10. Das Cauchy-Kriterium

Motivation: Sei (a_n) eine konvergente Folge, $a := \lim a_n$. Sei $\varepsilon > 0$. Dann existiert ein $n_0 = n_0(\varepsilon) \in \mathbb{N}$: $|a_n - a| < \frac{\varepsilon}{2} \ \forall n \ge n_0$.

Für $n, m \ge n_0$: $|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a_m - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \le \varepsilon$.

Eine konvergente Folge (a_n) hat also die folgende Eigenschaft:

$$(*)\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \ \forall n, m \geq n_0 : |a_n - a_m| < \varepsilon$$

Definition (Cauchy-Folge)

Hat (a_n) die Eigenschaft (*), so heißt (a_n) eine **Cauchyfolge** (CF). **Beachte:** (a_n) ist eine Cauchyfolge $\iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : |a_n - a_m| < \varepsilon \ \forall n > m \ge n_0 \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : |a_n - a_{n+p}| < \varepsilon \ \forall n \ge n_0 \ \forall p \in \mathbb{N}.$

Beispie

Beispiel
$$s_n := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} = \sum_{k=1}^n \frac{1}{k} \ (n \in \mathbb{N})$$

$$s_{2n} - s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} - (1 + \frac{1}{2} + \dots + \frac{1}{n}) = \underbrace{\frac{1}{n+1}}_{>\frac{1}{2n}} + \underbrace{\frac{1}{n+2}}_{>\frac{1}{2n}} + \dots + \underbrace{\frac{1}{2n}}_{\geq\frac{1}{2n}} \ge \underbrace{\frac{1}{2n}}_{>\frac{1}{2n}}$$

$$n \cdot \frac{1}{2n} = \frac{1}{2} \implies |s_{2n} - s_n| \ge \frac{1}{2} \ \forall n \in \mathbb{N} \implies (s_n)$$
 ist keine Cauchyfolge!

Satz 10.1 (Cauchy-Kriterium)

 (a_n) ist konvergent \iff (a_n) ist eine Cauchyfolge.

Beweis

"⇒": siehe oben

Annahme: (a_n) ist divergent $\stackrel{9.3}{\Longrightarrow} \alpha := \liminf a_n < \limsup a_n =: \beta$

$$\varepsilon := \frac{\beta - \alpha}{3}; \quad \exists n_0 \in \mathbb{N} : |a_n - a_{n_0}| < \varepsilon \ \forall n, m \ge n_0$$

$$\alpha \in H(a_n) \implies \exists n \in \mathbb{N} : a_n \in U_{\varepsilon}(\alpha) \text{ und } n \geq n_0 \implies a_n < \alpha + \varepsilon$$

$$\beta \in H(a_n) \implies \exists m \in \mathbb{N} : a_m \in U_{\varepsilon}(\beta) \text{ und } m \geq n_0 \implies a_m < \beta - \varepsilon$$

$$\implies a_m > a_n \implies |a_m - a_n| = a_m - a_n > \beta - \varepsilon - (\alpha + \varepsilon) = \beta - \alpha - 2\varepsilon = 3\varepsilon - 2\varepsilon = \varepsilon.$$

Folgerung 10.2

Die Folge (s_n) mit $s_n := 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \quad (n \in \mathbb{N})$ ist divergent.