Лабораторная забота №2.

Статистическое моделирование случайных величин. Интервальное оценивание параметров распределения случайных величин.

Часть I.

- 1. Смоделировать выборку из n независимых наблюдений над случайной величиной X, имеющей нормальный закон распределения с параметрами (a, σ^2) .
 - 1.1. С надежностью γ найти интервальную оценку (доверительный интервал) для математического ожидания случайной величины X, предполагая, что дисперсия случайной величины X известна (см. YKA3AHUE).
 - 1.2. С надежностью γ найти интервальную оценку (доверительный интервал) для математического ожидания случайной величины X, предполагая, что дисперсия случайной величины X неизвестна (см. YKA3AHUE).
 - 1.3. С надежностью γ найти интервальную оценку (доверительный интервал) для дисперсии случайной величины X.
- 2. Построить график зависимости длины доверительного интервала от надежности при неизменном объеме выборки для случаев интервального оценивания математического ожидания и дисперсии.
- 3. Построить график зависимости длины доверительного интервала от объема выборки при неизменной надежности для случаев интервального оценивания математического ожидания и дисперсии.
- 4. Смоделировать M выборок из n значений нормально распределенной случайной величины X с параметрами (a, σ^2) . По каждой из M выборок с надежностью γ найти интервальную оценку (доверительный интервал) для математического ожидания случайной величины X, предполагая, что дисперсия случайной величины X неизвестна.

По результатам моделирования найти точечную оценку у* надежности у.

Чем Вы можете объяснить наблюдающееся отклонение точечной оценки γ^* от надежности γ ?

- 5. Смоделировать M выборок из n значений нормально распределенной случайной величины X с параметрами (a, σ^2) .
- 5.1. По каждой из M выборок найти наблюдаемое значение случайной величины Z (описание случайной величины Z приведено в Вашем варианте)
- 5.2. По выборке из M значений случайной величины Z найти выборочные числовые характеристики ее распределения.
- 5.3. Построить гистограмму относительных частот и теоретическую кривую распределения случайной величины \mathbf{Z} , а также ящичковую диаграмму.

Каков закон распределения случайной величины Z?

УКАЗАНИЕ. В пунктах 1.1. и 1.2. **Части I** интервальные оценки найти двумя способами. Первый способ заключается в программной реализации формул для вычисления границ интервальной оценки, а второй — в использовании метода **interval** из модуля статистических функций **scipy.stats**.

Часть II.

1. Смоделировать M выборок из n значений нормально распределенной случайной величины X с параметрами (a, σ^2) . По каждой из M выборок с надежностью γ найти интервальную оценку (доверительный интервал) для дисперсии случайной величины X.

По результатам моделирования найти точечную оценку у* надежности у.

Чем Вы можете объяснить наблюдающееся отклонение точечной оценки γ^* от надежности γ ?

2. Повторив пункт 1. K раз, получите массив из K значений оценки γ^* . Найдите выборочные числовые характеристики оценки γ^* , постройте гистограмму относительных частот и боксплот.

Каким может быть закон распределения оценки у*?

Чему равны математическое ожидание и дисперсия оценки у*?

3. Смоделировать M выборок из n значений случайной величины W, описанной в Вашем варианте. По каждой из M выборок с надежностью γ найти интервальную оценку (доверительный интервал) для дисперсии случайной величины W (для построения интервальной оценки дисперсии использовать ту же формулу, что и в пункте 1, Части II). По результатам моделирования найти точечную оценку γ^* надежности γ .

Чем Вы можете объяснить наблюдающееся отклонение точечной оценки γ^* от надежности γ ?

4. Повторив пункт 3. K раз, получите массив из K значений оценки γ^* . Найдите выборочные числовые характеристики оценки γ^* , постройте гистограмму относительных частот и боксплот.

Каким может быть закон распределения оценки у*?

ВАРИАНТЫ ЗАДАНИЙ

Вариант	γ	n	M	K	Случайная величина	Случайная
					Z	величина
параметры $(a; \sigma^2)$						W
$\frac{(a,b)}{1}$	0,99	13	2000	150	$Z = \frac{\bar{X} - a}{s} \sqrt{n},$	$W = \frac{1}{4} \sum_{i=1}^4 U_i;$
_					$z = \frac{1}{s}$ үй,	U_1, U_2, U_3, U_4
(1;4)					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	случайная
					$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2};$	выборка из 4
					$\int_{-\infty}^{\infty} \frac{1}{n-1} \sum_{i=1}^{\infty} (A_i - A_i) ,$	значений случайной
					X_1, X_2, \dots, X_n — случайная	величины U ,
					выборка из п значений	равномерно
					случайной величины Х;	распределенной
2.	0,95	11	2500	100	$X \sim N(a, \sigma^2)$ $Z = \frac{\bar{X} - a}{S} \sqrt{n},$	на отрезке $[0, 1]$.
<u>2</u> (-1;5)	0,75	11	2300	100		$W = \frac{1}{5} \sum_{i=1}^5 U_i;$
					ГДе $\bar{\mathbf{v}} = {}^{1}\nabla^{n}$ \mathbf{v} .	U_1, U_2, \dots, U_5 — случайная
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	выборка из 5
					$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2};$	значений
					X_1, X_2, \dots, X_n — случайная	случайной величины U ,
					n_1, n_2, \dots, n_n ему паннал выборка из n значений	имеющей
					случайной величины X ;	распределение
					$X \sim N(a, \sigma^2)$	Хи-квадрат с 6 степенями
						свободы.
<u>3</u> (-3;9)	0,90	13	1500	180	$Z = \frac{\bar{X} - a}{s} \sqrt{n},$	$W = \frac{1}{3} \sum_{i=1}^3 U_i;$
(-3;9)					где	U_1, U_2, U_3 —
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	случайная
					$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2};$	выборка из 3 значений
					n-1-t-1	случайной
					X_1, X_2, \ldots, X_n — случайная	величины U ,
					выборка из n значений случайной величины X ;	равномерно распределенной
					$X \sim N(a, \sigma^2)$	на отрезке [0, 2].
<u>4</u>	0,99	10	2000	120	$X \sim N(a, \sigma^2)$ $Z = \frac{(n-1)S^2}{\sigma^2},$	$W = \frac{1}{5} \sum_{i=1}^5 U_i;$
(3;1)					σ^2 , где	U_1, U_2, \dots, U_5
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	случайная
					$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2};$	выборка из 5 значений
					n-1 $2l=1$ $(n l n)$,	случайной
					X_1, X_2, \dots, X_n — случайная	величины U ,
					выборка из п значений	имеющей
					случайной величины X ; $X \sim N(a, \sigma^2)$	распределение Фишера-
					11 11 (4) 0)	Снедекора с
						k1=k2=5
						степенями свободы.
<u>5</u>	0,95	15	1900	150	$Z = \frac{\bar{X} - a}{S} \sqrt{n},$	$W = \frac{1}{4} \sum_{i=1}^4 U_i;$
(-2;10)					$z = \frac{1}{s}$ үй,	U_1, U_2, \dots, U_4
						случайная

					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	выборка из 4
					16	значений
					$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2};$	случайной
						величины U ,
					X_1, X_2, \ldots, X_n — случайная	имеющей
					выборка из <i>п</i> значений	распределение
					случайной величины X ;	Хи-квадрат с 4
					$X \sim N(a, \sigma^2)$	степенями
						свободы.
6	0,90	16	2400	100	$Z = \frac{(n-1)S^2}{\sigma^2},$	$W = \frac{1}{4} \sum_{i=1}^4 U_i;$
<u>6</u> (-1;5)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				$Z = {\sigma^2}$	T
, ,-,					где	U_1, U_2, \dots, U_4 —
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	случайная
					$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2};$	выборка из 4
					$S = \frac{1}{n-1} \sum_{i=1}^{n-1} (A_i - A_i) ;$	значений
						случайной
					X_1, X_2, \dots, X_n — случайная	величины U ,
					выборка из <i>п</i> значений	равномерно
					случайной величины X ;	распределенной
					$X \sim N(a, \sigma^2)$	на отрезке [-1, 0].
<u>7</u>	0,99	12	1600	160	$X \sim N(a, \sigma^2)$ $Z = \frac{\bar{X} - a}{S} \sqrt{n},$	$W = \frac{1}{6} \sum_{i=1}^{6} U_i;$
(0,5;16)						U_1, U_2, \dots, U_6
					где	o_1, o_2, \dots, o_6 — случайная
					$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2};$	выборка из 6
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	значений
					n = i - 1 - i	случайной
					X_1, X_2, \dots, X_n — случайная	величины U ,
					$n_1, n_2, \dots, n_n \longrightarrow \text{случайнай}$ выборка из n значений	имеющей
					случайной величины X ;	распределение
					$X \sim N(a, \sigma^2)$	Фишера-
					$X \sim N(u, o)$	Снедекора с k ₁ =2
						и k2=6 степенями
						свободы.
8	0,95	14	1800	170	<u> </u>	
(-0,5;4)	0,73	1.	1000	170	$Z = \frac{\bar{X} - a}{S} \sqrt{n},$	$W = \frac{1}{5} \sum_{i=1}^5 U_i;$
(0,5,1)					где	U_1, U_2, \ldots, U_5
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	случайная
					16	выборка из 5
					$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2};$	значений
						случайной
					X_1, X_2, \dots, X_n — случайная	величины U ,
					выборка из п значений	имеющей
					случайной величины X ;	распределение
					$X \sim N(a, \sigma^2)$	Хи-квадрат с 4
						степенями
	0.55		400-	4 ~ -		свободы.
<u>9</u> (-4;6)	0,90	17	1800	180	$Z = \frac{(n-1)S^2}{\sigma^2},$	$W = \frac{1}{4} \sum_{i=1}^4 U_i;$
(-4;6)					σ ² где	U_1, U_2, \ldots, U_4
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	случайная
					16	выборка из 4
					$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2;$	значений
					<i>n</i> -1	случайной
					X_1, X_2, \dots, X_n — случайная	величины U ,
					выборка из n значений	имеющей
					случайной величины Х;	распределение
					$X \sim N(a, \sigma^2)$	Фишера-
					11 11 (4, 0)	Снедекора с
L			I		<u>L</u>	r 1 T *

	1 1		<u> </u>	1	T	1 1 6
						k1=k2=6
						степенями
- 10						свободы.
<u>10</u>	0,99	18	1900	130	$Z = \frac{\bar{X} - a}{c} \sqrt{n},$	$W = \frac{1}{4} \sum_{i=1}^{4} U_i;$
(0,5;5)					где	U_1, U_2, U_3, U_4 —
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	случайная
					κ	выборка из 4
					$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2;$	значений
					n-1-t	случайной
					X_1, X_2, \dots, X_n — случайная	величины U ,
					n_1, n_2, \dots, n_n выборка из n значений	равномерно
					случайной величины X;	распределенной
					$Y \sim N(\alpha, \sigma^2)$	на отрезке [-3, -2].
11	0,95	13	1600	110	$(n-1)S^2$	
(-1;1)	0,93	13	1000	110	$X \sim N(a, \sigma^2)$ $Z = \frac{(n-1)S^2}{\sigma^2},$	$W = \frac{1}{4} \sum_{i=1}^4 U_i;$
(-1,1)					где	U_1, U_2, U_3, U_4 —
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	случайная
					11.	выборка из 4
					$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2};$	значений
						случайной
					X_1, X_2, \dots, X_n — случайная	величины U ,
					выборка из <i>п</i> значений	имеющей
					случайной величины X ;	распределение
					$X \sim N(a, \sigma^2)$	Хи-квадрат с 3
						степенями
						свободы.
12	0,90	14	1800	160	$Z = \frac{\bar{X} - a}{s} \sqrt{n},$	$W = \frac{1}{5} \sum_{i=1}^5 U_i;$
(3;2)					3	
					где	U_1, U_2, \dots, U_5
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	случайная
					$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2;$	выборка из 5
					n-1 $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$	значений
					V V V OTTERO	случайной
					X_1, X_2, \dots, X_n — случайная	величины U , имеющей
					выборка из п значений	'
					случайной величины Х;	распределение
					$X \sim N(a, \sigma^2)$	Фишера-
						Снедекора с
						k1=k2=7
						степенями
12	0.00	18	2300	170	$(n-1)S^2$	свободы.
(4;9)	0,99	10	2300	1/0	$Z = \frac{(n-1)S^2}{\sigma^2},$	$W = \frac{1}{5} \sum_{i=1}^5 U_i;$
(4,9)					где	$U_1, U_2, U_3, \dots, U_5$ —
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	случайная
					ii .	выборка из 5
					$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2;$	значений
						случайной
					X_1, X_2, \dots, X_n — случайная	величины U ,
					выборка из п значений	равномерно
					случайной величины X ;	распределенной
					$X \sim N(a, \sigma^2)$	на отрезке [-3, 3].
<u>14</u>	0,95	20	1800	140	$X \sim N(a, \sigma^2)$ $Z = \frac{\bar{X} - a}{S} \sqrt{n},$	$W = \frac{1}{5} \sum_{i=1}^5 U_i;$
(2;7)						3
					где	U_1, U_2, \dots, U_5
					$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$	случайная
					$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2;$	выборка из 5 значений

	1		l		T	0 0
					X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ; $X \sim N(a, \sigma^2)$	случайной величины U , имеющей распределение X и-квадрат с 2
						степенями свободы.
15 (5;8)	0,90	17	1900	180	$Z = \frac{(n-1)S^2}{\sigma^2},$ где $ar{X} = \frac{1}{n} \sum_{i=1}^n X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ; $X \sim N(a, \sigma^2)$	$W = \frac{1}{6} \sum_{i=1}^{6} U_i;$ U_1, U_2, \dots, U_6 — случайная выборка из 6 значений случайной величины U , имеющей распределение Фишера-Снедекора с k_1 =3 и k_2 =5 степенями свободы.
16 (1;2)	0,99	10	1750	175	$Z = \frac{\bar{X} - a}{S} \sqrt{n},$ где $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ; $X \sim N(a, \sigma^2)$	$W = \frac{1}{4} \sum_{i=1}^{4} U_i;$ U_1, U_2, U_3, U_4 — случайная выборка из 4 значений случайной величины U , равномерно распределенной на отрезке [4, 5].
17 (2;1)	0,95	13	1950	125	$X \sim N(a, \sigma^2)$ $Z = \frac{(n-1)S^2}{\sigma^2},$ где $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины $X;$ $X \sim N(a, \sigma^2)$	$W = \frac{1}{6} \sum_{i=1}^{6} U_i;$ U_1, U_2, \dots, U_6 — случайная выборка из 6 значений случайной величины U , имеющей распределение X и-квадрат с 2 степенями свободы.
<u>18</u> (3;2)	0,90	17	1890	135	$Z = \frac{\bar{X} - a}{S} \sqrt{n},$ где $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ; $X \sim N(a, \sigma^2)$	$W = \frac{1}{6} \sum_{i=1}^{6} U_i;$ U_1, U_2, \dots, U_6 — случайная выборка из 6 значений случайной величины U , имеющей распределение Фишера-Снедекора с $k_1=3$ и $k_2=7$

						стапанями
						степенями свободы.
<u>19</u> (-5;8)	0,99	15	2100	160	$Z = \frac{(n-1)S^2}{\sigma^2},$ где	$W = \frac{1}{3} \sum_{i=1}^{3} U_{i}; U_{1}, U_{2}, U_{3}$
					$ar{X} = rac{1}{n} \sum_{i=1}^{n} X_i;$ $S^2 = rac{1}{n-1} \sum_{i=1}^{n} (X_i - ar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ;	случайная выборка из 3 значений случайной величины <i>U</i> , равномерно распределенной
20	0,95	14	1890	170	$X \sim N(a, \sigma^2)$ $Z = \frac{\bar{X} - a}{s} \sqrt{n},$	на отрезке [-2, 0].
(7;25)					где $ \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i; $ $ S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2; $ $ X_1, X_2, \dots, X_n \longrightarrow \text{случайная} $ выборка из n значений случайной величины X ; $ X \sim N(a, \sigma^2) $	$W = \frac{1}{4} \sum_{i=1}^{4} U_i;$ U_1, U_2, U_3, U_4 — случайная выборка из 4 значений случайной величины U , имеющей распределение X и-квадрат с 3 степенями свободы.
<u>21</u> (-1;16)	0,90	16	1950	180	$Z = \frac{(n-1)S^2}{\sigma^2},$ где $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ; $X \sim N(a, \sigma^2)$	$W = \frac{1}{6} \sum_{i=1}^{6} U_i;$ U_1, U_2, \dots, U_6 — случайная выборка из 6 значений случайной величины U , имеющей распределение Фишера-Снедекора с $k_1=3$ и $k_2=6$ степенями свободы.
(2;21)	0,99	17	1300	130	$Z = \frac{\bar{X} - a}{S} \sqrt{n},$ где $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ; $X \sim N(a, \sigma^2)$	$W = \frac{1}{5} \sum_{i=1}^{5} U_i;$ $U_1, U_2, U_3,, U_5$ — случайная выборка из 5 значений случайной величины U , равномерно распределенной на отрезке $[-4,0]$.
<u>23</u> (5;25)	0,95	12	1600	160	$X \sim N(a, \sigma^2)$ $Z = \frac{(n-1)S^2}{\sigma^2},$ где $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2;$	$W = \frac{1}{5} \sum_{i=1}^{5} U_i;$ U_1, U_2, \dots, U_5 — случайная выборка из 5 значений случайной величины U ,

	0.00	10	2100	200	X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ; $X \sim N(a, \sigma^2)$	имеющей показательное распределение с математическим ожиданием, равным 2.
24 (2;9)	0,90	19	2100	200	$Z = \frac{\bar{X} - a}{S} \sqrt{n},$ где $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ; $X \sim N(a, \sigma^2)$	$W = \frac{1}{5} \sum_{i=1}^{5} U_i;$ U_1, U_2, \dots, U_5 — случайная выборка из 5 значений случайной величины U , имеющей распределение X и-квадрат с 2 степенями свободы.
2 <u>5</u> (5;4)	0,99	20	1950	150	$Z=rac{(n-1)S^2}{\sigma^2},$ где $ar{X}=rac{1}{n}\sum_{i=1}^n X_i;$ $S^2=rac{1}{n-1}\sum_{i=1}^n (X_i-ar{X})^2;$ X_1,X_2,\ldots,X_n — случайная выборка из n значений случайной величины $X;$ $X{\sim}N(a,\sigma^2)$	$W = \frac{1}{4} \sum_{i=1}^{4} U_i;$ U_1, U_2, U_3, U_4 — случайная выборка из 4 значений случайной величины U , равномерно распределенной на отрезке $[0, 3]$.
26 (0;2)	0,91	20	1750	140	$X \sim N(a, \sigma^2)$ $Z = \frac{\bar{X} - a}{S} \sqrt{n},$ где $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины $X;$ $X \sim N(a, \sigma^2)$	$W = \frac{1}{7} \sum_{i=1}^{7} U_i;$ U_1, U_2, \dots, U_7 — случайная выборка из 7 значений случайной величины U , имеющей показательное распределение с математическим ожиданием, равным 3.
<u>27</u> (5;4)	0,92	20	2100	120	$Z = \frac{(n-1)S^2}{\sigma^2},$ где $ar{X} = \frac{1}{n} \sum_{i=1}^n X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ; $X \sim N(a, \sigma^2)$	$W = \frac{1}{5} \sum_{i=1}^{5} U_i;$ U_1, U_2, \dots, U_5 — случайная выборка из 5 значений случайной величины U , имеющей t -распределение Стьюдента с 3 степенями свободы.
2 <u>8</u> (5;4)	0,93	20	1900	130	$Z = \frac{\bar{X} - a}{S} \sqrt{n},$	$W = \frac{1}{6} \sum_{i=1}^{6} U_i;$

			1	1		
20	0,94	20	1800	160	где $ \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}; $ $ S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}; $ $ X_{1}, X_{2}, \dots, X_{n} \longrightarrow \text{случайная} $ выборка из n значений случайной величины X ; $ X \sim N(a, \sigma^{2}) $	U ₁ , U ₂ ,, U ₆ — случайная выборка из 6 значений случайной величины U, имеющей распределение Фишера-Снедекора с k ₁ =2 и k ₂ =8 степенями свободы
(5;4)	0,94	20	1000		$Z = \frac{(n-1)S^2}{\sigma^2},$ где $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ; $X \sim N(a, \sigma^2)$	$W = \frac{1}{5} \sum_{i=1}^{5} U_i;$ $U_1, U_2, U_3,, U_5$ — случайная выборка из 5 значений случайной величины U , равномерно распределенной на отрезке $[1, 2]$.
3 <u>0</u> (5;4)	0,95	20	1500	170	$X \sim N(a, \sigma^2)$ $Z = \frac{\bar{X} - a}{S} \sqrt{n},$ где $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины $X;$ $X \sim N(a, \sigma^2)$	$W = \frac{1}{6} \sum_{i=1}^{6} U_i;$ U_1, U_2, \dots, U_6 — случайная выборка из 6 значений случайной величины U , имеющей t -распределение Стьюдента с 4 степенями свободы.
<u>31</u> (5;4)	0,96	20	2050	110	$Z = \frac{(n-1)S^2}{\sigma^2},$ где $ar{X} = \frac{1}{n} \sum_{i=1}^n X_i;$ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2;$ X_1, X_2, \dots, X_n — случайная выборка из n значений случайной величины X ; $X \sim N(a, \sigma^2)$	Свободы: $W = \frac{1}{4} \sum_{i=1}^{4} U_i;$ $U_1, U_2, U_3, U_4 \longrightarrow$ случайная выборка из 4 значений случайной величины U , имеющей распределение Фишера-Снедекора с $k_1=1$ и $k_2=5$ степенями свободы.