DIT Departamento de Ingeniería investigaciones Tecnológica:

ECUACIÓN DE EULER-LAGRANGE

Los problemas marcados con (*) tienen alguna dificultad adicional, no dude en consultar.

1. **Péndulo rígido ideal** [Marion (english) ex. 7.2]

Péndulo de punto de suspensión libre y péndulo doble [Landau §5 ejs. 1 y 2]

Aplique la ecuación de Euler-Lagrange para obtener las ecuaciones de la dinámica de los sistemas:

Resultado 1c:

$$\ell_1 \left(\ell_1 m_1 \ddot{\varphi}_1 + \ell_1 m_2 \ddot{\varphi}_1 + \ell_2 m_2 \sin \left(\varphi_1 - \varphi_2 \right) \dot{\varphi}_2^2 + \ell_2 m_2 \cos \left(\varphi_1 - \varphi_2 \right) \ddot{\varphi}_2 + g m_1 \sin \left(\varphi_1 \right) + g m_2 \sin \left(\varphi_1 \right) \right) = 0$$

$$\ell_2 m_2 \left(\ell_1 \sin (\varphi_1 - \varphi_2) \dot{\varphi}_1^2 - \ell_1 \cos (\varphi_1 - \varphi_2) \ddot{\varphi}_1 - \ell_2 \ddot{\varphi}_2 - g \sin (\varphi_2) \right) = 0$$

2. Plano inclinado móvil

Un bloque de masa m_1 está originalmente inmóvil sobre un plano de inclinación θ que no le presenta fricción y de masa M. Este último puede deslizar sobre la superficie horizontal que tampoco le presenta fricción alguna. Denomine con c la coordenada para la posición de este último, en la dirección y sentido indicado por la flecha; y con d la del bloque superior en el sentido descendente.

a) Obtenga la ecuación de Euler-Lagrange para
$$c$$
 y aquella para d .
Resultado: $M\ddot{c} - m_1 \cos(\theta) \ddot{d} + m_1 \ddot{c} = 0$ $m_1 \left(g \sin(\theta) + \cos(\theta) \ddot{c} - \ddot{d} \right) = 0$

Habrá notado que no podría responder a una pregunta como "De soltar el bloque más pequeño, ¿qué aceleración tiene el plano?", pues obtuvo un sistema de dos ecuaciones diferenciales ligadas. En la clase siguiente aprenderá a resolver el sistema usando SymPy.

3. Soporte de péndulo sobre un plano inclinado

Un soporte de masa m_1 desliza por un plano inclinado inmóvil con un ángulo θ sin que este le presente fricción. Un péndulo de longitud ℓ y masa m cuelga del soporte describiendo un ángulo φ con la vertical. Es soporte se extiende a un costado del plano permitiendo al péndulo colgar libremente sin interferencia de este último. Preste particular atención con la dirección que la figura asigna como positiva para φ .

a) Encuentre las ecuaciones para la dinámica. Resultado:

$$\ell m \left(-\ell \ddot{\varphi} - g \sin(\varphi) + \cos(\theta - \varphi) \ddot{d} \right) = 0$$

$$\ell m \sin(\theta - \varphi)\dot{\varphi}^2 + \ell m \cos(\theta - \varphi)\ddot{\varphi} + gm \sin(\theta) + gm_1 \sin(\theta) - m\ddot{d} - m_1 \ddot{d} = 0$$

4. Resorte enrollado en un brazo de una "T"

Una pieza rígida en forma de T consiste en una larga varilla soldada perpendicularmente a otra de longitud ℓ que pivotea en torno a un origen. La T gira sobre un plano horizontal con velocidad angular constante ω . Una partícula de masa m muy superior a la de la T, por la que esta última es despreciable, puede desplazarse libremente en la primera varilla y está conectada a la intersección de ambas por un resorte de constante elástica k y longitud natural nula.

Mecánica Analítica Computacional

- a) Encuentre una ecuación para la dinámica en función de d, la distancia de la partícula a la intersección. Resultado: $-\omega^2 m d + k d + m \ddot{d} = 0$
- b) (*) Existe un "valor especial" para ω . ¿Cuál sería y que implicaría para d(t)?