A Case for Heterogeneous Disk Arrays

Toni Cortes and Jesús Labarta Departament d'Arquitectura de Computadors Univeritat Politècnica de Catalunya - Barcelona

Disk Arrays (RAIDs)

n Group several disks

- Single address space
- High capacity
- Improved performance
- Low cost

n Heterogeneous RAID

Not all disks are equal

Motivation

n Heterogeneous disk arrays are becoming

a common configuration

- Replacing a new disk
- Adding new disks

n Current solution

- All disks are treated as equal
 - ü No performance gain is obtained
 - ü No capacity gain is obtained

Objective

n AdaptRaid0

- Block-distribution policy
- Take advantage of the goodies of each disk

n Target Environment

- Scientific and general purpose
- Not multimedia
 - ü Solutions have already been presented
 - ü Very dependent on some characteristics
- □ Disk arrays level 0 (RAID0)
 - ü Level 5 is under development

Related Work

n Multimedia Systems

- Random distribution with replication (Santos 98)
- Policy based on logical disks (Zimmerman98)
- Use fast disk for hot data (Dan95)
- Differences:
 - ü Large blocks, only reads, and sustained bandwidth

n General purpose

- □ HP AutoRaid (Wilkes95)
- □ Disc-Cache Disk (Hu98)
- Differences:
 - ü Do not adapt to the existent hardware

Disk Arrays and Parallelism

n Parallelism within a request

- Requests have to large
 - ü The sub-request of each disk has to be large
 - ü Seek + search + transfer in all disks

n Parallelism between requests

- The number of disks has to be large
 - ü Compared to the average number of disks used in a requests

AdaptRaidO: An Example

n Basic idea

Load each disk depending on its characteristics

n Example

- 1 fast disk
 - ü Size = S
 - ü Performance = P
- 1 slow disk
 - \ddot{u} Size = S/2
 - $\ddot{\mathbf{u}}$ Performance = P/2

AdaptRaidO: The Parameters

n Utilization factor (UF)

- One factor per disk
 - ü Larger disks have more blocks?
 - ü Faster disks have more blocks?

n Lines in pattern (LIP)

- We define a pattern using the UF
 - ü Large patterns allow more requests with good disks
 - ü Small patterns allow a better distribution

AdaptRaidO: The Algorithm

n Algorithm

- Decide LIP and Ufd
- Compute number of blocks per disk in the pattern

```
U Blocksd= int(UFd * LIP)
```

- Distribute blocks in a round-robin way
 - ü Use the available disks
 - ü A disk becomes unavailable when Blocksd have already been placed in it
- Repeat step 3 until one disk becomes full

Methodology

n Parameters

- UF based on the size of the disk
- Lines in pattern
 - ü 100 lines for 8-disk arrays
 - ü 10 lines for 32-disk arrays

n Simulation

- □ Simulator: HRaid (Cortes99)
- Workload from HP labs (1999)

n Reference systems

Raid0 and OnlyFast

Environment

n Disks

- Fast disk
 - ü Seagate Barracuda 4LP (4.339 Gbytes)
- Slow disk
 - ü Seagate Cheetah 4LP (2.061 Gbytes)

n Bus

- ü 10us latency
- ü 100Mbit/s bandwidth

n File system

ü 10 requests in parallel

Capacity Evaluation

n Raid0

- Constant capacity
 ü Small
- n OnlyFast
 - Small capacity with few disks
- n AadaptRaid0
 - Offers the best size

Performance Evaluation (8 disks)

n Raid0

- Does not use
 - ü Characteristics of good disks

n OnlyFast

- Does not use
 - ü Parallelism between requests

Performance Evaluation (32 disks)

n Raid0

- Does not use
 - ü Characteristics of good disks
- It uses
 - ü Parallelism between requests

n OnlyFast

- Does not use
 - ü Parallelism between requests

Conclusions

n AdaptRaid0

- Performance
 - ü It knows how to use the disks
 - ü Allows parallelism
- Size
 - ü It uses all the available capacity

Future Work

n Solve the same problem for Raid5

- Problem of parity blocks
- Less scalable
 - ü No parallelism among requests