VCU

MATH 307

Multivariate Calculus

R. Hammack

Test 2

March 5, 2014

100

Directions. Answer the questions in the space provided. Unless noted otherwise, you must show and explain your work to receive full credit. Put your final answer in a box when appropriate.

This is a closed-book, closed-notes test. Calculators, computers, etc., are not $\!\!\!\!/$ used.

1. (16 pts.) This question concerns the function $f(x, y) = \frac{\sqrt{x}}{1 - 2}$.

(a) Sketch the domain of this function on the coordinate axis below.

Must have x≥0 and y≠2. All points (x,y) meeting these conditions are shaded below

(b) Using the same coordinate axis, sketch the level curve for f(x, y) = 1.

$$\frac{\sqrt{x}}{y-2} = 1 \Rightarrow \sqrt{x} = y-2 \Rightarrow y = \sqrt{x} + 2$$

This curve is sketched here

2. (16 pts.) Suppose
$$f(x, y) = x^2 - xy + y^2 - y$$
.

(a)
$$\nabla f(x,y) = \langle 2x - y \rangle$$
 $-x + 2y - 1 \rangle$

(b)
$$\nabla f(1,-1) = \left(3, -4 \right)$$

(c) Given the unit vector
$$\mathbf{u} = \left\langle \frac{1}{2}, \frac{\sqrt{3}}{2} \right\rangle$$
, compute $D_{\mathbf{u}}f(1, -1)$.

$$D_{\mathbf{u}} f(1, -1) = \nabla f(1, -1) \cdot \left\langle \frac{1}{2}, \frac{\sqrt{3}}{2} \right\rangle$$

(d) State a unit vector \mathbf{u} for which $D_{\mathbf{u}}f(1,-1)$ is largest.

That would be the unit vector in the direction of $\nabla f(1,-1)$, ie. $\frac{\langle 3, -4 \rangle}{|\langle 3, -4 \rangle|} = \frac{\langle 3, -4 \rangle}{|\langle 3, -4 \rangle|} = \frac{\langle 3, -4 \rangle}{|\langle 5, -4 \rangle|}$

(e) State a unit vector **u** for which $D_{\mathbf{u}}f(1,-1)=0$

Such a vector is tangen to the level curve at (1,-1), i.e. it is orthogonal to $\nabla f(1,-1) = (3,-4).$

From part (1) we therefore get
$$|\vec{u} = \langle \frac{4}{5}, \frac{3}{5} \rangle|$$

3. (20 pts.) Find the maximum and minimum values of $x^2 + y^2$ subject to the constraint $x^2 - 2x + y^2 - 4y = 0$. We want to find max/min of $f(x,y) = x^2 + y^2$ subject to constraint $g(x,y) = x^2 - 2x + y^2 - 4y = 0.$ 2g(x,y)=0 $\chi^{2}-2\chi+y^{2}-4y=0$ $\langle \langle x, y \rangle = \lambda \langle x - 1, y - 2 \rangle$ $\chi^{2} - 2\chi + y^{2} - 4y = 0$

We use the method of Lagrange multipliers

y = 2x - 2 y = 2y - 22 $|x^2 - 2x + y^2 - 4y = 0$ If $\lambda = 0$, then @ and @ give

X=0 and y=0, and the

system is satisfied. Get point (2, y) = (0,0) (c)

Now suppose 2 = 0, Multiplying O by y and (2) by x yields: $(xy = \lambda xy - \lambda y)$ $|xy = \lambda xy - a\lambda x$ Subtracting one from the other, 0 = -2y +22x Now divide both sides by 2 (+0) and transpose: y = 2xPutting this in (3) yields $\chi^{2} - 2x + (2x)^{2} - 4(2x) = 0$ $5\chi^2 - 10\chi = 0$ $5\chi(\chi-2)=0$ y = 2.0 = 0 y = 2.2 = 4Get points (0,0) and (2,4) f(0,0) = 02+02 = 0 < - MIN at (90) $f(2,4) = 2^2 + 4^2 = 20$ MAX at (2,4)

4. (20 pts.) Find the critical points of the function $f(x, y) = xe^y - 5x$. (Just find the critical points – no need to classify them as local max/min.)

Solve
$$\nabla f(x,y) = \langle 0,0 \rangle$$

 $\langle e^{3}-5, xe^{3} \rangle = \langle 0,0 \rangle$

$$e^{3} - 5 = 0$$
 $e^{3} = 5$

$$|x=0|$$

Therefore just one Critical point and it is ((0, ln5))

a)
$$\frac{\partial f}{\partial x} = \left[\cos \left(xy + \pi \right) \right]$$

(a)
$$\frac{\partial f}{\partial x} = \left[\cos(xy + \pi) y \right]$$

$$= y \cos(xy + \pi)$$

$$= |y \cos(xy + 7)|$$
(b) $\frac{\partial f}{\partial y} = |1 + \cos(xy + \pi)| \times$

$$= y \cos(xy + \pi)$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}$$

5. (12 pts.) Consider $f(x, y) = y + \sin(xy + \pi)$.

= 1+x cos(xy+TT)

(c) $\frac{\partial^2 f}{\partial y \partial x} = \left| \cos(xy + \pi) - y \times \sin(xy + \pi) \right|$

(product rule)

(d) $f_x(\frac{\pi}{8},2) = Cos\left(\frac{\pi}{8}\cdot 2 + \pi\right)\cdot 2$

= 2 cos (#+ T)

 $= 2\left(-\frac{\sqrt{2}}{2}\right) = \left[-\sqrt{2}\right]$

6. (12 pts.) Evaluate the limit or explain why it does not exist.

$$\lim_{(x,y)\to(2,0)}\frac{\sqrt{2x-y}-2}{2x-y-4}$$
 Gives $\frac{0}{0}$ so try to Cancel

$$= \lim_{(x,y)\to(2,0)} \frac{\sqrt{2x-y}-2}{\sqrt{2x-y^2}-2^2}$$

= lim
$$\sqrt{2x-y}-2$$

= $(x,y) \rightarrow (2,0) (\sqrt{2x-y}-2)(\sqrt{2x-y}+2)$

=
$$\lim_{(x,y)\to(2,0)} \frac{1}{\sqrt{2x-y}+2}$$

$$= \frac{1}{\sqrt{2 \cdot 2} - 0} + 2 = \frac{1}{2 + 2}$$