Vector calculus

For a scalar function
$$\varphi = \varphi(x)$$
, $d\varphi = \left(\frac{d\varphi}{dx}\right) dx$

For
$$\varphi = \varphi(x,y,z)$$
, $d\varphi = \left(\frac{\partial \varphi}{\partial x}\right) dx + \left(\frac{\partial \varphi}{\partial y}\right) dy + \left(\frac{\partial \varphi}{\partial z}\right) dz$ length element
$$= \left(\frac{\partial \varphi}{\partial x}\hat{\imath} + \frac{\partial \varphi}{\partial y}\hat{\jmath} + \frac{\partial \varphi}{\partial z}\hat{k}\right) \cdot \left(dx\hat{\imath} + dy\hat{\jmath} + dz\hat{k}\right)$$
$$= \left(\hat{\imath}\frac{\partial}{\partial x} + \hat{\jmath}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right) \varphi \cdot \left(dx\hat{\imath} + dy\hat{\jmath} + dz\hat{k}\right)$$

Vector operator DEL ♥

$$= \vec{\nabla} \varphi \cdot \vec{dl}$$

GRADIENT of scalar function φ which is a vector

$$dT = \vec{\nabla}T.\vec{dl}$$

$$dT = |\vec{\nabla}T| |\vec{dl}| \cos \theta$$
 where θ is the angle between $\vec{\nabla}T$ and \vec{dl}

For a given dI, dT is maximum when $\theta = 0$, ie, along the direction of ∇T

GRADIENT of a function points in the direction of max. increase of the function

 $|\overrightarrow{\nabla}T|$ gives the slope along the maximum direction

Example:
$$r(x,y,z)$$
 $\overrightarrow{\nabla} \mathbf{r}$? $\overrightarrow{\nabla} \mathbf{r} = |\overrightarrow{\nabla} \mathbf{r}| |\overrightarrow{\mathbf{dl}}| \cos \theta$

Direction?

r increases fastest along the radial direction \longrightarrow $\hat{\mathbf{r}}$

$$dl = dr \longrightarrow |\vec{\nabla}r| = 1 \qquad \qquad \vec{\nabla}r = \hat{r}$$

$$\vec{\nabla}\mathbf{T} = \frac{\partial \mathbf{T}}{\partial \mathbf{r}}\hat{\mathbf{r}} + \frac{1}{r}\frac{\partial \mathbf{T}}{\partial \theta}\hat{\boldsymbol{\theta}} + \frac{1}{rsin\theta}\frac{\partial \mathbf{T}}{\partial \phi}\hat{\boldsymbol{\phi}}$$

Spherical coordinates (r, θ, ϕ)

$$\vec{\nabla}T = \frac{\partial T}{\partial \rho}\hat{\rho} + \frac{1}{\rho}\frac{\partial T}{\partial \phi}\hat{\phi} + \frac{\partial T}{\partial z}\hat{z}$$

cylindrical coordinates (ρ, ϕ, z)

Divergence (scalar)

▽ acts on a vector function through dot product

$$\vec{\nabla} \cdot \vec{v} = \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}\right) \cdot \left(\hat{i} v_x + \hat{j} v_y + \hat{k} v_z\right)$$
$$= \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

Physical meaning:

- measures the spread out (divergence) of a vector at a given point
- net amount of flux through a given volume

$$\vec{v} = \vec{r} = (\hat{i} x + \hat{j} y + \hat{k} z)$$

$$\vec{\nabla} \cdot \vec{v} = 0$$

$$|\vec{\nabla}\mathbf{T} = \frac{\partial \mathbf{T}}{\partial \mathbf{r}}\hat{\mathbf{r}} + \frac{1}{r}\frac{\partial \mathbf{T}}{\partial \theta}\hat{\mathbf{\theta}} + \frac{1}{r\sin\theta}\frac{\partial \mathbf{T}}{\partial \phi}\hat{\mathbf{\phi}}$$

Spherical coordinates
$$(\mathbf{r}, \theta, \phi)$$

$$\vec{\nabla} \cdot \vec{\mathbf{v}} = \frac{1}{r^2} \frac{\partial}{\partial \mathbf{r}} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta)$$
$$+ \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} v_\phi$$

cylindrical (ρ, ϕ, z)

$$\vec{\nabla} \mathbf{T} = \frac{\partial \mathbf{T}}{\partial \rho} \hat{\rho} + \frac{1}{\rho} \frac{\partial \mathbf{T}}{\partial \phi} \hat{\phi} + \frac{\partial \mathbf{T}}{\partial \mathbf{z}} \hat{\mathbf{z}}$$
cylindrical coordinates
$$\vec{\nabla} \cdot \vec{\mathbf{v}} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho v_{\rho}) + \frac{1}{\rho} \frac{\partial}{\partial \phi} v_{\phi} + \frac{\partial v_{z}}{\partial z}$$

Curl (vector)

▽ acts on a vector function through cross product

$$\overrightarrow{\nabla} \times \overrightarrow{\mathbf{v}} = \begin{pmatrix} \hat{\mathbf{i}} \frac{\partial}{\partial \mathbf{x}} + \hat{\mathbf{j}} \frac{\partial}{\partial \mathbf{y}} + \hat{\mathbf{k}} \frac{\partial}{\partial \mathbf{z}} \end{pmatrix} \times \begin{pmatrix} \hat{\mathbf{i}} \mathbf{v}_{\mathbf{x}} + \hat{\mathbf{j}} \mathbf{v}_{\mathbf{y}} + \hat{\mathbf{k}} \mathbf{v}_{\mathbf{z}} \end{pmatrix}$$

$$= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \\ \mathbf{v}_{\mathbf{x}} & \mathbf{v}_{\mathbf{y}} & \mathbf{v}_{\mathbf{z}} \end{vmatrix}$$

$$\xrightarrow{\overrightarrow{\nabla}} \times \overrightarrow{\nabla} \times \overrightarrow{\nabla} = \mathbf{0}$$

measures the circulation (curl) of a vector at a given point

Gradient Theorem

For a scalar function $\Theta(x,y,z)$ in the interval (r_a,r_b)

$$\int_{\mathbf{r}_{a}}^{r_{b}} \overrightarrow{\nabla} \mathbf{\Theta} \cdot \overrightarrow{\mathbf{dl}} = \mathbf{\Theta}(\mathbf{r}_{b}) - \mathbf{\Theta}(\mathbf{r}_{a}) \qquad \qquad \{ \overrightarrow{\nabla} \boldsymbol{\varphi} \cdot \overrightarrow{\mathbf{dl}} = \boldsymbol{d} \boldsymbol{\varphi} \}$$

- ⇒ Depends only on the end points
- ⇒ Independent of path

$$\Rightarrow \Rightarrow \oint \vec{\nabla} \Theta \cdot \vec{dl} = 0$$
 over a closed path

Example:

$$T = xy^2$$
, $a(0,0,0)$ and $b(2,1,0)$

$$\vec{\nabla}T = \hat{\iota}y^2 + \hat{\jmath}2xy$$

$$\overrightarrow{\nabla}T \cdot \overrightarrow{dl} = (\hat{\imath}y^2 + \hat{\jmath}2xy) \cdot (dx\hat{\imath} + dy\hat{\jmath} + dz\hat{k})$$
$$= y^2 dx + 2xy dy$$

Divergence theorem (Gauss' Theorem / Green's Theorem)

Divergence of a vector function in a given volume is equivalent

to the flux passing through any surface bounding the volume

Divergence theorem - contradictions

Let $\vec{v} = \frac{\hat{r}}{r^2}$ be a vector field. Then divergence theorem implies that

$$\iiint\limits_{V} \left(\overrightarrow{\nabla} \cdot \frac{\widehat{r}}{r^2} \right) dV = \iint\limits_{S} \frac{\widehat{r}}{r^2} \cdot \overrightarrow{dS}$$

$$\overrightarrow{\nabla} \cdot \frac{\widehat{r}}{r^2} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{1}{r^2} \right) = 0$$
 Hence LHS = 0

If the volume is taken as a sphere of radius R, then RHS

$$= \iint_{\theta=0}^{\theta=\pi} \frac{\widehat{r}}{R^2} \cdot (\widehat{r} R^2 \sin \theta \ d\theta \ d\phi) = 4\pi$$

This contradiction is due to the fact that r = 0 is a singularity and such cases should be dealt with Dirac Delta-function method of integration.

Curl theorem (Green's theorem)

Curl of a vector function in a given surface is equivalent to

value of function along the bounding line enclosing the surface

Electrostatics Electric field, potential and conductors

ELECTROSTATICS

Assumption:

- all charges are stationary
- charges are given; i.e., neglect the internal structure of the charges or the energy needed to create them

AIM

Force exerted on a charge Q by charges q_1 , q_2 , q_n ? – Coloumb's Law (1st fundamental rule of electrostatics)

$$\overrightarrow{F} = \frac{qQ}{4\pi\epsilon_0 r^2}$$
 Attractive or repulsive depending on the charges Valid only for point charges or Charge distribution whose spatial extent << r

Superposition principle (2nd fundamental rule):

•Interaction between 2 charges is completely unaffected by the presence of other charges. i.e., interaction between charges q_i can be neglected.

$$\vec{q}_1 \quad q_3$$
 $\vec{q}_n \quad q_i \quad q_2$
 $\vec{F} = \sum_i \frac{q_i Q}{4\pi\epsilon_0 r_i^2} \hat{r}_i$

ELECTRIC FIELD

How the charge distribution knows about the charge Q? Action at a distance needs concept of Electric Field! Electric field attaches itself as a local property to a charge system (compare with gravity).

Force exerted on a charge Q by charges q_1 , q_2 ,, q_n

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \ldots + \vec{F}_n = \frac{1}{4\pi\epsilon_0} \left\{ \frac{q_1 Q}{r_1^2} \hat{r}_1 + \frac{q_2 Q}{r_2^2} \hat{r}_2 + \cdots \cdot \frac{q_n Q}{r_n^2} \hat{r}_n \right\}$$

E(P) refers only point P; = $Q\left\{\frac{q_1}{4\pi\epsilon_0r_1^2}\widehat{r_1} + \frac{q_2}{4\pi\epsilon_0r_2^2}\widehat{r_2} + \dots + \frac{q_i}{4\pi\epsilon_0r_i^2}\widehat{r_i}\right\}$ reference of test charge

$$\vec{F} = Q\vec{E}$$
 or $\vec{E} = \lim_{Q \to 0} \frac{\vec{F}}{Q}$

Test charge Q does not affect charge distribution $q_1, q_2,, q_n$

$$\vec{E}(P) = \sum \frac{q_i}{4\pi\epsilon_0 r_i^2} \hat{r}_i$$

Electric Field at the point P where charge Q is located

CONTINUOUS CHARGE DISTRIBUTIONS

LINE CHARGE

CHARGE DISTRIBUTED OVER A LENGTH L LINEAR CHARGE DENSITY λ = CHARGE/LENGTH

$$\vec{E}(P) = \int_{L} \frac{\lambda dl}{4\pi\epsilon_{0}r^{2}} \hat{r}$$

SURFACE CHARGE

CHARGE DISTRIBUTED OVER A SURFACE S
SURFACE CHARGE DENSITY σ = CHARGE/AREA

$$\vec{E}(P) = \iint_{S} \frac{\sigma ds}{4\pi\epsilon_{0}r^{2}} \hat{r}$$

VOLUME CHARGE

CHARGE DISTRIBUTED OVER A VOLUME V
VOLUME CHARGE DENSITY ρ = CHARGE/VOLUME

$$\vec{E}(P) = \iiint_{V} \frac{\rho d\tau}{4\pi\epsilon_{0}r^{2}}\hat{r}$$

SOLID ANGLE

To define angle, circle of radius *r* is drawn with the apex as its centre.

Flux of electric field and Gauss's Law

dS

Point charge +q at the origin : $E \propto 1/r^2$

Field lines

K

Flux of electric field

field lines passing through a given surface

Flux through elemental area dS

$$d\Theta = \vec{E} \cdot \vec{dS}$$
Total flux $\Theta = \int_{S} \vec{E} \cdot \vec{dS}$

For the point charge +q at the origin of the sphere, total flux

$$\iint_{\theta = 0} \frac{q}{\phi = 2\pi} \frac{q}{4\pi\epsilon_0 r^2} \hat{r} \cdot (r^2 \sin \theta \, d\theta \, d\phi \, \hat{r})$$

$$q$$

$$q$$

$$\oint \vec{E} \cdot \vec{ds} = \frac{q}{\varepsilon_0} \quad \Rightarrow \text{ constant, does not depend on } r$$
surface area increases as r^2

source is enclosed by the surface

e.f. decreases as $1/r^2$

For a system of charges q1, q2,, qn

$$\iint \vec{E} \cdot \vec{ds} = \frac{Q_{tot}}{\varepsilon_0}$$

Gauss's Law using SOLID ANGLE

$$d\Theta = \vec{E} \cdot \vec{dS} = \frac{q}{4\pi\epsilon_0 r^2} \hat{r} \cdot \vec{dS} = \frac{q}{4\pi\epsilon_0} \frac{\hat{r} \cdot dS}{r^2}$$
$$= \frac{q}{4\pi\epsilon_0} d\Omega$$

$$\Theta = \int_{S} d\Theta = \frac{q}{\varepsilon_{0}}$$

Flux of E if charge is outside the volume

Net flux = incoming flux – outgoing flux

Gauss's Law

Flux of electric field through a given surface,

$$\iint \vec{E} \cdot \vec{ds} = \frac{Q_{tot}}{\epsilon_0} \quad \text{if the surface encloses the charges}$$

= 0

= 0 if the surface does not enclose the charges

Integral form of Gauss's Law

Differential form

Using divergence theorem,

$$\iint \overrightarrow{E} \cdot \overrightarrow{ds} = \iiint (\overrightarrow{\nabla} \cdot \overrightarrow{E}) d\tau = \frac{Q_{\text{tot}}}{\varepsilon_0} = \frac{1}{\varepsilon_0} \iiint_V \rho d\tau$$

Since it is true for any volume,

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = \rho/\epsilon_0$$
 1st Maxwell equation

Gauss's Law - Applications

$$\iint \vec{E} \cdot \vec{ds} = \frac{Q_{tot}}{\epsilon_0} \quad \text{if the surface encloses the charges}$$

= 0 if the surface does not enclose the charges

If a symmetry in the charge distribution exists, integral form of GL provides a far easier method to find \vec{E}

Possible symmetries

- 1. Spherical
- 2. Cylindrical
- 3. Planar

Gauss's Law - Applications

Spherical symmetry: Electric field outside and inside a uniformly charged sphere of radius R and volume charge density ρ

Keep the sphere with its centre at the origin of the coordinate system. Let P be the point outside at a distance r from O where the electric field is to be calculated.

Draw a spherical surface of radius *r* centred at O : Gaussian surface

Then for the flux through the spherical surface,

$$\iint \vec{E} \cdot \vec{ds} = \frac{Q_{\text{tot,encl}}}{\varepsilon_0}$$

$$= \frac{1}{\varepsilon_0} \int_{V} \rho \, dV = \frac{\rho}{\varepsilon_0} \int_{V} dV = \frac{\rho}{\varepsilon_0} \left\{ \frac{4}{3} \pi R^3 \right\}$$

Symmetry arguments:

- At the spherical surface, E and dS will be in î direction
- dot product goes away.
- E will be constant everywhere on the surface
- E comes out of the integral.

This is the advantage of GL application in the case of symmetry

Gauss's Law - Applications

$$E \ 4\pi r^2 = \frac{\rho}{\varepsilon_0} \left\{ \frac{4}{3} \pi R^3 \right\} \longrightarrow E = \hat{r} \frac{\rho R^3}{3\varepsilon_0 r^2} = \hat{r} \frac{Q}{4\pi \varepsilon_0 r^2}$$
 Total charge

Field outside is exactly the same as if the whole charge is concentrated at the centre!

Electric field inside

This volume does not contribute to flux since it lies outside the point, OR not enclosed by the surface

4

$$Q_{\rm encl} = \frac{4}{3}\pi r^3 \rho$$

$$E.4\pi r^2 = \frac{1}{\varepsilon_0} \frac{4}{3} \pi r^3 \rho \implies \vec{E} = \hat{r} \frac{\rho r}{3\varepsilon_0}$$

GL is valid for all charge distributions; integral form can be used for calculating E when symmetry allows

- GL is more general compared to Coloumb's law
- CL: applicable only in static cases
- Differential form of GL is the 1st Maxwell equation
 - Valid for em waves/moving charges

Gauss's Law – Applications : E due to infinite sheet, surface charge density σ

E is perpendicular to the infinite sheet of charge: By symmetry, it <u>cannot</u> point in any other direction

Due to symmetry, $E_1 = E_2 = E$ (equidistance surfaces from the plane)

Since E is perpendicular to the plane, surface 3 (curved surface) contributes nothing (dot product goes to zero)

By Gauss's Law, Net Electric Flux 2 $E dS = \frac{\sigma}{\epsilon_0} dS$, i. e,

$$E = \frac{\sigma}{2\epsilon_0}$$

Constant! Does not depend on the distance

Gauss's Law – Applications : E due to infinite SLAB, thickness 2d, constant volume charge density ρ

Consider the slab as infinite sheets in the z-direction. Then field outside the sheet is constant

$$\oint \vec{E} \cdot \vec{ds} = \frac{Q}{\varepsilon_0} \implies E_{\text{out}} 2A = \frac{\rho(2dA)}{\varepsilon_0} \implies \vec{E}_{\text{out}} = \pm \hat{k} \frac{\rho d}{\varepsilon_0} = \hat{k} \frac{\rho d}{\varepsilon_0} \frac{z}{|z|}$$

Infinite slab, thickness 2a, volume charge density $\rho = \rho_0 z/2a$, kept in the x-y plane, Extends from z = 0 to z = 2a along the z-axis. Find the magnitude and direction of field both inside and outside

(b) E = 0 plane: Let the E = 0 plane be at a distance z as shown

(a) Field inside Electric field is in $+\widehat{k}$ direction if $z>\sqrt{2}a$ and in $-\widehat{k}$ direction if

Gauss's Law – Applications : E due to infinite line charge, charge density λ

(A). Electric field at P at a distance r from the wire

Draw Gaussian surface (cylinder of radius r and height h, enclosing the wire) such that the P is on the surface.

From symmetry,
$$\vec{E} = E\hat{r}$$
 \Rightarrow flux through flat surfaces (1 & 2) = 0, E \perp d

From symmetry,
$$\overrightarrow{E} = E \hat{r}$$
 \Rightarrow flux through flat surfaces (1 & 2) = 0, E \perp dS $\overrightarrow{E} \cdot \overrightarrow{ds} = E 2\pi r h = \frac{\lambda h}{\varepsilon_0} \Rightarrow \overrightarrow{E} = \pm \hat{r} \frac{\sigma}{2\pi \varepsilon_0 r}$

(B). E due to infinite cylinder, volume charge density ρ

(i) E outside

Gaussian cylinder
$$\overrightarrow{E} \cdot \overrightarrow{ds} = E \, 2\pi r h = \frac{\rho \pi a^2 h}{\varepsilon_0} \Rightarrow \overrightarrow{E}_{\text{out}} = \widehat{r} \, \frac{\rho a^2}{2\varepsilon_0 r}$$

(ii) E inside
$$\iint \vec{E} \cdot \vec{ds} = E \, 2\pi r h = \frac{\rho \pi r^2 h}{\varepsilon_0} \implies \vec{E}_{in} = \hat{r} \, \frac{\rho r}{2\varepsilon_0}$$

If $\rho = \rho_0 r$, where ρ_0 is constant, then

$$Q_{
m encl} = \int
ho \ dV$$
 outside
$$= \iiint_{r=0}^{a} \int_{\phi=0}^{2\pi} \int_{z=0}^{h}
ho_0 r \left(r \ dr \ d\phi \ dz
ight) =
ho_0 (2\pi) h \left(rac{a^3}{3}
ight)$$

$$Q_{\text{encl}} = \iiint_{r=0}^{r} \int_{\phi=0}^{2\pi h} \rho_0 r' \left(r' dr' d\phi dz \right) = \rho_0 (2\pi) h \left(\frac{r^3}{3} \right)$$

Curl of Electric field

$$\vec{\nabla} \times \vec{v} = \hat{r} \frac{1}{r \sin \theta} \left\{ \frac{\partial}{\partial \theta} \left(\sin \theta \ v_{\phi} \right) - \frac{\partial v_{\theta}}{\partial \phi} \right\} + \hat{\theta} \frac{1}{2} \left\{ \frac{1}{r \cos \theta} \frac{\partial v_{r}}{\partial \theta} - \frac{\partial v_{r}}{\partial \theta} \right\}$$

Spherical coordinates
$$(r, \theta, \phi)$$

$$+\widehat{\phi} \frac{1}{r} \left\{ \frac{\partial}{\partial r} (rv_{\theta}) - \frac{\partial v_r}{\partial \theta} \right\}$$

 (r, ϕ, z)

$$\vec{\nabla} \times \vec{v} = \hat{r} \left\{ \frac{1}{r} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_\phi}{\partial z} \right\} + \hat{\phi} \left\{ \frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r'} \right\} + \hat{z} \left\{ \frac{\partial}{\partial r} (r v_\phi) - \frac{\partial v_r}{\partial \phi} \right\}$$

$$= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \\ \mathbf{v}_{\mathbf{x}} & \mathbf{v}_{\mathbf{y}} & \mathbf{v}_{\mathbf{z}} \end{vmatrix}$$

$$\vec{v} = \mathbf{v_0} \hat{\mathbf{k}}$$

$$\vec{\mathbf{v}} = \vec{\mathbf{r}} = (\hat{\mathbf{i}} \mathbf{x} + \hat{\mathbf{j}} \mathbf{y} + \hat{\mathbf{k}} \mathbf{z})$$

$$E = E(r)$$
 \longrightarrow E is a central field \longrightarrow $\overrightarrow{\nabla} \times \overrightarrow{E} = 0$ \longrightarrow $\oint \overrightarrow{E} \cdot \overrightarrow{dl} = 0$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
 Curl of Electric field $\vec{\nabla} \times \vec{E} = 0$ \Longrightarrow $\vec{E} = \vec{\nabla} V$

Line integral of E

$$\overrightarrow{dl} = dr\widehat{r} + rd\theta\widehat{\theta} + r\sin\theta d\phi\widehat{\phi}$$

$$\vec{E} = |E|\hat{r} \implies \vec{E} \cdot \vec{dl} = Edr$$

$$\int_{r_a}^{r_b} \vec{E} \cdot \vec{dl} = \int_{r_a}^{r_b} E dr = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b} \right)$$

Line integral is independent of path; depends only on the end positions $\oint \vec{E} \cdot \vec{dl} = 0$

Using Stoke's theorem

$$\oint \vec{E} \cdot \vec{dl} = 0 \implies \iint_{S} (\vec{\nabla} \times \vec{E}) \cdot \vec{dS} = 0 \implies \vec{\nabla} \times \vec{E} = 0$$

Line integral of E —— Work done per unit charge (Potential V)

$$\int_{\infty}^{r} F \cdot dr = \int_{r}^{\infty} E \cdot dr = \frac{q}{4\pi\epsilon_{0}r} \longrightarrow V(r) = -\int_{\infty}^{r} \vec{E} \cdot \vec{dl} = -\int_{\vartheta}^{r} \vec{E} \cdot \vec{dl}$$
any reference point

Usually Potential Difference is important

$$V(r_b) - V(r_a) = -\int\limits_{r_a}^{r_b} \overrightarrow{E}.\overrightarrow{dl}$$
 From Gradient theorem $V(r_b) - V(r_a) = \int\limits_{r_a}^{r_b} \overrightarrow{\nabla} V.\overrightarrow{dl}$ \longrightarrow $\overrightarrow{E} = -\overrightarrow{\nabla} V$

Potential V is a scalar function, —grad of which gives the electric field

Potential obeys superposition principle

$$V = V_1 + V_2 + \dots$$
 A simple scalar sum