# Analysis of Algorithms & Big-O

CS16: Introduction to Algorithms & Data Structures
Spring 2019

#### Outline

- Running time
- Big-O
- ightharpoonup Big- $\Omega$  and Big- $\Theta$



# What is an "Efficient" Algorithm

- Possible efficiency measures
  - Total amount of time on a stopwatch?
  - Low memory usage?
  - Low power consumption?
  - Network usage?
- In CS16 we will focus on running time

How should we measure running time?

### A Simple Algorithm

```
function sum_array(array)
  // Input: an array of 100 integers
  // Output: the sum of the integers
  if array.length = 0
    return error
  sum = 0
  for i in [0, array.length-1]:
    sum = sum + array[i]
  return sum
```

How do we measure its running time?

### Measuring Running Time

- Experimentally?
  - Implement algorithm
  - Run algorithm on inputs of different size
  - Measure time it takes to finish
  - Plot the results



: Was that useful?

#### Experimental Running Time

- How large should the array be in the experiment?
- Which array should we use (i.e., which ints)?
- Which hardware should we run on?
- Which operating system?
- Which compiler should we use?
- Which compiler flags?
- **)** ...



# Measuring Running Time



- We need a measure that is
  - independent of hardware
  - independent of OS
  - independent of compiler
  - **)**
- It should depend only on
  - "intrinsic properties of the algorithm"

What is the *intrinsic* running time of an algorithm?

#### A Simple Algorithm

```
function sum_array(array)
   // Input: an array of integers
   // Output: the sum of the integers
   if array.length = 0
      return error
   sum = 0
   for i in [0, array.length-1]:
      sum = sum + array[i]
   return sum
```

#### Knuth's Observation

- Experimental running time can be determined using
  - Time of each operation & frequency of each operation
- Example:
  - run sum array on array of size 100

```
time(sum_array) = time(read)·100 + time(add)·99 + time(comp)·1
= 3ms·100 + 100ms·99 + 10ms·1
= 10.21s
```

#### Key insight!

- the time an operation takes depends on hardware but...
- the number of times an operation is repeated does not depend on hardware
- So let's ignore time and only focus on number of times an operation is repeated



#### Knuth's Observation

- How do we ignore time?
  - we'll assume each operation takes 1 unit of time
- Example:
  - sum\_array on array of size 100

- Let's simplify and just report total number of operations
  - time(sum\_array) = 200 ops

#### Elementary Operations

- Most algorithms make use of standard "elementary" operations:
  - Math: +, -, \*, /, max, min, log, sin, cos, abs, ...
  - Comparisons: ==,>,<,≤,≥</p>
  - Variable assignment
  - Variable increment or decrement
  - Array allocation
  - Creating a new object
  - Function calls and value returns
  - Careful: an object's constructor & function calls may have elementary ops too!
- In practice all these operations take different amounts of time but
  - we will assume each operation takes 1 unit of time

### What is Running Time?

"Running time"

Ξ

Number of elementary operations

Running time # Experimental time

#### Towards Algorithmic Running Time

- Problem #1
  - experimental running time depends on hardware
  - solution: focus on number of operations

# A Simple Algorithm

```
function sum_array(array)
   // Input: an array of integers
   // Output: the sum of the integers
   if array.length = 0 ←
                                                            1op
      return error ◀
                                                   1op
                                                 1op
   sum = 0
                                                            1op
   for i in [0, array.length-1]: ←
                                                          per loop
     sum = sum + array[i]
                                                           3ops
    return sum
                                                    1op
                                                          per loop
```

- ▶ Do we count "return error"?
  - depends on whether input array is empty
  - if array is empty then sum\_array takes 2 ops
  - ▶ if array is not empty then sum\_array takes 3+4·n ops

#### Towards Algorithmic Running Time

- ▶ Problem #1
  - experimental running time depends on hardware
  - solution: focus on number of operations
- Problem #2
  - number of operations depends on input
  - solution: focus on number of operations for worst-case input

## A Simple Algorithm

```
function sum_array(array)
   // Input: an array of integers
   // Output: the sum of the integers
   if array.length = 0 ←
                                                             1op
      return error ◀
                                                    1op
   sum = 0
                                                  1op
                                                             1op
   for i in [0, array.length-1]: ←
                                                           per loop
     sum = sum + array[i] ____
                                                             3ops
    return sum
                                                     1op
                                                           per loop
```

- What is the worst-case input for our algorithm?
  - any array that is non-empty
  - so we'll just ignore "return error"

### What is Running Time?

Worst-case running time =

Number of elementary operations on worst-case input

## A Simple Algorithm

```
function sum_array(array)
   // Input: an array of integers
   // Output: the sum of the integers
   if array.length = 0 ←
                                                            1op
      return error
                                                    1op
   sum = 0
                                                             1op
   for i in [0, array.length-1]: ←
                                                           per loop
     sum = sum + array[i] ____
                                                            3ops
    return sum
                                                     1op
                                                           per loop
```

- How many times does loop execute?
  - depends on size of input array

#### Towards an Algorithmic Running Time

#### ▶ Problem #1

- experimental running time depends on hardware
- solution: focus on number of operations (Knuth's observation)

#### Problem #2

- number of operations depends on input
- > solution: focus on number of operations on worst-case input! Why?

#### ▶ Problem #3

- number of operations depends on input size
- solution: focus on number of operations as a function of input size
   n.

## A Simple Algorithm

- How many times does loop execute?
  - depends on size of input array
  - sum\_array takes 3+4·n ops

## What is Running Time?

Worst-case running time =

T(n): Number of elementary operations on worst-case input as a function of input size n

# Constant Running Time

- How many operations are executed?
  - T(n)=2 ops
  - What if array has 100 elements?
  - What if array has 100,000 elements?

#### key observation:

running time does not depend on array size!

# Activity #I

# Activity #1

# 

# Linear Running Time

- How many operations are executed?
  - ightharpoonup T(n)=5n+2 ops where n=size(array)
- key observation:
  - running time depends (mostly) on array size

```
function possible_products(array):
   // Input: an array
   // Output: a list of all possible products
              between any two elements in the list
   products = [] ←
                                                         1op
   for i in [0, array.length): \leftarrow
                                                        1op per loop
      for j in [0, array.length): ←
                                                        lop per loop
         products.append(array[i] * array[j])
                                                        per loop
   return products
                                                        4ops per loop
                                                        per loop
                                                       1op
                                                  Activity #2
```

```
function possible_products(array):
   // Input: an array
   // Output: a list of all possible products
              between any two elements in the list
   products = [] ←
                                                         1op
   for i in [0, array.length): \leftarrow
                                                        1op per loop
      for j in [0, array.length): ←
                                                        lop per loop
         products.append(array[i] * array[j])
                                                        per loop
   return products
                                                        4ops per loop
                                                        per loop
                                                      1op
                                                  Activity #2
```

```
function possible_products(array):
   // Input: an array
   // Output: a list of all possible products
              between any two elements in the list
   products = [] ←
                                                         1op
   for i in [0, array.length): \leftarrow
                                                         1op per loop
      for j in [0, array.length): ←
                                                         lop per loop
         products.append(array[i] * array[j])
                                                        per loop
   return products
                                                         4ops per loop
                                                        per loop
                                                       1op
                                                   Activity #2
```

### Quadratic Running Time

- How many operations are executed?
  - ▶  $T(n)=5n^2+n+2$  operations where n=size(array)
- key observation:
  - running time depends (mostly) on the **square** of array size

#### Running Times







**Constant** independent of input size

**Linear**depends on input size

Quadratic depends on square of input size

how do we compare running times?

#### Which Algorithm is Better?

- Algorithm A takes  $T_A(n) = 30n + 10$  ops
- Algorithm B takes  $T_B(n)=5n$  ops





## Which Algorithm is Better?

- Alg A takes  $T_A(n) = 5n + 1000$  ops
- Alg B takes  $T_B(n)=10n+2$  ops
- It depends on n

```
rtime(A) < rtime(B) \Leftrightarrow 5n+1000 < 10n+2 \Leftrightarrow 5n > 998 \Leftrightarrow n > 199.6
```



## Which Algorithm is Better?

- Alg A takes  $T_A(n) = 1000n^2$  ops
- Alg B takes  $T_B(n) = n^8$  ops
- It depends on **n**

```
rtime(A) < rtime(B) \iff 1000n<sup>2</sup> < n<sup>8</sup> \iff 10000n<sup>2</sup> - n<sup>8</sup> < 0 \iff n<sup>2</sup>(1000 - n<sup>6</sup>) < 0 \iff 1000n<sup>2</sup>(Alg. A) \implies n > 10001/6 \iff n > 3.16...
```





## What is Running Time?

Asymptotic worst-case running time

=

Number of elementary operations
on worst-case input
as a function of input size n
when n tends to infinity

In CS "running time" usually means asymptotic worst-case running time…but not always!

we will learn about other kinds of running times

# Comparing Running Times

```
Comparing asymptotic running times

—
```

 $T_A(n)$  is better than  $T_B(n)$  if for large enough n  $T_A(n)$  grows slower than  $T_B(n)$ 

can we formalize all this mathematically?

# Big-O

```
Definition (Big-O): T_A(n) is O(T_B(n)) if there exists positive constants c and n_0 such that: T_A(n) \leq c \cdot T_B(n) for all n \geq n_0
```

- $ightharpoonup {\bf T}_A(n)$ 's order of growth is at most  ${\bf T}_B(n)$ 's order of growth
- Examples
  - $\rightarrow$  2n+10 is O(n)
  - $n^{10}+2019$  is  $O(n^{10})$  and also  $O(n^{50})$

## Big-O

- ▶ How do we find "the Big-O of something"?
  - Usually you "eyeball" it
  - Then you try to prove it
    - (though most of the time in CS16 it will be simple enough that you don't need to prove it)

## Big-O Examples

```
Definition (Big-O): T_A(n) is O(T_B(n)) if there exists positive constants c and n_0 such that: T_A(n) \le c \cdot T_B(n) for all n \ge n_0
```

- $\rightarrow$  2n+10 is O(n)
  - ▶ for example, choose c=3 and  $n_0=10$
- Why? because
  - ▶  $2n+10 \le 3 \cdot n$  when  $n \ge 10$
  - for example,  $2 \cdot 10 + 10 \le 3 \cdot 10$

# Plotting Running Times





We don't care what happens here

We only care what happens here



Experimental measurement



Big-O



#### More Big-O Examples

- $\rightarrow$  n<sup>2</sup> is not O(n). Why?
  - To prove that  $\mathbf{n}^2$  is  $\mathbf{O(n)}$  we have to find a positive constant  $\mathbf{c}$  and a positive constant  $\mathbf{n}_0$  such that
    - $n^2 \le c \cdot n \text{ for all } n > n_0$
  - This is not possible!
    - equivalent to asking that
    - $n \le c \text{ for all } n > n_0$

#### Big-O & Growth Rate

#### Big-O & Growth Rate

#### Big-O & Growth Rate

## Eyeballing Big-O

- If T(n) is a polynomial of degree d then T(n) is  $O(n^d)$
- In other words you can ignore
  - lower-order terms
  - constant factors
- Examples
  - ▶  $1000n^2+400n+739$  is  $O(n^2)$
  - $n^{80}+43n^{72}+5n+1$  is  $O(n^{80})$
- For the Big-O, use the smallest upper bound
  - ▶ 2n is O(n<sup>50</sup>) but that's not really a useful bound
  - instead it is better to say that 2n is O(n)

#### Example Big-O Analysis

- Given algorithm, find number of ops as a function of input size
  - first: T(n)=2
  - range argmax: T(n)=5n+2
  - ▶ possible\_products:  $T(n)=5n^2+n+3$
- ▶ Replace constants with "c" (they are irrelevant as n grows)
  - first: T(n)=c
  - argmax:  $T(n)=c_0n+c_1$
  - ▶ possible\_products:  $T(n)=c_0n^2+n+c_1$

### Example Big-O Analysis

- Discard constants & use smallest possible degree
  - first: T(n) = c is O(1)
  - argmax:  $T(n)=c_0n+c_1$  is O(n)
  - ▶ possible\_products:  $T(n)=c_0n^2+n+c_1$  is  $O(n^2)$
- The convention for T(n)=c is to write O(1)

# Big-O

```
Definition (Big-O): T_A(n) is O(T_B(n)) if there exists positive constants c and n_0 such that: T_A(n) \leq c \cdot T_B(n) for all n \geq n_0
```

- ▶  $T_A(n)$ 's growth rate is upper bounded by  $T_B(n)$ 's growth rate
- But what if we need to express a lower bound?
  - we use Big- $\Omega$  notation!

# Big-Omega

```
Definition (Big-\Omega): T_A(n) is \Omega(T_B(n)) if there exists positive constants c and n_0 such that: T_A(n) \geq c \cdot T_B(n) for all n \geq n_0
```

- T<sub>A</sub>(n)'s growth rate is lower bounded by T<sub>B</sub>(n)'s growth rate
- What about an upper and a lower bound?
  - We use Big-P notation

## Big-Theta

```
Definition (Big-P): T_A(n) is P(T_B(n)) if it is O(T_B(n)) and \Omega(T_B(n)).
```

 $ightharpoonup T_A(n)$ 's growth rate is the same as  $T_B(n)$ 's

Activity #4

10000

| T(n)                     | Big-O                     | Big- $oldsymbol{\Omega}$ | Big-P                      |
|--------------------------|---------------------------|--------------------------|----------------------------|
| an + b                   | ?                         | <b>~•</b>                | <b>P</b> (n)               |
| an <sup>2</sup> + bn + c | n <sup>2</sup> + bn + c ? |                          | <b>P</b> (n <sup>2</sup> ) |
| a ?                      |                           | ·                        | P(1)                       |
| 3n + an <sup>40</sup>    | $3^{n} + an^{40}$ ?       |                          | <b>P</b> (3 <sup>n</sup> ) |
| an + b log n             |                           | ?                        | <b>P</b> (n)               |

## Running Times



O(1) independent of input size



O(n)
depends on input size



 $O(n^2)$  depends on square of input size



O(n³)
depends on cube of input size



O(n<sup>70</sup>) depends on 70th power of input size



O(2<sup>n</sup>) exponential in input size

| n   | $\log n$ | n   | $n \log n$ | $n^2$   | $n^3$         | $2^n$                  |
|-----|----------|-----|------------|---------|---------------|------------------------|
| 8   | 3        | 8   | 24         | 64      | 512           | 256                    |
| 16  | 4        | 16  | 64         | 256     | 4,096         | 65,536                 |
| 32  | 5        | 32  | 160        | 1,024   | 32,768        | 4,294,967,296          |
| 64  | 6        | 64  | 384        | 4,096   | 262,144       | $1.84 \times 10^{19}$  |
| 128 | 7        | 128 | 896        | 16,384  | 2,097,152     | $3.40 \times 10^{38}$  |
| 256 | 8        | 256 | 2,048      | 65,536  | 16,777,216    | $1.15 \times 10^{77}$  |
| 512 | 9        | 512 | 4,608      | 262,144 | 134, 217, 728 | $1.34 \times 10^{154}$ |

### Readings

- Asymptotic runtime and Big-O
  - Dasgupta et al. section 0.3 (pp. 15-17)
  - Roughgarden Part I, Chap 2

#### Announcements

- ▶ Homework 1 due this Friday at 5pm!
- ▶ Thursday is in-class Python lab!
- If you are able to work on your own laptop
  - ▶ Go to McMillan 117 (here!)
- Make sure you can log into your CS account before attending lab
- See SunLab consultant if you have any account issues!
- Sections started yesterday
  - if you are not signed up, you could be in trouble!

#### References

- ▶ Slide #10
  - the portrait on the left is a drawing; really!
- ▶ Slide #25
  - Usain Bolt (constant): 8-time Olympic gold medalist and greatest sprinter of all time
  - Sally Pearson (linear): 2012 Olympic world champion in 100m hurdles, 2011 and 2017 World Champion
  - Wilson Kipsang (quadratic): former marathon world-record holder, Olympic marathon bronze medalist
  - ▶ Eliud Kipchoge (quadratic): 2016 Olympic marathon gold medalist, greatest marathoner of the modern era