Capacitieve sensor

Principe capacitieve sensor

- Capacitive touch sensing is een manier van menselijke aanraakdetectiemiddel dat weinig of geen kracht nodig heeft om te activeren.
- ➤ Het kan worden toegepast om menselijke contact te detecteren via kunststof, hout, keramiek of een ander isolatiemateriaal.

Waarom gebruik maken van een capacitieve sensor?

Principe capacitieve sensor

- ➤ ledere touch sensor heeft maar 1 aansluitdraad nodig
- ➤ Kan verborgen worden onder elk soort niet-metaalachtig materiaal
- Kan een hand detecteren op enkele centimeters van de sensor
- ➤ Heel goedkoop te realiseren

Hoe werkt het?

- De sensorplaat (of oppervlak) en het menselijk lichaam vormen samen een capaciteit.
- De grootte van de capaciteit is vooral bepalend van de afstand tussen je hand en de sensorplaat.
- Door je hand dichterbij of verder weg te brengen van de sensor vergroot of verklein je de capaciteitswaarde waardoor de lading die het bevat ook wordt gewijzigd.

Wat is de rol van Arduino?

Tussen Send pin en Receive pin wordt een bepaalde weerstand geplaatst afhankelijk van de gewenste response.

- 1 MΩ voor activatie bij aanraking
- 10 M Ω voor response op zo'n 10 à 15 cm afstand
- 40 M Ω voor response op zo'n 30 à 50 cm afstand

Hoe groter de weerstand, hoe groter de gevoeligheid van de sensor maar hoe trager de reactie zal zijn.

Een capaciteit van 1 nF in serie met de sensor kan eventueel 50 Hz bron voorkomen of sterk verminderen.

De weerstandswaarden gelden voor gebruik via de Capacitive Sensing bibliotheek.
http://playground.arduino.cc/Main/CapacitiveSensor?from=Main.C
apSense

Voorbeeldcode


```
6 // capacitieve sensor
7 #include <CapacitiveSensor.h>
9 CapacitiveSensor Cs = CapacitiveSensor (4,8); // 10 Mohm tussen pennen
.0 // pin 8 instellen als sensorpin
.1 const byte luidspreker = 13; //audio uitgangskanaal
  const int toonlengte = 100, del = 20; // toonlengte en vertraging
.3 // toonfrequenties
.4 const int A=440, B = 494;
.5 const int C = 523, d = 587, e = 659, f=698;
.6 const int g = 784, a = 880, b = 988, c = 1047;
.8 const byte drempel = 30; // sensor-drempelwaarde
.9
10 void setup() {
     pinMode(13, OUTPUT);
     Serial.begin(9600);
13 1
24
25 void loop() {
     long v = Cs.capacitiveSensor(30);
     Serial.println(v); // stuur sensorwaarde naar PC
28
     if (drempel < v) {
29
       digitalWrite(13, HIGH);
       if ((v >= 40) \ \alpha \ (v <= 50)) \ \{tone(luidspreker, B, toonlengte); \}
3.0
31
       if ((v >= 50) \& (v <= 60)) \{tone(luidspreker, c, toonlengte); \}
       if ((v >= 60) \& (v <= 70)) {tone(luidspreker, d, toonlengte); }
       if ((v >= 80) \& (v <= 90)) \{tone(luidspreker, e, toonlengte); \}
33
34
       if ((v \ge 90) \le (v \le 100)) {tone(luidspreker, f, toonlengte); }
3.5
       if ((v >= 100) \& (v <= 110)) {tone(luidspreker, g, toonlengte); }
       if ((v >= 110) \& (v <= 120)) {tone(luidspreker, b, toonlengte); }
37
       if ((v >= 130))
                                     {tone(luidspreker, c, 500); }
38
39
     else digitalWrite(13, LOW);
10
     delay(del);
                                                                19
11 }
```

