Shimmer IMU sensors

HARDWARE

- •ACCELEROMETER (3D): measures the change in velocity
- •GYROSCOPE (3D): measures the angular velocity
- •MAGNETOMETER (3D): measures the strength of the magnetic field

HARDWARE ACCELEROMETER

$$\underline{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} = \begin{bmatrix} a_I \cos(\theta_x) + g \cos(\varphi_x) \\ a_I \cos(\theta_y) + g \cos(\varphi_y) \\ a_I \cos(\theta_z) + g \cos(\varphi_z) \end{bmatrix},$$

HARDWARE GYROSCOPE

$$\underline{\omega} = \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} \omega \cos(\beta_x) \\ \omega \cos(\beta_y) \\ \omega \cos(\beta_z) \end{bmatrix},$$

HARDWARE MAGNETOMETER

$$\underline{m} = \begin{bmatrix} m_x \\ m_y \\ m_z \end{bmatrix} = \begin{bmatrix} m\cos(\alpha_x) \\ m\cos(\alpha_y) \\ m\cos(\alpha_z) \end{bmatrix}$$

SOFTWARE

Data we actually get from each device have this format

ACCELEROMETER			GYROSCOPE			MAGNETOMETER		
X axes	Y axes	Z axes	X axes	Y axes	Z axes	X axes	Y axes	Z axes
-0.6381260517 -0.6380077624 -0.5673273650 	-0.85463565892 -0.81825331906 -0.79494647771 • • • 4.72064493121 4.72026912372 4.79104052609	9.99691863372 10.0087475664 9.93393015842 • • • 8.81426530854 8.78964565140 8.69044442106	-1.30603847151 -1.06992021997 -0.83719184135 • • • 1.24207108972 1.79285476800 0.98309672126	0.77993576999 0.84110720293 0.91757149411 • • • 1.66692154763 1.03991435999 0.55054289646	-1.71018442341 -1.11508475673 -0.85897238112 • • • 1.24207108972 1.79285476800 0.98309672126	0.61133603238 0.61133603238 0.61133603238 0.61740890688 0.61740890688 0.61740890688	-0.64372469635 -0.64372469635 -0.62348178137 -0.02834008097 0.02834008097 0.02834008097	0.72 0.72 0.72 0.72 • • • 0.81500000000 0.815000000001 0.815000000000

They are calibrated so we get them in known SI metrics

SOFTWARE

The output is described by:

$$\underline{Y} = Kr\underline{u} + \underline{b} + \underline{n}$$

$$\underline{Y} = \begin{bmatrix} Y_X \\ Y_Y \\ Y_Z \end{bmatrix} \quad \text{,} \quad \underline{v} = \begin{bmatrix} v_X \\ v_Y \\ v_Z \end{bmatrix} \quad \text{,} \quad K = \begin{bmatrix} k_X & 0 & 0 \\ 0 & k_Y & 0 \\ 0 & 0 & k_Z \end{bmatrix} \quad \text{,} \quad R = \begin{bmatrix} r_{X'X} & r_{X'Y} & r_{X'Z} \\ r_{Y'X} & r_{Y'Y} & r_{Y'Z} \\ r_{Z'X} & r_{Z'Y} & r_{Z'Z} \end{bmatrix} \quad \text{,} \quad \underline{b} = \begin{bmatrix} b_X \\ b_Y \\ b_Z \end{bmatrix} \quad \text{ and } \quad \underline{n} = \begin{bmatrix} n_X \\ n_Y \\ n_Z \end{bmatrix}$$

K	Sensor's scale factor			
r	is the rotation matrix which defines the actual sensor axes			
u	value of the sensed phenomenon			
b	is the offset bias vector			
n	is the noise vector			

THIS PROJECT

What we do

Characterizing four hand movements using all three 3D sensors

- up
- 2. Down
- 3. Right
- 4. Left

How we do it

- gather measurements (samples) from all sensors for each movement
- Repeat each movement 10 times

...so actually we got 40 experiment sets from samples

THIS PROJECT

... and Visually

DATA ANALYSIS METHODOLOGY

Training phase

- Choose 7/10 experiment sets of each movement and elaborate them at the same time so we end up with 28 training sets
- From each training set we extract the values below, to use them as features in clustering Mean / Rms /Std/ Median
- Using features above to separate into cluster our dataset expecting to get four clusters each labeled as one from our movements

Testing phase

- Take the 3/10 experiment sets that left from each movement total sets (12 testing sets)
- Extract Mean / Rms /Std/ Median values from each set
- Run clustering with the above
- Check the correctness of the results

Mean: average of all numbers

sample
$$x_1, x_2, \ldots, x_n$$

$$ar{x}=rac{1}{n}\left(\sum_{i=1}^n x_i
ight)=rac{x_1+x_2+\cdots+x_n}{n}$$

Median: the middle number in a set of data

Rms (root mean square): the square root of the mean square

n values
$$\{x_1, x_2, \ldots, x_n\}$$

$$x_{
m rms} = \sqrt{rac{1}{n} \left(x_1^2 + x_2^2 + \cdots + x_n^2
ight)}$$

Std (standard deviation): quantifies the amount of variation or dispersion of a set of data values $\{x_1, x_2, ..., x_N\}$ are the observed values of the sample items,

$$s = \sqrt{rac{\sum_{i=1}^{N}(x_i - \overline{x})^2}{N-1}}.$$

 \overline{x} is the mean value

Data we actually analyze

n-by-p data matrix

n: number of observations (28 = 4movements * 7experiments)

p: features used (4 from each device → 36 features)

CLUSTER ANALYSIS METHOD

Kmeans

Parameters

Dataset: 28*36 matrix

• k=4

Distance metric: cityblock

Why Cityblock?

- Is a metric (36-dimensional)
- Is better in calculating distances in more than two dimensions
- Defined on \mathbb{R}^n

$$d\left(a,b
ight) =\sum_{i=1}^{n}\leftert b_{i}-a_{i}
ightert$$

a and b are vectors in \mathbb{R}^n with $a=(a_1,\ldots,a_n)$ and $b=(b_1,\ldots,b_n)$

RESULTS