

Multi-Objective Programming (MOP)

- Terminology
- Graphical representation of MOP problems
- Efficient solutions: Definition
- Examples
- The weighted sum approach for solving efficient solutions
- Goal programming

Next Monday's guest lecture:

"Optimisation in Energy Transition"

Matti Vuorinen, Director, Digital Solutions in UPM Energy

Multi-objective programming problems

- Many problems have multiple objectives:
 - Planning the national budget
 - improve social security, reduce debt, cut taxes, build national defense
 - Admitting students to college
 - high SAT or GMAT, high GPA, diversity
 - Planning an advertising campaign
 - reach, expenses, target groups
 - Designing a distribution system:
 - minimize transportation costs, minimize CO₂emissions
 - Choosing taxation levels
 - raise money for government, incentives for work, minimize flight of business
 - Planning an investment portfolio
 - maximize expected returns, minimize risk

MOP and MOO terminology

- Optimization/Programming problems with multiple objective functions are called Multi-objective (MO)
 - MOLP = Multi-Objective Linear Programming
 - MOILP =
 - MOZOLP =
 - MONLP =
 - MOINLP =
- The term "Bi-objective" is sometimes used to highlight that a problem has only two objective functions
- Both the terms "criteria" and "objectives" are used
 - E.g. Multi-criteria linear programming

MOLP Example

Graphical representation in the...

Math. formulation

Max
$$f_1 = x_1 + x_2$$

Max $f_2 = -x_1 + x_2$
s.t. $x_1 \le 3$
 $x_2 \le 3$
 $x_1, x_2 \ge 0$

decision variable space

objective function space

What is an "optimal solution" to a MOP problem?

- Generally, there does not exist a feasible solution that simultaneously optimizes all the objective functions
- Assume your objectives are to
 - (i) maximize the number of oranges
 - (ii) minimize the number of apples

Which of the fruit baskets would you choose?

Efficient solutions: Definition

- **Definition**: A feasible solution to MOP problem is <u>efficient</u>, if there does not exist another feasible solution which yields
 - (i) a better or equal value in each objective function AND
 - (ii) a strictly better value in some objective function.

C.f. in single objective optimization problems a feasible solution is optimal if there does not exists another feasible solution which yields a strictly better objective function value

Efficient solutions: Alternative equivalent definition

- Consider a MOP problem with n objective functions $f_1(x), ..., f_n(x)$ to be maximized
- **Definition:** Solution x dominates solution x' if

$$f_i(x) \ge f_i(x')$$
 for all $i \in \{1, ..., n\}$, and $f_i(x) > f_i(x')$ for some $i \in \{1, ..., n\}$.

- **Definition:** A feasible solution x is <u>efficient</u> if it is not dominated by any other feasible solution
- The term "non-dominated solution" is sometimes used instead of the term "efficient solution"

Efficient solutions example: Marketing Plan

- The Supersuds Corporation is developing its next year's marketing plan
 - Spots on five TV shows purchased under limited budget
 - $x_j \in \{0,1\}, j = 1, ..., 5$: purchase spot in jth show
 - Objective is to maximize reach in three important consumer groups
 - f_i , i = 1, ..., 3: reach in the *i*th consumer group

Question:

Supersuds has identified four feasible solutions: Which of them are efficient solutions?

	$f_1(x)$	$f_2(x)$	$f_3(x)$
A: $x = (1,1,1,0,0)$	1000	700	200
B: $x = (1,0,1,1,0)$	700	500	300
C: $x = (1,0,1,0,1)$	100	800	400
D: $x = (0,0,1,1,1)$	900	600	150

Example: Efficient solutions in MOLP

Graphical representation in the...

Math. formulation

Max
$$f_1 = x_1 + x_2$$

Max $f_2 = -x_1 + x_2$
s.t. $x_1 \le 3$
 $x_2 \le 3$
 $x_1, x_2 \ge 0$

Decision variable space

Objective function space

Solving efficient solutions

- For some special classes of problems (e.g. MOLP, MOILP, MOMILP) there are algorithms that identify the entire set of efficient solutions
- Most available methods transform the MOP problem into a single objective problem and then solve it using standard algorithms
 - E.g., Simplex for LPs; B&B for MILPs; Gradient search for NLPs
 - These methods generate one efficient solution on each run
 - Approaches:
 - Set target levels (=constraints) for all but one of the objective functions
 - C.f. return at least 13% and minimize risk (=variance)
 - Maximize the weighted sum of the objectives functions (next slides)
 - E.g. max 1*(# of oranges)-2*(# of apples)

Weighted sum approach

General MOP formulation

$$\max f_1(x_1,...,x_m)$$

$$\max f_2(x_1,...,x_m)$$

$$\dots$$

$$\max f_n(x_1,...,x_m)$$
subject to constraints on decision variables $x_1,...,x_m$

The general formulation can always be obtained by replacing "min $f_i(x_1,...,x_m)$ " with "max $-f_i(x_1,...,x_m)$ "

- Weighted sums approach
 - 1. Select (at random) positive weights $w_1,...,w_n$ for the objective functions
 - 2. Solve the single objective optimization problem → Solution is efficient
 - Repeat Steps 1 and 2 until enough efficient solutions have been found

Weighted sum formulation of MOP

$$\max \sum_{i=1}^{n} w_{i} f_{i}(x_{1},...,x_{m})$$

subject to constraints on decision variables $x_1,...,x_m$

Example: Weighed sum approach in MOLP

MOLP math. formulation

Max
$$f_1 = x_1 + x_2$$

Max $f_2 = -x_1 + x_2$
s.t. $x_1 \le 3$
 $x_2 \le 3$
 $x_1, x_2 \ge 0$

Weighted sum formulation

Max
$$w_1(x_1 + x_2) + w_2(-x_1 + x_2)$$

s.t. $x_1 \le 3$
 $x_2 \le 3$
 $x_1, x_2 \ge 0$

w₁=2, w₂=1:
"Unit increase in objective 1 is equally important to increase of two units in objective 2"

w₁=1, w₂=2:
"Unit increase in objective 2 is equally important to increase of two units in objective 1"

MONLP Example: The Markowitz Model revisited

- Hauck Financial Services allocates capital to 6 funds
 - Historical fund returns are used to construct 5 samples of possible returns for 2019 (scenarios)
 - Objective: max. expected return & min. standard deviation of return

$$\max 0.2 \sum_{s=1}^{5} r_s$$

$$\min \sqrt{0.2 \sum_{s=1}^{5} (r_s - \bar{r})^2}$$

$$r_1 = 10.06x_A + 17.64x_B + \dots + 24.56x_F$$

 $r_2 = 13.12x_A + 3.25x_B + \dots + 25.32x_F$

$$r_5 = -21.93x_A + 7.36x_B + \dots + 17.31x_F$$

$$x_A + x_B + x_C + x_D + x_E + x_F = 1$$

$$x_A, \dots, x_F \ge 0$$

	Historical returns											
Fund	2013	2014	2015	2016	2017							
Α	10.06	13.12	13.47	45.42	-21.93							
В	17.64	3.25	7.51	-1.33	7.36							
С	32.41	18.71	33.28	41.46	-23.26							
D	32.36	20.61	12.93	7.06	-5.37							
E	33.44	19.4	3.85	58.68	-9.02							
F	24.56	25.32	-6.7	5.43	17.31							

Statistics recap: For a random variable R that receives value r_i with probability p_i the expected value is $E[R] = \sum_i p_i r_i$, the variance is $Var[R] = \sum_i p_i (r_i - E[R])^2$, and the standard deviation is $\sqrt{Var[R]}$

Liesiö .11.2023

20.11.2023

 MONLP with all objective functions maximized:

$$\max 0.2 \sum_{s=1}^{5} r_s$$

$$\max - \sqrt{0.2 \sum_{s=1}^{5} (r_s - \bar{r})^2}$$

$$r_1 = 10.06x_A + 17.64x_B + \dots + 24.56x_F$$

$$r_2 = 13.12x_A + 3.25x_B + \dots + 25.32x_F$$

$$\dots$$

$$r_5 = -21.93x_A + 7.36x_B + \dots + 17.31x_F$$

$$x_A + x_B + x_C + x_D + x_E + x_F = 1$$

$$x_A, \dots, x_F \ge 0$$

• Weighted sum formulation:

$$\max w_1 \left(0.2 \sum_{s=1}^5 r_s \right) + w_2 \cdot - \sqrt{0.2 \sum_{s=1}^5 (r_s - \bar{r})^2}$$

$$r_1 = 10.06x_A + 17.64x_B + \dots + 24.56x_F$$

$$r_2 = 13.12x_A + 3.25x_B + \dots + 25.32x_F$$

$$\dots$$

$$r_5 = -21.93x_A + 7.36x_B + \dots + 17.31x_F$$

$$x_A + x_B + x_C + x_D + x_E + x_F = 1$$

$$x_A, \dots, x_F \ge 0$$

EXP	ON.DIST			- :	X V	f_x =	P11*L11-P1	4*L14			So	olver Paran	neters			
4	С	D	Е	F	G	Н	I	J	K	L						R
1												Se <u>t</u> Ob	jective:		SRS13	
2				Scenario					1				_			
3			Fund	1	2	3	4	5				To:	Max	0	Mi <u>n</u>	
			Α	10.06	13.12	13.47	45.42	-21.93		0		By Cha	nging Varia	bla Calle		
,			В	17.64	3.25	7.51	-1.33	7.36		0						
,			C	32.41	18.71	33.28	41.46	-23.26	0	.110229		SLS4:S				
7			D	32.36	20.61	12.93	7.06	-5.37		0		S <u>u</u> bject to the Constraints: \$L\$2 = 1				
			E	33.44	19.4	3.85	58.68	-9.02	0	.889771						
			F	24.56	25.32	-6.7	5.43	17.31		0						
0														Weigh	nts	
1	Scenar	rio-specifi	ic return	33.33	19.32	7.09	56.78	-10.59	I	21.19	Mea	an return		0.8	7	Weighted
2																Sum
3 io	n from n	nean mea	n return	147.36	3.47	198.62	1266.97	1009.78		525.24	Var	iance of r	eturn			⁷ 14*L14
4										22.92	St. [Dev. of re	turn	0.1	3	
5																

✓ Make Unconstrained Variables Non-Negative							
S <u>e</u> lect a Solving Method:	GRG Nonlinear	•					

Lets solve it for 50 different weights generated randomly...

• A lot of work ... lets use a macro!

Liesiö

17

Running the macro gives 50 efficient solutions

Cautionary note about the weighted sum approach

- Every solution generated by the weighted sum approach is efficient
 - Assuming all weights are strictly positive
- However, if the feasible region is not convex, there can be efficient solutions that the weighted approach cannot find
 - These solution do not maximize the weighted sum for any weights
- For instance, MILP, ILP and BLP problems do not usually have a convex feasible region

Goal programming (GP)

- Idea: set goal for each objective function
 - The goals are listed in the order of their importance.
 - Begin by minimizing deviation from the most important goal
 - Do the same for the second most important goal, but require that the deviation from the from the first goal is not increased
 - Continue to the following goals, always requiring that the deviations from the previously optimized goals do not increase

Major drawback: May lead to a solution that is not efficient

Different flavors exist: Preemptive GP (above), weighted GP,...

Multi-Objective Programming - Summary

- Optimization problems with multiple objective functions
- Instead of an optimal solution there is a (possibly infinite) set of efficient solutions
 - Definition: A feasible solution is efficient if no other feasible solution provides (i) an equal or better value in each objective function, and (ii) a strictly better value in at least one objective function
 - Terms "Pareto optimal solution" and "Non-dominated solution" widely used as synonyms for "Efficient solution"
- The are several methods for generating efficient solutions which make use of standard (i.e., single objective) solution algorithms
 - E.g. weighted sums approach

