

Module IN 2018

3D User Interfaces - Dreidimensionale Nutzerschnittstellen -

Prof. Gudrun Klinker

Interaction Techniques: System Control SS 2023

System Control

- 1. Definition and Classification
 - 2. Graphical Menus
 - 3. Voice Commands
 - 4. Gestural Commands
 - 5. Tools
 - 6. Multimodal System Control Techniques
 - 7. Design Guidelines

1. Definition and Classification

- 1.1 General Issues
- 1.2 Factors of Successful System Control Techniques
- 1.3 Classification

1. Definition and Classification

1.1 General Issues

- System commands are issued in order to
 - Request the system to perform a particular function
 - Change the mode of interaction
 - Change the system state
- Different from selection, manipulation and travel tasks (how, but not what)
- Typical control widgets (WIMP): interaction styles
 - Menus (pull-down, pop-up)
 - Toolboxes
 - Palettes
 - Toggles
 - Radio buttons
 - Checkboxes

1. Definition and Classification

1.2 Factors of Successful System Control Techniques

- Human factors
 - Usability and performance depends on user's
 - physical characteristics
 - training
 - · experience level
 - Other factors:
 - shape and size of controls
 - visual representation and labeling
 - methods of selection
 - underlying control structures
- Availability of input devices
- System- and application-level factors

1. Definition and Classification

1.3 Classification

Basic metaphors

System control method	Technique
Graphical menu	- Adapted 2D menu- 1-DOF menu- 3D widget- TULIP menu
Voice command	Speech recognitionSpoken dialogue system
Gestural command	- Gesture - Posture
Tools	Physical toolVirtual tool

System Control

- 1. Definition and Classification
- → 2. Graphical Menus
 - 3. Voice Commands
 - 4. Gestural Commands
 - 5. Tools
 - 6. Multimodal System Control Techniques
 - 7. Design Guidelines

2. Graphical Menus

- 2.1 Techniques
 - 2.2 Design and Implementation Issues
 - 2.3 Practical Application

[https://www.ted.com/speakers/john_underkoffler]

[Minority Report]

2. Graphical Menus

2.1 Techniques

- 2.1.1 Adapted 2D menus
- 2.1.2 1-DOF menus
- 2.1.3 TULIP menus
- 2.1.4 3D widgets

2. Graphical Menus | 2.1 Techniques

2.1.1 Adapted 2D Menus

- Principle: Simple adaptations from 2D
 - Same behavior
 - Opaque or semi-transparent
 - Attachment to various coordinate systems
 - Screen-based
 - Head-based
 - Object-based (e.g.: a tablet or a marker)
 - Interaction via 3D selection technique
- Advantage
 - Well-known interaction metaphors
- Disadvantages
 - Widgets may occlude important parts of the 3D environment
 - Users may have to search for menus within the 3D environment

[Pick et al 2013]

2. Graphical Menus | 2.1 Techniques

2.1.2 1-DOF-Menus

- Principle: 1 DOF list of options constrained 3D user motion
 - Ring menu: circular menu around a user's wrist
 - Linear hand motion (up-down, left-right)
 - Handheld widgets: relative hand positions (distance between hands)
- Advantages
 - Easy to use
 - Rapid access and use (strong placement cue)
- Disadvantage
 - Works only for short lists

[minority report]

[www.icido.de]

[AN Games Studio]

minority report

[AN Games Studio]

2. Graphical Menus | 2.1 Techniques

2.1.3 TULIP Menus

Three-Up, Labels In Palm

- Principle:
 - Interaction via pinch-gloves
 - Labels attached to fingers
 - Selection with thumb
 - 2 level menus (two hands)
 - Three-Up:
 - 3 fingers for "real labels"
 - 1 finger for "more"
 - Labels In Palm (for long lists)
 - 3 labels available for selection
 - Further labels (in sets of three) are shown in palm
- Advantages
 - Moderately efficient, comfortable, easy to use
- Disadvantages
 - Requires special hardware

[Bowman and Wingrave 2001]

2.1.4 3D Widgets

- Principle: Use truly 3D widgets
 - Context-sensitive (co-located)
 "The combination of geometry and behavior" [Conner et al 92]
 - Widgets attached to 3D objects
 - Menu functionality tuned to objects
 - Menus only available when relevant "diegetic interfaces"
 - Non-context-sensitive
 - Novel 3D menus
 - Fixed appearance and functionality
 - Interaction via pointer and buttons

2. Graphical Menus | 2.1 Techniques

[Bryson, NASA]

[Dead Space]

2. Graphical Menus

- 2.1 Techniques
- → 2.2 Design and Implementation Issues
 - 2.3 Practical Application

2. Graphical Menus

2.2 Design and Implementation Issues

- Placement
 - Easy accessibility vs. occlusion
 - Reference points: world, head, body (hand), device (screen)
 [Feiner 93]
- Selection (mismatch: 2D menus, 3D interaction)
 - Reduce useless degrees of freedom by constraining interpretation of user motions (e.g. pointing) to their intersections with planar surfaces (e.g.: ray casting)
- (Visual) representation and structure
 - Size and distances matter! (Avoid small objects and distances)
 - Structure the interface by using
 - Functional grouping
 - Sequential grouping
 - Context-sensitive menus
 - Style concepts (guides) for colors, shapes, surfaces, textures, dimensions, positions, texts, and symbols (icons)

2. Graphical Menus

- 2.1 Techniques
- 2.2 Design and Implementation Issues
- 2.3 Practical Application

2. Graphical Menus

2.3 Practical Application

- Menus are good for 3D applications
 - With large number of functions
- But
 - Menus shouldn't overlap too much with the 3D workspace
- Extension
 - Remote menus on a dedicated 2D device (PDA, tablet PC)

2. Graphical Menus

2.3 Practical Application

AR Games (TUM-Games Engineering)

Towering Defense:
 Information spread across multiple displays

https://youtu.be/KYAbeQ602o4

System Control

- 1. Definition and Classification
- 2. Graphical Menus
- → 3. Voice Commands
 - 4. Gestural Commands
 - 5. Tools
 - 6. Multimodal System Control Techniques
 - 7. Design Guidelines

3. Voice Commands

- 3.1 Techniques
- 3.2 Design and Implementation Issues
- 3.3 Practical Application

3. Voice Commands

3.1 Techniques

- Technical foundation: speech recognition engine
 - Factors influencing the recognition rate:
 - · Variability among speakers
 - Speaker-dependent (initial training)
 - Speaker-independent
 - · Size of vocabulary
 - Background noise
 - Often used in combination with other input modalities
- Technical options
 - Simple speech recognition
 - For issuing single commands to the system
 - Spoken dialogue
 - To promote a discourse between user and system
 - Spoken interaction in a "relatively" natural manner
 - Vocabulary dynamically adaptable to flow of discourse

3. Voice Commands

3.2 Design and Implementation Issues

- Designers must carefully analyze the task to define the size of the vocabulary
- Voice interfaces are invisible to the user
 - Users don't have a menu, they make mistakes
 - System-side verification of user input is essential!
 - Error correction by semantic and syntactic filtering
 - Formal discourse model
- "All at once" approach towards initialization, selection and issuing of a command
 - Push-to-talk techniques simplify initialization problem
 - Separate human-human communication from human-computer interaction
 - Distinction via syntactic differences between personal communication and system interaction

3. Voice Commands

3.3 Practical Application

- Voice input is powerful because it is hands-free and natural
- But: it is tiring and cannot be used in every environment
 - User needs to learn and memorize which voice commands are available (works well for only a small set of functions)
- Use of voice control has been studied in many applications, e.g.:
 - Voice control via telephone
 - Alexa, Siri, ...

System Control

- 1. Definition and Classification
- 2. Graphical Menus
- 3. Voice Commands
- 4. Gestural Commands
 - 5. Tools
 - 6. Multimodal System Control Techniques
 - 7. Design Guidelines

4. Gestural Commands

- 4.1 Techniques
- 4.2 Design and Implementation Issues
- 4.3 Practical Application

4.1 Techniques

- Classification
 - Posture: static configuration of the hand
 - Gesture: dynamic movement
- Typical gestures of humans:
 - Mimic gestures
 - Describe an object or concept (e.g., sweeping motion to outline a 3D object)
 - Sweeping (Marking-menu techniques)
 - Symbolic gestures (e.g., "thumbs up")
 - Sign language
 - Pre-specified set of postures and gestures
 - Whole-body interaction
 - Speech-connected hand gestures
 - Deictic gestures to indicate a referent ("Put that there")
 - Surface-based gestures

4.2 Design and Implementation Issues

Major gesture input techniques

- Glove-based recognition
 - Recognition algorithms: hidden Markov models, neural networks
 - Gesture models: button, valuator, locator, pick device
 - Devices:
 - Pinch gloves: only limited postures
 - DataGloves: postures and gestures
- Camera-based recognition (such as leap motion, kinect)
 - Computer vision: hand/gesture recognition
- Surface-based recognition
 - Touch screens, pen-based interaction

4.2 Design and Implementation Issues

Problems / Issues:

- Gestural interaction depends heavily on input device
- Gesture recognition is still not always reliable
- When a menu is accessed via a gestural interface, the lower accuracy of gestures may lead to the need for larger menu items
- Gesture-based system control shares many of the characteristics of speech input discussed in the previous section
 - Combines initialization, selection, and issuing of the command
 - Gestures should be designed to have clear *delimiters* that indicate the initialization and termination of the gesture ("Push-to-gesture"?)
- Users may need to discover the actual gesture or posture language

4.2 Design and Implementation Issues

Recommendations:

- Use limited number of gestures
- System has to provide adequate feedback when a gesture is recognized

4.3 Practical Application

See our classes (based on Kinect input device)

- Tanz und Schauspiel im virtuellen Studio
- Active SportGames

https://www.youtube.com/watch?v=YURjuWRYS-w

System Control

- 1. Definition and Classification
- 2. Graphical Menus
- 3. Voice Commands
- 4. Gestural Commands
- → 5. Tools
 - 6. Multimodal System Control Techniques
 - 7. Design Guidelines

5. Tools

- 5.1 Techniques
- 5.2 Design and Implementation Issues
- 5.3 Practical Application

5. Tools

5.1 Techniques

- Classification
 - Physical tools ("props")
 - Space-multiplexed
 - Time-multiplexed
 - Virtual tools
 - Tool belt
- Technical option
 - Tangible user interfaces (TUIs) [Ishii et al]
 Combination of representation and control
 - Physical representations are computationally coupled to underlying digital information
 - · Physical representations embody mechanisms for interactive control
 - Physical representations are perceptually coupled to actively mediated digital representation
- Examples
 - Physical pen selecting items of a virtual menu
 - Transparent physical tablet as a basis for a virtual menu

5. Tools

5.2 Design and Implementation Issues

- Function of a prop is communicated by its form
 - Imitate traditional control design (e.g.: machinery design)
 - Duplicate everyday tools
- Compliance between real and virtual worlds
 - Some prop-based interfaces require a clutching mechanism
- Possible: blind operation (merely by touch)
 - Props must be designed for tactile interaction
- Issue: Where are props placed when they are not needed?

5. Tools

5.3 Practical Application

- Public installations of VEs can greatly benefit from tools
 - Visitors can use tools without much (or even any) learning effort
- By definition, each tool has limited applicability
 - What can be done for applications with large sets of functionality?

Tool switching?

System Control

- 1. Definition and Classification
- 2. Graphical Menus
- 3. Voice Commands
- 4. Gestural Commands
- 5. Tools
- → 6. Multimodal System Control Techniques
 - 7. Design Guidelines

6. Multimodal Techniques

- Combined use of multiple input channels to control a system
- Advantages
 - Decoupling
 - Error reduction and correction
 - Flexibility and complementary behavior
 - Control of mental resources
- Examples:
 - "Put-that-there" [Bolt 80] (gesture and speech)
 - "Marking menus" (gesture-based shortcuts for items in menus)

System Control

- 1. Definition and Classification
- 2. Graphical Menus
- 3. Voice Commands
- 4. Gestural Commands
- 5. Tools
- 6. Multimodal System Control Techniques
- → 7. Design Guidelines

7. Design Guidelines

- Avoid disturbing the flow of action of an interaction task
- Prevent unnecessary changes of the focus of attention
- Avoid mode errors
- Use an appropriate spatial reference frame
- Structure the functions in an application
- Consider multimodal input

Thank you!

