Image Processing and Pattern Recognition (IPPR) Chapter5:Image Compression

Basanta Joshi, PhD

Asst. Prof., Depart of Electronics and Computer Engineering

Program Coordinator, MSc in Information and Communication Engineering

Member, Laboratory for ICT Research and Development (LICT)

Member, Research Management Cell (RMC)

Institute of Engineering

basanta@ioe.edu.np

http://www.basantajoshi.com.np

https://scholar.google.com/citations?user=iocLiGcAAAAJ https://www.researchgate.net/profile/Basanta_Joshi2

Contents

- Need of Compression
- Coding Redundancy: Huffman Coding
- Interpixel Redundancy: run length coding
- Psychovisual Redundancy: bit plane
- Image Compression Models
- Lossy & Lossless compression: Transform coding and predictive coding.

Why we need image compression?

One 90 minutes color movie, each second plays 24 frames. When we digitize it, each frame has 512×512 pixels, each pixel has three components R, G, B each one occupies 8 bits respectively, the total byte number is: 90×60×24×3×512×512 = 97,200MB

• A CD may save 600 megabytes data, the movie needs 160 CDs to save.

Image Compression

Objective: To reduce the amount of data required to represent an image.

Important in data storage and transmission

- Progressive transmission of images (internet, www)
- Video coding (HDTV, Teleconferencing)
- Digital libraries and image databases
 - Medical imaging
 - Satellite images

Lossy Vs. Lossless Compression

Compression techniques

Information preserving

(loss-less)

Images can be compressed and restored without any loss of information.

Application: Medical images, GIS

Perfect recovery is not possible but provides a large data compression. Example: TV signals, teleconferencing

Image Compression

- •Data compression refers to the process of reducing the amount of data required to represent a given quantity of information
 - data are the means where information is conveyed
 - relative data redundancy R_D :

$$R_D = 1 - \frac{1}{C_R}$$

where C_R is the compression ratio:

$$C_R = \frac{n_1}{n_2},$$

No of bits used to represent image before compression

$$C_R > = 1$$

No of bits used to represent image after compression

Image Compression

- Three basic data redundancy can be identified and exploited
 - coding redundancy
 - to reduce the amount of data representing the same information
 - interpixel redundancy
 - including spatial redundancy, geometric redundancy and interframe redundancy
 - psychovisual redundancy
 - certain information has less relative importance in normal visual processing and can be eliminated

• Assume a discrete random variable r_k in the interval [0,1] represents the grey levels of an image and that each r_k occurs with probability $p_r(r_k)$:

$$p_r(r_k) = \frac{n_k}{n}$$
 $k = 0,1,...,L-1$

and

$$L_{avg} = \sum_{k=0}^{L-1} l(r_k) p_r(r_k)$$

is the average number of bits used to represent each pixel, where $l(r_k)$ is the number of bits required for each value r_k

r _k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2
$r_2 = 2/7$	0.21	010	3	10	2
$r_3 = 3/7$	0.16	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_5 = 5/7$	0.06	101	3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
$r_7 = 1$	0.02	111	3	000000	6

TABLE 8.1

Example of variable-length coding.

$$L_{avg} = \sum_{k=0}^{7} l_2(r_k) p_r(r_k)$$

$$= 2(0.19) + 2(0.25) + 2(0.21) + 3(0.16) + 4(0.08)$$

$$+5(0.06)+6(0.03)+6(0.02)$$

$$= 2.7$$
 bits,

$$R_D = 1 - \frac{1}{1.11} = 0.099$$

r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2
$r_2 = 2/7$	0.21	010	3	10	2
$r_3 = 3/7$	0.16	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_5 = 5/7$	0.06	101	3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
$r_7 = 1$	0.02	111	3	000000	6
•					

L_{avg} 3 bits/symbol

L_{avg} 2.7 bits/symbol

FIGURE 8.1

Graphic representation of the fundamental basis of data compression through variable-length coding.

Concept: assign the longest code word to the symbol with the least probability of occurrence.

Huffman coding

Huffn	nan c	ode:	Consid	er a 6	symbol	source
	a_1	a_2	a_3	a_4	a ₅	a_6
p(a _i)	0.1	0.4	0.06	0.1	0.04	0.3

Huffman coding

 Huffman coding: give the smallest possible number of code symbols per source symbols.

Step 1: Source reduction

Original source		Source reduction				
Symbol	Probability	1	2	3	4	
a_{2} a_{6} a_{1} a_{4} a_{3} a_{5}	0.4 0.3 0.1 0.1 0.06 0.04	0.4 0.3 0.1 0.1 • 0.1	0.4 0.3 0.2 0.1	0.4 0.3 	► 0.6 0.4	

Huffman coding

Step 2: Code assignment procedure

Original source			Source reduction							
Sym.	Prob.	Code	1	L	2	2	2	3	4	4
a_2	0.4	1	0.4	1	0.4	1	0.4	1 _	-0.6	0
a_6	0.3	00	0.3	00	0.3	00	0.3	00 -	0.4	1
a_1	0.1	011	0.1	011	-0.2	010	0.3	01 🕶		
a_4	0.1	0100	0.1	0100-	0.1	011 🔫				
a_3	0.06	01010	0.1	0101	4 ∫					
a_5	0.04	01011								

The code is instantaneous uniquely decodable without referencing succeeding symbols.

Average length:

$$(0.4)(1) + 0.3(2) + 0.1 \times 3 + 0.1 \times 4 + (0.06 + 0.04)(1)$$

$$0.04) 5 = 2.2 \text{ bits/symbol}$$

Interpixel / Interframe Redundancy

Interpixel / Interframe Redundancy

Figure 8.2 Two images and their grey-level pixel histograms and normalized autocorrelation coefficients along one line.

Image Processing and Pattern Recognition (IPPR)

Interpixel / Interframe Redundancy

Figure 8.2 Two images and their grey-level pixel histograms and normalized autocorrelation coefficients along one line.

$$r(\Delta n) = \frac{A(\Delta n)}{A(0)},$$

where
$$A(\Delta n) = \frac{1}{N - \Delta n} \sum_{y=0}^{N-1-\Delta n} f(x, y) f(x, y + \Delta n)$$

Interpixel redundancy:
Parts of an image are
highly correlated.

In other words, we can predict a given pixel from its neighbor.

Run Length Coding

Line 100: (1,63) (0,87) (1,37) (0,5) (1,4) (0,556) (1,62) (0,210)

Total 12166 runs, each run use 11 bits → Total = 133826 Bits

Psychovisual Redundancy

- Certain information simply has less relative importance than other information in normal visual processing
- This information is said to be psychovisually redundant
 - can be eliminated without significantly impairing the quality of image perception

Psychovisual Redundancy

8-bit gray scale image

4-bit gray scale image

4-bit IGS image

False contours

Psychovisual Redundancy

Pixel	Gray Level	Sum	IGS Code
i - 1	N/A	0000 0000	N/A
i	01101100	01101100	0110
i + 1	1000 1011	1001 0111	1001
i + 2	1000 0111	1000 1110	1000
i + 3	1111 0100	1111 0100	1111

TABLE 8.2 IGS quantization procedure.

A sum-initially to zero-is first formed from the current 8-bit grey-level value and the four least significant bits of a previously generated sum. If the 4 most significant bits of the current value are 1111₂, however, 0000₂ is added instead. The 4 most significant bits of the resulting sum are used as the coded pixel value.

Bit Plane Coding

Example of binary image compression: Run length coding

Bit Plane Coding

Original gray scale image

Bit 6

Bit 5

Bit 3

Bit 2

Bit 1

Bit 0

Bit 4

mages from Rafael C. Fonzalez and Richard E. Food, Digital Image rocessing, 2nd Edition.

Gray Coded Bit Planes

Gonzalez and Richard E. Processing, 2nd Edition.

Gray Coded Bit Planes

There are less 0-1 and 1-0 transitions in grayed code bit planes.

Hence gray coded bit planes are more efficient for coding.

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition.

Image Compression Models

Source Encoder and Decoder Models

Error-Free Compression (Lossless)

- Error-free compression means lossless compression
- In numerous applications error-free compression is the only acceptable means of data reduction.
- They normally provide compression ratios of 2 to 10.

Lossless Predictive Coding Model

FIGURE 8.19 A

lossless predictive coding model:

- (a) encoder;
- (b) decoder.

Prediction error: $e_n = f_n - f_n$ e_n is coded using a variable length code

Lossless Predictive Coding Model

Example 1:
$$\hat{\mathbf{f}}_{n} = \operatorname{Int}\left(\sum_{i=1}^{m} \alpha_{i} f_{n-i}\right)$$

 \rightarrow Linear predictor; m = order of predictor

Example 2:
$$\hat{f}_n(x,y)=Int\left(\sum_{i=1}^m \alpha_i f(x,y-i)\right)$$

 Unlike the error-free approaches, lossy encoding is based on the concept of compromising the accuracy of the reconstructed image in exchange for increased compression.

Lossy compression: uses a quantizer to compress further the number of bits required to encode the 'error'. First consider this:

Notice that, unlike in the case of loss-less prediction, in lossy prediction the predictors P "see" different inputs at the encoder and decoder

This results in a gradual buildup of error which is due to the quantization error at the encoder site.

In order to minimize this buildup of error due to quantization we should ensure that 'Ps' have the same input in both the cases.

n	f_n	\hat{f}_n	e_n	\dot{e}_n	\dot{f}_n
0	0	-	-	-	0
1	1	0	1	2	2
2	2	1	1	2	4
3	3	2	1	2	6
4	4	3	1	2	8
5	5	4	1	2	10
6	6	5	1	2	12

$$\dot{f}_n = \dot{e}_n + \tilde{f} = \dot{e}_n + \dot{f}_{n-1}$$

Example:

$$\hat{f}_n = \alpha \, \dot{f}_{n-1}$$
and
$$\dot{e}_n = \begin{cases} +\xi & e_n > 0 \\ -\xi & e_n < 0 \end{cases}$$

 $0 < \alpha < 1$ prediction coefficient

$$\dot{f}_n = \dot{e}_n + \hat{f}_n$$
$$= \dot{e}_n + \alpha \, \dot{f}_{n-1}$$

Note: The quantizer used here is-- floor $(e_n/2)*2$. This is different from the one used in the earlier example. Note that this would result in a worse response if used without Feedback (output will be flat at "0").

n	f_n	\hat{f}_n	e_n	\dot{e}_n	\dot{f}_n
0	0	-	-	-	0
1	1	0	1	0	0
2	2	0	2	2	2
3	3	2	1	0	2
4	4	2	2	2	4

$$\dot{f}_n = \dot{e}_n + \hat{f}_n$$

$$\hat{f}_n = \dot{f}_{n-1}$$
 is used here for computation

{14, 15, 14, 15, 13, 15, 15, 14, 20, 26, 27, 28, 27, 27, 29, 37, 37, 62, 75, 77, 78, 79, 80, 81, 81, 82, 82}

FIGURE 8.22 An example of delta modulation.

Input			Encoder			Decoder	Error
n	f	\hat{f}	e	ė	f	\hat{f} \dot{f}	$[f-\dot{f}]$
0 1 2 3	14 15 14 15 29 37 47 62 75 77	20.5 14.0 20.5 14.0 20.5 27.0 33.5 40.0 46.5 53.0	1.0 -6.5 1.0 8.5 10.0 13.5 22.0 28.5 24.0	6.5 -6.5 6.5 6.5 6.5 6.5 6.5 6.5	14.0 20.5 14.0 20.5 27.0 33.5 40.0 46.5 53.0 59.6	— 14.0 20. 20.5 14. 14.0 20	5
÷	:		:	·	:		

Lossless Vs. Lossy Coding

Lossless Vs. Lossy Coding

	DATA COMPRESSION				
FACTORS	LOSSLESS COMPRESSION	LOSSY COMPRESSION			
Definition	Lossless compression is a class of data	Lossy compression is the class of data encoding methods			
	compression algorithms that allow the	that uses inexact approximations to represent the content.			
	original data to be perfectly reconstructed	These techniques are used to reduce the data size for			
	from the compressed data ^[7] .	storage, handling, and transmitting content ^[8] .			
Algorithm	RLW, LZW, Arithmetic encoding, Huffman	Transform coding, DCT, DWT, Fractal compression,			
	coding, Shannon-Fano coding	Rectangle Segmentation and Sparse Matrix Storage			
		(RSSMS).			
Uses	Text or programs, images and sound	Images, audio and video.			
Images	RAW, BMP, and PNG are all Lossless	JPEG and GUI are lossy image formats.			
	formats.				
Audio	WAV, FLAC, and ALAC are all Lossless	MP3, MP4, and OGG are lossy audio formats.			
	formats.				
Video	Few lossless video formats are in common	Common formats like H-264, MKV, and WMV are all			
	consumer use, they would result in video	lossy. H-264 can provides smaller files with higher			
	files taking up a huge amount of space.	qualities than previous generation of video codec because			
		it has a "smaller" algorithm that's better at choosing the			
		data to throw out.			
Advantages	It maintains quality.	It can make a multimedia file much smaller than its			
	Conversion in any other format possible	original size.It can reduce file sizes much more than			
	without loss of audio information.	lossless compression.			
Disadvanta	It doesn't reduce the file size as much as	Conversion to another format only with loss of audio			
ges	lossy compression. Lossless encoding	information.It cannot be used in all types of files because			
	technique cannot achieve high levels of	it works by removing data. Text and data cannot be			
	compression.	compressed because they do not have redundant			
Р		information.			

Image F

Transform Coding

Examples of transformations used for image compression: DFT and DCT

Transform Coding

- Parameters that effect transform coding performance:
 - 1. Type of transformation
 - 2. Size of subimage
 - 3. Quantization algorithm

Hadamard Transform

$$g(x, y, u, v) = h(u, v, x, y) = \frac{1}{N} (-1)^{\sum_{i=0}^{m-1} \lfloor b_i(x) p_i(u) + b_i(y) p_i(v) \rfloor}$$

$$N = 4$$

Advantage: simple, easy to implement Disadvantage: not good packing ability

Discrete Cosine Transform

$$\alpha(u) = \begin{cases} \sqrt{\frac{1}{N}} & \text{for } u = 0 \\ \sqrt{\frac{2}{N}} & \text{for } u = 1, \dots, N-1 \end{cases}$$

DCT is one of the most frequently used transform for image compression. For example, DCT is used in JPG files.

Advantage: good packing ability, modulate computational complexity

Transform Coding Example

Original image 512x512 pixels

Subimage size: 8x8 pixels = 64 pixels

Quatization by truncating 50% of coefficients (only 32 max cofficients are kept.)

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition.

Transform Coding Example

Figure 8.33 illustrates graphically the impact of subimage size on transform coding reconstruction error. The data plotted were obtained by dividing the monochrome image of Fig. 8.23 into subimages of size $n \times n$, for n = 2, 4, 8, 16, and 32, computing the transform of each subimage, truncating 75% of the resulting coefficients, and taking the inverse transform of the truncated arrays.

Thank you !!!