Podstawy Sztucznej Inteligencji - Projekt 1 Algorytm A*

Porównywaliśmy działanie algorytmu A* z algorytmem Dijkstry i algorytmem Floyda-Warshalla. Wynikiem działania algorytmu jest tablica dwuwymiarowa zawierająca długości najkrótszych ścieżek dla wszystkich możliwych par wierzchołków (jest ich n*n, gdzie n - liczba wierzchołków.

Spis plików:

- Astar.cpp
- Dijkstra.cpp
- FloydWarshall.cpp
- benchmark.h
- gen graph.cpp (jako argument podajemy liczbę wierzchołków)
- time_test.sh (skrypt do testowania działania algorytmów z dużymi grafami pełnymi, w tym przypadku w funkcji solve() trzeba zakomentować funkcję output(), na wyjściu będzie tylko czas działania algorytmu)
- run.sh (skrypt do testowania działania algorytmów z niewielkimi algorytmami, w tym przypadku w funkcji solve() trzeba odkomentować funkcję output(), na wyjściu będzie zarówno czas, jak i tablica dwuwymiarowa, zawierająca długości najkrótszych ścieżek dla wszystkich możliwych par wierzchołków, dane trzeba ręcznie umieścić w pliku graph.txt)

Złożoności obliczeniowe:

1) Algorytm Floyda-Warshalla:

 ${\rm O}(V^3)$, gdzie V – liczba wierzchołków (ze względu na potrójnie zagnieżdżoną pętlę for w algorytmie Floyda-Warshalla)

2) Algorytm Dijkstry:

Zwykły algorytm Dijkstry(najkrótsze ścieżki od ustalonego początkowego wierzchołka do wszystkich pozostałych) ma złożoność obliczeniową $O(V+E\cdot log V)$. Żeby znaleźć najkrótsze ścieżki dla wszystkich możliwych par wierzchołków, musimy uruchomić algorytm V razy, więc złożoność będzie równa $O(V^2+E\cdot V\cdot log V)$ (E – liczba krawędzi grafu). Dla grafów pełnych $E=O(V^2)$, więc końcowa złożoność obliczeniowa będzie wynosić $O(V^3\cdot log V)$.

3) Algorytm A*:

Zwykły algorytm A*(najkrótsze ścieżki od ustalonego początkowego wierzchołka do ustalonego końcowego) ma złożoność obliczeniową O(V+E). Żeby znaleźć najkrótsze ścieżki dla wszystkich możliwych par wierzchołków, musimy uruchomić algorytm V^2 razy, więc złożoność czasowa będzie wynosić $O(V^3+E\cdot V^2)$. Dla grafów pełnych $E=O(V^2)$, więc końcowa złożoność obliczeniowa będzie równa $O(V^4)$. Przypominamy, że E-Iiczba krawędzi grafu.

Testy:

W pliku gen_graph.cpp znajduje się generator grafów pełnych o zadanej liczbie wierzchołków z losowymi wagami w przedziale [1;25]. Testy zostały przeprowadzone dla grafów o takich liczbach wierzchołków: {5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140}. W pliku nagłówkowym benchmark.h zostało zdefiniowane narzędzie do zliczania czasu działania algorytmu.

Teraz ten sam wykres, ale ze zmienioną skalą, żeby łatwiej było zobaczyć różnice w złożoności czasowej pomiędzy algorytmami.

Przykład działania programu dla grafu o 4 wierzchołkach i 5 krawędzi.

45 125 244 436 3212 1411							
Po uruchomieniu skryptu run.sh otrzymujemy następujące wyjście:							
Astar							
0	5	15	9				
5	0	10	4				
15	10	0	6				
9	4	6	0				
A* time: 30 							
Dijkstra							
0	5	15	9				
5	0	10	4				
15	10	0	6				
9	4	6	0				
Dijkstra time: 20							

Zawartość pliku graph.txt:

FloydWarshall

0	5	15	9
5	0	10	4
15	10	0	6
9	4	6	0

Floyd-Warshall time: 0

Wnioski.

Obserwując zachowanie algorytmu A* oraz algorytmów testowych Dijkstry oraz Floyda-Warshalla, stwierdzamy, że najlepiej do problemu znajdowania najkrótszych ścieżek między wszystkimi parami wierzchołków nadaje się algorytm Floyda-Warshalla (pamiętajmy, że analizowaliśmy przypadek grafów gęstych). Świadczą o tym także uzyskane złożoności obliczeniowe.