Rechnernetze

Aaron Winziers

$July\ 24,\ 2017$

Contents

1	Ein	führung 1	
	1.1	Addressen	
	1.2	Protokolle	
2	ISO-Modell 2		
	2.1	Layers:	
	2.2	Router/Gateway	
3	Topologien 2		
	3.1	Typische Topologien	
	3.2		
4	DN	${f S}$	
	4.1	Domain Name Service	
5	Eth	ernet??	
6	IP 1	und ICMP 3	
	6.1	All Pairs Shortest Paths	
	6.2	IP	
	6.3	ICMP	
	6.4	Super-/Subnetting	
7	TCP & UDP 4		
	7.1	UDP	
1	E	Einführung	

1.1 Addressen

4 parts:

- Protokoll
- Host/Host IP
- Port
- Resource

1.2 Protokolle

- dns
- http/https
- \bullet ssh
- smtp
- etc...

2 ISO-Modell

2.1 Layers:

- 1. Physical Layer Definition der (elektrischen, optischen) Schnittstellen PCI, SCSI, USB
- 2. Link Layer Fehlerfreier Kanal zwischen 2 Knoten Ethernet
- Network Layer Host-to-Host Protokoll
 Teile: Innerhalb eines Netzes, Zwischen Netzen IPv4, IPv6
- 4. Transport Layer Ende-zu-Ende Protokoll $\label{eq:TCP} \text{TCP, UDP}$
- 5. Session Layer Kommunikationssitzung
- 6. Presentation Layer Umwandlung von Datenformen
- 7. Application Layer Spezifische Anwendungsprotokolle

2.2 Router/Gateway

- Router leitet nur weiter, kommt nur bis Ebene 3
- Gateway kann auch filtern, get auf Ebene 7 hoch

3 Topologien

3.1 Typische Topologien

- Bus
- \bullet Stern
- \bullet Hypercube
- Gatter
- Torus/Donut
- Butterfly(Flaches Hypercube)

3.2 Busse

Kollisionsverhinderung:

- FDMA Frequency Divison Multiple Access
- TDMA Time Division Multiple Access
- CDMA Code Division Multiple Access
- CSMA Listen before Talk

4 DNS

4.1 Domain Name Service

Host.Subdomain.Subdomain.TLD TLD - Top Level Domain

5 Ethernet??

6 IP und ICMP

6.1 All Pairs Shortest Paths

Floyd-Warshall-Algorithmus $O(n^3)$

6.2 IP

- Auf Ebene 3 im OSI-Modell
- "3" Klassen von Netzwerken
 - -Class A : 0—netID(7)—hostID(24)
 - Class B: 10—netID(14)—hostID(16)
 - Class C : 110—netID(21)—hostID(8)
- ARP & RARP (Address Resolution Protocol & Reverse Address Resolution Protocol)

6.3 ICMP

Internet Control Message Protocol - Erledigt administrative Aufgaben im Internet - Fehler-/Informationsmeldungen

6.4 Super-/Subnetting

Nehme Host-Anteil und Verwende Local-Routing um weitere Subnetze zu erzeugen

$$10$$
— $netID(14)$ — $subnetID(8)$ — $hostID(8)$

CIDR (Classless Inter-Domain Routing) - Keine Netzwerkklassen mehr NAT (Network Address Translation)

7 TCP & UDP

7.1 UDP

User Datagram Protocol

- ACK/NACK (impliziter vs expliziter Quittungsbetrieb)
- Maximierung des Speichermediums
- 3-Way Handshake

Client -¿ SYN, ISN Client -¿ Server

Client $\ensuremath{\mathsf{j-}}$ SYN, ISN Server, ACK ISN Client $\ensuremath{\mathsf{j-}}$ Server

Client -¿ ACK, ISN Server -¿ Server