Identification of the Curie Temperature Distribution from Temperature Dependent Magnetisation Data

Jonathon Waters¹, Hans Fangohr¹, Denis Kramer¹, Andreas Berger² and Ondrej Hovorka¹

¹Engineering and the Environment, University of Southampton, UK ²Somewhere

Introduction

Southampton Southampton

In HAMR¹:

- $ightharpoonup \bar{T}_C$ determines laser power.
- σ_{T_C} effects noise performance.

In Magnetic Hyperthermia²:

 $ightharpoonup T_C$ "switches off" process.

Ângela Andrade, Roberta Ferreira, José Fabris and Rosana Domingues (2011). Coating Nanomagnetic Particles for Biomedical Applications

¹Dieter Weller et al. "A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in". In: IEEE

²l Apostolova and JM Wesselinowa. "Possible low-TC nanoparticles for use in magnetic hyperthermia treatments". In: *Solid State Communications* 149,25 (2009), pp. 986–990

Finite Sized T_C

Correlation length $\propto |T-T_C^b|^{u}$ Grain size, $D \propto |T_C(D)-T_C^b|^{u}$

$$f_D(D) \Longrightarrow f_{T_C}(T_C)$$

Previous Methods

2 Types:

- ► Explicit measurement of individual grains.³
 - ► Introduces field broadening
- ► Implicit calculation using global measurements.⁴
 - ► Uses bulk relations

³ Simone Pisana et al. "Curie temperature distribution in FePt granular media". In: Magnetics, IEEE Transactions on 51.4 (2015), pp. 1–5

⁴ Andreas Berger et al. "Critical exponents of inhomogeneous ferromagnets". In: Journal of applied physics 91.10 (2002), pp. 8393–8395

Objectives

- ▶ Develop a method to identify the T_C distribution which incorporates the finite size effects of the individual grains.
- ► Test this method against benchmark data in order to verify it's effectiveness for different distributions.

Our Method

EPSRC Southampton

Aggregate Magnetisation:

$$M(T) = M_0 \int_0^\infty D^d m(D, T) f_D(D) dD$$

Scaling Ansatz:

$$m(D,T) \propto D^{-eta/
u} \mu \left(D^{1/
u} rac{T - T_C^b}{T_C^b}
ight)$$

Change of Variables:

$$D=d_{
m o}\left(rac{t}{T_C^b}
ight)^{-
u} \ t\equiv T_C^b-T_C(D)$$

Final Result:

$$M(T) = M_\mathrm{o}^* \int_\mathrm{o}^{T_C^b} t^{-d
u + eta} \mu \left(d_\mathrm{o}^{rac{1}{
u}} rac{T - T_C^b}{t}
ight) f_t(t) dt$$

Finding f_t

$$M(T) = M_{\mathrm{o}}^* \int_{\mathrm{o}}^{T_C^b} t^{-d
u + eta} \mu\left(d_{\mathrm{o}}^{rac{1}{
u}} rac{T - T_C^b}{t}
ight) f_t(t) dt$$

- \blacktriangleright M(T): To be fitted
- d, ν, β, μ : Known information about the material
- ▶ d_0 , T_C^b : May be known, otherwise taken from fit
- ► M_0^* , f_t [\bar{t} , σ_t]: Taken from the fit

Test Case: 2D Ising Model

Southampton

Used 2D Ising model as a benchmark:

- ► Easilly simulated
- Analytical results for β , ν , T_C^b ...

Tested against different f_D :

- ▶ All mean $\bar{D} = 100$
- ► Standard deviation $\sigma_D = 10, 20, 30, 40$

Conclusions

- \triangleright Presented a method to find size dependent T_C distribution.
- ► Based upon fitting ensemble magnetisation:

$$M(T)=M_{\mathrm{o}}^{st}\int_{\mathrm{o}}^{T_{C}^{b}}t^{-d
u+eta}\mu\left(d_{\mathrm{o}}^{rac{1}{
u}}rac{T-T_{C}^{b}}{t}
ight)f_{t}(t)dt$$

- ightharpoonup Tested against different size distributions f_D .
- ► Given certain constraints, the method works well.

Acknowledgements

In the completion of this work, we acknowledge financial support from the EPSRC Centre for Doctoral Training grant EP/Loo6766/1.

We also acknowledge the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton.

Contact: J.M.Waters@soton.ac.uk