Detecting and Classifying Abnormal Heart Beats from ECG Recordings

And U. Turken

Galvanize Capstone Presentation June 9, 2020

Background: Heart-health monitoring

- Abnormal in heart beat rhythms are warning signals
- Heart attacks and stroke can be predicted in advance
- Clinical electrocardiogram (ECG) monitoring
- ECG monitoring with IoT devices (e.g. smart watches)
- ML for automatic ECG abnormality detection
- Train machine learning model with expert-labeled ECG data
- Detect and classify abnormal heart beats using ECG data from same individuals, assess transfer to new individuals

Electrocardiogram (ECG) Data

- MIT-BIH Arrhythmia Database from PhysioNet
- 30 minute clinical ECG recordings from 43 individual patients
- ~109,000 expert-labeled heart beats, ~2,500 hear beats / individual
- Variable ECG abnormality across individuals, from 1% <, to > 50% (Overall, 14% of all ECG segments are labeled as abnormal)
- ~50% generally normal, ~50% with significant abnormality
- Type of abnormality recorded on continuous ECG
- Commonly used as a benchmark since 1990s
- Single channel data, recorded at 360 Hz, comparable to smartwatch

ECG data pre-processing

- Read continuous ECG into Python, visually inspect data quality
- Extract ECG segments for each heart beat
- Individual segments should comparable!
- Extensive pre-processing required
- Apply linear drift correction (detrend)
- Align segments so same peak latency
- Baseline correction
- Minimal temporal smoothing
- Scale ECG peak amplitude to 100
- Remove noisy segments
- Recording artifacts: ~2% of data excluded

Continuous ECG recording

Preprocessed ECG segment = One heart-beat

Modeling Approach

- Assess how well abnormal hear beats can be detected and classified in new unseen ECG data from the same group of individuals (n=28)
- Assess how well abnormal hear beats can be detected and classified in new ECG data from a new group of individuals (n=15)
- Two approaches:
- (1) Use amplitudes for all ECG times points as a feature vector
- (2) Representation learning apply unsupervised learning to learn a compact representation prior to classification (potentially better transfer to data from new groups of individuals)

Modeling with Scikit-Learn

- Train Test split (stratified, to preserve individual class frequencies): 75% -25% of all ECG segments from 28 individuals
- Five-fold cross-validation (CV) for hyper-parameter tuning
- Test out-of-sample generalizability: All ECG segments from further 15
- Multi-class classification: Normal ECG + Four most common abnormal ECG patterns; Precision, recall, F1 to assess performance
- To address class imbalance: "class weight" balancing in Scikit-Learn
- Unsupervised representation learning: "sparse" models for compact components that might capture clinically-relevant aspects of ECG morphology. Pipelined with a classification algorithm, representation tuned based on classifier performance with grid search. Batch learning to manage memory requirements

Modeling - Algorithms

- Simple baseline: Isolation forest for unsupervised anomaly detection (~69% accuracy for labeling abnormal ECG on test data)
- Baseline: K-Nearest Neighbors classifier tune neighborhood size with CV
- Logistic regression classifier tune L1 regularization
- Balanced Random Forest tune number of trees, number of features / tree
- Unsupervised learning: Sparse PCA, Dictionary Learning, ICA tune number of components, regularization

Results for k-NN, balanced Random Forest and Logistic Regression classifiers (no unsupervised pre-processing)

kNN - Train-test on same group of individuals	bRF - Train-test on same group of individuals	Log Reg - Train-test on same group of individuals
precision recall f1-score	precision recall f1-score	precision recall f1-score
N 0.99 1.00 1.00	N 1.00 0.98 0.99	N 0.95 0.97 0.96
A 0.98 0.92 0.95	A 0.81 0.95 0.87	A 0.73 0.66 0.69
L 0.99 0.99 0.99	L 0.99 0.99 0.99	L 0.92 0.93 0.93
R 0.99 1.00 0.99	R 0.99 0.99 0.99	R 0.86 0.85 0.86
V 0.98 0.97 0.98	V 0.88 0.99 0.93	V 0.81 0.64 0.71
macro avg 0.99 0.97 0.98	macro avg 0.93 0.98 0.95	macro avg 0.85 0.81 0.83
weighted avg 0.99 0.99 0.99	weighted avg 0.98 0.98 0.98	weighted avg 0.92 0.92 0.92
kNN - Train on group 1, test on group 2	bRF - Train on group 1, test on group 2	Log Reg - Train on group 1, test on group 2
precision recall f1-score	precision recall f1-score	precision recall f1-score
N 0.85 0.98 0.91	N 0.89 0.92 0.90	N 0.81 0.91 0.86
A 0.19 0.23 0.21	A 0.08 0.44 0.14	A 0.07 0.07 0.07
L 1.00 0.42 0.59	L 1.00 0.38 0.55	L 0.04 0.00 0.00
R 0.33 0.04 0.07	R 0.52 0.04 0.07	R 0.06 0.04 0.05
V 0.59 0.70 0.64	V 0.38 0.86 0.53	V 0.17 0.43 0.25
macro avg 0.59 0.47 0.48	macro avg 0.57 0.53 0.44	macro avg 0.23 0.29 0.25
weighted avg 0.82 0.83 0.80	weighted avg 0.85 0.79 0.78	weighted avg 0.73 0.77 0.75

k-NN: best performance with n=3; Balanced RF: best performance with 1000 trees; Log Regression: Heavy L1 regularization N: Normal ECG, A, L, R, V: Four most common ECG abnormality types

Modeling – Results / Conclusion

- Across all models, best performance for prediction abnormal ECG in new data from the same set of individuals
- Using low quality ECG data from a single channel, common machine learning algorithms can successfully be applied to detect abnormal heart activity when past data from same patients are available
- Relatively poor transfer to unseen population (however performance on single ECG segment is a very stringent criterion)
- Contrary to expectation, unsupervised preprocessing gave poorer results (in each cases, ~5-10% lower performance - results not presented further due potential implementation errors)
- Good performance of k-NN and RF suggest that similarity-based approaches might be best suited for this problem. Representation learning remains work in progress

Future work

- Need ML solution for isolating heart beats from continuous ECG
- Deep learning with data from large populations for transferable ECG pattern recognition
- Apply convolutional neural network (CNN) and autoencoder modeling to better characterize ECG morphology
- Apply autoencoder to model variability of ECG features within and across patients
- Characterize ECG abnormality in terms of relative timing and amplitudes of ECG features for better diagnostic interpretability