Project Documentation: Detección de Enfermedades a través de Rayos X con IA

1. Descubrimiento del Proyecto

1.1. Introducción

El presente proyecto tiene como objetivo desarrollar un software basado en inteligencia artificial (IA) que utilice técnicas de reconocimiento de imágenes para analizar rayos X de torsos humanos. Este software estará diseñado para detectar si una persona está sana (normal) o padece alguna enfermedad específica, comenzando con la neumonía. La idea es que el sistema aprenda a identificar patrones asociados a condiciones médicas a partir de un dataset inicial, y que su capacidad diagnóstica se expanda progresivamente para reconocer un mayor número de enfermedades. Por otro lado, este informe es tentativo y está sujeto a actualizaciones.

2. Planificación del Proyecto

2.1. Alcance del Proyecto (Scope)

Objetivo Principal: Desarrollar un sistema que, mediante el uso de IA y análisis de imágenes de rayos X, determine si un paciente está sano o padece alguna enfermedad, inicialmente enfocándose en la detección de neumonía.

Funcionalidad Básica: El sistema podrá analizar imágenes de rayos X del torso y emitir un diagnóstico preliminar basado en los patrones aprendidos por la IA.

Expansión Futura: A medida que el proyecto avance, si está en nuestras posibilidades, se integrarán nuevas enfermedades al sistema, mejorando su precisión y capacidad diagnóstica.

2.2. Metas y Entregables (Goals and Deliverables)

Meta Inicial: Entrenar la IA para diferenciar entre imágenes de rayos X de pacientes sanos y aquellos con neumonía.

Entregables:

Dataset Inicial: Un conjunto de datos etiquetados con imágenes de rayos X normales y de neumonía.

Modelo Entrenado: Un modelo de IA capaz de diagnosticar neumonía con un alto nivel de precisión.

Prototipo de Software: Una aplicación que permita a los usuarios cargar imágenes de rayos X y recibir un diagnóstico preliminar.

Documentación: Guías de uso y documentación técnica del software.

3. Análisis del Proyecto

3.1. Requisitos y Especificaciones

Requisitos Funcionales:

El software debe permitir la carga de imágenes de rayos X del torso.

La IA debe analizar las imágenes y clasificar cada caso como "normal" o "neumonía".

El sistema debe ofrecer una interfaz de usuario sencilla y accesible para la visualización de resultados.

Requisitos No Funcionales:

Alta precisión en la clasificación de imágenes.

Tiempo de respuesta razonable para el análisis de cada imagen.

Escalabilidad para incorporar nuevos datasets y diagnósticos de otras enfermedades en el futuro.

Especificaciones Técnicas:

Frontend: Desarrollado en un framework web React.

Backend: Python.

Almacenamiento: Uso de bases de datos para la gestión de imágenes y resultados.

Modelo de IA: Implementación inicial con CNNs (Convolutional Neural Networks) utilizando bibliotecas como TensorFlow o PyTorch.

4. Partes del Proyecto y Futuras Implementaciones

4.1. Diseño (Design)

Arquitectura:

Frontend: Una aplicación web que interactúe con el backend.

Backend: Servicios para gestionar las solicitudes del frontend y procesar imágenes con el modelo de IA.

Pipeline de IA: Proceso de entrenamiento, validación y mejora continua del modelo, integrado con el backend para análisis en tiempo real.

4.2. Codificación (Coding)

Desarrollo del Frontend, Desarrollo del Backend y Entrenamiento del Modelo de IA.

4.3. Pruebas (Testing)

Verificación: Probar cada componente del software de forma independiente (unit testing).

Validación: Asegurar que el modelo de IA funcione correctamente con imágenes nuevas y que la interfaz sea fácil de usar.

Pruebas de Integración: Validar que el frontend, backend y modelo de IA trabajen juntos sin problemas.

4.4. Despliegue (Deployment)

Lanzamiento Inicial: Implementar el software en un entorno de producción controlado para pruebas finales.

Despliegue en Producción: Hacer que el software esté disponible para su uso real en clínicas u hospitales, comenzando con pruebas piloto.

4.5. Mantenimiento (Maintenance)

Soporte Continuo: Resolver bugs, optimizar el rendimiento y mejorar la interfaz según el feedback de los usuarios.

Actualización de la IA: Regularmente entrenar la IA con nuevos datasets para incluir más enfermedades y mejorar su precisión.

Documentación: Mantener la documentación actualizada con cada nueva implementación y actualización del sistema.