

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 55-018656

(43)Date of publication of application : 08.02.1980

(51)Int.Cl.

G03G 13/08

(21)Application number : 53-092105

(71)Applicant : CANON INC

(22)Date of filing : 28.07.1978

(72)Inventor : KANBE JUNICHIRO
TOYONO TSUTOMU
HOSONO NAGAO
TAKAHASHI TORU

(54) ELECTROPHOTOGRAPHIC DEVELOPING METHOD

(57)Abstract:

PURPOSE: To obtain visible images excelling in gradient by enhancing the reproducibility of picture image, by adjusting so that the intensity of electric field acting in the developing gap between the toner carrier and electrostatic image holder may vary in specific form.

CONSTITUTION: An electrostatic image holder 10 and a toner carrier 12 are opposingly provided in a developing section, keeping a certain gap, and AC voltage is applied to the toner carrier 12 from a power source 9, and a low frequency electric field is applied. In this constitution, in the space between the non-picture image part of the electrostatic image holder 10 and the toner carrier 12, the toner particles are caused to move reciprocally. In about 0.2sec after start of development, the AC voltage is attenuated to zero at the time constant of about 0.5sec, the toner particles are moved in one direction from the toner carrier 12 to the picture image part in the picture image part, and in one direction from the non-picture image part to the toner carrier 12 in the non-picture image part.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

⑯ 日本国特許庁 (JP)

⑪ 特許出願公開

⑰ 公開特許公報 (A)

昭55—18656

⑤Int. Cl.³
G 03 G 13/08

識別記号

府内整理番号
6715—2H

④公開 昭和55年(1980)2月8日

発明の数 1
審査請求 未請求

(全18頁)

④電子写真現像方法

②特 願 昭53—92105

②出 願 昭53(1978)7月28日

⑦發明者 神辺純一郎

東京都大田区田園調布本町44—
7 楠荘

⑦發明者 豊野勉

東京都練馬区東大泉町571

⑦發明者 細野長穂

調布市下石原3丁目37番1号

⑦發明者 高橋通

東京都杉並区阿佐谷北2—10—
6

⑦出願人 キヤノン株式会社

東京都大田区下丸子3丁目30番
2号

⑦代理人 弁理士 丸島儀一

明細書

1. 発明の名称 電子写真現像方法

2. 特許請求の範囲

(1) 静電像を表面に形成した静電像保持体と現像剤層を表面に担持した現像剤担持体とを現像部において間隙を保持して対峙させ、

上記現像間隙における低周波電界が上記静電像保持体の少くとも非画像部においては交番すべて外部振動電界を与えることにより該非画像部と該現像剤担持体の間ににおいて、現像剤の粒子の往復運動を行わしめる第一の過程と、

上記外部振動電界の強度を調節し、現像剤粒子の転移を、画像部においては該現像剤担持体から該画像部へ一方的に、又非画像部においては該非画像部から該現像剤担持体へ一方的に起こさせる第二の過程と、

を有することを特徴とする電子写真現像方法。

(2) 特許請求の範囲の第1項に記載の電子写真現像方法において、該静電像形成面と該現像剤担持体とを静止して相対せしめ、該外部印加振動電界の振幅を現像終末時に向て減衰せしめ、一定値に収束させる過程において、上記第二の過程を与えることを特徴とする電子写真現像方法。

(3) 特許請求の範囲の第1項に記載の電子写真現像方法において、該外部印加振動電圧を一定に保ち、該静電像形成面と該現像剤担持体とを移動させつつ相対せしめ、その間隙を序々に大きくしていくことにより上記第二の過程を与えることを特徴とする電子写真現像方法。

(4) 特許請求の範囲の第1項から第3項のいずれか1項に記載の電子写真現像方法において、

該振動電圧の周波数が1KHz以下であることを特徴とする電子写真現像方法。

3. 発明の詳細な説明

本発明は、電子写真現像方法に関し、更に詳言すれば一成分現像剤を使用する電子写真現像方法に係り、特に画像鮮明度にすぐれ、階調性に富む可視像を得ることを可能にする電子写真現像方法に関するもの。

従来、一成分現像剤を使用する電子写真現像方法として、トナー粒子を噴霧状態にして用いるパウダー・クラウド法、ウエーブレジスト等によるトナー支持部材上に形成した一様なトナー層を静電像保持面に接触させて現像をおこなうコンタクト現像法、トナー層を静電像保持面上直接接触させず、静電像の電界により保持面上にトナーを選択的に飛行させるジャンピング現像法がある。

静電像の電界によるトナーの飛行現象を利用している為、得られる可視像は一般に次のような欠点を有している。

即ち、その主要なものは、ジャンピング現像法によつて得られる画像は、一般に階調性に欠けるという問題である。ジャンピング現像法においては、静電像の電界によつてトナーが、トナー支持体への拘束力に打ち勝つた時始めて飛行する。このトナーをトナー支持体に拘束している力は、トナーと、トナー支持体との間のファンデル・ワールス力、トナー同志の付着力、及びトナーが帶電していることにもとづくトナー支持体との間の鏡映力等の合力である。従つて、静電像の電位がある一定の値（以下、トナーの転移閾値と呼ぶ）以上になり、それによる電界が、上記トナーの拘束力以上になつた時始

像方法、また、導電性・磁性トナーを用いて、磁気ブラシを形成し静電像保持面に接触させて現像するマグネドライ法等が知られている。

上述の各種一成分現像方法のうち、パウダークラウド法、コンタクト現像法及びマグネドライ法は、トナーは静電像保持面に画像部（本来トナーが付着すべき部分）、非画像部（本来トナーが付着すべきでない他の領域部分）の区別なく、接触するため、多少とも非画像部にもトナー付着が生じ、所謂地かぶりの発生を避けることが出来なかつた。しかしながら、ジャンピング現像法（例えば特公昭41-9475号公報に記載の方法）は、トナー層と静電像保持面とが非接触で、間隙を有するようにして現像するため、地かぶりの防止という点では極めて有効な方法である。しかしながら、現像に際して、トナー飛行がおこり、静電像保持面へのトナー付着が生ずる。もつとも、上記トナーの支持体への拘束力は、一定の処方により製造・調合されたトナーであつても、個々のトナーにより、或いはまたトナーの粒径等によりその値は異なるから、ほぼ一定の値のまわりに狭く分布しているものと考えられ、それに対応して上記トナーの飛行の生ずる静電像表面電位の閾値もある一定の値のまわりに狭く分布しているものと思われる。このように支持体からのトナーの飛行の際に、閾値が存在するためこの閾値を超える表面電位を有する画像部には、トナー付着が生ずるが、逆に閾値以下の表面電位を有する画像部にはほとんどトナー付着が生じないとされる結果になり、所謂 γ （ γ = 静電像電位に対する画像濃度の特性曲線の勾配）の立つた階

調性にとぼしい画像しか得られないという結果になる。

本発明は、上述の各種一成分現像方法の問題点を除去すべくなされた発明であつて、その主要目的とするところは、画像の再現性にすぐれ、階調性に富む可視像を得ることを可能にする電子写真現像方法を提供することにある。

上記目的を達成するため、本発明は、次を特徴とするものである。

(1) 静電像を表面に形成した静電像保持体と現像剤層を表面に担持した現像剤担持体とを現像部において間隙を保持して対峙させ、

上記現像間隙における低周波電界が上記静電像保持体の少くとも非画像部においては交番すべく外部振動電界を与えることにより該非画像部と該現像剤担持体の間ににおいて、現像剤の粒

7

を有する電子写真現像方法。

(4) 第1項～第3項のいずれか1項において、該振動電圧の周波数が1KHz以下である電子写真現像方法。

以下、本発明に係る電子写真現像方法の実施態様並びに実施例を図面を参照して、詳細に説明する。

第1図(A), (B)は、本発明に係る電子写真現像方法の原理的説明をなすために描いたもので、先ず、この図面を用いて本発明の目的並びに効果として表現される、顕画像の地カブリ防止及び階調性向上について原理的説明を行う。

第1図(A)は、横軸に静電像電位がとられ、縦軸には現像剤担持体(以下トナー担持体とも言ふ)から静電像保持面へのトナーの転移量(正方向)、又は静電像保持面に付着したトナーが

9

子の往復運動を行わしめる第一の過程と、

上記外部振動電界の強度を調節し、現像剤粒子の転移を、画像部においては該現像剤担持体から該画像部へ一方的に、又非画像部においては該非画像部から該現像剤担持体へ一方的に起こさせる第二の過程と、

を有する電子写真現像方法。

(2) 第1項において、該静電像形成面と該現像剤担持体とを静止して相対せしめ、該外部印加振動電界の振幅を現像終末時に向つて減衰せしめ、一定値に収束させる過程において、上記第二の過程を与える電子写真現像方法。

(3) 第1項において、該外部印加振動電圧を一定に保ち、該静電像形成面と該現像剤担持体とを移動させつつ相対せしめ、その間隙を序々に大きくしていくことにより上記第二の過程を与

8

ドナー担持体へはぎとられるトナー逆転移度(負方向、転移度については後述する)をとつて示したグラフである。静電像電位としては、非画像部電位 v_L (通常は画像の明部に対応する部位の表面電位で、電位としては最小の値である。) と画像部電位 v_D (通常は画像の暗部に対応する部位の表面電位で、電位としては最大の値である。) を両端の電位として表わしてある。尚、中間調を含む画像の該中間調部位の表面電位は、その階調の程度により、 v_D と v_L の中間の電位をとる。

第1図(B)には、トナー担持体に印加する電圧波形が横軸に電位を、縦軸に時間をとつて描いてある。矩形波が例示されているが、後述する通り、この波形に限定されるものではない。例示された矩形波は、時間間隔 t_1 では上記静電像

10

保持体の背面電極を基準としたトナー担持体への印加電圧最小値 v_{min} のバイアス電圧が印加され、同 t_1 では同最大値 v_{max} のバイアス電圧が印加される周期的交番波形である。

画像部電 v_D は、用いる静電像形成プロセスによって正電位を探る場合と、負電位を探る場合があり、非画像部電位 v_L についても然りである。しかし、ここでは理解を易しくする観点から、先ず v_D が正電位の場合を、特に例にとり以下説明していく。勿論、これは説明のためのもので、本発明はこれに限定されない。 $v_D = 0$ の場合、勿論非画像部電位 v_L との関係は $v_D \geq v_L$ となる。さて、ここで、トナー担持体に印加する上記最大電圧 v_{max} 、最小電圧 v_{min} と v_L との関係を

$$v_{max} > v_L > v_{min} \quad \dots \dots \dots (1)$$

を満足するように設定すると、時間間隔 t_1 では

11

担持体に向かつて逆転移してくる量を示したもので、トナー逆転移の確率を表わす趣旨から逆転移度なる用語にしたわけである。

さて、トナー転移段階における、トナー担持体から静電像保持体へのトナー転移量は、第1図(A)に破線で示したカーブ1の如くになる。この曲線の傾きは、バイアス交番電圧を印加しない場合の曲線の傾きにほぼ等しいものである。この傾きは大きく、しかも v_L と v_D との中間の値で、トナー転移量は飽和してしまう傾向にあり、従つて、中間調画像の再現に劣り、階調性は悪い。第1図(A)に示した第2の破線のカーブ2は、トナー逆転移段階における、上述のトナー逆転移の確率を表わしたものである。

本発明に係る現像方法においては、このよう

なトナー転移段階と、トナー逆転移段階とが、バイアス電圧 v_{min} がトナー粒子をトナー担持体から静電像保持体に向けて転移させるよう作用するから、この段階をトナー転移段階と呼ぶ。又、時間間隔 t_1 において静電像保持体へ転移したトナーを逆に、トナー担持体へ戻す傾向に作用するので、この段階をトナー逆転移段階と呼ぶ。

第1図(A)には、 t_1 におけるトナー転移量と、 t_2 におけるトナー逆転移度が静電像電位に対し、モデル的にプロットされている。ここにトナー逆転移度なる用語が用いられているのは、 t_2 において、実際とは異なり、トナーが静電像保持体の画像部と非画像部のいずれにも一様な層として付着している状態を仮想し、この状態からバイアス電圧 v_{max} が印加された場合にトナー12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913<br

領域及び非画像部領域におけるトナー転移とトナー逆転移の様子を現像時間の変化と共に例示したものである。図中、実線矢印の方向はトナー転移方向の電界を示し、矢印の長さがその電界の強度を表わしている。又、破線はトナー逆転移方向の電界を示し、その矢印の長さがその電界の強度を表わしている。

性の極めて高い優れた顕画像が得られる。

現像間際ににおける斯かる電界強度の調節の方法としては、印加交互電圧を次第に適当な直流一定値に収束させていく第一の方法と、現像間隙そのものを現像時間に応じて大きくしていく第二の方法とが考えられる。以下、夫々の方法について詳述する。

先ず第一の方法における現像過程を第2図に示した。

第2図(A)は、上記第一の方法による場合の印加交互電圧の波形の一例の時間的変化を①、②、③の順に例示したものである。勿論連続的変化、又は間欠的変化いずれも可能であつて、連続的変化の場合、図示例の②はその変化の中途の状態を示している。

同図(B)、(C)は、夫々、静電像保持体の画像部

15

現像的に説明する。先ず画像部においては、第2図(B)に例示されるように、第一の過程①において、 $v_{max} > v_D > v_{min}$ であるので t_1 の期間（印加電圧 v_{min} ）では相対的に強いトナー転移電界がトナー担持体から静電像保持体の画像部に向けて起り、トナーが画像部に到來し、そこに付着する。他方、 t_2 の期間（印加電圧 v_{max} ）では、相対的に弱いトナー逆転移電界が静電像保持体の画像部からトナー担持体に向けて起り、トナーが画像部から一部分再びトナー担持体に戻される。このように期間 t_1 、 t_2 が繰り返されるごとに、トナーの転移と逆転移がトナー担持体と非画像部との間に生じる。これは印加電圧 v_{min} 、 v_{max} と画像部電位 v_D との関係が、

$$|v_{max} - v_D| < |v_D - v_{min}| \quad \dots \dots \dots (2)$$

と設定されているため、この第一の過程では、

第2図(A)～(C)中、最初の過程①を第一の過程と呼び、中途段階（より詳しくは後述する）から終了に至るまでの②の過程を第二の過程と呼ぶ。③は終了時を示し、このとき、印加電圧の交番は終了し、 v_D と v_L の中間の適切な直流の一定値 (v_0) に収束する。

上記第一の過程と、第二の過程における画像部と非画像部におけるトナーの転移と逆転移の作用が変化することが重要である。この模様を 16
トナー担持体から画像部へのトナー転移量がトナー逆転移量よりもはるかに多量であるので、トナー逆転移がトナー転移、即ち現像の効果を低下させることは実用的には問題とならない。

次いで第2図(A)の②で示されるように印加バイアス電圧の振幅が連続的又は間欠的に減衰して

$$v_{max} = v_D + |v_{thr}| \quad \dots \dots \dots (3)$$

なる所定の値になると、期間 t_2 において静電像保持体に一旦付着したトナーが、再びトナー担持体側に逆転移する量が 0 となる。ここに $|v_{thr}|$ は、トナーが上記静電像形成面より離脱しトナー担持体へ逆転移を行い得る上記静電像形成面と、トナー担持体表面間の最小の絶対電位差である。

$$\text{更に}, v_{max} < v_D + |v_{thr}| \quad \dots \dots \dots (4)$$

17

18

となると、もはや逆転移が起らない代りに、期間 t_1 のときのトナー転移量よりは少量であるが、トナー担持体から静電像保持体へ向けてのトナーベルトを促進する電界が生じるようになる。

従つて、印加電圧が減衰し

$$v_{max} \leq v_D + |v_{thr}| \quad \dots \dots \dots (5)$$

の関係を満足させる状態となつたとき、この過程を、画像部においては、第二の過程と呼ぶ。画像部におけるこの現象は、印加電圧の交番成分がなくなり、一定の直流値に収束するまで、量的に小さくなりつつ進行して終了し③の状態に至る。

次に静電像保持体の非画像部（電位 v_L ）におけるトナーの移動の過程を第2図(C)を参照して説明する。先ず①として示した第一の過程では、
 $v_{max} > v_L > v_{min}$ であるので、
 t_1 の期間（印加電圧 v_D の減衰時間）

19

移しないこと勿論である。

次いで第2図(A)の②で示されるように印加バイアス電圧の振幅が連続的又は間欠的に減衰して

$$v_{min} = v_L - |v_{thr}| \quad \dots \dots \dots (7)$$

なる所定の値になると、期間 t_1 において、トナー担持体から静電像保持体に転移する量が0となる。ここに $|v_{thr}|$ は、トナーがトナー担持体表面から離脱して上記静電像形成面と上記トナー担持体の最小の絶対電位差である。この値は現像剤、その条件により変化する。

$$\text{更に}, v_{min} > v_L - |v_{thr}| \quad \dots \dots \dots (8)$$

となると、もはや斯かる転移が起らぬ代りに、期間 t_2 のときのトナー逆転移よりは小であるが、トナーが静電像保持体からトナー担持体へ向けて逆転移する傾向を促進する電界が生じ

21

加電圧 v_{min}) では相対的に弱いトナー転位電界がトナー担持体から静電像保持体非画像部に起り、トナーが非画像部に付着する。他方、 t_2 の期間（印加電圧 v_{max} ）では、相対的に強いトナー逆転移電界が該非画像部からトナー担持体に向けて起り、トナーが該非画像部から再びトナー担持体に戻される。このように期間 t_1 、 t_2 が繰り返されるごとに、トナーの転移と逆転移がトナー担持体との間に生じ、トナーはこの間で往復運動を行うと考えられる。これは印加電圧 v_{min} 、 v_{max} と非画像部電位 v_L との関係が、

$$|v_{max} - v_L| > |v_L - v_{min}| \quad \dots \dots \dots (6)$$

と設定されているため、トナーの逆転移量が転移量より確率的には大となるものと考えられる。この場合実際には付着した以上のトナーは逆転するようになる。

従つて、印加電圧が減衰し（この場合 v_{min} は大となる）、

$$v_{min} \geq v_L - |v_{thr}| \quad \dots \dots \dots (9)$$

の関係を満足させる状態となつたとき、この過程を、非画像部においては第二の過程と呼ぶ。非画像部におけるこの現象は、印加電圧の交番成分がなくなり、一定の直流値に収束するまで量的に小さくなりつつ進行して終了する。

換言すると、地カブリ、即ち非画像部へのトナーの付着現象は、上記第一の過程においては生じるもの、次の第二の過程では、この地カブリは消去される。

第2図(D)は、第2図(A)に示したバイアス電圧印加の変形例を示し、同(E)、(F)は、その場合における画像部、非画像部へのトナー転移又は逆

22

転移の様様を表わしたものである。第2図(A)の場合のバイアス電圧印加は、 $v_{min} < v_L < v_{max}$ を満足し、且つ $v_{max} < v_D + |v_{thr}|$ の条件が加えられている。斯かるバイアス電圧印加の場合、第2図(A)のバイアス電圧印加の場合と比較して、画像部におけるトナー逆転移の現象が存在しないのみで、非画像部における現象は第2図(C)に示した状態と実質的変化はない。画像部においては、第2図(E)に示される通り、第一の過程①においてもトナーが逆転移する作用はなく、第二の過程②においても同様である。尚、この場合、第一、第二の過程の境界は非画像部における $v_{min} = v_L - |v_{thf}|$ のときで、それより v_{min} が大となると第二の過程へ移行すると考えられる。

以上は、単純に画像部(暗部)と、非画像部

23

ができ、一旦付着したトナーのはぎ取り(逆転移)を当該非画像部電位に応じて行うことにより、斯かる中間調部分の現像性の高い階調性に富む頭画像が得られる利点がある。

次に第二の方法における現像過程の一例を第3図に示す。第3図(A), (B)に示されるように、静電像保持体4は矢印方向に移動し、この間に、現像領域①, ②を通過し、③に至る。5はトナー担持体である。同図(A)は静電像保持体の画像部、同(B)は非画像部におけるトナー担持体5からのトナーの転移、逆転移の電界を示す。又、同図(C)は、トナー担持体に印加される交互電圧の波形を示し、先述した第一の過程を示す。この第二の方法では、後述するように、電圧そのものを減衰させるよりも、現像間隙を大ならしめ、結果的に電界強度を小ならしめることを主

25

(明部)の両極端の場合について述べたが中間調についてはその電位に応じたトナー転移量と、逆転移量の大小によつて最終的な静電像面へのトナー転移量が決まる。従つて静電像電位に対するトナー転移量のカーブは、第1図(A)のカーブ3に示されるような、傾きが相対的にカーブ1よりも小さく、且つ非画像部電位 v_L から画像部電位 v_D にまでほぼ一様に変化したものとなる。これにより、画像の中間調を含めて明部から暗部にかけての階調性が高い頭画像が得られる。上述した第一の方法における第一の過程においては、非画像部において電界が交番し、もつて、一旦非画像部にもトナーを付着させるよう構成することが必須であり、これがために当外非画像部に隣接した濃度を有する中間調画像部分においても、トナーを積極的に付着させること

24

眼としている。

第3図(C)に示されるように、バイアス電圧として v_{max} , v_{min} が時間間隔 t_1 ・ t_2 で繰返し印加されるが、その印加電圧波形は図示のものに限定されないこと勿論である。先述の通り、 $v_{max} > v_L > v_{min}$ の条件を前提とし、且つ、第3図(C)では $|v_{max} - v_L| > |v_L - v_{min}|$ 及び $|v_{max} - v_D| < |v_D - v_{min}|$ なる条件を設定する。

こうすると、画像部においては、第3図(A)に示される如く、現像領域①では、トナーの転移、逆転移の両方が交互に生じている。この現象については、第2図を参照して詳細に説明した。従つて、現像間隙が小であるこの現像領域①では、現像の第一の過程が生じている。次に、現像間隙が拡大し、現像領域②に入ると、先述し

26

転移をおこす程の転移電界は発生しない。従つて、この領域②で、地カブリは充分に除去される。

次いで、現像領域③に移行すると、最早トナーの転移、逆転移は共におこらざる現像は完結する。

従つて、この方法によつても、印加バイアス電圧を変化させていつたのと実質的に等しい効果が得られ、地カブリが除去できるのみならず、中間調についても、その表面電位に応じたトナー転移量と逆転移量の大小によつて最終的な静電像保持体へのトナー転移量が決まり、結果として、静電像電位対トナー転移量のカーブは、第1図(A)のカーブ3に示されるように階調性の高いものになる。

ここで重要なことは印加交互電界の周波数に

28

周波数の低い領域でとくによい階調性が得られる。

以下、本発明に係る装置の実施例を説明する。

実施例1

第4図(A)に示される実施例は、バイアス印加交互電圧を減衰させる態様の構成で、低周波交流電圧に直流分を重疊してなる電源電圧を機械的摺動電極を用いて減衰させる態様を示し、同図(B)は、電気回路を用いて源衰させる変形部分を示したものである。

第4図(A)において、10は酸化亜鉛感光紙で不図示の別の部所で静電像を形成され、図示された現像部所にローラー13、13により移送され現像時停止した後、定着のために移送される。12は、導電性ゴムベルトよりなるトナーグリッドであり、金属ローラー14、14により

30

た第二の過程が生ずる。この現像領域②では、現像間隙が広がるため、印加電圧値に変化はなくとも、間隙の拡大に逆比例して電界は弱まり、逆転移電界は、逆転移に必要な閾値以下となり、トナー転移は可能であるが、逆転移は起こらない。現像領域③に移向すると、最早、トナーの転移、逆転移が共に起こらない程に間隙は広がり、そこで現像は終了する。

第3図(B)に示した非画像部の場合、領域①、②が夫々第一の過程、第二の過程に対応している。領域①では、第2図について先述した通り、トナーの転移、逆転移の両方が生じている。従つてこの領域では地カブリが起こることになる。領域②に移行すると、 v_{max} 、 v_{min} の電圧による電界が共に現像間隙の拡大に逆比例して弱まり、トナーの逆転移は可能であるが、トナーの

27

は、上限があるということである。即ち、後に実施例2に於て述べる如く、周波数を上げると次第に r 値は大きくなり、階調性を高からしめる効果は薄れて行き、1 kHz以上になると実施例2について後述するように効果が殆んどなくなる。この原因は次のように考えられる。交互電界が印加された現像過程において、トナーがトナー担持体表面と静電像形成面の間で転移、逆転移を繰り返すとき、確実にその往復運動を行うには、有限の応答時間が必要である。とくに弱い電場を受けて転移するトナーは、転移を確実に行うのに長い時間を要する。一方、中間調の濃度を再現するには、弱い電場であつてもある閾値以上の電場を受けたトナーが、交互電界の半周期内に確実に転移する必要がある。それには交互電界の周波数が低い方が有利であり、

29

駆動される。静電像保持体としての酸化亜鉛感光紙 10 と、トナー担持体 12 は、ローラ 13, 14 をモータ 21, 22 により間欠的に駆動することによつて現像部位へ送られ、現像過程では停止しており、次の現像が始まる前に移行する。トナー担持体は半回転し再び停止する。

15 は容器 7 に格納された絶縁トナーであつて、その成分は、ステンレス樹脂にカーボンブラック 3%、正極性荷電制御剤 2% からなる（いずれも重量%）。又、流動性向上のため、0.2 重量% のコロイダルシリカが外添されている。トナーは担持体 12 によつて搬送されるが、これに接する部材 16 によつて塗布厚を 100 μ ~ 200 μ に規制され、コロナ帯電器 18 によつて現像前に正電荷を付与される。静電像保持体 1 とトナー担持体 2 の間隙は 500 μ に保持さ
31

現像の開始後、0.2 秒経過して後、摺動電極 26 は A 位置から等速で 0.5 秒の後 B 位置へ移る。摺動電極 26 が B 位置に移ると、モータ 22 が駆動し、トナー担持体 12 は、半回転し、その間に摺動電極は A 位置に復帰する。

第 4 図(B)は、摺動電極を用いる代りに、周知の RLC 減衰回路を用いた電源 9' を示すもので、現像開始後、0.2 秒経過して後、スイッチを A' 位置から B' 位置に切り換える。この減衰回路の時定数を 0.5 秒に設定しておく。スイッチの切り換えはリレー等の公知の手段にて、タイミング的に行い得る。

こうして先述した第一の方法による現像が適用でき、得られた画像は地カブリが実質上皆無で、又、画像の階調性は印加交互電圧の交番周波数 ω が低い領域で特に優れ、 $\omega \leq 1000 \text{ Hz}$ で
33

れている。149 は回転ローラ 14 の芯金に接触する摺動電極であつて、電源 9 によりトナー担持体 12 に交互電圧を印加する。

20 は、現像剤を搅拌し、トナー担持体 12 に供与するためのファーブラシである。

静電像保持体 10 上に形成された静電像の暗部電位は、-4.50V、明部電位は -40V であつた。印加電圧は、周波数 10 ~ 1000Hz の交流 1200V_{pp} に直流 -200V が重畠されており、現像開始して 0.2 秒の後、時定数約 0.5 秒で、交流電圧のみを 0 に減衰せしめる。

斯かる減衰をなさしめる電源 9 の構成を説明する。21 は交流トランス 27 の 2 次側の摺動電極 26 を動かすモータ、24 は交流電源、25 は直流電源、23 はタイミング信号発生回路及びモータ 21, 22 駆動用電源である。
32

良好な画像が得られた。

実施例 2

この実施例は、先述の第二の方法に基く現像方法を例示するもので、第 5 図を参照して説明する。31 は Cds 光導電層上に絶縁層を有する静電像保持体であり、32 は導電性現像剤担持体である。36 は、該トナー担持体に低周波交流電圧を印加する電源である。34 はころ 33 を介して静電像保持体 31 を該トナー担持体から離間するよう駆動するモータであつて、該モータの駆動はタイミング回路 37 により制御されている。

静電像保持体 31 と、トナー担持体 32 は、初期において、間隙 300 μ ~ 500 μ に保持され、0.2 秒経過後その後静電像保持体 31 は、モータ 34 により 0.2 秒間の間に間隙が 1 μ になる
34

まで等速にて引き上げられ、この時点で現像は終了する。この間に、正に帯電した静電像画像部 (+350V) は負に帯電した現像剤 35 によつて現像される。この負帯電トナーの成分は他の実施例のものと同じである。

静電像保持体 31 の背面電極 38 とトナー保持体 32との間には、外部交互電圧が印加され、第3図を参照して詳細に説明したように、この例においては、 $V_{max} = 500V$, $V_{min} = -300V$, 交番周波数 $f = 50Hz$ であつた。この場合、画像部最大電位 $V_D = +350V$ に対し、非画像部電位 $V_L = -50V$ であつた。こうして第3図について説明した通り斯かる非画像部にはトナーが最終的に付着せず、他方画像部には、その電位に応じて階調性の高い良好な画像が得られた。

この実施例における印加バイアス電圧の周波

35

曲線の傾きに実質的に等しくなつてくることが判る。斯かる高周波バイアスでは、先述した通り、 f 値が大となり、中間調画像の再現性が悪くなり、階調性が劣化する。従つて、印加交互電圧としては、1 kHz 以下の低周波電圧に設定すると、極めて良好な効果をもたらす。

実施例 3

この実施例は、実施例 2 と同じく、現像間隙を現像過程に従い、変化させて現像する先述した第二の方法を実現したもので、第7図を参照して説明する。

41 はセレン感光ベルトであり、図に示されていない別の部所で静電像を形成され、図示の部所で現像され、図示されていない次の部所で定着又は転写される。42 は導電性ゴムベルトよりなるトナー保持体であり、金属ローラ 43

37

特開昭55-18656(10)
数について、特に低周波が好ましい結果をもたらすことを例示するが、この結果は、勿論この実施例に限定されない。

第6図は、横軸に静電像電位(V)を、縦軸に画像濃度(反射濃度)(D)をとり、現像初期の静電像保持体 31 と、トナー保持体 32との間の現像間隙を 300μm に設定した場合、バイアス印加電圧の交番周波数 f を 50 Hz, 800 Hz, 1 kHz, 2 kHz に変えた状態の V-D 曲線の実験結果を示したものである。

この曲線群から判るように、最も低周波である 50 Hz の場合に V-D 曲線は、その傾きが最小で、忠実に静電像電位に対応した画像濃度が得られる。このカーブは、周波数の増加と共に徐々に傾きの大きな様相を呈し、2 kHz に達すると、バイアス電圧を印加しないときの V-D

36

により駆動される。45 は容器 47 に格納された絶縁性トナーであつて、その成分はポリエスチル樹脂にカーボンブラック 2%, 負極性荷電制御剤 2% からなる。又、流動性向上のため、0.1% のコロイダルシリカが外添されている。トナーは保持体 42 によつて搬送されるが、ローラ 43 に圧接せる弾性部材 46 によつて塗布厚を 50 μm ~ 150 μm に規制され、コロナ帯電器 48 によつて現像前に負電荷を付与される。静電像保持体 41 は現像部において、金属ローラ 51 によりトナー保持体 42 との間隙を、最小である 300 μm に保持される。又、その位置より、約 30 mm 離れた地点において、金属ローラ 52 によつて、部材 41 と 42 との距離は、約 2 mm に保たれる(調節可)。53 は金属ローラ 52 の位置を調節する回転部材である。このように

38

して、部材 4 1 と 4 2 とは最近接位置を通過後次第にその間隙を大きくしていく形状をとつてゐる。尚、部材 4 1 と 4 2 は、同速で同方向にスピード 200 mm/sec で進行する。4 9 は交互電圧印加用電源である。

部材 4 1 上に形成された静電像の画像部電位は 800 V，非画像部電位は 200 V である。印加電圧は周波数 200 Hz の交流 1000 V_{pp} に直流 400 V が重畠されている。このようにして地カブリのない階調性の高い良好な画像が得られた。この現像作用、特に第一、第二の過程については、第 3 図に詳述した通りである。

実施例 4

第 8 図は、本発明に係る、先述した第二の方法を採用した現像装置の更に他の実施例を示すものである。

39

持されているが部材 6 1 と 6 2 の回転に伴い第 3 図について先述した条件を満たすよう両部材の移動速度と間隙の広がりが設定されている。部材 6 2 と部材 6 6 とは、電気的に導通状態に保たれ、電源 6 9 によつて部材 6 1 の導電性支持部材に対して、交互電圧が印加される。交互電圧が印加される。交互電圧は正弦波、周波数は 200 Hz であり、電圧値と静電像電位との関係は第 9 図に示す如くである。

静電像電位は、画像部 +500 V、非画像部 0 V であつて振幅 400 V (800 V_{pp}) の正弦波に、直流電圧 +200 V が重畠されている。上記構成のもとに第 3 図について詳述した現像作用に加えて低周波であることにより階調性の高い、鮮明な画像を得ることができた。

以上の説明、特に上記の第二の方法を採用し

41

特開昭55-18656(1)
6 1 は、odS 層と絶縁層を有する半径 4.0 mm の感光ドラム、6 2 は永久磁石 6 3 を内包する半径 1.5 mm の非磁性スリーブであつて、両部材 6 1 と 6 2 は周速 1.00 mm/sec の等速で同一方向に回転する。6 5 は絶縁性の磁性トナーであつて、その成分はステンレス樹脂 60 重量%、マグネットイト重量 35 %、カーボンブラック 3 重量%，負性荷電制御剤重量 2 % からなる。又流動性向上のため 0.3 % 重量% のコロイダルシリカが外添されている。トナーはスリーブ 6 2 によつて搬送されるが、スリーブに近接した磁性ブレード 6 6 により、塗布厚を約 70 μm に規制される。又トナーはスリーブ 6 2 との摩擦帯電によつて負電荷を付与される。部材 6 7 はトナー容器である。

部材 6 1 と部材 6 2 の間隙は最小 200 μm に保
40
た現像装置において、トナー担持体と静電像保持体との間隙最小距離は、トナー層の厚みより小さくても適用できるが、その場合には、該間隙の内でトナーが凝集を起し易いので、好ましくは、該間隙をトナー層の厚み以上にするのが良いが、必ずしもこれに限定されない。

尚、以上は特に画像部電荷が正のときについて関係式を示してあるが、画像部電荷が負の場合、(2)～(9) 式は次のように表わされる。

$$|V_{min} - V_D| < |V_D - V_{max}| \quad \dots (2')$$

$$V_{min} = V_D - |V_{th,r}| \quad \dots (3')$$

$$V_{min} > V_D - |V_{th,r}| \quad \dots (4')$$

$$V_{min} \geq V_D - |V_{th,r}| \quad \dots (5')$$

$$|V_{min} - V_L| > |V_L - V_{max}| \quad \dots (6')$$

$$V_{max} = V_L + |V_{th,r}| \quad \dots (7')$$

$$V_{max} < V_L + |V_{th,r}| \quad \dots (8')$$

42

$$v_{max} \leq v_L + |v_{th-f}| \quad \dots (9')$$

本発明は、以上詳細に説明した通り、静電像担持体とトナー担持体とを所要の微小間隙において対峙させて現像を行う方法において、次の二過程を必須要件として有することを特徴とするものである。

第一の過程：現像部位におけるトナー担持体と非画像部との間隙に、該非画像部へのトナー粒子の転移と、トナー担持体への逆転移が交互に繰り返されるための低周波交番電界を印加する過程。

第二の過程：第一の過程に続いて、トナー担持体と画像部との間隙には該トナー担持体から該画像部へ一方的にトナーの転移を生ぜしめ、且つトナー担持体と非画像部との間隙には該非画像部から該トナー担持体へ一方的に

43

分の明部に近接した濃度を有する部分においても、その電位に応じてトナーが完全に付着することが保証され得る。これにより、中間調画像の再現性に優れた階調性に富む忠実な画像が得られる。

次に上記の第二の過程において、上述した通り、非画像部に付着したトナーをトナー担持体に向けて復帰せしめ、非画像部へのトナーの付着をことごとく除去できる効果があるのみならず、画像部には、トナーの付着を促進するから、画像部へのトナーの付着は完全なものとなり、地カブリのない階調性の良好な忠実な画像の再現が得られる効果がある。

電子写真現像方法において、静電像担持体とトナー担持体とを間隙をおいて対峙せしめ、この間隙に一定の高周波パルスバイアス（周波数

45 -358-

特開昭55-18656(2)

トナーの逆転移を生ぜしめる上記第一の過程における電界とは強度の異なる低周波交番電界を印加する過程。

斯かる過程を有する本発明は、次の優れた効果を有している。

上記の第一の過程において、トナー担持体と非画像部との間にトナー粒子の往復運動（転移-逆転移）を積極的に行わしめる構成であるから、この過程においては、非画像部へのトナーの付着を積極的に起させている。これは、地カブリの原因となるが、この地カブリは次の第二の過程で除去されるから問題ない。他方、非画像部にもトナーを付着させ得るこの第一の過程においては、静電像としての電位を有する画像部においてはその付着は更に強化される。従つて、所謂ハーフ・トーンを含む中間調画像部

44

10キロサイクル/秒～3000キロサイクル/秒）を印加して、画像部にはトナーを付着させるが、非画像部にはトナーを付着させないようにした技術は知られている（例えば米国特許第3,890,929号明細書）。この公知例においては、本発明のように階調性を良くする観点から低周波交番電圧を印加する技術思想は見られず、いわんや、印加電界強度を現像過程において調節・変化させ、もつて先述した通りの第一、第二の過程を実現し、この両過程の総合的作用によつて非画像部にも一旦トナーを付加せしめ、低電位部の現像をも強調せしめ、次いで静電像電位に応じてトナーをはき取り、忠実な階調性を再現という技術思想は記載されていない。

上記公知の技術に類似する現像方法が他にも記載されている（例えば米国特許第3,866,574

46

号明細書、同第3,893,418号明細書等)が、いずれも高周波バルスを適用している等、上述したと同じ理由により本発明とは技術思想を異にしているものである。

4. 図面の簡単な説明

第1図(A), (B)は本発明に係る現像方法の原理を説明するグラフ並びに印加電圧波形の一例を示す図、第2図(A)~(F)は、本発明に係る現像方法の第一の方法における第一、第二の過程並びに現像終了時の状態の印加電圧の変化、現像剤の移動を模式的に表わした過程説明図、第3図(A)~(C)は、本発明に係る現像方法の第二の方法における第一、第二の過程の現像剤の移動と印加電圧並びに電界変化に相当する印加電圧を模式的に表わした過程説明図、第4図(A), (B), 第5図~~等~~^等、第7図、第8図は本発明に係る現

像方法を具現した各実施例の説明図、第6図は、第5図に示した実施例における印加電圧の周波数変化に伴う静電像電位^{又は}は画像濃度特性を示す図、第9図は第8図に示した実施例における印加電圧の波形の一例を示す図である。

静電像保持体…4, 11, 31, 41, 61

現像剤担持体…5, 12, 32, 42, 62

特許出願人 キヤノン株式会社

代理人 丸島儀一

第1図

第2図

第3図

第4図(A)

第4図(B)

第5図

第6図

手続補正書（自発）

昭和54年7月11日

特許庁長官 川原能雄 殿

1. 事件の表示

昭和53年 特許願 第 92105 号

2. 発明の名称

電子写真現像方法

3. 補正をする者

事件との関係 特許出願人

住所 東京都大田区下丸子3-30-2

名称 (100) キヤノン株式会社 特許庁
54.7.12
代表者 賀来龍三郎
出願第二課
保坂

4. 代理人

居所 国146 東京都大田区下丸子3-30-2

キヤノン株式会社内（電話 758-2111）

氏名 (6987) 弁理士 丸島儀一郎

5. 補正より増加する発明の数 1

6. 補正の対象

明細書の「発明の名称」の欄、「特許請求の範囲」の欄、「発明の詳細な説明」の欄、及び図面（第3図(A), (B), 第4図(A)）

7. 補正の内容

- (1) 発明の名称を「現像方法及び装置」と補正する。
- (2) 特許請求の範囲を「別紙の通り」補正する。
記
- (3) 明細書の下記のページの下記の行の通り補正する。

ページ	行	補正前	補正後
3	4	電子写真現像方法	静電像の現像方法及び装置
3	5~6	同上	同上
3	7~8	同上	同上
4	6	イ法は 他の	イ法では 地の
4	8		異なるが
6	6	異なるから	飛行が
6	8	飛行の	静電像の現像方法及び装置
7	7	電子写真現像方法	(削除する)
7	10	表面に	

8	7	電子写真	(削除する)
8	1 2	同上	同上
9	1	同上	同上
9	3~4	同上	同上
9	5	同上	同上
9	8	同上	同上
11	5	画像部電	画像部電位
11	1 1	$V_D = 0$	$V_D > 0$
15	5	していく	していく
17	1	現像的	現象的
17	1 3	非画像部	画像部
21	9	形成面	形成面へ転移を行い得る 上記静電像形成面
23	1	第2図(A)	第2図(D)
32	1	149	14a
41	6~7	交互電圧が印加される。	(削除する)
46	1 4	再現	再現する
32	9	現像	現像

(4) 図面の第3図(A), (B)及び第4図(A)を「別紙の通り」補正する。

8.添付書類の目録

- | | |
|--------------------------|----|
| (1)特許請求の範囲を記載した書面 | 1通 |
| (2)図面第3図(A), (B)及び第4図(A) | 1通 |

3

ることを特徴とする現像方法。

(3) 特許請求の範囲の第1項に記載の現像方法において、上記外部印加振動電圧を一定に保ち、上記静電像形成面と該現像剤担持体とを移動させつつ相対せしめ、その間隙を序々に大きくしていくことにより上記第二の過程を与えることを特徴とする現像方法。

(4) 特許請求の範囲の第1項から第3項のいずれか1項に記載の現像方法において、上記外部振動電圧の周波数が1kHz以下であることを特徴とする現像方法。

(5) 静電像を形成した静電像保持体と、該静電像保持体に対して現像部において間隙を保持して対峙した現像剤担持体と、この現像間隙において上記静電像保持体の少くとも非画像部と現像剤担持体との間で現像剤の粒子の往復運動を行わしめる低周波交番電界を印加する手段と、現像剤粒子の転移を、画像部においては現像剤担持体から該画像部へ一方的に、又、非画像部においては該非画像部から現像剤担持体へ一方的に起こさせるよう上

2.特許請求の範囲

(1) 静電像を形成した静電像保持体と現像剤層を担持した現像剤担持体とを現像部において間隙を保持して対峙させ、

上記現像間隙における低周波電界が上記静電像保持体の少くとも非画像部においては^文交番すべく外部振動電界を与え、これにより^該非画像部と該現像担持体の間において、現像剤の粒子の往復運動を行わしめる第一の過程と、

上記外部振動電界の強度を開始し、現像剤粒子の転移を、画像部においては該現像剤担持体から該画像部へ一方的に、又非画像部においては該非画像部から該現像剤担持体へ一方的に起こさせる第二の過程と、

を有することを特徴とする現像方法。

(2) 特許請求の範囲の第1項に記載の現像方法において、上記静電像形成面と上記現像剤担持体とを静止して相対せしめ、上記外部印加振動電界の振幅を現像終末時に向つて減衰せしめ、一定値に収束させる過程において、上記第二の過程を与え

記交番電界の強度を変化させることを有することを特徴とする現像装置。

第 3 □

(A)

第 4 □

(A)

第 3 □

(B)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.