AVP 213 Drill Problems - Set 2

1. Construct Bode plots for the following G(s). [Asymptotic plot would be fine]

(a)
$$\frac{1}{s+10}$$

(e)
$$\frac{s}{s^2 + s + 1}$$

(b)
$$\frac{s+1}{s+10}$$

(f)
$$\frac{s^2 + s + 1}{s}$$

(c)
$$\frac{10}{s^2 + 80s + 400}$$

(d)
$$\frac{10}{2(2^2+800+400)}$$

(g)
$$\frac{s(s+20)}{(s+1)(s^2+60s+400)}$$

2. Bode magnitude plots are shown. Find the transfer function.

- 3. V_o obtained as the output of the following arrangement has to power certain power supplies. One type of those need:
 - (i) 100 Hz component to be attenuated by at least 250 times and the DC components to be passed with unity gain.

Another type of supplies require:

(ii) 100 Hz to be passed with unity gain DC components to be attenuated completely.

Design appropriate passive 1st order filters for these applications.

4. Design a passive and an active $1^{\rm st}$ order high pass filter which passes components $\geq 2 {\rm kHz}$ with a gain of 5.

- 5. For problem 4, assume you have an op-amp in the lab where the manufacturers have recommended the feedback resistance value to be less than 5 k Ω . (It is a common recommendation to avoid additional delay introduced due to parasitic capacitances. The value varies from case to case). Would your design change?
- 6. For the $1^{\rm st}$ order bandpass filter bode magnitude plot (asymptotic), 'B' is defined as the bandwidth.

Design an active $1^{\rm st}$ order bandpass filter where $f_U=10$ Hz and $f_H=2$ kHz, using the same op-amps of problem number 5.

- 7. Draw the $\frac{V_o(s)}{V_{in}(s)}$ transfer function for the following circuit and comment on the type of filtering action.
 - $R_1=200~\Omega$; $C_1=0.05~uF$; $R_2=28~k\Omega$ and $C_2=0.05~uF.$ Use of justifiable assumptions are welcome.

8. What kind of filter is the following? Plot the frequency response.

