for $C^s_{-(s-n)}$ an arbitrary component of the master field C. Taking $m \to -m$ in the set of equations (), (20), () and s=m+1 in (), we can iteratively determine the dependence of the C^{m+1}_m on the C^1_0 . From the equation () we obtain

$$\partial_z C_{-m}^{m+1} + \frac{e^{\rho}}{2} g_3^{2(m+2)}(1, -m-1) C_{-m-1}^{m+2} = 0$$
 (1)

taking into consideration that for certain components C_n^s it is required $|n| \leq s-1$ this iteratively leads to relation of C_m^{m+1} and C_0^1 , and from the () analogously for C_{-m}^{m+1} and C_0^1 . The general form of the C_\pm^s is then given in terms of $C_{\pm m}^{m+1}$ and coefficients $g_u^{ts}(m,n)$. Knowing C_\pm^s and $C_{\pm m}^{m+1}$ allows to obtain

$$(\delta C)_0^1 = \sum_{n=1}^s f_{\pm}^{s,n}(\lambda) \partial_z^{n-1} \Lambda^{(s)} \partial_z^{s-n} \phi$$
 (2)

for $\phi \equiv C_0^1$ and $f_\pm^{s,n}(\lambda)$ expressed in terms of coefficients $g_u^{st}(m,n)$ Using the replacement $\partial_\rho \to -(1\pm\lambda)$ and writing explicitly first few n values for $f_\pm^{s,n}(\lambda)$, allows to determine its general expression

$$f_{\pm}^{s,n}(\lambda) = (-1)^s \frac{\Gamma(s+\lambda)}{\Gamma(s-n+1\pm\lambda)} \frac{1}{2^{n-1}(2(\frac{n}{2}-1))!! (\frac{n-1}{2})!}$$

$$\times \prod_{j=1}^{\frac{n-1}{2}} \frac{s+1-n}{2s-2j-1}.$$
 (3)

Substituting () in () one obtains the variation of the scalar field $\,$

$$(\delta C)_{0}^{1} = \sum_{n=1}^{s} (-1)^{s} \frac{\Gamma(s \pm \lambda)}{\Gamma(s - n + 1 \pm \lambda)} \frac{1}{2^{n-1} \left(2\left(\frac{n}{2}\right) - 1\right)!! \left(\frac{n-1}{2}\right)!} \times \prod_{j=1}^{\left(\frac{n-1}{2}\right)} \frac{s + j - n}{2s - 2j - 1} \partial_{z}^{n-1} \Lambda^{(s)} \partial_{z}^{s-n} C_{0}^{1}.$$
(4)

To consider the coefficient in front, we focus on the term with the lowest number of ∂_z derivatives on the gauge field $\Lambda^{(s)}$, obtained for n=1. Then, () becomes

$$(\delta C)_0^1|_{n=1} = (-1)^s \Lambda^{(s)} \partial^{s-1} C_0^1.$$
 (5)

To obtain the linearised equation of motion for the scalar field we act on () with KG operator (). This can be written as

$$\Box_{KG}\tilde{C}_0^1 = \Box_{KG}C_0^1 + \Box_{KG}\delta C_0^1. \tag{6}$$

Taking $\partial_{\rho} \to (1 \pm \lambda)$ in $f_{\pm}^{s,n}(\lambda)$ we have taken and considering the term with highest number of derivatives on C_0^1 leads to

$$\Box_{KG}|_{\text{highest number of derivatives}}(\delta C)_0^1 = \tag{7}$$

$$= (-1)^s 4e^{-2\rho} \partial(\bar{\partial}\Lambda^{(s)}\partial^{(s-1)}C_0^1) \tag{8}$$

$$= (-1)^s 4e^{-2\rho} [\partial \bar{\partial} \bar{\Lambda}^{(s)} \partial^{(s-1)} C_0^1 + \bar{\partial} \Lambda^{(s)} \partial^s C_0^1]$$

$$+ \partial \Lambda^{(s)} \bar{\partial} \partial^{(s-1)} C_0^1 + \Lambda^{(s)} \bar{\partial} \partial^s C_0^1]. \tag{9}$$

The term in () that is of further interest is the one multiplying $4e^{-2\rho}\partial\bar{\partial}$ acting on δC_0^1 which is convenient to compute in the metric formulation.

I. METRIC FORMULATION

In the metric formulation we can express the higher spin field of arbitrary spin s with

$$\phi_{\mu_1....\mu_s} = tr\left(\tilde{e}_{(\mu_1}...\tilde{e}_{\mu_{s-1}}\tilde{E}_{\mu_s)}\right)$$
 (10)

where $\tilde{E}_{\mu s} = \tilde{A}_{\mu} - \tilde{\bar{A}}_{\mu}$ and \tilde{A}_{μ} and $\tilde{\bar{A}}_{\mu}$ we define below. The dreibein is determined from the background AdS metric ()

$$e_z = \frac{1}{2}e^{\rho}(L_1 + L_{-1}) = \frac{1}{2}e^{\rho}(V_1^2 + V_{-1}^2)$$
 (11)

$$e_{\bar{z}} = \frac{1}{2}e^{\rho}(L_1 - L_{-1}) = \frac{1}{2}e^{\rho}(V_1^2 - V_{-1}^2)$$
 (12)

$$e_{\rho} = L_0 = V_0^2. \tag{13}$$

The invariance of the equation () under the gauge transformation for $hs[\lambda] \oplus hs[\lambda]$ for the fields A means

$$A \to A + d\Lambda + [A, \Lambda]_{\star} \equiv \tilde{A}$$
 (14)

$$\bar{A} \to \bar{A} + d\bar{\Lambda} + \left[\bar{A}, \bar{\Lambda}\right]_{\star} \equiv \tilde{\bar{A}}.$$
 (15)

Since Λ parameter is chiral it means $\bar{\Lambda} = 0$ and the field \tilde{A} is essentially unchanged. The field \tilde{A}_{μ} is then

$$\tilde{A} = A_{AdS} + d\Lambda + [A_{AdS}, \Lambda]_{\star}. \tag{16}$$

 $d\Lambda$ reads

$$d\Lambda = \sum_{n=1}^{2s-1} \frac{1}{(n-1)!} V_{s-n}^s e^{(s-n)\rho} [(-\partial)^{n-1} \partial \Lambda^{(s)}(z,\bar{z}) dz \quad (17)$$

$$+ (-\partial)^{n-1} \bar{\partial} \Lambda^{(s)}(z,\bar{z}) d\bar{z} + (-\partial)^{n-1} \Lambda^{(s)}(z,\bar{z}) (s-n) d\rho$$
(18

and

$$[A_{AdS}, \Lambda]_{\star} = [e^{\rho} V_1^2 dz + V_0^2 d\rho,$$

$$\sum_{n=1}^{2s-1} \frac{1}{(n-1)!} (-\partial)^{n-1} \Lambda^{(s)}(z, \bar{z}) e^{(s-n)\rho} V_{s-n}^s]$$
(19)

To read out the coupling we focus on $\bar{z}....\bar{z}$ component of the field C_0^1 with lowest number of derivatives on gauge field $\Lambda^{(s)}$. The \star multiplication of the dreibeins in () in that case contributes only with first $g_u^{st}(m,n;\lambda)$ coefficient with the each following dreibein that is being multiplied. More explicitly

$$e_{\bar{z}} \star e_{\bar{z}} = \frac{1}{2^2} e^{2\rho} \left(V_1^2 - V_{-1}^2 \right) \star \left(V_1^2 - V_{-1}^2 \right)$$
 (20)

From () we notice that the lowest number of derivatives on Λ will appear for lowest n, i.e. for n=1 in summation (). Knowing the relation for the trace of higher spin generators, the required generator V_{s-n}^s will than