Mata Kuliah : Teori Peluang Kode Mata Kuliah : CII2G3

Peubah Acak Diskret

Minggu ke-4

Learning Objectives

Setelah mempelajari bagian ini, mahasiswa diharapkan memiliki kemampuan sebagai berikut:

- → Menentukan nilai peluang dari fungsi peluang
- Menentukan peluang dari fungsi distribusi kumulatif, menentukan Fungsi Distribusi dari fungsi probabilitas, dan sebaliknya.
- → Menentukan mean dan variansi untuk variabel acak diskrit.
- → Mengerti asumsi-asumsi pada setiap variabel acak diskrit yang dipelajari.

Materi:

- Definisi Peubah Acak Univariat
- Fungsi Massa Peluang dan Fungsi Distribusi
- Nilai Ekspektasi (Mean), dan Variansi

Peubah Acak Univariat

Pembahasan:

- **o** Definisi
- Fungsi Peluang dan Fungsi Distribusi
- Ekspektasi dan Variansi
- **o** Bivariate

9/4/2022

Pengenalan & Klasifikasi Peubah Acak

Dalam banyak eksperimen, kita ingin memadankan nilai numerik pada setiap keluaran yang mungkin untuk memungkinkan analisa matematis dari eksperimen tersebut.

Untuk tujuan ini, diperkenalkan variabel acak.

Definisi.

Suatu variabel acak adalah fungsi dari ruang sampel dari suatu eksperimen ke himpunan bilangan real. D.P.L, variabel acak memadankan suatu bilangan real tertentu pada setiap keluaran yang mungkin.

Catatan.

- Variabel acak adalah fungsi, bukan variabel.
- Variabel acak tidak dilakukan secara acak, tetapi memetakan hasil eksperimen yang acak ke bilangan real secara terdefinisi dengan baik.

Definisi

Jika E adalah suatu eksperimen yang mempunyai Ruang Contoh S, dan X adalah suatu fungsi yang memadankan bilangan real $X_{(e)}$ pada tiap outcome dari S, maka X disebut **peubah acak**, sedangkan range spacenya, Rx subset dari gugus bilangan real.

RE: MENGUNCALKAN KOIN, TIGA KALI

S = { TTT, TTH, THT, HTT, HHT, HTH, THH, HHH }

Peubah X yang mencacah banyaknya " heads (H)" dalam RE seperti kondisi diatas :

$$X (TTT) = 0$$
 $X (THT) = 1$ $X (HHT) = 2$ $X (THH) = 2$ $X (TTH) = 1$ $X (HTT) = 1$ $X (HTH) = 2$ $X (HHH) = 3$

- Nilai fungsi disetiap sample point dinyatakan dengan lambang X(e)
- Himpunan nilai-nilai $\{ X(e) : e \in S \}$ disebut range/range space, diberi lambang RX pada contoh diatas RX = $\{ 0, 1, 2, 3 \}$
- Ini menunjukan salah satu dari contoh PAD. Dinamakan PAD, karena RX mengambil hargaharga bilangan bulat.

KLASIFIKASI PEUBAH ACAK

JIKA RANGE/RS FINITE ATAU COUNTABLE

JIKA RANGE/RS UNCOUNTABLE

8

DEFINISI

Jika S adalah ruang contoh dari suatu RE dan satu peubah acak X dengan daerah hasil R_x terdefinisi pada S. Selanjutnya jika kejadian A adalah suatu kejadian dalam S, dan B adalah kejadian dalam R_x, maka A dan B adalah kejadian yang ekivalen jika:

$$A = \{e \in S : X_{(e)} \in B\}$$

Jika A adalah kejadian dalam S, dan B adalah kejadian dalam RX dari peubah acak X, maka peluang B didefinisikan:

$$PX(B) = P(A) dimana$$

$$PX(B) = P(A) \text{ dimana}$$
 $A = \{e \in S : X_{(e)} \in B\}$

Fungsi Peluang (pmf)

Definisi:

Jika X adalah p.a.d., suatu nilai $P \times (xi) = P(X = xi)$ dimana xi adalah outcome dalam $R \times$ utk i = 1, 2, 3, ..., n. pX(xi) harus memenuhi :

(i)
$$p_X(x) \ge 0$$

$$(ii)\sum_{x\in R_X}p_X(x_i)=1$$

Fungsi $p_X(x)$ disebut fungsi massa peluang (fmp) / probability mass function (pmf)

f.m.p:

$$p_X(x_i) = P(X = x_i)$$
, $X_i \in R_X$

$$p_X(x_i) = P(X = x_i)$$
, $X_i \in R_X$
 $p_X(x_i) = 0$, $X_i \notin R_X$

Kumpulan pasangan

$$[(x_i,p_X(x_i)), i=1, 2, 3, ..., n]$$

disebut distribusi peluang dari X

FUNGSI DISTRIBUSI KUMULATIF (CDF)

 Fungsi distribusi kumulatif (cdf) F_X(x) dari peubah acak X didefinisikan sebagai peluang

dari kejadian $\{X \le x\}$ atau P $(X \le x)$

$$F_X(x) = P(X \le x) \text{ untuk } -\infty < X < +\infty$$

Kasus Diskret :
$$F(x) = P(X \le x)$$

= $\sum_{x_i \le x} p(x)$

Kasus Kontinu :
$$F(x) = P(X \le x)$$

$$F(x_0) = \int_{-\infty}^{x_0} f(x) d(x)$$

Fungsi distribusi kumulatif (cdf)

Sifat sifat cdf

$$0 \le F_X(x) \le 1$$

$$\lim_{x \to \infty} F_X(x) = 1$$

$$\lim_{x \to -\infty} F_X(x) = 0$$

$$F_X(a) \le F_X(b) \text{ if } a \le b$$

$$F_X(b) = \lim_{h \to 0} F_X(b+h) = F_X(b^+)$$

- Dalam sebuah kotak terdapat 6 kapasitor, 4
 diantaranya bernilai 0,1μF dan sisanya bernilai 1
 μF. Dari kotak tersebut diambil 2 kapasitor secara
 acak. Jika peubah acak X menyatakan banyaknya
 kapasitor yang bernilai 1μF yang terambil , maka
 tentukan :
 - a. Daerah hasilnya.
 - b. Fungsi massa peluang bagi X
 - c. Fungsi distribusi X

Jawab:

- 6 kapasitor: 4 buah 0.1µF, 2 buah 1µF
- $X = banyak kapasitor 1\mu F terambil$
- a. Daerah hasil, $R_X = \{0, 1, 2\}$
- b. Fungsi massa peluang:

$$p_X(x) = \begin{cases} \frac{\binom{2}{x}\binom{4}{2-x}}{\binom{6}{2}} & ; x = 0, 1, 2\\ 0 & ; x \text{ lainnya} \end{cases}$$
 atau

c. Fungsi distribusi:

X	0	1	2
p(x)	6/15	8/15	1/15
F(x)	6/15	14/15	1

→ diambil 2 kapasitor

X	0	1	2
p(x)	6/15	8/15	1/15

- 2. Dari sebuah kotak yang berisi 4 uang logam bernilai Rp.100 dan 2 uang logam bernilai Rp.50, akan diambil 3 uang logam sekaligus secara acak. Apabila T menyatakan jumlah (total) nilai dari 3 uang logam yang terambil, maka tentukan:
 - a. Daerah hasil untuk T
 - b. Fungsi massa peluang untuk T
 - c. Fungsi distribusi untuk T

- 3. Suatu pengiriman 7 pesawat TV yang berisi 2 TV cacat. Sebuah hotel membeli 3 TV secara acak dari kelompok tadi. Bila peubah acak X menyatakan banyak pesawat TV yang rusak yang dibeli hotel tersebut, maka tentukan :
 - a. Daerah hasil untuk X
 - b. Fungsi massa peluang bagi X, dan gambarkan grafiknya
 - c. Fungsi distribusi bagi X, dan gambarkan grafiknya

Mean

Notasi :
$$\mu = E(X)$$

- Lambang E disebut operator **Ekspektasi**
- Beberapa istilah ekspektasi: mean/rataan, nilai harapan matematika

$$E(X) = \sum x \, p(x)$$

- Sifat:
 - 1. E(k) = k
 - 2. E(kX) = k E(X); dengan k adalah konstanta
 - 3. E(a + bX) = a + b E(X); dengan a dan b adalah konstanta

Variansi

Notasi : Var(X) atau σ_X^2

$$Var(X) = \sigma_X^2 = E[(X - \mu_X)^2]$$
$$= \sum_{X} (X - \mu_X)^2 \ p(X) = E(X^2) - \mu_X^2$$

Sifat :

- 1. Var(k) = 0
- 2. $Var(kX) = k^2 Var(X)$; dengan k adalah konstanta
- 3. $Var(a + bX) = b^2 Var(X)$; dengan a dan b adalah konstanta

Contoh soal

I. X adalah peubah acak dengan $E[(X - I)^2] = I0$, dan $E[(X - 2)^2] = 6$, hitunglah μ dan σ^2

Jawab:

$$E[(X-1)^2] = 10 \qquad \Rightarrow E[X^2 - 2X + 1] = E(X^2) - 2E(X) + 1 = 10$$

$$E(X^2) - 2E(X) = 9 \qquad ...(1)$$

$$E[(X-2)^2] = 6 \qquad \Rightarrow E[X^2 - 4X + 4] = E(X^2) - 4E(X) + 4 = 6$$

$$E(X^2) - 4E(X) = 2 \qquad ...(2)$$

(1) & (2):
$$E(X^2) - 2E(X) = 9$$

$$E(X^2) - 4E(X) = 2$$

$$2E(X) = 7$$

$$E(X) = \mu = 7/2$$

Contoh soal

$$E(X^2) - 2E(X) = 9$$
 ...(1)

$$E(X) = \mu = 7/2$$
 \Rightarrow $E(X^2) = 2E(X) + 9 = 2(7/2) + 9 = 16$

$$Var(X) = E(X^2) - \mu_X^2 = 16 - \left(\frac{7}{2}\right)^2 = 16 - \frac{49}{4} = \frac{15}{4}$$

Contoh soal

2. Diketahui X adalah peubah acak diskret dengan fungsi peluang:

X	0	1	2
p(x)	6/15	8/15	1/15

Tentukan : E(2X - 2) dan Var(3X)

Jawab:
$$E(X) = \sum x \, p(x) = 0 \left(\frac{6}{15}\right) + 1 \left(\frac{8}{15}\right) + 2 \left(\frac{1}{15}\right) = \frac{10}{15} = \frac{2}{3}$$

$$E(X^2) = \sum x^2 \, p(x) = 0^2 \left(\frac{6}{15}\right) + 1^2 \left(\frac{8}{15}\right) + 2^2 \left(\frac{1}{15}\right) = \frac{12}{15} = \frac{4}{5}$$

$$Var(X) = E(X^2) - \mu_X^2 = \frac{4}{5} - \left(\frac{2}{3}\right)^2 = \frac{4}{5} - \frac{4}{9} = \frac{16}{54} = \frac{8}{27}$$

$$E(2X - 2) = 2E(X) - 2 = 2\left(\frac{2}{3}\right) - 2 = -\frac{2}{3}$$

Peubah acak (variabel random) X mempunyai fungsi padat peluang (p.d.f.) :

$$f_X(x) = \begin{cases} 2x & \text{; } 0 \le x \le 1\\ 0 & \text{; } untuk \ x \ lainnya \end{cases}$$

Tentukan:

a. E(X) dan Var(X)

$$E(X) = \int_{-\infty}^{\infty} x \ f(x) \ dx = \int_{0}^{1} x \ 2x \ dx = \int_{0}^{1} 2x^{2} \ dx = \frac{2}{3}x^{3} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \frac{2}{3}$$

$$E(X) = \int_{-\infty}^{\infty} x \ f(x) \ dx = \int_{0}^{1} x \ 2x \ dx = \int_{0}^{1} 2x^{2} \ dx = \frac{2}{3}x^{3} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \frac{2}{3}$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{1} x^{2} 2x dx = \int_{0}^{1} 2x^{3} dx = \frac{1}{2}x^{4} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \frac{1}{2}$$

$$Var(X) = E(X^2) - \mu_X^2 = E(X^2) - [E(X)]^2 = \frac{1}{2} - \left(\frac{2}{3}\right)^2 = \frac{1}{2} - \frac{4}{9} = \frac{1}{18}$$

Soal latihan

- 1. Sebuah tas berisi 10 buah USB yang terdiri dari 4 USB yang isinya tentang pemrograman dan 6 USB yang isinya tentang manajemen bisnis. Seseorang mengambil 3 USB secara acak dari tas tsb. Jika variable random X didefiniskan sebagai banyaknya USB yang isinya tentang pemrograman, maka tentukan:
 - a. $P(1 < X \leq 3)$

_0

_0

_0

-0

_0

_0

_0

-0 -0 -0

-0 -0

_0

-0

_0

- b. Fungsi Distribusinya
- c. Var(2X+3)
- 2. Di sebuah lantai produksi dilakukan inspeksi terhadap produk yang cacat. Pemeriksaan dilakukan dengan mengambil sampel secara acak 5 buah produk di lantai produksi. Jika variable random X didefiniskan sebagai banyaknya produk yang cacat, maka tentukan :
 - a. $P(1 \le X \le 4)$
 - b. Fungsi Distribusinya
 - c. E(2X+3)

I. Misalkan X adalah peubah acak diskret dengan fmp:

$$p(x) = \begin{cases} \frac{1}{4}, & x = 0, 1\\ \frac{1}{8}, & x = 2, 4\\ k, & x = 5\\ 0, & x \text{ lainnya} \end{cases}$$

- a. Hitung nilai k
- b. Tentukan F(x)
- c. Hitung nilai:

d. E(X) dan Var(X)

2. Misalkan X adalah peubah acak diskret dengan fmp:

$$p(x) = \begin{cases} c(6-x), & x = -2, -1, 0, 1, 2 \\ 0, & x \text{ lainnya} \end{cases}$$

- a. Hitung nilai c
- b. Tentukan F(x), dan gambarkan grafiknya
- c. Hitung nilai : P(X>1), $P(1<X\le5)$, $P(1\le X\le5)$, $P(1\le X\le5)$, P(1<X<5)
- d. Hitung : E(X), $E(X^2)$, $E(X^2 5)$, dan Var(2X)

Diketahui Fungsi Distribusi peubah acak diskret X adalah:

F(x) =
$$\begin{cases} 0, x < -2 \\ \frac{1}{2}, -2 \le x < 2 \\ \frac{3}{5}, 2 \le x < 4 \\ \frac{8}{9}, 4 \le x < 6 \\ 1, x \ge 6 \end{cases}$$
Hitung a. Fur b. Ni c. Ni P(2) d. E(X)

Hitunglah:

- a. Fungsi massa peluang bagi X
- b. Nilai P(X>2)
- c. Nilai $P(2 \le X \le 6)$, $P(2 \le X \le 6)$, $P(2 \le X \le 6), P(2 \le X \le 6)$
- d. E(X), dan E(3X 2)

4. Diketahui Fungsi Distribusi peubah acak diskret X adalah :

$$F(x) = \begin{cases} 0, & x < -1 \\ 0, & 2, -1 \le x < 0 \\ 0, & 5, 0 \le x < 1 \\ 0, & 1 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

Hitunglah:

- a. Fungsi massa peluang bagi X
- b. Nilai P(X>I)
- c. Nilai $P(0 \le X < 3), P(0 < X \le 3), P(0 \le X \le 3), P(0 \le X \le 3)$
- d. E(X), dan Var(X)

5. Misal X adalah peubah acak diskret yang menyatakan jumlah barang cacat dalam suatu proses produksi dengan fungsi massa peluang :

X	0	I	2	3	4
p(x)	0.41	0.37	0.16	5k	k

Tentukan:

- a. Nilai k
- b. Fungsi distribusinya, kemudian gambarkan grafiknya
- c. $P(1 < X \le 3)$
- d. E(X), dan Var(X)
- e. Var(2X I)