Regression Assumptions, Diagnostics, and Fraud Detection

Regression Assumptions, Diagnostics, and Fraud Detection, Part I

There are several assumptions of linear regression.

- 1. The relationships are linear
- 2. The X variables (explanatory variables) are not correlated
- 3. Distribution of residuals
 - a. The error terms have constant variance.
 - b. The errors terms are not correlated.
 - c. There are no outliers.

Regression Assumptions, Diagnostics, and Fraud Detection, Part II

Violations

- Nonlinearity
- Multicollinearity
- Heteroscedasticity
- Serial correlation
- Outliers

Test

- RESET
- Variance inflation factor (VIF)
- Breusch-Pagan
- Durbin-Watson
- Bonferroni

Regression Assumptions, Diagnostics, and Fraud Detection, Part III

Violations

- Nonlinearity
- Multicollinearity
- Heteroscedasticity
- Serial correlation
- Outliers

Correction

- Box-Cox and Box-Tidwell
- Factor analysis
- Huber regression
- Prais-Winsten
- Drop outlier

Regression Assumptions, Diagnostics, and Fraud Detection

Regression Linearity Test

R: Regression Linearity Test

- Problem: data is nonlinear
- Test: RESET
- Correction: Box-Cox and Box-Tidwell

R: Regression Linearity Test

Collinearity Test

R: Collinearity Test

- Problem: X-variables are correlated
- Test: variance inflation factor (VIF)
- Correction: factor analysis

R: Collinearity Test

Heteroscedasticity Test

R: Heteroscedasticity

- Problem: magnitude of residuals changes as X changes (nonconstant variance)
- Test: Breusch-Pagan
- Correction: Huber regression

Heteroscedastic Residuals

R: Heteroscedasticity

Serial Correlation Test (Durbin-Watson)

R: Serial Correlation

- Problem: error terms are correlated
- Test: Durbin-Watson
- Correction: Prais-Winsten, Cochrane-Orcutt, ARCH, rhodifferencing

R: Serial Correlation

Outlier Test

R: Outliers

- Problem: outliers are data points far from the line, artificially influencing the slope
- Test: Bonferroni
- Correction: drop outliers

R: Outliers

Data Mining Using Rattle

R: Data Mining Using Rattle

Rattle is a data mining package in R which can create summary statistics including:

 Quartiles across multiple variables simultaneously

R: Data Mining Using Rattle

Benford's Law

R: Benford's Law

- Benford's law states that financial numbers tend to start with smaller digits.
- Deviations from this distribution are often a signal of fraud.
- Benford's law can detect fraud in expense reports, accounts receivable, accounts payable, financial statements, and income tax returns.

First digit	Frequency
1	30.1%
2	17.6%
3	12.5%
4	9.7%
5	7.9%
6	6.7%
7	5.8%
8	5.1%
9	4.6%

R: Benford's Law

- Deviations from Benford's distribution can signal fraud.
- The graph on the right shows the first digit of income on tax returns
- Group 1 returns were found to be fraudulent; group 0 were not fraudulent

R: Benford's Law