Lezione 30/05/23

Recap

- Legge di trasformazione dello stock: $S_n=\beta_n S_{n-1} \ \forall n=1,...,N$ che porta con sè alcune conseguenze, come.
 - o Prop 178:

$$E_m[S_n] = E[S_n|\mathcal{F}_m] = (up + dq)^{n-m}S_m \ \ orall n, m = 1, ..., N \ : m < n$$

Iterandola, abbiamo:

$$S_n=eta_n\cdot\ldots\cdoteta_{m+1}S_m$$
, infatti: $E_m[eta_n\cdot\ldots\cdoteta_{m+1}S_m]=E_m[eta_n\cdot\ldots\cdoteta_{m+1}]S_m=E[eta_n]\cdot\ldots\cdot E[eta_{m+1}]S_m$ Siamo passati dalla speranza condizionata al prodotto delle speranze perchè le varie eta_i sono indipendenti dalla sigma-algebra \mathcal{F}_m

o Possiamo introdurre il tasso di rendimento.

Nel **monoperiodale** era $r_T \doteq rac{S_T - S_0}{S_0}$.

Nel multiperiodale abbiamo:

$$r_n = rac{S_n - S_0}{S_0}$$
 per un singolo periodo $t = t_n$, e $rac{S_n - S_m}{S_m}$ nel periodo $[t_m, t_n]$ dove $m < n$

Dalla proposizione 179:

$$r_n=rac{S_n-S_0}{S_0}=(u^kd^{n-k}-1)_{k=0}^n$$
 con

$$P(r_n = u^k d^{n-k} - 1) = \binom{n}{k} p^k q^{n-k}$$

• Abbiamo poi visto il **BS-Portafoglio** (def 182):

 $\pi = ((X_n)_{n=1}^N, (Y_n)_{n=1}^N)$ con le quantità di bond e stock acquisiti al tempo n. (NB: sulle slide le successioni partono da 0, ma il prof ha detto di volerle scrivere così.)

La ricchezza del portafoglio parte da n=0, cioè $(W_n)_{n=0}^N$, ad esempio $W_1=X_1B_1+Y_1S_1$, e allora $W_n=X_nB_n+Y_nS_n$, ma come ci arrivo? Osservo i tempi B_0,S_0 , scelgo le quantità X_1,Y_1 e compongo $W_0=X_1B_0+Y_1S_0$. A noi interessa particolarmente $W_0=0$, ovvero prendiamo a prestito il bond (+) e compriamo lo stock(-), o viceversa. L'idea è che con ricchezza nulla, per comprare qualcosa devo vendere altro. Il portafoglio W_0 viene creato tra il tempo 0 e il tempo 1, ovvero $[t_0=0,t_1=\frac{1}{N}]$, in questo lasso di tempo non ho cambiamenti di bond e stock. Il portafoglio è *autofinanziante*.

Da questo portafoglio deriviamo due osservazioni:

- Tale processo è " $\aleph adattato$ " (la F è "gotica", non pare una F.) $W_n \aleph_n \beta(\mathbb{R})$ variabile aleatoria.
- $\pi=((X_n)_{n=1},(Y_n)_{n=1})$ è un processo $\aleph-predicibile$, e $(X_n,Y_n)-\aleph_{n-1}-\beta(\mathbb{R}^2)$ variabile aleatoria. (NB: A me sembrava che il prof usasse \mathcal{F}_n e \mathcal{F}_{n-1} , senza la lettera gotica, per entrambe le definizioni. BOH)
- \circ Ai fini della scelta di X_n, Y_n ci interessa solo lo stock, perchè il bond è noto. Quindi sia X_n sia Y_n sono in funzione di S_{n-1} .
- o Da CPS, vale che $E[Y|X]=E[Y|\sigma(X)]=f(X)$ dove f è una opportuna funzione boreliana. Il miglior predittore di Y dato X è sempre dato da una funzione di X. Se fossero indipendenti? f(X)=E[Y] che però è una costante. Se Y=g(X)? si porta fuori dalla speranza condizionata, allora g(X)=f(X). I casi che più ci interessano sono tutti tranne questi due casi estremi. Un esempio è se X,Y sono congiuntamente gaussiane, dove esiste una formula che ci dice: $E[Y|X] \doteq \alpha + \beta \cdot X = f(X)$

BS-Portafoglio d'arbitraggio

Se parto da ricchezza iniziale nulla e ho portafoglio autofinanziante, ho arbitraggio se $W_0=0 o P(W_n \geq 0)=1$ e $P(W_n>0)>0$

Nel multiperiodale (def 187) non avere arbitraggio coincide col dire:

$$r_{n-1,n}^+ > r_{norisk} > r_{n-1,n}^-$$
 , ovvero $u-1 > r_{norisk} > d-1$ da cui $u>1+r>d$,

stessa condizione vista nel monoperiodale. Supponiamo di violare questa condizione, allora al tempo t=1 posso realizzare portafoglio che *sicuramente* mi dà guadagno. Nel monoperiodale *finisce qui*, nel **multiperiodale** questo guadagno lo metto *tutto sul bond*, e quindi mi rimane fino alla fine.

Probabilità neutrale al rischio, def 188

E' una probabilità $ilde{P}: \xi
ightarrow R_+$ tale che:

- $\beta_1,...,\beta_n$ siano **totalmente*** indipendenti* rispetto a \tilde{P} . Se prendo un sottoinsieme e calcolo $\tilde{P}(\beta_{j_1},...,\beta_{j_n}) = \tilde{P}(\beta_{j_1}) \cdot ... \cdot \tilde{P}(\beta_{j_n})$ per ogni sottoinsieme.
- $S_{n-1}=rac{ ilde{E}_{n-1}[S_n]}{1+r}$ da cui deduciamo che:

$$\circ~S_m=rac{ ilde{E}_m[S_n]}{(1+r)^{n-m}}$$

$$\circ~S_0=rac{ ilde{E}[S_N]}{(1+r)^N}$$

Dalla [Prop 190]:

Come nel caso monoperiodale, se esiste una probabilità neutrale al rischio, essa è *unica*. Dipende dal fatto che lavoriamo con un modello *binomiale*. Ho modellato l'incertezza come una bernoulliana. Se la modellassi diversamente (es: trinomiale: "va bene", "va male", "non cambia nulla") non è detto che ciò valga ancora! (Può essere idea di un progetto!)

Inoltre, in assenza di portafogli BS d'arbitraggio, esiste un'unica probabilità neutrale al rischio.

Se
$$u>1+r>d$$
, si ha $\frac{1+r-d}{u-d}>0$ e $\frac{u-(1+r)}{u-d}>0$, allora la loro somma $\frac{1+r-d}{n-d}+\frac{u-(1+r)}{u-d}=1$, allora stiamo definendo una probabilità così fatta:

$$ilde{P}(eta_n=u) \doteq rac{1+r-d}{n-d} \doteq ilde{p}$$

$$ilde{P}(eta_n=d) \doteq rac{u-(1+r)}{u-d} \doteq ilde{q}$$

Perchè sappiamo che va bene? Perchè lo abbiamo fatto per p,q quindi che problemi dovrei avere se li chiamo \tilde{p} e \tilde{q} ? Si ha infatti:

$$ilde{E}_{n-1}[S_n] = S_{n-1}(1+r)$$
, ma $S_n = eta_n S_{n-1}$, allora:

$$ilde{E}_{n-1}[eta_n S_{n-1}] = ilde{E}_{n-1}[eta_n] S_{n-1} = ilde{E}[eta_n] S_{n-1} =$$

$$=(u ilde{p}+d ilde{q})S_{n-1}=(u\cdot rac{1+r-d}{n-d}+d\cdot rac{u-(1+r)}{u-d})S_{n-1}$$

$$S_{n-1} = (r+1)S_{n-1} = (r+1) \cdot rac{ ilde{E}_{n-1}[S_n]}{1+r}$$
 = $ilde{E}_{n-1}[S_n]$

Il processo dei prezzi scontati è una *Martingala*, e il processo dei prezzi è un *processo di Markov*.

Abbiamo detto che se esiste una (unica) probabilità neutrale al rischio (se non ci sono portafogli bs d'arbitraggio). Anche il viceversa è vero! Come nel monoperiodale.

Se riprendiamo il discorso delle Call & Put, avevamo $C_T - P_T = S_T - K$. Se ipotizziamo che il mercato sia descrivibile tramite binomiale?

La legge sopra vale sempre deterministica, ma deve succedere che $C_0-P_0=S_0-\frac{K}{1+r_T}$, dipendente dal fatto che sul mercato non ci siano arbitraggi. Si vede che la legge della domanda e dell'offerta segue in maniera forte questa legge derivata dall'ipotesi in cui il modello binomiale catturi l'essenza dei mercati reali, in assenza di arbitraggio.

Opzioni europee p.120

Contratti che ci danno diritto di acquisire o vendere lo stock ad un prezzo fissato detto *Strike* in un tempo T (detto anche N).

$$C_N = C_T = max\{S_T - K, 0\}$$
 e $P_N = P_T = max\{K - S_T, 0\}$

Chi sono C_0 e P_0 ? Nel monoperiodale erano $P_0=\frac{\bar{E}[P_T]}{1+r}$ e $C_0=\frac{\bar{E}[C_T]}{1+r}$, ma adesso *devo valutarle in tutto l'arco temporale della loro vita*.

$$S_T = u^j d^{N-j} S_0 \ \forall j = 0, 1, ..., N$$

Se volessi valutare il $max\{S_T-k,0\}$?

Si può dimostrare che, definito $n_K=min\{n\in N: u^nd^{N-n}S_0\geq K\}$ allora ho un sistema in cui: $C_N=0\quad \forall n=0,1,...,n_k-1$, oppure $C_N=u^kd^{N-k}S_0-K\quad \forall n=n_K,...,N$

Se k cresce, è più facile che la call valga 0. E' dimostrabile che $n_k = \left[\frac{ln(K) - (ln(S_0) + N \cdot ln(d)}{ln(u) - ln(d)}\right]$ di cui prendo la parte superiore.

Portafoglio autofinanziante di copertura

E' di tipo $\pi=((X_n)_{n=1}^N,(Y_n)_{n=1}^N)$ in cui $C_T=X_TB_T+Y_TS_T$ (uguale per la Put). Supponiamo di vendere una call allo strike "K", se alla scadenza il titolo supera "K", la call vale S_T-K , che è una retta di 45 gradi. Potenzialmente avrei perdite illimitate. L'idea è: vendo la call ad un certo prezzo (quale? da capire!) e con tale ricavo metto su un portafoglio, investendo nel bond e nello stock, in modo tale che al tempo finale sono in grado di ripagare il costo della call.

Se andassero sotto k? è tutto guadagno!

Non osservare questo principio ha portato alla crisi sui mutui del 2007/2009. Il mercato andava forte, le banche credevano di poter dare credito a chiunque. Questi crediti, che poi sono diventanti importanti, sono stati usati per creare dei derivati (li hanno "ammassati") per poi venderli. Il problema? I titoli erano stati valutati male, e quasi tutti sono andati in default. E' stato un difetto di valutazione.