VERSUCH 107

Das Kugelfallviskosimeter nach Höppler

 $\label{tabea} Tabea\ Hacheney \\ tabea.hacheney @tu-dortmund.de$

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 14.12.2021 Abgabe: 21.12.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie		
2	Durchführung	3	
3	Auswertung3.1 Dichte der Kugeln		
4	Diskussion	4	
5	Messwerte	4	
Lit	teratur	5	

1 Theorie

[1]

2 Durchführung

3 Auswertung

3.1 Dichte der Kugeln

Die Messwerte der Massen und Radien der beiden Kugeln sind in Tabelle 1 zu finden. Die Radien und Massen bestimmen sich zu

$$\begin{split} r_{\rm Gr} &= (7,86 \pm 0,04) \cdot 10^{-3} \, \mathrm{m} \\ m_{\rm Gr} &= (4,54 \pm 0,01) \cdot 10^{-3} \, \mathrm{kg} \\ r_{\rm Kl} &= (7,64 \pm 0,11) \cdot 10^{-3} \, \mathrm{m} \\ m_{\rm Kl} &= (4,44 \pm 0,02) \cdot 10^{-3} \, \mathrm{kg}. \end{split}$$

Tabelle 1: Messdaten der Massen und Radien der beiden Kugeln.

$r_{ m Gr}/{ m cm}$	$m_{\mathrm{Gr}}/\mathrm{g}$	$r_{\rm Kl}/{\rm cm}$	$m_{\rm Kl}/{\rm g}$
0,790	4,54	0,775	4,46
0,780	$4,\!56$	0,755	$4,\!46$
0,785	$4,\!54$	0,755	$4,\!43$
0,790	$4,\!54$	0,780	$4,\!42$
0,785	$4,\!54$	0,755	$4,\!43$

Aus () ergibt sich für die Dichten

$$\rho_{\rm Gr} = (2232 \pm 34) \frac{\rm kg}{\rm m^3}$$

$$\rho_{\rm Kl} = (2380 \pm 10) \frac{\rm kg}{\rm m^3}.$$

3.2 Viskositätsbestimmung mit Hilfe der großen Kugel

3.3 Viskositätsbestimmung mit Hilfe der kleinen Kugel

Siehe Abbildung 1!

Abbildung 1: Plot.

4 Diskussion

5 Messwerte

Radius &. Radius Ul.	Massege.	Massey.
1,58cm 1,55cm	4.61 4.54	4,46
1,56cm 1,55 cm	4,60 4,56	4,46
1,57cm 1,55cm	4,60 4,54	4,43
1,58cm 1,56 cm	4,614,54	4,42
1,57cm 1,55cm	4,614,54	4,43
35 63	4,59	
	191.54	1

Abbildung 2: Messung der Massen und Dichte der beiden Kugeln.

Literatur

 $[1] \quad \text{TU Dortmund. } \textit{Versuch zum Literaturverzeichnis. } 2014.$