1. Pipelining Basics ub 0...0 000111111001 0001

i. 0x8df80000 # lw \$24, 0(\$15) #Inst.Addr = 0x100

IF/ID	
No Cont rol Sign al	
PC+4	9×104
OpCode	0×23
Rs	\$15
Rt	\$24
Rd	Х
Funct	X
Imm(16)	0

ID/I	ΣX		EX/M	EM
MToR	ı		MToR	١
RegWr	1		RegWr	1
MemRd	-		MemRd	
MemWr	ø	П	метка	
Branch	ø		MemWr	1
RegDst	ø	П	Memwr	P
ALUsrc	i		Branch	_
ALUop	00	$ \ $	Branch	þ
PC+4	0 101		BrcTgt	0xl
PC+4	0×104		isZero?	ø
RData1	11610		AluRes	III _{bia}
RData2	Χ	RData2	de au	
Rt	\$24		nData2	\$2
Rd	Х	DstRNum	\$2	
Imm(32)	0		DSINNUM	

MToR	- 1
RegWr	l
MemRd	
MemWr	ø
Branch	þ
BrcTgt	0x104
isZero?	ø
AluRes	11610 + 0
RData2	\$24
DstRNum	\$24

MEM/WB	
MToR	-000+
RegWr	
MemRes	Mem (11610 +0)
AluRes	116,0+0
DstRNum	\$24

ii. 0x1023000C # beq \$1, \$3, 12 #Inst.Addr = 0x100

No Cont Fol Sign al	IF/ID	
OpCode Ox4 Rs \$1 Rt \$3 Rd X Funct X	Cont rol Sign	
Rs \$1 Rt \$3 Rd X Funct X	PC+4	0×lo4
Rt \$3 Rd X Funct X	OpCode	0×4
Rd X Funct X		\$1
Funct X		\$3
Imm(16)		X
Imm(16) (2 to	000000000000000000000000000000000000000	χ
	lmm(16)	12 ₁₀

ID/EX	
MToR	X
RegWr	ø
MemRd	16
MemWr	ø
Branch	ı
RegDst	Χ
ALUsrc	ø
ALUop	οl
PC+4	0×104
RData1	10210
RData2	10410
Rt	\$3
Rd	×
Imm(32)	1210

EX/MEM	
MToR	X
RegWr	ø
MemRd	ø
MemWr	þ
Branch	l
BrcTgt	Oxilo
isZero?	ø
AluRes	-210
RData2	10410
DstRNum	\$3

MEM/WB		
MToR	×	
RegWr	ø	
MemRes	X	
AluRes	-2 ₁₀	
DstRNum	\$3	

iii. 0x0285c822 # sub \$25, \$20, \$5 #Inst.Addr = 0x100

IF/ID	
No Cont rOl Sign al	
PC+4	0×104
OpCode	0×0
Rs	\$20
Rt	\$5
Rd	\$ 25
Funct	0×22
Imm(16)	X

ID/EX	
MToR	ø
RegWr	Ì
MemRd	ø
MemWr	ø
Branch	þ
RegDst	l
ALUsrc	ø
ALUop	10
PC+4	0×104
RData1	1210
RData2	10610
Rt	\$5
Rd	\$25
Imm(32)	X

EX/MEM	
MToR	þ
RegWr	1
MemRd	ø
MemWr	ø
Branch	ø
BrcTgt	X
isZero?	ø
AluRes	15,0
RData2	10610
DstRNum	\$25

MEM/WB	
MToR	ø
RegWr	١
MemRes	X
AluRes	(5 ₁₀
DstRNum	\$25

2.	Pipeline	. н	0 ZQY	ds																
	, i pour																			
(a).		F	2_	3	4	5	6	7	8	9	10	μ	12	13	14	lS	(6	17	18	
	Lw	F	D	E	M	W														
	addi		F	D	{p	D) E	M	M											
	SW			F	F	7)() D	(2)	1 <u>0</u>	E	M	W								
	addi						F	(F	XE.	10	E	M	W	E D (
	sub							·		F	(D)	(g)	D	E	M	W				
	bne									ı	(F)	(E)	F	D (2)(D	E	Μ	W	
	lw											•							F	
	Total	cycles	: 18	3																
(Ь).		ţ	2_	3	4	S	6	7	8	9	lo	ĮΙ	12	13	14	15	16	17	18	
	Lw	F	D	E	M	w														
	addi		F	D	(P)	E	М	W												
	SW			F	F	D	E	Μ	W											
	addi					F	D	E	М	W										
	sub						F	D	E,	М	W									
	bne							F	D	E	М	W								
	Lw											F								
	Total	cycles	- 1	1																

(e).		ţ	2	3	4	S	6	7	8	9	10	H	12	13	14	15	(6	17	18	
	Lw																			
	addi																			
	SM																			
	addi																			
	sub																			
	bne																			
	lw																			
	Total	cycle	s:																	
(q).		l	2	3	4	S	6	7	8	9	lo	11	12	13	14	15	ίβ	।र	18	
	Lw																			
	addi																			
	SW																			
	addi																			
	sub																			
	bne																			
	lw.																			
	Total	cycle	15 :																	
()						-		۹.	Q.	OI.	10		12	12	111	IE	- 1	12	121	
(e)·		(2	. 3	4	5	6	7	6	٦	10	į t	L	15	14	12	(6	(T	(4	
	Lw addi																			
	SW																			
	addi																			
	sub																			
	bne																			
	lw																			
	Total	eueli	es :																	
	10 (01)	27011																		

- 3. Data Forwarding Mechanism
- (a). Latch information
- (b). Datapath
- (c) Signal

