Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 1 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V2.

Mark:

Determine if
$$\begin{bmatrix} 0 \\ -1 \\ 6 \\ -7 \end{bmatrix}$$
 belongs to the span of the set $\left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \\ 4 \\ 3 \end{bmatrix} \right\}$.

Standard S1.
$$\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}, \text{ and } \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} \text{ are linearly dependent or linearly independent}$$

Standard S3.

$$\begin{bmatrix}
\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}
\end{bmatrix}$$
Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}\right\}\right)$. Find a basis for W .

Standard S4.

Mark:

Let W be the subspace of \mathcal{P}_3 given by $W = \operatorname{span}\left(\left\{x^3 - x^2 + 3x - 3, 2x^3 + x + 1, 3x^3 - x^2 + 4x - 2, x^3 + x^2 + x - 7\right\}\right)$. Compute the dimension of W.

Additional Notes/Marks