Final 2016

Теория вероятностей и математическая статистика

Обратная связь:

https://github.com/bdemeshev/probability_hse_exams

Последнее обновление: 9 января 2019 г.

При тестировании гипотезы о равенстве дисперсий по двум независимым нормальным выборкам размером m и n тестовая статистика может иметь распределение

$$\chi^2_{m+n-2}$$

$$F_{m-1,n-1}$$

$$ightharpoonup F_{m,n-2}$$

$$F_{m+1,n+1}$$

$$F_{m+1,n+1}$$

$$t_{m+n-2}$$

Для построения доверительного интервала для разности математических ожиданий по двум независимым нормальным выборкам размера m и n в случае неизвестных равных дисперсий используется распределение

- t_{m+n-2} $t_{m-1,n-1}$
- $\mathcal{N}(0; m+n-2)$
- $\chi_m^2 + n 2$

Для проверки гипотезы о равенстве дисперсий используются две независимые нормальные выборки размером 25 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 36, по второй — 49. Тестовая статистика может быть равна

- **1.56**
- 2.13
- 1.17
- 1.85
- 1.36

Для проверки гипотезы о равенстве математических ожиданий используются две нормальные выборки размером 25 и 16 наблюдений. Разница выборочных средних равна 1. Тестовая статистика НЕ может быть равна

- 1.17
- 2.13
- 1.56
- 1.36
- 1.85

Для построения доверительного интервала для разности математических ожиданий в двух нормальных выборках размеров m и n при известных и не равных дисперсиях тестовая статистика имеет распределение

- t_{m+n-2}
- $\mathcal{N}(0;1)$
- $t_{m-1,n-1}$
- $\begin{array}{c}
 \chi^2_{m+n-2} \\
 t_{m+n}
 \end{array}$

При проверке гипотезы о равенстве долей можно использовать распределение

- t_{m+n}
- t_{m+n-2}
- $\mathcal{N}(0;1)$
- $t_{m-1,n-1}$
- $\sum_{m+n-2}^{\infty} \chi^2_{m+n-2}$

При проверке гипотезы о равенстве дисперсий в двух выборках размером в 3 и 5 наблюдений было получено значение тестовой статистики 10. Если оценка дисперсии по одной из выборок равна 8, то другая оценка дисперсии может быть равна

- **2**5
- **4/3**
- **4/5**
- **1** 4
- **1/5**

Пусть $\hat{\sigma}_1^2$ и $\hat{\sigma}_2^2$ — несмещённые оценки дисперсий, полученные по независимым нормальным выборкам размером m и n соответственно. Тогда статистика $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ имеет распределение

- t_{m+n-2}
- $ightharpoonup F_{m,n}$
- $\sum_{m+n-2}^{\infty} \chi^2_{m+n-2}$

Требуется проверить гипотезу о равенстве математических ожиданий по независимым нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

- 1/2
- **1/14**
- 1/49
- **1/4**
- **1/7**

Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

- -1/4
- -1/14
- -1/7
- -1/49
- -1/2

В методе главных компонент

- выборочная дисперсия первой главной компоненты равна единице
- выборочная дисперсия первой главной компоненты минимальна
- первая главная компонента сильнее всего коррелирована с первой переменной
- выборочная корреляция первой и второй главных компонент равна единице
- выборочная корреляция первой и второй главных компонент равна нулю

Априорная функция плотности параметра a пропорциональна $\exp(-a)$ при a>0. Функция правдоподобия пропорциональна $\exp(-a^2+a)$. При a>0 апостериорная плотность пропорциональна

- $\exp(a^2 + 2a)$

- $= \exp(-a^2)$

Величины $X_1,~X_2,~\dots,~X_{10}$ представляют собой случайную выборку с $\mathbb{E}(X_i)=2\theta-1.$ Оказалось, что $\bar{X}_{10}=3.$ Оценка $\hat{\theta}_{MM}$ метода моментов равна

- Недостаточно данных
- 15.5
- **2**
- **2** 3

Величины $X_1,\,X_2,\,\dots,\,X_{10}$ представляют собой случайную выборку с $\mathbb{E}(X_i)=2\theta-1.$ Оказалось, что $\bar{X}_{10}=3.$ Оценка $\hat{\theta}_{ML}$ метода максимального правдоподобия равна

- Недостаточно данных
- **3**
- 15.5

Нелогарифмированная функция правдоподобия

- $lue{}$ асимпотитически распределена $\mathcal{N}(0;1)$
- $lue{}$ убывает по оцениваемому параметру heta
- может принимать отрицательные значения
- 🕑 может принимать значения больше единицы
- ullet возрастает по оцениваемому параметру heta

Оценка метода моментов

- 🔼 всегда несмещённая
- 🖸 эффективнее оценки максимального правдоподобия
- не требует знания точного закона распределения
- 📭 не может быть получена в малой выборке
- 🖸 не применима для дискретных случайных величин

По большой выборке была построена оценка максимального правдоподобия \hat{a} . Оказалось, что $\ell''(\hat{a})=-4$. Ширина 95%-го доверительного интервала для параметра a примерно равна

- 3

Величины X_1, X_2, \ldots, X_n представляют собой случайную выборку из $\mathcal{N}(\mu; \sigma^2)$. Вася оценивает оба параметра с помощью максимального правдоподобия. При этом

$$\mathbb{E}(\hat{\mu}) > \mu, \ \mathbb{E}(\hat{\sigma}^2) = \sigma^2$$

$$\mathbb{E}(\hat{\mu}) < \mu, \ \mathbb{E}(\hat{\sigma}^2) = \sigma^2$$

$$\mathbb{E}(\hat{\mu}) = \mu, \ \mathbb{E}(\hat{\sigma}^2) > \sigma^2$$

$$\mathbb{E}(\hat{\mu}) = \mu, \ \mathbb{E}(\hat{\sigma}^2) = \sigma^2$$

Если величина $\hat{\theta}$ имеет нормальное распределение $\mathcal{N}(3;0.01^2)$, то, согласно дельта-методу, $\hat{\theta}^3$ имеет примерно нормальное распределение

- $\mathcal{N}(27; 27^2 \cdot 0.01^2)$
- $\mathcal{N}(27; 3 \cdot 0.01^2)$
- $\sim \mathcal{N}(4; 16 \cdot 0.01^2)$
- $\mathcal{N}(3; 3 \cdot 0.01^2)$
- $\mathcal{N}(27; 27 \cdot 0.01^2)$

Есть два неизвестных параметра, θ и γ . Вася проверяет гипотезу H_0 : $\theta=1$ и $\gamma=2$ против альтернативной гипотезы о том, что хотя бы одно из равенств нарушено. Выберите верное утверждение об асимптотическом распределении статистики отношения правдоподобия, LR:

- $lue{}$ Если верна H_0 , то $LR \sim \chi_2^2$
- $lue{}$ Если верна H_{a} , то $LR \sim \chi_{2}^{2}$
- $lue{}$ И при H_0 , и при H_a , $LR\sim\chi_1^2$
- $lue{}$ Если верна H_0 , то $LR \sim \chi_1^2$
- $lue{}$ И при H_0 , и при H_a , $LR \sim \chi_2^2$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из распределения Пуассона с параметром $\lambda>0$. Информация Фишера о параметре λ , заключенная в ОДНОМ наблюдении случайной выборки, равна

- n/λ
- $e^{-\lambda}$
- $\sim \lambda/n$
- $1/\lambda$
- \bigcirc λ

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из распределения Бернулли с параметром $p\in(0;1)$. Информация Фишера о параметре p, заключенная в ОДНОМ наблюдении случайной выборки, равна

- **□** *p/n*
- $\frac{1}{p(1-p)}$
- **□** 1/p
- **□** n/p

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из нормального распределения с математическим ожиданием μ и дисперсией $\sigma^2=3$. Информация Фишера о параметре μ , заключенная в ДВУХ наблюдениях случайной выборки, равна

- 2/3
- 3/2
- $\mu/2$
- $2/\mu$
- $2\mu^2$

Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из распределения с плотностью распределения

$$f(x; heta) = egin{cases} rac{1}{ heta} e^{-rac{x}{ heta}}, & ext{при } x \geq 0, \ 0, & ext{при } x < 0 \end{cases} ,$$

где $\theta>0$ — неизвестный параметр распределения. Информация Фишера о параметре θ , заключенная в TPEX наблюдениях случайной выборки, равна

- θ^2
- $1/\theta$
- \bullet
- $\theta^2/3$
- $> 3/\theta^2$

Пусть $\hat{\theta}$ — несмещенная оценка для неизвестного параметра θ , а также выполнены условия регулярности. Неравенство Крамера-Рао представимо в виде

- $ightharpoonup Var(\hat{\theta}) \cdot I_n(\theta) > 1$
- $I_n(\theta) \leq Var(\hat{\theta})$
- $I_n^-1(\theta) \leq \operatorname{Var}(\hat{\theta})$
- $ightharpoonup Var(\hat{\theta}) \leq I_n(\theta)$
- $ightharpoonup Var(\hat{\theta}) \cdot I_n(\theta) \leq 1$

Пусть $X = (X_1, ..., X_n)$ — случайная выборка из дискретного распределения с таблицей распределения

Xi	-2	0	1
$\mathbb{P}(\cdot)$	$1/2 - \theta$	1/2	θ

Несмещённой является оценка

$$(\bar{X}-1)/3$$

$$(\bar{X}+1)/3$$

$$\bar{X}-1$$

$$\bar{X}$$

$$ldot \bar{X} + 1$$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного распределения на отрезке $[0;\,\theta]$, где $\theta>0$ — неизвестный параметр. Несмещённой является оценка

- \bigcirc $2\bar{X}$
- $\mathbf{D} \bar{X}$
- X_1
- $X_{(1)}$

Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из дискретного распределения с таблицей распределения

Xi	-2	0	1
$\mathbb{P}(\cdot)$	$1/2 - \theta$	1/2	θ

Состоятельной является оценка

- $\bar{X} 1$ $(\bar{X} + 1)/3$
- (X + 1)/
- $\mathbf{D} \bar{X}$
- $\Sigma \bar{X} + 1$
- $(\bar{X}-1)/3$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного распределения на отрезке $[0;\,\theta]$, где $\theta>0$ — неизвестный параметр. Состоятельной является оценка

- X_1
- $oldsymbol{\nabla} \bar{X}$
- $\bar{X}/2$
- $X_{(1)}$
- $2\bar{X}$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из нормального распределения с математическим ожиданием $\mu=3$ и дисперсией σ^2 . Несмещённой оценкой параметра σ^2 является

- $\frac{1}{n}\sum_{i=1}^{n}(X_i-3)^2$
- $\frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$
- $\frac{1}{n+1} \sum_{i=1}^{n} (X_i \bar{X})^2$
- $\sum_{i=1}^{n} \sum_{i=1}^{n} (X_i 3)^2$
- $\frac{1}{n+1}\sum_{i=1}^{n}(X_i-3)^2$

Оценка $\hat{ heta}_n$ называется состоятельной оценкой параметра heta, если

- $ightharpoonup Var(\hat{\theta}_n) o 0$
- $ightharpoonup \operatorname{Var}(\hat{\theta}_n) = \frac{\sigma^2}{n}$

- \square Для любой оценки T из класса $\mathcal K$ и любого θ выполнено $\mathbb E((\hat heta_n heta)^2) \leq \mathbb E((T heta)^2)$

Оценка $\hat{\theta}_n$ параметра θ называется эффективной в некотором классе оценок \mathcal{K} , если

- $ightharpoonup Var(\hat{\theta}_n)
 ightarrow 0$
- lacktriangle Для любой оценки T из класса $\mathcal K$ и любого heta выполнено $\mathbb E((\hat heta_n- heta)^2)\leq \mathbb E((T- heta)^2)$
- $ightharpoonup \operatorname{Var}(\hat{\theta}_n) = \frac{\sigma^2}{n}$
- $\mathbb{E}(\hat{\theta}_n) = \theta$

По выборке X_1,\dots,X_4 , имеющей нормальное распределение с известной дисперсией 1, проверяется гипотеза $H_0:\mu=10$ против $H_a:\mu>10$. Выборочное среднее оказалось равно 9. Тогда нулевая гипотеза

- $lue{}$ отвергается при lpha = 0.05, не отвергается при lpha = 0.01
- $lue{}$ отвергается при lpha=0.1, не отвергается при lpha=0.05
- 🖸 Отвергается на любом разумном уровне значимости
- $lue{}$ отвергается при lpha=0.01, не отвергается при lpha=0.05
- Не отвергается на любом разумном уровне значимости

По случайной выборке из 49 наблюдений было оценено выборочное среднее $\bar{X}=8$ и несмещённая оценка дисперсии $\hat{\sigma}^2=4$ проверяется гипотеза $H_0:\mu=7$ против $H_a:\mu\neq7$. Тогда значение тестовой статистики

- 3.5
- **3**
- 1.75
- 1.5
- **-1.75**

По выборке из 100 наблюдений X_1,\ldots,X_n , имеющей нормальное распределение с неизвестной дисперсией, был получен 95% доверительный интервал для математического ожидания [16, 24]. Значит, \bar{X} был равен

- 20.5
- 0
- 8
- 1
- 9

По выборке из 100 наблюдений X_1,\ldots,X_n , имеющей нормальное распределение с неизвестной дисперсией, был получен 95% доверительный интервал для математического ожидания [16, 24]. Считая критическое значение t-статистики равным 2, несмещенная оценка дисперсии была равна

- **-1.75**
- **1**8
- **1.5**
- **2** 3
- 400

По выборке из 5 наблюдений X_1,\dots,X_5 , имеющей экспоненциальное распределение, для проверки гипотезы о математическом ожидании $H_0:\mu=\mu_0$ против $H_a:\mu\neq\mu_0$, можно считать, что величина $\frac{\bar{X}-\mu_0}{\sqrt{\hat{\sigma}^2/n}}$ имеет распределение

- χ_5^2
- **U** t
- χ_4^2
- $\mathcal{N}(0,1)$

Вася 50 раз подбросил монетку, 23 раза она выпала «орлом», 27 раз — «решкой». При проверке гипотезы о том, что монетка — «честная», Вася будет пользоваться статистикой, имеющей распределение

- t_{50}
- $\mathcal{N}(0,1)$
- t_{49}
- t_{51}

Вася 25 раз подбросил монетку, 10 раз она выпала «орлом», 15 раз — «решкой». При проверке гипотезы о том, что монетка — «честная», Вася может получить следующее значение тестовой статистики

- -3.2
- **2**
- 0.4
- **□** -1
- 10.2

По выборке X_1, \dots, X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, строится доверительный интервал для дисперсии. Он НЕ может иметь вид

- \bigcirc (0,a)
- \bigcirc $(0,+\infty)$
- $(b, +\infty)$
- (a, b)
- $(-\infty,a)$

По выборке X_1,\ldots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Известно, что $\sum_{i=1}^n (X_i-\bar{X})^2=270$. Тестовая статистика может быть равна

- **27**
- Не хватает данных
- **3**

По выборке X_1,\dots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Тестовая статистика будет иметь распределение

- t_{n-1}
- $\mathcal{N}(0,1)$
- χ_n^2

Дана реализация выборки: 7, -1, 3, 0. Выборочный начальный момент второго порядка равен

- 0.75
- **19.75**
- 2.25
- \bigcirc -1
- **5**9

Дана реализация выборки: 7, -1, 3, 0. Первая порядковая статистика принимает значение

- **2** 3
- 2.25
- **D** 0
- -1
- **7**

Дана реализация выборки: 7, -1, 3, 0. Выборочная функция распределения в точке 0 принимает значение

- \bigcirc 1
- 0.25
- 0.75
- 0.5

46

Трёх случайно выбранных студентов 2-го курса попросили оценить сложность Теории вероятностей и Статистики по 100 балльной шкале

	Аким	Ариадна	Темуужин
Теория вероятностей	70	75	82
Статистика	64	69	100

Тест знаков отвергает гипотезу о том, что Статистика и Теории вероятностей одинаково сложны в пользу альтернативы, что Статистика проще при уровне значимости

- 0.1
- **3/8**
- 0.51
- 0.05
- 1/3

Преподаватель в течение 10 лет ведет статистику о посещаемости лекций. Он заметил, что перед контрольной работой посещаемость улучшается. Преподаватель составил следующую таблицу сопряженности

	Контрольная будет	Контрольной не будет
Пришло бол. пол. курса	35	80
Пришло мен. пол. курса	5	200

Если T — статистика Пирсона, а k — число степеней свободы её распределения, то

- T > 52, k = 2
- T < 52, k = 1
- T < 52, k = 4
- T > 52, k = 1
- T > 52, k = 3

Экзамен принимают два преподавателя: Б.Б. Злой и Е.В. Добрая. Они поставили следующие оценки:

Е.В. Добрая	6	4	7	8	
Б.Б. Злой	2	3	10	8	3

Значение статистики Вилкоксона для гипотезы о совпадении распределений оценок равно

- 20.5
- 20
- 22.5
- 7.5
- **1**9

При тестировании гипотезы о равенстве дисперсий по двум независимым нормальным выборкам размером m и n тестовая статистика может иметь распределение

$$\chi^2_{m+n-2}$$

$$F_{m-1,n-1}$$

$$ightharpoonup F_{m+1,n+1}$$

$$t_{m+n-2}$$

Для построения доверительного интервала для разности математических ожиданий по двум независимым нормальным выборкам размера m и n в случае неизвестных равных дисперсий используется распределение

- t_{m+n-2} $t_{m-1,n-1}$
- $\mathcal{N}(0; m+n-2)$
- $\chi_m^2 + n 2$

Для проверки гипотезы о равенстве дисперсий используются две независимые нормальные выборки размером 25 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 36, по второй — 49. Тестовая статистика может быть равна

- **1.56**
- 2.13
- 1.17
- 1.85
- 1.36

Для проверки гипотезы о равенстве математических ожиданий используются две нормальные выборки размером 25 и 16 наблюдений. Разница выборочных средних равна 1. Тестовая статистика НЕ может быть равна

- **1.17**
- 2.13
- 1.56
- 1.36
- 1.85

Для построения доверительного интервала для разности математических ожиданий в двух нормальных выборках размеров m и n при известных и не равных дисперсиях тестовая статистика имеет распределение

- t_{m+n-2}
- $\mathcal{N}(0;1)$
- $t_{m-1,n-1}$
- $\begin{array}{c}
 \chi^2_{m+n-2} \\
 t_{m+n}
 \end{array}$

Следующий вопрос

При проверке гипотезы о равенстве долей можно использовать распределение

- t_{m+n}
- t_{m+n-2}
- $\mathcal{N}(0;1)$
- $t_{m-1,n-1}$
- χ^2_{m+n-2}

При проверке гипотезы о равенстве дисперсий в двух выборках размером в 3 и 5 наблюдений было получено значение тестовой статистики 10. Если оценка дисперсии по одной из выборок равна 8, то другая оценка дисперсии может быть равна

- **2**5
- **4/3**
- **4/5**
- **4**
- **1/5**

Пусть $\hat{\sigma}_1^2$ и $\hat{\sigma}_2^2$ — несмещённые оценки дисперсий, полученные по независимым нормальным выборкам размером m и n соответственно. Тогда статистика $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ имеет распределение

- $F_m, n-2$
- $t_m + n 2$
- $F_m + 1, n + 1$
- \bigcirc F_m , n
- $\chi_m^2 + n 2$

Требуется проверить гипотезу о равенстве математических ожиданий по независимым нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

- 1/2
- **1/14**
- 1/49
- **1/4**
- **1/7**

Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

- -1/4
- -1/14
- -1/7
- -1/49
- -1/2

В методе главных компонент

- выборочная дисперсия первой главной компоненты равна единице
- выборочная дисперсия первой главной компоненты минимальна
- первая главная компонента сильнее всего коррелирована с первой переменной
- выборочная корреляция первой и второй главных компонент равна единице
- выборочная корреляция первой и второй главных компонент равна нулю

Априорная функция плотности параметра a пропорциональна $\exp(-a)$ при a>0. Функция правдоподобия пропорциональна $\exp(-a^2+a)$. При a>0 апостериорная плотность пропорциональна

- $= \exp(a^2 + 2a)$

- \bigcirc exp $(-a^2)$

Величины $X_1,~X_2,~\dots,~X_{10}$ представляют собой случайную выборку с $\mathbb{E}(X_i)=2\theta-1.$ Оказалось, что $\bar{X}_{10}=3.$ Оценка $\hat{\theta}_{MM}$ метода моментов равна

- Недостаточно данных
- 15.5
- **2**
- **2** 3

Величины $X_1,\,X_2,\,\dots,\,X_{10}$ представляют собой случайную выборку с $\mathbb{E}(X_i)=2\theta-1$. Оказалось, что $\bar{X}_{10}=3$. Оценка $\hat{\theta}_{ML}$ метода максимального правдоподобия равна

- Недостаточно данных
- **2** 3
- **2**
- 15.5

Нелогарифмированная функция правдоподобия

- $lue{}$ асимпотитически распределена $\mathcal{N}(0;1)$
- $lue{}$ убывает по оцениваемому параметру heta
- 🔼 может принимать отрицательные значения
- 🖸 может принимать значения больше единицы
- $lue{}$ возрастает по оцениваемому параметру heta

Оценка метода моментов

- 🔼 всегда несмещённая
- 🖸 эффективнее оценки максимального правдоподобия
- 📭 не требует знания точного закона распределения
- 🕟 не может быть получена в малой выборке
- 🕒 не применима для дискретных случайных величин

По большой выборке была построена оценка максимального правдоподобия \hat{a} . Оказалось, что $\ell''(\hat{a}) = -4$. Ширина 95%-го доверительного интервала для параметра a примерно равна

- **1** 4
- **D** 5
- **1** 2
- **2** 3

Величины X_1, X_2, \ldots, X_n представляют собой случайную выборку из $\mathcal{N}(\mu; \sigma^2)$. Вася оценивает оба параметра с помощью максимального правдоподобия. При этом

$$\mathbb{E}(\hat{\mu}) > \mu, \ \mathbb{E}(\hat{\sigma}^2) = \sigma^2$$

$$\mathbb{E}(\hat{\mu}) < \mu, \ \mathbb{E}(\hat{\sigma}^2) = \sigma^2$$

$$\mathbb{E}(\hat{\mu}) = \mu, \ \mathbb{E}(\hat{\sigma}^2) > \sigma^2$$

$$\mathbb{E}(\hat{\mu}) = \mu, \ \mathbb{E}(\hat{\sigma}^2) = \sigma^2$$

Если величина $\hat{\theta}$ имеет нормальное распределение $\mathcal{N}(3;0.01^2)$, то, согласно дельта-методу, $\hat{\theta}^3$ имеет примерно нормальное распределение

- $\mathcal{N}(27; 27^2 \cdot 0.01^2)$
- $\mathcal{N}(27; 3 \cdot 0.01^2)$
- $\mathcal{N}(4; 16 \cdot 0.01^2)$
- $\mathcal{N}(3; 3 \cdot 0.01^2)$
- $\mathcal{N}(27; 27 \cdot 0.01^2)$

Есть два неизвестных параметра, θ и γ . Вася проверяет гипотезу H_0 : $\theta=1$ и $\gamma=2$ против альтернативной гипотезы о том, что хотя бы одно из равенств нарушено. Выберите верное утверждение об асимптотическом распределении статистики отношения правдоподобия, LR:

- $lue{}$ Если верна H_0 , то $LR\sim\chi_2^2$
- $lue{}$ Если верна H_{a} , то $LR \sim \chi_{2}^{2}$
- $lue{}$ И при H_0 , и при H_a , $LR \sim \chi_1^2$
- $lue{}$ Если верна H_0 , то $LR \sim \chi_1^2$
- $lue{}$ И при H_0 , и при H_a , $LR\sim\chi_2^2$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из распределения Пуассона с параметром $\lambda>0$. Информация Фишера о параметре λ , заключенная в ОДНОМ наблюдении случайной выборки, равна

- n/λ
- $e^{-\lambda}$
- $\sim \lambda/n$
- $1/\lambda$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из распределения Бернулли с параметром $p\in(0;1)$. Информация Фишера о параметре p, заключенная в ОДНОМ наблюдении случайной выборки, равна

- **□** *p/n*
- $\frac{1}{p(1-p)}$
- **□** 1/*p*
- **□** n/p
- **p**

Пусть $X=(X_1,\,\dots,\,X_n)$ — случайная выборка из нормального распределения с математическим ожиданием μ и дисперсией $\sigma^2=3$. Информация Фишера о параметре μ , заключенная в ДВУХ наблюдениях случайной выборки, равна

- 2/3
- **3/2**
- $\mu/2$
- $2/\mu$
- $2\mu^2$

Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из распределения с плотностью распределения

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & \text{при } x \ge 0, \\ 0, & \text{при } x < 0 \end{cases},$$

где $\theta>0$ — неизвестный параметр распределения. Информация Фишера о параметре θ , заключенная в TPEX наблюдениях случайной выборки, равна

- θ^2
- $1/\theta$
- $\Box \theta$
- $\theta^2/3$
- $1/\theta^2$

Пусть $\hat{\theta}$ — несмещенная оценка для неизвестного параметра θ , а также выполнены условия регулярности. Неравенство Крамера-Рао представимо в виде

- $ightharpoonup Var(\hat{\theta}) \cdot I_n(\theta) > 1$
- $I_n(\theta) \leq Var(\hat{\theta})$
- $I_n^-1(\theta) \leq \operatorname{Var}(\hat{\theta})$
- $ightharpoonup Var(\hat{\theta}) \leq I_n(\theta)$
- $ightharpoonup Var(\hat{\theta}) \cdot I_n(\theta) \leq 1$

Пусть $X = (X_1, ..., X_n)$ — случайная выборка из дискретного распределения с таблицей распределения

Xi	-2	0	1
$\mathbb{P}(\cdot)$	$1/2-\theta$	1/2	θ

Несмещённой является оценка

- $(\bar{X}-1)/3$
- $(\bar{X}+1)/3$
- $\bar{X} = 1$
- \bar{X}
- $\bar{X} + 1$

Пусть $X=(X_1,\,\dots,\,X_n)$ — случайная выборка из равномерного распределения на отрезке $[0;\,\theta]$, где $\theta>0$ — неизвестный параметр. Несмещённой является оценка

- \bigcirc $2\bar{X}$
- $\bigcirc \bar{X}/2$
- $\mathbf{D} \bar{X}$
- X_1
- $X_{(1)}$

Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из дискретного распределения

Xi	-2	0	1
$\mathbb{P}(\cdot)$	$1/2 - \theta$	1/2	θ

Состоятельной является оценка

- $\Sigma \bar{X} 1$
- $(\bar{X}+1)/3$
- \bar{x}
- $ldot \bar{X} + 1$
- $(\bar{X}-1)/3$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного распределения на отрезке $[0;\,\theta]$, где $\theta>0$ — неизвестный параметр. Состоятельной является оценка

- X_1
- $\mathbf{D} \bar{X}$
- $\bar{X}/2$
- $X_{(1)}$
- $2\bar{X}$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из нормального распределения с математическим ожиданием $\mu=3$ и дисперсией σ^2 . Несмещённой оценкой параметра σ^2 является

- $\frac{1}{n}\sum_{i=1}^{n}(X_i-3)^2$
- $\frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$
- $\frac{1}{n+1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$
- $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-3)^2$
- $\frac{1}{n+1}\sum_{i=1}^{n}(X_i-3)^2$

Оценка $\hat{ heta}_n$ называется состоятельной оценкой параметра heta, если

- $ightharpoonup Var(\hat{\theta}_n) o 0$
- $\mathbb{E}(\hat{\theta}_n) = \theta$
- $lacksymbol{\square}$ Для любой оценки T из класса $\mathcal K$ и любого heta выполнено $\mathbb E((\hat{ heta}_n- heta)^2)\leq \mathbb E((T- heta)^2)$

Оценка $\hat{\theta}_n$ параметра θ называется эффективной в некотором классе оценок \mathcal{K} , если

$$ightharpoonup Var(\hat{\theta}_n) o 0$$

$$lacktriangle$$
 Для любой оценки T из класса $\mathcal K$ и любого $heta$ выполнено $\mathbb E((\hat heta_n- heta)^2)\leq \mathbb E((T- heta)^2)$

$$\operatorname{Var}(\hat{\theta}_n) = \frac{\sigma^2}{n}$$

$$\mathbb{E}(\hat{\theta}_n) = \theta$$

По выборке X_1,\dots,X_4 , имеющей нормальное распределение с известной дисперсией 1, проверяется гипотеза $H_0:\mu=10$ против $H_a:\mu>10$. Выборочное среднее оказалось равно 9. Тогда нулевая гипотеза

- $lue{}$ отвергается при lpha = 0.05, не отвергается при lpha = 0.01
- $lue{}$ отвергается при lpha=0.1, не отвергается при lpha=0.05
- 🕑 Отвергается на любом разумном уровне значимости
- $lue{}$ отвергается при lpha=0.01, не отвергается при lpha=0.05
- 🖸 Не отвергается на любом разумном уровне значимости

По случайной выборке из 49 наблюдений было оценено выборочное среднее $\bar{X}=8$ и несмещённая оценка дисперсии $\hat{\sigma}^2=4$ проверяется гипотеза $H_0:\mu=7$ против $H_a:\mu\neq7$. Тогда значение тестовой статистики

- 3.5
- **3**
- 1.75
- 1.5
- -1.75

По выборке из 100 наблюдений X_1, \ldots, X_n , имеющей нормальное распределение с неизвестной дисперсией, был получен 95% доверительный интервал для математического ожидания [16, 24]. Значит, \bar{X} был равен

- 20.5
- 0
- 8
- 1
- 9

По выборке из 100 наблюдений X_1,\ldots,X_n , имеющей нормальное распределение с неизвестной дисперсией, был получен 95% доверительный интервал для математического ожидания [16, 24]. Считая критическое значение t-статистики равным 2, несмещенная оценка дисперсии была равна

- **-1.75**
- **1**8
- **1.5**
- **3**
- 400

По выборке из 5 наблюдений X_1,\dots,X_5 , имеющей экспоненциальное распределение, для проверки гипотезы о математическом ожидании $H_0:\mu=\mu_0$ против $H_a:\mu\neq\mu_0$, можно считать, что величина $\frac{\bar{X}-\mu_0}{\sqrt{\hat{\sigma}^2/n}}$ имеет распределение

- t_4
- χ_5^2
- **U** t
- χ_4^2
- $\mathcal{N}(0,1)$

Вася 50 раз подбросил монетку, 23 раза она выпала «орлом», 27 раз — «решкой». При проверке гипотезы о том, что монетка — «честная», Вася будет пользоваться статистикой, имеющей распределение

- t_{50}
- $\mathcal{N}(0,1)$
- \bigcirc t_{49}
- t_{51}

Вася 25 раз подбросил монетку, 10 раз она выпала «орлом», 15 раз — «решкой». При проверке гипотезы о том, что монетка — «честная», Вася может получить следующее значение тестовой статистики

- -3.2
- **2**
- 0.4
- **D** -1
- 10.2

По выборке X_1,\ldots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, строится доверительный интервал для дисперсии. Он HE может иметь вид

- \bigcirc (0,a)
- $(0,+\infty)$
- $(b, +\infty)$
- (a, b)
- $(-\infty,a)$

По выборке X_1,\ldots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Известно, что $\sum_{i=1}^n (X_i-\bar{X})^2=270$. Тестовая статистика может быть равна

- Не хватает данных
- 3
- 9

По выборке X_1,\dots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Тестовая статистика будет иметь распределение

- t_{n-1}
- $\mathcal{N}(0,1)$
- χ_{n-1}^2
- χ_n^2
- t_n

Дана реализация выборки: 7, -1, 3, 0. Выборочный начальный момент второго порядка равен

- 0.75
- **19.75**
- 2.25
- \bigcirc -1
- **5**9

44

Дана реализация выборки: 7, -1, 3, 0. Первая порядковая статистика принимает значение

- **3**
- 2.25
- **1** 0
- \bigcirc -1
- **1** 7

45

Дана реализация выборки: 7, -1, 3, 0. Выборочная функция распределения в точке 0 принимает значение

- \bigcirc 1
- 0.25
- 0.75
- 0.5

46

Трёх случайно выбранных студентов 2-го курса попросили оценить сложность Теории вероятностей и Статистики по 100 балльной шкале

	Аким	Ариадна	Темуужин
Теория вероятностей	70	75	82
Статистика	64	69	100

Тест знаков отвергает гипотезу о том, что Статистика и Теории вероятностей одинаково сложны в пользу альтернативы, что Статистика проще при уровне значимости

- 0.1
- **3/8**
- 0.51
- 0.05
- **1/3**

47

Преподаватель в течение 10 лет ведет статистику о посещаемости лекций. Он заметил, что перед контрольной работой посещаемость улучшается. Преподаватель составил следующую таблицу

	Контрольная будет	Контрольной не будет
Пришло бол. пол. курса	35	80
Пришло мен. пол. курса	5	200

Если T — статистика Пирсона, а k — число степеней свободы её распределения, то

- T > 52, k = 2
- T < 52, k = 1
- T < 52, k = 4
- T > 52, k = 1
- T > 52, k = 3

Α	\sim
71	×
т	U

Экзамен принимают два преподавателя: Б.Б. Злой и Е.В. Добрая. Они поставили следующие оценки:

Е.В. Добрая	6	4	7	8	
Б.Б. Злой	2	3	10	8	3

Значение статистики Вилкоксона для гипотезы о совпадении распределений оценок равно

- 20.5
- **2**0
- 22.5
- 7.5
- **1**9

При тестировании гипотезы о равенстве дисперсий по двум независимым нормальным выборкам размером m и n тестовая статистика может иметь распределение

$$\chi^2_{m+n-2}$$

$$F_{m-1,n-1}$$

$$\mathbf{P}_{m,n-2}$$

$$F_{m+1,n+1}$$

$$t_{m+n-2}$$

$$t_{m+n-2}$$

Нет!

Для построения доверительного интервала для разности математических ожиданий по двум независимым нормальным выборкам размера m и n в случае неизвестных равных дисперсий используется распределение

$$t_{m+n-2}$$

$$t_{m-1,n-1}$$

$$t_{m+n}$$

$$\mathcal{N}(0; m+n-2)$$

$$\chi_m^2 + n - 2$$

Herl

Для проверки гипотезы о равенстве дисперсий используются две независимые нормальные выборки размером 25 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 36, по второй — 49. Тестовая статистика может быть равна

- 1.56
- 2.13
- **1.17**
- 1.85
- 1.36

Нет!

Для проверки гипотезы о равенстве математических ожиданий используются две нормальные выборки размером 25 и 16 наблюдений. Разница выборочных средних равна 1. Тестовая статистика НЕ может быть равна

- **1.17**
- 2.13
- 1.56
- 1.36
- 1.85

Нет!

Для построения доверительного интервала для разности математических ожиданий в двух нормальных выборках размеров m и n при известных и не равных дисперсиях тестовая статистика имеет распределение

- t_{m+n-2}
- $\mathcal{N}(0;1)$
- $t_{m-1,n-1}$
- $\begin{array}{c}
 \chi^2_{m+n-2} \\
 t_{m+n}
 \end{array}$

HeT!

При проверке гипотезы о равенстве долей можно использовать распределение

- t_{m+n}
- t_{m+n-2}
- $\mathcal{N}(0;1)$
- $t_{m-1,n-1}$
- χ^2_{m+n-2}

Нет!

При проверке гипотезы о равенстве дисперсий в двух выборках размером в 3 и 5 наблюдений было получено значение тестовой статистики 10. Если оценка дисперсии по одной из выборок равна 8, то другая оценка дисперсии может быть равна

- **2**5
- **4/3**
- **4/5**
- **4**
- **1/5**

Нет!

Пусть $\hat{\sigma}_1^2$ и $\hat{\sigma}_2^2$ — несмещённые оценки дисперсий, полученные по независимым нормальным выборкам размером m и n соответственно. Тогда статистика $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ имеет распределение

- t_{m+n-2}
- $ightharpoonup F_{m,n}$
- χ^2_{m+n-2}

Нет! Следующий вопрос

Требуется проверить гипотезу о равенстве математических ожиданий по независимым нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

- 1/2
- **1/14**
- 1/49
- 1/4
- **1/7**

Нет!

Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

- -1/4
- -1/14
- -1/7
- -1/49
- -1/2

Нет!

В методе главных компонент

- выборочная дисперсия первой главной компоненты равна единице
- выборочная дисперсия первой главной компоненты минимальна
- первая главная компонента сильнее всего коррелирована с первой переменной
- выборочная корреляция первой и второй главных компонент равна единице
- выборочная корреляция первой и второй главных компонент равна нулю

Herl

Априорная функция плотности параметра a пропорциональна $\exp(-a)$ при a>0. Функция правдоподобия пропорциональна $\exp(-a^2+a)$. При a>0 апостериорная плотность пропорциональна

- $= \exp(a^2 + 2a)$

- \bigcirc exp $(-a^2)$

Величины $X_1,\,X_2,\,\dots,\,X_{10}$ представляют собой случайную выборку с $\mathbb{E}(X_i)=2\theta-1.$ Оказалось, что $\bar{X}_{10}=3.$ Оценка $\hat{\theta}_{MM}$ метода моментов равна

- Недостаточно данных
- 15.5
- **2**
- **2** 3

Величины $X_1,\,X_2,\,\dots,\,X_{10}$ представляют собой случайную выборку с $\mathbb{E}(X_i)=2\theta-1.$ Оказалось, что $\bar{X}_{10}=3.$ Оценка $\hat{\theta}_{ML}$ метода максимального правдоподобия равна

- **D** 1
- Недостаточно данных
- **3**
- **C** 2
- 15.5

Нелогарифмированная функция правдоподобия

- $lue{}$ асимпотитически распределена $\mathcal{N}(0;1)$
- $lue{}$ убывает по оцениваемому параметру heta
- 🛂 может принимать отрицательные значения
- 🖸 может принимать значения больше единицы
- $loodsymbol{loodsymbol{loodsymbol{loodsymbol{eta}}}$ возрастает по оцениваемому параметру heta

Оценка метода моментов

- 🔼 всегда несмещённая
- 🖸 эффективнее оценки максимального правдоподобия
- 📭 не требует знания точного закона распределения
- 🕟 не может быть получена в малой выборке
- 💽 не применима для дискретных случайных величин

По большой выборке была построена оценка максимального правдоподобия \hat{a} . Оказалось, что $\ell''(\hat{a})=-4$. Ширина 95%-го доверительного интервала для параметра a примерно равна

- 4

Величины X_1, X_2, \ldots, X_n представляют собой случайную выборку из $\mathcal{N}(\mu; \sigma^2)$. Вася оценивает оба параметра с помощью максимального правдоподобия. При этом

$$\mathbb{E}(\hat{\mu}) > \mu$$
, $\mathbb{E}(\hat{\sigma}^2) = \sigma^2$

$$\mathbb{E}(\hat{\mu}) < \mu, \ \mathbb{E}(\hat{\sigma}^2) = \sigma^2$$

$$\mathbb{E}(\hat{\mu}) = \mu, \ \mathbb{E}(\hat{\sigma}^2) > \sigma^2$$

$$\mathbb{E}(\hat{\mu}) = \mu, \ \mathbb{E}(\hat{\sigma}^2) = \sigma^2$$

Если величина $\hat{ heta}$ имеет нормальное распределение $\mathcal{N}(3;0.01^2)$, то, согласно дельта-методу, $\hat{ heta}^3$ имеет примерно нормальное распределение

- $\mathcal{N}(27; 27^2 \cdot 0.01^2)$
- $\sim \mathcal{N}(27; 3 \cdot 0.01^2)$
- $\sim \mathcal{N}(4; 16 \cdot 0.01^2)$
- $\mathcal{N}(3; 3 \cdot 0.01^2)$
- $\mathcal{N}(27; 27 \cdot 0.01^2)$

Есть два неизвестных параметра, θ и γ . Вася проверяет гипотезу H_0 : $\theta=1$ и $\gamma=2$ против альтернативной гипотезы о том, что хотя бы одно из равенств нарушено. Выберите верное утверждение об асимптотическом распределении статистики отношения правдоподобия, LR:

- $lue{}$ Если верна H_0 , то $LR \sim \chi_2^2$
- $lue{}$ Если верна H_{a} , то $LR \sim \chi_{2}^{2}$
- $lue{}$ И при H_0 , и при H_a , $LR \sim \chi_1^2$
- $lue{}$ Если верна H_0 , то $LR \sim \chi_1^2$
- $lue{}$ И при H_0 , и при H_a , $LR\sim\chi_2^2$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из распределения Пуассона с параметром $\lambda>0$. Информация Фишера о параметре λ , заключенная в ОДНОМ наблюдении случайной выборки, равна

- n/λ
- $e^{-\lambda}$
- $\sim \lambda/n$
- $1/\lambda$
- \bigcirc λ

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из распределения Бернулли с параметром $p\in(0;1)$. Информация Фишера о параметре p, заключенная в ОДНОМ наблюдении случайной выборки, равна

- **□** *p/n*
- **□** 1/p
- **□** n/p
- **D** p

Пусть $X=(X_1,\,\dots,\,X_n)$ — случайная выборка из нормального распределения с математическим ожиданием μ и дисперсией $\sigma^2=3$. Информация Фишера о параметре μ , заключенная в ДВУХ наблюдениях случайной выборки, равна

- 2/3
- **3**/2
- $\mu/2$
- $2/\mu$
- $2\mu^2$

Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из распределения с плотностью распределения

$$f(x; \theta) = egin{cases} rac{1}{ heta} e^{-rac{x}{ heta}}, & ext{при } x \geq 0, \ 0, & ext{при } x < 0 \end{cases} ,$$

где $\theta>0$ — неизвестный параметр распределения. Информация Фишера о параметре θ , заключенная в TPEX наблюдениях случайной выборки, равна

- θ^2
- $1/\theta$
- θ
- $\theta^2/3$
- \bigcirc 3/ θ^2

Пусть $\hat{\theta}$ — несмещенная оценка для неизвестного параметра θ , а также выполнены условия регулярности. Неравенство Крамера-Рао представимо в виде

- $ightharpoonup Var(\hat{\theta}) \cdot I_n(\theta) > 1$
- $I_n(\theta) \leq Var(\hat{\theta})$
- $I_n^-1(\theta) \leq \operatorname{Var}(\hat{\theta})$
- $ightharpoonup Var(\hat{\theta}) \leq I_n(\theta)$
- $ightharpoonup Var(\hat{\theta}) \cdot I_n(\theta) \leq 1$

Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из дискретного распределения с таблицей распределения

Xi	-2	0	1
$\mathbb{P}(\cdot)$	$1/2 - \theta$	1/2	θ

Несмещённой является оценка

- $(\bar{X}-1)/3$
- $(\bar{X}+1)/3$
- ldot $\bar{X}-1$
- ldot \bar{X}
- $\Sigma \bar{X} + 1$

Пусть $X=(X_1,\,\dots,\,X_n)$ — случайная выборка из равномерного распределения на отрезке $[0;\,\theta]$, где $\theta>0$ — неизвестный параметр. Несмещённой является оценка

- \bigcirc $2\bar{X}$
- $\sqrt{X}/2$
- $oldsymbol{\nabla} \bar{X}$
- X_1
- $X_{(1)}$

Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка из дискретного распределения с таблицей распределения

Xi	-2	0	1
$\mathbb{P}(\cdot)$	$1/2 - \theta$	1/2	θ

Состоятельной является оценка

- $oldsymbol{\bar{X}} 1$
- $(\bar{X}+1)/3$
- $oldsymbol{\nabla} \bar{X}$
- $\bigcirc \bar{X} + 1$
- $(\bar{X}-1)/3$

Пусть $X=(X_1,\,\dots,\,X_n)$ — случайная выборка из равномерного распределения на отрезке $[0;\,\theta]$, где $\theta>0$ — неизвестный параметр. Состоятельной является оценка

- X_1
- $oldsymbol{\nabla} \bar{X}$
- $\bar{X}/2$
- $X_{(1)}$
- \bigcirc $2\bar{X}$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из нормального распределения с математическим ожиданием $\mu=3$ и дисперсией σ^2 . Несмещённой оценкой параметра σ^2 является

- $\frac{1}{n}\sum_{i=1}^{n}(X_i-3)^2$
- $\frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$
- $\frac{1}{n+1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$
- $\sum_{i=1}^{n} \sum_{i=1}^{n} (X_i 3)^2$
- $\sum_{i=1}^{n} \sum_{i=1}^{n} (X_i 3)^2$

Оценка $\hat{ heta}_n$ называется состоятельной оценкой параметра heta, если

- $ightharpoonup Var(\hat{\theta}_n) o 0$

- lacktriangle Для любой оценки T из класса $\mathcal K$ и любого heta выполнено $\mathbb E((\hat heta_n- heta)^2)\leq \mathbb E((T- heta)^2)$

Оценка $\hat{\theta}_n$ параметра θ называется эффективной в некотором классе оценок \mathcal{K} , если

$$ightharpoonup Var(\hat{\theta}_n) o 0$$

$$lacktriangle$$
 Для любой оценки T из класса $\mathcal K$ и любого $heta$ выполнено $\mathbb E((\hat heta_n- heta)^2)\leq \mathbb E((T- heta)^2)$

$$\mathbf{Var}(\hat{\theta}_n) = \frac{\sigma^2}{n}$$

$$\mathbb{E}(\hat{\theta}_n) = \theta$$

По выборке X_1,\dots,X_4 , имеющей нормальное распределение с известной дисперсией 1, проверяется гипотеза $H_0:\mu=10$ против $H_a:\mu>10$. Выборочное среднее оказалось равно 9. Тогда нулевая гипотеза

- $lue{}$ отвергается при lpha = 0.05, не отвергается при lpha = 0.01
- $lue{}$ отвергается при lpha=0.1, не отвергается при lpha=0.05
- 🖸 Отвергается на любом разумном уровне значимости
- $lue{}$ отвергается при lpha=0.01, не отвергается при lpha=0.05
- 🖸 Не отвергается на любом разумном уровне значимости

По случайной выборке из 49 наблюдений было оценено выборочное среднее $\bar{X}=8$ и несмещённая оценка дисперсии $\hat{\sigma}^2=4$ проверяется гипотеза $H_0:\mu=7$ против $H_a:\mu\neq7$. Тогда значение тестовой статистики

- 3.5
- **3**
- 1.75
- **1.5**
- -1.75

По выборке из 100 наблюдений X_1,\dots,X_n , имеющей нормальное распределение с неизвестной дисперсией, был получен 95% доверительный интервал для математического ожидания [16, 24]. Значит, \bar{X} был равен

- 20.5
- 0
- 8
- 1
- 9

По выборке из 100 наблюдений X_1,\ldots,X_n , имеющей нормальное распределение с неизвестной дисперсией, был получен 95% доверительный интервал для математического ожидания [16, 24]. Считая критическое значение t-статистики равным 2, несмещенная оценка дисперсии была равна

- **-1.75**
- **1**8
- **1.5**
- **2** 3
- 400

По выборке из 5 наблюдений X_1,\ldots,X_5 , имеющей экспоненциальное распределение, для проверки гипотезы о математическом ожидании $H_0:\mu=\mu_0$ против $H_a:\mu\neq\mu_0$, можно считать, что величина $\frac{\bar{X}-\mu_0}{\sqrt{\hat{\sigma}^2/n}}$ имеет распределение

- t_4
- χ_5^2
- **U** t
- χ_4^2
- $\mathcal{N}(0,1)$

Вася 50 раз подбросил монетку, 23 раза она выпала «орлом», 27 раз — «решкой». При проверке гипотезы о том, что монетка — «честная», Вася будет пользоваться статистикой, имеющей распределение

- t_{50}
- $\mathcal{N}(0,1)$
- $lue{t}_{49}$
- t_{51}

Вася 25 раз подбросил монетку, 10 раз она выпала «орлом», 15 раз — «решкой». При проверке гипотезы о том, что монетка — «честная», Вася может получить следующее значение тестовой статистики

- -3.2
- **2**
- 0.4
- **D** -1
- 10.2

По выборке X_1, \ldots, X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, строится доверительный интервал для дисперсии. Он НЕ может иметь вид

- \bigcirc (0,a)
- \bigcirc $(0,+\infty)$
- \bigcirc $(b, +\infty)$
- (a, b)
- $(-\infty,a)$

По выборке X_1,\dots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Известно, что $\sum_{i=1}^n (X_i-\bar{X})^2=270$. Тестовая статистика может быть равна

- **27**
- Не хватает данных
- **2** 3

По выборке X_1,\dots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Тестовая статистика будет иметь распределение

- t_{n-1}
- $\mathcal{N}(0,1)$
- χ_n^2
- t_n

Дана реализация выборки: 7, -1, 3, 0. Выборочный начальный момент второго порядка равен

- 0.75
- 19.75
- 2.25
- **5**9

Дана реализация выборки: 7, -1, 3, 0. Первая порядковая статистика принимает значение

- **2** 3
- 2.25
- **D** 0
- \bigcirc -1
- **@** 7

Дана реализация выборки: 7, -1, 3, 0. Выборочная функция распределения в точке 0 принимает значение

- **1**
- 0.25
- 0.75
- 0.5

46

Трёх случайно выбранных студентов 2-го курса попросили оценить сложность Теории вероятностей и Статистики по 100 балльной шкале

	Аким	Ариадна	Темуужин
Теория вероятностей	70	75	82
Статистика	64	69	100

Тест знаков отвергает гипотезу о том, что Статистика и Теории вероятностей одинаково сложны в пользу альтернативы, что Статистика проще при уровне значимости

- 0.1
- 3/8
- 0.51
- 0.05
- 1/3

Преподаватель в течение 10 лет ведет статистику о посещаемости лекций. Он заметил, что перед контрольной работой посещаемость улучшается. Преподаватель составил следующую таблицу сопряженности

	Контрольная будет	Контрольной не будет	
Пришло бол. пол. курса	35	80	
Пришло мен. пол. курса	5	200	

Если T — статистика Пирсона, а k — число степеней свободы её распределения, то

- T > 52, k = 2
- T < 52, k = 1
- T < 52, k = 4
- T > 52, k = 1
- T > 52, k = 3

1	O
4	Ö

Экзамен принимают два преподавателя: Б.Б. Злой и Е.В. Добрая. Они поставили следующие оценки:

Е.В. Добрая	6	4	7	8	
Б.Б. Злой	2	3	10	8	3

Значение статистики Вилкоксона для гипотезы о совпадении распределений оценок равно

- 20.5
- **2**0
- 22.5
- 7.5
- **1**9

Heт!