LECTURE 1

Author

Tom Jeong

January 6, 2025

Contents

1	Rings	2
2	Integral Domain	2
3	Fields	2
4	Ring Homorphisms	3
5	Quotient Rings	4
6	Fields of Fraction (tbc)	5

1 Rings

 \mathbb{Z} , +: addition, · multiplication

$$a + (b + c) = (a + b) + c \cdot 0$$
 - aditive identity (1)

$$(ab)c = a(bc) (2)$$

$$a + b = b + a$$
: multiplication doesn't have to be communicative (3)

$$(a+b)c = ac + bc$$
: distributinos (4)

$$a + (-a) = 0$$
: additive inverse (5)

 1_R - Multiplicative idenfity (if exists)

if there exists $1_R \in R$ then R is called unital or ring with unity.

If $ab = ba, \forall a, b \in R$ then R is a commutative ring

(R,+) is an abeligan group

examples: $(\mathbb{Z}, +, \cdot), (2\mathbb{Z}, +, \cdot)$ ring without 1,

 $M_n(R): n \times n$ matrices with entreis in a ring R. - Not communatitive ring.

2 Integral Domain

Ring D (commutative, unital) is an Integral Domain if it enjoys cancellation property:

$$ab = ac \rightarrow b = c \text{ (if } a \neq 0)$$

Definition 2.1 (Equivalent).

$$ab = ac \longleftrightarrow ab = ac = 0 \longleftrightarrow a(b - c) = 0$$

in other words:

$$ab = 0 \to (a = 0)||(b = 0)$$

Definition 2.2 (zero divisors).

$$ab = 0$$
 and $a, b \neq 0$

then a and b are zero divisors

 $\mathbb{Z}/6\mathbb{Z}$ (integer mod 6) or \mathbb{Z}_6 (same thing diff notation)

proving that this not an I.D. : $2 \cdot 3 = 0$ but $2, 3 \neq 0$

3 Fields

A commutative ring where every element has a multiplicative inverse is called a Field.

Definition 3.1 (unit).

An element $a \in R$ is called a unit if it has a multiplicative inverse

(groups of unit) $(ab)^{-1} = b^{-1}a^{-1}$: units in a ring forms a group. Commutative ring then it is an abelian group.

example \mathbb{Z} : units are $\{-1,1\} \cong \mathbb{Z}_2$

K-field, $K^* = K \setminus \{0\}$ and (K^*, \cdot) is an abelian group

example: $R = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}$

I claim that $(\sqrt{2}+1)$ is a unit. we show that it has a mult. inverse: $(\sqrt{2}+1)(\sqrt{2}-1)=1$ and we see that $(\sqrt{2}+1)^k$ are all distinct units for $k \in \mathbb{Z}, k \geq 0$

4 Ring Homorphisms

maps between rings: (respect the structure of addition, multiplication) $\phi:R\to S$ is a homomorphism if:

- 1. $\phi(a+b) = \phi(a) + \phi(b)$
- 2. $\phi(ab) = \phi(a)\phi(b)$

property:

- 1. $\phi(O_R) = O_S$
- 2. $\phi(-r) = -\phi(r)$
- 3. $\phi(R) \leq S$ (subring of S)

Definition 4.1 (ker).

$$ker(\phi) = \{ r \in R | \phi(r) = 0_S \}$$

Proposition 4.1. $ker\phi$ is a subring of R

Proof.

$$\phi(ab) = \phi(a)\phi(b) = 0$$

 $a,b \in ker\phi$

$$\phi(a+b) = \phi(a) + \phi(b) = 0$$

$$\phi(ra) = 0$$
 for all r inR

Definition 4.2 (ideal).

 $ker\phi$ is an ideal of R.

Ideal: subring closed under multiplication by any element of R.

ideal I of R if $\forall a, b \in I, r \in R \rightarrow a, b \in I$

- 1. closure under addition and additive inverse $a b \in I$
- $2. ra \in I$

Example: $2\mathbb{Z}$ is an ideal in \mathbb{Z}

k-field: $\{0\}$, R "not interesting ideals contains only zero

Proper Ideal of R is an "interesting" ideal A proper ideal is any ideal that is a strict subset of R (so not R itself). These are considered "interesting" because they:

- Reveal the ring's algebraic structure
- Help classify rings
- \bullet Are used to construct quotient rings
- Can determine properties like primality and maximality

For example, in \mathbb{Z} (integers), $(4) = \{\ldots, -8, -4, 0, 4, 8, \ldots\}$ is an interesting proper ideal, while $\{0\}$ and \mathbb{Z} are uninteresting.

:: I- ideal.

$$I \subsetneq R \leftrightarrows 1_R \not\in I \leftrightarrows I$$
 contains no units

Proof. Let $I \subset K$ be a proper ideal. If $a \neq 0$ and $a \in I$, then $a \cdot a^{-1} \in I$ since I is an ideal. But $a \cdot a^{-1} = 1$ (multiplicative identity), therefore $1 \in I$. Since I is an ideal, for any $k \in K$, $k \cdot 1 = k \in I$. Thus I = K, contradicting that I is proper.

5 Quotient Rings

R/I: cosets of I:

$$a+I\forall a\in R$$

$$(a+I)\cdot(b+I)=ab+I$$

$$(a+I)+(b+I)=a+b+I$$

$$0_{R/I}=0+I=I$$

Definition 5.1 (canonical projection).

$$\begin{aligned} \pi : R &\to R/I \\ a &\mapsto a + I \\ ker \pi &= I \\ \phi : R &\to S \\ im \phi &\cong R/\ker \phi \end{aligned}$$

All ring homomorphisms are canonical projections (because kernel is always the ideal.)

6 Fields of Fraction (tbc)

 $\mathbb{Z} \to \mathbb{Q}$,

D integral Domain

Definition 6.1 (rational).

$$(a,b): \frac{a}{b}, a,b \in \mathbb{Z}$$

but we have a problem: $(1,2)=(2,4)=(3,6)=\dots$ So tequivalence classes of pairs of integersL

$$(a,b) \sim (a',b') \leftrightarrows ab' = a'b$$

actions on rational numbers

1. multiplication: $(a, b) \cdot (a', b') = (aa', bb')$ ID is needed.

2. addition:
$$(a,b) + (a',b') = \frac{a}{b} + \frac{a'}{b'} = \frac{ab' + a'b}{bb'} = (ab' + a'b,bb')$$

Why ID is needed:

Proof. The identity element (1,1) is required because:

1. In a ring, multiplication must have an identity element

2. For component-wise multiplication $(a,b)\cdot(1,1)=(a\cdot 1,b\cdot 1)=(a,b)$ must hold

3. Without (1,1), the structure would not satisfy ring axioms:

• Existence of multiplicative identity

• Distributive property over addition

• Closure under multiplication

This ensures the direct product maintains ring properties from its component rings. \Box equivalence relation?

1.
$$(a, b) \sim (a, b)$$

2.
$$(a,b) \sim (a',b') \leftrightarrow (a',b') \sim (a,b)$$

3.
$$(a,b) \sim (a',b')$$
 and $(a',b') \sim (a'',b'') \rightarrow (a,b) \sim (a'',b'')$

If
$$(a,b) \sim (a',b')$$
 then $\exists k_1 \in \mathbb{Q} : a-a'=k_1 \text{ and } b-b'=k_1$

If
$$(a', b') \sim (a'', b'')$$
 then $\exists k_2 \in \mathbb{Q} : a' - a'' = k_2 \text{ and } b' - b'' = k_2$

Adding equations:
$$(a - a') + (a' - a'') = k_1 + k_2$$
 and $(b - b') + (b' - b'') = k_1 + k_2$

Therefore
$$a - a'' = k_1 + k_2$$
 and $b - b'' = k_1 + k_2$ where $k_1 + k_2 \in \mathbb{Q}$

Thus $(a,b) \sim (a'',b'')$ (there is an easier way i just pasted the above from claude)

this construction adds a multiplicative inverse to every non-zero element, making it into a field. $\mathcal{Q}(D)$