CMA211 AD - Cálculo 2 - Mecânica Diurno

23 de Novembro de 2018 Prova 3

	Q:	1	2	3	4	5	6	7	Total
Nome:	P:	15	15	25	15	15	15	10	110
	N:								

Questão 1 Calcule $\iiint_E \frac{z^2}{(x^2+y^2+z^2)^{\frac{3}{2}}}V$, onde E é a região acima do cone $z=\sqrt{x^2+y^2}$ entre as esferas $x^2 + y^2 + z^2 = 1$ e $x^2 + y^2 + z^2 = 4$. Calcule $\oint x^2 e^y dy$, onde C é a curva fechada que passa nos vértices (0,0), (1,0) e (1,1) no sentido anti-horário. Seja **F** = $(2x - y)\vec{i} + (1 - x)\vec{j}$. (a) 10 Esboce o campo vetorial F. (b) 10 Calcule a integral $\int_{\mathbb{R}} \mathbf{F} \cdot d\mathbf{r}$ onde C é a curva parametrizada por $\mathbf{r}(t) = \langle t^2, e^{t^3} \rangle$, $0 \le t \le 1$. (c) $\boxed{5}$ Calcule a integral $\int_{\mathbb{C}} \mathbf{F} \cdot d\mathbf{r}$ onde C é a curva dada pela circunferência centrado em C(3,2) e raio 2. Calcule $\iint_{\mathbb{R}} \mathbf{rot} \ \mathbf{F} \cdot d\mathbf{S}$ onde $\mathbf{F} = (x^2 z)\vec{i} + y^2 \vec{j} + xy\vec{k}$, através da superfície de $z = 1 - x^2 - y^2$ acima do plano xy, orientada para cima. Calcule o fluxo de $\mathbf{F} = xz\vec{i} + yz\vec{j} + 2018z\vec{k}$ através da casca elíptica $\frac{x^2}{4} + y^2 = 1$, com $0 \le z \le 2$. Calcule I = $\iint_{\mathbb{R}} \sqrt{x^2 + y^2} \, dA$, sendo R a região limitada pelas curvas $x^2 + y^2 = 2x$, $x^2 + y^2 = 4x$,

 $y = x, y = \frac{\sqrt{3}}{2}x.$