VESTFOLDBANEN BARKÅKER – TØNSBERG Alternativt Signalanlegg - Plan C FD06 ANALYSERAPPORT

	BANE NOR		
1 🔽	Akseptert Accepted		
2 🔲	Accepted with comments Akseptert med kommentarer		
3 🗌	Ikke akseptert Not accepted		
4	Kun for informasjon For information only		
Signatur(e)	I		
ALVHE	ALVHEI 02.10.2024		
Alv	Alv Flei		

00E	Første utgivelse	05.09.2024			
Rev.	Revisjonen gjelder	Dato	Utarb. av	Kontr. av	Godkj. av
		Ant. sider	Fritekst 1d		
Titte	el:	40	Fritekst 2d		
Ves	tfoldbanen	18	Fritekst 3d		
(Dra	mmen) – Larvik	Produsent			
Bark	råker - Tønsberg	Prod. dok. nr.			
FD0	6 analyserapport	Erstatning for	UVB-62-A	-91056	
		Erstattet av			
Pro	sjekt: 965202	Dokument nr.			Rev.
Parsell: 62		UVB	-62-Q-9	1051	00E
BANE NOR		Dokument nr.			Rev.

Dato: Revisjon: Side:

05.09.2024 00E

2 av 18

R	EVISJON	ISHISTORIKK	3
S	AMMEND	PRAG	4
1	INNLI	EDNING	5
		BAKGRUNNFORMÅL	_
2	GRU	NNLAG FOR ANALYSEN	6
		AnalysemetodikkAnalysegruppens sammensetning	_
3	TERM	IINOLOGI OG FORKORTELSER	9
	3.2 <i>i</i> 3.3	GRUNNLAGSDOKUMENTER AVGRENSNINGER FORUTSETNINGER OMFANG AV ANALYSEN	10 10
4	SYST	EMBESKRIVELSE	11
	4.2 4.3 4.4 4.5 4.6	GENERELT OM PROSJEKTET	12 12 12 12 12
5	SIKK	ERHETSANALYSENE	13
	5.1.1 5.1.2 5.2 5.2.1 5.2.2 5.2 5.2 5.2	Analyseresultat systemfarer ANALYSE AV OPERATIVE FARER Metode og gjennomføring for identifisering av operative farer Analyseresultat operative farer 2.1 Fare 1 – Avsporing av godstog inn mot Tønsberg stasjon fra sør (Sem) 2.2 Fare 2 – Overgang fra TXP til fjernstyring 2.3 Fare 3 – Arbeidsområdeinndeling på togparkering Tønsberg	13 15 15 15 16 16
6	KON	KLUSJON	17
7	REFE	RENCES	18

 Dato:
 05.09.2024

 Revisjon:
 00E

 Side:
 3 av 18

REVISJONSHISTORIKK

Rev.	Prosjektfase	Beskrivelse av endring	Dato	Forfatter
00E	FD06	Første utgivelse. Erstatter dokumentnummer UVB-62-A-91056. Dokumentet har derfor endringsmarkering.	05.09.2024	FIHO

Dato: 05.0 Revisjon:

05.09.2024 00E

SAMMENDRAG

Oppdraget gjelder midlertidig signalanlegg på strekningen Nykirke – Tønsberg, som en plan C hvis ikke ERTMS kan settes i drift i 2025 eller 2026. Strekningen er planlagt med ERTMS for idriftsettelse i 2025 (plan A). Plan B er utsettelse av ERTMS på strekningen med 1 år. Strekningen Barkåker – Tønsberg planlegges med NSI-63 sikringsanlegg, mens strekningen (Galleberg) – (Barkåker) realiseres med Hitachi ESTW L90 5 sikringsanlegg. Analysemøtene ble utført på hele strekningen, men denne analyserapporten gjelder bare for NSI-63-anlegget for Barkåker – Tønsberg.

For den delen av prosjektet som gjelder NSI-63-anlegg gjennomføres det en forenklet signalprosess hvor metodesettet som benyttes er «regler for god praksis» (COP) gitt av ARB-804175, der dette dokumentet skal sikre gjennomføringen av arbeidsprosess FD06. Risikoanalysen skal ivareta krav i STY-605166 «Krav til utførelse av risikovurdering innen trafikksikkerhet», hvor hensikten er å identifisere potensielle systemfarer og operative farer for signalanlegget.

Analysemetodikken følger beskrivelsen gitt ARB-804175 kapittel 5. Beskrivelsen er todelt, der den tar for seg gjennomføring av analyse for å identifisere systemfarer og operative farer for signalanlegget.

Under analysen av systemfarer ble det identifisert 10 relevante systemfarer, mens 3 ble ansett som ikke relevante. De 3 farene ble vurdert som ikke relevante fordi funksjonen ikke eksisterer i planlagt signalsystem, og dermed er det heller ikke et system som kan feile. Det ble ikke identifisert noen nye systemfarer for signalanlegget som ikke allerede er predefinert. Gitt relevans av eksisterende systemfarer samt at det ikke ble identifisert noen nye systemfarer, betyr dette at signalsystemet ikke krever ytterligere sikkerhetsfunksjonalitet enn det som allerede er definert i eksisterende regelverk.

Under analysen av operative farer ble det identifisert 3 farer og 3 tiltak. Farene og tiltakene er kort oppsummert i Tabell 6, og vil bli overført til prosjektets RAM- og farelogg for signal for videre oppfølging. Forutsatt at tiltakene for de operative farene blir fulgt opp, konkluderer denne analysen med at prosjekteringen for signalsystemet plan C innehar de forventningene og kravene for å ha fullført FD06 i Bane NORs forenklede signalprosess.

Dato: 05.0 Revisjon:

05.09.2024 00E 5 av 18

1 INNLEDNING

1.1 Bakgrunn

Oppdraget gjelder midlertidig signalanlegg på strekningen Nykirke – Tønsberg, som en plan C hvis ikke ERTMS kan settes i drift i 2025 eller 2026. Strekningen er planlagt med ERTMS for idriftsettelse i 2025 (plan A). Plan B er utsettelse av ERTMS på strekningen med 1 år.

Strekningen Barkåker – Tønsberg planlegges med NSI-63 sikringsanlegg, mens strekningen (Galleberg) – (Barkåker) realiseres med Hitachi ESTW L90 5 sikringsanlegg. Analysemøtene ble utført på hele strekningen, men denne analyserapporten gjelder bare for NSI-63-anlegget for Barkåker – Tønsberg.

1.2 Formål

For den delen av prosjektet som gjelder NSI-63-anlegg gjennomføres det en forenklet signalprosess hvor metodesettet som benyttes er «regler for god praksis» (COP) gitt av ARB-804175, der dette dokumentet skal sikre gjennomføringen av arbeidsprosess FD06. Risikoanalysen skal ivareta krav i STY-605166 «Krav til utførelse av risikovurdering innen trafikksikkerhet», hvor hensikten er å identifisere potensielle operative farer og systemfarer for signalanlegget.

05.09.2024 Dato: Revisjon:

00E

2 **GRUNNLAG FOR ANALYSEN**

2.1 Analysemetodikk

Analysemetodikken følger beskrivelsen gitt ARB-804175 kapittel 5 (1). Beskrivelsen er todelt, der den tar for seg gjennomføring av analyse for å identifisere systemfarer og operative farer for signalanlegget.

Metoden for identifisering av systemfarer er hovedsakelig en sammenligning mot eksisterende identifiserte systemfarer gitt i ARB-804181 (2). Etter sammenligningen ble det også utført en evaluering av om det er systemfarer som ikke er identifisert og dermed krever ytterligere sikkerhetsfunksjonalitet i signalsystemet.

Analysemetodikken for de operative farene er en mer kreativ og tverrfaglig prosess som følger stegene i kapittel 5.1 i ARB-804175 (1). Systemdefinisjonen (3) ble lagt ved møteinnkallelsen til gjennomlesning for deltagerne og en rask gjennomgang av systemet ble gjort som introduksjon i analysemøtet. Relevante farer fra en tidligere utført risikovurdering (4) ble gjennomgått før møtet og relevansen ble vurdert, før strekningen ble analysert fra laveste til høyeste kilometer. Idékartet i vedlegg 3 i ARB-804175 (1) ble benyttet som hjelpemiddel.

Rambøll utførte et eget internmøte for å identifisere systemfarer og gjennomgåelse av relevansen til tidligere registrerte operative farer fra en tidlig fase av ERTMSprosjektet (4). Analysen av de nye operative farene ble utført i et eget tverrfaglig møte i samarbeid med Bane NOR.

Metodesettet til forenklet signalprosess gir valget med å vurdere signalsystemet mot et referansesystem eller COP. Gitt at det ikke ble funnet noen gode referansesystem i samarbeid med systemspesialist, er det valgt å vurdere systemet mot COP. COPmetoden tilsier at systemet skal vurderes opp mot gjeldende teknisk regelverk (TRV) hos Bane NOR. Alle farer som blir avdekket i analysen vil dermed få tiltak for å imøtekomme TRV. Resultatet av denne analysen vil bli benyttet til å videreutvikle prosjekteringen til anlegget og utarbeide en kravspesifikasjon. I FD06 blir ikke farer vurdert mot CSM-RA. I FD12 vil kravspesifikasjonen blir vurdert mot TRV og avvik vil bli risikovurdert mot CSM-RA.

Ytterligere detaljert beskrivelse av analysemetodikk er gitt i kapittel 5.

2.2 Analysegruppens sammensetning

Det er gjennomført to analysemøter via videokonferanse. Analysemøtet for systemfarer og gjennomgang av tidligere analyse (4) ble gjennomført 28. mai 2024, mens analysen for operative farer ble gjennomført 10. juni 2024.

Tabell 1 og Tabell 2 viser hvilke personer som deltok i analysemøtene.

 Dato:
 05.09.2024

 Revisjon:
 00E

 Side:
 7 av 18

Tabell 1: Liste over deltagere i analysemøtet for systemfarer 28. mai 2024

Navn	Stilling/rolle	Bedrift/enhet
Agnete Dessen Nielsen	Prosjektleder/FA RAMS	Rambøll
Filip Hoel	RAMS-rådgiver/analyseleder	Rambøll
Kjell Åge Hagemoen	Prosjekteringsleder signal	Rambøll
Tormod Helling	Signalingeniør	Rambøll

Tabell 2: Liste over deltagere i analysemøtet for operative farer 10. juni 2024

Navn	Stilling/rolle	Bedrift/enhet
Dmitrii Bondarenko Griffin	Signalingeniør, Thales	Bane NOR
Finn Roar Andersen	Signalingeniør fagressurs	Bane NOR
Heidi Urianstad Andersen	Prosjekteringsleder Signal	Bane NOR
Jarle Stærkebye Ødegård	Rådgiver operasjonell trafikksikkerhet	Bane NOR
Joakim Jaer Hansson	TXP, Narvik	Bane NOR
John Andre Gonsholt	Prod. Leder Vestfoldbanen	Bane NOR
Magne Berg	Kontrollingeniør signal, banesjefens org, infrastruktur	Bane NOR
Magne Gunnar Arnesen	TTG, funksjonell godkjenning	Bane NOR
Marius Benmessaoud- Tangen	Drift	Bane NOR
Marte Johanne Hagenes Henden	RAMS-ressurs UNB-prosjektene	Bane NOR
Morten Jørn Rasch	TTG, funksjonell godkjenning	Bane NOR
Rune Glienke Berge	FA Signal Vestfold og Telemark	Bane NOR
Sander Nilsen	Trafikkstyrer TXP Tønsberg	Bane NOR
Tommy Nilsen	Signalingeniør BN	Bane NOR
Torben Trogstad	Prosjektleder	Bane NOR
Torbjørn Flaten	Tilstandskontrollør signal	Bane NOR
Agnete Dessen Nielsen	Prosjektleder/FA RAMS	Rambøll
Filip Hoel	RAMS-rådgiver/analyseleder	Rambøll
Katja Mo	Dokumentkontroller	Rambøll
Kjell Åge Hagemoen	Prosjekteringsleder signal	Rambøll

 Dato:
 05.09.2024

 Revisjon:
 00E

 Side:
 8 av 18

Navn	Stilling/rolle	Bedrift/enhet
Tormod Helling	Signalingeniør	Rambøll

Analysegruppens samlede kompetanse vurderes som tilstrekkelig for analysens formål.

Dato: Revisjon: Side: 05.09.2024 00E 9 av 18

3 TERMINOLOGI OG FORKORTELSER

Forkortelse/Uttrykk	Beskrivelse/Definisjoner
ATC	Automatic train control
COP	Common Practice (regler for god praksis)
CSM-RA	Common Safety Methods for Risk Analysis
СТС	Centralised Traffic Control
DATC	Delvis ATC
FA	Fagansvarlig
IC	InterCity – Overordnet prosjektpakke for utbedring av togtilbud mellom byene på Østlandet
LOP	Local Operator Panel
PLO	Planovergang
RAMS	Reliability, Availability, Maintainability and Safety
TCS	Train Control System
TRV	Teknisk regelverk
TTG	Teknisk Trafikal Godkjenner
TXP	Togekspeditør/trafikkstyrer
VICOS	Vehicle Infrastructure Control Operating System – Kommunikasjon- og kontrolløsning for signal

3.1 Grunnlagsdokumenter

Referansedokumentene er listet under:

Dok. ID	Tittel	Revisjon
ERP-H3-Q-00002	Rapport forberedende RAMS-analyse (ERTMS) (4)	01B
UVB-62-A-91003	System Definition (Galleberg) - Horten	02-1
UVB-62-A-91055	Systemdefinisjon (Nykirke) - Tønsberg	01-1
UVB-62-S-91000	Skjematisk plan Nykirke	00B
UVB-62-S-91050	Skjematisk plan Tønsberg	00B
UVB-62-S-91052	Skjematisk plan Barkåker	00B

Dato: 05. Revisjon:

05.09.2024 00E 10 av 18

3.2 Avgrensninger

Avgrensningene er beskrevet i Tabell 3.

Tabell 3: Liste over avgrensninger

Type avgrensning	Beskrivelse av avgrensning
Analysespesifikt	Analysen er kvalitativ
Geografisk	Fra innkjørhovedsignal A/UA Barkåker, km 106.600 (forsignal A/UA, km 102.350), til innkjørhovedsignal B på Tønsberg stasjon km 114.366.
Operativt	Nytt dobbeltspor fra Barkåker til Tønsberg, inklusiv ny togparkering på Barkåker. Tønsberg stasjon endres fra TXP styrt til fjernstyrt stasjon.
Teknisk	Signalteknisk realiseres strekningen med NSI-63 anlegg på Barkåker og Tønsberg. Teknisk dekkes strekningen mellom innkjør A/UA på Barkåker st. og innkjør B Tønsberg st.

3.3 Forutsetninger

Forutsetningene er beskrevet i Tabell 4.

Tabell 4: Liste over forutsetninger

ID	Forutsetning	Betydning for sikkerhet og/eller tilgjengelighet
N/A	Det er ikke registrert noen forutsetninger	N/A
	for analysen	

3.4 Omfang av analysen

Analysen omfatter NSI-63-delen av plan C, hvor oppdraget er å prosjektere et nytt NSI-63 signalanlegg på strekningen Barkåker – Tønsberg som kan benyttes frem til nytt signalanlegg av typen ERTMS overtar. Metoden for analysene er kvalitative.

05.09.2024 Dato: Revisjon:

00E

SYSTEMBESKRIVELSE

For signalspesifikk systembeskrivelse henvises det til systemdefinisjonen for signal (3) (ikke formelt utgitt utgave, oppdatert per 15. august 2024)

4.1 Generelt om prosjektet

Strekningen Barkåker – Tønsberg er en del av Vestfoldbanen. Traseen går igjennom forstadsområdet inn til Tønsberg og inn til sentrum av byen. Tønsberg by bidrar til at dette er et tett befolket område. Utbygging Nykirke – Barkåker (UNB) utfører en oppgradering av Tønsberg stasjon. I tilknytning til nytt dobbeltspor Nykirke-Barkåker tilrettelegges også spor for en fremtidig Kopstad godsterminal ved Nykirke som kan påvirke godstrafikken på hele strekningen.

Strekningen frem til Tønsberg betjenes av Togleder i Drammen fjernstyringssentral, Tønsberg er styrt av TXP. Fjernstyringsanlegget er av typen VICOS fra Siemens. Eksisterende strekning Skoppum - Larvik – Nordagutu har DATC.

Plan A er å utruste hele strekningen med ERTMS i 2025. Plan B er at ERTMS utsettes til 2026. Plan C er ombygging av NSI-63 på strekningen Barkåker – Tønsberg for idriftsettelse 2026. Figur 1 viser kart over strekningen.

Denne analyserapporten dekker strekningen Barkåker – Tønsberg som planlegges realisert med NSI-63 sikringsanlegg. Omfanget av strekningen som skal håndteres av NSI-63 har blitt redusert siden analysemøtet ble utført, men hele strekningen ble vurdert og endringen påvirker ikke analyseresultatet.

Dato: 05.09.2024 Revisjon: 00E Side: 12 av 18

Figur 1 Kart over dagens trase inklusiv ny trase mellom Nykirke og Barkåker. Analysen gjelder for strekningen sør på kartet mellom Barkåker - Tønsberg

Dato: Revisjon:

05.09.2024 00E

SIKKERHETSANALYSENE

Arbeidsprosesser for signal (5) gir en trinn for trinn-beskrivelse av tilnærmingen prosjekterende skal ta for å oppnå et signalsystem som blir prosjektert sikkert innen gjeldende lover og regler. Disse analysene skal utfylle de to halvdelene som utgjør FD06, identifisering av operative farer og systemfarer.

5.1 Analyse av systemfarer

5.1.1 Metode og gjennomføring for identifisering av systemkrav

Et signalanlegg har sikkerhetskritiske funksjoner, som innebærer at det kan føre til en ulykke dersom funksjonen feiler. En systemfare er faren for at en sikkerhetskritisk funksjon feiler.

Et eksempel på en sikkerhetsfunksjon er: «Et signal skal ved feil vise et mer restriktivt signalbilde». Et eksempel på en systemfare er: «Et signal viser et mindre restriktivt signalbilde». (Eksemplene er hentet fra ARB-804181 (2)).

Videre beskriver ARB-804181 hensikten med å definere systemfarer: «Beskrivelsen av systemfaren utelukker alle feil som resulterer i et mer restriktivt signalbilde. Alle systemer vil feile, og det er viktig at systemfaren defineres slik at det er mulig for et system å feile uten at det resulterer i en systemfare. Dette gjør at det finnes sikre tilstander, og det er dermed mulig for den som designer systemet og designe systemet slik at systemet feiler til en slik sikker tilstand». Deretter lister kapittel 5.2 til 5.14 i ARB-804181 opp en oversikt over systemfarer for signalanlegg.

Metoden for denne analysen, som beskrevet i ARB-804175 (1), er at de allerede predefinerte systemfarene gitt av ARB-804181 gjennomgås og det evalueres om disse er relevante. De systemene som er relevante er ansett som kjente for signalsystemet, og blir håndtert av generisk applikasjon. Deretter skal det vurderes om det er noen systemfarer som ikke er identifisert, som vil si at det kreves ytterligere sikkerhetsfunksjoner i signalsystemet. For å identifisere eventuelle nye systemfarer, ble tidligere analyser og identifiserte farescenarioer fra andre prosjekter brukt for å se om noen farer har blitt oversett eller for å finne inspirasjon til mulige nye systemfarer. Under analysegjennomgangen ble relevante systemer først sortert, deretter ble underliggende systemfarer gjennomgått.

Håndteringen av farene (både kjente og ukjente), blir håndtert i kravspesifikasjonen (FD12). Avvik i kravspesifikasjonen fra TRV blir vurdert med CSM RA.

5.1.2 Analyseresultat systemfarer

Resultatet av analysen er som gitt i Tabell 5.

Det ble brukt en oversikt over systemfarer for komplett signalsystem (kapittel 5.1 i ARB-804181 (2)), hvor det ble identifisert 10 relevante systemfarer, og 3 ble ansett som ikke relevante. Alle systemfarene som ikke er relevante, har fått en forklarende kommentar.

Dato: 05.0 Revisjon:

05.09.2024 00E 14 av 18

Det ble ikke identifisert noen nye systemfarer under analysemøtet. I følge ARB-804175 kapittel 5.2. (1) skal det så langt som mulig unngås å kreve ytterligere sikkerhetsfunksjonalitet, så det blir vurdert som et akseptabelt/forventet resultat å ikke identifisere nye systemfarer.

Tabell 5: Analysetabell med resultat. Hvis faren er relevant, er den håndtert av generisk applikasjon.

ID-	Systemfarer konvensjonelle	D.1	
nummer	anlegg	Relevant?	Kommentarer
HA1	Signalsystemet sender en mindre restriktiv beskjed til tog gjennom ATC/baliser	Ja	
1142	Signalsystemet sender en mindre restriktiv beskjed til tog gjennom signalbilde	la.	
HA2	Signalsystemet sender en mindre restriktiv beskjed til tog gjennom både ATC og	Ja	
HA3	signalbilde Signalsystemet viser ugyldig signalbilde som kan oppfattes som mindre restriktivt enn det forriglingsutrustningen tilsier (f.eks. rødt/grønt i hovedsignal)	Ja Ja	
HA5	En sporveksel skifter posisjon utilsiktet	Ja	
HA6	En planovergang åpnes når den skulle vært sikret	Ja	
HA7	Veisignal viser feilaktig signalbilde – "åpen for biltrafikk".	Ja	
HA8	En sporsperre skifter posisjon utilsiktet	Nei	Det er ingen sporsperrer for prosjektet
HA9	Signalsystemet sender feil indikering til LOP/TCS/CTC	Ja	
HA10	Signalsystemet sender et feilaktig signal til tilstøtende linjeblokk eller signalsystem	Ja	
HA11	Nøkkel for sikring av arbeidsområde "frigis" feilaktig	Ja	
HA12	Nøkkellås (f.eks. s-lås) løses ut feilaktig	Nei	Ingen kontrollås for prosjektet
HA13	N/A (bare for ERTMS)	Nei	Bare for ERTMS

Dato: Revisjon: 05.09.2024 00E 15 av 18

5.2 Analyse av operative farer

5.2.1 Metode og gjennomføring for identifisering av operative farer

Operative farer er farer relatert til drift og vedlikehold av jernbanen. «Dette er farer som først og fremst oppstår som et resultat av geografisk plassering av objekter, hastighetsprofil, stigning mm. For eksempel faren for at hensatt materiale skal komme i bevegelse pga. sporets stigning, at et tog ikke skal klare å stoppe i tide pga. sikt til signal eller at plassering av objekter utsetter vedlikeholds personell for unødvendig risiko» (hentet fra (1)).

Det ble kalt inn til et analysemøte da systemdefinisjonen var utarbeidet og kunne benyttes som grunnlag (3). Under analysemøtet ble den skjematiske planen gjennomgått fra lavest til høyest km. Alle endringer ble forklart og vurdert. Tankekartet fra ARB-804175 vedlegg 3 ble benyttet til inspirasjon som instruert i kapittel 5.1 i samme kilde (1).

Figur 5-1: Idékart for fareidentifisering hentet fra (1)

5.2.2 Analyseresultat operative farer

Den operative analysedelen i FD06 er en grovanalyse som skal benyttes som designinput til prosjekteringen på et tidlig stadie. Derfor er ikke farene vurdert mot noen CSM-RA-kriterier på dette tidspunktet (dette utføres i FD12), og alle tiltak skal vurderes grundigere i designprosessen. Resultatet er listet i de følgende delkapitlene og kort oppsummert i Tabell 6. Det ble identifisert 3 farer og 3 tiltak. Farene og tiltakene vil bli overført til prosjektets RAM- og farelogg.

Tabell 6: Liste over farer og tiltak

Farer		Tiltak
1.	Avsporing av godstog inn mot	Legge inn en avsporingsindikator foran
	Tønsberg stasjon fra sør (Sem)	forsignal B på Tønsberg stasjon
2.	Overgang fra TXP til fjernstyring	Det foreslås et eget møte for å
		analysere planovergangen, hvor

Dato: 05.0 Revisjon:

05.09.2024 00E 16 av 18

Farer	Tiltak
	liggetid, fjernstyring og relevante hendelser blir vurdert
3. Arbeidsområdeinndeling på togparkering Tønsberg	Det er foreslått å ta et eget analysemøte på inndeling av arbeidsområder for å finne best mulig løsning

5.2.2.1 Fare 1 – Avsporing av godstog inn mot Tønsberg stasjon fra sør (Sem)

Farebeskrivelse:

Med økt godstogtrafikk er det en økt fare for avsporing inn mot Tønsberg stasjon.

Tiltak:

Det må legges inn avsporingsindikator inn mot Tønsberg stasjon, foreslått plassering er foran forsignal B på Tønsberg stasjon. Sannsynligheten for avsporing ut fra stasjonen ansees som neglisjerbar.

Kommentarer:

Det er i dag veldig lite godstogtrafikk på linjen per i dag, men om Kopstad godsterminal driftsettes vil dette øke. I dag er det en avsporingsindikator på Holmestrand som dekker strekningen nordfra mot Tønsberg stasjon. En avsporingsindikator foran forsignal B mot Tønsberg stasjon vil da dekke tilsvarende strekning sørfra. Da vil krav fra TRV om dekning for dobbeltsporede tunnelrike strekninger imøtekommes (TRV:00688).

5.2.2.2 Fare 2 – Overgang fra TXP til fjernstyring

Farebeskrivelse:

Ved Tønsberg stasjon er det en PLO med mye trafikk. TXP hjelper til i dag om det skjer en feil (f.eks. ved å resette anlegget), men det blir ikke like lett om når det blir fjernstyring.

Det er også notert en fare fra tidligere analyse (4) som presiserer at tilgang til «ambulanseovergang» kun er tilgjengelig for utvalgt personell, deriblant TXP. Ved overgang til fjernstyring vil denne funksjonen forsvinne slik det er i dag.

Tiltak:

Det foreslås et eget møte for å analysere planovergangen, hvor liggetid, fjernstyring og relevante hendelser blir vurdert.

5.2.2.3 Fare 3 – Arbeidsområdeinndeling på togparkering Tønsberg

Farebeskrivelse:

Det er usikkert om planlagt inndeling av arbeidsområder (med ett område per spor) er lite hensiktsmessig. Det kan føre til lite effektive arbeidsmetoder under vedlikeholdsarbeid og igjen at arbeiderne tar farlige snarveier.

Tiltak:

Det er foreslått å ta et eget analysemøte på inndeling av arbeidsområder for å finne best mulig løsning.

Dato: 05 Revisjon:

05.09.2024 00E

6 KONKLUSJON

Under analysen av systemfarer ble det identifisert 10 relevante systemfarer, mens 3 ble ansett som ikke relevante. De 3 farene ble vurdert som ikke relevante fordi funksjonen ikke eksisterer i planlagt signalsystem, og dermed er det heller ikke et system som kan feile. Det vil si at alle farene håndteres av generisk applikasjon, og blir igjen kontrollert i kravspesifikasjonen (FD12).

Det ble ikke identifisert noen nye systemfarer for signalanlegget som ikke allerede er predefinert.

Gitt relevans av eksisterende systemfarer samt at det ikke ble identifisert noen nye systemfarer, betyr dette at signalsystemet ikke krever ytterligere sikkerhetsfunksjonalitet enn det som allerede er definert i eksisterende regelverk.

Under analysen av operative farer ble det identifisert 3 farer og 3 tiltak. Det er få registrerte operative farer for et prosjekt med slikt omfang, men det er samtidig å forvente ettersom strekningen har gjennomgått flere RAMS-analyser over prosjekteringstiden. Farene og tiltakene er kort oppsummert i Tabell 6, og vil bli overført til prosjektets RAM- og farelogg for signal for videre oppfølging.

Forutsatt at tiltakene for de operative farene blir fulgt opp, konkluderer denne analysen med at prosjekteringen for signalsystemet plan C innehar de forventningene og kravene for å ha fullført FD06 i Bane NORs forenklede signalprosess.

Dato: Revisjon: Side:

05.09.2024

00E

18 av 18

REFERENCES

1. Bane NOR. ARB-804175, Prosedyre for sikkerhetsanalyse og kravsporing forenklet prosess. 2023.

- 2. —. ARB-804181, Prosedyre for sikkerhetsanalyse full prosess. 2024.
- 3. Rambøll. Systemdefinisjon, UVB-62-A-91055.
- 4. Bane NOR. ERTMS-programmet, SIG-VESB1 C-Rapport forberedende RAMS-analyse, ERP-H3-Q-00002. 31.08.2020.
- 5. —. Signalprosesser. [Internett] 2024.

https://prosjektmodeller.banenor.no/Model.aspx?modelld=120&filter=&processes=16796;167 94;16798.