Potential Based Reward Shaping Tutorial

ALA 2014 Sam Devlin

Knowledge-Based Reinforcement Learning

- ► Commonly, RL algorithms assume no prior knowledge
- Including domain knowledge can simplify learning

Reward Shaping

Q-Learning

- A popular RL algorithm

Reward Shaping

- Provide heuristic knowledge by an additional reward

Potential-Based Reward Shaping

$$F(s,s') = \gamma \Phi(s') - \Phi(s)$$

- ▶ F(s, s'): Additional reward when moving from state s to s'
- $ightharpoonup \gamma$: Discount factor
- $ightharpoonup \Phi(s)$: Potential of state s

Potential-Based Reward Shaping

Formal Definition

 $F(s,s') = \gamma \Phi(s') - \Phi(s)$

Guarantees

Policy invariance (optimal policy unchanged) in single agent¹

Can

► Increase/Decrease time taken to learn optimal policy

¹ Ng, Russell and Harada. "Policy Invariance Under Reward Transformations: Theory And Application To Reward Shaping." ICML, 1999.
THE UNIVERSITY Of York

An Example Potential Function

Potential-Based Reward Shaping

Figure: A Typical Single Agent Result

Proof of Policy Invariance ²

$$U_{\Phi}(\overline{s}) = \sum_{j=0}^{\infty} \gamma^{j} (r_{j} + \gamma \Phi(s_{j+1}) - \Phi(s_{j}))$$

$$= \sum_{j=0}^{\infty} \gamma^{j} r_{j} + \sum_{j=0}^{\infty} \gamma^{j+1} \Phi(s_{j+1}) - \sum_{j=0}^{\infty} \gamma^{j} \Phi(s_{j})$$

$$= U(\overline{s}) + \sum_{j=1}^{\infty} \gamma^{j} \Phi(s_{j}) - \Phi(s_{0}) - \sum_{j=1}^{\infty} \gamma^{j} \Phi(s_{j})$$

$$= U(\overline{s}) - \Phi(s_{0})$$

THE UNIVERSITY of York

² Asmuth, Littman and Zinkov. "Potential-based shaping in model-based reinforcement learning." AAAI, 2008.

$$U_{\Phi}(\bar{s}) = \sum_{j=0}^{\infty} \gamma^{j} (r_{j} + \gamma \Phi(s_{j+1}) - \Phi(s_{j}))$$

$$U_{\Phi}(\overline{s}) = \sum_{j=0}^{\infty} \gamma^{j} (r_{j} + \gamma \Phi(s_{j+1}) - \Phi(s_{j}))$$

$$= \sum_{j=0}^{\infty} \gamma^{j} r_{j} + \sum_{j=0}^{\infty} \gamma^{j+1} \Phi(s_{j+1}) - \sum_{j=0}^{\infty} \gamma^{j} \Phi(s_{j})$$

$$U_{\Phi}(\bar{s}) = \sum_{j=0}^{\infty} \gamma^{j} (r_{j} + \gamma \Phi(s_{j+1}) - \Phi(s_{j}))$$

$$= \sum_{j=0}^{\infty} \gamma^{j} r_{j} + \sum_{j=0}^{\infty} \gamma^{j+1} \Phi(s_{j+1}) - \sum_{j=0}^{\infty} \gamma^{j} \Phi(s_{j})$$

$$= U(\bar{s}) + \sum_{j=1}^{\infty} \gamma^{j} \Phi(s_{j}) - \Phi(s_{0}) - \sum_{j=1}^{\infty} \gamma^{j} \Phi(s_{j})$$

$$U_{\Phi}(\bar{s}) = \sum_{j=0}^{\infty} \gamma^{j} (r_{j} + \gamma \Phi(s_{j+1}) - \Phi(s_{j}))$$

$$= \sum_{j=0}^{\infty} \gamma^{j} r_{j} + \sum_{j=0}^{\infty} \gamma^{j+1} \Phi(s_{j+1}) - \sum_{j=0}^{\infty} \gamma^{j} \Phi(s_{j})$$

$$= U(\bar{s}) + \sum_{j=1}^{\infty} \gamma^{j} \Phi(s_{j}) - \Phi(s_{0}) - \sum_{j=1}^{\infty} \gamma^{j} \Phi(s_{j})$$

$$= U(\bar{s}) - \Phi(s_{0})$$

Q-Table Initialization

▶ Wiewiora: "Potential-based shaping and Q-value initialization are equivalent." (JAIR, 2003)

...If the potential function is static.

Multi-Agent Reinforcement Learning

- ▶ Multiple agents learning concurrently in the same environment
- Typically learn a Nash equilibrium
- ▶ No clear notion of an optimal policy

Multi-Agent Potential-Based Reward Shaping

Guarantees

► Nash Equilibria not altered ³

Can

- Increase/Decrease time taken to reach a stable joint policy
- Change final joint policy

Devlin and Kudenko, "Theoretical Considerations Of Potential-Based Reward Shaping For Multi-Agent Systems", AAMAS, 2011.

Potential-Based Reward Shaping

Figure: A Typical Multi-Agent Result

Exploration Altered

- ▶ Reward shaping alters exploration / which actions are chosen
- ▶ In single-agent, this affects time to convergence
- In multi-agent, this may cause the agents to reach a different point of equilibrium
 - Wellman and Hu (1998) showed the joint policy converged upon in a learning MAS is highly sensitive to initial belief

Multi-Agent Example 4

⁴ Boutillier, "Sequential Optimality And Coordination In Multiagent Systems", IJCAI, 1999.

The University of York

Results

(a) Without Reward Shaping

Safe Reward Shaping

Safe Reward Shaping

Results

(b) With Safe Reward Shaping

THE UNIVERSITY of York

Coordinated Reward Shaping

Results

(c) With Coordinated Reward Shaping

Miscoordinated Reward Shaping

Results

(d) With Miscoordinated Reward Shaping

THE UNIVERSITY of York

Multiagent Example 2: RoboCup KeepAway ⁵

Devlin, Grzes and Kudenko. "An Empirical Study Of Potential-Based Reward Shaping And Advice In Complex, Multi-Agent Systems."

THE UNIVERSITY OF YORK ACS, 2011.

Practical Exercise: Design a Potential Function

- b: $dist(K_1, K_3)$ c: $dist(K_1, T_1)$ d: $dist(K_1, T_2)$ e: $dist(K_1, C)$ f: $dist(K_2, C)$
- g: $dist(K_3, C)$ h: $dist(T_1, C)$

a: $dist(K_1, K_2)$

- i: $dist(T_2,C)$ j: $min_dist(K_{2-mid},T_i)$
- k: $\min_{dist(K_{3-mid}, T_j)}$
- 1: $\min_{\alpha} ang(K_2, K_1, T_j)$
- m: $\min_ang(K_3, K_1, T_j)$

Past Assumptions

- Previous theoretical guarantees assume a static potential function
- Some claim the potential function must converge before the agent can ⁶

⁶ Laud, "Theory And Application Of Reward Shaping In Reinforcement Learning", PhD Thesis, 2004.

Dynamic Potential Based Reward Shaping 7

Guarantees policy invariance or consistant Nash equilibria, provided:

$$F(s, t, s', t') = \gamma \Phi(s', t') - \Phi(s, t)$$

Devlin and Kudenko. "Dynamic Potential-Based Reward Shaping." AAMAS, 2012.
THE UNIVERSITY OF ITERACTION

Context Sensitive Reward Shaping 8

► In different contexts we often reccomend different behaviours

Be Hauwere, Devlin, Kudenko and Nowe. "Context Sensitive Reward Shaping for Sparse Interaction Multi-Agent Systems." BNAIC, 2013.
THE UNIVERSITY of York

Belief Revision 9

⁹ Efthymiadis, Devlin, and Kudenko. "Overcoming Erroneous Domain Knowledge in Plan-Based Reward Shaping." AAMAS, 2013.
THE UNIVERSITY of York

Q-Table Initialization

▶ Wiewiora: "Potential-based shaping and Q-value initialization are equivalent." (JAIR, 2003)

...If the potential function is static.

State and Action Shaping 10

Look-Ahead Advice

- $F(s,a,s',a') = \gamma \Phi(s',a') \Phi(s,a)$
- $\qquad \qquad \pi(s) = \operatorname{argmax}_{a} \{ Q(s, a) + \Phi(s, a) \}$
- Maintains all previous guarantees

Look-Back Advice

- ► $F(s, a, s', a') = Φ(s', a') γ^{-1}Φ(s, a)$
- No guarantees proven

Wiewiora, Cottrell and Elkan. "Principled methods for advising reinforcement learning agents." ICML, 2003.
THE UNIVERSITY of York

Partial Observability

Formal Definition

 $F(o,o') = \gamma \Phi(o') - \Phi(o)$

Guarantees 11

- Equivalence to Q-table initialisation
- Policy invariance (optimal policy unchanged) in single agent
- Consistant Nash equilibria in multi-agent systems

¹¹ Eck, Soh, Devlin and Kudenko. "Potential-Based Reward Shaping for Partially Observable Markov Decision Processes." AAMAS, 2013.

Potential Based Reward Shaping Tutorial Closing Remarks

Closing Remarks

Implementation Advice

- $ightharpoonup \gamma$ must be equal to update rule
- Use an absorbing state
- Store current potential for next iteration
- Avoid negative potentials ¹²

¹² Grzes and Kudenko. "Theoretical and empirical analysis of reward shaping in reinforcement learning." ICMLA, 2009.

General Effect

▶ Does not modify any property of the underlying MDP or SG invariant to changes in absolute value of expected return.

 Provided a property is only reliant on the relative difference or order of expected returns, potential-based reward shaping will not affect it.

Neccessity

▶ For every reward shaping function that is not potential-based, there is an MDP where the optimal policy differs with and without reward shaping. ¹³

¹³ Ng, Russell and Harada. "Policy Invariance Under Reward Transformations: Theory And Application To Reward Shaping." ICML, 1999.
THE UNIVERSITY of York

References

- Ng, Russell and Harada. "Policy Invariance Under Reward Transformations: Theory And Application To Reward Shaping." ICML, 1999.
- Wiewiora. "Potential-based shaping and Q-value initialization are equivalent." JAIR, 2003
- Wiewiora, Cottrell and Elkan. "Principled methods for advising reinforcement learning agents." ICML, 2003.
- Asmuth, Littman and Zinkov. "Potential-based shaping in model-based reinforcement learning." AAAI 2008
- Devlin and Kudenko, "Theoretical Considerations Of Potential-Based Reward Shaping For Multi-Agent Systems", AAMAS, 2011.
- ▶ Devlin and Kudenko. "Dynamic Potential-Based Reward Shaping." AAMAS, 2012.
 THE UNIVERSITY of York

AAMAS 2014

Potential-Based Difference Rewards for Multiagent Reinforcement Learning.

Sam Devlin, Logan Yliniemi, Daniel Kudenko and Kagan Tumer

Learning I Miles Davis A & B Wednesday 09:00