

Machine Learning

Lab2

Fall 2023

Instructor: Xiaodong Gu

基于GPT2的程序生成


```
send_tweet.py
```

基于GPT2的程序生成

• 任务:

参考课堂讲解的 GPT2 finetuning 以及示范代码实现程序自动生成系统并进行调参实验。最后对生成的程序样例进行展示。

• 数据:

https://github.com/wangcongcong123/auto_coding/tree/master/dataset 也可采用其他数据集如CodeNet (https://github.com/IBM/Project_CodeNet)或自行收集数据

• 参考代码:

https://github.com/wangcongcong123/auto_coding

有问题请联系助教林雅岚 linyalan@sjtu.edu.cn

AI编程

- 提交: SID_NAME.zip
 - 代码及运行说明
 - 实验报告。包括但不仅限于系统设计、训练过程(如loss曲线)、调参实验及结果(不同参数下的perplexity等指标)、样例展示等。训练结果指标仅作为一项参考,不是主要的评价标准!

系统设计 模型设计 训练方法

实验结果

训练过程(如loss曲线) 调参实验及结果(如模型在不同超参数下的精确度) 生成代码展示

●截止日期:2023年11月27日

AI编程

注意事项:

- 1. 需要配置开发环境,如:PyCharm+Anaconda, python=3.7, torch=1.10.1
- 2. 如果使用 gpt2 训练较慢, 可以适当减小 seq_len、使用 distilgpt2 (https://huggingface.co/distilgpt2)
- 3. 读取示例数据的代码已经给出,可以参考此代码构建自己的 Dataset 类
- 4. DataLoader 中可以设置如 num_workers=4 提高计算效率
- 5. 在架构较新的GPU上 (18 年后发布的NIVDIA GPU), 可 以使用混合精度训练提高效率
- 6. 为了减轻工作量,可以参考开源代码(报告中注明来源),但要有自己的发挥。

Machine Learning: Lab 2

AI编程

• 评分: 综合评价功能、质量和工作量

功能:

代码无法运行

能完成功能、鼓励举一反三、尝试新方法

质量:

生成内容无意义、报告质量低

工作量:

直接提交示例代码或 完全照搬开源代码

生成可读程序、报告完整思路清晰

显示出对代码有理解、重构、或改进

