1.	(True/False) When learning decision trees, smaller depth USUALLY translates to lower training error.	1 point
	True	
	• False	
2.	(True/False) If no two data points have the same input values, we can always learn a decision tree that achieves 0 training error. True	1 point
	False	
3.	(True/False) If decision tree T1 has lower training error than decision tree T2, then T1	1 point
Ο.	will always have better test error than T2.	r point
	True	
	False	
4.		1 point
	Which of the following is true for decision trees?	·
	Model complexity increases with size of the data.	
	Model complexity increases with depth.	
	None of the above	
5.		1 point
	Pruning and early stopping in decision trees is used to	
	combat overfitting	
	improve training error	
	None of the above	

6.		1 point
	Which of the following is NOT an early stopping method?	
	\bigcirc	
	Stop when the tree hits a certain depth	
	Stop when node has too few data points (minimum node "size")	
	Stop when every possible split results in the same amount of error reduction	
	Stop when best split results in too small of an error reduction	
7.		1 point
	Consider decision tree T1 learned with minimum node size parameter = 1000. Now consider decision tree T2 trained on the same dataset and parameters, except that the minimum node size parameter is now 100. Which of the following is always true?	·
	The depth of T2 >= the depth of T1	
	The number of nodes in T2 >= the number of nodes in T1	
	The test error of T2 <= the test error of T1 The training error of T2 <= the training error of T1	
8.	Questions 8 to 11 refer to the following common scenario:	1 point
	Imagine we are training a decision tree, and we are at a node. Each data point is $(x1, x2, y)$, where $x1,x2$ are features, and y is the label. The data at this node is: $x1$ y	
	0 1 +1	
	1 0 +1	
	0 1 +1	
	1 1 -1	
	What is the classification error at this node (assuming a majority class classifier)?	
	0.25	
		1
9.	Refer to the scenario presented in Question 8.	1 point
	If we split on x1, what is the classification error?	
	·	
	0.25	

10.	Refer to the scenario presented in Question 8. If we split on x2, what is the classification error?	1 point
	0.25	
11.	Refer to the scenario presented in Question 8. If our parameter for minimum gain in error reduction is 0.1, do we split or stop early?	1 point
	Split Stop early	