Chapter 2, Section 1

James Lee

April 23, 2025

1. Let A be an Abelian group, and define the *constant presheaf* associated to A on the topological space X to be the presheaf $U \mapsto A$ for all $U \neq \emptyset$, with restriction maps the identity. Show that the constant sheaf \mathscr{A} defined in the text is the sheaf associated to this presheaf.

Proof. Let \mathscr{C}^+ be the sheaf associated to the constant presheaf \mathscr{C} defined above. It suffices to show \mathscr{C}^+ and \mathscr{A} are isomorphic at the level of stalks. Fix $P \in X$, then the stalk of \mathscr{C}^+ at P is the same as the stalk of \mathscr{C} at P, and since the restriction morphisms of \mathscr{C} are identity maps, we must have $\mathscr{C}_P^+ = \mathscr{C}_P = A$. The constant sheaf \mathscr{A} is defined as $U \mapsto \{\text{continuous maps } U \to A\}$, where A has the discrete topology. Then, we can take the stalk of \mathscr{A} at x to be the direct limit of $\mathscr{A}(U)$ where U is a connected open neighborhood of x, and if U is connected, $\mathscr{A}(U) = A$ since the image of a connected set must be connected, i.e. $U \to A$ is continuous if and only if it is constant. Therefore, we have $\mathscr{A}_P = A$. Hence, \mathscr{C}^+ and \mathscr{A} are isomorphic.

- **2.** (a) For any morphism of sheaves $\varphi : \mathscr{F} \to \mathscr{G}$, show that for each point P, $(\ker \varphi)_P = \ker (\varphi_P)$ and $(\operatorname{im} \varphi)_P = \operatorname{im} (\varphi_P)$.
 - (b) Show that φ is injective (respectively, surjective) if and only if the induced maps on the stalks φ_P is injective (respectively, surjective) for all P.
 - (c) Show that a sequence $\cdots \to \mathscr{F}^{i-1} \xrightarrow{\varphi^{i-1}} \mathscr{F}^{i} \xrightarrow{\varphi^{i}} \mathscr{F}^{i+1} \to \ldots$ of sheaves and morphisms is exact if and only if for each $P \in X$ the corresponding sequence of stalks is exact as a sequence of abelian groups.

Proof.

- (a) It is true in general that kernels commute with limits and cokernels commute with colimits in any abelian category, since kernels and cokernels can be realized as limits and colimits, respectively.
- (b) φ is injective $\iff \ker \varphi = 0 \iff (\ker \varphi)_P = 0 \iff \ker \varphi_P = 0.$ φ is surjective $\iff \operatorname{im} \varphi = \mathscr{G} \iff \operatorname{im}(\varphi_P) = (\operatorname{im} \varphi)_P = \mathscr{G}_P.$
- (c) The sequence $\cdots \to \mathscr{F}^{i-1} \xrightarrow{\varphi^{i-1}} \mathscr{F}^i \xrightarrow{\varphi^i} \mathscr{F}^{i+1} \to \cdots$ is exact $\iff \operatorname{im} \varphi^{i-1} = \ker \varphi^i \text{ for all } i \iff (\operatorname{im} \varphi^{i-1})_P = (\ker \varphi^i)_P \text{ for all } i \text{ and } P \in X \iff \operatorname{im}(\varphi_P^{i-1}) = \ker(\varphi_P^i) \text{ for all } i \text{ and } P \in X \text{ by part (a) above.}$

- **3.** (a) Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. Show that φ is surjective if and only if the following condition holds: for every open set $U \subseteq X$, and for every $s \in \mathscr{G}(U)$, there is a covering $\{U_i\}$ of U, and there are elements $t_i \in \mathscr{F}(U_i)$, such that $\varphi(t_i) = s\big|_{U_i}$ for all i.
 - (b) Give an example of a surjective morphism of sheaves $\varphi : \mathscr{F} \to \mathscr{G}$, and an open set U such that $\varphi(U) : \mathscr{F}(U) \to \mathscr{G}(U)$ is not surjective.

Proof.

(a) Suppose $\varphi: \mathscr{F} \to \mathscr{G}$ is a surjective morphism of sheaves. Then for any $P \in U$, the induced morphism of stalks $\varphi_P: \mathscr{F}_P \to \mathscr{G}_P$ is surjective. The elements of \mathscr{G}_P (and similarly \mathscr{F}_P) are an equivalence class of ordered pairs (U,s) with U an open neighborhood of P and $s \in \mathscr{G}(U)$ and the equivalence relation $(U,s) \sim (V,t)$ if and only if there exists some open $W \subseteq U \cap V$ containing P such that $s|_W = t|_W$. If φ_P is surjective, then for every $(U,s) \in \mathscr{G}_P$ there exists some $(V,f) \in \mathscr{G}_P$ such that

$$\varphi_P(V, f) = (V, \varphi f), \quad \varphi : \mathscr{F}(V) \to \mathscr{G}(V),$$

so there exists some open subset $W\subseteq U\cap V$ such that $\varphi f|_W=s|_W$. We can repeat this process for all $x\in U$ to obtain an open cover with the desired properties, that is $\{W_x\}_{x\in U}$ of U where W_x is defined as above with an associated $f_x\in\mathscr{F}(W_x)$ such that by definition $\varphi f_x=s|_W$.

Conversely, it suffices to show $\varphi_P: \mathscr{F}_P \to \mathscr{G}_P$ is surjective for all $P \in X$. Fix $P \in X$ and consider an arbitrary element $(U, s) \in \mathscr{F}_P$. We want to show there exists some $(V, f) \in \mathscr{G}_P$ such that $(V, \varphi_V(f)) \sim (U, s)$. To that end, by assumption there exists some open subset $W \subseteq U$ and $g \in \mathscr{F}(W)$ such that $\varphi_W(g) = s|_W$, hence $\varphi_P(W, g) = (U, s)$.

(b) We provide an example of a sheaf from open sets to sets that satisfies the condition. Let $X, Y = S^1$. Let $\pi_X : X \to S^1$ be the identity map, and let $\tau : Y \to X$ be defined by $z \mapsto z^2$ where X, Y is identified with the unit circle in the complex plane, and let $\pi_Y := \tau \circ \pi_X$. Define a sheaf \mathscr{F} on S^1 for a nonempty open subset U of S^1 as

$$\mathscr{F}(U) = \{\text{sections } s : U \to X \text{ with respect to } \pi_X \}$$

= $\{\text{continuous maps } s : U \to X \text{ such that } \pi_X \circ s = \mathrm{id}_U \},$

and similarly define \mathscr{G} as the map that maps U to the set of sections from U to Y with respect to π_Y . If $s \in \mathscr{G}(U)$ so that $\pi_Y \circ s = \mathrm{id}_U$, then we can compose s with τ so that

$$\pi_X \circ (\tau \circ s) = (\pi_X \circ \tau) \circ s = \pi_Y \circ s = \mathrm{id}_U$$

which shows $\tau \circ s$ is a section from to X, so we can define a morphism $\tau_{\#}: \mathscr{G} \to \mathscr{F}$ induced by τ as

$$\tau_{\#}(U): \mathscr{G}(U) \to \mathscr{F}(U)$$
 $s \mapsto \tau \circ s.$

Let U be the entire space S^1 , then $\mathscr{G}(S^1) = \emptyset$ and $\mathscr{F}(S^1) = \{ \text{id} : S^1 \to X \}$, so $\mathscr{G}(S^1) \to \mathscr{F}(S^1)$ cannot be surjective. However, for any proper open subset U of S^1 , the map $\tau_\# : \mathscr{G}(U) \to \mathscr{F}(U)$ is surjective, thus by part (a) above $\tau_\#$ is a surjective morphism.

5. Show that a morphism of sheaves is an isomorphism if and only if it is both injective and surjective.

Proof. $\varphi : \mathscr{F} \to \mathscr{G}$ is an isomorphism $\iff \varphi_P : \mathscr{F}_P \to \mathscr{G}_P$ is an isomorphism for all $P \in X \iff \varphi$ is injective and surjective by Exercise 2.

6. (a) Let \mathscr{F}' be a subsheaf of a sheaf \mathscr{F} . Show that the natural map of \mathscr{F} to the quotient sheaf \mathscr{F}/\mathscr{F}' is surjective, and has kernel \mathscr{F}' . Thus, there is an exact sequence

$$0 \longrightarrow \mathscr{F}' \longrightarrow \mathscr{F} \longrightarrow \mathscr{F}/\mathscr{F}' \longrightarrow 0.$$

(b) Conversely, if $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ is an exact sequence, show that \mathscr{F}' is isomorphic to a subsheaf of \mathscr{F} , and that \mathscr{F}'' is isomorphic to the quotient \mathscr{F} by this subsheaf.

Proof.

- (a) The map $\mathscr{F}(U) \to \mathscr{F}(U)/\mathscr{F}'(U)$ is surjective for all open $U \subseteq X$, so $\pi : \mathscr{F} \to \mathscr{F}/\mathscr{F}'$ is surjective. To show π has kernel \mathscr{F}' , by Exercise 2 it suffices to show $(\ker \pi)_P = \mathscr{F}'_P$ for all $P \in X$. Each map $\mathscr{F}(U) \to \mathscr{F}(U)/\mathscr{F}'(U)$ has kernel $\mathscr{F}'(U)$, hence we have $(\ker \pi)_P = \varinjlim \mathscr{F}'(U) = \mathscr{F}'_P$.
- (b) By Exercise 2, We have the following equivalent statements:

$$\begin{split} 0 &\to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0 \text{ is exact.} \\ &\iff 0 \to \mathscr{F}'_P \to \mathscr{F}_P \to \mathscr{F}''_P \to 0 \text{ is exact.} \\ &\iff \mathscr{F}'_P \subseteq \mathscr{F}_P \text{ and } \mathscr{F}''_P \simeq \mathscr{F}_P/\mathscr{F}'_P \simeq (\mathscr{F}/\mathscr{F}')_P \\ &\iff \mathscr{F}' \text{ is isomorphic to a subsheaf of } \mathscr{F} \text{ and } \mathscr{F}'' \cong \mathscr{F}/\mathscr{F}'. \end{split}$$

7. Let $\varphi: \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves.

2

- (a) Show that im $\varphi \cong \mathcal{F}/\ker \varphi$.
- (b) Show that $\operatorname{coker} \varphi \cong \mathscr{G} / \operatorname{im} \varphi$.

Proof.

- (a) It suffices to show $(\operatorname{im} \varphi)_P \simeq \mathscr{F}_P/(\ker \varphi)_P$, which again follows from the fact that for all open $U \subseteq X$, $\operatorname{im}(\varphi(U)) \simeq \mathscr{F}(U)/\ker(\varphi(U))$.
- (b) In the same vain, coker $\varphi \simeq \mathscr{G}/\operatorname{im} \varphi$ follows from the fact that $\operatorname{coker}(\varphi(U)) \simeq \mathscr{G}(U)/\operatorname{im}(\varphi(U))$.
- **8.** For any open subset $U \subseteq X$, show that the functor $\Gamma(U,\cdot)$ from sheaves on X to abelian groups is a left exact functor, i.e. if $0 \to \mathscr{F}' \xrightarrow{f} \mathscr{F} \xrightarrow{g} \mathscr{F}''$ is an exact sequence of sheaves, then $0 \to \Gamma(U,\mathscr{F}') \xrightarrow{f_U} \Gamma(U,\mathscr{F}) \xrightarrow{g_U} \Gamma(U,\mathscr{F}'')$ is an exact sequence of groups.

Proof. Exactness at $\Gamma(U, \mathscr{F}')$ follows from the fact that $\mathscr{F}' \to \mathscr{F}$ is an injective morphism of sheaves if and only if $\Gamma(U, \mathscr{F}') \to \Gamma(U, \mathscr{F})$ is injective for all U. To show exactness at $\Gamma(U, \mathscr{F})$, the sequence $\mathscr{F}' \to \mathscr{F} \to \mathscr{F}''$ is exact if and only if $\mathscr{F}'_P \to \mathscr{F}_P \to \mathscr{F}''_P$ is an exact sequence for all $P \in X$

If $s \in \text{im } f_U$ then $(U, s) \in \text{ker } g_P$ for all $P \in X$, so (U, g(s)) equals to 0 everywhere locally, hence $s \in g_U$. Conversely, if $s \in \text{ker } g_U$, then by Exercise 3 there exists an open cover $\{U_i\}$ and elements $t_i \in \Gamma(U_i, \mathscr{F}')$ such that $f_U(t_i) = s\big|_{U_i}$. For any i, j, consider $t_i\big|_{U_i \cap U_j}$, $t_j\big|_{U_i \cap U_j}$. Since $f_{U_i \cap U_j}: \Gamma(U_i \cap U_j, \mathscr{F}') \to \Gamma(U_i \cap U_j, \mathscr{F})$ is injective and $f_{U_i \cap U_j}(t_i\big|_{U_i \cap U_j}) = s\big|_{U_i \cap U_j}$, we have must $t_i\big|_{U_i \cap U_j} = t_j\big|_{U_i \cap U_j}$, so by the sheaf property there exists $t \in \Gamma(U, \mathscr{F}')$ such that $t\big|_{U_i} = t_i$, so $f_U(t) = s$, hence $s \in \text{im } f_U$.

9. Direct Sum. Let \mathscr{F} and \mathscr{G} be sheaves on X. Show that the presheaf $U \mapsto \mathscr{F}(U) \oplus \mathscr{G}(U)$ is a sheaf. It is called the direct sum of \mathscr{F} and \mathscr{G} , and is denotes by $\mathscr{F} \oplus \mathscr{G}$. Show that it plays the role of direct sum and of direct product in the category of sheaves of abelian groups.

Proof. Since the category of sheaves on X is a full subcategory of presheaves on X, it suffices to show it satisfies the universal property of a direct sum and of direct product in the category of presheaves of abelian groups on X, then show it satisfies the sheaf property. Let $\pi_1: \mathscr{F} \oplus \mathscr{G} \to \mathscr{F}, \ \pi_2: \mathscr{F} \oplus \mathscr{G}_{\to}\mathscr{G}$ be the canonical projection morphisms, and let $\mathscr{H} \in \mathfrak{PreSh}_X$ with morphisms $\tau_1: \mathscr{H} \to \mathscr{F}$ and $\tau_2: \mathscr{H} \to \mathscr{G}$ such that the following diagram commutes:

we find the find a unique morphism $\alpha: \mathscr{H} \to \mathscr{F} \oplus \mathscr{G}$ such that the diagram above commmutes. For any open $U \subseteq X$, define $\alpha(U): \mathscr{H}(U) \to (\mathscr{F} \oplus \mathscr{G})(U)$ as $\alpha(h) = (\tau_1(h), \tau_2(h))$. Since $\alpha(U)$ is unique by the same universal property for abelian groups, α must be the desired unique morphism, and since the direct sum and direct product are essentially the same for finite collections, we have shown $\mathscr{F} \oplus \mathscr{G}$ is a direct sum and product in the category of presheaves.

Now we show $\mathscr{F} \oplus \mathscr{G}$ is a sheaf. Let U be an open subset of X, and let $\{V_i\}$ be a cover of U by open sets. If $(s,t) \in \Gamma(U,\mathscr{F} \oplus \mathscr{G})$, then $(s|_{U_i},t|_{U_i})=(s,t)|_{U_i}=0$ by universal property nonsense, so s=0 and t=0. Also, if we have elements $(s_i,t_i) \in \Gamma(V_i,\mathscr{F} \oplus \mathscr{G})$ such that for all i,j, $(s_i,t_i)|_{V_i\cap V_j}=(s_j,t_j)|_{V_i\cap V_j}$, then again $(s_i|_{U_i\cap U_j},t_i|_{U_i\cap U_j})=(s_j|_{U_i\cap U_j},t_j|_{U_i\cap U_j})$ if and only if $s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j}$ and $t_i|_{U_i\cap U_j}=t_j|_{U_i\cap U_j}$, so by the sheaf properties of \mathscr{F} and \mathscr{G} , there exists $s\in\Gamma(U,\mathscr{F})$ and $t\in\Gamma(U,\mathscr{G})$ such that $(s,t)|_{U_i}=(s_i,t_i)$.

10. Direct Limit. Let $\{\mathscr{F}_i\}$ be a direct system of sheaves and morphisms on X. We define the direct limit of the system $\{\mathscr{F}_i\}$, denoted $\varinjlim \mathscr{F}_i$, to be the sheaf associated to the presheaf $U \mapsto \varinjlim \mathscr{F}_i(U)$. Show that this is a direct limit in the category of sheaves on X.

Proof. Let \mathscr{F} denote the presheaf defined $U \mapsto \varinjlim \mathscr{F}_i$, and let \mathscr{F}^+ denote the sheaf associated to \mathscr{F} with associated morphism $\theta: \mathscr{F} \to \mathscr{F}^+$. From the direct system, we have morphisms $\mu_{ij}: \mathscr{F}_i \to \mathscr{F}_j$ and $\mu_i: \mathscr{F}_i \to \mathscr{F}$ such that for all $i, j, \mu_i = \mu_j \circ \mu_{ij}$. To show \mathscr{F}^+ is a direct limit in the category-theoretic sense, we must provide the data of morphisms (between sheaves) $\alpha_i: \mathscr{F}_i \to \mathscr{F}^+$ such that $\alpha_i = \alpha_j \circ \mu_{ij}$ for all i, j satisfying the following universal property: if \mathscr{G} is any sheaf on X with the data of morphisms $\{\phi_i: \mathscr{F}_i \to \mathscr{G}\}$ satisfying for all $i, j, \phi_i = \phi_j \circ \mu_{ij}$, then there exists a unique morphism $\phi: \mathscr{F}^+ \to \mathscr{G}$ such that $\phi_i = \phi \circ \alpha_i$. Observe the following commutative diagram:

We claim $\{\alpha_i := \theta \circ \mu_i\}$ are the desired morphisms. By the universal property of the direct limit which defines \mathscr{F} and the direct system of morphisms $\{\psi_i\}$, there exists a unique morphism between presheaves $\phi : \mathscr{F} \to \mathscr{G}$ such that $\phi_i = \psi \circ \mu_i$. Then, by the universal property of the sheaf \mathscr{F}^+ associated to the presheaf \mathscr{F} , there exists a unique morphism between sheaves $\phi : \mathscr{F}^+ \to \mathscr{G}$ such that $\psi = \phi \circ \theta$. It remains to check $\phi_i = \phi \circ \alpha_i$. Indeed, we have

$$\phi_i = \psi \circ \mu_i = (\phi \circ \theta) \circ \mu_i = \phi \circ (\theta \circ \mu_i) = \phi \circ \alpha_i$$

and ϕ is unique by the universal properties above.

11. Let $\{\mathscr{F}_i\}$ be a direct system of sheaves on a noetherian topological space X. In this case show that the presheaf $U \mapsto \lim \mathscr{F}_i(U)$ is already a sheaf. In particular, $\Gamma(X, \lim \mathscr{F}_i) = \lim \Gamma(X, \mathscr{F}_i)$.

Proof. We directly show the presheaf \mathscr{F} defined by $\mathscr{F}(U) = \varinjlim \mathscr{F}_i(U)$ is a sheaf. Let U be an open subset of X, and let $\{V_i\}$ be open cover of U. By the noetherian hypothesis, we can assume $\{V_j\}$ to be a finite set $(1 \le j \le n)$, then we have the following exact sequence of abelian groups

$$0 \longrightarrow \Gamma(U, \mathscr{F}_i) \longrightarrow \prod_{j=1}^n \Gamma(V_j, \mathscr{F}_i) \longrightarrow \prod_{j,k} \Gamma(V_j \cap V_k, \mathscr{F}_i),$$

and since both products $\prod_{j=1}^n \Gamma(V_j, \mathscr{F}_i)$ and $\prod_{j\neq k} \Gamma(V_j \cap V_k, \mathscr{F}_i)$ are finite, it is equivalent to the coproduct; in particular, colimits commute with colimits, so we have the exact sequence

$$0 \longrightarrow \varinjlim \Gamma(U,\mathscr{F}_i) \longrightarrow \prod_{j=1}^n \varinjlim \Gamma(V_j,\mathscr{F}_i) \longrightarrow \prod_{j,k} \varinjlim \Gamma(V_j \cap V_k,\mathscr{F}_i)$$

so the sheaf properties immediately follow.

12. Inverse Limit. Let $\{\mathscr{F}_i\}$ be an inverse system of sheaves on X. Show that the presheaf $U \mapsto \varprojlim \mathscr{F}_i(U)$ is a sheaf. It is called the *inverse limit* of the system $\{\mathscr{F}_i\}$, and is denoted by $\varprojlim \mathscr{F}_i$. Show that this it has the universal property of an inverse limit in the category of sheaves.

Proof. Let \mathscr{F} be the presheaf $U \mapsto \varprojlim \mathscr{F}_i(U)$. We have morphisms $\pi_{ij} : \mathscr{F}_i \to \mathscr{F}_j$ and $\pi_i : \mathscr{F} \to \mathscr{F}_i$ such that for all $i, j, \pi_j = \pi_{ij} \circ \pi_i$. If U is an open set, if $\{V_\alpha\}$ is an open covering of U, then we have the exact sequence of abelian groups

$$0 \longrightarrow \Gamma(U, \mathscr{F}_i) \longrightarrow \prod_{\alpha} \Gamma(V_{\alpha}, \mathscr{F}_i) \longrightarrow \prod_{\alpha \beta} \Gamma(V_{\alpha} \cap V_{\beta}, \mathscr{F}_i)$$

and direct limits commute with direct products, so the fact that \mathscr{F} is a sheaf follows from the exact sequence

$$0 \longrightarrow \varprojlim \Gamma(U,\mathscr{F}_i) \longrightarrow \prod_{\alpha} \varprojlim \Gamma(V_{\alpha},\mathscr{F}_i) \longrightarrow \prod_{\alpha,\beta} \varprojlim \Gamma(V_{\alpha} \cap V_{\beta},\mathscr{F}_i).$$

To show \mathscr{F} is an inverse limit in a category-theoretic sense, if \mathscr{G} is some sheaf on X with a collection of morphisms $\tau_i:\mathscr{G}\to\mathscr{F}_i$ such that $\tau_j=\pi_{ij}\circ\tau_i$ for all i,j, then we want to show there exists a unique $\theta:\mathscr{G}\to\mathscr{F}$ such that $\tau_i=\pi_i\circ\theta$. Since for each open subset U in X we have a direct system $\tau_i(U):\Gamma(U,\mathscr{G})\to\Gamma(U,\mathscr{F}_i)$, by the universal property of the inverse limit $\Gamma(U,\mathscr{F})=\varprojlim\Gamma(U,\mathscr{F}_i)$, there exists a unique morphism $\theta(U):\Gamma(U,\mathscr{G})\to\varprojlim\Gamma(U,\mathscr{F}_i)$ such that $\tau_i(U)=\pi_i(U)\circ\theta(U)$, so we can define θ as such, then it is unique by construction.

14. Support. Let \mathscr{F} be a sheaf on X, and let $s \in \mathscr{F}(U)$ be a section over an open set U. The support of s, denoted Supp s, is defined to be $\{P \in U \mid s_P \neq 0\}$, where s_P denotes the germ of s in the stalk \mathscr{F}_P . Show that Supp s is a closed subset of U. We define the support of \mathscr{F} , Supp \mathscr{F} , to be $\{P \in X \mid \mathscr{F}_P \neq 0\}$. It need not be a closed subset.

Proof. We show $U - \operatorname{Supp} s$ is an open set. If $Q \in U$ such that $s_Q = 0$, then by definition of the direct limit, there exists an open neighborhood V of Q in U such that $0 = (V, s|_V) \in \mathscr{F}_Q$, hence $s_R = 0$ for all $R \in V$.

15. Sheaf $\mathscr{H}om$. Let \mathscr{F} , \mathscr{G} be sheaves of abelian groups on X. For any open subset $U\subseteq X$, show that the set $\operatorname{Hom}(\mathscr{F}|_U,\mathscr{G}|_U)$ of morphisms of the restricted sheaves has a natural structure of an abelian group. Show that the presheaf $U\mapsto \operatorname{Hom}(\mathscr{F}|_U,\mathscr{G}|_U)$ is a sheaf. It is called the *sheaf of local morphisms* of \mathscr{F} into \mathscr{G} , "sheaf hom" for short, and is denoted $\mathscr{H}om(\mathscr{F},\mathscr{G})$.

Proof. Morphisms $f,g \in \operatorname{Hom}(\mathscr{F}|_U,\mathscr{G}|_U)$ define for all open $V \subseteq U$ homomorphisms between abelian groups $f(V),g(V):\mathscr{F}(V)\to\mathscr{G}(V)$, so we can define f+g as (f+g)(V)=f(V)+g(V). It is obviously an abelian group with identity 0 as the zero morphism defined by $0(V)\equiv 0$.

Let U be an open subset of X, and let $\{V_i\}$ be an open cover of U. We make some clarifying remarks. If $s \in \Gamma(U, \mathscr{H}om(\mathscr{F},\mathscr{G})) = \operatorname{Hom}(\mathscr{F}\big|_U, \mathscr{G}\big|_U)$, then s is a natural transformation of functors $\mathscr{F}\big|_U \to \mathscr{G}\big|_U$, so $s\big|_{V_i}$ refers to the induced natural transformation of functors $\mathscr{F}\big|_{V_i} \to \mathscr{G}\big|_{V_i}$ by only considering open subsets $W \subseteq V_i$. Thus, we have the following commutative diagram:

$$0 \longrightarrow \Gamma(W, \mathscr{F}) \longrightarrow \prod \Gamma(W \cap V_i, \mathscr{F}) \longrightarrow \prod \Gamma(W \cap V_i \cap V_j, \mathscr{F})$$

$$\downarrow s(W) \qquad \qquad \prod s(W \cap V_i) \qquad \qquad \prod s(W \cap V_i \cap V_j) \qquad \qquad \downarrow$$

$$0 \longrightarrow \Gamma(W, \mathscr{G}) \longrightarrow \prod \Gamma(W \cap V_i, \mathscr{G}) \longrightarrow \prod \Gamma(W \cap V_i \cap V_j, \mathscr{G})$$

hence $\mathscr{H}om(\mathscr{F},\mathscr{G})$ is a sheaf.

17. Skyscraper Sheaves. Let X be a topological space, let P be a point, and let A be an abelian group. Define a sheaf $i_P(A)$ on X as follows: $i_P(A)(U) = A$ if $P \in U$, 0 otherwise. Verify that the stalk of $i_P(A)$ is A at every point $Q \in \{\overline{P}\}$, and 0 elsewhere. Hence, the name "Skyscraper sheaf." Show that this sheaf could also be described as $i_*(A)$, where A denotes the constant sheaf A on the closed subspace $\{\overline{P}\}$, and $i: \{\overline{P}\} \to X$ is the inclusion.

Proof. We first identify the restriction maps of $i_P(A)$. Let $U \subseteq V$ be open subsets of X, then $i_P(A)(V) \to i_P(A)(U)$ is the zero map if either V or U (hence V as well) does not contain P, and is the identity map if both V and U contain P. If $Q \in \overline{\{P\}}$, then every open neighborhood of Q contains P, so the direct system of open neighborhoods of Q induces the direct system consisting of a copy of A for every $U \ni Q$ with the identity map as transition maps, hence $(i_P(A))_Q = A$. If $Q \notin \overline{\{P\}}$, then there exists an open neighborhood W of Q not containing P, which means $i_P(A)(W) = 0$, hence $(i_P(A))_Q = 0$. The last statement is obvious.

18. Adjoint Property of f^{-1} . Let $f: X \to Y$ be a continuous map of topological spaces. Show that for any sheaf \mathscr{F} on X there is a natural map $f^{-1}f_*\mathscr{F} \to \mathscr{F}$, and for any sheaf \mathscr{G} on Y there is a natural map $\mathscr{G} \to f_*f^{-1}\mathscr{G}$. Use these maps to show that there is a natural bijection of sets, for any sheaves \mathscr{F} on X and \mathscr{G} on Y,

$$\operatorname{Hom}_X(f^{-1}\mathscr{G},\mathscr{F})=\operatorname{Hom}_Y(\mathscr{G},f_*\mathscr{F}).$$

Proof. Let U, V be open in X, Y, respectively. We unpack the definitions:

$$(f^{-1}f_*\mathscr{F})(U) = \lim_{W \supseteq f(U)} (f_*\mathscr{F})(W) = \lim_{W \supseteq f(U)} \mathscr{F}(f^{-1}(W)),$$
$$(f_*f^{-1}\mathscr{G})(V) = (f^{-1}\mathscr{G})(f^{-1}(V)) = \lim_{W \supseteq f(f^{-1}(V))} \mathscr{G}(W).$$

We also have

$$(f_*f^{-1}f_*\mathscr{F})(V) = (f^{-1}f_*\mathscr{F})(f^{-1}(V))$$

$$= \varinjlim_{W \supseteq f(f^{-1}(V))} \mathscr{F}(f^{-1}(W))$$

$$= \mathscr{F}(f^{-1}(V))$$

$$= (f_*\mathscr{F})(V)$$

$$(f^{-1}f_*f^{-1}\mathscr{G})(U) = \varinjlim_{W \supseteq f(U)} (f_*f^{-1}\mathscr{G})(W)$$

$$= \varinjlim_{W \supseteq f(U)} \varinjlim_{W' \supseteq f(f^{-1}(W))} \mathscr{G}(W')$$

$$= \varinjlim_{W \supseteq f(U)} \mathscr{G}(W)$$

$$= (f^{-1}\mathscr{G})(U)$$

Note that $V' := f(f^{-1}(V)) = V \cap f(X)$. An element of $(f^{-1}f_*\mathscr{F})(U)$ is of the form (W, s) where $W \supseteq f(U)$ and $s \in \mathscr{F}(f^{-1}(W))$. Define $\alpha : f^{-1}f_*\mathscr{F} \to \mathscr{F}$ as

$$\alpha(U): (f^{-1}f_*\mathscr{F})(U) \to \mathscr{F}(U)$$

 $(W,s) \mapsto s|_{U}.$

An element of $(f_*f^{-1}\mathscr{G})(V)$ is of the form (W,t) where $W\supseteq V'$ and $t\in\mathscr{G}(W)$. Define $\beta:\mathscr{G}\to f_*f^{-1}\mathscr{G}$ as

$$\beta(V): \mathscr{G}(V) \to (f_*f^{-1}\mathscr{G})(V)$$

 $t \mapsto (V, t).$

Let $\varphi: \mathscr{F} \to \mathscr{F}'$, $\psi: \mathscr{G} \to \mathscr{G}'$, where $\mathscr{F}, \mathscr{F} \in \mathfrak{Sh}_X$, $\mathscr{G}, \mathscr{G}' \in \mathfrak{Sh}_Y$, $\varphi \in \operatorname{Hom}_X(\mathscr{F}, \mathscr{F}')$, and $\psi \in \operatorname{Hom}_Y(\mathscr{G}, \mathscr{G}')$. We explicitly describe the induced lifts with respect to f, namely $f_*\varphi: f_*\mathscr{F} \to f_*\mathscr{F}'$ and $f^{-1}\psi: f^{-1}\mathscr{G} \to f^{-1}\mathscr{G}'$. Let U, V be open sets in X, Y, respectively. Define

$$f_*\varphi(V): f_*\mathscr{F}(V) \to f_*\mathscr{F}'(V)$$

 $s \mapsto \varphi(f^{-1}(V))(s)$

where $s \in \Gamma(f^{-1}(V), \mathcal{F})$, and define

$$f^{-1}\psi(U): f^{-1}\mathscr{G}(U) \to f^{-1}\mathscr{G}'(U)$$
$$(W,t) \mapsto (W,\psi(W)(t)),$$

where $(W,t) \in \varinjlim_{W \supseteq f(U)} \mathscr{G}(W)$. For every $\varphi : f^{-1}\mathscr{G} \to \mathscr{F}$, we have the morphism $f_*\varphi : f_*f^{-1}\mathscr{G} \to f_*\mathscr{F}$, so we define $\beta^* : \operatorname{Hom}_X(f^{-1}\mathscr{G},\mathscr{F}) \to \operatorname{Hom}_Y(\mathscr{G},f_*\mathscr{F})$ as

$$\beta^*\varphi = (f_*\varphi) \circ \beta.$$

Similarly, for every $\psi : \mathscr{G} \to f_*\mathscr{F}$, we have the morphism $f^{-1}\psi : f^{-1}\mathscr{G} \to f^{-1}f_*\mathscr{F}$, so we define $\alpha_* : \operatorname{Hom}_Y(\mathscr{G}, f_*\mathscr{F}) \to \operatorname{Hom}_X(f^{-1}\mathscr{G}, \mathscr{F})$ as

$$\alpha_* \psi = \alpha \circ (f^{-1} \psi).$$

To show α_*, β^* are bijections with inverses to each other, it suffices to show $\alpha_* \circ \beta^* = \mathrm{id}_{\mathrm{Hom}_X(f^{-1}\mathscr{G},\mathscr{F})}$ and $\beta^* \circ \alpha_* = \mathrm{id}_{\mathrm{Hom}_Y(\mathscr{G} \to f_*\mathscr{F})}$:

$$(\alpha_* \circ \beta^*)(\varphi) = \alpha_*((f_*\varphi) \circ \beta) = \alpha \circ f^{-1}((f_*\varphi) \circ \beta) = \alpha \circ (f^{-1}f_*\varphi) \circ (f^{-1}\beta)$$
$$(\beta^* \circ \alpha^*)(\psi) = \beta^*(\alpha \circ (f^{-1}\psi)) = f_*(\alpha \circ (f^{-1}\psi)) \circ \beta = (f_*\alpha) \circ (f_*f^{-1}\psi) \circ \beta.$$

Again, we unpack the definitions. Let $(W,s) \in f^{-1}\mathscr{G}(U)$, where $f(U) \subseteq W \subseteq Y$ with $t \in \Gamma(W,\mathscr{G})$. We want to show

$$(\alpha_*\beta^*\varphi)(U)((W,t)) = \varphi(U)((W,t)).$$

We have

$$(\alpha_*\beta^*\varphi)(U)((W,t)) = (\alpha(U) \circ (f^{-1}f_*\varphi))(U) \circ (f^{-1}\beta)(U))((W,t))$$

$$= (\alpha(U) \circ (f^{-1}f_*\varphi)(U))((W,t)))$$

$$= \alpha(U)((f^{-1}(W), \varphi(f^{-1}(W)(t))))$$

$$= \varphi(f^{-1}(W)((W,t)))|_{U}$$

$$= \varphi(U)((W,t)).$$

Here, we used the fact that the restriction map commutes with $\varphi(U)$ by definition of morphisms between sheaves. Let $t \in \Gamma(V, \mathscr{G})$. We similarly have

$$(\beta * \alpha^* \psi)(V)(t) = ((f_* \alpha)(V) \circ (f_* f^{-1} \psi)(V) \circ \beta(V))(t)$$

= $((f_* \alpha)(V) \circ (f_* f^{-1} \psi(V)))((V, t))$
= $(f_* \alpha)(V)(\psi(V)(t))$
= $\psi(V)(t)$.

Hence, $\alpha *$ and $\beta *$ are bijections with inverses to each other.

- **22.** Glueing Sheaves. Let X be a topological space, let $\mathfrak{U} = \{U_i\}$ be an open cover of X, and suppose we are given for each i a sheaf \mathscr{F}_i on U_i , and for each i, j an isomorphism $\varphi_{ij} : \mathscr{F}_i|_{U_i \cap U_i} \xrightarrow{\sim} \mathscr{F}_j|_{U_i \cap U_i}$ such that
 - (1) for each i, $\varphi_{ii} = id$,
 - (2) and for each $i, j, k, \varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ on $U_i \cap U_j \cap U_k$.

Then there exists a unique sheaf \mathscr{F} on X together with isomorphisms $\psi_i:\mathscr{F}|_{U_i}\xrightarrow{\sim}\mathscr{F}_i$ such that for each i,j, $\psi_j=\varphi_{ij}\circ\psi_i$ on $U_i\cap U_j$. We say loosely that \mathscr{F} is obtained by glueing the sheaves \mathscr{F}_i via the isomorphisms φ_{ij} .