LINEAR MODELS FOR CLASSIFICATION: PERCEPTRON

Problem setting

- Given data points \mathbf{x}_i , i = 1, 2, ..., m
- Possible class choices: c_1, c_2, \ldots, c_k
- Wish to estimate a mapping/classifier,

$$f: \mathbf{x} \to \{c_1, c_2, \ldots, c_k\}$$

that predicts class labels $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_m$

Problem setting

- Given data points \mathbf{x}_i , $i = 1, 2, \dots, m$
- Possible class choices: c_1, c_2, \ldots, c_k
- Wish to estimate a mapping/classifier,

$$f: \mathbf{x} \to \{c_1, c_2, \ldots, c_k\}$$

that predicts class labels $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_m$

• In general, series of mappings

$$\mathbf{x} \xrightarrow{f(\cdot)} \mathbf{y} \xrightarrow{g(\cdot)} \mathbf{z} \xrightarrow{h(\cdot)} \{c_1, c_2, \dots, c_k\}$$

where y, z are in some latent space.

• Consider a binary classification problem: $f(\mathbf{x}) \in \{-1, +1\}$

• Objective: Learn a linear classifier

- Consider a binary classification problem: $f(\mathbf{x}) \in \{-1, +1\}$
- Desirable: Any new input pattern similar to a seen pattern is classified correctly

- Consider a binary classification problem: $f(\mathbf{x}) \in \{-1, +1\}$
- Desirable: Any new input pattern similar to a seen pattern is classified correctly

Linear Classification? $\mathbf{w}^{\top}\phi(\mathbf{x}) + b \geq 0$ for +ve points (y = +1) $\mathbf{w}^{\top}\phi(\mathbf{x}) + b < 0$ for -ve points (y = -1) $\mathbf{w}, \phi \in \mathbb{R}^m$

• Often, b is indirectly captured by including it in \mathbf{w} , and using a ϕ as: $\phi_{aug} = [\phi, 1]$

• Thus, $\mathbf{w}^{\top}\phi(\mathbf{x})$

$$egin{aligned} &=egin{bmatrix} w_1 & w_2 & w_3 & \dots & w_m & b\end{bmatrix} egin{bmatrix} \phi_1 \ \phi_2 \ \phi_3 \ dots \ \phi_m \ 1 \end{bmatrix} \end{aligned}$$

• $\mathbf{w}^{\top} \phi(\mathbf{x}) = 0$ is the separating hyperplane.

Perceptron Intuition

- Go over all the existing examples, whose class is known, and check their classification with the current weight vector
- If correct,

Perceptron Intuition

- Go over all the existing examples, whose class is known, and check their classification with the current weight vector
- If correct, continue
- If not, marginally correct the weights
 -by

Perceptron Intuition

- Go over all the existing examples, whose class is known, and check their classification with the current weight vector
- If correct, continue
- If not, marginally correct the weights
 - ulletby adding to the weights a quantity that is proportional to the product of the input pattern with the desired output $y=\pm 1$

• Start with some weight vector $\mathbf{w}^{(0)}$, and for k = 0, 1, 2, 3, ..., n (for every example denoted by $(\mathbf{x}', \mathbf{y}')$), do:

$$\mathbf{w}^{k+1} = \mathbf{w}^k + y'\phi(\mathbf{x}')$$

• only when \mathbf{x}' is misclassified by $(\mathbf{w}^k)^{\top}\phi(\mathbf{x})$ i.e. $y'(\mathbf{w}^k)^{\top}\phi(\mathbf{x}') < 0$

Perceptron: Separating Hyperplane

• Perceptron does not find the *best* separating hyperplane, it finds *any* seperating hyperplane.

Perceptron: Separating Hyperplane

- Perceptron does not find the *best* separating hyperplane, it finds *any* seperating hyperplane.
- The separating hyperplane does not provide enough breathing space this is what SVMs address!

- Perceptron works for two classes $(y = \pm 1)$.
- A point is misclassified if $y\mathbf{w}^T(\phi(\mathbf{x})) < 0$.
- Perceptron Algorithm:
 - INITIALIZE: w=zeros()
 - REPEAT: for each $\langle \mathbf{x}, y \rangle$
 - If $y\mathbf{w}^T\Phi(\mathbf{x}) < 0$

- Perceptron works for two classes $(y = \pm 1)$.
- A point is misclassified if $y\mathbf{w}^T(\phi(\mathbf{x})) < 0$.
- Perceptron Algorithm:
 - INITIALIZE: w=zeros()
 - REPEAT: for each $\langle \mathbf{x}, y \rangle$
 - If $y\mathbf{w}^T\Phi(\mathbf{x}) < 0$
 - ullet then, ${f w}={f w}+\eta\phi({f x}).y$

- Perceptron works for two classes $(y = \pm 1)$.
- A point is misclassified if $y\mathbf{w}^T(\phi(\mathbf{x})) < 0$.
- Perceptron Algorithm:
 - INITIALIZE: w=zeros()
 - REPEAT: for each $\langle \mathbf{x}, y \rangle$
 - If $y\mathbf{w}^T\Phi(\mathbf{x}) < 0$
 - then, $\mathbf{w} = \mathbf{w} + \eta \phi(\mathbf{x}).y$
 - endif

• Intuition:

$$y(\mathbf{w}^{(k+1)})^T \phi(\mathbf{x}) =$$

Intuition:

$$y(\mathbf{w}^{(k+1)})^T \phi(\mathbf{x}) = y(\mathbf{w}^k + \eta y \phi^T(\mathbf{x})) \phi(\mathbf{x})$$

$$= y(\mathbf{w}^k)^T \phi(\mathbf{x}) + \eta y^2 ||\phi(\mathbf{x})||^2$$

$$> y(\mathbf{w}^k)^T \phi(\mathbf{x})$$

Since
$$y(\mathbf{w}^k)^T \phi(\mathbf{x}) \leq 0$$
, we have $y(\mathbf{w}^{(k+1)})^T \phi(\mathbf{x}) > y(\mathbf{w}^k)^T \phi(\mathbf{x}) \Rightarrow$

Intuition:

$$y(\mathbf{w}^{(k+1)})^T \phi(\mathbf{x}) = y(\mathbf{w}^k + \eta y \phi^T(\mathbf{x})) \phi(\mathbf{x})$$

= $y(\mathbf{w}^k)^T \phi(\mathbf{x}) + \eta y^2 ||\phi(\mathbf{x})||^2$
> $y(\mathbf{w}^k)^T \phi(\mathbf{x})$

Since $y(\mathbf{w}^k)^T \phi(\mathbf{x}) \leq 0$, we have $y(\mathbf{w}^{(k+1)})^T \phi(\mathbf{x}) > y(\mathbf{w}^k)^T \phi(\mathbf{x}) \Rightarrow$ more hope that this point is classified correctly now.

Summarily: Perceptron Update Rule

- Start with zero-weights vector, $\mathbf{w} \leftarrow \vec{0}$
- ullet For each training instance, $\{\mathbf{x}_i,y_i\}\in\mathcal{D}$

Predict its label using the current weight vector

$$\hat{y}_i = egin{cases} +1 & ext{if } \mathbf{w}^T \phi(\mathbf{x_i}) \geq 0 \ -1 & ext{otherwise} \end{cases}$$

If $y_i \neq \hat{y}_i$ (or equivalently, $y_i \mathbf{w}^T \phi(\mathbf{x}_i) < 0$)

Adjust the weight vector using the following update rule:

$$\mathbf{w} \leftarrow \mathbf{w} + y_i \phi(\mathbf{x}_i)$$

• Repeat until sign($\mathbf{w}^T \mathbf{x}$) = y for all $(\mathbf{x}, y) \in \mathcal{D}$

Why is it called a perceptron?

Loose inspiration drawn from neurons

Features are inputs; each feature associated with a weight. Activation quantified by the sum of weighted features.

Perceptron can model linearly separable functions

Convergence of Perceptron Update Rule: Formally

Convergence of the perceptron algorithm

Consider the case when data is linearly separable i.e. there exists a weight vector \mathbf{u} s.t. $y = \text{sign}(\mathbf{u}^T\mathbf{x}) \quad \forall \{\mathbf{x},y\} \in \mathcal{D}$. Without loss of generality, let us assume that \mathbf{u} is a unit-length vector. Let us also assume that the data is scaled to lie in the Euclidean ball of radius 1, i.e., $||\mathbf{x}|| \leq 1 \quad \forall \mathbf{x} \in \mathcal{D}$.

Convergence of the perceptron algorithm

Consider the case when data is linearly separable i.e. there exists a weight vector \mathbf{u} s.t. $y = \text{sign}(\mathbf{u}^T\mathbf{x}) \quad \forall \{\mathbf{x},y\} \in \mathcal{D}$. Without loss of generality, let us assume that \mathbf{u} is a unit-length vector. Let us also assume that the data is scaled to lie in the Euclidean ball of radius 1, i.e., $||\mathbf{x}|| \leq 1 \quad \forall \mathbf{x} \in \mathcal{D}$.

Define a new quantity, margin of separation $\gamma = \min_{\mathbf{x} \in \mathcal{D}} |\mathbf{u}^T \mathbf{x}|$

Convergence of the perceptron algorithm

Consider the case when data is linearly separable i.e. there exists a weight vector \mathbf{u} s.t. $y = \text{sign}(\mathbf{u}^T\mathbf{x}) \quad \forall \{\mathbf{x},y\} \in \mathcal{D}$. Without loss of generality, let us assume that \mathbf{u} is a unit-length vector. Let us also assume that the data is scaled to lie in the Euclidean ball of radius 1, i.e., $||\mathbf{x}|| \leq 1 \quad \forall \mathbf{x} \in \mathcal{D}$.

Define a new quantity, margin of separation $\gamma = \min_{\mathbf{x} \in \mathcal{D}} |\mathbf{u}^T \mathbf{x}|$

Theorem: If there exists a unit vector \mathbf{u} such that $y\mathbf{u}^T\mathbf{x} \geq \gamma$ for all \mathbf{x} , then the number of weight updates made by the perceptron algorithm is at most $\frac{1}{\gamma^2}$.

Proof of the mistake bound for the perceptron algorithm

Let us track the following two quantities: $\mathbf{w}^T \mathbf{u}$ and $||\mathbf{w}||^2$. Quantity 1: $\mathbf{w}^T \mathbf{u}$ on every update increases by at least γ . For a positive example:

$$(\mathbf{w} + \mathbf{x})^T \mathbf{u} = \mathbf{w}^T \mathbf{u} + \mathbf{x}^T \mathbf{u}$$

 $\geq \mathbf{w}^T \mathbf{u} + \gamma$

Quantity 2: $||\mathbf{w}||^2$ after every update increases by at most 1. For a positive example:

$$||\mathbf{w} + \mathbf{x}||^2 = (\mathbf{w} + \mathbf{x})^T (\mathbf{w} + \mathbf{x}) = ||\mathbf{w}||^2 + 2\mathbf{w}^T \mathbf{x} + ||\mathbf{x}||^2$$

 $\leq ||\mathbf{w}||^2 + ||\mathbf{x}||^2$
 $\leq ||\mathbf{w}||^2 + 1$

Putting these two inequalities together i.e. $\mathbf{w}_{i+1}^T \mathbf{u} \geq \mathbf{w}_i^T \mathbf{u} + \gamma$ and $||\mathbf{w}_{i+1}||^2 \leq ||\mathbf{w}_i||^2 + 1$, after k updates, we have

$$\mathbf{w}_k^T \mathbf{u} \ge k \gamma \text{ and } ||\mathbf{w}_k||^2 \le k$$

Putting these two inequalities together i.e. $\mathbf{w}_{i+1}^T \mathbf{u} \geq \mathbf{w}_i^T \mathbf{u} + \gamma$ and $||\mathbf{w}_{i+1}||^2 \leq ||\mathbf{w}_i||^2 + 1$, after k updates, we have

$$\mathbf{w}_k^T \mathbf{u} \ge k \gamma$$
 and $||\mathbf{w}_k||^2 \le k$

$$\Rightarrow \sqrt{k} \ge ||\mathbf{w}_k|| \ge \mathbf{w}_k^T \mathbf{u} \ge k\gamma$$

Putting these two inequalities together i.e. $\mathbf{w}_{i+1}^T \mathbf{u} \geq \mathbf{w}_i^T \mathbf{u} + \gamma$ and $||\mathbf{w}_{i+1}||^2 \leq ||\mathbf{w}_i||^2 + 1$, after k updates, we have

$$\mathbf{w}_k^T \mathbf{u} \ge k \gamma$$
 and $||\mathbf{w}_k||^2 \le k$

$$\Rightarrow \sqrt{k} \ge ||\mathbf{w}_k|| \ge \mathbf{w}_k^T \mathbf{u} \ge k \gamma$$

$$\Rightarrow k \leq \frac{1}{\gamma^2}$$

What is the perceptron optimizing?

Hinge loss

Consider the following loss function for the perceptron algorithm:

$$L_P(f_{\mathbf{w}}(\mathbf{x}), y) = \max(0, -yf_{\mathbf{w}}(\mathbf{x}))$$

Hinge loss

Consider the following loss function for the perceptron algorithm:

$$L_P(f_{\mathbf{w}}(\mathbf{x}), y) = \max(0, -yf_{\mathbf{w}}(\mathbf{x}))$$

Apply the stochastic gradient descent (SGD) algorithm:

Consider a set of examples $\{\mathbf{x}_i, y_i\} \in \mathcal{D}$. Choose an example $\{\mathbf{x}_t, y_t\}$.

- **①** Compute the gradient of the loss of $f_{\mathbf{w}}(\mathbf{x}_t)$ with respect to \mathbf{w} , $\nabla_{\mathbf{w}} L(f_{\mathbf{w}}(\mathbf{x}_t), y)$
- ② Update the weight vector: $\mathbf{w} \leftarrow \mathbf{w} \nabla_{\mathbf{w}} L(f_{\mathbf{w}}(\mathbf{x}_t), y)$

SGD and the perceptron algorithm

Consider a set of examples $\{\mathbf{x}_i, y_i\} \in \mathcal{D}$. Choose an example $\{\mathbf{x}, y\}$.

- ① Compute the gradient of the loss of $f_{\mathbf{w}}(\mathbf{x})$ with respect to \mathbf{w} , $\nabla_{\mathbf{w}} L_P(f_{\mathbf{w}}(\mathbf{x}), y)$ where $L_P(f_{\mathbf{w}}(\mathbf{x}), y) = \max(0, -yf_{\mathbf{w}}(\mathbf{x}))$
- ② Update the weight vector: $\mathbf{w} \leftarrow \mathbf{w} \nabla_{\mathbf{w}} L_P(f_{\mathbf{w}}(\mathbf{x}), y)$

SGD and the perceptron algorithm

Consider a set of examples $\{\mathbf{x}_i, y_i\} \in \mathcal{D}$. Choose an example $\{\mathbf{x}, y\}$.

- Compute the gradient of the loss of $f_{\mathbf{w}}(\mathbf{x})$ with respect to \mathbf{w} , $\nabla_{\mathbf{w}} L_P(f_{\mathbf{w}}(\mathbf{x}), y)$ where $L_P(f_{\mathbf{w}}(\mathbf{x}), y) = \max(0, -yf_{\mathbf{w}}(\mathbf{x}))$
- ② Update the weight vector: $\mathbf{w} \leftarrow \mathbf{w} \nabla_{\mathbf{w}} L_P(f_{\mathbf{w}}(\mathbf{x}), y)$

Step 2 of SGD gives $\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$ which is exactly the perceptron update rule!

Which weight vector should we use for evaluation?

Option 1: Use the final **w** at test time. Not always a good idea!

Which weight vector should we use for evaluation?

Option 1: Use the final **w** at test time. Not always a good idea!

Option 2: Use an intermediate w:

• **Voted Perceptron**: Count votes for weight vectors tallying how many examples they correctly classified.

Which weight vector should we use for evaluation?

Option 1: Use the final w at test time. Not always a good idea!

Option 2: Use an intermediate w:

- Voted Perceptron: Count votes for weight vectors tallying how many examples they correctly classified.
- Averaged Perceptron: Use the averaged weight vector at the end of the algorithm rather than voting.

Beyond linearly separable data?