

02-2 Bayesian Optimization Demo

Application for Beam Injection Optimization at KARA Storage Ring

Chenran Xu, Andrea Santamaria Garcia, and the KARA operator team

KARA Storage Ring Injection Optimization

Goal:

Improve the injection rate from the booster to the storage ring KARA automatically

Motivation:

Manual trial-and-error

- Time consuming
- Easily stuck in local optima

Tool:

Bayesian optimization

- Global optimization
- Fast tuning

Figure adapted from D. Einfeld, The Injection Scheme for the ANKA Storage Ring, 1998

KARA Storage Ring Injection Optimization

- Circumference: 110.4 m
- Energy: 0.5 GeV (injection) → 2.5 GeV (radiation mode)
- Injection repetition rate 1 Hz
- Injection bump with 3 kicker magnets

Maximize the objective function

Injection Efficiency := $\frac{\text{net injected current in SR}}{\text{booster extraction current}}$

Figure adapted from D. Einfeld, The Injection Scheme for the ANKA Storage Ring, 1998

- In-house developed python packages (GPy for building the GP model)
- Pyepics / (caproto) for interaction with machine
- Containerized using singularity/docker (stable environment not affected by updates of control room PCs)
- Ready-to-use Jupyter notebooks
 - Choose parameter config file (range, PV names...)
 - Choose input parameters, kernel definition, etc.
 - · Choose acquisition, optimization steps

Chenran Xu

- Start optimization
- (Ongoing) build as softIOC and integrate into the control system → easier usage for operators

```
Initialize the optimizer
        noise_var=0.05,
       start_point = [499.74,176.2,0.005,380,590,460],
       conf="./conf/pv_new_magnet.json",)
Start Optimization
        file="./test/beamtime test.ison")
Other Useful commands
myopt.set best point() # Set to best point, will be run automatically after the op
myopt.get_injeff_with_var(n_avg=3, correct=True) # Check the current injection effi
myopt.set_param([176.8,400,640,480]) # Set the parameters manually, the order must m
```


GP Hyperparameters

- Signal variance
- Length-scales
- Noise variance
- Parameter Bounds

BO Demonstration

BO Demonstration

BO with UCB and EI acquisition compared with N-M

Exploration / convergence behaviour N-M sometimes gets stuck in local optima and needs to be restarted

Manual Tuning

Manual Tuning

Optimizations with comparable machine condition. Reduced injection time for 100 mA from 30 min to 18 min.

Caveat... in real world application

- BO best for **stationary problem**, need additional techniques to include time-varying process (magnet heating up etc.)
- Exploration / large steps can lead to undesired conditions (beam loss, machine protection)...
 - Used currently more as "optimize and set" rather than continuously tracking the optimum setting
- Convergence to global optimum not guaranteed, still affected by noisy readback values; sometimes
 multiple runs required

Mitigations require modifications of the "normal" BO

- Contextual optimization
- · Including safety constraints
- Dynamic adapting exploration-exploitation trade-off
- Preference on smaller parameter changes
- ...

Backup

BO runs for commissioning when switching to new magnets power supplies

Manual baseline outperformed in most cases

12

Backup

Example of an injection bump orbit found by BO (blue line) compared to reference orbit (grey dashed)

Backup

