A Sketch of Nash's Theorem from Fixed Point **Theorems**

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Reference

- Lecture Notes in 6.853 Topics in Algorithmic Game Theory [link].
- Fixed Point Theorems and Applications to Game Theory. Allen Yuan. The University of Chicago Mathematics REU 2017. [link].
 - REU = Research Experience for Undergraduate students.

Outline

- Brouwer's Fixed Point Theorem
 - Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)
- Kakutani's Fixed Point Theorem
 - Pure Nash Equilibria of Pure Strategic Games
 - Preliminaries
 - Main Theorem I & The Proof
 - Mixed Nash Equilibria of Finite Strategies Games
 - Preliminaries & Assumptions
 - Main Theorem II & the Proof

Outline

- Brouwer's Fixed Point Theorem
 - Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)
- 2 Kakutani's Fixed Point Theorem
 - Pure Nash Equilibria of Pure Strategic Games
 - Preliminaries
 - Main Theorem I & The Proof
 - Mixed Nash Equilibria of Finite Strategies Games
 - Preliminaries & Assumptions
 - Main Theorem II & the Proof

The Setting

- A set N of n players.
- Strategy set $S_i = \{s_{i,1}, \dots, s_{i,k_i}\}$ for each player $i \in N$, k_i is bounded.
- Utility function: u_i for each player i.
- $\Delta := \Delta_1 \times \Delta_2 \times \cdots \Delta_n$: a Cartesian product of $(\Delta_i)_{i \in N}$.
 - For $\mathbf{x} \in \Delta$, $x_i(s)$ denotes the probability mass on strategy $s \in S_i$.
 - $\Delta_i = \{(x_i(s_{i,1}), x_i(s_{i,2}), \dots, x_i(s_{i,k_i})) \mid x_i(s_{i,j}) \geq 0 \ \forall j; \ \sum_i x_i(s_{i,j}) = 1\}.$
 - $x_i \in \Delta_i$: a mixed strategy.

Nash's Theorem

Nash (1950)

Every game $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ has a Nash equilibrium.

• Note: $u_i(x) := \sum_{s \in S_i} x_i(s) \cdot u_i(s; x_{-i}).$

Nash's Theorem

Nash (1950)

Every game $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ has a Nash equilibrium.

- Note: $u_i(x) := \sum_{s \in S_i} x_i(s) \cdot u_i(s; x_{-i}).$
- No player wants to deviate to the other strategy unilaterally.

closed & bounded

Fall 2024

Brouwer, Kakutani & Nash Brouwer's Fixed Point Theorem

Fixed Point

Brouwer's Fixed Point Theorem

Brouwer's Fixed-Point Theorem

Let D be a convex, compact (closed and bounded) subset of the Euclidean space. If $f: D \to D$ is continuous, then there exists $x \in D$ such that

$$f(x) = x$$
.

• **Idea:** We want the function f to satisfy the conditions of Brouwer's fixed point theorem.

Brouwer's Fixed Point Theorem

Brouwer's Fixed-Point Theorem

Let D be a convex, compact (closed and bounded) subset of the Euclidean space. If $f: D \to D$ is continuous, then there exists $x \in D$ such that

$$f(x) = x$$
.

- **Idea:** We want the function f to satisfy the conditions of Brouwer's fixed point theorem.
- Try to relate utilities of players to a function f like above.

The Gain function

Gain

Suppose that $x' \in \Delta$ is given. For a player i and strategy $s_i \in S_i$ (or $s_i \in \Delta_i$), we define the gain as

$$Gain_{i,s_i}(\mathbf{x}') = \max\{u_i(s_i; \mathbf{x}'_{-i}) - u_i(\mathbf{x}), 0\},\$$

which is non-negative.

- $\mathbf{x}'_{-i} := (x_i)_{i \in \mathbb{N}}, (\mathbf{x}_{-i}, x_i) = \mathbf{x}.$
- It's equal to the increase in payoff for player *i* if he/she were to switch to pure strategy *s_i*.

Proof of Nash's Theorem (Define a response function)

- Define a function $f: \Delta \to \Delta$ that satisfies the conditions of Brouwer's fixed point theorem.
- For all $\mathbf{x} \in \Delta$, $\mathbf{y} = f(\mathbf{x})$ where for all $i \in N$ and $s_i \in S_i$,

$$y_i(s_i) := \frac{x_i(s_i) + \mathsf{Gain}_{i;s_i}(\mathbf{x})}{1 + \sum_{s_i' \in S_i} \mathsf{Gain}_{i;s_i'}(\mathbf{x})}.$$

• f tries to boost the probability mass where strategy switching results in gains in payoff.

Proof of Nash's Theorem (Define a response function)

- Define a function $f: \Delta \to \Delta$ that satisfies the conditions of Brouwer's fixed point theorem.
- For all $x \in \Delta$, y = f(x) where for all $i \in N$ and $s_i \in S_i$,

$$y_i(s_i) := \frac{x_i(s_i) + \mathsf{Gain}_{i;s_i}(\mathbf{x})}{1 + \sum_{s_i' \in S_i} \mathsf{Gain}_{i;s_i'}(\mathbf{x})}.$$

- $f: \Delta \to \Delta$ is continuous (verify this by yourself).
- ullet Δ is a product of simplicies so it is convex (verify this by yourself).
- Δ is closed and bounded, so it is compact.

Proof of Nash's Theorem (Define a response function)

- Define a function $f: \Delta \to \Delta$ that satisfies the conditions of Brouwer's fixed point theorem.
- For all $x \in \Delta$, y = f(x) where for all $i \in N$ and $s_i \in S_i$,

$$y_i(s_i) := \frac{x_i(s_i) + \mathsf{Gain}_{i;s_i}(\mathbf{x})}{1 + \sum_{s_i' \in S_i} \mathsf{Gain}_{i;s_i'}(\mathbf{x})}.$$

- $f: \Delta \to \Delta$ is continuous (verify this by yourself).
- Δ is a product of simplicies so it is convex (verify this by yourself).
- Δ is closed and bounded, so it is compact.
- * Brouwer's fixed point theorem guarantees the existence of a fixed point of f.

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Claim: Any fixed point of f is a Nash equilibrium

- It suffices to prove that a fixed point x = f(x) satisfies:
 - $Gain_{i:s_i}(\mathbf{x}) = 0$, for each $i \in N$ and each $s_i \in S_i$.

Fall 2024

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Claim: Any fixed point of f is a Nash equilibrium

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p :
 - $Gain_{p:s_n}(\mathbf{x}) > 0$.

Claim: Any fixed point of f is a Nash equilibrium

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p :
 - $Gain_{p:s_n}(\mathbf{x}) > 0$.
- Note that we must have $x_p(s_p) > 0$, otherwise **x** cannot be a fixed point of f.
 - From the definition of f; the numerator would be > 0.

$$y_p(s_p) := \frac{x_p(s_p) + \mathsf{Gain}_{p;s_p}(\mathbf{x})}{1 + \sum_{s_p' \in S_p} \mathsf{Gain}_{p;s_p'}(\mathbf{x})}.$$

Claim: Any fixed point of f is a Nash equilibrium

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p :
 - $Gain_{p;s_n}(x) > 0$

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Claim: Any fixed point of f is a Nash equilibrium

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p :
 - $Gain_{p:s_p}(x) > 0 \Rightarrow u_p(s_p; x_{-p}) u_p(x) > 0.$

Claim: Any fixed point of *f* is a Nash equilibrium

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_p :
 - $Gain_{p;s_p}(x) > 0 \Rightarrow u_p(s_p; x_{-p}) u_p(x) > 0.$
- We argue that there must be some other pure strategy \hat{s}_p such that:
 - $x_p(\hat{s}_p) > 0$ and
 - $u_p(\hat{s}_p; \mathbf{x}_{-p}) u_p(\mathbf{x}) < 0$
 - * Notice that

$$u_p(\mathbf{x}) := \sum_{\mathbf{s} \in S_p} x_p(\mathbf{s}) \cdot u_p(\mathbf{s}; \mathbf{x}_{-p}).$$

Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)

Claim: Any fixed point of f is a Nash equilibrium

Prove it by contradiction.

- Assume that there is some player p who can improve his/her payoff by switching to a pure strategy, say s_n :
 - $Gain_{p:s_p}(x) > 0 \Rightarrow u_p(s_p; x_{-p}) u_p(x) > 0$.
- We argue that there must be some other pure strategy \hat{s}_p such that:
 - $x_p(\hat{s}_p) > 0$ and
 - $u_p(\hat{s}_p; \mathbf{x}_{-p}) u_p(\mathbf{x}) < 0 \implies \mathsf{Gain}_{p,\hat{s}_p}(\mathbf{x}) = 0.$
 - * Notice that

$$u_p(\mathbf{x}) := \sum_{s \in S_p} x_p(s) \cdot u_p(s; \mathbf{x}_{-p}).$$

• We obtain that $(x \text{ is not a fixed point } \Rightarrow \leftarrow)$

$$y_p(\hat{s}_p) := \frac{x_p(\hat{s}_p) + \mathsf{Gain}_{p;\hat{s}_p}(\mathbf{x})}{1 + \sum_{s_p' \in S_p} \mathsf{Gain}_{p;s_p'}(\mathbf{x})} < x_p(\hat{s}_p).$$

Outline

- Brouwer's Fixed Point Theorem
 - Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)
- Kakutani's Fixed Point Theorem
 - Pure Nash Equilibria of Pure Strategic Games
 - Preliminaries
 - Main Theorem I & The Proof
 - Mixed Nash Equilibria of Finite Strategies Games
 - Preliminaries & Assumptions
 - Main Theorem II & the Proof

An Extension of Brouwer's work

- Focus: set-valued functions.
 - Refer here for further readings.
 - Why do we consider set-valued functions?

An Extension of Brouwer's work

- Focus: set-valued functions.
 - Refer here for further readings.
 - Why do we consider set-valued functions?
 - Best-responses.

Upper Semi-Continuous (having a closed graph)

Upper semi-continuous functions

Let

- $\mathbb{P}(X)$: all nonempty, closed, convex subsets of X.
- S: a nonempty, compact, and convex set.

Then the set-valued function $\Phi:S\to\mathbb{P}(S)$ is upper semi-continuous if

for arbitrary sequences $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ in S, we have

- $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{x}_0$,
- $\lim_{n\to\infty} \mathbf{y}_n = \mathbf{y}_0$,
- $\mathbf{y}_n \in \Phi(\mathbf{x}_n)$ for all $n \in \mathbb{N}$,

imply that $\mathbf{y}_0 \in \Phi(\mathbf{x}_0)$.

Removable discontinuity, Sequentially compact, Bolzano-Weierstrass theorem.

(Figure from Wikipedia)

Fixed Point of Set-Valued Functions

Fixed Point (Set-Valued)

A fixed point of a set-valued function $\Phi: S \to \mathbb{P}(S)$ is a point $\mathbf{x}^* \in S$ such that $\mathbf{x}^* \in \Phi(\mathbf{x}^*)$.

Kakutani's Theorem for Simplices

Kakutani's Theorem for Simplices (1941)

If S is an r-dimensional closed simplex in a Euclidean space and $\Phi: S \to \mathbb{P}(S)$ is upper semi-continuous, then Φ has a fixed point.

Kakutani's Fixed-Point Theorem

Kakutani's Fixed-Point Theorem (1941)

If S is a nonempty, compact, convex set in a Euclidean space and $\Phi: S \to \mathbb{P}(S)$ is upper semi-continuous, then Φ has a fixed point.

Kakutani's Fixed-Point Theorem

Kakutani's Fixed-Point Theorem (1941)

If S is a nonempty, compact, convex set in a Euclidean space and $\Phi: S \to \mathbb{P}(S)$ is upper semi-continuous, then Φ has a fixed point.

- We won't go over its proof.
- Instead, we will delve into how it can be used to prove Nash's Theorem from the perspectives of set-valued functions and best-responses.

Outline

- Brouwer's Fixed Point Theorem
 - Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)
- Kakutani's Fixed Point Theorem
 - Pure Nash Equilibria of Pure Strategic Games
 - Preliminaries
 - Main Theorem I & The Proof
 - Mixed Nash Equilibria of Finite Strategies Games
 - Preliminaries & Assumptions
 - Main Theorem II & the Proof

Cartesian product of Sets

Cartesian Product

For a family of sets $\{A_i\}_{i\in N}$, $\prod_{i\in N}A_i=A_1\times A_2\times \cdots \times A_n$ denotes the Cartesian product of A_i for $i\in N$.

Profile

for $x_i \in A_i$, then $(x_i)_{i \in N}$ is called a (strategy) profile.

Binary Relation

Binary Relation

- A binary relation on a set A is a subset of A × A consisting of all pairs of elements.
- For $a, b \in A$, we denote by R(a, b) if a is related to b.

Binary Relation

Binary Relation

- A binary relation on a set A is a subset of A × A consisting of all pairs of elements.
- For $a, b \in A$, we denote by R(a, b) if a is related to b.

Properties on Binary Relations

- Completeness: For all $a, b \in A$, we have R(a, b), R(b, a), or both.
- **Reflexivity**: For all $a \in A$, we have R(a, a).
- **Transitivity**: For $a, b, c \in A$, if R(a, b) and R(b, c), then we have R(a, c).

Preference Relation

Preference Relation

A preference relation is a complete, reflexive, and transitive binary relation.

- Denote by $a \succeq b$ if a is related to b.
- Denote by $a \succ b$ if $a \succsim b$ but $b \not\succsim a$.
- Denote by $a \sim b$ if $a \succeq b$ and $b \succeq a$.

Preference Relation

Preference Relation

A preference relation is a complete, reflexive, and transitive binary relation.

- Denote by $a \succeq b$ if a is related to b.
- Denote by $a \succ b$ if $a \succsim b$ but $b \not\succsim a$.
- Denote by $a \sim b$ if $a \succsim b$ and $b \succsim a$.
- $a \succeq b$: a is weakly preferred to b.
- $a \sim b$: agent is indifferent between a and b.

Continuity on a Preference relation

Continuous Preference Relation

A preference relation is continuous if:

whenever there exist sequences $(a_k)_{k\in\mathbb{N}}$ and $(b_k)_{k\in\mathbb{N}}$ in A such that

- $\bullet \ \operatorname{lim}_{k\to\infty} a_k = a,$
- $\bullet \ \lim_{k\to\infty}b_k=b,$
- and $a_k \succsim b_k$ for all $k \in \mathbb{N}$

we have $a \succeq b$.

Strategic Games

Strategic Games

A strategic game is a tuple $\langle N, (A_i), (\succeq_i) \rangle$ consisting of

- a finite set of **players** *N*.
- for each player $i \in N$, a nonempty set of **actions** A_i .
- for each player $i \in N$, a **preference relation** \succeq_i on $A = \prod_{j \in N} A_j$.
- A strategic game is finite if A_i is finite for all $i \in N$.

Strategic Games

Strategic Games

A strategic game is a tuple $\langle N, (A_i), (\succeq_i) \rangle$ consisting of

- a finite set of **players** *N*.
- for each player $i \in N$, a nonempty set of **actions** A_i .
- for each player $i \in N$, a **preference relation** \succeq_i on $A = \prod_{j \in N} A_j$.
- A strategic game is finite if A_i is finite for all $i \in N$.
- **Note**: \succsim_i is not defined on A_i only, but instead on the set of all $(A_j)_{j \in N}$.

PNE w.r.t. a Preference Relation

Pure Nash Equilibrium (PNE) with (\succeq_i)

A (pure) Nash equilibrium (PNE) of a strategic game $\langle N, (A_i), (\succsim_i) \rangle$ is a profile $\mathbf{a}^* := (a_i)_{i \in N}$ such that for all $i \in N$, we have

$$(\boldsymbol{a}_{-i}^*,a_i^*)\succsim_i (\boldsymbol{a}_{-i}^*,a_i')$$
 for all $a_i'\in A_i$.

Best-Response Function

Best-Response Functions

The best-response function of player i,

$$BR_i: \prod_{j\in N\setminus\{i\}} A_j \to \mathbb{P}(A_i),$$

is given by

$$BR_i(\boldsymbol{a}_{-i}) = \{a_i \in A_i \mid (\boldsymbol{a}_{-i}, a_i) \succsim_i (\boldsymbol{a}_{-i}, a_i') \text{ for all } a_i' \in A_i\}.$$

Best-Response Function

Best-Response Functions

The best-response function of player i,

$$BR_i: \prod_{j\in N\setminus\{i\}} A_j \to \mathbb{P}(A_i),$$

is given by

$$BR_i(\boldsymbol{a}_{-i}) = \{a_i \in A_i \mid (\boldsymbol{a}_{-i}, a_i) \succsim_i (\boldsymbol{a}_{-i}, a_i') \text{ for all } a_i' \in A_i\}.$$

- BR_i is set-valued.
- Recall: $\mathbb{P}(X)$ includes all nonempty, closed, and convex subsets of X.

PNE w.r.t. a Preference Relation

Alternative definition of NE.

Pure Nash Equilibrium (PNE) with (\succeq_i)

A Nash equilibrium of a strategic game $\langle N, (A_i), (\succsim_i) \rangle$ is a profile $\mathbf{a}^* := (a_i)_{i \in N}$ such that $\mathbf{a}_i^* \in BR_i(\mathbf{a}_{-i}^*)$ for all $i \in N$.

• Thus, to prove the existence of a PNE for a strategic game $\langle N, (A_i), (\succsim_i) \rangle$, it suffices to show that:

PNE w.r.t. a Preference Relation

Alternative definition of NE.

Pure Nash Equilibrium (PNE) with (\succeq_i)

A Nash equilibrium of a strategic game $\langle N, (A_i), (\succsim_i) \rangle$ is a profile $a^* := (a_i)_{i \in N}$ such that $a_i^* \in BR_i(a_{-i}^*)$ for all $i \in N$.

- Thus, to prove the existence of a PNE for a strategic game $\langle N, (A_i), (\succeq_i) \rangle$, it suffices to show that:
 - There exists a profile $\mathbf{a}^* \in A$ such that for all $i \in N$ we have $\mathbf{a}_i^* \in BR_i(\mathbf{a}_{-i}^*)$.

Outline

- Brouwer's Fixed Point Theorem
 - Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)
- Kakutani's Fixed Point Theorem
 - Pure Nash Equilibria of Pure Strategic Games
 - Preliminaries
 - Main Theorem I & The Proof
 - Mixed Nash Equilibria of Finite Strategies Games
 - Preliminaries & Assumptions
 - Main Theorem II & the Proof

General Idea

• Let $BR: A \to \mathbb{P}(A)$ be

$$BR(\boldsymbol{a}) = \prod_{i \in N} BR_i(\boldsymbol{a}_{-i}).$$

• We seek for some $a^* \in A$ such that $a^* \in BR(a^*)$.

General Idea

• Let $BR:A \to \mathbb{P}(A)$ be

$$BR(\mathbf{a}) = \prod_{i \in N} BR_i(\mathbf{a}_{-i}).$$

- We seek for some $a^* \in A$ such that $a^* \in BR(a^*)$.
- We can then use Kakutani's Fixed-Point Theorem to show that a* exists.

General Idea

• Let $BR: A \to \mathbb{P}(A)$ be

$$BR(\mathbf{a}) = \prod_{i \in N} BR_i(\mathbf{a}_{-i}).$$

- We seek for some $a^* \in A$ such that $a^* \in BR(a^*)$.
- We can then use Kakutani's Fixed-Point Theorem to show that a* exists.
- Yet, we need to verify the conditions under which Kakutani's Fixed-Point Theorem holds.

Quasi-Concave

Quasi-Concave of \succeq_i

A preference relation \succeq_i over A is quasi-concave on A_i if for all $\mathbf{a} \in A$, the set

$$\{a_i' \in A_i \mid (\boldsymbol{a}_{-i}, a_i') \succsim_i (\boldsymbol{a}_{-i}, a_i)\}$$

is convex.

 Then, we can consider the following theorem which guarantees the condition of a PNE.

An example of quasi-concave function.

$$f(\lambda x + (1 - \lambda y)) \ge \min\{f(x), f(y)\}, \text{ for } \lambda \in [0, 1]$$

The Main Theorem I

Main Theorem I

The strategic game $\langle N, (A_i), (\succsim_i) \rangle$ has a (pure) Nash equilibrium if

- ullet A_i is a nonempty, compact, and convex subset of a Euclidean space
- \succsim_i is continuous and quasi-concave on A_i for all $i \in N$.
- We will show that A (cf. S) and BR (cf. Φ) satisfy the conditions to apply Kakutani's Fixed-Point Theorem.

• A_i is nonempty, compact and convex for all $i \in N$, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.

- A_i is nonempty, compact and convex for all $i \in N$, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.
- Note that in Kakutani's Theorem, $\Phi: S \to \mathbb{P}(S)$, where $\mathbb{P}(S)$ denotes all nonempty, closed, and convex subsets of S.

- A_i is nonempty, compact and convex for all $i \in N$, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.
- Note that in Kakutani's Theorem, $\Phi: S \to \mathbb{P}(S)$, where $\mathbb{P}(S)$ denotes all nonempty, closed, and convex subsets of S.
- We need to show that $BR_i(\boldsymbol{a}_{-i})$ is nonempty, closed, and convex for all $\boldsymbol{a}_{-i} \in \prod_{j \in \mathcal{N} \setminus \{i\}} A_j$.

- A_i is nonempty, compact and convex for all $i \in N$, so their Cartesian product (i.e., A) must also be nonempty, compact and convex.
- Note that in Kakutani's Theorem, $\Phi: S \to \mathbb{P}(S)$, where $\mathbb{P}(S)$ denotes all nonempty, closed, and convex subsets of S.
- We need to show that $BR_i(\boldsymbol{a}_{-i})$ is nonempty, closed, and convex for all $\boldsymbol{a}_{-i} \in \prod_{j \in \mathcal{N} \setminus \{i\}} A_j$.
 - Their Cartesian product BR(a) is then nonempty, closed and convex, too.
 - We then have $BR:A\to \mathbb{P}(A)$.

$BR_i(\mathbf{a}_{-i})$ is nonempty

• Assume that we can construct a continuous function (utility function) $u_i: A_i \to \mathbb{R}$ such that for $a_i, a_i' \in A_i$, $(\mathbf{a}_{-i}, a_i) \succsim (\mathbf{a}_{-i}, a_i')$ if and only if $u_i(a_i) \ge u_i(a_i')$.

$BR_i(\mathbf{a}_{-i})$ is nonempty

Pure Nash Equilibria of Pure Strategic Games

- Assume that we can construct a continuous function (utility function) $u_i: A_i \to \mathbb{R}$ such that for $a_i, a_i' \in A_i$, $(\mathbf{a}_{-i}, a_i) \succsim (\mathbf{a}_{-i}, a_i')$ if and only if $u_i(a_i) \ge u_i(a_i')$.
- Since A_i is compact and u_i is continuous, $u_i(A_i)$ is compact as well.
- By the Extreme Value Theorem, there must exist some $a_i^* \in A_i$ such that $u_i(a_i^*) \ge u_i(a_i)$ for all $a_i \in A_i$.

$BR_i(\boldsymbol{a}_{-i})$ is nonempty

- Assume that we can construct a continuous function (utility function) $u_i: A_i \to \mathbb{R}$ such that for $a_i, a_i' \in A_i$, $(\mathbf{a}_{-i}, a_i) \succsim (\mathbf{a}_{-i}, a_i')$ if and only if $u_i(a_i) \ge u_i(a_i')$.
- Since A_i is compact and u_i is continuous, $u_i(A_i)$ is compact as well.
- By the Extreme Value Theorem, there must exist some $a_i^* \in A_i$ such that $u_i(a_i^*) \ge u_i(a_i)$ for all $a_i \in A_i$.
- By definition of u_i , it follows that $(\mathbf{a}_{-i}, a_i^*) \succsim (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$, thus $a_i^* \in BR_i(\mathbf{a}_{-i})$.

$BR_i(\mathbf{a}_{-i})$ is nonempty

- Assume that we can construct a continuous function (utility function) $u_i: A_i \to \mathbb{R}$ such that for $a_i, a_i' \in A_i$, $(\mathbf{a}_{-i}, a_i) \succsim (\mathbf{a}_{-i}, a_i')$ if and only if $u_i(a_i) \ge u_i(a_i')$.
- Since A_i is compact and u_i is continuous, $u_i(A_i)$ is compact as well.
- By the Extreme Value Theorem, there must exist some $a_i^* \in A_i$ such that $u_i(a_i^*) \ge u_i(a_i)$ for all $a_i \in A_i$.
- By definition of u_i , it follows that $(\mathbf{a}_{-i}, a_i^*) \succsim (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$, thus $a_i^* \in BR_i(\mathbf{a}_{-i})$.
- So $BR_i(\mathbf{a}_{-i})$ is nonempty.

$BR_i(\mathbf{a}_{-i})$ is closed

- Take an arbitrary $p \in \overline{BR_i(\boldsymbol{a}_{-i})}$.
- There must exist some sequence $(p_k)_{k\in\mathbb{N}}$ such that $p_k\in BR_i(\boldsymbol{a}_{-i})$ for all $k\in\mathbb{N}$ and $\lim_{k\to\infty}p_k=p$.

$BR_i(\boldsymbol{a}_{-i})$ is closed

- Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.
- There must exist some sequence $(p_k)_{k\in\mathbb{N}}$ such that $p_k\in BR_i(\boldsymbol{a}_{-i})$ for all $k\in\mathbb{N}$ and $\lim_{k\to\infty}p_k=p$.
- By the definition of BR_i , we know that $(\mathbf{a}_{-i}, p_k) \succsim_i (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$.

$BR_i(\boldsymbol{a}_{-i})$ is closed

- Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.
- There must exist some sequence $(p_k)_{k\in\mathbb{N}}$ such that $p_k\in BR_i(\boldsymbol{a}_{-i})$ for all $k\in\mathbb{N}$ and $\lim_{k\to\infty}p_k=p$.
- By the definition of BR_i , we know that $(\mathbf{a}_{-i}, p_k) \succsim_i (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$.
- For each $a_i \in A_i$, we can construct
 - a sequence $((\boldsymbol{a}_{-i},p_k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\boldsymbol{a}_{-i},p_k)=(\boldsymbol{a}_{-i},p)$.
 - a sequence $((\boldsymbol{a}_{-i},a_i))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\boldsymbol{a}_{-i},a_i)=(\boldsymbol{a}_{-i},a_i)$.

$BR_i(\mathbf{a}_{-i})$ is closed

- Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.
- There must exist some sequence $(p_k)_{k\in\mathbb{N}}$ such that $p_k\in BR_i(\boldsymbol{a}_{-i})$ for all $k\in\mathbb{N}$ and $\lim_{k\to\infty}p_k=p$.
- By the definition of BR_i , we know that $(\mathbf{a}_{-i}, p_k) \succsim_i (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$.
- For each $a_i \in A_i$, we can construct
 - a sequence $((\boldsymbol{a}_{-i},p_k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\boldsymbol{a}_{-i},p_k)=(\boldsymbol{a}_{-i},p).$
 - ullet a sequence $((m{a}_{-i},a_i))_{k\in\mathbb{N}}$ such that $\lim_{k o\infty}(m{a}_{-i},a_i)=(m{a}_{-i},a_i)$.
- Note that $(\mathbf{a}_{-i}, p_k) \succsim_i (\mathbf{a}_{-i}, a_i)$ for all $k \in \mathbb{N}$.
 - By the continuity of \succsim_i , we have $(a_{-i}, p) \succsim_i (a_{-i}, a_i)$ for all $a_i \in A_i$.

$BR_i(\mathbf{a}_{-i})$ is closed

- Take an arbitrary $p \in \overline{BR_i(\boldsymbol{a}_{-i})}$.
- There must exist some sequence $(p_k)_{k\in\mathbb{N}}$ such that $p_k\in BR_i(\boldsymbol{a}_{-i})$ for all $k\in\mathbb{N}$ and $\lim_{k\to\infty}p_k=p$.
- By the definition of BR_i , we know that $(\mathbf{a}_{-i}, p_k) \succsim_i (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$.
- For each $a_i \in A_i$, we can construct
 - a sequence $((\boldsymbol{a}_{-i},p_k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\boldsymbol{a}_{-i},p_k)=(\boldsymbol{a}_{-i},p)$.
 - ullet a sequence $((m{a}_{-i},a_i))_{k\in\mathbb{N}}$ such that $\lim_{k o\infty}(m{a}_{-i},a_i)=(m{a}_{-i},a_i)$.
- Note that $(\mathbf{a}_{-i}, p_k) \succsim_i (\mathbf{a}_{-i}, a_i)$ for all $k \in \mathbb{N}$.
 - By the continuity of \succeq_i , we have $(a_{-i}, p) \succeq_i (a_{-i}, a_i)$ for all $a_i \in A_i$.
 - $\Rightarrow p \in BR_i(\mathbf{a}_{-i})$

$BR_i(\boldsymbol{a}_{-i})$ is closed

- Take an arbitrary $p \in \overline{BR_i(\mathbf{a}_{-i})}$.
- There must exist some sequence $(p_k)_{k\in\mathbb{N}}$ such that $p_k\in BR_i(\boldsymbol{a}_{-i})$ for all $k\in\mathbb{N}$ and $\lim_{k\to\infty}p_k=p$.
- By the definition of BR_i , we know that $(\mathbf{a}_{-i}, p_k) \succsim_i (\mathbf{a}_{-i}, a_i)$ for all $a_i \in A_i$.
- For each $a_i \in A_i$, we can construct
 - a sequence $((\boldsymbol{a}_{-i},p_k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\boldsymbol{a}_{-i},p_k)=(\boldsymbol{a}_{-i},p).$
 - ullet a sequence $((m{a}_{-i},a_i))_{k\in\mathbb{N}}$ such that $\lim_{k o\infty}(m{a}_{-i},a_i)=(m{a}_{-i},a_i)$.
- Note that $(\mathbf{a}_{-i}, p_k) \succsim_i (\mathbf{a}_{-i}, a_i)$ for all $k \in \mathbb{N}$.
 - By the continuity of \succeq_i , we have $(a_{-i}, p) \succeq_i (a_{-i}, a_i)$ for all $a_i \in A_i$.
 - $\Rightarrow p \in BR_i(\mathbf{a}_{-i}) \ (\therefore BR_i(\mathbf{a}_{-i}) \text{ is closed}).$

Brouwer, Kakutani & Nash

Kakutani's Fixed Point Theorem

Pure Nash Equilibria of Pure Strategic Games

$BR_i(\boldsymbol{a}_{-i})$ is convex

- Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- \succsim_i is quasi-concave on $A_i \Rightarrow$

$BR_i(\boldsymbol{a}_{-i})$ is convex

- Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- \succsim_i is quasi-concave on $A_i \Rightarrow$

$$S = \{a_i' \in A_i \mid (\boldsymbol{a}_{-i}, a_i') \succsim_i (\boldsymbol{a}_{-i}, a_i)\}$$
 is convex

• Since a_i is a best response, the responses a'_i weakly preferable to a_i must be also best responses.

$BR_i(\mathbf{a}_{-i})$ is convex

- Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- \succsim_i is quasi-concave on $A_i \Rightarrow$

$$S = \{a_i' \in A_i \mid (\boldsymbol{a}_{-i}, a_i') \succsim_i (\boldsymbol{a}_{-i}, a_i)\}$$
 is convex

• Since a_i is a best response, the responses a_i' weakly preferable to a_i must be also best responses. $\Rightarrow S \subseteq BR_i(\mathbf{a}_{-i})$.

$BR_i(\mathbf{a}_{-i})$ is convex

- Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- \succsim_i is quasi-concave on $A_i \Rightarrow$

$$S = \{a_i' \in A_i \mid (\boldsymbol{a}_{-i}, a_i') \succsim_i (\boldsymbol{a}_{-i}, a_i)\}$$
 is convex

- Since a_i is a best response, the responses a_i' weakly preferable to a_i must be also best responses. $\Rightarrow S \subseteq BR_i(\mathbf{a}_{-i})$.
- Any other best response $a_i^* \in BR_i(\boldsymbol{a}_{-i})$ must be at least good as a_i

$BR_i(\mathbf{a}_{-i})$ is convex

- Consider $a_i \in BR_i(\mathbf{a}_{-i})$.
- \succsim_i is quasi-concave on $A_i \Rightarrow$

$$S = \{a_i' \in A_i \mid (\boldsymbol{a}_{-i}, a_i') \succsim_i (\boldsymbol{a}_{-i}, a_i)\}$$
 is convex

- Since a_i is a best response, the responses a_i' weakly preferable to a_i must be also best responses. $\Rightarrow S \subseteq BR_i(\mathbf{a}_{-i})$.
- Any other best response $a_i^* \in BR_i(\boldsymbol{a}_{-i})$ must be at least good as $a_i \Rightarrow BR_i(\boldsymbol{a}_{-i}) \subseteq S$.
- Hence, we have $BR_i(\boldsymbol{a}_{-i}) = S$, so $BR_i(\boldsymbol{a}_{-i})$ is convex.

Brouwer, Kakutani & Nash Kakutani's Fixed Point Theorem Pure Nash Equilibria of Pure Strategic Games

• Next, we will show that BR is upper semi-continuous.

Recall: Upper Semi-Continuous

Upper semi-continuous functions

Let

- $\mathbb{P}(X)$: all nonempty, closed, convex subsets of X.
- S: a nonempty, compact, and convex set.

Then the set-valued function $\Phi:S \to \mathbb{P}(S)$ is upper semi-continuous if

for arbitrary sequences $(\boldsymbol{x}_n)_{n\in\mathbb{N}}, (\boldsymbol{y}_n)_{n\in\mathbb{N}}$ in S, we have

- $\bullet \ \lim_{n\to\infty} \mathbf{x}_n = \mathbf{x}_0,$
- $\lim_{n\to\infty} \mathbf{y}_n = \mathbf{y}_0$,
- $\mathbf{y}_n \in \Phi(\mathbf{x}_n)$ for all $n \in \mathbb{N}$,

imply that $\mathbf{y}_0 \in \Phi(\mathbf{x}_0)$.

Fall 2024

BR is upper semi-continuous

• Consider two sequences $(x^k), (y^k)$ in A such that

$$\lim_{k\to\infty} \mathbf{x}^k = \mathbf{x}^0,$$

 $\lim_{k\to\infty} \mathbf{y}^k = \mathbf{y}^0.$
 $\mathbf{y}^k \in BR_i(\mathbf{x}^k)$ for all $k \in \mathbb{N}$.

• Then we have $y_i^k \in BR_i(\mathbf{x}_{-i}^k)$ for all $i \in N, k \in \mathbb{N}$.

43 / 55

BR is upper semi-continuous

• Consider two sequences $(x^k), (y^k)$ in A such that

$$\lim_{k\to\infty} \mathbf{x}^k = \mathbf{x}^0,$$

 $\lim_{k\to\infty} \mathbf{y}^k = \mathbf{y}^0.$
 $\mathbf{y}^k \in BR_i(\mathbf{x}^k)$ for all $k \in \mathbb{N}$.

- Then we have $y_i^k \in BR_i(\mathbf{x}_{-i}^k)$ for all $i \in N, k \in \mathbb{N}$.
- For an arbitrary $i \in N$, we have $(\mathbf{x}_{-i}^k, y_i^k) \succsim_i (\mathbf{x}_{-i}^k, a_i)$ for all $a_i \in A_i$ and $k \in \mathbb{N}$ (: best response).

- For each $a_i \in A_i$, we can construct:
 - a sequence $((\mathbf{x}_{-i}^k, y_i^k))_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} (\mathbf{x}_{-i}^k, y_i^k) = (\mathbf{x}_{-i}^0, y_i^0)$.
 - a sequence $((\pmb{x}_{-i}^k,a_i))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\pmb{x}_{-i}^k,a_i)=(\pmb{x}_{-i}^0,a_i)$.
- Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succsim_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - By continuity of \succsim_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succsim_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.

- For each $a_i \in A_i$, we can construct:
 - a sequence $((\mathbf{x}_{-i}^k,y_i^k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\mathbf{x}_{-i}^k,y_i^k)=(\mathbf{x}_{-i}^0,y_i^0).$
 - a sequence $((\pmb{x}_{-i}^k,a_i))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\pmb{x}_{-i}^k,a_i)=(\pmb{x}_{-i}^0,a_i)$.
- Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succsim_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - By continuity of \succsim_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succsim_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.
- Thus, we have $y_i^0 \in BR_i(\mathbf{x}_{-i}^0)$ for all $i \in N$.
 - $y^0 \in BR_i(x^0)$.

- For each $a_i \in A_i$, we can construct:
 - a sequence $((\pmb{x}_{-i}^k,y_i^k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\pmb{x}_{-i}^k,y_i^k)=(\pmb{x}_{-i}^0,y_i^0)$.
 - a sequence $((\pmb{x}_{-i}^k,a_i))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\pmb{x}_{-i}^k,a_i)=(\pmb{x}_{-i}^0,a_i)$.
- Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succsim_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - By continuity of \succsim_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succsim_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.
- Thus, we have $y_i^0 \in BR_i(\mathbf{x}_{-i}^0)$ for all $i \in N$.
 - $y^0 \in BR_i(x^0)$.
- Therefore, BR is upper semi-continuous.

- For each $a_i \in A_i$, we can construct:
 - a sequence $((\mathbf{x}_{-i}^k,y_i^k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\mathbf{x}_{-i}^k,y_i^k)=(\mathbf{x}_{-i}^0,y_i^0).$
 - a sequence $((\pmb{x}_{-i}^k,a_i))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\pmb{x}_{-i}^k,a_i)=(\pmb{x}_{-i}^0,a_i)$.
- Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succsim_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - By continuity of \succsim_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succsim_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.
- Thus, we have $y_i^0 \in BR_i(\mathbf{x}_{-i}^0)$ for all $i \in N$.
 - $y^0 \in BR_i(x^0)$.
- Therefore, BR is upper semi-continuous.

By Kakutani's Fixed-Point Theorem, there exists some $\mathbf{a}^* \in A$ such that $\mathbf{a}^* \in BR(\mathbf{a}^*)$

- For each $a_i \in A_i$, we can construct:
 - a sequence $((\pmb{x}_{-i}^k,y_i^k))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\pmb{x}_{-i}^k,y_i^k)=(\pmb{x}_{-i}^0,y_i^0)$.
 - a sequence $((\pmb{x}_{-i}^k,a_i))_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty}(\pmb{x}_{-i}^k,a_i)=(\pmb{x}_{-i}^0,a_i)$.
- Note that we have $(\mathbf{x}_{-i}^k, y_i^k) \succsim_i (\mathbf{x}_{-i}^k, a_i)$ for all $k \in \mathbb{N}$.
 - By continuity of \succsim_i , we have $(\mathbf{x}_{-i}^0, y_i^0) \succsim_i (\mathbf{x}_{-i}^0, a_i)$ for all $a_i \in A_i$.
- Thus, we have $y_i^0 \in BR_i(\mathbf{x}_{-i}^0)$ for all $i \in N$.
 - $y^0 \in BR_i(x^0)$.
- Therefore, BR is upper semi-continuous.

By Kakutani's Fixed-Point Theorem, there exists some $\mathbf{a}^* \in A$ such that $\mathbf{a}^* \in BR(\mathbf{a}^*) \Rightarrow \mathbf{a}^*$ is a PNE of the strategic game.

Outline

- Brouwer's Fixed Point Theorem
 - Sketch of the Proof of Nash's Theorem (from Brouwer's Theorem)
- Kakutani's Fixed Point Theorem
 - Pure Nash Equilibria of Pure Strategic Games
 - Preliminaries
 - Main Theorem I & The Proof
 - Mixed Nash Equilibria of Finite Strategies Games
 - Preliminaries & Assumptions
 - Main Theorem II & the Proof

Limitations of the Previous PNE Result

Any finite game cannot satisfy the conditions.

Limitations of the Previous PNE Result

- Any finite game cannot satisfy the conditions.
 - Each A_i cannot be convex if it is finite and nonempty.
- Next, we consider extending finite games into non-deterministic (randomized) strategies.

Assumptions

- For a strategic game $\langle N, (A_i), (\succeq_i) \rangle$, we assume that we can construct a utility function $u_i : A \to \mathbb{R}$, where $A = \prod_{i \in N} A_i$.
- Each player's *expected utility* is coupled with the set of probability distributions over *A*.
- $\Delta(X)$: the set of probability distributions over X.
- If X is finite and $\delta \in \Delta(X)$, then
 - $\delta(x)$: the probability that δ assigns to $x \in X$.
 - The support of δ : $\chi(\delta) = \{x \in X \mid \delta(x) > 0\}.$

Mixed Nash Equilibria of Finite Strategies Games

Mixed Strategy

Mixed Strategy

Given a strategic game $\langle N, (A_i), (u_i) \rangle$, we call

- $\alpha_i \in \Delta(A_i)$ a mixed strategy.
- $a_i \in A_i$ a pure strategy.

A profile of mixed strategies $\alpha = (\alpha_j)_{j \in N}$ induces a probability distribution over A.

• The probability of $\mathbf{a} = (a_j)_{j \in N}$ under α :

$$\alpha(\mathbf{a}) = \prod_{j \in N} \alpha_j(\mathbf{a}_j).$$
 (a normal product)

 $(A_i \text{ is finite } \forall i \in N \text{ and each player's strategy is resolved independently.})$

Mixed Nash Equilibria of Finite Strategies Games

Mixed Extension of $\langle N, (A_i), (u_i) \rangle$

Mixed Extension of the Strategic Games

 $\langle N, (\Delta(A_i)), (U_i) \rangle$:

- $U_i: \prod_{i\in N} \Delta(A_i) \to \mathbb{R}$; expected utility over A induced by $\alpha \in \prod_{i\in N} \Delta(A_i)$.
- If A_j is finite for all $j \in N$, then

$$U_i(\alpha) = \sum_{\boldsymbol{a} \in A} (\alpha(\boldsymbol{a}) \cdot u_i(\boldsymbol{a}))$$

= $\sum_{\boldsymbol{a} \in A} \left(\left(\prod_{j \in N} \alpha_j(a_j) \right) \cdot u_i(\boldsymbol{a}) \right).$

Main Theorem II

Main Theorem II

Every finite strategies game has a mixed strategy Nash equilibrium.

- Consider an arbitrary finite strategic game $\langle N, (A_i), (u_i) \rangle$, let $m_i := |A_i|$ for all $i \in N$.
- Represent each $\Delta(A_i)$ as a collection of vectors $\mathbf{p}^i = (p_1, p_2, \dots, p_{m_i})$.
 - $p_k \ge 0$ for all $k \in [m_i]$ and $\sum_{k=1}^{m_i} p_k = 1$.
 - $\Delta(A_i)$ is a standard $m_i 1$ simplex for all $i \in N$.

Main Theorem II

Main Theorem II

Every finite strategies game has a mixed strategy Nash equilibrium.

- Consider an arbitrary finite strategic game $\langle N, (A_i), (u_i) \rangle$, let $m_i := |A_i|$ for all $i \in N$.
- Represent each $\Delta(A_i)$ as a collection of vectors $\mathbf{p}^i = (p_1, p_2, \dots, p_{m_i})$.
 - $p_k \ge 0$ for all $k \in [m_i]$ and $\sum_{k=1}^{m_i} p_k = 1$.
 - $\Delta(A_i)$ is a standard $m_i 1$ simplex for all $i \in N$.
 - ⋆ $\Delta(A_i)$: nonempty, compact, and convex for each i ∈ N.
- U_i: continuous (∵ multilinear).
- Next, we show that U_i is quasi-concave in $\Delta(A_i)$.

- Consider $\alpha \in \prod_{i \in N} \Delta(A_i)$.
- Goal: Show that $S = \{\alpha'_i \in \Delta(A_i) \mid U_i(\alpha_{-i}, \alpha'_i) \geq U_i(\alpha_{-i}, \alpha_i)\}$ is convex.

- Consider $\alpha \in \prod_{i \in N} \Delta(A_i)$.
- **Goal:** Show that $S = \{\alpha'_i \in \Delta(A_i) \mid U_i(\alpha_{-i}, \alpha'_i) \geq U_i(\alpha_{-i}, \alpha_i)\}$ is convex.
- Take $\beta_i, \gamma_i \in S, \lambda \in [0, 1]$.
- By definition of S, we have
 - $U_i(\alpha_{-i}, \beta_i) > U_i(\alpha_{-i}, \alpha_i)$, and
 - $U_i(\alpha_{-i}, \gamma_i) > U_i(\alpha_{-i}, \alpha_i)$.

- Consider $\alpha \in \prod_{i \in N} \Delta(A_i)$.
- **Goal:** Show that $S = \{\alpha'_i \in \Delta(A_i) \mid U_i(\alpha_{-i}, \alpha'_i) \geq U_i(\alpha_{-i}, \alpha_i)\}$ is convex.
- Take $\beta_i, \gamma_i \in S, \lambda \in [0, 1]$.
- By definition of S, we have
 - $U_i(\alpha_{-i}, \beta_i) > U_i(\alpha_{-i}, \alpha_i)$, and
 - $U_i(\alpha_{-i}, \gamma_i) > U_i(\alpha_{-i}, \alpha_i)$.
- $\lambda U_i(\alpha_{-i}, \beta_i) + (1 \lambda)U_i(\alpha_{-i}, \gamma_i) \geq$ $\lambda U_i(\alpha_{-i}, \alpha_i) + (1 - \lambda)U_i(\alpha_{-i}, \alpha_i) = U_i(\alpha_{-i}, \alpha_i).$

• By the multilinearity of U_i , we have

$$\lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda)U_i(\alpha_{-i}, \gamma_i) = U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i).$$

• By the multilinearity of U_i , we have

$$\lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda)U_i(\alpha_{-i}, \gamma_i) = U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i).$$

So,

$$U_i(\boldsymbol{\alpha}_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i) \geq U_i(\boldsymbol{\alpha}_{-i}, \alpha_i).$$

• By the multilinearity of U_i , we have

$$\lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda)U_i(\alpha_{-i}, \gamma_i) = U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i).$$

So.

$$U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i) \geq U_i(\alpha_{-i}, \alpha_i).$$

$$\lambda \beta_i + (1 - \lambda) \gamma_i \in S$$

• By the multilinearity of U_i , we have

$$\lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda)U_i(\alpha_{-i}, \gamma_i) = U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i).$$

So.

$$U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i) \geq U_i(\alpha_{-i}, \alpha_i).$$

$$\lambda \beta_i + (1 - \lambda) \gamma_i \in S \Rightarrow U_i$$
 is convex.

• Thus, U_i is quasi-concave in $\Delta(A_i)$.

We are done.

A Question

Matching Pennies of Infinite Actions

We have two players A and B having utility functions $f(x,y) = (x-y)^2$ and $g(x,y) = -(x-y)^2$ respectively. $x,y \in [-1,1]$.

- Does this game has a pure Nash equilibrium?
- Why can't we use Kakutani's fixed point theorem?

Brouwer, Kakutani & Nash Kakutani's Fixed Point Theorem Mixed Nash Equilibria of Finite Strategies Games

Thank You.

