

Höhere Mathematik 3

1. Nützliches Wissen $e^{jx} = \cos(x) + i \cdot \sin(x)$

$$\begin{array}{ll} \textbf{1.0.1 sinh, cosh} & \cosh^2(x) - \sinh^2(x) = 1 \\ \sinh x = \frac{1}{2}(e^x - e^{-x}) & \operatorname{arsinh} \ x := \ln\left(x + \sqrt{x^2 + 1}\right) \\ \cosh x = \frac{1}{2}(e^x + e^{-x}) & \operatorname{arcosh} \ x := \ln\left(x + \sqrt{x^2 - 1}\right) \end{array}$$

Additions theoreme
$$\cosh x + \sinh x = e^x$$
$$\sinh(\operatorname{arcosh}(x)) = \sqrt{x^2 - 1}$$
$$\cosh(\operatorname{arcsigh}(x)) = \sqrt{x^2 + 1}$$

$${\sf Stammfunktionen}$$

$$\begin{split} \cosh x &+ \sinh x &= e^x & \int \sinh x \, dx = \cosh x + C \\ \sinh(\operatorname{arcosh}(x)) &= \sqrt{x^2 - 1} & \int \cosh x \, dx = \sinh x + C \\ \cosh(\operatorname{arsinh}(x)) &= \sqrt{x^2 + 1} \end{split}$$

1.0.2 sin, cos
$$\sin^2(x) + \cos^2(x) = 1$$

x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$\frac{3}{2}\pi$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
$_{ m tan}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	0	$-\infty$	0
Additionstheoreme Stammfunktionen								

$\cos(x - \frac{\pi}{2}) = \sin x$
$\sin(x + \frac{\pi}{2}) = \cos x$
$\sin 2x = 2\sin x \cos x$
$\cos 2x = 2\cos^2 x - 1$
() () (

$\int x \cos(x) \, \mathrm{d}x = \cos(x) + x \sin(x)$ $\int x \sin(x) \, dx = \sin(x) - x \cos(x)$

$$\sin(x + \frac{1}{2}) = \cos(x)$$

$$\sin(x) + \frac{1}{2}\sin(x)\cos(x)$$

$$\cos(x) = 2\sin(x)\cos(x)$$

$$\cos(x) = 2\cos^2(x) - 1$$

$$\sin(x) = \tan(x)\cos(x)$$

$$\int \sin^2(x) dx = \frac{1}{2}(x - \sin(x)\cos(x))$$

$$\sin(x) = \tan(x)\cos(x)$$

$$\int \cos^2(x) dx = \frac{1}{2}(x - \sin(x)\cos(x))$$

$$\begin{array}{ll} \sin x = \frac{1}{2\mathrm{j}}(e^{\mathrm{j}x} - e^{-\mathrm{j}x}) & \cos x = \frac{1}{2}(e^{\mathrm{j}x} + e^{-\mathrm{j}x}) \\ a^x = e^{x\ln a} & \log_a x = \frac{\ln x}{\ln a} & \log(1) = 0 \end{array}$$

1.1. Wichtige Integrale:

- Partielle Integration: $\int uv' = uv \int u'v$
- Substitution: $\int f(g(x)) g'(x) dx = \int f(t) dt$

t dt							
F(x)	f(x)	f'(x)					
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}					
$\frac{2\sqrt{x^3}}{3}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$					
$x \ln(x) - x$	ln(x)	$\frac{1}{x}$					
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$					
$-\cos(x)$	sin(x)	$\cos(x)$					
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$					
$\ln \sin(x) $	$\cot(x)$	$\frac{-1}{\sin^2(x)}$					
$x \arcsin(x) + \sqrt{1 - x^2}$	$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$					
$x \arccos(x) - \sqrt{1 - x^2}$	arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$					
$x \arctan(x) - \frac{1}{2} \ln \left 1 + x^2 \right $	arctan(x)	$\frac{1}{1+x^2}$					
$e^{(x)}(x-1)$	$x \cdot e^{(x)}$	$e^x(x+1)$					
$\frac{1}{2}\left(\sqrt{x^2+1}x+\sinh^{-1}(x)\right)$	$\sqrt{1+x^2}$	$\frac{x}{\sqrt{x^2+1}}$					
$\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$							
$\int t \sin(bt) dt = \frac{1}{b_1^2} (\sin(bt) - bt \cos(bt))$							
$\int t \cos(bt) dt = \frac{1}{b^2} (bt \sin(bt) + \cos(bt))$							

$$\int te^{at} dt = \frac{at-1}{a^2} e^{at}$$
 $\int t^2 e^{at} dt = \frac{(ax-1)^2 + 1}{a^3} e^{at}$

1.2. Determinante von $A \in \mathbb{K}^{n \times n}$: det(A) = |A|

$$\det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix} = \det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \cdot \det(D)$$
Hat $A \ge \text{linear abhäng Zeilen}(\text{Snalten} \to |A| = 0)$

Entwicklung. n. iter Zeile: $|A| = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot |A_{ij}|$

1.2.1 Eigenwerte λ und Eigenvektoren \underline{v}

$$\widetilde{\underline{A}}$$

$$\det \mathbf{A} = \prod \lambda_i$$
 Sp $\mathbf{A} = \sum \lambda_i$

Eigenwerte:
$$\det(\underline{A} - \lambda \underline{1}) = 0$$
, Det-Entwickl., Polynom-Div. Eigenvektoren: $\mathrm{Eig}_A(\lambda_i) = \ker(\underline{A} - \lambda_i \underline{1}) = \underline{v}_i$ $\rightarrow \dim(\mathrm{Eig}_A(\lambda_i)) = \gcd(\lambda_i) \quad \forall i : 1 \leq \gcd(\lambda_i) \leq \deg(\lambda_i)$ Hauptvektoren Ein Vektor \underline{v} heißt Hauptvektor k -ter Stufe genau dann wenn: $(\underline{A} - \lambda \underline{E})^k \underline{v} = \underline{0}$ und $(\underline{A} - \lambda \underline{E})^{k-1} \underline{v} \neq 0$

1.3. Reihen

$$\sum\limits_{n=1}^{\infty} rac{1}{n}
ightarrow \infty$$
 Harmonische Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n} \to \infty \qquad \sum_{n=0}^{\infty} q^n \stackrel{|q| < 1}{=} \frac{1}{1 - q} \qquad \sum_{n=0}^{\infty} \frac{z^n}{n!} = e^z$$
Harmonische Reihe Exponentialreihe

$$\sum_{n=0}^{\infty} \frac{z^n}{n!} = e^z$$

1.4. Vektoroperatoren

$$\begin{array}{ll} \operatorname{grad} f = \nabla f & \operatorname{div} \underline{\boldsymbol{f}} = \nabla^\top \cdot \underline{\boldsymbol{f}} & \operatorname{rot} \underline{\boldsymbol{f}} = \nabla \times \underline{\boldsymbol{f}} \\ \Delta f = \operatorname{div} \operatorname{grad} f & \end{array}$$

2. Integralarten

2.0.1 Regulärer Bereich

 $B\subseteq\mathbb{R}^n$ heißt regulärer Bereich, wenn

- B abgeschlossen und einfach zusammenhängend
- B lässt sich in endlich viele Normalhereiche zerlegen

2.0.2 Volumen und Oberfläche von Rotationskörpern um x-Achse $O = 2\pi \int_{a}^{b} f(x) \sqrt{1 + f'(x)^2} dx$ $V = \pi \int_a^b f(x)^2 dx$

2.1. Skalares Kurvenintegral

$$\int\limits_{\gamma} f \, \mathrm{d}s := \int\limits_{a}^{b} f(\underline{\gamma}(t)) \cdot \|\dot{\underline{\gamma}}(t)\| \mathrm{d}t \qquad \text{SF } f(\underline{\boldsymbol{x}}); \underline{\boldsymbol{x}}, \underline{\gamma} \in \mathbb{R}^{n}$$

$$L(\underline{\gamma}) = \int_{\gamma} 1 \, \mathrm{d}s$$

Gesamtmasse $M=\int\limits_{\gamma}f\;\mathrm{d}s=\int\limits_{a}^{b}\varrho\big(\underline{\gamma}(t)\big)\cdot\|\dot{\underline{\gamma}}(t)\|\mathrm{d}t$

Schwerpunkt $\underline{\underline{S}}$: $S_i = \frac{1}{M(\gamma)} \cdot \int\limits_{\gamma} x_i \varrho \; \mathrm{d}s$

2.2. vektorielles Kurvenintegral

$$\int \underline{\boldsymbol{v}} \cdot d\underline{\boldsymbol{s}} := \int_{a}^{b} \underline{\boldsymbol{v}} (\underline{\boldsymbol{\gamma}}(t))^{\top} \cdot \underline{\dot{\boldsymbol{\gamma}}}(t) dt \quad \text{VF } \underline{\boldsymbol{v}}(\underline{\boldsymbol{x}}); \underline{\boldsymbol{x}}, \underline{\boldsymbol{v}}, \underline{\boldsymbol{\gamma}} \in \mathbb{R}^{n}$$

2.2.1 Fluss durch Kurve

Fluss von v von (in Durchlaufrichtung gesehen) links nach rechts.

$$\int_{\omega} \underline{\boldsymbol{v}} \, d\underline{\boldsymbol{n}} = \int_{\omega} \underline{\boldsymbol{v}} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \underline{\boldsymbol{T}}(\underline{\boldsymbol{x}}) \, d\underline{\boldsymbol{s}}$$

2.3. Gebietsintegrale über Normalbereiche

$$f:B\subseteq\mathbb{R}^2 o\mathbb{R}$$
 stetig

2.3.1 Flächenintegrale im \mathbb{R}^2

Typ I $B_{\rm I}$ regulärer Bereich

$$B_{l} = \left\{ \underline{x} \in \mathbb{R}^{2} | a \le x_{1} \le b; g(x_{1}) \le x_{2} \le h(x_{1}) \right\}$$

$$\iint_{B} f \, dF = \int_{x_{1}=a}^{b} \int_{x_{2}=g(x_{1})}^{h(x_{1})} f(x_{1}, x_{2}) \, dx_{2} \, dx_{1}$$

$$\iint_{B} \int dr - \int_{x_{1}=a} \int_{x_{2}=g(x_{1})} \int (x_{1}, x_{2}) dx_{2} dx_{1}$$

Typ II $B_{\rm II}$ regulärer Bereich

$$B_{\mathsf{II}} = \left\{ \underline{\boldsymbol{x}} \in \mathbb{R}^2 | c \le x_2 \le d; l(x_2) \le x_1 \le r(x_2) \right\}$$

$$\iint_B f \, dF = \int_{x_2=c}^d \int_{x_1=l(x_2)}^{r(x_2)} f(x_1, x_2) \, dx_1 \, dx_2$$

2.3.2 Volumenintegrale im \mathbb{R}^3

V regulärer Bereich

$$\iiint_{V} f \, dV = \int_{0}^{b} \int_{0}^{o(x_{1})} \int_{0}^{o'(x_{1}, x_{2})} f(x_{1}, x_{2}, x_{3}) \, dx_{3} \, dx_{2} \, dx_{1}$$

2.4. Koordinatentransformationen

 $D, B \subseteq \mathbb{R}^2$ reguläre Bereiche $\underline{\boldsymbol{x}}:D\to B \text{ mit }\underline{\boldsymbol{x}}=\underline{\boldsymbol{x}}(u_1,u_2) \quad \underline{\boldsymbol{u}}\in D$ $\Rightarrow \iint_B f(x_1, x_2) \, dF(\underline{\boldsymbol{x}}) = \iint_D f(\underline{\boldsymbol{x}}(u_1, u_2)) \left| \det J_{\underline{\boldsymbol{x}}}(\underline{\boldsymbol{u}}) \right| \, dF(\underline{\boldsymbol{u}})$ $J_{\mathbf{z}} \neq 0$ bis auf Nullmengen

 $D, B \subseteq \mathbb{R}^3$ reguläre Bereiche

$$\begin{array}{l} \underline{\boldsymbol{x}}: D \xrightarrow{-} B \text{ mit } \underline{\boldsymbol{x}} = \underline{\boldsymbol{x}}(u_1, u_2, u_3) \quad \underline{\boldsymbol{u}} \in D \\ \Rightarrow \iiint_B f(\underline{\boldsymbol{x}}) \; \mathrm{d}V(\underline{\boldsymbol{x}}) = \iiint_D f(\underline{\boldsymbol{x}}(\underline{\boldsymbol{u}})) \left| \det J_{\underline{\boldsymbol{x}}}(\underline{\boldsymbol{u}}) \right| \; \mathrm{d}V(\underline{\boldsymbol{u}}) \\ J_{\underline{\boldsymbol{x}}} \neq 0 \text{ bis auf Nullmengen} \end{array}$$

2.4.1 Koordinatenwechsel

 ${m x}:{m u}\in D o{m x}({m u})\in B$ orthogonale Transformation $D.B \subseteq \mathbb{R}^3$

$$\begin{split} B(\underline{\boldsymbol{u}}) &= \begin{pmatrix} \underline{\boldsymbol{e}}_{u_1} & \underline{\boldsymbol{e}}_{u_2} & \underline{\boldsymbol{e}}_{u_3} \end{pmatrix} \quad \underline{\boldsymbol{e}}_{u_i} = \frac{\underline{\boldsymbol{x}}_{u_i}}{\|\underline{\boldsymbol{x}}_{u_i}\|} \\ \hline \boldsymbol{v}(\boldsymbol{x}(\boldsymbol{u})) &= B(\boldsymbol{u})\boldsymbol{V}(\boldsymbol{u}) \end{split}$$

Kurvenintegrale

 $\omega(t) \in D$: Kurve im ${m u}$ -Raum

 $\underline{\tilde{\omega}}(t) = \underline{x}(\underline{\omega}(t))$: Zugehörige Kurve im x-Raum

$$\begin{split} & \underline{\boldsymbol{v}}(\underline{\boldsymbol{x}}) \cdot \ \mathrm{d}\underline{\boldsymbol{x}} = \underline{\boldsymbol{V}}(\underline{\boldsymbol{u}}) \cdot \begin{pmatrix} h_1 \ \mathrm{d}u_1 \\ h_2 \ \mathrm{d}u_2 \\ h_3 \ \mathrm{d}u_3 \end{pmatrix} = \begin{pmatrix} h_1 V_1(\underline{\boldsymbol{u}}) \\ h_2 V_2(\underline{\boldsymbol{u}}) \\ h_3 V_3(\underline{\boldsymbol{u}}) \end{pmatrix} \cdot \ \mathrm{d}\underline{\boldsymbol{u}} \\ & \mathrm{d}\underline{\boldsymbol{x}} = h_1 \underline{\boldsymbol{e}}_{u_1} \ \mathrm{d}u_1 + h_2 \underline{\boldsymbol{e}}_{u_2} \ \mathrm{d}u_2 + h_3 \underline{\boldsymbol{e}}_{u_3} \ \mathrm{d}u_3 \\ & \mathrm{d}s(\underline{\boldsymbol{x}}) = \sqrt{h_1^2 \dot{\omega}_1(t)^2 + h_2^2 \dot{\omega}_2(t)^2 + h_3^2 \dot{\omega}_3(t)^2} \ \mathrm{d}t \end{split}$$

Oberflächenintegrale

 $T \subset D$: Fläche im u-Bereich

 $S \subset B$: Entsprechende Fläche im x-Bereich

 $S = \underline{\boldsymbol{x}}(T)$; Parametrisierung in D: $(u, w) \in M \mapsto \boldsymbol{\phi}(u, w)$

$$\begin{split} & \iint_{S} \underline{\boldsymbol{v}} \cdot \, \mathrm{d}\underline{\boldsymbol{Q}} = \iint_{M} \left(V_{1} h_{2} h_{3} \frac{\partial(\phi_{2}, \phi_{3})}{\partial(u, w)} \right. \\ & \left. + V_{2} h_{3} h_{1} \frac{\partial(\phi_{3}, \phi_{1})}{\partial(u, w)} + V_{3} h_{1} h_{2} \frac{\partial(\phi_{1}, \phi_{2})}{\partial(u, w)} \right) \, \mathrm{d}s \, \mathrm{d}t \end{split}$$

$$d\underline{\mathbf{Q}}(\underline{\mathbf{x}}) = \left[h_2 h_3 \frac{\partial (\phi_2, \phi_3)}{\partial (u, w)} \underline{\mathbf{e}}_{u_1} + h_3 h_1 \frac{\partial (\phi_3, \phi_1)}{\partial (u, w)} \underline{\mathbf{e}}_{u_2} + h_1 h_2 \frac{\partial (\phi_1, \phi_2)}{\partial (u, w)} \underline{\mathbf{e}}_{u_3} \right] ds dt$$

2.5. Integration über Flächen in \mathbb{R}^3

2.5.1 Parametrisierung

Fläche im Zweidimensionalen wird zuerst parametrisiert: $(u, w) \in M \mapsto \phi(u, w) = \underline{x} \in \mathbb{R}^3$

$$\phi = x^2 + y^2 \le r^2$$
 $\partial \phi = \begin{pmatrix} r \cos(t) \\ r \sin(t) \end{pmatrix}$ $\underline{\boldsymbol{n}} = \begin{pmatrix} r \cos(t) \\ r \sin(t) \end{pmatrix}$

$$\phi = \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$$
 $\partial \phi = \begin{pmatrix} a\cos(t) \\ b\sin(t) \end{pmatrix}$ $\underline{\boldsymbol{n}} = \begin{pmatrix} a\cos(t) \\ b\sin(t) \end{pmatrix}$

Eigenschaften der Parametrisierung $\phi(u, w)$

- x flächentreu: $\|\phi_{yx} \times \phi_{yy}\| = 1$
- x winkeltreu: $\underline{\phi}_{u} \perp \underline{\phi}_{w}$ & $\|\underline{\phi}_{u}\| = \|\underline{\phi}_{w}\|$
- x längentreu: $\underline{\phi}_{y} \perp \underline{\phi}_{y}$ & $\|\underline{\phi}_{y}\| = \|\underline{\phi}_{y}\| = 1$

2.5.2 Skalares Oberflächenintegral

2.5.3 Vektorielles Oberflächenintegral (Fluss)

$$\begin{split} & \text{VF } \underline{v} : D \subseteq \mathbb{R}^3 \to \mathbb{R}^3, \underline{x} \mapsto \underline{v}(x,y,z) \text{ und Fläche } \underline{\phi}(u,w) \\ & \boxed{ \iint_{\underline{\phi}} \underline{v} \cdot \, \mathrm{d}\underline{\mathcal{Q}} := \iint_{B} \underline{v} \Big(\underline{\phi}(u,w)\Big)^{\top} \cdot \Big(\underline{\phi}_{u} \times \underline{\phi}_{w}\Big) \, \mathrm{d}u \, \, \mathrm{d}w } \end{split}$$

3. Integralsätze

$$\begin{split} \text{Ist } B \subseteq \mathbb{R}^2 \text{ Gebiet mit geschlossenem Rand } \partial B = \sum \underline{\gamma}_i \min \underline{\gamma}_i \in \mathcal{C}^1 \\ \text{und pos. param. (gegen Uhrzeigersinn), dann gilt } \forall \mathcal{C}^1 \text{ VF } \underline{v} \text{:} \end{split}$$

3.1. Divergenzsatz von Grauß für einfache $\partial V = \sum \phi_i$

$$\iiint_V \operatorname{div} \underline{\boldsymbol{v}} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \oiint_{\partial V} \underline{\boldsymbol{v}} \cdot \, \mathrm{d}\underline{\boldsymbol{O}} = \sum \iint_{\underline{\boldsymbol{\phi}}_i} \underline{\boldsymbol{v}} \cdot \, \mathrm{d}\underline{\boldsymbol{O}}$$

 $\overline{\phi_i}$ muss pos. param. sein! $(\underline{n} = \phi_{iu} \times \phi_{iy} \text{ nach außen})$

3.1.1 Sektorformel zur Flächenberechnung

$$\omega(t) = \partial B$$

$$F(B) = \frac{1}{2} \int_{a}^{b} \omega_{1} \dot{\omega_{2}} - \omega_{2} \dot{\omega_{1}} dt$$

3.2. Satz von Stokes für doppelpunktfreien $\partial \phi = \sum \gamma_i$

$$\boxed{ \iint_{\underline{\phi}} \operatorname{rot} \underline{v} \, d\underline{O} = \oint_{\partial \underline{\phi}} \underline{v} \, d\underline{s} }$$

Flächennormale = Daumen Umlaufrichtung = Finger

$$\iint_{B} \frac{\partial v_{2}}{\partial x} - \frac{\partial v_{1}}{\partial y} dx dy = \oint_{\partial B} \underline{\boldsymbol{v}} \cdot d\underline{\boldsymbol{s}} = \sum_{i=1}^{k} \int_{\underline{\boldsymbol{\gamma}}_{i}} \underline{\boldsymbol{v}} \cdot ds$$

3.2.2 Satz von Stokes für ebene Felder

$$\underline{v}: B \subseteq \mathbb{R}^2 \to \mathbb{R}^2 \text{ und } \underline{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\iint_B \operatorname{rot} \left(\underline{v} \right) \underline{e_3} \, dF = \oint_{\partial B} \underline{v} \, d\underline{x}$$

Sind
$$f,g$$
 zwei SF, so: $\iiint_B f\Delta g + \nabla f \nabla g \; \mathrm{d}V = \iint_{\partial B} f \nabla g \; \mathrm{d}\underline{\mathcal{Q}}$ für $f=1$: $\iiint_B \Delta g \; \mathrm{d}V = \iint_{\partial B} \nabla g \; \mathrm{d}\underline{\mathcal{Q}}$

3.3. Gradientenfeld

 $D\subset\mathbb{R}^n$ offen und **einfach zusammenhängend** und $\underline{v}(\underline{x})$ mit $\underline{v}:D\to\mathbb{R}^n$ C^1 -Vektorfeld. Wenn

- $\operatorname{rot} \underline{\boldsymbol{v}} = 0$ oder
- $J_{\underline{v}}(\underline{x}) = J_{\underline{v}}^T(\underline{x}) \quad \forall \underline{x} \in D$

Dann

- $\underline{\boldsymbol{v}}$ ist Gradientenfeld mit $\underline{\boldsymbol{v}} = \operatorname{grad} \phi$
- $\int_{\omega} \underline{v} \cdot d\underline{s} = \int_{a}^{b} \underline{v}(\underline{\gamma}(t))\dot{\underline{\gamma}} dt = \Phi\left(\underline{\gamma}(b)\right) \Phi\left(\underline{\gamma}(a)\right)$ (wegunabhängig)
- $\oint_C \underline{\boldsymbol{v}} \cdot d\underline{\boldsymbol{s}} = 0 \quad \forall C^1$ -Kurven in D
- ullet v konservativ auf $D \Rightarrow$ auch auf jeder Teilmenge von D
- \bullet Stammfunktion: Es gilt $\partial_i\Phi=v_i\to\Phi=\int v_i\;\mathrm{d}x_i+c(\underline{x_k})\quad k\neq i$

4. Fourierreihe

ist die Entwicklung einer Funktion $f\in C(T)$ in eine Reihe aus \sin und \cos

 $C(T):T ext{-periodisch, stetig fortsetzbar}$

f ist T-periodisch, falls $f(x+T)=f(x) \to \text{auch } n \cdot T$ periodisch.

4.1. Entwicklung in Fourierreihen $f(x) \sim S_f(x)$

• Bestimme die Fourierkoeffizienten zu $f \in C(T)$:

$$a_k, b_k \in \mathbb{R}: \begin{bmatrix} a_k = \frac{2}{T} & \frac{T}{2} \\ b_k = \frac{2}{T} & \int_{-\frac{T}{2}}^{T} f(x) \begin{Bmatrix} \cos\left(k\frac{2\pi}{T}x\right) & \mathrm{d}x \end{Bmatrix}$$

 a_0 immer separat berechnen mit k=0!

$$c_k \in \mathbb{C} \colon \left[c_k = \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \exp\left(-\mathrm{j}k \frac{2\pi}{T} x\right) \, \mathrm{d}x \right]$$

- c_0 immer separat berechnen mit k=0!
- ullet Aufstellen der Fourierreihe S_f zu f

$$S_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(k\frac{2\pi}{T}x\right) + b_k \sin\left(k\frac{2\pi}{T}x\right)$$

$$S_f(x) = \sum_{k=-\infty}^{\infty} c_k \exp\left(jk\frac{2\pi}{T}x\right)$$

Konvergenz: $S_f(x) \sim f(x) \Rightarrow f$ in x stetig & stückweise stetig differenzierbar $\Rightarrow S_f(x) = f(x)$

$$f$$
 nicht in x stetig $\Rightarrow x = a_i$ und $S_f(x) = \frac{f(a_i^+) + f(a_i^-)}{2}$

4.2. Rechenregeln

$$\begin{array}{lll} \text{Linearität} & \alpha f + \beta g & \bigodot \bullet & \alpha c_k + \beta d_k \\ \text{Konjugation} & \overline{f} & \bigodot \bullet & \overline{c_{-k}} \\ \text{Zeitumkehr} & f(-t) & \bigodot \bullet & c_{-k} \\ \text{Streckung} & f(\gamma t) & \bigodot \bullet & c_k; \gamma > 0; \tilde{T} = \frac{T}{\gamma} \\ \text{Verschiebung } t & f(t+a) & \bigodot \bullet & e^{jk\omega a}c_k \\ \text{Verschiebung } \omega & e^{jn\omega t}f(t) & \bigodot \bullet & c_{k-n} \\ \text{Ableitung} & \overline{f}(t) & \bigodot \bullet & \frac{c_k}{jk\omega} & k \neq 0 \\ \text{Stammfunktion} & \int_0^t f(t) & \bigodot \bullet & \left\{ \frac{c_k}{jk\omega} & k \neq 0 \\ -\frac{1}{T}\int_0^T tf(t) & dt & k = 0 \\ & c_0 & \vdots & \vdots \\ \text{Faltung} & f*g & \bigodot \bullet & c_k d_k \end{array} \right.$$

4.3. Symmetrien

- f gerade (achsensym.) Funktion: $f(\frac{T}{2}+t)=f(\frac{T}{2}-t)$ $c_k=c_{-k}$ & $b_k=0$ $a_k=\frac{4}{T}\int_0^{T/2}f(x)\cos\left(k\frac{2\pi}{T}x\right)~\mathrm{d}x$
- f ungerade (punktsym.) Funktion: $f(\frac{T}{2}+t)=-f(\frac{T}{2}-t)$ $c_k=-c_{-k}$ & $a_k=0$ $b_k=\frac{4}{T}\int_0^{T/2}f(x)\sin\left(k\frac{2\pi}{T}x\right)\,\mathrm{d}x$
- $\begin{array}{l} \bullet \ \, f \ \, \text{ohne} \ \, \frac{T}{2} \text{-periodischen Anteil:} \ \, f(\frac{T}{2}+t) = -f(t) \\ c_{2k} = a_{2k} = b_{2k} = 0 \\ \left\{ \begin{matrix} a_{2k+1} \\ b_{2k+1} \end{matrix} \right. = \frac{1}{T} \int_0^{T/2} f(t) \left\{ \begin{matrix} \cos\left((2k+1)\omega t\right) \\ \sin\left((2k+1)\omega t\right) \end{matrix} \right. \right. \, \mathrm{d} \end{array}$

4.4. Umrechnungsformeln

- $a_0 = 2c_0$ $a_k = c_k + c_{-k}$ $b_k = j(c_k c_{-k})$
- $\bullet \ c_0 = \tfrac{a_0}{2} \ c_k = \tfrac{1}{2} (a_k \mathrm{j} b_k) \ c_{-k} = \tfrac{1}{2} (a_k + \mathrm{j} b_k)$

4.5. LTI-Systeme

$$\begin{split} L[y](t) &= a_n y^{(n)}(t) + \dots + a_1 \dot{y}(t) + a_0 y(t) = x(t) \\ \frac{\mathrm{d}^n}{\mathrm{d}t^n} &\to s^n \to P(s) = a_n s^n \dots + a_1 s + a_0 \\ h_T(t) &= \sum_{k=-\infty}^\infty d_k e^{\mathrm{j}k\omega t} \text{ mit } d_k = \frac{1}{P(\mathrm{j}k\omega)} \\ y(t) &= h_T(t) * x(t) = \int_0^T h_T(\tau) x(t-\tau) \, \mathrm{d}\tau \end{split}$$

4.6. Umrechnung von T in S periodische Funktionen

$$\begin{array}{ll} f & \text{ist} \quad T \quad \text{periodisch,} \quad g(x) & = \quad f\left(\frac{T}{S}x\right), \quad S \quad \text{periodisch,} \quad \text{denn} \\ g(x+S) = f\left(\frac{T}{S}(x+S)\right) = f\left(\frac{T}{S}x + T\right) = f\left(\frac{T}{S}x\right) = g(x) \end{array}$$

4.7. Funktionen

4.7.1 Sägezahnfunktion

$$\begin{split} s(t) &= \frac{1}{2}(\pi - t), \quad 0 < t < 2\pi, \quad T = 2\pi, \quad \omega = 1 \\ c_0 &= 0; \quad c_k = \frac{1}{2k_{\rm j}} \\ S_f(t) &= \sum_{k=1}^{\infty} \frac{1}{k} \frac{e^{{\rm j}kt} - e^{-{\rm j}kt}}{2{\rm j}} \end{split}$$

5. Fouriertransformation $f(t) \rightarrow F(\omega)$

Voraussetzungen:

- 1. f stückweise stetig differenzierbar
- 2. $f(t) = \frac{1}{2} \left(f(t^+) + f(t^-) \right)$
- 3. $\int_{-\infty}^{\infty} |f(t)| dt < \infty$ (f absolut integrierbar)

$$o$$
 F mit Zeitfunktion $f:\mathbb{R} \to \mathbb{C}$ und Frequenzfkt./Spektralfkt F

$$F(\omega) := \int_{-\infty}^{\infty} f(t) \exp(-j\omega t) dt$$

Wichtige Fouriertransformationen:

5.1. Die Dirac'sche Deltafkt. $\delta(t)$

$$\begin{array}{l} \delta_{\varepsilon}(t-t_0) = \frac{1}{\varepsilon}, \ \text{für} \ t_0 \leq t \leq t_0 + \varepsilon, \ \text{sonst} \ 0 \\ \text{Für stetiges} \ g \ \text{gilt:} \ \int_{-\infty}^{\infty} g(t) \delta(t-t_0) \ \mathrm{d}t = g(t_0) \\ \Delta_{t_0}(\omega) = \int_{-\infty}^{\infty} \delta(t-t_0) \exp(-\mathrm{j}\omega t) \ \mathrm{d}t = \exp(-\mathrm{j}\omega t_0) \\ \delta(t-t_0) \ \bigcirc -\!\!\!\!\!- \ \Delta_{t_0}(\omega) \ \text{und} \ \delta(t) \ \bigcirc -\!\!\!\!\!\!- \ 1 \end{array}$$

5.2. Heaviside-Funktion u(t)

$$\mathbf{u}: \mathbb{R} \to \mathbb{C}, \mathbf{u}(t) = \begin{cases} 1 &, t > 0 \\ 0 &, t < 0 \end{cases} \approx \lim_{a \to 0} \exp(-at)$$

5.3. Die Inverse Fouriertransformation

$$\begin{split} f(t) &= \frac{1}{2\pi} \int \limits_{-\infty}^{\infty} F(\omega) \exp(\mathrm{j}\omega t) \; \mathrm{d}\omega \\ \begin{cases} f(t) & , f \; \mathrm{stetig in} \; t \\ \frac{f(t^-) + f(t^+)}{2} & , \mathrm{falls} \; f \; \mathrm{unstetig} \; \mathrm{in} \; t \end{cases} \end{split}$$

5.4. Rechenregeln

5.5. Lineare DGLn

$$\begin{split} L[y](t) &= P\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)y(t) = b(t) \ \ \mathbf{0} - \bullet \ \ P(\mathrm{j}\omega)Y(\omega) = B(\omega) \\ Y(\omega) &= \underbrace{\frac{1}{P(\mathrm{j}\omega)}}_{H(\omega) \ \ \mathbf{0} - \bullet \ \ h(t)} B(\omega) \end{split}$$

6. Laplacetransformation $\mathcal{L}(f(t)) = F(s)$

Linearität: $\alpha f(t) + \beta g(t) \bigcirc - \bullet \alpha F(s) + \beta G(s)$ Ähnlichkeit: $f(ct) \bigcirc - \bullet \frac{1}{a} F(\frac{s}{a})$

Ableitung Originalfkt:
$$f'(t)$$
 \circ — \bullet $sF(s)$ $f(0)$ $f''(t)$ \circ — \bullet $s^2F(s)$ $sf(0)$ $f'(0)$

 $f^{(n)} \circ -\!\!\!\!\! \bullet \quad s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) \ldots - f^{(n-1)}(0)$ Integral Originalfkt: $\int_0^t f(s) \, \mathrm{d} s \circ -\!\!\!\!\!\! \bullet \quad \frac{1}{s} F(s)$

Ableitung Bildfkt: $(-t)^n f(t) \circ - \bullet F^{(n)}(s)$ Verschiebung: $f(t-a)u(t-a) \circ - \bullet e^{-as}F(s)$

Verschiebung: $f(t-a)u(t-a) \bigcirc \bullet e^{-as}$. Dämpfung: $e^{-at}f(t) \bigcirc \bullet F(s+a)$

Faltung: $(f*g)(t) := \int_0^t f(t-\tau)g(\tau) d\tau \quad \bigcirc \bullet \quad F(s) \cdot G(s)$

Inverse: $f(t) = \frac{1}{2\pi \mathrm{j}} \int\limits_{\gamma - \mathrm{j}\infty}^{-\gamma + \mathrm{j}\infty} F(s) \exp(st) \; \mathrm{d}s$

Es gibt eine eineindeutige Korespondens zwischen den Originalfkt und Bildfkt. Meist Nennergrad > Zählergrad: Bruch geschickt umformen! Laplacetransformierte als Summe nie auf gemeinsamen Nenner bringen!!

7. Differentialgleichungen DGL

Anfangswertproblem AWP = DGL + Anfangsbedingung: $af''(t) + bf'(t) + cf(t) = s(t) \quad f(0) = d, f'(0) = e \rightarrow \text{falls DGL h\"oherer Ordnung} \rightarrow \text{Vogel-Strau8-Algorithmus}$

7.1. DGL LaPlace-Transformierbar

Falls gilt $f(t) \circ - \bullet F(s)$ und $s(t) \circ - \bullet S(s)$: Laplacetrafo: $a(s^2F(s) - sf(0) - f'(0)) + b(sF(s) - f(0)) + cF(s) = S(s)$ $F(s) = \frac{a(sd+e)+bd}{as^2+bs+c} + S(s) \frac{1}{as^2+bs+c}$ Rücktransformation von F(s) liefert die Lösung f(t)

7.2. DGL-Systeme + Anfangsbedingung

$$\begin{array}{l} \dot{\boldsymbol{f}} = \underline{\boldsymbol{A}}\underline{\boldsymbol{f}} + \underline{\boldsymbol{s}}(t) \\ \overline{1}. \operatorname{Ordning} + 2 \operatorname{Gelichungen} \operatorname{und} x(0) = x_0; y(0) = y_0 \\ \dot{\boldsymbol{x}}(t) = ax(t) + by(t) + s_1(t) \\ \dot{\boldsymbol{y}}(t) = cx(t) + dy(t) + s_2(t) \\ \overline{\boldsymbol{y}}(t) = \operatorname{Indiag} \underline{\boldsymbol{s}}(t) + \operatorname{Indiag} \underline{\boldsymbol{s}}(t) \\ \overline{\boldsymbol{s}}(t) = ax(t) + dy(t) + s_2(t) \\ \overline{\boldsymbol{s}}(t) = ax(t) + dy(t) + dy(t) + dy(t) \\ \overline{\boldsymbol{s}}(t) = ax(t) + dy(t) + dy(t) + dy(t) \\ \overline{\boldsymbol{s}}(t) = ax(t) + dy(t) + dy(t) + dy(t) \\ \overline{\boldsymbol{s}}(t) = ax(t) + dy(t) + dy(t) + dy(t) + dy(t) \\ \overline{\boldsymbol{s}}(t) = ax(t) + dy(t) + dy(t) + dy(t) + dy(t) \\ \overline{\boldsymbol{s}}(t) = ax(t) + dy(t) + dy(t) + dy(t) + dy(t) + dy(t) \\ \overline{\boldsymbol{s}}(t) = ax(t) + dy(t) + dy(t)$$

7.3. Integralgleichungen vom Volterra-Typ

$$a\cdot f(t)+\int_0^t k(t-x)f(x)\ \mathrm{d}x=s(t)$$
 Falls alle Fkt. Ltrafobar: $aF(s)+K(s)\cdot F(s)=S(s)$

7.4. seperierbare DGL

Form:
$$y' = f(x) \cdot g(y)$$
; Lösung: $\int \frac{1}{g(y)} dy = \int f(x) dx$

7.5. lineare DGL mit konstanten Koeffizienten

7.5.1 homogene DGL mit konstanten Koeffizienten

$$a_n y^{(n)} + a_{n-1} y^{n-1} + \ldots + a_0 y = 0$$

- Stelle die charakteristische Gleichung $p(\lambda) = \sum_{k=0}^n a_k \lambda^k = 0$ auf
- Bestimme alle Lösungen von $p(\lambda)$
- ullet Gib n linear unabhängige Lösungen der DGL an:
- Ist λ eine m-fache reelle NST, dann wähle $y_1=e^{\tilde{\lambda}x}$, $y_i=x^ie^{\lambda x}$

- Ist λ eine m-fache konjugiert komplexe NST $\lambda=a+\mathrm{j}b$, dann streiche $\overline{\lambda}_i$ und wähle $y_1=e^{ax}\cos(bx),\ y_2=e^{ax}\sin(bx)$ bzw. $y_i=x^ie^{ax}\sin(bx)$ und $y_{i+1}=x^ie^{ax}\cos(bx)$
- $y(x) = c_1 y_1(x) + \ldots + c_n y_n(x)$ mit $c_1, \ldots c_n \in \mathbb{R}$ ist Lösung der DGI

7.5.2 inhomogene DGL mit konstanten Koeffizienten

$$a_n y^{(n)} + a_{n-1} y^{n-1} + \ldots + a_0 y = s(t)$$

- Löse homogene DGL (s=0), liefert y_h
- ullet Partikuläre Lösung y_p durch Variation der Konstanten
- Stelle ein $y_{\mathcal{D}}(x)$ mit variablen Konstanten c(x) auf
- Löse das System: $\begin{aligned} c_1'y_1+c_2'y_2&=0\\ c_1'y_1'+c_2'y_2'&=\frac{1}{a_n}s(x)\\ \text{Beachte dabei auch die Ableitung nach der Produktregel} \end{aligned}$
- Erhalte c(x) durch unbestimmte Integration aus c'(x)
- $-y_p = c_1(x)y_1 + c_2(x)y_2$ ist die partikuläre Lösung
- \bullet Partikuläre Lsg. y_p durch Ansatz vom komischen Typ auf der rechten Seite
 - Idee: y_p hat die Form von s(x) Falls $s(x)=(b_0+b_1x+\ldots+b_mx^m)e^{ax}{cos(bx)\choose sin(bx)}$, dann $y_p=x^r\cdot \left[(A_0+A_1x+\ldots+A_mx^m)\cos(bx)+(B_0+B_1x+\ldots+B_mx^m)\sin(bx)\right]e^{ax}$ mit a+bj ist r-fache Nullstelle(Resonanz) vom char. Poly. von y_h Tipp: Bei Summen im Störglied entkoppelt, d.h. y_p getrennt berechnen und addieren.
- Die Lösung der DGL ist $y = y_n + y_h$

7.6. Die exakte DGL

DGL der Form:
$$f(x,y) + g(x,y) \cdot y' = 0$$
bzw. $f(x,y) dx + g(x,y) dy = 0$

Bedingung für Exaktheit: $\partial_y f=\partial_x g$ Gradientenfeld $v(x,y)=\begin{pmatrix} f(x,y)\\g(x,y) \end{pmatrix}$ hat Stammfkt. F(x,y(x))=C

- \bullet Bestimme die Stammfunktion F(x,y) von v durch sukzessive Integration:
 - $(*) F(x, y) = \int f dx + G(y)$
 - Bestimme G'(y) aus $F_y = \frac{\partial}{\partial y} F(x,y) = g$
 - Bestimme G(y) aus G'(y) durch Integration
 - Erhalte F(x, y) aus Schritt (*)
- Löse F(x,y)=c nach y=y(x) auf, falls möglich
- Die von c abhängige Lsg. ist die allg. Lsg. der DGL

7.7. Integrierende Faktoren - der Eulen-Multiplikator

Multipliziere nicht exakte DGL mit integrierenden Faktor $\mu(x,y)$ und erhalte eine exakte DGL mit gleichen Lösungen.

$$\begin{array}{ll} \partial_y(\mu f) = \partial_x(\mu g) & \Rightarrow \boxed{\mu_y f + \mu f_y = y_x g + \mu g_x} \\ \text{lst } \frac{\partial_y f - \partial_x g}{g} = u(x) \text{ so ist } \mu = \exp(\int u(x) \, \mathrm{d}x) \\ \text{lst } \frac{\partial_x g - \partial_y f}{f} = u(y) \text{ so ist } \mu = \exp(\int u(y) \, \mathrm{d}y) \end{array}$$

7.8. Die euler-homogene DGL

Form
$$y' = \phi\left(\frac{y}{x}\right)$$
 \Rightarrow Substitution: $z = \frac{y}{x}$
$$\boxed{y' = z + xz' = \phi(z)}$$
 Löse $z' = (\phi(z) - z) \cdot \frac{1}{x} \Rightarrow y = xz$

7.9. eulersche DGL

DGL in der Form
$$\sum_{i=0}^n a_i x^i \cdot y^{(i)}(x) = s(x)$$
 Lösungsmenge $L_a = y_p + L_n$ durch V.d.K. alg. Lös. part. Lös. hom. Lös. Löse char. Pol.: $a_n \alpha(\alpha-1)...(\alpha-(n-1)) + ... + a_1\alpha_1 + a_0 = 0$

Wähle Basisvektoren des Lösungsraumes:

•
$$m$$
-fache Nullstelle $\in \mathbb{R}$: $x^{\alpha}, \dots, x^{\alpha} (\ln x)^{m-1}$

• m-fache Nullstelle $\in \mathbb{C}$ (streiche $\overline{\alpha_i}$): $x^a \sin(b \ln x), \dots, x^a \sin(b \ln x) (\ln x)^{m-1}$ $x^a \cos(b \ln x), \dots, x^a \sin(b \ln x) (\ln x)^{m-1}$

Lösung: (z.B. für 2 Nullstellen $\in \mathbb{R}$): $y(x) = C_1 x^{\alpha} + C_2 x^{\alpha} \ln(x)$

7.10. Potenzreihenansatz

$$\begin{array}{l} \text{Geg. DGL } y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = s(x) \\ \text{Falls } a_i(x) \approx \sum\limits_{k=0}^{\infty} c_k^{(a_i)} \cdot (x-a)^k \text{ und } s(x) = \sum\limits_{k=0}^{\infty} c_k^{(s)} \cdot (x-a)^k \end{array}$$

Dann
$$\exists y(x) = \sum\limits_{0}^{\infty} c_k \cdot (x-a)^k$$
 eine Lsg der DGL.

Die c_k bestimmt man durch einsetzen von y(x) + Koeff. Vergleich.

7.11. Homogene lineare DGL Systeme

ightarrow Jede DGL lässt sich als DGL System darstellen

Transformiere eine DGL 2. Ordnung in ein DGL System 1. Ordnung:

- ullet Substituiere $\dot{x}=y$
- Schreibe DGL-Systen

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ a_1 & a_2 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \text{ (Bestimme } a_1 \text{ und } a_2 \text{ aus DGL)}$$

Löse das DGL-System (Das System ist ohnehin an allem Schuld ;))

- 1. Bestimme EW λ_i und Basis aus EV b_i von A
- 2. Setze $\underline{S} = (\underline{b}1, ..., \underline{b}_n)$ und bestimme \underline{S}^{-1} und $\underline{D} = \underline{S}^{-1} \underline{A} \underline{S}$
- 3. Berechne $e^{\stackrel{m{A}}{\sim}}=\exp(m{S}m{D}m{S}^{-1})=m{S}e^{\stackrel{m{D}}{\sim}}m{S}^{-1}$

$$\underline{\boldsymbol{y}}' = \underline{\boldsymbol{A}}\underline{\boldsymbol{y}} \quad \Rightarrow \quad \underline{\boldsymbol{y}} = \underline{\boldsymbol{c}} \cdot e^{(x-x_0)}\underline{\hat{\boldsymbol{A}}} = \sum_{i=0}^n c_i \cdot e^{\lambda_i x} \cdot b_i$$

Bei komplexen EW: Trennung in Real und Imaginärteil

7.12. Lösung für y' = Ay falls A nicht diagbar

 \rightarrow Es existiert eine Jordan-Normalform J mit $S^{-1}AS$

$$e^{\underline{J}} = e^{\underline{D} + \underline{N}} = e^D e^N = e^D \cdot (\underline{E}_k + \underline{N} + \frac{1}{2}\underline{N}^2 + \dots + \frac{1}{k!}\underline{N}^k)$$

$$e^{x\tilde{N}} = \begin{bmatrix} 1 & x & \frac{1}{2}x^2 & \dots & \frac{1}{(k-1)!}x^{k-1} \\ & 1 & x & \\ 0 & & 1 & \end{bmatrix}$$

 \underline{S} ist die Transformationsmatr. auf Jordan-Normalform: $\underline{\widetilde{S}} = (\underline{b}_1, ..., \underline{b}_n)$ mit $\underline{b}_1 ... \underline{b}_n$ sind EV bzw. HV von \underline{A}

Allgemeine Lösung

$$\underline{\boldsymbol{y}}(x) = e^{x} \overset{\boldsymbol{A}}{\sim} \cdot \underline{\boldsymbol{c}} = \boldsymbol{\tilde{S}} e^{x} \overset{\boldsymbol{J}}{\sim} \boldsymbol{\tilde{S}}^{-1} = \boldsymbol{\tilde{S}} e^{x} (\overset{\boldsymbol{D}}{\sim} + \overset{\boldsymbol{N}}{\sim}) \underline{\boldsymbol{c}}$$

Die Lösungsformel für (1×1) , (2×2) und (3×3) Kästchen $y_a(x)=c_1e^{\lambda_1\,x}v_1$

$$\begin{array}{l} 3u(w)^{2}x^{2}v_{2} + c_{3}e^{\lambda_{2}x}(xv_{2} + v_{3}) \\ + c_{4}e^{\lambda_{3}x}v_{4} + c_{5}e^{\lambda_{3}x}(xv_{4} + v_{5}) + c_{6}e^{\lambda_{3}x}(\frac{1}{2}x^{2}v_{4} + xv_{5} + v_{6}) \end{array}$$

 $\rightarrow v_1, v_2, v_4$ EV, v_3, v_5 HV 2. Stufe und v_6 HV 3. Stufe

7.13. Lösen von allgemeinen DGL-Systemen

- 1. Finde n lin. unabhäng. Lösungsvektoren $\underline{\pmb{y}}_1,...,\underline{\pmb{y}}_n$ mit der Wronski Determinante $W(t)=\det(\underline{\pmb{y}}_1,...,\underline{\pmb{y}}_n) \neq 0$
- 2. Bestimme $\underline{\boldsymbol{y}}_p = \underline{\boldsymbol{Y}}(t)\underline{\boldsymbol{c}}(t)$ durch Variation der Konstanten $c(t) = \int \underline{\boldsymbol{Y}}^{-1}(t)\underline{\boldsymbol{b}}(t) \; \mathrm{d}t \; \mathrm{bzw}. \; \underline{\boldsymbol{Y}} \cdot \underline{\boldsymbol{c}}'(t) = \underline{\boldsymbol{b}}$
- 3. Bestimme $\underline{\boldsymbol{y}} = \underline{\boldsymbol{y}}_n + \sum c_i \underline{\boldsymbol{y}}_i$ mit $c_i \in \mathbb{R}$

Gleichgewichtspunkt: $Ay_g + b = 0 \rightarrow (A|b) \rightarrow (E|y_g)$ Stabilität:

- $Re(\lambda_i) < 0 \rightarrow \text{asymptotisch stabil}$
- $Re(\lambda_i) > 0 \rightarrow \text{instabil}$
- $Re(\lambda_i) \le 0 \to \text{stabil}$

Auch wichtig: Schrödingers Katze