1. Download the dataset: Dataset

2. Load the dataset.

```
import numpy as np
import pandas as pd
df = pd.read csv("Churn Modelling.csv")
```

3. Perform Below Visualizations.

Univariate Analysis

```
import seaborn as sns
sns.histplot(df.EstimatedSalary,kde=True)
<AxesSubplot:xlabel='EstimatedSalary', ylabel='Count'>
```


● Bi - Variate Analysis

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.scatterplot(df.Balance,df.EstimatedSalary)
plt.ylim(0,15000)
```

C:\Users\ELCOT\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y.

From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

(0.0, 15000.0)

• Multi - Variate Analysis

import seaborn as sns
df=pd.read_csv("Churn_Modelling.csv")
sns.pairplot(df)

<seaborn.axisgrid.PairGrid at 0x1c4d49721c0>

4. Perform descriptive statistics on the dataset.

df=pd.read_csv("Churn_Modelling.csv")
df.describe(include='all')

	RowNumber	CustomerId	Surname	CreditScore	Geography
Gender count 10000	10000.00000	1.000000e+04	10000	10000.000000	10000
unique	NaN	NaN	2932	NaN	3
2 top Male	NaN	NaN	Smith	NaN	France
freq	NaN	NaN	32	NaN	5014
5457 mean	5000.50000	1.569094e+07	NaN	650.528800	NaN

NI - NI						
NaN std	2886.89568	7.193619e+04	Nal	N 96.6	53299	NaN
NaN min	1.00000	1.556570e+07	Nal	N 350.0	00000	NaN
NaN 25%	2500.75000	1.562853e+07	Nal	N 584.0	00000	NaN
NaN 50%	5000.50000	1.569074e+07	Nal	N 652.0	00000	NaN
NaN 75%	7500.25000	1.575323e+07	Nal	N 718.0	00000	NaN
NaN max NaN	10000.00000	1.581569e+07	Nal	N 850.0	00000	NaN
	Age	Tenure		Balance	NumOfProdu	cts
HasCrCar count	10000.000000	10000.000000	1000	90.000000	10000.000	900
10000.00 unique	NaN	NaN		NaN	I	NaN
NaN top	NaN	NaN		NaN	I	NaN
NaN freq	NaN	NaN		NaN	I	NaN
NaN mean	38.921800	5.012800	7648	35.889288	1.530	200
0.70550 std	10.487806	2.892174	6239	97.405202	0.581	ô54
0.45584 min	18.000000	0.000000		0.000000	1.000	900
0.00000 25%	32.000000	3.000000		0.000000	1.000	900
0.00000 50%	37.000000	5.000000	9719	98.540000	1.000	900
1.00000 75%	44.000000	7.000000	12764	44.240000	2.000	900
1.00000 max 1.00000	92.000000	10.000000	25089	98.090000	4.000	900
count unique top freq mean std min 25%	N	00 10000.00 aN aN aN 00 100090.23 97 57510.49	00000 NaN NaN NaN 89881 02818		000 NaN NaN NaN 700 769	
50%	1.0000			0.000		

75%	1.000000	149388.247500	0.000000
max	1.000000	199992.480000	1.000000

5. Handle the Missing values.

```
from ast import increment_lineno
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(color_codes=True)
df=pd.read_csv("Churn_Modelling.csv")
df.head()
```

,	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

	Tenure	Balance	NumOfProducts	${\sf HasCrCard}$	IsActiveMember	\
0	2	0.00	1	1	1	
1	1	83807.86	1	Θ	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0

6. Find the outliers and replace the outliers

```
import pandas as pd
import matplotlib
from matplotlib import pyplot as pyplot
%matplotlib inline
matplotlib.rcParams['figure.figsize']=(10,6)
```

```
df=pd.read csv("Churn Modelling.csv")
df.sample(5)
      RowNumber CustomerId
                               Surname
                                         CreditScore Geography
                                                                 Gender
Age
2289
           2290
                    15789097
                                Keelev
                                                 644
                                                         France
                                                                   Male
48
8327
           8328
                    15766787
                                Piazza
                                                 707
                                                         France
                                                                 Female
35
                              Lombardi
6626
           6627
                    15619932
                                                 847
                                                         France
                                                                   Male
66
3501
           3502
                                                  646
                    15802060
                                 Ch'ang
                                                        Germany
                                                                 Female
30
9467
           9468
                    15734850
                              Milanesi
                                                 676
                                                          Spain
                                                                   Male
36
                          NumOfProducts HasCrCard
                                                      IsActiveMember
      Tenure
                Balance
2289
           8
                    0.00
                                       2
                                                   0
                                                                    1
                                       2
                                                                   1
8327
           9
                    0.00
                                                   1
           7
                                       1
                                                                    1
6626
              123760.68
                                                   0
                                       2
          10
              100548.67
                                                   0
                                                                   0
3501
9467
           1
               82729.49
                                       1
                                                   1
                                                                   0
      EstimatedSalary Exited
             44965.54
2289
                             1
8327
             70403.65
                             0
6626
             53157.16
                             0
            136983.77
                             0
3501
```

7. Check for Categorical columns and perform encoding.

113810.12

```
df=pd.read_csv("Churn_Modelling.csv")
df.columns
import pandas as pd
import numpy as np
headers=['RowNumber','CustomerID','Surname','CreditScore','Geography',
    'Gender','Age','Tenure','Balance','NumofProducts','HasCard'
    'IsActiveMember','EstimatedSalary','Exited']
import seaborn as sns
df.head()
    RowNumber CustomerId Surname CreditScore Geography Gender Age
```

,	RowNumber	CustomerId	Surname	CreditScore G	eography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42

```
3
           4
                 15701354
                               Boni
                                              699
                                                      France Female
                                                                        39
4
           5
                 15737888 Mitchell
                                              850
                                                       Spain Female
                                                                        43
   Tenure
             Balance
                       NumOfProducts HasCrCard
                                                   IsActiveMember
0
        2
                 0.00
        1
                                    1
                                                                 1
1
            83807.86
                                               0
2
        8
           159660.80
                                    3
                                                1
                                                                 0
3
        1
                 0.00
                                    2
                                               0
                                                                 0
4
        2
           125510.82
                                    1
                                                1
                                                                 1
   EstimatedSalary Exited
0
         101348.88
                          1
1
         112542.58
                          0
2
         113931.57
                          1
```

8. Split the data into dependent and independent variables.

```
x=df.iloc[:,:-1].values
print(x)
y=df.iloc[:,-1]._values
print(y)

[[1 15634602 'Hargrave' ... 1 1 101348.88]
  [2 15647311 'Hill' ... 0 1 112542.58]
  [3 15619304 'Onio' ... 1 0 113931.57]
  ...
  [9998 15584532 'Liu' ... 0 1 42085.58]
  [9999 15682355 'Sabbatini' ... 1 0 92888.52]
  [10000 15628319 'Walker' ... 1 0 38190.78]]
[1 0 1 ... 1 1 0]
```

9. Scale the independent variables

93826.63

79084.10

```
import seaborn as sns
df=pd.read_csv("Churn_Modelling.csv")
dff=df[['Balance','Age']]
sns.heatmap(dff.corr(), annot=True)
sns.set(rc={'figure.figsize':(40,40)})
```


10. Split the data into training and testing

```
from scipy.sparse.construct import random
x=df.iloc[:, 1:2].values
y=df.iloc[:,2].values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train,
y_test=train_test_split(x,y,test_size=0.2,random_state=0)
print('Row count of x_train table'+'-'+str(f"{len(x_train):,}"))
print('Row count of y_train table'+'-'+str(f"{len(y_train):,}"))
print('Row count of x_test table'+'-'+str(f"{len(x_test):,}"))
print('Row count of y_test table'+'-'+str(f"{len(y_test):,}"))
Row count of x_train table-8,000
Row count of y_train table-8,000
Row count of y_test table-2,000
Row count of y_test table-2,000
Row count of y_test table-2,000
```