Algebra Autumn 2025 Frank Sottile 26 August 2025

First Homework

Write your answers neatly, in complete sentences. I highly recommend recopying your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in at the start of class, Thursday 28 August:

- 0. Read Sections I.1 and I.2 of Lang's Algebra.
- 1. We explained that $\operatorname{Func}(S)$, the set of functions $f: S \to S$, where S is set, forms a monoid. Let $S := \{1, 2\}$, a set with two elements. We write the elements of S in 2-line notation as

$$e := \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \qquad \alpha := \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \qquad \beta := \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \qquad \gamma := \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}.$$

Please give the composition (multiplication) table for this monoid $Func(\{1,2\})$.

0	$\mid e \mid$	α	β	γ
e				
α			$\alpha \circ \beta$	
β				
γ				

(Evaluate the composition $\alpha \circ \beta$, place it in that cell, and do the same for the other 15 cells.)

Is this monoid commutative?

- 2. Let $\mathbb{R}_{\geq 0}$ be the monoid of nonnegative real numbers under addition, and let \mathbb{R}_+ denote the monoid of positive real numbers under multiplication.
 - (a) Find the smallest submonoid of $\mathbb{R}_{\geq 0}$ that contains $\sqrt{3}$. (That is, describe it elements as a set. The term "smallest" here means, by defintion, the submonoid that is contained in any other submonoid that contains $\sqrt{3}$.)
 - (b) Find the smallest submonoid of \mathbb{R}_+ that contains $\sqrt{3}$.
 - (c) Are either of $\mathbb{R}_{\geq 0}$ or \mathbb{R}_+ a group? If so, do the answers to the previous quesions change if "submonoid" is replaced by "subgroup"?

(You need not justify your answers.)

- 3. Let $B_2(\mathbb{R}):=\{(\begin{smallmatrix} a & b \\ 0 & c\end{smallmatrix}) \mid a,b,c\in\mathbb{R},\ ac\neq 0\}$. Show that $B_2(\mathbb{R})$ is a subgroup of $\mathsf{GL}(2,\mathbb{R})$, under matrix multiplication. (This subgroup is called a $Borel\ subgroup$.)
- 4. Let \mathbb{C}^{\times} be the group of nonzero complex numbers under multiplication. Define $f\colon \mathbb{C}^{\times} \to \mathrm{GL}(2,\mathbb{R})$ by $f(z) = \left(\begin{smallmatrix} a(z) & b(z) \\ -b(z) & a(z) \end{smallmatrix} \right)$, where $a(z) := \frac{z+\overline{z}}{2}$ and $b(z) := \frac{z-\overline{z}}{2\sqrt{-1}}$ are the real and imaginary parts of the complex number z.

Show that f is an injective group homomorphism.

5. The center of a group G is the set $Z(G) := \{a \in G \mid ag = ga \ \forall g \in G\}$. For a fixed $g \in G$, the centralizer of g is the set $C_G(g) := \{a \in G \mid ag = ga\}$. Prove that both Z(G) and $C_G(g)$ are subgroups of G.