Math 337 - Elementary Differential Equations Lecture Notes - Second Order Linear Equations

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

 $http://www-rohan.sdsu.edu/{\sim} jmahaffy$

Spring 2019

Outline

- 1 Introduction
 - Second Order Differential Equation
 - Dynamical system formulation
 - Classic Examples
- 2 Theory for 2^{nd} Order DEs
 - Existence and Uniqueness
 - Linear Operators and Superposition
 - Wronskian and Fundamental Set of Solutions
- 3 Linear Constant Coefficient DEs
 - Homogeneous Equations
 - Method of Undetermined Coefficients
 - Forced Vibrations

Introduction

Introduction

- Introduction to second order differential equations
- Linear Theory and Fundamental sets of solutions
- Homogeneous linear second order differential equations
- Nonhomogeneous linear second order differential equations
 - Method of undetermined coefficients
 - Variation of parameters
 - Reduction of order

Second Order DE

Second Order Differential Equation with an independent variable y, dependent variable t, and prescribed function, f:

$$y'' = f(t, y, y'),$$

- Often arises in physical problems, e.g., Newton's Law where force depends on acceleration
- Solution is a twice continuously differentiable function
- Initial value problem requires two initial conditions

$$y(t_0) = y_0$$
 and $y'(t_0) = y_1$

• Can develop Existence and Uniqueness conditions

Linear Second Order DE

Linear Second Order Differential Equation:

$$y'' + p(t)y' + q(t)y = g(t)$$

- Equation is **homogeneous** if g(t) = 0 for all t
- Otherwise, nonhomogeneous
- Equation is **constant coefficient** equation if written

$$ay'' + by' + cy = g(t),$$

(5/32)

where $a \neq 0$, b, and c are constants

Dynamical system formulation

Dynamical system formulation Suppose

$$y'' = f(t, y, y')$$

and introduce variables $x_1 = y$ and $x_2 = y'$

Obtain dynamical system

$$\dot{x}_1 = x_2
\dot{x}_2 = f(t, x_1, x_2)$$

The state variables are y and y', which have solutions producing trajectories or orbits in the phase plane

For movement of a particle, one can think of the DE governing the dynamics produces by Newton's Law of motion and the **phase plane orbits** show the **position** and **velocity** of the particle

Classic Examples

- Spring Problem with mass m position y(t), k spring constant, γ viscous damping, and external force F(t)
 - Unforced, undamped oscillator, my'' + ky = 0
 - Unforced, damped oscillator, $my'' + \gamma y' + ky = 0$
 - Forced, undamped oscillator, my'' + ky = F(t)
 - Forced, undamped oscillator, $my'' + \gamma y' + ky = F(t)$
- Pendulum Problem- mass m, drag c, length L, $\gamma = \frac{c}{mL}$, $\omega^2 = \frac{g}{L}$, angle $\theta(t)$
 - Nonlinear, $\theta'' + \gamma \theta' + \omega^2 \sin(\theta) = 0$
 - Linearized, $\theta'' + \gamma \theta' + \omega^2 \theta = 0$
- RLC Circuit
 - Let R be the resistance (ohms), C be capacitance (farads), L be inductance (henries), e(t) be impressed voltage
 - Kirchhoff's Law for q(t), charge on the capacitor

$$Lq'' + Rq' + \frac{q}{C} = e(t),$$

Existence and Uniqueness

Theorem (Existence and Uniqueness)

Let p(t), q(t), and g(t) be continuous on an open interval I, let $t_0 \in I$, and let y_0 and y_1 be given numbers. Then there exists a unique solution $y = \phi(t)$ of the 2^{nd} order differential equation:

$$y'' + p(t)y' + q(t)y = g(t),$$

that satisfies the initial conditions

$$y(t_0) = y_0$$
 and $y'(t_0) = y_1$.

This unique solution exists throughout the interval I.

Linear Operator

Theorem (Linear Differential Operator)

Let L satisfy L[y] = y'' + py' + qy, where p and q are continuous functions on an interval I. If y_1 and y_2 are twice continuously differentiable functions on I and c_1 and c_2 are constants, then

$$L[c_1y_1 + c_2y_2] = c_1L[y_1] + c_2L[y_2].$$

Proof uses linearity of differentiation.

Theorem (Principle of Superposition)

Let L[y] = y'' + py' + qy, where p and q are continuous functions on an interval I. If y_1 and y_2 are two solutions of L[y] = 0 (homogeneous equation), then the linear combination

$$y = c_1 y_1 + c_2 y_2$$

is also a solution for any constants c_1 and c_2 .

Wronskian

Wronskian: Consider the linear homogeneous 2^{nd} order DE

$$L[y] = y'' + p(t)y' + q(t)y = 0.$$

with p(t) and q(t) continuous on an interval I

Let y_1 and y_2 be solutions satisfying $L[y_i] = 0$ for i = 1, 2 and define the **Wronskian** by

$$W[y_1, y_2](t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix} = y_1(t)y'_2(t) - y'_1(t)y_2(t).$$

If $W[y_1, y_2](t) \neq 0$ on I, then the **general solution** of L[y] = 0 satisfies

$$y(t) = c_1 y_1(t) + c_2 y_2(t).$$

Fundamental Set of Solutions

Theorem

Let y_1 and y_2 be two solutions of

$$y'' + p(t)y' + q(t)y = 0,$$

and assume the Wronskian, $W[y_1, y_2](t) \neq 0$ on I. Then y_1 and y_2 form a **fundamental set of solutions**, and the general solution is given by

$$y(t) = c_1 y_1(t) + c_2 y_2(t).$$

where c_1 and c_2 are arbitrary constants. If there are given initial conditions, $y(t_0) = y_0$ and $y'(t_0) = y_1$ for some $t_0 \in I$, then these conditions determine c_1 and c_2 uniquely.

Homogeneous Equations

Homogeneous Equation: The general 2^{nd} order constant coefficient homogeneous differential equation is written:

$$ay'' + by' + cy = 0$$

This can be written as a system of 1^{st} order differential equations

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} = \begin{pmatrix} 0 & 1 \\ -c/a & -b/a \end{pmatrix} \mathbf{x},$$

where

$$\mathbf{x} = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} y \\ y' \end{array}\right)$$

This has a the general solution

$$\mathbf{x} = c_1 \begin{pmatrix} y_1 \\ y_1' \end{pmatrix} + c_2 \begin{pmatrix} y_2 \\ y_2' \end{pmatrix}$$

Homogeneous Equations

Characteristic Equation: Obtain characteristic equation by solving

$$\det |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} -\lambda & 1 \\ -c/a & -b/a - \lambda \end{vmatrix} = \frac{1}{a} \left(a\lambda^2 + b\lambda + c \right) = 0$$

Find eigenvectors by solving

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \begin{pmatrix} -\lambda & 1 \\ -c/a & -b/a - \lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

If λ is an eigenvalue, then it follows the corresponding eigenvector is

$$\mathbf{v} = \left(\begin{array}{c} 1 \\ \lambda \end{array}\right)$$

Then a solution is given by

$$\mathbf{x} = e^{\lambda t} \mathbf{v} = \begin{pmatrix} e^{\lambda t} \\ \lambda e^{\lambda t} \end{pmatrix} = \begin{pmatrix} y(t) \\ y'(t) \end{pmatrix}$$

Homogeneous Equations

Theorem

Let λ_1 and λ_2 be the roots of the **characteristic equation**

$$a\lambda^2 + b\lambda + c = 0.$$

Then the general solution of the homogeneous DE,

$$ay'' + by' + cy = 0,$$

satisfies

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$
 if $\lambda_1 \neq \lambda_2$ are real,

$$y(t) = c_1 e^{\lambda_1 t} + c_2 t e^{\lambda_1 t} \qquad if \lambda_1 = \lambda_2,$$

$$y(t) = c_1 e^{\mu t} \cos(\nu t) + c_2 e^{\mu t} \sin(\nu t)$$
 if $\lambda_{1,2} = \mu \pm i\nu$ are complex.

Homogeneous Equations - Example

Consider the IVP

$$y'' + 5y' + 6y = 0,$$
 $y(0) = 2,$ $y'(0) = 3.$

The **characteristic equation** is $\lambda^2 + 5\lambda + 6 = (\lambda + 3)(\lambda + 2) = 0$, so $\lambda = -3$ and $\lambda = -2$

The general solution is $y(t) = c_1 e^{-3t} + c_2 e^{-2t}$

From the initial conditions

$$y(0) = c_1 + c_2 = 2$$
 and $y'(0) = -3c_1 - 2c_2 = 3$

When solved simultaneously, gives $c_1 = -7$ and $c_2 = 9$, so

$$y(t) = 9e^{-2t} - 7e^{-3t}$$

This problem is the same as solving

$$\dot{\mathbf{x}} = \begin{pmatrix} 0 & 1 \\ -6 & -5 \end{pmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Nonhomogeneous Equations

Nonhomogeneous Equations: Consider the DE

$$L[y] = y'' + p(t)y' + q(t)y = g(t)$$

Theorem

Let y_1 and y_2 form a fundamental set of solutions to the **homogeneous equation**, L[y] = 0. Also, assume that Y_p is a **particular solution** to $L[Y_p] = g(t)$. Then the general solution to L[Y] = g(t) is given by:

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + Y_p(t).$$

Nonhomogeneous Equations

The previous theorem provides the basic solution strategy for 2^{nd} order nonhomogeneous differential equations

- Find the general solution $c_1y_1(t) + c_2y_2(t)$ of the homogeneous equation
 - This is sometimes called the **complementary solution** and often denoted $y_c(t)$ or $y_h(t)$
- Find any solution of the **nonhomogeneous DE**
 - This is usually called the **particular solution** and often denoted $y_p(t)$
- Add these solutions together for the **general solution**
- Two common methods for obtaining the particular solution
 - For common specific functions and constant coefficients for the DE, use the method of undetermined coefficients
 - More general method uses method of variation of parameters

Method of Undetermined Coefficients - Example 1: Consider the DE

$$y'' - 3y' - 4y = 3e^{2t}$$

The characteristic equation is $\lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4) = 0$, so the homogeneous solution is

$$y_c(t) = c_1 e^{-t} + c_2 e^{4t}$$

Neither solution matches the forcing function, so try

$$y_p(t) = Ae^{2t}$$

It follows that

$$4Ae^{2t} - 6Ae^{2t} - 4Ae^{2t} = -6Ae^{2t} = 3e^{2t}$$
 or $A = -\frac{1}{2}$

$$y(t) = c_1 e^{-t} + c_2 e^{4t} - \frac{1}{2} e^{2t}$$

Method of Undetermined Coefficients - Example 2: Consider

$$y'' - 3y' - 4y = 5\sin(t)$$

From before, the homogeneous solution is $y_c(t) = c_1 e^{-t} + c_2 e^{4t}$

Neither solution matches the forcing function, so try

$$y_p(t) = A\sin(t) + B\cos(t)$$
 so
 $y_p'(t) = A\cos(t) - B\sin(t)$ and $y_p''(t) = -A\sin(t) - B\cos(t)$

It follows that

$$(-A + 3B - 4A)\sin(t) + (-B - 3A - 4B)\cos(t) = 5\sin(t)$$

or
$$3A + 5B = 0$$
 and $3B - 5A = 5$ or $A = -\frac{25}{34}$ and $B = \frac{15}{34}$

$$y(t) = c_1 e^{-t} + c_2 e^{4t} + \frac{15}{34} \cos(t) - \frac{25}{34} \sin(t)$$

Method of Undetermined Coefficients - Example 3: Consider

$$y'' - 3y' - 4y = 2t^2 - 7$$

From before, the homogeneous solution is $y_c(t) = c_1 e^{-t} + c_2 e^{4t}$

Neither solution matches the forcing function, so try

$$y_p(t) = At^2 + Bt + C$$

It follows that

$$2A - 3(2At + B) - 4(At^{2} + Bt + C) = 2t^{2} - 7,$$

so matching coefficients gives -4A = 2, -6A - 4B = 0, and 2A - 3B - 4C = -7, which yields $A = -\frac{1}{2}$, $B = \frac{3}{4}$ and $C = \frac{15}{16}$

$$y(t) = c_1 e^{-t} + c_2 e^{4t} - \frac{t^2}{2} + \frac{3t}{4} + \frac{15}{16}$$

Superposition Principle: Suppose that $g(t) = g_1(t) + g_2(t)$. Also, assume that $y_{1p}(t)$ and $y_{2p}(t)$ are particular solutions of

$$ay'' + by' + cy = g_1(t)$$

 $ay'' + by' + cy = g_2(t)$,

respectively.

Then $y_{1n}(t) + y_{2n}(t)$ is a solution of

$$ay'' + by' + cy = g(t)$$

From our previous examples, the solution of

$$y'' - 3y' - 4y = 3e^{2t} + 5\sin(t) + 2t^2 - 7$$

satisfies

$$y(t) = c_1 e^{-t} + c_2 e^{4t} - \frac{1}{2} e^{2t} + \frac{15}{34} \cos(t) - \frac{25}{34} \sin(t) - \frac{t^2}{2} + \frac{3t}{4} + \frac{15}{16}$$

- (21/32)

Method of Undetermined Coefficients - Example 4: Consider

$$y'' - 3y' - 4y = 5e^{-t}$$

From before, the homogeneous solution is $y_c(t) = c_1 e^{-t} + c_2 e^{4t}$

Since the **forcing function** matches one of the solutions in $y_c(t)$, we attempt a particular solution of the form

$$y_p(t) = Ate^{-t},$$

SO

$$y_p'(t) = A(1-t)e^{-t}$$
 and $y_p''(t) = A(t-2)e^{-t}$

It follows that

$$(A(t-2) - 3A(1-t) - 4At)e^{-t} = -5Ae^{-t} = 5e^{-t},$$

Thus, A = -1

$$y(t) = c_1 e^{-t} + c_2 e^{4t} - t e^{-t}$$

Method of Undetermined Coefficients: Consider the problem

$$ay'' + by' + cy = g(t)$$

- First solve the homogeneous equation, which must have constant coefficients
- The nonhomogeneous function, g(t), must be in the class of functions with polynomials, exponentials, sines, cosines, and products of these functions
- $g(t) = g_1(t) + ... + g_n(t)$ is a sum the type of functions listed above
- Find particular solutions, $y_{ip}(t)$, for each $g_i(t)$
- General solution combines the homogeneous solution with all the particular solutions
- The arbitrary constants with the homogeneous solution are found to satisfy initial conditions for unique solution

Summary Table for Method of Undetermined Coefficients

The table below shows how to choose a particular solution

Particular solution for ay'' + by' + cy = g(t)

$$\frac{g(t)}{P_n(t) = a_n t^n + \dots + a_1 t + a_0} \qquad \frac{y_p(t)}{t^s (A_n t^n + \dots + A_1 t + A_0)}$$

$$P_n(t) e^{\alpha t} \qquad t^s (A_n t^n + \dots + A_1 t + A_0) e^{\alpha t}$$

$$P_n(t) e^{\alpha t} \begin{cases} \sin(\beta t) \\ \cos(\beta t) \end{cases} \qquad t^s \left[(A_n t^n + \dots + A_1 t + A_0) e^{\alpha t} \cos(\beta t) + (B_n t^n + \dots + B_1 t + B_0) e^{\alpha t} \sin(\beta t) \right]$$

Note: The s is the smallest integer (s = 0, 1, 2) that ensures no term in $y_p(t)$ is a solution of the homogeneous equation

Forced Vibrations

Forced Vibrations: The damped spring-mass system with an external force satisfies the equation:

$$my'' + \gamma y' + ky = F(t)$$

Example 1

- Assume a 2 kg mass and that a 4 N force is required to maintain the spring stretched 0.2 m
- Suppose that there is a damping coefficient of $\gamma = 4 \text{ kg/sec}$
- Assume that an external force, $F(t) = 0.5 \sin(4t)$ is applied to this spring-mass system
- The mass begins at rest, so y(0) = y'(0) = 0
- Set up and solve this system

Example 1: The first condition allows computation of the spring constant, k

Since a 4 N force is required to maintain the spring stretched 0.2 m,

$$k(0.2) = 4$$
 or $k = 20$

It follows that the damped spring-mass system described in this problem satisfies:

$$2y'' + 4y' + 20y = 0.5\sin(4t)$$

or equivalently

$$y'' + 2y' + 10y = 0.25\sin(4t)$$
, with $y(0) = y'(0) = 0$

Solution: Apply the Method of Undetermined Coefficients to

$$y'' + 2y' + 10y = 0.25\sin(4t)$$

The Homogeneous Solution:

The characteristic equation is $\lambda^2 + 2\lambda + 10 = 0$, which has solution $\lambda = -1 \pm 3i$, so the homogeneous solution is

$$y_c(t) = c_1 e^{-t} \cos(3t) + c_2 e^{-t} \sin(3t)$$

The Particular Solution:

Guess a solution of the form:

$$y_p(t) = A\cos(4t) + B\sin(4t)$$

Solution: Want $y_p'' + 2y_p' + 10y_p = 0.25\sin(4t)$, so with $y_p(t) = A\cos(4t) + B\sin(4t)$

$$-16A\cos(4t) - 16B\sin(4t) + 2(-4A\sin(4t) + 4B\cos(4t)) +10(A\cos(4t) + B\sin(4t)) = 0.25\sin(4t)$$

Equating the coefficients of the sine and cosine terms gives:

$$-6A + 8B = 0,$$

 $-8A - 6B = 0.25,$

which gives $A = -\frac{1}{50}$ and $B = -\frac{3}{200}$

The solution is

$$y(t) = e^{-t} \left(c_1 \cos(3t) + c_2 \sin(3t) \right) - \frac{1}{50} \cos(4t) - \frac{3}{200} \sin(4t)$$

Solution: With the solution

$$y(t) = e^{-t} \left(c_1 \cos(3t) + c_2 \sin(3t) \right) - \frac{1}{50} \cos(4t) - \frac{3}{200} \sin(4t),$$

we apply the initial conditions.

$$y(0) = 0 = c_1 - \frac{1}{50}$$
 or $c_1 = \frac{1}{50}$

$$y'(0) = 3c_2 - c_1 - \frac{3}{50} = 0$$
 or $c_2 = \frac{2}{75}$

The solution to this spring-mass problem is

$$y(t) = e^{-t} \left(\frac{1}{50} \cos(3t) + \frac{2}{75} \sin(3t) \right) - \frac{1}{50} \cos(4t) - \frac{3}{200} \sin(4t)$$

Frequency Response

Frequency Response: Rewrite the damped spring-mass system:

$$y'' + 2\delta y' + \omega_0^2 y = f(t),$$

with $\omega_0^2 = k/m$ and $\delta = \gamma/(2m)$

Example 2: Let $f(t) = K \cos(\omega t)$ and find a particular solution to this equation

Take

$$y_p(t) = A\cos(\omega t) + B\sin(\omega t)$$

Upon differentiation and collecting cosine terms, we have

$$-A\omega^2 + 2B\delta\omega + A\omega_0^2 = K$$

The sine terms satisfy

$$-B\omega^2 - 2A\delta\omega + B\omega_0^2 = 0$$

Frequency Response

Frequency Response: Coefficient from our Undetermined Coefficient method give the linear system

$$(\omega_0^2 - \omega^2)A + 2\delta\omega B = K,$$

$$-2\delta\omega A + (\omega_0^2 - \omega^2)B = 0.$$

This has the solution

$$A = \frac{K(\omega_0^2 - \omega^2)}{((\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2)} \quad \text{and} \quad B = \frac{2K\delta\omega}{((\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2)}$$

It follows that the **particular solution** is

$$y_p(t) = \frac{K\left[(\omega_0^2 - \omega^2)\cos(\omega t) + 2\delta\omega\sin(\omega t)\right]}{((\omega_0^2 - \omega^2)^2 + 4\delta^2\omega^2)}$$

Frequency Response

Frequency Response: The model

$$y'' + 2\delta y' + \omega_0^2 y = K\cos(\omega t),$$

has exponentially decaying solutions from the **homogeneous** solution.

Thus, the solution approaches the **particular solution**

$$y_p(t) = \frac{K\left[(\omega_0^2 - \omega^2)\cos(\omega t) + 2\delta\omega\sin(\omega t) \right]}{((\omega_0^2 - \omega^2)^2 + 4\delta^2\omega^2)}$$

This particular solution has a maximum response when $\omega = \omega_0$

Thus, tuning the forcing function to the natural frequency, ω_0 yields the maximum response

