Universitat Autònoma de Barcelona

y Universidad de Málaga

Categorías 2024

Apéndice

El **Apéndice** esta pensado para poner a disposición de todos detalles técnicos o ampliaciones del contenido visto durante las sesiones.

1. Lema de Yoneda

Esta es la traducción del apartado dedicado al lema de Yoneda en mi TFG¹ donde se demuestra la vercion contravariante del lema de Yoneda usando la sumersión de Yoneda.

Definición 1.0.1 Dada una categoría localmente pequeña C. Definimos la categoría de diagramas Set^C donde los objetos son functores de C a Set y los morfismos son transformaciones naturales de entre estos functores.

Definición 1.0.2 Para un objeto $c \in C$ definimos el functor representable contravariante que es la forma contravariante del functor $\operatorname{Mor}_{C}(c, -)$.

Para comprobar que es un functor, para $f: d \to c$ de $\mathrm{Mor}_{\mathsf{C}^{\mathsf{op}}}(d,c)$ y $f: d \to c$ de C^{op} podemos ver que $\mathrm{Mor}_{\mathsf{C}^{\mathsf{op}}}(\mathrm{Id}_d,c) = \mathrm{Id}_{\mathrm{Mor}_{\mathsf{C}^{\mathsf{op}}}(d,c)}$ y $\mathrm{Mor}_{\mathsf{C}^{\mathsf{op}}}(g \circ s,c) = \mathrm{Mor}_{\mathsf{C}^{\mathsf{op}}}(s,c) \circ \mathrm{Mor}_{\mathsf{C}^{\mathsf{op}}}(g,c)$.

$$\operatorname{Mor}_{\mathsf{C}^{\mathsf{op}}}\left(\operatorname{Id}_{d},c\right)\left(f\right) = f \circ \operatorname{Id}_{d}$$

$$= f$$

$$= \operatorname{Id}_{\operatorname{Mor}_{\mathsf{C}^{\mathsf{op}}}\left(d,c\right)}\left(f\right)$$

$$\operatorname{Mor}_{\mathsf{C}^{\mathsf{op}}}\left(g \circ s,c\right)\left(f\right) = f \circ \left(g \circ s\right)$$

$$= \left(f \circ g\right) \circ s$$

$$= \left(\operatorname{Mor}_{\mathsf{C}^{\mathsf{op}}}\left(s,c\right) \circ \operatorname{Mor}_{\mathsf{C}^{\mathsf{op}}}\left(g,c\right)\right)\left(f\right)$$

Definición 1.0.3 La sumersión de Yoneda es un functor d'una categoría localmente

pequeña C a la categoría de diagramas $\mathsf{Set}^{\mathsf{C}^{\mathrm{op}}}.$

$$\sharp \colon \mathsf{C} o \mathsf{Set}^\mathsf{C^{\mathrm{op}}}$$

¹Intr
ducció a les Categories de Models en Topologia (Martí Parés Baraldés) con Carles Broto Blanco como tutor

que envía un objeto c al functor $Mor_{C^{op}}(-,c)$ (Definición 1.0.2)

$$\sharp (c) = \operatorname{Mor}_{\mathsf{C}^{\mathrm{op}}} (-, c) : \mathsf{C}^{\mathrm{op}} \to \mathsf{Set}$$

Y el morfismo $\xi \colon c \to c'$ en C lo envía a la siguiente transformación natural,

$$\sharp (\xi) = \operatorname{Mor}_{\mathsf{C}}(-, \xi) : \operatorname{Mor}_{\mathsf{C}}(-, c) \Rightarrow \operatorname{Mor}_{\mathsf{C}}(-, c')$$

tal que, por todo $g\colon e\to d$ en C^op

$$\begin{array}{ccc} \operatorname{Mor}_{\mathsf{C}^{\mathrm{op}}}\left(d,c\right) & \xrightarrow{\sharp(\xi)_{d}} \operatorname{Mor}_{\mathsf{C}^{\mathrm{op}}}\left(d,c'\right) \\ \operatorname{Mor}_{\mathsf{C}^{\mathrm{op}}}\left(g,c\right) & & -\circ g \Big| \operatorname{Mor}_{\mathsf{C}^{\mathrm{op}}}\left(g,c'\right) \\ \operatorname{Mor}_{\mathsf{C}^{\mathrm{op}}}\left(e,c\right) & \xrightarrow{\sharp(\xi)_{e}} \operatorname{Mor}_{\mathsf{C}^{\mathrm{op}}}\left(e,c'\right) \end{array}$$

es un diagrama conmutativo, cosa fácilmente comprobable ya que por todo $f \in \text{Mor}_{\mathsf{C}}(d,c)$ tenemos que $(\xi \circ f) \circ g = \xi \circ (f \circ g)$.

Teorema 1.0.4 (Lema de Yoneda) Sea C una categoría localmente pequeña. Para cualquier objeto $c \in C$ y functor $F \in Set^{C^{op}}$ tenemos un isomorfismo de conjuntos.

$$\operatorname{Mor}_{\operatorname{\mathsf{Set}}}^{\operatorname{\mathsf{Cop}}}\left(\sharp\left(c\right),\operatorname{F}\right)\cong\operatorname{F}\left(c\right)$$

que es natural en F y en c que se traduce en que por todo functor $G: C^{op} \to Set$, transformación natural $\alpha: F \Rightarrow G$ y morfismo $h: c \to d$ los siguientes diagramas son conmutativos.

$$\begin{array}{cccc}
\operatorname{Mor}_{\mathsf{Set}^{\mathsf{Cop}}}\left(\, \sharp \, (c) \, , \mathrm{F} \right) & \overset{\cong}{\longrightarrow} \, \mathrm{F} \, (c) & \operatorname{Mor}_{\mathsf{Set}^{\mathsf{Cop}}}\left(\, \sharp \, (c) \, , \mathrm{F} \right) & \overset{\cong}{\longrightarrow} \, \mathrm{F} \, (c) \\
\operatorname{Mor}\left(\, \sharp \, (c), \alpha \right) \downarrow & & & \operatorname{Mor}\left(\, \sharp \, (b), \mathrm{F} \right) \uparrow & & \uparrow \mathrm{F} \, (d) \\
\operatorname{Mor}_{\mathsf{Set}^{\mathsf{Cop}}}\left(\, \sharp \, (c) \, , \mathrm{G} \right) & \overset{\cong}{\longrightarrow} \, \mathrm{G} \, (c) & & \operatorname{Mor}_{\mathsf{Set}^{\mathsf{Cop}}}\left(\, \sharp \, (d) \, , \mathrm{F} \right) & \overset{\cong}{\longrightarrow} \, \mathrm{F} \, (d)
\end{array}$$

Demostración. Definimos una aplicación $\Phi_{c,F}$ de Mor_{Set}^{cop} (\sharp (c), F) a F (c)

$$\operatorname{Mor}_{\mathsf{Set}^{\mathsf{Cop}}}\left(\, \sharp \, (c) \,, \mathrm{F} \right) \xrightarrow{\Phi_{c,\mathrm{F}}} \mathrm{F} \, (c)$$
$$\eta \colon \sharp \, (c) \Rightarrow \mathrm{F} \longmapsto \eta_{c} \, (\mathrm{Id}_{c})$$

y definimos una segunda aplicación $\Theta_{c,F}$ de F(c) a Mor_{Set}^{cop} ($\sharp(c),F$)

$$F\left(c\right) \xrightarrow{\Theta_{c,F}} \operatorname{Mor}_{\mathsf{Set}^{\mathsf{Cop}}}\left(\sharp\left(c\right), F\right)$$

$$\theta \longmapsto \eta_{\theta} \colon \sharp\left(c\right) \Rightarrow F$$

Definimos la imagen de θ bajo $\Theta_{c,F}$ como la transformación natural η_{θ} , cuyos componentes son

$$(\eta_{\theta})_{e}: \operatorname{Mor}_{\mathsf{C}^{op}}(e, c) \longrightarrow \operatorname{F}(r)$$

$$g: e \to c \longmapsto \operatorname{F}$$

Primero vamos a comprobar que η_{θ} esta bien definida como transformación natural, verificando que para cualquier $f: r \to e$ de C^{op} , el siguiente diagrama es conmutativo.

Para todo $g \in \text{Mor}_{\mathsf{C}^{op}}(e, c)$

$$(\eta_{\theta})_{r} \circ \operatorname{Mor}_{\mathsf{C}^{\operatorname{op}}}(f, c) (g) = (\eta_{\theta})_{r} (g \circ f)$$

$$= \operatorname{F} (g \circ f) (\theta)$$

$$= \operatorname{F} (f) \circ \operatorname{F} (g) (\theta)$$

$$= \operatorname{F} \circ (\eta_{\theta})_{e} (g)$$

El siguiente paso es comprobar que $\Phi_{c,\mathrm{F}}$ y $\Theta_{c,\mathrm{F}}$ son mutuamente inversos.

$$\operatorname{Mor}_{\mathsf{Set}^{\mathsf{Cop}}}\left(\ \ \, \sharp\left(c\right), \mathrm{F}\right) \xrightarrow{\Phi_{c,\mathrm{F}}} \mathrm{F}\left(c\right) \xrightarrow{\Theta_{c,\mathrm{F}}} \operatorname{Mor}_{\mathsf{Set}^{\mathsf{Cop}}}\left(\ \ \, \sharp\left(c\right), \mathrm{F}\right)$$

$$\eta \colon \ \, \sharp\left(c\right) \Rightarrow \mathrm{F} \longmapsto \eta_{c}\left(\operatorname{Id}_{c}\right) = \theta \longmapsto \eta_{\theta} \colon \ \, \sharp\left(c\right) \Rightarrow \mathrm{F}$$

Por definición de η : \sharp $(c) \Rightarrow$ F el siguiente diagrama es conmutativo

$$\operatorname{Mor}_{\mathsf{C}^{\mathrm{op}}}(c,c) = \sharp(c)(c) \xrightarrow{\eta_{c}} \operatorname{F}(c)$$

$$\downarrow^{\operatorname{Mor}_{\mathsf{C}^{\mathrm{op}}}(g,c)} \qquad \downarrow^{\sharp(c)(g)} \qquad \downarrow^{\operatorname{F}(g)}$$

$$\operatorname{Mor}_{\mathsf{C}^{\mathrm{op}}}(e,c) = \sharp(c)(e) \xrightarrow{\eta_{e}} \operatorname{F}(e)$$

De esta forma tenemos

$$(\eta_{\theta})_{e}(g) = F(g)(\theta)$$

$$= F(g)(\eta_{c}(Id_{c}))$$

$$= \eta_{e} \circ \sharp(c)(g)(Id_{c})$$

$$= \eta_{e}(g)$$

Asi que $\eta_{\theta} = \eta$ por cualquier $\theta \in F(c)$, por tanto $\Theta_{c,F} \circ \Phi_{c,F} = \operatorname{Id}_{\operatorname{Mor}_{\mathsf{Set}}\mathsf{C^{op}}\left(\sharp(c),F\right)}$. A continuación comprobamos el otro orden de composición.

$$F\left(c\right) \xrightarrow{\Theta_{c,F}} \operatorname{Mor}_{\mathsf{Set}^{\mathsf{Cop}}}\left(\mathtt{k}\left(c\right), \mathsf{F}\right) \xrightarrow{\Phi_{c,F}} F\left(c\right)$$

$$\theta \longmapsto \eta_{\theta} \colon \mathtt{k}\left(c\right) \Rightarrow \mathsf{F} \longmapsto (\eta_{\theta})_{c}\left(\mathrm{Id}_{c}\right)$$

$$(\eta_{\theta})_{c} (\mathrm{Id}_{c}) = \mathrm{F} (\mathrm{Id}_{c}) (\theta)$$

= $\mathrm{Id}_{\mathrm{F}(c)} (\theta)$
= θ

Finalmente podemos concluir que $\Phi_{c,F} \circ \Theta_{c,F} = \mathrm{Id}_{F(c)}$.

Por tanto hemos demostrado que $\Phi_{c,F}$: $\operatorname{Mor}_{\mathsf{Set}^{\mathsf{Cop}}}\left(\sharp\left(c\right) ,F\right) \xrightarrow{\cong} F\left(c\right)$ es un isomorfismo.

Para finalizar la demostración nos falta demostrar la naturalidad en F y en $c \in C$. Por cualquier functor G: $C^{op} \to \mathsf{Set}$ y transformación natural $\alpha \colon F \Rightarrow G$,

$$(\eta: \sharp(c) \Rightarrow F) \in \operatorname{Mor}(\sharp(c), F)$$

$$\operatorname{Mor}(\sharp(c), F) \xrightarrow{\cong} F(c)$$

$$\operatorname{Mor}(\sharp(c), \alpha) \downarrow^{\alpha \circ -} \qquad \qquad \downarrow^{\alpha_{c}}$$

$$\operatorname{Mor}(\sharp(c), G) \xrightarrow{\cong} G(c)$$

Obtenemos

$$(\alpha_{c} \circ \Phi_{c,F}) (\eta) = \alpha_{c} (\eta_{c} (\mathrm{Id}_{c}))$$

$$= (\alpha \circ \eta)_{c} (\mathrm{Id}_{c})$$

$$= \Phi_{c,G} (\mathrm{Mor} (\sharp (c), \alpha) (\eta))$$