NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

22.03.2019

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

3-5AI

Clique Problem

Knapsack Problem

Partition Problem

Komplexitätsklassen

Satisfiability Problem (SAT)

3-SAT

Beweis: SAT \leq_p 3-SAT

Clique Problem **Beweis**

Knapsack Problem

Beweis

Partition Problem

Beweis

Der Operator $L_1 \leq_p L_2$ bedeutet, dass das L_1 polynomiell auf L_2 reduzierbar ist. Dies ist der Fall, wenn es eine polynomielle Transformation von L_1 nach L_2 gibt, so das heißt, wenn es eine von einer DTM in polynomieller Zeit berechenbare Funktion $f: \sum_1^* \to \sum_2^*$ gibt, so dass für alle $w \in \sum_1^*$ gilt:

$$w \in L_1 \leftrightarrow f(w) \in L_2$$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SA

3-SAT

Clique Problem

Knapsack Problem

Partition Problem

Definition: \leq_p "ordnet" Entscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-vollständig

$$\rightarrow L \in NP \text{ und } \forall L' \in NP : L' \leq_p L$$

- →Alle folgenden Probleme sind NP-vollständig
- 4. NP-schwierig

$$\rightarrow \forall L' \in NP : L' \leq_{p} L$$

5 nicht rekursiv

NP-Vollständigkeit

wichtiger Probleme

Für natürliche Zahlen n und m seien m Klauseln über n Variablen gegeben. Eine Klausel ist die Disjunktion [Veroderung] von einigen Literalen x_i bzw. $\overline{x_i}$ mit $i, j \in \{1, ..., n\}$. Es soll entschieden werden, ob es eine Belegung $a = \{a_1, ..., a_n\} \in \{0, 1\}^n$ der Variablen $x_1, ..., x_n$ gibt, so dass alle Klauseln erfüllt sind.

Fragestellung: Existiert eine Wahrheitsbelegung der Variablen x_1, \dots, x_n so dass alle Klauseln erfüllt sind?

→Satz von Cook: SAT is NP-vollständig

- Jede Klausel enthält 3 Literale
- ➤ Zu Beweisen: SAT ist durch 3-SAT abbildbar und beide sind damit gleich komplex (NP-vollständig)

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

3-SAT

Beweis: SAT \leq_{ρ} 3-SA

Clique Problem

Beweis

Knapsack Proble
Beweis

Partition Problem

Literatur

Grundidee: Alle Klauseln des allgemeinen SAT in neue Klauseln der

- ► Klausel 1 Literal z
 - \rightarrow $z \lor / z \lor / z$

Länge 3 überführen.

- \triangleright Klausel 2 Literale $z \lor v$
 - $\rightarrow z \lor z \lor v$
- ightharpoonup Klausel 3 Literale $z \lor v \lor z$ →Keine Änderung
- ► Klausel > 4 Literale $z_1 \vee ... \vee z_k$
 - →siehe nächste Folie

Beispiel: k = 7 Literale mit $z_1 \lor ... \lor z_k$: $(y_1, y_2, y_3, y_4 \text{ sind Hilfsvariablen})$

- \triangleright $z_1 \lor z_2 \lor y_1$
- $ightharpoonup \overline{y_1} \lor z_3 \lor y_2$
- $ightharpoonup \overline{y_2} \lor z_4 \lor y_3$
- $ightharpoonup \overline{y_3} \lor z_5 \lor y_4$
- $ightharpoonup \overline{y_4} \lor z_6 \lor z_7$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: SAT ≤_e 3-SAT

Clique Problem

Knapsack Problem

Partition Problem

Beweis: SAT \leq_p 3-SAT

Allgemein:

- 1. $z_1 \vee z_2 \vee y_{c,1}$
- 2. $\overline{y_{c,l}} \vee z_{l+2} \vee y_{c,l+1}$ für $1 \leq l \leq k-4$
- 3. $\overline{y_{c,k-3}} \vee z_{k-1} \vee z_k$

Index c für separate Hilfsvariablen für jede Klausel

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

3-SAT

Beweis: SAT \leq_{ρ} 3-SAT

Clique Problem

Knapsack Problem

Partition Problem

Beweis: SAT \leq_p 3-SAT

- ► SAT lässt sich durch 3-SAT abbilden
- ► SAT \leq_p 3-SAT
- ➤ 3-SAT ist NP-vollständig

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: SAT ≤_p 3-SAT

Clique Problem

Knapsack Problem

Partition Problem

Clique Problem

In einem ungerichteten Graphen G = (V, E) bildet die Knotenmenge $V' \subseteq V$ eine Clique, wenn für alle $v, v' \in V'$ gilt $v, v' \in E$. [1]

Abbildung: Ein Graph mit einer Clique der Größe 3.

 $Quelle: \ https://de.wikipedia.org/wiki/Clique_(Graphentheorie) \#/media/File: 6n-graf-clique.svg$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

Beweis: SAT \leq_{ρ} 3-SA

Clique Problem

Beweis

Knapsack Problen
Beweis

Partition Problem

Beweis

Clique - Beispiel

Abbildung: Ein Graph mit 2 Cliquen der Größe 4.

 $Quelle: \ https://en.wikipedia.org/wiki/Clique_(graph_theory)\#/media/File: VR_complex.svg$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: SAT < .. 3-SA

Clique Problem

Beweis

Knapsack Problem

Partition Problem

NP-Vollständigkeit

3-SAT Reveis: SAT < 3

Clique Problem

Knapsack Problem

Partition Problem

Beweis

- 1. Gibt es eine Clique der Größe k?
 - \rightarrow Entscheidungsproblem
- 2. Berechne das größte k, so dass eine Clique der Größe k vorhanden ist.
 - →Optimale Lösung
- 3. Berechne eine Clique mit dem größten k.
 - ${\rightarrow} Optimierung sproblem$

Beweis teilt sich in 2 Teile auf:

- 1. Clique ist in NP enthalten
- 2. SAT \leq_p Clique

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT

3-SAT

Clique Problem

Clique Problem

Beweis

Knapsack Problem

Partition Problem

eweis

Beweis:

1. NTM zählt Anzahl *n* der Knoten im Graphen

2. Rät Wort $w \in \{0,1\}^n$

Clique ist in NP enthalten.

- 3. Das Wort wird als Knotenauswahl interpretiert, V' enthält alle Knoten i mit $w_i = 1$
- 4. Es wird getestet, ob
 - 4.1 V' genau k Knoten beinhaltet.
 - 4.2 G eine Clique auf V' enthält
- Rechenaufwand ist polynomiell in der Knotenzahl n

- Es wurde bereits bewiesen: NTM können durch DTM abgebildet werden
- ▶ Polynomielle Laufzeit + Nichtdeterminismus →NP
- ▶ Daraus folgt: Clique ist in NP enthalten

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: SAT \leq_{ρ} 3-SA

Clique Problem

Beweis

Knapsack Problem

Partition Problem

.

Beweis teilt sich in 2 Teile auf:

- 1. Clique ist in NP enthalten ✓
- 2. SAT \leq_p Clique

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

3-SAT Rougis: SAT < 3.

Clique Problem

Reweis

ewers

Knapsack Problem

Partition Problem

Deweis

Es wurde bereits bewiesen, dass $Clique \in NP$ und SAT (und 3-SAT) NP-vollständig ist.

Nun ist zu beweisen, dass $SAT \leq_p Clique$.

Daraus folgt: Clique ist NP-vollständig.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability
Problem (SAT)

Beweis: SAT \leq_{ρ} 3-SA

Clique Problem

Beweis

Knapsack Problem

Partition Problem

Reweis

Konstruiere einen Graphen, der mittels Clique ein Problem löst, welches ein SAT-Problem ist

- 1. Füge für jedes Literal in den Klauseln einen Knoten hinzu.
- 2. Verbinde alle Literale außer folgende Kanten:
 - ► Klauselgruppen untereinander
 - ▶ Gegensätzliche Literale (z.B. x_1 und $\overline{x_1}$)
- 3. Suche eine Clique der Größe k, k ist die Anzahl der Klauseln. Da die Knoten einer Klauselgruppe nicht verbunden sind, muss aus jeder Klausel ein Literal "wahr" sein. Da die Literale in den Klauseln ODER-verknüpft sind, sind alle Klauseln erfüllt. [2]

Umformung SAT-Problem zu Clique an der Tafel:

- $ightharpoonup x_1 \lor \overline{x_2} \lor x_3$
- $ightharpoonup \overline{x_1} \lor x_2$
- $ightharpoonup x_3 \lor \overline{x_2}$

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: SAT \leq_{ρ} 3-SA

Clique Problem

Beweis

Knapsack Problem

Partition Problem

Abbildung: Graph nach Transformation von Clique- in SAT-Problem

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

Clique Problem

Beweis

Knapsack Problem

Partition Problem
Beweis

- ► $SAT \leq_p Clique$
- Clique ist NP-vollständig.

(mit polynomialen Zeitaufwand).

Sebastian Bernauer

Komplexitätsklasser

Satisfiability
Problem (SAT)

Beweis: SAT \leq_{ρ} 3-SA

Clique Problem

Beweis

Knapsack Problem

Partition Problem

Beweis

Knapsack Problem

Gegeben sind ein Rucksack und n Objekte mit Gewichten $g_1,...,g_n \in \mathbb{N}$ sowie eine Gewichtsschranke G. Zusätzlich seien $a_1,...,a_n \in \mathbb{N}$ die Nutzenwerte für die Objekte. [1]

Abbildung: Ein zu befüllender Rucksack.

 $Quelle: \ https://de.wikipedia.org/wiki/Rucksackproblem\#/media/File:Knapsack.svg$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: SAT \leq_{ρ} 3-SA

Clique Problem Beweis

Knapsack Problem

Partition Problem

 \rightarrow Entscheidungsproblem

- 2. Berechne den größtmöglichen Nutzwert.
 - →Optimale Lösung
- 3. Berechne die optimale Beladung.
 - ightarrow Optimierungsproblem

Sebastian Bernauer

Komplexitätsklasser

Satisfiability
Problem (SAT)

Beweis: SAT \leq_{ρ} 3-SA

ique Proble _{eweis}

Knapsack Problem

Doubles Doubles

Beweis Problem

Knapsack - Beweis

Der Beweis sei an dieser Stelle vorausgesetzt. Es wird bewiesen, dass $3\text{-SAT} \leq_{p} \mathsf{KP}$ ist.

Für Interessierte ist er unter [1] im Kapitel 3.4.3 auf Seite 55 zu finden.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: SAT \leq_{ρ} 3

Clique Problem

Knapsack Problem

Partition Problem

Gegeben sind $b_1, ..., b_n \in \mathbb{N}$. Gibt es eine Teilmenge $I \subseteq \{1, ..., n\}$, so dass die Summe aller $b_i, i \in I$ gleich der Summe aller $b_i, i \notin I$ ist? \rightarrow Teil eine Menge von Gewichten in 2 gleich schwere Haufen auf.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability
Problem (SAT)

Beweis: SAT \leq_p :

Clique Problem
Beweis

Knapsack Problem

Partition Problem

Reweis

Es wurde bereits bewiesen, dass ein (spezielles) Knapsack Problem KP* NP-vollständig ist.

(Für $a_1, ..., a_n$ soll entschieden werden, ob es eine Auswahl gibt, so dass die Summe genau A beträgt).

Nun ist zu beweisen, dass $KP^* \leq_p PARTITION$.

Daraus folgt: PARTITION ist NP-vollständig.

Beweis: SAT < , 3-SA

Beweis

Beweis Problem

Partition Problem
Beweis

Literatur

Sei $(a_1, ..., a_n, A)$ eine Eingabe für KP^* .

Daraus konstruieren wir in polynomieller Zeit die Eingabe $(a_1, ..., a_n, S - A + 1, A + 1)$ für *PARTITION*, wobei *S* die Summe aller a_i ist.

Falls I eine Lösung für das KP ist, erhalten wir mit $I \cup \{n+1\}$ eine Lösung für PARTITION, da

$$\sum_{i \in I} a_i + S - A + 1 = S + 1 = \sum_{1 \le i \le n} a_i + 1 = \sum_{i \notin I} a_i + A + 1$$

Sie Summe aller Zahlen in der Eingabe für PARTITION beträgt 2S+2. Ein Lösung für PARTITION muss also so aussehen, dass jeder Teil sich zu S+1 aufsummiert.

Damit müssen die Zahlen S-A+1 und A+1 in verschiedenen Teilen sein. (S-A+1)+(A+1)=(S+2)>(S+1) Die Zahlen, die S-A+1 zu S+1 ergänzen, haben die Summe A und bilden eine Lösung für die Eingabe von KP^* .

Sebastian Bernauer

Komplexitätsklasser

Satisfiability Problem (SAT)

Beweis: SAT \leq_{ρ} 3-5

Clique Problem

Knapsack Problem

Partition Problem

Partition Problem

Beweis

NP-Vollständigkeit

Literatur

Ingo WEGENER. Theoretische Informatik. Eine algorithmenorientierte Einführung. Teubner, 2005.

WEITZ. Clique ist NP-vollständig. 2017. URL: https://www.youtube.com/watch?v=D3gkCTRMcKU (besucht am 25.02.2019).