

EE141-Spring 2012 Digital Integrated Circuits

Lecture 24 Scaling + Energy

EECS141

Lecture #24

1

Administrativia

- □ Project Phase 2 due Today.
- □ Project Phase 3 to be launched today
- □ Assignment 9 posted today
 - One more assignmnet (#10) will not be graded

CMOS Scaling

EECS141 Lecture #24

Technology Scaling

- □ Benefits of 30% "Dennard" scaling (1974):
 - Double transistor density
 - Reduce gate delay by 30% (increase operating frequency by 43%)
 - Reduce energy per transition by 65% (50% power savings @ 43% increase in frequency)
- □ Die size used to increase by 14% per generation (not any more)
- □ Technology generation spans 2-3 years

Full Scaling (Dennard, Long-Channel)

- □ W, L, t_{ox}: 1/S
- \square V_{DD} , V_T : 1/S
- □ Area: WL
- □ C_{ox}: 1/tox
- \Box C_L: C_{ox}WL
- \square I_D: C_{ox}(W/L)(V_{DD}-V_T)²
- \square R_{eq}: V_{DD}/I_{DSAT}

EECS141 Lecture #24

Full Scaling (Dennard, Long-Channel)

- □ W, L, t_{ox}: 1/S
- □ V_{DD}, V_T: 1/S
- \Box t_p : $R_{eq}C_L$
- \square P_{avg} : $C_L V_{DD}^2 / t_p$
- \square P_{avg}/A: C_{ox}V_{DD}²/t_p

Scaling Relationships for Long Channel Devices

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V_{DD}, V_{T}		1/S	1/ U	1
N _{SUB}	V/W _{depl} ²	S	S ² /U	S ²
Area/Device	WL	1/S ²	1/S ²	1/S ²
Cox	1/t _{ox}	S	S	s
$C_{\mathbf{L}}$	CoxWL	1/S	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S	S
I _{av}	$k_{n,p} V^2$	1/S	S/U^2	s
t _p (intrinsic)	C _L V / I _{av}	1/S	U/S ²	1/S ²
Pav	$C_L V^2 / t_p$ $C_L V^2$	1/S ²	S/U ³	S
PDP	$C_L V^2$	1/S ³	$1/\mathrm{SU}^2$	1/S

EECS141 Lecture #24

Full Scaling (Dennard, Short-Channel)

- □ W, L, t_{ox}: 1/S
- \square V_{DD} , V_T : 1/S
- □ Area: WL
- □ C_{ox}: 1/tox
- \Box C_L : $C_{ox}WL$
- \Box I_D : $WC_{ox}v_{sat}(V_{DD}-V_T-V_{VSAT}/2)$
- \square R_{eq} : V_{DD}/I_{DSAT}

Full Scaling (Dennard, Short-Channel)

- \square W, L, t_{ox} : 1/S
- \square V_{DD} , V_T : 1/S
- \Box t_p : $R_{eq}C_L$
- \square P_{avg} : $C_L V_{DD}^2 / t_p$
- \square P_{avg}/A: C_{ox}V_{DD}²/t_p

EECS141 Lecture #24

Transistor Scaling (Velocity-Saturated Devices)

Parameter	Relation	Full Scaling	General Scaling	Fixed-Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V_{DD} V_{T}		1/S	1/U	1
N_{SUB}	V/W_{depl}^2	S	S^2/U	S^2
Area/Device	WL	1/S ²	$1/S^2$	1/S ²
$C_{\rm ox}$	$1/t_{\rm ox}$	S	S	S
$C_{\it gate}$	$C_{ox}WL$	1/S	1/S	1/S
k_n , k_p	$C_{\mathrm{ox}}W/L$	S	S	S
I_{sat}	$C_{ox}WV$	1/S	1/U	1
Current Density	I _{sat} /Area	S	S^2/U	S ²
Ron	V/I _{sat}	1	1	1
Intrinsic Delay	$R_{on}C_{gate}$	1/S	1/S	1/S
P	$I_{sat}V$	1/S ²	$1/U^2$	1
Power Density	P/Area	1	S^2/U^2	S^2
Lecture #24				

EECS141

10

Interesting questions

- □ What causes this model to break down?
 - Leakage set by kT/q
 - Temp. does not scale
 - V_⊤ set to minimize power
 - Power actually increased
 - Leakage increased drastically
 - f increased faster than device speed
 - Hit cooling limit
 - Process Variation
 - Hard to build very small things accurately (less averaging)

Wire Scaling

- □ Wire scaling model
 - C = WL/tox
 - $R = \rho L/(WH)$
 - $t_p = 0.38RC$
 - E = C VDD²

Transition Activity and Power

 \square Energy consumed in N cycles, E_N :

$$E_N = C_L \cdot V_{DD}^2 \cdot n_{0 \rightarrow 1}$$

 $n_{0\rightarrow 1}$ – number of 0 \rightarrow 1 transitions in N cycles

$$P_{\text{avg}} = \lim_{N \to \infty} \frac{E_N}{N} \cdot f = \left(\lim_{N \to \infty} \frac{n_{0 \to 1}}{N}\right) \cdot C_L \cdot V_{DD}^2 \cdot f$$

$$\alpha_{0 \to 1} = \lim_{N \to \infty} \frac{n_{0 \to 1}}{N} \cdot f$$

$$P_{\text{avg}} = \alpha_{0 \to 1} \cdot C_L \cdot V_{DD}^2 \cdot f$$

EECS141

Lecture #2

17

Factors Affecting Transition Activity

- "Static" component (does not account for timing)
 - Type of Logic Function (NOR vs. XOR)
 - Type of Logic Style (Static vs. Dynamic)
 - **Signal Statistics**
 - **→** Inter-signal Correlations
- "Dynamic" or timing dependent component
 - **⊸** Circuit Topology
 - → Signal Statistics and Correlations

Type of Logic Function: NOR

Example: Static 2-input NOR Gate

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Assume signal probabilities

$$p_{A=1} = 1/2$$

 $p_{B=1} = 1/2$

Then transition probability

$$p_{0\rightarrow 1} = p_{Out=0} \times p_{Out=1}$$

$$= 3/4 \times 1/4 = 3/16$$

If inputs switch every cycle

$$\alpha_{0\rightarrow 1}=3/16$$

EECS141 Lecture #24 19

Power Consumption of Dynamic Gates

Power only dissipated when previous Out = 0

Dynamic Power Consumption is Data Dependent

Dynamic 2-input NOR Gate

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Assume signal probabilities

$$P_{A=1} = 1/2$$

 $P_{B=1} = 1/2$

Then transition probability

$$P_{0\rightarrow 1} = P_{out=0} \times P_{out=1}$$

$$= 3/4 \times 1 = 3/4$$

Switching activity always higher in dynamic gates!

$$P_{0\rightarrow 1} = P_{out=0}$$

EECS141 Lecture #24 21

Problem: Reconvergent Fanout

$$P(Z = 1) = P(B = 1) \cdot P(X = 1 \mid B=1)$$

Becomes complex and intractable fast

Inter-Signal Correlations

Logic without reconvergent fanout

Logic with reconvergent fanout

$$p_{0\rightarrow 1} = (1 - p_{\overline{A}}p_B) p_{\overline{A}}p_B$$

$$P(Z = 1) = p(C=1 \mid B=1) p(B=1)$$

 $p_{0\to 1} = 0$

- □ Need to use conditional probabilities to model inter-signal correlations
- □ CAD tools best for performing such analysis

EECS141 Lecture #24 23

Glitching in Static CMOS

Also known as dynamic hazards

The result is correct, but there is extra power dissipated

Principles for Power Reduction

- □ Most important idea: reduce waste
- Examples:
 - Don't switch capacitors you don't need to
 - Clock gating, glitch elimination, logic re-structuring
 - Don't run circuits faster than needed
 - Power α $V_{\text{DD}}{}^2$ can save a lot by reducing supply for circuits that don't need to be as fast
 - Parallelism falls into this category
- □ Let's say we do a good job of that then what?

Increasing use of Concurrency Saturates ■ Can combine parallelism and pipelining to drive V_{DD} down ■ But, close to process threshold overhead of excessive concurrency starts to dominate 0.9 0.8 0.7 Power 0.6 0.4 0.3 0.2 0.1 Concurrency Assuming constant #24 overhead EECS141 35

What if the Required Throughput is Below Minimum?

(that is, at no concurrency)

Introduce Time-Multiplexing!

Absorb unused time slack by increasing clock frequency (and voltage ...)

Again comes with some area and capacitance overhead!

Some Energy-Inspired Design Guidelines

□ For maximum performance

Maximize use of concurrency at the cost of area

□ For given performance

Optimal amount of concurrency for minimum energy

□ For given energy

 Least amount of concurrency that meets performance goals

□ For minimum energy

 Solution with minimum overhead (that is – direct mapping between function and architecture)

The Leakage Challenge – Power in Standby

- □ With clock-gating employed in most designs, leakage power has become the dominant standby power source
- □ With no activity in module, leakage power should be minimized as well
 - Remember constant ratio between dynamic and static power ...
- □ Challenge how to disable unit most effectively given that no ideal switches are available

EECS141 Lecture #24 41

Standby Static Power Reduction Approaches

- □ Transistor stacking
- □ Power gating
- Body biasing
- □ Supply voltage ramping

Transistor Stacking

- □ Off-current reduced in complex gates (see leakage power reduction @ design time)
- □ Some input patterns more effective than others in reducing leakage
- □ Effective standby power reduction strategy:
 - Select input pattern that minimizes leakage current of combinational logic module
 - Force inputs of module to correspond to that pattern during standby
- □ Pro's: Little overhead, fast transition

EECS 41 Con: Limited effectiven കൂട

43

Power Gating

Disconnect module from supply rail(s) during standby

- Footer or header transistor, or both
- Most effective when high V_T transistors are available

46

- Easily introduced in standard design flows
- But ... Impact on performance

Very often called "MTCMOS" (when using high- and low- threshold devices)

EECS141 [Ref: T. Sakara, WEST 93; S. Mutoh, ASIC 93]

