

ফাংশন

যদি x ও y দুটি বাস্তব চলক এমনভাবে সম্পর্কযুক্ত হয় যে, কোন নির্দিষ্ট ডোমেইনে x এর অনুরূপ প্রত্যেকটি মানের জন্য y এর একটি নির্দিষ্ট মান পাওয়া যায় তবে বলা যায় y ঐ ডোমেইনে x এর একটি ফাংশন। লেখা হয়, সেট তক্তানুসারে x, $y \in f$: $x \to y$ যখন f: $R \to R$ এবং গাণিতিকভাবে, y = f(x)

এখানে, $X = \{X_1, X_2, X_3\}$, ডোমেন লেখা হয়, ডোম, $f = \{X_1, X_2, X_3\}$,

সঠিক পদ্ধতিঃব্যাবধি ব্যবহার করে ডোম $f=[x_1,\,x_2]
ightarrow$ বদ্ধ ব্যাবধি।

= (x_1, x_2) → খোলা ব্যাবধি।

 $= [x_1, x_2) \rightarrow$ বদ্ধ খোলা ব্যাবধি।

 $=(x_1, x_2]$ → খোলা বদ্ধ ব্যাবধি।

রেঞ্জঃ x এর অনুরূপ মান গুলোর জন্য প্রাপ্ত y এর মানগুলোর সেটই হলো রেঞ্জ $f = \{y_1, y_2, y_3, \dots \}$

ব্যবধিতে x এর পর্যায়েক্রমিক মানের সেট পাওয়া যায় বলে এখানে x হলো অবিচ্ছিন্ন চলক। ব্যবধিতে ±∞ খোলা চিহ্ন '()' বা '] [' বিশিষ্ট হয়।

ফাংশনের প্রকারভেদ : Not funcition f (x) = 0 [নট ফাংশন],constant function, f(x) = c প্রিব ফাংশন]

Identity function, f(x) = x [অভেদক ফাংশন],এক এক \leftarrow one one function, f(x) = x + 1 dom f and range $f = R = (-\infty, \infty)$

সার্বিক \leftarrow onto fumction, f (x) = x +1 \because Range = codomain.,বিপরীত \leftarrow Inverse function, f (x) = $\frac{x-1}{\sqrt[3]{x-1}}$ \because Range = codomain.

ফাংশনের বিপরীত \leftarrow Inverse of a function, $f^{-1}(x) = \sqrt{x-1}$ when, $f(x) \ge 0$

$$f(x) = x^2 + 1 = y$$

ফাংশন নয়, কারণ x এর একটি মানের জন্য f দুটি মান দেখায় যা সংজ্ঞানুসারে অবৈধ। এটা একটা সম্পর্ক (Relation)

শর্ত (1) এক এক $x_1 \neq x_2$ যাংশনের জন্য এর জন্য $f(x_1) \neq f(x_2)$ রেঞ্জ কোডোমেনের উপসেট অথবা সমান হতে পারে।

- (1) সার্বিক ফাংশন (onto fumction): Range = codomain.
- (2) বিপরীত ফাংশন (Inverse function) যে ফাংশনটি এক এক এবং সার্বিক সে ফাংশনের বিপরীত ফাংশন নির্ণয় করা যায়।
- (3) বহু এক ফাংশনের বিপরীত ফাংশন হল ফাংশনটির বিপরীত (Inverse of a function)

যুগা ফাংশন: f(x) = f(-x), $y = \cos x + |x|$

অযুগা ফাংশন: f(x) = f(-x), $y = \sin x$

ট্রান্স সেনডেন্টাল ফাংশন : e^x , a^x , $\log x$, $\sin x$, $\sin^{-1} x$, etc

[exponential function : ex, ax, logarithmic function : loge x, log₁₀ x

Trisonometric function : $\sin x$, $\sin^{-1} x$]

ফাংশন সম্পর্কে পরিস্কার ধারনা অর্জন করার জন্য ফাংশনের ডোমেন ও রেঞ্জ বের করার সঠিক পদ্ধতি শিখতে হবে।

Type-1: ডোমেন ও রেঞ্জ বের করার পদ্ধতি (বিভিন্ন ধরণের ফাংশনের জন্য)

EXAMPLE - 01 : y= x-1 =f(x), (x,y) ∈R বাস্তব

এখানে x এর যে কোন মানের জন্য y সংজ্ঞয়িত।

 \therefore ডোম f = $(-\infty, \infty)$,

 $EXAMPLE - 02: y = \frac{1}{(x-1)} = f(x)$ এখানে x=1 এর জন্য ফাংশনটি অসংজ্ঞায়িত বা ফাংশনটি বিচ্ছিন্ন।

 \therefore x=1 ব্যতিত সকল বাস্তব সংখ্যার জন্য y সংজ্ঞায়িত

 \therefore ডোম $f=R-\{1\}$,সঠিক পদ্ধতি : ডোম $f=(-\infty,1)$ U $(1,\infty)$

এবং রেঞ্জ y = {y₁, y₂, y₃.......} = রেঞ্জ f এখানে x₁এর জন্য y₁, x₂এর জন্য y₂ etc.

কিন্তু কোডোমেন হল y.,অর্থাৎ y অক্ষের ওপর প্রাপ্ত সকল বিন্দুর সেট বা রেঞ্জ ⊆ কোডেমেন হতে পারে।

EXAMPLE - 03: X, Y বাস্তব সংখ্যার সেট R এর দুইটি উপসেট এবং $f: X \to Y$, যেখানে $f(x) = \frac{x-3}{2x+1}$, ফাংশন f এর ডোমেন এবং রেঞ্জ নির্ণয় কর।

SOLVE: প্রদত্ত ফাংশন, $f(x) = \frac{x-3}{2x+1}$,ফাংশনটি $2x + 1 \neq 0$ এর জন্য সংজ্ঞায়িত,

তাহলে, $2x+1 \neq 0 \Rightarrow 2x \neq 1 \Rightarrow x \neq -\frac{1}{2}$: ডোম $f = R - \left\{-\frac{1}{2}\right\}$ (Ans)

আবার, ধরি, f(x) = yতাহলে, $y = \frac{x-3}{2x+1} \Rightarrow 2xy + y = x - 3$

$$\Rightarrow 2xy - x = -y - 3 \Rightarrow x(2y - 1) = -(y + 3) \Rightarrow x = -\frac{y+3}{2y-1} :: f^{-1}(x) = -\frac{y+3}{2x-1}$$

 $2x-1 \neq 0$ এর জন্য $f^{-1}(x)$ ফাংশন সংজ্ঞায়িত হবে অর্থাৎ, $2x-1 \neq 0 \Rightarrow 2x \neq 1 \Rightarrow x \neq \frac{1}{2}$

অর্থাৎ রেঞ্জ $f=R-\left\{rac{1}{2}
ight\}(\mathbf{Ans})$ সংক্ষেপে, $f:R-\left\{-rac{1}{2}
ight\}
ightarrow R-\left\{rac{1}{2}
ight\}$ এর জন্য f(x) এক এক এবং সার্বিক।

EXAMPLE – 04: সব বাস্তব সংখ্যার সেট R এবং $A = \{-3, -1, 0, 1, 3\}$, $f: A \to R$ কে $f(x) = x^2 + x + 1$ দ্বারা সংজ্ঞায়িত হলে, f ডোমেন এবং রেঞ্জ নির্ণয় কর।

SOLVE : প্রদত্ত ফাংশন, $f(x) = x^2 + x + 1$

 $f:A \to R$ এখানে ডোমেন $A=\{-3,-1,0,1,3\}$ এবং কোডোমেন=R

$$x = -3$$
 $\overline{2}$ (q) $= (-3)^2 + (-3) + 1 = 9 - 3 + 1 = 7$

$$x = -1$$
 হলে, $f(-1) = (-1)^2 + (-1) + 1 = 1 - 1 + 1 = 1$

$$x = 0$$
 হল, $f(0) = 0 + 0 + 1 = 1$

$$x = 1$$
 হলে, $f(1) = 1^2 + 1 + 1 = 1 + 1 + 1 = 3$

$$x = 3$$
 হলে, $f(3) = 3^2 + 3 + 1 = 9 + 3 + 1 = 13$ \therefore রেঞ্জ, $f = \{7, 1, 1, 3, 13\}$ (Ans)

Type-2: বিভিন্ন ধরণের ফাংশনের মান নির্ণয়

EXAMPLE – 01: $f: R \to R$ এবং $g: R \to R$, $f(x) = x^2 - 2|x|$ এবং $g(x) = x^2 + 1$ হলে, (fog)(-2), (fog)(5), (gof)(-4) এবং (gof)(3) নিণয় কর।

SOLVE: $f: R \to R$, $g: R \to R$.

$$f(x) = x^{2} - 2|x|, \ g(x) = x^{2} + 1, \ fog (x) = f\{g(x)\} = (x^{2} + 1)^{2} - 2|x^{2} + 1|$$

$$fog(-2) = \{(-2)^{2} + 1\}^{2} - 2|(-2)^{2} + 1| = (4 + 1)^{2} - 2|(4 + 1)|$$

$$= 5^{2} - 2 \times 5 = 25 - 10 = 15 \Rightarrow fog (5) = (5^{2} + 1)^{2} - 2|5^{2} + 1|$$

$$= (26)^{2} - 2|26| = 676 - 52 = 624 \Rightarrow gof(x = g\{f(x) = \{x^{2} - |x|\}^{2} + 1\})$$

$$gof (-4) = \{(-4)^{2} - 2|-4|\}^{2} + 1 \Rightarrow = (16 - 8)^{2} + 1 = 8^{2} + 1 = 64 + 1 = 65$$

$$gof (3) = \{3^{2} - 2|3|\}^{2} + 1 = (9 - 6)^{2} + 1 = 3^{2} + 1 = 9 + 1 = 10$$

EXAMPLE-02: মনে কর, বাস্তব সংখ্যার সেট R এবং $f:R\to R$ কে নিচের সূত্র দ্বারা সংজ্ঞায়িত করা হলো

SOLVE: (ক) x = 2, যা $-2 \le x \le 3$ ব্যবধির মধ্যে x = 2 এর জন্য, $f(x) = x^2 - 2$

$$f(2) = 2^2 - 2 = 4 - 2 = 2$$
 (Ans)

পর্যায়ক্রমে নির্ণেয় মানগুলো, 15, 624, 65, 10 (Ans)

(খ)
$$x = 4 > 3$$
 : $f(x) = 3x - 1$; $x = 4$ হলে $f(4) = 3 \times 4 - 1 = 12 - 1 = 11$ (**Ans**)

(গ)
$$x=1$$
যা $[-2,\ 3]$ ব্যবধির মধ্যে এক্ষেত্রে, $f(x)=x^2-2$ \therefore $f(-1)=(-1)^2-2=1-2=-1$ (Ans)

(ঘ)
$$x = -3 < -2$$
 : এক্ষেত্রে $f(x) = 2x + 3$: $f(-3) = 2(-3) + 3 = -6 + 3 = -3$ (Ans)

Type-3: সংযোজিত ফাংশনের মান নির্ণয়

 $\mathbf{EXAMPLE} - \mathbf{01}: \mathbf{f}(\mathbf{x}) = \sqrt{\mathbf{x}}$, $\mathbf{g}(\mathbf{x}) = \mathbf{x}^2 - 1$ হলে, সংযোজিত ফাংশন (i) \log (ii) \log নির্ণয় কর। প্রত্যেকটি সংযোজতি ফাংশনের ডোমেন ও রেঞ্জ নির্ণয় কর।

SOLVE: দেওয়া আছে, $f(x) = \sqrt{x}$, $g(x) = x^2 - 1$

(i)fog(x) = f{g(x)} =
$$\sqrt{x^2 - 1}$$
 (ii)gof (x) = g{f(x)} = $(\sqrt{x})^2 - 1 = x - 1$

(i)নং এর জন্য : ধরি,fog(x) = F(x).

$$F(x) = \sqrt{x^2 - 1}$$
 : $F(x)$ সংজ্ঞায়িত হবে যদি $x^2 - 1 \ge 0$ হয়,

অর্থাৎ,
$$x^2 \ge 1 \Rightarrow |x| \ge 1$$
 (+)ve এর জন্য, $x \ge 1$

অর্থাৎ,
$$x \ge 1$$
বা $x \le -1$

$$F(x)$$
 এর ডোমেন, $(-\infty, -1) \cup (1, \infty)$

$$F(x)$$
 এর রেঞ্জ $:$ $x=1$ এর জন্য $f(x)=0$, $x=\infty$ এর জন্য $F(x)=\infty$ েরেঞ্জ $F=[0,\infty]$

$$(ii)$$
নং এর জন্য : ধরি, $G(x)=x-1$; x এর সকল বাস্তব মানের জন্য $G(x)$ সংজ্ঞায়িত x ডোম $G=R$ আবার, ধরি, $G(x)=y$, তাহলে, $y=x-1\Rightarrow x=y+1$,

$$G^{-1}(x)=x+1$$
এক্ষেত্রে $\,x\,$ এর সকল বাস্তব মানের জন্য $\,G^{-1}(x)\,$ সংজ্ঞায়িত $\,:\,$ রেঞ্জ $\,G=R\,$

Type-4: এক-এক এবং সর্বগ্রাহী, বিপরীত ফাংশন

EXAMPLE-01: R বাস্তব সংখ্যার সেট, $A=R-\{3\}$, $B=R-\{1\}$ এবং $f:A\to B$ কে $f(x)=\frac{x-2}{x-3}$ দ্বারা সজ্ঞায়িত করা হলো। প্রমাণ কর যে, f এক-এক এবং সর্বগ্রাহী উভয় ধরণের ফাংশন। যে সূত্র দ্বারা f^{-1} কে সংজ্ঞায়িত করা যায় তা নির্ণয় কর।

SOLVE: দেওয়া আছে, $f(x)=rac{x-2}{x-3}$; $x-3=0 \Longrightarrow x=3$ এর জন্য f(x) অসংজ্ঞায়িত

 \therefore ফাংশনটির ডোমেন : ডোম $f=R-\{3\}$ \therefore x=3 ব্যাতিত x এর প্রত্যেক মানের জন্য f(x) এর একটি করে ভিন্ন মান পাওয়া যাবে । \therefore f(x) একটি এক এক ফাংশন । আবার, $x=x_1,x_2,x_3$ x_2 হত্যাদি মানের জন্য

 $f(x_1)=rac{x_1-2}{x_1-3}$, $f(x_2)=rac{x_2-2}{x_2-3}$ যদি $f(x_1)
eq f(x_2)$ হয় তবে এক এক ফাংশনের জন্য $x_1
eq x_2$ হবে

$$\therefore \frac{x_1 - 2}{x_1 - 3} \neq \frac{x_2 - 2}{x_2 - 3} \Longrightarrow x_1 x_2 - 3x_1 - 2x_2 + 6 \neq x_1 x_2 - 3x_2 - 2x_1 + 6$$

$$\Rightarrow$$
 $x_1 \neq x_2$ \therefore $f(x)$ একটি এক এক ফাংশন। আবার, ধরি, $y=\frac{x-2}{x-3}$ \Rightarrow $yx-3y=x-2$

$$\Rightarrow yx - x = 3y - 2 \Rightarrow x(y - 1) = 3y - 2 : x = \frac{3y - 2}{y - 1} \text{ of } f^{-1}(x) = \frac{3x - 2}{x - 1}$$

এখানে, বিপরীত ফাংশনটি $x-1 \neq 0$ এর জন্য সংজ্ঞায়িত, $x-1 \neq 0 \Rightarrow x \neq 1$

∴বিপরীত ফাংশনের ডোমেন = প্রদত্ত ফাংশনের রেঞ্জ ।

f(x) এর রেঞ্জ, রেঞ্জ $f=R\{1\}$

অর্থাৎ, x=1 ব্যতিত x এর প্রত্যেক মানের জন্য $f^{-1}(x)$ এর একটি করে মান পাওয়া যাবে যা f(x) এর রেঞ্জ....। এক্ষেত্রে f(x) সঠিক।

ইনভার্স ফাংশনকে যে সুত্র দ্বারা সংজ্ঞায়িত করা যায়:

ধরি,
$$f(x) = \frac{ax+b}{cx+d} = y \Rightarrow cxy + dy = ax + b \Rightarrow cxy - ax = -dy + b \Rightarrow x(cy - a) = -dy + b$$

$$\Rightarrow x = rac{-dy+b}{cy-a} \Rightarrow f^{-1}(x) = rac{-dy+b}{cx-a} cx - a
eq 0$$
হলে $f^{-1}(x)$ সংজ্ঞায়িত হবে। সুতরাং, $x
eq rac{a}{c}$ হতে হবে,

প্রদত্ত ফাংশনের ক্ষেত্রে, a=1, c=1 \therefore $x\neq \frac{a}{c}$ \Rightarrow $x\neq \frac{1}{1}$ \Rightarrow $x\neq 1$ এর জন্য $f^{-1}(x)$ সংজ্ঞায়িত হবে।

EXAMPLE – 02 : ফাংশন f কে $f(x) = \frac{2x+1}{x-5} \{x \in R, x \neq 5\}$ দ্বারা সংজ্ঞায়িত করা হলো । f^{-1} এর ডোমেন ও রেঞ্জ নির্ণয় কর ।

SOLVE: $f(x) = \frac{2x+1}{x-5}$ [$x \in \mathbb{R}$, $x \neq 5$]

ধরি,y = f(x)তাহলে, $y = \frac{2x+1}{x-5} \Rightarrow yx - 5y = 2x + 1 \Rightarrow yx - 2x = 1 + 5y$

 \Rightarrow x(y-2)=5y+1 \Rightarrow $x=rac{5y+1}{y-2}$ ফাংশনটিy-2
eq 0এর জন্য সংজ্ঞায়িত \therefore y
eq 2

y=2ব্যাতিত সকল বাস্তব সংখ্যা $f^{-1}(x)$ এর ডোমেন। \cdot ডোম, $f=R-\{2\}$

আবার, $f(x)=rac{2x+1}{x-5}$ এর ডোমেনই হলো $f^{-1}(x)$ এর রেঞ্জ । x-5
eq 0 এর জন্য f(x) সংজ্ঞায়িত হবে।

অর্থাৎ, $x \neq 5$; x = 5 ব্যাতিত সকল বাস্তব সংখ্যার সেটেই হবে f(x) এর ডোমেন। অর্থাৎ, $f^{-1}(x)$ এর রেঞ্জ

 \therefore রেঞ্জ $f^{-1}(x)=R-\{5\}$ অথবা, এভাবে লেখা যায়, $(-\infty,\ 5)\ \cup\ (5,\ \infty)$

EXAMPLE - 03: নিচের ফাংশন গুলো এক এক এবং সার্বিক কিনা তা কারণসহ উল্লেখ কর ঃ

(i) $f_1\colon R\to R$, $f_1(x)=x^5$ দ্বারা সংজ্ঞায়িত। (ii) $f\colon R\to R$, $f(x)=x^3+5$ দ্বারা সংজ্ঞায়িত।

SOLVE: (i). প্রদত্ত ফাংশন, $f(x) = x^5$

x = 1যদিf(1) = 1

x = -1এর জন্য যদি $f(-1) = (-1)^5 = 5 - 1$

x = 2 এর জন্য যদি $f(2) = 2^5 = 32$

x = -2 এর জন্য যদি $f(-2) = (-2)^5 = -32$

 $\mathbf{x}=\mathbf{x}_1$ এর জন্য যদি $\mathbf{f}(\mathbf{x}_1)=\mathbf{x}_1^5$

 $x = x_2$ এর জন্য যদি $f(x_2) = x_2^5$

যদি $x_1 \neq x_2$ হয় তবে , $\therefore x_1^5 \neq x_2^5 \Rightarrow f(x_2) \neq f(x_2)$ \therefore ফাংশনটি এক এক আবার,

ধরি, y = f(x) তাহলে, $y = x^5 \Rightarrow y^{\frac{1}{5}} = (x^5)^{\frac{1}{5}} \Rightarrow y^{\frac{1}{5}} = x$; $f^{-1}(x) = x^{\frac{1}{5}}$

x = 1এর জন্য, $f^{-1}(1) = (1)^{\frac{1}{5}} = 1$

$$x = -1$$
এর জন্য, $f^{-1}(-1) = (-1)^{\frac{1}{5}} = -1$

$$x = 2$$
এর জন্য, $f^{-1}(2) = 2^{\frac{1}{5}}$

$$x = x_1$$
এর জন্য, $f^{-1}(x_1) = x_1^{\frac{1}{5}}$

$$x = x_2$$
এর জন্য, $f^{-1}(x_2) = x_2^{\frac{1}{5}}$

যদি,
$$f^{-1}(x_1) \neq f^{-1}(x_2)$$
 হয়, তবে $,x_1^{\frac{1}{5}} \neq x_2^{\frac{1}{5}} \Rightarrow \left(x_1^{\frac{1}{5}}\right)^5 \neq \left(x_2^{\frac{1}{5}}\right)^5 \Rightarrow x_1 \neq x_2$

: f(x) এর বিপরীত ফাংশন $f^{-1}(x)$ এক এক । : f(x) সার্বিক ।

(ii) দেওয়া আছে,
$$f: R \to R$$
 , $f(x) = x^3 + 5$

তাহলে,
$$x = 0$$
 হলে, $f(0) = 0^3 + 5 = 0 + 5 = 5$

$$x = -1$$
হলে, $f(-1) = (-1)^3 + 5 = -1 + 5 = 4$

$$x = 2$$
 হলে, $f(2) = 2^3 + 5 = 8 + 5 = 13$

$$x = -2$$
 eq., $f(-2) = (-2)^3 + = -8 + 5 = -3$

 $\mathbf{x}=\mathbf{x}_1,\ \mathbf{x}_2,\ \mathbf{x}_3$ ইত্যাদি মানের জন্য $\mathbf{f}(\mathbf{x}_1)=\mathbf{x}_1^3+5,\ \mathbf{f}(\mathbf{x}_2)=\mathbf{x}_2^3+5,\mathbf{f}(\mathbf{x})$ এক এক হবে যদি $\mathbf{f}(\mathbf{x}_1)=\mathbf{f}(\mathbf{x}_2)$ এর জন্য $\mathbf{x}_1=\mathbf{x}_2$ হয়। $\mathbf{x}_1^3+5=\mathbf{x}_2^3+5 \implies \mathbf{x}_1^3=\mathbf{x}_2^3 \implies \mathbf{x}_1=\mathbf{x}_2$ [কাল্পনিক মূল বাস্তব সংখ্যার অন্তর্ভুক্ত নয়]

এখানে ডোমেন xএর প্রত্যেক মানের জন্য ভিন্ন ভিন্ন রেঞ্জ পাওয়া যাচ্ছে। ডোমেন রেঞ্জ

$$0 \xrightarrow{f} 5$$
; $1 \xrightarrow{f} 6$; $-1 \xrightarrow{f} 4$; $2 \xrightarrow{f} 13$; $-2 \xrightarrow{f} -3$

 \therefore ফাংশনটির এক এক প্রমাণিত হল । আবার ,ধরি, f(x)=y.

তাহল,
$$y = x^3 + 5 \Rightarrow x^3 = y - 5 \Rightarrow x = \sqrt[3]{y - 5}$$
 : $f^{-1}(x) = \sqrt[3]{x - 5}$

 $x-5\geq 0$ এর জন্য ফাংশনটি সংজ্ঞায়িত $x\geq 5$ ফাংশনটি x=5 হতে বড় সকল ধনাত্মক বাস্তব সংখ্যার জন্য সংজ্ঞায়িত।

$$x = 5$$
 হলে, $f^{-1}(x) = \sqrt[3]{5 - 5} = \sqrt[3]{0} = 0$

$$x = 6$$
 er, $f^{-1}(6) = \sqrt[3]{6-5} = \sqrt[3]{1} = 1$

$$x = 7$$
 হলে, $f^{-1}(7) = \sqrt[3]{7 - 5} = \sqrt[3]{2}$

$$\sqrt[3]{2}=x$$
 হলে, $2=x^3$ $\Rightarrow \left(\frac{x}{\sqrt[3]{2}}\right)^3=1$ $\Rightarrow \frac{x}{\sqrt[3]{2}}=1$, ω , ω^2 $\therefore x=\sqrt[3]{2}$, $\sqrt[3]{2}\omega$ এবং $\sqrt[3]{2}\omega^2$

এখানে $\sqrt[3]{2}\omega$ এবং $\sqrt[3]{2}\omega^2$ দুটো কাল্পনিক মূল বিধায় তা $f^{-1}(x)$ এর অন্তর্ভূক্ত হবে না।

সুতরাং, $x \geq 5$ এর জন্য $f^{-1}(x)$ একটি এক এক ফাংশন যেখানে রেঞ্জ = কোডোমেন।

: f(x) একটি সঠিক ফাংশন। সুতরাং f(x) একটি সার্বিক ফাংশন প্রমাণিত হল।

EXAMPLE – 04: $f: R \to R$ কে $f(x) = x^2$ দ্বারা সূত্রায়িত করা হলো। মান নির্ণয় কর ঃ

(*)
$$f^{-1}(36), f^{-1}(16), f^{-1}(-16)$$
 (*) $f^{-1}([-\infty, 0])$ (*) $f^{-1}([16])$

SOLVE : (ক) প্রদত্ত ফাংশন, $f(x)=x^2$ ধরি, f(x)=y তাহলে, $y=x^2\Rightarrow x^2=y$ $\Rightarrow x=\sqrt{y}$

$$\therefore f^{-1}(x) = \sqrt{x}; \ x = 36$$
 হলে, $f^{-1}(36) = \sqrt{36} = \pm 6$

(খ)
$$f^{-1}([-\infty, 0]) = ?$$
 $f^{-1}(-\infty) = \sqrt{-\infty} = [$ অসংজ্ঞায়িত]

 $f^{-1}(0)=\sqrt{0}=0$ [0 থেকে $-\infty$ এর মধ্যে সকল সংখ্যা কাল্পনিক যা বাস্তব সংখ্যায় প্রদর্শন করা যায় না]

$$\therefore f^{-1}([-\infty,0]) = \{0\}$$

(1).
$$f^{-1}([1, 16]) = ?$$

$$f^{-1}(1) = \sqrt{1} = \pm 1$$
; $f^{-1}(16) = \sqrt{16} = \pm 4$

$$\therefore f^{-1}([1,16]) = \{f: R \to R, -1 \le x \le 1, -4 \le x \le 4\}$$

EXERCISES:

- 01. A,B,C এর প্রত্যেকটি বাস্তব সংখ্যার সেট। $f:A\to B$ এবং $g:B\to C$ ফাংশনদ্বয়কে যথাক্রমে f(x)=x+1 এবং $g(x)=x^2+2$ দ্বারা সংজ্ঞায়িত করা হলো। সংযোজিত ফাংশন (gof) নির্ণয় কর।
- 02. $f: R \to R$ কে $f(x) = \begin{cases} x^2 + 3x & x \ge 2 \\ x + 2 & x < 2 \end{cases}$ দ্বারা সংজ্ঞায়িত করা হলো। f(7), f(0) এবং f(2) নির্ণয় কর।
- 03. $f: R \to R$ কে $f(x) = \begin{cases} x^2 3x & x \ge 2 \\ x + 2 & x < 2 \end{cases}$ দ্বারা সংজ্ঞায়িত করা হলো। f(-1), f(2), f(4), f(-4), f(5) ও f(-2) এর মান নির্ণয় কর।
- 04. মনে কর সেট $A=\{-4,-2,0,2.4\}$ এবং $f:A\to R$ ফাংশনটি $f(x)=x^2+2x+3$ দ্বারা সংজ্ঞায়িত। f এর রেঞ্জ নির্ণয় কর।
- 05. $f: R \to R$ কে $f(x) = x^2 + 1$ দ্বারা সংজ্ঞায়িত করা হলো। মান নির্ণয় কর ঃ (ক) $f^{-1}(5)$ (খ) $f^{-1}(0)$ গে $f^{-1}(10)$

ANS:

$01. x^2 + 2x + 3$	02. 70, 2,0	03. 2, 1, -2, 4, -2, 10
04. {11, 3, 27}	05. (क) {−2, 2} (∜) Ø	(গ) {3, -3} (ঘ)