

PATENT ABSTRACTS OF JAPAN

(11)Publication number : **63-036151**

(43)Date of publication of application : **16.02.1988**

(51)Int.CI. **G01N 33/543**

(21)Application number : **61-177829** (71)Applicant : **SHOWA DENKO KK**

(22)Date of filing : **30.07.1986** (72)Inventor : **MIZUKOSHI TATSUYA FUKUI KATSUJI**

(54) QUANTITATIVE DETERMINATION OF FINE PARTICLE BY MEASURING FLUORESCENT INTENSITY

(57)Abstract:

PURPOSE: To enable simultaneous multinomial measurement with high sensitivity by using a reagent prepd. by depositing sensitive materials conjugating specifically with each of materials to be measured to plural kinds of fine particles which are identifiable by labeling by grain sizes and fluorescent materials.

CONSTITUTION: The reagent for simultaneous measurement of two items is prepd. by mixing, at an equal ratio, polystyrene beads of $7 \mu\text{m}$ average grain size to which an anti-human IgG antibody is immobilized and polystyrene beads of $10 \mu\text{m}$ average grain size to which anti-HSA antibody is immobilized. The above-mentioned reagent mixture is added to a standard soln. contg. IgA and HsA at various concns. to cause reaction. The particles in the resultant reaction liquid is analyzed by a flow sightmetry method to obtain a calibration curve. The quantities of ≥ 2 kinds of the materials to be measured are thereby measured simultaneously with high sensitivity.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

⑪ 公開特許公報 (A) 昭63-36151

⑫ Int.CI.⁴
G 01 N 33/543識別記号
D-7906-2G

⑬ 公開 昭和63年(1988)2月16日

審査請求 未請求 発明の数 1 (全5頁)

⑭ 発明の名称 微粒子の蛍光強度測定による定量方法

⑮ 特願 昭61-177829

⑯ 出願 昭61(1986)7月30日

⑰ 発明者 水越達也 東京都大田区多摩川2-24-25 昭和電工株式会社総合技術研究所内

⑱ 発明者 福井勝治 東京都大田区多摩川2-24-25 昭和電工株式会社総合技術研究所内

⑲ 出願人 昭和電工株式会社 東京都港区芝大門1丁目13番9号

⑳ 代理人 弁理士 菊地精一

明細書

1. 発明の名称

微粒子の蛍光強度測定による定量方法

2. 特許請求の範囲

1. 様体中に含まれているn種の被測定物質のそれぞれの量を、被測定物質のそれぞれと特異的に結合するn種の感応物質を担持させた微粒子を担体として利用して測定する方法であつて、粒径の大きさによって及び/又は蛍光物質による標識づけによってn種に判別できる該微粒子を担体として用い、各々の種類の担体にそれぞれの被測定物質と特異的に結合する前記n種の感応物質をそれぞれ担持させたものを試薬とし、n種の被測定物質を含む検体と混合し、反応を十分行なわせたのち、担体上に結合した被測定物質に蛍光活性を持たせ個々の微粒子の蛍光強度を測定することにより被測定物質の定量を行なうことを特徴とする微粒子の蛍光強度測定による定量方法。

2. 担体上に結合した被測定物質に蛍光活性を持たせる手段として、被測定物質と特異的に結合す

る感応物質の蛍光標識体を用いることを特徴とする特許請求の範囲第1項記載の方法。

3. 担体上に結合した被測定物質に蛍光活性を持たせる手段として、まず感応物質を反応させ、さらにその感応物質と結合するもう1つの感応物質の蛍光標識体を用いることを特徴とする特許請求の範囲第1項記載の方法。

4. 特異的な結合が抗原・抗体反応であることを特徴とする特許請求の範囲第1項記載の方法。

5. 微粒子の蛍光強度を、フローサイトメトリーによって測定することを特徴とする特許請求の範囲第1項又は第2項記載の方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、物質同志の特異的な結合、例えば抗原・抗体反応を利用した定量方法に関する。

(従来の技術)

医療分野における微量分析の手法として免疫学的反応を利用した測定法は、すでに定着しており、その中でも主流はラジオイムノアッセイ

(RIA)である。RIAは、1959年バーソン、ヤロウラによって、インスリンの測定法として開発されたのが最初であり、その後爆発的に普及した。しかしラジオアイソトープの取り扱い、専用の設備、廃棄の際の安全性、あるいは標識化合物の寿命等の問題も從来からクローズアップされており、RIAの代替として非放射性の標識法についての研究がさかんに行われてきた。感度的に匹敵するものとして1971年にエンザイムイムノアッセイ(EIA)が登場し、RIAに代わるものとして注目を浴びてきた。確かに測定項目によってはRIAと同程度、あるいはそれ以上の感度を持つことが報告されているし、RIAとは違い抗原抗体結合型と遊離型との分離、いわゆるB/F分離の必要がないホモジニアスな系での測定も可能であるという特長があるが、生物学的反応を用いるといった不安定な要素や、相対的に見た感度、煩雑さなどの問題もあり、今一つRIAにとって代わるだけのものが現状であろう。ラジオアイソトープの代わりに螢光プローブを用いた

(発明が解決する問題点)

本発明は、上記問題点を解決するためになされたものであり、これまでのEIAでは困難であった、検体中の被測定物質の高感度かつ同時に多項目測定法を提供することを目的とする。

(問題点を解決するための手段及び作用)

本発明は固相を用いたEIAのいわゆるサンドwich法の改善であり、固相として均一粒径微粒子群を用い、その粒子一つ一つの螢光活性を分析することを特徴としており、その要旨は検体中に含まれているN種の被測定物質のそれぞれの量を、被測定物質のそれぞれと特異的に結合するN種の感応物質を担持させた微粒子を担体として利用して測定する方法であって、粒径の大きさによって及び/又は螢光物質による標識づけによってN種に判別できる該微粒子を担体として用い、各々の種類の担体にそれぞれの被測定物質と特異的に結合する前記N種の感応物質をそれぞれ担持させたものを試薬とし、N種の被測定物質を含む検体と混合し、反応を十分行なわせたのち、担体

のが螢光イムノアッセイ(FIA)である。感度的には、RIAに今一步およばないが、安全性の点で問題がなくRIAと同様の原理で使用できる上に、B/F分離の必要がないホモジニアスな系での測定も可能なため、欧米諸国では非常によく利用されている。

医療分野において、疾病の発生、進行度、治療効果等を知る上で特定の生体内物質(マーカー)の変化は非常に重要な意味を持つ。例えば肺癌マーカーならば、CA-125、CA-19-9、AFP、CEAなどを始めとして、かなりの数が知られているが、すべての腫瘍に共通で、しかも早期発見の手助けとなるようなマーカーは現在までに知られていない。したがって、検査する癌、腫瘍存在の可能性、発生部位等を正確に把握するためには、多項目のマーカーについて検査し、総合的に判断するしかてだてがない。ところが現状では、複数のデーターが知りたい場合、その数だけ測定を行うしかなく、採血の麻の患者の苦痛、検査のために要する手間、時間が増大するばかりであった。

上に結合した被測定物質に螢光活性を持たせ個々の微粒子の螢光強度を測定することにより被測定物質の定量を行なうことを特徴とする微粒子の螢光強度測定による定量方法を提供することにある。

ここで、Nは、自然数であるが、2以上の自然数の場合特に顯著な効果を発揮する。

粒子上の感應物質と被測定物質の間の特異的な反応、さらに、粒子上に結合した被測定物質に螢光活性を持たせるための特異的な結合反応の代表的なものは抗原抗体反応であるが、それ以外でもホルモンとレセプター、糖とレクチン、アビシンとビオチン、IgG分画とProtein Aなどの反応も利用が可能である。

抗原抗体反応を例にとり、さらに詳しく説明する。測定対象が抗原となり得るもの(ハプテン等も含む)であれば、それに対応する抗体を微粒子に担持させておく。測定対象によっては、抗原・抗体が逆の組み合わせでもよい。

本発明では、複数の物質を、同時に定量する為

に微粒子（1~100 μ程度の粒径のそろったもの）を予め、複数のグループに判別できるように構成しておく。その方法の一つは、粒径を複数のレベルにそろえておくことである。また粒子を螢光物質で標識づけする場合、螢光物質の有・無又は濃度、螢光の種類などにより、複数のグループに判別できる。そして、両者を組み合わせることにより、さらに多くの粒子群の判別が可能である。

微粒子としては、例えば赤血球などの細胞、金属、リボソームなどのマイクロカプセル、ポリスチレン等のラテックス粒子等で、粒径 1~100 μ程度のものが利用できる。

微粒子に所定の感応物質、例えば抗体を担持させるには物理的に吸着させる方法、微粒子上の官能基を利用して化学的に結合させる方法などが知られている。

理解を容易にするため、まず n=1 を例にとつて説明する。

均一粒径の微粒子に特定の抗体 B を担持する。B は被測定特質 A と特異的に結合するものとす

なお、本発明については、粒子どうしの非特異的な凝集、あるいは抗原抗体反応による凝集を極力防がねばならず、そのために单クローニング抗体を用いるか、機械的な刺離によって簡単に分散するような比較的大きな粒子を用いるとか、或いは粒子濃度を稀薄にしておくことが好ましい。

微粒子のグループの判別法、螢光強度の測定法には、顯微鏡観察なども利用できるが、好ましい実施態様の一つとしては、これらの粒子を一つ一つ、フローサイトメトリー法で測定する方法を挙げることができる。

フローサイトメトリー法とは、主として光学機器分析に関するものであり粒子を1個ずつ流し、粒子にレーザー光などをあてて、その散乱光を測定することにより、粒子の大きさ、色、或いは、予め粒子を螢光物質等で標識づけておき、その螢光強度測定等により粒子の形質を測定するものである。又、いわゆるコウルターの原理により、粒子の容量（コウルターポリュームという）を電気的に測定する方法によるもの、これと光学測定と

る。一方で、やはり A と特異的に結合する抗体（以下第2抗体という）を螢光標識したもの B' を作製しておく。

B を担持した試薬と A を含有するサンプルを混和する。A と B の反応により、結果的に粒子上に A が結合する。さらに第2抗体 B' を反応させることにより、粒子上に A の役に応じた B' が結合することになる。したがってサンプル中にある被測定物質の量に応じた螢光活性が粒子に与えられることになるわけである。

被測定物質が複数（n 個）の場合、n 個の区別し得る粒子各々に A₁ …… A_n に対する抗体 B₁ …… B_n を別々に担持する。そして、A₁ …… A_n に対する螢光標識抗体即ち第2抗体 B'₁ …… B'_n を作製しておく。ただし、この際 A₁ …… A_n と B₁ …… B_n あるいは B'₁ …… B'_n は各々免疫学的交叉反応がないことが必要である。操作は前述の n=1 の時と同様であり、最終的に n 個の各粒子の螢光強度を測定することにより、A₁ …… A_n の定量ができるわけである。

を合わせたものも利用されている。

粒子を n 個のグループへ判別するには、例えば粒子径で 3 グループ、螢光色素を付着したものとさせない粒子とを調整すれば合計 6 グループの粒子を調整できる。この場合、6 種の抗体を各グループの粒子にそれぞれ担持させた試薬を、検体と接触させ、サンドウィッチ方式によりさらに前記螢光物質とは異った種類で標識された 6 種の第2抗体を、各グループの粒子へ別々に結合させた測定液をコウルターポリューム測定機能と螢光強度測定機能とを併せもった公知のフローサイトメーターで測定すると、粒子径と粒子につけた螢光の有無とにより粒子のグループ分けが出来る。

被測定物質の量は、第2抗体を標識づけした螢光物質の螢光強度測定により行われる。両螢光物質は、螢光強度測定の波長を選定することにより区別され、AI の濃度が、微粒子のグループ毎即ち被測定物質ごとに測定できる。

尚、このグループ分けには、特開昭60-130882 に示されている方法が利用できる。

(実施例1)

ヒト绒毛性ゴナドトロビン（hCG）の定量

(1) 試薬の調整

ポリスチレンビーズ（平均粒径 $7\mu\text{m}$ ）固型分として 20 mg をリン酸緩衝食塩水（PBS pH 7.4）で2回洗浄する。それに、抗 hCG モノクローナル抗体（anti hCG Mab） $200\text{ }\mu\text{g}/\text{ml}$ を 2 ml 加え、 37°C で1時間ゆるやかに搅拌した後 4°C で1晩放置する。PBS で遠心分離にて2回洗浄した後、保護コロイドとして1%の牛血清アルブミン（BSA）を含む PBS 5 ml に懸濁し、固型分 0.4% のラテックス試薬として試験に供す。

(2) 検量線の作成

上記の試薬 $30\text{ }\mu\text{l}$ に異なる濃度の hCG を含む標準液を $100\text{ }\mu\text{l}$ 加えよく混合する。1時間室温で振盪した後、ウサギの抗 hCG 血清（IgG 分画） $100\text{ }\mu\text{g}/\text{ml}$ $50\text{ }\mu\text{l}$ を加え混合する。再び1時間室温で振盪した後、FITC 標識したヤギの抗ウサギ IgG 血清（IgG

ポリスチレンビーズ（平均粒径 $10\mu\text{m}$ ）固型分として 10 mg と、ヤギの抗 HSA 抗体（IgG 分画） $200\text{ }\mu\text{g}/\text{ml}$ を用いて、a) と同様の操作を行い、0.2% のラテックス試薬を得る。

c) 混合試薬

a), b) の等量混合物（各々 0.1%）を同時2項目測定用試薬として試験に供する。

(2) 検量線の作成

異なる濃度の IgG、HSA を含む標準液 $100\text{ }\mu\text{l}$ と上記混合試薬 $100\text{ }\mu\text{l}$ を混合し、室温で1時間ゆるやかに搅拌する。その後 FITC-標識抗血清（抗 HSA、IgG とともに抗体換算で $100\text{ }\mu\text{g}/\text{ml}$ ） $100\text{ }\mu\text{l}$ を加え混合した後、1時間室温でゆるやかに搅拌する。得られた反応液を PBS で 5 倍希釈し、フローサイトメトリー法によって分析する。得られた検量線を第2図に示す。

(効果)

本発明の方法により、検体中に含まれる又は

分画） $200\text{ }\mu\text{g}/\text{ml}$ を $50\text{ }\mu\text{l}$ を加え、混合し、さらに1時間室温で振盪する。得られた反応液を PBS で約 10 倍に希釈した後フローサイトメトリー法によって分析する。得られた検量線を第1図に示す。

(実施例2)

ヒト IgG、ヒト血清アルブミン（HSA）の同時測定

(1) 試薬の調整

a) ヒト IgG 分析用試薬

ポリスチレンビーズ（平均粒径 $7\mu\text{m}$ ）固型分として 10 mg をリン酸緩衝食塩水（PBS pH 7.4）で2回洗浄する。それにアフィニティー精製した抗ヒト IgG 抗体（ヤギ $200\text{ }\mu\text{g}/\text{ml}$ ） 5 ml を加え、 37°C で1.5時間ゆるやかに搅拌する。PBS を用いて遠心分離にて2回洗浄した後、保護コロイドとして1%の BSA を含む PBS 5 ml に懸濁し固型分 0.2% のラテックス試薬を得る。

b) HSA 分析用試薬

複数の被測定物質を同時に高感度で測定できる。この分析の好ましい実施態様は微粒子の大きさ、螢光活性の同時測定をする機能をもつフローサイトメトリー（FCM）の利用である。FCM を利用することによって、粒径の差、粒子自体に持たせた螢光色素の種類、量の差、等により微粒子を区別し、その各々について、螢光活性を測定することが可能になり、1種又は2種以上の被測定物質の量を同時に高感度で測定できる。

こうして同時複数項目の測定が可能になると、総合的な診断をする上で大きな手助けになり、偽陽性、偽陰性のような誤診断の減少、また各疾患の早期指標などに大きく寄与する。

4. 図面の簡単な説明

第1図は hCG の濃度と螢光強度との関係、第2図は、IgG 及び HSA の濃度と螢光強度との関係を示す測定例のグラフである。

特許出願人 昭和電工株式会社

代理人弁理士 萩地精一

第1図

第2図

