CONCEPTS COVERED

MULTIVARIABLE CALCULUS

- **☐** Limit Test for Differentiability
- **☐** Worked Problems

Differentiability of Functions of Two Variables (Previous Lecture)

The function z = f(x, y) is said to be differentiable at the point (x, y), if at this point

$$\Delta z = a \, \Delta x + b \, \Delta y + \epsilon_1 \, \Delta x + \epsilon_2 \, \Delta y$$

Necessary conditions

- Continuity of *f*
- Existence of partial derivatives $f_x \& f_y$

Sufficient conditions

Continuity of one/both partial derivatives

Testing Differentiability

Differentiability
$$\iff \lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = 0, \qquad \Delta \rho = \sqrt{\Delta x^2 + \Delta y^2}$$

Let *f* be differentiable

$$\Delta z = \underbrace{a \, \Delta x + b \, \Delta y}_{} + \epsilon_1 \, \Delta x + \epsilon_2 \, \Delta y \quad \Longrightarrow \quad \frac{\Delta z - dz}{\Delta \rho} = \epsilon_1 \frac{\Delta x}{\Delta \rho} + \epsilon_2 \frac{\Delta y}{\Delta \rho}$$

$$dz$$

$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = \lim_{\Delta \rho \to 0} \epsilon_1 \frac{\Delta x}{\Delta \rho} + \lim_{\Delta \rho \to 0} \epsilon_2 \frac{\Delta y}{\Delta \rho} = 0$$

Note that
$$\frac{\Delta x}{\Delta \rho} \le 1$$
 & $\frac{\Delta y}{\Delta \rho} \le 1$ and ϵ_1 , ϵ_2 tend to zero as $\Delta \rho \to 0$

Testing Differentiability (cont.)

Differentiability
$$\iff \lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = 0, \qquad \Delta \rho = \sqrt{\Delta x^2 + \Delta y^2}$$

Let
$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = 0 \implies \frac{\Delta z - dz}{\Delta \rho} = \epsilon$$
 $\epsilon \to 0$ as $\Delta \rho \to 0$

$$\Rightarrow \Delta z - dz = \epsilon \Delta \rho = \epsilon \sqrt{\Delta x^2 + \Delta y^2} = \epsilon \frac{\Delta x^2 + \Delta y^2}{\sqrt{\Delta x^2 + \Delta y^2}}$$

$$= \left(\frac{\epsilon \Delta x}{\sqrt{\Delta x^2 + \Delta y^2}}\right) \Delta x + \left(\frac{\epsilon \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}}\right) \Delta y$$

$$\Rightarrow \Delta z = dz + \epsilon_1 \Delta x + \epsilon_2 \Delta y \Rightarrow$$
 Differentiability of f

Problem – 1 (Continuous, partial derivatives exist but not differentiable)

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Existence of Partial Derivatives

$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = 0$$
 $f_y(0, 0) = \lim_{\Delta y \to 0} \frac{f(0, \Delta y) - f(0, 0)}{\Delta y} = 0$

Continuity Changing to polar coordinates $(x = r \cos \theta, y = r \sin \theta)$

$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y) = \lim_{r \to 0} r \cos \theta \sin \theta = 0 = f(0, 0)$$

$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = ?$$

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$\Delta z = f(0 + \Delta x, 0 + \Delta y) - f(0, 0) = \frac{\Delta x \, \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}}$$

$$dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y = 0$$

$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = \lim_{\Delta \rho \to 0} \left(\frac{\Delta x \, \Delta y}{\Delta x^2 + \Delta y^2} \right)$$

Along the path $\Delta y = m \Delta x$

$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = \frac{m}{1 + m^2}$$

The given function is NOT differentiable.

Problem – 2 (Continuous, partial derivatives exist but not differentiable)

$$f(x,y) = \begin{cases} \frac{x^3 + 2y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Existence of Partial Derivatives

$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = 1$$
 $f_y(0, 0) = \lim_{\Delta y \to 0} \frac{f(0, \Delta y) - f(0, 0)}{\Delta y} = 2$

Continuity Changing to polar coordinates $(x = r \cos \theta, y = r \sin \theta)$

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3 + 2y^3}{x^2 + y^2} = \lim_{r \to 0} \frac{r^3 \cos^3 \theta + 2r^3 \sin^3 \theta}{r^2} = 0 = f(0, 0)$$

$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = ?$$

$$f(x,y) = \begin{cases} \frac{x^3 + 2y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$\Delta z = f(0 + \Delta x, 0 + \Delta y) - f(0, 0) = \frac{\Delta x^3 + 2\Delta y^3}{\Delta x^2 + \Delta y^2}$$

$$dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y = \Delta x + 2 \Delta y$$

$$\lim_{\Delta \rho \to 0} \frac{1}{\sqrt{\Delta x^2 + \Delta y^2}} \left(\frac{\Delta x^3 + 2\Delta y^3}{\Delta x^2 + \Delta y^2} - (\Delta x + 2 \Delta y) \right) = \lim_{\Delta \rho \to 0} \frac{-\Delta x \Delta y^2 - 2\Delta x^2 \Delta y}{(\Delta x^2 + \Delta y^2)^{3/2}}$$

Along the path $\Delta y = m \Delta x$

$$=\frac{-m^2-2m}{(1+m^2)^{3/2}}$$

The given function is NOT differentiable.

Problem – 3 (Differentiable but $f_x \& f_y$ are not continuous)

$$f(x,y) = \begin{cases} (x^2 + y^2) \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right), & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Existence of Partial Derivatives

$$f_{x}(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0,0)}{\Delta x} = 0 \qquad f_{y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = 0$$

Continuity Changing to polar coordinates $(x = r \cos \theta, y = r \sin \theta)$

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 + y^2) \cos \left(\frac{1}{\sqrt{x^2 + y^2}} \right) = 0 = f(0, 0)$$

Differentiability

$$f(x,y) = \begin{cases} (x^2 + y^2)\cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right), & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$\Delta z = f(0 + \Delta x, 0 + \Delta y) - f(0, 0)$$

$$= (\Delta x^2 + \Delta y^2) \cos \left(\frac{1}{\sqrt{\Delta x^2 + \Delta y^2}} \right) \qquad dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y = 0$$

$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{(\Delta x^2 + \Delta y^2)}{\sqrt{\Delta x^2 + \Delta y^2}} \cos\left(\frac{1}{\sqrt{\Delta x^2 + \Delta y^2}}\right)$$
$$= \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \sqrt{\Delta x^2 + \Delta y^2} \cos\left(\frac{1}{\sqrt{\Delta x^2 + \Delta y^2}}\right) = 0$$

Hence, the given function is differentiable

Continuity of $f_x \& f_y$

$$At (x, y) \neq (0,0)$$

$$f(x,y) = \begin{cases} (x^2 + y^2)\cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right), & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$f_x(x,y) = -(x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) \left(-\frac{1}{2} \frac{2x}{(x^2 + y^2)^{\frac{3}{2}}}\right) + 2x \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$

$$= \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) \left(\frac{x}{\sqrt{(x^2 + y^2)}}\right) + 2x \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$

Along *x*-axis

$$\lim_{x \to 0} f_{x}(x, y) = \lim_{x \to 0} \left(\frac{x}{|x|} \sin\left(\frac{1}{|x|}\right) + 2x \cos\left(\frac{1}{|x|}\right) \right) \neq 0$$

 $\Rightarrow f_x$ is not continuous at (0,0). Similarly, f_y is not continuous at (0,0)

Remark: The above example shows that continuity of partial derivatives is not a necessary condition for differentiability. A function can be differentiable without having continuous first order partial derivatives.

Example (Differentiable but $f_x \& f_y$ are not continuous) – Homework Problem

$$f(x,y) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) + y^2 \cos\left(\frac{1}{y}\right), & x \neq 0, y \neq 0\\ 0 & \text{elsewhere} \end{cases}$$

DIFFERENTIABILITY

CONCLUSIONS

Differentiability
$$\iff \lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = 0$$

- The function may not be differentiable at a point P(x, y) even if the partial derivatives f_x and f_y exists at P.
 (Existence of partial derivatives is a necessary condition)
- A function may be differentiable even if f_x and f_y are not continuous.

(Continuity of the f_x and/or f_y is a sufficient condition)

Differentiability of Functions of Two Variables (Previous Lecture)

$$\Delta z = a \, \Delta x + b \, \Delta y + \epsilon_1 \, \Delta x + \epsilon_2 \, \Delta y \quad \Leftrightarrow \quad \lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = 0, \qquad \Delta \rho = \sqrt{\Delta x^2 + \Delta y^2}$$

Necessary Conditions

- Continuity of *f*
- Existence of partial derivatives $f_x \& f_y$

Sufficient Conditions

Existence of one partial derivative and continuity of the other

Problem – 1
Discuss the differentiability at origin of the function $f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$

 $f_y(0,0)=0$

Necessary Conditions

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 \qquad f_{x}(0,0) = 0$$

Sufficient Conditions

$$f_{x}(x,y) = \begin{cases} \frac{-x^{2}y^{3} + y^{5}}{(x^{2} + y^{2})^{2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 Hence f_{x} is continuous.

Therefore the function f is differentiable at (0,0).

Problem – 2

Discuss the differentiability at origin of the function $f(x,y) = \begin{cases} y^3 \sin\left(\frac{1}{x^2}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$

Continuity of f and existence of partial derivatives at (0,0) can easily be shown.

$$f_{x}(x,y) = \begin{cases} -\frac{2y^{3}}{x^{3}}\cos\left(\frac{1}{x^{2}}\right), & x \neq 0\\ 0, & x = 0, y = 0\\ \text{Does not exist,} & x = 0, y \neq 0 \end{cases}$$

Since f_x does not exist in the neighborhood of (0,0), f_x is NOT continuous.

Differentiability at origin of the function
$$f(x,y) = \begin{cases} y^3 \sin\left(\frac{1}{x^2}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$f_y(x,y) = \begin{cases} 3y^2 \cos\left(\frac{1}{x^2}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$f_{y}(x,y) = \begin{cases} 3y^{2} \cos\left(\frac{1}{x^{2}}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$$

$$\lim_{(x,y)\to(0,0)} f_y(x,y) = 0 \qquad \text{Hence } f_y \text{ is continuous.}$$

- $\Rightarrow f_x$ exist at (0,0) and f_v is continuous at (0,0)
- $\Rightarrow f$ is differentiable at (0,0)

LIMIT TEST

Differentiability at origin of the function $f(x,y) = \begin{cases} y^3 \sin\left(\frac{1}{x^2}\right), & x \neq 0 \\ 0. & x = 0 \end{cases}$

$$dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y = 0 \qquad \Delta z = f(\Delta x, \Delta y) - f(0, 0) = \Delta y^3 \sin\left(\frac{1}{\Delta x^2}\right)$$

$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = \lim_{\Delta \rho \to 0} \frac{\Delta y^3 \sin\left(\frac{1}{\Delta x^2}\right)}{\sqrt{\Delta x^2 + \Delta y^2}}$$
$$= \lim_{r \to 0} r^2 \sin\left(\frac{1}{r^2 \cos^2 \theta}\right) = 0$$

Polar Coordinates:

$$\Delta x = r \cos \theta$$
, $\Delta x = r \sin \theta$

 $\Rightarrow f$ is differentiable at (0,0)

Problem – 3 Let
$$f(x,y) = \begin{cases} \sqrt{xy}, & xy \ge 0 \\ 0 & \text{elsewhere.} \end{cases}$$

Determine whether the function is differentiable at the origin.

Continuity:
$$\lim_{(x,y)\to(0,0)} \sqrt{xy} = 0$$

Existence of Partial Derivatives:

$$f_x = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = 0$$
 $f_y = \lim_{\Delta y \to 0} \frac{f(0, \Delta y) - f(0, 0)}{\Delta y} = 0$

Differentiability
$$f(x,y) = \begin{cases} \sqrt{xy}, & xy \ge 0 \\ 0 & \text{elsewhere.} \end{cases}$$

$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = ?$$

$$dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y = 0$$

$$dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y = 0 \qquad \Delta z = f(0 + \Delta x, 0 + \Delta y) - f(0, 0) = \sqrt{\Delta x} \Delta y$$

(assuming $\Delta x \Delta y \geq 0$)

$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = \lim_{\Delta \rho \to 0} \frac{\sqrt{\Delta x \, \Delta y}}{\sqrt{\Delta x^2 + \Delta y^2}}$$

Along the path
$$\Delta y = \Delta x$$

$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = \frac{1}{\sqrt{2}} \neq 0$$

The given function is NOT differentiable

Problem – 4 Discuss the differentiability at the origin of the function

$$f(x,y) = \begin{cases} x^{\frac{5}{2}} \sin\left(\frac{1}{\sqrt{x}}\right) + y^{\frac{5}{2}} \cos\left(\frac{1}{\sqrt{y}}\right), & x \neq 0, y \neq 0 \\ 0 & \text{elsewhere} \end{cases}$$

Recall the definition of differentiability $\Delta z = a \Delta x + b \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$

$$f(\Delta x, \Delta y) - f(0, 0) = \Delta x^{\frac{5}{2}} \sin\left(\frac{1}{\sqrt{\Delta x}}\right) + \Delta y^{\frac{5}{2}} \cos\left(\frac{1}{\sqrt{\Delta y}}\right)$$
$$= 0 \cdot \Delta x + 0 \cdot \Delta y + \Delta x \left(\Delta x^{\frac{3}{2}} \sin\left(\frac{1}{\sqrt{\Delta x}}\right)\right) + \Delta y \left(\Delta y^{\frac{3}{2}} \cos\left(\frac{1}{\sqrt{\Delta y}}\right)\right)$$

Problem – 5 Let
$$f(x,y) = \begin{cases} 0, & xy \neq 0 \\ 1, & xy = 0 \end{cases}$$

Check the existence of $f_x \& f_y$ at origin. Is f differentiable at origin?

$$f_x = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = 0$$
 $f_y = \lim_{\Delta y \to 0} \frac{f(0, \Delta y) - f(0, 0)}{\Delta y} = 0$

Continuity Check of *f*

$$\lim_{(x,y)\to(0,0)} f(x,y) \text{ along } (x=y) = 0 \neq f(0,0)$$

- \Rightarrow the function f is not continuous at (0,0)
- \Rightarrow the function f is NOT differentiable at (0,0)

Problem – 6 Let
$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{|x| + |y|}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 Is f differentiable at origin?

Continuity Check

$$|f(x,y) - 0| = \frac{x^2 + y^2}{|x| + |y|} < \frac{(|x| + |y|)^2}{|x| + |y|} = |x| + |y| < \sqrt{2} \sqrt{x^2 + y^2} < \sqrt{2} \delta < \epsilon$$

Choose
$$\delta < \frac{\epsilon}{\sqrt{2}}$$
, then $|f(x,y) - f(0,0)| < \epsilon$ whenever $0 < \sqrt{x^2 + y^2} < \delta$

This implies the function f(x, y) is continuous.

Differentiablity of
$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{|x| + |y|}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Existence of Partial Derivatives

$$\lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x^2}{|\Delta x| \Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{|\Delta x|}$$
 limit does not exist

 $\Rightarrow f_{\chi}(0,0)$ does not exist.

Similarly, $f_y(0,0)$ does not exist.

 \Rightarrow The function f is NOT differentiable at (0,0)

DIFFERENTIABILITY

CONCLUSIONS

Necessary Conditions:

Continuity & existence of partial derivatives

Sufficient Conditions:

Continuity of one of the partial derivatives

Final Check (Limit Test):

$$\lim_{\Delta \rho \to 0} \frac{\Delta z - dz}{\Delta \rho} = 0 \text{ or } \Delta z = a \, \Delta x + b \, \Delta y + \epsilon_1 \, \Delta x + \epsilon_2 \, \Delta y$$