Assessment of the potential of Marinduque Island for Wind and Solar energy

MEE 613 Requirement

Ivan John A. Naparota * ivanjohnnaparota66@gmail.com | Jeffrey Cepedoza * jeffrycepedoza@gmail.com University of San Carlos – Talamban Campus

Department of Electrical and Electronics Engineering

Abstract — this paper presents the assessment of the potential of Marinduque Island for Wind and Solar Energy using Global Solar Atlas and Global Wind Atlas, this paper also offers a design of a hybrid system integrating the said renewable energy sources to the existing diesel power plants in the island.

I. INTRODUCTION

Marinduque is an island province in the Philippines located in the Southwestern Tagalog Region or MIMAROPA [1]. It belongs to the small power utilities group (SPUG) which is one of the functional groups of the National Power Corporation and is mandated by law to perform the missionary electrification function and shall provide power generation and its associated power delivery systems in areas that are not connected to the main grid [2].

As for the knowledge of everyone, all of the energy consumers in the Philippines are compulsory to subsidize an amount to perform the said missionary electrification which is reflected in our electric bill. So we might ask, are they enjoying a stable energy supply? Are the money of the people not wasted with just a mediocre energy service? We can ensure all of that by discovering the potential of the island for other sources of energy to add up to the existing power plants that can ensure the stability of energy supply.

On the other hand, carbon emission is one of the world's biggest problem right now, so discovering not only any energy sources but renewable energy sources will greatly help the people in the island without compromising the earth's well – being.

The authors of this paper used a free access database for solar and wind data which is Global Wind Atlas and Global Solar Atlas to assess the capability of the island for the said renewable energy sources, added to that, HOMER Energy is deployed to design the hybrid system.

II. MARINDUQUE

A. Population and Land Area [3]

MUNICIPALITY	POPULATION	LAND AREA
BOAC(CAPITAL)	54730	212.70 sq. km
BUENAVISTA	23988	81.25 sq. km
GASAN	34828	100.88 sq.km
MOGPOG	34043	108.06 sq. km
SANTA CRUZ	56408	270.77 sq. km
TORRIJOS	30524	178.92 sq. km

The land area of each municipality of Marinduque is relatively large for an island that is not inhabited that much, this makes Marinduque ideal for location of renewable energy sources knowing that renewable energy farms consume a significant area of land, according to [4], "a 2-megawatt wind turbine would require a total area of about half a square kilometer", so imagine the necessary land area if we'll put up a 50MW wind farm.

B. Existing Power Plants

This is the different locations of the existing diesel power plants in the island, the bigger the legend circle the bigger the installed capacity.

POWER PLANT	OPERATING HOURS	RATED	DEPLOYED	ANNUAL GENERATION	ACF	FUEL TYPE
BOAC DPP	24 HOURS	3.672 MW	3 MW	26280 MWh	49 %	DIESEL
MONARK EQUIPMENT CORPORATION	BACK UP	5.715 MW	4 MW			DIESEL
TORRIJOS DPP	BACK UP	0.5 MW	0.46 MW			DIESEL
POWER BARGE 120	24 HOURS	7.2 MW	4.6 MW	40296 MWh	52%	DIESEL
MANIWAYA DPP	8 HOURS	0.104 MW	0.098 MW	286.16 MWh	31.41 %	DIESEL
MONGPONG DPP	8 HOURS	0.104 MW	0.098 MW	286.16 MWh	31.41 %	DIESEL
POLO DPP	8 HOURS	0.092 MW	0.088 MW	256.96 MWh	31.88 %	DIESEL
TOTAL				67405.28 MWh		

The island entirely rely on diesel power plants for their energy consumption, so it is expected that this will give off a very large amount of carbon for an entire year of operation.

III. WIND AND SOLAR ASSESSMENT

A. Wind

a. Behavior

For the whole island, the 10% windiest area has a mean power density of 351 watts per square meter but for a particular area in Buenavista 10km by 10km, it tallies the highest mean power density of 521 watts per square meter at 100m anemometer height.

Buenavista, Marinduque mean power density

b. Comparison to established Wind Farms

i. San Lorenzo, Guimaras

- San Lorenzo, Guimaras is the location of one of Philippines' wind energy farm having an installed capacity of 50MW
- 2. San Lorenzo has a mean power density of 398 watts per square meter which is relatively lesser than of the

recorded mean power density of Marinduque

ii. Nabas, Aklan

- 1. 36 MW wind energy source is located in Nabas, Aklan
- 2. Mean power density due to wind in Nabas, Aklan is relatively larger than of Marinduque's but it does not have that much of a difference

Marinduque's potential for wind energy source is noticeable and proposing a wind energy farm in Buenavista, Marinduque is reasonable for it has the biggest mean power density across the region of Marinduque. Added to that, Marinduque's potential for wind energy source is complemented by its large land area, Buenavista has a land area of 81.25 sq. km and according to [4], "a 2-megawatt wind turbine would require a total area of about half a square kilometer", making it more desirable to put the wind energy farm in Buenavista, Marinduque.

B. Solar

It is observable in the GUI of Global Solar Atlas that Torrijos, Marinduque has the largest Global Horizontal Irradiance across the Marinduque region, it has a high potential for solar energy having a GHI of 1886 kWh per square meter. More to that is the fact that it is located in Torrijos, it is favorable that Torrijos would be the place for the solar farm because the municipality has the least population density of only

170 persons per square kilometer [3] and having a very large land area of 178.92 square kilometer [3].

IV. HYBRID SYSTEM DESIGN

A. Wind and Solar Data

Buenavista, Marinduque Wind Data (m/s)

Lat 13.248 Lon 121.981	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
10-year Average	6.59	5.69	5.28	4.17	3.36	4.48	4.26	5.55	4.24	4.55	5.96	7.00

Torrijos, Marinduque Horizontal Insolation (kWh/m²/day)

Lat 13.334 Lon 122.016	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
22-year Average	4.34	5.09	5.84	6.53	6.18	5.32	4.99	5.11	4.93	4.51	4.12	3.87

B. HOMER Simulation

a. Specifications of components

COMPONENTS	CAPACITY
BOAC DPP	3000 kw
MONARK EQUIPMENT CORPORATION	4000 kw
TORRIJOS DPP	460 kw
POWER BARGE 120	4600 kw
MANIWAYA DPP	50 kw
MONGPONG DPP	98 kw
POLO DPP	88 kw
PV ARRAY	20000,25000,30000 kw
WIND TURBINE (WES 30)	250 kw AC
BATTERY (300 Trojan L16P)	2.16 kwh
CONVERTER	15000 kwh

b. Existing diesel power plants

System architecture

Boac DPP	3,000 kW
Power Barge120	4,600 kW
Torrijos DPP	460 kW
Polo DPP	88 kW
Maniwaya DPP	50 kW
Mongpong DPP	98 kW
Monark Equimen	t4,000 kW

Results:

Emissions

Pollutant	Emissions (kg/yr)
Carbon dioxide	60,432,392
Carbon monoxide	149,169
Unburned hydocarbons	16,523
Particulate matter	11,245
Sulfur dioxide	121,359
Nitrogen oxides	1,331,045

Cost summary

Total net present cost	\$ 438,678,816
Levelized cost of energy	\$ 0.417/kWh
Operating cost	\$ 26,900,056/yr

c. Proposed Hybrid System (HOMER Optimized)

System architecture

PV Array	30,000 KW
Wind turbine	40 WES 30
Boac DPP	3,000 kW
Power Barge120	4,600 kW
Torrijos DPP	460 KW
Polo DPP	88 kW
Maniwaya DPP	50 kW
Mongpong DPP	98 kW
Monark Equiment	t4,000 kW
Battery	1,500 Trojan L16P
Inverter	15,000 kW
Rectifier	15,000 kW
Dispatch strategy	Cycle Charging

Results:

Cost summary

Total net present cost	\$ 360,420,000
Levelized cost of energy	\$ 0.343/kWh
Operating cost	\$ 17,713,774/yr

Emissions

Pollutant	Emissions (kg/yr)
Carbon dioxide	31,862,958
Carbon monoxide	78,649
Unburned hydocarbons	8,712
Particulate matter	5,929
Sulfur dioxide	63,986
Nitrogen oxides	701,793

Electrical

Component	Production	Fraction
Component	(kWh/yr)	
PV array	44,352,912	46%
Wind turbines	16,058,743	17%
Boac DPP	11,990,222	13%
Power Barge120	9,628,506	10%
Torrijos DPP	668,374	1%
Polo DPP	94,541	0%
Manwaya DPP	52,122	0%
Mongpong DPP	68,890	0%
Monark Equiment	12,656,629	13%
Total	95,570,944	100%

V. DISCUSSIONS

The results from HOMER which are presented shows that the optimized hybrid system is composed of generally a 30 MW solar energy source and a 10 MW wind energy source, it is observable that it limits the usage of existing diesel power plants to only 37 % of the total energy consumption of the island, resulting in a lesser carbon emission which is about half of the total carbon emission of the existing diesel power plants in the island, and surprisingly, the levelized cost of energy became lesser with the proposed hybrid system, from \$ 0.417 to \$ 0.343.

VI. CONCLUSIONS

- Practicing the use of renewable energy is of big help in addressing the problem in excessive emission of carbon dioxide to the atmosphere.
- The island of Marinduque has a high potential for solar and wind energy.

VII. REFERENCES

- 1. https://en.wikipedia.org/wiki/Marinduque
- https://www.spug.ph/index.php/frequently-askquestions
- 3. Census of Population (2015).Highlights of the Philippine Population 2015 Census of Population.PSA. Retrieved20 June2016