

Model Development Phase

Date	21 March 2024
Team ID	738220
Project Title	Walmart Sales Analysis for Retail Industry with Machine Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:


```
from sklearn.tree import DecisionTreeRegressor
    # Create a decision tree regressor model
    dt_model = DecisionTreeRegressor(random_state=42)
    # Train the model on the training set
    dt_model.fit(X_train, y_train)
    # Make predictions on the test set
    dt_predictions = dt_model.predict(X_test)
    # Calculate the R^2 score of the model
    dt_score = dt_model.score(X_test, y_test) * 100
    # Print the R^2 score
    print(f"Decision Tree R^2 Score: {dt_score:.2f}%")
    # Calculate the Mean Absolute Error (MAE)
    dt_mae = mean_absolute_error(y_test, dt_predictions)
    # Calculate the Root Mean Squared Error (RMSE)
    dt_rmse = np.sqrt(mean_squared_error(y_test, dt_predictions))
    # Print the MAE and RMSE values
    print(f"Decision Tree MAE: {dt_mae:.2f}")
    print(f"Decision Tree RMSE: {dt rmse:.2f}")
```

```
# Calculate the training accuracy for the Random Forest model

rf_train_accuracy = rf_model.score(X_train, y_train) * 100

# Calculate the training accuracy for the Decision Tree model

dt_train_accuracy = dt_model.score(X_train, y_train) * 100

# Print the training accuracy for both models

print(f"Random Forest Training Accuracy: {rf_train_accuracy:.2f}%")

print(f"Decision Tree Training Accuracy: {dt_train_accuracy:.2f}%")
```



```
import xgboost as xgb
 from sklearn.metrics import mean_squared_error, mean_absolute_error
 # Create an XGBoost regressor model
 xgb_model = xgb.XGBRegressor(objective='reg:squarederror', nthread=4, n_estimators=1000, max_depth=5, learning_r
 # Train the model on the training set
 xgb_model.fit(X_train, y_train)
 # Make predictions on the test set
 xgb_predictions = xgb_model.predict(X_test)
 # Calculate the R^2 score of the model
 xgb_score = xgb_model.score(X_test, y_test) * 100
 # Print the R^2 score
 print(f"XGBoost R"2 Score: {xgb_score:.2f}%")
 # Calculate the Mean Absolute Error (MAE)
 xgb_mae = mean_absolute_error(y_test, xgb_predictions)
 # Calculate the Root Mean Squared Error (RMSE)
 xgb_rmse = np.sqrt(mean_squared_error(y_test, xgb_predictions))
 # Print the MAE and RMSE values
 print(f"XGBoost MAE: {xgb_mae:.2f}")
 print(f"XGBoost RMSE: {xgb_rmse:.2f}")
 # Calculate the training accuracy for the XGBoost model
 xgb_train_accuracy = xgb_model.score(X_train, y_train) * 100
 # Print the training accuracy
 print(f"xGBoost Training Accuracy: {xgb_train_accuracy:.2f}%")
```

```
# Calculate the Root Mean Squared Error (RMSE)
arima_rmse = np.sqrt(mean_squared_error(test_data, forecast))

# Calculate the Mean Squared Error (MSE)
arima_mse = mean_squared_error(test_data, forecast)

# Calculate the Mean Absolute Error (MAD)
arima_mad = mean_absolute_error(test_data, forecast)

# Print the RMSE, MSE, and MAD
print(f"RMSE: {rmse:.2f}")
print(f"MSE: {mse:.2f}")
print(f"MAD: {mad:.2f}")
```


Model Validation and Evaluation Report:

Model		Classification Report									
	②		Model	Training Accuracy	Testing Accuracy	RMSE	MAE				
		0	RandomForest	99.050713	96.354873	4402.192253	1626.485867				
Random Regression		1	Decision Tree	100.000000							
S		2	XGBoost	97.503405	90.112049	4546.164068	2094.805962				
	(2)			Training Accuracy	Testing Accuracy	RMSE	MAE				
		0	RandomForest	99.050713	96.354873		1626.485867				
Decision Tree		1	Decision Tree	100.000000	94.189247	5558,131863	2075.260710				
		2	XGBoost	97,503405	90.112549	4546.164068	2094,000902				
	(2)		Model	Training Accuracy	Testing Accurac	y RMS	E MAE				
		0	RandomForest	99.050713	96.35487	3 4402.19225	3 1626.485867				
Walaaa		1	Decision Tree	100.000000	94.18924	7 5558,13186	3 2075.260710				
Xgboost		2	XGBoost	97.503405	96.11254	9 4546.16406	8 2094.808962				

	+	Training Accuracy	Test Accuracy	+ RMSE	+ MAE /MAD (Arima)
Arima	Decision Tree	99.05071258942313 100.0 97.50340544072975	96.35487250338254 94.18924713750879 96.112549042831	5558.131862816404 4546.164067935629	+ 1626.4858674570846 2075.2607103422015 2094.8089620184737 448.5092795868826 + -