

🕽 । ছায়ী মূল কণিকার বৈশিষ্ট্য ঃ

পরমাণুর নাম	ভর	চার্জের প্রকৃতি	চার্জের পরিমাণ	ব্যাসার্ধ
১. ইলেকট্রন	5.48×10^{-4}	ঋণাত্মক ধর্মী	1.602×10 ⁻¹⁹	2.5×10^{-12}
প্রতীক: (e)	a.m.u	চার্জ	কুলম্ব বা	ст
সংকেত: $_{-1}e^o$	বা 9.12×10 ⁻²⁸ g =		$4.8 \times 10^{-10} e.s.u$	
আবিষ্কার:	9.12×10 ⁻³¹ kg			
$T \hom son(1897)$	/ ₁₈₃₇ th of H atom			
২. প্রোটন:	1.007648 a.m.u	ধনাত্মক ধর্মী	1.602×10 ⁻¹⁹ কুলম্ব	1.2×10 ⁻¹²
প্রতীক: (p)	9.12×10 ⁻²⁴ g =	চার্জ	বা	ст
সংকেতः $_1H^1$	1.6725×10 ⁻²⁷ kg		$4.8 \times 10^{-10} e.s.u$	
আবিষ্কার:				
Rutherford(1911)				
৩. নিউট্ৰন	1.0089 a.m.u	নিরপেক্ষ	0	1.2×10^{-12}
প্রতীক: (n)	=1.675×10 ⁻²⁷ kg			cm
সংকেত: $_0n^1$				
আবিষ্কার:				
Chadwick(1932)				

২। আইসোটোপ, আইসোবার ও আইসোটোনের ভরসংখ্যা, প্রোটন সংখ্যা, নিউট্রন সংখ্যার তুলনা ঃ

	ভরসংখ্যা	প্রোটন সংখ্যা	নিউট্রনসংখ্যা	উদাহরণ
	(A)	(Z)	(N)	
আইসোটোপ	ভিন্ন	একই	ভিন্ন	12 6 এবং 6
আইসোবার	একই	ভিন্ন	ভিন্ন	40 18 Ar এবং 40 20 Ca
আইসোটোন	ভিন্ন	ভিন্ন	একই	2 H এবং 3 1 Le

৩। বোর মডেলের সাহায্যে বিভিন্ন রাশি গণনা ঃ

কক্ষপথের ব্যাসার্ধ (H বা H এর মত আয়ন যেমন He^+, Li^{2+}, Be^{3+} ইত্যাদি)

নিউক্লিয়াসের প্রোটন সংখ্যা = পারমাণবিক সংখ্যা =Z : প্রতিটি প্রোটনের চার্জ = প্রতিটি ইলেকট্রনের চার্জ =eনিউক্রিয়াসে মোট ধনাতাক আধান = Ze

(i) কুলম্বের সূত্রানুসারে ইলেকট্রন ও নিউক্লিয়াসের মধ্যে আকর্ষণ বল ঃ

$$S.I$$
 এককে কুলম্বের সূত্রঃ $F=rac{1}{4\pi \in \Omega} rac{q_1}{r^2} rac{q_2}{r^2} = 9 imes 10^9 rac{q_1q_2}{r^2}$

$$q_1$$
= নিউক্লিয়াসের চার্জ

$$q_2=$$
 ইলেকট্রনের চার্জ $=1.6 imes 10^{-19} c$

প্ল্যাণকের ধ্রুবক,
$$h=6.63\times10^{-34}\,Js$$

কিন্তু
$$C.G.S$$
 এককে কুলম্বের সূত্র, $F=rac{q_1}{r^2}$; এক্ষেত্রে F এর একক $=dyne$

ইলেকট্রনের চার্জ
$$=4.8 \times 10^{-10} \ e.s.u$$

প্লাংকের ধ্রুবক,
$$h=6.63\times10^{-27}\,erg.s$$

কক্ষপথের ব্যাসার্ধ
$$(cm)$$
 : $r=rac{n^2h^2}{4\pi^2mze^2}$ শুধুমাত্র $C.G.S$ একক ব্যবহার করতে হবে

শুধুমাত্র
$$\mathit{C.G.S}$$
 একক ব্যবহার করতে হবে

$$r = \frac{n^2 h^2 \in_o}{\pi \, m \, z e^2}$$

 $r=rac{n^2h^2\in_o}{\pi\,m\,\sigma^2}$ শুধুমাত্র S.I একক ব্যবহার করতে হবে।

(ii) প্রথম কক্ষ ও n তম কক্ষের ব্যাসার্ধের সম্পর্ক ঃ

$$n$$
 তম কক্ষের ব্যাসার্থ $(r_n) = \frac{n^2 h^2}{4\pi^2 m Z e^2}$ এবং প্রথম কক্ষের ব্যাসার্থ $(r_1) = \frac{1^2 h^2}{4\pi^2 m Z e^2} = \frac{h^2}{4\pi^2 m Z e^2}$

সুতরাং,
$$\frac{r_n}{r_1} = \frac{n^2h^2}{4\pi^2mZe^2} \times \frac{4\pi^2mZe^2}{h^2} = n^2$$
 বা, $r_n = r_1 \times n^2$

(iii) হাইড্রোজেন পরমাণুর প্রথম কক্ষের ব্যাসার্ধ নির্ণয় ঃ হাইড্রোজেন পরমাণুর
$$r_1 = \frac{1^2 \times h^2}{4\pi^2 me^2}$$

h=2্রান্কের ধ্রুবক $=6.626 \times 10^{-27}\ erg.s.$; m= ইলেকট্রনের ভর $=9.1 \times 10^{-28}\ g$; e= ইলেকট্রনের আধান = $4.8 \times 10^{-10} \, esu$

$$\therefore r_1 = \frac{(6.626 \times 10^{-24})^2}{4 \times (3.14)^2 \times (9.1 \times 10^{-28}) \times (4.8 \times 10^{-10})^2} = 0.53 \times 10^{-8} = 0.53 A^0 \ [\because 1A^0 = 10^{-8} \ cm]$$

(iv) n তম বোর কক্ষের (Orbit) একটি ইলেকট্রনের শক্তি নির্ণয়ঃ n তম কক্ষে একটি ইলেকট্রনের মোট শক্তি,

$$\therefore E_n = -\frac{2\pi^2 m Z^2 e^4}{2 L^2} \dots (4)$$

 $\therefore E_n = -rac{2\pi^2 m Z^2 e^4}{2L^2}$ (4) (v) বোরের সমীকর্মণ হতে হাইড্রোজেনের (Z=1) রেখা বর্ণালি সম্পর্কীত রিডবার্গের সমীরকণের সাহায্যে বিকিরণ শক্তি (ΔE) এবং এর কম্পাঙ্ক (υ) নির্ণয় ঃ

$$\Delta E = R_H \left(rac{1}{n_1^2} - rac{1}{n_2^2}
ight)$$
 এখানে $R_H =$ রিডবার্গের ধ্রুবক। [শক্তির ক্ষেত্রে]

(vi) হাইড্রোজেন বর্ণালীর জন্য কম্পাঙ্ক ও তরঙ্গদৈর্ঘ্য নির্ণয়ঃ

$$\therefore \frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad [n_2 > n_1] \therefore \overline{\upsilon} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) R_H = \frac{2\pi^2 e^4 m}{ch^3}$$

C.G.S এককে e,m,c এবং h এর মান বসিয়ে পাই,

$$R_{H} = \frac{2 \times (3.1416)^{2} \times (4.8 \times 10^{-10} \, e.s.u)^{4} \times (9.109 \times 10^{-28}) g}{(3 \times 10^{10} \, cm/s) \times (6.626 \times 10^{-27} \, erg - sec)^{3}} = 109737 cm^{-1}$$

কিন্তু R_H এর পরীক্ষামূলক মান = $109678cm^{-1}$ \longrightarrow এটিই অংকে ব্যবহার করা হয়।

৪। বোর মডেলের সাহায্যে হাইড্রোজেন বর্ণালী ঃ

ইলেক্ট্রন উচ্চ কক্ষপথ (n_2) থেকে নিমু কক্ষপথে (n_1) ফিরে আসলে বিভিন্ন তরঙ্গ দৈর্ঘ্যের আলোক রশ্মি বিকিরিত হয়, এদের বর্ণাল্রী বলে। হাইড্রোজেন পরমাণুতে যে বর্ণালী সৃষ্ট হয় তার তরঙ্গ দৈর্ঘ্য বের করার সূত্র,

$$\frac{1}{\lambda} = R_H \left[\begin{array}{c} \frac{1}{n_1^2} - \frac{1}{n_2^2} \end{array} \right]$$
 এখানে ন $, n_2 > n_1$

Note ঃ এই সূত্র শুধুমাত্র হাইড্রোজেন পরমাণুর জন্য প্রযোজ্য

অন্য পরমাণুর জন্য ,
$$\frac{1}{\lambda} = z^2 R_H \, (\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2}) \quad [\, z = \,$$
 পরমাণবিক সংখ্যা $]$

 $R_H=$ রিডবার্গ ধ্রুবক = $109678cm^{-1}$ যেহেতু $m{X}$ এর একক $m{Y}$ তাই $m{\lambda}$ এর একক cm এ আসবে । কম্পাংক (υ) বের করতে বললে আগে $\upsilon=rac{c}{\lambda}$ প্রয়োগ করে $m{\upsilon}$ বের করবে ।

ে। হাইড্রোজেন বর্ণালীর বিভিন্ন সিরিজ ঃ

সিরিজ	অঞ্চল	n ₁	n_2
১. লাইমেন	অতিবেগুনি	1	2,3,4,5,
২. বামার	দৃশ্যমান	2	3,4,5,
৩. প্যাশ্চেন	অবলোহিত	3	4,5,6,
৪. ব্রাকেট	অবলোহিত	4	5,6,7,
৫. ফান্ড	অবলোহিত	5	6,7,

কোন সিরিজের জন্য , n_1 ঐ সিরিজের জন্য যা আর , $n_2=n_1+$ যত রেখা

যদি সর্বনিম্ন কম্পাংক/সর্বোচ্চ তরঙ্গদৈর্ঘ্য বের করতে বলে, সেক্ষেত্রে n_1 ঐ সিরিজের জন্য যা আর , $n_2=n_1+1$ যদি লিমিটিং তরঙ্গ দৈর্ঘ্য বের করতে বলে সেক্ষেত্রে $n_2=\infty$

বামার সিরিজের জন্য ৩য় রেখার তরঙ্গ বের করতে বললে, $n_1 = 2$ (কারণ বামার); $n_2 = 2+3=5$

৬। রিড্বার্গ সমীকরণ থেকে হাইড্রোজেন পরমাণুর আয়নীকরণ শক্তি নির্ণয় ঃ

যে পরিমাণ শক্তি প্রয়োগ করে হাইড্রোজেন পরমাণুর প্রথম কক্ষ (n=1) থেকে ইলেকট্রনটিকে অসীম দূরত্বে স্থানান্তর করার ফলে H^+ উৎপন্ন হয়, সেই পরিমাণ শক্তিকে হাইড্রোজেনের আয়নীকরণ শক্তি বলে।

$$\Delta E = rac{2\pi^2 e^4 m}{h^2} igg(rac{1}{{n_1^2}^2} - rac{1}{{n_2^2}}igg)$$
 এই সমীকরণে $n_1 = 1$ এবং $n_2 = \infty$ বসালে হাইড্রোজেন পরমাণুর আয়নীকরণ শক্তি পাওয়া যায়।

৭।n-তম বোর কক্ষে ঘূর্ণায়মান ইলেকট্রনের প্রতি সেকেন্ডে আবর্তন সংখ্যা st

$$n$$
 -তম কক্ষে আবর্তনশীল ইলেক্ট্রনের গতিবেগ , $v_n=\dfrac{2\pi\,Ze^2}{nh}$; n -তম কক্ষের ব্যাসার্থ , $r_n=\dfrac{n^2h^2}{4\pi^2mZe^2}$ n -তম কক্ষের পরিধি $=2\pi\,r_n=\dfrac{2\pi\,n^2h^2}{4\pi^2mZe^2}=\dfrac{n^2h^2}{2\pi\,mZe^2}$

৮।n -তম কক্ষপথে (Orbit) ইলেকট্রনের বেগ নির্ণয়ঃ

বোরের দ্বিতীয় স্বীকার্য হতে ,
$$mvr=rac{nh}{2\pi}$$
 বা , $v=rac{nh}{2\pi\,mr}$ আবার , $r=rac{n^2h^2}{4\pi^2Ze^2m}$

$$\therefore v = \frac{nh}{2\pi m} \times \frac{4\pi^2 Z e^2 m}{n^2 h^2} = \frac{2\pi Z e^2}{nh} \quad \therefore \quad v = \frac{2\pi Z e^2}{nh}$$

৯। n -তম কক্ষ ও প্রথম কক্ষে আবর্তনশীল ইলেক্ট্রনের গতিবেগের সম্পর্ক ঃ n -তম কক্ষে আবর্তনশীল গতিবেগ

$$(v_n)=rac{2\pi\,Ze^2}{nh}$$
 এবং প্রথম কক্ষে আবর্তনশীল ইলেকট্রনের গতিবেগ $(v_1)=rac{2\pi\,Ze^2}{1 imes h}$

সুতরাং,
$$\frac{v_n}{v_1} = \frac{2\pi Ze^2}{nh} \times \frac{1 \times h}{2\pi Ze^2}$$
 বা, $v_n = v_1 \times \frac{1}{n}$

১০। কোয়ান্টাম সংখ্যা ঃ

১০ (খ)। সহকারী কোয়ান্টাম সংখ্যা (ℓ)

১০ (ক)। প্রধান কোয়ান্টাম সংখ্যা (n)

১০ (ফ) । এবান কোরাতাম সংখ্যা (II) (i) n এর মান দিয়ে শক্তিন্তর বুঝায়

n =1 মানে ১ম শক্তিন্তর বা k-shell

n=2 মানে ২য় শক্তিন্তর বা L-shell ইত্যাদি।

(ii) n তম কক্ষপথে সর্বোচ্চ ইলেক্ট্রন ধারণ ক্ষমতা= $2n^2$

১০(গ)। চৌম্বক কোয়ান্টাম সংখ্যা (m)

(i) $\ell = 0$ থেকে n-1

 ℓ = 0 মানে s – subshell

 ℓ = 1 মানে p – subshell

 ℓ = 2 মানে d – subshell

 ℓ = 3 মানে f – subshell

(iii) ℓ তম উপশক্তিন্তরে সর্বোচ্চ ইলেক্ট্রন ধারণ

ক্ষমতা =
$$2(2\ell + 1)$$

$$(i)$$
 $m=0$ সহ $\pm \ell$

- (ii) ℓ এর প্রতিটি মানের জন্য m এর $(2\ell+1)$ সংখ্যক মান পাওয়া যাবে।
- (ii) n এর মান যত বাড়বে কক্ষপথের শক্তি তত বাড়বে।

১০(ঙ)। ℓ এর মান দিয়ে উপশক্তিন্তরের আকৃতি বুঝানো হয়।

$$\ell = 0$$
 মানে বর্তুলাকার

 ℓ = 2 মানে ডাবল ডাম্বেল (জটিল)

 $\ell=1$ মানে ডাম্বেল আকৃতি

ℓ = 3 মানে আরো জটিল

১০ (চ) । s – subshell এর জন্য *m* = 0

s – subshell এর জন্য n = 0

∴ s – subshell এর জন্য 1টি অরবিটাল।

P-subshell এর জন্য m=-1, 0, 1

D-subshell এর জন্য

m=-2, -1, 0, 1, 2

∴ D–subshell এ 5 টি অরবিটাল

 $(d_{xy}, d_{yz}, d_{zx}, d_{z^2-y^2}, d_{z^2})$

৬

$$\therefore$$
 P -subshell এ 3 টি অরবিটাল (P_x, P_y, P_z) f -subshell এর জন্য $m=-3,-2,-1,0,1,2,3$ \therefore f -subshell এ 7 টি অরবিটাল $(Exception d \ Electronic \ Configuration)$

১১। ব্যতিক্রম ইলেকট্রন বিন্যাস ঃ

$$Cr(24) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$$

$$Cu(29) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$$

$$Ag(47) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^1$$

$$La(57) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6 5d^1 6s^2$$

$$Au(79) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^1$$

$$Th(90) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^2 6p^6 6d^2 7s^2$$

১২। দ্রবণ, দ্রাব্যতা, দ্রাব্যতা গুণফল ঃ

দ্রবণ = দ্রব +দ্রাবক; একটি সম্পৃক্ত দ্রবণ বিবেচনা করি (অবশ্যই সম্পৃক্ত), যার ভিতর mg দ্রব দ্রবীভূত আছে। π বণ =Mg; দ্রব=mg \therefore দ্রাবক =(M-m)g

 $\therefore (M-m)$ g দ্রাবককে সম্পৃক্ত করতে প্রয়োজনীয় দ্রব =m g

$$100g$$
 " " $=\frac{m\times100}{M-m}g$

ইহাই ঐ তাপমাত্রায় ঐ দ্রব্যের দ্রাব্যতা। \therefore দ্রাব্যতা, $S=rac{m imes 100}{M-m}$

Remember ঃ (i) তাপমাত্রা নির্দিষ্ট (কারণ তাপমাত্রা Change হলে দ্রাব্যতা Change হবে) (ii) দ্রবণ টি সম্পৃক্ত।

(iii) প্রতি লিটার দ্রবণে কত মোল দ্রব দ্রবীভূত আছে সেটি দিয়েও দ্রাব্যতা প্রকাশ করে। তখন দ্রাব্যতার একক $molL^{-1}/M$ ১২ (ক) । দ্রাব্যতার গুণফলঃ AgCl এর সম্পুক্ত দ্রবণের উপস্থিত আয়নের ঘনমাত্রার যে গুণফল সেটিই দ্রাব্যতার গুণফল।

$$AgCI \Leftrightarrow Ag^{+} + CI^{-}$$

 $k_{Sp} = [Ag^{+}] [CI^{-}]$

ধরি, AgCl এর দ্রাব্যতা x mol/L। তার মানে প্রতি লিটার দ্রবনে x mol AgCl দ্রবীভূত হবে। এখন সমীকরণ থেকে দেখা যাচ্ছে 1 mol AgCl দ্রবীভূত হলে 1 mol Ag^+ ও 1 mol Cl^- পাওয়া যায়। তার মানে x mol AgCl দ্রবীভূত হলে x mol Ag^+ ও x mol Cl^- পাওয়া যাবে

$$[Ag^+] = x mol/L$$

$$[Cl^-] = x mol/L$$

$$K_{SP} = [Ag^+] [Cl^-]$$

$$: K_{SP} = x^2$$

এক্ষেত্রে AgCl এর দ্রাব্যতা x দেওয়া থাকবে দ্রাব্যতার গুণফল KSP বের করা যাবে, অথবা KSP দেওয়া থাকলে দ্রাব্যতা x বের করা যাবে।

Remember ঃ দ্রাব্যতা অবশ্যই mol/L এককে Use করতে হবে। প্রশ্নে g/L এ দেওয়া থাকলে আনবিক ভর দিয়ে ভাগ করে mol এ Convert করে দ্রাবতার গুণফল বের করতে হবে।

১২ (খ) । AB2 যৌগের ক্ষেত্রে

CaF₂ (s)
$$\Leftrightarrow$$
 Ca²⁺ (aq) + 2F⁻ (aq) Ksp = [Ca²⁺] [F⁻] = (x)(2x)² : Ksp = $4x^3$

১২ (গ) । AB3 যৌগের ক্ষেত্রে

AICI3
$$\Leftrightarrow$$
 AI³⁺(aq) + 3CI⁻ (aq) $K_{Sp} = [AI^{3+}][CI^{-}]^3 = (x)(3x)^3 = 27x^4$

১২ (ঘ) । A3B2 যৌগের ক্ষেত্রে

Ca₃ (PO₄)₂ (s)
$$\Leftrightarrow$$
 3Ca²⁺ (aq) + 2PO₄³⁻ \therefore K_{Sp} = [Ca²⁺]³ [PO₄³⁻]² = (3x)³(2x)² = 108x⁵
x 3x 2x

১৩। আয়নিক গুণফল VS দ্রাব্যতা গুণফলঃ

যে কোন দ্রবনে (সম্পৃক্ত বা অসম্পৃক্ত Doesn't matter) উপস্থিত আয়ন সমূহের ঘনমাত্রার গুণফলই আয়নিক গুণফল।

Remember ঃ"নির্দিষ্ট তাপমাত্রার কোন দ্রবের দ্রাব্যতার গুণফল Fixed"

- (i) আয়নিক গুণফল= দ্রাব্যতার গুণফল হলে. দ্রবণ টি সম্পক্ত।
- (ii) আয়নিক গুণফল < দ্রাব্যতার গুণফল হলে, দ্রবণ টি অসম্প্রক ।
- (iii) আয়নিক গুণফল > দ্রাব্যতার গুণফল হলে, দ্রবটির অধ্বংক্ষেপ পড়বে ।

১৪। সমআয়ন প্রভাব ঃ

সমআয়ন বিশিষ্ট মৃদু বিশ্লেষ্য দ্রবনে অন্য একটি সবল তড়িৎ বিশ্লেষ্য দ্রবণযোগ করলে মৃদু বিশ্লেষ্যের আয়নিত হওয়ার ক্ষমতা বা দ্রাব্যতা হ্রাস পায়।

যেমন ঃ AgCl এর দ্রবনে NaCl দ্রবণযোগ করলে, AgCl আগের চেয়ে কম দ্রবীভূত হবে। নিচের সম্পৃক্ত দ্রবণবিবেচনা কর ঃ $Ag_2CrO_4(S) \Leftrightarrow 2Ag^+(Aq) + CrO_4^{2^-}$

এ দ্রবনে তুমি যদি AgNO3 যোগ কর তাহলে Common ion Ag^+ এর কারণে সাম্যাবস্থাটি বাম দিকে সরে যাবে, তার মানে অতিরিক্ত Ag_2CrO4 অদ্রবীভূত বা কঠিন অবস্থায় পাবা, ফলে Ag_2CrO4 এর অধ্যক্ষেপ পড়বে। AgNO3 এর বদলে

K2CrO4 যোগ করলে একই ঘটনা ঘটবে (তখন CrO4²⁻ সমআয়ন)।

Remember ३ সমআয়নের উপস্থিতিতে দ্রাব্যতা হ্রাস পেলেও দ্রাবতার গুণফল Same থাকে । মনে করি, একটি মৃদু তড়ি-বিশ্লেষ্য MA এবং এর দ্রাব্যতা S

$$MA \rightleftharpoons M^+ + A^-$$
-S S' S
$$\therefore K_{SP} = [M^+] [A^-]$$

এই মৃদু তড়িৎ বিশ্লেষ্যটির মধ্যে C মোলার ঘনমাত্রার অন্য একটি সরল তড়িৎ-বিশ্লেষ্য AB যোগ করি। AB এর উপস্থিতিতে MA এর দ্রাব্যতা ধরি, S'

$$MA \rightleftharpoons M^{+} + A^{-}$$

$$-S' \quad S' \quad S'$$

$$BA \rightleftharpoons B^{+} + A^{-}$$

$$-C' \quad C$$

$$\therefore K_{SP} = [M^{+}] [A^{-}]$$

সুতরাং দ্রবণে A^- এর মোট ঘনমাত্রা $[A^-]=(S'+C)$ $\therefore K_{SP}=[M^+][A^-]=S(S'+C)$ যেহেতু উভয় দ্রবণই MA; এর দ্রাব্যতা গুণফল ধ্রুব। তাই, $K_{SP}=S'(S'+C)=S'^2+S'C$

এ সমীকরণের সাহায্যে সমআয়নের দ্রবণের দ্রাব্যতা নির্ণয় করা যাবে। তবে S' এর উচ্চঘাত বিশিষ্ট মানসমূহ বাদ দেয়া হয়।

- ১৫। দ্রাব্যতার উপর বিভিন্ন নিয়ামকের প্রভাবঃ
- ১৫ (ক)। তরল কঠিন দ্রবণ
- (i) তাপমাত্রাঃ দ্রব (কঠিন) + তাপ শোষণ ⇔ দ্রব (আয়নিত)
 এক্ষেত্রে তাপমাত্রা বৃদ্ধি করলে সাম্য ডানদিকে যাবে ফলে দ্রাব্যতা বৃদ্ধি পাবে।
 দ্রব (কঠিন) ⇔ দ্রব (আয়নিত) + তাপ

এক্ষেত্রে তাপমাত্রা বৃদ্ধি করলে সাম্য বাম দিকে যাবে ফলে দ্রাব্যতা হ্রাস পাবে।

- (ii) চাপ ঃ No effect
- ১৫ (খ)। তরল গ্যাস দ্রবণ
- (i) তাপমাত্রাঃ একটি দ্রবীভূত গ্যাসের দ্রাব্যতা তাপমাত্রা বৃদ্ধির সাথে সাথে হ্রাস পায়।
- (ii) চাপ ঃ তরল দ্রাবকে গ্যাসীয় দ্রব দ্রবীভূত হওয়ার ক্ষেত্রে চাপের প্রভাব পরিলক্ষিত হয়। বিজ্ঞানী হেনরীর সূত্রানুসারে ছির তাপমাত্রা নির্দিষ্ট আয়তনের কোন তরল পদার্থে কোন গ্যাসের দ্রাব্যতা এর উপর প্রযুক্ত চাপের সমানুপাতিক। তবে এ ক্ষেত্রে ঐ গ্যাস ও তরল দ্রাবকের মধ্যে কোনরূপ রাসায়নিক বিক্রিয়া ঘটবেনা। উদাহরণসরূপ তরল পানীয় বা সোডা ওয়াটারের বোতলে উচ্চ চাপে CO2 গ্যাস দ্রবীভূত থাকে। বোতলের মুখ খোলার সাথে সাথে বোতলের ভিতরের চাপ কমে যায় এবং অতিরিক্ত CO2 গ্যাস বুদবুদ আকারে বেরিয়ে আসে। চাপ হ্রাসের সাথে সাথে CO2 এর দ্রাব্যতার হ্রাস ঘটে থাকে তাই এমনটি হয়ে থাকে।

দ্রাব্যতা লেখ (Solubility curve) ঃ তাপমাত্রার পরিবর্তনে কঠিন দ্রব্যের দ্রাব্যতার পরিবর্তন দ্রাব্যতা লেখ নামে লেখচিত্র দ্বারা সহজে ও সুস্পষ্টভাবে বোঝানো যায়। X –অক্ষ বরাবর তাপমাত্রা এবং Y –অক্ষ বরাবর দ্রাব্যতা ধরে ছক কাগজে বিভিন্ন তাপমাত্রা–দ্রাব্যতা নির্দেশক বিন্দুগুলি স্থাপন করে বিন্দুগুলিকে রেখা দ্বারা যুক্ত করলে যে লেখচিত্র পাওয়া যায় তাকে দ্রাব্যতা লেখ বলে।

১৬। দ্রাব্যতা লেখ এর প্রকৃতি এবং তাৎপর্য (Nature and Significance of Solubility Curve) ঃ

- (i) কতকগুলি কঠিন পদার্থ আছে যাদের দ্রাব্যতা তাপমাত্রা বৃদ্ধিতে নিয়মিতভাবে বৃদ্ধি পায়। এই সমস্ত কঠিন পদার্থের ক্ষেত্রে হয় $\Delta H>0$ । এরূপ পদার্থের কতকগুলি উদাহরণ হল $KNO_3, NaNO_3, NaClO_3$ ইত্যাদি।
- (ii) কতকগুলি কঠিন পদার্থ আছে যাদের দ্রাব্যতা তাপমাত্রা বৃদ্ধিতে ক্রমশ হ্রাস পায়। এই সমস্ত কঠিন পদার্থের ক্ষেত্রে $\Delta H < 0$ হয়। এরূপ পদার্থের কতগুলি উদাহরণ হল Li_2SO_4 , $CaSO_4$ এবং অনার্দ্র লবণ $CuSO_4$, Na_2SO_4
- (iii) কতকগুলি কঠিন পদার্থ আছে যাদের দ্রাব্যতা তাপমাত্রার পরিবর্তনে নিয়মিতভাবে বৃদ্ধি বা হ্রাস পায় না । উদাহরণস্বরূপ- $Na_2SO_4.10H_2O$ এর পানিতে দ্রবীভূত হওয়ার প্রক্রিয়াটি হল তাপশোষক প্রক্রিয়া কিন্তু Na_2SO_4 এর পানিতে দ্রবীভূত হওয়ার প্রক্রিয়াটি হল তাপ উৎপাদক প্রক্রিয়া । দেখা গেছে , 34^{o} C তাপমাত্রায় সোদক $Na_2SO_4.10H_2O$ অনার্দ্র Na_2SO_4 এ পরিণত হয় । 34^{o} C তাপমাত্রা পর্যন্ত এর দ্রাব্যতা $Na_2SO_4.10H_2O$ ক্রমশ বাড়তে থাকে । এরপর তাপমাত্রা বৃদ্ধি করলে $Na_2SO_4.10H_2O$ থেকে উৎপন্ন অনার্দ্র Na_2SO_4 এর দ্রাব্যতা ক্রমশ ক্রমতে থাকে ।

যে তাপমাত্রায় দ্রাব্যতার ওই প্রকার বৈপরীত্য লক্ষ্য করা হয়, সেই তাপমাত্রাকে **ট্রানজিসান তাপমাত্রা (Transition** temperature) বলে।