Parametrized Complexity Part 2

Aeren

October 18, 2022

Correction

Correction

There was a (possible) error in the definition of the parameterized reduction.

Correction

There was a (possible) error in the definition of the parameterized reduction.

DEFINITION

Let A and B be parameterized problems. A **parameterized reduction** of A onto B maps an instance (x, k) of A to an instance (x', k') of B such that

- 1. x' depends only on x.
- 2. k' depends only on k.
- 3. The function that maps x to x' can be computed in $f(k) \cdot poly(|x|)$ time.
- 4. k' is bounded by a computable function of k.
- 5. $(x, k) \in A$ if and only if $(x', k') \in B$.

Introduction

Introduction

 As with polynomial-time-reduction, parameterized reduction also yields its own hierarchical complexity class structure, which will be the main topic of today's lecture.

[PROBLEM] Nondeterministic-Turing-Machine-Acceptance (NTMA $_k$)

[PROBLEM] Nondeterministic-Turing-Machine-Acceptance(NTMA_k)

Instance: A nondeterministic turing machine with O(n) states, alphabets, and choices at each step, and an integer $k \ge 0$.

[PROBLEM] Nondeterministic-Turing-Machine-Acceptance(NTMA $_k$)

Instance: A nondeterministic turing machine with O(n) states, alphabets, and choices at each step, and an integer $k \ge 0$.

Question: Is there an accepting path of length k for 0^n ?

[PROBLEM] Nondeterministic-Turing-Machine-Acceptance(NTMA $_k$)

Instance: A nondeterministic turing machine with O(n) states, alphabets, and choices at each step, and an integer $k \ge 0$.

Question: Is there an accepting path of length k for 0^n ?

• It is believed, though not as strong as $P \neq NP$, that $NTMA_k \notin FPT$.

[PROBLEM] Nondeterministic-Turing-Machine-Acceptance(NTMA $_k$)

Instance: A nondeterministic turing machine with O(n) states, alphabets, and choices at each step, and an integer $k \ge 0$.

Question: Is there an accepting path of length k for 0^n ?

- It is believed, though not as strong as $P \neq NP$, that $NTMA_k \notin FPT$.
- We can now define a new complexity class under the assumption that NTMA_k \notin FPT.

	Polynomial Time Reduction	Parameterized Reduction
--	---------------------------	-------------------------

Polynomial Time Reduction	Parameterized Reduction
Problem A is NP	Problem A is $W[1]$
if A is reducible to SAT	if A is reducible to $NTMA_k$

Parameterized Reduction
Problem A is W[1]
if A is reducible to $NTMA_k$
Problem A is W[1]-hard
if $NTMA_k$ is reducible to A

Polynomial Time Reduction	Parameterized Reduction
Problem A is NP	Problem A is $W[1]$
if A is reducible to SAT	if A is reducible to $NTMA_k$
Problem A is NP-hard	Problem A is W[1]-hard
if SAT is reducible to A	if $NTMA_k$ is reducible to A
Problem A is NP-complete	Problem A is $W[1]$ -complete
if A is NP and NP-hard	if A is W[1] and W[1]-hard
**	

THEOREM

Independent-Set_k is W[1]-complete.

THEOREM

Independent-Set_k is W[1]-complete.

THEOREM

Independent-Set $_k$ is W[1]-complete.

PROOF) Independent-Set_k \in W[1]

• Given (G, k), set up a nondeterministic turing machine which have G built into it and guesses k vertices while guaranteeing that the set of guessed vertices is independent at each guesses.

THEOREM

Independent-Set_k is W[1]-complete.

- Given (G, k), set up a nondeterministic turing machine which have G built into it and guesses k vertices while guaranteeing that the set of guessed vertices is independent at each guesses.
- As any independent set of size k can be found, if any, within path length of $O(k^2)$, we conclude that Independent-Set_k \in W[1].

THEOREM

Independent-Set_k is W[1]-complete.

 $\mathsf{PROOF)} \; \mathsf{Independent}\text{-}\mathsf{Set}_k \in \mathsf{W[1]}\text{-}\mathsf{hard}$

THEOREM

Independent-Set $_k$ is W[1]-complete.

PROOF) Independent-Set_k \in W[1]-hard

• Let Σ be the set of alphabet and Q the set of state of the given nondeterministic turing machine.

THEOREM

Independent-Set $_k$ is W[1]-complete.

- Let Σ be the set of alphabet and Q the set of state of the given nondeterministic turing machine.
- Let a configuration of the machine be an element of $\Sigma^*(\Sigma \times Q)\Sigma^*$ describing the content of the tape, position of the head, and the state of the machine.

THEOREM

Independent-Set $_k$ is W[1]-complete.

- Let Σ be the set of alphabet and Q the set of state of the given nondeterministic turing machine.
- Let a configuration of the machine be an element of $\Sigma^*(\Sigma \times Q)\Sigma^*$ describing the content of the tape, position of the head, and the state of the machine.
- The vertices of the graph will be grouped into k^2 cells labelled $\{1, 2, \dots, k\} \times \{1, 2, \dots, k\}$, where vertices in each cell form a clique.

THEOREM

Independent-Set_k is W[1]-complete.

- Let Σ be the set of alphabet and Q the set of state of the given nondeterministic turing machine.
- Let a configuration of the machine be an element of $\Sigma^*(\Sigma \times Q)\Sigma^*$ describing the content of the tape, position of the head, and the state of the machine.
- The vertices of the graph will be grouped into k^2 cells labelled $\{1, 2, \dots, k\} \times \{1, 2, \dots, k\}$, where vertices in each cell form a clique.
- By adding some more edges, we want this graph to have an independent set of size $k \times k$ if and only if the machine has an accepting path of length k.

THEOREM

Independent-Set $_k$ is W[1]-complete.

PROOF) Independent-Set_k \in W[1]-hard

• The cell (i,j) represent the state of the tape after i steps, and has a vertex for each element in $\Sigma \cup (\Sigma \times Q)$.

THEOREM

Independent-Set_k is W[1]-complete.

- The cell (i,j) represent the state of the tape after i steps, and has a vertex for each element in $\Sigma \cup (\Sigma \times Q)$.
- We add edges between every pair of vertices which is impossible to occur together. i.e.

THEOREM

Independent-Set_k is W[1]-complete.

- The cell (i,j) represent the state of the tape after i steps, and has a vertex for each element in $\Sigma \cup (\Sigma \times Q)$.
- We add edges between every pair of vertices which is impossible to occur together. i.e.
 - 1. For all $1 \le i \le k$ and $1 \le j_1 < j_2 \le k$, add edges between every vertices from $\Sigma \times Q$ in the cell (i, j_1) and in the cell (i, j_2) .

THEOREM

Independent-Set_k is W[1]-complete.

- The cell (i,j) represent the state of the tape after i steps, and has a vertex for each element in $\Sigma \cup (\Sigma \times Q)$.
- We add edges between every pair of vertices which is impossible to occur together. i.e.
 - 1. For all $1 \le i \le k$ and $1 \le j_1 < j_2 \le k$, add edges between every vertices from $\Sigma \times Q$ in the cell (i, j_1) and in the cell (i, j_2) .
 - 2. For all $1 \le i < k$ and j and $(p, a) \in \Sigma \times Q$, put edges between (p, a) at cell (i, j) and every vertices at the row i + 1 which is incompatible with (p, a) according to the transition function of the machine.

THEOREM

Independent-Set $_k$ is W[1]-complete.

- The cell (i,j) represent the state of the tape after i steps, and has a vertex for each element in $\Sigma \cup (\Sigma \times Q)$.
- We add edges between every pair of vertices which is impossible to occur together. i.e.
 - 1. For all $1 \le i \le k$ and $1 \le j_1 < j_2 \le k$, add edges between every vertices from $\Sigma \times Q$ in the cell (i, j_1) and in the cell (i, j_2) .
 - 2. For all $1 \le i < k$ and j and $(p, a) \in \Sigma \times Q$, put edges between (p, a) at cell (i, j) and every vertices at the row i + 1 which is incompatible with (p, a) according to the transition function of the machine.
- Clearly, this graph has a clique of size k^2 if and only if the initial machine has an accepting path of length k. Therefore, Independent-Set_k is W[1]-complete.

COROLLARY

Clique_k is W[1]-complete.

THEOREM

 $\mathsf{Regular}\text{-}\mathsf{Clique}_k \text{ is } \mathsf{W[1]}\text{-}\mathsf{complete}.$

THEOREM

Regular-Clique_k is W[1]-complete.

PROOF)

• Clique_k \in W[1] implies Regular-Clique_k \in W[1], so it's suffice to show that Regular-Clique_k \in W[1]-hard.

THEOREM

Regular-Clique_k is W[1]-complete.

- Clique_k \in W[1] implies Regular-Clique_k \in W[1], so it's suffice to show that Regular-Clique_k \in W[1]-hard.
- Given the input (G, k), let Δ be the maximum degree of a vertex of G.

THEOREM

Regular-Clique_k is W[1]-complete.

- Clique_k \in W[1] implies Regular-Clique_k \in W[1], so it's suffice to show that Regular-Clique_k \in W[1]-hard.
- Given the input (G, k), let Δ be the maximum degree of a vertex of G.
- Create Δ copies of $G: G_1, \dots, G_{\Delta}$, and let v_i be the vertex corresponding to v in G_i .

THEOREM

Regular-Clique_k is W[1]-complete.

- Clique_k \in W[1] implies Regular-Clique_k \in W[1], so it's suffice to show that Regular-Clique_k \in W[1]-hard.
- Given the input (G, k), let Δ be the maximum degree of a vertex of G.
- Create Δ copies of $G: G_1, \dots, G_{\Delta}$, and let v_i be the vertex corresponding to v in G_i .
- For each vertex v of G, create $\Delta \deg(v)$ new vertices $v_1', \dots, v_{\Delta \deg(v)}'$, and connect each v_i and v_i' .

THEOREM

Regular-Clique_k is W[1]-complete.

- Clique_k \in W[1] implies Regular-Clique_k \in W[1], so it's suffice to show that Regular-Clique_k \in W[1]-hard.
- Given the input (G, k), let Δ be the maximum degree of a vertex of G.
- Create Δ copies of $G: G_1, \dots, G_{\Delta}$, and let v_i be the vertex corresponding to v in G_i .
- For each vertex v of G, create $\Delta \deg(v)$ new vertices $v'_1, \dots, v'_{\Delta \deg(v)}$, and connect each v_i and v'_i .
- Since for each $l \ge 3$, all clique of size l of the resulting graph is contained in one of G_i s, it has a clique of size k if and only if the original graph has a clique of size k.

COROLLARY

Regular-Independent-Set $_k$ is W[1]-complete.

[PROBLEM] $Multicolored-Clique_k(resp. Multicolored-Independent-Set_k)$

[PROBLEM] Multicolored-Clique_k(resp. Multicolored-Independent-Set_k)

Instance: A graph G = (V, E) and a partition $V = V_1 \cup \cdots \cup V_k$.

[PROBLEM] Multicolored-Clique_k(resp. Multicolored-Independent-Set_k)

Instance: A graph G = (V, E) and a partition $V = V_1 \cup \cdots \cup V_k$.

Question: Is there a clique(resp. independent set) with one vertex from each V_i ?

[PROBLEM] Multicolored-Clique_k (resp. Multicolored-Independent-Set_k)

Instance: A graph G = (V, E) and a partition $V = V_1 \cup \cdots \cup V_k$.

Question: Is there a clique(resp. independent set) with one vertex from each V_i ?

THEOREM

Multicolored-Clique_k(resp. Multicolored-Independent-Set_k) is W[1]-complete.

[PROBLEM] Multicolored-Clique_k(resp. Multicolored-Independent-Set_k)

Instance: A graph G = (V, E) and a partition $V = V_1 \cup \cdots \cup V_k$.

Question: Is there a clique(resp. independent set) with one vertex from each V_i ?

THEOREM

Multicolored-Clique_k(resp. Multicolored-Independent-Set_k) is W[1]-complete.

PROOF) Trivial.

We've looked at W[1]-complete problems so far. Now we'll look at some problems which is believed not to be W[1]-complete.

We've looked at W[1]-complete problems so far. Now we'll look at some problems which is believed not to be W[1]-complete.

[PROBLEM] Dominating-Set $_k$

We've looked at W[1]-complete problems so far. Now we'll look at some problems which is believed not to be W[1]-complete.

[PROBLEM] Dominating-Set_k

Instance: A graph G = (V, E) and an integer $k \ge 0$.

We've looked at W[1]-complete problems so far. Now we'll look at some problems which is believed not to be W[1]-complete.

[PROBLEM] Dominating-Set_k

Instance: A graph G = (V, E) and an integer $k \ge 0$.

Question: Is there a set of vertices D, called a **dominating set**, of size k where every vertex u of G is either in D or adjacent to a vertex in D?

We've looked at W[1]-complete problems so far. Now we'll look at some problems which is believed not to be W[1]-complete.

[PROBLEM] Dominating-Set_k

Instance: A graph G = (V, E) and an integer $k \ge 0$.

Question: Is there a set of vertices D, called a **dominating set**, of size k where every vertex u of G is either in D or adjacent to a vertex in D?

• It is unlikely that Dominating-Set_k is W[1]: after guessing k vertices for the dominating set D, we have to check whether every vertex is adjacent to D, which takes $O(k \cdot n)$ time.

We've looked at W[1]-complete problems so far. Now we'll look at some problems which is believed not to be W[1]-complete.

[PROBLEM] Dominating-Set_k

Instance: A graph G = (V, E) and an integer $k \ge 0$.

Question: Is there a set of vertices D, called a **dominating set**, of size k where every vertex u of G is either in D or adjacent to a vertex in D?

- It is unlikely that Dominating-Set_k is W[1]: after guessing k vertices for the dominating set D, we have to check whether every vertex is adjacent to D, which takes $O(k \cdot n)$ time.
- In case of $Clique_k$, it is W[1] because it is "local": after guessing k vertices, we don't have to look at every other vertices.

We've looked at W[1]-complete problems so far. Now we'll look at some problems which is believed not to be W[1]-complete.

[PROBLEM] Dominating-Set_k

Instance: A graph G = (V, E) and an integer $k \ge 0$.

Question: Is there a set of vertices D, called a **dominating set**, of size k where every vertex u of G is either in D or adjacent to a vertex in D?

- It is unlikely that Dominating-Set_k is W[1]: after guessing k vertices for the dominating set D, we have to check whether every vertex is adjacent to D, which takes $O(k \cdot n)$ time.
- In case of Clique_k, it is W[1] because it is "local": after guessing k vertices, we don't have to look at every other vertices.
- We'll later define the class W[2], where Dominating-Set_k has been proven to be complete on.

THEOREM

Dominating-Set_k is W[1]-hard.

THEOREM

Dominating-Set_k is W[1]-hard.

PROOF) We reduce Multicolored-Independent-Set $_k$ to Dominating-Set $_k$.

THEOREM

Dominating-Set_k is W[1]-hard.

PROOF) We reduce Multicolored-Independent-Set_k to Dominating-Set_k.

• Input: G = (V, E) with the partition $V = V_1 \cup \cdots \cup V_k$.

THEOREM

Dominating-Set_k is W[1]-hard.

- Input: G = (V, E) with the partition $V = V_1 \cup \cdots \cup V_k$.
- Create a graph G' by adding some vertices and edges as follows:
 - 1. Connect every pair of vertices in V_i for all $1 \le i \le k$.

THEOREM

Dominating-Set_k is W[1]-hard.

- Input: G = (V, E) with the partition $V = V_1 \cup \cdots \cup V_k$.
- Create a graph G' by adding some vertices and edges as follows:
 - 1. Connect every pair of vertices in V_i for all $1 \le i \le k$.
 - 2. Create new vertices x_i and y_i for all $1 \le i \le k$.

THEOREM

Dominating-Set_k is W[1]-hard.

- Input: G = (V, E) with the partition $V = V_1 \cup \cdots \cup V_k$.
- Create a graph G' by adding some vertices and edges as follows:
 - 1. Connect every pair of vertices in V_i for all $1 \le i \le k$.
 - 2. Create new vertices x_i and y_i for all $1 \le i \le k$.
 - 3. For all $v_i \in V_i$, connect v_i with both x_i and y_i .

THEOREM

Dominating-Set_k is W[1]-hard.

- Input: G = (V, E) with the partition $V = V_1 \cup \cdots \cup V_k$.
- Create a graph G' by adding some vertices and edges as follows:
 - 1. Connect every pair of vertices in V_i for all $1 \le i \le k$.
 - 2. Create new vertices x_i and y_i for all $1 \le i \le k$.
 - 3. For all $v_i \in V_i$, connect v_i with both x_i and y_i .
 - 4. For every edge e = (u, v) with $u \in V_i$, $v \in V_j$, and $i \neq j$, create a new vertex w_e .

THEOREM

Dominating-Set_k is W[1]-hard.

- Input: G = (V, E) with the partition $V = V_1 \cup \cdots \cup V_k$.
- Create a graph G' by adding some vertices and edges as follows:
 - 1. Connect every pair of vertices in V_i for all $1 \le i \le k$.
 - 2. Create new vertices x_i and y_i for all $1 \le i \le k$.
 - 3. For all $v_i \in V_i$, connect v_i with both x_i and y_i .
 - 4. For every edge e = (u, v) with $u \in V_i$, $v \in V_j$, and $i \neq j$, create a new vertex w_e .
 - 5. Connect w_e with every vertex of $V_i \{u\}$ and $V_j \{v\}$.

THEOREM

Dominating-Set_k is W[1]-hard.

- Input: G = (V, E) with the partition $V = V_1 \cup \cdots \cup V_k$.
- Create a graph G' by adding some vertices and edges as follows:
 - 1. Connect every pair of vertices in V_i for all $1 \le i \le k$.
 - 2. Create new vertices x_i and y_i for all $1 \le i \le k$.
 - 3. For all $v_i \in V_i$, connect v_i with both x_i and y_i .
 - 4. For every edge e = (u, v) with $u \in V_i$, $v \in V_j$, and $i \neq j$, create a new vertex w_e .
 - 5. Connect w_e with every vertex of $V_i \{u\}$ and $V_i \{v\}$.
- As there's no edge between x_i and y_i , every dominating set of size k in the resulting graph must contain exactly one vertex from each V_i .

THEOREM

Dominating-Set_k is W[1]-hard.

- Input: G = (V, E) with the partition $V = V_1 \cup \cdots \cup V_k$.
- Create a graph G' by adding some vertices and edges as follows:
 - 1. Connect every pair of vertices in V_i for all $1 \le i \le k$.
 - 2. Create new vertices x_i and y_i for all $1 \le i \le k$.
 - 3. For all $v_i \in V_i$, connect v_i with both x_i and y_i .
 - 4. For every edge e = (u, v) with $u \in V_i$, $v \in V_j$, and $i \neq j$, create a new vertex w_e .
 - 5. Connect w_e with every vertex of $V_i \{u\}$ and $V_i \{v\}$.
- As there's no edge between x_i and y_i , every dominating set of size k in the resulting graph must contain exactly one vertex from each V_i .
- Now it is clear from the construction that the original graph has an independent set of size k if and only if the resulting graph has a dominating set of size k.

[PROBLEM] Circuit-SAT_k

[PROBLEM] Circuit-SAT_k

Instance: A boolean circuit C and an integer $k \geq 0$.

[PROBLEM] Circuit-SAT_k

Instance: A boolean circuit C and an integer $k \ge 0$.

Question: Is there a valid assignment of the input where exactly k variables are set to True?

THEOREM

1. Independent-Set_k is reducible to Circuit-SAT_k, i.e. it is W[1]-hard.

THEOREM

- **1**. Independent-Set_k is reducible to Circuit-SAT_k, i.e. it is W[1]-hard.
- 2. Dominating-Set_k is reducible to Circuit-SAT_k.

THEOREM

- 1. Independent-Set_k is reducible to Circuit-SAT_k, i.e. it is W[1]-hard.
- 2. Dominating-Set_k is reducible to Circuit-SAT_k.

So far, we have:

So far, we have:

- W[1]-complete
 - $NTMA_k$, {Regular-, Multicolored-}{Clique_k, Independent-Set_k}

So far, we have:

- W[1]-complete
 - $NTMA_k$, {Regular-, Multicolored-}{Clique_k, Independent-Set_k}
- W[1]-hard but doesn't seem to be W[1]
 - Dominating-Set_k, Circuit-SAT_k

So far, we have:

- W[1]-complete
 - $NTMA_k$, {Regular-, Multicolored-}{Clique_k, Independent-Set_k}
- W[1]-hard but doesn't seem to be W[1]
 - Dominating-Set_k, Circuit-SAT_k

As we've noted earlier, locality of $Clique_k$ / $Independent-Set_k$ plays a part in the distinguishment of these two groups.

We formalize this concept to define other classes in W-Hierarchy.

1. In the Independent-Set_k circuit, all the input-output path pass through only one gate that has large number of inputs.

- 1. In the Independent-Set_k circuit, all the input-output path pass through only one gate that has large number of inputs.
- 2. In the Dominating-Set_k circuit, all the input-output path pass through two gates that has large number of inputs.

DEFINITION

1. A large gate is a gate that has more than some fixed constant number. We let the constant be 2 for now.

- 1. A **large gate** is a gate that has more than some fixed constant number. We let the constant be 2 for now.
- 2. The **depth** of a circuit is the maximum length of an input-output path.

- 1. A **large gate** is a gate that has more than some fixed constant number. We let the constant be 2 for now.
- 2. The **depth** of a circuit is the maximum length of an input-output path.
- 3. The **weft** of a circuit is the maximum number of large gates on a an input-output path.

- 1. A **large gate** is a gate that has more than some fixed constant number. We let the constant be 2 for now.
- 2. The **depth** of a circuit is the maximum length of an input-output path.
- 3. The **weft** of a circuit is the maximum number of large gates on a an input-output path.
- 4. Let C[t,d] be the set of all circuits having weft at most t and depth at most d.

- 1. A **large gate** is a gate that has more than some fixed constant number. We let the constant be 2 for now.
- 2. The **depth** of a circuit is the maximum length of an input-output path.
- 3. The **weft** of a circuit is the maximum number of large gates on a an input-output path.
- 4. Let C[t,d] be the set of all circuits having weft at most t and depth at most d.
- 5. Let $C[t,d]_k$ the set of problems deciding whether there's an assignment for the given circuit in C[t,d] with exactly k variables assigned to True.

- 1. A **large gate** is a gate that has more than some fixed constant number. We let the constant be 2 for now.
- 2. The **depth** of a circuit is the maximum length of an input-output path.
- 3. The weft of a circuit is the maximum number of large gates on a an input-output path.
- 4. Let C[t,d] be the set of all circuits having weft at most t and depth at most d.
- 5. Let $C[t,d]_k$ the set of problems deciding whether there's an assignment for the given circuit in C[t,d] with exactly k variables assigned to True.

DEFINITION

DEFINITION

Let A_k be a parameterized problem and $t \ge 0$ an integer.

1. $A_k \in W[t]$ if there's a computable function f such that there's a reduction from A_k to a problem in $C[t,d]_k$.

DEFINITION

- 1. $A_k \in W[t]$ if there's a computable function f such that there's a reduction from A_k to a problem in $C[t,d]_k$.
- 2. A_k is W[t]-hard if, for all d, every problem in C[t,d]_k is reducible to A_k .

DEFINITION

- 1. $A_k \in W[t]$ if there's a computable function f such that there's a reduction from A_k to a problem in $C[t,d]_k$.
- 2. A_k is W[t]-hard if, for all d, every problem in C[t,d]_k is reducible to A_k .
- 3. A_k is W[t]-complete, if it is W[t] and W[t]-hard.

DEFINITION

- 1. $A_k \in W[t]$ if there's a computable function f such that there's a reduction from A_k to a problem in $C[t,d]_k$.
- 2. A_k is W[t]-hard if, for all d, every problem in C[t,d]_k is reducible to A_k .
- 3. A_k is W[t]-complete, if it is W[t] and W[t]-hard.
- **4.** $A_k \in W[SAT]$ if A_k is reducible to SAT_k .

DEFINITION

- 1. $A_k \in W[t]$ if there's a computable function f such that there's a reduction from A_k to a problem in $C[t,d]_k$.
- 2. A_k is W[t]-hard if, for all d, every problem in C[t,d]_k is reducible to A_k .
- 3. A_k is W[t]-complete, if it is W[t] and W[t]-hard.
- **4.** $A_k \in W[SAT]$ if A_k is reducible to SAT_k .
- **5**. $A_k \in W[P]$ if A_k is reducible to Circuit-SAT_k.

DEFINITION

- 1. $A_k \in W[t]$ if there's a computable function f such that there's a reduction from A_k to a problem in $C[t,d]_k$.
- 2. A_k is W[t]-hard if, for all d, every problem in C[t,d]_k is reducible to A_k .
- 3. A_k is W[t]-complete, if it is W[t] and W[t]-hard.
- **4.** $A_k \in W[SAT]$ if A_k is reducible to SAT_k .
- 5. $A_k \in W[P]$ if A_k is reducible to Circuit-SAT_k.
- 6. $A_k \in XP$ if there exists computable functions f and g such that A_k can be solved in time $f(k) \cdot n^{g(k)}$.

The followings are known:

 $\bullet \ \mathsf{FPT} = \mathsf{W}[\mathsf{0}] \subseteq \mathsf{W}[\mathsf{1}] \subseteq \mathsf{W}[\mathsf{2}] \subseteq \cdots \subseteq \mathsf{W}[\mathsf{SAT}] \subseteq \mathsf{W}[\mathsf{p}] \subseteq \mathsf{XP}$

- $\mathsf{FPT} = \mathsf{W}[0] \subseteq \mathsf{W}[1] \subseteq \mathsf{W}[2] \subseteq \cdots \subseteq \mathsf{W}[\mathsf{SAT}] \subseteq \mathsf{W}[\mathsf{p}] \subseteq \mathsf{XP}$
- For integer $t \ge 0$, we can equivalently define W[t] the same way as the NTMA_k definition of W[1], except that the machine can have t tapes.

- $\mathsf{FPT} = \mathsf{W}[\mathsf{0}] \subseteq \mathsf{W}[\mathsf{1}] \subseteq \mathsf{W}[\mathsf{2}] \subseteq \cdots \subseteq \mathsf{W}[\mathsf{SAT}] \subseteq \mathsf{W}[\mathsf{p}] \subseteq \mathsf{XP}$
- For integer $t \ge 0$, we can equivalently define W[t] the same way as the NTMA_k definition of W[1], except that the machine can have t tapes.
- Dominating-Set_k is W[2]-complete. Hence, it's unlikely that it is reducible to Independent-Set_k.

- $\mathsf{FPT} = \mathsf{W[0]} \subseteq \mathsf{W[1]} \subseteq \mathsf{W[2]} \subseteq \cdots \subseteq \mathsf{W[SAT]} \subseteq \mathsf{W[p]} \subseteq \mathsf{XP}$
- For integer $t \ge 0$, we can equivalently define W[t] the same way as the NTMA_k definition of W[1], except that the machine can have t tapes.
- Dominating-Set_k is W[2]-complete. Hence, it's unlikely that it is reducible to Independent-Set_k.
- $FPT \neq XP$

THEOREM

Assuming ETH, Vertex-Cover_k requires $2^{\Omega}(k)n^c$ time to solve for all integer c>0.

THEOREM

Assuming ETH, Vertex-Cover_k requires $2^{\Omega}(k)n^c$ time to solve for all integer c>0.

PROOF)

• Recall that assuming ETH, Vertex-Cover requires $2^{\Omega(n)}$ time to solve.

THEOREM

Assuming ETH, Vertex-Cover_k requires $2^{\Omega}(k)n^c$ time to solve for all integer c > 0.

- Recall that assuming ETH, Vertex-Cover requires $2^{\Omega(n)}$ time to solve.
- If Vertex-Cover_k could be solved in $2^{o(k)} \cdot n^c$ time, since $k \leq n$, this would yield a $2^{o(n)} \cdot n^c$ algorithm for Vertex-Cover, violating the ETH.
- As Vertex-Cover has been shown to be solvable in time $O(k \cdot n + 1.28^k)$ by Chen et al., this bound is tight.

Assuming ETH,

• Similarly to the previous theorem, Dominating-Set_k, Clique_k, and Hamiltonian-Cycle_k can all be shown to require $2^{\Omega(k)} \cdot n^c$ time to solve for all integer c > 0.

- Similarly to the previous theorem, Dominating-Set_k, Clique_k, and Hamiltonian-Cycle_k can all be shown to require $2^{\Omega(k)} \cdot n^c$ time to solve for all integer c > 0.
- Furthurmore, Planar-Vertex-Cover_k, Planar-Dominating-Set_k, and Planar-Directed-Hamiltonian-Cycle_k can all be shown to require $2^{\Omega(\sqrt{k})} \cdot n^c$ time to solve for all integer c > 0.

- Similarly to the previous theorem, Dominating-Set_k, Clique_k, and Hamiltonian-Cycle_k can all be shown to require $2^{\Omega(k)} \cdot n^c$ time to solve for all integer c > 0.
- Furthurmore, Planar-Vertex-Cover_k, Planar-Dominating-Set_k, and Planar-Directed-Hamiltonian-Cycle_k can all be shown to require $2^{\Omega(\sqrt{k})} \cdot n^c$ time to solve for all integer c>0.
- Albert et al. showed that Planar-Dominating-Set_k can be done in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time. Thus, the bound above is tight.

- Similarly to the previous theorem, Dominating-Set_k, Clique_k, and Hamiltonian-Cycle_k can all be shown to require $2^{\Omega(k)} \cdot n^c$ time to solve for all integer c > 0.
- Furthurmore, Planar-Vertex-Cover_k, Planar-Dominating-Set_k, and Planar-Directed-Hamiltonian-Cycle_k can all be shown to require $2^{\Omega(\sqrt{k})} \cdot n^c$ time to solve for all integer c > 0.
- Albert et al. showed that Planar-Dominating-Set_k can be done in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time. Thus, the bound above is tight.
- Demaine et al. showed that Planar-Vertex-Cover_k can be done in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time. Thus, the bound above is tight.

Recall that assuming FPT \neq W[1], Clique_k and Independent-Set_k cannot be solved in $f(k) \cdot n^{O(1)}$ time.

Recall that assuming FPT \neq W[1], Clique_k and Independent-Set_k cannot be solved in $f(k) \cdot n^{O(1)}$ time.

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

Recall that assuming FPT \neq W[1], Clique_k and Independent-Set_k cannot be solved in $f(k) \cdot n^{O(1)}$ time.

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

PROOF)

• Recall that 3COL requires $2^{\Omega(n)}$ time assuming ETH.

Recall that assuming FPT \neq W[1], Clique_k and Independent-Set_k cannot be solved in $f(k) \cdot n^{O(1)}$ time.

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

- Recall that 3COL requires $2^{\Omega(n)}$ time assuming ETH.
- We give a reduction from 3COL to Clique_k.

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

1. Input:
$$G = (V, E)$$

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

- 1. Input: G = (V, E)
- 2. Split V into k groups V_1, \dots, V_k , roughly n/k vertices each.

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

- 1. Input: G = (V, E)
- 2. Split *V* into *k* groups V_1, \dots, V_k , roughly n/k vertices each.
- 3. For each $1 \le i \le k$ and each valid 3-colorings of V_i , add a new vertex to a vertex set V'. This step takes $O(k \cdot 3^{n/k})$ time.

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

- 1. Input: G = (V, E)
- 2. Split *V* into *k* groups V_1, \dots, V_k , roughly n/k vertices each.
- 3. For each $1 \le i \le k$ and each valid 3-colorings of V_i , add a new vertex to a vertex set V'. This step takes $O(k \cdot 3^{n/k})$ time.
- 4. For each vertex $x \in V_i$ and $y \in V_j$ with i < j, if the coloring $x \cup y$ is valid, add the edge (x, y) to an edge set E'.

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

- 1. Input: G = (V, E)
- 2. Split *V* into *k* groups V_1, \dots, V_k , roughly n/k vertices each.
- 3. For each $1 \le i \le k$ and each valid 3-colorings of V_i , add a new vertex to a vertex set V'. This step takes $O(k \cdot 3^{n/k})$ time.
- 4. For each vertex $x \in V_i$ and $y \in V_j$ with i < j, if the coloring $x \cup y$ is valid, add the edge (x, y) to an edge set E'.
- 5. G' = (V', E') is the final graph.

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

PROOF)

ullet Clearly, G has a 3-coloring if and only if G' has a k-clique.

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

- Clearly, G has a 3-coloring if and only if G' has a k-clique.
- Now assume Clique_k is solvable in $f(k) \cdot n^{o(k)}$ time. Then there exists a monotonously increasing unbounded function s such that Clique_k is solvable in $f(k) \cdot n^{k/s(k)}$ time.

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

- Clearly, G has a 3-coloring if and only if G' has a k-clique.
- Now assume Clique_k is solvable in $f(k) \cdot n^{o(k)}$ time. Then there exists a monotonously increasing unbounded function s such that Clique_k is solvable in $f(k) \cdot n^{k/s(k)}$ time.
- Set k to be the maximum value such that $f(k) \le n$ and $k^{k/s(k)} \le n$, and let g be the minimum value between the inverse of the two functions above.

THEOREM

Assuming ETH, for any computable function f, Clique_k and Independent-Set_k require $f(k) \cdot n^{\Omega(k)}$ time.

- Clearly, G has a 3-coloring if and only if G' has a k-clique.
- Now assume Clique_k is solvable in $f(k) \cdot n^{o(k)}$ time. Then there exists a monotonously increasing unbounded function s such that Clique_k is solvable in $f(k) \cdot n^{k/s(k)}$ time.
- Set k to be the maximum value such that $f(k) \le n$ and $k^{k/s(k)} \le n$, and let g be the minimum value between the inverse of the two functions above.
- Now the runtime of our 3-coloring algorithm is $f(k) \cdot ((k \cdot 3^{n/k})^{k/s(k)}) \le n \cdot k^{k/s(k)} \cdot 3^{n/s(k)} \le n^2 \cdot 3^{n/s(g(n))} \le 2^{o(n)}$ which violates the ETH.

The End