Rozwiązywanie równań nieliniowych

Krystian Madej, 22.05.2024

1. Treść zadania

Stosując metodę Newtona oraz metodę siecznych wyznaczyć pierwiastki równania $x^n+x^m=0$; n=15, m=12 w przedziale [a=-1,2,b=1,2]. Dla metody Newona wybrać punkty startowe $x_0\in\{a,a+0,1,...,b\}$. Dla metody siecznych wybrać punkty startowe $x_1=a$, $x_0=\{a+0,1,...,b\}$ oraz $x_1=b$, $x_0=\{a,a+0,1,...,b-0,1\}$. Porównać liczbę iteracji dla obu metod, dla różnych wartości ρ , stosując kryteria stopu:

- $|x_{i+1} x_i| < \rho$ przyrostowe
- $|f(x_i)| < \rho$ wartościowe

1.1 Wykres funckji

Wykres 1. Funkcja $x^{15} + x^{12}$

2. Środowisko obliczeń

Obliczenia zostały wykonane przy pomocy języka C++20 na systemie Windows 11, kompilacja 22631.3593, procesorze 64-bitowym Intel Core i5-11400H 2.70GHz, kod kompilowany kompilatorem MSVC (wersja 19.39).

3. Użyte biblioteki i programy pomocnicze

Do utworzenia map cieplnych wykorzystano program GnuPlot.

Do instalacji bibliotek C++ użyto programu conan, wersja 2.1.

Najważniejsze użyte biblioteki:

- <format> latwe formatowanie
- <numbers> stałe matematyczne
- CvPlot tworzenie wykresów
- <future> obiekty std::future oraz std::async
- <ranges> operacje na obiektach iterowalnych
- <thread> watki

4. Sposób obliczeń

4.1. Metoda Newtona

Wyprowadzenie metody newtona:

f(x) = 0, α - prosty pierwiastek x_{i-1} - przybliżenie α niech $\alpha = x_{i-1} + h$

$$f(\alpha) = 0 = f(x_{i-1} + h) = f(x_{i-1}) + h \cdot f'(x_{i-1}) + \cdots$$
$$h = -\frac{f(x_{i-1})}{f'(x_{i-1})}$$
$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

wzór iteracyjny: $x = \Phi(x)$, czyli $\Phi(x) = x - \frac{f(x)}{f'(x)}$

Warunek zbieżności: $\Phi'(x) = \frac{f''(x)f(x)}{\left(f'(x)\right)^2}$ dla $x = \alpha$: $f'(\alpha) \neq 0$

$$\Phi'(\alpha) = 0$$
, bo $f(\alpha) = 0$

Powinno istnieć otoczenia α , w którym $|\Phi'(x)| < 1$, tj. przy odpowiednim doborze x_0 metoda Newtona jest zawsze zbieżna do α .

Twierdzenie o wyborze przedziału dla metody Newtona:

Założenia:

- $f(a) \cdot f(b) < 0$ w [a,b] istnieje co najmniej 1 pierwiastek
- $f'(x) \neq 0, x \in [a, b]$ pierwiastek jednokrotny
- $f''(x) \ge 0$ lub $f''(x) \le 0$ dla wszystkich $x \in [a, b]$
- $\left| \frac{f(a)}{f'(a)} \right| < b-a$ i $\left| \frac{f(b)}{f'(b)} \right| < b-a$ styczna przecina oś x w [a,b]

Teza:

Metoda Newtona jest zbieżna do pierwiastka α dla dowolnego $x_0 \in [a,b]$.

4.2 Analiza f(x) pod względem założeń metody Newtona

f(x) jest funkcją ciągłą na R.

Bardzo łatwo można sprowadzić wzór $x^{15}+x^{12}$ do postaci:

$$x^{12}(x+1)(x^2-x+1)$$

Od razu widać że funkcja ma 2 pierwiastki rzeczywiste 0 oraz -1, przy czym 0 jest 12-krotnym pierwiastkiem.

Na wykresie funkcji widać, że posiada ona 2 ekstrema, w tym jedno będące pierwiastkiem. Oznacza to że w 2 punktach f'(x)=0, zatem metoda Newtona nie ma zdefiniowanego kolejnego kroku iteracyjnego dla tych ekstremów.

Do tego funkcja posiada punkty przegięcia.

 $f(a) \cdot f(b) < 0$, co widać na wykresie, a warunek $\left| \frac{f(a)}{f'(a)} \right| \approx 0.06 < b-a = 2.4$ i $\left| \frac{f(b)}{f'(b)} \right| \approx 0.09 < b-a = 2.4$ też jest spełniony.

Funkja $x^{15}+x^{12}$ nie spełnia wszystkich wymagań metody Newtona, zatem podczas przybliżania jej pierwiastków mogą wystąpić komplikacje.

4.3 Metoda siecznych

Startujemy z (x_0, x_1) $f(x_i) = f_i$, i = 0,1,...Nie badamy $f_0 \cdot f_1$ linie proste $(x_0, f_0), (x_1, f_1),...$

$$x_{i+2} = x_{i+1} - \frac{x_{i+1} - x_i}{f_{i+1} - f_i} \cdot f_{i+1}$$

Metoda podobna do metody Newtona, ale $f'(x_i)$ przybliżami ilorazem różnicowym $\frac{x_{i+1}-x_i}{f_{i+1}-f_i}$.

5. Implementacja obliczeń

Na początku zaimplementowano funkcje warunktów stopu: roots::stop::dx, przyjmująca x_{i+1} , x_i oraz ρ i zwracająca wartość logiczną wyrażenia $|x_{i+1}-x_i|<\rho$, oraz roots::stop::val, przyjmująca wartość f(x) oraz ρ i zwracająca wartość logiczną wyrażenia $|f(x_i)|<\rho$

Następnie zaimplementowano funkcję roots::newton, przyjmującą funkcję f(x), pochodną $\frac{df}{dx}(x)$, punkt x_0 , przedział [a,b], wartość ρ , oraz wartość typu roots::stop::predicate odpowiadającą kryterium stopu. Funkcja ta przybliża pierwiastek f(x) metodą Newtona. Zwraca ona tablicę z wartościami kolejnych przybliżeń (ostateczny wynik jest ostatnim elementem tablicy) oraz liczbę iteracji. Jeżeli wartość kolejnej iteracji jest poza przedziałem [a,b] lub jest NaN to funkcja zwraca tablicę z jedną wartością NaN, oraz ilość iteracji równa wyrażeniu (size t)-1.

Następnie zaimplementowano funkcję roots::secant, przyjmującą funkcję f(x), punkty x_0 i x_1 , przedział [a,b], wartość ρ , oraz wartość typu roots::stop::predicate odpowiadającą kryterium stopu. Funkcja ta przybliża pierwiastek f(x) metodą siecznych. Zwraca ona tablicę z

wartościami kolejnych przybliżeń (ostateczny wynik jest ostatnim elementem tablicy) oraz liczbę iteracji. Jeżeli wartość kolejnej iteracji jest poza przedziałem [a,b] lub jest NaN to funkcja zwraca tablicę z jedną wartością NaN, oraz ilość iteracji równa wyrażeniu (size_t)-1.

Jeżeli kryterium stopu to roots::stop::val oraz $|f(x_0)| < \rho$, funkcje nie wykonują pierwszej iteracji. Jeżeli kryterium to roots::stop::dx, to ze względu na naturę kryterium należy wykonać co najmniej 1 iterację.

Program zapisuje w folderze roots_results wyniki obliczeń do plików o nazwach: <metoda>_<kryterium stopu>_<rodzaj danych>_file.txt, gdzie:

- <metoda> jest jednym z:
 - o newton zawiera wyniki metody Newtona
 - \circ secant_a zawiera wyniki metody siecznych, gdzie $x_1 = a$
 - o secant_b zawiera wyniki metody siecznych, gdzie $x_1 = b$
- <kryterium stopu> jest jednym z:
 - o dx zawiera wyniki z kryterium stopu: $|x_{i+1} x_i| < \rho$
 - o val zawiera wyniki z kryterium stopu: $|f(x_0)| < \rho$
- <rodzaj danych> jest jednym z:
 - o val zawiera faktyczne przybliżenia pierwiastków
 - diff zawiera odległość przybliżeń do najbliższego pierwiastka
 - o iter − zawiera liczbę iteracji

6. Wyniki obliczeń

W poniższych tabelach kolory wyniki z niebieskim obramowaniem są bliżej wartościowo pierwiastka -1. Ciemnoczerwone obramowanie lub wypełnienie oznacza brak zbieżności.

6.1 Metoda Newtona

x_0\rho	1.00E-02	1.00E-03	1.00E-05	1.00E-07	1.00E-10	1.00E-12	1.00E-15	x_0\rho	1.00E-02	1.00E-03	1.00E-05	1.00E-07	1.00E-10	1.00E-12	1.00E-15
-1.2	6.69E-05	5.81E-08	4.4E-14	4.4E-14	0	0	0	-1.2	6	7	8	8	9	9	10
-1.1	0.000274	9.71E-07	1.23E-11	0	0	0	0	-1.1	4	5	6	7	7	8	8
-1	0	0	0	0	0	0	0	-1	1	1	1	1	1	1	1
-0.9	0.104029	0.010829	0.000108	1.07E-06	1.01E-09	1.1E-11	1E-14	-0.9	22	48	101	154	234	286	366
-0.8	0.109035	0.010404	0.000103	1.03E-06	1.06E-09	1.06E-11	1.1E-14	-0.8	22	49	102	155	234	287	366
-0.7	0.107817	0.010288	0.000102	1.02E-06	1.05E-09	1.04E-11	1.1E-14	-0.7	21	48	101	154	233	286	365
-0.6	0.102736	0.010695	0.000106	1.06E-06	1.09E-09	1.09E-11	1E-14	-0.6	20	46	99	152	231	284	364
-0.5	0.103043	0.010727	0.000107	1.06E-06	1.1E-09	1.09E-11	1E-14	-0.5	18	44	97	150	229	282	362
-0.4	0.107753	0.010282	0.000102	1.02E-06	1.05E-09	1.04E-11	1.1E-14	-0.4	15	42	95	148	227	280	359
-0.3	0.105325	0.010964	0.000109	1.08E-06	1.03E-09	1.02E-11	1.1E-14	-0.3	12	38	91	144	224	277	356
-0.2	0.108698	0.010372	0.000103	1.02E-06	1.06E-09	1.05E-11	1.1E-14	-0.2	7	34	87	140	219	272	351
-0.1	0.091665	0.01041	0.000103	1.03E-06	1.06E-09	1.06E-11	1.1E-14	-0.1	1	26	79	132	211	264	343
0	nan	0	nan												
0.1	0.091669	0.010412	0.000103	1.03E-06	1.06E-09	1.06E-11	1.1E-14	0.1	1	26	79	132	211	264	343
0.2	0.108842	0.010389	0.000103	1.03E-06	1.06E-09	1.05E-11	1.1E-14	0.2	7	34	87	140	219	272	351
0.3	0.105864	0.010104	0.00011	1.09E-06	1.03E-09	1.03E-11	1.1E-14	0.3	12	39	91	144	224	277	356
0.4	0.109101	0.010413	0.000103	1.03E-06	1.06E-09	1.06E-11	1.1E-14	0.4	15	42	95	148	227	280	359
0.5			0.000109			1.02E-11	1.1E-14	0.5	18	44	97	150	230	283	362
0.6			0.000102			1.04E-11	1.1E-14	0.6	20	47	100	153	232	285	364
0.7		0.010136		1.09E-06		1.03E-11	1.1E-14	0.7	22	49	101	154	234	287	366
8.0			0.000107		1.1E-09	1.09E-11	1E-14	8.0	24	50	103	156	235	288	368
0.9			0.000102		1.05E-09	1.04E-11	1.1E-14	0.9	25	52	105	158	237	290	369
1			0.000105			1.08E-11	1E-14	1	27	53	106	159	238	291	371
1.1			0.000108			1.01E-11	1E-14	1.1	28	54	107	160	240	293	372
1.2	0.105714	0.01009	0.000109	1.09E-06	1.03E-09	1.02E-11	1.1E-14	1.2	29	56	108	161	241	294	373

Tabela 1. Błędy przybliżeń pierwiastków dla metody Newtona z przyrostowym kryterium stopu

Tabela 2. Liczby iteracji metody Newtona z przyrostowym kryterium stopu

Tabela 3. Błędy przybliżeń pierwiastków dla metody Newtona z wartościowym kryterium stopu

Tabela 4. Liczby iteracji metody Newtona z wartościowym kryterium stopu

Jak widać na tabelach 1-4 zmniejszanie wartości ρ powoduje zwiększenie dokładności przybliżenia. Ta jest dużo wyższa dla przyrostowego kryterium, nawet o kilkanaście rzędów w porównaniu z kryterium wartościowym. To drugie, ze względu na duże wypłaszczenie funkcji w okolicach 0 powoduje, iż nie wykona się ani jedna iteracja. Nawet dla niewielkich wartości ρ daje przybliżenia odległe o około 0.05 od właściwego pierwiastka. Taka sytuacja nie występuje, gdy wartości zbiegają do -1, które jest pierwiastkiem jednokrotnym.

Metoda Newtona potrzebuje jednak znacznie mniej iteracji, aby osiągnąć kryterium wartościowe, liczba iteracji nie przekaracza 40. Dla kryterium przyrostowego wartość ta sięga nawet 350.

6.2 Metoda siecznych

6.2.1 $x_1 = a$

x_1	x_0\rho	1.00E-02	1.00E-03	1.00E-05	1.00E-07	1.00E-10	1.00E-12	1.00E-15	x_1	x_0\rho	1.00E-02	1.00E-03	1.00E-05	1.00E-07	1.00E-10	1.00E-12	1.00E-15
-1.2	-1.1	0.001142	1.21E-06	1.3E-09	2E-14	0	0	0	-1.2	-1.1	6	8	9	10	11	11	12
-1.2	-1	0	0	0	0	0	0	0	-1.2	-1	2	2	2	2	2	2	2
-1.2	-0.9	0.092998	0.016078	0.000155	1.58E-06	1.54E-09	1.57E-11	1.5E-14	-1.2	-0.9	2	64	141	217	332	408	523
-1.2	-0.8	0.195852	0.015315	0.000156	1.6E-06	1.55E-09	1.59E-11	1.5E-14	-1.2	-0.8	2	66	142	218	333	409	524
-1.2	-0.7	0.298595	0.298595	0.00016	1.54E-06	1.59E-09	1.53E-11	1.6E-14	-1.2	-0.7	2	2	140	217	331	408	522
-1.2	-0.6	0.399684	0.399684	0.000157	1.61E-06	1.56E-09	1.6E-11	1.6E-14	-1.2	-0.6	2	2	138	214	329	405	520
-1.2	-0.5	0.499954	0.499954	0.000159	1.53E-06	1.58E-09	1.52E-11	1.6E-14	-1.2	-0.5	2	2	135	212	326	403	517
-1.2	-0.4	0.400004	0.400004	0.400004	1.57E-06	1.52E-09	1.55E-11	1.6E-14	-1.2	-0.4	2	2	2	208	323	399	513
-1.2	-0.3	0.3	0.3	0.3	0.3	1.55E-09	1.58E-11	1.5E-14	-1.2	-0.3	2	2	2	2	318	394	509
-1.2	-0.2	0.2	0.2	0.2	0.2	1.58E-09	1.52E-11	1.6E-14	-1.2	-0.2	2	2	2	2	311	388	502
-1.2	-0.1	0.1	0.1	0.1	0.1	0.1	0.1	1.5E-14	-1.2	-0.1	2	2	2	2	2	2	491
-1.2	0	0	0	0	0	0	0	0	-1.2	0	2	2	2	2	2	2	2
-1.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1.5E-14	-1.2	0.1	2	2	2	2	2	2	491
-1.2	0.2	0.2	0.2	0.2	0.2	1.58E-09	1.52E-11	1.6E-14	-1.2	0.2	2	2	2	2	311	388	502
-1.2	0.3	0.3	0.3	0.3	1.6E-06	1.56E-09	1.59E-11	1.5E-14	-1.2	0.3	2	2	2	203	318	394	509
-1.2	0.4	0.399991	0.399991	0.399991	1.59E-06	1.54E-09	1.57E-11	1.5E-14	-1.2	0.4	2	2	2	208	323	399	514
-1.2	0.5	0.499856	0.499856	0.000153	1.57E-06	1.52E-09	1.55E-11	1.6E-14	-1.2	0.5	2	2	136	212	327	403	517
-1.2	0.6	0.598544	0.598544	0.000154	1.58E-06	1.53E-09	1.57E-11	1.5E-14	-1.2	0.6	2	2	139	215	330	406	521
-1.2	0.7	0.689674	0.015596	0.000159	1.53E-06	1.58E-09	1.52E-11	1.6E-14	-1.2	0.7	2	65	141	218	332	409	523
-1.2	8.0	0.159989	0.01523	0.000156	1.59E-06	1.55E-09	1.58E-11	1.5E-14	-1.2	0.8	28	67	143	219	334	410	525
-1.2	0.9	0.15712	0.015887	0.000153	1.56E-06	1.52E-09	1.55E-11	1.6E-14	-1.2	0.9	28	66	143	219	334	410	524
-1.2	1	0.481754	0.481754	0.000157	1.6E-06	1.56E-09	1.59E-11	1.5E-14	-1.2	1	2	2	135	211	326	402	517
-1.2	1.1	0.118697	0.118697	0.118697	0.118697	0.118697	1.55E-11	1.6E-14	-1.2	1.1	2	2	2	2	2	379	493
-1.2	1.2	0.304905	0.304905	0.000159	1.53E-06	1.57E-09	1.51E-11	1.6E-14	-1.2	1.2	2	2	140	217	331	408	522

Tabela 5. Błędy przybliżeń pierwiastków dla metody Siecznych z x1=a oraz przyrostowym kryterium stopu

Tabela 6. Liczby iteracji metody Siecznych z x1=a oraz przyrostowym kryterium stopu

x 1	x 0\rho	1 00F-02	1 00E-03	1 00E-05	1 00F-07	1.00E-10	1 00F-12	1 00F-15	x 1	x 0\rho	1.00F-02	1 00F-03	1.00F-05	1 00F-07	1.00F-10	1.00E-12	1 00F-15
-1.2	-1.1		8.23E-05			2F-14	2F-14	0	-1.2	-1.1	6	7	8	9	1.002-10	10	11
-1.2	-1.1	0.001142	0.201-03	0	0	0	0	0	-1.2	-1.1	1	1	1	1	10	1	1
-1.2	-0.9	·				0.141037			-1.2	-0.9	3	6	12	18	28	34	44
-1.2	-0.8					0.142699			-1.2	-0.8	4	7	13	19	29	35	45
-1.2	-0.7					0.145715			-1.2	-0.7	1	5	11	18	27	34	43
-1.2	-0.7					0.143713			-1.2	-0.7	1	3	9	16	25	31	41
-1.2	-0.5					0.14483			-1.2	-0.5	1	1	6	13	22	29	38
	-0.5								-1.2	-0.5	1	1	3	9	19	25	35
-1.2						0.139777					1	1					
-1.2	-0.3	0.3	0.3			0.142281			-1.2	-0.3	1	1	1	4	14	20	30
-1.2	-0.2	0.2	0.2	0.2		0.144938			-1.2	-0.2	1	1	1	1	7	14	23
-1.2	-0.1	0.1	0.1	0.1	0.1	0.1		0.053633	-1.2	-0.1	1	1	1	1	1	1	12
-1.2	0	0	0	0	0	0	0	0	-1.2	0	1	1	1	1	1	1	1
-1.2	0.1	0.1	0.1	0.1	0.1	0.1	0.091669	0.053642	-1.2	0.1	1	1	1	1	1	3	12
-1.2	0.2	0.2	0.2	0.2	0.2	0.14508	0.095151	0.055297	-1.2	0.2	1	1	1	1	7	14	23
-1.2	0.3	0.3	0.3	0.3	0.245469	0.142961	0.099572	0.05448	-1.2	0.3	1	1	1	5	14	20	30
-1.2	0.4	0.399996	0.399996	0.367154	0.258231	0.141479	0.098539	0.053915	-1.2	0.4	1	1	3	9	19	25	35
-1.2	0.5	0.499928	0.499928	0.364934	0.254944	0.139668	0.097277	0.053224	-1.2	0.5	1	1	7	13	23	29	39
-1.2	0.6	0.599266	0.551108	0.367547	0.256744	0.140658	0.097967	0.053602	-1.2	0.6	1	3	10	16	26	32	42
-1.2	0.7	0.63779	0.539991	0.379323	0.24961	0.145228	0.095233	0.055345	-1.2	0.7	3	6	12	19	28	35	44
-1.2	8.0	0.664815	0.527629	0.370556	0.258867	0.141826	0.098781	0.054047	-1.2	8.0	4	8	14	20	30	36	46
-1.2	0.9	0.653763	0.549426	0.363995	0.254243	0.139282	0.097009	0.053077	-1.2	0.9	4	7	14	20	30	36	46
-1.2	1	0.481799	0.481799	0.373244	0.24547	0.14281	0.099467	0.054423	-1.2	1	1	1	6	13	22	28	38
-1.2	1.1					0.118697		0.05312	-1.2	1.1	1	1	1	1	1	5	15
-1.2						0.144627				1.2	1	5	11	18	27	34	43
		2.220000	2	2.222007		2.2.4027	2.224700	21220004			_			0	_,		

metody Siecznych z x1=a oraz wartościowym kryterium stopu

x1=a oraz wartościowym kryterium stopu

Jak widać na tabelach 5-8 podobnie jak w przypadku metody Newtona, zmniejszenie ρ zwiększa dokładność wyniku. Widać także, że ze względu na duże wypłaszczenie funkcji, niektóre wartości zostają uznane przez oba kryteria za pierwiastki, mimo że obie wartości dzieli duża różnica. Tym razem liczba iteracji z wartościowym kryterium stopu nie przekracza 50, natomiast dla kryterium

przyrostowego potrafi przekroczyć 500. Nawet dla niewielkich wartości ρ , kryterium wartościowe daje przybliżenia odległe o około 0.05 od właściwego pierwiastka. Taka sytuacja nie występuje, gdy wartości zbiegają do -1, które jest pierwiastkiem jednokrotnym.

6.2.2 $x_1 = b$

x_1	x_0\rho	1.00E-02	1.00E-03	1.00E-05	1.00E-07	1.00E-10	1.00E-12	1.00E-15	x_1	x_0\rho	1.00E-02	1.00E-03	1.00E-05	1.00E-07	1.00E-10	1.00E-12	1.00E-15
1.2	-1.2	0.304904	0.304904	0.000159	1.53E-06	1.57E-09	1.51E-11	1.6E-14	1.2	-1.2	2	2	140	217	331	408	522
1.2	-1.1	0.004095	1.49E-05	1.08E-11	1.08E-11	0	0	0	1.2	-1.1	2	4	6	6	7	8	8
1.2	-1	0	0	0	0	0	0	0	1.2	-1	2	2	2	2	2	2	2
1.2	-0.9	0.086543	0.015931	0.000153	1.57E-06	1.52E-09	1.55E-11	1.6E-14	1.2	-0.9	2	63	140	216	331	407	521
1.2	-0.8	0.194388	0.015328	0.000157	1.6E-06	1.56E-09	1.59E-11	1.5E-14	1.2	-0.8	2	66	142	218	333	409	524
1.2	-0.7	0.298571	0.298571	0.00016	1.54E-06	1.59E-09	1.53E-11	1.6E-14	1.2	-0.7	2	2	140	217	331	408	522
1.2	-0.6	0.399747	0.399747	0.000157	1.61E-06	1.56E-09	1.6E-11	1.6E-14	1.2	-0.6	2	2	138	214	329	405	520
1.2	-0.5	0.49997	0.49997	0.000159	1.53E-06	1.58E-09	1.52E-11	1.6E-14	1.2	-0.5	2	2	135	212	326	403	517
1.2	-0.4	0.400002	0.400002	0.400002	1.57E-06	1.52E-09	1.55E-11	1.6E-14	1.2	-0.4	2	2	2	208	323	399	513
1.2	-0.3	0.3	0.3	0.3	0.3	1.55E-09	1.58E-11	1.5E-14	1.2	-0.3	2	2	2	2	318	394	509
1.2	-0.2	0.2	0.2	0.2	0.2	1.58E-09	1.52E-11	1.6E-14	1.2	-0.2	2	2	2	2	311	388	502
1.2	-0.1	0.1	0.1	0.1	0.1	0.1	0.1	1.5E-14	1.2	-0.1	2	2	2	2	2	2	491
1.2	0	0	0	0	0	0	0	0	1.2	0	2	2	2	2	2	2	2
1.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1.5E-14	1.2	0.1	2	2	2	2	2	2	491
1.2	0.2	0.2	0.2	0.2	0.2	1.58E-09	1.52E-11	1.6E-14	1.2	0.2	2	2	2	2	311	388	502
1.2	0.3	0.3	0.3	0.3	0.3	1.56E-09	1.59E-11	1.5E-14	1.2	0.3	2	2	2	2	318	394	509
1.2	0.4	0.399999	0.399999	0.399999	1.59E-06	1.54E-09	1.57E-11	1.5E-14	1.2	0.4	2	2	2	208	323	399	514
1.2	0.5	0.499984	0.499984	0.499984	1.57E-06	1.52E-09	1.55E-11	1.6E-14	1.2	0.5	2	2	2	212	327	403	517
1.2	0.6	0.599869	0.599869	0.000155	1.58E-06	1.54E-09	1.57E-11	1.5E-14	1.2	0.6	2	2	139	215	330	406	521
1.2	0.7	0.699238	0.699238	0.000152	1.55E-06	1.6E-09	1.54E-11	1.6E-14	1.2	0.7	2	2	142	218	332	409	523
1.2	8.0	0.796608	0.015182	0.000155	1.58E-06	1.54E-09	1.57E-11	1.5E-14	1.2	8.0	2	68	144	220	335	411	526
1.2	0.9	0.888136	0.015203	0.000155	1.59E-06	1.54E-09	1.58E-11	1.5E-14	1.2	0.9	2	70	146	222	337	413	528
1.2	1	0.156337	0.015808	0.000152	1.55E-06	1.6E-09	1.54E-11	1.6E-14	1.2	1	33	71	148	224	338	415	529
1.2	1.1	0.158401	0.016016	0.000154	1.57E-06	1.53E-09	1.56E-11	1.5E-14	1.2	1.1	34	72	149	225	340	416	531

Tabela 5. Błędy przybliżeń pierwiastków dla metody Siecznych z x1=a oraz przyrostowym kryterium stopu

Tabela 6. Liczby iteracji metody Siecznych z x1=a oraz przyrostowym kryterium stopu

x_1	x_0\rho	1.00E-02	1.00E-03	1.00E-05	1.00E-07	1.00E-10	1.00E-12	1.00E-15	x_1	x_0\rho	1.00E-02	1.00E-03	1.00E-05	1.00E-07	1.00E-10	1.00E-12	1.00E-15
1.2	-1.2	0.305556	0.445258	0.381668	0.249192	0.144627	0.094798	0.055084	1.2	-1.2	1	5	11	18	27	34	43
1.2	-1.1	0.000288	0.000288	5.57E-08	1.08E-11	1.08E-11	0	0	1.2	-1.1	3	3	5	6	6	7	7
1.2	-1	0	0	0	0	0	0	0	1.2	-1	1	1	1	1	1	1	1
1.2	-0.9	0.413134	0.467843	0.368567	0.255784	0.139742	0.097294	0.053225	1.2	-0.9	3	5	11	17	27	33	43
1.2	-0.8	0.328771	0.452111	0.376821	0.246067	0.14282	0.099436	0.054397	1.2	-0.8	4	7	13	20	29	35	45
1.2	-0.7	0.299289	0.44079	0.384597	0.251079	0.145718	0.095513	0.055499	1.2	-0.7	1	5	11	18	27	34	43
1.2	-0.6	0.399874	0.453531	0.378472	0.247137	0.143439	0.099867	0.054632	1.2	-0.6	1	3	9	16	25	31	41
1.2	-0.5	0.499985	0.499985	0.382363	0.249536	0.144826	0.094929	0.05516	1.2	-0.5	1	1	6	13	22	29	38
1.2	-0.4	0.400001	0.400001	0.366088	0.25584	0.139776	0.097318	0.053238	1.2	-0.4	1	1	3	9	19	25	35
1.2	-0.3	0.3	0.3	0.3	0.261176	0.142281	0.099061	0.054191	1.2	-0.3	1	1	1	4	14	20	30
1.2	-0.2	0.2	0.2	0.2	0.2	0.144938	0.095017	0.055211	1.2	-0.2	1	1	1	1	7	14	23
1.2	-0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.053633	1.2	-0.1	1	1	1	1	1	1	12
1.2	0	0	0	0	0	0	0	0	1.2	0	1	1	1	1	1	1	1
1.2	0.1	0.1	0.1	0.1	0.1	0.1	0.091669	0.053642	1.2	0.1	1	1	1	1	1	3	12
1.2	0.2	0.2	0.2	0.2	0.2	0.14508	0.095151	0.055297	1.2	0.2	1	1	1	1	7	14	23
1.2	0.3	0.3	0.3	0.3	0.24547	0.142961	0.099572	0.05448	1.2	0.3	1	1	1	5	14	20	30
1.2	0.4	0.399999	0.399999	0.36716	0.258235	0.141481	0.098541	0.053916	1.2	0.4	1	1	3	9	19	25	35
1.2	0.5	0.499992	0.499992	0.365011	0.254999	0.139698	0.097298	0.053235	1.2	0.5	1	1	7	13	23	29	39
1.2	0.6	0.599935	0.552035	0.368232	0.257227	0.140923	0.098152	0.053703	1.2	0.6	1	3	10	16	26	32	42
1.2	0.7	0.644634	0.546361	0.361729	0.252647	0.138404	0.096397	0.056021	1.2	0.7	3	6	13	19	29	35	44
1.2	8.0	0.661287	0.525993	0.369401	0.258053	0.141378	0.098469	0.053876	1.2	8.0	5	9	15	21	31	37	47
1.2	0.9	0.662663	0.526683	0.36989	0.258397	0.141567	0.098601	0.053948	1.2	0.9	7	11	17	23	33	39	49
1.2	1	0.649598	0.546844	0.362202	0.25298	0.138587	0.096524	0.056095	1.2	1	9	12	19	25	35	41	50
1.2	1.1	0.657687	0.553781	0.366924	0.256307	0.140417	0.0978	0.05351	1.2	1.1	10	13	20	26	36	42	52

Tabela 7. Błędy przybliżeń pierwiastków dla Tabela 8. Liczby iteracji metody Siecznych z metody Siecznych z x1=a oraz wartościowym kryterium stopu

x1=a oraz wartościowym kryterium stopu

Jak widać na tabelach 5-8 podobnie jak w przypadku metody Newtona, zmniejszenie ρ zwiększa dokładność wyniku. Widać także, że ze względu na duże wypłaszczenie funkcji, niektóre wartości zostają uznane przez oba kryteria za pierwiastki, mimo że obie wartości dzieli duża różnica. Tym razem liczba iteracji z wartościowym kryterium stopu nie przekracza 50, natomiast dla kryterium przyrostowego potrafi przekroczyć 500. Nawet dla niewielkich

wartości ρ , kryterium wartościowe daje przybliżenia odległe o około 0.05 od właściwego pierwiastka. Taka sytuacja nie występuje, gdy wartości zbiegają do -1, które jest pierwiastkiem jednokrotnym.

7. Wnioski

Metoda Newtona daje najlepsze przybliżenia pierwiastków funkcji. Jest to jednak obarczone dużymi wymaganiami obliczeniowymi. Metoda ta nie radzi sobie w przypadku napotkania punktu, gdzie $f'(x) \approx 0$. Wypłaszczenia oraz wielokrotne pierwiastki podobnie obniżają jakość przybliżenia.

Metoda siecznych daje gorsze przybliżenie pierwiastka, dodatkowo wymagając więcej iteracji do uzyskania zbliżonego wyniku.

Kryterium przyrostowe zawsze dawało przybliżenie rzędu wielkości lepsze od kryterium wartościowego. Wymagało jednak nawet 10-krotnie więcej iteracji, aby zakończyć działanie.