STAT-511 2018 Spring

Lecture 4: Sign and Rank Tests

Instructor: Naveen N. Narisetty Scribe: Yutong Dai Last Modified: 2018-03-04

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications, and they may contain factual and/or typographic errors.

4.1 Sign Test

A type of nonparmametric testing without any assumption on the distribution of samples. It is more robust in the sense that the performance is more stable among a wide variety of distributions.

4.1.1 Symmetry Tests: Median

Setup: $Z_1,...,Z_N \stackrel{iid}{\sim} F \in \mathcal{F}$, where \mathcal{F} is the set of continuous distribution functions that are symmetric about their median η . We test

$$H_0: F \in \mathcal{F} \text{ with } \eta = 0 \quad H_A: F \in \mathcal{F} \text{ with } \eta \neq 0.$$

Test Statistics: $T(\mathbf{Z}) = \sum_{i=1}^{n} sign(z_i)$

Distribution of the Test Statistics: Under H_0 , $\frac{n+T(\mathbf{Z})}{2} \sim \text{Binomial}(n, \frac{1}{2})$.

4.1.2 Asymmetry Tests: Quantile

We can generalize the notion of sign(x) to general sign function $\phi_{\tau}(z)$.

Definition 4.1 The general sign function $\phi_{\tau}(z)$ is defined as

$$\phi_{\theta}^{\tau}(z) = \begin{cases} \tau, & z \ge \theta \\ \tau - 1, & z < \theta \end{cases}.$$

Remark: The θ serves as the cut-off and τ is the weight.

Setup: $Z_1,...,Z_N \stackrel{iid}{\sim} F \in \mathcal{F}$, where \mathcal{F} is the set of continuous distribution functions. Denote $Q_{\tau}(F)$ as the τ -th quantile of the F. We test

$$H_0: Q_{\tau}(F) = \theta \quad H_A: Q_{\tau}(F) \neq \theta.$$

Test Statistics: $T(\mathbf{Z}) = \sum_{i=1}^{n} \phi_{\tau}^{\theta}(z_i)$

Distribution of the Test Statistics: Under H_0 , $n(1-\tau) + T(\mathbf{Z}) \sim \text{Binomial}(n, 1-\tau)$.