Espaço Nulo, Linha e Coluna

Marcelo Dreux

Espaço Linha e Espaço Coluna

Seja A_{mxn} uma matriz real. O espaço linha de A é o subespaço de R^n gerado pelo conjunto de vetores das linhas de A. A dimensão do espaço linha de A é chamada de posto linha da matriz.

O espaço coluna de A é o subespaço de R^m gerado pelo conjunto de vetores das colunas de A. A dimensão do espaço coluna de A é chamada de posto coluna da matriz.

Espaço Linha e Espaço Coluna

O posto linha de A é igual ao posto coluna de A e, portanto, é usual usar simplesmente o termo posto de A, denotado por pos(A). Como consequência $pos(A) = pos(A^T)$.

O posto de uma matriz A é menor ou igual ao número de linhas de A e menor ou igual ao número de colunas de A.

Espaço Linha

As operações elementares com linhas não alteram o espaço linha de uma matriz.

O espaço linha de A é encontrado escalonando-se a matriz até sua forma reduzida. Os vetores não nulos geram o espaço linha e o número de linhas não nulas é o posto de A.

Exemplo

Achar o posto, o espaço linha e o espaço coluna

da matriz
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 7 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$

Espaço Nulo

O espaço nulo de A é o espaço gerado pelas soluções de Ax = 0. A dimensão do espaço nulo de A é chamada de nulidade de A, denotado por nul(A).

As operações elementares com linhas não alteram o espaço nulo de uma matriz.

Exemplo

Achar a nulidade e o espaço nulo de

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 7 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$

Relação entre Posto e Nulidade

Seja A_{mxn} então pos(A) + nul(A) = n.

Verificar no exemplo anterior.

Exercício

Considere a matriz M cuja forma escalonada reduzida por linhas é a matriz R abaixo e marque todas as alternativas corretas.

$$R = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 7 & 0 \\ 0 & 1 & 8 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- O espaço nulo de M tem dimensão 5
- oxdot O espaço nulo de $\emph{\textbf{M}}$ tem dimensão 6
- \square O espaço coluna de $\emph{\textbf{M}}$ tem dimensão 4
- O espaço linha de M tem dimensão 7
- lacksquare O espaço coluna de $m{M}$ tem dimensão 3
- O espaço linha de M tem dimensão 3
- \square O espaço nulo de $\emph{\textbf{M}}$ tem dimensão 4
- O espaço linha de M tem dimensão 4
- O espaço nulo de *M* tem dimensão 3

Exercício

$$r = \{t(-1, 2, 5) \mid t \in \mathbb{R}\}$$

$$W = \{(x, y, z) \in \mathbb{R}^3 \mid -x + 2y + 5z = 0\}$$

$$A = \begin{bmatrix} -1 & 2 & 5 \end{bmatrix}$$

- \square O espaço nulo de \emph{A} é \emph{r}
- \square O espaço linha de \emph{A} é \emph{r}
- \square O espaço nulo de $m{A}$ é $m{W}$
- \square O espaço linha de B é r
- \square O espaço linha de $\emph{\textbf{B}}$ é $\emph{\textbf{W}}$
- \square O espaço nulo de $\emph{\textbf{B}}$ é $\emph{\textbf{r}}$
- \square $W = r^{\perp}$
- $W^{\perp} = r$
- \square O espaço linha de \emph{A} é \emph{W}
- lacksquare O espaço nulo de $m{B}$ é $m{W}$

$$B = \begin{bmatrix} 0 & -5 & 2 \\ 5 & 0 & 1 \end{bmatrix}$$