Problème de Programmation Linéaire

L'entreprise AMLAS produit des chaises et des petites tables à partir d'un stock de 16 unités de bois, 10 unités de tissu et emploie un ouvrier qui fournit 40 heures de travail par semaine.

Pour produire une chaise il faut 1 heure de travail, une unité de bois et une unité de tissu ; tandis que pour une table il faut 4 heures de travail et 1 unité de bois.

Le prix d'une chaise est de 100 Unités-Monétaire (UM) et celui d'une table de 200 UM. L'entrepreneur désire déterminer la production hebdomadaire des chaises et des tables permettant de maximiser son chiffre d'affaires.

1. Donnons la formalisation mathématique, sous forme canonique, du programme primal. Soient:

 x_1 : nombre de chaises produites par semaine

max
$$z = 100x_1 + 200x_2$$

$$x_2$$
: nombre de tables produites par semaine

$$\left[x_{1} + 4x_{2} \le 40\right]$$
 (heuresde travail) (1)

$$s/c \begin{cases} x_1 + 4x_2 \le 40 & \text{(heuresde travail)} \quad (1) \\ x_1 + x_2 \le 16 & \text{(stock en bois)} \quad (2) \\ x_1 \le 10 & \text{(stock en tissu)} \quad (3) \\ x_1, x_2 \ge 0 \end{cases}$$

2. Déterminons graphiquement la production optimale des chaises et des tables ; Le vecteur directeur de la droite représentant la fonction objectif $z = 100x_1 + 200x_2$ est $\vec{u} = (-200,100)$ ou encore $\vec{u}' = (-2,1)$. La production optimale A est la solution du système suivant :

$$\begin{cases} x_1 + 4x_2 = 40 \\ x_1 + x_2 = 16 \end{cases} \Rightarrow \begin{cases} x_2 = \frac{40 - 16}{3} = 8 \\ x_1 = 16 - x_2 \end{cases} \Rightarrow \begin{cases} x_1 = 8 \\ x_2 = 8 \end{cases} \Rightarrow A = (8,8)$$

$$z_{\text{max}} = 100(8) + 200(8) = 2400 \, UM$$

(1)
$$x_1 + 4x_2 = 40$$

x_1	0	8	
<i>x</i> ₂	10	8	

(2)
$$x_1 + x_2 = 16$$

x_1	0	16	
х2	16	0	

(3)
$$x_1 = 10$$

droite verticale

3. L'interprétation économique des résultats :

produire 8

chaises et 8 tables par semaine (A = (8,8)) et ainsi réaliser un chiffre d'affaires maximal de 2400 UM $(z_{\text{max}} = (100 \times 8) + (200 \times 8) = 2400).$

5. Le passage de la forme canonique du programme primal à la forme standard se fait par l'ajout de trois variables d'écart e_1,e_2 et e_3 :

$$\max z = 100x_1 + 200x_2 + 0e_1 + 0e_2 + 0e_3$$

$$s/c \begin{cases} x_1 + 4x_2 + e_1 & = 40 \\ x_1 + x_2 + e_2 & = 16 \\ x_1 + e_3 & = 10 \\ x_1, x_2, e_1, e_2, e_3 \ge 0 \end{cases}$$

6. L'interprétation économique de chacune des variables d'écart :

e1: les heures de travail disponibles par semaine et non utilisées

e2 : la quantité de bois disponible par semaine et non utilisée

e3: la quantité de tissu disponible par semaine et non utilisée

7. Retrouvons la production optimale via l'algorithme du simplexe :

BHB	<i>x</i> ₁	<i>x</i> ₂	e_1	e ₂	e ₃	0	K
e_1	1	4	1	0	0	40	40/4
e ₂	1	1	0	1	0	16	16/1
<i>e</i> ₃	1	0	0	0	1	10	-
-z	100	200	0	0	0	0	

<u>Tableau</u> intermédiaire

B HB	<i>x</i> ₁	<i>x</i> ₂	e ₁	e2	e3	Ь	K
<i>x</i> ₂	1/4	1	1/4	0	0	10	40
e ₂	3/4	0	-1/4	1	0	6	8
	1	0	0	0	1	10	10
-z	50	0	-50	0	0	-2000	

ableau final

ВНВ	<i>x</i> ₁	<i>x</i> ₂	e_1	e ₂	e ₃	Ь
<i>x</i> ₂	0	1	1/3	-1/3	0	8
<i>x</i> ₁	1	0	-1/3	4/3	0	8
e ₃	0	0	1/3	-4/3	1	2
-z	0	0	-100/3	-200/3	0	-2400

La solution de base admissible est $(x_1,x_2,e_1,e_2,e_3)=(8,8,0,0,2)$. Donc la production optimale est $(x_1,x_2)=(8,8)$ et le chiffre d'affaires maximal est $z_{\rm max}=2400~UM$

L'interprétation économique

Pour réaliser une recette maximale égales a 2400, il faut produire 8 chaises et 8 tables,

- e1 : les heures de travail sont épuisés (utilisées)
- e2 : la quantité de bois disponible sont épuisés (utilisée)
- e3 : la quantité de tissu reste 2 non utilisées
- 9. Ecrivons le programme dual :

a partir du tableau de primal nous déduisons la solution du dual

HB	<i>x</i> ₁	<i>x</i> ₂	e_1	e ₂	e ₃	С
<i>x</i> ₂	0	1	1/3	-1/3	0	8
<i>x</i> ₁	1	0	-1/3	4/3	0	8
<i>e</i> ₃	0	0	1/3	-4/3	1	2
-z	0	0	-100/3	-200/3	0	-2400

Donc la solution du programme dual est :
$$(y_1, y_2, y_3) = \left(\frac{100}{3}, \frac{200}{3}, 0\right)$$