Chapter 7 Sampling Distribution: Univariate Case

► Goldberger, Ch. 8

Wackerly et al. Chapter 7

Yale Note, Ch. 10

- ► Random Sample
- ► Sample Statistics
- ► Sampling Distribution
 - from Normal Distribution
 - from non-Normal Distribution

1. Random Sample

- X: random variable with f(x).
- ► Let X_1, X_2, \dots, X_n be independent drawings from the population.
- \Rightarrow The outcome when the same experiment is repeated n times independently.
- ► $\mathbf{X} = (X_1, X_2, \dots, X_n)'$; random sample of size n on the variable X. (From the population X / From the probability distribution f(x)).
- $\mathbf{x} = (x_1, x_2, \dots, x_n)'$; taken values of random vector $\mathbf{X} = (X_1, X_2, \dots, X_n)'$.

- If $\mathbf{X} = (X_1, X_2, \dots, X_n)'$ is a random sample on X, then the X_i 's are <u>independent</u> and <u>identically distributed</u>(i.i.d.).
- ► Joint density $g_n(\mathbf{x}) = g(x_1, x_2, \dots, x_n) = f_1(x_1) f_2(x_2) \dots f_n(x_n) = \prod_{i=1}^n f(x_i)$.

(Example)

- ① $X \sim Bernoulli(p)$,
- $g_n(\mathbf{x})$
- ► Here, $g_n(\mathbf{x}) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$: likelihood.
- ② $X \sim N(\mu, \sigma^2)$, $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ for $-\infty < x < \infty$.
- $g_n(\mathbf{x})$

2. Sample Statistics

• Let $T = h(X_1, X_2, \dots, X_n) = h(\mathbf{X})$ be a scalar function of the random sample.

Then, T is called <u>sample statistics</u>(표본통계량).

(Example)

- ① $\overline{X} = \frac{1}{n} \sum_{i} X_{i}$: sample mean.
- ② $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$: sample variance.
- ③ $M'_r = \frac{1}{n} \sum_{i=1}^n X_i^r$: sample raw moment.
- (4) $M_r = \frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^r$: sample central moment.

• It is possible to derive the <u>sampling distribution</u> of $T = h(X_1, X_2, \dots, X_n) = h(\mathbf{X})$ from f(x) and n (to make an inference on population parameter).

(1) Sample Mean

The sampling distribution of sample mean differs,

- as a population distribution differs and
 - **b** sample size differs (small sample vs. large sample).
- Common properties of the sample mean:
- ① $E(\bar{X})$
- ② $Var(\bar{X})$
- Sample Mean Theorem

In <u>random sampling</u> with sample size n, from <u>any</u> distribution with $E(X_i) = \mu$ and

$$V(X_i) = \sigma^2$$
, sample mean \overline{X} has $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$.

(2) Other Sample Moments

① Sample raw moment: $M'_r = \frac{1}{n} \sum_{i=1}^n X_i^r$

(Note) Population raw moment: $\mu'_r = E(X^r)$.

► M'_r has mean $E(M'_r) = \mu'_r$, $V(M'_r) = \frac{1}{n} (\mu'_{2r} - (\mu'_r)^2)$.

► Analogy principle

2 Sample central moment (about population mean)

•
$$M_r^* = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^r$$
.

Population moment: $\mu_r = E \left[(X - \mu)^r \right]$.

► Sample mean theorem applies with $E(M_r^*) = \mu_r$, $V(M_r^*) = \frac{1}{n} (\mu_{2r} - (\mu_r)^2)$.

3 Sample central moment about sample mean

•
$$M_r = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^r$$
.

(Example)
$$r = 2$$
, $M_r = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{n-1}{n} s^2$, where $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

Let
$$Y_i = (X_i - \overline{X})^r$$
, so $M_r = \overline{Y}$.

However, the Y_i 's are NOT independent(so NOT i.i.d.)

► Let
$$U_1 = (X_1 - \overline{X})$$
, $U_2 = (X_2 - \overline{X})$, then $Cov(U_1, U_2) \neq 0$.

So, sample mean theorem can <u>NOT</u> be applied.

► However, the brute force can be applied to the expectation and variance.

(Example) Consider
$$M_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
.

$$\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i} (X_i - \mu)^2 - n(\mu - \bar{X})^2$$

So,
$$E[M_2] = \frac{n-1}{n}\sigma^2$$
.

(Note)
$$E[M_2] = E\left(\frac{1}{n}\sum_{i=1}^n (X_i - \bar{X})^2\right) = \frac{n-1}{n}\sigma^2 \neq \sigma^2$$
.

- (a) As $n \to \infty$, $E[M_2] \to \sigma^2$.
- ⓑ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$, then $E[s^2] = \sigma^2$; unbiased.

- 3. Sampling Distribution: the probability distribution of a sample statistic.
- ① Chi-squares distribution
- If $Z_1, Z_2, \dots, Z_k \sim N(0,1)$, then $W = \sum_{i=1}^k Z_i^2 \sim \chi^2(k)$.

$$g_{k}(w) = \begin{cases} \frac{\left(\frac{1}{2}\right)\left(\frac{w}{2}\right)^{\frac{k}{2}-1} \exp\left(-\frac{w}{2}\right)}{\Gamma(k/2)} & \text{for } w > 0\\ 0 & \text{otherwise} \end{cases}$$

where
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
, $\Gamma(1) = 1$, $\Gamma(n) = (n-1)\Gamma(n-1)$.

- ightharpoonup Single parameter k, the number of degrees of freedom.
- $ightharpoonup \chi^2(k)$ random variable only takes positive values.
- ► Skewed to the right.

• Mean & Variance

Since $E(Z_i) = 0$, $E(Z_i^2) = 1$, $E(Z_i^4) = 3$, so $V(Z_i^2) = 2$.

- (a) E(W) = k
- b V(W) = 2k

2 Student's t-distribution

If $Z_i \sim N(0,1)$, $W \sim \chi^2(k)$ with Z_i and W are independent, then

$$U = \frac{Z_i}{\sqrt{W/k}} = \frac{"N(0,1)"}{"\sqrt{X^2(k)/k}"} \sim t(k)$$

• The pdf of $\it U$ is

$$g_k(u) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k}\Gamma\left(\frac{k}{2}\right)\Gamma\left(\frac{1}{2}\right)} \left(1 + \frac{u^2}{k}\right)^{-\frac{k+1}{2}}.$$

- ightharpoonup Single parameter k, the number of degrees of freedom.
- ► The pdf is symmetric about zero.
- Similar in shape to a standard normal pdf.
- ► More area in the tails relative to a standard normal.

Mean & Variance

- (a) E(U) = 0
- ► For future reference, $E\left(\frac{1}{W}\right) = \frac{1}{k-2}$ for k > 2, $E\left(\frac{1}{W^2}\right) = \frac{1}{(k-2)(k-4)}$ for k > 4.
- ► As $k \to \infty$, $V(U) \to 1$. So, $G_k(\cdot) \to \Phi(\cdot)$.
- ► Name of student-t distribution.

(Remark)

- \blacktriangleright t(1) is called Cauchy distribution. Its mean and variance do not exist.
- ightharpoonup t(2) has mean 0 but no variance.

- Some Important Applications:
- (a) Let $W_1, W_2, \dots, W_k \sim \text{indep. } \chi^2(1), \chi^2(2), \dots, \chi^2(k)$, then $W_1 + W_2 + \dots + W_k \sim \chi^2(1 + 2 + \dots + k)$.
- ⓑ Let X_1, X_2, \dots, X_n be a random sample of size n from $N(\mu, \sigma^2)$, then $\sum_{i=1}^n \left(\frac{X_i \mu}{\sigma}\right)^2 \sim \chi^2(n).$
- © If $W_1 \sim \chi^2(r_1)$, $W_1 + W_2 \sim \chi^2(r)$ and independent with $r > r_1$, then $W_2 \sim \chi^2(r-r_1)$.

4. Sampling Distribution from Normal Distribution

- X_1, X_2, \dots, X_n : random sample from $N(\mu, \sigma^2)$.
- $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$.
- $(2) \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$
- $\underbrace{\sqrt{n}\left(\overline{X}-\mu\right)}_{S} = \underbrace{\left(\overline{X}-\mu\right)}_{S/\sqrt{n}} \sim t(n-1).$

(note) If
$$S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
, ② $\frac{nS^{*2}}{\sigma^2} \sim \chi^2(n-1)$.

Then,
$$4 \frac{\sqrt{n-1}(\bar{X}-\mu)}{S^*} = \frac{(\bar{X}-\mu)}{S^*/\sqrt{n-1}} \sim t(n-1)$$
.

(Proof of 2 under 3)

5. Sampling Distribution from non-Normal Distribution

We can NOT derive the general conclusion when the population distribution is not normal.

► Asymptotic distribution(Large sample theory)