MULTICONTACT FRAMEWORK FOR NON-CONSERVATIVE FIELD THEORIES

Manuel de León, Jordi Gaset, Miguel C. Muñoz-Lecanda, Xavier Rivas*, and Narciso Román-Roy

XVIII Young Researchers Workshop on Geometry, Dynamics and Field Theory • Warsaw, Poland, February 21–23, 2024

ABSTRACT A new geometric structure inspired by multisymplectic and contact geometries, called multicontact structure, has been developed recently to describe non-conservative and action-dependent classical field theories [1]. We review the main features of this formulation, showing how it is applied to study some classical theories in theoretical physics which are modified in order to include action-dependence; namely: the modified Klein-Gordon equation and the action-dependent bosonic string.

Multicontact Lagrangian and Hamiltonian formalisms

MULTIVECTOR FIELDS

Let \mathcal{M} be a manifold with dim $\mathcal{M} = n$. The *m-multivector fields* on \mathcal{M} are the contravariant skew-symmetric tensor fields of order min \mathcal{M} . The set of *m*-multivector fields in \mathcal{M} is denoted $\mathfrak{X}^m(\mathcal{M})$.

A multivector field $\mathbf{X} \in \mathfrak{X}^m(\mathcal{M})$ is *locally decomposable* if, for every $p \in \mathcal{M}$, there exists an open neighbourhood $U_p \subset \mathcal{M}$ such that

 $\mathbf{X}|_{U_p} = X_1 \wedge \cdots \wedge X_m$, for some $X_1, ... X_m \in \mathfrak{X}(U_p)$.

The contraction of a locally decomposable multivector field $\mathbf{X} \in \mathfrak{X}^m(\mathcal{M})$ and a differentiable form $\Omega \in \Omega^k(\mathcal{M})$ is

$$\iota\left(\mathbf{X}\right)\Omega|_{U_{0}} = \iota\left(X_{1} \wedge \cdots \wedge X_{m}\right)\Omega = \iota\left(X_{m}\right)\ldots\iota\left(X_{1}\right)\Omega\;,\quad \text{if } k \geq m \quad;\quad \iota(\mathbf{X})\left.\Omega\right|_{U_{0}} = 0,\quad \text{if } k < m$$

Let $\kappa \colon \mathcal{M} \to M$ be a fiber bundle with local coordinates (x^{μ}, z^{\prime}) on \mathcal{M} (x^{μ} are coordinates on M and z^{\prime} are coordinates on the fibers). A multivector field $\mathbf{X} \in \mathfrak{X}^m(\mathcal{M})$ is κ -transverse if $\iota(\mathbf{X})(\kappa^*\beta)|_p \neq 0$, for $p \in \mathcal{M}$ and $\beta \in \Omega^m(M)$. If M is an orientable manifold with volume form $\omega \in \Omega^m(M)$, then $\mathbf{X} \in \mathfrak{X}^m(\mathcal{M})$ is κ -transverse if, and only if, $\iota(\mathbf{X})(\kappa^*\omega) \neq 0$. This condition can be fixed by taking $\iota(\mathbf{X})(\kappa^*\omega) = 1$.

If $\mathbf{X} \in \mathfrak{X}^m(\mathcal{M})$ is locally decomposable and κ -transverse, a section $\psi(\mathbf{x}^\mu) = (\mathbf{x}^\mu, \mathbf{z}^I(\mathbf{x}^\nu))$ of κ is an *integral section* of \mathbf{X} if $\frac{\partial \mathbf{z}^I}{\partial \mathbf{z}^{II}} = F^i_\mu$.

Then, **X** is *integrable* if, for $p \in \mathcal{M}$, there exist $x \in M$ and an integral section ψ of **X** such that $p = \psi(x)$.

MULTICONTACT LAGRANGIAN FORMALISM

For the Lagrangian formulation of non-conservative first-order field theories, the configuration bundle of a (first-order) Lagrangian field theory is $\pi \colon E \to M$ (dim M = m, dim E = n + m), where M is an orientable manifold with volume form $\omega \in \Omega^m(M)$, which usually represent space-time. The theory is developed on the bundle

$$au \colon \mathcal{P} = J^1 \pi \times_{M} \Lambda^{m-1}(\mathrm{T}^*M) \to M$$

where J^1 is the the first-order jet bundle of π and $\Lambda^{m-1}(T^*M)$ is the bundle of (m-1)-forms on M, which can be identified with \mathbb{R}^m . Natural coordinates in \mathcal{P} are $(x^{\mu}, y^i, y^i_{\mu}, s^{\mu})$ $(\mu = 1, \dots, m, i = 1, \dots, n; \dim \mathcal{P} = nm + n + 2m)$, such that $\omega = \mathrm{d}x^1 \wedge \cdots \wedge \mathrm{d}x^m \equiv \mathrm{d}^m x$. A *Lagrangian density* on $\mathcal P$ as a m-form $\mathcal L \in \Omega^m(\mathcal P)$, whose expression is $\mathcal L(x^\mu,y^i,y^i_\mu,s^\mu) = L(x^\mu,y^i,y^i_\mu,s^\mu)\,\mathrm d^m x$, where $L\in\mathscr C^\infty(\mathcal P)$ is

the Lagrangian function associated with \mathcal{L} . A Lagrangian L is **regular** if the matrix $\left(\frac{\partial^2 L}{\partial v^i \partial v^j}\right)$ is regular everywhere; then $\Theta_{\mathcal{L}}$ is a variational multicontact form on $\mathcal P$ and $(\mathcal P,\Theta_{\mathcal L},\omega)$ is a multicontact Lagrangian system. Otherwise, L is a singular Lagrangian [1, 2].

The *Lagrangian m-form* associated with
$$\mathcal{L}$$
 is:
$$\Theta_{\mathcal{L}} = -\frac{\partial L}{\partial \mathbf{v}_{\mu}^{i}} \mathrm{d}\mathbf{y}^{i} \wedge \mathrm{d}^{m-1}\mathbf{x}_{\mu} + \left(\frac{\partial L}{\partial \mathbf{v}_{\mu}^{i}}\mathbf{y}_{\mu}^{i} - L\right) \mathrm{d}^{m}\mathbf{x} + \mathrm{d}\mathbf{s}^{\mu} \wedge \mathrm{d}^{m-1}\mathbf{x}_{\mu} \quad \text{(where } \mathrm{d}^{m-1}\mathbf{x}_{\mu} = \iota\left(\frac{\partial}{\partial \mathbf{x}^{\mu}}\right) \mathrm{d}^{m}\mathbf{x} = (-1)^{\mu-1} \mathrm{d}\mathbf{x}^{1} \wedge \ldots \wedge \widehat{\mathrm{d}\mathbf{x}^{\mu}} \wedge \ldots \wedge \mathrm{d}\mathbf{x}^{m}) . \tag{1}$$

The local function $E_{\mathcal{L}} = \frac{\partial L}{\partial v_{\mu}^{i}} y_{\mu}^{i} - L$ is the *energy Lagrangian function* associated with L. Then, the *Lagrangian* (m+1)-form is

$$\overline{\Omega}_{\mathcal{L}} := \mathrm{d}\Theta_{\mathcal{L}} + \sigma_{\Theta_{\mathcal{L}}} \wedge \Theta_{\mathcal{L}} = \mathrm{d}\Big(- \frac{\partial L}{\partial y_{\mu}^{i}} \mathrm{d}y^{i} \wedge \mathrm{d}^{m-1} x_{\mu} + \Big(\frac{\partial L}{\partial y_{\mu}^{i}} y_{\mu}^{i} - L \Big) \mathrm{d}^{m} x \Big) - \Big(\frac{\partial L}{\partial s^{\mu}} \frac{\partial L}{\partial y_{\mu}^{i}} \mathrm{d}y^{i} - \frac{\partial L}{\partial s^{\mu}} \mathrm{d}s^{\mu} \Big) \wedge \mathrm{d}^{m} x \; ,$$

where $\sigma_{\Theta_{\mathcal{L}}} = -\frac{\partial L}{\partial s^{\mu}} dx^{\mu}$ is the so-called **dissipation form**.

A section $\psi : M \to \mathcal{P}$ of the projection τ is a **holonomic section** on \mathcal{P} if it is locally expressed as $\psi(x^{\mu}) = (x^{\mu}, y^{i}(x^{\nu}), y^{i}_{\mu}(x^{\nu}), s^{\mu}(x^{\nu}))$. Then $X \in \mathfrak{X}^m(\mathcal{P})$ is a **holonomic** m-multivector field (a SOPDE) if it is τ -transverse, integrable, and has holonomic integral sections. The (pre)multicontact Lagrangian equations can be derived from the generalized Herglotz Principle [3] and, for holonomic multivector fields, they can be stated as:

$$\iota\left(\mathbf{X}_{\mathcal{L}}\right)\Theta_{\mathcal{L}}=\mathbf{0}\quad,\quad\iota\left(\mathbf{X}_{\mathcal{L}}\right)\overline{\Omega}_{\mathcal{L}}=\mathbf{0}\quad,\quad\iota\left(\mathbf{X}_{\mathcal{L}}\right)\left(au^{*}\omega\right)=\mathbf{1}\;.$$

In a natural chart of coordinates of \mathcal{P} , a holonomic m-multivector field $\mathbf{X}_{\mathcal{L}} \in \mathfrak{X}^m(\mathcal{P})$ verifying the condition $\iota(\mathbf{X})(\tau^*\omega) = 1$ is

$$\mathbf{X}_{\mathcal{L}} = \bigwedge_{\nu=1}^{m} \left(\frac{\partial}{\partial x^{\mu}} + y_{\mu}^{i} \frac{\partial}{\partial y^{i}} + (X_{\mathcal{L}})_{\mu\nu}^{i} \frac{\partial}{\partial y_{\nu}^{i}} + (X_{\mathcal{L}})_{\mu}^{\nu} \frac{\partial}{\partial s^{\nu}} \right), \text{ and equations (2) lead to}$$

$$(X_{\mathcal{L}})^{\mu}_{\mu} = L \quad ; \quad \frac{\partial L}{\partial y^{i}} - \frac{\partial^{2} L}{\partial x^{\mu} \partial y^{i}_{\mu}} - \frac{\partial^{2} L}{\partial y^{j} \partial y^{i}_{\mu}} y^{j}_{\mu} - \frac{\partial^{2} L}{\partial s^{\nu} \partial y^{i}_{\mu}} (X_{\mathcal{L}})^{\nu}_{\mu} - \frac{\partial^{2} L}{\partial y^{j} \partial y^{i}_{\mu}} (X_{\mathcal{L}})^{\nu}_{\mu} - \frac{\partial^{2} L}{\partial y^{j} \partial y^{i}_{\mu}} (X_{\mathcal{L}})^{\nu}_{\mu} - \frac{\partial^{2} L}{\partial y^{j} \partial y^{i}_{\mu}} (X_{\mathcal{L}})^{j}_{\mu} = -\frac{\partial L}{\partial s^{\mu}} \frac{\partial L}{\partial y^{i}} .$$

$$(3)$$

For the holonomic integral sections $\psi(x^{\nu}) = \left(x^{\mu}, y^{i}(x^{\nu}), \frac{\partial y'}{\partial x^{\mu}}(x^{\nu}), s^{\mu}(x^{\nu})\right)$ of $\mathbf{X}_{\mathcal{L}}$ we have that $y_{\mu}^{i} = \frac{\partial y^{i}}{\partial x^{\mu}}$, $(X_{\mathcal{L}})_{\mu\nu}^{j} = \frac{\partial y_{\mu}^{j}}{\partial x^{\nu}} = \frac{\partial^{2}y^{i}}{\partial x^{\mu}\partial x^{\nu}}$,

 $(X_{\mathcal{L}})^{\nu}_{\mu} = \frac{\partial s^{\mu}}{\partial x^{\nu}}$, and these equations transform into the **Herglotz–Euler– Lagrange field equations**:

$$\frac{\partial s^{\mu}}{\partial x^{\mu}} = L \circ \psi \quad ; \quad \frac{\partial}{\partial x^{\mu}} \left(\frac{\partial L}{\partial y^{i}_{\mu}} \circ \psi \right) = \left(\frac{\partial L}{\partial y^{i}} + \frac{\partial L}{\partial s^{\mu}} \frac{\partial L}{\partial y^{i}_{\mu}} \right) \circ \psi . \tag{6}$$

For regular Lagrangians, these equations always have solution. When L is not regular, the field equations could have no solutions everywhere on \mathcal{P} . Hence, the final objective is, applying a constraint algorithm, to find the maximal submanifold \mathcal{S}_f of \mathcal{P} (if it exists) where there are holonomic Lagrangian multivector fields $\mathbf{X}_{\mathcal{L}}$ which are tangent solutions to the Lagrangian field equations on \mathcal{S}_f .

MULTICONTACT HAMILTONIAN FORMALISM

Consider the bundle

$$\widetilde{ au} \colon \mathcal{P}^* := J^{1*}\pi \times_M \Lambda^{m-1}(\mathrm{T}^*M) o M$$

which is identified with $J^{1*}\pi \times \mathbb{R}^m$; where $J^{1*}\pi$ is the *restricted multimomentum bundle*. Natural coordinates on \mathcal{P}^* are $(x^\mu, y^i, p_i^\mu, s^\mu)$. If $(\mathcal{P}, \Theta_{\mathcal{L}}, \omega)$ is a Lagrangian system, with $\mathcal{L} = L\omega$, the **Legendre map** associated with \mathcal{L} is the map $\mathcal{FL}: \mathcal{P} \to \mathcal{P}^*$ locally given by

$$\mathcal{F}\mathcal{L}^* \mathbf{x}^
u = \mathbf{x}^
u \quad , \quad \mathcal{F}\mathcal{L}^* \mathbf{y}^i = \mathbf{y}^i \quad , \quad \mathcal{F}\mathcal{L}^* \mathbf{p}_i^
u = rac{\partial \mathbb{L}}{\partial \mathbf{v}_
u^i} \quad , \quad \mathcal{F}\mathcal{L}^* \mathbf{s}^\mu = \mathbf{s}^\mu \ .$$

The Lagrangian L is regular if, and only if, \mathcal{FL} is a local diffeomorphism, and L is **hyperregular** when \mathcal{FL} is a global diffeomorphism. In the hyperregular case (for the singular case and examples, see [2]), $\mathcal{FL}(\mathcal{P}) = \mathcal{P}^*$, The form $\Theta_{\mathcal{L}} \in \Omega^m(\mathcal{P})$ projects to \mathcal{P}^* by \mathcal{FL} giving the **Hamiltonian** m-form $\Theta_{\mathcal{H}} \in \Omega^m(\mathcal{P}^*)$, $\Theta_{\mathcal{L}} = \mathcal{FL}^*\Theta_{\mathcal{H}}$, whose local expression is

$$\Theta_{\mathcal{H}} = -\boldsymbol{p}_{i}^{\mu} \mathrm{d} y^{i} \wedge \mathrm{d}^{m-1} \boldsymbol{x}_{\mu} + \boldsymbol{H} \mathrm{d}^{m} \boldsymbol{x} + \mathrm{d} \boldsymbol{s}^{\mu} \wedge \mathrm{d}^{m-1} \boldsymbol{x}_{\mu} , \qquad (5)$$

where $H = p_i^{\mu} (\mathcal{F} \mathcal{L}^{-1})^* y_{\mu}^i - (\mathcal{F} \mathcal{L}^{-1})^* L \in \mathscr{C}^{\infty}(\mathcal{P}^*)$ is the *Hamiltonian function*. Then, $\Theta_{\mathcal{H}}$ is a variational multicontact form and $(\mathcal{P}^*, \Theta_{\mathcal{H}}, \omega)$ is the *multicontact Hamiltonian system* associated with $(\mathcal{P}, \Theta_{\mathcal{L}}, \omega)$. Then, we define the *Hamiltonian* (m+1)-form

$$\overline{\Omega}_{\mathcal{H}} := \mathrm{d}\Theta_{\mathcal{H}} + \sigma_{\Theta_{\mathcal{H}}} \wedge \Theta_{\mathcal{H}} = \mathrm{d}(-p_i^\mu \mathrm{d}y^i \wedge \mathrm{d}^{m-1}x_\mu + H\,\mathrm{d}^mx) + \left(rac{\partial H}{\partial s^\mu}p_i^\mu\,\mathrm{d}y^i - rac{\partial H}{\partial s^\mu}\,\mathrm{d}s^\mu
ight) \wedge \mathrm{d}^mx \; ,$$

where $\sigma_{\mathcal{H}} = \frac{\partial H}{\partial \mathbf{c}^{\mu}} d\mathbf{x}^{\mu}$ is the *dissipation form* in this formalism. We have that $\overline{\Omega}_{\mathcal{L}} = \mathcal{F} \mathcal{L}^* \overline{\Omega}_{\mathcal{H}}$.

The multicontact Hamilton-de Donder-Weyl equations for $\widetilde{\tau}$ -transverse and locally decomposable multivector fields are stated as:

$$\iota\left(\mathbf{X}_{\mathcal{H}}\right)\Theta_{\mathcal{H}}=\mathbf{0}\quad,\quad\iota\left(\mathbf{X}_{\mathcal{H}}\right)\overline{\Omega}_{\mathcal{H}}=\mathbf{0}\quad,\quad\iota\left(\mathbf{X}_{\mathcal{H}}\right)(\widetilde{\tau}^{*}\omega)=\mathbf{1}\;.\tag{6}$$

In natural coordinates, if $\mathbf{X}_{\mathcal{H}} = \bigwedge_{\mu=1}^{m} \left(\frac{\partial}{\partial \mathbf{x}^{\mu}} + (\mathbf{X}_{\mathcal{H}})_{\mu}^{i} \frac{\partial}{\partial \mathbf{y}^{i}} + (\mathbf{X}_{\mathcal{H}})_{\mu}^{\nu} \frac{\partial}{\partial \mathbf{p}_{i}^{\nu}} + (\mathbf{X}_{\mathcal{H}})_{\mu}^{\nu} \frac{\partial}{\partial \mathbf{s}^{\nu}} \right) \in \mathfrak{X}^{m}(\mathcal{P}^{*})$ is a solution to the equations (6), then

$$(X_{\mathcal{H}})^{\mu}_{\mu} = p_{i}^{\mu} \frac{\partial H}{\partial p_{i}^{\mu}} - H \quad , \quad (X_{\mathcal{H}})^{i}_{\mu} = \frac{\partial H}{\partial p_{i}^{\mu}} \quad , \quad (X_{\mathcal{H}})^{\mu}_{\mu i} = -\left(\frac{\partial H}{\partial v^{i}} + p_{i}^{\mu} \frac{\partial H}{\partial s^{\mu}}\right) \quad ,$$

$$(7)$$

If $\psi(x^{\nu}) = (x^{\mu}, y^{i}(x^{\nu}), p_{i}^{\mu}(x^{\nu}), s^{\mu}(x^{\nu}))$ is an integral section of $\mathbf{X}_{\mathcal{H}}$, equations (6) lead to the **Hergiotz-Hamilton-de Donder-Weyl equations** for ψ :

$$\frac{\partial \mathbf{s}^{\mu}}{\partial \mathbf{x}^{\mu}} = \left(\mathbf{p}_{i}^{\mu} \frac{\partial \mathbf{H}}{\partial \mathbf{p}_{i}^{\mu}} - \mathbf{H} \right) \circ \boldsymbol{\psi} \quad , \quad \frac{\partial \mathbf{y}^{i}}{\partial \mathbf{x}^{\mu}} = \frac{\partial \mathbf{H}}{\partial \mathbf{p}_{i}^{\mu}} \circ \boldsymbol{\psi} \quad , \quad \frac{\partial \mathbf{p}_{i}^{\mu}}{\partial \mathbf{x}^{\mu}} = -\left(\frac{\partial \mathbf{H}}{\partial \mathbf{y}^{i}} + \mathbf{p}_{i}^{\mu} \frac{\partial \mathbf{H}}{\partial \mathbf{s}^{\mu}} \right) \circ \boldsymbol{\psi} \quad . \tag{8}$$

These equations are compatible in \mathcal{P}^* . As \mathcal{FL} is a diffeomorphism, the solutions to the Lagrangian field equations for $(\mathcal{P}, \Theta_{\mathcal{L}}, \omega)$ are in one-to-one correspondence to those of the Hamilton-de Donder-Weyl field equations for $(\mathcal{P}^*, \Theta_{\mathcal{H}}, \omega)$.

APPLICATION TO PHYSICAL THEORIES

The modified Klein–Gordon equation and the Telegrapher's equation

The *Klein-Gordon equation* in the Minkowski space-time \mathbb{R}^4 (with the metric signature $g_{\mu\nu}\equiv (-1,1,1,1)$) is

$$(\Box + m^2)\phi \equiv \partial_{\mu}\partial^{\mu}\phi + m^2\phi = 0$$
,

where ϕ is a scalar field, m^2 is a constant, \square denotes de D´Alembert operator in \mathbb{R}^4 , and $\partial_\mu \equiv \frac{\partial}{\partial \mathbf{x}^\mu}$, $\partial^\mu \equiv \mathbf{g}^{\mu\nu}\partial_\nu$. It derives from the Lagrangian $L_0 = \frac{1}{2} \partial_\mu \phi \, \partial^\mu \phi - \frac{1}{2} m^2 \phi^2$, which can be modified to include a more generic potential, $\tilde{L}_0 = \frac{1}{2} \partial_\mu \phi \, \partial^\mu \phi - V(\phi)$. LAGRANGIAN FORMALISM

Consider the bundle $\tau: \mathcal{P} = J^1\pi \times_M \Lambda^{m-1}(T^*\mathbb{R}^4) \to \mathbb{R}^4$, with coordinates (x^μ, y, y_μ, s^μ) $(\mu = 0, \dots, 3)$, where y denotes the field variable, and the volume form is $\omega = dx^0 \wedge \cdots \wedge dx^3 \equiv d^4x$ on \mathbb{R}^4 . Consider the contactified Lagrangian $L \in \mathscr{C}^{\infty}(\mathcal{P})$:

$$L(x^{\mu}, y, y_{\mu}, s^{\mu}) = L_0(x^{\mu}, y, y_{\mu}) + \gamma_{\mu}s^{\mu} = \frac{1}{2}y_{\mu}y^{\mu} - \frac{1}{2}m^2y^2 + \gamma_{\mu}s^{\mu},$$

where $\gamma \equiv (\gamma_{\mu}) \in \mathbb{R}^4$ is a constant vector, and $y^{\mu} = \partial^{\mu} y$. It is a quadratic hyperregular Lagrangian. Using the Hodge star operator, *, the Lagrangian multicontact 4-form (1) is:

$$\Theta_{\mathcal{L}} = y^{\mu} \mathrm{d}y \wedge * \mathrm{d}x_{\mu} + \mathcal{E}_{\mathcal{L}} \mathrm{d}^4 x + \mathrm{d}s^{\mu} \wedge * \mathrm{d}x_{\mu} = y^{\mu} \mathrm{d}y \wedge * \mathrm{d}x_{\mu} + \left(\frac{1}{2}y_{\mu}y^{\mu} + \frac{1}{2}m^2y^2 - \gamma_{\mu}s^{\mu}\right) \mathrm{d}^4 x + \mathrm{d}s^{\mu} \wedge * \mathrm{d}x_{\mu} \ .$$

Then $\overline{\Omega}_{\mathcal{L}} = d\Theta_{\mathcal{L}} + \sigma_{\Theta_{\mathcal{L}}} \wedge \Theta_{\mathcal{L}}$, where $\sigma_{\Theta_{\mathcal{L}}} = -\gamma_{\mu} dx^{\mu}$.

For holonomic multivector fields $\mathbf{X}_{\mathcal{L}} = \bigwedge_{\mu} \left(\frac{\partial}{\partial \mathbf{x}^{\mu}} + \mathbf{y}_{\mu} \frac{\partial}{\partial \mathbf{y}} + \mathbf{F}_{\mu\nu} \frac{\partial}{\partial \mathbf{y}} + \mathbf{F}_{\mu\nu} \frac{\partial}{\partial \mathbf{z}^{\nu}} \right) \in \mathfrak{X}^{4}(\mathcal{P})$, the Lagrangian equations (3) are

$${\cal G}^\mu_\mu = {\cal L} \quad , \quad m^2 y + {\cal F}^\mu_\mu = \gamma_\mu y^\mu \; .$$

For the integral holonomic sections $\psi(x^{\nu}) = \left(x^{\mu}, y(x^{\nu}), \frac{\partial y}{\partial x^{\mu}}(x^{\nu}), s^{\mu}(x^{\nu})\right)$ of $\mathbf{X}_{\mathcal{L}}$, bearing in mind that $\frac{\partial y^{\mu}}{\partial x^{\mu}} = \frac{\partial^2 y}{\partial x_{\nu} \partial x^{\mu}}$, equations (4) read,

$$\frac{\partial s^{\mu}}{\partial x^{\mu}} = L \quad , \quad \frac{\partial^{2} y}{\partial x_{\mu} \partial x^{\mu}} + m^{2} y = \gamma_{\mu} \frac{\partial y}{\partial x_{\mu}} = \gamma^{\mu} \frac{\partial y}{\partial x^{\mu}} . \tag{10}$$

where the last equation is the *Klein–Gordon equation with additional first-order terms*.

For simplicity, we have considered the Minkowski metric and γ_μ constants. However, a similar procedure can be performed for a generic metric $g_{\mu\nu}=g_{\mu\nu}(x^{\nu})$ and functions $\gamma_{\mu}=\gamma_{\mu}(x^{\nu})$, thus obtaining,

$$\frac{\partial s^{\mu}}{\partial x^{\mu}} = L \quad , \quad \frac{\partial^{2} y}{\partial x_{\mu} \partial x^{\mu}} + m^{2} y + \frac{\partial g_{\mu\nu}}{\partial x^{\mu}} \frac{\partial y}{\partial x^{\nu}} = \gamma^{\mu} \frac{\partial y}{\partial x^{\mu}} .$$

THE TELEGRAPHER'S EQUATION: As an interesting application of this modified Klein-Gordon equation, we can derive from it the so-called telegrapher's equation which describes the current and voltage on a uniform electrical transmission line:

$$\frac{\partial V}{\partial x} = -L \frac{\partial I}{\partial t} - RI \quad , \quad \frac{\partial I}{\partial x} = -C \frac{\partial V}{\partial t} - GV \; ,$$

where V is the voltage, I is the current, R is the resistance, L is the inductance, C is the capacitance, and G is the conductance. This system can be uncoupled, obtaining the system

$$\frac{\partial^2 V}{\partial x^2} = LC \frac{\partial^2 V}{\partial t^2} + (LG + RC) \frac{\partial V}{\partial t} + RGV \quad , \quad \frac{\partial^2 I}{\partial x^2} = LC \frac{\partial^2 I}{\partial t^2} + (LG + RC) \frac{\partial I}{\partial t} + RGI .$$

Both equations above can be written as

$$\Box y + \gamma \frac{\partial y}{\partial t} + m^2 y = 0, \qquad (11)$$

where \Box is the d'Alembert operator in 1+1 dimensions, and γ and m^2 are adequate constants. Taking $\gamma_{\mu}=(-\gamma,0,0,0)$ in (10), we obtain the telegrapher's equation (11). In this way, we can see the telegrapher's equation as a modified Klein-Gordon equation. HAMILTONIAN FORMALISM

The adapted coordinates of fiber bundle $\widetilde{\tau} : \mathcal{P}^* = J^{1*}\pi \times_M \Lambda^{m-1}(T^*\mathbb{R}^4) \to \mathbb{R}^2$ are (x^μ, y, p^μ, s^μ) . The Legendre map $\mathcal{FL} : \mathcal{P} \to \mathcal{P}^*$ is $\mathcal{FL}(\pmb{\mathsf{x}}^\mu,\pmb{\mathsf{y}},\pmb{\mathsf{y}}_\mu,\pmb{\mathsf{s}}^\mu) = (\pmb{\mathsf{x}}^\mu,\pmb{\mathsf{y}},\pmb{\mathsf{p}}^\mu,\pmb{\mathsf{s}}^\mu) \;,$

with $p^{\mu} = y_{\mu}$. It is a diffeomorphism since the Lagrangian function is hyperregular. The contact Hamiltonian *m*-form (5) is,

$$\Theta_{\mathcal{H}} = \boldsymbol{p}^{\mu} \mathrm{d}\boldsymbol{y} \wedge * \mathrm{d}\boldsymbol{x}_{\mu} + \boldsymbol{H} \, \mathrm{d}^{4}\boldsymbol{x} + \mathrm{d}\boldsymbol{s}^{\mu} \wedge * \mathrm{d}\boldsymbol{x}_{\mu} = \boldsymbol{p}^{\mu} \mathrm{d}\boldsymbol{y} \wedge * \mathrm{d}\boldsymbol{x}_{\mu} + \left(\frac{1}{2} \boldsymbol{p}^{\mu} \boldsymbol{p}_{\mu} + \frac{1}{2} \boldsymbol{m}^{2} \boldsymbol{y}^{2} - \gamma_{\mu} \boldsymbol{s}^{\mu}\right) \mathrm{d}^{4}\boldsymbol{x} + \mathrm{d}\boldsymbol{s}^{\mu} \wedge * \mathrm{d}\boldsymbol{x}_{\mu}$$

and then $\overline{\Omega}_{\mathcal{H}} = \mathrm{d}\Theta_{\mathcal{H}} + \sigma_{\Theta_{\mathcal{H}}} \wedge \Theta_{\mathcal{H}}$, where $\sigma_{\Theta_{\mathcal{H}}} = -\gamma_{\mu} \mathrm{d} x^{\mu}$. Equations (7) for $\widetilde{\tau}$ -transverse 4-multivector fields $\mathbf{X}_{\mathcal{H}} = \bigwedge \left(\frac{\partial}{\partial \mathbf{x}^{\mu}} + f_{\mu} \frac{\partial}{\partial \mathbf{y}} + F_{\mu}^{\nu} \frac{\partial}{\partial \mathbf{p}^{\nu}} + G_{\mu}^{\nu} \frac{\partial}{\partial \mathbf{s}^{\nu}} \right) \in \mathfrak{X}^{4}(\mathcal{P}^{*})$ are

$$G^{\mu}_{\mu} = rac{1}{2} p^{\mu} p_{\mu} - rac{1}{2} m^2 y^2 + \gamma_{\mu} s^{\mu} \quad , \quad f_{\mu} = p_{\mu} \quad , \quad F^{\mu}_{\mu} = -m^2 y + \gamma_{\mu} p^{\mu} \, .$$

and using the Legendre map, these equations transform into (9) along with the holonomy condition. Thus, the Lagrangian and Hamiltonian formalisms are equivalent.

For the integral sections $\psi(x^{\nu}) = (x^{\mu}, y(x^{\nu}), p^{\mu}(x^{\nu}), s^{\mu}(x^{\nu}))$ of $\mathbf{X}_{\mathcal{H}}$, the Herglotz–Hamilton–De Donder–Weyl equations (8) read

$$rac{\partial s^{\mu}}{\partial x^{\mu}} = rac{1}{2} p^{\mu} p_{\mu} - rac{1}{2} m^2 y^2 + \gamma_{\mu} s^{\mu} \quad , \quad rac{\partial y}{\partial x^{\mu}} = p_{\mu} \quad , \quad rac{\partial p^{\mu}}{\partial x^{\mu}} = -m^2 y + \gamma_{\mu} p^{\mu} \; .$$

and, combining the last two equations above, we obtain the equation (10).

Action-dependent bosonic string theory

Spacetime is a (d+1)-dimensional manifold M, with local coordinates x^{μ} ($\mu=1,\ldots,d$) and a metric $G_{\mu\nu}$ (signature $(-+\cdots+)$). The string worldsheet is a 2-dimensional manifold Σ , with local coordinates σ^i (i = 0, 1) and the volume form $\omega = d^2\sigma$. The fields $x^{\mu}(\sigma)$ are scalar fields on Σ given by the embedding maps $\Sigma \to M$: $\sigma^a \mapsto x^\mu(\sigma)$. The configuration bundle is $\pi: E = \Sigma \times M \to \Sigma$. On $J^1\pi$ we also have a 2-form $g = \frac{1}{2}g_{ij}d\sigma^i \wedge d\sigma^j$, whose pullback by jet prolongations of sections $\phi \in \Gamma(\pi)$, $j^1\phi = \left(\sigma^i, x^\mu(\sigma), \frac{\partial X^\mu}{\partial \sigma^i}(\sigma)\right)$ gives the induced

metric on
$$\Sigma$$
, $(j^1\phi)^*g=h\equiv \frac{1}{2}h_{ij}\mathrm{d}\sigma^i\wedge\mathrm{d}\sigma^j$, where $h_{ij}=G_{\mu\nu}\frac{\partial x^\mu}{\partial\sigma^i}\frac{\partial x^\nu}{\partial\sigma^j}$.

The bundle $\tau: \mathcal{P} \simeq J^1\pi \times \mathbb{R}^2 \to \Sigma$ has adapted coordinates $(\sigma^i, x^\mu, x^\mu_i, s^i)$. Consider the contactified Lagrangian function

$$L(\sigma^i, \mathbf{x}^{\mu}, \mathbf{x}^{\mu}_i, \mathbf{s}^i) = L_0(\sigma^i, \mathbf{x}^{\mu}, \mathbf{x}^{\mu}_i) + \gamma_i \mathbf{s}^i = -T \sqrt{-\det(G_{\mu\nu}\mathbf{x}^{\mu}_i \mathbf{x}^{\nu}_i)} d^2\sigma + \gamma_i \mathbf{s}^i \in \mathscr{C}^{\infty}(\mathcal{P}) ,$$

where L_0 is the standard Nambu–Goto Lagrangian, T is a constant called the string tension, and $\gamma \equiv (\gamma_\mu) \in \mathbb{R}^2$ is a constant vector. This is a regular Lagrangian since the following Hessian matrix is regular everywhere,

$$rac{\partial^2 \mathsf{L}}{\partial \mathsf{x}_{\pmb{i}}^\mu \partial \mathsf{x}_{\pmb{i}}^
u} = - T \sqrt{-\det g} \Big[G_{\mu
u} g^{ji} - G_{\mulpha} G_{
ho
u} \mathsf{x}_{\pmb{k}}^lpha \mathsf{x}_\ell^
ho \left(g^{ji} g^{k\ell} + g^{kj} g^{i\ell} - g^{ki} g^{j\ell}
ight) \Big] \; .$$

The Lagrangian multicontact 2-form (1) is

$$\Theta_{\mathcal{L}} = \frac{\partial L}{\partial \boldsymbol{x}_{i}^{\mu}} \mathrm{d}\boldsymbol{x}^{\mu} \wedge \mathrm{d}^{1}\sigma_{i} - \boldsymbol{\mathcal{E}}_{\mathcal{L}} \wedge \mathrm{d}^{2}\sigma + \mathrm{d}\boldsymbol{s}^{i} \wedge \mathrm{d}^{1}\sigma_{i} = -T\sqrt{-\det\boldsymbol{g}} \; \boldsymbol{G}_{\mu\nu} \boldsymbol{g}^{ji} \boldsymbol{x}_{j}^{\nu} \mathrm{d}\boldsymbol{x}^{\mu} \wedge \mathrm{d}^{1}\sigma_{i} - \left(T\sqrt{-\det\boldsymbol{g}} + \gamma_{i}\boldsymbol{s}^{i}\right) \mathrm{d}^{2}\sigma + \mathrm{d}\boldsymbol{s}^{i} \wedge \mathrm{d}^{1}\sigma_{i} \; ,$$

where $d^1\sigma_i = \iota\left(\frac{\partial}{\partial\sigma^i}\right)d^2\sigma$. Then, as usual, $\overline{\Omega}_{\mathcal{L}} = d\Theta_{\mathcal{L}} + \sigma_{\Theta_{\mathcal{L}}} \wedge \Theta_{\mathcal{L}}$, where $\sigma_{\Theta_{\mathcal{L}}} = -\gamma_i d\sigma^i$.

For a holonomic 2-multivector field $\mathbf{X}_{\mathcal{L}} = \bigwedge_{i} \left(\frac{\partial}{\partial \sigma^{i}} + x_{i}^{\mu} \frac{\partial}{\partial \mathbf{x}^{\mu}} + F_{ij}^{\mu} \frac{\partial}{\partial \mathbf{x}_{i}^{\mu}} + f_{i}^{j} \frac{\partial}{\partial \mathbf{s}^{j}} \right) \in \mathfrak{X}^{2}(\mathcal{P})$ the Lagrangian equations (3) are

$$f_i^i = L$$
 ; $T\sqrt{-\det g} \, G_{\mu
u} g^{ji} x_j^
u \gamma_i = x_i^
ho \left[rac{\partial}{\partial x^
ho} \left(\sqrt{-\det g} \, G_{\mu
u} g^{ji} x_j^
u
ight) - rac{\partial}{\partial x^\mu} \left(\sqrt{-\det g} \, G_{
ho
u} g^{ji} x_j^
u
ight)
ight] + \sqrt{-\det g} \left[G_{\mu
u} g^{ji} - G_{\mulpha} G_{eta
u} x_k^lpha x_\ell^eta \left(g^{ji} g^{k\ell} + g^{kj} g^{i\ell} - g^{ki} g^{j\ell}
ight)
ight] F_{ij}^
u + \left[rac{1}{2} \sqrt{-\det g} \, g^{ji} x_i^lpha x_j^eta rac{\partial G_{lpha
u}}{\partial x^\mu} + rac{\partial}{\partial \sigma^i} \left(\sqrt{-\det g} \, G_{\mu
u} g^{ji} x_j^
u
ight)
ight] \, .$

For the holonomic integral sections $\psi(\sigma) = \left(\sigma^a, x^{\mu}(\sigma), \frac{\partial x^{\mu}}{\partial \sigma^a}\right)$ of $\mathbf{X}_{\mathcal{L}}$, these equations become the Herglotz–Euler–Lagrange equations:

$$\begin{split} \frac{\partial s^{i}}{\partial \sigma^{i}} &= L \qquad ; \qquad T \sqrt{-\det g} \ G_{\mu\nu} g^{ji} \gamma_{i} \frac{\partial x^{\nu}}{\partial \sigma^{j}} = \frac{\partial x^{\rho}}{\partial \sigma^{i}} \left[\frac{\partial}{\partial x^{\rho}} \left(\sqrt{-\det g} \ G_{\mu\nu} g^{ji} \frac{\partial x^{\nu}}{\partial \sigma^{j}} \right) - \frac{\partial}{\partial x^{\mu}} \left(\sqrt{-\det g} \ G_{\rho\nu} g^{ji} \frac{\partial x^{\nu}}{\partial \sigma^{j}} \right) \right] \\ &+ \sqrt{-\det g} \left[G_{\mu\nu} g^{ji} - G_{\mu\alpha} G_{\beta\nu} \left(g^{ji} g^{k\ell} + g^{kj} g^{i\ell} - g^{ki} g^{j\ell} \right) \frac{\partial x^{\alpha}}{\partial \sigma^{k}} \frac{\partial x^{\beta}}{\partial \sigma^{\ell}} \right] \frac{\partial^{2} x^{\nu}}{\partial \sigma^{i} \partial \sigma^{j}} \\ &+ \left[\frac{1}{2} \sqrt{-\det g} \ g^{ji} \frac{\partial G_{\alpha\beta}}{\partial x^{\mu}} \frac{\partial x^{\alpha}}{\partial \sigma^{i}} \frac{\partial x^{\beta}}{\partial \sigma^{j}} + \frac{\partial}{\partial \sigma^{i}} \left(\sqrt{-\det g} \ G_{\mu\nu} g^{ji} \frac{\partial x^{\nu}}{\partial \sigma^{j}} \right) \right] \, . \end{split}$$

HAMILTONIAN FORMALISM

The bundle $\tau : \mathcal{P}^* \simeq J^{1*}\pi \times \mathbb{R}^2 \to \Sigma$ has adapted coordinates $(\sigma^i, x^\mu, p^i_\mu, s^i)$. The Legendre map $\mathcal{FL} : \mathcal{P} \to \mathcal{P}^*$ is

$$\mathcal{F}\mathcal{L}^*\sigma^{\pmb{i}}=\sigma^{\pmb{i}}\quad,\quad \mathcal{F}\mathcal{L}^*\pmb{x}^\mu=\pmb{x}^\mu\quad,\quad \mathcal{F}\mathcal{L}^*\pmb{p}^{\pmb{i}}_\mu=-\pmb{T}\sqrt{-\detm{g}}\,\,m{G}_{\mu
u}m{g}^{\pmb{j}m{i}}\pmb{x}^
u_{\pmb{i}}\quad,\quad \mathcal{F}\mathcal{L}^*m{s}^\mu=m{s}^\mu\;,$$

and is a diffeomorphism, since L is regular. Then, the 2-form g can be translated to \mathcal{P}^* by the push-forward of the Legendre map. Introducing $\Pi^{ij} \equiv G^{\mu\nu} p^i_{\mu} p^j_{\nu}$, the contact Hamiltonian 2–form can be written as

$$\Theta_{\mathcal{H}} = p_{\mu}^{i} \mathrm{d}x^{\mu} \wedge \mathrm{d}^{1}\sigma_{i} - H \wedge \mathrm{d}^{2}\sigma = p_{\mu}^{i} \mathrm{d}x^{\mu} \wedge \mathrm{d}^{1}\sigma_{i} + \left(\frac{1}{T}\sqrt{-\det\Pi} + \gamma_{i}s^{i}\right) \mathrm{d}^{2}\sigma ,$$

and then $\overline{\Omega}_{\mathcal{H}} = \mathrm{d}\Theta_{\mathcal{H}} + \sigma_{\Theta_{\mathcal{H}}} \wedge \Theta_{\mathcal{H}}$, where $\sigma_{\Theta_{\mathcal{H}}} = -\gamma_i \, \mathrm{d}\sigma^i$. For $\widetilde{\tau}$ -transverse 2-multivector fields $\mathbf{X}_{\mathcal{H}} = \bigwedge_i \left(\frac{\partial}{\partial \sigma^i} + F_i^{\mu} \frac{\partial}{\partial \mathbf{x}^{\mu}} + F_{i\mu}^j \frac{\partial}{\partial \boldsymbol{p}_{\mu}^i} + f_i^j \frac{\partial}{\partial \boldsymbol{s}^j} \right) \in \mathfrak{X}^2(\mathcal{P}^*)$, equations (7) are

$$\begin{split} \frac{\partial \boldsymbol{s}^{i}}{\partial \sigma^{i}} &= \frac{\sqrt{-\det \Pi}}{T} \left(1 - \Pi_{ji} \boldsymbol{G}^{\mu\nu} \boldsymbol{p}_{\mu}^{i} \boldsymbol{p}_{\nu}^{j} \right) + \gamma_{i} \boldsymbol{s}^{i} = \frac{\sqrt{-\det \Pi}}{T} \left(1 - \Pi_{ji} \Pi^{ij} \right) + \gamma_{i} \boldsymbol{s}^{i} , \\ \boldsymbol{F}_{i}^{\mu} &= -\frac{\sqrt{-\det \Pi}}{T} \Pi_{ji} \boldsymbol{G}^{\mu\nu} \boldsymbol{p}_{\nu}^{j} , \quad \boldsymbol{F}_{i\mu}^{i} &= \frac{\sqrt{-\det \Pi}}{2T} \Pi_{ji} \frac{\partial \boldsymbol{G}^{\rho\alpha}}{\partial \boldsymbol{x}^{\mu}} \boldsymbol{p}_{\rho}^{i} \boldsymbol{p}_{\alpha}^{j} + \gamma_{i} \boldsymbol{p}_{\mu}^{i} . \end{split}$$

For the integral sections $\psi(\sigma) = (\sigma^i, x^{\mu}(\sigma), p^i_{\mu}(\sigma), s^i(\sigma))$ of $\mathbf{X}_{\mathcal{H}}$, for which $F^{\mu}_i = \frac{\partial x^{\mu}}{\partial \sigma^i}$, $F^j_{i\mu} = \frac{\partial p^j_{\mu}}{\partial \sigma^i}$, and $f^j_i = \frac{\partial s^j}{\partial \sigma^i}$, the field equations become the Herglotz-Hamilton-De Donder-Weyl equations:

$$rac{\partial oldsymbol{s}^{i}}{\partial \sigma^{i}} = rac{\sqrt{-\det\Pi}}{T} \left(\mathbf{1} - \Pi_{ji} oldsymbol{G}^{\mu
u} oldsymbol{p}_{\mu}^{i} oldsymbol{p}_{
u}^{j}
ight) + \gamma_{i} oldsymbol{s}^{i} = rac{\sqrt{-\det\Pi}}{T} \left(\mathbf{1} - \Pi_{ji} \Pi^{ij}
ight) + \gamma_{i} oldsymbol{s}^{i} \,, \ rac{\partial oldsymbol{s}^{\mu}}{\partial \sigma^{i}} = -rac{\sqrt{-\det\Pi}}{T} \Pi_{ji} oldsymbol{G}^{
holpha} oldsymbol{p}_{
u}^{j} \,, \qquad rac{\partial oldsymbol{p}_{\mu}^{i}}{\partial \sigma^{i}} = rac{\sqrt{-\det\Pi}}{2T} \Pi_{ji} rac{\partial oldsymbol{G}^{
holpha}}{\partial oldsymbol{s}^{\mu}} oldsymbol{p}_{
ho}^{j} oldsymbol{p}_{lpha}^{j} + \gamma_{i} oldsymbol{p}_{\mu}^{j} \,.$$

ACKNOWLEDGMENTS

Spanish Ministry of Science and Innovation, grants PID2021-125515NB-C22, and RED2022-134301-T of AEI, Ministry of Research and Universities of the Catalan Government, project 2021 SGR 00603 Geometry of Manifolds and Applications, GEOMVAP, and "Severo Ochoa Programme for Centres of Excellence in R&D" (CEX2019-000904-S).

REFERENCES

- M. de León, J. Gaset, M.C. Muñoz-Lecanda, X. Rivas, and N. Román-Roy, "Multicontact formulation for non-conservative field theories", J. Phys. A: Math. Theor. 56(2) (2023) 025201. (https://doi.org/10.1088/1751-8121/acb575).
- M. de León, J. Gaset, M.C. Muñoz-Lecanda, X. Rivas, and N. Román-Roy, "A contact formulation of non-conservative and action-dependent field theories. Applications to physics", (In preparation) (2023).
- J. Gaset, M. Laínz, A. Mas, and X. Rivas, "The Herglotz variational principle for dissipative field theories", arXiv:2211.17058 [math-ph] (2022).