EDA

Elinor chu

12/6/2021

```
theft_train=read_csv("../data/clean/theft_train.csv")

## Rows: 1769 Columns: 70

## -- Column specification -------
## Delimiter: ","

## chr (2): state, county

## dbl (68): pertrump, permale, med_age, nevermarried, widowed, fromdifstate, f...

##

## i Use `spec()` to retrieve the full column specification for this data.

## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

EDA - Response Variable

Histogram of Response


```
\#\# Boxplot of Response
```

Boxplot of Theft Rate

Highest Theft Rate - Top 10 Counties

Table 1: This a table showing the top 10 counties with the highest theft rate.

State	County	Theft Rate
Indiana	Hamilton	0.105
New York	New York	0.079
Colorado	Jefferson	0.076
Mississippi	Tunica	0.045
Missouri	Greene	0.042
New Mexico	Bernalillo	0.042
West Virginia	Wayne	0.041
Missouri	Marion	0.035
Georgia	Bibb	0.034
North Carolina	Cherokee	0.034

Heat map of theft rate

```
map_data("county") %>%
  as_tibble() %>%
  left_join(theft_train %>%
              rename(region = state,
                     subregion = county,
                     `Theft Rate` = theftrate) %>%
              mutate(region = str_to_lower(region),
                     subregion = str_to_lower(subregion)),
            by = c("region", "subregion")) %>%
  ggplot() +
  geom_polygon(data=map_data("state"),
               aes(x=long, y=lat, group=group),
               color="black", fill=NA, size = 1, alpha = .3) +
  geom_polygon(aes(x=long, y=lat, group=group, fill = `Theft Rate`),
               color="darkblue", size = .1) +
  scale_fill_gradient(low = "blue", high = "red") +
  theme_void()
```


#EDA for important features

corrplots of all features

```
theft_train_corrAll = theft_train%>% select(-fips, -state, -county,-theftrate)
M = cor(theft_train_corrAll)
```


corrplots of 5 clusters of features

cluster_safetynet = theft_train%>% select(-fips, -state, -county) %>% select(unemp_bens_possible, spend cluster_criminaljustice = theft_train%>% select(-fips, -state, -county) %>% select(incar_rate, police_v cluster_health = theft_train%>% select(-fips, -state, -county) %>% select(mean_hha_score, poor_fair_heactuster_ses = theft_train%>% select(-fips, -state, -county) %>% select(lessthan_hs, bachplus, unemployed cluster_demo= theft_train%>% select(-fips, -state, -county) %>% select(med_age,permale,divorced,widowed)

```
M_safetynet = cor(cluster_safetynet)
M_criminaljustice = cor(cluster_criminaljustice)
M_health = cor(cluster_health)
M_ses = cor(cluster_ses)
M_demo = cor(cluster_demo)

corrplot(M_safetynet, type = 'lower', order = 'hclust', tl.col = 'black', cl.ratio = 0.2, tl.srt = 45, col = COL2('PuOr', 10), tl.cex = 1)
```


Histogram for the Top7 important features (overlaps of Ridge & Lasso)

- ## Warning: Transformation introduced infinite values in continuous y-axis
- ## Warning: Transformation introduced infinite values in continuous y-axis
- ## Warning: Removed 30 rows containing non-finite values (stat_smooth).

Percentage of Adults Reporting Fair or Poor Health vs Theft Rate

theft_train %>% arrange(desc(poor_fair_health))%>%head(5)

```
## # A tibble: 5 x 70
                 county pertrump permale med_age nevermarried widowed fromdifstate
##
     state
                                             <dbl>
##
     <chr>>
                 <chr>
                            <dbl>
                                                          <dbl>
                                                                  <dbl>
                                    <dbl>
                                                                               <dbl>
## 1 Texas
                 Zavala
                            0.340
                                    0.517
                                              32.9
                                                          0.297 0.0550
                                                                             0.0247
## 2 Texas
                 Starr
                            0.471
                                    0.487
                                              28.8
                                                          0.270
                                                                 0.0486
                                                                             0.00257
## 3 Texas
                 Brooks
                            0.402
                                    0.533
                                              29.7
                                                          0.351
                                                                 0.0462
                                                                             0.0381
                                                          0.310
## 4 Texas
                 Willacy
                            0.440
                                    0.540
                                              33
                                                                 0.0400
                                                                             0.00371
## 5 Mississippi Claibo~
                            0.135
                                    0.469
                                              33.9
                                                          0.449
                                                                 0.0494
                                                                             0.0136
## # ... with 62 more variables: fromabroad <dbl>, divorced <dbl>,
## #
       foodstamp <dbl>, households <dbl>, Marriedcouplefamily <dbl>,
       single_mom <dbl>, inschool <dbl>, inundergrad <dbl>, ingradprofesh <dbl>,
       lessthan_hs <dbl>, bachplus <dbl>, med_income <dbl>, gini <dbl>,
## #
       singledad <dbl>, withkids <dbl>, med_2bed <dbl>, foreignborn <dbl>,
## #
## #
       unemployed_rate <dbl>, employed_rate <dbl>, no_health_ins <dbl>,
       dis5to17 <dbl>, dis18to34 <dbl>, dis35to64 <dbl>, fips <dbl>, ...
# plot theftrate against housing_density
p2 = theft_train %>% select(-fips, -state, -county)%>%
  ggplot(aes(x = housing_density, y = theftrate)) +
  geom_point(alpha = 0.6) +
  scale x log10() +
  scale_y_log10() +
  geom_smooth(method = "lm", formula = "y~x", se = FALSE) +
  labs(x = "Housing Density",
       y = "Theft Rate",
```

```
title = "Housing Density vs Theft Rate") +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
p2
```

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Removed 30 rows containing non-finite values (stat_smooth).

Housing Density vs Theft Rate

theft_train %>% arrange(desc(housing_density))%>%head(5)

```
## # A tibble: 5 x 70
##
     state
                county
                         pertrump permale med_age nevermarried widowed fromdifstate
##
     <chr>>
                <chr>
                             <dbl>
                                     <dbl>
                                             <dbl>
                                                          <dbl>
                                                                   <dbl>
                                                                                <dbl>
## 1 New York
                New York
                            0.123
                                     0.473
                                              37.5
                                                          0.433 0.0406
                                                                               0.0369
## 2 New Jersey Hudson
                            0.262
                                     0.497
                                              35.3
                                                          0.334
                                                                 0.0391
                                                                               0.0293
                                     0.500
                                              34.7
## 3 Virginia
                Arlingt~
                            0.171
                                                          0.369
                                                                 0.0266
                                                                               0.0637
## 4 New Jersey Essex
                            0.219
                                     0.481
                                              37.6
                                                          0.344
                                                                 0.0447
                                                                               0.0171
## 5 New Jersey Union
                            0.315
                                     0.488
                                              38.7
                                                          0.297 0.0492
                                                                               0.0144
## # ... with 62 more variables: fromabroad <dbl>, divorced <dbl>,
       foodstamp <dbl>, households <dbl>, Marriedcouplefamily <dbl>,
## #
       single_mom <dbl>, inschool <dbl>, inundergrad <dbl>, ingradprofesh <dbl>,
## #
       lessthan_hs <dbl>, bachplus <dbl>, med_income <dbl>, gini <dbl>,
       singledad <dbl>, withkids <dbl>, med_2bed <dbl>, foreignborn <dbl>,
## #
```

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Removed 30 rows containing non-finite values (stat_smooth).

Population Density vs Theft Rate

theft_train %>% arrange(desc(pop_density))%>%head(5)

```
## # A tibble: 5 x 70
## state county pertrump permale med_age nevermarried widowed fromdifstate
```

```
<chr>
               <chr>
                            <dbl>
                                    <dbl>
                                            <dbl>
                                                         <dbl>
                                                                <dbl>
                                                                              <dbl>
## 1 New York New York
                            0.123
                                    0.473
                                             37.5
                                                         0.433 0.0406
                                                                             0.0369
## 2 New Jersey Hudson
                            0.262
                                    0.497
                                             35.3
                                                         0.334 0.0391
                                                                             0.0293
## 3 Virginia Arlingt~
                                    0.500
                                             34.7
                                                         0.369 0.0266
                                                                             0.0637
                            0.171
## 4 New Jersey Essex
                            0.219
                                    0.481
                                             37.6
                                                         0.344 0.0447
                                                                             0.0171
## 5 New Jersey Union
                            0.315
                                    0.488
                                             38.7
                                                         0.297 0.0492
                                                                             0.0144
## # ... with 62 more variables: fromabroad <dbl>, divorced <dbl>,
      foodstamp <dbl>, households <dbl>, Marriedcouplefamily <dbl>,
## #
      single_mom <dbl>, inschool <dbl>, inundergrad <dbl>, ingradprofesh <dbl>,
## #
      lessthan_hs <dbl>, bachplus <dbl>, med_income <dbl>, gini <dbl>,
      singledad <dbl>, withkids <dbl>, med_2bed <dbl>, foreignborn <dbl>,
      unemployed_rate <dbl>, employed_rate <dbl>, no_health_ins <dbl>,
## #
      dis5to17 <dbl>, dis18to34 <dbl>, dis35to64 <dbl>, fips <dbl>, ...
# plot theftrate against pertrump
p4 = theft_train %>% select(-fips, -state, -county)%>%
  ggplot(aes(x = pertrump, y = theftrate)) +
  geom_point(alpha = 0.6) +
  scale_x_log10() +
  scale_y_log10() +
  geom_smooth(method = "lm", formula = "y~x", se = FALSE) +
  labs(x = "Percent of Trump Supporters",
      y = "Theft Rate",
      title = "Percent of Trump Supporters (in 2020) vs Theft Rate") +
  theme bw() +
  theme(plot.title = element_text(hjust = 0.5))
p4
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 30 rows containing non-finite values (stat_smooth).
```

Percent of Trump Supporters (in 2020) vs Theft Rate

theft_train %>% arrange(desc(pertrump))%>%head(5)

```
## # A tibble: 5 x 70
##
     state
              county
                       pertrump permale med_age nevermarried widowed fromdifstate
     <chr>
                                           <dbl>
##
              <chr>
                          <dbl>
                                  <dbl>
                                                        <dbl>
                                                                <dbl>
                                                                             <dbl>
                                                        0.239 0.0441
                                                                           0.00452
## 1 Texas
              Jack
                          0.904
                                  0.571
                                           39.6
## 2 Oklahoma Beaver
                          0.904
                                  0.503
                                           39
                                                        0.179 0.0560
                                                                           0.0253
                                           35.1
## 3 Texas
              Hansford
                          0.903
                                  0.510
                                                        0.197 0.0563
                                                                           0.0319
## 4 Georgia Brantley
                          0.902
                                  0.490
                                           41.1
                                                        0.218 0.0713
                                                                           0.0179
## 5 Oklahoma Ellis
                          0.901
                                  0.481
                                           44.1
                                                        0.166 0.0847
                                                                           0.0184
## # ... with 62 more variables: fromabroad <dbl>, divorced <dbl>,
## #
       foodstamp <dbl>, households <dbl>, Marriedcouplefamily <dbl>,
       single mom <dbl>, inschool <dbl>, inundergrad <dbl>, ingradprofesh <dbl>,
       lessthan_hs <dbl>, bachplus <dbl>, med_income <dbl>, gini <dbl>,
## #
       singledad <dbl>, withkids <dbl>, med_2bed <dbl>, foreignborn <dbl>,
## #
## #
       unemployed_rate <dbl>, employed_rate <dbl>, no_health_ins <dbl>,
       dis5to17 <dbl>, dis18to34 <dbl>, dis35to64 <dbl>, fips <dbl>, ...
# plot theftrate against PctEmpFIRE
p5 = theft_train %>% select(-fips, -state, -county)%>%
  ggplot(aes(x = PctEmpFIRE, y = theftrate)) +
  geom_point(alpha = 0.6) +
  scale x log10() +
  scale_y_log10() +
  geom_smooth(method = "lm", formula = "y~x", se = FALSE) +
  labs(x = "Percent of People Employed in FIRE",
       y = "Theft Rate",
```

```
title = "Percent of People Employed in \n Finance/Insurance/Real Estate(FIRE) vs Theft Rate") +
  theme bw() +
  theme(plot.title = element_text(hjust = 0.5))
p5
```

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Removed 30 rows containing non-finite values (stat_smooth).

Percent of People Employed in Finance/Insurance/Real Estate(FIRE) vs Theft Rate

theft_train %>% arrange(desc(PctEmpFIRE))%>%select(state, county, PctEmpFIRE, theftrate)%>%head(5)

```
## # A tibble: 5 x 4
                       PctEmpFIRE theftrate
##
     state
              county
##
     <chr>>
              <chr>
                            <dbl>
                                      <dbl>
## 1 Iowa
              Dallas
                             20.1 0.000953
## 2 New York New York
                             16.3 0.0793
## 3 Iowa
              Polk
                             15.1 0.00148
## 4 Ohio
              Delaware
                             13.7 0.00435
## 5 Colorado Pitkin
                             13.6 0.00145
# plot theftrate against saversperhouses
p6 = theft_train %>% select(-fips, -state, -county)%>%
  ggplot(aes(x = saversperhouses, y = theftrate)) +
 geom_point(alpha = 0.6) +
```

```
## Warning: Transformation introduced infinite values in continuous x-axis
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Transformation introduced infinite values in continuous x-axis
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 34 rows containing non-finite values (stat_smooth).
```

Percent of people qualifying for Saver's Credit vs Theft Rate

theft_train %>% arrange(desc(saversperhouses))%>%select(state, county, saversperhouses, theftrate)%>%he

```
0.355
                                            0.0107
## 3 Virginia York
## 4 Florida Walton
                                    0.306
                                            0.00996
                                    0.281
## 5 Florida Bay
                                            0.0103
# plot theftrate against unemp_bens_possible
p7 = theft_train %>% select(-fips, -state, -county)%>%
  ggplot(aes(x = unemp_bens_possible, y = theftrate)) +
  geom_point(alpha = 0.6) +
  scale_x_log10() +
  scale_y_log10() +
  geom_smooth(method = "lm", formula = "y~x", se = FALSE) +
  labs(x = "State unemployment insurance",
       y = "Theft Rate",
       title = "State Unemployment Insurance vs Theft Rate") +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))
p7
```

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Removed 30 rows containing non-finite values (stat_smooth).

State Unemployment Insurance vs Theft Rate


```
# plot theftrate against lessthan_hs
p8= theft_train %>% select(-fips, -state, -county)%>%
ggplot(aes(x = lessthan_hs, y = theftrate)) +
```

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Removed 30 rows containing non-finite values (stat_smooth).

Percent of people with Less than High School Education vs Theft Rate

theft_train %>% arrange(desc(lessthan_hs))%>%select(state, county, lessthan_hs, theftrate)%>%head(5)

```
## # A tibble: 5 x 4
     state
                   county
                             lessthan hs theftrate
##
     <chr>
                   <chr>
                                   <dbl>
                                             <dbl>
## 1 Texas
                   Presidio
                                   0.295 0
                                   0.259 0.00378
## 2 Texas
                   Starr
                                   0.252 0.00383
## 3 Kentucky
                   Clay
## 4 West Virginia McDowell
                                   0.230 0.0000536
```

```
## 5 Texas
                                  0.229 0.00557
                   Maverick
# plot theftrate against PctEmpConstruction
p9= theft_train %>% select(-fips, -state, -county)%>%
  ggplot(aes(x = PctEmpConstruction, y = theftrate)) +
  geom_point(alpha = 0.6) +
  scale_x_log10() +
  scale_y_log10() +
  geom_smooth(method = "lm", formula = "y~x", se = FALSE) +
  labs(x = "Percent employed in construction",
       y = "Theft Rate",
       title = "Percent of People Employed in Construction") +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))
p9
```

Warning: Transformation introduced infinite values in continuous y-axis
Warning: Transformation introduced infinite values in continuous y-axis
Warning: Removed 30 rows containing non-finite values (stat_smooth).

Percent of People Employed in Construction

theft_train %>% arrange(desc(PctEmpConstruction))%>%select(state, county, PctEmpConstruction, theftrate

##	1	Texas	Gaines	19.5	0.00439
##	2	Texas	San Jacinto	17.9	0.0252
##	3	Wyoming	Lincoln	16.8	0.00436
##	4	Texas	Caldwell	16.5	0.00228
##	5	Virginia	Mathews	16.1	0.00785