Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. A method for creating a single digital image file from multiple digital images, comprising:

using a single imaging station to generate a plurality of digital images from a medium, each digital image representing the same source image on the medium; [[and]]

combining the plurality of digital images to create a single enhanced digital image which represents the source image; and

aligning the plurality of digital images.

- 2. The method as recited in claim 1, wherein the medium comprises developing film.
- 3. The method as recited in claim 1, wherein the imaging station comprises a radiation source and a radiation sensor.
- 4. The method as recited in claim 1, further comprising:

 moving the medium through the single imaging station in a continuous
 uni-directional path.
- 5. The method as recited in claim 4, wherein the medium is moved by applying the medium to a transport structure and rotating the structure.
- 6. The method as recited in claim 1, wherein the medium comprises developing film, and the imaging station comprises a back source configured to apply radiation to the back of the developing film, a front source configured to apply radiation to the front of the developing film, a back sensor configured to sense radiation from the back of the developing film, and a front sensor configured to sense radiation from the front of the developing film.

- 7. (Cancelled)
- 8. (Cancelled)
- 9. The method as recited in elaim 8 claim 10, wherein each sensing step comprises: sensing radiation reflected from the front and back of the film and radiation transmitted through the film.
- 10. The method as recited in claim 8, A method for creating a digital image file from a developing film, comprising:

applying developer to film to cause the film to begin to develop;

positioning a frame on the developing film in front of a source during
a first film development period;

during the first film development period, applying radiation to the frame of the developing film using the source;

sensing first radiation from the frame of the film during the first film development period using a sensor;

creating a first digital image file from the sensed first radiation; returning the frame to the source during a second film development period; during the second film development period, applying radiation to the frame of the

developing film using the source;

sensing second radiation from the frame of the film during the second film development period using a sensor;

creating a second digital image file from the sensed second radiation; and combining the first and second digital image files to form a combined digital image file which represents the frame;

wherein the positioning and returning steps are conducted by moving the film in the same direction.

11. The method as recited in claim 8, A method for creating a digital image file from a developing film, comprising:

applying developer to film to cause the film to begin to develop; positioning a frame on the developing film in front of a source during

a first film development period;

during the first film development period, applying radiation to the frame of the developing film using the source;

sensing first radiation from the frame of the film during the first film development period using a sensor;

creating a first digital image file from the sensed first radiation;
returning the frame to the source during a second film development period;
during the second film development period, applying radiation to the
frame of the

developing film using the source;

sensing second radiation from the frame of the film during the second film development period using a sensor;

creating a second digital image file from the sensed second radiation; and combining the first and second digital image files to form a combined digital image file which represents the frame;

wherein the positioning and returning steps are conducted by moving the developing film in a uni-directional continuous path.

- 12. The method as recited in claim 11, wherein the moving step is conducted by applying the developing film to a film transport structure and rotating the structure.
- 13. The method as recited in claim 12, wherein the structure has a circular shape.
- 14. A digital film development system, comprising:
 - a source configured to apply radiation to a developing film strip;
 - a sensor configured to sense radiation from the developing film strip; and
 - a transportation system adapted to move the developing film strip past the

source and

sensor multiple times in a continuous unidirectional path.

- 15. The system as recited in claim 14, wherein the sensor is configured to provide multiple digital images for each frame on the film.
- 16. The system as recited in claim 15, further comprising:

an image processor configured to combine the digital images for each frame.

- 17. The system as recited in claim 14, wherein the source comprises a back source configured to apply radiation to the back of the film and a front source configured to apply radiation to the front of the film.
- 18. The system as recited in claim 14, wherein the sensor comprises a back sensor configured to sense radiation from the back of the film and a front sensor configured to sense radiation from the front of the film.