17. Bázis, dimenzió

17.1. Az elméleti anyag

17.1.1. Bázis

- 17.1. Definíció. Az $x_1, \ldots, x_k \in V$ vektorrendszert (V-beli) bázisnak nevezzük, ha generátorrendszer is és lineárisan független is.
- 17.2. Megjegyzés. Mi a bázis előnye? Mivel a bázis generátorrendszer, ezért a tér minden vektora előállítható a bázisban lévő vektorok (röviden: bázisvektorok) lineáris kombinációjaként. Mivel a bázis lineárisan független rendszer is, ezért a 16.5 tétel miatt ez az előállítás egyértelmű. Összefoglalva:

A tér bármely vektora egyértelműen előállítható a bázisvektorok lineáris kombinációjaként. Ezt a vektor adott bázison vett előállításának vagy kifejtésének nevezzük.

17.3. **Definíció.** A fenti lineáris kombináció együtthatóit a vektor adott bázisra vonatkozó koordinátáinak nevezzük.

Mivel már láttunk példákat generátorrendszerekre is és lineárisan független rendszerekre is, ezért az alábbi példák könnyen adódnak.

17.4. Példák.

- 1. A síkvektorok terében bármely két, nem egy egyenesen fekvő vektorból álló rendszer bázis
- 2. A térvektorok terében bármely három, nem egy síkban fekvő vektorból álló rendszer bázis.
- **3.** A \mathbb{K}^n térben a kanonikus egységvektorok rendszere bázis. Ezt \mathbb{K}^n kanonikus vagy standard bázisának nevezzük.

Kérdés, hogy van-e minden véges dimenziós vektortérben bázis.

Mivel a {0} zéróvektortérben nincs lineárisan független rendszer, ezért ebben a vektortérben nincs bázis. Az alábbi tételben megmutatjuk, hogy ettől az esettől eltekintve minden véges dimenziós vektortérben van bázis.

17.5. Tétel. (bázis létezéséről) Bármely véges dimenziós, nem {0} vektortérben van bázis.

157

Bizonyítás. Legyen y_1, \ldots, y_m a V véges dimenziós, nem $\{0\}$ vektortér egy véges generátorrendszere. Ha ez a rendszer lineárisan független, akkor bázis. Ha összefüggő, akkor az 16.6 tétel szerint elhagyható belőle egy vektor úgy, hogy a visszamaradó, m-1 vektorból álló rendszer ugyanazt az alteret feszíti ki vagyis generátorrendszer. Ha ez lineárisan független, akkor bázis. Ha összefüggő, akkor ismét elhagyunk belőle egy vektort, s az eljárást folytatjuk tovább. Így vagy valamelyik lépésben bázist kapunk, vagy pedig (m-1 lépés után) eljutunk az egyetlen vektorból álló vektorrendszerhez, ami tehát generátorrendszere V-nek. Mivel $V \neq \{0\}$, ezért ez az egyetlen visszamaradt vektor nem 0, azaz lineárisan független rendszer, tehát bázis.

17.6. Megjegyzés. A tétel állításánál többet igazoltunk. Megmutattuk, hogy a tér bármely véges generátorrendszeréből kiválasztható bázis, sőt eljárást is adtunk e bázis kiválasztására.

A következőkben azt fogjuk igazolni, hogy a véges dimenziós nem $\{0\}$ vektortér bármely két bázisa ugyanannyi vektorból áll. Ehhez először bebizonyítjuk az ún. kicserélési tételt.

17.7. Tétel. (kicserélési tétel) Legyen $x_1, \ldots, x_k \in V$ egy lineárisan független rendszer, $y_1, \ldots, y_m \in V$ pedig egy generátorrendszer.

Ekkor minden $i \in \{1, ..., k\}$ esetén létezik olyan $j \in \{1, ..., m\}$ index, hogy az

$$x_1, \ldots, x_{i-1}, y_j, x_{i+1}, \ldots, x_k$$

vektorrendszer lineárisan független.

Bizonyítás. i=1 feltehető, a többi i-re a bizonyítás hasonlóan történik. Az állítással ellentétben tegyük fel, hogy az y_j, x_2, \ldots, x_k vektorrendszer minden $j \in \{1, \ldots, m\}$ esetén összefüggő. Ekkor az x_2, \ldots, x_k rendszer függetlenségéből az 16.11 következmény felhasználásával kapjuk, hogy $y_j \in \text{Span}(x_2, \ldots, x_k)$ minden $j \in \{1, \ldots, m\}$ esetén. Ebből viszont

$$V = \operatorname{Span}(y_1, \dots, y_m) \subset \operatorname{Span}(x_2, \dots, x_k) \subset V$$

következik, ami azt jelenti, hogy x_2, \ldots, x_k generátorrendszer V-ben, tehát

$$x_1 \in V = \operatorname{Span}(x_2, \dots, x_k).$$

Ez pedig – a 16.8 tétel alapján – ellentmond az x_1, \ldots, x_k rendszer függetlenségének. \square

17.8. Tétel. Bármely (véges) lineárisan független vektorrendszer tagjainak száma nem nagyobb, mint bármely (véges) generátorrendszer tagjainak száma. (Ezzel pontos értelmet nyert az, hogy a független rendszerek a "kis" rendszerek, a generátorrendszerek pedig a "nagy" rendszerek.)

Bizonyítás. Jelöljön ugyanis x_1, \ldots, x_k egy lineárisan független rendszert, y_1, \ldots, y_m pedig egy generátorrendszert. Cseréljük ki x_1 -et alkalmas y_{j_1} -re a kicserélési tétel alapján, így kapjuk az $y_{j_1}, x_2, \ldots, x_k$ független rendszert. Erre ismét alkalmazzuk a kicserélési tételt, x_2 -t kicseréljük y_{j_2} -re, így kapjuk az $y_{j_1}, y_{j_2}, x_3, \ldots, x_k$ független rendszert. Az eljárást folytatva véges számú (k) lépésben eljutunk az y_{j_1}, \ldots, y_{j_k} független rendszerhez, ami (a függetlenség miatt) csupa különböző vektorból áll. Azt kaptuk tehát, hogy az y_1, \ldots, y_m vektorok között van k db különböző, tehát valóban $k \leq m$.

17.9. Tétel. Legyen V véges dimenziós, nem {0} vektortér. Ekkor V bármely két bázisa azonos elemszámú.

Bizonyítás. Legyen e_1, \ldots, e_m és f_1, \ldots, f_k két bázis V-ben. Mivel e_1, \ldots, e_m lineárisan független, f_1, \ldots, f_k pedig generátorrendszer, ezért az előző tétel szerint $m \leq k$. Szerepcserével kapjuk, hogy $k \leq m$. Így tehát k = m.

17.10. Definíció. A véges dimenziós (és nem $\{0\}$) vektortér bázisainak közös elemszámát a tér dimenziójának nevezzük, és dim V-vel jelöljük. Megállapodunk még abban is, hogy dim $\{0\} := 0$.

17.11. Példák.

- 1. Az egyenes helyvektorainak tere 1 dimenziós.
- 2. A sík helyvektorainak tere 2 dimenziós.
- 3. A tér helyvektorainak tere 3 dimenziós.
- **4.** dim $\mathbb{K}^n = n \quad (n \in \mathbb{N}).$

A példák állításai azonnal adódnak az 17.4. példákból.

17.12. Tétel. ("4 apró állítás")

Legyen $1 \leq \dim(V) = n < \infty$. Ekkor

1. Ha $x_1, \ldots, x_k \in V$ lineárisan független, akkor $k \leq n$.

Másképp: Bármely lineárisan független rendszer legfeljebb annyi vektorból áll, mint amennyi a tér dimenziója.

Még másképp: Bármely vektorrendszer, amelyben több vektor van, mint amennyi a tér dimenziója, lineárisan összefüggő.

2. Ha $x_1, \ldots, x_k \in V$ generátorrendszer, akkor $k \geq n$.

Másképp: Bármely generátorrendszer legalább annyi vektorból áll, mint amennyi a tér dimenziója.

Még másképp: Bármely vektorrendszer, amelyben kevesebb vektor van, mint amennyi a tér dimenziója, nem generátorrendszer.

3. Ha $x_1, \ldots, x_n \in V$ lineárisan független rendszer, akkor generátorrendszer is (következésképpen: bázis)

Másképp: Ha egy lineárisan független rendszer annyi vektorból áll, mint amennyi a tér dimenziója, akkor generátorrendszer is (következésképpen: bázis)

4. $Ha x_1, \ldots, x_n \in V$ generátorrendszer, akkor lineárisan független is (következésképpen: bázis)

Másképp: Ha egy generátorrendszer annyi vektorból áll, mint amennyi a tér dimenziója, akkor lineárisan független is (következésképpen: bázis)

Bizonyítás.

1. Legyen e_1, \ldots, e_n bázis V-ben. Ekkor generátorrendszer is, tehát a 17.8 tétel miatt:

$$k < n$$
.

2. Legyen e_1, \ldots, e_n bázis V-ben. Ekkor lineárisan független, tehát a 17.8 tétel miatt:

$$k > n$$
.

3. Tegyük fel indirekt, hogy x_1, \ldots, x_n nem generátorrendszer. Ekkor

$$V \setminus \operatorname{Span}(x_1, \dots, x_n) \neq \emptyset$$
.

Legyen $x \in V \setminus \text{Span}(x_1, \dots, x_n)$. Ekkor a 16.10 tétel miatt x_1, \dots, x_n, x lineárisan független. Ez ellentmondás, mivel ez a rendszer n+1 vektorból áll, többől, mint a tér dimenziója.

4. Tegyük fel indirekt, hogy $x_1,\,\dots,\,x_n$ lineárisan összefüggő. Ekkor a 16.6 tétel miatt

$$\exists i \in \{1, 2, ... n\}: \operatorname{Span}(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) = \operatorname{Span}(x_1, ..., x_n) = V.$$

Ez ellentmondás, mivel az $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ rendszer n-1 vektorból áll, kevesebből, mint a tér dimenziója.

17.1.2. Ellenőrző kérdések az elmélethez

- 1. Definiálja a bázis fogalmát és adjon rá 3 példát
- 2. Definiálja a koordináták fogalmát
- 3. Milyen tételt tanultunk bázis létezéséről?
- 4. Mondja ki a kicserélési tételt
- **5.** Mondja ki a kicserélési tétel legfontosabb következményét (a lineárisan független és a generátorrendszerek tagjainak számáról)
- 6. Definiálja a dimenzió fogalmát, és adjon rá 3 példát
- 7. Mondja ki a dimenzióval kapcsolatos "4 apró állítás"-t

17.1.3. Bizonyítandó tételek

- 1. Minden véges dimenziós nemzéró vektortérben van bázis
- 2. A kicserélési tétel
- 3. A kicserélési tétel legfontosabb következménye (a lineárisan független és a generátorrendszerek tagjainak számáról)
- 4. Véges dimenziós térben bármely két bázis ugyanannyi vektorból áll
- 5. A dimenzióval kapcsolatos "4 apró állítás"

17.2. Feladatok

17.2.1. Órai feladatok

1. Legyen \mathbb{R}^4 -ben

$$x_1 = (3, 0, -2, 4), \quad x_2 = (2, 1, -1, 3), \quad x_3 = (-1, 4, 2, 0), \quad x_4 = (-1, 1, 1, -1).$$

Adjunk meg bázist – generátorrendszerből való kiválasztással – az általuk generált W altérben. Hány dimenziós ez az altér?

2. Döntsük el, hogy az alábbi vektorrendszerek bázist alkotnak-e \mathbb{R}^4 -ben.

a)
$$x_1, x_2$$
 b) x_1, x_2, x_3, x_4, x_5 c) x_1, x_2, x_3, x_4, x_5

ahol

$$x_1 = (2, 3, -2, 7),$$
 $x_2 = (0, 1, 0, 1),$ $x_3 = (1, 2, -1, 0),$ $x_4 = (-1, -5, 2, 0),$ $x_5 = (3, -1, 1, 2).$

3. Válasszunk ki bázist az alábbi, \mathbb{R}^4 -beli vektorrendszerekből a $W = \mathrm{Span}(x_1, x_2, x_3)$ altérben. Határozzuk meg dim W-t is.

a)
$$x_1 = (1, 2, 2, -1); \quad x_2 = (4, 3, 9, -4); \quad x_3 = (5, 8, 9, -5).$$

b)
$$x_1 = (1, 2, 3, 1); \quad x_2 = (2, 2, 1, 3); \quad x_3 = (-1, 2, 7, -3).$$

4. Bázist alkotnak-e az alábbi vektorrendszerek \mathbb{R}^3 -ban?

(a)
$$(1,0,0)$$
, $(2,2,0)$, $(3,3,3)$

17.2. Feladatok 161

- (b) (3,1,-4), (2,5,6), (1,4,8)
- (c) (2, -3, 1), (4, 1, 1), (0, -7, 1), (1, 6, 4)
- (d) (2,4,-1), (-1,2,5)

17.2.2. További feladatok

- 1. Az alábbi vektorrendszerek közül melyik alkot bázist?
 - (a) $x_1 = (1, 0, 0), x_2 = (2, 2, 0), x_3 = (3, 3, 3) \mathbb{R}^3$ -ben.
 - (b) $y_1 = (3, 1, -4), y_2 = (2, 5, 6), y_3 = (1, 4, 8) \mathbb{R}^3$ -ben.
 - (c) $z_1 = (1, 2, -1, 0), z_2 = (0, 1, 0, 1), z_3 = (-1, -5, 2, 0), z_4 = (2, 3, -2, 7) \mathbb{R}^4$ -ben.
 - (d) $v_1 = (1, 2, 1, 2), z_2 = (2, 1, 0, -1), z_3 = (-1, 4, 3, 8), z_4 = (0, 3, 2, 5) \mathbb{R}^4$ -ben.
- 2. Az előző feladatbeli adatokat tekintve, válasszuk ki a megadott vektorrendszerekből az általuk generált altér egy bázisát. Hány dimenziósak ezek az alterek?