

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Primer Semestre de 2019

Tarea 2

Fundamentos de la Matemática - MAT 2405 Fecha de Entrega: 2019/04/24

> Integrantes del grupo: Nicholas Mc-Donnell, Maximiliano Norbu

Problemas

Problema 1 (8pts). Sea φ una \mathcal{L} -fórmula con una variable libre x. Sea \mathfrak{M} una \mathcal{L} -estructura. Muestre que $\mathfrak{M} \models \forall x \varphi$ si y sólo si para toda \mathfrak{M} -asignación $i : \{x\} \to M$ se cumple que $(\mathfrak{M}, i) \models \varphi$.

Solución problema 1:

Problema 2.

- (a) (4pts) Con el lenguaje $\mathcal{L} = \{\dot{+}, \dot{=}, E\}$, y la \mathcal{L} -estructura $\mathfrak{M} = (\mathbb{Z}/p\mathbb{Z}, +, =, f)$ donde el símbolo de función unaria E se interpreta como la función $f(x) = x^2$ y los otros símbolos se interpretan de la manera usual, muestre que el conjunto $A = \{\overline{1}\} \subseteq \mathbb{Z}/p\mathbb{Z}$ es definible.
- (b) (8pts) Con el lenguaje $\mathcal{L} = \{\dot{+}, \dot{=}\}$ y la \mathcal{L} -estructura $\mathfrak{M} = (\mathbb{N}_0, +, =)$ donde los símbolos del lenguaje se interpretan de la manera usual, mostrar que todo subconjunto finito de \mathbb{N}_0 es definible.

Solución problema 2:

(a) Sea φ la siguiente \mathcal{L} -fórmula con variable libre x:

$$(f(x) = x) \land (\forall y \neg (x + y = y))$$

Se puede notar que si x cumple f(x)=x, entonces es su propio cuadrado en $\mathbb{Z}/p\mathbb{Z}$, se recuerda que es cuerpo¹, por lo que no hay divisores de 0, entonces $x^2-x=x(x-\overline{1})=0$ y como es un cuerpo se sabe que $x=\overline{1}$ ó $x=\overline{0}$. Luego $\overline{1}+y\neq y$, para cualquier y, pero $\overline{0}+y=y$, para cualquier y, por lo que solo $\overline{1}$ satisface φ . Con lo que A es definible.

(b) Se nota que si existe φ_n \mathcal{L} -fórmula tal que solo n lo satisface, entonces un conjunto finito $A = \{a_1, ..., a_k\}$ es definible por la siguiente \mathcal{L} -fórmula:

$$\bigvee_{i=1}^{k} \varphi_{a_i}$$

Se puede notar que φ_0 sería la \mathcal{L} -fórmula con variable libre $b \ \forall x(x+b=x)$. Luego, se considera la siguiente \mathcal{L} -fórmula con variable libre a

$$\forall x, y((x+y=a) \implies ((\neg(x=y)) \land (((a=x) \land \varphi_0(y|b)) \lor ((a=y) \land \varphi_0(x|b)))))$$

Se va a notar que esta es φ_1 , ya que solo 1 cumple que la única forma de escribirlo en forma de suma es tomándose a si mismo y sumándole el 0, también se consideran ambas posibilidades con el orden². Con estas \mathcal{L} -fórmulas se tiene lo suficiente para construir φ_n con variable libre x:

$$\exists y((\underbrace{((\dots(y+y)+\dots)+y)}_{\text{"n" }y}=x) \land \varphi_1(y|a))$$

Esto es suficiente ya que para cada φ_n el n es fijo, y n es único número natural que cumple que es la suma de n unos. Ya construido φ_n por lo mencionado al comienzo, se tiene que todo subconjunto finito A de \mathbb{N}_0 es definible.

Problema 3 (Bonus). Sea $A = \{p_1, p_2, ...\}$ el conjunto de todas las letras proposicionales. Muestre que hay a lo más un conjunto consistente maximal que contiene el conjunta A.

Solución problema 3: Se recuerda la definición de conjunto consistente M, esto es; para toda oración φ se cumple solo una de las siguientes:

$$M \vdash \varphi \circ M \vdash \neg \varphi$$

¹Artin (2011)

²La suma es conmutativa.

Se considera el conjunto A de las letras proposicionales, se sabe que solo tiene una valuación V que la satisface, la valuación donde toda letra proposicional es verdad. Luego, es consistente ya que por correctitud, todo φ tal que $A \vdash \varphi$ además cumple $A \models \varphi$, y si además $A \vdash \neg \varphi$, entonces $A \models \neg \vdash$, pero entonces $V(\varphi) = T = V(\neg \varphi)$, pero eso implicaría que alguna letra proposicional tiene ambos valores de verdad. Este argumento se puede extender a conjuntos consistentes que contiene A, es decir todo conjunto que contiene A solo tiene una posible valuación V. Ahora sea, M un conjunto consistente maximal que contiene A y sea N otro conjunto consistente maximal que contiene A. Ambos son maximales por lo que, ó M = N, ó $M \neq N$ donde ninguno esta contenido en el otro. Para el segundo caso se nota que existe algún $\varphi \in M \setminus N$, entonces $M \vdash \varphi$ y $N \vdash \neg \varphi$, ya que ambos son consistentes maximales.

Referencias

Artin, M. (2011). Algebra. Pearson Prentice Hall.