Fast and Scalable Network Monitoring Applications based on Data Stream Processing

<u>Presenter:</u> Alessandra Fais

PhD student at University of Pisa

Outline

- Introduction
 - Problem and main goals
- What can be found in literature
- Proposed approach
 - Continuous monitoring as stream analytics problem
 - Architecture and challenges
- Conclusions

- Modern networks
 - Accommodate a variety of services
 - Shared infrastructure
 - Adapt to requests for service (de-)activation
 - Stringent Quality of Service requirements

How to manage modern networks?

- How to manage modern networks?
- Network operators need
 - Rapid and easy network (re-)configuration
 - Continuous real-time network monitoring for detecting
 - Security issues
 - Performance degradation

- How to manage modern networks?
- Network operators need
 - Rapid and easy network (re-)configuration
 - Continuous real-time network monitoring for detecting
 - Security issues
 - Performance degradation

What can be found in literature

Main tradeoff: expressiveness VS performance

What can be found in literature

- > Main tradeoff: expressiveness VS performance
- Solutions based on
 - Stream processing only
- high expressiveness
 - high performance Programmable switches alone

What can be found in literature

- Main tradeoff: expressiveness VS performance
- Solutions based on
 - Stream processing only
- high expressiveness
 - Programmable switches alone

 high performance
- Can we provide both?
 - Some new proposals use stream processing AND programmable switches
 - Proposed approach based on stream processing ONLY

A new framework: main goals

- High performance: real-time continuous data analysis
 - Stream processing pipelines
 - Implementation through Data Stream Processing frameworks

A new framework: main goals

- High performance: real-time continuous data analysis
 - Stream processing pipelines
 - Implementation through Data Stream Processing frameworks
- Scalability

Distributed processing over programmable network nodes

A new framework: main goals

- High performance: real-time continuous data analysis
 - Stream processing pipelines
 - Implementation through Data Stream Processing frameworks

Scalability

Distributed processing over programmable network nodes

High expressiveness

- Provide high level programming abstractions
- Support for complex analysis queries

A new framework: architecture

A new framework: architecture

Conclusions

- Cheaper solution
 - Programmable switches are expensive
 - Use general purpose network devices (multicores + SmartNICs, GPUs, FPGAs)

Conclusions

- Cheaper solution
 - Programmable switches are expensive
 - Use general purpose network devices (multicores + SmartNICs, GPUs, FPGAs)
- High performance
 - Optimized usage of resources
 - Parallelism in all computation stages (packet capturing, processing)

Conclusions

- Cheaper solution
 - Programmable switches are expensive
 - Use general purpose network devices (multicores + SmartNICs, GPUs, FPGAs)
- High performance
 - Optimized usage of resources
 - Parallelism in all computation stages (packet capturing, processing)
- High-level interface
 - Simplify the implementation of real-time continuous monitoring applications
 - Encourage network programmers to use the proposed framework