Monday, August 2

Warm-Up: Prove that if
$$f: X \rightarrow Y$$
 is continuous at x_0 and $g: Y \rightarrow Z$ is continuous at $f(x_0)$ then $g \circ f$ is continuous at x_0 at x_0 .

Proof:

$$(1)$$
 $\chi_n \rightarrow \chi_0$. Then $f(\chi_n) \rightarrow f(\chi_0)$.
Then $g(f(\chi_n)) \rightarrow g(f(\chi_0))$.
 $g \cdot f(\chi_n) \rightarrow g \cdot f(\chi_0)$.

Let
$$\varepsilon > 0$$
. There exists $\delta > 0$
5.t. $|y - f(x_0)| < \delta \Rightarrow |g(y) - g(f(x_0))| < \varepsilon$.
There exists $\delta > 0$ s.t.
 $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \delta$.
Then $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \delta \Rightarrow |g - f(x_0)| < \varepsilon$.

Math 104 Worksheet 15 UC Berkeley, Summer 2021

Thursday, July 29

1. Let (f_n) be a sequence of continuous functions on [a,b] which converge pointwise to 0, i.e. $f_n(x) \to 0$ for each $x \in [a,b]$.

(a) Find an example to show that (f_n) does not necessarily converge uniformly to 0.

(b) Now suppose that for each $x \in [a, b]$, the sequence $(f_n(x))$ is nonincreasing, i.e. $f_{n+1}(x) \le f_n(x)$ for each $n \in \mathbb{N}$. Prove that $f_n \to 0$ uniformly by following the outline below.

Proof. (Contradiction) Suppose that (f_n) does not converge uniformly to 0. Then there exists $\varepsilon > 0$ such that for each $N \in \mathbb{N}$,

there exists $n \ge N$: $| +_n(x) | \ge \varepsilon$ for sor of (f_n) such that for each $k \in \mathbb{N}$, there exists $x_k \in [a, b]$

Then there exists a subsequence (f_{n_k}) of (f_n) such that for each $k \in \mathbb{N}$, there exists $x_k \in [a, b]$ such that

such that $|f_{n_K}(\chi_K)| \geq \epsilon$.

Now $(x_k)_{k\in\mathbb{N}}$ is a sequence in [a,b], so by Bolzano-Weierstrass there exists a subsequence (x_{k_j}) of (x_k) such that $x_{k_j} \to x^*$ for some $x^* \in [a,b]$. Fix $p \in \mathbb{N}$. Since $(f_{n_k}(x))$ is nonincreasing for each $x \in [a,b]$, for j > p we have the inequality

$$f_{n_{k_p}}(x_{k_j}) \geq \frac{f_{n_k}(x_{k_j})}{\epsilon} \geq \epsilon$$
.

(Complete the proof by using continuity of $f_{n_{k_p}}$, followed by convergence of (f_n) to find a contradiction.)

Since $f_{n_{k_p}}$ is continuous, true for any pEN. $f_{n_{k_p}}(\chi_{k_1}) \xrightarrow{\geq_{\epsilon}} f_{n_{k_p}}(\chi^*) \geq_{\epsilon} f_{n_{k_p}}(\chi^*) \geq_{\epsilon} f_{n_{k_p}}(\chi^*)$

(c) Apply part (b) to prove **Dini's Theorem**: If (f_n) is a sequence of continuous functions on [a,b] such that $(f_n(x))$ is nondecreasing for each $x \in [a,b]$ and $f_n \to f$ pointwise for some continuous function f, then $f_n \to f$ uniformly on [a,b].

Consider $g_n = f - f_n$. By above, $g_n \to 0$ uniformly. $\Rightarrow f_n \to f$ uniform.

(d) Find an example to show that the conclusion in part (c) does not necessarily hold if f is not assumed to be continuous.

for
$$f(x) = \chi^{\frac{1}{n}} \longrightarrow f(x) = \begin{cases} 0 & x = 0 \\ 1 & x \in (0,1) \end{cases}$$
 not uniform.

f(x) = x"

2. Abel's Theorem

Lemma. If $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has radius of convergence 1 and the series converges at x = 1, then f is continuous on [0, 1].

You may use the preceding lemma without proof (yet) for the following exercises.

(a) Use the lemma to show that if $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R with $0 < R < \infty$ and the series converges at x = R, then f is continuous at R. (*Hint*: Consider the function g(x) = f(Rx).)

$$g(x) = f(Rx) = \sum_{n=0}^{\infty} a_n (Rx)^n = \sum_{n=0}^{\infty} a_n R^n x^n$$
 $g(x)$ converges at $x=1 \Rightarrow g$ is continuous at $x=1$.

By Lemma.

$$f(x) = g(\frac{x}{R})$$
 continuous at $x=R$.

continuous at $x=R$; g continuous at 1.

(b) Use the result of part (a) to show that if $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R with $0 < R < \infty$ and the series converges at x = -R, then f is continuous at x = -R. (Hint: Consider the function h(x) = f(-x).)

$$h(x) = f(-x) = \sum_{n=0}^{\infty} a_n (-x)^n = \sum_{n=0}^{\infty} (-1)^n a_n x^n$$

$$h(x)$$
 converges at $x=R \Rightarrow h$ is continuous by (a) at $x=R$.

$$f(x) = h(-x)$$
 continuous at $-R$.
Continuous at $-R$; h is continuous R.

Lemma: $f(x) = \sum a_n x^n$ radius of convergence 1, converges at x = 1.

f is continuous on [D₁].

Proof: $f(x) = \sum_{n=0}^{\infty} a_n x^n$. Let $A = \sum_{n=0}^{\infty} a_n$ (= f(i)).

Consider g = f - A: $g(x) = (a_0 - A) + \sum_{n=1}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$ $b_k = a_k$ for all $k \ge 1$.

g(i) = 0.Let $g_n(x) = \sum_{k=0}^{n} b_k x^k$, $S_n = g_n(i) = \sum_{k=0}^{n} b_k$. $f_n(i) = \sum_{k=0}^{n} a_k x^n$

Observe: $b_n = S_n - S_{n-1}$ and $S_n \rightarrow 0$.

Know: $g_n \rightarrow g$ pointwise on [0,1], each g_n is continuous.

Goal: Show that $g_n \rightarrow g$ uniformly on $[0_11]$. To do this, we show that (g_n) is uniformly Cauchy on $[0_11]$.

For
$$m < n$$
:
$$g_{n}(x) - g_{m}(x) = \sum_{k=m+1}^{n} b_{k} x^{k} = \sum_{k=m+1}^{n} \left(S_{k} - S_{k-1} \right) x^{k}$$

$$= \sum_{k=m+1}^{n} S_{k} x^{k} - \sum_{k=m+1}^{n} S_{k-1} x^{k}$$

$$= \sum_{k=m+1}^{n} S_{k} x^{k} - \sum_{k=m+1}^{n} S_{k-1} x^{k}$$

$$= \sum_{k=m+1}^{n} S_{k} x^{k} - \sum_{k=m+1}^{n} S_{k} x^{k}$$

$$= \sum_{k=m+1}^{n} S_{k} x^{k} - \sum_{k=m+1}^{n-1} S_{k} x^{k}$$

$$= \sum_{k=m+1}^{n} S_{k} x^{k} - \sum_{k=m+1}^{n} S_{k} x^{k} - \sum_{k=m+1}^{n-1} S_{k} x^{k}$$

$$= \sum_{k=m+1}^{n} S_{k} x^{k} - \sum_{k=m+1}^{n} S_{$$

For
$$n \ge m \ge N$$
,
$$\left| \begin{array}{ccc} (1-\chi) \sum_{k=m}^{n-1} S_k \chi^k \end{array} \right| \le \left(1-\chi\right) \sum_{k=m}^{n-1} \frac{1}{2} S_k \chi^k < \frac{z}{3} \left(1-\chi\right) \sum_{k=m}^{n-1} \chi^k$$

For
$$n \ge m \ge N$$
 and $x \in [0,1]$,
$$|g_n(x) - g_m(x)| \le |S_n|x^n + |S_m|x^m + |(1-x)\sum_{k=m}^{n-1} S_k x^k| < \varepsilon$$

$$|g_n(x) - g_m(x)| \le |S_n|x^n + |S_m|x^m + |(1-x)\sum_{k=m}^{n-1} S_k x^k| < \varepsilon$$

$$|f_n \to f \text{ uniformly }$$
on $[0,1]$.

fn -> f uniformly.
on [0,1].

Limits of functions

Def: $\lim_{x\to c} f(x) = L$ means that for every sequence $(x_n) \subseteq dom(f) \setminus \{c\}$ such that x, -> c, we have f(xn) -> L

Also have $\varepsilon - \delta$ definition:

For any $\varepsilon > 0$, there exists

Want

S>0 such that

O<|x-c|< δ \Longrightarrow | f(x) - L| $< \varepsilon$,

f is continuous at c if and only $\lim_{x\to c} f(x) = f(c)$.

Def: $\lim_{x\to c^{-}} f(x) = L$ means that there exists a < c such that $(a,c) \leq dom f$ and for any sequence $(x_n) \subseteq (a,c)$ such that $\chi_n \rightarrow C$, we have $f(\chi_n) \rightarrow L$.

Similarly define lim f(x) = L. Theorem: $\lim_{x \to c} f(x)$ exists if and only if $\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x)$, in which case, all equal.

Differentiation:

Def: Let f be a real-valued function defined on an open interval containing a point x.

Let $\Psi_{\chi}(y) = \frac{f(y) - f(\chi)}{y - \chi}$ defined on $dom(f) \setminus \{\chi\}$

différence quotient.

Say f is differentiable at x if $\lim_{y\to x} \Psi_x(y)$ exists and is finite (i.e. some real number), in which case we define the derivative of f at x as $f'(x) = \lim_{y\to x} \Psi_x(y)$.

- differentiable on a set E: diff at every $x \in E$. $= \lim_{y \to x} \frac{f(y) f(x)}{y x}$
- · differentiable: diff at every x & dom (f).
- · Can consider f' as a function, $dom(f') = \begin{cases} \chi \in dom(f) : \lim_{y \to x} \mathcal{L}_y(x) \text{ exists, finite } \end{cases} \leq dom(f)$.

$$\exists x : f(x) = x^2 , \quad x = 2 .$$

$$\lim_{y \to 2} \frac{f(y) - f(z)}{y - x} = \lim_{y \to 2} \frac{y^2 - 4}{y - 2} = \lim_{y \to 2} \frac{(y - z)(y + z)}{y - z} = \lim_{y \to 2} (y + z) = 4$$

$$f'(2) = 4$$
.

$$\lim_{y\to x} \frac{f(y) - f(x)}{y - x} = \lim_{y\to x} \frac{y^2 - x^2}{y - x} = \lim_{y\to x} (y+x) = 2x.$$

$$f'(x) = 2x$$
 for all $x \in \mathbb{R}$.