

WOVOdat version 1.1

WOVOdat Design Document: The Schema, Table Descriptions, and Create Table Statements for the Database of Worldwide Volcanic Unrest

Original Version:

WOVOdat1.0 By Dina Y. Venezky and Christopher G. Newhall, USGS Open File Report 2007-1117

Revised Version:

WOVOdat1.1 By WOVOdat Team at The Earth Observatory of Singapore, April 2010.

Contents

<u>i</u>	
WOVOtaOverview	5
WOVOtaFiamewak	6
Prototype Hardware and Software	7
NamingConvention	7
Table N1. The WOVOdat naming convention	3
Challenges 8	
Tine	3
Location	g
Data Collection from Permanent and Non-Permanent Instruments	g
Data Ownership and Availability	10
Table V1. Volcano Table	11
Table V2. Volcano-Contact Junction Table	12
Table V3. Volcano Information Table	12
Table V4. Magma Chamber Table	15
Table V5. Tectonic Setting Table	16
Table E1. Eruption Table	18
Table E2. Eruption Phase Table	19
Table E3. Eruption Video Table	21
Table E4. Eruption Phase Table	22
Table S1. Event Data from a Network Table	24
Table S2. Event Data from a Single Station Table	30
Table S3. Intensity Date Table	32
Table S4. Seismic Tremor Table	34
Table S5. Interval (swarm) Data Table	35
Table S6. RSAM/SSAM Table	38
Table S7. RSAM Data Table	39
Table S8. SSAM Data Table	40
Table S9. Representative Waveform Table	41
Table S10: Seismic Network Table	42
Table S11. Seismic Station Table	44
Table S12. Seismic Instrument Table	46
Table S13. Seismic Component Table	47
Table S14. Earthquake Translation Table	48
Table D1. Electronic Tilt Data Table	49
Table D2. Tilt Vector Data Table	51
Table D3. Strainmeter Data Table	52
Table D4. Tilt/Strain Instrument Table	54
Table D5. EDM Data Table	56
Table D6. Angle Data Table	57
Table D7. GPS Data Table	59
Table D8. GPS Vectors Table	61
Table D9. Leveling Data Table	63
Table D10. InSAR Image Table	64
Table D11. InSAR Satellite Junction Table	66
Table D12. InSAR Data Table	66
Table D13. Deformation Station Table	67

Table D14. General Deformation Instrument Table	68
Table G1 (modified). Directly Sampled Gas Table	70
Table G3. Soil Efflux Data Table	73
Table G4 (modified). Plume Data Table	74
Table G5. Gas Station Table	75
Table G6. Gas Instrument Table	77
Table H1(modified). Hydrologic Data Table	78
Table H2. Hydrologic Station Table	80
Table H3. Hydrologic Instrument Table	82
Table F1. Magnetic Fields Data Table	84
Table F2. Magnetic Vector Data Table	85
Table F3. Electric Fields Data Table	87
Table F4. Gravity Data Table	89
Table F5. Fields Station Table	90
Table F6. Fields Instrument Table	91
Table T1. Ground-Based Thermal Data Table	93
Table T2. Thermal Image Table	94
Table T3. Thermal Image Data Table	98
Table T4. Thermal Station Table	98
Table T5. Thermal Instrument Table	100
Table IP1. Magma Movement Table	101
Table IP3. Volatile Saturation Table	103
Table IP5. Buildup of Magma Pressure Table	104
Table IP7. Hydrothermal System Interaction Table	105
Table IP9. Regional Tectonics Interactions Table	108
Table C1. Bibliographic Table	110
Table C2. Contact Table	111
Table C3. Registry Table	113
Table C4. Permissions Table	113
Table C5. Images Table	114
Table C6. Images Junction Table	115
Table C7. Common Network Table	115
Table C8. Satellite Table	116
Table C9. Volcano-Network Junction Table	117
Table C10. Maps Table	118
Table C11. Changes Table	119
Table C12. Observations Table	120
Table C13. Upload History Table	120
Table C14. User to User Permission Table	120
Admondingerents	122
Comments and Conductors Conductors Conductors Mar SOL advantages	122
Code for Creating MySQL database	123

REMARKS:

- 1. **CAVW** is a number at the Catalog of Active Volcanoes of the World. Every volcano has its specific number. It consist of 4-digit number identifying region and subregion and 2 or 3 digit individual volcano number. As the number of volcanoes is increasing due to new foundings, Smithsonian Institution, Global Volcanism Program added one more digit ("-", "=" or numeric).
- 2. The datum used for the measurements is stored in *_datum or *_*_datum. All data should be converted to WGS 84 prior to entering WOVOdat.
- 3. Time:
 - a. DATETIME format is YYYY-MM-DD hh:mm:ss;
 - b. TIMESTAMP format is YYYYMMDDhhmmss.
 - c. All about "time", such as the start time of measurement, the time of instrument installation, start time of eruption, start time of a terminology used, is store in a field *_stime or *_*_stime, are stored in a DATETIME format in UTC. It is also the same for *_etime and *_*_etime for end-time field. For instance: ed_stime (start time of eruption) would be 2006-16-14 15:00:00.
 - d. The uncertainty of time is store in a field with a code *_stime_unc or *_etime_unc. This time uncertainty is also written in DATETIME. For instance: for ed_time that we are not sure at which minute the eruption happens, it means that the uncertainty is about 1 hour. So, ed_time_unc would be 0000-00-00 01:00:00 (and not 2006-16-14 16:00:00)
 - e. For eruption time at "BC", we added a new field to keep the year (only the year number). And, in that case, ed_stime should be written as "0000-00-00 00:00". This field is NULL if the date is "AD".
 - f. For seismic events, it need sometimes to include second fraction for arrival time of event. One one is added: sd_even_timecsec at S1 table and sd_evs_timecsec at S2 table.
- 4. The collector ID, cc_id, links to contact information for the primary observatory in charge of the volcano or the person responsible for the data. It could be also the person collecting the data. The field cc_id_load is for storing data loader ID and is used to provide contact information about the person who loaded the data into WOVOdat. Multiple people can enter data as long as each entry is kept separate and includes the appropriate contact ID. The collector ID, cc_id, and data loader ID, cc_id_load, both link to contact information in the Contact table. There will also be a junction table for connecting with reference data, which will provide access to the people who collected the data in the tables.
- 5. The load date, * loaddate, is a TIMESTAMP and entered automatically in UTC;
- 6. the publish date, *_pubdate, is the date the data will become accessible by the public.

(* could be two or three characters or more depending on the type of the table.)

WOVOdat Design Document: The Schema, Table Descriptions, and Create Table Statements for the Database of Worldwide Volcanic Unrest (WOVOdat Version 1.0)

By Dina Y. Venezky¹ and Christopher G. Newhall²

WOVOdatOverview

During periods of volcanic unrest, the ability to forecast near future activity has been a primary concern for human populations living near volcanoes. Our ability to forecast future activity and mitigate hazards is based on knowledge of previous activity at the volcano exhibiting unrest and knowledge of previous activity at similar volcanoes. A small set of experts with past experience are often involved in forecasting. We need to both preserve the knowledge the experts use and continue to investigate volcanic data to make better forecasts. Advances in instrumentation, networking, and data storage technologies have greatly increased our ability to collect volcanic data and share observations with our colleagues. The wealth of data creates numerous opportunities for gaining a better understanding of magmatic conditions and processes, if the data can be easily accessed for comparison. To allow for comparison of volcanic unrest data, we are creating a central database called WOVOdat. WOVOdat will contain a subset of time-series and geo-referenced data from each WOVO observatory in common and easily accessible formats.

WOVOdat is being created for volcano experts in charge of forecasting volcanic activity, scientists investigating volcanic processes, and the public. The types of queries each of these groups might ask range from, "What volcanoes were active in November of 2002?" and "What are the relationships between tectonic earthquakes and volcanic processes?" to complex analyses of volcanic unrest to determine what future activity might occur. A new structure for storing and accessing our data was needed to examine processes across a wide range of volcanologic conditions. WOVOdat provides this new structure using relationships to connect the data parameters such that searches can be created for analogs of unrest. The subset of data that will fill WOVOdat will continue to be collected by the observatories, who will remain the primary archives of raw and detailed data on individual episodes of unrest. MySQL, an Open Source database, was chosen as the WOVOdat database for its integration with common web languages.

The question of where the data will be stored and how the disparate data sets will be integrated will not be discussed in detail here. The focus of this document is to explain the data types, formats, and table organization chosen for WOVOdat 1.0. It was written for database administrators, data loaders, query writers, and anyone who monitors volcanoes. We begin with an overview of several challenges faced and solutions used in creating the WOVOdat schema. Specifics are then given for the parameters and table organization. After each table organization section, basic create table statements are included for viewing the database field formats.

In the next stage of the project, scripts will be needed for data conversion, entry, and cleansing. Views will also need to be created once the data have been loaded and the basic queries are better known. Many questions and opportunities remain. We look forward to the growth and continual improvement in efficiency of the system. We hope WOVOdat will improve our understanding of magmatic systems and help mitigate future volcanic hazards.

WOVOdatFramework

A relational database was chosen as the model for storing and accessing the large amounts of data of volcanic unrest. A relational database is a collection of tables that are related by common fields. Each table contains a collection of records, which can be thought of as rows. The records contain fields or attributes, which can be thought of as columns. Each table contains a unique key, called the primary ID, for linking with other tables. If the primary ID of table A is placed in table B then table B would contain its own primary ID plus the primary ID from A. The primary ID from table A is referred to as a foreign key or foreign ID when found in other tables. Whether the primary ID from table A is placed into table B or the primary ID from table B is placed in table A is a function of the types of relationships the data have to each other.

There are three relationships between data; one-to-one (1:1), one-to-many (1:m), and many-to-many (m:n). In a one-to-one relationship, only one instance exists in table B for each instance of table A and vice-versa. For example, each U.S. scientist in table A is associated with one Social Security Number (SSN) in table B and each SSN in table B is associated with one scientist in table A. In a one-to-many relationship, there are multiple instances of table B for each instance of table A but for each instance of table B, only one instance of table A exists. For example, a volcano can have multiple installed instruments on it. When each instrument, in the example, is examined, it is found to be associated with only one volcano. For each instance of table A in a many-to-many relationship, there are multiple instances of table B and for each instance of table B, there are multiple instances of table A. For example, a volcano can be monitored by many non-permanent instruments, such as a thermometer carried into the field. And each non-permanent instrument can be used to monitor multiple volcanoes.

When tables are created for data with one-to-many relationships, the foreign key of the one part of the relationship is placed in the table of the many part of the relationship. For example, a table with installed instruments at a volcano would include the volcano ID as a foreign key to link the instruments back to the volcano. If the instruments were put in the volcano table then multiple attributes would be needed to link all of the instruments. Additionally, new instruments would require new fields in the volcano table. By adding the volcano ID to the instruments table instead, no additional fields are needed if a new instrument is added.

The language used to access data in a relational database is called Structured Query Language (SQL). Using SQL, a query could be written to return all instruments installed at a particular volcano. A join or join operation would be used in the query to connect the data from both tables. The query would select the volcano name and instrument name from the volcano table and instrument table where the volcano ID in the instrument table was equal to the volcano ID in the volcano table and the volcano ID in the volcano table was the ID for the name of the volcano of interest. Queries to search for patterns of volcanic unrest are much more complicated and require a structured database organization or normalization to make them more efficient. The first step towards a structured organization is a logical model that represents the entities and their relationships. The logical model can then be normalized to reduce data redundancies, data anomalies, and various nefficiencies that would otherwise increase the number of joins and increase the potential for data errors

Prototype Hardware and Software

WOVOdat 1.0 was designed using MySQL version 4.0.14. for Mac OS X in early 2004. The database ran on Mac OS X version 10.3.3 running an Apache web server version 1.3.29 and PHP version 4.3.2. Several web scripts were written in HTML, PHP, and XML to pull data from a preliminary database called wovotest.

Naming Convention

WOVOdat was designed to be a scalable database for global use by a range of end-users. Most end-users will utilize previously created web-based applications or will request queries from a WOVOdat team, however, some users may prefer to write their own queries. Future attributes and tables may also need to be added by people unfamiliar with the original design. To address these needs, a naming convention was created to provide enough information about the attribute and the table to which it belongs without being too lengthy and cumbersome. The WOVOdat naming convention was based on a large retail corporate database naming convention where disparate groups of people were involved with changes throughout the project lifecycle and attribute names needed to indicate what they were and the table from which they originated. The unique attribute names are used in a few junction tables to associate images and data changes with fields in other tables.

Simplified WOVOdat schema

Instrument, Bibliographic, and Contact information included for all data.

Table N1. The WOVOdat naming convention

a	Category - seismic (s), deformation (d), gas (g), thermal (t), hydrologic (h), volcano (v), inferred processes (I), potential fields (f), common (c), junction (j)
b	Table type - data (d), station information (s), instrument (i), network (n), bibliographic (b), contact (c)
cde	Subcategory, if necessary - gps (gps), tilt (tlt), tremor, (trm), gravity (gra). CO ₂ flux (co ₂), etc
fgh*	Attribute - latitude (lat), end point or final benchmark (fbm), description (desc), etc.

The WOVOdat naming convention follows the format of ab_cde_fgh, where the category and table type can be quickly discerned from the first two letters (ab) of the attribute. The first letter of the attribute (a) is the category to which the attribute belongs. These categories include selections of data such as seismic or geodetic as well as broader categories such as common tables and junction tables. The second letter of the attribute (b) gives the table type to which the attribute belongs. The table type gives information about the type of data in the tables such as data, station information, instrument information, network information, bibliographic information, and contact information. Junction tables start with a single letter (j). The second set of descriptive acronyms (cde) describes a subcategory, if appropriate. The subcategories describe the categories in more detail such as distinguishing between electronic tilt data, vector tilt data, and gps data in the geodetic category. The subcategory for Junction tables is four letters in length and combines two letters from each of the tables it is joining. The final set of attributes (fgh*), further describe the attribute and include shorthand for such terms as location, time, resolution, etc.

Challenges

There were several challenges that spanned multiple tables warranting a separate discussion. Below is an overview of the challenges faced and solutions used for formatting time and location data along with the table organization selected for data collected by both permanent and non-permanent instruments. Having data in standard formats greatly increases the ease at which data can be compared. Unfortunately, there are no standards that cover volcano monitoring data and multiple formats for the same type of data can be found within an observatory. Therefore, a collection of global data will contain a wide variety of formats.

The formats chosen for WOVOdat will most likely be questioned throughout the project's lifecycle and we hope WOVOdat will create opportunities for designing volcano monitoring data standards. Because of the large range in formats used, we tried to include as many experts in data format discussions as possible. Parameters were discussed at the WOVOdat meeting in Bali in 2000 and again in Menlo Park, CA in 2002. Emails were sent to all WOVO observatories with hyperlinks to the parameters and formats posted on the WOVOdat website for feedback. Additional group discussions, email discussions, and phone conversations were held in 2003 to try to finalize the parameter list and formats. This documentation was developed in early 2004 to provide more detailed information about the choices made. In late 2006, a WOVOdat steering committee was established that met at the Fall American Geophysical Union meeting. A follow-up technical design workshop was held in February 2007 where this schema was discussed for possible use by teams at INGV (Bologna, Italy) and NIED (Japan).

Time

Recording time-stamped global data such that it can be used for future comparisons presents two main

challenges. The first is determining when to convert data from one time zone to another and the second is agreeing on a standard for handling differences in level of detail between data that was recorded by an instrument for that second and data where less detail is known. Simple scripts can perform conversions to a different time zone as long as the difference between the UTC zone and the Universal Time Code (UTC) is known. However, the conversions can reduce the speed at which data is returned from complex queries. Because WOVOdat will be used mainly for accessing data, it is better to increase the data input effort than to slow down the query process. To make the query process as easy and fast as possible, all times should be converted to the Universal Time Code (UTC) prior to entry into WOVOdat, except for the load dates, which will be automatically entered in UTC. The decision for UTC was made based the ease of loading the local data and assumption that queries needing the load date information would be orders of magnitude less frequent than queries comparing the other data. Standard data loading scripts to convert time should be made available for consistency. The conversion from local time to UTC will be stored in the station tables and network tables to make the conversion to UTC faster when necessary. We found having the UTC conversion in only the Volcano table made the conversion queries more complicated and time consuming.

The standards chosen for the time formats are the MySQL data type, **DATETIME** (YYYY-MM-DD hh:mm:ss), for all time data and **TIMESTAMP** (YYYYMMDDhhmmss), for all load dates. The load dates are entered automatically every time data is loaded into WOVOdat. Special scripts will be needed to load less detailed time data and flag it with the known level of detail. *Because MySQL does not validate dates like other databases, it requires the months range from 0 to 12 and the dates from 0 to 31, we originally discussed a zero date for months where the exact day is unknown and a zero month years where the exact month is unknown.* A standard day, such as the 15th, should be used when the exact day is not known, and a standard month, such as January, should be used when the month is not known. Information about the known level of detail should be included in the comments field.

Location

The ability to compare geospatial data is important to the success of WOVOdat, which means a common reference frame or datum is a necessity. A datum is a global reference model that is used to compute horizontal and vertical positions. Early datums were surface oriented and local. In North America one such early datum was NAD27. As models for calculating the surface of the Earth and the tools used to measure the distance between two points have become more sophisticated, local datums have undergone revisions. The more recent datums are now earth-centered and created using GPS (Global Positioning System) technology. Unfortunately, it is often difficult to convert data from one datum to another. The difference between older datums and more recent datums can be significant because the datums are based on different moel reference ellipsoids and changes vary with location (the shift from NAD27 to NAD83 is as large as 100 meters [325 feet] in portions of California). To solve several datum issues, WGS 84 (World Geodetic System of 1984) was created using advancements in GPS technology to be a standard global datum. Although NAD83 is based on similar technology, it was created using different ellipsoids and therefore small differences have been found.

To make comparisons easier, WGS 84 has been chosen as the standard for WOVOdat. As such, all data should be converted to WGS 84 prior to entry. Although new datums may be introduced in the future, is likely that conversions from WGS 84 to the new standards will be common.

Data Collection from Permanent and Non-Permanent Instruments

The comparisons of data collected from instruments that are either carried into the field or installed permanently at a station, present data organization challenges. Access to instrument information is required for data comparisons to ensure similar collection methods. Therefore, a database-wide organization was needed to simplify queries where data collection frequencies could change. Multiple junction tables were examined to

allow for the many-to-many instrument-to-station relationships, however, this method was found to require more data entry and potentially more difficult queries than other solutions. Our solution involves linking instrument information directly from the data tables for the temporary instruments whereas data collected from permanently installed instruments would be linked to the instrument information through the station tables. The station tables link to contact information for the data collector so tables that contain data collected using temporary instruments need to include a link to the contact information for the collector. Tables that hold data from both temporary and permanently installed instruments include a flag to indicate if the data were collected periodically (P) or continuously (C). There were discussions about limiting the amount of continuous data in WOVOdat, such as every 10 minutes instead of every 10 seconds. A decision was made to let the observatories submit their preferred data frequency instead of imposing calculations to limit the amount of data.

Image data that can be collected from an instrument on a moving object or from a fixed point such as a caldera rim or observatory roof also present a data organization challenge. A similar solution to that used for periodic data is used for data collection for instruments without a fixed location. The image data collected by instruments on moving objects include the location of the instrument during data collection in the data table. The image data collected from a stationary location do not include the location in the data tables because the location can be found using a link to the station table. The station tables include fields for indicating if the station is collecting data at that point in space or remotely, as is the case for image data. The data tables allow for the collection of both types of data and scripts are needed to load the data properly for each case.

Data Ownership and Availability

One common concern about storing data in a global database is loss of data ownership. To alleviate these concerns, we've added access to the data owner's contact information and a method for the data owner to set when the data can become public. Each WOVOdat table contains an ID for the data collector or data owner, an ID for the person who put the data into WOVOdat, and a date after which the data can become public. The data owner fields link to the contact table for contact or reference information. The publish date sets a time after which the data will be made public in the database. The publish date can be set up to two years in advance giving the data owner time to analyze and publish their data. Data that has been entered in advance would be available to the owner for comparisons with other global data. It would also be available to the database administrator and a select WOVOdat volcanology experts for use during times of volcanic hazards.

Table Structures and Create Table Statements

Throughout this document, italics are used to provide additional information about choices made in the schema organization. The additional information gives a more complete summary of the discussions that led to this version of the schema. Table names are capitalized and all attributes are in lowercase. SI units (Le Système international d'unités or International System of Units) were chosen for all parameters.

In creating tables, the number of joins for currently known queries were reduced whenever possible.

Volcano

The volcano section of WOVOdat contains not only information about the volcano but also the necessary links between the monitoring data and the eruption data. Data from the Smithsonian Global Volcanism Program will fill most of these tables, however, some data will need to be entered by hand through a web form.

• The data in the volcano tables ranges from location and tectonic environment information to inferred dimensions of the magma storage system. There are four volcano tables:

- The Volcano table, vd, contains only the attributes that are unlikely to change for linking to all other tables. We include only the attributes that are unlikely to change.
- The Volcano Information table, vd_inf, contains more specific information about the volcano that could possibly change over time such as the volcano height and description.
- The Magma Chamber table contains information that could be used to define the magma storage system such as the depth of a low velocity zone and volume of the largest eruption.
- The Tectonic Setting table stores information about the tectonic environment.

General Volcano

Table V1. Volcano Table

vd_id	Volcano ID	An identifier for linking with other tables
vd_cavw	CAVW number	CAVW from Smithsonian Institute. This field store only the newest
		version of cavw coding.
vd_name	Volcano name	The name of the volcano stored in the CAVW as the primary name
vd_tzone	Time zone	The time zone relative to UTC. Please enter the number of hours
		from GMT, using a negative sign (-) for hours before GMT and
		no sign for positive numbers (sxx.x).
vd_mcont	Contact flag	A flag (please enter M for multiple contacts) to indicate that there
		are multiple contacts for this volcano and the Volcano-Contact
		Junction table should be queried to access all of the contact
		information.
cc_id	Contact ID	An identifier for linking to contact information about the person
		or observatory who monitors the volcano.
vd_loaddate	Load date	The date this row was entered in UTC.
vd_pubdate	Publish date	The date this row can become public. This date can be set up to two
		years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who
		entered this row of data

The Volcano table is one of the fundamental tables of WOVOdat in that it links to almost every other table. Our original design included one volcano table instead of volcano and volcano information tables. Certain queries, however, were found to be too cumbersome if information in the volcano table were to change, because the time of data collection would need to be matched to the valid time for the volcano information for each query. A simple change in the design was made to create two volcano tables, which should prevent a substantial amount of work in the future.

The Volcano table (vd for volcano data) stores two pieces of data that are unlikely to change, the volcano name and the time zone. There may be instances where one of these attributes changes and a solution based on when the change occurs in WOVOdat's lifecycle will be needed. The primary ID, vd_id, is stored in multiple other tables for linking from the monitoring or eruption data to the volcano data. The time zone, vd_tzone, provides the information necessary to convert from local time to UTC. The contact ID (cc_id) links to contact information for the primary observatory that manages this volcano. In some cases there are multiple observatories monitoring one volcano so a flag, vd_mcont, has been included to indicate the Volcano Contact Junction table should be queried for additional contact information. The letter M should be entered in the vd_mcont field if there are multiple contacts.

The fields vd_pubdate would be "NULL" if data from volcano is not available. A field to store CAVW code, vd_cavw is added. The change is necessary as CAVW become the most important identification code of volcanoes. If vd_cavw change, the new code replaces the old one. However, we keep the cavw-field in V3 to tracks historical modification on cavw number. For V3 table, the new cavw will be stored in a new record without deleting the old one.

Volcano-Contact Junction

Table V2. Volcano-Contact Junction Table

jj_volcon_id	Volcano Contact	An identifier for linking with other tables
	junction ID	
vd_id	Volcano ID	The identifier for linking to the volcano table. The volcano
		table stores the volcano name and time zone. It is used to
		connect to all other data
cc_id	Contact ID	An identifier for linking to contact information about the
		person or observatory who monitors the volcano
jj_volcon_loaddate	Load date	The date this row was entered in UTC
cc_id_load	Data loader	An identifier for linking to contact information for the
	ID	person who entered this row of data

The Volcano Contact Junction table, jj_volcon, is the junction table for the many-to-many relationship between the volcano and the observatories that monitor the volcano. The table contains a primary ID, jj_volcon_id, for joining with other tables in separate databases if needed, the volcano ID, vd_id, the contact ID, cc_id, a load date, jj_volcon_loaddate, and a data loader ID, cc_id_load.

Volcano Information

Table V3. Volcano Information Table

vd_inf_id	Volcano information ID	An identifier for linking with other tables
vd_id	Volcano ID	The identifier for linking to the volcano table. The
		volcano table stores the volcano name and time zone. It is
		used to connect to all other data
vd_inf_cavw	CAVW Number	The CAVW number from the Smithsonian (nn-nn-
		nnn).
vd_inf_desc	Short narrative	A short narrative about the volcano and its history
vd_inf_slat	Summit Latitude	The summit latitude in decimal degrees from the
		Smithsonian (positive is to the N) (sxx.xxxxxx).
vd_inf_slon	Summit Longitude	The summit longitude in decimal degrees from the
		Smithsonian (positive is to the E) (sxxx.xxxxxxx)
vd_inf_selev	Elevation of summit	The summit elevation in meters from the Smithsonian
		where positive values are above sea level (sxxxx).
vd_inf_type	Volcano type	The type of volcano from the Smithsonian. This field
		will list all types in order from primary through

		secondary
vd inf aval	Volume of edifice	·
vd_inf_evol		The volume of the edifice (xx.x).
vd_inf_numcald	Number of calderas present	The number of calderas present (xx).
vd_inf_lcald_dia	Diameter of largest caldera	The diameter of the largest caldera or crater (xxx.x)
vd_inf_ycald_lat	Latitude of youngest caldera	The latitude of youngest caldera in decimal degress
		(SXXX.XXXXXXX)
vd_inf_ycald_lon	Longitude of youngest	The longitude of youngest caldera in decimal degress
	caldera	(SXXX.XXXXXXX)
vd_inf_stime	Start time	The time the data became valid or was measured in
		UTC stored as DATETIME. If the data needs to be
		updated then this field will help find information about
		the volcano for the time period requested
vd_inf_stime_unc	Start time uncertainty	The uncertainty in time the data became valid or was
		measured in UTC stored as DATETIME
vd_inf_etime	Endtime	The time the data changed in UTC stored as
		DATETIME.
vd_inf_etime_unc	End time uncertainty	The uncertainty in time the data changed in UTC stored
		as DATETIME. This field will be null if the data are
		still valid
cc_id	Contact ID	An identifier for linking to contact information
vd_inf_loaddate	Load date	The date this row was entered in UTC
vd_inf_pubdate	Publish date	The date this row can become public. This date can be
		set up to two years in advance
cc_id_load	Data loader ID	An identifier for linking to contact

The Volcano Information table (vd inf for volcano data - information) contains information about the volcano that could possibly change over the life of the database, such as the CAVW number, the location of the summit, and other descriptive information (please see the Volcano table for additional discussion). Much of this information will be loaded from the Smithsonian Global Volcanism Program' Volcano Reference File (VRF). The primary key is vd_inf_id, which will be entered automatically and is set up as a medium integer. The Volcano ID, vd_id, is the primary key from the volcano table and will be used to link the volcano information to eruption information and monitoring data. The contact ID (cc_id) links to contact information for the primary observatory that manages this volcano. In some cases there are multiple observatories monitoring one volcano. Information about the multiple observatories can be found using the flag in the Volcano table and the Volcano Contact Junction table. A flag similar to the one in the Volcano Table may make it easier to find this additional information. The Volcano Information Table includes the CAVW number, vd inf cavw, from the Smithsonian along with a short narrative of the volcano, vd_inf_desc, also from the Smithsonian. The CAVW numbers are based on geographic regions and there have been cases where a volcano has been added to the CAVW and the CAVW numbers of previously known volcanoes have been changed to "make room" for the new volcano. The location information for the summit of the volcano includes the latitude, vd_inf_lat, longitude, vd_inf_lon, elevation, vd_inf_elev. When a volcano erupts, there is the potential for changes in the summit latitude, longitude, elevation, edifice volume, diameter of primary caldera, latitude and longitude of primary caldera, number of calderas, the volcano type, and the description of the volcano. For example, when Mt. St. Helens erupted on May 18th, 1980 the summit elevation went from about 3900 m to 2400 m.

The volcano type, vd_inf_type, is a list of volcano types from the Smithsonian starting with the primary volcano type. The volume of the edifice, vd_inf_evol, number of calderas present, vd_inf_numcald, diameter of largest caldera, vd_inf_lcald_dia, and locations of the youngest caldera, vd_inf_ycald_lat and vd_inf_ycald_lon will also be based on data in the Smithsonian database. If the information in the Volcano Information table has

been changed, the vd_inf_stime and vd_inf_etime, will be used for linking to information for the appropriate time period. The vd_inf_stime attribute is the time the data became valid or was measured. The vd_inf_etime is the time the data changed. If the data in the Volcano Information table have not changed, the vd_inf_etime attribute will be null and the table can be easily queried to return this information. The uncertainties for the start and end times are stored in vd_inf_stime_unc and vd_inf_etime_unc. The field vd_ycald_datum is removed.

Magma Chamber

Table V4. Magma Chamber Table

vd_mag_id	Magma chamber ID	An identifier for linking with other tables
vd_id	Volcano ID	The identifier for linking to the volcano table. The
		volcano table stores the volcano name and time zome.
		It is used to connect to all other data
vd_mag_lvz_dia	The diameter of low	The diameter of low velocity zone in kilometres (xxx)
	velocity zone	
vd_mag_lvz_vol	Volume of low velocity	The volume of low velocity zone in cubic kilometrs
	zone	(xxxx)
vd_mag_tlvz	Top of low velocity	The depth to top of low velocity zone in kilometres
	zone	(xx)
vd_mag_lerup_vol	Volume of largest	The volume expressed as dense rock equivalent or
	eruption	DRE, of the largest historic or prehistoric eruption (in
		km3) (xxxx.xxx)
vd_mag_drock	Dominant rock type	The dominant rock type, for example andesite
vd_mag_orock	Outlier rock type	The outlier rock type, for example, basalt
vd_mag_orock2	Outlier rock type 2	A second outlier rock type, if applicable
vd_mag_orock3	Outlier rock type 3	A third outlier rock type, if applicable
vd_mag_minsio2	Minimum SiO ₂	The minimum SiO ₂ content of whole rocks erupted
	_	(xx.xx)
vd_mag_maxsio2	Maximum SiO,	The maximum SiO, content of whole rocks erupted
	2	(xx.xx)
vd_mag_com	Comments	Comments or a description of the magma shamber
cc_id	Collector ID	An identifier for linking to contact information about
_		the person who collected this data
vd_mag_loaddate	Load date	The date this row was entered in UTC
vd_mag_pubdate	Publish date	The date this row can become public. This date can be
		set up to two year in advance
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Magma Chamber table (vd_mag for volcano data - magma chamber) contains information about the magma chamber such as its composition(s) and minimum size (based on the largest eruption volume). The primary key is vd_mag_id, which will be entered automatically and is set up as a medium integer. The Volcano ID, vd_id, is the primary key from the volcano table and will be used to link to volcano information, eruption information, and monitoring data.

One method for determining information about the magma chamber is through geophysical surveys of the low velocity zone (a zone that could potentially contain magma). The diameter of the low velocity zone is stored in kilometers in vd_mag_lvz_dia, the volume of the low velocity zone is stored in cubic kilometers in vd_mag_lvz_vol, and the top of the low velocity zone is stored in kilometers in vd_mag_tlvz. Another method of estimating the size of the magma chamber is from the size of an eruption. We store the volume (dense rock equivalent) of the largest eruption in cubic kilometers in vd_mag_lerup_vol. Additional information about the magma chamber can be gained from the types of eruptive products. We store the dominant rock type, vd_mag_drock, and three outlier types, vd_mag_orock, vd_mag_orock2, and vd_mag_orock3. The range in SiO₂ contents of the whole rock eruptive products is stored as a minimum SiO₂, vd_mag_minsio2, and maximum SiO₂, vd_mag_maxsio2. The final attribute is a comments field,

vd_mag_com, for any additional comments about the magma chamber.

Tectonic Setting

Table V5. Tectonic Setting Table

ner tables
he volcano table. The
name and time zone. It is
escription of the local
parallel strike-slip in
_
ers per year (xx.x).
eters per year (xx.x).
t in centimeters per year
led comments about the
ntact information about
UTC
ublic. This date can be
tact information for the
ta

The Tectonic Setting table (vd_tec for volcano data - tectonic setting) contains information about the local tectonic setting such as rates of movement either along a plate or over a hotspot. This information will all need to be entered by hand from a variety of sources. The primary key is vd_tec_id, which will be entered automatically and is set up as a medium integer. The Volcano ID, vd_id, is the primary key from the volcano table and will be used to link to volcano information, eruption information, and monitoring data. Information about the local tectonic setting can be stored in the description attribute, vd_tec_desc. The rates of arc- or ridge-parallel strike slip, rate of extension, and rate of convergence are stored in vd_tec_strslip, vd_tec_ext, and vd_tec_conv all as centimeters per year. The rate of movement over a hotspot is stored in vd_travhs, also in centimeters per year. We also include an added comments field, vd_tec_com, for additional comments about the tectonic setting that are not covered in vd_tec_desc.

Euption

Volcanic eruptions can be classified in multiple ways based on the style of eruption, composition, duration, and location. The eruption section of WOVOdat contains general information about each volcanic eruption including parameters used to describe the type of eruption, video of the eruption, and forecasts made about the eruption. The tables are linked to the Volcano table for volcano information and for access to the monitoring data. The **Smithsonian Global Volcanism Program** will be a source for most of the data in the eruption tables. All other data will need to be entered by hand through a web form. The eruption tables store

information about each volcanic eruption, the individual eruption phases, sample video footage, and forecasts made prior to the eruptions. There are five eruption tables:

- The Eruption table, ed, contains summary information about an eruption such as a narrative and time period.
- The Eruption Phase table, ed_phs, contains more specific information about individual eruption phases such as the size of the phase and composition of magma.
- The Eruption Phase table links to the Eruption table. Some of the eruption phase data will come from the Smithsonian but the rest will need to be entered by hand.
- The Eruption Video table, ed_vid, stores information about a video clip of the eruption including the location of the clip and a summary of the clip contents.
- The Eruption Forecast table, ed_for, stores information about forecasts made for a phase of the eruption such as an overview of the forecast and the eruption times forecasted.

General Eruption

Table E1. Eruption Table

ed id	Eruption data ID	An identifier for linking with other tables
ed code	Collector defined ID	An eruption identifier used by data
Cu_couc	Concetor defined ID	owner/observatory/collector
vd id	Volcano ID	The identifier for linking to the volcano table. The volcano
		table stores the volcano name and time zone. It is used to
		connect to all other data.
ed_name	Name of eruption	The name (other than eruption year) that is often used to refer
	•	to the eruption (e.g., the Hoei eruption of Fuji or the VTTS
		eruption of Novarupta/Katmai).
ed_nar	Narrative of eruption	A narrative of eruption (if any) from the Smithsonian.
	(if any)	This field is currently 255
ed_stime	Start time of eruption	The eruption start time in UTC stored as DATETIME.
ed_stime_bc	"BC" year	An integer (sxxxxx) to store the year at BC period. If the
		date is "AD", this field is NULL.
ed_stime_unc	Start time of eruption	The uncertainty in the eruption start time in UTC stored
	uncertainty	as DATETIME.
ed_etime	End time of eruption	The eruption end time in UTC stored as DATETIME.
ed_etime_bc	"BC" year	An integer (sxxxxx) to store the year at BC period. If the
		date is "AD", this field is NULL
ed_etime_unc	End time of eruption	The uncertainty in the eruption end time in UTC stored as
	uncertainty	DATETIME.
ed_climax	Onset of eruption	The onset of eruption climax in UTC stored as
	climax	DATETIME .
ed_climax_unc	Onset of eruption	The uncertainty in the time of the onset of eruption climax
	climax uncertainty	in UTC stored as DATETIME.
ed_com	Comments	A text field for storing comments and additional
		information about the eruption
cc_id	Collector ID	An identifier for linking to contact information about the
		person who collected this data
ed_loaddate	Load date	The date this row was entered in UTC
ed_pubdate	Publish date	The date this row can become public. This date can be set
		up to two year in advance
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Eruption table (ed for eruption data) stores general information about an eruption such as a narrative and time span. More specific information about the eruption is stored in the Eruption Phase table, which links to the Eruption table. The primary ID is ed_id and the main foreign key is the volcano ID, vd_id for linking to the volcano and monitoring information.

The name by which the eruption is most often referred to is stored in ed_name. A narrative of the eruption from the Smithsonian database or entered by hand is stored in ed_nar. This field is currently a 255-character text field and we may need to increase its size if the narratives are longer. The time span of the eruption is stored as ed_stime and ed_etime, both in UTC DATETIME. The onset of the eruption climax is also stored in UTC DATETIME in the field ed_climax. Uncertainties for the time span and eruption climax are stored in

ed_stime_unc, ed_etime_unc, and ed_climax_unc. Additional comments about the eruption can be stored in ed_com.

Two fields are added to store BC year. These are ed_stime_bc and ed_etime_bc. The field stores integer of year at BC period. In this case, the _etime or _etime should be 0000-00-00 00:00:00. If the date is "AD", this field is NULL.

Eruption Phase

Table E2. Eruption Phase Table

ed_phs_id	Eruption phase ID	An identifier for linking with other tables
ed_phs_code	Collector defined ID	An eruption phase identifier used by data
		owner/observatory/collector
ed_id	Eruption ID	An identifier for linking with information in the Eruption
		table. The Eruption table contains general information about
		an eruption including a narrative and time span. The
1 1 1	Di I	Eruption table also links to the Volcano table.
ed_phs_phsnum	Phase number	The observatory defined phase number starting with number
ad also ations	Ctart fina	1 for the first phase of the eruption
ed_phs_stime	Start time	The start time of this phase in UTC stored as DATETIME.
ed_phs_stime_bc	"BC" year	An integer (sxxxxx) to store the year at BC period. If the
os_pris_surio_co	De jour	date is "AD", this field is NULL.
ed_phs_stime_unc	Start time uncertainty	The uncertainty in the start time of this phase in UTC
		stored as DATETIME.
ed_phs_etime	End time	The end time of this phase in UTC stored as DATETIME.
ed_phs_etime_bc	"BC" year	An integer (sxxxxx) to store the year at BC period. If the
		date is "AD", this field is NULL.
ed_phs_etime_unc	End time uncertainty	The uncertainty in the end time of this phase in UTC
		stored as DATETIME.
ed_phs_desc	Description	A description of the eruption characteristics for this phase
		(please include the word climax for the climax of the
1 1 '	\/\(\tau\)	eruption for search purposes).
ed_phs_vei	VEI, this phase	The volcanic explosivity index (VEI) for this phase taken
ad also means love	May lave autories	from the Smithsonian. The maximum lava extrusion rate in m3/s.
ed_phs_max_lext	Max lava extrusion rate	The maximum lava extrusion rate in m5/s.
ed_phs_max_expdis	Max explosive mass	The maximum explosive mass discharge rate in kg/s x 10°
ca_piis_max_expais	discharge rate	The maximum explosive mass disentinge rate in kg/s/x 10
ed_phs_dre	DRE	The volume of material erupted or DRE in m ³ x 10 ⁶ .
ed_phs_mix	Magma mixing	A text field to indicate if there is evidence of magma
		mixing. Use Y for detected, N for not seen, or U for
		unknown. You can also give a short description of the
		evidence for magma mixing
ed_phs_col	Column height	The maximum height of the eruption column in kilometers
		above sea level
ed_phs_coldet	Column height	The method used to determine the maximum height of the

	determination	eruption column
ed_phs_minsio2_mg	Minimum SIO2 of	The minimum SiO ₂ of the matrix glass as a weight percent
	matrix glass	(xx.xx%)
ed_phs_maxsio2_mg	Maximum SiO ₂ of	The maximum SiO ₂ of the matrix glass as a weight percent
	matrix glass	(xx.xx%).
ed_phs_minsio2_wr	Minimum SiO2 of	The minimum SiO ₂ of the whole rock as a weight percent
	whole rock	(xx.xx%)
ed_phs_maxsio2_wr	Maximum SiO2 of	The maximum SiO ₂ of the whole rock as a weight percent
	whole rock	(xx.xx%)
ed_phs_totxtl	Total crystalinity	The total crystallinity of the dominant rock type in volume
		% (xx%)
ed_phs_phenc	Phenocryst content	The percentage of phenocrysts in the dominant rock type
		(xx%).
ed_phs_phena	Phenocryst	The phenocryst assemblage listed in order of most abundant
	assemblage	to least abundant
ed_phs_h2o	Pre-eruption water	Pre-eruption water content in melt, as analysed in melt
1 1 10 1	content	inclusions in phenocryst
ed_phs_h2o_xtl	Phenocrist with melt	A description of the phenocryst and the melt inclusion that
	inclusion	was analyzed to determine the pre-eruption water content
-1 -1	C	along with the method used
ed_phs_com	Comments	Additional information about this eruptive phase including descriptions of the rocks, phenocrysts, and inclusions
cc_id	Collector ID	An identifier for linking to contact information about the
\(\alpha_\text{id}\)	Conceior in	person who collected this data
ed_phs_loaddate	Load date	The date this row was entered in UTC
ed_phs_pubdate	Publish date	The date this row can become public. This date can be set
⊣ r • ⊣ r • • • • • • • • • • • • • • • • • • •		up to two year in advance
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Eruption Phase table (ed_phs for eruption data - phase) stores specific information about the eruption such as the size of the phase and composition of magma. The primary ID is ed_phs_id and the phase information is linked to the main Eruption table by the Eruption table ID, ed_id. The eruption phase number, ed_phs_num, is a number assigned by the observatory for the particular eruption phase. If the available information is not subdivided by phase, use "phase 1" to show details of the entire eruption. The time span of the eruption phase is stored in ed_phs_stime and ed_phs_etime, along with the uncertainties in the times ed_phs_stime_unc and ed_phs_etime_unc, all in UTC DATETIME. A description of the phase is stored in ed_phs_desc. The description field is currently limited to 255-characters, if more space is required we will need to change the data type. The VEI (volcano explosivity index) for the phase is stored in ed_phs_vei. The VEI should come from the Smithsonian database. The maximum lava extrusion rate, ed_phs_maxlext, is stored in cubic meters per second and the maximum explosive discharge rate, ed_phs_maxexpdis, is stored in kilograms per second x 10 ⁶₆. The volume of erupted magma or dense rock equivalent, ed_phs_dre, is stored in cubic meters x 10.

The Eruption Phase table also contains information about magma mixing for the observed phase. The field, ed_phs_mix, should include a single character, Y for evidence of magma mixing detected, N for not seen, and U for unknown. In addition, brief comments about the observed magma mixing can be entered such as large quantities of banded pumice. Information about the column height for this phase should be stored in ed_phs_col as kilometers. The method used to determine the column height should be stored in the text field ed_phs_coldet. The composition of the rock types from the phase are stored as maximum and minimum SiO₂ content of the matrix

glass, ed_phs_minsio2_mg and ed_phs_maxsio2_mg, and of the whole rock, ed_phs_minsio2_wr and ed_phs_maxsio2_wr. The compositions are stored as weight percents with two decimal places of precision. In addition to the composition, we also request information about the total crystallinity, ed_phs_totxtl, and the phenocryst content, ed_phs_phenc, and both as volume percents. The phenocryst assemblage should be included in ed_phs_phena in order of most abundant to least abundant. The pre-eruption water content in the melt, as analyzed in melt inclusions in phenocrysts, is stored in ed_phs_h2o. A description of the phenocryst and the melt inclusion that was analyzed to determine the pre-eruption water content should be stored in ed_phs_h2o_xtl along with the analysis method used. The final field is the comments field, ed_phs_com, for any additional information about the eruption phase.

Two field are added to store BC year. These are ed_phs_stime_bc and ed_phs_etime_bc. The field stores interger of the year number at BC period. In this case, the _etime or _etime should be 0000-00-00 00:00:00. If the date is "AD", this field is NULL.

Eruption Video

Table E3. Eruption Video Table

ed_vid_id	Video ID	An identifier for linking with other tables
ed_vid_code	Collector defined ID	An video identifier used by data owner/observatory/
		collector
vd_id	Volcano ID	The identifier for linking to the Volcano table. The
		Volcano table stores the volcano name and time zone. It
		is used to connect to all other data
ed_id	Eruption ID	An identifier for linking with information in the Eruption
		table. The Eruption table contains general information about
		an eruption including a narrative and time span.
ed_phs_id	Eruption Phase ID	The identifier for linking to the Eruption Phase table.
		The Eruption Phase table stores specific information
		about the eruption phase such as the time span and
		composition
ed_vid_link	Video clip link	A link to the video clip or information about where to find
		the video clip
ed_vid_stime	Start time	The start time of the video clip in UTC stored as
		DATETIME
ed_vid_stime_unc	Start time uncertainty	The uncertainty in the start time of the video clip in UTC stored as DATETIME.
ed_vid_length	Length of video clip	The length of the video clip stored in TIME (hh:mm:ss).
ed_vid_desc	Description	A text field for a short description of the video, e.g.,
		strombolian eruption footage taken from northwest of the vent
		at a distance of 5km. This field should contain enough
		information to allow the user to determine if the video will be
		useful to them.
ed_vid_com	Comments	A text field for additional information about the video
		including copyright information
cc_id	Collector ID	An identifier for linking to contact information about the
		person who collected this data
ed_vid_loaddate	Load date	The date this row was entered in UTC
ed_vid_pubdate	Publish date	The date this row can become public. This date can be set up

		to two year in advance
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Eruption Video table (ed_vid for eruption data - video) stores information about a video clip of the eruption. The primary ID is ed_vid_id and the video information is linked to several foreign keys. At the most general level, we include the volcano ID, vd_id, in case the video covers several eruptions. The eruption ID, ed_id, is included for cases where the video contains scenes from multiple phases of an eruption and the eruption phase ID, ed_phs_id, is included for the most specific case where the video is of a single eruptive phase. The video link, ed_vid_link, contains a link or information on how to access the video footage. The start time of the video, ed_vid_stime, stores the time the video starts in UTC as DATETIME and the length of the video, ed_vid_length, is stored as TIME (hh:mm:ss). The description field, ed_vid_desc, is a text field for a short description of the video such as "strombolian eruption footage taken 5 km northwest of the vent." The description field should contain enough information for the user so a decision can be made about the usefulness of the video prior to downloading it. The comments field, ed_vid_com, should include copyright information and any additional comments.

Eruption Forecast

Table E4. Eruption Phase Table

ed_for_id	Forecat ID	An identifier for linking with other tables
ed for code	Collector defined ID	An eruption forecast identifier used by data
ca_ior_code	Concetor defined in	owner/observatory/collector
vd_id	Volcano ID	The identifier for linking to the Volcano table. The
٧ <u>۵_</u> ۱۵	Voice io io	Volcano table stores the volcano name and time zone. It is
		used to connect to all other data
ed_phs_id	Eruption phase ID	The identifier for linking to the Eruption Phase table.
04_p:10_14	Ziaptori prieso iz	The Eruption Phase table stores specific information
		about the eruption phase such as the time span and
		composition
ed_for_desc	Description	A short description of the forecast for this phase. Please
	'	include the forecast type and magnitude (255 character
		text field)
ed_for_open	Forecat window opens	The earliest expected start time of the eruption,in UTC
		stored as DATETIME
ed_for_open_unc	Forecast window opens uncertainty	The uncertainty in the earliest expected start time of the
		eruption,in UTC stored as DATETIME
ed_for_dose	Forecast window closes	The latest expected start time of the eruption, in UTC
		stored as DATETIME
ed_for_dose_unc	Forecast window doses uncertainty	The uncertainty in the latest expected start time of the
		eruption, in UTC stored as DATETIME
ed_for_time	Forecast issue date	The time the forecast was issued in UTC stored as
		DATETIME.
ed_for_time_unc	Forecast issue date uncertainty	The uncertainty in the time the forecast was issued in
		UTC stored as DATETIME
ed_for_tsucc	Success of forecast time flag	A flag and comments on the success of the forcasted time
		of the eruption. Use the letters Y for yes, N for no, or P for
		partly

ed_for_muscc	Success of forecast magnitude flag	A flag and comments on the success of the forcasted type and magnitude of the eruption. Use the letters Y for yes, N for no, or P for partly
ed_for_com	Forecast comments	Any comments or additional information about the
		forecast, including what aspects were or were not
		successful
∞_id	Contacts ID	An identifier for linking to contact information about the
		forecast.
ed_for_loaddate	Load date	The date this row was entered in UTC.
ed_for_pubdate	Published date	The date this row can become public. This date can be set
		up to two years in advance
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Eruption Forecast table (ed_for for eruption data - forecast) stores information about forecasts made for a phase of the eruption, such as an overview of the forecast and the times forecasted. The forecasts give an insight into what was thought would occur at specific times during unrest. WOVOdat should provide the opportunity to analyze forecasts with monitoring data and event outcomes for future crisis situations.

The primary ID is ed_for_id and links to the Volcano table, vd_id, and the Eruption Phase table, ed_phs_id, are included to provide access to additional information about the volcanic activity. Originally, we wanted to only include the eruption phase ID, however, we also want information about forecasts where an eruption did not occur prior to the issuing of another forecast. Additional information about forecasts for events that did not lead to an eruption can be found using the link to the Volcano table.

The forecast description, ed_for_desc, is a 255-character text field for describing the forecast made. Additional space may be required in the future. We store three separate forecast times: the earliest forecast start of the eruption, ed_for_open; the latest forecast start of the eruption, ed_for_close; and the time the forecast was made, ed_for_time. There are two fields that will store flags and comments on the success of the forecast, ed_for_tsuccess for evaluating the timing of the eruption and ed_for_msucc for evaluating the success of the type and magnitude of the forecast. We request the use of the letters Y (successful, correct), N (unsuccessful, incorrect), or P (partly successful) for both of the success evaluation fields. The comments field, ed_for_com, is a 255-character text field for any additional information about the forecast. If there are multiple comments for a particular forecast, then we may want a separate table for people to be able to provide additional comments.

Seismic

One of the most useful types of information about volcanic unrest is seismic data. Almost all volcanoes exhibit some type of seismic activity prior to eruption. Our ability to collect the seismic data, however, is limited by the number and types of instruments at a volcano. The seismic tables were created to store earthquake and volcanic tremor data as recorded by both seismic networks and individual seismic stations. At this time, only a few volcanoes have networks with more than 50 stations; many more have less than five. Additionally, many of the seismometers of interest are short- period instruments although use of broadband instruments is increasing. Originally, only the processed data was going to be included in these tables but many of the seismic experts who reviewed the parameter list have requested more background information to provide the details needed to understand the processed data. We have added more background information and included qualitative attributes to more fully describe the instrument response for those who would like the additional information. We would also like to store some waveforms as digital data but a table has not been created for the storage. Once the storage formats are known, a table named Waveform Data

(sd_wvd) should be created that links to the Waveform table.

- Multiple seismic tables were created to accommodate the large variation in seismic data that have been and are currently being collected.
- The Event Data from a Network table stores the magnitudes, locations, and additional information about earthquakes recorded at multiple stations in a network.
- The Event Data from a Single Station stores the maximum amplitude of the trace, the coda duration, and a felt intensity for events recorded at single stations. The latter data cannot be used to find a location of the event.
- The Intensity table stores information about felt earthquakes. Although the data are not recorded by an
 instrument, we provide links to the Seismic Station or Seismic Network tables for the cases where the
 intensity reports can be linked to recorded data about the event.
- The Tremor table stores the duration of the tremor, amplitudes, and dominant frequencies for periods of tremor. The tremor envelope will be picked by the observatory and can be linked to a waveform in the waveform table.
- The Interval (Swarm) Data table stores the number of felt earthquakes, total seismic release, and migration of hypocenters for specified periods of time.
- The next three tables store Real-time Seismic-Amplitude Measurements (RSAM) and Seismic Spectral-Amplitude Measurements (SSAM), which integrate seismic activity in real-time during volcanic crises using the amplitudes and frequencies of seismic signals rather than the locations and magnitudes of the earthquakes.
- The Waveforms table stores representative waveforms and links to archives of additional waveforms.
- The Seismic Network table stores information about the seismic network such as the velocity model and instrument type.
- The Seismic Station table stores information about the individual stations such as their location, instrument type, and system gain.
- The Seismic Instrument table provides information about the instruments such as model, manufacturer, number of components, dynamic range, and instrument gain.
- The information about how the individual components attach to the instrument is stored in the Seismic Component table.
- The Earthquake Translation table links earthquake types used by individual observatories to the WOVOdat earthquake type.

Event Data from a Network

Table S1. Event Data from a Network Table

sd_evn_id	Seismic data ID	An identifier for linking with other tables
sd_evn_code	Event identifier	The event identifier used by observatory
sn_id	Seismic network ID	An identifier for linking with the seismic network
		information. The Seismic Network table provides
		information on the velocity model used and a link to the
		volcano information
sd_evn_arch	Seismogram archive	Location of the seismogram archive, if available. The
		network ID and collector ID also link to additional contact
		information

sd_evn_time	Origin time	The time of the beginning of the event in UTC stored as DATETIME.
sd_evn_timecsec	Origin time, second fraction	The hundredth second fraction for arrival time (xx)
sd_evn_time_unc	Origin time uncertainty	The uncertainty in the time of the beginning of the event in UTC stored as DATETIME
sd_evn_timecsec_unc	Origin time, second fraction uncertainty	The uncertainty of hundredth second fraction for arrival time
sd_evn_dur	Duration (coda length)	Average duration of the earthquake as recorded at stations <15
	D ((O 11)	km from the volcano (in sec)
sd_evn_dur_unc	Duration (Coda length) uncertainty	The uncertainty in the average duration of the earthquake as recorded at stations <15 km from the volcano (in sec)
sd_evn_tech	Location technique	The technique used to locate the event. Please include information about each recalculation such as "initial Hypo71, those locations recalculated using double difference". There is a 255-character limit on this field
sd_evn_picks	Picks	A description of how the picks were determined. Use A for
		an automatic picker, R for hand-picked with a ruler, H for a
		human using a computer-based picker, or U
		for unknown
sd_evn_elat	Estimated latitude	Estimated latitude of the seismic event (positive = N)
		(SXX.XXXXXXX)
sd_evn_elon	Estimated longitude	Estimated longitude of the seismic event (positive = E)
		(sxxx.xxxxxxx)
sd_evn_edep	Estimated depth	Estimated depth of the seismic event in kilometers (xxx.x).
sd_evn_fixdep	Fixed depth flag	A flag to indicate that the depth was held fixed by the location algorithm. Use Y for fixed, N for not fixed, and U for unknown. If the depth was fixed, information about how the depths are fixed should be available in the Seismic Network table.
sd_evn_nst	Total number of stations	The total number of seismic stations that reported arrival times for this earthquake.
sd_evn_nph	Number of phases	The total number of P and S arrival-time observations used to compute the hypocenter location
sd_evn_gp	Azimjuthal gap	The largest azimuthal gap between azimuthally adjacent stations (in degrees, 0-360) (xxx).
sd_evn_dcs	Distance to closest station	Horizontal distance from the epicenter to the nearest station in km (xx.x).
sd_evn_rms	Rms	The weighted root-mean-square (RMS) travel time residual, in sec. This parameter provides a measure of the fit of the observed arrival times to the predicted arrival times for this location (xx.xx)
sd_evn_herr	Horizontal error	The horizontal location error, in km, defined as the length of the largest projection of the three principal errors on a horizontal plane. The principal errors are the major axes of the error ellipsoid, and are mutually perpendicular (xx.xxx).
sd_evn_xerr	X error	The maximum x (longitude) error, in km, for cases where the horizontal error is not given.
sd_evn_yerr	Yerror	The maximum y (latitude) error, in km, for cases where the horizontal error is not given.
sd_evn_derr	Depth error	The depth error, in km, defined as the largest projection of the

		three principal errors on a vertical line (xx.xxx)
sd_evn_locqual	Location quality	The quality of the calculated location. The quality marker
0d_0v1_100quai	Locatoriquanty	will be defined by WOVOdat and added at a later date
sd_evn_pmag	Primary Magnitude	The primary Magnitude stored as x.x
sd_evn_pmag_type	Primary Magnitude type	The primary Magnitude type, e.g., M_{\bullet} , M_{\bullet} , M_{\bullet} , M_{\bullet} , M_{\bullet} (the last,
Su_evii_piriag_type	Till hary iviagrillade type	duration or "coda" magnitude).
sd_evn_smag	Secondary magnitude	A secondary Magnitude, where given, stored as x.x
sd_evn_smag_type	Secondary Magnitude type	A secondary Magnitude type
sd_evn_eqtype	Earthquake type	The WOVOdat terminology for the earthquake type. Please
ou_cvii_cqtypc	(WOVOdat terminology)	see the Earthquake Translation table (sr_eqtr) for information
	(TTO TO GGREEN MINOLOGY)	on the translation from the original terminology to the
		WOVOdat terminology.
sd_evn_eqtype_org	Earthquake type (original	The original terminology for the earthquake given by the
Su_evii_eqtype_oig	teminology)	
sd evn mtscale	Moment tensor scale	observatory. (for example VT, LP; A,B,C; HF, LF; other) The scale of the following moment tensor data. Please store
Su_evii_iiiiscale	Morrierit terisor scale	as a multiplier for the moment tensor data. Flease store
sd_evn_mxx	Moment tensor m_xx	Moment tensor m_xx stored as +/- x.xx
	Moment tensor m_xy	
sd_evn_mxy	Moment tensor m xz	Moment tensor m_xy stored as +/- x.xx
sd_evn_mxz	_	Moment tensor m_xz stored as +/- x.xx
sd_evn_myy	Moment tensor m_yy	Moment tensor m_yy stored as +/- x.xx
sd_evn_myz	Moment tensor m_yz	Moment tensor m_yz stored as +/- x.xx
sd_evn_mzz	Moment tensor m_zz	Moment tensor m_zz stored as +/- x.xx
sd_evn_strk1	Strike 1	Strike 1 of best double couple (0-360 degrees) (xxx)
sd_evn_strk1_err	Strike 1 Error	The uncertainty in the value of strike 1 (x)
sd_evn_dip1	Dip 1	Dip 1 of best double couple (0-90 degrees) (xx)
sd_evn_dip1_err	Dip 1 error	The uncertainty in the value of dip 1 (x)
sd_evn_rak1	Rake 1	Rake 1 of best double couple (0-90 degrees) (xx)
sd_evn_rak1_err	Rake 1 error	The uncertainty in the value of dip 1 (x).
sd_evn_strk2	Strike 2	Strike 2 of best double couple, if available (0-360 degrees)
		(xx).
sd_evn_strk2_err	Strike 2 error	The uncertainty in the value of strike $2(x)$
sd_evn_dip2	Dip 2	Dip 2 of best double couple, if available (0-
		90 degrees) (xx).
sd_evn_dip2_err	Dip 2 error	The uncertainty in the value of dip $2(x)$.
sd_evn_rak2	Rake 2	Rake 2 of best double couple, if available (0-90 degrees) (xx).
sd_evn_rak2_err	Rake 2 error	The uncertainty in the value of rake $2(x)$.
sd_evn_foc	Focal plane solution	The focal plane solution (beachball, w/ arrivals) stored as a
		.gif for well defined events.
sd_evn_samp	Sampling rate	The sampling rate in Hz
∞_id	Data owner ID	The link to the contact information for the owner of this set of
		data.
sd_evn_loaddate	Load date	The date this row was entered in UTC
sd_evn_pubdate	Publish date	The date this row can become public. This date can be set up
		to two years in advance
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Event Data from a Network table (sd_evn for seismic data - event from a network) contains seismic data that were collected from several stations in a network and then processed to give a location. Most of these data are in an electronic format and will be loaded by scripts from either the observatories or from a central seismic database like IRIS. The primary ID is sd_evn_id and there are several foreign IDs for linking to other tables. The Seismic Network table is linked by sn_id and provides the velocity model, a conversion from local time to UTC, information about the type of instruments used (for instrument details you would need to link to the station tables associated with the network and then from there to the instrument table), a link to the volcano information, and a link to the contact information for the person responsible for the network.

The event identifier used by the observatory that collected the data is stored as sd_evn_eventid and the location of the seismogram archive is stored as sd_evn_arch. The archive contact information may be the same as the network contact information and the collector information, if the data are not stored in a central repository. Additional information about the waveform data, if available, including a link to the waveform, can be found in the Waveform table (sd_wav). The technique used to locate the event is stored as, sd_evn_tech. We added this field to the data table to store not only the original technique used to locate the event but also any subsequent recalculations. An example entry into this text field would be "initial Hypo71, those locations recalculated using double difference".

The origin time of the seismic event, sd_evn_time, and the uncertainty, sd_evn_time_unc, are stored as DATETIME in UTC (see time discussion under challenges). The average length of earthquake codas are stored in sd_evn_dur to simplify the estimation of coda magnitudes. The uncertainty for the average length of the earthquake codes are stored in sd_evn_dur_unc. A description of how the picks were determined is stored in sd_evn_picks. Use A for an automatic picker, R for hand-picked with a ruler, H for a human using a computer-based picker, or U for unknown. The estimated latitude and longitude of the epicenter are stored as sd_evn_elat and sd_evn_elon and the estimated depth of the hypocenter is stored as sd_evn_edep. A flag, sd_evn_fixdep, is included to indicate fixed depths where Y is for depths that are fixed, N is for depths that are not fixed, and U is for unknown. If the depths have been held fixed in the location algorithm then the Seismic Network table, linked by sn_id, should indicate this. The datum for the latitudes and longitudes are stored as sd_evn_datum. Most of the seismic community uses WGS 84 as their datum, which is the preferred datum for WOVOdat.

The U.S.G.S. Earthquake Program web pages (http://earthquake.usgs.gov/recenteqsww/glossary.htm) provided information for the next set of attributes. The total number of stations and phases used to determine the location of the event are stored as integers in sd_evn_nst and sd_evn_nph. The azimuthal gap, sd_evn_gp, is the largest azimuthal gap between azimuthally adjacent stations in degrees (0-360). The horizontal distance from the epicenter to the nearest station is stored in sd_evn_dcs (dcs is for distance to the closest station) in km. The root-mean-square (RMS) travel time residual is stored in seconds in the attribute sd_evn_ms. This parameter provides a measure of the fit of the observed arrival times to the predicted arrival times for this location. The value is dependent on the accuracy of the velocity model used to compute the earthquake location, the quality weights assigned to the arrival time data, and the procedure used to locate the earthquake (the velocity model can be found in the network table). The horizontal location error, sd_evn_herr, is defined as the length of the largest projection of the three principal errors on a horizontal plane and is stored in km. Alternatively, we include fields for the x and y error, sd_evn_xerr and sd_evn_yerr, if the uncertainties are stored by x and y errors instead of the error on the xy plane. The depth error, sd_evn_derr, is defined as the largest projection of the three principal errors on a vertical line and is also stored in km. The quality of the calculation location is given in sd_evn_locqual. This quality marker is based on a WOVOdat quality scale that has not yet been created.

The earthquake magnitude is a logarithmic measure of size that is computed by different methods depending on the range of the magnitude and type of seismometer used in the measurement. Because there are different methods for measuring magnitude, we are providing fields to store a primary magnitude and type and a secondary magnitude and type. In many cases a secondary magnitude will not be available. The primary and secondary magnitudes are stored as sd_evn_pmag and sd_evn_smag. The identifying factor for the magnitudes is the magnitude type, sd_evn_pmag_type and sd_evn_smag_type. The magnitude types are limited to the following: duration (Md), local (ML), surface wave (Ms), moment (Mw) and body (Mb). The duration magnitude (Md) is based on the duration of shaking as measured by the time decay of the amplitude of the seismogram. This magnitude (also known as coda magnitude) is often used to compute magnitude from

seismograms with "clipped" waveforms due to limited dynamic recording range of analog instrumentation. The local magnitude (ML) is the original magnitude relationship defined by Richter and Gutenberg for local earthquakes and is based on the maximum amplitude of a seismogram recorded on a Wood-Anderson torsion seismograph (appropriate adjustments are made for modern instrumentation). The surface wave magnitude (Ms) is used for distant earthquakes based on the amplitude of Rayleigh surface waves measured at a period near 20 sec. The moment magnitude (Mw) is based on the moment of the earthquake, which is equal to the rigidity of the earth times the average amount of slip on the fault times the amount of fault area that slipped. The body magnitude (Mb) is based on the amplitude of P body- waves and is most appropriate for deep-focus earthquakes.

The earthquake type as defined by WOVOdat is stored as sd_evn_eqtype. The earthquake translation table (sr_eqtr for seimic reference table - earthquake translations) will be used to map original terminologies into standard WOVOdat earthquake terminology. At present, different scientists refer to earthquakes using several different terminologies and we hope that including a standard WOVOdat terminology along with the original earthquake type, sd_evn_eqtype_org, will facilitate systematic searches and correlations between data.

We store the six moment tensors m_xx, m_xy, m_xz, m_yy, m_yz, and m_zz with the format +/- x.xx as sd_evn_mxx, sd_evn_mxy, sd_evn_mxz, sd_evn_yy, sd_evn_yz, sd_evn_zz. The scale for the moment tensors is stored as a multiplier in sd_evn_mtscale. We also store two strikes, dips, and rakes for the best double couple, if available, as sd_evn_strk1, sd_evn_dip1, sd_evn_rake1, sd_evn_strk2, sd_evn_dip2, and sd_evn_rake2. The strikes are stored in degrees from 0-360 and the dips and rakes are stored in degrees from 0-90. The uncertainties in the strikes, dips, and rakes are stored in sd_evn_strk1_err, sd_evn_dip1_err, sd_evn_rake1_err, sd_evn_strk2_err, sd_evn_dip2_err, and sd_evn_rake2_err. An image (the beach ball arrivals) of the focal plane solution, sd_evn_foc, is requested for well-defined events to show the solution graphically and to show any non-double couple component. The sample rate of stored event data is given in sd_evn_samp.

Replace cc_id_owner with cc_id for consistency. The field sd_evn_eqtype_sub is added to store the sub-type of volcanic earthquake (See next diagram for illustration). There are 7 types of earthquake for WOVOdat "eq_evn_eqtype":

VT : volcano-tectonics,

H: hybrid,

LF : low frequency, VLF : very-low frequency, E : eruption quake,

V : generic volcanic quake without any further classification,

R : regional tectonic earthquake occurring surrounding or near the volcano,

Q : quary blasts (see description).

And their related subtypes in the sd_evn_eqtype_sub field is added to store more detail classification. In fact, R and Q is not of volcanic earthquake, however it may have a relation to volcanic activity or occur in volcanic area. V is included as one of the type for those the detail type is not recognized.

Two fields, sd_evn_time_ms and sd_evn_time_unc_ms are added for storing second fraction up to hundredth of second (xx). A field, sd_evn_eqtype_sub are added to store the type of earthquake.

The description of these 7 types for classifying earthquakes occurring in and at surrounding volcanoes:

1. VT-type

VT-type is uses for volcanic earthquake that results from faulting failure mechanism. It is similar to regional seismic event except that it happens inside or underneath volcanic body. Many observatories might use different terminology, such as high-frequency event (HF). In the former time A-Type of Minakami's classification is more widely used. As this type of event is generated by faulting process, when the source-receiver distance is quite far (more than 2 km from Minakami's term), P and S phases could be clearly distinguished in seismogram. With a modern instrument, digital seismic record could

identify VT-type that might be at a closer distance. Thus it is possible to identify VT-type of closer source. Faulting process generates a high frequency signal of more than 5 Hz. Thus, a term of "HF-event" is usually used in place of VT-type.

2. H-type

H-type is used to name Hybrid seismic event. It is an events containing a combination of high and low frequency. B-Type from Minakami is based on that there is no clear S arrival, which could be similar to shallow VT (shallow VT). However it could be also related to a dome growth. Event-accompanying dome growth is in a form of Hybrid (St. Helens) (= or MP (Merapi)). Hybrid events usually consists of HF part (first onset) and LF part (coda) (Redoubt, Monserrat), whereas LHF is another hybrid with inverse order (LF first then HF).

3. LF-type

Low frequency event is related to the volcanic process inside volcano. Fluid and gas play role in creating such an event. It frequency is about 0.5-5 Hz. There is no indication of P-S distinction because it is not from faulting mechanism.

4. VLP

Installation of broadband seismograph in many volcanoes could have revealed the presence of VLP events. Its signal period ranges from 2 to 30 second. (in Hachijo island T=20s; Erebus T=8-20s; Stromboli T=2-30s). Some recent studies conclude that VLP is related to a movement of a gas slug inside volcano conduit. (O'Brien and Bean, GRL 35, 2008)

5. E (for Explosion)

Explosion event is seismic signal that accompany eruption process.

6. T (for Tremor)

Tremor is a continuous seismic signal with a duration from several minutes to days. Many volcanoes produce tremor with only single dominant frequency (monochromatic tremor), or tremor with two or harmonic peaks (harmonic tremor). Some tremors, from record observation have wider frequency content (non-harmonic tremor). Earthquake swarm with dense event population, commonly happen prior to eruption, (=short interval between events) could produce non harmonic tremor, or a "dense-events" tremor

7. R-type

R-type, or regional type uses for tectonic earthquakes occurring close to the volcano. For individual volcanic cone, the term "close" refers to distance of less than 30 km (?) from the volcano edifice. For a volcanic zone, such as Campi Flegrei and Auckland volcanic zones, it refers to distance of 30 km (?) from the outer boundary of the zone. Storing data about tectonic earthquakes near volcano in the WOVOdat is important as in several cases that volcanic activity could be affected or re-awaked by tectonic earthquakes.

8. Q-type

Quary blast occuring on volcanic region

sd_evn_eqtype	sd_evn_eqtype_sub
VT	1. Blank (no information)
	2. Shallow (< 2km)
	3. Deep (> 2km)
Н	1. Blank
	2. HLF
	3. LHF
LF	1. Blank,
	2. LP
	3. Tornillo

Event Data from a Single Station

Table S2. Event Data from a Single Station Table

Table OE: EVOIR Bala II of the Oil glo Oldson Table		
sd_evs_id	Event data ID	An identifier for linking with other tables
sd_evs_code	Owner defined ID	The seismic event identifier used by owner/observatory/
		collector
ss_id	Seismic station ID	An identifier for linking with the seismic station
		information. The Seismic Station table provides the station
		location, instrument information, and a conversion from local
		time to UTC
sd_evs_time	Events start time	The event start time (P phase) in UTC stored as
		DATETIME.
sd_evs_timecsec	Origin time, second fraction	The hundredth second fraction for arrival time (xx)
sd_evs_time_unc	Events start time	The uncertainty in the event start time (P phase) in UTC
	uncertainty	stored as DATETIME.
sd_evs_timecsec_unc	Origin time, second fraction	The uncertainty of hundredth second fraction for arrival time.
	uncertainty	
sd_evs_picks	Picks	A description of how the picks were determined. Use A for

	an automatic picker, R for hand-picked with a ruler, H for a
	human using a computer-based picker, or U for unknown
S-P Interval	The interval between the S and P start times in seconds
Coda duration	The length or duration of the event in seconds from the start
	time until a a background level has returned
Coda duration	The uncertainty in the length or duration of the event in
uncertainty	seconds from the start time until a background level has
	returned.
Distance from active	The approximate distance from where the event was recorded
vent	to the active vent
Max amplitude of trace	The maximum amplitude of trace. Please enter this
	information only if whole system magnification is listed in
	Seismic Station table.
Sampling rate	The sampling rate in Hz of the stored single station data
Collector ID	An identifier for linking to contact information for the data
	collector.
Load date	The date this row was entered in UTC.
Publish date	The date this row can become public. This
	date can be set up to two years in advance.
Data loader ID	An identifier for linking to contact information for the person
	who entered this row of data
	Coda duration Coda duration uncertainty Distance from active vent Max amplitude of trace Sampling rate Collector ID Load date Publish date

The Event Data from a Single Station table (sd_evs for seismic data - event from a single station) contains seismic data that were collected from a single station and therefore no location can be calculated. The event data from a single station primary ID is sd_evs_id. The Seismic Station table is linked by ss_id and provides the location of the station, a conversion from local time to UTC, a link to the instrument table, and a link to the Seismic Network table, if the station is part of a network. The Event Data from a Single Station table was originally created to store data from stations that are not linked to a network, however, we understand that there is valuable information from single stations that are part of a network, for example, event counts from a single station that might be more complete than an event count based only on located events.

The event start time and uncertainty, recorded as the beginning of the P phase, sd_evs_time and sd_evs_time_unc, is stored in UTC as DATETIME and the duration of the event or coda duration and its uncertainty is stored in seconds as sd_evs_dur and sd_evs_dur_unc. The time interval between the S and P arrivals is stored as sd_evs_spint in seconds. The distance from the active vent to where the event was recorded can be stored in sd_evs_dist_actven. We originally wanted to calculate this distance from other data in WOVOdat but at this time we do not store the location of the active vent. We store the location of the summit and of the youngest caldera in the Volcano Information table and the times and compositions of the eruptions in the Eruption and Eruption Phase tables. We will need to add an active vent location to the Eruption Phase table to make this calculation or make the sd_evs_dis_actven a text field and request that the vent location is entered, if known, as well as the distance. The maximum amplitude of the trace, sd_evs_maxamptrac, should be stored only if the whole system magnification is listed in the Seismic Station table. The Event Data from a Single Station also includes a reported intensity of the event as sd_evs_fint. If additional intensity information is available, it will be stored in the Intensity table along with a link to the event ID. The sampling rate of the data is stored in sd_evs_samp. Note: The sampling rate in the Seismic Component table refers to the collection rate for the data.

Two fields, sd_evs_time_ms and sd_evn_time_unc_ms are added for storing second fraction up to hundredth of second (xx).

Intensity Data

Table S3. Intensity Date Table

sd_int_id	Intensity ID	An identifier for linking with other tables
sd_int_code	Owner defined ID	The intensity data identifier used by owner/observatory/collector
vd_id	Volcano ID	An identifier for linking to the volcano information table
sd_evn_id	Probable network event ID	This is the probable event identifier for linking with event information from the Network table, if available
sd_evs_id	Probable single station event ID	This is the probable event identifier for linking with event information from the single Station table, if available
sd_int_time	Time	Approximate time of event (UTC) stored as DATETIME
sd_int_time_unc	Time uncertainty	Uncertainty in the approximate time of event (UTC) stored as DATETIME
sd_int_city	City	The name of the city or town where the event was felt
sd_int_maxdist	Max distance, felt	The maximum distance at which the earthquake was felt, measured from the volcano summit in km (xxx).
sd_int_maxrint	Maximum reprted intensity	The maximum reported intensity (Modified Mercalli intensity) (x)
sd_int_maxrint_dist	Distance at max reported intensity	The distance from the volcano's summit to where the maximum intensity was reported in km (xxx)
cc_id	Collector ID	An identifier for linking to contact information for the data collector
sd_int_loaddate	Loaddate	The date this row was entered in UTC
sd_int_pubdate	Publish date	The date this row can become public. This date can be set up of two years in advance
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data

The Intensity Data table (sd_int for seismic data - intensity) was created to store information about the intensities of events that may or may not have been recorded by a station. The intensity data will most likely not be in an electronic format and we may need to create a web form for inserting the data into the table. The primary ID for the Intensity table is sd_int_id and there are several foreign IDs for linking to other tables. The volcano ID, vd_id, is the primary link for location and will also give the conversion from local time to UTC (see below). The links to additional event information are sd_evs_id or sd_evn_id depending on whether the event can be linked to an event recorded at a single station or an event recorded by a network. The event may not be able to be linked to a station if the nearby station was not functioning for any reason or if there were no nearby instruments. Much of the data in this table will be approximate but may cover episodes of unrest for which we have no other information.

The approximate time of the event along with the uncertainty is stored in sd_int_time and sd_int_time_unc in UTC DATETIME. The conversion factor for converting local time to UTC can be found in the Volcano table (vd_vol), which is linked to the Intensity table by the volcano ID. The city or town where the event was felt is stored in sd_int_city. The three other defining attributes for the intensity are the maximum distance felt, the maximum reported intensity, and the distance at maximum reported intensity. The maximum distance felt, sd_int_maxdist, is the maximum distance at which the earthquake was felt in km,

measured from the volcano's summit. The maximum reported intensity, sd_int_maxrint, is the maximum reported modified mercalli intensity. The distance of the maximum reported intensity from the volcano's summit, sd_int_maxrint_dist, is stored in km.

Seismic Tremor

Table S4. Seismic Tremor Table

Table 54. Seismic Tremor		<u>, </u>
sd_trm_id	Tremor data ID	An identifier for linking with other tables
sd_trm_code	Owner defined ID	The seismic tremor identifier used by owner/observatory/collector
sn_id	Seismic network ID	An identifier for linking with the seismic network information. The Seismic Network table provides information on the velocity model used and a link to the volcano information.
ss_id	Seismic station ID	An identifier for linking with the seismic station information. The Seismic Station table provides the station location, instrument information, and a conversion from local time to UTC. Enter this field only if the reports are from a single station
sd_trm_stime	Start time of tremor enveloppe	The start time (UTC) stored as DATETIME for individual envelope. The start and end times are defined by the observatoriers
sd_trm_stime_unc	Start time of tremor envelope uncertainty	The uncertainty in the start time (UTC) stored as DATETIME for individual envelope. The start Start time of tremor envelope and end times are defined by the
sd_trmetime	End time of tremor envelope	The end time (UTC) stored as DATETIME for individual envelope. The start and end times are defined by the observatories
sd_trm_etime_unc	End time of tremor envelope uncertainty	The uncertainty in the end time (UTC) stored as DATETIME for individual envelope. The start and end times are defined by the observatories
sd_trm_dur_day	Tremor duration per day	The total duration of tremor for each day in minutes (xxxx).
sd_trm_dur_day_unc	Tremor duration per day uncertainty	The uncertainty in the total duration of tremor for each day in minutes (xxxx).
sd_trm_type	Type of tremor	The type and a description of the tremor, e.g., any temporal pattern such as banding, spasmodic bursts, etc.
sd_trm_qdepth	Qualitative depth	The qualitative depth of the tremor. Use D for deep (> 10 km), I for intermediate (4-10 km), S for shallow (S=0-4 km), or U for unknown
sd_trm_domfreq1	Dominant frequency 1	The dominant frequency (in Hz) (xx.xx).
sd_trm_domfreq2	Dominant frequency 2 (if any)	The second dominant frequency (if any, in Hz) (xx.xx).
sd_trm_maxamp	Maximum amplitude of tremor	The maximum amplitude of tremor (refer to the Seismic Station table for system gain information) (xx)
sd_trm_noise	Background noise	The background noise level (xx)
sd_trm_reddis	RD	The reduced displacement (as estimated using a station >5km from source to minimize the effects of geometrical spreading (xx).
sd_trm_rderr	RD error	The reduced displacement error (xx).
sd_trm_visact	Associated visible activity	A description of any associated visible activity
cc_id	Collector ID	An identifier for linking to contact information for the data
	•	

		collector.
sd_trm_loaddate	Load date	The date this row was entered in UTC
sd_trm_pubdate	Publish date	The date this row can become public. This date can be set up
		to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Seismic Tremor table (sd_trm for seismic data - tremor) contains information about tremor such as the time interval, qualitative depth, dominant frequency, amplitude range, and reduced displacement. The information in this table will most likely need to be entered by hand into a web form. The seismic tremor primary ID is sd_trm_id and we include two foreign keys for linking to the seismic network or seismic station information depending on where the data were collected. If the tremor data were collected by stations in a network, then the seismic network ID, sn_id, should be used for linking to location and instrument information. If the tremor data were collected by a single station that is not part of a network, then the seismic station ID, ss_id, should be used for linking to the location and instrument information.

The seismic tremor is defined in time by a start, stop, and a duration/day. The start time of the tremor envelope, sd_trm_stime, should be the time chosen by the observatory as the beginning of the tremor event described in the row of data in UTC DATETIME. The end time of the tremor envelope, sd_trm_etime, is the time chosen by the observatory as the end of the tremor event described in the row of data in UTC DATETIME. The duration of tremor per day, sd_trm_dur_day, should give a total amount of time each day that tremor is felt; for example, if there are three episodes of tremor, each of approximately 20 minutes in length, then sd_trm_dur_day would be 60 minutes. Each time has an associated uncertainty, sd_trm_stime_unc, sd trm etime unc, and sd trm dur day unc, in the same units as the measured time.

According to the original proposal in WOVOdat 1.0, the type and description of tremor field, sd_trm_type, indicates if the tremor is narrowband (N) or broadband (B) where broadband is defined as a frequency range greater than 3 Hz. The tremor description should include any temporal patterns such as banding, spasmodic bursts, etc. The qualitative depth of the origin of the tremor, sd_trm_qdepth, is a single letter code, D for deep or > 10km, I for intermediate or 4-10 km, S for shallow or 0-4 km, and U for unknown. The dominant frequency, sd_trm_domfreq1, is the dominant frequency of the tremor in Hz. The second dominant frequency, sd_trm_domfreq2, also in Hz, covers cases where a second frequency peak is recorded. The maximum amplitude of the tremor is stored as a range in mm in the fields maximum amplitude of tremor, sd_trm_maxamp, and background noise, sd_trm_noise. The system gain information should be available in the Seismic Station table. The reduced displacement, sd_trm_reddis, has units of cm² and the associated error, sd_trm_rderr, is also in cm².

The associated visible activity field, sd_trm_visact, should be used to provide additional information about any associated activity that was seen during the tremor envelope. This field has a 255 character limit.

The field sd_trm_type originally could be N for narrow band and B for broadband tremor. WOVOdat uses three terms: M for monochromatic, H for harmonic and C for close-spaced events tremor, and T for General tremor without any further detail description about the type.

Interval (swarm) Data

Table S5. Interval (swarm) Data Table

sd_ivl_id	Interval data ID	An identifier for linking with other tables
sd_ivl_code	Owner defined ID	The interval data identifier used by owner/observatory/
		collector
sn_id	Seismic network ID	An identifier for linking with the seismic network
		information. The Seismic Network table provides
		information on the velocity model used and a link to the

		volcano information
ss_id	Seismic station ID	An identifier for linking with the seismic station information. The Seismic Station table provides the station location, instrument information, and a conversion from local time to UTC. Enter this field only if a single station was
		used for counts
sd_ivl_eqtype	Earthquake type (WOVOdat terminology)	The WOVOdat terminology for the earthquake type.
sd_ivl_stime	Interval start time	The start time (UTC) of this interval based on instrument recordings stored as DATETIME
sd_ivl_stime_unc	Interval start time uncertainty	The uncertainty in the start time (UTC) of this interval based on instrument recordings stored as DATETIME
sd_ivl_etime	Interval end time	The end time (UTC) of this interval based on instrument recordings stored as DATETIME.
sd_ivl_etime_unc	Interval end time uncertainty	The uncertainty in the end time (UTC) of this interval based on instrument recordings stored as DATETIME
sd_ivl_hdist	Horizontal distance	The horizontal distance from the summit to the swarm center in km (xx.x).
sd_ivl_avgdepth	Mean depth of swarm	Mean depth of the swarm earthquakes in m)
sd_ivl_vdispers	Vertical dispersion	Range (dispersion) of depths over which these swarm earthquakes occurred
sd_ivl_hmigr_hyp	Horizontal migration of hypocenters	Any horizontal migration of hypocenters from/to the summit in km (Use positive numbers for outward and negative numbers for inward) (sxx.x).
sd_ivl_vmigr_hyp	Vertical migration of hypocenters	Any vertical migration of hypocenters in km (Use positive numbers for up and negative numbers for down) (sxx.x).
sd_ivl_patt	Temporal pattern of swarm	The temporal pattern of the swarm (using one of the WOVOdat defined patterns). The WOVOdat defined patterns need to be added
sd_ivl_data	Types of data	A description of the types of data included in the earthquake counts. Use L for earthquakes that have been located, C for those detected by a computer trigger algorithm, H for hand counted, U for unknown or any combination of the above
sd_ivl_picks	Picks	A description of how the picks were determined. Use A for an automatic picker, R for hand-picked with a ruler, H for a human using a computer-based picker, or U for unknown
sd_ivl_felt_stime	Earthquake counts felt start time	The felt earthquake counts measurement start time (UTC) stored as DATETIME.
sd_ivl_felt_stime_unc	Earthquake counts felt start time uncertainty	The uncertainty in the felt earthquake counts measurement start time (UTC) stored as DATETIME.
sd_ivl_felt_etime	Earthquake counts felt stop time	The felt earthquake counts measurement stop time (UTC) stored as DATETIME.
sd_ivl_felt_etime_unc	Earthquake counts felt stop time uncertainty	The uncertainty in the felt earthquake counts measurement stop time (UTC) stored as DATETIME.
sd_ivl_nrec	Number of recorded earthquakes	The recorded earthquake count during the specified time interval (xxxxxx).
sd_ivl_nfelt	Number of felt earthquakes	The number of felt earthquakes for this interval (xxxx)
sd_ivl_etot_stime	Seismic E window opens	The total seismic energy release (seismic moment)

		measurement start time (UTC) stored as DATETIME
sd_ivl_etot_stime_unc	Seismic E window opens	The uncertainty in the total seismic energy release (seismic
	uncertainty	moment) measurement start time (UTC) stored as
		DATETIME.
sd_ivl_etot_etime	Seismic E window	The total seismic energy release (seismic moment)
	closes	measurement stop time (UTC) stored as DATETIME.
sd_ivl_etot_etime_unc	Seismic E window close	The uncertainty in the total seismic energy release (seismic
	uncertainty	moment) measurement end time (UTC) stored as
		DATETIME
sd_ivl_etot	Total seismic E release	The total seismic energy release (seismic moment) for this
	(Seismic moment)	swarm interval in erg ⁰⁵ .
sd_ivl_desc	Description	A field for describing the swarms or interval data and any
		uncertainties in the data such as location
cc_id	Collector ID	An identifier for linking to contact information for the data
		collector.
sd_ivl_loaddate	Load date	The date this row was entered in UTC
sd_ivl_pubdate	Publish date	The date this row can become public. This date can be set up
		to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Seismic Interval (swarm) data table (sd_ivl for seismic data - intervals) contains data about earthquakes that occur in specified time intervals, e.g., as seismic swarms. The seismic interval primary ID is sd_ivl_id and we include two foreign keys for linking to the network or station information depending on where the data were collected. If the interval data were collected by a network, then the seismic network ID, sn_id, should be used for linking to location and instrument information. If the interval data were collected by a single station that is not part of a network, then the seismic station ID, ss_id, should be used for linking to the location and instrument information.

The Seismic Interval data table describes swarms in three ways: spatial distribution, temporal pattern, and energy release. Ideally, all of this information would be from the same time period, however, in many cases the time periods may not be exact so additional time fields are included to handle these cases. The interval start and end times are given by sd_ivl_stime and sd_ivl_etime along with their uncertainties, sd_ivl_stime_unc and sd_ivl_etime unc. All are stored in UTC as DATETIME.

The distance from the swarm to the summit is stored in kilometers as sd_ivl_hdist, for horizontal distance. This field should be entered, if known, instead of calculated because we do not store the average location of the swarm. An average depth of the swarm is stored in sd_ivl_avgdepth and the vertical range of swarm events is stored in sd_ivl_vdispers. Any horizontal migration of the hypocenters, sd_ivl_hmigr, is stored in kilometers with a positive value moving towards the summit and a negative value moving away from the summit. Any vertical migration of the hypocenters, sd_ivl_vmigr, is also stored in kilometers with a positive value moving upwards and a negative value moving downwards. We request the inclusion of location uncertainties in the description field, sd_ivl_desc (see below), if location data are entered.

The temporal pattern of a swarm, sd_ivl_patt, will be input from a small set of generic WOVOdat-defined temporal patterns. Counts of recorded and felt earthquakes during the interval are stored as sd_ivl_nrec and sd_ivl_nfelt, respectively. The interval start and end times for the counts are given by sd_ivl_felt_stime and sd_ivl_felt_etime along with their uncertainties, sd_ivl_felt_stime_unc and sd_ivl_felt_etime_unc. All are stored in UTC as DATETIME. Because counts depend heavily on how they are made, we include an attributesd_ivl_data to note whether the instrumental counts (sd_ivl_nrec) are based on earthquakes that have been located (L), those detected and automatically counted by a computer trigger algorithm (C), hand counted (H), or

counted in some unknown or combination way (U). If the earthquake counts include earthquakes that have been located, those located events should be included in the Event Data from a Network Table. The field, sd_ivl_picks, stores a description of how the picks were determined (A for an automatic picker, R for hand-picked with a ruler, H for a human using a computer-based picker, or U for unknown).

The total seismic energy release or seismic moment of an interval or swarm is stored as sd_ivl_etot. The interval start and end times for the total seismic energy release are given by sd_ivl_etot_stime and sd_ivl_etot_etime along with their uncertainties, sd_ivl_etot_stime_unc and sd_ivl_etot_etime_unc. All are stored in UTC as DATETIME. The description field, sd_ivl_desc, provides a place to store additional information about the data such as the uncertainties in locations.

Two fields, sd_ivl_eqtype and sd_ivl_eqtype_sub are added to store the type of earthquake. This is important in the case the database received a daily seismic count that is usually volcanic earthquake is distinguished in their type.

RSAM/SSAM Table

Table S6. RSAM/SSAM Table

sd_sam_id	RSAM/SSAM ID	An identifier for linking with other tables
sd_sam_code	Owner defined ID	The RSAM/SSAM identifier used by owner/observatory/
	0 1 1 1 1 15	collector
ss_id	Seismic station ID	An identifier for linking with the seismic station information.
		The Seismic Station table provides the station location, instrument
		information, and a conversion from local time to UTC
sd_sam_stime	Start time	The measurement start time (UTC) of RSAM or SSAM
		measurements stored as DATETIME.
sd_sam_stime_unc	Start time uncertainty	The uncertainty in the measurement start time (UTC) of RSAM
		or SSAM measurements stored as DATETIME.
sd_sam_etime	End time	The measurement eend time (UTC) of a continuous string of
		RSAM or SSAM measurements (UTC) stored as DATETIME.
sd_sametime_unc	End time uncertainty	The uncertainty in the measurement end time (UTC) of RSAM or
		SSAM measurements stored as DATETIME.
sd_sam_int	Counting ingterval	The time interval in seconds for each measurement bin in the
		associated RSAM and SSAM data tables.
sd_sam_int_unc	Counting interval	The uncertainty in the time interval in seconds for each
	uncertainty	measurement bin in the associated RSAM and SSAM data tables
cc_id	Collector ID	An identifier for linking to contact information for the data
		collector.
sd_sam_loaddate	Load date	The date this row was entered in UTC
sd_sam_pubdate	Publish date	The date this row can become public. This date can be set up to two
		years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who
		entered this row of data

The Real-time Seismic-Amplitude Measurements (RSAM) and Seismic Spectral-Amplitude Measurements (SSAM) table store information needed to create RSAM and SSAM images. These techniques were developed by the USGS to summarize seismic activity in real-time during volcanic crises. The techniques use the amplitudes and frequencies of seismic signals instead of the locations and magnitudes of the

earthquakes, which makes them an ideal tool for rapid analysis during periods of time when seismicity has reached a level at which individual seismic events are difficult to distinguish.

The RSAM/SSAM table (sd_sam for seismic data - RSAM/SSAM) stores the information needed to define the boundaries of RSAM and SSAM images. The data needed to create these images are stored in the individual RSAM and SSAM data tables. The primary ID for the RSAM/SSAM table is sd_sam_id. The information in the RSAM/SSAM table is linked to the station tables by ss_id to provide background information on the stations collecting the data such as their location and types of instruments.

There are six data fields in the RSAM/SSAM table; start time, end time, and interval time along with each uncertainty. The start time, sd_sam_stime, gives the beginning of the entire time interval for the image and the end time, sd_sam_etime, gives the end time for all of the data collected for the image. The interval, sd_sam_int, gives the amount of time for each interval or bin of data (see the RSAM and SSAM data tables for more information). The uncertainties for each time, sd_sam_stime_unc, sd_sam_etime_unc, and sd sam int unc are given the same format as the measurements.

RSAM

Table S7. RSAM Data Table

sd_rsm_id	RSAM ID	An identifier for linking with other tables.
sd_sam_id	RSAM/SSAM ID	An identifier for linking with the main RSAM/SSAM
		table. The RSAM/SSAM table stores the entire time
		period and the interval time for the RSAM image
sd_rsm_stime	Start time	The starting time for the given interval.
sd_rsm_stime_unc	Start time uncertainty	The uncertainty in the starting time for the given interval.
sd_rsm_count	RSAM count	The RSAM count during this interval (xxxxx).
sd_rsm_calib	RSAM Calibration (if	The reduced displacement per 100 RSAM counts.
	any)	
sd_rsm_loaddate	Load date	The date this row was entered in UTC.
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

RSAM gives a measure of the overall level of seismic activity because it combines the average amplitude of ground shaking caused by earthquakes and volcanic tremor over successive short (often 10 minute) intervals of time. The RSAM Data table (sd_rsm for seismic data - RSAM) stores the data needed to create an RSAM image. The RSAM primary ID is sd_rsm_id and the data table is linked to the main RSAM/SSAM table by sd_sam_id for information about the period of time for the entire RSAM, the intervals of time for each data point (bin), and the data collector.

There are three fundamental variables in the RSAM Data table, start time, RSAM count, and RSAM calibration. The start time, sd_rsm_stime, gives the beginning of each individual time interval. The uncertainty in the start time is recorded in sd_rsm_stime_unc. The RSAM count, sd_rsm_count, is the average amplitude of tremor, earthquakes, and noise combined, over each successive short time increment (bin). The RSAM calibration, sd_rsm_calib, gives the reduced displacement per 100 RSAM counts. It was unclear where the calibration information should be stored and we decided the data table would give the most accurate information for both RSAM and SSAM. *Originally the calibrations were included in the Seismic Station table but we were concerned the calibration would change more frequently than other data in that table. We also considered putting it into the main RSAM/SSAM table but we wanted the RSAM and SSAM calibrations to be stored at the same level in the table hierarchy and putting the SSAM calibration in the SSAM data table requires the least number of additional attributes (please see the SSAM Data table for more information).*

SSAM

Table S8. SSAM Data Table

sd_ssm_id	RSAM ID	An identifier for linking with other tables.
sd_sam_id	RSAM/SSAM ID	An identifier for linking with the main RSAM/SSAM table.
		The RSAM/SSAM table stores the entire time period and the
		interval time for the RSAM image
sd_ssm_stime	Start time	The starting time for the given interval.
sd_ssm_stime_unc	Start time uncertainty	The uncertainty in the starting time for the given interval.
sd_ssm_lowf	Low frequency	The low frequency limit in Hz for this frequency range
		(xx.xxx).
sd_ssm_highf	High frequency	The high frequency limit in Hz for this frequency range
		(xx.xxx).
sd_ssm_count	SSAM count	The SSAM count for this time and frequency interval (xxxxx).
sd_ssm_calib	SSAM Calibration (if	The reduced displacement per 100 SSAM counts for the
	any)	specified frequency range
sd_ssm_loaddate	Load date	The date this row was entered in UTC.
sd_ssm_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

The Seismic Spectral-Amplitude Measurement (SSAM) system computes in real-time the average amplitude of the seismic signals in specific frequency bands. This type of measurement provides additional information about the nature of seismicity in a simple graphical format that helps to highlight subtle shifts in frequency that can be related to changing dynamics of magma movement. The SSAM Data table (sd_ssm for seismic data - SSAM) stores the data needed to create an SSAM image. The primary ID is sd_ssm_id. The SSAM Data table is linked to the main RSAM/SSAM table by sd_sam_id for information about the period of time for the entire SSAM, the intervals of time for each data point (bin), and the data collector.

There are five data fields in the SSAM Data table: start time, low frequency value, high frequency value, SSAM count, and SSAM calibration. The start time, sd_ssm_stime, gives the beginning of the individual time interval. The uncertainty for the starting time is recorded in sd_ssm_stime_unc. The amount of time in the interval is given in the RSAM/SSAM table. The frequency range for the given interval is defined by a low value, sd_ssm_lowf, and a high value, sd_ssm_highf, both in Hz. The SSAM count, sd_rsm_count, is the average amplitude of the seismic signals in the specific frequency band for the given time interval. The SSAM calibration, sd_ssm_calib, gives the reduced displacement per 100 SSAM counts for each frequency band.

Representative Waveforms

Table S9. Representative Waveform Table

	Waveform ID	An identifier for linking with other tables
sd_wav_id	Waveform ID	An identifier for linking with other tables.
sd_wave_code	Owner defined ID	The waveform identifier used by owner/observatory/collector
ss_id	Seismic station ID	An identifier for linking with the seismic station information.
		The Seismic Station table provides the station location, instrument
		information, and a conversion from local time to UTC. This field
		is used only in the case of waveform from single station and for
		tremor.
sd_evt_id	Event data ID	An identifier for linking with the event information for events
		according to sd_evt_flag.
sd_evt_flag	Flag to event type	N=network event → sd_ev_id = sd_evn_id
		S=single station → sd_ev_id = sd_evs_id
		T for tremor \rightarrow sd_ev_id = sd_trm_id
sd_wav_arch	Waveform archive	Location of seismogram archive. This information should be
		used to find additional waveforms beyond the
		representative waveforms stored here
sd_wav_link	Waveform link	A link to the archive where the waveform is stored. This link
		should bring up an image of the waveform. If
		the link is unavailable, please see the waveform archive for more
		information
sd wav dist	Distance from the	The distance that the waveform was recorded from the summit.
	summit	Use P for proximal (<2 km), I for intermediate (2- 5 km), D for
		distal (>5 km), and U for unknown if the distance is unknown
sd_wav_img	Waveform	The waveform stored as an image
sd_wav_info	Information about	Background information to include the event type in WOVOdat
	the waveform	terminology the volcano or approximate location where the event
		occurred, and a time.
sd_wav_desc	Description	Added description of the waveform. Include how often and when
	2 courp aron	this kind of waveform occurs, if any
∞ id	Collector ID	An identifier for linking to contact information for the data
00_10	30113000112	collector.
sd wav loaddate	Load date	The date this row was entered in UTC
sd_wav_pubdate	Publish date	The date this row can become public. This date can be set up to
pabaato	1 dollo I dato	two years in advance.
cc id load	Data loader ID	An identifier for linking to contact information for the person
iu_iuau	Dala Idadei ID	who entered this row of data
		who entered this fow of data

The Waveform table (sd_wav for seismic data - waveforms) contains sample waveforms to highlight common and uncommon events at different volcanoes and links to the event information. Some of these waveforms will be stored elsewhere in a digital format whereas others will need to be scanned. This table was created to store images of the waveforms and we will need a separate waveform data table to store the actual data. The waveform primary ID is sd_wav_id and we include two foreign keys for linking the waveform to the event data. The links to the event data provide access to details bout the event such as the specific time and location. It was decided not to duplicate the time and ocation information in this table and instead to request more general information about the location and time in a text field called information. *Time and location data can be added in the future, if necessary*. Additional digital waveforms will be stored in archives that are web accessible.

Instead of storing the digital data for all of these waveforms, we will provide links to the waveform data archives via sd_wav_arch. This information should be used to find the waveform if a waveform link is not available or no longer active. The link to the archive where the waveform can be found is stored in sd_wav_link. This link should bring up an image of the waveform.

There are four data attributes in the waveform table: the distance from the vent, the waveform image, waveform information, and a waveform description. As a proxy for distance to the hypocenters, distance to the summit should be used. The language for this field should be proximal for <2 km, intermediate for 2-5 km, distal for >5 km, and unknown if the distance is unknown.

The waveform image, sd_wav_img, will store images of representative waveforms in a standard format such as .jpg. This field and the following descriptive fields were created to store example waveforms that will need to be scanned. The background information, sd_wav_info, should include the event type in WOVOdat terminology, the volcano or approximate location where the event occurred, and a time. The background information will be used to search for sample waveforms of a particular type of event or a particular volcano. The description of the waveform, sd_wav_desc, should include how often and when this type of event occurs, and any interpretations. The description should provide additional information about common or not-so-common waveforms for comparison with those seen at other volcanoes.

The fields sd_evn_id, sd_evs_id and sd_trm_id are removed and replace with one field sd_ev_id and a flag field sd_ev_flag. The flag is a single character: N (sd_ev_id=sd_evn_id), S (sd_ev_id=sd_evn_id), and T (sd_ev_id=sd_trm_id). A field ss-id is added to link waveform to the station the waveform belongs to.

Seismic Network

Table S10: Seismic Network Table

sn_id	Seismic network ID	An identifier for linking with other tables.
sn_code	Owner defined ID	The seismic network identifier used by owner/observatory
vd_id	Volcano ID	An identifier for linking to the Volcano table. The Volcano table
		is used to link with eruption information and other monitoring data.
sn_code	Network name	The name of the network given by the observatory.
sn_vmodel	Velocity model	A description the velocity model if it is a simple 2D model. For
		more complex models, Use the sn_vmodel_detail field.
sn_vmodel_detail	Velocity model detail	A link to a file containing additional details about the velocity
		model, including graphical descriptions of a 3-D model. This
		may be stored in the database as a blob.
sn_zerokm	Zero km	The elevation of the zero km "depth", in meters above sea level. For
		some networks the zero km value will be sea level whereas other
		networks use a local base level or
		average elevation of stations in the network. Please also describe
		what negative depths mean, if applicable.
sn_fdepth	Fixed Depth Description	A description of whether and how depths in the data tables are
		held fixed by the location algorithm. "Y" for fixed depth and "N" for
		unfixed depth during iteration.
sn_stime	Start date	The date (UTC) the network was set up and activated or the time
		new information in this table became valid. The date is stored in
		DATETIME.
sn_stime_unc	Start date uncertainty	The uncertainty in the date (UTC) the network was set up and
		activated. The date is stored in DATETIME.
sn_etime	End date	The date (UTC) the network was permanently decommissioned or
		the time the information in this table became invalid. The date is

		stored in DATETIME. See observatory for for station and network hostory
sn_etime_unc	End date uncertainty	The uncertainty in the date (UTC) the network was was permanently decommissioned or the time the information in this table became invalid. The date is stored in DATETIME
sn_tot	Total number of seismometers	The number of permanent seismometers in the network.
sn_bb	Num ber of broadband seismometer	The number of broadband seismometers in network (corner period >10 s)
sn_smp	Number of short and mid- perios seismometer	The number of short- and mid-period seismometers in network (corner period <10 s)
sn_digital	Number of digital seismometer	The number of digital seismometers in the network (not including analog seismometers whose signal is later converted to digital
sn_analog	Number of analog seismometer	The number of analog seismometers including those whose signal is later converted to digital
sn_tcomp	Number of 3 component seismometer	The number of 3-component seismometers in network
sn_micro	Number of microphones	The number of microphones in the network (for recording air waves, acoustic signals)
sn_desc	Description	Additional description of the network that should include azimuthal coverage, how the data are relayed, status information and any other descriptive information that could be helpful.
sn_utc	Difference from UTC	Time zone relative to UTC. Please enter the number of hours from GMT, using a negative sign (-) for hours before GMT and no sign for positive numbers.
cc_id	Contact ID	An identifier for linking to contact information about the observatory or person who installed the network.
sn_loaddate	Load date	The date this row was entered in UTC.
sn_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data.

The Seismic Network table (sn for seismic network) contains information about the seismic network such as the velocity model used for computing the event locations and a general overview of the types of nstruments used. The individual stations in the network are linked to the Seismic Network table by a link in the Seismic Station table, which contains more information about the individual stations. The seismic network primary ID is sn_id and the table is linked to the Volcano table by the volcano ID, vd_id.

The name of the seismic network used by the observatories is stored in sn_name. The velocity model, sn_vmodel, should be used to describe simple, 2D, velocity models. The velocity model detail attribute, sn_vmodel_detail, should be used for more complex models and includes a link to a file or a blob that contains a full description of the model. We recommend that this additional information is included if a description of the velocity model cannot be given in the 255 character limit sn_vmodel. If greater detail is needed, the contact person or observatory (cc_id) responsible for the network can be contacted. A start and end date for the validity of the Seismic Network table may need to be added in the future in case the velocity model changes.

The zero km attribute, sn_zerokm, stores the value of the zero km mark in meters above sea level for earthquake depths in the associated data tables. For some networks the zero km value will be sea level whereas other networks pick a local baselevel, e.g., the foot of a volcano or the average elevation of seismometers in the network. This field should also describe what negative depths mean, if applicable. The fixed depth description

attribute, sn_fdepth, stores a description of how the flagged depths in the data tables are fixed, if applicable.

The Seismic Network table also includes start and end dates, sn_stime and sn_etime, along with uncertainties, sn_stime_unc and sn_etime_unc, in DATETIME UTC. These dates provide information on when the network is active or when the information in the table is valid. There are several fields to indicate the types and numbers of instruments in the network including the total number of permanent seismometers, sn_tot, the number of broadband seismometers, sn_bb, the number of short- and mid- period seismometers, sn_smp, the number of digital seismometers, sn_digital, the number of analog seismometers, sn_analog, the number of three component seismometers, sn_tcomp, and the number of microphones, sn_micro.

The description of the network, sn_desc, should include how well the stations are spaced around the volcano (azimuthal coverage), how the data are relayed, network status information, and any other descriptive information that could be helpful. The Seismic Network table also stores the difference from local time to UTC as sn_utc. This information allows for the conversion back to UTC for data that links to the Seismic Network table and not the Seismic Station table as discussed in the Time Section.

In case of multi-volcano network, the vd_id field in the S10 (the second column of S1) should be filled with NULL. This NULL value is also an indication that any queries should be directed toward Table C9:Volcano_Network_Junction_Table.

Seismic Station

Table S11. Seismic Station Table

ss id	Seismic Station table ID	An identifier for linking with other tables.
ss_code	Owner defined ID	The seismic station identifier used by owner/observatory
sn_id	Seismic network ID	An identifier for linking with the seismic network information. The Seismic Network table provides information on the velocity model used and a link to the volcano information.
ss_name	Station Name	The name of the station given by the observatory
ss_lat	Latitude	The latitude of the station in degrees (sxx.xxxxxx).
ss_lon	Longitude	The longitude of the station in degrees (sxxx.xxxxxxx)
ss_elev	Elevation	The nominal elevation of the ground where the station is located. All elevations are assumed to be above sea level unless a negative sign is used (indicating an elevation below sea level) (sxxxx).
ss_depth	Depth of Instrument	The depth of the instrument in meters below the elevation given in ss_elev. If there are multiple components at different depths, please give a list of depths
ss_stime	Start date	The date (UTC) the station was set up and activated or the time new information in this table became valid. The date is stored in DATETIME.
ss_stime_unc	Startdate uncertainty	The uncertainty in the date (UTC) the station was set up and activated. The date is stored in DATETIME.
ss_etime	End date	The date (UTC) the station was permanently decommissioned or the time the information in this table became invalid. The date is stored in DATETIME. See observatory for details of station operation history.
ss_etime_unc	Enda date uncertainty	The uncertainty in the date (UTC) the station was was permanently decommissioned or the time the information in this table became invalid. The date is stored in DATETIME.
ss_utc	Difference from UTC	Time zone relative to UTC. Please enter the number of hours from

		GMT, using a negative sign (-) for hours before GMT and no sign for positive numbers (sxx.x).
ss_instr_type	Instrument Type (s)	The type(s) of instruments installed at this station. For more detailed information, please see the Seismic Instrument table
ss_sgain	System gain	Total gain from seismometer, telemetry, and recorder. The instrument gain can also be found in the instrument table. Please refer to the observatory for information on gain updates.
ss_desc	Station Descriptiion	A description of the station including the type of material it is set in, any issues with the installation and/or function, how the data are relayed, and any additional descriptive information.
ss_com	Comment	Comments about the station including information about status.
cc_id	Contact ID	An identifier for linking to contact information.
ss_loaddate	Loaddate	The date this row was entered in UTC.
ss_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data

The Seismic Station table (ss - for seismic station) stores information such as a location, name, system gain, and comments about the stations where the data are collected. The primary ID is ss_id and there are several foreign IDs for linking to other tables. The Seismic Station table links to the Seismic Network table by the seismic network ID, sn_id. It is through the Network table that the data can be linked to the volcano.

The station name, ss_name, is given by the observatories and will be visible to users on the web interface to search for information about the station. The Seismic Station table stores all of the location information for the station including the latitude, ss_lat, longitude, ss_lon, elevation, ss_elev. The elevation, ss_elev, should be of the ground where the station is located and not the elevation of the instrument. The depth of the instrument, ss_depth, should be the depth in meters below the ground elevation. We also store the depth of the component in the Seismic Component table. In the case where there are multiple sensors at different depths, please give a list of depths. The Seismic Station table also includes start and end dates, ss_stime and ss_etime, along with uncertainties, ss_stime_unc and ss_etime_unc, in DATETIME UTC. These dates provide information on when the station is active or when the information in the table is valid. For example, we would like to store when the system gain changes. The Seismic Station table also stores the difference from local time to UTC as ss utc. This information allows for the conversion back to UTC whenever needed as discussed in the Time Section. We are requesting general information about the instrument, such as the number of components, in the instrument type field, ss_instr_type. The instrument specifics are stored in the Seismic Instrument table and can be linked from that table using the seismic station ID. The system gain attribute in the Seismic Station table, ss_sgain, is the total gain from the seismometer, the telemetry, and the recorder. We have also added an instrument gain attribute into the Seismic Instrument table for storing this information when available.

The station description, ss_desc, contains information about the station including the type of material the instrument is set in, any issues with the installation and/or function, how the data are relayed, and any additional descriptive information. The Seismic Station Comments attribute, ss_com, was created to include information about the status of the station and any other applicable comments. *Originally we were going to have a separate status table but we've decided to include the status in the station table along with the valid start and stop dates. It may become necessary to include a status table once we starting working with seismic data from multiple observatories.*

Seismic Instrument

Table \$12. Seismic Instrument Table

	T	
si_id	Seismic Instrument ID	An identifier for linking with other tables.
si_code	Owner defined ID	The seismic instrument identifier used by owner/observatory
ss_id	Seismic station ID	An identifier for linking with the seismic station information. The
		Seismic Station table provides the station location,
		instrument information, and a conversion from local time to UTC
si_name	Name	The name, model, and manufacturer of the instrument (recorder).
si_type	Туре	The type of instrument. This field should include if the instrument is
		analog or digital.
si_range	Dynamic range	The dynamic range of the instrument, please provide the units.
si_igain	Inatrument gain	The instrument gain.
si_filter	Filters	Information about filters if they have been applied.
si_ncomp	Number of component	The number of components.
si_resp	Respone overview	An overview of the response for the instrument (poles and zeros).
si_resp_file	Response in detail	A pointer to the file that contains the instrument response (poles and zeros)
		in more detail, if available.
si_stime	Start time	The time the instrument information in this table became valid in UTC
		stored as DATETIME.
si_stime_unc	Start date uncertainty	The uncertainty in the time the instrument information in this table
		became valid in UTC stored as DATETIME.
si_etime	End time	The time the instrument information in this table changed in UTC stored
		as DATETIME. This field will be null if the original information is
		still valid.
si_etime_unc	End time uncertainty	The uncertainty in the time the instrument information in this table
		changed in UTC stored as DATETIME. This field will be null if the
		original information is still valid.
si_com	Comment	Comments about the station including information about status.
∞_id	Contact ID	An identifier for linking to contact information.
si_loaddate	Loaddate	The date this row was entered in UTC.
si_pubdate	Publish date	The date this row can become public. This date can be set up to two years
		in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who
		entered this row of data

The Seismic Instrument table (si_) stores information such as the instrument name, model, number of components and response time. The primary ID is si_id and the Seismic Station ID, ss_id, is included to link to information about the location of station where the instrument is installed. We put the Seismic Station ID in the Seismic Instrument table in case there were multiple instruments at a station. The Seismic Component Table includes a link to the Seismic Instrument table for cases where an instrument has multiple components. The Seismic Component table, si_cmp, defines the channels and location of the components.

The basic information in the Instrument table includes the instrument name, model and manufacturer in si_name and the instrument type in si_type. We request that the instrument type include if the instrument is digital or analog. The flexible instrument parameters include dynamic range, gain, and filters. The dynamic range is stored as text in si_range, the instrument gain is stored as si_igain, and any information about filters should be stored as text in si_filters. The number of components that link to the instrument should be stored in si_ncomp. The details about these components such as their type, orientation, and band are stored in the Seismic Component

table, si_cmp. The instrument response is stored in two fields, response overview, and response details. The response overview, si_resp, is a descriptive text field and should include a brief overview of the poles and zeros. The response detail, si_resp_det, is a pointer to a file that is either stored on the database server or is web accessible. The response detail file, if available, should include the details of the poles and zeros. We will probably include this information as a blob in the database to keep all of the information together. The instrument information can change so we include valid from, si_stime, and valid to, si_etime, times (UTC DATETIME) for capturing each time frame when the data are valid. The start and end times also have associated uncertainties, si_stime_unc and si_etime_unc. A comments field, si_com, is included to store additional information.

Seismic Components

Table \$13. Seismic Component Table

Table 513. Seismic Component Table		
si_cmp_id	Seismic Instrument ID	An identifier for linking with other tables.
si_cmp_code	Component name	The name of the component given by the observatory, if applicable.
si_id	Instrument ID	For linking to instrument table
si_cmp_name	Name	The name, manufacturer, and model of the geophone.
si_cmp_type	Туре	The type of geophone.
si_cmp_resp	Response function	A description of the response of the component.
si_cmp_band	Band type	The band type for this component. Please follow the SEED
		convention for Band Code (S, B, V, etc).
si_cmp_samp	Sampling rate	The sample rate for the component, in Hz
si_cmp_icode	Instrument Code	The instrument code for this component. Please follow the
	Component	SEED convention for Instrument Code
si_cmp_orient	Orientation	The orientation code for this component. Please follow the
		SEED convention for Instrument Code (Z, N, E, A, B C, etc).
si_cmp_sens	Sensitivity of component	The sensitivity of the component, please include the units.
si_cmp_depth	Depth of component	The depth of the component in meters. This field is used to
		differentiate (make unique) similar components in a borehole
		(xxxx).
si_cmp_com	Comment	Comments about the station including information about status.
cc_id	Contact ID	An identifier for linking to contact information.
si_cmp_loaddate	Loaddate	The date this row was entered in UTC.
si_cmp_pubdate	Publish date	The date this row can become public. This date can be set up to two
		years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who
		entered this row of data

The Seismic Component table (si_cmp, for Seismic Instrument - Component) stores information about an individual component (geophone) that sends data to the instrument or recorder such as the component name, model, orientation, band type, and sampling rate. The primary ID is si_cmp_id. The primary identifiers for seismic data include network information, station information, channel information, and location information. The Component table, si_cmp, links to the Instrument table, which provides details about the recorder. The Seismic Instrument table links to the Seismic Station table, which links to the Network table.

The basic information in the Component table includes the component name, model, and manufacturer in si_cmp_name and the component type in si_type. Include these here only if there is more detail than could be shown in the Instrument table. If the observatory has given the component a name, then it can be stored in

si cmp cname. We request that the instrument type include if the instrument is digital or analog. The response function, si_cmp_resp, is a descriptive text field for storing information about the component response. The band type, si_cmp_band, should store a single letter code for the band type based on the SEED list of band codes. The SEED codes were chosen because they are used by many members of the seismological community and having a code will help cut down on spelling errors that will need to be cleansed. We will include a table that defines the SEED codes used in WOVOdat. The sampling rate, si_cmp_samp is currently a text field for storing the sampling rate or range in Hz. By using a text field we can handle single sampling rates or ranges of rates. The instrument code, si cmp_icode, is also a one letter code following the SEED convention that gives information about the type of instrument such as a high or low gain seismometer. The orientation, si_cmp_orient, should be used to store the orientation of the component following SEED convention. Examples of the orientation are Z, N, or E for the traditional Vertical, North-South, East-West orientations; A, B, or C for a triaxial orientation (edges of a cube turned up on a corner); T or R for formed beams; 1, 2, or 3 for orthogonal components with non-traditional orientations, etc. The sensitivity of the component should be stored in si cmp sens. The final attribute needed to define the component is the depth, si_smp_depth, or location of the component in a borehole. This attribute is necessary for instances where there are several similar components in the same borehole. We also include a comments field, si_cmp_com, for storing comments about the component.

The field si id is added to link table to the instrument table.

Earthquake Translation

Table \$14. Earthquake Translation Table

st_eqt_id	Earthquake translation ld	An identifier for linking with other tables.
st_eqt_org	Original terminology	The original terminology used by the observatory. An observatory
		link, through the contact ID, is needed to differentiate who is using
		the original terminology.
st_eqt_wovo	WOVOdat terminology	The WOVOdat earthquake terminology. This standard name will
		be used to describe the earthquakes and to find similar earthquakes
		that had different original terminology.
st_eqt_desc	Description	A description of the WOVOdat terminology.
∞_id	Contact ID	An identifier for linking to contact information.
st_eqt_loaddate	Loaddate	The date this row was entered in UTC.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who
		entered this row of data

The Earthquake Translation table (st_eqt, for Seismic Translation - Earthquake Types) allows users to translate an earthquake type defined by one observatory to the WOVOdat earthquake type. Some observatories refer to different earthquake types by the same name or similar earthquake types by different names. The WOVOdat earthquake type will allow for queries by a similar earthquake type. The primary ID is st_eqt_id. The original terminology provided by the observatory is stored in st_eqt_org and the WOVOdat terminology is stored in st_eqt_wovo; both fields are text fields. A description of the WOVOdat terminology is given in st_eqt_desc.

The field st eqt publicate is removed from the table as this table is not confidential and should be public immediately.

Deformation

The Deformation tables store data of a variety of geodetic methods, from precise leveling and tiltmeters to GPS and radar interferometry. Multiple Deformation tables were created for the different types of data:

- The Electronic Tilt table stores tilt data in either processed or raw form. Most modern tilt data are collected electronically and continuously.
- The Tilt Vector table stores the values of tilt vectors where the original data are no longer available. The vector data may need to be entered by hand.
- The Strainmeter table stores both strain data and processed information such as the maximum and minimum principle strains. The strain data are collected electronically and continuously.
- The Tilt/Strain Instrument table stores information about the individual components of tiltmeters and strainmeters. This instrument table gives general tilt/strain instrument information and the information that is needed for processing raw (electronic tilt) data.
- The EDM table stores the line lengths measured between two stations along with measurement errors and links to the station information. Most EDM data are not continuous.
- The Angle Data table stores legacy and a small amount of recent theodolite data are.
- The GPS table stores GPS data, errors, and information about the orbits and processing method. The GPS data can be continuous or periodic.
- The GPS vectors table stores vector information where the original GPS position data are unavailable.
- The Leveling table contains the elevation changes along lines of benchmarks. These data are collected in campaign mode.
- The InSAR image table stores information about selected radar interferograms, including the area, location, pixel size, and processing method.
- The InSAR Satellite Junction table contains the necessary IDs for linking the InSAR data to the satellite from which it was collected.
- The InSAR data table is linked to the InSAR image table and contains the pixel-by-pixel data of interferograms.
- The Deformation Station table stores location information including the datum, a list of any installed instruments, and a conversion from local time to UTC. A new row should be created in the Deformation Station table every time the information about the station changes.
- The General Deformation Instrument table contains general information about non tilt/strain instruments, their resolution, and links to the Deformation Station table for installed instruments and the non tilt/strain data tables.

One of the challenges in creating tables for the deformation parameters is that stations or benchmarks can be used for multiple types of measurements; they can contain permanent instruments orbe used with different types of instruments periodically as part of a campaign; and there are some stations that contain both a benchmark for leveling and GPS studies plus an installed instrument within a few feet. Our solution was to create one general station table to store location information and two instrument tables to store instrument specifics for both installed and campaign instruments. The first instrument table is for Tilt and Strain and the other instrument table covers all other deformation monitoring. We then put links to both the station and instrument tables into most of the data tables.

Electronic Tilt

Table D1. Electronic Tilt Data Table

Table 2 II Elocation in The Date Total		
dd_tlt_id	Tilt data ID	An identifier for linking with other tables.
dd_tlt_code	Owner defined ID	The data identifier used by data owner/observatory
ds_id	Deformation Station ID	An identifier for linking to the Deformation Station information. The Deformation Station table stores location

		information including the datum, a list of any installed instruments, and a conversion from local time to UTC
di_tlt_id	Tilt/Strain Instrument ID	An identifier for linking with the tilt/strain instrument table. This table gives conversion information for processing raw data and general instrument information
dd_tlt_time	Time	The measurement time in UTC stored as DATETIME.
dd_tlt_time_unc	Measurement time uncertainty	The uncertainty in the measurement time in UTC stored as DATETIME.
dd_tlt_srate	Sampling rate	The sampling rate for these data in seconds (xxxxxxxx).
dd_tlt1	Tilt 1	Tilt measurement 1 or x (positive is down to the north) (sxxxxxx).
dd_tlt2	Tilt 2	Tilt measurement 2 or y (positive is down to the east) (sxxxxxx).
dd_tlt_err1	Tilt 1 error	The error from all sources (instrument, rain, diurnal heating, etc) for processed tilt 1 data or error from environmental factors only if the raw data are provided (xxx).
dd_tlt_err2	Tilt 2 error	The error from all sources (instrument, rain, diurnal heating, etc) for processed tilt 2 data or error from environmental factors only if the raw data are provided (xxx).
dd_tlt_proc_flg	Processed data flag	A single character field to indicate that these data have already been processed and do not require a link to the instrument table for conversions. Use P for processed data or R for raw data
œ_id	Collector ID	An identifier for linking to contact information for the data collector.
dd_tlt_loaddate	Load date	The date this row was entered in UTC.
dd_tlt_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data

The Electronic Tilt data table (dd_tlt for deformation data - tilt) contains tilt data that are either raw or processed. The primary ID is dd_tlt_id and there are several foreign IDs for linking to other tables. The Deformation Station table is linked by ds_id and provides location information including the datum, a list of installed instruments, and a conversion from local time to UTC (please see the Deformation Station table for more details). The Tilt/Strain Instrument table is linked by di_tlt_id and provides the necessary information for processing raw data and general instrument information (please see the Tilt/Strain Instrument table for more details). The time of the tilt measurement, dd_tlt_time, along with the uncertainty, dd_tlt_time_unc, are stored as DATETIME in UTC (see time discussion under challenges). The data will be collected continuously and imported using scripts that will convert from local time to UTC. We decided to store the sampling rate (dd_tlt_srate) instead of computing it because in some cases the sampling rate will change, for example there are

tiltmeters that are event triggered and will sample at a higher frequency during periods of greater unrest.

The actual tilt data will be stored in dd_tlt1 and dd_tlt2. Measurements should be recorded with a positive sign for down to the north. For processed tilt errors, dd_tlt_err1 and dd_tlt_err2, should include all sources of error including the instrument, temperature, and rainfall. If the data are in a raw mV form, then the analog to digital resolution and the electronic conversions are stored in the instrument tables. These values in the instrument tables should be used for the instrument error. The tilt errors stored in the data table should include environmental factors, such as rainfall and temperature. The processed data flag (dd_tlt_proc_flg) provides an easy way to determine if the data in dd_tlt1 and dd_tlt2 are raw and therefore require processing using the instrument (di_tlt_id) link or if the data do not require further processing for comparisons. The processed data flag is a single character text field and we request that P is used to indicate processed data and R is used to indicate raw data

.

Tilt Vector Data

Table D2. Tilt Vector Data Table

Table DZ. Till Veciol Dala	TADIC	
dd_tlv_id	Tilt vector data ID	An identifier for linking with other tables.
dd_tlv_code	Owner defined ID	The data identifier defined by data owner/observatory
ds_id	Deformation station ID	An identifier for linking to the Deformation Station information.
di_tlt_id	Tilt/Strain Instrument ID	An identifier for linking with the tilt/strain instrument table. This table stores general instrument details
dd_tlv_stime	Start time	Start time of measurement in UTC stored as DATETIME.
dd_tlv_stime_unc	Start time uncertainty	The uncertainty of the start time of measurement in UTC stored as DATETIME.
dd_tlv_etime	End time	End time of measurement in UTC stored as DATETIME.
dd_tlv_etime_unc	End time uncertainty	The uncertainty of the end time of measurement in UTC stored as DATETIME.
dd_tlv_mag	Tilt magnitude	The magnitude of the tilt vector (the length) in microradians (xxxx).
dd_tlv_azi	Tilt azimuth	The azimuth of downward tilt (the direction) in degrees (0-360) (xxx).
dd_tlv_magerr	Magnitude error	The magnitude error in microradians (xxx).
dd_tlv_azierr	Azimuth error	The azimuth error in degrees (xx).
dd_tlv_com	Comments	Comments about possible artifacts and instrument details if not available in the Tilt/Strain Instrument table
cc_id	Collector ID	An identifier for linking to contact information for the data collector.
dd_tlv_loaddate	Load date	The date this row was entered in UTC.
dd_tlv_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person

	who entered this row of data
--	------------------------------

The Tilt Vector Data table (dd_tlv) stores tilt information from sources where we do not have the raw or semi-processed data and only have access to tilt vectors. These data may need to be entered by hand. The primary ID is dd_tlv_id and there are several foreign IDs for linking to other tables. The Deformation Station table is linked by ds_id, if available, and provides location information including the datum, a list of installed instruments, and a conversion from local time to UTC (please see the Deformation Station table for more details). Information about the instrument used, if available, can be found in the Tilt/Strain Instrument table linked by di_tlv_id, which provides instrument specifics including resolution.

Tilt vectors show a change in tilt over a period of time. We store the start and end times in the fields dd_tlv_stime and dd_tlv_etime along with the uncertainties, dd_tlv_stime_unc and dd_tlv_etime_unc, as DATETIME in UTC (please see the time discussion under challenges for more information about time). The tilt magnitude or length of the vector (dd_tlv_mag) is stored in microradians and the tilt azimuth or direction of the vector (dd_tlv_azi) is stored in degrees from 0-360. Each of the measurements also has an associated total error, dd_tlv_magerr for tilt magnitude and dd_tlv_azierr for tilt azimuth. The Tilt Vector table includes a comments field, dd_tlv_com, for providing any additional information about the vector such as possible artifacts and instrument details if not available in the Tilt/Strain Instrument table.

Strainmeter Data

Table D3. Strainmeter Data Table

dd_str_id	Strain Data ID	An identifier for linking with other tables.
dd_str_code	Owner defined ID	The data identifier defined by data owner/observatory
ds_id	Deformation Station ID	An identifier for linking to the Deformation Station information. The Deformation Station table stores location information including the datum, a list of any installed instruments, and a conversion from local time to UTC
di_tlt_id	Tilt/Strain Instrument ID	An identifier for linking with the tilt/strain instrument table. This table gives conversion information for processing raw data and general instrument details.
dd_str_time	Measurement time	The time of measurement in UTC stored as DATETIME
dd_str_time_unc	Measurement time uncertainty	The uncertainty in the measurement time in UTC stored as DATETIME.
dd_str_comp1	Component 1	The strainmeter data for component 1 in microstrain where contraction is positive and dilatation is negative (xxx.xxxx).
dd_str_comp2	Component 2	The strainmeter data for component 2 in microstrain where contraction is positive and dilatation is negative (xxx.xxxx)
dd_str_comp3	Component 3	The strainmeter data for component 3 in microstrain where contraction is positive and dilatation is negative (xxx.xxxx).

dd_str_comp4	Component 4	The strainmeter data for component 4 in microstrain where contraction is positive and dilatation is negative (xxx.xxxx).
dd_str_err1	Error 1	The error in measurement of component 1, in microstrain (x.xxxx)
dd_str_err2	Error 2	The error in measurement of component 2, in microstrain (x.xxxx).
dd_str_err3	Error 3	The error in measurement of component 3 in microstrain (x.xxxx).
dd_str_err4	Error 4	The error in measurement of component 4, in microstrain (x.xxxx)
dd_str_vdstr	Volumetric Strain change	The volumetric strain in microstrain (contraction is positive and dilatation is negative) (sxxxx.xxx).
dd_str_vdstr_err	Volumetric strain change error	The error associated with the volumetric strain in microstrain (x.xxxx).
dd_str_sstr_ax1	Shear strain, axis 1	The shear strain of axis 1 (gamma 1) in microstrain (sxxxx.xxx).
dd_str_azi_ax1	Azimuth, axis 1	The azimuth of axis 1 (gamma 1) in degrees (0-360) measuring with respect to North with clockwise rotation as positive (xxx).
dd_str_sstr_ax2	Shear strain, axis 2	The shear strain of axis 2 (gamma 2) in microstrain (sxxxx.xxx).
dd_str_azi_ax2	Azimuth, axis 2	The azimuth of axis 2 (gamma 2) in degrees (0-360)) measuring with respect to North with clockwise rotation as positive (xxx).
dd_str_sstr_ax3	Shear strain, axis 3	The shear strain of axis 3 (gamma 3) in microstrain, (for 3D strainmeters) (sxxxx.xxx).
dd_str_azi_ax3	Azimuth, axis 3	The azimuth of axis 3 (gamma 3) in degrees (0-360) measuring with respect to North with clockwise rotation as positive (xxx).
dd_str_stderr1	Standard error 1	The uncertainty in the strain for axis 1 in microstrain (xxx.xxx).
dd_str_stderr2	Standard error 2	The uncertainty in the strain for axis 2 in microstrain (xxx.xxx).
dd_str_stderr3	Standard error 3	The uncertainty in the strain for axis 3 in microstrain (xxx.xxx).
dd_str_pmax	Max principal strain 1	The maximum principal strain in microstrain (xxx.xxx).
dd_str_pmaxerr	Max principal strain 1 standard error	The uncertainty in the maximum principle strain in microstrain (xxx.xxx).
dd_str_pmin	Min principal strain 3	The minimum principal strain in microstrain (xxx.xxx).
dd_str_pminerr	Min principal strain 3 standard error	The uncertainty in the minimum principle strain in microstrain (xxx.xxx).
dd_str_pmax_dir	Max principal strain	The direction of the maximum principal strain 1 in degrees

	direction	(0-360) (xxx).
dd_str_pmax_direrr	Max principal strain direction standard error	The uncertainty in the maximum principal strain direction in microstrain (xx).
dd_str_pmin_dir	Min principal strain direction	The direction of the minimum principal strain 3 in degrees (0-360) (xxx).
dd_str_pmin_direrr	Min principal strain direction standard error	The uncertainty in the minimum principal strain direction in microstrain (xx).
cc_id	Collector ID	An identifier for linking to contact information for the data collector.
dd_strloaddate	Load date	The date this row was entered in UTC.
dd_str_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data

The Strainmeter Data table (dd_str for deformation data - strain) stores both raw and processed strainmeter data. The primary ID is dd_str_id and there are several foreign IDs for linking to other tables. The Deformation Station table is linked by ds_id and provides location information including the datum, a list of installed instruments, and a conversion from local time to UTC (please see the Deformation Station table for more details). The Tilt/Strain Instrument ID di_tlt_id provides a link to the necessary information for processing raw data (please see the tilt/strain instrument table for more details). The time of the strain measurement, dd_str_time, along with the uncertainty, dd_str_time_unc, is stored as DATETIME in UTC. In most cases the data will be collected continuously and imported using scripts that will convert from local time to UTC.

The strain data are stored by component, dd_str_comp1, dd_str_comp2, dd_str_comp3, and dd_str_comp4, as microstrain with a positive value for contraction and a negative value for dilatation. Each of the strain data values has an error, dd_str_err1, dd_str_err2, dd_str_err3, dd_str_err4, also in microstrain. We also store processed data in this table such as the volumetric strain, dd_str_vdstr, and the volumetric strain error, dd_str_vdstrerr in microstrain. The shear strains in microstrain and azimuths in degrees (0-360) are stored for each of three axes, dd_str_sstr_ax1, dd_str_azi_ax1, dd_str_sstr_ax2, dd_str_azi_ax2, dd_str_sstr_ax3, along with their errors, dd_str_stderr1, dd_str_stderr2, dd_str_stderr3, which are also in microstrain. The maximum principal strain, dd_str_pmax, minimum principal strain, dd_str_pmin, and their associated errors, dd_str_pmaxerr, and dd_str_pminerr are all stored in microstrain. The maximum principal strain direction, dd_str_pmin_dir, are stored in degrees (0-360) whereas their associated errors, dd_str_pmax_direrr and dd_str_pmin_direrr are in microstrain.

Tilt/Strain Instrument

Table D4. Tilt/Strain Instrument Table

di_tlt_id	Tilt/Strain Instrument ID	An identifier for linking with other tables.
di_tlt_code	Owner defined ID	The instrument identifier defined by owner/observatory
ds_id	Deformation Station ID	An identifier for linking to the Deformation Station
		information. The Deformation Station table stores location
		information including the datum, a list of installed

		instruments and a conversion from local
		instruments, and a conversion from local
	1.7	time to UTC
di_tlt_name	Name	The name, model, and manufacturer of the instrument.
di_tlt_type	Type	The type of instrument.
di_tlt_depth	Depth of instrument	The depth of instrument (in meters).
di_tlt_units	Measured units	The units the instrument measures.
di_tlt_res	Resolution	The analog to digitizer resolution. This is a text field for
		describing the resolution (xxx)
di_tlt_dir1	Direction 1	The azimuth of direction 1 (or x for tiltmeters) using
		geographic north in degrees from 0 to 360 (xxx).
di_tlt_dir2	Direction 2	The azimuth of direction 2 (or y for tiltmeters) using
		geographic north in degrees from 0 to 360 (xxx).
di_tlt_dir3	Direction 3	The azimuth of direction 3 using geographic north in
		degrees from 0 to 360 (xxx).
di_tlt_dir4	Direction 4	The azimuth of direction 4 using geographic north in
	771	degrees from 0 to 360 (xxx)
di_tlt_econv1	Electronic conversion 1	The electronic conversion (scale factor) for component 1.
		The tilt conversion will be from mV to microradians and
		the strain conversion should be from mV to microstrain. <i>If</i>
		we do put the conversions in the data input stage rather than
		into WOVOdat storage, these fields would no longer be
1. 4. 2		necessary (xxx.xx). The electronic conversion (cools factor) for commonant 2
di_tlt_econv2	Electronic conversion 2	The electronic conversion (scale factor) for component 2. The tilt conversion should be from mV to microradian
		conversion and the strain conversion should be from mV to
		microstrain (xxx.xx)
di the accura		The electronic conversion (scale factor) for component 3,
di_tlt_econv3	Electronic conversion 3	if applicable. The tilt conversion should be from mV to
		microradian conversion and the strain conversion should be
		from mV to microstrain (xxx.xx).
di_tlt_econv4	Electronic conversion 4	The electronic conversion (scale factor) for component 4,
		if applicable. The tilt conversion should be from mV to
		microradian conversion and the strain conversion should be
		from mV to microstrain (xxx.xx). The time the instrument information in this table became
di_tlt_stime	Start time	valid in UTC stored as DATETIME.
di_tlt_stime_unc	Start time uncertainty	The uncertainty of the time the instrument information in
		this table became valid in UTC stored as DATETIME.
di_tlt_etime	End time	The time the instrument information in this table changed
		in UTC stored as DATETIME. This field will be null if
		the original information is still valid
di_tlt_etime_unc	End time uncertainty	The uncertainty of the time the instrument information in
		this table changed in UTC stored as. This field will be
		null if the original information is still valid
di_tlt_com	Comments	Comments about the instrument
cc_id	Collector ID	An identifier for linking to contact information for the data
		collector.
di_tlt_loaddate	Load date	The date this row was entered in UTC.

di_tlt_pubdate	Publish date	The date this row can become public. This date can be set
1		up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Tilt/Strain Instrument table (di_tlt for deformation instrument - tilt/strain) stores information about each individual instrument and provides the necessary data to process raw data from the tilt and strain data tables. The original thought was to have a common instrument table for the model number and a more specific instrument table for the resolution of the instrument at the specific station but we decided to limit the number of joins and combine the tables. The primary ID is di_tlt_id and there are only a few foreign IDs for linking to other tables.

The Tilt/Strain Instrument table contains information about the instrument such as the name, model, and manufacturer in di_tlt_name, the type of instrument, di_tlt_type, and the units the instrument measures in di_tlt_units. These units may not be the units we are requesting for the data tables and conversions may be necessary (these should be part of the individual data loading scripts for each observatory). The resolution for converting from an analog signal to a digital signal is stored in di_tlt_res and gives the least count noise or how small of a change can be measured. The directions or azimuth for the tilt and strainmeter components are stored as di_tlt_dir1, di_tlt_dir2, di_tlt_dir3, and di_tlt_dir4. The tiltmeters will only use di_tlt_dir1 and di_tlt_dir2 as the x and y directions. All directions should be entered as degrees from 0 to 360 using geographic north. Most strainmeters have up to three components, however, there are new strainmeters that contain a fourth. To convert the raw data to processed data we also need to store the electronic conversions or scale factors for each of the components, di_tlt_econv1, di_tlt_econv2, di_tlt_econv3, di_tlt_econv4. The electronic conversions for the components are different than the analog to digital conversion for the entire instrument. For tiltmeters the conversion is from millivolts to microradians and for the strainmeters the conversion is from millivolts to microradians and for the strainmeters the conversion is from millivolts to

The final attributes of the Tilt/Strain Instrument table are the valid from or start time, di_tlt_stime, and the valid to or end time, di_tlt_etime, along with their uncertainties, di_tlt_stime_unc and di_tlt_etime_unc. These fields are stored in DATETIME UTC (the information for converting to UTC is found in the Deformation Station table). The end time should be entered after an instrument has been pulled out of the ground for maintenance and then reset, if the resolution was changed, if the instrument was permanently removed, or if the instrument is no longer working. Information should then be entered for the new or modified instrument using a new di_tlt_id and a new start time. Comments or additional information about the instrument should be included in the field, di_tlt_com.

EDM

Table D5. EDM Data Table

dd_edm_id	EDM data ID	Identifier for linking to other tables.
dd_edm_code	Owner defined ID	The data identifier defined by data owner/observatory
di_gen_id	General Deformation	An identifier for linking with the General Deformation
	Instrument ID	Instrument table. The General Deformation Instrument table
		provides specific information about the instrument including
		the resolution, the type of monitoring performed, and a link to
		the Deformation Station table if the instrument
		is permanently installed at a station.
ds_id1	Instrument station ID	An identifier for linking to information about the station

		where the EDM is being operated
ds_id2	Target station ID	An identifier for linking to information about the Target or Reflector station, in the Deformation Station table. The Deformation Station table gives the station nominal location, a list of installed instruments, the conversion from local time to UTC, and a reference datum
dd_edm_time	Measurement time	The time of the measurement in UTC stored as DATETIME.
dd_edm_time_unc	Measurement time uncertainty	The uncertainty in the measurement time in UTC stored as DATETIME.
dd_edm_line	Line length	The mark-to-mark line length in meters (xxxxx.xxx).
dd_edm_cerr	Constant error	The constant error in meters, an indication of the instrument and reflector error (x.xxx)
dd_edm_serr	Scale error	The scale error in ppm, an indication of the error in line length due to temperature, and pressure (xxxx).
cc_id	Collector ID	An identifier for linking to contact information for the data collector.
dd_edm_loaddate	Load date	The date this row was entered in UTC.
dd_edm_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data

The EDM data table (dd_edm for deformation data - electronic distance meter) contains EDM data that were collected between two stations, an Instrument station and a Target or Reflector station. Information about both of these stations can be found in the Deformation Station table, linked from ds_id1 for the instrument station and ds_id2 for the target station. The Deformation Station table provides the nominal locations for each station or benchmark, a link to the Network table, a list of any installed instruments, a conversion from local time to UTC, and a link to the reference station information. Information about the instrument used to take campaign measurements is reached using the link di_gen_id. Contact information and information about the instruments that record continuous data can be found through links in the Deformation Station table. The primary ID for the EDM table is dd_edm_id.

EDM data is generally collected as part of a campaign but is collected continuously by at least one observatory. The data attributes for the EDM table are the time of measurement, the line length, and the errors. The time of measurement, dd_edm_time, along with the uncertainty, dd_edm_unc, is stored in UTC DATETIME. The frequency of measurements varies greatly from one volcano to another or even on a single volcano. The line length, dd_edm_line, is the length of the measurement from the Instrument station to the Target station in meters. The constant error, dd_edm_cerr, is an indication of the instrument and reflector error recorded in meters. The scale error, dd_edm_serr, is an indication of the error in line length due to temperature and pressure recorded in ppm.

Angle Data table

Table D6. Angle Data Table

dd_ang_id	Angle data ID	Identifier for linking to other tables.
dd_ang_code	Owner defined ID	The data identifier defined by data owner/observatory
di_gen_id	General Deformation	An identifier for linking with the General Deformation Instrument table. The General Deformation Instrument table

	Instrument ID	provides information about instruments and their
		Resolution
ds_id	Instrument station ID	An identifier for linking to information about the station
		from which the measurements were taken, if available, in
		the Deformation Station table
ds_id1	Target station ID 1	An identifier for linking with information about Target
_		station number 1, if available, in the Deformation Station
		table.
ds_id2	Target station ID 2	An identifier for linking with information about Target
		station number 2, if available, in the Deformation Station
		table. The time of the measurement in UTC stored as
dd_ang_time	Measurement time	DATETIME.
	Magazzananttina	The uncertainty in the measurement time in UTC stored as
dd_ang_time_unc	Measurement time	DATETIME.
	uncertainty	
dd_ang_hort1	Horizontal angle to target 1	The horizontal angle as measured by the dolite or total
11 1 0	TT : 1 . 1	station (in degrees, 0-360) (xxx.xx) to target 1
dd_ang_hort2	Horizontal angle to target 2	The horizontal angle as measured by theodolite or total station (in degrees, 0-360) (xxx.xx) to target 2
dd_ang_vert1	Vertical angle to target 1	The vertical angle as measured by the odolite or total station
		(in degrees, 0-360) (xxx.xx) to target 1
dd_ang_vert2	Vertical angle to target 2	The vertical angle as measured by the odolite or total station
		(in degrees, 0-360) (xxx.xx) to target 2
dd_ang_herr1	Horizontal error on angle 1	The error on the horizontal angle (x.xx) to target 1.
dd_ang_herr2	Horizontal error on angle 2	The error on the horizontal angle (x.xx) to target 2.
dd_ang_verr1	Vertical error on angle 1	The error on the vertical angle (x.xx) to target 1
dd_ang_verr2	Vertical error on angle 2	The error on the vertical angle (x.xx) to target 2.
dd_ang_com	Comments	Comments about the angle data including any information
		that is not available in the Deformation station and
		instruments tables, and information on how well we know
		the location and time of measurement.
cc_id	Collector ID	An identifier for linking to contact information for the data
	* 11	collector.
dd_ang_loaddate	Load date	The date this row was entered in UTC.
dd_ang_pubdate	Publish date	The date this row can become public. This date can be set up
		to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Angle data table (dd_ang for deformation data - angle) contains a few angles from early geodetic surveys where someone would stand on a high point (on top of a mountain) and measure the horizontal and vertical angles to prominent features in the area. Today, angles are measured to describe dramatic vertical or horizontal deformation of points on which GPS receivers and other modern instruments cannot safely be installed (e.g., on growing lava domes). We include a comments field, dd_ang_com, for additional information about the locations (see below for more information on the comments field). More specific information about the Instrument and two Target stations, if available, can be found in the Deformation Station table and is linked

from ds_id1 for the Instrument station, ds_id2 for the first Target station, and ds_id3 for the second Target station. The Deformation Station table provides the nominal locations for each station or benchmark, a link to the Network table, a list of any installed instruments, and a conversion from local time to UTC. Information about the instrument used to take the measurements, if available, is linked by di_gen_id, to the General Deformation Instrument table provides specific information about the instrument including the resolution and the type of monitoring performed. If a link to the General Deformation Instrument table is not available, the comments field provides an alternative place for more general instrument information. The primary ID for the Angle table is dd_ang_id.

The data attributes for the Angle table are the time of measurement, the angles, and the errors on the angles. The time of measurement, dd_ang_time, may be an approximate time when the data was collected and the uncertainty is stored in dd_ang_time_unc. The two angles are stored in dd_ang_hort1 and dd_ang_hort2 for the hortizontal angle (0-360 degrees) to target 1 and 2 and dd_ang_vert1 and dd_ang_vert2 for the vertical angle (+90 to -90 degrees) to target 1 and 2. The errors on the angles, dd_ang_herr1 and dd_ang_herr2 for the horizontal and dd_ang_verr1 and dd_ang_verr2 for the vertical angle errors, are both also in degrees. It was unclear during the discussions if fields were needed for the for horizontal and vertical angles to target station 2. In addition to providing location information, the comments field, dd_ang_com, should include information about how well the location and time of measurement are known and instrument information.

GPS Data

Table D7. GPS Data Table

dd_gps_id	GPS data ID	An identifier for linking with other tables.
dd_gps_code	Owner defined ID	The data identifier defined by data owner/observatory
di_gen_id	General Deformation Instrument ID	An identifier for linking with the General Deformation Instrument table. The General Deformation Instrument table provides information about non-tilt/strain instruments and their resolution, and a link to the Deformation Station table if the instrument is permanently installed at a station
ds_id	GPS station ID	An identifier for linking with the Deformation Station table
ds_id_ref1	Reference station 1	The first reference (fixed) station
ds_id_ref2	Reference station 2	The second reference (fixed) station, if any
dd_gps_time	Time of measurement	The time of the measurement in UTC stored as DATETIME.
dd_gps_time_unc	Measurement time uncertainty	The uncertainty in the measurement time in UTC stored as DATETIME.
dd_gps_lat	Latitude	The measured latitude in decimal degrees (sxx.xxxxxxxxx)
dd_gps_lon	Longitude	The measured longitude in decimal degrees (sxxx.xxxxxxxxx).
dd_gps_elev	Elevation	The measured elevation in meters (asl) (sxxxx.xxx).
dd_gps_nserr	N-S Error	The north-south error in degrees (x.xxxxxxxxx).
dd_gps_ewerr	E-W Error	The east-west error in degrees (x.xxxxxxxxx).
dd_gps_verr	Vertical Error	The vertical error in meters (x.xxx).
dd_gps_software	Position-determining software	The software used to determine the positions, e.g., GIPSY, BERNESE, other
dd_gps_orbits	Orbits used	The orbits used to determine the positions (source, and corrections applied). Please provide whose orbits and which ones.
dd_gps_dur	Duration of the	The duration of the solution in minutes. For continuous data, please

	solution	give the frequency of measurement and the duration of time used to calculate each position, e.g., For example, data collected every 10 seconds and each position computed from 24 hours of data. For periodic (campaign) data, please give the duration of dataused to calculate this position
dd_gps_qual	Quality marker	An indicator of the quality for this measurement (use E for excellent, G for good, P for poor, and U or unknown).
cc_id	Collector ID	An identifier for linking to contact information for the data collector.
dd_gps_loaddate	Load date	The date this row was entered in UTC.
dd_gps_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data

The GPS data table (dd_gps for deformation data - Global Positioning System) contains continuous and periodic data collected at a single station and referenced to two reference stations. These data are collected either by a temporary GPS instrument for a period of time or by an instrument that records the position continuously. The periodic data may require a web form for data entry. The primary ID for the GPS table is dd_gps_id and the station from which the measurement was made is linked using the Deformation Station table ID, ds_id. Fields for two reference stations, ds_id_ref1 and ds_id_ref2, are included and should also link to the Deformation Station table provides the nominal locations for each station or benchmark, a link to the Network table, a list of any installed instruments, a conversion from local time to UTC, and a link to the reference station information. Information about the instrument used to take the measurements is linked by di_gen_id, to the General Deformation Instrument table. The General Deformation Instrument table provides specific information about the instrument including the resolution, and a link to the Deformation Station table if the instrument is permanently installed at a station.

The time of the measurement is stored in, dd_gps_time, along with an uncertainty, dd_gps_time_unc, in UTC DATETIME. GPS data can be collected either continuously or as part of a campaign. The measured location is stored in dd_gps_lat, dd_gps_lon, and dd_gps_elev for the latitude, longitude, and elevation. In addition to the measured location, we also request errors associated with each direction of the location, dd_gps_nserr for the North-South error, dd_gps_ewerr for the East-West error, and dd_gps_verr for the vertical error. The North-South and East-West errors are stored in degrees whereas the vertical error is stored in meters. The software used to determine the location should be stored in dd gps software and information about the orbits used should be stored in dd_gps_orbits. Both the software and orbits attributes are text fields that should include any information that would be helpful for understanding how the locations were calculated. The duration of the solution, dd_gps_dur, depends on whether the data were collected continuously or periodically and should include an uncertainty. If the data were collected continuously, the frequency of data collection should be included along with the length of time the data were averaged over. For example, "data collected every 10 seconds, plus or minus one half second. one value computed for each 24 hour period." If the data were collected periodically (by hand) please indicate the period of time during which the measurement was taken in minutes. The GPS data table also includes a quality marker, dd_gps_qual, for defining the data. The quality marker is a single character text field for the following characters; E for excellent, G for good, P for poor, and U for unknown.

GPS Vectors

Table D8. GPS Vectors Table

dd_gpv_id	GPS data ID	Identifier for linking to other tables
dd_gpv_code	Owner defined ID	The data identifier defined by data owner/observatory
di_gen_id	General Deformation	An identifier for linking with the General Deformation
	Instrument ID	Instrument table. The General Deformation Instrument table
		provides specific information about the non-tilt/strain
		instruments and their resolution.
ds_id	GPS BM ID	An identifier for linking with the Deformation Station table.
dd_gpv_stime	Start time	Start time of measuring interval in UTC stored as DATETIME.
dd_gpv_stime_unc	Start time uncertainty	The uncertainty of the start time of measurement in UTC stored as DATETIME.
dd_gpv_etime	End time	End time of measuring interval in UTC stored as DATETIME.
dd_gpv_etime_unc	End time uncertainty	The uncertainty of the end time of measurement in UTC stored as DATETIME
dd_gpv_dmag	Displacement magnitude	The magnitude of the displacement in mm, if vector is described by displacement magnitude, azimuth, and vector
		inclination (xxxxx)
dd_gpv_daz	Displacement azimuth	The displacement azimuth in degrees (0-360), if vector is so
-C1 -	1	described (xxx.x).
dd_gpv_vincl	Vector inclination	The inclination of displacement vector in degrees (0-90), if
		vector is so described (xx.x).
dd_gpv_N	North displacement	The displacement to the north in mm, if vector is described in
	" '	terms of North, East, and Vertical displacement (xxxxx).
dd_gpv_E	East displacement	The displacement to the east in mm, if vector is so described
dd_gpv_vert	Vertical displacement	(xxxxx). The vertical displacement in mm, if vector is so described
du_gpv_ven	v erucai dispiacement	(xxxxx)
dd_gpv_dnerr	North displacement	The uncertainty in north-south displacement magnitude in
du_Sp v_drien	uncertainty	mm (xxx).
dd_gpv_deerr	Easth displacement	The uncertainty in east-west displacement magnitude in mm
<u> </u>	uncertainty	(xxx).
dd_gpv_dverr	vertical displacement	The uncertainty in vertical displacement magnitude in mm
	uncertainty	(xxx).
dd_gpv_com	Comments	Comments about the vector data including locations of the
		instrument and target stations (if the specifics are not
		available in the Deformation Station Table), information
		about the instruments and information on how well we know the location and time of measurement
oc id	Collector ID	An identifier for linking to contact information for the data
cc_id	COLLECTOR ID	collector.
dd_gpv_loaddate	Load date	The date this row was entered in UTC.
dd_gpv_pubdate	Publish date	The date this row can become public. This date can be set up
		to two years in advance.
cc_id_load		An identifier for linking to contact information for the
	Data loader ID	person who entered this row of data

The GPS Vectors table (dd_gpv for deformation data - Global Positioning System vectors) contains vectors that were computed from GPS data where the actual positions are not available. These data will need to be entered by hand and will require a web script. The primary ID for the GPS Vectors table is dd_gpv_id and information about the station from which the data was collected is linked using the Deformation station ID, ds _id, if available. If these data are not available, then a comments field (see below) has been created to store more general location information. The Deformation Station table provides the nominal locations for each station or benchmark, a link to the Network table, a list of any installed instruments, a conversion from local time to UTC, and a link to the reference station information. Information about the instrument used, if available, can be found in the General Deformation Instrument table, which stores general information about the instrument including resolution. If a link to the General Deformation Instrument table is not available, the comments field (see below) provides an alternative place for more general instrument information.

The GPS vectors record changes of position from time 1 to time 2. The attribute dd_gpv_stime stores the start time of the interval and dd_gpv_etime stores the end time of the interval, all in UTC DATETIME. The uncertainties for the times, dd_gpv_stime_unc and dd_gpv_etime_unc, are also stored in UTC DATETIME. The conversion to UTC can be found in the Deformation Station table. The values for the angles can be given as either displacement magnitudes and azimuths, or as north, east, and vertical displacements. Data can be entered for either but not both. The displacement magnitudes and azimuths are stored in dd_gpv_dmag as mm and dd_gpv_daz as degrees from 0-360. The vector inclination is stored in dd_gpv_vincl as degrees from 0-90. The alternative method for storing the angle data, by north, east, and vertical displacement is stored in dd_gpv_e, and dd_gpv_vert all in mm. We also request a magnitude uncertainty, dd_gpv_derr, in mm. A comments field, dd_gpv_com, is included for information about the station if specifics are not available in the Deformation Station Table, information about the instrument used, if not available in the General Deformation Instrument table, and information on how well we know the location and time of measurement.

Leveling Data

Table D9. Leveling Data Table

dd_lev_id	Leveling ID	An identifier for linking with other tables.
dd_lev_code	Owner defined ID	The data identifier defined by data owner/observatory
di_gen_id	General Deformation	An identifier for linking with the General Deformation
	Instrument ID	Instrument table
ds_id_ref	Reference BM ID	An identifier for linking with the reference benchmark in the
		Deformation Station table
ds_id1	BM(n) ID	An identifier for linking to the first benchmark (n) in the
		Deformation Station table.
ds_id2	BM(n+1)ID	An identifier for linking to the second benchmark $(n + 1)$ in
		the Deformation Station table.
dd_lev_ord	Order	The order of the survey
dd_lev_class	Class	The class of the survey.
dd_lev_time	Survey date	The date of the survey in UTC stored as DATETIME.
dd_lev_time_unc	Survey date uncertainty	The uncertainty in the date of the survey in UTC stored as
		DATETIME.
dd_lev_delev	Elevation change	The elevation change in mm from the first benchmark (n) to
		the second benchmark (n+1) (xxx.x).
dd_lev_herr	Estimated error in delta h	The estimated error in the elevation change in mm from the
		first benchmark (n) to the second benchmark $(n+1)(xx.x)$.
dd_lev_com	Comments	Comments about the data including the original level of detail
		for the survey date (the year, the month, or the day).
cc_id	Collector ID	An identifier for linking to contact information for the data
		collector.
dd_lev_loaddate	Load date	The date this row was entered in UTC.
dd_lev_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load		An identifier for linking to contact information for the person
	Data loader ID	who entered this row of data

The Leveling data table (dd_lev for deformation data - leveling) contains elevation changes between successive benchmarks of a leveling line. The primary ID for the Leveling table is dd_lev_id and information about the reference station for the measurements is linked using the Deformation Station table ID, ds_id_ref. Information about the first benchmark or station (n) in the measurement is linked to the Deformation Station table using ds_id1 and the second benchmark or station (n+1) is linked using ds_id2. The Deformation Station table provides the nominal locations for each station or benchmark, a link to the Network table, a list of any installed instruments, and a conversion from local time to UTC. Information about the instrument used to take the measurements is linked by di_gen_id, to the General Deformation Instrument table. The General Deformation Instrument table provides specific information about the instrument including the resolution and the type of monitoring performed.

Leveling data are collected in time-consuming but precise campaigns. The survey date is stored in dd_lev_time, along with an uncertainty, dd_lev_time_unc, as DATETIME for consistency with the other WOVOdat data, although many leveling data are identified only by year and month. If only the day is known, use a time of 12:00:00 and if only the month is known, use the 15th for the day. Information about the known level of detail should be included in the comments field, dd_lev_com (see below). The order of the survey is stored as dd_lev_order and the class of the survey is stored as dd_lev_class. Both are small text fields. The

measured elevation change from the first benchmark (n) to the second benchmark (n+1) in mm is stored in dd_lev_delev and an estimated error on the elevation change is stored in dd_lev_herr. The comments field, dd_lev_com, stores comments about the data including the original level of detail for the date of the survey.

InSAR Image

Table D10. InSAR Image Table

Table D10. In SAR Image Ta		T
dd_sar_id	InSAR ID	An identifier for linking with other tables.
dd_sar_code	Collector defined ID	The image identifier defined by data collector/observatory
vd_id	Volcano ID	The identifier for linking to the Volcano table. The Volcano
		table stores the volcano name and time zone. It is used to connect to
		all other data
di_gen_id	General	An identifier for linking with the General Deformation
	Deformation	Instrument table
	Instrument ID	
dd_sar_slat	Starting latitude	The latitude in the starting corner (sxx.xxxxxxx)
dd_sar_slon	Starting longitude	The longitude in the starting corner (sxxx.xxxxxxx).
dd_sar_spos	Starting position	The starting position. Use BLC for bottom left corner or TLC
-		for top left corner
dd_sar_rord	Row order	The order of the rows for example, left to right.
dd_sar_nrows	Number of rows	The number of rows in the image.
dd_sar_ncols	Number of columns	The number of columns in the image.
dd_sar_units	Units	The units used in the image (e.g., mm).
dd sar ndata	Null data value	The number used for fields without data.
dd_sar_loc	Location	The location of the image (e.g., This is Yellowstone).
dd_sar_pair	Pair flag	A flag indicating if the image is composed of a pair (P) of data,
	8	stacked data (S), or unknown (U)
dd_sar_desc	Description of image	A description of the image including a set of standard features, the
		number of satellite passes, and the time frame covered by the image
		(e.g., Norris uplift anomaly includes 3 images, one from Sept.
		1996 to Sept 2000, one from Aug. 2000 to Aug 2001, and one
		from July 2001 to July 2002).
dd_sar_dem	DEM	The DEM used (e.g., 30m NED or SRTM)
dd sar dord	Data order	The order in which the bytes are stored and which bytes are most
		significant in multi- byte data types (e.g., big endian or little
		endian).
dd_sar_img1_time	Date, image 1	The date of image 1 in UTC stored as DATETIME
	, 6	
dd_sar_img1_time_	Date, image 1	The uncertainty in the date of image 1 in UTC stored as
unc	uncertainty	DATETIME
dd_sar_img2_time	Date, image 2	The date of image 2 in UTC stored as DATETIME
dd_sar_img2_time_	Date, image 2	The uncertainty in the date of image 2 in UTC stored as
unc	uncertainty	DATETIME.
dd_sar_pixsiz	Pixel size	The pixel size in meters (xxxxx).
dd_sar_spacing	Spacing of rows and	Same information as pixel size, but in units of decimal degrees
	columns	(one can be calculated from the other)
dd_sar_lookang	Look angle	The look angle (xx).
dd_sar_limb	Limb	The limb, Use ASC for ascending or DES for descending
dd_sar_jpg	JPG of interferogram	A JPG of interferogram
010		

dd_sar_geotiff	Geotiff of Interferogram	A Geotiff of the interferograms (24 bit color and includes the encoded projection types, coordinate systems, datums, ellipsoids,
	meriogram	etc
dd_sar_prometh	Processing method	The processing method.
dd_sar_softwr	Software	The software used.
dd_sar_dem_qual	DEM quality	The DEM quality, Use excellent (E) for 1m, good (G) for 10m,
		fair (F) for 100m, or unknown (U).
cc_id	Collector ID	An identifier for linking to contact information for the data
		collector.
dd_sar_loaddate	Load date	The date this row was entered in UTC.
dd_sar_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load		An identifier for linking to contact information for the person
	Data loader ID	who entered this row of data

The InSAR image table (dd_sar for deformation data - InSAR) contains information about radar interferograms that show deformation of volcanoes. The original data are pairs of radar images, currently from a satellite such as ERS1, ERS2, Envisat, JERS, Radarsat, or (soon) PalSAR. Only select, processed interferograms are included in WOVOdat. At present, most interferograms use only data from a single satellite because all of the current radar satellites (except ERS1 and ERS2) have different orbits, radar sources, and formats, however, data from multiple satellites may be used for interferograms in the future. A separate InSAR-Satellite relationship table is available for cases where different satellites were used. Alternatively, a satellite ID could be included in this table along with a flag to let users know if the relationship table is needed for their query.

The data used to create the interferogram are stored in the InSAR data table and linked to the image table using the InSAR image table primary ID, dd_sar_id. Information about the volcano that is being imaged can be found using the volcano id link, vd_id. Information about the instrument used to take the measurements is linked by di_gen_id, to the General Deformation Instrument table. The General Deformation Instrument table provides specific information about the instrument including the resolution and the type of monitoring performed.

The data contained in the InSAR image table describes the InSAR image. The location the image covers is described by a starting latitude, dd_sar_slat; a starting longitude, dd_sar_slon; the datum for the latitude and longitude, dd_sar_datum; and the starting position of the image, dd_sar_spos. The starting position is a small text field and can be either the bottom left corner (BLC) or the top left corner (TLC). If a different starting position is used, a brief description of the starting position should be included in dd_sar_spos. The units used in the image, such as mm, are stored in the text field dd_sar_units. The value used for fields without data are stored in the text field dd_sar_ndata. Two short descriptive text fields are included for information about the image. The location attribute, dd_sar_loc, should contain a brief description of where the image was taken, for example, Yellowstone National Park. The pair flag, dd_sar_pair, stores a flag that indicates if the image is composed of a pair (P) of data, stacked data (S), or if it is unknown (U). A description of the image, stored in dd_sar_desc, should include a set of standard features, the number of satellite passes, and the time frame covered by the image (e.g., Norris uplift anomaly includes 3 images, one from Sept. 1996 to Sept 2000, one from Aug. 2000 to Aug 2001, and one from July 2001 to July 2002).

The DEM used should be stored in dd_sar_dem and the quality of the DEM should be stored in dd_sar_dem_qual, where excellent (E) is for 1m, good (G) is for 10m, fair (F) is for 100m, and (U) is for unknown. The data order (big endian or little endian) should be stored in dd_sar_dord. The image date attributes are dd_sar_time1 and dd_sar_time2 for the first and second passes by the satellite, along with their uncertainties, dd_sar_time1_unc and dd_sar_time2_unc. These dates are stored in UTC in DATETIME. The pixel size, dd_sar_pixsiz, is in mm and the look angle, dd_sar_lookang, is in degrees. The limb, dd_sar_limb is a text field, use ASC for ascending and DES is for descending. The information about the processing method for

creating the image should be stored in the text field, dd_sar_prometh and information about the software used should be stored in dd_sar_softwr. Sample images should be stored as a jpeg in dd_sar_jpg and/or as a geotiff in dd_sar_geotiff.

InSAR Satellite Junction Table

Table D11. InSAR Satellite Junction Table

j_sarsat_id	InSAR Satellite junction ID	An identifier for linking with other tables.
dd sar id	InSAR ID	An identifier for linking with the INSAR table for
		details about the full image such as the location, size,
		processing method, dates, and a sample image
cs_id	Satellite ID	An identifier for linking with the Satellite table. The
		Satellite table gives the name of the satellite and a
		description
j_sarsat_loaddate	Load date	The date this row was entered in UTC.
cc_id_load		An identifier for linking to contact information for the
	Data loader ID	person who entered this row of data

The InSAR Satellite Relationship table, j_sarsat, is the junction table for the many-to-many relationship between the satellite data and the InSAR data. This table is necessary because InSAR images can be created by different satellite passes over an area. Also, different satellites collect data over multiple areas. *Alternatively, a satellite ID could be included in the InSAR image table along with a flag to let users know if this relationship table is needed for their query*. The table contains an ID, j_sarsat_id, for joining with other tables in separate databases, the InSAR ID, dd_sar_id, the Satellite ID, cs_id, a load date, j_sarsat_loaddate, the date the data can become public, j sarsat pubdate, and a data loader ID, cc_id load.

InSAR data

Table D12. InSAR Data Table

Table Diz. II On Coala Tal	JIC .	
dd_srd_id	InSAR data ID	An identifier for linking with other tables.
dd_sar_id	InSAR ID	An identifier for linking with the InSAR table for details about the full image such as the location, size, processing method, dates, and a .jpg or geotiff image
dd_srd_dchange	Range of change	The range of change for each pixel in mm (xx.x).
dd_srd_loaddate	Load date	The date this row was entered in UTC.
dd_srd_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance.
cc_id_load		An identifier for linking to contact information for the
	Data loader ID	person who entered this row of data

The InSAR data table (dd_srd for deformation data - InSAR data) contains the data collected by two satellites to create an InSAR image. Information about the InSAR image is stored in the InSAR image table and linked using the INSAR image table primary ID, dd_sar_id. The InSAR data primary ID is dd_srd_id. The only data attribute in the InSAR data table is dd_srd_dchange, which is the rate of change for each pixel in mm.

Deformation Station

Table D13. Deformation Station Table

Table D 13. Deloma		
ds_id	Deformation Station ID	An identifier for linking with other tables.
ds_code	Owner defined ID	The station identifier used by data owner/observatory
ds_name	Station Name	The name of the benchmark or station given by the observatory.
ds_code	Station Code	The station code given by the observatory.
cn_id	Network ID	An identifier for linking with information about the network in
		the Common Network table. The Common Network table gives
		a description of this network and a link to the volcano
ds_perm	Instrument	A list of any permanent instruments installed at this site. The
		instrument tables will link to the Deformation Station table and
		will provide details and allow for their
		to be several permanent and periodic instruments at each station
ds_nlat	Nominal latitude	The nominal latitude of the station in decimal degrees
		(SXX.XXXXXX).
ds_nlon	Nominal longitude	The nominal longitude of the station in decimal degrees
		(SXXX.XXXXXXX).
ds_nelev	Nominal elevation	The nominal elevation of the station in meters (sxxxx).
ds_herr_loc	Horizontal precision	The horizontal precision of nominal location for GPS
	location	
ds_stime	Start date	The date (UTC) the station was set up and activated or the time
		new information in this table became valid. The date is stored in
		DATETIME.
ds_stime_unc	Start date uncertainty	The uncertainty in the date (UTC) the station was set up and
		activated or the time new information in this table became valid.
		The date is stored in DATETIME
ds_etime	End date	The date (UTC) the station was permanently decommissioned or
		the time the information in this table became invalid. The date is
		stored in DATETIME. See observatory for station operation
		history
ds_etime_unc	End date uncertainty	The uncertainty in the date (UTC) the station was permanently
		decommissioned or the time the information in this table became
		invalid. The date is stored in
1 ,	D'CC C LITTC	DATETIME
ds_utc	Difference from UTC	The time zone relative to UTC. Please enter the number of hours
		from GMT, using a negative sign (-) for hours before GMT and
10	D-f	no sign for positive numbers (sxx.x).
ds_rflag	Reference station flag	A flag indicating that this station is used as a reference station (Y
1. 1	Ct-ti 1i-ti	for yes).
ds_desc	Station description	A description of the station or any comments.
cc_id	Contact ID	An identifier for linking to contact information for the data collector.
ds_loaddate	Load date	The date this row was entered in UTC.
ds_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load		An identifier for linking to contact information for the person
	Data loader ID	who entered this row of data
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

The Deformation Station table (ds_ for Deformation Station) stores information such as a location, name,

and description for stations where deformation or geodetic data are collected. Originally there were going to be two station tables, a tilt/strain station table and a general deformation station table, each with a link to the appropriate instrument table for linking with vector and angle data. It was later decided to have one station table and allow for multiple instruments at a station by having the link go from the instrument table to the station table for permanent stations. For instruments used periodically, there was an instrument/station junction table but it was decided to treat the instrument like data, since it could change so often, and store the instrument link in the data tables. The primary ID for the Deformation Station table is ds id and there are several foreign IDs for linking to other tables. The Deformation Station table links to the Common Network table by the network ID, cn id. It is through the network table that data collected at a station can be linked to the volcano. Information about tiltmeters or strainmeters installed or used at this station can be found in the Tilt/Strain Instrument table using the station table ID, ds_id. The Tilt/Strain Instrument table provides the necessary information for processing raw data along with general instrument information (please see the Tilt/Strain Instrument table for more details). The link to the instrument table can also be found in some of the tilt/strain data tables. Information about other types of instruments used and their resolution can be found in the General Deformation Instrument table, which is linked to the Deformation Station table using the station primary ID, ds_id.

Each station has a name, ds_name, given by the observatory and if applicable, a separate station code, ds_code. The station name and code are both text fields. The field ds_inst records any permanent instruments installed at the station. Additional information about the instruments can be found in either the General Deformation Instrument table or the Tilt/Strain Instrument table; both contain links to the station table. For cases where an instrument is part of a campaign and is used at multiple stations, the instrument is linked from the data tables.

The Deformation Station table stores all of the information for determining the station location including the latitude, ds_lat, longitude, ds_lon, elevation, ds_elev. The Deformation Station table also includes start and end dates, ds_stime and ds_etime, along with their uncertainties, ds_stime_unc and ds_etime_unc, in DATETIME UTC. These dates provide information on when the station information in the table is valid. The instrument table also contains a date range. New instruments at the station should be recorded in the instrument table instead of the station table unless the location of the new instrument changes the location of the station. The Deformation Station table also contains a description field, ds_desc. The description field should include information about the setting, for example, "very close to a steep cliff," in addition to any information that could help explain future data and site selection. The difference from local time to UTC is stored as ds_utc. The UTC field allows for the conversion back to UTC whenever needed as discussed in the Time Section.

General Deformation Instrument

Table D14. General Deformation Instrument Table

di_gen_id	General Deformation	An identifier for linking with other tables
	Instrument ID	
di_gen_code	Owner defined ID	The instrument identifier used by data owner/observatory
di_gen_code	Owner defined ID	The instrument identifier used by owner/observatory
ds_id	Deformation Station ID	An identifier for linking with the Deformation Station
		table. This link requires the station type as well.
di_gen_name	Name	The name, model, and manufacturer of the instrument.
di_gen_type	Туре	The type of instrument chosen from a standard set of instruments. This field will be used along with the
		Deformation Station ID to uniquely link installed
		instruments to their stations
di_gen_units	Measured units	The units the instrument measures

di_gen_res	Resolution	Typical instrumental measuring precision.
di_gen_stn	Signal to noise	An instrument specific signal to noise ratio.
di_gen_stime	Start date	The date (UTC) the instrument was set up and activated or
		the time new information in this table became valid.
		The date is stored in DATETIME.
di_gen_stime_unc	Start date uncertainty	The uncertainty in the date (UTC) the instrument was set up
		and activated or the time new information in this table
		became valid. The date is stored in
		DATETIME.
di_gen_etime	End date	The date (UTC) the instrument was permanently
		decommissioned or the time the information in this table
		became invalid. The date is stored in
		DATETIME. See observatory for station operation history.
di_gen_etime_unc	End date uncertainty	The uncertainty in the date (UTC) the instrument was
		permanently decommissioned or the time the
		information in this table became invalid. The date is stored
		in DATETIME. See observatory for station operation
		history
di_gen_com	Comments	Comments on the instrument including anything unusual,
		for example, modifications
cc_id	Contact ID	An identifier for linking to contact information for the data
		collector.
di_gen_loaddate	Load date	The date this row was entered in UTC.
di_gen_pubdate	Publish date	The date this row can become public. This date can be set up
		to two years in advance.
cc_id_load		An identifier for linking to contact information for the
	Data loader ID	person who entered this row of data

The General Deformation Instrument table (di_gen for deformation instrument - general) stores information about each individual instrument. The permanently installed instruments are linked to the stations at which they are installed by the station ID, ds_id, and the instrument type, di_gen_type, which gives information on the type of instrument. Having two fields allows for searches of all instruments at a station and also for instruments of a certain type at all stations. The periodic instrument data are linked to the General Deformation Instrument table using the instrument table's primary ID, di_gen_id, which has been placed in the data tables. An instrument/station junction table was originally created to handle periodic data recorded by multiple instruments that could be used at multiple stations. We decided to put the instrument link with the data, along with the station link, because the instruments can change often.

The name of the instrument is stored in di_gen_name, the manufacturer is stored in di_genman, and the model is stored in di_gen_mod. All of these fields are text fields. The units the instrument measures are stored in the text field di_gen_units and the resolution or measuring precision for those units is stored in di_gen_res. The instrument specific signal to noise ratio is stored in di_gen_stn. The General Deformation Instrument table also includes start and end dates, di_gen_stime and di_gen_etime, along with their uncertainties, di_gen_stime_unc and di_gen_etime_unc, in DATETIME UTC. These dates provide information for determing which set of instrument information is valid. The data are considered invalid if the resolution or signal to noise ratio changes or if an installed instrument is removed from a station. A comments attribute, di_gen_com, is included for information about how this instrument has been modified or is used in a non-standard way.

Gas

The gas tables contain data about fumaroles, plumes, or diffuse soil degassing. Both direct sampling (fumarole and diffuse soil degassing) and remote plume measurements can be continuous or periodic. These tables include a flag to note if the data are continuous or periodic. A link to the collector ID and instrument ID are included for the periodic data whereas those links can be found through the station table for the continuous data. There are five main gas tables:

- The Directly Sampled table, gd, contains gas concentrations collected from a point source. The type of point source is included in the station table. The recorded data units are entered in this table to solve the issue of multiple measurement types. *If the recorded units do not solve the issue, the measurement types should be stored in a separate table.*
- The Soil Efflux Data table, gd_sol, contains the total flux value per day and the number of points sampled for a single measured species. CO₂ is the most common species measured using this technique but it is possible to measure other species. *The Soil Efflux table was created to provide the flexibility for future measurements*.
- The Plume Data table, gd_plu, contains plume data including the emission rates of several gases, the plume height, vent location, and weather information. The plume data are collected remotely, either from an instrument that is moving or fixed in space.
- The Gas Station table contains information about the location of the station and permanently installed instruments. It is linked to the Common Network table, which contains information about the monitoring network and a link to the Volcano table.
- The Gas Instrument table contains the instrument model, its resolution, and the units it measures.
- The permanently installed instruments are linked to their stations and the periodically used instruments are linked through the data tables.

Directly Sampled Gas

Table G1 (modified). Directly Sampled Gas Table

gd_id	Directly sampled ID	An identifier for linking with other
gd_code	Owner defined ID	The gas data identifier used by owner/observatory/ collector
gs_id	Gas Station ID	The identifier for linking with the Gas Station table. The Gas
		Station table contains the station name, location, and description.
gi_id	Gas Instrument ID	An identifier for linking to information in the Gas Instrument
		table. The Gas Instrument table contains the instrument model, its
		resolution, and the units it measures.
gd_time	Sampling/ measurement	Sampling/measurement time in UTC stored as DATETIME.
	time	
gd_time_unc	Sampling/	The uncertainty in the sampling/ measurement time in UTC
	measurement time	stored as DATETIME.
	uncertainty	
gd_gtemp	Gas temperature	The gas temperature in degrees Celsius Gas temperature (xxx.x).
gd_bp	Barometric pressure	The atmospheric pressure in millibars at the time of
		measurement (xxxx.x).
gd_flow	Gas emission rate	The measured gas emission rate.
gd_species	Species or ratio of gas	Example: CO2, SO2, H2S, HCl, HF, CO
	reported	

gd_waterfree_flag	Water free gas flag	The one-character flag to indicate that the value is calculated for
		water-free regime (F). Y for water free, N for non-water free
gd_units	Reported units	The units reported for the species below, e.g., vol % or wt %.
gd_concentration	gas concentration	The measured concentration
gd_concentration_err	Estimated uncertainty	The estimated uncertainty in concentration
gd_recalc	Recalculated value flag	A single character field to know if the value is directly from
		measurement (= O, for original) or recalculated from other
		parameters (=R, for recalculated). gd_recalc = R for water-free
		gas.
gd_envir	Environmental factors	Comments on environmental factors, e.g., snowpack,
		groundwater masking
gd_submin	Sublimate minerals	Information on sublimate minerals
gd_com	Other comments	Additional comments, e.g., tree kill, dead animals, etc.
cc_id	Collector ID	An identifier for linking to contact information for the data
		collector.
gd_loaddate	Load date	The date this row was entered in UTC.
gd_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

The Directly Sampled Gas table (gd for gas data – ground-based) stores gas data collected at ground sites. Data include the gas temperature, concentrations, and environmental factors. The primary ID is gd_id and the main foreign keys are the station ID, gs_id, for linking to station information, such as the type of gas feature (bubbling pool gas, fumerole, ambient air, lava gas, hornito or skylight, submarine vent, etc.) and its location, the gas instrument ID, gi_id, for linking to information about the instrument that collected periodic data, and the collector ID (cc_id) links to contact information for the person or observatory that collected the periodic data. The instrument and contact information for continuous data can be found through the station ID.

Directly sampled gas data can be collected either continuously or periodically. If the data are collected periodically, please also include the collector ID in cc_id and the instrument ID in gi_id. The time of the measurement along with an uncertainty is stored in, gd_time and gd_time_unc, in UTC DATETIME. The gas temperature, gd_temp, is stored in Celsius. The barometric pressure, gd_bp, is the atmospheric pressure in millibars at the time of measurement and the gas emission rate is stored in gd_flow. Because there are several methods for collecting directly sampled gas data the units used for the concentrations in the field should be stored in, gd_units. The field gd_units is a 255-character text field allowing space for information about all units included in the table.

The gas concentrations, stored in the units recorded in gd_units, include; CO_2 , SO_2 , H_2S , HCI, HF, CH_4 , H_2 , and CO. The estimated uncertainty for each of these measurements, in the same units recorded in gd_units, should be stored in gd_concentration_err in the same units in gd_units. gd_species could be used for calculated water-free values in the reported units. Several ratio could be stored in the gd_species, such as (3He/4He), the measured delta per mil such as of ^{13}C in, $\delta^{34}S$, δD , and $\delta^{18}O$.

Three additional comments fields are included to describe the sample site. The environmental factors field, gd_envir, should include comments on environmental factors such as a snow pack and the weather for that day. The sublimate minerals field, gd_submin, is for comments on any sublimate minerals seen during the measurements. And the general comments field, gd_com, stores additional information about the measurements or observations including tree kill and dead animals.

The field gd_species could have a value from one of these possibilities: CO₂, SO₂, H₂S, HCl, HF, CH₄, H₂, and CO (in %w, or %vol), or their water-free with gd_waterfree_flag to be "F" (in %w, %vol), or one of ratios or delta of 3He/4He, d13c, d34s, d18o, dd (in "per mil").

All fields that store concentration values are compressed in four (4) fields: gd_species, gd_concentration, gd_concentration_err and gd_recalc. The main change is on gd_species. Formerly every gas species has its own field that makes the table is quite long.

Soil Efflux Data

Table G3. Soil Efflux Data Table

gd_sol_id	Soil Efflux Data ID	An identifier for linking with other tables.
gd_sol_code	Owner defined ID	The data identifier used by owner/observatory
gs_id	Gas Station ID	The identifier for linking with the Gas Station table. The Gas
		Station table contains the station name, location, and
		description
gi_id	Gas Instrument ID	An identifier for linking to information in the Gas
		Instrument table. The Gas Instrument table contains the
		instrument model, its resolution, and the units it measures
gd_sol_time	Measurement time	The measurement time in UTC stored as DATETIME.
Gd_sol_time_unc	Measurement time	The uncertainty in the measurement time in UTC stored as
	uncertainty	DATETIME
gd_sol_species	Measured species	The type of gas measured (CO ₂ , Radon, etc.).
gd_sol_tflux	Total flux	The total flux value in t/d.
Gd_sol_flux_err	Flux value uncertainty	The uncertainty in the flux value in t/d.
Gd_sol_pts	Number of points	The number of points measured
gd_sol_area	Area	The area measured in m2
gd_sol_high	Highest individual flux	The highest individual flux for the measured species in
		g/m2/d.
gd_sol_htemp	Highest temperature	The highest measured temperature in degrees Celsius if the
		measurement was from a geothermal area.
gd_sol_com	Comments	Comments about the measurement including information about
		the weather such as snow on the ground.
cc_id	Collector ID	An identifier for linking to contact information for the data
		collector.
gd_sol_loaddate	Load date	The date this row was entered in UTC.
gd_sol_pubdate	Publish date	The date this row can become public. This date can be set up
		to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

The Soil Efflux Data table (gd_sol for gas data – soil efflux) stores a daily total flux value for an individual gas species. The primary ID is gd_sol_id and the main foreign keys are the station ID, gs_id for linking to the Gas Station table, for the name of the site, its location, and a link to the network, and gi_id, the gas instrument ID for linking to information about the instrument.

The time of the measurement along with an uncertainty is stored in, gd_sol_time and gd_sol_time_unc, in UTC DATETIME. The measured species, gd_sol_species, contains the gas species measured at the site, for example radon or CO₂. The total flux of the gas species is stored in gd_sol_tflux and the total flux value uncertainty is stored in gd_sol_tflux_err, both as t/d. The number of points measured is stored in gd_sol_pts and the area measured is stored in gd_sol_area in meters squared. The highest individual efflux in g/m2/d is stored in gd_sol_high and the highest soil temperature is stored in degrees Celsius in gd_sol_htemp if the area measured is a geothermal area. The comments field, gd_sol_com, provides a field for comments about the weather, the site, and the measurement.

Plume Data

Table G4 (modified). Plume Data Table

Table G4 (modified). Pi		A 11 10 0 11 11 11 11 11
gd_plu_id	Plume ID	An identifier for linking with other tables
gd_plu_code	Owner defined ID	The plume data identifier used by owner/observatory
vd_id	Volcano ID	An identifier for linking with the volcano table
gs_id	Gas Station ID	The identifier for linking with the Gas Station table. The Gas
		Station table contains the station name, location, and description
gi_id	Gas Instrument ID	An identifier for linking to information in the Gas Instrument
		table. The Gas Instrument table contains the instrument model, its
		resolution, and the units it measures
gd_plu_lat	Latitude	The latitude of the vent in decimal degrees (sxxx.xxxxxx).
gd_plu_lon	Longitude	The longitude of the vent in decimal degrees (sxxx.xxxxxxx).
gd_plu_height	Height	The height of the plume in km above the vent
gd_plu_hdet	Plume height	The method used to determine the height of the plume
	determination	
gd_plu_time	Measurement time	The measurement time in UTC stored as DATETIME
gd_plu_time_unc	Measurement time	The uncertainty in the measurement time in UTC stored as
	uncertainty	DATETIME.
gd_plu_species	Species of gas reported	Example: CO2, SO2, H2S, HCl, HF, CO
gd_plu_units	Reported units	The units reported for the emission rates below, e.g., t/d or kg/s.
gd_plu_emit	gas emission rate	The gas emission rate in the plume in the units reported in
		gd_plu_units.
gd_plu_emit_err	gas emission standard	The gas standard error in the units reported in gd_plu_units
	error	
gd_plu_recalc	Recalculated value flag	A single character field to know if the value is directly from
		measurement (= O, for original) or recalculated from other
		parameters (=R, for recalculated)
gd_plu_wind	Wind speed	The estimated wind speed at plume height in m/s (xx.x).
gd_plu_weth	Weather notes	Notes on the weather for example information on cloud cover,
		rain, ambient temperature, etc
gd_plu_com	Additional comments	Additional comments about the plume such as the shape and size,
		and how the plume data was collected.
gi_id	Gas Instrument ID	An identifier for linking to information in the Gas Instrument
		table.
cc_id	Collector ID	An identifier for linking to contact information for the data
		collector.
gd_plu_loaddate	Load date	The date this row was entered in UTC.
gd_plu_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

The Plume Data table (gd_plu for gas data - plume) stores gas data collected from a plume including the location of the vent, the height of the plume, and the gas emission rates. The primary ID is gd_plu_id. The main foreign keys are the volcano ID, vd_id, for linking periodic data collected from space to the Volcano table and the station ID, gs_id, to link to the station, instrument, and contact information for continuous ground-based emission-rates. Data collected periodically by a satellite or airplane are linked to instrument

information by the instrument ID, gi id, and collector information by the collector ID, cc id.

Plume data can be collected either continuously or periodically. If the data are collected periodically, include the collector ID in cc_id and the instrument ID in gi_id. Because continuous and periodic data are often reported differently, the units for the emission rates, e.g., t/d or kg/s. are stored in gd_plu_units. The location of the plume, including the latitude and longitude of its source vent in decimal degrees, is stored in gd_plu_lat and gd_plu_lon. The height of the plume in kilometers above the vent (sea level) is stored in, gd_plu_height, and the method for determining the height is stored in gd_plu_hdet. The time of the measurement along with an uncertainty is stored in, gd_plu_time and gd_plu_time_unc, in UTC DATETIME.

The Plume Data table stores several emission rates of gas such as CO2, SO2, etc, and their standard deviations in metric tonnes per day: The measurement platform, gd_plu_plat, should contain information about how the instrument was mounted for a measurement for example, on a tripod, vehicle, plane or satellite. Three comments fields are included for additional information about the data. The estimated wind speed field, gd_plu_wind, is for information about the wind speed at the plume height. The weather field, gd_plu_weth, is for comments about the weather such as cloud cover, rain, and ambient temperature. The general comments field, gd_plu_com, is for additional information about the plume, for example shape and size, and how the measurements were taken.

The field gd_plu_species could have one of these following values: CO₂, SO₂, H₂S, HCl, HF, and CO (in t/day or kg/second). The field gd_plu_iddesc is not necessary as it is already a link with gas station table through gs_id. All fields that store plume gas species values are compressed in four (4) fields: gd_plu_species, gd_plu_emit, gd_emit_err and gd_plu_recalc... The main change is on gd_plu_species. Formerly every gas species has its own field that makes the table is quite long.

Gas Station

Table G5. Gas Station Table

Gas Station ID	An identifier for linking with other tables
Owner defined ID	The gas station identifier used by owner/observatory
Station name or code	The name of the station.
Network ID	An identifier for linking with the Common Network table, if
	applicable. The Common Network table contains information about
	the monitoring network and links to the
	Volcano table.
Latitude	The latitude of the station in decimal degrees (sxx.xxxxxxx).
Longitude	The longitude of the station in decimal degrees (sxxx.xxxxxxx).
Elevation	The elevation of the land surface in meters above sea level (asl)
	(sxxxx).
Instrument	A list of permanent instruments, if applicable, installed at this site. The
	Gas Instrument table links to the Gas Station
	table for permanent instruments and provides details about the permanent
	and campaign instruments.
Type	The type of gas body found at the station, for example fumarole or
	diffuse soil degassing or if the station is used to collect remote plume
	data
Difference from	The time zone relative to UTC. Please enter the number of hours from
UTC	GMT, using a negative sign (-) for hours before GMT and no sign for
	positive numbers.
Start date	The date (UTC) the station was set up and activated or the time new
	Owner defined ID Station name or code Network ID Latitude Longitude Elevation Instrument Type Difference from UTC

		information in this table became valid. The date is stored in
		DATETIME.
gs_stime_unc	Start date uncertainty	The uncertainty in the date (UTC) the station was set up and activated or
		the time new information in this table became valid. The date is
		stored in DATETIME.
gs_etime	Stop date	The date (UTC) the station was permanently decommissioned or the
		time the information in this table became invalid. The date is stored in
		DATETIME. See observatory for station operation history.
gs_etime_unc	End date uncertainty	The uncertainty in the date the station was decommissioned or the time
		this set of information is no longer valid in UTC stored as
		DATETIME
gs_desc	Station description	A description of the station and any comments.
	_	
cc_id	Contact ID	An identifier for linking to contact information for the data collector.
gs_loaddate	Load date	The date this row was entered in UTC.
gs_pubdate	Publish date	The date this row can become public. This date can be set up to two
		years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who
		entered this row of data

The Gas Station table (gs_ for Gas Station) stores information such as a location, type of gas body monitored, and a description of the stations where gas data are collected. A Gas network is defined as a set of stations that collect Gas data on either a single volcano or over a series of nearby volcanoes. The primary ID for the Gas Station table is gs_id. The Gas Station table links to the Common Network table by the network ID, cn_id. The network table provides the link to the volcano table. A junction table connects the network and volcano for instances where the network covers more than one volcano.

The Gas Station table stores the station location including the latitude and longitude in decimal degrees, gs_lat and gs_lon, the elevation in meters, gs_elev. The names of any instruments installed at the station should be stored in the text field, gs_inst. Additional information about these instruments can be found in the Gas Instrument table by searching on the gas station ID (the instrument is linked to the station because there can be multiple instruments at a station). The station name or code, created by the observatory, is stored in gs_name. The type of body monitored at the station is stored in gs_type and should include a brief description of the feature at the site, e.g., 1 m wide fumarole or a remote feature, e.g., a plume. The difference from local time to UTC is stored in gs_utc. This information allows for the conversion back to UTC whenever needed as discussed in the Time Section.

The Gas Station table also includes start and end dates, gs_stime and gs_etime, along with uncertainties for those times, gs_stime_unc and gs_etime_unc, in DATETIME UTC. These dates provide information on when the station information in the table is valid. The instrument table also contains a date range. New station instruments should be recorded in the instrument table instead of the station table unless the location of the new instrument changes the screen location or the location of the station. The description of the station, gs_desc, is stored in a 255-character text field. The description should include any additional information about the station such as the activity level of the site and comments on why there is gas to monitor.

Gas Instrument

Table G6. Gas Instrument Table

	-
Sensor ID	An identifier for linking with other tables.
Owner defined ID	The gas instrument identifier used by owner/observatory
Satellite ID	An identifier for linking with the Satellite table, if the instrument is
	mounted on a satellite or airplane. The Satellite table gives the
	name of the satellite and a description.
Gas Station ID	An identifier for linking with the Gas Station table for instruments
	installed at a station. The Gas Station table includes the station
	location, the type of gas feature, and
	links to the Gas Network and Gas Instrument tables (for
	permanently installed instruments).
Type	The type of instrument.
Name	The name, manufacturer, and model of the instrument.
Measured units	The units the instrument measures
Resolution	Typical instrumental measuring precision
Signal to noise	An instrument specific signal to noise ratio.
Calibration	The calibration method.
Start date	The date (UTC) the instrument was set up and activated or the time
	new information in this table became valid. The date is stored in
	DATETIME.
Start date uncertainty	The uncertainty in the date (UTC) the instrument was set up and
	activated or the time new information in this table became valid.
	The date is stored in DATETIME.
End date	The date (UTC) a 'permanent' instrument was permanently
	decommissioned or the time the information in this table became
	invalid. The date is stored in DATETIME. See observatory for
	station operation history.
End date uncertainty	The uncertainty in the date the instrument was decommissioned or
	the time this set of information is no longer valid in UTC stored
	as DATETIME.
	Comments on the instrument.
Coontact ID	An identifier for linking with the person or group of people who
	use this instrument.
	The date this row was entered in UTC.
Publish date	The date this row can become public. This date can be set up to two
	years in advance.
Data loader ID	An identifier for linking to contact information for the person who
	entered this row of data
	Owner defined ID Satellite ID Gas Station ID Type Name Measured units Resolution Signal to noise Calibration Start date Start date uncertainty End date End date uncertainty Comments

The Gas Instrument table (gi for gas instrument) was created to store information about the instruments used to collect ground-based and remote gas. The permanently installed instruments are linked to the stations at which they are installed by the station ID, gs_id. he periodic instrument data are linked to the Gas Instrument table using the instrument table's primary ID, gi_id, which has been placed in the data tables.

The name, model, and manufacturer of the instrument are stored in the text field gi_name, and the type of instrument is stored in the text field gi_type. The units the instrument measures are stored in the text field gi_units and the resolution or measuring precision in those units is stored in gi_res. The instrument

specific signal to noise ratio is stored in gi_stn. The Gas Instrument table also includes start and end dates, gi_stime and gi_etime, along with uncertainties, gi_stime_unc and gi_etime_unc, in DATETIME UTC. These dates provide information on when the instrument information in the table is valid. The data are considered invalid if the resolution or signal to noise ratio changes or if an installed instrument is removed from a station. A comments attribute, gi_com, is included for comments about the instrument and its uses.

Hydrologic

The hydrology section of WOVOdat contains water monitoring data that are collected from water wells, springs, or crater lakes, all broadly indicative of groundwater conditions and the possible role of groundwater in volcanic unrest. WOVOdat's hydrology tables do not contain data on surface water hydrology that is unrelated to unrest at the volcano, e.g., normal variations in stream discharge or chemistry. There are three hydrology tables:

- The Hydrologic Data table, hd, contains all of the water data including temperature, water depth, and chemical composition. The data are collected either continuously or periodically as part of a campaign. The most commonly collected campaign data are water levels, temperature, pH, and conductance but concentrations can also be included. As WOVOdat and collecting methods evolve, separate tables may be useful if there is a clear distinction between the frequency of data collection.
- The Hydrologic Data table is linked to the Hydrologic Station table, hs. The Hydrologic Station table
 contains information about the location of the station, the type of water body, and a list of any
 permanently installed instruments. The Hydrologic Station table is linked to the Common Network
 table, which contains information about the monitoring network and a link to the Volcano table.
- The Hydrologic Instrument table contains information about permanent and campaign instruments
- including the pressure measurement type, the units measured, and the resolution. Permanent instruments are linked to the Hydrologic Station table, whereas campaign instruments are linked to the Hydrologic Instrument table through the Hydrologic Data table.

Hydrologic Data

Table H1(modified). Hydrologic Data Table

hd_id	Hydrologic data ID	An identifier for linking with other tables
hd_code	Owner defined ID	The hydrologic data identifier used by owner/observatory/
hs_id	Hydrologic Station ID	An identifier for linking with the Hydrologic Station table.
		The Hydrologic Station table contains information about the
		type of water body and location.
hi_id	Hydrologic Instrument	An identifier for linking with the Hydrologic Instrument
	ID	table for non- permanent instruments. The Hydrologic
		Instrument table contains instrument information including
		the pressure measurement type, the units measured, and the
		resolution
hd_time	Measurement time	The measurement time (UTC) stored as DATETIME.
hd_time_unc	Measurement time	The uncertainty in the measurement time in UTC stored as
	uncertainty	DATETIME.

hd_temp	Temperature	The temperature of the water in degrees Celsius (xxx.xx).
hd_welev	Water elevation	The elevation of the water level in meters above sea level, if
_		available (sxxxx.xxx).
hd_wdepth	Water depth	The water depth in meters below the ground surface, if
_ 1	1	available (xxxx.xxx).
hd_dwlev	Change in water level	The change in water level in meters if the water depth and
_	8	water elevation are not available (xxx.xxx).
hd_bp	Barometric pressure	The atmospheric pressure in millibars at the time of
_ 1	1	measurement (xxxx.x).
hd_sdisc	Spring discharge rate	The measured spring discharge rate in liters per second
		(xxxx.xx).
hd_prec	Precipitation	The amount of precipitation in millimeters for this
	T	measurement. Use the number 0 for no rain and leave the
		field blank for unknown. The frequency of the precipitation
		measurement may be different than the frequency of the other
		data, please check in the Hydrologic Station table for the
		measurement frequencies. (xxx.x)
hd_dprec	Daily precipitation	The precipitation in millimeters for the preceding day. Use
= T	J F ··· F ····	the number 0 for no rain because a null value will stand for
		no data measured. This information should be included only
		if the precipitation is not recorded continuously
hd_tprec	Type of precipitation	The precipitation type. Use R for rain, FR for freezing rain
	-7F F	or sleet, S for snow, H for hail, or any combination of the
		above.
hd_ph	pH	The pH of the water (xx.x).
hd_ph_err	pH standard error	The standard error in the measured pH of the water (x.x).
hd_cond	Conductivity	The measured conductivity in micromhos/cm
_		(microSiemens/cm) (xxx.x).
hd_cond_err	Conductivity standard	The standard error in measured conductivity in
	error	micromhos/cm (microSiemens/cm) (xx.x)
hd_comp_species	Type of compound,	Example: SO2, Cl, H2S, Fe, Ca, Na,
_ 1_1	kation, anion, or ratio	
hd_comp_units	Units reported	The units reported for the emission rates below, e.g., t/d or
_ 1_	1	kg/s.
hd_comp_content	content of compound,	The measured content in unit mentioned in hd_comp_units
_ 1_	kation, anion, or	_ 1_
	ration	
hd_comp_content_err	content of compound,	compound content standard error in unit hd_comp_units.
_ 1	kation, anion, or ratio	_ 1_
	error	
hd_com	Comments	Comments about the measurement and about precipitation over
_		the past month
cc_id	Collector ID	An identifier for linking to contact information for the data
_		collector. The collector ID is for campaign data only, the
		Hydrologic Station table includes contact information for
		the continuous data
hd_loaddate	Load date	The date this row was entered in UTC.
hd_pubdate	Publish date	The date this row can become public. This date can be set up
		to two years in advance.
	1	··· ··· - J - ···· - · ··· · · · · ·

cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Hydrologic Data table (hd for hydrologic data) stores all of the water data including temperature, water depth, and concentrations. The primary ID is hd_id and the main foreign keys are the station ID, hs_id for linking to the station information, which includes the type of water body, its location and a link for information about permanent instruments, and hi_id, the hydrologic instrument ID, for linking to instrument information for campaign data. The instrument link for the continuous data can be found in the Hydrologic Station table. The collector ID (cc_id) links to contact information about the person or observatory that collected the data. The collector ID is for campaign data only, the Hydrologic Station table includes contact information for the continuous data. The time of the measurement is stored in, hd_time, along with an uncertainty, hd_time_unc, in UTC DATETIME. The hydrologic data can be collected either continuously or periodically. The temperature, hd_temp, is stored in Celsius. The depth of the water is stored in three different parameters depending on the original data. The water elevation, hd_welev, is the elevation of the water surface in meters above sea level. The water depth, hd_wdepth, is the water depth in meters below the ground surface, and the change in water level, hd_dwlev, is the change in water level in meters for cases where the water depth and water elevation are not known. The barometric pressure, hd_bp, is the atmospheric pressure in millibars at the time of measurement. The spring discharge rate, hd_sdisc, is the measured spring discharge rate in liters per second, where applicable. Information about precipitation is stored in three parameters, the precipitation rate at the time of measurement, hd prec, for continuous measurements, the daily precipitation rate, hd_dprec, for campaign measurements, and the type of precipitation, hd_tprec. The precipitation rates are stored in millimeters, use the number 0 for no rain and a null value for no data measured. The precipitation type should contain single letters for each type of precipitation, such as, R for rain, FR for freezing rain or sleet, S for snow, H for hail, or any combination of the above. The pH of the water is stored in hd_ph, and the conductivity is stored in hd_cond as micromhos/cm (or microSeimans/cm). Standard errors or resolutions for the pH and conductivity are stored in hd_ph_err and hd_cond_err.

The Hydrologic Data table stores several concentrations of common ions: SO_4 , H_2S (reduced S), CI_7 , F_7 , HCO_{3-} , Mg_4 , F_9 , Ca, Na, and K, in units stored in hd_comp_unit (could be, for example in mg/L). The measured Helium 3/4 ratio (He/ He), and the He/4He ratio corrected for air contamination. There are also several ratios referred to by the measured delta per milliliter such as $\delta^{13}C$, $\delta^{34}S$, δD , and $\delta^{18}O$. Each of these concentrations has an associated standard error or resolution. A comments field, hd_com, is included to store additional information about the measurements or observations that day including the current weather.

Hd_comp_species could have one of the following possibilities: SO₄, H₂S for total sulfide, Cl⁻, F, HCO3⁻, MG, Fe, Ca, Na, K (in mg/L); or 3He/4He, 3He/4He corrected, for corrected ratio from air contamination, or d13c, d34c, d18o, dd (in per mil).

Hydrologic Station

Table H2. Hydrologic Station Table

<u> </u>	J	
hs_id	Hydrologic station ID	An identifier for linking with other tables
hs_code	Owner defined ID	The hydrologic station identifier used by owner/observatory/
cn_id	Common Network ID	An identifier for linking with the Common Network table, if
		applicable. The Common Network table contains information about
		the monitoring network and links to the Volcano table.
hs_lat	Latitude	The latitude of the station in decimal degrees (xx.xxxxxx).
hs_lon	Longitude	The longitude of the station in decimal degrees (xxx.xxxxxx).

hs_elev	Elevation	The elevation of the land surface in meters (xxxx).
hs_perm	Instrument list	A list of permanent instruments, if applicable, installed at this site.
		The Hydrologic Instrument table links to the Hydrologic Station
		table for details of these permanent instruments. and provides details
		about the permanent and campaign instruments
hs_name	Well name or code	The name or code of the station
hs_type	Type of water body	The type of water body (well, lake, spring, etc.)
hs_utc	Difference from UTC	The time zone relative to UTC. Please enter the number of hours
		from GMT, using a negative sign (-) for hours before GMT and no
		sign for positive numbers (xx.x).
hs_tscr	Top of screen	The top of the interval open to inflow in meters below the surface
		(xxx.xx).
hs_bscr	Bottom of screen	The bottom of the interval open to inflow in meters below the surface
		(xxx.xx).
hs_tdepth	Total depth of well	The total depth of well in meters below the surface (xxxx.xx).
hs_stime	Start time	The date (UTC) the station was set up and activated or the time new
		information in this table became valid. The date is stored in
		DATETIME.
hs_stime_unc	Start time uncertainty	The uncertainty in the date (UTC) the station was set up and activated
		or the time new information in this table became valid. The date is
		stored in DATETIME.
hs_etime	Stop time	The date (UTC) the station was permanently decommissioned or the
		time the information in this table became invalid. The date is stored
		in DATETIME. See observatory for station operation history.
hs_etime_unc	End time uncertainty	The uncertainty in the date the station was decommissioned or the time
		this set of information is no longer valid in UTC stored as
		DATETIME.
hs_desc	Station description	A description of the station, please include information about
		environmental factors, e.g., nearby pumping, ocean tides, or anything
	G T	else that might affect the water measurements
cc_id	Contact ID	An identifier for linking to contact information about the person or
1 1 11.	T 11.	observatory that manages this station.
hs_loaddate	Load date	The date this row was entered in UTC.
hs_pubdate	Publish date	The date this row can become public. This date can be set up to two
	D . 1 1 D	years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who
		entered this row of data

The Hydrologic Station table (hs_ for Hydrologic Station) stores information such as location, type of water body, and descriptions for stations where hydrologic data are collected. There are often multiple instruments at a station and some observatories may use an instrument at multiple stations. Multiple permanent instruments at a station are recorded by a link to the Hydrologic Station table in the Hydrologic Instrument. For instruments used periodically, the link to the instrument is included in the Hydrologic Data table. *Originally, an instrument/station junction table was used for the periodic instruments but it was decided to treat the instrument like data, since it could change so often, and store the instrument link in the data tables.*

The primary ID for the Hydrologic Station table is hs_id. The Hydrologic Station table links to the Common Network table by the network ID, cn_id. The data can be linked to the volcano through the Common Network table. A hydrologic network is defined as a set of stations that collect hydrologic data either on a single

volcano or over a series of nearby volcanoes.

The station name or code, given by the observatory, is stored in hs_name and the type of bodymonitored is stored in hs_type. The Hydrologic Station table stores the station location including the latitude and longitude in decimal degrees, hs_lat and hs_lon, the elevation in meters, hs_elev.

A list of any instruments permanently installed at the station should be stored in the text field, hs_perm. Additional information about these instruments can be found in the Hydrologic Instrument table by searching on the hydrologic station ID (the instrument is linked to the station because there can be multiple instruments at a station). The difference from local time to UTC is stored in hs_utc. This information allows for the onversion back to UTC whenever needed as discussed in the Time Section.

The top of the interval open to inflow or the top of the screen, hs_tscr, is stored in meters below the surface and the bottom of the interval open to inflow, hs_bscr, is stored in meters below the surface. The total depth of the well, hs_tdepth, is stored in meters below the surface. The Hydrologic Station table also includes start and end dates, hs_stime and hs_etime, along with uncertainties, hs_stime_unc and hs_etime_unc, in DATETIME UTC. These dates provide information on when the station information in the table is valid. The instrument table also contains a date range. New station instruments should be recorded in the instrument table instead of the station table unless the location of the new instrument changes the screen location or the location of the station. A 255-character field, hd_desc, is available for storing a description of the station. The description should include any additional information about the station such as information about nearby pumping, ocean tides, or anything else that might affect the water measurements.

Hydrologic Instrument

Table H3. Hydrologic Instrument Table

hi_id	Hydrologic instrument ID	An identifier for linking with other tables.
hi_code	Owner defined ID	The hydrologic instrument identifier used by owner/observatory
hs_id	Hydrologic Station ID	An identifier for linking with the Hydrologic Station table. The Hydrologic Station table contains information about the type of water body and location.
hi_name	Name	The name of the instrument including the model and manufacturer.
hi_type	Type	The type of instrument (float, pressure transducer, bubbler, rain gage, barometer, flow meter, pH or conductivity meter)
hs_meas	Pressure measurement type	A single character text field (A or V) that stores whether the pressure transducer measurement is absolute (non-vented) or vented (gauge).
hi_units	Measured units	The units the instrument measures
hi_res	Resolution	The measurement resolution or precision.
hi_stime	Installation date	The date (UTC) the instrument was set up and activated or the time new information in this table became valid. The date is stored in DATETIME.
hi_stime_unc	Start date uncertainty	The uncertainty in the date (UTC) the instrument was set up and activated or the time new information in this table became valid. The date is stored in DATETIME.
hi_etime	Enda date	The date (UTC) the instrument was permanently decommissioned or the time the information in this table became invalid. The date is stored in DATETIME. See observatory for station operation history

hi_etime_unc	End date uncertainty	The uncertainty in the date the instrument was decommissioned
		or the time this set of information is no longer valid in UTC
		stored as DATETIME.
hi_desc	Description	A description of or comments about the instrument.
cc_id	Contact ID	An identifier for linking to contact information about the
		person or observatory responsible for this instrument
hi_loaddate	Load date	The date this row was entered in UTC.
hi_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

Hydrologic stations will often have multiple permanently installed instruments and these can be identified for each station using the hydrologic station ID link, hs_id. The periodic instrument data are linked to the Hydrologic Instrument table using the instrument table's primary ID, hi _id, which has been placed in the Hydrologic Data table. An instrument/station junction table was originally created to handle the periodic data from a non-permanent instrument but because the instruments can change often, it was decided to put the instrument link with the data, along with the station link.

The name of the instrument is stored in the text field hi_name. The instrument type, di_type, provides the type of instrument including what it measures. The field, hi_meas, is a single character text field (A or V) that stores information about whether the pressure transducer measurement is absolute (non-vented) or vented (gauge). The units the instrument measures are stored in the text field hi_units and the resolution or measuring precision in those units is stored in hi_res. The Hydrologic Instrument table also includes start and end dates, hi_stime and hi_etime, in DATETIME UTC. These dates provide information on when the instrument information in the table is valid. The data are considered invalid if the resolution changes or if an installed instrument is removed from a station. A description attribute, hi_desc, is included for a description of the type of instrument and its uses.

Potential Fields

The potential fields tables contain data on magnetic, gravity, and electrical changes at volcanoes. These measurements can be continuous or periodic and the data tables include a flag to note the frequency of measurement. A link to the collector ID and instrument ID are included for the periodic data whereas those links can be found through the station table for the continuous data. There are six potential fields tables:

- The Magnetic Field Strength data table stores the total field strength and the frequency range of measurement.
- The Magnetic Vector Data table stores the vector declination and inclination.
- The Electric Data table stores the electric field, frequency range for the measurement, the self potential, and resistivities.
- The Gravity Data table stores the field strength and information about associated vertical displacement and ground water levels, if known.
- The Fields Station table contains the station location, a conversion from local time to UTC, and links to the instrument and network tables. The instrument links in the Fields Station table are for permanent stations only, data collected as part of a campaign are stored in the data tables with links to the instruments.
- The Fields Instrument table contains the instrument type, resolution, sampling rate, filter type, and orientation.

Magnetic Fields

Table F1. Magnetic Fields Data Table

fd_mag_id	Magnetic field strength ID	An identifier for linking with other tables.
fd_mag_code	Owner defined ID	The data identifier used by owner/observatory/ collector
fs_id	Fields station ID	The identifier for linking to the Fields Station table. The
15_K		Fields Station table contains the station location, a
		conversion from local time to UTC, and links to the
		Fields Instrument and Common Network tables.
fs_id_ref	Reference station ID	A link to information about the reference station in the
		Fields Station table. The Fields Station table contains the
		station location, a conversion from local time to UTC,
		and links to the Fields Instrument and Common Network
		tables
fi_id	Fields nstrument ID	An identifier for linking with the Fields Instrument table
		for non-permanent (campaign) instruments
fd_mag_time	Measurement time	The measurement time in UTC stored as DATETIME.
fd_mag_time_unc	Measurement time	The uncertainty in the measurement time in UTC stored
	uncertainty	as DATETIME.
fd_mag_f	F	The total field strength in nanoteslas (xxxxx.xx)
fd_mag_compx	X	The X component in nanoteslas (xxxxx.xx).
fd_mag_compy	Y	The Y component in nanoteslas (xxxxx.xx).
fd_mag_compz	Z	The Z component in nanoteslas (xxxxx.xx).
fd_mag_ferr	Total field strength	The total field strength uncertainty in nanoteslas (xx.xx).
	uncertainty (F)	
fd_mag_errx	Component X uncertainty	The uncertainty in the x component measurement in
		nanoteslas (xx.xx).
fd_mag_erry	Component Y uncertainty	The uncertainty in the y component measurement in
		nanoteslas (xx.xx).
fd_mag_errz	Component Z uncertainty	The uncertainty in the z component measurement in
		nanoteslas (xx.xx).
fd_mag_highpass	Highpass	The high pass filter frequency value in Hz above which
	_	signals are used (passed) (xx.x).
fd_mag_lowpass	Lowpass	The low pass filter frequency value in Hz below which
21		signals are used (passed) (xx.x).
fd_mag_com	Comments	Comments on the magnetic measurements.
cc_id	Collector ID	An identifier for linking to contact information for the
		data collector.
fd_mag_loaddate	Load date	The date this row was entered in UTC.
fd_mag_pubdate	Publish date	The date this row can become public. This date can be set
	D 1 1 T	up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Magnetic Fields Data table (fd_mag for fields data - magnetic) contains magnetic data that were collected digitally. The primary ID is fd_mag_id and there are several foreign IDs for linking to other tables.

The Fields Station table is linked by fs_id and provides the station location, a conversion from local time to UTC, and links to the Fields Instrument and Common Network tables. The reference station ID is stored in fs_id_ref and links to the Fields Station table. The instrument ID, fi_id, is included for linking to the Fields Instrument table for information about instruments that collected campaign data.

The time of the measurement is stored in, fd_mag_time, along with an uncertainty, fd_mag_time_unc in UTC DATETIME. The total field strength is stored in, fd_mag_f, in nanoteslas and the total field strength uncertainty is stored in fd_mag_ferr, also in nanoteslas. The x, y, and z components are stored in fd_mag_x, fd_mag_y, and fd_mag_z, in nanoteslas as are the uncertainties in x, y, and z (fd_mag_xerr, fd_mag_yerr, and fd_mag_zerr).

If there is a high pass filter, the frequency above which signal is being used is stored in fd_mag_hpass. If there is a lowpass filter, the frequency below which signal is being used is stored in fd_mag_lpass. If a bandpass filter range is used, please enter the high value of the range in fd_mag_lpass and the low value of the range in fd_mag_hpass. Additional comments about the measurements should be stored in fd_mag_com.

Magnetic Vector

Table F2. Magnetic Vector Data Table

Table I Z. May I cuc vec	<u>UI Dala Table</u>	
fd_mgv_id	Magnetic vector ID	An identifier for linking with other tables.
fd_mgv_code	Owner defined ID	The data identifier used by owner/observatory/ collector
fs_id	Fields station ID	The identifier for linking to the Fields Station table. The
		Fields Station table contains the station location, a conversion
		from local time to UTC, and links to the
		Fields Instrument and Common Network tables.
fi_id	Fields Instrument ID	An identifier for linking with the Fields Instrument table for
		non-permanent (campaign) instruments.
fd_mgv_time	Measurement time	The measurement time in UTC stored as DATETIME.
fd_mgv_time_unc	Measurement time	The uncertainty in the measurement time in UTC stored as
	uncertainty	DATETIME.
fd_mgv_dec	Declination	The declination in degrees from 0 to 360 (xxx).
fd_mgv_incl	Inclination	The inclination in degrees from 0 to 90 (sxx).
fd_mgv_com	Comments	Comments.
cc_id	Collector ID	An identifier for linking to contact information for the data
		collector.
fd_mgv_oaddate	Load date	The date this row was entered in UTC.
fd_mgv_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

The Magnetic Vector Data table (fd_mgv for fields data - magnetic vector) contains magnetic vector data for which the data for the individual components is unavailable. The primary ID is fd_mgv_id and there are several foreign IDs for linking to other tables. The Fields Station table is linked by fs_id and provides the station ocation, a conversion from local time to UTC, and links to the Fields Instrument and Common Network tables. The Fields Instrument table is linked by fi_id and contains instrument information for data collected as part of a campaign.

The time of the measurement is stored in, fd_mgv_time, along with an uncertainty, fd_mgv_time_unc, in

UTC DATETIME. The declination of the vector in degrees from 0 to 360 is stored in fd_mgv_dec and the inclination of the vector in degrees from 0 to 90 is stored in fd_mgv_incl. Additional comments about the measurements can be stored in fd_mgv_com.

Electric Fields

Table F3. Electric Fields Data Table

fd_ele_id	Electric data ID	An identifier for linking with other tables
fd_ele_code	Owner defined ID	The data identifier used by owner/observatory/ collector
fs_id1	Ref station 1 ID	The identifier for linking to the electric fields station
		information from which the electrode is subtracted (station
		A in the equation A - B). The Fields Station table contains
		the station location, a conversion from local time to UTC,
		and links to the Fields Instrument and Common Network
		tables.
fs_id2	Ref station 2 ID	The identifier for linking to the electric fields station
		information for the electrode that's being subtracted (station
		B in the equation A - B). The Fields Station table contains
		the station location, a conversion from local time to UTC,
		and links to the Fields Instrument and Common Network
		Tables
fi_id	Fields Instrument ID	An identifier for linking with the Fields Instrument table
		for non-permanent (campaign) instruments.
fd_ele_time	Measurement time	The measurement time in UTC stored as DATETIME.
fd_ele_time_unc	Measurement time	The uncertainty in the measurement time in UTC stored
	uncertainty	as DATETIME.
fd_ele_field	Electric field	The electric field in mV (difference/distance) (sxxxx).
fd_ele_ferr	Electric field uncertainty	Electric field uncertainty in mV (xxx).
fd_ele_dir	Direction	The direction from station 1 to station 2 in degrees from 0
		to 360 with respect to geodetic north (xxx).
fd_ele_hpass	High pass	The high pass filter frequency value in Hz above which
		signals are used (passed) (xx.x).
fd_ele_lpass	Low pass	The low pass filter frequency value in Hz below which
		signals are used (passed) (xx.x).
fd_ele_spot	Self Potential	The self potential in mV between station 1(A) and station
		2 (B) (i.e., 1-2, or A-B) (sxxxx).
fd_ele_spot_err	Self potential uncertainty	The self potential uncertainty in mV (xxx).
fd_ele_ares	Apparent Resistivity	The apparent resistivity in ohm-m (xxxx).
fd_ele_ares_err	Apparent Resistivity	The uncertainty in apparent resistivity in ohm-m (xxx).
	uncertainty	
fd_ele_dres	Direct Resistivity	The direct resistivity in ohm-m (xxxx)
fd_ele_dres_err	Direct Resistivity	The uncertainty in direct resistivity in ohm-m(xxx)
	uncertainty	
fd_ele_com	Comments	Comments about the measurement
cc_id	Collector ID	An identifier for linking to contact information for the
		data collector.
fd_ele_loaddate	Load date	The date this row was entered in UTC.
fd_ele_pubdate	Publish date	The date this row can become public. This date can be set
		up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the

	person who entered this row of data

The Electric Fields Data table (fd_ele for fields data - electric) contains electric data in digital form. The primary ID is fd_ele_id and there are several foreign IDs for linking to other tables. There are two reference tables, fs_id1 and fs_id2. Both reference stations link to the Fields Station table, which contains the station location, a conversion from local time to UTC, and links to the Fields Instrument and Common Network tables. A link to the Fields Instrument table, fi_id, is included in this table for all campaign data.

The time of the measurement is stored in, fd_ele_time, along with an uncertainty, fd_ele_time_unc, in UTC DATETIME. The electric field is stored in, fd_ele_field, in milliVolts and the electric field uncertainty is stored in fd_ele_ferr, also in milliVolts. If there is a high pass filter, the frequency above which signal is being used is stored in fd_ele_hpass. If there is a lowpass filter, the frequency below which signal is being used is stored in fd_ele_lpass. If a bandpass filter range is used, please enter the high value of the range in fd_ele_lpass and the low value of the range in fd_ele_hpass. The self potential is stored in fd_ele_spot in milliVolts and the self potential uncertainty, fd_ele_spot_err, is also stored in milliVolts. The direction from station 1 to station 2 is stored in fd_ele_dir, in degrees from 0 to 360 with respect to North. The apparent resistivity, fd_ele_ares, and direct resistivity, fd_ele_dres, are stored in ohm-m as are their uncertainties, fd_ele_ares_err and fd_dres_err. Additional comments about the measurements should be stored in fd ele com.

Gravity

Table F4. Gravity Data Table

fd_gra_id	Gravity data ID	An identifier for linking with other tables
fd_gra_code	Owner defined ID	The data identifier used by owner/observatory/ collector
fs_id	Fields station ID	The identifier for linking to the Fields Station table. The Fields Station table contains the station location, a conversion from local
		time to UTC, and links to the Fields Instrument and Common Network tables.
fs_id_ref	Reference station ID	A link to information about the reference station in the Fields Station table. The Fields Station table contains the station location, a conversion from local time to UTC, and links to the Fields
		Instrument and Common Network tables.
fi_id	Fields Instrument ID	An identifier for linking with the Fields Instrument table for non-permanent (campaign) instruments
fd_gra_time	Measurement time	The measurement time in UTC stored as DATETIME.
fd_gra_time_unc	Measurement time	The uncertainty in the measurement time in UTC stored as
	uncertainty	DATETIME
fd_gra_fstr	Field strength	The field strength in Gal corrected for tides (xxxx.xxx).
fd_gra_ferr	Field strength uncertainty	The field strength uncertainty in Gal (xxxx.x).
fd_gra_vdisp	Assoc vertical	A field for comments on associated vertical displacement. Use the
	displacement	letters Y for yes, U for unknown and N for none in front of the comments
fd_gra_gwater	Assoc gwater level	A field for comments on associated change in groundwater level. Use the letters Y for yes, U for unknown and N for none in front of the comments.
fd_gra_com	Comments	Comments about the measurement
cc_id	Collector ID	An identifier for linking to contact information for the data collector.
fd_gra_loaddate	Load date	The date this row was entered in UTC.
fd_gra_pubdate	Publish date	The date this row can become public. This date can be set up to two
		years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data

The Gravity Data table (fd_gra for fields data - gravity) contains gravity data such as field strength and associated vertical displacement. The primary ID is fd_gra_id and there are several foreign IDs for linking to other tables. The Fields Station table is linked by fs_id and provides the station location, a conversion from local time to UTC, and links to the Fields Instrument and Common Network tables. The reference station ID is stored in fs_id_ref and contains the same station information. A link to the Fields Instrument table, fi_id, is included for all campaign data.

The time of the measurement is stored in, fd_gra_time, along with an uncertainty, fd_gra_time_unc, in UTC DATETIME. The field strength is stored in, fd_gra_fstr, in Gal and the field strength uncertainty is stored in fd_gra_ferr, also in Gals. Three text fields are included for comments. The field for comments on associated vertical displacement, if applicable, is gd_gra_vdisp and the field for comments on associated groundwater level, if applicable, is gd_gra_gwater. Use the letters Y for yes, U for unknown and N for none. In addition, a general comments field, fd_gra_com, is included for any additional comments on the measurement.

Fields Station

Table F5. Fields Station Table

fs_id	Fields station table ID	An identifier for linking with other tables.
fs_code	Owner defined ID	The station identifier used by owner/observatory
cn_id	Network ID	An identifier for linking with information about the network in
CI_IU	Network ID	the Common Network table. The Common Network table gives a
		description of the network and a link to the volcano
fs_code	Station Code	The station code given by the observatory
fs_name	Station code Station name	
		The letitude of the station in decimal decrees (syn ynynyny)
fs_lat	Latitude	The latitude of the station in decimal degrees (sxx.xxxxxxx).
fs_lon	Longitude	The longitude of the station in decimal degrees (sxxx.xxxxxxx).
fs_elev	Elevation	The elevation of the land surface in meters (sxxxx).
fs_inst	Instrument list	A list of permanent instruments, if applicable, installed at this site.
		The Common Instrument table links to the Fields Station table for
		permanent instruments and provides details about the permanent
		and campaign instruments.
fs_utc	Difference from UTC	The time zone relative to UTC. Please enter the number of hours
		from GMT, using a negative sign (-) for hours before GMT and
		no sign for positive numbers (sxx.x).
fs_stime	Start date	The date (UTC) the station was set up and activated or the time
		new information in this table became valid. The date is stored in
		DATETIME.
fs_stime_unc	Start date uncertainty	The uncertainty in the date (UTC) the station was set up and
		activated or the time new information in this table became valid.
		The date is stored in DATETIME.
fs_etime	Stop date	The date (UTC) the station was permanently decommissioned or
		the time the information in this table became invalid. The date is
		stored in DATETIME. See observatory for station
		operation history
fs_etime_unc	End date uncertainty	The uncertainty in the date the station was decommissioned or the
		time this set of information is no longer valid in UTC stored as
		DATETIME.
fs_desc	Station description	A description of the station or any comments
cc_id	Contact ID	An identifier for linking to contact information for the person or
		observatory in charge of this station
fs_loaddate	Load date	The date this row was entered in UTC.
fs_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

The Fields Station table (fs_ for fields station) stores information such as a location, conversion from local time to UTC, and a description of the stations where fields data are collected. The primary ID for the Fields Station table is fs_id. The Fields Station table links to the Common Network table by the network ID, cn_id. It is through the network table that the data can be linked to the volcano. A fields network is defined as a set of stations that collect fields data either on a single volcano or over a series of nearby volcanoes.

The Fields Station table stores the station location including the latitude and longitude in decimal degrees, fs_lat and fs_lon, the elevation in meters, fs_elev. The name and code for the station, given by the

observatory, are stored in fs_name and fs_code. A list of instruments permanently installed at the station should be stored in the text field, fs_inst. Additional information about these instruments can be found in the Fields Instrument table by searching on the fields station ID (the instrument is linked to the station because there can be multiple instruments at a station). The instrument link for periodic data is stored within the fields data tables. The difference from local time to UTC is stored in fs_utc. This information allows for the conversion back to UTC whenever needed as discussed in the Time Section. The Fields Station table also includes start and end dates, fs_stime and fs_etime, along with uncertainties, fs_stime_unc and fs_etime_unc, in DATETIME UTC. These dates provide information on when the station information in the table is valid. The instrument table also contains a date range and new station instruments should be recorded in the instrument table instead of the station table unless the location of the new instrument changes the location of the station. The description of the station, fs_desc, should include any additional information about the station such as the site environment and why the site was chosen for the type of measurement.

Fields Instrument

Table F6. Fields Instrument Table

Table F6. Fields Instrui	nentrable	
fi_id	Fields Instrument ID	An identifier for linking with other tables.
fi_code	Owner defined ID	The instument identifier used by owner/observatory
fs_id	Field station ID	A link to the Fields Station table for the permanent installations.
		The Fields Station table contains the station location, a conversion
		from local time to UTC, and links to the Fields Instrument and
		Common Network tables. This link requires the station type as well
fi_name	Name	The name, model, and manufacturer of the instrument or instrument
		package, for example magnetometers may consist of one instrument
		for gathering vectorial data and another for total intensity of the field
fi_type	Type	The type of instrument(s)
fi_res	Resolution	The resolution of each individual instrument in the instrument
		package. Please give the instrument name and then the resolution
fi_units	Unit measured	The units each instrument measures
fi_rate	Sampling rate	The sampling rate for the instrument(s).
fi_filter	Filter type	The filter type, if applicable
fi_orient	Orientation	The orientation of the instrument, if applicable (for permanent
		stations only).
fi_calc	Calculation	Any processing used to convert and clean or correct the raw data
		collected by this instrument to the data stored in the fields data tables.
		Please note corrections made for
		atmospheric conditions, ground deformation, noise, thermal stability,
		and/or long term instability of the instrument(s).
fi_stime	Start date	The date (UTC) the instrument was set up and activated or the time
		new information in this table became valid. The date is stored in
		DATETIME.
fi_stime_unc	Start date uncertainty	The uncertainty in the date (UTC) the instrument was set up and
		activated or the time new information in this table became valid.
		The date is stored in DATETIME.
fi_etime	End date	The date (UTC) the instrument was permanently decommissioned or
		the time the information in this table became invalid. The date is
		stored in DATETIME. See observatory for station operation
		history
fi_etime_unc	End date uncertainty	The uncertainty in the date the instrument was decommissioned or

		the time this set of information is no longer valid in UTC stored as DATETIME.
fi_com	Comments	Comments on the instrument(s).
cc_id	Contact ID	An identifier for linking with the person or group of people who
		use this instrument.
fi_loaddate	Load date	The date this row was entered in UTC.
fi_pubdate	Publish date	The date this row can become public. This date can be set up to two
		years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who
		entered this row of data

The Fields Instrument table (fi_ for fields instruments) stores information about the instruments used to collect magnetic, electric, and gravity data along with a flag, fi_perm, to indicate if the instrument is installed permanently or is used periodically as part of a campaign. The permanently installed instruments are linked to the stations at which they are installed by the station ID, fs_id, and the instrument type, fi_type, which gives information on the type of potential field monitoring for which the instrument is used. Having two fields allows for searches of all instruments at a station and also for instruments of a certain type. The periodic instrument data are linked to the Fields Instrument table using the instrument table's primary ID, fi_id, which has been placed in the data tables. In some cases several instruments will be used together to collect the data, such as with measuring magnetic data where one instrument will be used for gathering vectorial data (H, D, Z) and another for total intensity of the field (F).

Basic instrument information such as the name, model, and manufacturer should be stored in the text field fi_name whereas the instrument type should be stored in fi_type. The units the instrument(s) measures and the resolution or measuring precision in those units should be stored in the text fields fi_units and fi_res. The sampling rate is stored in fi_srate and the filter type is stored in fi_filter. The orientation of the instrument, for electric measurements in particular, is stored in fi_orient. Any standard calculations used to convert, clean and correct the raw data into WOVOdat data should be stored in fi_calc along with a list of potential artifacts and instabilities of the instrument. The Fields Instrument table also includes start and end dates, fi_stime and fi_etime, along with uncertainties, fi_stime_unc and fi_etime_unc, in DATETIME UTC. These dates provide information on when the instrument information in the table is valid. The data are considered invalid if the resolution changes or if an installed instrument is removed from a station. A description attribute, fi_desc, is included for more information about the type of instrument and its uses. The comments attribute, fi_com, is included for any information on how this instrument might be used in a non-standard way, for example, changes in precision.

Thermal

The thermal tables contain ground-based data collected at the thermal site or image data collected remotely. Thermal image data are often the only method for examining remote volcanoes where seismic and other monitoring instruments are not available. These data can be collected continuously or periodically. Temperature measurements of fumaroles, springs, and crater lakes that are made primarily for the purpose of tracking temperature change are included in this section, even though there will be slight overlap with data in the Gas and Hydrologic unrest tables. The main challenge of organizing the thermal data is that the image data can be collected from an instrument mounted to a moving object, like a satellite or aiplane, or it can be collected from an instrument mounted to a stationary object, like a caldera rim or observatory roof. Sites that contain stationary

instruments should be included in the Thermal Station table along with comments about the instrument recording image data. Instruments mounted on a moving object are linked through the Thermal Image table. There are five thermal tables:

- The **Ground-based Thermal Data** table, td, contains non-image thermal data collected on the ground. These data can be collected continuously or periodically. The Ground-based Thermal Data table is linked to the Thermal Station table, ts.
- The **Thermal Image** table, td_img, contains information about images created from remote instruments that are either moving or fixed. Information about each pixel in the thermal image is stored in the Thermal Image Data table, td_pix.
- The **Thermal Image Data** table links to the Thermal Image table.
- The Thermal Station table contains information about the location of the ground-based stations and is linked to the Common Network table, which contains information about the monitoring network and a link to the Volcano table.
- The **Thermal Instrument** table contains information about imaging and non-imaging instruments. Periodic instruments are linked to the Thermal Instrument table through the thermal data tables.

Ground-Based Thermal

Table T1. Ground-Based Thermal Data Table

td_id	Ground-based thermal ID	An identifier for linking with other tables.
td_code	Collector defined ID	The ground-based thermal identifier used by collector/observatory
ts_id	Thermal station ID	An identifier for linking with the Thermal Station table. The Thermal Station table includes the station location, the type of thermal feature, and links to the Thermal Network and Instrument tables
ti_id	Instrument ID	An identifier for linking with the Instrument table. The Instrument table provides information about the instrument model, its <i>resolution</i> , and the units it measures.
td_mtype	Type of instrument	The type of measurement, for example, thermocouple or thermal IR.
td_time	Time of measurement	The measurement time (UTC) stored as DATETIME.
td_time_unc	Time of measurement uncertainty	The uncertainty in the measurement time (UTC) stored as DATETIME
td_depth	Depth of measurement	The depth of the measurement in meters below the ground surface. Depths are used to derive geothermal gradients and/or heat flux.
td_distance	Distance from instrument to the measured object	The distance of the instrument from the object measured. This field is used in the case when the measurement is done remotely.
td_calc_flag	Direct value flag	The flag to indicate if the value is directly measured (O), or recalculated from other parameter (R).
td_temp	Temperature	The measured temperature in degrees Celsius
td_terr	Standard error	The standard error or precision of the temperature in degrees Celsius
td_area		The approximate area of of the body measured in meters squared.
td_flux		The heat flux in W/m2
td_ferr		The standard error or precision of flux in W/m2.

td_bkgg		The regional background geothermal gradient in deg Celsius/km.
td_tcond	Thermal conductivity	The thermal conductivity at the station or measurement point, in
		W/(m2 degC). This value is either inferred from the soil type or
		measured intrinsically, and used to derive heat flux with the help
		of Fick's law.
td_com	Comments	Additional comments on the heat flux and thermal conductivity
		including if they inferred or measured.
cc_id	Collector ID	An identifier for linking to contact information for the data
		collector. To be entered only if data are not continuous.
td_loaddate	Load date	The date this row was entered in UTC.
td_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

The Ground-based Thermal Data table (td for thermal data) stores all of the thermal data collected on the ground. The primary ID is td_id. The thermal station ID, ts_id, links to station information including the type of thermal feature, the soil or ground type, and its location; the thermal instrument ID, ti_id, links to information about the instrument including its model, resolution, and the units it measures.

The type of measurement is stored in the text field td_mtype. Thermal data can be collected either continuously or periodically. If the data are collected periodically, please include the collector ID in cc_id and the instrument ID in ti_id. The time of the measurement is stored in, td_time, in UTC DATETIME, along with an uncertainty in the time, td_time_unc, and the depth of the measurement, td_depth, is stored in meters. The measurement temperature is stored in degrees Celsius in td_temp and the standard error or precision in the temperature measurement is stored in td_terr, also in degrees Celsius. The approximate area of the body measured is stored in td_aarea in meters squared. The measured or derived heat flux is stored in td_flux in W/ m² and the standard error on the flux is stored in td_ferr, also as W/ m². Whether the flux was measured or derived should be stored in the comments field, td_com (see below). The regional background geothermal gradient is stored in td_bkgg as degrees Celsius per kilometer and the thermal conductivity is stored in td_tcond as W/(m² degrees Celsius).

Comments on the measurement including if the heat flux and thermal conductivity were inferred or measured should be stored in td_com. If sampling occurred at a new site, for which station information has yet to be entered, for example a new hot spot or fumarole, please include the location and any additional information about the site that would help explain why data were collected in the comments field.

The field td_continuous is removed from the table because we could still know if the measurement is continuous from the time-series at td_time data. Continuous flag removal is applied for all tables. Td_dtemp, td_ptime and td_ptime_unc are removed. With td_dtemp, td_temp could be found directly from the previous records which are stored also in the same table.

Td_ptime and td_ptime_unc of WOVOdat1.0 are removed because it will duplicate the former records in the table. Td_distance is added to store the distance from the measuring instrument to the object if the measurement is done remotely. Td_calc_flag is a flag to indicate if the value is directly measured (D), or recalculated from other parameter (R).

Thermal Image

Table T2. Thermal Image Table

td_img_id	Thermal image ID	An identifier for linking with other tables.
td_img_code	Owner defined ID	The thermal image identifier used by collector

1 • 1	W 1 ID	
vd_id	Volcano ID	The identifier for linking to the Volcano table for data that is
		collected by an instrument mounted on a moving object. The
		Volcano table stores the volcano name and time zone. It is used
.,	a with the	to connect to all other data
cs_id	Satellite ID	An identifier for linking with the Satellite table which gives
		the name of the satellite and a description
ts_id	Thermal Station ID	An identifier for linking with the Thermal Station table. The
		Thermal Station table includes the station location, the type of
		thermal feature, and links to the Thermal Network and
		Instrument tables.
ti_id	Instrument ID	An identifier for linking with the Thermal Instrument table.
		The Thermal Instrument table provides information about the
		instrument model, its resolution, and the units it measures.
td_img_iplat	Instrument platform	A description of the instrument platform, for example on an
	_	airplane or satellite, or on a crater rim or roof of a hut.
td_img_ialt	Instrument altitude	The altitude of the instrument during recording of image in
		meters above sea level. Please enter the location information
		for instruments on moving objects only. Stationary instrument
		locations are provided in the Thermal Station table
td_img_ilat	Instrument latitude	The latitude of the instrument during recording of image in
		decimal degrees. Please enter the location information for
		instruments on moving objects only. Stationary instrument
		locations are provided in the Thermal Station table
td_img_ilon	Instrument longitude	The longitude of the instrument during recording of image in
		decimal degrees. Please enter the location information for
		instruments on moving objects only. Stationary instrument
		locations are provided in the Thermal Station table
td_img_idatum	Datum	The datum used for latitude and longitude. This field is only for
to_mg_reatesm	Dutum	instruments on moving objects.
td_img_desc	Description of image	A description of the thermal image, for example a hot spot at
ta_mig_cose	Description of mage	summit that has increased in temperature over the past week.
td_img_time	Time of image	The time the image was taken in UTC stored as
ta_mig_time	Thric of image	DATETIME
td_img_time_unc	Time of image	The uncertainty in the time the image was taken in UTC stored
ta_mig_ume_une	uncertainty	as DATETIME.
td_img_bname	Band name	The band name where each band is separated by a comma
td_img_hbwave	High band wavelength	The high value of the band wavelength range in microns
td_img_lbwave	Low band wavelength	The low value of the band wavelength range in microns
td_img_ipg	Image	The image stored as a jpg
td_img_pg td_img_psize	Pixel size	The pixel size in meters.
td_img_psize td_img_maxrad	Maximum radiance	The maximum radiance of any pixel in the frame in W/(m²-m)
w_iiig_iiiaxiau	IVIAXIIIIUIII IAUIAIICE	x 10 ⁷ .
td ima marrand	Maximum relative	The maximum relative radiance of any pixel in the frame in
td_img_maxrrad		
	radiance	W/(m²-m x sr) x 10 ⁷ where sr is spectral radiance, which is
41 :	T - C1 4 C	wavelength dependent.
td_img_maxtemp	T of hottest flux	The temperature of the hottest pixel (if calibrated) in degrees
	m . 1 . 1!	Celsius.
td_img_totrad	Total radiance in the	(march 13-2010). Total radiance in the whole surface of the
	frame	frame. This is an integration of all pixels radiances

td_img_maxflux	Maximum Heat flux	The heat flux of the hottest pixel in W/m ² .
td_img_ntres	Nominal T resolution	The nominal temperature resolution (per pixel) in degrees
		Celsius
td_img_atmcorr	Atmospheric correction	The type of atmospheric correction procedure / method applied.
td_img_thmcorr	Thermal correction	The type of thermal correction procedure / method applied
		using ground truth points
td_img_ortho	Orthorectification	The type of orthorectification procedure used, for example
	procedure	ESRI tool, rubber sheeting, etc
td_img_com	Comments	Additional comments on the heat flux and thermal
		conductivity including if they inferred or measured.
cc_id	Collector ID	An identifier for linking to contact information for the data
		collector. To be entered only if data are not continuous.
td_img_loaddate	Load date	The date this row was entered in UTC.
td_img_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

The Thermal Image table (td_img for thermal data - image) contains data collected from space, the air, or the ground that are used to create thermal images. The actual pixel-by-pixel data of the image are stored in the Thermal Image Data table, which is linked to the Thermal Image table. The Thermal Image table primary ID is td_img_id and there are several foreign keys for linking to additional information. The volcano ID, vd_id, links the data collected from space to the volcano that is being observed. The sensor ID, ti_id, links to the Thermal Instrument table, which contains information about the instrument including the type and precision. The Thermal Station ID is included for linking to station information about stationary sites, such as a caldera rim. The stationary thermal image sites are a little different from other sites in that they include information about a measuring station and not about the point on the ground that is being measured. This distinction is made in the Thermal Station table.

The satellite ID, cs_id, links to information about the satellite or airplane. A description of the imaging sensor or instrument's platform and its relative location, for example, from an airplane, satellite, crater rim, roof of a hut, or observatory, is stored in td_img_iplat. The exact location of the instrument, given by td_img_ilat, td_img_ilon, td_img_ielev, and td_img_idatum, should be used only if the instrument recording the information is non-permanent where future measurements will not necessarily occur from the same place. For example, if the instrument is in the air on a satellite or airplane. The latitudes and longitudes are stored in decimal degrees and the elevation is stored in meters. The locations of the permanent instruments can be found in the Thermal Station table, and are linked using the station ID ts_id.

A description of the anomaly being imaged is stored in td_img_desc as a text field. The text field is currently 255 characters but the may need to be increased in the future. The time the image was taken is stored in td_img_time in UTC DATETIME. A conversion to UTC can be made using information in the Volcano table. The band name is stored in the text field td_img_bname. Individual bands should be separated by a semicolon. The band wavelength range is stored in td_img_hbwave and td_img_lbwave, for the high value and ow value of the range, both in microns. A copy of the image is stored as a .jpg in td_img_jpg. The pixel size for the image is stored in td_img_psize in meters. The maximum radiance in any frame is stored in td_img_maxrad in W/(m -m) x 10⁷. The maximum relative radiance of any pixel in the frame is stored in td_img_maxrad in W/(m²-m x sr) x 10⁷ where sr is spectral radiance. The spectral radiance is wavelength dependent. The temperature of the hottest pixel, td_img_maxtemp, is stored in degrees Celsius if the temperature is calibrated. The maximum heat flux of the hottest pixel, td_img_maxflux, is stored as W/m² and the nominal temperature resolution per pixel, td_img_ntres, is stored in degrees Celsius.

The type of atmospheric correction applied, td_img_atmcorr, the type of thermal correction applied using ground truth points, td_img_thmcorr, and the orthorectification procedure used, td_img_ortho, are stored

as text fields. These text fields are all 255 characters in length. Additional information about the image or methods used should be stored in the comments, td_img_com, field.

Field td_img_totrad is added to store the total radiance in the frame.

Thermal Image

Table T3. Thermal Image Data Table

td_pix_id	Image data ID	An identifier for linking with other tables
td_img_id	Thermal Image ID	An identifier for linking with the Thermal Image table
		(td_img). The Thermal Image table contains information
		about the image these data create including a description of
		the anomaly, corrections applied, and a jpg of the image
td_pix_elev	Pixel center elevation	The elevation at the pixel center in meters.
td_pix_lat	Pixel center latitude	The latitude at the pixel center in decimal degrees.
td_pix_lon	Pixel center longitude	The longitude at the pixel center in decimal degrees
td_pix_rad	Pixel center radiance	The radiance of the pixel center in $W/(m^2-m) \times 10^r$.
td_pix_flux	Pixel center heat flux	The heat flux at the pixel center in W/m ²
td_pix_temp	Pixel center temperature	The temperature at the pixel center in degrees Celsius
td_pix_loaddate	Load date	The date this row was entered in UTC.
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Thermal Image Data table (td_pix for thermal data - pixels) contains data for each pixel of a thermal image. Information about the thermal image is stored in the Thermal Image table and linked using the thermal image data ID, td_img_id. The Thermal Image table contains information about the image these data create including a description of the anomaly, corrections applied, and a jpg of the image. The thermal image data primary ID is td_pix_id.

The location of each pixel is stored as the center elevation, td_pix_elev, in meters and the pixel center longitude, td_pix_lon, and pixel center latitude, td_pix_lat in decimal degrees. The radiance of the pixel center, td_pix_rad, is stored in W/(m²-m) x 10⁷ and the heat flux at the pixel center, td_pix_flux, is stored in W/m². The temperature at the pixel center, td pix temp, is stored in degrees Celsius.

The word "center" is removed from td_pix_rad, td_pix_flux and td_pix_temp because data is available pixel by pixel.

Thermal Station

Table T4. Thermal Station Table

THE THE HOLD CONTENT OF THE CONTENT		
ts_id	Thermal Station ID	An identifier for linking with other tables
ts_code	Owner defined ID	The thermal station identifier used by observatory
cn id	Network ID	An identifier for linking with information about the network
		in the Common Network table, if applicable. The Common
		Network table gives a description of the network and a link to
		the volcano.
ts_name	Benchmark name	The name of the benchmark or station
ts_type	Type of thermal feature	The type of thermal feature at the site (soil, fumarole, surface or
		crack in a dome, spring, crater lake, etc.) or if the station is used
		to collect remote image data
ts_ground	The soil or ground type	The soil or ground type
ts_lat	Latitude	The latitude of the station in decimal degrees
ts_lon	Longitude	The longitude of the station in decimal degrees
ts_elev	Elevation	The nominal elevation of the station in meters.

ts_perm	Instruments	A list of any permanent instruments installed at this site. The instrument tables will link to the Thermal Station table and will provide details and allow for their to be several permanent and periodic instruments <u>at each station</u> , if applicable
ts_utc	Difference from UTC	The time zone relative to UTC. Please enter the number of hours from GMT, using a negative sign (-) for hours before GMT and no sign for positive numbers
ts_stime	Date established	The date the station was set up in UTC stored as DATETIME.
ts_stime_unc	Date established uncertainty	The uncertainty in the date the station was set up in UTC stored as DATETIME
ts_etime	End date	The date (UTC) the station was permanently decommissioned or the time this set of information is no longer valid. The date is stored in DATETIME. See observatory for station operation history
ts_etime_unc	End date uncertainty	The uncertainty in the date the station was decommissioned or the time this set of information is no longer valid in UTC stored as DATETIME.
ts_desc	Station description	A description of the station or comments
cc_id	Contact ID	An identifier for linking to contact information
ts_loaddate	Load date	The date this row was entered in UTC.
ts_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data

The Thermal Station table (ts for thermal station) stores information such as a location, name, and a description for stations where thermal data are collected. The primary ID for the Thermal Station table is ts_id and there are several foreign IDs for linking to other tables. Permanently installed instruments are linked to the Thermal Station table from the Thermal Instrument table using the thermal station ID, ts_id. Periodically used instrument information are linked from the data tables. The Thermal Station table links to the Common Network table by the network ID, cn_id, which contains the volcano ID.

The station location information includes the latitude, ts_lat, longitude, ts_lon, elevation, ts_elev. The latitudes and longitudes are stored in decimal degrees and the elevation is stored in meters. The station name, given by the observatory, is stored in ts_name and the type of thermal feature found at the station is stored in ts_type. The ts_type field should also be used to indicate if the station is used to collect remote image data. A list of the instruments installed at the station, if applicable, is stored in ts_perm. The frequency time frame should be exact for the continuous data and approximate for the periodic data. The difference from local time to UTC is stored as ts_utc. This information allows for the conversion back to UTC whenever needed as discussed in the Time Section.

The Thermal Station table also includes start and end dates, ts_stime and ts_etime, along with their uncertainties, ts_stime_unc and ts_etime_unc, in DATETIME UTC. These dates provide information on when the information in the station table is valid. The instrument table also contains a date range. New station instruments should be recorded in the instrument table instead of the station table unless the location of the new instrument changes the location of the station. The Thermal Station table also contains a description field, ts_desc, which should be used for additional information that could help explain the data and the selection of the site.

Field td_datum and td_freq are removed from the table. Datum for WOVOdat is always in WGS84. The field td_freq is removed because the measurement frequency could still be known from the time-series at td_time

data.

Thermal Instrument

Table T5. Thermal Instrument Table

Nent lable	An identifier for linking with other tables
	An identifier for linking with other tables.
	The thermal instrument identifier used by observatory
Satellite ID	An identifier for linking with the Satellite table, if the
	instrument is mounted on a satellite or airplane. The Satellite
	table gives the name of the satellite and a description
Thermal Station ID	An identifier for linking with the Thermal Station table for
	instruments installed at a station. The Thermal Station table
	includes the station location, the type of thermal feature, and
	links to the Thermal Network
	and Instrument tables.
Type	The type of instrument
	The name, manufacturer, and model of the instrument.
	The units the instrument measures
Resolution	Typical instrumental measuring precision
Signal to noise	An instrument specific signal to noise ratio
Start date	The date (UTC) the instrument was set up and activated or the
	time new information in this table became valid. The date is
	stored in DATETIME.
Start date uncertainty	The uncertainty in the date (UTC) the instrument was set up and
	activated or the time new information in this table became
	valid. The date is stored in DATETIME.
End date	The date (UTC) the instrument was permanently
	decommissioned or the time the information in this table
	became invalid. The date is stored in DATETIME. See
	observatory for station operation history.
End date uncertainty	The uncertainty in the date the instrument was decommissioned
	or the time this set of information is no longer valid in UTC
	stored as DATETIME
Station description	A description of the station or comments
Contact ID	An identifier for linking with the person or group of people
	who use this instrument.
Load date	The date this row was entered in UTC.
Publish date	The date this row can become public. This date can be set up to
	two years in advance.
Data loader ID	An identifier for linking to contact information for the person
1	who entered this row of data
	Sensor ID Owner defined ID Satellite ID Thermal Station ID Type Name Measured units Resolution Signal to noise Start date Start date End date End date End date Load date Publish date

The Thermal Instrument table (ti for thermal instrument) was created to store information about the instruments used to collect ground-based and remote thermal data. The flag, ti_perm, should be used to indicate if the instrument is installed permanently or is used periodically as part of a campaign. The letter should be used only if all of the data were collected continuously and the letter P should be used if any of the data were collected as part of a campaign. The permanently installed instruments are linked to the stations at which they are

installed by the station ID, ts_id. The periodic instrument data are linked to the Thermal Instrument table using the instrument table's primary ID, ti_id, which has been placed in the data tables. Links to information about instruments on moving platforms have been kept in the data tables to avoid the creation of an additional junction table because the instruments are more likely to change than the permanently installed instruments. For cases where an instrument is permanently installed on a satellite, there is a link from the Thermal Instrument table to the Satellite table, cs_id. The satellite information can also be accessed through a link in the Thermal Image table.

The name, model, and manufacturer of the instrument are stored in the text field ti_name, and the type of instrument is stored in the text field ti_type. The units the instrument measures are stored in the text field ti_units and the resolution or measuring precision in those units is stored in ti_res. The instrument specific signal to noise ratio is stored in ti_stn. The Thermal Instrument table also includes start and end dates, ti_stime and ti_etime, along with their uncertainties, ti_stime_unc and ti_etime_unc, in DATETIME UTC. These dates provide information on when the instrument information in the table is valid. The data are considered invalid if the resolution or signal to noise ratio changes or if an installed instrument is removed from a station. A comments attribute, ti_com, is included for comments about the type of instrument and its uses.

Field td_perm is removed from the table. (idem explanation).

Inferred Processes

The Inferred Processes tables were created to store historical (in most cases, published) inferences about processes causing volcanic unrest. These tables link to the volcano, date/time of unrest, and pertinent references or contact persons. The inferred process tables include a table on magma movement, a table on volatile saturation, a table on the buildup of magma pressure, a table on interactions with a hydrothermal system, and a table on the interaction of the magma/hydrothermal system with regional tectonics. The inferred process fields store a single character, Y for yes, N for No, M for maybe, and U for unknown or no information, with a table-wide comments field for additional information. Please note the information stored in these tables is based on interpretations. WOVOdat includes these processes as they were reported, but makes no judgment about the validity of the inferences. References are linked using keywords in the bibliographic table.

Magma Movement

Table IP1. Magma Movement Table

ip_mag_id	Magma movement ID	An identifier for linking with other tables.
ip_mag_code	Interpreter defined ID	The data identifier used by owner/observatory/ collector
vd_id	Volcano ID	An identifier for linking to the Volcano table. The Volcano
		table stores the volcano name and time zone. It is used to connect
		to all other data
ip_mag_time	Inference time	The date and time of the inference in UTC stored as
		DATETIME. Will often be a year of publication
ip_mag_time_unc	Inference time	The uncertainty in the date and time of the inference in UTC
	uncertainty	stored as DATETIME. Will often be a year of publication
ip_mag_start	Start time of inferred	The date and time at which this inferred process started. In
	process	UTC as DATETIME. If no specific times or dates are
		available give the year of eruption.
ip_mag_start_unc	Start time of inferred	The uncertainty in the date and time at which this inferred
	process uncertainty	process started. In UTC as DATETIME. If no specific times
		or dates are available, give the year of eruption
ip_mag_end	Ending time of	The date and time at which (or by which) this inferred process

	inferred process	stopped. In UTC as DATETIME
ip_mag_end_unc	End time of inferred	The uncertainty in the date and time at which this inferred
	process uncertainty	process ended. In UTC as DATETIME. If no specific times
		or dates are available, give the year of eruption.
ip_mag_deepsupp	Deep Supply	New or renewed supply of magma from depth. Use Y for yes,
		N for No, M for maybe, and U for unknown or no Information
ip_mag_asc	Ascent	Magma ascent, up from reservoir. Use Y for yes, N for No, M
		for maybe, and U for unknown or no information
ip_mag_convb	Convection Below	Magma convection/overturn induced from below by an
		intrusion at the base. The magma convection can be within the
		conduit and/or in underlying reservoir. If magma in a conduit
		convects to shallow depth, it may foam and release a substantial
		part of its gas. Use Y for yes, N for No, M for maybe, and U
		for unknown or no information.
ip_mag_conva	Convection Above	Magma convection/overturn induced from above, by settling of
		a dense crystal-rich mass. In conduit and/or reservoir, with
		potential foaming, as above. Use Y for yes, N for No, M for
		maybe, and U for unknown
in	Maama Minina	or no information
ip_mag_mix	Magma Mixing	Magma mixing. Use Y for yes, N for No, M for maybe, and U for unknown or no information
in mag dilza	Dike	Dike intrusion. In many cases this will be new intrusion
ip_mag_dike	DIKE	through country rock; in some instances, magmas will flow
		anew through existing dikes. Use Y for yes, N for No, M for
		maybe, and U for unknown or no information
ip_mag_pipe	Pipe	Intrusion through a pipe-like cylindrical conduit. As above,
ip_mag_pipe	T Ipc	may be a new intrusion through country rock or renewed flow
		in an existing conduit. Use Y for yes, N for No, M for maybe,
		and U for unknown or no information
ip_mag_sill	Sill	Sill intrusion. Use Y for yes, N for No, M for maybe, and U
		for unknown or no information
ip_mag_com	Comments	Added comments on magma movement
cc_id	Interpreter ID	An identifier for linking with the person who interpreted
	_	this process.
ip_mag_loaddate	Load date	The date this row was entered in UTC.
ip_mag_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

The Magma Movement table stores information about processes related to the movement of magma. The primary ID is ip_mag_id, the link to the Volcano table is vd_id, and the link to the person making the inference is cc_id. The date the information was entered is stored in ip_mag_loaddate, the date the information can become public is stored in ip_mag_pubdate, and a link to information about the person who loaded the data is stored in cc_ip_load. The time the inference was made is stored in ip_mag_time in UTC as DATETIME and the uncertainty for the time is stored in ip_mag_time_unc. The times at which the inferred process began and ended are stored in ip_mag_start and ip_mag_end. The uncertainties in the times the process began and ended are stored in ip_mag_end_unc.

The inferred processes in the Magma Movement table are deep magma supply, ip_mag_deepsupply,

magma ascent from a reservoir, ip_mag_asc, magma convection induced from below, ip_mag_convb, magma convection induced from above, ip_mag_conva, magma mixing, ip_mag_mix, a dike intrusion, ip_mag_dike, a pipe intrusion, ip_mag_pipe, and a sill intrusion, ip_mag_sill. The magma movement inferred process fields should store a single character, Y for yes, N for No, M for maybe, and U for unknown or no information. The comments field, ip_mag_com, is included for storing additional information.

Volatile Saturation

Table IP3. Volatile Saturation Table

ip_sat_id	Volatile saturation ID	An identifier for linking with other tables
ip_sat_code	Interpreter defined ID	The data identifier used by owner/observatory/ collector
vd_id	Volcano ID	An identifier for linking to the Volcano table. The Volcano
		table stores the volcano name and time zone. It is used to
		connect to all other data
ip_sat_time	Inference time	The date and time of the inference in UTC stored as
		DATETIME.
ip_sat_time_unc	Inference time	The uncertainty in the date and time of the inference in UTC
	uncertainty	stored as DATETIME. Will often be a year of publication
ip_sat_start	Start time of inferred	The date and time at which this inferred process started. In
1	process eruption.	UTC as DATETIME. If no specific times or dates are
		available, give the year of eruption
ip_sat_start_unc	Start time of inferred	The uncertainty in the date and time at which this inferred
1	process uncertainty	process started. In UTC as DATETIME. If no specific
		times or dates are available, give the year of eruption
ip_sat_end	Ending time of inferred	The date and time at which (or by which) this inferred
	process	process stopped. In UTC as DATETIME
ip_sat_end_unc	End time of inferred	The uncertainty in the date and time at which this inferred
1	process uncertainty	process ended. In UTC as DATETIME. If no specific
		times or dates are available, give the year of eruption.
ip_sat_co2	CO ₂ saturation	Magma became saturated with CO ₂ before an eruption and
		contributed to preeruption unrest. Saturation induced by any
		cause. Use Y for yes, N for No, M for maybe, and U for
		unknown or no information
ip_sat_h2o	H ₂ O saturation	Magma became saturated with H ₂ O before an eruption and
		contributed to preeruption unrest. Saturation induced by any
		cause. Use Y for yes, N for No, M for maybe, and U for
		unknown or no information
ip_sat_decomp	Decompress	Volatile saturation by decompression. Use Y for yes, N for
•	•	No, M for maybe, and U for unknown or no information
ip_sat_dfo2	Fugacity	Volatile saturation by change in fO ₂ . Use Y for yes, N for
_		No, M for maybe, and U for unknown or no information
ip_sat_add	Volatile Addition	Volatile saturation by volatile addition. Use Y for yes, N
1		for No, M for maybe, and U for unknown or no information
ip_sat_xtl	2 nd Boil	Volatile saturation by crystallization or second boiling.
r		Use Y for yes, N for No, M for maybe, and U for unknown
		or no information
ip_sat_ves	Vesiculation	Subsurface, preeruptive increases in vesiculation, thereby
r		decreasing density. This would include extreme
	_1	1 6

		vesiculation to permeable foam. Use Y for yes, N for No, M
		for maybe, and U for unknown or no information.
ip_sat_deves	Devesiculation	Subsurface, preeruptive decreases in vesiculation, thereby
		increasing density. This would include collapse of newly-
		degassed foam. Use Y for yes, N for No, M
		for maybe, and U for unknown or no information.
ip_sat_degas	Degassing	Deep and near-surface degassing including gas explosion
		events. Use Y for yes, N for No, M for maybe, and U for
		unknown or no information. Use Y for yes, N for No, M
		for maybe, and U for unknown or no information.
ip_sat_com	Comments	Added comments on magma movement
cc_id	Interpreter ID	An identifier for linking with the person who interpreted
		this process.
ip_sat_loaddate	Load date	The date this row was entered in UTC.
ip_sat_pubdate	Publish date	The date this row can become public. This date can be set up
		to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Volatile Saturation table stores information about processes related to volatiles in the magma. The primary ID is ip_sat_id, the link to the Volcano table is vd_id, and the link to the person making the inference is cc_id. The date the information was entered is stored in ip_sat_loaddate, the date the information can become public is stored in ip_sat_pubdate, and a link to information about the person who loaded the data is stored in cc_ip_load. The time the inference was made is stored in ip_sat_time in UTC as DATETIME and the uncertainty for the time is stored in ip_sat_ime_unc. The times at which the inferred process began and ended are stored in ip_sat_start and ip_sat_end. The uncertainties in the times the process began and ended are stored in ip_sat_start_unc and ip_sat_end_unc. The initial processes correspond to the presence of volatile saturation and include magma saturated with CO₂, ip_sat_co2, and magma saturated with H2O, ip_sat_h2o. The next set of inferred processes are about how the magma became volatile saturated and include by decompression, ip_sat_decomp, by change in fO₂, ip_sat_dfo2, by volatile addition, ip_sat_add, by crystallization or second boiling, ip_sat_xtl, by increases in vesiculation or decreasing density, ip_sat_degas. The volatile saturation inferred process fields should store a single character, Y for yes, N for No, M for maybe, and U for unknown or no information. The comments field, ip_sat_com, is included for additional information.

Buildup of Magma Pressure

Table IP5. Buildup of Magma Pressure Table

abo ii o. Bailaap o magma 1 1000aro 1 abo		
ip_pres_id	Magma pressure ID	An identifier for linking with other tables
ip_pres_code	Interpreter defined ID	The data identifier used by owner/observatory/ collector
vd_id	Volcano ID	An identifier for linking to the Volcano table. The Volcano
		table stores the volcano name and time zone. It is used to connect
		to all other data
ip_pres_time	Inference time	The date and time of the inference in UTC stored as
		DATETIME.
ip_pres_time_unc	Inference time	The uncertainty in the date and time of the inference in UTC
		stored as DATETIME. Will often be a year of publication
ip_pres_start	Start time of inferred	The date and time at which this inferred process started in UTC

	process	as DATETIME. If no specific times or dates are available,
		give the year of eruption
ip_pres_start_unc	Start time of inferred	The uncertainty in the date and time at which this inferred
	process uncertainty	process started. In UTC as DATETIME. If no specific times
		or dates are available, give the year of eruption
ip_pres_end	End time of inferred	The date and time at which (or by which) this inferred process
	process	stopped. In UTC as DATETIME
ip_pres_end_unc	End time of inferred	The uncertainty in the date and time at which this inferred
	process uncertainty	process ended. In UTC as DATETIME. If no specific times
		or dates are available, give the year of eruption.
ip_pres_gas	Gas overpressure	Gas-induced overpressure. Use Y for yes, N for No, M for
		maybe, and U for unknown or no information
ip_pres_tec	Tectonic	Magma or tectonically induced overpressures. Use Y for yes,
	overpressure	N for No, M for maybe, and U for unknown or no information
ip_pres_com	Comments	Comments on the buildup of magma
cc_id	Interpreter ID	An identifier for linking with the person who interpreted
		this process.
ip_pres_loaddate	Load date	The date this row was entered in UTC.
ip_pres_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

The Buildup of Magma Pressure table stores information about processes related to an increase in magmatic pressure. The primary ID is ip_pres_id, the link to the Volcano table is vd_id, and the link to the person making the inference is cc_id. The date the information was entered is stored in ip_pres_loaddate, the date the information can become public is stored in ip_pres_publate, and a link to information about the person who loaded the data is stored in cc_ip_load. The time the inference was made is stored in ip_pres_time in UTC as DATETIME and the uncertainty for the time is stored in ip_pres_time_unc. The times at which the inferred process began and ended are stored in ip_pres_start and ip_pres_end. The uncertainties in the times the process began and ended are stored in ip_pres_start_unc and ip_pres_end_unc.

The inferred processes in the Buildup of Magma Pressure table are gas-induced overpressure, ip_pres_gas, and magma or tectonically induced overpressures, ip_pres_tec. The buildup of magma pressure inferred process fields should store a single character, Y for yes, N for No, M for maybe, and U for unknown or no nformation. The comments field, ip_pres_com, is included for additional information.

Hydrothermal System Interaction

Table IP7. Hydrothermal System Interaction Table

ip_hyd_id	Hydrothermal ID	An identifier for linking with other tables
ip_hyd_code	Interpreter defined ID	The data identifier used by owner/observatory/ collector
vd_id	Volcano ID	An identifier for linking to the Volcano table. The Volcano
		table stores the volcano name and time zone. It is used to connect
		to all other data.
ip_hyd_time	Inference time	The date and time of the inference in UTC stored as
		DATETIME.
ip_hyd_time_unc	Inference time	The uncertainty in the date and time of the inference in UTC
	uncertainty	stored as DATETIME. Will often be a year of publication

ip_hyd_start	Start time of inferred process	The date and time at which this inferred process started. In UTC as DATETIME. If no specific times or dates are available, give the year of eruption
ip_hyd_start_unc	Start time of inferred process uncertainty	The uncertainty in the date and time at which this inferred process started. In UTC as DATETIME. If no specific times or dates are available, give the year of eruption.
ip_hyd_end	End time of inferred process	The date and time at which (or by which) this inferred process stopped. In UTC as DATETIME
ip_hyd_end_unc	End time of inferred process uncertainty	The uncertainty in the date and time at which this inferred process ended. In UTC as DATETIME. If no specific times or dates are available, give the year of eruption
ip_hyd_gwater	Heated ground water	Convective heating of groundwater. Use Y for yes, N for No, M for maybe, and U for unknown or no information
ip_hyd_ipor	Pore Destabilization	Destabilization of edifice by pore pressure increase. Use Y for yes, N for No, M for maybe, and U for unknown or no information
ip_hyd_edef	Pore deformation	Elastic deformation induced by pore pressure change. Use Y for yes, N for No, M for maybe, and U for unknown or no information
ip_hyd_hfrac	Hydrofracturing	Hydrofracturing. Use Y for yes, N for No, M for maybe, and U for unknown or no information
ip_hyd_btrem	Boiling induced tremor	Boiling-induced tremor. Use Y for yes, N for No, M for maybe, and U for unknown or no information
ip_hyd_abgas	Soluble gases	Absorption of soluble gases. Use Y for yes, N for No, M for maybe, and U for unknown or no information
ip_hyd_species	Equilibrium change	Changing the equilibrium species. Use Y for yes, N for No, M for maybe, and U for unknown or no information
ip_hyd_chim	Boiling until dry	Boiling until dry chimneys are formed. Use Y for yes, N for No, M for maybe, and U for unknown or no information
ip_hyd_com	Comments	Comments on interaction with the hydrothermal system
cc_id	Interpreter ID	An identifier for linking with the person who interpreted this process.
ip_hyd_loaddate	Load date	The date this row was entered in UTC.
ip_hyd_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data

The Hydrothermal System Interaction table stores information about magmatic interactions with the hydrothermal system. The primary ID is ip_hyd_id, the link to the Volcano table is vd_id, and the link to the person making the inference is cc_id. The date the information was entered is stored in ip_hyd_loaddate, the date the information can become public is stored in ip_hyd_publate, and a link to information about the person who loaded the data is stored in cc_ip_load. The time the inference was made is stored in ip_hyd_time in UTC as DATETIME and the uncertainty for the time is stored in ip_mag_hyd_unc. The times at which the inferred process began and ended are stored in ip_hyd_start_unc and ip_hyd_end. The uncertainties in the times the process began and ended are stored in ip_hyd_start_unc and ip_hyd_end_unc.

The inferred processes in the Hydrothermal System Interaction table are convective heating of the

groundwater, ip_hyd_gwater, destabilization of the edifice due to increased pore pressure, ip_hyd_ipor, elastic deformation induced by a change in pore pressure, ip_hyd_edef, hydrofracturing, ip_hyd_hfrac, boiling-induced tremor, ip_hyd_btrem, absorption of a soluble gas, ip_hyd_abgas, changing the equilibrium species, ip_hyd_species, and boiling until dry chimneys form, ip_hyd_chim. Each of the inferred processes fields should store a one-character flag (Y for yes, N for No, M for maybe, and U for unknown or no information). The comments field, ip_hyd_com, is included for additional information on the hydrothermal interaction.

Regional Tectonics Interactions

Table IP9. Regional Tectonics Interactions Table

	ectonics Interactions Table	An identified for linking with other teller
ip_tec_id	Regional tectonic ID	An identifier for linking with other tables
ip_tec_code	Interpreter defined ID	The data identifier used by owner/observatory/ collector
vd_id	Volcano ID	An identifier for linking to the Volcano table. The Volcano table
		stores the volcano name and time zone. It is used to connect to all
		other data
ip_tec_time	Inference time	The date and time of the inference in UTC stored as
		DATETIME. Will often be a year of publication
ip_tec_time_unc	Inference time	The uncertainty in the date and time of the inference in UTC
-	uncertainty	stored as DATETIME. Will often be a year of publication
ip_tec_start	Start time of inferred	The date and time at which this inferred process started. In UTC
1	process	as DATETIME. If no specific times or dates are available, give
	1	the year of eruption
ip_tec_start_unc	Start time of inferred	The uncertainty in the date and time at which this inferred process
ip_icc_start_unc	process uncertainty	started. In UTC as DATETIME. If no specific times or dates
	process uncertainty	are available, give the year of eruption
ip_tec_end	Ending time of	The date and time at which (or by which) this inferred process
ip_tec_end	inferred process	
	<u> </u>	stopped. In UTC as DATETIME
ip_tec_end_unc	Ending time of	The uncertainty in the date and time at which this inferred process
	inferred process u	ended. In UTC as DATETIME. If no specific times or dates
	certainty	are available, give the year of eruption
ip_tec_change	Tectonic change	Tectonically induced changes in magma/hydrothermal system
		(any mechanism). Use Y for yes, N for No, M
		for maybe, and U for unknown or no information
ip_tec_sstress	Static stress	Changes induced by changes in static stress after large regional
		earthquakes (incl. Viscoelastic processes). Use Y for yes, N for
		No, M for maybe, and U for unknown or no information
ip_tec_dstrain	Dynamic stress	Changes induced by dynamic strain, associated with passage of
_		earthquake waves from distal sources. Use Y for yes, N for No, M
		for maybe, and U for unknown or no information
ip_tec_fault	Local shear	Changes induced by local fault shear or other deformation of the
1		cone. Use Y for yes, N for No, M for maybe, and U for unknown
		or no information
ip_tec_seq	Slow earthquake	Changes induced by "slow earthquake," as recorded in a GPS or
	510 W cartifutate	other strain network. Use Y for yes, N for No, M for maybe, and
		U for unknown or no information
in tec press	Distal pressure	Changes induced by pressurization of magma or hydrothermal
ip_tec_press	Distai pressure	reservoir located several kilometers or more from the apparent
		center of unrest. May include Distal VT earthquakes. Use Y for
		yes, N for No, M for maybe, and U for unknown or no
in 400 I	Distal	information Changes induced by degrees wineting of magnetic and hydrothermal
ip_tec_depress	Distal	Changes induced by depressurization of magma or hydrothermal
	depressurization	reservoir located several kilometers or more from the apparent
		center of unrest. May include Distal VT earthquakes. Use Y for
		yes, N for No, M for maybe, and U for unknown or no
		information
ip_tec_hppress	Hydrothermal	Changes induced by increased hydrothermal pore pressures

	lubrication	("lubrication") along faults beneath or near the volcano. Use Y for yes, N for No, M for maybe, and U for unknown or no information
ip_tec_etide	Earth-tide	Earth tide interaction with magma/hydrothermal systems. Typically inferred from correlations between unrest and semi-diurnal or fortnightly earth tides. Use Y for yes, N for No, M for maybe, and U for unknown or no information
ip_tec_atmp	Atmospheric influence	Interaction of the volcanic system with changes in atmospheric pressure, rainfall, wind, etc. Use Y for yes, N for No, M for maybe, and U for unknown or no information
ip_hyd_com	Comments	Comments on interaction between the magma/hydrothermal system and regional tectonics
cc_id	Interpreter ID	An identifier for linking with the person who interpreted this process.
ip_hyd_loaddate	Load date	The date this row was entered in UTC.
ip_hyd_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data

The Regional Tectonics Interactions table stores information about processes related to regional tectonic events. The primary ID is ip_tec_id, the link to the Volcano table is vd_id, and the link to the person making the inference is cc_id. The date the information was entered is stored in ip_tec_loaddate, the date the information can become public is stored in ip_tec_pubdate, and a link to information about the person who loaded the data is stored in cc_ip_load. The time the inference was made is stored in ip_tec_time in UTC as DATETIME and the uncertainty for the time is stored in ip_tec_time_unc. The times at which the inferred process began and ended are stored in ip_tec_start and ip_tec_end. The uncertainties in the times the process began and ended are stored in ip_tec end unc.

The inferred processes in the Regional Tectonics Interactions table include a basic field for tectonically induced changes, ip_tec_change. There are also seven inferred processes to record changes induced by changes in static stress, ip_tec_sstress, dynamic strain, ip_tec_dstrain, local fault shear or other deformation of the cone, ip_tec_fault, slow earthquakes, ip_tec_seq, pressurization of magma or hydrothermal reservoir, ip_tec_press, depressurization of the magma or hydrothermal reservoir, ip_tec_depress, and increased hydrothermal pore pressures, ip_tec_hppress. The final three inferred processes are magmatically or hydrothermally induced release of tectonic strain, ip_tec_tstrain, earth-tide interactions, ip_tec_etide, and interactions with changes in atmospheric pressure, rainfall, or wind, ip_tec_atmp. The regional tectonics interactions inferred process fields should store a single character, Y for yes, N for No, M for maybe, and U for unknown or no information. The comments field, ip_tec_com, is included for additional information.

CommonorShared

The common or shared tables store data from within the Volcano > Network > Station > Instrument hierarchy that are used by almost all of the monitoring data tables. The common tables include:

- The Bibliographic table, which stores reference information.
- The Contact table, which stores contact information.
- The Registry table, which stores usernames and passwords for users requiring both read and write privileges.

- The Permissions table, which stores the permissions for each user level.
- The Images table, which stores images associated with WOVOdat data.
- The Images Junction table for storing links between the Images table and other tables.
- The Common Network table, which stores network information from non-seismic or geodetic networks.
- The Satellite table, which stores satellite or airplane information.
- A Volcano-Network Junction table for storing links between the Volcano and Network tables for instances where the relationship is many-to-many instead of one-to-many.
- A Maps table for storing information about maps that cover areas where WOVOdat data is collected.
- A Changes table for storing information about any changes made to WOVOdat.
- An Observations table for storing observations about volcanic activity.

Bibliographic Table

Table C1. Bibliographic Table

Table 9 II Bibliographic Table		
cb_id	Reference ID	An identifier for linking with other tables
cb_auth	Authors/Editors	The authors or editors of the paper or article
cb_year	Publication yr	The publication year stored as YEAR
cb_title	Title	The title of the paper or book
cb_journ	Journal	The name of the journal
cb_vol	Volume	The journal volume.
cb_pub	Publisher	The name of the publisher (book only)
cb_page	Pages	The page numbers
cb_doi	Digital object identifier	The digital object identifier
cb_isbn	International standard	The international standard book number.
	book number	
cb_url	Web info	Information about where to find the article if it was published on
		the web including the URL. This field can also store an address
		for a web site that contains additional information about data in
		WOVOdat or interpretations of data in WOVOdat
cb_labadr	Laboratory email	Email address of observatory or laboratory where users could
	address	make contact if necessary.
Cb_keyword	Keywords	A list of keywords separated by commas to describe the article.
		The keywords should include the name of the volcano, the type of
		monitoring data discussed, and an eruption if applicable
cb_loaddate	Load date	The date this bibliographic reference was entered in UTC.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered the bibliographic data

The Bibliographic table store information about articles, papers, books, and web sites, hereafter referred to as articles, with information that is related to the data in WOVOdat. *Originally, the information in the Bibliographic table was going to be linked directly to the data tables using multiple junction tables. We instead decided to include keywords for linking bibliographic information to the data and to create junction tables for the inferred processes only. Junction tables for the rest of the data can be easily created in the future, if necessary. The primary ID for the Bibliographic table is cb_id. The date the data was loaded into the table is stored in cb_loaddate in UTC and the date the information can become public is stored in cb_pubdate. The link*

to the contact information for the data loader is stored in cc id load.

The general bibliographic information in this table includes text fields for the authors or editors, cb_auth, the title, cb_title, the journal name, cb_journ, the journal volumn, cb_vol, the publisher for books only, cb_pub, and the page numbers, cb_page. The publication year, cb_year, is stored as YEAR. If known, the digital object identifier and the international standard book number should be entered in cb_doi and cb_isbn. If the article was published on the web or if the reference is to a website then the web address or URL should be stored in cb_url. The keywords that will be used for finding the article should be stored in cb_keywords and separated by commas. The keywords should include the name of the volcano, the type of monitoring data discussed, and an eruption if applicable.

Contact Table

Table C2. Contact Table

aue	
Contact, Collector	An identifier for linking with other tables.
First name	The first name of the person who can be contacted using the
	information in this row of the Contact table.
Las name	The last name of the person who can be contacted using the
	information in this row of the Contact table.
Observatory	The name of the observatory, university, or company with which the
	contact person is associated. If the first and last name fields are null
	then this row of data contains only the contact information for the
	institution
Address1	The first line of the contact address
Address2	The second line of the contact address.
City	The city of the contact address
State, province or	The state, province, or prefecture of the contact address
prefecture	
Country	The country of the contact address
Postal code	The postal code of the contact address
Web address	The web address for the person or institution, if applicable
Email	The email address of the contact person or institution.
Phone	The primary phone number for contacting the person or institution
Phone2	The secondary phone number for contacting the person or institution
Fax	The fax number for contacting the person or institution
Comments	A text field for comments about contacting the person or institution
Load date	The date this bibliographic reference was entered in UTC.
	Contact, Collector or Data loader ID First name Las name Observatory Address1 Address2 City State, province or prefecture Country Postal code Web address Email Phone Phone2 Fax Comments

The Contact table provides all of the contact information for a person, observatory, or institution. The primary ID is cc_id and is included in most of the WOVOdat tables as a contact ID, collector ID, or data loader ID. The date the data was loaded into the table is stored in cc_loaddate in UTC and the date the information can become public is stored in cc_public. The link to contact information for the data loader is stored in cc_id_load.

If the contact is for a person then the first name is stored in cc_fname and the last name is stored in cc_lname. The observatory or institution is stored in cc_obs. If the first and last name fields are null then data associated with this cc_id contains the contact information for the institution only. The address is stored in separate text fields and includes the first line of the contact address, cc_add1, the second line of the address, cc_add2, the city, cc_city, state, cc_state, country, cc_country, and postal code, cc_post. A web address, if applicable, is stored in cc_url and a contact email address is stored in cc_email. The phone and fax numbers are also stored in text fields and include a primary phone number, cc_phone, a secondary phone number, cc_phone2,

and a fax number, cc_fax. A comments field is also included to record any additional information about the contact including the best method of contact.

Field cc_pubdate and cc_id_load are removed from the table as it is a static table.

Registry

Table C3. Registry Table

cr_id	Registry ID	An identifier for linking with other tables
œ_id	Contact ID	An identifier for linking with the Contact table. The Contact table contains the name, address, phone, and email address for the person or observatory
cr_uname	User name	A user name for logging into the system.
cr_regdate	Register date	The date the information was originally entered.
cr_update	Update	The most recent date the information in this table was updated.
cr_com	Comments	A text field for comments about the user being granted additional privileges

The Registry table (cr for common registry) provides username and password information for people who need both read and write privileges to WOVOdat. The primary ID is cr_id and the foreign key is the contact ID, cc_id, for linking with contact information for the user. The user's database privileges are stored in the Privileges table that is linked to the Registry table using the registry ID. The date the data was originally entered into the Registry table is stored in cr_regdate in UTC and the most recent update time is stored in cr_update. Superusers, those with write access to data for more than one observatory, should be requested to change their passwords periodically.

The username is stored in cr_uname and the password is encrypted in cr_pwd. The user type, cr_type, provides information about the responsibility of the user, for example, loading deformation data for LVO. There is also a comments field, cr_com, for any additional information about the user.

Permissions

Table C4. Permissions Table

cp_id	Permisssion ID	An identifier for linking with other tables
cr_id	Registry ID	An identifier for linking with the Registry table. The
		Registry table contains the user's username and password
cp_access	The access level	The name of the privilege level for the user
cp_tables	Tables	The table name or prefix for the set of tables the access
		applies to
cp_com	Comments	A text field for comments about the access level. A
		description of the access level. For example, editor with
		read, write, execute access
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data.

The Permissions table (cp for common permissions) provides the access information for each user. The primary ID is cp_id and the foreign key is the registry ID, cr_id, and data loader, cc_id_load. The name of the access level is stored in, cp_access, and a description of the access level is stored in cp_description. The access levels would include administrators, editors, data entry/correction, data entry, participating/contributing scientists and administrators, scientist power users, educators, and the public. The tables for which the access applies would be stored in cp_tables either as a table or prefix for a set of tables. The comments field, cp_com, provides space for additional information about the privilege.

Images

Table C5. Images Table

cm_id	Images ID	An identifier for linking with other tables
cm_code	Owner defined ID	The image identifier defined by data owner
vd_id	Volcano ID	An identifier for linking with the volcano table. The
		Volcano table stores the volcano name and time zone. It is
		used to connect to all other data
cm_lat	Latitude	The latitude of the image location in decimal degrees
		(sxx.xxxxxxx)
cm_lon	Longitude	The longitude of the image location in decimal degrees
		(sxxx.xxxxx
cm_location	Location of image	The location where the image was taken including the
		direction the image was taken, if known
cm_description	Image description	A description of the image including the scale
cm_format	Image format	The image format
cm_date	Image date	The date the image was taken
cm_date_unc	Image date uncertainty	The uncertainty of date the image was taken.
cm_image	Image	The image
cm_keywords	Keywords	Keywords to describe the image that will be used for searches
cm_usage	Image usage	Comments about use of the image include copyright
		information
cm_loaddate	Load date	The date this row was entered in UTC
cm_pubdate	Publish date	The date this row can become public. This date can be set up
		to two years in advance
∞_id	Collector ID	An identifier for linking to contact information for the data
		collector. To be entered only if data are not continuous
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data.

The Images table (cm for common images) stores images that support other WOVOdat data. The primary ID is cm_id and the volcano ID, vd_id, is included for connecting to the volcano at which the image was taken, if applicable. Other methods for connecting the image to other WOVOdat data include the keywords field, cm_keywords and the Images Junction table.

The location information for the image includes the latitude, cm_lat, longitude, cm_lon and a description of the location, cm_location. A description of the image is stored in, cm_description, the image format is stored in cm_format, the date the image was taken is stored in cm_date, the uncertainty in the image date is stored in cm_date_unc, and the image is stored in, cm_image. The image usage field, cm_usage, should store information about use of the image including copyright information. Keywords, used for searching, should be entered into the field cm_keywords. A standard set of keywords should be created to help with searches.

Field cm_datum is removed from the table. (idem explanation).

Images Junction

Table C6. Images Junction Table

jj_imgx_id	Image Junction ID	An identifier for linking with other tables
cm_id	Image ID	The identifier for linking to the Image table. The Image table
		stores a description of the image, the location, and the image
jj_idname	Name of linking table ID	The name of the other table ID of interest
jj_x_id	Lingking table ID	The identifier for linking to another table of
		interest.
jj_imgx_loaddate	Load date	The date this row was entered in UTC
cc_id_load	Data loader ID	An identifier for linking to contact information for
		the person who entered this row of data

The Images Junction table was created to link images to other known data. The Images Junction table contains a primary ID, jj_img_id, the image ID, cm_id, and the linking table ID name, jj_idname, and ID, jj_x_id. If images are taken during data collection then the Images Junction table should be used to link the images to the data. For example, if an image is taken of an area where gas emissions are being sampled then the ID name for the Directly Sampled Gas table, gd_id, would be stored in jj_idname, and the ID for the data collected would be stored in jj_x_id. Alternatively, the image could be linked to the appropriate station table. The image taken during gas sampling would then link to the Gas Station table, gs_ID, such that gs_ID would be entered into jj_idname and the ID number for the station where the picture was taken would be entered into jj_x_id. The date the picture was taken would be found through the images table. If there are types of data that consistently include images then the image ID should be included in the data table. The load date is stored in UTC in jj_volnet_loaddate and the data loader ID is stored in cc_id_load.

Common Network

Table C7. Common Network Table

Table 411 Continuent total on Continuent		
cn_id	Network ID	An identifier for linking with other tables
cn_code	Owner defined ID	The data identifier defined by data owner/observatory/
		collector
vd_id	Volcano ID	table. The Volcano table stores the volcano name and time zone.
		It is used to connect to all other data.
cn_name	Name	The name of the network
cn_type	Type	The network type, for example seismic, gravity, or GPS. These
		types should come from a standard WOVOdat list and match
		the station types.
cn_area	Area	The volcano and approximate area in km³ covered by the
		network
cn_map	Map	A map of the network from the observatory
cn_stime	Start date	The date (UTC) the network was set up and activated. The date
		is stored in DATETIME.
cn_stime_unc	Start date uncertainty	The uncertainty in the date (UTC) the network was set up and
		activated. The date is stored in DATETIME
cn_etime	Stop date	The date (UTC) the network was permanently decommissioned
		or the time this set of information became invalid. The date is

		stored in DATETIME. See observatory for network and station operation history.
cn_etime_unc	End date uncertainty	The uncertainty in the date (UTC) the networkwas decommissioned or the time this set of information became invalid. The date is stored in DATETIME.
cn_utc	Difference from UTC	Time zone relative to UTC. Please enter the number of hours from GMT, using a negative sign (-) for hours before GMT and no sign for positive numbers.
cn_desc	Description	A description of the network including permanent stations and types of instruments
cn_com	Comments	Comments about the network including minor updates to the network over time and future plans
cc_id	Contact ID	An identifier for linking to contact information for the person responsible for the station.
cn_loaddate	Load date	The date this row was entered in UTC.
cn_pubdate	Publish date	The date this row can become public. This date can be set up to two years in advance
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data

The Common Network table contains information about the network of stations that collect data at a particular site, in general at one volcano. The primary ID is cn_id and a link to the volcano ID, vd_id, is included. If the network covers more than one volcano then the Volcano-Network Junction table is needed to connect the network to the multiple volcanoes.

The name of the network is stored in cn_name and the type of network is stored in cn_type. The area the network covers in cubic kilometers should be store in cn_area and an image of the network including the station locations should be included in cn_map. The Network table also includes start and end dates, cn_stime and cn_etime, and start and end time uncertainties, cn_stime_unc and cn_etime_unc, in DATETIME UTC. These dates provide information on when the network information in the table is valid. Modifications to the network such as the addition of a new instrument or station, or if a network has been deactivated, should be recorded in the comments field, cn_com (see below). A description of the network including permanent stations and types of instruments should be included in cn_desc and additional comments about the network should be stored in cn_com.

Satellite Table

Table C8. Satellite Table

cs_id	Satelite ID	An identifier for linking with other tables
cs_code	Owner defined ID	The data identifier defined by owner
cs_type	Satellite or airplane flag	A flag for indicating if the information is about a satellite (S) or
		airplane (A).
cs_name	Name	The name of the satellite or airplane
cs_stime	Start date	The date (UTC) the satellite or airplane was first used. The date
		is stored in DATETIME.
cs_stime_unc	Start date uncertainty	The uncertainty in the date (UTC) the date satellite or airplane
		was first used. The date is stored in DATETIME.
cs_etime	Stop date	The date (UTC) the satellite or airplane was was permanently
		decommissioned or the time this set of information became

		' 1'1 TPL 1 . ' . 1' DATECTED (F. C. 1
		invalid. The date is stored in DATETIME. See observatory
		for network and station operation history.
cs_etime_unc	Stop date uncertainty	The uncertainty in the date (UTC) the satellite or airplane was
		first used was decommissioned or the time this set of
		information became invalid. The date is stored in
		DATETIME.
cs_desc		Comments or descriptions about the satellite or airplane
		including where to find more information. For satellites,
		include information about orbit (geostationary, polar-orbiting,
		etc), the standard repeat time for images taken from directly
		overhead, and the package of onboard instruments that are
		pertinent to volcano observations (e.g., TOMS, ASTER,
		MODIS, etc) and anything that makes the vehicle special or
		more useful for collecting data
cs_url	Satellite web site	The url of satellite website that users can browse for more detail
		information
cs_loaddate	Load date	The date this row was entered in UTC.
cs_pubdate	Publish date	The date this row can become public. This date can be set up to
		two years in advance
cs_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data

The Satellite table stores information about satellites and airplanes that are used for collecting data from above the surface of the earth. The primary ID is cs_id. The type of aircraft, S for satellite or A for airplane, should be stored in the type flag and the name of the satellite or airplane should be stored in cs_name. The Satellite table also includes start and end dates, cn_stime and cn_etime, and start and end time uncertainties, cn_stime_unc and cn_etime_unc, in DATETIME UTC. These dates provide information on when the satellite information in the table is valid. The description field, cs_desc, should contain a description of the satellite or airplane including where to find additional information. The comments field, cs_com, should contain comments about the satellite or airplane including anything that makes the vehicle special or more useful for collecting data.

Volcano-Network Junction

Table C9. Volcano-Network Junction Table

jj_volnet_id	Volcano-Network ID	An identifier for linking with other tables.
vd_id	Volcano ID	The identifier for linking to the Volcano table. The Volcano
		table stores the volcano name and time zone. It is used to connect
		to all other data
jj_net_id	Seismic Network ID	An identifier for linking with the Seismic Network table or
		Common Network Table. The Seismic Network table provides
		information on the velocity model used and a link to the volcano
		information
jj_net_flag	Network flag	=C or =S. If flag=C, jj_net_id equals cn_id (table C7), else if
		flag=S then jj_net_id equals sn_id (table S10)
jj_volnet_loaddate	Load date	The date this row was entered in UTC.
cc_id_load	Data loader ID	An identifier for linking to contact information for the person

	who entered this row of data
	who chicrea this fow of talla

The Volcano-Network Junction table was created to handle cases where a network covers more than one volcano, such as the Northern California Seismological Network, which covers multiple volcanoes in Northern California. The Volcano-Network Junction table contains a primary volcano- network ID, jj_volnet_id, and three foreign IDs, the volcano ID, vd_id, the common network ID, cn_id, and the seismic network ID, sn_net_id. The load date is stored in UTC in jj_volnet_loaddate and the data loader ID is stored in cc_id_load.

Field sn_net_id is changed to sn_id. Identity code for network is sn_id as it is used in Table S10 of "Seismic Network Table". This sn_id in S10 is linked to vd_id. Table C9 is for the case where sn_id covers several vd_id. In Table S1 network event table, each event record is linked to sn_id not to vd_id because physically, earthquake is recorded by a seismic network which is not necessarily to be on volcano. However, for volcanological domain, sn_id should be linked to one or more more volcano by vd_id.

The field names "cn_id" (could be equal to "cn_net_id") and "sn_net_id" (could be equal to "sn_id"). Both fields are replaced by one field "jj_net_id" and another field for flag. Thus jj_net_id with flag C means that jj_net_id=cn_id; whereas with flag S jj_net_id=sn_id.

In case of multi-volcano network, the vd_i field in the S10 (the second column of S1) should be filed with NULL.

Maps

Table C10. Maps Table

md_id	Map ID	An identifier for linking with other tables
mdcode	Collector defined identifier	The maps identifier used by owner/observatory/ collector
vd_id	Volcano ID	The identifier for linking to the Volcano table. The
		Volcano table stores the volcano name and time zone. It
		is used to connect to all other data
md_name	Map name	The name of the map including a title, quad sheet name, or
		a description of the contents, e.g., SRTM of Mt. St.
		Helens.
md_type	Map tpe	The type of map (topo, DEM, etc.).
md_srtm	SRTM data	A link to the SRTM ARC file stored on the WOVOdat
		server. Additional file types can be found at
		http://srtm.usgs.gov/data/obtainingdata.php
md_scale	Scale	The scale of the map (1:xxxxxxx)
md_contour	Contour interval	For topographic maps, contour interval (in m).
md_date	Date of publication	The date the map was published in DATE.
md_date_unc	Date of publication	The uncertainty in the date the map was published in
	uncertainty	DATE.
md_proj	Projection	The map projection.
md_map_datum	Geodetic model	The horizontal datum, ellipsoid name, semi-major axis,
		and denominator of flattening ratio
md_west	West bounding coordinate in	The west bounding coordinate in decimal degrees
	decimal degree	
md_east	East bounding coordinate in	The east bounding coordinate in decimal degrees.
	decimal degree	
md_north	North bounding coordinate in	The north bounding coordinate in decimal degrees.
	decimal degree	

md_south	South bounding coordinate in	The south bounding coordinate in decimal degrees
_	decimal degree	
md_elev_max	Maximum elevation	The maximum elevation on the map in meteres where
		positive values are above sea level (sxxxx).
md_elev_min	Minimum elevation	The minimum elevation on the map in meteres where
		positive values are above sea level (sxxxx)
md_use	Intended use	The intended use for the map
md_restrictions	Restrictions	Restrictions on the use of the map.
md_quality	Quality	The quality of the map.
md_image	Image	An image of the map or link to an image of the map
md_desc	Description	A description of the map including an overview of what
		the map covers and indicates.
∞_id	Contact ID	An identifier for linking to contact information.
md_loaddate	Load date	The date this row was entered in UTC.
md_pubdate	Publish date	The date this row can become public. This date can be set
		up to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data.

The Maps table stores information about maps that cover areas where WOVOdat data is collected. The primary ID is md_id. The map name including a title, quad sheet name, and a description of the contents, e.g., "SRTM of Mt. St. Helens," is stored in md_name. The map type is stored in md_type. WOVOdat will store SRTM data and basic vector data such as roads, major towns in an ARC file along with its metadata that is linked to the Maps table by md_srtm. SRTM data in other formats can be retrieved from the USGS Seamless Archive (http://srtm.usgs.gov/data/obtainingdata.php). There may also need to be another table to store digital map data. The scale of the map is stored in md_scale as text and the date the map was published is stored in md_date in DATE format, along with an uncertainty for the date, md_date_unc. The projection for the map is stored in md_proj and the horizontal datum is stored in md_datum. The locations of the four corners of the map are stored for registering future data and include the west bounding coordinate, md_west, the east bounding coordinate, md_east, the north bounding coordinate, md_north, and the south bounding coordinate, md_south. All of the latitudes and longitudes are stored in decimal degrees.

The maximum and minimum elevation are stored in md_elev_max and md_elev_min in meters. The intended use of the map should be stored in md_use and any restrictions on the use of the map should be stored in md_restrictions. The quality of the map should be stored in md_quality and guidelines for the quality qualifications will be needed. An image of the map or a link to an image of the map is stored in md_image and a description of the map is stored in md_desc.

Field vd id is added in the table to know which volcano the map is linked with.

Changes

Table C11. Changes Table

ch_id	Changes ID	An identifier for linking with other tables	
ch_linkname	Link name	The name of the the table where the change has been made.	
ch_linkid	Link ID	The ID (number) for the set of data (row) where the change has	
		been made.	
ch_atname	Attribute name	The name of the attribute where a change has been made.	
ch_desc	Description of change	A description of the change that has been made. Include why	

		the change was made and both values
ch_loaddate	Load date	The date this row was entered in UTC
cc_id_load	Data loader ID	An identifier for linking to contact information for the person
		who entered this row of data.

The Changes table (ch for common changes) stores information about any changes that have been made in the database. The primary ID is ch_id. The name of the attribute where a change has been made is stored in, ch_atname, and the name of the ID for the data is stored in ch_linkname along with the actual ID for linking, ch_linkid. The load date ch_loaddate is a TIMESTAMP and entered automatically in UTC. The data loader, cc_id_load, contains the ID of the person making the change. All information about the change should be stored in ch_desc. For example, if a temperature was incorrectly entered into the Ground-based Thermal Data table then the attribute name, ch_atname would be td_temp, the ch_linkname would be td_id, and the actual id for linking to the changed data would be a number, such as 10034. The description of the change might be, "decimal point entered incorrectly, T is 101.5 not 10.15."

Observations

Table C12. Observations Table

co_id	Observation ID	An identifier for linking with other tables
co_code	Observation code	User defined code for observation
vd_id	Volcano ID	The identifier for linking to the Volcano table. The
		Volcano table stores the volcano name and time zone. It is
		used to connect to all other data
co_observe	Observation	A description of the observation
co_stime	Start time of observation	The time the observation was made.
co_stime_unc	Start time of observation	The uncertainty in the time the observation was made.
	uncertainty	
co_etime	End time of observation	The end time the observation was made.
co_etime_unc	End time of observation	The uncertainty in the end time the observation was made.
	uncertainty	
cc_id	Contact ID	An identifier for linking to contact information for the
		person who made this observation.
co_loaddate	Load date	The date this row was entered in UTC.
co_pubdate	Publish date	The date this row can become public. This date can be set up
		to two years in advance.
cc_id_load	Data loader ID	An identifier for linking to contact information for the
		person who entered this row of data

The Observations table (co for common observations) provides storage for observations about volcanic activity. The primary ID is co_id and the foreign keys include the volcano ID, vd_id, for linking to other information about the volcano, the observer ID, cc_id and the data loader ID.

The actual observations are stored in co_observe along with a start time the observation was made, co_stime, the end time of the observation, co_etime, and uncertainties for the times, co_stime_unc, and co_etime_unc.

Upload History

Table C13. Upload History Table

cu_id	Upload ID	An identifier for linking with other tables
cu_file	File name	The name of the original file uploaded
cu_type	Type of Upload	Type of upload: I=In database, N=Not in database (test), U=Undone, T=Temporary (to be treated later), W=translated to WOVOML, F=Failed
ch_com	Comments	A comment of error message during upload
ch_loaddate	Load date	The date this row was entered in UTC
cc_id_load	Data loader ID	An identifier for linking to contact information for the person who entered this row of data.

User to user Permissions

Table C14. User to user Permission Table

Telefor T. II. Cock to Good T. Cittle Cock T. Cittl			
jj_concon_id	User to User Permission	An identifier for linking with other tables	
	ID		
cc_id	Granter ID	The identifier of the granting user	
cc_id_granted	Granted user ID	The identifier of the granted user	
jj_concon_view	View Permission	Permission to view unpublished data: 0=No, 1=Yes	
jj_concon_upload	Upload Permission	Permission to upload data: 0=No, 1=Yes	
jj_concon_update	Update Permission	Permission to update data: 0=No, 1=Yes	
jj_concon_admin	Admin Permission	Permission to manage account: 0=No, 1=Yes	
jj_concon_loaddate	Load date	The date this row was entered in UTC.	
cc_id_load	Data loader ID	An identifier for linking to contact information for the person	
		who entered this row of data.	

Acknowledgements

Creating WOVOdat has been a group effort and we would like to thank all of the WOVO observatories for their help and we hope for continued participation in this project. There are a few people who we would like to thank individually for their continued support and input. Florian Schwandner, Steve Malone, Manny Nathenson, Mike Lisowski, Mike Poland, Chuck Wicks, Evelyn Roeloffs, Bill Evans, Chris McGee, Malcolm Johnston, Ed Venzke, Peter Cervelli, Dan Cervelli, Joel Robinson, David Ramsey, Steve McNutt, Dave Hill, Chuck Meertens, Randy White, Maurizio Battaglia, David Oppenheimer, Phil Dawson, Jake Lowenstern, Jeff Wynn, Terry Keith, Bob Tilling, Stephen Hahn, Steve Schilling, Eisuke Fujita, Hideki Ueda, Jacopo Selva, Dan Cervelli, Bruce Weertman, Kelly Stroker, Kenneth Masarie, and Brad Scott.

Comments and Conclusions

WOVOdat is an important project for bringing together data of worldwide volcanic unrest and this first version is a necessary step towards making the database a reality. There were multiple challenges involved with determining which parameters to use and how to organize them into tables that would allow for rapid querying. The main use of WOVOdat will be accessing data. Many decisions were made to make the access easier at the expense of the data loading process. Of course, due to the large number of raw data formats, the data loading process was always going to require scripts for individual observatories. The next challenge is to write the scripts to load the tables. Given more time we would have made some of the data types require specific input (ENUM). In time it will also become more apparent how many characters are required for the VARCHAR fields. We tried to create standards for names, VARCHAR(30), and long text, VARCHAR(255). There will be cases where longer text fields (TEXT) are required. There are also muliple unresolved questions that are mentioned in the documentation. Again, the data loaders will need to make decisions about these. We've enjoyed creating this pilot database and hope this document helps others understand the decisions we made so new and better versions of WOVOdat can be created.

Appendix 1. Code for Creating MySQL database

```
-- Table structure for table 'cb'
CREATE TABLE cb (
cb_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'Bibliographic data ID',
cb auth varchar(255) DEFAULT NULL COMMENT 'Authors/Editors',
cb year year(4) DEFAULT NULL COMMENT 'Publication year',
cb_title varchar(255) DEFAULT NULL COMMENT 'Title',
cb journ varchar(255) DEFAULT NULL COMMENT 'Journal',
 cb_vol varchar(20) DEFAULT NULL COMMENT 'Volume',
cb_pub varchar(50) DEFAULT NULL COMMENT 'Publisher',
cb_page varchar(30) DEFAULT NULL COMMENT 'Pages number',
 cb_doi varchar(20) DEFAULT NULL COMMENT 'Digital Object Identifier',
cb_isbn varchar(13) DEFAULT NULL COMMENT 'International Standard Book Number',
cb_url varchar(255) DEFAULT NULL COMMENT 'Info on the web',
cb_labadr varchar(320) DEFAULT NULL COMMENT 'Email address of observatory or laboratory',
cb_keywords varchar(255) DEFAULT NULL COMMENT 'Keywords',
cb loaddate datetime DEFAULT NULL COMMENT 'Load date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID (link to cc.cc_id)',
 PRIMARY KEY (cb_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Bibliographic';
-- -----
-- Table structure for table 'cc'
CREATE TABLE cc (
cc id smallint(5) unsigned NOT NULL AUTO INCREMENT COMMENT 'Contact ID',
cc code varchar(15) DEFAULT NULL COMMENT 'Code',
cc_code2 varchar(15) DEFAULT NULL COMMENT 'Alias of cc_code (contact code)',
cc_fname varchar(30) DEFAULT NULL COMMENT 'First name',
cc_lname varchar(30) DEFAULT NULL COMMENT 'Last name',
cc_obs varchar(150) DEFAULT NULL COMMENT 'Observatory',
cc_add1 varchar(60) DEFAULT NULL COMMENT 'Address 1',
cc_add2 varchar(60) DEFAULT NULL COMMENT 'Address 2',
cc_city varchar(50) DEFAULT NULL COMMENT 'City',
cc state varchar(30) DEFAULT NULL COMMENT 'State',
cc_country varchar(50) DEFAULT NULL COMMENT 'Country',
cc post varchar(30) DEFAULT NULL COMMENT 'Postal code',
cc_url varchar(255) DEFAULT NULL COMMENT 'Web address',
cc_email varchar(320) DEFAULT NULL COMMENT 'Email',
cc_phone varchar(50) DEFAULT NULL COMMENT 'Phone',
cc_phone2 varchar(50) DEFAULT NULL COMMENT 'Phone 2',
cc fax varchar(60) DEFAULT NULL COMMENT 'Fax',
 cc_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc_loaddate datetime DEFAULT NULL COMMENT 'Load date',
PRIMARY KEY (cc id),
 UNIQUE KEY `CODE` (cc code).
 UNIQUE KEY CODE2 (cc code2)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Contact';
-- -----
```

```
-- Table structure for table 'ch'
CREATE TABLE ch (
ch id smallint(5) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
enum('cb','cc','ch','cm','co','cp','cr','cr_tmp','cs','cu','dd_ang','dd_edm','dd_gps','dd_gpv','dd_sar','dd_srd','dd_str
','dd_tlt','dd_tlv','di_gen','di_tlt','ds','ed','ed_for','ed_phs','ed_vid','fd_ele','fd_gra','fd_mag','fd_mgv','fi','fs','gd','gd_plu','gd_
sol', 'gi', 'gs', 'hd_dly', 'hd_smp', 'hi', 'hs', 'ip_hyd', 'ip_mag', 'ip_pres', 'ip_sat', 'ip_tec', 'jj_concon', 'jj_imgx', 'jj_volcon', 'jj_volnet', 'j
_sarsat','md','sd_evn','sd_evs','sd_int','sd_ivl','sd_rsm','sd_sam','sd_ssm','sd_trm','sd_wav','si','si_cmp','sn','ss','st_eqt','td','td
_img','td_pix','ti','ts','vd','vd_inf','vd_mag','vd_tec') DEFAULT NULL COMMENT 'Table',
ch_link_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Link ID',
ch_atname varchar(30) DEFAULT NULL COMMENT 'Field name',
ch desc varchar(255) DEFAULT NULL COMMENT 'Description',
ch_loaddate datetime DEFAULT NULL COMMENT 'Load date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID (link to cc.cc_id)',
PRIMARY KEY (ch_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Change';
  _____
-- Table structure for table 'cm'
CREATE TABLE cm (
 cm_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
cm_code varchar(30) DEFAULT NULL COMMENT 'Code',
vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID (link to vd.vd_id)',
cm_lat double DEFAULT NULL COMMENT 'Latitude',
cm lon double DEFAULT NULL COMMENT 'Longitude',
cm_location varchar(255) DEFAULT NULL COMMENT 'Location',
cm_description varchar(255) DEFAULT NULL COMMENT 'Description',
cm format varchar(10) DEFAULT NULL COMMENT 'Format',
cm_date datetime DEFAULT NULL COMMENT 'Date',
cm_date_unc datetime DEFAULT NULL COMMENT 'Date uncertainty',
cm_image varchar(255) DEFAULT NULL COMMENT 'Data',
cm_usage varchar(255) DEFAULT NULL COMMENT 'Usage',
cm_keywords varchar(255) DEFAULT NULL COMMENT 'Keywords',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID (link to cc.cc_id)',
cm_loaddate datetime DEFAULT NULL COMMENT 'Load date',
cm_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID (link to cc.cc id)',
PRIMARY KEY (cm id),
 UNIQUE KEY `CODE` (cm_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Image';
-- Table structure for table 'cn'
CREATE TABLE cn (
cn_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
cn_code varchar(30) DEFAULT NULL COMMENT 'Code',
vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
cn_name varchar(255) DEFAULT NULL COMMENT 'Name',
cn_type enum('Deformation','Fields','Gas','Hydrologic','Thermal','Unknown') NOT NULL DEFAULT 'Unknown'
```

COMMENT 'Type',

```
cn area float DEFAULT NULL COMMENT 'Area',
cn map varchar(255) DEFAULT NULL COMMENT 'Map',
cn_stime datetime DEFAULT NULL COMMENT 'Start time',
cn stime unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
cn_etime datetime DEFAULT NULL COMMENT 'End time',
cn_etime_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
cn utc float DEFAULT NULL COMMENT 'Difference from UTC',
cn_desc varchar(255) DEFAULT NULL COMMENT 'Description',
 cn_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID (link to cc.cc id)',
 cn loaddate datetime DEFAULT NULL COMMENT 'Load date',
cn_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (cn id),
UNIQUE KEY `CODE` (cn_code,cc_id,cn_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Common network';
-- Table structure for table 'co'
CREATE TABLE co (
co id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
co_code varchar(30) DEFAULT NULL COMMENT 'Code',
vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
co_observe text COMMENT 'Description',
co stime datetime DEFAULT NULL COMMENT 'Start time',
co_stime_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
co etime datetime DEFAULT NULL COMMENT 'End time',
co_etime_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Observer ID',
co loaddate datetime DEFAULT NULL COMMENT 'Load date',
co_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (co_id),
UNIQUE KEY `CODE` (co_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Observation';
______
-- Table structure for table 'cp'
CREATE TABLE cp (
 cp_id tinyint(3) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
cr_id tinyint(3) unsigned DEFAULT NULL COMMENT 'Registry ID',
cp_access enum('0','1','2','3','4','5','6','7','8','9') NOT NULL DEFAULT '9' COMMENT 'Access level: 0=Developer,
9=Minimum access',
 cp_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (cp_id),
 UNIQUE KEY `REGISTERED USER` (cr_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Permission';
```

```
-- Table structure for table 'cr'
CREATE TABLE cr (
cr_id tinyint(3) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'User ID',
cr uname varchar(30) NOT NULL COMMENT 'Username',
cr_pwd varchar(60) DEFAULT NULL COMMENT 'Password',
cr_regdate datetime DEFAULT NULL COMMENT 'Registration date',
 cr update datetime DEFAULT NULL COMMENT 'Last update',
 PRIMARY KEY (cr id),
 UNIQUE KEY USERNAME (cr_uname)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Registry';
-- Table structure for table 'cr_tmp'
CREATE TABLE cr_tmp (
cr_tmp_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
cr_tmp_time datetime NOT NULL COMMENT 'Time',
cr tmp email varchar(320) NOT NULL COMMENT 'Email',
cr tmp fname varchar(30) DEFAULT NULL COMMENT 'First name',
cr_tmp_lname varchar(30) DEFAULT NULL COMMENT 'Last name',
cr_tmp_obs varchar(150) DEFAULT NULL COMMENT 'Observatory',
cr_tmp_add1 varchar(60) DEFAULT NULL COMMENT 'Address 1',
cr_tmp_add2 varchar(60) DEFAULT NULL COMMENT 'Address 2',
cr_tmp_city varchar(50) DEFAULT NULL COMMENT 'City',
cr tmp state varchar(30) DEFAULT NULL COMMENT 'State',
cr_tmp_country varchar(50) DEFAULT NULL COMMENT 'Country',
cr tmp post varchar(30) DEFAULT NULL COMMENT 'Postal code',
cr_tmp_url varchar(255) DEFAULT NULL COMMENT 'Web address',
cr_tmp_phone varchar(50) DEFAULT NULL COMMENT 'Phone',
cr_tmp_phone2 varchar(50) DEFAULT NULL COMMENT 'Phone 2',
cr_tmp_fax varchar(60) DEFAULT NULL COMMENT 'Fax',
cr_tmp_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cr_tmp_uname varchar(30) NOT NULL COMMENT 'Username',
cr_tmp_pwd varchar(60) DEFAULT NULL COMMENT 'Password',
PRIMARY KEY (cr_tmp_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Temporary registry';
-- Table structure for table 'cs'
CREATE TABLE cs (
 cs_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
cs_code varchar(30) DEFAULT NULL COMMENT 'Code',
cs_type enum('S','A') DEFAULT NULL COMMENT 'Type (A=Airplane, S=Satellite)',
cs_name varchar(50) DEFAULT NULL COMMENT 'Name',
cs_stime datetime DEFAULT NULL COMMENT 'Start time',
cs_stime_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
cs_etime datetime DEFAULT NULL COMMENT 'End time',
cs_etime_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
cs_desc varchar(255) DEFAULT NULL COMMENT 'Description',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
```

```
cs_loaddate datetime DEFAULT NULL COMMENT 'Load date',
cs_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (cs id),
UNIQUE KEY `CODE` (cs_code,cc_id,cs_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Satellite';
  _____
-- Table structure for table 'cu'
CREATE TABLE cu (
cu_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
cu_file varchar(255) NOT NULL COMMENT 'Original file name',
cu_type enum(T','N','U','T','W','F') DEFAULT NULL COMMENT 'Type of upload: I=In database, N=Not in database,
U=Undone, T=Temporary, W=translated to WOVOML, F=Failed',
 cu_com text COMMENT 'Comments or error message',
cu_loaddate datetime DEFAULT NULL COMMENT 'Load date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (cu id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Upload history';
-- Table structure for table 'dd_ang'
CREATE TABLE dd ang (
dd ang id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
dd_ang_code varchar(30) DEFAULT NULL COMMENT 'Code',
di gen id mediumint(8) unsigned DEFAULT NULL COMMENT 'General deformation instrument ID',
ds_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Instrument station ID',
 ds_id1 mediumint(8) unsigned DEFAULT NULL COMMENT 'Target station 1 ID',
 ds_id2 mediumint(8) unsigned DEFAULT NULL COMMENT 'Target station 2 ID',
dd_ang_time datetime DEFAULT NULL COMMENT 'Measurement time',
 dd_ang_time_unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
 dd_ang_hort1 float DEFAULT NULL COMMENT 'Horizontal angle to target 1',
 dd_ang_hort2 float DEFAULT NULL COMMENT 'Horizontal angle to target 2',
dd_ang_vert1 float DEFAULT NULL COMMENT 'Vertical angle to target 1',
dd ang vert2 float DEFAULT NULL COMMENT 'Vertical angle to target 2'.
 dd ang herr1 float DEFAULT NULL COMMENT 'Horizontal error on angle 1',
 dd_ang_herr2 float DEFAULT NULL COMMENT 'Horizontal error on angle 2',
 dd_ang_verr1 float DEFAULT NULL COMMENT 'Vertical error on angle 1',
dd_ang_verr2 float DEFAULT NULL COMMENT 'Vertical error on angle 2',
dd_ang_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
dd_ang_loaddate datetime DEFAULT NULL COMMENT 'Load date',
dd_ang_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (dd ang id),
 UNIQUE KEY `CODE` (dd_ang_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Angle';
  _____
```

-- Table structure for table 'dd_edm'

```
CREATE TABLE dd_edm (
dd edm id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
dd_edm_code varchar(30) DEFAULT NULL COMMENT 'Code',
di_gen_id mediumint(8) unsigned DEFAULT NULL COMMENT 'General deformation instrument ID',
ds_id1 mediumint(8) unsigned DEFAULT NULL COMMENT 'Instrument station ID',
ds_id2 mediumint(8) unsigned DEFAULT NULL COMMENT 'Target station ID',
dd_edm_time datetime DEFAULT NULL COMMENT 'Measurement time',
 dd edm time unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
 dd edm line double DEFAULT NULL COMMENT 'Line length',
 dd edm_cerr float DEFAULT NULL COMMENT 'Constant error',
 dd_edm_serr float DEFAULT NULL COMMENT 'Scale error',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 dd_edm_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 dd_edm_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (dd_edm_id),
UNIQUE KEY `CODE` (dd_edm_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='EDM';
-- Table structure for table 'dd gps'
CREATE TABLE dd_gps (
 dd_gps_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
dd_gps_code varchar(30) DEFAULT NULL COMMENT 'Code',
di gen id mediumint(8) unsigned DEFAULT NULL COMMENT 'General deformation instrument ID',
ds_id mediumint(8) unsigned DEFAULT NULL COMMENT 'GPS station ID',
ds_id_ref1 mediumint(8) unsigned DEFAULT NULL COMMENT 'Reference station 1 ID',
 ds_id_ref2 mediumint(8) unsigned DEFAULT NULL COMMENT 'Reference station 2 ID',
dd_gps_time datetime DEFAULT NULL COMMENT 'Measurement time',
 dd_gps_time_unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
 dd_gps_lat double DEFAULT NULL COMMENT 'Latitude',
dd_gps_lon double DEFAULT NULL COMMENT 'Longitude',
 dd_gps_elev double DEFAULT NULL COMMENT 'Elevation',
 dd_gps_nserr double DEFAULT NULL COMMENT 'N-S error',
 dd_gps_ewerr double DEFAULT NULL COMMENT 'E-W error',
dd_gps_verr float DEFAULT NULL COMMENT 'Vertical error',
dd gps software varchar(50) DEFAULT NULL COMMENT 'Position-determining software'.
 dd gps orbits varchar(255) DEFAULT NULL COMMENT 'Orbits used',
 dd_gps_dur varchar(255) DEFAULT NULL COMMENT 'Duration of the solution',
 dd_gps_qual enum('E','G','P','U') DEFAULT NULL COMMENT 'Quality: E=Excellent, G=Good, P=Poor,
U=Unknown'.
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
dd_gps_loaddate datetime DEFAULT NULL COMMENT 'Load date',
dd_gps_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (dd_gps_id),
 UNIQUE KEY `CODE` (dd_gps_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='GPS';
-- Table structure for table 'dd_gpv'
```

```
CREATE TABLE dd_gpv (
 dd_gpv_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
dd gpv code varchar(30) DEFAULT NULL COMMENT 'Code',
di_gen_id mediumint(8) unsigned DEFAULT NULL COMMENT 'General deformation instrument',
ds_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Deformation station ID',
dd gpv stime datetime DEFAULT NULL COMMENT 'Start time',
dd_gpv_stime_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
 dd_gpv_etime datetime DEFAULT NULL COMMENT 'End time',
 dd gpv etime unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
 dd gpv dmag float DEFAULT NULL COMMENT 'Displacement magnitude',
 dd_gpv_daz float DEFAULT NULL COMMENT 'Displacement azimuth',
 dd_gpv_vincl float DEFAULT NULL COMMENT 'Vector inclination',
 dd_gpv_N float DEFAULT NULL COMMENT 'North displacement',
 dd_gpv_E float DEFAULT NULL COMMENT 'East displacement',
 dd_gpv_vert float DEFAULT NULL COMMENT 'Vertical displacement',
 dd_gpv_dherr float DEFAULT NULL COMMENT 'Magnitude horizontal uncertainty',
 dd_gpv_dnerr float DEFAULT NULL COMMENT 'North displacement uncertainty',
 dd_gpv_deerr float DEFAULT NULL COMMENT 'East displacement uncertainty',
 dd_gpv_dverr float DEFAULT NULL COMMENT 'Magnitude vertical uncertainty',
 dd_gpv_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 dd gpv loaddate datetime DEFAULT NULL COMMENT 'Load date',
 dd_gpv_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (dd_gpv_id),
 UNIQUE KEY `CODE` (dd_gpv_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='GPS vector';
-- Table structure for table 'dd_lev'
CREATE TABLE dd_lev (
dd_lev_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
dd_lev_code varchar(30) DEFAULT NULL COMMENT 'Code',
di_gen_id mediumint(8) unsigned DEFAULT NULL COMMENT 'General deformation instrument ID',
 ds_id_ref mediumint(8) unsigned DEFAULT NULL COMMENT 'Reference benchmark ID',
ds_id1 mediumint(8) unsigned DEFAULT NULL COMMENT 'First benchmark (n) ID',
ds_id2 mediumint(8) unsigned DEFAULT NULL COMMENT 'Second benchmark (n+1) ID',
dd lev ord mediumint(9) DEFAULT NULL COMMENT 'Order'.
dd lev class varchar(30) DEFAULT NULL COMMENT 'Class',
dd_lev_time datetime DEFAULT NULL COMMENT 'Survey date',
dd_lev_time_unc datetime DEFAULT NULL COMMENT 'Survey date uncertainty',
dd_lev_delev float DEFAULT NULL COMMENT 'Elevation change',
dd_lev_herr float DEFAULT NULL COMMENT 'Elevation change uncertainty',
dd_lev_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
dd_lev_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 dd_lev_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (dd lev id),
 UNIQUE KEY `CODE` (dd_lev_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Leveling';
```

```
-- Table structure for table 'dd sar'
CREATE TABLE dd sar (
 dd sar id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
dd_sar_code varchar(30) DEFAULT NULL COMMENT 'Code',
vd id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
di_gen_id mediumint(8) unsigned DEFAULT NULL COMMENT 'General deformation instrument ID',
dd_sar_slat double DEFAULT NULL COMMENT 'Starting latitude',
dd sar slon double DEFAULT NULL COMMENT 'Starting longitude',
 dd_sar_datum varchar(30) DEFAULT NULL COMMENT 'Datum',
 dd_sar_spos enum('BLC','TLC') DEFAULT NULL COMMENT 'Starting position: BLC=Bottom Left Corner,
TLC=Top Left Corner',
 dd sar rord varchar(30) DEFAULT NULL COMMENT 'Row order',
 dd_sar_nrows smallint(5) unsigned DEFAULT NULL COMMENT 'Number of rows',
 dd_sar_ncols smallint(5) unsigned DEFAULT NULL COMMENT 'Number of columns',
 dd_sar_units varchar(30) DEFAULT NULL COMMENT 'Units',
 dd_sar_ndata varchar(30) DEFAULT NULL COMMENT 'Null data value',
 dd_sar_loc varchar(255) DEFAULT NULL COMMENT 'Location',
 dd_sar_pair enum('P','S','U') DEFAULT NULL COMMENT 'Flag: P=Pair, S=Stacked, U=Unknown',
 dd_sar_desc varchar(255) DEFAULT NULL COMMENT 'Description',
dd sar dem varchar(50) DEFAULT NULL COMMENT 'DEM',
dd sar dord varchar(30) DEFAULT NULL COMMENT 'Data order',
 dd_sar_img1_time datetime DEFAULT NULL COMMENT 'Date of image 1',
dd sar img1 time unc datetime DEFAULT NULL COMMENT 'Date of image 1 uncertainty',
dd_sar_img2_time datetime DEFAULT NULL COMMENT 'Date of image 2',
 dd_sar_img2_time_unc datetime DEFAULT NULL COMMENT 'Date of image 2 uncertainty',
 dd_sar_pixsiz float DEFAULT NULL COMMENT 'Pixel size',
dd_sar_spacing float DEFAULT NULL COMMENT 'Spacing of rows and columns',
 dd_sar_lookang float DEFAULT NULL COMMENT 'Look angle',
 dd_sar_limb enum('ASC','DES') DEFAULT NULL COMMENT 'Limb: ASC=Ascending, DES=Descending',
dd_sar_jpg varchar(255) DEFAULT NULL COMMENT 'JPG of interferogram',
dd_sar_geotiff varchar(255) DEFAULT NULL COMMENT 'GEOTIFF of interferogram',
 dd_sar_prometh varchar(255) DEFAULT NULL COMMENT 'Processing method',
 dd_sar_softwr varchar(255) DEFAULT NULL COMMENT 'Software',
 dd_sar_dem_qual enum('E','G','F','U') DEFAULT NULL COMMENT 'DEM quality: E=Excellent, G=Good, F=Fair,
U=Unknown',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 dd_sar_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 dd_sar_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (dd_sar_id),
 UNIQUE KEY `CODE` (dd_sar_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='InSAR image';
-- Table structure for table 'dd_srd'
CREATE TABLE dd_srd (
dd srd id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
dd_sar_id mediumint(8) unsigned DEFAULT NULL COMMENT 'InSAR image ID',
 dd_srd_numb int(10) unsigned DEFAULT NULL COMMENT 'Number',
 dd_srd_dchange float DEFAULT NULL COMMENT 'Range of change',
 dd_srd_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (dd_srd_id),
```

UNIQUE KEY `PIXEL NUMBER` (dd_sar_id,dd_srd_numb)

```
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='InSAR image pixel';
-- Table structure for table 'dd_str'
CREATE TABLE dd_str (
dd str id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
dd str code varchar(30) DEFAULT NULL COMMENT 'Code',
ds_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Deformation station ID',
 di tlt id smallint(5) unsigned DEFAULT NULL COMMENT 'Strainmeter ID',
 dd_str_time datetime DEFAULT NULL COMMENT 'Measurement time',
 dd_str_time_unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
 dd_str_comp1 double DEFAULT NULL COMMENT 'Component 1',
 dd_str_comp2 double DEFAULT NULL COMMENT 'Component 2',
 dd_str_comp3 double DEFAULT NULL COMMENT 'Component 3',
 dd_str_comp4 double DEFAULT NULL COMMENT 'Component 4',
 dd_str_err1 double DEFAULT NULL COMMENT 'Component 1 error',
 dd_str_err2 double DEFAULT NULL COMMENT 'Component 2 error',
 dd str err3 double DEFAULT NULL COMMENT 'Component 3 error',
 dd str err4 double DEFAULT NULL COMMENT 'Component 4 error',
 dd str vdstr double DEFAULT NULL COMMENT 'Volumetric strain change',
 dd str vdstr err double DEFAULT NULL COMMENT 'Volumetric strain change error',
 dd_str_sstr_ax1 double DEFAULT NULL COMMENT 'Shear strain of axis 1',
 dd_str_azi_ax1 float DEFAULT NULL COMMENT 'Azimuth of axis 1',
dd_str_sstr_ax2 double DEFAULT NULL COMMENT 'Shear strain of axis 2',
dd_str_azi_ax2 float DEFAULT NULL COMMENT 'Azimuth of axis 2',
dd_str_sstr_ax3 double DEFAULT NULL COMMENT 'Shear strain of axis 3',
dd str azi ax3 float DEFAULT NULL COMMENT 'Azimuth of axis 3',
dd_str_stderr1 double DEFAULT NULL COMMENT 'Strain for axis 1 uncertainty',
dd_str_stderr2 double DEFAULT NULL COMMENT 'Strain for axis 2 uncertainty',
 dd_str_stderr3 double DEFAULT NULL COMMENT 'Strain for axis 3 uncertainty',
 dd_str_pmax double DEFAULT NULL COMMENT 'Maximum principal strain',
 dd_str_pmaxerr double DEFAULT NULL COMMENT 'Maximum principal strain uncertainty',
 dd_str_pmin double DEFAULT NULL COMMENT 'Minimum principal strain',
 dd_str_pminerr double DEFAULT NULL COMMENT 'Minimum principal strain uncertainty',
 dd_str_pmax_dir float DEFAULT NULL COMMENT 'Maximum principal strain direction',
 dd_str_pmax_direrr float DEFAULT NULL COMMENT 'Maximum principal strain direction uncertainty',
dd_str_pmin_dir float DEFAULT NULL COMMENT 'Minimum principal strain direction',
dd_str_pmin_direrr float DEFAULT NULL COMMENT 'Minimum principal strain direction uncertainty',
dd str com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
dd str loaddate datetime DEFAULT NULL COMMENT 'Load date',
dd_str_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (dd_str_id),
 UNIQUE KEY `CODE` (dd_str_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Strain';
-- Table structure for table 'dd tlt'
CREATE TABLE dd_tlt (
 dd_tlt_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
```

dd_tlt_code varchar(30) DEFAULT NULL COMMENT 'Code',

```
ds_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Deformation station ID',
di_tlt_id smallint(5) unsigned DEFAULT NULL COMMENT 'Tiltmeter ID',
dd_tlt_time datetime DEFAULT NULL COMMENT 'Measurement time',
dd_tlt_timecsec decimal(2,2) DEFAULT NULL COMMENT 'Centisecond precision for measurement time',
dd_tlt_time_unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
dd_tlt_timecsec_unc decimal(2,2) DEFAULT NULL COMMENT 'Centisecond precision for measurement time
uncertainty',
 dd tlt srate double DEFAULT NULL COMMENT 'Sampling rate',
dd_tlt1 double DEFAULT NULL COMMENT 'Tilt measurement 1',
dd tlt2 double DEFAULT NULL COMMENT 'Tilt measurement 2',
 dd_tlt_err1 double DEFAULT NULL COMMENT 'Tilt 1 error',
 dd_tlt_err2 double DEFAULT NULL COMMENT 'Tilt 2 error',
dd_tlt_proc_flg enum('P','R') DEFAULT NULL COMMENT 'Flag: P=Processed, R=Raw',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 dd_tlt_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 dd_tlt_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (dd_tlt_id),
UNIQUE KEY `CODE` (dd_tlt_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Electronic tilt';
-- Table structure for table 'dd tlv'
CREATE TABLE dd_tlv (
dd_tlv_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
dd_tlv_code varchar(30) DEFAULT NULL COMMENT 'Code',
ds id mediumint(8) unsigned DEFAULT NULL COMMENT 'Deformation station ID',
di_tlt_id smallint(5) unsigned DEFAULT NULL COMMENT 'Tiltmeter ID',
dd_tlv_stime datetime DEFAULT NULL COMMENT 'Start time',
 dd tly stime unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
dd_tlv_etime datetime DEFAULT NULL COMMENT 'End time',
 dd_tlv_etime_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
 dd_tlv_mag float DEFAULT NULL COMMENT 'Magnitude',
dd_tlv_azi float DEFAULT NULL COMMENT 'Azimuth',
dd_tlv_magerr float DEFAULT NULL COMMENT 'Magnitude error',
dd_tlv_azierr float DEFAULT NULL COMMENT 'Azimuth error',
dd_tlv_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
dd tly loaddate datetime DEFAULT NULL COMMENT 'Load date'.
dd tly pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (dd tlv id),
 UNIQUE KEY `CODE` (dd_tlv_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Tilt vector';
-- Table structure for table 'di gen'
CREATE TABLE di_gen (
di_gen_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
di_gen_code varchar(30) DEFAULT NULL COMMENT 'Code',
ds_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Deformation station ID',
 di_gen_name varchar(255) DEFAULT NULL COMMENT 'Name',
```

```
di gen type varchar(50) DEFAULT NULL COMMENT 'Type',
 di_gen_units varchar(30) DEFAULT NULL COMMENT 'Measured units',
 di_gen_res float DEFAULT NULL COMMENT 'Resolution',
di gen stn float DEFAULT NULL COMMENT 'Signal to noise',
 di_gen_stime datetime DEFAULT NULL COMMENT 'Start time',
 di_gen_stime_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
 di gen etime datetime DEFAULT NULL COMMENT 'End time',
di_gen_etime_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
 di_gen_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
 di gen loaddate datetime DEFAULT NULL COMMENT 'Load date',
 di_gen_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (di gen id),
UNIQUE KEY `CODE` (di_gen_code,cc_id,di_gen_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='General deformation instrument';
-- Table structure for table 'di_tlt'
CREATE TABLE di tlt (
di tlt id smallint(5) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
di_tlt_code varchar(30) DEFAULT NULL COMMENT 'Code',
ds_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Deformation station ID',
di_tlt_name varchar(255) DEFAULT NULL COMMENT 'Name',
di_tlt_type varchar(50) DEFAULT NULL COMMENT 'Type',
di_tlt_depth float DEFAULT NULL COMMENT 'Depth',
di tlt units varchar(30) DEFAULT NULL COMMENT 'Measured units',
di_tlt_res float DEFAULT NULL COMMENT 'Resolution',
 di_tlt_dir1 float DEFAULT NULL COMMENT 'Azimuth of direction 1',
 di_tlt_dir2 float DEFAULT NULL COMMENT 'Azimuth of direction 2',
 di_tlt_dir3 float DEFAULT NULL COMMENT 'Azimuth of direction 3',
 di_tlt_dir4 float DEFAULT NULL COMMENT 'Azimuth of direction 4',
 di_tlt_econv1 float DEFAULT NULL COMMENT 'Electronic conversion for component 1',
 di_tlt_econv2 float DEFAULT NULL COMMENT 'Electronic conversion for component 2',
 di_tlt_econv3 float DEFAULT NULL COMMENT 'Electronic conversion for component 3',
 di_tlt_econv4 float DEFAULT NULL COMMENT 'Electronic conversion for component 4',
 di_tlt_stime datetime DEFAULT NULL COMMENT 'Start time',
di_tlt_stime_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
di tlt etime datetime DEFAULT NULL COMMENT 'End time'.
di tlt etime unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
di_tlt_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
di_tlt_loaddate datetime DEFAULT NULL COMMENT 'Load date',
di_tlt_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (di tlt id),
 UNIQUE KEY `CODE` (di_tlt_code,cc_id,di_tlt_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Tilt/Strain instrument';
-- Table structure for table 'ds'
```

```
ds id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
ds_code varchar(30) DEFAULT NULL COMMENT 'Code',
ds_name varchar(30) DEFAULT NULL COMMENT 'Name',
cn id smallint(5) unsigned DEFAULT NULL COMMENT 'Deformation network ID',
ds_perm varchar(255) DEFAULT NULL COMMENT 'List of permanent instruments',
 ds_nlat double DEFAULT NULL COMMENT 'Nominal latitude',
 ds nlon double DEFAULT NULL COMMENT 'Nominal longitude',
ds_nelev float DEFAULT NULL COMMENT 'Nominal elevation',
ds_herr_loc float DEFAULT NULL COMMENT 'Horizontal precision of nominal location',
 ds stime datetime DEFAULT NULL COMMENT 'Start date',
 ds stime unc datetime DEFAULT NULL COMMENT 'Start date uncertainty',
 ds_etime datetime DEFAULT NULL COMMENT 'End date',
 ds_etime_unc datetime DEFAULT NULL COMMENT 'End date uncertainty',
 ds_utc float DEFAULT NULL COMMENT 'Difference from UTC',
 ds_rflag enum('Y','N') DEFAULT NULL COMMENT 'Reference station flag: Y=Yes, N=No',
 ds_desc varchar(255) DEFAULT NULL COMMENT 'Description',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
 ds_loaddate datetime DEFAULT NULL COMMENT 'Load date',
ds_pubdate datetime DEFAULT NULL COMMENT 'Publish dat',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (ds_id),
 UNIOUE KEY `CODE` (ds_code,cc_id,ds_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Deformation station';
-- Table structure for table 'ed'
CREATE TABLE ed (
ed id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
ed_code varchar(30) DEFAULT NULL COMMENT 'Code',
 vd id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
ed_name varchar(60) DEFAULT NULL COMMENT 'Name',
ed_nar varchar(255) DEFAULT NULL COMMENT 'Narrative',
ed_stime datetime DEFAULT NULL COMMENT 'Start time',
ed_stime_bc smallint(6) DEFAULT NULL COMMENT 'Start time before Christ',
 ed_stime_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
 ed_etime datetime DEFAULT NULL COMMENT 'End time',
 ed_etime_bc smallint(6) DEFAULT NULL COMMENT 'End time before Christ',
 ed_etime_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
ed climax datetime DEFAULT NULL COMMENT 'Onset of climax'.
ed climax bc smallint(6) DEFAULT NULL COMMENT 'Climax time before Christ',
 ed_climax_unc datetime DEFAULT NULL COMMENT 'Onset of climax uncertainty',
ed_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Contact ID',
ed_loaddate datetime DEFAULT NULL COMMENT 'Load date',
ed_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (ed_id),
 UNIQUE KEY `CODE` (ed_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Eruption';
-- Table structure for table 'ed_for'
```

```
CREATE TABLE ed for (
 ed_for_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
ed_for_code varchar(30) DEFAULT NULL COMMENT 'Code',
 vd id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
ed_phs_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Eruption phase ID',
 ed_for_desc varchar(255) DEFAULT NULL COMMENT 'Description',
ed for open datetime DEFAULT NULL COMMENT 'Earliest expected start time of eruption',
ed_for_open_unc datetime DEFAULT NULL COMMENT 'Earliest expected start time of eruption uncertainty',
ed_for_close datetime DEFAULT NULL COMMENT 'Latest expected start time of eruption',
 ed for close unc datetime DEFAULT NULL COMMENT 'Latest expected start time of eruption uncertainty',
 ed for time datetime DEFAULT NULL COMMENT 'Issue date',
 ed_for_time_unc datetime DEFAULT NULL COMMENT 'Issue date uncertainty',
 ed_for_tsucc enum('Y','N','P') DEFAULT NULL COMMENT 'Success on time: Y=Yes, N=No, P=Partly',
 ed_for_msucc enum('Y','N','P') DEFAULT NULL COMMENT 'Success on magnitude: Y=Yes, N=No, P=Partly',
 ed_for_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Contact ID',
 ed_for_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 ed_for_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (ed_for_id),
 UNIQUE KEY `CODE` (ed_for_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Eruption forecast';
-- Table structure for table 'ed_phs'
CREATE TABLE ed_phs (
 ed phs id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
ed phs code varchar(30) DEFAULT NULL COMMENT 'Code',
 ed_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Eruption ID',
 ed phs phsnum float DEFAULT NULL COMMENT 'Phase number',
 ed_phs_stime datetime DEFAULT NULL COMMENT 'Start time',
 ed_phs_stime_bc smallint(6) DEFAULT NULL COMMENT 'Year of start time before Christ',
 ed_phs_stime_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
 ed_phs_etime datetime DEFAULT NULL COMMENT 'End time',
 ed_phs_etime_bc smallint(6) DEFAULT NULL COMMENT 'Year of end time before Christ',
 ed_phs_etime_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
 ed_phs_desc varchar(255) DEFAULT NULL COMMENT 'Description',
 ed_phs_vei mediumint(9) DEFAULT NULL COMMENT 'VEI (Volcanic Explosivity Index)',
 ed phs max lext float DEFAULT NULL COMMENT 'Maximum lava extrusion rate'.
 ed phs max expdis float DEFAULT NULL COMMENT 'Maximum explosive mass discharge rate',
 ed_phs_dre float DEFAULT NULL COMMENT 'DRE',
 ed_phs_mix enum('Y','N','U') DEFAULT NULL COMMENT 'Evidence of magma mixing: Y=Yes, N=No,
U=Unknown'.
 ed_phs_col float DEFAULT NULL COMMENT 'Column height',
ed_phs_coldet varchar(255) DEFAULT NULL COMMENT 'Column height determination',
ed_phs_minsio2_mg float DEFAULT NULL COMMENT 'Minimum SiO2 of matrix glass',
ed_phs_maxsio2_mg float DEFAULT NULL COMMENT 'Maximum SiO2 of matrix glass',
 ed_phs_minsio2_wr float DEFAULT NULL COMMENT 'Minimum SiO2 of whole rock',
 ed phs maxsio2 wr float DEFAULT NULL COMMENT 'Maximum SiO2 of whole rock',
 ed_phs_totxtl float DEFAULT NULL COMMENT 'Total crystallinity',
 ed_phs_phenc float DEFAULT NULL COMMENT 'Phenocryst content',
 ed_phs_phena varchar(255) DEFAULT NULL COMMENT 'Phenocryst assemblage',
 ed_phs_h2o float DEFAULT NULL COMMENT 'Pre-eruption water content',
 ed_phs_h2o_xtl varchar(255) DEFAULT NULL COMMENT 'Description of phenocryst and melt inclusion',
 ed_phs_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Contact ID',
```

```
ed_phs_loaddate datetime DEFAULT NULL COMMENT 'Load date',
ed_phs_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (ed_phs_id),
UNIQUE KEY `CODE` (ed_phs_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Eruption phase';
-- Table structure for table 'ed vid'
CREATE TABLE ed vid (
ed_vid_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
ed_vid_code varchar(30) DEFAULT NULL COMMENT 'Code',
 vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
 ed_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Eruption ID',
 ed_phs_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Eruption phase ID',
 ed_vid_link varchar(255) DEFAULT NULL COMMENT 'Link',
 ed_vid_stime datetime DEFAULT NULL COMMENT 'Start time',
 ed vid stime unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
 ed vid length time DEFAULT NULL COMMENT 'Length',
 ed_vid_desc varchar(255) DEFAULT NULL COMMENT 'Description',
ed vid com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Contact ID',
ed_vid_loaddate datetime DEFAULT NULL COMMENT 'Load date',
ed_vid_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (ed_vid_id),
 UNIQUE KEY 'CODE' (ed vid code,cc id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Eruption video';
-- Table structure for table 'fd_ele'
CREATE TABLE fd_ele (
fd_ele_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
fd_ele_code varchar(30) DEFAULT NULL COMMENT 'Code',
fs id1 mediumint(8) unsigned DEFAULT NULL COMMENT 'ID of fields station from which the electrode is
subtracted'.
 fs_id2 mediumint(8) unsigned DEFAULT NULL COMMENT ID of fields station for the electrode that"s being
subtracted'.
 fi id mediumint(8) unsigned DEFAULT NULL COMMENT 'Fields instrument ID',
fd_ele_continuous enum('C','P') DEFAULT NULL COMMENT 'Flag: C=Continuous, P=Periodic',
 fd_ele_time datetime DEFAULT NULL COMMENT 'Measurement time',
 fd_ele_time_unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
 fd_ele_field float DEFAULT NULL COMMENT 'Field',
 fd_ele_ferr float DEFAULT NULL COMMENT 'Field uncertainty',
 fd ele dir float DEFAULT NULL COMMENT 'Direction',
 fd_ele_hpass float DEFAULT NULL COMMENT 'High pass filter frequency',
 fd_ele_lpass float DEFAULT NULL COMMENT 'Low pass filter frequency',
 fd_ele_spot float DEFAULT NULL COMMENT 'Self potential',
 fd_ele_spot_err float DEFAULT NULL COMMENT 'Self potential uncertainty',
 fd_ele_ares float DEFAULT NULL COMMENT 'Apparent resistivity',
 fd_ele_ares_err float DEFAULT NULL COMMENT 'Apparent resistivity uncertainty',
```

fd_ele_dres float DEFAULT NULL COMMENT 'Direct resistivity',

```
fd_ele_dres_err float DEFAULT NULL COMMENT 'Direct resistivity uncertainty',
 fd_ele_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 fd ele loaddate datetime DEFAULT NULL COMMENT 'Load date',
 fd_ele_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (fd ele id),
 UNIQUE KEY `CODE` (fd_ele_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Electric fields';
-- Table structure for table 'fd gra'
CREATE TABLE fd_gra (
fd_gra_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
fd_gra_code varchar(30) DEFAULT NULL COMMENT 'Code',
 fs_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Fields station ID',
 fs_id_ref mediumint(8) unsigned DEFAULT NULL COMMENT 'Reference station ID',
 fi id mediumint(8) unsigned DEFAULT NULL COMMENT 'Fields instrument ID',
 fd gra time datetime DEFAULT NULL COMMENT 'Measurement time',
 fd_gra_time_unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
 fd gra fstr double DEFAULT NULL COMMENT 'Strength',
 fd_gra_ferr double DEFAULT NULL COMMENT 'Strength uncertainty',
 fd_gra_vdisp varchar(255) DEFAULT NULL COMMENT 'Associated vertical displacement: Y=Yes, N=No,
U=Unknown',
 fd_gra_gwater varchar(255) DEFAULT NULL COMMENT 'Associated change in groundwater level: Y=Yes, N=No,
U=Unknown',
 fd gra com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 fd_gra_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 fd_gra_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (fd_gra_id),
 UNIQUE KEY `CODE` (fd_gra_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Gravity';
-- Table structure for table 'fd mag'
CREATE TABLE fd_mag (
fd_mag_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
fd_mag_code varchar(30) DEFAULT NULL COMMENT 'Code',
fs_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Fields station ID',
fs_id_ref mediumint(8) unsigned DEFAULT NULL COMMENT 'Reference station ID',
 fi_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Fields instrument ID',
 fd_mag_time datetime DEFAULT NULL COMMENT 'Measurement time',
 fd mag time unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
 fd_mag_f double DEFAULT NULL COMMENT 'F',
 fd_mag_compx double DEFAULT NULL COMMENT 'X',
 fd_mag_compy double DEFAULT NULL COMMENT 'Y',
 fd_mag_compz double DEFAULT NULL COMMENT 'Z',
 fd_mag_ferr float DEFAULT NULL COMMENT 'Total field strength uncertainty',
 fd_mag_errx float DEFAULT NULL COMMENT 'Component X uncertainty',
 fd_mag_erry float DEFAULT NULL COMMENT 'Component Y uncertainty',
```

```
fd_mag_errz float DEFAULT NULL COMMENT 'Component Z uncertainty',
 fd_mag_highpass float DEFAULT NULL COMMENT 'High pass',
 fd_mag_lowpass float DEFAULT NULL COMMENT 'Low pass',
 fd mag com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 fd_mag_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 fd mag pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (fd_mag_id),
 UNIQUE KEY 'CODE' (fd mag code,cc id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Magnetic fields';
-- Table structure for table 'fd_mgv'
CREATE TABLE fd_mgv (
fd_mgv_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
fd_mgv_code varchar(30) DEFAULT NULL COMMENT 'Code',
 fs id mediumint(8) unsigned DEFAULT NULL COMMENT 'Fields station ID',
 fi id mediumint(8) unsigned DEFAULT NULL COMMENT 'Fields instrument ID',
 fd_mgv_time datetime DEFAULT NULL COMMENT 'Measurement time',
 fd mgv time unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
 fd_mgv_dec float DEFAULT NULL COMMENT 'Declination',
 fd_mgv_incl float DEFAULT NULL COMMENT 'Inclination',
 fd_mgv_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 fd_mgv_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 fd_mgv_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (fd_mgv_id),
 UNIQUE KEY `CODE` (fd_mgv_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Magnetic vector';
-- Table structure for table 'fi'
CREATE TABLE fi (
 fi id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
 fi code varchar(30) DEFAULT NULL COMMENT 'Code',
 fs_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Fields station ID',
fi_name varchar(255) DEFAULT NULL COMMENT 'Name',
 fi_type varchar(255) DEFAULT NULL COMMENT 'Type',
 fi_res float DEFAULT NULL COMMENT 'Resolution',
 fi_units varchar(255) DEFAULT NULL COMMENT 'Measured units',
 fi_rate float DEFAULT NULL COMMENT 'Sampling rate',
 fi_filter varchar(255) DEFAULT NULL COMMENT 'Filter type',
 fi_orient varchar(255) DEFAULT NULL COMMENT 'Orientation',
 fi_calc varchar(255) DEFAULT NULL COMMENT 'Calculation',
 fi_stime datetime DEFAULT NULL COMMENT 'Start date',
 fi_stime_unc datetime DEFAULT NULL COMMENT 'Start date uncertainty',
 fi_etime datetime DEFAULT NULL COMMENT 'End date',
 fi_etime_unc datetime DEFAULT NULL COMMENT 'End date uncertainty',
fi_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
```

```
fi_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 fi_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (fi id),
UNIQUE KEY `CODE` (fi_code,cc_id,fi_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Fields instrument';
-- Table structure for table 'fs'
CREATE TABLE fs (
fs_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
fs_code varchar(30) DEFAULT NULL COMMENT 'Code',
cn_id smallint(5) unsigned DEFAULT NULL COMMENT 'Fields network ID',
 fs_name varchar(50) DEFAULT NULL COMMENT 'Name',
 fs_lat double DEFAULT NULL COMMENT 'Latitude',
 fs_lon double DEFAULT NULL COMMENT 'Longitude',
 fs_elev float DEFAULT NULL COMMENT 'Elevation',
 fs inst varchar(255) DEFAULT NULL COMMENT 'Instruments list',
 fs utc float DEFAULT NULL COMMENT 'Difference from UTC',
 fs_stime datetime DEFAULT NULL COMMENT 'Start date',
 fs stime unc datetime DEFAULT NULL COMMENT 'Start date uncertainty',
fs_etime datetime DEFAULT NULL COMMENT 'End date',
 fs_etime_unc datetime DEFAULT NULL COMMENT 'End date uncertainty',
 fs_desc varchar(255) DEFAULT NULL COMMENT 'Description',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
 fs_loaddate datetime DEFAULT NULL COMMENT 'Load date',
fs_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (fs id),
UNIQUE KEY `CODE` (fs_code,cc_id,fs_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Fields station';
  -----
-- Table structure for table 'gd'
CREATE TABLE gd (
 gd id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
gd_code varchar(30) DEFAULT NULL COMMENT 'Code',
gs_id smallint(5) unsigned DEFAULT NULL COMMENT 'Gas station ID',
gi_id smallint(5) unsigned DEFAULT NULL COMMENT 'Gas instrument ID',
 gd_time datetime DEFAULT NULL COMMENT 'Sampling/measurement time',
 gd_time_unc datetime DEFAULT NULL COMMENT 'Sampling/measurement time uncertainty',
 gd_gtemp float DEFAULT NULL COMMENT 'Gas temperature',
 gd_bp float DEFAULT NULL COMMENT 'Barometric pressure',
 gd_flow float DEFAULT NULL COMMENT 'Gas emission rate',
gd_species enum('CO2','SO2','H2S','HCl','HF','CH4','H2','CO','3He4He','d13C','d34S','d18O','dD') DEFAULT NULL
COMMENT 'Species or ratio of gas reported',
 gd_waterfree_flag enum('Y','N') DEFAULT NULL COMMENT 'Water free gas: Y=Yes, N=No',
 gd_units varchar(30) DEFAULT NULL COMMENT 'Reported units',
 gd_concentration float DEFAULT NULL COMMENT 'Gas concentration',
 gd_concentration_err float DEFAULT NULL COMMENT 'Gas concentration uncertainty',
 gd_recalc enum('O','R') DEFAULT NULL COMMENT 'Recalculated value: O=Original, R=Recalculated',
 gd_envir varchar(255) DEFAULT NULL COMMENT 'Environmental factors',
```

```
gd_submin varchar(255) DEFAULT NULL COMMENT 'Sublimate minerals',
gd_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 gd loaddate datetime DEFAULT NULL COMMENT 'Load date',
gd_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (gd id),
 UNIQUE KEY `CODE` (gd_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Directly sampled gas';
-- Table structure for table 'gd_plu'
CREATE TABLE gd_plu (
gd_plu_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
gd_plu_code varchar(30) DEFAULT NULL COMMENT 'Code',
 vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
 gs_id smallint(5) unsigned DEFAULT NULL COMMENT 'Gas station ID',
gi id smallint(5) unsigned DEFAULT NULL COMMENT 'Gas instrument ID',
gd plu lat double DEFAULT NULL COMMENT 'Latitude',
gd_plu_lon double DEFAULT NULL COMMENT 'Longitude',
gd plu height float DEFAULT NULL COMMENT 'Height',
gd_plu_hdet varchar(255) DEFAULT NULL COMMENT 'Height determination',
 gd_plu_time datetime DEFAULT NULL COMMENT 'Measurement time',
 gd_plu_time_unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
 gd_plu_species enum('CO2','SO2','H2S','HCl','HF','CO') DEFAULT NULL COMMENT 'Species of gas reported',
 gd_plu_units varchar(30) DEFAULT NULL COMMENT 'Reported units',
 gd plu emit float DEFAULT NULL COMMENT 'CO2 emission rate',
 gd_plu_emit_err float DEFAULT NULL COMMENT 'CO2 emission rate uncertainty',
 gd_plu_recalc enum('O','R') DEFAULT NULL COMMENT 'SO2 emission rate',
gd_plu_wind float DEFAULT NULL COMMENT 'Wind speed',
gd_plu_weth varchar(255) DEFAULT NULL COMMENT 'Weather notes',
gd_plu_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 gd_plu_loaddate datetime DEFAULT NULL COMMENT 'Load date',
gd_plu_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (gd_plu_id),
 UNIQUE KEY `CODE` (gd_plu_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Plume';
-- Table structure for table 'gd_sol'
CREATE TABLE gd_sol (
 gd_sol_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
 gd sol code varchar(30) DEFAULT NULL COMMENT 'Code',
 gs_id smallint(5) unsigned DEFAULT NULL COMMENT 'Gas station ID',
 gi_id smallint(5) unsigned DEFAULT NULL COMMENT 'Gas instrument ID',
 gd_sol_time datetime DEFAULT NULL COMMENT 'Measurement time',
 gd_sol_time_unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
 gd_sol_species varchar(30) DEFAULT NULL COMMENT 'Measured species',
 gd_sol_tflux float DEFAULT NULL COMMENT 'Total flux',
 gd_sol_flux_err float DEFAULT NULL COMMENT 'Total flux uncertainty',
```

```
gd_sol_pts smallint(5) unsigned DEFAULT NULL COMMENT 'Number of points',
gd_sol_area float DEFAULT NULL COMMENT 'Area',
gd_sol_high float DEFAULT NULL COMMENT 'Highest individual flux',
gd sol htemp float DEFAULT NULL COMMENT 'Highest temperature',
gd_sol_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 gd sol loaddate datetime DEFAULT NULL COMMENT 'Load date',
 gd_sol_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (gd sol id),
 UNIQUE KEY `CODE` (gd_sol_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Soil efflux';
  _____
-- Table structure for table 'gi'
CREATE TABLE gi (
gi_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
gi code varchar(30) DEFAULT NULL COMMENT 'Code',
cs id smallint(5) unsigned DEFAULT NULL COMMENT 'Satellite ID',
 gs_id smallint(5) unsigned DEFAULT NULL COMMENT 'Gas station ID',
gi type varchar(255) DEFAULT NULL COMMENT 'Type',
gi_name varchar(255) DEFAULT NULL COMMENT 'Name',
 gi_units varchar(50) DEFAULT NULL COMMENT 'Measured units',
 gi_pres float DEFAULT NULL COMMENT 'Resolution',
 gi_stn float DEFAULT NULL COMMENT 'Signal to noise',
 gi_calib varchar(255) DEFAULT NULL COMMENT 'Calibration',
gi stime datetime DEFAULT NULL COMMENT 'Start date',
gi_stime_unc datetime DEFAULT NULL COMMENT 'Start date uncertainty',
gi_etime datetime DEFAULT NULL COMMENT 'End date',
gi_etime_unc datetime DEFAULT NULL COMMENT 'End date uncertainty',
gi_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
 gi_loaddate datetime DEFAULT NULL COMMENT 'Load date',
gi_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (gi_id),
UNIQUE KEY `CODE` (gi_code,cc_id,gi_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Gas instrument';
-- Table structure for table 'gs'
CREATE TABLE gs (
 gs_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
 gs_code varchar(30) DEFAULT NULL COMMENT 'Code',
gs name varchar(50) DEFAULT NULL COMMENT 'Name',
cn id smallint(5) unsigned DEFAULT NULL COMMENT 'Gas network ID',
 gs_lat double DEFAULT NULL COMMENT 'Latitude',
gs_lon double DEFAULT NULL COMMENT 'Longitude',
 gs_elev float DEFAULT NULL COMMENT 'Elevation',
 gs_inst varchar(255) DEFAULT NULL COMMENT 'Permanent instruments list',
gs_type varchar(255) DEFAULT NULL COMMENT 'Type of gas body',
gs_utc float DEFAULT NULL COMMENT 'Difference from UTC',
```

```
gs stime datetime DEFAULT NULL COMMENT 'Start date',
gs_stime_unc datetime DEFAULT NULL COMMENT 'Start date uncertainty',
gs_etime datetime DEFAULT NULL COMMENT 'End date',
gs etime unc datetime DEFAULT NULL COMMENT 'End date uncertainty',
gs_desc varchar(255) DEFAULT NULL COMMENT 'Description',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
 gd loaddate datetime DEFAULT NULL COMMENT 'Load date',
 gd_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (gs id),
 UNIQUE KEY `CODE` (gs_code,cc_id,gs_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Gas station';
-- Table structure for table 'hd_dly'
CREATE TABLE hd_dly (
hd_dly_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
hd dly code varchar(30) DEFAULT NULL COMMENT 'Code',
hs id smallint(5) unsigned DEFAULT NULL COMMENT 'Hydrologic station ID',
hi id smallint(5) unsigned DEFAULT NULL COMMENT 'Hydrologic instrument ID',
hd dly time datetime DEFAULT NULL COMMENT 'Measurement time',
hd_dly_time_unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
hd_dly_temp float DEFAULT NULL COMMENT 'Temperature',
hd_dly_welev double DEFAULT NULL COMMENT 'Water elevation',
hd_dly_wdepth double DEFAULT NULL COMMENT 'Water depth',
hd_dly_dwlev double DEFAULT NULL COMMENT 'Change in water level',
hd dly bp float DEFAULT NULL COMMENT 'Barometric pressure',
hd_dly_sdisc double DEFAULT NULL COMMENT 'Water discharge rate',
hd_dly_prec float DEFAULT NULL COMMENT 'Precipitation',
hd_dly_cond float DEFAULT NULL COMMENT 'Conductivity',
hd_dly_cond_err float DEFAULT NULL COMMENT 'Conductivity standard error',
hd_dly_com varchar(255) DEFAULT NULL COMMENT 'Commments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
hd_dly_loaddate datetime DEFAULT NULL COMMENT 'Load date',
hd_dly_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (hd_dly_id),
 UNIQUE KEY `CODE` (hd_dly_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Hydrologic daily data';
-- Table structure for table 'hd_smp'
CREATE TABLE hd_smp (
hd_smp_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'Hydrologic sample data ID',
hd smp code varchar(30) DEFAULT NULL COMMENT 'ID given by collector',
hs_id smallint(5) unsigned DEFAULT NULL COMMENT 'Hydrologic station ID',
hi_id smallint(5) unsigned DEFAULT NULL COMMENT 'Hydrologic instrument ID',
hd_smp_time datetime DEFAULT NULL COMMENT 'Measurement time',
hd_smp_time_unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
hd_smp_temp float DEFAULT NULL COMMENT 'Water temperature',
hd_smp_welev double DEFAULT NULL COMMENT 'Water elevation',
hd_smp_wdepth double DEFAULT NULL COMMENT 'Water depth',
```

```
hd_smp_dwlev double DEFAULT NULL COMMENT 'Change in water level',
hd_smp_bp float DEFAULT NULL COMMENT 'Barometric pressure',
hd_smp_sdisc double DEFAULT NULL COMMENT 'Spring discharge rate',
hd smp prec float DEFAULT NULL COMMENT 'Precipitation',
hd_smp_dprec float DEFAULT NULL COMMENT 'Precipitation of preceding day',
                     enum('R','FR','S','H','R-FR','R-S','R-H','FR-R','FR-S','FR-H','S-R','S-FR','S-H','H-R','H-FR','H-S')
hd_smp_tprec
DEFAULT NULL COMMENT 'Type of precipitation: R=Rain, FR=Freezing Rain, S=Snow, H=Hail, and combinations',
hd_smp_ph float DEFAULT NULL COMMENT 'pH',
hd_smp_ph_err float DEFAULT NULL COMMENT 'pH standard error',
hd smp cond float DEFAULT NULL COMMENT 'Conductivity',
hd_smp_cond_err float DEFAULT NULL COMMENT 'Conductivity standard error',
hd_smp_comp_species
enum('SO4','H2S','Cl','F','HCO3','Mg','Fe','Ca','Na','K','3He4He','c3He4He','d13C','d34S','dD','d18O') DEFAULT NULL
COMMENT 'Type of compound, kation, anion or ratio',
hd_smp_comp_units varchar(30) DEFAULT NULL COMMENT 'Reported units',
hd_smp_comp_content float DEFAULT NULL COMMENT 'Content of compound, kation, anion or ratio',
hd_smp_comp_content_err float DEFAULT NULL COMMENT 'Content of compound, kation, anion or ratio error',
hd_smp_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
hd_smp_loaddate datetime DEFAULT NULL COMMENT 'Load date',
hd_smp_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (hd_smp_id),
 UNIQUE KEY `CODE` (hd_smp_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Hydrologic sample data';
-- Table structure for table 'hi'
CREATE TABLE hi (
hi id smallint(5) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
hi_code varchar(30) DEFAULT NULL COMMENT 'Code',
hs_id smallint(5) unsigned DEFAULT NULL COMMENT 'Hydrologic station ID',
hi_name varchar(255) DEFAULT NULL COMMENT 'Name',
hi_type varchar(50) DEFAULT NULL COMMENT 'Type',
hi_meas enum('A','V') DEFAULT NULL COMMENT 'Pressure measurement type: A=Absolute, V=Vented',
hi_units varchar(50) DEFAULT NULL COMMENT 'Measured units',
hi_res float DEFAULT NULL COMMENT 'Resolution',
hi_stime datetime DEFAULT NULL COMMENT 'Start date',
hi stime unc datetime DEFAULT NULL COMMENT 'Start date uncertainty'.
hi etime datetime DEFAULT NULL COMMENT 'End date',
hi_etime_unc datetime DEFAULT NULL COMMENT 'End date uncertainty',
hi_desc varchar(255) DEFAULT NULL COMMENT 'Description',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
hi_loaddate datetime DEFAULT NULL COMMENT 'Load date',
hi_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (hi_id),
 UNIQUE KEY `CODE` (hi_code,cc_id,hi_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Hydrologic instrument';
-- Table structure for table 'hs'
```

CREATE TABLE hs (

hs_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',

hs_code varchar(30) DEFAULT NULL COMMENT 'Code',

cn id smallint(5) unsigned DEFAULT NULL COMMENT 'Hydrologic network ID',

hs_lat double DEFAULT NULL COMMENT 'Latitude',

hs_lon double DEFAULT NULL COMMENT 'Longitude',

hs_elev float DEFAULT NULL COMMENT 'Elevation',

hs_perm varchar(255) DEFAULT NULL COMMENT 'List of permanent instruments',

hs_name varchar(30) DEFAULT NULL COMMENT 'Name',

hs_type varchar(255) DEFAULT NULL COMMENT 'Type of water body',

hs_utc float DEFAULT NULL COMMENT 'Difference from UTC',

hs_tscr float DEFAULT NULL COMMENT 'Top of screen',

hs_bscr float DEFAULT NULL COMMENT 'Bottom of screen',

hs_tdepth double DEFAULT NULL COMMENT 'Total depth of well',

hs_stime datetime DEFAULT NULL COMMENT 'Start date',

hs_stime_unc datetime DEFAULT NULL COMMENT 'Start date uncertainty',

hs_etime datetime DEFAULT NULL COMMENT 'End date',

hs_etime_unc datetime DEFAULT NULL COMMENT 'End date uncertainty',

hs_desc varchar(255) DEFAULT NULL COMMENT 'Description',

cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',

hs_loaddate datetime DEFAULT NULL COMMENT 'Load date',

hs pubdate datetime DEFAULT NULL COMMENT 'Publish date',

cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',

PRIMARY KEY (hs id),

UNIQUE KEY 'CODE' (hs code,cc id,hs stime)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Hydrologic station';

-- -----

--

-- Table structure for table 'ip hyd'

--

CREATE TABLE ip hyd (

ip_hyd_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',

ip_hyd_code varchar(30) DEFAULT NULL COMMENT 'Code',

vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',

ip_hyd_time datetime DEFAULT NULL COMMENT 'Inference time',

 $ip_hyd_time_unc\ datetime\ DEFAULT\ NULL\ COMMENT\ 'Inference\ time\ uncertainty',$

ip_hyd_start datetime DEFAULT NULL COMMENT 'Start time',

ip_hyd_start_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',

ip_hyd_end datetime DEFAULT NULL COMMENT 'End time',

ip_hyd_end_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',

ip_hyd_gwater enum('Y','N','M','U') DEFAULT NULL COMMENT 'Heated groundwater: Y=Yes, N=No, M=Maybe, U=Unknown',

ip_hyd_ipor enum('Y','N','M','U') DEFAULT NULL COMMENT 'Pore destabilization: Y=Yes, N=No, M=Maybe, U=Unknown',

 ip_hyd_edef enum('Y','N','M','U') DEFAULT NULL COMMENT 'Pore deformation: Y=Yes, N=No, M=Maybe, U=Unknown',

ip_hyd_hfrac enum('Y','N','M','U') DEFAULT NULL COMMENT 'Hydrofracturing: Y=Yes, N=No, M=Maybe, U=Unknown',

ip_hyd_btrem enum('Y','N','M','U') DEFAULT NULL COMMENT 'Boiling induced tremor: Y=Yes, N=No, M=Maybe, U=Unknown',

ip_hyd_abgas enum('Y','N','M','U') DEFAULT NULL COMMENT 'Absorption of soluble gases: Y=Yes, N=No, M=Maybe, U=Unknown',

ip_hyd_species enum('Y','N','M','U') DEFAULT NULL COMMENT 'Change in equilibrium species: Y=Yes, N=No, M=Maybe, U=Unknown',

ip_hyd_chim enum('Y','N','M','U') DEFAULT NULL COMMENT 'Boiling until dry chimneys are formed: Y=Yes, N=No, M=Maybe, U=Unknown',

ip_hyd_com varchar(255) DEFAULT NULL COMMENT 'Comments',

```
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Interpreter ID',
ip hyd loaddate datetime DEFAULT NULL COMMENT 'Load date',
ip_hyd_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (ip_hyd_id),
 UNIQUE KEY `CODE` (ip_hyd_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Hydrothermal system interaction';
-- Table structure for table 'ip_mag'
CREATE TABLE ip_mag (
ip_mag_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
ip_mag_code varchar(30) DEFAULT NULL COMMENT 'Code',
 vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
ip_mag_time datetime DEFAULT NULL COMMENT 'Inference time',
ip_mag_time_unc datetime DEFAULT NULL COMMENT 'Inference time uncertainty',
ip_mag_start datetime DEFAULT NULL COMMENT 'Start time',
ip mag start unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
 ip mag end datetime DEFAULT NULL COMMENT 'End time',
ip_mag_end_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
ip_mag_deepsupp enum('Y','N','M','U') DEFAULT NULL COMMENT 'Supply of magma from depth: Y=Yes, N=No,
M=Maybe, U=Unknown',
 ip_mag_asc enum('Y','N','M','U') DEFAULT NULL COMMENT 'Ascent: Y=Yes, N=No, M=Maybe, U=Unknown',
ip_mag_convb enum('Y','N','M','U') DEFAULT NULL COMMENT 'Convection below: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_mag_conva enum('Y','N','M','U') DEFAULT NULL COMMENT 'Convection above: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_mag_mix enum('Y','N','M','U') DEFAULT NULL COMMENT 'Magma mixing: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_mag_dike enum('Y','N','M','U') DEFAULT NULL COMMENT 'Dike intrusion: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_mag_pipe enum('Y','N','M','U') DEFAULT NULL COMMENT 'Pipe intrusion: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_mag_sill enum('Y','N','M','U') DEFAULT NULL COMMENT 'Sill intrusion: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_mag_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Interpreter ID',
 ip_mag_loaddate datetime DEFAULT NULL COMMENT 'Load date',
ip mag pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (ip mag id),
 UNIQUE KEY `CODE` (ip_mag_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Magma movement';
-- Table structure for table 'ip_pres'
CREATE TABLE ip_pres (
ip_pres_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
ip_pres_code varchar(30) DEFAULT NULL COMMENT 'Code',
 vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
ip_pres_time datetime DEFAULT NULL COMMENT 'Inference date',
ip_pres_time_unc datetime DEFAULT NULL COMMENT 'Inference date uncertainty',
```

```
ip pres start datetime DEFAULT NULL COMMENT 'Start time',
 ip_pres_start_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
ip_pres_end datetime DEFAULT NULL COMMENT 'End time',
ip pres end unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
ip_pres_gas enum('Y','N','M','U') DEFAULT NULL COMMENT 'Gas-induced overpressure: Y=Yes, N=No,
M=Maybe, U=Unknown',
 ip pres tec enum('Y','N','M','U') DEFAULT NULL COMMENT 'Tectonic overpressure: Y=Yes, N=No, M=Maybe,
U=Unknown',
 ip_pres_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc id smallint(5) unsigned DEFAULT NULL COMMENT 'Interpreter ID',
ip pres loaddate datetime DEFAULT NULL COMMENT 'Load date',
 ip_pres_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (ip_pres_id),
 UNIQUE KEY `CODE` (ip_pres_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Buildup of magma pressure';
-- Table structure for table 'ip_sat'
CREATE TABLE ip sat (
ip sat id smallint(5) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
ip_sat_code varchar(30) DEFAULT NULL COMMENT 'Code',
vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
 ip_sat_time datetime DEFAULT NULL COMMENT 'Inference time',
ip_sat_time_unc datetime DEFAULT NULL COMMENT 'Inference time uncertainty',
 ip_sat_start datetime DEFAULT NULL COMMENT 'Start time',
ip sat start unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
ip sat end datetime DEFAULT NULL COMMENT 'End time',
ip_sat_end_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
ip_sat_co2 enum('Y','N','M','U') DEFAULT NULL COMMENT 'CO2 saturation: Y=Yes, N=No, M=Maybe,
U=Unknown'.
ip_sat_h2o enum('Y','N','M','U') DEFAULT NULL COMMENT 'H2O saturation: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_sat_decomp enum('Y','N','M','U') DEFAULT NULL COMMENT 'Decompression: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_sat_dfo2 enum('Y','N','M','U') DEFAULT NULL COMMENT 'Fugacity: Y=Yes, N=No, M=Maybe, U=Unknown',
ip_sat_add enum('Y','N','M','U') DEFAULT NULL COMMENT 'Volatile addition: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip sat xtl enum('Y','N','M','U') DEFAULT NULL COMMENT 'Crystallization or 2nd boiling: Y=Yes, N=No,
M=Maybe, U=Unknown'.
 ip_sat_ves enum('Y','N','M','U') DEFAULT NULL COMMENT 'Vesiculation: Y=Yes, N=No, M=Maybe,
U=Unknown'.
ip_sat_deves enum('Y','N','M','U') DEFAULT NULL COMMENT 'Devesiculation: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_sat_degas enum('Y','N','M','U') DEFAULT NULL COMMENT 'Degassing: Y=Yes, N=No, M=Maybe,
U=Unknown',
 ip_sat_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Interpreter ID',
ip sat loaddate datetime DEFAULT NULL COMMENT 'Load date',
ip_sat_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (ip_sat_id),
 UNIQUE KEY `CODE` (ip_sat_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Volatile saturation';
```

.....

```
-- Table structure for table 'ip_tec'
CREATE TABLE ip_tec (
 ip tec id smallint(5) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
ip_tec_code varchar(30) DEFAULT NULL COMMENT 'Code',
 vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
ip tec time datetime DEFAULT NULL COMMENT 'Inference time',
 ip tec time unc datetime DEFAULT NULL COMMENT 'Inference time uncertainty',
 ip_tec_start datetime DEFAULT NULL COMMENT 'Start time',
 ip tec start unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
ip_tec_end datetime DEFAULT NULL COMMENT 'End time',
ip_tec_end_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
ip_tec_change enum('Y','N','M','U') DEFAULT NULL COMMENT 'Tectonic changes: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_tec_sstress enum('Y','N','M','U') DEFAULT NULL COMMENT 'Static stress: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_tec_dstrain enum('Y','N','M','U') DEFAULT NULL COMMENT 'Dynamic strain: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_tec_fault enum('Y','N','M','U') DEFAULT NULL COMMENT 'Local shear: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_tec_seq_enum('Y','N','M','U') DEFAULT NULL COMMENT 'Slow earthquake: Y=Yes, N=No, M=Maybe,
U=Unknown'.
ip tec press enum('Y','N','M','U') DEFAULT NULL COMMENT 'Distal pressurization: Y=Yes, N=No, M=Maybe,
U=Unknown',
 ip_tec_depress enum('Y','N','M','U') DEFAULT NULL COMMENT 'Distal depressurization: Y=Yes, N=No,
M=Maybe, U=Unknown',
 ip_tec_hppress enum('Y','N','M','U') DEFAULT NULL COMMENT 'Hydrothermal lubrication: Y=Yes, N=No,
M=Maybe, U=Unknown',
ip_tec_etide enum('Y','N','M','U') DEFAULT NULL COMMENT 'Earth-tide: Y=Yes, N=No, M=Maybe, U=Unknown',
ip_tec_atmp enum('Y','N','M','U') DEFAULT NULL COMMENT 'Atmospheric influence: Y=Yes, N=No, M=Maybe,
U=Unknown',
ip_tec_com char(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Interpreter ID',
ip_tec_loaddate datetime DEFAULT NULL COMMENT 'Load date',
ip_tec_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (ip_tec_id),
 UNIQUE KEY `CODE` (ip_tec_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Regional tectonics interaction';
-- Table structure for table 'ji concon'
CREATE TABLE jj_concon (
```

jj_concon_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',

cc_id smallint(5) unsigned NOT NULL COMMENT 'Granting user ID',

cc id granted smallint(5) unsigned NOT NULL COMMENT 'Granted user ID',

jj_concon_view tinyint(1) NOT NULL DEFAULT '0' COMMENT 'Permission to view unpublished data: 0=No, 1=Yes'.

- jj_concon_upload tinyint(1) NOT NULL DEFAULT '0' COMMENT 'Permission to upload data: 0=No, 1=Yes',
- jj_concon_update tinyint(1) NOT NULL DEFAULT '0' COMMENT 'Permission to update data: 0=No, 1=Yes',
- jj_concon_admin tinyint(1) NOT NULL DEFAULT '0' COMMENT 'Permission to manage account: 0=No, 1=Yes',
- jj_concon_loaddate datetime DEFAULT NULL COMMENT 'Load date',
- cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',

```
PRIMARY KEY (jj_concon_id),
  UNIQUE KEY `GRANT` (cc_id,cc_id_granted)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='User to user permissions';
-- Table structure for table 'jj_imgx'
CREATE TABLE jj_imgx (
 jj_imgx_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
 cm_id smallint(5) unsigned NOT NULL COMMENT 'Image ID',
enum('cb','cc','ch','cm','co','cp','cr','cr_tmp','cs','cu','dd\_ang','dd\_edm','dd\_gps','dd\_gpv','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_srr','dd\_s
','dd_tlt','dd_tlv','di_gen','di_tlt','ds','ed','ed_for','ed_phs','ed_vid','fd_ele','fd_gra','fd_mag','fd_mgv','fi','fs','gd','gd_plu','gd_
sol', 'gi', 'gs', 'hd_dly', 'hd_smp', 'hi', 'hs', 'ip_hyd', 'ip_mag', 'ip_pres', 'ip_sat', 'ip_tec', 'jj_concon', 'jj_imgx', 'jj_volcon', 'jj_volnet', 'j
_sarsat','md','sd_evn','sd_evs','sd_int','sd_ivl','sd_rsm','sd_sam','sd_ssm','sd_trm','sd_wav','si','si_cmp','sn','ss','st_eqt','td','td
_img','td_pix','ti','ts','vd','vd_inf','vd_mag','vd_tec') DEFAULT NULL COMMENT 'Table name',
 jj_x_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Link ID',
 jj_imgx_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (jj imgx id),
 UNIQUE KEY LINK (cm_id,jj_idname,jj_x_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Image junction';
-- Table structure for table 'jj_volcon'
CREATE TABLE jj_volcon (
 jj_volcon_id smallint(5) unsigned NOT NULL AUTO_INCREMENT,
  vd_id mediumint(8) unsigned NOT NULL,
 cc_id smallint(5) unsigned NOT NULL,
 jj_volcon_loaddate datetime DEFAULT NULL,
 cc_id_load smallint(5) unsigned DEFAULT NULL,
 PRIMARY KEY (jj_volcon_id),
  UNIQUE KEY LINK (vd_id,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Volcano-contact junction';
-- Table structure for table 'jj_volnet'
CREATE TABLE jj_volnet (
 jj_volnet_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
 vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
 jj_net_id smallint(5) unsigned DEFAULT NULL COMMENT 'Network ID',
 jj_net_flag enum('C','S') DEFAULT NULL COMMENT 'Network type: C=Common, S=Seismic',
 jj_volnet_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (jj_volnet_id),
  UNIQUE KEY LINK (vd_id,jj_net_id,jj_net_flag)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Volcano-network junction';
```

-- -----

```
-- Table structure for table 'j_sarsat'
CREATE TABLE j_sarsat (
i sarsat id smallint(5) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
dd_sar_id mediumint(8) unsigned DEFAULT NULL COMMENT 'InSAR image ID',
cs_id smallint(5) unsigned DEFAULT NULL COMMENT 'Satellite ID',
i sarsat loaddate datetime DEFAULT NULL COMMENT 'Load date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (j_sarsat_id),
 UNIQUE KEY LINK (dd sar id,cs id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='InSAR-satellite junction';
  -----
-- Table structure for table 'md'
CREATE TABLE md (
 md id smallint(5) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
 md code varchar(30) DEFAULT NULL COMMENT 'Code',
vd id mediumint(8) DEFAULT NULL COMMENT 'Volcano ID',
 md_name varchar(255) DEFAULT NULL COMMENT 'Name',
 md_type varchar(30) DEFAULT NULL COMMENT 'Type',
 md_srtm varchar(255) DEFAULT NULL COMMENT 'Link to SRTM',
 md_scale varchar(30) DEFAULT NULL COMMENT 'Scale',
 md_contour float DEFAULT NULL COMMENT 'Contour interval',
 md date date DEFAULT NULL COMMENT 'Publication date',
 md_date_unc date DEFAULT NULL COMMENT 'Publication date uncertainty',
 md_proj varchar(255) DEFAULT NULL COMMENT 'Projection',
 mp_map_datum varchar(255) DEFAULT NULL COMMENT 'Datum',
 md_west float DEFAULT NULL COMMENT 'West bounding coordinate',
 md_east float DEFAULT NULL COMMENT 'East bounding coordinate',
 md_north float DEFAULT NULL COMMENT 'North bounding coordinate',
 md_south float DEFAULT NULL COMMENT 'South bounding coordinate',
 md_elev_max float DEFAULT NULL COMMENT 'Maximum elevation',
 md_elev_min float DEFAULT NULL COMMENT 'Minimum elevation',
 md_use varchar(255) DEFAULT NULL COMMENT 'Intended use',
 md_restrictions varchar(255) DEFAULT NULL COMMENT 'Restrictions on the use',
 md quality varchar(255) DEFAULT NULL COMMENT 'Quality',
 md_image varchar(255) DEFAULT NULL COMMENT 'Link to image',
 md_desc varchar(255) DEFAULT NULL COMMENT 'Description',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Contact ID',
 md_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 md_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (md_id),
 UNIQUE KEY `CODE` (md_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Map';
-- Table structure for table 'sd_evn'
```

CREATE TABLE sd_evn (

```
sd evn id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'Seismic data ID',
sd_evn_code varchar(30) DEFAULT NULL COMMENT 'Code',
sn_id smallint(5) unsigned DEFAULT NULL COMMENT 'Seismic network ID',
sd evn arch varchar(255) DEFAULT NULL COMMENT 'Location of the seismogram archive',
sd_evn_time datetime DEFAULT NULL COMMENT 'Origin time',
sd_evn_timecsec decimal(2,2) DEFAULT NULL COMMENT 'Centiseconds precision for the origin time',
sd evn time unc datetime DEFAULT NULL COMMENT 'Origin time uncertainty',
sd_evn_timecsec_unc decimal(2,2) DEFAULT NULL COMMENT 'The uncertainty in the centiseconds for the origin
time',
 sd evn dur float DEFAULT NULL COMMENT 'Average duration of the earthquake as recorded at stations <15 km
from the volcano (in sec)',
sd_evn_dur_unc float DEFAULT NULL COMMENT 'The uncertainty in the average duration of the earthquake',
sd_evn_tech varchar(255) DEFAULT NULL COMMENT 'The technique used to locate the event',
sd_evn_picks enum('A','R','H','U') DEFAULT NULL COMMENT 'Determination of picks: A=Automatic picker,
R=Ruler, H=Human using a computer-based picker, U=Unknown',
 sd_evn_elat double DEFAULT NULL COMMENT 'Estimated latitude',
sd_evn_elon double DEFAULT NULL COMMENT 'Estimated longitude',
sd_evn_edep float DEFAULT NULL COMMENT 'Estimated depth (km)',
sd_evn_fixdep enum('Y','N','U') DEFAULT NULL COMMENT 'Fixed depth: Y=Yes, N=No, U=Unknown',
sd_evn_nst tinyint(3) unsigned DEFAULT NULL COMMENT 'The total number of seismic stations that reported
arrival times for this earthquake',
sd evn nph tinyint(3) unsigned DEFAULT NULL COMMENT 'The total number of P and S arrival-time observations
used to compute the hypocenter location',
 sd_evn_gp float DEFAULT NULL COMMENT 'The largest azimuthal gap between azimuthally adjacent stations (in
degrees, 0-360)'.
 sd evn dcs float DEFAULT NULL COMMENT 'Horizontal distance from the epicenter to the nearest station (km)',
sd_evn_rms float DEFAULT NULL COMMENT 'RMS travel time residual (s)',
sd_evn_herr float DEFAULT NULL COMMENT 'The horizontal location error defined as the length of the largest
projection of the three principal errors on a horizontal plane (km)',
 sd_evn_xerr float DEFAULT NULL COMMENT 'The maximum x (longitude) error, in km, for cases where the
horizontal error is not given',
 sd_evn_yerr float DEFAULT NULL COMMENT 'The maximum y (latitude) error, in km, for cases where the
horizontal error is not given',
sd_evn_derr float DEFAULT NULL COMMENT 'The depth error, in km, defined as the largest projection of the three
principal errors on a vertical line',
 sd_evn_locqual varchar(255) DEFAULT NULL COMMENT 'The quality of the calculated location',
sd_evn_pmag float DEFAULT NULL COMMENT 'The primary magnitude',
 sd_evn_pmag_type varchar(30) DEFAULT NULL COMMENT 'The primary magnitude type, e.g., Ms, Mb, Mw, Md
(the last, duration or "coda" magnitude)',
 sd_evn_smag float DEFAULT NULL COMMENT 'A secondary magnitude',
 sd_evn_smag_type varchar(30) DEFAULT NULL COMMENT 'A secondary magnitude type',
 sd_evn_eqtype
                     enum('R','Q','V','VT','VT_D','VT_S','H','H_HLF','H_LHF','LF','LF_LP','LF_T','LF_ILF','VLP','E')
DEFAULT NULL COMMENT 'The WOVOdat terminology for the earthquake type',
 sd evn mtscale float DEFAULT NULL COMMENT The scale of the following moment tensor data. Please store as a
multiplier for the moment tensor data',
 sd_evn_mxx float DEFAULT NULL COMMENT 'Moment tensor m_xx stored as +/- x.xx',
 sd_evn_mxy float DEFAULT NULL COMMENT 'Moment tensor m_xy stored as +/- x.xx',
sd_evn_mxz float DEFAULT NULL COMMENT 'Moment tensor m_xz stored as +/- x.xx',
sd_evn_myy float DEFAULT NULL COMMENT 'Moment tensor m_yy',
sd_evn_myz float DEFAULT NULL COMMENT 'Moment tensor m_yz',
 sd_evn_mzz float DEFAULT NULL COMMENT 'Moment tensor m_zz',
 sd_evn_strk1 float DEFAULT NULL COMMENT 'Strike 1 of best double couple (0-360 degrees)',
 sd evn strk1 err float DEFAULT NULL COMMENT 'The uncertainty in the value of strike 1',
 sd_evn_dip1 float DEFAULT NULL COMMENT 'Dip 1 of best double couple (0-90 degrees)',
```

sd_evn_dip1_err float DEFAULT NULL COMMENT 'The uncertainty in the value of dip 1', sd_evn_rak1 float DEFAULT NULL COMMENT 'Rake 1 of best double couple (0-90 degrees)', sd_evn_rak1_err float DEFAULT NULL COMMENT 'The uncertainty in the value of rake 1',

sd_evn_strk2_err float DEFAULT NULL COMMENT 'The uncertainty in the value of strike 2',

sd_evn_strk2 float DEFAULT NULL COMMENT 'Strike 2 of best double couple',

sd_evn_dip2 float DEFAULT NULL COMMENT 'Dip 2 of best double couple',

```
sd_evn_dip2_err float DEFAULT NULL COMMENT 'The uncertainty in the value of dip 2',
sd_evn_rak2 float DEFAULT NULL COMMENT 'Rake 2 of best double couple',
sd_evn_rak2_err float DEFAULT NULL COMMENT 'The uncertainty in the value of rake 2',
sd evn foc varchar(255) DEFAULT NULL COMMENT 'The focal plane solution (beachball, w/ arrivals) stored as a
gif for well defined events',
 sd_evn_samp float DEFAULT NULL COMMENT 'The sampling rate in Hz',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
sd_evn_loaddate datetime DEFAULT NULL COMMENT 'The date this row was entered in UTC',
sd_evn_pubdate datetime DEFAULT NULL COMMENT 'The date this row can become public',
 cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'The loader ID',
 PRIMARY KEY (sd evn id),
 UNIQUE KEY `CODE` (sd_evn_code,cc_id,sn_id,sd_evn_tech)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Event data from a network';
-- Table structure for table 'sd_evs'
CREATE TABLE sd_evs (
sd evs id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
sd evs code varchar(30) DEFAULT NULL COMMENT 'Code',
ss id mediumint(8) unsigned DEFAULT NULL COMMENT 'Seismic station ID',
sd evs time datetime DEFAULT NULL COMMENT 'Start time',
sd_evs_time_ms decimal(2,2) DEFAULT NULL COMMENT 'Centisecond precision for start time',
sd_evs_time_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
sd_evs_time_unc_ms decimal(2,2) DEFAULT NULL COMMENT 'Centisecond precision for uncertainty in start time',
sd_evs_picks enum('A','R','H','U') DEFAULT NULL COMMENT 'Determination of picks: A=Automatic picker,
R=Ruler, H=Human using a computer-based picker, U=Unknown',
 sd evs spint float DEFAULT NULL COMMENT 'S-P interval',
 sd_evs_dur float DEFAULT NULL COMMENT 'Duration',
 sd_evs_dur_unc float DEFAULT NULL COMMENT 'Duration uncertainty',
sd_evs_dist_actven float DEFAULT NULL COMMENT 'Distance from active vent',
sd_evs_maxamptrac float DEFAULT NULL COMMENT 'Maximum amplitude of trace',
sd_evs_samp float DEFAULT NULL COMMENT 'Sampling rate',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
sd_evs_loaddate datetime DEFAULT NULL COMMENT 'Load date',
sd_evs_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (sd_evs_id),
 UNIQUE KEY `CODE` (sd_evs_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Seismic event data from a single station';
-- Table structure for table 'sd_int'
CREATE TABLE sd_int (
 sd_int_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
 sd int code varchar(30) DEFAULT NULL COMMENT 'Code',
 vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
 sd_evn_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Seismic event data from a network ID',
sd_evs_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Seismic event from a single station ID',
sd_int_time datetime DEFAULT NULL COMMENT 'Time',
 sd_int_time_unc datetime DEFAULT NULL COMMENT 'Time uncertainty',
sd_int_city varchar(30) DEFAULT NULL COMMENT 'City',
 sd_int_maxdist float DEFAULT NULL COMMENT 'Max distance felt',
```

```
sd int maxrint float DEFAULT NULL COMMENT 'Maximum reported intensity',
sd_int_maxrint_dist float DEFAULT NULL COMMENT 'Distance at maximum reported intensity',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
sd int loaddate datetime DEFAULT NULL COMMENT 'Load date',
sd_int_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (sd int id),
 UNIQUE KEY `CODE` (sd_int_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Intensity';
-- Table structure for table 'sd ivl'
CREATE TABLE sd_ivl (
sd_ivl_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
sd_ivl_code varchar(30) DEFAULT NULL COMMENT 'Code',
sn_id smallint(5) unsigned DEFAULT NULL COMMENT 'Seismic network ID',
 ss_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Seismic station ID',
                    enum('R','Q','V','VT','VT_D','VT_S','H','H_HLF','H_LHF','LF','LF_LP','LF_T','LF_ILF','VLP','E')
sd ivl eqtype
DEFAULT NULL COMMENT 'Earthquake type',
 sd ivl stime datetime DEFAULT NULL COMMENT 'Start time',
sd ivl stime unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
sd_ivl_etime datetime DEFAULT NULL COMMENT 'End time',
sd_ivl_etime_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
 sd_ivl_hdist float DEFAULT NULL COMMENT 'Horizontal distance from summit to swarm center',
sd_ivl_avgdepth float DEFAULT NULL COMMENT 'Mean depth',
 sd_ivl_vdispers float DEFAULT NULL COMMENT 'Vertical dispersion',
 sd ivl hmigr hyp float DEFAULT NULL COMMENT 'Horizontal migration of hypocenters',
 sd_ivl_vmigr_hyp float DEFAULT NULL COMMENT 'Vertical migration of hypocenters',
 sd_ivl_patt varchar(30) DEFAULT NULL COMMENT 'Temporal pattern',
sd_ivl_data enum('L','C','H','U') DEFAULT NULL COMMENT 'Data type: L=Located earthquakes, C=Detected by
computer trigger algorithm, H=Hand counted, U=Unknown',
 sd_ivl_picks enum('A','R','H','U') DEFAULT NULL COMMENT 'Determination of picks: A=Automatic picker,
R=Ruler, H=Human using a computer-based picker, U=Unknown',
sd_ivl_felt_stime datetime DEFAULT NULL COMMENT 'Earthquake counts felt start time',
sd_ivl_felt_stime_unc datetime DEFAULT NULL COMMENT 'Earthquake counts felt start time uncertainty',
sd_ivl_felt_etime datetime DEFAULT NULL COMMENT 'Earthquake counts felt end time',
sd_ivl_felt_etime_unc datetime DEFAULT NULL COMMENT 'Earthquake counts felt end time uncertainty',
sd_ivl_nrec mediumint(6) unsigned DEFAULT NULL COMMENT 'Number of recorded earthquakes',
sd ivl nfelt smallint(4) unsigned DEFAULT NULL COMMENT 'Number of felt earthquakes'.
sd ivl etot stime datetime DEFAULT NULL COMMENT 'Total seismic energy release measurement start time',
sd_ivl_etot_stime_unc datetime DEFAULT NULL COMMENT 'Total seismic energy release measurement start time
uncertainty',
sd_ivl_etot_etime datetime DEFAULT NULL COMMENT 'Total seismic energy release measurement end time',
sd_ivl_etot_etime_unc datetime DEFAULT NULL COMMENT 'Total seismic energy release measurement end time
uncertainty',
 sd_ivl_etot float DEFAULT NULL COMMENT 'Total seismic energy release',
sd_ivl_desc varchar(255) DEFAULT NULL COMMENT 'Description',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 sd ivl loaddate datetime DEFAULT NULL COMMENT 'Load date',
 sd_ivl_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (sd ivl id),
 UNIQUE KEY `CODE` (sd_ivl_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Interval (swarm)';
```

```
-- Table structure for table 'sd_rsm'
CREATE TABLE sd_rsm (
 sd rsm id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
sd_sam_id mediumint(8) unsigned DEFAULT NULL COMMENT 'RSAM-SSAM ID',
sd_rsm_stime datetime DEFAULT NULL COMMENT 'Start time',
 sd rsm stime unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
 sd rsm count float DEFAULT NULL COMMENT 'Count',
 sd_rsm_calib float DEFAULT NULL COMMENT 'Reduced displacement per 100 RSAM counts',
sd rsm loaddate datetime DEFAULT NULL COMMENT 'Load date',
cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (sd_rsm_id),
UNIQUE KEY `TIME` (sd_sam_id,sd_rsm_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='RSAM data';
-- Table structure for table 'sd sam'
CREATE TABLE sd sam (
sd_sam_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
sd_sam_code varchar(30) DEFAULT NULL COMMENT 'Code',
ss_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Seismic station ID',
sd_sam_stime datetime DEFAULT NULL COMMENT 'Start time',
 sd_sam_stime_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
 sd sam etime datetime DEFAULT NULL COMMENT 'End time',
sd sam etime unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
sd_sam_int float DEFAULT NULL COMMENT 'Counting interval',
sd sam int unc float DEFAULT NULL COMMENT 'Counting interval uncertainty',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
sd_sam_loaddate datetime DEFAULT NULL COMMENT 'Load date',
sd_sam_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (sd_sam_id),
 UNIQUE KEY `CODE` (sd_sam_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='RSAM-SSAM';
-- Table structure for table 'sd ssm'
CREATE TABLE sd_ssm (
 sd_ssm_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
sd_sam_id mediumint(8) unsigned DEFAULT NULL COMMENT 'RSAM-SSAM ID',
sd_ssm_stime datetime DEFAULT NULL COMMENT 'Start time',
 sd_ssm_stime_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
 sd_ssm_lowf float DEFAULT NULL COMMENT 'Low frequency limit',
 sd_ssm_highf float DEFAULT NULL COMMENT 'High frequency limit',
sd_ssm_count float DEFAULT NULL COMMENT 'Count',
sd_ssm_calib float DEFAULT NULL COMMENT 'Reduced displacement per 100 SSAM counts',
sd_ssm_loaddate datetime DEFAULT NULL COMMENT 'Load date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (sd_ssm_id),
```

```
UNIQUE KEY `TIME AND FREQUENCY` (sd_sam_id,sd_ssm_stime,sd_ssm_lowf)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='SSAM data';
-- Table structure for table 'sd trm'
CREATE TABLE sd trm (
 sd trm id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
sd_trm_code varchar(30) DEFAULT NULL COMMENT 'Code',
sn id smallint(5) unsigned DEFAULT NULL COMMENT 'Seismic network ID',
ss_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Seismic station ID',
sd_trm_stime datetime DEFAULT NULL COMMENT 'Start time',
sd_trm_stime_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
sd_trm_etime datetime DEFAULT NULL COMMENT 'End time',
sd_trm_etime_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
 sd_trm_dur_day float DEFAULT NULL COMMENT 'Duration per day',
 sd_trm_dur_day_unc float DEFAULT NULL COMMENT 'Duration per day uncertainty',
sd_trm_type enum('G','M','H','C') DEFAULT NULL COMMENT 'Type: G=General, M=Monochromatic,
H=Harmonic, C=Close-events',
sd trm qdepth enum('D','T','S','U') DEFAULT NULL COMMENT 'Qualitative depth: D=Deep (>10 km),
I=Intermediate (4-10 km), S=Shallow (0-4 km), U=Unknown',
 sd_trm_domfreq1 float DEFAULT NULL COMMENT 'Dominant frequency'.
sd_trm_domfreq2 float DEFAULT NULL COMMENT 'Second dominant frequency',
sd_trm_maxamp float DEFAULT NULL COMMENT 'Maximum amplitude',
sd_trm_noise float DEFAULT NULL COMMENT 'Background noise level',
sd_trm_reddis float DEFAULT NULL COMMENT 'Reduced displacement (as estimated using a station >5km from
source)',
 sd trm rderr float DEFAULT NULL COMMENT 'Reduced displacement error',
sd trm visact varchar(255) DEFAULT NULL COMMENT 'Description of associated visible activity',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
sd trm loaddate datetime DEFAULT NULL COMMENT 'Load date',
sd_trm_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (sd_trm_id),
UNIQUE KEY `CODE` (sd_trm_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Tremor';
 ______
-- Table structure for table 'sd wav'
CREATE TABLE sd wav (
 sd_wav_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
sd_wav_code varchar(30) DEFAULT NULL COMMENT 'Code',
ss_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Seismic station ID',
sd_evt_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Seismic event ID',
 sd_evt_flag enum('N','S','T') DEFAULT NULL COMMENT 'Seismic event type: N=Network, S=Single station,
T=Tremor',
sd_wav_arch varchar(255) DEFAULT NULL COMMENT 'Location of seismogram archive',
sd_wav_link varchar(255) DEFAULT NULL COMMENT 'Link to archive',
sd_wav_dist enum('P', T', 'D', 'U') DEFAULT NULL COMMENT 'Distance from summit: P=Proximal (< 2 km),
I=Intermediate (2-5 km), D=Distal (> 5 km), U=Unknown',
 sd_wav_img varchar(255) DEFAULT NULL COMMENT 'Image',
sd_wav_info varchar(255) DEFAULT NULL COMMENT 'Information',
```

sd_wav_desc varchar(255) DEFAULT NULL COMMENT 'Description',

```
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
sd wav loaddate datetime DEFAULT NULL COMMENT 'Load date',
sd_wav_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (sd_wav_id),
 UNIQUE KEY `CODE` (sd_wav_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Waveform';
-- Table structure for table 'si'
CREATE TABLE si (
si_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
si_code varchar(30) DEFAULT NULL COMMENT 'Code',
ss_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Seismic station ID',
 si_name varchar(255) DEFAULT NULL COMMENT 'Name',
si_type varchar(255) DEFAULT NULL COMMENT 'Type',
si_range varchar(255) DEFAULT NULL COMMENT 'Dynamic range',
si igain float DEFAULT NULL COMMENT 'Gain',
si filter varchar(255) DEFAULT NULL COMMENT 'Filters',
si_ncomp tinyint(3) unsigned DEFAULT NULL COMMENT 'Number of components',
si resp varchar(255) DEFAULT NULL COMMENT 'Response overview',
si_resp_file varchar(255) DEFAULT NULL COMMENT 'File containing response',
si_stime datetime DEFAULT NULL COMMENT 'Start date',
si_stime_unc datetime DEFAULT NULL COMMENT 'Start date uncertainty',
si_etime datetime DEFAULT NULL COMMENT 'End date',
si_etime_unc datetime DEFAULT NULL COMMENT 'End date uncertainty',
si com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
si_loaddate datetime DEFAULT NULL COMMENT 'Load date',
si pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (si_id),
 UNIQUE KEY `CODE` (si_code,cc_id,si_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Seismic instrument';
-- Table structure for table 'si cmp'
CREATE TABLE si_cmp (
si_cmp_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
si_cmp_code varchar(30) DEFAULT NULL COMMENT 'Code',
si_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Seismic instrument ID',
si_cmp_name varchar(255) DEFAULT NULL COMMENT 'Name',
si_cmp_type varchar(255) DEFAULT NULL COMMENT 'Type',
si_cmp_resp varchar(255) DEFAULT NULL COMMENT 'Description of response',
si cmp band varchar(30) DEFAULT NULL COMMENT 'Band type (SEED convention)',
si_cmp_samp float DEFAULT NULL COMMENT 'Sampling rate',
si_cmp_icode varchar(30) DEFAULT NULL COMMENT 'Instrument code (SEED convention)',
si_cmp_orient varchar(30) DEFAULT NULL COMMENT 'Orientation code (SEED convention)',
si_cmp_sens varchar(255) DEFAULT NULL COMMENT 'Sensitivity',
si_cmp_depth float DEFAULT NULL COMMENT 'Depth',
si_cmp_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
```

```
si cmp loaddate datetime DEFAULT NULL COMMENT 'Load date',
si_cmp_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (si cmp id),
 UNIQUE KEY `CODE` (si_cmp_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Seismic component';
-- Table structure for table 'sn'
CREATE TABLE sn (
sn_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
sn_code varchar(30) DEFAULT NULL COMMENT 'Code',
vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
sn_name varchar(30) DEFAULT NULL COMMENT 'Name',
sn_vmodel varchar(511) DEFAULT NULL COMMENT 'Description of velocity model',
sn_vmodel_detail varchar(255) DEFAULT NULL COMMENT 'Link to a file containing additional details about
velocity model',
 sn zerokm varchar(255) DEFAULT NULL COMMENT 'Elevation of zero km "depth",
 sn fdepth varchar(255) DEFAULT NULL COMMENT 'Fixed depth description',
sn_fdepth_flag enum('Y','N','U') DEFAULT NULL COMMENT 'A flag whether depth is fixed',
sn stime datetime DEFAULT NULL COMMENT 'Start date',
sn_stime_unc datetime DEFAULT NULL COMMENT 'Start date uncertainty',
sn_etime datetime DEFAULT NULL COMMENT 'End date',
sn_etime_unc datetime DEFAULT NULL COMMENT 'End date uncertainty',
sn_tot tinyint(3) unsigned DEFAULT NULL COMMENT 'Total number of seismometers',
 sn_bb tinyint(3) unsigned DEFAULT NULL COMMENT 'Number of broadband seismometers',
 sn smp tinyint(3) unsigned DEFAULT NULL COMMENT 'Number of short- and mid-period seismometers',
 sn_digital tinyint(3) unsigned DEFAULT NULL COMMENT 'Number of digital seismometers',
sn_analog tinyint(3) unsigned DEFAULT NULL COMMENT 'Number of analog seismometers',
 sn_tcomp tinyint(3) unsigned DEFAULT NULL COMMENT 'Number of 3 component seismometers',
sn_micro tinyint(3) unsigned DEFAULT NULL COMMENT 'Number of microphones',
sn_desc varchar(255) DEFAULT NULL COMMENT 'Description',
sn_utc float DEFAULT NULL COMMENT 'Difference from UTC',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
sn_loaddate datetime DEFAULT NULL COMMENT 'Load date',
sn_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (sn_id),
 UNIQUE KEY `CODE` (sn_code,cc_id,sn_stime,sn_vmodel)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Seismic network';
-- Table structure for table 'ss'
CREATE TABLE ss (
 ss id mediumint(8) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
ss_code varchar(30) DEFAULT NULL COMMENT 'Code',
sn_id smallint(5) unsigned DEFAULT NULL COMMENT 'Seismic network ID',
ss_name varchar(30) DEFAULT NULL COMMENT 'Name',
ss_lat double DEFAULT NULL COMMENT 'Latitude',
ss_lon double DEFAULT NULL COMMENT 'Longitude',
ss_elev float DEFAULT NULL COMMENT 'Elevation',
```

ss_depth varchar(255) DEFAULT NULL COMMENT 'Depth of instruments',

```
ss stime datetime DEFAULT NULL COMMENT 'Start date',
ss_stime_unc datetime DEFAULT NULL COMMENT 'Start date uncertainty',
ss_etime datetime DEFAULT NULL COMMENT 'End date',
ss etime unc datetime DEFAULT NULL COMMENT 'End date uncertainty',
 ss_utc float DEFAULT NULL COMMENT 'Difference from UTC',
 ss_instr_type varchar(255) DEFAULT NULL COMMENT 'Instrument types',
ss sgain float DEFAULT NULL COMMENT 'System gain',
ss_desc varchar(255) DEFAULT NULL COMMENT 'Description',
ss_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
 ss loaddate datetime DEFAULT NULL COMMENT 'Load date',
ss_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (ss id),
UNIQUE KEY `CODE` (ss_code,cc_id,ss_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Seismic station';
-- Table structure for table 'st_eqt'
CREATE TABLE st_eqt (
st eqt id smallint(5) unsigned NOT NULL AUTO INCREMENT COMMENT 'ID',
st_eqt_org varchar(255) DEFAULT NULL COMMENT 'Original terminology',
st_eqt_wovo varchar(255) DEFAULT NULL COMMENT 'WOVOdat terminology',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Contact ID',
st_eqt_loaddate datetime DEFAULT NULL COMMENT 'Load date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (st eqt id),
UNIQUE KEY 'USER TRANSLATION' (st eqt wovo,cc id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Earthquake type translation';
-- Table structure for table 'td'
CREATE TABLE td (
td_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
td code varchar(30) DEFAULT NULL COMMENT 'Code',
ts id smallint(5) unsigned DEFAULT NULL COMMENT 'Thermal station',
ti_id smallint(5) unsigned DEFAULT NULL COMMENT 'Thermal instrument',
td_mtype varchar(255) DEFAULT NULL COMMENT 'Measurement type',
td_time datetime DEFAULT NULL COMMENT 'Measurement time',
td_time_unc datetime DEFAULT NULL COMMENT 'Measurement time uncertainty',
td_depth float DEFAULT NULL COMMENT 'Depth of measurement',
td_distance float DEFAULT NULL COMMENT 'Distance from instrument to the measured object',
td_calc_flag enum('O','R') DEFAULT NULL COMMENT 'Recalculated value: O=Original, R=Recalculated',
td_temp float DEFAULT NULL COMMENT 'Temperature',
td_terr float DEFAULT NULL COMMENT 'Temperature standard error',
td_aarea float DEFAULT NULL COMMENT 'Approximate area of body measured',
td_flux float DEFAULT NULL COMMENT 'Heat flux',
td_ferr float DEFAULT NULL COMMENT 'Heat flux standard error',
td_bkgg float DEFAULT NULL COMMENT 'Background geothermal gradient',
td_tcond float DEFAULT NULL COMMENT 'Thermal conductivity',
td_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
```

```
td_loaddate datetime DEFAULT NULL COMMENT 'Load date',
td_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (td id),
UNIQUE KEY `CODE` (td_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Ground-based thermal data';
    _____
-- Table structure for table 'td_img'
CREATE TABLE td img (
td_img_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
td_img_code varchar(30) DEFAULT NULL COMMENT 'Code',
 vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
cs_id smallint(5) unsigned DEFAULT NULL COMMENT 'Satellite ID',
ts_id smallint(5) unsigned DEFAULT NULL COMMENT 'Thermal station ID',
 ti_id smallint(5) unsigned DEFAULT NULL COMMENT 'Thermal instrument ID',
td_img_iplat varchar(255) DEFAULT NULL COMMENT 'Description of instrument platform',
td img ialt float DEFAULT NULL COMMENT 'Instrument altitude',
td img ilat float DEFAULT NULL COMMENT 'Instrument latitude',
td img ilon float DEFAULT NULL COMMENT 'Instrument longitude',
td img idatum varchar(50) DEFAULT NULL COMMENT 'Datum',
td_img_desc varchar(255) DEFAULT NULL COMMENT 'Description',
td_img_time datetime DEFAULT NULL COMMENT 'Time',
td_img_time_unc datetime DEFAULT NULL COMMENT 'Time uncertainty',
td_img_bname varchar(255) DEFAULT NULL COMMENT 'Band name',
td_img_hbwave float DEFAULT NULL COMMENT 'High band wavelength',
td img lbwave float DEFAULT NULL COMMENT 'Low band wavelength',
td_img_jpg blob COMMENT 'JPG',
td_img_psize float DEFAULT NULL COMMENT 'Pixel size',
td_img_maxrad float DEFAULT NULL COMMENT 'Maximum radiance',
td_img_maxrrad float DEFAULT NULL COMMENT 'Maximum relative radiance',
td_img_maxtemp float DEFAULT NULL COMMENT 'Maximum temperature',
td_img_totrad float DEFAULT NULL COMMENT 'Total radiance in the frame',
td_img_maxflux float DEFAULT NULL COMMENT 'Maximum heat flux',
td_img_ntres float DEFAULT NULL COMMENT 'Nominal temperature resolution',
td_img_atmcorr varchar(255) DEFAULT NULL COMMENT 'Atmospheric correction',
td_img_thmcorr varchar(255) DEFAULT NULL COMMENT 'Thermal correction',
td_img_ortho varchar(255) DEFAULT NULL COMMENT 'Orthorectification procedure',
td img com varchar(255) DEFAULT NULL COMMENT 'Comments'.
cc id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
td_img_loaddate datetime DEFAULT NULL COMMENT 'Load date',
td_img_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (td_img_id),
 UNIQUE KEY `CODE` (td_img_code,cc_id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Thermal image';
-- Table structure for table 'td_pix'
CREATE TABLE td_pix (
td_pix_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
```

td_img_id smallint(5) unsigned DEFAULT NULL COMMENT 'Thermal image ID',

```
td_pix_elev float DEFAULT NULL COMMENT 'Elevation',
td_pix_lat float DEFAULT NULL COMMENT 'Latitude',
td_pix_lon float DEFAULT NULL COMMENT 'Longitude',
td pix rad float DEFAULT NULL COMMENT 'Radiance',
td_pix_flux float DEFAULT NULL COMMENT 'Heat flux',
td_pix_temp float DEFAULT NULL COMMENT 'Temperature',
td_pix_loaddate datetime DEFAULT NULL COMMENT 'Load date',
cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (td_pix_id),
 UNIQUE KEY `LAT/LON` (td img id,td pix lat,td pix lon)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT="Thermal image pixel";
-- Table structure for table 'ti'
CREATE TABLE ti (
ti_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
ti_code varchar(30) DEFAULT NULL COMMENT 'Code',
cs id smallint(5) unsigned DEFAULT NULL COMMENT 'Satellite ID',
ts id smallint(5) unsigned DEFAULT NULL COMMENT 'Thermal station ID',
ti type varchar(255) DEFAULT NULL COMMENT 'Type',
ti name varchar(255) DEFAULT NULL COMMENT 'Name',
ti_units varchar(50) DEFAULT NULL COMMENT 'Measured units',
ti_pres float DEFAULT NULL COMMENT 'Resolution',
ti_stn float DEFAULT NULL COMMENT 'Signal to noise',
ti_stime datetime DEFAULT NULL COMMENT 'Start date',
ti_stime_unc datetime DEFAULT NULL COMMENT 'Start date uncertainty',
ti etime datetime DEFAULT NULL COMMENT 'End date',
ti_etime_unc datetime DEFAULT NULL COMMENT 'End date uncertainty',
ti_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
ti_loaddate datetime DEFAULT NULL COMMENT 'Load date',
ti_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (ti_id),
 UNIQUE KEY `CODE` (ti_code,cc_id,ti_stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Thermal instrument';
-- Table structure for table 'ts'
CREATE TABLE ts (
ts_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
ts code varchar(30) DEFAULT NULL COMMENT 'Code',
cn_id smallint(5) unsigned DEFAULT NULL COMMENT 'Thermal network ID',
ts_name varchar(30) DEFAULT NULL COMMENT 'Name',
ts_type varchar(255) DEFAULT NULL COMMENT 'Type of thermal feature',
ts_ground varchar(255) DEFAULT NULL COMMENT 'Soil or ground type',
ts_lat float DEFAULT NULL COMMENT 'Latitude',
ts_lon float DEFAULT NULL COMMENT 'Longitude',
ts_elev float DEFAULT NULL COMMENT 'Elevation',
ts_perm varchar(255) DEFAULT NULL COMMENT 'List of permanent instruments',
ts_utc float DEFAULT NULL COMMENT 'Difference from UTC',
ts_stime datetime DEFAULT NULL COMMENT 'Start date',
```

```
ts stime unc datetime DEFAULT NULL COMMENT 'Start date uncertainty',
ts_etime datetime DEFAULT NULL COMMENT 'End date',
ts_etime_unc datetime DEFAULT NULL COMMENT 'End date uncertainty',
ts desc varchar(255) DEFAULT NULL COMMENT 'Description',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Owner ID',
ts_loaddate datetime DEFAULT NULL COMMENT 'Load date',
ts pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (ts_id),
 UNIQUE KEY `CODE` (ts code,cc id,ts stime)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Thermal station';
-- Table structure for table 'vd'
CREATE TABLE vd (
vd_id mediumint(8) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
 vd_cavw varchar(15) DEFAULT NULL COMMENT 'The current CAVW number for this volcano',
 vd_name varchar(255) DEFAULT NULL COMMENT 'Name',
 vd tzone float DEFAULT NULL COMMENT 'Time zone',
 vd mcont char(1) DEFAULT NULL COMMENT 'M=Multiple contacts for this volcano',
cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Contact ID',
 vd loaddate datetime DEFAULT NULL COMMENT 'Load date',
vd_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (vd_id),
 UNIQUE KEY `CAVW NUMBER` (vd_cavw)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Volcano';
-- Table structure for table 'vd inf'
CREATE TABLE vd_inf (
vd_inf_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
 vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
 vd_inf_cavw varchar(15) DEFAULT NULL COMMENT 'CAVW number',
 vd_inf_desc varchar(255) DEFAULT NULL COMMENT 'Short narrative',
 vd_inf_slat double DEFAULT NULL COMMENT 'Summit latitude',
 vd inf slon double DEFAULT NULL COMMENT 'Summit longitude'.
 vd inf selev float DEFAULT NULL COMMENT 'Summit elevation',
 vd_inf_type varchar(255) DEFAULT NULL COMMENT 'Type',
 vd_inf_evol float DEFAULT NULL COMMENT 'Volume of edifice',
 vd_inf_numcald tinyint(4) unsigned DEFAULT NULL COMMENT 'Number of calderas',
 vd_inf_lcald_dia float DEFAULT NULL COMMENT 'Diameter of largest caldera',
 vd_inf_ycald_lat double DEFAULT NULL COMMENT 'Latitude of youngest caldera',
 vd_inf_ycald_lon double DEFAULT NULL COMMENT 'Longitude of youngest caldera',
 vd_inf_stime datetime DEFAULT NULL COMMENT 'Start time',
 vd_inf_stime_unc datetime DEFAULT NULL COMMENT 'Start time uncertainty',
 vd inf etime datetime DEFAULT NULL COMMENT 'End time',
 vd_inf_etime_unc datetime DEFAULT NULL COMMENT 'End time uncertainty',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Contact ID',
 vd_inf_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 vd_inf_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
 cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (vd_inf_id),
 UNIQUE KEY 'INFORMATION AT A CERTAIN TIME' (vd_id,vd_inf_stime)
```

```
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Volcano information';
-- Table structure for table 'vd_mag'
CREATE TABLE vd mag (
 vd_mag_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
 vd id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
 vd_mag_lvz_dia float DEFAULT NULL COMMENT 'Diameter of low velocity zone',
 vd_mag_lvz_vol float DEFAULT NULL COMMENT 'Volume of low velocity zone',
 vd_mag_tlvz float DEFAULT NULL COMMENT 'Depth to top of low velocity zone',
 vd_mag_lerup_vol double DEFAULT NULL COMMENT 'Volume of largest eruption',
 vd_mag_drock varchar(60) DEFAULT NULL COMMENT 'Dominant rock type',
 vd_mag_orock varchar(60) DEFAULT NULL COMMENT 'Outlier rock type',
 vd_mag_orock2 varchar(60) DEFAULT NULL COMMENT 'Second outlier rock type',
 vd_mag_orock3 varchar(60) DEFAULT NULL COMMENT 'Third outlier rock type',
 vd_mag_minsio2 float DEFAULT NULL COMMENT 'Minimum SiO2 content of whole rocks erupted',
 vd_mag_maxsio2 float DEFAULT NULL COMMENT 'Maximum SiO2 content of whole rocks erupted',
 vd_mag_com varchar(255) DEFAULT NULL COMMENT 'Comments',
cc id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 vd mag loaddate datetime DEFAULT NULL COMMENT 'Load date',
 vd_mag_pubdate datetime DEFAULT NULL COMMENT 'Publish date',
cc_id_load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
PRIMARY KEY (vd mag id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Magma chamber';
-- Table structure for table 'vd_tec'
CREATE TABLE vd tec (
 vd_tec_id smallint(5) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
 vd_id mediumint(8) unsigned DEFAULT NULL COMMENT 'Volcano ID',
 vd_tec_desc varchar(255) DEFAULT NULL COMMENT 'Description',
 vd_tec_strslip float DEFAULT NULL COMMENT 'Rate of strike-slip',
 vd_tec_ext float DEFAULT NULL COMMENT 'Rate of extension',
 vd_tec_conv float DEFAULT NULL COMMENT 'Rate of convergence',
 vd_tec_travhs float DEFAULT NULL COMMENT 'Travel rate across hotspot',
 vd_tec_com varchar(255) DEFAULT NULL COMMENT 'Comments',
 cc_id smallint(5) unsigned DEFAULT NULL COMMENT 'Collector ID',
 vd_tec_loaddate datetime DEFAULT NULL COMMENT 'Load date',
 vd_tec_pubdate datetime DEFAULT NULL COMMENT 'Publish date'.
 cc id load smallint(5) unsigned DEFAULT NULL COMMENT 'Loader ID',
 PRIMARY KEY (vd tec id)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Tectonic setting';
```