Dynamic Programming

- Implementing dictionaries
- with operations (search, insert, delete)
- If probabilities of searching for elements of a set are known!
- How to make an optimal tree with minimal average number of comparisons for a random successful search?

keys	A	В	С	D
Prob.	0.1	0.2	0.4	0.3

$$0.1 * 1 + 0.2 * 2 + 0.4 * 3 + 0.3 * 4 = 2.9$$

$$0.1 * 2 + 0.2 * 1 + 0.4 * 2 + 0.3 * 3 = 2.1$$

- Brute-Force approach:
 - Create all possible binary trees
 - > Find the optimal one
 - Not feasible!
- Total number of possible binary search trees with n keys:

$$C(n) = \frac{1}{n+1} \binom{2n}{n}$$

$$C(0) = 1$$

- Dynamic Programming approach:
- $\geq a_1, ..., a_n \rightarrow \text{distinct key ordered from smallest to largest}$
- $p_1, \dots, p_n \to \text{probabilities of searching for each key}$
- $\succ C(i,j)$ = optimal number of comparisons in a tree made of keys $a_i, ..., a_j$
 - Find optimal root a_k among keys $a_i, ..., a_j$
 - Find optimal left subtree using keys $a_i, ..., a_{k-1}$
 - Find optimal right subtree using keys $a_{k+1}, ..., a_j$
- $C(j,j) = \min\{c(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s, i \le k \le j$
- $ightharpoonup C(i,i) = P_i$
- C(i, i-1) = 0
- ightharpoonup C(1,n) = GOAL

Example

keys	A	В	С	D
Number	1	2	3	4
Prob.	0.1	0.2	0.4	0.3

Example

keys	A	В	С	D
Number	1	2	3	4
Prob.	0.1	0.2	0.4	0.3

main table					
0	1	2	3	4	
0	0.1	0.4	1.1	1.7	
	0	0.2	8.0	1.4	
		0	0.4	1.0	
			0	0.3	
				0	
		0 1 0.1	0 1 2 0 0.1 0.4	0 1 2 3 0 0.1 0.4 1.1 0 0.2 0.8 0 0.4	

main table

	root table					
	0	1	2	3	4	
1		1	2	3	3	
2			2	3	3	
3				3	3	
4					4	
5						