

ROVER

Archivo: Main Bodyy

Mass properties of Main Bodyy

Configuration: Standard

Coordinate system: Coordinate System1

Mass = 3.2015 kilograms

Volume = 0.0016 cubic meters

Surface area = 0.8676 square meters

Center of mass: (meters)

X = -0.0012

Y = -0.0226

Z = 0.0618

Principal axes of inertia and principal moments of inertia: (kilograms * square meters) Taken at the center of mass.

Ix = (0.0177, -0.9828, 0.1838)	Px = 0.0465
ly = (0.9995, 0.0125, -0.0293)	Py = 0.0860
Iz = (0.0265, 0.1843, 0.9825)	Pz = 0.1013

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

Lxx = 0.0860	Lxy = -0.0008	Lxz = -0.0003
Lyx = -0.0008	Lyy = 0.0483	Lyz = -0.0099
Lzx = -0.0003	Lzv = -0.0099	Lzz = 0.0994

Moments of inertia: (kilograms * square meters)

Taken at the output coordinate system.

Ixx = 0.0999	lxy = -0.0007	Ixz = -0.0005
lyx = -0.0007	lyy = 0.0606	lyz = -0.0144
Izx = -0.0005	Izy = -0.0144	Izz = 0.1011

Archivo: Rocker

Mass properties of Rocker Configuration: Standard

Coordinate system: Coordinate System1

Mass = 0.377 kilograms

Volume = 0.0003 cubic meters

Surface area = 0.1121 square meters

Center of mass: (meters)

X = 0.0426

Y = -0.0588

Z = -0.026

Distancias al origen del main body

Distance: 181.96mm

Delta X: 156.20mm Delta Y: 55.70mm

Delta Z: 74.90mm

Principal axes of inertia and principal moments of inertia: (kilograms * square meters) Taken at the center of mass.

Ix = (0.1634, -0.9861, 0.0311) Px = 0.0003 Iy = (0.414, 0.0399, -0.9094) Py = 0.0078 Iz = (0.8955, 0.1615, 0.4147) Pz = 0.008

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

Moments of inertia: (kilograms * square meters)

Taken at the output coordinate system.

Archivo: Boogie_pivot

Distance: 209.33mm Delta X: 180.90mm Delta Y: 5.93mm Delta Z: 105.17mm

Mass properties of Bogie_pivot
Configuration: Standard

Coordinate system: Coordinate System1

Mass = 0.4016 kilograms

Volume = 0.0003 cubic meters

Surface area = 0.13 square meters

Center of mass: (meters)

X = 0.0467

Y = 0.0106

Z = -0.0186

Principal axes of inertia and principal moments of inertia: (kilograms * square meters)

Taken at the center of mass.

 $\begin{aligned} & \text{Ix} = (\ 0.0553,\ -0.9114,\ -0.4077) & \text{Px} = \ 0.0004 \\ & \text{Iy} = (\ 0.8293,\ 0.2693,\ -0.4896) & \text{Py} = \ 0.0058 \\ & \text{Iz} = (\ 0.5561,\ -0.311,\ 0.7708) & \text{Pz} = \ 0.006 \end{aligned}$

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

Moments of inertia: (kilograms * square meters)

Taken at the output coordinate system.

|xx| = 0.0061 |xy| = 0 |xz| = -0.0006 |yx| = 0 |yy| = 0.0024 |yz| = 0.002|zx| = -0.0006 |zy| = 0.002 |zz| = 0.006

Archivo: Drive Module steerable

Distance: 399.33mm Delta X: 258.58mm Delta Y: 104.15mm

Delta Z: 285.92mm

Distance: 376.58mm Delta X: 258.09mm Delta Y: 104.12mm

Delta Z: 253.71mm

1

Mass properties of MirrorDrive Module_steerable

Configuration: Standard Coordinate system: Coordinate System1

Mass = 0.1932 kilograms

Volume = 0.0002 cubic meters

Surface area = 0.0525 square meters

Center of mass: (meters)

X = -0.0392

Y = -0.0273

Z = 0.0416

Principal axes of inertia and principal moments of inertia: (kilograms * square meters) Taken at the center of mass.

Ix = (-0.0078, -0.5596, 0.8287)	Px = 0.0037
ly = (0.0209, 0.8285, 0.5596)	Py = 0.0075
Iz = (-0.9998, 0.0217, 0.0052)	Pz = 0.0102

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

Moments of inertia: (kilograms * square meters)

Taken at the output coordinate system.

Ixx = 0.0107	lxy = 0.0003	Ixz = -0.0003
lyx = 0.0003	lyy = 0.0070	lyz = -0.0020
Izx = -0.0003	Izv = -0.0020	Izz = 0.0054

Distance: 406.64mm Delta X: 269.58mm Delta Y: 104.18mm

Delta Y: 104.18mm Delta Z: 286.06mm

Distance: 316.44mm Delta X: 299.40mm Delta Y: 102.42mm Delta Z: 1.79mm

2

Distance: 384.21mm

Delta X: 269.09mm Delta Y: 104.12mm Delta Z: 253.71mm 3

Dolla 2. 200.7 11111

Distance: 384.21mm Delta X: 269.09mm Delta Y: 104.12mm Delta Z: 253.71mm

Distance: 316.44mm Delta X: 299.40mm Delta Y: 102.42mm Delta Z: 1.79mm

Distance: 406.64mm

Delta X: 269.58mm

Delta Y: 104.18mm Delta Z: 286.06mm

Mass properties of Wheel Configuration: Standard

Coordinate system: Coordinate System1

Density = 1020 kilograms per cubic meter

Archivo: Wheel

Mass = 0.11466772 kilograms

Volume = 0.00011242 cubic meters

Surface area = 0.12789658 square meters

Center of mass: (meters)

X = -0.0283157

Y = 0

Z = -0.00034779

Principal axes of inertia and principal moments of inertia: (kilograms * square meters) Taken at the center of mass.

 $\begin{aligned} & \text{Ix} = (-0.01104094, -0.4440118, \ 0.89595291) & \text{Px} = 0.0002563 \\ & \text{Iy} = (\ 0.00542147, -0.89602094, -0.4439787) & \text{Py} = 0.00025631 \\ & \text{Iz} = (\ 0.99992435, -4.456e-05, \ 0.01230011) & \text{Pz} = 0.00032224 \end{aligned}$

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

Moments of inertia: (kilograms * square meters)

Taken at the output coordinate system.

lxx = 0.00032225 lxy = 0 lxz = 3.2e-07 lyx = 0 lyz = 0 lzx = 3.2e-07 lzx = 3.2e-07 lzy = 0 lzz = 0.00034825

Archivo: MirrorRocker

Distance: 181.96mm Delta X: 156.20mm

Delta Y: 55.70mm Delta Z: 74.90mm

Mass properties of MirrorRocker Configuration: Standard

Coordinate system: Coordinate System1

Mass = 0.3770 kilograms

Volume = 0.0003 cubic meters

Surface area = 0.1121 square meters

Center of mass: (meters)

X = 0.0646

Y = 0.0913

Z = -0.0405

Principal axes of inertia and principal moments of inertia: (kilograms * square meters)

Taken at the center of mass.

 $\begin{array}{lll} Ix = (-0.9743, \, -0.1228, \, \, 0.1887) & Px = 0.0161 \\ Iy = (-0.1565, \, -0.2328, \, -0.9599) & Py = 0.0258 \\ Iz = (\, 0.1617, \, -0.9648, \, \, 0.2076) & Pz = 0.0342 \\ \end{array}$

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

Moments of inertia: (kilograms * square meters)

Taken at the output coordinate system.

Archivo: MirrorBogie_pivot

Distance: 209.33mm

Delta X: 180.90mm Delta Y: 5.93mm

Delta Z: 105.17mm

Mass properties of MirrorBogie_pivot

Configuration: Standard

Coordinate system: Coordinate System1

 $Mass = 0.4016 \ kilograms$

Volume = 0.0003 cubic meters

Surface area = 0.13 square meters

Center of mass: (meters)

X = -0.0106

Y = -0.0467

Z = -0.0186

Principal axes of inertia and principal moments of inertia: (kilograms * square meters)

Taken at the center of mass.

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

Lxx = 0.0014 Lxy = -0.0002 Lxz = -0.002 Lyz = 0.0002 Lyz = 0.0002 Lzx = -0.002 Lzz = 0.0002 Lzz = 0.0051

Moments of inertia: (kilograms * square meters)

Taken at the output coordinate system.

Archivo: MirrorDrive Module_steerable

Mass properties of MirrorDrive Module_steerable

Configuration: Standard

Coordinate system: Coordinate System1

Distance: 376.58mm

Delta X: 258.09mm Delta Y: 104.12mm

Delta Z: 253.71mm

3

Mass = 0.1932 kilograms

Volume = 0.0002 cubic meters

Surface area = 0.0525 square meters

Distance: 399.33mm

Delta X: 258.58mm Delta Y: 104.15mm

Delta Z: 285.92mm

Center of mass: (meters)

X = -0.0002

Y = -0.039

Z = 0.0437

Principal axes of inertia and principal moments of inertia: (kilograms * square meters) Taken at the center of mass.

Ix = (0.0168, -0.8358,	0.5489)	Px = 0.0001
ly = (-0.0153, 0.5487,	0.8359)	Py = 0.0003
Iz = (-0.9997, -0.0224,	-0.0035)	Pz = 0.0004

Moments of inertia: (kilograms * square meters)

Taken at the center of mass and aligned with the output coordinate system.

Lxx = 0.0004	Lxy = 0	Lxz = 0
Lyx = 0	Lyy = 0.0002	Lyz = -0.0001
Lzx = 0	Lzy = -0.0001	Lzz = 0.0003

Moments of inertia: (kilograms * square meters)

Taken at the output coordinate system.

Ixx = 0.001	lxy = 0	Ixz = 0
lyx = 0	lyy = 0.0005	lyz = -0.0004
Izx = 0	Izy = -0.0004	Izz = 0.0005