Computer Networks CS3001 (Section BDS-7A) Lecture 19

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science
26 October, 2023

IP addressing: introduction

Q: how are interfaces actually connected?

A: we'll learn about that in chapters 6, 7

223.1.1.1 223.1.2. 223.1.1.2 223.1.1.4 223.1.2.9 A: wired Ethernet interfaces 223.1.3.27 connected by 223.1.1.3 Ethernet switches 223.1.3.1 223.1.3.2

For now: don't need to worry about how one interface is connected to another (with no intervening router)

A: wireless WiFi interfaces connected by WiFi base station

Subnets

- What's a subnet?
 - device interfaces that can physically reach each other without passing through an intervening router
- IP addresses have structure:
 - subnet part: devices in same subnet have common high order bits
 - host part: remaining low order bits

network consisting of 3 subnets

Subnets

Recipe for defining subnets:

- detach each interface from its host or router, creating "islands" of isolated networks
- each isolated network is called a *subnet*

subnet mask: /24

(high-order 24 bits: subnet part of IP address)

Subnets

- where are the subnets?
- what are the /24 subnet addresses?

IP addressing: CIDR

CIDR: Classless InterDomain Routing (pronounced "cider")

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

IP addresses: how to get one?

That's actually two questions:

- 1. Q: How does a *host* get IP address within its network (host part of address)?
- 2. Q: How does a *network* get IP address for itself (network part of address)

How does *host* get IP address?

- hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from a server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

goal: host dynamically obtains IP address from network server when it "joins" network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/on)
- support for mobile users who join/leave network

DHCP overview:

- host broadcasts DHCP discover msg [optional]
- DHCP server responds with DHCP offer msg [optional]
- host requests IP address: DHCP request msg
- DHCP server sends address: DHCP ack msg

DHCP client-server scenario

DHCP client-server scenario

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS server
- network mask (indicating network versus host portion of address)

DHCP: example

- Connecting laptop will use DHCP to get IP address, address of firsthop router, address of DNS server.
- DHCP REQUEST message encapsulated in UDP, encapsulated in IP, encapsulated in Ethernet
- Ethernet de-mux'ed to IP de-mux'ed, UDP de-mux'ed to DHCP

DHCP: example

- DCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulated DHCP server reply forwarded to client, de-muxing up to DHCP at client
- client now knows its IP address, name and IP address of DNS server, IP address of its first-hop router

IP addresses: how to get one?

Q: how does network get subnet part of IP address?

A: gets allocated portion of its provider ISP's address space

ISP's block <u>11001000 00010111 0001</u>0000 00000000 200.23.16.0/20

ISP can then allocate out its address space in 8 blocks:

Hierarchical addressing: route aggregation

hierarchical addressing allows efficient advertisement of routing information:

Hierarchical addressing: more specific routes

- Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
- ISPs-R-Us now advertises a more specific route to Organization 1

Hierarchical addressing: more specific routes

- Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
- ISPs-R-Us now advertises a more specific route to Organization 1

IP addressing: last words ...

- Q: how does an ISP get block of addresses?
- A: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/
 - allocates IP addresses, through 5
 regional registries (RRs) (who may
 then allocate to local registries)
 - manages DNS root zone, including delegation of individual TLD (.com, .edu, ...) management

- Q: are there enough 32-bit IP addresses?
- ICANN allocated last chunk of IPv4 addresses to RRs in 2011
- NAT (next) helps IPv4 address space exhaustion
- IPv6 has 128-bit address space

"Who the hell knew how much address space we needed?" Vint Cerf (reflecting on decision to make IPv4 address 32 bits long)