SF1625 Envariabelanalys Föreläsning 7

Lars Filipsson

Institutionen för matematik KTH

Från förra veckan...

Derivera $f(x) = |\sin x|, -\pi < x < \pi$, ange var f är deriverbar.

$$f(x) = \begin{cases} \sin x & \text{sin } x \ge 0 & \text{dow } 0 \le x < TT \\ -\sin x & \text{sin } x < 0 & \text{dow } -\pi < x < 0 \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } 0 < x < TT \\ -\cos x & \text{one } -\pi < x < 0 \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } 0 < x < TT \\ -\cos x & \text{one } -\pi < x < 0 \end{cases}$$

$$f'(x) = \begin{cases} \sin x & \text{sin } x < 0 & \text{down} -\pi < x < 0 \\ -\cos x & \text{one } -\pi < x < 0 \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x < TT \end{cases}$$

$$f'(x) = \begin{cases} \cos x & \text{one } \cos x < TT \\ \cos x & \text{one } \cos x <$$

Att göra denna vecka

Översikt över modul 3

- Exp Log Arc (3.1-3.5)
 - Invers
 - Exponentialfunktioner
 - Logaritmer
 - Arcusfunktioner (inversa trigonometriska)
- Derivataundersökningar (linjarisering, max/min, växande/avtagande, inverterbarhet, etc)
- Ordinära linjära differentialekvationer (3.7 och 18.6)
 - Homogena
 - Inhomogena (även med resonans)

Att göra denna vecka

Missa inte: Man måste bli bra på potenslagar, log-lagar och på att hantera arcusfunktioner! Kunna egenskaperna hos exp, log, arc, kunna derivera dem och dra slutsatser av derivatan! Grejen denna vecka är att vi lägger till exp-, log- och arc-funktioner till vårt bibliotek av elementära funktioner som vi KAN.

Injektiva funktioner

Funktioner kan ibland upprepa sig och ha samma funktionsvärde i flera olika punkter. Vissa funktioner upprepar sig dock aldrig och de har ett särskilt namn:

Injektiva funktioner avbildar alltid olika *x* på olika *y*, dvs:

$$x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$

Ett annat sätt att säga exakt samma sak är:

$$f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

Invers

För injektiva funktioner går det (i princip) att för alla funktionsvärden y tala om precis vilket x de kom ifrån.

Exempel. Om y = f(x) = 2x + 1, så måste $x = \frac{y - 1}{2}$. Detta ger oss en ny funktion som kallas **inversen** till f och skrivs f^{-1} .

I vårt exempel är
$$f^{-1}(y) = \frac{y-1}{2}$$
.

Invers

I allmänhet kan man för injektiva $f:D_f\to V_f$ definiera inversen $f^{-1}:V_f\to D_f$ genom

$$f^{-1}(y) = x \iff y = f(x)$$

Obs att definitionsmängden för f^{-1} är värdemängden för f och värdemängden för f^{-1} är definitionsmängden för f

Invers forts.

En inverterbar funktion och dess invers uppfyller alltid:

$$f^{-1}(f(x)) = x$$
, för alla x i definitionsmängden för f

$$f(f^{-1}(y)) = y$$
, för alla y i definitionsmängden för f^{-1}

Obs att strängt växande och strängt avtagande funktioner alltid är injektiva och alltså inverterbara.

Invers forts.

Ofta vill man ha x som variabel i funktionen, även för inversen. Det är smidigt när man ritar grafer i xy-planet t ex att man får det som man är van vid.

Om man byter y mot x så motsvarar det geometriskt en spegling i linjen y = x. Alltså gäller:

Funktionsgraferna y = f(x) och $y = f^{-1}(x)$ är varandras **spegelbilder** i linjen y = x

Exempel. Bestäm inversen till funktionen f som ges av

$$f(x)=2+3x^2, \quad x\geq 0.$$

Ange inversens definitionsmängd och värdemängd samt rita kurvorna y = f(x) och $y = f^{-1}(x)$ i samma koordinatsystem. Kan du utan att räkna bestämma inversens minsta värde?

$$\sqrt{t} = \left[5^{\circ} \infty \right)^{\circ} D^{t-1}$$

$$f(x) = 2 + 3x^{2}, \quad x \ge 0.$$

$$y = 2 + 3x^{2}, \quad x \ge 0.$$

$$y^{-1} = x^{2}, \quad x \ge 0$$

$$\sqrt{y^{-2}} = x^{2}, \quad x \ge 0$$

$$f^{-1}(y) = \sqrt{\frac{y^{-2}}{3}}$$

Exempel. Visa att $h(x) = x^7 + x^3 + x$ är inverterbar (utan att skriva upp inversen).

$$h'(x) = 7x^6 + 3x^2 + 1 > 0$$
 for alla x
=) h str. vax p^a p^a p^a .

Exponentialfunktionen

Exponentialfunktionen. Det finns en funktion $exp(x) = e^x$ som är definierad för alla x och har värdemängd alla y > 0.

Vi har **potenslagarna** som gäller för alla *s* och *t*:

$$e^{s}e^{t} = e^{s+t}$$

$$1/e^{t} = e^{-t}$$

$$e^{s}/e^{t} = e^{s-t}$$

$$e^{0} = 1$$

$$(e^{s})^{t} = e^{st}$$

$$e^{t/2} \cdot e^{t/2} = e^{t} = e^{t}$$

$$e^{t/3} = \sqrt[3]{e}$$

$$e^{t/4} = \sqrt[4]{e}$$

Potenslagar

$$e^{9} = \underbrace{e \cdot e \cdot e \cdot \cdot \cdot \cdot e}_{x + 1}$$

$$e^{3} \cdot e^{2} = (e \cdot e \cdot e) \cdot (e \cdot e) = e^{3}$$

$$\frac{e^{3}}{e^{2}} = \underbrace{e \cdot e \cdot e}_{x \cdot e} = e^{3}$$

$$e^{-1} \underbrace{\frac{e^{3}}{e^{3}}}_{e^{2}} = \underbrace{\frac{e \cdot e}{e \cdot e \cdot e}}_{e \cdot e \cdot e} = \underbrace{\frac{e^{3}}{e^{3}}}_{e^{3}} = e^{3}$$

$$e^{-1} \underbrace{\frac{e^{3}}{e^{3}}}_{e^{3}} = \underbrace{\frac{e \cdot e}{e \cdot e \cdot e}}_{e \cdot e \cdot e \cdot e} = \underbrace{\frac{e^{3}}{e^{3}}}_{e^{3}} = e^{3}$$

$$\underbrace{\frac{e^{3}}{e^{3}}}_{e^{3}} = \underbrace{\frac{e \cdot e}{e \cdot e \cdot e}}_{e \cdot e \cdot e \cdot e} \cdot \underbrace{\frac{e^{3}}{e^{3}}}_{e^{3}} = e^{3}$$

$$\underbrace{\frac{e^{3}}{e^{3}}}_{e^{3}} = \underbrace{\frac{e \cdot e}{e \cdot e \cdot e}}_{e \cdot e \cdot e \cdot e} \cdot \underbrace{\frac{e^{3}}{e^{3}}}_{e^{3}} = e^{3}$$

$$\underbrace{\frac{e^{3}}{e^{3}}}_{e^{3}} = \underbrace{\frac{e \cdot e}{e \cdot e \cdot e}}_{e \cdot e \cdot e \cdot e} \cdot \underbrace{\frac{e^{3}}{e^{3}}}_{e^{3}} = e^{3}$$

Exp forts

Exponentialfunktionen är **deriverbar** för alla *x* och har derivata

$$\frac{d}{dx}e^{x}=e^{x}.$$

Exponentialfunktionen är strängt växande på hela reella axeln.

Dessutom:

$$\lim_{x \to \infty} e^x = \infty$$
 och $\lim_{x \to -\infty} e^x = 0$

Den naturliga logaritmfunktionen

Eftersom exponentialfunktionen är strängt växande är den injektiv och har därmed invers. Inversen kallas den **naturliga logaritmfunktionen**, skrivs In.

Vi har alltså:

$$\ln y = x \Longleftrightarrow y = e^x$$

Eller på ren svenska:

logaritmen för y är det tal man ska höja e till för att få y.

In forts

Vi har **logaritmlagarna** som gäller för alla positiva *u* och *v* och alla *t*:

$$\ln(uv) = \ln u + \ln v \qquad \ln(1/v) = -\ln v$$

$$\ln(u/v) = \ln u - \ln v \qquad \ln 1 = 0$$

$$\ln(u^t) = t \ln u$$

$$\ln(uv) = \ln (e^{re^s}) = \ln (e^{r+s}) = r+s = \ln u + \ln v$$

In forts

Definitionsmängden för den naturliga logaritmfunktionen In är alla positiva reella tal och **värdemängden** är alla reella tal.

 $\ln x$ är **deriverbar** för alla x > 0 och

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

Den naturliga logaritmfunktionen är **strängt växande** för x > 0. Dessutom:

$$\lim_{x \to \infty} \ln x = \infty \quad \text{och} \quad \lim_{x \to 0^+} \ln x = -\infty$$

Självklarheter

Två självklara saker:

$$\ln e^x = x$$
, för alla x .

$$e^{\ln x} = x$$
, för alla $x > 0$

Andra exponentialfunktioner

Om vi vill använda andra baser än talet e så kan vi göra så här:

$$a^x = e^{\ln a^x} = e^{x \ln a}$$

Dvs a^x kan alltid skrivas som e^{kx} med nån konstant k. Här tänker vi oss att a är något positivt tal men inte 1. På samma vis kan man översätta mellan logaritmer med olika baser.

$$\frac{4x}{4} \cdot 10^{x} = \frac{4x}{4} \cdot e^{\ln 10^{x}} = \frac{4x}{4} \cdot e^{x \ln 10} = e^{x \ln 10} \cdot \ln 10$$

Viktiga gränsvärden

Dessa standardgränsvärden måste man kunna (a > 0):

$$\lim_{X \to \infty} \frac{x^{a}}{e^{x}} = 0$$

$$\lim_{X \to \infty} \frac{x^{a}}{e^{x}} = 0$$

$$\lim_{X \to \infty} \frac{\ln x}{x^{a}} = 0$$

Talet e

Talet *e* är ett specifikt reellt tal, det är inte rationellt, och det brukar definieras genom ett gränsvärde eller en summa:

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \sum_{n=0}^{\infty} \frac{1}{n!}$$

Ett annat sätt kan vara att först definiera exponentialfunktionen exp och sedan sätta $e = \exp(1)$.

Hur som helst gäller att $e \approx 2.71828$

Bevis?

För att bevisa allt det vi har sagt om \exp och \ln kan man i princip utgå från vad e^r betyder om r är rationellt och sedan definiera e^x som ett gränsvärde av e^r när r är rationellt och går mot x. Då blir e^x definierat för alla x. Sedan får man bevisa potenslagarna och derivatan av e^x . Man måste visa att e^x är strängt växande och då vet man att den har invers som man kan kalla \ln . Potenslagar ger då loglagar, osv osv.

Detta går att göra, men problemet är att det är väldigt svårt att göra det ordentligt. Bara att bevisa att potenslagarna gäller för icke-rationella exponenter blir ganska knöligt.

Bevis?

Därför gör jag (och boken) på ett annat sätt. Vi börjar med att definiera $\ln x$ som en integral (se teori-pdf 7 Expolog eller bokens kap 3.3). Med den definitionen är det lätt att bevisa loglagarna och härleda derivatan av $\ln x$. Med derivatan visas lätt att $\ln x$ är strängt växande. Därmed har den en invers som vi kan kalla exp. Potenslagarna härleds ur loglagarna och derivatan av $\exp(x)$ får vi med hjälp av derivatan av $\ln x$. På detta sätt lyckas vi bevisa alla fakta som vi vill ha kring \exp och \ln utan att det blir för krångligt.

Teori skiss

Def Ellen(x) =
$$\int_{1}^{x} \frac{1}{t} dt = \int_{1}^{x} \frac{1}{t} dt = \int_{1}$$

Teori skiss

Bonis av log lagar
$$\frac{d}{dx}\left(\ln xy - \ln x\right) = \frac{1}{xy}y - \frac{1}{x} = 0$$

$$\Rightarrow \ln xy - \ln x = C \qquad x = 1 \text{ ger } C = \ln y$$

$$s^2 = \ln xy = \ln x + \ln y$$

Uppgift. Bestäm ett närmevärde till $e^{0.1}$. $f(x) = e^{x}$, a = 0 $f(x) \approx f(a) + f'(a)(x-a)$, x = a. $L \cdot A$. $f(a) = f(0) = e^{0} = 1$, $f'(x) = e^{x}$, f'(0) = 1 $f(x) = e^{x} \approx 1 + 1 \cdot (x - 0) = 1 + x$, $f'(x) = e^{x}$, $f'(x) = e^{x}$. $f(0.1) = e^{0.1} \approx 1 + 0.1 = 1.1$

Uppgift. Bestäm ett närmevärde till In 1.2.

Grafiskt

Uppgift. Undersök funktionen $f(x) = \frac{\ln x}{x}$ med hjälp av dess derivata. Var är f strängt växande resp avtagande? Har den max? min? Hur många lösningar har ekvationen f(x) = 1/2?

$$D_{f} = (0, \infty), f \text{ bontinuerly } p^{2}(0, \infty).$$

$$f'(x) = \frac{1}{x} \cdot x - 1 \cdot \ln x = \frac{1 - \ln x}{x^{2}} \text{ alla } x \in (0, \infty)$$

$$f'(x) = 0 \in x = 0$$

$$f'(x) = 0 \in x = 0$$

$$f(x) = 0$$

$$f(x) = 0 \in x = 0$$

$$f(x) =$$

Forts

$$\lim_{x\to 0+} f(x) = -\infty, \lim_{x\to \infty} f(x) = 0$$

$$\lim_{x\to 0+} f(x) = -\infty, \lim_{x\to \infty} f(x) = 0$$

$$\lim_{x\to 0+} f(x) = -\infty, \lim_{x\to \infty} f(x) = 0$$

$$\lim_{x\to 0+} f(x) = -\infty, \lim_{x\to \infty} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to \infty} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to \infty} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to \infty} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to \infty} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to \infty} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} f(x) = -\infty, \lim_{x\to 0} f(x) = 0$$

Uppgift. Undersök funktionen $g(x) = xe^{-x^2}$ med hjälp av dess derivata. Var är g strängt växande resp avtagande? Har den max? min? Hur många lösningar har ekvationen g(x) = 1/8?

Forts

