

- Algorithms, 4th edition
  - 1. Fundamentals
    - 1.1 Programming Model
    - 1.2 Data Abstraction
    - 1.3 Stacks and Queues
    - 1.4 Analysis of Algorithms
    - 1.5 Case Study: Union-Find
  - o 2. Sorting
    - 2.1 Elementary Sorts
    - 2.2 Mergesort
    - 2.3 Quicksort
    - 2.4 Priority Queues
    - 2.5 Sorting Applications
  - 3. Searching
    - 3.1 Symbol Tables
    - 3.2 Binary Search Trees
    - 3.3 Balanced Search Trees
    - 3.4 Hash Tables
    - 3.5 Searching Applications
  - o 4. Graphs
    - 4.1 Undirected Graphs
    - 4.2 Directed Graphs
    - 4.3 Minimum Spanning Trees
    - 4.4 Shortest Paths
  - o <u>5. Strings</u>
    - <u>5.1 String Sorts</u>
    - 5.2 Tries
    - 5.3 Substring Search
    - <u>5.4 Regular Expressions</u>
    - <u>5.5 Data Compression</u>
  - o <u>6. Context</u>
    - <u>6.1 Event-Driven Simulation</u>
    - 6.2 B-trees
    - 6.3 Suffix Arrays
    - 6.4 Maxflow
    - 6.5 Reductions
    - 6.6 Intractability
- Related Booksites





- FAO
- Data
- Code
- Errata
- <u>Lectures</u>
- Cheatsheet
- References
- Online Course
- Programming Assignments

| Custom Search |  |  |
|---------------|--|--|

# Algorithms and Data Structures Cheatsheet

We summarize the performance characteristics of classic algorithms and data structures for sorting, priority queues, symbol tables, and graph processing.

We also summarize some of the mathematics useful in the analysis of algorithms, including commonly encountered functions; useful formulas and appoximations; properties of logarithms; asymptotic notations; and solutions to divide-and-conquer recurrences.

#### Sorting.

The table below summarizes the number of compares for a variety of sorting algorithms, as implemented in this textbook. It includes leading constants but ignores lower-order terms.

| ALGORITHM      | CODE           | IN PLACE | STABLE | BEST             | AVERAGE                | WORST              | REMARKS                                              |
|----------------|----------------|----------|--------|------------------|------------------------|--------------------|------------------------------------------------------|
| selection sort | Selection.java | <b>√</b> |        | $\frac{1}{2}n^2$ | $\frac{1}{2}n^2$       | $\frac{1}{2}n^2$   | n exchanges;<br>quadratic in best<br>case            |
| insertion sort | Insertion.java | ✓        | ✓      | n                | $\frac{1}{4}n^2$       | $\frac{1}{2}n^2$   | use for small or<br>partially-sorted<br>arrays       |
| bubble sort    | Bubble.java    | ✓        | ✓      | n                | $\frac{1}{2}n^2$       | $\frac{1}{2}n^2$   | rarely useful;<br>use insertion<br>sort instead      |
| shellsort      | Shell.java     | ✓        |        | $n \log_3$       | unknown                | c n <sup>3/2</sup> | tight code;<br>subquadratic                          |
| mergesort      | Merge.java     |          | ✓      | ½ n lg<br>n      | n lg n                 | $n \lg n$          | <i>n</i> log <i>n</i> guarantee; stable              |
| quicksort      | Quick.java     | ✓        |        | $n \lg n$        | 2 <i>n</i> ln <i>n</i> | $\frac{1}{2}n^2$   | n log n probabilistic guarantee; fastest in practice |

|          |                  | Algoriu | iiis and Data Otructu | ics Officationics |                        |                                                               |
|----------|------------------|---------|-----------------------|-------------------|------------------------|---------------------------------------------------------------|
| heapsort | <u>Heap.java</u> | ✓       | n <sup>†</sup>        | 2 n lg n          | 2 <i>n</i> lg <i>n</i> | <ul><li>n log n</li><li>guarantee;</li><li>in place</li></ul> |
|          |                  |         |                       |                   |                        | $^{\dagger}$ $n \lg n$ if all keys are distinct               |

## Priority queues.

The table below summarizes the order of growth of the running time of operations for a variety of priority queues, as implemented in this textbook. It ignores leading constants and lower-order terms. Except as noted, all running times are worst-case running times.

| DATA<br>STRUCTURE | CODE                                  | INSERT     | DEL-MIN            | MIN | DEC-KEY        | DELETE                   | MERGE    |
|-------------------|---------------------------------------|------------|--------------------|-----|----------------|--------------------------|----------|
| array             | BruteIndexMinPQ.java                  | 1          | n                  | n   | 1              | 1                        | n        |
| binary heap       | IndexMinPQ.java                       | $\log n$   | $\log n$           | 1   | $\log n$       | $\log n$                 | n        |
| d-way heap        | $\underline{IndexMultiwayMinPQ.java}$ | $\log_d n$ | $d \log_d n$       | 1   | $\log_d n$     | $d \log_d n$             | n        |
| binomial heap     | $\underline{IndexBinomialMinPQ.java}$ | 1          | $\log n$           | 1   | $\log n$       | $\log n$                 | $\log n$ |
| Fibonacci<br>heap | IndexFibonacciMinPQ.java              | 1          | $\log n^{\dagger}$ | 1   | 1 <sup>†</sup> | $\log n^{\dagger}$       | 1        |
|                   |                                       |            |                    |     |                | † amortized<br>guarantee | 1        |

### Symbol tables.

The table below summarizes the order of growth of the running time of operations for a variety of symbol tables, as implemented in this textbook. It ignores leading constants and lower-order terms.

|                                                   |                         |          | worst case | !        | a        | verage cas | e        |
|---------------------------------------------------|-------------------------|----------|------------|----------|----------|------------|----------|
| DATA<br>STRUCTURE                                 | CODE                    | SEARCH   | INSERT     | DELETE   | SEARCH   | INSERT     | DELETE   |
| sequential<br>search<br>(in an<br>unordered list) | SequentialSearchST.java | n        | n          | n        | n        | n          | n        |
| binary search<br>(in a sorted<br>array)           | BinarySearchST.java     | $\log n$ | n          | n        | log n    | n          | n        |
| binary search<br>tree<br>(unbalanced)             | <u>BST.java</u>         | n        | n          | n        | log n    | $\log n$   | sqrt(n)  |
| red-black<br>BST<br>(left-leaning)                | RedBlackBST.java        | log n    | $\log n$   | log n    | log n    | $\log n$   | log n    |
| AVL                                               | AVLTreeST.java          | $\log n$ | $\log n$   | $\log n$ | $\log n$ | $\log n$   | $\log n$ |

| hash table<br>(separate-<br>chaining) | <u>SeparateChainingHashST.java</u> | n | n | n | 1 † | 1 † | 1 <sup>†</sup> |
|---------------------------------------|------------------------------------|---|---|---|-----|-----|----------------|
| hash table<br>(linear-<br>probing)    | LinearProbingHashST.java           | n | n | n | 1 † | 1 † | 1 <sup>†</sup> |

<sup>†</sup> uniform hashing assumption

## Graph processing.

The table below summarizes the order of growth of the worst-case running time and memory usage (beyond the memory for the graph itself) for a variety of graph-processing problems, as implemented in this textbook. It ignores leading constants and lower-order terms. All running times are worst-case running times.

| PROBLEM                                  | ALGORITHM       | CODE                                | TIME       | SPACE |
|------------------------------------------|-----------------|-------------------------------------|------------|-------|
| path                                     | DFS             | DepthFirstPaths.java                | E + V      | V     |
| shortest path (fewest edges)             | BFS             | BreadthFirstPaths.java              | E + V      | V     |
| cycle                                    | DFS             | Cycle.java                          | E + V      | V     |
| directed path                            | DFS             | <u>DepthFirstDirectedPaths.java</u> | E + V      | V     |
| shortest directed path<br>(fewest edges) | BFS             | BreadthFirstDirectedPaths.java      | E + V      | V     |
| directed cycle                           | DFS             | <u>DirectedCycle.java</u>           | E + V      | V     |
| topological sort                         | DFS             | Topological.java                    | E + V      | V     |
| bipartiteness / odd cycle                | DFS             | Bipartite.java                      | E + V      | V     |
| connected components                     | DFS             | <u>CC.java</u>                      | E + V      | V     |
| strong components                        | Kosaraju–Sharir | KosarajuSharirSCC.java              | E + V      | V     |
| strong components                        | Tarjan          | <u>TarjanSCC.java</u>               | E + V      | V     |
| strong components                        | Gabow           | GabowSCC.java                       | E + V      | V     |
| Eulerian cycle                           | DFS             | EulerianCycle.java                  | E + V      | E + V |
| directed Eulerian cycle                  | DFS             | <u>DirectedEulerianCycle.java</u>   | E + V      | V     |
| transitive closure                       | DFS             | TransitiveClosure.java              | V(E+V)     | $V^2$ |
| minimum spanning tree                    | Kruskal         | KruskalMST.java                     | $E \log E$ | E + V |
| minimum spanning tree                    | Prim            | PrimMST.java                        | $E \log V$ | V     |
| minimum spanning tree                    | Boruvka         | BoruvkaMST.java                     | $E \log V$ | V     |
| shortest paths<br>(nonnegative weights)  | Dijkstra        | <u>DijkstraSP.java</u>              | $E \log V$ | V     |
| shortest paths (no negative cycles)      | Bellman-Ford    | BellmanFordSP.java                  | V(V+E)     | V     |

| shortest paths (no cycles) | topological sort          | AcyclicSP.java         | V + E                    | V     |
|----------------------------|---------------------------|------------------------|--------------------------|-------|
| all-pairs shortest paths   | Floyd–Warshall            | FloydWarshall.java     | $V^3$                    | $V^2$ |
| maxflow-mincut             | Ford-Fulkerson            | FordFulkerson.java     | E V (E + V)              | V     |
| bipartite matching         | Hopcroft–Karp             | HopcroftKarp.java      | $V^{\frac{1}{2}}(E + V)$ | V     |
| assignment problem         | successive shortest paths | AssignmentProblem.java | $n^3 \log n$             | $n^2$ |

#### Commonly encountered functions.

Here are some functions that are commonly encountered when analyzing algorithms.

| <b>FUNCTION</b>           | NOTATION              | DEFINITION                                   |
|---------------------------|-----------------------|----------------------------------------------|
| floor                     | $\lfloor x  floor$    | largest integer not greater than $x$         |
| ceiling                   | $\lceil x  ceil$      | smallest integer not smaller than $x$        |
| binary logarithm          | $\lg x$ or $\log_2 x$ | $y$ such that $2^y=x$                        |
| natural logarithm         | $\ln x$ or $\log_e x$ | $y$ such that $e^y=x$                        |
| common logarithm          | $\log_{10} x$         | $y$ such that $10^y=x$                       |
| iterated binary logarithm | $\lg^* x$             | $0$ if $x \leq 1; \; \lg^*(\lg x)$ otherwise |
| harmonic number           | $H_n$                 | $1 + 1/2 + 1/3 + \ldots + 1/n$               |
| factorial                 | n!                    | $1\times 2\times 3\times \ldots + n$         |
| binomial coefficient      | $\binom{n}{k}$        | $\frac{n!}{k! \; (n-k)!}$                    |

#### Useful formulas and approximations.

Here are some useful formulas for approximations that are widely used in the analysis of algorithms.

- Harmonic sum:  $1+1/2+1/3+\ldots+1/n\sim \ln n$
- ullet Triangular sum:  $1+2+3+\ldots+n=n\left(n+1
  ight)/\left(2-n^2/2
  ight)$
- Sum of squares:  $1^2 + 2^2 + 3^2 + \ldots + n^2 \sim n^3 / 3$
- ullet Geometric sum: If r 
  eq 1 , then  $1 + r + r^2 + r^3 + \ldots + r^n = (r^{n+1} 1) \ / \ (r-1)$
- Geometric sum (r = 1/2):  $1+1/2+1/4+1/8+\ldots+1/2^n \sim 2$
- Geometric sum (r = 2):  $1+2+4+8+16+\ldots+n=2n-1\sim 2n$  , when n is a power of 2
- Stirling's approximation:  $\lg(n!) = \lg 1 + \lg 2 + \lg 3 + \ldots + \lg n \sim n \lg n$

- ullet Exponential:  $(1-1/n)^n \sim 1/e$
- ullet Binomial coefficients:  $inom{n}{k}\sim n^k \ / \ k!$  when k is a small constant
- ullet Approximate sum by integral: If f(x) is a monotonically increasing function, then  $\int_0^n f(x) \ dx \le \sum_{i=1}^n f(i) \le \int_1^{n+1} f(x) \ dx$

#### Properties of logarithms.

- Definition:  $\log_b a = c$  means  $b^c = a$ . We refer to b as the base of the logarithm.
- Special cases:  $\log_b b = 1$ ,  $\log_b 1 = 0$
- Inverse of exponential:  $b^{\log_b x} = x$
- Product:  $\log_b(x \times y) = \log_b x + \log_b y$
- Division:  $\log_b(x \div y) = \log_b x \log_b y$
- Finite product:  $\log_b(x_1 imes x_2 imes \ldots imes x_n) = \log_b x_1 + \log_b x_2 + \ldots + \log_b x_n$
- ullet Changing bases:  $\log_b x = \log_c x \ / \ \log_c b$
- Rearranging exponents:  $x^{\log_b y} = y^{\log_b x}$
- Exponentiation:  $\log_b(x^y) = y \log_b x$

### Aymptotic notations: definitions.

| NAME      | NOTATION                 | DESCRIPTION                                                                          | DEFINITION                                                                                             |
|-----------|--------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Tilde     | $f(n) \sim g(n)$         | f(n) is equal to $g(n)$ asymptotically (including constant factors)                  | $\lim_{n\to\infty}\frac{f(n)}{g(n)}=1$                                                                 |
| Big Oh    | f(n) is $O(g(n))$        | f(n) is bounded above by $g(n)$ asymptotically (ignoring constant factors)           | there exist constants $c>0$ and $n_0\geq 0$ such that $0\leq f(n)\leq c\cdot g(n)$ for all $n\geq n_0$ |
| Big Omega | $f(n)$ is $\Omega(g(n))$ | f(n) is bounded below by $g(n)$ asymptotically (ignoring constant factors)           | g(n) is $O(f(n))$                                                                                      |
| Big Theta | $f(n)$ is $\Theta(g(n))$ | f(n) is bounded above and below by $g(n)$ asymptotically (ignoring constant factors) | $f(n)$ is both $O(g(n))$ and $\Omega(g(n))$                                                            |
| Little oh | f(n) is $o(g(n))$        | f(n) is dominated by $g(n)$ asymptotically (ignoring constant factors)               | $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$                                                                 |

Little f(n) is f(n) dominates g(n) asymptotically g(n) is o(f(n)) omega  $\omega(g(n))$  (ignoring constant factors)

#### Common orders of growth.

| NAME         | NOTATION      | EXAMPLE                                                                                  | CODE FRAGMENT                                                                                                                   |
|--------------|---------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Constant     | O(1)          | array access<br>arithmetic operation<br>function call                                    | op();                                                                                                                           |
| Logarithmic  | $O(\log n)$   | binary search in a sorted array<br>insert in a binary heap<br>search in a red-black tree | for (int i = 1; i <= n; i = 2*i) op();                                                                                          |
| Linear       | O(n)          | sequential search<br>grade-school addition<br>BFPRT median finding                       | <pre>for (int i = 0; i &lt; n; i++)     op();</pre>                                                                             |
| Linearithmic | $O(n \log n)$ | mergesort<br>heapsort<br>fast Fourier transform                                          | <pre>for (int i = 1; i &lt;= n; i++)   for (int j = i; j &lt;= n; j = 2*j)     op();</pre>                                      |
| Quadratic    | $O(n^2)$      | enumerate all pairs<br>insertion sort<br>grade-school multiplication                     | <pre>for (int i = 0; i &lt; n; i++)   for (int j = i+1; j &lt; n; j++)     op();</pre>                                          |
| Cubic        | $O(n^3)$      | enumerate all triples Floyd–Warshall grade-school matrix multiplication                  | <pre>for (int i = 0; i &lt; n; i++)   for (int j = i+1; j &lt; n; j++)     for (int k = j+1; k &lt; n; k++)         op();</pre> |
| Polynomial   | $O(n^c)$      | ellipsoid algorithm for LP<br>AKS primality algorithm<br>Edmond's matching algorithm     |                                                                                                                                 |
| Exponential  | $2^{O(n^c)}$  | enumerating all subsets<br>enumerating all permutations<br>backtracing search            |                                                                                                                                 |

### Asymptotic notations: properties.

- Reflexivity: f(n) is O(f(n)).
- Constants: If f(n) is O(g(n)) and c>0, then  $c\cdot f(n)$  is O(g(n)).
- Products: If  $f_1(n)$  is  $O(g_1(n))$  and  $f_2(n)$  is  $O(g_2(n))$ , then  $f_1(n) \cdot f_2(n)$  is  $O(g_1(n) \cdot g_2(n))$ .
- ullet Sums: If  $f_1(n)$  is  $O(g_1(n))$  and  $f_2(n)$  is  $O(g_2(n))$ , then  $f_1(n)+f_2(n)$  is  $O(\max\{g_1(n),g_2(n)\})$ .
- Transitivity: If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n)).

- ullet Polynomials: Let  $f(n)=a_0+a_1n+\ldots+a_dn^d$  with  $a_d>0$  . Then, f(n) is  $\Theta(n^d)$  .
- Logarithms and polynomials:  $\log_b n$  is  $O(n^d)$  for every b>0 and every d>0.
- Exponentials and polynomials:  $n^d$  is  $O(r^n)$  for every r>0 and every d>0.
- Factorials: n! is  $2^{\Theta(n \log n)}$ .
- Limits: If  $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$  for some constant  $0 < c < \infty$  , then f(n) is  $\Theta(g(n))$  .
- Limits: If  $\lim_{n o \infty} rac{f(n)}{g(n)} = 0$ , then f(n) is O(g(n)) but not  $\Theta(g(n))$  .
- ullet Limits: If  $\lim_{n o\infty}rac{f(n)}{g(n)}=\infty$  , then f(n) is  $\Omega(g(n))$  but not O(g(n)) .

Here are some examples.

#### Divide-and-conquer recurrences.

For each of the following recurrences we assume T(1)=0 and that  $n \mathbin{/} 2$  means either  $\lfloor n \mathbin{/} 2 \rfloor$  or  $\lceil n \mathbin{/} 2 \rceil$  .

| RECURRENCE                              | T(n)                                      | <b>EXAMPLE</b>           |
|-----------------------------------------|-------------------------------------------|--------------------------|
| $T(n) = T(n \operatorname{/} 2) + 1$    | $\sim \lg n$                              | binary search            |
| T(n)=2T(n  /  2)+n                      | $\sim n \lg n$                            | mergesort                |
| T(n)=T(n-1)+n                           | $\sim rac{1}{2} n^2$                     | insertion sort           |
| T(n)=2T(n  /  2)+1                      | $\sim n$                                  | tree traversal           |
| T(n)=2T(n-1)+1                          | $\sim 2^n$                                | towers of Hanoi          |
| $T(n) = 3T(n  /  2) + \Theta(n)$        | $\Theta(n^{\log_2 3}) = \Theta(n^{1.58})$ | Karatsuba multiplication |
| $T(n) = 7T(n  /  2) + \Theta(n^2)$      | $\Theta(n^{\log_2 7}) = \Theta(n^{2.81})$ | Strassen multiplication  |
| $T(n) = 2T(n  /  2) + \Theta(n \log n)$ | $\Theta(n\log^2 n)$                       | closest pair             |

T

#### Master theorem.

Let  $a \ge 1, b \ge 2$ , and c > 0 and suppose that T(n) is a function on the non-negative integers that satisfies the divideand-conquer recurrence

$$T(n) = a \ T(n \, / \, b) + \Theta(n^c)$$

with T(0) = 0 and  $T(1) = \Theta(1)$ , where n / b means either  $\lfloor n / b \rfloor$  or either  $\lceil n / b \rceil$ .

- $\begin{array}{l} \bullet \ \ \mathrm{If} \ c < \log_b a, \ \mathrm{then} \ T(n) = \Theta(n^{\log_b a}) \\ \bullet \ \ \mathrm{If} \ c = \log_b a, \ \mathrm{then} \ T(n) = \Theta(n^c \log n) \\ \bullet \ \ \mathrm{If} \ c > \log_b a, \ \mathrm{then} \ T(n) = \Theta(n^c) \end{array}$

Remark: there are many different versions of the master theorem. The Akra-Bazzi theorem is among the most powerful.

Last modified on February 27, 2020.

Copyright © 2000–2019 Robert Sedgewick and Kevin Wayne. All rights reserved.