

Robot Learning & Interaction

Research Programs

Human-Al Teaming

Al for Sustainable & Resilient Societies

Al for Life

Al for Everyone

Idiap's 3 missions:

- Research
- Education
- Technology transfer

Joint development plan with:

Application 1: Insertion

Sensorless peg-in-hole insertion

Sensorless peg-in-hole insertion

Collect Demonstration

Open Loop Ergodic Control

Model Reference Distribution (6D)

Closed Loop Ergodic Control

[Shetty, Silvério and Calinon, IEEE Trans. on Robotics, 2022]

Suhan Shetty

Application 2: Whole-body exploration

Ergodic control for whole body exploration

Increased sensor footprint by modelling the whole-body as a collection of virtual exploration agents

Locally consistent exploration by non-stationary diffusion

[Bilaloglu, Löw and Calinon, IEEE RA-L, 2023] **ThAT18.07 (10:30-12:00) @ ICRA**

Ergodic control based on diffusion

Heat Equation Driven Area Coverage (HEDAC)
[Ivić, Crnković, & Mezić, IEEE Transactions on Cybernetics, 2017]

Cem Bilaloglu

Tobias Löw

Diffusion equation

$$\dot{u}(\mathbf{x},t) = \alpha \cdot \Delta u(\mathbf{x},t) + s(\mathbf{x},t)$$

$$s(\mathbf{x},t) = d(\mathbf{x}) - c(\mathbf{x},t)$$

Global exploration with local consistency

Cem Bilaloglu

Tobias Löw

Decompose whole body into a set of agents

Independent agents

Consensus between agents

[Bilaloglu, Löw and Calinon, IEEE RA-L, 2023] ThAT18.07 (10:30-12:00) @ ICRA

Ergodic control for whole body exploration

Cem Bilaloglu

Tobias Löw

We measure the performance using

 $\varepsilon = \text{unexplored region/target region}$

$$= \|\max(s(\boldsymbol{x},t),0)\|_2 / \int_{\Omega} d(\boldsymbol{x}) d\boldsymbol{x}$$

Ergodic control for whole body exploration

Explore the region until contact, using links 5, 6, 7

Application 3: Drawing

DrozBot: The portraitist robot

Tobias Löw

HEDAC

SMC

Stochastic

DrozBot: The portraitist robot

Tobias Löw

[Löw, Maceiras and Calinon, IEEE RA-L, 2022]

DrozBot: The portraitist robot

[Löw, Maceiras and Calinon, IEEE RA-L, 2022]

Application 4: Washing

Ergodic control on point clouds

Closed-loop surface exploration using ergodic control:

- Exploration domain is a point cloud
- Can handle targets and obstacles
- Use of proximity or tactile sensors
- Combining local and global exploration

Cem Bilaloglu

Tobias Löw

[Bilaloglu, Löw and Calinon, arXiv:2402.04862, 2024]

Ergodic control on point clouds

Cem Bilaloglu

Tobias Löw