It's how you use the items that counts: An intelligent procedure for item selection in Item Response Theory

Ottavia M. Epifiania¹, Pasquale Anselmi³, Egidio Robusto³

Psychology and Cognitive Science Department, University of Trento, Italy Psicostat, University of Padova, Italy

³ Department of Philosophy, Sociology, Education, and Applied Pscyhology, University of Padova. Italy

Convegno ASA 2024, Contributed session:

Developing, administering and refining measurement instruments in

Social Sciences

1 Aim

- 2 Item Response Theory and Information Functions
 - 2-Parameter Logistic Model
 - Item and Test Information Functions
- 3 Item Selection Procedures
 - Item Locating Algorithm ILA
 - Brute Force Procedure BFP
- 4 Simulation Study
 - Simulation design
 - Results
 - Conclusions

Automated (new) procedure: A priori defintion of latent trait levels of interest on which the STF should be focusing the most

Issue

Not an automated procedure \rightarrow depends on the subjectivity of the researcher **Automated (new) procedure:** A priori defintion of latent trait levels of interest on which the STF should be focusing the most

Issue

Not an automated procedure \rightarrow depends on the subjectivity of the researcher **Automated (new) procedure:** A priori defintion of latent trait levels of interest on which the STF should be focusing the most

Issue

Punctual definition of the specific latent trait levels of interest influences the number of selected items

Issue

Not an automated procedure \rightarrow depends on the subjectivity of the researcher **Automated (new) procedure:** A priori defintion of latent trait levels of interest on which the STF should be focusing the most

Issue

Punctual definition of the specific latent trait levels of interest influences the number of selected items

AIM

New automated procedure for item selection in IRT that only requires the definition of the desired characteristics of a test

LItem Response Theory and Information Functions

- 1 Aim
- 2 Item Response Theory and Information Functions
 - 2-Parameter Logistic Model
 - Item and Test Information Functions
- 3 Item Selection Procedures
 - Item Locating Algorithm ILA
 - Brute Force Procedure BFP
- 4 Simulation Study
 - Simulation design
 - Results
 - Conclusions

- 1 Aim
- 2 Item Response Theory and Information Functions
 - 2-Parameter Logistic Model
 - Item and Test Information Functions
- 3 Item Selection Procedures
 - Item Locating Algorithm ILA
 - Brute Force Procedure BFP
- 4 Simulation Study
 - Simulation design
 - Results
 - Conclusions

$$P(x_{pi} = 1 | \theta_p, b_i, a_i) = \frac{\exp[a_i(\theta_p - b_i)]}{1 + \exp[a_i(\theta_p - b_i)]}$$

- 1 Aim
- 2 Item Response Theory and Information Functions
 - 2-Parameter Logistic Model
 - Item and Test Information Functions
- 3 Item Selection Procedures
 - Item Locating Algorithm ILA
 - Brute Force Procedure BFP
- 4 Simulation Study
 - Simulation design
 - Results
 - Conclusions

Item Information Function (IIF): $I_i(\theta) = a_i^2 P_i(\theta, b_i, a_i) [1 - P_i(\theta, b_i, a_i)]$

Test Information Function (TIF): $I(\theta) = \sum_{i=1}^{I} I_i(\theta)$

- 1 Aim
- 2 Item Response Theory and Information Functions
 - 2-Parameter Logistic Model
 - Item and Test Information Functions
- 3 Item Selection Procedures
 - Item Locating Algorithm ILA
 - Brute Force Procedure BFP
- 4 Simulation Study
 - Simulation design
 - Results
 - Conclusions

- 1 Aim
- 2 Item Response Theory and Information Functions
 - 2-Parameter Logistic Model
 - Item and Test Information Functions
- 3 Item Selection Procedures
 - Item Locating Algorithm ILA
 - Brute Force Procedure BFP
- 4 Simulation Study
 - Simulation design
 - Results
 - Conclusions

Set up:

N: number of items included in the item bank

 Q^k : Set of item indexes selected for inclusion in the STF up to iteration $k \ (Q^0 = \emptyset)$

TIF*: TIF target

$$\mathbf{TIF}^0 = (0, 0, \dots, 0)$$

ILA Algorithm:

- 1 Aim
- 2 Item Response Theory and Information Functions
 - 2-Parameter Logistic Model
 - Item and Test Information Functions
- 3 Item Selection Procedures
 - Item Locating Algorithm ILA
 - Brute Force Procedure BFP
- 4 Simulation Study
 - Simulation design
 - Results
 - Conclusions

For each $Q_m \subset Q$ with $Q_m \neq \emptyset$, calculate:

$$TIF^{Q_m} = \frac{\sum_{i \in Q_m} IIF_i}{||Q_m||}$$

$$Q_{BFP} = \arg\min_{\emptyset \neq Q_m \subset Q} \overline{\Delta}_{\mathbf{TIF}^{Q_m}}$$

- 1 Aim
- 2 Item Response Theory and Information Functions
 - 2-Parameter Logistic Model
 - Item and Test Information Functions
- 3 Item Selection Procedures
 - Item Locating Algorithm ILA
 - Brute Force Procedure BFP
- 4 Simulation Study
 - Simulation design
 - Results
 - Conclusions

- 1 Aim
- 2 Item Response Theory and Information Functions
 - 2-Parameter Logistic Model
 - Item and Test Information Functions
- 3 Item Selection Procedures
 - Item Locating Algorithm ILA
 - Brute Force Procedure BFP
- 4 Simulation Study
 - Simulation design
 - Results
 - Conclusions

100 iterations:

- ① Generate an item bank B of N=6 items:
 - Difficulty parameters: $\mathcal{U}(-3,3)$
 - Discrimination parameters: $\mathcal{U}(.90, 2.0)$
- 2 Random item selections of lengths l from B ($M_l = 3.34 \pm 1.13$) + modification parameters $\mathcal{U}(-0.20, 0.20) \to \mathbf{TIF}^*$
- 3 Considering **TIF*** at Step 2 and item parameters at Step 1:
 - ILA \rightarrow Forwardly searches
 - \bullet BFP \rightarrow Systematically tests

Comparison:

- $||Q_{\mathrm{BFP}}|| ||Q_{\mathrm{ILA}}||$
- ullet Percentile rank of the distance $\mathbf{TIF}_{\mathrm{BFP}} \mathbf{TIF}_{\mathrm{ILA}}$

- 1 Aim
- (2) Item Response Theory and Information Functions
 - 2-Parameter Logistic Model
 - Item and Test Information Functions
- 3 Item Selection Procedures
 - Item Locating Algorithm ILA
 - Brute Force Procedure BFP
- 4 Simulation Study
 - Simulation design
 - Results
 - Conclusions

 $57\% \to ||Q_{BFP}|| - ||Q_{ILA}|| = 0$

Figure: $43\% \rightarrow ||Q_{\rm BFP}|| - ||Q_{\rm ILA}|| \neq 0$

- 1 Aim
- 2 Item Response Theory and Information Functions
 - 2-Parameter Logistic Model
 - Item and Test Information Functions
- 3 Item Selection Procedures
 - Item Locating Algorithm ILA
 - Brute Force Procedure BFP
- 4 Simulation Study
 - Simulation design
 - Results
 - Conclusions

Pros

- ILA selects items that are able to recreate the desired characteristics of a test (usually)
- It is computationally "Light"

Cons

- ILA grounds its selection on a single $\theta_{target} \rightarrow$ it might select items minimizing the distance on that target but that are useless for the test
- \bullet ILA only forwardly searches an item \rightarrow once it is in, it can't get out
- ILA does not account for the discrimination parameters of the items