PAT-NO:

JP408166351A

DOCUMENT-IDENTIFIER:

JP 08166351 A

TITLE:

APPARATUS FOR INSPECTING

INSIDE OF CONDUIT

PUBN-DATE:

June 25, 1996

INVENTOR-INFORMATION:

NAME

KURAKAZU, SHIGERU

AKITA, MITSUO

FUJIWARA, SHIGERU

ASSIGNEE-INFORMATION:

NAME

COUNTRY

KAWASAKI STEEL CORP

KK C X R

N/A

N/A

APPL-NO:

JP06135840

APPL-DATE:

June 17, 1994

INT-CL (IPC): G01N021/88, B25J005/00 , G01B011/06

, G01B021/08 , G01B021/20

, G06T007/00

ABSTRACT:

PURPOSE: To provide a self-running inspecting apparatus which can inspect painting of inner surfaces of conduits of any configuration including straight pipes and irregularly-shaped pipes.

CONSTITUTION: An inspection truck 2 loading inspection sensors in a rotatable fashion, a running/driving part 3 loading a control circuit 3m and-the like and exerting the driving force, a control truck 4 loading an inspection controller, a running device 5 having driving wheels 5d, a control truck 6 loading an inspection controller, and a rear camera truck 7 loading a rear camera 7a and the like are coupled sequentially by links 8-12. A painted film thickness-measuring sensor and a pin hole inspection brush 30 are set to a swingable secondary movable body which is coupled with a linearly movable primary movable body at a rotary head 2a, and a film thickness sensor is set to the secondary movable body via an actuator to be able to swing. The electromagnetic film thickness sensor is fixedly accommodated in a primary holder which is fitted to a secondary holder via a cylinder to be linearly movable. Both of the primary and secondary holders have non-conductive bodies or notches.

COPYRIGHT: (C) 1996, JPO

DERWENT-ACC-NO:

1996-351176

DERWENT-WEEK:

200144

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE:

Check appts. for pipe line -

has several vehicles

connected in sequence and

carrying various devices which

includes cameras, sensors,

drive unit and controller

PATENT-ASSIGNEE: CXR KK[CXRCN] , KAWASAKI STEEL

CORP[KAWI]

PRIORITY-DATA: 1994JP-0135840 (June 17, 1994)

PATENT-FAMILY:

PUB-NO PUB-DATE

LANGUAGE PAGES MAIN-IPC

JP 08166351 A June 25, 1996

N/A 009 G01N 021/88

JP 3188809 B2 July 16, 2001 N/A 009 G01N 021/84

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-

NO APPL-DATE

JP 08166351A N/A

1994JP-0135840 June 17, 1994

JP 3188809B2 N/A

1994JP-0135840 June 17, 1994

JP 3188809B2 Previous Publ. JP

8166351 N/A

INT-CL (IPC): B25J005/00, G01B007/06,
G01B011/06, G01B021/08,
G01B021/20, G01N021/84, G01N021/88,
G01N027/92, G06T007/00

ABSTRACTED-PUB-NO: JP 08166351A

BASIC-ABSTRACT:

The appts. has a check vehicle (2) which includes a rotating head (2a) to which a camera (33) is mounted. The camera picks up the image inside the pipe (1) for a sensor which detects the paint film thickness and a brush which detects the pinhole. A pinhole voltage component (2f) which applies high voltage to the pipe is mounted on the check vehicle. A control circuit (3m) and a solenoid valve (3n) which controls the check vehicle are mounted on a transit drive vehicle (3).

A pinhole controller (4b) controlling the pinhole voltage component is mounted to a pinhole vehicle (4). A transport vehicle (5) moves the check vehicle and pinhole vehicle. A <u>sensor</u> controller (6b) which regulates the <u>sensor</u> is mounted on a <u>sensor</u> vehicle (6). A back camera (7b) which picks up image of the back of the pipe is mounted on a back camera vehicle (7). The vehicles are connected sequentially.

ADVANTAGE -

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平8-166351

(43)公開日 平成8年(1996)6月25日

(51) Int.CL ⁶	識別記号	宁内整理番号	FΙ			技術表示箇所
G01N 21/88	В					
	J					
	Z					
B 2 5 J 5/00	A					
			G06F	15/ 62	400	
		審查請求	未請求 請求羽	の数4 OL	(全 9 頁)	最終質に続く
(21) 出願番号 特顯平6-135840			(71) 出願人 000001258			
				川崎製鉄株式	会社	
(22)出顧日	平成6年(1994)6月17日		兵庫県神戸市中央区北本町道			通1丁目1番28
			1	身		
	•		(71)出廣人	000211226		
				株式会社シーエックスアール 広島県呉市三条2丁目4番10号		ル
			(72)発明者 倉員 繁			
				東京都千代田区内幸町2丁目2番3号 川		
				崎製鉄株式会	社東京本社内	
			(74)代理人	弁理士 守谷	一雄(外	1名)
						最終頁に続く
			<u> </u>	·		

(54) 【発明の名称】 管路内点検装置

(57)【要約】

(修正有)

【目的】直管及び異形管を含むあらゆる配置形状の管路 内面塗装の点検が可能な自送方式の管路内点検装置を提供する。

【構成】本装置は、点検用センサー類を回転可能に搭載した点検車2、制御用回路3m等を搭載し駆動力を有する走行駆動部3、点検用制御器を搭載した制御車4、駆動車輪5dを有する走行機5、点検用制御器を搭載した制御車6、後方カメラ7a等を搭載した後方カメラ車7を順次リンク8~12により連結した。塗装膜厚測定センサーとピンホール検査用ブラシ30は、回転ヘッド2aにおいて、直動可能な1次可動体に連結された揺動可能な2次可動体に、膜厚センサーは、2次可動体に対しアクチュエーターを介して揺動可能に取付ける。電磁式の膜厚センサーは1次ホルダーに収納固定され、1次ホルダーは2次ホルダーにシリンダーを介して直動可能に取付ける。1次ホルダー、2次ホルダーは共に非導電体または切欠きを備える。

1

【特許請求の範囲】

【請求項1】管(1)内の塗装膜厚を測定するとともに 前記管内のピンホールを検査し、前記管内を撮像して前 記管内の内面塗装を点検する管路内点検装置であって、 前記塗装膜厚を測定する塗装膜厚測定用センサー(3 2)、前記ピンホールを検査するピンホール検査用ブラ シ(30)および前記管内を撮像するカメラ(33)を 搭載したヘッド(2a)を回転自在に備え、前記ピンホ ール検査用ブラシに高電圧を印加するピンホール高圧部 (2f)を搭載した台車(2b)からなる点検車(2) 10 と、

前記点検車を制御する制御用回路(3m)および電磁弁 (3n)を搭載し駆動車輪(3b、3c)を有する走行 駆動部(3)と、

前記ピンホール高圧部を制御するピンホール制御器(4 b)を搭載したピンホール制御車(4)と、

前記点検車および前記ピンホール制御車を走行させる駆 動車輪(5d)を有する走行機(5)と、

前記途装膜厚測定用センサーおよび前記カメラを制御す るセンサー/カメラ制御器(6b)を搭載したセンサー 20 /カメラ制御車(6)と、

前記管の後方を撮像して確認する後方カメラ(7a)を 搭載した後方カメラ車(7)とを順次連結したことを特 徴とする管路内点検装置。

【請求項2】前記塗装膜厚測定用センサーおよび前記ピ ンホール検査用ブラシは、前記ヘッド上において前記管 の適用管径に対応可能なよう前記ヘッドに固定された固 定軸(20)上を移動して位置決めされる1次可動体 (21、22) に固定されたシリンダー (23) に結合 され前記シリンダーの伸縮に伴って運動する揺動可能な 30 2次可動体(27)に取付けられることを特徴とする請 求項1記載の管路内点検装置。

【請求項3】前記塗装膜厚測定用センサーは、該センサ ーに装備されたコイル(37)により発生する磁場が影 響を受けないよう非導電体の1次ホルダー(31a)に 固定され、前記1次ホルダーは前記管に対して前記塗装 膜厚測定用センサーを移動させるシリンダー(31c) を介して、該センサーに装備されたコイル(37)によ り発生する磁場が影響を受けないよう非導電体の2次ホ ルダー(31b)に固定されることを特徴とする請求項 40 1または2記載の管路内点検装置。

【請求項4】前記塗装膜厚測定用センサーは、該センサ ーに装備されたコイル (37) により発生する磁場が影 響を受けないよう切欠き(41)を有する導電体の1次 ホルダー (31a) に固定され、前記1次ホルダーは前 記管に対して前記塗装膜厚測定用センサーを移動させる シリンダー (31c)を介して、該センサーに装備され たコイル(37)により発生する磁場が影響を受けない よう切欠き(40)を有する導電体の2次ホルダー(3

記載の管路内点検装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は管路内点検装置に関し、 特に、管径の小さい管路、直管及び異形管を含む曲がり 管の混在する管路、殊に水道管路内を走行して管内面塗 装の点検作業を行なう管路内点検装置に係わるものであ る。

2

[0002]

【従来の技術】従来、水道管路などの維持管理、建設な どに供するため、内面目視、点検等に用いられる管路内 点検装置が製作され、それらは自走能力の有無により大 きく2種類に分類されている。 自走他走いずれにして も、従来の管路内点検装置は、水平管路及び緩い傾斜の 管路を対象としたものか、あるいは、曲がり管を含む管 路のうちでも比較的管径の大きい管路を対象としたもの であった。

[0003]

【発明が解決しようとする課題】このように水平管路 か、緩い傾斜の管路、あるいは、曲がり管でも比較的管 径の大きい管路を対象とした現在までの管路内点検装置 によっては、直管、異形管及び曲がり管の混在する管路 のうち、管径の小さい管路に対しては対応できなかっ た。すなわち、管径500mm以上の比較的管径が大き い管路に対しては、管路内点検装置に対する寸法的な制 限が少なく、構成が比較的容易であるが、管径の小さい 管路(管径400mm未満)に対しては、寸法的な制限 が急激に大きくなり、管路内点検装置の構成が非常に困 難となり、内面塗装の点検などの作業を目的とした自送 方式の装置は例を見なかった。

[0004]

【目的】本発明はこのような課題を解決するためになさ れたもので、直管及び異形管を含むあらゆる配置形状の 管路であって管径の比較的小さい管路内を走行して、管 路内面塗装の点検が可能な自送方式の管路内点検装置を 提供することを目的とする。

[0005]

【課題を解決するための手段】この目的を達成するため に本発明の管路内点検装置は、管内の塗装膜厚を測定す るとともに管内のピンホールを検査し、管内を撮像して 管内の内面塗装を点検する管路内点検装置であって、塗 装膜厚を測定する塗装膜厚測定用センサー、ピンホール を検査するピンホール検査用ブラシおよび管内を撮像す るカメラを搭載したヘッドを回転自在に備え、ピンホー ル検査用ブラシに高電圧を印加するピンホール高圧部を 搭載した台車からなる点検車と、点検車を制御する制御 用回路および電磁弁を搭載し駆動車輪を有する走行駆動 部と、ピンホール高圧部を制御するピンホール制御器を 搭載したピンホール制御車と、点検車およびピンホール 1b)に固定されることを特徴とする請求項1または2-50 制御車を走行させる駆動車輪を有する走行機と、塗装膜

厚潤定用センサーおよびカメラを制御するセンサー/カメラ制御器を搭載したセンサー/カメラ制御車と、管の後方を撮像して確認する後方カメラを搭載した後方カメラ車とを順次連結した構成である。

【0006】また、本発明の管路内点検装置の塗装膜厚 測定用センサーおよびピンホール検査用ブラシは、ヘッ ド上において管の適用管径に対応可能なようヘッドに固 定された固定軸上を移動して位置決めされる1次可動体 に固定されたシリンダーに結合されシリンダーの伸縮に 伴って運動する揺動可能な2次可動体に取付けられてい 10 る。

【0007】更に、本発明の管路内点検装置の塗装膜厚 測定用センサーは、センサーに装備されたコイルにより 発生する磁場が影響を受けないよう非導電体または切欠 きを有する導電体の1次ホルダーに固定され、1次ホル ダーは管に対して塗装膜厚測定用センサーを移動させる シリンダーを介して、センサーに装備されたコイルによ り発生する磁場が影響を受けないよう非導電体または切 欠きを有する導電体のの2次ホルダーに固定されてい る。

[8000]

【作用】この管路内点検装置は、点検用センサー類を回転可能に搭載した点検車、制御用回路等を搭載し駆動力を有する走行駆動部、点検用制御器を搭載した駆動力を有しないピンホール制御車、駆動車輪を有する走行機、点検用制御器を搭載し駆動力を有しないセンサー/カメラ制御車、および後方カメラ等を搭載した後方カメラ車を順次リンクにより連結して構成し、点検装置の各制御部を別台車に搭載し、走行駆動部を分散させ、装置を小径管(250m~400m)に対応する構造とした。【0009】塗装膜厚測定センサーとピンホール検査用ブラシは、回転するヘッド上において、直動可能な1次

【0009】塗装膜厚測定センサーとピンホール検査用ブラシは、回転するヘッド上において、直動可能な1次可動体に連結された揺動可能な2次可動体に装備され、塗装膜厚測定センサーは、2次可動体に対しロータリーアクチュエーターを介して揺動可能に取付けられるので、管内各所を自在に点検できる。また、電磁式の塗装膜厚測定センサーは、非導電体または切欠きを有する導電体の1次ホルダーに収納固定され、1次ホルダーは、非導電体または切欠きを有する導電体の2次ホルダーにエアーシリンダーを介して直動可能に取付けられるので、センサーコイルに流れる電流により発生した磁場を介して周囲の導電体に流れる渦電流の変化による測定誤差を防止できる。

【0010】装置が小型化され、管内各所を自在に点検でき、直管及び曲がり管の混在する水平管路、傾斜管路及び垂直管路等のいかなる形状の管路にたいしても適用可能となり、電磁式の膜厚測定センサーの磁場の影響も回避され、現在まで不可能であった小径管路の内面塗装の品質管理に適する。

[0011]

【実施例】以下、本発明による管路内点検装置を図面に沿って詳細に説明する。本発明による管路内点検装置は、図1(a)に示すように、管1内の塗装膜厚を測定する塗装膜厚測定用センサー32(図4)、管1内のピ

4

ンホールを検査するピンホール検査用ブラシ30、および管1内を撮像するカメラ33を搭載した回転自在のヘッド2aと、ピンホール検査用ブラシ30に高電圧を印加するピンホール高圧部2fを搭載した台車2bとからなる点検車2が、点検車2を制御する制御用回路3mおよび電磁弁3nを搭載し駆動車輪3b、3cを有する走

行駆動部3に、リンク8を介して連結されている。走行 駆動部3はリンク9を介して、ピンホール高圧部2fを 制御するピンホール制御器4bを搭載したピンホール制 御車4に連結され、ピンホール制御車4はリンク10を

介して、同図(b)に示すように、点検車2およびピンホール制御車4を走行させ駆動車輪5dを有する走行機5に連結されている。走行機5はリンク11を介して、

塗装膜厚測定用センサー32およびカメラ33を制御するセンサー/カメラ制御器6bを搭載したセンサー/カンラ制御車6に連結され、センサー/カメラ制御車6は

リンク12を介して、管1の後方を撮像する後方カメラ 7aを搭載した後方カメラ車7に連結されている。リン ク8、9、10、11、12で連結される各車両間は、

電源ケーブル、地上制御装置 (図示せず) からの信号ケーブル、管路内点検データの送信ケーブルおよび各車両間の信号ケーブル等によっても連結されている。

【0012】図2に示すように、点検車2は、膜厚測定用センサー32(図4)、ピンホールブラシ30、カメラ33を有し回転するヘッド2aと台車2bから構成さ30 れ、台車2bはクランプ車輪20cと固定車輪2d、2eを備え、固定車輪の一個2dは、クランプ車輪20cと管局方向に180°の位置に配置され、他の固定車輪2eは、クランプ車輪20cと180°の関係にある固定車輪2dより120°の管局方向位置であって、管軸方向につきクランプ車輪20cより後方に2個配置されている

【0013】ヘッド2aは、台車2b内のモータに連結された回転軸に連結され(図示せず)、モータは地上制御装置からの制御により適宜回転する。固定車輪2e

40 は、外周に接線方向に配置された軸に取付けられたコロ (図示せず)を有する車輪であり(オムニホイールとい う商品名で市販されているものである)、構造上、回転 しながら、直交する方向にも移動できるものである。ク ランプ車輪20cは、後述のようにエアーシリンダーに より伸縮し、台車2bを管1内に固定する。

【0014】なお、台車2bには膜厚測定用センサー3 2のオン/オフ、後述の揺動リンク30aの伸縮等の機 能を有する電磁弁、モータ(図示せず)およびピンホー ル高圧部2fが搭載されている。ピンホール高圧部2f 50 は、ピンホールブラシ30および後述するピンホール制 御器4 bと接続され、ピンホール制御器4 bからの信号 によりピンホールブラシ30への高電圧印加機能を有す る。 ピンホール高圧部2fとピンホールブラシ30の距 離は短いほど好適である。この点、ピンホール高圧部2 fがヘッド2aの直後に配置されることにより、高電圧 の流れる線長が短くなり、他装置への影響が少なくなる とともに、電圧低下も少なくなりピンホール装置の負荷 も少なくなり、装置の小型化にも寄与する。

【0015】図9 (a)、(b)、(c)に示すよう に、クランプ車輪20cは、台車2bの両側にそれぞれ 10 エアーシリンダー36を2個ずつ配置し、クランプ車輪 20cを台車2bに取付けるための取着軸34を2個の エアーシリンダー36、36の間に配置し、取着軸34 の上部は、台車2bにボルト39cで固定された固定部 39の孔39aに挿着され、ボルト39bを締めて孔径 を狭めて固定される。また、エアーシリンダー36下方 のシリンダー軸36'、36'および取着軸34下方の ガイド軸37は車輪20cを軸支したベース38にねじ 38aで固定される。エアーシリンダー36、36の外 筒はベース35に挿着され、ナット35aで固定され る。また、ベース35は、取着軸34下方のガイド軸3 7を、ベース35の内部に設けた直動軸受34bと嵌合 させ、下方はストロークベアリング34 aで囲繞して固 定する。取着軸34とベース35はねじ34bで固定さ れている。

【0016】エアーシリンダー36の台車2bに対する 固定は、エアーシリンダー36と取着軸34を固定する ベース35を介し、収着軸34と固定部39によって台 車26へ固定する間接的方法なので、エアーシリンダー **プ車輪部2cをこのように構成することにより、台車2** bの占める容積が大きくとれ、必要な機器搭載スペース が確保され、小径管への対応が可能となる。

【0017】 走行駆動部3は、点検車2を制御する制御 回路3mおよびクランプ車輪部2cのオン/オフ等の機 能を有する電磁弁3mを搭載した制御回路搭載筺体3a を車体として、この車体に駆動車輪3b、3cを取付け る。駆動車輪3bには、エアーシリンダー3eとモータ -3dとが装備され、車輪は伸縮可能に構成されるの で、走行駆動部3は所望の高さに調整可能である。駆動 40 車輪3 cには、エアーシリンダーは装備されない。以上 の構造により、走行駆動部3は、管1内にセンタリング 固定される。制御回路搭載車体3 aは、車体としての機 能と、点検車を制御する各種制御回路搭載エリアとして の機能を持つ。

【0018】ピンホール制御車4は、搭載台車4aとピ ンホール制御器4b から構成され、搭載台車4aは、 上部構造体41、下部構造体42にそれぞれ2個ずつの 固定車輪4 cを有し、ピンホール制御器4 bを上下より

体42は、前後端部においてボルトにより結合される構 造である。

【0019】走行機5は、上部構造体5aと下部構造体 5cと中央構造体5bから構成される。上部構造体5a は、公知技術により構成されるもので(特開平4ー33 1656号公報)、上部駆動車輪5d2式と、操舵モー ター5eより構成される上部駆動部5kが支持具5fに 揺動可能に支持され、支持具5 f はエアーシリンダー5 iを介して上部ベース5jに伸縮可能に連結されてい

【0020】さらに、上部ベース5jは、中央構造体5 bの固定具5hに対し、上下移動が可能であって、固定 可能に取付けられる。すなわち、中央構造体5bの固定 具5hは、上部ベース5jに固定された軸5pおよび下 部ベース5cに固定された軸5qが貫通する孔5S、5 Sを有し、その孔5Sには切欠き5mが設けられ、ボル ト5rを締めることにより孔径を狭めて軸5p、5qを 締めつける(図3(b))。また、軸5p、5gには位 置決め用の穴が複数個穿設されており(図示せず)、そ 20 れらの穴に対応して固定具5hにも穴5nが複数個穿設 され (図3 (a)) 、軸5p、5qの穴と固定具5hの 穴5nをボルト51で位置決め固定する。 こうして、 走 行機5の上部構造体5 a と下部構造体5 c は、中央構造 体5bに対し、所定距離に位置決め可能であると同時 に、伸縮可能となり、各種管径に対応可能となる。

【0021】なお、下部構造体5cには、下部駆動車輪 5gが2個、所定距離はなれた位置に固定されている。 上部駆動車輪5dは、通常のゴム車輪であり、下部駆動 車輪5gは、車輪円周上に接線方向に配置された軸に対 し、コロをはめあわせた構造であり、回転しながら、管 周方向に移動可能な横滑り車輪(公知技術、特公昭63 -34075号公報)である。このように構成すること により、対応可能な管径の範囲を広くすることができる (250m-400m).

【0022】センサー/カメラ制御車6の搭載台車6 a の構造は、ピンホール制御器4bおよび搭載台車4aと からなるピンホール制御車4の搭載台車4aとまったく 同様に構成され、ピンホール制御器4bがセンサー/カ メラ制御器6 bに入替わったものである。後方カメラ車 7は、後方監視用カメラ7a及び前方カメラ/後方カメ ラの切り換え、前方照明/後方照明の切り換え等を制御 する制御回路が搭載され、後方 (地上側) にバネ13を 介してケーブルコネクタ14を備え、地上制御装置との インターフェース機能を有するとともに、運転支援情報 を提供する機能を有する。

【0023】図4 (a) に示す回転円盤15は、台車2 bに対して回転可能に結合され、その回転は台車2b内 の図示しないモーターにより行なわれる。 図5(a)に 示すように、側板18と結合された上部下部フランジ1 はさみつけて絶縁固定する。上部構造体41と下部構造 50 6、17は回転円盤15に対し固定され、送りねじ19

および固定軸であるガイド軸20が組み込まれている。 【0024】1次可動体21には送りねじ19が螺着され、送りねじ19を回転させることにより1次可動体2 1は上下に移動する。また、1次可動体21にはガイド軸20が嵌合される。1次可動体21とガイド軸20は、すべり対偶とし、1次可動体21の嵌合孔に切り欠き21aが設けてあり(図4)、切り欠き21aにボルトを締めることにより、嵌合孔の径が縮小して、ガイド軸20を締め付け、1次可動体21は固定可能に構成されている。

【0025】1次可動体21に固定され、1次可動体2 1と一緒に移動する他の1次可動体であるベース22に は、シリンダー23が固定されている。スライド軸24 は、ベース22に固定された軸受け24aと嵌合する。 シリンダー23は、走行駆動車3に搭載された制御回路 3mを介した地上制御装置からの制御信号に基づき空気 の供給弁(図示せず)の開閉がコントロールされる。なお、制御回路は他の車両に搭載してもよい。シリンダー 23の軸、スライド軸24と結合された移動体25は、シリンダー23の伸縮により上下する。

【0026】この移動体25と2次可動体であるセンサー取付けベース27は、ピン26によって自由揺動可能(図4(a矢印))に連結される。回転コロ28は、シリンダー23を伸ばし、センサー取付けベース27を管壁方向に押したとき、所定のギャップを得て、センサー取付けベース27を押した状態で移動可能とするための機能を有する。

【0027】ロータリーアクチュエーター29は、その本体がセンサー取付けベース27に固定され、軸は揺動リンク30aに固定される。ロータリーアクチュエータ30ー29は、地上制御装置からの制御信号に基づき、台車2bに搭載された電磁弁(図示せず)によってコントロールされる。なお、電磁弁は他の車両に搭載してもよい。膜厚センサーユニット31は、膜厚センサー32が組み込まれると同時に、膜厚センサー揺動リンク30bと回転支点30cにより、センサー取付けベース27に対して自由回転可能に結合される。揺動リンク30aと膜厚センサー揺動リンク30bは、X部においてY軸を中心にして自由揺動可能に構成される(図4(b)の矢印)。

【0028】カメラケース33bには、CCDカメラ33が収納される。カメラケース33bを揺動させるための笠歯車33aは、駆動モーター(図示せず)と連結されている。また、図5(b)に示すように、円筒形のピンホールブラシ30のブラシ軸30dは、絶縁体27aを介してセンサー取付けベース27に取付けられる。ブラシ軸30dと回転コロ28のコロ軸28aはねじ結合されている。

【0029】以上の構成により、ヘッド2aの多少の傾きによらず、膜厚センサー32を安定して管壁に押しつ 50

けることができ、信頼性のある測定ができる。また、ピンホールブラシ30と膜厚センサーユニット31を同一ベース27に取付ける構造としたことにより、ピンホールブラシ制御用のアクチュエーター等が不要となり、寸法的にも小さくなり、小径管への適用が可能となる。

8

【0030】図7に示すように、本発明の管路内点検装置の塗装膜厚測定用センサー32は、1次ホルダー31 aに固定され、その1次ホルダー31 aには、管1に対して塗装膜厚測定用センサー32を押圧、離脱の移動を10 するシリンダー31cの軸が連結され、シリンダー31 cは2次ホルダーに固定された塗装膜厚測定用センサー32は、シリンダー31cを介して2次ホルダー31bに連結される。

【0031】2次ホルダー31bは、シリンダー31cが固定されるとともにピン30c(図6)を介して揺動リンク30bに連結される。1次ホルダー31aは、膜厚センサー32を保持するとともに、シリンダー31cの軸に連結される。シリンダー31cを伸縮させることの軸に連結される。シリンダー31cを伸縮させることにより、2次ホルダー31bに対して1次ホルダー31aをスライドさせることができる。コロ31eは、脚31dを介して1次ホルダー31aに取付けられる。ここで、2次ホルダー31b、1次ホルダー31aはポリエチレン、ポリ塩化ビニル等合成樹脂のような非導電体の材料で製作される。導電体材料の場合には1部に切り欠きを設ける必要がある。

【0032】塗装膜厚の測定にあたっては、あらかじめ 既知の厚さの模擬試験片等により、コイルインピーダン スと塗料厚の換算線を求めておく。図8に示すように、 測定する対象である管1の塗料1pに膜厚センサー32 を軽く押し当て、膜厚センサー32内部のコイル37の インピーダンスを求め、上述の換算線より、膜厚を求め る。これは、公知の技術であり、多くの装置が市販され ている。

【0033】コイル37の周辺に対象物以外磁場を乱す 物体が存在しない場合は問題は起こらないが、本装置の ごとく、周辺に磁場を乱す物体が存在する場合にはつぎ のような問題が起こる。図8において、膜厚センサー3 2に装備されたコイル37により磁場が発生することは 電磁気学により示されるところである。このとき、2次 ホルダー31b、1次ホルダー31aが導電体の場合、 コイル37による磁場を介して、316、31aに渦電 流が生じ、その流れは、膜厚センサー内部のコイルの同 心円状となる。その結果、膜厚センサー内部のコイル3 7に流れる電流、それにより発生する磁場(磁束)、2 次ホルダー31b及び1次ホルダー31aに流れる渦電 流は電磁気的に結合される。このような状態で、膜厚セ ンサー32を管1に押しつける(1次ホルダー31aと 膜厚センサー32が2方向に移動)と、1次ホルダー3 1a、膜厚センサー32は一緒に動くため、2次ホルダ

-31bとの位置関係に変化を生じ、測定されるコイル 37のインピーダンスは、その位置関係の変化によるも のと、塗料厚みによるものが重畳した値となり、真の塗 料厚が測定できない。

【0034】1次ホルダー31a、膜厚センサー32と 2次ホルダー31bとの位置関係の変化が塗料の厚みの 変化と関係することから、この補正は非常に困難であ る。本装置においては、2次ホルダー31b、1次ホル ダー31aを非導電体とすることにより、渦電流の発生 を防止するので、このような問題は起こらない。また、 別法として、2次ホルダー31b、1次ホルダー31a が尊電体の場合、図8に示すように、2次ホルダー31 b、1次ホルダー31aに、それぞれ切り欠き40、4 1を設けることによっても対処できることは、渦電流の 流れを切ることから容易に推測できる。

【0035】ピンホールを検出にあたっては、シリンダ -23を伸ばす。センサー取付けベース27は下方へ押 し下げられ、回転コロ28が管1の内壁に到着して停止 する。このとき、ピンホールブラシ30は管内面の塗装 面に接触する。ピンホールブラシ30が塗装面に接触し 20 た状態でピンホールブラシ30に高電圧を印加すると、 高電圧のマイナス極は管母材に接地されているため、塗 装にピンホールが存在すれば、ピンホールブラシ30と 管母材間に放電現象が発生する。この放電現象の検知に よりピンホールを検出する。

【0036】以上のように構成された本発明による管路 . 内点検装置は、直管及び曲がり管を含むいかなる形状の 小径管(250㎜~400㎜)に対しても適用でき、こ れまで不可能であった小径管の内面塗装の点検が可能と なった。

[0037]

【発明の効果】以上説明したように本発明の管路内点検 装置によれば、塗装膜厚を測定する塗装膜厚測定用セン サー、ピンホールを検査するピンホール検査用ブラシお よび管内を撮像するカメラを搭載したヘッドを回転自在 に備え、ピンホール検査用ブラシに高電圧を印加するピ ンホール高圧部を搭載した台車からなる点検車と、点検 車を制御する制御用回路および電磁弁を搭載し駆動車輪 を有する走行駆動部と、ピンホール高圧部を制御するピ ンホール制御器を搭載したピンホール制御車と、点検車 40 およびピンホール制御車を走行させる駆動車輪を有する 走行機と、塗装膜厚測定用センサーおよびカメラを制御 するセンサー/カメラ制御器を搭載したセンサー/カメ ラ制御車と、管の後方を撮像して確認する後方カメラを 搭載した後方カメラ車とを順次連結した構成であり、ま た、本発明の管路内点検装置の塗装膜厚測定用センサー およびピンホール検査用ブラシは、ヘッド上において管 の適用管径に対応可能なようヘッドに固定された固定軸 上を移動して位置決めされる1次可動体に固定されたシ リンダーに結合されシリンダーの伸縮に伴って運動する 50 14…コネクター

揺動可能な2次可動体に取付けらる構造であるため装置 が小型化され、直管及び曲がり管の混在する水平管路、 傾斜管路及び垂直管路等のいかなる形状の小径の管路の 内面塗装の品質管理に適する。

10

【0038】更に、本発明の管路内点検装置の塗装膜厚 測定用センサーは、センサーに装備されたコイルにより 発生する磁場が影響を受けないよう非導電体または切欠 きを有する導電体の1次ホルダーに固定され、1次ホル ダーは管に対して塗装膜厚測定用センサーを移動させる 10 シリンダーを介して、センサーに装備されたコイルによ り発生する磁場が影響を受けないよう非導電体または切 欠きを有する導電体のの2次ホルダーに固定されている ので、電磁式の塗装膜厚測定用センサーは正確な計測が できる。

【図面の簡単な説明】

【図1】本発明の管路内点検装置の構成を説明する図。

【図2】管路内点検装置の部分拡大図。

【図3】(a)は管路内点検装置の部分拡大図、(b) は細部説明図。

【図4】(a)は点検ヘッド回転部正面図、(b)は細 部説明図。

【図5】(a)は点検ヘッド回転部側面図、(b)は細 部説明図。

【図6】膜厚センサー平面図。

【図7】膜厚センサー側面図。

【図8】膜厚センサー近傍模式図。

【図9】(a)、(b)ともクランプ車輪を説明する 図.

【符号の説明】

30 1…管

1 p…塗料

2……点検車

2a…ヘッド

2 b…台車

2 f…ピンホール高圧部

3…走行駆動部

3b、3c …駆動車輪

3 m…制御用回路

3 n…電磁弁

4…ピンホール制御車

4 b…ピンホール制御器

5…走行機

5d、5g…駆動車輪

6…カメラ/膜厚測定装置制御器搭載台車

6 b…カメラ/膜厚測定器制御器

7…後方カメラ車

7 a…後方カメラ

8~12…接続リンク

13…バネ

11

15…回転円盤

20…固定軸 (ガイド軸)

20 c…クランプ車輪

21…1次可動体

22…1次可動体 (ベース)

23…シリンダー

25…移動体

27…2次可動体(センサー取付けベース)

30…ピンホール検査用ブラシ

31…センサーユニット

12

31a…1次ホルダー

31b…2次ホルダー

31c…シリンダー

32…塗装膜厚測定用センサー

33…カメラ

37…コイル

40、41…切欠き

【図1】

【図6】

【図8】

【図2】

【図3】

【図7】

【図9】

【手続補正書】

【提出日】平成6年9月19日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】図9

【補正方法】変更

【補正内容】

【図9】(a)、(b)および(c)はクランプ車輪を

説明する図。

フロントページの続き

(72)発明者 秋田 充穏

東京都千代田区内幸町2丁目2番3号 川崎製鉄株式会社東京本社内

(72) 発明者 藤原 茂

広島県呉市西中央2丁目1番12号 株式会 社シーエックスアール内