

Exhibit 1

1 IN THE UNITED STATES DISTRICT COURT
2 FOR THE EASTERN DISTRICT OF TEXAS
3 TYLER DIVISION

4 BLUE SPIKE, LLC, §
5 Plaintiff, § CIVIL ACTION NO.
6 VS. § 6:12-CV-00499-MHS

7 TEXAS INSTRUMENTS, INC. §
8 Defendant. §

9 BLUE SPIKE, INC., §
10 Plaintiff, §
11 VS. §
12 AUDIBLE MAGIC CORPORATION, §
13 FACEBOOK, INC., MYSPACE, LLC, §
14 SPECIFIC MEDIA, LLC, §
15 PHOTOBUCKET.COM, INC., § CIVIL ACTION NO.
16 DAILYMOTION, INC., DAILYMOTION §
17 S.A., SOUNDCLLOUD INC., § 6:12-CV-00576-MHS
18 SOUNDCLLOUD LTD., MYXER, INC., §
19 QLIPSO, INC, QLIPSO MEDIA §
20 NETWORKS, LTS, YAP.TV, INC., §
21 GOMISO, INC., IMESH, INC., §
22 METACAFE, INC., BOODABEE §
23 TECHNOLOGIES INC., TUNECORE, §
24 INC., ZEDGE HOLDINGS, INC. §
25 BRIGHTCOVE INC., COINCIDENT. §
TV INC., ACCEDO BROADBAND §
NORTH AMERICA, INC., ACCEDO §
BROADBAND AB, and MEDIAFIRE, §
LLC, §

21 Defendants. §
22 CONFIDENTIAL - OUTSIDE COUNSEL EYES ONLY
23 ORAL AND VIDEOTAPED DEPOSITION OF
24 SCOTT MOSKOWITZ
December 11th, 2014
VOLUME 3
25 Pages 639 through 822

Deposition Resources, Inc.
800.295.4109

1 ORAL AND VIDEOTAPED DEPOSITION OF SCOTT
2 MOSKOWITZ, produced as a witness at the instance of
3 the Defendant Audible Magic, and duly sworn, was
4 taken in the above-styled and numbered cause on the
5 11th of December, 2014, from 8:45 a.m. to 2:29 p.m.,
6 before Daniel J. Skur, Notary Public and Certified
7 Shorthand Reporter in and for the State of Texas,
8 reported by stenographic means, at the offices of
9 Garteiser Honea, 218 North College Avenue, Tyler
10 Texas, pursuant to the Federal Rules of Civil
11 Procedure.

12
13
14
15
16
17
18
19
20
21
22
23
24
25

Deposition Resources, Inc.
800.295.4109

1 sheet is where we got that. Thank you.

2 MR. GARTEISER: Sure.

3 MR. RAMSEY: Let's go off the record
4 and take a quick break. I'd like to get back.

5 VIDEOGRAPHER: This is the end of
6 tape number 1 to be continued on tape number 2.

7 We're off the record at 9:31 a.m.

8 (Recess held.)

9 VIDEOGRAPHER: This is the beginning
10 of tape number 2 in the continued deposition of
11 Scott Moskowitz taken on December 11th, 2014. We're
12 on the record at 9:47 a.m.

13 MR. RAMSEY: All right. This is
14 Gabe Ramsey for Audible Magic. For the record, we
15 are now leaving the 30(b)(6) testimony of Blue Spike
16 LLC and continuing that to another day, and at this
17 point on the record, we resume the 30(b)(1)
18 testimony and deposition of Scott Moskowitz.

19 Please mark this as Exhibit 17,
20 please.

21 (Deposition Exhibit 17 marked.)

22 MR. BRASHER: Counsel, could we have
23 a copy.

24 MR. RAMSEY: I'm sorry. Of course.

25 MR. BRASHER: Thank you.

1 BY MR. RAMSEY:

2 Q. Figures 2 through 13.

3 A. Oh, pardon me. I'm sorry. Figures 2
4 through 13. Okay.

5 Q. All right. Mr. Moskowitz, isn't it true
6 that the process described in Figures 2 through 13
7 of the '223 patent described the process of creating
8 abstracts in your signal abstracting patents?

9 A. No.

10 Q. Isn't that true?

11 A. No, it's not true at all.

12 Q. Do you -- you must admit that the
13 process described between Figures 2 through 13 of
14 the '223 patent anticipates the creating of
15 abstracts in your '472 patent.

16 MR. GARTEISER: Objection, form.

17 BY MR. RAMSEY:

18 Q. Correct?

19 MR. GARTEISER: Objection, form.

20 A. "Anticipate" means what?

21 BY MR. RAMSEY:

22 Q. Isn't it true that the process of
23 creating abstracts in the claims of your asserted
24 patents is reflected in Figures 2 through 13 of the
25 '223 patent?

1 A. No, it's not true at all, and I can
2 refer actually -- we can start at Figure 2 if you
3 would like.

4 Q. Please. Tell me why that's not so.

5 A. In Figure 2 of the '223 patent, step 200
6 at the top says, open sound file, read header
7 information.

8 Q. Okay. What is the import of that fact?

9 A. We're not concerned with header
10 information.

11 Q. All right. Are there any other reasons
12 why Figures 2 through 13 do not anticipate the
13 process of creating abstracts in your patent?

14 A. Again, I'm not going to follow your
15 definition of what "anticipates" means because the
16 patent office has already said that it doesn't
17 anticipate, but I'll go page to page.

18 In Figure 3, starting from the top,
19 prepare file for reading, read one frame of samples
20 from sound file into sample array. Did we read a
21 full frame?

22 Then skipping down below that,
23 compute FFT of this frame and convert to magnitude
24 spectrum and store in array mag, I believe that
25 says, it's hard to read, with a corresponding array

1 of the frequencies of each bin in frequency, and
2 there's no reference there. However, when it says
3 did we read a full frame in Figure 3 and the answer
4 is no, then we get into pitch trajectory cleanup in
5 addition to statistics computation referred to in
6 Figure 13.

7 Next would be Figure 5. Starting
8 with -- well, I mean, again, all of these things can
9 have references to descriptions within the
10 specification itself, so I'm only reading what's
11 written here, and I would like the opportunity to
12 actually refer to the actual terminology as well as
13 description that is in the specification, but if
14 yes, if fund equals minus 1, fund C and frequency
15 candidateCount equals fund. Compute score.
16 CandidateCount -- which then refers to Figure 7.
17 CandidateCount equals candidateCount plus 1, and
18 then finally, pick best candidate, which refers to
19 Figure 8, and compute confidence in Figure 9.

20 Referring now to Figure 7B, I
21 believe it says Figure 7 in an earlier reference,
22 but there is a Figure 7A and a Figure 7B, and in
23 this figure there are several, I guess, harmonic and
24 sums that are being determined, and at the end it
25 says, fund C and Score candidateCount equals

1 fitSum/FFTNorm, referring to step 726, and then it
2 says compute score.

3 Referring now to Figure 9B, there is
4 a key to Figure 9B which refer separately to Figure
5 9A and Figure 9B. The steps I won't repeat. They
6 are as they're written in the document, but the last
7 piece of this in what is called step 928 says pitch
8 confidence, parentheses, frame count equals conf
9 sum/FFT norm and then the following becomes a
10 compute confidence.

11 Finally -- and again you've asked
12 the question several times about what are called
13 MFCCs, or Mel-spaced overlapping triangle filters,
14 which is the way it's described here, I'd refer to
15 however the term would be described in the
16 specification, but the following steps of
17 normalizing the magnitude spectrum, apply a
18 preemphasis filter, apply mel-spaced overlapping
19 triangular filters, apply cosine transform to obtain
20 cep -- excuse me, cepstral coefficients,
21 parentheses, MFCCs, and the result is MFCC
22 computation.

23 Finally, below that, as a separate
24 computation I'll read the steps as they occur. I
25 will do my best to make sure, but reference to the

1 figure is probably much easier.

2 For each acoustic attribute
3 trajectory, not feature, or not characteristic,
4 trajectory, compute the corresponding first
5 derivative trajectory, so we're not only not a
6 feature or a characteristic, but we're now an
7 acoustic attribute trajectory corresponding to its
8 first derivative.

9 The second step is for each
10 trajectory, parentheses, acoustic attributes, and
11 first derivatives compute the amplitude weighted
12 mean.

13 The next step, without getting into
14 the mathematics that are described here, for each
15 trajectory, parentheses, acoustic attributes and
16 first derivatives, compute the amplitude weighted
17 standard deviation and the result of these steps is
18 a statistics computation.

19 Q. All right. So -- thank you. So is it
20 true that each of the --

21 A. Now --

22 Q. -- features that you just described --

23 A. But --

24 Q. -- from --

25 A. I'm sorry.

1 Q. -- Figures 2 through 13 are -- those are
2 your -- it's your position that each of those
3 independently is a reason why the process set forth
4 in the '223 patent is different from your signal
5 abstracting creation process; is that right?

6 MR. GARTEISER: Objection, form.

7 A. That's not what was asked. What was
8 asked of me is akin to the question you've been
9 asking me several times over the past three days,
10 which is your contention that an MFCC is somehow
11 equivalent with a signal abstract. I contend that
12 this is not the case. So as, again, going past the
13 limited figures that you've described, we can also
14 refer to Figure 18, because if we're talking about
15 things like a comparing step, which was hotly
16 contested, if I remember correctly, in the claim
17 construction, it seems to me that not only is it not
18 the same thing, but once again, we get into
19 measuring distances between JF pair of frames, so
20 somehow an analysis of frames of sound. Somehow
21 those frames are measured in some way, and as we get
22 to the end of this, whether there's a match or a
23 nonmatch, the underlying title of Figure 18 is
24 Comparing Sounds By Matching Trajectories. Signal
25 abstracts, to the best of my knowledge, are not

Deposition Resources, Inc.
800.295.4109

1 comparing sounds by matching trajectories, but I
2 again refer to the specification, prosecution
3 history, as well as the claim construction.

4 Q. Please turn --

5 A. And then -- I'm sorry. Interrupt.

6 Q. Please turn to Figure 17.

7 MR. GARTEISER: Counsel, you didn't
8 let him finish answering your last question. Are
9 you going to retract that question?

10 MR. RAMSEY: No.

11 MR. GARTEISER: Then he needs to
12 have the opportunity to finish answering.

13 BY MR. RAMSEY:

14 Q. Finish the answer to the question.

15 A. Then in Figure 19, similarly, measure
16 distance between rhythms where there are values of I
17 including inverse duration, log tempo, what is
18 called pattern 3, and then finally rhythm
19 trajectory. And in this distance, which again
20 you've asked me several times about, I believe,
21 Euclidean measurements of distances between points
22 in a signal referencing the patents that are at
23 suit, here we see that the result is an overall
24 distance where W is a user-supplied weight, so
25 someone is providing some information about what the

1 weight should be, and norm, I believe that may refer
2 to normalization, is a system defined normalization,
3 oh, it is, for the I figure, and that says comparing
4 rhythms.

5 Finally, in Figure 20, again, we get
6 into computing the distance between two rhythm
7 trajectories. The last two steps that are included
8 here are find the two smallest values of distance I
9 for I equals zero to LEN, L-E-N, minus 1, and take
10 their average which is computing the distance
11 between two rhythm trajectories. So once again, I
12 don't think any of this characterizes what a signal
13 abstract is without limitation and reference to the
14 specification, the prosecution history, where plenty
15 of references were proffered by the office and
16 argued, or the claim construction.

17 Q. Isn't it true that the processes
18 described between Figure 17 and 20 describe the
19 process of comparing abstracts stated in your signal
20 abstracting patents?

21 A. No.

22 Q. Tell me what it -- tell me your position
23 about why you think, starting with Figure 17, what
24 in Figure 17 is different than the process of
25 comparing one abstract to another in your patents?

1 | What's your contention?

2 MR. GARTEISER: Objection, form.

3 A. Well, for one, as I had mentioned
4 earlier, not all of the patents include a database,
5 so for at least the reason that the third step of
6 Figure 17 says read sample sounds feature vector
7 from the database, and I also call into question the
8 term "feature vector" which is not an equivalent
9 with the signal abstract as being another term, and
10 the other one would be the fact that measuring
11 distance from sample sound to each sound in
12 database, I'm not clear on what that means, but the
13 last step in comparing sounds says, sort all sounds
14 by distance and display result to user. And if I
15 recall from the earlier testimony and without
16 limitation and refer to -- prefer to refer to the
17 testimony regarding Euclidean distances within
18 signals, that I told you it is not necessary to
19 include Euclidean distance measurements in creating
20 a signal abstract, and I still stand by that, and I
21 will not say anything further that would limit me
22 from what the specification as well as the
23 prosecution history and the claim construction went
24 in, and I will finally -- I'm sorry for the
25 long-winded answer.

Deposition Resources, Inc.
800.295.4109

1 My final response to that is these
2 figures as they exist in this application, I believe
3 it's improper to read simply the figures since
4 entering figures in patents, as I remember it, have
5 to include some description in the detail
6 description in a -- in a -- in an area which we call
7 brief description of the drawings so that we can
8 understand exactly what's meant. Not simply
9 referring to figures without any type of reference
10 to the actual specification. And that exists at
11 column 4, which says, brief description of the
12 drawings.

13 BY MR. RAMSEY:

14 Q. Sir, you cannot disagree -- isn't it
15 true you cannot disagree that a feature vector
16 representing MFCC values is exactly the same as your
17 signal abstract; isn't that right?

18 MR. GARTEISER: Objection, form.

19 A. I can and I will and I have and I'll
20 continue to, and the U.S. Patent and Trademark
21 Office of these United States agrees with me.

22 BY MR. RAMSEY:

23 Q. So it's your contention that the U.S.
24 Patent and Trademark Office agreed that a feature
25 vector representing MFCC values is not your signal

1 abstract; is that your view?

2 MR. GARTEISER: Objection, form.

3 A. That's not what I said.

4 BY MR. RAMSEY:

5 Q. So you -- so the patent office does
6 agree that feature vectors representing MFCC values
7 is the same as your -- your signal abstract?

8 MR. GARTEISER: Objection, form.

9 BY MR. RAMSEY:

10 Q. You agree that it is, right?

11 MR. GARTEISER: Hold on. Objection,
12 form.

13 A. Again, that's not what I said, but this
14 patent was presented to the patent office under my
15 duty to disclose. It was determined by the patent
16 office however the examiners examined and did
17 searches against that to come to the conclusion that
18 a signal abstract is a pioneering invention, and as
19 I'll remind you as I've responded several times
20 earlier, the original first office action on the
21 merits indicated allowable subject matter from the
22 very beginning, and I'll further supplement the
23 answer by saying even if you think it might be, you
24 had ample opportunity to submit under current patent
25 law an inter partes review claiming whatever you're

1 claiming right now so that you could get a definite
2 answer from the patent office, but you and the other
3 defendants failed to do so.

4 Q. Isn't it true that a feature vector
5 representing MFCCs is exactly the same as your
6 signal abstract? You can't -- you can't disagree
7 with that proposition. Correct?

8 MR. GARTEISER: Objection, form.

9 A. Counselor, you telling me what I can and
10 can't agree to sounds very odd in the context of a
11 question. Would you like to rephrase the question
12 so I can understand it better?

13 BY MR. RAMSEY:

14 Q. Isn't it true you agree that a feature
15 vector representing MFCC values is exactly the same
16 as the signal abstract described in your asserted
17 patents?

18 MR. GARTEISER: Objection, form.

19 A. Again, I've said it many times, a signal
20 abstract is not the same thing as the MFCCs and,
21 again, the claim construction which you based your
22 arguments was rejected by the court during the
23 Markman hearing, and so if you want further
24 clarification on it, I'm still going to continue to
25 maintain, not only are they not the same, but as per

1 the title, and again shouldn't only rely on titles
2 of patents, but it says here, method and article of
3 manufacture for content-related analysis, storage,
4 retrieval, and segmentation of audio information.
5 The three features that you asked me to explain how
6 my invention with my co-inventor Mike Berry were
7 different than I mentioned on the first day of these
8 depositions, if we would like to go back over those
9 features, none of those features can be -- can be
10 handled by what's described here in this patent or
11 any other patent, frankly, that existed or any other
12 reference that existed at the time of the invention.

13 BY MR. RAMSEY:

14 Q. Maybe you misunderstood my question. My
15 question was particularly, isn't it true that you
16 agree that a feature vector representing MFCC values
17 is exactly the same as the signal abstract described
18 in your patents?

19 MR. GARTEISER: Objection, form.

20 A. No, I don't agree with it. And by the
21 way, I'll supplement the answer, and I'll refer you
22 to column 3 why I think that.

23 MR. GARTEISER: Column 3 of what?

24 A. Column 3 of patent 5,918,223 or
25 otherwise known as the '223 patent, between column

1 3, line 5, and column -- and 65, it says
2 specifically, and I'll only read a part of it, but
3 I'm again going to give you the opportunity to argue
4 over what is written here, but at the end of column
5 34, starting around line 62, the invention also
6 provides an alternative method for classifying
7 sounds in which the classification is formed using a
8 probability density function based on the analysis
9 frames themselves rather than using the feature
10 vector statistical measurements. So once again,
11 probably density functions on analysis of frames
12 themselves versus what you just said was the only
13 thing was a feature vector for an MFCC is stark
14 contrast based on a reading of just that single
15 column.

16 BY MR. RAMSEY:

17 Q. Isn't it true that at column 3, line 4
18 through 21 of the '223 patent, the process of
19 creating a signal abstract as understood in your
20 patents is described?

21 A. Pardon?

22 Q. Isn't it true that at column 3, lines 4
23 through 21, the process of creating a signal
24 abstract as understood in your patents is described?

25 MR. GARTEISER: Objection, form.

Deposition Resources, Inc.
800.295.4109

1 again. It seems to be a habit of yours.

2 Q. Are you -- so you're incapable or
3 unwilling to describe for me the process of
4 comparing two abstracts in your asserted patents
5 without quoting from the patent specification; is
6 that true?

7 MR. GARTEISER: Objection, form.

8 A. I didn't say that.

9 BY MR. RAMSEY:

10 Q. Are you capable of describing for me
11 without reading from the patents the process of
12 comparing two abstracts?

13 MR. GARTEISER: Objection, form.

14 A. I'm capable of describing it, but,
15 again, this happens to be, what do you call it, a 30
16 point what?

17 BY MR. RAMSEY:

18 Q. Right now we're not in the 30(b)(6)
19 deposition.

20 A. What type of deposition is this?

21 Q. Right now we're -- right now is the
22 deposition of the inventor Scott Moskowitz. Please
23 describe for me how the process of comparing two
24 abstracts in your asserted patents works.

25 MR. GARTEISER: Object -- objection,

Deposition Resources, Inc.
800.295.4109

1 that what you just said?

2 MR. GARTEISER: Objection, form.

3 A. They may produce different results
4 depending on the context of the signal. For
5 instance, if the signal is in a single dimension
6 such as audio, which I believe that your prior
7 recitation or reference to Deposition Exhibit 17,
8 content-based classification search and retrieval of
9 audio, I'm not sure that I saw anything about root
10 mean square calculations, but I did see something in
11 the -- let's see. I did see in Exhibit 18 which is
12 U.S. patent to Blum 5,918,223 or what has been
13 referred to previously as the Blum patent or the
14 '223 patent, that -- let's see. Let's do both of
15 these.

16 (Witness reviews document.)

17 BY MR. RAMSEY:

18 Q. Are you done reviewing the document,
19 Mr. Moskowitz? I have another question.

20 A. I'm not done reading the document,
21 sorry.

22 Q. Let's move on.

23 A. It's lengthy.

24 Q. I think you've answered my last
25 question.

1 A. Wait. Wait. What was your last
2 question?

3 Q. You stated in response to the question,
4 does the use of different mathematics produce
5 different results in the comparing process in your
6 patent, and you said it may -- that they may produce
7 different results depending on the context of the
8 signal. So my question to you is, does your --

9 A. So -- so again, you mentioned root mean
10 square calculations, and the reference in, let's
11 see, Exhibit 1, column 6, refers specifically to
12 watermarking, however, must inherently alter at
13 least one --

14 (Interruption by the reporter.)

15 A. I'm sorry. Watermarking, however, must
16 inherently alter at least one data bit of the
17 original signal to represent a minimal change from
18 the original signal's unwatermarked state. The
19 changes may affect only a bit at the very least or
20 may -- or be dependent on information hiding
21 relating to signal characteristics, such as phase
22 information, differences between digitized samples,
23 root mean square calculations, Z transform analysis,
24 or similar signal characteristic category.

25 So once again, it's -- doesn't

1 appear to me that it's a necessary condition, but
2 within the context of your question, I think you're
3 ignoring the entirety of the specification and all
4 of the references made to prior applications
5 incorporated by reference.

6 BY MR. RAMSEY:

7 Q. So does -- do your asserted patents
8 specify which mathematics should be used in one
9 signal context versus another, for example,
10 one-dimensional signal context versus
11 two-dimensional signal contexts?

12 MR. BRASHER: Objection, form.

13 A. Once again, I need to understand what
14 you mean by "mathematics."

15 BY MR. RAMSEY:

16 Q. Well, what's your understanding of
17 "mathematics"?

18 A. My understanding of mathematics is that
19 originally it was called philosophy.

20 Q. All right. So do your asserted patents
21 specify which mathematics should be used to compare
22 signal abstracts in one signal context versus
23 another, for example, one-dimensional signals versus
24 two-dimensional signals?

25 A. Well, that's a signal context, but

1 you're also not referring, as you've repeatedly
2 asked questions, about perceptual features and
3 perceptual characteristics and MFCCs. Is that what
4 you continue to talk about? So what do you mean by
5 "signal context" now?

6 Q. You just stated that different
7 mathematics produce different results depending on
8 the context of the signal in the comparing process.
9 Does your patent describe which mathematics to use
10 in one-dimensional contexts and what mathematics to
11 use in another signal context in order to carry out
12 comparison?

13 A. I think you're mischaracterizing the
14 response. It's the context of the monitoring
15 effort. The sender and the receiver of the signal,
16 the people who are interested in the identification.

17 Q. Okay.

18 A. So if I'm in the image business and I
19 want certain types of images to be identified based
20 on the characteristics inherent or features inherent
21 to that image and root mean square calculations may
22 help speed up the ability to compare, then, sure, it
23 may be a feature there.

24 Q. All right.

25 A. But the sentence that you are taking out

1 from the specification is talking about watermarking
2 technology which is not the subject of this
3 litigation, and, again, without being very --
4 without getting clarity on what you mean by
5 "context" and what you mean by "mathematics," it's
6 not -- it's not clear to me exactly what you're
7 asking.

8 Q. All right. So you're saying that in
9 your patents, your patents say that the sender and
10 receiver must agree on what mathematical techniques
11 are appropriate to carry out a comparing of
12 abstracts in one context versus another.

13 MR. BRASHER: Objection, form.

14 BY MR. RAMSEY:

15 Q. It's not limited. It's the sender and
16 receiver's decision.

17 MR. BRASHER: Objection, form.

18 A. I didn't say that.

19 BY MR. RAMSEY:

20 Q. So -- okay. In that case, where in your
21 specification of your asserted patents is it
22 specified which mathematics should be used in one
23 signal context versus another?

24 MR. BRASHER: Objection, form.

25 A. Once again, I am trying to understand

1 what you mean by "mathematics."

2 BY MR. RAMSEY:

3 Q. So you don't understand mathematics as
4 they apply to your patents. When I ask you what
5 mathematics are applied in the abstract comparison
6 process, you don't understand what that means; is
7 that true?

8 MR. BRASHER: Objection, form.

9 A. You've asked a compound question, and I,
10 again, ask you, is this a mathematics quiz, or is
11 this some other endeavor to try and figure out
12 something that I'm not understanding.

13 BY MR. RAMSEY:

14 Q. I'm trying to understand the inventor's
15 view of what mathematics are used to compare two
16 signal abstracts in the claims of the asserted
17 patents. Please tell me that.

18 MR. BRASHER: Objection, form.

19 A. I believe that I've answered that
20 question and again refer you to the entirety of the
21 specification, the prosecution history, as well as
22 the claim constructions.

23 BY MR. RAMSEY:

24 Q. What --

25 A. What I will say is that the mathematics

Deposition Resources, Inc.
800.295.4109

1 of MFCCs are not equivalent with a signal abstract
2 on -- in any way, shape, or form.

3 Q. Okay.

4 MR. RAMSEY: All right. I think
5 we've just hit 2:30. So we're -- at this moment,
6 this is Gabe Ramsey for Audible Magic. We are
7 continuing until January the deposition -- the
8 continued deposition of Scott Moskowitz -- Scott
9 Moskowitz, the continued deposition of Blue Spike
10 Inc., and the continued deposition of Blue Spike
11 LLC. Thank you.

12 VIDEOGRAPHER: This is the end of
13 tape number 5, and this is the end of the deposition
14 for today. We're off the record at 2:28 p.m.

15

16

17

18

19

20

21

22

23

24

25

Deposition Resources, Inc.
800.295.4109