Elitarny Algorytm Genetyczny (EGA) dla Problemu Zbioru Plonów Zad 1b

Michał Zarzycki 184856, Michał Kolada 189729

1 Cel Projektu

Celem projektu było zaimplementowanie Elitarnego Algorytmu Genetycznego (EGA) w celu rozwiazania problemu zbioru plonów, który jest zadaniem optymalizacji z ograniczeniami. Problem ten polega na maksymalizacji funkcji celu, która reprezentuje całkowita wydajność zbioru, przy jednoczesnym spełnieniu równania wzrostu oraz nałożonych ograniczeń. W szczególności celem było uzyskanie maksymalnej wydajności zbioru, przy zachowaniu stanu poczatkowego i końcowego równego oraz nieujemnych wartości dla zbiorów.

Wyniki porównano z rozwiazaniem przedstawionym w ksiażce: Michalewicz Z., (1996): Algorytmy genetyczne + struktury danych = programy ewolucyjne, WNT Warszawa.

2 Opis Problemu

Problem zbioru plonów można opisać nastepujaca funkcja celu:

$$J = \sum_{k=0}^{N-1} \sqrt{u_k} \tag{1}$$

przy ograniczeniach:

• Równanie wzrostu:

$$x_{k+1} = a \cdot x_k - u_k \tag{2}$$

 $\bullet \; \mbox{Ograniczenia sterowania:}$

$$u_k > 0$$
, dla $k = 0, 1, \dots, N - 1$ (3)

• Ograniczenie równości:

$$x_0 = x_N \tag{4}$$

Gdzie:

- \bullet J funkcja celu reprezentujaca całkowita wydajność zbioru,
- u_k ilość zbioru w okresie k,
- x_k stan systemu w okresie k,
- $\bullet \ a$ współczynnik wzrostu,
- N liczba okresów,
- x_0 stan poczatkowy.

2.1 Rozwiazanie Analityczne

Dla tego problemu można wyprowadzić rozwiazanie analityczne, które pozwala obliczyć optymalne wartości sterowań u_k oraz maksymalna wartość funkcji celu J^* .

2.1.1 Optymalna Wartość Funkcji Celu

Optymalna wartość funkcji celu J^* oblicza sie ze wzoru:

$$J^* = \sqrt{\frac{x_0 \left(a^N - 1\right)^2}{(a-1)a^{N-1}}} \tag{5}$$

2.1.2 Optymalne Sterowania

Optymalne sterowania u_k dla $k=1,2,\ldots,N$ wyrażaja sie wzorem:

$$u_k = \frac{x_0 \left(a^N - 1 \right)}{N \cdot a^{N-k}} \tag{6}$$

2.2 Obliczenia Dla Parametrów Problemu

Dla danych:

- a = 1,1,
- $x_0 = 100$,
- Różne wartości N (np. N = 2, 4, 10, 20, 45).

2.2.1 Przykład Obliczeń dla N=2

Obliczamy optymalna wartość funkcji celu oraz sterowania.

Optymalna Wartość Funkcji Celu

$$J^* = \sqrt{\frac{100 (1,1^2 - 1)^2}{(1,1-1) \cdot 1,1^{2-1}}}$$

$$= \sqrt{\frac{100 (1,21-1)^2}{0,1 \cdot 1,1}}$$

$$= \sqrt{\frac{100 \cdot 0,0441}{0,11}}$$

$$= \sqrt{\frac{4,41}{0,11}}$$

$$= \sqrt{40,0909}$$

$$\approx 6,3317$$

Optymalne Sterowania Dla k = 1:

$$u_1 = \frac{100 (1,1^2 - 1)}{2 \cdot 1,1^{2-1}}$$
$$= \frac{100 \cdot 0,21}{2 \cdot 1,1}$$
$$= \frac{21}{2,2}$$
$$\approx 9,5455$$

Dla k = 2:

$$u_2 = \frac{100 (1,1^2 - 1)}{2 \cdot 1,1^{2-2}}$$
$$= \frac{100 \cdot 0,21}{2 \cdot 1,1^0}$$
$$= \frac{21}{2}$$
$$= 10,5$$

2.2.2 Interpretacja Wyników

Dla N=2, optymalne sterowania to $u_1\approx 9,5455$ oraz $u_2=10,5$, a maksymalna wartość funkcji celu wynosi $J^*\approx 6,3317$.

2.2.3 Obliczenia dla Innych Wartości N

Podobne obliczenia można przeprowadzić dla innych wartości N. Na przykład dla $N=4,\ N=10,\ N=20$ i N=45, co pozwala porównać wyniki algorytmu EGA z rozwiazaniem analitycznym.

2.3 Znaczenie Rozwiazania Analitycznego

Rozwiazanie analityczne stanowi punkt odniesienia dla wyników uzyskanych za pomoca algorytmu genetycznego. Pozwala to na ocene skuteczności i dokładności algorytmu EGA w rozwiazywaniu problemu zbioru plonów.

3 Elitarny Algorytm Genetyczny (EGA)

Elitarny Algorytm Genetyczny (EGA) jest jednym z wariantów algorytmów genetycznych, który korzysta z idei elitarności, polegającej na bezpośrednim przenoszeniu najlepszych osobników do nastepnej generacji. Celem algorytmu było zoptymalizowanie wartości zbiorów u_k , aby zmaksymalizować funkcje celu, spełniając wszystkie ograniczenia.

3.1 Parametry Algorytmu

- Parametry problemu:
 - Współczynnik wzrostu a=1,1
 - Stan poczatkowy $x_0 = 100$
 - Liczba okresów N = [2, 4, 10, 20, 45]
- Parametry algorytmu:

- Rozmiar populacji: 20 000 osobników

– Liczba generacji: 500

– Współczynnik mutacji: 0,1
– Współczynnik elitarności: 5%

3.2 Populacja Osobników

- Reprezentacja osobników: Każdy osobnik był wektorem rzeczywistych liczb reprezentujacych wartości zbiorów w poszczególnych okresach $(u = [u_0, u_1, \dots, u_{N-1}])$.
- Inicjalizacja populacji: Wartości u_k były inicjalizowane losowo z zakresu $[0, a \cdot x_0]$, przy zachowaniu ograniczeń problemu, jak zaimplementowano w funkcji initialize_population.

3.3 Funkcja Celu i Ograniczenia

Funkcja celu była maksymalizowana zgodnie ze wzorem:

$$J = \sum_{k=0}^{N-1} \sqrt{u_k} \tag{7}$$

Do oceny przystosowania osobników użyto funkcji calculate_fitness, która uwzgledniała kary za niespełnienie ograniczeń, takie jak nieujemność wartości zbiorów i stanów oraz spełnienie warunku $x_0 = x_N$.

3.4 Selekcja, Krzyżowanie i Mutacja

- Selekcja: Selekcja turniejowa została zaimplementowana w funkcji tournament_selection, gdzie osobniki były wybierane w grupach po 5, a do nastepnej generacji wybierano osobniki o najwyższej wartości funkcji celu.
- Krzyżowanie: Zastosowano zaawansowane krzyżowanie BLX-Alpha dla genów rzeczywistych, co pozwoliło na efektywna eksploracje przestrzeni rozwiazań.
- Mutacja: Do potomstwa stosowano mutacje niejednorodna, która dynamicznie zmieniała zakres mutacji w zależności od numeru generacji, co umożliwiało precyzyjniejsze dostrajanie rozwiazań w późniejszych etapach algorytmu.

3.5 Elitarność

Najlepsze 5% osobników było bezpośrednio przenoszone do nastepnej generacji bez zmian. Elitarność była stosowana w każdej iteracji algorytmu, co umożliwiało zachowanie najlepszych rozwiazań przez cały proces ewolucji.

4 Implementacja Algorytmu

Algorytm został zaimplementowany jako klasa EGA. Algorytm iterował przez określona liczbe generacji, w każdej z nich obliczajac przystosowanie, wybierajac elite, przeprowadzajac selekcje, krzyżowanie i mutacje oraz zapewniajac spełnienie wszystkich ograniczeń. Do obliczeń wykorzystano akceleracje na GPU (cuda), co znaczaco przyspieszyło proces ewolucji dla dużych rozmiarów populacji.

5 Porównanie Wyników z Rozwiazaniem Analitycznym

W celu weryfikacji działania algorytmu obliczono również rozwiazanie analityczne, zaimplementowane w pliku analytical_solution.py. Rozwiazanie to pozwalało uzyskać optymalne wartości zbiorów i funkcji celu, z którymi porównano wyniki uzyskane przez EGA. W poniższej tabeli przedstawiono porównanie wyników dla różnych wartości N:

N	Wartość funkcji celu (EGA)	Wartość funkcji celu (analityczna)	Różnica
2	6,3374	6,3317	0,0057
4	12,7257	12,7210	0,0047
10	32,6488	32,8209	0,1721
20	70,1728	73,2377	3,0649
45	98,4216	279,2752	180,8535

Table 1: Porównanie wartości funkcji celu uzyskanych przez EGA i metode analityczna

6 Wyniki i Wnioski

ullet Dla małych wartości N (2 i 4), algorytm EGA zdołał znaleźć rozwiazania bardzo zbliżone do optymalnych wartości analitycznych, co potwierdzaja niewielkie różnice miedzy wartościami funkcji celu.

- Dla średnich wartości N (10 i 20), różnice miedzy wynikami EGA a rozwiazaniem analitycznym sa wieksze, ale nadal akceptowalne. Algorytm wymaga wiekszej liczby generacji lub dostrojenia parametrów dla lepszej dokładności.
- Dla dużych wartości N (45), różnica jest znaczaca. Algorytm EGA nie zdołał znaleźć rozwiazania bliskiego optymalnemu w zadanej liczbie generacji. Może to wynikać z wiekszej złożoności problemu przy dużym N i konieczności zastosowania zaawansowanych technik optymalizacji.
- Konwergencja algorytmu jest zauważalna na wykresach dla mniejszych N, gdzie wartość funkcji celu stabilizuje sie po pewnej liczbie generacji. Dla wiekszych N algorytm nadal wykazuje tendencje wzrostowa nawet w późnych generacjach.
- Wpływ parametrów algorytmu: Duży rozmiar populacji (20 000) oraz wykorzystanie zaawansowanego krzyżowania BLX-Alpha pozytywnie wpłyneły na zdolność eksploracji przestrzeni rozwiazań.

7 Wykresy i Wizualizacje

Przy pomocy narzedzia Visualization.py przedstawiono nastepujace wykresy dla różnych wartości N. Wykresy te pozwalaja na analize działania algorytmu EGA oraz porównanie jego wyników z rozwiazaniem analitycznym.

7.1 Konwergencja algorytmu

Poniższe wykresy przedstawiaja zmiane wartości funkcji celu w kolejnych generacjach dla różnych wartości N. Możemy z nich wywnioskować, jak szybko algorytm zbliża sie do optymalnego rozwiazania oraz czy osiaga stabilizacje.

Figure 1: Konwergencja algorytmu dla N=2

Dla N=2 algorytm bardzo szybko osiaga wartość funkcji celu zbliżona do optymalnej. Już po kilkudziesieciu generacjach nastepuje stabilizacja, co świadczy o skuteczności algorytmu dla małych rozmiarów problemu.

W przypadku N=4 obserwujemy podobna tendencje. Algorytm konwerguje nieco wolniej niż dla N=2, jednak nadal szybko osiaga wartość funkcji celu bliska optymalnej.

Dla N=10 konwergencja jest wolniejsza. Wartość funkcji celu rośnie stopniowo przez wiele generacji. Algorytm potrzebuje wiecej czasu, aby zbliżyć sie do wartości optymalnej, co wynika z wiekszej złożoności problemu.

Przy N=20 algorytm wykazuje jeszcze wolniejsza konwergencje. Wartość funkcji celu nadal rośnie pod koniec procesu ewolucji, co sugeruje, że zwiekszenie liczby generacji lub dostrojenie parametrów mogłoby poprawić wyniki.

Figure 2: Konwergencja algorytmu dla N=4

Figure 3: Konwergencja algorytmu dla N=10

Dla najwiekszej wartości N=45 konwergencja jest najwolniejsza. Algorytm osiaga wartość funkcji celu znacznie niższa niż wartość optymalna. Jest to spowodowane duża złożonościa problemu i koniecznościa zastosowania wiekszej liczby generacji lub zaawansowanych technik optymalizacji.

7.2 Porównanie stanów x_k uzyskanych przez EGA i rozwiazanie analityczne

Wykresy przedstawiające stany x_k w kolejnych okresach pozwalają na wizualne porównanie rozwiazań uzyskanych przez algorytm EGA z rozwiazaniem analitycznym.

Dla N=2 stany uzyskane przez EGA niemal idealnie pokrywaja sie z rozwiazaniem analitycznym. Świadczy to o wysokiej dokładności algorytmu dla prostych problemów.

W przypadku N=4 również obserwujemy bardzo dobra zgodność miedzy EGA a rozwiazaniem analitycznym. Niewielkie różnice moga wynikać z losowości algorytmu genetycznego.

Dla N=10 różnice miedzy stanami sa już bardziej widoczne, jednak ogólny trend pozostaje podobny. EGA zbliża sie do rozwiazania analitycznego, ale nie osiaga go dokładnie.

Przy N = 20 różnice sa jeszcze wieksze. Stany uzyskane przez EGA odchylaja sie od tych z rozwiaza-

Figure 4: Konwergencja algorytmu dla N=20

Figure 5: Konwergencja algorytmu dla N=45

nia analitycznego, co sugeruje, że algorytm ma trudności z dokładnym odwzorowaniem optymalnej trajektorii przy wiekszych N.

Dla N=45 stany uzyskane przez EGA znacznie odbiegaja od rozwiazania analitycznego. Algorytm nie jest w stanie znaleźć odpowiednio dobrego rozwiazania w zadanej liczbie generacji, co potwierdza potrzebe dalszej optymalizacji parametrów lub zastosowania innych metod.

7.3 Porównanie sterowań u_k uzyskanych przez EGA i rozwiazanie analityczne

Analiza sterowań u_k pozwala zrozumieć, jak algorytm EGA alokuje zasoby w czasie w porównaniu do optymalnego rozwiazania.

Dla N=2 sterowania uzyskane przez EGA sa bardzo zbliżone do optymalnych. Algorytm prawidłowo rozkłada zbiór plonów na dwa okresy, maksymalizujac funkcje celu.

W przypadku N=4 sterowania EGA również sa bliskie optymalnym, choć wystepuja niewielkie różnice w poszczególnych okresach. Algorytm dobrze radzi sobie z alokacja zasobów.

Dla N=10 sterowania uzyskane przez EGA zaczynaja odbiegać od rozwiazania analitycznego.

Figure 6: Porównanie stanów x_k dla N=2

Figure 7: Porównanie stanów x_k dla N=4

Możemy zauważyć wieksze wahania i mniej regularny rozkład zbiorów.

Przy N=20 różnice sa jeszcze bardziej widoczne. Sterowania EGA nie pokrywaja sie z trendem optymalnym, co wpływa na niższa wartość funkcji celu.

Dla N=45 sterowania uzyskane przez EGA sa bardzo nieregularne i znacznie odbiegaja od optymalnych. Algorytm ma trudności z wyznaczeniem właściwej strategii zbioru plonów dla tak dużej liczby okresów.

7.4 Porównanie wartości funkcji celu

Wykresy przedstawiające wartości funkcji celu uzyskane przez EGA oraz rozwiazanie analityczne pozwalaja na ocene efektywności algorytmu.

Dla N=2 wartość funkcji celu uzyskana przez EGA niemal pokrywa sie z wartościa analityczna. Algorytm jest bardzo skuteczny dla prostych problemów.

W przypadku N=4 sytuacja jest podobna. Różnica miedzy wartościami jest minimalna, co potwierdza dobra jakość rozwiazań EGA.

Figure 8: Porównanie stanów x_k dla N=10

Figure 9: Porównanie stanów x_k dla N=20

Dla N=10 różnica miedzy EGA a rozwiazaniem analitycznym jest wieksza, ale nadal akceptowalna. Algorytm zbliża sie do wartości optymalnej, choć jej nie osiaga.

Przy N=20 różnica jest już wyraźna. Wartość funkcji celu uzyskana przez EGA jest niższa niż wartość analityczna, co wskazuje na potrzebe dalszej optymalizacji algorytmu.

Dla N=45 wartość funkcji celu uzyskana przez EGA jest znacznie niższa od wartości analitycznej. Algorytm nie jest w stanie znaleźć rozwiazania bliskiego optymalnemu w zadanej liczbie generacji.

7.5 Wnioski z analizy wykresów

Analiza wykresów pozwala na wyciagniecie nastepujacych wniosków:

- \bullet Algorytm EGA jest skuteczny dla małych i średnich wartości N,gdzie potrafi znaleźć rozwiazania bliskie optymalnym.
- Dla wiekszych wartości N algorytm napotyka trudności i nie osiaga wartości funkcji celu zbliżonych do optymalnych, co wynika z wiekszej złożoności problemu.

Figure 10: Porównanie stanów x_k dla ${\cal N}=45$

Figure 11: Porównanie sterowań u_k dla ${\cal N}=2$

- ullet Konwergencja algorytmu jest wolniejsza dla wiekszych N, co sugeruje potrzebe zwiekszenia liczby generacji, dostrojenia parametrów lub zastosowania bardziej zaawansowanych technik optymalizacji.
- Porównanie sterowań i stanów wskazuje, że EGA ma trudności z odwzorowaniem optymalnej strategii zbioru plonów przy dużej liczbie okresów.

Figure 12: Porównanie sterowań u_k dla N=4

Figure 13: Porównanie sterowań u_k dla N=10

Podsumowanie Sekcji

Wykresy i wizualizacje dostarczaja cennych informacji na temat działania algorytmu EGA. Pokazuja, że algorytm dobrze radzi sobie z prostszymi problemami, jednak dla bardziej złożonych wymaga dodatkowych usprawnień. Analiza ta pozwala na identyfikacje obszarów wymagajacych optymalizacji i stanowi podstawe do dalszych badań nad poprawa efektywności algorytmu.

8 Podsumowanie

Algorytm EGA okazał sie skuteczny w rozwiazywaniu problemu zbioru plonów dla małych i średnich wartości N. Dla wiekszych N konieczne może być zwiekszenie liczby generacji, dostrojenie parametrów lub zastosowanie dodatkowych technik optymalizacji, aby osiagnać wyniki bliższe rozwiazaniu analitycznemu. Zastosowanie zaawansowanego krzyżowania BLX-Alpha oraz dużej populacji pozwoliło na efektywna eksploracje przestrzeni rozwiazań, co jest kluczowe w algorytmach genetycznych dla problemów z ograniczeniami.

Figure 14: Porównanie sterowań u_k dla ${\cal N}=20$

Figure 15: Porównanie sterowań u_k dla ${\cal N}=45$

Figure 16: Wartości funkcji celu dla ${\cal N}=2$

Figure 17: Wartości funkcji celu dla ${\cal N}=4$

Figure 18: Wartości funkcji celu dla ${\cal N}=10$

Figure 19: Wartości funkcji celu dla ${\cal N}=20$

Figure 20: Wartości funkcji celu dla ${\cal N}=45$