EE671: VLSI DESIGN SPRING 2024/25

LAXMEESHA SOMAPPA

DEPARTMENT OF ELECTRICAL ENGINEERING

IIT BOMBAY

laxmeesha@ee.iitb.ac.in

LECTURE – 15 ARITHMETIC IP: ADDERS

1-BIT ADDER

Half Adder

$$S = A \oplus B$$
 $C_{\text{out}} + C_{\text{out}}$
 $C_{\text{out}} = A \cdot B$

$$C_{\text{out}} = A \cdot B$$

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder

$$S = A \oplus B \oplus C$$

$$C_{\text{out}} = MAJ(A,B,C)$$

$$C_{out}$$
 $+$ C

Α	В	С	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = \overline{A} \cdot \overline{B} \cdot C_{in} + \overline{A} \cdot B \cdot \overline{C_{in}} + A \cdot B \cdot C_{in} + A \cdot \overline{B} \cdot \overline{C_{in}}$$

$$C_{\text{out}} = A \cdot B + B \cdot C_{\text{in}} + C_{\text{in}} \cdot A = A \cdot B + C_{\text{in}} \cdot (A + B)$$

1-BIT ADDER

Full Adder
$$S = A \oplus B \oplus C$$

$$C_{out} = MAJ(A,B,C)$$

$$C_{out} = C_{out}$$

$$\frac{C_{out}}{C_{out}} = \frac{A \cdot B + C_{in} \cdot (A + B)}{\overline{A} \cdot \overline{B} + \overline{C_{in}} \cdot (\overline{A} + \overline{B})}$$

$$\operatorname{sum} = \overline{A} \cdot \overline{B} \cdot C_{in} + \overline{A} \cdot B \cdot \overline{C_{in}} + A \cdot \overline{B} \cdot \overline{C_{in}} + A \cdot B \cdot C_{in}$$

$$\overline{\operatorname{sum}} = A \cdot B \cdot \overline{C_{in}} + A \cdot \overline{B} \cdot C_{in} + \overline{A} \cdot B \cdot C_{in} + \overline{A} \cdot \overline{B} \cdot \overline{C_{in}}$$

- ☐ Sum and Carry functions: are their complements
 - □ **Property-1:** NMOS and PMOS can have symmetric configuration!
 - **Property-2:** The hardware that generates Sum and Carry with \overline{A} , \overline{B} and $\overline{C_{in}}$, will generate complement of Sum and Carry with \overline{A} , \overline{B} and $\overline{C_{in}}$

1-BIT ADDER

Full Adder

$$S = A \oplus B \oplus C$$

 $C_{\text{out}} = MAJ(A,B,C)$

A total of 32 MOSFETs (including inverters) to generate Sum and Carry

Property-1: Symmetric NMOS and PMOS side

N-BIT ADDER

- ☐ Simple N-bit adder: carry propagate adder
 - ☐ Each sum bit depends on previous stage carry bit
 - ☐ Need to compute carry quickly
- ☐ Simplest N-bit adder: Ripple Carry Adder (RCA)

N-BIT ADDERS: RIPPLE CARRY ADDER (RCA)

- ☐ RCA: Cascade of FAs
- ☐ Worst case delay: Carry path (carry propagates from Cin to Cout)
- \Box $t_{adder} = (N-1) t_{carry} + t_{sum}$
- □ Speeding up the adder: reduce carry hardware delay
- ☐ Alternately: Sum is not in the critical path!!

RCA: OPTIMIZATION

- ☐ Sum is not in the critical path
 - ☐ Can generate sum slowly -> if it can reduce MOSFETs

$$sum = \overline{C_{out}} \cdot (A + B + C_{in}) + A \cdot B \cdot C_{in}$$

A total of 28 MOSFETs to generate Sum and Carry (Property-1)

RCA: FURTHER OPTIMIZATION?

☐ Use property-2!! -> Odd FAs: complement input

- ☐ Using only property-1:
 - \square [28*4] = 112 MOSFETs, delay: (N.t_{carry})
- Now:
 - \square [10+16]*2 + [10+14+4]*2 = 108 MOSFETs, delay: (N.t_{carry new})
 - \Box t_{carry new}: one-inverter delay lesser than t_{carry} \rightarrow i.e., (N. t_{inv}) faster

FEW OBSERVATIONS BEFORE WE PROCEED TO OTHER ADDERS

Α	В	С	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

When both inputs are o, irrespective of Cin, Cout is always o. **Kill** the Cout. i.e., when,

$$K \equiv \overline{A} \cdot \overline{B}$$
, Cout = 0

Other input cases (only one input is 0/1), Cout = Cin.

Propagate Cout. i.e., when,

$$P \equiv A \oplus B$$
, Cout = Cin

When both inputs are 1, irrespective of Cin, Cout is always 1.

Generate Cout. i.e., when,

$$G \equiv A.B$$
, Cout = 1

Sum =
$$P \oplus C$$
 and Cout = $G + P.C$

GENERATING P AND G

When both inputs are o, irrespective of Cin, Cout is always o. **Kill** the Cout. i.e., when,

$$K \equiv \overline{A} \cdot \overline{B}$$
, Cout = 0

Other input cases (only one input is 0/1), Cout = Cin.

Propagate Cout. i.e., when,

$$P \equiv A \oplus B$$
, Cout = Cin

When both inputs are 1, irrespective of Cin, Cout is always 1. **Generate** Cout. i.e., when,

$$G \equiv A.B$$
, Cout = 1

GENERATING P AND G: MANCHESTER CARRY CHAIN

G,P,K can be precomputed in parallel

When both inputs are o, irrespective of Cin, Cout is always o. **Kill** the Cout. i.e., when,

$$K \equiv \overline{A} \cdot \overline{B}$$
, Cout = 0

Other input cases (only one input is 0/1), Cout = Cin.

Propagate Cout. i.e., when,

$$P \equiv A \oplus B$$
, Cout = Cin

When both inputs are 1, irrespective of Cin, Cout is always 1. **Generate** Cout. i.e., when,

$$G \equiv A.B$$
, Cout = 1

4-BIT MANCHESTER CARRY CHAIN

- ☐ Worst case delay: All "P" are 1
- □ Series of RC network → delay high in the absence of static inverter

THE CARRY RECURRENCE

Recurrence: $C_{i+1} = G_i + P_i C_i$

$$\begin{split} &C_1 = G_0 + P_0 C_0 \\ &C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0 \\ &C_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0 \\ &C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0 \end{split}$$

- ☐ Consider a 4 bit adder.
- □ The final Cout (C_4 in this case) can be directly generated from C_0 (neglecting the hardware complexity)
- \square Practically: to generate C_{4} we need high fan-in CMOS gates (max 5 input AND)
- ☐ Generating C4 will have the same order of delay as RCA.

CARRY SKIP (BYPASS) ADDER

- □ Compute P and G for each bit parallelly
- \square If $P_0.P_1.P_2.P_3 = 1$, then carry is propagated (critical path delay)
- ☐ If a G is generated in any FA: no propagation → not critical path
- ☐ Hence, bypass the critical path through mux!
- ☐ No use in its standalone mode. But consider the next case

CARRY SKIP (BYPASS) ADDER

- \square Compute $P_i.P_{i+1}.P_{i+2}.P_{i+3}$. These will be computed at the same time across 4 stages.
- ☐ Propagate signal are pre-computed for stage-2 onwards
- ☐ Critical path can be bypassed from stage-2 onwards