First-degree First-Order Equations

Waseem A. Malik

Course: ENPM 667 (Control of Robotic Systems)

Reference:

K. Riley, M. Hobson, S. Bence "Mathematical Methods for Physics and Engineering", 2006

First-degree First-Order Equations

• First-degree first-order equations contain only dy/dx equated to some function of x and y and can be written in either of two equivalent forms:

$$\frac{dy}{dx} = F(x, y), \quad A(x, y)dx + B(x, y)dy = 0$$

where F(x,y) = -A(x,y)/B(x,y) and F(x,y),A(x,y) and B(x,y) are in general functions of both x and y.

- Which of the two forms is the more useful for finding a solution depends on the type of the equation being considered.
- There are several different types of First-degree first-order equations that are of interest in the physical sciences. We will discuss some of these in this lecture.

Separable Variable Equations (1)

• A separable-variable equation is one which maybe written in the form:

$$\frac{dy}{dx} = f(x)g(y)$$

where f(x) and g(y) are functions of x and y respectively. This also includes cases in which f(x) or g(y) is simply a constant.

 Rearranging this equation so that the terms depending on x and y appear on opposite sides and integrating we obtain:

$$\int \frac{dy}{g(y)} = \int f(x)dx$$

- Finding the solution y(x) that satisfies the equation depends only on the ease with which the integrals can be evaluated.
- It should also be noted that ODE's that at first sight do not appear
 to be in the conventional form can be made separable by an
 appropriate factorisation.

Separable Variable Equations (2)

• **Example:** Solve the equation

$$\frac{dy}{dx} = x + xy$$

The RHS of this equation can be factorised to give x(1+y), the equation becomes separable and we obtain $\int \frac{dy}{1+y} = \int x dx$. Integrating both sides separately we obtain

$$\ln(1+y) = \frac{x^2}{2} + c \implies 1 + y = \exp\left(\frac{x^2}{2} + c\right) = A \exp\left(\frac{x^2}{2}\right)$$

where c and hence A is an arbitrary constant.

• **Solution Method:** Factorise the equation so that it becomes separable. Rearrange it so that the terms depending on x and those depending on y appear on opposite sides and then integrate directly.

Exact Equations (1)

An exact first-degree frist-order ODE is of the form

$$A(x,y)dx + B(x,y)dy = 0$$
 and for which $\frac{\partial A}{\partial y} = \frac{\partial B}{\partial x}$

• In this case A(x,y)dx + B(x,y)dy is an exact differential say dU(x,y). In other words

$$Adx + Bdy = dU = \frac{\partial U}{\partial x}dx + \frac{\partial U}{\partial y}dy$$

which gives us that

$$A(x,y) = \frac{\partial U}{\partial x}, \quad B(x,y) = \frac{\partial U}{\partial y}$$

Since
$$\frac{\partial^2 U}{\partial x \partial y} = \frac{\partial^2 U}{\partial y \partial x}$$
 we therefore require

$$\frac{\partial A}{\partial y} = \frac{\partial B}{\partial x}$$

Exact Equations (2)

• If $\frac{\partial A}{\partial y} = \frac{\partial B}{\partial x}$ then the ODE can be written as dU(x,y) = 0 which has the solution U(x,y) = c where c is a constant and by using $\frac{\partial U}{\partial x} = A(x,y)$, we get

$$U(x,y) = \int A(x,y)dx + F(y)$$

- The function F(y) can be found from equation $B(x,y) = \frac{\partial U}{\partial y}$ by differentiating the expression for U(x,y) with respect to y and equating it to B(x,y).
- Example: Solve

$$x\frac{dy}{dx} + 3x + y = 0$$

Rearranging the equation we get:

$$(3x + y)dx + xdy = 0$$

Exact Equations (3)

It should be noted that A(x,y) = 3x + y and B(x,y) = x. Since

$$\frac{\partial A}{\partial y} = \frac{\partial B}{\partial x} = 1$$

Therefore, the equation is exact. So the solution is given by:

$$U(x,y) = \int (3x+y)dx + F(y) = c_1 \implies \frac{3x^2}{2} + yx + F(y) = c_1$$

Differentiating U(x, y) with respect to y and equating it to B(x, y) = x we obtain dF/dy = 0 which integrates to give $F(y) = c_2$. Letting $c = c_1 - c_2$, the solution is given by:

$$\frac{3x^2}{2} + xy = c$$

Inexact Equations: Method of Integrating Factors (1)

Equations that maybe written in the form

$$A(x,y)dx + B(x,y)dy = 0$$
 but for which $\frac{\partial A}{\partial y} \neq \frac{\partial B}{\partial x}$

are known as inexact equations.

• However, the differential can always be made exact by multiplying by an integrating factor $\mu(x, y)$ which obeys

$$\frac{\partial(\mu A)}{\partial y} = \frac{\partial(\mu B)}{\partial x}$$

- For an integrating factor that is a function of both x and y, $\mu = \mu(x,y)$ there exists no general method for finding it. In such cases it might be found by inspection.
- If an integrating factor exists that is a function of either x or y alone then the equation above can be used to solve it.

Inexact Equations: Method of Integrating Factors (2)

• If we assume that the integrating factor is a function of x alone, $\mu = \mu(x)$ then

$$\frac{\partial(\mu A)}{\partial y} = \frac{\partial(\mu B)}{\partial x} \quad \Rightarrow \quad \mu \frac{\partial A}{\partial y} = \mu \frac{\partial B}{\partial x} + B \frac{d\mu}{dx}$$

Rearranging we get:

$$\frac{d\mu}{\mu} = \frac{1}{B} \left(\frac{\partial A}{\partial y} - \frac{\partial B}{\partial x} \right) dx = f(x) dx$$

where we require f(x) also to be a function of x only.

• This provides a general method of determining whether the integrating factor μ is a function of x alone. This integrating factor is then given by:

$$\mu(x) = \exp\left\{\int f(x)dx\right\} \text{ where } f(x) = \frac{1}{B}\left(\frac{\partial A}{\partial y} - \frac{\partial B}{\partial x}\right)$$

Inexact Equations: Method of Integrating Factors (3)

• Similarly if the integrating factor is a function of y alone $\mu = \mu(y)$

$$\mu(y) = \exp\left\{\int g(y)dy\right\} \text{ where } g(y) = \frac{1}{A}\left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}\right)$$

• **Example:** Solve $\frac{dy}{dx} = -\frac{2}{y} - \frac{3y}{2x}$ Rearranging we have

$$(4x + 3y^2)dx + 2xydy = 0$$

where $A = 4x + 3y^2$ and B = 2xy. Computing the partial derivatives we get:

$$\frac{\partial A}{\partial y} = 6y, \quad \frac{\partial B}{\partial x} = 2y$$

Clearly the ODE is not exact. However, we observe that

$$f(x) = \frac{1}{B} \left(\frac{\partial A}{\partial y} - \frac{\partial B}{\partial x} \right) = \frac{2}{x}$$

Inexact Equations: Method of Integrating Factors (4)

• Therefore, an integration factor exists that is a function of x alone. Ignoring the arbitrary constant of integration, $\mu(x)$ is given by:

$$\mu(x) = \exp\left\{2\int \frac{dx}{x}\right\} = \exp(2\ln x) = x^2$$

Multiplying by the integrating factor we obtain the equation

$$(4x^3 + 3x^2y^2)dx + 2x^3ydy = 0$$

Using the methodology for solving exact equations we get:

$$U(x,y) = \int 4x^3 + 3x^2y^2dx + F(y) = x^4 + x^3y^2 + F(y) = c_1$$

Taking the derivative of U(x, y) with respect to y and setting it equal to B(x, y) we get $F(y) = c_2$. Letting $c = c_1 - c_2$ we get the solution

$$x^4 + x^3y^2 = c$$

Linear Equations (1)

 Linear first-order ODEs are a special case of inexact ODEs and can be written in the conventional form:

$$\frac{dy}{dx} + P(x)y = Q(x)$$

- Such an equation can be made exact by multiplication by an appropriate integrating factor.
- In this case the integrating factor is a function of x alone and can be expressed in a particularly simple form. The integrating factor $\mu(x)$ must be such that:

$$\mu(x)\frac{dy}{dx} + \mu(x)P(x)y = \frac{d}{dx}[\mu(x)y] = \mu(x)Q(x)$$

which can be integrated directly to give:

$$\mu(x)y = \int \mu(x)Q(x)dx$$

Linear Equations (2)

We can also write

$$\frac{d}{dx}(\mu y) = \mu \frac{dy}{dx} + \frac{d\mu}{dx}y = \mu \frac{dy}{dx} + \mu Py$$

This gives the simple relation:

$$\frac{d\mu}{dx} = \mu(x)P(x) \quad \Rightarrow \quad \mu(x) = \exp\left\{\int Pdx\right\}$$

• **Solution Method:** Rearrange the given equation into the conventional form. Multiply by the integrating factor given by $\mu(x) = \exp\left\{\int Pdx\right\}$. Then the solution is given by the equation $\mu(x)y = \int \mu(x)Q(x)dx$

Homogeneous Equations (1)

Homogeneous equations are ODEs that maybe written in the form

$$\frac{dy}{dx} = \frac{A(x,y)}{B(x,y)} = F\left(\frac{y}{x}\right)$$

where A(x, y) and B(x, y) are homogeneous functions of the same degree.

• A function f(x, y) is homogeneous of degree n if for any λ

$$f(\lambda x, \lambda y) = \lambda^n f(x, y)$$

for example if $A = x^2(y) - xy^2$ then we see that A is a homogeneous function of degree 3.

• The RHS of a homogeneous equation can be written as a function of y/x.

Homogeneous Equations (2)

• The equation can be solved by making the substitution y = vx so that

$$\frac{dy}{dx} = v + x \frac{dv}{dx} = F(v)$$

This is now a separable equation and can be integrated directly to give

$$\int \frac{1}{F(v) - v} dv = \int \frac{1}{x} dx$$

Bernoulli's Equation

Bernoulli's equation has the form

$$\frac{dy}{dx} + P(x)y = Q(x)y^n$$
 where $n \neq 0, 1$

- This equation is very similar in form to the linear equation but is in fact non-linear due to the extra y^n factor on the RHS.
- This equation can be made linear by substituting $v = y^{1-n}$ to get

$$\frac{dy}{dx} = \left(\frac{y^n}{1-n}\right) \frac{dv}{dx}$$

• Now substituting this into the equation and dividing throughout by y^n we find

$$\frac{dv}{dx} + (1-n)P(x)v = (1-n)Q(x)$$

which is a linear equation and can be solved by using the integrating factor technique.