Drugs Acting in the Kidney; Diuretics

PHC 721

Winter 2022

Agnieszka Z. Balkowiec

Common Cardiovascular Health Conditions & Treatment Goals

- 1. Primary (a.k.a. Essential, Idiopathic) Hypertension
- **↓** Systemic Vascular Resistance (SVR) & **↓** Extracellular Fluid Volume (EFV)
- 2. Myocardial Ischemia/Infarction
- ↑ Coronary Blood Flow, ↓ O₂ Demand, Statins, Anti-thrombotics
- 3. Congestive Heart Failure
- ↑ Contractility, ↓ SVR, ↓ EFV, ↓ Pathological Ventricular Remodeling
- 4. Cardiac arrhythmias
- **↓** Automatic Rhythms

Peripheral circulation:

Vasodilation (Blockers: α_1 , Ca²⁺ ch, RAA; Direct vasodilators) \downarrow Blood volume (Diuretics)

Coronary arteries:

Vasodilation (Organic Nitrates; Blockers: Ca²⁺ ch)

↓ Heart Rate /↓Contractility (Blockers: β adrenergic, Ca²⁺ ch)

Cardiomyocytes:

- ↑Contractility (Cardiac Glycosides; β₁ adrenergic Agonists)
- Ventricular Remodeling (Blockers: AT₁ receptors)

Conducting System:

- Conduction Velocity/Excitability/Refractoriness (Blockers: Na⁺ ch (I), β₁ (II), K⁺ ch (III), Ca²⁺ ch (IV)

$V = I \times R$

[Mean Arterial Pressure] = [Cardiac Output] x [Systemic Vascular Resistance]

Genesis of Pulmonary and Peripheral Edema

- ↑ Hydrostatic pressure (e.g., Venous Congestion due to Heart Failure)
- ↓ Plasma colloid osmotic (oncotic) pressure (e.g., Hepatic Cirrhosis, Nephrotic Syndrome)

↑ Water in the Interstitial Space: EDEMA

Intervention: ↓ Extracellular Fluid Volume

- Left Heart Failure: Pulmonary Edema
- Right (& Left) Heart Failure: Peripheral Edema

Diuretics: An Overview

<u>Diuretics</u> increase the rate of urine flow and the rate of Na⁺ excretion (natriuresis). <u>Primary clinical application</u> is to reduce volume of extracellular fluid by:

Diuretics: An Overview

- 1. Inhibitors of Carbonic Anhydrase (Acetazolamide)
- 2. Osmotic Diuretics (Mannitol)
- 3. Loop Diuretics (Furosemide)
- 4. Thiazide Diuretics (Hydrochlorothiazide)
- 5. K⁺-Sparing Diuretics (*Amiloride*)
 - 6. Antagonists of Aldosterone (Spironolactone)

Limited usefulness as diuretics

Indications (examples):

- To correct for metabolic alkalosis
- Altitude illness/Acute mountain sickness (prophylaxis; symptomatic relief)

2. Osmotic Diuretics

Mechanism of Action:

 \uparrow osmolarity of plasma \Rightarrow \uparrow osmolarity of tubular fluid freely filtered in the glomerulus/largely non-reabsorbable

Relatively inert pharmacologically (does not react with tissues)

Indications:

- to restore osmotic equilibrium after hemodialysis
- to decrease intraocular pressure (acute attacks of glaucoma)
- to reduce cerebral edema (neurosurgery)

Side effects/Contraindications:

- Pulmonary edema / heart failure, pulmonary congestion

3. Loop Diuretics

Mechanism of Action:

Inhibition of Na+-K+-2Cl- symport in Thick Ascending Limb of the Loop of Henle (TALoLH)

Salt transport in TALoLH at a standstill!

The high efficacy (high-ceiling diuretics) is due to:

1) a significant (25%) contribution of TALoLH to reabsorption of the filtered Na⁺ load;

2) nephron segments past TALoLH are not capable of rescuing the solutes rejected by TALoLH

Indications:

- A widely used class of diuretics (e.g. congestive heart failure)
- Particularly beneficial for treatment of pulmonary edema (\uparrow venous capacitance $\Rightarrow \downarrow$ left ventricular filling pressure)
- Less useful for hypertension Tx (short elimination half-life),
 compared to thiazide-type diuretics

Mechanism of Action:

Inhibition of Na⁺-Cl⁻ symport in the Distal Convoluted Tubule

Tubular

Lumen

Distal Convoluted

Tubule

Interstitial

Space

- Na

 \Rightarrow \uparrow NaCl excretion

Indications:

- Hypertension: the best initial therapy in uncomplicated cases; the most frequently used class of antihypertensive agents

 Edema in Congestive Heart Failure (due to ↑ hydrostatic pressure), Hepatic Cirrhosis (due to ↓ oncotic pressure), and Kidney diseases with preserved GFR (>30 mL/min)

Dental Implications

- NSAIDs blunt the hypotensive effect of thiazide diuretics.
- Triple therapy with an NSAID, plus diuretic and an ACE inhibitor (e.g. Enalapril) or AT_1 receptor blocker (e.g. Losartan) may lead to acute renal failure (nephrotoxicity)

5. K⁺-Sparing Diuretics: Na⁺ channel inhibitors

Rx Only

NDC 0574-0292-01

Amiloride HCI Tablets, USP 5 mg

(Anhydrous equivalent)

100 Tablets

Mechanism of Action:

Inhibition of Na⁺ channels in epithelial cells of the Late Distal Tubule
 & Collecting Duct
 ⇒ ↓ Na⁺ reabsorption ⇒ smal/↑ NaCl excretion

Hydrochlorothiazide 50 mg.

Indications:

- Rarely used alone (modest natriuretic effect)
- Usually applied for their potassium sparing (anti-kaliuretic) actions together with other diuretics

6. K⁺-Sparing Diuretics: Antagonists of Aldosterone

Mechanism of Action:

- Blockade of mineralocorticoid/aldosterone receptors in epithelial cells of Late Distal Tubule & Collecting Duct ⇒ ↓ Na⁺ channel expression and activity ⇒ ↓ NaCl transport ⇒ ↑ NaCl excretion
- Inhibition of K+ secretion, otherwise driven by Na⁺ influx to epithelial cells and the resulting trans-epithelial voltage (lumen-negative)

Indications:

- Usually co-applied with thiazide or loop diuretics because of the potassium-sparing characteristic (Tx of edema & hypertension)
- Resistant hypertension due to Primary Aldosteronism

Angiotensinogen

Angiotensin I

Angiotensin II

VASOPRESSIN NJECTION, USP Synthetic 20 Units/1ml 1 ml MULTIPLE DOSEV FOR IM OR SC USE OF AMERICAN REGENT LABORATORIES, INC. SHRILEY, NY 1196

Anti-Diuretics

Vasopressin (Anti-Diuretic Hormone, ADH, AVP): a non-selective activation of V_1 and V_2 receptors, with strong effects on vasoconstriction and GI smooth muscle contraction (V_1 receptor-mediated).

<u>Indications</u>: vasodilatory shock, visceral bleeding, ileus.

Vasopressin V₁R: Blood vessels

Vasopressin V₂R: Collecting Duct

Desmopressin: preferential activation of V_2 receptors in the Collecting Duct ($\Rightarrow \uparrow$ aquaporin 2 (AQ_2) channel insertion to the apical membrane \Rightarrow \uparrow permeability of water from the collecting duct)

<u>Indications:</u> polyuria/polydipsia in *central* Diabetes Insipidus (insufficient ADH supply by the pituitary); Basolateral primary nocturnal enuresis

Dental Implications:

NSAIDs and Morphine potentiate the anti-diuretic effects \Rightarrow risk of water intoxication (contraindicated in hypertension and heart failure)