Problem 1.41. Let B and C be languages over $\Sigma = \{0, 1\}$. Define

 $B \xleftarrow{1} C = \{w \in B \mid for \ some \ y \in C, \ strings \ w \ and \ y \ contain \ equal \ numbers \ of \ 1s\}.$

Show that the class of regular languages is closed under the $\stackrel{1}{\leftarrow}$ operation.

Proof. To show that the operation $B \stackrel{1}{\leftarrow} C$ is closed under the class of regular languages we use the closure properties of operations intersection, $Zero^-$ and $Zero^+$, and give a regular expression that uses these operations to describes operation $B \stackrel{1}{\leftarrow} C$.

Let A be any language over $\Sigma = \{0, 1\}$. Define

 $Zero^{-}(A) = \{w \mid w \text{ is constructed by removing all 0s from some string in } A\}.$

 $Zero^+(A) = \{w \mid w \text{ is constructed by inserting any number of } 0s \text{ anywhere in some string of } A\}.$

The closure properties of $Zero^-$ and $Zero^+$ are proved in Corollaries 1 and 2. Let B and C be any regular languages over $\Sigma = \{0, 1\}$. The regular expression that describes the operation $B \stackrel{1}{\leftarrow} C$ is:

$$B \xleftarrow{1} C = Zero^+ \Big(Zero^-(B) \cap Zero^-(C) \Big) \cap B$$

Corollary 1. Show that the class of regular languages is closed under the $Zero^-$ operation.

Proof.

Corollary 2. Show that the class of regular languages is closed under the $Zero^+$ operation.

Proof.