

Physics 2: Electricity, Optics and Quanta

2023.9

QQ group: 776916994

cyjing@swjtu.edu.cn

Schedules

Week	Topic	Number of sessions	Note
1	Electrostatics	3	
2	Electrostatics & DC Electricity	3	
3	DC Electricity	3	
4	Capacitors	3	
5	Magnetism	3	
6	Electromagnetic Induction	3	
7	Generators, Motors	3	

Generators, Motors & Back Emf

Schedules

Week	Topic	Number of sessions	Note
9	Self inductance & Midterm Exam	3	
10	Self inductance & AC Electricity	3	
11	AC Electricity	3	
12	AC Electricity	3	
13	Electromagnetic waves	3	
14	Optics	3	
15	Wave optics	3	
16	Quanta & Quanta waves	3	

Motton works & DEVICION

Looking back

AVERAGE

68.62

Your final grade

Assessment type	% of module	
Lab Report	10	
Homework	10	
Mid-term test	10	
End of module Exam	70	

Two tips

Two tips

Textbook

Physics
by Dobson, Grace and Lovett

Physics by Giancoli

As a reference book

Physics 2: Electricity, Optics and Quanta

Week 1 – Electrostatics

2023.9

QQ group: 776916994

cyjing@swjtu.edu.cn

Floating of the plastic rope

Static electricity

What type of charge?

Hold a net charge for long?

Where does the charge go?

Static electricity

Benjamin Franklin 1706-1790

What type of charge?

Net electric charge?

Static electricity

Polar – neutral, but charge is not distributed uniformly

Hold a net charge for long?

Hold their charge for a limited time and return to neutral state.

Where does the charge go?

Excess charge "leaks off" on to water molecules in the air.

Electric Charge, Force and Field

Electric force

Compare the electric forces that the two electrons experience.

(given the same distance between electrons and nuclei)

Electrostatic Force – Coulomb's law

2 **point** charges q_1 and q_2 :

Vector!
$$\mathbf{F}_{21} = k \frac{q_1 q_2}{r_{21}^2} \hat{\mathbf{r}}_{21} = \frac{q_1 q_2}{4\pi \varepsilon_0 r_{21}^2} \hat{\mathbf{r}}_{21}$$
 unit vector (to show the direction)

$$q_1$$
 on q_2 ?

$$q_2$$
 on q_1 ?

$$k = 9 \times 10^9 \, Nm^2 C^{-2}$$

$$\varepsilon_0 = 8.85 * 10^{-12} \,\mathrm{C}^2 / (\mathrm{N \, m}^2)$$

(Permittivity of free space)

"quantized" Electric charge

$$q = \pm ne$$
 $e = 1.6 \times 10^{-19} \text{ C}$ $= 1.6021766208(98) \times 10^{-19} \text{ C}$

Elementary/subatomic particles carry elementary charge:

electron	- e	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
proton	e	$m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$
neutron	0	$m_{\rm n} = 1.6749 \times 10^{-27} \text{ kg}$

Unit of electric charge

coulomb (unit symbol: C)

charge (symbol: Q or q) transported

$$1 C = 1 A \cdot 1 s$$

Thus, it is also the amount of excess charge on a capacitor of one **farad** charged to a potential difference of one **volt**:

$$1 C = 1 F \cdot 1 V$$

Charles-Augustin de Coulomb (1736 –1806)

Unit of electric charge

Force on two 1 Coulomb charges separated by 1 m

 $F = 9 \times 10^9 \text{ N}$ equivalent to the weight of 920,000 metric tons!

So: 1 C is a very big charge!

Coulombs in everyday life

a few micro-coulombs $\mu C = 10^{-6} C$

A lightning bolt:

about 15 C

Total charge from AA battery from fully charged to discharged:

$$5 \text{ kC} = 5000 \text{ C}$$

Superposition of electric forces

Electrostatic force

Force on a small "test" charge q

What if the test charge becomes 2q? How about the forces?

Force on a small "test" charge q

What if the test charge becomes 2q? How about the forces?

$$F \propto Q_{test}$$

$$F/Q_{test}$$
 = constant

Electric field

Electrostatic force

Define through the electric force

At any point in space, we can define :
$$E = \frac{r_{\text{tot}}}{q} = \frac{r_{\text{tot}}}{q}$$

E is the Electric Field.

It is a field that surrounds electric charges.

vectors

1 positive and 1 negative charges (dipole)

Direction of E?

Tangential to the field line

Electric field lines

never cross

each other!

Characteristics:

- 1. Direction
- 2. Magnitude
- 3. Direction of *E*
- 4. Never cross

Nearly uniform field between parallel plates

Electric field from an infinite charged plate

Electric field from an infinite charged plate

Electric field from a uniformly charged ring

Surface charge density $\sigma = Q/A$

- divide the circle into small elements
- Direction of electric field of the small elements?

• Direction of total E?

Electric field from a uniformly charged ring

Surface charge density $\sigma = Q/A$

- divide the circle into small elements
- the *horizontal* components from elements on opposite sides of the circle cancel out
- all the small elements give a same amount of electric field in the *vertical* direction

Electric field from a uniformly charged ring

- area of each element: $A_{el} = r\delta\phi \delta r$
- charge of each element: $Q_{el} = \sigma r \delta \phi \ \delta r$
- number of elements in a circle: $\frac{2\pi r}{r\delta\phi} = \frac{2\pi}{\delta\phi}$
 - field from one element:

$$E_{el} = \frac{Q_{el}}{4\pi\varepsilon_0 d^2} \cos\theta = \frac{\sigma r \delta \phi \, \delta r \cos\theta}{4\pi\varepsilon_0 d^2}$$

total field from the circle

$$E_{tot}(r) = rac{2\pi}{\delta\phi} rac{\sigma r \delta\phi}{4\pi oldsymbol{arepsilon}_0 d^2} \cos heta = rac{\sigma r \, h \, \delta r}{2oldsymbol{arepsilon}_0 (r^2 + h^2)^{3/2}}$$

Electric field from an infinite charged plate

- divide the plane into concentric rings with equal width
- contributions from rings, from r=0 to infinity
 contribution from one ring (r): $E_{tot}(r) = \frac{2\pi}{\delta\phi} \frac{\sigma r \delta\phi}{4\pi\varepsilon_0 d^2} \cos\theta = \frac{\sigma r h \delta r}{2\varepsilon_0 (r^2 + h^2)^{3/2}}$
 - Define a new variable x: $x = \frac{r}{h}$ $\delta x = \frac{\delta r}{h}$

$$E_{tot}(r) = rac{\sigma(rac{r}{h})\!ig(rac{\delta r}{h}ig)}{2arepsilon_0ig(ig(rac{r}{h}ig)^{\!\!2}+1ig)^{\!\!3/2}}$$

• Field from charges at radius r = hx

$$E_{tot}(x) = \frac{\sigma x \, \delta x}{2\varepsilon_0 (x^2 + 1)^{3/2}}$$

Electric field from an infinite charged plate

Add all Fields from x = 0 to $x = \infty$

$${E}_{ extit{plate}} = rac{\sigma}{2oldsymbol{arepsilon}_0}\int\limits_0^\infty rac{x}{(1+x^2)^{3/2}}dx$$

$$E_{\it plate} = rac{\sigma}{2 oldsymbol{arepsilon}_0}$$

Electric field from an infinite charged plate

with a uniform surface density of charge σ :

- But of course, no plate can be infinite
- This is only an approximation

Plate is large

Close to the plate

Electric field from an infinite charged wire

Gravitational field

Definition: Force per unit mass

Magnitude above Earth surface:

 GM_E/r^2

At the earth surface, magnitude

$$g = GM_E/r^2$$

Charge accelerated in an electric field

Potential Energy U

Charge accelerated in an electric field

In a gravitational field.

Potential Energy

The electrostatic force is a conservative force

Corresponding potential energy

Zero potential - infinitely far away

$$v = 0$$

Change in potential energy = - work done

$$W = Fx = -\Delta U$$

$$W = F x$$

F depends on x

For each small interval:

$$\Delta W = F(x) \, \Delta x$$

The total work is the sum of all those small intervals:

$$W = \int_{\infty}^{d} F(x) \, dx$$

$$F(x) = \frac{Qq}{4\pi\varepsilon_0 x^2} \Longrightarrow W = \frac{Qq}{4\pi\varepsilon_0} \int_{\infty}^{d} \frac{1}{x^2} dx = \frac{Qq}{4\pi\varepsilon_0} \left[\frac{-1}{x} \right]_{\infty}^{d} = \frac{-Qq}{4\pi\varepsilon_0 d} + 0$$

So the potential energy is:

$$U = \frac{Qq}{4\pi\varepsilon_0 d}$$

path?

Potential energy and the path

So the work does not depend on the path!

U and multiple charges

Total U is the sum of potential energy due to all charges

$$U = \sum_{i=1}^{6} \frac{Q_i q}{4\pi \varepsilon_0 d_i}$$

> Potential energy is always proportional to q

Define:
$$V = \frac{U}{q} = \sum_{i=1}^{6} \frac{Q_i}{4\pi\varepsilon_0 d_i}$$

V is the "potential"

Electric potential

$$V = \frac{U}{q}$$

V is the 'electric potential', or just 'potential'

Change in potential between points A and B is:

$$\Delta V = V_B - V_A = \frac{\Delta U_{BA}}{q}$$
 (Joules/Coulomb = Volt) also called "Voltage"

$$Q \leftarrow 5 \text{ cm} \qquad V=? \qquad Q=-3 \text{ nC}$$

$$V = \frac{U}{q}$$

$$U = \frac{kQq}{r}$$

$$V = \frac{kQ}{r} = \frac{(9.0 * 10^{9} \text{ Nm}^{2}/\text{C}^{2})(-3 * 10^{-9} \text{ C})}{0.05 \text{ m}} = -539 \text{ V}$$

$$V = \frac{kQ}{r}$$

Potential at distance 'r' from a point charge is the same

We can draw "equipotential lines" where potential is the same

Equipotential lines/surfaces are perpendicular to Electric Field lines

Electric field line

Characteristics:

- 1. Direction
- 2. Magnitude
- 3. Direction of *E*
- 4. Never cross

Characteristics:

- 1. Direction to E
- 2. Shape
- 3. Shortest way

Similar in the Gravitational potential lines/Conservation of mechanical Energy

V and E

How to relate potential to electric field?

In a constant electric field

$$W = qV_{AB} = F_E d = qEd$$

$$E = \frac{V_{AB}}{d}$$

1 N/C = 1 V/m

In general

$$E = -\frac{dV}{dr}$$

or $\vec{E} = -\nabla V$ gradient

Four identical point charges are arranged at the corners of a square [Hint: Draw a figure]. The electric field E and potential V at the center of the square are

- (a) E = 0, V = 0.
- (b) $E = 0, V \neq 0.$
- (c) $E \neq 0, V \neq 0$.
- $(d) E \neq 0, V = 0.$
- (e) E = V regardless of the value.

Which of the following statements is valid?

- (a) If the potential at a particular point is zero, the field at that point must be zero.
- (b) If the field at a particular point is zero, the potential at that point must be zero.
- (c) If the field throughout a particular region is constant, the potential throughout that region must be zero.
- (d) If the potential throughout a particular region is constant, the field throughout that region must be zero.

Parallel metal plates charged by a constant voltage source.

What is the charge on the plate(s)?

Voltage of the battery = potential difference

Distance between plates - D

Surface area of plates - A

Parallel metal plates charged by a constant voltage source.

What is the charge on the plate(s)?

- **8.** Which of the following do not affect capacitance?
 - (a) Area of the plates.
 - (b) Separation of the plates.
 - (c) Material between the plates.
 - (d) Charge on the plates.
 - (e) Energy stored in the capacitor.

