

Figure 3.1 Op-amp equivalent circuit. The two inputs are v_1 and v_2 . A differential voltage between them causes current flow through the differential resistance R_d . The differential voltage is multiplied by A, the gain of the op amp, to generate the output-voltage source. Any current flowing to the output terminal vo must pass through the output resistance R_o .

© From J. G. Webster (ed.), Medical instrumentation: application and design. 3rd ed. New York: John Wiley & Sons, 1998.

Figure 3.2 Op-amp circuit symbol. A voltage at v_1 , the inverting input, is greatly amplified and inverted to yield v_0 . A voltage at v_2 , the noninverting input, is greatly amplified to yield an in-phase output at v_0 .

Figure 3.3 (a) An inverting amplified. Current flowing through the input resistor R_i also flows through the feedback resistor R_f . (b) A lever with arm lengths proportional to resistance values enables the viewer to visualize the input-output characteristics easily. (c) The input-output plot shows a slope of $-R_f/R_i$ in the central portion, but the output saturates at about ± 13 V.

© From J. G. Webster (ed.), Medical instrumentation: application and design. 3rd ed. New York: John Wiley & Sons, 1998.

Figure E3.1 (a) This circuit sums the input voltage v_i plus one-half of the balancing voltage v_b . Thus the output voltage v_o can be set to zero even when v_i has a nonzero dc component. (b) The three waveforms show v_i , the input voltage; $(v_i + v_b/2)$, the balanced-out voltage; and v_o , the amplified output voltage. If v_i were directly amplified, the op amp would saturate.

© From J. G. Webster (ed.), Medical instrumentation: application and design. 3rd ed. New York: John Wiley & Sons, 1998.

Figure 3.4 (a) A follower, $\upsilon_{\rm o} = \upsilon_{\rm i}$. (b) A noninverting amplifier, $\upsilon_{\rm i}$ appears across $R_{\rm i}$, producing a current through $R_{\rm i}$ that also flows through $R_{\rm f}$. (c) A lever with arm lengths proportional to resistance values makes possible an easy visualization of input-output characteristic. (d) The input-output plot shows a positive slope of $(R_{\rm f} + R_{\rm i})/R_{\rm i}$ in the central portion, but the output saturates at about ± 13 V.

© From J. G. Webster (ed.), Medical instrumentation: application and design. 3rd ed. New York: John Wiley & Sons, 1998.

Figure 3.5 (a) The right side shows a one-op-amp differential amplifier, but it has low input impedance. The left side shows how two additional op amps can (2) provide high input impedance and gain. (b) For the one-opamp differential amplifier, two levers with arm lengths proportional to resistance values make possible an easy visualization of input-output characteristics. (b)

© From J. G. Webster (ed.), Medical instrumentation: application and design. 3rd ed. New York: John Wiley & Sons, 1998.

Figure 3.6 (a) Comparator. When $R_3 = 0$, v_0 indicates whether $(v_1 + v_{Ref})$ is greater or less than 0 V. When R_3 is larger, the comparator has hysteresis, as shown in (b), the input-output characteristic.

Figure 3.7 (a) Full-wave precision rectifier. For $\upsilon_i > 0$, the noninverting amplifier at the top is active, making $\upsilon_o > 0$. For $\upsilon_i < 0$, the inverting amplifier at the bottom is active, making $\upsilon_o > 0$. Circuit gain may be adjusted with a single pot. (b) Input-output characteristics show saturation when $\upsilon_o > +13$ V. (Reprinted with permission from Electronics Magazine, copyright © December 12, 1974; Penton Publishing, Inc.) (c) One-op-amp full-wave rectifier. For $\upsilon_i < 0$, the circuit behaves like the inverting amplifier rectifier with a gain of +0.5. For $\upsilon_i > 0$, the op amp disconnects and the passive resistor chain yields a gain of +0.5.

Figure 3.8 (a) A logarithmic amplifier makes use of the fact that a transistor's $V_{\rm BE}$ is related to the logarithm of its collector current. With the switch thrown in the alternate position, the circuit gain is increased by 10. (b) Input-output characteristics show that the logarithmic relation is obtained for only one polarity; $\times 1$ and $\times 10$ gains are indicated.

Figure 3.9 A three-mode integrator With S_1 open and S_2 closed, the dc circuit behaves as an inverting amplifier. Thus $\upsilon_o = \upsilon_{ic}$ and υ_o can be set to any desired initial conduction. With S_1 closed and S_2 open, the circuit integrates. With both switches open, the circuit holds υ_o constant, making possible a leisurely readout.

Figure 3.10 Bode plot (gain versus frequency) for various filters. Integrator (I); differentiator (D); low pass (LP), 1, 2, 3 section (pole); high pass (HP); bandpass (BP). Corner frequencies $f_{\rm c}$ for high-pass, low-pass, and bandpass filters.

© From J. G. Webster (ed.), Medical instrumentation: application and design. 3rd ed. New York: John Wiley & Sons, 1998.

Figure E3.2 The charge amplifier transfers charge generated from a piezo-electric sensor to the op-amp feedback capacitor *C*.

 \odot From J. G. Webster (ed.), *Medical instrumentation: application and design.* 3^{rd} ed. New York: John Wiley & Sons, 1998.

Figure 3.11 A differentiator The dashed lines indicate that a small capacitor must usually be added across the feedback resistor to prevent oscillation.

Figure 3.12 Active filters (a) A low-pass filter attenuates high frequencies (b) A high-pass filter attenuates low frequencies and blocks dc. (c) A bandpass filter attenuates both low and high frequencies.

Figure 3.13 Op-amp frequency characteristics

early op amps (such as the 709) were uncompensated, had a gain greater than 1 when the phase shift was equal to -180° , and therefore oscillated unless compensation was added externally. A popular op amp, the 411, is compensated internally, so for a gain greater than 1, the phase shift is limited to -90°. When feedback resistors are added to build an amplifier circuit, the loop gain on this log-log plot is the difference between the opamp gain and the amplifiercircuit gain.

Figure 3.14 Noise sources in an op amp The noise-voltage source v_n is in series with the input and cannot be reduced. The noise added by the noise-current sources In can be minimized by using small external resistances.

Figure 3.15 The amplifier input impedance is much higher than the op-amp input impedance R_d . The amplifier output impedance is much smaller than the op-amp output impedance R_o .

Figure 3.16 Functional operation of a phase-sensitive demodulator (a) Switching
function. (b) Switch. (c), (e), (g),
(i) Several input voltages. (d),
(f), (h), (j) Corresponding output voltages.

Figure 3.17 A ring demodulator This phase-sensitive detector produces a full-wave-rectified output v_0 that is positive when the input voltage v_1 is in phase with the carrier voltage v_2 and negative when v_1 is 180° out of phase with v_2 .