Accepted Manuscript

Population structure and antimicrobial profile of *Staphylococcus aureus* strains associated with bovine mastitis in China

Lili Zhang, Yuchen Li, Hongduo Bao, Ruicheng Wei, Yan Zhou, Hui Zhang, Ran Wang

PII: S0882-4010(15)30237-0

DOI: 10.1016/j.micpath.2016.06.005

Reference: YMPAT 1853

To appear in: Microbial Pathogenesis

Received Date: 19 December 2015

Revised Date: 30 May 2016 Accepted Date: 1 June 2016

Please cite this article as: Zhang L, Li Y, Bao H, Wei R, Zhou Y, Zhang H, Wang R, Population structure and antimicrobial profile of *Staphylococcus aureus* strains associated with bovine mastitis in China, *Microbial Pathogenesis* (2016), doi: 10.1016/j.micpath.2016.06.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	Population structure and antimicrobial profile of Staphylococcus
3	aureus strains associated with bovine mastitis in China
4	Lili Zhang ^a , Yuchen Li ^a , Hongduo Bao ^a , Ruicheng Wei ^a , Yan Zhou ^a , Hui
5	Zhang ^a , Ran Wang ^{a,*}
6	^a Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality
7	Ministry of Agriculture, Key Laboratory of Food Quality and Safety of Jiangsu
8	Province-State Key Laboratory Breeding Base, Institute of Food Quality and Safety, Jiangsu
9	Academy of Agricultural Sciences, Nanjing 210014, China
10	*Corresponding author: Wangran2001@126.com
11	Dr. Ran Wang
12	Institute of Food Safety & Detection
13	Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
14	Tel.: 86 25 84391617
15	Fax: 86 25 84391617
16	
17	
18	
19 20	
21	
22	

23	

Abstract

25	Staphylococcus aureus is a significant bacterial pathogen associated with
26	bovine mastitis. The aim of the present study was to investigate and characterize
27	of S. aureus strains isolated from the milk of cows suffering from mastitis in the
28	mid-east of China. Among the 200 milk samples analyzed, 58 were positive for
29	S. aureus, of these isolates, 11 isolates were methicillin-resistant Staphylococcus
30	aureus (MRSA). All of the 58 S. aureus strains were classified in agr group I,
31	while seven different sequence type (ST) patterns were identified and among
32	them the most common was ST630 followed by ST188. All of the S. aureus
33	isolates belonging to ST630 were resistant to more than four antimicrobials, and
34	22.2% of isolates belonging to ST188 were resistant to eight antimicrobials.
35	Interestingly, while strong biofilm producers demonstrated higher resistance to
36	multiple antimicrobials, they exhibited lower intracellular survival rates. The
37	results of this study illustrated the distribution, antimicrobial susceptibility
38	profiles, genotype, and the ability of biofilm production and mammary epithelial
39	cells invasion of these S. aureus isolates. This study can provide the basis for the
40	development of a disease prevention program in dairy farms to reduce the
41	potential risk in both animal and human health.
42	Key words: Staphylococcus aureus; bovine mastitis; MLST typing; biofilm
43	production; invasion assay.

1. Introduction

50

51 Milk production is an important branch of the Chinese agribusiness and 52 China has become the third largest milk producing country in the world, even though most Asians are lactose intolerant. As the most important disease in the 53 54 dairy industry worldwide, bovine mastitis can cause heavy economic burdens in 55 dairy herds [1]. In China, several studies have reported the isolation of S. aureus in milk samples from cows with mastitis [2-5]; however, data related to 56 molecular typing, biofilm production ability and the invasion of mammary 57 epithelial cells by S. aureus from milk samples are scarce. 58 59 Because of the acquisition of the <u>mecA</u> gene, many S. aureus can be methicillin resistance (MRSA), which can cause important therapeutic problems 60 when implicated in human or animal infections. However, interests in 61 methicillin-susceptible S. aureus (MSSA) have also increased in recent years, as 62 published reports have proven that MSSA can also be implicated in important 63 infections and may help to explain the appearance and evolution of the different 64 MRSA lineages [6]. Many different molecular typing methods have been 65 developed for MSSA and MRSA genetic relevance study, such as phage typing 66 67 [7], pulsed field gel electrophoresis (PFGE) [8]; multilocus sequence typing (MLST) [9], polymorphism of protein A gene (spa typing) [8] and accessory 68 gene regulator gene (agr typing) [10]. 69 70 The pathogenesis of S. aureus infection is very complex and worthy of making further research. Biofilm formation can impair the action of both the 71 host immune system and the antimicrobial agent, which represents one of the 72 most important survival mechanisms of bacteria persistently colonizing the 73 extracellular niche [11]. S. aureus can produce a wide range of extracellular 74 75 toxins, virulence factors, several exfoliatins and enterotoxins, which represent 76 risks for humans and animals, as they are associated with severe infections.

77	Nevertheless, S. aureus is also known to penetrate, survive, and even multiply
78	within a large variety of eukaryotic cells, such as the epithelial cells of the
79	mammary gland or the immune cells [12]. This survival within the intracellular
80	niche protects the bacteria from the antibiotics commonly used in mastitis
81	treatment, and also enables them to persist in the host for a long time without
82	causing apparent inflammation [13, 14].
83	The aim of the present work was thus to identify S. aureus strains gathered
84	in 2014 from bovine mastitis milk in Jiangsu, China. S. aureus strains were
85	studied further through agr-typing, MLST, antimicrobial susceptibilities, biofilm
86	production and an invasion assay.
87	2. Materials and methods
88	2.1. Sample collection
89	In our study, samples were collected from three dairy farms, located in the
90	north, center, and south areas, respectively, of Jiangsu Province in the year 2014.
91	The three farms represent typical dairy production practices in each region. Milk
92	samples were taken from cows with clinical mastitis, which manifested as
93	decreased milk production, color change of the milk, and inflammation of the
94	udder. Cotton swabs soaked in 70% ethanol were used to disinfect the surfaces
95	of teats. The first few streams of milk were discarded. Then a milk sample was
96	collected into a 10-ml sterile plastic tube. The collected samples were kept in a
97	cooler with ice and transported to the laboratory within 8 hours.
98	2.2. Bacterial isolation and identification
99	Isolation and identification of S. aureus were performed according to
100	China's National Technical Standard GB4789.10-2010. After incubation at 37°C
101	for 24 h on Baird-Parker agar plates with 5% egg yolk and tellurite (BPA,
102	Beijing Land Bridge Technology Ltd., Beijing, China), up to two presumptive
103	colonies (black colonies surrounded by 2-5-mm clear zones) were selected from

104	a S. aureus-positive milk sample. Putative S. aureus isolates were further tested
105	for hemolytic and coagulase activities, followed by PCR to identify the S.
106	aureus specific gene nuc1 [15]. All bacteria were routinely confirmed by the API
107	STAPH® identification system (bioMe´rieux, Marcy l'Etoile, France).
108	S. aureus strains were tested for methicillin resistance using the disc
109	diffusion method outlined in the Clinical Laboratory Institute Standards
110	guidelines CLSI (M100-S25, 2015). Moreover, the mecA gene, which has been
111	shown to confer methicillin resistance to S. aureus (MRSA), was also detected
112	by PCR using primers described previously [16]. Only when the isolates were
113	both <u>mecA</u> positive and cefoxitin resistant, which can be classified as MRSA.
114	2.3. Antimicrobial susceptibility testing
115	Antimicrobial resistance was determined by agar disk diffusion tests on
116	Müeller-Hinton agar plates according to <u>CLSI (M100-S25, 2015)</u> . In the agar disk
117	diffusion tests, the isolates were tested against a total of 13 antimicrobials as
118	follows: penicillin (P, 15 μ g), ampicillin (AMP, 10 μ g), azithromycin (AZM, 15 μ g),
119	cephalothin (KF, 30 μg), cefotaxime (CTX, 30 μg), ciprofloxacin (CIP, 5 μg),
120	clindamycin (DA, 2µg), gentamicin (CN, 10 µg), kanamycin (KAN, 5 µg),
121	ofloxacin (OFX, 5 μg), streptomycin (STR, 10 μg), tetracycline (TET, 30 μg) and
122	sulfamethoxazole (SXT, 25 μg). In addition, susceptibility tests against
123	vancomycin were performed using an MIC method according to CLSI guidelines.
124	The standard reference strains S. aureus ATCC29213 and ATCC25923 served as
125	quality control strains in every test run.
126	2.4. Genomic DNA extraction
127	A single colony of S. aureus was inoculated into LB culture medium, and
128	the culture was shaken overnight at 37°C. Then the culture was used for
129	preparation of genomic DNA using the TIANamp Bacteria DNA Kit (Tiangen
130	Biotech Co., Ltd, Beijing, China) according to the manufacturer's instructions.

- 131 2.5. agr genotyping
- The agr allele types (I-IV) were determined by multiplex PCR as
- described [17]. In brief, multiplex PCRs were performed on 2 µl of DNA using
- 134 Tag DNA polymerase (Yeasen Biotechnoligy Co. Ltd., Shanghai, China) and 1
- μM of each of the following primers: Pan (5'-ATG CAC ATG GTG CAC ATG
- 136 C-3'), agr1 (5'-GTC ACA AGT ACT ATA AGC TGC GAT-3'), agr2 (5'-TAT
- 137 TAC TAA TTG AAA AGT GGC CAT AGC-3'), agr3 (5'-GTA ATG TAA TAG
- 138 CTT GTA TAA TAA TAC CCA G-3'), and agr4 (5'-CGA TAA TGC CGT AAT
- 139 ACC CG-3'). Amplifications were performed with the following PCR
- programme: 1 cycle at 94°C for 1 min; 26 cycles at 94°C for 30 s, 55°C for 30 s,
- and 72°C for 1 min; and finally 1 cycle at 72°C for 10 min. All PCR products
- were separated using gel electrophoresis on 1.5% agarose gels, stained with
- ethidium bromide and visualized under UV light.
- 2.6. Multilocus sequence typing (MLST)
- MLST was carried out as described previously [9]. Specifically, the MLST
- analysis was conducted by sequencing fragments of seven house-keeping genes
- 147 (arcC, aroE, glpF, gmk, pta, tpi and yqiL). Allele number and sequence types
- 148 (STs) were assigned by using the S. aureus MLST website
- 149 (http://saureus.mlst.net).
- 150 2.7. Biofilm production
- Biofilm formation was evaluated by spectrophotometry in microplates
- using safranin staining [18]. The quantitative classification of biofilm production
- was based on cut-off values (ODc) and average OD values [19], leading to four
- categories of strains: $OD \le ODc = not$ a biofilm producer; $ODc < OD \le 2ODc = not$
- weak biofilm producer; $2ODc \le OD \le 4ODc = moderate$ biofilm producer; 4
- 156 OD < OD = strong biofilm producer.
- 157 2.8. Invasion assay

158	Bovine mammary epithelial cells (MAC-T) were used for in vitro bacterial
159	internalization assays as previously described [18, 20, 21].
160	2.9. Statistical analysis
161	The antimicrobial resistance of S. aureus was analyzed using GraphPad
162	PRIM software (version 5.02 for Windows; GraphPad software Inc.). To
163	illustrate the evolutionary relatedness of S. aureus isolates, a population
164	snapshot of the comparison of the MLST results of our sequence types (STs)
165	with published STs was made using eBURST software, version 3.0 (Feil et al.,
166	2004). A maximum likelihood tree was constructed with these STs to determine
167	phylogenies. The best-fit substitution model was determined using MEGA 4.0
168	[22], and the likelihood of each model was measured with the Bayesian
169	information criterion and corrected with the Akaike information criterion. The
170	TrN93 model with a discrete gamma distribution (zG) allowing for invariant
171	sites (zI) was used in the complete genome analysis.
171 172	sites (zI) was used in the complete genome analysis. 3. Results
172	3. Results
172 173	3. Results 3.1. Isolation and identification of S. aureus
172 173 174	3. Results 3.1. Isolation and identification of S. aureus Among the 200 milk samples analyzed, 58 (29.0%) were positive for S.
172173174175	 3. Results 3.1. Isolation and identification of S. aureus Among the 200 milk samples analyzed, 58 (29.0%) were positive for S. aureus, including 26 from Nanjing, 5 from Suzhou and 27 from Yangzhou. Of
172 173 174 175 176	3.1. Isolation and identification of S. aureus Among the 200 milk samples analyzed, 58 (29.0%) were positive for S. aureus, including 26 from Nanjing, 5 from Suzhou and 27 from Yangzhou. Of these 58 isolates, 11 isolates (19.0%, 11/58) harbored the mecA gene and were
172 173 174 175 176 177	3.1. Isolation and identification of S. aureus Among the 200 milk samples analyzed, 58 (29.0%) were positive for S. aureus, including 26 from Nanjing, 5 from Suzhou and 27 from Yangzhou. Of these 58 isolates, 11 isolates (19.0%, 11/58) harbored the mecA gene and were resistant to cefoxitin, thus were MRSA. All of these were isolated from a dairy
172 173 174 175 176 177 178	3.1. Isolation and identification of S. aureus Among the 200 milk samples analyzed, 58 (29.0%) were positive for S. aureus, including 26 from Nanjing, 5 from Suzhou and 27 from Yangzhou. Of these 58 isolates, 11 isolates (19.0%, 11/58) harbored the mecA gene and were resistant to cefoxitin, thus were MRSA. All of these were isolated from a dairy farm in Yangzhou. Besides this, 6 S. aureus isolates (10.3%, 6/58) showed
172 173 174 175 176 177 178	3.1. Isolation and identification of S. aureus Among the 200 milk samples analyzed, 58 (29.0%) were positive for S. aureus, including 26 from Nanjing, 5 from Suzhou and 27 from Yangzhou. Of these 58 isolates, 11 isolates (19.0%, 11/58) harbored the mecA gene and were resistant to cefoxitin, thus were MRSA. All of these were isolated from a dairy farm in Yangzhou. Besides this, 6 S. aureus isolates (10.3%, 6/58) showed resistance to cefoxitin but did not carry the mecA gene.
172 173 174 175 176 177 178 179	3.1. Isolation and identification of S. aureus Among the 200 milk samples analyzed, 58 (29.0%) were positive for S. aureus, including 26 from Nanjing, 5 from Suzhou and 27 from Yangzhou. Of these 58 isolates, 11 isolates (19.0%, 11/58) harbored the mecA gene and were resistant to cefoxitin, thus were MRSA. All of these were isolated from a dairy farm in Yangzhou. Besides this, 6 S. aureus isolates (10.3%, 6/58) showed resistance to cefoxitin but did not carry the mecA gene. 3.2. Antimicrobial resistance phenotypes

kanamycin (24/58, 34.5%) and streptomycin (13/58, 22.4%), and to a lesser

extent tetracycline (11/58, 19.0%), azithromycin (10/58, 17.2%), clindamycin 185 186 (6/58, 10.3%) and ofloxacin (6/58, 10.3%) (Fig.1). However, no isolates were 187 resistant to cephalothin and vancomycin, and the S. aureus isolates showed low resistance to cefotaxime and sulfamethoxazole (resistance rate ranged from 188 1.7% to 3.5%) (Fig.1). Fifty-five (94.8%) S. aureus isolates were resistant to at 189 least one antimicrobial and the percentage of resistance to 1–3 antimicrobials 190 191 was 72.4% (Table 1). In particular, approximately 22.4% of isolates was resistant to ≥ 5 antimicrobials (Table 1). 192 Fifty-five resistant S. aureus isolates belonging to 20 drug-resistance 193 patterns were identified, with the most frequent being resistant to AMP CIP 194 195 KAN P (15/55, 17.3%), and 9 MRSA isolates belonged to this drug-resistance pattern (Table 1). In addition, other resistance patterns such as AMP P (11/55, 196 19.0%) and AMP CIP OFX P (5/55, 9.1%) were also wide spread. Though 197 various resistance patterns were identified, certain drugs resistance (such as: 198 199 AMP, CIP, KAN, P) were found in different resistance patterns. In addition, four strains isolated from Suzhou were resistant to eight antibiotics (AMP AZM 200 201 CIP CN DA P S TET) (Table 1). 3.3. agr-typing and MLST 202 203 Through multiplex PCR, the agr alleles were successfully identified in 58 isolates. All of the isolates were classified as agr I (Table 2). From the MLST 204 results, seven different ST patterns were identified among the 58 S. aureus 205 isolates (Table 1). ST630 and ST188 were the prominent STs in this study, 206 207 represented by 24 and 18 S. aureus isolates respectively, followed by ST97, ST6 and ST71, while one strain displayed ST1 and one strain displayed ST5 (Table 208 1). 209 With the less stringent group definition of 5/7 shared alleles, five clusters 210 of linked STs CC (clonal complex) were displayed in the snapshot, along with 211

two unlinked STs (Fig.2). Through cluster analysis, four clonal complexes CC1, 212 213 CC5, CC97 and CC188 were found. ST97 was the primary founder of CC-97 214 and ST-71 was one of the SLVs (single-loucus) of it. CC-97 was the largest CC with 21 SLVs. However, we also found an uneven distribution of STs in the 215 three cities and each city had its own particular STs. For example, ST97 and 216 ST6 were only found in Nanjing, while ST630 and ST71 were identified in 217 Yangzhou (Fig.2). 218 Phylogenetic trees revealed the relationship between our ST types with 219 other ST types identified in mastitis milk in China (Fig.2). By cluster analysis, all 220 unique STs were separated into two big clusters and our ST types (isolates from 221 222 Jiangsu) all belonged to A clusters, including most of the mastitis-related ST types in China (Fig.3). ST-97 was closely related to ST-71 in A clusters, which 223 were widely distributed in China, except Shandong province (Fig.3). It also had 224 the nearer evolutionary distance with the clinic and subclinical mastitis -related 225 ST types in Xinjiang, Zhejiang, Jiangsu and Neimeng. The genetic relationships 226 among other STs in both clusters were far, especially ST-2166, which had the 227 farthest genetic distance with other ST types in B cluster (Fig.3). 228 3.4. Biofilm production 229 230 In TSB_{glc}, only three strains (5.2%) did not produce any biofilm, while the 231 majority were biofilm producers, respectively weak (n = 1, 1.7%), moderate (n = 1, 1.7%)7, 12.1%) or strong (n = 47, 81.0%) producers (Table 2). 232 3.5 Invasion assay 233 234 We observed that 54 strains (93.1%) showed an invasion rate lower than 235 1% of the initial inoculum, while only four strains (6.9%) showed an invasion rate greater than 1% (Table 2). We found that these four strains showed a high 236 invasion rate in MAC-T cells, formed no or a weak biofilm in TSB_{glc}. In contrast, 237 238 most strains showed a low invasion rate in MAC-T cells and formed a strong

 $239 \qquad biofilm \ in \ TSB_{glc} \ (Table \ 2).$

4. Discussion

241	Many previous studies showed that members of the genus Staphylococcus
242	were the major causative agent of bovine mastitis in China (Cao et al., 2010; Liu
243	et al., 2007). In this study, we characterized 58 S. aureus isolates from bovine
244	mastitis milk samples collected from Jiangsu province in China. The overall
245	prevalence of S. aureus contamination was approximately 29.0%. This result is
246	higher than that of a previous study conducted in China [4] and other developing
247	countries, such as Turkey and Brazil [6, 23]. Moreover, the S. aureus
248	contamination rate was higher than that in developed European countries and the
249	United States [24, 25]. Different sampling seasons, sampling procedures, and
250	isolation methods could affect the S. aureus prevalence results. Better sanitation
251	in cow fairy, use of preharvest surveillance and control of S. aureus may
252	account for the lower contamination rates in developed countries.
253	Antimicrobial resistance in S. aureus has become a significant public health
254	concern. The antimicrobial resistance level in our study was relatively high. In
255	the present study, the highest rates of antimicrobial resistance were against
256	ampicillin and penicillin (both 91.4%), which are the most widely used
257	antimicrobials in the treatment of bovine mastitis. This result was somewhat
258	expected and agreed with previous reports from China and Brazil [3, 26].
259	However, the high rate of ciprofloxacin, streptomycin and ofloxacin resistance
260	observed in this study is of concern. These antimicrobial agents are still widely
261	used in human therapy in China because of their low cost and ready availability.
262	Therefore, resistance to these antimicrobials by foodborne pathogens may
263	generate problems for human disease treatment.
264	Our results indicated that 94.8% of the S. aureus isolates were resistant to
265	at least one antimicrobial agent. Thirteen out of 58 staphylococcal isolates were

266	resistant to five or more antimicrobial classes including most of the commonly
267	used antimicrobials in the region (Table 1). These results were similar to those
268	previously reported in China [4, 5]. However, several clinical studies have
269	reported lower levels of antimicrobial resistance among mastitic S. aureus in the
270	United States and in European countries [27]. The uncontrolled use of antibiotic
271	in the region could be a reason for the spread of multidrug-resistant isolates. In
272	chronic and localized infections like mastitis, this may largely be dependent on
273	the bacterium's ability to form biofilms in which bacterial cells can evade the
274	antibiotic and host defenses employed to inhibit colonization and subsequent
275	infections [28]. In the present study, most of the S. aureus isolates (47/58, 81.0%)
276	were strong biofilm producers. This may be one of the reasons why the
277	antimicrobial resistance level was relatively high in our study. Moreover, 90.0%
278	of MRSA isolates could form biofilms in TSB_{glc} . Importantly, MRSA isolates
279	that form biofilms also develop resistance to all the commonly used antibiotics
280	to which the planktonic bacteria are susceptible.
281	MLST results revealed that ST630 was the most common genotype in
282	isolates recovered from milk in this study. According to the S. aureus MLST
283	database (http://saureus.mlst.net), strains belonging to ST630 have appeared
284	only in bulk milk in Japan. ST1 and ST5, reported previously in major human S.
285	aureus infections in Asia, Africa and Europe, were found in mastitis milk for the
286	first time in our study. However, ST97, which were represented by seven
287	isolates in our study, has been reported extensively in clinical and subclinical
288	mastitis milk in multiple regions in China. ST97 can form various ST types
289	through active locus mutation. For example, ST71 may have originated from
290	ST97, and both ST71 and ST97 belong to CC-97, which includes mainly strains
291	of clinical and subclinical bovine mastitis all over the world (Fig. 2). ST71
292	found in this study was reported for the first time in Asia. It was only found in

293	Europe and may appear from the single-locus mutation of ST97. Phylogenetic
294	analyses revealed that the majority of STs in our study all belonged to cluster A
295	and showed a close genetic relationship (Fig. 3). This supports the hypothesis
296	that S. aureus is a clonal organism and spreads from cow to cow. In our study,
297	isolates belonging to ST630 were frequently associated with the ACKP type
298	(resistance to AMP, CIP, Kan, and Penicillin) and all MRSA isolates belonged
299	to the ST type. This indicated the frequent emergence of ST630 S. aureus with
300	high resistance rate in China [2]. The increasing prevalence of the MDR S.
301	aureus ST630 clone will pose a considerable threat to the control of clinical S.
302	aureus infections.
303	Investigation of MRSA from farm animals has intensified all over the
304	world during recent years. However, limited information is available for the
305	genetic characterization of MRSA from dairy cows in China [5, 29]. In the
306	present study, using phenotypic and genotypic methods, 11 MRSA were
307	identified from 58 S. aureus isolates. All these MRSA were found in Yangzhou
308	city. We have learned that β -lactams were widely used for the treatment and
309	prevention of bovine mastitis in this farm. Although effective, the massive use
310	of these antimicrobials may exert a selection pressure favoring the emergence of
311	methicillin-resistant S. aureus strains. Meanwhile, we also found five
312	phenotype-positive MRSA isolates, which were <u>mecA</u> negative. The
313	<u>mecA</u> -negative but phenotype-positive MRSA have been previously reported in
314	Turkey and India [30, 31]. Recently, the presence of <u>mecA</u> -negative MRSA
315	strains in bovine milk samples has also been reported in China [32]. In our study
316	the <u>mecA</u> -negative MRSA strains showed high levels of antimicrobial resistance
317	and possessed a multi-drugs resistant phenotype AMP CIP OFX P (Table 1).
318	However, most of the previous studies were based on genotype tests for
319	identifying MRSA, which may misidentify these isolates as methicillin-sensitive

320	S. aureus (MSSA) and underestimate the true prevalence of MRSA. Thus, a
321	combination of genotypic and phenotypic tests is necessary to avoid false
322	positive or false negative results in identifying MRSA.
323	In the present study, the 58 isolates were classified as agr I by multiplex
324	PCR (Table 2). This finding agrees with a previous observation, where 88% of
325	the bovine S. aureus strains were classified in agr group I [33]. It was revealed
326	that the bovine S. aureus strains in Jiangsu area mainly belonged to agr group I.
327	Similarly, a study of human S. aureus showed that agr group I was prevalent
328	among clinical strains [34]. The agr group has been frequently associated with
329	MAC-T cell invasion and in vivo persistence. In fact, agr group I S. aureus
330	strains show a higher invasion rate than other agr groups [18]. Moreover, agr
331	group I S. aureus strains, which were cap5-positive but tested negative in vitro
332	for CP5 ELISA, showed a high invasion rate in MAC-T cells and formed a weak
333	biofilm in TSB _{glc} [18]. However, previous studies have obtained different results
334	They showed that there was no association of the capsular phenotype with
335	biofilm formation of S. aureus strains from clinical bovine mastitis [35].
336	Oliveira et al. (2011) suggested that S. aureus invasion levels were not related to
337	biofilm formation. In the present study, four strains showed a high invasion rate
338	in MAC-T cells and formed no or weak biofilms in TSB_{glc} . In contrast, most
339	strains showed a low invasion rate in MAC-T cells and formed strong biofilms
340	in TSB _{glc} .
341	The present study describes the epidemiology and characteristic of S. aureus
342	from milk samples in Jiangsu located in the mid-east of China. However, the
343	study design and in particular the less number of sampling area and samples
344	limit the conclusions regarding correlate properties of which may be associated
345	with persistent mastitis. Further research is essential to using a larger strain
346	collection with isolates associated cow mastitis from more farms and more

diverse geographical locations in China, which can provide the basis for the

348	development of a disease prevention program in dairy farms to reduce the
349	potential risk in both animal and human health.
350	Conflict of interest
351	There are no conflicts of interest.
352	Acknowledgments
353	We thank Dr. Honglin Jiang for providing MAC-T cells. This work was
354	supported by the Natural Science Foundation of Jiangsu Province (BK20140458)
355	and the Jiangsu Agricultural Science and Technology Foundation [CX
356	(14)5062].
357	
358	References
359	[1] McDougall S, Parker KI, Heuer C, Compton CW. A review of prevention and control of
360	heifer mastitis via non-antibiotic strategies. Veterinary microbiology. 2009;134:177-85.
361	[2] Xie Y, He Y, Gehring A, Hu Y, Li Q, Tu SI, et al. Genotypes and toxin gene profiles of
362	Staphylococcus aureus clinical isolates from China. PloS one. 2011;6:e28276.
363	[3] Gao J, Ferreri M, Yu F, Liu X, Chen L, Su J, et al. Molecular types and antibiotic resistance
364	of Staphylococcus aureus isolates from bovine mastitis in a single herd in China. Veterinary
365	journal. 2012;192:550-2.
366	[4] Li L, Zhou L, Wang L, Xue H, Zhao X. Characterization of methicillin-resistant and
367	-susceptible staphylococcal isolates from bovine milk in northwestern china. PloS one.
368	2015;10:e0116699.
369	[5] Wang D, Wang Z, Yan Z, Wu J, Ali T, Li J, et al. Bovine mastitis Staphylococcus aureus:
370	antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant
371	and methicillin-sensitive strains in China. Infection, genetics and evolution : journal of
372	molecular epidemiology and evolutionary genetics in infectious diseases. 2015;31:9-16.

- 373 [6] Silva NC, Guimaraes FF, Manzi MP, Budri PE, Gomez-Sanz E, Benito D, et al. Molecular
- 374 characterization and clonal diversity of methicillin-susceptible Staphylococcus aureus in milk of
- cows with mastitis in Brazil. Journal of dairy science. 2013;96:6856-62.
- 376 [7] Roberson JR, Fox LK, Hancock DD, Gay JM, Besser TE. Sources of intramammary
- infections from Staphylococcus aureus in dairy heifers at first parturition. Journal of dairy
- 378 science. 1998;81:687-93.
- 379 [8] Buzzola FR, Quelle L, Gomez MI, Catalano M, Steele-Moore L, Berg D, et al. Genotypic
- 380 analysis of Staphylococcus aureus from milk of dairy cows with mastitis in Argentina.
- 381 Epidemiology and infection. 2001;126:445-52.
- 382 [9] Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for
- 383 characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus
- aureus. Journal of clinical microbiology. 2000;38:1008-15.
- 385 [10] Ote I, Taminiau B, Duprez JN, Dizier I, Mainil JG. Genotypic characterization by
- 386 polymerase chain reaction of Staphylococcus aureus isolates associated with bovine mastitis.
- 387 Veterinary microbiology. 2011;153:285-92.
- 388 [11] Melchior MB, Vaarkamp H, Fink-Gremmels J. Biofilms: a role in recurrent mastitis
- 389 infections? Veterinary journal. 2006;171:398-407.
- 390 [12] Kerro Dego O, van Dijk JE, Nederbragt H. Factors involved in the early pathogenesis of
- 391 bovine Staphylococcus aureus mastitis with emphasis on bacterial adhesion and invasion. A
- review. The Veterinary quarterly. 2002;24:181-98.
- 393 [13] Boulanger D, Bureau F, Melotte D, Mainil J, Lekeux P. Increased nuclear factor kappaB
- activity in milk cells of mastitis-affected cows. Journal of dairy science. 2003;86:1259-67.
- 395 [14] Garzoni C, Kelley WL. Staphylococcus aureus: new evidence for intracellular persistence.
- 396 Trends in microbiology. 2009;17:59-65.
- 397 [15] Brakstad OG, Aasbakk K, Maeland JA. Detection of Staphylococcus aureus by polymerase
- 398 chain reaction amplification of the nuc gene. Journal of clinical microbiology. 1992;30:1654-60.
- 399 [16] Perez-Roth E, Claverie-Martin F, Villar J, Mendez-Alvarez S. Multiplex PCR for

- 400 simultaneous identification of Staphylococcus aureus and detection of methicillin and mupirocin
- resistance. Journal of clinical microbiology. 2001;39:4037-41.
- 402 [17] Gilot P, Lina G, Cochard T, Poutrel B. Analysis of the genetic variability of genes encoding
- 403 the RNA III-activating components Agr and TRAP in a population of Staphylococcus aureus
- 404 strains isolated from cows with mastitis. Journal of clinical microbiology, 2002;40:4060-7.
- 405 [18] Bardiau M, Detilleux J, Farnir F, Mainil JG, Ote I. Associations between properties linked
- 406 with persistence in a collection of Staphylococcus aureus isolates from bovine mastitis. Vet
- 407 Microbiol. 2014;169:74-9.
- 408 [19] Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, et al.
- 409 Quantification of biofilm in microtiter plates: overview of testing conditions and practical
- 410 recommendations for assessment of biofilm production by staphylococci. APMIS: acta
- 411 pathologica, microbiologica, et immunologica Scandinavica. 2007;115:891-9.
- 412 [20] Boulanger D, Brouillette E, Jaspar F, Malouin F, Mainil J, Bureau F, et al. Helenalin reduces
- 413 Staphylococcus aureus infection in vitro and in vivo. Veterinary microbiology. 2007;119:330-8.
- 414 [21] Brouillette E, Grondin G, Shkreta L, Lacasse P, Talbot BG. In vivo and in vitro
- demonstration that Staphylococcus aureus is an intracellular pathogen in the presence or absence
- of fibronectin-binding proteins. Microbial pathogenesis. 2003;35:159-68.
- 417 [22] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis
- 418 (MEGA) software version 4.0. Molecular biology and evolution. 2007;24:1596-9.
- 419 [23] Karahan M, Acik MN, Cetinkaya B. Investigation of toxin genes by polymerase chain
- 420 reaction in Staphylococcus aureus strains isolated from bovine mastitis in Turkey. Foodborne
- 421 pathogens and disease. 2009;6:1029-35.
- 422 [24] Pol M, Ruegg PL. Treatment practices and quantification of antimicrobial drug usage in
- 423 conventional and organic dairy farms in Wisconsin. Journal of dairy science. 2007;90:249-61.
- 424 [25] Stalder U, Stephan R, Corti S, Bludau M, Maeschli A, Klocke P, et al. Short communication:
- 425 Staphylococcus aureus isolated from colostrum of dairy heifers represent a closely related group
- 426 exhibiting highly homogeneous genomic and antimicrobial resistance features. Journal of dairy

- 427 science. 2014;97:4997-5000.
- 428 [26] Castelani L, Pilon LE, Martins T, Pozzi CR, Arcaro JR. Investigation of biofilm production
- 429 and icaA and icaD genes in Staphylococcus aureus isolated from heifers and cows with mastitis.
- 430 Animal science journal = Nihon chikusan Gakkaiho. 2015;86:340-4.
- 431 [27] Graveland H, Duim B, van Duijkeren E, Heederik D, Wagenaar JA. Livestock-associated
- 432 methicillin-resistant Staphylococcus aureus in animals and humans. International journal of
- 433 medical microbiology: IJMM. 2011;301:630-4.
- 434 [28] Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends
- 435 Microbiol. 2001;9:34-9.
- 436 [29] Pu W, Su Y, Li J, Li C, Yang Z, Deng H, et al. High incidence of oxacillin-susceptible
- 437 <u>mecA-positive Staphylococcus aureus (OS-MRSA)</u> associated with bovine mastitis in China.
- 438 PloS one. 2014;9:e88134.
- 439 [30] Turutoglu H, Hasoksuz M, Ozturk D, Yildirim M, Sagnak S. Methicillin and
- aminoglycoside resistance in Staphylococcus aureus isolates from bovine mastitis and sequence
- analysis of their *mecA* genes. Veterinary research communications. 2009;33:945-56.
- 442 [31] Kumar R, Yadav BR, Singh RS. Genetic determinants of antibiotic resistance in
- 443 Staphylococcus aureus isolates from milk of mastitic crossbred cattle. Current microbiology.
- 444 2010;60:379-86.
- 445 [32] Wang X, Wang X, Wang Y, Guo G, Usman T, Hao D, et al. Antimicrobial resistance and
- 446 toxin gene profiles of Staphylococcus aureus strains from Holstein milk. Letters in applied
- 447 microbiology. 2014;58:527-34.
- 448 [33] Buzzola FR, Alvarez LP, Tuchscherr LP, Barbagelata MS, Lattar SM, Calvinho L, et al.
- 449 Differential abilities of capsulated and noncapsulated Staphylococcus aureus isolates from
- diverse agr groups to invade mammary epithelial cells. Infection and immunity. 2007;75:886-91.
- 451 [34] Dufour P, Jarraud S, Vandenesch F, Greenland T, Novick RP, Bes M, et al. High genetic
- variability of the agr locus in Staphylococcus species. Journal of bacteriology. 2002;184:1180-6.
- 453 [35] Babra C, Tiwari JG, Pier G, Thein TH, Sunagar R, Sundareshan S, et al. The persistence of

454	biofilm-associated antibiotic resistance of Staphylococcus aureus isolated from clinical bovine
455	mastitis cases in Australia. Folia microbiologica. 2013;58:469-74.
456	
457	Figure legends
458	Fig. 1. Distribution of antimicrobial resistance towards different classes of
459	antibiotics among the 58 Staphylococcus aureus isolates in 2014.
460	Fig. 2. Population snapshot of all STs related to bovine mastitis included in the
461	MLST database for Staphylococcus aureus. The snapshot displays the
462	evolutionary relationships among STs found in this study and those in the
463	database (all ST associated with bovine mastitis worldwide). The STs identified
464	in this study are marked in red. The STs grouped based on the less stringent
465	definition of five of seven shared alleles are connected by lines.
466	Fig. 3. Maximum composite likelihood tree showing the genetic relationships
467	among the merged sequences of seven housekeeping gene fragments from
468	Staphylococcus aureus recovered in this study and the ST type reported in
469	China

Table 1. Profile diversity of Staphylococcus aureus isolates based on MLST, serotyping, antimicrobial resistance, biofilm formation and intracellular survival

			J				Biofilm formation				Intracellular survival	
ST (n=58)	Allele profiles	MecA	FOX	City	Antimicrobial resistance ^a	No. of isolates	No n=3	Weak n=1	Moderate n=7	Strong n=47	<1%	>1%
ST1 (n=1)	(1,1,1,1,1,1,1)			Nj	AMP P	1	0	0	0	1	1	0
ST5 (n=1)	(1,4,1,4,12,1,10)			Nj	AMP KAN P	1	0	0	0	1	1	0
ST6 (n=4)	(12,4,1,4,12,1,3)			Nj	AMP P	3	0	0	0	3	3	0
				Nj	AMP P	1	0	0	1	0	1	0
ST71 (n=3)	(18,1,1,1,1,5,3)			Yz	AMP CIP CN OFX P S	1	0	0	1	0	1	0
				Yz	AMP CN P S	1	0	0	1	0	1	0
				Yz	AMP P S	1	0	0	0	1	1	0
ST97 (n=7)	(3,1,1,1,1,5,3)			Nj	AMP CN P TET	2	2	0	0	0	1	1
				Nj	AMP AZM CN P TET	1.	0	0	0	1	1	0
			+	Nj	AMP AZM KAN CN P S TET	1	0	0	1	0	1	0
				Νi	AMP P S TET	1	1	0	0	0	0	1
				Νi	AMP P TET	1	0	0	0	1	1	0
				Nj	SXT	1	0	0	0	1	1	0
ST188 (n=18)	(3,1,1,8,1,1,1)			Nj	AMP P	6	0	0	0	6	6	0
(11-10)				Sz	AMP AZM CIP CN DA P S TET	4	0	0	0	4	4	0
				Sz	AMP AZM CIP CN DA P S	Y i	0	0	0	1	1	0
				Nj	AMP AZM CIP DA P TET	1	0	0	0	1	1	0
				Ni	AMP KAN P S	1	0	0	0	1	1	0
				Ni	AMP KAN P	1	Õ	0	0	1	1	0
				Ni	KAN	1	0	0	0	1	1	0
				Nj		2	Ö	0	0	2	2	0
				Nj		1	Ö	1	0	0	0	1
ST630 (n=24)	(3,1,1,4,4,3)			Yz	AMP AZM CIP KAN P S	1	0	0	0	1	1	0
(21)		+	+	Yz	AMP AZM CIP KAN P S	1	0	0	0	1	1	0
		•	•	Yz	AMP CIP CTX KAN P	1	Ö	0	1	0	1	0
		+	+	Yz	AMP CIP CTX KAN P	1	0	0	0	1	1	0
				Yz	AMP CIP KAN P	5	0	0	0	5	5	0
				Yz	AMP CIP KAN P	1	0	0	1	0	1	0
		+	+	Yz	AMP CIP KAN P	9	0	0	0	9	9	0
			+	Yz	AMP CIP OFX P	4	0	0	0	4	4	0
			+	Yz	AMP CIP OFX P	1	0	1	0	0	0	1

^aAntimicrobial resistance: P, penicillin; AMP, ampicillin; AZM, azithromycin; KF, cephalothin; CTX, cefotaxime; CIP, ciprofloxacin; DA, clindamycin; CN, gentamicin; KAN, kanamycin; OFX, ofloxacin; STR, streptomycin; TET, tetracycline; SXT, sulfamethoxazole; VA, vancomycin.

Table 2. MLST, MRSA, agr group, biofilm formation and intracellular survival frequency distribution

			Biofi	lm formatio	Intracellular survival ^a				
MLST		MRSA	agr I	No	Weak	Moderate	Strong	<1%	>1%
ST1	1	0	1	0	0	0	1	1	0
ST5	1	0	1	0	0	0	1	1	0
ST6	4	0	4	0	0	1	3	4	0
ST71	3	0	3	0	0	2	1	3	0
ST97	7	0	7	3	0	1	3	5	2
ST188	18	0	18	0	0	1	17	17	1
ST630	24	11	24	0	1	2	21	23	1
Total	58	11	58	3	1	7	47	54	4
	Intracellu	<1%	4	1	9	40			
			>1%	2	1	1	0		

^a: Intracellular survival is presented as the % of the initial inoculum.

Fig.1

Fig. 2

Fig. 3

Highlights

The 58 (29.0%) *S. aureus* strains causing bovine mastitis were isolated from Jiangsu of China, and 19.0% was MRSA.

All of the 58 S. aureus isolates were classified in agr group I.

ST630 and ST188 were the prominent STs in this study.

Approximately 22.4% of isolates was resistant to ≥ 5 antimicrobials.

Most strains showed a low invasion rate in MAC-T cells and formed a strong biofilm in $TSB_{\mbox{\scriptsize glc}}$.