Estudo do campo magnético através das bobinas de Helmholtz

Autores:

João Gameiro, №93097

Francisco Martino, №85088

Leandro Rito, №92975

Turma: PL4 / Grupo: 3 / Data: 10-12-2019

Sumário

Os principais objetivos deste trabalho são: calibrar uma sonda de efeito Hall por meio de um solenoide, estabelecer a configuração de Helmholtz e medir o campo magnético ao longo do eixo de duas bobinas e verificar o princípio da sobreposição.

Para realizar o trabalho e atingir os objetivos esperados, será seguido o guião prático disponibilizado. Todos os procedimentos e dados obtidos serão registados para posterior análise e tratamento. Um relatório será ser posteriormente elaborado partindo de toda a informação recolhida.

Para parte A é suposto obter uma reta afim que representa a tensão em função da intensidade.

Na parte B espera-se que seja possível verificar o princípio da sobreposição através do gráfico obtido, com auxílio dos dados obtidos na parte A.

Introdução Teórica

Um campo magnético é criado a partir de correntes elétricas em movimento e pode ser calculado através da Lei de Ampere.

Considerando um solenoide em que N/L representa o número de espiras por unidade de comprimento, e μ_0 constante de permeabilidade magnética do vácuo, partindo da Lei de Ampere podemos obter o campo magnético.

Para $l = \frac{N}{L}l$ e sabendo que $\mu_0 \cdot I_n = \mu_0 \cdot \frac{N}{L}l \cdot I$ através da Lei da Ampere obtemos:

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \cdot I_{int} \Rightarrow B \cdot l = \frac{\mu_0 \cdot N \cdot l}{L} \cdot I \Leftrightarrow B = \frac{\mu_0 \cdot N}{L} \cdot I$$

Esta expressão é válida nos casos em que que o comprimento é muito maior que o raio.

Contrariamente ao solenoide, temos o caso das bobinas de Helmholtz, constituídas por dois enrolamentos em que o raio é muito maior que o comprimento.

Se estas bobinas forem exatamente iguais, a distância entre si for igual ao seu raio e forem percorridas por correntes iguais com o mesmo sentido é criado um campo magnético uniforme ao longo do eixo dos enrolamentos.

Neste caso a expressão para cálculo do campo magnético é:

$$B(x) = \frac{\mu_0}{2} \cdot \frac{I \cdot R^2}{(R^2 + x^2)^{\frac{3}{2}}}$$

Em que x representa a distância em relação ao centro entre as bobinas e R o raio dos enrolamentos.

Quando nos encontramos na presença de um campo magnético perpendicular a uma corrente que atravessa um condutor, gera-se uma diferença de potencial intitulada de efeito Hall. Esta tensão pode ser medida através de:

$$qE = q V_H h = qvB \Longrightarrow V_H = vhB$$

A tensão de Hall é proporcional à corrente de Hall que percorre o material e à intensidade do campo magnético. (--Se a intensidade for constante conseguimos, a tensão de Hall é proporcional ao campo.--) Para medir o campo magnético com uma sonda é necessário calibrá-la, para que seja possível calcular a constante de proporcionalidade (CC – constante de calibração).

Para a calibração da sonda de Hall (Parte A), as grandezas a serem medidas são a intensidade (que produz vários valores de campo magnético) e a tensão.

No entanto para a Parte B após a certificação de que a intensidade da corrente é 0,5 A, serão medidas a posição e a tensão para posteriormente se calcular o campo magnético e se observar o princípio da sobreposição.

Procedimento Experimental

Parte A

Figura 1: Esquema de Montagem da Parte A

Material

Fonte de alimentação simétrica;

- Reóstato;
- Medidor Efeito Hall;
- Multímetros;
- Solenoide;
- Sonda;
- Cabos (interligação de componentes).

Metodologia

- 1. Efetuar a montagem da experiência de acordo com a especificada na Figura 1;
- 2. Registar o comprimento do solenoide (23 cm);
- 3. Registar o valor de N/L;
- **4.** Registar os vários pontos do solenoide de acordo com o seu comprimento (P_i=0 cm, P_{médio}=11,5 cm e P_{final}=23 cm);
- **5.** Inserir a sonda no solenoide de modo a que a mesma se encontre num ponto do eixo que minimize a aproximação de solenoide infinito $(P_{médio})$;
- **6.** Regular os multímetros de modo a que estejam prontos para medir a intensidade e a tensão;
- 7. Variar a resistência de modo a que seja possível recolher dados para a observação da relação entre a tensão e intensidade;
- 8. Registar todos os valores obtidos.

Parte B

Figura 2: Esquema de Montagem da Parte B

Figura 3: Esquema da montagem das bobinas em série para a medição da tensão

Material

- Fonte de alimentação simétrica;
- Reóstato;
- Medidor Efeito Hall;
- Multímetros;
- Bobinas;
- Sonda;
- Cabos (interligação de componentes).

Metodologia

- 1. Medir o diâmetro das bobinas para obter o raio das mesmas (r);
- 2. Colocar nas bobinas a uma distância igual ao raio obtido no ponto anterior;
- 3. Regular os multímetros para medirem intensidade e tensão;
- 4. Variar a resistência de modo a que a intensidade seja igual a 0,5 A;
- 5. Colocar a sonda no interior das bobinas;
- 6. Efetuar a preparação do circuito para a medição da tensão apenas na bobina 1;
- 7. Medir os vários valores de tensão para cada posição da sonda;
- 8. Efetuar a preparação do circuito para a medição da tensão apenas na bobina 2;
- 9. Medir os vários valores de tensão para cada posição da sonda;
- **10.** Alterar o circuito de modo a que seja possível medir a tensão das bobinas em série (Figura 3);
- 11. Medir os vários valores de tensão para cada posição da sonda.

Parte A

Medições

Valores medidos para a intensidade e tensão:

Pontos	Intensidade(A), Is	Tensão(V), V _H
P1	0,01	0,037
P2	0,02	0,052
Р3	0,04	0,081
P4	0,05	0,101
P5	0,1	0,185
P6	0,2	0,328
P7	0,3	0,482
P8	0,5	0,792
P9	0,68	1,058
P10	1,01	1,540

Cálculos

Gráfico da Tensão em Função da Intensidade:

O declive (m) representa a relação entre a intensidade e a tensão que será posteriormente utilizado na Parte B.

Parte B

Medições

Raio das Bobinas (r): 3,5 ± 0,05 cm

Valores de tensão medidos para as bobinas juntas, bobina 1 e bobina 2:

A distância é relativa ao ponto que se localiza no centro das bobinas

Posição	Bobina1	Bobina2	Bobina1 e Bobina2 (em série)
Distância (cm)	Tensão(V)	Tensão(V)	Tensão(V)
-8	0,003	0,000	0,006
-7	0,005	0,000	0,009
-6	0,009	0,001	0,013
-5	0,013	0,002	0,020
-4	0,022	0,005	0,031
-3	0,030	0,008	0,041
-2	0,037	0,012	0,052
-1	0,038	0,019	0,061
0	0,033	0,027	0,063
1	0,025	0,035	0,064
2	0,017	0,039	0,060
3	0,011	0,037	0,052
4	0,007	0,030	0,041
5	0,004	0,021	0,029
6	0,002	0,015	0,020
7	0,001	0,009	0,013
8	0,000	0,005	0,008
9	0,000	0,004	0,005

Cálculos

Cálculo do CC e do seu respetivo erro:

Sabendo que $\Delta I=0.01$, $\Delta \frac{N}{L}=60$ e $\Delta V_{H}=0.001$ temos que

$$\Delta CC = \left| \frac{1}{\mu_0 \frac{N}{L} I} \right| \cdot \Delta V_H + \left| \frac{V_H}{-\mu_0 \left(\frac{N}{L} \right)^2 I} \right| \cdot \Delta \frac{N}{L} + \left| \frac{V_H}{-\mu_0 \frac{N}{L} I^2} \right| \cdot \Delta I$$
 (1)

Substituindo na expressão (1) obtemos o valor final do erro de CC que é de

$$\Delta CC = 0.728$$

Tendo que $CC = \frac{V_H}{\mu_0 \frac{N}{L} I}$, obtemos o valor de CC é de 4,25

Assim sendo obtemos que o erro relativo é $\frac{\Delta CC}{cc} \times 100 = 17,129 \%$

Podemos calcular o campo magnético através da seguinte expressão:

$$B = CC \cdot V_h \Leftrightarrow \frac{B}{V_h} = CC \Leftrightarrow CC = \frac{m}{\mu_0 \cdot \frac{N}{L}} \Leftrightarrow \frac{B}{V_h} = \frac{m}{\mu_0 \cdot \frac{N}{L}} \Leftrightarrow B = \frac{m}{\mu_0 \cdot \frac{N}{L}} \cdot V_h$$

Campo Bobina1	Campo Bobina2	Campo Bobinas série
8,82353E-05	0	0,00017647
0,000117647	0	0,00026471
0,000264706	2,94E-05	0,00038235
0,000382353	5,88E-05	0,00058824
0,000647059	0,000147	0,00091176
0,000882353	0,000235	0,00120588
0,001088235	0,000353	0,00152941
0,001117647	0,000559	0,00179412
0,000970588	0,000794	0,00185294
0,000735294	0,001029	0,00185294
0,0005	0,001147	0,00176471
0,000323529	0,001088	0,00152941
0,000205882	0,000882	0,00120588
0,000117647	0,000618	0,00085294
5,88235E-05	0,000441	0,00058824
2,94118E-05	0,000265	0,00038235
0	0,000147	0,00023529
0	0,000118	0,00014706

Estima do Nº de espiras da bobina de Helmholtz:

Usando uma expressão em que B_T representa o valor de campo teórico e B_P representa o valor de campo magnético prático, podemos obter uma estima do N^o de espiras (N) da bobina.

Ao escolher um par de valores da Parte e usando a expressão (2) do enunciado, obtemos o valor de Campo Teório.

$$B_p = N \times B_t \Leftrightarrow N = \frac{B_p}{B_t} \Leftrightarrow N = \frac{0,00117647}{1,019899028 \times 10^{-6}} = 1153,516 \ espiras$$

Discussão e Conclusão

O valor do erro relativo obtido para a constante de calibração é 17,129%.

Ao observar o gráfico da distância em função do campo podemos observar o princípio da sobreposição através do facto de que a soma dos valores de campo das bobinas 1 e 2 são equivalentes ao valor de campo obtidos para as bobinas e série.

Fontes de erro:

- Dificuldade em obter uma intensidade precisa (Parte B);
- Medição imprecisa do raio das Bobinas.