Lezione del 20 Novembre di Gandini

Definizione 0.1. Sia X uno spazio topologico e $Y \subseteq X$ allora

- Y è detto **raro** in X se $\overline{Y}^{\circ} = \emptyset$
- \bullet Y è detto **magro** o di I categoria se è unione numerabile di rari

Osservazione 1. Un chiuso $Z \subseteq X$ è raro $\Leftrightarrow Z^{\circ} = \emptyset$ in modo equivalente se e solo se $X \setminus Z$ è aperto denso

Definizione 0.2. X è detto di **Baire** se $Y^{\circ} = \emptyset$ per ogni magro $Y \subseteq X$

Proposizione 0.1. I sequenti fatti sono equivalenti

- (i) X è uno spazio di Baire
- (ii) Unione numerabile di chiusi rari ha parte interna vuota
- (iii) Intersezione numerabile di aperti densi è densa

Dimostrazione.

- (ii) ⇔(iii) Usando l'osservazione di sopra e passando al complementare
- (i)⇒(ii) È un indebolimento della definizione di spazio di Baire
- (ii) \Rightarrow (i) Sia $Y \subseteq X$ magro allora

$$Y = \bigcup_{n \in \mathbb{N}} Y_n \quad Y_n \text{ raro}$$

Ora

$$Y^{\circ} = \left(\bigcup Y_n\right)^{\circ} \subseteq \left(\bigcup \overline{Y_n}\right)^{\circ}$$

Ora $\overline{Y_n}$ è chiuso raro dunque per la propietà (ii) si ha $Y^\circ \subseteq \emptyset$ dunque $Y^\circ = \emptyset$

Teorema 0.2. X spazio metrico completo $\Rightarrow X$ spazio di Baire

Dimostrazione. Usiamo la caratterizzazione (ii).

Sia $\{F_n\}$ una famiglia numerabile di chiusi rari.

Supponiamo per assurdo che $\left(\bigcup F_n\right)^{\circ} \neq \emptyset$.

Sia $x_0 \in X$ e $r_0 > 0$ tali che

$$B(x_0, r_0) \subseteq \bigcup_{n \in \mathbb{N}} F_n$$

Costruiamo induttivamente una successione di Cauchy, il cui limite (che esiste, vista la completezza) porta ad un assurdo.

$$F_0^{\circ} = \emptyset \quad \Rightarrow \quad B\left(x_0, \frac{r_0}{3}\right) \not\subset F_0$$

Ora essendo F_0 chiuso

$$\exists x_1 \in B\left(x_0, \frac{r_0}{3}\right) \setminus F_0 \quad \exists r_1 < \frac{r_0}{3} \text{ tale che } B(x_1, r_1) \cap F_0 = \emptyset$$

Ripetendo il ragionamento con x_1, r_1, F_1

$$\exists x_2 \in B\left(x_1, \frac{r_1}{3}\right) \setminus F_1 \quad \exists r_2 < \frac{r_1}{3} \text{ tale che } B(x_2, r_2) \cap F_1 = \emptyset$$

In questo modo costruisco successione $\{x_n\} \subseteq X$ e $\{r_n\} \subseteq R_+$ con le seguenti propietà

1.
$$r_{n+1} < \frac{r_n}{3} \le \frac{r_0}{3^{n+1}}$$

2.
$$x_{n+1} \in B\left(x_n, \frac{r_n}{3}\right) \setminus F_n$$
 dunque $d(x_n, x_{n+1}) < \frac{r_n}{3} \le \frac{r_0}{3^{n+1}}$

3.
$$B(x_{n+1}, r_{n+1}) \cap F_n = \emptyset$$

Mostriamo adesso che $\{x_n\}$ è di Cauchy.

Siano m > n allora

$$d(x_n, x_m) \le d(x_n, x_{n+1}) + \dots + d(x_{m-1}, x_m) < \frac{r_n}{3} + \frac{r_{n+1}}{3} + \dots + \frac{r_{m-1}}{3} \le \frac{r_n}{3} \sum_{k=0}^{\infty} \frac{1}{3^k} = \frac{r_n}{2} \le \frac{r_n}{2 \cdot 3^2}$$

Essendo la successione di Cauchy esiste $x_{\infty} = \lim x_n$.

Mostriamo che $x_{\infty} \notin F_n$.

Passando $m \to \infty$ in $d(x_{n+1}, x_m) < \frac{r_{n+1}}{2}$ si ha $d(x_{n+1}, x_\infty) \le \frac{r_{n+1}}{2}$ dunque $x_\infty \in B(x_{n+1}, r_{n+1})$ tale palla per 3 non interseca F_n .

Mostriamo che $d(x_{\infty}, x_0) < r_0$.

Passando $m \to +\infty$ alla disuguaglianza $d\left(x_0,x_m\right) < \frac{r_0}{2}$ otteniamo $d(x_0,x_\infty) < r_0$ ovvero

$$x_{\infty} \in b\left(x_{0}, r_{0}\right) \subseteq \bigcup_{n \in \mathbb{N}} F_{n}$$

il che è assurdo \Box

Osservazione 2.

Il Teorema è detto di Baire, che contiene anche un altro enunciato (non dimostriamo):

Teorema 0.3. X localmente compatto e $T2 \Rightarrow X$ spazio di Baire

Definizione 0.3. Sia X topologico, $y \in X$ si dice punto isolato se $\{y\} \subseteq X$ è un aperto

Definizione 0.4. $Y \subseteq X$ si dice **perfetto** se e chiuso e privo di punti isolati

Proposizione 0.4. $Y \subseteq \mathbb{R}$ perfetto, allora Y è più che numerabile

Dimostrazione. Supponiamo $Y = \{y_n\}_{n \in \mathbb{N}}$.

Vogliamo trovare $n \in \mathbb{N}$ per cui $y_n \in Y$ è isolato.

 $Y \subseteq \mathbb{R}$ chiuso \Rightarrow Y spazio metrico completo \Rightarrow Y spazio di Baire

Ora $Y = \bigcup_{n \in \mathbb{N}} \{y_n\}$ è unione numerabile di chiusi e $Y^{\circ} = Y \neq \emptyset$.

Per il teorema esiste un chiuso non raro dunque $\exists n$ tale che $y_n \in Y$ punto isolato (non può essere $\overline{\{y_n\}}^{\circ} = \emptyset$ per ogni $n \in \mathbb{N}$

Teorema 0.5. Esiste una funzione $f:[0.1] \to \mathbb{R}$ continua non derivabile in nessun punto Dimostrazione. A BREVE