Лабораторная работа №1

Основы администрирования операционных систем

Верниковская Е. А., НПИбд-01-23

5 сентября 2024

Российский университет дружбы народов, Москва, Россия

Вводная часть

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Скачать Rocky Linux.
- 2. Создать виртуальную машину.
- 3. Настроить виртуальную машину.

Выполнение лабораторной

работы

Скачиваем Rocky Linux (рис. 1), (рис. 2)

Рис. 1: Сайта Rocky Linux

Рис. 2: Установка Rocky Linux с сайта

Открываем VirtualBox и создаём новую виртуальную машину

Указываем имя виртуальной машины, определяем тип операционной системы и указываем путь к iso-образу (рис. 3)

Рис. 3: Создание виртуалтной машины (1)

Далее указываем размер оперативной памяти иртуальной машины - 2048 МБ и число процессоров - 2 (рис. 4)

Рис. 4: Создание виртуалтной машины (2)

Задаём размер виртуального жёсткого диска - 40 ГБ (рис. 5)

Рис. 5: Создание виртуалтной машины (3)

Далее запускаем виртуальнцю машину (рис. 6)

Рис. 6: Запуск виртуалтной машины

После запуска устанавливаем английский язык интерфейса (рис. 7)

Рис. 7: Запуск виртуалтной машины

Далее отключаем KDUMP, а место установки ОС оставляем без изменения (рис. 8), (рис. 9), (рис. 10)

Рис. 8: Место установки ОС

Рис. 9: Отключение KDUMP

Рис. 10: Настройка ВМ

Включаем сетевое соединение и в качестве имени узла указываем user.localdomain, где вместо user имя нашего пользователя в соответствии с соглашением об именовании (рис. 11)

Рис. 11: Сетевое соединение

Устанавливаем пароль для root, разрешение на ввод пароля для root при использовании SSH (рис. 12)

Рис. 12: Пароль для root

Затем задаём локального пользователя с правами администратора и пароль для него (рис. 13)

Рис. 13: Пароль для root

Начинаем установку операционной системы (рис. 14), (рис. 15)

Рис. 14: Выставленные настройки

29/48

После установки ОС и перезапуска ВМ входим в ОС под заданной нами при установке учётной записью (рис. 16), (рис. 17)

Рис. 16: Вход в учётную запись

Рис. 17: Rocky Linux

Далее через терминал подключаем образ диска дополнений гостевой ОС: (рис. 18)

- заходим в пользователя root, с помощью sudo -i
- переходим в каталог /run/media/имя_пользователя/VBox_GAs_версия/
- запускаем VBoxLinuxAdditions.run

Рис. 18: Подключение образ диска дополнений гостевой ОС

Установка имени пользователя и названия хоста

При установке виртуальной машины мы задали имя пользователя и имя хоста, удовлетворяющее соглашению об именовании. Поэтому нам не надо ничего исправлять. Я просто посмотрю им хоста с помощью *hostnamectl* (рис. 19)

Рис. 19: Имя хоста

Домашнее задание

В окне терминала проанализируем последовательность загрузки системы, выполнив команду *dmesg* (рис. 20)

```
[eavernikovskaya@eavernikovskaya ~]$ dmesg
    0.0000000] Linux version 5.14.0-427.13.1.el9 4.x86 64 (mockbuild@iadl-prod-build001.bld.equ.rockylinux.org) (gcc
(GCC) 11.4.1 20231218 (Red Hat 11.4.1-3). GNU ld version 2.35.2-43.el9) #1 SMP PREEMPT DYNAMIC Wed May 1 19:11:28 UTC
2024
    0.0000000] The list of certified hardware and cloud instances for Enterprise Linux 9 can be viewed at the Red Hat
Ecosystem Catalog, https://catalog.redhat.com.
     0.000000] Command line: BOOT IMAGE=(hd0.msdos1)/vmlinuz-5.14.0-427.13.1.el9 4.x86 64 root=/dev/mapper/rl-root ro
resume=/dev/mapper/rl-swap rd.lvm.lv=rl/root rd.lvm.lv=rl/swap rhgb quiet
    0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point registers'
    0.0000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
    0.0000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
    0.0000001 x86/fpu: xstate offset[2]: 576, xstate sizes[2]: 256
    0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes, using 'standard' format.
    0.0000000] signal: max sigframe size: 1776
    0.0000000] BIOS-provided physical RAM map:
     0.000000] BIOS-e828: [mem 0x00000000000000-0x000000000009fbff] usable
```

Рис. 20: Команда dmesg

Далее посмотрим вывод этой команды с помошью $dmesg \mid less$ (рис. 21), (рис. 22)

```
[eavernikovskaya@eavernikovskaya ~]$ dmesg | less
[eave<u>rnikovska</u>ya@eavernikovskaya ~]$
```

Рис. 21: Команда dmesg | less (1)

Рис. 22: Команда dmesg | less (2)

Далее получаем следующую информацию:

- 1. Версия ядра Linux (Linux version) (рис. 23)
- 2. Частота процессора (Detected Mhz processor) (рис. 24)
- 3. Модель процессора (СРИО) (рис. 25)
- 4. Объем доступной оперативной памяти (Memory available) (рис. 26)
- 5. Тип обнаруженного гипервизора (Hypervisor detected) (рис. 27)
- 6. Тип файловой системы корневого раздела (рис. 28)
- 7. Последовательность монтирования файловых систем (рис. 29])

Рис. 23: Версия ядра Linux

```
[eavernikovskaya@eavernikovskaya ~]$ dmesg | grep -i "Mhz"
[ 0.000012] tsc: Detected 1991.997 WHz processor
[ 3.931684] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:93:db:bc
[eavernikovskaya@eavernikovskaya ~]$
```

Рис. 24: Частота процессора

```
[eavernikovskaya@eavernikovskaya ~]$ dmesg | grep "CPUQ"
[ 0.204654] smpboot: CPU@: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz (family: 0x6, model: 0x8e, stepping: 0xa)
[eavernikovskaya@eavernikovskaya ~]$
```

Рис. 25: Модель процессора

```
[eavernikovskaya@eavernikovskaya ~]$ free -m
                                                  shared
                                                         buff/cache
                                                                       available
               total
                            used
                                        free
                            1060
                                         450
                                                      19
Mem:
                                                                             906
                2095
                                        2095
Swap:
[eavernikovskaya@eavernikovskaya ~]$
```

Рис. 26: Объем доступной оперативной памяти

```
[eavernikovskaya@eavernikovskaya ~]$ dmesg | grep "Hypervisor detected"
[ 0.000000] <mark>Hypervisor detected:</mark> KVM
[eavernikovskaya@eavernik<u>ovskaya ~</u>]$
```

Рис. 27: Тип обнаруженного гипервизора

```
[eavernikovskaya@eavernikovskaya ~]$ dmesg | grep -i "filesystem"
[ 5.826385] XFS (dm-0): Mounting V5 Filesystem 760e43c0-13b0-41b3-9e49-ad0b46fa0d30
[ 9.506433] XFS (sdal): Mounting V5 Filesystem 9a39db74-1505-4a34-92d7-aba95e8d7183
[eavernikovskaya@eavernikovskaya ~]$
```

Рис. 28: Тип файловой системы корневого раздела

Рис. 29: Последовательность монтирования файловых систем

Подведение итогов

Выводы

В ходе выполнения лабораторной работы мы приобрели практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

- 1. Лаборатораня работа №1 [Электронный ресурс] URL: https://esystem.rudn.ru/pluginfile.php/2400671/mod_resource/content/7/002-os_install-Rocky9.pdf
- 2. VirtualBox [Электронный ресурс] URL: https://www.virtualbox.org/wiki/Linux_Downloads
- 3. Rocky Linux [Электронный ресурс] URL: https://rockylinux.org/ru/download