

Fundamentals of Machine Learning Week 7: Unsupervised learning Working on final project

Jonas Moons

All images are either own work, public domain, CC-licensed or fair use Credits on last slide

Evalytics survey

https://app.evalytics.nl/#/login

Choose: Evaluate with code

Code: rkd-256

Program

- 0-1.5 hours: short lecture
 - Clustering
 - Presentations
- >1.5 hours: project supervision / help in small groups
- Participants in AI research project get separate supervision next week

Supervised vs. unsupervised learning

- Supervised: use known patterns to predict new cases
 - Handwriting recognition
- Unsupervised: you let the algorithm discover patterns/clusters on its own
 - Spotify Radio / Discover Weekly

MNIST data set

Why clustering?

- To discover interesting and useful clusters in the data and adapt our content or marketing strategy
- For instance, different user types based on behavior (user profiling), e.g.
 - Explicit: likes, favorites, ratings, comments, etc.
 - Implicit: pages visited, content seen, mouse movements, etc.

What is clustering?

- Assign observations to several clusters
- It's not always clear which solution is 'correct'
- There are many algorithms; we will use k-means (simple to understand but often suboptimal)
- Remember: shown as 2-dimensional here but n-dimensional in reality, n being the number of variables used

Distance

- Each user is represented by a point in space
- Each item (movie) is a dimension
- The distance between two users can be calculated for any number of dimensions/movies (shown: 3)

User	Movie 1	Movie 2	Movie 3
1	5	3	5
2	4	1	2

k-means algorithm

1. Start with *k* cluster centers at random

2. Assign each observation to nearest center

3. Move cluster centers to center of observations

4. Repeat until stable

Exercise: clustering *Iris* data set (1)

In this exercise, you will explore the logic of clustering using the famous Iris data set. See the Exercise folder for the data set (iris.csv), and the Notebook k-means in the Examples folder.

- 1. Read in the csv file.
- 2. Using a Seaborn scatterplot, plot the *Iris* data set with petal length on the x-axis and sepal length on the y-axis. Plot the different Iris species with a different symbol (see the Seaborn documentation).
- 3. What possible clusters do you see with the naked eye? How do they relate to the three species?
- 4. Using k-means clustering with 3 clusters (using **only** petal length and sepal length as X variables), create a new variable *cluster* and use this to make another scatterplot, using color for *cluster*.
- 5. How does k-means perform?
- 6. Try out different numbers of clusters to see what happens. What seems like the 'natural' number of clusters for this data set?

Exercise: clustering *Iris* data set (2)

In this exercise, you will explore the logic of clustering using the famous Iris data set. See the Exercise folder for the data set (iris.csv), and the Notebook k-means in the Examples folder.

- 1. Read in the csv file.
- 2. Using a Seaborn scatterplot, plot the *Iris* data set with petal length on the x-axis and sepal length on the y-axis. Plot the different Iris species with a different symbol (see the Seaborn documentation).
- 3. What possible clusters do you see with the naked eye? How do they relate to the three species?
- 4. Using k-means clustering with 3 clusters (using **only** petal length and sepal length as X variables), create a new variable *cluster* and use this to make another scatterplot, using color for *cluster*.
- 5. How does k-means perform?
- 6. Try out different numbers of clusters to see what happens. What seems like the 'natural' number of clusters for this data set?

Problems with k-means

- k-means can only make Voronoi cells (straight lines)
- Suitable number of clusters often hard to determine in practice

Presentation

- Week 9
 - D02: Wednesday 20th January
 - D01: Friday 22nd January
- You get short feedback from peers and from me via e-mail
- Physical or online → what is your preference? Definitive details end of next week

If physical:

- Presentations of 5 min. with max. 5 slides
- In groups of 6-8 (schedule to be sent)
- Streamed online via Teams (unless you object) for peers, family and friends
- Possible to participate online

If online:

- Poster presentation in Gather
- PDF with simple poster

Format

- Introduction: in which you define the context, the research question and the practical relevance
- Data set: in which you explain how you acquired the data, and show your data cleaning steps
- Feature engineering: in which you explain which transformations you have made to make your variables more informative (e.g., calculating number of days from a starting date)
- Descriptive analysis: in which you show relevant graphs, tables and numbers with respect to your problem
- Predictive model: in which you explain which analysis you have chosen and why. In which you build a relevant statistical model or train a machine learning algorithm.
- Evaluation: in which you evaluate the model: numerically, qualitatively and in terms of practical value.

Peer groups

- This week (w7) & next week (w8)
- Discussion and Q&A on final assignment & weekly assignments
- Topic is up to you: present your work, ask questions
- Max. 4 minutes per person
- Maybe you can form a Whatsapp / Teams chat to encourage and help each other?

Image credit

- Pythagoras by CheCheDaWaff (CC-BY-SA)
- K-means algorithm pictures by Weston.pace (CC-BY-SA)
- K-means gif by Chire (CC-BY-SA)