CS 170 Efficient Algorithms and Intractable Problems

Lecture 2: Divide and Conquer I, Asymptotics

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Discussion sections start today!

- For coordination purposes, sign up to let us know which section you'll go to.
- You can still go to any other section, without the RSVP.
- Feeling you need a slower-paced section? Go to LOST section on Fridays.

Homework 1 will be posted today!

• Due next Monday (labor day!). Due on Tuesday

Homework party:

This Friday and next Monday (labor day!)

More announcements

Course Email:

- We said "it will be viewable by 2 instructors and 2 head TAs"
- → Revise this to "Also 2 graduate TAs with Admin role".

Other issues

Short break in the middle of the lecture?

Noise in the lecture hall?

Any other issues? Tell us on Ed!

Recap of last time

Introductions all around!

Our motivating questions about algorithms:

- Does it work?
- Is it fast?
- Can I do better?

Technical content:

- Arithmetic and Big Oh notation
- Intro to Divide and Conquer
- First attempt at fast multiplication
- \rightarrow Still didn't beat $O(n^2)$

Recap of last time

Introductions all arc

Our motivating ques Bre

- Does it work?
- Is it fast?
- Can I do better

Technical content:

- Arithmetic and Big
- Intro to Divide an
- First attempt at fas
- → Still didn't beat O

The algorithm

Break up the multiplication of two integers with n digits into multiplication of integers with n/2 digits:

$$[x_1 x_2 \cdots x_n] = [x_1, x_2, \cdots, x_{n/2}] \times 10^{\frac{n}{2}} + [x_{n/2+1} x_{n/2+2} \cdots x_n]$$

$$x \times y = \left(a \times 10^{\frac{n}{2}} + b\right) \left(c \times 10^{\frac{n}{2}} + d\right)$$
$$= (a \times c)10^{n} + (a \times d + c \times b)10^{n/2} + (b \times d)$$
P1
P2
P3
P4

One n-digit multiplication

Four n/2-digit multiplications

(simplify: assume even n

Recap of last time

Introductions all arc

Our motivating ques

- Does it work?
- Is it fast?
- Can I do better

Technical content:

- Arithmetic and Big
- Intro to Divide an
- First attempt at fa:
- → Still didn't beat @

Layer	# of digits	# problems
0	n	1
1	n/2	4
:	:	:
t	$\frac{n}{2^t}$	4 ^t
:	:	:
$\log_2(n)$	1	$4^{\log_2 n} = n^2$

This lecture

- Karatsuba's algorithm with $O(n^{1.6})$
- →Using divide and conquer, but this time better!
- Reviewing $O(\cdot)$ and $\Omega(\cdot)$ notation formally.
- Recurrence relations and a useful theorem for solving them!

Karatsuba's Idea

Divide and Conquer indeed can lead to a faster algorithm!

$$x \times y = \left(a \times 10^{\frac{n}{2}} + b\right) \left(c \times 10^{\frac{n}{2}} + d\right)$$

$$= (a \times c)10^{n} + (a \times d + c \times b)10^{n/2} + (b \times d)$$
P1
P2
P3
P4

The issue is that we are creating 4 sub-problems. What if we could create fewer subproblems?

Main idea: Could we write P2+P3 using what we compute in P1 and P4, and at most one other n/2-digit multiplication?

Karatsuba's Clever Trick

Let us only compute 3 things:

- Q1: $a \times c$
- Q2: $b \times d$
- Q3: (a + b)(c + d)

Expressing P2+P3 differently

$$a \times d + c \times b = (a + b)(c + d) - ac - bd$$

Three subproblems

$$x \times y = (a \times 10^{\frac{n}{2}} + b)(c \times 10^{\frac{n}{2}} + d)$$

$$= (a \times c)10^{n} + (a \times d + c \times b)10^{n/2} + (b \times d)$$
Q1
Q3-Q1-Q2
Q2

What is the runtime of Karatsuba's algorithm?

Less formally, how many 1-digit multiplications do we do in Karatsuba's algorithm?

Same approach as last lecture, this time our branching factor is 3 instead of 4

Layer	# of digits	# problems
0	n	1
1	n/2	3
•	•	:
t	n/at	3 ^t
•	:	:
log (n)	1	bg(n) bg(3) 3 = n

2n6

Other Algorithms

- Karatsuba (1960): $O(n^{1.6})!$ Saw this!
- Toom-3/Toom-Cook (1963): $O(n^{1.465})$

Divide and conquer too! Instead of breaking into three n/2-sized problems, break into five n/3-sized problems.

Hint: Start with 9 subproblems and reduce it to 5 subproblems.

- Schönhage-Strassen (1971):
 - Runs in time $O(n \log(n) \log \log(n))$
- Furer (2007)
 - Runs in time $n \log(n) \cdot 2^{O(\log^*(n))}$
- Harvey and van der Hoeven (2019)
 - Runs in time $O(n \log(n))$

What about binary representation?

We used base 10 so far

→ Counted the # of 1-digit operations, assuming adding/multiplying single digits is easy (memorized our multiplication table!)

What if we use base 2?

 \rightarrow We would want to count # of 1-bit operations.

How do we alter Karatsuba's algorithm for binary numbers?

N-bit integer multiplications

Easy to compute 10^k in base 10. In base 2, it is easy to compute 2^k .

$$[b_1b_2\cdots b_n] = [b_1,b_2,\cdots,b_{n/2}] \times 2^{n/2} + [b_{n/2+1}b_{n/2+2}\cdots b_n]$$

$$\begin{bmatrix} b_1 & b_2 & b_3 & \cdots & \cdots & b_{n-2} & b_{n-1} & b_n \end{bmatrix}$$

$$a \times b = (a^L \times b^L) 2^n + (a^L \times b^R + a^R \times b^L) 2^{n/2} + (a^R \times b^R)$$
$$= \cdots$$

Practice: Complete this equation the Karatsuba's way and rederived $O(n^{1.6})$ runtime for multiplying two n-bit numbers. Also on Homework 1!

Details we skipped

Technically

- We only counted the number of 1-digit problems
- There are other things we do: adding, subtracting, ...
- Shouldn't we account for all of that?

Absolutely!

- We should be more formal, and we will be next!
- In this case, additions/subtractions end up in lower order terms
- Don't affect O(.).

Asymptotic Notations More Formally

Runtime of Algorithms Asymptotically

Suppose an algorithm with input size *n* takes

$$T(n) = 5n^2 + 20n\log(n) + 7$$
 ms

 $T(n) \in O(n^2)$ also commonly written as $T(n) = O(n^2)$

Why is it a good idea to just say this is $O(n^2)$?

- Constants like 5, 20, 7, depend on the platform and computer.
- Makes it easier to compare the performance of algorithms on large inputs
- Makes algorithm analysis easier
- Sometime clever tricks and representations improve the constants anyway.

Definition of O(...)

- Let T(n), g(n) be functions of positive integers.
 - Think of T(n) as a runtime: positive and increasing in n.
- We say "T(n) is O(g(n))" if and only if for large enough n, T(n) is at most some constant multiple of g(n).

Definition of O(...)

- Let T(n), g(n) be functions of positive integers.
 - Think of T(n) as a runtime: positive and increasing in n.
- We say "T(n) is O(g(n))" if and only if

There exists c and $n_0 > 0$ Such that for all $n \ge n_0$, $T(n) \le c \cdot g(n)$

Example

Prove that for $T(n) = 2n^2 + 2$, we $T(n) \in O(n^2)$

Even though T(n) is larger than n^2 always, we can find c=4 and $n_0=1$, such that all $n>n_0$

$$2n^2 + 2 \le 4n^2$$

How do you prove the above inequality?

Whatever (correct!) math you like!

• E.g., equal at n_0 and RHS has larger derivative.

BEWARE of pictures!

The picture seems to imply that for $T(n) = 0.1n^2 + 2$ we have that $T(n) \in O(n \log(n))!$

What's wrong with this argument and relying on pictures?

BEWARE of pictures!

The picture seems to imply that for $T(n) = 0.1n^2 + 2$ we have that $T(n) \in O(n \log(n))!$

What's wrong with this argument and relying on pictures?

That is why you should come up with c and n_0 and mathematically prove that for all $n \ge n_0$, $T(n) \le c \cdot g(n)$.

How to prove $0.1n^2 \notin O(n)!$

- Proof by contradiction:
 Suppose that n² ∈ O(n).
- Then there is some positive *c* and n_0 so that:

$$\forall n \geq n_0, \qquad 0.1n^2 \leq c n$$

• Divide both sides by *n*:

$$\forall n \geq n_0, \qquad 0.1n \leq c$$

- That's not correct. Let $n = n_0 + 10$ c
 - Then $n \ge n_0$, but 0.1n > c.
- Contradiction!

Recap of Proof Techniques

To prove $T(n) \in O(g(n))$:

• You have to come up with c and n_0 so that the definition is satisfied.

To prove $T(n) \notin O(g(n))$

- You have to rule out **all possible** c and n_0 .
- One approach is to use proof by contradiction:
 - Suppose there exists a c and an n_0 so that the definition is satisfied.
 - Derive a contradiction,
 - \rightarrow e.g., by finding large enough n (as a function of c and n_0), for which the definition is not satisfied.

$\Omega(...)$ means lower bound

- Let T(n), g(n) be functions of positive integers.
 - Think of T(n) as a runtime: positive and increasing in n.
- We say " $T(n) \in \Omega(g(n))$ " if and only if

There exists c and $n_0 > 0$

Such that for all $n \ge n_0$, $c \cdot g(n) \le T(n)$

Example

Indeed, $0.1n^2 + 2 \in \Omega(n \log(n))!$

Prove this formally:

Find constants c and $n_0 > 0$, such that for all $n \ge n_0$, $c \, n \log(n) \le 0.1n^2 + 2$.

$\Theta(...)$ means both!

We say "T(n) is $\Theta(g(n))$ " iff both:

$$T(n) = O(g(n))$$
 and

$$T(n) = \Omega(g(n))$$

Example: Asymptotics of the geometric series

Take any constant
$$r$$
 and function $T(n) = 1 + r + r^2 + \dots + r^n$
Show that $T(n) = \begin{cases} \Theta(r^n) & \text{if } r > 1 \\ \Theta(1) & \text{if } r < 1 \\ \Theta(n) & \text{if } r = 1 \end{cases}$

<u>Proof Idea:</u> Recall sum of a geometric series that for $r \neq 1$:

$$1 + r + r^{2} + \dots + r^{n} = \frac{r^{n+1} - 1}{r - 1}$$

Intuition:

- For r > 1, this is approximately $\frac{r^{n+1}}{r} = r^n$.
- For r < 1, $\frac{r^{n+1}-1}{r-1} \approx \frac{1}{1-r}$

Prove formally at home (also EX 0.2 of the book).

Revisiting Karatsuba's Alg runtime, more formally

What is the runtime of Karatsuba's Alg?

At each layer, we have 3 problems

 \rightarrow Each problem of size $\frac{n}{2}$.

Karatsuba's Alg in 1 layer

Q1=
$$a \times c$$
 Q2= $b \times d$ Q3= $(a + b)(c + d)$
 $x \times y = Q1 \times 10^{n} + (Q3 - Q1 - Q2)10^{n/2} + Q2$

We have to do a bunch of other operations

- Finding a, b, c, d by shifting *n*-digit arrays.
- n/2-digit additions a + b, c+d
- n-digit additions Q3 Q1 Q2
- 2n-digit additions $Q1 \times 10^n + (Q3 Q1 Q2)10^{n/2} + Q2$

•

$$O(n)$$
 More precisely $\leq 20n$

Runtime:
$$T(n) = 3 T\left(\frac{n}{2}\right) + 20n$$

Recurrence Relations

Recurrence relations give a formula for T(n), i.e., the runtime on size n problems in terms of T(k) where k < n.

$$T(n) = 3 T\left(\frac{n}{2}\right) + 20n$$
 is a **recurrence relation.** $T(1) = 0(1)$ Base case (e.g., $T(1) = 5$ or 500)

Main question:

Given a recurrence relation for T(n), find a closed-form expression for it.

For example, we hope that $T(n) = O(n^{1.6})$ for the above recurrence!

Solve Karatuba's Alg Recurrence Relation

Solve Karatuba's Alg Recurrence Relation Abstraction of the tree $T(n) = 3T(\frac{n}{2}) + 20n$, T(1) = 20.

$$T(n) = 3T \binom{n}{2} + 20n, \quad T(1) = 20.$$

$$\sum_{i=0}^{\log(n)} 20n \left(\frac{3}{2}\right)^i = 20n \sum_{i=0}^{\log(n)} \left(\frac{3}{2}\right)^i$$

$$= O\left(n\left(\frac{3}{2}\right)^{\log(n)}\right)$$

$$= O(n \times n^{\log 3 - \log 2})$$

$$= O(n^{\log(3)}) = O(n^{1.6})$$

$$9\times (n/4)$$

$$3^t \times (n/2^t)$$

Total contribution in this layer 20n

$$3\times20\left(\frac{n}{2}\right)$$

$$9\times20\left(\frac{n}{4}\right)$$

$$3^t \times 20 \left(\frac{n}{2^t}\right)$$

$$3^{\log(n)} \times 20(1)$$

Solving Recurrence Relations Generally

The tree method, as we just did

- Keep track of the number and size of problems in each step
- Account for total amount of computation done in each layer.
- Sum over all the computation done in the layers.

The Master Theorem

The tree method, as we just did

- Keep track of the number and size of problems in each step
- Account for total amount of computation done in each layer.
- Sum over all the computation done in the layers.

The Master Theorem

Suppose that $a \ge 1, b > 1$, and $d \ge 0$ are constants (independent of n).

Suppose
$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$$
. Then

$$T(n) = \begin{cases} O(n^d) & \text{if } a < b^d \\ O(n^d \log(n)) & \text{if } a = b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

More on the Master Theorem

- Can it be used to solve any recurrence relation?
- → Nope! But it is a useful tool in many cases.
- → So, make sure you are also comfortable with the tree method.
- Don't we need a base case?
- \rightarrow Yes!
- \rightarrow Take T(1) = O(1), the exact constant in this case doesn't affect the O(.).
- What if n/b is not an integer?
- → The Master Theorem is also correct with $T(n) = a \cdot T\left(\left|\frac{n}{b}\right|\right) + O(n^d)$.
- → We will mostly **ignore floors and ceilings** in recurrence relations.

Overview of the proof of Master Theorem

• See Section 2.2 of the book for a complete proof.

For the proof, suppose that $T(n) \le a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$.

- For formal recursive arguments, we always substitute a constant.
- → Precise relationship between each layer's parameter and the amount of work.
- \rightarrow Let's assume T(1) = c, too. For convenience!
- → Just do the tree method!

$$T(n) \le a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$$

$$a^2 \times (n/b^2)$$

•

$$a^t \times (n/b^t)$$

$$a^{\log_b(n)} \times \underbrace{1}_{\text{(Size 1)}}$$

Layer	Problem size	# problems	Work @ this layer
0	$\frac{n}{=}$	1	c. n
1	n/b	а	,
:	:	•	4
t	n/b^t	a^t	a^{t} . $C\left(\frac{n}{b^{t}}\right)$
•	•	•	(
$\log_b(n)$	1	$a^{\log_b(n)}$	(

$$T(n) \le a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$$

$$a^2 \times (n/b^2)$$

 $a^t \times (n/b^t)$

 $a^{\log_b(n)} \times \underbrace{1}_{\text{(Size 1)}}$

Layer	Problem size	# problems	Work @ this layer
0	n	1	$c \cdot n^d$
1	n/b	a	$a \cdot c \cdot \left(\frac{n}{b}\right)^d$
:	•	•	:
t	n/b^t	a^t	$a^t \cdot c \cdot \left(\frac{n}{b^t}\right)^d$
•	•	•	•
$\log_b(n)$	1	$a^{\log_b(n)}$	$a^{\log_b(n)} \cdot c$

$$T(n) \le a \cdot T\left(\frac{n}{h}\right) + c \cdot n^d$$

Total computation on all layers:

$$cn^{d} \cdot \sum_{t=0}^{\log_{b}(n)} \left(\frac{a}{b^{d}}\right)^{t}$$

Looks so familiar ...

Layer	Problem size	# problems	Work @ this layer
0	n	1	$c \cdot n^d$
1	n/b	а	$a \cdot c \cdot \left(\frac{n}{b}\right)^d$
•	:	•	•
t	n/b^t	a^t	$a^t \cdot c \cdot \left(\frac{n}{b^t}\right)^d$
•	:	•	:
$\log_b(n)$	1	$a^{\log_b(n)}$	$a^{\log_b(n)} \cdot c$

Proof of the Master Theorem

$$T(n) \le a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$$

Total computation on all layers:

$$cn^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t$$

Geometric series

$$1 + r + r^2 + \dots + r^n = \begin{cases} \Theta(r^n) & \text{if } r > 1 \\ \Theta(1) & \text{if } r < 1 \\ \Theta(n) & \text{if } r = 1 \end{cases}$$

The Master Theorem

$$T(n) \le a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$$

Total computation on all layers:

$$cn^{d} \cdot \sum_{t=0}^{\log_{b}(n)} \left(\frac{a}{b^{d}}\right)^{t}$$

$$= \begin{cases} \Theta\left(n^d \left(\frac{a}{b^d}\right)^{\log_b(n)}\right) \\ \Theta\left(n^d \log(n)\right) \end{cases}$$

Position Inform
$$T(n) \leq a \cdot T\left(\frac{n}{b}\right) + c \cdot n^{d}$$

$$tomputation on all layers:$$

$$Cn^{d} \cdot \sum_{t=0}^{\log_{b}(n)} \left(\frac{a'}{b^{d}}\right)^{t}$$

$$Geometric series$$

$$n^{d} \cdot n^{\log_{b}(\frac{a}{b^{d}})} = n^{d + \log_{b}(a) - \log_{b}(b^{d})}$$

$$= n^{d + \log_{b}(a) - \log_{b}(b^{d})}$$

$$= n^{\log_{b}(a)}$$

$$tf \ a > b^{d}$$

$$tf \ a < b^{d} = n^{d + \log_{b}(a) - \log_{b}(b^{d})}$$

$$tf \ a < b^{d} = n^{\log_{b}(a)}$$

* In lecture we used & here. These should be O(.) only.

Master Theorem's Interpretation

Wide tree $a > b^d$

Branching causes the number of problems to explode!

Most work is at the bottom of the tree!

VS.

Tall and narrow $a < b^d$

Problem size shrinks fast, so most work is at the top of the tree!

 $a = b^d$ Branching perfectly balances total amount of work per layer. **All layers contribute equally.**

Wrap up

Karatsuba Integer Multiplication:

You can do better than grade school multiplication! Example of divide-and-conquer in action Runtime analysis, informal and formal.

Asymptotics, recurrence relations, and Master theorem

Tree method is intuitive and fun!

Master theorem is useful!

Next time

- More divide and conquer
- Matrix multiplications
- Median selection