Orthogonal sets and orthogonal matrices

4433LALG3: Linear Algebra

Week 2, Lecture 8, Valente Ramírez

Mathematical & Statistical Methods group — Biometris, Wageningen University & Research

Overview

- Orthogonal and orthonormal sets
- Orthogonal matrices
- Supplementary material

References:

■ Nicholson §5.3 and §8.1 (only the subsection *Projections*)

Section 1

Orthogonal and orthonormal sets

Introduction

Suppose we are in \mathbb{R}^2 . We have seen that if $\{b_1, b_2\}$ is linearly independent, then it constitutes a basis for \mathbb{R}^2 :

Any vector \mathbf{x} can be uniquely be expressed as: $\mathbf{x} = \alpha \mathbf{b}_1 + \beta \mathbf{b}_2$.

However, decomposing x in terms of b_1, b_2 is not always intuitive.

Notice: $\mathbf{x} \neq \operatorname{proj}_{\mathbf{b}_1} \mathbf{x} + \operatorname{proj}_{\mathbf{b}_2} \mathbf{x}$.

Introduction

A very special case is when the vectors b_1, b_2 are **orthogonal**.

Notice: $\mathbf{x} = \operatorname{proj}_{\mathbf{b}_1} \mathbf{x} + \operatorname{proj}_{\mathbf{b}_2} \mathbf{x}$.

Orthogonal and orthonormal sets

Definition

A set of vectors $\{\mathbf{f}_1, \dots, \mathbf{f}_k\}$ in \mathbb{R}^n is called an **orthogonal set** if:

- \bullet $\mathbf{f}_i \neq \mathbf{0}$ for all $i = 1, \dots, k$,

Moreover, an orthogonal set is called orthonormal if it also satisfies:

$$\blacksquare \|\mathbf{f}_i\| = 1 \text{ for all } i = 1, \dots, k.$$

A common way of expressing that a set is orthonormal is by writing:

$$\mathbf{f}_i^{\top} \mathbf{f}_j = \delta_{ij},$$

where δ_{ij} is the *Kronecker delta* function.

Some important facts

Definition

We say that a set $\{\mathbf{f}_1, \dots, \mathbf{f}_k\}$ is an **orthogonal basis** for a subspace U of \mathbb{R}^n whenever the set is an orthogonal set and it is also a basis for U.

Theorem

- 1. Any orthogonal set $\{\mathbf{f}_1, \dots, \mathbf{f}_k\}$ in \mathbb{R}^n is linearly independent.
- 2. Any subspace U of \mathbb{R}^n has an orthogonal basis.
- 3. Any orthogonal set in \mathbb{R}^n of size n is an orthogonal basis for \mathbb{R}^n .

In the above definition and theorem, all instances of 'orthogonal' could be replaced by 'orthonormal' and the results remain valid.

Expansion theorem

Here we formalize our claim on slide 4.

Theorem

Let $\{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_k\}$ be an orthogonal basis of a subspace U of \mathbb{R}^n .

Let y be an arbitrary vector in \mathbb{R}^n . Then:

$$\operatorname{proj}_{U} \mathbf{y} = \operatorname{proj}_{\mathbf{f}_{1}} \mathbf{y} + \operatorname{proj}_{\mathbf{f}_{2}} \mathbf{y} + \ldots + \operatorname{proj}_{\mathbf{f}_{k}} \mathbf{y}.$$

In particular, 1 if \mathbf{x} is a vector in U, then:

$$\mathbf{x} = \operatorname{proj}_{\mathbf{f}_1} \mathbf{x} + \operatorname{proj}_{\mathbf{f}_2} \mathbf{x} + \ldots + \operatorname{proj}_{\mathbf{f}_h} \mathbf{x}.$$

¹This part is the *expansion theorem* in Nicholson (Theorem 5.3.6). You can recover his formula by using the following fact from last lecture: $\operatorname{proj}_{\mathbf{f}} \mathbf{x} = \frac{\mathbf{f}^{\top} \mathbf{x}}{\|\mathbf{f}\|^2} \mathbf{f}$.

The orthonormal case

We will focus on the case of an orthonormal set $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$.

From last lecture, we know that if \mathbf{u} is of unit length, then:

$$\operatorname{proj}_{\mathbf{u}} \mathbf{x} = (\mathbf{u}^{\top} \mathbf{x}) \, \mathbf{u}.$$

We conclude that:

$$\operatorname{proj}_{U} \mathbf{y} = (\mathbf{u}_{1}^{\top} \mathbf{y}) \mathbf{u}_{1} + \ldots + (\mathbf{u}_{k}^{\top} \mathbf{y}) \mathbf{u}_{k}.$$

The orthonormal case

We now re-write the last formula using matrix notation.

So far, we have been treating $\mathbf{u}_i^{\top}\mathbf{y}$ as a scalar (because it is). But we can also think of it as a 1 × 1 matrix

If we want to multiply it against the $n \times 1$ vector \mathbf{u}_i , we need to do the multiplication from the right:

$$\operatorname{proj}_{U} \mathbf{y} = (\mathbf{u}_{1}^{\top} \mathbf{y}) \mathbf{u}_{1} + \ldots + (\mathbf{u}_{k}^{\top} \mathbf{y}) \mathbf{u}_{k}$$
$$= \mathbf{u}_{1}(\mathbf{u}_{1}^{\top} \mathbf{y}) + \ldots + \mathbf{u}_{k}(\mathbf{u}_{k}^{\top} \mathbf{y})$$
$$= (\mathbf{u}_{1} \mathbf{u}_{1}^{\top}) \mathbf{y} + \ldots + (\mathbf{u}_{k} \mathbf{u}_{k}^{\top}) \mathbf{y}$$

We conclude the following:

Useful facts

Let P be the matrix associated to the orthogonal projection onto U, and for $i=1,\ldots,k$, let P_i be the matrix associated to projection onto \mathbf{u}_i .

$$P = P_1 + \ldots + P_k,$$

$$P_i = \mathbf{u}_i \mathbf{u}_i^\top.$$

Section 2

Orthogonal matrices

Orthogonal matrices 正效時

An important situation is when we have an orthonormal basis for \mathbb{R}^n . In this case, it is usual to arrange the vectors into an $n \times n$ matrix.

Definition

An $n \times n$ matrix P is called an **orthogonal matrix** whenever the columns of P form an orthonormal set.

标准正交

Warning

The columns of an orthogonal matrix are required to be orthonormal, not just orthogonal!

Orthogonal matrices

Properties

Suppose P is an $n \times n$ orthogonal matrix. Then the following hold:

- $\blacksquare P^{\top}$ is also orthogonal
 - ullet In particular, the **rows** of P also from an orthonormal set
- - ullet In particular, P is invertible
- $P^{-1} = P^{\top}$

Distortion

Usually, linear transformations distort both length and angles.

No distortion

Suppose T is a transformation that does not distort lengths nor angles. 2 Vectors

What can we say about the columns of the associated matrix A?

- Because $\mathbf{a}_i = T(\mathbf{e}_i)$, we have $\|\mathbf{a}_i\| = \|\mathbf{e}_i\| = 1$.
- Because $\mathbf{e}_i, \mathbf{e}_j$ are orthogonal for $i \neq j$, so are $\mathbf{a}_i, \mathbf{a}_j$.

Conclusion:

The matrix A is orthogonal.

Orthogonal transformations

A linear transformation is called **orthogonal** (or sometimes *an isometry*) if it is represented by an orthogonal matrix.

Orthogonal transformations are precisely those linear transformations that **do not distort** angles and distances.

Indeed, computing the dot product before or after applying the transformation gives the same result.

If P is an orthogonal matrix:

$$(P\mathbf{v})^{\top}(P\mathbf{w}) = (\mathbf{v}^{\top}P^{\top})(P\mathbf{w})$$
$$= \mathbf{v}^{\top}(P^{\top}P)\mathbf{w}$$
$$= \mathbf{v}^{\top}I_{n}\mathbf{w}$$
$$= \mathbf{v}^{\top}\mathbf{w}$$

Section 3

Supplementary material

Rotations in \mathbb{R}^2

Example

A (counter-clockwise) rotation about the origin with angle φ preserves the length of any vector, and the angle between any two vectors.

Therefore, the associated matrix P must be orthogonal.

With some trigonometry, it is easy to derive that:

$$P = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}.$$

Exercise:

Verify that the columns of ${\cal P}$ form an orthonormal set, and compute the determinant

Reflections in \mathbb{R}^2

Example

Suppose ℓ is the line through the origin forming an angle φ with the x-axis. The reflection in the line ℓ defines a linear transformation which preserves the length of any vector, and the angle between any two vectors (disregarding orientation). Therefore, the associated matrix Q must be orthogonal.

With some trigonometry, it is easy to derive that:

$$Q = \begin{bmatrix} \cos(2\varphi) & \sin(2\varphi) \\ \sin(2\varphi) & -\cos(2\varphi) \end{bmatrix}.$$

Exercise:

Verify that the columns of ${\cal Q}$ form an orthonormal set, and compute the determinant

Orthogonal matrices

The product of two orthogonal matrices is also orthogonal.

The simplest examples of orthogonal matrices are *rotations* and *reflections*. Therefore, also the composition of such transformations results in an orthogonal transformation.

Exercise:

Consider $P=\begin{bmatrix}0&1\\-1&0\end{bmatrix}$, which represents a 90° rotation clockwise, and $Q=\begin{bmatrix}-1&0\\0&1\end{bmatrix}$, which represents reflection in the y-axis.

Compute the matrix associated to the transformation " 90° rotation clockwise followed by reflection in the y-axis", and verify that this is an orthogonal matrix.

Is this a rotation or a reflection?