The Best Thesis Anyone Has Ever Seen

by

GREGGORY H. ROTHMEIER

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science in the College of Arts and Sciences Georgia State University 2012

Copyright by Greggory Rothmeier 2012

The Best Thesis Anyone Has Ever Seen

by

GREGGORY H. ROTHMEIER

Committee Chair: A. G. Unil Perera

Committee: Mukesh Dhamala

Brian Thoms

D. Michael Crenshaw

Electronic Version Approved:

Office of Graduate Studies College of Arts and Sciences Georgia State University May 2012

Dedication

 ${\bf Mama.}$

Acknowledgements

Perera, Dhamala, Brooke, Lab Mates, Dhamala's Lab

Contents

A	cknowledgments	iv
Li	ist of Tables	vi
Li	ist of Figures	vii
1	Introduction	1
2	Functional Near-Infrared Spectroscopy (fNIRS)	2
3	Calculating Temperature Changes using fMRI BOLD Response	4
	3.1 What is BOLD	4
	3.2 What does BOLD have to do with Temperature?	5
4	Conclusion	6
\mathbf{R}	deferences	7
A	ppendices	8

List of Tables

List of Figures

2.1	Absorption spectra of water	Hb and Dhb.	From [1] and [3]		
-----	-----------------------------	-------------	------------------	--	--

AWESOME TITLE

A thesis

presented in Partial Fulfilment of Requirements for the Degree of Master of Science in the College of Arts and Sciences

Georgia State University

2012

by

Greggory Rothmeier

Committee:

A. G. Unil Perera, Chair

Mukesh Dhamala, Member

Brian Thoms, Member

D. Michael Crenshaw, Member

April 1, 2012

Date

Dick Miller Department Chair

Introduction

Functional Near-Infrared
Spectroscopy (fNIRS)

Figure 2.1: Absorption spectra of water, Hb and Dhb. From [1] and [3]

Calculating Temperature Changes using fMRI BOLD Response

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam felis justo, consequat vel semper eu, bibendum sed lectus. Fusce ultricies mi sit amet ante imperdiet eget posuere turpis volutpat. Nulla facilisi. Nulla convallis, erat et mattis bibendum, nunc velit tincidunt nisl, ac luctus massa tellus nec lectus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nam at venenatis sapien. In vel tortor dapibus tortor porta aliquam a sit amet diam. Nullam feugiat dignissim scelerisque. Donec rhoncus sapien eget lacus eleifend vitae adipiscing arcu mollis. Donec vel tincidunt nibh. Duis placerat scelerisque velit. Integer elementum nisl vel mi sollicitudin dictum non vel dolor. Cras consectetur consequat metus, a malesuada quam tincidunt vitae. Etiam fermentum metus nibh. Sed sollicitudin convallis faucibus. Nunc tincidunt ultricies orci, in aliquam purus interdum fermentum. [4]

3.1 What is BOLD

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam felis justo, consequat vel semper eu, bibendum sed lectus. Fusce ultricies mi sit amet ante imperdiet eget posuere turpis volutpat. Nulla facilisi. Nulla convallis, erat et mattis bibendum, nunc velit tincidunt nisl, ac luctus massa tellus nec lectus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nam at [2] venenatis sapien. In vel tortor dapibus tortor porta aliquam a sit amet diam. Nullam feugiat dignissim scelerisque. Donec rhoncus sapien eget lacus eleifend vitae adipiscing arcu mollis. Donec vel tincidunt nibh. Duis placerat scelerisque velit. Integer elementum nisl vel mi sollicitudin dictum non vel dolor. Cras consectetur conse-

quat metus, a malesuada quam tincidunt vitae. Etiam fermentum metus nibh. Sed sollicitudin convallis faucibus. Nunc tincidunt ultricies orci, in aliquam purus interdum fermentum.

3.2 What does BOLD have to do with Temperature?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam felis justo, consequat vel semper eu, bibendum sed lectus. Fusce ultricies mi sit amet ante imperdiet eget posuere turpis volutpat. Nulla facilisi. Nulla convallis, erat et mattis bibendum, nunc velit tincidunt nisl, ac luctus massa tellus nec lectus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nam at venenatis sapien. In vel tortor dapibus tortor porta aliquam a sit amet diam. Nullam feugiat dignissim scelerisque. Donec rhoncus sapien eget lacus eleifend vitae adipiscing arcu mollis. Donec vel tincidunt nibh. Duis placerat scelerisque velit. Integer elementum nisl vel mi sollicitudin dictum non vel dolor. Cras consectetur consequat metus, a malesuada quam tincidunt vitae. Etiam fermentum metus nibh. Sed sollicitudin convallis faucibus. Nunc tincidunt ultricies orci, in aliquam purus interdum fermentum.

Conclusion

Bibliography

- [1] M Cope. The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infants. *London University*, 1991.
- [2] Gigi Galiana, Rosa T. Branca, Elizabeth R. Jenista, and Warren S. Warren. Accurate temperature imaging based on intermolecular coherences in magnetic resonance. *Science*, 322(5900):421–424, 2008.
- [3] B. L. Horecker. The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions. *The Journal of Biological Chemistry*, 1942.
- [4] Roberto C. Sotero and Yasser Iturria-Medina. From blood oxygen level dependent (bold) signals to brain temperature maps. *Bulletin of Mathematical Biology*, 73(11):2731–2747, 2011.

Calculating the Temperature Change

```
function temperatureOut = tempCalcChangingMetabolismFlow(tissue,bloodT,
    airT, nt, tmax, pastCalc, start, stop, amplitudeMet, amplitudeFlow, region,
    savesteps)
2 % tempCalcChaning Metabolism How does changin metabolism affect things?
      tissue: holds all of the strucual information
      bloodT: Temperature of the blood
  %
      airT:
               Temperature of the surrounding ait
  %
              Number of time steps
      nt:
  %
               Total amount of time the simulation should run over
  %
      region: logical matrix same size as head
  %
      start: units of steps
      stop: units of steps
      Writen by Greggory Rothmeier (greggroth@gmail.com)
      Georgia State University Dept. Physics and Astronomy
  %
      May, 2011
  %#codegen
  %%
       Default Values
  if nargin<2, bloodT = 37;</pre>
                                        end
  if nargin <3,
                airT = 24;
                                        end
  if nargin <4,
                nt = 3;
                                        end
  if nargin < 5,
                tmax = 1;
                                        end
  if nargin<6, pastCalc = 0;</pre>
                                                 Voxel size (m)
                                        end
  if nargin<7, start = 10;</pre>
                                        end
                                               %
                                                  in steps
  if nargin <8,
                stop = 20;
                                        end
                                                  in steps
  if nargin<9, amplitudeMet = 1.2;</pre>
                                        end
                                               %
                                                  normalized
  if nargin<10, amplitudeFlow = 1.2;</pre>
                                                  normalized
                                        end
  if nargin<11, savesteps = 1;</pre>
                                        end
```

```
dx = 2*10^-3;
  if nt < (2*tmax),
      warning ('Time step size is not large enough. Results will be
        unreliable. Consider increasing the number of steps or reducing
        tmax.')
  end
  % Constants used that aren't already stored in tissue
  [xmax ymax zmax t] = size(tissue);
  clear t;
  dt = tmax/(nt-1);
41 % rhoBlood = 1057;
  % wBlood = 1000;
  % cBlood = 3600;
  statusbar = waitbar(0, 'Initializing');
  %%
      Maps
       Creates a map that identifies where there is tissue
      the condition squeeze(tissue(:,:,:,)~=airIndex picks out the elements
      that are
  %
       tissue
  temperatureOut = ones(ceil((nt-1)/savesteps),xmax,ymax,zmax,'single');
  temperature = ones(2,xmax,ymax,zmax,'single')*airT;
  if pastCalc == 0
       temperature(1, squeeze(tissue(:,:,:,1))~=1) = bloodT;
  else
       temperature(1,:,:,:) = pastCalc(end,:,:,:);
       % temperature(1,:,:,:) = pastCalc;
```

```
end
  temperatureOut(1,:,:,:) = temperature(1,:,:,:);
  metabMultiplier = ones([xmax ymax zmax], 'single');
  flowMultiplier = ones([xmax ymax zmax],'single');
      Do Work.
  %%
      This is a vectorized version of the next section. For the love of
     god
      don't make any changes to this without first looking below to make
     sure
      you know what you're changing. This is [nearly] impossible to
      understand, so take your time and don't break it.
  %
      data is stored in 'tissue' as such :
      [tissuetype 0 Qm c rho k w]; <-- second element is blank for all.
           1
                   2 3 4 5 6 7
     This makes an array that has smoothed out variations in k by averaging
     all of the k's around each voxel (including itself). This is a
  % hap-hazard solution to the problem that if you only take the value of
    for the voxel without considering what surrounds it, it doesn't matter
     whether the head is surrounded by air, water or anything else.
     water is a better thermal conductor than air, we need a way of
     accounting for this. This is one way:
  averagedk = (circshift(tissue(:,:,:,6),[1 0 0])+circshift(tissue(:,:,:,6)
     ,[-1 0 0])+circshift(tissue(:,:,:,6),[0 1 0])+circshift(tissue(:,:,:,6)
     ,[0 -1 0])+circshift(tissue(:,:,:,6),[0 0 1])+circshift(tissue(:,:,:,6)
     ,[0 \ 0 \ -1])+tissue(:,:,:,6))/7;
81 rhoblood = 1057;
  cblood = 3600;
_{\rm 84} %% Only saves every 4 steps
```

```
tic
   for t2 = 1:nt-1
      waitbar(t2/(nt-1), statusbar, sprintf('%d%%', round(t2/(nt-1)*100)));
      if (start < t2) && (t2 < stop)</pre>
                                   % for __ steps
          metabMultiplier(region) = amplitudeMet;
                                                      % region is hardcoded
             here
          flowMultiplier(region) = amplitudeFlow;
      elseif t2==stop % once the period is over, reset it back to ones
91
          metabMultiplier(region) = 1;
          flowMultiplier(region) = 1;
      end
      temperature(2,:,:,:) = squeeze(temperature(1,:,:,:)) + ...
           dt/(tissue(:,:,:,5).*tissue(:,:,:,4)).* ...
           ((averagedk/dx^2).*...
           (circshift(squeeze(temperature(1,:,:,:)),[1 0 0])-2*squeeze(
              temperature(1,:,:,:))+circshift(squeeze(temperature(1,:,:,:))
              ,[-1\ 0\ 0])+... % shift along x
            circshift(squeeze(temperature(1,:,:,:)),[0 1 0])-2*squeeze(
100
               temperature(1,:,:,:))+circshift(squeeze(temperature(1,:,:,:))
               ,[0 -1 0])+... % shift along y
            circshift(squeeze(temperature(1,:,:,:)),[0 0 1])-2*squeeze(
               temperature(1,:,:,:))+circshift(squeeze(temperature(1,:,:,:))
               ,[0\ 0\ -1]))\ldots % shift along z
               -(1/6000)*rhoblood*flowMultiplier.*tissue(:,:,:,7)*cblood.*(
                  squeeze(temperature(1,:,:,:))-bloodT)+metabMultiplier.*
                  tissue(:,:,:,3));
           resets the air temperature back since it's also modified above,
       %
         but
           it needs to be kept constant throughout the calculations
104
       temperature(2, squeeze(tissue(:,:,:,1)) == 1) = airT;
       temperatureOut(ceil(t2/savesteps),:,:,:) = temperature(2,:,:,:);
106
```

```
temperature (1,:,:,:) = temperature (2,:,:,:); % moves 2 back to 1
107
   end
108
   close(statusbar);
   toc
       Keeps all of the data
   %%
       Note: Make sure that temperature() has enough preallocated space
   %{
   tic
114
   for t2 = 1:nt-1
      %tic
116
      waitbar(t2/(nt-1), statusbar, sprintf('%d%%', round(t2/(nt-1)*100)));
117
      if (start<t2) && (t2<stop)</pre>
                                    % for 10 steps
118
          metabMultiplier(region) = amplitudeMet;
                                                      % region is hardcoded
119
            here
          flowMultiplier(region) = amplitudeFlow;
120
      elseif t2==stop % once the period is over, reset it back to ones
          metabMultiplier(region) = 1;
          flowMultiplier(region) = 1;
      end
124
      temperature(t2+1,:,:,:) = squeeze(temperature(t2,:,:,:)) + ...
           dt/(tissue(:,:,:,5).*tissue(:,:,:,4)).* ...
           ((averagedk/dx^2).*...
           (circshift(squeeze(temperature(t2,:,:,:)),[1 0 0])-2*squeeze(
128
              temperature(t2,:,:,:))+circshift(squeeze(temperature(t2,:,:,:))
              ,[-1 0 0])+... % shift along x
            circshift(squeeze(temperature(t2,:,:,:)),[0 1 0])-2*squeeze(
               temperature(t2,:,:))+circshift(squeeze(temperature(t2,:,:,:)
               ),[0 -1 0])+... % shift along y
            circshift(squeeze(temperature(t2,:,:,:)),[0 0 1])-2*squeeze(
130
               temperature(t2,:,:))+circshift(squeeze(temperature(t2,:,:,:)
               ),[0 0 -1]))... % shift along z
```

```
-(1/6000)*rhoblood*flowMultiplier.*tissue(:,:,:,7)*cblood.*(
                  squeeze(temperature(t2,:,:,:))-bloodT)+metabMultiplier.*
                  tissue(:,:,:,3));
           resets the air temperature back since it's also modified above,
          but
           it needs to be kept constant throughout the calculations
       temperature(t2+1, squeeze(tissue(:,:,:,1)) == 1) = airT;
       %dispTimeLeft(1,1,nt-1,t2)
135
   end
   close(statusbar);
   toc
   %}
139
140
   %% Old Code
141
   \% This is what used to be used. It's much slower (~60 times slower),
     but
     it's much easier to understand compared to the above code. If any
      changes need to be made above, first look through this code to ensure
      you understand what's happening before making changes. It's really
      easy
     to mess up the code above and nearly impossible to figure out where.
147
   %
      good luck.
148
149
151
   for t2 = 1:nt-1
       for x2 = 2: xmax - 1
           for y2 = 2:ymax-1
                for z2 = 2: zmax - 1
                    if tissue(x2,y2,z2,1) ~= 1,
```

```
temperature(t2+1,x2,y2,z2) = temperature(t2,x2,y2,z2)
157
                             + (dt/(tissue(x2,y2,z2,5)*tissue(x2,y2,z2,4)))*((
                            tissue(x2,y2,z2,6)/dx^2)*...
                            (temperature(t2,x2+1,y2,z2)-2*temperature(t2,x2,y2,
158
                              z2) + temperature (t2, x2-1, y2, z2) + . . .
                           temperature(t2,x2,y2+1,z2)-2*temperature(t2,x2,y2,
159
                              z2)+temperature(t2,x2,y2-1,z2)+...
                           temperature(t2,x2,y2,z2+1)-2*temperature(t2,x2,y2,
160
                              z2)+temperature(t2,x2,y2,z2-1))...
                            -(1/6000)*rhoBlood*wBlood*cBlood*(temperature(t2,x2
161
                              ,y2,z2)-bloodT)+tissue(x2,y2,z2,3));
                     end
162
                end
163
            end
        end
165
   end
   %}
167
168
169
   end
170
```

Calculating The Equilibrium Temperature