

First Results from the Fennoscandian GPS Networks

J.M. Johansson and R.T.K. Jaldehag

Onsala Space Observatory

J.L. Davis and P. Elosegui

Smithsonian Astrophysical Observatory

1993 AGU Fall Meeting

The Swedish Permanent GPS Network for Positioning (SWEPOS)

Collaborative effort between:

The National Land Survey of Sweden
Onsala Space Observatory
Smithsonian Astrophysical Observatory

Applications

Real-Time Navigation

“Low accuracy” positioning

Surveying

Geophysical applications, e.g., Postglacial rebound and correction of tide gauge data (SAO, OSO, U. Toronto)

The Local Control Network at Esrange

Umeå - Vilhelmina; Baseline Length = 190 km

Karlstad - Umeå; Baseline Length = 560 km

Correlation Study

- Using limited data (~60 days), we attempt to obtain measure of temporal correlations
- Method: Group observations into weeks, determine weekly averages
- If errors are uncorrelated day-to-day, errors in weekly averages should be $1/\sqrt{7}$ (0.378) times smaller
- Model for correlations: $r(\Delta t) = \exp[-|\Delta t| / \tau]$
- This model can be used to predict precision of averaged values for different values of τ
- Using ratio of RMS scatters of averaged values to RMS scatters of unaveraged values, we can estimate τ
- Results: $\tau \approx 1$ day ($r < 1\%$ after 5 days)

Conclusions and Future Work

The results show that the network can be used in geophysical applications such as the DOSE investigation on Postglacial rebound

Smithsonian Astrophysical Observatory
Onsala Space Observatory
National Land Survey of Sweden
University of Toronto

Areas of research

Atmospheric Loading

Troposphere

Ionosphere

Multipath

Anti-Spoofing (AS)

Correlations (power spectra, etc.)