Basic Electronic Circuits (IEC-103)

Lecture-14

555 Timer

555 IC

The IC 555 is an 8-pin Integrated Circuit (IC) that is capable of producing accurate time delays and/or oscillations.

555 IC

The IC 555 is an 8-pin Integrated Circuit (IC) that is capable of producing accurate time delays and/or oscillations.

DIP chip (Dual-Inline package)

555 IC (Internal Circuit Diagram)

555 IC (Internal Circuit Diagram)

555 IC (Internal Circuit Diagram)

Truth Table of RS Flip Flop

<u> </u>			
S	R	Q	State
0	0	Previous State	No Change
0	1	0	Reset
1	0	1	Set
1	1	?	Forbidden

Modes of Operation

Modes of Operation

Time Delay Mode

In the time delay mode, the delay is controlled by one external resistor and capacitor.

Example: Turn a light on in a delayed amount of time (just turn on or off once)

Modes of Operation

Time Delay Mode

In the time delay mode, the delay is controlled by one external resistor and capacitor.

Example: Turn a light on in a delayed amount of time (just turn on or off once)

Oscillator Mode

In the oscillator mode, the frequency of oscillation are controlled with two external resistors and one capacitor.

Example: Can make a light flash a specific rate (can turn on and off repeatedly)

Mono stable Multivibrator Output pulse duration

Output pulse duration

$$v_c = V_{CC} \left(1 - e^{-t/RC} \right)$$

Output pulse duration

$$v_c = V_{CC} \left(1 - e^{-t/RC} \right)$$

$$v_c = V_{TH} = \frac{2}{3}V_{CC} \text{ at } t = T$$

Output pulse duration

$$v_c = V_{CC} \left(1 - e^{-t/RC} \right)$$

$$v_c = V_{TH} = \frac{2}{3}V_{CC} \text{ at } t = T$$

$$T = RCln(3) = 1.1RC$$

$$v_c(t) = v_c(\infty) + (v_c(0) - v_c(\infty))e^{-t/((R_A + R_B)C)}$$

$$v_c(t) = v_c(\infty) + (v_c(0) - v_c(\infty))e^{-t/((R_A + R_B)C)}$$

$$v_c(T_{ON}) = V_{TH} = V_{CC} + (V_{TL} - V_{CC})e^{-T_{ON}/((R_A + R_B)C)}$$

$$v_c(t) = v_c(\infty) + (v_c(0) - v_c(\infty))e^{-t/((R_A + R_B)C)}$$

$$v_c(T_{ON}) = V_{TH} = V_{CC} + (V_{TL} - V_{CC})e^{-T_{ON}/((R_A + R_B)C)}$$

$$(2/3)V_{CC} = V_{CC} + ((1/3)V_{CC} - V_{CC})e^{-T_{ON}/((R_A + R_B)C)}$$

$$v_c(t) = v_c(\infty) + (v_c(0) - v_c(\infty))e^{-t/((R_A + R_B)C)}$$

$$v_c(T_{ON}) = V_{TH} = V_{CC} + (V_{TL} - V_{CC})e^{-T_{ON}/((R_A + R_B)C)}$$

$$(2/3)V_{\rm CC} = V_{\rm CC} + ((1/3)V_{\rm CC} - V_{\rm CC})e^{-T_{\rm ON}/((R_A + R_B)C)}$$

$$(2/3) = 1 + ((1/3) - 1)e^{-T_{ON}/((R_A + R_B)C)}$$

$$(2/3) = 1 + ((1/3) - 1)e^{-T_{ON}/((R_A + R_B)C)}$$

$$(2/3) = 1 + ((1/3) - 1)e^{-T_{ON}/((R_A + R_B)C)}$$

$$\Rightarrow (2/3)e^{-T_{\text{ON}}/((R_A+R_B)C)} = (1/3)$$

$$(2/3) = 1 + ((1/3) - 1)e^{-T_{ON}/((R_A + R_B)C)}$$

$$\Rightarrow (2/3)e^{-T_{\text{ON}}/((R_A+R_B)C)} = (1/3)$$

$$\Rightarrow e^{-T_{\text{ON}}/((R_A + R_B)C)} = (1/2)$$

$$(2/3) = 1 + ((1/3) - 1)e^{-T_{ON}/((R_A + R_B)C)}$$

$$\Rightarrow (2/3)e^{-T_{\text{ON}}/((R_A+R_B)C)} = (1/3)$$

$$\Rightarrow e^{-T_{\text{ON}}/((R_A + R_B)C)} = (1/2)$$

$$\Rightarrow$$
 $-\mathrm{T_{ON}}/((R_A + R_B)C) = ln(1/2)$

$$\Rightarrow -T_{\rm ON}/((R_A + R_B)C) = \ln(1/2)$$

$$\Rightarrow$$
 $-\mathrm{T}_{\mathrm{ON}}/((R_A + R_B)C) = ln(1/2)$

$$\Rightarrow$$
 T_{ON} = $(R_A + R_B)C ln(2)$

$$\Rightarrow$$
 $-\mathrm{T}_{\mathrm{ON}}/((R_A + R_B)C) = ln(1/2)$

$$\Rightarrow$$
 T_{ON} = $(R_A + R_B)C ln(2)$

$$\Rightarrow$$
 T_{ON} = 0.69($R_A + R_B$) C

Mono stable Multivibrator Turn off time calculation

$$v_c(t) = v_c(0)e^{-t/R_BC}$$

$$v_c(t) = v_c(0)e^{-t/R_BC}$$

$$v_c(T_{OFF}) = V_{TL} = \frac{1}{3}V_{CC} = \frac{2}{3}V_{CC}e^{-T_{OFF}/R_BC}$$

$$v_c(t) = v_c(0)e^{-t/R_BC}$$

$$v_c(T_{OFF}) = V_{TL} = \frac{1}{3}V_{CC} = \frac{2}{3}V_{CC}e^{-T_{OFF}/R_BC}$$

$$\Rightarrow e^{-T_{\rm ON}/R_BC} = 1/2$$

$$v_c(t) = v_c(0)e^{-t/R_BC}$$

$$v_c(T_{OFF}) = V_{TL} = \frac{1}{3}V_{CC} = \frac{2}{3}V_{CC}e^{-T_{OFF}/R_BC}$$

$$\Rightarrow e^{-T_{\rm ON}/R_BC} = 1/2$$

$$\Rightarrow$$
 $-T_{OFF}/R_BC = ln(1/2)$

$$\Rightarrow$$
 $-T_{OFF}/R_BC = ln(1/2)$

$$\Rightarrow$$
 $-T_{OFF}/R_BC = ln(1/2)$

$$\Rightarrow$$
 T_{OFF} = $R_B C ln(2)$

$$\Rightarrow$$
 $-T_{OFF}/R_BC = ln(1/2)$

$$\Rightarrow$$
 T_{OFF} = $R_B C ln(2)$

$$\Rightarrow$$
 T_{OFF} = 0.69 R_BC

$$T = T_{ON} + T_{OFF} = 0.69(R_A + R_B)C + 0.69R_BC$$

$$T = T_{ON} + T_{OFF} = 0.69(R_A + R_B)C + 0.69R_BC$$

$$T = T_{ON} + T_{OFF} = 0.69(R_A + 2R_B)C$$

$$T = T_{ON} + T_{OFF} = 0.69(R_A + R_B)C + 0.69R_BC$$

$$T = T_{ON} + T_{OFF} = 0.69(R_A + 2R_B)C$$

DutyRatio =
$$\frac{T_{ON}}{T} = \frac{T_{ON}}{T_{ON} + T_{OFF}} = \frac{0.69(R_A + R_B)C}{0.69(R_A + 2R_B)C} = \frac{(R_A + R_B)C}{(R_A + 2R_B)C}$$

☐ A transistor is an electronic device capable of achieving amplification of weak signals.

- ☐ A transistor is an electronic device capable of achieving amplification of weak signals.
- ☐ Before semiconductor transistors, vacuum tubes were used for amplification which were bulky and needed more power for operation.

- ☐ A transistor is an electronic device capable of achieving amplification of weak signals.
- ☐ Before semiconductor transistors, vacuum tubes were used for amplification which were bulky and needed more power for operation.

Advantages of transistors over vacuum tubes

- Advantages of transistors over vacuum tubes
 - Very Small in size and weight thus reducing the equipment size.

- Advantages of transistors over vacuum tubes
 - Very Small in size and weight thus reducing the equipment size.
 - large numbers of extremely small transistors can be manufactured as a single integrated circuit.

- Advantages of transistors over vacuum tubes
 - Very Small in size and weight thus reducing the equipment size.
 - large numbers of extremely small transistors can be manufactured as a single integrated circuit.
 - Less power hungry and more efficient.

- Advantages of transistors over vacuum tubes
 - Very Small in size and weight thus reducing the equipment size.
 - large numbers of extremely small transistors can be manufactured as a single integrated circuit.
 - Less power hungry and more efficient.
 - More life.

- Advantages of transistors over vacuum tubes
 - Very Small in size and weight thus reducing the equipment size.
 - large numbers of extremely small transistors can be manufactured as a single integrated circuit.
 - Less power hungry and more efficient.
 - More life.
 - Mechanically strong.

- Advantages of transistors over vacuum tubes
 - Very Small in size and weight thus reducing the equipment size.
 - large numbers of extremely small transistors can be manufactured as a single integrated circuit.
 - Less power hungry and more efficient.
 - More life.
 - Mechanically strong.
- ☐ Invented in 1948 in Bell Labs.

First Working Transistor

First Working Transistor

Invented by
Shockley,
Bardeen, and
Brattain.

Jointly awarded Nobel Prize in Physics in 1956.

☐ Transistors are unidirectional current carrying devices with capability to control the current flowing through them.

- ☐ Transistors are unidirectional current carrying devices with capability to control the current flowing through them.
- ☐ The switch current can be controlled by either current or voltage.

- ☐ Transistors are unidirectional current carrying devices with capability to control the current flowing through them.
- ☐ The switch current can be controlled by either current or voltage.
- ☐ They can be used either as switches or as amplifiers.

☐ Transistor: 'Transfer'+ 'resistance'. It transfers current from low resistance circuit to a high resistance circuit.

- ☐ Transistor: 'Transfer'+ 'resistance'. It transfers current from low resistance circuit to a high resistance circuit.
- ☐ It is 3 terminal device.

- ☐ Transistor: 'Transfer'+ 'resistance'. It transfers current from low resistance circuit to a high resistance circuit.
- ☐ It is 3 terminal device.
- Two types of transistors
 - Bipolar Junction Transistors (BJT)
 - Field Effect Transistors (FET)

- ☐ Transistor: 'Transfer'+ 'resistance'. It transfers current from low resistance circuit to a high resistance circuit.
- It is 3 terminal device.
- Two types of transistors
 - Bipolar Junction Transistors (BJT)
 - Field Effect Transistors (FET)
- ☐ Two types BJTs
 - NPN Transistor
 - PNP Transistor

BJT Construction

(a) Basic epitaxial planar structure

Transistor Symbol

Transistor Construction

Transistor Construction

☐ Consists of 3 sections and 2 junctions.

Transistor Construction

- ☐ Consists of 3 sections and 2 junctions.
- ☐ 3 sections are Emitter, Base, and Collector

Transistor Construction

- ☐ Consists of 3 sections and 2 junctions.
- ☐ 3 sections are Emitter, Base, and Collector
- ☐ The base is very thin and collector is much wider then emitter

Transistor Construction

- □ Consists of 3 sections and 2 junctions.
- 3 sections are Emitter, Base, and Collector
- ☐ The base is very thin and collector is much wider then emitter
- ☐ The base is very lightly doped, emitter is heavily doped and collector is moderately doped.

BJT Operation showing Electron Flow

$$I_E = I_B + I_C$$

$$I_E = I_B + I_C$$

$$I_C = \alpha I_E$$
$$I_C = \beta I_B$$

Transistor Symbols

Transistor Symbols

Arrow indicates the direction of conventional current flow with forward bias.