從平均數說起 迴歸分析 時間序列 最大概似函數 線性代數的角色

統計應用數學與計算

汪群超

國立台北大學統計系

May 28, 2013

從平均數說起

算數平均 最小平方法 最大概似函數 貝氏估計

迴歸分析

時間序列

最大概似函數

線性代數的角色

Outline

從平均數說起

算數平均 最小平方法 最大概似函數 貝氏估計

迴歸分析

時間序列

最大概似函數

線性代數的角色

問題 1

使用電子體重計來量測 A 女的體重,由於體重計本身的誤差,為求較精準,共量測了 100 次。希望從這 100 個量測值 $y_1, y_2, \cdots, y_{100}$ 估計 A 女的體重。

巴比倫人的方法

紀元前三百年(戰國時期)

$$\hat{\mathbf{x}} = \frac{1}{100} \sum_{i=1}^{100} \mathbf{y}_i$$

Legendre 及 Gauss

西元 1806,1809 年

假設 x 為 A 女真正的體重, $y_i - x$ 代表第 i 次的測量誤差 A 女體重的最小平方估計為

$$\hat{\mathbf{X}}_{LS} \triangleq \min_{\mathbf{X}} \sum_{i=1}^{100} (\mathbf{y}_i - \mathbf{X})^2$$

Bernoulli

西元 1777 年

假設 $p(y_1, y_2, \dots, y_{100}|x)$ 為量測值的條件式聯合機率密度函數,A 女體重的最大(對數)概似估計為

$$\hat{\mathbf{x}}_{ML} \triangleq \max_{\mathbf{x}} \log \mathbf{p}(\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_{100} | \mathbf{x})$$

Bayes

西元 1763 年

提出貝氏定理:
$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

A 女體重的貝氏估計(或稱 Maximum A Posteriori, MAP 估計)為

$$\hat{\mathbf{x}}_{\mathsf{MAP}} \triangleq \max_{\mathbf{x}} \ \log \mathbf{p}(\mathbf{x}|\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_{100})$$

Gauss

西元 1809 年

Gauss 建立了量測值的模式 並做了以下的假設:

▶ 量測誤差值服從常態分配

$$\mathbf{y} = \mathbf{x} + \epsilon$$

$$\epsilon_i \sim N(0, \sigma^2)$$

Gauss

西元 1809 年

Gauss 建立了量測值的模式

$$\mathbf{y} = \mathbf{x} + \epsilon$$

並做了以下的假設:

▶ 量測誤差值服從常態分配

$$\epsilon_{\it i} \sim {\it N}(0,\sigma^2)$$

▶ 量測誤差值 $\epsilon_1, \epsilon_2, \cdots$ 為獨立變數

Gauss

西元 1809 年

Gauss 建立了量測值的模式 並做了以下的假設:

- ▶ 量測誤差值服從常態分配 $\epsilon_i \sim N(0, \sigma^2)$
- ▶ 量測誤差值 $\epsilon_1, \epsilon_2, \cdots$ 為獨立變數
- ▶ 未知數x為均等分配(意即,對x一無所知)

 $\mathbf{v} = \mathbf{X} + \epsilon$

Gauss 得到以下結論

$$\hat{\mathbf{x}}_{LS} = \hat{\mathbf{x}}_{ML} = \hat{\mathbf{x}}_{MAP} = \frac{1}{100} \sum_{i=1}^{100} \mathbf{y}_i$$

奠定最小平方法的立論基礎,更說明了平均數的內涵。

Outline

從平均數說起 算數平均 最小平方法 最大概似函數

迴歸分析

時間序列 最大概似函數 線性化數的角色

問題 2

已知 20 個人的體重資料,要預測第 21 人的體重?

加入身高資料,對預測有幫助嗎?可以從一個人的身高預

測其體重? 迴歸分析:

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X} + \boldsymbol{\epsilon}$$

體重 (Y)	身高 (X)
93	57
110	58
99	60
112	60
÷	÷

計算聯立方程式 (System of Linear Equations) 的解: β_0, β_1

$$93 = \beta_0 + 57\beta_1$$

$$110 = \beta_0 + 58\beta_1$$

$$99 = \beta_0 + 60\beta_1$$

$$112 = \beta_0 + 60\beta_1$$

$$\vdots = \vdots$$

有解?無解?無限多組解?

從平均數說起 **迴歸分析** 時間序列 最大概似函數 線性代數的角色

假設 $\hat{\beta}_0$, $\hat{\beta}_1$ 為上述聯立方程式的解,在已知身高 (x) 的情況下,體重的預測

$$\hat{\mathbf{y}} = \hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}$$

Outline

從平均數說起

算數平均 最小平方法 最大概似函數 目氏估計

迴歸分析

時間序列

最大概似函數 線性代數的角色

問題3

已知 y_1, y_2, \dots, y_N 為 N 筆依時間排序的資料,欲預測尚未發生的第 N+1 筆 y_{N+1}

假設:每筆時間資料都與其前 p 筆資料有關,其關係假設 為

$$\mathbf{y}_n = \mathbf{a}_1 \mathbf{y}_{n-1} + \mathbf{a}_2 \mathbf{y}_{n-2} + \cdots + \mathbf{a}_p \mathbf{y}_{n-p}$$

計算聯立方程式 (System of Linear Equations) 的解:

$$\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_p$$

$$y_{\rho+1} = a_1 y_{\rho} + a_2 y_{\rho-1} + \cdots + a_{\rho} y_1$$

 $y_{\rho+2} = a_1 y_{\rho+1} + a_2 y_{\rho} + \cdots + a_{\rho} y_2$
 \vdots
 $y_N = a_1 y_{N-1} + a_2 y_{N-2} + \cdots + a_{\rho} y_{N-\rho}$

有解?無解?無限多組解?

從平均數說起 迴歸分析 時間序列 最大概似函數 線性代數的角色

假設 $\hat{a}_1, \hat{a}_2, \cdots, \hat{a}_p$ 為上述聯立方程式的 \mathbf{m} ,則未知資料 \mathbf{y}_{N+1} 的預測為

$$\hat{\mathbf{y}}_{_{N+1}} = \hat{\mathbf{a}}_{1}\mathbf{y}_{_{N}} + \hat{\mathbf{a}}_{2}\mathbf{y}_{_{N-1}} + \cdots + \hat{\mathbf{a}}_{_{p}}\mathbf{y}_{_{N-p+1}}$$

Outline

從平均數說起

算數平均

最大概似函數

貝氏估計

迴歸分析

時間序列

最大概似函數

線性代數的角色

問題 4

假設 X 為一個服從多項分配的變數, $X \sim M(N, \theta_1, \theta_2, \theta_3)$, $\theta_1 + \theta_2 + \theta_3 = 1$ 已知 N = 10 次的試驗中,這三項的次數分別為 2, 3, 5,如何對母體的參數 $\theta_1, \theta_2, \theta_3$ 做最好的估計?

假設 $N = Z_1 + Z_2 + Z_3$,概似函數寫成

$$L(\theta) = \begin{pmatrix} N \\ Z_1 Z_2 Z_3 \end{pmatrix} \theta_1^{\mathbf{Z}_1} \theta_2^{\mathbf{Z}_2} \theta_3^{\mathbf{Z}_3}$$

最大概似函數的參數估計: $\max_{\theta} L(\theta)$

$$\frac{\partial L(\theta)}{\partial \theta_1} = 0$$

$$\frac{\partial L(\theta)}{\partial \theta_2} = 0$$

Outline

從平均數說起

算數平均

最小平方法

最大概似函數

貝氏估計

迴歸分析

時間序列

最大概似函數

線性代數的角色

Matrix Representation

$$Ax = b$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_m \end{bmatrix}$$