Math 110A Homework 1

Jiaping Zeng

1/9/2020

1. Let a be any integer and let b and c be positive integers. Suppose that when a is divided by b, the quotient is q, and the remainder is r, so that a = bq + r and $0 \le r < b$. If ac is divided by bc, show that the quotient is q and the remainder is rc.

Answer: Since c is a positive integer, we have $a = bq + r \implies ac = (bq + r)c \implies ac = (bc)q + rc$ and $0 \le r < b \implies 0 \le rc < bc$. Then by Division Algorithm, the quotient is bc and the remainder is cc.

2. Let n be a positive integer. Prove that a and c leave the same remainder when divided by n if and only if a - c = nk for some integer k.

Answer:

- \Rightarrow : Suppose a and c leave the same remainder when divided by n, we want to show that a-c=nk for some integer k. By Division Algorithm, we have a=np+r and c=nq+r for quotients $p,q\in\mathbb{Z}$ and remainder $r\in\mathbb{Z}$. Then a-c=np+r-nq-r=n(p-q). Since p and q are both integers, so is their difference. So we can let k=p-q and we have a-c=nk for $k\in\mathbb{Z}$.
- \Leftarrow : Suppose a-c=nk for some integer k, we want to show that a and c leave the same remainder when divided by n. By Division Algorithm, we have a=np+r and c=nq+s for quotients $p,q\in\mathbb{Z}$ and remainders $r,s\in\mathbb{Z}$ with $0\leq r< n$ and $0\leq s< n$. Then by substitution we have $a-c=np+r-nq-s=n(p-q)+(r-s)\implies r-s=(a-c)-n(p-q)\implies r-s=nk-n(p-q)=n(k-p+q)$, i.e. n divides r-s. However, since we have $0\leq r< n$ and $0\leq s< n$, which implies that $0\leq r-s< n$, n can only divide r-s if r-s=0, i.e. r=s. Therefore a and c leave the same remainder when divided by n.
- 3. Suppose a, b, q and r are integers such that a = bq + r. Prove the following:
 - (a) Every common divisor c of a and b is also a common divisor of b and r. **Answer**: Since c divides both a and b, we have a = cs and b = ct for some $s, t \in \mathbb{Z}$. Then by substitution we have $a = bq + r \implies cs = ctq + r \implies r = cs ctq = c(s tq)$. Therefore c also divides r and is a common divisor of b and r.
 - (b) Every common divisor of b and r is also a common divisor of a and b.

Answer: Let m be an arbitrary common divisor of b and r, then b = mj and r = mk for some $j, k \in \mathbb{Z}$. Then by substitution we have $a = bq + r \implies a = mjq + mk = m(jq + k)$. Therefore m also divides a and is a common divisor of a and b.

(c) (a,b) = (b,r).

Answer: By parts (a) and (b), every common divisor of a and b is a common divisor of b and r, and every common divisor of b and r is a common divisor of a and b. Therefore a, b and b, r share the same common divisors and must therefore have the same greatest common divisor, i.e. (a, b) = (b, r).

4. Use the Euclidean algorithm (see Exercise 1.2.15) to compute the gcd (123,90), and find integers u and v with (123,90) = 123u + 90v. Show your work.

Answer: Using the Euclidean algorithm, we have the following:

$$123 = 90 \cdot 1 + 33, 0 < 33 < 90$$

$$90 = 33 \cdot 2 + 24, 0 \le 66 < 90$$

$$33 = 24 \cdot 1 + 9, 0 \le 24 < 33$$

$$24 = 9 \cdot 2 + 6, 0 \le 6 < 9$$

$$9 = 6 \cdot 1 + 3, 0 \le 3 < 6$$

$$6 = 3 \cdot 2 + 0$$

Therefore (123, 90) = 3.

5. (a) If (a, c) = 1 and (b, c) = 1, prove that (ab, c) = 1.

Answer: Since (a,c)=1, we must have $au_1+cv_1=1$ for some $u_1,v_1\in\mathbb{Z}$. Similarly, we also must have $bu_2+cv_2=1$ for some $u_2,v_2\in\mathbb{Z}$. Upon multiplying the two equations, we have $(au_1+cv_1)(bu_2+cv_2)=1 \implies abu_1u_2+acu_1v_2+bcu_2v_1+c^2v_1v_2=1 \implies ab(u_1u_2)+c(au_1v_2+bu_2v_1+cv_1v_2)=1$. Now suppose (ab,c)=d, then we must have ab=dm and c=dn for some $m,n\in\mathbb{Z}$. By substitution we have $dm(u_1u_2)+dn(au_1v_2+bu_2v_1+cv_1v_2)=1 \implies d|1$. Therefore d=(ab,c)=1.

(b) Use induction and part (a) to show that if (a,b)=1 then $(a,b^n)=1$ for all integers $n\geq 1$.

Answer: By induction on n:

Base case: n = 1; we want to show that (a, b) = 1, which is true by our assumption.

Inductive step: Suppose that $(a,b)=1 \implies (a,b^n)=1$, we want to show that $(a,b^{n+1})=1$ also.

First we note that (m, n) = (n, m) trivially, which lets us swap the variables when using part (a).

Now we apply part (a) which gives us $(a, b^n \cdot b) = 1 \implies (a, b^{n+1}) = 1$.

Therefore $(a, b) = 1 \implies (a, b^n) = 1$ by induction.

6. Let $a, b, c \in \mathbb{Z}$. Prove that the equation ax + by = c has integer solutions if and only if (a, b)|c.

Answer: Let d = (a, b), then we must have au + bv = d for some $u, v \in \mathbb{Z}$. In addition, since d|a and d|b, we also have a = dm and b = dn for some $m, n \in \mathbb{Z}$.

- \Rightarrow : Suppose ax + by = c has integer solutions, i.e. $x, y \in \mathbb{Z}$, we want to show that d|c. By substitution we have $dmx + dny = c \implies d(mx + ny) = c$, which implies that d|c.
- \Leftarrow : Suppose that d|c, we want to show that ax + by = c has integer solutions. Since d|c, there must exist some $k \in \mathbb{Z}$ such that c = dk. By substitution we have $ax + by = dk \implies ax + by = (au + bv)k \implies ax + by = auk + bvk$. Then we can take x = uk and y = vk; since u, v, k are all integers, so are x and y.

7. Suppose that $a = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ where p_1, p_2, \dots, p_k are distinct positive primes and each $r_i \ge 0$. Find a formula for the number of positive divisors of a, in terms of the exponents r_i .

Answer: To construct a positive divisor, we can "choose" an exponent for each p_i and multiply the result together. Note that we can choose from 0 to r_i for each p_i , giving us $r_i + 1$ choices. Therefore, we have $\prod_k (r_i + 1) = k \prod_k r_i$ possible positive divisors.

8. For any integer n > 0, prove that a|b if and only if $a^n|b^n$.

Answer:

- \Rightarrow : Suppose that a|b, we want to show that $a^n|b^n$. Since a|b, there must exist some $m \in \mathbb{Z}$ such that b = ma. Since n > 0, we have $b^n = (ma)^n \implies b^n = m^n a^n$, where $m^n \in \mathbb{Z}$. Therefore $a^n|b^n$.
- $\Leftarrow: \text{ Suppose that } a^n|b^n, \text{ we want to show that } a|b. \text{ By prime factorization, we have } a=p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k} \\ \text{ and } b=p_1^{s_1}p_2^{s_2}\cdots p_k^{s_k}, \text{ where } p_1,p_2,\ldots,p_k \text{ are distinct positive primes and each } r_i,s_i\geq 0. \text{ Then we also have } a^n=p_1^{nr_1}p_2^{nr_2}\cdots p_k^{nr_k} \text{ and } b^n=p_1^{ns_1}p_2^{ns_2}\cdots p_k^{ns_k} \text{ by substitution. Since } a^n|b^n, \text{ we must have } ns_i\geq nr_i \text{ for each } i; \text{ then since } n\geq 1, \text{ we also have } s_i\geq r_i \text{ for each } i, \text{ i.e. } s_i=r_i+t_i \\ \text{where } t_i\geq 0. \text{ Again by substitution we have } b=p_1^{s_1}p_2^{s_2}\cdots p_k^{s_k}=(p_1^{t_1}p_2^{t_2}\cdots p_k^{t_k})\cdot(p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k})=(p_1^{t_1}p_2^{t_2}\cdots p_k^{t_k})a. \text{ Since } (p_1^{t_1}p_2^{t_2}\cdots p_k^{t_k})\in \mathbb{Z}, a \text{ divides } b \text{ by definition.}$
- 9. For any integers m and n with $0 \le m \le n$, let $\binom{n}{m} = \frac{n!}{m!(n-m)!}$. Recall that these are the binomial coefficients in the binomial theorem:

$$(a+b)^n = \sum_{m=0}^n \binom{n}{m} a^m b^{n-m}.$$

It is know that $\binom{n}{m}$ is an integer. Let p be a prime and let k be an integer with $1 \le k \le p-1$. Prove that p divides $\binom{p}{k}$.

Answer: We have $\binom{p}{k} = \frac{p!}{k!(p-k)!} = p \cdot \frac{(p-1)!}{k!(p-k)!}$. Since p is prime and the denominator is the product of integers strictly less than p, by prime factorization there is no prime factor in k!(p-k)! that divides p. Then for $\binom{p}{k}$ to be an integer as given, we must have k!(p-k)!|(p-1)!, i.e. $\frac{(p-1)!}{k!(p-k)!} \in \mathbb{Z}$. Therefore p divides $\binom{p}{k}$ by definition.