Exploring the Robustness of the Frank-Wolfe method and the Effectiveness of Linear Minimization Oracle

Tao Hu

Abstract Keywords Frank-Wolfe \cdot conditional gradients \cdot inexact oracle \cdot stochastic optimization \cdot heavy-tailed noise \cdot projection vs. LMO

1 Introduction

Let $Q \subset \mathbb{R}^d$ be a compact convex set and $f: Q \to \mathbb{R}$ be the objective function. Denote $\|\cdot\|$ to be the l^2 norm. Our main purpose here is to consider the minimization problem here:

$$\min_{\lambda} f(\lambda)$$
 s.t. $\lambda \in Q$. (1)

The Frank-Wolfe method is an effective way to address this problem which computes at $\lambda_k \in Q$ the point for linear minimization

$$\tilde{\lambda}_k \in \arg\min_{\lambda \in Q} \left\{ f(\lambda_k) + \nabla f(\lambda_k)^\top (\lambda - \lambda_k) \right\}$$
 (2)

and updates with $\lambda_{k+1} = (1 - \bar{\alpha}_k)\lambda_k + \bar{\alpha}_k\tilde{\lambda}_k$ where $\bar{\alpha}_k \in [0, 1)$. Assuming that ∇f is L-Lipschitz on Q, and Q is of diameter D, then Frank-Wolfe achieves the classical $\mathcal{O}(LD^2/k)$ convergence rate for convex functions [6,4], and $\mathcal{O}(LD^2/\sqrt{k})$ convergence rate for nonconvex functions [7].

It is worth noticing that in the convergence analysis, those auxiliary sequences are frequently used and will also be used in our proof:

$$\beta_k = \frac{1}{\prod_{j=1}^{k-1} (1 - \bar{\alpha}_j)} , \qquad \alpha_k = \frac{\beta_k \bar{\alpha}_k}{1 - \bar{\alpha}_k} , \qquad k \ge 1 .$$
 (3)

Tao Hu

Xi'an Jiaotong University E-mail: tao_hu@berkeley.edu

Here $\{\overline{\alpha}_k\}_{k=1}^{+\infty}$ is sequence of stepsizes in our algorithm. We follow the conventions: $\prod_{j=1}^0 \cdot = 1$ and $\sum_{i=1}^0 \cdot = 0$.

Besides the convergence guarantee, robustness and the efficiency of the Linear Minimization Oracle (LMO) are also important aspects of the Frank-Wolfe method.

To start with, the robustness of Frank-Wolfe, that is, how Frank-Wolfe performs under inexact gradient, is a very interesting problem. With unbiased gradients and bounded variance (or sub-Gaussian tails), Stochastic Frank-Wolfe variants achieve a Frank-Wolfe gap of $\mathcal{O}(\varepsilon)$ with $\mathcal{O}(1/\varepsilon^4)$ gradient evaluations, and variance reduction accelerates finite-sum problems and can achieve the same Frank-Wolfe gap with $\mathcal{O}(1/\varepsilon^3)$ gradient evaluations [11,5,9,8,16,12]. For heavy-tailed noise, Stochastic Frank-Wolfe with clipping or robust estimation achieves high-probability guarantees [14,13].

In the deterministic setting, the situation that the noise is bounded by δ but can be arbitrarily chosen along the training trajectory is often referred to as obtaining a δ -oracle:

$$\left| (g_{\delta}(x) - \nabla f(x))^T (x - y) \right| \le \delta, \, \forall \, y \in Q. \tag{4}$$

Freund and Grigas proves an $\mathcal{O}(1/k + \delta)$ convergence [4], and we shows an $\mathcal{O}(1/\sqrt{k} + \delta)$ convergence for nonconvex functions in this paper.

Another interesting problem occurs when considering objective functions that are convex but non-smooth. Those functions may not obtain a gradient, but they can be equipped with a (δ, L) oracle [3]:

$$0 \le f(x) - (f_{\delta,L}(y) + g_{\delta,L}(y)^T(x - y)) \le \frac{L}{2} ||x - y||^2 + \delta, \, \forall \, x, y \in Q.$$

Unlike inexact gradient, this (δ, L) oracle allows the error to interact with the local quadratic model and leads to error accumulation, which shows that the Frank-Wolfe method is only guaranteed to reach a Frank-Wolfe gap of $\mathcal{O}(\sqrt{\delta})$. However, it remains an open problem whether the final guarantee of Frank-Wolfe gap is optimal theoretically. In this paper, we show that

While Frank-Wolfe does not have the same guarantee on the (δ, L) oracle as proximal gradient descent. The ease of computing the Linear Minimization Oracle (LMO) is widely considered a major advantage of the Frank-Wolfe method. However, this belief is currently limited to intuition and set-specific comparisons [1,10]. Beyond such instances, Woodstock showed that exact projection is never easier than obtaining an ε -accurate LMO, uniformly over compact convex sets [15]. We extend this to approximate projections: a single K-projection at a scaled point yields an ε -accurate LMO.

Our contributions.

(i) Frank-Wolfe with a δ -oracle (nonconvex). We show that for L-smooth nonconvex f over a compact convex set, Frank-Wolfe with a directional δ -oracle achieves

$$\min_{0 \leq k \leq K} g(x^k) \ \leq \ \sqrt{\frac{2C\left(f(x^0) - f_{\inf}\right)}{K+1}} \ + \ 2\delta,$$

where

$$g(x) = \sup_{y \in Q} \nabla f(y)^{T} (x - y)$$

- (ii) Frank-Wolfe with a (δ, L) -oracle. We show that Frank-Wolfe method is theoretically guaranteed to reach a Frank-Wolfe gap of $\mathcal{O}(\sqrt{\delta})$. We also show that this final Frank-Wolfe gap can be reduced to $O(\delta)$ when f is convex
- (iii) **Projection vs. LMO.** We show that a K-approximate projection at $-\lambda x$ produces an ε -accurate LMO at x with $\varepsilon = \mathcal{O}((K + D_C^2)/\lambda)$, reinforcing that coarse projections are not cheaper than accurate LMOs.

2 Frank-Wolfe with a δ -oracle: main result and a tight example

We assume $Q \subset \mathbb{R}^d$ is compact and convex with diameter D, and $f: Q \to \mathbb{R}$ is convex with L-Lipschitz gradient on Q. We run Frank-Wolfe using the δ -oracle g_{δ} in Algorithm 1.

Algorithm 1 Frank-Wolfe with a gradient δ -oracle (maximization)

```
1: Initialize \lambda_0 \in Q.
```

- 2: **for** $k = 0, 1, 2, \dots$ **do**
- 3: Query $g_{\delta}(\lambda_k)$.
- 4: Compute $\tilde{\lambda}_k \in \arg\min_{\lambda \in Q} \{ f(\lambda_k) + g_{\delta}(\lambda_k)^{\top} (\lambda \lambda_k) \}.$
- 5: Update $\lambda_{k+1} = \lambda_k + \bar{\alpha}_k(\tilde{\lambda}_k \lambda_k)$ with $\bar{\alpha}_k \in [0, 1)$.
- 6: end for

Lemma 1 Under (4), for any $\lambda_k \in Q$,

$$f^{\star} \geq f(\lambda_k) + \min_{\lambda \in Q} g_{\delta}(\lambda_k)^{\top} (\lambda - \lambda_k) - \delta.$$

Proof By convexity, $f(\lambda) \geq f(\lambda_k) + \nabla f(\lambda_k)^{\top} (\lambda - \lambda_k)$ for any $\lambda \in Q$. From (4), $\nabla f(\lambda_k)^{\top} (\lambda - \lambda_k) \geq g_{\delta}(\lambda_k)^{\top} (\lambda - \lambda_k) - \delta$. Therefore,

$$f(\lambda) \ge f(\lambda_k) + g_{\delta}(\lambda_k)^T (\lambda - \lambda_k) - \delta.$$

Taking $\min_{\lambda \in Q}$ on both sides yields the claim.

We also recall a subproblem-level accuracy transfer.

Proposition 2 ([4, Prop. 5.1]) Fix $\bar{\lambda} \in Q$ and $\delta \geq 0$. If $\tilde{\lambda} \in \arg\min_{\lambda \in Q} g_{\delta}(\bar{\lambda})^{\top} \lambda$, then

$$\nabla f(\bar{\lambda})^{\top} \tilde{\lambda} \leq \min_{\lambda \in Q} \nabla f(\bar{\lambda})^{\top} \lambda + 2\delta.$$

Theorem 3 (Nonaccumulation under a δ -oracle[4]) Let Q be compact convex with diameter D, and f be convex with L-Lipschitz gradient on Q. Let g_{δ} satisfy (4). For the Frank-Wolfe iterates of Algorithm 1 with stepsizes satisfying $\sum_{k=0}^{+\infty} \bar{\alpha}_k = \infty$ and $\bar{\alpha}_k \downarrow 0$, then

$$f(\lambda_{k+1}) - f^* \le (1 - \bar{\alpha}_k) (f(\lambda_k) - f^*) + 2\bar{\alpha}_k \delta + \frac{1}{2} L D^2 \bar{\alpha}_k^2,$$
 (5)

and hence $\limsup (f(\lambda_k) - f^*) \leq 2\delta$.

Example 4 (Tightness up to constants) Let $Q = [-1,1], f(\lambda) = \frac{1}{2}\lambda^2$ (convex, L=1, D=2). Define a δ -oracle by $g_{\delta}(\lambda) = \nabla f(\lambda) + \frac{\delta}{D} \operatorname{sign}(\lambda)$. Frank-Wolfe with $\bar{\alpha}_k = 2/(k+2)$ converges to a neighborhood whose size is proportional to δ .

3 Nonconvex objectives with a directional δ -oracle

We now consider *nonconvex* minimization over a compact convex set $S \subset \mathbb{R}^d$:

$$\min_{x \in S} f(x),$$

where f is differentiable and has L-Lipschitz gradient on S. Denote D :=Diam(S) and set

$$C \triangleq \max\{LD^2, GD\}$$
 with $G := \sup_{x \in S} \|\nabla f(x)\| < \infty$.

The Frank-Wolfe (FW) gap at x is

$$g(x) \triangleq \max_{s \in S} \langle \nabla f(x), x - s \rangle.$$

We assume access to a directional δ -oracle for the gradient, i.e., for every $x \in S$ there exists $g_{\delta}(x)$ such that

$$|\langle \nabla f(x) - g_{\delta}(x), s - x \rangle| \le \delta \quad \forall s \in S.$$
 (6)

Define the approximate Frank-Wolfe gap

$$\tilde{g}(x) \triangleq \max_{s \in S} \langle g_{\delta}(x), x - s \rangle.$$

From (6) it follows that

$$|g(x) - \tilde{g}(x)| \le \delta, \tag{7}$$

where $s_{\delta}(x) \in \arg \max_{s \in S} \langle g_{\delta}(x), x - s \rangle$.

Algorithm 2 Nonconvex Frank-Wolfe with a directional δ-oracle

- 1: Input: $x^0 \in S$, curvature constant $C \ge \max\{LD^2, GD\}$, error level $\delta \ge 0$.
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- Obtain $g_{\delta}(x^k)$ that satisfies (6); set $s^k \in \arg\max_{s \in S} \langle g_{\delta}(x^k), x^k s \rangle$ and $\tilde{g}_k := \langle g_{\delta}(x^k), x^k s^k \rangle = \tilde{g}(x_k)$.
- Stepsize: $\overline{\alpha}_k := \min\left\{\frac{(\tilde{g}_k \delta)_+}{C}, 1\right\}$, where $(u)_+ := \max\{u, 0\}$. Update: $x^{k+1} \leftarrow x^k + \overline{\alpha}_k(s^k x^k)$.
- 6: end for

Lemma 5 (One-step decrease) The iterates of Algorithm 2 satisfy

$$f(x^{k+1}) \le f(x^k) - \frac{(\tilde{g}_k - \delta)_+^2}{2C}.$$
 (8)

Proof L-smoothness gives

$$f(x^{k+1}) \leq f(x^k) + \overline{\alpha}_k \langle \nabla f(x^k), s^k - x^k \rangle + \frac{L}{2} \overline{\alpha}_k^2 || s^k - x^k ||^2$$

$$\leq f(x^k) + \overline{\alpha}_k \langle g_\delta(x^k), s^k - x^k \rangle + \overline{\alpha}_k \delta + \frac{C}{2} \overline{\alpha}_k^2$$

$$= f(x^k) - \overline{\alpha}_k \tilde{g}(x^k) + \overline{\alpha}_k \delta + \frac{C}{2} \overline{\alpha}_k^2$$

$$= f(x^k) - \overline{\alpha}_k (\tilde{g}_k - \delta) + \frac{C}{2} \overline{\alpha}_k^2$$

using (7) and $||s^k - x^k|| \le D$. With $\overline{\alpha}_k = (\tilde{g}_k - \delta)_+/C$,

$$f(x^{k+1}) \le f(x^k) - \frac{1}{2C}(\tilde{g}_k - \delta)_+^2,$$

since $\overline{\alpha}_k = 0$ if $\tilde{g}_k - \delta \leq 0$.

Theorem 6 (Nonconvex Frank-Wolfe with directional δ -oracle) Let f be L-smooth on a compact convex set S of diameter D and let $C \ge \max\{LD^2, GD\}$. Suppose the directional δ -oracle (6) is available. Then the iterates of Algorithm 2 satisfy, for all $K \ge 0$,

$$\min_{0 \le k \le K} g(x^k) \le \sqrt{\frac{2C(f(x^0) - f_{\inf})}{K + 1}} + 2\delta, \tag{9}$$

where $f_{\inf} := \inf_{x \in S} f(x)$. In particular, to reach a Frank-Wolfe gap at most $\varepsilon > 2\delta$, it suffices to take

$$K+1 \geq \frac{2C(f(x^0) - f_{\inf})}{(\varepsilon - 2\delta)^2}.$$

Remark 7 (Discussion and special cases) (i) When $\delta=0$ the bound reduces to the classical nonconvex Frank-Wolfe rate. (ii) For $\delta>0$, the method converges to an $O(\delta)$ neighborhood in the Frank-Wolfe gap; the error does not accumulate across iterations. (iii) The stepsize uses \tilde{g}_k (computed "for free" while solving the LMO with g_{δ}), exactly mirroring the steepest-feasible steps in standard Frank-Wolfe. (iv) Any $C \geq LD^2$ works for (8); taking $C \geq \max\{LD^2, GD\}$ ensures $\alpha_k \leq 1$ without extra capping.

4 Frank-Wolfe with a (δ,L) -oracle: error does not accumulate for convex functions

Algorithm 3 Frank-Wolfe with a (δ, L) -oracle (maximization)

- 1: Initialize $\lambda_0 \in Q$.
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- 3: Query $(f_{\delta,L}(\lambda_k), g_{\delta,L}(\lambda_k))$.
- 4: Compute $\tilde{\lambda}_k \in \arg\min_{\lambda \in Q} \langle g_{\delta,L}(\lambda_k), \lambda \lambda_k \rangle$. Denote $g(\lambda_k) = \nabla f(\lambda_k)^T (\lambda_k \tilde{\lambda}_k)$.
- 5: Update $\lambda_{k+1} = \lambda_k + \bar{\alpha}_k(\tilde{\lambda}_k \lambda_k)$ with $\bar{\alpha}_k \in [0, 1)$.
- 6: end for

We adopt the Devolder–Glineur–Nesterov (δ, L) -oracle for the function f[2]: for any $\bar{\lambda} \in Q$, the oracle returns $(f_{\delta,L}(\bar{\lambda}), g_{\delta,L}(\bar{\lambda}))$ such that for any $\lambda \in Q$

(upper)
$$f(\lambda) \leq f_{\delta,L}(\bar{\lambda}) + \langle g_{\delta,L}(\bar{\lambda}), \lambda - \bar{\lambda} \rangle + \frac{L}{2} \|\lambda - \bar{\lambda}\|^2 + \delta,$$

(lower) $f(\lambda) \geq f_{\delta,L}(\bar{\lambda}) + \langle g_{\delta,L}(\bar{\lambda}), \lambda - \bar{\lambda} \rangle.$ (10)

Theorem 8 ([4] Theorem 5.3) If the step-size sequence $\{\bar{\alpha}_k\}$ is used in the iterate sequences of the Frank-Wolfe method with the (δ, L) -oracle (Algorithm 3),

$$f(\lambda_{k+1}) - f^* \le \frac{f(\lambda_0) - f^*}{\beta_{k+1}} + \frac{\frac{1}{2}C\sum_{i=1}^k \bar{\alpha}_i^2 \beta_{i+1}}{\beta_{k+1}} + \frac{2\delta\sum_{i=1}^k \beta_{i+1}}{\beta_{k+1}}, \ \forall \ k \ge 0, \ (11)$$

where $C = LD^2$.

Remark 9 Consider the right hand side of Equation (11), we have that

$$\begin{split} &\frac{f_0 - f^*}{\beta_{k+1}} + \frac{\frac{1}{2}C\sum_{i=1}^k \frac{\alpha_i^2}{\beta_{i+1}}}{\beta_{k+1}} + \frac{\sum_{i=1}^k \beta_{i+1}\delta}{\beta_{k+1}} \\ = &\frac{f_0 - f^*}{\beta_{k+1}} + \frac{\sum_{i=1}^k \left(\frac{1}{2}C_{h,Q}\frac{\alpha_i^2}{\beta_{i+1}} + \beta_{i+1}\delta\right)}{\beta_{k+1}} \\ \geq &\frac{f_0 - f^*}{\beta_{k+1}} + \frac{\sum_{i=1}^k \alpha_i \sqrt{2C_{h,Q}\delta}}{\beta_{k+1}} \\ = &\frac{f_0 - f^*}{\beta_{k+1}} + \sqrt{2C_{h,Q}\delta}\frac{\beta_{k+1} - 1}{\beta_{k+1}}. \end{split}$$

For k sufficiently large, we have that

$$0 < \frac{\beta_2 - 1}{\beta_2} \le \frac{\beta_{k+1} - 1}{\beta_{k+1}} \le 1.$$

Therefore, error accumulation means that, in order to achieve a first-order accurate solution, we need a second-order accurate gradient.

Example 10 When we are using a constant step size $\bar{\alpha}_k = \bar{\alpha}$, and we take $\delta_i = \delta$, then we have that

$$\beta_k = (1 - \bar{\alpha})^{-k+1}, \alpha_k = \bar{\alpha}(1 - \bar{\alpha})^{-k}.$$

We will show in the appendix that, if we take $\bar{\alpha} = 1 - (k-1)^{-1/(k-2)}$, then

$$\bar{\alpha} = 1 - (k-1)^{-1/(k-2)} = 1 - e^{-\frac{\log(k-1)}{k-2}} \in \left[\frac{1}{e} \frac{\log(k-1)}{k-2}, \frac{\log(k-1)}{k-2} \right].$$

$$f(\lambda_{k+1}) - f^*$$

$$\leq \frac{1}{2} C \left((1 - \bar{\alpha})^{k-1} + \bar{\alpha} \right) + \frac{\delta}{\bar{\alpha}}$$

$$\leq \frac{1}{2} C \left((1 - \bar{\alpha})^{k-2} + \bar{\alpha} \right) + \frac{\delta}{\bar{\alpha}}$$

$$= \frac{1}{2} C \left(\frac{1}{k-1} + 1 - (k-1)^{-\frac{1}{k-2}} \right) + \frac{\delta}{\bar{\alpha}}$$

$$= \frac{1}{2} C \left(\frac{1}{k-1} + 1 - e^{-\frac{\log(k-1)}{k-2}} \right) + \frac{\delta}{\bar{\alpha}}$$

$$\leq \frac{1}{2} C \left(\frac{1}{k-1} + \frac{\log(k-1)}{k-2} \right) + \frac{\delta}{\bar{\alpha}}$$

Therefore, in order to achieve a convergence rate of $\widetilde{O}(\frac{1}{k})$, it suffices to let

$$\delta \sim O(\frac{\bar{\alpha}}{k}) = O(\frac{\log(k)}{k^2}).$$

However, if we assume that f is convex (not necessarily smooth), we can show that no error accumulates.

Theorem 11 (Nonaccumulation under convex functions[4]) Let Q be compact convex with diameter D, and f be convex with (δ, L) -oracle on Q. Let $(f_{\delta,L}, g_{\delta,L})$ satisfy (10). For the Frank-Wolfe iterates of Algorithm 1 with stepsizes satisfying $\sum_{k=0}^{+\infty} \bar{\alpha}_k = \infty$ and $\bar{\alpha}_k \downarrow 0$, then

$$f(\lambda_{k+1}) - f^* \le (1 - \bar{\alpha}_k) (f(\lambda_k) - f^*) + 2\bar{\alpha}_k \delta + \frac{1}{2} L D^2 \bar{\alpha}_k^2,$$
 (12)

and hence $\limsup_{k\to\infty} (f(\lambda_k) - f^*) \le 2\delta$.

5 Projection vs. LMO: accurate linear minimization beats coarse projection

Let (\cdot,\cdot) denote the Euclidean inner product and $\|\cdot\|$ its norm. For a nonempty compact convex $C \subset \mathbb{R}^d$, define the projection $\operatorname{Proj}_C(x) = \arg\min_{c \in C} \frac{1}{2} \|c - x\|^2$ and the linear minimization oracle $\operatorname{LMO}_C(z) = \arg\min_{c \in C}(c, z)$. We consider a K-approximate projection $p' \in C$ at x such that

$$\frac{1}{2}||p'-x||^2 \le \min_{c \in C} \frac{1}{2}||c-x||^2 + K.$$

Proposition 12 If $p' \in C$ is a K-approximate projection of x onto C, then for all $c \in C$,

$$(c-p', x-p') \le K + \frac{1}{2} ||c-p'||^2.$$

Proof From the definition of p', $\frac{1}{2}\|p'-x\|^2 \leq \frac{1}{2}\|c-x\|^2 + K$ for all $c \in C$. Expanding the squares and simplifying gives $(c-p', x-p') \leq K + \frac{1}{2}\|c-p'\|^2$.

Theorem 13 (From K-projection to accurate LMO) Let $x \in \mathbb{R}^d$ and nonempty compact convex $C \subset \mathbb{R}^d$ with diameter $\delta_C := \sup_{c_1, c_2 \in C} \|c_1 - c_2\|$ and radius $\mu_C := \sup_{c \in C} \|c\|$. Let $v \in \mathrm{LMO}_C(x)$ and $p' \in C$ be a K-approximate projection of $-\lambda x$ for some $\lambda > 0$. Then

$$0 \le (p', x) - (v, x) \le \frac{K + \frac{1}{2}\delta_C^2 + \min\{\mu_C \delta_C, \mu_C^2\}}{\lambda}.$$

In particular, choosing $\lambda \geq \left(K + \frac{1}{2}\delta_C^2 + \min\{\mu_C\delta_C, \mu_C^2\}\right)/\varepsilon$ ensures $(p', x) \leq \min_{c \in C}(c, x) + \varepsilon$, i.e., $p' \in \varepsilon\text{-LMO}_C(x)$.

Discussion. This extends the exact-projection implication of [15] to inexact projections: one K-projection at a scaled point yields an ε -accurate LMO. In particular, accurate linear minimization is no slower than coarse projection, uniformly over compact convex sets.

Appendix A. Proof of Theorem 3

Let D = Diam(Q). Lipschitz smoothness of f and (4) yield, for the Frank-Wolfe step $\lambda_{k+1} = \lambda_k + \bar{\alpha}_k(\tilde{\lambda}_k - \lambda_k)$,

$$f(\lambda_{k+1}) \leq f(\lambda_k) + \nabla f(\lambda_k)^{\top} (\lambda_{k+1} - \lambda_k) + \frac{L}{2} \|\lambda_{k+1} - \lambda_k\|^2$$

$$= f(\lambda_k) + \bar{\alpha}_k \nabla f(\lambda_k)^{\top} (\tilde{\lambda}_k - \lambda_k) + \frac{L}{2} \bar{\alpha}_k^2 \|\tilde{\lambda}_k - \lambda_k\|^2$$

$$\leq f(\lambda_k) + \bar{\alpha}_k g_{\delta}(\lambda_k)^T (\tilde{\lambda}_k - \lambda_k) + \bar{\alpha}_k \delta + \frac{L}{2} \bar{\alpha}_k^2 \|\tilde{\lambda}_k - \lambda_k\|^2$$

$$\leq (1 - \bar{\alpha}_k) f(\lambda_k) + \bar{\alpha}_k (f(\lambda_k) + g_{\delta}(\lambda_k)^{\top} (\tilde{\lambda}_k - \lambda_k) - \delta) + 2\bar{\alpha}_k \delta + \frac{L}{2} D^2 \bar{\alpha}_k^2$$

$$\leq (1 - \bar{\alpha}_k) f(\lambda_k) + \bar{\alpha}_k f^* + 2\bar{\alpha}_k \delta + \frac{L}{2} D^2 \bar{\alpha}_k^2,$$

where the third line uses $\|\tilde{\lambda}_k - \lambda_k\| \le D$ and the last line uses Lemma 1. Subtracting both sides from f^* gives (12).

In order to continue, we multiply β_k by both sides of Equation (12); we get that

$$\beta_{k+1}(f(\lambda_{k+1}) - f^*) \le \beta_k(f(\lambda_k) - f^*) + 2\bar{\alpha}_k\beta_{k+1}\delta + \frac{L}{2}D^2\bar{\alpha}_k^2\beta_{k+1}.$$

By taking summation, we get that

$$\beta_{k+1}(f(\lambda_{k+1}) - f^*) \le (f(\lambda_0) - f^*) + 2\delta \sum_{j=0}^k \bar{\alpha}_j \beta_{j+1} + \frac{L}{2} D^2 \sum_{j=0}^k \bar{\alpha}_j^2 \beta_{j+1}$$

$$\le (f(\lambda_0) - f^*) + 2\delta \sum_{j=0}^k (\beta_{j+1} - \beta_j) + \frac{L}{2} D^2 \sum_{j=0}^k \bar{\alpha}_j^2 \beta_{j+1}$$

Since $\beta_{k+1} - \beta_k = \bar{\alpha}_k \beta_{k+1}$, the summation term telescopes as

$$\sum_{j=0}^{k} (\beta_{j+1} - \beta_j) = \beta_{k+1} - 1.$$

Substituting this back, we obtain

$$\beta_{k+1}(f(\lambda_{k+1}) - f^*) \le (f(\lambda_0) - f^*) + 2\delta(\beta_{k+1} - 1) + \frac{L}{2}D^2 \sum_{j=0}^{k} \bar{\alpha}_j^2 \beta_{j+1}.$$

Dividing both sides by β_{k+1} yields

$$f(\lambda_{k+1}) - f^* \le \frac{f(\lambda_0) - f^*}{\beta_{k+1}} + 2\delta \left(1 - \frac{1}{\beta_{k+1}}\right) + \frac{L}{2} D^2 \frac{\sum_{j=0}^k \bar{\alpha}_j^2 \beta_{j+1}}{\beta_{k+1}}.$$

Take any 1 < J < k,

$$\frac{\sum_{j=0}^{k} \bar{\alpha}_{j}^{2} \beta_{j+1}}{\beta_{k+1}} = \sum_{j=0}^{J} \bar{\alpha}_{j}^{2} \prod_{t=J+1}^{k} (1 - \bar{\alpha}_{t}) + \sum_{j=J+1}^{k} \bar{\alpha}_{j}^{2} \prod_{j=J+1}^{k} (1 - \bar{\alpha}_{t})
\leq \sum_{j=0}^{J} \bar{\alpha}_{j}^{2} \prod_{t=J+1}^{k} (1 - \bar{\alpha}_{t}) + \sum_{j=J+1}^{k} \bar{\alpha}_{j}^{2}.$$

Therefore,

$$\limsup_{k \to +\infty} \frac{\sum_{j=0}^k \bar{\alpha}_j^2 \beta_{j+1}}{\beta_{k+1}} \le \sum_{j=J+1}^{+\infty} \bar{\alpha}_j^2, \, \forall J > 1.$$

Hence,

$$\limsup_{k \to +\infty} \frac{\sum_{j=0}^k \bar{\alpha}_j^2 \beta_{j+1}}{\beta_{k+1}} = 0.$$

Hence

$$\limsup_{k \to \infty} (f(\lambda_k) - f^*) \le 2\delta.$$

This completes the proof.

Appendix B. Proof of Theorem 6

By Lemma 5 we have

$$f(x^{k+1}) \le f(x^k) - \frac{(\tilde{g}_k - \delta)_+^2}{2C}.$$

Summing from k = 0 to K yields

$$\sum_{k=0}^{K} (\tilde{g}_k - \delta)_+^2 \le 2C(f(x^0) - f(x^{K+1})) \le 2C(f(x^0) - f_{\inf}).$$

Therefore

$$\min_{0 \le k \le K} (g(x^k) - 2\delta)_+ \le \min_{0 \le k \le K} (\tilde{g}_k - \delta)_+ \le \sqrt{2C(f(x^0) - f_{\inf})/(K + 1)}.$$

Appendix C. Proof of Theorem 8

$$f(\lambda_{k+1}) \leq f(\lambda_{k}) + g_{\delta,L}(\lambda_{k})^{T} (\lambda_{k+1} - \lambda_{k}) + 2\delta + \frac{1}{2}L\|\lambda_{k+1} - \lambda_{k}\|^{2}$$

$$= f(\lambda_{k}) + \bar{\alpha}_{k}g_{\delta,L}(\lambda_{k})^{T} (\tilde{\lambda}_{k} - \lambda_{k}) + 2\delta + \frac{1}{2}\bar{\alpha}_{k}^{2}L_{h,Q}\|\tilde{\lambda}_{k} - \lambda_{k}\|^{2}$$

$$\leq (1 - \bar{\alpha}_{k})f(\lambda_{k}) + \bar{\alpha}_{k}(f(\lambda_{k}) + g_{\delta,L}(\lambda_{k})^{T} (\tilde{\lambda}_{k} - \lambda_{k}) - \delta) + (2 + \bar{\alpha}_{k})\delta + \frac{1}{2}C\bar{\alpha}_{k}^{2}$$

$$\leq (1 - \bar{\alpha}_{k})h(\lambda_{k}) + \bar{\alpha}_{k}f^{*} + 3\delta + \frac{1}{2}C\bar{\alpha}_{k}^{2}$$

$$\leq (1 - \bar{\alpha}_{k})h(\lambda_{k}) + \bar{\alpha}_{k}f^{*} + 3\delta + \frac{1}{2}C\bar{\alpha}_{k}^{2}$$

Hence,

$$f(\lambda_{k+1}) - f^* \le (1 - \bar{\alpha}_k)(f(\lambda_k) - f^*) + 3\delta + \frac{1}{2}C\bar{\alpha}_k^2$$

Therefore,

$$\beta_k(f(\lambda_{k+1}) - f^*) \le \beta_{k-1}(f(\lambda_k) - f^*) + 3\delta\beta_k + \frac{1}{2}C\bar{\alpha}_k^2\beta_k.$$

By taking summation, we get that

$$\beta_k(f(\lambda_{k+1}) - f^*) \le (f(\lambda_0) - f^*) + 3\delta \sum_{j=1}^k \beta_j + \frac{1}{2}C \sum_{j=1}^k \bar{\alpha}_j^2 \beta_j.$$

Dividing both side by β_k yields the result.

Appendix D. Proof of Theorem 11

Since $\lambda_{k+1} = (1 - \bar{\alpha}_k)\lambda_k + \bar{\alpha}_k\tilde{\lambda}_k$.

$$f(\tilde{\lambda}_k) \le f(\lambda_k) + g_{\delta,L}(\lambda_k)^T (\tilde{\lambda}_k - \lambda_k) + 2\delta + \frac{1}{2} L \|\lambda_{k+1} - \lambda_k\|^2.$$

Since $f(\lambda_{k+1}) \leq (1 - \bar{\alpha}_k) f(\lambda_k) + \bar{\alpha}_k f(\tilde{\lambda}_k)$,

$$f(\lambda_{k+1}) \le f(\lambda_k) + \bar{\alpha}_k g_{\delta,L}(\lambda_k)^T (\tilde{\lambda}_k - \lambda_k) + 2\bar{\alpha}_k \delta + \frac{1}{2} \bar{\alpha}_k^2 L ||\tilde{\lambda}_k - \lambda_k||^2.$$

The rest parts are the same as the proof of theorem 3.

References

- 1. C. W. Combettes and S. Pokutta, Complexity of linear minimization and projection on some sets, arXiv preprint arXiv:2101.10040, (2021).
- 2. O. DEVOLDER, F. GLINEUR, AND Y. NESTEROV, First-Order Methods of Smooth Convex Optimization with Inexact Oracle, Tech. Rep. 2013/19, Center for Operations Research and Econometrics (CORE), Louvain-la-Neuve, Belgium, 2013. CORE Discussion Paper.
- O. DEVOLDER, F. GLINEUR, AND Y. NESTEROV, First-order methods of smooth convex optimization with inexact oracle, Mathematical Programming, 146 (2014), pp. 37–75.
 R. M. FREUND AND P. GRIGAS, New analysis and results for the Frank-Wolfe method,
- 4. R. M. Freund and P. Grigas, New analysis and results for the Frank-Wolfe method, Mathematical Programming, 155 (2016), pp. 199–230. arXiv:1307.0873 (2013).
- D. GOLDFARB, G. IYENGAR, AND C. ZHOU, Linear convergence of stochastic frank-wolfe variants, in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

- M. JAGGI, Revisiting Frank-Wolfe: Projection-free sparse convex optimization, in Proceedings of the 30th International Conference on Machine Learning (ICML), vol. 28, 2013, pp. 427–435.
- $7.\ \ S.\ Lacoste-Julien,\ Convergence\ rate\ of\ frank-wolfe\ for\ non-convex\ objectives,\ 2016.$
- 8. F. LOCATELLO ET AL., Stochastic frank-wolfe for composite convex minimization, in AISTATS, 2019.
- 9. H. Lu and R. M. Freund, Generalized stochastic frank-wolfe with stochastic substitute gradient, Optimization Online, (2018). 6748.
- 10. S. Pokutta, *The frank-wolfe algorithm: A short introduction*, Business & Information Systems Engineering, (2024).
- S. J. Reddi, S. Sra, B. Poczos, and A. Smola, Stochastic frank-wolfe methods for nonconvex optimization, in Proceedings of the 33rd International Conference on Machine Learning (ICML), 2016.
- 12. M.-E. SFYRAKI AND J.-K. WANG, Lions and muons: Optimization via stochastic frankwolfe, 2025.
- 13. M. E. Sfyraki and Y. Wang, Lions and muons: Optimization via stochastic frank-wolfe, arXiv preprint arXiv:2506.04192, (2025).
- 14. T. Tang, K. Balasubramanian, and T. C. M. Lee, *High-probability bounds for robust stochastic frank-wolfe algorithm*, in Proceedings of Machine Learning Research, vol. 180, 2022.
- 15. Z. WOODSTOCK, High-precision linear minimization is no slower than projection, arXiv preprint arXiv:2501.18454, (2025).
- M. ZHANG ET AL., One sample stochastic frank-wolfe, in Proceedings of the 37th International Conference on Machine Learning (ICML), 2020.