death_ratio
country						
China	503302	5272	160000000	1448471400	317.900585	0.000004
UAE	1051336	2348	199104417	10081785	189.382288	0.000233
Turks and Caicos	6551	38	611527	39741	93.348649	0.000956
Oman	399449	4628	25000000	5323993	62.586213	0.000869
Bermuda	18791	159	1026742	61939	54.640094	0.002567
Saudi Arabia	829041	9606	45121063	35844909	54.425611	0.000268
Rwanda	133170	1468	5959042	13600464	44.747631	0.000108
Denmark	3174758	8237	129185732	5834950	40.691521	0.001412
Bhutan	62611	21	2303734	787941	36.794397	0.000027
Austria	5871234	21825	211273524	9066710	35.984518	0.002407
Spain	13755956	119186	471036328	46719142	34.242355	0.002551
Sierra Leone	7760	126	259958	8306436	33.499742	0.000015
Gabon	48981	306	1621909	2331533	33.113023	0.000131
Tonga	16801	13	535009	107749	31.843878	0.000121
Yemen	11945	2159	329592	31154867	27.592465	0.000069
Hong Kong	2882553	13445	76127725	7604299	26.409827	0.001768
Gibraltar	20420	111	534283	33704	26.164691	0.003293
Niger	9931	312	254538	26083660	25.630651	0.000012
Chad	7675	194	191341	17413580	24.930423	0.000011
Mali	32946	743	794233	21473764	24.107115	0.000035

In [231]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

%matplotlib inline

In [239]:

```
sns.scatterplot(x = np.arange(20), y = df_low.death_ratio, marker = 's')
sns.scatterplot(x = np.arange(20), y = df_high.death_ratio)
plt.legend(['low','high']);
```


In [233]:

```
df_high['death_per_case'] = df_high['deaths']/df_high['cases']
df_low['death_per_case'] = df_low['deaths']/df_low['cases']
```

In [234]:

```
sns.scatterplot(x = np.arange(20), y = df_low.death_per_case, marker = 's')
sns.scatterplot(x = np.arange(20), y = df_high.death_per_case)
plt.legend(['low', 'high'])
```

Out[234]:

<matplotlib.legend.Legend at 0x7fa9a90c4220>

In [235]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
```

In [236]:

```
df = scaler.fit_transform(data_df)
```

In [237]:

```
sns.regplot(x = df[:,1], y = df[:,4])
```

Out[237]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fa9a90fc250>

No matter how I look at it, there doesn't seem to be much effect of increasing the tests done per a case in preventing the deaths.