Reg. No.:

Name :

Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act. 1956)

Continuous Assessment Test I - January 2023

Programme		Junuary 2020		
Course	: B.Tech	Semester	:	WS 2022-23
course	•	Code	:	BECE101L
Engelt	Basic Electronics	Class Nbr	:	CH2022235002756 CH2022235002712 CH2022235001341
Faculty Time	: Dr B Lakshmi, Dr A Prathiba, Mr Premanand S	Slot	1: 1	B2
Time	: 90 Minutes	Max. Marks	1:	50

Answer \underline{ALL} the questions

/	Question Text	Marks
1. √1)	Determine the net capacitance C of the capacitor combination shown in Figure 1 a & b when the capacitances are $C_1=12~\mu F$, $C_2=2~\mu F$ and $C_3=4~\mu F$.	[3] + [3]
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
ji)	Figure 1 Find the equivalent resistance across the two ends A and B of this circuit	
	Signal Marso	[4]
	A PANTA PANT	
jil) E	P. I. I. D. R. I. I. C. R. I.	[5]
	Figure 2	[5]·

	ii)	Silicon is doped with 5×10^{16} arsenic donor atoms cm ⁻³ .	[2]
		(a) State whether the material n- or p-type?	+
		Calculate the electron and hole concentrations at $T = 300$ K. Assume the n_i of silicon as 1.5×10^{10} cm ⁻³	[3]
	jiij	V Heatha dioda aquation to compute the diode current at Vn = 0.05 V and at VD = 0.75	[5]
3.	i)	Plot the voltage transfer characteristics v_0 versus v_1 for a half wave feetiner within the range of $-10 \le v_1 \le 10$ V. Also sketch v_0 versus time for the sinusoidal input. Assume $v_1 = 10$ since (V) and $R = 1$ kO	[4]
	jij)	A full-wave rectifier uses two diodes, the internal resistance of each diode may be assumed constant at 20 Ω . The transformer rms secondary voltage from centre tap to each end of secondary is 50 V and load resistance is 980 Ω . Compute (i) mean load current (ii)	[6]
	jii)	Justify how a Zener diode act as a voltage regulator with an appropriate circuit diagram	[5]
		and characteristics Total Marks	[50]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$

Reg. No.:

Name :

Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)

Continuous Assessment Test II - March 2023

		Semester		WS 2022-23
Programme	: B.Tech		+:+-	BECE101L
		Code		CH2022235002756
Course	Basic Electronics	Class Nbr	:	CH2022235002733 CH2022235002712 CH2022235001341
Flt	: Dr B Lakshmi, Dr A Prathiba, Mr S Premanand	Slot	:	B2
Faculty		Max. Marks	:	50
Time	: 90 Minutes	With Triality		

Answer ALL the questions

Q.No.	Sub- divisio		Marks
1.	n(i)	A npn transistor with β = 80 is connected in a common-base configuration as shown in Figure 1 (a) The emitter is driven by a constant-current source with I_E = 1.2 mA. Determine I_B , I_C , α , and V_C . (b) Repeat part (a) for I_E = 0.80 mA. (c) Repeat parts (a) and (b) for β = 120.	10
		V_{C} I_{E} I_{E} I_{B} I_{C} I_{C} I_{C} I_{C} I_{C} I_{C}	
		Figure 1	
(4)	ij	Calculate the drain current in an NMOS transistor with parameters $V_{TN} = 0.4 \text{ V}$, $k'_n = 120 \mu\text{A/V}^2$, $W = 10 \mu\text{m}$, $L = 0.8 \mu\text{m}$, and with applied voltages of $V_{DS} = 0.1 \text{ V}$ and (a) $V_{GS} = 0$, (b) $V_{GS} = 1 \text{ V}$, (c) $V_{GS} = 2 \text{ V}$, and (d) $V_{GS} = 3 \text{ V}$.	5
35)	ر پن	With a neat circuit diagram and waveform, discuss an electronic circuit which uses positive feedback to produces oscillations at low and medium frequencies. Also mention its frequency of operation	5
B),ji)	The tuned oscillator used in the Hartley oscillator of a radio receiver makes use of a LC tune circuit with L1=50 µH, L2=75 µH and C=380 pF. Calculate the frequency of oscillation.	
8	jii)	Calculate the drain current and drain-to-source voltage of a common source circuit with an n-channel enhancement-mode MOSFET for Figure 2 if $R_1 = 3 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_D = 2\Omega$, $V_{DD} = 4.7 \text{ V}$, $V_{TN} = 0.8 \text{ V}$, and $K_n = 0.2 \text{ mA/V}^2$.	5

Figure 2	
Convert (1110101.1101) ₂ to decimal.	2
Realize the functionality of <u>OR</u> , AND and NOT gates using NAND gate only	3
Simplify the Boolean expression to a minimum number of literals and implement the same using basic logic gates. F= a'bc + abc' + abc + a'bc'	5
Implement the Boolean function and also verify the truth table, $F = xy + x'y' + y'z$ using (a) With AND and inverter gates and (b) With OR and inverter gates.	10
Total Mark	[50]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$

[5]

Final Assessment Test (FAT) - APRIL/MAY 2023

Programme	B.Tech	Semester	Winter Semester 2022-23
Course Title	BASIC ELECTRONICS	Course Code	BECE101L
F I N	D 0 DD D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Slot	B2
raculty Name	Prof. PREMANAND S	Class Nbr	CH2022235001341
Time	3 Hours	Max. Marks	100

SECTION 1 (2 X 4 Marks)

Answer All questions

- [4] 91. In a common base connection, current amplification factor is 0.9. If the emitter current is 1mA, determine the value of base current.
 - In a common base connection, the emitter current is 1mA. If the emitter circuit is open, the [4] collector current is 50 μA . Find the total collector current. Given that $\alpha = 0.92$.

SECTION 2 (10 X 5 Marks)

Answer All questions

- 93. Calculate the forward bias current of a Si diode when forward bias voltage of 0.4V is applied, [5] the reverse saturation current is 1.17×10^{-9} A and the thermal voltage is 25.2 mV.
- 64. Explain the working of PN junction under these three operating conditions: [5]
 - i) No bias
 - ii) Forward bias
 - iii) Reverse bias
 - 6. Find the equivalent resistance, R_{EQ} for the following resistor combination circuit shown in [5] Figure 1.

Figure 1 6. Find the total capacitance of the combination of capacitors shown in the figure 2

Figure 2

- 07. Consider an n-channel depletion-mode MOSFET with parameters $V_{TN} = -1.2 \text{ V} \text{ and } k'_n = 120 \text{ } \mu\text{A/V}^2. \text{ The drain current is } I_D = 0.5 \text{ mA at } V_{GS} = 0 \text{ and } V_{DS} = 2 \text{ V}.$ Determine the W/L aspect ratio.
- 98. Determine the (i) operating frequency and (ii) feedback fraction for Colpitt's oscillator shown in the below Figure 3

Figure 3

O9 In the phase shift oscillator shown for the below figure 4, $R_1 = R_2 = R_3 = 1M\Omega$ and $C_1 = C_2 = C_3$ [5] = 68 pF. At what frequency does the circuit oscillate?

Figure 4

- 10. A garden contains 39 plants. The following plants were chosen at random, and their heights were recorded in cm: 38, 51, 46, 79, and 57. Calculate their heights' standard deviation.
- With a suitable and neat sketch, briefly explain a sensor which is used to measure displacement [5]
- 12. For a certain thermistor β = 3100 K and its resistance at 20°C is known to be 1050 Ω . The thermistor is used for temperature measurement and the resistance measured is 2300 Ω . Find the measured temperature if the temperature resistance characteristics of the thermistor is given by $R=R_0\exp[\beta((1/T)\cdot(1/T_0))]$

where T is in Kelvin.

SECTION 3 (2 X 6 Marks) Answer All questions

- 13. Describe a simple common-emitter circuit with an npn bipolar transistor and also discuss the relation between collector-emitter voltage and input base current
- 14. Explain the working of an enhancement n-channel MOSFET with neat schematic for different gate bias and drain bias conditions. Draw the current voltage characteristics and mark the region of operation.

SECTION 4 (3 X 10 Marks)

Answer All questions

15. Simplify the following Boolean equations

[10]

- F = A'B'C'+A'BC'+A'BC+ABC'+ABC'
- b) $\overline{(A+B)}\overline{C}\overline{D}+E+\overline{F}$
- [10] 16. Represent the output Boolean expression for the logic circuit shown in below figure 5 and simplify the same using Boolean algebra

Figure 5

17. Elaborate the functional elements required to complete the task for an instrumentation system using a typical example

[10]

Final Assessment Test (FAT) - June 2022

Programme	B.Tech / M.Tech(Int)	Semester	Winter Semester 2021-22
Course Title	BASIC ELECTRONICS	Course Code	BECE101L
Faculty Name	Prof S Solvendage	Slot	E2
	Froi. S Seivendran	Class Nbr	CH2021222300398
Time	3 Hours	Max. Marks	100

Section-A (2 X 10 Marks) Answer All questions

1. X voltage divider circuit supplies reference voltages to various instruments. From Figure 1.

[10]

- (i) Obtain the voltage drop across AB, voltage drop across R₁, voltage drop across R₂, voltage drop across BC, voltage drop across R₃, voltage drop across R₄, voltage drop across R₅.
 - (ii) Determine the total current through the circuit.
- الْتُمَا What would be the equivalent resistance of the circuit?
- (iv) What would be the colour coding for R₃?

[10 Marks]

Figure 1

- 2. a) Discuss in detail about the types of errors that are likely to occur in measuring instruments. [6 [10] Marks]
 - **b)** Consider an analog voltmeter to measure a voltage drop of about 75 V across a resistor. The reading value in the meter is about 73 V. Find i) Absolute Error ii) Relative Error iii) Accuracy iv) Precision value when the mean of measured value is 74.8V. [4 Marks]

Section-B (4 X 15 Marks) Answer All questions

- 3. (a) How is the 230V AC input used to charge your mobile phones? What is the type of output? Explain the functionality involved using a suitable diagram. [12 Marks]
 - (b) How can a diode be used as a rectifier and as a voltage regulator? Give an example for each.

 [3 Marks]

[15]

- 4. (a) For the MOSFET amplifier in common source configuration assume V_{DD} =16V, V_D = 6 V . [15] V_{DS} = 8 V, I_D = 5 mA and V_{in} = 40V with 1 KHz. [10 Marks] Determine
 - (i) The value of R_D and R_S.
 - (ii) The value of R_2 if $R_1 = 150 \text{ K}\Omega$ and $V_G = 12 \text{ V}$.
 - (iii) The value of coupling capacitor whose capacitive impedance should be less than 2 K Ω .
 - (iv) Draw the circuit diagram.
 - (b) For the circuit shown in figure 2, find the frequency of oscillation and feedback fraction. [5 marks

Figure 2

- 5. a) Convert the decimal number 6781 to Octal and binary number. [4 Marks]
 - b) Draw the truth table for the following logic circuit as depicted in figure 3. [3 Marks]

Figure 3

- c) Draw the logic diagram for the Boolean expression (x+y)(x+y')+((xy')+x')'. Also, simply this expression to minimum possible literals using Boolean algebra. [8 Marks]
- 6. a) Describe how displacement can be measured using sensor where the displacement variation is converted as change in electrostatic potential variation. Explain with a neat sketch. [8

b) Explain why LVDT is preferable in position sensing over other sensing measurements. [7 Marks

[15]

[15]

Section-C (1 X 20 Marks) Answer All questions

- 7. a) Sketch and discuss transistor (BJT) configuration which has a (i) Voltage gain less than or equal to one, (ii) Voltage gain greater than one with 180° phase shift. Mention an application for each. [10 Marks]
 - b) Calculate I_B , I_C , I_E , V_{BE} , V_{CE} , and V_{CB} in the given circuit as shown in figure 4. The transistor has $\beta_{DC} = 183$. [10 Marks]

Figure 4

 $\Leftrightarrow \times \Rightarrow \times \Rightarrow$

[20]