Ανάλυση Αλγορίθμων

Χρόνος Τρεξίματος

- Οι περισσότεροι αλγόριθμοι μετασχηματίζουν αντικείμενα εισόδου σε αντικείμενα εξόδου
- Τυπικά ο απαιτούμενος χρόνος αυξάνει με το μέγεθος της εισόδου
- Συνήθως είναι δύσκολο να υπολογισθεί μέσος χρόνος τρεξίματος.
- Εστιάζουμε στη χειρότερη περίπτωση.
 - Ευκολότερη η Ανάλυση
 - Σημαντική για εφαρμογές όπως οικονομικές, παίγνια, και ρομποτική

Πειραματικές Μελέτες

- Τρέξτε το πρόγραμμα με εισόδους μεταβλητού μεγέθους και σύνθεσης
- Σρησιμοποιήστε μια μέθοδο όπως την System.currentTimeMillis() για να έχετε ακριβή στοιχεία του χρόνου τρεξίματος
- Πάρτε γραφική παράσταση των αποτελεσμάτων

Περιορισμοί των Πειραμάτων

- Η υλοποίηση του αλγόριθμου μπορεί να είναι δύσκολη
- Τα αποτελέσματα μπορεί να μην είναι ενδεικτικά του χρόνου τρεξίματος για άλλες εισόδους που δεν συμπεριλαμβάνονται στο πείραμα
- Για τη σύγκριση δύο αλγορίθμων πρέπει να χρησιμοποιηθεί το ίδιο περιβάλλον λογισμικού και υλικού.

Θεωρητική Ανάλυση

- Αντί για υλοποίηση χρησιμοποιεί μια υψηλού επιπέδου περιγραφή του αλγόριθμου
- Εκφράζει το χρόνο τρεξίματος σαν συνάρτηση του μεγέθους της εισόδου *n*.
- Λαμβάνει υπόψη όλες τις πιθανές εισόδους
- Μας επιτρέπει να αξιολογούμε την ταχύτητα ενός αλγορίθμου ανεξάρτητα από το περιβάλλον υλικού/λογισμικού

Ψευδοκώδικας

- Περιγραφή ενός αλγόριθμου σε υψηλό επίπεδο
- Πιο δομημένος τρόπος από τη φυσική γλώσσα
- Λιγότερο λεπτομερές από ένα πρόγραμμα
- Συμβολισμός που προτιμείται για την περιγραφή αλγορίθμων
- Αποκρύπτει θέματα σχεδιασμού προγραμμάτων

Παράδειγμα: να βρεθεί το μέγαλύτερο στοιχείο ενός πίνακα

Algorithm *arrayMax(A, n)*Input array *A* of *n* integers
Output maximum element of *A*

 $currentMax \leftarrow A[0]$ $for i \leftarrow 1 to n - 1 do$ if A[i] > currentMax then $currentMax \leftarrow A[i]$ return currentMax

Λεπτομέρειες Ψευδοκώδικα

- Έλεγχος Ροής
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Αντί για αγκύλες έχει χρησιμοποιηθεί στοίχιση
- Δήλωση Μεθόδου

Algorithm *method* (arg [, arg...])
Input ...

Output ...

- Κλήση μεθόδοvar.method (arg [, arg...])
- □ Επιστρεφόμενη τιμή return expression
- Εκφράσεις
 - ← Assignment (όπως το = στην Java)
 - = Έλεγχος ισότητας (όπως το == στην Java)
 - π² Επιτρέπονται δυνάμεις και άλλοι μαθηματικοί συμβολισμοί

Το μοντέλο μηχανής τυχαίας προσπέλασης (RAM)

Miα CPU

Οι θέσεις μνήμης έχουν αριθμηθεί και η προσπέλαση σε μια θέση μνήμης απαιτεί μια μονάδα χρόνου. © 2010 Goodrich, Tamassia Ανάλυση Αλγορίθμων

Επτά σημαντικές Συναρτήσεις

- Επτά συναρτήσεις που χρησιμοποιούνται στην ανάλυση αλγορίθμων:
 - Σταθερά ≈ 1
 - Λογαριθμική $\approx \log n$
 - Γραμμική $\approx n$
 - N-Log-N $\approx n \log n$
 - Τετραγωνική ≈ n^2
 - Kυβική ≈ n^3
 - \mathbf{E} κ $\mathbf{\theta}$ ετικ $\mathbf{\hat{\eta}} \approx \mathbf{2}^n$
- Σε ένα log-log
 διάγραμμα, η κλίση της
 γραμμής αντιστοιχεί στο ρυθμό αύξησης

Γράφοι συναρτήσεων

Από τον Matt Stallmann.

$$g(n) = n \lg n$$

$$g(n) = \lg r$$

$$g(n) = n^2$$

$$g(n) = n$$

$$g(n) = n^3$$

Βασικές Πράξεις

- Βασικοί υπολογισμοί που εκτελούνται από ένα αλγόριθμο
- Προσδιορίζονται σε ψευδοκώδικα
- Ανεξάρτητα από τη γλώσσα προγραμματισμού
- Δεν είναι σημαντικός ο ακριβής ορισμός
- Υποθέτουμε ότι κάθε μια απαιτεί μια μονάδα χρόνου

- Υπολογισμός μιας έκφρασης
- Ανάθεση μιας τιμής σε μια μεταβλητή
- Δείκτης πίνακα
- Κλήση μιας μεθόδου
- Επιστροφή από μια μέθοδο

Μέτρηση των Βασικών Πράξεων

Με έλεγχο στον ψευδοκώδικα, μπορούμε να αποφανθούμε για το μέγιστο πλήθος βασικών πράξεων που εκτελούνται από ένα αλγόριθμο, σαν συνάρτηση του μεγέθους της εισόδου

Algorithm arrayMax(A, n)	# operations
$currentMax \leftarrow A[0]$ $for i \leftarrow 1 \text{ to } n-1 \text{ do}$	$\frac{2}{2n}$
if $A[i] > currentMax$ then	2(n-1)
$currentMax \leftarrow A[i]$	2(n-1)
{ increment counter i }	2(n-1)
return currentMax	
Σύνολο	8n-2

Εκτίμηση του Χρόνου Εκτέλεσης

- □ Ο αλγόριθμος *arrayMax* εκτελεί 8*n* − 2 βασικές πράξεις στη χειρότερη περίπτωση. Ορισμός:
 - α = Χρόνος της γρηγορότερης βασικής πράξης
 - **b** = Χρόνος της πιό αργής βασικής πράξης
- \Box Έστω T(n) ο χειρότερος χρόνος του array Max. Τότε

$$a (8n - 2) \le T(n) \le b(8n - 2)$$

Επομένως, ο χρόνος τρεξίματος T(n) φράσεται
 από δύο γραμμικές συναρτήσεις

Ρυθμός Αύξησης του χρόνου τρεξίματος

- Αλλαγή του περιβάλλοντος υλικού/ λογισμικού
 - Επηρεάζει το *T*(*n*) κατά σταθερό παράγοντα, αλλά
 - Δεν αλλάζει το ρυθμό αύξησης του T(n)
- Η γραμμική αύξηση του ρυθμού του χρόνου τρεξίματος του T(n) είναι μια εσωτερική ιδιότητα του αλγορίθμου arrayMax

Γιατί είναι σημαντικός ο ρυθμός Από τον Matt Stallmann

αύξησης

Αν ο χρόνος είναι	για n + 1	για 2 n	για 4 η
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
cn	c (n + 1)	2c n	4c n
c n lg n	~cnlgn +cn	2c n lg n + 2cn	4c n lg n + 4cn
c n²	~ c n ² + 2c n	4c n ²	16c n ²
c n ³	$\sim c n^3 + 3c n^2$	8c n ³	64c n ³
c 2 ⁿ	c 2 n+1	c 2 ²ⁿ Ανάλυση Αλγορ	с 2 ⁴ⁿ

Ο χρόνος τετραπλασιάζεται όταν διπλασιασθεί το μέγεθος του προβλήματος

15

Σύγκριση δύο Αλγορίθμων

η ταξινόμηση με παρεμβολή είναι n² / 4
ταξινόμηση με συγχώνευση 2 n lg n

ταξινόμηση 1000000 στοιχείων? η παρεμβολή θέλει περίπου 70 ώρες ενώ

> η συγχώνευση περίπου 40 δεύτερα

Αυτή είναι μια αργή μηχανή αλλά 100 x γρηγορότερη είναι 40 λεπτά έναντι λιγότερο από 0.5 sec

Σταθεροί Παράγοντες

- Ο ρυθμός αύξησης δεν επηρεάζεται από
 - σταθερούς παράγοντες ή
 - όρους χαμηλότερης τάξης
- Παραδείγματα
 - 10²n + 10⁵ είναι
 γραμμική συνάρτηση
 - $10^5 n^2 + 10^8 n$ είναι τετραγωνική συνάρτηση

© 2010 Goodrich, Tamassia

Ανάλυση Αλγορίθμων

17

Συμβολισμός Big-Oh

Οταν δίδονται οι συναρτήσεις f(n) και g(n), λέμε ότι η f(n) είναι O(g(n)) αν υπάρχουν θετικές σταθερές c και n_0 έτσι ώστε

$$f(n) \leq cg(n)$$
 yia $n \geq n_0$

- □ Παράδειγμα: 2n + 10 είναι O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - $\text{'EOT}\omega \ c = 3 \text{ Kal } n_0 = 10$

10,000

Παράδειγμα Big-Oh

Παράδειγμα: η συνάρτηση n² δεν είναι O(n)

- $n \leq c$
- Η παραπάνω ανισότητα δεν ισχύει εφόσον το c πρέπει να είναι μια σταθερά

Παραδείγματα Big-Oh

♦ 7n-2

7n-2 είναι O(n) Θέλουμε ένα c > 0 και ένα $n_0 \ge 1$ τέτοιο ώστε 7n-2 \le c•n για $n \ge n_0$ αυτό ισχύει για c = 7 και $n_0 = 1$

■ $3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ sival O(n³)

θέλουμε ένα c > 0 και ένα $n_0 \ge 1$ τέτοιο ώστε $3n^3 + 20n^2 + 5 \le c \cdot n^3$ για $n \ge n_0$ αυτό ισχύει για c = 4 και $n_0 = 21$

■ 3 log n + 5

 $3 \log n + 5 \text{ sival } O(\log n)$

θέλουμε ένα c > 0 και ένα $n_0 \ge 1$ τέτοιο ώστε 3 log n + 5 \le c \bullet log n για $n \ge n_0$ αυτό ισχύει για c=8 και $n_0 = 2$

Big-Oh και Ρυθμός Αύξησης

- Ο συμβολισμός big-Oh αποτελεί ένα άνω φράγμα στο ρυθμό αύξησης μιας συνάρτησης
- Η πρόταση "η f(n) είναι O(g(n))" σημαίνει ότι ο ρυθμός αύξησης της f(n) δεν ξεπερνά το ρυθμό αύξησης της g(n)
- Μπορούμε να χρησιμοποιήσουμε τον συμβολισμό big-Oh για βαθμολόγηση συναρτήσεων με βάση το ρυθμό αύξησής τους

	f(n) είναι $O(g(n))$	g(n) είναι $O(f(n))$
g (n) πιό γρήγορα	ναι	όχι
f(n) πιό γρήγορα	óχι	ναι
Ίδια αύξηση	ναι	ναι

Κανόνες της Big-Oh

- \Box Αν η f(n) είναι πολυώνυμο βαθμού d, τότε η f(n) είναι $O(n^d)$, δηλ.
 - 1. Απορρίπτουμε τους όρους χαμηλότερης τάξης
 - 2. Απορρίπτουμε τις σταθερές
- Χρησιμοποιούμε την ελάχιστη δυνατή κλάση συναρτήσεων
 - \blacksquare Λέμε "η 2n είναι O(n)" αντί για " η 2n είναι $O(n^2)$ "
- Χρησιμοποιούμε την απλούστερη έκφραση της κλάσης
 - Λέμε "η 3n + 5 είναι O(n)" αντί "η 3n + 5 είναι O(3n)"

Ασυμπτωτική Ανάλυση Αλγορίθμων

- Η ασυμπτωτική ανάλυση ενός αλγορίθμου καθορίζει το χρόνο τρεξίματος σε συμβολισμό big-Oh
- Για την ασυμπτωτική ανάλυση
 - Βρίσκουμε την χειρότερη περίπτωση βασικών πράξεων σαν συνάρτηση του μεγέθους της εισόδου
 - Εκφράζουμε αυτή τη συνάρτηση με συμβολισμό big-Oh
- Παράδειγμα:
 - Βρίσκουμε ότι ο αλγόριθμος arrayMax εκτελεί το πολύ 8n 2 βασικές πράξεις
 - Λέμε ότι ο αλγόριθμος *arrayMax* "τρέχει σε *O*(*n*) χρόνο"
- Αφού οι σταθερές και οι χαμηλότερης τάξης όροι τελικά απορρίπτονται, μπορούμε να τους αγνοήσουμε όταν μετράμε τις βασικές πράξεις

Υπολογισμός μέσων προθέματος

- Δείχνουμε επιπλέον
 ασυμπτωτική ανάλυση με
 δύο αλγόριθμους για
 μέσους προθέματος
- ο i-th μέσος προθέματος ενός πίνακα X είναι η μέση τιμή των πρώτων (i+1) στοιχείων του X:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

Ο υπολογισμός ενός πίνακα
 Α με τους μέσους
 προθέματος ενός άλλου
 πίνακα Χ έχει εφαρμογές
 στην οικονομική ανάλυση

© 2010 Goodrich, Tamassia

Ανάλυση Αλγορίθμων

Μέσοι προθέματος (Τετραγωνικός)

 Ο παρακάτω αλγόριθμος υπολογίζει τους μέσους προθέματος σε τετραγωνικό χρόνο εφαρμόζοντας τον ορισμό

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

 $A \leftarrow$ new array of n integers

n

for
$$i \leftarrow 0$$
 to $n-1$ do

n

$$s \leftarrow X[0]$$

n

for
$$j \leftarrow 1$$
 to i do

$$1 + 2 + \ldots + (n - 1)$$

$$s \leftarrow s + X[j]$$

$$1 + 2 + \ldots + (n - 1)$$

$$A[i] \leftarrow s / (i+1)$$

n

return A

1

Αριθμητική Πρόοδος

- O χρόνος του prefixAverages1 είναι O(1+2+...+n)
 - Το άθροισμα των πρώτων n ακεραίων είναι n(n+1) /
 - Υπάρχει μια απλή οπτική απόδειξη αυτού του γεγονότος
- Επομένως, ο αλγόριθμος prefixAverages1 τρέχει σε O(n²) χρόνο

Μέσοι Προθέματος (Γραμμικός)

 Ο παρακάτω αλγόριθμος υπολογίζει τους μέσους προθέματος σε γραμμικό χρόνο αποθηκεύοντας το τρέχον άθροισμα

Algorithm prefixAverages2(X, n)	
Input array X of n integers	
Output array A of prefix averages of X	#operations
$A \leftarrow$ new array of n integers	n
$s \leftarrow 0$	1
for $i \leftarrow 0$ to $n-1$ do	n
$s \leftarrow s + X[i]$	n
$A[i] \leftarrow s / (i+1)$	n
return A	1

 \bullet Ο αλγόριθμος prefixAverages2 τρέχει σε O(n) χρόνο

Μαθηματικά που θα σας χρειασθούν

- ◆ Αθροίσματα
- Λογάριθμοι και Εκθετικές

- Τεχνικές απόδειξης
- ◆ Βασικές πιθανότητες

Ιδιότητες λογαρίθμων:

$$log_b(xy) = log_bx + log_by$$

 $log_b(x/y) = log_bx - log_by$
 $log_bxa = alog_bx$
 $log_ba = log_xa/log_xb$

Ιδιότητες εκθετικών :

$$a^{(b+c)} = a^b a^c$$

 $a^{bc} = (a^b)^c$
 $a^b / a^c = a^{(b-c)}$
 $b = a^{\log_a b}$
 $b^c = a^{c*\log_a b}$

Συγγενείς της Big-Oh

big-Omega

η f(n) είναι Ω(g(n)) αν υπάρχει μια σταθερά c > 0
 και μια ακέραια σταθερά n₀ ≥ 1 τέτοια ώστε f(n) ≥ c•g(n) για n ≥ n₀

big-Theta

η f(n) είναι Θ(g(n)) αν υπάρχουν σταθερές c' > 0 και c" > 0 και μια ακέραια σταθερά n₀ ≥ 1 τέτοια ώστε c'•g(n) ≤ f(n) ≤ c"•g(n) για n ≥ n₀

Διαίσθηση του Ασυμπτωτικού Συμβολισμού

Big-Oh

η f(n) είναι O(g(n)) αν η f(n) είναι
 ασυμπτωτικά μικρότερη ἡ ίση με την g(n)

big-Omega

η f(n) είναι Ω(g(n)) αν η f(n) είναι
 ασυμπτωτικά μεγαλύτερη ἡ ίση με την g(n)

big-Theta

• η f(n) είναι Θ(g(n)) αν η f(n) είναι ασυμπτωτικά ίση με την g(n)

Παραδείγματα Χρήσης των συγγενών της Big-Oh

\blacksquare 5n² είναι $\Omega(n^2)$

f(n) είναι $\Omega(g(n))$ αν υπάρχει μια σταθερά c>0 και μια ακέραια σταθερά $n_0 \ge 1$ τέτοια ώστε $f(n) \ge c \cdot g(n)$ για $n \ge n_0$ έστω c=5 και $n_0=1$

■ $5n^2$ είναι Ω(n)

f(n) είναι $\Omega(g(n))$ αν υπάρχει μια σταθερά c>0 και μια ακέραια σταθερά $n_0\geq 1$ τέτοια ώστε $f(n)\geq c\bullet g(n)$ για $n\geq n_0$ έστω c=1 και $n_0=1$

$= 5n^2$ είναι $\Theta(n^2)$

f(n) είναι $\Theta(g(n))$ αν είναι $\Omega(n^2)$ και $O(n^2)$. Έχουμε ήδη διαπιστώσει το πρώτο, για το δεύτερο θυμίζουμε ότι η f(n) είναι O(g(n)) αν υπάρχει μια σταθερά c>0 και μια ακέραια $n_0\geq 1$ υέτοια ώστε $f(n)\leq c \cdot g(n)$ για $n\geq n_0$

 $E \sigma \tau \omega \ c = 5 \ \mbox{και} \ n_0 = 1$ © 2010 Goodrich, Tamassia