8 октября 2025 г.

Орел Владислав Олегович Б82-ММ

- 1.1 а) Доказать: $A\subseteq B\cap C\Leftrightarrow A\subseteq B$ и $A\subseteq C$. Док-во.
 - (\Rightarrow) Пусть $x \in A$. следует $A \subseteq B \cap C$ следует $x \in B \cap C$, то есть $x \in B$ и $x \in C$. Следовательно, $A \subseteq B$ и $A \subseteq C$.
 - (\Leftarrow) Если $A \subseteq B$ и $A \subseteq C$, то для любого $x \in A$ имеем $x \in B$ и $x \in C$, значит $x \in B \cap C$. Следовательно, $A \subseteq B \cap C$.
- б) Доказать: $A \subseteq B \backslash C \Leftrightarrow A \subseteq B$ и $A \cap C = \emptyset$. Док-во.
 - (⇒) Пусть $x \in A => x \in B$), т.к $A \subseteq B.A \cap C = \emptyset => x \notin C. => .x \in B \backslash C => A \subseteq B \backslash C$
 - (\Leftarrow) Пусть $x \in A =>$ х $\in B$ и $x \notin C, => A \subseteq B$ и $x \notin A \cap C => A \subseteq BA \cap C = \emptyset. => .x <math>\in B \setminus C => A \subseteq B \setminus C$
- 1.2 а) Доказать равенство: $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$. Док-во.
 - (\subseteq) Пусть $X \in \mathcal{P}(A \cap B)$. Тогда $X \subseteq A \cap B$, откуда $X \subseteq A$ и $X \subseteq B$. Следовательно, $X \in \mathcal{P}(A)$ и $X \in \mathcal{P}(B)$, то есть $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
 - (\supseteq) Пусть $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Тогда $X \subseteq A$ и $X \subseteq B$. Следовательно, $X \subseteq A \cap B$, то есть $X \in \mathcal{P}(A \cap B)$.
- б) Доказать: $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Док-во: Пусть $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Тогда $X \subseteq A$ или $X \subseteq B$. В любом случае $X \subseteq A \cup B$, следовательно, $X \in \mathcal{P}(A \cup B)$.

Пример: A={1}, B={1,2} $=>P(A\cup B)=\{\emptyset,\{1\},\{2\},\{1,2\}\}$ $P(A)=\{\emptyset,1\},\ P(B)=\{\emptyset,2\}=>P(A)\cup\mathcal{P}(B)=\{\emptyset,\{1\},\{2\}\}$ $=>P(A)\cup\mathcal{P}(B)\subset\mathcal{P}(A\cup$

- в) Доказать: $P(A \setminus B) \subseteq (\mathcal{P}(A) \setminus \mathcal{P}(B)) \cup \{\emptyset\}.$ Док-во:
- 1) Пусть $X \in \mathcal{P}(A \backslash B) => X \subseteq A \backslash B => X \subseteq A$ и $X \nsubseteq B$ Если $X = \emptyset, => X \subseteq A$ и $X \subseteq B$ Если $X \neq \emptyset, => X \subseteq A$ и $X \cap B = \emptyset => X \in \mathcal{P}(A) \backslash \mathcal{P}(B) \cup \{\emptyset\}$

```
Пример: A=\{1,2\}, B=\{2\}
=>P(A \setminus B) = \{\emptyset, \{1\}\}
P(A)=\{\emptyset,1\}, P(B)=\{\emptyset,2\} => P(A) \setminus \mathcal{P}(B) = \{\{1\}, \{1,2\}\}
=>P(A \setminus B) \subset \mathcal{P}(A) \setminus \mathcal{P}(B) \cup \{\emptyset\}
```

1.3

- а) Проверка св-в ОЧП:
 - 1) Рефлексивность: $\forall v$ должно выполняться $(v,v) \in R_1 i_k <= i_k$ будет выполняться, а для $i_k <$
- i_k нет => нерефлексивно
- 2) Антисимметричность: условия $\exists k: i_k < j_k, \text{ и } i_k = j_k$ не могут выполняться одновременно => неа R_1- не ОЧП
- б) Проверка св-в ОЧП:
 - 1) Рефлексивность: $\exists k: i_l = i_l => i_k < i_k$ неверно => нерефлексивно
 - 2) Антисимметричность: условия $\exists k: i_l = j_l, \text{ и } i_k < j_k, i_l = j_l, \text{ и } i_k < j_k$ не могут выполняться одновр $=> \mathrm{R}_2-$ не ОЧП

1.4

- а) E(f)=R, биекция
- б) E(f) > =1, ничего
- в) E(f)=R, биекция
- Γ) E(f)>0, инъективна
- д) E(f) > = 2, ничего
- е) E(f)=[-1;1], биекция
- ж) E(f)=[0;1], ничего
- з) E(f)=[-1;1], сюръективна
- и) E(f)=R, сюръективна

1.5

- а)неверно, т.к f может быть неинъективна
- б)верно, т.к f(x)=z => g(f(x))=g(z)=y

 $=> C_1 \cap C_2 \neq \emptyset =>$ такое возможно

- в)верно, т.к f инъективна и сюръективна и g инъективна и сюръективна
- Γ)верно, т.к g(f(x1))=g(f(x2))=>f(x1)=f(x2)=>x1=x2
- д)неверно, т.к f может быть неинъективна
- е)верно, т.к для каждого у существует х т.ч g(f(x))=y=>f(x) должен быть определен для всех у
- 1.8

Пусть А-множество жителей, \mathbf{k}_i — число знакомых для каждого жителя \mathbf{C}_1 — множество людей с $d_i>=0,5*|A|,~C_2$ — множество людей с $d_i<=0,5*|A|$ => $\mathbf{C}_2=A\backslash C_1$ По условию $\mathbf{d}_i>=0,3*|A|$ => $C_1-0,3*|A|<=d_i<=0,5*|A|$