

At a college, the students choose exactly one of tennis, hockey or netball to play. The table shows the numbers of students in Year 1 and Year 2 at the college playing each of these sports.

3

	Tennis	Hockey	Netball
Year 1	16	22	12
Year 2	24	18	28

One student is chosen at random from the 120 students. Events *X* and *N* are defined as follows:

X: the student is in Year 1

N: the student plays netball.

$$P(X|N) = P(X)$$

(a) Find P(X|N). [1]

 $\frac{p(x \text{ and } N)}{p(N)}$ $\frac{12}{120}$ = 12

(b) Find P(N|X). [1]

(c) Determine whether or not X and N are independent events. [1]

 \Rightarrow $P(x md N) = P(x) . P(N) <math>\rightarrow$ for independent events \Rightarrow $12/120 \neq \frac{50}{120} . \frac{40}{120}$ \Rightarrow Dependent events.

One of the students who plays netball takes 8 shots at goal. On each shot, the probability that she will succeed is 0.15, independently of all other shots.

(d) Find the probability that she succeeds on fewer than 3 of these shots. [3]

> Xi" No. of Shots taken at goal"

→ X~B(&, 0.15)

 $\Rightarrow P(X \ge 3) = P(X = 0, 1, 2)$ = 8 / (0.15) (0.85) + (1) (0.15) (0.85) + (2) (0.17) (0.85) = 0.895

DO NOT WRITE IN THIS MARGIN

5

- A fair coin and an ordinary fair six-sided dice are thrown at the same time. The random variable *X* is defined as follows.
 - If the coin shows a tail, X is twice the score on the dice.
 - If the coin shows a head, X is the score on the dice if the score is even and X is 0 otherwise.

(a)	Draw up the pr	obability o	distributi	on table	for X .					1	,	[3]
							1	2	3	4	5	6
						Н	0	2	0	4	0	6
						7	2	4	6	8	10	12
	•••••	•	•••••	•••••	•	•	•••••		••••••	1	1	1
ſ	X	0	2_	4	6	8	lo	12	. (•••••	•••••	•••••
	$\rho(\chi = x)$	3/12	2/12	2/12	2	1/12	1/2	\ \/ı	2	•••••	•••••	•••••
		1		***************************************			•	(•••••	•••••	•••••
	•••••	••••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••
	••••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••		•••••	•••••	•••••
	•••••	•••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••••	•••••	•••••		•••••	•••••	•••••
	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	
			•••••	•••••	•••••	•••••••	•••••	•••••		•••••	•••••	
(b)	Find $Var(X)$.	41.0 +	- 8	+ 12	lıs t	8/127	- 10/	+ 13	2	= 9/2		[3]
フ	$\int \Omega(t) =$	81	221.	L 721	112 H	ر مرادا د مرادا	_100(12			_ (a	, \ Z	
			· 3 112			412 (1112		12)	
.0	/m(x) = 1	4, 13			•••••			•••••		•••••	•••••	
					•••••			•••••		•••••	•••••	
					• • • • • • • • • • • • • • • • • • • •			•••••		•••••	•••••	
					• • • • • • • • • • • • • • • • • • • •			•••••		•••••	•••••	
					•••••			•••••		•••••		

In a certain forest there are 450 white pine trees.

(a) How many of these trees would you expect to have height less than 18.2 metres? [4]

(12 <0.667)

The heights, in metres, of red pine trees are normally distributed with mean 23.4 and standard deviation σ . It is known that 26% of red pine trees have height greater than 25.5 metres.

(b) Find the value of σ . [3]

$$7 = 0.6432$$

DO NOT WRITE IN THIS MARGIN

In a game, players attempt to score a goal by kicking a ball into a net. The probability that Leno scores a goal is 0.4 on any attempt, independently of all other attempts. The random variable *X* denotes the number of attempts that it takes Leno to score a goal.

(a) Find P(X = 5). [1]

ゥ	$(0.6)^{1}(0.4)$		
	· · · · · · · · · · · · · · · · · · ·	n ₀	
		00 - 40	••••

(b) Find $P(3 \le X \le 7)$. [2]

•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
	••			
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	

(c) Find the probability that Leno scores his second goal on or before his 5th attempt. [3]

•••••	 •••••	•••••	•••••	
•••••	 			

.....

Leno has 75 attempts to score a goal.

(d)	Use a suitable approximation to find the probability that Leno scores more than 28	goals but fewer
	than 35 goals.	[5]

11

 $\rightarrow 0 = 75$, 0 = 0.4, 0 = 0.6

→ np and ng > 5 → Aprior as ND

→ X~ N(30, 18)

 $= P(\times < 39.5) - P(\times < 28.5)$

 $= \frac{1}{28} = \frac{106}{106} = \frac{1020035}{1006} = \frac{10200353}{1006}$ $= \frac{102006}{1006} = \frac{10200353}{1006}$ $= \frac{102006}{1006} = \frac{10200353}{1006}$

= 0.403

 •••••	•••••	

.....