${f I} \;\;|\; {f Alimentation \; type \; Flyback}$

Le transformateur est un tore sur lequel sont bobinés deux enroulements comprenant n_1 et n_2 spires. Le tore a une longueur moyenne l, une section droite S. On néglige la résistance ohmique des circuits et on considère le matériau ferromagnétique sans perte, linéaire, de perméabilité μ .

On note Φ le flux du champ magnétique à travers une section droite du transformateur et on considère qu'il n'y a aucune fuite de flux.

Le transistor est fermé sur $[0,\alpha T]$ et ouvert sur $[\alpha T,T]$.

- 1) A quelle(s) condition(s) le transformateur est-il sans perte?
- 2) L_1 et L_2 sont les inductances propres des enroulements primaires et secondaires. Exprimer le rapport L_2/L_1 en fonction de n_2 et n_1 , dans le cas d'un transformateur constitué d'un matériaux doux, non saturé.
- 3) Quel nom porte le montage consitué de la diode, et du dipôle RC? A quelle(s) condition(s) sur C la tension v_R est elle constante? Cette condition est réalisée dans toute la suite : $v_R = cste > 0$

Pour les questions suivantes, on se place sur $[0,\alpha T]$

- 4) Exprimez v_2 en fonction de E, n_1 et n_2 .
- 5) Montrez que la diode est ouverte.
- 6) Exprimez $i_1(t)$ en fonction de E et L_1 . On notera i_{10} sa valeur en t=0. Que vaut sa valeur $i_{1\alpha}$ en $t=\alpha T$?

Pour les deux questions suivantes, on se place sur $[\alpha T, T]$

- 7) Pourquoi la somme $n_1i_1+n_2i_2$ est elle continue? En déduire qu'il apparaît un courant i_2 dans l'enroulement secondaire en $t=\alpha T$. Quel est l'état de la diode juste après αT ? Exprimez sa valeur en $t=\alpha T$, $i_{2\alpha}$, en fonction de n_1 , n_2 et $i_{1\alpha}$.
- 8) Calculez $i_2(t)$ en fonction de v_R , L_2 et $i_{2\alpha}$.
- 9) Exprimez v_R en fonction de E, $m = n_2/n_1$ et α .
- 10) Expliquez pourquoi on parle de convertisseur à accumulation.

I | Etude d'un transformateur en court-circuit

On réalise le montage suivant pour étudier les caractéristiques d'un transformateur :

L'ampèremètre A_1 mesure I_1 , la valeur efficace du courant au primaire, l'ampèremètre A_2 mesure I_2 , la valeur efficace du courant au secondaire, le voltmètre V_1 mesure U_1 , tension efficace d'entrée au primaire et le wattmètre W mesure P_1 , puissance consommée au primaire. Les mesures effectuées sont synthétisées dans le tableau suivant :

I_1 (A)	0,24	0,48	0,70	0,95	1,2
U_1 (V)	7,8	15	23	31	39
P_1 (W)	1,0	4,2	9,2	17	27
I_2 (A)	2,0	4,0	6,0	8,0	10

La mesure à l'ohmmètre des résistances des bobinages donne $R_1=1,5\,\Omega$ (primaire) et $R_2=0,17\,\Omega$ (secondaire). La résistance interne de l'ampèremètre A_2 est $R_A=0,8\,\Omega$.

1) La plaque signalétique du transformateur donne une tension d'alimentation u_1 de 220 V pour une tension de sortie u_2 de 24 V et une intensité admissible au secondaire de 10 A. Peut-on alimenter directement le transformateur sous 220 V avec le montage proposé ?

On modélise le transformateur réel étudié comme suit

- 2) Exprimer le rapport de de transformation m puis effectuer l'application numérique.
- 3) Exprimer puis calculer l'inductance L_2 du secondaire. On rappelle pour cela que $L_2/L_1=(N_2/N_1)^2=m^2$.

${f I}^{-1}$ Transformateur torique

Sur un tore magnétique, on dispose deux enroulements. Le primaire est constitué de N_1 spires, et relié à un générateur de force électromotrice e(t) par l'intermédiaire d'une résistance R_1 . Le secondaire comprend N_2 spires, il est branché sur une résistance R_2 . Les résistances des enroulements sont nulles. Le tore est constitué d'un matériau de perméabilité $\mu = \mu_0 \mu_r$ (μ_r très grand devant l'unité). Sa section est notée S. Son rayon a l'épaisseur du tore. On néglige les variations du champ magnétique à l'intérieur du tore, que l'on prend de la forme $\overrightarrow{B} = B \overrightarrow{e}_{\theta}$.

- 1) Déterminer le champ magnétique dans le tore. Définir les bornes homologues.
- 2) Établir les expressions des flux Φ_1 et Φ_2 , traversant respectivement le primaire et le secondaire.
- 3) Déterminer le coefficient de mutuelle inductance M existant entre les deux circuits, ainsi que leurs inductances propres respectives L_1 et L_2 , en fonction de $L_0 = \mu S/(2\pi a)$. Quelle relation existe-t-il entre M, L_1 et L_2 ?
- 4) Etablir l'expression du rapport de transformation $m = u_2/u_1$ en fonction de N_1 et N_2 .
- 5) Montrer que pour un transformateur idéal, on a $i_2/i_1 = -1/m$. En déduire une nouvelle expression pour le champ magnétique B dans le tore. Ce résultat est-il génant ?

I | Relèvement du facteur de puissance

Une installation industrielle comporte en parallèle deux machines assimilées à des impédances inductives qui consomment respectivement les puissances $P_1 = 2000~W$ avec un facteur de puissance $\cos(\phi_1) = 0.6$ et $P_2 = 6000~W$ avec un facteur de puissance $\cos(\phi_2) = 0.7$, en parallèle desquels sont branchés des lampes consommant au total une puissance $P_L = 2000~W$. Les lampes sont assimilées à des résistances.

La tension aux bornes de l'installation est sinusoïdale de fréquence $f=50\ Hz$ et sa valeur efficace est 230 V.

- 1) Réalisez le schéma électrique correspondant à l'installation présentée.
- 2) Exprimez le facteur de puissance et la valeur efficace du courant consommé par l'installation complète et commenter le résultat obtenu. A.N.
- 3) Proposez une solution qui permet de réduire les pertes en lignes, puis faire l'étude du nouveau dispositif et commentez.