Question number	Answer		Mark
18(a)	• Use of $E_k = \frac{1}{2} m v^2$	1	
	• Use of $V = Q / 4\pi \epsilon_0 r$ and $W = QV$	1	
	• Use of $F = Q_1Q_2 / 4\pi\epsilon_0 r^2$	1	
	• Use of $F = ma$	l	(=)
	• $a = 4.2 \times 10^{27} \text{ m s}^{-2}$	1	(5)
	Example of calculation $E_k = \frac{1}{2} \times 6.64 \times 10^{-27} \text{ kg} \times (1.74 \times 10^7 \text{ m s}^{-1})^2$ = 1.01 × 10 ⁻¹² J		
	$1.01 \times 10^{-12} \text{ J} = \frac{2 \times 1.6 \times 10^{-19} \text{ C} \times 79 \times 1.6 \times 10^{-19} \text{ C}}{4 \times \pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times r}$		
	$r = 3.60 \times 10^{-14} \mathrm{m}$		
	$F = \frac{2 \times 1.6 \times 10^{-19} \text{ C} \times 79 \times 1.6 \times 10^{-19} \text{ C}}{4 \times \pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times (3.60 \times 10^{-14} \text{ m})^2}$		
	= 28.1 N		
	$a = 28.1 \text{ N} / 6.64 \times 10^{-27} \text{ kg}$ $a = 4.23 \times 10^{27} \text{ m s}^{-2}$		
18(b)	alpha particle does not ever have zero speed/ke	1	
	• so not all of the energy has been transferred from the kinetic energy		(4)
	store to the electric potential energy store		
	• it is not as close to the nucleus	1	
	Or minimum r is greater		
	• so (max) force is less, so (max) acceleration is less	1	
	20 (11) 10.100 10 1000, 00 (11) 4000101411011 10 1000	1	
	Total for Question 18	1	9