Проект на тему:

Электрический пробой

Астафьева Анна Андреевна Коломиец Мария Владимировна Жиронкин Павел Владимирович Паландузян Артем Карапетович Сурнаков Александр Васильевич Евдокимова Юлия Константиновна Группа: НПИбд-01-18

Содержание

1	Введение	5
2	Терминология	7
3	Цели и задачи	8
4	Теоретическое описание задачи 4.1 Вычисление потенциала 4.2 Критерии роста 4.2.1 Модель НТП 4.2.2 Флуктуационный критерий роста 4.2.3 Модели стохастического времени запаздывания	9 12 12 13 13
5	Вывод	14
6	Список литературы	15

Список таблиц

Список иллюстраций

4.1	Фото грозы
4.2	Теорема Гаусса
4.3	Теорема Гаусса для кубической ячейки
4.4	Полный поток
4.5	Уравнение Лапласа
4.6	Полный поток
4.7	Полный поток квалратной ячейки

1 Введение

Человек познакомился с искровым разрядом задолго до того, как приступил к научному познанию мира. Феерическое и грозное явление природы — молния с точки зрения физики являет собой пример грандиозного искрового разряда в атмосфере. Началом систематического исследования электрического разряда можно считать экспериментальные исследования Б. Франклина в середине XVIII века, в которых было доказано единство природы молнии и лабораторной электрической искры.

Возникновение искрового электрического разряда сильно зависит от условий эксперимента. В длинных искровых промежутках (когда расстояние между электродами составляет десятки сантиметров или даже метры) при постепенном увеличении напряжения между электродами вначале наблюдается коронный разряд. Коронный разряд наблюдается в виде синевато-фиолетового свечения на одном из электродов (катоде), охватывающего ту область электрода, где поле наиболее сильное, и затухающего по мере удаления от металлической поверхности. Корона возникает в основном в области неоднородного поля — возле металлических выступов, «заусенцев», любых неоднородностей на электродах.

При напряжениях, более высоких, чем те, которые приводят к образованию короны, в газах возникают так называемые стримеры. Стримеры представляют собой систему слабосветящихся проводящих каналов, образующуюся в газе в области наиболее сильного электрического поля. Стример прорастает, как правило, с одного из электродов и при высоких напряжениях может ветвиться. Ветвление стримера происходит нерегулярно, и на сегодняшний день можно считать, что

эти ветвления носят случайных характер. Разветвленную стримерную вспышку часто называют импульсной короной. Размер области, в которой развиваются стримеры, может составлять несколько метров даже в лабораторных условиях. Скорость продвижения стримера вглубь межэлектродного промежутка не меньше 10 км/с и может достигать 10000 км/с. Вспышкой импульсной короны начинается искровой разряд в воздухе или других газах в длинных промежутках между электродами. В случае пробоя в газах при определенных условиях энерговыделения в стримерных каналах они превращаются в так называемые лидерные каналы. Лидер — это плазменное образование очень высокой светимости и настолько высокой проводимости, что его в некотором смысле можно считать продолжением электрода. Скорость распространения лидера по порядку величины составляет 10 км/с. Перед головной частью лидера образуется стримерная корона, от которой зависит дальнейшая динамика лидерного канала.

На сегодняшний день менее всего изучен механизм роста и ветвления стримеров при электрическом разряде. Согласно современным представлениям, рост кончика стримера определяется величиной напряженности электрического поля перед ним. Величина электрического поля зависит не только от падения напряжения между электродами, но и от радиуса стримера, и от скорости его роста. Эти три величины — радиус, локальная напряженность электрического поля и скорость роста кончика стримера работы — связаны между собой. При определенных значениях этих величин кончик стримера может разветвляться.

2 Терминология

Электрический разряд – это физический процесс, который характеризуется наличием потока заряженных частиц между двумя пространственными областями, имеющими разный потенциал в газовой среде.

Коронный разряд – это самостоятельный газовый разряд, возникающий в резко неоднородных полях у электродов с большой кривизной поверхности (острия, тонкие провода).

Стримеры - система слабосветящихся проводящих каналов, образующуюся в газе в области наиболее сильного электрического поля.

Импульсная корона — разветвленная стримерная вспышка.

Лидер – это плазменное образование очень высокой светимости и настолько высокой проводимости, что его в некотором смысле можно считать продолжением электрода.

Электрический пробой – явление резкого возрастания тока в твёрдом, жидком или газообразном диэлектрике (или полупроводнике) или воздухе, возникающее при приложении напряжения выше критического (напряжение пробоя).

3 Цели и задачи

Цель работы: изучение электрического пробоя, изучен механизм роста и ветвления стримеров и создание модели возникновения системы стримеров, наблюдаемых при искровом разряде в газах.

Задачи:

- 1. Вычисление электрического потенциала в однородном диэлектрике итерационным методом
- 2. Моделирование пробоя в геометрии «острие-плоскость» с использованием флуктуационного критерия роста
- 3. Изучение изменения густоты ветвей в зависимости от радиуса стримерной структуры электрического пробоя в геометрии «точка-окружность»
- 4. Реализация модели со степенной зависимостью вероятности роста от напряженности поля $p \, E \eta$ для случаев не η = 0, 1, 2.

Объект исследования: электрический пробой в однородном веществе.

Предмет исследования: механизм роста и ветвления стримеров.

4 Теоретическое описание задачи

Интересной задачей является моделирование пробоя, ведь это очень красивое явление (рис. 4.1):

Рис. 4.1: Фото грозы

4.1 Вычисление потенциала

Рассмотрим простейший случай — вещество однородно (диэлектрическая проницаемость среды ε везде одинакова), и первоначально в нем нет свободных зарядов.

По теореме Гаусса поток вектора индукции электрического поля D через любую замкнутую поверхность S равен нулю при отсутствии внутри поверхности свободных электрических зарядов (см. рис. 4.2).

Рис. 4.2: Теорема Гаусса

(n – вектор внешней нормали к поверхности).

Для большинства диэлектриков индукция электрического поля выражается через электрическое поле как $D=\varepsilon E$. В общем случае вектор E имеет три компоненты (E_x,E_y,E_z) .

Рассмотрим в пространстве кубическую решетку с ячейками со сторонами h по всем координатам $\Delta x = h$, $\Delta y = h$ и $\Delta z = h$. Сначала рассмотрим только один ряд ячеек вдоль оси x (рис. 4.3). Пусть электрический потенциал принимает в центре i-той ячейки значение $\phi_{i,j,k}$.

Рис. 4.3: Теорема Гаусса для кубической ячейки

Вычислим полный поток изнутри ячейки и поделим его на объем ячейки (рис. 4.4).

$$\frac{\phi}{h^{3}} = \frac{\phi_{x} + \phi_{y} + \phi_{z}}{h^{3}} = -\varepsilon \frac{(\varphi_{i+1,j,k} - 2\varphi_{i,j,k} + \varphi_{i-1,j,k})}{h^{2}} - \varepsilon \frac{(\varphi_{i,j+1,k} - 2\varphi_{i,j,k} + \varphi_{i,j-1,k})}{h^{2}} - \varepsilon \frac{(\varphi_{i,j,k+1} - 2\varphi_{i,j,k} + \varphi_{i,j,k-1})}{h^{2}}$$

Рис. 4.4: Полный поток

Если записать поток поля через клетку и приравнять к нулю, то получится уравнение Лапласа (рис. 4.5).

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$

Рис. 4.5: Уравнение Лапласа

Используя условие равенства нулю полного потока из уравнения (1) можно также получить уравнение (см. рис. 4.6).

$$\varphi_{i-\underline{1,j,k}} + \varphi_{i+1,j,k} + \varphi_{i,j-1,k} + \varphi_{i,j+1,k} + \varphi_{i,j,k-1} + \varphi_{i,j,k+1} - 6\varphi_{i,j} = 0$$

Рис. 4.6: Полный поток

Далее будем рассматривать плоский случай. Потенциал изменяется только в плоскости XY, поэтому по теореме Гаусса для квадратной ячейки сетки с номером i, j получим (см. рис. 4.7).

$$\phi_{i-1,j,k} + \phi_{i+1,j,k} + \phi_{i,j-1,k} + \phi_{i,j+1,k} + \phi_{i,j,k-1} + \phi_{i,j,k+1} - 6\phi_{i,j} = 0$$

Рис. 4.7: Полный поток квадратной ячейки

Теперь можно итеративно просчитывать потенциал для всей решётки. Зная потенциал, можно вычислить электрическое поле.

4.2 Критерии роста

Осталось придумать правило для роста так называемого стримера.

Электрический пробой — стохастический процесс, каждое звено может пробиваться с некоторой вероятностью, зависящей от поля. Такая зависимость называется **критерием роста**. Рассмотрим некоторые примеры:

- Модель НТП
- Флуктуационный критерий роста
- Модели стохастического времени запаздывания

4.2.1 Модель НТП

Один из самых простых критериев роста - модель НПВ: Нимейером, Пьетронеро и Висманом впервые была предложена модель, которая позволяет описать рост структур разряда в диэлектриках. В основе модели лежит предположение, что структура растет случайным образом, причем вероятность роста зависит только от локального электрического поля вблизи структуры.

Рост начинается с одной из точек на электроде. На каждом шаге роста с некоторой вероятностью может образоваться одна веточка разрядной структуры. Эта веточка будет соединять два соседних узла сетки, один из которых уже принадлежит разрядной структуре, а другой является «диэлектриком». Таким образом, из каждого узла двумерной сетки может образоваться до восьми веточек, если учитывать возможность роста и по диагоналям (для трехмерной сетки до 26 веточек).

Такая модель роста принадлежит к классу однозвенных моделей, в которых считается, что проводящее звено, появившееся первым, подавляет рост остальных на текущем временном шаге.

4.2.2 Флуктуационный критерий роста

В многозвенных моделях, наоборот, пренебрегается влиянием друг на друга проводящих звеньев, возникающих на данном шаге по времени. Пусть пробой происходит в областях диэлектрика, где величина поля превосходит некоторое пороговое значение E* (электрическую прочность).

4.2.3 Модели стохастического времени запаздывания

Для каждого возможного звена было введено случайное время ожидания пробоя. В однозвенной модели пробивается звено, у которого время минимально. Шаг роста во времени принимается равным этому минимальному значению.

В многозвенной модели пробиваются все звенья, для которых это время меньше заданного шага по времени Δt , который можно выбрать постоянным.

5 Вывод

На основе проделанной работы мы изучили электрический пробой, изучили механизм роста и ветвления стримеров.

Описано вычисление потенциала и модели разных критериев роста.

6 Список литературы

- 1. Д. А. Медведев, А. Л. Куперштох, Э. Р. Прууэл, Н. П. Сатонкина, Д. И. Карпов МОДЕЛИ-РОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ И ЯВЛЕНИЙ НА ПК
- 2. Niemeyer L., Pietronero L., Wiesmann H. J. Fractal dimension of dielectric breakdown // Physical Review Letters. 1984. V. 52, N 12. P. 1033–1036
- 3. Biller P. Fractal streamer models with physical time // Proc. 11th Int. Conf. on Conduction and Breakdown in Dielectric Liquids, IEEE N 93CH3204-5. Baden-D"attwil, Switzerland, 1993. P. 199–203.