Слайд 1

Здравствуйте, уважаемые члены комиссии.

Слайд 2

Целью является разработка метода оптимизации планирования грузоперевозок в транспортной системе. Для её решения требовалось выполнить задачи, представленные на слайде.

Слайд 3

В первую очередь затронем актуальность задачи. В нынешнее время активно ведётся развитие торговых розничных сетей (ритейл-фирм). Одним из залогов успеха для них является грамотное управление цепочками поставок — вопросами взаимодействия предприятий производства, складирования, доставки, дистрибьюции и продажи товаров.

В данной работе уделяется внимание одному из этапов процесса SCM – транспортной логистике. Целевым пользователем разрабатываемой программы будет транспортная фирма, организующая доставку товаров от складов до потребителей по сформированным заказам.

Слайд 4

Данный комплекс задач решают системы управления перевозками (TMS-transport management system). Они осуществляют:

- составление и расчёт стоимостей
- прогнозирование
- поручение и контроль выполнения плана транспортировок
- и т.д.

На слайде приведены сравнения наиболее популярных подобных программ в России. Отметим, что:

- только в одной из них возможно детальное планирование
- две из них частично прекратили свою деятельность в РФ
- их стоимость зачастую непозволительна для малого бизнеса, который может быть больше заинтересован не в комплексном решении их задач, а в точечном.

Поэтому разрабатываемое ПО будет решать только задачу составления оптимального плана маршрутов.

Слайд 5

Для решения задачи формализуем объекты транспортной системы. Наиболее удобным является граф, с вершинами в пунктах маршрута и рёбрами в качестве дорог. Тогда составляемые маршруты —множество циклов графа, для которых выполняется ряд условий. Главным из них является минимальность функции оптимума.

Слайд 6

Также для маршрутов должен соблюдаться ряд ограничений, представленных на слайде. Критерием оптимизации выбрана минимизация общей протяжённости маршрутов.

Слайд 7

Разработанный для решения данной задачи метод можно разбить на три этапа. Рассмотрим их подробнее.

Слайд 8

Первый этап служит для формирования опорного плана маршрутов, то есть выполняющего все заказы, но неоптимального. Для этой цели выбран метод минимального элемента. Все возможные маршруты вида Стоянка -> Склад -> Потребитель рассматриваются в порядке возрастания их длин. На маршрут назначается максимальная возможная перевозка товаров. Таким образом получается набор маршрутов, вместе удовлетворяющие всем заказам.

Оптимизация созданного плана же осуществляется на следующем этапе.

Слайд 9

Это достигается перераспределением перевозки товаров с одних маршрутов на другие — удлинение одних маршрутов и укорачиванию или исчезновению других. Если в изменение дало более оптимальный план, то он становится новым опорным, операция повторяется.

Порядок рассмотрения вариантов изменения маршрутов определяется с помощью метода потенциалов. Вычисляются значения стоимости перевозки каждого продукта в каждый пункт, это и считается потенциалом. После этого вычисляется величина невязок — изменения стоимости в случае замены маршрута пункта А за счёт продления маршрута из пункта В. Описанное перестроение маршрутов производится в первую очередь у вершин с минимальными невязками.

На примере невязки отображены с помощью штрихпунктирных дуг с указанием значения. Применение метода к примеру приводит к удалению двух маршрутов.

Слайд 10

Завершающем этапом метода является составление расписания так, чтобы избежать одновременное обсаживание двух машин на одном пункте. За основу данного подхода взят метод интервалов.

Действие заключается в сравнении времени прибывания в пунктах выбранного маршрута с закреплёнными в расписании. Если среди них обнаруживаются пересечения, маршрут сдвигается на его длительность. В расписании закрепляется маршрут с самым ранним началом и сравнение маршрутов начинается заново, пока все они не окажется в расписании.

Слайд 11

Описанные методы были реализованы в программе.

Она позволяет задавать конфигурацию системы, вычислять маршруты, наблюдать их в визуализаторе и составлять временную диаграмму расписания.

Слайд 12

Для неё были проведены следующие исследования.

На данном слайде демонстрируется сравнение стоимости опорного плана с оптимизированным. Таким образом показывается, что уменьшение стоимости в 2+ раз происходит при различных размерностях системы. Следовательно, поставленную задачу он выполняет.

Слайд 13

Исследование зависимости времени работы от размерности системы показывает, что на всех разумных количествах пунктов маршрута (в рамках данной задачи) программа выполняется за приемлемое время.

Слайд 14

В результате работы была достигнута её цель: разработан собственный метод для оптимизации доставки товаров. Решены поставленные задачи. Программа в полном объёме удовлетворяет поставленным условиям.

Её достоинствами является учет факторов многопродуктовости, ограничений транспортных средств и количества машин, обслуживаемых на одном пункте маршрута. К недостаткам разработанного продукта относится допущение одинакового объёма груза и вместимости транспорта.

В качестве перспектив дальнейшего развития может послужить более общая постановка задачи и расширение функционала программы.