### Solution to Problems for Week 3

Yunwen Lei

School of Computer Science University of Birmingham

Two dice are tossed. Let  $\boldsymbol{X}$  be the absolute difference in the number of dots facing up.

- Find the PMF of X.
- Find the CDF of X.

#### We have the table

| 1 | 2                | 3                               | 4                                         | 5                                                   | 6                                                             |
|---|------------------|---------------------------------|-------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|
| 0 | 1                | 2                               | 3                                         | 4                                                   | 5                                                             |
| 1 | 0                | 1                               | 2                                         | 3                                                   | 4                                                             |
| 2 | 1                | 0                               | 1                                         | 2                                                   | 3                                                             |
| 3 | 2                | 1                               | 0                                         | 1                                                   | 2                                                             |
| 4 | 3                | 2                               | 1                                         | 0                                                   | 1                                                             |
| 5 | 4                | 3                               | 2                                         | 1                                                   | 0                                                             |
|   | 1<br>2<br>3<br>4 | 0 1<br>1 0<br>2 1<br>3 2<br>4 3 | 0 1 2<br>1 0 1<br>2 1 0<br>3 2 1<br>4 3 2 | 0 1 2 3<br>1 0 1 2<br>2 1 0 1<br>3 2 1 0<br>4 3 2 1 | 0 1 2 3 4<br>1 0 1 2 3<br>2 1 0 1 2<br>3 2 1 0 1<br>4 3 2 1 0 |

We have the table

|   | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 2 | 1 | 0 | 1 | 2 | 3 | 4 |
| 3 | 2 | 1 | 0 | 1 | 2 | 3 |
| 4 | 3 | 2 | 1 | 0 | 1 | 2 |
| 5 | 4 | 3 | 2 | 1 | 0 | 1 |
| 6 | 5 | 4 | 3 | 2 | 1 | 0 |

It is clear

$$P_X(0) = \mathbb{P}(\{X = 0\}) = 6/36, \quad P_X(1) = \mathbb{P}(\{X = 1\}) = 10/36.$$

We have the table

|   | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 2 | 1 | 0 | 1 | 2 | 3 | 4 |
| 3 | 2 | 1 | 0 | 1 | 2 | 3 |
| 4 | 3 | 2 | 1 | 0 | 1 | 2 |
| 5 | 4 | 3 | 2 | 1 | 0 | 1 |
| 6 | 5 | 4 | 3 | 2 | 1 | 0 |

It is clear

$$P_X(0) = \mathbb{P}(\{X = 0\}) = 6/36, \quad P_X(1) = \mathbb{P}(\{X = 1\}) = 10/36.$$

In a similar way we know

$$P_X(2) = \frac{8}{36}$$
,  $P_X(3) = \frac{6}{36}$ ,  $P_X(4) = \frac{4}{36}$ ,  $P_X(5) = \frac{2}{36}$ .

Then

$$F_X(0) = \mathbb{P}(\{X \le 0\}) = P_X(0) = \frac{6}{36}$$

$$F_X(1) = \mathbb{P}(\{X \le 1\}) = P_X(0) + P_X(1) = \frac{6+10}{36} = \frac{16}{36}$$

$$F_X(2) = \mathbb{P}(\{X \le 2\}) = P_X(0) + P_X(1) + P_X(2) = \frac{6+10+8}{36} = \frac{24}{36}$$

Then

$$F_X(0) = \mathbb{P}(\{X \le 0\}) = P_X(0) = \frac{6}{36}$$

$$F_X(1) = \mathbb{P}(\{X \le 1\}) = P_X(0) + P_X(1) = \frac{6+10}{36} = \frac{16}{36}$$

$$F_X(2) = \mathbb{P}(\{X \le 2\}) = P_X(0) + P_X(1) + P_X(2) = \frac{6+10+8}{36} = \frac{24}{36}$$

Then we get the following CDF

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0\\ \frac{6}{36} & \text{if } x \in [0, 1)\\ \frac{16}{36} & \text{if } x \in [1, 2)\\ \frac{24}{36} & \text{if } x \in [2, 3)\\ \frac{30}{36} & \text{if } x \in [3, 4)\\ \frac{34}{36} & \text{if } x \in [4, 5)\\ \frac{36}{36} & \text{if } x \ge 5. \end{cases}$$

#### Consider a continuous random variable X with a CDF given by

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ 0.5x, & \text{if } 0 \le x \le 1 \\ 0.5, & \text{if } 1 \le x \le 2 \\ 0.5(1 + (x - 2)^2), & \text{if } 2 \le x \le 3 \\ 1, & \text{otherwise.} \end{cases}$$



- **1** Compute  $\mathbb{P}(X \in (0.5, 2.5))$
- Compute the PDF

1

$$\mathbb{P}(0.5 < X \le 2.5) = F_X(2.5) - F_X(0.5)$$
  
= 0.5 \* (1 + 0.5<sup>2</sup>) - 0.5 \* 0.5 = 0.625 - 0.25 = 0.375

1

$$\mathbb{P}(0.5 < X \le 2.5) = F_X(2.5) - F_X(0.5)$$
  
= 0.5 \* (1 + 0.5<sup>2</sup>) - 0.5 \* 0.5 = 0.625 - 0.25 = 0.375

We can differentiate the CDF to obtain (recall that we can take integration of PDF to get CDF, and we can take derivative of CDF to give PDF)

$$f_X(x) = \begin{cases} 0' = 0, & \text{if } x < 0 \\ 0.5x' = 0.5, & \text{if } 0 \le x \le 1 \\ 0.5' = 0, & \text{if } 1 \le x \le 2 \\ (0.5(1 + (x - 2)^2)' = x - 2, & \text{if } 2 \le x \le 3 \\ 1' = 0, & \text{otherwise.} \end{cases}$$

Let X have a CDF  $F_X$ . Denote  $Y_1 = \max\{X, 0\}$  and  $Y_2 = \min\{X, 0\}$ . Compute the CDF of  $Y_1$  and  $Y_2$ .

If y < 0, then (note that  $\max\{X, 0\} \ge 0$  which is impossible to be less than y)

$$\mathbb{P}(Y_1 \leq y) = \mathbb{P}(\max\{X,0\} \leq y) = 0.$$

If  $y \ge 0$ , then (note that  $\max\{X,0\} \le y$  means the intersection of  $A_1 = \{X \le y\}$  and  $A_2 = \{0 \le y\}$ .  $A_2$  is the whole sample space and therefore the intersection is  $A_1$ )

$$\mathbb{P}(Y_1 \leq y) = \mathbb{P}(\max\{X,0\} \leq y) =$$

If y < 0, then (note that  $\max\{X, 0\} \ge 0$  which is impossible to be less than y)

$$\mathbb{P}(Y_1 \leq y) = \mathbb{P}(\max\{X, 0\} \leq y) = 0.$$

If  $y \ge 0$ , then (note that  $\max\{X,0\} \le y$  means the intersection of  $A_1 = \{X \le y\}$  and  $A_2 = \{0 \le y\}$ .  $A_2$  is the whole sample space and therefore the intersection is  $A_1$ )

$$\mathbb{P}(Y_1 \leq y) = \mathbb{P}(\max\{X,0\} \leq y) = \mathbb{P}(X \leq y) = F_X(y).$$

If  $y \ge 0$ , then (note that  $\min\{X,0\} \le 0$  which is always to be less than y)

$$\mathbb{P}(Y_2 \leq y) = \mathbb{P}(\min\{X,0\} \leq y) = 1.$$

If y < 0, then (note that  $\min\{X,0\} \le y$  means the union of  $A_1 = \{X \le y\}$  and  $A_2 = \{0 \le y\}$ .  $A_2$  is empty and therefore the union is just  $A_1$ )

$$\mathbb{P}(Y_2 \le y) = \mathbb{P}(\min\{X, 0\} \le y) =$$

If y < 0, then (note that  $\max\{X, 0\} \ge 0$  which is impossible to be less than y)

$$\mathbb{P}(Y_1 \leq y) = \mathbb{P}(\max\{X,0\} \leq y) = 0.$$

If  $y \ge 0$ , then (note that  $\max\{X,0\} \le y$  means the intersection of  $A_1 = \{X \le y\}$  and  $A_2 = \{0 \le y\}$ .  $A_2$  is the whole sample space and therefore the intersection is  $A_1$ )

$$\mathbb{P}(Y_1 \le y) = \mathbb{P}(\max\{X, 0\} \le y) = \mathbb{P}(X \le y) = F_X(y).$$

If  $y \ge 0$ , then (note that  $\min\{X, 0\} \le 0$  which is always to be less than y)

$$\mathbb{P}(Y_2 \le y) = \mathbb{P}(\min\{X, 0\} \le y) = 1.$$

If y < 0, then (note that  $\min\{X,0\} \le y$  means the union of  $A_1 = \{X \le y\}$  and  $A_2 = \{0 \le y\}$ .  $A_2$  is empty and therefore the union is just  $A_1$ )

$$\mathbb{P}(Y_2 \leq y) = \mathbb{P}(\min\{X,0\} \leq y) = \mathbb{P}(X \leq y) = F_X(y).$$

Therefore

$$F_{Y_1}(y) = \begin{cases} 0, & \text{if } y < 0 \\ F_X(y), & \text{otherwise.} \end{cases}$$
  $F_{Y_2}(y) = \begin{cases} F_X(y), & \text{if } y < 0 \\ 1, & \text{otherwise.} \end{cases}$ 

The lifetime, X years, of a certain type of battery has probability density function given by

$$f_X(x) = \begin{cases} \frac{k}{x^2}, & \text{if } 1 \le x \le a \\ 0, & \text{otherwise}, \end{cases}$$

where k and a are positive constants.

- lacktriangle Compute the value of k.
- 2 Compute the CDF.
- **3** Compute the probability of  $X \in (a/4, a/2)$ .

The CDF can be computed by  $(x \in (1, a))$ 

$$F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_1^x \frac{k}{t^2}dt = -k \int_1^x dt^{-1}$$
$$= k(1 - x^{-1}).$$

The CDF can be computed by  $(x \in (1, a))$ 

$$F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_1^x \frac{k}{t^2}dt = -k \int_1^x dt^{-1}$$
$$= k(1 - x^{-1}).$$

To determine k, we use the fact  $F_X(a) = 1$ 

$$1 = k(1-1/a) = \frac{k(a-1)}{a} \Longrightarrow k = \frac{a}{a-1}.$$

The CDF can be computed by  $(x \in (1, a))$ 

$$F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_1^x \frac{k}{t^2}dt = -k \int_1^x dt^{-1}$$
$$= k(1 - x^{-1}).$$

To determine k, we use the fact  $F_X(a) = 1$ 

$$1 = k(1-1/a) = \frac{k(a-1)}{a} \Longrightarrow k = \frac{a}{a-1}.$$

Since  $f_X(x)=0$  for  $x\leq 1$  we always have  $F_X(x)=0$  if  $x\leq 1$ . Since  $F_X(x)>F_X(a)$  if  $x\geq a$  we have  $F_X(x)=1$  if  $x\geq a$ . Therefore the CDF is

$$F_X(x) = \begin{cases} 0, & \text{if } x \le 1\\ \frac{a(x-1)}{(a-1)x}, & \text{if } x \in (1, a)\\ 1, & \text{otherwise.} \end{cases}$$

If  $a \ge 4$ , we know  $(a/4 \ge 1)$ 

$$\mathbb{P}(X \in (a/4, a/2)) = F_X(a/2) - F_X(a/4) = \frac{a(a/2 - 1)}{(a - 1)a/2} - \frac{a(a/4 - 1)}{(a - 1)a/4}$$
$$= \frac{a - 2}{a - 1} - \frac{4(a/4 - 1)}{a - 1} = \frac{2}{a - 1}.$$

If  $a \ge 4$ , we know  $(a/4 \ge 1)$ 

$$\mathbb{P}(X \in (a/4, a/2)) = F_X(a/2) - F_X(a/4) = \frac{a(a/2 - 1)}{(a - 1)a/2} - \frac{a(a/4 - 1)}{(a - 1)a/4}$$
$$= \frac{a - 2}{a - 1} - \frac{4(a/4 - 1)}{a - 1} = \frac{2}{a - 1}.$$

If  $a \in (2,4)$ , we know (a/4 < 1 < a/2)

$$\mathbb{P}(X \in (a/4, a/2)) = F_X(a/2) - F_X(a/4) = \frac{a-2}{a-1} - 0 = \frac{a-2}{a-1}.$$

If  $a \ge 4$ , we know  $(a/4 \ge 1)$ 

$$\mathbb{P}(X \in (a/4, a/2)) = F_X(a/2) - F_X(a/4) = \frac{a(a/2 - 1)}{(a - 1)a/2} - \frac{a(a/4 - 1)}{(a - 1)a/4}$$
$$= \frac{a - 2}{a - 1} - \frac{4(a/4 - 1)}{a - 1} = \frac{2}{a - 1}.$$

If  $a \in (2,4)$ , we know (a/4 < 1 < a/2)

$$\mathbb{P}(X \in (a/4, a/2)) = F_X(a/2) - F_X(a/4) = \frac{a-2}{a-1} - 0 = \frac{a-2}{a-1}.$$

If  $a \in [1,2]$ , we know  $(a/2 \le 1)$ 

$$\mathbb{P}(X \in (a/4, a/2)) = F_X(a/2) - F_X(a/4) = 0 - 0 = 0.$$

If  $a \ge 4$ , we know  $(a/4 \ge 1)$ 

$$\mathbb{P}(X \in (a/4, a/2)) = F_X(a/2) - F_X(a/4) = \frac{a(a/2 - 1)}{(a - 1)a/2} - \frac{a(a/4 - 1)}{(a - 1)a/4}$$
$$= \frac{a - 2}{a - 1} - \frac{4(a/4 - 1)}{a - 1} = \frac{2}{a - 1}.$$

If  $a \in (2,4)$ , we know (a/4 < 1 < a/2)

$$\mathbb{P}(X \in (a/4, a/2)) = F_X(a/2) - F_X(a/4) = \frac{a-2}{a-1} - 0 = \frac{a-2}{a-1}.$$

If  $a \in [1, 2]$ , we know  $(a/2 \le 1)$ 

$$\mathbb{P}(X \in (a/4, a/2)) = F_X(a/2) - F_X(a/4) = 0 - 0 = 0.$$

Therefore,

$$\mathbb{P}(X \in (a/4, a/2)) = \begin{cases} \frac{2}{a-1}, & \text{if } a \ge 4\\ \frac{a-2}{a-1}, & \text{if } a \in (2, 4)\\ 0, & \text{otherwise.} \end{cases}$$



Suppose that X has PDF

$$f_1(x) = \begin{cases} 0, & \text{if } x < 0 \\ \frac{1}{(1+x)^2}, & \text{otherwise.} \end{cases}$$

Suppose Y has PDF

$$f_2(y) = \begin{cases} 0, & \text{if } x < 0 \\ \frac{1}{1+y}, & \text{otherwise.} \end{cases}$$

- Is  $f_1$  a well-defined PDF?
- 2 Is  $f_2$  a well-defined PDF?

The integral of  $f_1$  is

$$\int_{-\infty}^{\infty} f_1(x) dx = \int_0^{\infty} \frac{1}{(1+x)^2} dx = -\int_0^{\infty} d(1+x)^{-1} = -(1+x)^{-1}|_0^{\infty} = 1$$

The integral of  $f_1$  is

$$\int_{-\infty}^{\infty} f_1(x) dx = \int_{0}^{\infty} \frac{1}{(1+x)^2} dx = -\int_{0}^{\infty} d(1+x)^{-1} = -(1+x)^{-1}|_{0}^{\infty} = 1$$

The integral of  $f_2$  is

$$\int_{-\infty}^{\infty} f_2(y) dy = \int_{0}^{\infty} \frac{1}{1+y} dx = \int_{0}^{\infty} d \log(y+1) = \log(y+1)|_{0}^{\infty} = \infty.$$

We know a well defined density function should have the integration 1 when taking the integration over the range. Therefore,  $f_1$  is a well-defined PDF while  $f_2$  is not.