## Water in Subsurface Environment

Groundwater Engineering | CE60205

Lecture:04

### **Learning Objective(s)**

- To calculate the hydraulic head
- To differentiate between aquifer, aquitard, aquiclude

### **Energy and Hydraulic Head**

- Mechanical energy in water can take on three forms
  - Elastic potential energy: gained by compressing water
  - Gravitational potential energy: achieved by lifting water to higher elevation
  - Kinetic energy: stems from the velocity of water

$$E = pV + mgz + \frac{1}{2}mv^2$$

- The mechanical energy predicted by E can be thought of as the work required to compress, elevate, and accelerate a mass m of water to its current state from a reference state where p = 0, z = 0, v = 0.
- Hubbert's Fluid Potential ( $\phi$ ): energy per unit mass of water

$$\phi = \frac{E}{m} = \frac{p}{\rho_w} + gz + \frac{v^2}{2}$$

### Energy and Hydraulic Head (Contd.)

• Hydraulic Head (*h*): energy per unit weight of water

$$h = \frac{E}{mg} = \frac{p}{\rho_w g} + z + \frac{v^2}{2g}$$

- The three terms on the right side are called the pressure head, elevation head, and velocity head, respectively.
- Hydraulic head has the simple unit of length
- Water always flows towards regions of lower hydraulic head
- Groundwater flows with very low velocity, usually less than a few meters per day ( $\approx 20 \, m/day$ )
- Velocity head contributes an insignificant amount to the hydraulic head ( $\approx 2.73 \times 10^{-9} m$ )

### Energy and Hydraulic Head (Contd.)

• Hydraulic head for groundwater flow

$$h = \frac{p}{\rho_w g} + z = \frac{p}{\gamma} + z = \psi + z$$

- All measurements of z are made relative to one elevation datum
- In case of small study areas, the elevation datum is often selected as some arbitrary horizontal surface.
- In case of large study areas, the elevation datum is selected as mean sea level (MSL)



### **Hydrostatics**

- Constant hydraulic head => no flow (v=0) => hydrostatic condition
- Going down from the surface, h remains constant, while p increases at the same rate z decreases
- Under uniform fluid density condition, pressure can be calculated as

$$p = \rho_w g(h - z)$$



# Measuring Hydraulic Head with Wells and Piezometers

- Using hydrostatic principles, hydraulic head in the pore water of the saturated zone can be measured directly.
- Upper end of the pipe must be open to the atmosphere
- At or near the bottom of the pipe, holes or slots allow water to move into the pipe from the surrounding saturated rock or soil
- Small diameter pipes are called piezometers
- Larger diameter ones are called wells



### Example

• Calculate the hydraulic head at piezometers A and B, and the water pressure at the bottom of these two piezometers. Does groundwater flow in the vicinity of these two piezometers have an upward or a downward component?



| Well | Elevation, TOC (m) | Elevation, BOC (m) | Depth to Water (m) |
|------|--------------------|--------------------|--------------------|
| Α    | 476.93             | 470.92             | 2.18               |
| В    | 477.67             | 455.16             | 3.44               |
| С    | 477.04             | 472.74             | 0.35               |
| D    | 472.22             | 458.03             | 0.05               |
| E    | 472.41             | 466.84             | 0.71               |

TOC: top of piezometer casing.

BOC: bottom of piezometer casing, open to subsurface.

Depth to water measured down from TOC.

| $h_A = TOC - Depth to water$ |
|------------------------------|
| =476.93-2.18                 |
| = 474.75 m                   |
|                              |

$$h_B = 474.23 \text{ m}$$

$$P_A = (h_A - z_A) \rho_w g$$
  
= 37,572 N/m<sup>2</sup>

$$P_B = 187,077 \text{ N/m}^2$$

$$h_A > h_B$$

### **Aquifers and Confining Layers**

- The terms aquifer and confining layer are relative descriptors of water-bearing zones or layers in the subsurface.
- Aquifers are the layers that are typically tapped by water supply wells, and aquifers transmit most of the flow in a given location.
- Confining layers (also called aquitards) retard flow and typically transmit relatively little water.
- The term aquiclude is no longer used much, and it means an extremely low K confining layer that virtually "precludes" flow.



#### Aquifer

- Store & transmit enough water

#### Aquitard

- Transmit, cannot store water

#### Aquiclude

- Store, cannot transmit water



- Aquifer: "a geologic unit that can store enough water and transmit it at a rate fast enough to be hydrologically significant."
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy
- Article 7

Waters used for the abstraction of drinking water

- 1. Member States shall identify, within each river basin district:
  - all bodies of water used for the abstraction of water intended for human consumption providing more than 10 m³ a day as an average or serving more than 50 persons, and
  - those bodies of water intended for such future use.





Modified after Harlan and others, 1989

#### Confined Aquifer

- Under pressure
- Bounded by impervious layers

#### Unconfined Aquifer

- Phreatic or water table
- Bounded by a water table

#### Unconfined aquifer

- piezometric head = elevation

$$h = Y + Z$$

$$p = 0$$

$$h = z$$



### **Home Lab**

- Foldable Aquifer Project -http://aquifer.geology.buffalo.edu/
- Paper aquifer model
  - Example Aquifer The basics



### **Learning Strategy**

Chapter 2: Physical Properties

Section 2.5, 2.6



# Thank you