House Sale Price & Bonus Eligibility Prediction

*Question 1 - Use %LET statements to name the macro variables and set their values. The macro variables are referred to in the SAS code as &categorical and &interval, to distinguish those names from those of variables;

*Part 1:

%let categorical = Central_Air Foundation_2 Garage_Type_2 Heating_QC Mo_Sold House_Style House_Style2 Masonry_Veneer;

%let interval = Age_Sold Basement_Area Bedroom_AbvGr Bonus Fireplaces Full_Bathroom Garage_Area Gr_Liv_Area Half_Bathroom Log_Price Lot_Area Overall_Cond Overall_Cond2 Overall_Qual Overall_Qual2 SalePrice Season_Sold Total_Bathroom Year Built Yr Sold;

*Here, we split the character and numeric variables into the respective &categorical and &interval %let statements. In other words, we let the character variables into the categorical group, and the numeric ones into the interval group.

*Question 2 - Use PROC UNIVARIATE to generate plots and descriptive statistics for continuous variables and PROC FREQ to generate plots and tables for categorical variables.; title "Categorical Variable Descriptive Statistics"; proc freq data = orion.team8; tables &categorical / plots = freqplot (type = bar); run:

*The frequency plots and tables show the distribution of various sub-categories included within the variables part of the constructed houses. For example, the frequency table and bar graph above shows a distribution of whether or the constructed houses include masonry veneer walls or not;

proc univariate data=orion.team8 noprint; var &interval; histogram &interval / normal kernel; title "Interval Variable Distribution"; run;

This plot shows a normal and kernel distribution among the construction years of the respective houses. A fitted normal distribution shows the approximate continuous probability of the construction years, whereas the kernel hits the precise data points in order to better interpret the data.

*Question 3 - Use the TTEST procedure to test whether the mean of SalePrice is \$135,000 in the data set. Is the

mean value in the sample statistically significantly different from \$135,000 at an alpha level of 0.05?;

proc ttest data=orion.team8 h0=135000 plots(only shownull)=interval; var SalePrice; title 'Testing Whether the Mean Sale Price is 135000'; run;

*P-value < alpha => 0.0002 < 0.05 => Yes, the mean value is statistically significant; *Here, the p-value, 0.0002 is less than the alpha of 0.05. Also, the mean value is greater than 135000, at 139,834. Hence we reject the null hypothesis or H0 = 135,000 for Ha != 135000, and the mean value is statistically significant; *Question 4 - Use the TTEST procedure to test whether the mean of SalePrice is the same for homes with masonry veneer and those without. Provide your insights.

Using TTEST to find whether the mean of SalePrice is the same for homes with masonry veneer and those without */

proc ttest data=orion.team8 plots(only shownull)=interval;

class Masonry_Veneer;

var SalePrice:

title "Two-sample t-Test Comparing homes with masonry veneer and those without";

run;

The above code gives the following output where looking at the F-test, the P-value(0.8387) is > 0.05 which tells that we accept the variances are equal. While looking at the t-test table we can see the P-value is significant for the pooled method and we reject the null hypothesis. Hence, there is significant difference between Saleprice with homes with and without masonry veneer

		The T	TEST	Proc	edure						
	Variable	: SaleP	rice (S	Sale	price in	doll	lars)				
Masonry_Veneer	Method	N	Me	an S	Std Dev	Sto	Err	Mini	imum	Maximum	
N		565	1327	59 :	35140.5	14	78.4	39	300.0	271500	
Υ		233	1566	87	35506.9	23	26.1	61	500.0	285000	
Diff (1-2)	Pooled		23927	7.8	35247.7	27	44.3				
Diff (1-2)	Satterthwaite	2	-23927	7.8		27	56.2				
Masonry_Veneer	Method	Me	an	95%	CL Mea	n	Std	Dev	95% (CL Std Dev	
N		1327	59	12985	6 135	663	351	40.5	33204	.1 37318.5	i
Υ		1566	87	15210	161	270	355	06.9	32549	.1 39060.5	j
Diff (1-2)	Pooled	-23927	.8 -2	9314	7 -1854	0.9	352	47.7	33598	.1 37068.8	1
Diff (1-2)	Satterthwaite	-23927	.8 -2	9345	.1 -1851	0.5					
	Method	Varia	nces		DF t Va	lue	Pr	> t			
	Pooled	Equal		7	96 -8	3.72	<.0	001			
	Satterthwaite	Unequ	ual	428.	51 -8	68	<.0	001			
		Equal	ity of	Varia	inces			T			
	Method	Num DI	De	n DF	F Valu	e F	Pr > F				
	Folded F	23	2	564	1.0	2 0	.8387	7			

The same thing can be inferred from the means from the confidence interval plot. The null value is not included(which is our hypothesized value) in the plot and with 95% confidence we can say that there is significant difference around (-24000)

*Question 5 - Create scatter plots to show relationships between continuous predictors and SalePrice and comparative box plots to show relationships between categorical predictors and SalePrice using Macro program;

%let interval = Lot_Area Year_Built Gr_Liv_Area Garage_Area Basement_Area Deck_Porch_Area Age_Sold;

*Question 6 - Examine the relationships between SalePrice and the continuous predictor variables in the dataset;

```
* continuous predictor variables in our dataset are considered as follows:
%let variable= Lot_Area Gr_Liv_Area Garage_Area Basement_Area Deck_Porch_Area
Age_Sold;
proc corr data=orion.Team8 PLOTS=SCATTER(NVAR=all);
var &variable:
with SalePrice:
title "Correlations Plots";
/* Output of question 6 is as follows
Pearson Correlation Coefficients, N = 800
             Lot Area Gr Liv Area Garage Area Basement Area Deck Porch Area
Age Sold
SalePrice
              0.22170 0.59629
                                    0.50223
                                                0.61098
                                                            0.40526 -0.63645 */
*Question 7 - Perform a simple linear regression
analysis with SalePrice as the response variable, and
one of
the significant predictors. Explain why you have chosen
that variable. What's the prediction
equation?;
* Selecting Age_Sold as the most significant predictors as its negatively correlated with
SalePrice with highest corr coefficient as -0.63 as compared to other independent
variables
Regression analysis code of Sale Price with Age sold --;
proc reg data=orion.Team8:
model SalePrice=Age_Sold / R P VIF SLENTRY = 0.01;
run;
*Answer- The prediction equation is SalePrice = 178230 - 883.45296(Age_Sold);
*Question 8 - Perform a regression model of SalePrice
with Lot Area and Basement Area as predictor
variables;
*Regression analysis code considering only independent variables (Lot Area &
Basement_Area)--;
proc reg data=orion.team8;
model SalePrice=Lot_Area Basement_Area;
plot RESIDUAL. * Lot_Area Basement Area:
run;
*70892 = 1.07517(Lot Area) + 66.19581(Basement Area)
R squared value is 0.3835 and both p-values are less than 0.01;
```

```
*Question 9 - Call to macro to run SELECT for the
options SL, AIC, BIC, AICC, and SBC
and compare the selected models from the output. Does
the significance level for entry
into and staying in the model have any impact when you
use options other than SL?
Which variables stay in the model for each 5 options?
Which selection methods and
criteria would you recommend?
Regression of salePrice with all the interval variables using GLMSELECT with select
options SL, AIC, BIC, AICC, SBC */
%let interval = Lot Area Year Built Gr Liv Area Bedroom AbvGr Fireplaces
                                   Mo_Sold Yr_Sold Basement_Area
Garage Area
Total_Bathroom Deck_Porch_Area Age_Sold;
%macro modelsel(mod, type, slent=0.05, slst =0.05);
     title "&mod and &type";
     proc glmselect data=orion.team8 plots=all;
           model SalePrice = &interval / selection = &mod
                                   details = steps
                                   select = &type
                                   slentry = &slent
                                   slstay = &slst;
     run;
%mend modelsel;
%modelsel(stepwise,SL)
%modelsel(stepwise, AIC)
%modelsel(stepwise, BIC)
%modelsel(stepwise, AICC)
%modelsel(stepwise, SBC)
When SL is used as select option:
```


The R-square value is: 0.7632 and a total of 10 variables are considered including intercept

Lot_Area Year_Built Gr_Liv_Area Bedroom_AbvGr Fireplaces Garage_Area Basement Area Total Bathroom Deck Porch Area

All the select option produces the same result. So any of the select option can be used.

/* *Question 10 - Invoke PROC REG with the plots option
using rsquare adjrsq cp to produce a
regression of SalePrice on all the other interval
variables in the data set. Which model you would
suggest, and why?

Regression of salePrice with all the interval variables and comparing the models with selection options R-square, Adjusted R-square and Cp */

The following diagrams shows the output of the model with different selection methods. It is obvious that the values of r-square and adjusted r-square are maximum when all the variables are used and the value of cp is minimum for the same, however after 8 variables minimum value of information is added to the model. Hence, we can suggest we can use any of the three models as all of them are producing the same results.

Fig 1: Plot with R-square selection method

Fig 2: Plot with adjusted R-square selection method

Fig 3: Plot with cp selection method

```
*Question 11 - create one-way frequency tables for the
variables Bonus,
Fireplaces, and Lot Shape 2 and create two-way
frequency tables for the variables
Bonus by Fireplaces, and Bonus by Lot Shape 2. For the
continuous variable,
Basement Area, create histograms for each level of
Bonus?;
proc freq data = orion.team8;
tables Bonus;
run:
proc freq data = orion.team8;
tables Fireplaces;
proc freq data = orion.team8;
tables Lot_Shape_2;
run:
proc freq data = orion.team8;
tables Bonus *Fireplaces;
run;
proc freq data = orion.team8;
tables Bonus *Lot_Shape_2;
run:
proc univariate data=orion.team8;
class Bonus;
 histogram;
 var Basement_Area;
run;
```

- *Answer a There are missing values in the dataset. There are present in the table since misssing option wasn't added in the tables statement.
- *Asnwer b Basement area is normally distributed when Bonus = 0 and it is left-skewed when there is a bonus for the sale. It is also evident that incresase in basement area increases the chance of bonus.

```
*Question 12 - Use PROC FREQ to test whether an ordinal association exists between Bonus and Fireplaces.; proc freq data=orion.team8; tables Fireplaces*Bonus / chisq cl; Run; *Answer a;
```

There is Bonus and Fireplaces have a significant ordinal association as p value is less than 0.001

*Answer b;

```
For the Spearman correlation statistic, the relationship is significant at the 0.05
significance
Value - 0.2898
95% Confidence Limit - 0.2203,0.3593
*Question 13 - Fit a binary logistic regression model
in PROC LOGISTIC. Select Bonus as the outcome
variable and VARIABLE assigned to your team as the
predictor variable.;
*Answer a:
proc logistic data =orion.Team8;
      model Bonus(event='1') = Total_Bathroom / CTABLE PPOB = (0 to 1 by .1)
/*classification table */
      LACKFIT clodds=pl/*Goodness-of-fit test - Hosmer & Lemeshow*/
      RISKLIMITS /*odds ratios for each varb with 95% CI*/
   OUTROC=ROC ALPHA=.10;
run:
*Answer b - BETA=0 mean that the intercept value is 0 and we'll look at the importance of
independent variables when intercept is 0;
*Answer c - Since all the 3 statistics in Global Null Hypothesis has a p-value <0.0001,
wecan say that we reject the null hypothesis.
*Answer d - The logistic regression equation is P = 1/(e^{-})
6.0946+2.2333(Total_Bathroom))) or it can be written as LOG(Bonus)=-
6.0946+2.2333(Total_Bathroom;
*Answer e - p-value of Total Bathroom is <.0001 & hence is significant at the 0.10
significance level;
*Answer f - odd ratio of Total_Bathroom calculation is
                  ODDS(Bonus)when Total Bathroom is present= exp(-6.0946+2.2333*
                  1) = 0.021
                  ODDS(Bonus)when Total Bathroom is absent= exp(-6.0946+2.2333*
                  0) = 0.0023
                  Odds Ratio = 0.021/0.0023 = 9.13;
*Question 14 - Run an analysis of variance with
SalePrice as the response variable and Heating QC as
the
categorical predictor variable. Output diagnostic plots
and look at Levene's test of homogeneity
of variances.
#Levene's test of homogeneity of variances;
proc glm data=mylib.Team8
plots(only)=diagnostics;
class Heating QC;
```

model SalePrice=Heating_QC;

means Heating_QC / hovtest=levene; title "One-Way ANOVA with SalePrice as Heating_QC using levene"; run; quit;

Solution - Please find below the output screenshots of my code

		TI	ne GL	.M Pr	ocedure	9		
							Variance Means	•
Source	DF	Sum of	F Squ	ares	Mean	Square	F Value	Pr > F
Heating_QC	3		6.153	3E19	2.	051E19	5.99	0.0005
Error	796		2.725	E21	3.	424E18		
One-W	/ay A						ating_Q	С
One-W		TI			ocedure		eating_Q	C
One-W	Level	TI			ocedure	9		C
One-W	Level	Th	ne GL	.M Pr	ocedure	Price	Dev	c
One-W	Level Heati	Th	ne GL N	M Pr	Sale Mean	Price Std	Dev	iC
One-W	Level Heati Ex	Th	N 279	1586 1079	Sale Mean 521.487	Price Std 38020.3	Dev 3081 0813	oC .

Answer: According to anova analysis, SalePrice & Heating_QC seem to be significant to each other with p-value less than 0.0001 with both 95 & 99% confidence.

*Question 15 - Use the LSMEANS statement in PROC GLM to produce comparison information about the mean sale prices of the different heating system quality ratings.
#Using lsmeans;

proc glm data=mylib.Team8
plots(only)=diagnostics;
class Heating_QC;
model SalePrice=Heating_QC;
Ismeans Heating_QC / slice=Heating_QC;
title "One-Way ANOVA with SalePrice as Heating_QC including Ismeans";
run;
quit;

One-Way ANOVA with SalePrice as Heating_QC

The GLM Procedure Least Squares Means

Heating_QC	SalePrice LSMEAN
Ex	158621.487
Fa	107975.419
Gd	139629.982
TA	126769.892

*Answer : Using 1smeans produces the above table in addition to Q1 output. Looking at the above table, we can say FA in Heating_QC has the lowest Salepeice mean, whereas TA & GD come next with mean sale price close to each other.

Ex has the highest SalePrice mean among all the heating QC;

*Question 16 - Perform a two-way ANOVA of SalePrice with Heating_QC and Season_Sold as predictor variables. Before conducting an analysis of variance, you should explore the data. To further explore the numerous treatments, examine the means graphically. Include the interaction between the two explanatory variables. Store the output to a dataset and adjust p-values using PROC PLM.

*Performing Bivariate analysis between variables and exploring the data before jumping into two-way anova analysis;

********bivariate analysis between Heating_QC & SalePrice; proc sgplot data=mylib.Team8; vbox SalePrice / category=Heating_QC connect=mean; title "Sale price with Heating QC"; run;

#Descriptive statistics

proc means data=mylib.Team8;

var SalePrice;

class Heating_QC;

title 'Descriptive Statistics of SalePrice by Heating_QC';

run;

Descriptive Statistics of SalePrice by Heating_QC

The MEANS Procedure

Analysis Variable : SalePrice Sale price in dollars										
Heating quality and condition	N Obs	N	Mean	Std Dev	Minimum	Maximum				
Ex	279	279	158621.49	38020.31	65000.00	285000.00				
Fa	31	31	107975.42	38968.08	39300.00	177500.00				
Gd	167	167	139629.98	33727.35	59000.00	270000.00				
TA	323	323	126769.89	28675.32	40000.00	218000.00				

#bivariate analysis between Season_Sold & SalePrice; #Boxplot
******bivariate analysis between Season_Sold &
SalePrice;

proc sgplot data=mylib.Team8;

vbox SalePrice / category=Season_Sold connect=mean;

title "Sale price with Season Sold";

run;

#Descriptive Statistics between Season_Sold & SalePrice

proc means data=mylib.Team8;

var SalePrice;

class Season_Sold;

title 'Descriptive Statistics of SalePrice by Season_Sold';

run

Descriptive	Descriptive Statistics of SalePrice by Season_Sold The MEANS Procedure								
Analysi	s Variat	ole : S	SalePrice S	ale price i	n dollars				
Season when house sold	N Obs	N	Mean	Std Dev	Minimum	Maximum			
1	80	80	132753.13	36982.39	39300.00	245500.00			
2	289	289	142795.08	38496.58	52500.00	271500.00			
3	327	327	140430.22	36821.41	40000.00	285000.00			
4	104	104	135180.81	31209.66	55000.00	230000.00			

******bivariate analysis between Heating_QC & Season_Sold; proc freq data = mylib.Team8; tables Heating_QC *Season_Sold; run;

Des	criptive Statistics o	f SaleP	-	/ Seaso	on_Sole	d				
Frequency	Table of Heating_QC by Season_Sold									
Percent Row Pct	Heating_QC(Heating	Season	_Sold(S	eason w	vhen hou	ise sold				
Col Pct	quality and condition)	1	2	3	4	Total				
	Ex	24	107	117	31	279				
		3.00	13.38	14.63	3.88	34.88				
		8.60	38.35	41.94	11.11					
		30.00	37.02	35.78	29.81					
	Fa	4	10	14	3	3				
		0.50	1.25	1.75	0.38	3.8				
		12.90	32.26	45.16	9.68					
		5.00	3.46	4.28	2.88					
	Gd	16	59	66	26	16				
		2.00	7.38	8.25	3.25	20.8				
		9.58	35.33	39.52	15.57					
		20.00	20.42	20.18	25.00					
	TA	36	113	130	44	32				
		4.50	14.13	16.25	5.50	40.3				
		11.15	34.98	40.25	13.62					
		45.00	39.10	39.76	42.31					
	Total	80	289	327	104	80				
		10.00	36.13	40.88	13.00	100.0				

********Performing GLM where I have included an interaction between Heating_QC & Season_Sold and also storing the output to a new dataset proc glm data=mylib.Team8 plots(only)=(intplot); class Heating_QC Season_Sold; model SalePrice=Heating_QC Season_Sold Heating_QC*Season_Sold; lsmeans Heating_QC*Season_Sold / slice=Heating_QC; store out=new; title "Model with Heating QC and Season Sold along with their interaction"; run;

Model with Heating QC and Season Sold along with their interaction

The GLM Procedure

Dependent Variable: SalePrice Sale price in dollars

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	15	211797395550	14119826370	12.66	<.0001
Error	784	874298347515	1115176463.7		
Corrected Total	799	1.0860957E12			

R-Square	Coeff Var	Root MSE	SalePrice Mean
0.195008	23.88129	33394.26	139834.4

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Heating_QC	3	185076246528	61692082176	55.32	<.0001
Season_Sold	3	5197053124.7	1732351041.6	1.55	0.1993
Heating_Q*Season_Sol	9	21524095898	2391566210.9	2.14	0.0239

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Heating_QC	3	119916208462	39972069487	35.84	<.0001
Season_Sold	3	10855638542	3618546180.8	3.24	0.0215
Heating_Q*Season_Sol	9	21524095898	2391566210.9	2.14	0.0239

Heating_QC	Season_Sold	SalePrice LSMEAN
Ex	1	160520.833
Ex	2	161361.766
Ex	3	157744.291
Ex	4	151003.355
Fa	1	70075.000
Fa	2	111213.800
Fa	3	107521.429
Fa	4	149833.333
Gd	1	120868.750
Gd	2	148069.610
Gd	3	137571.970
Gd	4	137248.077
TA	1	126487.500
TA	2	125255.088
TA	3	129842.692
TA	4	121812.500

Model with Heating QC and Season Sold along with their interaction

The GLM Procedure Least Squares Means

Heating_Q*S	Heating_Q*Season_Sol Effect Sliced by Heating_QC for SalePrice									
Heating_QC	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Ex	3	2779199876	926399959	0.83	0.4771					
Fa	3	11109778638	3703259545	3.32	0.0194					
Gd	3	10261200946	3420400315	3.07	0.0273					
TA	3	2570989584	856989855	0.77	0.5118					

Answer: Heating_QC seems to be significant with Sale Price (p-value <0.0001) whereas Season Sold alone is not significant with Sale Price but when Season Sold is made to interact with Heating_QC, it acts significant with p-value of 0.02

```
*******Adjusted p-values using PROC PLM on new dataset created;
#Below are the plots of how interaction between Heating_QC &
Season_Sold are significant with Sale_Price at individual level
proc plm restore=new plots=all;
    slice Heating_QC*Season_Sold / sliceby=Heating_QC adjust=tukey;
    effectplot interaction(sliceby = Heating_QC) / clm;
title "Model with PLM";
run;
```

Slice	Season when house sold	Season when house sold	Estimate	Standard Error	DF	t Value	Pr > t	Adj P
Heating_QC Ex	1	2	-840.93	7542.41	784	-0.11	0.9113	0.9995
Heating_QC Ex	1	3	2776.54	7483.12	784	0.37	0.7107	0.9826
Heating_QC Ex	1	4	9517.48	9079.60	784	1.05	0.2949	0.7210
Heating_QC Ex	2	3	3617.48	4466.95	784	0.81	0.4183	0.8498
Heating_QC Ex	2	4	10358	6811.43	784	1.52	0.1287	0.4255
Heating_QC Ex	3	4	6740.94	6745.73	784	1.00	0.3180	0.7498

Adjustment for Multiple Comparisons: Tukey-Kramer											
Slice	Season when house sold	Season when house sold	Estimate	Standard Error	DF	t Value	Pr > t	Adj P			
Heating_QC Fa	1	2	-41139	19756	784	-2.08	0.0376	0.1598			
Heating_QC Fa	1	3	-37446	18933	784	-1.98	0.0483	0.1972			
Heating_QC Fa	1	4	-79758	25505	784	-3.13	0.0018	0.0099			
Heating_QC Fa	2	3	3692.37	13827	784	0.27	0.7895	0.9933			
Heating_QC Fa	2	4	-38620	21983	784	-1.76	0.0793	0.2952			
Heating_QC Fa	3	4	-42312	21246	784	-1.99	0.0468	0.1920			

Slice	Num DF	Den DF	F Value	Pr > F
Heating_QC Go	3	784	3.07	0.0273

		ences of Heating_Q*Se ment for Multiple Com			eans			
Slice	Season when house sold	Season when house sold	Estimate	Standard Error	DF	t Value	Pr > t	Adj F
Heating_QC Gd	1	2	-27201	9412.75	784	-2.89	0.0040	0.0206
Heating_QC Gd	1	3	-16703	9305.65	784	-1.79	0.0730	0.2768
Heating_QC Gd	1	4	-16379	10611	784	-1.54	0.1231	0.4119
Heating_QC Gd	2	3	10498	5983.14	784	1.75	0.0797	0.2963
Heating_QC Gd	2	4	10822	7860.83	784	1.38	0.1690	0.5144
Heating_QC Gd	3	4	323.89	7732.27	784	0.04	0.9666	1.0000

Heating_QC TA 3 784 0.77 0.5118	Slice	Num DF	Den DF	F Value	Pr > F
	Heating_QC TA	3	784	0.77	0.5118

Simple Differences of Heating_Q*Season_Sol Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer										
Slice	Season when house sold	Season when house sold	Estimate	Standard Error	DF	t Value	Pr > t	Adj P		
Heating_QC TA	1	2	1232.41	6391.08	784	0.19	0.8471	0.9975		
Heating_QC TA	1	3	-3355.19	6289.31	784	-0.53	0.5939	0.9509		
Heating_QC TA	1	4	4675.00	7504.80	784	0.62	0.5335	0.9247		
Heating_QC TA	2	3	-4587.60	4295.01	784	-1.07	0.2858	0.7091		
Heating_QC TA	2	4	3442.59	5934.12	784	0.58	0.5620	0.9380		
Heating_QC TA	3	4	8030.19	5824.36	784	1.38	0.1684	0.5131		

Answer: Used Tukey to get better insights into the interaction between Season Sold & Heating_QC. Anova gives us the overall result but Tukey test exactly tells us where the difference lie that is basically which Season_Sol with Heating_QC is actually significant with SalePrice