

习题课

- •每道证明题应当以"证明"开始, 其它题目应当以"解"开始.
- 习题1-1
- (A) 1.(1) x 1 > 0 且 $\ln(x 1) \neq 0$, 即 x > 1, $x \neq 2$. 定义域为 (1,2) \cup (2, + ∞).
- (2) $x \neq -1$ \exists

$$-1 \le \frac{2x}{1+x} = 2 - \frac{2}{x+1} \le 1$$
, $1 \le \frac{2}{x+1} \le 3$, $\frac{2}{3} \le x+1 \le 2$,

• 即 $-\frac{1}{3} \le x \le 1$. 定义域为 $\left[-\frac{1}{3}, 1\right]$.

- (3) $3-x \ge 0, x \ne 0$. 定义域为 $(-\infty, 0) \cup (0,3]$.
- (4) $1-x^3 > 0, 1-x^2 \ge 0, -1 \le x < 1$. 定义域为 [-1,1).
- 2.(1) f(x) 的定义域为 $(-\infty,0) \cup (0,+\infty)$, g(x) 的定义域为 $(-\infty,+\infty)$. 因此二者不同.
- (2) 二者的定义域均为 $(-\infty, +\infty)$, 且对任意 x,

$$f(x) = x\sqrt[3]{1-x} = \sqrt[3]{x^3-x^4} = g(x).$$

- 因此二者相同.
- 注意, $\sqrt[n]{x}$ 当 n 为奇数时定义域为 $(-\infty, +\infty)$, 当 n 为偶数时定义域为 $[0, +\infty)$, 以及 $\sqrt[2]{x} = \sqrt{x}$, $\sqrt[4]{x} = x$.

- (3) f(x) 的定义域为 $(-\infty, +\infty)$, g(x) 的定义域为 $\{x \in \mathbb{R} \mid \sin x \neq 0\} = \{x \in \mathbb{R} \mid x \neq k\pi, k \in \mathbb{Z}\}.$
- 因此二者不同.
- 3. 根据题意, (2,1) 和 (1,2) 都落在函数 f(x) 的图像上, 因此

$$a + b = 2$$
, $2a + b = 1$,

- 解得 a = -1, b = 3.
- 4. $0 \le -x \le 2, 0 \le x + 1 \le 2$, 因此 $-1 \le x \le 0$, 定义域为 [-1,0].

- (B) 1.(1) 令 x = t + 1, 则 $f(t) = e^{(t+1)^3}$, 即 $f(x) = e^{(x+1)^3}$. (变量无关性)
- (2) 由 $f[\varphi(x)] = \frac{2\varphi(x)-1}{3\varphi(x)+2} = \ln x$ 得

$$(3 \ln x - 2) \varphi(x) + 2 \ln x + 1 = 0,$$
 $\qquad \varphi(x) = \frac{1 + 2 \ln x}{2 - 3 \ln x}.$

• 2.
$$f[g(x)] = \begin{cases} 1, g(x) > 0, \\ -2, g(x) \le 0 \end{cases} = \begin{cases} 1, x \in (-\sqrt{2}, \sqrt{2}), \\ -2, x \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, +\infty). \end{cases}$$

$$g[f(x)] = 2 - f(x)^2 = \begin{cases} 1, x > 0, \\ -2x \le 0. \end{cases}$$

- 3. 当 $x \le 0$ 时, $y \le 0$, x = 2y. 当 x > 0 时, y > 0, $x = \frac{1}{y}$.
- 因此该函数存在反函数 $x = \begin{cases} 2y, y \le 0, \\ \frac{1}{y}, y > 0. \end{cases}$
- 习题1-2
- (A)1. 由均值不等式, $x^2 + 1 \ge 2\sqrt{x^2 \cdot 1} = 2|x|$, 因此 $|f(x)| \le \frac{1}{2}$.
- 2.(1) 定义域为 $(-\infty, +\infty)$ 且 $f(-x) = -x \cos(-x) = -x \cos x = -f(x)$, 所以是奇函数.
- (2) 定义域为 $(-\infty, +\infty)$ 且 f(-x) = f(x), 所以是偶函数.

- (3) $f(1) = 6 \neq \pm f(-1) = \pm 4$, 所以既不是奇函数也不是偶函数.
- 一般地,一个多项式是奇函数当且仅当它的所有非零单项式次数均为奇数; 一个多项式是偶函数当且仅当它的所有非零单项式次数均为偶数.
- 3. 当 x₁ < x₂ 时,

$$f(x_2) - f(x_1) = x_2^3 - x_1^3 = (x_2 - x_1)(x_2^2 + x_1x_2 + x_1^2).$$

• 而 $x_2^2 + x_1x_2 + x_1^2 = \left(x_2 + \frac{x_1}{2}\right)^2 + \frac{3}{4}x_1^2 \ge 0$, 等号成立当且仅当 $x_1 = x_2 = 0$. 所以 $f(x_2) - f(x_1) > 0$, f(x) 是单调增加函数.

• (B) 1. 由于 $x - 1 < [x] \le x$, 因此

$$(x+1)-1 < [x]+1 \le x+1, \quad [x+1]=[x]+1,$$

$$f(x+1)=x+1-[x+1]=x+1-([x]+1)=x-[x]=f(x).$$

• 2. 当 $x_1 < x_2$ 时, $g(x_1) > g(x_2)$,

$$\varphi(x_1) = f[g(x_1)] > f[g(x_2)] = \varphi(x_2),$$

$$\psi(x_1) = g[g(x_1)] < g[g(x_2)] = \psi(x_2),$$

• 所以 $\varphi(x)$ 是单调减少函数, $\psi(x)$ 是单调增加函数.

- 对于任意 M > 0, 令 $x_M = e^{-M-2} 1 \le e^{-2} 1 < 0$, $x_M > -1$, 且 $|f(x_M)| = |-M| = M$. 因此 f 在 (-1,1) 内无界.
- 4.(1) $f(x) + f(-x) = \ln(x + \sqrt{1 + x^2}) \cdot \ln(-x + \sqrt{1 + x^2})$ = $\ln(1 + x^2 - x^2) = 0$,
- 因此 f(x) 是奇函数.

• (2)
$$f(x) + f(-x) = \frac{1}{1 + e^x} - \frac{1}{2} + \frac{1}{1 + e^{-x}} - \frac{1}{2}$$

= $\frac{1}{1 + e^x} - \frac{e^x}{1 + e^x} - 1 = 0$,

• 因此 f(x) 是奇函数.

- 6. 实际上该命题对单调不减函数也成立.
- 反证法, 假设存在 x 使得 $y = f(x) \neq x$.
- 如果 x < y, 则 $f(x) \le f(y)$, 即 $y \le f[f(x)] = x$, 矛盾!
- 如果 x > y, 则 $f(x) \ge f(y)$, 即 $y \ge f[f(x)] = x$, 矛盾!
- 因此不存在这样的 x, 从而 f(x) = x 恒成立.

- 习题1-3(A)
- 1.

- 2.(1) 当 $x \ge 0$ 时, $f(x) = x = \frac{1}{2}(x + x) = \frac{1}{2}(|x| + x)$.
- (2) 因为 $|x| = \sqrt{x^2}$ 是初等函数, 所以 f(x) 也是初等函数.

- 习题1-3(B)

$$t^2 = x^2 + \frac{1}{x^2} - 2 = f(t) - 2,$$

- 然而, 这样写是不严格的, 因为题目只规定了 t 落在函数 $x \frac{1}{x}$ 的像的范围时 f(t) 的值. 我们还需要说明 $t = x \frac{1}{x}$ 对任意 t 有解,

$$x^2 - tx - 1 = 0,$$
 $x = \frac{t \pm \sqrt{t^2 + 4}}{2}.$

• (2)
$$f(\cos x) = \sin^2 x + \cot^2 x$$

 $= 1 - \cos^2 x + \frac{\cos^2 x}{\sin^2 x}$
 $= 1 - \cos^2 x + \frac{\cos^2 x}{1 - \cos^2 x}$
 $= \frac{1}{1 - \cos^2 x} - \cos^2 x$

• 2.
$$y = \sinh x = \frac{e^x - e^{-x}}{2}$$
, $e^x - 2y - e^{-x} = 0$, $e^{2x} - 2ye^x - 1 = 0$.

$$(e^x - y)^2 = y^2 + 1$$
, $e^x = y \pm \sqrt{y^2 + 1}$.

• 而
$$e^x > 0$$
, 因此 $e^x = y + \sqrt{y^2 + 1}$, $x = \ln(y + \sqrt{y^2 + 1})$.

- 3. 当 C > 1 时, 解为 $x \in [0,2\pi]$.
- 当 $0 < C \le 1$ 时, 若 $x \in \left[0, \frac{\pi}{2}\right]$, $x \le \arcsin C$; 若 $x \in \left[\frac{\pi}{2}, \pi\right]$, $\sin x = \sin(\pi x) \le C$, $\pi x \le \arcsin C$, $x \ge \pi \arcsin C$; 若 $x \in [\pi, 2\pi]$, $\sin x \le 0 \le C$. 因此解为 $[0, \arcsin C] \cup [\pi \arcsin C, 2\pi]$.
- 类似地,当 C = 0 时,解为 $\{0\} \cup [\pi, 2\pi]$.
- 当 $-1 \le C < 0$ 时, 解为 $[\pi \arcsin C, 2\pi + \arcsin C]$.
- 当 C = -1 时, 解为 $\left\{\frac{3\pi}{2}\right\}$. C < -1 时, 解为 \emptyset .

- 习题1-4
- ·(A) 2. 这题本身比较简单,但这种裂项技巧在求和中很有用.
- 4. $x^{\ln y} = e^{\ln x \cdot \ln y} = (e^{\ln y})^{\ln x} = y^{\ln x}$.
- (B)1. 原式 = $\sum_{n=1}^{99} \frac{1}{n(n+1)} = \sum_{n=1}^{99} \left(\frac{1}{n} \frac{1}{n+1}\right) = \frac{1}{1} \frac{1}{100} = \frac{99}{100}$.
- (2) $\sin^4 x + \cos^4 x = \left(\frac{1 \cos 2x}{2}\right)^2 + \left(\frac{1 + \cos 2x}{2}\right)^2$ = $\frac{1}{2}(1 + \cos^2 2x) = \frac{1}{2}\left(1 + \frac{1 + \cos 4x}{2}\right) = \frac{3}{4} + \frac{1}{4}\cos 4x$.

- 习题1-5
- (A)1. $r\cos\theta + r\sin\theta = 1, r = \frac{1}{\cos\theta + \sin\theta}$.
- A: $\tan \theta = \frac{y}{x} = 1$. 由于 $\cos \theta = \frac{x}{r} > 0$, 因此 $\theta = \frac{\pi}{4} + 2k\pi, k \in \mathbb{Z}$.
- B: $\tan \theta = \frac{y}{x} = -\sqrt{3}$. 由于 $\cos \theta = \frac{x}{r} < 0$, 因此 $\theta = \frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}$.
- 2. $r^2 = 2r \cos \theta$, $x^2 + y^2 = 2x$, $(x 1)^2 + y^2 = 1$ 为圆心在 (1,0) 半径为 1 的圆.

• (B)1. 题目等价于

$$(r^2)^2 = 2[(r\cos\theta)^2 - (r\sin\theta)^2] = 2r^2\cos 2\theta$$
.

• 当 $r \neq 0$ 时, $r^2 = 2\cos 2\theta$, $r = \sqrt{2\cos 2\theta}$. 显然 r = 0 可以取到, 因此该曲线极坐标方程为 $r = \sqrt{2\cos 2\theta}$, 其中

$$\cos 2\theta \ge 0$$
, $\theta \in \left[k\pi - \frac{\pi}{4}, k\pi + \frac{\pi}{4}\right], k \in \mathbb{Z}$.

- 总复习题一
- f[g(0)] = f(0) = 0, 因此选 C.

- 2. $y = \sin x = -\sin(x \pi)$, 其中 $x \pi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. 因此 $x \pi = \arcsin(-y)$, $x = \pi \arcsin y$, $y = \pi \arcsin x$.
- 3. $f_1(x)$ 和 f(x)的图像关于 y 轴对称.
- $f_2(x)$ 和 f(x)的图像关于 x 轴对称.
- $f_3(x)$ 和 f(x)的图像关于原点中心对称.
- 6. 设 $0 < x_1 < x_2 < a$, 则 $-a < -x_2 < -x_1 < 0$, 因此 $f(-x_2) > f(-x_1)$.
- 由于 f 是奇函数, 因此 $-f(x_2) > -f(x_1)$, $f(x_1) > f(x_2)$, f 在 (0,a) 上 单调减少.

- 7. (1) 令 x = -1, 则 f(1) f(-1) = f(2), 而 f(-1) = -f(1) = -a, 因此 f(2) = 2a.
- 由 f(x + 2) = f(x) + f(2) 可知

$$f(5) = f(3) + f(2) = f(1) + 2f(2) = 5a.$$

- (2) f(x) 是周期为 2 的周期函数当且仅当 f(x + 2) = f(x), 即 f(2) = 0, a = 0.
- 8. 当 $x \in [k, k+1)$ 时, $x k \in [0,1)$. 由于 |k| 是周期, 所以

$$f(x) = f(x - k) = (x - k)^2$$
.

- 9. 由 $f(2n+\frac{1}{2})=2n+\frac{1}{2}$ 可知 f(x) 无界.
- 由 f(0) = f(1) = 0, $f(\frac{1}{2}) = 1$ 可知 f(x)不是单调函数.
- 若 T 是 f(x) 的周期, 则当 $x \in [0,T)$ 时, $|f(x)| \le |[x] + \frac{1}{2}| \le T + \frac{1}{2}$, 从而 f 有界, 矛盾!
- 当 $x \in \mathbb{Z}$ 时, f(x) = 0 = f(-x). 当 $x \notin \mathbb{Z}$ 时, 设 [x] = n, 则 n < x < n + 1, -n 1 < -x < -n, [-x] = -n 1, $f(x) = \left(n + \frac{1}{2}\right)\sin \pi x, \qquad f(-x) = \left(-n 1 + \frac{1}{2}\right)\sin(-\pi x) = f(x).$
- 因此 f 是偶函数, 选 D.

• 10. 当 $x \neq 1$ 时, 我们有

$$xs = x + 2x + 3x^2 + \dots + 99x^{99} + 100x^{100},$$

• 两式相减得到

$$(1-x)s = 1 + x + x^2 + \dots + x^{99} - 100x^{100} = \frac{1-x^{100}}{1-x} - 100x^{100},$$

$$s = \frac{1-x^{100}}{(1-x)^2} - \frac{100x^{100}}{1-x} \quad (x \neq 1).$$

• 11.
$$\Leftrightarrow s_n = \frac{n(n+1)(2n+1)}{6}$$
, \circlearrowleft

$$s_n - s_{n-1} = \frac{n(n+1)(2n+1)}{6} - \frac{(n-1)n(2n-1)}{6}$$

$$= \frac{n}{6} \cdot \left[\left(2n^2 + 3n + 1 \right) - \left(2n^2 - 3n + 1 \right) \right] = n^2.$$

• 因此

$$\sum_{k=1}^{n} k^2 = \sum_{k=1}^{n} (s_k - s_{k-1}) = s_n - s_0 = s_n = \frac{n(n+1)(2n+1)}{6}.$$

• 一般地, 想要计算 $\sum_{k=1}^{n} k^m$ 可设 s_n 是一个 k+1 次多项式, 然后通过 $s_n - s_{n-1} = n^m$ 和 $s_0 = 0$ 求得其系数.

- 12.(1) 归纳法. n = 1 时显然.
- 当 n=2 时, 若 $x_1=0$ 或 $x_2=0$ 显然. 若 x_1, x_2 同号, 则 $|x_1+x_2|=|x_1|+|x_2|.$
- 若 x_1, x_2 异号, 则 $|x_1 + x_2| = ||x_1| |x_2|| \le \max\{|x_1|, |x_2|\} \le |x_1| + |x_2|.$
- 假设 $|x_1 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|$, 则 $|x_1 + \dots + x_n + x_{n+1}| \le |x_1 + \dots + x_n| + |x_{n+1}|$ $\le |x_1| + |x_2| + \dots + |x_n| + |x_{n+1}|.$
- 由数学归纳法可知命题成立.

• (2) 由

$$|(x_1 + \dots + x_n + x) + (-x_1) + \dots + (-x_n)|$$

 $\leq |x_1 + \dots + x_n + x| + |x_1| + \dots + |x_n|$

- 可得.
- 13. 当 $a \ge b$ 时, |a b| = a b,

$$\frac{a+b-|a-b|}{2} = \frac{a+b-(a-b)}{2} = b = \min\{a,b\},\$$

$$\frac{a+b+|a-b|}{2} = \frac{a+b+a-b}{2} = a = \max\{a,b\}.$$

• 当 a < b 时,将上述等式中 a,b 交换位置即可得到.