

TK68HC811E2 Microcontroller 512 Bytes RAM, 2048 bytes EEPROM

February 13th, 2024 V1.14

Product Overview

Features

- 175°C Operation
- o Enhanced screening for longer data retention.
- 68HC11 Central Processing Unit (CPU)
- o Power Saving STOP and WAIT Modes
- 512 Bytes of On-Chip RAM, Data Retained During Standby
- 2048 Bytes Electrically Erasable Programmable ROM (EEPROM)
- Asynchronous Non-Return to Zero (NRZ)` Communications Interface (SCI)
- Synchronous Serial Peripheral Interface (SPI)
- 8-Channel 8-Bit Analog-to-Digital (A/D) Converter
- 16-Bit Timer System
 - Three Input Capture (IC) Channels
 - Four Output Compare (OC) Channels
 - One Additional Channel, Selectable as Fourth IC or Fifth OC
- o 8-Bit Pulse Accumulator
- o Real-Time Interrupt Circuit
- Computer Operating Properly (COP) Watchdog System
- 38 General-Purpose Input / Output (I/O) Pins
 - 16 Bidirectional I/O Pins
 - 11 Input-Only Pins
 - 11 Output-Only Pins
- 48-Pin Ceramic Dual In-Line Package (DIP)
- Pin for pin replacement of the Freescale MC68HC811E2

General Description

The TK68HC811E2 is a member of the TK68HC11E family of MCUs. The full set of specifications can be found in the datasheet TK68HC11E. The operation of the entire family is largely the same except for the various configurations of RAM, ROM, or EPROM.

The Tekmos TK68HC811E2 is available in a 175C version.

The TK68HC811E2 is a fully static design using high-density complementary metal-oxide semiconductor (HCMOS) fabrication process that allows it to operate at frequencies from 2 MHz to dc, with very low power consumption.

The device is available in the 48 pin Ceramic DIP, the 52-pin PLCC, and the 52 pin PQFP packages.

Pin Assignments for 48-Pin DIP

Pinout

PLCC	CDIP	PQFP	Signal	PLCC	CDIP	PQFP	Signal
1	23	46	VSS	52	22	45	VRH
2	24	47	MODB	51	21	44	VRL
3	25	48	MODA	50		43	PE7
4	26	49	STRA	49	20	42	PE3
5	27	50	E	48		41	PE6
6	28	51	STRB	47	19	40	PE2
7	29	52	EXTAL	46		39	PE5
8	30	1	XTAL	45	18	38	PE1
9	31	2	PC0	44		37	PE4
10	32	3	PC1	43	17	36	PE0
11	33	4	PC2	42	16	35	PB0
12	34	5	PC3	41	15	34	PB1
13	35	6	PC4	40	14	33	PB2
14	36	7	PC5	39	13	32	PB3
15	37	8	PC6	38	12	31	PB4
16	38	9	PC7	37	11	30	PB5
17	39	10	/RESET	36	10	29	PB6
18	40	11	/XIRQ	35	9	28	PB7
19	41	12	/IRQ	34	8	27	PA0
20	42	13	PD0	33	7	26	PA1
21	43	14	PD1	32	6	25	PA2
22	44	15	PD2	31	5	24	PA3
23	45	16	PD3	30	4	23	PA4
24	46	17	PD4	29	3	22	PA5
25	47	18	PD5	28	2	21	PA6
26	48	19	VDD	27	1	20	PA7

Electrical Characteristics

5.1 General Requirements - All static and dynamic electrical characteristics specified.

5.2 - Static Characteristics

5.2.1 DC Electrical Characteristics

Characteristics ⁽¹⁾	Symbol	Min	Max	Unit
Output voltage ⁽²⁾ I _{Load} = ±±10.0 μA All outputs except XTAL All outputs except XTAL, RESET, and MODA	V _{OL} , V _{OH}	 V _{DD} -0.1	0.1	V
Output high voltage ⁽²⁾ $I_{Load} = -0.8 \text{ mA, } V_{DD} = 4.5 \text{ V}$ All outputs except XTAL, RESET, and MODA	V _{OH}	V _{DD} -0.8	_	V
Output low voltage I _{Load} = 1.6 mA All outputs except XTAL	V _{OL}	_	0.4	V
Input high voltage All inputs except RESET RESET	V _{IH}	$0.7 \times V_{DD} \\ 0.8 \times V_{DD}$	V _{DD} + 0.3 V _{DD} + 0.3	V
Input low voltage, all inputs	V _{IL}	V _{SS} -0.3	$0.2 \times V_{DD}$	V
I/O ports, 3-state leakage V _{In} = V _{IH} or V _{IL} PA7, PA3, PC[7:0], PD[5:0], AS/STRA, MODA/LIR, RESET	l _{OZ}	_	±10	μА
Input leakage current V _{In} = V _{DD} or V _{SS} PA[2:0], IRQ, XIRQ MODB/V _{STBY} (XIRQ on EPROM-based devices)	I _{In}	=	±1 ±10	μΑ
RAM standby voltage, power down	V _{SB}	4.0	V_{DD}	V
RAM standby current, power down	I _{SB}	_	10	μΑ
Input capacitance PA[2:0], PE[7:0], IRQ, XIRQ, EXTAL PA7, PA3, PC[7:0], PD[5:0], AS/STRA, MODA/LIR, RESET	C _{In}	_	8 12	pF
Output load capacitance All outputs except PD[4:1] PD[4:1]	CL	_	90 100	pF

^{1.} V_{DD} = 5.0 Vdc ± 10%, V_{SS} = 0 Vdc, T_A = T_L to T_H, unless otherwise noted 2. V_{OH} specification for RESET and MODA is not applicable because they are open-drain pins. V_{OH} specification not applicable to ports C and D in wired-OR mode.

5.2.2 Supply Currents and Power Dissipation

Characteristics ⁽¹⁾	Symbol	MIn	Max	Unit
Run maximum total supply current ⁽²⁾ Single-chip mode2 MHz 3 MHz Expanded multiplexed mode2 MHz 3 MHz	I _{DD}	_ _ _ _	15 27 27 27 35	mA
Wait maximum total supply current ⁽²⁾ (all peripheral functions shut down) Single-chip mode2 MHz 3 MHz Expanded multiplexed mode2 MHz 3 MHz	W _{IDD}	_ _ _ _	6 15 10 20	mA
Stop maximum total supply current ⁽²⁾ Single-chip mode, no clocks-40°C to +85°C > +85°C to +105°C > +105°C to +125°C	S _{IDD}		25 50 100	μА
Maximum power dissipation Single-chip mode2 MHz 3 MHz Expanded multiplexed mode2 MHz 3 MHz	P _D	_ _ _ _	85 150 150 195	mW

^{1.} V_{DD} = 5.0 Vdc \pm 10%, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted 2. EXTAL is driven with a square wave, and t_{CYC} = 500 ns for 2 MHz rating t_{CYC} = 333 ns for 3 MHz rating $V_{IL} \le 0.2 \text{ V}$ $V_{IH} \ge V_{DD} - 0.2 \text{ V}$ no dc loads

5.3 Dynamic (Switching) characteristics

5.3.1 Control Timing

Characteristic ⁽¹⁾ (2)	Symbol	1.0 MHz		2.0 MHz		Unit
Characteristic	Symbol	Min	Max	Min	Max	Oilit
Frequency of operation	f _o	dc	1.0	dc	2.0	MHz
E-clock period	t _{CYC}	100 0	_	500	_	ns
Crystal frequency	f _{XTAL}	_	4.0	_	8.0	MHz
External oscillator frequency	4 f _o	dc	4.0	dc	8.0	MHz
Processor control setup time t _{PCSU} = 1/4 t _{CYC} + 50 ns	t _{PCSU}	300	_	175	_	ns
Reset input pulse width To guarantee external reset vector Minimum input time (can be pre-empted by internal reset)	PW _{RSTL}	8 1	_	8	_	t _{CYC}
Mode programming setup time	t _{MPS}	2	_	2	_	t _{CYC}
Mode programming hold time	t _{MPH}	10	_	10	_	ns
Interrupt pulse width, \overline{IRQ} edge-sensitive mode $PW_{IRQ} = t_{CYC} + 20 \text{ ns}$	PW _{IRQ}	102 0	_	520	_	ns
Wait recovery startup time	t _{WRS}	_	4	_	4	t _{CYC}
Timer pulse width input capture pulse accumulator input PW _{TIM} = t _{CYC} + 20 ns	PW _{TIM}	102 0	_	520	_	ns

- 1. V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H , all timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless otherwise noted
- 2. RESET is recognized during the first clock cycle it is held low. Internal circuitry then drives the pin low for four clock cycles, releases the pin, and samples the pin level two cycles later to determine the source of the interrupt.

Timer Inputs

Notes:

- 1. Rising edge sensitive input
- 2. Falling edge sensitive input
- 3. Maximum pulse accumulator clocking rate is E-clock frequency divided by 2.

www.Tekmos.com 02/13/2024 5

POR External Reset Timing Diagram

STOP Recovery Timing Diagram

- Notes: 1. Edge Sensitive $\overline{\text{IRQ}}$ pin (IRQE bit = 1) 2. Level sensitive $\overline{\text{IRQ}}$ pin (IRQE bit = 0)

 - 3. $t_{STOPDELAY}$ = 4064 t_{CYC} if DLY bit = 1 or 4 t_{CYC} if DLY = 0.

 - 4. XIRQ with X bit in CCR = 1.
 5. IRQ or (XIRQ with X bit in CCR = 0).

WAIT Recovery from Interrupt Timing Diagram

Note: RESET also causes recovery from WAIT.

Interrupt Timing Diagram

- Notes: 1. Edge sensitive \overline{IRQ} pin (IRQE bit = 1)
 - 2. Level sensitive \overline{IRQ} pin (IRQE bit = 0)

5.3.2 Peripheral Port Timing

10.11 Peripheral Port Timing

Observatoristic(1) (2)	Cumbal	1.0 MHz		2.0 MHz		Unit
Characteristic ⁽¹⁾ (2)	Symbol	Min	Max	Min	Max	Unit
Frequency of operation E-clock frequency	f _o	dc	1.0	dc	2.0	MHz
E-clock period	t _{CYC}	1000	_	500	_	ns
Peripheral data setup time MCU read of ports A, C, D, and E	t _{PDSU}	100	_	100	_	ns
Peripheral data hold time MCU read of ports A, C, D, and E	t _{PDH}	50	_	50	_	ns
Delay time, peripheral data write t _{PWD} = 1/4 t _{CYC} + 100 ns MCU writes to port A MCU writes to ports B, C, and D	t _{PWD}		200 350	_	200 225	ns
Port C input data setup time	t _{IS}	60	_	60	_	ns
Port C input data hold time	t _{IH}	100	_	100	_	ns
Delay time, E fall to STRB t _{DEB} = 1/4 t _{CYC} + 100 ns	t _{DEB}	_	350	_	225	ns
Setup time, STRA asserted to E fall ⁽³⁾	t _{AES}	0	_	0	_	ns
Delay time, STRA asserted to port C data output valid	t _{PCD}	_	100	_	100	ns
Hold time, STRA negated to port C data	t _{PCH}	10	_	10	_	ns
3-state hold time	t _{PCZ}	_	150	_	150	ns

^{1.} V_{DD} = 5.0 Vdc \pm 10%, V_{SS} = 0 Vdc, T_A = T_L to T_H , all timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless otherwise noted

Port Read Timing Diagram

Note: For non-latched operation of Port C.

Ports C and D timing is valid for active drive. (CWOM and DWOM bits are not set in PIOC and SPCR registers, respectively.)

^{3.} If this setup time is met, STRB acknowledges in the next cycle. If it is not met, the response may be delayed one more cycle.

Port Write Timing Diagram

Simple Input Strobe Timing Diagram

Simple Output Strobe Timing Diagram

Notes:

- After reading PIOC with STAF set
 Figure shows rising edge STRA (EGA = 1) and high true STRB (INVB = 1).

Port C Output Handshake Timing Diagram

Notes:

- After reading PIOC with STAF set
 Figure shows rising edge STRA (EGA = 1) and high true STRB (INVB = 1).

State Variation of Output Handshake Timing Diagram (STRA Enables Output Buffer)

Notes:

- 1. After reading PIOC with STAF set
- 2. Figure shows rising edge STRA (EGA = 1) and high true STRB (INVB = 1).

5.4 Analog-to-Digital Converter Characteristics

CharacterIstic ⁽¹⁾	Parameter ⁽²⁾	MIn	Absolute	2.0 MHz Max	Unit
Resolution	Number of bits resolved by A/D converter	_	8	_	Bits
Non-linearity	Maximum deviation from the ideal A/D transfer characteristics	_	_	±1/2	LS B
Zero error	Difference between the output of an ideal and an actual for 0 input voltage	_	_	±1/2	LS B
Full scale error	Difference between the output of an ideal and an actual A/D for full-scale input voltage	_	_	±1/2	LS B
Total unadjusted error	Maximum sum of non-linearity, zero error, and full-scale error	_	_	±1/2	LS B
Quantization error	Uncertainty because of converter resolution	_	_	±1/2	LS B
Absolute accuracy	Difference between the actual input voltage and the full-scale weighted equivalent of the binary output code, all error sources included	_	_	±1	LS B
Conversion range	Analog input voltage range	V _{RL}	_	V _{RH}	V
V _{RH}	Maximum analog reference voltage ⁽³⁾	V _{RL}	_	V _{DD} +0.1	٧
V _{RL}	Minimum analog reference voltage ⁽²⁾	V _{SS} -0.1	_	V _{RH}	V
ΔV _R	Minimum difference between V _{RH} and V _{RL} ⁽²⁾	3	_	_	٧
Conversion time	Total time to perform a single A/D conversion: E clock Internal RC oscillator		32 —	_ t _{CYC} +32	t _{CY} c μs
Monotonicity	Conversion result never decreases with an increase in input voltage; has no missing codes	_	Guaranteed	_	_
Zero input reading	Conversion result when V _{In} = V _{RL}	00	_	_	Hex
Full scale reading	Conversion result when V _{In} = V _{RH}	_	_	FF	Hex
Sample acquisition time	Analog input acquisition sampling time: E clock Internal RC oscillator	_ _	12 —	_ 12	t _{CY} C μs
Sample/hold capacitance	Input capacitance during sample PE[7:0]	_	20 typical	_	pF
Input leakage	Input leakage on A/D pins PE[7:0] V _{RL} , V _{RH}	_	_ _	400 1.0	nΑ μΑ

^{1.} $V_{DD}=5.0~Vdc~\pm10\%,~V_{SS}=0~Vdc,~T_A=T_L~to~T_{H_1},750~kHz \le E \le 3.0~MHz,~unless~otherwise~noted$ 2. Source impedances greater than 10 k Ω affect accuracy adversely because of input leakage. 3. Performance verified down to 2.5 V ΔV_R , but accuracy is tested and guaranteed at $\Delta V_R=5~V~\pm10\%$.

5.5 Expansion Bus Timing Characteristics

Num	Characteristic ⁽¹⁾	Symbol	1.0	MHz	2.0 MHz		I I m I f
Nulli	Characteristics		MIn	Max	MIn	Max	Unit
	Frequency of operation (E-clock frequency)	f _o	dc	1.0	dc	2.0	MHz
1	Cycle time	t _{CYC}	1000	_	500	1	ns
2	Pulse width, E low ⁽²⁾ , PW _{EL} = 1/2 t _{CYC} –23 ns	PW _{EL}	477	_	227	١	ns
3	Pulse width, E high ⁽²⁾ , PW _{EH} = 1/2 t _{CYC} –28 ns	PW _{EH}	472	_	222	1	ns
4a	E and AS rise time	t _r	_	20	_	20	ns
4b	E and AS fall time	t _f	_	20	_	20	ns
9	Address hold time ^{(2) (3)a} , t _{AH} = 1/8 t _{CYC} -29.5 ns	t _{AH}	95.5	_	33	_	ns
12	Non-multiplexed address valid time to E rise $t_{AV} = PW_{EL} - (t_{ASD} + 80 \text{ ns})^{(2)} (^{3})^a$		281.5	_	94	1	ns
17	Read data setup time	t _{DSR}	30	_	30	-	ns
18	Read data hold time, max = t _{MAD}	t _{DHR}	0	145.5	0	83	ns
19	Write data delay time, t _{DDW} = 1/8 t _{CYC} + 65.5 ns ^{(2) (3)a}	t _{DDW}	_	190.5	_	128	ns
21	Write data hold time, t _{DHW} = 1/8 t _{CYC} -29.5 ns ^{(2) (3)a}	t _{DHW}	95.5	_	33	_	ns
22	Multiplexed address valid time to E rise $t_{\text{AVM}} = \text{PW}_{\text{EL}} - (t_{\text{ASD}} + 90 \text{ ns})^{(2)} ^{(3)a}$	t _{AVM}	271.5	_	84	_	ns
24	Multiplexed address valid time to AS fall t _{ASL} = PW _{ASH} -70 ns ⁽²⁾	t _{ASL}	151	_	26	-	ns
25	Multiplexed address hold time t _{AHL} = 1/8 t _{CYC} -29.5 ns ⁽²⁾ (^{3)b}	t _{AHL}	95.5	_	33	_	ns
26	Delay time, E to AS rise, $t_{ASD} = 1/8 t_{CYC} - 9.5 \text{ ns}^{(2) (3)a}$	t _{ASD}	115.5	_	53	-	ns
27	Pulse width, AS high, PW _{ASH} = 1/4 t _{CYC} -29 ns ⁽²⁾	PW _{ASH}	221	_	96	1	ns
28	Delay time, AS to E rise, t _{ASED} = 1/8 t _{CYC} -9.5 ns ^{(2) (3)b}	t _{ASED}	115.5	_	53	-	ns
29	MPU address access time ^{(3)a} $t_{ACCA} = t_{CYC} - (PW_{EL} - t_{AVM}) - t_{DSR} - t_{f}$	t _{ACCA}	744.5	_	307		ns
35	MPU access time, t _{ACCE} = PW _{EH} -t _{DSR}	t _{ACCE}	_	442	_	192	ns
36	Multiplexed address delay (Previous cycle MPU read) t _{MAD} = t _{ASD} + 30 ns ⁽²⁾ (^{3)a}	t _{MAD}	145.5	_	83	_	ns

^{1.} V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H , all timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless otherwise noted

Where:

dc is the decimal value of duty cycle percentage (high time)

^{2.} Formula only for dc to 2 MHz

^{3.} Input clocks with duty cycles other than 50% affect bus performance. Timing parameters affected by input clock duty cycle are identified by (a) and (b). To recalculate the approximate bus timing values, substitute the following expressions in place of 1/8 t_{CYC}in the above formulas, where applicable:

⁽a) $(1-dc) \times 1/4 t_{CYC}$

⁽b) $dc \times 1/4 t_{CYC}$

5.6 Serial Peripheral Interface Timing Characteristics

Num	Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
	Frequency of operation E clock	f _o	dc	2.0	MHz
	E-clock period	t _{CYC}	333	_	ns
	Operating frequency Master Slave	f _{op(m)} f _{op(s)}	f _o /32 dc	f _o /2 f _o	MHz
1	Cycle time Master Slave	t _{CYC(m)} t _{CYC(s)}	2 1	32 —	t _{CYC}
2	Enable lead time ⁽²⁾ Slave	t _{lead(s)}	1	_	t _{CYC}
3	Enable lag time ⁽²⁾ Slave	t _{lag(s)}	1	_	t _{CYC}
4	Clock (SCK) high time Master Slave	$t_{\text{W(SCKH)m}}$ $t_{\text{W(SCKH)s}}$	t _{CYC} -25 1/2 t _{CYC} -25	16 t _{CYC}	ns
5	Clock (SCK) low time Master Slave	$\begin{matrix} t_{w(\text{SCKL})m} \\ t_{w(\text{SCKL})s} \end{matrix}$	t _{CYC} -25 1/2 t _{CYC} -25	16 t _{CYC}	ns
6	Data setup time (inputs) Master Slave	t _{su(m)}	30 30		ns
7	Data hold time (inputs) Master Slave	t _{h(m)} t _{h(s)}	30 30	_ _	ns
8	Slave access time CPHA = 0 CPHA = 1	t _a	0	40 40	ns
9	Disable time (hold time to high-impedance state) Slave	t _{dis}	_	50	ns
10	Data valid ⁽³⁾ (after enable edge)	t _v	_	50	ns
11	Data hold time (outputs) (after enable edge)	t _{ho}	0	_	ns

^{1.} V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H, all timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless otherwise noted

^{2.} Time to data active from high-impedance state

^{3.} Assumes 200 pF load on SCK, MOSI, and MISO pins

11 (REF)

MOSI

OUTPUT

SCK CPOL = 0 INPUT SCK CPOL = 1 OUTPUT MISO INPUT M

(11)

(10)

MASTER LSB OUT

SPI Master Timing (CPHA = 0)

Note: This first clock edge is generated internally but is not seen at the SCK pin.

MASTER MSB OUT

SPI Master Timing (CPHA = 1)

BIT 6

Note: This first clock edge is generated internally but is not seen at the SCK pin.

Note: Not defined but normally MSB of character just received

SPI Slave Timing (CPHA = 1) SS INPUT (3) SCK 5 CPOL = 0INPUT 2 SCK CPOL = 1 INPUT (8)→ (10 (9)- 4 MISO SEE BIT 6 MSB OUT SLAVE LSB OUT SLAVE OUTPUT NOTE 10 **€**(6); MOSI BIT 6 LSB IN MSB IN INPUT

Note: Not defined but normally LSB of character previously transmitted

5.7 EEPROM Characteristics

Characteristic ⁽¹⁾	Temperature Range				
Characteristic	–40 to 85°C	–40 to 125°C	–55 to 175°C	Unit	
Programming time	10	20	20	ms	
Erase time Byte, row, and bulk	10	10	10	ms	
Write/erase endurance	10,000	10,000	5,000	Cycles	
Data retention	10	10	10	Years	

^{1.} V_{DD} = 5.0 Vdc ±10%, V_{SS} = 0 Vdc, T_A = T_L to T_H

Package Outlines PQFP 52Pin-

SYMBOLS	MIN.	NOM.	MAX.
А	100	-	2.70
A1	0.25	-	0.50
A2	1.80	2.00	2.20
Ь	0.22	-	0.40
D	13.00	13.20	13.40
D1	9.90	10.00	10.10
E	13.00	13.20	13.40
E1	9.90	10.00	10.10
е	(0.65 BASI	0
С	0.11	_	0.23
L	0.73	0.88	1.03
L1		1.60 REF	
θ°	0	_	7

NOTES:

1.JEDEC OUTLINE : MO-108 AC-1

2.DATUM PLANE I IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

3.DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DIMENSIONS D1 AND E1 D0 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE 1991.

4.DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION.

PLCC 52Pin-

- NOTES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.

 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
- PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 5. CONTROLLING DIMENSION: INCH.
- 5. CONTROLLING DIMENSION: INCH.
 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U A RE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
 7. DIMENSION HOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.337 (0.940). THE DAMBAR RINTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.257 (0.940).
- H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.785	0.795	19.94	20.19	
В	0.785	0.795	19.94	20.19	
С	0.165	0.180	4.20	4.57	
E	0.090	0.110	2.29	2.79	
F	0.013	0.019	0.33	0.48	
G	0.050	BSC	1.27	BSC	
Н	0.026	0.032	0.66	0.81	
J	0.020	_	0.51	_	
K	0.025	_	0.64		
R	0.750	0.756	19.05	19.20	
U	0.750	0.756	19.05	19.20	
٧	0.042	0.048	1.07	1.21	
W	0.042	0.048	1.07	1.21	
X	0.042	0.056	1.07	1.42	
Υ	_	0.020	_	0.50	
Z	2°	10°	20	100	
G1	0.710	0.730	18.04	18.54	
K1	0.040		1.02	_	

Ceramic DIP 48Pin-

	Larra		11111		
SYMBOLS	MIN.	NOR.	MAX.		
Α	_	-	0.220		
A1	0.015	_	-		
A2	0.150	0.155	0.160		
D	2.400	2.450	2.550		
E	0.600 BSC				
E1	0.540	0.545	0.550		
L	0.115	0.130	0.150		
ев	0.630	0.650	0.670		
θ°	0	7	15		

UNIT: INCH

NOTE: 1.JEDEC OUTLINE : MS-011 AD

Ordering Information

All devices use the 7740 die revision.

Temperature	Frequency	Reference Number	Ordering Number	Package	Lead Finish
-40°C to +125°C	2 MHz	TK68HC811E2MC2	TK7740E	48 CDIP	RoHS
-55°C to +175°C	2 MHz	TK68HC811E2XSE2	TK7740	48 CDIP	RoHS
-40°C to +125°C	2 MHz	TK68HC811E2CPBE2	TK7740D	52 PQFP	RoHS

Termination Finish for CDIP Package- RoHS:

Leads are plated with 50-350 u" Ni then plated with 60 u" Min Au Anneal level - annealed after Ni flash applied and after 50-350 u" Ni is applied Minimum Sn thickness - there is no Sn on the package

Contact Information

Please contact orders@tekmos.com for further information.

Tekmos, Inc. 14121 Hwy 290 W. Bldg 15 Austin, TX 78737 512 342-9871 phone Sales@Tekmos.Com www.Tekmos.com

Revision History

Date	Revision	Description		
12/19/13	1.0	Initial Release		
3/05/14	1.1	Fix Typographical Errors		
4/21/14	1.2	Add 175C operation; Delete 52 pin package		
6/6/18	1.3	Add 52 pin packages		
6/27/18	1.4	Add pinout, ordering information		
07/2/18	1.5	Replace LQFP package, with PQFP package		
8/23/18	1.6	Added PQFP ordering information		
8/28/18	1.7	Updated PQFP temperature range		
4/22/20	1.8	Updates PQFP Temperature Range		
6/08/20	1.9	Update electrical specifications		
6/29/20	1.10	Remove "-" in part number		
6/13/22	1.11	Updated pinlist on PQFP package. Changed Tekmos Contact Address.		
5/15/23	1.12	Updated Ordering Information table to include Pb Finish on TK7740E		
		device. Change the lower temp range to -40C for TK7740E device.		
8/7/2023	1.13	Updated electrical characteristics to reflect the M68HC11E Freescale		
		Datasheet. Added termination finish to RoHS device.		
2/13/2024	1.14	Removed Pb-Finish option on Ordering Information Table.		

^{© 2020} Tekmos, Inc.

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Tekmos Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Tekmos' products as critical components in life support systems is not authorized except with express written approval by Tekmos. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Tekmos logo and name are registered trademarks of Tekmos, Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective companies. All rights reserved.

Terms and product names in this document may be trademarks of others.