Annotations in the pangenome with indexed GAF files

Jean Monlong^{1,2}, Adam M. Novak¹, Dickson Chung¹, Glenn Hickey¹, Toshiyuki T. Yokoyama³, Erik Garrison⁴, Benedict Paten¹

¹UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA ³Department of Computational Biology and Medical Sciences, The University of Tokyo, Chiba, Japan

²Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France ⁴Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA

A genomic range can be represented as a path in the pangenome. The **Graph Alignment Format (GAF) text format**, which was proposed to represent alignments, could be used to represent any type of annotation in a pangenome graph. To explore this approach within the vg toolkit, two subcommands were updated: vg gamsort to **sort and index bgzipped GAF files**; vg annotate to **project annotation on the latest HPRC pangenomes**.

GAF sorting and indexing

Methods

Sort paths by minimum, then maximum node ID.

Tweak HTSlib to index bgzipped GAF files

- Tab-separated file, like VCF or BED
- Instead of indexing on CHR:START-END, index on MIN_NODE-MAX_NODE

Query a node ID range or path range, like we would a genomic range.

Benchmark

Sort 30x Illumina short-read dataset (~300M paired-end reads)

- GAM:
- File size: 69G sorted
- Sorting: ~9h and ~2.5Gb mem
- GAF:
- File size: **24 Gb** sorted
- Sorting: $\sim 6h$ and ~ 3.5 Gb mem
- GAM to GAF conversion: ∼2h

Sorted GAF file with minimum and maximum node IDs highlithed

read_name_6	100	0	100	+	<394<393<392< 391	128	25	124	100	100	0
read_name_7	100	0	100	+	<2075<4074<2073< 2072	128	7	106	100	100	0
read_name_2	100	0	100	+	<2300<2299<2298< 2297	128	7	106	100	100	0
read_name_9	100	0	100	+	<3222<3221<3220< 3219	128	18	117	100	100	0
read_name_5	100	0	100	+	<13108<13107<13106< 13105	128	7	106	100	100	0
read_name_1	100	0	100	+	<15216<15215<15214< 15213	128	28	127	100	100	0
read_name_3	100	0	100	+	> 18612 >18613>18614>18615	128	15	114	100	100	0
read_name_8	100	0	100	+	> 19602 >19603>19604>19605	128	11	110	100	100	0
read_name_4	100	0	100	+	<19770<19769<19768< 19767	128	8	107	100	100	0

Commands

- > vg gamsort -G reads.gaf.gz | bgzip > reads.sorted.gaf.gz
- > tabix -p gaf reads.sorted.gaf.gz
- > vg find -F reads.sorted.gaf.gz -o 200-300
- > vg chunk -x graph.vg -F -a reads.sorted.gaf.gz -p chr22:1000-1200 -c 10

Annotation with GAF files

Methods

Look for path in pangenome graph and create an "alignment" record. If path is broken in pieces, break the region in multiple alignments

Record the path name from BED 4th column or GFF Name.

Commands

- > vg annotate -x graph.gbz -b anno.bed | \
- vg convert -G graph.gbz | gzip > anno.gaf.gz
- > vg annotate -x graph.gbz -f anno.gff | \
 vg convert -G graph.gbz | gzip > anno.gaf.gz
- > vg gamsort -t 1 -pG anno.gaf.gz | bgzip > anno.sorted.gaf.gz
- > tabix -p gaf anno.sorted.gaf.gz

HPRC pangenome annotation

Annotate genes, segmental duplications, tandem repeats and repeats annotations from the HPRC freeze 1 into the CHM13-based Minigraph-Cactus pangenome.

On average per haplotype, vg annotate $\sim 4M$ gene annotations in ~ 16 mins, and $\sim 5.5M$ repeats from RepeatMasker in ~ 9 mins.

Using sequenceTubeMap, haplotypes, read alignments and paths can be visualized interactively. Hovering on a path displays its name, here the ID of a coding region of the BOLA2B gene.

Haplotypes: CHM13 (purple), HG00621 (greys). Annotated CDS for HG00621 hap 1 (reds) and 2 (blues).

Using BandageNG, a fork that can import paths in GAF files, paths were searched and colored to illustrate a mobile element insertion.

Yellow: AluYa5 element annotated in the haplotype 1 of HG00438.

Blue: CHM13 reference path.

Limitations

- No metadata recorded, all in one path name.
- Simplistic handling of clipped paths.
- Optimized for short paths/ranges.
- Requires ordered integer node IDs for best performance

Links

Code and tutorial: https://github.com/jmonlong/HPRC2023-gaf-annotation

vg https://github.com/vgteam/vg ("gafidx" branch)
 docker: quay.io/jmonlong/vg:gafidx

sequenceTubeMap https://github.com/vgteam/sequenceTubemap
docker: quay.io/jmonlong/sequencetubemap:gaf

Bandage NG v2022.09 https://github.com/asl/BandageNG

