Programação Dinâmica Multiplicação de Matrizes Problema Binário da Mochila Problema do Troco em Moedas Atividades

Projeto e Análise de Algoritmos

Hamilton José Brumatto

Bacharelado em Ciência da Computação - UESC

9 de abril de 2019

Conceitos Básicos

Programação Dinâmica

Material desenvolvido com base no material de aula desenvolvido por: Cid Carvalho de Souza, Cândida Nunes da Silva e Orlando Lee

Conceitos Básicos

- O paradigma de PROGRAMAÇÃO DINÂMICA aplica-se basicamente a problemas de otimização.
- Pode-se aplicar este paradigmas em problemas onde há:
 - Subestrutura Ótima: As soluções ótimas do problema incluem soluções ótimas de subproblemas.
 - Sobreposição de Subproblemas: O cálculo da solução através de recursão implica no recálculo de subproblemas.

Técnica de Programação Dinâmica

- A técnica de PROGRAMAÇÃO DINÂMICA visa evitar o recálculo desnecessário das soluções dos subproblemas.
- As soluções dos subproblemas são armazenadas em tabelas.
- Para que o algoritmo de programação dinâmica seja eficiente, é preciso que o número total de subproblemas que devem ser resolvidos seja pequeno (polinomial no tamanho da entrada).

Multiplicação de Matrizes

Considere o seguinte problema computacional:

Problema: Multiplicação de Matrizes

Calcular o número mínimo de operações de multiplicação (escalar) necessários para computar a matriz M dada por:

$$M = M_1 \times M_2 \times ... M_i ... \times M_n$$

onde M_i é uma matriz de b_{i-1} linhas e b_i colunas, para todo $i \in {1,...,n}$.

 Como as matrizes são multiplicadas aos pares, é necessário encontrar uma parentização ótima para a cadeia de matrizes.

Cálculo do número de operações

- Para calcular a matriz M' dada por $M_i \times M_{i+1}$ teremos:
 - M_i são b_{i-1} linhas e b_i colunas.
 - M_{i+1} são b_i linhas e $b_i + 1$ colunas.
- Cada elemento M'_{pq} é obtido multiplicando-se b_i elementos da linha p de M_i pelos b_i elementos da coluna q de M_{i+1} , como p varia de 1 a b_{i-1} e q varia de 1 a b_{i+1} , então são $b_{i-1} \cdot b_i \cdot b_{i+1}$ multiplicações.

Exemplo do problema

- Qual é o mínimo de multiplicações escalares necessárias para computar $M = M_1 \times M_2 \times M_3 \times M_4$ com $b = \{200, 2, 30, 20, 5\}$?
- As possibilidades de parentização são:

$$M=(M_1\times (M_2\times (M_3\times M_4))) \rightarrow 5.300$$
 multiplicações $M=(M_1\times ((M_2\times M_3)\times M_4)) \rightarrow 3.400$ multiplicações $M=((M_1\times M_2)\times (M_3\times M_4)) \rightarrow 4.500$ multiplicações $M=((M_1\times (M_2\times M_3))\times M_4) \rightarrow 29.200$ multiplicações $M=(((M_1\times (M_2\times M_3))\times M_4) \rightarrow 152.000$ multiplicações $M=(((M_1\times M_2)\times M_3)\times M_4) \rightarrow 152.000$ multiplicações

Então a ordem das multiplicações faz grande diferença!

Ataque pela Força Bruta

- Uma opção é calcular o número de multiplicações para todas as possíveis parentizações e escolher a melhor.
- O número de possíveis parentizações é dada pela seguinte fórmula de recorrência:

$$P(n) = \begin{cases} 1, & n = 1\\ \sum_{k=1}^{n-1} P(k) \cdot P(n-k) & n > 1 \end{cases}$$

 Mas P(n) ∈ Ω(4ⁿ/n^{3/2}), a estratégia da força bruta é impraticável.

Buscando uma subestrutura ótima

• Inicialmente, para todo (i,j) tal que $1 \le i \le j \le n$, vamos definir as seguintes matrizes:

$$M_{ij} = M_i \times M_{i+1} \times ... \times M_j$$

- Agora, dada uma parentização ótima, existem dois pares de parêntesis que identificam o último par de matrizes que serão multiplicadas. Ou seja, existe k tal que $M=M_{1,k}\times M_{k+1,n}$.
- Como a parentização de M é ótima, as parentizações no cálculo de $M_{1,k}$ e $M_{k+1,n}$ devem ser ótimas também, caso contrário, seria possível obter uma parentização de M ainda melhor!
- Encontramos a SUBESTRUTURA ÓTIMA do problema: a parentização ótima de M inclui a parentização ótima de $M_{1,k}$ e $M_{k+1,n}$.

Calculando o mínimo de multiplicações

• De forma geral, se m[i,j] é número mínimo de multiplicações que devem ser efetuadas para computar $M_i \times M_{i+1} \times ... \times M_j$, então m[i,j] é dado por:

$$m[i,j] = \min \{m[i,k] + m[k+1,j] + b_{i-1} \cdot b_k \cdot b_j\}$$

 Podemos então projetar um algoritmo recursivo (indutivo) para resolver o problema.

Projetando o Algoritmo Recursivo para calcular o mínimo de multiplicações

- Entrada: Vetor b com as dimensões das matrizes e os índices i e j que delimitam o ínicio e o término da subcadeia.
- Saída: O número mínimo de multiplicações escalares necessárias para computar a multiplicação da subcadeia. Esse valor é registrado em uma tabela (m[i,j]), bem como o índice da divisão em subcadeias ótimas (s[i,j]).
- Este algoritmo será chamado inicialmente para a cadeia 1..n de matrizes.

O algoritmo

```
Algoritmo MinimoMultiplicacoesRecursivo(b,i,j)
   se i = i então
       Retorna 0
   m[i,j] \leftarrow \infty
   para k \leftarrow i até i-1 faça
       q \leftarrow MinimoMultiplicacoesRecursivo(b, i, k)+
           MinimoMultiplicacoesRecursivo(b, k + 1, j)+
           b[i-1] * b[k] * b[j]
       se m[i,j] > q então
           m[i,j] \leftarrow q
           s[i,j] \leftarrow k
   Retorna m[i,j]
```

Analisando a complexidade do algoritmo encontrado:

 O número mínimo de operações feitas pelo algoritmo recursivo é dado pela recorrência:

$$T(n) \geqslant \begin{cases} 1, & n = 1 \\ 1 + \sum_{k=1}^{n-1} [T(k) + T(n-k) + 1] & n > 1, \end{cases}$$

- Portanto, $T(n) \ge 2 \sum_{k=1}^{n-1} T(k) + n$, para n > 1.
- É possível provar (por substituição) que $T(n) \geqslant 2^{n-1}$, ou seja, o algoritmo recursivo tem a complexidade $\Omega(2^n)$, também impraticável.

O recálculo

- A ineficiência do algoritmo recursivo deve-se a sobreposição de subproblemas: o cálculo do mesmo m[i,j] pode ser requerido em vários subproblemas.
- Por exemplo, para n=4, m[1,2], m[2,3], e m[3,4] são computados duas vezes.
- O número total de m[i,j]'s calculados é $O(n^2)$ apenas!
- Portanto, podemos obter um algoritmo mais eficiente se evitarmos recálculos de subproblemas.

Técnica da Memorização¹

- Cria-se a tabela com os valores ótimos calculados.
- Antes de cada chamada recursiva, faz-se uma consulta à tabela, se o valor já foi calculado, então devolve o valor já calculado.
- Esta técnica não evita chamadas recursivas desnecessárias.
 Portanto se o tempo (desprezado) da chamada recursiva for da ordem do tempo de operação, então ainda temos problemas.

Algoritmo de Memorização

Algoritmo MINIMOMULTIPLICACOESMEMORIZADO(b,n) para
$$i \leftarrow 1$$
 até n faça para $j \leftarrow 1$ até n faça $m[i,j] \leftarrow \infty$ Retorna Memorizacao(b,1,n)

 Primeiro é necessário zerar a "Memória" pois alguma informação indica que aquele subproblema já foi calculado.

Algoritmo de Memorização

Algoritmo MEMORIZACAO(b,i,j) se
$$m[i,j] < \infty$$
 então Retorna $m[i,j]$ se $i=j$ então $m[i,j]=0$ senão para $k \leftarrow 1$ até $j-1$ faça $q \leftarrow Memorizacao(b,i,k)+Memorizacao(b,k+1,j)+b[i-1]*b[k]*b[j]$ se $m[i,j]>q$ então $m[i,j]\leftarrow q;s[i,j]\leftarrow k$ Retorna $m[i,j]$

Técnica da Programação Dinâmica

- Preenche uma tabela que registra o valor ótimo para cada subproblema de forma apropriada.
- A computação do valor ótimo de cada subproblema depende somente de subproblemas já previamente computados.
- Elimina completamente o uso da recursão.
- A abordagem é "bottom-up" calcula-se os valores ótimos para os menores problemas, e com estes valores computa-se os valores para problemas maiores.
- No problema das subcadeias, computamos a partir dos valores crescentes dos tamanhos das subcadeias u, primeiro todas subcadeias de tamanho 2, subcadeias de tamanho 3, ...

O algoritmo baseado em programação dinâmica

```
Algoritmo MINIMOMULTIPLICACOES(b)
    para i \leftarrow 1 até n faça
        m[i,i] \leftarrow 0
     \triangleright Calcula o mínimo de todas sub-cadeias de tamanho u+1
    para u \leftarrow 1 até n-1 faça
        para i \leftarrow 1 até n - u faca
            i \leftarrow i + u
             m[i,j] \leftarrow \infty
             para k \leftarrow i até i-1 faça
                 q \leftarrow m[i, k] + m[k+1, j] +
                     b[i-1]*b[k]*b[j]
                 se q < m[i, j] então
                      m[i, j] \leftarrow q; s[i, j] \leftarrow k
```

Retorna (m, s)

• O vetor b é: $\{200, 2, 30, 20, 5\}$, indexado a partir do índice 0.

• Inicialmente os valores m[i, i] é zerado.

$$u = 1$$
 $\begin{cases} i = 1 \\ j = 2 \end{cases}$ $k = 1 \Rightarrow 200 \cdot 2 \cdot 30 + m[1, 1] + m[2, 2] = 12000 + 0 + 0$

•
$$m[1,2] = 12000$$
, $s[1,2] = 1$

	1	2	3	4
1	0	12000 1		
2		0		
3			0	
4				0

$$u = 1$$
 $\begin{cases} i = 2 \\ j = 3 \end{cases}$ $k = 2 \Rightarrow 2 \cdot 30 \cdot 20 + m[2, 2] + m[3, 3] = 1200 + 0 + 0$

•
$$m[2,3] = 1200, s[2,3] = 2$$

$$u = 1$$
 $\begin{cases} i = 3 \\ j = 4 \end{cases}$ $k = 3 \Rightarrow 30 \cdot 20 \cdot 5 + m[3, 3] + m[4, 4] = 3000 + 0 + 0$

•
$$m[3,4] = 3000, s[3,4] = 3$$

$$u = 2 \quad \begin{array}{l} i = 1 \\ j = 3 \end{array} \right\} \quad \begin{array}{l} k = 1 \Rightarrow 200 \cdot 2 \cdot 20 + m[1,1] + m[2,3] = 8000 + 0 + 1200 = 9200 \\ k = 2 \Rightarrow 200 \cdot 30 \cdot 20 + m[1,2] + m[3,3] = 120000 + 12000 + 0 = 132000 \end{array}$$

•
$$m[1,3] = 9200, s[1,3] = 1$$

	1	2	3	4
1	0	12000 1	9200 1	
2		0	1200 2	
3			0	3000 3
4				0

$$u = 2 \quad \begin{array}{l} i = 2 \\ j = 4 \end{array} \right\} \quad \begin{array}{l} k = 2 \Rightarrow 2 \cdot 30 \cdot 5 + m[2,2] + m[3,4] = 300 + 0 + 3000 = 3300 \\ k = 3 \Rightarrow 2 \cdot 20 \cdot 5 + m[2,3] + m[4,4] = 200 + 1200 + 0 = 1400 \end{array}$$

•
$$m[2,4] = 1400, s[2,4] = 3$$

$$u = 3 \quad \begin{tabular}{l} $i = 1$ \\ $j = 4$ \end{tabular} \right\} \quad \begin{tabular}{l} $k = 1 \Rightarrow 200 \cdot 2 \cdot 5 + m[1,1] + m[2,4] = 2000 + 0 + 1400 = 3400 \\ $k = 2 \Rightarrow 200 \cdot 30 \cdot 5 + m[1,2] + m[3,4] = 30000 + 12000 + 3000 = 45000 \\ $k = 3 \Rightarrow 200 \cdot 20 \cdot 5 + m[1,3] + m[4,4] = 20000 + 9200 + 0 = 29200 \end{tabular}$$

•
$$m[1,4] = 3400, s[1,4] = 1$$

- Vamos reescrever $M_{1,4}$
- $M_{i,i}$ é simplesmente M_i
- s[1,4] = 1

	1	2	3	4
1	0	12000 1	9200 1	3400 1
2		0	1200 2	1400 3
3			0	3000 3
4				0

•
$$M_{1,4} = (M_1) \times (M_{2,4})$$

- Vamos reescrever $M_{1,4}$
- $M_{i,i}$ é simplesmente M_i
- s[2,4] = 3

	1	2	3	4
1	0	12000 1	9200 1	3400 1
2		0	1200 2	1400 3
3			0	3000 3
4				0

•
$$M_{1,4} = (M_1) \times ((M_{2,3}) \times (M_4))$$

- Vamos reescrever $M_{1,4}$
- $M_{i,i}$ é simplesmente M_i
- s[2,3] = 2

	1	2	3	4
1	0	12000 1	9200 1	3400 1
2		0	1200 2	1400 3
3			0	3000 3
4				0

•
$$M_{1,4} = (M_1) \times (((M_2) \times (M_3)) \times (M_4))$$

- Resultado final da parentização para M
- Tirando os parêntesis redundantes

- $M = M_1 \times ((M_2 \times M_3) \times M_4)$
- O total de multiplicações realizadas para esta parentização é 3400.

Calculando a complexidade do algoritmo

• Como são loops, basta calcular a soma das operações:

$$T(n) = \sum_{u=1}^{n-1} \sum_{i=1}^{n-u} \sum_{k=i}^{i+u-1} \Theta(1)$$

$$= \sum_{u=1}^{n-1} \sum_{i=1}^{n-u} u\Theta(1)$$

$$= \sum_{u=1}^{n-1} u(n-u)\Theta(1)$$

$$= \sum_{u=1}^{n-1} (nu - u^2)\Theta(1)$$

Calculando a complexidade do algoritmo

Sabemos que:

$$\sum_{u=1}^{n-1} nu = \frac{n^3}{2} - \frac{n^2}{2}$$

е

$$\sum_{n=1}^{n-1} n^2 = \frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6}$$

ficamos com:

$$T(n) = (\frac{n^3}{6} - \frac{n}{6})\Theta(1).$$

- A complexidade é $\Theta(n^3)$
- A complexidade do espaço é $\Theta(n^2)$, já que é necessário armazenar a matriz com os valores ótimos dos subproblemas.

O Problema Binário da Mochila

Considere o seguinte problema computacional:

Dada uma mochila de capacidade W (inteiro) e um conjunto de n itens com tamanho w_i (inteiro) e valor c_i associado a cada item i, queremos determinar quais itens devem ser colocados na mochila de modo a **maximizar** o valor total transportado, respeitando sua capacidade.

- Podemos então assumir as seguintes condições:
 - $\sum_{i=1}^{n} w_i > W$; Não cabem todos os itens na mochila.
 - $0 < w_i \le W$, para todo i = 1, ..., n; Cada item individualmente cabe na mochila.

Problema de Programação Linear Inteira

- Criamos uma variável x_i para cada item: $x_i = 1$ se o item i estiver na solução ótima e $x_i = 0$ caso contrário.
- A modelagem do problema é simples:

$$\max \sum_{i=1}^{n} c_i x_i \tag{1}$$

$$\sum_{i=1}^{n} w_i x_i \leqslant W \tag{2}$$

$$x_i \in \{0,1\} \tag{3}$$

• (1) é a função objetivo e (2-3) o conjunto de restrições

Análise do problema

- Existem 2ⁿ possíveis subconjuntos de itens: um algoritmo de força bruta não é prático.
- É um problema de otimização. Será que existe uma subestrutura ótima?
- Se o item n estiver na solução ótima, o valor desta solução será c_n mais o valor da melhor solução do problema da mochila com capacidade $W-w_n$ considerando-se só os n-1 primeiros itens.
- Se o item n não estiver na solução ótima, o valor ótimo será dado pelo valor da melhor solução do problema da mochila com capacidade W considerando-se só os n-1 primeiros itens.

Subestrutura Ótima

- Seja z[k, d] o valor ótimo do problema da mochila considerando-se uma capacidade d para a mochila que contém um subconjunto dos k primeiros itens da instância original.
- A fórmula de recorrência para computar z[k, d] para todo valor de d e k é:

Abordagem Recursiva

 A complexidade do algoritmo recursivo para este problema no pior caso é dada pela recorrência:

$$T(k,d) = \begin{cases} 1, & k = 0 \text{ ou } d = 0 \\ T(k-1,d) + T(k-1,d-w_k) + 1, & k > 0 \text{ e } d > 0 \end{cases}$$

- Portanto, no pior caso, o algoritmo recursivo tem complexidade $\Omega(2^n)$. Não é prático.
- Precisamos ver se existem sobreposição de subproblemas, poderemos evitar o recálculo com memorização, ou em especial com programação dinâmica.

Analisando a sobreposição de problemas

Vamos considerar: w = 2, 1, 6, 5 e W = 7

O subproblema z[1,1] foi computado 2 vezes.

Construindo a solução por programação dinâmica

- O número total máximo de subproblemas a serem computados é nW.
- Tanto o tamanho dos itens quanto a capacidade da mochila são inteiros!
- Podemos usar a programação dinâmica para evitar o recálculo de subproblemas.
- Como o cálculo de z[k,d] depende de z[k-1,d] e $z[k-1,d-w_k]$, preenchemos a tabela linha a linha.
- Ou seja, cada linha representa a consideração de um objeto, podendo ser inserido ou não em qualquer volume da mochila (volumes inteiros), o que for mais vantajoso.

Varrendo a tabela

O algoritmo da Mochila: Problema Binário da Mochila

Entrada: Vetores c e w com o valor e tamanho de cada item, capacidade W da mochila e o número de itens n.

Saída: O valor máximo do total de itens na mochila.

```
Algoritmo MOCHILA(c,w,W,n) para d \leftarrow 0 até W faça z[0,d] \leftarrow 0 para k \leftarrow 1 até n faça z[k,0] \leftarrow 0 para k \leftarrow 1 até n faça z[k,d] \leftarrow 0 para q \leftarrow 1 até q faça q \leftarrow 1 até q \leftarrow 1 faça q \leftarrow 1 factorial fa
```

•
$$c = \{10, 7, 25, 24\}, w = \{2, 1, 6, 5\}, e W = 7$$

k	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0							
2	0							
3	0							
4	0							

•
$$c = \{10, 7, 25, 24\}, w = \{2, 1, 6, 5\}, e W = 7$$

k d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0							
3	0							
4	0							

•
$$c = \{10, 7, 25, 24\}, w = \{2, 1, 6, 5\}, e W = 7$$

k d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0							
4	0							

•
$$c = \{10, 7, 25, 24\}, w = \{2, 1, 6, 5\}, e W = 7$$

k d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0							

•
$$c = \{10, 7, 25, 24\}, w = \{2, 1, 6, 5\}, e W = 7$$

k d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

•
$$c = \{10, 7, 25, 24\}, w = \{2, 1, 6, 5\}, e W = 7$$

k d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

Análise do Algoritmo

- Baseado nos dois loops, encontramos que o algoritmo é O(nW).
- É um algoritmo *pseudo-polinomial* pois depende do valor de W, que é parte da entrada do algoritmo.
- Embora não há indicação no algoritmo do subconjunto de itens escolhidos, a escolha é fácil de se recuperar pela matriz gerada.

Algoritmo de recuperação da solução

Algoritmo MochilaSolucao(z,n,W)
para
$$i \leftarrow 1$$
 até n faça
 $MochilaSolucaoAux(x, z, n, W)$
Retorna x

Netoma /

Algoritmo MOCHILASOLUCAOAUX
$$(x,z,k,d)$$
se $k \neq 0$ então
se $z[k,d] = z[k-1,d]$ então
 $x[k] \leftarrow 0$
 $MochilaSolucaoAux(x,z,k-1,d)$
senão
 $x[k] \leftarrow 1$
 $MochilaSolucaoAux(x,z,k-1,d-w_k)$

•
$$c = \{10, 7, 25, 24\}$$
, $w = \{2, 1, 6, 5\}$, e $W = 7$

$\frac{d}{k}$	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

•
$$c = \{10, 7, 25, 24\}$$
, $w = \{2, 1, 6, 5\}$, e $W = 7$

k d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

•
$$c = \{10, 7, 25, 24\}$$
, $w = \{2, 1, 6, 5\}$, e $W = 7$

k d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

•
$$c = \{10, 7, 25, 24\}, w = \{2, 1, 6, 5\}, e W = 7$$

k d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

O Problema Subestrutura Ótima Programação Dinâmica Algoritmo Solução da Mochila

•
$$c = \{10, 7, 25, 24\}, w = \{2, 1, 6, 5\}, e W = 7$$

•
$$x[1] = 1$$
, $x[2] = 0$, $x[3] = 0$, $x[4] = 1$

k d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

Problema do Troco em Moedas

Considere o seguinte problema computacional:

Dado um conjunto base de n valores de moedas $M = \{M_1, M_2, ..., M_n\}$, desejo o menor conjunto de moedas que sirva para compor um troco de valor T.

- Poderíamos pensar em um ALGORITMO GULOSO, por exemplo sempre pegar a maior moeda menor que T.
- Veja a seguinte situação: $M = \{1, 2, 5, 7, 10\}$ e T = 14.
- Se escolhessemos pela maior moeda, o troco seria composto por: {10, 2, 2}, no entanto, {7, 7} é o menor conjunto.

Problema de Otimização com subestrutura Ótima

- É um problema de otimização, queremos o menor conjunto.
- Também possui uma subestrutura ótima, pois se a k-ésima moeda fizer parte da solução ótima para o problema, T – M_k é um problema cuja solução ótima é parte da solução ótima do problema original.
- Novamente encontramos um algoritmo recursivo.
 - Para um determinado valor T, se possuímos k faces de moedas, a k-ésima moeda pode fazer parte (uma ou mais vezes) ou não do troco, neste caso ficaríamos com:
 m[T, k] = m[T M_k, k] + 1 se a k-ésima moeda fizer parte do troco, ou
 - m[T, k] = m[T, k 1] se a k-ésima moeda não fizer parte do troco.

De qualquer forma, caímos em um subproblema menor

• A fórmula de recorrência para o problema é:

$$m[T,k] = \left\{ \begin{array}{ll} 0 & , \ T=0 \\ m[T-M_k,k]+1 & , \ T>0 \ \mathrm{e} \ k=1 \\ m[T,k-1] & , \ T>0 \ \mathrm{e} \ k>1 \ \mathrm{e} \ M_k>T \\ \min\{m[T,k-1],m[T-M_k,k]+1\} & , \ T>0 \ \mathrm{e} \ k>1 \ \mathrm{e} \ M_k\leqslant T; \end{array} \right.$$

- Observe que $k \neq 0$, sempre, pois a solução seria ∞ , mais ainda, para uma base válida para qualquer valor de T, $k = 1 \rightarrow M_k = \1 .
- Qual o tempo deste algoritmo?

•
$$C(T,k) = \begin{cases} 1, & T = 0 \\ C(T-M_k,k) + C(T,k-1) + 1, & T > 0 \end{cases}$$

• Este algoritmo é pior que o da mochila binária.

• A fórmula de recorrência para o problema é:

$$m[T,k] = \left\{ \begin{array}{ll} 0 & , \ T = 0 \\ m[T - M_k, k] + 1 & , \ T > 0 \ \mathrm{e} \ k = 1 \\ m[T, k - 1] & , \ T > 0 \ \mathrm{e} \ k > 1 \ \mathrm{e} \ M_k > T \\ \min\{m[T, k - 1], m[T - M_k, k] + 1\} & , \ T > 0 \ \mathrm{e} \ k > 1 \ \mathrm{e} \ M_k \leqslant T; \end{array} \right.$$

- Observe que $k \neq 0$, sempre, pois a solução seria ∞ , mais ainda, para uma base válida para qualquer valor de T, $k = 1 \rightarrow M_k = \1 .
- Qual o tempo deste algoritmo?

•
$$C(T,k) = \begin{cases} 1, & T = 0 \\ C(T-M_k,k) + C(T,k-1) + 1, & T > 0 \end{cases}$$

• Este algoritmo é pior que o da mochila binária.

Sobreposição de Subproblemas

• Vamos considerar um caso simples, troco para 7 centavos, que usaria moedas de 1, 2 e 5 centavos apenas.

Aplicando a técnica de Programação Dinâmica

 Aplicando a recorrência de forma iterativa: programação dinâmica:

```
Algoritmo TrocoOtimo(T,M,n)
    para k \leftarrow 1 até n faca
        m[0,k] \leftarrow 0
                                                                   \triangleright T = 0
    para t \leftarrow 1 até T faça
        m[t,1] \leftarrow t
                                                                   \triangleright k = 1
    para k \leftarrow 2 até n faca
        para t \leftarrow 1 até T faca
            m[t, k] = m[t, k-1]
            se M_k \leq t e (m[t-M_k,k]+1) < m[t,k] então
                 m[t, k] = m[t - M_k, k] + 1
    Retorna m[T, n]
```

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k T	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1 k ₁															
\$2 k ₂															
\$5 k ₃															
\$7 k ₄															
\$10 k ₅															

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	<u>/</u> -	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0														
\$5	<i>k</i> ₃	0														
\$7	k ₄	0														
\$10) <i>k</i> ₅	0														

$$\begin{aligned} & \mathbf{para} \ k \leftarrow 1 \ \mathbf{at\'e} \ n \ \mathbf{fa\'ça} \\ & m[0,k] \leftarrow 0 \\ & \mathbf{para} \ t \leftarrow 1 \ \mathbf{at\'e} \ T \ \mathbf{fa\'ça} \\ & m[t,1] \leftarrow t \end{aligned}$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

N_k	<u></u>	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1													
\$5	<i>k</i> ₃	0														
\$7	<i>k</i> ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

N_k	1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0~	1+	1 T												
\$5	<i>k</i> ₃	0														
\$7	k ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	/	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1∗	1+	1 <u>1</u> 2											
\$5	<i>k</i> ₃	0														
\$7	<i>k</i> ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	<u></u>	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	<i>k</i> ₂	0	1	1*	2+	1 <u>1</u> 2										
\$5	<i>k</i> ₃	0														
\$7	<i>k</i> ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	/	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1	1	2≪	2+	1 1 3									
\$5	<i>k</i> ₃	0														
\$7	k ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	/	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1	1	2	2⊀	3+	1 3								
\$5	<i>k</i> ₃	0														
\$7	<i>k</i> ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	<u></u>	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	<i>k</i> ₂	0	1	1	2	2	3₹	3+	1 1 4							
\$5	<i>k</i> ₃	0														
\$7	<i>k</i> ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1	1	2	2	3	3₹	4+	1 4						
\$5	<i>k</i> ₃	0														
\$7	k ₄	0														
\$1	0 <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	<u></u>	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1	1	2	2	3	3	4≪	4+	1 5					
\$5	<i>k</i> ₃	0														
\$7	<i>k</i> ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1	1	2	2	3	3	4	4≪	5+	1 <u>1</u> 5				
\$5	<i>k</i> ₃	0														
\$7	<i>k</i> ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	<u></u>	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	<i>k</i> ₂	0	1	1	2	2	3	3	4	4	5∢	5+	1 f			
\$5	<i>k</i> ₃	0														
\$7	<i>k</i> ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	<u></u>	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	<i>k</i> ₂	0	1	1	2	2	3	3	4	4	5	5⊀	6+	$\frac{1}{6}$		
\$5	<i>k</i> ₃	0														
\$7	<i>k</i> ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	/	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1	1	2	2	3	3	4	4	5	5	6≺	6+	1 7	
\$5	<i>k</i> ₃	0														
\$7	k ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	/	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1	1	2	2	3	3	4	4	5	5	6	6≺	7+	1 7
\$5	<i>k</i> ₃	0														
\$7	k ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k	T	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
\$5	<i>k</i> ₃	0	1	1	2	2	1	2	2	3	3	2	3	3	4	4
\$7	<i>k</i> ₄	0														
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M_k		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
\$5	<i>k</i> ₃	0	1	1	2	2	1	2	2	3	3	2	3	3	4	4
\$7	<i>k</i> ₄	0	1	1	2	2	1	2	1	2	2	2	3	2	3	2
\$10) <i>k</i> ₅	0														

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14$$

M	T	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	∟ <i>k</i> 1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	2 k ₂	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
\$5	5 k ₃	0	1	1	2	2	1	2	2	3	3	2	3	3	4	4
\$7	7 k ₄	0	1	1	2	2	1	2	1	2	2	2	3	2	3	2
\$1	LO <i>k</i> 5	0	1	1	2	2	1	2	1	2	2	1	2	2	3	2

para
$$k \leftarrow 2$$
 até n faça
$$m[t,k] = m[t,k-1]$$
 se $M_k \leqslant t$ e $(m[t-M_k,k]+1) < m[t,k]$ então
$$m[t,k] = m[t-M_k,k]+1$$

Complexidade do Algoritmo

- A contagem dos *loops* nos fornece complexidade O(nT).
- Algoritmo pseudo-polinomial, T é valor, não quantidade.
- Na recuperação usamos a matriz m[n, T].

```
Algoritmo TROCOCERTO(T,n,m) t \leftarrow T; \ k \leftarrow n Troco \leftarrow \emptyset enquanto m[t,k] > 0 faça se k > 1 e m[t,k] = m[t,k-1] então k \leftarrow k-1 senão Troco \leftarrow Troco \cup M_k t \leftarrow t-M_k
```

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14 M = \{\}$$

M_k		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	<i>k</i> ₁	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	<i>k</i> ₂	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
\$5	<i>k</i> ₃	0	1	1	2	2	1	2	2	3	3	2	3	3	4	4
\$7	k ₄	0	1	1	2	2	1	2	1	2	2	2	3	2	3	2
\$10) k ₅	0	1	1	2	2	1	2	1	2	2	1	2	2	3	ž

enquanto
$$m[t,k]>0$$
 faça se $k>1$ e $m[t,k]=m[t,k-1]$ então $k\leftarrow k-1$ senão
$$Troco \leftarrow Troco \cup M_k$$
 $t\leftarrow t-M_k$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14 M = \{\}$$

M_k		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	<i>k</i> ₁	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	<i>k</i> ₂	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
\$5	<i>k</i> ₃	0	1	1	2	2	1	2	2	3	3	2	3	3	4	4
\$7	k ₄	0	1	1	2	2	1	2	1	2	2	2	3	2	3	ž
\$10) k ₅	0	1	1	2	2	1	2	1	2	2	1	2	2	3	2

enquanto
$$m[t,k]>0$$
 faça se $k>1$ e $m[t,k]=m[t,k-1]$ então $k\leftarrow k-1$ senão
$$Troco \leftarrow Troco \cup M_k$$
 $t\leftarrow t-M_k$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14 M = \{\$7\}$$

M_k		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	<i>k</i> ₁	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	<i>k</i> ₂	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
\$5	<i>k</i> ₃	0	1	1	2	2	1	2	2	3	3	2	3	3	4	4
\$7	k ₄	0	1	1	2	2	1	2	1~	2	2	2	3	2	3	-2
\$10) k ₅	0	1	1	2	2	1	2	1	2	2	1	2	2	3	2

enquanto
$$m[t,k]>0$$
 faça se $k>1$ e $m[t,k]=m[t,k-1]$ então $k\leftarrow k-1$ senão
$$Troco \leftarrow Troco \cup M_k$$
 $t\leftarrow t-M_k$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14 M = \{\$7\}$$

M_k	/-	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	k_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	<i>k</i> ₂	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
\$5	<i>k</i> ₃	0	1	1	2	2	1	2	2	3	3	2	3	3	4	4
\$7	k ₄	0	1	1	2	2	1	2	ľ	2	2	2	3	2	3	2
\$10) <i>k</i> ₅	0	1	1	2	2	1	2	1	2	2	1	2	2	3	2

enquanto
$$m[t,k]>0$$
 faça se $k>1$ e $m[t,k]=m[t,k-1]$ então $k\leftarrow k-1$ senão
$$Troco \leftarrow Troco \cup M_k$$
 $t\leftarrow t-M_k$

•
$$M = \{1, 2, 5, 7, 10\}, n = 5, T = 14 M = \{\$7, \$7\}$$

M_k		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$1	<i>k</i> ₁	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\$2	k ₂	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
\$5	k ₃	0	1	1	2	2	1	2	2	3	3	2	3	3	4	4
\$7	k ₄	0~	1	1	2	2	1	2	-1	2	2	2	3	2	3	2
\$10	k ₅	0	1	1	2	2	1	2	1	2	2	1	2	2	3	2

enquanto
$$m[t,k]>0$$
 faça se $k>1$ e $m[t,k]=m[t,k-1]$ então $k\leftarrow k-1$ senão
$$Troco \leftarrow Troco \cup M_k$$
 $t\leftarrow t-M_k$

Atividades baseadas no CLRS.

- Ler capítulos 15 (prefácio), 15.2 e 15.3 (pulamos o 15.1, mas se desejar, pode ler).
- 2 Exercícios: 15.2-1, 15.2-2
- Resolver a lista 9