Software Requirements Specification

Apple DWH Solution

Table of Content

Versions Management	3
TBD Management	3
Overview	3
Business Background	3
Benefits	4
Requirements	4
Business Requirements	4
Functional Requirements	5
Non - Functional Requirements	5
Solution Sketch	6
DWH Solution Sketch	6
Source Tables structure	6
Scheme Structure	7
Star Scheme	7
Logical Diagram	7
Snowflake Scheme	
Logical Diagram	
Aggregate Facts	8
Fact Table	8
User Access and Rights Matrix	8
Data Warehouse Architecture	<u>C</u>
Partitioning Fact Table	
Parallel Execution	
Extraction Description	
Offline Extraction	
Full Extraction	
Transformation Description	
SQL Transformation	11
PL/SQL Transforming	
Transforming Data Using Table Functions	
Business solution concept Transformation Strategy	
Transportation Description	
Transportation Using Flat Files	
Transportation Using Transportable Tablespaces	
Glossary	12

Versions Management

Version	Date	Description
1.0	07/24/2022	Document created, (Added Version Management, TBD Management,
		Overview, Requirements, and Solution Sketch chapters).
2.0	07/25/2022	Added Scheme Structure chapter (Logical Diagram)
2.1	08/03/2022	Minor fixes, added Parallel Execution chapter, edited Glossary
2.2	08/17/2022	Added Chapter Extraction Description
2.3	08/21/2022	Added Chapters Transformation Description, Transportation Description

TBD Management

ID	Short description	Date of creating	Status	Date of determination	Determination Version Number
TBD - 01	Which reports?		Non – determined		
TBD - 02	Oher business requirements		Non – determined		
TBD - 03	Oher functional requirements		Determined	08/21/22	2.3
TBD - 04	Oher non – functional requirements	07/24/22	Determined	08/21/22	2.3
TBD - 05	Carres tables]	Determined	08/21/22	2.3
TBD - 06	Source tables		Determined	08/21/22	2.3
TBD - 07	structure, e.g. add more tables		Determined	08/21/22	2.3
TBD - 08	inore tables		Determined	08/21/22	2.3
TBD - 09	Overview		Determined	08/04/22	2.1

Overview

As an example, I wanted to demonstrate Apple sales to show specifics of building DWH in this sphere. (TBD - 09) Nowadays apple sells so many products every second, minute, hour that it would be hindsight enough not to have a picture expressed in data about them. One of the most reasonable solution that can be used to store all these data is a DWH.

Business Background

Apple Inc. is an American multinational technology company that specializes in consumer electronics, software and online services. Apple is the largest technology company by revenue and it is the world's second biggest company by market capitalization, the fourth-largest personal computer vendor by unit sales and second-largest mobile phone manufacturer. It is one of the Big Five American information technology companies, alongside Alphabet, Amazon, Meta, and Microsoft. In fact, Apple Has More Cash than the US Government.

Most popular products:

- 1. IPhone
- 2. Services
- 3. Mac
- 4. IPad
- 5. Wearables, Home and Accessories

Benefits

- 1. Time saving. In the modern fast-paced world of cutthroat competition, your capacity as a business is to swiftly make refined decisions is essential to outpace your opponents. A DWH provides access to all required data in a matter of minutes, so you and your employees do not have to dread an approaching deadline. All you need to do is deploy your data model to acquire data within seconds. Our DWH solution allow you to do that without using a complex query or machine learning. With data warehousing, your business will not have to rely on the 24/7 availability of a technical expert to troubleshoot problems associated with retrieving information. This way, we can save plenty of time.
- 2. Improves Data Quality. The refined quality of data helps guarantee that Apple Company's policies are based on precise information about your corporate exertions. By understanding the data warehousing meaning, we can transform data from multiple sources into a shared arrangement. Consequently, we can ensure the reliability and quality of corporate data. This way, we can identify and remove replicated data, poorly recorded data, and any other errors.
- 3. Increases BI operations performance. We can use a data warehouse to gather, assimilate, and derive data from any source and set up a process to leverage business analytics. As a result, BI will improve rapidly, owing to the capability of effortlessly integrating data from distinct sources. With a data warehouse in place, every team member can have an integrated understanding of all the relevant information in a timely manner.
- 4. Storing Historical Data. Data Warehouse allows storing large volumes of historical data from operational databases. It is easy to investigate different time phases and inclinations that can be innovative for your company. Thus, with the right and real-time data in your hands, you can make superior corporate decisions concerning business strategies. Moreover, predicting the results of business processes is a significant aspect. It can be challenging to forecast the future without a tangible understanding of our historical achievements and letdowns of Apple Inc. Thus, using EDW gives us an advantage in business procedures.

Requirements

Business Requirements

Busine	ss Requirements
ID	Requirement Description
BR - 01	Get an actual information about different separate product sales
BR - 02	Get reports structured by different time dimensions to decrease amount of time needed to
	create right report.
BR - 03	Improve data storing performance to have an ability to target different offers
BR - 04	Improve data access performance
BR - 05	Improve security of data storages
BR - 06	Improve the quality of stored data
BR - 07	Ensure long - lasting and effective storage of historical data

Functional Requirements

Functio	onal Requirements
ID	Requirement Description
FR - 01	System should give an opportunity to see sales statistics divided by different time dimensions
FR – 02	System should give an opportunity to see sales statistics divided by different geo dimensions
FR – 03	System should give an opportunity to choose geo and time dimensions that user interested in
	to see in report
FR – 04	System should store time and geo dimension packages on company servers at least 5 years
	from the date of commissioning
FR – 05	System should generate daily/weekly/monthly reports automatically and store them on
	company servers 5 years
FR – 06	System should give an opportunity to increase or decrease the amount of time the data will
	be stored on servers
FR – 07	System should give an opportunity to make reports manually (not only at the end of
	day/week/month)
FR – 08	System should give an opportunity to configure reports in Data Mart Level (Except of FR – 01
	/ FR - 02) (TBD - 01)
FR – 09	System should automatically update an information about actual sales data.
FR – 10	DWH Architecture should consist of Storage, Cleansing, Data Warehouse, Data Warehouse
	Prepare Star Cleansing Level, STAR – Cleansing and STAR Levels (Data Warehouse
	Architecture Chapter)
FR – 11	System should have an opportunity to be built using either STAR or SNOWFLACKE Schema
TBD - 03	

Non - Functional Requirements

Function	onal Requirements
ID	Requirement Description
NFR - 01	System should give an opportunity to access data in any time (24 hours a day)
NFR – 02	System should be integrated with Banking API
NFR - 03	System should update data no longer than 5 seconds (except of complex queries)
NFR - 04	System should have an actual back up version of current region sales on master server and
	current region server
NFR – 05	System should have an opportunity to store an information about hew opened stores (extensible)
NFR – 06	System should have an opportunity to use it (or its separate parts) in other company's products(other DWH's e.g.)
NFR – 07	System should have built according to ETL philosophy
TBD - 04	

Solution Sketch

DWH Solution Sketch

At the diagram above you can see Conceptual Sketch Diagram that shows stages of data transforming:

Picture 1 - <u>DWH Data Transformation sketch</u> (Link)

Source Tables structure

Name	T_products
Description	Table contains data about
	different products
Data Source	Flat files or operational
	databases
Frequency	Automatically every week
of updating	/ manually
TBD - 05	
	Description Data Source Frequency of updating

Name	T_stores
Description	Table contains data about
	different stores and their
	locations
Data Source	Flat files or operational databases
Frequency of	Automatically every month /
updating	manually
TBD - 06	

Name	T_countries
Description	Table contains data about
	different countries and
	regions
Data Source	Flat files or operational
	databases
Frequency	Automatically with
of updating	opening new stores or
	sales markets / manually
TBD - 07	

Name	T_customers
Description	Table contains data about
	all customers
Data Source	Flat files or operational
	databases
Frequency	Automatically every
of updating	customer creates new
	account on web site /
	manually
TBD - 08	

Scheme Structure

Star Scheme

Logical Diagram

Picture 3 - <u>Logical Diagram</u> (Link)

Snowflake Scheme

Logical Diagram

Picture 5 - <u>Logical Diagram</u> (Link)

Aggregate Facts

Fact Table

Name	Code	Table Name	Additive	Descriptions
Total products sold	Sales_Amount	FACT_SALES	+	Shows the amount of sold products according to range of time, product etc.
Total employeed	Employees_Amount	FACT_SALES	+	Shows the amount hired employees according to selected period e.g.

User Access and Rights Matrix

User	Admin	Super users (Chiefs, CO – founders etc.)	Manager	BI – Analyst	Other Systems (TBD)
DML	CRUD	CRUD	CRUD	CRD	CRUD
DDL	CRUD	CRUD	CRUD	CRUD	CRUD*
DCL	L	CRUD	L	L	L
DQL	CRUL	CRUD	CRUL	CRUD	CRUD

- C create
- R read (COST > 50)
- U update
- D delete
- L list (COST < 50)

^{*(}exp. can call creating entities, queries)

Data Warehouse Architecture

Level Type	Object Name	Tablespace	Description	
Storage level	SA_CUSTOMERS	ts_SA_CUSTOMERS_DATA_01	Loads data from flat files, stores data about customers/products Loads from stage level	
	SA_PRODUCTS	ts_SA_PRODUCTS_DATA_01		
DW Cleansing Level	DW_CLEANSING	ts_DW_CLEANSING		
SA Date	SA_DATE	ts_sa_date	Contains all info about dates/locations	
DW Level	DW_DATA	ts_DW_DATA_01	Loads data from cleansing level and preparing it for to the 3 normal form	
DW Prepare Star Cleansing Level	SAL_DW_CL	ts_SA_DW_CL_01	Loads data from DW system. Contains views and objects from DW - Level	
STAR Cleansing	SAL_CL	ts_SA_CL_001	Loads data from DW_CL, but clean some redundancy if are some	
STAR Level	DM_FCT_SALES	ts_SA_FCT_SALES_01	INFO	
	DM_CUSTOMERS	ts_SA_DIM_CUSTOMERS_01		
	DM_PRODUCTS	ts_SA_DIM_PRODUCTS_01		
	DM_GEO	ts_SA_DIM_GEO_01		

Partitioning Fact Table

Picture 6 - <u>Partitioning Fact Table</u> (Link)

Parallel Execution

Parallel execution is the ability to apply multiple CPU and I/O resources to the execution of a single database operation. It dramatically reduces response time for data-intensive operations on large databases typically associated with decision support systems (DSS) and data warehouses.

Now it is clear that we can use parallel execution to increase query performance know that we are going to operate with enormous amount of data.

Picture 7 - Parallel Execution ex.

Extraction Description

Offline Extraction

From our point of view the *offline extraction* can be assessed as followed: as data is not directly taken from the source, it already has an existing structure, namely it can be tablespaces and logs or in another case the structure may be a result of the extraction method.

Full Extraction

Another type of extraction, namely, full extraction may be described as complete pulling of data directly from the source. This may be beneficial in a sense that there is no need to track the source system as the extraction process reflects all the available data in the system.

Transformation Description

SQL Transformation

The SQL transformation processes SQL queries midstream in a pipeline. The SQL transformation can be an active or passive transformation. You can insert, delete, update, and retrieve rows from a database. You can pass the database connection information to the SQL transformation as input data at run time. The transformation processes external SQL scripts or SQL queries that you create in an SQL editor. The SQL transformation processes the query and returns rows and database errors.

PL/SQL Transforming

In a data warehouse environment, you can use procedural languages such as PL/SQL to implement complex transformations in the Oracle Database. Whereas CTAS operates on entire tables and emphasizes parallelism, PL/SQL provides a row-based approached and can accommodate very sophisticated transformation rules.

For example, a PL/SQL procedure could open multiple cursors and read data from multiple source tables, combine this data using complex business rules, and finally insert the transformed data into one or more target table. It would be difficult or impossible to express the same sequence of operations using standard SQL statements.

Transforming Data Using Table Functions

Table functions provide the support for pipelined and parallel execution of transformations implemented in PL/SQL, C, or Java.

Scenarios as mentioned earlier can be done without requiring the use of intermediate staging tables, which interrupt the data flow through various transformations steps.

Business solution concept Transformation Strategy

The right way would be to use a combo of Transformation types. Thus different objects need to be transformed in different ways.

Reference tables are not needed to be transformed, for example, using PL/SQL Transformation Strategy as well as Customers and Employees Dimensions and Fact Sales table, for example are needed to be updated or loaded within new data using Multiple Cursors, Functions and Procedures to manipulate with several objects at the same time.

Picture 8 – Transformation Strategy

Transportation Description

Transportation Using Flat Files

The most common method for transporting data is by the transfer of flat files, using mechanisms such as FTP or other remote file system access protocols. Data is unloaded or exported from the source system into flat files, and is then transported to the target platform using FTP or similar mechanisms.

Source systems and DWH often use different operating systems and database systems, using flat files is often the simplest way to exchange data between heterogeneous systems with minimal transformations. However, even when transporting data between homogeneous systems, flat files are often the most efficient and most easy-to-manage mechanism for data transfer.

The best way to get the greatest performance is working with flat files because they are easy to generate, use quite a little memory, easy to parse and easy to generate from back – end algorithms.

Transportation Using Transportable Tablespaces

Transportable tablespaces is a feature of the Oracle database, introduced with Oracle 8i, that allows DBAs to copy or move tablespaces between databases. It is especially helpful when tablespace size is in huge, in Terabytes and tradition ways are not as quicker as scp..ing the datafiles. In other words, Transportable Tablespaces allow Oracle data files to be unplugged from a database and copied to another Oracle instance (on another server) and then added into that Oracle instance (refer to Figure below).

The most common applications of transportable tablespaces in data warehouses are in moving data from a staging database to a data warehouse, or in moving data from a data warehouse to a data mart.

Picture 9 – Transportation Strategy

Glossary

- Customer a person (or business) who bought at least 1 product.
- Cost an estimate of the run-time for a given operation.
- Dashboard a dashboard is a visual display of data.
- Logical Scheme a data model of a specific problem domain expressed independently of a particular database management product or storage technology.
- Physical Scheme a representation of a data design as implemented, or intended to be implemented, in a database management system.
- TBD To be determined
- DWH Data WareHouse
- EDW Enterprise Data WareHouse
- ETL Extract, Transform and Load
- API Application Programming Interface