Yakeen NEET 2.0 2026

Motion in a Plane

Assignment-04 By: M.R. Sir

- 1. Angular velocity of minute hand of a clock is:
 - (1) $\frac{2\pi}{1800}$ rad/s
- (3) $\frac{\pi}{1800}$ rad/s (4) $\frac{\pi}{30}$ rad/s
- 2. An object moving in a circular path at constant speed has constant
 - (1) Energy
- (2) Velocity
- (3) Acceleration
- (4) Displacement
- 3. The angle between velocity vector and acceleration vector in uniform circular motion is:
 - (1) 0°
- $(2) 180^{\circ}$
- (3) 90°
- (4) 45°
- Two cyclists cycle along circular tracks of radii R_1 4. and R_2 at uniform rates. If both of them take same time to complete one revolution, then their angular speeds are in the ratio
 - (1) $R_1: R_2$
- (2) $R_2: R$
- (3) 1:1
- (4) $R_1R_2:1$
- 5. Centripetal acceleration of a cyclist completing acceleration of a cyclist completing 7 rounds in a minute along a circular track of radius 5m with a constant speed, is
 - (1) 2.7 m/s^2
- (2) 4 m/s^2
- (3) 3.78 m/s^2 (4) 6 m/s^2
- 6. A body is moving on a circle of radius 80 m with a speed 20 m/s which is decreasing at the rate 5 m/s? at an instant. The angle made by its acceleration with its velocity is
 - (1) 45°
- (2) 90°
- (3) 135°
- $(4) 0^{\circ}$

- A car is moving at a speed of 40 m/s on a circular track of radius 400 m. The speed is increasing at the rate of 3 m/s. The acceleration of car is
 - (1) 4 m/s^2
- (2) 7 m/s^2
- (3) 5 m/s^2 (4) 3 m/s^2
- A car is going round a circle of radius R_1 with constant speed. Another car is going round a circle of radius R_2 with constant speed. If both of them take same time to complete the circles, the ratio of their angular speeds and linear speeds will be
 - (1) $\sqrt{\frac{R_1}{R_2}}, \frac{R_1}{R_2}$ (2) 1, 1
 - (3) $1, \frac{R_1}{R_2}$ (4) $\frac{R_1}{R_2}$
- 9. If θ is angle between the velocity and acceleration of a particle moving on a circular path with decreasing speed, then
 - (1) $\theta = 90^{\circ}$
- (2) $0^{\circ} < \theta < 90^{\circ}$
- (3) $90^{\circ} < \theta < 180^{\circ}$ (4) $0^{\circ} \le \theta \le 180^{\circ}$
- **10.** The distance of a particle moving on a circle of radius 12 m measured from a fixed point on the circle and measured along the circle is given by $s = 2t^3$ (in meters). The ratio of its tangential to centripetal acceleration at t = 2 sec.
 - (1) 4:1
- (2) 1:2
- (3) 2:1
- (4) 3:1
- 11. A motor car is travelling at 30 m/sec on a circular road of radius 500 m. It is increasing its speed at the rate of 2.0 ms⁻². The total acceleration is:
 - (1) 1.8 ms^{-2} (2) 2 ms^{-2}
 - (3) 3.8 ms^{-2} (4) 2.7 ms^{-2}

In the given figure, $a = 15 \text{ m s}^{-2}$ represents the total 12. acceleration of a particle moving in the clockwise direction in a circle of radius R = 2.5 m at a given instant of time. The speed of the particle is

- (1) 4.5 m s^{-1}
- (2) 5.0 m s^{-1}
- (3) 5.7 m s^{-1}
- (4) 6.2 m s^{-1}
- 13. A car moves on a circular path such that its speed is given by v = Kt, where K = constant and t is time. Also given: radius of the circular path is r. The net acceleration of the car at time t will be
 - (1) $\sqrt{K^2 + \left(\frac{K^2 t^2}{r}\right)^2}$ (2) 2K

- (3) K
- (4) $\sqrt{K^2 + K^2 t^2}$
- If the equation for the displacement of a particle 14. moving on a circular path is given by $(\theta) = 2t^3 + 0.5$, where θ is in radians and t in seconds, then the angular velocity of the particle after 2s from its start is:
 - (1) 8 rad/s
- (2) 12 rad/s
- (3) 24 rad/s
- (4) 36 rad/s
- 15. In uniform circular motion acceleration is:
 - (1) Constant
- (2) Variable
- A particles is moving in a circle of radius r having 16. centre at O, with a constant speed v. The magnitude of change in velocity in moving from A to B is

- (1) 2v
- (2) 0
- (4) v

- 17. A body revolves with constant speed v in a circular path of radius r. The magnitude of its average acceleration during motion between two points in diametrically opposite direction is

- 18. The position vector of a particle \vec{R} as a function of time is given by $\vec{R} = 4\sin(2\pi t)\hat{i} + 4\cos(2\pi t)\hat{j}$, where R is in meters, t is in seconds and \hat{i} and \hat{j} denote unit vectors along x-and y-directions, respectively. Which one of the following statements is wrong for the motion of particle?
 - (1) Path of the particle is a circle of radius 4 m
 - (2) Acceleration vector of along $-\vec{R}$
 - (3) Magnitude of acceleration vector is v^2/R , where v is the velocity of particle
 - (4) Magnitude of the velocity of particle is 8 meter/second
- 19. A particle moves so that its position vector is given by $\vec{r} = \cos \omega t \, \hat{x} + \sin \omega t \, \hat{y}$, where ω is a constant. Which of the following is true?
 - (1) Velocity is perpendicular to \vec{r} and acceleration is directed away from the origin.
 - (2) Velocity and acceleration both the perpendicular to \vec{r}
 - (3) Velocity and acceleration both are parallel to \vec{r} .
 - (4) Velocity is perpendicular to \vec{r} and acceleration is directed towards the origin.
- 20. A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity of the particle, the motion of the particle takes place in a plane. It follows that:
 - (1) Its velocity is constant
 - (2) Its acceleration is constant
 - (3) Its kinetic energy is constant
 - (4) It moves in a straight line

21. A music CD of 'Bajirao Mastani' is rotating clockwise (as shown). After turning it off, the CD slows down. Assuming it has not come to a stop yet, the direction of acceleration at point P is:

- **22.** A particle is moving around a circular path with uniform angular speed (ω) . The radius of the circular path is r. The acceleration of the particle is:
 - $(1) \quad \frac{\omega^2}{r}$
- (2) $\frac{\omega}{r}$
- (3) $v\omega$
- (4) vr
- 23. A particle moves in a circle of radius 5 cm with constant speed and time period 0.2π s. The acceleration of the particle is
 - (1) 15 m/s^2
- (2) 25 m/s^2
- (3) 36 m/s^2
- (4) 5 m/s^2
- 24. A stone tied to the end of a string of 1 m long is whirled in a horizontal circle with a constant speed. If the stone makes 22 revolutions in 44 seconds, what is the magnitude and direction of acceleration of the stone?
 - (1) π^2 m s⁻² and direction along the radius towards the centre
 - (2) π^2 m s⁻² and direction along the radius away from the centre
 - (3) π^2 m s⁻² and direction along the tangent to the circle
 - (4) $\pi^2/4$ m s⁻² and direction along the radius towards the centre

- **25.** The angular speed of a flywheel making 120 revolutions/minute is
 - (1) $4\pi \text{ rad/s}$
- (2) $4\pi^2 \text{ rad/s}$
- (3) $\pi \text{ rad/s}$
- (4) $2\pi \text{ rad/s}$
- 26. A particle of mass 10g moves along a circle of radius 6.4 cm with a constant tangential acceleration. What is the magnitude of this acceleration, if the kinetic energy of the particle becomes equal to 8×10^{-4} J by the end of the second revolution after the beginning of the motion?
 - (1) 0.15 m/s^2
- (2) 0.18 m/s^2
- (3) 0.2 m/s^2
- (4) 0.1 m/s^2
- 27. The radius vector of a particle moving on a circle is given by $\vec{r} = A\cos Bt \ \hat{i} + A\sin Bt \ \hat{j}$ (A and B are constants). The radius of the circle and speed of the particle, respectively, are
 - (1) A, AB
- (2) A, A^2/B
- (3) B, AB
- (4) B, A^2/B
- **28.** A particle starts moving on a circular path from rest, such that its tangential acceleration varies with time as $a_t = kt$. Distance traveled by particle on the circular path in time t is
 - $(1) \quad \frac{kt^3}{3}$
- $(2) \quad \frac{kt^2}{6}$
- $(3) \quad \frac{kt^3}{6}$
- $(4) \quad \frac{kt^2}{2}$

A	NS	W	ER	K	$\mathbf{E}\mathbf{V}$

1.	(2)

- 2. (1)
- 3. (3)
- 4. (3)
- **5.** (1)
- 6. (3)
- 7. (3)
- 8. (2)
- 9. (2)
- 10. (2)
- 11. (4)
- 12. (3)
- 13. (1)
- 14. (3)

- 15. (2)
- 16. (4)
- 17. (3)
- 18. (4)
- 19. (4)
- 20. (3)
- 21. (4)
- 22. (3)
- 23. (4)
- 24. (1)
- **25.** (1)
- 26. (4)
- 27. (3)
- 28. (3)

