IS53012B/A Computer Security

Dr Ida Pu

Room 10, 29 St James Goldsmiths, University of London

2018-19 (since 2007)

Part I

Homework

Outline

Questions

Questions

Questions I

• Consider the Fermat's Little Theorem (necessary condition)

Theorem

If p is a prime number, a is an integer between (1, p-1) (exclude 1 and p-1), then

$$a^{p-1} \mod p = 1$$

Fill the missing data in the table below to show it is not true in general if n is not a prime.

n	2	3	4	5	6	7	8	9	10	11	12	13
n-1	1	2		4		6	7		9			12
$2^{n-1} \mod n$	0	1										1
$p \in [3, 41]$	3	5		11		17		23		31		41
$2^{n-1} \mod p$	2								19			37

Questions II

@ Give small examples for the following reducibility properties:

$$(a+b) \mod n = [(a \mod n) + (b \mod n)] \mod n$$

 $(a*b) \mod n = [(a \mod n)*(b \mod n)] \mod n$

- Operation Perform the following operations using reduction first:
 - $(273 + 147) \mod 10$
 - ② (4223 + 17323) mod 10
 - **3** (148 + 14432) mod 12
 - $(2467 + 461) \mod 12$
 - **6** (273 * 147) mod 10
 - **6** (4223 * 17323) mod 10
 - (148 * 14432) mod 12
 - **3** (2467 * 461) mod 12
- Using shift cipher with a shift of 4 to encode the sentence THE DOG BIT THE MAN.

Questions III

- Demonstrate how the Vernam cipher works for the example of plaintext "computer" and the one-time pad (5 20 0 9 17 16 22 18). Explain why the cipher is hopeless in practice.
- Explain how the transposition cipher works. Demonstrate how the plaintext can be decrypted from the ciphertext HKFPRZNIWUVLG UOJOEO TCNMEAOEBOETYCQRXDHDE, using the key IAMTHE.
- Oconsider the RSA (Rivest, Shamir and Adleman) cryptosystem. Before sending a message m=3 to Alice, Bob prepares his keys carefully. He randomly chooses p=5, q=7 and e=7. Answer the following questions on the RSA cryptosystem. Show all your work.
 - **1** What is the value of RSA modulus *n*?
 - **2** What is the value of $r = \varphi(n)$?
 - **3** What is the value of the decryption exponent d?
 - 4 Which values are used as Bob's private key?
 - 6 Which values are used as Bob's public key?