South-Eastern Finland University of Applied Sciences Jari Kortelainen

Matrices and Graphs

Exercises 4

Problems

- 1. Let us consider a 3D real point P(3,1,-1). Rotate this point counterclockwise $\frac{\pi}{6}$ (radians) around a) x-axis, b) y-axis and c) z-axis.
- 2. Let $\mathbf{a} = (2,4)$ and $\mathbf{b} = (1,-3)$ be vectors in \mathbb{R}^2 . If these vectors are considered as edges of a parallelogram then calculate its area A.
- 3. Let $\mathbf{a} = (2,4,0)$, $\mathbf{b} = (1,-3,2)$ and $\mathbf{c} = (-1,2,1)$ be vectors in \mathbb{R}^3 . If these vectors are edges of a parallelepiped (a polyhedron where each face is a parallelogram) then calculate its volume V. How would you calculate the volume of a *tetrahedron* with \mathbf{a} , \mathbf{b} and \mathbf{c} as its edges?
- 4. Let $\mathbf{a} = (2,4,0)$ and $\mathbf{b} = (1,-3,2)$ be vectors in \mathbb{R}^3 . Calculate $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$. Sketch a vector $\mathbf{c} = (2,3,2)$ in the standard real coordinate system. Calculate $\mathbf{c} \times \mathbf{k}$ (where is naturally $\mathbf{k} = (0,0,1)$) and position this vector in the same coordinate system with \mathbf{c} .
- 5. Let \mathbf{v} and \mathbf{u} be vectors in \mathbb{R}^3 . Consider the vector \mathbf{u} as a unit vector representing a *rotation axis*. We want to rotate \mathbf{v} around \mathbf{u} by an angle θ (using the right hand rule). Then, the rotated vector \mathbf{v}_{rot} is given by *Rodrigues' rotation formula*

$$\mathbf{v}_{\text{rot}} = (\cos \theta)\mathbf{v} + (\sin \theta)(\mathbf{u} \times \mathbf{v}) + (1 - \cos \theta)(\mathbf{u} \cdot \mathbf{v})\mathbf{u}.$$

Calculate (using SAGE) \mathbf{v}_{rot} if $\mathbf{v}=(2,3,4)$, $\mathbf{u}=(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$ and $\theta=\frac{\pi}{4}$. Sketch in a standard real coordinate system.

6. a) Let

$$\mathbf{A} = \begin{bmatrix} 7 & 5 \\ 6 & 14 \end{bmatrix}$$

Calculate the eigenvalues and eigenvectors of **A**.

b) Study by yourself, how to calculate the eigenvalues and eigenvectors of matrices using SAGE. Then, calculate by SAGE the eigenvalues and eigenvectors of **A** and

$$\mathbf{B} = \begin{bmatrix} 1 & 4 & 8 \\ -6 & 14 & 7 \\ 0 & 9 & -2 \end{bmatrix}$$