Quantification

Quantifying Fluorescence Intensity

Table II. Protocol for quantitation of fluorescence intensity values

1. Acquire optical images

• Set up specimen and imaging system for optimal signal detection, low background, and low noise (Table I)

2. Acquire digital images

- Use software to monitor intensity values in the image to choose the best acquisition settings^a
- Use full dynamic range of the camera for fixed specimens^a
- For live-cell work, it is often necessary to sacrifice SNR to minimize specimen exposure to light and maintain cell health and viability^a
- Consider binning to increase SNR^a
- Avoid high camera gain when a large dynamic range is neededa
- Avoid saturating pixels in the image^a
- Eliminate or minimize exposure of specimen to fluorescence excitation light prior to image acquisitiona
- Focus carefully, preferably with phase or DICb

3. Store images

- Always save the raw images^c
- Use either no compression or lossless compression^c

4. Process images

- Use flat-field correction to correct for uneven illumination^d
- Be sure any other image processing used prior to quantitation preserves relative intensity values^{c,d}

5. Analyze images

- Subtract local background value from intensity measurements^e
- Do not measure intensity values on compressed or pseudo-colored images^c
- Validate image segmentation and analysis method^f
- Calculate and report the error in your measurements^{d,g}

Waters, JCB, 2009 7(185)

Quantifying Intermolecular FRET— Sensitized Emission

Predetermined factors with pure samples of donor and acceptor:

Donor cross-talk : R_D Acceptor cross-excitation: R_F

Quantifying Intramolecular FRET

Birtwistle et al., PLoS One, 2011

- Because the stoichiometry is known and fixed (typically 1 to 1) a simple ratio can be used
- Typically, it is the Donor Ex/Acceptor Em channel divided by the Donor Ex/Donor Em channel (denoted R)
- However this can have a non-linear relationship to FRET efficiency (Birtwistle et al., 2011)
- Something which may solve that is using Donor Ex/Donor Em channel divided by Acceptor Ex/Acceptor Em channel (denoted R_{alt})
- Another way to quantify FRET, either intra or inter, is by fluorescence lifetime (FLIM)...we won't cover that here