1)

i.

$$B \setminus \bigcup_{i \in \mathbb{I}} A_i = \bigcap_{i \in \mathbb{I}} (B \setminus A_i)$$

Proof. \subseteq) Sabemos $x \in B$ y $x \notin \bigcup_{i \in \mathbb{I}} A_i$

Luego $x \in B$ y $x \notin \bigcup A_i \quad \forall i \in \mathbb{I}$

Entonces $x \in B \setminus A_i \quad \forall i \in \mathbb{I}$

 $\Rightarrow x \in \bigcap B \setminus A_i$

 \supseteq) Sabemos $x \in B \setminus A_i \quad \forall i \in \mathbb{I}$

Luego para cada $i \in \mathbb{I}$ sabemos $x \in B$ y $x \notin A_i$

 $\Rightarrow x \in B \setminus \bigcup A_i$

ii.

$$B \setminus \bigcap_{i \in \mathbb{I}} A_i = \bigcup_{i \in \mathbb{I}} (B \setminus A_i)$$

Proof. \subseteq) Sabemos $x \in B$ y $x \notin \bigcap A_i$

Luego existe algún $i \in \mathbb{I}$ tal que $x \notin A_i$ (quizas para todos los $i \in I$ sucede que $x \notin A_i$ pero con uno alcanza)

Entonces existe algún $i \in \mathbb{I}$ tal que $x \in B$ y $x \notin A_i \Rightarrow B \setminus A_i$

 $\Rightarrow x \in \bigcup (B \setminus A_i)$

 \supseteq) Tenemos $x \in B \setminus A_i$ para algún $i \in \mathbb{I}$

Luego $x \in B$ y $x \not\in A_i$ para algún $i \in \mathbb{I}$

Entonces $x \in B$ y $x \notin \bigcap A_i \quad \forall i \in \mathbb{I}$

 $\Rightarrow x \in B \setminus \bigcap A_i$

iii.

$$\bigcup_{i\in\mathbb{I}}(A_i\cap B)=B\cap(\bigcup_{i\in\mathbb{I}}A_i)$$

Proof. \subseteq) Tenemos $x \in A_i \cap B$ para algún $i \in \mathbb{I}$

Luego $x \in B$ y $x \in A_i$ para algún $i \in \mathbb{I} \Rightarrow x \in \bigcup A_i$

Entonces $x \in B$ y $x \in \bigcup A_i$

 $\Rightarrow x \in B \cap (\bigcup A_i)$