Complexité Algorithmique

Dr Ahmed Wade

awade@ept.sn

Sommaire

- Machine de Turing
- 2 Notations et simplification
- 3 Les classes de complexité

- Définit par Alan Turing (1936)
- Modélise le fonctionnement des appareils mécaniques de calcul.
- Donne une définition précise au concept d'algorithme
 - Thèse de Church-Turing : « tout traitement réalisable mécaniquement peut être accompli par une machine de Turing »
- Fournit un modèle théorique pour étudier la complexité des problèmes

- Elle est constituée de
 - Un ruban infini à droite et à gauche
 - Chaque case contient un symbole parmi un alphabet fini
 - Une tête de lecture/écriture qui peut lire et écrire des symboles sur le ruban et se déplacer vers la gauche ou vers la droite
 - Un registre d'état qui mémorise l'état courant de la machine
 - Le nombre d'états est fini et il existe un état de départ
 - Une table d'actions

- La table d'action associe une (ou plusieurs) action(s) à chaque couple (état, caractère lu)
- Une action indique à la machine quel caractère écrire sur le ruban et comment déplacer la tête de lecture/écrire
- Tant qu'il existe une action à appliquer, la machine l'applique, sinon elle s'arrête

Dr Ahmed Wade

Machine de Turing déterministe

On parle de machine de Turing déterministe si chaque couple (état, caractère lu) de la table d'action est associée une et une seule transition possible

Machine de Turing non déterministe

On parle de machine de Turing non déterministe si à chaque couple (état, caractère lu) est associées une ou plusieurs transitions possibles.

6 / 34

Sommaire

- Machine de Turing
- Notations et simplification
 - Majoration : notation O
 - Autres notations Ω et Θ
- Les classes de complexité

Notations et simplification

- Le calcul des complexités est "complexe"
- Pour les même raisons que la terminaison
 - Il n'existe pas de méthode générale (ou algorithme) pour calculer la complexité d'un algorithme encore moins celle d'un problème
- Nous montrerons comment évaluer la fonction complexité d'un algorithme
 - en évaluant non pas précisément cette fonction
 - mais en évaluant la classe à laquelle elle appartient

DIC1

8 / 34

Complexité en temps

- Soit A un algorithme qui résout un problème P
- La complexité en temps de l'algo. A est
 - une fonction f: N → N où f(n) est le nombre maximum d'étapes de calcul de A sur toutes les entrées de taille n
- On dit que A s'exécute en temps f(n)
- Idem pour la complexité en espace

DIC1

9 / 34

Rappel: Notation Landau

- Soit deux fonctions f, g: $N \to R^+$, on dit que
 - f(x) = O(g(x)) (quand x tend vers ∞) s'il existe deux nombres réels c et x_0 tels que pour tout $x \ge x_0$

$$f(x) \le c \cdot g(x)$$

• Exemple : $3x^4 + 2x^3 + x + 4 = ?$

Rappel: Notation Landau

- Soit deux fonctions f, g: $N \to R^+$, on dit que
 - f(x) = O(g(x)) (quand x tend vers ∞) s'il existe deux nombres réels c et x_0 tels que pour tout $x \ge x_0$

$$f(x) \leq c \cdot g(x)$$

- Exemple : $3x^4 + 2x^3 + x + 4 = O(x^4)$
- Pour les polynômes, il suffit de garder le terme de plus grand ordre et supprimer son coeff.

Complexité en temps

• Un algorithme A résout un problème P en temps O(T(n)) si, pour tout n et pour toute instance de taille n, l'algorithme retourne une solution admissible après O(T(n)) étapes

Exercice

Considérant qu'une opération élémentaire se fasse en 10^{-8} seconde (un milliardième de seconde), rappelant qu'une année comporte à peu près 3.10⁷ seconde. Calculer le temps nécessaire à l'exécution d'un algorithme sur une entrée de taille 100 de complexité :

- \bigcirc n, 2n,
- \bigcirc log(n), 3log(n)
- $n^2 \cdot 2n^2$
- \bigcirc n^3 .
- **6** 2^{n} .
- 0 n!

Type de complexité

Notation	Type de complexité	Pour n = 100 avec 10^8 ops/sec
O(1)	constante	Temps constant
O(log(n))	logarithmique	10 ⁻⁷ secondes
O(n)	linéaire	10 ⁻⁶ secondes
O(nlog(n))	quasi-linéaire	10 ⁻⁵ secondes
O(n ²)	quadratique	10 ⁻⁴ secondes
O(n³)	cubique	10 ⁻² secondes
O(n ^p)	polynomiale	11 jours si p = 7
O(2 ⁿ)	exponentielle	10 ¹⁴ années
O(n!)	factorielle	10 ¹⁴² années

Classes de complexité (1)

Dr Ahmed Wade

- O(1): complexité constante, pas d'augmentation du temps d'exécution quand le paramètre croit
- O(log(n)): complexité logarithmique, augmentation très faible du temps d'exécution quand le paramètre croit.
 - Exemple : algorithmes qui décomposent un problème en un ensemble de problèmes plus petits (dichotomie)
- O(n): complexité linéaire, augmentation linéaire du temps d'exécution quand le paramètre croit (si le paramètre double, le temps double)
 - Exemple : algorithmes qui parcourent séquentiellement des structures linéaires

14 / 34

Classes de complexité (2)

- $O(n\log(n))$: complexité quasi-linéaire, augmentation un peu supérieure à O(n)
- $O(n^2)$: complexité quadratique, quand le paramètre double, le temps d'exécution est multiplié par 4
 - Exemple : algorithmes avec deux boucles imbriquées
- $O(n^i)$: complexité polynomiale, quand le paramètre double, le temps d'exécution est multiplié par 2ⁱ
 - Exemple : algorithme utilisant i boucles imbriquées

Classes de complexité (3)

- $O(2^n)$: complexité exponentielle, quand le paramètre double, le temps d'exécution est élevé à la puissance 2
- O(n!): complexité factorielle, asymptotiquement équivalente à n^n

16 = > = \phi \qquad \qquad

Algorithm 1 Recherche séquentielle

```
1: fonction rechercheElement(entier | tab, entier x) : booléen
        entier i
 2:
        i \leftarrow 0
3:
        n \leftarrow tab.longueur
 4:
        tant que i < n faire
 5:
            si tab[i] = x alors
 6:
                retourne VRAL
 7:
            fin si
 8:
            i \leftarrow i+1
 9:
        fin tant que
10:
        retourne FAUX
11:
12: fin fonction
```

◆ロト ◆部ト ◆差ト ◆差ト を める

Exercice 2

Algorithm 2 Recherche dichotomique

```
1: fonction rechercheElement(entier∏ tab, entier x) : booléen
        i \leftarrow 0, j \leftarrow tab.longueur-1
        tant que i < j faire
 3:
            si tab[(j+i)/2] = x) alors
 4:
                 retourne VRAI
 5:
             sinon
 6:
                 si tab[(j+i)/2] > x alors
 7:
                     i \leftarrow (j+i)/2 - 1
 8:
                 sinon
 9:
10:
                     i \leftarrow (i+i)/2 +1
                 fin si
11:
             fin si
12:
13:
        fin tant que
```

Exercice 3

Algorithm 3 Tri à bulles

```
1: fonction triBulle(entier[] tab)
       entier i, j, n=taille tab
 2:
        pour i allant de n-1 à 1 faire
3:
           pour j allant de 0 à i-1 faire
 4:
               si tab[j] > tab[j+i] alors
 5:
                   échanger (tab[j+i], tab[j])
6:
               fin si
 7:
 8:
           fin pour
 9:
        fin pour
10: fin fonction
```

Notations Ω et Θ

- Soit deux fonctions f, g: $N \to R^+$, on dit que
 - $f(x) = \Omega(g(x))$ (quand x tend vers ∞) s'il existe deux nombres réels c et x_0 tels que pour tout $x \ge x_0$

$$f(x) \ge c \cdot g(x)$$

• Si $f(x) = \Omega(g(x))$ et f(x) = O(g(x)) alors $f(x) = \Theta(g(x))$

Sommaire

- Machine de Turing
- 2 Notations et simplification
- Les classes de complexité
 - La classe P
 - La classe NP
 - P vs. NP
 - Problèmes NP-Complets

La classe P

- La classe P est l'ensemble des problèmes qui peuvent être résolus en temps polynomial par une machine de Turing déterministe
- Elle correspond en pratique à l'ensemble des problèmes qui sont traitables en un temps raisonnable par un ordinateur

- Ce sont tous les problèmes que l'on peut résoudre sur une machine réelle en temps polynomial
 - PGCD de deux entiers
 - Tri d'un tableau
 - Recherche d'un élément dans un tableau ordonné

La classe NP

- La classe NP est l'ensemble des problèmes qui peuvent être résolus en temps polynomial par une machine de turing non déterministe
- NP est une abréviation pour Nondeterministic Polynomial

- Somme d'un sous ensemble
 - Donnée : un ensemble de n entiers
 - Sortie : existe-il un sous ensemble dont la somme de ses éléments est égal à B?
- Exemple: supposer l'ensemble {4, 5, 8, 13, 15, 24, 33}
 - B = 36
 - B=14

- SAT : satisfiabilité d'une expression Booléenne
 - Donnée : n, un entier, et Φ une expression booléenne avec n variables booléennes, x_1, x_2, \dots, x_n
 - Sortie: oui, si Φ est satisfiable, i.e. il existe une valuation v telle que $v(\Phi) = Vrai$
- Exemple : si $\Phi = (x_1 + x_2 + x_3)(x_1 + x_4)(\bar{x_1} + \bar{x_3})(x_1 + \bar{x_4})$

- SAT : satisfiabilité d'une expression Booléenne
 - Donnée : n, un entier, et Φ une expression booléenne avec n variables booléennes, x_1, x_2, \dots, x_n
 - Sortie: oui, si Φ est satisfiable, i.e. il existe une valuation v telle que $v(\Phi) = Vrai$
- Exemple : si $\Phi = (x_1 + x_2 + x_3)(x_1 + x_4)(\bar{x_1} + \bar{x_3})(x_1 + \bar{x_4})$
 - Φ est elle satisfiable?

- SAT : satisfiabilité d'une expression Booléenne
 - Donnée : n, un entier, et Φ une expression booléenne avec n variables booléennes, x_1, x_2, \cdots, x_n
 - Sortie: oui, si Φ est satisfiable, i.e. il existe une valuation v telle que $v(\Phi) = Vrai$
- Exemple : si $\Phi = (x_1 + x_2 + x_3)(x_1 + x_4)(\bar{x_1} + \bar{x_3})(x_1 + \bar{x_4})$
 - Φ est satisfiable : $x_1 = vrai$, $x_3 = faux$

- SAT : satisfiabilité d'une expression Booléenne
 - Donnée : n, un entier, et Φ une expression booléenne avec n variables booléennes, x_1, x_2, \dots, x_n
 - Sortie : oui, si Φ est satisfiable, i.e. il existe une valuation v telle que $v(\Phi) = Vrai$
- Exemple : si $\Phi = (x_1 + x_2 + x_3)(x_1 + x_4)(\bar{x_1} + \bar{x_3})(x_1 + \bar{x_4})$
 - Φ est satisfiable : $x_1 = vrai$, $x_3 = faux$
- si $\Phi = (x_1 + x_4)(\bar{x_1} + \bar{x_3})(x_1 + \bar{x_4})(\bar{x_1} + x_4)$

- SAT : satisfiabilité d'une expression Booléenne
 - Donnée : n, un entier, et Φ une expression booléenne avec n variables booléennes, x_1, x_2, \cdots, x_n
 - Sortie: oui, si Φ est satisfiable, i.e. il existe une valuation v telle que $v(\Phi) = Vrai$
- Exemple : si $\Phi = (x_1 + x_2 + x_3)(x_1 + x_4)(\bar{x_1} + \bar{x_3})(x_1 + \bar{x_4})$
 - Φ est satisfiable : $x_1 = vrai$, $x_3 = faux$
- si $\Phi = (x_1 + x_4)(\bar{x_1} + \bar{x_3})(x_1 + \bar{x_4})(\bar{x_1} + x_4)$
 - Φ est elle satisfiable?

- Un cycle hamiltonien d'un graphe G est un cycle qui passe une et une seule fois par tous les sommets de G
- Problème du Cycle Hamiltonien
 - Étant donné un graphe G, le graphe G possède-t-il un cycle hamiltonien?

27 / 34

- Partition en trinômes
 - Donnée : une liste de n étudiants, et pour chaque étudiant la liste de ceux avec qui il accepte de travailler;
 - Sortie : oui, si on peut répartir les étudiants en trinômes qui respectent les choix des étudiants

P vs. NP

- P est la classe des problèmes dont on peut rapidement trouver une solution (rapidement = en temps polynomial)
- NP est la classe des problèmes dont on peut rapidement vérifier qu'une solution est bien une solution
- Une des plus grandes questions en informatique est la suivante : les classes P et NP sont-elles distinctes?

Voulez-vous gagner 1 000 000 \$

- Voulez-vous gagner 1 000 000 \$?
 - Il "suffit" de démontrer la conjecture suivante
 - $P \neq NP$
 - ou bien de prouver que P = NP
 - www.claymath.org/millennium-problems/p-vs-np-problem

Problèmes NP-Complets

- Un progrès important pour résoudre la question (P vs. NP) a été fait par Stephen Cook et Leonid Levin dans les années 1970
- Ils ont découvert certains problèmes de NP dont la complexité du problème est liée à la complexité de la classe NP entière
- Si un algorithme polynomial existe pour un de ces problèmes, alors tous les problèmes de NP peuvent être résolus en temps polynomial
- Ces problèmes sont dits NP-complets

Problèmes NP-Complets

- Le premier problème qui a été montré NP-complet est le problème de satisfabilité (SAT)
- Une liste de problèmes NP-complet
 - https: //en.wikipedia.org/wiki/List_of_NP-complete_problems

ロトオ団トオミトオミト ミーのの

Exemple: une fonction pire que la factorielle

La fonction d'Ackermann se définit de la manière suivante, pour tous entiers m et n positifs

Algorithm 4 Ackermann

```
1: fonction Ackermann(m,n)
       entier m, n
       si m = 0 alors
3
4:
          retourne n+1
5:
       sinon
          si n = 0 alors
6:
7:
              retourne Ackermann(m-1,1)
          sinon
8:
              retourne Ackermann(m-1, Ackermann(m, n-1))
9:
          fin si
10:
       fin si
11:
12: fin fonction
```

DIC1 33 / 34

- Calculer Ackermann(2,3)
 - •
- Calculer Ackermann(5,0)
 - •
- Calculer Ackermann(4,2)
 - •
- Calculer Ackermann(4,4)?

- Calculer Ackermann(2,3)
 - Ackermann(2,3)=9
- Calculer Ackermann(5,0)
 - •
- Calculer Ackermann(4,2)
 - •
- Calculer Ackermann(4,4)?

コト ◆母 ト ◆ 喜 ト ◆ 喜 ・ 夕 Q

- Calculer Ackermann(2,3)
 - Ackermann(2,3)=9
- Calculer Ackermann(5,0)
 - Ackermann(5,0) = Ackermann(4,1) = 65533
- Calculer Ackermann(4,2)

0

Calculer Ackermann(4,4)?

- Calculer Ackermann(2,3)
 - Ackermann(2,3)=9
- Calculer Ackermann(5,0)
 - Ackermann(5,0) = Ackermann(4,1) = 65533
- Calculer Ackermann(4,2)
 - Ackermann $(4,2)=2^{65536}-3$
- Calculer Ackermann(4,4)?