Problem 1. Probability distribution of a Quantum Harmonic Oscillator

Consider a quantum harmonic oscillator in one dimension interacting with a thermal environment. This could be, for example, a single atom attached via a spring-like bond to a large stationary molecule. The vibrational frequency of the oscillator is $\omega_0 = \sqrt{k_{\rm sp}/m}$.

Recall that the energy levels of a quantum harmonic oscillator are

$$\epsilon_n = \left(n + \frac{1}{2}\right)\hbar\omega_0\tag{1}$$

with $n = 0, 1, 2, ... \infty$. Here $\hbar \omega_0$ is one discrete unit of quantized vibrational energy. The integer n is known as the *vibrational* quantum number – the larger is n, the larger is the energy (in units of $\hbar \omega_0$), and the more the atom is vibrating. For large n the energy is nearly continuous and the motion can be treated classically. A plot of the energy levels and the wave-functions are shown in Fig. 1.

Since only differences in energies are physically important, we can shift what we call "zero energy" downward by $\frac{1}{2}\hbar\omega_0$ and write the energy levels as

$$\epsilon_n = n\hbar\omega_0 \tag{2}$$

The probability to find the oscillator in the n-th vibrational state is

$$P_n = \frac{1}{Z}e^{-\epsilon_n/kT} = \frac{1}{Z}e^{-n\hbar\omega_0/kT} \tag{3}$$

Figure 1: Energy levels $\epsilon_n \equiv E_n = (n + \frac{1}{2})\hbar\omega_0$ and wave functions for the first six levels of the quantum harmonic oscillator.

Figure 2: Probability for the oscillator to have n quanta of vibrational energy $\hbar\omega_0$ for different values $\hbar\omega_0/kT$.

where Z is a normalizing constant. Z is known as the partition function in English, and the letter Z is short for Zustandsumme in German (meaning "sum over states").

- (a) By normalizing the probability P_n , show that $Z = \sum_{n=0}^{\infty} e^{-n\beta\hbar\omega_0}$. I find the German name descriptive, because, as you see, it is a "sum over states".
- (b) Noting that $e^{-n\hbar\omega_0/kT} = u^n$ with $u = e^{-\hbar\omega_0/kT}$, evaluate the sum, and determine the explicit form for Z and P_n . A plot of P_n for a variety of $\hbar\omega_0$ is shown in Fig. 2. Describe qualitatively what this plot is telling you physically. For each of the three curves in Fig. 2, give a rough graphical estimate for the mean vibrational quantum number.

You should find

$$P_n = e^{-n\hbar\omega_0/kT} (1 - e^{-\hbar\omega_0/kT}) \tag{4}$$

(c) The first vibrational excited state (n=1) of diatomic hydrogen H_2 is excited from the ground state (n=0) by a photon of wavelength of $\lambda_0 = 2270 \,\mathrm{nm}$. This wavelength is typical of molecular vibrations – is the photon, if rared, visible, or uv? Express the vibrational unit of energy $\hbar\omega_0$ in eV. By looking at Fig. 2, give a rough estimate for the temperature when the mean number of vibrational quanta of energy in the oscillations of H_2 becomes of order unity.

Please do not use constants like $\hbar = 1.05 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$ and $k_B = 1.38 \times 10^{-23} \,\mathrm{J/^\circ K^{-1}}$, but rather try to put it in physical terms. For instance use $\hbar c = 197 \,\mathrm{eV}\,\mathrm{nm}$, and $k_B T \simeq 1/44 \,\mathrm{eV}$ at freezing 273 °K. A summary of constants you will need for the course are given on the website.

Discussion: I find $T \simeq 6000^{\circ}$ K. Indeed this is about right. At room temperatures $(T = 300 \,^{\circ}\text{K})$ diatomic molecules translate and rotate but do not vibrate significantly. And so¹, $\langle \epsilon \rangle = \frac{5}{2}kT$ and $C_p^{1\text{ml}} = \frac{7}{2}R$ as seen in the figure below for the specific heat of H_2 . At higher temperatures (at around 1000°K) they begin to vibrate, and the $\frac{5}{2}kT$ estimate for the molecule's energy is no longer valid. Much above this temperature the molecule begins to break apart as the number of vibrational quanta gets too large (the dashed line). The following figure shows the specific heat of H_2 gas. As we will discuss fully later, the increase increase starting at around 1000°K reflects the fact vibrational degrees of freedom becoming "active", i.e. this means that the average n is becoming significantly larger than zero.

¹You should be able to explain the rest of this sentence. Ask me or look in the course notes if you can't!

Probability of a Quantum Harmonic Oscillator

a) We have

$$P_n = \int e^{-\beta E_n} = e^{-n\hbar\omega_0 \beta}$$
 then $\sum_{n=1}^{\infty} P_n = 1$
So multiply $b \neq 1$

$$\sum_{n} Z P_{n} = Z \quad and \quad thus \qquad \sum_{n} e^{-n \hbar \omega_{n} \beta} = Z$$

$$\sum_{n} e^{-n \hbar \omega_{b} \beta} = 2$$

b) We use
$$u = e^{-\beta \hbar \omega_b}$$
 so

$$\frac{2}{Z} = \sum_{n=0}^{\infty} (e^{-\beta \hbar \omega_0})^n = \sum_{n=0}^{\infty} u^n = 1 + u + u^2 + \dots$$

$$= 1 \Rightarrow Z = 1$$
 and $P_n = e^{-\beta \hbar \omega_n} (1 - e^{-\beta \hbar \omega_n})$

The graphs show the probability of the oscillator vibrating with n quanta of energy hwo. At high T two/kT << 1 then there is a significant probability, that the oscillator will have more than one quanta of energy.

Problem 2. Paramagnets from the canonical ensemble

A primer/reminder on magnets and magnetic materials

Basic magnetism we need in this course: If I have a coil of wire carrying a current, it has a magnetic dipole moment defined as²:

$$\vec{\mu} \equiv \mu_0 I \vec{A} \ , \tag{5}$$

where $|\vec{A}|$ is the area of the loop. The direction of the area vector is normal to the face of the loop (see below), according to the right hand rule. You can think of a current carrying loop as small magnet (or compass needle) with north pole and south pole. $\vec{\mu}$ is aligned with the north pole of the magnet and its magnitude gives the strength of the magnet.

Figure 3: An explanation of magnetic moments.

When this coil is placed into a magnetic field \vec{B} , the magnetic moment (or compass needle) wants to align with the magnetic field. This is due to the net torque on the current carrying wire, ultimately produced by the magnetic forces on the wire, i.e. $F = I\ell B$. The potential energy of the current carrying loop is³

$$U_{\rm dip} = -\vec{\mu} \cdot \vec{B} = -\mu B \cos \theta \,, \tag{6}$$

 $^{^{-2}\}mu_0$ is the vacuum permeability (or magnetic constant), $\mu_0 = 4\pi \times 10^{-7} \text{H/m}$, and is not related to the magnetic dipole moment.

³We use U_{dip} for the potential energy of one magnetic dipole moment, e.g. from one atom. U is reserved for the internal energy of the entire paramagnet, i.e. N atoms (see above).

where the angle θ is between the magnetic dipole moment and the magnetic field (see below).

(a) Qualitatively, why is there a minus is in this equation? Using Fig. 3 as a guide, draw a coil of wire with the lowest potential energy and highest potential energy.

Paramagnets (lots of little magnets): In a paramagnetic substance, you should have a picture where each atom in the substance, can be treated as a tiny coil of wire with magnetic moment $\vec{\mu}$. The substance as a whole will not be magnetized, because the magnetic moments all point in all random directions, and cancel each other out, see Fig. 4(a). In math, the total magnetization \vec{M} , which is a sum of the magnetic moments, is approximately zero⁴

$$\vec{M} = \sum_{i} \vec{\mu}_i \simeq 0. \tag{7}$$

This sum is over all the atoms with $\vec{\mu}_i$ being the magnetic moment of the *i*-th atom. When a strong magnetic field is applied, as is Fig. 4(b), there is a preference for the atoms to align with the magnetic field, and the magnetization of the substance will be non-zero, i.e. there is a net north pole and south pole from the sum of moments. This magnetization of the substance can easily be measured, heuristically by bring a compass needle close to the substance. In general the system the system will be between (a) and (b), i.e. partially aligned.

Figure 4: An explanation paramagnets.

⁴A paramagnetic substance is different from your kitchen magnet. In the kitchen magnet the magnetic moments remain aligned even without the magnetic field.

Our goal in this course is to calculate how the magnetization depends on the temperature and applied magnetic field, i.e. to find

$$M(T,B), (8)$$

which measures the degree of partial alignment in the system. At high temperatures the atoms are more likely to point in random directions and the magnetization is small (Fig. 4(a)). Similarly, when the magnetic field is weak, the magnetization is small, since there is nothing to align the moments. At small magnetic fields we can make a Taylor series expansion, noting that at zero magnetic field we must have no magnetization, and thus

$$M \simeq \frac{\partial M}{\partial B} B \equiv \chi(T) B$$
. (9)

Here we defined the "susceptibility"

$$\chi(T) \equiv \frac{\partial M}{\partial B} \,, \tag{10}$$

which records how much magnetization you get per magnetic field.

Since the magnetization also vanishes at high temperature, one would expect that at high temperature

$$\chi(T) \propto \frac{1}{T},$$
(11)

This is known as the Curie Law and is seen in most paramagnetic materials.

(b) Is the magnetization as defined here an intensive or extensive quantity? Explain.

The First Law for Magnets:

If the magnetic field is increased and I do work, then the potential energy of each atom is increased (from Eq. (6))

$$dU_{\rm dip} = -\vec{\mu} \cdot d\vec{B} \,, \tag{12}$$

Assuming that no heat flows into or out of the magnet (adiabatically), we can sum over all of the atoms, and the total change in the energy U of the magnet is

$$dU = -\sum_{i} \vec{\mu}_{i} \cdot d\vec{B} = -\vec{M}(T, B) \cdot d\vec{B}.$$
(13)

In general, heat will flow in and out of the magnet and we have then

$$dU = dQ_{\rm in} - \vec{M}(T, B) \cdot d\vec{B}, \qquad (14)$$

which is analogous to

$$dU = dQ_{\rm in} - pdV. (15)$$

To summarize the work done on the system (or dW_{in}) by increasing the magnetic field by dB is

$$dW_{\rm in} = -\vec{M} \cdot d\vec{B} \,. \tag{16}$$

The work done by the system is minus this $dW_{\text{out}} = -dW_{\text{in}}$

Problem:

In a model of a paramagnet, there are N independent atoms. Each atom can be in one of two spin states: "up" or "down" (see below). We use N_{\uparrow} to notate the number of up spins and N_{\downarrow} for down spins (see Fig. 5).

The magnetic moment of each atom is proportional to its spin and has magnitude μ . Thus the magnetic moment the *i*-th atom is $\vec{\mu}_i = \pm \mu$, with the sign indicating whether the magnetic moment points up or down. The magnetization of the magnet, which is a sum of the magnetic moments of the atoms, is thus proportional to the difference in up versus down spins, $M \equiv \mu(N_{\uparrow} - N_{\downarrow})$.

A magnetic field, B, points in the z direction, and the spins tend to align with this field. The energy of an up spin is (from Eq. (6)) $\epsilon_{\uparrow} = -\mu B$, where μ is the atom's magnetic moment. On the other hand, the energy of a down spin is $\epsilon_{\downarrow} = +\mu B$. The reason why up spins have lower energy than down spins, is that up spins are aligned with the magnetic field, while the down spins are aligned opposite to the field.

Figure 3.6. A two-state paramagnet, consisting of N microscopic magnetic dipoles, each of which is either "up" or "down" at any moment. The dipoles respond only to the influence of the external magnetic field B; they do not interact with their neighbors (except to exchange energy). Copyright ©2000, Addison-Wesley.

Figure 3.7. The energy levels of a single dipole in an ideal two-state paramagnet are $-\mu B$ (for the "up" state) and $+\mu B$ (for the "down" state). Copyright ©2000, Addison-Wesley.

Figure 5: (a) A visualization of the paramagnet (Schroeder). (b) The energy levels of a paramagnet (Schroeder).

(c) The hyperbolic cosine, sine, and tangent are defined by

$$\cosh(x) \equiv (e^x + e^{-x})/2 \tag{17}$$

$$\sinh(x) \equiv (e^x - e^{-x})/2 \tag{18}$$

$$\tanh(x) \equiv \frac{\sinh(x)}{\cosh(x)} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$
 (19)

and arise frequently in stat mech and quantum mechanics. Sketch these functions and show that the Taylor series expansion of $\tanh(x)$ is $\tanh(x) \simeq x - x^3/3$.

(d) Use the canonical ensemble to show that the magnetization can be written

$$M = N\mu \tanh(\mu B/kT), \qquad (20)$$

and that the energy is

$$U = -N\mu B \tanh(\mu B/kT). \tag{21}$$

Using the Taylor expansion of the previous part show that at small magnetic fields the magnetization is proportional to the applied magnetic field at small field

$$M \simeq \chi(T)B$$
 with a proportionality constant $\chi(T) \equiv \frac{N\mu^2}{kT} \propto \frac{1}{T}$, (22)

and that

$$U \simeq -\chi(T)B^2 \tag{23}$$

The proportionality constant $\chi(T)$ is known as the magnetic susceptibility. The fact that magnetization is inversely proportional to the temperature is known as the Curie Law. A comparison of the Curie Law and the $\tanh(x)$ form to experimental data on the magnetization of paramagnets is shown below. Answer the following:

- (i) Qualitatively why would one expect the magnetization to disappear at high temperatures?
- (ii) When is the Curie Law and the Taylor series expansion valid, i.e. what conditions should be satisfied by the magnetic field and temperature for its validity? Do you see deviations from the Curie Law in comparison with experiment in the right place? Explain.
- (e) Consider a paramagnet maintained at temperature T by some temperature regulatory system as the magnetic field is changed. The magnetic field is increased from B=0 up to B_{max} . Use the high temperature approximations of (b) (where $M \simeq \chi(T)B$ and $U=-\chi B^2$) to compute the heat flow into and or out of the system as B is increased to B_{max} .

Hint: Use the first law. You should find, $Q_{\rm in}=-\chi(T)B_{\rm max}^2/2$ so heat flows out of the magnet.

Figure 3.12. Experimental measurements of the magnetization of the organic free radical "DPPH" (in a 1:1 complex with benzene), taken at B=2.06 T and temperatures ranging from 300 K down to 2.2 K. The solid curve is the prediction of equation 3.32 (with $\mu=\mu_{\rm B}$), while the dashed line is the prediction of Curie's law for the high-temperature limit. (Because the effective number of elementary dipoles in this experiment was uncertain by a few percent, the vertical scale of the theoretical graphs has been adjusted to obtain the best fit.) Adapted from P. Grobet, L. Van Gerven, and A. Van den Bosch, Journal of Chemical Physics 68, 5225 (1978). Copyright ©2000, Addison-Wesley.

Solution

(a) The lowest energy state is when the magnetic moment is aligned with the magnetic field, i.e. $-\vec{\mu} \cdot \vec{B} \propto -\cos \theta$ is lowest when $\theta = 0$. The coil with the lowest/highest energy is like Fig. 6, but the arrow $\vec{\mu}$ points directly up/down respectively.

Figure 6: An explanation of magnetic moments.

(b) The Magnetization is a sum of all atoms

$$\vec{M} = \sum_{i} \vec{\mu}_{i} \tag{24}$$

This increases with the number of atoms and thus is extensive.

(c) The Taylor series for sinh(x) and cosh(x) follows from that of exp(x)

$$\sinh(x) = x + \frac{1}{3!}x^3 + O(x^5) \tag{25}$$

$$\cosh(x) = 1 + \frac{1}{2!}x^2 + O(x^4) \tag{26}$$

This also follows sin and cossine using $\sinh(x) = -i\sin(ix)$ and $\cosh(x) = \cos(ix)$

Then

$$\tanh(x) = \frac{x + \frac{1}{6}x^3}{1 + \frac{1}{2}x^2} \simeq (x + \frac{1}{6}x^3)(1 - \frac{1}{2}x^2) \simeq x + \frac{1}{6}x^3 - \frac{1}{2}x^3 + O(x^4) \simeq x - \frac{x^3}{3}$$
 (27)

(d) The probability of being up or down is just like the two state system with energies $\epsilon_{\uparrow} = -\mu B$ and $\epsilon_{\downarrow} = +\mu B$. The partition function is

$$Z(\beta) = e^{\beta\mu B} + e^{-\beta\mu B} \tag{28}$$

Then the probability of being up or down are:

$$P_{\uparrow} = \frac{e^{\beta \mu B}}{Z} \qquad P_{\downarrow} = \frac{e^{-\beta \mu B}}{Z} \tag{29}$$

The number of up spins is $N_{\uparrow} = NP_{\uparrow}$, with a similar expression for N_{\downarrow} . Thus we have

$$M = N \frac{e^{\beta \mu B} - e^{-\beta \mu B}}{e^{\beta \mu B} + e^{-\beta \mu B}} \tag{30}$$

$$M = N\mu \left(\frac{e^{2\mu B/kT} + 1}{e^{2\mu B/kT} + 1} \right) \tag{31}$$

We finally note

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} - 1}$$
(32)

So

$$M = N\mu \tanh(\mu B/kT) \tag{33}$$

For small $x = \mu B/kT$ we have $\tanh(x) \simeq x$ leading to

$$M = \frac{N\mu^2}{kT}B + \mathcal{O}(x^3) \tag{34}$$

The energy is U = -MB. Another way to find U is to find the average energy of one spin:

$$\langle \epsilon \rangle = -\frac{\partial}{\partial \beta} \ln Z(\beta) = -\mu B \frac{e^{\beta \mu B} - e^{-\beta \mu B}}{e^{\beta \mu B} + e^{-\beta \mu B}}$$
(35)

Multiplying by N we find

$$U = N \langle \epsilon \rangle = -N\mu B \tanh(\beta \mu B) \tag{36}$$

- (i) At high temperature the directions of the spins are essentially random. Then the magnetization, which is proportional to the difference in up and down spins, approaches zero.
- (ii) For the the Taylor series to be valid we need

$$x = \frac{\mu B}{kT} \ll 1 \tag{37}$$

so that $\tanh(x) \simeq x$. Looking at the graph we see that at low temperatures (or high 1/T) the Curie Law is violated meaning that x is no longer small $x \sim 1$. In this regime the full form of the $\tanh(x)$ is needed.

$$\Delta U = Q_{\rm in} + W_{\rm in} \tag{38}$$

The work put in is

$$W_{\rm in} = \int_0^{B_{\rm max}} -MdB = -\int_0^{B_{\rm max}} \chi(T)BdB = -\frac{1}{2}\chi(T)B_{\rm max}^2$$
 (39)

The change in energy is

$$\Delta U = U_{\text{final}} - U_{\text{initial}} = -\chi(T)B_{\text{max}}^2 - \underbrace{0}_{U_{\text{initial}}}$$
(40)

So the heat that flows into the system is $Q_{in} = \Delta U - \Delta W_{in} = -\frac{1}{2}\chi(T)B_{\max}^2$. So heat flows out of the system as the magnetic field increases.

Problem 3. Paramagnet from the micro-canonical ensemble

This problem is a continuation of the previous and follows the same setup and notation. In this part the energy difference between spin down energy and the spin up energy is written, $\Delta \equiv \epsilon_{\downarrow} - \epsilon_{\uparrow} = 2\mu B$. The number of excited atoms (spin down) per site is written $n \equiv N_{\downarrow}/N_{\downarrow}$

(a) Determine the state of lowest possible energy (the ground state), and show that the energy of this state is $-\mu BN$. Define the excitation energy $\mathcal{E} = E - (-N\mu B)$, i.e. the energy above the ground state energy. Show that

$$\frac{\mathcal{E}}{N} = n\Delta \tag{41}$$

where $n=N_{\downarrow}/N$ is the number of excited atoms.

(b) By directly counting the states $\Omega(N_{\downarrow}, N_{\uparrow})$ show that the entropy as a function of energy is

$$S(\mathcal{E}) = Nk_B \left[-(1-n)\log(1-n) - n\log n \right] \tag{42}$$

(c) Using Eq. (42) show that the temperature of the system with a given \mathcal{E} is related to the fraction of atoms that are excited (down arrows)

$$\frac{\Delta}{kT} = \ln\left(\frac{1-n}{n}\right) \,. \tag{43}$$

Show that

$$n = \frac{e^{-\Delta/kT}}{1 + e^{-\Delta/kT}},\tag{44}$$

as can be found with the canonical approach.

(d) How is n related to the magnetization? Use this relation and the n of part (c) to find the magnetization. Does your result for the magnetization agree with the previous problem?

Distribution of Debroglie voaves:

a) First we will used unoriented (or Lebegue) integrals
$$T = \int dx \ f(x) = \int du \ du \ f(-u) = \int f(-u) \ du$$

$$[-\infty,\infty] = R$$

$$[-\infty,\infty] = R'$$

$$[-\infty,\infty]$$

$$mapped region under$$

$$map x \rightarrow u = -1$$

Alternatively with oriented integrals:

$$\overline{I} = \int dx f(x) = \int du \left(\frac{dx}{du}\right) f(-u) = \int du (-) f(-u)$$

$$= \int du f(-u)$$

b) In thermal systems the typical energy is E-kT. Then since $E \sim p^2/zm$, we have $p \sim \sqrt{mkT}$, where I dropped the 2 in the spirit of making an estimate So

$$\lambda - h \sim h$$

$$\rho (mkT)''^{2}$$

Photons have EnkT but their energy is E=Cp. So the typical wavelength is

The distribution of speeds is

$$\frac{d\mathcal{P}}{v} = \frac{m}{(2\pi kT)^{3/2}} e^{-\frac{V_2 m v^2}{kT}} + 4\pi v^2 dv$$

We have
$$\lambda = h = h$$
 or $v = h$
 $p = mv$
 $m\lambda$

So using in an unoriented sense (i.e. the sense of Probability -- is it in a bin or not not is du positive or negative)

$$\frac{dV}{d\lambda} = \frac{dV}{d\lambda} = \frac{h}{m} \frac{d\lambda}{\lambda^2} \qquad \text{or} \qquad \frac{dV}{V} = \frac{d\lambda}{\lambda}$$

We get:

$$\frac{V}{(kT/m)^{1/2}} = \frac{h}{(mkT)^{1/2}} \frac{1}{\lambda} = \sqrt{2\pi} \frac{\lambda_{th}}{\lambda_{th}}$$

And So

$$\frac{d\mathcal{P} = 4\pi e^{-i\pi(\lambda + k/\lambda)^{2}} \cdot \left(\frac{m}{kT}\right)^{3/2} \cdot \sqrt{3} \frac{dy}{\sqrt{2\pi} \frac{\lambda + k/\lambda}{2}} \\
= 4\pi e^{\pi/\lambda + k/\lambda}^{2} \cdot \left(\sqrt{2\pi} \frac{\lambda + k}{\lambda}\right)^{3} \frac{d\lambda}{\lambda} \\
\frac{(2\pi)^{3/2}}{\sqrt{2\pi}} \frac{d\lambda}{\lambda} \frac{d\lambda}{\lambda}$$

Leading ultimately to the result:

$$d\mathcal{P} = 4\pi e^{-\pi(\lambda + h/\lambda)^2} \left(\frac{\lambda + h}{\lambda}\right)^4 \frac{d\lambda}{\lambda + h}$$

So from the graph. The most probable λ is at the maximum $\lambda_{mp} = 1.2 \lambda_{LL}$

Estimating the mean $\langle \lambda \rangle \sim 2 \lambda_{th}$ and $\langle \delta \lambda^2 \rangle \sim 1 \lambda_{th}^2$. We can of course compute $\langle \lambda \rangle$ precisely

$$\langle 2 \rangle = \int_{0}^{\infty} P(v) dv \int_{mv}^{\infty}$$

$$= \int_{0}^{\infty} \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-\frac{k^{2}mv^{2}/kT}{4\pi v^{2}}dv} \frac{h}{mv}$$

= 1.13 λ_{th} = do it yourself! So our estimate of $(\lambda) \sim 2\lambda_{th}$ was a bit off.

Problem 4. Probabilities for escaping particles

In class we showed the number of particles per area per second escaping through a hole in the container (see above) with speeds between (v, v + dv), and angles between $(\theta, \theta + d\theta)$ and $(\phi, \phi + d\phi)$ is

$$d\Phi = nP(v) v \cos\theta \, dv \, \frac{d\Omega}{4\pi} \,. \tag{45}$$

Here $d\Omega = \sin\theta d\theta d\phi$ is the differential solid angle; n = N/V is the number of particles per volume and the speed distribution is

$$P(v) = \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} 4\pi v^2.$$
 (46)

Note P(v) is not explicitly needed in this problem. If we integrate over the possible speeds v, the flux per solid angle is:

$$\frac{\mathrm{d}\Phi}{\mathrm{d}\Omega} \equiv \frac{1}{\sin\theta} \frac{\mathrm{d}\Phi}{\mathrm{d}\theta\mathrm{d}\phi} \propto \cos\theta. \tag{47}$$

This distribution is illustrated on the next page.

(a) Show that the total number of particles escaping through a hole per (hole) area per time per solid angle is

$$\frac{\mathrm{d}\Phi}{\mathrm{d}\Omega} = \frac{1}{4\pi} n \langle v \rangle \cos \theta \,, \tag{48}$$

and that

$$\Phi = \frac{1}{4} n \langle v \rangle . \tag{49}$$

For reference $\langle v \rangle = (8kT/\pi m)^{1/2}$ but you do not need to show this.

- (b) Take a gas of Helium at room temperature and pressure of one bar. There is a pinhole in the container of radius 1 mm. Consider two detectors each of collecting area 1 cm², both placed at angle of 30° relative to the normal (see figure). The first is placed 10 cm away, while the second is placed 20 cm away. What is the total number of particles emitted per second and what is the number of particles collected per second by the two detectors? Use Fig. 7 to explain why $d\Phi/d\Omega$ a more experimentally relevant quantity for these detectors, than $d\Phi/d\theta d\phi \propto \sin\theta \cos\theta$, which carries the same information.
 - You should find $0.04\,\mathrm{mol/s}$, $1.1\times10^{-4}\mathrm{mol/s}$, and $2.7\times10^{-5}\mathrm{mol/s}$. Questions to consider: What is the solid angle $\Delta\Omega$ subtended by the two detectors? What fraction of the sphere do they cover and how is this related to $\Delta\Omega$?
- (c) Show that the average value of $\cos \theta$ for these escaping particles is 2/3. What does this number represent physically? How would Fig. 7 look like if this number was 0.99?
- (d) (Optional) Your bicycle tire has a slow leak, so that it goes flat within about an $\tau \simeq 1$ hour after being fully inflated. Make an estimate for the radius of the hole when the tire is fully inflated. Take any reasonable estimate for the volume of an inflated tire, the temperature, and a typical mass for air.

Hint: show that the loss of atoms per time takes the form $dN/dt = -N/\tau$, where $\tau^{-1} \equiv A(kT/2\pi m)^{1/2}/V$ is a characteristic decay time, and $A = \pi R^2$.

For reasonable estimates of the volume and temperature I find a hole radius of about $R \sim 30$ microns. But of course if your results could differ from mine by factors of two or three.

Figure 7: (a) Distribution of escaping particles over the solid angle, $\mathrm{d}\Phi/\mathrm{d}\Omega \propto \cos\theta$. The red means more particles per per time per solid angle $\mathrm{d}\Omega$ ($\mathrm{d}\Omega$ is proportional to the graphical area $\mathrm{d}A$ this spherical plot). If particles were emitted uniformly over the sphere $\mathrm{d}\Phi/\mathrm{d}\Omega$ would be constant (constant color), but $\mathrm{d}\Phi/\mathrm{d}\theta\mathrm{d}\phi$ would not be constant.

Solution

(a) $d\Phi_{v,\theta,\phi}$ is the number of particles escaping per area per second with speed in [v, dv] and angles in $[\theta, d\theta]$ and $[\phi, d\phi]$. If we only care about the angles θ and ϕ one can integrate over the speed

$$d\Phi_{\theta,\phi} = \int_{\text{over-v}} d\Phi_{v,\theta,\phi} = n\cos\theta \, \frac{d\Omega}{4\pi} \int_0^\infty P(v)vdv \tag{50}$$

where $d\Omega = \sin \theta d\theta d\phi$. Then integrating over v

$$d\Phi_{\theta,\phi} = n\cos\theta \langle v \rangle \frac{d\Omega}{4\pi} \tag{51}$$

If we integrate over the angles

$$\Phi = \int_{over-\theta,\phi} d\Phi_{\theta,\phi} \tag{52}$$

$$= n \left\langle v \right\rangle \frac{1}{4\pi} \int_0^{\pi} \sin\theta \cos\theta \int d\phi \tag{53}$$

$$= n \left\langle v \right\rangle \frac{1}{4\pi} \times \frac{1}{2} \times 2\pi \tag{54}$$

$$=\frac{1}{4}n\left\langle v\right\rangle \tag{55}$$

(b) The hole area is

$$A_h = \pi r_h^2 = 3.14 \times 10^{-6} \text{m}^2 \tag{56}$$

where $r_h = 1 \,\mathrm{mm}$.

The solid angle of the first detector

$$\Delta\Omega_1 = \frac{A_1}{R_1^2} = \frac{1cm^2}{(10cm)^2} = 0.01 \tag{57}$$

The solid angle of the second detector is

$$\Delta\Omega_2 = \frac{A_1}{R_2^2} = \frac{1cm^2}{(20cm)^2} = 0.0025 \tag{58}$$

If you don't have a visual picture of solid angle, you need to read the lecture notes where the relevant pictures are given.

The density of particles is

$$n = \frac{P}{kT} = \frac{PN_A}{RT} = 41 \frac{\text{mol}}{\text{m}^3} \tag{59}$$

The molar mass is $mN_A=4\,\mathrm{g}$. The mean velocity is

$$\langle v \rangle = \sqrt{\frac{8RT}{\pi(4\,\mathrm{g})}} = 1245\,\frac{\mathrm{m}}{s} \tag{60}$$

The angle is

$$\cos(\pi/6) = 0.866 \tag{61}$$

Then

$$\frac{dN_1}{dt} = A_h n \langle v \rangle \cos \theta \frac{\Delta \Omega_1}{4\pi} = 1.1 \times 10^{-4} \text{mol/s}$$
 (62)

$$\frac{dN_2}{dt} = A_h n \langle v \rangle \cos \theta \frac{\Delta \Omega_2}{4\pi} = 2.7 \times 10^{-5} \text{mol/s}$$
 (63)

The total number emitted per second is

$$\frac{dN}{dt} = \frac{1}{4} A_h n \langle v \rangle = 0.04 \,\text{mol/s} \tag{64}$$

(c) The probability of escaping particles is proportional to the angular flux

$$dP \propto d\Phi_{\theta,\phi} \propto \cos\theta \sin\theta d\theta d\phi \tag{65}$$

So

$$\langle \cos \theta \rangle = \frac{\int_0^{\pi/2} \cos \theta \cdot \cos \theta \sin \theta d\theta \int_0^{2\pi} d\phi}{\int_0^{\pi/2} \cos \theta \sin \theta d\theta \int_0^{2\pi} d\phi} = \frac{\frac{1}{3} \cos^3 \theta \Big|_0^{\pi/2}}{\frac{1}{2} \cos^2 \theta \Big|_0^{\pi/2}} = \frac{2}{3}$$
 (66)

If this number were 0.99 then the graph would be highly focussed at $\theta = 0$.

(d) The change in the number of particles in the tire per time is

$$\frac{dN}{dt} = -\frac{1}{4} \frac{N}{V} A_h \sqrt{\frac{8kT}{\pi m}} \tag{67}$$

which takes the form

$$\frac{dN}{dt} = -\frac{N}{\tau} \quad \text{with} \quad \tau^{-1} = \frac{A_h}{V} \sqrt{\frac{kT}{2\pi m}}$$
 (68)

So the hole area is

$$A_h \sim \frac{V}{\tau} \sqrt{\frac{2\pi m}{kT}} \tag{69}$$

Taking $\tau=3600\,\mathrm{s},\,kT=300^\circ\mathrm{K}$, the molar mass is the molar mass of diatomic nitrogen $mN_A=28\,\mathrm{g}$ (air is 70% diatomic nitrogen, and taking a volume of 1 L we find

$$A_h \sim 2.3 \times 10^{-9} m^2 \tag{70}$$

Treating the hole as a square of size $A=L^2$, the size of one side of the hole is

$$L = 48 \,\mu\text{m} \tag{71}$$