PROPAGACIÓN DE ONDAS

Energías Et = Ec + Ep

$$\omega = \sqrt{K/m}$$

$$\omega = 2\pi f$$

$$f = \frac{1}{2\pi} \sqrt{K/m}$$

$$T = 2\pi \sqrt{m/K}$$

Ec =
$$\frac{1}{2}$$
 mv²,, Ec = $\frac{1}{2}$ m (A² $\omega^2 \cos^2 \omega t$), como $\cos^2 \omega t = 1 - \cos^2 \omega t \Rightarrow$
Ec = $\frac{1}{2}$ m A² $\omega^2 (1 - \cos^2 \omega t)$, \Rightarrow Ec = $\frac{1}{2}$ m $\omega^2 (A^2 - A^2 \cos^2 \omega t)$, \Rightarrow
Ec = $\frac{1}{2}$ m $\omega^2 (A^2 - X^2)$

Como Ep =
$$\frac{1}{2}$$
 KX², Ec = $\frac{1}{2}$ m ω^2 (A² – X²), y K = m ω^2
Ec = $\frac{1}{2}$ (m ω^2) A² – $\frac{1}{2}$ (m ω^2) X² La Et = $\frac{1}{2}$ m ω^2 A² – $\frac{1}{2}$ K X² + $\frac{1}{2}$ K X² \Rightarrow

$$Et = \frac{1}{2} m \omega^2 A^2 \implies Et = \frac{1}{2} KA^2$$

Péndulo:

F = - mg sen α , S = α . L Como Sen $\alpha \cong \alpha$ para ángulos muy pequeños

Como
$$\mathbf{F} = -\mathbf{mg} \alpha \implies \mathbf{F} = -\mathbf{mg} \text{ S/L y } \mathbf{F} = -\mathbf{K.X} \implies \mathbf{K} = \frac{mg}{L}$$

$$\begin{array}{c|c}
\alpha & \uparrow & Ty \\
Tx & & \downarrow & F \\
\end{array}$$

Si
$$T = 2 \pi \sqrt{m/K} \Rightarrow T = 2 \pi \sqrt{m/(mg/L)} \Rightarrow$$

 $T = 2 \pi \sqrt{L/(g)}$

Movimiento Ondulatorio

Cualquier perturbación que se propaga por :

• La Materia: Onda Mecánica

• Por el vacío: Onda Electromagnética

- El Movimiento Ondulatorio transmite: Energía y Cantidad de Movimiento sin necesidad de transportar materia.
- La perturbación se propaga con la velocidad de la fase propia del medio.
- Las partículas materiales vibran alrededor de la posición de equilibrio sin trasladarse.
- Tipos de ondas según la forma en que se transmite la perturbación:
 - **Longitudinales**: Tienen la misma dirección el desplazamiento que las partículas y la propagación de la perturbación. Pe.: muelle, ondas sonoras, etc.
 - **Transversales**: Se propagan perpendicularmente a la perturbación (vibración). Pe.: cuerdas de guitarra, ondas superficie del agua, ondas electromagnéticas, etc.

Como la velocidad de propagación es constante, $\mathbf{t'} = \mathbf{x} / \mathbf{v}$, y al ser un tiempo después del $\mathbf{t} = \mathbf{0}$, $\mathbf{t'} = -\mathbf{x}/\mathbf{v}$ el tiempo será: $(\mathbf{t} - \mathbf{x}/\mathbf{v})$ Por tanto las ecuaciones quedarían:

Y= A seno
$$\omega$$
 (t ± t'); Y= A seno (ω t ± φ); Y= A seno (ω t ± K x); Y = A seno (ω t ± $\frac{w}{v}$ x);

Siendo K = el número de onda,
$$\mathbf{K} = \frac{2 \cdot \pi}{\lambda}$$
; $\mathbf{K} = \frac{w}{v}$

$Y(x, t)=A sen(\omega t)$

t' = tiempo que tarda la perturbación en llegar;

$$v = x / t$$

Velocidad de ondas transversales en una cuerda: $v = \int_{\gamma_\mu}^{\overline{\Gamma}}$

T = tensión, 🗜 = densidad lineal de masa de la cuerda.

Velocidad de ondas longitudinales en un muelle: $v = L\sqrt{\frac{k}{m}}$

k = constante del muelle, M = masa del muelle, L = longitud del muelle.

Atenuación de amplitud por absorción: $A = A_0 e^{-\alpha x}$ coeficiente de absorción.

Atenuación de intensidad por absorción: $I=\ I_0e^{-2\pi x}$