General Physics I Classnotes

Jonathan Henrique Maia de Moraes (ID: 1620855)

02/01/2016

February 01

Summary 1

Iff a = constant?

$$(1) v = v_0 + at v(t)$$

(2)
$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 $x(t)$

(3)
$$x = x_0 + \frac{1}{2}(v_0 + v)t$$
 No a

(4)
$$2a(x - x_0) = v^2 - v_0^2$$
 No t

2 Gravity

In the absence of air resistante ($\alpha = 0$) gravity produces a constant acceleration of $g = 9.80 \ m/s^2 = 32.2 \ ft/s^2 = 22.0 \ \frac{mi/h}{s}$. Example: Drop an object from a height. What is the velocity and the

distance fallen after 0 s, 1 s, 2 s, and 3 s?

$$speed = |v| \tag{1}$$

FEBRUARY 01 ii

$$x_{0} = 0$$

$$v_{0} = 0$$

$$a = +g$$

$$v = v_{0} + at$$

$$= 0 + gt$$

$$= (9.80 m/s^{2}) t$$

$$= (32.2 ft/s^{2}) t$$

$$= \left(22 \frac{mi/h}{s}\right) t$$

$$x = x_{0} + v_{0}t + \frac{1}{2}at^{2}$$

$$= 0 + (0)t + \frac{1}{2}gt^{2}$$

$$= \frac{1}{2} (9.80 m/s^{2}) t^{2} = (4.90 m/s^{2}) t^{2}$$

$$= \frac{1}{2} (32.2 ft/s^{2}) t^{2} = (16.1 ft/s^{2}) t^{2}$$

$$= \frac{1}{2} \left(22 \frac{mi/h}{s}\right) t^{2} = \left(11 \frac{mi/h}{s}\right) t^{2}$$

t	v	v	v	x	x
(s)	(m/s)	(ft/s)	(mi/h)	m	ft
0	0	0	0	0	0
1	9.80	32.2	22	4.9	16.1
2	19.6	64.4	44	19.6	64.4
3	29.4	96.6	66	44.1	144.9

 $[\]rightarrow$ Example 3 - PH1300 Examples (Dr. Rex Joyner) - 2015-2016