线性方程组复习题

黄利兵

数学科学学院

2022年11月13日

本章总结

- 主要概念: 系数矩阵, 增广矩阵, 线性表出, 线性相关, 线性无关, 极大线性 无关组, 向量组的秩, 矩阵的秩, 子式, 基础解系
- 重要算法: 消元法解线性方程组/用初等行变换将增广矩阵变为约化阶梯形,用初等行变换求矩阵的秩/求列向量组的极大线性无关组
- 基本结论: 向量组的表出与秩的关系, 矩阵的行秩与列秩相等, 矩阵的秩与 行列式间的关系, 线性方程组有解判别定理, 线性方程组解的结构
- 核心方法: 运用基本结论

填空题

- 1. $\[\psi \] \alpha_1 = (1,1,0,0), \[\alpha_2 = (1,0,1,0), \[\alpha_3 = (0,0,1,1), \[\alpha_4 = (0,1,0,1), \] \] \] \beta = (1,2,3,a). \] \] \] \omega + \beta \] \] \pi$ where $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function of $\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \]$ depends a single function o
- 2. 如果 \mathbb{R}^4 中的向量 (x,1,1,1), (1,x,1,1), (1,1,x,1), (1,1,1,x) 线性相关, 则 x 的值是______.
- 3. 若向量组 $\alpha_1 = (1, 2, -3), \alpha_2 = (3, 0, 1), \alpha_3 = (9, 6, -7)$ 与向量组 $\beta_1 = (0, 1, -1), \beta_2 = (a, 2, 1), \beta_3 = (b, 1, 0)$ 有相同的秩, 则 a/b 的值是______.
- 4. 若矩阵 $\begin{pmatrix} 1 & a & -1 & 2 \\ 0 & -1 & a & 2 \\ 1 & 0 & -1 & 2 \end{pmatrix}$ 的秩为 2, 则 a 的值为______.
- 5. n 阶方阵 $\begin{pmatrix} 1-n & 1 & \cdots & 1 \\ 1 & 1-n & \cdots & 1 \\ \cdots & \cdots & \cdots & 1 \\ 1 & 1 & \cdots & 1-n \end{pmatrix}$ 的秩是______.

解答题 (一)

7. 若 $m \ge n \ge 2$, 且 a_1, a_2, \dots, a_n 互不相同, 解线性方程组

$$\begin{cases} x_1 + a_1 x_2 + \dots + a_1^{m-1} x_m = 2, \\ x_1 + a_2 x_2 + \dots + a_2^{m-1} x_m = 2, \\ \dots & \dots \\ x_1 + a_n x_2 + \dots + a_n^{m-1} x_m = 2. \end{cases}$$

解答题 (三)

8. 将 $1, 2, 3, \dots, n^2$ 排成一个 $n \times n$ 矩阵 A, 求 A 的秩的取值范围.

证明题 (一)

9. 已知向量组

I: $\alpha_1 = (0, 1, 2, 3)', \ \alpha_2 = (3, 0, 1, 2)', \ \alpha_3 = (2, 3, 0, 1)';$

II: $\beta_1 = (2, 1, 1, 2)'$, $\beta_2 = (0, -2, 1, 1)'$, $\beta_3 = (4, 4, 1, 3)'$.

求证: 向量组 II 能被 I 线性表出, 但 I 不能被 II 线性表出.

6/10

证明题 (二)

10. 已知 $n \ge 3$ 且 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是线性无关向量组. 如果 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \dots, \alpha_{n-1} + \alpha_n, \alpha_n + \alpha_1$ 也是线性无关向量组, 证明: n 为奇数.

证明题 (三)

11. 设 A, B 为 n 阶实方阵, 且 A 的 (i,j) 元为 a_{ij} , B 的 (i,j) 元为

$$b_{ij} = \sum_{k=1}^{n} a_{ki} a_{kj}.$$

求证: 秩(B) = 秩(A).

证明题 (四)

12. 对于正整数 k, n, 定义 $S_n(k) = 1^n + \cdots + (k-1)^n$. 证明:

$$S_{n-1}(k) = \frac{1}{n!} \begin{vmatrix} k^n & C_n^{n-2} & C_n^{n-3} & \cdots & C_n^1 & C_n^0 \\ k^{n-1} & C_{n-1}^{n-2} & C_{n-1}^{n-3} & \cdots & C_{n-1}^1 & C_{n-1}^0 \\ k^{n-2} & 0 & C_{n-2}^{n-3} & \cdots & C_{n-2}^1 & C_{n-2}^0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ k & 0 & 0 & \cdots & 0 & C_1^0 \end{vmatrix}.$$

补充题

- A1. 有 2n+1 个零件, 从其中任意拿走一个, 剩下的零件都可以分成两堆, 每堆n 个, 重量相等. 求证: 所有零件的重量都相等.
- A2. 有 n+1 个同学, 他们都读过某 n 本书中的至少一本书. 证明在这 n+1 个同学中可以找到甲乙两个小组, 甲组同学读过的书合在一起与乙组同学读过的书合在一起完全相同.