Tabu pretraga - Tabu Search

Vladimir Mijić

23. maj 2024.

• Metaheuristika koja se koristi za rješavanje problema kombinatorne optimizacije

- Metaheuristika koja se koristi za rješavanje problema kombinatorne optimizacije
- Klase metaheuristika:
 - Metode pretrage zasnovane na populaciji eng. population based (genetski algoritmi -GA, mravlje kolonije - ACO)
 - Metode pretrage sa jednom tačkom -eng. single point search (tabu pretraga TS, simulirano kaljenje - SA)

- Metaheuristika koja se koristi za rješavanje problema kombinatorne optimizacije
- Klase metaheuristika:
 - Metode pretrage zasnovane na populaciji eng. population based (genetski algoritmi -GA, mravlje kolonije - ACO)
 - Metode pretrage sa jednom tačkom -eng. single point search (tabu pretraga TS, simulirano kaljenje - SA)
- Konstruisana od strane Freda Glover-a 1986. godine

- Metaheuristika koja se koristi za rješavanje problema kombinatorne optimizacije
- Klase metaheuristika:
 - Metode pretrage zasnovane na populaciji eng. population based (genetski algoritmi -GA, mravlje kolonije - ACO)
 - Metode pretrage sa jednom tačkom -eng. single point search (tabu pretraga TS, simulirano kaljenje - SA)
- Konstruisana od strane Freda Glover-a 1986. godine
- Tabu pretraga je bazirana na lokalnoj pretrazi

- Metaheuristika koja se koristi za rješavanje problema kombinatorne optimizacije
- Klase metaheuristika:
 - Metode pretrage zasnovane na populaciji eng. population based (genetski algoritmi -GA, mravlje kolonije - ACO)
 - Metode pretrage sa jednom tačkom -eng. single point search (tabu pretraga TS, simulirano kaljenje - SA)
- Konstruisana od strane Freda Glover-a 1986. godine
- Tabu pretraga je bazirana na lokalnoj pretrazi
- Cilj je pronaći globalni minimum funkcije cilja, odnosno izbjeći zaglavljivanje u lokalnom minimumu rješenja

- Za postizanje ovog cilja koristi se lista zabranjenih rješenja eng. tabu list
- Može da prihvatiti i lošija rješenja

Tabu pretraga - Opis algoritma

• Tabu pretragu (TP) koristimo za rješavanje problema oblika:

$$\min_{x \in X} f(x)$$

gdje je:

- X konačan skup dopustivih rješenja (prostor rješenja)
- ullet f proizvoljna funkcija, $f:X o\mathbb{R}$

Tabu pretraga - Opis algoritma

• Tabu pretragu (TP) koristimo za rješavanje problema oblika:

$$\min_{x \in X} f(x)$$

gdje je:

- X konačan skup dopustivih rješenja (prostor rješenja)
- f proizvoljna funkcija, $f: X \to \mathbb{R}$
- Uvodimo strukturu susjedstva u prostoru rješenja X:
 - Svako $x \in X$ ima svoj skup $N(x) \subset X$, $x \notin N(x)$, koji se naziva *okolina* od x.
 - N(x) je definisan kao skup svih $y \in X$ koji se mogu dobiti direktno iz x modifikacijom koju nazivamo pomjeraj iz x u y i označavamo sa m(x,y).
 - rješenje iz okoline označavamo sa x^* .

Tabu pretraga - Opis algoritma - tabu lista

- Tabu lista (T): Lista zabranjenih stanja (čvorova, poteza, konfiguracija)
- Svrha: Sprečava vraćanje na već posjećena rješenja
- Izmjenjena okolina *eng. modified neighborhood* (N' (x)): Podskup dopustivih stanja nakon primjene tabu liste:

$$N'(x) = N(x) \setminus T$$

 Odabir sljedećeg koraka (x'): Izbor najboljeg dozvoljenog rješenja iz izmjenjene okoline.

Tabu pretraga - Opis algoritma - kratkoročna memorija

Problemi:

- Čuvanje svih stanja može biti skupo
- Čuvanje kompleksnih struktura stanja može biti nepraktično jer je pored čuvanja potrebno izvršiti i poređenje

Tabu pretraga - Opis algoritma - kratkoročna memorija

Problemi:

- Čuvanje svih stanja može biti skupo
- Čuvanje kompleksnih struktura stanja može biti nepraktično jer je pored čuvanja potrebno izvršiti i poređenje
- Kratkoročna memorija: Čuvanje samo posljednjih k stanja
- Mala vjerovatnoća da će se davno posjećena stanja ponoviti u trenutnoj iteraciji

Tabu pretraga - Opis algoritma - Pseudokod Input: Početno rješenje x, maksimalan broj iteracija, maksimalna dužina tabu liste

```
Output: Najbolje rješenje x*
trenutno rješenje = pocetno rjesenje;
najbolje_rjesenje = pocetno_rjesenje;
tabu lista = [trenutno riesenie]:
for k = 1 to max_iteracija do
    okolina = generisi okolinu(trenutno riesenie);
    izmjenjena okolina = [x \in okolina \mid x \notin tabu\_lista];
    if izmieniena okolina nije prazna then
         x' \leftarrow \text{selektuj\_najbolje\_ocenjeno\_rjesenje(izmjenjena\_okolina)};
         if f(x') < f(x^*) then
              naibolie riesenie = x':
         end
         tabu lista.dodai(x'):
         if duzina(tabu_lista) > max_duzina_tabu_liste then
              tabu lista.izbaci najstariji element();
         end
         trenutno riesenie = x':
    end
```

and

Tabu pretraga - Opis algoritma - Kriterijum aspiracije

- Moguće je u tabu listi čuvati samo određene poteze, a ne kompletna rješenja
- Problem: Neki tabu potezi mogu voditi do boljih rješenja za određene kriterijume
- Rješenje: Kriterijum aspiracije (eng. aspiration criterion) dozvoljava tabu poteze u okolini, pod uslovom da zadovoljavaju kriterijum aspiracije
- Primjer kriterijuma: Dozvoli tabu potez ako vodi do rješenja boljeg od trenutno najboljeg

Tabu pretraga - Srednjoročna i dugoročna memorija

- Srednjoročna memorija (eng. intermediate-term memory): Usmjeravanje ka obećavajućim regijama - intenzifikacija (eng. intensification rules)
- Dugoročna memorija (eng. long-term memory): Usmjeravanje ka neistraženim regijama - diverzifikacija (eng. diversification rules)

Tabu pretraga i problem kvadratnog raspoređivanja (QAP)

Kvadratni problem raspoređivanja (QAP)

- Cilj: Optimalno raspoređivanje *n* objekata na *n* lokacija kako bi se minimizirala ukupna cijena transporta između svih parova objekata.
- Matematička formulacija (Skorin-Kapov, 1990):

$$\min \sum_{i,p,j,q} f_{ip} d_{jq} x_{ij} x_{pq}$$

uz uslove:

$$\sum_{j} x_{ij} = 1, \quad \forall i$$

$$\sum_{i} x_{ij} = 1, \quad \forall j$$

$$x_{ij} \in \{0, 1\}$$

Tabu pretraga i problem kvadratnog raspoređivanja (QAP) (nastavak)

Kvadratni problem raspoređivanja (QAP)

- gdje je:
 - f_{ip} tok/protok između objekata i i p
 - d_{ia} rastojanje između lokacija j i q
 - x_{ii} binarna promjenljiva (1 ako je objekat *i* dodijeljen lokaciji *j*, 0 inače)
- Alternativna formulacija (preko permutacija):

$$\min_{\pi \in \Pi_n} \sum_{i,j} f_{ij} d_{\pi(i),\pi(j)}$$

gdje je Π_n skup svih permutacija elemenata $\{1, 2, ..., n\}$.

Tabu pretraga i QAP - Primiena

Tabu navigation (Skorin-Kapov, 1990):

```
Input: Matrica tokova F, matrica rastojanja D
Output: Naibolie riešenie (permutacija)
Inicijalizuj dugoročnu memoriju (LTM);
repeat
    // Konstruktivna faza
    \pi \leftarrow \text{konstruiši inicijalnu permutaciju();}
   // Faza poboljšanja
    tabu_size, max_iter = učitaj_parametre();
   for k = 1 to max iter do
       pregledaj sve parove zamjena(\pi);
       izvrši najbolji dozvoljeni potez(\pi);
       ažurirai tabu listu(T):
       ažuriraj dugoročnu memoriju(LTM);
    end
    // Restart ili primiena dugoročne memorije
    izbor = učitaj izbor korisnika();
    if izbor == 1 then
       \pi \leftarrow \text{konstruiši iniciialnu permutaciiu()}:
    else if izbor == 2 then
       \pi \leftarrow najbolie riešenie:
    else if izhor == 3 then
       D \leftarrow D + \mu LTM:
       \pi \leftarrow \mathsf{konstrui\check{s}i\_inicijalnu\_permutaciiu()}:
    معام
       // break
until krai procedure:
return naibolie riešenie:
```

Algorithm 2: Tabu Navigation

Tabu pretraga i QAP - Rezultati iz literature

Table IV
Computational Results for Randomly Generated Data

	Construction		Improvement		TABU ^a		Simulated Annealing ^b	
n	Z_{ι}	CPU	Z_{ι}	CPU	Z_{t}	CPU	$Z_{\mathcal{S}}$	CPU
42	16336	1.70	16056	4.22	15866	30.65	15956	42.06
49	24184	2.98	24028	5.90	23632	58.02	23662	72.27
56	35630	4.92	35374	10.27	34952	99.01	34916	109.75
64	50132	8.34	49476	20.31	48964	172.34	49020	150.92
72	68408	12.85	67718	34.67	66920	281.09	66924	251.82
81	93304	20.23	92154	63.69	91834	459.76	91432	347.27
90	118208	30.18	116952	76.56	116360	727.20	116460	538.69

^a Parameters: Tabu_Size = $\lceil n/3 \rceil$, Miter = 4n.

Slika: Uporedni rezultati primjene Tabu navigacije i Simuliranog kaljenja na QAP problemu

^b Parameters: Rep = 10, Iter = 2n; Fiter = 1.2; FT = 0.6.

Tabu pretraga i QAP - Primjena

Demonstracija rada algoritma

Tabu pretraga - Zaključak

- Tabu pretraga je moćna metaheuristika za rješavanje optimizacionih problema
- Jednostavna za implementaciju, a daje odlične rezultate
- Kombinacija kratkoročne, srednjoročne i dugoročne memorije omogućava efikasnu pretragu
- Širok spektar primjena: raspoređivanje, transport, particionisanje, treniranje neuronskih mreža, ...

Hvala na pažnji!

Reference

- Tabu Search Applied to the Quadratic Assignment Problem Jadranka Skorin-Kapov
- Tabu Search Fred Glover
- Tabu Search: A Brief Survey and Some Real-Life Applications Mirjana M. Čangalović, et. al.
- Prezentacije iz predmeta 'Uvod u vještačku inteligenciju' doc. dr Marko Đukanović