Университет ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №2

по «Вычислительной математике» Вариант 3

Выполнил:

Студент группы Р3208

Дашкевич Егор Вячеславович

Преподаватели:

Машина Екатерина Алексеевна

Санкт-Петербург

Оглавление

Цель работы	3
Текст задания	3
Вычислительная часть	5
Нелинейное уравнение	5
Система нелинейных уравнений	8
Программная часть	13
Вывод	

Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Текст задания

1 часть. Решение нелинейного уравнения

Задание:

- 1. Отделить корни заданного нелинейного уравнения графически
- 2. Определить интервалы изоляции корней.
- 3. Уточнить корни нелинейного уравнения с точностью $\varepsilon = 10^{-2}$.
- 4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.
- 5. Вычисления оформить в виде таблиц, в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой.

2 часть. Решение системы нелинейных уравнений

Задание:

- 1. Отделить корни заданной системы нелинейных уравнений графически
- 2. Используя указанный метод, решить систему нелинейных уравнений с точностью до 0,01.
- 3. Для метода простой итерации проверить условие сходимости метода.
- 4. Подробные вычисления привести в отчете.

2 Программная реализация задачи:

Для нелинейных уравнений:

1. Все численные методы должны быть реализованы в виде отдельных подпрограмм/методов/классов.

- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3-5 функций, в том числе и трансцендентные), из тех, которые предлагает программа.
- 3. Предусмотреть ввод исходных данных (границы интервала/начальное приближение к корню и погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя.
- 4. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные.
- 5. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом, простой итерации), выбор начального приближения x_0 (а или b) вычислять в программе.
- 6. Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале.
- 7. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя.
- 8. Организовать вывод графика функции, график должен полностью отображать весь исследуемый интервал (с запасом). Пользователь должен видеть интервалы изоляции корней.

Для систем нелинейных уравнений:

- 1. Пользователь выбирает предлагаемые программой системы двух нелинейных уравнений (2-3 системы).
- 2. Организовать вывод графика функций.
- 3. Начальные приближения ввести с клавиатуры.
- 4. Для метода простой итерации проверить достаточное условие сходимости.
- 5. Организовать вывод вектора неизвестных: x1, x2.

- 6. Организовать вывод количества итераций, за которое было найдено решение.
- 7. Организовать вывод вектора погрешностей: $|x_i^k x_i^{-(k-1)}|$
- 8. Проверить правильность решения системы нелинейных уравнений.

Вычислительная часть

Нелинейное уравнение

Формула: $x^3 + 2,84x^2 - 5,606x - 14,766$

Графическое решение:

Аналитическое решение:

Корень	Крайний левый	Средний	Крайний правый
Метод	Метод простой итерации	Метод Ньютона	Метод половинного деления
Интервал изоляции	[-3,7; -2,7]	[-2,5; -1,5]	[2; 3]

Поиск первого корня:

Рабочая формула метода: $x_{i+1} = \varphi(x_i)$

$$\varphi(x) = x + \lambda f(x), \varphi'(x) = 1 + \lambda f'(x)$$

$$f(x) = x^3 + 2,84x^2 - 5,606x - 14,766$$

$$f'(x) = 3x^2 + 5,68x - 5,606$$

$$\varphi(x) = x + \lambda(x^3 + 2,84x^2 - 5,606x - 14,766)$$

$$f'(-3,7) = 14,448 \quad f'(-2,7) = 0,928 \quad \lambda = -\frac{1}{14,448} \approx -0,069$$

Проверяем условие сходимости:

$$\varphi'(-3.7) = 0.003 \ll 1 \ \varphi'(-2.7) = 0.936 < 1$$

Условие сходимости выполняется!

Шаг	x_k	x_{k+1}	$f(x_{k+1})$	$ x_k-x_{k+1} $
1	-3.7	-3.3	-1.276	0,4
2	-3.3	-3.212	-0.597	0,088
3	-3.212	-3.17	-0.316	0,042
4	-3.17	-3.149	-0.174	0,021

5	-3.149	-3.137	-0,102	0,012
6	-3.137	-3.13	-0.598	0,007

Уточненное значение $x_1 = -3.13$

Поиск второго корня:

Рабочая формула метода:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

$$f(x) = x^3 + 2,84x^2 - 5,606x - 14,766$$
$$f'(x) = 3x^2 + 5,68x - 5,606$$

Шаг	x_k	$f(x_k)$	$f'(x_k)$	x_{k+1}	$ x_k - x_{k+1} $
1	-2.5	1.374	-1.056	-1.199	1.301
2	-1.199	-5.685	-8.104	-1.901	0.702
3	-1.901	-0.716	-5.562	-2.03	0.129
4	-2.03	-0.048	-4.774	-2.04	0.01

Уточненное значение $x_2 = -2.04$

Поиск третьего корня:

Рабочая формула метода:

$$x_i = \frac{a_i + b_i}{2}$$

Шаг	а	b	Х	f(a)	f(b)	f(x)	a - b
1	2	3	2.5	-6.618	20.976	4.594	1

2	2	2.5	2.25	-6.618	4.594	-1.611	0.5
3	2.25	2.5	2.375	-1.611	4.594	1.335	0.25
4	2.25	2.375	2.313	-1.611	1.336	-0.164	0.125
5	2.313	2.375	2.344	-0.164	1.336	0.576	0.062
6	2.313	2.344	2.329	-0.164	0.576	0.216	0.031
7	2.313	2.329	2.321	-0.164	0.216	0.025	0.016
8	2.313	2.321	2.317	-0.164	0.025	-0.07	0.008

Уточненный корень $x_3 = 2.317$

Система нелинейных уравнений

3	$\begin{cases} cos(x-1) + y = 0.5 \\ x - cosy = 3 \end{cases}$	Метод простой итерации
---	--	------------------------

Графическое решение:

Вычислительное решение:

Последующие приближения находятся по формулам:

$$\begin{cases} x_1^{(k+1)} = \varphi_1(x_1^k, x_2^k, \dots, x_n^k) \\ x_2^{(k+1)} = \varphi_2(x_1^k, x_2^k, \dots, x_n^k) \\ \dots \\ x_n^{(k+1)} = \varphi_n(x_1^k, x_2^k, \dots, x_n^k) \end{cases} \qquad k = 0, 1, 2, \dots$$

$$\begin{cases} y = 0.5 - \cos(x - 1) \\ x = 3 + \cos y \end{cases}$$

Интервал изоляции: $x \in [3; 4]$ $y \in [0,5; 1,5]$

Условие сходимости:

$$\frac{\partial \varphi_1}{\partial x} = \sin(x - 1) \qquad \frac{\partial \varphi_2}{\partial x} = 0 \qquad \frac{\partial \varphi_1}{\partial y} = 0 \qquad \frac{\partial \varphi_2}{\partial y} = -\sin y$$

$$\left| \frac{\partial \varphi_1}{\partial x} \right| + \left| \frac{\partial \varphi_1}{\partial y} \right| < 1 \qquad \left| \frac{\partial \varphi_2}{\partial x} \right| + \left| \frac{\partial \varphi_2}{\partial y} \right| < 1$$

Начальное приближение: $x_0 = 3 \ y_0 = 0.5$

Вычисление:

• 1 Шаг:

$$y_1 = 0.5 - \cos(x_0 - 1) = 0.5 - \cos(3 - 1) = 0.916$$

 $x_1 = 3 + \cos y_0 = 3 + \cos 0.5 = 3.878$
 $|x_1 - x_0| = 0.122$
 $|y_1 - y_0| = 0.416$

• 2 Шаг:

$$y_2 = 0.5 - \cos(x_1 - 1) = 1,465$$

 $x_2 = 3 + \cos y_1 = 3.609$
 $|x_2 - x_1| = 0.269$
 $|y_2 - y_1| = 0.549$

• 3 Шаг:

$$y_3 = 0.5 - \cos(x_2 - 1) = 1.361$$

 $x_3 = 3 + \cos y_2 = 3,106$
 $|x_3 - x_2| = 0.503$
 $|y_3 - y_2| = 0.104$

• 4 Шаг:

$$y_4 = 0.5 - \cos(x_3 - 1) = 1.01$$

 $x_4 = 3 + \cos y_3 = 3.208$
 $|x_4 - x_3| = 0.102$
 $|y_4 - y_3| = 0.351$

• 5 Шаг:

$$y_5 = 0.5 - \cos(x_4 - 1) = 1.095$$

 $x_5 = 3 + \cos y_4 = 3.532$
 $|x_5 - x_4| = 0.324$
 $|y_5 - y_4| = 0.085$

• 6 Шаг:

$$y_6 = 0.5 - \cos(x_5 - 1) = 1.32$$

 $x_6 = 3 + \cos y_5 = 3.458$
 $|x_6 - x_5| = 0.074$
 $|y_6 - y_5| = 0.225$

• 7 Шаг:

$$y_7 = 0.5 - \cos(x_6 - 1) = 1.275$$

 $x_7 = 3 + \cos y_6 = 3.248$
 $|x_7 - x_6| = 0.21$
 $|y_7 - y_6| = 0.045$

• 8 Шаг:

$$y_8 = 0.5 - \cos(x_7 - 1) = 1.127$$

 $x_8 = 3 + \cos y_7 = 3.292$
 $|x_8 - x_7| = 0.044$
 $|y_8 - y_7| = 0.148$

• 9 Шаг:

$$y_9 = 0.5 - \cos(x_8 - 1) = 1.16$$

 $x_9 = 3 + \cos y_8 = 3.429$
 $|x_9 - x_8| = 0.137$
 $|y_9 - y_8| = 0.033$

• 10 Шаг:

$$y_{10} = 0.5 - \cos(x_9 - 1) = 1.257$$

 $x_{10} = 3 + \cos y_9 = 3.399$
 $|x_{10} - x_9| = 0.03$
 $|y_{10} - y_9| = 0.097$

• 11 Шаг:

$$y_{11} = 0.5 - \cos(x_{10} - 1) = 1.237$$

 $x_{11} = 3 + \cos y_{10} = 3.309$
 $|x_{11} - x_{10}| = 0.09$
 $|y_{11} - y_{10}| = 0.02$

• 12 Шаг:

$$y_{12} = 0.5 - \cos(x_{11} - 1) = 1.173$$

 $x_{12} = 3 + \cos y_{11} = 3.328$
 $|x_{12} - x_{11}| = 0.019$
 $|y_{12} - y_{11}| = 0.064$

• 13 Шаг:

$$y_{13} = 0.5 - \cos(x_{12} - 1) = 1.187$$

 $x_{13} = 3 + \cos y_{12} = 3.387$
 $|x_{13} - x_{12}| = 0.059$
 $|y_{13} - y_{12}| = 0.014$

• 14 Шаг:

$$y_{14} = 0.5 - \cos(x_{13} - 1) = 1.229$$

 $x_{14} = 3 + \cos y_{13} = 3.374$
 $|x_{14} - x_{13}| = 0.013$
 $|y_{14} - y_{13}| = 0.042$

• 15 Шаг:

$$y_{15} = 0.5 - \cos(x_{14} - 1) = 1.22$$

 $x_{15} = 3 + \cos y_{14} = 3.335$
 $|x_{15} - x_{14}| = 0.039$
 $|y_{15} - y_{14}| = 0.009$

• 16 Шаг:

$$y_{16} = 0.5 - \cos(x_{15} - 1) = 1.192$$

 $x_{16} = 3 + \cos y_{15} = 3.344$
 $|x_{16} - x_{15}| = 0.009$
 $|y_{16} - y_{15}| = 0.028$

• 17 Шаг:

$$y_{17} = 0.5 - \cos(x_{16} - 1) = 1.198$$

 $x_{17} = 3 + \cos y_{16} = 3.37$
 $|x_{17} - x_{16}| = 0.026$
 $|y_{17} - y_{16}| = 0.006$

• 18 Шаг:

$$y_{18} = 0.5 - \cos(x_{17} - 1) = 1.193$$

 $x_{18} = 3 + \cos y_{17} = 3.364$
 $|x_{18} - x_{17}| = 0.027$
 $|y_{18} - y_{17}| = 0.005$

• 19 Шаг:

$$y_{19} = 0.5 - \cos(x_{18} - 1) = 1.213$$

 $x_{19} = 3 + \cos y_{18} = 3.369$
 $|x_{19} - x_{18}| = 0.005$
 $|y_{19} - y_{18}| = 0.02$

• 20 Шаг:

$$y_{20} = 0.5 - \cos(x_{19} - 1) = 1.216$$

 $x_{20} = 3 + \cos y_{19} = 3.35$
 $|x_{20} - x_{19}| = 0.019$
 $|y_{20} - y_{19}| = 0.003$

• 21 Шаг:

$$y_{21} = 0.5 - \cos(x_{20} - 1) = 1.203$$

 $x_{21} = 3 + \cos y_{20} = 3.347$
 $|x_{21} - x_{20}| = 0.003$
 $|y_{21} - y_{20}| = 0.013$

• 22 Шаг:

$$y_{22} = 0.5 - \cos(x_{21} - 1) = 1.201$$

 $x_{22} = 3 + \cos y_{21} = 3.36$
 $|x_{22} - x_{21}| = 0.013$
 $|y_{22} - y_{21}| = 0.002$

• 23 Шаг:

$$y_{23} = 0.5 - \cos(x_{22} - 1) = 1.21$$

 $x_{23} = 3 + \cos y_{22} = 3.361$
 $|x_{23} - x_{22}| = 0.001$
 $|y_{23} - y_{22}| = 0.009$

$$max|x_i - x_{i-1}| = 0,009 < 0,01 =>$$
 расчет завершён

Приближенный корень: x = 3,361; y = 1,21

Программная часть

Листинг программы:

Метод простых итераций:

```
def get_lambda(f, a, b, accuracy):
    x = a
    x_max = x
    l = 0
    sign = 1
    while (x <= b):
        if l < abs(f(x)):
            l = max(l, abs(f(x)))
            sign = abs(f(x)) / f(x)
            x_max = x
            x += accuracy
    return -1 / l * sign, x_max</pre>
```

```
def solve(f, deriv, a, b, accuracy):
   iter = 1
   lambd, x0 = get_lambda(deriv, a, b, accuracy)
   q = abs(1 + lambd * deriv(x0))
   if q > 1:
       print('Достаточное условие сходимости не выполняется!')
   elif q > 0.5:
        accuracy = (1 - q) / q * accuracy
   print_table_header(["#", "x_i", "x_{i+1}", "f(x_i)", "delta_x"])
   while abs(f(x)) > accuracy and iter < 10000:
       if (q >= 1 \text{ and iter} > 3):
           break
       prev_x = x
       x = x + f(x) * lambd
        print_table_row([iter, x, prev_x, f(x), abs(x - prev_x)])
        iter += 1
   return x
```

Метод половинного деления:

```
def solve(f, a, b, accuracy):
    iter = 0
    x = 0.0
    print_table_header(["#", "a", "b", "x_i", "f(a)", "f(b)", "f(x_i)", "|a-b|"])
    while abs(a-b) > accuracy:
        iter += 1
            x = mid(a, b)
        if f(a)*f(x) > 0: a = x
        else: b = x
        print_table_row([iter, a, b, x, f(a), f(b), f(x), abs(a-b)])
    x = mid(a, b)
    return x
```

Метод секущих:

```
def get_x(f, ff, start, end):
   if f(start) * ff(start) > 0:
       return [start, start + 0.1]
   elif f(end) * ff(end) > 0:
       return [end, end - 0.1]
   else:
       return [start, start + 0.1]
def solve(f, ff, start, end, accuracy):
   iter = 0
   print(get_x(f, ff, start, end))
   x, prev_x = get_x(f, ff, start, end)
   def find_x():
       return x - (x - prev_x) / (f(x) - f(prev_x)) * f(x)
   print_table_header(["#", "x_{i-1}", "x_i", "x_{i+1}", "f(x_i+1)", "delta_x"])
   while abs(x - prev_x) > accuracy and abs(f(x)) >= accuracy:
       iter += 1
       _out = [iter, prev_x, x]
       x = find_x()
       prev_x = _out[-1]
       print_table_row(_out + [x, f(x), abs(x - prev_x)])
   return x
```

Метод Ньютона для систем:

```
def solve(sys, x, y, eps):
    max_iters = 13
    iter = 1
   jac = calc_jacobian(sys, x, y)
   x_{iter} = x - calc_{delta}(sys, x, y) / jac
   y_iter = y - calc_delta_y(sys, x, y) / jac
   print_table_header(["#", "x", "y", "x_dif", "y_dif"])
   dif_x = abs(x_iter - x)
    dif_y = abs(y_iter - y)
    print_table_row([iter, x_iter, y_iter, dif_x, dif_y])
    while iter < max_iters:</pre>
       iter += 1
       x = x_{iter}
       y = y_iter
        jac = calc_jacobian(sys, x, y)
       x_iter = x - calc_delta_x(sys, x, y) / jac
       y_iter = y - calc_delta_y(sys, x, y) / jac
       dif_x = abs(x_iter - x)
        dif_y = abs(y_iter - y)
        print_table_row([iter, x_iter, y_iter, dif_x, dif_y])
        if max(dif_x, dif_y) <= eps:</pre>
            break
    if iter == max_iters:
        print("Reached max iterations, answer is not in desired precision")
    return [x_iter, y_iter]
```

Вывод программы:

```
What are we doing:
1. single equation
2. equation system
3. both
Your choice: 3
Select function:
1. x^3 + 2.84x^2 - 5.606x - 14.766
2. (x^2)/2 - \sin(x)
3. sin(x) + 2cos(x)
Function: 1
Enter interval: 3 4
No solution on this interval
Invalid interval, please try again
Enter interval: 2 4
Enter desired precision: 0.01
Select method:
1. basic iterations
2. halfing division
3. secants method
Solve type: 2
```

Метод і	половинного	деления				
#	a	b	x_i	f(a) f(b)	f(x_i) a-b	
1	2.0	3.0	3.0	-6.618 20.976	20.976 1.0	_
2	2.0	2.5	2.5	-6.618 4.594	4.594 0.5	
3	2.25	2.5	2.25	-1.6114 4.594	-1.6114 0.25	
4	2.25	2.375	2.375	-1.6114 1.3356	1.3356 0.125	
5	2.3125	2.375	2.3125	-0.1761 1.3356	-0.1761 0.0625	
6	2.3125	2.3438	2.3438	-0.1761 0.5701	0.5701 0.0312	
7	2.3125	2.3281	2.3281	-0.1761 0.1946	0.1946 0.0156	
8	2.3125	2.3203	2.3203	-0.1761 0.0087	0.0087 0.0078	
Найден	решение х	= 2.31640	625 f(x) =	-0.0838489165		

Вывод

В ходе выполнения лабораторной разобрался в применении различных методов для решения нелинейных уравнений, реализовал их в виде программ.