习题讲解

陈建文

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^{\mathbf{Y}}$ 往证 $f(f^{-1}(E)) = E$ 。

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^{Y}$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^Y$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^Y$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^Y$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^{Y}$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。 对任意的 $y, y \in E$,

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^{Y}$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。 对任意的 $y, y \in E$,由f为满射知存在 $x \in X$,y = f(x),

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^Y$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。 对任意的 $y, y \in E$,由f为满射知存在 $x \in X, y = f(x)$,从而 $f(x) \in E$,

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^Y$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。 对任意的 $y, y \in E$,由f为满射知存在 $x \in X$,y = f(x),从而 $f(x) \in E$,即 $x \in f^{-1}(E)$,

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^Y$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。 对任意的 $y, y \in E$,由f为满射知存在 $x \in X, y = f(x)$,从而 $f(x) \in E$,即 $x \in f^{-1}(E)$,由y = f(x)知 $y \in f(f^{-1}(E))$ 。

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^{Y}$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。 对任意的 $y, y \in E$,由f为满射知存在 $x \in X, y = f(x)$,从而 $f(x) \in E$,即 $x \in f^{-1}(E)$,由y = f(x)知 $y \in f(f^{-1}(E))$ 。 设对任意的 $E \in 2^{Y}$, $f(f^{-1}(E)) = E$,往证f为满射。

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^{Y}$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。 对任意的 $y, y \in E$,由f为满射知存在 $x \in X, y = f(x)$,从而 $f(x) \in E$,即 $x \in f^{-1}(E)$,由y = f(x)知 $y \in f(f^{-1}(E))$ 。 设对任意的 $E \in 2^{Y}$, $f(f^{-1}(E)) = E$,往证f为满射。 对任意的 $y \in Y$,

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^{Y}$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。 对任意的 $y, y \in E$,由f为满射知存在 $x \in X, y = f(x)$,从而 $f(x) \in E$,即 $x \in f^{-1}(E)$,由y = f(x)知 $y \in f(f^{-1}(E))$ 。 设对任意的 $E \in 2^{Y}$, $f(f^{-1}(E)) = E$,往证f为满射。 对任意的 $y \in Y$,则 $f(f^{-1}(\{y\})) = \{y\}$,

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设 f 为满射,对任意的 $E \in 2^{Y}$ 往证 $f(f^{-1}(E)) = E$ 。 对 任意的 $y, y \in f(f^{-1}(E))$,则 存 在 $x, x \in f^{-1}(E)$ 并且 y = f(x),于是存在 $x, f(x) \in E$ 并且 y = f(x),从而 $y \in E$ 。 对 任意的 $y, y \in E$,由 f 为满射知 存 在 $x \in X$, y = f(x),从而 $f(x) \in E$,即 $x \in f^{-1}(E)$,由 y = f(x) 知 $y \in f(f^{-1}(E))$ 。 设对任意的 $E \in 2^{Y}$, $f(f^{-1}(E)) = E$, 往证 f 为满射。 对 任意的 $y \in Y$,则 $f(f^{-1}(\{y\})) = \{y\}$,于是 $f^{-1}(\{y\}) \neq \phi$,

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^{Y}$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。 对任意的 $y, y \in E$,由f为满射知存在 $x \in X, y = f(x)$,从而 $f(x) \in E$,即 $x \in f^{-1}(E)$,由y = f(x)知 $y \in f(f^{-1}(E))$ 。 设对任意的 $E \in 2^{Y}$, $f(f^{-1}(E)) = E$,往证f为满射。 对任意的 $y \in Y$,则 $f(f^{-1}(\{y\})) = \{y\}$,于是 $f^{-1}(\{y\}) \neq \phi$,从而存在 $x \in X, x \in f^{-1}(\{y\})$,

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^{Y}$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。 对任意的 $y, y \in E$,由f为满射知存在 $x \in X, y = f(x)$,从而 $f(x) \in E$,即 $x \in f^{-1}(E)$,由y = f(x)知 $y \in f(f^{-1}(E))$ 。 设对任意的 $E \in 2^{Y}$, $f(f^{-1}(E)) = E$,往证f为满射。 对任意的 $y \in Y$,则 $f(f^{-1}(\{y\})) = \{y\}$,于是 $f^{-1}(\{y\}) \neq \phi$,从而存在 $x \in X, x \in f^{-1}(\{y\})$,即 $f(x) \in \{y\}$,

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设f为满射,对任意的 $E \in 2^Y$ 往证 $f(f^{-1}(E)) = E$ 。 对任意的 $y, y \in f(f^{-1}(E))$,则存在 $x, x \in f^{-1}(E)$ 并且y = f(x),于是存在 $x, f(x) \in E$ 并且y = f(x),从而 $y \in E$ 。 对任意的 $y, y \in E$,由f为满射知存在 $x \in X, y = f(x)$,从而 $f(x) \in E$,即 $x \in f^{-1}(E)$,由y = f(x)知 $y \in f(f^{-1}(E))$ 。 设对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$,往证f为满射。 对任意的 $y \in Y$,则 $f(f^{-1}(\{y\})) = \{y\}$,于是 $f^{-1}(\{y\}) \neq \phi$,从而存在 $x \in X, x \in f^{-1}(\{y\}), 即 f(x) \in \{y\}$,等价的,f(x) = y,

设 $f: X \to Y$ 。试证: f为满射当且仅当对任意的 $E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

证明.

设 f 为满射,对任意的 $E \in 2^{Y}$ 往证 $f(f^{-1}(E)) = E$ 。 对 任意的 $y, y \in f(f^{-1}(E))$,则 存 在 $x, x \in f^{-1}(E)$ 并且 y = f(x),于是存在 $x, f(x) \in E$ 并且 y = f(x),从而 $y \in E$ 。 对 任意的 $y, y \in E$,由 f 为 满射知 存 在 $x \in X$, y = f(x),从而 $f(x) \in E$,即 $x \in f^{-1}(E)$,由 y = f(x)知 $y \in f(f^{-1}(E))$ 。 设对 任意的 $E \in 2^{Y}$, $f(f^{-1}(E)) = E$, 往证 f 为 满射。 对 任意的 $y \in Y$,则 $f(f^{-1}(\{y\})) = \{y\}$,于是 $f^{-1}(\{y\}) \neq \phi$,从而 存 在 $x \in X$, $x \in f^{-1}(\{y\})$,即 $f(x) \in \{y\}$,等价的, f(x) = y,故 f 为 满射。