1

Assignment 4

Shivangi Parashar

Geometry

Abstract—This documnet contains the solution to prove angles of a equilateral triangles are 60 degrees through Linear Algebra .

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment4/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment4/ Assignment4.tex

1 Problem

To prove angles of equilateral triangles are 60 °each.

2 Solution

Fig. 1: Equilateral $\triangle ABC$ with A,B and C as vertices

Considering A,B and C as the vertices of triangle:

$$A = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} B = \begin{pmatrix} 0 \\ 0 \end{pmatrix} C = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

In equilateral triangle all sides are equal. Hence,

$$\|\mathbf{A} - \mathbf{B}\| = \|\mathbf{B} - \mathbf{C}\| = \|\mathbf{A} - \mathbf{C}\|$$
 (2.0.1)

Putting $\mathbf{B} = 0$ in (2.0.1) we have,

$$\|\mathbf{A}\| = \|\mathbf{C}\| \tag{2.0.2}$$

$$\|\mathbf{A}\| = \|\mathbf{A} - \mathbf{C}\| \tag{2.0.3}$$

Squaring equation (2.0.2)

$$\|\mathbf{A}\|^2 = \|\mathbf{C}\|^2 \tag{2.0.4}$$

Squaring equation (2.0.3)

$$\|\mathbf{A}\|^2 = \|\mathbf{A}\|^2 - 2\mathbf{A}^T C + \|\mathbf{C}\|^2$$

$$\implies \|\mathbf{A}\|^2 = 2\mathbf{A}^T C \qquad (2.0.5)$$

Taking the inner product of sides AB,BC we have:

$$(\mathbf{A} - \mathbf{B})^{T}(\mathbf{B} - \mathbf{C}) = ||\mathbf{A} - \mathbf{B}|| \, ||\mathbf{B} - \mathbf{C}|| \cos ABC$$
(2.0.6)

The angle ABC from the above equation is:

$$\cos ABC = \frac{(\mathbf{A} - \mathbf{B})^T (\mathbf{B} - \mathbf{C})}{\|\mathbf{A} - \mathbf{B}\| \|\mathbf{B} - \mathbf{C}\|}$$
(2.0.7)

Substituting value in (2.0.7) and putting we have:

$$\cos ABC = \frac{(\mathbf{A})^T(\mathbf{C})}{\|\mathbf{A}\|^2}$$
 (2.0.8)

From (2.0.5) we have:

$$\cos ABC = \frac{(\mathbf{A})^{T}(\mathbf{C})}{2(\mathbf{A})^{T}(\mathbf{C})}$$

$$\implies \cos ABC = 1/2$$

$$\implies \angle ABC = 60^{\circ}$$
 (2.0.9)

Taking the inner product of sides AB,AC we have:

$$(\mathbf{B} - \mathbf{A})^{T}(\mathbf{A} - \mathbf{C}) = ||\mathbf{B} - \mathbf{A}|| \, ||\mathbf{A} - \mathbf{C}|| \cos BAC$$
(2.0.10)

The angle BAC from the above equation is:

$$\cos BAC = \frac{(\mathbf{B} - \mathbf{A})^T (\mathbf{A} - \mathbf{C})}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{A} - \mathbf{C}\|}$$
(2.0.11)

Substituting value in (2.0.11) and putting we have:

$$\cos BAC = \frac{(\mathbf{A})^T (\mathbf{A} - \mathbf{C})}{\|\mathbf{A}\|^2}$$
 (2.0.12)

$$\implies \frac{(\mathbf{A})^T(\mathbf{A}) - (\mathbf{A})^T(\mathbf{C})}{\|\mathbf{A}\|^2}$$
 (2.0.13)

We know $(\mathbf{A})^T(\mathbf{A}) = ||\mathbf{A}||^2$

From equation (2.0.5) we have: $(\mathbf{A})^T(\mathbf{C}) = \frac{1}{2} ||\mathbf{A}||^2$ Substituting values in (2.0.12) we have:

$$\cos BAC = \frac{\frac{1}{2} ||\mathbf{A}||^2}{||\mathbf{A}||^2}$$

$$\implies \cos BAC = 1/2$$

$$\implies \angle BAC = 60^{\circ}$$
(2.0.14)

Taking the inner product of sides AC,BC we have:

$$(\mathbf{C} - \mathbf{A})^{T}(\mathbf{C} - \mathbf{B}) = \|\mathbf{C} - \mathbf{A}\| \|\mathbf{C} - \mathbf{B}\| \cos ACB$$
(2.0.15)

The angle ACB from the above equation is:

$$\cos ACB = \frac{(\mathbf{C} - \mathbf{A})^T (\mathbf{C} - \mathbf{B})}{\|\mathbf{C} - \mathbf{A}\| \|\mathbf{C} - \mathbf{B}\|}$$
(2.0.16)

Substituting value in (2.0.18) and putting we have:

$$\cos ACB = \frac{(\mathbf{C} - \mathbf{A})^{T}(\mathbf{C})}{\|\mathbf{A}\|^{2}}$$

$$\implies \frac{(\mathbf{C})^{T}(\mathbf{C}) - (\mathbf{A})^{T}(\mathbf{C})}{\|\mathbf{A}\|^{2}}$$
(2.0.17)

We know $(\mathbf{C})^T(\mathbf{C}) = ||\mathbf{C}||^2$

From (2.0.4) and (2.0.5) we have:

$$(\mathbf{A})^T(\mathbf{C}) = \frac{1}{2} ||\mathbf{A}||^2 = \frac{1}{2} ||\mathbf{C}||^2$$

Substituting values in (2.0.17) we have:

$$\cos ACB = \frac{\frac{1}{2} \|\mathbf{C}\|^2}{\|\mathbf{C}\|^2}$$
 (2.0.18)

$$\implies \cos ACB = 1/2$$

$$\implies \angle ACB = 60^{\circ}$$
(2.0.19)

Hence from equation (2.0.9),(2.0.14) and(2.0.18)

$$\angle ABC = \angle BAC = \angle ACB = 60^{\circ}$$
 (2.0.20)