9. Modal Logic & Verification

David Pereira José Proença Eduardo Tovar

RAMDE 2021/2022

Requirements and Model-driven Engineering

CISTER – ISEP Porto, Portugal

https://cister-labs.github.io/ramde2122

Recall: What's in a logic?

A logic

A language

i.e. a collection of well-formed expressions to which meaning can be assigned.

A semantics

describing how language expressions are interpreted as statements about something.

A deductive system

i.e. a collection of rules to derive in a purely syntactic way facts and relationships among semantic objects described in the language.

Note

- a purely syntactic approach (up to the 1940's; the sacred form)
- a model theoretic approach (A. Tarski legacy)

Semantic reasoning: models

- sentences
- models & satisfaction: $\mathfrak{M} \models \phi$
- validity: $\models \phi$ (ϕ is satisfied in every possible structure)
- logical consequence: $\Phi \models \phi$ (ϕ is satisfied in every model of Φ)
- theory: $Th \Phi$ (set of logical consequences of a set of sentences Φ)

Syntactic reasoning: deductive systems

Deductive systems ⊢

- sequents
- Hilbert systems
- natural deduction
- tableaux systems
- resolution
-
- derivation and proof
- deductive consequence: $\Phi \vdash \phi$
- theorem: $\vdash \phi$

Soundness & completeness

• A deductive system \vdash is sound wrt a semantics \models if for all sentences ϕ

$$\vdash \phi \implies \models \phi$$

(every theorem is valid)

• · · · complete ...

$$\models \phi \implies \vdash \phi$$

(every valid sentence is a theorem)

Consistency & refutability

For logics with negation and a conjunction operator

- A sentence ϕ is refutable if $\neg \phi$ is a theorem (i.e. $\vdash \neg \phi$)
- A set of sentences Φ is refutable if some finite conjunction of elements in Φ is refutable
- ϕ or Φ is consistent if it is not refutable.

Examples

$$\mathfrak{M} \models \phi$$

- Propositional logic (logic of uninterpreted assertions; models are truth assignments)
- Equational logic (formalises equational reasoning; models are algebras)
- First-order logic (logic of predicates and quatification over structures; models are relational structures)
- Modal logics
- ..

Modal Logic

Modal logic (from P. Blackburn, 2007)

Over the years modal logic has been applied in many different ways. It has been used as a tool for reasoning about time, beliefs, computational systems, necessity and possibility, and much else besides.

These applications, though diverse, have something important in common: the key ideas they employ (flows of time, relations between epistemic alternatives, transitions between computational states, networks of possible worlds) can all be represented as simple graph-like structures.

Modal logics are

- tools to talk about relational, or graph-like structures.
- fragments of classical ones, with restricted forms of quantification ...
- which tend to be decidable and described in a pointfree notations.

Basic Modal Logic

Syntax

```
\phi \ ::= \ \textcolor{red}{p} \ | \ \mathsf{true} \ | \ \mathsf{false} \ | \ \neg \phi \ | \ \phi_1 \wedge \phi_2 \ | \ \phi_1 \rightarrow \phi_2 \ | \ \langle m \rangle \, \phi \ | \ [m] \, \phi where \textcolor{red}{p} \in \mathsf{PROP} and m \in \mathsf{MOD}
```

Disjunction (\vee) and equivalence (\leftrightarrow) are defined by abbreviation.

The signature of the basic modal language is determined by sets:

- PROP of propositional symbols (typically assumed to be denumerably infinite) and
- MOD of modality symbols.

The language

Notes

- if there is only one modality in the signature (i.e., MOD is a singleton), write simply $\Diamond \phi$ and $\Box \phi$
- the language has some redundancy: in particular modal connectives are dual (as quantifiers are in first-order logic): $[m] \phi$ is equivalent to $\neg \langle m \rangle \neg \phi$

Example

```
Models as LTSs over Act. MOD = Act \qquad \text{(sets of actions)} \langle a \rangle \phi \text{ can be read as "} it \text{ must observe a, and } \phi \text{ must hold after that."} [a] \phi \text{ can be read as "} if \text{ it observes a, then } \phi \text{ must hold after that."}
```

Semantics

$$\mathfrak{M}, s \models \phi$$
 – what does it mean?

Model definition

A model for the language is a pair $\mathfrak{M}=\langle \mathfrak{L},V \rangle$, where

- $\mathfrak{L} = \langle S, \mathsf{MOD}, \longrightarrow \rangle$ is an LTS:
 - S is a non-empty set of states (or points)
 - MOD are the labels consisting of modality symbols
 - $\longrightarrow \subseteq S \times \mathsf{MOD} \times S$ is the transition relation
- $V : \mathsf{PROP} \longrightarrow \mathcal{P}(S)$ is a valuation.

When MOD = 1

- $\Diamond \phi$ and $\Box \phi$ instead of $\langle \cdot \rangle \phi$ and $[\cdot] \phi$
- $\mathfrak{L} = \langle S, \longrightarrow \rangle$ instead of $\mathfrak{L} = \langle S, \mathsf{MOD}, \longrightarrow \rangle$
- \longrightarrow \subseteq $S \times S$ instead of \longrightarrow \subseteq $S \times MOD \times S$

Semantics

Safistaction: for a model $\mathfrak M$ and a point s

$$\begin{array}{lll} \mathfrak{M},s\models\mathsf{true} \\ \mathfrak{M},s\models\mathsf{false} \\ \mathfrak{M},s\models\mathsf{p} & \mathsf{iff} & s\in V(p) \\ \mathfrak{M},s\models\neg\phi & \mathsf{iff} & \mathfrak{M},s\not\models\phi \\ \mathfrak{M},s\models\phi_1\land\phi_2 & \mathsf{iff} & \mathfrak{M},s\models\phi_1 \text{ and } \mathfrak{M},s\models\phi_2 \\ \mathfrak{M},s\models\phi_1\rightarrow\phi_2 & \mathsf{iff} & \mathfrak{M},s\models\phi_1 \text{ or } \mathfrak{M},s\models\phi_2 \\ \mathfrak{M},s\models\langle\mathsf{m}\rangle\phi & \mathsf{iff} & \mathfrak{M},s\not\models\phi_1 \text{ or } \mathfrak{M},s\models\phi_2 \\ \mathfrak{M},s\models\langle\mathsf{m}\rangle\phi & \mathsf{iff} & \mathsf{there\ exists}\ v\in S\ \mathsf{st}\ s\xrightarrow{m} v\ \mathsf{and}\ \mathfrak{M},v\models\phi \\ \mathfrak{M},s\models[m]\phi & \mathsf{iff} & \mathsf{for\ all}\ v\in S\ \mathsf{st}\ s\xrightarrow{m} v\ \mathsf{and}\ \mathfrak{M},v\models\phi \end{array}$$

Semantics

Satisfaction

A formula ϕ is

- satisfiable in a model ${\mathfrak M}$ if it is satisfied at some point of ${\mathfrak M}$
- globally satisfied in $\mathfrak M$ $(\mathfrak M\models\phi)$ if it is satisfied at all points in $\mathfrak M$
- valid ($\models \phi$) if it is globally satisfied in all models
- **a** semantic consequence of a set of formulas Γ ($\Gamma \models \phi$) if for all models $\mathfrak M$ and all points s, if $\mathfrak M, s \models \Gamma$ then $\mathfrak M, s \models \phi$

Example: Hennessy-Milner logic

Process logic (Hennessy-Milner logic)

- PROP = \emptyset (hence $V = \emptyset$)
- $S = \mathcal{P}$ is a set states in a labelled transition system, typically process terms
- each subset $K \subseteq Act$ of actions generates a modality corresponding to transitions labelled by an element of K

Assuming the underlying LTS $\mathfrak{L} = \langle \mathcal{P}, \mathbb{P}(Act), \{\langle p, K, p' \rangle \mid K \subseteq Act \} \rangle$ as the model's LTS, satisfaction is abbreviated as

$$\begin{split} p &\models \langle K \rangle \, \phi & \text{iff} \quad \exists_{q \in \{p' \mid p \xrightarrow{a} p' \, \land \, a \in K\}} \, . \, q \models \phi \\ p &\models [K] \, \phi & \text{iff} \quad \forall_{q \in \{p' \mid p \xrightarrow{a} p' \, \land \, a \in K\}} \, . \, q \models \phi \end{split}$$

Example: Hennessy-Milner logic

Process Logic Syntax

$$\phi \, ::= \, \mathsf{true} \, \mid \, \mathsf{false} \, \mid \, \neg \phi \, \mid \, \phi_1 \wedge \phi_2 \, \mid \, \phi_1 \rightarrow \phi_2 \, \mid \, \langle \mathsf{K} \rangle \, \phi \, \mid \, [\mathsf{K}] \, \phi$$

where $K \subseteq Act$

Ex. 9.1: Prove:

- 1. $S_1 \models [a, b, c] (\langle b, c \rangle tt)$
- 2. $S_2 \models [a] (\langle b \rangle tt \wedge \langle c \rangle tt)$
- 3. $S_1 \not\models [a] (\langle b \rangle tt \wedge \langle c \rangle tt)$
- 4. $S_2 \models [b][c](\langle a \rangle tt \vee \langle b \rangle tt)$
- 5. $S_1 \models [b][c](\langle a \rangle tt \vee \langle b \rangle tt)$
- 6. $S_1 \models [a, b] \langle b, c \rangle (\langle a \rangle tt)$

Examples II

(P,<) a strict partial order with infimum 0

```
I.e., P = \{0, a, b, c, \ldots\}, a \rightarrow b means a < b, a < b and b < c implies a < c 0 < x, for any x \neq 0 there are no loops some elements may not be comparable
```

- $P, x \models \Box$ false if x is a maximal element of P
- $P, 0 \models \Diamond \square \text{ false } \text{iff } \dots$
- $P, 0 \models \Box \Diamond \Box$ false iff ...

Examples III

Temporal logic

- $\langle T, < \rangle$ where T is a set of time points (instants, execution states , ...) and < is the earlier than relation on T.
- Thus, $\Box \varphi$ (respectively, $\Diamond \varphi$) means that φ holds in all (respectively, some) time points.

Examples IV

Epistemic logic (J. Hintikka, 1962)

- W is a set of agents
- $\alpha \models [K_i] \phi$ means that agent *i* always knows that ϕ is true.
- $\alpha \models \langle K_i \rangle$ ϕ means that agent i can reach a state where he knows ϕ .
- $\alpha \models (\neg [K_i] \ \phi) \land (\neg [K_i] \ \neg \phi)$ means that agent i does not know whether ϕ is true or not.

Many variations exist, modelling knowledge and believes, knowledge of who knows what, distributed knowledge, etc.

Examples V

Deontic logic (G.H. von Wright, 1951)

- Obligations and permissions: must and can do.
- $\alpha \models \Box \phi$ means ϕ is obligatory.
- $\alpha \models \Diamond \phi$ means ϕ is a possibility.

Each logic accepts a different set of *principles* or *rules* (with variations), that makes their interpretation different.

Ex. 9.2: Express the properties in Process Logic

- inevitability of *a*:
- progress (can always act):
- deadlock or termination (is stuck):

Ex. 9.3: What does this mean?

- 1. $\langle \rangle$ false
- 2. [-] true

"-" stands for Act, and "-x" abbreviates $Act - \{x\}$

Recall syntax

$$\begin{array}{ll} \phi \; ::= \; \mathsf{true} \\ & | \; \mathsf{false} \\ & | \; \neg \phi \\ & | \; \phi_1 \wedge \phi_2 \\ & | \; \phi_1 \rightarrow \phi_2 \\ & | \; \langle \mathcal{K} \rangle \, \phi \\ & | \; [\mathcal{K}] \, \phi \end{array}$$

where $K \subseteq Act$

Ex. 9.2: Express the properties in Process Logic

- inevitability of a: $\langle \rangle$ true $\wedge [-a]$ false
- progress (can always act):
- deadlock or termination (is stuck):

Ex. 9.3: What does this mean?

- 1. $\langle \rangle$ false
- 2. [-] true

"-" stands for Act, and "-x" abbreviates $Act - \{x\}$

Recall syntax

$$\begin{array}{ll} \phi \ ::= \ \operatorname{true} \\ & | \ \operatorname{false} \\ & | \ \neg \phi \\ & | \ \phi_1 \wedge \phi_2 \\ & | \ \phi_1 \rightarrow \phi_2 \\ & | \ \langle K \rangle \, \phi \\ & | \ [K] \, \phi \end{array}$$

where $K \subseteq Act$

Express the following using Process Logic

Ex. 9.4: Coffee-machine

- 1. The user can have tea or coffee.
- 2. The user can have tea but not coffee.
- 3. The user can have tea after having 2 consecutive coffees.

Ex. 9.5: a's and b's

- 1. It is possible to do a after 3 b's, but not more than 1 a.
- 2. It must be possible to do a after [doing a and then b].
- 3. After doing a and then b, it is not possible to do a.

Express the following using Process Logic

Ex. 9.6: Taxi network

- $\phi_0 = In$ a taxi network, a car can collect a passenger or be allocated by the Central to a pending service
- $\phi_1 =$ This applies only to cars already on-service
- $\phi_2 =$ If a car is allocated to a service, it must first collect the passenger and then plan the route
- $\phi_3 = On$ detecting an emergence the taxi becomes inactive
- $\phi_4 = A$ car on-service is not inactive

Process Logic + regular expressions

Process Logic Syntax

$$\phi ::= \text{true} \mid \text{false} \mid \neg \phi \mid \phi_1 \wedge \phi_2 \mid \phi_1 \rightarrow \phi_2 \mid \langle E \rangle \phi \mid [E] \phi$$

where E is a regular expression over Act

More expressive than Process Logic. Used by mCRL2.

Examples

- " $\langle a.b.c \rangle$ true" means " $\langle a \rangle \langle b \rangle \langle c \rangle$ true"
- "[a.b.c] false" means "[a][b][c] false"
- " $\langle a^*.b \rangle$ true" means that b can be taken after some number of a's.
- " $\langle -*.a \rangle$ true" means that a can eventually be taken
- " $[-*]\langle a+b\rangle$ true" means it is always possible to do a or b

Ex. 9.7: What does this mean?

- 1. $\langle \rangle$ true
- 2. $[-*]\langle \rangle$ true
- 3. $[-*.a]\langle b \rangle$ true
- 4. $\langle -*.send \rangle$ $\langle (-send)^*.recv \rangle$ true

Ex. 9.8: Express using logic

- 1. The user can only have coffee after the coffee button is pressed.
- 2. The used must have coffee after the coffee button is pressed.
- 3. It is always possible to turn off the coffee machine.
- 4. It is always possible to reach a state where the coffee machine can be turned off.
- 5. It is never possible to add chocolate right after pressing the *latte button*.

mCRL2 Tools

Slides 10:

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

Bisimulation and modal equivalence

Bisimulation (of models)

Definition

Given two models $\mathfrak{M}=\langle\mathfrak{L},V\rangle$ and $\mathfrak{M}'=\langle\mathfrak{L}',V'\rangle$, a bisimulation of \mathfrak{L} and \mathfrak{L}' is also a bisimulation of \mathfrak{M} and \mathfrak{M}' if,

whenever
$$s R s'$$
, then $V(s) = V'(s')$

Invariance and definability

Lemma (invariance: bisimulation implies modal equivalence)

Given two models \mathfrak{M} and \mathfrak{M}' , and a bisimulation R between their states:

```
if two states s, s' are related by R (i.e. sRs').
then s, s' satisfy the same basic modal formulas.
```

(i.e., for all ϕ : $\mathfrak{M}, s \models \phi \Leftrightarrow \mathfrak{M}', s' \models \phi$)

(i.e., for all
$$\phi$$
: $\mathfrak{Ml}, s \models \phi \Leftrightarrow \mathfrak{Ml'}, s' \models \phi$)

Hence

Given 2 models \mathfrak{M} and \mathfrak{M}' , if you can find ϕ such that

$$\mathfrak{M} \models \phi$$
 and $\mathfrak{M}' \models \phi$

then they are NOT bisimilar.

Ex. 9.9: Bisimilarity and modal equivalence

Consider the following transition systems:

Give a modal formula that can be satisfied at point 1 but not at 3.

Ex. 9.10: Find distinguishing modal formula

1)
$$\longrightarrow p_0$$
 $\stackrel{\text{coin}}{\longrightarrow} p_1$ $\longrightarrow q_0$ $\stackrel{\text{coin}}{\longleftarrow} q_0$ $\stackrel{\text{coffee}}{\longleftarrow} q_0$

2)
$$\longrightarrow p_0 \xrightarrow{a \qquad p_1 \qquad b \qquad p_2} \longrightarrow q_0 \xrightarrow{a \qquad q_1 \qquad b \qquad q_2}$$

3)
$$\longrightarrow p_0 \xrightarrow{a \qquad p_1 \qquad b \qquad p_2} \qquad \longrightarrow q_0 \xrightarrow{a \qquad q_1 \qquad b \qquad q_2}$$

Richer modal logics

Richer modal logics

can be obtained in different ways, e.g.

- axiomatic extensions
- introducing more complex satisfaction relations
- support novel semantic capabilities
- · ...

Examples

- richer temporal logics
- hybrid logic
- modal μ -calculus

Temporal Logics with $\mathcal U$ and $\mathcal S$

Until and Since

$$\mathfrak{M}, w \models \phi \, \mathcal{U} \, \psi \qquad \text{iff there exists } v \text{ st } w \leq v \text{ and } \mathfrak{M}, v \models \psi, \text{ and} \\ \text{for all } u \text{ st } w \leq u < v, \text{ one has } \mathfrak{M}, u \models \phi \\ \\ \mathfrak{M}, w \models \phi \, \mathcal{S} \, \psi \qquad \text{iff there exists } v \text{ st } v \leq w \text{ and } \mathfrak{M}, v \models \psi, \text{ and} \\ \text{for all } u \text{ st } v < u \leq w, \text{ one has } \mathfrak{M}, u \models \phi \\ \\ \end{cases}$$

- Defined for temporal frames $\langle T, < \rangle$ (transitive, asymmetric).
- note the $\exists \forall$ qualification pattern: these operators are neither diamonds nor boxes.
- More general definition for other frames it becomes more expressive than modal logics.

Temporal logics - rewrite using $\ensuremath{\mathcal{U}}$

- \bullet $\Diamond \psi =$
- $\blacksquare \psi$ =

Temporal logics - rewrite using \mathcal{U}

Temporal logics - rewrite using $\ensuremath{\mathcal{U}}$

•
$$\Diamond \psi = \operatorname{tt} \mathcal{U} \psi$$

Linear temporal logic (LTL)

$$\phi := \mathsf{true} \mid p \mid \phi_1 \land \phi_2 \mid \neg \phi \mid \bigcirc \phi \mid \phi_1 \, \mathcal{U} \, \phi_2$$

mutual exclusion	$\Box(\neg c_1 \vee \neg c_2)$
liveness	$\Box\Diamond c_1 \wedge \Box\Diamond c_2$
starvation freedom	$(\Box\lozenge w_1 o \Box\lozenge c_1) \wedge (\Box\lozenge w_1 o \Box\lozenge c_1)$
progress	$\square(w_1 \to \lozenge c_1)$
weak fairness	$\Diamond \Box \textit{w}_1 \rightarrow \Box \Diamond \textit{c}_1$
eventually forever	$\Diamond\Box w_1$

- First temporal logic to reason about reactive systems [Pnueli, 1977]
- Formulas are interpreted over execution paths
- Express linear-time properties

Computational tree logic (CTL, CTL*)

state formulas to express properties of a state:

$$\Phi := \mathsf{true} \mid \Phi \wedge \Phi \mid \neg \Phi \mid \exists \psi \mid \forall \psi$$

path formulas to express properties of a path:

$$\psi := \bigcirc \Phi \mid \Phi \mathcal{U} \Psi$$

mutual exclusion	$\forall \Box (\neg c_1 \lor \neg c_2)$
liveness	$\forall \Box \forall \Diamond c_1 \land \forall \Box \forall \Diamond c_2$
order	$\forall \Box (c_1 \lor \forall \bigcirc c_2)$

- Branching time structure encode transitive, irreflexive but not necessarily linear flows of time
- flows are trees: past linear; branching future

Motivation

Add the possibility of naming points and reason about their identity

Compare:

$$\Diamond(r \wedge p) \ \wedge \ \Diamond(r \wedge q) \ \rightarrow \ \Diamond(p \wedge q)$$

with

$$\Diamond (i \wedge p) \wedge \Diamond (i \wedge q) \rightarrow \Diamond (p \wedge q)$$

for $i \in NOM$ (a nominal)

Syntax

$$\phi ::= \ldots \mid p \mid \langle m \rangle \phi \mid [m] \phi \mid i \mid @_i \phi$$

where $p \in PROP$ and $m \in MOD$ and $i \in NOM$

Nominals i

- Are special propositional symbols that hold exactly on one state (the state they name)
- In a model the valuation V is extended from

$$V: \mathsf{PROP} \longrightarrow \mathcal{P}(W)$$

to

$$V: \mathsf{PROP} \longrightarrow \mathcal{P}(W) \quad \mathsf{and} \quad V: \mathsf{NOM} \longrightarrow W$$

where NOM is the set of nominals in the model

Satisfaction:

$$\mathfrak{M}, w \models i$$
 iff $w = V(i)$

The @_i operator

$$\mathfrak{M},s\models \mathsf{true}$$
 $\mathfrak{M},s\not\models \mathsf{false}$
 $\mathfrak{M},s\models p$ iff $s\in V(p)$
 $\mathfrak{M},s\models \neg\phi$ iff $\mathfrak{M},s\not\models\phi$
 $\mathfrak{M},s\models\phi_1\wedge\phi_2$ iff $\mathfrak{M},s\models\phi_1$ and $\mathfrak{M},s\models\phi_2$
 $\mathfrak{M},s\models\phi_1\rightarrow\phi_2$ iff $\mathfrak{M},s\not\models\phi_1$ or $\mathfrak{M},s\models\phi_2$
 $\mathfrak{M},s\models\langle m\rangle\phi$ iff $\mathsf{there\ exists\ }v\in S\ \mathsf{st\ }s\xrightarrow{m}v\ \mathsf{and\ }\mathfrak{M},v\models\phi$
 $\mathfrak{M},s\models[m]\phi$ iff for all $v\in S\ \mathsf{st\ }s\xrightarrow{m}v\ \mathsf{and\ }\mathfrak{M},v\models\phi$
 $\mathfrak{M},s\models\emptyset_i\phi$ iff $\mathfrak{M},u\models\phi\ \mathsf{and\ }u=V(i)$

[u is the state denoted by i]

Summing up

- basic hybrid logic is a simple notation for capturing the bisimulation-invariant fragment of first-order logic with constants and equality, i.e., a mechanism for equality reasoning in propositional modal logic.
- comes cheap: up to a polynomial, the complexity of the resulting decision problem is no worse than for the basic modal language