BAYESIAN NETWORKS:

MODELING AND INFERENCE:

Interence

- 1. Queries
- 2. Algorithms

Modeling

Sensitivity Analysis

C: Condition

T, /T2: Tests

S: Sex

32 Worlds

QUERTES:

PRIOR MARGINALS:

C = yes	3.2%
C=No	96.89.

T, = tve 21.92%

Ty=-ve 78.08%

Monitors

Probabilities hith no other evidence.

POSTERIOR MARMINALS:

he have evidence.

T, = +ve, Tz: tve

P+(·)

b, (, 18)

Posterio r

B: T, = +ve, Tz: tve

C = yes	45-33%	
C=No	54.67%	

Male	83.02%
Female	16. 98%

MPE: MOST PROBABLE EXPLANATION:

Evidence
$$A = yes$$

$$T_1 = T_2 = +ve \quad or$$

$$T_1 = T_2 = -ve$$

32 instantiations

Return the most probable instantiation of S,C,T_1,T_2 given evidence A = yes

MAP: MAXIMUM A POSTERZORI HYPOTHE SIS:

Evidence:

Pass evidence and set of parameters to maximize over. MAP + all variables = MPE

COMPLEXITY OF INFERENCE:

- Variable elimination

- Conditioning

TOPOLOGY, TREENSOTH

(measure of how connected)

n: # variables

d: #values

w: tree width

morginals

, o(v·9m)

- TREE

-> POLYTREE [SINDLE- CONNECTED]

(Multiple parents)

w= 1x

where k: maximum number of parents a node can have.

-> MULTIPLE - CONNECTED (DAP)

WEIGHTED MODEL COUNTING (WMC): D: (AVB) A 7C weights A B C 80.0 t 0.04 t Ŧ t f 0.10 t 4 0.10 0.00 t t t

f f 6.00

t ţ f 0.42 t f t

0.09

product of SAT - yes, no weights of #SAT - 2 (models) literals. model (ounting (Mc)

WMC: 0.04 + 0.10 + 0.00 = 0.14

REDUCING PROBABILISTIC INFERENCE TO WMC:

8 worlds

Variables: A,B,C

Introduce a boolean variable for each parameter:

P1: OA P3: OBIA P5: OBIA P7: OCIA P9: OCIA

P2: OTA P4: OTBIA P6: OTBIAA P8: OTCIAA

* Dne model of A:

A 78 C P, P4 P7 782 7P3 7P6 7P8 7P9 7P10

* Weights of literals:

- w(P;) = 0;

- w(7Pi)=1

BAYESZAN:

n: variables

k: maximum # parents per node

d: maximum # valves per variable

dk+) } bound on size cpt

O CPTS.

Size of Bayesian: O(n, d^{kt1})
Network

Joint Probability 2

Example

The flu is an acute disease characterized by fever, body aches and pains, and can be associated with chilling and a sore throat. The cold is a bodily disorder popularly associated with chilling and can cause a sore throat. Tonsillitis is inflammation of the tonsils which leads to a sore throat and can be associated with fever.

```
STEP 1:
Variable, Value
STEP 2:
Edge
STEP 3:
CPTs
```

: 1 ggt 2

Variables:

Example

The <u>flu</u> is an acute disease characterized by <u>fever</u>, <u>body aches</u> and pains, and can be associated with <u>chilling</u> and a <u>sore throat</u>. The <u>cold</u> is a bodily disorder popularly associated with chilling and can cause a sore throat. <u>Tonsillitis</u> is inflammation of the tonsils which leads to a sore throat and can be associated with fever.

Values: T/F for each

STEP 2:

Query Yariable Evidence variable

STEP 3:

- 3 Methods
 - 1. Problem Statement
 - 2. subjective Beliefs
 - 3. learning from data.

from data: Learning

CPTs cal	n also be	estimate	ed from medica	al records of	previous patien	ts		
Case	Cold?	Flu?	Tonsillitis?	Chilling?	Bodyache?	Sorethroat?	Fever?	
1	true	false	?	true	false	false	false	
2	false	true	false	true	true	false	true	
3	?	?	true	false	?	true	false	
		:	:			:	:	
'								

Data - Complete - Closed Form (Efficient)

-> Incomplete -> EM: Expectation Maximization.

Structure + CPTS = Bayesian Netword BN

A · CPTS A = BN A

Find the scores

(probability) of each B. CPT B = BN B

data.

Find maximum score

MAXIMUN LIKELIHOOD

PRINCIPLE.

Pr (Data (BN)

Example

A few weeks after inseminating a cow, we have three possible tests to confirm pregnancy. The first is a scanning test which has a false positive of 1% and a false negative of 10%. The second is a blood test, which detects progesterone with a false positive of 10% and a false negative of 30%. The third test is a urine test, which also detects progesterone with a false positive of 10% and a false negative of 20%. The probability of a detectable progesterone level is 90% given pregnancy, and 1% given no pregnancy. The probability that insemination will impregnate a cow is 87%.

578P 1:

Variables

Example

A few weeks after inseminating a cow, we have three possible tests to confirm pregnancy. The first is a scanning test which has a false positive of 1% and a false negative of 10%. The second is a blood test, which detects progesterone with a false positive of 10% and a false negative of 30%. The third test is a urine test, which also detects progesterone with a false positive of 10% and a false negative of 20%. The probability of a detectable progesterone level is 90% given pregnancy, and 1% given no pregnancy. The probability that insemination will impregnate a cow is 87%.

STEP 2:

STEP 3:

P	
yes	0 .87
No	0.13

	P	S	
	yes	tve	0.9
fo →	yes	~ve	0.1
fp -	00	tve	0.01
	10	·ve	0.99

Evidence:

P= yes	10 · 21%
P = No	89.79%

Posterior Marginal

if we want P=yes = 5%

RECOMMENDATIONS:

3.
$$P(L=yes|P=yes)$$

$$P000 \rightarrow 99.679.$$

NAIVE BAYES STRUCTURE:

