UDAAN 2025

Mathematics

Triangles

Q1 In $\triangle ACB - \triangle APQ$. If $BC=8~\mathrm{cm}, PQ=4~\mathrm{cm}, BA=6.5~\mathrm{cm}$ and $AP=2.8~\mathrm{cm}$, find CA and AQ

- Q2 A vertical stick 10 cm long casts a shadow 8 cm long. At the same time a tower casts a shadow 30 m long. Determine the height of the tower.
- Q3 In AB||QR, find the length of PB.

Q4 In $DE\|BC$ such that AE=(1/4)AC. If $AB=6~\mathrm{cm}$, find AD.

Q5 In, $XY \parallel BC$. Find the length of XY.

Answer Key

Q2 3750cm Q5 1.5cm

Q3 2cm

Hints & Solutions

Q1 Text Solution:

Given $\triangle ACB \sim \triangle APQ$ Then, AC/AP=BC/PQ=AB/AQ Or $AC/2.8=8/4=6.5/\mathrm{AQ}$ Or AC/2.8=8/4 and 8/4=6.5/AQ Or $AC=8/4\times2.8$ and $AQ=6.5\times4/8$ Or AC=5.6 cm and AQ=3.25 cm

Video Solution:

Q2 Text Solution:

Length of stick $=10~{\rm cm}$ Length of shadow stick $=8~{\rm cm}$ In $\triangle ABC$ and $\triangle PQR$ $\angle ABC=\angle PQR=90^\circ$

And $\angle ACB = \angle PRQ$ (Angular elevation of sum)

Then $\triangle ABC \sim \triangle PQR$ (By AA similarty) So, $\frac{AB}{PQ} = \frac{BC}{QR}$ 10/PQ=8/3000

 $PQ = \frac{10}{8} \times 3000$

3750 cm Or 37.5 m

Q3 Text Solution:

We have $\triangle PAB$ and $\triangle PQR < P = < P$ (Common) $\angle PAB = \angle PQR$ (Corresponding angles) Then, $\triangle PAB \sim \triangle PQR$ (BY AA similarity) So, $\frac{PB}{PR} = \frac{AB}{QR}$ (Corresponding parts of similar triangle area proportion) Or, $\frac{PB}{6} = \frac{3}{9}$ Or $PB = \frac{3}{9} \times 6$ Or PB = 2 cm

Video Solution:

Q4 Text Solution:

We have, $DE\|BC,AB=6~ ext{cm}$ and $AE=1/4 ext{AC}$ In $\triangle ADE$ and $\triangle ABC$

 $\angle A = \angle A$ (Common) $\angle ADE = \angle ABC$ (Corresponding angles)

Then, $\triangle ADE \sim \triangle ABC$ (By AA similarity) So, $\frac{AD}{AB} = \frac{AE}{AC}$ (Corresponding parts of similar triangle area proportion) Or

$$rac{AD}{6}=rac{rac{1}{4}AC}{AC}(AE=1/4AC~{
m Given}~)$$
 Or, $rac{AD}{6}=rac{1}{4}$ Or, $AD=6/4$ Or, $AD=1.5~{
m cm}$

Video Solution:

Q5 Text Solution:

We have, $XY \| BC$ In $\triangle AXY$ and $\triangle ABC$ $\angle A = \angle A$ (Common) $\angle AXY = \angle ABC$ (Corresponding angles) Then, $\triangle AXY \sim \triangle ABC$ (By AA Similarity) So, $\frac{AX}{BY} = \frac{XY}{BC}$ (Corresponding parts of similar triangle area proportion) Or $\frac{1}{4} = \frac{XY}{6}$ Or XY = 6/4 Or XY = 1.5 cm

Video Solution:

