Scattering Theory

Units and constants:

$$1 \text{ b} = 10^{-24} \text{ cm}^2 = 100 \text{ fm}^2$$
, $\hbar c \simeq 200 \text{ MeV fm}$.

Exercise 1: Cross Section

A flux of 10^{24} particles cm⁻² s⁻¹ with momentum p = 200 MeV/c scatters off a fixed target. Knowing that the scattering amplitude is

$$f(p,\theta,\varphi) = \frac{3\hbar}{2p}(\sin\theta\sin\varphi + i\cos\theta)$$
,

- *i*) Find the differential cross section $\frac{d\sigma}{d\Omega}$ and the total cross section σ . Give the result in barn (1 b = 10^{-24} cm²).
- *ii*) Determine the forward amplitude $f(\vec{p} \leftarrow \vec{p})$ in fm. Check the optical theorem.
- *iii*) Find the number of particles that scatter in direction $\Omega = (\theta, \varphi)$ per unit of time and solid angle and the total flux of particles that scatter.
- *iv)* Calculate the total number of particles scattered per unit of time in the following regions: (a) the backward hemisphere, (b) the right hemisphere.

Exercise 2: Optical Theorem

Electrons of p=10 keV/c scatter off an attractive central potential V(r). It is found that the forward differential cross section is 1 mb/sr and that $\sigma_{\text{tot}}=15$ mb. Find the forward scattering amplitude. Does the scatter of the s-wave saturate the cross section?

Exercise 3: Born approximation

- *i*) Find the phase shift associated to a central potential in the Born approximation in terms of the scattering amplitude $f(\vec{p}' \leftarrow \vec{p})$.
- *ii*) Show that the low-energy behaviour of the phase shift is $\delta_{\ell} \sim p^{2\ell+1}$.

Hint:
$$\int_{-1}^{1} dy \ (1-y)^{\ell} \ P_{\ell'}(y) \propto \delta_{\ell\ell'}$$
.

Exercise 4: Optical Theorem

A neutron beam ($mc^2 = 940$ MeV) with kinetic energy E = 0.2 MeV scatters off a repulsive central potential of range $a = 3 \times 10^{-13}$ cm. We measure a total cross section $\sigma = 2.75$ b and $d\sigma/d\Omega = 0.58$ b/sr in the forward direction. Use the scattering of the partial waves $\ell = 0.1$ to estimate the differential cross section at $\theta = \pi/2$.

Exercise 5: Test exercise, September 2014 [3P]

A beam of particles with mass m and momentum \vec{p} scatters of the potential

$$V(r) = V_0 \, \delta(r - R) \; .$$

- i) Find the scattering amplitude (f) in the Born approximation.
- ii) Consider the limit with $qR/\hbar \ll 1$, with $\vec{q} = \vec{p}' \vec{p}$. Find to the lowest non-vanishing order the total cross section (σ) and the amplitude (f_{ℓ}) and the phase shift (δ_{ℓ}) in the partial waves s and p.

Hint:
$$P_0(x) = 1$$
, $P_1(x) = x$, $\sin^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{2}$.

Exercise 6: Diatomic molecule

A neutron beam of kinetic energy E along the \hat{z} axis scatters off a diatomic molecule of identical atoms. The interaction potential is $V(\vec{r}) = A\delta(x)\delta(z)[\delta(y-b) + \delta(y+b)]$, where $y = \pm b$ gives the position of the nuclei in the two atoms. Find the scattering amplitude in the Born approximation and discuss the validity of that approximation.

Exercise 7: Test exercise, February 2013 [2.5P]

A beam of particles with mass m and kinetic energy E scatters off the potential

$$V(r) = \frac{\alpha}{r} e^{-\frac{r}{r_0}},$$

where α and r_0 are constants.

- *i*) Find the scattering amplitude $(f(E,\theta))$ in the Born approximation. Determine the phase shifts $(\delta_{0,1})$ in the partial waves s and p.
- *ii*) Consider the limit $r_0 \to \infty$. Find the total cross section $(\sigma_T(E))$ in the Born approximation in that limit. Interpret the result.

Hint. Take into account $\sin^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{2}$, as well as the following useful integrals

$$\int dx \, e^{ax} \sin bx = \frac{e^{ax} (a \, \sin bx - b \, \cos bx)}{a^2 + b^2} \,, \quad \int dx \, \frac{x}{1 + a(1 - x)} = -\frac{ax + (a + 1) \ln(1 + a(1 - x))}{a^2} \,.$$

Exercise 8: Identical particles

Consider the scattering $\pi^0 + \pi^0 \to \pi^0 + \pi^0$ only in the s and p waves. In the center of mass frame we have

$$\frac{d\sigma}{d\Omega} = p^{-2}(A + B\cos\theta + C\cos^2\theta).$$

Keeping in mind that the scattering amplitude must be symmetric under particle exchange, what can be said about the coefficients *B* and *C*?

Exercise 9: Identical particles

Find the non-polarized differential cross section for the collision of two identical spin 1 bosons in the center of mass frame. Suppose that the interaction potential is spin independent.

Hint. For a system of two identical particles with well-defined total spin (s and m_s), the scattering amplitude exhibits the same symmetry as the spatial part under particle exchange.

Exercise 10: Spin dependent potential

A beam of spin 1/2 particles with mass m scatters off a heavy spin 1/2 nucleus. The interaction potential is

$$V = c \vec{s}_1 \cdot \vec{s}_2 \delta(\vec{x}_1 - \vec{x}_2),$$

where c is a small constant, \vec{s}_1 and \vec{s}_2 are the spin of the projectile and the nucleus, respectively, and \vec{x}_1 and \vec{x}_2 are their positions.

- *i)* Find the differential and the total cross section in the Born approximation doing the average over the initial and the sum over the final spin configurations.
- *ii*) If the spin of the projectile is $|+\rangle$ and the nucleus is not polarized, find the probability that the particles after the scattering still have spin $|+\rangle$.

Exercise 11: Time-independent formalism

A particle of mass m and energy E scatters off the central potential

$$V(r) = -\frac{\hbar^2}{ma^2} \frac{1}{\cosh^2(r/a)},$$

where a is a constant. If the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + c^2 y + \frac{2}{\cosh^2 x} y = 0$$

has as solutions $y = e^{\pm icx}(\tanh x \mp ic)$, find the phase shift and the s wave contribution to the total cross section.