

Integrate BPMN and Archimate Models using SpecIF

TdSE 2021
Oskar von Dungern, Dr.-Ing., enso managers GmbH

Basic Assumptions

- There will be always specialized tools for different purposes
- It is unwise to require collaborators to use certain tools or even a single tool
- Yet, there is an interest
 - to navigate, search and audit partial results in a common context
 - to exchange model information between organizations and tools

→ That's where SpecIF kicks in: Specification Integration Facility

The eye sees the same - behind the surface it gets interesting

Creating the "Visible"

- Text editing and image "drawing"
- Needs brain and discipline to build and keep consistent

Partial Modelling

- Text editing and modelling per method
- Tool support within the methods

Model Integration

- Text editing and modelling per method
- Elements in all views are interrelated by a semantic net

Add partial models step-by-step ...

Five Principles of Model Integration

- 1. Separate View and Model
- 2. Abstract Model Element Types
- 3. Use a Vocabulary
- 4. Share Model Elements between Views
- 5. Interrelate Model Elements to build a semantic net

Find a Useful Abstraction Level

Model-Integration: Cannot match original model-element types, because there are too many.

 Configuration Management: Should only handle a few artefact types.

→ Map to 3 fundamental model-element types ■ Actor, • State and • Event being common to *all* notations.

(see Fundamental Modelling Concepts by S.Wendt)

Use a Vocabulary

- Add meaning to terms
- Agree on terms and meaning
- Meaning is conveyed with the terms
- Can be translated to
 - national languages
 - special terminology in a given field

→ Use and contribute to the SpecIF System Engineering Vocabulary

Resource Class Names

- **FMC:**Actor
- IREB:Requirement

Statement Class Names

- IREB:satisfiedBy
- oslc rm:refinedBy

Property Names

- dcterms:title
- SpecIF:Priority

Property Values

SpecIF:priorityHigh

Telephone Connection Request - Business Process (BPMN)

BPMN → SpecIF Transformation

Telephone Connection Request

Application Landscape (Archimate)

Archimate → SpecIF Transformation

Telephone Connection Request

- Class Diagram (Archimate, UML, ..)

Class Diagram → SpecIF Transformation

All relations combined → Semantics of a Model-Element

Navigate, search and audit in a common context

SpecIF Goals and Benefits

- Exchange model-based specifications between organizations and tools.
- Combine texts and models from different tools.
- Navigate, search and audit in a common context.
- Manage the product lifecycle from birth to death ("end-to-end"):
 - Reference for all engineering-disciplines
 - Combining methods
 - Technology-neutral
 - Vendor-neutral
 - Schema-conforming
 - Standard-conforming
 - Open and cooperative

What is different?

- SpecIF builds on known notations and technical formats; doesn't replace any.
- 2. Conveys meaning through defined vocabulary and simple predicate logic.
- 3. SpecIF works because it uses *few* fundamental model-element types.
- SpecIF is a semantic net ("graph-data") with typed nodes and edges.
- 5. Graph data is highly scalable searching is ultra-fast.
- 6. Dynamic data-model strict meta-model with schema and constraint checker.
- 7. Users drive open-source development don't expect product vendors to invest; time-to-production 7 years \rightarrow 1 year.

Status ...

Plan

Resources

- SpecIF Home
- SpecIF Schema and Tools on GitHub (Open Source, Apache License)
 - → Use the GitHub Ticket System for questions, proposals and requests
- Hosted SpecIF <u>Schema</u> and <u>Consistency-check</u> (CORS-enabled, watch for <u>new releases</u>)
- SpecIF <u>Viewer</u> und <u>Editor</u>
- Examples:
 - <u>Telephone Connection Request</u> (Notation BPMN+Archimate+XSLX)
 - System Engineering Collaboration (Notation Archimate)
 - <u>Dimmer</u> (Notation FMC)
 - Small Autonomous Vehicle (Notation: SysML)
- SpecIF <u>Vocabulary</u>

Literature

- [1] Wendt, S.: Ein grundlegender Begriffsrahmen für das Wissensmanagement im Software-Engineering. In Proceedings "Knowtech" Dresden 2001.
- [2] Knöpfel, A.; Gröne, B.; Tabeling, P.: Fundamental Modelling Concepts – Effective Communication of IT Systems. ISBN-13: 978-0-470-02710-3. John Wiley&Sons, Chichester, 2005.
- [3] Kaufmann, U., Pfenning, M.: 10 Theses about MBSE and PLM.
- Object Management Group: Systems Modeling Language (OMG SysML™), Version 1.3, June 2012. [4]
- Object Management Group: Requirements Interchange Format (RegIF). [5]
- Open Services for Lifecycle Collaboration (OSLC). [6]
- [7] Specification Integration Facility (SpecIF).
- [8] Dungern, O.v.: Semantic Model-Integration for System Specification – Meaningful, Consistent and Viable, 7. Grazer Symposium Virtuelles Fahrzeug, Graz, Mai 2014.
- Dungern, O.v.: Integration von Systemmodellen mit fünf fundamentalen Elementtypen. TdSE Tag des Systems Engineering der GfSE, Ulm, [9] November 2015.
- Dungern, O.v.: Von Anforderungslisten zu vernetzten Produktmodellen am Beispiel der Gebäudeautomation. REConf, Unterschleißheim, [10] März 2016.
- Dungern, O.v.: Semantic Model Integration for System Specification. TdSE Tag des Systems Engineering der GfSE, Herzogenaurach, October 2016. [11]
- [12] Uphoff, F.: Konzept und prototypische Implementierung der Modellintegration der Interaction-Room-Methode in die Specification Integration Facility, Kamp-Lintfort, März 2017.
- Mochine, P.; Sünnetcioglu, A.; Dungern, O.v.; Stark, R.: SysML-Modelle maschinell verstehen und verknüpfen. TdSE Tag des Systems Engineering [13] der GfSE, Paderborn, Oktober 2017.
- Alt, O.: SpecIF Die kommende vielschichtige Datenquelle für Spezifikationsdaten. Fachgruppentreffen GI-RE, Nürnberg, November 2018. [14]
- Dungern, O.v.: Model-Integration with SpecIF. ProSTEP ivip e.V. SysML-Workflow-Forum November 2019. [15]

Interessant?

od@enso-managers.de oliver.alt@mdd4all.de

Details for further discussion

What is SpecIF?

"Specification Integration Facility", a GfSE initiative

- SpecIF adds conventions to convey meaning using known technical formats such as RegIF or OSLC.
 - 1. Vocabulary for Objects, Relations and Attributes
 - Logic Assertions ("First-order predicate logic")

- "Requirement", "Actor", "State", "Event" ... "satisfies", "reads", "contains", "triggers", ...
- "A Component satisfies a Requirement" "An Event *triggers* an Activity"
- → SpecIF carries both the "Visible" and the "Meaning"

Purpose: Model Integration

- Search, navigate and audit partial engineering results in a common context
- Interrelate information elements of disparate sources to create a common view
- Find inconsistencies and gaps between different views
- Use-Cases:
 - Localize requirements on a BoM: Which components are affected when changing a requirement (or vice versa)?
 - When a use-case mentions a data-object, which system components and interfaces are involved?
 - Interrelate system structures with process models: Which activities are affected when modifying a system component (or vice versa)?
 - Associate a FMI simulation-routine with a SysML system component (block)
 - Collect and compare information about an element from different sources.

Consolidate model elements from different diagrams

- Key to success is the abstraction using 5 fundamental model element types
- Impossible with 162 model element types in SysML and almost as many in BPMN
- Even within SysML the current tools fail to properly consolidate model elements from different model views

What's Needed to Integrate System-Models with Requirements

available Import FMC (ARCWAY Cockpit)

Import SysML → O. Alt (EA), O. Eichmann (Cameo)

Import BPMN-XML available

Import Archimate/Open-Exchange model-elements and relations: yes, diagrams manually

Import RegIF

Import Arcadia (Capella)

Import XLSX, XLS, CSV available

Model-Integration per "Adopt" available

SpecIF Server → O. Alt (.Net Core), O. v. Dungern (Node.js)

available Export RegIF

available Export ePub

Export OOXML (MS Word) available (early version)

All model diagram types (notations) consist of three fundamental model-element types*

		■ Diagram Type (Notation)								
	Model-element Type	BPMN Business- process	State- machine	System- composition	Organi- sation Chart	UML Classes				
	Actor	X	(X)	X	X					
•	State	Х	X	X		X				
♦	Event	X	X							

^{*} Prof. Dr. Siegfried Wendt, Founding Director of the Hasso-Plattner-Institute, Potsdam: Fundamental Modelling Concepts

A complete specification needs also ,feature' and ,requirement'

		■ Diagram Type (Notation)							
	Model-element Type	BPMN Business- process	State- machine	System- composition	Organi- sation Chart	UML Classes	Document Outline		
	Actor	X	(X)	X	X		X		
•	State	X	X	X		X	X		
♦	Event	X	X				X		
*	Feature						X		
4	Requirement						X		

A SpecIF data set contains both the Set types ("model") and the instances ("data" = "payload")

SpecIF model with Resource- and Statement-Classes

The classes can be defined at runtime ("dynamic model")

Hierarchical ordering of Resources (e.g. for convenient reading)

> SpecIF data (payload) with Resources and **Statements**

The SpecIF Integration Model with 5 Fundamental Model-element Types

Simple Model-Integration "Adopt"

- Adopt existing model-element types, if they are equivalent
- Add new diagrams (views)
- Adopt existing model-elements having the same title
- Add new statements
- Build new glossary of model-elements, sorted by fundamental type