REMARKS

Claims 10 to 17 and 19 to 23 as presented with applicants' paper dated February 28, 2006, are currently pending in this application.

The Examiner reiterated the rejection of Claims 10 to 17 and 19 to 23 under Section 101 as being unpatentable over Claims 1 to 9 of US 6,482,772. It is respectfully requested that the respective issue be held in abeyance until the disclaimer which was filed by applicants in U.S. Patent 6,482,772 on February 26, 2004, has been approved and entered by the Certificate of Correction Branch. Favorable action is solicited.

Further, the Examiner rejected Claims 11 to 17 and 19 to 22 under 35 U.S.C. §112, ¶2, as being indefinite. In particular, the Examiner argued that the meaning of the term "alkylpolyglycoside" and the meaning of a degree of polymerization of 1 was unclear. Favorable reconsideration of the Examiner's position and withdrawal of the rejection is respectfully solicited in light of the following and the enclosed copy of *H. Mollet*, Formulation Technology, Wiley-VCH 2004, page 34.

The "distinctly claim" requirement of 35 U.S.C. §112, ¶2, means that the claims must have a clear and definite meaning when construed in the light of the complete patent document, 1) and the test of definiteness is whether a person of ordinary skill in the pertinent art would understand the bounds of the claim when reading it in the light of the supporting specification. 2) As explained by the Board in Ex parte Wu^3)

In rejecting a claim under the second paragraph of 35 U.S.C. 112, it is incumbent on the examiner to establish that one of ordinary skill in the pertinent art, when reading the claims in light of the supporting specification, would not have been able to ascertain with reasonable degree of precision and particularity the particular area set out and circumscribed by the claims.

Additionally, it is well settled that an application need not teach,

¹⁾ Standard Oil Co. v. American Cyanamid Co., 774 F.2d 448, 227 USPQ 293 (Fed. Cir. 1985)

²⁾ Morton Int. Inc. v. Cardinal Chem. Co., 5 F.3d 1464, 28 USPQ2d 1190 (Fed. Cir. 1993); Orthokinetics Inc. v. Safety Travel Chairs, Inc., 806 F.2d 1565, 1 USPQ2d 1081 (Fed. Cir. 1986)

^{3) 10} USPQ2d 2031 at 2033 (BPAI 1989).

and preferably omits, that which is well known in the art.4)

Applicants have addressed the meaning of the term "alkylpolyglycoside" (in the following also referred to as "APG") on page 13, indicated line 1 et seq., of the application, and the exemplary commercially available products which are mentioned in that context corroborate that the respective class of substances is well known in the art. A corresponding summary of the technical background knowledge regarding the nature of APGs and their degree of polymerization is, for example, also found in col. 2, indicated line 32, to col. 3, indicated line 45, of Garst et al. (US 5,550,115).5) It is evident from the technical background which is summarized not only by applicants but also by Garst et al. that a person of ordinary skill in the pertinent art is well aware of the meaning of the term "alkylpolyglycoside" and the meaning of a degree of polymerization of 1 of APGs. Further and for the Examiner's convenience applicants have enclosed herewith a formula representation of a group of APGs in figure 1.28 on page 34 of Mollet.

The foregoing and the attached corroborate that a person of ordinary skill in the pertinent art is fully apprised of the meaning of the term "alkylpolyglycoside" and of the meaning of "a degree of polymerization of 1" in the context of APGs so that the respective expressions cannot be deemed to render the subject matter of of applicants' claims indefinite within the meaning of Section 112, ¶2. It is therefore respectfully requested that the rejection be withdrawn. Favorable action is solicited.

Additionally, the Examiner rejected Claims 10 to 17 and 19 to 23 under 35 U.S.C. §112, ¶1, as lacking an enabling disclosure regarding sulfonyl urea herbicides beyond the representative employed in applicants' Example 16 on page 32 of the application. The Examiner asserted in particular that a person of ordinary skill in the art could not practice the invention without undue experimentation

- 1) because the pertinent art lacked predictability;
- 2) because the application failed to provide guidance as to how to use the invention successfully with all sulfonyl urea herbicides; and

- 3 -061108

⁴⁾ Hybritech, Inc. v. Monoclonal Antibodies, Inc., 802 F.2d 1367, 231 USPQ 81 (Fed. Cir. 1986); Lindemann Maschinenfabrik GMBH v. American Hoist and Derrick Co., 730 F.2d 1452, 1463, 221 USPQ 481, 489 (Fed. Cir. 1984).

⁵⁾ U.S. counterpart of WO 95/28410 mentioned on page 2, indicated lines 25 and 26, of the application.

3) because the application failed to contain working examples to support all sulfonyl urea herbicides.

Applicants' invention pertains to a particular solid mixture which comprises, on the one hand, a sulfonyl urea herbicide6) and, on the other hand, an APG, 7) and to a method of controlling undesirable plant growth which involves the application of the solid mixture to such growth or an area where such growth occurs. In order to "make and/or use", or to practice, the invention which is defined in applicants' claims a person of ordinary skill in the art therefore has to be enabled

- (a) to provide the particular components of applicants' solid mix-
- (b) to combine the respective components to form the solid mixture, and
- (c) to apply the solid mixture to the undesired plants or their environment.

The capabilities which are required for (b) combining the necessary components, and/or for (c) treating certain targets or locations with the requisite mixture, are deemed to be clearly well within the ordinary skill of a person in the herbicidal art. As noted above, an application need not teach and preferably omits that what is well known in the art,8) so that applicants disclosure of the invention does not need to address these issues in order to meet the enablement requirement of Section 112, ¶1. The question whether applicants' disclosure is sufficient to enable a person of ordinary skill in the art therefore focuses on whether applicants provide a sufficient amount of information with regard to the mandatory constituents of the solid mixture and in particular, in light of the Examiner's remarks, sufficient information pertaining to sulfonyl urea herbicides.

The sulfonyl urea herbicides are addressed on pages 3 to 12 of the application. Moreover, the class of sulfonyl urea herbicides, including the particular herbicidal property of the representatives

- 4 -061108

⁶⁾ Cf. e.g. page 3, indicated line 13, to page 12, indicated line 47, of the application.

⁷⁾ Cf. e.g. page 13, indicated line 1, to page 14, indicated line 22, of the applica-

⁸⁾ Hybritech, Inc. v. Monoclonal Antibodies, Inc., 802 F.2d 1367, 231 USPQ 81 (Fed. Cir. 1986); Lindemann Maschinenfabrik GMBH v. American Hoist and Derrick Co., 730 F.2d 1452, 1463, 221 USPQ 481, 489 (Fed. Cir. 1984). Cf. also applicants' remarks on pages 21 to 23 of the application.

of this class, is well known in the art. This fact is, for example, corroborated by the enclosed copy of K. Hirai in P. Böger et al. (editors), "Herbicide Classes in Development," Springer-Verlag Berlin Heidelberg 2002, pp. 180-196. Given the technical background knowledge of a person having ordinary skill in the pertinent technology it is not apparent to applicants why such a person of ordinary skill would be required to engage in more than routine experimentation in order to select any one of the known sulfonyl urea herbicides and to combine it with an APG to form the solid mixture, particularly since "[t]he solid formulations according to the invention can be prepared by various processes known to the person skilled in the art."9) More particularly, given the background knowledge pertaining to sulfonyl urea herbicides it is not apparent to applicants how the pertinent art can reasonably be deemed to be "unpredictable" in that regard. The Examiner's respective position is, therefore, not understood.

The Examiner relied with regard to (2) on the Court's holding in In re Dreshfield, 110 F.2d 235, 45 USPQ 36 (CCPA 1940) that: "It is well settled that in cases involving chemicals and chemical compounds, which differ radically in their properties it must appear in an applicant's specification either by the enumeration of a sufficient number of the members of a group or by appropriate language, that the chemicals or chemical combinations included in the claims are capable of accomplishing the desired result."10) However, sulfonyl urea herbicides clearly cannot reasonably be considered to be "chemicals and chemical compounds, which differ radically in their properties." Also, applicants' disclosure on pages 3 to 12 clearly provides the requisite "enumeration of a sufficient number of the members of a group or by appropriate language, that the chemicals or chemical combinations included in the claims are capable of accomplishing the desired result" referenced by the Court. The respective holding is accordingly not suited to support the Examiner's position. Further, as noted above, "[t]he solid formulations according to the invention can be prepared by various processes known to the person skilled in the art"11) so that the making and using of applicants' invention clearly does not require "ingenuity beyond that to be expected of one of ordinary skill" as the Examiner would have it. 12) It is also noted

- 5 -061108

⁹⁾ Page 21, indicated lines 42 and 43, of the application.

¹⁰⁾ Office action page 5, subsection 3, lines 3 to 7.

¹¹⁾ Ibid.

¹²⁾ Office action paragraph bridging pages 5 and 6.

that the Examiner has not pointed to any statement made by applicants which is, on its face, contrary to generally accepted scientific principles. 13) The Examiner's findings regarding the sufficiency of the quidance which applicants' presented in the application is, therefore, clearly in error.

As noted in the foregoing, a person of ordinary skill in the art does not require quidance or direction beyond the information provided in applicants' disclosure of the invention

- (a) to provide a particular sulfonyl urea herbicide of applicants' solid mixture,
- (b) to combine the respective sulfonyl urea herbicide with an APG to form the solid mixture, and
- (c) to apply the solid mixture to the undesired plants or their environment.

The Examiner's position that a person or ordinary skill in the art would require working examples to support all sulfonyl urea herbicides is, therefore, clearly without merit.

It is well settled that an assertion by the PTO that the enabling disclosure is not commensurate in scope with the protection sought must be supported by evidence or reasoning substantiating those doubts. 14)

... it is incumbent on the Patent Office, whenever a rejection on this basis is made, to explain why it doubts the truth or accuracy of any statement in a supporting disclosure and to back up assertions of its own with acceptable evidence or reasoning which is inconsistent with the contested statement. Otherwise there would be no need for the applicant to go to the trouble and expense of supporting his presumptively accurate disclosure.[15]

In light of the foregoing remarks it is respectfully urged that the Examiner has not presented any such acceptable evidence or reason-It is therefore respectfully urged that the rejection of Claims 10 to 17 and 19 to 23 under Section 112, ¶1, be withdrawn. Favorable action is solicited.

- 6 -061108

¹³⁾ Ibid.

¹⁴⁾ In re Dinh-Nguyen, 492 F.2d 856, 858, 181 USPQ 47, 49 (CCPA 1974); In re Bowen, 492 F.2d 859, 862, 181 USPQ 48, 51 (CCPA 1974); In re Armbruster, 512 F.2d 676, 185 USPO 152 (CCPA 1975).

¹⁵⁾ In re Marzocchi, 439 F.2d 220, 222-23, 169 USPQ 367, 369-70 (CCPA 1971); footnote and citations omitted.

Last but not least the Examiner rejected Claims 10 to 17 and 19 to 23 under 35 U.S.C. §103(a) as being unpatentable in light of the teaching of Kocur et al. (US 5,258,358). The Examiner asserted in this context that the reference teaches a combination of a sulfonyl urea herbicide with an APG, albeit in liquid form, and argued that the reference would have motivated a person of ordinary skill to turn away from the liquid formulations to a solid mixture. For the following reasons, applicants respectfully disagree.

The teaching of Kocur et al. relates to a particular formulation of glyfosinate-ammonium, 16) ie. a herbicide which is structurally unrelated to sulfonyl urea herbicides. The teaching specifically seeks to address problems which are associated with liquid formulations of $glyfosinate-ammonium^{17}$) such as phase separation which occurs where the formulations are free of organic solvents, 18) and the specific stability issues which are encountered upon storage at low temperatures. 19) According to the authors the respective problems are obviated by providing the liquid composition which comprises glyfosinate-ammonium in combination with a surfactant from the series of APGs and optionally further in mixture with certain fatty alcohol polygylcol ether sulfates, alkyldimethylamine oxides, alkyldimethylammonium chloride and/or coconut alkyldimethylammoniumacetic acid. 20) It is clear from the referenced sections of the teaching of Kocur et al. that the particular and advantageous effects which are described are solely exhibited by the liquid preparations since phase separation as well as the storage problems which are described in the reference are specific to such formulations and the respective problems are not encountered in solid formulations. It should also be noted that the formulation problems are specifically associated with the particular type of active ingredient, namely glyfosinate-ammonium, which is, as noted, structurally unrelated to sulfonyl urea herbicides.

With a particular view to information which pertains to sulfonyl urea herbicides the reference merely remarks that the <u>liquid</u> compositions of glyfosinate-ammonium and the surfactant(s) may comprise other herbicidal substances which can enhance the effectivity of gly-

- 7 -061108

¹⁶⁾ Cf. col. 1, indicated lines 8 to 15, of US 5,258,358.

¹⁷⁾ E.g. col. 1, indicated lines 27 to 33 and 44 to 58, of **US** 5,258,358.

¹⁸⁾ E.g. col. 1, indicated lines 27 to 33, of US 5,258,358.

¹⁹⁾ E.g. col. 1, indicated lines 44 to 58, of US 5,258,358.

²⁰⁾ E.g. col. 1, indicated line 65, to col. 2, indicated line 9, of US 5,258,358.

fosinate-ammonium, and enumerates among other herbicides four representatives from the class of sulfonyl urea herbicides.

The Examiner's position that the reference would have motivated a person of ordinary skill in the art to turn away from the liquid formulations addressed in the reference to a solid formulation is not deemed to be well taken. As noted, the particular advantages are, according to Kocur et al.'s teaching, dependent on the fact that the formulation is in liquid form. This means that a person of ordinary skill in the art cannot reasonably expect to arrive at any advantageous effects if the formulation is in solid form instead of the liquid form which is mandated by the reference. There is, accordingly, no reason why a person of ordinary skill in the art would modify the teaching of Kocur et al. in a manner such that glyfosinate-ammonium and the surfactant(s) and optionally one or more of the other herbicidal substances are formulated in solid rather than liquid form. The mere fact that the prior art may be modified in some manner so as to result in the invention as claimed does not make such a modification obvious unless the prior art suggests the desirability of such a modification. 21) The modification in question is, where applicants' invention and the teaching of Kocur et al. are concerned, clearly not suggested as a desirable modification and the respective modification can, therefore, clearly not be deemed to be rendered obvious by the reference. For this reason alone, the Examiner's rejection is deemed to be in error.

Additionally, the inventive subject matter as a whole which is referenced in Section 103(a) includes not only the elements which are recited in the claims, but also encompasses the properties and results which are inherent in the combination of the recited elements which are disclosed in the specification. 22) Applicants have found that the use of APGs in solid formulations of sulfonyl urea herbicides results in a pronounced stabilization of the active ingredient in comparison to other wetting agents such as ethoxylated fatty amines or alcohol ethoxylate, and that this effect can be observed especially when water-soluble inorganic salts are present. 23) The

- 8 -061108

²¹⁾ Cf. In re Fritch, 972 F.2d 1260, 23 USPQ2d 1780, 1783-84 (Fed. Cir. 1992); In re Gordon, 733 F.2d 900, 902, 221 USPQ 1125, 1127 (Fed. Cir. 1984); Berghauser v. Dann, Comr. Pats., 204 USPQ 393 (DCDC 1979); ACS Hospital Systems, Inc. v. Montefiore Hospital, 732 F.2d 1572, 221 USPQ 929 (Fed. Cir. 1984).

²²⁾ In re Antonie, 559 F.2d 618, 620, 195 USPQ 6, 8 (CCPA 1977).

²³⁾ Note e.g. page 2, indicated line 42, to page 3, indicated line 3, of the application.

teaching of Kocur et al. not only fails to render a solid formulation obvious within the meaning of Section 103(a). The reference also fails to suggest or imply that the combination of a sulfonyl urea herbicide with an APG in a solid formulation may have any effect on the stability of the sulfonyl urea herbicide. As explained in the foregoing, all of the advantageous properties which Kocur et al. attribute to the use of APGs pertain to the herbicide glyfosinate-ammonium and to <u>liquid</u> preparations thereof. As such, the reference fails to suggest or imply that APGs may exhibit any particular properties in a solid formulation and also fails to suggest or imply that the presence of an APG may have any effect on a sulfonyl urea herbicide, be it in a liquid or a solid formulation. Bearing in mind that obviousness cannot be predicated on what is not known at the time an invention is made even if the inherence of a certain feature is later established, 24) and that it constitutes hindsight when one of ordinary skill in the art is imbued with the knowledge of the invention when the prior art reference fails to convey or suggest that knowledge, 25) the teaching of Kocur et al. can clearly not be considered to render applicants' invention as a whole obvious within the meaning of Section 103(a).

The foregoing explanations show that the reference upon which the Examiner relied in rejecting applicants' claims under Section 103(a) is not sufficient to establish a prima facie case of obviousness. It is therefore respectfully requested that the rejection be withdrawn. Favorable action is solicited.

Moreover, in light of the foregoing and the attached, the subject matter defined in in applicants' claims is deemed to be patentable under the provisions of Sections 103(a) and 112, ¶1 and ¶2, of the Patent Act, and the application should therefore be in condition for allowance. Favorable action by the Examiner is respectfully solicited.

- 9 -061108

²⁴⁾ In re Rijckaert, 9 F.2d 1531, 28 USPQ2d 1955 (Fed. Cir. 1993); In re Adams, 356 F.2d 998, 148 USPQ 742 (CCPA 1966).

²⁵⁾ Gore & Assocs., Inc. v. Garlock, Inc., 721 F.2d 1540, 230 USPQ 303 (Fed. Cir. 1983).

Hans Mollet, Arnold Grubenmann

Formulation Technology

Emulsions, Suspensions, Solid Forms

Translated by H. R. Payne

 $We in he im \cdot New \ York \cdot Chichester \cdot Brisbane \cdot Singapore \cdot Toronto$

Dr. Hans Mollet (†)

Dr. Arnold Grubenmann Chemin des Cossettes 1 CH-1723 Marly Switzerland

This book was carefully produced. Nevertheless, authors, translator and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No. applied for.

British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British Library.

Die Deutsche Bibliothek – CIP Cataloguing-in-Publication-Data: A catalogue record for this publication is available from Die Deutsche Bibliothek.

1st Edition 2001 1st Reprint 2004

ISBN 3-527-30201-8

© WILEY-VCH Verlag GmbH. D-69469 Weinheim (Federal Republic of Germany), 2001 Printed on acid-free paper.

Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieses Buches darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form – durch Photokopie, Mikroverfilmung oder irgendein anderes Verfahren – reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertragen oder übersetzt werden. Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen in diesem Buch berechtigt nicht zu der Annahme, daß diese von jedermann frei benutzt werden dürfen. Vielmehr kann es sich auch dann um eingetragene Warenzeichen oder sonstige gesetzlich geschützte Kennzeichen handeln, wenn sie nicht eigens als solche markiert sind. All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in

this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printing: Strauss Offsetdruck, D-69509 Mörlenbach Bookbinding: Osswald & Co., D-67433 Neustadt (Weinstraße)

Printed in the Federal Republic of Germany.

Preface

What do we mealong been estable something of a oldest formulation development and galenics. In other amongst a compressiderable econosiderable econosiderable econosiderable although admitted although admitted

A large proposynthetic, must be agriculture, foods mixing; pure dye substances simple sufficient; in add and of the apple formulation into freeflowing, dust stable concentrate products, slow-re

It has long be formulated can be solubilization, divide formulated, absimprovements, as competitiveness is determined by it formulated to flow

The art of for disciplinary chara chemistry, analys forms for applica modern analytica formulation tech empiricism is incorrectivity and invested the creation of new the creation of new the creation.

Biotensides are four to five times more expensive than ordinary tensides. Usually, however, they have a greater specific efficacy, so the cost of their use is reduced. An alternative to biotensides, in terms of their biodegradability, is offered by tensides derived from saccharides: *sorbitan fatty acid esters*, *saccharose fatty acid esters*, and *fatty alcohol polyglycosides*. Henkel has recently started producing *alkyl polyglucosides* commercially (Figure 1.28).

Figure 1.28. A new class of tensides: alkyl polyglucosides (APG), synthesized from fatty alcohols (8–14 C) and glucose. Advantages: excellent cleaning action and skin compatibility (no R38 notice), biodegradable.

Another class of tensides is the *glucamines*. Paraffinsulfonic acid glucamine salt is skin-compatible and is not an eye irritant. According to Hüls, the topic of monosaccharide-based tensides is far from exhausted.

Reduction of tenside concentration by synergy: Certain tenside combinations are effective at lower concentration than either tenside alone, for example a fatty alcohol ether sulfate and a linear alkyl sulfate.

1.6 Cohesion, Adhesion, and Spreading

These phenomena of interface chemistry play a decisive role in wetting, rewetting, washing, and cleaning. Formulation chemists therefore need to have good knowledge of them.

1.6.1 Cohesion in a Liquid

Cohesion in a liquid is a measure of the attraction between similar molecules (A and A); adhesion is a measure of that between dissimilar molecules (A and B).

To divitive two new sutension γ_A ,

 W_{c}

The words dissimilar $\gamma_A + \gamma_B$ mi W_a is as gi

 W_{a}

The ad

 W_{a}

Figure 1.2

1.6.2 Sr

If a drop water, it i

Peter Böger · Ko Wakabayashi · Kenji Hirai (Eds.)

Herbicide Classes in Development

Genetic Engineering, Chemistry Mode of Action, Targets,

With 96 Figures, 2 in Color, and 53 Tables

Springer

Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris

Department of Plant Physiology and Biochemistry Professor Dr. Peter Böger University of Konstanz D-78457 Konstanz Germany

Department of Physiology and Biochemistry Professor Dr. Ko Wakabayashi Machida-shi, Tokyo 194-8610 Tamagawa University

Sagami Chemical Research Center Hayakawa 2743-1, Ayase Kanagawa 252-1193 Dr. Kenji Hirai

FINGANG Gv.,/H Hauptöücherei 2 0. Aug. 2002

ISBN 3-540-43147-0 Springer-Verlag Berlin Heidelberg New York

Library of Congress Cataloging-in-Publication Data

Herbicide classes in development : mode of action, targets, genetic engineering, chemistry / Peter Böger, Ko Wakabayashi, Kenji Hirai (eds.).

Includes bibliographical references.

ISBN 3540431470 falk, paper) 1. Herbicides. 2. Herbicide-resistant crops. 1. Böger, Peter. 11. Wakabayashi, K. (Ko), 1938- III. Hirai, Kenji, 1953-

SB951.4 .H425 2002 632'.954 - dc21

This work is subject to copyright. All rights reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on miscrofilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag, Violations are liable for prosecution under the German Copyright Law.

1 member of BertelsmannSpringer Science + Business Media GmbH Springer-Verlag Berlin Heidelberg New York

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: SNP Best-set Typesetter Ltd., Hong Kong SPIN 10774148 31/3130 - 5 4 3 2 1 0 - Printed on acid-free paper Cover design: D&P, Heidelberg

Preface

Chemical pest control is in use in practically every country in the world since agrochemicals play a decisive role in ensuring food supply and protection century since World War II, food production has risen dramatically in most parts of the world. In the last 20 years, the yield of major crops has roughly against damage by pests, insects and pathogenic fungi. Particularly in the halfdoubled in Western agriculture and there is still the potential for further achievements, particularly in the developing countries.

has to increase by 2.4% annually to cope with the rising food demand caused mainly by the growing population and improvement of living standards in most of the developing countries. Such a demand for food has to be achieved by higher yields from the restricted arable land already in use. Global farmland resources are about 1.4 billion ha, of which 1.2 billion ha is cultivated with tive areas is unlikely. Those with a high yield potential are already in use; new fields with a lower output may possibly be obtained by cultivation of arid or cold areas. More recently, new areas of large-scale farmland have been devel-The world's cereal and rice production, now more than 2 billion tons/year, major crops. Experts agree that a future substantial addition of new producoped in tropical regions of Latin America, primarily in Argentina and Brazil, at the cost of the destruction of tropical rain forest.

The 1980s were an exciting period for the development of modern herbicides, for both industry and academia. Acetolactate synthase (ALS) inhibitors, introduced into chemical weed control. The start of the widespread use of new acetyl-CoA carboxylase (ACCase) inhibitors such as the phenoxypropionate and cyclohexanedione classes brought about a major turning Protox) inhibitors, such as flumiclorac-pentyl, is another breakthrough in the explosive development of the next-generation of cyclic imide classes. These new herbicide chemistries, which combine excellent activity with unparalleled high novelty, have been rapidly adopted worldwide and have had an amazing represented by the sulfonylurea (SU) and imidazolinone (IMI) classes, were point in the subsequent evolution of agrochemicals. The discovery of fluoromodified tetrahydrophthalimides as PPO (= protoporphyrinogen oxidase, lower dosage, crop safety, specific mechanism of action and/or structural impact on agriculture.

Today, the use rate of modern herbicides is in the range of 100–300 ga.i./ha, with a declining tendency. In particular, the very low use rates of original SU and cyclic imide herbicides have prompted agrochemical researchers to find 181

classes derived from sulfonylureas are also ALS inhibitors. Group B of the HRAC classification includes 50 kinds of ALS inhibitors. All ALS inhibitors disclosed since 1990 are documented in this chapter and classified by their chemical structure, although some of them are not regarded as ALS inhibitors. Also, agricultural properties and several major synthetic routes of practical ALS inhibitors are briefly summarized. Moreover, the structural evolution of each class is chronologically reviewed relating to their chemical structures.

Sulfonylurea Acetolactate Synthase Inhibitors

the discovery of chlorsulfuron and sulfometuron-methyl by DuPont in the The most important key to the market launch of sulfonylurea herbicides was pounds are under development. These practical sulfonylureas are shown in Table 1. Sulfonylureas have been subjected to structural modifications in order to reduce the dosage dramatically, widen the weed spectrum and enhance early 1980s, since then, 27 compounds have been commercialized and 3 comselectivity for crops. Hence, modern sulfonylureas exhibit extremely strong activity against numerous weeds, including grass and broadleaf weeds, and have played important roles in increasing the yield of primary crops such as rice, wheat, barley, soybeans, corn and so on. Additionally, some sulfonylureas such as metsulfuron-methyl are also used in non-crops.

Practical Sulfonylurea Acetolactate Synthase Inhibitors

ized by DuPont in 1984. It consists of a 2-chlorophenylsulfonyl group and a 4,6-disubstituted triazine ring, which are connected together through the urea moiety. Chlorsulfuron is the origin of the term of "sulfonylurea". Since the discovery of chlorsulfuron, explosive developments of the sulfonylurea class have wheat, barley, oats and rye and shows good herbicidal activity against broadleaf weeds at as low as 4-30g/ha with pre- or post-emergence application. Moreover, it controls different varieties of grass weeds and the water been carried out by many companies. Chlorsulfuron has good selectivity for furon, introduction of a variety of substituents at the benzene and triazine Chlorsulfuron was the first sulfonylurea class ALS inhibitor to be commercialhyacinth. In particular, chlorsulfuron plays a most important role in spring wheat in North America by controlling harmful broadleaf weeds at rates of rings has been actively accomplished because a slight difference in the chem-20-30g/ha by post-emergence application. Since the discovery of chlorsulical structure considerably affects herbicidal activity and crop safety.

cide at 2-8 g/ha in wheat, barley, oats and turf. It controls a wide range of Metsulfuron-methyl bearing a methoxycarbonyl group at the ortho-position annual and perennial broadleaf weeds. The herbicide is superior to of the benzene ring has been used as either a pre- or post-emergence herbi-

Modern Herbicide Classes and Agrochemical Characteristics

Table 1. Practical sulfonylurea ALS inhibitors

ISC Chemical structure Coc	ISO name Code No. Company	Dosc Appl. method Target crops	Patent No.
<sulfonylureas ring="" triazine="" with=""></sulfonylureas>		oversity of furnitures statistical degree of passessing entertainty designates	and the second of the second o
0	chlorsulfuron DPX-W-4189/DuPont (R¹=Ci, R²=Me0, R¹=Me)	4~30 g/ha pre, post cercals, turf	US4127405
R DI	motsuifuron-methyl DPX-6376/DuPont (R¹=McOOC, R²=Me)	2-8 g/ha pre, post non-crop, cereals	US4370480
tria CO (R)	njasulfuron CGA-131036/Ciba-Geigy (R¹=Cl(CH ₂₎₂ 0, R²=Me0, R³=Me)	5~15 g/ha pre, post cereals	US4514212 EP44808
eth Di (R	cthametsulfuron-methyl DPX-A-7881/DuPont (R¹=MeOOC, R²=EO. R³=MeNH)	10~120 g/ha pre, post rice, rape, turf	EP136061
ĕ C C	cinosulfuron CGA-142264, CG-148 Ciba-Geigy (R¹=MeO(CH ₂) ₂ O, R²=R³=MeO)	10~40 g/ha post rape	US4479821 EP44807
	prosulfuron CGA-152005, CG-205 Ciba-Geigy (R¹=CF₃(CH₂)2, R²=McO, R³=Me)	12~40 g/ha post maize, turf, com	EP120814
Ð	tritosulfuron BASF ($R^1=R^2=CF_3$, $R^3=MeO$)		DE4038430
CO ₂ Me O Ne trib SO ₂ NHCN N DI Me N D	tribenuron-methyl DPX-L-5300, DPX-53 DuPont	5~30 g/ha post cercals, citrus	WO88/02599
NACA NIF (N	triflusulfuron-methyl DPX-66037 DuPont	10-25 g/na post sugar bect	WO89/9214
CO ₂ Me O N= iod So ₂ N'CNH=(N A) Na ⁺ N=(A) Me	iodosulfuron-methyl-sodium AE F115008 AgrEvo	post cereals	DE19520839 WO92/13845
<sulfonylurcas pyrimidine="" ring="" with=""></sulfonylurcas>	~ C	The second secon	-
$\left\langle \begin{array}{ccc} \text{CO}_2 R^1 & & & \\ \text{CO}_2 R^1 & & & \\ \text{CO}_2 NHCNH + & & & \\ \end{array} \right\rangle$	sulfometuron-methyl DPX-T-F-5648, MB-13/DuPont (R ¹ =R ² =R ³ =Mc)	70~840 g/ha pre, post non-crop, turf	US4127405
R Obline	chlorimuron-ethyl DPX-F-6025, DPX-25/DuPont (R¹=Et, R²=McO, R³=Cl)	9~13 g/ha pre, post soybcans, turf	US4394506 US4547215
Pri-	primisulfuron-methyl CGA-136872/Ciba-Geigy (R¹=Mc, R²=R³=CHF₂0)	20-40 g/ha post soybeans, maize	EP84020 US4478635
Oxa CC (R)	oxasulfuron CGA-277476/Novartis (R¹=3-oxetanyl, R²=R³=Me)	45~80 g/ha post soybeans	EP496701 US5209771

182 K. Hirai et al.

Table 1. Continued

NH	Chemical structure Coc Sulfonylureas with pyrimidine ring> COR O O O O O O O O O O O O O O O O O O	ISO name Code No. Code No. fords No.	Dose Appl. method Target crops	Patent No. DE4335297 DE4415049
flazasulfuron 25–100 g/ha SL-160, OK-116/fshihara post (R=CF) mifloxysulfuron CGA-292230/Novartis cereals (R=CF ₂ CH ₂ O) flupyrsulfuron-methyl-Na 10 g/ha DPX-KE-459, IN-KE-459, post IE-183/DuPont soybeaus, cereals	OMe	nicosulfuron DPX-V-9360/DuPont (R=Me ₂ NCO) irnsulfuron DPX-E-9636/DuPont (R=EiSO ₂)	40-60 g/ha post maize 5-15 g/ha post corn, turf, potatoes	US4789393 WO90/05728 EP3411011
CGA-292230Novartis cereals CGA-292230Novartis cereals (R=CF,CH ₂ O) OMe (Ilipyrsulfuron-methyl-Na 10 gha DPX-KE-459, IN-KE-459, post OMe IE-183/DuPont soybeans, cereals	-	lazasulfuron SL-160, OK-116/Ishihara (R=CF3)	25~100 g/ha post sugarcane, turf	WO94/23063
flupyrsulfuron-methyl-Na 10 g/ha DPX-KE-459, IN-KE-459, post JE-183/DuPont soybeaus, cereals		nifloxysulfuron CGA-292230/Novartis (R=CF ₃ CH ₂ 0)	cereals	W092/16522
		upyrsulfuron-methyl-Na DPX-KE-459, IN-KE-459, JE-183/DuPont	10 g/ha post soybeans, cereals	WO88/04297 EP327251 EP502740

US4746353 US4786311 US4484029 JP60208977 JP0656792 JP05-9102 EP477808 JP6438091 70-140 g/ha, pre 18~35 g/ha, post com, turf, sugarcane post wheat, barley, citrus, soybeans 75~100 g/ha pre, post rice, turf 17~35 g/ha 14-30 g/ha 8~20 g/ha post rice 10~30 g/ha pre, post rice, turf pyrazosulfuron-ethyl NCA-256, NC-311/Nissan (R=Et, X=H) sulfosulfuron MON-37500, TKM-19 Takeda (X=EtSO₂) thifensulfuron-methyl DPX-M-6316, DPX-16 DuPont azimsulfuron DPX-A-8947, DPX-47 DuPont halosulfuron-methyl NC-319/Nissan (R=Me, X=Cl) imazosulfuron TH-913/Takeda (X=C1) <Sulfonylureas with heterocycles>

Table 1. Continued

Chemical structure	ISO name Code No. Company	Dose Appl. method Target crops	Patent No.
<benzyl-, and="" anilino-="" phenoxy-sulfonylureas=""></benzyl-,>	ulfonylureas>		
OMe	honoralfirms marked	-9- 00t 0c	
R X-SO ₂ NHCNH-(DPX-F-5384, DPX-84/DuPont	20~100 g/na pre, post	US4420325
- MC	(N=WEOLA, A=CH2)	32	
	cyclosulfamuron AC-322140 AC-140/ACC	25~60 g/ha pre, post	USS009699 FP613618
	(R=c-PrCO, X=NH)	rice, cereals,	WO92/00952
		ini.	
	ethoxysulfuron	10~120 g/ha	EP342569
	// noe-095404, noe-404/Agrevo	pre, post	EP20/093
<sulfonamidosulfonylurea></sulfonamidosulfonylurea>	(N-130, A=0)	nec, cerears, nuf	Er 3001 / 0
OMe			
Me O N=	amidosulfuron	15~60 g/ha	1000000
MesO, MesO,	Hoechst	post	EF 298901
OMe			

ized as a post-emergence corn herbicide. It is effective against broadleaf weeds lebur, common ragweed and morningglory at rates of 12-40 g/ha. Tritosulfuron is characterized by two trifluoromethyl groups at the 2- and 6-positions of the Ethametsulfuron-methyl having a 6-ethoxy-4-methylamino-1,3,5-triazine ring chamomile, henbit, ladysthumb, wild mustard, common purslane, common chlorsulfuron in controlling violets and turfed knotweeds except for activities oped as a wheat and barley herbicide. It shows excellent herbicidal activity against Apera spica-venti and some Lolium sp., violets, catchweed bedstraw and broadleaf weeds at 5-15g/ha with pre- or post-emergence application. was launched in 1993 by DuPont as an oilseed rape herbicide. Pre- and postemergence treatment provides good herbicidal activity at 10-40 g/ha in spring rape and 80–120g/ha in winter rape. It controls important weeds such as wild chickweed and Polygonum tomentosum. Cinosulfuron was developed as a postemergence herbicide. It shows strong activity against annual and perennial weeds including needle spikerush, Japanese bulrush, Sagittaria pygmaea, Alisma canaliculatum and Cyperus serotinus except for barnyard grass at 10-40 g/ha in transplanted and direct seeded rice. Prosulfuron was commercialsuch as velvetleaf, common lambsquarters, common purslane, common cockagainst catchweed bedstraw. Ciba-Geigy's sulfonylurea, triasulfuron was develbenzene and triazine rings, respectively. It is currently developed by BASF.

Tribenuron-methyl is a unique sulfonylurea substituted with a methyl group at the ureido-nitrogen atom. It was launched as a post-emergence herbicide in wheat. It is active on various kinds of perennial broadleaf weeds at 5–30 g/ha and shows high safety in crop rotation of rape or beans because the introduction of the methyl group at the ureido-nitrogen atom promotes rapid decomposition in soil. Triflusulfuron-methyl was DuPont's first sugar beet herbicide

with post-emergence application and was launched in 1993. It controls annual and perennial broadleaf weeds and annual grasses such as catchweed bedstraw, slender amaranth, black nightshade, prostrate knotweed, wild mustard, saltmarsh aster, and water foxtail at rates of 10–25 g/ha in two applications. AgrEvo launched a new sulfonylurea herbicide, iodosulfuron-methyl-sodium for use on European cereals in 1999. It is effective against grass weeds including black-grass, ryegrass and meadow grass and has a wide spectrum of broadleaf weeds by post-emergence application.

The first sulfonylurea with a pyrimidine ring was sulfometuron-methyl and its first registration was approved in 1985. It has been used in non-crop fields and grass fields, and exhibits superior efficacy at 70–840 g/ha against grass weeds, especially johnsongrass and broadleaf weeds. Structural modifications at the pyrimidine ring of sulfometuron-methyl led to chlorimuron-ethyl, which has dramatically improved the crop safety. It is used as a post-emergence herbicide in soybeans and controls common cocklebur, slender amaranth and morningglory at rates of 9–13 g/ha. Moreover, chlorimuron-ethyl has been used in combination with metribuzin as a pre-emergence herbicide.

Introduction of a difluoromethoxy group at the pyrimidine ring gives good selectivity for crops. For example, primisulfuron-methyl is a post-emergence herbicide that controls grass weeds such as johnsongrass and quackgrass as well as broad leaf weeds in maize at 20–40 g/ha. Application of less than 20 g/ha has no influence on crop rotations. Oxasulfuron is a post-emergence herbicide that controls a range of broadleaf and grass weeds such as velvetleaf, common cocklebut, common purslane, common ragweed, barnyardgrass, morningglory and johnsongrass at application rates of 45–80 g/ha in soybeans. Foramsulfuron and mesosulfuron, having additional substituents at the benzene rings, are under development.

dine, thiophene, pyrazole or imidazole produced a new class of sulfonylurea herbicides. Nicosulfuron is the first example. It can control annual and perennial grass weeds such as barnyardgrass, fall panicum, quackgrass and johnsongrass as well as broadleaf weeds at 40-60g/ha. Rimsulfuron was activity against quackgrass, johnsongrass, Breea setosa, purple nutsedge and Green foxtail, Panicum bisulcatum, and southern crabgrass are sensitive for grass weeds including umbrella plant at 25-100 g/ha in sugarcane. It is also useful as a turf herbicide. Trifloxysulfuron is now under development as trifluoromethyl group at 6-positon on the pyridine ring, controls annual grass Replacements of the usual benzene rings against hetero rings such as pyricommercialized as a post-emergence herbicide. It exhibits strong herbicidal atrazine-resistant broadleaf weeds at the extremely low rates of 5-15g/ha. rimsulfuron. Also, it is used as a post-emergence herbicide in potato fields. Flazasulfuron is a pre- or a post-emergence herbicide active on broadleaf and a cereal herbicide by Syngenta. Flupyrsulfuron-methyl-sodium, with a weeds such as blackgrass and broadleaf weeds in cereals at a rate of 10 g/ha.

DuPont launched thifensulfuron-methyl in 1988. It is positioned as the first sulfonylurea herbicide with a five-membered heterocycle instead of the

ular, it exhibits good efficacy against Eleocharis kuroguwai, Cyperus serotinus, phenyl group and controls important broadleaf weeds and Apera spica-venti by post-emergence application to wheat or barley at 17-35 g/ha. Nissan's pyrazosulfuron-ethyl with a pyrazole ring has been developed as a pre- or postemergence herbicide to control annual and perennial grass weeds and many broadleaf weeds in direct-sown and transplanted rice at 14-30 g/ha. In particarrowhead, Sagittaria pygmaea, Oenanthe javanica and Potamogeton distinctus in rice fields. Halosulfuron-methyl is selective for corn, sugarcane and turf, and can be used for controlling velvetleaf, common cocklebur and purple respectively. DuPont's rice herbicide, azimsulfuron, was first launched in Malaysia in 1996. It controls grass weeds such as Cyperus serotinus and Eleocharis kuroguwai at the rates of 8-20g/ha. Azimsulfuron is much more active than DuPont's older rice herbicide, bensulfuron-methyl; however, the activity against broadleaf weeds is weaker. Takeda developed two sulfonylurea for use in wheat. It controls some grass weeds and many broadleaf weeds at nutsedges with pre- or post-emergence application of 70–140 and 18–35 g/ha, herbicides with imidazopyridine rings, namely, imazosulfuron and sulfosulfuron. The former was first launched in 1993 in Japan. It controls annual and perennial broadleaf weeds, except for barnyardgrass in rice, and several combination products are now available. The latter is a post-emergence herbicide rates as low as 10-30 g/ha. It is recommended for use at 27 g/ha to control wild oat, redroot pigweed, chickweed, wild mustard and stinkgrass. It also suppresses green foxtail, quackgrass and dandelion.

In the aforementioned sulfonylurea herbicides, the arylsulfonyl moiety (X = CH₂₀ O or NH) was remarkably effective for increasing crop safety even lurea, bensulfuron-methyl is a useful rice herbicide that controls broadleaf weeds and umbrella plant except for barnyardgrass at rates of 20-100g/ha post-emergence in autumn wheat and post-emergence in spring wheat. The (Aryl-SO₂) is a common structure, which is important in providing strong herbicidal activity against a wide range of weeds. In the course of structural modifications of this moiety, it was shown that an aryl-X-SO2 -- moiety at the sacrifice of powerful activity against weeds. Benzyl-modified sulfonywith pre- or post-emergence application. Cyclosulfamuron, decorated with a substituted anilino group at the sulfonylurea moiety, was launched by the American Cyanamid Comp. (ACC) group in 1997. It controls annual and perennial broadleaf weeds at application rates of 25-60g/ha in the paddy mile, Persian speedwell and wild mustard, and can be applied pre- and development, however, has been discontinued. Ethoxysulturon was first field. Cyclosulfamuron is also active on catchweed bedstraw, wild chamodeveloped as a rice herbicide and then it was recognized as a pre- or postemergence herbicide in small-grain cereals to control Cyperus sp. and cleavers. It shows excellent activity against important broadleaf weeds at 10-120g/ha

Amidosulfuron has a unique chemical structure in the sulfonylurea classes, because it includes an N-methyl-N-methylsulfonylamino group instead of

Modern Herbicide Classes and Agrochemical Characteristics

the usual aryl group at the sulfonylurea moiety. It was launched as a postemergence herbicide by Hoechst in 1990. The active ingredient controls important broadleaf weeds including wild mustard and shepherd's purse in wheat and barley at rates of 15-60 g/ha.

Structural Evolution of Sulfonylurea Acetolactate Synthase Inhibitors

17, 54, 58], trifluoromethoxy [12, 63], alkylthio groups [46, 51] or a chlorine ring often seems to improve herbicidal activity and crop safety. Sulfonylureas, end to be highly active and several compounds [10, 16, 42, 43, 62] have been development. Also, sulfonylureas with a 2,3-disubstituted phenyl ring have since 1990 are chronologically demonstrated in Figs. 1 and 2, respectively. With atom [10, 16, 18, 62] at ortho-position. Additional substitution at the benzene example triflusulfuron-methyl with ortho-disubstituted phenyl rings, produced since 1990. Moreover, sulfonylureas bearing ortho- and metawith 2,5-disubstituted phenyl rings have been studied, and iodosulfuronmethyl-sodium [5], mesosulfuron [33] and foramsulfuron [45] are under Structural modifications of triazine and pyrimidine sulfonyhureas disclosed regard to the substituents at ortho-position of the benzene ring, slightly bulky sulfonylureas cited in these figures are substituted by alkoxycarbonyl [1-6, 13, 14, 19, 23-44], sulfonyl [49, 50, 53], sulfenyl [9, 47, 48, 52], fluorinated alkyl [10, disubstituted phenyl rings keep strong activity, although it depends on the suband hydrophobic forms are essential for potent herbicidal activity. Almost all stituent at *meta-*position. Especially, sulfonylureas [6, 11, 28–32, 34–39, 51, 53] been continued [40, 41, 44].

dine rings, introduction of methoxy groups at the 4- and 6-positions gave dimethoxypyrimidine ring were easily decomposed, so that carryover, a In the course of optimization of substituents at 1,3,5-triazine and pyrimiof which urea moieties are modified with a methyl, ethoxymethyl, or butyl and as a mimic of the urea group. Especially sulfonylguanidine is a prototype lead good results. Sulfonylureas with the 4,6-dimethoxy-1,3,5-triazine or 4,6rotation, was overcome. Further structural other substituents. Additionally, an amidine or guanidine moiety is introduced modifications are observed in the investigations of some sulfonylureas [12–20] compound for triazolopyrimidine ALS inhibitors mentioned later. serious problem in crop

sulfonylureas proposed in the early 1990s possess electron-donating groups 95]. Alternatively, new pyridyl-sulfonylureas [83-87] with substituted amino Structural evolution of pyridyl-sulfonylureas is chronologically depicted in Fig. 3. Practical pyridyl-sulfonylureas, namely, flazasulfuron, rimsulfuron, nicosulfuron and flupyrsulfuron-methyl-sodium have electron-withdrawing groups such as trifluoromethyl, ethanesulfonyl and dimethylcarbamoyl groups at the neighboring position of the sulfonyl group at the pyridine ring. Pyridylsuch as amino [76-82], alkoxy [88-93] and substituted alkyl groups [94, groups only at 6-position of the pyridine ring have been suggested.

188

зо^зинсин-Ö

Na"

SO₂N-CNH

20⁵/NHC/NH

OCE3

£661 : £9

62: 1990 (32g/Ecc)

No.: Year, Example (Dose per ha/Application/Weeds/Crops)

9MC

oMe

oMe

∍MQ

69: 1992 (500g/Ipp,Aba.Pac) OMe

(lql\arq\g00t) 0991 : 88

67: 1990 (400g/pre.post)

зо^уинсин

1990 (125g/soya)

»MO (1014) (1008/post/1800)

įΜο

9M 66

<sultaineraron-methyl>

owe

OMe

9MQ

OMe

2M

9MC

owd

Pig. 2. Structural evolution of sulfonylurea ALS inhibitors with pyrimidine ring since 1990

Various kinds of sulfonylureas with five-membered heterocycles have been aggressively developed, as shown in Fig. 4. Thifensulfuron-methyl was the first sulfonylurea herbicide having a thiophen-3-yl group. Other sulfur-containing heterocycles such as thiazole and thiadiazole rings have been proposed since cycles such as pyrrole and pyrazole rings are shown chronologically in Fig. 5. yrazosulfuron-ethyl and halosulfuron-methyl are leading compounds for these sulfonylureas. Additionally, sulfonylureas with bicyclic heterocycles such

Structural modifications of sulfonylureas with nitrogen-containing hetero-

the 1990s.

45: 1995 <foramsulfuron> (mn/\g01) 0991 : 95 9MO инсно aMC -го⁵инсинго⁵инсин СОИМе₂ oMo COSMe No. 1990; X 3 - 6 No. 1990; X 3 - 6 No. 1990; X 3 - 6 No. 1990; X 3 - 7 (1-1990; X 3 - 7 (1 X (5g/prc,pos/Gipte,pos/Ling)

28: 1990; X=OCN (50g/prc,pos/Ling)

21: 1999; X=PROC(Me)C=NUH

23: 1999; X=PROC(Me)C=NUH

24: 1999; X=CHONH

25: 1999; X=CHONH

25: 1999; X=CHONH

26: 1999; X=CHONH

27: 1999; X=CHONH

28: 1990; X=CHONH

29: 1990; X=CHONH

29: 1990; X=CHONH

20: 19 -20⁵ИНСИН Ö COSMe 9MQ 51: 1996; X=Me(Ac)N, 11=0 52: 1996; X=EtCONHNH, 11=1 53: 1997; X=Ac(Me)NCH₂, n=2 61 : 1997; X=H3; Y=MoC (125g/BH)
(15g/R)could (15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)could
(15g/R)d
(15g/R)d го⁵инсин 'ao'e ow^zod 46: 1993; R.-Bl, n.-0, X.=Y=McO, Y=Mcd: 1993; R.-Bl, n.-0, X.=Y=McO, Y=Mcd: 1-1, X.=ChgO, Y.=Hd; 1993; R.-Bl, n.=2, X.=McO, Y.=Chgo, Y.=Ch 23: 1990, X=Cl, Y=3-McO-C₆H₄O (SS0g/posl/Amr) 24: 1991, X=McO, Y=ClF₃ (com) 26: 1993; X=McO, Y=ClF₃ (com) 26: 1993; X=McO, Y=ClF₄C (Sg/posl/Brl/whest) 27: 1995; X=McO, Y=Mc 54: 1992; X=CH₂F(HO)CH, Y=Me (DR. DOS) COSMe <chlored furon>

investigations of almost all derivatives have been discontinued.

Other sulfonylureas possessing substituted benzyl, sulfonamido, anilino and phenoxy groups are depicted in Fig. 6. In spite of good biological properties

uously. Among them, imazosulfuron and sulfosulfuron are practical ALS

inhibitors developed by Takeda.

as imidazopyridine [125] and benzopyrazole [126] have been studied contin-

Fig. 4. Structural evolution of sulfonylures ALS inhibitors with sulfur-containing heterocycles since 1990

Fig. 5. Structural evolution of sulfonylurea ALS inhibitors with nitrogen-containing heterocycles since 1990

nt - Ky

192

No.: Year; Example (Dose per ha/Application/Weeds/Crops)

7661:77

-20⁵инСин О

141:1992

140 : (300g/pre/Ecc,Sia)

D-20⁵ИНСИІ Ö

<euoxnjiusyxodio>

-20⁵NHCNI

<Phenoxysulfonylures types>

9MO

OMe

9MC

Scheme 1. General synthetic routes for sulfonylurea moiety

10.2.1.3 Major Synthetic Routes for Sulfonylureas

137: 1995; (X=6-Me, R=Pr) 138: 1995; (X=4-F, R=Pr)

134 : 1993; R=EtSO, MeS (post) 135 : 1994; R=EtSO, MeS (post) 136 : 1998; R=Me2NCO (50g)

133: 1993 (2.5kg/Ecc)

. и–го⁵инсин 0

<cyclosulfamuron>

<Anilinosulfonylurea types>

SMe

9MQ

oMo

9MO

9MQ

oMe

ни-го⁵инсин

There are generally two methods for preparing sulfonylurea (-SO₂NHCONH-) herbicides as shown in Scheme 1. One is the reaction of arylsulfonamides (1) with isocyanates (2) or phenyl carbamates (3), the other one is the reaction of arylsulfonyl isocyanates (4) or phenyl N-phenylsulfonyl carbamates (5) with arylamine (6). Major synthetic pathways for modern sulfonylurea ALS inhibitors are described briefly below.

Pig. 6. Structural evolution of benzyl-, sulfonamido-, anilino- and phenoxy-sulfonylurea ALS inhibitors since 1990

139: 1995 (32g/pre/Mov/rice)

7661 : 781

131:1661 (40g/pre/Cym)

-205ИНСИН

и–го⁵инсин Ö

<Sulfonamidosulfonylurea types>

MeSO₂

MeSO₂

SMC

ьМQ

oMo

эмо

OMe

The synthetic route for chlorsulfuron is shown in Scheme 2. Here, the key intermediate is sulfonamide (8) that is prepared from 2-chloroaniline (7) by three subsequent steps, diazotization, chlorosulfonation and amination. Phosgenation of sulfonamide (8) is accelerated by the addition of a lower alkyl isocyanate such as butyl isocyanate to yield 2-chlorophenylsulfonyl isocyanate (9), which is condensed with 2-amino-1,3,5-triazine (10) affording chlorsulfuron.

The synthesis of flupyrsulfuron-methyl-sodium is also depicted in Scheme 2. Cyclocondensation of 4-butoxy-3-buten-2-one (11) with ester (12) followed by bromination with phosphoryl bromide gives pyridine-3-carboxylate (13). After benzylthiolation of 13, treatments with hypochlorite and tert-buylamine give N-tert-butylpyridine-2-sulfonamide (14). Deprotection of the tert-butyl group by trifluoroacetic acid affords sulfonamide (15), which reacts with phenyl N-(4,6-dimethoxypyrimidin-2-yl)carbamate (16) to give flupyrsulfuron-methyl-sodium.

130:1661

-20⁵инсин ⁶ Ö

(si2,mt2\teqpre,post/Stm,Sia)

го⁵инсин О

1661 : 871

cpensulfuron-methyl>

о⁵инсин

<Benzylsulfonylurea types>

9MQ

COSWe

Scheme 2 also shows the synthetic procedure for thifensulfuron-methyl. The key intermediate, methyl 3-aminothiophene-2-carboxylate (18) is easily synthesized by cycloaddition reaction with chloroacrylonitrile (17) and methyl thioglycolate. After diazotization of the amino group of (18), treatment with sulfur dioxide in the presence of copper chloride and then ammonia gas gives

194 K. Hirai et al.

<Synthesis of chlorsulfuron>

«Synthesis of flupyrsulfuron-methyl-sodium»

Scheme 2. Major synthetic routes for chlorsulfuron, flupyrsulfuron-methyl-sodium and thifensulfuron-methyl

thiophene-3-sulfonamide (19). Reaction of sulfonamide (19) with phenyl N-(4methoxy-6-methyl-1,3,5-triazin-2-yl)carbamate (20) easily proceeds to yield thifensulfuron-methyl.

1-methylpyrazole-4-carboxylate (24) is an important key precursor. There are two synthetic pathways for 24 as depicted in Scheme 3. The first method is affording 3-chloropyrazole (22). The compound (22) is treated with sulfur For the synthesis of halosulfuron-methyl, methyl 5-aminosulfonyl-3-chlorocharacterized by using lithium reagent. Methyl 3-amino-1-methylpyrazole-4-carboxylate (21) is selectively chlorinated at 3-position via diazonium salt

<Synthesis of halosulfuron-methyl (Method-2)>

<Synthesis of cyclosulfamuron>

<Synthesis of ethoxysulfuron>

Scheme 3. Major synthetic routes for halosulfuron-methyl, cyclosulfamuron and ethoxysulfuron

readily obtained by amination of 23. The other is the method without lithium dioxide after lithiation by lithium diisopropylamide (LDA) and chlorinated by N-chlorosuccinimide (NCS) to give pyrazole (23). The key intermediate (24) is reagent in spite of somewhat long steps. Methyl cyanoacetate condenses with trichloroacetonitrile to obtain acrylate (25). Cycloaddition reaction of 25 with hydrazine yields 3,5-diaminopyrazole-4-carboxylate (26), which is dichlorinated at the 3- and 5-positions via a diazonium salt and methylated at the 1-position. Selective thiolation at the 5-position of 27 by sodium hydro-4-carboxylate (28), followed by treatment with a chlorine gas in water and amination subsequently giving the desired intermediate (24). Pyrazole-4sulfide is accomplished to give methyl 3-chloro-5-mercapto-1-methylpyrazolecarboxylate (24) thus obtained is easily converted to halosulfuron-methyl.

Scheme 3 also shows the synthetic scheme for cyclosulfamuron including a unique method for introduction of a cyclopropylcarbonyl group. Condensation of anthraniloyl chloride (29) with 2-acetyl-y-butyrolactone (30) in the presence of magnesium diethoxide gives anilide (31), which is heated together tosylaminophenyl)-1-butanone (32). Ring closure of 32 by treating with aqueous sodium hydroxide gives cyclopropyl ketone (33), followed by hydrolpropyl ketone (34). The ketone (34) reacts with chlorosulfonylurea (35) to yield with concentrated hydrochloric acid in toluene to yield 4-chloro-1-(2-Nysis of the tosyl group and recyclization yielding ortho-aminophenyl cyclocyclosulfamuron.

An efficient synthetic approach of ethoxysulfuron is shown in Scheme 3. It carbamate (37), which is derived by condensation of two equivalents of phenol is readily synthesized by the reaction of pyrimidine (38) with 2-ethoxyphenyl-(36) and chlorosulfonyl isocyanate.

Friazolinone Acetolactate Synthase Inhibitors

Practical Triazolinone Acetolactate Synthase Inhibitors

Triazolinone herbicides are classified as second-category ALS inhibitors disubstituted triazolinone rings bridged together by a sulfonylaminocarbonyl (-SO₂NHCO-) moiety. Investigations have been actively continued since the designed on the basis of the usual sulfonylurea ALS inhibitors. Most triazolinone ALS inhibitors, in general, consist of substituted phenyl groups and 4,5-1990s and two practical herbicides, flucarbazone-sodium and procarbazone-Flucarbazone-sodium is a post-emergence cereal graminicide and controls wild oat and green foxtail at 30 g/ha. Procarbazone-sodium is being developed sodium, have been commercialized and are under development (Table 2). as a wheat herbicide.

Modern Herbicide Classes and Agrochemical Characteristics

Table 2. Practical triazolinone ALS inhibitors

Patent No.	US5541337 EP507171	USS541337 US6147221 US6147222
Dose Appl. method Target crops	30 g/ha post cereals	30~70 g/ha wheat
ISO name Code No. Company	flucarbazone-sodium BAY-MKH-6562 Bayer	procarbazone-sodium BAY-MKH-6561 Bayer
Chemical structure	OCF3 O NWE	CO ₂ Mc O Na ⁻

Structural Evolution of Triazolinone Acetolactate Synthase Inhibitors

marized in the left column of Fig. 7. Ortho-positions of the benzene rings are withdrawing groups such as the alkoxycarbonyl group. On the other hand, the modified by a variety of substituents, which are not always limited to electronsubstituents on the triazolinone rings are restricted to electron-donating Structural modifications of orthodox triazolinone ALS inhibitors are sumgroups except for the incipient compound [144].

Major Synthetic Routes for Triazolinone Acetolactate Synthase Inhibitors

As an example of synthetic routes for triazolinone ALS inhibitors, the major dition reaction of phenyl carbazate (39) and trimethyliminocarbonate (40) together with elimination of phenoxide gives 3-methoxytriazolinone (41), which reacts with 2-trifluoromethoxyphenylsulfonyl isocyanate (42) to yield synthetic pathway of flucarbazone-sodium is illustrated in Scheme 4. Cycloadflucarbazone-sodium (43).

Triazolopyrimidine Acetolactate Synthase Inhibitors

thetic strategy for the construction of the triazolopyrimidine ring is of some sciences disclosed the characteristic triazolopyrimidine in the 1980s. The syninterest to herbicide researchers. At first, 3-(arylsulfonylamino)triazolopyrim-Triazolopyrimidine herbicides are grouped as the third-category ALS inhibitors that are distinguished by their triazolopyrimidine rings. Dow Agrodevelopment was interrupted because of their low solubility. Further structural modifications resulted in inversion of -502 and -NH moieties, which improved idine derivatives were designed and synthesis was attempted; however, further