ELETROMAGNETISMO

MEFT

3ªSérie de problemas

(Eletrostática – Condensadores, Dielétricos, Energia Eletrostática)

1) Condutores [Exerc.3.5 JL]

Duas esferas condutoras homogéneas de raios a e b, com os centros separados pela distância d (ver figura), têm respetivamente carga $q_a = Q$ e $q_b = 0$, na altura em que se ligam por um fio condutor neutro.

- a) Calcule os potenciais elétricos das duas esferas, bem como as cargas em cada esfera, após atingir o equilíbrio e desprezando a carga que possa ficar no fio, supondo que $a, b \ll d \ll \infty$.
- b) Calcule os potenciais elétricos das duas esferas, bem como as cargas em cada esfera, após atingir o equilíbrio e desprezando a carga que possa ficar no fio, no limite $d \to \infty$ (isto é, de forma a que não haja influência elétrica entre as cargas).

2) Equação de Laplace

Determine o potencial elétrico na região do espaço (x, y, z) delimitado pelos planos x = 0 e x = d e pelo plano y = 0 (para y > 0), com as condições fronteira $\phi(x = 0, y, z) = \phi(x = d, y, z) = 0$ e no plano y = 0, $\phi(x, 0, z) = \varphi_0 \sin \frac{\pi x}{d}$ (para $0 \le x \le d$) e calcule o campo elétrico nessa região.

[R: Sug.: parta da solução geral da equação de Laplace $\nabla^2 = 0$ com separação de variáveis, $\phi(x,y,z) = \sum_{j=0}^{\infty} (A_j e^{a_j x} + A_j' e^{-a_j x}) (B_j e^{b_j y} + B_j' e^{-b_j y}) (C_j e^{c_j z} + C_j' e^{-c_j z})$, com $a_j^2 + b_j^2 + c_j^2 = 0$, e aplique as condições fronteira (note que a_i , b_i , c_i são números complexos – que podem ser reais).

3) Método das Imagens (solução sugerida por Lord Kelvin)

Uma esfera condutora de raio R_0 está ligada à Terra (potencial elétrico $\phi = 0$ V), na origem do referencial. À distância $z = 3R_0$ do centro da esfera está uma carga pontual q).

- a) Calcule o potencial elétrico em todo o espaço (em função das coordenadas cilíndricas (R, φ, z) do ponto onde está a calcular o potencial).
 - [R: Sug.: Comece por mostrar que pode substituir a esfera por uma carga pontual q' = -q/3 colocada em $z = +R_0/3$;

b) Sabendo que a normal à superfície exterior da esfera se pode escrever em coordenadas cilíndricas como $\vec{n} = \frac{1}{R_0} \left[\left(\sqrt{R_0^2 - z^2} \right) \vec{e}_R + z \vec{e}_z \right]$, calcule a densidade de carga elétrica à superfície da esfera.

4) Capacidade e meios dielétricos

Dois condutores planos quadrados e iguais, com área total 2 m², estão sob influência mútua separados por uma distância d=4 mm. O meio entre eles tem uma constante dielétrica $\epsilon=2\epsilon_0=1,77x10^{-11}$ F/m. Justifique todas as aproximações que entender aplicar. Se a carga total num dos condutores for Q= 4 μ C,

- a) Determine a carga total no outro condutor;
- b) Calcule o campo elétrico em todo o espaço;
- c) Determine a diferença de potencial entre os condutores;
- d) Calcule a capacidade deste sistema capacitivo (condensador).

- e) Introduz-se agora um terceiro condutor igual entre os dois condutores, ficando à distância d=1 mm de um dos condutores. Despreze a espessura dos condutores.
 - Calcule a capacidade deste novo sistema;
- f) Finalmente substitui-se no volume mais pequeno o meio por ar, com constante dielétrica aproximadamente igual à do vácuo, $\epsilon_0 = 8,854 \text{x} \, 10^{-12} \, \text{F/m}$. Calcule a capacidade do sistema.

5) Capacidade e meios dielétricos

Um condutor esférico maciço de raio R_A =0,05 m tem uma carga Q=+5 nC uniformemente distribuída (em superfície). Envolvendo esta esfera encontram-se outras esferas condutoras 2 e 3, ocas e eletricamente descarregadas, de raios interiores R_{BI} =0.2 m, R_{CI} =0.4 m, e raios exteriores R_{BE} =0.25 m, R_{CE} =0.45 m, respetivamente, como mostra a figura. Os meios entre os condutores têm constante dielétrica ε = 2X = 2 ε 0 = 1,77×10⁻¹¹ F/m. No exterior do sistema tem-se constante dielétrica ε = ε 0.

- a) Determine o campo elétrico em função da distância r ao centro das esferas.
- b) Determine o potencial elétrico em função da distância r ao centro das esferas.
- c) Calcule a capacidade do sistema.
- d) Se ligar a esfera exterior à Terra ($\phi_C = 0 \text{ V}$), calcule a carga nesse condutor, Q_C ?

6) Campo Elétrico e Capacidade

Considere o sistema esquematizado na figura, em que duas placas quadradas condutoras e sob influência mútua, envolvem duas regiões A e B com constantes dielétricas respetivamente iguais a ϵ_A =2X=10 ϵ_0 , ϵ_B =3X=15 ϵ_0 . As placas têm 1 m de lado.

- a) Se a diferença de potencial elétrico entre as placas for V=10 V, qual o valor do campo elétrico E em todo o espaço? Justifique.
- b) Usando o Teorema de Gauss, calcule o valor da carga total nas regiões da placa esquerda em contacto com as regiões A e B.
- c) Qual a capacidade deste sistema, e quais as capacidades obtidas se partíssemos as placas pela linha de fronteira entre as regiões A e B (ver figura)?
- d) Se ligássemos estes dois sistemas A e B em paralelo num circuito, por qual deles fluiria melhor a corrente elétrica (antes de atingirem o equilíbrio)? E se retirássemos os meios dielétricos, ficando com ar em ambos os casos, por qual deles fluiria melhor a corrente elétrica (antes de carregarem)? Justifique sumariamente em ambos os casos.

- 7) Capacidade, energia e força eletrostática [Exerc.4.11C JL] Considere um condensador plano, suposto ideal, de dielétrico vácuo, de armaduras de área A=a × l, separadas da distância d. Supondo que o espaço entre as armaduras é gradualmente substituído por um dielétrico de permitividade ε, determine:
 - a) A capacidade C(x) do condensador assim formado.
 - b) A variação de energia eletrostática do condensador a cargas constantes, após a substituição completa do vácuo pelo dielétrico de permitividade ε.]
 - c) Refaça a alínea anterior assumindo que a substituição se faz a potenciais constantes.

8) Capacidade, energia e força eletrostática [Exerc.4.12C JL] Um líquido dielétrico de permitividade ε e massa volúmica ρ_m é "aspirado" na vertical, a potenciais constantes, pelo condensador da figura. Calcule:

- a) A Capacidade do condensador em função da altura y;
- b) A força eletrostática que se exerce sobre o dielétrico.
- c) A posição de equilíbrio da superfície líquida.
- d) O Balanço de energia eletrostática.

9) Energia eletrostática e força sobre dielétricos [Problem 4.28 DG] Um cilindro e um tubo cilíndrico aberto, condutores, de altura L e coaxiais (o interior maciço de raio a, o exterior de raio b e espessura desprezável, com $a, b \ll L$), estão sobre uma tina com um óleo dielétrico de susceptibilidade elétrica χ_e e massa volúmica ρ_m . Supondo que o cilindro exterior está ligado à Terra (potencial elétrico zero) e o interior é mantido com um potencial elétrico $\phi(a) = V$,

- a) Calcule o campo elétrico no espaço entre os tubos, na zona com ar e na zona com óleo.
 - [R:(Sug.: comece por calcular o campo para uma densidade linear de carga e de seguida calcule o potencial em a que terá que ser V)]
- b) Calcule as cargas elétricas nas superfícies do condutor interior em contacto com o ar e com o óleo.
- c) Calcule a capacidade do sistema em função da altura a que sobe o dielétrico, h.
- d) Calcule a altura h a que sobe o dielétrico.
- **10)** Associação de condensadores

Considere o seguinte diagrama especial dum circuito com capacidades $C_1 = 10 \text{ pF}, C_2 = 20 \text{ pF e } C_3 = 30 \text{ pF}.$

- a) Determine a capacidade equivalente C_{eq} do sistema entre os pontos A e B;
- b) Determine a capacidade equivalente C_{eq} do sistema entre os pontos D e E. (Sug.: qual a carga e tensão em C₃ no equilíbrio?)

11) Funcionamento de condensadores

Um condensador de capacidade $C_1 = 10 \mu F$ é carregado até atingir uma tensão $V_0 = 15 \text{ V}$. Depois é ligado em série com um condensador descarregado de capacidade $C_2 = 5 \mu F$ em circuito aberto (figura da esquerda).

a) Explique o que acontece às cargas e tensões dos condensadores C1 e C2 nessas condições;

- b) Depois do circuito ser fechado (figura central) determine as cargas Q_1 , Q_2 , tensões V_1 , V_2 e energias armazenadas W_1 , W_2 para os condensadores C_1 e C_2 , após atingir o equilíbrio.
- c) Assumindo agora que o circuito é fechado em série com uma bateria que pode fornecer uma tensão V = 50V (figura da direita), e que ambos os condensadores estão descarregados quando fecha o circuito, determine as cargas, tensões e energias nos condensadores após atingir o equilíbrio.

