

10-708 Probabilistic Graphical Models

MACHINE LEARNING DEPARTMENT

Machine Learning Department School of Computer Science Carnegie Mellon University

Variational Autoencoders

Matt Gormley Lecture 20 April 12, 2021

Reminders

- Quiz 2
 - Wed, Apr 14, during lecture time
- HW5 Recitation
 - Wed, Apr. 14 at 7pm
- Homework 5: Variational Inference
 - Out: Thu, Apr. 8
 - Due: Wed, Apr. 21 at 11:59pm
- Project Midway Milestones:
 - Midway Poster Session:Tue, Apr. 27 at 6:30pm 8:30pm
 - Midway Executive Summary
 Due: Tue, Apr. 27 at 11:59pm
 - New requirement: must have baseline results

QUIZ 2 LOGISTICS

Quiz 2

Time / Location

- Time: In-Class Quiz
 Wed, Apr. 14 during lecture time
- Location: The same Zoom meeting as lecture/recitation.
 Please arrive online early.
- Please watch Piazza carefully for announcements.

Logistics

- Covered material: Lecture 9 Lecture 15
 (and unavoidably some material from Lectures 1 8)
- Format of questions:
 - Multiple choice
 - True / False (with justification)
 - Derivations
 - Short answers
 - Interpreting figures
 - Implementing algorithms on paper
 - Drawing
- No electronic devices
- You are allowed to bring one 8½ x 11 sheet of notes (front and back)

Quiz 2

- Advice (for before the exam)
 - Try out the Gradescope quiz-style interface in the "Fake Quiz" now available
- Advice (for during the exam)
 - Solve the easy problems first (e.g. multiple choice before derivations)
 - if a problem seems extremely complicated you're likely missing something
 - Don't leave any answer blank!
 - If you make an assumption, write it down
 - If you look at a question and don't know the answer:
 - we probably haven't told you the answer
 - but we've told you enough to work it out
 - imagine arguing for some answer and see if you like it

Topics for Quiz 1

- Graphical Model Representation
 - Directed GMs vs.
 Undirected GMs vs.
 Factor Graphs
 - Bayesian Networks vs.
 Markov Random Fields vs.
 Conditional Random Fields
- Graphical Model Learning
 - Fully observed Bayesian
 Network learning
 - Fully observed MRF learning
 - Fully observed CRF learning
 - Parameterization of a GM
 - Neural potential functions

Exact Inference

- Three inference problems:
 - (1) marginals
 - (2) partition function
 - (3) most probably assignment
- Variable Elimination
- Belief Propagation (sumproduct and max-product)

Topics for Quiz 2

- Learning for Structure
 Prediction
 - Structured Perceptron
 - Structured SVM
 - Neural network potentials
- (Approximate) MAP
 Inference
 - MAP Inference via MILP
 - MAP Inference via LP relaxation

- Approximate Inference by Sampling
 - Monte Carlo Methods
 - Gibbs Sampling
 - Metropolis-Hastings
 - Markov Chains and MCMC
- Parameter Estimation
 - Bayesian inference
 - Topic Modeling

Q&A

AUTOENCODERS

- Idea: (Two Steps)
 - Use supervised learning, but pick a better starting point
 - Train each level of the model in a greedy way
- 1. Unsupervised Pre-training
 - Use unlabeled data
 - Work bottom-up
 - Train hidden layer 1. Then fix its parameters.
 - Train hidden layer 2. Then fix its parameters.
 - ...
 - Train hidden layer n. Then fix its parameters.
- 2. Supervised Fine-tuning
 - Use labeled data to train following "Idea #1"
 - Refine the features by backpropagation so that they become tuned to the end-task

Unsupervised pretraining of the first layer:

- What should it predict?
- What else do we observe?
- The input!

Auto-Encoders

Unsupervised pretraining of the first layer:

- What should it predict?
- What else do we observe?
- The input!

This topology defines an Auto-encoder.

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:

- x' is the reconstruction of x
- Loss = $||x DECODER(ENCODER(x))||^2$
- Train with the same backpropagation algorithm for 2-layer Neural Networks with x_m as both input and output.

DECODER: x' = h(W'z)

ENCODER: z = h(Wx)

Unsupervised pretraining

- Work bottom-up
 - Train hidden layer 1.
 Then fix its parameters.
 - Train hidden layer 2.
 Then fix its parameters.
 - **—** ...
 - Train hidden layer n.
 Then fix its parameters.

Input

Unsupervised pretraining

- Work bottom-up
 - Train hidden layer 1. Then fix its parameters.
 - Train hidden layer 2. Then fix its parameters.

 - Train hidden layer n. Then fix its parameters.

Input

Unsupervised pretraining

- Work bottom-up
 - Train hidden layer 1. Then fix its parameters.
 - Train hidden layer 2. Then fix its parameters.

 - Train hidden layer n. Then fix its parameters.

Output

Unsupervised pretraining

- Work bottom-up
 - Train hidden layer 1. Then fix its parameters.
 - Train hidden layer 2. Hidden Laver Then fix its parameters.

 - Train hidden layer n. Then fix its parameters.

Supervised fine-tuning Backprop and update all parameters

Deep Network Training

- Idea #1:
 - 1. Supervised fine-tuning only

- Idea #2:
 - 1. Supervised layer-wise pre-training
 - 2. Supervised fine-tuning
- Idea #3:
 - 1. Unsupervised layer-wise pre-training
 - 2. Supervised fine-tuning

Comparison on MNIST

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

Comparison on MNIST

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

VARIATIONAL AUTOENCODERS

Why VAEs?

Autoencoders:

- learn a low dimensional representation of the input, but hard to work with as a generative model
- one of the key limitations of autoencoders is that we have no way of sampling from them!

Variational autoencoders (VAEs)

- by contrast learn a continuous latent space that is easy to sample from!
- can generate new data (e.g. images) by sampling from the learned generative model

 $z \sim \text{Gaussian}(0, I)$

Graphical Model Perspective

- The DGM diagram shows that the VAE model is quite simple as a graphical model (ignoring the neural net details that give rise to x)
- Sampling from the model is easy:
 - Consider a DGM where $x = g_{\phi}(z/10 + z/||z||)$ (i.e. we don't use parameters ϕ)
 - Then we can draw samples of z and directly convert them to values x
- Key idea of VAE: define $g_{\phi}(z)$ as a neural net and learn ϕ from data

Neural Network Perspective

- We can view a variational autoencoder (VAE) as an autoencoder consisting of two neural networks
- VAEs (as encoders) define two distributions:
 - encoder: $q_{\theta}(z \mid x)$
 - decoder: $p_{\phi}(x \mid z)$
- Parameters θ and ϕ are neural network parameters (i.e. θ are not the variational parameters)

Graphical Model Perspective

- We can also view the VAE from the perspective of variational inference
- In this case we have two distributions:
 - model: $p_{\phi}(z \mid x)$
 - variational approximation: $q_{\lambda=f(x;\theta)}(z \mid x)$
- We have the same model parameters φ
- The variational parameters λ are a function of NN parameters θ

$$q_{\lambda}(\mathbf{z} \mid \mathbf{x})$$

$$\lambda = f(x; \theta)$$

Whiteboard

- Variational Autoencoder = VAE
- VAE as a Probability Model
- Parameterizing the VAE with Neural Nets
- Variational EM for VAEs

Reparameterization Trick

Figure 4: A training-time variational autoencoder implemented as a feed-forward neural network, where P(X|z) is Gaussian. Left is without the "reparameterization trick", and right is with it. Red shows sampling operations that are non-differentiable. Blue shows loss layers. The feedforward behavior of these networks is identical, but backpropagation can be applied only to the right network.