Total No. of Questions: 10]	90	SEAT No.:
P5577		[Total No. of Pages : 3
	[5561]-547	

		B.E. (Mechanical) (Semester - 11)
		SOLAR AND WIND ENERGY
		(2015 Pattern) (Elective - IV)
Time	e: 2½	Hours] [Max. Marks : 70
Insti	ructio	ons to the candidates:
	<i>1)</i>	Draw suitable neat diagrams, wherever necessary.
	<i>2)</i>	Figures to the right indicate full marks.
	3)	Use of electronic pocket calculator is allowed.
	4)	Assume suitable data, if required.
<i>Q1)</i>	a)	Explain present energy scenario and role of governing bodies for solar
•	6	and wind energy. [6]
	b)	Explain Solar tower with figure. [4]
		OR
<i>Q2)</i>	a)	Explain any one solar measurement instrument with figure. [6]
	b)	Explain solar distillation with figure. [4]
Q3)	a)	Classify solar thermal collectors and describe flat plate collector with the
		help of suitable diagram. [6]
	b)	Explain solar PV Cell with figure. [4]
		OR
Q4)	a)	Classify solar concentrating collectors and explain point contact concentrator with figure. [6]
	b)	Describe classification of solar cells based on type of active material.[4]

Q5) Design a solar PV System wherein load consists of a CFL, TV, Fan, Refrigerator and Computer. The system should allow the use of loads in non sunshine hours. The operating hours and the power rating of these loads are given in following table.
[18]

Load	Watts	Hr/day	Numbers
CFL	18	6	10
Fan	70	4	8
TV(21")	250	2	2
Refrigerator	150	8	8
Computer	250	1	3

OR

Q6) An evacuated tube solar water heating system is designed for daily hot water supply of 300 lit. The daily average solar global radiation is 780 W/m². The inlet and outlet temperature of water is 25°C and 50°C. The effective sunshine hours are 7 hours. Calculate number of evacuated tube required if dimension of one tube is $1800 \text{mm} \times \phi 57 \text{mm} \times 47 \text{mm}$. Calculate efficiency of the system.

[18]

- **Q7)** a) Sketch the diagram of HAWT and explain function of its main components.
 - b) Describe main considerations in selecting a site for wind generators. [8]

OR

- Q8) a) Explain analysis of aerodynamic forces acting on wind mill blades with figures.[8]
 - b) Explain various design considerations for horizontal and vertical axis wind turbines. [8]

Q9) A propeller type turbine has a following data:

Speed of free wind at a height of 10m = 15 m/sec

 $\alpha = 0.14$

air density = 1.226 kg/m^3

height of tower = 100m

diameter of rotor = 90m

wind velocity at turbine reduces by 25%

generator efficiency = 90%

Find total power available to wind, power extracted by wind turbine, electrical power generated, axial thrust on turbine, maximum axial thrust on turbine.

[16]

OR

- Q10) a) Explain in detail step by step design process for miniature wind mill. [8]
 - b) Explain status of wind energy potential and installation in India. [8]
