Problem 1. Consider the compound proposition: $(p \lor q \lor \neg r) \to (p \land q)$.

(a) Give a truth table for this proposition

					. – –	
p	q	r	$\neg r$	$p \lor q \lor \neg r$	$p \wedge q$	$(p \lor q \lor \neg r) \to (p \land q)$
Т	Т	Т	F	${ m T}$	Т	F
T	Т	F	Т	${ m T}$	T	Т
\overline{T}	F	Т	F	T	F	F
\overline{T}	F	F	Т	T	F	F
F	Т	Т	F	T	F	F
F	Т	F	Т	Т	F	F
F	F	Т	F	F	F	Т
F	F	F	Т	Т	F	F

(b) Give the DNF

$$(p \lor q \lor \neg r) \to (p \land q)$$

$$\neg (p \lor q \lor \neg r) \lor (p \land q)$$

$$(\neg p \land \neg q \land \neg \neg r) \lor (p \land q)$$

$$(\neg p \land \neg q \land r) \lor (p \land q)$$
DNF Form

Table 7 DeMorgan's Law Double Negation

Problem 2.

(a)
$$p \rightarrow (q \lor s)$$

(b)
$$\neg r \rightarrow (\neg q \land s)$$

(c)
$$q \rightarrow (\neg s \lor r)$$

(d)
$$(q \wedge p) \rightarrow \neg s$$

Problem 3.

- (a) Let j_1, s_1, k_1 represent the threes attendance, and let j_2, s_2, k_2 represent their happiness. Note that j_1 is independent of any other attendance, while $s_1 \to k_1$ and $k_1 \to j_1$. For happiness, $s_1 \to \neg j_2$, and the other two are independent for happiness.
- (b) Thus the combination of friends which allows everyone to be happy is any without Samir's attendance, so either Jasmine and Kanti or just Jasmine.

Problem 4.

$$\begin{split} (q \wedge \neg r) &\rightarrow (p \rightarrow \neg r) \\ (q \wedge \neg r) &\rightarrow (\neg p \vee \neg r) \\ \neg (q \wedge \neg r) \vee (\neg p \vee \neg r) \\ (\neg q \vee \neg \neg r) \vee (\neg p \vee \neg r) \\ (\neg q \vee r) \vee (\neg p \vee \neg r) \\ \neg r \vee r \vee \neg q \vee \neg p \\ T \vee \neg q \vee \neg p \end{split}$$

Table 7 Table 7 DeMorgan's Law Double Negation Commutative/Associative of \lor Negation

$$\begin{array}{c} T\vee (\neg q\vee \neg p) & \text{Associative} \\ (\neg q\vee \neg p)\vee T & \text{Commutative} \\ T & \text{Domination} \end{array}$$

Problem 5.

- (a) $\exists x (\neg P(x) \lor \neg Q(x))$
- **(b)** $\forall x(Q(x) \rightarrow \exists y(S(x,y)))$
- (c) $\exists x_1 \exists x_2 (\forall s (\neg S(x_1, s) \land \neg S(x_2, s)))$
- (d) $\exists x_1 \exists x_2 (P(x_1) \land P(x_2) \to \forall s (S(x_1, s) \lor S(x_2, s)))$
- (e) $\forall x (\exists s (S(x,s) \rightarrow \neg Q(x)))$

Problem 6.

(a)
$$\forall x(P(x) \to Q(x))$$

 $\forall x(\neg P(x) \lor Q(x))$ Table 7
 $\exists x \neg (\neg P(x) \lor Q(x))$ Negated Quantifiers
Can't go further without \land

$$\begin{array}{l} \textbf{(b)} \ \forall x (\neg Q(x) \iff (P(x) \land R(x))) \\ \forall x ((\neg Q(x) \rightarrow (P(x) \land R(x))) \land ((P(x) \land R(x)) \rightarrow \neg Q(x))) \\ \forall x ((\neg \neg Q(x) \lor (P(x) \land R(x))) \land (\neg (P(x) \land R(x)) \lor \neg Q(x))) \\ \forall x ((Q(x) \lor (P(x) \land R(x))) \land (\neg Q \lor (\neg P(x) \land R(x)))) \\ \forall x ((Q(x) \lor P(x)) \land (Q(x) \lor R(x))) \land ((\neg Q(x) \lor \neg P(x)) \land (\neg Q(x) \lor R(x)))) \\ \text{Got Stuck} \end{array}$$

$$\begin{array}{ll} \textbf{(c)} \ \exists x \forall y ((S(x,y0 \land Q(x)) \rightarrow (R(x) \lor R(y))) \\ \exists x \forall y (\neg (S(x,y) \land Q(x)) \lor (R(x) \lor R(y))) & \text{Table 7} \\ \exists x \forall y ((\neg S(x,y) \lor \neg Q(x)) \lor (R(x) \lor R(y))) & \text{Distributive} \\ \exists x \forall y (\neg S(x,y) \lor Q(x) \lor R(x) \lor R(y)) & \text{Commutative} \\ \exists x \exists y \neg (\neg S(x,y) \lor Q(x) \lor R(x) \lor R(y)) & \text{Quantifier Negation} \end{array}$$