ECO 372: Introduction to Econometrics Spring 2025

Lecture 9: Dummy Variables in Econometric Modelling

Sakib Bin Amin, Ph.D.

Associate Professor in Economics

Director, Accreditation Project Team (APT)

Outline

Our objectives for this lecture will be to learn:

- O What are Dummy Variables?
- o Why Dummy Variables are Important?
- o Measurement of Dummy Variables
- Modelling with Dummy Variables
- o Visualisation of Dummy Variable Data
- o Statistical Inferences of Dummy Variable Models
- o Examples of Dummy Variable Uses From Literature
- o Application of Dummy Variables in Models With STATA

What are Dummy Variables?

- So far the dependent and independent variables have been numerical or quantitative. For example: income, output, prices, costs, height, temperature.
- ➤ But this may not always be the case.
- There are occasions where the independent variables can be qualitative in nature.
- The qualitative variables are often known as dummy variables.
- Alternative names for dummy variables found in literature are : indicator variables, binary variables, categorical variables, and dichotomous variables.
- Some Examples: race, gender color, religion, nationality, geographical region, political upheavals, structural changes, policy reforms, natural calamity, party affiliation, etc.
- > Used in all types of modelling framework: cross-section, time series, and panel.

Why Dummy Variables are Important?

- Dummy variables usually indicate the presence or absence of a "quality" or an attribute.
- For example, holding all other things constant, female workers are found to earn less than their male counterparts or nonwhite workers are found to earn less than whites.
- This pattern may result from gender or racial discrimination, but whatever the reason, qualitative variables such as gender and race seem to influence the independent variable(s).
- Therefore, they should be included among the explanatory variables, or the regressors for policy analysis or impact analysis if there is scope.
- Now, the question is, how to measure dummy variables?

Measurement of Dummy Variables

- Dummy are essentially <u>nominal scale</u> variables.
- ➤ In simple, a nominal scale variable does not have a <u>natural order or ranking</u>.
- ➤ One way we could "quantify" such attributes is by constructing artificial variables that take on values of 1 or 0.
- ➤ 1 indicating the presence (or possession) of that attribute and 0 indicating the absence of that attribute.
- This means a dummy variables can split the sample into two distinct groups.
- \triangleright Mainly denoted by D.

D = 1; if gender is male

D = 0; if gender is female

➤ Other way around is also possible.

Visualisation of Dummy Variable Data

Respondent ID	Age	Education (Years of Education)	Gender (Male=1, Female=0)
1	18	12	1
2	19	10	0
3	20	8	0
4	21	7	0
5	23	12	0
6	25	12	1
7	26	12	0
8	28	12	0
9	31	12	0
10	33	8	0
11	35	12	1
12	37	5	1
13	19	5	1
14	20	12	1
15	21	12	1
16	23	12	1
17	25	16	1
18	26	13	1
19	28	13	0
20	30	16	0

Modelling with Dummy Variables

Suppose we have the following single variable model:

$$Y_i = \beta_0 + \beta_1 D_i + u_i ; u_i \sim N(\mu, \sigma^2)$$

 \triangleright If $D_i = 0$ then:

$$Y_i = \beta_0 + u_i$$

 \triangleright If $D_i = 1$ then:

$$Y_i = \beta_0 + \beta_1 + u_i$$

> We can extend this modelling framework with other continuous variable(s):

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_{1i} + \dots + \beta_k X_{ki} + u_i$$

- The use of dummy variables do not pose any new challenge for estimation, and we can use the traditional OLS to estimate parameters of the models.
- When all the explanatory variables are dummies, we refer such model as Analysis-of-Variance (ANOVA) models.
- ➤ Model with mix of dummy and continuous variables are called Analysis-of-Covariance (ANCOVA).

Statistical Inferences of Dummy Variable Models

- Let's take an simulated example.
- $ightharpoonup D_i = 1$ is male and $D_i = 0$ is female.

$$Wage_i = \beta_0 + \beta_1 D_{gender,i} + \beta_2 Age_i + u_i$$

We estimate the model with OLS and find the following:

$$\widehat{Wage_i} = 20 + 3.2D_{gender,i} + 2.5Age_i$$

- The observed data is split into 2 groups according to the gender dummy as shown earlier.
 - \triangleright The group with $D_i = 0$ is called the baseline (i.e., female).
 - \triangleright The group with $D_i = 1$ is called the target group/other group (i.e., male).
- $\triangleright \beta_1$ of dummy quantifies the expected effect of the target group (i.e., male in our case).

Statistical Inferences of Dummy Variable Models

$$Wage_{i} = \beta_{0} + \beta_{1}D_{gender,i} + \beta_{2}Age_{i} + u_{i}$$

$$\widehat{Wage}_{i} = 20 + 3.2D_{gender,i} + 2.5Age_{i}$$

Expected value of wage if male (holding age constant):

$$E(Wage_i|D_{gender,i}=1) = \beta_0 + \beta_1 = 20 + 3.2 = 23.2$$

Expected value of wage if female(holding age constant):

$$E(Wage_i | D_{gender,i} = 0) = \beta_0 = 20$$

Expected wage difference between male and female:

$$E(Wage_i|D_{gender,i} = 1) - E(Wage_i|D_{gender,i} = 0) = \beta_1 = 3.2$$

➤ Wage difference indicates males earn 3.2 units more compared to females, ceteris paribus.

Modelling and Statistical Inferences of Dummy Variable Models

 \triangleright If we want to plot the models for $D_i = 0$ and $D_i = 1$, we will get something like the figure below:

Dummy Variable Trap

- The general principle of dummy variables can be extended to cases where there are several (but not infinite) discrete groups/categories.
- In some cases, this might lead to perfect multicollinearity in the model. This is known as the dummy variable trap.
- The good thing is all the current software algorithms can detect this issue automatically and remove one of the dummies from the model to avoid perfect multicollinearity.
- To illustrate, let's say we have three dummies that tell where the respondents live in a city:

Respondent ID	С	D1 (north)	D2 (south)	D3 (east)	D4(west)	D1+D2+D3+D4
1	1	1	0	0	0	1
2	1	0	1	0	0	1
3	1	0	0	1	0	1
4	1	0	0	0	1	1

- \triangleright In this example, we can show, for example, C = D1 + D2 + D3 + D4, which is case of perfect multicollinearity
- ➤ Therefore as a rule of thumb, when closely related multiple dummies are present, N-1 dummies should be used, given N is the number of dummies.

TABLE 4

Impact of Electricity Access on Women Empowerment in Urban Areas

<u> </u>		-		
Variables	Economic Freedom	Economic Decision	Household Decision	Mobility and Agency
Electricity (Hrs)	0.0336***	0.0572*	0.0550***	-0.0272
T (T)	(0.0108)	(0.0300)	(0.0199)	(0.0204)
Log (Income)	0.590	-5.159***	-0.440	-0.589
* /* \2	(2.195)	(1.755)	(1.259)	(0.949)
Log (Income) ²	-0.0293	0.244***	0.00974	0.0306
	(0.107)	(0.0850)	(0.0628)	(0.0462)
Household Size	-0.0267	-0.0133	0.00913	-0.0264
	(0.0220)	(0.0497)	(0.0324)	(0.0280)
Household Head Sex (Female = 1) ^a	0.237***	0.567**	0.480***	0.696***
1	(0.0890)	(0.223)	(0.160)	(0.152)
Woman Age	0.0517***	0.0627*	0.0844***	0.0113
	(0.0139)	(0.0320)	(0.0229)	(0.0228)
Woman Age ²	-0.000562***	-0.000662*	-0.000906***	-0.000164
<u> </u>	(0.000167)	(0.000384)	(0.000270)	(0.000268)
Ethnicity (Indigenous = 1)	-0.0138	-0.201	0.0290	-0.240
	(0.170)	(0.331)	(0.241)	(0.223)
Number of Children	0.122	0.188	-0.0128	-0.0776
	(0.0969)	(0.263)	(0.169)	(0.153)
Married (Yes = 1)	0.0239	-0.263	-0.0163	-0.135
	(0.134)	(0.292)	(0.203)	-0.0776
Controls				
District FE	Yes	Yes	Yes	Yes
Household Type FE	Yes	Yes	Yes	Yes
Instruments	76	76	76	76
Constant	-4.960	28.87***	0.539	1.799
	(11.23)	(10.47)	(6.810)	(5.611)
N	221	221	221	221

^a Even though the female headed households are low (11%) in urban areas but 62.5% of those households are indigenous. We also believe some ethnicity aspects are suppressed due to urban dynamics. Perhaps, these together results high significance of the coefficients. Robust standard errors in parentheses

- Look at the Household Head variable. It's a dummy. It takes 1 for female and 0 otherwise.
- The estimation suggests that in urban areas of the Chittagong Hill Tracts of Bangladesh, women's economic freedom is higher by <u>0.237 units</u> in <u>female headed households</u> compared to <u>male headed households</u>.

Amin, S. B., Jamasb, T., Khan, F., & Nepal, R. (2024). Electricity access, gender disparity, and renewable energy adoption dynamics: The case of mountain areas of Bangladesh. *Economics of Energy & Environmental Policy*, 13 (1), DOI: 10.5547/2160-5890.13.1.sami

^{***} p < 0.01, ** p < 0.05, * p < 0.15

➤ We take the following models for estimations:

$$lnWage_{i} = \beta_{0} + \beta_{1}Age_{i} + \beta_{2}Black_{i} + u_{i}$$

$$lnWage_{i} = \beta_{0} + \beta_{1}Age_{i} + \beta_{2}SMSA_{i} + u_{i}$$

$$lnWage_{i} = \beta_{0} + \beta_{1}Age_{i} + \beta_{2}Black_{i} + \beta_{2}SMSA_{i} + u_{i}$$

Here:

 $Black_i = 1$ if the person is black

 $Black_i = 0$ if the person is white

 $SMSA_i = 1$ if the person is not from metropolitan area

 $SMSA_i = 0$ if the person is from metropolitan area

Table to show the summary of variable Black

Table to show the summary of variable SMSA

1 if black	Freq.	Percent	Cum.	1 if not SMSA	Freq.	Percent	Cum.
0	20,483 8,051	71.78 28.22	71.78 100.00	0 1	20,469	71.76 28.24	71.76 100.00
Total	28,534	100.00	_	Total	28,526	100.00	

Table to show the distributions of black and white employees living in the metropolitan areas

1 if black	Freq.	Percent	Cum.
0	6,163 1,894	76.49 23.51	76.49 100.00
Total	8,057	100.00	

$$lnWage_i = \beta_0 + \beta_1 Age_i + \beta_2 Black_i + u_i$$

Linear regression	Number of obs	=	28,510
	F(2, 28507)	=	1358.57
	Prob > F	=	0.0000
	R-squared	=	0.0944
	Root MSE	=	.45499

ln_wage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0196842	.0004233	46.51	0.000	.0188546	.0205138
black	1387483	.0059396	-23.36	0.000	1503903	1271064
_cons	1.142352	.0120125	95.10	0.000	1.118807	1.165897

Follow model selection handout for interpretation.

Estimate shows black employees tend to earn around 13.87% less than the white employees, considering all are constant.

 $lnWage_i = \beta_0 + \beta_1 Age_i + \beta_2 SMSA_i + u_i$

Linear regression	Number of obs	=	28 , 502
	F(2, 28499)	=	1919.00
	Prob > F	=	0.0000
	R-squared	=	0.1272
	Root MSE	=	.44671

ln_wage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0202263	.0004153	48.71	0.000	.0194124	.0210403
not_smsa	2370934	.0057822	-41.00	0.000	2484267	22576
_cons	1.154443	.0117055	98.62	0.000	1.1315	1.177386

 $lnWage_i = \beta_0 + \beta_1 Age_i + \beta_2 Black_i + \beta_2 SMSA_i + u_i$

Linear regression	Number of obs	=	28,502
	F(3, 28498)	=	1555.19
	Prob > F	=	0.0000
	R-squared	=	0.1484
	Root MSE	=	. 44126

ln_wage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
age black not_smsa _cons	.0200584 1550226 2471931 1.205903	.0004116 .0056919 .0056668 .0117308	48.73 -27.24 -43.62 102.80	0.000 0.000 0.000	.0192516 166179 2583003 1.18291	.0208653 1438662 2360859 1.228896

STATA Commands

```
webuse regsmpl
           tab black
           tab not_smsa
           tab black if not_smsa==1
*ols with black dummy
reg ln_wage age black, vce(r)
*ols with smsa dummy
reg ln_wage age not_smsa, vce(r)
*ols with both bakck and smsa dummies
reg ln_wage age black not_smsa, vce(r)
//general method of dummy variable creation with STATA
*Read: Speaking STATA: How best to generate indicator or dummy variables by Nicholas J. Cox and Clyde B. Schechter
sysuse auto
*suppose you need a dummy that shows 1=mpg higher than 30 and 0=otherwise
gen hi_mpg = 1 if mpg > 30
           ed hi_mpg mpg if mpg<=30.
           replace hi_mpg=0 if mpg<=30
           ed hi_mpg mpg
*the first line creates a variable hi_mpg that takes value 1 when mpg variable is greater than 30. Less than and equal to 30 are still
missing.
**second line will show you a dot (.) in hi_mpg when mpg<=30. dot(.) indicates missing value in STATA.
** third line addresses this issue and makes all dots (.) as 0 when mpg is <=30 with "replace" command.
** fourth line shows the actual mpg and hi_mpg data in a spreadsheet with "ed".
```