SPRINT DELIVERY – 4

Team ID	PNT2022TMID20250
Project Name	IoT Enabled Smart
	Farming Application
Date	10 November 2022

5.5 Receiving commands from IBM cloud using Python program

```
import time import
sys
import ibmiotf.application
import ibmiotf.device import
random
#Provide your IBM Watson Device
Credentialsorganization = "157uf3"
deviceType = "abcd" deviceId = "7654321"
authMethod = "token" authToken =
"87654321"
# Initialize GPIO
def myCommandCallback(cmd): print("Command
received: %s" % cmd.data['command'])
                             if status=="motoron":
status=cmd.data['command']
print ("motor is on") elif status == "motoroff":
                                                 print
("motor is off") else:
    print ("please send proper command")
try:
       deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
```

```
except Exception as e:
      print("Caught exception connecting device: %s" %
str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from
DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
  data = { 'temp' : temp, 'Humid': Humid,
'Mois': Mois}
    #print data
                   def
myOnPublishCallback(
):
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
%Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
      success = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0,on publish=myOnPublishCallback)
                                              if not success:
      print("Not connected to IoTF")
time.sleep(10)
    deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
ibmiotpublishsubscribe.py - C\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py (3.7.0)
File Edit Format Run Options Window Help
import time
 import sys
 import ibmiotf.application
 import ibmiotf.device
 import random
#Provide your IBM Watson Device Credentials
organization = "157uf3"
deviceType = "abcd"
deviceId = "7654321"
authMethod = "token"
authToken = "87654321"
# Initialize GPIO
 def myCommandCallback(cmd):
       print("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
       if status="motoron":
    print ("motor is on")
elif status = "motoroff":
    print ("motor is off")
else:
```

deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMe
deviceCli = ibmiotf.device.Client(deviceOptions)

print ("please send proper command")

try:

- o ×

MIT / Python 3.7.0 Shell* 0 X × File Edit Shell Debug Options Wind < C · · · Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD6 ^ 4)] on win32

Type "copyright", "credits" or "license()" for more information. Other favorites == RESTART: C:\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py = 2022-11-07 20:01:24,074 ibmiotf.device.Client INFO Connected successfully: d:157uf3:abcd:7654321
Published Moisture = 90 deg C Temperature = 96 C Humidity = 76 % to IBM Watson Published Moisture = 102 deg C Temperature = 110 C Humidity = 68 % to IBM Watson Published Moisture = 45 deg C Temperature = 99 C Humidity = 100 % to IBM Watson Published Moisture = 45 deg C Temperature = 99 C Humidity = 100 % to IBM Watson Command received: motoron motor is on Published Moisture = 77 deg C Temperature = 91 C Humidity = 85 % to IBM Watson Published Moisture = 73 deg C Temperature = 94 C Humidity = 86 % to IBM Watson Command received: motoroff motor is off Published Moisture = 101 deg C Temperature = 104 C Humidity = 87 % to IBM Watson

6. Flow Chart

7. Observations & Results

8. Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

9.Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.