Indian Institute of Technology Kharagpur Department of Mathematics MA41007 - Functional Analysis Test - 3, AUTUMN 2021

N	Α	λ	11	₹,•
т л	1 A	.⊥ν	LL	_,

ROLL NO:

Instructions: Answers all the questions. No queries will be entertained during examination.

- 1. Let X and Y be Banach spaces and $A: X \to Y$ be a injective bounded linear map such that R(A) is closed in Y. Then $F^{-1}: R(A) \to X$ is a ------map.
- 2. Let X be a Banach space with two noms $\|.\|_1$ and $\|.\|_2$ such that $\|x\|_1 \le \alpha \|x\|_2$, for some $\alpha > 0$, for all $x \in X$. Then $\|.\|_1$ and $\|.\|_2$ are equivalent (TRUE/ FALSE) -----.
- 3. Let X be a Banach space and Y be a normed linear space. Let $A: X \to Y$ be a bounded linear map and there exists $\gamma > 0$ such that $\gamma ||x|| \le ||Ax||, \forall x \in X$. Then $A^{-1}: R(A) \to X$ is continuous(TRUE/ FALSE): ----- and R(A) is ------.
- 4. Let X and Y be normed linear space and $A: X \to Y$ be a open linear map. Then A is a ----- linear map.
- 5. Let X = C[a, b] with norm $\|.\|_{\infty}$ and Y = C[a, b] with norm $\|x\|_1 = \int_a^b |x(t)| dt, x \in X$. Let $A: X \to Y$ be identity linear map. Then A is continuous linear map(TRUE/FASLE): ---- and $A^{-1}: Y \to X$ is continuous (TRUE/FASLE): -----.
- 7. Let X be a complex inner product space. Then there hold "For all $x, y \in X$, $||x + y||^2 = ||x||^2 + ||y||^2$ if and only if $x \perp y$ ". Is this statement true?(Yes/No): -----.
- 8. Let $(X, < ., .>_X)$ and $(Y, < ., .>_Y)$ be inner product spaces and $F: X \to Y$ be a linear map such that $||F(x)|| = ||x||, \forall x \in X$. Then $\langle Fx_1, Fx_2 \rangle_Y = ----$.
- 9. An infinite dimensional separable Hilbert space H is isometrically isomorphic to ----.
- 10. Let $X=R^2$ be a normed linear space over the field K with the Euclidean norm $\|.\|$ and let $Y=\{(x,y)\in R^2\mid x=\gamma y, \text{for some }\gamma\in K\}$. Let $f:Y\to K$ be the functional defined by $f(x,y)=x,\ \forall (x,y)\in Y.$ Then the Hahn-Banach extension $g:X\to K$ of f is given by g(x,y)=-----, $\forall (x,y)\in X.$
