Biological Information Modeling

September 7, 2018

Abstract

Keywords:

Mathematics Subject Classification 2000:

1 Introduction

The describing of the biological problems :

- 1. the background information (by WX)
- 2. the expression of the biological experiments (by WX)

2 Mathematical Formulations

- 1. We use the following notations:
 - (i) P_R stands by ...
 - (ii) T_R stands by ...
- (iii) P_L stands by ...
- (iv) T_L stands by ...
- (v) a stands by ...
- (vi) b stands by ...
- (vii) c stands by ...

All these functions are positive.

The differential equations for the evolutions of genes:

$$\dot{P}_R = a - cP_R,$$

$$\dot{T}_R = a - b(T_R - P_R),$$
(2.1)

where \dot{P}_R and \dot{T}_R are the derivatives of the two functions $P_R(t)$ and $T_R(t)$ with respect to t and the coefficients a, b and c are also functions of t.

2. The formulations for labeled genes from the labeling time t^* .

Since the labeling time is very small with respect to the evolution of genes, the coefficient b=0 for labeling genes and $M_L(t^*)=0$ at the labeling time. Hence solving (2.1), we obtain the formulation of the labeling genes:

$$P_L(t) = \frac{a_t}{c_t} (1 - e^{-c_t t_L}),$$

$$T_L(t) = a_t t_L.$$
(2.2)

3 Fundamental Assumptions

In [1], it is assumed that

- (i) a(t) is a ... in each time-periodic.
- (ii) b(t) is a ... in each time-periodic.
- (iii) c(t) is a ... in each time-periodic.

Hence solving (2.1) and (2.2), we obtain the formulations in [1] as follows:

$$a = \dots$$

$$b = \dots$$

$$c = \dots$$

While the problem is:

for two almost same genes, the correlations of a, b and c are very small.

4 Improvement of Models

To overcome this problem, we assume that the coefficients a, b and c are continuous functions and the variations of a, b and c are very small, i.e.,

$$\int_{t_0}^{t} |\dot{a}(s)|^2 + |\dot{b}(s)|^2 + |\dot{c}(s)|^2 ds$$

is small as possible. The reason is that the ... of each gene does not change very fast.

5 Improvement of Mathematical Formulations

Let $(P_R(t_0), T_R(t_0), P_L(t_0), T_L(t_0))$ and $(P_R(t_1), T_R(t_1), P_L(t_1), T_L(t_1))$ be obtained at two time points and t_L be the given labeling-time.

- (i) We insert several time points in $[t_0, t_1]$ labeled by $s_i = t_0 + \frac{i(t_1 t_0)}{N}$, where N is an integer and i = 0, ..., N. We label the approximation values of the functions a, b and c at each time periodic $[s_i, s_{i+1}]$ by a^i , b^i and c^i , i = 0, ..., N 1 and the approximations values of the functions a, b and c at the time point $s_N = t_1$ by a^N , b^N and c^N .
- (ii) With $(P_L(t_0), T_L(t_0))$, $(P_L(t_1), T_L(t_1))$ and t_L , we obtain from (2.2) that

$$a^{0} = T_{L}(t_{0})/t_{L}$$

$$a^{N} = T_{L}(t_{1})/t_{L}$$

$$\frac{c^{0}}{1 - e^{-c^{0}t_{L}}} = \frac{T_{L}(t_{0})}{P_{L}(t_{0})t_{L}}$$

$$\frac{c^{N}}{1 - e^{-c^{N}t_{L}}} = \frac{T_{L}(t_{1})}{P_{L}(t_{1})t_{L}}$$

(iii) With the approximation coefficients a^i , b^i and c^i , we solve (2.1) in $[s_i, s_{i+1}]$ by the given initial value (P_R^i, T_R^i) to obtain the approximation value (P_R^{i+1}, T_R^{i+1}) for $i = 0, \ldots, N-1$,

$$\begin{pmatrix} P_R^{i+1} \\ T_R^{i+1} \end{pmatrix} = \begin{pmatrix} P_R^i \\ T_R^i \end{pmatrix} + h \begin{pmatrix} a^i - c^i P_R^i \\ a^i - b^i (T_R^i - P_R^i). \end{pmatrix}$$

Here $h = (t_1 - t_0)/N$ and $(P_R^0, T_R^0) = (P_R(t_0), T_R(t_0))$.

After this process, we obtain an approximation value (P_R^N, T_R^N) to the final value $(P_R(t_1), T_R(t_1))$.

(iv) The changing rate of the coefficients in the time periodic $[s_i, s_{i+1}]$ are approximated by

$$|\dot{a}(s)|^2 \approx \left(\frac{a^{i+1} - a^i}{h}\right)^2,$$
$$|\dot{b}(s)|^2 \approx \left(\frac{b^{i+1} - b^i}{h}\right)^2,$$
$$|\dot{c}(s)|^2 \approx \left(\frac{c^{i+1} - c^i}{h}\right)^2,$$

for $i=0,\dots,N-1$. Hence the total change of the coefficients are approximated by

$$J(a,b,c) = \frac{1}{2} \sum_{i=0}^{N-1} \frac{(a^{i+1} - a^i)^2}{h} + \frac{(b^{i+1} - b^i)^2}{h} + \frac{(c^{i+1} - c^i)^2}{h},$$

which has an equivalent quadrature form

$$J(X) = \frac{1}{2}X^T A X + B^T X + C,$$

where $X=(a^1,\cdots,a^{N-1},b^0,\cdots,b^N,c^1,\cdots,c^{N-1})^T\in\mathbb{R}^{3N-1}$ and the matrix $A\in\mathbb{R}^{(3N-1)\times(3N-1)}$, the vector $B\in\mathbb{R}^{3N-1}$ and $C\in\mathbb{R}$ are given by

$$\begin{split} A &= \frac{N}{2(t_1 - t_0)} \begin{pmatrix} \bar{I}_{N-1} & & \\ & \bar{I}_{N+1} & \\ & & \bar{I}_{N-1} \end{pmatrix}_{(3N-1)\times(3N-1)}, \\ B &= \frac{N}{t_1 - t_0} \begin{pmatrix} -a^0, & 0_{(N-3)}, & -a^N, & 0_{(N+1)}, & -c^0, & 0_{(N-3)}, & -c^N \end{pmatrix}^T, \\ C &= \frac{N}{2(t_1 - t_0)} ((a^0)^2 + (a^N)^2 + (c^0)^2 + (c^N)^2), \end{split}$$

where

$$I_N = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ 0 & \cdots & -1 & 2 & -1 \\ 0 & \cdots & 0 & -1 & 1 \end{pmatrix}_{N \times N},$$

and

$$\bar{I}_N = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ 0 & \cdots & -1 & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}_{N \times N}.$$

(v) The coefficients a, b and c are solved by the following optimal problem with positive and nonlinear constraints, i.e.,

$$X = \arg \min J(X)$$
s.t. $X > 0$,
$$P_R^N(X) = P_R(t_1)$$

$$T_R^N(X) = T_R(t_1)$$

6 Improvement of Solving Programs

(i) Solving the differential equations with a higher-order method such as Runge's method.

$$\begin{pmatrix} K_1^i \\ L_1^i \end{pmatrix} = \begin{pmatrix} a^i - c^i P_R^i \\ a^i - b^i (T_R^i - P_R^i) \end{pmatrix},$$

$$\begin{pmatrix} K_2^i \\ L_2^i \end{pmatrix} = \begin{pmatrix} a^i - c^i (P_R^i + h/2K_1^i) \\ a^i - b^i ((T_R^i + h/2L_1^i) - (P_R^i + h/2K_1^i)) \end{pmatrix},$$

$$\begin{pmatrix} K_3^i \\ L_3^i \end{pmatrix} = \begin{pmatrix} a^i - c^i (P_R^i + h/2K_2^i) \\ a^i - b^i ((T_R^i + h/2L_2^i) - (P_R^i + h/2K_2^i)) \end{pmatrix},$$

$$\begin{pmatrix} K_4^i \\ L_4^i \end{pmatrix} = \begin{pmatrix} a^i - c^i (P_R^i + hK_3^i) \\ a^i - b^i ((T_R^i + hL_3^i) - (P_R^i + hK_3^i)) \end{pmatrix},$$

$$\begin{pmatrix} K_4^i \\ L_4^i \end{pmatrix} = \begin{pmatrix} a^i - b^i ((T_R^i + hL_3^i) - (P_R^i + hK_3^i)) \end{pmatrix},$$

$$\begin{pmatrix} P_R^{i+1} \\ T_R^{i+1} \end{pmatrix} = \begin{pmatrix} P_R^i \\ T_R^i \end{pmatrix} + \frac{h}{6} \begin{pmatrix} K_1^i \\ L_1^i \end{pmatrix} + 2 \begin{pmatrix} K_2^i \\ L_2^i \end{pmatrix} + 2 \begin{pmatrix} K_3^i \\ L_3^i \end{pmatrix} + \begin{pmatrix} K_4^i \\ L_4^i \end{pmatrix} \end{pmatrix}.$$

(ii) By introducing a penalty factor, the optimal problem is transformed into

$$\min J(X) + 0.5\alpha_1 (P_R^N(X) - P_R(t_1))^2 + 0.5\alpha_2 (T_R^N(X) - T_R(t_1))^2$$
s.t. $X > 0$

where α_1, α_2 are positive large numbers. Then the gradient descent method is given by

$$X_{k+1} = X_k - \rho_k \left(\frac{\partial J}{\partial X}(X_k) + \alpha_1 (P_R^N(X_k) - P_R(t_1)) \frac{\partial P_R^N}{\partial X}(X_k) + \alpha_2 (T_R^N(X_k) - T_R(t_1)) \frac{\partial T_R^N}{\partial X}(X_k)\right)$$

where ρ_k is a small number such that $X_{k+1} > 0$ piecewise component. Of course

$$\frac{\partial J}{\partial X}(X_k) = AX_k + B.$$

Hence in the following, we present an approach for the approximations to $\frac{\partial P_R^N}{\partial X}(X_k)$ and $\frac{\partial T_R^N}{\partial X}(X_k)$.

(iii) Following from (2.1), in each $[s_i, s_{i+1}]$, one obtains that

$$\frac{d}{dt} \left(\frac{\partial P_R}{\partial X} \right)_{3N-1} = (\eta_i)_{3N-1} - P_R(\xi_i)_{3N-1} - c_i \left(\frac{\partial P_R}{\partial X} \right)_{3N-1} \\
=: f_i \left(P_R, \left(\frac{\partial P_R}{\partial X} \right)_{3N-1} \right), \\
\frac{d}{dt} \left(\frac{\partial T_R}{\partial X} \right)_{3N-1} = (\eta_i)_{3N-1} - (T_R - P_R)(\theta_i)_{3N-1} \\
- b_i \left(\left(\frac{\partial T_R}{\partial X} \right)_{3N-1} - \left(\frac{\partial P_R}{\partial X} \right)_{3N-1} \right) \\
=: g_i \left(T_R - P_R, \left(\frac{\partial P_R}{\partial X} \right)_{3N-1}, \left(\frac{\partial T_R}{\partial X} \right)_{3N-1} \right), \tag{6.1}$$

where $\frac{\partial P_R}{\partial X}, \frac{\partial T_R}{\partial X}, \eta_i, \xi_i, \theta_i \in \mathbb{R}^{3N-1}$ are given by

$$\eta_0 = 0,
\eta_i = (e_i, 0_{N+1}, 0_{N-1})^T, i = 1, \dots, N-1,
\xi_0 = 0,
\xi_i = (0_{N-1}, 0_{N+1}, e_i)^T, i = 1, \dots, N-1,
\theta_i = (0_{N-1}, \bar{e}_{i+1}, 0_{N-1})^T, i = 0, \dots, N-1.$$

Here
$$\frac{\partial P_R}{\partial X}(0) = 0$$
, $\frac{\partial T_R}{\partial X}(0) = 0$, $e_i = (0, \dots, 0, 1, 0, \dots, 0)^T \in \mathbb{R}^{N-1}$, $i = 1, \dots, N-1$, and $\bar{e}_i = (0, \dots, 0, 1, 0, \dots, 0)^T \in \mathbb{R}^{N+1}$, $i = 1, \dots, N+1$.

(iv) Runge's method for (6.1) from
$$s_i$$
 with $G_i^P \approx \frac{\partial P_R}{\partial X}(s_i)$ and $G_i^T \approx \frac{\partial T_R}{\partial X}(s_i)$ to s_{i+1} with $G_{i+1}^P \approx \frac{\partial P_R}{\partial X}(s_{i+1})$ and $G_{i+1}^T \approx \frac{\partial T_R}{\partial X}(s_{i+1})$ is given by :

$$\begin{pmatrix} D_1^i \\ E_1^i \end{pmatrix} = \begin{pmatrix} f_i(P_R^i, G_i^P) \\ g_i(T_R^i - P_R^i, G_i^P, G_i^T) \end{pmatrix},$$

$$\begin{pmatrix} D_2^i \\ E_2^i \end{pmatrix} = \begin{pmatrix} f_i(P_R^i + h/2K_1^i, G_i^P + h/2D_1^i) \\ g_i((T_R^i + h/2L_1^i) - (P_R^i + h/2K_1^i), G_i^P + h/2D_1^i, G_i^T + h/2E_1^i) \end{pmatrix},$$

$$\begin{pmatrix} D_3^i \\ E_3^i \end{pmatrix} = \begin{pmatrix} f_i(P_R^i + h/2K_2^i, G_i^P + h/2D_2^i) \\ g_i((T_R^i + h/2L_2^i) - (P_R^i + h/2K_2^i), G_i^P + h/2D_2^i, G_i^T + h/2E_2^i) \end{pmatrix},$$

$$\begin{pmatrix} D_4^i \\ E_4^i \end{pmatrix} = \begin{pmatrix} f_i(P_R^i + hK_3^i, G_i^P + hD_3^i) \\ g_i((T_R^i + hL_3^i) - (P_R^i + hK_3^i), G_i^P + hD_3^i, G_i^T + hE_3^i) \end{pmatrix},$$

$$\begin{pmatrix} G_{i+1}^P \\ G_{i+1}^T \end{pmatrix} = \begin{pmatrix} G_i^P \\ G_i^T \end{pmatrix} + \frac{h}{6} \begin{pmatrix} D_1^1 \\ E_1^i \end{pmatrix} + 2 \begin{pmatrix} D_2^i \\ E_2^i \end{pmatrix} + 2 \begin{pmatrix} D_3^i \\ E_3^i \end{pmatrix} + \begin{pmatrix} D_4^i \\ E_4^i \end{pmatrix}.$$

- (v) Implementation.
 - (a) Given initial values $(P_R(t_0), T_R(t_0), P_L(t_0), T_L(t_0)), (P_R(t_1), T_R(t_1), P_L(t_1), T_L(t_1))$ and t_L .

- (b) Given an integer $N \geqslant 1$, $\alpha_1, \alpha_2 \gg 1$, $\rho \in (0, 1)$ and $\epsilon \ll 1$.
- (c) Calculate a^0, a^N, c^0, c^N .
- (d) Set k = 0 and give an initial guess X_0 for the other coefficients.
- (e) Calculate ${\cal P}_R^N$ and ${\cal T}_R^N$ by Runge's method for (2.1).
- (f) Calculate G_N^P and G_N^T by Runge's method for (6.1)
- (g) Calculate the gradient

$$g_k = \frac{\partial J}{\partial X}(X_k) + \alpha_1(P_R^N(X_k) - P_R(t_1)) \frac{\partial P_R^N}{\partial X}(X_k) + \alpha_2(T_R^N(X_k) - T_R(t_1)) \frac{\partial T_R^N}{\partial X}(X_k)$$

(h) If $\max |g_k| < \epsilon$, the program is stopped. Otherwise update the guessing value by

$$X_{k+1} = X_k - \rho \frac{\min\{X_k\}}{\max|q_k|} g_k,$$

set k = k + 1 and go to Step (e).

References

[1] INSPEcT