SMART FARMER- IOT ENABLED SMART FARMING APPLICATION

TEAM DETAILS Team ID: PNT2022TMID47823 1. P.SARAN 2. SIVA KUMAR .A 3. SIVA PRASANTH N 4. VAIRAMUTHU M

s.n o	Year/Auth or	IoT Sub Verticals	Measures (Data collection)	Technolog ie s Used	Benefits of Proposed System	Challenges in Current Approach	Solution for Current Issues	Drivers of IoT
1	Krishna et al (2017)	Smart Farming livestock manageme nt	Soil Moisture Light intensity Humidity Temperature Soil pH	Raspberry pi Zig Bee Wi-fi	Reducing labor costs Helps to track the changes accurately occurring instantly in real time at the field.	lack of moisture in the fields salinity lack of application of fertilizers Different sowing time.	Using wireless mobile robot performin g various operations of the field.	Develop the capabilitie s of the robot.
2	Suciu et al (2016)	Smart Farming	Temperature	Mobile technolog y GPRS	Improve the quality and safety of the products Detecting plant diseases, flood. Etc.	Climatic Change High temperatu re Low profit margin	Assist for cropmana gement by using smart agriculture	Allowing system to measure basic parameter s for irrigation managem e nt.
3	Mahalaksh mi et al (2016)	Water Managem ent Crop Managem ent	Temperature Humidity Soil Moisture Light Intensity	Zig bee	Monitor crop field. Automate the irrigation system.	Water consumpti on is high.	Continuou s field monitorin gwith the help of low-cost sensors. Reduces water consumpti on. Reduced	Reduced water consumpti o

SMART FARMER- IOT ENABLED SMART FARMING APPLICATION

TEAM DETAILS Team ID: PNT2022TMID47823 1. P.SARAN 2. SIVA KUMAR .A 3. SIVA PRASANTH N 4. VAIRAMUTHU M

			2211VIID47023 1. F.				power consumpti on. Increased crop productivit y. Reduced wastage of crops	
4	Ruengittin un et al (2017)	Smart farming	Temperature Humidity PH Electrical conductivity	Wi-Fi	Can farm in less space Provides many products	Differentia I of temperatu re Lack of time to manage and plant	Build a smart hydroponi c eco system	Symmetric al plantation to check the accuracy of the HFE across multiple farms in the same area
5	Wicha et al (2017)	Water Management	Soil level Temperature	Wi-fi	Efficient water managem ent	High watercons umption.	Managed water system effective manner.	Reveals the positive compariso n results from the adaptive Wetting Front Detector (WFD).