

Notice

이 교육과정은 교육부 '성인학습자 역량 강화 교육콘텐츠 개발 ' 사업의 일환으로써 교육부로부터 예산을 지원 받아 고려사이버대학교가 개발하여 운영하고 있습니다. 제공하는 강좌 및 학습에 따르는 모든 산출물의 적작권은 교육부, 한국교육학술정보원, 한국원격대학협의외와 고려사이버대학교가 공동 소유하고 있습니다.

학습목표

GOALS

BPTT의 문제점에 대해 설명할 수 있다.

Truncated BPTT 모델에 대해 설명할 수 있다.

LSTM의 기본 구조에 대해 배우고 설명할 수 있다.

Enter

4 LSTM의 작동 원리와 다양한 변형에 대해 설명할 수 있다.

BPTT의 문제점

01 데이터셋 확인하기

Anthony intelligence (All refers

Toy 데이터셋 생성 및 시각화 코드

출처: 퍼블릭에이아이(www.publicai.co.kr)

02 Orthogonal Initialization

BPTT는 아래 수식과 같이 전파됨

 $tanh'(a^{(t)})를 1이라 가정하면,$

 $\frac{\partial L}{\partial h} = \frac{\partial L}{\partial h^{(t)}} = \frac{\partial a^{(t)}}{\partial h^{(t-1)}} = \frac{\partial L}{\partial h^{(t)}} tanh'(a^{(t)}) W_{hh}$

$$\frac{\partial L}{\partial h_{(t-1)}} \approx \; \frac{\partial L}{\partial h^{(t)}} W_{hh}$$

$$rac{\partial L}{\partial h_{(t-n)}} pprox rac{\partial L}{\partial h^{(t)}} (W_{hh})^n$$

- 위 수식과 같이 N번의 Time step을 진행하게 되면, whit가 N번 반복하는 행렬곱 연산이 진행됨
- 초기 whh의 값에 따라 오차가 매우 크게 증폭될 수도 있고, 매우 적게 수렴될 수도 있음

ritin in intelligence (All refer

예시 가중치 행렬

02 Orthogonal Initialization

Artificial Intelligence (All refer

가중치 행렬의 크기 : 보통 L2 norm으로 계산

```
In [5]: 1 np.sqrt(np.sum(weight**2))
Out[5]: 10.956754373466538
    위의 수식을 Numpy에서는 아래와 같이 메소드를 제공합니다.
In [6]: 1 np.linalg.norm(weight)
Out[6]: 10.956754373466538
```

PLEARNING AND NATURAL LANGUAGE PROCESSING

연산이 거듭됨에 따른 가중치의 변화

```
w = weight.copy()
w_norms = []
for i in range(5):
    w = np.matmul(weight,w)
    w_norms.append(np.linalg.norm(w))

plt.plot(w_norms)
plt.show()
```



```
weight = np.random.normal(0,0.1,100).reshape(10,10)

w = weight.copy()
w_norms = []
for i in range(5):
    w = np.matmul(weight,w)
    w_norms.append(np.linalg.norm(w))

plt.plot(w_norms)
plt.show()
```


02 Orthogonal Initialization

Artificial (stalligance (Al) return

Orthogonal Initialization

SVD(SinIge Value Decomposition)를 통해 가중치 행렬의 각 행이
 모두 수직이 되도록 만드는 방법

• U matrix가 바로 직교 행렬

U matrix의 각 행은 Eigen Vector로 구성되어 있음

DITERINATING AND NATURAL CANGULAGE RECORDS NO

Orthogonal Initialization 수행 시 가중치 추세

03 Gradient Clipping

Gradient Clipping이란?

Artificial Intelligence (All refere

EFICATIONS AND NATURAL LANGUAGE PERCESSING

Gradient exploding 시의 문제 재현 - 모델 구성하기

03 Gradient Clipping

Artificial Intelligence (All refer

Gradient exploding 시의 문제 재현 - 모델 학습하기

Please use Model.fit, which supports generators.

===] - 3s 34ms/step - loss: nan

Gradient Clipping

Gradient의 최대 크기를 제한하고, 만약 최대치를 넘게 되면
 Gradient의 크기를 재조정하는 방법

$$\hat{g} = \frac{\partial \varepsilon}{\partial \theta}$$

$$\begin{cases} \hat{g} \leftarrow \frac{threshold}{||\hat{g}||} \hat{g}, & \text{if } |\hat{g}| \ge threshold \\ \hat{g} \leftarrow \hat{g}, & \text{if } |\hat{g}| < threshold \end{cases}$$

03 Gradient Clipping

Artificial Intelligence (All refere

Gradient Clipping - 모델 구성하기

```
In [14]:
         1 K.clear_session()
          2 n_inputs = 1
           3 n_steps = 50
           n_neurons = 200
           5 n_outputs = n_inputs
           7 inputs = Input(shape=(n_steps,n_inputs))
           8 rec_init = tf.keras.initializers.RandomNormal(0,1.)
           9 hidden = SimpleRNN(n_neurons,
                               recurrent initializer=rec_init)(inputs)
         11 output = Dense(1)(hidden)
         13 model = Model(inputs,output)
         15 # Optimizer에 clipnorm=0.1을 지정하는 것으로
         16 # gradient clipping 적용가능
         17 model.compile(loss=tf.losses.mean_squared_error,
                          optimizer=Adam(lr=le-4, clipnorm=.1))
```

03 Gradient Clipping

Gradient Clipping - 모델 학습하기

```
In [15]:
             batch_size = 16
             train_gen = timeseries_generator(n_steps, batch_size)
             hist = model.fit_generator(train_gen,
                                          steps_per_epoch=100,
epochs=10)
         Epoch 1/10
         100/100 [=
                                             =====] - 3s 35ms/step - loss: 2.4639
          Epoch 2/10
         100/100 [==
                                                     - 3s 34ms/step - loss: 2.2776
         Epoch 3/10
          100/100 [=
                                                       3s 33ms/step - loss: 2.1678
         Epoch 4/10
100/100 [==
                                                     - 3s 35ms/step - loss: 2.1198
          Epoch 5/10
         100/100 [==
                                                     - 3s 34ms/step - loss: 2.0176
         Epoch 6/10
         100/100 [=
                                                       3s 33ms/step - loss: 1.9450
         Epoch 7/10
          100/100 [==
                                                     - 4s 35ms/step - loss: 1.8178
          Epoch 8/10
         100/100 [==
                                                     - 3s 33ms/step - loss: 1.7278
         Epoch 9/10
         100/100 [=
                                                   ] - 3s 33ms/step - loss: 1.5797
         Epoch 10/10
          100/100 [==:
                                              ====] - 4s 35ms/step - loss: 1.6647
```

04 Truncated BPTT

Artificial Intelligence (All refer

Truncated BPTT

- 학습 시 Error의 전파를 특정 구간별로 자르는 방법
- 본질적으로 BPTT 과정에서 문제가 발생되는 부분은 긴 시계열 데이터를 다루는 경우
- 긴 시계열 데이터의 경우 Gradient를 계산하기 위해 각 Time step 별로
 값을 저장하기 때문에 메모리 이슈와 Gradient 이슈가 존재

Truncated BPTT

04 Keras로 Truncated BPTT 구현하기

Artificial (stalligance (Al) return

데이터 확인하기

모델 구성하기

04 Keras로 Truncated BPTT 구현하기

rtiturer jistelligenne (All refere

Stateful 을 위한 Generator 구성하기

```
In [19]: 1 total_ts = []
2 final_ys = []
3 for _ in range(batch_size):
    timeseries, y = generate_timeseries(n_steps=1000)
    total_ts.append(timeseries)
6     final_ys.append(timeseries)
7     total_ts = mp.stack(total_ts)
9     final_ys = mp.stack(total_ts)
9     final_ys = mp.stack(final_ys)[:,np.newaxis]

In [20]: 1 print("total_ts2 % ! ",total_ts.shape)
2 print("final_ys2 % ! ",total_ts.shape)
    total_ts2 % ! (16, 1000)
    final_ys2 % ! (16, 1)

1 train_ys = mp.concatenate((train_xs[:,11,0], final_ys],axis=1)
2 print("train_ys2 % ! ", train_ys.shape)

1 train_ys2 % ! (16, 5)

1 train_ys = train_ys.transpose(1,0,2)[...,np.newaxis]
2 train_ys = train_ys.transpose(1,0,2)[...,np.newaxis]
3 print("train_ys2 % ! ", train_ys.shape)

1 train_ys2 % ! ", train_ys.shape)

1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
1 train_ys2 % ! ", train_ys.shape)
```

Stateful 을 위한 Generator 구성하기

```
In [24]: 1 def generate_stateful_sequences(batch_size=16,
                                                   truncated steps=50,
                                                   n_steps=1000):
                   total ts = []
                   final_ys = []
for _ in range(batch_size):
                        timeseries, y = generate timeseries(n steps)
                        total_ts.append(timeseries)
                        final_ys.append(y)
                   total_ts = np.stack(total_ts)
final_ys = np.stack(final_ys)[:,np.newaxis]
           13
                   train_xs = (total_ts.reshape((batch_size,-1,truncated_steps)))
                   train_ys = np.concatenate([train_xs[:,1:,0], final_ys],axis=1)
           17
                   train_xs = train_xs.transpose(1,0,2)[...,np.newaxis]
                   train_ys = train_ys.transpose(1,0)[...,np.newaxis]
return train_xs, train_ys
           18
           19
```

04 Keras로 Truncated BPTT 구현하기

Artificial (stalligance (Al) return

Truncated BPTT 적용하기

02

LSTM이란?

01 LSTM

Artifusia: proviligance (All refer

LSTM(Long Short-Term Memory)

- °RNN의 hidden state에 cell-state를 추가한 구조
- □ Input과 output 사이에 긴 time step이 존재할 때 학습에 어려움이 있는 BPTT의 이슈를 개선하고자 고안된 모델
 - RNN의 Cell을 개선하여 해결하고자 함

기존의 RNN Cell

출처: 퍼블릭에이아이(www.publicai.co,kr)

02 LSTM의 기본 구조

출처: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

rtifusia intelligance (Al) refere

Forget Gate

출처: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

04 LSTM 수식 단순화하기

Anthony intelligence (All refers

 $x_t \cdot W_x^{(f)} + h_t \cdot W_h^{(f)} + b^{(f)}$

 $x_t \cdot W_x^{(o)} + h_t \cdot W_h^{(o)} + b^{(o)}$

 $x_t \cdot W_x^{(i)} + h_t \cdot W_h^{(i)} + b^{(i)}$

 $= x_t \cdot W_x + h_t \cdot W_h + b$

$$x_t \cdot W_x^{(u)} + h_t \cdot W_h^{(u)} + b^{(u)}$$
• 이 식을 정리하면 아래처럼 구현이 됩니다.
$$x_t \cdot [W_x^{(f)}, W_x^{(o)}, W_x^{(i)}, W_x^{(u)}] + h_t \cdot [W_h^{(f)}, W_h^{(o)}, W_h^{(i)}, W_h^{(u)}] + [b^{(f)}, b^{(o)}, b^{(i)}, b^{(u)}]$$

```
1 class LSTMCell(Layer):
In [3]:
                 def __init__(self, n_units, **kwargs):
    self.n_units = n_units
    self.state_size = (n_units, n_units)
    super(LSTMCell, self).__init__(**kwargs)
                  def build(self, input_shape):
    self.wx = self.add_weight("weight_x",
                                                     shape=(input_shape[-1],self.n_units*4),
          10
                                                     initializer='glorot_uniform')
                      11
          13
                                                     initializer='orthogonal')
                      14
          15
                                                    initializer='zeros')
          17
                      super(LSTMCell, self).build(input_shape)
          18
          19
                  def call(self, x, states):
                      h, c = states
# 행렬곱 연산
          21
22
                      z = tf.dot(x, self.wx) + tf.dot(h, self.wh) + self.b
                       # forget에 관련된 처리들
          25
                      forget_fate = tf.sigmoid(z[:,:self.n_units])
# update에 관련된 처리들
          26
                       input_gate = tf.sigmoid(z[:,self.n_units:self.n_units*2])
                      update = tf.tanh(z[:,self.n_units*2:self.n_units*3])
new_c = forget_gate * c + update * input_gate
# output에 관련된 처리들
          29
          30
                       output_gate = tf.sigmoid(z[:,self.n_units*3:])
          32
                       new_h = output_gate * tf.tanh(new_c)
          33
          34
                       return output, [new h, new c]
```

06 Keras를 활용한 LSTM

```
In [4]:
          1 from tensorflow.keras.layers import LSTMCell, RNN, Input, Dense
           from tensorflow.keras.models import Model
            K.clear_session()
          5 n_steps = 30
6 n_inputs = 50
          7 n_hiddens = 100
          8 n_outputs = 3
         10 inputs = Input(shape=(n_steps,n_inputs))
         hidden = RNN(LSTMCell(n_hiddens))(inputs)
         12 output = Dense(n_outputs,activation='softmax')(hidden)
         14 model = Model(inputs,output)
         16 model.summary()
```

Model: "functional_1"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 30, 50)]	0
rnn (RNN)	(None, 100)	60400
dense (Dense)	(None, 3)	303
Total params: 60,703		
Trainable params: 60,703		
Non-trainable params: 0		

In [5]: 1 from tensorflow.keras.layers import LSTM K.clear_session() n_steps = 30 n_inputs = 50 n_hiddens = 100 n_outputs = 3 9 inputs = Input(shape=(n_steps,n_inputs)) 10 hidden = LSTM(n_hiddens)(inputs) 11 output = Dense(n_outputs,activation='softmax')(hidden) 13 model = Model(inputs,output) 15 model.summary()

Model: "functional_1"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 30, 50)]	0
lstm (LSTM)	(None, 100)	60400
dense (Dense)	(None, 3)	303

Trainable params: 60,703 Non-trainable params: 0

07 LSTM의 순전파

출처: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN에 비해 훨씬 더 많은 Weights를 가지고 있음

→ 3개의 gate와 하나의 update로 인해, 총 4배의 weight

추가적으로 3번의 sigmoid 연산과 1번의 tanh 연산이 더해지기 때문에 Cell에서 처리하는데에 좀더 많은시간을 필요로함

APPLICATION

03

실습

SUMMARY

학습정리

- ♦ BPTT의 문제를 해결하기 위한 Orthogonal Initialization
- ◆ Recurrent weight의 초기화 방법 Gradient Clipping
- ◆ Error의 전파를 특정 구간별로 자르는 Truncated BPTT
- LSTM (Long Short-Term Memory)

확장하기

- 1. Orthogonal Initialization은 무엇이고 다른 초기화 방법에는 어떤 것들이 있을까요?
- 2. Gradient Clipping은 무엇 이고 어떤 원리로 동작할까요?
- 3. Truncated BPTT는 어떤 경우에 주로 사용하고 어떤 이슈가 존재할까요?
- 4. LSTM은 기존의 RNN Cell과 어떻게 다를까요?
- 5. LSTM의 메모리와 연산량에는 어떤 특징이 있을까요?

참고 문헌

REFERENCE

- ♦ 참고 사이트
 - 용어들에 대한 정의 : https://ko.wikipedia.org/wiki.
 - Understandig LSTM Networks: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
 - 퍼블릭에이아이(www.publicai.co.kr)
- ♦ 참고 서적
 - 사이토 고키, 「밑바닥 부터 시작하는 딥러닝 2」, 한빛미디어, 2019