R

2022-02-11

# Contents

|          |              |                                                                                                                      | 6 |
|----------|--------------|----------------------------------------------------------------------------------------------------------------------|---|
| 1        | R            |                                                                                                                      | 7 |
|          | 1.1          | R                                                                                                                    | 7 |
|          | 1.2          | R                                                                                                                    | 7 |
|          | 1.3          | RStudio R                                                                                                            | 7 |
|          | 1.4          |                                                                                                                      | 7 |
|          | 1.5          |                                                                                                                      | 7 |
|          | 1.6          |                                                                                                                      | 7 |
|          | 1.7          | $R \ :  \dots \dots$ | 7 |
| <b>2</b> | $\mathbf{R}$ |                                                                                                                      | 9 |
| 4        |              |                                                                                                                      |   |
|          | 2.1          |                                                                                                                      | 9 |
|          | 2.2          |                                                                                                                      | 8 |
|          | 2.3          |                                                                                                                      | 8 |
|          | 2.4          |                                                                                                                      | 8 |
|          |              |                                                                                                                      |   |
|          | 2.5          |                                                                                                                      | 8 |
|          | 2.5<br>2.6   |                                                                                                                      |   |
|          |              | Tibble: 2                                                                                                            | 8 |

| 4 | CONTENTS |
|---|----------|
|   |          |

| 3         |         | 31 |
|-----------|---------|----|
| 3.1       | : readr | 31 |
| 3.2 Excel |         | 31 |
| 3.3 SAS   |         | 31 |
| 3.4 HTML  |         | 31 |
| 4 dplyr   |         | 33 |
| 4.1       |         | 33 |
| 4.0       |         | 33 |
| 4.2       |         |    |

6 CONTENTS



# Chapter 1

# $\mathbf{R}$

Placeholder

1.1 R

1.2 R

1.3 RStudio R

1.4

1.5

1.6

1.7 R

1.7.1

1.7.2

1.7.3 tidyverse

### Chapter 2

### $\mathbf{R}$

```
typeof() .
> typeof(x)
[1] "logical"
> typeof(y1)
[1] "integer"
> typeof(y2)
[1] "double"
> typeof(z)
[1] "character"
                length() . length(y2) y2
    3 .
       (scalar) , c()
                                   . , a <- 1 a <- c(1)
> c(1, "1", TRUE)
[1] "1" "1" "TRUE"
> c(3, TRUE, FALSE)
[1] 3 1 0
    1 , "1" , TRUE
                                 TRUE 1, FALSE 0 .
             . , , , ( )
> c(Seoul=9930, Busan=3497, Inchon=2944, Suwon=1194)
 Seoul Busan Inchon Suwon
9930 3497 2944 1194
                names() .
> pop <- c(9930,3497,2944,1194)
> names(pop) <- c("Seoul", "Busan", "Inchon", "Suwon")</pre>
> pop
 Seoul Busan Inchon Suwon
9930 3497 2944 1194
```

```
• scan()
 scan()
                                            scan()
 . Console > 1: , . . 4
                                  5:
                                           Enter
> x <- scan()
1: 24
2: 35
3: 28 21
5:
Read 4 items
> X
[1] 24 35 28 21
     what="character" . c()
> y <- scan(what = "character")
1: Seoul Suwon
3: 'New York'
Read 3 items
> y
[1] "Seoul"
            "Suwon" "New York"
                  scan() .
                            . z scan()
  D:\Data
            data1.txt
                  data1 - 메모장
                 파일(F) 편집(E) 서식(O)
                 24 35 28 21
25
```

Figure 2.1: data1.txt

```
> z <- scan("Data/data1.txt")
> z
[1] 24 35 28 21 25
```

2.1.2

•

2.1.2.1

```
c() append() . c()
```

```
> x <- c(11,12,13,14)
> c(x, 15)
[1] 11 12 13 14 15
> y <- c(16,17,18)
> c(x, y)
[1] 11 12 13 14 16 17 18
```

append() after .

```
> append(x, 15)
[1] 11 12 13 14 15
> append(x, 15, after=2)
[1] 11 12 15 13 14
> append(x, y)
[1] 11 12 13 14 16 17 18
> append(x, y, after=3)
[1] 11 12 13 16 17 18 14
```

#### 2.1.2.2

•

1 . 1 .

```
> 1:5
[1] 1 2 3 4 5
> -3:3
[1] -3 -2 -1 0 1 2 3
> 1.5:5.4
[1] 1.5 2.5 3.5 4.5
> 5:0
[1] 5 4 3 2 1 0
```

```
• seq()
                                     seq() .
         1
                                                 1 .
from to
 by
            . to , from by
                                       length
from to
> seq(from=0, to=5)
[1] 0 1 2 3 4 5
> seq(from=0, to=5, by=2)
[1] 0 2 4
> seq(from=0, to=5, length=3)
[1] 0.0 2.5 5.0
> seq(from=0, by=2, length=3)
[1] 0 2 4
 seq() 1 1 ()
> seq(3)
[1] 1 2 3
> seq(-3)
[1] 1 0 -1 -2 -3
                                             , length
                             seq() along
       . seq_along() seq_len()
> x < -c(24,31,29)
> seq(along=x)
[1] 1 2 3
> seq_along(x)
[1] 1 2 3
> seq(length=length(x))
[1] 1 2 3
> seq_len(length(x))
[1] 1 2 3
  • rep()
 rep() times each, length
                                      . times
> rep(1, times=3)
[1] 1 1 1
> rep(1:3, times=2)
```

```
[1] 1 2 3 1 2 3
> rep(c("M","F"), times=c(2,3))
[1] "M" "M" "F" "F" "F"
                                     c("M","F")
 times
                                                      c(2,3)
  М
              F
                      each
 each
                                   times
                                                each
                                                            times
> rep(1:3, each=2)
[1] 1 1 2 2 3 3
> rep(1:3, times=rep(2,3))
[1] 1 1 2 2 3 3
> rep(1:3, each=2, times=2)
[1] 1 1 2 2 3 3 1 1 2 2 3 3
 length
                    length
                                                            each
                                       . each
         length
> rep(1:3, length=6)
[1] 1 2 3 1 2 3
> rep(1:3, each=2, length=8)
[1] 1 1 2 2 3 3 1 1
2.1.3
\mathbf{R}
Table 2.1 .
                            Table 2.1:
                   nchar(x)
                   paste(..., sep=" ")
                   substr(x, start, stop)
                   toupper(x)
                   tolower(x)
                   strsplit(x, split)
                   sub(old, new, x)
                   gsub(old, new, x)
```

nchar():

```
\mbox{nchar()} \qquad \qquad \mbox{.} \qquad \mbox{x} \qquad \mbox{4} \; , \qquad \mbox{3} \; , \qquad \mbox{4}
> x <- c("Park","Lee","Kwon")
> nchar(x)
[1] 4 3 4
> nchar(" ")
[1] 6
  • paste():
                        . paste() . paste()
             , sep
> paste(" ", " ", " ", " ", " ")
[1] "
> paste(" ", " ", " ", " ", " ",
+ sep="-")
[1] " - - - "
> paste(" ", " ", " ", " ", " ",
+ sep="")
[1] " "
paste()
> paste(" ", pi, " ")
[1] " 3.14159265358979 "
                                                     "Stat"
paste()
                                              . ,
paste() . , . , "Stat" 1:3 c("Stat", "Stat", "Stat") 1:3 , c("Stat", "Math")
1:3 , c("Stat", "Math", "Stat") 1:3 .
> paste(c("Stat", "Math"), 1:2, sep = "")
[1] "Stat1" "Math2"
> paste("Stat", 1:3, sep="")
[1] "Stat1" "Stat2" "Stat3"
> paste(c("Stat","Math"), 1:3, sep="-")
[1] "Stat-1" "Math-2" "Stat-3"
```

paste() sep="" paste0()

```
> paste0("stat", 1:3)
[1] "stat1" "stat2" "stat3"
                                   collapse
 letters LETTERS
> letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"
> paste0(letters, collapse="")
[1] "abcdefghijklmnopqrstuvwxyz"
> paste(LETTERS, collapse=",")
[1] "A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z"
         collapse
 paste()
                    collapse
> pasteO(letters, LETTERS, collapse = ",")
[1] "aA,bB,cC,dD,eE,fF,gG,hH,iI,jJ,kK,lL,mM,nN,oO,pP,qQ,rR,sS,tT,uU,vV,wW,xX,yY,zZ"
> paste(letters, LETTERS, sep = "-", collapse = ",")
substr():
                        . \operatorname{substr}() , , .
                               (=1, =2),
                                            (=3,=6),
       (=1, =2)
> substr("Statistics", 1, 4)
[1] "Stat"
> x <- c(" ", "
> substr(x, 3, 6)
[1] " " " " " "
> substr(x, c(1,3), c(2,6))
[1] " " " " " "
     nchar()
```

```
> x <- c("New York, NY", "Ann Arbor, MI", "Chicago, IL")
> substr(x, start=nchar(x)-1, stop=nchar(x))
[1] "NY" "MI" "IL"
                                                           trans
  ggplot2
                               . 11
                                       trans
                 mpg
  . library()
                                       ::
                                                  . mpg$trans
                         ??
mpg trans
                                      table()
> x <- ggplot2::mpg$trans</pre>
> table(x)
х
  auto(av)
             auto(13)
                        auto(14)
                                   auto(15)
                                              auto(16)
                                                         auto(s4)
                                                                    auto(s5)
        5
                   2
                              83
                                         39
                                                     6
                                                                3
  auto(s6) manual(m5) manual(m6)
  16
                  58
auto(av) auto(s6) auto
                       manual(m5) manual(m6) manual
                                                                 1,
  nchar(x)-4
> y <- substr(x, start=1, stop=nchar(x)-4)</pre>
> table(y)
У
 auto manual
157 77
  • strsplit():
                                        strsplit() split
                                            split=","
   Х
R
                2.7
> x <- c("New York, NY", "Ann Arbor, MI", "Chicago, IL")
> (y <- strsplit(x,split=","))</pre>
[[1]]
[1] "New York" " NY"
[[2]]
[1] "Ann Arbor" " MI"
[[3]]
[1] "Chicago" " IL"
> unlist(y)
[1] "New York" " NY"
                          "Ann Arbor" " MI"
                                                    "Chicago" " IL"
```

```
18
                                       CHAPTER 2. R
                                         unlist() ,
 У
                       split = "".
> unlist(strsplit("PARK",split=""))
[1] "P" "A" "R" "K"
                 split="."
(.)
                                 . split
                                                 (regular
expression)
  ??
> unlist(strsplit("a.b.c",split="."))
[1]
> unlist(strsplit("a.b.c",split="[.]"))
[1] "a" "b" "c"
  toupper() tolower()
                        toupper() tolower()
> x <- c("park","lee","kwon")
> (y <- toupper(x))
[1] "PARK" "LEE" "KWON"
> tolower(y)
[1] "park" "lee" "kwon"
                                              substr()
       toupper() , substr()
[1] "park" "lee" "kwon"
> substr(x,1,1) <- toupper(substr(x,1,1))</pre>
[1] "Park" "Lee" "Kwon"
  • sub() gsub():
                     sub(old, new, x) gsub(old, new, x) ,
            old new
                      . sub() old new ,
```

x

gsub() old new

```
> x <- "Park hates stats. He hates math, too."
> sub("hat","lov",x)
[1] "Park loves stats. He hates math, too."
> gsub("hat","lov",x)
[1] "Park loves stats. He loves math, too."
```

.

```
> (y <- paste0("banana",1:3))
[1] "banana1" "banana2" "banana3"
> sub("a","A",y)
[1] "bAnana1" "bAnana2" "bAnana3"
> gsub("a","A",y)
[1] "bAnAnA1" "bAnAnA2" "bAnAnA3"
```

new "" .

```
> z <- "Everybody cannot do it"
> sub("not","",z)
[1] "Everybody can do it"
```

#### 2.1.4

, . . .

```
> x <- c(7,8,9,10)
> y <- c(1,2,3,4)
> x+y
[1]  8 10 12 14
> x-y
[1]  6 6 6 6
> x*y
[1]  7 16 27 40
> x/y
[1]  7.0 4.0 3.0 2.5
> x^y
[1]  7 64  729 10000
```

, , , . . .

```
> x
[1] 7 8 9 10
> x+3
[1] 10 11 12 13
> x/4
[1] 1.75 2.00 2.25 2.50
> 2^x
[1] 128 256 512 1024
 R .
                                  (loop)
                         \mathbf{R}
           Inf, -Inf, NaN . Inf -Inf NaN 'Not a
Number'
> c(-1,0,1)/0
[1] -Inf NaN Inf
NaN 0/0
> sqrt(-1)
Warning in sqrt(-1): NaN
[1] NaN
> Inf-Inf
[1] NaN
> Inf/Inf
[1] NaN
R
            . 1:6 + 1:3 3 1:3 6 c(1,2,3,1,2,3)
> 1:6 + 1:3
[1] 2 4 6 5 7 9
> 1:6 + rep(1:3,2)
[1] 2 4 6 5 7 9
                c(7,8,9,10) 3 3 4 c(3,3,3,3)
                                      . R
```

```
> 1:4 + 1:3
Warning in 1:4 + 1:3:
[1] 2 4 6 5
```

.

•

 ${\bf R}$  . Table 2.2

Table 2.2:

abs(x) sqrt(x)ceiling(x) floor(x) $\mathbf{x}$ trunc(x)round(x, n) xn signif(x, n)X n log(x) $\mathbf{x}$ log10(x)Х  $\exp(x)$ х

```
> abs(-2)
[1] 2
> sqrt(25)
[1] 5
> ceiling(3.475)
[1] 4
> floor(3.475)
[1] 3
> trunc(5.99)
[1] 5
> round(3.475,2)
[1] 3.48
> signif(0.00347, 2)
[1] 0.0035
> sin(1); cos(1); tan(1)
[1] 0.841471
[1] 0.5403023
[1] 1.557408
> asin(sin(1)); acos(cos(1)); atan(tan(1))
```

```
[1] 1

[1] 1

[1] 1

> log(2,base=2)

[1] 1

> log(10)

[1] 2.302585

> log10(10)

[1] 1

> exp(log(10))

[1] 10
```

.

. Table 2.3

Table 2.3:

```
\begin{array}{c} \hline \\ \overline{\mathrm{mean}(x)} \\ \mathrm{median}(x) \\ \mathrm{range}(x) \\ \mathrm{IQR}(x) \\ \mathrm{sum}(x) \\ \mathrm{diff}(x,\,n) \quad : x[i+n] - x[i], \quad n \quad \quad 1 \\ \mathrm{min}(x) \\ \mathrm{max}(x) \end{array}
```

```
> x <- c(1,2,3,4,50)
> mean(x)
[1] 12
> median(x)
[1] 3
> range(x)
[1] 1 50
> IQR(x)
[1] 2
> sd(x)
[1] 21.27205
> var(x)
[1] 452.5
> sum(x)
[1] 60
```

```
> min(x)
[1] 1
> max(x)
[1] 50
> diff(c(1,2,4,7,11))
[1] 1 2 3 4
             . R NA (not available) .
      , is.na()
> x \leftarrow c(1,0,3,5,NA)
> is.na(x)
[1] FALSE FALSE FALSE TRUE
          is.na()
                        sum()
> sum(is.na(x))
[1] 1
           x == NA
                                                 x == NA
                                        2.1.5
  NA .
NA
                         NA
                                         . {
m R} NA
            NA
                       na.rm=TRUE
> mean(x)
[1] NA
> max(x)
[1] NA
> mean(x,na.rm=TRUE)
[1] 2.25
> max(x,na.rm=TRUE)
[1] 5
2.1.5
```

,

```
Table 2.4: /
                        <
                        <=
                        >
                        >=
                        ==
                        !=
                        !_{\mathrm{X}}
                             x (NOT)
                        x \mid y - x - y \text{ (OR)}
                        x \& y \quad x \quad y \text{ (AND)}
                                                      . 3
\mathbf{R}
             > x \leftarrow c(3,8,2)
> y < -c(5,4,2)
> x > y
[1] FALSE TRUE FALSE
> x >= y
[1] FALSE TRUE TRUE
> x < y
[1] TRUE FALSE FALSE
> x <= y
[1] TRUE FALSE TRUE
> x == y
[1] FALSE FALSE TRUE
> x != y
[1] TRUE TRUE FALSE
> x <- 1:3
> x > 2
[1] FALSE FALSE TRUE
> x < 2
[1] TRUE FALSE FALSE
> x <= 2 | x >= 3
[1] TRUE TRUE TRUE
> x <= 2 & x >= 1
[1] TRUE TRUE FALSE
```

any() all() .

```
> x <- 1:5
> any(x>=4)
[1] TRUE
> all(x>=4)
[1] FALSE
                                                x 4
           sum() mean()
> x <- 1:5
> x >= 4
[1] FALSE FALSE FALSE TRUE TRUE
> sum(x>=4)
[1] 2
> mean(x>=4)
[1] 0.4
                        %in%
> x <- 1:5
> x %in% c(2,4)
[1] FALSE TRUE FALSE TRUE FALSE
x %in%
                TRUE, FALSE .
   x c(2,4) x == c(2,4)
> x == c(2,4)
Warning in x == c(2, 4):
[1] FALSE FALSE FALSE TRUE FALSE
              x c(2,4) .
                                        c(2,4)
                                                         x ==
c(2,4,2,4,2) , .
2.1.6
   (indexing)
                         , \hspace{1cm} . \hspace{1cm} , \hspace{1cm} x[\mathtt{a}] \hspace{1cm} , \hspace{1cm} \mathtt{a}
> y < -c(2,4,6,8,10)
> y[c(1,3,5)]
[1] 2 6 10
> y[c(-2,-4)]
[1] 2 6 10
```

```
NA .
> y[c(2,2,2)]
[1] 4 4 4
> y[0]
numeric(0)
> y[6]
[1] NA
                      . pop Seoul Suwon
> pop <- c(Seoul=9930, Busan=3497, Inchon=2944, Suwon=1194)
> pop[c("Seoul", "Suwon")]
Seoul Suwon
9930 1194
         TRUE
> y
[1] 2 4 6 8 10
> y[c(TRUE,TRUE,FALSE,FALSE,TRUE)]
[1] 2 4 10
> y>3
[1] FALSE TRUE TRUE TRUE TRUE
> y[y>3]
[1] 4 6 8 10
           TRUE
          x
> x \leftarrow c(80,88,90,93,95,94,99,78,101)
> x >= mean(x)
[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
{\tt FALSE} \qquad , \; {\tt TRUE}
> x[x >= mean(x)]
[1] 93 95 94 99 101
  1) \pm 1
```

2)  $\pm 1$   $\pm 2$ 

3)  $\pm 2$ 

z z z  $\pm 2$ 

> z <- (x-mean(x))/sd(x)
> x[abs(z) <= 1] # 1
[1] 88 90 93 95 94
> x[abs(z) > 1 & abs(z) <= 2] # 2
[1] 80 99 78 101
> x[abs(z) > 2] # 3
numeric(0)

2.2

2.2.1

2.2.2

2.3

2.4

2.4.1

2.4.2

2.5

2.5.1

2.5.2

2.5.3 with()

2.6 Tibble:

**2.6.1** Tibble

2.6.2 Tibble

2.7

2.8

1. iris setosa, versicolor, virginica .  $50 \hspace{0.2in} 50 \hspace{0.2in} \text{setosa}, \hspace{0.2in} 51 \hspace{0.2in} 100 \hspace{0.2in} \text{versicolor}, \hspace{0.2in} 50 \hspace{0.2in} \text{viginica}$ 

• iris  $1 \sim 3$   $51 \sim 53$   $101 \sim 103$  .

2.8.

|     | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species    |
|-----|--------------|-------------|--------------|-------------|------------|
| 1   | 5.1          | 3.5         | 1.4          | 0.2         | setosa     |
| 2   | 4.9          | 3.0         | 1.4          | 0.2         | setosa     |
| 3   | 4.7          | 3.2         | 1.3          | 0.2         | setosa     |
| 51  | 7.0          | 3.2         | 4.7          | 1.4         | versicolor |
| 52  | 6.4          | 3.2         | 4.5          | 1.5         | versicolor |
| 53  | 6.9          | 3.1         | 4.9          | 1.5         | versicolor |
| 101 | 6.3          | 3.3         | 6.0          | 2.5         | virginica  |
| 102 | 5.8          | 2.7         | 5.1          | 1.9         | virginica  |
| 103 | 7.1          | 3.0         | 5.9          | 2.1         | virginica  |

- iris Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
- $\bullet \ 150 \quad {\tt Petal.Width} \quad 1 \quad {\tt Petal.Length} \ 4$
- $2. \qquad \mathtt{mtcars} \ 1974 \qquad \qquad 32 \qquad \qquad .$
- $\bullet \qquad \texttt{mpg} \qquad \qquad \texttt{grade} \qquad . \ , \ \bar{x} \ sd \quad \texttt{mpg}$

| $mpg \leq \overline{x} - sd$ | grade = "Bad"       |
|------------------------------|---------------------|
|                              | grade = "Good"      |
| $mpg > \frac{s}{x} + sd$     | grade = "Excellent" |

- mtcars model
- grade Excellent model mpg .
- grade Bad mpg .

## Chapter 3

### Placeholder

- 3.1 : readr
- 3.1.1 read\_table()
- 3.1.2 read\_csv()  $\operatorname{CSV}$
- $3.1.3 \quad {\tt read\_fwf()}$
- 3.2 Excel
- 3.3 SAS
- 3.4 HTML

32 CHAPTER 3.

### Chapter 4

# dplyr

Placeholder

### 4.1

4.1.1 : filter()

4.1.2 : slice()

4.1.3 : arrange()

4.1.4 : distinct()

4.2

4.2.1 : select()

4.2.2 : rename() rename\_with()

4.2.3 : relocate()

4.2.4 : mutate() transmute()

4.3 : summarise()