Programmazione Avanzata

2024-2025

Introduzione

Il linguaggio di programmazione ideale facilità la scrittura di programmi succinti e chiari. Questo ne permette la comprensione, modifica e mantenimento durante l'intero ciclo di vita. Aiuterà inoltre i programmatori a gestire l'interazione tra le componenti di un sistema software complesso. A un software è richeisto di essere affidabile, manutenibile ed efficiente. Ad un linguaggio di programmazione si chiede di essere scrivibile, ovvero di permettere la stesura di una soluzione in modo non contorto; leggibile, ovvero di permettere di riconoscere la correttezza o gli errori direttamente dalla sintassi, senza eseguire; semplice, ovvero facile da apprendere e applicare; sicuro, ovvero contenere protezioni contro la scrittura di codice malevolo; robusto, ovvero resistente ad eventi indesiderati.

Agli inizi, la programmazione era effettuata direttamente in codice macchina per ottenere programmi piccoli ed efficienti. E negli anni '50 che emergono i primi due linguaggi, Fortran e Cobol. Il primo permette di scrivere programmi in forma matematica, il secondo è adatto all'uso bancario. Le necessità dei programmatori sono cambiate nel corso degli anni. Funzionalità e paradigmi un tempo considerati inefficienti, come la ricorsione e la programmazione ad oggetti, sono oggi diventati la norma. Le caratteristiche del linguaggio sono, in ogni caso, definite al punto d'incontro tra le necessità umane del programmatore e le necessità tecniche dell'architettura di Von Neumann della macchina sottostante. Possiamo distinguere diversi paradigmi. La programmazione procedurale sceglie la routine come unità base per la modularizzazione. La programmazione imperativa si basa su istruzioni, definite a passaggi, che modificano valori. La programmazione funzionale segue un approccio simile a quello matematico, basato su espressioni e funzioni. La programmazione a oggetti si basa sul concetto di classe come unità base. La programmazione abstract data type usa i tipi astratti come unità base.La programmazione dichiarativa cerca di definire il problema tramite regole, invece di descrivere i passaggi per trovare la soluzione.

Computabilità

Un programma per computer è interpretabile come funzione matematica dello stato della macchina prima dell'esecuzione e degli ingressi forniti dall'utente. Esso può implementare solo funzioni computabili, ovvero in grado di produrre un risultato. Questi può essere impossibile da raggiungere per errori nella funzione, oppure a causa di un tempo di esecuzione infinito. Alcune funzioni possono essere computabili in principio, ma non in pratica (se il tempo di computazione eccede limiti materiali). Si definisce funzione parziale una funzione definita solo per certi argomenti. Usando le definizioni matematiche:

- funzione computabile: $f: A \to B$ è un insieme di coppie $f \subseteq A \times B$ che soddisfano le seguenti condizioni:
 - $\begin{array}{l} < x,y> \in f \text{ e} < x,z> \in f \rightarrow y=z \\ \ \forall x \in A, \quad \exists y \in B \ / \ < x,y> \in f \end{array}$
- funzione parziale $f:A \to B$ è un insieme di coppie $f \subseteq A \times B$ che soddisfano la seguente condizione:

 $-\langle x,y\rangle \in f \ e \ zx,z\rangle \in f \ \rightarrow \ y=z$

Possiamo fornire una definizione alternativa di computabilità. Una funzione è computabile se esiste un algoritmo che permetta di produrre il risultato desiderato per qualsiasi ingresso appartenente al dominio. Anche quando l'algoritmo esiste, la sua implementabilità dipende dal linguaggio di programmazione scelto. La classe delle funzioni computabili sui numeri naturali coincide con la classe delle funzioni parziali ricorsive. Questo perché la ricorsione è essenziale nella computazione, e perché la maggior parte delle funzioni è parziale.

Un'altra definizione di computabilità si basa sul concetto di macchina di Turing. Una macchina di Turing è un sistema bicomponente. Il primo elemento è un nastro, diviso in celle di memoria, sul quale sia possibile leggere, scrivere e muoversi di una cella per volta. Il secondo elemento è un controllore a stati finiti, che opera sul nastro per leggerlo, per scriverci o per muovervisi di una cella. Una funzione sui numeri naturali è computabile con un metodo efficace se e solo se è computabile da una macchina di Turing. Questo teorema è dimostrabile con tre dimostrazioni: Alonso Church, Alan Turing e Calcolo Lambda. Tutti i linguaggi di programmazione sono Turing-complete.

In una quarta definizione, la computabilità è riconducibile all'halting problem, che consiste nel determinare se un programma terminerà in corrispondenza di un certo ingresso. Possiamo associare il problema ad una funzione f_{halt} a doppio ingresso (programma, input) che ritorna halt o $\neg halt$ se il programma termina o meno. Supponendo di avere un programma in grado di risolvere il problema, ovvero che abbia lo stesso output di f_{halt} , possiamo utilizzarlo per creare un programma che a volte non termina.

Compilatori, calcolo lambda, semantica denotativa, divisione dei linguaggi

Un compilatore traduce il programma in istruzioni macchina, mentre un interprete traduce ed esegue allo stesso tempo. Il compilatore è divisibile in componenti. Il lexical analyzer raggruppa le istruzioni in token. Il syntax analyzer o parser raggruppa i token in espressioni, statement e dichiarazioni, in vase a regole grammaticali. Il prodotto del parser è il parse tree, una struttura dati che rappresenta il programma. Il semantic analyzer applica regole e procedure aggiuntive in base al contesto delle espressioni, come ad esempio il type checking, producendo un augmented parse tree. L'intermediate code generator produce una prima versione non ottimizzata del codice, in un formato chiamato intermediate representation. Il code optimizer elimina sottoespressioni, sostituisce variabili duplicate, rimuove istruzioni inutilizzate e rimpiazza le chiamate a funzioni brevi con il rispettivo codice (inlining) quando esso è più efficiente. Il code generator converte il codice intermedio in codice macchina per il target desiderato.

Distinguiamo tra sintassi (il testo di un programma) e semantica (la funzionalità che rappresenta). Una grammatica è composta da un simbolo iniziale, un insieme di simboli non temrinali, un insieme di terminali e un insieme di regole di produzione. Essa fornisce un metodo per definire un insieme infinito di espressioni. I non terminali sono i simboli utilizzati per esprimere la grammatica, mentre i terminali sono i simboli che appaiono nel linguaggio. Una grammatica è detta ambigua se la stessa espressione ammette più di un parse tree. I linguaggi umani uniscono ambiguità, frasi imperative, dichiarative, e interrogative. I linguaggi imperativi uniscono dichiarazioni e assegnamenti. Nella semantica denotazionale un programma è una funzione matematica da stato a stato. Lo stato è una funzione matematica che rappresenta i valori della memoria in un determinato stato dell'esecuzione di un programma.

Il lambda calculus è una notazione per descrivere la computazione, composta da tre parti. La prima è una notazione per descrivere le funzioni. La seconda è un meccansimo di prova per descrivere equazioni tra epsressioni. La terza è un insieme di regole di calcolo chiamate riduzioni. I due concetti principali del calcolo lambda sono le astrazioni lambda, per cui se M è un'espressione, $\lambda x.M$ è la funzione ottenuta trattando M come una funzione di x, e l'applicazione, ovvero l'anteposizione di un'espressione davanti ad un'altra per ottenere la composizione. Ad esempio, in $(\lambda x.x)M = M$, applichiamo una funzione identità all'espressione M. Un linguaggio di programmazione è interpretabile come un'applicazione del calcolo lambda, ovvero l'unione del calcolo lambda puro con tipi di dati aggiuntivi. Introduciamo ora il concetto di assegnazione delle variabili. Si dice libera una variabile che non è dichiarata nell'espressione (recuperare la definzione di algebra e logica). Nel calcolo lambda, al contrario di quanto avvenga nei linguaggi di programmazione procedurali come C, l'assegnamento di variabili non ha alcun effetto secondario ed è puramente funzionale.

Gestione della memoria

Lo stack serve soltanto per la ricorsione, mentre l'heap serve soltanto per le strutture dati dinamiche. Quando queste due funzionalità non sono necessarie, la memoria può essere gestita staticamente. Ad esempio il linguaggio FORTRAN, non permettendo la ricorsione, non aveva un record di attivazione. La memoria occupata da un programma era stimabile in modo esatto al momento della compilazione. I linguaggi moderni, invece, permettendo la ricorsione e l'allocazione dinamiche, necessitano di record di attivazione e di una gestione più complessa della memoria. Molti linguaggi sono block-structured, ovvero le variabili sono accessibili solo all'interno del loro blocco (variabili locali) o di sottoblocchi interni ad esso. Nell'analisi del ciclo di vita di variabili, distinguiamo tra scope, ovvero la regione di spazio (a livello di blocchi) in cui la variabile è attiva, e lifetime, ovvero tempo di allocazione. Queste due metriche possono non corrispondere. Ad esempio, se dichiaro una variabile in un blocco interno che abbia lo stesso nome di quella esterna, ottengo un "hole in scope" in cui la variabile esterna è ancora attiva ma non accessibile. Ogni blocco vede come globali tutte le variabili dichiarate in blocchi di livello superiore. Lo spazio in memoria viene allocato all'ingresso nel blocco, e deallocato all'uscita. I blocchi possono essere legati a funzioni, inline, oppure legati a istruzioni quali controllo di flusso e cicli. C e C++ non permettono la dichiarazione di funzioni locali innestate.

Viene creato un record di attivazione ad ogni ingresso in un blocco. Ogni record di attivazione contiene, in ordine, un control link ovvero un puntatore al record precedente sullo stack, delle variabili locali e dei risultati intermedi. L'indirizzo nell'environment pointer è al control link del record in cima allo stack. Una macchina standard contiene dei registri standard, il codice e un registro chiamato program counter o instruction pointer con l'indirizzo dell'istruzione corrente, i dati (stack e heap) e un environment pointer o stack pointer con l'indirizzo della cima dello stack. Le chiamate a funzioni richiedono il passaggio dei parametri, il salvataggio dell'indirizzo di ritorno, il salvataggio di variabili locali e risultati intermedi, e l'allocazione di spazio per il valore di ritorno. I parametri delle funzioni possono essere valutati al momento del passaggio, oppure essere lasciati come funzioni per la lazy evaluation, in base al tipo di linguaggio. Il passaggio può avvenire per reference o per valore. Il passaggio per valore, richiedendo di copiare il valore del parametro, è più sicuro ma più lento. Riduce però il problema dell'aliasing, ovvero il puntamento allo stesso indirizzo di memoria da parte di più variabili. In base alla terminologia il valore effettivo di una variabile può prendere il nome di R-value mentre il suo indirizzo è denominato L-value.

```
#include <cstdio>
void f() {
    int x = 5;
    int y = 3;
}
int main(int argc, char *argv[]) {
    printf("Hello World!");
    return 0;
}
f():
        sub
                 sp, sp, #16; due byte in più: stack pointer e frame pointer
                 w8, #5
        mov
                w8, [sp, #12]
        str
        mov
                 w8, #10
                 w8, [sp, #8]
        str
                 sp, sp, #16
        add
        ret
main:
        sub
                 sp, sp, #48
                 x29, x30, [sp, #32]
        stp
                 x29, sp, #32
        add
                 w8, wzr
        mov
                 w8, [sp, #12]
        str
                 wzr, [x29, #-4]
                 w0, [x29, #-8]
        stur
                 x1, [sp, #16]
        str
                 f()
        bl
        adrp
                 x0, .L.str
        add
                 x0, x0, :lo12:.L.str
                printf
        bl
        ldr
                 w0, [sp, #12]
        ldp
                 x29, x30, [sp, #32]
        add
                 sp, sp, #48
        ret
.L.str:
        .asciz "Hello World!"
```

In C++ è possibile salvare reference. Ad esempio, int &x = y crea in x una reference non modificabile a y. Passando per reference i parametri per le funzioni, al contrario di quello che avviene con il passaggio per valore, si creano side effects. Una versione ibrida è il passaggio per puntatore. L'indirizzo viene passato per copia, ma poi tramite di esso si può modificare la variabile originale come se fosse una reference. Per verificare se un linguaggio supporta veramente il passaggio per reference si può provare a costruire una funzione per scambiare il contenuto di due variabili. Non possiamo infatti scambiare il contenuto di due variabili passate per copia, perché la modifica avverrebbe solo sulle copie locali, e verrebbe in ogni caso deallocata al termine dell'esecuzione della funzione. In C++ è possibile scambiare variabili passate per reference. In Java questo non funziona con i tipi base, che sono sempre passati per copia.

```
int f(int a, int b) {
    if (b==0)
        return a;
    else
        return f(b, a%b);
}
int main(int argc, const char *argv[]) {
    f(15,10);
    return 0;
}
```

```
sub
                 sp, sp, #32
        stp
                 x29, x30, [sp, #16]
                                       ; store pair, x30=return address
                                 ; x29=frame pointer
        add
                 x29, sp, #16
                w0, [sp, #8]
        str
                 w1, [sp, #4]
        str
        ldr
                 w8, [sp, #4]
                 w8, .LBB0_2
        cbnz
                 .LBB0_1
        b
.LBB0_1:
        ldr
                 w8, [sp, #8]
        stur
                 w8, [x29, #-4]
                 .LBB0_3
.LBB0_2:
            ; il risultato è il resto (divide intero, rimoltiplica, sottrae)
                 w0, [sp, #4]
        ldr
        ldr
                 w8, [sp, #8]
                 w10, [sp, #4]
        ldr
        sdiv
                 w9, w8, w10
        mul
                w9, w9, w10
        subs
                 w1, w8, w9
        bl
                 f
        stur
                 w0, [x29, #-4]
                 .LBB0_3
        b
.LBB0_3:
                 w0, [x29, #-4]
        ldur
                 x29, x30, [sp, #16]
        ldp
        add
                 sp, sp, #32
        ret
main:
        sub
                 sp, sp, #48
        stp
                 x29, x30, [sp, #32]
        {\tt add}
                 x29, sp, #32
        mov
                 w8, wzr
                 w8, [sp, #12]
        str
                wzr, [x29, #-4]
        stur
        stur
                 w0, [x29, #-8]
                 x1, [sp, #16]
        str
                 w0, #15
        mov
                 w1, #10
        mov
        bl
        ldr
                 w0, [sp, #12]
        ldp
                 x29, x30, [sp, #32]
        add
                 sp, sp, #48
        ret
```

Il compilatore può ottimizzare il salvataggio dei valori di ritorno tenendoli in un registro invece di assegnarli allo stack. Soluzione vecchia (ottimizzata meglio):

Indirizzo	Contenuto	Descrizione
0xF174	00 00 00 0A	10
0xF178	$00\ 00\ 00\ 0F$	15
0xF17C		Return value
0xF180		x29: stack pointerframe pointer
0xF188		x30: link registerreturn address

Indirizzo	Contenuto	Descrizione
154	00 00 00 05	5
158	$00\ 00\ 00\ 0A$	10
15c	• • •	Return value
160		SP

Indirizzo	Contenuto	Descrizione
168		LR

Indirizzo	Contenuto	Descrizione
134	00 00 00 00	0 (b)
138	$00\ 00\ 00\ 05$	5 (a)
13c		Return value
140		x29 sp
148		$\times 30$ l r / ra

Gli array a dimensione predefinita sono stack-allocated sia in C che in Java. Quando si passano struct a funzioni, l'intero struct viene copiato nello stack.

Gli array a dimensione fissa sono stack-allocated sia in C che in Java. Nel caso di Java, questo è vero soltanto per i tipi base. In C/C++, quando uno struct è argomento (per valore) di una funzione, viene copiato per intero nello stack. Per questo, in questo caso, può essere conveniente passare gli struct per reference, pur facendo attenzione alla possibilità di $side\ effects$. In Java il passaggio per valore di oggetti non è invece possibile.

Si analizzi ora un piccolo esempio di funzione per cambiare il valore dei puntatori, riscritta in due versioni:

```
// VERSIONE 1
int y = 10;

void styp(int* p) {
    p = &y;
}

int main(void) {
    int m = 0;
    int * q = &m;
    styp(q);
    printf("%d", *q);
    return EXIT_SUCCESS;
}
```

Ritorna 0. q punta ancora ad m.

Scriviamo una seconda versione, in cui si passa un puntatore a puntatore (o si passa un puntatore per reference, volendolo interpretare così):

```
// Versione 2
int y = 10;

void stypp(int** p) {
    *p = &y;
}

int main(void) {
    int m = 0;
    int * q = &m;
    stypp(q);
    printf("%d", *q);
    return EXIT_SUCCESS;
}
```

Ritorna 10. q punta ad y.

Variabili globali

Forniamo un esempio di codice dove sia deliberatamente creato un hole~in~scope, per creare ambiguità nell'uso della variabile \mathbf{x} nel blocco più interno.

```
int x = 1;
function g(z) = x + z;
function f(y) = {
   int x = y + 1;
   return g(y*z)
};
f(3);
```

Analizziamo il contenuto delle variabili in vari momenti dell'esecuzione del codice. Al momento dell'outer block:

Variabile	Valore
x	1

All'esecuzione di f(3):

Variabile	Valore
у	3
X	4

All'esecuzione di g(12):

Variabile	Valore
Z	12

Non è chiaro quale x usare. - $static\ scope$: variabili globali dal più vicino blocco intorno - $dynamic\ scope$: variabili dal record di attivazione più recente

L'access link è un meccanismo legato al record di attivazione, dedicato all'accesso alle variabili globali secondo le regole di scope. La maggior parte dei linguaggi di programmazione è dotata di un access link statico, ovvero risolto in compilazione. In C, ad esempio, l'access link di un blocco contiene puntatori sia all'access link del blocco precedente, che al return address del blocco delle variabili globali. In molti linguaggi è possibile dichiarare variabili slegate dal lifetime del proprio scope utilizzando la keyword static. In C e C++, quest'operazione è indistinguibile dalla dichiarazione di variabili globali, per mancanza di una categoria apposita. Le variabili dello scope corrente sono viste come locali, e tutte le altre degli scope più esterni sono interpretate come globali. Il compilatore cerca le variabili statiche e le carica per prime in memoria.

Nei linguaggi non sicuri come C e C++, è possibile effettuare un tipo di attacco noto come buffer overflow. Esso si basa sull'uscita dai confini di memoria di un array, dato che l'accesso non è controllato, per scrivere codice malevolo da qualche parte, e per modificare il return address del record di attivazione più recente in modo che punti a tale codice.

Tail recursion

Una funzione fa una chiamata tail ad un'altra funzione se il ritorno della prima è il ritorno della seconda. Questo si può determinare in compile time. In tal caso, si può procedere senza impilare le chiamate di funzione sullo stack. Può essere sovrascritto lo stesso record.

L'uso dello *stack* e dei *record* di attivazione è reso necessario solo e soltanto dall'uso della ricorsione. I *record* si impilano perché i valori di ritorno delle chiamate ricorsive devono essere salvati per processarli al momento del loro ritorno. Esiste un caso particolare, nel quale il valore di ritorno della chiamata ricorsiva coincide con il valore di ritorno della funzione chiamante. Quando questo avviene, non è necessario creare un nuovo record di attivazione. Questo tipo di ricorsione è chiamato *ricorsione tail*. È considerata desiderabile perché non riempie lo *stack*. Questo la rende equivalente all'uso di cicli dal punto di vista dell'impiego di memoria. In molti casi, funzioni ricorsive normali possono essere trasformate in funzioni di tipo *tail recursive* con piccoli adattamenti. Questo è ad esempio vero per il più classico esempio di funzione ricorsiva, ovvero il calcolo dei fattoriali:

```
// Versione standard
int factorial(int n) {
   if (n == 0)
        return 1;
   else
        return n * factorial(n - 1);
```

```
}
// Versione tail-recursive
int tail_factorial(int n, int accumulator) {
   if (n == 0)
       return accumulator;
   else
      return tail_factorial(n - 1, n * accumulator);
}
```

Esercizio In questo esercizio verifichiamo l'esecuzione della seguente funzione ricorsiva, che richiama sé stessa per quattro volte.

```
int pow_n(int a, int ex) {
    if (ex == 0) return 1;
    if (ex == 1) return a;
    return a * pow_n(a, ex-1);
}
int main(int argc, const char *argv[]) {
    pow_n(5);
}
```

È riportata l'occupazione dello stack alla terza chiamata, su un'architettura ARMv8 a 64 bit.

Indirizzo	Contenuto	Descrizione
ff318		x30
ff314		
ff310		x29
ff30c		
ff308	7d 00 00 00	7.16 + 13 = 112 + 13 = 125 = 25 * 5
304	$05\ 00\ 00\ 00$	a = 5
300	03 00 00 00	ex = 3
28c	1a 00 00 00	25
288	01 00 00 00	lr x30
284	68 3f 00 00	
280	01 00 00 00	fp x29
2ec	10 f3 df 6f	
2e8	1a 00 00 00	$a * pow_n(a, ex-1)$
2e4	$05\ 00\ 00\ 00$	a = 3
2e0	$02\ 00\ 00\ 00$	x = 2
2dc	$05\ 00\ 00\ 00$	valore di ritorno
2d8	01 00 00 00	lr x30
2d4	68 2f 00 00	
2d0	01 00 00 00	fp (sp) x29
2dc	f0 f2 df ef	
2c8	$05\ 00\ 00\ 00$	a * pow(a, ex-1)
2c4	$05\ 00\ 00\ 00$	a = 5
2c0	01 00 00 00	a=1

Tipizzazione

Una componente importante della sicurezza di un sistema (intesa come safety, protezione da falle intrinseche, e non come security ovvero resistenza agli attacchi esterni) è il sistema dei tipi. Definiamo tipo un insieme di valori omogenei e di operazioni su di esso definite. I tipi definiscono concetti che possono essere elementari (tipi base che rappresentano numeri, lettere, ...) o complessi (collezioni e classi, che sono composizioni di tipi base). L'uso dei tipi permette al compilatore di interpretare correttamente i dati in memoria, e di controllare che essi siano definiti e utilizzati correttamente dall'utente.

Un possibile errore a livello *hardware* può consistere nella confusione tra dati e programmi. Entrambe le categorie sono indistinguibilmente valori binari in memoria centrale. Come descritto in precedenza, questa ambiguità nella rappresentazione fisica può essere utilizzata deliberatamente per produrre un attacco che inserisca codice eseguibile malevolo in un'area altrimenti destinata ai dati. Esistono inoltre errori semantici. La rappresentazione binaria di uno

stesso valore è diversa a seconda che si tratti di un intero o di un numero a virgola mobile. La lettura di una variabile secondo la convenzione sbagliata porta ad errori aritmetici. Nei linguaggi di programmazione ad oggetti il controllo dei tipi deve imporre il rispetto della gerarchia di ereditarietà. Il membro di una sottoclasse può essere promosso a membro di una superclasse perché possiede tutti i campi e metodi necessari, ma non vale il contrario.

Un linguaggio di programmazione si dice type safe se non è possibile scrivere con esso un programma in grado di violare il suo sistema di tipi. Le violazioni possono includere la confusione tra tipi, la chiamata di dati come se fossero funzioni, o l'accesso a zone di memoria riservate ad altri dati. La proprietà di prevenzione di quest'ultima problematica è chiamata memory safety. C e C++ non sono type safe perché le operazioni di casting incontrollato e l'aritmetica dei puntatori permettono di violare sia la type safety che la memory safety. Questo perché C punta alla velocità e all'efficienza, lasciando al programmatore la responsabilità per la sicurezza. Possiamo rendere C più sicuro riducendo l'uso delle feature pericolose. Pascal è parzialmente type safe perché richiede la deallocazione manuale della memoria, con il conseguente problema dei dangling pointers. Java, Python e Lisp sono considerati type safe. Laddove non sia possibile usare linguaggi type safe, sono comunque disponibili tool esterni di analisi, pur sempre limitati dal precedente nominato problema di Turing.

Elenchiamo in dettaglio le problematiche che rendono C e C++ non type safe. Innanzitutto, il casting è incontrollato e permette il passaggio tra tipi di dimensioni incompatibili, con rischio di perdita di informazione e overflow. Permette inoltre di trasformare tipi per variabili in tipi per funzioni, e dunque di chiamare aree di memoria per dati come se fossero codice. Non solo non esistono meccanismi che impediscano il dereferenziamento dei puntatori nulli, ma addirittura lo standard del linguaggio non definisce cosa fare in tale evenienza. Il valore nullo del puntatore è semplicemente lo 0. La funzione malloc usata per l'allocazione dinamica restituisce il valore null quando fallisce, e dunque anch'essa può essere fonte di comportamento indefinito. In alcuni sistemi è il sistema operativo a restituire un segmentation fault quando si tenta di accedere ad un puntatore nullo, ma questa protezione si perde quando il puntatore nullo è usato per accedere ad una cella di un array diversa dalla prima. Problemi simili si presentano con l'algebra dei puntatori. Ad esempio, *(p+i) permette di accedere a celle contigue che potrebbero avere un tipo diverso rispetto a quello di p. Equivalentemente, x = *(p+i) può permettere di salvare in x variabili del tipo sbagliato. Infine esistono problematiche di accesso non valido. Le violazioni possono essere spaziali (out of bound, uscire dall'area di memoria assegnata ad un array), o temporali (dangling pointers, puntatori ad aree deallocate e potenzialmente riscritte). Per quanto riguarda l'accesso non valido, l'allocazione dinamica è meno affetta da questa problematica, ma anche l'allocazione statica può essere resa sicura evitando di non passare mai alla funzione chiamante riferimenti alle variabili locali di una funzione chiamata.

Il controllo a compile time è obbligato a rifiutare programmi potenzialmente validi perché non è possibile determinarne staticamente la correttezza (sarebbe come risolvere il problema di Turing). Il controllo a runtime non soffre di questo problema ma rallenta l'esecuzione. Java utilizza un approccio ibrido introducendo in compilazione dei controlli da effettuare in esecuzione in presenza di problemi di tipo non risolvibili staticamente (ad esempio casting tra classi imparentate).

Il controllo dei tipi può essere effettuato in compilazione o in esecuzione. ML, C, C++ e Java controllano i tipi in compilazione. Python e Lisp li controllano in esecuzione. Il controllo in compilazione deve necessariamente rifiutare programmi potenzialmente validi perché non è possibile determinarne staticamente la correttezza. Se il loro flusso di controllo è programmatico, infatti, determinarne a priori la traiettoria sarebbe equivalente alla risoluzione, impossibile, del problema di halting. Il controllo in esecuzione non soffre di questa problematica, ma la maggiore libertà di programmazione si paga in riduzione della velocità, a causa del rallentamento dovuto all'accertamento dinamico dei tipi. Un altro problema del controllo in esecuzione è che gli errori di tipo non vengono individuati fino al momento dell'esecuzione della porzione di codice che li contiene. Java impiega un approccio ibrido. I controlli che sono impossibili da risolvere staticamente sono deferiti al momento dell'esecuzione tramite l'iniezione, al momento della compilazione, di codice di controllo da eseguire dinamicamente. Un esempio di questa strategia riguarda il controllo della promozione a superclasse.

Una distinzione ulteriore tra linguaggi è tra tipizzazione forte e tipizzazione dinamica. Nel primo caso, il tipo di una variabile è fissato per tutto il suo ciclo di vita. Nel secondo, una variabile può cambiare tipo al momento del riassegnamento del suo valore. Alla prima categoria appartengono C, C++ e Java. Alla seconda categoria appartiene Python. Un concetto correlato è l'inferenza dei tipi. Il linguaggio può determinare automaticamente il tipo di una variabile in base al contenuto assegnatole dall'utente. L'algoritmo di inferenza del tipo lavora in tre fasi. Dapprima assassegna un tipo ad ogni espressione e sottoespressione, usando tipi noti. Dopodiché, genera vincoli sui tipi usando l'albero sintattico dell'espressione. Infine, risolve i vincoli per unificazione. Python inferisce dinamicamente i tipi, ma essi sono anche specificabili manualmente. La tipizzazione è dinamica ma ben definita. Essa si perde nella definizione delle funzioni, in cui non è necessario specificare né il tipo dei parametri né il tipo del valore ritorno. Vale in questo caso il concetto di duck typing (if it walks like a duck and quacks like a duck, then it's a duck), secondo il quale non è necessario lanciare errori di tipo fin quando i valori ricevuti rispettano il contratto minimo necessario, ovvero hanno a disposizione quei campi e quei metodi richiesti durante l'esecuzione. Java, dalla versione 10, introduce la keyword var per la dichiarazione di variabili con inferenza automatica del tipo. Dopo un primo assegnamento, il tipo rimane fisso e non modificabile.