EXAMEN

Durée : 2h.

Dans la suite, les variables sont supposées de carré intégrable et STS signifie "série temporelle stationnaire (au second ordre)". On note γ_X (ou γ s'il n'y a pas d'ambiguïté) la fonction d'autocovariance de X.

NB Il sera tenu compte de la précision et de la clarté des raisonnements et arguments. Par ailleurs, merci d'écrire lisiblement.

Exercice pratique (barème indicatif : 7 pts)

Supposez que vous disposiez des mesures suivantes d'un phénomène

année	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	l
mesure	1	7	12	5	-1	-1	5	8	5	-1	,

que l'on vous informe que ce phénomène a une saisonnalité de période 5 ans, et que l'on vous demande une prévision sur la valeur à laquelle on peut s'attendre en 2023.

Que faites-vous et que répondez-vous?

NB Exposez et justifiez clairement toutes les étapes de votre raisonnement. Dans la mesure où on observe seulement 2 périodes, on ne cherchera pas à déterminer de tendance lente non constante. Vous pouvez vous aider de l'outil informatique pour les calculs, à condition d'être capable d'expliquer précisément ce que fait le code que vous utilisez.

Problème. (barème indicatif : 18 pts) Au verso.

Problème. Les questions 1, 2, 3 et 4 sont indépendantes. On note $\{\}$ l'ensemble vide pour éviter toute ambiguïté avec les paramètres ϕ .

Soient $p, q \in \mathbb{N}$ et des paramètres $\sigma, \phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q \in \mathbb{R}$ (si p = 0, resp. q = 0, il n'y a pas de paramètres ϕ , resp. θ).

On note $ARMA(\sigma^2; \phi_1, \dots, \phi_p; \theta_1, \dots, \theta_q)$ l'ensemble des STS telles qu'il existe $Z \in BB(\sigma^2)$ tel que

$$\forall n \in \mathbb{Z}, \quad X_n = \sum_{i=1}^p \phi_i X_{n-i} + Z_n + \sum_{i=1}^q \theta_i Z_{n-i}$$
 (1)

(en convenant que, si p = 0 ou q = 0, la somme correspondante est nulle).

- 1. Dans le cas où p = 0:
 - (a) Pour quelles valeurs de $\theta_1, \dots \theta_q$ a-t-on $ARMA(\sigma^2; \{\}; \theta_1, \dots, \theta_q) \neq \{\}$?
 - (b) Quand c'est le cas, pour $X \in ARMA(\sigma^2; \{\}; \theta_1, \dots, \theta_q)$, calculez γ_X en fonction des paramètres.
 - (c) Montrer que le support de γ_X (les valeurs pour lesquelles cette fonction est non nulle) est fini.
- 2. Dans le cas où p=1, q=0 (dans cette question on abrègera la notation ϕ_1 en ϕ):
 - (a) (question de cours, à rédiger) Si $|\phi| < 1$, montrer que $ARMA(\sigma^2; \phi; \{\}) \neq \{\}$.
 - (b) Même question si $|\phi| > 1$.
 - (c) Si $|\phi| = 1$, montrer que $ARMA(\sigma^2; \phi; \{\}) = \{\}$. Indications: raisonner par l'absurde et, en fixant un $k \in \mathbb{N}^*$, calculer $Var(X_n - \phi^k X_{n-k})$ de deux façons différentes, pour en déduire que $\gamma(k) \neq \gamma(-k)$.
 - (d) Si $\phi \notin \{-1,1\}$, pour $X \in ARMA(\sigma^2; \phi; \{\})$, calculez γ_X en fonction des paramètres.
 - (e) Quel est le support de γ_X ?

Pour la question 3, on admettra le résultat suivant :

Théorème 1 Supposons que

$$\forall z \in \mathbb{C}, |z| \le 1 \Rightarrow 1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p \ne 0.$$
 (2)

Alors

- 1) $ARMA(\sigma^2; \phi_1, \dots, \phi_p; \theta_1, \dots, \theta_q) \neq \{\}$
- 2) Il existe une suite $(\psi_k)_{k\in\mathbb{N}}$ (dépendant des paramètres) telle que, pour toute STS X,

$$X \text{ v\'erifie } (1) \iff X_n = \sum_{k=0}^{+\infty} \psi_k Z_{n-k}.$$

- 3. Dans le cas où p=1, q=1, soit $\phi_1=\phi\in]-1,1[,\theta_1=\theta\in \mathbb{R}.$
 - (a) Pourquoi $ARMA(\sigma^2; \phi; \theta) \neq \{\}$?
 - (b) On admet que la suite ψ du Théorème 1 vérifie ici $\psi_0 = 1$ et $\psi_1 = \phi + \theta$. Soit $X \in ARMA(\sigma^2; \phi; \theta)$. En exprimant $X_n - \phi X_{n-1}$ et X_{n-h} en fonction du bruit blanc Z, trouver une relation de récurrence entre $\gamma_X(h)$ et $\gamma_X(h-1)$.
 - (c) En déduire γ_X .
- 4. Soit $q \in \mathbb{N}$ et X une STS centrée telle que γ_X est à support dans [-q,q]. Le but de cette question est de montrer qu'il existe $\sigma, \theta_1, \ldots, \theta_q \in \mathbb{R}$ tels que $X \in ARMA(\sigma^2; \{\}; \underline{\theta_1, \ldots, \theta_q})$.

Notons, pour $n, k \in \mathbb{Z}$, $V(n, k) = \text{Vect}(X_{n-k}, \dots, X_{n-1})$ et $V(n, \infty) = \overline{\text{Vect}(X_m, m < n)}$.

On rappelle que pour tout $n \in \mathbb{Z}$ fixé, $P_{V(n,k)}X_n \xrightarrow[k \to \infty]{} P_{V(n,\infty)}X_n$ dans $\mathbb{L}^2(\mathbb{P})$, où P_A est la projection orthogonale sur A.

- (a) Montrer, pour $n, k \in \mathbb{Z}$, que $||X_{n+1} P_{V(n+1,k)}X_{n+1}|| = ||X_n P_{V(n,k)}X_n||$.
- (b) Soit, pour $n \in \mathbb{Z}$, $Z_n = X_n P_{V(n,\infty)}X_n$. Montrer que Z est un bruit blanc.
- (c) Montrer que $V(n, \infty) = V(n-q, \infty) \stackrel{\perp}{\bigoplus} \operatorname{Vect}(Z_{n-1}, \dots, Z_{n-q}).$
- (d) En déduire qu'il existe $\theta_1, \ldots, \theta_q \in \mathbb{R}$ tels que $P_{V(n,\infty)} X_n = \theta_1 Z_{n-1} + \cdots + \theta_q Z_{n-q}$.
- (e) Conclure.
- (f) En quoi ce qui précède peut être utile en pratique, lorsqu'on étudie des données que l'on cherche à modéliser par une STS?