

DEVOR DE MATHS 6D 2H 03.12.2016

Exercice 1(8pts):

Parmi les réponses proposées pour chaque question ci -après, une seule réponse est exacte

N°	Question	Réponse A	Réponse B	Réponse C
1	(U_n) est une suite arithmétique de raison $r = 2$ et	$U_{15} = 23$	$U_{15} = 22$	$U_{15} = 25$
	$U_8 = 9$; donc			
2	(U _n)est une suite arithmétique telle que	r=-2	r = 4	r = -3
	u_5 =-17et u_1 =-1; alors			
3	(U_n) est une suite arithmétique telle que $U_5 = 9$	$u_{15} = 75$	$U_{15} = 101$	$U_{15} = 105$
	et			
	$u_{10} = 55$		$\overline{}$	
4	(U _n) est une suite arithmétique de raison 3 et du	3n+5	3n - 5	3n+10
	1^{ier} terme $u_5 = 10$; alors le terme général $u_n =$		\searrow	
	(U_n) est une suite géométrique de raison $q=\frac{3}{2}$	3,5	$U_5 = \frac{81}{8}$	$U_5 = \frac{25}{4}$
5	(On) est une suite geometrique de raison q	$U_5 = 3(\frac{3}{2})^5$	•	4
	et $U_2 = 3$; donc		(
6	(Un)est une suite géométrique de raison négative q	-4/	-3	-2
	telle que $u_2 = 9$ et $u_4 = 81$, alors $q =$	7		
7	3	$\frac{3}{n^{-3}}$	3_n	3_{n+3}
	(U_n) est une suite géométrique de raison $\frac{1}{2}$ telle que	$\left(\frac{2}{2}\right)^{-1}$	$2\left(\frac{3}{2}\right)^n$	$(\frac{3}{2})^{n+3}$
	u ₃ = 2 . Alors le terme général/de u _n =	_	_	_
8	Si $s_n = 1 + 2 + 2^2 + 2^3 + 2^4 + \dots + 2^{n-1}$, alors $s_n = 1 + 2 + 2^2 + 2^3 + 2^4 + \dots + 2^{n-1}$	1-2 ⁿ⁺¹	2 ⁿ -1	2 ⁿ⁺¹ -1
		7		

Exercice 2(5pts): Soit(u_n) une suite arithmétique telle que u_2 =3 et u_5 =6.

1°a) Calculer la raison de cette suite.

b) Donne l'expression de u_n en fonction de n . En déduire u₂₀₁₆.

 $2^{\circ}a$) Calculer en fonction de n $s_n = u_0 + u_1 + ... + u_n$.

b) Déterminer l'entier naturel n pour lequel s_n=66.

Exercice 3(5pts): Soit u_n la suite définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{2}u_n + n - 1 \end{cases}$ et $v_n = u_n - 2n + 6$. pour

tout entier naturel

- 1) Calculer u_1 et u_2 . Montrer que $(u_n$) n'est ni arithmétique , ni géométrique .
- 2) Montrer que la suite (v_n) est géométrique .
- 3) En déduire l'expression de v_n puis celle de u_n en fonction de n .
- 4) Exprimer en fonction de n la somme $s_n=v_0+v_1+\ldots+v_n$.

Présentation et rédaction : 2 points .