Ultra Low Power Circuits

Master Degree (M.Sc.) in Electrical and Computer Engineering 5th year, 1st Quarter 2022-2023

#1 Circuits Report (1 week -October 7, with report)

Goals: Get the feeling for Currents and Voltages values in sub-threshold and in strong inversion.

To Do:

- 1) NMOS transistor simulation: W=Group_number*1um/L=0.35um
 - a. VDS=1.2V, 0V<VGS<1.2V

Plot ID vs VGS, with key points and comments

- b. VGS1=0.5V; VGS2=0.4V; VGS3=0.3V; 0<VDS<0.5V Plot ID vs VDS for 3 VGS curves, with key points and comments.
- 2) Design a CMOS Inverter with Vth=VDD/2~0.6V
 - a. VDD=1.2V, 0V<VGS<1.2V
 - i. Plot Vo vs Vi
 - ii. Plot ID vs VGS, with comments
 - b. 0V<VDD <1V, 0V<Vi<VDD
 - i. Plot Vo vs Vi, with comments

Report:

1 page with Identification and plots; 1 page with relevant comments

#2/#3 Analog Report (2 weeks -October 21, with report)

Goals: Design of a Low-gm Amplifier.

To Do:

Consider V_{DD} =1V and a current source of 2uA.

- 1) Design a transconductance amplifier (Fig.1) with io/v_d <10uS. Consider schematic changes in the current mirrors with the circuit in Fig.2. Consider using the transistors in the differential pair in weak inversion.
- 2) Estimate the operation zone of the transistors.
- 3) Obtain the gain and output resistance of the amplifier.

Report:

4 pages with Identification, dimensioning, plots; and relevant comments.

Fig. 1 Amplifier schematic

Fig.2 Current mirror scaling

#4 Digital Report (2 weeks -November 4, with report)

Goals: Design of a digital output driver.

To Do: Design an output driver employing CMOS inverters.

Constraints:

Output capacitance *C*_l=10pF

Supply voltage 2V

Frequency 10MHz

Design space:

Number of stages *N*

Inverter structure First inverter: NMOS minimum dimensions; PMOS

adapted.

All other inverters free.

Transistor dimensioning

Goals:

Minimize power consumption

Minimize Area

Report (5 pages):

2 pages with Identification, figures and plots; 3 pages with relevant comments.