

Regression and Demand Forecasting

Hakim Qahtan
Department of Information and Computing Sciences
Utrecht University

Utrecht University

Supervised Learning

Regression vs. Classification

- Regression
 - Algorithms attempt to estimate the mapping function f from the input variables x to numerical or continuous output variables y
 - Given a dataset about house prices predict the price of a given house
- Classification
 - Algorithms attempt to estimate the mapping function f from the input variables x to discrete or categorical output variables y
 - Houses dataset predict if the selling price is more or less than the recommended price

6

Utrecht University

7

Regression

Regression

- Given the values of inputs *X* and the corresponding output *Y* belongs to the set of real values *R*, predict output accurately for new input.
- Formally:
 - Given:
 - A set of N observations $\{x_n\}_{n=1\dots N}$ with their corresponding target values $\{y_n\}_{n=1\dots N}$
 - Goal:
 - Predict the value of y_{n+1} for a give x_{n+1}
- Predictive technique where the target variable to be estimated is continuous

Utrecht University

8

Q

Regression (Cont.)

• Let D denote a dataset containing N observations,

$$D = \{(x_i, y_i) | i = 1, 2, ..., N\}$$

- x_i corresponds to the values of attributes of the i-th observation.
 - These are called **explanatory variables** and can be discrete or continuous.
- y_i corresponds to the target variable.
- Target: find a function that can minimize the error between the predicted and the actual values
 - The error can be measured as the sum of absolute or squared error

sum absolute error(SAE) =
$$\sum_{i} |y_i - f(x_i)|$$

sum squared error (SSE) = $\sum_{i} (y_i - f(x_i))^2$

Utrecht University

q

What is Regression?

- Regression: making predictions about real-world quantities.
 - What would be the price of a product after producing a new version?
 - How much the discount will affect the sales volume?
 - How much the weather will affect the sales of the restaurants?
 - How many students are expected to show up in a lecture?
 - ...
- Remember: regression is a supervised machine learning model

Regression – More Examples

ENRICHMENT ENRICHMENT

Continuous

Variables

- Processes, memory → Power consumption _
- Protein structure → Energy
- Heart-beat rate, age, speed, duration → Fat ←
- Oil supply, consumption, etc. → Oil price
- ...
- Definition: Regression is the task of learning a target function f that
 maps each attribute set x into a continuous-valued output y.

Utrecht University

11

11

Regression – Examples

• Predict the value of y_{n+1} for a give x_{n+1}

Utrecht University

Simple Linear Regression (Cont.)

- The above optimization problem can be solved by:
 - 1. Taking the partial derivatives of SSE with respect to ω_0 and ω_1
 - 2. Setting $\frac{\partial SSE}{\partial \omega_0}$ and $\frac{\partial SSE}{\partial \omega_1}$ to 0
 - 3. Solving the system of linear equations

Since:
$$SSE = \sum_i (y_i - \omega_0 - \omega_1 x_i)^2$$

Then $\frac{\partial SSE}{\partial \omega_0} = -2 \sum_i (y_i - \omega_0 - \omega_1 x_i) = 0$
And $\frac{\partial SSE}{\partial \omega_1} = -2 \sum_i x_i (y_i - \omega_0 - \omega_1 x_i) = 0$

Utrecht University

15

Simple Linear Regression (Cont.)

• The equations can be summarized by the normal equation:

$$\begin{pmatrix} N & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \end{pmatrix} {\omega_{0} \choose \omega_{1}} = \begin{pmatrix} \sum_{i} y_{i} \\ \sum_{i} x_{i} y_{i} \end{pmatrix}$$

Utrecht University

Example

• Consider the following dataset

x	1	2	2.5	2	4	4	4	4.5	4.7	5	5	6	6	7
y	7	4	9	8	9	8	9	7	11	11	10	13	14	13

$$\sum_{i} x_{i} = 57.7 \qquad \sum_{i} x_{i}^{2} = 276.59$$

$$\sum_{i} y_{i} = 133 \qquad \sum_{i} x_{i}y_{i} = 598.7$$

Utrecht University

17

17

Example (Cont.)

x	1	2	2.5	2	4	4	4	4.5	4.7	5	5	6	6	7
y	7	4	9	8	9	8	9	7	11	11	10	13	14	13

$$\sum_{i} x_{i} = 57.7 \qquad \sum_{i} x_{i}^{2} = 276.59 \qquad \sum_{i} y_{i} = 133 \qquad \sum_{i} x_{i} y_{i} = 598.7$$

$$\begin{pmatrix} 14 & 57.7 \\ 57.7 & 276.59 \end{pmatrix} {\omega_{0} \choose \omega_{1}} = {133 \choose 598.7}$$

By solving the equations, we get:

 $\omega_0 pprox 4.13 \text{ and } \omega_1 pprox 1.3$

Hence:

$$f(x_i) = 1.3 x_i + 4.13$$

Utrecht University

18

Simple Linear Regression (Cont.)

• A general solution for the normal equation can be found as follows:

$$\omega_o = \bar{y} - \omega_1 \bar{x}$$

and

$$\omega_1 = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2}$$

where

 \bar{x} , \bar{y} are the mean (average) values for the vectors x, y

Utrecht University

10

Multiple Linear Regression

ENRICHMENT FOR ALL

- Fitting d-dimensional hyperplane to the d variables
- Simple, yet powerful
- If the relation between the response and independent variables is nonlinear, we can use non-linear transformation of the variables
- E.g. x_i^2 instead of x_i

Utrecht University

Polynomial Regression

- Suitable when the relationship between the response and the independent variables is non-linear
- Higher order polynomials complicate the model
- · May cause model overfitting
- Increase the computational complexity
- Case Study: Predicting the price of a new housing market – check the provided notebook

Utrecht University

21

Linear Regression in Python from sklearn.linear_model import LinearRegression import matplotlib df = pd.read_csv('sample_data/diabetes_data.csv') matplotlib.rcParams.update({'font.size': 18}) x = np.array(df["BMXWAIST"]).reshape(-1,1) y = np.array(df["BMXWT"]).reshape(-1,1) mdl = LinearRegression() mdl.fit(x, y) test = np.arange(min(x), max(x)+4).reshape(-1,1) test_hat = mdl.predict(test)

Decisions that Require Forecasting

- What products to produce?
- How many people to hire?
- How many units to purchase?
- How many units to produce?
- How many items to order?
- And so on.....

Utrecht University

Common Characteristics of Forecasting

- Forecasts are rarely perfect
- Forecasts are more accurate for aggregated data than for individual items
- Forecast are more accurate for shorter than longer time periods

27

Methods of Forecasting the Trend

- Naïve Forecasting
- Simple Mean
- Moving Average
- Weighted Moving Average
- Exponential Smoothing
- Regression models

Utrecht University

29

Forecasting the Trend – Example

- Determine forecast for periods 11
 - Naïve forecast
 - Simple average
 - 3- and 5-period moving average
 - 3-period weighted moving average with weights 0.5, 0.3, and 0.2
 - Exponential smoothing with alpha=0.2 and 0.5

Utrecht University

Naïve Forecasting

 Next period's forecast = previous period's actual

$$\hat{y}_{t+1} = y_t$$

 \hat{y}_t represents the predicted value at time t

y represents the actual value at time t

Period	Orders	Naïve Forecast	ENRICHMENT FOR ALL
1	122		
2	91	122	
3	100	91	
4	77	100	•
5	115	77	
6	58	115	
7	75	58	
8	128	75	
9	111	128	
10	88	111	
11		88	31

31

Utrecht University

Simple Average

 Next period's forecast = average of previously overserved data

$$\hat{y}_{t+1} = \frac{y_1 + y_2 + \dots + y_t}{t}$$

Utrecht University

Moving Average (MA)

 Next period's forecast = simple average of the last k periods

$$\hat{y}_{t+1} = \frac{y_{t-k+1} + y_{t-k+2} + \dots + y_t}{k}$$

- Also called Rolling Window
- A smaller k makes the forecast more responsive
- A larger k makes the forecast more stable

			ENRICHMEN FOR ALL	ıΤ
Period	Orders	MA (k = 3)	MA(k = 5)	İ
				İ
1	122			
2	91			
3	100			
4	77	104		
5	115	89		
6	58	97	101	
7	75	83	88	
8	128	83	85	
9	111	87	91	000000
10	88	105	97	av i
11		109	92	33
-				44 mm (8)

Utrecht University

33

Weighted Moving Average

 Next period's forecast = weighted average of the last k periods

$$\hat{y}_{t+1} = c_1 y_{t-k+1} + \dots + c_k y_t$$

With

$$c_1 + c_2 + \dots + c_k = 1$$

We take $c_1 = 0.2$, $c_2 = 0.3$ and $c_3 = 0.5$

d		

Period	Orders	Weighted Moving Average (k = 3)
1	122	
2	91	
3	100	
4	77	102
5	115	87
6	58	101
7	75	79
8	128	78
9	111	98
10	88	109
11		103

Utrecht University

Exponential Smoothing

WEE

 Next period's forecast = weighted average of the previous reading and the history

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_t$$
$$\hat{y}_3 = 0.2 * 91 + 0.8 * 122 = 116$$

- A smaller α makes the forecast more **stable**
- A larger α makes the forecast more **responsive**

Period	Orders	Exponential Smoothing(α = 0.2)	Exponential Smoothing(α = 0.5)
1	122		
2	91		
3	100	116	107
4	77	113	104
5	115	106	91
6	58	108	103
7	75	98	81
8	128	93	78
9	111	100	103
10	88	102	107
11		99	98

25

Utrecht University

Regression Models

- Training dataset
 - Include the set of features (explanatory variables) and the target variable
- Train the regression model
 - Find the best estimation of the parameters
 - $f(x) = w_0 + w_1 x_1 + \dots + w_n x_n$ where $x = (x_1, x_2, \dots, x_n)$
- Predict the value of the target variable for the new incoming record

Utrecht University

Forecast Accuracy

- ullet Tests of forecast accuracy are based on the difference between the forecast of the variables' values at time t and the actual value at the same time point t
- The closer the two to each other ⇒ the smaller the forecast error,
 i.e. better forecast

Mean Squared Error (MSE)

• The MSE statistic is defined as:

$$MSE = \frac{\sum_{t=T_1}^{T} (y_t - \hat{y}_t)^2}{T - T_1 + 1}$$

- *T* is the total number of samples in the time series
- T_1 the index of the first value to be forecast
- \hat{y}_t is the predicted value at time t
- $\bullet \; y_t$ is the actual value at time t
- Another popular metric: Root Mean Squared Error (RMSE) = \sqrt{MSE}

Utrecht University

11

Forecast Accuracy – More Metrics

• The Mean Absolute Error (MAE):

$$MAE = \frac{\sum_{t=T_1}^{T} |(y_t - \hat{y}_t)|}{T - T_1 + 1}$$

- It is also known as Mean Absolute Deviation (MAD)
- Tracking Signal (TS)

$$TS = \frac{\sum_{t=T_1}^{T} (y_t - \hat{y}_t)}{MAE}$$

R-Square

• R-Square (R^2) is defined as:

$$R^{2} = 1 - \frac{\sum_{i} (f(x_{i}) - y_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}, \qquad \hat{y}_{i} = f(x_{i})$$

- \bullet R^2 close to 1 means that the data fits well to the regression line
- $\sum_{i} (f(x_i) y_i)^2$ is called the residual sum of squares
- $\sum_{i} (y_i \bar{y})^2$ is called the total sum of squares.

Utrecht University

43

R-Square

• When adding more explanatory variables, the value of \mathbb{R}^2 increases so it is adjusted using the formula

Adjusted
$$R^2 = 1 - \left(\frac{N-1}{N-d-1}\right)(1-R^2)$$

where N is the number of data points and d+1 is the number of parameters of the regression model

Reading Material for Interested Students

• Introduction to Data Science, Ch 6.

<u>Regression Analysis</u>

Data Mining: Concepts-and-Techniques
 Ch 6 (§6.5). Linear Classifiers

Acknowledgement: parts of the material were prepared by Xiangliang Zhang

45

Utrecht University

