

Barath K - 21PC06

ABOUT THE PROJECT

This project, the **investment recommendation system**, is designed to empower users in making well-informed decisions regarding their investments. It harnesses demographic insights, employment particulars, and investment behavior patterns to tailor personalized recommendations. Employing sophisticated machine learning techniques such as **MLPClassifier** and **XGBClassifier**, the system predicts potential investment returns and delivers actionable insights for optimal decision-making.

WORK FLOW

- Data Loading and Preprocessing
- Data Splitting & Scaling
- Model Training & Evaluation
- Recommendation Generation
- Example Recommendation
- Why Neural Network and XGBoost?
- System Design

Data Loading and Preprocessing

- The algorithm starts by loading the dataset from an Excel file named "Sample Data for shortlisting.xlsx" into a pandas DataFrame.
- Categorical variables in the dataset are encoded into numerical representation using
 LabelEncoder from scikit-learn.
- Missing values in the dataset are filled with the mean of the respective columns.

Data Splitting & Scaling

- The dataset is split into features (X) and the target variable (y). Features include all columns except for the ones specified to be excluded.
- The data is further split into training and testing sets using train_test_split function from scikit-learn.
- **StandardScaler** from scikit-learn is used to scale the features to have a mean of 0 and a standard deviation of 1.

Model Training & Evaluation

- Two machine learning models are trained:
 - MLPClassifier (Neural Network) with 1 hidden layer of 100 neurons and another hidden layer of 50 neurons.
 - XGBClassifier (XGBoost) with scale_pos_weight set to 5 and objective set to 'binary:logistic'.
- Performance metrics such as accuracy, precision, recall, F1-score, and ROC-AUC are calculated for both models using the testing data.

Recommendation Generation

- A function named generate_recommendation is defined to generate investment recommendations based on user input.
- User input is encoded and scaled to match the format expected by the trained models.
- Predictions are made using both the Neural Network and XGBoost models, and the recommendation is determined based on the model with higher accuracy.
- If both models give the same recommendation, that recommendation is returned.

Why Neural Network and XGBoost?

Neural Network

- A Neural networks, especially **Multi-Layer Perceptrons (MLPs)**, are known for their capability to learn complex non-linear relationships between input features and target variables.
- MLPs are highly flexible and can capture intricate patterns in the data, making them suitable for tasks where the relationship between features and target is not easily discernible or linear.
- In the context of investment recommendation, neural networks can effectively learn from the diverse set of features such as demographic information, employment details, and investment behavior to predict investment returns

XGBoost

- XGBoost is an ensemble learning technique based on decision trees, known for its efficiency and effectiveness in handling structured/tabular data.
- XGBoost is particularly well-suited for handling tabular data with a large number of features, as it can capture both linear and non-linear relationships effectively.
- It provides robustness against overfitting and handles missing data well, making it suitable for real-world datasets with diverse characteristics.
- In the investment recommendation context, XGBoost can complement the Neural Network by providing a different perspective on the data and capturing additional nuances that may not be fully captured by the neural network.

SYSTEM DESIGN

Demographic Distribution Analysis

Demographic Distribution Analysis

Accuracy: 0.48148148148148145

Employment Details Exploration

Accuracy: 0.19135802469135801

Demographic Distribution Analysis

Investment Behavior Insights

Accuracy: 0.4012345679012346

RECOMMENDATION SYSTEM DESIGN

Recommendation System

Neural Network Metrics:

```
"Accuracy": 16.66666666666664

"Precision": 16.82966522393046

"Recall": 16.666666666666664

"F1-score": 16.66370469478175

"ROC-AUC": 49.20150279655632
```

XGBoost Metrics:

```
"Accuracy": 22.839506172839506

"Precision": 23.387990052503408

"Recall": 22.839506172839506

"F1-score": 22.941578738330815

"ROC-AUC": 53.63845091934524
}
```

Data Preview:

	S. No.	City	Gender	Marital Status	Age	Education	Role	Number of investors in family	Hou
0	1	2	0	1	1	2	2	2	
1	2	2	1	0	1	0	0	2	
2	3	4	1	0	1	3	4	2	
3	4	3	0	1	2	4	4	5	
4	5	3	0	0	4	1	1	2	

Number of investors in family

2 - +

Household Income

US\$ 8206 to US\$ 13675

Percentage of Investment

6% to 10%

Source of Awareness about Investment Workers Knowledge level about different investment product Knowledge level about sharemarket Knowledge about Govt. Schemes 5 Investment Influencer Friends Reference Investment Experience 4 Years to 6 Years Risk Level Medium Reason for Investment Fun and Exitement

Return Earned: 2

CONCLUSION

- In summary, by combining the strengths of **Neural Network** and **XGBoost**, our investment recommendation algorithm offers a robust solution for handling complex financial datasets.
- Neural Networks excel at capturing non-linear relationships, while XGBoost efficiently handles structured data. This synergistic approach enhances the accuracy and reliability of investment recommendations, providing investors with valuable insights for informed decision-making.

THANK YOU