

CC430F6137, CC430F6135, CC430F6127, CC430F6126, CC430F6125 CC430F5137, CC430F5135, CC430F5133

SLAS554I -MAY 2009-REVISED SEPTEMBER 2018

CC430F613x, CC430F612x, CC430F513x MSP430™ SoC With RF Core

Device Overview

Features 1.1

- True System-on-Chip (SoC) for Low-Power Wireless Communication Applications
- Wide Supply Voltage Range: 3.6 V Down to 1.8 V
- Ultra-Low Power Consumption
 - CPU Active Mode (AM): 160 μA/MHz
 - Standby Mode (LPM3 RTC Mode): 2.0 µA
 - Off Mode (LPM4 RAM Retention): 1.0 μA
 - Radio in RX: 15 mA, 250 kbps, 915 MHz
- MSP430[™] System and Peripherals
 - 16-Bit RISC Architecture, Extended Memory, up to 20-MHz System Clock
 - Wake up From Standby Mode in Less Than 6 µs
 - Flexible Power-Management System With SVS and Brownout
 - Unified Clock System With FLL
 - 16-Bit Timer TA0, Timer A With Five Capture/Compare Registers
 - 16-Bit Timer TA1, Timer A With Three Capture/Compare Registers
 - Hardware Real-Time Clock (RTC)
 - Two Universal Serial Communication Interfaces (USCIs)
 - USCI_A0 Supports UART, IrDA, SPI
 - USCI_B0 Supports I²C, SPI
 - 12-Bit Analog-to-Digital Converter (ADC) With Internal Reference, Sample-and-Hold, and Autoscan Features (CC430F613x and CC430F513x Only)
 - Comparator
 - Integrated LCD Driver With Contrast Control for up to 96 Segments (Only CC430F61xx)
 - 128-Bit AES Security Encryption and Decryption Coprocessor
 - 32-Bit Hardware Multiplier
 - 3-Channel Internal DMA

1.2 **Applications**

- Wireless Analog and Digital Sensor Systems
- **Heat Cost Allocators**
- **Thermostats**

- Serial Onboard Programming, No External Programming Voltage Needed
- Embedded Emulation Module (EEM)
- High-Performance Sub-1 GHz RF Transceiver Core
 - Same as in CC1101
 - Wide Supply Voltage Range: 2 V to 3.6 V
 - Frequency Bands: 300 MHz to 348 MHz, 389 MHz to 464 MHz, and 779 MHz to 928 MHz
 - Programmable Data Rate From 0.6 kBaud to 500 kBaud
 - High Sensitivity (–117 dBm at 0.6 kBaud, -111 dBm at 1.2 kBaud, 315 MHz, 1% Packet Error Rate)
 - Excellent Receiver Selectivity and Blocking Performance
 - Programmable Output Power up to +12 dBm for All Supported Frequencies
 - 2-FSK, 2-GFSK, and MSK Supported, Also OOK and Flexible ASK Shaping
 - Flexible Support for Packet-Oriented Systems: On-Chip Support for Sync Word Detection, Address Check, Flexible Packet Length, and Automatic CRC Handling
 - Support for Automatic Clear Channel Assessment (CCA) Before Transmitting (for Listen-Before-Talk Systems)
 - Digital RSSI Output
 - Suited for Systems Targeting Compliance With EN 300 220 (Europe) and FCC CFR Part 15 (US)
 - Suited for Systems Targeting Compliance With Wireless M-Bus Standard EN 13757-4:2005
 - Support for Asynchronous and Synchronous Serial Receive or Transmit Mode for Backward Compatibility With Existing Radio Communication Protocols
- **Device Comparison Summarizes the Available** Family Members
- AMR or AMI Metering
- Smart Grid Wireless Networks

1.3 Description

The TI CC430 family of ultra-low-power system-on-chip (SoC) microcontrollers with integrated RF transceiver cores consists of several devices that feature different sets of peripherals targeted for a wide range of applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The devices feature the powerful MSP430 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.

The CC430 family provides a tight integration between the microcontroller core, its peripherals, software, and the RF transceiver, making these true SoC solutions easy to use as well as improving performance.

The CC430F61xx series are microcontroller SoC configurations that combine the excellent performance of the state-of-the-art CC1101 sub-1 GHz RF transceiver with the MSP430 CPUXV2, up to 32KB of insystem programmable flash memory, up to 4KB of RAM, two 16-bit timers, a high-performance 12-bit ADC with eight external inputs plus internal temperature and battery sensors on CC430F613x devices, a comparator, USCIs, a 128-bit AES security accelerator, a hardware multiplier, a DMA, an RTC module with alarm capabilities, an LCD driver, and up to 44 I/O pins.

The CC430F513x series are microcontroller SoC configurations that combine the excellent performance of the state-of-the-art CC1101 sub-1 GHz RF transceiver with the MSP430 CPUXV2, up to 32KB of insystem programmable flash memory, up to 4KB of RAM, two 16-bit timers, a high-performance 12-bit ADC with six external inputs plus internal temperature and battery sensors, a comparator, USCIs, a 128-bit AES security accelerator, a hardware multiplier, a DMA, an RTC module with alarm capabilities, and up to 30 I/O pins.

For complete module descriptions, see the CC430 Family User's Guide.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (2)
CC430F6137IRGC	VQFN (64)	9 mm × 9 mm
CC430F5137IRGZ	VQFN (48)	7 mm × 7 mm

⁽¹⁾ For the most current part, package, and ordering information, see the Package Option Addendum in Section 9, or see the TI website at www.ti.com.

⁽²⁾ The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 9.

1.4 Functional Block Diagrams

Figure 1-1 shows the CC430F613x functional block diagram.

Copyright © 2017, Texas Instruments Incorporated

Figure 1-1. CC430F613x Functional Block Diagram

Figure 1-2 shows the CC430F612x functional block diagram.

Copyright © 2017, Texas Instruments Incorporated

Figure 1-2. CC430F612x Functional Block Diagram

Figure 1-3 shows the CC430F513x functional block diagram.

Copyright © 2017, Texas Instruments Incorporated

Figure 1-3. CC430F513x Functional Block Diagram

2 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Chan	ges from September 6, 2013 to September 17, 2018	Page
•	Document format and organization changes throughout, including addition of section numbering Added Device Information table Added Section 1.4 and moved all functional block diagrams to it Added Section 3, Device Comparison, and moved Table 3-1 to it Added Section 3.1, Related Products Added Section 4, Terminal Configuration and Functions, and moved all pinouts and terminal functions tables to it Added Section 5, Specifications, and moved all electrical and timing specifications to it Added Section 5.2, ESD Ratings. Changed the MIN value of the V _(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 5.19, PMM, Brownout	2 7 7 t 8 17 17
•	Reset (BOR) Updated notes (1) and (2) and added note (3) in Section 5.25, Wake-up Times From Low-Power Modes and Reset Removed ADC12DIV from the formula for the TYP value in the second row of the t _{CONVERT} parameter in Section 5.36, 12-Bit ADC, Timing Parameters (removed because ADC12CLK is after division) For the t _{EN_CMP} parameter in Section 5.42, Comparator_B: Removed "CBPWRMD = 10" from the Test Conditions in the first row; added second row with Test Conditions of "CBPWRMD = 10" and a MAX value of	<u>29</u> <u>31</u> <u>39</u>
•	100 µs Changed the test conditions "RF crystal oscillator only" and added note in Section 5.48, Current Consumption, Reduced-Power Modes Corrected the link for DN013 Programming Output Power on CC1101 Changed all instances of "bootstrap loader" to "bootloader" throughout document. Corrected spelling of NMIIFG in Table 6-8, System Module Interrupt Vector Registers. Added Section 8, Device and Documentation Support, and moved Device Nomenclature, ESD Caution, and Trademarks sections to it Added Section 9, Mechanical, Packaging, and Orderable Information.	<u>56</u> <u>65</u> <u>70</u>

3 Device Comparison

Table 3-1 summarizes the available family members.

Table 3-1. Device Comparison⁽¹⁾⁽²⁾

	PROGRAM SRAM (KB)				U	SCI				
DEVICE		-	Timer_A ⁽³⁾	LCD_B	CHANNEL A: UART, LIN, IrDA, SPI	CHANNEL B: SPI, I ² C	ADC12_A CHANNELS	COMP_B CHANNELS	I/O	PACKAGE
CC430F6137	32	4	5, 3	96 seg	1	1	8 ext, 4 int	8	44	64 RGC
CC430F6135	16	2	5, 3	96 seg	1	1	8 ext, 4 int	8	44	64 RGC
CC430F6127	32	4	5, 3	96 seg	1	1	N/A ⁽⁴⁾	8	44	64 RGC
CC430F6126	32	2	5, 3	96 seg	1	1	N/A	8	44	64 RGC
CC430F6125	16	2	5, 3	96 seg	1	1	N/A	8	44	64 RGC
CC430F5137	32	4	5, 3	N/A ⁽⁴⁾	1	1	6 ext, 4 int	6	30	48 RGZ
CC430F5135	16	2	5, 3	N/A	1	1	6 ext, 4 int	6	30	48 RGZ
CC430F5133	8	2	5, 3	N/A	1	1	6 ext, 4 int	6	30	48 RGZ

⁽¹⁾ For the most current device, package, and ordering information, see the *Package Option Addendum* in Section 9, or see the TI website at www.ti.com.

3.1 Related Products

For information about other devices in this family of products or related products, see the following links.

Products for TI Microcontrollers TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a broad range of applications.

Products for MSP430 Ultra-Low-Power Microcontrollers One platform. One ecosystem. Endless possibilities. Enabling the connected world with innovations in ultra-low-power microcontrollers with advanced peripherals for precise sensing and measurement.

Companion Products for CC430F6137 Review products that are frequently purchased or used in conjunction with this product.

Reference Designs for CC430F6137 TI Designs Reference Design Library is a robust reference design library that spans analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at ti.com/tidesigns.

⁽²⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

⁽³⁾ Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 5, 3 represents two instantiations of Timer_A, the first instantiation having 5 capture/compare registers and PWM output generators, and the second instantiation having 3 capture/compare registers and PWM output generators, respectively.

⁽⁴⁾ N/A = not available

4 Terminal Configuration and Functions

4.1 Pin Diagrams

Figure 4-1 shows the pinout for the CC430F613x devices in the 64-pin RGC package.

CAUTION: The LCDCAP/R33 must be connected to VSS if not used.

NOTE: The secondary digital functions on ports P1, P2, and P3 are fully mappable. This pinout shows only the default mapping. See Table 6-6 for details.

Figure 4-1. 64-Pin RGC Package (Top View), CC430F613x

Figure 4-2 shows the pinout for the CC430F612x devices in the 64-pin RGC package.

CAUTION: The LCDCAP/R33 must be connected to VSS if not used.

NOTE: The secondary digital functions on ports P1, P2, and P3 are fully mappable. This pinout shows only the default mapping. See Table 6-6 for details.

Figure 4-2. 64-Pin RGC Package (Top View), CC430F612x

Figure 4-3 shows the pinout for the CC430F513x devices in the 48-pin RGZ package.

NOTE: The secondary digital functions on ports P1, P2, and P3 are fully mappable. This pinout shows only the default mapping. See Table 6-6 for details.

Figure 4-3. 48-Pin RGZ Package (Top View), CC430F513x

4.2 Signal Descriptions

Table 4-1 describes the signals for the CC430F613x and CC430F612x devices. See Table 4-2 for the CC430F513x devices.

Table 4-1. CC430F613x and CC430F612x Terminal Functions

TERMINAL		(1)	DECORPORTOR			
NAME	NO.	I/O ⁽¹⁾	DESCRIPTION			
P1.7/ PM_UCA0CLK/ PM_UCB0STE/ R03	1	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_A0 clock input/output; USCI_B0 SPI slave transmit enable Input/output port of lowest analog LCD voltage (V5)			
P1.6/ PM_UCA0TXD/ PM_UCA0SIMO/ R13/LCDREF	2	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in master out Input/output port of third most positive analog LCD voltage (V3 or V4) External reference voltage input for regulated LCD voltage			
P1.5/ PM_UCA0RXD/ PM_UCA0SOMI/ R23	3	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_A0 UART receive data; USCI_A0 SPI slave out master in Input/output port of second most positive analog LCD voltage (V2)			
LCDCAP/ R33	4	I/O	LCD capacitor connection Input/output port of most positive analog LCD voltage (V1) CAUTION: Must be connected to VSS if not used.			
СОМО	5	0	LCD common output COM0 for LCD backplane			
P5.7/ COM1/ S26	6	I/O	General-purpose digital I/O LCD common output COM1 for LCD backplane LCD segment output S26			
P5.6/ COM2/ S25	7	I/O	General-purpose digital I/O LCD common output COM2 for LCD backplane LCD segment output S25			
P5.5/ COM3/ S24	8	I/O	General-purpose digital I/O LCD common output COM3 for LCD backplane LCD segment output S24			
P5.4/ S23	9	I/O	General-purpose digital I/O LCD segment output S23			
VCORE	10		Regulated core power supply			
DVCC	11		Digital power supply			
P1.4/ PM_UCB0CLK/ PM_UCA0STE/ S22	12	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 clock input/output Default mapping: USCI_A0 SPI slave transmit enable LCD segment output S22			
P1.3/ PM_UCB0SIMO/ PM_UCB0SDA/ S21	13	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 SPI slave in master out Default mapping: USCI_B0 I ² C data LCD segment output S21			
P1.2/ PM_UCB0SOMI/ PM_UCB0SCL/ S20	14	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 SPI slave out master in Default mapping: UCSI_B0 I ² C clock LCD segment output S20			
P1.1/ PM_RFGDO2/ S19	15	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Radio GDO2 output LCD segment output S19			
P1.0/ PM_RFGDO0/ S18	16	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Radio GDO0 output LCD segment output S18			
P3.7/ PM_SMCLK/ S17	17	I/O	General-purpose digital I/O with mappable secondary function Default mapping: SMCLK output LCD segment output S17			
P3.6/ PM_RFGDO1/ S16	18	I/O	General-purpose digital I/O with mappable secondary function Default mapping: Radio GDO1 output LCD segment output S16			

Table 4-1. CC430F613x and CC430F612x Terminal Functions (continued)

TERMINAL		I/O ⁽¹⁾	DESCRIPTION		
NAME	NO.	1/0(1)	DESCRIPTION		
P3.5/ PM_TA0CCR4A/ S15	19	I/O	General-purpose digital I/O with mappable secondary function Default mapping: TA0 CCR4 compare output or capture input LCD segment output S15		
P3.4/ PM_TA0CCR3A/ S14	20	I/O	General-purpose digital I/O with mappable secondary function Default mapping: TA0 CCR3 compare output or capture input LCD segment output S14		
P3.3/ PM_TA0CCR2A/ S13	21	I/O	General-purpose digital I/O with mappable secondary function Default mapping: TA0 CCR2 compare output or capture input LCD segment output S13		
P3.2/ PM_TA0CCR1A/ S12	22	I/O	General-purpose digital I/O with mappable secondary function Default mapping: TA0 CCR1 compare output or capture input LCD segment output S12		
P3.1/ PM_TA0CCR0A/ S11	23	I/O	General-purpose digital I/O with mappable secondary function Default mapping: TA0 CCR0 compare output or capture input LCD segment output S11		
P3.0/ PM_CBOUT0/ PM_TA0CLK/ S10	24	I/O	General-purpose digital I/O with mappable secondary function Default mapping: Comparator_B output Default mapping: TA0 clock input LCD segment output S10		
DVCC	25		Digital power supply		
P4.7/ S9	26	I/O	General-purpose digital I/O LCD segment output S9		
P4.6/ S8	27	I/O	General-purpose digital I/O LCD segment output S8		
P4.5/ S7	28	I/O	General-purpose digital I/O LCD segment output S7		
P4.4/ S6	29	I/O	General-purpose digital I/O LCD segment output S6		
P4.3/ S5	30	I/O	General-purpose digital I/O LCD segment output S5		
P4.2/ S4	31	I/O	General-purpose digital I/O LCD segment output S4		
P4.1/ S3	32	I/O	General-purpose digital I/O LCD segment output S3		
P4.0/ S2	33	I/O	General-purpose digital I/O LCD segment output S2		
P5.3/ S1	34	I/O	General-purpose digital I/O LCD segment output S1		
P5.2/ S0	35	I/O	General-purpose digital I/O LCD segment output S0		
RF_XIN	36	ı	Input terminal for RF crystal oscillator, or external clock input		
RF_XOUT	37	0	Output terminal for RF crystal oscillator		
AVCC_RF	38		Radio analog power supply		
AVCC_RF	39		Radio analog power supply		
RF_P	40	RF I/O	Positive RF input to LNA in receive mode Positive RF output from PA in transmit mode		
RF_N	41	RF I/O	Negative RF input to LNA in receive mode Negative RF output from PA in transmit mode		
AVCC_RF	42		Radio analog power supply		
AVCC_RF	43		Radio analog power supply		
RBIAS	44		External bias resistor for radio reference current		
GUARD	45		Power supply connection for digital noise isolation		
PJ.0/ TDO	46	I/O	General-purpose digital I/O Test data output port		

Table 4-1. CC430F613x and CC430F612x Terminal Functions (continued)

TERMINAL		I/O ⁽¹⁾	DESCRIPTION		
NAME	NO.	1/0(1)	DESCRIPTION		
PJ.1/ TDI/ TCLK	47	I/O	General-purpose digital I/O Test data input or test clock input		
PJ.2/ TMS	48	I/O	General-purpose digital I/O Test mode select		
PJ.3/ TCK	49	I/O	General-purpose digital I/O Test clock		
TEST/ SBWTCK	50	I	Test mode pin – select digital I/O on JTAG pins Spy-Bi-Wire input clock		
RST/NMI/ SBWTDIO	51	I/O	Reset input active low Nonmaskable interrupt input Spy-Bi-Wire data input/output		
DVCC	52		Digital power supply		
AVSS	53		Analog ground supply for ADC12		
P5.1/ XOUT	54	I/O	General-purpose digital I/O Output terminal of crystal oscillator XT1		
P5.0/ XIN	55	I/O	General-purpose digital I/O Input terminal for crystal oscillator XT1		
AVCC	56		Analog power supply		
P2.7/ PM_ADC12CLK/ PM_DMAE0/ CB7 (/A7)	57	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: ADC12CLK output Default mapping: DMA external trigger input Comparator_B input CB7 Analog input A7 – 12-bit ADC (CC430F613x only)		
P2.6/ PM_ACLK/ CB6 (/A6)	58	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: ACLK output Comparator_B input CB6 Analog input A6 – 12-bit ADC (CC430F613x only)		
P2.5/ PM_SVMOUT/ CB5 (/A5/ VREF+/ VeREF+)	59	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: SVM output Comparator_B input CB5 Analog input A5 – 12-bit ADC (CC430F613x only) Output of reference voltage to the ADC (CC430F613x only) Input for an external reference voltage to the ADC (CC430F613x only)		
P2.4/ PM_RTCCLK/ CB4 (/A4/ VREF-/ VeREF-)	60	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: RTCCLK output Comparator_B input CB4 Analog input A4 – 12-bit ADC (CC430F613x only) Negative terminal for the ADC reference voltage for both sources, the internal reference voltage, or an external applied reference voltage (CC430F613x only)		
P2.3/ PM_TA1CCR2A/ CB3 (/A3)	61	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: TA1 CCR2 compare output or capture input Comparator_B input CB3 Analog input A3 – 12-bit ADC (CC430F613x only)		
P2.2/ PM_TA1CCR1A/ CB2 (/A2)	62	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: TA1 CCR1 compare output or capture input Comparator_B input CB2 Analog input A2 – 12-bit ADC (CC430F613x only)		
P2.1/ PM_TA1CCR0A/ CB1 (/A1)	63	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: TA1 CCR0 compare output or capture input Comparator_B input CB1 Analog input A1 – 12-bit ADC (CC430F613x only)		
P2.0/ PM_CBOUT1/ PM_TA1CLK/ CB0 (/A0)	64	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Comparator_B output Default mapping: TA1 clock input Comparator_B input CB0 Analog input A0 – 12-bit ADC (CC430F613x only)		
VSS, Exposed die attach pad			Ground supply CAUTION: The exposed die attach pad must be connected to a solid ground plane as this is the ground connection for the chip.		

Table 4-2 describes the signals for the CC430F513x devices. See Table 4-1 for the CC430F613x and CC430F612x devices.

Table 4-2. CC430F513x Terminal Functions

TERMINAL .					
NAME	NO.	I/O ⁽¹⁾	DESCRIPTION		
P2.2/ PM_TA1CCR1A/ CB2/ A2	1	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: TA1 CCR1 compare output or capture input Comparator_B input CB2 Analog input A2 – 12-bit ADC		
P2.1/ PM_TA1CCR0A/ CB1/ A1	2	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: TA1 CCR0 compare output or capture input Comparator_B input CB1 Analog input A1 – 12-bit ADC		
P2.0/ PM_CBOUT1/ PM_TA1CLK/ CB0/ A0	3	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Comparator_B output Default mapping: TA1 clock input Comparator_B input CB0 Analog input A0 – 12-bit ADC		
P1.7/ PM_UCA0CLK/ PM_UCB0STE	4	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_A0 clock input/output Default mapping: USCI_B0 SPI slave transmit enable		
P1.6/ PM_UCA0TXD/ PM_UCA0SIMO	5	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in master out		
P1.5/ PM_UCA0RXD/ PM_UCA0SOMI	6	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_A0 UART receive data Default mapping: USCI_A0 SPI slave out master in		
VCORE	7		Regulated core power supply		
DVCC	8		Digital power supply		
P1.4/ PM_UCB0CLK/ PM_UCA0STE	9	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 clock input/output Default mapping: USCI_A0 SPI slave transmit enable		
P1.3/ PM_UCB0SIMO/ PM_UCB0SDA	10	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 SPI slave in master out Default mapping: USCI_B0 I ² C data		
P1.2/ PM_UCB0SOMI/ PM_UCB0SCL	11	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 SPI slave out master in Default mapping: UCSI_B0 I ² C clock		
P1.1/ PM_RFGDO2	12	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Radio GDO2 output		
P1.0/ PM_RFGDO0	13	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Radio GDO0 output		
P3.7/ PM_SMCLK	14	I/O	General-purpose digital I/O with mappable secondary function Default mapping: SMCLK output		
P3.6/ PM_RFGDO1	15	I/O	General-purpose digital I/O with mappable secondary function Default mapping: Radio GDO1 output		
P3.5/ PM_TA0CCR4A	16	I/O	General-purpose digital I/O with mappable secondary function Default mapping: TA0 CCR4 compare output or capture input		
P3.4/ PM_TA0CCR3A	17	I/O	General-purpose digital I/O with mappable secondary function Default mapping: TA0 CCR3 compare output or capture input		
P3.3/ PM_TA0CCR2A	18	I/O	General-purpose digital I/O with mappable secondary function Default mapping: TA0 CCR2 compare output or capture input		
P3.2/ PM_TA0CCR1A	19	I/O	General-purpose digital I/O with mappable secondary function Default mapping: TA0 CCR1 compare output or capture input		
P3.1/ PM_TA0CCR0A	20	I/O	General-purpose digital I/O with mappable secondary function Default mapping: TA0 CCR0 compare output or capture input		
P3.0/ PM_CBOUT0/ PM_TA0CLK	21	I/O	General-purpose digital I/O with mappable secondary function Default mapping: Comparator_B output Default mapping: TA0 clock input		

Table 4-2. CC430F513x Terminal Functions (continued)

TERMINAL		I/O ⁽¹⁾	DESCRIPTION	
NAME	NO.	1/0(.,	DESCRIPTION	
DVCC	22		Digital power supply	
P2.7/ PM_ADC12CLK/ PM_DMAE0	23	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: ADC12CLK output Default mapping: DMA external trigger input	
P2.6/ PM_ACLK	24	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: ACLK output	
RF_XIN	25	ı	Input terminal for RF crystal oscillator, or external clock input	
RF_XOUT	26	0	Output terminal for RF crystal oscillator	
AVCC_RF	27		Radio analog power supply	
AVCC_RF	28		Radio analog power supply	
RF_P	29	RF I/O	Positive RF input to LNA in receive mode Positive RF output from PA in transmit mode	
RF_N	30	RF I/O	Negative RF input to LNA in receive mode Negative RF output from PA in transmit mode	
AVCC_RF	31		Radio analog power supply	
AVCC_RF	32		Radio analog power supply	
RBIAS	33		External bias resistor for radio reference current	
GUARD	34		Power supply connection for digital noise isolation	
PJ.0/ TDO	35	I/O	General-purpose digital I/O Test data output port	
PJ.1/ TDI/ TCLK	36	I/O	General-purpose digital I/O Test data input or test clock input	
PJ.2/ TMS	37	I/O	General-purpose digital I/O Test mode select	
PJ.3/ TCK	38	I/O	General-purpose digital I/O Test clock	
TEST/ SBWTCK	39	I	Test mode pin – select digital I/O on JTAG pins Spy-Bi-Wire input clock	
RST/NMI/ SBWTDIO	40	I/O	Reset input active low Nonmaskable interrupt input Spy-Bi-Wire data input/output	
DVCC	41		Digital power supply	
AVSS	42		Analog ground supply for ADC12	
P5.1/ XOUT	43	I/O	General-purpose digital I/O Output terminal of crystal oscillator XT1	
P5.0/ XIN	44	I/O	General-purpose digital I/O Input terminal for crystal oscillator XT1	
AVCC	45		Analog power supply	
P2.5/ PM_SVMOUT/ CB5/ A5/ VREF+/ VeREF+	46	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: SVM output Comparator_B input CB5 Analog input A5 – 12-bit ADC Output of reference voltage to the ADC Input for an external reference voltage to the ADC	
P2.4/ PM_RTCCLK/ CB4/ A4/ VREF-/ VeREF-	47	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: RTCCLK output Comparator_B input CB4 Analog input A4 – 12-bit ADC Negative terminal for the ADC reference voltage for both sources, the internal reference voltage, or an external applied reference voltage	
P2.3/ PM_TA1CCR2A/ CB3/ A3	48	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: TA1 CCR2 compare output or capture input Comparator_B input CB3 Analog input A3 – 12-bit ADC	

Table 4-2. CC430F513x Terminal Functions (continued)

TERMINAL		I/O ⁽¹⁾	DESCRIPTION	
NAME	NO.	1/0(1)	DESCRIPTION	
VSS, Exposed die attach pad			Ground supply The exposed die attach pad must be connected to a solid ground plane as this is the ground connection for the chip.	

5 Specifications

All graphs in this section are for typical conditions, unless otherwise noted.

Typical (TYP) values are specified at $V_{CC} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

5.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Voltage applied at DVCC and AVCC pins to V _{SS}	-0.3	4.1	V
Voltage applied to any pin (excluding VCORE, RF_P, RF_N, and R_BIAS) (2)	-0.3	V _{CC} + 0.3 (4.1 V Maximum)	V
Voltage applied to VCORE, RF_P, RF_N, and R_BIAS ⁽²⁾	-0.3	2.0	V
Input RF level at pins RF_P and RF_N		10	dBm
Diode current at any device terminal		±2	mA
Storage temperature, T _{stg} ⁽³⁾	-55	150	°C
Maximum junction temperature, T _J		95	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
\ <u>\</u>	\/ Flacture static disable was	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance.

5.3 Recommended Operating Conditions

			MIN	NOM MAX	UNIT
	Supply voltage range applied at all DVCC and AVCC pins ⁽¹⁾ during program execution and	PMMCOREVx = 0 (default after POR)	1.8	3.6	
	flash programming with PMM default settings, Radio is not operational with PMMCOREVx = 0 or $1^{(2)(3)}$	PMMCOREVx = 1	2.0	3.6	
	Supply voltage range applied at all DVCC and	PMMCOREVx = 2	2.2	3.6	
V _{CC}	AVCC pins ⁽¹⁾ during program execution, flash programming, and radio operation with PMM default settings ⁽²⁾⁽³⁾	PMMCOREVx = 3	2.4	3.6	V
	Supply voltage range applied at all DVCC and AVCC pins ⁽¹⁾ during program execution, flash programming and radio operation with PMMCOREVx = 2, high-side SVS level lowered (SVSHRVL = SVSMHRRL = 1) or high-side SVS disabled (SVSHE = 0) ⁽²⁾⁽³⁾⁽⁴⁾	PMMCOREVx = 2, SVSHRVLx = SVSHRRRLx = 1 or SVSHE = 0	2.0	3.6	
V _{SS}	Supply voltage applied at the exposed die attach	VSS and AVSS pin		0	V
T _A	Operating free-air temperature		-40	85	°C

⁽¹⁾ TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation.

⁽²⁾ All voltages referenced to V_{SS}.

⁽³⁾ Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.

⁽²⁾ Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.

⁽³⁾ The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Section 5.21 threshold parameters for the exact values and further details.

⁽⁴⁾ Lowering the high-side SVS level or disabling the high-side SVS might cause the LDO to operate out of regulation, but the core voltage will still stay within its limits and is still supervised by the low-side SVS, ensuring reliable operation.

Recommended Operating Conditions (continued)

			MIN	NOM	MAX	UNIT
T_{J}	Operating junction temperature		-40		85	°C
C _{VCORE}	Recommended capacitor at VCORE (5)			470		nF
C _{DVCC} / C _{VCORE}	Capacitor ratio of capacitor at DVCC to capacitor	at VCORE	10			
		PMMCOREVx = 0 (default condition)	0		8	
f _{SYSTEM}	Processor (MCLK) frequency ⁽⁶⁾ (see Figure 5-1)	PMMCOREVx = 1	0		12	MHz
0.0.2		PMMCOREVx = 2	0		16	
		PMMCOREVx = 3	0		20	
P _{INT}	Internal power dissipation		Vo	cc × I _{DVCC}		W
P _{IO}	I/O power dissipation of I/O pins powered by DVCC		(V _{CC}	– V _{IOH}) × V _{IOL} × I _{IOL}		W
P _{MAX}	Maximum allowed power dissipation, P _{MAX} > P _{IO}	+ P _{INT}	(T _J -	– T _A) / θ _{JA}		W

⁽⁵⁾ A capacitor tolerance of ±20% or better is required.

⁽⁶⁾ Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.

NOTE: The numbers within the fields are the supported PMMCOREVx settings.

Figure 5-1. Maximum System Frequency

5.4 Active Mode Supply Current Into V_{CC} Excluding External Current

over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3)

						FR	EQUEN	ICY (f _{DCC}	= f _{MCLK}	= f _{SMCLI}	()			
PARAMETER	MEMORY	V _{cc}	PMMCOREVx	1 M	Hz	8 M	Hz	12 N	1Hz	16 MHz		20 MHz		UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
			0	0.23	0.26	1.35	1.60							
I _{AM Flash} (4) Flash	3 V	1	0.25	0.28	1.55		2.30	2.65					A	
I _{AM, Flash} (4)	FlaSII	Flasii 3 V	2	0.27	0.30	1.75		2.60		3.45	3.90			mA
			3	0.28	0.32	1.85		2.75		3.65		4.55	5.10	
			0	0.18	0.20	0.95	1.10							
I _{AM, RAM} ⁽⁵⁾	RAM	2.1/	1	0.20	0.22	1.10		1.60	1.85					A
	KAW	3 V	2	0.21	0.24	1.20		1.80		2.40	2.70			mA
			3	0.22	0.25	1.30		1.90		2.50		3.10	3.60	l

- (1) All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.
- (2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF.
- (3) Characterized with program executing typical data processing. f_{ACLK} = 32786 Hz, f_{DCO} = f_{MCLK} = f_{SMCLK} at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.
- (4) Active mode supply current when program executes in flash at a nominal supply voltage of 3 V.
- (5) Active mode supply current when program executes in RAM at a nominal supply voltage of 3 V.

5.5 Typical Characteristics – Active Mode Supply Currents

Figure 5-2. Active Mode Supply Current vs MCLK Frequency

Low-Power Mode Supply Currents (Into V_{cc}) Excluding External Current 5.6

						TE	MPERAT	URE (T _A)				
	PARAMETER	V _{cc}	PMMCOREVx	-40°	С	25°	С	60°	С	85°0	C	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
_	Low-power mode 0 ⁽³⁾ (4)	2.2 V	0	80	100	80	100	80	100	80	100	
I _{LPM0,1MHz}	Low-power mode o	3 V	3	90	110	90	110	90	110	90	110	μA
	Low-power mode 2 ⁽⁵⁾ (4)	2.2 V	0	6.5	11	6.5	11	6.5	11	6.5	11	
I _{LPM2}	Low-power mode 2000	3 V	3	7.5	12	7.5	12	7.5	12	7.5	12	μA
			0	1.8		2.0	2.6	3.0	4.0	4.4	5.9	
	Low-power mode 3, crystal	3 V	1	1.9		2.1		3.2		4.8		
I _{LPM3,XT1LF}	mode (6) (4)	3 V	2	2.0		2.2		3.4		5.1		μA
			3	2.0		2.2	2.9	3.5	4.8	5.3	7.4	ĺ
			0	0.9		1.1	2.3	2.1	3.7	3.5	5.6	
	Low-power mode 3,	3 V	1	1.0		1.2		2.3		3.9		
I _{LPM3,VLO}	VLO mode ⁽⁷⁾ (4)	3 V	2	1.1		1.3		2.5		4.2		μA
			3	1.1		1.3	2.6	2.6	4.5	4.4	7.1	ĺ
			0	0.8		1.0	2.2	2.0	3.6	3.4	5.5	
l law	Low power made 4(8) (4)	2.1/	1	0.9		1.1		2.2		3.8		
I _{LPM4}	Low-power mode 4197 197	-power mode 4 ⁽⁸⁾ (4) 3 V	2	1.0		1.2		2.4		4.1		μA
			3	1.0		1.2	2.5	2.5	4.4	4.3	7.0	ĺ

- (1) All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.
- The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF.
- Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
- $\label{eq:cpuoff} \text{CPUOFF} = 1, \ \text{SCG0} = 0, \ \text{SCG1} = 0, \ \text{OSCOFF} = 0 \ (\text{LPM0}), \ f_{\text{ACLK}} = 32768 \ \text{Hz}, \ f_{\text{MCLK}} = 0 \ \text{MHz}, \ f_{\text{SMCLK}} = f_{\text{DCO}} = 1 \ \text{MHz}$ $\text{Current for brownout, high-side supervisor (SVS_{\text{H}}) normal mode included. Low-side supervisor (SVS_{\text{L}}) and low-side monitor (SVM_{\text{L}}) }$ disabled. High-side monitor (SVM_H) disabled. RAM retention enabled.
- Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). $\mathsf{CPUOFF} = 1, \, \mathsf{SCG0} = 0, \, \mathsf{SCG1} = 1, \, \mathsf{OSCOFF} = 0 \, \, \mathsf{(LPM2)}, \, \mathsf{f}_{\mathsf{ACLK}} = 32768 \, \, \mathsf{Hz}, \, \mathsf{f}_{\mathsf{MCLK}} = 0 \, \, \mathsf{MHz}, \, \mathsf{f}_{\mathsf{SMCLK}} = \mathsf{f}_{\mathsf{DCO}} = 0 \, \, \mathsf{MHz}, \, \mathsf{DCO} \, \, \mathsf{setting} = 0 \, \, \mathsf{MHz}$ 1 MHz operation, DCO bias generator enabled.
- Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). $\mathsf{CPUOFF} = 1, \, \mathsf{SCG0} = 1, \, \mathsf{SCG1} = 1, \, \mathsf{OSCOFF} = 0 \, \, \mathsf{(LPM3)}, \, \mathsf{f}_{\mathsf{ACLK}} = 32768 \, \, \mathsf{Hz}, \, \mathsf{f}_{\mathsf{MCLK}} = \, \mathsf{f}_{\mathsf{SMCLK}} = \mathsf{f}_{\mathsf{DCO}} = 0 \, \, \mathsf{MHz}$
- Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), $f_{ACLK} = f_{VLO}$, $f_{MCLK} = f_{SMCLK} = f_{DCO} = 0$ MHz CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), $f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0$ MHz

60

80

Typical Characteristics - Low-Power Mode Supply Currents 5.7

5.8 Low-Power Mode With LCD Supply Currents (Into V_{CC}) Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)

						TE	MPERA	TURE (T	۸)			
	PARAMETER	V _{CC}	PMMCOREVx	-40	°C	25°	С	60°	С	85°	С	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
	Low-power mode 3		0	2.2		2.4		3.5		4.9		
I _{LPM3} LCD,	(LPM3) current, LCD 4-	3 V	1	2.3		2.5		3.7		5.3		
ext. bias	mux mode, external biasing (3) (4)	3 V	2	2.4		2.6		3.9		5.6		μΑ
	biasing		3	2.4		2.6		4.0		5.8		
	Low-power mode 3		0	3.1		3.3	4.0	4.3		5.8	7.4	
I _{LPM3}	I _{LPM3} (LPM3) current, LCD 4- LCD, mux mode, internal	3 V	1	3.2		3.4		4.5		6.2		
int. bias			2	3.3		3.5		4.7		6.5		μΑ
	disabled ⁽³⁾ (5)		3	3.3		3.5	4.3	4.8		6.7	8.9	
			0			4.0						
		2.2 V	1			4.1						
	Low-power mode 3 (LPM3) current, LCD 4-		2			4.2						
I _{LPM3}	I _{LPM3} LCD,CP mux mode, internal biasing, charge pump enabled (3) (6)		0			4.2						μΑ
202,0.		2.1/	1			4.3						
		3 V	2			4.5						
			3			4.5		<u>-</u>				

- (1) All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
- (2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF.
- (3) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 MHz Current for brownout, high-side supervisor (SVS_H) normal mode included. Low-side supervisor (SVS_L) and low-side monitor (SVM_L) disabled. High-side monitor (SVM_H) disabled. RAM retention enabled.
- (4) LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz / 32 / 4 = 256 Hz)
 Current through external resistors not included (voltage levels are supplied by test equipment).
 Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.
- (5) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.
- (6) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump enabled), VLCDx = 1000 (V_{LCD} = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.

5.9 Thermal Resistance Characteristics, CC430F51xx

			PACKAGE	VALUE
	has all and the model and the annual model and a second library	Low-K board	40 OFN (DOZ)	98°C/W
θ_{JA}	Junction-to-ambient thermal resistance, still air	High-K board	48 QFN (RGZ)	28°C/W

5.10 Thermal Resistance Characteristics, CC430F61xx

			PACKAGE	VALUE
0	lunction to ambient thermal registance, ctill air	Low-K board	64 QFN (RGC)	83°C/W
θ _{ЈА}	Junction-to-ambient thermal resistance, still air	High-K board	04 QFN (RGC)	26°C/W

5.11 Digital Inputs

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
\/	Positive-going input threshold voltage		1.8 V	0.80		1.40	\
V _{IT+}	Positive-going input threshold voltage		3 V	1.50		2.10	V
V	Negative going input throughold voltage		1.8 V	0.45		1.00	\
V _{IT} _	Negative-going input threshold voltage		3 V	0.75		1.65	V
V	lenut valtage hystoresis (\(\)		1.8 V	0.3		0.8	\
V _{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})		3 V	0.4		1.0	V
R _{Pull}	Pullup or pulldown resistor	For pullup: V _{IN} = V _{SS} For pulldown: V _{IN} = V _{CC}		20	35	50	kΩ
C _I	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		рF
I _{lkg(Px.y)}	High-impedance leakage current	See (1) (2)	1.8 V, 3 V			±50	nΑ
t _(int)	External interrupt timing (external trigger pulse duration to set interrupt flag) ⁽³⁾	Ports with interrupt capability [see block diagram (Section 1.4) and terminal function descriptions (Section 4.2)]	1.8 V, 3 V	20			ns

⁽¹⁾

The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pins, unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is (2)

An external signal sets the interrupt flag every time the minimum interrupt pulse duration $t_{(int)}$ is met. It may be set by trigger signals shorter than t(int).

5.12 Digital Outputs

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
		$I_{(OHmax)} = -1 \text{ mA}, PxDS.y = 0^{(2)}$	1.8 V	V _{CC} - 0.25	V_{CC}	
\/	High-level output voltage,	$I_{(OHmax)} = -3 \text{ mA}, PxDS.y = 0^{(3)}$	1.6 V	V _{CC} - 0.60	V_{CC}	V
V _{OH}	reduced drive strength ⁽¹⁾	$I_{(OHmax)} = -2 \text{ mA}, PxDS.y = 0^{(2)}$	3 V	V _{CC} - 0.25	V_{CC}	V
		$I_{(OHmax)} = -6 \text{ mA}, PxDS.y = 0^{(3)}$	3 V	V _{CC} - 0.60	V_{CC}	
		$I_{(OLmax)} = 1 \text{ mA}, PxDS.y = 0^{(2)}$	1.8 V	V_{SS}	$V_{SS} + 0.25$	
\ <u>\</u>	Low-level output voltage,	$I_{(OLmax)} = 3 \text{ mA}, PxDS.y = 0^{(3)}$	1.0 V	V _{SS}	$V_{SS} + 0.60$	V
V _{OL}	reduced drive strength (1)	$I_{(OLmax)} = 2 \text{ mA}, PxDS.y = 0^{(2)}$	3 V	V _{SS}	$V_{SS} + 0.25$	V
		$I_{(OLmax)} = 6 \text{ mA}, PxDS.y = 0^{(3)}$	3 V	V _{SS}	$V_{SS} + 0.60$	
		$I_{(OHmax)} = -3 \text{ mA}, PxDS.y = 1^{(2)}$	1.8 V	V _{CC} - 0.25	V_{CC}	
	High-level output voltage,	$I_{(OHmax)} = -10 \text{ mA}, PxDS.y = 1^{(3)}$	1.0 V	$V_{CC} - 0.60$	V_{CC}	V
V _{OH}	full drive strength	$I_{(OHmax)} = -5 \text{ mA}, PxDS.y = 1^{(2)}$	3 V	V _{CC} - 0.25	V_{CC}	
	$I_{\text{(OHmax)}} = -15 \text{ mA, PxDS.y} = 1^{(3)}$		3 V	V _{CC} - 0.60	V_{CC}	
		$I_{(OLmax)} = 3 \text{ mA}, PxDS.y = 1^{(2)}$	1.8 V	V _{SS}	$V_{SS} + 0.25$	
\/	Low-level output voltage,	$I_{(OLmax)} = 10 \text{ mA}, PxDS.y = 1^{(3)}$	1.6 V	V _{SS}	$V_{SS} + 0.60$	V
V _{OL}	full drive strength	$I_{(OLmax)} = 5 \text{ mA}, PxDS.y = 1^{(2)}$	3 V	V_{SS}	$V_{SS} + 0.25$	v
		$I_{(OLmax)} = 15 \text{ mA}, PxDS.y = 1^{(3)}$	3 V	V_{SS}	$V_{SS} + 0.60$	•
f	Port output frequency	$C_L = 20 \text{ pF, } R_L^{(4) (5)}$	$V_{CC} = 1.8 \text{ V},$ PMMCOREVx = 0		16	MHz
f _{Px.y}	(with load)	C _L = 20 pr, R _L (7) (7)	V _{CC} = 3 V, PMMCOREVx = 2		25	IVITZ
£	Clark systems from the second	C 20 - F ⁽⁵⁾	V _{CC} = 1.8 V, PMMCOREVx = 0		16	N/I I-
f _{Port_CLK}	Clock output frequency	$C_L = 20 \text{ pF}^{(5)}$	V _{CC} = 3 V, PMMCOREVx = 2		25	MHz

⁽¹⁾ Selecting reduced drive strength may reduce EMI.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.

⁽³⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage

⁽⁴⁾ A resistive divider with 2 x R1 between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider. For full drive strength, R1 = 550 Ω . For reduced drive strength, R1 = 1.6 k Ω . C_L = 20 pF is connected to the output to V_{SS} .

⁽⁵⁾ The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

5.13 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)

5.14 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)

5.15 Crystal Oscillator, XT1, Low-Frequency Mode⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP	MAX	UNIT
		f_{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, T_A = 25°C		0.075		
$\Delta I_{DVCC.LF}$	Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode	$\begin{split} f_{OSC} &= 32768 \text{ Hz, XTS} = 0,\\ \text{XT1BYPASS} &= 0, \text{XT1DRIVEx} = 2,\\ T_A &= 25^{\circ}\text{C} \end{split}$	3 V	0.170		μΑ
		$\label{eq:fosc} \begin{array}{l} f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ \text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 3, \\ T_{A} = 25^{\circ}\text{C} \end{array}$		0.290		
f _{XT1,LF0}	XT1 oscillator crystal frequency, LF mode	XTS = 0, XT1BYPASS = 0		32768		Hz
f _{XT1,LF,SW}	XT1 oscillator logic-level square- wave input frequency, LF mode	XTS = 0, XT1BYPASS = 1 ⁽²⁾ (3)		10 32.768	50	kHz
04	Oscillation allowance for	$ \begin{aligned} &XTS = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 0, \\ &f_{XT1,LF} = 32768 \; Hz, C_{L,eff} = 6 \; pF \end{aligned} $		210		kΩ
OA _{LF}	LF crystals ⁽⁴⁾	$\begin{split} XTS &= 0, \\ XT1BYPASS &= 0, XT1DRIVEx = 1, \\ f_{XT1,LF} &= 32768 \text{ Hz}, C_{L,eff} = 12 \text{ pF} \end{split}$		300		K\$2
		$XTS = 0$, $XCAPx = 0^{(6)}$		2		
C	Integrated effective load	XTS = 0, $XCAPx = 1$		5.5		pF
$C_{L,eff}$	capacitance, LF mode (5)	XTS = 0, $XCAPx = 2$		8.5		рг
		XTS = 0, $XCAPx = 3$		12.0		
	Duty cycle, LF mode	XTS = 0, Measured at ACLK, $f_{XT1,LF}$ = 32768 Hz		30%	70%	
f _{Fault,LF}	Oscillator fault frequency, LF mode ⁽⁷⁾	XTS = 0 ⁽⁸⁾		10	10000	Hz
+	Start-up time, LF mode	f_{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, T_A = 25°C, $C_{L,eff}$ = 6 pF	3 V	1000		mc
t _{START,LF}	Stateup tille, Er moue	$\begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0,\\ &\text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 3,\\ &T_{A} = 25^{\circ}\text{C, }C_{L,\text{eff}} = 12 \text{ pF} \end{aligned}$	3 V	500		ms

- (1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - Keep the trace between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet.
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- (4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:

 - For XT1DRIVEx = 0, $C_{L,eff} \le 6$ pF For XT1DRIVEx = 1, 6 pF $\le C_{L,eff} \le 9$ pF
 - For XT1DRIVEx = 2, 6 pF \leq C_{L,eff} \leq 10 pF For XT1DRIVEx = 3, C_{L,eff} \geq 6 pF
- (5) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag.
- Measured with logic-level input frequency but also applies to operation with crystals.

5.16 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f_{VLO}	VLO frequency	Measured at ACLK	1.8 V to 3.6 V	6	9.4	14	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V		0.5		%/°C
df _{VLO} /dV _{CC}	VLO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V		4		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40%	50%	60%	

¹⁾ Calculated using the box method: (MAX(-40°C to 85°C) – MIN(-40°C to 85°C)) / MIN(-40°C to 85°C) / (85°C – (-40°C))

5.17 Internal Reference, Low-Frequency Oscillator (REFO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TY	MAX	UNIT
I _{REFO}	REFO oscillator current consumption	T _A = 25°C	1.8 V to 3.6 V	;	3	μA
f _{REFO}	REFO frequency calibrated	Measured at ACLK	1.8 V to 3.6 V	3276	3	Hz
	REFO absolute tolerance calibrated	Full temperature range	1.8 V to 3.6 V		±3.5%	
	REFO absolute tolerance calibrated	T _A = 25°C	3 V		±1.5%	
df_{REFO}/d_{T}	REFO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V	0.0	l	%/°C
$\begin{array}{c} df_{REFO}/dV_{C} \\ c \end{array}$	REFO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V	1.0)	%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40% 50%	60%	
t _{START}	REFO start-up time	40%/60% duty cycle	1.8 V to 3.6 V	2	5	μs

Calculated using the box method: (MAX(-40°C to 85°C) - MIN(-40°C to 85°C)) / MIN(-40°C to 85°C) / (85°C - (-40°C))

5.18 DCO Frequency

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
f _{DCO(0,0)}	DCO frequency (0, 0) ⁽¹⁾	DCORSELx = 0, $DCOx = 0$, $MODx = 0$	0.07	0.20	MHz
f _{DCO(0,31)}	DCO frequency (0, 31) ⁽¹⁾	DCORSELx = 0, $DCOx = 31$, $MODx = 0$	0.70	1.70	MHz
f _{DCO(1,0)}	DCO frequency (1, 0) ⁽¹⁾	DCORSELx = 1, $DCOx = 0$, $MODx = 0$	0.15	0.36	MHz
f _{DCO(1,31)}	DCO frequency (1, 31) ⁽¹⁾	DCORSELx = 1, DCOx = 31, MODx = 0	1.47	3.45	MHz
f _{DCO(2,0)}	DCO frequency (2, 0) ⁽¹⁾	DCORSELx = 2, $DCOx = 0$, $MODx = 0$	0.32	0.75	MHz
f _{DCO(2,31)}	DCO frequency (2, 31) ⁽¹⁾	DCORSELx = 2, $DCOx = 31$, $MODx = 0$	3.17	7.38	MHz
f _{DCO(3,0)}	DCO frequency (3, 0) ⁽¹⁾	DCORSELx = 3, $DCOx = 0$, $MODx = 0$	0.64	1.51	MHz
f _{DCO(3,31)}	DCO frequency (3, 31) ⁽¹⁾	DCORSELx = 3, DCOx = 31, MODx = 0	6.07	14.0	MHz
f _{DCO(4,0)}	DCO frequency (4, 0) ⁽¹⁾	DCORSELx = 4, $DCOx = 0$, $MODx = 0$	1.3	3.2	MHz
f _{DCO(4,31)}	DCO frequency (4, 31) ⁽¹⁾	DCORSELx = 4, DCOx = 31, MODx = 0	12.3	28.2	MHz
f _{DCO(5,0)}	DCO frequency (5, 0) ⁽¹⁾	DCORSELx = 5, $DCOx = 0$, $MODx = 0$	2.5	6.0	MHz
f _{DCO(5,31)}	DCO frequency (5, 31) ⁽¹⁾	DCORSELx = 5, DCOx = 31, MODx = 0	23.7	54.1	MHz
f _{DCO(6,0)}	DCO frequency (6, 0) ⁽¹⁾	DCORSELx = 6, $DCOx = 0$, $MODx = 0$	4.6	10.7	MHz
f _{DCO(6,31)}	DCO frequency (6, 31) ⁽¹⁾	DCORSELx = 6, DCOx = 31, MODx = 0	39.0	88.0	MHz
f _{DCO(7,0)}	DCO frequency (7, 0) ⁽¹⁾	DCORSELx = 7, DCOx = 0, MODx = 0	8.5	19.6	MHz
f _{DCO(7,31)}	DCO frequency (7, 31) ⁽¹⁾	DCORSELx = 7, DCOx = 31, MODx = 0	60	135	MHz
S _{DCORSEL}	Frequency step between range DCORSEL and DCORSEL + 1	$S_{RSEL} = f_{DCO(DCORSEL+1,DCO)}/f_{DCO(DCORSEL,DCO)}$	1.2	2.3	ratio

⁽¹⁾ When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, f_{DCO}, should be set to reside within the range of f_{DCO(n, 0),MAX} ≤ f_{DCO} ≤ f_{DCO(n, 31),MIN}, where f_{DCO(n, 0),MAX} represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and f_{DCO(n,31),MIN} represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual f_{DCO} frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting.

⁽²⁾ Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)

²⁾ Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)

DCO Frequency (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
S _{DCO}	Frequency step between tap DCO and DCO + 1	$S_{DCO} = f_{DCO(DCORSEL,DCO+1)}/f_{DCO(DCORSEL,DCO)}$	1.02		1.12	ratio
	Duty cycle	Measured at SMCLK	40%	50%	60%	
df _{DCO} /dT	DCO frequency temperature drift	f _{DCO} = 1 MHz		0.1		%/°C
df_{DCO}/dV_{CC}	DCO frequency voltage drift	f _{DCO} = 1 MHz		1.9		%/V

Figure 5-13. Typical DCO Frequency

5.19 PMM, Brownout Reset (BOR)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _(DVCC_BOR_IT-)	BOR _H on voltage, DV _{CC} falling level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$			1.45	V
V _(DVCC_BOR_IT+)	BOR _H off voltage, DV _{CC} rising level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$	0.80	1.30	1.50	V
V _(DVCC_BOR_hys)	BOR _H hysteresis		50		250	mV
t _{RESET}	Pulse duration required at RST/NMI pin to accept a reset		2			μs

5.20 PMM, Core Voltage

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
V _{CORE3} (AM)	Core voltage, active mode, PMMCOREV = 3	$2.4 \text{ V} \leq \text{DV}_{\text{CC}} \leq 3.6 \text{ V}$	1.90	V
V _{CORE2} (AM)	Core voltage, active mode, PMMCOREV = 2	$2.2 \text{ V} \leq \text{DV}_{\text{CC}} \leq 3.6 \text{ V}$	1.80	V
V _{CORE1} (AM)	Core voltage, active mode, PMMCOREV = 1	$2 \text{ V} \leq \text{DV}_{\text{CC}} \leq 3.6 \text{ V}$	1.60	V
V _{CORE0} (AM)	Core voltage, active mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V	1.40	V
V _{CORE3} (LPM)	Core voltage, low-current mode, PMMCOREV = 3	$2.4 \text{ V} \leq \text{DV}_{\text{CC}} \leq 3.6 \text{ V}$	1.94	V
V _{CORE2} (LPM)	Core voltage, low-current mode, PMMCOREV = 2	$2.2 \text{ V} \leq \text{DV}_{\text{CC}} \leq 3.6 \text{ V}$	1.84	V
V _{CORE1} (LPM)	Core voltage, low-current mode, PMMCOREV = 1	$2 \text{ V} \leq \text{DV}_{\text{CC}} \leq 3.6 \text{ V}$	1.64	V
V _{CORE0} (LPM)	Core voltage, low-current mode, PMMCOREV = 0	$1.8 \text{ V} \leq \text{DV}_{\text{CC}} \leq 3.6 \text{ V}$	1.44	V

5.21 PMM, SVS High Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVSHE = 0, DV_{CC} = 3.6 V		0		- ^
I _(SVSH)	SVS current consumption	SVSHE = 1, DV_{CC} = 3.6 V, $SVSHFP$ = 0		200		nA
		SVSHE = 1, DV_{CC} = 3.6 V, $SVSHFP$ = 1		1.5		μA
		SVSHE = 1, SVSHRVL = 0	1.53	1.60	1.67	
V	SVS _H on voltage level ⁽¹⁾	SVSHE = 1, SVSHRVL = 1	1.73	1.80	1.87	V
$V_{(SVSH_IT-)}$	SVS _H on voltage level ^(*)	SVSHE = 1, SVSHRVL = 2	1.93	2.00	2.07	v
		SVSHE = 1, SVSHRVL = 3	2.03	2.10	2.17	
		SVSHE = 1, SVSMHRRL = 0	1.60	1.70	1.80	
	SVS _H off voltage level ⁽¹⁾	SVSHE = 1, SVSMHRRL = 1	1.80	1.90	2.00	
		SVSHE = 1, SVSMHRRL = 2	2.00	2.10	2.20	
V		SVSHE = 1, SVSMHRRL = 3	2.10	2.20	2.30	V
$V_{(SVSH_IT+)}$		SVSHE = 1, SVSMHRRL = 4	2.25	2.35	2.50	V
		SVSHE = 1, SVSMHRRL = 5	2.52	2.65	2.78	
		SVSHE = 1, SVSMHRRL = 6	2.85	3.00	3.15	
		SVSHE = 1, SVSMHRRL = 7	2.85	3.00	3.15	
	CVC managerian dalari	SVSHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVSHFP = 1		2.5		
t _{pd(SVSH)}	SVS _H propagation delay	SVSHE = 1, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVSHFP = 0		20		μs
	CVC are an eff delevations	SVSHE = $0 \rightarrow 1$, $dV_{DVCC}/dt = 10 \text{ mV/}\mu\text{s}$, SVSHFP = 1		12.5		
t _(SVSH)	SVS _H on or off delay time	SVSHE = $0 \rightarrow 1$, $dV_{DVCC}/dt = 1$ mV/ μ s, SVSHFP = 0		100		μs
dV _{DVCC} /dt	DV _{CC} rise time		0		1000	V/s

⁽¹⁾ The SVS_H settings available depend on the VCORE (PMMCOREVx) setting. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *CC430 Family User's Guide* on recommended settings and use.

5.22 PMM, SVM High Side

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVMHE = 0, DV _{CC} = 3.6 V		0		π Λ
I _(SVMH)	SVM _H current consumption	SVMHE = 1, DV_{CC} = 3.6 V, $SVMHFP$ = 0		200		nA
		SVMHE = 1, DV _{CC} = 3.6 V, SVMHFP = 1		1.5		μΑ
		SVMHE = 1, SVSMHRRL = 0	1.60	1.70	1.80	
		SVMHE = 1, SVSMHRRL = 1	1.80	1.90	2.00	
		SVMHE = 1, SVSMHRRL = 2	2.00	2.10	2.20	
		SVMHE = 1, SVSMHRRL = 3	2.10	2.20	2.30	
V _(SVMH)	SVM _H on or off voltage level ⁽¹⁾	SVMHE = 1, SVSMHRRL = 4	2.25	2.35	2.50	V
		SVMHE = 1, SVSMHRRL = 5	2.52	2.65	2.78	
		SVMHE = 1, SVSMHRRL = 6	2.85	3.00	3.15	
		SVMHE = 1, SVSMHRRL = 7	2.85	3.00	3.15	
		SVMHE = 1, SVMHOVPE = 1		3.75		
	CVM propagation dolor	SVMHE = 1, $dV_{DVCC}/dt = 10 \text{ mV/}\mu\text{s}$, SVMHFP = 1		2.5		
t _{pd(SVMH)}	SVM _H propagation delay	SVMHE = 1, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVMHFP = 0		20		μs
	CVM on or off dolay time	SVMHE = $0 \rightarrow 1$, $dV_{DVCC}/dt = 10 \text{ mV/}\mu\text{s}$, SVMHFP = 1		12.5		0
t _(SVMH)	SVM _H on or off delay time	SVMHE = $0 \rightarrow 1$, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVMHFP = 0		100		μs

⁽¹⁾ The SVM_H settings available depend on the VCORE (PMMCOREVx) setting. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *CC430 Family User's Guide* on recommended settings and use.

5.23 PMM, SVS Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _(SVSL)		SVSLE = 0, PMMCOREV = 2		0		nA
	SVS _L current consumption	SVSLE = 1, PMMCOREV = 2, SVSLFP = 0		200		nA
		SVSLE = 1, PMMCOREV = 2, SVSLFP = 1		1.5		μΑ
	CVC propagation dalay	SVSLE = 1, dV _{CORE} /dt = 10 mV/µs, SVSLFP = 1		2.5		
t _{pd} (SVSL)	SVS _L propagation delay	SVSLE = 1, dV _{CORE} /dt = 1 mV/µs, SVSLFP = 0		20		μs
+	SVS on or off dolay time	SVSLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 10$ mV/ μ s, SVSLFP = 1		12.5		
t _(SVSL)	SVS _L on or off delay time	SVSLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 1$ mV/ μ s, SVSLFP = 0		100		μs

5.24 PMM, SVM Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		TYP	MAX	UNIT
I _(SVML)		SVMLE = 0, PMMCOREV = 2		0		nΑ
	SVM _L current consumption	SVMLE = 1, PMMCOREV = 2, SVMLFP = 0		200		nA
		SVMLE = 1, PMMCOREV = 2, SVMLFP = 1		1.5	μA	μΑ
	CVM propagation delay	SVMLE = 1, dV _{CORE} /dt = 10 mV/µs, SVMLFP = 1		2.5		
t _{pd(SVML)}	SVM _L propagation delay	SVMLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVMLFP = 0		20		μs
	SVM _i on or off delay time	SVMLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 10 \text{ mV/}\mu\text{s}$, $SVMLFP = 1$		12.5		
t _(SVML)		SVMLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 1$ mV/ μ s, SVMLFP = 0		100		μs

5.25 Wake-up Times From Low-Power Modes and Reset

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIO	NS	MIN	TYP	MAX	UNIT
t _{WAKE-UP-FAST}	Wake-up time from LPM2, LPM3, or LPM4 to active mode ⁽¹⁾	PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 1	f _{MCLK} ≥ 4.0 MHz f _{MCLK} < 4.0 MHz			5 6	μs
t _{WAKE-UP-SLOW}	Wake-up time from LPM2, LPM3, or LPM4 to active mode (2)(3)	PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0			150	165	μs
t _{WAKE-UP-RESET}	Wake-up time from RST or BOR event to active mode (4)				2	3	ms

⁽¹⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). t_{WAKE-UP-FAST} is possible with SVS_L and SVM_L in full performance mode or disabled. For specific register settings, see the *Low-Side SVS and SVM Control and Performance Mode Selection* section in the *Power Management Module and Supply Voltage Supervisor* chapter of the *CC430 Family User's Guide*.

5.26 Timer A

PARAMETER		TEST CONDITIONS	V _{cc}	MIN MAX	UNIT
f _{TA}	Timer_A input clock frequency	Internal: SMCLK or ACLK, External: TACLK, Duty cycle = 50% ±10%	1.8 V, 3 V	25	MHz
t _{TA,cap}	Timer_A capture timing	All capture inputs, Minimum pulse duration required for capture	1.8 V, 3 V	20	ns

⁽²⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). t_{WAKE-UP-SLOW} is set with SVS_L and SVM_L in normal mode (low current mode). For specific register settings, see the *Low-Side SVS and SVM Control and Performance Mode Selection* section in the *Power Management Module and Supply Voltage Supervisor* chapter of the CC430 Family User's Guide.

⁽³⁾ The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the performance mode settings as for LPM2, LPM3, and LPM4

performance mode settings as for LPM2, LPM3, and LPM4.

(4) This value represents the time from the wake-up event to the reset vector execution.

5.27 USCI (UART Mode) Clock Frequency

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10%		f _{SYSTEM}	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)			1	MHz

5.28 USCI (UART Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	V _{cc}	MIN	MAX	UNIT
	LIADT receive decition time (1)	2.2 V	50	600	20
ιτ	t _τ UART receive deglitch time ⁽¹⁾	3 V	50	600	ns

⁽¹⁾ Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time.

5.29 USCI (SPI Master Mode) Clock Frequency

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK or ACLK, Duty cycle = 50% ±10%		f _{SYSTEM}	MHz

5.30 USCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5-14 and Figure 5-15)

	PARAMETER	TEST CONDITIONS	PMMCOREVx	V _{cc}	MIN	MAX	UNIT
t _{SU,MI}	SOMI input data setup time		0	1.8 V	55		ns
				3 V	38		
				2.4 V	30		
			3	3 V	25		
t _{HD,MI}	SOMI input data hold time		0	1.8 V	0		ns
				3 V	0		
				2.4 V	0		
				3 V	0		
t _{VALID,MO}	SIMO output data valid time (2)	UCLK edge to SIMO valid, C _L = 20 pF	0	1.8 V		20	ns
				3 V		18	
			3	2.4 V		16	
				3 V		15	
t _{HD,MO}	SIMO output data hold time ⁽³⁾	C _L = 20 pF	0	1.8 V	-10		ns
				3 V	-8		
			3	2.4 V	-10		
				3 V	-8		

 ⁽¹⁾ f_{UCxCLK} = 1/2t_{LO/HI} with t_{LO/HI} ≥ max(t_{VALID,MO(USCI)} + t_{SU,SI(Slave)}, t_{SU,MI(USCI)} + t_{VALID,SO(Slave)})
 For the slave parameters t_{SU,SI(Slave)} and t_{VALID,SO(Slave)}, see the SPI parameters of the attached slave.
 (2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams

in Figure 5-14 and Figure 5-15.

⁽³⁾ Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-14 and Figure 5-15.

Figure 5-14. SPI Master Mode, CKPH = 0

Figure 5-15. SPI Master Mode, CKPH = 1

5.31 USCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5-16 and Figure 5-17)

	PARAMETER	TEST CONDITIONS	PMMCOREVx	V _{CC}	MIN	MAX	UNIT
t _{STE,LEAD}	STE lead time, STE low to clock		0	1.8 V	11		
				3 V	8		ns
			0	2.4 V	7		
			3	3 V	6		
	STE lag time, Last clock to STE high		0	1.8 V	3		ns
				3 V	3		
t _{STE,LAG}				2.4 V	3		
			3	3 V	3		
	STE access time, STE low to SOMI data out			1.8 V		66	ns
			0	3 V		50	
t _{STE,ACC}			_	2.4 V		36	
			3	3 V		30	
	STE disable time, STE high to SOMI high impedance		_	1.8 V		30	ns
			0	3 V		23	
t _{STE,DIS}			3	2.4 V		16	
				3 V		13	
	SIMO input data setup time		0	1.8 V	5		ns
				3 V	5		
t _{SU,SI}				2.4 V	2		
				3 V	2		
	SIMO input data hold time		3	1.8 V	5		ns
				3 V	5		
t _{HD,SI}				2.4 V	5		
				3 V	5		
	SOMI output data valid time (2)		0	1.8 V		76	ns
		UCLK edge to SOMI valid, C _L = 20 pF	0	3 V		60	
t _{VALID,SO}			3	2.4 V		44	
				3 V		40	
	SOMI output data hold time ⁽³⁾	C _L = 20 pF	0	1.8 V	18		
				3 V	12		
t _{HD,SO}			3	2.4 V	10		ns
				3 V	8		1

f_{UCxCLK} = 1/2t_{LO/HI} with t_{LO/HI} ≥ max(t_{VALID,MO(Master)} + t_{SU,SI(USCI)}, t_{SU,MI(Master)} + t_{VALID,SO(USCI)})
For the master parameters t_{SU,MI(Master)} and t_{VALID,MO(Master)}, see the SPI parameters of the attached master.
Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams

in Figure 5-16 and Figure 5-17.

Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-16 and Figure 5-17.

Figure 5-16. SPI Slave Mode, CKPH = 0

Figure 5-17. SPI Slave Mode, CKPH = 1

5.32 USCI (I²C Mode)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
f _{SCL}	SCL clock frequency		2.2 V, 3 V	0	400	kHz
	Lield time (non-outed) CTART	f _{SCL} ≤ 100 kHz	2.2 V, 3 V	4.0		μs
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		
t _{SU,STA}	Setup time for a repeated START	f _{SCL} ≤ 100 kHz	2.2 V, 3 V	4.7		μs
		$f_{SCL} > 100 \text{ kHz}$		0.6		
t _{HD,DAT}	Data hold time		2.2 V, 3 V	0		ns
t _{SU,DAT}	Data setup time		2.2 V, 3 V	250		ns
t _{SU,STO}	Setup time for STOP	f _{SCL} ≤ 100 kHz	2.2 V, 3 V	4.0		μs
		f _{SCL} > 100 kHz		0.6		
t _{SP}	Pulse duration of spikes suppressed by input filter		2.2 V 3 V	50	600	ns
				50	600	

Figure 5-18. I²C Mode Timing

5.33 LCD_B Operating Conditions

I	PARAMETER	CONDITIONS	MIN	NOM	MAX	UNIT
V _{CC,LCD_B,CP} en,3.6	Supply voltage range, charge pump enabled, V _{LCD} ≤ 3.6 V	LCDCPEN = 1, 0000 < VLCDx ≤ 1111 (charge pump enabled, V _{LCD} ≤ 3.6 V)	2.2		3.6	V
V _{CC,LCD_B,CP} en,3.3	Supply voltage range, charge pump enabled, $V_{LCD} \le 3.3 \text{ V}$		2.0		3.6	V
V _{CC,LCD_B,int.} bias	Supply voltage range, internal biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 0	2.4		3.6	V
V _{CC,LCD_B,ext.} bias	Supply voltage range, external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 0	2.4		3.6	V
V _{CC,LCD_B,VLCDEXT}	Supply voltage range, external LCD voltage, internal or external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 1	2.0		3.6	V
V _{LCDCAP/R33}	External LCD voltage at LCDCAP/R33, internal or external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 1	2.4		3.6	V
C _{LCDCAP}	Capacitor on LCDCAP when charge pump enabled	LCDCPEN = 1, VLCDx > 0000 (charge pump enabled)	4.7	4.7	10	μF
f _{Frame}	LCD frame frequency range	$f_{LCD} = 2 \times mux \times f_{FRAME}$ with mux = 1 (static), 2, 3, 4	0		100	Hz
f _{ACLK,in}	ACLK input frequency range		30	32	40	kHz
C _{Panel}	Panel capacitance	100-Hz frame frequency			10000	pF
V _{R33}	Analog input voltage at R33	LCDCPEN = 0, VLCDEXT = 1	2.4		V _{CC} + 0.2	V
V _{R23,1/3bias}	Analog input voltage at R23	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0	V _{R13}	$V_{R03} + 2/3 \times (V_{R33} - V_{R03})$	V _{R33}	V
V _{R13,1/3bias}	Analog input voltage at R13 with 1/3 biasing	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0	V_{R03}	V _{R03} + 1/3 x (V _{R33} - V _{R03})	V _{R23}	V
V _{R13,1/2bias}	Analog input voltage at R13 with 1/2 biasing	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1	V _{R03}	V _{R03} + 1/2 x (V _{R33} - V _{R03})	V _{R33}	V
V _{R03}	Analog input voltage at R03	R0EXT = 1	V _{SS}			V
V _{LCD} – V _{R03}	Voltage difference between V _{LCD} and R03	LCDCPEN = 0, R0EXT = 1	2.4		V _{CC} + 0.2	V
V _{LCDREF/R13}	External LCD reference voltage applied at LCDREF/R13	VLCDREFx = 01	0.8	1.2	1.5	V

5.34 LCD_B Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		VLCDx = 0000, VLCDEXT = 0	2.4 V to 3.6 V		V_{CC}		
		LCDCPEN = 1, VLCDx = 0001	2 V to 3.6 V		2.54		
		LCDCPEN = 1, VLCDx = 0010	2 V to 3.6 V		2.60		
		LCDCPEN = 1, VLCDx = 0011	2 V to 3.6 V		2.66		
		LCDCPEN = 1, VLCDx = 0100	2 V to 3.6 V		2.72		
		LCDCPEN = 1, VLCDx = 0101	2 V to 3.6 V		2.78		
		LCDCPEN = 1, VLCDx = 0110	2 V to 3.6 V		2.84		
V	I CD voltage	LCDCPEN = 1, VLCDx = 0111	2 V to 3.6 V		2.90		V
V_{LCD}	LCD voltage	LCDCPEN = 1, VLCDx = 1000	2 V to 3.6 V		2.96		V
		LCDCPEN = 1, VLCDx = 1001	2 V to 3.6 V		3.02		
		LCDCPEN = 1, VLCDx = 1010	2 V to 3.6 V		3.08		
		LCDCPEN = 1, VLCDx = 1011	2 V to 3.6 V		3.14		
		LCDCPEN = 1, VLCDx = 1100	2 V to 3.6 V		3.20		
		LCDCPEN = 1, VLCDx = 1101	2.2 V to 3.6 V		3.26		
		LCDCPEN = 1, VLCDx = 1110	2.2 V to 3.6 V		3.32		
		LCDCPEN = 1, VLCDx = 1111	2.2 V to 3.6 V		3.38	3.6	
I _{CC,Peak,CP}	Peak supply currents due to charge pump activities	LCDCPEN = 1, VLCDx = 1111	2.2 V		200		μΑ
t _{LCD,CP,on}	Time to charge C _{LCD} when discharged	C _{LCDCAP} = 4.7μF, LCDCPEN = 0→1, VLCDx = 1111	2.2 V		100	500	ms
I _{CP,Load}	Maximum charge pump load current	LCDCPEN = 1, VLCDx = 1111	2.2 V	50			μΑ
R _{LCD,Seg}	LCD driver output impedance, segment lines	LCDCPEN = 1, VLCDx = 1000, I _{LOAD} = ±10 µA	2.2 V			10	kΩ
R _{LCD,COM}	LCD driver output impedance, common lines	LCDCPEN = 1, VLCDx = 1000, I _{LOAD} = ±10 µA	2.2 V			10	kΩ

5.35 12-Bit ADC, Power Supply and Input Range Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
AV _{CC}	Analog supply voltage, full performance	AVCC and DVCC are connected together, AVSS and DVSS are connected together, $V_{(AVSS)} = V_{(DVSS)} = 0 \text{ V}$		2.2		3.6	V
$V_{(Ax)}$	Analog input voltage range (2)	All ADC12 analog input pins Ax		0		AV_CC	V
	Operating supply current into	$f_{ADC12CLK} = 5.0 \text{ MHz}, ADC12ON = 1,$	2.2 V		125	155	
I _{ADC12_A}	Operating supply current into AVCC terminal (3)	REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0	3 V		150	220	μΑ
C _I	Input capacitance	Only one terminal Ax can be selected at one time	2.2 V		20	25	pF
R_{I}	Input MUX ON resistance	$0 \text{ V} \leq V_{Ax} \leq AV_{CC}$		10	200	1900	Ω

⁽¹⁾ The leakage current is specified by the digital I/O input leakage.

5.36 12-Bit ADC, Timing Parameters

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		For specified performance of ADC12 linearity parameters using an external reference voltage or AVCC as reference ⁽¹⁾		0.45	4.8	5.0	
f _{ADC12CLK}	ADC conversion clock	For specified performance of ADC12 linearity parameters using the internal reference (2)	2.2 V, 3 V	0.45	2.4	4.0	MHz
		For specified performance of ADC12 linearity parameters using the internal reference (3)		0.45	2.4	2.7	
f _{ADC12OSC}	Internal ADC12 oscillator ⁽⁴⁾	ADC12DIV = 0, f _{ADC12CLK} = f _{ADC12OSC}	2.2 V, 3 V	4.2	4.8	5.4	MHz
	Conversion time	REFON = 0, Internal oscillator, $f_{ADC12OSC}$ = 4.2 MHz to 5.4 MHz	2.2 V, 3 V	2.4		3.1	
tCONVERT	Conversion time	External $f_{ADC12CLK}$ from ACLK, MCLK or SMCLK, ADC12SSEL $\neq 0$			13 x 1 / f _{ADC12CLK}		μs
t _{Sample}	Sampling time	$R_S = 400 \ \Omega, \ R_I = 1000 \ \Omega, \ C_I = 30 \ pF,$ $\tau = (R_S + R_I) \times C_I^{(5)}$	2.2 V, 3 V	1000			ns

⁽¹⁾ REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0, SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the specified performance of the ADC12 linearity is ensured with f_{ADC12CLK} maximum of 5.0 MHz.

⁽²⁾ The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results. If the reference voltage is supplied by an external source or if the internal reference voltage is used and REFOUT = 1, then decoupling capacitors are required. See Section 5.40 and Section 5.41.

⁽³⁾ The internal reference supply current is not included in current consumption parameter I_{ADC12} A.

⁽²⁾ SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1

⁽³⁾ SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC divided by 2.

⁽⁴⁾ The ADC12OSC is sourced directly from MODOSC inside the UCS.

⁽⁵⁾ Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB:
t_{Sample} = ln(2ⁿ⁺¹) × (R_S + R_I) × C_I + 800 ns, where n = ADC resolution = 12, R_S = external source resistance

5.37 12-Bit ADC, Linearity Parameters Using an External Reference Voltage or AVCC as **Reference Voltage**

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP	MAX	UNIT
_	Integral linearity error(!)	1.4 V ≤ dVREF ≤ 1.6 V ⁽²⁾	2.2 V, 3 V		±2.0	5
Eı		1.6 V < dVREF ⁽²⁾	2.2 V, 3 V		±1.7	LSB
E _D	Differential linearity error ⁽¹⁾	See (2)	2.2 V, 3 V		±1.0	LSB
_	Offset error ⁽³⁾	dVREF ≤ 2.2 V ⁽²⁾	2.2 V, 3 V	±1.0	±2.0	LSB
Eo	Offset effort	dVREF > 2.2 V ⁽²⁾	2.2 V, 3 V	±1.0	±2.0	LSB
E _G	Gain error ⁽³⁾	See (2)	2.2 V, 3 V	±1.0	±2.0	LSB
г	Total unadicated array	dVREF ≤ 2.2 V ⁽²⁾	2.2 V, 3 V	±1.4	±3.5	LCD
E _T	Total unadjusted error	dVREF > 2.2 V ⁽²⁾	2.2 V, 3 V	±1.4	±3.5	LSB

Parameters are derived using the histogram method.

Parameters are derived using a best fit curve.

5.38 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage

	PARAMETER	TEST CONDI	TIONS ⁽¹⁾	V _{CC}	MIN	TYP	MAX	UNIT
_	Integral linearity	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V			±1.7	LSB
Eı	error ⁽²⁾	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±2.5	LOD
		ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz		-1.0		+2.0	
E _D	Differential linearity error ⁽²⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V	-1.0		+1.5	LSB
	inicantly circi	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz		-1.0		+2.5	
_	Offset error ⁽³⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	221/21/		±1.0	±2.0	LSB
Eo	Oliset ellor	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V		±1.0	±2.0	LSB
_	Gain error ⁽³⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	227.27		±1.0	±2.0	LSB
E _G	Gain endi	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1.5% ⁽⁴⁾	VREF
_	Total unadjusted	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V		±1.4	±3.5	LSB
E _T	error	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1.5% ⁽⁴⁾	VREF

The internal reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 1. $dVREF = V_{R-} - V_{R-}$

The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = $V_{R+} - V_{R-}$, $V_{R+} < AVCC$, $V_{R-} > AVSS$. Unless otherwise mentioned, dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω and two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF+/VREF- to decouple the dynamic current. Also see the CC430 Family User's Guide.

Parameters are derived using the histogram method.

Parameters are derived using a best fit curve.

The gain error and total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In this mode the reference voltage used by the ADC12_A is not available on a pin.

5.39 12-Bit ADC, Temperature Sensor and Built-In V_{MID}⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V	See (2) (3)	ADC12ON = 1, INCH = 0Ah,	2.2 V		680		mV
V _{SENSOR}	See C/ C/	$T_A = 0$ °C	3 V		680		IIIV
TC	See ⁽³⁾	ADC12ON = 1, INCH = 0Ah	2.2 V		2.25		mV/°C
TC _{SENSOR}	See V	ADC12ON = 1, INCH = UAII	3 V		2.25		IIIV/ C
+	Sample time required if	ADC12ON = 1, INCH = 0Ah,	2.2 V	30			110
tSENSOR(sample)	channel 10 is selected (4)	Error of conversion result ≤ 1 LSB	3 V	30			μs
	AV _{CC} divider at channel 11, V _{AVCC} factor	ADC12ON = 1, INCH = 0Bh		0.48	0.5	0.52	V _{AVCC}
V_{MID}	AV _{CC} divider at channel 11	ADC12ON - 1 INCH - OPh	2.2 V	1.06	1.1	1.14	V
	AV _{CC} divider at channel 11	ADC12ON = 1, INCH = 0Bh	3 V	1.44	1.5	1.56	V
t _{VMID(sample)}	Sample time required if channel 11 is selected ⁽⁵⁾	ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤1 LSB	2.2 V, 3 V	1000			ns

- (1) The temperature sensor is provided by the REF module. See the REF module parametric, I_{REF+}, regarding the current consumption of the temperature sensor.
- (2) The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor.
- (3) The device descriptor structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage levels. The sensor voltage can be computed as V_{SENSOR} = TC_{SENSOR} × (Temperature, °C) + V_{SENSOR}, where TC_{SENSOR} and V_{SENSOR} can be computed from the calibration values for higher accuracy.
- (4) The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time t_{SENSOR(on)}.
- (5) The on time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}; no additional on time is needed.

Figure 5-19. Typical Temperature Sensor Voltage

5.40 REF, External Reference

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{eREF+}	Positive external reference voltage input	$V_{eREF+} > V_{REF-}/V_{eREF-}$ ⁽²⁾		1.4		AV_{CC}	٧
V _{REF} _/V _{eREF} _	Negative external reference voltage input	$V_{eREF+} > V_{REF-}/V_{eREF-}$ (3)		0		1.2	٧
(V _{eREF+} - V _{REF} _/V _{eREF} _)	Differential external reference voltage input	V _{eREF+} > V _{REF} _/V _{eREF} _ ⁽⁴⁾		1.4		AV _{CC}	V
I _{VeREF+}	Ctatia inquit aurrent	$\begin{array}{l} 1.4~V \leq V_{eREF+} \leq V_{AVCC}~,~V_{eREF-} = 0~V,\\ f_{ADC12CLK} = 5~MHz,~ADC12SHTx = 1h,\\ Conversion~rate~200~ksps \end{array}$	2.2 V, 3 V		±8.5	±26	4
I _{VREF-/VeREF-}	Static input current	$\begin{array}{l} 1.4~V \leq V_{eREF+} \leq V_{AVCC}~,~V_{eREF-} = 0~V,\\ f_{ADC12CLK} = 5~MHz,~ADC12SHTx = 8h,\\ Conversion~rate~20~ksps \end{array}$	2.2 V, 3 V			±1	μА
C _{VREF+/-}	Capacitance at VREF+ or VREF- terminal, external reference (5)			10			μF

- (1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, C_i, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
- (2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
- (3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
- (4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.
- (5) Two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. Also see the *CC430 Family User's Guide*.

5.41 REF, Built-In Reference

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		REFVSEL = 2 for 2.5 V, REFON = REFOUT = 1, I _{VREF+} = 0 A	3 V		2.41	±1.5%	
V_{REF+}	Positive built-in reference voltage output	REFVSEL = 1 for 2 V, REFON = REFOUT = 1, I _{VREF+} = 0 A	3 V		1.93	±1.5%	V
		REFVSEL = 0 for 1.5 V, REFON = REFOUT = 1, I _{VREF+} = 0 A	2.2 V, 3 V		1.45	±1.5%	
		REFVSEL = 0 for 1.5 V, reduced performance		1.8			
۸۱/	AVCC minimum voltage, Positive built-in reference	REFVSEL = 0 for 1.5 V		2.2			V
$AV_{CC(min)}$	active	REFVSEL = 1 for 2 V		2.3			V
		REFVSEL = 2 for 2.5 V		2.8			
	Operating supply current into	REFON = 1, REFOUT = 0, REFBURST = 0	3 V		100	140	μΑ
I _{REF+}	Operating supply current into AVCC terminal (2)(3)	REFON = 1, REFOUT = 1, REFBURST = 0	3 V		0.9	1.5	mA
I _{L(VREF+)}	Load-current regulation, VREF+ terminal ⁽⁴⁾	REFVSEL = 0, 1, or 2, I_{VREF+} = +10 μ A or -1000 μ A, AV_{CC} = $AV_{CC(min)}$ for each reference level, REFON = REFOUT = 1				2500	μV/mA
C _{VREF+}	Capacitance at VREF+ terminals, internal reference	REFON = REFOUT = 1		20		100	pF
TC _{REF+}	Temperature coefficient of built-in reference (5)	I _{VREF+} = 0 A, REFVSEL = 0, 1, or 2, REFON = 1, REFOUT = 0 or 1			30	50	ppm/ °C
PSRR_DC	Power supply rejection ratio (DC)	$\begin{array}{l} AV_{CC} = AV_{CC(min)} \text{ to } AV_{CC(max)}, \\ T_A = 25 \text{ °C}, \text{ REFVSEL} = 0, 1, \text{ or } 2, \\ \text{REFON} = 1, \text{ REFOUT} = 0 \text{ or } 1 \end{array}$			120	300	μV/V
PSRR_AC	Power supply rejection ratio (AC)	$\begin{array}{l} AV_{CC} = AV_{CC(min)} \ to \ AV_{CC(max)} \\ T_A = 25 \ ^{\circ}C, \ f = 1 \ kHz, \ \Delta Vpp = 100 \ mV, \\ REFVSEL = 0, \ 1, \ or \ 2, \\ REFON = 1, \ REFOUT = 0 \ or \ 1 \end{array}$			6.4		mV/V
	Sottling time of reference	$AV_{CC} = AV_{CC(min)}$ to $AV_{CC(max)}$, REFVSEL = 0, 1, or 2, REFOUT = 0, REFON = 0 \rightarrow 1			75	75	
t _{SETTLE}	Settling time of reference voltage ⁽⁶⁾	$\begin{array}{l} AV_{CC} = AV_{CC(min)} \ to \ AV_{CC(max)}, \\ C_{VREF} = C_{VREF}(maximum), \\ REFVSEL = 0, \ 1, \ or \ 2, \\ REFOUT = 1, \ REFON = 0 \rightarrow 1 \end{array}$			75		μs

⁽¹⁾ The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers, one smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal, as well as, used as the reference for the conversion and uses the larger buffer. When REFOUT = 0, the reference is only used as the reference for the conversion and uses the smaller buffer.

- (3) The temperature sensor is provided by the REF module. Its current is supplied from the AVCC terminal and is equivalent to I_{REF+} with REFON = 1 and REFOUT = 0.
- (4) Contribution only due to the reference and buffer including package. This does not include resistance due to PCB trace or other causes.
- (5) Calculated using the box method: (MAX(–40°C to 85°C) MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C (–40°C)).
- (6) The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB. The settling time depends on the external capacitive load when REFOUT = 1.

⁽²⁾ The internal reference current is supplied from the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an analog-to-digital conversion. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current contribution of the larger buffer without external load.

5.42 Comparator_B

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage			1.8		3.6	V
			1.8 V			40	
	Comparator operating supply	CBPWRMD = 00	2.2 V		30	50	
I _{AVCC_COMP}	current into AVCC, Excludes		3 V		40	65	μΑ
	reference resistor ladder	CBPWRMD = 01	2.2 V, 3 V		10	30	
		CBPWRMD = 10	2.2 V, 3 V		0.1	0.5	
I _{AVCC_REF}	Quiescent current of local reference voltage amplifier into AVCC	CBREFACC = 1, CBREFLx = 01				22	μΑ
V _{IC}	Common mode input range			0		V _{CC} – 1	V
\ /	land offertualte on	CBPWRMD = 00				±20	\/
V _{OFFSET}	Input offset voltage	CBPWRMD = 01 or 10				±10	mV
C _{IN}	Input capacitance				5		pF
	Coving input registeres	On (switch closed)			3	4	kΩ
R _{SIN}	Series input resistance	Off (switch open)		30			$M\Omega$
		CBPWRMD = 00, CBF = 0				450	
t _{PD}	Propagation delay, response time	CBPWRMD = 01, CBF = 0				600	ns
		CBPWRMD = 10, CBF = 0				50	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00		0.35	0.6	1.0	
	Decreased and decreased the Observation	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01		0.6	1.0	1.8	
t _{PD,filter}	Propagation delay with filter active	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10		1.0	1.8	3.4	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11		1.8	3.4	6.5	
	Comparator enable time, settling	CBON = 0 to CBON = 1, CBPWRMD = 00 or 01			1	2	
ten_cmp	time	CBON = 0 to CBON = 1, CBPWRMD = 10				100	μs
t _{EN_REF}	Resistor reference enable time	CBON = 0 to CBON = 1			0.3	1.5	μs
V _{CB_REF}	Reference voltage for a given tap	VIN = reference into resistor ladder, n = 0 to 31			VIN x (n + 1) / 32		V

5.43 Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TJ	MIN	TYP	MAX	UNIT
DV _{CC(PGM/ERASE)}	Program and erase supply voltage		1.8		3.6	V
I _{PGM}	Average supply current from DVCC during program			3	5	mA
I _{ERASE}	Average supply current from DVCC during erase			2	6.5	mA
I _{MERASE} , I _{BANK}	Average supply current from DVCC during mass erase or bank erase			2	6.5	mA
t _{CPT}	Cumulative program time ⁽¹⁾				16	ms
	Program and erase endurance		10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	25°C	100			years
t _{Word}	Word or byte program time ⁽²⁾		64		85	μs
t _{Block, 0}	Block program time for first byte or word (2)		49		65	μs
t _{Block, 1-(N-1)}	Block program time for each additional byte or word, except for last byte or word (2)		37		49	μs
t _{Block, N}	Block program time for last byte or word (2)		55		73	μs
t _{Erase}	Erase time for segment erase, mass erase, and bank erase when available (2)		23		32	ms
f _{MCLK,MGR}	MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1)		0		1	MHz

⁽¹⁾ The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word write, individual byte write, and block write modes.

5.44 JTAG and Spy-Bi-Wire Interface

	PARAMETER	V _{cc}	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V, 3 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2.2 V, 3 V	0.025		15	μs
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) ⁽¹⁾	2.2 V, 3 V			1	μs
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time		15		100	μs
4	TCK input frequency, 4-wire JTAG ⁽²⁾	2.2 V	0		5	MHz
f _{TCK}	TCK input frequency, 4-wire JTAG (-)	3 V	0		10	MHz
R _{internal}	Internal pulldown resistance on TEST	2.2 V, 3 V	45	60	80	kΩ

⁽¹⁾ Tools that access the Spy-Bi-Wire interface need to wait for the minimum t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

⁽²⁾ These values are hardwired into the state machine of the flash controller.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

5.45 RF1A CC1101-Based Radio Parameters

5.46 Recommended Operating Conditions

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage range during radio operation	2.0		3.6	V
PMMCOREVx	Core voltage range, PMMCOREVx setting during radio operation	2		3	
		300		348	
RF range		389 ⁽¹⁾		464	MHz
		779		928	•
	2-FSK	0.6		500	
Data rate	2-GFSK, OOK, and ASK	0.6		250	kBaud
	(Shaped) MSK (also known as differential offset QPSK) (2)	26		500	•
RF crystal frequency		26	26	27	MHz
RF crystal tolerance	Total tolerance including initial tolerance, crystal loading, aging, and temperature dependency. (3)		±40		ppm
RF crystal load capacitance		10	13	20	pF
RF crystal effective series resistance				100	Ω

- (1) If using a 27-MHz crystal, the lower frequency limit for this band is 392 MHz.
- If using optional Manchester encoding, the data rate in kbps is half the baud rate.
- The acceptable crystal tolerance depends on frequency band, channel bandwidth, and spacing. Also see DN005 -- CC11xx Sensitivity versus Frequency Offset and Crystal Accuracy.

5.47 RF Crystal Oscillator, XT2

 $T_A = 25$ °C, $V_{CC} = 3$ V (unless otherwise noted)⁽¹⁾

7				
PARAMETER	MIN	TYP	MAX	UNIT
Start-up time (2)		150	810	μs
Duty cycle	45%	50%	55%	

- All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).
- The start-up time depends to a very large degree on the used crystal.

5.48 Current Consumption, Reduced-Power Modes

 $T_A = 25$ °C, $V_{CC} = 3$ V (unless otherwise noted)⁽¹⁾

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Current consumption	RF crystal oscillator only ⁽²⁾		100		μΑ
	DLE state (including RF crystal oscillator)		1.7		m Λ
	FSTXON state (only the frequency synthesizer is running) (3)		9.5		mA

- All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).
- To measure the current, follow this sequence:
 - Enable XT2 with XOSC_FORCE_ON = 1.
 - Set radio to sleep mode.
 - Disable XT2 clock requests from any module.
- (3) This current consumption is also representative of other intermediate states when going from IDLE to RX or TX, including the calibration

5.49 Current Consumption, Receive Mode

 T_A = 25°C, V_{CC} = 3 V (unless otherwise noted)⁽¹⁾ (2)

PARAMETER	FREQ (MHz)	DATA RATE (kBaud)	TEST CONDI	rions	TYP	UNIT
		1.2		Input at -100 dBm (close to sensitivity limit)	17	
		1.2		Input at -40 dBm (well above sensitivity limit)	16	
	315	315 38.4	Register settings optimized for	Input at -100 dBm (close to sensitivity limit)	17	
	313	30.4	reduced current	Input at -40 dBm (well above sensitivity limit)	16	
		250		Input at -100 dBm (close to sensitivity limit)	18	
	250		Input at -40 dBm (well above sensitivity limit)	16.5		
	1.2		Input at -100 dBm (close to sensitivity limit)	18		
			Input at -40 dBm (well above sensitivity limit)	17		
Current	422	433 38.4	Register settings optimized for	Input at -100 dBm (close to sensitivity limit)	18	mA
consumption, RX	433	36.4	reduced current	Input at -40 dBm (well above sensitivity limit)	17	IIIA
		250		Input at -100 dBm (close to sensitivity limit)	18.5	
				Input at -40 dBm (well above sensitivity limit)	17	
		1.2		Input at -100 dBm (close to sensitivity limit)	16	
		1.2		Input at -40 dBm (well above sensitivity limit)	15	
	969 045	20.4	Register settings optimized for	Input at -100 dBm (close to sensitivity limit)	16	
868, 915	000, 915	868, 915 38.4 rei	reduced current ⁽³⁾	Input at -40 dBm (well above sensitivity limit)	15	
				Input at -100 dBm (close to sensitivity limit)	16	
		250		Input at -40 dBm (well above sensitivity limit)	15	

⁽¹⁾ All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).

⁽²⁾ Reduced current setting (MDMCFG2.DEM_DCFILT_OFF = 1) gives a slightly lower current consumption at the cost of a reduction in sensitivity. See Section 5.55 through Section 5.58 for additional details on current consumption and sensitivity.

⁽³⁾ For 868 or 915 MHz, see Figure 5-20 for current consumption with register settings optimized for sensitivity.

Figure 5-20. Typical RX Current Consumption Over Temperature and Input Power Level, 868 MHz, Sensitivity-Optimized Setting

5.50 Current Consumption, Transmit Mode

 $T_A = 25$ °C, $V_{CC} = 3$ V (unless otherwise noted)⁽¹⁾ (2)

PARAMETER	FREQUENCY [MHz}	PATABLE SETTING	OUTPUT POWER (dBm)	TYP	UNIT
		0xC0	maximum	26	
	245	0xC4	+10	25	
	315	0x51	0	15	
		0x29	-6	15	
		0xC0	maximum	33	
	422	0xC6	+10	29	
	433	0x50	0	17	
Comment and a second and TV		0x2D	-6	17	A
Current consumption, TX		0xC0	maximum	36	mA
	000	0xC3	+10	33	
	868	0x8D	0	18	
		0x2D	-6	18	
		0xC0	maximum	35	
	015	0xC3	+10	32	
	915	0x8D	0	18	
		0x2D	-6	18	

⁽¹⁾ All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).

⁽²⁾ Reduced current setting (MDMCFG2.DEM_DCFILT_OFF = 1) gives a slightly lower current consumption at the cost of a reduction in sensitivity. See Section 5.55 through Section 5.58 for additional details on current consumption and sensitivity.

5.51 Typical TX Current Consumption, 315 MHz

PARAMETER	PATABLE	OUTPUT POWER	V _{cc}	2 V	3 V	3.6 V	UNIT
	SETTING	(dBm)	T _A	25°C	25°C	25°C	ONIT
Current consumption, TX	0xC0	maximum		27.5	26.4	28.1	
	0xC4	+10		25.1	25.2	25.3	A
	0x51	0		14.4	14.6	14.7	mA mA
	0x29	-6		14.2	14.7	15.0	

5.52 Typical TX Current Consumption, 433 MHz

PARAMETER	PATABLE SETTING	OUTPUT	V _{cc}	2 V	3 V	3.6 V	
		POWER (dBm)	T _A	25°C	25°C	25°C	UNIT
Current consumption, TX	0xC0	maximum		33.1	33.4	33.8	
	0xC6	+10		28.6	28.8	28.8	A
	0x50	0		16.6	16.8	16.9	mA
	0x2D	-6		16.8	17.5	17.8	

5.53 Typical TX Current Consumption, 868 MHz

PARAMETER	SETTING POWE	PATABLE OUTPUT		V _{CC}		2 V		3 V			3.6 V			
		POWER (dBm)	T _A	-40°C	25°C	85°C	-40°C	25°C	85°C	-40°C	25°C	85°C	UNIT	
Current consumption, TX	0xC0	maximum		36.7	35.2	34.2	38.5	35.5	34.9	37.1	35.7	34.7		
	0xC3	+10		34.0	32.8	32.0	34.2	33.0	32.5	34.3	33.1	32.2	А	
	0x8D	0		18.0	17.6	17.5	18.3	17.8	18.1	18.4	18.0	17.7	mA	
	0x2D	-6		17.1	17.0	17.2	17.8	17.8	18.3	18.2	18.1	18.1		

5.54 Typical TX Current Consumption, 915 MHz

PARAMETER	PAIARIE	OUTPUT V _{CC}		2 V		3 V			3.6 V				
		POWER (dBm)	T _A	-40°C	25°C	85°C	-40°C	25°C	85°C	-40°C	25°C	85°C	UNIT
Current consumption, TX	0xC0	maximum		35.5	33.8	33.2	36.2	34.8	33.6	36.3	35.0	33.8	
	0xC3	+10		33.2	32.0	31.0	33.4	32.1	31.2	33.5	32.3	31.3	A
	0x8D	0		17.8	17.4	17.1	18.1	17.6	17.3	18.2	17.8	17.5	mA
	0x2D	-6		17.0	16.9	16.9	17.7	17.6	17.6	18.1	18.0	18.0	

5.55 RF Receive, Overall

 $T_A = 25$ °C, $V_{CC} = 3$ V (unless otherwise noted)⁽¹⁾

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Digital channel filter bandwidth (2)		58		812	kHz	
Spurious emissions ⁽³⁾ (4)	25 MHz to 1 GHz		-68	-57	dBm	
	Above 1 GHz		-66	-47	ubili	
RX latency	Serial operation ⁽⁵⁾		9		bit	

- (1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).
- (2) User programmable. The bandwidth limits are proportional to crystal frequency (given values assume a 26.0 MHz crystal)
- (3) Typical radiated spurious emission is -49 dBm measured at the VCO frequency
- (4) Maximum figure is the ETSI EN 300 220 limit
- (5) Time from start of reception until data is available on the receiver data output pin is equal to 9 bit.

5.56 RF Receive, 315 MHz

 $T_A = 25$ °C, $V_{CC} = 3$ V (unless otherwise noted)⁽¹⁾

2-FSK, 1% packet error rate, 20-byte packet length, Sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF = 0 (unless otherwise noted)

PARAMETER	DATA RATE (kBaud)	TEST CONDITIONS	ТҮР	UNIT
	0.6	14.3-kHz deviation, 58-kHz digital channel filter bandwidth	-117	
	1.2	5.2-kHz deviation, 58-kHz digital channel filter bandwidth (2)	-111	
Receiver sensitivity	38.4	20-kHz deviation, 100-kHz digital channel filter bandwidth (3)	-103	dBm
	250	127-kHz deviation, 540-kHz digital channel filter bandwidth (4)	-95	
	500	MSK, 812-kHz digital channel filter bandwidth (4)	-86	

- 1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).
- (2) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF =1. The typical current consumption is then reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to −109 dBm.
- (3) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF =1. The typical current consumption is then reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to −102 dBm.
- (4) MDMCFG2.DEM_DCFILT_OFF =1 cannot be used for data rates ≥ 250kBaud.

5.57 RF Receive, 433 MHz

 $T_A = 25$ °C, $V_{CC} = 3$ V (unless otherwise noted)⁽¹⁾

2-FSK, 1% packet error rate, 20-byte packet length, Sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF = 0 (unless otherwise noted)

PARAMETER	DATA RATE (kBaud)	TEST CONDITIONS	TYP	UNIT
	0.6	14.3-kHz deviation, 58-kHz digital channel filter bandwidth	-114	
	1.2	5.2-kHz deviation, 58-kHz digital channel filter bandwidth (2)	-111	
Receiver sensitivity	38.4	20-kHz deviation, 100-kHz digital channel filter bandwidth (3)	-104	dBm
	250	127-kHz deviation, 540-kHz digital channel filter bandwidth (4)	-93	
	500	MSK, 812-kHz digital channel filter bandwidth (4)	-85	

- (1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).
- (2) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF =1. The typical current consumption is then reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to -109 dBm.
- (3) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF =1. The typical current consumption is then reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to -101 dBm.
- (4) MDMCFG2.DEM DCFILT OFF =1 cannot be used for data rates ≥ 250kBaud.

5.58 RF Receive, 868 or 915 MHz

 $T_A = 25$ °C, $V_{CC} = 3$ V (unless otherwise noted)⁽¹⁾

1% packet error rate, 20-byte packet length, Sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF = 0 (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
0.6-kBaud data rate, 2-F	SK, 14.3-kHz deviation, 58-kHz digital channel filter ba	ndwidth (unless othe	rwise note	ed)		
Receiver sensitivity				-115		dBm
1.2-kBaud data rate, 2-F	SK, 5.2-kHz deviation, 58-kHz digital channel filter ban	dwidth (unless other	wise noted	i)	•	
				-109		<u>l</u>
Receiver sensitivity (2)	2-GFSK modulation by setting MDMCFG2.MOD_FORMAGAUSsian filter with BT = 0.5	AT = 2,		-109		dBm
Saturation	FIFOTHR.CLOSE_IN_RX =0 ⁽³⁾			-28		dBm
Adjacent channel	Desired channel 3 dB above the sensitivity limit, 100-	-100-kHz offset		39		dB
rejection	kHz channel spacing ⁽⁴⁾	+100-kHz offset		39		αь
Image channel rejection	IF 152 kHz, desired channel 3 dB above the sensitivity limit			29		dB
Disabises	Desired shared 2 dB share the secretarity limit (5)	±2-MHz offset		-48		dBm
Blocking	Desired channel 3 dB above the sensitivity limit (5)	±10-MHz offset		-40		dBm
38.4-kBaud data rate, 2-	FSK, 20-kHz deviation, 100-kHz digital channel filter ba	indwidth (unless othe	erwise not	ed)	·	
				-102		
Receiver sensitivity (6)	2-GFSK modulation by setting MDMCFG2.MOD_FORM/ Gaussian filter with BT = 0.5	AT = 2,		-101		dBm
Saturation	FIFOTHR.CLOSE_IN_RX =0 (3)			-19		dBm
Adjacent channel	Desired channel 3 dB above the sensitivity limit, 200-	-200-kHz offset	20			-10
rejection	kHz channel spacing ⁽⁵⁾	+200-kHz offset	25			dB
Image channel rejection	IF 152 kHz, desired channel 3 dB above the sensitivity lin	mit		23		dB
Disabises	Desired showed 2 dB shows the consists the limit (5)	±2-MHz offset		-48		dBm
Blocking	Desired channel 3 dB above the sensitivity limit (5)	±10-MHz offset		-40		dBm
250-kBaud data rate, 2-F	SK, 127-kHz deviation, 540-kHz digital channel filter be	andwidth (unless oth	erwise not	ted)		
				-90		1
Receiver sensitivity (7)	2-GFSK modulation by setting MDMCFG2.MOD_FORM/ Gaussian filter with BT = 0.5	AT = 2,		-90		dBm
Saturation	FIFOTHR.CLOSE_IN_RX =0 ⁽³⁾			-19		dBm
Adjacent channel	Desired channel 3 dB above the sensitivity limit, 750-	-750-kHz offset		24		-10
rejection	kHz channel spacing ⁽⁸⁾	+750-kHz offset		30		dB
Image channel rejection	IF 304 kHz, desired channel 3 dB above the sensitivity lin	mit		18		dB
Disabises	Desired shared 2 dD share the secretary (8)	±2-MHz offset		-53		dBm
Blocking	Desired channel 3 dB above the sensitivity limit (8)	±10-MHz offset		-39		dBm
500-kBaud data rate, MS	SK, 812-kHz digital channel filter bandwidth (unless oth	nerwise noted)	•			
Receiver sensitivity ⁽⁷⁾				-84		dBm
Image channel rejection	IF 355 kHz, desired channel 3 dB above the sensitivity lii	mit		-2		dB
Disabises	Desired showed 2 dB shows the constitute the (9)	±2-MHz offset		-53		dBm
Blocking	Desired channel 3 dB above the sensitivity limit (9)	±10-MHz offset		-38		dBm
	<u>u</u>		1			

- (1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).
- (2) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF =1. The typical current consumption is then reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to -107 dBm
- (3) See DN010 Close-in Reception with CC1101.
- (4) See Figure 5-21 for blocking performance at other offset frequencies.
- 5) See Figure 5-22 for blocking performance at other offset frequencies.
- (6) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF =1. The typical current consumption is then reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to -100 dBm.
- 7) MDMCFG2.DEM_DCFILT_OFF = 1 cannot be used for data rates ≥ 250kBaud.
- (8) See Figure 5-23 for blocking performance at other offset frequencies.
- (9) See Figure 5-24 for blocking performance at other offset frequencies.

NOTE: 868.3 MHz, 2-FSK, 5.2-kHz deviation, IF is 152.3 kHz, digital channel filter bandwidth is 58 kHz

Figure 5-21. Typical Selectivity at 1.2-kBaud Data Rate

NOTE: 868 MHz, 2-FSK, 20 kHz deviation, IF is 152.3 kHz, digital channel filter bandwidth is 100 kHz

Figure 5-22. Typical Selectivity at 38.4-kBaud Data Rate

NOTE: 868 MHz, 2-FSK, IF is 304 kHz, digital channel filter bandwidth is 540 kHz

Figure 5-23. Typical Selectivity at 250-kBaud Data Rate

NOTE: 868 MHz, 2-FSK, IF is 355 kHz, digital channel filter bandwidth is 812 kHz

Figure 5-24. Typical Selectivity at 500-kBaud Data Rate

5.59 Typical Sensitivity, 315 MHz, Sensitivity Optimized Setting

PARAMETER	DATA RATE	V _{CC}		2 V			3 V			3.6 V		UNIT
PARAMETER	(kBaud)	TA	-40°C	25°C	85°C	-40°C	25°C	85°C	-40°C	25°C	85°C	UNII
	1.2		-112	-112	-110	-112	-111	-109	-112	-111	-108	
Sensitivity, 315 MHz	38.4		-105	-105	-104	-105	-103	-102	-105	-104	-102	dBm
313 WII IZ	250		-95	-95	-92	-94	-95	-92	-95	-94	-91	

5.60 Typical Sensitivity, 433 MHz, Sensitivity Optimized Setting

PARAMETER	DATA RATE	V _{cc}		2 V			3 V			3.6 V		UNIT
PARAMETER	(kBaud)	TA	-40°C	25°C	85°C	-40°C	25°C	85°C	-40°C	25°C	85°C	UNII
	1.2		-111	-110	-108	-111	-111	-108	-111	-110	-107	
Sensitivity, 433 MHz	38.4		-104	-104	-101	-104	-104	-101	-104	-103	-101	dBm
400 1011 12	250		-93	-94	-91	-93	-93	-90	-93	-93	-90	

5.61 Typical Sensitivity, 868 MHz, Sensitivity Optimized Setting

PARAMETER	DATA RATE	V _{CC}		2 V			3 V			3.6 V		UNIT
PARAMETER	(kBaud)	TA	-40°C	25°C	85°C	-40°C	25°C	85°C	-40°C	25°C	85°C	UNIT
	1.2	*	-109	-109	-107	-109	-109	-106	-109	-108	-106	
Sensitivity,	38.4		-102	-102	-100	-102	-102	-99	-102	-101	-99	alD
868 MHz	250		-90	-90	-88	-89	-90	-87	-89	-90	-87	dBm
	500		-84	-84	-81	-84	-84	-80	-84	-84	-80	

5.62 Typical Sensitivity, 915 MHz, Sensitivity Optimized Setting

, .	• •	•					•						
PARAMETER	DATA RATE	V _{cc}		2 V			3 V			3.6 V		UNIT	
PARAMETER	(kBaud)	TA	-40°C	25°C	85°C	-40°C	25°C	85°C	-40°C	25°C	85°C	UNIT	
	1.2		-109	-109	-107	-109	-109	-106	-109	-108	-105		
Sensitivity,	38.4		-102	-102	-100	-102	-102	-99	-103	-102	-99	dBm	
915 MHz	250		-92	-92	-89	-92	-92	-88	-92	-92	-88	иын	
	500		-87	-86	-81	-86	-86	-81	-86	-85	-80		

5.63 RF Transmit

 $T_A = 25$ °C, $V_{CC} = 3$ V (unless otherwise noted)⁽¹⁾

 $P_{TX} = +10 \text{ dBm (unless otherwise noted)}$

PARAMETER	FREQUENCY (MHz)	TEST CONDITIONS	3	ТҮР	UNIT
	315			122 + j31	
Differential load impedance (2)	433			116 + j41	Ω
	868, 915			86.5 + j43	
	315			+12	
Output power, highest	433	Delivered to a 50- Ω single-ended load from	m CC430 reference	+13	dBm
setting (3)	868	design RF matching network		+11	abiii
	915			+11	
Output power, lowest setting ⁽³⁾		Delivered to a 50- Ω single-ended load from design RF matching network	m CC430 reference	-30	dBm
	422	Second harmonic	-56		
	433	Third harmonic		-57	
Harmonics, radiated (4)(5)(6)	000	Second harmonic		-50	alD.aa
Harmonics, radiated (17(8)(8)	868	Third harmonic		-52	dBm
	045	Second harmonic	-50		
	915	Third harmonic		-54	
	245	Frequencies below 960 MHz	. 4.0. dD C\\\	< -38	
	315	Frequencies above 960 MHz	+10 dBm CW	< -48	
	400	Frequencies below 1 GHz	. 4.0. dD C\\\	-45	
Harmaniaa aandustad	433	Frequencies above 1 GHz	+10 dBm CW	< -48	dBm
Harmonics, conducted	060	Second harmonic	+10 dBm CW	-59	UDIII
	868	Other harmonics	+10 dBm Cvv	< -71	
	015	Second harmonic	+11 dBm CW ⁽⁷⁾	-53	
	915	Other harmonics	+11 dBm Cvv /	< -47	
	245	Frequencies below 960 MHz	. 4.0. dD C\\\	< -58	
	315	Frequencies above 960 MHz	+10 dBm CW	< -53	
		Frequencies below 1 GHz		< -54	
	433	Frequencies above 1 GHz	+10 dBm CW	< -54	
Spurious emissions,	100	Frequencies from 47 to 74, 87.5 to 118, 174 to 230, 470 to 862 MHz	- 110 dBiii 011	< -63	JD
conducted, harmonics not included (8)		Frequencies below 1 GHz		< -46	dBm
	868	Frequencies above 1 GHz	+10 dBm CW	< -59	
	000	Frequencies from 47 to 74, 87.5 to 118, 174 to 230, 470 to 862 MHz	- 10 dBill Ovv	< -56	
	045	Frequencies below 960 MHz	. 44 . ID OW	< -49	
	915	Frequencies above 960 MHz	+11 dBm CW	< -63	
TX latency ⁽⁹⁾		Serial operation		8	bits

- (1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).
- (2) Differential impedance as seen from the RF port (RF_P and RF_N) towards the antenna. Follow the CC430 reference designs available from the TI website.
- (3) Output power is programmable, and the full range is available in all frequency bands. Output power may be restricted by regulatory limits. Also see AN050 Using the CC1101 in the European 868MHz SRD Band and DN013 Programming Output Power on CC1101, which gives the output power and harmonics when using multilayer inductors. The output power is then typically +10 dBm when operating at 868 or 915 MHz.
- (4) The antennas used during the radiated measurements (SMAFF-433 from R.W.Badland and Nearson S331 868/915) play a part in attenuating the harmonics.
- (5) Measured on EM430F6137RF900 with CW, maximum output power
- (6) All harmonics are below –41.2 dBm when operating in the 902 to 928 MHz band.
- (7) Requirement is –20 dBc under FCC 15.247.
- (8) All radiated spurious emissions are within the limits of ETSI. Also see DN017 CC11xx 868/915 MHz RF Matching.
- (9) Time from sampling the data on the transmitter data input pin until it is observed on the RF output ports

5.64 Optimum PATABLE Settings for Various Output Power Levels and Frequency Bands

 $T_A = 25$ °C, $V_{CC} = 3$ V (unless otherwise noted)⁽¹⁾

OUTPUT POWER (4Pm)	PATABLE SETTING										
OUTPUT POWER (dBm)	315 MHz	433 MHz	868 MHz	915 MHz							
-30	0x12	0x05	0x03	0x03							
-12	0x33	0x26	0x25	0x25							
-6	0x29	0x2D	0x2D	0x2D							
0	0x51	0x50	0x8D	0x8D							
10	0xC4	0xC4	0xC3	0xC3							
Maximum	0xC0	0xC0	0xC0	0xC0							

⁽¹⁾ All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).

5.65 Typical Output Power, 315 MHz⁽¹⁾

PARAMETER	PATABLE SETTING	V _{CC}	2 V	3 V	3.6 V	UNIT
PARAWETER	PATABLE SETTING	T _A	25°C	25°C	25°C	UNII
	0xC0 (maximum)		11.9	11.8	11.8	
	0xC4 (10 dBm)		10.3	10.3	10.3	
Output power, 315 MHz	0xC6 (default)			9.3		dBm
	0x51 (0 dBm)		0.7	0.6	0.7	
	0x29 (-6 dBm)		-6.8	-5.6	-5.3	

⁽¹⁾ All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).

5.66 Typical Output Power, 433 MHz⁽¹⁾

PARAMETER	PATABLE SETTING	V _{CC}	2 V	3 V	3.6 V	UNIT
PARAIVIETER	PATABLE SETTING	T _A	25°C	25°C	25°C	UNII
	0xC0 (maximum)		12.6	12.6	12.6	
	0xC4 (10 dBm)		10.3	10.2	10.2	
Output power, 433 MHz	0xC6 (default)			10.0		dBm
	0x50 (0 dBm)		0.3	0.3	0.3	
	0x2D (-6 dBm)		-6.4	-5.4	-5.1	

⁽¹⁾ All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).

5.67 Typical Output Power, 868 MHz⁽¹⁾

PARAMETER	PATABLE SETTING	V _{CC}		2 V			3 V		3.6 V			
PARAMETER	PATABLE SETTING	TA	-40°C	25°C	85°C	-40°C	25°C	85°C	-40°C	25°C	85°C	UNIT
	0xC0 (maximum)		11.9	11.2	10.5	11.9	11.2	10.5	11.9	11.2	10.5	
	0xC3 (10 dBm)		10.8	10.1	9.4	10.8	10.1	9.4	10.7	10.1	9.4	
Output power, 868 MHz	0xC6 (default)						8.8					dBm
ODO IVITIZ	0x8D (0 dBm)		1.0	0.3	-0.3	1.1	0.3	-0.3	1.1	0.3	-0.3	
	0x2D (-6 dBm)		-6.5	-6.8	-7.3	-5.3	-5.8	-6.3	-4.9	-5.4	-6.0	

⁽¹⁾ All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).

5.68 Typical Output Power, 915 MHz⁽¹⁾

PARAMETER	PATABLE SETTING	V _{CC}		2 V			3 V				UNIT	
PARAMETER	PATABLE SETTING	T _A	-40°C	25°C	85°C	-40°C	25°C	85°C	-40°C	25°C	85°C	UNII
	0xC0 (maximum)		12.2	11.4	10.6	12.1	11.4	10.7	12.1	11.4	10.7	
	0xC3 (10 dBm)		11.0	10.3	9.5	11.0	10.3	9.5	11.0	10.3	9.6	
Output power, 915 MHz	0xC6 (default)						8.8					dBm
915 MHZ	0x8D (0 dBm)		1.9	1.0	0.3	1.9	1.0	0.3	1.9	1.1	0.3	
	0x2D (-6 dBm)		-5.5	-6.0	-6.5	-4.3	-4.8	-5.5	-3.9	-4.4	- 5.1	

⁽¹⁾ All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).

5.69 Frequency Synthesizer Characteristics

 $T_A = 25$ °C, $V_{CC} = 3$ V (unless otherwise noted)⁽¹⁾

MIN figures are given using a 27MHz crystal. TYP and MAX figures are given using a 26MHz crystal.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Programmed frequency resolution (2)	26- to 27-MHz crystal	397	f _{XOSC} / 2 ¹⁶	412	Hz
Synthesizer frequency tolerance ⁽³⁾			±40		ppm
	50-kHz offset from carrier		-95		
	100-kHz offset from carrier		-94		
	200-kHz offset from carrier		-94		
DE comica abose soise	500-kHz offset from carrier		-98		-ID - /I I=
RF carrier phase noise	1-MHz offset from carrier		-107		dBc/Hz
	2-MHz offset from carrier		-112		
	5-MHz offset from carrier		-118		
	10-MHz offset from carrier		-129		
PLL turnon and hop time (4)	Crystal oscillator running	85.1	88.4	88.4	μs
PLL RX to TX settling time ⁽⁵⁾		9.3	9.6	9.6	μs
PLL TX to RX settling time ⁽⁶⁾		20.7	21.5	21.5	μs
PLL calibration time ⁽⁷⁾		694	721	721	μs

- All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).
- The resolution (in Hz) is equal for all frequency bands.
- Depends on crystal used. Required accuracy (including temperature and aging) depends on frequency band and channel bandwidth and spacing.
- Time from leaving the IDLE state until arriving in the RX, FSTXON, or TX state, when not performing calibration.
- Settling time for the 1-IF step from RX to TX Settling time for the 1-IF step from TX to RX
- Calibration can be initiated manually or automatically before entering or after leaving RX or TX.

5.70 Typical RSSI_offset Values

 $T_A = 25$ °C, $V_{CC} = 3$ V (unless otherwise noted)⁽¹⁾

DATA DATE (I-Devel)	RSSI_OFFSET (dB)		
DATA RATE (kBaud)	433 MHz	868 MHz	
1.2	74	74	
38.4	74	74	
250	74	74	
500	74	74	

(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 7-1).

Figure 5-25. Typical RSSI Value vs Input Power Level for Different Data Rates at 868 MHz

6 Detailed Description

6.1 Sub-1 GHz Radio

The implemented sub-1 GHz radio module is based on the industry-leading CC1101, requiring very few external components. Figure 6-1 shows a high-level block diagram of the implemented radio.

Figure 6-1. Sub-1 GHz Radio Block Diagram

The radio features a low-IF receiver. The received RF signal is amplified by a low-noise amplifier (LNA) and down-converted in quadrature to the intermediate frequency (IF). At IF, the I/Q signals are digitized. Automatic gain control (AGC), fine channel filtering, demodulation bit, and packet synchronization are performed digitally.

The transmitter part is based on direct synthesis of the RF. The frequency synthesizer includes a completely on-chip LC VCO and a 90° phase shifter for generating the I and Q LO signals to the down-conversion mixers in receive mode.

The 26-MHz crystal oscillator generates the reference frequency for the synthesizer, as well as clocks for the ADC and the digital part.

A memory mapped register interface is used for data access, configuration, and status request by the CPU.

The digital baseband includes support for channel configuration, packet handling, and data buffering.

For complete module descriptions, see the CC430 Family User's Guide.

6.2 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses. The peripherals can be managed with all instructions.

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data.

6.3 Operating Modes

The CC430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

Software can configure the following operating modes:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
 - FLL loop control remains active
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - FLL loop control is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK and FLL loop control and DCOCLK are disabled
 - DC generator of the DCO remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO is disabled
 - Crystal oscillator is stopped
 - Complete data retention

6.4 Interrupt Vector Addresses

The interrupt vectors and the power-up start address are located in the address range 0FFFFh–0FF80h (see Table 6-1). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

asd

Table 6-1. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power-Up External Reset Watchdog Time-out, Password Violation Flash Memory Password Violation	WDTIFG, KEYV (SYSRSTIV) ⁽¹⁾⁽²⁾	Reset	0FFFEh	63, highest
System NMI PMM Vacant Memory Access JTAG Mailbox	SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) ⁽¹⁾⁽³⁾	(Non)maskable	0FFFCh	62
User NMI NMI Oscillator Fault Flash Memory Access Violation	NMIIFG, OFIFG, ACCVIFG (SYSUNIV) ⁽¹⁾⁽³⁾	(Non)maskable	0FFFAh	61
Comparator_B	Comparator_B Interrupt Flags (CBIV) ⁽¹⁾	Maskable	0FFF8h	60
Watchdog Interval Timer Mode	WDTIFG	Maskable	0FFF6h	59
USCI_A0 Receive or Transmit	UCA0RXIFG, UCA0TXIFG (UCA0IV)(1)	Maskable	0FFF4h	58
USCI_B0 Receive or Transmit	UCB0RXIFG, UCB0TXIFG, I ² C Status Interrupt Flags (UCB0IV) ⁽¹⁾	Maskable	0FFF2h	57
ADC12_A (Reserved on CC430F612x)	ADC12IFG0 ADC12IFG15 (ADC12IV) ⁽¹⁾	Maskable	0FFF0h	56
TA0	TA0CCR0 CCIFG0	Maskable	0FFEEh	55
TA0	TA0CCR1 CCIFG1 TA0CCR4 CCIFG4, TA0IFG (TA0IV) ⁽¹⁾	Maskable	0FFECh	54
RF1A CC1101-based Radio	Radio Interface Interrupt Flags (RF1AIFIV) Radio Core Interrupt Flags (RF1AIV)	Maskable	0FFEAh	53
DMA	DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) ⁽¹⁾	Maskable	0FFE8h	52
TA1	TA1CCR0 CCIFG0	Maskable	0FFE6h	51
TA1	TA1CCR1 CCIFG1 TA1CCR2 CCIFG2, TA1IFG (TA1IV) ⁽¹⁾	Maskable	0FFE4h	50
I/O Port P1	P1IFG.0 to P1IFG.7 (P1IV) ⁽¹⁾	Maskable	0FFE2h	49
I/O Port P2	P2IFG.0 to P2IFG.7 (P2IV) ⁽¹⁾	Maskable	0FFE0h	48
LCD_B (Reserved on CC430F513x)	LCD_B Interrupt Flags (LCDBIV) ⁽¹⁾	Maskable	0FFDEh	47
RTC_A	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG (RTCIV) ⁽¹⁾	Maskable	0FFDCh	46
AES	AESRDYIFG	Maskable	0FFDAh	45
			0FFD8h	44
Reserved	Reserved ⁽⁴⁾		:	:
			0FF80h	0, lowest

⁽¹⁾ Multiple source flags

⁽²⁾ A reset is generated if the CPU tries to fetch instructions from within peripheral space.

^{(3) (}Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

⁽⁴⁾ Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, reserve these locations.

6.5 Memory Organization

Table 6-2 summarizes the memory map of the devices.

Table 6-2. Memory Organization

		CC430F6137 CC430F6127 CC430F5137 ⁽¹⁾	CC430F6126 ⁽¹⁾	CC430F6135 CC430F6125 CC430F5135 ⁽¹⁾	CC430F5133 ⁽¹⁾
Main Memory (flash)	Total Size	32KB	32KB	16KB	8KB
Main: Interrupt vector		00FFFFh-00FF80h	00FFFFh-00FF80h	00FFFFh-00FF80h	00FFFFh-00FF80h
Main: code memory	Bank 0	32KB 00FFFFh-008000h	32KB 00FFFFh-008000h	16KB 00FFFFh-00C000h	8KB 00FFFFh-00E000h
RAM	Total Size	4KB	2KB	2KB	2KB
	Sect 1	2KB 002BFFh-002400h	not available	not available	not available
	Sect 0	2KB 0023FFh-001C00h	2KB 0023FFh-001C00h	2KB 0023FFh-001C00h	2KB 0023FFh-001C00h
Device		128 B 001AFFh-001A80h	128 B 001AFFh-001A80h	128 B 001AFFh-001A80h	128 B 001AFFh-001A80h
Descriptor		128 B 001A7Fh–001A00h	128 B 001A7Fh–001A00h	128 B 001A7Fh-001A00h	128 B 001A7Fh–001A00h
	Info A	128 B 0019FFh–001980h	128 B 0019FFh-001980h	128 B 0019FFh–001980h	128 B 0019FFh–001980h
Information	Info B	128 B 00197Fh–001900h	128 B 00197Fh–001900h	128 B 00197Fh-001900h	128 B 00197Fh–001900h
memory (flash)	Info C	128 B 0018FFh–001880h	128 B 0018FFh–001880h	128 B 0018FFh–001880h	128 B 0018FFh–001880h
	Info D	128 B 00187Fh–001800h	128 B 00187Fh–001800h	128 B 00187Fh–001800h	128 B 00187Fh–001800h
	BSL 3	512 B 0017FFh–001600h	512 B 0017FFh–001600h	512 B 0017FFh-001600h	512 B 0017FFh–001600h
Bootloader	BSL 2	512 B 0015FFh–001400h	512 B 0015FFh–001400h	512 B 0015FFh–001400h	512 B 0015FFh–001400h
(BSL) memory (flash)	BSL 1	512 B 0013FFh–001200h	512 B 0013FFh–001200h	512 B 0013FFh–001200h	512 B 0013FFh–001200h
	BSL 0	512 B 0011FFh–001000h	512 B 0011FFh–001000h	512 B 0011FFh–001000h	512 B 0011FFh–001000h
Peripherals		4KB 000FFFh–0h	4KB 000FFFh-0h	4KB 000FFFh-0h	4KB 000FFFh-0h

⁽¹⁾ All memory regions not specified here are vacant memory, and any access to them causes a Vacant Memory Interrupt.

6.6 Bootloader (BSL)

The BSL enables users to program the flash memory or RAM using various serial interfaces. Table 6-3 lists the pin requirements. Access to the device memory through the BSL is protected by a user-defined password. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For a complete description of the features of the BSL and its implementation, see *MSP430 Programming With the Bootloader (BSL)*.

Table 6-3. UART BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
TEST/SBWTCK	Entry sequence signal
P1.6	Data transmit
P1.5	Data receive
VCC	Power supply
VSS	Ground supply

6.7 JTAG Operation

6.7.1 JTAG Standard Interface

The CC430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 6-4 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface.

Table 6-4. JTAG Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION
PJ.3/TCK	IN	JTAG clock input
PJ.2/TMS	IN	JTAG state control
PJ.1/TDI/TCLK	IN	JTAG data input, TCLK input
PJ.0/TDO	OUT	JTAG data output
TEST/SBWTCK	IN	Enable JTAG pins
RST/NMI/SBWTDIO	IN	External reset
VCC		Power supply
VSS		Ground supply

6.7.2 Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the CC430 family supports the two wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 6-5 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface.

Table 6-5. Spy-Bi-Wire Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION
TEST/SBWTCK	IN	Spy-Bi-Wire clock input
RST/NMI/SBWTDIO	IN, OUT	Spy-Bi-Wire data input/output
VCC		Power supply
VSS		Ground supply

6.8 Flash Memory

The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (Info A to Info D) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments Info A to Info D can be erased individually, or as a group with the main memory segments.
 Segments Info A to Info D are also called information memory.
- Segment A can be locked separately.

6.9 RAM

The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data are lost. Features of the RAM include:

- RAM has n sectors of 2KB each.
- Each sector 0 to n can be completely disabled; however, data retention is lost.
- Each sector 0 to n automatically enters low power retention mode when possible.

www.ti.com

6.10 Peripherals

Peripherals are connected to the CPU through data, address, and control buses. The peripherals can be managed using all instructions. For complete module descriptions, see the *CC430 Family User's Guide*.

6.10.1 Oscillator and System Clock

The Unified Clock System (UCS) module includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator. The UCS module is designed to meet the requirements of both low system cost and low-power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turnon clock source and stabilizes in less than 5 µs. The UCS module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, the internal low-frequency oscillator (VLO), or the trimmed low-frequency oscillator (REFO).
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to ACLK.
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.

6.10.2 Power-Management Module (PMM)

The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.

6.10.3 Digital I/O

Up to five 8-bit I/O ports are implemented: ports P1 through P5.

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- · Programmable pullup or pulldown on all ports.
- Programmable drive strength on all ports.
- Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
- Read and write access to port-control registers is supported by all instructions.
- Ports can be accessed byte-wise (P1 through P5) or word-wise in pairs (PA and PB).

6.10.4 Port Mapping Controller

The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port pins of ports P1 through P3 (see Table 6-6). Table 6-7 lists the default settings for all pins that support port mapping.

Table 6-6. Port Mapping, Mnemonics and Functions

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION (PxDIR.y = 0)	OUTPUT PIN FUNCTION (PxDIR.y = 1)	
0	PM_NONE	None	DVSS	
1 (1)	PM_CBOUT0	-	Comparator_B output (on TA0 clock input)	
	PM_TA0CLK	TA0 clock input	-	
2 ⁽¹⁾	PM_CBOUT1	-	Comparator_B output (on TA1 clock input)	
	PM_TA1CLK	TA1 clock input	-	
3	PM_ACLK	None	ACLK output	
4	PM_MCLK	None	MCLK output	
5	PM_SMCLK	None	SMCLK output	
6	PM_RTCCLK	None	RTCCLK output	
7 ⁽¹⁾	PM_ADC12CLK	_	ADC12CLK output	
/ ("/	PM_DMAE0	DMA external trigger input	-	
8	PM_SVMOUT	None	SVM output	
9	PM_TA0CCR0A	TA0 CCR0 capture input CCI0A	TA0 CCR0 compare output Out0	
10	PM_TA0CCR1A	TA0 CCR1 capture input CCI1A	TA0 CCR1 compare output Out1	
11	PM_TA0CCR2A	TA0 CCR2 capture input CCI2A	TA0 CCR2 compare output Out2	
12	PM_TA0CCR3A	TA0 CCR3 capture input CCI3A	TA0 CCR3 compare output Out3	
13	PM_TA0CCR4A	TA0 CCR4 capture input CCI4A	TA0 CCR4 compare output Out4	
14	PM_TA1CCR0A	TA1 CCR0 capture input CCI0A	TA1 CCR0 compare output Out0	
15	PM_TA1CCR1A	TA1 CCR1 capture input CCI1A	TA1 CCR1 compare output Out1	
16	PM_TA1CCR2A	TA1 CCR2 capture input CCI2A	TA1 CCR2 compare output Out2	
17 ⁽²⁾	PM_UCA0RXD	USCI_A0 UART RXD (directi	on controlled by USCI – input)	
17 (=)	PM_UCA0SOMI	USCI_A0 SPI slave out master	in (direction controlled by USCI)	
18 ⁽²⁾	PM_UCA0TXD	USCI_A0 UART TXD (direction	on controlled by USCI – output)	
10(-/	PM_UCA0SIMO	USCI_A0 SPI slave in master of	out (direction controlled by USCI)	
19 ⁽³⁾	PM_UCA0CLK	USCI_A0 clock input/output	(direction controlled by USCI)	
19(5)	PM_UCB0STE	USCI_B0 SPI slave transmit enable	(direction controlled by USCI - input)	
20 ⁽⁴⁾	PM_UCB0SOMI	USCI_B0 SPI slave out master	in (direction controlled by USCI)	
20\'/	PM_UCB0SCL	USCI_B0 I ² C clock (open drain	and direction controlled by USCI)	
21 ⁽⁴⁾	PM_UCB0SIMO	USCI_B0 SPI slave in master of	out (direction controlled by USCI)	
2117	PM_UCB0SDA	USCI_B0 I ² C data (open drain a	and direction controlled by USCI)	
PM_UCB0CLK USCI_B0 clock input/output (direction controlled by USCI_B0 clock input/output)		(direction controlled by USCI)		
22 ⁽⁵⁾	PM_UCA0STE	USCI_A0 SPI slave transmit enable (direction controlled by USCI – inpu		
23	PM_RFGDO0	Radio GDO0 (direction controlled by Radio)		
24	PM_RFGDO1	Radio GDO1 (direction controlled by Radio)		
25	PM_RFGDO2	Radio GDO2 (direction controlled by Radio)		

⁽¹⁾ Input or output function is selected by the corresponding setting in the port direction register PxDIR.

²⁾ UART or SPI functionality is determined by the selected USCI mode.

⁽³⁾ UCA0CLK function takes precedence over UCB0STE function. If the mapped pin is required as UCA0CLK input or output, USCI_B0 is forced to 3-wire SPI mode even if 4-wire mode is selected.

⁽⁴⁾ SPI or I²C functionality is determined by the selected USCI mode. In case the I²C functionality is selected the output of the mapped pin drives only the logical 0 to V_{SS} level.

⁽⁵⁾ UCB0CLK function takes precedence over UCA0STE function. If the mapped pin is required as UCB0CLK input or output, USCI_A0 is forced to 3-wire SPI mode even if 4-wire mode is selected.

Table 6-6. Port Mapping, Mnemonics and Functions (continued)

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION (PxDIR.y = 0)	OUTPUT PIN FUNCTION (PxDIR.y = 1)
26	Reserved	None	DVSS
27	Reserved	None	DVSS
28	Reserved	None	DVSS
29	Reserved	None	DVSS
30	Reserved	None	DVSS
31 (0FFh) ⁽⁶⁾	PM_ANALOG	Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals.	

⁽⁶⁾ The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored, resulting in a read value of 31.

Table 6-7. Default Mapping

PIN	PxMAPy MNEMONIC	INPUT PIN FUNCTION (PxDIR.y = 0)	OUTPUT PIN FUNCTION (PxDIR.y = 1)
P1.0/P1MAP0	PM_RFGDO0	None	Radio GDO0
P1.1/P1MAP1	PM_RFGDO2	None	Radio GDO2
P1.2/P1MAP2	PM_UCB0SOMI/PM_UCB0SCL		in (direction controlled by USCI), and direction controlled by USCI)
P1.3/P1MAP3	PM_UCB0SIMO/PM_UCB0SDA		ut (direction controlled by USCI), and direction controlled by USCI)
P1.4/P1MAP4	PM_UCB0CLK/PM_UCA0STE		direction controlled by USCI), (direction controlled by USCI – input)
P1.5/P1MAP5	PM_UCA0RXD/PM_UCA0SOMI		on controlled by USCI – input), in (direction controlled by USCI)
P1.6/P1MAP6	PM_UCA0TXD/PM_UCA0SIMO		n controlled by USCI – output), ut (direction controlled by USCI)
P1.7/P1MAP7	PM_UCA0CLK/PM_UCB0STE		direction controlled by USCI), (direction controlled by USCI – input)
P2.0/P2MAP0	PM_CBOUT1/PM_TA1CLK	TA1 clock input	Comparator_B output
P2.1/P2MAP1	PM_TA1CCR0A	TA1 CCR0 capture input CCI0A	TA1 CCR0 compare output Out0
P2.2/P2MAP2	PM_TA1CCR1A	TA1 CCR1 capture input CCI1A	TA1 CCR1 compare output Out1
P2.3/P2MAP3	PM_TA1CCR2A	TA1 CCR2 capture input CCI2A	TA1 CCR2 compare output Out2
P2.4/P2MAP4	PM_RTCCLK	None	RTCCLK output
P2.5/P2MAP5	PM_SVMOUT	None	SVM output
P2.6/P2MAP6	PM_ACLK	None	ACLK output
P2.7/P2MAP7	PM_ADC12CLK/PM_DMAE0	DMA external trigger input	ADC12CLK output
P3.0/P3MAP0	PM_CBOUT0/PM_TA0CLK	TA0 clock input	Comparator_B output
P3.1/P3MAP1	PM_TA0CCR0A	TA0 CCR0 capture input CCI0A	TA0 CCR0 compare output Out0
P3.2/P3MAP2	PM_TA0CCR1A	TA0 CCR1 capture input CCI1A	TA0 CCR1 compare output Out1
P3.3/P3MAP3	PM_TA0CCR2A	TA0 CCR2 capture input CCI2A	TA0 CCR2 compare output Out2
P3.4/P3MAP4	PM_TA0CCR3A	TA0 CCR3 capture input CCI3A	TA0 CCR3 compare output Out3
P3.5/P3MAP5	PM_TA0CCR4A	TA0 CCR4 capture input CCI4A	TA0 CCR4 compare output Out4
P3.6/P3MAP6	PM_RFGDO1	None	Radio GDO1
P3.7/P3MAP7	PM_SMCLK	None	SMCLK output

6.10.5 System Module (SYS)

The SYS module handles many of the system functions within the device. These functions include power on reset and power up clear handling, NMI source selection and management, reset interrupt vector generators (see Table 6-8), bootloader entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application.

Table 6-8. System Module Interrupt Vector Registers

RST/NMI (POR)	INTERRUPT VECTOR REGISTER	ADDRESS	INTERRUPT EVENT	VALUE	PRIORITY
RST/NMI (POR)			No interrupt pending	00h	
PMMSWBOR (BOR)			Brownout (BOR)	02h	Highest
Reserved			RST/NMI (POR)	04h	
Security violation (BOR)			PMMSWBOR (BOR)	06h	
SYSRSTIV, System Reset O19Eh			Reserved	08h	
SYSRSTIV, System Reset			Security violation (BOR)	0Ah	
SYSRSTIV, System Reset			SVSL (POR)	0Ch	
SYSRSTIV, System Reset			SVSH (POR)	0Eh	
SVMH_OVP (POR) 12h	CVCDCTIV Custom Deset	04056	SVML_OVP (POR)	10h	
WDT time-out (PUC)	SYSRSTIV, System Reset	019En	SVMH_OVP (POR)	12h	
WDT password violation (PUC)			PMMSWPOR (POR)	14h	
KEYV flash password violation (PUC)			WDT time-out (PUC)	16h	
Reserved			WDT password violation (PUC)	18h	
Peripheral area fetch (PUC)			KEYV flash password violation (PUC)	1Ah	
PMM password violation (PUC) 20h Reserved 22h to 3Eh Lowest No interrupt pending 00h SVMLIFG 02h Highest SVMHIFG 04h DLYLIFG 06h DLYHIFG 08h DLYHIFG 0Ah DLYHIFG 0Ah DLYHIFG 0Ah DLYHIFG 0Ah DLYHIFG 0Ah DLYHIFG 0Ah JMBINIFG 0Ch JMBOUTIFG 0Eh VLRLIFG 10h VLRHIFG 12h Reserved 14h to 1Eh Lowest No interrupt pending 00h SYSUNIV, User NMI 019Ah OFIFG 04h ACCVIFG 06h			Reserved	1Ch	
Reserved 22h to 3Eh Lowest			Peripheral area fetch (PUC)	1Eh	
No interrupt pending			PMM password violation (PUC)	20h	
SVMLIFG			Reserved	22h to 3Eh	Lowest
SVMHIFG			No interrupt pending	00h	
DLYLIFG 06h			SVMLIFG	02h	Highest
DLYHIFG 08h			SVMHIFG	04h	
SYSSNIV, System NMI 019Ch VMAIFG 0Ah JMBINIFG 0Ch 0Ch JMBOUTIFG 0Eh 0Eh VLRLIFG 10h 0Eh VLRHIFG 12h 0Eh Reserved 14h to 1Eh Lowest No interrupt pending 00h NMIIFG 02h Highest SYSUNIV, User NMI 019Ah OFIFG 04h ACCVIFG 06h 06h			DLYLIFG	06h	
JMBINIFG			DLYHIFG	08h	
JMBOUTIFG	SYSSNIV, System NMI	019Ch	VMAIFG	0Ah	
VLRLIFG 10h VLRHIFG 12h Reserved 14h to 1Eh Lowest No interrupt pending 00h NMIIFG 02h Highest SYSUNIV, User NMI 019Ah OFIFG 04h ACCVIFG 06h 06h			JMBINIFG	0Ch	
VLRHIFG 12h Reserved 14h to 1Eh Lowest No interrupt pending 00h 00h NMIIFG 02h Highest SYSUNIV, User NMI 019Ah OFIFG 04h ACCVIFG 06h 06h			JMBOUTIFG	0Eh	
Reserved 14h to 1Eh Lowest No interrupt pending 00h NMIIFG 02h Highest SYSUNIV, User NMI 019Ah OFIFG 04h ACCVIFG 06h 06h			VLRLIFG	10h	
No interrupt pending			VLRHIFG	12h	
NMIIFG			Reserved	14h to 1Eh	Lowest
SYSUNIV, User NMI 019Ah OFIFG 04h ACCVIFG 06h			No interrupt pending	00h	
ACCVIFG 06h	SYSUNIV, User NMI		NMIIFG	02h	Highest
		019Ah	OFIFG	04h	
Reserved 08h to 1Eh Lowest		,	ACCVIFG	06h	
			Reserved	08h to 1Eh	Lowest

6.10.6 DMA Controller

The DMA controller allows movement of data from one memory address to another without CPU intervention. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. Table 6-9 lists the available triggers for DMA operation.

Table 6-9. DMA Trigger Assignments⁽¹⁾

TRICOER		CHANNEL			
TRIGGER	0	1	2		
0	DMAREQ	DMAREQ	DMAREQ		
1	TA0CCR0 CCIFG	TA0CCR0 CCIFG	TA0CCR0 CCIFG		
2	TA0CCR2 CCIFG	TA0CCR2 CCIFG	TA0CCR2 CCIFG		
3	TA1CCR0 CCIFG	TA1CCR0 CCIFG	TA1CCR0 CCIFG		
4	TA1CCR2 CCIFG	TA1CCR2 CCIFG	TA1CCR2 CCIFG		
5	Reserved	Reserved	Reserved		
6	Reserved	Reserved	Reserved		
7	Reserved	Reserved	Reserved		
8	Reserved	Reserved	Reserved		
9	Reserved	Reserved	Reserved		
10	Reserved	Reserved	Reserved		
11	Reserved	Reserved	Reserved		
12	Reserved	Reserved	Reserved		
13	Reserved	Reserved	Reserved		
14	Reserved	Reserved	Reserved		
15	Reserved	Reserved	Reserved		
16	UCA0RXIFG	UCA0RXIFG	UCA0RXIFG		
17	UCA0TXIFG	UCA0TXIFG	UCA0TXIFG		
18	UCB0RXIFG	UCB0RXIFG	UCB0RXIFG		
19	UCB0TXIFG	UCB0TXIFG	UCB0TXIFG		
20	Reserved	Reserved	Reserved		
21	Reserved	Reserved	Reserved		
22	Reserved	Reserved	Reserved		
23	Reserved	Reserved	Reserved		
24	ADC12IFGx ⁽²⁾	ADC12IFGx ⁽²⁾	ADC12IFGx ⁽²⁾		
25	Reserved	Reserved	Reserved		
26	Reserved	Reserved	Reserved		
27	Reserved	Reserved	Reserved		
28	Reserved	Reserved	Reserved		
29	MPY ready	MPY ready	MPY ready		
30	DMA2IFG	DMA2IFG DMA0IFG DI			
31	DMAE0	DMAE0	DMAE0		

Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers will not cause any DMA trigger event when selected.

⁽²⁾ Only on CC430F613x and CC430F513x. Reserved on CC430F612x.

6.10.7 Watchdog Timer (WDT_A)

The primary function of the watchdog timer is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the timer can be configured as an interval timer and can generate interrupts at selected time intervals.

6.10.8 CRC16

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.

6.10.9 Hardware Multiplier

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations.

6.10.10 AES128 Accelerator

The AES accelerator module performs encryption and decryption of 128-bit data with 128-bit keys according to the Advanced Encryption Standard (AES) (FIPS PUB 197) in hardware.

6.10.11 Universal Serial Communication Interface (USCI)

The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3-pin or 4-pin) and I²C, and asynchronous communication protocols such as UART, enhanced UART with automatic baud-rate detection, and IrDA.

The USCI_An module provides support for SPI (3-pin or 4-pin), UART, enhanced UART, and IrDA.

The USCI_Bn module provides support for SPI (3-pin or 4-pin) and I²C.

One USCI_A0 and one USCI_B0 modules are implemented.

6.10.12 TA0

TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple capture/compares, PWM outputs, and interval timing. TA0 also has extensive interrupt capabilities (see Table 6-10). Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-10. TA0 Signal Connections

DEVICE INPUT SIGNAL	MODULE INPUT NAME	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL
PM_TA0CLK	TACLK			
ACLK (internal)	ACLK	Timer	NA	
SMCLK (internal)	SMCLK	rimer	INA	
RFCLK/192 ⁽¹⁾	INCLK			
PM_TA0CCR0A	CCI0A			PM_TA0CCR0A
DV_SS	CCI0B	CCR0	TAO	
DV _{SS}	GND	CCRU	TA0	
DV_CC	V_{CC}			
PM_TA0CCR1A	CCI1A			PM_TA0CCR1A
CBOUT (internal)	CCI1B	CCR1	TA1	ADC12 (internal) ⁽²⁾ ADC12SHSx = {1}
DV _{SS}	GND			
DV _{CC}	V _{CC}			
PM_TA0CCR2A	CCI2A	CCR2		PM_TA0CCR2A
ACLK (internal)	CCI2B		TA2	
DV _{SS}	GND	CCR2	TAZ	
DV _{CC}	V _{CC}			
PM_TA0CCR3A	CCI3A			PM_TA0CCR3A
GDO1 from Radio (internal)	CCI3B	CCR3	TA3	
DV _{SS}	GND			
DV _{CC}	V _{CC}			
PM_TA0CCR4A	CCI4A			PM_TA0CCR4A
GDO2 from Radio (internal)	CCI4B	CCR4	TA4	
DV _{SS}	GND			
DV _{CC}	V _{CC}			

⁽¹⁾ If a different RFCLK divider setting is selected for a radio GDO output, this divider setting is also used for the Timer_A INCLK.

⁽²⁾ Only on CC430F613x and CC430F513x

6.10.13 TA1

TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-11). TA1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-11. TA1 Signal Connections

DEVICE INPUT SIGNAL	MODULE INPUT NAME	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL PZ
PM_TA1CLK	TACLK			PL PL
ACLK (internal)	ACLK	Timer	Timer NA	
SMCLK (internal)	SMCLK			
RFCLK/192 ⁽¹⁾	INCLK			
PM_TA1CCR0A	CCI0A	CCR0 TA0	PM_TA1CCR0A	
RF Async. Output (internal)	CCI0B		TA0	RF Async. Input (internal)
DV _{SS}	GND			
DV _{CC}	V_{CC}			
PM_TA1CCR1A	CCI1A			PM_TA1CCR1A
CBOUT (internal)	CCI1B	CCR1 TA1	TA1	
DV _{SS}	GND	CCRT	IAI	
DV _{CC}	V_{CC}			
PM_TA1CCR2A	CCI2A	CCR2 TA2		PM_TA1CCR2A
ACLK (internal)	CCI2B		TAO	
DV _{SS}	GND			
DV _{CC}	V _{CC}			

⁽¹⁾ If a different RFCLK divider setting is selected for a radio GDO output, this divider setting is also used for the Timer_A INCLK.

6.10.14 Real-Time Clock (RTC A)

The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated real-time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Calendar mode integrates an internal calendar which compensates for months with less than 31 days and includes leap year correction. The RTC_A also supports flexible alarm functions and offset-calibration hardware.

6.10.15 Voltage Reference (REF)

REF generates all of the critical reference voltages that can be used by the various analog peripherals in the device. These peripherals include the ADC12_A, LCD_B, and COMP_B modules.

6.10.16 LCD B (Only CC430F613x and CC430F612x)

The LCD_B driver generates the segment and common signals required to drive a liquid crystal display (LCD). The LCD_B controller has dedicated data memories to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-, 3-, and 4-mux LCDs are supported. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to control the level of the LCD voltage and thus contrast by software. The module also provides an automatic blinking capability for individual segments.

6.10.17 Comparator_B

The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals.

6.10.18 ADC12_A (Only CC430F613x and CC430F513x)

The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.

6.10.19 Embedded Emulation Module (EEM) (\$ Version)

The EEM supports real-time in-system debugging. The S version of the EEM has the following features:

- Three hardware triggers or breakpoints on memory access
- One hardware trigger or breakpoint on CPU register write access
- Up to four hardware triggers can be combined to form complex triggers or breakpoints
- One cycle counter
- · Clock control on module level

6.10.20 Peripheral File Map

Table 6-12 lists the base address for the registers of each peripheral.

Table 6-12. Peripherals

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE
Special Functions (see Table 6-13)	0100h	000h-01Fh
PMM (see Table 6-14)	0120h	000h-00Fh
Flash Control (see Table 6-15)	0140h	000h-00Fh
CRC16 (see Table 6-16)	0150h	000h-007h
RAM Control (see Table 6-17)	0158h	000h-001h
Watchdog (see Table 6-18)	015Ch	000h-001h
UCS (see Table 6-19)	0160h	000h-01Fh
SYS (see Table 6-20)	0180h	000h-01Fh
Shared Reference (see Table 6-21)	01B0h	000h-001h
Port Mapping Control (see Table 6-22)	01C0h	000h-007h
Port Mapping Port P1 (see Table 6-23)	01C8h	000h-007h
Port Mapping Port P2 (see Table 6-24)	01D0h	000h-007h
Port Mapping Port P3 (see Table 6-25)	01D8h	000h-007h
Port P1, P2 (see Table 6-26)	0200h	000h-01Fh
Port P3, P4 (see Table 6-27) (P4 not available on CC430F513x)	0220h	000h-01Fh
Port P5 (see Table 6-28)	0240h	000h-01Fh
Port PJ (see Table 6-29)	0320h	000h–01Fh
TA0 (see Table 6-30)	0340h	000h-03Fh
TA1 (see Table 6-31)	0380h	000h-03Fh
RTC_A (see Table 6-32)	04A0h	000h-01Fh
32-Bit Hardware Multiplier (see Table 6-33)	04C0h	000h-02Fh
DMA Module Control (see Table 6-34)	0500h	000h-00Fh
DMA Channel 0 (see Table 6-35)	0510h	000h-00Fh
DMA Channel 1 (see Table 6-36)	0520h	000h-00Fh
DMA Channel 2 (see Table 6-37)	0530h	000h-00Fh
USCI_A0 (see Table 6-38)	05C0h	000h-01Fh
USCI_B0 (see Table 6-39)	05E0h	000h-01Fh
ADC12 (see Table 6-40) (only CC430F613x and CC430F513x)	0700h	000h-03Fh
Comparator_B (see Table 6-41)	08C0h	000h-00Fh
AES Accelerator (see Table 6-42)	09C0h	000h-00Fh
LCD_B (see Table 6-43) (only CC430F613x and CC430F612x)	0A00h	000h-05Fh
Radio Interface (see Table 6-44)	0F00h	000h-03Fh

Table 6-13. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 6-14. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
PMM control 0	PMMCTL0	00h
PMM control 1	PMMCTL1	02h
SVS high side control	SVSMHCTL	04h
SVS low side control	SVSMLCTL	06h
PMM interrupt flags	PMMIFG	0Ch
PMM interrupt enable	PMMIE	0Eh
PMM power mode 5 control	PM5CTL0	10h

Table 6-15. Flash Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Flash control 1	FCTL1	00h
Flash control 3	FCTL3	04h
Flash control 4	FCTL4	06h

Table 6-16. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
CRC data input	CRC16DI	00h
CRC initialization and result	CRCINIRES	04h

Table 6-17. RAM Control Registers (Base Address: 0158h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
RAM control 0	RCCTL0	00h

Table 6-18. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Watchdog timer control	WDTCTL	00h

Table 6-19. UCS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
UCS control 0	UCSCTL0	00h
UCS control 1	UCSCTL1	02h
UCS control 2	UCSCTL2	04h
UCS control 3	UCSCTL3	06h
UCS control 4	UCSCTL4	08h
UCS control 5	UCSCTL5	0Ah
UCS control 6	UCSCTL6	0Ch
UCS control 7	UCSCTL7	0Eh
UCS control 8	UCSCTL8	10h

Table 6-20. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
System control	SYSCTL	00h
Bootloader configuration area	SYSBSLC	02h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh
Bus error vector generator	SYSBERRIV	18h
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

Table 6-21. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Shared reference control	REFCTL	00h

Table 6-22. Port Mapping Control Registers (Base Address: 01C0h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Port mapping key	PMAPKEYID	00h
Port mapping control	PMAPCTL	02h

Table 6-23. Port Mapping Port P1 Registers (Base Address: 01C8h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Port P1.0 mapping	P1MAP0	00h
Port P1.1 mapping	P1MAP1	01h
Port P1.2 mapping	P1MAP2	02h
Port P1.3 mapping	P1MAP3	03h
Port P1.4 mapping	P1MAP4	04h
Port P1.5 mapping	P1MAP5	05h
Port P1.6 mapping	P1MAP6	06h
Port P1.7 mapping	P1MAP7	07h

Table 6-24. Port Mapping Port P2 Registers (Base Address: 01D0h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Port P2.0 mapping	P2MAP0	00h
Port P2.1 mapping	P2MAP1	01h
Port P2.2 mapping	P2MAP2	02h
Port P2.3 mapping	P2MAP3	03h
Port P2.4 mapping	P2MAP4	04h
Port P2.5 mapping	P2MAP5	05h
Port P2.6 mapping	P2MAP6	06h
Port P2.7 mapping	P2MAP7	07h

Table 6-25. Port Mapping Port P3 Registers (Base Address: 01D8h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Port P3.0 mapping	P3MAP0	00h
Port P3.1 mapping	P3MAP1	01h
Port P3.2 mapping	P3MAP2	02h
Port P3.3 mapping	P3MAP3	03h
Port P3.4 mapping	P3MAP4	04h
Port P3.5 mapping	P3MAP5	05h
Port P3.6 mapping	P3MAP6	06h
Port P3.7 mapping	P3MAP7	07h

Table 6-26. Port P1, P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 pullup/pulldown enable	P1REN	06h
Port P1 drive strength	P1DS	08h
Port P1 selection	P1SEL	0Ah
Port P1 interrupt vector word	P1IV	0Eh
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 pullup/pulldown enable	P2REN	07h
Port P2 drive strength	P2DS	09h
Port P2 selection	P2SEL	0Bh
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 6-27. Port P3, P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 pullup/pulldown enable	P3REN	06h
Port P3 drive strength	P3DS	08h
Port P3 selection	P3SEL	0Ah
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 pullup/pulldown enable	P4REN	07h
Port P4 drive strength	P4DS	09h
Port P4 selection	P4SEL	0Bh

Table 6-28. Port P5 Registers (Base Address: 0240h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Port P5 input	P5IN	00h
Port P5 output	P5OUT	02h
Port P5 direction	P5DIR	04h
Port P5 pullup/pulldown enable	P5REN	06h
Port P5 drive strength	P5DS	08h
Port P5 selection	P5SEL	0Ah

Table 6-29. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ pullup/pulldown enable	PJREN	06h
Port PJ drive strength	PJDS	08h

Table 6-30. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
Capture/compare control 3	TA0CCTL3	08h
Capture/compare control 4	TA0CCTL4	0Ah
TA0 counter	TA0R	10h
Capture/compare 0	TA0CCR0	12h
Capture/compare 1	TA0CCR1	14h
Capture/compare 2	TA0CCR2	16h
Capture/compare 3	TA0CCR3	18h
Capture/compare 4	TA0CCR4	1Ah
TA0 expansion 0	TA0EX0	20h
TA0 interrupt vector	TAOIV	2Eh

Table 6-31. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter	TA1R	10h
Capture/compare 0	TA1CCR0	12h
Capture/compare 1	TA1CCR1	14h
Capture/compare 2	TA1CCR2	16h
TA1 expansion 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

Table 6-32. Real-Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
RTC control 0	RTCCTL0	00h
RTC control 1	RTCCTL1	01h
RTC control 2	RTCCTL2	02h
RTC control 3	RTCCTL3	03h
RTC prescaler 0 control	RTCPS0CTL	08h
RTC prescaler 1 control	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds/counter 1	RTCSEC/RTCNT1	10h
RTC minutes/counter 2	RTCMIN/RTCNT2	11h
RTC hours/counter 3	RTCHOUR/RTCNT3	12h
RTC day of week/counter 4	RTCDOW/RTCNT4	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh

Table 6-33. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 x 16 result low word	RESLO	0Ah
16 x 16 result high word	RESHI	0Ch
16 x 16 sum extension	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 × 32 result 0 – least significant word	RES0	24h
32 x 32 result 1	RES1	26h
32 x 32 result 2	RES2	28h
32 × 32 result 3 – most significant word	RES3	2Ah
MPY32 control 0	MPY32CTL0	2Ch

Table 6-34. DMA Module Control Registers (Base Address: 0500h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
DMA module control 0	DMACTL0	00h
DMA module control 1	DMACTL1	02h
DMA module control 2	DMACTL2	04h
DMA module control 3	DMACTL3	06h
DMA module control 4	DMACTL4	08h
DMA interrupt vector	DMAIV	0Ah

Table 6-35. DMA Channel 0 Registers (Base Address: 0510h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
DMA channel 0 control	DMA0CTL	00h
DMA channel 0 source address low	DMA0SAL	02h
DMA channel 0 source address high	DMA0SAH	04h
DMA channel 0 destination address low	DMA0DAL	06h
DMA channel 0 destination address high	DMA0DAH	08h
DMA channel 0 transfer size	DMA0SZ	0Ah

Table 6-36. DMA Channel 1 Registers (Base Address: 0520h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
DMA channel 1 control	DMA1CTL	00h
DMA channel 1 source address low	DMA1SAL	02h
DMA channel 1 source address high	DMA1SAH	04h
DMA channel 1 destination address low	DMA1DAL	06h
DMA channel 1 destination address high	DMA1DAH	08h
DMA channel 1 transfer size	DMA1SZ	0Ah

Table 6-37. DMA Channel 2 Registers (Base Address: 0530h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
DMA channel 2 control	DMA2CTL	00h
DMA channel 2 source address low	DMA2SAL	02h
DMA channel 2 source address high	DMA2SAH	04h
DMA channel 2 destination address low	DMA2DAL	06h
DMA channel 2 destination address high	DMA2DAH	08h
DMA channel 2 transfer size	DMA2SZ	0Ah

Table 6-38. USCI_A0 Registers (Base Address: 05C0h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
USCI control 1	UCA0CTL1	00h
USCI control 0	UCA0CTL0	01h
USCI baud rate 0	UCA0BR0	06h
USCI baud rate 1	UCA0BR1	07h
USCI modulation control	UCA0MCTL	08h
USCI status	UCA0STAT	0Ah
USCI receive buffer	UCA0RXBUF	0Ch
USCI transmit buffer	UCA0TXBUF	0Eh
USCI LIN control	UCA0ABCTL	10h
USCI IrDA transmit control	UCA0IRTCTL	12h
USCI IrDA receive control	UCA0IRRCTL	13h
USCI interrupt enable	UCA0IE	1Ch
USCI interrupt flags	UCA0IFG	1Dh
USCI interrupt vector word	UCA0IV	1Eh

Table 6-39. USCI_B0 Registers (Base Address: 05E0h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
USCI synchronous control 1	UCB0CTL1	00h
USCI synchronous control 0	UCB0CTL0	01h
USCI synchronous bit rate 0	UCB0BR0	06h
USCI synchronous bit rate 1	UCB0BR1	07h
USCI synchronous status	UCB0STAT	0Ah
USCI synchronous receive buffer	UCB0RXBUF	0Ch
USCI synchronous transmit buffer	UCB0TXBUF	0Eh
USCI I2C own address	UCB0I2COA	10h
USCI I2C slave address	UCB0I2CSA	12h
USCI interrupt enable	UCB0IE	1Ch
USCI interrupt flags	UCB0IFG	1Dh
USCI interrupt vector word	UCB0IV	1Eh

Table 6-40. ADC12_A Registers (Base Address: 0700h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Control 0	ADC12CTL0	00h
Control 1	ADC12CTL1	02h
Control 2	ADC12CTL2	04h
Interrupt flag	ADC12IFG	0Ah
Interrupt enable	ADC12IE	0Ch
Interrupt vector word	ADC12IV	0Eh
ADC memory-control 0	ADC12MCTL0	10h
ADC memory-control 1	ADC12MCTL1	11h
ADC memory-control 2	ADC12MCTL2	12h
ADC memory-control 3	ADC12MCTL3	13h
ADC memory-control 4	ADC12MCTL4	14h
ADC memory-control 5	ADC12MCTL5	15h
ADC memory-control 6	ADC12MCTL6	16h
ADC memory-control 7	ADC12MCTL7	17h
ADC memory-control 8	ADC12MCTL8	18h
ADC memory-control 9	ADC12MCTL9	19h
ADC memory-control 10	ADC12MCTL10	1Ah
ADC memory-control 11	ADC12MCTL11	1Bh
ADC memory-control 12	ADC12MCTL12	1Ch
ADC memory-control 13	ADC12MCTL13	1Dh
ADC memory-control 14	ADC12MCTL14	1Eh
ADC memory-control 15	ADC12MCTL15	1Fh
Conversion memory 0	ADC12MEM0	20h
Conversion memory 1	ADC12MEM1	22h
Conversion memory 2	ADC12MEM2	24h
Conversion memory 3	ADC12MEM3	26h
Conversion memory 4	ADC12MEM4	28h
Conversion memory 5	ADC12MEM5	2Ah
Conversion memory 6	ADC12MEM6	2Ch
Conversion memory 7	ADC12MEM7	2Eh
Conversion memory 8	ADC12MEM8	30h
Conversion memory 9	ADC12MEM9	32h
Conversion memory 10	ADC12MEM10	34h
Conversion memory 11	ADC12MEM11	36h
Conversion memory 12	ADC12MEM12	38h
Conversion memory 13	ADC12MEM13	3Ah
Conversion memory 14	ADC12MEM14	3Ch
Conversion memory 15	ADC12MEM15	3Eh

Table 6-41. Comparator_B Registers (Base Address: 08C0h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Comp_B control 0	CBCTL0	00h
Comp_B control 1	CBCTL1	02h
Comp_B control 2	CBCTL2	04h
Comp_B control 3	CBCTL3	06h
Comp_B interrupt	CBINT	0Ch
Comp_B interrupt vector word	CBIV	0Eh

Table 6-42. AES Accelerator Registers (Base Address: 09C0h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
AES accelerator control 0	AESACTL0	00h
Reserved		02h
AES accelerator status	AESASTAT	04h
AES accelerator key	AESAKEY	06h
AES accelerator data in	AESADIN	008h
AES accelerator data out	AESADOUT	00Ah

Table 6-43. LCD_B Registers (Base Address: 0A00h)

REGISTER DESCRIPTION	ACRONYM	OFFSET		
LCD_B control 0	LCDBCTL0	000h		
LCD_B control 1	LCDBCTL1	002h		
LCD_B blinking control	LCDBBLKCTL	004h		
LCD_B memory control	LCDBMEMCTL	006h		
LCD_B voltage control	LCDBVCTL	008h		
LCD_B port control 0	LCDBPCTL0	00Ah		
LCD_B port control 1	LCDBPCTL1	00Ch		
LCD_B charge pump control	LCDBCTL0	012h		
LCD_B interrupt vector word	LCDBIV	01Eh		
LCD_B memory 1	LCDM1	020h		
LCD_B memory 2	LCDM2	021h		
LCD_B memory 14	LCDM14	02Dh		
LCD_B blinking memory 1	LCDBM1	040h		
LCD_B blinking memory 2	LCDBM2	041h		
LCD_B blinking memory 14	LCDBM14	04Dh		

Table 6-44. Radio Interface Registers (Base Address: 0F00h)

REGISTER DESCRIPTION	ACRONYM	OFFSET
Radio interface control 0	RF1AIFCTL0	00h
Radio interface control 1	RF1AIFCTL1	02h
Radio interface error flag	RF1AIFERR	06h
Radio interface error vector word	RF1AIFERRV	0Ch
Radio interface interrupt vector word	RF1AIFIV	0Eh
Radio instruction word	RF1AINSTRW	10h
Radio instruction word, 1-byte auto-read	RF1AINSTR1W	12h
Radio instruction word, 2-byte auto-read	RF1AINSTR2W	14h
Radio data in	RF1ADINW	16h
Radio status word	RF1ASTATW	20h
Radio status word, 1-byte auto-read	RF1ASTAT1W	22h
Radio status word, 2-byte auto-read	RF1AISTAT2W	24h
Radio data out	RF1ADOUTW	28h
Radio data out, 1-byte auto-read	RF1ADOUT1W	2Ah
Radio data out, 2-byte auto-read	RF1ADOUT2W	2Ch
Radio core signal input	RF1AIN	30h
Radio core interrupt flag	RF1AIFG	32h
Radio core interrupt edge select	RF1AIES	34h
Radio core interrupt enable	RF1AIE	36h
Radio core interrupt vector word	RF1AIV	38h

6.11 Input/Output Diagrams

6.11.1 Port P1 (P1.0 to P1.4) Input/Output With Schmitt Trigger

Figure 6-2 shows the port diagram. Table 6-45 summarizes the selection of the pin functions.

CC430F513x devices do not provide LCD functionality on port P1 pins.

Figure 6-2. Port P1 (P1.0 to P1.4) Diagram

Table 6-45. Port P1 (P1.0 to P1.4) Pin Functions

			CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P1.x)	PIN NAME (P1.x) x FUNCTION	P1DIR.x	P1SEL.x	P1MAPx	LCDS18 to LCDS22 ⁽²⁾	
		P1.0 (I/O)	I: 0; O: 1	0	Х	0
P1.0/P1MAP/S18	0	Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0
P1.0/P1WAP/516	U	Output driver and input Schmitt trigger disabled	Х	1	= 31	0
		S18 (not available on CC430F513x)	X	Χ	Χ	1
		P1.1 (I/O)	I: 0; O: 1	0	X	0
P1.1/P1MAP1/S19	1	Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0
P1.1/P1MAP1/519		Output driver and input Schmitt trigger disabled	Х	1	= 31	0
		S19 (not available on CC430F513x)	Х	Χ	Х	1
		P1.2 (I/O)	I: 0; O: 1	0	Χ	0
P1.2/P1MAP2/S20	2	Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0
F1.2/F1WAF2/320	2	Output driver and input Schmitt trigger disabled	Х	1	= 31	0
		S22 (not available on CC430F513x)	Х	Х	Х	1
		P1.3 (I/O)	I: 0; O: 1	0	Х	0
P1.3/P1MAP3/S21	3	Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0
P1.3/P1WAP3/521	3	Output driver and input Schmitt trigger disabled	Х	1	= 31	0
		S21 (not available on CC430F513x)	Х	Х	Х	1
		P1.4 (I/O)	I: 0; O: 1	0	Х	0
D4 4/D4144 D4/000	١,	Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0
P1.4/P1MAP4/S22	4	Output driver and input Schmitt trigger disabled	Х	1	= 31	0
		S22 (not available on CC430F513x)	Х	Х	Х	1

X = don't care

LCDSx not available in CC430F513x.
According to mapped function – see Table 6-6.

6.11.2 Port P1 (P1.5 to P1.7) Input/Output With Schmitt Trigger

Figure 6-3 shows the port diagram. Table 6-46 summarizes the selection of the pin functions.

CC430F513x devices do not provide LCD functionality on port P1 pins.

Figure 6-3. Port P1 (P1.5 to P1.7) Diagram

Table 6-46. Port P1 (P1.5 to P1.7) Pin Functions

DIN NAME (D4 v)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P1.x)	Х	FUNCTION	P1DIR.x	P1SEL.x	P1MAPx	
		P1.5 (I/O)	I: 0; O: 1	0	Х	
P1.5/P1MAP5/R23	5	Mapped secondary digital function – see Table 6-6	0; 1 ⁽²⁾	1	≤ 30 ⁽²⁾	
		R23 ⁽³⁾ (not available on CC430F513x)	Х	1	= 31	
		P1.6 (I/O)	I: 0; O: 1	0	Х	
P1.6/P1MAP6/R13/ LCDREF	6	Mapped secondary digital function – see Table 6-6	0; 1 ⁽²⁾	1	≤ 30 ⁽²⁾	
LOBINE		R13/LCDREF ⁽³⁾ (not available on CC430F513x)	Х	1	= 31	
		P1.7 (I/O)	I: 0; O: 1	0	Х	
P1.7/P1MAP7/R03	7	Mapped secondary digital function – see Table 6-6	0; 1 ⁽²⁾	1	≤ 30 ⁽²⁾	
		R03 ⁽³⁾ (not available on CC430F513x)	Х	1	= 31	

⁽¹⁾ X = don't care

⁽²⁾ According to mapped function – see Table 6-6.

⁽³⁾ Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver and the input Schmitt trigger.

6.11.3 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger

Figure 6-4 through Figure 6-6 show the port diagrams. Table 6-47 summarizes the selection of the pin functions.

Figure 6-4. Port P2 (P2.0 to P2.3) Diagram

Figure 6-5. Port P2 (P2.4 and P2.5) Diagram

CC430F513x devices do not provide analog functionality on port P2.6 and P2.7 pins.

Figure 6-6. Port P2 (P2.6 and P2.7) Diagram

Table 6-47. Port P2 (P2.0 to P2.7) Pin Functions

DINI NIAME (DO)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾				
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL.x	P2MAPx	CBPD.x	
		P2.0 (I/O)	I: 0; O: 1	0	Х	0	
P2.0/P2MAP0/CB0	0	Mapped secondary digital function – see Table 6-6	0; 1 ⁽²⁾	1	≤ 30 ⁽²⁾	0	
(/A0)	U	A0 (not available on CC430F612x) (3)	Х	1	= 31	Х	
		CB0 ⁽⁴⁾	Χ	Х	Х	1	
		P2.1 (I/O)	I: 0; O: 1	0	Х	0	
P2.1/P2MAP1/CB1	1	Mapped secondary digital function – see Table 6-6	0; 1 ⁽²⁾	1	≤ 30 ⁽²⁾	0	
(/A1)	1	A1 (not available on CC430F612x) ⁽³⁾	Х	1	= 31	Х	
		CB1 ⁽⁴⁾	Х	Х	Х	1	
		P2.2 (I/O)	I: 0; O: 1	0	Х	0	
P2.2/P2MAP2/CB2	2	Mapped secondary digital function – see Table 6-6	0; 1 ⁽²⁾	1	≤ 30 ⁽²⁾	0	
(/A2)	2	A2 (not available on CC430F612x) ⁽³⁾	Х	1	= 31	Х	
		CB2 ⁽⁴⁾	Х	Х	Х	1	
		P2.3 (I/O)	I: 0; O: 1	0	Х	0	
P2.3/P2MAP3/CB3		Mapped secondary digital function – see Table 6-6	0; 1 ⁽²⁾	1	≤ 30 ⁽²⁾	0	
(/A3)	3	A3 (not available on CC430F612x) ⁽³⁾	Χ	1	= 31	Х	
		CB3 ⁽⁴⁾	Х	Х	Х	1	
		P2.4 (I/O)	I: 0; O: 1	0	Х	0	
P2.4/P2MAP4/CB4		Mapped secondary digital function – see Table 6-6	0; 1 ⁽²⁾	1	≤ 30 ⁽²⁾	0	
(/A4/VREF-/VeREF-)	4	A4/VREF-/VeREF- (not available on CC430F612x) (3)	Χ	1	= 31	Х	
		CB4 ⁽⁴⁾	Х	Х	Х	1	
		P2.5 (I/O)	I: 0; O: 1	0	Х	0	
P2.5/P2MAP5/CB5	_	Mapped secondary digital function – see Table 6-6	0; 1 ⁽²⁾	1	≤ 30 ⁽²⁾	0	
(/A5/VREF+/VeREF+)	5	A5/VREF+/VeREF+ (not available on CC430F612x)(3)	Х	1	= 31	Х	
		CB5 ⁽⁴⁾	Х	Х	Х	1	
		P2.6 (I/O)	I: 0; O: 1	0	Х	0	
Do 0/D0144 D0//0D0)		Mapped secondary digital function – see Table 6-6	0; 1 ⁽²⁾	1	≤ 30 ⁽²⁾	0	
P2.6/P2MAP6(/CB6) (/A6)	6	A6 (not available on CC430F612x and CC430F513x) ⁽³⁾	Х	1	= 31	Х	
		CB6 (not available on CC430F513x) ⁽⁴⁾	Х	Х	Х	1	
		P2.7 (I/O)	I: 0; O: 1	0	Х	0	
D0 7/D0144 D7//05=`		Mapped secondary digital function – see Table 6-6	0; 1 ⁽²⁾	1	≤ 30 ⁽²⁾	0	
P2.7/P2MAP7(/CB7) (/A7)	7	A7 (not available on CC430F612x and CC430F513x) ⁽³⁾	Х	1	= 31	Х	
		CB7 (not available on CC430F513x) ⁽⁴⁾	Χ	Х	Х	1	

According to mapped function – see Table 6-6.
Setting P2SEL.x bit together with P2MAPx = PM_ANALOG disables the output driver and the input Schmitt trigger.

Setting the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CBPD.x bit.

6.11.4 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger

Figure 6-7 shows the port diagram. Table 6-48 summarizes the selection of the pin functions.

CC430F513x devices do not provide LCD functionality on port P3 pins.

Figure 6-7. Port P3 (P3.0 to P3.7) Diagram

Table 6-48. Port P3 (P3.0 to P3.7) Pin Functions

			CC	CONTROL BITS OR SIGNALS ⁽¹⁾				
PIN NAME (P3.x)	x	FUNCTION	P3DIR.x	P3SEL.x	РЗМАРх	LCDS10 to LCDS17 ⁽²⁾		
		P3.0 (I/O)	I: 0; O: 1	0	Х	0		
D2 0/D2MA D0/C40	0	Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0		
P3.0/P3MAP0/S10	0	Output driver and input Schmitt trigger disabled	X	1	= 31	0		
		S10 (not available on CC430F513x)	X	Х	Х	1		
		P3.1 (I/O)	I: 0; O: 1	0	Х	0		
DO 4/DOMA D4/C44		Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0		
P3.1/P3MAP1/S11	1	Output driver and input Schmitt trigger disabled	X	1	= 31	0		
		S11 (not available on CC430F513x)	X	Х	Х	1		
		P3.2 (I/O)	I: 0; O: 1	0	Х	0		
D0 0/D0MA D7/C40		Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0		
P3.2/P3MAP7/S12	2	Output driver and input Schmitt trigger disabled	Х	1	= 31	0		
		S12 (not available on CC430F513x)	Х	Х	Х	1		
		P3.3 (I/O)	I: 0; O: 1	0	Х	0		
DO 0/DOMA DO/O40		Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0		
P3.3/P3MAP3/S13	3	Output driver and input Schmitt trigger disabled	X	1	= 31	0		
		S13 (not available on CC430F513x)	Х	Х	Х	1		
		P3.4 (I/O)	I: 0; O: 1	0	Х	0		
DO 4/DOMA D 4/O4 4	١,	Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0		
P3.4/P3MAP4/S14	4	Output driver and input Schmitt trigger disabled	X	1	= 31	0		
		S14 (not available on CC430F513x)	X	Х	Х	1		
		P3.5 (I/O)	I: 0; O: 1	0	Х	0		
DO 5/DOMA D5/045	_	Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0		
P3.5/P3MAP5/S15	5	Output driver and input Schmitt trigger disabled	Х	1	= 31	0		
		S15 (not available on CC430F513x)	Х	Х	Х	1		
		P3.6 (I/O)	I: 0; O: 1	0	Х	0		
DO 0/DOMA DO/O40		Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0		
P3.6/P3MAP6/S16	6	Output driver and input Schmitt trigger disabled	X	1	= 31	0		
		S16 (not available on CC430F513x)	X	Х	Х	1		
		P3.7 (I/O)	I: 0; O: 1	0	Х	0		
D0 7/D0MA D7/047	_	Mapped secondary digital function – see Table 6-6	0; 1 ⁽³⁾	1	≤ 30 ⁽³⁾	0		
P3.7/P3MAP7/S17	7	Output driver and input Schmitt trigger disabled	Х	1	= 31	0		
		S17 (not available on CC430F513x)	Х	Х	Х	1		

X = don't care

LCDSx not available in CC430F513x.
According to mapped function – see Table 6-6.

6.11.5 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger (CC430F613x and CC430F612x Only)

Figure 6-8 shows the port diagram. Table 6-49 summarizes the selection of the pin functions.

Figure 6-8. Port P4 (P4.0 to P4.7) Diagram (CC430F613x and CC430F612x Only)

Table 6-49. Port P4 (P4.0 to P4.7) Pin Functions (CC430F613x and CC430F612x Only)

		FUNCTION	CONTRO	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P4.x)	X		P4DIR.x	P4SEL.x	LCDS2 to LCDS9		
		P4.0 (I/O)	I: 0; O: 1	0	0		
D4.0/D4MA.D0/C0	0	N/A	0	1	0		
P4.0/P4MAP0/S2	U	DVSS	1	1	0		
		S2	X	Х	1		
		P4.1 (I/O)	I: 0; O: 1	0	0		
P4.1/P4MAP1/S3	1	N/A	0	1	0		
P4. I/P4WIAP I/53	1	DVSS	1	1	0		
		S3	X	X	1		
		P4.2 (I/O)	I: 0; O: 1	0	0		
P4.2/P4MAP7/S4	2	N/A	0	1	0		
P4.2/P4WAP7/54	2	DVSS	1	1	0		
		S4	Х	Х	1		
		P4.3 (I/O)	I: 0; O: 1	0	0		
D4 0/D4MA D0/OF	3	N/A	0	1	0		
P4.3/P4MAP3/S5	3	DVSS	1	1	0		
		S5	X	Х	1		
		P4.4 (I/O)	I: 0; O: 1	0	0		
P4.4/P4MAP4/S6	4	N/A	0	1	0		
F4.4/F4WAF4/30	4	DVSS	1	1	0		
		S6	X	X	1		
		P4.5 (I/O)	I: 0; O: 1	0	0		
P4.5/P4MAP5/S7	5	N/A	0	1	0		
P4.5/P4WAP5/57	5	DVSS	1	1	0		
		S7	X	Х	1		
		P4.6 (I/O)	I: 0; O: 1	0	0		
D4.6/D4MA.D6/00	6	N/A	0	1	0		
P4.6/P4MAP6/S8	ь	DVSS	1	1	0		
		S8	X	Х	1		
		P4.7 (I/O)	I: 0; O: 1	0	0		
D4 7/D4MA D7/C0	7	N/A	0	1	0		
P4.7/P4MAP7/S9	/	DVSS	1	1	0		
		S9	X	Х	1		

⁽¹⁾ X = don't care

6.11.6 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger

Figure 6-9 and Figure 6-10 show the port diagrams. Table 6-50 summarizes the selection of the pin functions.

Figure 6-9. Port P5 (P5.0) Diagram

Figure 6-10. Port P5 (P5.1) Diagram

Table 6-50. Port P5 (P5.0 and P5.1) Pin Functions

DINI NIAME (DE)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾					
PIN NAME (P5.x)	X	FONCTION	P5DIR.x	P5SEL.0	P5SEL.1	XT1BYPASS		
P5.0/XIN		P5.0 (I/O)	I: 0; O: 1	0	Х	Х		
	0	XIN crystal mode ⁽²⁾	Х	1	Х	0		
		XIN bypass mode ⁽²⁾	Х	1	Х	1		
P5.1/XOUT		P5.1 (I/O)	I: 0; O: 1	0	Х	Х		
	1	XOUT crystal mode (3)	Х	1	Х	0		
		P5.1 (I/O) ⁽³⁾	Х	1	Х	1		

⁽¹⁾ X = don't care

Setting P5SEL.0 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.0 is configured for crystal (2) mode or bypass mode.

Setting P5SEL.0 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.1 can be used as general-purpose I/O.

6.11.7 Port P5 (P5.2 to P5.4) Input/Output With Schmitt Trigger (CC430F613x and CC430F612x Only)

Figure 6-11 shows the port diagram. Table 6-51 and Table 6-52 summarize the selection of the pin functions.

Figure 6-11. Port P5 (P5.2 to P5.4) Diagram (CC430F613x and CC430F612x Only)

Table 6-51. Port P5 (P5.2 to P5.3) Pin Functions (CC430F613x and CC430F612x Only)

	x	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P5.x)			P5DIR.x	P5SEL.x	LCDS0 to LCDS1	
		P5.2 (I/O)	I: 0; O: 1	0	0	
P5.2/S0	2	N/A	0	1	0	
P5.2/50	2	DVSS	1	1	0	
		S0	X	X	1	
		P5.3 (I/O)	I: 0; O: 1	0	0	
DE 2/04	2	N/A	0	1	0	
P5.3/S1	3	DVSS	1	1	0	
		S1	X	Х	1	

⁽¹⁾ X = don't care

Table 6-52. Port P5 (P5.4) Pin Functions (CC430F613x and CC430F612x Only)

PIN NAME (P5.x)	x	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
			P5DIR.x	P5SEL.x	LCDS23	
	4	P5.4 (I/O)	I: 0; O: 1	0	0	
DE 4/000		N/A	0	1	0	
P5.4/S23		DVSS	1	1	0	
		S23	X	Х	1	

⁽¹⁾ X = don't care

6.11.8 Port P5 (P5.5 to P5.7) Input/Output With Schmitt Trigger (CC430F613x and CC430F612x Only)

Figure 6-12 shows the port diagram. Table 6-53 summarizes the selection of the pin functions.

Figure 6-12. Port P5 (P5.5 to P5.7) Diagram (CC430F613x and CC430F612x Only)

Table 6-53. Port P5 (P5.5 to P5.7) Pin Functions (CC430F613x and CC430F612x Only)

	x	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P5.x)			P5DIR.x	P5SEL.x	LCDS24 to LCDS26	
		P5.5 (I/O)	I: 0; O: 1	0	0	
P5.5/COM3/S24	5	COM3 ⁽²⁾	X	1	X	
		S24 ⁽²⁾	X	0	1	
		P5.6 (I/O)	I: 0; O: 1	0	0	
P5.6/COM2/S25	6	COM2 ⁽²⁾	Х	1	Х	
		S25 ⁽²⁾	Х	0	1	
		P5.7 (I/O)	I: 0; O: 1	0	0	
P5.7/COM1/S26	7	COM1 ⁽²⁾	Х	1	X	
		S26 ⁽²⁾	Х	0	1	

⁽¹⁾ X = don't care

⁽²⁾ Setting P5SEL.x bit disables the output driver and the input Schmitt trigger.

6.11.9 Port J (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output

Figure 6-13 shows the port diagram. Table 6-54 summarizes the selection of the pin functions.

Figure 6-13. Port PJ (PJ.0) Diagram

6.11.10 Port J (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output

Figure 6-14 shows the port diagram. Table 6-54 summarizes the selection of the pin functions.

Figure 6-14. Port PJ (PJ.1 to PJ.3) Diagram

Table 6-54. Port PJ (PJ.0 to PJ.3) Pin Functions

PIN NAME (PJ.x)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾
,			PJDIR.x
PJ.0/TDO	0	PJ.0 (I/O) ⁽²⁾	l: 0; O: 1
	0	TDO ⁽³⁾	X
DI ATTOLITO IA	4	PJ.1 (I/O) ⁽²⁾	I: 0; O: 1
PJ.1/TDI/TCLK	1	TDI/TCLK ⁽³⁾ (4)	X
D.L.O/TMC	0	PJ.2 (I/O) ⁽²⁾	I: 0; O: 1
PJ.2/TMS	2	TMS ⁽³⁾ (4)	X
PJ.3/TCK	2	PJ.3 (I/O) ⁽²⁾	I: 0; O: 1
	3	TCK ⁽³⁾ (4)	X

⁽¹⁾ X = don't care

⁽²⁾ Default condition

⁽³⁾ The pin direction is controlled by the JTAG module.

⁽⁴⁾ In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.

6.12 Device Descriptor

Table 6-55 lists the content of the device descriptor tag-length-value (TLV) structure for CC430F613x and CC430F513x device types.

Table 6-56 lists the content of the device descriptor tag-length-value (TLV) structure for CC430F612x device types.

Table 6-55. Device Descriptor Table (CC430F613x and CC430F513x)

			SIZE	IZE VALUE				
	DESCRIPTION	ADDRESS	(bytes)	F6137	F6135	F5137	F5135	F5133
	Info length	01A00h	1	06h	06h	06h	06h	06h
	CRC length	01A01h	1	06h	06h	06h	06h	06h
	CRC value	01A02h	2	Per unit	Per unit	Per unit	Per unit	Per unit
Info Block	Device ID	01A04h	1	61h	61h	51h	51h	51h
	Device ID	01A05h	1	37h	35h	37h	35h	33h
	Hardware revision	01A06h	1	Per unit	Per unit	Per unit	Per unit	Per unit
	Firmware revision	01A07h	1	Per unit	Per unit	Per unit	Per unit	Per unit
	Die record tag	01A08h	1	08h	08h	08h	08h	08h
	Die record length	01A09h	1	0Ah	0Ah	0Ah	0Ah	0Ah
Die Desemb	Lot/wafer ID	01A0Ah	4	Per unit	Per unit	Per unit	Per unit	Per unit
Die Record	Die X position	01A0Eh	2	Per unit	Per unit	Per unit	Per unit	Per unit
	Die Y position	01A10h	2	Per unit	Per unit	Per unit	Per unit	Per unit
	Test results	01A12h	2	Per unit	Per unit	Per unit	Per unit	Per unit
	ADC12 calibration tag	01A14h	1	11h	11h	11h	11h	11h
	ADC12 calibration length	01A15h	1	10h	10h	10h	10h	10h
	ADC gain factor	01A16h	2	Per unit	Per unit	Per unit	Per unit	Per unit
	ADC offset	01A18h	2	Per unit	Per unit	Per unit	Per unit	Per unit
	ADC 1.5-V reference Temperature sensor 30°C	01A1Ah	2	Per unit	Per unit	Per unit	Per unit	Per unit
ADC12	ADC 1.5-V reference Temperature sensor 85°C	01A1Ch	2	Per unit	Per unit	Per unit	Per unit	Per unit
Calibration	ADC 2.0-V reference Temperature sensor 30°C	01A1Eh	2	Per unit	Per unit	Per unit	Per unit	Per unit
	ADC 2.0-V reference Temperature sensor 85°C	01A20h	2	Per unit	Per unit	Per unit	Per unit	Per unit
	ADC 2.5-V reference Temperature sensor 30°C	01A22h	2	Per unit	Per unit	Per unit	Per unit	Per unit
	ADC 2.5-V reference Temperature sensor 85°C	01A24h	2	Per unit	Per unit	Per unit	Per unit	Per unit
	REF calibration tag	01A26h	1	12h	12h	12h	12h	12h
555	REF calibration length	01A27h	1	06h	06h	06h	06h	06h
REF Calibration	1.5-V reference factor	01A28h	2	Per unit	Per unit	Per unit	Per unit	Per unit
242.41011	2.0-V reference factor	01A2Ah	2	Per unit	Per unit	Per unit	Per unit	Per unit
	2.5-V reference factor	01A2Ch	2	Per unit	Per unit	Per unit	Per unit	Per unit
Peripheral	Peripheral descriptor tag	01A2Eh	1	02h	02h	02h	02h	02h
Descriptor	Peripheral descriptor length	01A2Fh	1	57h	57h	55h	55h	55h
(PD)	Peripheral descriptors	01A30h	PD Length					

Table 6-56. Device Descriptor Table (CC430F612x)

DESCRIPTION		455550	SIZE	VALUE			
DE	SCRIPTION	ADDRESS	(bytes)	F6127	F6126	F6125	
	Info length	01A00h	1	06h	06h	06h	
	CRC length	01A01h	1	06h	06h	06h	
	CRC value	01A02h	2	Per unit	Per unit	Per unit	
Info Block	Device ID	01A04h	1	61h	61h	61h	
	Device ID	01A05h	1	27h	26h	25h	
	Hardware revision	01A06h	1	Per unit	Per unit	Per unit	
	Firmware revision	01A07h	1	Per unit	Per unit	Per unit	
	Die record tag	01A08h	1	08h	08h	08h	
	Die record length	01A09h	1	0Ah	0Ah	0Ah	
D's Desert	Lot/wafer ID	01A0Ah	4	Per unit	Per unit	Per unit	
Die Record	Die X position	01A0Eh	2	Per unit	Per unit	Per unit	
	Die Y position	01A10h	2	Per unit	Per unit	Per unit	
	Test results	01A12h	2	Per unit	Per unit	Per unit	
	Empty tag	01A14h	1	05h	05h	05h	
Empty Descriptor	Empty tag length	01A15h	1	10h	10h	10h	
		01A16h	16	undefined	undefined	undefined	
	REF calibration I	01A26h	1	12h	12h	12h	
	REF calibration length	01A27h	1	06h	06h	06h	
REF Calibration	1.5-V reference factor	01A28h	2	Per unit	Per unit	Per unit	
	2.0-V reference factor	01A2Ah	2	Per unit	Per unit	Per unit	
	2.5-V reference factor	01A2Ch	2	Per unit	Per unit	Per unit	
	Peripheral descriptor tag	01A2Eh	1	02h	02h	02h	
Peripheral Descriptor (PD)	Peripheral descriptor length	01A2Fh	1	55h	55h	55h	
(, D)	Peripheral descriptors	01A30h	PD Length				

7 Applications, Implementation, and Layout

NOTE

Information in the following Applications section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

7.1 Application Circuits

Figure 7-1 shows a typical application circuit for the CC430F61xx. Table 7-1 lists the bill of materials.

Copyright © 2017, Texas Instruments Incorporated

For a complete reference design including layout, see the CC430 wireless development tools and the MSP430 Hardware Tools User's Guide.

Figure 7-1. Typical Application Circuit CC430F61xx

Figure 7-2 shows a typical application circuit for the CC430F51xx. Table 7-1 lists the bill of materials.

Copyright © 2017, Texas Instruments Incorporated

For a complete reference design including layout, see the CC430 wireless development tools and the MSP430 Hardware Tools User's Guide.

Figure 7-2. Typical Application Circuit CC430F51xx

Table 7-1. Bill of Materials

Components	For 315 MHz	For 433 MHz	For 868 or 915 MHz	Comment
C1, C3, C4, C5, C7, C9, C11, C13, C15		100 nF		Decoupling capacitors
C8, C10, C12, C14		10 μF		Decoupling capacitors
C2, C6, C16, C17, C18		2 pF		Decoupling capacitors
C19		470 nF		V _{CORE} capacitor
C20		2.2 nF		RST decoupling cap (optimized for SBW)
C21, C22		27 pF		Load capacitors for 26 MHz crystal (1)
R1		56 kΩ		R_BIAS (±1% required)
R2		47 kΩ		RST pullup
L1, L2	Capacitors: 220 pF	0.016 μH	0.012 μH	
L3, L4	0.033 µH	0.027 µH	0.018 µH	
L5	0.033 µH	0.047 µH	0.015 μH	
L6	dnp ⁽²⁾	dnp ⁽²⁾	0.0022 μH	
L7	0.033 µH	0.051 µH	0.015 μH	
C23	dnp ⁽²⁾	2.7 pF	1 pF	
C24	220 pF	220 pF	100 pF	
C25	6.8 pF	3.9 pF	1.5 pF	
C26	6.8 pF	3.9 pF	1.5 pF	
C27	220 pF	220 pF	1.5 pF	
C28	10 pF	4.7 pF	8.2 pF	
C29	220 pF	220 pF	1.5 pF	

⁽¹⁾ The load capacitance C_L seen by the crystal is $C_L = 1 / ((1 / C21) + (1 / C22)) + C_{parasitic}$. The parasitic capacitance $C_{parasitic}$ includes pin capacitance and PCB stray capacitance. It can typically be estimated to be approximately 2.5 pF.

⁽²⁾ dnp = do not populate

8 Device and Documentation Support

8.1 Getting Started and Next Steps

For an introduction to the MSP430[™] family of devices and the tools and libraries that are available to help with your development, visit the Getting Started page.

8.2 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully qualified production devices (MSP).

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

MSP - Fully qualified production device

XMS devices are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. Tl's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature range, package type, and distribution format. Figure 8-1 provides a legend for reading the complete device name.

Processor Family MCU Platform	CC = Embedded RF Radio MSP = Mixed-Signal Processor XMS = Experimental Silicon PMS = Prototype Device 430 = MSP430 low-power microcontroller platform					
Device Type	Memory Type C = ROM F = Flash FR = FRAM G = Flash or FRAM (Value Line) L = No Nonvolatile Memory	Specialized Application AFE = Analog Front End BQ = Contactless Power CG = ROM Medical FE = Flash Energy Meter FG = Flash Medical FW = Flash Electronic Flow Meter				
Series	1 = Up to 8 MHz 2 = Up to 16 MHz 3 = Legacy 4 = Up to 16 MHz with LCD	5 = Up to 25 MHz 6 = Up to 25 MHz with LCD 0 = Low-Voltage Series				
Feature Set	Various levels of integration within a series					
Optional: A = Revision	N/A					
Optional: Temperature Range	S = 0°C to 50°C C = 0°C to 70°C I = -40°C to 85°C T = -40°C to 105°C					
Packaging	http://www.ti.com/packaging					
Optional: Tape and Reel	T = Small reel R = Large reel No markings = Tube or tray					
Optional: Additional Features	-EP = Enhanced Product (–40°C to 105°C) -HT = Extreme Temperature Parts (–55°C to 150°C) -Q1 = Automotive Q100 Qualified					

Figure 8-1. Device Nomenclature

8.3 Tools and Software

The CC430 microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties.

Design Kits and Evaluation Modules

- CC430 Sub-GHz RF Experimenter's Board The MSP-EXPCC430RFx Experimenter Kit is a complete sub-GHz development platform for the CC430 devices from the MSP430 family of ultra-low-power microcontrollers. The kit provides two sub-GHz wireless modules: the MSP-EXP430F6137Rx Base Board with the CC430F6137, and the MSP-EXP430F5137Rx Satellite Board with the CC430F5137.
- Chronos: Wireless Development Tool in a Watch The eZ430-Chronos is a highly integrated, wearable wireless development system based for the CC430 in a sports watch. It may be used as a reference platform for watch systems, a personal display for personal area networks, or as a wireless sensor node for remote data collection.
- Sub-1 GHz RF Spectrum Analyzer Tool The MSP-SA430-SUB1GHZ Spectrum Analyzer is CC430-based reference design that can be used to implement an easy and affordable tool to jumpstart RF development in the sub-GHz frequency range. More and more electronic devices include a built-in RF link. RF transceivers are inexpensive but the equipment to design and debug such systems is not. The CC430-based spectrum analyzer provides an affordable development tool that reduces the time needed on expensive measurement equipment.

Software

- MSP430Ware MSP430Ware software is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of CCS or as a stand-alone package.
- CC430F613x Code Examples C Code examples that configure each of the integrated peripherals for various application needs.
- ULP (Ultra-Low Power) Advisor ULP (Ultra-Low Power) Advisor is a tool for guiding developers to write more efficient code to fully utilize the unique ultra-low power features of MSP430 and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every last nano amp out of your application.

Development Tools

- Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers

 Composer Studio is an integrated development environment (IDE) that supports all MSP microcontroller devices. Code Composer Studio comprises a suite of embedded software utilities used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features.
- GCC Open Source Compiler for MSP430 Microcontrollers TI has partnered with Red Hat to bring you a new and fully supported open source compiler as the successor to the community driven MSPGCC. This free GCC 4.9 compiler supports all MSP430 devices and has no code size limit. In addition, this compiler can be used stand-alone or selected within Code Composer Studio v6.0 or later.
- MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool often called a debug probe which allows users to quickly begin application development on MSP low-power microcontrollers (MCU).
- **MSP-GANG Production Programmer** The MSP Gang Programmer is a device programmer that can program up to eight identical devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow the user to fully customize the process.

8.4 Documentation Support

The following documents describe the CC430F613x, CC430F612x, and CC430F513x devices. Copies of these documents are available on the Internet at www.ti.com.

Receiving Nofication of Document Updates

To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (for links to the product folder, see Section 8.5). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

Errata

CC430F6137 Device Erratasheet	Describes the known exceptions to the functional specifications.
CC430F6135 Device Erratasheet	Describes the known exceptions to the functional specifications.
CC430F6127 Device Erratasheet	Describes the known exceptions to the functional specifications.
CC430F6126 Device Erratasheet	Describes the known exceptions to the functional specifications.
CC430F6125 Device Erratasheet	Describes the known exceptions to the functional specifications.
CC430F5137 Device Erratasheet	Describes the known exceptions to the functional specifications.
CC430F5135 Device Erratasheet	Describes the known exceptions to the functional specifications.
CC430F5133 Device Erratasheet	Describes the known exceptions to the functional specifications.

User's Guides

- **CC430 Family User's Guide** Detailed information on the modules and peripherals available in this device family.
- Code Composer Studio for MSP430 User's Guide This user's guide describes how to use the TI Code Composer Studio IDE with the MSP430 ultra-low-power microcontrollers.
- MSP430™ Flash Device Bootloader (BSL) User's Guide The MSP430 bootloader (BSL, formerly known as the bootstrap loader) allows users to communicate with embedded memory in the MSP430 microcontroller during the prototyping phase, final production, and in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap loader programs found in some digital signal processors (DSPs) that automatically load program code (and data) from external memory to the internal memory of the DSP.
- MSP430 Programming With the JTAG Interface This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).
- MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described.

Application Reports

- MSP430 32-kHz Crystal Oscillators Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production.
- MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing cost-effective and ultra-low-power components. This application report addresses three different ESD topics to help board designers and OEMs understand and design robust system-level designs: (1) Component-level ESD testing and system-level ESD testing, their differences

and why component-level ESD rating does not ensure system-level robustness. (2) General design guidelines for system-level ESD protection at different levels including enclosures, cables, PCB layout, and on-board ESD protection devices. (3) Introduction to System Efficient ESD Design (SEED), a co-design methodology of on-board and on-chip ESD protection to achieve system-level ESD robustness, with example simulations and test results. A few real-world system-level ESD protection design examples and their results are also discussed.

- DN005 CC11xx Sensitivity versus Frequency Offset and Crystal Accuracy This design note provides plots of CC11xx (CC1100, CC1100E, CC1101, CC1110, and CC1111) sensitivity versus frequency offset for different data rates. The required crystal accuracy is calculated from these plots. The results are also applicable for CC430.
- AN050 Using the CC1101 in the European 868 MHz SRD Band The CC1101 is a truly low cost, highly integrated, and very flexible RF transceiver. The CC1101 is primarily designed for use in low-power applications in the 315, 433, 868 and 915 MHz SRD/ISM bands. This application note describes how to use the CC1101 in the European 863 870 MHz SRD frequency bands in order to comply with EN 300 220 requirements. The application note is also applicable for CC1110, CC1111, and CC430 SoCs as they use the same radio as CC1101.
- DN010 Close-in Reception with CC1101 This document describes how the CC1100E and CC1101 can be used in close-range applications. The chips have a saturation limit of approximately -15 dBm at 250 kbps, which might be a challenge for some short-range applications. Two suggested solutions are presented, the first is a double-transmit scheme and the second is to shift the receivers dynamic range during close-range reception.
- DN013 Programming Output Power on CC1101 The CC1101 RF output power level is set by the PATABLE register setting. This register setting also influences the power levels at the different harmonics and the current consumption for the device. These parameters must therefore be considered when choosing the optimal register settings. This document gives complete CC1101 PA tables with typical output power, harmonics, and current consumption for the different register settings at 25°C and 3.0 V supply voltage.
- DN017 CC11xx 868/915 MHz RF Matching This design note gives a short introduction to RF matching and important aspects when designing products using the CC11xx parts. Because all of the CC11xx parts have the same RF front end, the same matching network can be used between the radio and the antenna. TI provides a reference design for all CC11xx products. These reference designs show recommended placement and values for decoupling capacitors and components in the matching network.

8.5 Related Links

Table 8-1 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 8-1. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
CC430F6137	Click here	Click here	Click here	Click here	Click here
CC430F6135	Click here	Click here	Click here	Click here	Click here
CC430F6127	Click here	Click here	Click here	Click here	Click here
CC430F6126	Click here	Click here	ck here Click here Click here		Click here
CC430F6125	Click here	Click here	Click here	Click here	Click here
CC430F5137	Click here	Click here	Click here	Click here	Click here
CC430F5135	Click here	Click here	Click here	Click here	Click here
CC430F5133	Click here	Click here	Click here	Click here	Click here

8.6 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

8.7 Trademarks

MSP430, MSP430Ware, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

8.8 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.9 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

8.10 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

8-Sep-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CC430F5133IRGZ	ACTIVE	VQFN	RGZ	48	52	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC430 F5133	Sample
CC430F5133IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC430 F5133	Sample
CC430F5133IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC430 F5133	Sample
CC430F5135IRGZ	ACTIVE	VQFN	RGZ	48	52	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC430 F5135	Sample
CC430F5135IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC430 F5135	Sample
CC430F5135IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC430 F5135	Sample
CC430F5137IRGZ	ACTIVE	VQFN	RGZ	48	52	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC430 F5137	Sample
CC430F5137IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC430 F5137	Sample
CC430F5137IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC430 F5137	Sample
CC430F6125IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC430F6125	Sample
CC430F6126IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC430F6126	Sample
CC430F6127IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC430F6127	Sample
CC430F6127IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC430F6127	Sample
CC430F6135IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC430F6135	Sample
CC430F6137IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC430F6137	Sampl
CC430F6137IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-3-260C-168 HR	-40 to 85	CC430F6137	Sampl

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

PACKAGE OPTION ADDENDUM

8-Sep-2018

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Sep-2018

TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CC430F5133IRGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2
CC430F5133IRGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2
CC430F5135IRGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2
CC430F5135IRGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2
CC430F5137IRGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2
CC430F5137IRGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2
CC430F6125IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2
CC430F6126IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2
CC430F6127IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2
CC430F6127IRGCT	VQFN	RGC	64	250	180.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2
CC430F6135IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2
CC430F6137IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2
CC430F6137IRGCT	VQFN	RGC	64	250	180.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Sep-2018

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CC430F5133IRGZR	VQFN	RGZ	48	2500	336.6	336.6	28.6
CC430F5133IRGZT	VQFN	RGZ	48	250	213.0	191.0	55.0
CC430F5135IRGZR	VQFN	RGZ	48	2500	336.6	336.6	28.6
CC430F5135IRGZT	VQFN	RGZ	48	250	213.0	191.0	55.0
CC430F5137IRGZR	VQFN	RGZ	48	2500	336.6	336.6	28.6
CC430F5137IRGZT	VQFN	RGZ	48	250	213.0	191.0	55.0
CC430F6125IRGCR	VQFN	RGC	64	2000	336.6	336.6	28.6
CC430F6126IRGCR	VQFN	RGC	64	2000	336.6	336.6	28.6
CC430F6127IRGCR	VQFN	RGC	64	2000	336.6	336.6	28.6
CC430F6127IRGCT	VQFN	RGC	64	250	213.0	191.0	55.0
CC430F6135IRGCR	VQFN	RGC	64	2000	336.6	336.6	28.6
CC430F6137IRGCR	VQFN	RGC	64	2000	350.0	350.0	43.0
CC430F6137IRGCT	VQFN	RGC	64	250	213.0	191.0	55.0

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5—1994.
 - B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

RGC (S-PVQFN-N64)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

RGC (S-PVQFN-N64)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RGZ (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

4206354-3/Z 03/15

NOTE: All linear dimensions are in millimeters

RGZ (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated