Cvičenie č. 3 Dátum:

Matice Typy matíc. Operácie s maticami. Hodnosť matice

Teoretický rámec

Definícia (*Matica*). Nech $m, n \in N$ a $a_{ii}, i = 1, 2, ..., m, j = 1, 2, ..., n \in R$, potom tabul'ka (schéma)

čísel a_{ij} usporiadaná do m riadkov a n stĺpcov $\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$ sa nazýva \pmb{matica} .

Čísla $a_{ij} \in R$ sa nazývajú *prvky matice*. Matice označujeme veľkými tučnými písmenami napr. **A** a zapisujeme $\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$, kde i = 1, 2, ..., m, j = 1, 2, ..., n.

Niektoré typy matíc			
Riadková/stĺpcová matica	je riadkový, resp. stĺp. vektor $[a_{ij}]_{1\times n}$, resp. $[a_{ij}]_{m\times 1}$		
	je matica $\left[a_{ij}\right]_{m \times n}$, ak $m \neq n$, napr.:		
Obdĺžniková matica	$\begin{pmatrix} -1 & 5 & 1 & 7 \end{pmatrix}$		
	$\mathbf{A} = \begin{pmatrix} -1 & 5 & 1 & 7 \\ 0 & 2 & 6 & 0 \\ 4 & 0 & 3 & 5 \end{pmatrix}_{3 \times 4}$		
Transponovaná matica	je matica $\mathbf{A}^{\mathrm{T}} = \begin{bmatrix} a_{ji} \end{bmatrix}_{n \times m}$, ak $\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$		
Opačná matica	je matica $-\mathbf{A} = \begin{bmatrix} -a_{ij} \end{bmatrix}_{m \times n}$, ak $\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$		
	je matica $\left[a_{ij}\right]_{m\times n}$, ktorej všetky prvky = 0, teda $\left[0\right]_{m\times n}$,		
Nulová matica	napr.: $0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{2 \times 3}$		
	je matica $\left[a_{ij}\right]_{m \times n}$, ak $m = n$, teda $\left[a_{ij}\right]_{n \times n}$, napr.:		
Štvorcová matica <i>n</i> -tého stupňa	(2, 1 5)		
	$\mathbf{A} = \begin{pmatrix} 2 & 1 & 5 \\ -1 & Q & 2 \\ 3 & 4 & 1 \end{pmatrix}$		
hlavná diagonála	$(3 \ 4 \ 1)_{3\times 3}$		
	je štvorcová matica s prvkami na hlavnej diagonále = 1,		
Jednotková matica \mathbf{E}_n	napr.:		
	$\mathbf{E} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$		
	$\mathbf{E}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$		
	(0 0 1)		

Operácie s maticami

Definícia (*Rovnost' matíc*). Matice $\mathbf{A}_{m \times n}$ a $\mathbf{B}_{k \times l}$ sa *rovnajú* \Leftrightarrow m = k a n = l a $a_{ij} = b_{ij}, \forall i = 1, 2, ..., m, j = 1, 2, ..., n$. Píšeme $\mathbf{A} = \mathbf{B}$.

Definícia (*Súčet matíc*). Nech $\mathbf{A} = [a_{ij}]_{m \times n}$, $\mathbf{B} = [b_{ij}]_{m \times n}$. Potom matica $\mathbf{C} = [c_{ij}]_{m \times n}$ s prvkami $c_{ij} = a_{ij} + b_{ij}$ sa nazýva *súčet matíc* $\mathbf{A} + \mathbf{B}$. Píšeme $\mathbf{C} = \mathbf{A} + \mathbf{B}$.

Definícia (α-násobok matice). Nech $\mathbf{A} = [a_{ij}]_{m \times n}$, $\alpha \in R$. Potom matica $\mathbf{B} = [b_{ij}]_{m \times n}$ sa nazýva α-násobok matice $\mathbf{A} \Leftrightarrow \text{ak } b_{ij} = \alpha \cdot a_{ij}$, i = 1, 2, ..., m, j = 1, 2, ..., n. Píšeme $\mathbf{B} = \alpha \cdot \mathbf{A}$.

Definícia (*Súčin matíc*). Nech $\mathbf{A} = [a_{ij}]_{m \times n}$, $\mathbf{B} = [b_{ij}]_{m \times n}$. Potom matica $\mathbf{C}_{m \times n} = \mathbf{A}_{m \times p} \cdot \mathbf{B}_{p \times n}$ sa nazýva *súčin matíc* \mathbf{A} , \mathbf{B} , v tomto poradí, kde matica $\mathbf{C} = [c_{ij}]_{m \times n}$ má prvky $c_{ij} = \sum_{k=1}^p a_{ik} \ b_{kj}, i = 1, 2, ..., m, j = 1, 2, ..., n$. Súčin matíc \mathbf{A} , \mathbf{B} v danom poradí označujeme $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$. Teda:

- 1. Typ matice $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$ je jednoznačne určený počtom riadkov matice \mathbf{A} a počtom stĺpcov matice \mathbf{B} .
- 2. Súčin matíc **A** a **B** $\exists \Leftrightarrow$ ak počet stĺpcov matice **A** sa rovná počtu riadkov matice **B**.
- 3. Pre súčin matíc *neplatí vo všeobecnosti komutatívnost*'. Navyše, ak existuje súčin $\mathbf{A} \cdot \mathbf{B}$, súčin $\mathbf{B} \cdot \mathbf{A}$ nemusí existovat'.

	$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$	$\mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}$
Poznámka.	$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$	$\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$
	$\mathbf{A} + 0 = \mathbf{A}$	$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$
Nech A, B, C sú vhodné ma-	$\mathbf{A} + (-\mathbf{A}) = 0$	$\mathbf{A}(\alpha \mathbf{B}) = \alpha (\mathbf{A}\mathbf{B})$
tice pre operácie súčtu a súčinu; α , $\beta \in R$. Potom pre súčet a násobenie matíc platí:	$(\alpha\beta)\mathbf{A} = \alpha(\beta\mathbf{A})$	$(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$
	$1\mathbf{A} = \mathbf{A}$	$(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$
	$\alpha(\mathbf{A} + \mathbf{B}) = \alpha\mathbf{A} + \alpha\mathbf{B}$	$(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$
	$(\alpha + \beta)\mathbf{A} = \alpha\mathbf{A} + \beta\mathbf{A}$	$(\mathbf{A}\mathbf{D})^{-} = \mathbf{D}^{-}\mathbf{A}^{-}$

Definícia (*Hodnost' matice*). Nech je daná matica $\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ a nech $S(\mathbf{A})$ a $R(\mathbf{A})$ sú stĺpcový a riadkový priestor matice \mathbf{A} . Dimenzia dim $S(\mathbf{A})$ sa nazýva stĺpcová hodnosť matice \mathbf{A} , zapisujeme dim $S(\mathbf{A}) = h_s(\mathbf{A})$. Dimenzia dim $R(\mathbf{A})$ sa nazýva riadková hodnosť matice \mathbf{A} , zapisujeme dim $R(\mathbf{A}) = h_r(\mathbf{A})$. Platí vzťah $h(\mathbf{A}) = h_r(\mathbf{A}) = h_s(\mathbf{A})$.

Poznámka. Platí, že $h(\mathbf{A}) = h(\mathbf{A}^{\mathrm{T}})$.

Pri určovaní hodnosti matice **A** stačí určiť stĺpcovú (riadkovú) hodnosť matice, t.j. maximálny počet lineárne nezávislých stĺpcových (riadkových) vektorov matice **A**. Hodnosť matice budeme ďalej určovať len použitím **elementárnej zmeny bázy**.

Príklady na riešenie

Príklad 1.

Dané sú matice
$$\mathbf{F} = \begin{pmatrix} 1 & 0 & 1 & -3 \\ 0 & -2 & 2 & 0 \\ 4 & 2 & -1 & 3 \end{pmatrix}$$
, $\mathbf{G} = \begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & 0 & 1 & 4 \\ 1 & -2 & 3 & -2 \end{pmatrix}$. Určte maticu:

- a) A, ktorá je α -násobkom matice F, ak $\alpha = 2$,
- b) B, ktorá je súčtom matíc F, G,
- c) \mathbf{C} , ktorá je lineárnou kombináciou v tvare $3 \cdot \mathbf{F}^T 2 \cdot \mathbf{G}^T$,
- d) opačnú k matici G,
- e) **E**₄.

Príklad 2.

Nech sú dané matice
$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -2 & 1 \\ 4 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 1 & 3 \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \end{pmatrix}.$$

Určte tieto súčiny matíc, ak daný súčin existuje: $\mathbf{B} \cdot \mathbf{C}$, $\mathbf{C} \cdot \mathbf{B}$, $\mathbf{D} \cdot \mathbf{C}$, $\mathbf{C} \cdot \mathbf{D}$. Jednotlivé výsledky porovnajte.

Príklad 3.

Je daná matica
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 1 & 0 & 1 & -1 \\ 1 & 4 & -2 & 3 \\ -1 & -3 & 1 & -2 \end{pmatrix}$$
. Určte metódou EZB hodnosť matice \mathbf{A} .

Poznámka. Vektory zaveďte do bázy v prirodzenom poradí.

Báza	Σ

Príklad 4.

Je daná matica $\mathbf{D} = \begin{pmatrix} 2 & -6 & 1 \\ -1 & 15 & 0 \\ 2 & \alpha & 2 \end{pmatrix}$. Určte metódou EZB hodnosť matice \mathbf{D} v závislosti od hodno-

ty parametra α , $\alpha \in R$.

Báza	Σ

Príklad 5.

Nech sú dané matice $\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 3 & 5 \\ 1 & 1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 & 0 & 9 & -2 \\ 0 & 1 & -5 & 1 \end{pmatrix}$, $\mathbf{D} = \begin{pmatrix} 7 & -3 & 4 & 13 \\ 14 & 2 & 88 & 14 \\ 2 & 3 & 5 & 1 \\ 3 & 0 & 9 & 7 \end{pmatrix}$.

Určte:

a) súčet matíc $\mathbf{B} + \mathbf{C}$

b) súčet matíc $\mathbf{E} + \mathbf{D}$

c) či súčin matíc: $\mathbf{B} \cdot \mathbf{C}$, $\mathbf{D} \cdot \mathbf{C}$ a $\mathbf{D} \cdot \mathbf{C}^{\mathrm{T}}$ existuje

d) maticu $\mathbf{F} = 10 \cdot \mathbf{E}_2$

e) maticu $\mathbf{G} = \mathbf{E} \cdot \mathbf{D}$