UNIP – Universidade Paulista	(//, /// _)
Disciplina.: Linguagens Formais	
Professor: Leandro C. Fernandes	UNIVERSIDADE PAULISTA

-:: Lista de Exercícios #1 :: Fundamentos, Linguagens ::-

4		١

2) Defina cada um dos conceitos a seguir, dando também exemplos:

a)

b) Alfabeto

c) Cadeia

d) Linguagem

3) O que é a operação de fechamento de um alfabeto e qual a importância dela?

4) Como se pode descrever uma linguagem formal?

5) Considerando os alfabetos Σ ={0,1,2,3,4,5,6,7,8,9}, Γ ={a,b,c,d,e,f,g}, Λ ={#,\$,@,!,?,*,&,%} e as cadeias δ =abc, β =10001 e α =%\$##\$%, dê o resultado para cada uma das operações a seguir:

a)

b) $\Sigma\Gamma$

c) $\Gamma \Sigma$

d) ∑*

e) Λ⁺

f) $\alpha\beta$

g) $\beta\alpha$

h) $\alpha^2 \beta^2$

i) δ^R

j) (αβ)²

k) $\alpha \alpha^R$

|α|

m) $|\beta|_{\circ}$

n) |ε|

δ*

p) δ⁺

6) Dadas as expressões abaixo, dê cinco cadeias quaisquer que estejam ali representadas. Porém, dentre estas cinco, uma deve ser a cadeia de menor comprimento possível.

a)

b) a^nb^m , onde n, m ≥ 0

c) a^nb^n , onde $n \ge 1$

d) $(ab)^n cd^2$, onde $n \ge 0$

e) $(0,1)^m$, onde m ≥ 0

f) $(0,1)^m(2,3)^m$, onde $m \ge 1$

g) $(0,1)^n(2,3)^m$, onde n, m ≥ 1

7) Demonstre a veracidade das afirmações a seguir:

a) se uma cadeia x é prefixo de uma cadeia y e y também é prefixo de x, então x e y são cadeias iguais.

- b) se uma cadeia x é prefixo de uma cadeia y e y é prefixo de uma cadeia z, então x é prefixo de z.
- 8) Considere que as linguagens abaixo foram definidas sobre os alfabetos Σ ={0,1,2,3,4,5,6,7}, Γ ={a,b} e Λ ={#,\$,@}. Assim, para cada uma das linguagens, dê cinco cadeias quaisquer que pertençam ao conjunto definido por ela:

a)

b)
$$L = \{w \mid w \in \Sigma^* e 5 \ge |w| > 1\}$$

c) L = {u |
$$u \in (\sum \cup \Gamma)^*$$
}

d)
$$L = \{x \mid x \in \sum^* e \ x = x^R \}$$

e)
$$L = \{y \mid y, w \in \sum^* e \ y = ww^R \}$$

f)
$$L = \{0^n 1^m 0^m 1^n \mid n \ge 0 \text{ e } m \ge 1\}$$

- g) L = {z | $z \in (\sum \cup \Gamma \cup \Lambda)^*$ }
- 9) Complete a tabela abaixo de acordo com Noam Chomsky sobre a hierarquia que envolvem as linguagens e seus formalismos geradores e reconhecedores.

Classe da Linguagem	Formalismo Gerador	Formalismo Reconhecedor