重庆大学《计算机组成原理》课程试

A卷 B卷

2015 — 2016 学年 第一学期

开课学院: 计算机学院 课程号: _____ 考试日期: _

考试方式: ○开卷 ⑥闭卷 ○其他

考试时间: _____分钟

题 号	1	11	111	四	五	六	七	八	九	+	总分
得 分											

考试提示

1.严禁随身携带通讯工具等电子设备参加考试;

2.考试作弊,留校察看,毕业当年不授学位;请人代考、替他人考试、两次及以上作弊等,属严重作弊,开除学籍。

一、(20分)选择题(每小题2分)

- 1. 假定处理器时钟频率为每秒 2GHz, 其对应的 CPI 为 4, 如果一个程序执行的时间为 20 秒, 那么执行该程序的时钟周期和指令数分别是()。
 - A. 40, 20G
 - B. 40G, 10G
 - C. 20G, 10G
 - D. 15G, 30G
- 2. 有关提高吞吐率和响应时间描述正确的是()
 - A. 更换更高速的处理器只能提高响应时间
 - B. 系统中增加处理器可以提高响应时间
 - C. 更换更高速的处理器可以同时提高响应时间和吞吐率

	D. 系统中增加处理器不能提高系统的吞吐率
3.	下列选项中,能引起外部中断的事件是() A. 键盘输入 B. 除数为 0 C. 浮点运算下溢
	D. 访存缺页
1.	A. MIPS 指令可一次性取出 32 位的立即数 B. 其条件跳转指令跳转的范围大约为指令前后越 1M 字节 C. 其无条件跳转指令的跳转范围为指令前后范围的 4GB 字节
	D. 其指令的长度为固定长度,均为32位长度的指令
5.	下列寄存器中,程序员可以使用的是() 。 A. 存储器的地址寄存器(MAR) B. 指令寄存器(IR)
	C. 存储器的数据寄存器(MDR)
	D. 通用寄存器
3.	
	A. 其完全由硬件来管理
	B. 只需要操作系统软件管理
	C. 需要硬件和软件协同完成
	D. 需要由应用软件来管理
7.	DMA 的电路中有程序中断部件,其作用是()
	A. 通知 CPU 传输结束
	B. 向 CPU 提出总线使用权
	C. 实现数据传送
	D. 发中断请求
3.	> + + + - + - + + + + + + + + + + + + +
	A. 外部设备发出中断后,中断服务程序可立即执行
	B. 外部设备发出中断后,一定会中断当前执行的程序
	C. 中断方式一般用于处理随机出现的服务请求
	D. 程序查询方式相对中断方式, CPU 利用率更高

)时, X > -1/2 成立。

9. 设[X]补=1.x1x2x3x4,当满足(

A. x1 必须为 1, x2x3x4 至少有一个为 1

- B. x1 必须为 1, x2x3x4 任意
- C. x1 必须为 0, x2x3x4 至少有一个为 1
- D. x1 必须为 0, x2x3x4 任意
- 10. 在主存和 CPU 之间增加 cache 存储器的目的是()
 - A. 增加内存容量
- B. 提高内存可靠性
- C. 解决 CPU 和主存之间的速度匹配问题
- D. 增加内存容量,同时加快存取速度

二、 简答题(30分,每小题6分)

1. 请简要分析算法、编程语言和编译器、指令系统以及处理器对计算机系统性能的影响。

2. 请以 IEEE 754 浮点数为例说明计算机中浮点数的加法运算不满足结合率律,并举例说明。

3. 请简要 Cache 中写直达法(Write Through)和写回法(Write Back) 的优缺点 4. 请简要分析 Cache 的容量、块的大小以及相联性对 Cache 性能的影响。

5、请简述单重中断系统的处理过程。

三、 计算题(30分,每小题10分)

- 1. 计算二进制浮点数加法; $1.000_2 \times 2^{-1} + (-1.110_2 \times 2^{-2})$,请结合 MIPS 计算机进行浮点数加法的主要步骤,给出详细的计算步骤,结果不需要 转换成 IEEE754 标准浮点数。(6分)
- 2) IEEE754 标准中对单精度浮点数用 32 个 bits 来表示, 其中最高位为浮点数的符号位, 指数域为 8 位宽, 尾数域 23 位宽, 表示方式如下图所示:

Bit	Bit	Bit
31	$30 \sim 23$	22~ 0
Sign	指数域 8 bits	尾数域 23 bits

请将 1.000₂ × 2⁻¹表示为 IEEE754 标准中的单精度浮点数形式 (4分)

2. 某总线在一个总线周期中并行传送 2 个字节的数据,假设一个总线周期等于一个总线时钟周期,总线时钟频率为 33MHz。请问: 1) 该总线带宽是多少? 2) 如果一个总线周期中并行传送 64 位数据,总线时钟频率升为 100MHz,则总线带宽是多少?

- 3. 计算机的字长为 32 位,假设主存的最大容量为 8MB, Cache 中数据容量 为 64KB,内存与 Cache 交换数据块的大小为 16 个字节,若按照采用直接映射方式。请问:
- 1) Cache 划分为多少块?每个块中包含多少个字
- 2) 使用物理地址访问 Cache 时,物理地址应划分成哪几个字段?要求说明每个字段的位数及在物理地址中的位置。
- 3) 请计算 Cache 总的容量有多大(需要考虑有效位和标记位)

四、 综合分析题(20分)

如下图所示的一个支持 MIPS32 指令集的单周期的模型机,其数据总线和地址总线均为 32 位,其中 Registers 为 32 个 32 位的通用寄存器的寄存器堆,可以同时读出两个寄存器值,当 RegWrite=1 时进行寄存器的写入操作; Data Memory 为数据存储器; Instruction Memory 为指令存储器; PC为程序计数器; ALU 为运算器; Control 为控制器; MUX 为多路选择器; ADD部件为加法器; Sign-extend 为符号扩展电路; Shift Left 为左移电路; ALU control 为算术运算控制电路。

MIPS32 中 R-type 加法指令 ADD rd, rs, rt, 实现将寄存器 rs 和 rt 求和 后存放在寄存器 rd 中, 指令的格式为:

条件跳转指令Beqrs, rt, address, 实现rs和rt比较, 如果相同则跳转到PC+address*4处开始执行。

Beq	4	rs	rt	address		
	31:26	25:21	20:16	15:0		

假设各个部件的时延为:

指令存储器: 400ps;加法器: 100ps;多路选择器 30ps;ALU 运算器: 120ps; 寄存器堆: 200ps;数据存储器: 350ps; 控制器 100ps。假设其它部件的时 延忽略不计。请完成:

- 1) 描述 R-type 加法执行过程并计算该指令执行时间;
- 2) 描述 Beq 指令执行过程并计算该指令执行时间;