

## Sorting

Yi-Shin Chen
Institute of Information Systems and Applications
Department of Computer Science
National Tsing Hua University
yishin@gmail.com



## Back to Sort

#### **Motivation**

■Given a list, where each record contains one or more keys, how do we search a record with a specific key?

- ■Sequential search
  - Search the list in left-to-right or right-to-left order until we find the first occurrence of the record with the key
  - Complexity: O(N)



### Improvement?

■Sort the list in a specific order before searching

- Approaches
  - Insertion based on some sorting policy
    - Retrieval time should be small
  - Sort after a batch of insertion
    - Insertion time should be small
    - Chance of retrieval is rare

## Categories of Sorting

#### ■Internal sort

- The entire sort could be done in main memory
- Suitable for list of small size (e.g. 1MB)
- Types: Insertion sort, merge sort, heap sort, radix sort

#### ■External sort

- Data I/O are necessary during the sorting.
- Suitable for list of large size (e.g. 1T)
- Types: Merge sort

#### Stable Sort

- ■Stable sort algorithms can keep
  - iff  $r_i = r_j$  and  $r_i$  precedes  $r_j$  in the input list, then  $r_i$  precedes  $r_j$  in the sorted list

Unsorted Stable sort

21, 4, 5, 78, 5, 12

4, 5, 5 12, 21, 78

21, 4, 5, 78, **5**, 12



4, 5, 5 12, 21, 78

Unstable sort



## **Insertion Sort**

### **Motivation of Insertion Sort**

- Two parts in the input sequence
  - Sorted one: the left part
  - Unsorting one: the right part
- Sort one element one at a time
  - Take one from the right part and insert it into the correct position in the left part

## Algorithm of Insertion Sort

```
template <class T>
void Insert(const T& e, T *a, int i) {
      a[0] = e;
      while (e < a[i]) {
        a[i+1] = a[i];
       i--; }
      a[i+1] = e;
template <class T>
void InsertionSort(T *a, const int n) {
      for (int j = 2; j \le n ; j++) {
        T \text{ temp} = a[j];
        Insert (temp, a, j - 1);)
```

## Properties

- ■Worst case running time
  - Outer loop: O(n)
  - Inner loop: O(j)
  - Total running time: O(n²)
- ■Average case running time: O(n²)
- ■Stable sort

```
template <class T>
void Insert(const T& e, T *a, int i) {
      a[0] = e;
      while (e < a[i]) {
        a[i+1] = a[i];
        i--; }
      a[i+1] = e;
template <class T>
void InsertionSort(T *a, const int n) {
      for (int j = 2; j \le n ; j++) {
        T temp = a[j];
        Insert(temp, a, j - 1);}
```



## **Quick Sort**

### Motivation of Quick Sort

- Divide and conquer
- Utilize a "Pivot"
  - The left records of the pivot are less than or equal to that of the pivot
  - The right records of the pivot are greater than that of the pivot
- Steps
  - Find the position of the selected pivot
  - Sort the two sublists recursively

## Quick Sort (Codes)

```
template <class T>
void QuickSort(T *a, const int left, const int right)
         if (left < right) {</pre>
                   int i = left, j = right + 1, pivot = a[left];
                   do {
                            do i++; while (a[i] < pivot);
                             do j--; while (a[j] > pivot);
                             if (i < j) swap (a[i], a[j]);
                   } while (i < j);
                   swap (a[left], a[j]);
                   QuickSort(a, left, j - 1);
                   QuickSort(a, j + 1, right);
```

## **Quick Sort Example**



## Time Complexity

- ■If the splitting record is in the middle
- ■Depth of recursion : O(logn)
- ■Finding the position of splitting record: O(n)
- ■Total average running time: O(nlogn)
- ■Worst case running time: O(n²)

## **Properties**

- ■Find a better splitting record:
  - Try to find the median one
  - Median{ first, middle, last}
- ■Not a stable sort



## The Bound of Sorting

#### How Fast Can We Sort?

- ■What is the best computing time for sorting?
  - If only comparisons and interchanges during sorting
    - lacksquare  $\Omega(nlogn)$  is the best possible time
- ■Decision tree:
  - A tree that describe sorting process
  - Each vertex represents a comparison
  - Each branch indicate the result

### **Decision Tree for Insertion Sort**



## Time Complexity

- ■Given a list of *n* records
  - $\blacksquare$  n! combinations and n! leaf nodes in a decision tree
  - The height (depth) of the tree is *nlogn*
- Therefore the average root-to-leaf path is  $\Omega(nlogn)$



# Merge Sort

## Motivation of Merge Sort

- ■Merge sorted lists to get a single sorted one
- ■Divide and conquer
  - Divide till the lists are sorted
  - Merge lists recursively
- ■Stable sort

## Merging

- ■Given two sorted lists, merge them into sorted one
- ■Use an algorithm similar to polynomial addition
- Assume the size of two lists are m and I
  - Time complexity of merging two lists is O(m+l)



## Merging (Code)

```
template <class T>
void Merge(T *initList, T *mergedList, const int 1, const int m,
const int n)
{ for (int i1 = 1, iResult = 1, i2 = m + 1; i1 <= m \&\& i2 <= n;
       iResult++)
       if (initList[i1] <= initList [i2]){</pre>
             mergedList[iResult] = initList[i1];
             i1++;
       }else{
             mergedList[iResult] = initList[i2];
             i2++;}
  // copy the remaining records, if any, of 1st list
  copy (initList + i1, initList + m + 1, mergedList + iResult);
  // copy the remaining records, if any, of 2nd list
  copy (initList + i2, initList + n + 1, mergedList + iResult);
```

## **Iterative Merge Sort**

- ■Interpret the list as comprised of n sorted sublists
- ■Steps:
  - 1<sup>st</sup> pass: n sublists are merged by pairs to obtain n/2 sublists
  - 2<sup>nd</sup> pass: n/2 sublists are merged by pairs to obtain n/4 sublists
  - ...
  - The process repeats until only one sublist exists

## MergePass Example



## Iterative Merge Sort (codes)

```
template <class T>
void MergePass(T *initList, T *resultList, const int n, const
int s)
{ // Adjacent pairs of sublists of size s are merged from
  // initList to resultList. n is the size of initList.
 for (int i = 1; // i is the 1<sup>st</sup> position in the 1<sup>st</sup> sublist
      i <= n-2*s+1; // enough records for two sublists?
      i+=2*s
         Merge(initList, resultList, i, i + s -1, i + 2 * s -1);
// merge remaining list of size < 2 * s
if ((i + s - 1) < n)
   Merge(initList, resultList, i, i + s -1, n);
else
   copy(initList + i, initList + n + 1, resultList + i);
```

## Iterative Merge Sort (codes)

## **Properties**

- ■Time complexity
  - Number of merge pass: O(logn)
  - Time complexity of merge pass: O(n)
  - Time complexity = O(nlogn)
- ■Require additional storage to store merged results
- ■Stable sort

## Recursive Merge Sort

- ■Divide the list to be sorted into two roughly equal parts called left and right sublists
- ■Recursively sort the two sublists.
- ■Merge the sorted sublists

## Example of Recursive Merge Sort



#### Example of Recursive Merge Sort (Contd.)



## Recursive Merge Sort (codes)

```
tamplate <class T>
int ListMerge (T* a, int* link, const int start1, const int
start2)
{// merge two sorted lists, starting from start1 and start2.
// link[0] is a temporary head, stores the head of merged list.
 // iRsults records the last element of currently merged list.
 int iResult = 0;
 for (int i1 = start1, i2 = start2; i1 && i2; ){
  if (a[i1] \le a[i2]) {
    link[iResult] = i1; iResult = i1; i1 = link[i1];}
 else {
    link[iResult] = i2; iResult = i2; i2 = link[i2];}
 }
 // attach the remaining list to the resultant list.
 if (i1 = = 0) link[iResult] = i2;
else link[iResult] = i1;
return link[0];
```



# Heap Sort

### Heap Sort

- ■Utilize the max-heap structure
  - The insertion and deletion could be done in O(logn)
- ■Build a max-heap using *n* records, insert each record one by one (O(nlogn))
- ■Iteratively remove the largest record (the root) from the max-heap (O(nlogn))
- ■Not a stable sort

## Heap Sort (codes)

```
template <class T>
void HeapSort(T *a, const int n)
{
    Heapify(a, n);
    for (i = n-1; i >= 1; i--) // Sorting
    {
        swap(a[1], a[i+1]); // swap the root with last node
        Heapify(a, i); // rebuild the heap (a[1:i])
    }
}
```

## Running Example for Heap Sort

26 5 77 1 61 11 59 15 48 19





# Sorting with Several Keys

## Sorting a Deck of Cards

- ■A list of records with respect to the keys K<sup>1</sup>,K<sup>2</sup>,...,K<sup>r</sup>
  - iff for every pair of records i and j, i < j and  $(K_i^1, K_i^2, ..., K_i^r) \le (K_j^1, K_j^2, ..., K_j^r)$
- ■Each card has two keys
  - K¹ (Suits): ♣ < ♦ < ♥ < ♠
  - K² (Face values): 2 < 3 < 4 ... J < Q < K < A
  - The sorted list is: 2 ♣, ..., A ♣, ..., 2 ♠, ..., A ♠

## **Sorting Approaches**

- ■Most-significant-digit (MSD) sort
  - Sort using K¹ to obtain 4 "piles" of records
  - Sort each piles into sub-piles
  - Merge piles by placing the piles on top of each other
- ■Least-significant-digit (**LSD**) sort
  - Sort using K² to obtain 13 "piles" of records.
    - Place 3's on top of 2's,..., Aces on top of kings
  - Using a stable sort with respect to K¹ and obtain 4 "piles"
  - Merge piles by placing the piles on top of each other

## Bin Sort (Bucket Sort)

- ■Assume the sorted records come from a set of size **m**, {1,2,...m}
- ■Create **m** buckets
- ■Scan the sequence a[1] ... a[n], and put a[i] element into the a[i]<sup>th</sup> bucket
- ■Concatenate all buckets to get the sorted list
  - Suitable for a set with small **m**

#### Radix Sort

- ■Decompose the key (number) into subkeys using some radix (base) r
- ■Create r-1 buckets
- ■Apply bin sort with MSD or LSD order
- ■Suitable to sort numbers with large value range

## Radix Sort Example (Pass 3)



Time Complexity: O(d\*(n+r))

### LSB Radix Sort (codes)

```
template <class T>
int RadixSort(T *a, int *link, const int d, const int r, const int n)
{// using a radix sort with d digits radix r to sort a[1:n]
// digit(a[i], j, r) return the jth key in radix r of a[i]
// each digit is within the range [0, r). Using the bin sort to
// sort elements of the same digit.
 int e[r], f[r]; // head and tail of the bin
 int first = 1; // start from the 1st element
 for(int i =1; i < n; i++) link[i]=i+1; // link the elements</pre>
 link[n] = 0;
 // do radix sorting...
 for (i = d-1 ; i \ge 0; i--) \{ // \text{ sort in LSB order} \}
   fill(f, f+r, 0); // initialize the bins
   for (int current = first; current; current = link[current])
   { // put the element with key k to bin[k]
     int k = digit(a[current], i, r);
     if (f[k]==0) f[k] = current;
     else link[e[k]] = current;
     e[k] =current;
```

### LSB Radix Sort (codes)

```
for (j = 0; !f[j]; j++); // find the 1<sup>st</sup> non-empty bin
    first = f[j];
    int last = e[j];
    for (int k = j + 1; k < r; k++){ // link the rest of bins
        if (f[k]) {
            link[last] = f[k];
            last = e[k];}
        }
        link[last] = 0;
}
return first;
}</pre>
```

## **Internal Sorting Summary**

| Method         | Worst          | Average |
|----------------|----------------|---------|
| Insertion Sort | n <sup>2</sup> | n²      |
| Heap Sort      | nlogn          | nlogn   |
| Merge Sort     | nlogn          | nlogn   |
| Quick Sort     | n²             | nlogn   |
| Radix Sort     | nk             | nk      |

| n    | Insert | Heap  | Merge | Quick |
|------|--------|-------|-------|-------|
| 0    | 0.000  | 0.000 | 0.000 | 0.000 |
| 50   | 0.004  | 0.009 | 0.008 | 0.006 |
| 100  | 0.011  | 0.019 | 0.017 | 0.013 |
| 200  | 0.033  | 0.042 | 0.037 | 0.029 |
| 300  | 0.067  | 0.066 | 0.059 | 0.045 |
| 400  | 0.117  | 0.090 | 0.079 | 0.061 |
| 500  | 0.179  | 0.116 | 0.100 | 0.079 |
| 1000 | 0.662  | 0.245 | 0.213 | 0.169 |
| 2000 | 2.439  | 0.519 | 0.459 | 0.358 |
| 3000 | 5.390  | 0.809 | 0.721 | 0.560 |
| 4000 | 9.530  | 1.105 | 0.972 | 0.761 |
| 5000 | 15.935 | 1.410 | 1.271 | 0.970 |

## **Overall Complexity Analysis**

Part II Sorting and Order Statistics

| Algorithm      | Worst-case<br>running time | Average-case/expected running time |
|----------------|----------------------------|------------------------------------|
| Insertion sort | $\Theta(n^2)$              | $\Theta(n^2)$                      |
| Merge sort     | $\Theta(n \lg n)$          | $\Theta(n \lg n)$                  |
| Heapsort       | $O(n \lg n)$               | _                                  |
| Quicksort      | $\Theta(n^2)$              | $\Theta(n \lg n)$ (expected)       |
| Counting sort  | $\Theta(k+n)$              | $\Theta(k+n)$                      |
| Radix sort     | $\Theta(d(n+k))$           | $\Theta(d(n+k))$                   |
| Bucket sort    | $\Theta(n^2)$              | $\Theta(n)$ (average-case)         |

Order statistics

## **Internal Sorting Summary**



### Design Guidelines

- ■Insertion sort is good for small *n* and when the list is partially sorted
- ■Merge sort is slightly faster than heap sort but it require additional storage
- Quick sort outperforms in average



# External Sort

#### **External Sort**

- ■The lists are **too large** to be completely loaded
  - The list could reside on a disk
- ■The external sorting algorithm
  - Read partial records
  - Perform the sorting
  - Write the result back to disk
- ■"Block"
  - The unit of data that is read/written at one time

### **External Sorting Algorithm**

- ■Merge sort
  - Segments (runs) of input lists sorted using an internal sort
  - The runs generated in phase one are merged together following the merge-tree pattern
- ■Why merge sort?
  - Sublists could be sorted independently and merged later
  - During the merging, only the leading records of the two runs needed to be loaded in memory

## Runs & Merge Tree



Merge tree

### Running Example for External Sorting

- Problem:
  - Internal memory: 750 records
  - Block size: 250 records
  - List to be sorted: 4500 (250\*18) records
- To merge R1 and R2:
  - The first blocks of R1 and R2 are read into input buffers
  - The merged data is written to output buffer
  - Output buffer full → write onto disk
  - Input buffer empty → read from the new block

## **Optimal Merging of Runs**

- Runs with different sizes
- Different merge sequence may result in different runtime





## Weighted External Path Length

■The total number of merge is equal to:

$$\sum_{i=1}^{n} s_i d_i$$

- Where  $s_i$  is the size of Run i and  $d_i$  is the distance from the node to root
- ■How to build a merge tree such that the total cost is minimized?

## Weighted External Path Length

■ Sort runs using its size

2 4 5 15

- Take the two runs with *least sizes* and combine them into a tree
- Repeat the process until we obtain one tree





# Message Encoding

## Message Encoding

- Given a set of messages {M<sub>1</sub> , M<sub>2</sub> , ..., M<sub>i</sub>}
- How do we encode each M<sub>i</sub> using a binary code such that each code is unique?

|       | Encode 1 | Encode 2 | Encode 3 |
|-------|----------|----------|----------|
| $M_1$ | 0        | 0001     | 0001     |
| $M_2$ | 1        | 0010     | 1        |
| $M_3$ | 10       | 0100     | 01       |
| $M_4$ | 11       | 1000     | 001      |

#### **Huffman Codes**

■ Using a binary tree, called **decode tree** to encode messages



Decode tree

|       | Huffman Codes |
|-------|---------------|
| $M_1$ | 000           |
| $M_2$ | 001           |
| $M_3$ | 01            |
| $M_4$ | 1             |

#### **Huffman Codes**

- Cost of decoding a code word is proportional to the number of bits in the code
- Assume the frequency of a message M<sub>i</sub> been transmitted is q<sub>i</sub>, the total cost is:

$$\sum_{i=1}^{n} q_i d_i$$

■ How do we construct a decode tree such that the transmission cost is minimized?

## Weighted External Path Length

■ Sort the message according to q<sub>i</sub>

| $M_1$ | $M_3$ | $M_2$ | $M_4$ |
|-------|-------|-------|-------|
| 1/7   | 1/7   | 2/7   | 3/7   |

- Take the two messages with **least** q<sub>i</sub> and combine them into a tree
- Repeat the process until we obtain one tree.



## Message Encoding





|                                  | Huffman Codes |
|----------------------------------|---------------|
| $M_1$                            | 111           |
| $M_2$                            | 10            |
| $M_3$                            | 110           |
| $M_{\scriptscriptstyle{\Delta}}$ | 0             |

|       | Huffman Codes |
|-------|---------------|
| $M_1$ | 000           |
| $M_2$ | 01            |
| $M_3$ | 001           |
| $M_4$ | 1             |