CLAIMS

1	1.	A method comprising:		
2		detecting a condition of an integrated circuit having a TAP while		
3		communicating with the TAP using a first TAP control device;		
4		and		
5		communicating with the TAP using a second TAP control device in		
6		response to detecting the condition.		
1	2.	The method of claim 1, wherein communicating with the TAP using a		
2	seco	nd TAP control device occurs in response to detecting the condition and		
3	issui	ng a second control signal to the second TAP control device.		
1	3.	The method of claim 1, wherein the condition is a failure of the		
2	integrated circuit.			
1	4.	The method of claim 1:		
2		wherein the condition is associated with a set of state data in the		
3		integrated circuit; and	•	
4	wherein communicating with the TAP using a second TAP control device,			
5	comprises reading the set of state data using the second TAP control device.			
1	5.	The method of claim 1, further comprising:		
2		maintaining the integrated circuit in the detected condition; and		
3		coupling the second TAP control device to the TAP while maintaining		
4		the integrated circuit in the detected condition.		
1	6.	The method of claim 5, wherein coupling the second TAP control device	e	
2	to the TAP occurs in response to a first control signal from the first TAP			
3	control device.			
	Attor	ney Dkt. 884.879US1 14 Client Ref. P15907	7	

l 7. A method of	comprising:
------------------	-------------

- 2 inputting test data from a first memory device to a test-access port of an
- 3 integrated circuit; and
- 4 storing state data associated with the input test data and output from the test-
- 5 access port in a second memory device have a lower nominal speed rating than
- 6 the first memory device.
- 1 8. The method of claim 7, wherein the first memory device stores vector
- 2 test-pattern data and second memory device does not store.
- 1 9. The method of claim 7, wherein storing state data associated with the
- 2 input test data occurs after:
- detecting existence of a desired condition of the integrated circuit; and
- decoupling the first memory device from at least a portion of the test
- 5 access port.
- 1 10. A system comprising:
- 2 first means for communicating with a test-access port of an integrated
- 3 circuit;
- 4 second means for communicating with a test-access port of an integrated
- 5 circuit; and
- a multiplexer module, coupled between the test-access port and the first
- means and between the test-access port and the second means,
- 8 for selectively coupling the first or second means to the test-
- 9 access port.
- 1 11. The system of claim 10:
- wherein the first and second means include respective first and second
- sets of signal nodes for outputting or receiving signals from a
- 4 test-access port; and

5	wherein the multiplexer module includes first and second multiplexers,
6	with each multiplexer having a first input node coupled to one of
7	the signal nodes in the first set of signal nodes and a second input
8	node coupled to one of the signal nodes in the second set of
9	signal nodes.

- 1 12. The system of claim 10, further comprising means for communicating a
- 2 control signal from the first means to the second means to coordinate control of
- 3 the test-access port.
- 1 13. The system of claim 10, wherein the first and second sets of signal
- 2 nodes output or receive respective sets of JTAG signals.
- 1 14. Apparatus comprising:
- 2 a first TAP control device having a first node for connection to a test
- port of an integrated circuit; and
- a multiplexer including first and second selectable nodes and a non-
- 5 selectable node, with the first selectable node coupled to the first
- 6 node of the first TAP control device and the non-selectable node
- 7 for connection to the test port.
- 1 15. The apparatus of claim 14, further comprising a second TAP control
- device having a second node coupled to the second selectable node of
- 3 the multiplexer.
- 1 16. The apparatus of claim 14, further comprising a vector pattern memory
- or algorithmic pattern generator coupled to the first TAP control device.
- 1 17. The apparatus of claim 14, wherein the first TAP control device
- 2 comprises a JTAG boundary-scan controller.

1	18.	Apparatus for selecting control of a test-access port of an integrated		
2	circuit, comprising:			
3		first means for electrical connection to a node of a first TAP control		
4		device;		
5		second means for electrical connection to a node of a second TAP		
6		control device;		
7		third means for electrical connection to a node of a test-access-port of		
8		an integrated circuit; and		
9		a first multiplexer coupled to the first, second, and third conductive		
0		means for selectively coupling the first or second means to the		
1		third means for electrical connection.		
1	19.	The apparatus of claim 18, further comprising a circuit board supporting		
2	the fi	rst multiplexer and the first, second, and third means.		
1	20.	The apparatus of claim 18, wherein the third means is for connection to		
2	one o	of a test clock node, a test-data-input node, a test-mode-select node, and a		
3	test-d	test-data-out node of the test-access port.		
1	21.	The apparatus of claim 18, further comprising:		
2		fourth means for connection to a node of the first TAP control device;		
3		fifth means for connection to a node of the second TAP control device:		

- fifth means for connection to a node of the first TAP control device;

 sixth means for connection to a node of the second TAP control device

 sixth means for connection to a node of the test-access-port; and

 a second multiplexer coupled to the fourth, fifth, and sixth conductive
- means for selectively coupling the fourth or fifth conductive means to the sixth conductive means.
- 1 22. Apparatus comprising:

a first connector for connection to a first TAP control device;

- a second connector for connection to a second TAP control device;
- a third connector for connection to a test-access-port of an integrated
- 5 circuit; and

- a first multiplexer coupled to respective first, second, and third nodes of
- 7 the first, second, and third connectors for selectively coupling the
- 8 first or second nodes to the third nodes.
- 1 23. The apparatus of claim 22, further comprising a circuit board supporting
- 2 the first multiplexer and the first, second, and third connectors.
- 1 24. The apparatus of claim 22, wherein each of the first, second, and third
- 2 connectors includes a test clock node, a test-data-input node, a test-mode-select
- 3 node, and a test-data-out node.
- 1 25. A machine-readable medium including coded instructions for operating
- 2 a switching device to couple one of a plurality of TAP controllers to a TAP in
- 3 an integrated circuit.
- 1 26. The machine-readable medium of claim 25, further including coded
- 2 instructions for operating a device to detect a condition of the integrated circuit
- 3 while using a first TAP controller and for communicating with the TAP using a
- 4 second TAP control device in response to detection of the condition.
- 1 27. The medium of claim 25, wherein the condition is a failure of the
- 2 integrated circuit.
- 1 28. The medium of claim 25, wherein the medium comprises an electronic,
- 2 optical, or magnetic memory.