Álgebra Lineal - Clase 16

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Repaso de forma de Jordan nilpotente. Unicidad y semejanza de matrices nilpotentes.
- Forma de Jordan: caso general.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 7 (Secciones 7.1 y 7.2).

Forma de Jordan nilpotente (repaso)

```
f:V\to V t.l. nilpotente definida en un K-e.v. de dimensión n. m_f=X^k\leadsto k es el índice de nilpotencia: f^k=0 y f^{k-1}\neq 0
```

Para $1 \le j \le k-1$, B_j base de $Nu(f^j)$.

Se construyen conjuntos $D_j = \{v_1^{(j)}, \dots, v_{r_j}^{(j)}\} \subset \text{Nu}(f^j)$, para $j = k, k - 1, \dots, 1$:

- ▶ D_k extiende B_{k-1} a una base de $V = Nu(f^k)$.
- ▶ D_{k-1} extiende $B_{k-2} \cup f(D_k)$ a una base de $Nu(f^{k-1})$.
- **.** . . .
- ▶ D_1 extiende $\bigcup_{j=1}^{k-1} f^j(D_{j+1})$ a una base de Nu(f).

$$\{0\} \subsetneq \mathsf{Nu}(f) \; \subsetneq \cdots \subsetneq \; \; \mathsf{Nu}(f^{k-2}) \subsetneq \; \; \mathsf{Nu}(f^{k-1}) \subsetneq \; \; \mathsf{V} = \mathsf{Nu}(f^k)$$

$$f^{k-1}(D_k) \; \ldots \; \; \; f^2(D_k) \; \; \; f(D_k) \; \; \; D_k$$

$$f^{k-2}(D_{k-1}) \; \ldots \; \; f(D_{k-1}) \; \; D_{k-1}$$

$$f^{k-3}(D_{k-2}) \; \ldots \; \; D_{k-2}$$

$$\ldots$$

Con los vectores de la tabla, recorrida de arriba hacia abajo y, cada fila de derecha a izquierda, se obtiene una base de Jordan B para f. $|f|_B$ es la forma de Jordan de f. Cada fila de la tabla genera un

subespacio f-invariante que corresponde a un bloque de Jordan.

$$|f|_{\mathcal{B}} = \begin{pmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & \dots \\ \vdots & \ddots & 0 \\ 0 & \dots & 0 & J_r \end{pmatrix} \text{ con } J_i = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & 0 \end{pmatrix} \in K^{n_i \times n_i}$$

 $y k = n_1 \ge n_2 \ge \cdots \ge n_r$.

- ▶ El bloque de Jordan más grande es de $k \times k$, con k = índice de nilpotencia de f.
- ▶ La cantidad total de bloques es r = dim(Nu(f)).
- ▶ La cantidad de bloques de tamaño j, $1 \le j \le k$, es $r_j = \#D_j$. Depende sólo de las dimensiones de los núcleos de las potencias de f.

Corolario

Sean J y J' en $K^{n \times n}$ formas de Jordan nilpotentes.

Si $J \sim J'$, entonces J = J'.

Demostración.

$$J \sim J' \Rightarrow \operatorname{rg}(J^i) = \operatorname{rg}((J')^i) \ \forall i.$$

 \Rightarrow J y J' tienen la cantidad de bloques de cada tamaño.

$$\Rightarrow J = J'$$
.

Teorema

Sean V un K-e.v. de dimensión n y $f:V\to V$ una t.l. nilpotente. Entonces existe una única forma de Jordan nilpotente $J_f\in K^{n\times n}$ tal que $|f|_B=J_f$ para alguna base B de V.

Teorema

Sean $A, B \in K^{n \times n}$ matrices nilpotentes. Sean J_A y J_B formas de Jordan nilpotentes en $K^{n \times n}$ tales que $A \sim J_A$ y $B \sim J_B$. Entonces $A \sim B \iff J_A = J_B$.

Ejemplo.

Probar que si $A, B \in \mathbb{R}^{4 \times 4}$ son dos matrices tales que $m_A = m_B = X^3$, entonces $A \sim B$.

Basta ver que existe una única forma de Jordan nilpotente $J \in \mathbb{R}^{4 \times 4}$ tal que $m_J = X^3$.

En tal caso, $J_A = J_B = J$, con lo cual $A \sim B$.

 $m_J = X^3 \Rightarrow$ el bloque más grande en J es de 3×3 . $J \in \mathbb{R}^{4 \times 4} \Rightarrow$ la única posibilidad es que esté formada por un bloque de 3×3 y otro de 1×1 :

$$J = \left(\begin{array}{ccc|c} \hline 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{array}\right).$$

Forma de Jordan de una transformación lineal

Un caso particular.

Sea V un K-e.v. de dimensión n y sea $f:V\to V$ una t.l. tal que $m_f=(X-\lambda)^k$ para algún $k\le n$.

$$(f - \lambda i d_V)^k = 0$$
 y $(f - \lambda i d_V)^{k-1} \neq 0$
 $f_{\lambda} = f - \lambda i d_V$ nilpotente de índice $k \Rightarrow \exists B$ base de V tal que

$$|f_{\lambda}|_{B} = \begin{pmatrix} J_{1} & 0 & \dots & 0 \\ 0 & J_{2} & \dots & \dots \\ \vdots & \ddots & 0 \\ 0 & \dots & 0 & J_{r} \end{pmatrix} \text{con } J_{i} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & 0 \end{pmatrix} \in K^{n_{i} \times n_{i}} \text{ y}$$

$$k = n_{1} \geq n_{2} \geq \dots \geq n_{r}.$$

$$|f|_{B} = |f - \lambda i d_{V}|_{B} + |\lambda i d_{V}|_{B} = |f_{\lambda}|_{B} + \lambda \cdot I_{n}$$

$$|f|_{B} = \begin{pmatrix} J_{1}(\lambda) & 0 & \dots & 0 \\ 0 & J_{2}(\lambda) & \dots & \dots \\ \vdots & \ddots & 0 \\ 0 & \dots & 0 & J_{r}(\lambda) \end{pmatrix} \text{ con } J_{i}(\lambda) = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 1 & \lambda & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & \lambda \end{pmatrix} \in K^{n_{i} \times n_{i}}$$

$$\forall k = n_{1} > n_{2} > \dots > n_{r}.$$

Forma de Jordan - Existencia

Lema

Sea V un K e.v. de dimensión finita. Sea $f:V\to V$ una t.l. tal que $m_f=P$. Q con (P:Q)=1. Entonces:

- 1. Nu(P(f)) y Nu(Q(f)) son subespacios invariantes por f,
- 2. $V = Nu(P(f)) \oplus Nu(Q(f))$,
- 3. $m_{f_{|_{\text{Nu}(P(f))}}} = P \text{ y } m_{f_{|_{\text{Nu}(Q(f))}}} = Q.$

Demostración.

1.
$$v \in Nu(P(f)) \Rightarrow P(f)(v) = 0$$
.

$$P(f)(f(v)) = (P(f) \circ f)(v) = ((P(X).X)(f))(v) =$$

$$((X.P(X)(f))(v) = (f \circ P(f))(v) = f(P(f)(v)) = f(0) = 0$$

$$\Rightarrow f(v) \in \text{Nu}(P(f)).$$
The graph of the properties of the proper

Luego, Nu(P(f)) es f-invariante. De igual forma, Nu(Q(f)) es f-invariante.

2.
$$V = \operatorname{Nu}(P(f)) \oplus \operatorname{Nu}(Q(f))$$
: $(P:Q) = 1 \Rightarrow \exists S, T \in K[X] \text{ tales que } 1 = S.P + T.Q$ $id_V = S(f) \circ P(f) + T(f) \circ Q(f)$. Sea $v \in \operatorname{Nu}(P(f)) \cap \operatorname{Nu}(Q(f))$. Entonces

Sea
$$V \in \operatorname{Nu}(F(T)) \cap \operatorname{Nu}(Q(T))$$
. Entonce

$$v = id_V(v) = S(f)(P(f)(v)) + T(f)(Q(f)(v))$$

= $S(f)(0) + T(f)(0) = 0$.

$$\Rightarrow \operatorname{Nu}(P(f)) \cap \operatorname{Nu}(Q(f)) = \{0\}.$$

Para cada
$$v \in V$$
,

$$v = (S(f) \circ P(f))(v) + (T(f) \circ Q(f))(v) = w + u$$

$$V = (S(t) \circ P(t))(V) + (T(t) \circ Q(t))(V) = W + U$$

Como
$$Q(f) \circ S(f) = (Q, S)(f) = (S, Q)(f) = S(f) \circ Q(f),$$

 $Q(f)(w) = (Q(f) \circ S(f) \circ P(f))(v) = S(f)((Q(f) \circ P(f))(v))$

$$= S(f)(m_f(f)(v)) = S(f)(0) = 0,$$

$$\Rightarrow w \in \text{Nu}(O(f)) \quad \text{Análogamento} \quad u \in \text{Nu}(P(f))$$

$$\Rightarrow w \in \text{Nu}(Q(f))$$
. Análogamente, $u \in \text{Nu}(P(f))$.
 $\Rightarrow \text{Nu}(P(f)) + \text{Nu}(Q(f)) = V$.

3.
$$m_{f_{|_{\text{Nu}(P(f))}}} = P \text{ y } m_{f_{|_{\text{Nu}(Q(f))}}} = Q$$
:

Sean f_1 y f_2 las restricciones de f a Nu(P(f)) y Nu(Q(f)) resp.

$$V = \operatorname{Nu}(P(f)) \oplus \operatorname{Nu}(Q(f)) \Rightarrow m_f = \operatorname{mcm}(m_{f_1}, m_{f_2}).$$

Si
$$P = \sum_{i=0}^{r} a_i X_i$$
, para $v \in Nu(P(f))$,

$$P(f_1)(v) = \sum_{i=0}^r a_i f_1^i(v) = \sum_{i=0}^r a_i f^i(v) = P(f)(v) = 0$$

$$\Rightarrow m_{f_1} \mid P$$
. Análogamente, $m_{f_2} \mid Q$.

$$\Rightarrow m_{f_1} \mid P$$
. Analogamente, $m_{f_2} \mid Q$

$$(P:Q)=1\Rightarrow (m_{f_1}:m_{f_2})=1$$

$$P.Q = m_f = mcm(m_{f_1}, m_{f_2}) = n$$

$$P.Q = m_f = mcm(m_{f_1}, m_{f_2}) = m_{f_1}.m_{f_2}$$

$$\Rightarrow m_{f_1} = P \text{ y } m_{f_2} = Q.$$

Teorema.

Sea V un K-e.v. de dimensión finita y sea $f: V \to V$ una t.l. tal que m_f se factoriza linealmente sobre K. Entonces existe una base B de V, que llamamos una base de Jordan para f, tal que

$$|f|_{B} = \begin{pmatrix} J_{1} & 0 & \dots & 0 \\ 0 & J_{2} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & J_{s} \end{pmatrix}$$
 (forma de Jordan para f),

donde, para cada
$$1 \le i \le s$$
, J_i es de la forma
$$J_i = \begin{pmatrix} J(\lambda_i, n_1^{(i)}) & 0 & \dots & 0 \\ 0 & J(\lambda_i, n_2^{(i)}) & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & & \dots & 0 & J(\lambda_i, n_{r_i}^{(i)}) \end{pmatrix}$$

con $n_1^{(i)} \ge \cdots \ge n_{r_i}^{(i)}$ y $\lambda_i \ne \lambda_i$ para $i \ne j$.

Para $\lambda \in K$ y $m \in \mathbb{N}$, $J(\lambda, m)$ es un bloque de Jordan de autovalor λ v tamaño $m \times m$.

Demostración.

Inducción en $n = \dim(V)$. Para n = 1 \checkmark

Supongamos que vale para K-e.v. de dimensión m < n.

Si $m_f = (X - \lambda)^k$, ya lo vimos. \checkmark

Supongamos que f tiene al menos dos autovalores distintos, $m_f = (X - \lambda_1)^{k_1} Q$ con gr(Q) > 1 y $((X - \lambda_1)^{k_1} : Q) = 1$.

- ► $S = \text{Nu}((f \lambda_1 i d_V)^{k_1})$ y T = Nu(Q(f)) son subespacios f-invariantes de V.
- $V = S \oplus T$, $0 < \dim(S) < n \text{ y } 0 < \dim(T) < n$,
- $m_{f|_S} = (X \lambda_1)^{k_1} \text{ y } m_{f|_T} = Q.$

Por HI para $f_1 = f|_S : S \to S$ y $f_2 = f|_T : T \to T$, existen bases B_1 de S y B_2 de T tales que $|f_1|_{B_1}$ y $|f_2|_{B_2}$ son formas de Jordan.

$$\Rightarrow B = B_1 \cup B_2$$
 es base de V y $|f|_B = \begin{pmatrix} |f_1|_{B_1} & 0 \\ 0 & |f_2|_{B_2} \end{pmatrix}$.

 $m_{f_1}=(X-\lambda_1)^{k_1}$ y $m_{f_2}=Q$, con $Q(\lambda_1)\neq 0$.

 \Rightarrow $|f_1|_{B_1}$ está formada por bloques de Jordan de autovalor λ_1 y $|f_2|_{B_2}$ por bloques de Jordan de autovalores $\neq \lambda_1$.

 $\Rightarrow |f|_B$ es una forma de Jordan.

Cómo hallar una base de Jordan y la forma de Jordan para f.

Si
$$m_f = \prod_{i=1}^r (X - \lambda_i)^{k_i} \operatorname{con} \lambda_i \neq \lambda_j$$
 si $i \neq j$

Si
$$m_f = \prod_{i=1}^r (X - \lambda_i)^{k_i} \operatorname{con} \lambda_i \neq \lambda_j \operatorname{si} i \neq j,$$

$$V = \operatorname{Nu}((f - \lambda_1. id_V)^{k_1}) \oplus \cdots \oplus \operatorname{Nu}((f - \lambda_r. id_V)^{k_r}).$$

Para i = 1, ..., r:

- Considerar la restricción f_i de f a $S_i = \text{Nu}((f \lambda_i. id_V)^{k_i})$.
- $ightharpoonup m_{f_i} = (X \lambda_i)^{k_i} \Rightarrow f_{\lambda_i} = f_i \lambda_i$. $id: S_i \rightarrow S_i$ es nilpotente de índice k_i .
- ▶ Hallar una base de Jordan B_i de S_i para f_{λ_i} y su forma de Jordan (caso nilpotente).

$$B=B_1\cup\cdots\cup B_r$$
 es una base de V y

$$|f|_{B} = \begin{pmatrix} |f_{1}|_{B_{1}} & 0 & \dots & 0 \\ 0 & |f_{2}|_{B_{2}} & \dots & \vdots \\ \vdots & & \ddots & \\ 0 & \dots & 0 & |f_{r}|_{B_{r}} \end{pmatrix}$$

es una forma de Jordan para f.

Teorema.

Sea $A \in \mathbb{C}^{n \times n}$. Entonces A es semejante a una forma de Jordan.

A una base B de K^n tal que $|f_A|_B$ es una forma de Jordan, la llamaremos una base de Jordan para A, y a la matriz $|f_A|_B$ una forma de Jordan para A.

Ejemplo.

Hallar una forma de Jordan semejante a A y una base de Jordan

para
$$A = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 2 & -1 & 0 & 2 \\ 2 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \mathbb{C}^{4 \times 4}.$$

$$\mathcal{X}_A = (X-1)^2(X+1)^2,$$

 $m_A = (X-1)^2(X+1).$

$$J_A = \begin{pmatrix} J_1 & 0 \\ 0 & J_2 \end{pmatrix}$$

$$\begin{split} \mathcal{X}_A &= (X-1)^2 (X+1)^2, \\ m_A &= (X-1)^2 (X+1). \end{split} \qquad \qquad J_A = \begin{pmatrix} J_1 & 0 \\ 0 & J_2 \end{pmatrix} \\ \mathcal{C}^4 &= \mathsf{Nu}((A-I)^2) \oplus \mathsf{Nu}(A+I) \end{split} \qquad \qquad J_2 \in \mathbb{C}^{2 \times 2} \text{ con autovalor } 1 \text{ y}$$

▶ Base y forma de Jordan de $f_1: S_1 \to S_1$, restricción de f_A a $S_1 = \text{Nu}((A - I)^2)$.

$$m_{f_1} = (X - 1)^2 \Rightarrow f_1 - id_{S_1}$$
 es nilpotente de índice 2.

$$A - I = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 2 & -2 & 0 & 2 \\ 2 & 0 & -2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ y } (A - I)^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -4 & 4 & 0 & 0 \\ -4 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\text{Nu}(A - I) = \langle (1, 1, 1, 0) \rangle \text{ y}$$

$$Nu((A-I)^2) = \langle (1,1,1,0), (0,0,0,1) \rangle$$
.
Extendemos una base de $Nu(A-I)$ a una de $Nu((A-I)^2$

Extendemos una base de Nu(A - I) a una de $Nu((A - I)^2)$ con $e_4 = (0, 0, 0, 1)$:

$$\{0\} \subseteq \operatorname{Nu}(A-I) \subseteq \operatorname{Nu}((A-I)^2)$$

$$(A-I).e_4 \qquad e_4$$

$$\Rightarrow$$
 $B_1 = \{e_4, (A - I).e_4\} = \{(0, 0, 0, 1), (2, 2, 2, 0)\}$ es una base de Jordan para f_1 y la forma de Jordan de f_1 es $|f_1|_{B_1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

▶ Base y forma de Jordan de $f_2: S_2 \to S_2$, restricción de f_A a $S_2 = Nu(A + I)$.

 $m_{f_2} = X + 1 \Rightarrow f_2$ es diagonalizable.

$$A+I = \left(\begin{array}{cccc} 2 & 0 & 0 & 2 \\ 2 & 0 & 0 & 2 \\ 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \end{array}\right).$$

 $Nu(A+I) = \langle (0,1,0,0), (0,0,1,0) \rangle$

$$\Rightarrow$$
 $B_2=\{(0,1,0,0),(0,0,1,0)\}$ es una base de Jordan para f_2 y la forma de Jordan de f_2 es $|f_2|_{B_2}=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

 $B = B_1 \cup B_2 = \{(0,0,0,1), (2,2,2,0), (0,1,0,0), (0,0,1,0)\}$ es una base de Jordan para A y una forma de Jordan para A es

$$J_{A} = \left(\begin{array}{cc} |f_{1}|_{B_{1}} & 0 \\ 0 & |f_{2}|_{B_{2}} \end{array}\right) = \left(\begin{array}{cc} \boxed{1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \hline 0 & 0 \boxed{-1} & 0 \\ 0 & 0 & \boxed{0} & \boxed{1} \end{array}\right).$$

Forma de Jordan - Unicidad y semejanza de matrices

Teorema.

Sean V un K-e.v. de dimensión n y $f:V\to V$ una t.l. tal que m_f se factoriza linealmente sobre K. Entonces existe una única forma de Jordan $J\in K^{n\times n}$ (salvo por el orden de los autovalores) tal que para alguna base B de V, $|f|_B=J$.

Teorema.

Sean $A, B \in \mathbb{C}^{n \times n}$, y sean J_A y J_B las formas de Jordan de A y B. $A \sim B \iff J_A = J_B$ (salvo el orden de los autovalores).

Demostración.

$$(\Rightarrow) A \sim B, A \sim J_A \text{ y } B \sim J_B \Rightarrow J_A \sim J_B.$$

$$\Rightarrow \exists f: K^n \to K^n$$
 t.l. y bases B_1 y B_2 de K^n tales que $|f|_{B_1} = J_A$ y $|f|_{B_2} = J_B$.

 \Rightarrow $J_A = J_B$ salvo el orden de los autovalores (Teorema anterior).

$$(\Leftarrow) A \sim J_A, B \sim J_B \text{ y } J_A = J_B \Rightarrow A \sim B.$$