Química orgánica

CUESTIONES

Formulación/Nomenclatura

a) Nombra los siguientes compuestos e identifica y nombra los grupos funcionales presentes en cada uno de ellos:

a.1) CH₃-COO-CH₂-CH₃ a.2) CH₃-NH₂ a.3) CH₃-CH₂-CHOH-CH₃

a.4) CH₃-CH₂-COOH.

(A.B.A.U. ord. 19)

Solución:

	Fórmula	Nombre	Tipo	Grupo funcional	
a.1)	CH ₃ -COO-CH ₂ -CH ₃	etanoato de etilo	éster	-COO-	acilo
a.2)	CH ₃ -NH ₂	metilamina	amina	$-NH_2$	amino
a.3)	CH ₃ -CH ₂ -CHOH-CH ₃	butan-2-ol	alcohol	-OH	hidroxilo
a.4)	CH ₃ -CH ₂ -COOH	ácido propanoico	ácido carboxílico	-COOH	carboxilo

a) Escribe la fórmula semidesarrollada de:

a.1) dimetilamina

a.2) etanal

a.3) ácido 2-metilbutanoico

Nombra: a.4) CH₃-CH₂-O-CH₂-CH₃

a.5) CH₃-CH(CH₃)-CO-CH₂-CH(CH₃)-CH₃

a.6) CH₃Cl.

(A.B.A.U. extr. 18)

Solución:

a.1) Dimetilamina: CH₃-NH-CH₃ $CH_3-C > O$ a.2) Etanal:

 $CH_3-CH_2-CH-C {\overset{O}{\overset{}{\sim}}} OI$ a.3) Ácido 2-metilbutanoico:

etoxietano o dietiléter a.4) CH₃-CH₂-O-CH₂-CH₃: a.5) CH₃-CH(CH₃)-CO-CH₂-CH(CH₃)-CH₃: 2,5-dimetilhexan-3-ona

a.6) CH₃Cl: clorometano

Isomería

- Dadas las siguientes parejas de moléculas, nombra o formula cada especie según corresponda, y razona si en cada pareja las moléculas son isómeros entre sí, y de ser así, indica el tipo de isomería:
 - a) Acetato de metilo y CH₃-CH₂-COOH
 - b) CH₃-CH₂-CH₂OH y propan-2-ol

(A.B.A.U. ord. 24)

Solución:

a) Acetato de metilo: éster

CH₃-CH₂-COOH ácido propanoico ácido carboxílico

Son isómeros de función: tienen la misma fórmula molecular, pero difieren en su función química o grupo funcional.

b) CH₃-CH₂-CH₂OH propan-1-ol CH₃-CH-CH₃ propan-2-ol ÒН

Son isómeros de posición: tienen la misma fórmula molecular y la misma cadena de carbonos, pero difieren en la posición de un grupo funcional en la cadena.

- 2. Escribe las fórmulas semidesarrolladas de los siguientes compuestos, nombre su grupo funcional, y justifique si alguno de ellos presenta isomería óptica:
 - a) ácido 3-pentenoico,
- b) 2-hidroxipropanal, c) etanoato de metilo,

d)propino. (A.B.A.U. extr. 23)

grupo carbonilo (-CHO)

Solución:

a) Acido 3-pentenoico: grupo carboxilo (-COOH)

 $CH_3-CH=CH-CH_2-C > O OH$ $CH_3-CH-C > O OH$ OHb) 2-Hidroxipropanal: grupo hidroxilo (-OH) e

 CH_3-C' $O-CH_3$ grupo acilo (-COO-) c) Etanoato de metilo:

d) Propino: grupo etinilo (-C = CH)

El 2-hidroxipropanal presenta isomería óptica porque el carbono 2 es un carbono asimétrico (quiral). Está unido a cuatro sustituyentes diferentes: metilo (-CH₃), hidrógeno (-H), hidroxilo (-OH) y carbonilo (-CHO). Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

- a) Justifica si la siguiente afirmación es verdadera o falsa: El CH₃-CH=CH-CH₃ reacciona con HCl para dar un compuesto que no presenta isomería óptica.
 - b) Escribe las fórmulas semidesarrolladas y nombra los isómeros geométricos del 2,3-dibromobut-2eno.

(A.B.A.U. ord. 23)

Solución:

a) Falsa.

El compuesto CH₃-CH=CH-CH₃ es el 2-buteno, que puede reaccionar con HCl para dar 2-clorobutano (CH₃-CHCl-CH₂-CH₃) siguiendo la regla de Markovnikov. Se trata de una reacción de adición.

$$CH_3\text{-}CH=CH\text{-}CH_3 + HCI \longrightarrow CH_3 - \overset{\square}{C} - CH_2 - CH_3$$

El 2-clorobutano presenta isomería óptica porque el carbono 2 es un carbono asimétrico (quiral). Está unido a cuatro sustituyentes diferentes: metilo (CH₃-), hidrógeno (H-), cloro (Cl-) y etilo (CH₃-CH₂-). Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

b) El 2,3-dibromobut-2-eno tiene isomería geométrica porque cada uno de los carbonos del doble enlace está unidos a grupos diferentes (bromo y metilo). Sus isómeros pueden llamarse *cis* y *trans* o *Z* y *E*.

Br Br Br
$$CH_3$$
 $C = C$ CH_3 CH_3 Br CH_3 Br Cis -2,3-dibromobut-2-eno (Z) -2,3-dibromobut-2-eno (E) -2,3-dibromobut-2-eno

4. Nombra los siguientes compuestos, razona cuáles presentan algún tipo de isomería y nómbrala: CH₂=CH-CH₃ CH₃-CH₂-CHOH-CH₃ CH₃-CH=CH-COOH CH₃-CHCl-CH₃ (A.B.A.U. extr. 20)

Solución:

 $CH_2=CH-CH_3$: prop-1-eno $CH_3-CH_2-CHOH-CH_3$: butan-2-ol

 CH_3 -CH=CH-COOH: ácido but-2-enoico CH_3 -CHCl- CH_3 : 2-cloropropano

El butan-2-ol, CH₃-C-CH₂-CH₃, tiene isomería óptica porque el carbono 2 es asimétrico. Está unido a

cuatro grupos distintos: hidrógeno (-H), etilo (-CH₂-CH₃), hidroxilo (-OH) y metilo (-CH₃). Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

Del ácido but-2-enoico existen dos isómeros geométricos, que se pueden llamar cis y trans o Z y E.

$$CH_3$$
 H $C=C$ $C=C$ CH_3 $COOH$ CH_3

5. Nombra los siguientes compuestos y justifica si presentan algún tipo de isomería y de qué tipo:

CH₃-CHOH-COH

CH₃-CH₂-CH=CH-CH₂-CH₃

(A.B.A.U. ord. 20)

(A.D.A.U. 0ra. 20)

Solución:

CH₃-CHOH-COH: 2-hidroxipropanal. El carbono 2 es asimétrico (está unido a cuatro grupos distintos: hidrógeno (-H), hidroxilo (-OH), metilo (-CH₃) y carbonilo (-CHO), por lo que presenta isomería óptica.

Además puede tener isómeros de función como

 CH_3 - CH_2 -COOH: ácido propanoico CH_3 -COO- CH_3 : etanoato de metilo CH_2OH -CH=CHOH: propeno-1,3-diol.

 CH_3 - CH_2 - CH_2 - CH_3 : hex-3-eno, tiene un doble enlace entre los carbonos 3 y 4, y cada uno de ellos está unido a dos grupos distintos: hidrógeno (-H) y etilo (- CH_2 - CH_3). Existen dos isómeros geométricos, que se pueden llamar *cis* y trans o Z y E.

Además puede tener isómeros de cadena como:

$$CH_3$$
 $CH_3 - C - CH = CH_2$
 CH_3
 $H_2C - CH_2$
 CH_2
 CH_2

También presenta isómeros de posición: CH₂=CH-CH₂-CH₂-CH₂-CH₃: hex-1-eno.

6. b) Para los compuestos:

b.1.1) 2-pentanol b.1.2) dietiléter b.1.3) ácido 3-metilbutanoico b.1.4) propanamida:

b.1) Escribe sus fórmulas semidesarrolladas.

b.2) Razona si alguno puede presentar isomería óptica.

(A.B.A.U. ord. 18)

Solución:

b.1.1) 2-Pentanol (pentan-2-ol):
$$CH_3 - \overset{\text{H}}{\overset{\text{C}}{\text{C}}} - CH_2 - CH_2 - CH_3$$

$$OH$$

$$DH_2 - CH_3 - CH_2 - CH_2 - CH_3$$

$$CH_3 - CH_2 - CH_2 - CH_3$$

$$CH_3 - CH_2 - C \overset{\text{O}}{\overset{\text{C}}{\text{O}}} OH$$

$$CH_3 - CH_2 - C \overset{\text{O}}{\overset{\text{O}}{\text{O}}} OH$$

$$CH_3 - CH_2 - C \overset{\text{O}}{\overset{\text{O}}{\text{O}}} OH$$

$$CH_3 - CH_2 - C \overset{\text{O}}{\overset{\text{O}}{\text{O}}} OH$$

- b.2) Presenta isomería óptica el pentan-2-ol porque tiene un carbono asimétrico. El carbono 2 está unido a cuatro grupos distintos: metilo (-CH₃), hidrógeno (-H), hidroxilo (-OH) y propilo (-CH₂-CH₂-CH₃).
- cause grapes member (e.i.g., maregene (ii), marenne (e.i.)) propue (e.i.2 e.i.3).
 - a) Escribe la fórmula semidesarrollada de los siguientes compuestos:

 a.1) 3-metil-2,3-butanodiol
 a.2) 5-hepten-2-ona
 a.3) etilmetiléter
 a.4) etanamida

 b) Indica si el ácido 2-hidroxipropanoico presenta carbono asimétrico y represente los posibles isómeros ópticos.

(A.B.A.U. extr. 17)

Solución:

b) El ácido 2-hidroxipropanoico, CH₃-C-COOH, tiene un carbono asimétrico. El carbono 2 está unido a

cuatro grupos distintos: metilo (-CH₃), hidrógeno (-H), hidroxilo (-OH) y carboxilo (-COOH). Los isómeros ópticos son:

b) Justifica cuál de los siguientes compuestos presenta isomería óptica:

CH₃CH₂CH₂CH₃ BrCH=CHCl

CH₃CH(OH)CH₂CH₃ CH₃CH(NH₂)COOH

BrCH=CHBr H₃CH(OH)CH₂CH₂CH₃

(A.B.A.U. ord. 17)

Solución:

b) La isomería óptica la presentan los compuestos que tienen algún carbono asimétrico.

El butan-2-ol, $CH_3 - \overset{1}{C} - CH_2 - CH_3$, tiene isomería óptica porque el carbono 2 es asimétrico. Está unido a

cuatro grupos distintos: hidrógeno (-H), etilo (-CH₂-CH₃), hidroxilo (-OH) y metilo (-CH₃). Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

El ácido 2-aminopropanoico, $CH_3 - \overset{\frown}{C} - COOH$, tiene isomería óptica porque el carbono 2 es asimétrico. Está

unido a cuatro grupos distintos: hidrógeno (-H), amino (-NH₂), metilo (-CH₃) y carboxilo (-COOH). Tiene dos isómeros ópticos.

El pentan-2-ol, $CH_3 - \overset{\bar{\Gamma}}{C} - CH_2 - CH_2 - CH_3$, tiene isomería óptica porque el carbono 2 es asimétrico. Está uni-

do a cuatro grupos distintos: hidrógeno (-H), hidroxilo (-OH), propilo (-CH₂-CH₂-CH₃) y metilo (-CH₃). Tiene dos isómeros ópticos.

- b) Escribe la fórmula semidesarrollada y justifica si alguno de los siguientes compuestos presenta isomería cis-trans:
 - b.1) 1,1-dicloroetano
- b.2) 1,1-dicloroeteno b.3) 1,2-dicloroetano
- b.4) 1,2-dicloroeteno

(A.B.A.U. extr. 19)

Solución:

b.1) 1,1-Dicloroetano: CHCl₂-CH₃
b.2) 1,1-Dicloroeteno: CCl₂=CH₂
b.3) 1,2-Dicloroetano; CH₂Cl-CH₂Cl
b.4) 1,2-Dicloroeteno: CHCl=CHCl

Un compuesto tendrá isomería geométrica (cis-trans), si tiene al menos un doble enlace en el que los grupos unidos a cada carbono del doble enlace sean distintos.

El único compuesto que tiene isomería geométrica es el 1,2-dicloroeteno:

Reacciones

1. Completa las siguientes reacciones nombrando todos los productos orgánicos presentes en ellas, tanto reactivos como productos, e indica a qué tipo de reacción se corresponden: $CH_3-CH_2-CH_2-COOH + CH_3OH \longrightarrow CH_3-CH_2-CH_2-CH_2OH \xrightarrow{K_3Cr_2Lo_7.\ H^+}$

(A.B.A.U. extr. 22)

Solución:

CH₃-CH₂-COOH + CH₃OH → CH₃-CH₂-COO-CH₃ + H₂O ácido butanoico metanol butanoato de metilo

Es una reacción de esterificación, que es uno de los casos de las reacciones de condensación.

CH₃-CH₂-CH₂-CH₂OH → CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-COOH butan-1-ol butanal ácido butanoico

Es una reacción de oxidación. Los alcoholes primarios se oxidan primara a aldebídos y después

Es una reacción de oxidación. Los alcoholes primarios se oxidan primero a aldehídos y después a ácidos carboxílicos.

 Escribe la reacción que sucede cuando el 2-metil-1-buteno reacciona con HCl, dando lugar a dos halogenuros de alquilo. Nombra los compuestos obtenidos e indica razonadamente si alguno de ellos presenta isomería óptica.

(A.B.A.U. ord. 22)

Solución:

Son reacciones de adición

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 \\ CH_3 \\ CH_3 \end{array} + HCl \rightarrow CH_3 - C - CH_2 - CH_3 \\ Cl \end{array} \qquad \text{(2-cloro-2-metilbutano)}.$$

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 \\ CH_3 \end{array} + HCl \longrightarrow \begin{array}{c} CH_2CI - CH - CH_2 - CH_3 \\ CH_3 \end{array} \quad \text{(1-cloro-2-metilbutano)}.$$

El 1-cloro–2-metilbutano tiene isomería óptica porque el carbono 2 es asimétrico. Está unido a cuatro grupos distintos: hidrógeno (-H), etilo (-CH₂-CH₃), clorometilo (-CH₂Cl) y metilo (-CH₃). Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

$$CH_2CH_3$$
 CH_2CH_3 CH_2CH_3 CH_2CH_3 CH_2CH_3 CH_3 CH_4 CH_5 CH_5 CH_7 C

Completa las siguientes reacciones químicas orgánicas empleando las fórmulas semidesarrolladas e indica el tipo de reacción al que pertenecen:

$$CH_3$$
- $CH_2OH + HBr \rightarrow \underline{\hspace{1cm}} + H_2O$
 CH_2 = $CH_2 + H_2O \rightarrow \underline{\hspace{1cm}}$
 CH_3 - $COOH + CH_3NH_2 \rightarrow \hspace{1cm}} + H_2O$

(A.B.A.U. extr. 21)

Solución:

CH₃-CH₂OH + HBr $CH_3-CH_2Br + H_2O$ 2-bromoetano agua bromuro de hidrógeno

Reacción de sustitución

CH₃-CH₂OH $CH_2=CH_2 +$ H_2O eteno etanol agua

Reacción de adición.

 CH_3 - $COOH + <math>CH_3NH_2 \rightarrow$ CH₃-CONH-CH₃ + H_2O ácido etanoico metilamina N-metiletanamida agua

Reacción de condensación.

Completa las siguientes reacciones indicando el tipo de reacción y nombrando los productos que se forman:

Solución:

a) CH_3 -CHOH- $CH_3 \xrightarrow{KMnO_4, H^+} CH_3$ -CO- CH_3

Es una reacción de oxidación. Los alcoholes secundarios se oxidan a cetonas. Se produce propanona.

b) CH_3 - $CH=CH_2 + Br_2 \rightarrow CH_3$ -CHBr- CH_2Br

Es una reacción de adición. El producto es el 1,2-dibromopropano.

Completa las siguientes reacciones, identificando el tipo de reacción y nombrando los compuestos orgánicos que se forman:

 CH_3 - CH_2 - $COOH + CH_3$ - $CH_2OH \rightarrow$ _____ + ____ $CH_4 + Cl_2 \rightarrow$ _____ + ____ (A.B.A.U. ord. 20)

Solución:

 $CH_3-CH_2-COOH + CH_3-CH_2OH \rightarrow CH_3-CH_2-COO-CH_2-CH_3 + H_2O$ ácido propanoico etanol propanoato de etilo

Reacción de esterificación.

 $CH_4 + Cl_2$ CH₃Cl + HCl Metano Clorometano $CH_3CI + CI_2$ CH₂Cl₂ + HCl Clorometano Diclorometano

$$\begin{array}{ccc} CH_2CI_2+CI_2 & \longrightarrow & CHCI_3+HCI \\ Diclorometano & Triclorometano \\ CHCI_3+CI_2 & \longrightarrow & CCI_4+HCI \end{array}$$

Triclorometano Tetracloruro de carbono

Reacciones de sustitución.

6. b) Completa la siguiente reacción: CH₃-CH₂-CH₂-CH₂-CH₂-CH₂ + Cl₂ →
 Identifica el tipo de reacción y nombra los compuestos orgánicos que participan en ella.
 (A.B.A.U. ord. 19)

Solución:

b)
$$CH_3$$
- CH_2

Reacción de adición

7. b) El 2-metil-1-buteno reacciona con el ácido bromhídrico (HBr) para dar dos halogenuros de alquilo. Escribe la reacción que tiene lugar indicando qué tipo de reacción orgánica es y nombrando los compuestos que se producen.

(A.B.A.U. extr. 17)

Solución:

b) Son reacciones de adición

CH₂=C-CH₂-CH₃ + HBr
$$\rightarrow$$
 CH₃ C-CH₂-CH₃ (2-bromo-2-metilbutano).

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 + HBr \longrightarrow CH_2Br - CH - CH_2 - CH_3 \\ CH_3 \end{array} \quad \text{(1-bromo-2-metilbutano)}.$$

8. b) Dada la reacción: 2-propanol → propeno + agua, escribe las fórmulas semidesarrolladas de los compuestos orgánicos e identifica el tipo de reacción.

(A.B.A.U. ord. 18)

Solución:

b) Reacción de eliminación: propan-2-ol
$$\to$$
 propeno + agua $CH_2-CH-CH_3 \to CH_2=CH-CH_3 + H-O-H$ H OH

 a) Completa e indica el tipo de reacción que tiene lugar, nombrando los compuestos orgánicos que participan en ellas:

a.1)
$$CH_3$$
- CH = CH - CH_3 + HCI \rightarrow a.2) CH_3 - $COOCH_2$ + H_2O

(A.B.A.U. extr. 18)

Solución:

a.1) CH₃-CH=CH-CH₃ + HCl
$$\rightarrow$$
 CH₃-CH-CH-CH₃ H Cl

but-2-eno

2- clorobutano

Reacción de adición.

a.2) CH_3 - $COOH + CH_3$ - $CH_2OH \rightarrow CH_3$ - $COOCH_2$ - $CH_3 + H_2O$ ácido etanoico etanol etanoato de etilo Reacción de condensación.

Polímeros

1. b) Nombra cada monómero, emparéjalo con el polímero al que da lugar y cita un ejemplo de un uso doméstico y/o industrial de cada uno de ellos.

CH₂=CH₂ CH₂=CHCl policloruro de vinilo poliestireno polietileno

(A.B.A.U. extr. 19)

Solución:

b) Monómeros

 $CH_2=CH_2$: eteno (monómero del polietileno)

CH₂=CHCl: cloroeteno (monómero del policloruro de vinilo)

Ejemplos de uso de polímeros:

Policloruro de vinilo: aislante cables eléctricos.

Poliestireno: aislante térmico. Polietileno: fabricación de envases.

2. b) Identifica el polímero que tiene la siguiente estructura: ...CH₂-(CH₂)_n-CH₂..., indicando además el nombre y la fórmula del monómero de partida.

(A.B.A.U. ord. 17)

Solución:

b) El polímero es el polietileno.

El monómero de partida es el eteno CH₂=CH₂ también llamado etileno.

Actualizado: 10/06/24

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una hoja de cálculo de LibreOffice del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión CLC09 de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de *traducindote*, de Óscar Hermida López.

Se procuró seguir las <u>recomendaciones</u> del Centro Español de Metrología (CEM).

Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Sumario

0	ш	IAA	ICA		C	NI	$C\Delta$
v	U	1/41	-	Or	· Or	ZI VI	-

<u>CUESTIONES</u>	1
Formulación/Nomenclatura	
<u>Isomería</u>	
Reacciones	
Polímeros	
<u>roumeros</u>	>

Índice de pruebas A.B.A.U.

5, 9
ŀ, 8
ŀ, 8
, 8
, 8
, 9
3, 7
3
7
7
6
6
2
2 2
1
5 1 . 1 5 . 3