Modules over orders, conjugacy classes of integral matrices and abelian varieties over finite fields

- Let R be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The minimal polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

Question 1:

- Let R be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The minimal polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \text{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

- Let *R* be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The minimal polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

Answer(s):

- Let R be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The minimal polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

Answer(s):

Over \mathbb{Q} : yes! Same characteristic polynomial $x^2 + 5$, which is irreducible.

- Let R be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The minimal polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

Answer(s):

Over \mathbb{Q} : yes! Same characteristic polynomial $x^2 + 5$, which is irreducible. But...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへで

- Let R be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The minimal polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

Answer(s):

Over \mathbb{Q} : yes! Same characteristic polynomial $x^2 + 5$, which is irreducible.

But...

Over \mathbb{Z} : no! Every such a P must have even determinant.

- each m_i irreducible and
- $m_i \neq m_j$ if $i \neq j$. (i.e. m is squarefree)

3/11

Stefano Marseglia ANTS XVI - MIT July 18 2024

- each m_i irreducible and
- $m_i \neq m_j$ if $i \neq j$. (i.e. m is squarefree)

Question 2.1 Can we describe the representatives of the \mathbb{Z} -conjugacy classes of matrices with:

- minimal polynomial m, and
- characteristic polynomial h?

3/11

- each m_i irreducible and
- $m_i \neq m_j$ if $i \neq j$. (i.e. m is squarefree)

Question 2.1 Can we describe the representatives of the \mathbb{Z} -conjugacy classes of matrices with:

- minimal polynomial m, and
- characteristic polynomial h?

Answer:

Theorem ((generalized) Latimer-MacDuffee)

The order $\mathbb{Z}[\pi] = \frac{\mathbb{Z}[x]}{(m)}$ acts on $V = \left(\frac{\mathbb{Q}[x]}{m_1}\right)^{s_1} \times \ldots \times \left(\frac{\mathbb{Q}[x]}{m_n}\right)^{s_n}$. We have a bijection

$$\{\mathbb{Z}[\pi]$$
-lattices in $V\}_{\simeq_{\mathbb{Z}[\pi]}}$

- each *m_i* irreducible and
- $m_i \neq m_j$ if $i \neq j$. (i.e. m is squarefree)

Question 2.1 Can we describe the representatives of the \mathbb{Z} -conjugacy classes of matrices with:

- minimal polynomial m, and
- characteristic polynomial h?

Answer:

Theorem ((generalized) Latimer-MacDuffee)

The order $\mathbb{Z}[\pi] = \frac{\mathbb{Z}[x]}{(m)}$ acts on $V = \left(\frac{\mathbb{Q}[x]}{m_1}\right)^{s_1} \times \ldots \times \left(\frac{\mathbb{Q}[x]}{m_n}\right)^{s_n}$. We have a bijection

$$\left\{ \mathbb{Z}[\pi] \text{-lattices in } V \right\}_{\cong_{\mathbb{Z}[\pi]}}$$

$$\left\{ \text{matrices with min. poly. m and char. poly. h} \right\}_{\sim_{\mathbb{Z}}}$$

Proof (idea):

Answer: Do the same thing with $\mathbb{Z}[\pi, q/\pi]$ instead of $\mathbb{Z}[\pi]$:

Answer: Do the same thing with $\mathbb{Z}[\pi, q/\pi]$ instead of $\mathbb{Z}[\pi]$:

Theorem (Deligne)

 $\{abelian\ varieties\ with\ char.\ poly.\ h\}_{\simeq_{\mathbb{F}_q}}$

Answer: Do the same thing with $\mathbb{Z}[\pi, q/\pi]$ instead of $\mathbb{Z}[\pi]$:

Theorem (Deligne)

How do we make this theorems effective?

Set-up:

- $K_1, ..., K_n$ number fields, with ring of integers $\mathcal{O}_i \subset K_i$.
- $K = K_1 \times ... \times K_n$.
- $\mathcal{O} = \mathcal{O}_1 \times ... \times \mathcal{O}_n$, the maximal order of K.
- $s_1, ..., s_n$ positive integers and $V = K_1^{s_1} \times ... \times K_n^{s_n}$.
- for an order R in K, set $\mathcal{L}(R, V) = \{R\text{-lattice in } V\} / \simeq_R$.

Proposition (Steinitz): Let M be in $\mathcal{L}(\mathcal{O}, V)$. Then there are fractional \mathcal{O}_i -ideals I_i and there exists an \mathcal{O} -linear isomorphism

$$M\simeq\bigoplus_{i=1}^n\left(\mathcal{O}_i^{\oplus(s_i-1)}\oplus I_i\right).$$

The isomorphism class of M is uniquely determined by the isomorphism class of the fractional \mathcal{O} -ideal $I = I_1 \oplus \cdots \oplus I_n$.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

- Let $f = (R : \mathcal{O}) = \{x : x \in Kx\mathcal{O} \subseteq R\}$ be the conductor of R in \mathcal{O} .
- Write $\mathfrak{f} = \bigoplus_{i=1}^n \mathfrak{f}_i$, \mathfrak{f}_i a fractional \mathcal{O}_i -ideal in K_i .

Theorem: Let M be in $\mathcal{L}(R, V)$. Then there exist an M' in $\mathcal{L}(R, V)$, and fractional \mathcal{O}_i -ideals I_i such that

- $M' \simeq M$ as an R-module.
- $\bullet \quad M'\mathcal{O} = \bigoplus_{i=1}^n \left(\mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i \right).$
- $\bullet \quad \bigoplus_{i=1}^n \left(\mathfrak{f}_i^{\oplus (s_i-1)} \oplus \mathfrak{f}_i I_i\right) \subseteq M' \subseteq \bigoplus_{i=1}^n \left(\mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i\right).$

Proof:

Islsomorphic

the algorithm

reduced the number of enumerations to 1