Sprawozdanie z zad nr 4

Jan Ryszkiewicz January 29, 2025

Zadanie 1: Nierówności ogonowe dla rozkładu dwumianowego $\operatorname{Bin}\left(n,\frac{1}{2}\right)$

Przybliżałem wartości następujących prawdopodobieństw za pomocą nierówności Markowa i Czebyszewa:

•
$$P\left(X \ge \frac{6}{5} \cdot E(X)\right)$$

•
$$P(|X - E(X)| \ge \frac{1}{10} \cdot E(X))$$

	N =	$P(X \ge 6/5 * E(X))$	P(X - E(X) >= 1/10 * E(X))
-		-	-
Markov	100	0.8333333333	1.818181818
Chebyshev	100	0.125	1.0
Exact Val	100	0.02844396682049044056	0.3682016173
-		-	-
Markov	1000	0.8333333333	1.818181818
Chebyshev	1000	0.0125	0.1
Exact Val	1000	1.36423206065217073e-10	0.001730536085
-	-	-	-
Markov	10000	0.8333333333	1.818181818
Chebyshev	10000	0.00125	0.01
Exact Val	10000	0.0	0.0

Po przeprowadzeniu obliczeń wyraźnie widać że nierówność Czebyszewa daje nieporównywalnie lepsze przybliżenie. aczkolwiek nadal jest ono dalekie od dokładnego, co widać po różnicy od wartości faktycznej.

Zadanie 2: Błądzenie losowe na liczbach całkowitych

interpretuję tutaj plik exc2.pdf

wyraźnie widać że razem z rosnącym N dystrybuanta S_N jest coraz lepiej przybliżana przez

Zadanie 3: Błą
adzenie losowe na Z rozkład " $czasu\ spęedzonego\ nad\ osiq\ OX"$

interpretuję tutaj plik exc3.pdf

Z wykresów łatwo zauważyć, że w przeważającej ilości przypadków większość czasu spędzimy pod lub nad osią O_X a rzadko po środku Sam wykres przypomina natomiast funkcję gęstości dla dystrybuanty = $\frac{2}{\pi} \arcsin\left(\sqrt{t}\right)$, $t \in [0,1]etc$. (zad 5 lista 8)