

Hidden Markov Models

Scott O'Hara

Metrowest Developers

Machine Learning Group

05/23/2018

RNN Discussion Reminded Me of HMMs

HMM Data Flow

Contents:

- Introducing Hidden Markov Models (HMMs)
- Some Probability Preliminaries
- HMM Algorithms
- HMM Applications
- Training HMMs: Baum-Welch

Maybe Next Time:

- Computing Belief States
- The Backward-Forward Algorithm
- The Viterbi Algorithm
- The Baum-Welch Algorithm

Introducing Hidden Markov Models

- Markov Processes
- Hidden Markov Models (HMM)
- The Markov Assumptions

Markov Process

 A <u>Markov process</u> (or chain) is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.

Source: https://en.oxforddictionaries.com/definition/us/markov chain

- A Markov process has the following components:
 - A set of N states
 - A **transition probability matrix** representing the probability of moving from state i to state j. . For any state i, all probabilities must sum to 1.
 - A special start state and end state.

Source: adapted from https://web.stanford.edu/~jurafsky/slp3/9.pdf

Markov Process Example

Source: https://upload.wikimedia.org/wikipedia/commons/4/47/MarkovChain1.png

A possible sequence of states:

Bull, Bull, Stagnant, Stagnant, Bull, Stagnant, Bear, Bear

Hidden Markov Models

• A <u>Hidden Markov Model</u> (HMM) is a statistical model in which the system being modeled is assumed to be a <u>Markov process</u> with unobserved (i.e. hidden) states.

Source: https://en.wikipedia.org/wiki/Hidden Markov model

- A Hidden Markov model has the following components:
 - A set of N states
 - An **initial probability distribution** over the states specifying the probability that state i is the first state in a sequence.
 - A **transition probability matrix** representing the probability of moving from state i to state j. . For any state i, all probabilities must sum to 1.
 - A sequence of **observation states**.
 - a sequence of **observation likelihoods** each expressing the probability of an observation i being generated from state i.

Source: adapted from https://web.stanford.edu/~jurafsky/slp3/9.pdf

HMM Example (1)

States and Transitions:

States and Observations:

HMM Example (2)

An Observation Sequence:

States and Transitions:

States and Observations:

Markov Assumption 1

The future is independent of the past given the present:

$$P(H_{t+1}|H_1, ..., H_t, O_1, ..., O_t) = P(H_{t+1}|H_t)$$

Markov Assumption 2

Observations depend only on the current hidden state:

$$P(O_t|H_1,...,H_t,O_1,...,O_t) = P(O_t|H_t)$$

HMM Data Structures

By Terencehonles - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=8384168

```
# n = 2 hidden states
states = ('Rainy', 'Sunny')
# m = 3 observation states
observations = ('walk', 'shop', 'clean')
# n x 1 start table
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
# n x n transition table
transition_probability = { 'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
                          'Sunny': {'Rainy': 0.4, 'Sunny': 0.6}, }
# n x m observation table
emission_probability = { 'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
                          'Sunny': {'walk': 0.6, 'shop': 0.3, 'clean': 0.1}, }
```

Adapted from https://en.wikipedia.org/w/index.php?title=Hidden_Markov_model&oldid=841523243

Some Probability Preliminaries

Some Probability Preliminaries

- Discrete Random Variables
- Probabilities and the Sum Rule
- Joint Probability
- Conditional Probability
- The Product Rule
- The Chain Rule
- Bayes' Rule
- Marginalization

Discrete Random Variables

- Discrete Variable a variable that can only take on a finite number of values.
- Random Variable a variable whose possible values are outcomes of a random process.
- Random variables are represented as boldfaced capital letters e.g., A or B.
- For random variable X, the set of possible values it may take is represented by the lowercase X.
- A Discrete Random Variable is a discrete variable whose possible values are outcomes of a random process.

Probabilities and the Sum Rule

- P(X=x) probability that discrete random variable X equals the value $x \in X$.
- P(X) is always a value between 0.0 and 1.0.

$$0.0 \le P(X) \le 1.0$$

$$\sum_{x \in X} P(X) = 1$$

Joint Probability

Identities:

$$P(A,B) = P(B,A)$$

Conditional Probability

P(A|B) – What is the probability that A is true given that B is true?

Identities:

$$P(\boldsymbol{A}|\boldsymbol{B}) = \frac{P(\boldsymbol{A},\boldsymbol{B})}{P(\boldsymbol{B})}$$

The Product Rule

•
$$P(A|B) = \frac{P(A,B)}{P(B)}$$

Conditional Probability

$$P(A, B) = P(A|B) P(B) = P(B|A) P(A)$$

The Chain Rule (Generalized Product Rule)

•
$$P(A, B) = P(A|B) P(B)$$

Product Rule

$$P(A_1, A_2, ..., A_n) = P(A_1 | A_2, ..., A_n) P(A_2, ..., A_n)$$

Chain Rule Example

•
$$P(A_1, A_2, ..., A_n) = P(A_1|A_2, ..., A_n)P(A_2, ..., A_n)$$

Chain Rule

• Example:

•
$$P(A_1, A_2, A_3, A_4) = P(A_1|A_2, A_3, A_4)P(A_2, A_3, A_4)$$

$$= P(A_1|A_2, A_3, A_4)P(A_2|A_3, A_4)P(A_3, A_4)$$

$$= P(A_1|A_2, A_3, A_4)P(A_2|A_3, A_4)P(A_3|A_4)P(A_4)$$

Bayes' Rule

- P(A, B) = P(A|B) P(B) = P(B|A) P(A) Product Rule
- P(A|B) P(B) = P(B|A) P(A)
- P(B|A) P(A) = P(A|B) P(B)

$$P(\boldsymbol{B}|\boldsymbol{A}) = \frac{P(\boldsymbol{A}|\boldsymbol{B}) P(\boldsymbol{B})}{P(\boldsymbol{A})}$$

Marginalization

$$P(\mathbf{B}) = \sum_{a} P(\mathbf{A} = a, \mathbf{B})$$

where $A = \{a_1, a_2, a_3\}$

$$\sum_{x \in X} P(X) = 1 \text{ (Sum Rule)}$$

HMM Algorithms

The 3 HMM Algorithms

Forward-Backward – computes the probability of a sequence of observations o_1, \dots, o_n .

Viterbi – computes the most likely sequence of hidden states $h_1, ..., h_n$ that would result from an observation sequence $o_1, ..., o_n$.

Baum-Welch – trains the parameters of HMM that so that it maximizes the likelihood of the training data.

The Forward-Backward Algorithm

- Given an HMM, the forward-backward algorithm takes as input an observation sequence $o_1, ..., o_n$, and computes $P(o_1, ..., o_n)$, i.e., the probability that the sequence would be generated by the HMM model.
- Uses a dynamic programming approach, which is possible because of the Markov assumptions.
- Relatively efficient at $O(m^2n)$ where m is the number of hidden states and n is the sequence length.
- Forms the basis for sequence classification.
- There are 2 forms: the forward algorithm and the backward algorithm. There is no advantage of one over the other.

The Viterbi Algorithm

- Given an HMM, the Viterbi algorithm computes the most likely sequence of hidden states $h_1, ..., h_n$ that would result in a given observation sequence $o_1, ..., o_n$
- Uses a dynamic programming approach
- Similar to the Forward-Backward algorithm but has both a forward and backward pass.
- $O(m^2n)$ where m is the number of hidden states and n is the sequence length.
- Used to find the "best explanation" for a given observation sequence.

The Baum-Welch Algorithm

- Given a set of observation sequences (training data) and the number of hidden states *m*, train the parameters of an *m*-state HMM that maximizes the likelihood of the training data.
- The parameter include the probabilities in the <u>start table</u>, the <u>transition table</u> and the <u>observation table</u>.
- The algorithm is a hill-climbing algorithm and is an application of the more general expectation-maximization algorithm.
- Uses Forward-Backward algorithm

Baum-Welch Algorithm Cost

- m hidden states
- N training sequences
- n max length per sequence
- $\bullet O(m^2Nn)$
- How many iterations are needed? Unknown

Some HMM Variants

There are many HMM variants

- N-order HMMs HMM depends on n previous states.
- Input/Output HMMs adds a visible input node
 It at each time t. Each hidden node and
 observation node at time t receives an input from
 It.
- Factorial HMMs allow multiple chains of hidden nodes. Does not satisfy Markov property.
- Switching Auto-Regressive HMMs (SAR-HMMs) Use real-valued observations that are correlated to previous observations by linear regression.
- Kalman Filter HMM cousin where hidden states are continuous real values as are the observations.
- Etc., etc.

HMM Applications

What Problems HMMs Can Solve

Filtering – given a sequence of observations o_1, \ldots, o_t , find the most likely state h_t i.e., where $P(h_t|o_1, \ldots, o_t)$ is maximal.

Smoothing – given a sequence of observations $o_1, ..., o_T$ and t < T, find the most likely state h_t i.e., where $P(h_t|o_1, ..., o_T)$ is maximal.

Prediction – given a sequence of observations $o_1, ..., o_t$, predict the most likely observation o_{t+1} i.e., where $P(o_{t+1}|o_1, ..., o_t)$ is maximal.

Classification – classify a sequence of observations o_1, \ldots, o_t by assigning a class c associated with the HMM_c that computes the highest probability of generating the sequence.

Explanation – Given a a sequence of observations o_1, \ldots, o_t , find a sequence of hidden states h_1, \ldots, h_t that best explains the observations.

Some Real HMM Application Areas

- Computational Finance
- Speech Recognition e.g., Siri
- Speech Synthesis
- Part-of-Speech Tagging
- Protein Folding
- Single-molecule kinetic analysis
- Target tracking (Kalman filter)
- etc., etc.

Sources:

"The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World", Pedro Domingos, 2015.

https://en.wikipedia.org/wiki/Hidden Markov model

Classifying an Observation Sequence

Approach 1:

- Train an HMM_i for each class c_i in C.
- Given observation sequence o_1, \dots, o_n , for each c_i , compute $P_i(o_1, \dots, o_n)$.
- Classify sequence as c_{max} for $max = \operatorname{argmax}_i P_i(o_1, ..., o_n)$

Classifying an Observation Sequence

Approach 2: Weight probabilities by prior probabilities for each class.

- Compute prior probability $P(c_i)$ for each class c_i in C.
- Train an HMM_i for each class c_i in C.
- Given observation sequence $o_1, ..., o_n$, compute $argmax_i P(c_i | o_1, ..., o_n)$.

•
$$\operatorname{argmax} P(c_i|o_1, \dots, o_n) = \operatorname{argmax}_i \frac{P(o_1, \dots, o_n|c_i)P(c_i)}{P(o_1, \dots, o_n)}$$
 (by Bayes' rule)
= $\operatorname{argmax}_i P(o_1, \dots, o_n|c_i)P(c_i)$ (o_1, \dots, o_n has no effect on max)

• Classify sequence as c_{max} for $\max = \underset{i}{argmax} P(o_1, ..., o_n | c_i) P(c_i)$.

Application Example: Word Recognition

- Train a separate HMM for each word.
- Represent a word as a sequence of phonemes (hidden states)
- Represent observations as frequency vectors.

Application Example: Word Recognition (2)

A Word Model:

An Observation Sequence:

Application Example: Tracking

- Suppose we want to track the movement of a mouse in a set of connected rooms.
- There are microphones in each room that can detect various sounds like: "squeak", "scurry", "crunch".
- The microphones don't always pick up a sound and may detect sounds in other rooms.
- Use filtering, smoothing and prediction to estimate where the mouse is, what it is doing and where it will go next.

Application Example: Spam "Deobfuscation"

obfuscated input	deobfuscated input
u-n-s-u-s-c-r-i-b-e link	unsubscribe link
Re xe finance	refinance
M∧ cromei)i∧	macromedia
gre4t pr1ces	great prices
heyllooo it's me Chelsea	hello it's me chelsea
veerrryyy cheeaapp	very cheap
u.n sabscjbe	unsubscribe
pa, rty for sen, ding this re.port	party for sending this report
get you un iversi t y di pl0 m a	get your university dimploma
ree movee below:	remove below

Application Example: Spam "Deobfuscation"

Training HMMs: Baum-Welch

Learning Parameters

Input: observation sequences

sequences may be different lengths

Goal: Learn HMM parameters

HMM Data Structures

By Terencehonles - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=8384168

```
# n = 2 hidden states
states = ('Rainy', 'Sunny')
# m = 3 observation states
observations = ('walk', 'shop', 'clean')
# n x 1 start table
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
# n x n transition table
transition_probability = { 'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
                          'Sunny': {'Rainy': 0.4, 'Sunny': 0.6}, }
# n x m observation table
emission_probability = { 'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
                          'Sunny': {'walk': 0.6, 'shop': 0.3, 'clean': 0.1}, }
```

Adapted from https://en.wikipedia.org/w/index.php?title=Hidden_Markov_model&oldid=841523243

Parameters

$$\theta_{h,o} = P(O_i = o \mid H_i = h)$$

$$\theta_{h_1,h_2} = P(H_{i+1} = h_2 \mid H_i = h_1)$$

$$\theta_h^1 = P(H_1 = h)$$

Observation Table

Transition Table

Start Table

If only ...

- If we could observe hidden states, learning would be easy
 - define sufficient statistics
 - count statistics in data
 - use maximum likelihood formula for each parameter

Sufficient Statistics

 $N_{h,o}$ = number of times state h occurs with observation o

 N_{h_1,h_2} = number of times state h_1 is followed by h_2

 N_h^1 = number of times initial state is h

Maximum Likelihood Estimation

$$\theta_{h,o} = P(O_i = o \mid H_i = h)$$

$$\theta_{h,o} = \frac{N_{h,o}}{\sum_{o' \in O} N_{h,o'}}$$

$$\theta_{h_1,h_2} = P(H_{i+1} = h_2 \mid H_i = h_1)$$

$$\theta_{h_1,h_2} = \frac{N_{h_1,h_2}}{\sum_{h \in H} N_{h_1,h}}$$

$$\theta_h^1 = P(H_1 = h)$$

$$\theta_{h}^{l} = \frac{N_{h}^{l}}{N}$$

Unfortunately . . .

- We don't observe the hidden states
- So we cannot count the statistics
- What can we do?

Expectation-maximization!

 EM in HMMs is called the Baum-Welch algorithm

EM

- 1. Pick initial parameters θ
- Repeat until convergence:
 - a) E-step: compute expected sufficient statistics given θ and the data
 - M-step: choose θ so as to maximize likelihood of expected sufficient statistics

Expectation Step

$$E[N_h^1] = \sum_{j=1}^N P(H_1^j = h | o_1^j, ..., o_{n^j}^j)$$

$$E[N_{h_1,h_2}] = \sum_{j=1}^{N} \sum_{i=1}^{n^j-1} P(H_i^j = h_1, H_{i+1}^j = h_2 \mid o_1^j, ..., o_{n^j}^j)$$

$$E[N_{h,o}] = \sum_{j=1}^{N} \sum_{i=1}^{n^{j}} \begin{cases} 0 & \text{if } o_{i}^{j} \neq o \\ P(H_{i}^{j} = h \mid o_{1}^{j}, ..., o_{n^{j}}^{j}) & \text{if } o_{i}^{j} = o \end{cases}$$

Maximization Step

Just replace sufficient statistics with expected sufficient statistics

$$\theta_{h,o} = \frac{E[N_{h,o}]}{\sum_{o' \in O} E[N_{h,o'}]}$$

$$\theta_{h_1,h_2} = \frac{E[N_{h_1,h_2}]}{\sum_{h \in H} E[N_{h_1,h}]}$$

$$\theta_{h}^{1} = \frac{E[N_{h}^{1}]}{N}$$

Cost

- m hidden states
- N sequences
- n max length per sequence
- O(m²Nn) per iteration
- But how many iterations are needed?
 - Unknown

How Many Hidden States?

- Do you want more or fewer hidden states?
 - Which might underfit the data?
 - Which might overfit the data?

- More hidden states:
 - more complex models
 - captures more pattern
 - may overfit

Amount of Data Needed

- m hidden states
- Size of observation model: O(m)
- Size of transition model: O(m²)
- Size of initial model: O(m)
- Overall number of parameters: O(m²)

 You need roughly quadratic data to learn a model with more hidden states

Training Time

- Training time per iteration: quadratic in number of hidden states
- Number of iterations required until convergence may also grow
- Overall cost of computation grows quickly with number of hidden states

Bottom Line

 While having more hidden states is useful for capturing more pattern in the data, having a very large number of hidden states is often impractical

HMMs vs RNNs

Look in the slide notes below for topics to consider talking about

Linear Dynamical Systems (engineers love them!)

- These are generative models. They have a realvalued hidden state that cannot be observed directly.
 - The hidden state has linear dynamics with Gaussian noise and produces the observations using a linear model with Gaussian noise.
 - There may also be driving inputs.
- To predict the next output (so that we can shoot down the missile) we need to infer the hidden state.
 - A linearly transformed Gaussian is a Gaussian. So the distribution over the hidden state given the data so far is Gaussian. It can be computed using "Kalman filtering".

Hidden Markov Models (computer scientists love them!

- Hidden Markov Models have a discrete oneof-N hidden state. Transitions between states are stochastic and controlled by a transition matrix. The outputs produced by a state are stochastic.
 - We cannot be sure which state produced a given output. So the state is "hidden".
 - It is easy to represent a probability distribution across N states with N numbers.
- To predict the next output we need to infer the probability distribution over hidden states.
 - HMMs have efficient algorithms for inference and learning.

A fundamental limitation of HMMs

- Consider what happens when a hidden Markov model generates data.
 - At each time step it must select one of its hidden states. So with N
 hidden states it can only remember log(N) bits about what it generated
 so far.
- Consider the information that the first half of an utterance contains about the second half:
 - The syntax needs to fit (e.g. number and tense agreement).
 - The semantics needs to fit. The intonation needs to fit.
 - The accent, rate, volume, and vocal tract characteristics must all fit.
- All these aspects combined could be 100 bits of information that the first half of an utterance needs to convey to the second half. 2^100 is big!

A fundamental limitation of HMMs

- Consider what happens when a hidden Markov model generates data.
 - At each time step it must select one of its hidden states. So with N
 hidden states it can only remember log(N) bits about what it generated
 so far.
- Consider the information that the first half of an utterance contains about the second half:
 - The syntax needs to fit (e.g. number and tense agreement).
 - The semantics needs to fit. The intonation needs to fit.
 - The accent, rate, volume, and vocal tract characteristics must all fit.
- All these aspects combined could be 100 bits of information that the first half of an utterance needs to convey to the second half. 2^100 is big!

Recurrent neural networks

- RNNs are very powerful, because they combine two properties:
 - Distributed hidden state that allows them to store a lot of information about the past efficiently.
 - Non-linear dynamics that allows them to update their hidden state in complicated ways.
- With enough neurons and time, RNNs can compute anything that can be computed by your computer.

Do generative models need to be stochastic?

- Linear dynamical systems and hidden Markov models are stochastic models.
 - But the posterior probability distribution over their hidden states given the observed data so far is a deterministic function of the data.

- Recurrent neural networks are deterministic.
 - So think of the hidden state
 of an RNN as the
 equivalent of the
 deterministic probability
 distribution over hidden
 states in a linear dynamical
 system or hidden Markov
 model.

Recurrent neural networks

- What kinds of behaviour can RNNs exhibit?
 - They can oscillate. Good for motor control?
 - They can settle to point attractors. Good for retrieving memories?
 - They can behave chaotically. Bad for information processing?
 - RNNs could potentially learn to implement lots of small programs that each capture a nugget of knowledge and run in parallel, interacting to produce very complicated effects.
- But the computational power of RNNs makes them very hard to train.
 - For many years we could not exploit the computational power of RNNs despite some heroic efforts (e.g. Tony Robinson's speech recognizer).

Hidden Markov Models

Scott O'Hara

Metrowest Developers

Machine Learning Group

05/23/2018

Extra Slides

Look in the slide notes below for topics to consider talking about

Forward-Backward Algorithm

Given an HMM, compute the probability of an observation sequence.

Compute the probability of a sequence of observations

Given: o₁, ..., o_n

Goal: compute probability $P(o_1, ..., o_n)$

Two Algorithms:

- Backward Algorithm
- Forward Algorithm
- Together called the forward-backward algorithm

Approach 1: Enumerate All Possibilities

Introduce $h_1, ..., h_n$ with marginalization:

$$P(o_1, ..., o_n) = \sum_{h_1, ..., h_n} P(h_1, ..., h_n, o_1, ..., o_n)$$

Enumerate all possible configurations of $h_1, ..., h_n$ and sum the results where:

$$P(h_1, \dots, h_n, o_1, \dots, o_n) = P(o_1|h_1)P(h_1) \prod_{i=2}^n P(h_i|h_{i-1})P(o_i|h_i)$$

Problem: the total number of sequences is exponential in the length of sequence.

Approach 2: Dynamic Programming

- Build the solution from the bottom up by combining the solution of smaller problems into the solution of larger problems.
- Backward Algorithm: compute from the end of the sequence toward the beginning.
- Forward Algorithm: computer from the beginning of the sequence toward the end.
- Neither approach has any particular advantage.

Backward Algorithm

- Subproblem at time i: probability of suffix from i starting from each possible hidden state
- Define $f_i(h_i) = P(o_1, ..., o_n | h_i)$

Base Case

• $f_n(h_n) = P(o_n|h_n)$, from the observation model.

Backward Inductive Step

$$\begin{split} f_i(h_i) &= P(o_i, \dots, o_n | h_i) \\ &= P(o_i | h_i) P(o_{i+1}, \dots, o_n | h_i, o_i) & \text{chain rule} \\ &= P(o_i | h_i) P(o_{i+1}, \dots, o_n | h_i) & \text{Markov property} \\ &= P(o_i | h_i) \sum_{h_{i+1} \in H} P(h_{i+1}, o_{i+1}, \dots, o_n | h_i) & \text{marginalization} \\ &= P(o_i | h_i) \sum_{h_{i+1} \in H} P(h_{i+1} | h_i) P(o_{i+1}, \dots, o_n | h_i, h_{i+1}) & \text{chain rule} \\ &= P(o_i | h_i) \sum_{h_{i+1} \in H} P(h_{i+1} | h_i) P(o_{i+1}, \dots, o_n | h_{i+1}) & \text{Markov property} \\ &= P(o_i | h_i) \sum_{h_{i+1} \in H} P(h_{i+1} | h_i) P(o_{i+1}, \dots, o_n | h_{i+1}) & \text{definition of } f \end{split}$$

Inductive Step (1)

$$f_i(h_i) = P(o_i|h_i) \sum_{h_{i+1} \in H} P(h_{i+1}|h_i) f_{i+1}(h_{i+1})$$

Previously Computed

Inductive Step (2)

$$f_{i}(h_{i}) = P(o_{i}|h_{i}) \sum_{h_{i+1} \in H} P(h_{i+1}|h_{i}) f_{i+1}(h_{i+1})$$

$$H_{1} \longrightarrow H_{2} \longrightarrow H_{3} \longrightarrow H_{n}$$

$$O_{1} \longrightarrow O_{2} \longrightarrow O_{3}$$

$$i = 2$$

$$from$$

$$transition$$

$$model$$

Inductive Step (3)

Final Step (1)

$$P(o_1, ..., o_n) = \sum_{h_1 \in H} P(o_1|h_1)P(o_2, ..., o_n|h_1)$$
$$= \sum_{h_1 \in H} P(o_1|h_1)f_1(h_1)$$

Final Step (2)

$$P(o_{1},...,o_{n}) = \sum_{h_{1} \in H} P(o_{1}|h_{1})P(o_{2},...,o_{n}|h_{1})$$

$$= \sum_{h_{1} \in H} P(o_{1}|h_{1})f_{1}(h_{1})$$
observation
model

H1
H2
H3
...

Credit: adapted from lecture slides Sarah Finney, "CS181: Intelligent Machines Perception, Learning and Uncertainty", 2009, Harvard University.

Final Step (3)

$$P(o_1, \dots, o_n) = \sum_{h_1 \in H} P(o_1|h_1)P(o_2, \dots, o_n|h_1)$$

$$= \sum_{h_1 \in H} P(o_1|h_1)f_1(h_1)$$

$$previously computed$$

$$O_1 \qquad O_2 \qquad O_3$$

$$O_n$$

Credit: adapted from lecture slides Sarah Finney, "CS181: Intelligent Machines Perception, Learning and Uncertainty", 2009, Harvard University.

Complexity: m hidden states, n time steps

Init

For each hidden state h_n:

O(m)

$$f_n(h_n) = P(o_n \mid h_n)$$

Loop

For i = n-1 down to 1:

O(n) times

For each hidden state h;:

O(m2)

$$f_i(h_i) = P(o_i \mid h_i) \ \Sigma_{h(i+1)} \ P(h_{i+1} \mid h_i) \ f_{i+1}(h_{i+1})$$

Finish

Return $\Sigma_{h1}P(h_1)f_1(h_1)$

O(m)

Total: O(m2n)

Credit: adapted from lecture slides Sarah Finney, "CS181: Intelligent Machines Perception, Learning and Uncertainty", 2009, Harvard University.

Template

Stuff

Template