Homework 3

1

1

```
data("Weekly")

Weekly = Weekly %>%
  janitor::clean_names() %>%
  select(-today)

skimr::skim_without_charts(Weekly)
```

Table 1: Data summary

Name	Weekly
Number of rows	1089
Number of columns	8
Column type frequency:	
factor	1
numeric	7
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
direction	0	1	FALSE	2	Up: 605, Dow: 484

Variable type: numeric

skim_variable	n_missing	$complete_rate$	mean	sd	p0	p25	p50	p75	p100
year	0	1	2000.05	6.03	1990.00	1995.00	2000.00	2005.00	2010.00
lag1	0	1	0.15	2.36	-18.20	-1.15	0.24	1.41	12.03
lag2	0	1	0.15	2.36	-18.20	-1.15	0.24	1.41	12.03
lag3	0	1	0.15	2.36	-18.20	-1.16	0.24	1.41	12.03
lag4	0	1	0.15	2.36	-18.20	-1.16	0.24	1.41	12.03
lag5	0	1	0.14	2.36	-18.20	-1.17	0.23	1.41	12.03
volume	0	1	1.57	1.69	0.09	0.33	1.00	2.05	9.33

Scatter Plot Matrix

```
Weekly_Tr = Weekly %>%
  filter(year <=2008)

Weekly_Ts = Weekly %>%
  filter(year > 2008)
```

 $\mathbf{2}$

```
Weekly_logistic =
  train(
    X_tr,
    Y_tr,
    Y_tr,
    method = "glm",
    family = "binomial",
    trControl = TRC,
    metric = "ROC",
    preProcess = c("center", "scale")
)
```

```
logistic_prediction =
  predict(Weekly_logistic,newdata = X_ts, type = "raw")
confusionMatrix(logistic_prediction,Y_ts)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Down Up
##
         Down
               31 44
                12 17
         Uр
##
##
                  Accuracy: 0.462
##
                    95% CI : (0.363, 0.562)
##
##
       No Information Rate: 0.587
##
       P-Value [Acc > NIR] : 0.996
##
##
                     Kappa: 0
##
##
   Mcnemar's Test P-Value : 3.43e-05
##
##
               Sensitivity: 0.721
##
               Specificity: 0.279
##
            Pos Pred Value: 0.413
##
            Neg Pred Value: 0.586
##
                Prevalence : 0.413
            Detection Rate: 0.298
##
##
      Detection Prevalence: 0.721
##
         Balanced Accuracy: 0.500
##
##
          'Positive' Class : Down
##
3
Weekly_logistic2 =
  train(model.matrix(direction~lag1+lag2, Weekly_Tr)[,-1],
        method = "glm",
        metric = "ROC",
        trControl = TRC,
        preProcess = c("center", "scale"))
logistic_roc = pROC::roc(Y_ts,predict(Weekly_logistic2,newdata = X_ts,type = "prob")[,2])
```

4

LDA

```
lda_roc = pROC::roc(Y_ts,predict(Weekly_lda,newdata = X_ts,type = "prob")[,2])
```

QDA

```
qda_roc = pROC::roc(Y_ts,predict(Weekly_qda,newdata = X_ts,type = "prob")[,2])
auc = c()

ROC = list(logistic_roc,lda_roc,qda_roc)

for (i in 1:3){
    auc = append(auc,ROC[[i]]$auc[1])
    plot(ROC[[i]],col = i, add = T * (i>1), legacy.axes = T * (i==1))
}

model_name =
    c("logistic","LDA","QDA")

legend("bottomright",
    legend = pasteO(model_name,"~",round(auc,3)),col=1:3,lwd=2)
```

