Streaming Algorithms

Meng-Tsung Tsai
05/11/2018

Algorithm

Initialize three counters C_0 , C_1 , and C_2 as 0.

```
foreach update (c_i, \Delta_i) { C_0 += \Delta_i; C_1 += \Delta_i c_i; C_2 += \Delta_i (c_i)^2 }  if((C_2)(C_0) = (C_1)^2) \{ \text{ // Cauchy-Schwarz Ine.}  output (C_0 == 0)? "0" : "1"; // the non-zero coordinate is C_1/C_0 } else { output "2+"; }
```

Uniquess Testing

Input: Let A[1..U] be an array of length U. Initialize $A = \{0\}$. Give a sequence of updates (c_i, Δ_i) where the i-th update asks to add Δ_i to A[c_i]. Assume that $A \ge 0$ after every update.

Output: "0" if A = 0, or "1" if there is exactly one index i in [U] so that A[i] > 0, or otherwise "2+".

Goal: O(1) working space.

$$(c_i = k, \Delta_i)$$

Sample a Coordinate i with A[i] > 0

Let $||A||_0$ be the zero norm of A, i.e. $\sum_i 1[A[i] \neq 0]$.

Run the Uniquess-Test and we get $||A||_0$.

```
 \begin{aligned} & Switch(\|A\|_0) \{ \\ & Case \ 0: \ /\! \ \|A\|_0 == 0 \\ & return \ "A = 0"; \\ & Case \ 1: \\ & return \ C_1/C_0; \\ & Case \ 2: \\ & return \ ?; \\ & ... \\ & \end{aligned}
```

Sample a Coordinate i with A[i] > 0

Idea: assign "a random bit" to each coordinate, and ignore those updates whose coordinate isn't associated with a 0-bit.

If $||A||_0 = 2$, then with probability 1/2, the Uniqueness-Test can return one of them.

If we run k independent copies of the above, then with probability $1-1/2^k$, some Uniqueness-Test can return one of them.

To store these random bits, we need space of n bits.

Sample a Coordinate i with A[i] > 0

Remark. For $||A||_0 = 2$, there exists a data structure that can sample a coordinate i with A[i] > 0 with probability 1/2 using $O(\log U)$ bits.

Remark. For $||A||_0 = 2$, there exists a data structure that can sample a coordinate i with A[i] > 0 with probability $1-1/2^k$ using $O(k \log U)$ bits.

What if $||A_0||$ is large?

Sample a Coordinate i with A[i] > 0

2-wise independent randomness:

Step1. choose a prime p >> U.

Step2. pick two independent random numbers $a, b \in [U]$.

Step3. associate the x-th coordinate with $(h_{a,b}(x) = ax + b \pmod{p})$ $\pmod{2}$ for each x in $\{1, 2, ..., U\}$.

// for each $x\neq y\in U$, $h_{a,b}(x)$ and $h_{a,b}(y)$ are independent. // note that $h_{a,b}(1),\,h_{a,b}(2),\,...,\,h_{a,b}(U)$ are pairwise independent rather // than mutually independent.

To store these random bits, we need O(log U) bits.

Sample a Coordinate i with A[i] > 0

2-wise independent randomness:

Step1. choose a prime $p \gg U$.

Step2. pick two independent random numbers $a, b \in [U]$.

Step3. associate the x-th coordinate with $(h_{a,b}(x) = ax + b \pmod{p})$ (mod r) for each x in $\{1, 2, ..., U\}$.

// with probability 1/r, the updates with coordinate i are not ignored.

Sample a Coordinate i with A[i] > 0

Let S be the set of cooridnate i whose A[i] > 0 and isn't ignored given $h_{a,b}$ and r.

Expectation.

$$\mu = E[|S|] = ||A||_0/r$$
.

Variance.

$$\sigma^2 = \text{Var}[|S|] = ||A||_0 ((1-1/r)(1/r)) < E[|S|].$$

Chebyshev Inequality.

$$\Pr[||S|-\mu| \ge \lambda \sigma] \le 1/\lambda^2$$
.

Remark.

$$Pr[|S| \in [\mu-2\mu^{1/2}, \mu+2\mu^{1/2}]] \ge 3/4.$$

The Data Structure D

Let D be k copies of Uniquess-Test components.

Each x in S will be used to update exactly one random copy $C_{d(x)}$,

where
$$d(x) = d_{a,b}(x) = (ax + b \pmod{p}) \pmod{k}$$
.

If all elements in S don't collide, we can return a random element from S, so we need to pick k to be large enough.

 $Pr[a \text{ certain pair } e_1, e_2 \text{ collide}] = 1/k.$

 $Pr[some pair e_1, e_2 collide] \le |S|^2/k$.

Pr[this procedure fails] $\leq 1/4 + (\mu + 2\mu^{1/2})^2/k \leq 1/2$ if $k = 4(\mu + 2\mu^{1/2})^2$.

Sample a Coordinate i with A[i] > 0

```
 \ell_0\text{-Sampler}()\{ \\  \mbox{pick a prime $p$ $\gg U$;} \\  \mbox{let $h(x) \leftarrow h_{a,b}(x)$ (mod $r$) with random $a$, $b$ in $\{1,2,...,p\}$;} \\  \mbox{foreach update $(c_i, \Delta_i)$} \\  \mbox{if $(h(c_i) == 0)$ { // $S = \{x \in [U]$: $h(x) = 0$ \}} \\  \mbox{update "a data structure" for $S$;} \\  \mbox{} \\  \mbox{if $(|S| \in [\mu\text{-}2\mu^{1/2}, \mu\text{+}2\mu^{1/2}])$ { // happens $w.p. $\geq 3/4$} \\  \mbox{return a random element $e \in S$;} \\  \mbox{} \\  \mbox{}
```

Sample a Coordinate i with A[i] > 0

Sample a Coordinate i with A[i] > 0

Remark. There exists (explicitly given) a $(4(\mu+2\mu^{1/2})^2)$ -space data structure so that

with probability $\geq 1/2$

it returns a coordinate i with A[i] > 0, noting that each coordinate i with A[i] > 0 is returned with probability $\Omega(1/\|A\|_0)$

or otherwise

it returns "Fails."

Issues. We don't know what μ is.

Programming Assignment #2

Input: Given a sequence of edge insertions and deletions of an n-node graph and it is asserted that the final graph has $\leq 2n$ edges.

Output: the final graph with high probability.

Run $O(n \log n) \ell_0$ -samplers in parallel.

Sample a Coordinate i with A[i] > 0

Set μ = 100, and thus D has 4*(100+20)² copies of Uniqueness-Test components.

Run in parallel with r = 1, 2, 4, 8,, log U. There exists some r so that the corresponding $\mu = ||A||_0/r \le 100$, so the above works.