

Tarea 1

Pregunta 4

- a) Se dice que una función de Hash tiene Resistencia a Preimagen si no existe un algoritmo eficiente que, dado $x \in \mathcal{H}$, encuentra $m \in \mathcal{M}$ tal que h(m) = x. Se define el juego Hash-PM(n) como sigue:
- i) Verificador genera $s=Gen(1^n)$ y genera aleatoriamente un mensaje m sobre $\mathcal M$ con distribución uniforme.
 - ii) Verificador le entrega a Adversario $x = h^s(m)$, m y s.
 - iii) Adversario elige mensaje m' tal que $m' \neq m$.
 - iv) Adversario gana si $h^s(m') = x$, en caso contrario pierde.

Una función de hash (Gen, h) se dice resistente a preimagen si para todo adversario que funciona como un algoritmo aleatorizado en tiempo polinomial, existe una función despreciable f(n) tal que:

$$Pr(Adversario\ gana\ Hash-PM(n)) \le f(n)$$

b) Por demostrar, usando contrapositivo, que si (Gen, h) no es resistente a preimagen, entonces (Gen, h) no es resistente a colisiones.

Sea (Gen, h) un hash no resistente a preimagen, entonces existe un adversario que funciona como un algoritmo aleatorizado polinomial tal que su probabilidad de ganar Hash-PM(n) no es despreciable. Sea \mathcal{A} el algoritmo utilizó el Adversario para ganar Hash-PM(n) que eficientemente encuentra un m' tal que $h^s(m') = x$ para un s y m dados.

Así, se utilizará \mathcal{A} al jugar Hash-Col(n) para encontrar una colisión:

- i) Verificador genera $s = Gen(1^n)$ y se lo entrega a Adversario.
- ii) Adversario elige un m_1 arbitrario como 0^n y calcula $h^s(m_1) = x$. Luego, le entrega a \mathcal{A} los valores m_1 , x y s. El algoritmo \mathcal{A} retorna m' y Adversario lo elige como m_2 .
 - iii) Adversario gana porque $h^s(m_1) = x = h^s(m_2)$.

La probabilidad de ganar no es despreciable debido a que \mathcal{A} haga Hash-PM(n). Además, el algoritmo del Adversario se basa en \mathcal{A} aleatorio y polinomial en n por lo que este es completamente aleatorio y polinomial en n. Por lo tanto, (Gen, h) no es resistente a colisiones.