2506/102 2507/102 AIRCRAFT ELECTRICAL TECHNOLOGY March/April 2024 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE I

AIRCRAFT ELECTRICAL TECHNOLOGY

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/Non-programmable scientific calculator;

Drawing instruments.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer any THREE questions from section A and any TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take: Permittivity of free space, $\varepsilon_o = 8.854 \times 10^{-12} \ F/m$ Permeability of free space, $\mu_0 = 4\pi \times 10^{-7} \ H/M$

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: AIRCRAFT ELECTRICAL INSTALLATION TECHNOLOGY

Answer THREE questions from this section.

1. (a) State three aircraft safety hazards.

(3 marks)

(b) Table 1 shows aircraft electrical installation tools and their functions. Complete the table.

Table 1

Tool	Function
	Cutting and stripping insulation
Nose pliers	
	Pulling wires through conduits
	Loosening or fastening screws
Crimper	

- (c) With aid of a labelled block diagram, describe the operation of a variable speed constant frequency (VSCF) generator system for aircrafts. (8 marks)
- (d) (i) Define 'wild frequency' with respect to aircrafts.
 - (ii) Identify the aircraft electrical components represented by each of the following symbols. (4 marks)

- 2. (a) (i) State three factors considered when selecting connectors for coaxial cables
 - (ii) Describe BNC coaxial cable connectors.

(6 marks)

(b) With aid of a diagram, describe the process of making a telegraph joint.

(7 marks)

(c) With aid of a labelled diagram, describe pillar terminal used in aircraft cable termination.

(7 marks)

2506/102 2507/102 March/April 2024

3.	(a)	State 1	three merits of using copper wires in aircrafts electrical wiring system.	(3 marks)
	(b)	(i)	Define each of the following with respect to fuses:	
			(I) fusing current; (ii) fuse rating.	
		(ii)	A fuse has a fusing current of 10 A and a fusing factor of 1.5. Determine current rating of the fuse.	ne the
				(4 marks)
	(c)	With aid of a labelled diagram, describe the working principle of a magnetic circuit breaker. (7 magnetic circuit breaker)		ircuit (7 marks)
	(d)	State three:		
		(i) (ii)	merits of vacuum circuit breakers; benefits of bonding in electrical wiring systems.	(6 marks)
4.	(a)	Describe each of the following structured cabling subsystems in aircrafts:		
		(i) (ii) (iii) (iv)	entrance facility; equipment room; backbone cabling; work area.	
				(8 marks)
	(b)	With aid of a diagram, describe the construction of a shielded twisted pair (STP) cable used in aircraft structured cabling. (6		P) (6 marks)
	(c)	A fibre optic cable has a relative refractive index of 0.012 and a numerical aperture of 0.22. Determine the:		
		(i) (ii) (iii)	core refractive index; cladding refractive index; critical angle.	
				(6 marks)
5.	(a)	(i)	Distinguish between illumination and brightness with respect to lightin systems.	g
		(ii)	State Lamberts cosine law of illumination.	(4 marks)

2506/102 2507/102 March/April 2024

- (b) An aircraft boarding area 120 m by 60 m is to be illuminated by identical 1000 W lamps mounted on 12 towers uniformly distributed over the area. An illumination of 1000 lumen/m³ is required on the ground and the efficiency of the lamp is 30 lumens/W. Assuming 40% of the total light reaches the ground, determine the:
 - (i) total luminous flux required to be produced;
 - (ii) luminous flux contributed by each tower;
 - (iii) output of each lamp;
 - (iv) number of lamps on each tower.

(8 marks)

- (c) Figure 1 shows an aircraft lighting scheme with four lamps each of 2000 cd. At point C, determine the:
 - (i) illumination due to lamp L1;
 - (ii) illumination due to lamp, L2;
 - (iii) illumination due to lamps L1 and L2;
 - (iv) total illumination.

(8 marks)

SECTION B: ELECTRICAL ENGINEERING PRINCIPLES

Answer TWO questions from this section.

- 6. (a) (i) Distinguish between primary and secondary cells.
 - (ii) State two battery charging methods.

(4 marks)

- Eight cells each with an internal resistance of $0.2\ \Omega$ and emf of $2.2\ V$ are used to supply (b) a 100Ω load. Determine the current flowing in the circuit if the cells are connected in:
 - (i) series:
 - (ii) parallel.

(8 marks)

- Figure 2 shows a bridge network. Using Kirchhoff's laws, determine the current (c) flowing through the:
 - 11Ω resistor; (i)
 - (ii) 3Ω resistor.

(8 marks)

- Fig. 2
- 7. Define 'reluctance' with regard to electromagnetism. (a) (i)
 - State Lenz's law of electromagnetic induction. (ii)

(3 marks)

- (b) Figure 3 shows a magnetic circuit with a steel core having a cross-section area of 2 cm² and an air gap 1 mm wide. The magnetic field strength in the circuit is 750 A/m and the flux density at the airgap is 0.8T. Determine the:
 - (i) reluctance of the steel core;
 - (ii) reluctance of the air gap;
 - (iii) total reluctance in the circuit;
 - (iv) flux density in the circuit.

(9 marks)

Fig. 3

- (c) A 400 pF parallel plate capacitor is charged to a potential difference of 100 V. The plates have a cross-sectional area of 200 cm³ and the dielectric has a relative permittivity of 2.3. Determine the:
 - (i) charge stored in the capacitor;
 - (ii) distance between the plate;
 - (iii) flux density;
 - (iv) energy stored in the capacitor.

(8 marks)

8. (a) Figure 4 shows an a.c waveform. Identify the quantities labelled X, Y and Z.

(3 marks)

2506/102 2507/102 March/April 2024

- (b) Figure 5 shows a circuit. Determine the:
 - (i) inductive reactance, X_L;
 - (ii) capacitive reactance, X_C;
 - (iii) total circuit impedance, Z;
 - (iv) current flowing through the circuit, I;
 - (v) phase angle Φ .

(9 marks)

Fig. 5

- (c) A 100 kVA, 400 V/200 V, 50 Hz single phase transformer has 100 secondary turns. Neglecting losses, determine the:
 - (i) secondary current, I₂;
 - (ii) primary current, I₁;
 - (iii) primary turns, N₁;
 - (iv) flux, Φ .

(8 marks)

THIS IS THE LAST PRINTED PAGE.