

Пусть функция z(x;y) дифференцируема достаточное количество раз. Верно ли, что $d^2z = d(z_x') dx^2 + d(z_y') dy^2$?

О Да

✓ Hen

Правильный ответ на вопрос

Баллов: 1 из 1

Сообщить об ошибке (0)

Выберите все верные утверждения, если u(x; y; z) – дифф. функция, \vec{l} – некоторый вектор в \mathbb{R}^3 , φ – угол между \vec{l} и $\operatorname{grad} u$, \vec{n} – вектор нормали к поверхности уровня функции u в $M(x_0, y_0, z_0)$

- $\frac{\partial u}{\partial \vec{l}} = \operatorname{grad} u \cdot \vec{l^0}$
- $|\operatorname{grad} u| = \frac{\partial u}{\partial \vec{l}} \cdot \cos \varphi$
- $\frac{\partial u}{\partial \vec{l}} = |\operatorname{grad} u| \cdot \cos \varphi$
- grad $u(M) \parallel \vec{n}$
- $\frac{\partial u}{\partial \vec{l}} = \prod p_{\vec{l}} \operatorname{grad} u$

Неправильный ответ на вопрос

Баллов: 0 из

Сообщить об ошибке (0)

Дана кривая L: $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ без особых точек.

Верно ли записано уравнение нормальной плоскости в точке при t_0 ?

$$\frac{x - \varphi(t_0)}{\varphi'(t_0)} = \frac{y - \psi(t_0)}{\psi'(t_0)}$$

О Да

✓ Нет

Правильный ответ на вопрос

Баллов: 1 из 1

Сообщить об ошибке (0)

