

Prescriptive Analytics For Response variation reduction

Problem Statement

> Customer Specs for 'response'

- > Upper Control Limit = 24
- > Lower Control Limit = 21

Current Performance

> ~10% of 'response' falls outside the control limits and cannot be sold to the customer

> Questions to Answer with data:

- > Which features have the most impact on response's variation?
- > How much should the variation in these features be tightened to ensure response variation meets customer specs?

> Approach:

- > 1st question to be answered with a linear model for interpretability
- > 2nd question to be answered with Monte-Carlo simulation

> Challenge:

> Features are sampled measurements to control cost and hence have ~80% missing data

Dataset Analysis

> 201 columns

- > 1 Response column
- > 200 Feature columns

> 30K rows

Dataset columns = 30000, rows = 201

	feature_1	feature_2	feature_3	feature_4	feature_5	feature_6	feature_7	 feature_195	feature_196	feature_197	feature_198	feature_199	feature_200	response
(NaN	 NaN	NaN	NaN	NaN	NaN	NaN	22.331327						
1	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	21.791539						
2	. NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	22.482583
3	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	21.906473						
4	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	22.444643						

- > 80:20 split between Train and Test
- > First 24K rows used to Train model
- > Last 6K rows used to Test model
- Simulate Training model on historical data and predicting on future data
- > Many missing values observed

Features Analysis

- > 200 features available.
- Approximately 80% of values missing for each feature.
- > Probably due to sampling of measurements.
- > Different features have different magnitude of measurement.

Mean missing = 81.39% Min missing = 65.23% Max missing = 81.98%

	count	mean	std
feature_1	4450.0	-0.049984	0.002009
feature_2	4368.0	-0.030033	0.001987
feature_3	4424.0	99.962276	4.968360
feature_4	4367.0	50.091356	5.060973
feature_5	4385.0	-11.385654	5.151478
feature_6	4456.0	105.867981	8.741134
feature_7	4414.0	-59.339075	2.710678
feature_8	4477.0	-125.787108	1.057162
feature_9	4429.0	-93.298123	20.619588
feature_10	4434.0	136.594302	29.424855

Response Analysis

- Approximately 10% of Response falls outside customer specs

> Response has normal distribution.

Customer Specs:

$$LCL = 21$$

 $UCL = 24$

Hence,
Desired response stddev = (UCL-LCL)/6 = 0.5

Response Mean: 22.51, StdDev: 0.91

Below LCL(21): 4.92%, Above UCL(24): 5.01%

Initial Model

- > Missing data filled with column mean.
- > Choose Linear Models to have interpretable results
- All Models have high error (high RMSE)
- All Models have low correlation between model's predicted value and actual value (low R2)

Model Investigation

- Investigate further into 1 model to find reason for high error and low correlation
- > Plot the actual correlation between model's predicted value vs actual value
- Correlation looks significant for many points
- However, there is a second distribution that has weak correlation
- > This is an artifact of filling missing data with the column mean.
- > Let's change the prediction to only predict the response when the row has values for all the columns used by the model.

Lasso Model

- > Lasso model has automatic feature selection and only uses features that are important for prediction.
- The model picks up 5 features as important.
 Coefficients are the Model's estimate of rate of change of response per unit change in feature.
- > For these 5 features, drop the rows that have missing values and plot predicted vs actual again
- > Very high correlation and low error observed
- Hence the model is very good at predicting those rows that have measurements for all 5 important features
- > Recommendation: Ensure measurement sampling can measure all 5 features as much as possible

Important Features

	coefficient
feature_1	240.664873
feature_2	-242.632047
feature_3	-0.097016
feature_4	0.043333
feature_61	-0.000341

Monte-Carlo Simulation

Response Mean: 22.51, StdDev: 0.91

Below LCL(21): 4.92%, Above UCL(24): 5.01%

- > Run simulation 50K times
- > Each time, randomly choose a value from each of the 5 important features and calculate simulated response using the model parameters.
- Compare final simulated response to actual response and see that they are quite similar which indicates simulation is successful.

Simulated Response Mean: **22.51**, StdDev: **0.87** 500 Below LCL(21): **4.19%**, Above UCL(24): **4.29%**

Optimization

- > Run optimization by reducing the stddev of each of the 5 important features and calculate stddev of simulated response.
- > Stop when the stddev of simulated response is lower than the customer specs (0.5)
- > StdDev of each feature needs to divide by: 1.80 to get Final Simulated Response StdDev: 0.49.
- > The desired std dev for each of the important features are shown in the table. If these conditions are met, only 0.2% of response will fall outside customer specs.

Optimized Simulated Response Mean: 22.51, StdDev: 0.49 Below LCL(21): 0.11%, Above UCL(24): 0.12%

	Current StdDev	Desired StdDev
feature_1	0.002009	0.001116
feature_2	0.001987	0.001104
feature_3	4.96836	2.7602
feature_4	5.060973	2.811652
feature_61	4.053497	2.251943

Conclusion & Recommendations

> Conclusions:

- Response can be predicted with low error stddev of 0.1 using 5 features: feature_1,2,3,4,61.
- > Desired stddev of important features are shown in the table. Each stddev needs to divide by 1.8 of current value.
- > Response not meeting customer specs can be drastically reduced from ~10% to 0.2% if all features meet the desired stddey values.

> Recommendations:

- > Ensure measurement can measure all 5 important features as much as possible
- > Control 5 important features within desired stddev values

Optimized Simulated Response:

Below LCL(21): 0.11%, Above UCL(24): 0.12%

	Current StdDev	Desired StdDev
feature_1	0.002009	0.001116
feature_2	0.001987	0.001104
feature_3	4.96836	2.7602
feature_4	5.060973	2.811652
feature_61	4.053497	2.251943

