Introduction à l'analyse des séries temporelles

Felix Cheysson felix.cheysson@sorbonne-universite.fr

Année 2020-2021

Rappel: variable aléatoire

- Intuitivement. Une variable aléatoire est une variable dont la valeur dépend d'événements inconnus.
- Exemple. On mesure la fréquence cardiaque d'une personne.
- On caractérise une variable aléatoire par :
 - les différentes valeurs qu'elle peut prendre ;
 - la probabilité qu'elle prenne ces valeurs.
- Fonction de densité de la loi $\mathcal{N}(0,1)$.

Définition : série temporelle

 Définition. On appelle série temporelle une collection de variables aléatoires indexées par le temps :

$$(x_t)_{t\in\mathbb{N}} = (x_0, x_1, x_2, \ldots).$$

• Exemple. On mesure la fréquence cardiaque d'un individu toutes les minutes pendant 10 minutes au cours d'un effort :

$$(x_t)_{0 \le t \le 10} = (x_0, x_1, \dots, x_{10}).$$

Problématique

- On cherche à expliquer la fréquence cardiaque de l'individu en fonction de l'effort réalisé.
- Naïvement. On effectue une ANOVA en fonction de l'effort :

$$x_t = \mu + \alpha_{\mathsf{effort}} + \epsilon_t,$$

où
$$\epsilon_t \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$
 .

Quel est le problème d'une telle modélisation ?

Exemple de données de surveillance

- Nombre de remboursements des prescriptions d'antibiotiques en ville.
 - Données du SNIIRAM (CNAMTS + RSI) : 90% de la population.
- Nombre de syndromes grippaux.
 - Données du Réseau Sentinelles : représentatives à l'échelle de la France.

Surveillance épidémiologique

Qualité de l'indicateur

- Représentatif?
 - Surveillance passive : sous-estimation.
 - Biais de recrutement.
- Stabilité temporelle ?
 - Evolution de l'indicateur dans le temps.

Qualité de la modélisation

- Caractérisation simple de la série (tendance, saison, variations accidentelles, points de rupture, ...).
- Représentation de la série par un modèle statistique (ARIMA).
- Prédiction de la série à partir de ses valeurs passées.

Exemple de données biologiques

Intensité du signal BOLD (Blood Oxygenation-Level Dependent) dans le cortex d'un patient soumis à des stimuli, collectée par fMRI.

Exemple de données économiques

Nombre de personnes sans emploi aux Etats-Unis entre 1948 et 1978.

• Impact du choc pétrolier de 1973.

Exemple de données géologiques

Épaisseur de la couche sédimentaire.

- Recueillie au Massachussetts.
- Représentative de la température il y a 11.834 ans.

Objectifs

Applications

- Identifier la nécessité d'un modèle de séries temporelles.
- Modéliser les séries temporelles simples (ARIMA).
 - Nomenclature, démarche, etc.
 - Programmation en R.
- Connaître ses limites.

Théoriques

- Connaître les notions statistiques sous-jacentes aux modèles de séries temporelles.
- Comprendre les résultats mathématiques permettant l'analyse des séries temporelles.
 - Stationnarité d'une série.
 - Théorème de représentation de Wold.

Contenu

- Exemples
- 2 Notions théoriques essentielles
- Stationnarité
- 4 Estimateurs de la corrélation

- 5 Données non stationnaires
- 6 Modèles ARIMA
- Modèles saisonniers SARIMA
- 8 Procédure de Box et Jenkins

Outline

- Exemples
 - Bruit blanc Gaussien
 - Moyenne mobile
 - Processus autorégressif
 - Marche aléatoire avec dérive
 - Signal bruité

Exemple 1.1: Bruit blanc Gaussien

Collection de variables aléatoires normales *indépendantes* et *identiquement* distribuées :

$$w_t \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_w^2)$$

Exemple 1.2: Moyenne mobile

Combinaison linéaire d'un bruit blanc Gaussien :

$$x_{t} = \frac{1}{3} \left(w_{t-1} + w_{t} + w_{t+1} \right)$$

Exemple 1.3 : Processus autorégressif

Régression sur les valeurs passées de la série :

$$x_t = 0.9 \, x_{t-1} + w_t$$

Exemple 1.4 : Marche aléatoire avec dérive

Succession de pas aléatoire avec dérive δ :

$$x_t = \delta + x_{t-1} + w_t$$

Exemple 1.5 : Signal bruité

Signal périodique bruité :

$$x_t = 2\cos\left(\frac{2\pi t}{52}\right) + w_t$$

Outline

- Notions théoriques essentielles
 - Fonction d'autocovariance
 - Fonction d'autocorrélation

Caractérisation des séries temporelles

• Espérance.

$$\mu_t = \mathbb{E}[x_t]$$

• Fonction d'autocovariance ou produit moment d'ordre 2. (ex. 1)

$$\gamma(s,t) = \operatorname{Cov}(x_s, x_t)$$
$$= \mathbb{E}[(x_s - \mu_s)(x_t - \mu_t)]$$

- Remarque. La fonction d'autocovariance désigne la dépendance linéaire entre deux temps.
- Remarque. $\gamma(t,t) = \operatorname{Var}(x_t)$.

Caractérisation des séries temporelles (cont'd)

• Propriétés. Soient A,B et C trois variables aléatoires et α un réel. (ex. 2, 3, 4)

$$Cov(A, B) = Cov(B, A)$$

$$Cov(A + B, C) = Cov(A, C) + Cov(B, C)$$

$$Cov(\alpha A, B) = \alpha Cov(A, B)$$

• Fonction d'autocorrélation (ACF).

(ex. 2, 3)

$$\rho(s,t) = \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}}$$

• Remarque. La fonction d'autocorrélation caractérise la prédictabilité linéaire de la série au temps t sachant la valeur de x_s .

Outline

- Stationnarité
 - Problématique
 - Stationnarité au sens strict
 - Stationarité au sens faible

Stationnarité : problématique

Pour la régression linéaire, toutes les observations sont indépendantes et identiquement distribuées.

Stationnarité : problématique (cont'd)

Pour la plupart des séries temporelles, les observations ne sont pas indépendantes.

Stationnarité au sens strict

On dit que la série (x_t) est stationnaire au sens strict si le comportement probabiliste de toute collection $(x_{t_1}, \ldots, x_{t_k})$ est invariant par translation.

 \rightarrow Pour tout h, le comportement probabiliste de $(x_{t_1}, \ldots, x_{t_k})$ est identique à $(x_{t_1+h}, \ldots, x_{t_k+h})$.

Stationnarité au sens faible (ou du 2^{ème} ordre)

On dit que la série (x_t) est stationnaire au sens faible si ses deux premiers moments sont invariants par translation :

- ullet $\mu_t = \mathbb{E}[x_t]$ ne dépend pas de t ;
- $\gamma(s,t) = \operatorname{Cov}(x_s,x_t)$ ne dépend que de |s-t|.

- Stationnarité stricte $\underset{(x_t)}{\longleftarrow}$ Stationnarité faible.

Stationnarité au sens faible (cont'd)

- ullet Espérance. $\mathbb{E}[x_t]=\mu$;
- Fonction d'autocovariance.

$$\gamma(t+h,t) = \operatorname{Cov}(x_{t+h}, x_t)$$

$$= \operatorname{Cov}(x_h, x_0)$$

$$= \gamma(h, 0)$$

$$=: \gamma(h) ;$$

- Variance. $Var(x_t) = \gamma(t, t) = \gamma(0, 0) = \gamma(0)$;
- Fonction d'autocorrélation. $\rho(h)\coloneqq \rho(t+h,t)=\cdots=\gamma(h)/\gamma(0)$.
- Exemples. Les séries 1, 2, 4 et 5 sont-elles stationnaires ?
- Exemple. Sous l'hypothèse de stationnarité, calculer l'espérance et la variance pour la série 3.

Outline

- Estimateurs de la corrélation
 - Définitions
 - Exemples

Estimateurs de la corrélation

 Fonction d'autocovariance empirique. Il s'agit de l'estimateur défini par :

$$\widehat{\gamma}(h) = n^{-1} \sum_{t=1}^{n-h} (x_{t+h} - \bar{x})(x_t - \bar{x}).$$

• Fonction d'autocorrélation (ACF) empirique. Il s'agit de l'estimateur précédent normalisé :

$$\widehat{\rho}(h) = \widehat{\gamma}(h)/\widehat{\gamma}(0).$$

• Propriété. Pour un bruit blanc Gaussien (w_t) , si n est "grand", la loi de l'ACF empirique peut être approchée par :

$$\widehat{\rho}_w(h) \sim \mathcal{N}\left(0, \sigma_{\widehat{\rho}_w(h)}^2\right),$$

où
$$\sigma_{\widehat{
ho}_w(h)} = rac{1}{\sqrt{n}}$$
 .

ACF 4.1: Bruit blanc Gaussien

Collection de variables aléatoires normales *indépendantes* et *identiquement* distribuées :

$$w_t \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_w^2)$$

Series eps

ACF 4.2 : Moyenne mobile

Combinaison linéaire d'un bruit blanc Gaussien :

$$x_{t} = \frac{1}{3} \left(w_{t-1} + w_{t} + w_{t+1} \right)$$

Series ma[!is.na(ma)]

ACF 4.3 : Processus autorégressif

Régression sur les valeurs passées de la série :

$$x_t = 0.9 \, x_{t-1} + w_t$$

Series ar

ACF 4.4 : Marche aléatoire avec dérive

Succession de pas aléatoire avec dérive δ :

$$x_t = \delta + x_{t-1} + w_t$$

Series walk

ACF 4.5 : Signal bruité

Signal périodique bruité :

$$x_t = 2\cos\left(\frac{2\pi t}{52}\right) + w_t$$

Series sig

Outline

- Données non stationnaires
 - Prise en compte d'une tendance par régression
 - Prise en compte d'une tendance par différenciation
 - Stabilisation de la variance

Données non stationnaires

Problématique

En pratique, la plupart des jeux de données ne sont pas issus de processus stationnaires.

Méthode. On va chercher à *stationnariser* (rendre stationnaire) la série de données afin de pouvoir analyser sa structure de dépendance.

- Prise en compte d'une tendance par régression ;
- Prise en compte d'une tendance par différentiation.
 - Tendance linéaire ;
 - Tendance stochastique;
 - Tendance saisonnière.

Prise en compte d'une tendance par régression

On considére une série du type $x_t = \mu_t + y_t$, où y_t est stationnaire.

Par exemple :

- Régression linéaire avec erreurs stationnaires : $x_t = \beta_0 + \beta_1 t + y_t$;
- Signal bruité : $x_t = x_t = 2\cos\left(\frac{2\pi t}{52}\right) + w_t$

Démarche de modélisation :

- 1. Modéliser μ_t , et effectuer la régression linéaire $x_t = \mu_t + \epsilon_t$;
- 2. Etudier la structure de dépendance des résidus $\widehat{y}_t = x_t \widehat{\mu}_t$;
- 3. Utiliser la structure identifiée pour estimer conjointement les paramètres de la régression et de la structure de dépendance.

Prise en compte d'une tendance par différenciation

- **Principe**. On retire la tendance en étudiant les différences de la série.
- On note B l'**opérateur retard** défini par :

$$B x_t = x_{t-1},$$

 $B^2 x_t = B(Bx_t) = B(x_{t-1}) = x_{t-2},$
 $B^k x_t = x_{t-k}.$

ullet On note $abla\coloneqq 1-B$ l'opérateur de différence d'ordre 1 :

$$\nabla x_t = (1 - B) \ x_t = x_t - Bx_t = x_t - x_{t-1},$$

$$\nabla^2 x_t = (1 - B)^2 x_t = (1 - 2B + B^2) x_t = x_t - 2x_{t-1} + x_{t-2}.$$

- Exemple. Etudier la stationnarité de la série 4 par différenciation.
- Exemple. Etudier la stationnarité de la régression linéaire avec erreurs stationnaires par différenciation.

37 / 78

Différentiation de la marche aléatoire

$$x_t = \delta + x_{t-1} + w_t$$

Stationnarité : Marche aléatoire avec dérive

Succession de pas aléatoire avec dérive δ :

$$x_t = \delta + x_{t-1} + w_t$$

Prise en compte de la tendance par différenciation

- Pour une série saisonnière, on pourra étudier une différenciation de plus grand ordre.
- On note $\nabla_S = 1 B^S$ l'opérateur de différence d'ordre S :

$$\nabla_S x_t = (1 - B^S) x_t = x_t - x_{t-S}.$$

• Exemple. Etudier la stationnarité de la série 5 par différenciation.

Différentiation ou régression du signal bruité

$$x_t = 2\cos\left(\frac{2\pi t}{52}\right) + w_t$$

Stationnarité : Signal bruité

Signal périodique bruité :

$$x_t = 2\cos\left(\frac{2\pi t}{52}\right) + w_t$$

Stabilisation de la variance

- Pour des séries dont la variabilité augmente avec l'espérance, on peut stabiliser la variance en transformant la série par un logarithme.
- Exemple. $y_t = \log x_t$ avec x_t la série des couches sédimentaires.

Outline

- Modèles ARIMA
 - Modèles MA
 - Modèles AR
 - Autocorrélation partielle
 - Modèles ARMA
 - Estimation
 - Prédiction

Modèle moyenne mobile (moving average)

• **Définition**. On appelle processus moyenne mobile d'ordre q, noté $\mathsf{MA}(q)$, le processus x_t défini par :

$$x_t = w_t + \theta_1 w_{t-1} + \ldots + \theta_q w_{t-q}$$
$$= w_t + \sum_{j=1}^q \theta_j w_{t-j},$$

où $\theta_q \neq 0$ et $w_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_w^2)$.

Remarque.

$$x_t = (1 + \theta_1 B + \dots + \theta_q B^q) w_t$$
$$x_t = \Theta(B) w_t$$

- ullet **Définition**. On appelle Θ le polynôme moyenne mobile.
- Exemple. MA(1): $x_t = w_t + \theta w_{t-1}$. Que valent $\mathbb{E}[x_t]$ et $\rho(h)$?

Felix Cheysson Séries chronologiques 2020-2021

45 / 78

Trajectoires de processus MA

ACF de processus MA

Modèle autorégressif

• **Définition**. On appelle processus autorégressif d'ordre p, noté AR(p), le processus stationnaire x_t vérifiant :

$$x_t = w_t + \phi_1 x_{t-1} + \dots + \phi_p x_{t-p}$$

= $w_t + \sum_{i=1}^p \phi_i x_{t-i}$,

où
$$\phi_p \neq 0$$
 et $w_t \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma_w^2)$.

- Remarque. Si $\mathbb{E}[x_t] = \mu$, on considérera $y_t = x_t \mu$.
- Remarque.

$$x_t = (\phi_1 B + \dots + \phi_p B^p) x_t + w_t$$
$$(1 - \phi_1 B - \dots - \phi_p B^p) x_t = w_t$$
$$\Phi(B) x_t = w_t$$

ullet **Définition**. On appelle Φ le polynôme autorégressif.

Ecriture d'un AR(1) comme processus linéaire

1. Soit x_t un AR(1). Prouver que :

$$x_t = \phi^k x_{t-k} + \sum_{j=0}^{k-1} \phi^j w_{t-j}.$$

2. Si $|\phi| < 1$ et x_t stationnaire, on peut donc représenter un AR(1) par un MA(∞) :

$$x_t = \sum_{j=0}^{\infty} \phi^j w_{t-j}.$$

3. En déduire :

$$\mathbb{E}[x_t] = 0,$$

$$\gamma(h) = \frac{\sigma_w^2 \phi^h}{1 - \phi^2},$$

$$\rho(h) = \phi^h.$$

Causalité

• **Définition**. Lorsque, pour un AR(p) de la forme $\Phi(B)x_t = w_t$, l'écriture

$$x_t = \sum_{j=0}^{\infty} \psi_j w_{t-j} = \Psi(B) w_t$$

existe, on dira que le processus x_t est causal.

• Remarque. Dans ce cas, on a

$$\Phi^{-1}(B)\Phi(B)x_t = \Phi^{-1}(B)w_t,$$

soit

$$\Psi(B) = \Phi^{-1}(B).$$

Inversibilité

• **Définition**. Lorsque, pour un MA(q) de la forme $x_t = \Theta(B)w_t$, l'écriture

$$w_t = \sum_{j=0}^{\infty} \pi_j x_{t-j} = \Pi(B) x_t$$

existe, on dira que le processus x_t est inversible.

• Remarque. Dans ce cas, on a

$$\Theta^{-1}(B)x_t = \Theta^{-1}(B)\Theta(B)w_t,$$

soit

$$\Pi(B) = \Theta^{-1}(B).$$

Trajectoires de processus AR

ACF de processus AR

Corrélation partielle

- Idée. Contrôler les facteurs de confusion dans le calcul de corrélation.
- **Définition**. Le coefficient de corrélation partielle entre deux variables aléatoires X et Y sachant une troisième variable Z est défini par :

$$Corr(X, Y|Z) = Corr(E, F),$$

où E et F sont les résidus des régressions de X et Y sur Z :

$$X = a_1 + b_1 Z + E,$$
 $Y = a_2 + b_2 Z + F.$

Autocorrélation partielle

• **Définition**. La fonction d'autocorrélation partielle (**PACF**) d'une série stationnaire x_t , notée ϕ_{hh} , est définie par :

$$\phi_{11} = \operatorname{Corr}(x_t, x_{t-1}) = \rho(1)$$

$$\phi_{hh} = \operatorname{Corr}(x_t, x_{t-h} | x_{t-1}, \dots, x_{t-h+1}), \quad h \ge 2.$$

 Idée. On retire la dépendance linéaire des termes intermédiaires de la série.

Autocorrélation partielle : processus AR

• On considère un processus AR(2) : $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t$.

• PACF d'ordre 2 : $\phi_{22} = \text{Corr}(x_t, x_{t-2} | x_{t-1})$.

• PACF d'ordre 3 : $\phi_{33} = \text{Corr}(x_t, x_{t-3} | x_{t-1}, x_{t-2})$.

PACF de processus AR

Autocorrélation partielle : processus MA

• On considère un processus MA(1) : $x_t = w_t + \theta_1 w_{t-1}$.

• PACF d'ordre 2 : $\phi_{22} = \text{Corr}(x_t, x_{t-2} | x_{t-1})$.

58 / 78

Autocorrélation partielle : processus MA (cont'd)

• On considère un processus MA(1) : $x_t = w_t + \theta_1 w_{t-1}$.

• PACF d'ordre 3 : $\phi_{33} = \text{Corr}(x_t, x_{t-3} | x_{t-1}, x_{t-2})$.

59 / 78

PACF de processus MA

Modélisation: identification des ordres du processus

Modèle autorégressif moyenne mobile

• **Définition**. On appelle processus autorégressif moyenne mobile d'ordre (p, q), noté ARMA(p, q), le processus stationnaire x_t vérifiant :

$$x_t = w_t + \sum_{i=1}^{p} \phi_i x_{t-i} + \sum_{j=1}^{q} \theta_j w_{t-j},$$

où $\phi_p \neq 0$, $\theta_q \neq 0$ et $w_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_w^2)$.

ullet Remarque. En utilisant les polynômes AR Φ et MA Θ , on a :

$$\Phi(B)x_t = \Theta(B)w_t.$$

• Théorème de représentation de Wold. Toute série stationnaire au second ordre peut être représentée par un processus ARMA(p, q).

Identification des ordres du processus ?

Redondance paramétrique

Un sophisme

- Soit $x_t = w_t$ un bruit blanc Gaussien.
- On a donc $0.5 x_{t-1} = 0.5 w_{t-1}$.
- Puis $x_t 0.5 x_{t-1} = w_t 0.5 w_{t-1}$
- Donc x_t est un processus ARMA(1, 1).

Redondance paramétrique. La surparamétrisation cache le fait que le processus est un bruit blanc Gaussien :

$$(1 - 0.5B)x_t = (1 - 0.5B)w_t.$$

Critères pénalisés d'information : critères de parcimonie

Pour choisir entre deux modèles, on utilise l'AIC ou le BIC (plus parcimonieux).

- Basés sur la fonction de vraisemblance ;
- Pénalisent le nombre de paramètres du modèle ;
- Compromis entre la qualité de l'ajustement et la complexité du modèle.

$$\begin{split} \text{AIC} &= 2\,\#\{\text{paramètres}\} - 2\log(\text{vraisemblance}), \\ \text{BIC} &= \log(n)\,\#\{\text{paramètres}\} - 2\log(\text{vraisemblance}). \end{split}$$

Modèle autorégressif intégré moyenne mobile

• **Définition**. On appelle processus autorégressif intégré moyenne mobile d'ordre (p,d,q), noté ARIMA(p,d,q), un processus x_t tel que $\nabla^d x_t = (1-B)^d x_t$ est un modèle ARMA(p,q):

$$\Phi(B)\nabla^d x_t = \Theta(B)w_t.$$

- Aucune nouveauté ici : il s'agit principalement d'un jeu d'écriture.
- \bullet $\it Remarque.$ L'écriture ARIMA est surtout utile pour R pour effectuer des prédictions.

Estimation des modèles ARMA

- On procède par maximum de vraisemblance : on cherche à maximiser $\mathcal{L}(\mu, \Phi, \Theta, \sigma_w^2; x_{1:n}) = f_{\mu, \Phi, \Theta, \sigma_w^2}(x_1, \dots, x_n)$.
- Cette fonction de densité jointe se décompose en conditionnant par rapport aux points du passé :

$$f_{\mu,\Phi,\Theta,\sigma_w^2}(x_1,\ldots,x_n) = f(x_1)f(x_2 \mid x_1)\cdots f(x_n \mid x_{1:(n-1)}).$$

• Chaque fonction intermédiaire $f(x_j \mid x_{1:j})$ est la fonction de densité d'une loi normale univariée.

Estimation des modèles ARMA (cont'd)

• Propriété. Sous de "bonnes conditions", pour un processus ARMA causal et inversible, le maximum de vraisemblance donne des estimateurs optimaux de σ_w^2 et $\beta = (\mu, \Phi, \Theta)$, et

$$\sqrt{n}(\widehat{\beta} - \beta) \xrightarrow{d} \mathcal{N}(0, \mathcal{I}^{-1}(\beta)).$$

• Remarque. Dans le cas d'un modèle surparamétrisé, la variance des estimateurs augmente : $\operatorname{Var}(\widehat{\beta}) \nearrow$.

Prédiction

- On cherche à prédire x_{n+m} à partir des observations (x_1, \ldots, x_n) .
- On appelle prédicteur au pas de temps m la variable aléatoire définie par :

$$x_{n+m}^n = \mathbb{E}[x_{n+m} \mid x_{1:n}].$$

Prédiction (cont'd)

• Exemple. Pour un AR(p):

$$\dot{\mathbf{A}} \ n+1 : x_{n+1}^n = \phi_1 x_n + \phi_2 x_{n-1} + \ldots + \phi_p x_{n-p+1},$$

$$\dot{\mathbf{A}} \ n+2 : x_{n+2}^n = \phi_1 x_{n+1}^n + \phi_2 x_n + \ldots + \phi_p x_{n-p+2}.$$

• Exemple. Pour un ARMA $(p,\,q)$, il faut d'abord l'écrire sous forme de MA (∞) :

$$x_{n+m} = \sum_{j=0}^{\infty} \psi_j w_{n+m-j}.$$

Alors, on a

$$x_{n+m}^n = \sum_{j=m}^{m+n} \psi_j w_{n+m-j}.$$

Outline

- Modèles saisonniers SARIMA
 - ARIMA saisonnier pur
 - Modèles SARIMA

ARIMA saisonnier pur

- *Idée*. On souhaite modéliser une structure de dépendance saisonnière.
- **Principe**. On va appliquer un modèle ARIMA, dont les ordres sont des multiples de la saisonnalité S.
- On note $\nabla_S \coloneqq 1 B^S$ l'opérateur de différence d'ordre S.
- **Définition**. On appelle processus ARIMA $(P, D, Q)_S$ saisonnier le processus stationnaire x_t vérifiant :

$$\Phi_P(B^S)\nabla^D_S x_t = \Theta_Q(B^S)w_t,$$

οù

$$\Phi_P(B^S) = 1 - \varphi_1 B^S - \dots - \varphi_P B^{PS},$$

$$\Theta_Q(B^S) = 1 + \vartheta_1 B^S + \dots + \vartheta_Q B^{QS}.$$

Trajectoire et (P)ACF d'ARIMA saisonnier

Modèles SARIMA

- En pratique, il existe généralement deux structures de dépendances :
 - Une à court terme, généralement ≤ 3 pas de temps ;
 - ullet Une à long terme, due à la saisonnalité S de la série.
- Idée. On va combiner deux modèles ARIMA, le premier pour expliquer la dépendance à court terme, le deuxième pour la dépendance à long terme.
- **Définition**. On appelle processus SARIMA $(p, d, q) \times (P, D, Q)_S$ le processus stationnaire x_t vérifiant :

$$\Phi_P(B^S)\Phi(B)\nabla^D_S\nabla^d x_t = \Theta_Q(B^S)\Theta(B)w_t,$$

où Φ et Θ sont les polynômes AR et MA de court terme, et Φ_P et Θ_Q sont ceux modélisant la saisonnalité.

Trajectoire et (P)ACF d'ARIMA saisonnier

Outline

Procédure de Box et Jenkins

Procédure de Box et Jenkins

- 0a. Représenter les données.
- 0b. Transformer les données si nécessaire.
 - Régression linéaire ou différentiation ;
 - Stabilisation de la variance par logarithme.
 - 1. Identification les ordres p et q du modèle ARMA.
 - ACF (acf) et PACF (pacf) empiriques.
 - Identifier les structures saisonnières avant celles de court terme.
 - 2. Estimation des paramètres par maximum de vraisemblance.
 - 3. Diagnostic des résidus.
 - ACF des résidus : existe-t-il des pics de covariance non pris en compte ?
 - Test de Ljung-Box : l'ensemble des pics de covariance est-il conforme avec un bruit blanc ?
 - Graphiques et tests usuels : la normalité des résidus est-elle vérifiée ?
 - 4. Choix du modèle.
 - Utilisation des critères d'information parcimonieux.

Identification des ordres du processus

