Electroencephalogram Signal Processing with Deep Learning

Shen Gao June 2020

Contents

- Introduction to signal processing with deep learning
 - Deep learning: the final frontier for signal processing and time series analysis?
- Recent and classic studies on EEG
 - MusicID: A Brainwave-based User Authentication System for Internet of Things
 - <u>EEGNet: A Compact Convolutional Neural Network for EEG-based Brain-Computer Interfaces</u>
 - EnK: Encoding Time-Information in Convolution
 - Deep Learning Human Mind for Automated Visual Classification

Deep learning: the final frontier for signal processing and time series analysis?

Alexandr Honchar Nov 10, 2018

Sources of Signals

- Natural signal: Temperature, wind speed, ...
- Business and finance signals: exchange rate, ...
- Bbiosignals: EEG, ECG, EMG
- ...

Classical Approaches

- Time domain analysis: "Looking" how time series evolves over time.
- Frequency domain analysis: Some signals are better represented by what amplitudes they have in it and how they change.
- Nearest neighbors analysis: Compare or measure a distance between two signals.
- (S)AR(I)MA(X) models: Models based on linear self-dependence.
- Decomposition: Decomposing time series into logical parts.
- Nonlinear dynamics: Using differential equations as a tool for modeling dynamical systems.
- Machine learning

- RNN: Created for sequences with the ability to maintain its hidden state and learn dependencies over time.
 - However, as it has been shown in <u>this research</u>, RNN is no always efficient.
 - From author's experience, RNN is good only when deal with short sequences (10-100 steps)
- CNN: Great for vision, also good for even more simple 1D data.

 CNN + RNN: Use CNN to obtain local patterns, use RNN to analyse dependencies over time.

```
model= Sequential()
model.add(Embedding(20000,32,input_length=100))
model.add(Conv1D(32,kernel_size=3,padding='same',activation='relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(Conv1D(64,kernel_size=3,padding='same',activation='relu'))
model.add(MaxPooling1D(pool_size=3))
model.add(LSTM(50,return_sequences=True))
model.add(Flatten())
model.add(Dense(128,activation='relu'))
model.add(Dropout(0.45))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
```

 Autoregressive neural nets: Avoid RNN, but still "emulate" dependence from last N time steps and have N quite large.

- Clustering using autoencoder.
 - <u>Deep Temporal Clustering: Fully</u>
 <u>Unsupervised Learning of Time-Domain</u>
 Features
- Anomaly detection.
 - <u>Efficient GAN-Based Anomaly Detection</u>
- Hybrid methods.

MusicID: A Brainwave-based User Authentication System for Internet of Things

Jinani Sooriyaarachchi, Suranga Seneviratne, Kanchana Thilakarathna, and Albert Y. Zomaya

Data61-CSIRO, Australia
School of Computer Science, The University Sydney, Australia.

Introduction

- Task: Use music-induced brainwave patterns as a behavioral biometric modality.
- No deep learning methods used, but we are looking at the data collection and preprocessing part.

Data Collection

- 20 volunteers (11 females and 9 males).
- Listen to a popular English song and indifidual's favorite song.
- Muse brain sensing headset with 4 electrodes in the standard 4-channel configuration (TP9, AF7, AF8, TP10).

Data Collection

- Listen to the music for 150 seconds, recording interval: 0.5s, thus 300 data sample in total.
- Sampling rate: 220Hz.
- Each data sample included 24 reading:
 - o Alpha, Beta, Theta, Delta, Gamma and Raw EEG without separated.
 - Each with 4 channels.

Data Preprocessing

- Remove Delta brainwave, devide 300 samples into 14 frames with 50% override.
- 20 readings each sample.
- Calculate mean, maximux, minimux, zero crossing rate for earh reading.

Classification and Result

- Use random forest classification.
- 98% accuracy for identification.
- 97% accuracy for verification.

EEGNet: A Compact Convolutional Neural Network for EEG-based Brain-Computer Interfaces

Vernon J. Lawhern, Amelia J. Solon, Nicholas R. Waytowich, Stephen M. Gordon, Chou P. Hung, and Brent J. Lance

Human Research and Engineering Directorate, U.S. Army Research Laboratory

Introduction

- Design a single CNN architecture to accurately classify EEG signals from different BCI paradigms.
- Contribution: EGGNet. The model is robust enough to learn a wide variety of interpretable features over a range of BCI tasks.

Dataset

- Two types of BCI depending on the EEG feature of interest:
 - Event-related potential (ERP)
 - Oscillatory
- P300 ERP
- Feedback Error-Related Negativity (ERN)
- Movement-Related Cortical Potential (MRCP)
- Sensory Motor Rhythm (SMR)

EEGNet

Why do convolution like this?

- First perform convolution on time axis, then compress the feature on frequency axis by another convolution.
- Inspired by <u>Filter Bank Common Spatial Pattern</u> algorithm.

Classification Result

EnK: Encoding Time-Information in Convolution

Avinash K Singh, Chin-Teng Lin

Center for Artificial Intelligence, School of Computer Science University of Technology Sydney

Inspiration

- How to encode denpendency over time?
- Propose EnK (Time Encoding Kernel).

Methods

- Input: Part1=output of the previous conv layer, Part2=input of the previous conv layer.
- Initialize a same conv layer with the previous conv layer, but fixed weight=1.
- Apply the conv layer on Part2.
- Initialize a fixed time encoding vector, value range from 0 to its length. The vector has the same length with Part2 in time axis.
- Expand the time encoding vector to the same size with Part2.
- Multiply Part2 with the time encoding vector and a trainable scaling factor.
- Output: Part1 + Part2.

Result

	EEGNet			ShallowConvNet			DeepConvNet		
Datasets	Org	EnK	Gauss	Org	EnK	Gauss	Org	EnK	Gauss
CC	0.8344	0.8518	0.8465	0.8396	0.8518	0.8398	0.8468	0.8518	0.8218
pHRC	0.8798	0.8801	0.8799	0.8782	0.8799	0.8791	0.8806	0.8799	0.8799
P300	0.9423	0.9412	0.9200	0.8991	0.9333	0.9293	0.9200	0.9333	0.9320
MRCP	0.4501	0.5621	0.4951	0.4816	0.5804	0.4885	0.4080	0.5564	0.3732
		EEGNet		Sha	llowConv	Net	De	eepConvN	let
Datasets	Org	EnK	Gauss	Org	EnK	Gauss	Org	EnK	Gauss
CC	0.7189	0.7418	0.7350	0.7263	0.7418	0.7253	0.7345	0.7418	0.7029
pHRC	0.7856	0.7862	0.7856	0.7828	0.7856	0.7842	0.7869	0.7856	0.7856
P300	0.9412	0.9412	0.9216	0.8922	0.9314	0.9314	0.9216	0.9314	0.9314
MRCP	0.4526	0.5625	0.5053	0.4842	0.6000	0.4947	0.4421	0.5579	0.5053

Deep Learning Human Mind for Automated Visual Classification

C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano, N. Souly, M. Shah

Department of Electrical, Electronics and Computer Engineering - PeRCeiVe Lab Center for Research in Computer Vision – University of Central Florida

Introduction

 Task: Read the mind and transfer human visual capabilities to computer vision methods.

Methods

Encoder

Result

Model	Details	Max VA	TA at max VA
	64 common	74.4%	73.9%
Common	128 common	77.3%	74.1%
	64,64 common	75.9%	72.5%
	128,64 common	79.1%	76.8%
	128,128 common	79.7%	78.0%
Cl. 1.C	5 channel, 32 common	75.7%	72.9%
Channel + Common	5 channel, 64 common	74.3%	71.2%
Common Loutnut	128 common, 64 output	81.6%	78.7%
Common + output	128 common, 128 output 85.4% 82.9%		82.9%

Visualization time	Max VA	TA at max VA	
40-480 ms	85.4%	82.9%	
40-160 ms	81.4%	77.5%	
40-320 ms	82.6%	79.7%	
320-480 ms	86.9%	84.0%	

Criticism

- Used test dataset to train.
- Signal filtering issues.
- https://arxiv.org/pdf/1812.07697.pdf
- https://www.reddit.com/r/MachineLearning/comments/a8p0l8/p_training_on_t
 he_test_set_an_analysis_of/
- https://www.jigizhixin.com/articles/2018-12-24-15