Formal Languages and Compilers

Alexander Meduna &

Roman Lukáš

• These lecture notes are based on Automata and Languages by Alexander Meduna, Springer, 2000

Part I. Alphabets, Strings, and Languages

Alphabets and symbols

Definition: An *alphabet* is a finite, nonempty set of elements, which are called *symbols*.

Alphabets and symbols

Definition: An *alphabet* is a finite, nonempty set of elements, which are called *symbols*.

Example:

If we denote this alphabet as Σ , then $\Sigma = \{a, b, 0, 1\}$

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ϵ is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes the empty string that contains no symbols.

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes the empty string that contains no symbols.

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Example: Consider
$$\Sigma = \{0, 1\}$$
:

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Example: Consider
$$\Sigma = \{0, 1\}$$
:

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Example: Consider
$$\Sigma = \{0, 1\}$$
:

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Example: Consider
$$\Sigma = \{0, 1\}$$
:

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Gist:
$$x = a_1 a_2 ... a_n$$

Definition: Let Σ be an alphabet.

- 1) ε is a string over Σ
- 2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Gist: $|a_1 a_2 ... a_n| = n$

Definition: Let x be a string over Σ .

The *length* of x, |x|, is defined as follows:

- 1) if $x = \varepsilon$, then |x| = 0
- 2) if $x = a_1...a_n$, then |x| = n for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Note: The length of *x* is the number of all symbols in *x*.

Example: Consider x = 1010

Task: |x|

Gist: $|a_1 a_2 ... a_n| = n$

Definition: Let x be a string over Σ .

The *length* of x, |x|, is defined as follows:

- 1) if $x = \varepsilon$, then |x| = 0
- 2) if $x = a_1 ... a_n$, then |x| = n

for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Note: The length of *x* is the number of all symbols in *x*.

Example: Consider x = 1010

Task: |x|

 $x = 1 \ 0 \ 1 \ 0$

Gist: $|a_1 a_2 ... a_n| = n$

Definition: Let x be a string over Σ .

The *length* of x, |x|, is defined as follows:

- 1) if $x = \varepsilon$, then |x| = 0
- 2) if $x = a_1 ... a_n$, then |x| = n

for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Note: The length of *x* is the number of all symbols in *x*.

Example: Consider x = 1010

Task: |x|

$$x = 1 \ 0 \ 1 \ 0$$
$$a_1 a_2 a_3 a_4$$

Gist:
$$|a_1 a_2 ... a_n| = n$$

Definition: Let x be a string over Σ .

The *length* of x, |x|, is defined as follows:

- 1) if $x = \varepsilon$, then |x| = 0
- 2) if $x = a_1 ... a_n$, then |x| = n

for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Note: The length of *x* is the number of all symbols in *x*.

Example: Consider x = 1010

Task: |x|

$$x = 1010$$
 $a_1 a_2 a_3 a_4 \rightarrow n = 4$, thus $|x| = 4$

Concatenation of Strings

Gist: xy

Definition: Let x and y be two strings over Σ . The *concatenation* of x and y is xy.

Note: $x\varepsilon = \varepsilon x = x$

Concatenation of Strings

Gist: xy

Definition: Let x and y be two strings over Σ . The *concatenation* of x and y is xy.

Note: $x\varepsilon = \varepsilon x = x$

Examples:

Concatenation of 101 and 001 is 101001 Concatenation of ε and 001 is ε 001 = 001

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^3 = xx^2 = 10x^2$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^3 = xx^2 = 10x^2$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^3 = xx^2 = 10x^2$$

 $x^2 = xx^1 = 10x^1$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^3 = xx^2 = 10x^2$$

$$x^2 = xx^1 = 10x^1$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^3 = xx^2 = 10x^2$$

 $x^2 = xx^1 = 10x^1$
 $x^1 = xx^0 = 10x^0$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^{3} = xx^{2} = 10x^{2}$$

$$x^{2} = xx^{1} = 10x^{1}$$

$$x^{1} = xx^{0} = 10x^{0}$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^{3} = xx^{2} = \mathbf{10}x^{2}$$

$$x^{2} = xx^{1} = \mathbf{10}x^{1}$$

$$x^{1} = xx^{0} = \mathbf{10}x^{0}$$

$$x^{0} = \mathbf{\epsilon}$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^3 = xx^2 = 10x^2$$
 $x^2 = xx^1 = 10x^1$
 $x^1 = xx^0 = 10x^0$
 $x^0 = \epsilon$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^{3} = xx^{2} = 10x^{2}$$

$$x^{2} = xx^{1} = 10x^{1}$$

$$x^{1} = xx^{0} = 10x^{0}$$

$$x^{0} = \varepsilon$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^{3} = xx^{2} = 10x^{2}$$

$$x^{2} = xx^{1} = 10x^{1}$$

$$x^{1} = xx^{0} = 10x^{0} \longrightarrow x^{1} = 10\varepsilon = 10$$

$$x^{0} = \varepsilon$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^{3} = xx^{2} = 10x^{2}$$

$$x^{2} = xx^{1} = 10x^{1}$$

$$x^{1} = xx^{0} = 10x^{0}$$

$$x^{0} = \varepsilon$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^{3} = xx^{2} = \mathbf{10}x^{2}$$

$$x^{2} = xx^{1} = \mathbf{10}x^{1}$$

$$x^{1} = xx^{0} = \mathbf{10}x^{0}$$

$$x^{0} = \mathbf{\epsilon}$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^{3} = xx^{2} = 10x^{2}$$

$$x^{2} = xx^{1} = 10x^{1}$$

$$x^{1} = xx^{0} = 10x^{0}$$

$$x^{1} = 10x^{1}$$

$$x^{0} = 10x^{0}$$

$$x^{1} = 10x^{1}$$

$$x^{2} = 10x^{1}$$

$$x^{1} = 10x^{1}$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^{3} = xx^{2} = 10x^{2}$$

$$x^{2} = xx^{1} = 10x^{1}$$

$$x^{1} = xx^{0} = 10x^{0}$$

$$x^{1} = 10x^{1}$$

$$x^{2} = 10x^{0}$$

$$x^{1} = 10x^{1}$$

$$x^{2} = 10x^{0}$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

$$x^{3} = xx^{2} = 10x^{2}$$

$$x^{2} = xx^{1} = 10x^{1}$$

$$x^{1} = xx^{0} = 10x^{0}$$

$$x^{1} = 10x^{1}$$

$$x^{2} = 10x^{0}$$

$$x^{1} = 10x^{1}$$

$$x^{2} = 10x^{0}$$

Gist:
$$x^i = \underbrace{xx...x}_{i\text{-times}}$$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1)
$$x^0 = \varepsilon$$

2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

Task:
$$x^3$$

$$x^3 = xx^2 = 10x^2$$

$$x^2 = xx^1 = 10x^1$$

$$x^1 = xx^0 = 10x^0$$

$$x^1 = 10x^1$$

$$x^2 = 1010$$

$$x^1 = 10x^2$$

$$x^2 = 1010$$

Gist: reversal $(a_1...a_n) = a_n...a_1$

Definition: Let x be a string over Σ .

The reversal of x, reversal(x), is defined as:

- 1) if $x = \varepsilon$ then reversal(ε) = ε
- 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010

Gist: reversal $(a_1...a_n) = a_n...a_1$

Definition: Let x be a string over Σ .

The reversal of x, reversal(x), is defined as:

- 1) if $x = \varepsilon$ then reversal(ε) = ε
- 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

, SO

Example: Consider x = 1010

Gist: reversal $(a_1...a_n) = a_n...a_1$

Definition: Let x be a string over Σ .

The reversal of x, reversal(x), is defined as:

- 1) if $x = \varepsilon$ then reversal(ε) = ε
- 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010

$$reversal(a_1) = a_1, so$$

Gist: reversal $(a_1...a_n) = a_n...a_1$

Definition: Let x be a string over Σ .

The reversal of x, reversal(x), is defined as:

- 1) if $x = \varepsilon$ then reversal(ε) = ε
- 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010

Task: reversal(x)

 $reversal(a_1a_2) = a_2a_1, so$

Gist: reversal $(a_1...a_n) = a_n...a_1$

Definition: Let x be a string over Σ .

The reversal of x, reversal(x), is defined as:

- 1) if $x = \varepsilon$ then reversal(ε) = ε
- 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010

Task: reversal(x)

 $reversal(a_1a_2a_3) = a_3a_2a_1, so$

Gist: reversal $(a_1...a_n) = a_n...a_1$

Definition: Let x be a string over Σ .

The reversal of x, reversal(x), is defined as:

- 1) if $x = \varepsilon$ then reversal(ε) = ε
- 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010

Task: reversal(x)

reversal $(a_1a_2a_3a_4) = a_4a_3a_2a_1$, so

Gist: reversal $(a_1...a_n) = a_n...a_1$

Definition: Let x be a string over Σ .

The reversal of x, reversal(x), is defined as:

- 1) if $x = \varepsilon$ then reversal(ε) = ε
- 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010

reversal
$$(a_1a_2a_3a_4) = a_4a_3a_2a_1$$
, so reversal $(a_1a_2a_3a_4) = a_4a_3a_2a_1$

Gist: reversal $(a_1...a_n) = a_n...a_1$

Definition: Let x be a string over Σ .

The reversal of x, reversal(x), is defined as:

- 1) if $x = \varepsilon$ then reversal(ε) = ε
- 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010

reversal
$$(a_1a_2a_3a_4) = a_4a_3a_2a_1$$
, so reversal (1) = 1

Gist: reversal $(a_1...a_n) = a_n...a_1$

Definition: Let x be a string over Σ .

The reversal of x, reversal(x), is defined as:

- 1) if $x = \varepsilon$ then reversal(ε) = ε
- 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010

reversal
$$(a_1a_2a_3a_4) = a_4a_3a_2a_1$$
, so reversal $(1\ 0\) = 0\ 1$

Gist: reversal $(a_1...a_n) = a_n...a_1$

Definition: Let x be a string over Σ .

The reversal of x, reversal(x), is defined as:

- 1) if $x = \varepsilon$ then reversal(ε) = ε
- 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010

reversal
$$(a_1a_2a_3a_4) = a_4a_3a_2a_1$$
, so reversal $(1\ 0\ 1) = 1\ 0\ 1$

Gist: reversal $(a_1...a_n) = a_n...a_1$

Definition: Let x be a string over Σ .

The reversal of x, reversal(x), is defined as:

- 1) if $x = \varepsilon$ then reversal(ε) = ε
- 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010

reversal
$$(a_1a_2a_3a_4) = a_4a_3a_2a_1$$
, so reversal $(1\ 0\ 1\ 0\) = 0\ 1\ 0\ 1$

Gist: x is a prefix of xz

Definition: Let x and y be two strings over Σ ; x is *prefix* of y if there is a string z over Σ so xz = y

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper prefix* of y.

Example: Consider 1010

Task: All prefixes of 1010

Gist: x is a prefix of xz

Definition: Let x and y be two strings over Σ ; x is *prefix* of y if there is a string z over Σ so

$$xz = y$$

Note: if $x \notin \{\varepsilon, y\}$ then x is **proper prefix** of y.

Example: Consider 1010

Task: All prefixes of 1010

3

Gist: x is a prefix of xz

Definition: Let x and y be two strings over Σ ; x is *prefix* of y if there is a string z over Σ so

$$xz = y$$

Note: if $x \notin \{\varepsilon, y\}$ then x is **proper prefix** of y.

Example: Consider 1010

Task: All prefixes of 1010

ε 1

Gist: x is a prefix of xz

Definition: Let x and y be two strings over Σ ; x is *prefix* of y if there is a string z over Σ so

xz = y

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper prefix* of y.

Example: Consider 1010

Task: All prefixes of 1010

ε 1 1(

Gist: x is a prefix of xz

Definition: Let x and y be two strings over Σ ; x is *prefix* of y if there is a string z over Σ so

$$xz = y$$

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper prefix* of y.

Example: Consider 1010

Task: All prefixes of 1010

Gist: x is a prefix of xz

Definition: Let x and y be two strings over Σ ; x is *prefix* of y if there is a string z over Σ so

$$xz = y$$

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper prefix* of y.

Example: Consider 1010

Task: All prefixes of 1010

Gist: x is a prefix of xz

Definition: Let x and y be two strings over Σ ; x is *prefix* of y if there is a string z over Σ so xz = y

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper prefix* of y.

Example: Consider 1010

Task: All prefixes of 1010

 $\text{Prefixes of 1010} \begin{cases} \frac{\epsilon}{1} \\ 10 \\ 101 \\ 1010 \end{cases}$

Gist: x is a prefix of xz

Definition: Let x and y be two strings over Σ ; x is *prefix* of y if there is a string z over Σ so xz = y

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper prefix* of y.

Example: Consider 1010

Task: All prefixes of 1010

Gist: x is a suffix of zx

Definition: Let x and y be two strings over Σ ; x is *suffix* of y if there is a string z over Σ so zx = y

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper suffix* of y.

Example: Consider 1010

Task: All suffixes of 1010

Gist: x is a suffix of zx

Definition: Let x and y be two strings over Σ ; x is *suffix* of y if there is a string z over Σ so

zx = y

Note: if $x \notin \{\varepsilon, y\}$ then x is **proper suffix** of y.

Example: Consider 1010

Task: All suffixes of 1010

Gist: x is a suffix of zx

Definition: Let x and y be two strings over Σ ; x is *suffix* of y if there is a string z over Σ so

zx = y

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper suffix* of y.

Example: Consider 1010

Task: All suffixes of 1010

3

Gist: x is a suffix of zx

Definition: Let x and y be two strings over Σ ; x is *suffix* of y if there is a string z over Σ so

$$zx = y$$

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper suffix* of y.

Example: Consider 1010

Task: All suffixes of 1010

ε 0 10

Gist: x is a suffix of zx

Definition: Let x and y be two strings over Σ ; x is *suffix* of y if there is a string z over Σ so

$$zx = y$$

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper suffix* of y.

Example: Consider 1010

Task: All suffixes of 1010

Gist: x is a suffix of zx

Definition: Let x and y be two strings over Σ ; x is *suffix* of y if there is a string z over Σ so

$$zx = y$$

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper suffix* of y.

Example: Consider 1010

Task: All suffixes of 1010

Suffix of String

Gist: x is a suffix of zx

Definition: Let x and y be two strings over Σ ; x is *suffix* of y if there is a string z over Σ so zx = y

Note: if $x \notin \{\varepsilon, y\}$ then x is **proper suffix** of y.

Example: Consider 1010

Task: All suffixes of 1010

Suffixes of 1010 $\begin{cases} & \epsilon \\ & 0 \\ & 10 \\ & 010 \\ & 1010 \end{cases}$

Suffix of String

Gist: x is a suffix of zx

Definition: Let x and y be two strings over Σ ; x is *suffix* of y if there is a string z over Σ so zx = y

Note: if $x \notin \{\varepsilon, y\}$ then x is **proper suffix** of y.

Example: Consider 1010

Task: All suffixes of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

3

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

3

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

ε 1, 0 10, 01 101, 010 1010

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

 $\begin{array}{c} \textbf{Substrings} \\ \textbf{of 1010} \\ \end{array} \begin{array}{c} \textbf{E} \\ \textbf{1,0} \\ \textbf{10,01} \\ \textbf{101,010} \\ \textbf{1010} \\ \end{array}$

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

 $\begin{array}{c} \textbf{Substrings} \\ \textbf{of 1010} \\ \end{array} \begin{array}{c} \textbf{E} \\ \textbf{1,0} \\ \textbf{10,01} \\ \textbf{101,010} \\ \textbf{1010} \\ \end{array}$

Gist: x is a substring of zxz'

Definition: Let x and y be two strings over Σ ; x is *substring* of y if there are two string z, z' over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Gist: $L \subseteq \Sigma^*$

Definition: Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ .

Note: Σ^+ denote the set $\Sigma^* - \{\epsilon\}$.

Example: Consider $\Sigma = \{0, 1\}$:

Gist: $L \subseteq \Sigma^*$

Definition: Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ .

Gist: $L \subseteq \Sigma^*$

Definition: Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ .

Gist: $L \subseteq \Sigma^*$

Definition: Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ .

Gist: $L \subseteq \Sigma^*$

Definition: Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ .

Gist: $L \subseteq \Sigma^*$

Definition: Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ .

Gist: $L \subseteq \Sigma^*$

Definition: Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ .

Gist: $L \subseteq \Sigma^*$

Definition: Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ .

Note: Σ^+ denote the set $\Sigma^* - \{\epsilon\}$.

 L_1, L_2, L_3, L_4 are languages over Σ

Finite and Infinite Languages

Gist: finite language contains a finite number of strings

Definition: A language, *L*, is *finite* if *L* contains a finite number of strings; otherwise, *L* is *infinite*.

Note: Let S be a set; card(S) is the number of its members.

Finite and Infinite Languages

Gist: finite language contains a finite number of strings

Definition: A language, *L*, is *finite* if *L* contains a finite number of strings; otherwise, *L* is *infinite*.

Note: Let *S* be a set; card(*S*) is the number of its members.

Examples:

- $L_1 = \emptyset$ is **finite** because card $(L_1) = 0$
- $L_2 = \{ \epsilon \}$ is finite because card $(L_2) = 1$
- $L_3 = \{x: |x| = 1\} = \{0, 1\}$ is **finite** because $card(L_3) = 2$
- $L_4 = \{x: 10 \text{ is substring of } x\} = \{10, 010, 100, \dots \}$ is infinite

Union of Languages

Gist: Union of L_1 and L_2 is $L_1 \cup L_2$

Definition: Let L_1 and L_2 be two languages over Σ . The *union* of L_1 and L_2 , $L_1 \cup L_2$, is defined as $L_1 \cup L_2 = \{x: x \in L_1 \text{ or } x \in L_2\}$

Example: Consider languages $L_1 = \{0, 1, 00, 01\}$,

 $L_2 = \{00, 01, 10, 11\}$

Task: $L_1 \cup L_2$

Union of Languages

Gist: Union of L_1 and L_2 is $L_1 \cup L_2$

Definition: Let L_1 and L_2 be two languages over Σ . The *union* of L_1 and L_2 , $L_1 \cup L_2$, is defined as $L_1 \cup L_2 = \{x: x \in L_1 \text{ or } x \in L_2\}$

Example: Consider languages $L_1 = \{0, 1, 00, 01\}$,

Union of Languages

Gist: Union of L_1 and L_2 is $L_1 \cup L_2$

Definition: Let L_1 and L_2 be two languages over Σ . The *union* of L_1 and L_2 , $L_1 \cup L_2$, is defined as $L_1 \cup L_2 = \{x: x \in L_1 \text{ or } x \in L_2\}$

Example: Consider languages $L_1 = \{0, 1, 00, 01\}$,

Intersection of Languages

Gist: Intersection of L_1 and L_2 is $L_1 \cap L_2$

Definition: Let L_1 and L_2 be two languages over Σ .

The *intersection* of L_1 and L_2 , $L_1 \cap L_2$, is defined as:

$$L_1 \cap L_2 = \{x: x \in L_1 \text{ and } x \in L_2\}$$

Example: Consider languages $L_1 = \{0, 1, 00, 01\}$,

$$L_2 = \{00, 01, 10, 11\}.$$

Task: $L_1 \cap L_2$

Intersection of Languages

Gist: Intersection of L_1 and L_2 is $L_1 \cap L_2$

Definition: Let L_1 and L_2 be two languages over Σ .

The *intersection* of L_1 and L_2 , $L_1 \cap L_2$, is defined as:

$$L_1 \cap L_2 = \{x: x \in L_1 \text{ and } x \in L_2\}$$

Example: Consider languages $L_1 = \{0, 1, 00, 01\}$,

Intersection of Languages

Gist: Intersection of L_1 and L_2 is $L_1 \cap L_2$

Definition: Let L_1 and L_2 be two languages over Σ .

The *intersection* of L_1 and L_2 , $L_1 \cap L_2$, is defined as:

$$L_1 \cap L_2 = \{x: x \in L_1 \text{ and } x \in L_2\}$$

Example: Consider languages $L_1 = \{0, 1, 00, 01\}$,

Difference of Languages

Gist: Difference of L_1 and L_2 is $L_1 - L_2$

Definition: Let L_1 and L_2 be two languages over Σ . The *difference* of L_1 and L_2 , $L_1 - L_2$, is defined as $L_1 - L_2 = \{x: x \in L_1 \text{ and } x \notin L_2\}$

Example: Consider languages $L_1 = \{0, 1, 00, 01\}$,

 $L_2 = \{00, 01, 10, 11\}$

Task: $L_1 - L_2$

Difference of Languages

Gist: Difference of L_1 and L_2 is $L_1 - L_2$

Definition: Let L_1 and L_2 be two languages over Σ . The *difference* of L_1 and L_2 , $L_1 - L_2$, is defined as $L_1 - L_2 = \{x: x \in L_1 \text{ and } x \notin L_2\}$

Example: Consider languages $L_1 = \{0, 1, 00, 01\}$,

Difference of Languages

Gist: Difference of L_1 and L_2 is $L_1 - L_2$

Definition: Let L_1 and L_2 be two languages over Σ . The *difference* of L_1 and L_2 , $L_1 - L_2$, is defined as $L_1 - L_2 = \{x: x \in L_1 \text{ and } x \notin L_2\}$

Example: Consider languages $L_1 = \{0, 1, 00, 01\}$,

Gist:
$$\overline{L} = \Sigma^* - L$$

Definition: Let L be a languages over Σ .

The *complement* of *L*, *L*, is defined as

$$\overline{L} = \Sigma^* - L$$

Example: Consider language $L = \{0, 1, 01, 10\}$

Task: \overline{L}

Gist:
$$\overline{L} = \Sigma^* - L$$

Definition: Let L be a languages over Σ .

The *complement* of L, L, is defined as

$$\overline{L} = \Sigma^* - L$$

Gist:
$$\overline{L} = \Sigma^* - L$$

Definition: Let L be a languages over Σ .

The *complement* of L, L, is defined as

$$\overline{L} = \Sigma^* - L$$

Gist:
$$\overline{L} = \Sigma^* - L$$

Definition: Let L be a languages over Σ .

The *complement* of L, L, is defined as

$$\overline{L} = \Sigma^* - L$$

Gist: $L_1L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Gist: $L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Gist: $L_1L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Gist: $L_1L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Gist: $L_1L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Gist: $L_1L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Gist: $L_1L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Gist: $L_1L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Gist: $L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Concatenation of Languages

Gist: $L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Task: L_1L_2

Concatenation of Languages

Gist: $L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Task: L_1L_2

Concatenation of Languages

Gist: $L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$

Definition: Let L_1 and L_2 be two languages over Σ .

The *concatenation* of L_1 and L_2 , L_1L_2 , is defined as

$$L_1L_2 = \{xy: x \in L_1 \text{ and } y \in L_2\}$$

Note: 1) $L\{\varepsilon\} = \{\varepsilon\}L = L$ 2) $L\varnothing = \varnothing L = \varnothing$

Example: Consider languages $L_1 = \{0, 1\}, L_2 = \{00, 01\}$

Gist: $reversal(L) = \{reversal(x) : x \in L\}$

Definition: Let L be a language over Σ . The reversal of L, reversal(L), is defined as $reversal(L) = \{reversal(x) : x \in L\}$

Example: Consider $L=\{01,011\}$

Gist: $reversal(L) = \{reversal(x) : x \in L\}$

Definition: Let L be a language over Σ . The reversal of L, reversal(L), is defined as $reversal(L) = \{reversal(x) : x \in L\}$

Example: Consider $L=\{01,011\}$

Gist: $reversal(L) = \{reversal(x) : x \in L\}$

Definition: Let L be a language over Σ . The reversal of L, reversal(L), is defined as $reversal(L) = \{reversal(x) : x \in L\}$

Example: Consider $L=\{01,011\}$

Task: reversal(L)

01

Gist: $reversal(L) = \{reversal(x) : x \in L\}$

Definition: Let L be a language over Σ . The *reversal* of L, reversal(L), is defined as $reversal(L) = \{reversal(x) : x \in L\}$

Example: Consider $L=\{01,011\}$

Gist: $reversal(L) = \{reversal(x) : x \in L\}$

Definition: Let L be a language over Σ . The *reversal* of L, reversal(L), is defined as $reversal(L) = \{reversal(x) : x \in L\}$

Example: Consider $L=\{01,011\}$

Gist: $reversal(L) = \{reversal(x) : x \in L\}$

Definition: Let L be a language over Σ . The *reversal* of L, reversal(L), is defined as $reversal(L) = \{reversal(x) : x \in L\}$

Example: Consider $L=\{01,011\}$

Gist: $reversal(L) = \{reversal(x) : x \in L\}$

Definition: Let L be a language over Σ . The *reversal* of L, reversal(L), is defined as $reversal(L) = \{reversal(x) : x \in L\}$

Example: Consider $L=\{01,011\}$

Gist: $reversal(L) = \{reversal(x) : x \in L\}$

Definition: Let L be a language over Σ . The *reversal* of L, reversal(L), is defined as $reversal(L) = \{reversal(x) : x \in L\}$

Example: Consider $L=\{01,011\}$

Gist: $reversal(L) = \{reversal(x) : x \in L\}$

Definition: Let L be a language over Σ . The *reversal* of L, reversal(L), is defined as $reversal(L) = \{reversal(x) : x \in L\}$

Example: Consider $L=\{01,011\}$

Gist: $reversal(L) = \{reversal(x) : x \in L\}$

Definition: Let L be a language over Σ . The *reversal* of L, reversal(L), is defined as $reversal(L) = \{reversal(x) : x \in L\}$

Example: Consider $L=\{01,011\}$

Gist: $reversal(L) = \{reversal(x) : x \in L\}$

Definition: Let L be a language over Σ . The *reversal* of L, reversal(L), is defined as $reversal(L) = \{reversal(x) : x \in L\}$

Example: Consider $L=\{01,011\}$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if $i \ge 1$ then $L^{i} = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if *i* ≥ 1 then $L^{i} = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if $i \ge 1$ then $L^i = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if $i \ge 1$ then $L^i = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Task: L^2

3

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if *i* ≥ 1 then $L^{i} = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if $i \ge 1$ then $L^{i} = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if
$$i \ge 1$$
 then $L^i = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist:
$$L^i = \underbrace{LL...L}_{i\text{-times}}$$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if
$$i \ge 1$$
 then $L^{i} = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist:
$$L^i = \underbrace{LL...L}_{i\text{-times}}$$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if
$$i \ge 1$$
 then $L^{i} = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if
$$i \ge 1$$
 then $L^i = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if
$$i \ge 1$$
 then $L^i = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if
$$i \ge 1$$
 then $L^{i} = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist:
$$L^i = \underbrace{LL...L}_{i\text{-times}}$$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of L, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if
$$i \ge 1$$
 then $L^i = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist:
$$L^i = \underbrace{LL...L}_{i\text{-times}}$$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of L, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

2) if
$$i \ge 1$$
 then $L^i = LL^{i-1}$

Example: Consider $L=\{0,01\}$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

Gist: $L^i = \underbrace{LL...L}_{i\text{-times}}$

Definition: Let L be a language over Σ .

For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as:

1)
$$L^0 = \{ \epsilon \}$$

Iteration of Language

Gist: $L^* = L^0 \cup L^1 \cup L^2 \cup ... \cup L^i \cup ...$ $L^+ = L^1 \cup L^2 \cup ... \cup L^i \cup ...$

Definition: Let L be a language over Σ . The *iteration* of L, L^* , and the *positive iteration* of L, L^+ , are defined as $L^* = \bigcup_{i=0}^{\infty} L^i$, $L^+ = \bigcup_{i=1}^{\infty} L^i$

Note: 1) $L^+ = LL^* = L^*L$

2) $L^* = L^+ \cup \{\epsilon\}$

Example:

Consider language $L=\{0, 01\}$ over $\Sigma=\{0, 1\}$.

Task: L^* and L^+

Iteration of Language

Gist:
$$L^* = L^0 \cup L^1 \cup L^2 \cup ... \cup L^i \cup ...$$

 $L^+ = L^1 \cup L^2 \cup ... \cup L^i \cup ...$

Definition: Let L be a language over Σ . The *iteration* of L, L^* , and the *positive iteration* of L, L^+ , are defined as $L^* = \bigcup_{i=0}^{\infty} L^i$, $L^+ = \bigcup_{i=1}^{\infty} L^i$

Note: 1)
$$L^+ = LL^* = L^*L$$
 2) $L^* = L^+ \cup \{\epsilon\}$

Example:

Consider language $L=\{0, 01\}$ over $\Sigma=\{0, 1\}$.

Task: L^* and L^+

$$L^0 = \{ \mathbf{\epsilon} \}, L^1 = \{ \mathbf{0}, \mathbf{01} \}, L^2 = \{ \mathbf{00}, \mathbf{001}, \mathbf{010}, \mathbf{0101} \}, \dots$$
 $L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \{ \mathbf{\epsilon}, \mathbf{0}, \mathbf{01}, \mathbf{00}, \mathbf{001}, \mathbf{010}, \mathbf{0101}, \dots \}$
 $L^+ = L^1 \cup L^2 \cup \dots = \{ \mathbf{0}, \mathbf{01}, \mathbf{00}, \mathbf{001}, \mathbf{010}, \mathbf{0101}, \dots \}$