Lösungen zur schriftlichen Prüfung aus VO Energieversorgung am 11.11.2014

<u>Hinweis:</u> Bei den Berechnungen wurden alle Zwischenergebnisse in der technischen Notation¹ (Format ENG) dargestellt und auf drei Nachkommastellen gerundet. Für die weitere Rechnung wurde das gerundete Ergebnis verwendet.

Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

1. Leitungsgleichung

a. Wie groß sind die **längenbezogene symmetrische Betriebsinduktivität** der Leitung und die **längenbezogene symmetrische Betriebskapazität** der Leitung?

$$L' = 902,409 \frac{\mu H}{km}$$
 (1.1)

$$C' = 12,379 \frac{nF}{km}$$
 (1.2)

b. Wie groß ist die Spannung <u>U</u>₁ am **Anfang** der **Leitung**, wenn am Ende die Spannung das 1,1-fache der Nennspannung beträgt und dort eine Wirkleistung von 50% der natürlichen Leistung entnommen wird?

Phasenspannung:

$$\underline{U}_{1,a} = 195,003 \text{kV} + j \cdot 58,752 \text{kV} = 203,661 \cdot e^{j0,293 \text{ rad}} \text{ kV}$$
 (1.3)

Außenleiterspannung:

$$\underline{U}_{1,a,b} = 352,752 \cdot e^{j0,293 \text{ rad}} \text{ kV (wenn arg}(\underline{U}_{2,a,b}) = 0 \text{ rad)}$$
 (1.4)

c. Wie groß ist die Eingangsimpedanz der Leitung bei dem Betriebszustand unter b.?

$$Z_1 = 336,47e^{-j\cdot 0.76\,\text{rad}}\Omega\tag{1.5}$$

d. Dimensionieren Sie das **Bauelement**, welches am Ende der Leitung für eine **ideale Kompensation** der Leitung zugeschaltet wird, damit im Leerlauf der Betrag der Spannung am Ende auf den 1,1-fachen Wert der Nennspannung reduziert wird. Geben Sie die **Verschaltung** des Bauelements an.

Damit die Spannung am Ende der leerlaufenden Leitung auf den gegebenen Wert reduziert wird, wird am Ende der Leitung eine parallele Induktivität zugeschaltet.

$$L_2 = 5.01 \,\mathrm{H}$$
 (1.6)

e. Welche **Gesamt-Scheinleistung** weist das Kompensationselement am Ende der Leitung auf?

$$Q_2 = 111,01 \text{ Myar}$$
 (1.7)

¹ http://de.wikipedia.org/wiki/Wissenschaftliche Notation

2. Drehstromkomponentensystem

a. Ermitteln Sie für diesen Drehstromverbraucher entsprechend der obigen Schaltung die Null-, Mit- und Gegenimpedanz $\underline{Z}_{(0)}$, $\underline{Z}_{(1)}$, $\underline{Z}_{(2)}$.

$$\underline{Z}_{(0)} = 6 \Omega \tag{2.1}$$

$$\underline{Z}_{(1)} = \frac{16}{5}\Omega\tag{2.2}$$

$$\underline{Z}_{(2)} = \underline{Z}_{(1)} = \frac{16}{5}\Omega \tag{2.3}$$

b. Geben Sie für den symmetrischen Drehstromverbraucher die **Null-, Mit- und Gegenim- pedanz** $\underline{Z}_{(0)}$, $\underline{Z}_{(1)}$, $\underline{Z}_{(2)}$ an.

$$\underline{Z}_{(0)} = 7 \Omega \tag{2.4}$$

$$\underline{Z}_{(1)} = \underline{Z}_{(2)} = 4 \Omega \tag{2.5}$$

c. Berechnen Sie die **symmetrischen Spannungskomponenten** $\underline{U}_{(0)}$, $\underline{U}_{(1)}$, $\underline{U}_{(2)}$.

$$\underline{U}_{(0)} = -\frac{20}{3} V \tag{2.6}$$

$$\underline{U}_{(1)} = \frac{220V}{3} \tag{2.7}$$

$$\underline{U}_{(2)} = -\frac{20}{3} V \tag{2.8}$$

d. (6) Berechnen Sie die **Stromkomponenten** $\underline{I}_{(0)}$, $\underline{I}_{(1)}$, $\underline{I}_{(2)}$ und den **Strom in Phase a**.

$$\underline{I}_{(0)} = -0.952A$$
 $\underline{I}_{(1)} = 18,333A$
 $\underline{I}_{(2)} = -1,667A$
(2.9)

$$I_a = 15,714A$$
 (2.10)

3. Zweipoliger Kurzschluss ohne Erdberührung

a. Wie groß sind die drei **Phasenströme** \underline{I}_a , \underline{I}_b und \underline{I}_c am **Kurzschlussort**? (komplexe Darstellung)

Winkel können beliebig festgelegt werden, daher Ib mit Winkel 0°. Daraus ergibt sich

$$\underline{I}_{a} = 0$$
 $\underline{I}_{b} = 417 \text{ A}$
 $\underline{I}_{c} = -417 \text{ A}$
(3.1)

da $\sum \underline{I} = 0$.

b. Wie groß sind die drei Komponentenströme $\underline{I}_{(0)}$, $\underline{I}_{(1)}$ und $\underline{I}_{(2)}$ am Kurzschlussort? (komplexe Darstellung)

$$\underline{I}_{(0)} = 0 \text{ A} \tag{3.2}$$

$$\underline{I}_{(1)} = j240,755 \text{ A}$$
 (3.3)

$$\underline{I}_{(2)} = -j240,755 \text{ A}$$
 (3.4)

c. Leiten Sie anhand der Ergebnisse aus Punkt b die korrekte **Ersatzschaltung** im Mit-, Gegen- und Nullsystem für diesen Fehlerfall ab (**mit kurzer Erklärung!**).

Relevant sind nur die Bedingungen an der Fehlerstelle: Da $\underline{I}_{(2)} = -\underline{I}_{(1)}$ ergibt sich obige Verschaltung von Mit- und Gegensystem. Da $\underline{I}_{(0)} = 0$ ist das Nullsystem nicht beteiligt, was auch naheliegend ist, da keine Erdberührung stattfindet.

d. Berechnen Sie für diesen Kurzschlussfall die wirksame **Gesamtimpedanz** (**komplexe Darstellung**) bezogen auf die Kurzschlussseite (Leitung).

Generator:

$$Z_{G(1)} = X_{G(1)} = 16,714 \Omega$$

 $R_{G(1)} = 0 \Omega$ (3.5)
 $X_{G(2)} = X_{G(1)}$

Transformator:

$$Z_{T(1)} = X_{T(1)} = 16,875 \Omega$$
 (3.6)

$$R_{T(1)} = 0$$

 $X_{T(2)} = X_{T(1)}$ (3.7)

Leitung:

$$X_{L(1)} = 6 \Omega$$

 $X_{L(2)} = X_{L(1)}$ (3.8)

Nullsystemreaktanzen und Erdkapazität liefern keine Beiträge, daher sind diese auch nicht relevant für die wirksame Gesamtimpedanz!

Gesamtimpedanz:

$$\underline{Z}_{Ges} = j79,178 \Omega \tag{3.9}$$

e. Berechnen Sie den Betrag des **dreiphasigen Anfangs-Kurzschlussstroms** $I_{k3p}^{"}$ im Fall eines dreipoligen Kurzschlusses (c = 1,1).

$$\underline{I}''_{k3p} = 481,259 \text{ A}$$
 (3.10)

4. Fünf Sicherheitsregeln

Siehe Skriptum

5. Barwertvergleich von Leitungssystemen

a. Wie groß sind die jährlichen Energieverluste für beide Leitungssysteme?

FL ... Freileitung

KA ... Kabel

$$V_{E,FL} = 28,277 \cdot 10^{6} \frac{\text{kWh}}{\text{a}}$$

$$V_{E,KA} = 7,778 \cdot 10^{6} \frac{\text{kWh}}{\text{a}}$$
(5.1)

b. Wie groß sind die **jährlichen Aufwendungen** für den leistungsabhängigen Anteil der Verlustkosten für beide Leitungssysteme?

$$K_{P,FL} = 1,463 \cdot 10^6 \frac{\epsilon}{a}$$

$$K_{P,KA} = 382,5 \cdot 10^3 \frac{\epsilon}{a}$$
(5.2)

c. Wie groß sind die **jährlichen Zahlungen** für beide Leitungssysteme in den ersten 9 Jahren und in den restlichen 16 Jahren?

Die gesamten Kosten in den ersten neun Jahren:

$$Z_{FL,9a} = 4,096 \cdot 10^6 \, \frac{\epsilon}{a} \tag{5.3}$$

$$Z_{KA,9a} = 1{,}105 \cdot 10^6 \frac{\epsilon}{a}$$
 (5.4)

Für die Jahre 10 bis 25 ergeben sich:

$$Z_{FL,16a} = 3,276 \cdot 10^6 \, \frac{\epsilon}{a} \tag{5.5}$$

$$Z_{\text{KA,16a}} = 879,736 \cdot 10^3 \; \frac{\epsilon}{a} \tag{5.6}$$

d. Wie groß ist der Barwert der 110kV Freileitung zum Zeitpunkt der Inbetriebnahme?

$$B_{0,FL} = 58,597 \cdot 10^6 \in \tag{5.7}$$

e. Wie groß ist der Barwert des 110kV Kabels zum Zeitpunkt der Inbetriebnahme?

f. Welches Leitungssystem ist **wirtschaftlich günstiger** bezogen auf den Betrachtungszeitpunkt von 25 Jahren?

Aufgrund des deutlich niedrigeren Barwerts ist wirtschaftlich das Kabelsystem vorzuziehen!