Math 101 Tutorial Worksheet 10

There is an associated quiz due on BrightSpace on Tuesday, March 29 at 10:00 PM

- 1. Evaluate the following expressions and write your answers in the form a + bi.
 - (a) (3+2i)(8-2i)
 - (b) $\frac{1+4i}{3+2i}$
 - (c) 2i(4-i)
 - (d) $e^{\frac{\pi}{6}i}$
- 2. Express the following complex numbers in the exponential form $re^{i\theta}$ with $r \geq 0$ and $-\pi < \theta \leq \pi$, and in the polar form $r(\cos \theta + i \sin \theta)$. Sketch the diagram for each calculation.
 - (a) 4 4i
 - (b) $\frac{1}{2} + \frac{1}{2}i$
 - (c) $2\sqrt{3} 2i$
 - (d) $\frac{1+i}{1-i}$
- 3. Find the indicated power using De Moivre's Theorem.
 - (a) $(1 \sqrt{3i})^5$
 - (b) $(1-i)^8$
- 4. Find the indicated roots. Sketch the roots in the complex plane.
 - (a) The fifth roots of 32
 - (b) The cube roots of 1+i
- 5. (i) Find the formal Taylor series for $e^{i\theta}$ and $e^{-i\theta}$.
 - (ii) Using the formal Taylor series for $\sin \theta$ and $\cos \theta$, derive Euler's Formula: $e^{i\theta} = \cos \theta + i \sin \theta$.
 - (iii) Using (ii), show that $\cos \theta = \frac{1}{2} (e^{i\theta} + e^{-i\theta}).$