MIEInf

Cálculo

——— folha 9 —

2017'18 —

1. Calcule os seguintes integrais

(a)
$$\int_0^1 (3x^2 - 2x^5) dx$$

(g)
$$\int_0^{\pi} x \sin x \, dx$$

(m)
$$\int_0^2 f(x) dx$$
, com
$$f(x) = \begin{cases} x^2 & \text{se } 0 \le x \le 1, \\ 2-x & \text{se } 1 < x \le 2 \end{cases}$$

(b)
$$\int_{0}^{4} (\sqrt{x} + 2)^{2} dx$$

$$(h) \int_0^\pi (x+2)\cos x \, dx$$

$$(\mathsf{n}) \ \int_{-\pi/2}^{\pi/2} | \, \mathsf{sen} \, x \, | \, dx$$

$$\text{(c)} \int_0^1 e^{\pi x} \, dx$$

(i)
$$\int_0^{\pi/2} e^x \sin x \, dx$$

(o)
$$\int_{3}^{5} |x-1| \, dx$$

(d)
$$\int_0^{\sqrt{\pi/2}} x \, \operatorname{sen}(x^2) \, dx$$

(j)
$$\int_0^2 x^3 e^{x^2} dx$$

(p)
$$\int_0^1 g(x) dx$$
, com

(e)
$$\int_0^1 \frac{e^x}{\sqrt{e^x + 1}} \, dx$$

(k)
$$\int_0^1 \ln(x^2+1) dx$$

$$g(x) = \begin{cases} x & \text{se } 0 \le x \le 1/2, \\ -x & \text{se } 1/2 < x \le 1. \end{cases}$$

(f)
$$\int_{-5}^{0} 2x\sqrt{4-x} \, dx$$

(I)
$$\int_0^{\sqrt{2}/2} \operatorname{arcsen} x \, dx$$

(q)
$$\int_{-3}^{2} \sqrt{|x|} \, dx.$$

2. [Mudança de variável universal]

(a) Mostre que, se $x = 2 \arctan t$, então

$$\cos x = \frac{1-t^2}{1+t^2} \qquad \text{e} \qquad \sin x = \frac{2t}{1+t^2}.$$

(b) Usando a substituição $x = 2 \arctan t$, calcule

$$\int_0^{\pi/2} \frac{1}{\sin x + \cos x} \, dx.$$

3. Usando a substituição indicada, calcule

(a)
$$\int_{-1}^{1} \arcsin x \, dx, \quad x = \operatorname{sen} t$$

(e)
$$\int_{3/4}^{4/3} \frac{1}{x^2 \sqrt{x^2 + 1}} dx$$
, $x = \sinh t$

$$\text{(b)} \ \int_{-1}^1 e^{\operatorname{arcsen} x} \, dx, \quad x = \operatorname{sen} t$$

(f)
$$\int_{1}^{2} x \sqrt{x-1} \, dx$$
, $t = x-1$

(c)
$$\int_0^1 \sqrt{1-x^2} \, dx$$
, $t = \sin t$

(g)
$$\int_0^{3/2} 2^{\sqrt{2x+1}} dx$$
, $x = \frac{t^2 - 1}{2}$

(d)
$$\int_{0}^{3} \sqrt{9-x^2} \, dx$$
, $x = 3 \, \text{sen} \, t$

(h)
$$\int_{1}^{2} \frac{e^{x}}{1 - e^{2x}} dx$$
, $t = e^{x}$.

4. Considere a seguinte definição de "logaritmo" (em termos de uma função algébrica): $\ln x = \int_1^x \frac{1}{t} \, dt$. Nestas condições, prove (usando a substituição $s=x\,t$) que

$$\ln x + \ln y = \ln(xy)$$

5. Usando integrais definidos, calcule

(a)
$$\lim_{n \longrightarrow +\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \ldots + \frac{n-1}{n^2} \right)$$

(a)
$$\lim_{n \longrightarrow +\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \ldots + \frac{n-1}{n^2} \right)$$
 (b) $\lim_{n \longrightarrow +\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n} \right)$

- **6.** Seja $f:[-1,2]\longrightarrow \mathbb{R}$ definida por $f(x)=1+x^2$. Determine o valor médio da função e, se possível, o valor $c \in [-1, 2]$ tal que f(c) é o valor médio da função.
- 7. Sabe-se que o crescimento anual da população de um dado país é modelado por $f(t)=2.02.036^t$, com a unidade de f(t) fixada em milhões e t iniciado no ano 2000. Seja $F(x) = \int_0^x f(t) \, dt$. Nestas condições,
 - (a) O que representa F(20)?
 - (b) Qual a população média do país, entre os anos 2000 e 2020?
- 8. Justifique, sem efetuar o cálculo do respetivo integral

(a)
$$\int_0^{\sqrt{\pi}} \operatorname{sen}(x^2) \, dx \leq \sqrt{\pi}$$

(b)
$$2 \le \int_0^2 \sqrt{1+x^3} \, dx \le 6$$

9. Sejam $f \in g$ duas funções integráveis em [a, b] cujas curvas de intersetam neste intervalo. Nestas condições, qual o significado geométrico de cada um dos integrais?

(a)
$$\int_{a}^{b} [f(x) - g(x)] dx$$

(b)
$$\int_{a}^{b} |f(x) - g(x)| dx$$

- 10. Determine a área da região limitada por $y=\sqrt{x}$, pela tangente a esta curva em x=4 e pelo eixo das ordenadas.
- 11. Represente graficamente o conjunto A dado e calcule a sua área.
 - (a) A é o conjunto do plano limitado pelas retas x=1, x=4, y=0 e pela curva de $f(x)=\sqrt{x}$
 - (b) $A = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1 \text{ e } \sqrt{x} \le y \le -x + 2\}.$
 - (c) A é o conjunto do plano limitado superiormente pela parábola de equação $y=-x^2+\frac{7}{2}$ e inferiormente pela parábola de equação $y=x^2-1$.
 - (d) A é o conjunto de todos os pontos (x,y) em \mathbb{R}^2 tais que $x^2-1\leq y\leq x+1$.
- 12. Em cada alínea calcule a área da região limitada pelas curvas de equações:

(a)
$$x = 0$$
, $x = 1$, $y = 3x$, $y = -x^2 + 4$
(b) $x = 0$, $x = \pi/2$, $y = \sin x$, $y = \cos x$
(c) $x = -1$, $y = |x|$, $y = 2x$, $x = 1$
(d) $y = -x^3$, $y = -(4x^2 - 4x)$
(e) $y = 0$, $x = 2 - y - y^2$
(f) $y = 2 - x^2$, $y^3 = x^2$

(d)
$$y = -r^3$$
 $y = -(4r^2 - 4r^2)$

(b)
$$x = 0$$
, $x = \pi/2$, $y = \sin x$, $y = \cos x$

(e)
$$y = 0$$
, $x = 2 - y - y^2$

(c)
$$x = -1$$
, $y = |x|$, $y = 2x$, $x = 1$

(f)
$$y = 2 - x^2$$
, $y^3 = x^2$

- 13. Defina a reta horizontal (y=k) que divide a área da região entre $y=x^2$ e y=9 em duas partes iguais.
- **14.** Mostre, geometricamente, que $\int_{-2}^{2} \pi (\sqrt{4-x^2})^2 dx = \frac{4}{3}\pi \times 2^3$.
- **15.** Encontre o comprimento da curva definida por y = 2x entre os pontos de coordenadas (1,2) e (2,4):
 - (a) usando o teorema de Pitágoras;
 - (b) usando um integral definido em ordem a x;
 - (c) usando um integral definido em ordem a y;
- **16.** Determine o comprimento da curva definida pelas equações apresentadas, entre os pontos a e b indicados:

(a)
$$y = \frac{2}{3}x^{\frac{2}{3}}$$
, $A = (1, \frac{2}{3})$, $B = (8, \frac{8}{3})$

(c)
$$y = 6\sqrt[3]{x^2} + 1$$
, $A = (-1,7)$, $B = (-8,25)$

(b)
$$y = 5 - \sqrt{x^3}$$
, $A = (1, 4)$, $B = (4, -3)$

(a)
$$y = \frac{2}{3}x^{\frac{2}{3}}$$
, $A = (1, \frac{2}{3})$, $B = (8, \frac{8}{3})$
(b) $y = 5 - \sqrt{x^3}$, $A = (1, 4)$, $B = (4, -3)$
(c) $y = 6\sqrt[3]{x^2} + 1$, $A = (-1, 7)$, $B = (-8, 25)$
(d) $y = \frac{1}{4x} + \frac{x^3}{3}$, $A = (-2, \frac{67}{24})$, $B = (-3, \frac{109}{12})$.

17. Seja A a área limitada por $y=\frac{1}{\sqrt{x}}$, y=0, x=1 e x=b,b>1. Calcule A e $\lim_{b\longrightarrow +\infty} A$.