Applied Machine Learning for Business Analytics

Lecture 5: Auto-encoders

Lecturer: Zhao Rui

Logistics

Appreciate if you keeps video on!

Agenda

- 1. Project Scoping
- 2. Autoencoders
- 3. Applications of Autoencoders
- 4. Recommendation Systems

1. Project Scoping

Goals of ML Projects

- An ML project should be aimed at increasing profits directly or indirectly.
 - Increasing sales
 - Cutting costs
 - Increasing satisfaction
 - Increasing time spent on a website
- Do we have non-profits projects? Yes
 - Climate change
 - Public health
 - Education

Connect business metrics to your machine learning models

Case Study

Improve customer satisfaction which makes them spend more money

Solve their problems faster which makes them spend less money

Case Study: Movie Recommendation

- When building a recommendation system for movie
 - Maximize Engagement
 - Maximize Revenue from sponsored content
 - Click more, ads fee more
 - Minimize the spread of restricted content

How to set goals?

- Goals: General Purpose of a Project
 - Maximize users' engagement while minimizing the spread of violent content and maximize revenue from sponsored content
- Objectives: Specific steps on how to achieve the above goals
 - Filter out unclasificated movies
 - Rank movies by quality ————
 - Rank movies by their ads fee
 - Rank movies by engagement: how likely users will watch it

How to combine these two targets via ML systems?

Multi-objective System

- Rank Movies by quality
 - Predict films' rating
 - Minimize Rating_loss: loss between predicted rating and true rating
- Rank movies by engagement: how likely users will watch it
 - Predict watch times
 - Minimize Engagement_loss: loss between predicted watch times and true times

Solution: combine different models

- Train two models
 - Model A: rating_loss
 - Model B: engagement_loss
 - Rank movies by \alpha*pred_modelA + \beta*pred_modelB

Decouple different objectives

- Easier for training
- Easier to tweak our systems
 - No need to retrain the whole system if weights for different objectives are changed
- Easier for maintenance
 - Different objectives might need different maintenance schedules

One-Pager for Machine Learning Projects

- Amazon Writing Style Tip
 - https://medium.com/fact-of-the-day-1/amazon-writing-style-tip-a349b4bd3839
- How to write design documents for data science/machine learning projects?
 - https://eugeneyan.com/writing/writing-docs-why-what-how/

Three types of documents required during projects

Timelines not drawn to scale

2. Autoencoders

Unsupervised Learning

- Given the data x without labels
- Goal: Learn hidden structure (low dimension)

Representation Learning
Data lies on a low-dimensional
manifold

Clustering Group data points based their similarity

Density Estimation

Estimate data probability p(x) from data x1, x2,, xn

Principal Component Analysis: Maximize Variance

 PCA aims to find the directions of maximum variance in high-dimensional data and projects it onto a new subspace with equal of fewer dimensions than the original one Goal: Learn hidden structure (low dimension)

MNIST Dataset

PCA for MNIST Visualization

- Each image has 28 by 28 pixels -> 28 by 28 matrix -> 784 dimensional vector
- ullet Using PCA, find a project matrix ${f W} \in R^{784 imes 2}$
- After project, each image can be encoded into a 2-dimensional space

PCA: Minimize Reconstruction Error

 PCA aims to find a linear subspace that minimize the distance of the project in a least-square sense

minimize $||\mathbf{X} - \mathbf{X}\mathbf{W}\mathbf{W}^T||_F^2$ $\mathbf{W}^T\mathbf{W} = I$ W's shape is (d, h) and h < d

PCA in neural network format

- Non-linear relationship between original representation and latent features
- Which machine learning models to use for **nonlinear approximation**?

Autoencoder: NonLinear

Deep Autoencoder

Deep Autoencoder vs PCA

Deep Autoencoder vs PCA

Structure of Autoencoder

Undercomplete Autoencoder

- Simply copy input to output without learning anything useful
 - The autoencoder just mimic the identify function
 - Reconstruct the training data perfectly
 - Overfitting
- To avoid the above issues, we should use undercomplete autoencoders
 - The hidden layer size c is small compared to the original feature dimensionality

Sandwich Architecture in Autoencoder

- Forcing c (hidden layer size) is less than d (the input layer size)
 - Learn the important features
 - Information bottleneck:
 - A kind of trade-off between compression and retaining information

Input Layer Hidden Layer

Can we use only 4 bricks to rebuild the previous shape?

Optimization Targets

- For Autoencoder, the training objective is to minimize $||x-\tilde{x}||^2$
- Hidden representation is what we really want to learn

Unsupervised or Self-supervised

- ullet Autoencoder is one kind of self-supervised learning $||x- ilde{x}||^2$
- Input is x, target is x
- Pretend there is part of the input you do not know and predict that

Build Autoencoders in Keras

https://blog.keras.io/building-autoencoders-in-keras.html

Regularized Autoencoder

Add constraints in case the identity transformation is learned, i.e., overfitting

Sparse Autoencoders

- Constrain on c that penalizes it from dense
- Regularization on output of encoder, not parameters

$$L(x, g(f(x))) + \Omega(c)$$

Denoising Autoencoders

- Add noise into original data points
- Still reconstruct the original data points

$$L(x,g(f(ar{x})))$$

3. Applications of Autoencoders

Better Representation

Bag-of-Word

Pre-training Deep Neural Network

Greedy Layer-wise Pre-training for W1

Pre-training Deep Neural Network

Greedy Layer-wise Pre-training for W3

Pre-training Deep Neural Network

Greedy Layer-wise Pre-training for W2

Pre-training Deep Neural Network

Fine-tune by backpropagation

4. Recommendation Systems

The two best performing public stocks of the decade - Netflix (+3700%) and Domino's Pizza (+3000%) - perfectly epitomize the 2010s. You either build the world's most advanced machine learning content recommender system, or make a better pizza sauce, there's no middle ground.

1:20 PM - 27 Dec 2019

Core Problem in Rec. Sys.

- Filter Information for users
- Personalization is the key:
 - Given a certain user, compute the score that quantifies how strongly a user likes item i.

Content-based Method

- Define the similarity from items' content
 - Name: cosine similarity
 - Category
 - Rating
 - Description
 - o Etc
- Combine them into a final score
- Ranked items based on their similar scores compared to users' purchased item.

User Behaviour

- Content-based methods: only look at the items' information
- The Insights behind the huge interaction behind users and items

Ratings in Netflix

Order History

User-Item Matrix

- Content-based methods: only look at the items' information
- The Insights behind the huge interaction behind users and items

			Item Vector				
		Item 1	Item 2	Item 3	 Item k-1	Imte k	
	User 1	1	0	0	3	1	
User Vector	User 2	0	3	1	0	2	
	User n-1	0	2	0	1	1	
	User n	0	0	0	0	0	

User Behaviour

- Content-based methods: only look at the items' information
- The Insights behind the huge interaction behind users and items

Ratings in Netflix

Order History

User-based CF

- Find the similarity score between users
- Recommend products which these similar users have liked or bought previously

$$s_{u,v} = cos(ec{u},ec{v}) = rac{ec{u} * ec{v}}{||ec{u}|||ec{v}||}$$

Cosine similarity used a lot in information retrieval

Item-based CF

- Find the similarity score between items
- Recommend similar items which were liked or purchased by the users in the past

$$s_{i,m} = cos(ec{i},ec{m}) = rac{ec{i}*ec{m}}{||ec{i}|||ec{m}||}$$

Data Sparsity

movield	1	2	3	4	5	6	7	9	10	11	 106487	106489	106782	106920	109374	
userld																Simila
316	-0.829457	NaN	NaN	NaN	NaN	NaN	-1.329457	NaN	-0.829457	NaN	 NaN	NaN	NaN	NaN	NaN	
320	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	betwee
359	1.314526	NaN	NaN	NaN	NaN	1.314526	NaN	NaN	0.314526	0.314526	 NaN	NaN	NaN	NaN	NaN	and ite
370	0.705596	0.205596	NaN	NaN	NaN	1.205596	NaN	NaN	NaN	NaN	 -1.294404	-0.794404	0.705596	0.205596	NaN	zero
910	1.101920	0.101920	-0.39808	NaN	-0.39808	-0.398080	NaN	NaN	NaN	0.101920	 NaN	NaN	-0.398080	NaN	NaN	

- The core problem behind recommendation sys. is to fill these zero entries, i.e., infer the users preference over the item.
 - Address as data missing problems:
 - Use the mean value of the row
 - Use the mean value of the column
 - Matrix Factorization
 - Singular Value Decomposition
 - Non-Negative Matrix Factorization
 - Auto-encoder

NMF for Rec

Autoencoder for Rec.

Pros & Cons of CF

Pros

- Capture latent users and item factors
- Can handle sparsity
- Scalable computation (ALS)

Cons:

- Biases (Temporal and Popularity)
- Cold Start Problem
- No Context-awareness

How to evaluate Rec. Sys.

- Offline Evaluation
 - Train/test Splitting
 - RMSE
 - Recall
- Online Evaluation:
 - A/B Testing
 - Click-Through Rate (CTR)
 - Conversion Rate (CR)