#### ~ Seminar 4 ~

# > Expresii regulate (RegEx)

**Definiție:** Se numește familia expresiilor regulate peste  $\Sigma$  și se notează RegEx( $\Sigma$ ) mulțimea de cuvinte peste alfabetul  $\Sigma \cup \{(, ), +, \cdot, *, \emptyset, \lambda\}$  definită recursiv astfel:

- i)  $\emptyset, \lambda \in RegEx$  și  $\alpha \in RegEx, \forall \alpha \in \Sigma$ .
- ii) Dacă  $e_1, e_2 \in RegEx$ , atunci  $(e_1 + e_2) \in RegEx$ . (reuniune)
- iii) Dacă  $e_1, e_2 \in RegEx$ , atunci  $(e_1 \cdot e_2) \in RegEx$ . (concatenare)
- iv) Dacă  $e \in RegEx$ , atunci  $(e^*) \in RegEx$ . (stelare)
- Precedența operațiilor: () > \* > · > + (paranteze > stelare > concatenare > reuniune)

  Obs: În evaluarea unei expresii regulate se ține cont în primul rând de paranteze, iar apoi
  ordinea în care se evaluează operațiile este: stelare, apoi concatenare, apoi reuniune.

  (Dacă vreți să fiți siguri că nu le încurcați, puteți să faceți o analogie cu operațiile aritmetice,
  unde se evaluează întâi ridicarea la putere, apoi înmulțirea și apoi adunarea.)
- Reamintim din seminarul 1:

$$\begin{split} L &= L_1 \cup L_2 = \{ w \mid w \in L_1 \; sau \; w \in L_2 \} \\ L &= L_1 \cdot L_2 = \{ w_1 \cdot w_2 \mid w_1 \in L_1 \; \S i \; w_2 \in L_2 \} \\ L &= (L_1)^* = \{ \lambda \} \cup \bigcup_{n \geq 1} \; \{ w_1 w_2 \ldots w_n \mid w_i \in L_1, \forall \; 1 \leq i \leq n \} \end{split}$$

# ➤ Algoritm: Transformarea RegEx → AFN-λ

Pentru fiecare caz din definiția RegEx vom construi câte un automat finit echivalent.

Caz i)

| RegEx         | $e = \emptyset$ | $e = \lambda$   | $e = a$ , unde $a \in \Sigma$ |
|---------------|-----------------|-----------------|-------------------------------|
| Limbaj        | $L = \emptyset$ | $L = {\lambda}$ | $L = \{a\}$                   |
| Automat Finit | d0              | q0              | q0 a q1                       |

În **cazurile ii), iii) și iv)** presupunem că pentru expresia regulată  $e_k$  și limbajul  $L(e_k)$ ,  $k \in \{1, 2\}$  avem deja automate finite  $AF(L(e_k)) = (Q_k, \Sigma_k, q_{0k}, F_k, \delta_k)$ , cu  $Q_1 \cap Q_2 = \emptyset$  (stări disjuncte).

Desenăm schema unui automat punând în evidență starea inițială  $q_{0k}$  și mulțimea stărilor finale  $F_k$ . Dreptunghiul  $M_k$  include toate celelalte stări și tranzițiile automatului.



Vom construi automatele pentru operațiile de reuniune, concatenare și stelare.



• Exemplu: Desenați 3 automate finite pentru  $L_1 = a^*$ ,  $L_2 = bc^*$ ,  $L_3 = ac$ , apoi folosind algoritmii pentru reuniune, concatenare, stelare și ținând cont de paranteze și de ordinea operațiilor, desenați automatul pentru  $L_4 = (a^* + bc^*) \cdot (ac)^* = (L_1 + L_2) \cdot (L_3)^*$ .



# ➤ Algoritm: Transformarea AFN-λ → RegEx

**Definiție:** Se numește AFE (automat finit extins),  $M = (Q, \Sigma, et, q_0, F)$ , unde, la fel ca la celelalte automate finite, Q este mulțimea stărilor,  $\Sigma$  este alfabetul,  $q_0$  este starea inițială,  $\Gamma$  este mulțimea stărilor finale. Aici (în locul funcției de tranziție) avem funcția de etichetare  $et: Q \times Q \to RegEx(\Sigma)$ .

Notăm et(p,q) prin  $e_{pq}$  (expresia regulată asociată săgeții de la starea p la starea q)

*Ideea algoritmului* este de a transforma automatul finit într-un automat finit extins și apoi a elimina una câte una stările până ajungem la o expresie regulată echivalentă cu automatul inițial.

#### • Algoritm:

**Pas 1:** Transformăm automatul finit dat într-un AFE astfel: dacă de la starea  $q_x$  către starea  $q_y$  există *mai multe tranziții*, atunci le înlocuim cu *expresia regulată* obținută prin reunirea (operatorul "+") simbolurilor de pe acele tranziții.

$$et(q_x, q_y) = \{w \in REX(\Sigma) \mid w = a_1 + a_2 + \dots + a_n; q_y \in \delta(q_x, a_i), a_i \in (\Sigma \cup \{\lambda\}), \forall i \in \{1, \dots, n\}\}$$

Pas 2: Dacă starea inițială este și finală sau dacă există săgeți care vin către starea inițială, atunci se adaugă la automat o nouă stare care va fi inițială și va avea o săgeată cu expresia  $\lambda$  către fosta stare initială.

**Pas 3:** Dacă există mai multe stări finale sau dacă există săgeți care pleacă din vreo stare finală, atunci se adaugă la automat o nouă stare care va fi unica finală și va avea săgeți cu expresia  $\lambda$  din toate fostele stări finale către ea.

Pas 4: În orice ordine, se elimină pe rând, una câte una, toate stările în afară de cea inițială și cea finală, astfel:

- $\rightarrow$  Presupunem că vrem să eliminăm starea  $\mathbf{q}$  și că există săgeți cu etichetele (expresiile regulate)  $et(p, \mathbf{q})$ ,  $et(\mathbf{q}, s)$  și eventual bucla cu  $et(\mathbf{q}, \mathbf{q})$ .
- $\rightarrow$  Atunci obținem noua etichetă (expresie regulată) de pe săgeata de la starea p la starea s:
  - [(fosta etichetă directă de la p la s) sau (Ø dacă nu există săgeată directă)]
     reunită cu
  - [(eticheta de la p la q) concatenată cu
     (stelarea etichetei buclei de la q la q, sau λ dacă bucla nu există) concatenată cu
     (eticheta de la q la s)]. (Vezi desenul de mai jos.)

Pas 5: Atunci când rămân doar două stări, expresia obținută între starea inițială și cea finală este răspunsul final (o expresie regulată echivalentă cu automatul finit dat).

#### • Observații:

(1) La pas 4, pentru starea q pe care dorim să o eliminăm (împreună cu toate săgețile lipite de ea), trebuie să găsim orice "predecesor"  $p \neq q$  (adică există o săgeată de la p la q) și orice "succesor"  $s \neq q$  (adică există săgeată de la q la s). Deci făcând abstracție de eventuala buclă a lui q, căutăm și grupăm orice săgeată care intră spre q cu orice săgeată care iese din q și astfel obținem expresia regulată de pe săgeata de la p la s cu formula explicată mai sus. Atentie, dacă p = s, înseamnă că vom obtine o buclă.

→ Vrem să eliminăm q și avem un p ("predecesor") și un s ("succesor").



- (2) Dacă una dintre expresii conține reuniune ("+"), atunci *o includem între paranteze*, pentru a se executa întâi acea reuniune și abia apoi concatenarea cu expresiile de pe alte săgeți. Fiecare expresie obținută între *p* și *s* încercăm să o *simplificăm* cât mai mult folosind formulele de mai jos.
- (3) În funcție de *ordinea* în care alegem să eliminăm stările la pasul 4, vom obține o anumită expresie, dar toate sunt echivalente între ele. *Sfat:* În general, eliminăm starea care are momentan cele mai puține săgeți pentru a calcula cât mai puține drumuri.

*Atenție* să nu confundați semnul "+" dintre expresii (folosit pentru *reuniunea* lor) cu semnul "+" pus la putere (folosit pentru *concatenare repetată*, cel puțin puterea 1).

*Obs:* Algoritmul de mai sus descoperă și *reunește expresiile regulate corespunzătoare tuturor drumurilor de la starea inițială la o stare finală*. Puteți verifica asta pe exemplele următoare, comparând automatul finit dat cu expresia regulată obținută la finalul algoritmului.

#### • Câteva formule utile

- (A)  $e \cdot \emptyset = \emptyset$  și  $\emptyset \cdot e = \emptyset$  ( $\emptyset$  este pentru concatenare cum este 0 pentru înmulțire)
- (B)  $e \cdot \lambda = e$  si  $\lambda \cdot e = e$  ( $\lambda$  este pentru concatenare cum este 1 pentru înmultire)
- (C)  $e^* \cdot e = e^+$  și  $e \cdot e^* = e^+$  (Dar  $e^+$  nu va fi folosită în RegEx pt că nu respectă definiția lor.)
- (D)  $\{e_1, e_2\}^* = (e_1 + e_2)^* = (e_1^* \cdot e_2^*)^*$  (Formulă valabilă pentru oricâte expresii, nu doar 2.)
- (E)  $e_1 \cdot (e_2 + e_3) = (e_1 \cdot e_2) + (e_1 \cdot e_3)$  și  $(e_1 + e_2) \cdot e_3 = (e_1 \cdot e_3) + (e_2 \cdot e_3)$
- (F)  $e + \emptyset = \emptyset + e = e$  (Ø este pentru reuniune cum este 0 pentru adunare)
- (G)  $\emptyset^* = {\lambda}$  (conform definiției stelării) și  $\lambda^* = \lambda$  (conform formulei B de mai sus)
- (H) Dacă  $e_1 \supseteq e_2$ , atunci  $e_1 + e_2 = e_2 + e_1 = e_1$ . (De exemplu:  $a + ab^* = ab^*$ )
- (I) În loc de  $\lambda + (e)^+ = \lambda + e \cdot e^*$  scriem  $e^*$ .

#### • Exemplu rezolvat:

Să se transforme următorul automat finit într-o expresie regulată echivalentă.

# Pas 1 (AF $\rightarrow$ AFE):

=> Reunim tranzițiile aflate pe aceeași săgeată.

Pas 2 (Verificăm starea inițială:

- să nu fie stare finală și
- să nu vină săgeți către ea)
- => adăugăm o nouă stare inițială cu λ către fosta stare inițială.





#### Pas 3 (Verificăm starea finală:

- să fie unica finală și
- să nu plece săgeți din ea)

=> adăugăm o nouă unică stare finală spre care vin  $\lambda$  din fostele stări finale.



#### Pas 4 (eliminăm q2):

=> 
$$et(q_1, q_3) = et(q_1, q_3) +$$
  
 $et(q_1, q_2) \cdot (et(q_2, q_2))^* \cdot et(q_2, q_3)$ 



#### Pas 4 (eliminăm q1):

$$=> et(q_0, q_3) = et(q_0, q_3) +$$
  
 $et(q_0, q_1) \cdot (et(q_1, q_1))^* \cdot et(q_1, q_3)$ 



# • Exemplu: [discutat la seminar]

Să se transforme următorul automat finit într-o expresie regulată echivalentă.

# Pas 1 (AF $\rightarrow$ AFE):

=> Reunim tranzițiile aflate pe aceeași săgeată.



# Pas 2 (Verificăm starea inițială:

- să nu fie stare finală și
- să nu vină săgeți către ea)
- => adăugăm o nouă stare inițială cu  $\lambda$  către fosta stare inițială.



#### Pas 3 (Verificăm starea finală:

- să fie unica finală și
- să nu plece săgeți din ea)
- => adăugăm o nouă unică stare finală spre care vin  $\lambda$  din fostele stări finale.



(@MN 2025, FMI – UNIBUC)

# Pas 4 (eliminăm q3):

=> 
$$et(q_2, q_4) = et(q_2, q_4) +$$
  
 $et(q_2, q_3) \cdot (et(q_3, q_3))^* \cdot et(q_3, q_4)$ 

$$=> et(q_1, q_4) = et(q_1, q_4) +$$

$$et(q_1,q_3) \cdot (et(q_3,q_3))^* \cdot et(q_3,q_4)$$



#### Pas 4 (eliminăm q2):

$$=> et(q_1, q_4) = et(q_1, q_4) +$$
  
 $et(q_1, q_2) \cdot (et(q_2, q_2))^* \cdot et(q_2, q_4)$ 

# $(a+b) + a \cdot b^{*} \cdot (\lambda + a)$ $= a+b + ab^{*} + ab^{*}a$ $= b + ab^{*} \cdot (\lambda + a)$ $= b + ab^{*} \cdot (\lambda + a)$

#### Pas 4 (eliminăm q1):

$$=> et(q_0, q_4) = et(q_0, q_4) +$$
  
 $et(q_0, q_1) \cdot (et(q_1, q_1))^* \cdot et(q_1, q_4)$ 



#### > Minimizarea AFD

[definiție extrasă din curs 7.2, pag 4]

#### Def: Echivalență pe cuvinte

Pentru un limbaj  $L \subseteq \Sigma^*$  definim  $\equiv_L$  astfel:

$$x \equiv_L y \iff [\forall \mathbf{z} \in \Sigma^* \text{ avem } x\mathbf{z} \in L \iff y\mathbf{z} \in L]$$

**Obs:** Cuvintele x și y **nu** sunt echivalente conform L dacă există un cuvânt z astfel încât exact unul dintre cuvintele xz și yz aparține limbajului L și celălalt nu aparține lui L.

$$x \not\equiv_L y \iff [\exists z \in \Sigma^* \text{ avem } xz \in L \iff yz \not\in L]$$

## ➤ *Algoritm:* Minimizare AFD

Se dă un AFD <u>complet definit</u> (adică din fiecare stare din mulțimea Q pleacă câte o tranziție cu fiecare simbol din alfabetul  $\Sigma$ ). Se cere să se construiască un AFD echivalent (care să accepte același limbaj) care să aibă un număr minim de stări.

Obs: Dacă AFD-ul dat **nu** este complet definit, atunci pentru completarea lui se adaugă o nouă stare nefinală  $q_{aux}$ . Toate tranzițiile lipsă din celelalte stări se adaugă spre această nouă stare, apoi pentru starea  $q_{aux}$  se adaugă o buclă cu toate simbolurile din alfabet.

*Ideea* algoritmului este de a găsi acele stări care au comportament echivalent, pentru a le grupa și a obține o unică stare nouă în locul acestora.

Două stări sunt "**echivalente**" dacă pentru orice cuvânt am alege, plecând din cele două stări, fie ajungem în două stări finale, fie ajungem în două stări nefinale.

$$\forall p, q \in Q, p \equiv q \iff [\forall w \in \Sigma^*, \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F]$$

Două stări sunt "separabile" dacă există un cuvânt pentru care plecând din cele două stări ajungem într-o stare finală și într-una nefinală.

$$\forall p, q \in Q, p \not\equiv_{w} q \iff [\exists w \in \Sigma^{*}, \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \notin F]$$

#### > Algoritm: Minimizare AFD (metoda 1: cu partiționarea mulțimii Q a stărilor)

Ideea algoritmului este de a împărți mulțimea Q în partiții din ce în ce mai mici (pe măsură ce descoperim că două stări din *aceeași* partiție sunt separabile, le vom pune în partiții *diferite*), astfel încât la final orice partiție să conțină doar stări echivalente între ele.

**Pas 0:** Împărțim mulțimea Q în două partiții, una care conține stările nefinale  $(A_0 = Q \setminus F)$  și una care conține stările finale  $(B_0 = F)$ . Orice stare din  $A_0$  este separabilă de orice stare din  $B_0$  prin cuvântul  $\lambda$  de lungime 0.

Pas  $k \in \{1, 2, ...\}$ :

- a) În cadrul fiecărei partiții  $X_{k-1}$  (cu  $|X_{k-1}| \ge 2$ ,  $X \in \{A, B, C, ...\}$ ), verificăm pentru orice pereche de două stări  $(q_i \in X_{k-1} \text{ si } q_j \in X_{k-1})$  dacă sunt separabile, adică dacă există vreo literă  $\alpha$  din alfabetul  $\Sigma$  pentru care  $\delta(q_i, \alpha) \in Y_{k-1}$  și  $\delta(q_j, \alpha) \in Z_{k-1}$ , cu  $Y_{k-1} \ne Z_{k-1}$  (adică tranzițiile de la cele două stări  $q_i$  și  $q_j$ , cu o aceeași literă  $\alpha$ , duc spre stări aflate deja (la pasul k-1) în partiții diferite).
- → Dacă duc către aceeași partiție  $(Y_{k-1} = Z_{k-1})$ , atunci stările  $q_i$  și  $q_j$  vor rămâne la pasul k în aceeași partiție  $T_k$ , pentru că *până acum* (pasul k) sunt echivalente (pentru orice cuvânt  $\forall w \in \Sigma^*$ , cu  $0 \le |w| \le k$ ).
- $\rightarrow$  Iar dacă duc spre partiții diferite ( $Y_{k-1} \neq Z_{k-1}$ ) atunci vom separa stările  $q_i$  și  $q_j$  în partiții diferite  $S_k$  și  $T_k$ , cu  $S_k \neq T_k$  (există un cuvânt de lungime k, având ultima literă  $\alpha$ , pentru care stările  $q_i$  și  $q_j$  sunt separabile).
- b) Dacă la **pasul k, a**) s-a modificat vreo partiție, continuăm cu **pasul k+1, a**). Altfel, algoritmul se oprește și în cadrul fiecărei partiții  $X_k$  avem doar stări echivalente între ele.

Atenție! La pasul k a) nu verificăm niciodată două stări aflate deja în partiții diferite (știm deja că stările sunt separabile), ci doar pe cele aflate în aceeași partiție.

#### Întrebări:

- (1) Dacă AFD-ul dat era deja minimal, în ce situație vom ajunge la finalul algoritmului?
- (2) Care este valoarea maximă la care poate ajunge k? (Adică maxim câți pași putem avea?)
- Exemplu: Să se minimizeze următorul AFD.

Fie automatul AFD complet definit din desen. Se cere automatul minimal echivalent cu el.



#### **Pas 0:**

Orice stare nefinală este separabilă prin  $\lambda$  de orice stare finală.

Deci împărțim stările din mulțimea Q în cele două partiții inițiale, A<sub>0</sub> și B<sub>0</sub>.

Apoi în interiorul tabelului cu tranziții, pentru fiecare stare destinație scriem din ce partiție de la pasul curent face parte.

| Partițiile                  | δ     | a             | b             |
|-----------------------------|-------|---------------|---------------|
|                             | $q_0$ | $q_1 \in A_0$ | $q_3 \in A_0$ |
|                             | $q_1$ | $q_3 \in A_0$ | $q_2 \in A_0$ |
| $\mathbf{A_0} =$            | $q_2$ | $q_3 \in A_0$ | $q_2 \in A_0$ |
| Q\F                         | $q_3$ | $q_6 \in B_0$ | $q_5 \in A_0$ |
|                             | $q_4$ | $q_6 \in B_0$ | $q_5 \in A_0$ |
|                             | $q_5$ | $q_6 \in B_0$ | $q_2 \in A_0$ |
| $\mathbf{B}_0 = \mathbf{F}$ | $q_6$ | $q_4 \in A_0$ | $q_5 \in A_0$ |

Obs: La fiecare pas k o să redenumim partițiile Ak, Bk, Ck, etc.

#### Pas k = 1:

- $\rightarrow$  Verificăm toate perechile de stări aflate în  $A_0$  și observăm că stările din  $\{q_0, q_1, q_2\}$  sunt separabile pe coloana literei "a" de cele din  $\{q_3, q_4, q_5\}$ , pentru că tranzițiile primelor ajung cu "a" în  $A_0$ , iar pentru celelalte tot cu "a" ajung în  $B_0$ .
- → Partiția B<sub>0</sub> conține o singură stare, deci aici nu avem ce compara.

| Partițiile     | δ     | a             | b             |  |
|----------------|-------|---------------|---------------|--|
|                | $q_0$ | $q_1 \in A_1$ | $q_3 \in B_1$ |  |
| $\mathbf{A_1}$ | $q_1$ | $q_3 \in B_1$ | $q_2 \in A_1$ |  |
|                | $q_2$ | $q_3 \in B_1$ | $q_2 \in A_1$ |  |
|                | $q_3$ | $q_6 \in C_1$ | $q_5 \in B_1$ |  |
| $\mathbf{B_1}$ | $q_4$ | $q_6 \in C_1$ | $q_5 \in B_1$ |  |
|                | $q_5$ | $q_6 \in C_1$ | $q_2 \in A_1$ |  |
| C <sub>1</sub> | $q_6$ | $q_4 \in B_1$ | $q_5 \in B_1$ |  |

#### Pas k = 2:

- $\rightarrow$  Verificăm toate perechile de stări aflate în  $A_1$  și observăm că starea  $q_0$  este separabilă de stările din  $\{q_1, q_2\}$  (atât pe coloana "a", cât și pe coloana "b").
- $\rightarrow$  Verificăm toate perechile de stări aflate în  $B_1$  și observăm că starea  $q_5$  este separabilă de stările din  $\{q_3, q_4\}$  (pe coloana "b").
- → Partiția C<sub>1</sub> conține o singură stare, deci aici nu avem ce compara.

| Partițiile     | δ                | a             | b             |  |  |
|----------------|------------------|---------------|---------------|--|--|
| $\mathbf{A}_2$ | $q_0$            | $q_1 \in B_2$ | $q_3 \in C_2$ |  |  |
| $\mathbf{B}_2$ | $q_1$            | $q_3 \in C_2$ | $q_2 \in B_2$ |  |  |
| <b>D</b> 2     | $q_2$            | $q_3 \in C_2$ | $q_2 \in B_2$ |  |  |
| $\mathbb{C}_2$ | $q_3$            | $q_6 \in E_2$ | $q_5 \in D_2$ |  |  |
| $C_2$          | $q_4$            | $q_6 \in E_2$ | $q_5 \in D_2$ |  |  |
| $\mathbf{D}_2$ | $q_5$            | $q_6 \in E_2$ | $q_2 \in B_2$ |  |  |
| $\mathbf{E}_2$ | $\overline{q}_6$ | $q_4 \in C_2$ | $q_5 \in D_2$ |  |  |

#### Pas k = 3:

- $\rightarrow$  Verificăm perechea de stări din partiția  $B_2$  și observăm că  $q_1$  și  $q_2$  rămân echivalente (pentru fiecare coloană în parte, cele două stări din pereche duc către aceeași partiție).
- → Verificăm perechea de stări din partiția C<sub>2</sub> și observăm că q<sub>3</sub> și q<sub>4</sub> rămân echivalente (pentru fiecare coloană în parte, cele două stări din pereche duc către aceeași partiție).
- → Partițiile A<sub>2</sub>, D<sub>2</sub> și E<sub>2</sub> conțin fiecare câte o singură stare, deci aici nu avem ce compara.

Nicio partiție nu s-a mai modificat, deci algoritmul se termină cu concluzia stărilor echivalente:  $q_1 \equiv q_2$  și  $q_3 \equiv q_4$ .

Automatul AFD minimal obținut va avea  $Q = \{q_0, q_{12}, q_{34}, q_5, q_6\}$  și  $F = \{q_6\}$ . Tranzițiile le desenăm conform automatului inițial, dar ținând cont de această grupare a stărilor. [vezi pag 10, înainte de observații]



# ➤ Algoritm: Minimizare AFD (<u>metoda 2</u>: cu teorema Myhill-Nerode)

- Vom construi un tabel, pe linii și pe coloane având stările automatului AFD complet definit. Vom completa tabelul (triunghiul de sub diagonala principală) pentru fiecare pereche de stări  $(q_i, q_j)$ , având i > j, cu *un cuvânt prin care cele două stări sunt separabile*. Dacă nu vom găsi un astfel de cuvânt atunci acele stări sunt echivalente.
- Vom completa tabelul căutând cuvintele recursiv, în ordinea crescătoare a lungimii lor. Cuvintele de lungime *k* le vom obține cu ajutorul celor de lungime *k-1* calculate anterior.

- $\rightarrow$  Pas 0: Două stări sunt separabile prin cuvântul vid  $\lambda$  (de lungime zero), dacă una din ele este <u>finală</u> și cealaltă este <u>nefinală</u> în automatul dat.
- → Dacă la pasul k-1 s-a marcat în tabel cel puțin o pereche de stări separabile, atunci Repetăm Pas k: (Pentru k luând valori de la 1 la maxim cât ?)
- a) Pentru **fiecare** pereche de stări  $(q_i, q_j)$ , cu i > j, care **nu** a fost încă marcată ca fiind separabilă prin niciun cuvânt, verificăm:
  - **b)** pentru **fiecare** simbol x din alfabetul  $\Sigma$ :
- c) dacă plecând din perechea de stări  $(q_i, q_j)$ , cu i > j, și aplicând tranzițiile cu simbolul x din alfabet ajungem în perechea de stări  $(q_s, q_t)$ , cu s > t, iar stările  $q_s$  și  $q_t$  erau marcate în tabel ca fiind <u>separabile</u> prin cuvântul w,
  - atunci rezultă că stările  $q_i$  și  $q_j$  sunt <u>separabile</u> prin cuvântul xw și le marcăm în tabel cu acest cuvânt. **Stop** pas b) și **continuăm** pas a).
- b') Dacă nu s-a găsit <u>niciun</u> simbol x care să ne ducă într-o pereche de stări separabile (adică *toate* simbolurile din alfabet ne-au dus fie în perechi de stări nemarcate încă în tabel, fie în perechi de stări identice  $(q_s = q_t)$ ),
  - atunci perechea  $(q_i, q_i)$  rămâne momentan nemarcată în tabel și continuăm pas a).
- a') Dacă la aplicarea pasului curent **k** am marcat cel puţin o pereche de stări separabile în tabel, **atunci** incrementăm valoarea lui k şi repetăm acest pas (adică vom căuta stări separabile prin cuvinte de lungime **k+1**).

**Altfel** (dacă nu s-a modificat nimic în tabel la pasul k), *algoritmul se termină* cu concluzia că stările rămase *nemarcate* în tabel sunt <u>stări echivalente</u>.

- Apoi desenăm AFD-ul minimal astfel:
  - Desenăm întâi toate stările, grupându-le pe cele echivalente între ele într-o singură stare a AFD-ului minimal.
  - Starea inițială este grupul format din stările echivalente cu fosta stare inițială q<sub>0</sub>.
  - Stările finale sunt grupurile formate din stări care erau finale în automatul original.
  - Pentru a duce **tranzițiile**, dacă în automatul original aveam tranziție din starea **q** cu simbolul **x** către starea **r**, atunci în AFD-ul minimal, din grupul de stări echivalente cu starea **q** ducem tranziție cu simbolul **x** către grupul de stări echivalente cu starea **r**.

#### *Observații:* [valabile pentru metoda 1 si metoda 2 ale algoritmului de minimizare AFD]

<u>Înainte</u> de aplicarea algoritmului descris mai sus, **eliminăm** din automat toate **stările** inaccesibile (cele până la care nu există niciun drum care pleacă din starea inițială) împreună cu toate tranzițiile care pleacă sau ajung în ele.

 $\underline{Dup\check{a}}$  aplicarea algoritmului descris mai sus, **eliminăm** toate stările plecând din care nu se poate ajunge în nicio stare finală, împreună cu tranzițiile care pleacă sau ajung în ele. De exemplu va fi eliminată acea stare nefinală  $q_{aux}$  adăugată pentru completarea AFD-ului.

• Exemplu: Pentru următorul AFD construiți un AFD minimal echivalent.



Observăm că AFD-ul dat este complet definit și nu există stări inaccesibile.

<u>Pas 0</u>: Căutăm perechile de stări separabile prin cuvântul  $\lambda$  de lungime zero. Avem o singură stare finală în acest exemplu, deci ea va fi separabilă prin  $\lambda$  de toate celelalte stări, care sunt nefinale. Completăm în tabel, pentru toate perechile  $(q_6, q_i)$ ,  $0 \le i \le 5$ .

|                | q <sub>0</sub> | q1 | q <sub>2</sub> | q <sub>3</sub> | q4 | q5 | q <sub>6</sub> |
|----------------|----------------|----|----------------|----------------|----|----|----------------|
| $\mathbf{q}_0$ |                |    |                |                |    |    |                |
| q1             |                |    |                |                |    |    |                |
| $\mathbf{q}_2$ |                |    |                |                |    |    |                |
| q <sub>3</sub> |                |    |                |                |    |    |                |
| q <sub>4</sub> |                |    |                |                |    |    |                |
| q5             |                |    |                |                |    |    |                |
| q <sub>6</sub> | λ              | λ  | λ              | λ              | λ  | λ  |                |

Pas 1: Căutăm cuvinte de lungime 1.

Avem 
$$\delta(q_0, a) = q_1 \notin F$$
;  $\delta(q_1, a) = q_3 \notin F$ ;  $\delta(q_2, a) = q_3 \notin F$   
 $\text{si } \delta(q_3, a) = q_6 \in F$ ;  $\delta(q_4, a) = q_6 \in F$ ;  $\delta(q_5, a) = q_6 \in F$ .

Rezultă că orice stare din mulțimea  $\{q_0, q_1, q_2\}$  va fi separabilă de orice stare din mulțimea  $\{q_3, q_4, q_5\}$  prin cuvântul "a".

(Observăm că toate tranzițiile cu "b" merg către stări nefinale, deci nu va exista nicio pereche de stări care să fie separabile prin cuvântul "b".)

**Obs:** E posibil să fie separabile și prin altceva, dar este suficient să găsim un singur cuvânt.

|                | q <sub>0</sub> | q1 | $\mathbf{q}_2$ | q <sub>3</sub> | q4 | q <sub>5</sub> | q <sub>6</sub> |
|----------------|----------------|----|----------------|----------------|----|----------------|----------------|
| $\mathbf{q}_0$ |                |    |                |                |    |                |                |
| $\mathbf{q}_1$ |                |    |                |                |    |                |                |
| $\mathbf{q}_2$ |                |    |                |                |    |                |                |
| q <sub>3</sub> | a              | a  | a              |                |    |                |                |
| q4             | a              | a  | a              |                |    |                |                |
| q5             | a              | a  | a              |                |    |                |                |
| q <sub>6</sub> | λ              | λ  | λ              | λ              | λ  | λ              |                |

Pas 2: Căutăm cuvinte de lungime 2.

| $\operatorname{Dac\check{a}}(q_i, q_j) \xrightarrow{x \in \Sigma} (q_s, q_t)$   |                                                                | Rezultă: $q_i \not\equiv_{xw} q_j$               |
|---------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|
| $(q_1, q_0) \xrightarrow{a} (q_3, q_1)$                                         | $q_3 \not\equiv_a q_1$                                         | $\Rightarrow q_1 \not\equiv_{aa} q_0$            |
| $(q_2, q_0) \xrightarrow{a} (q_3, q_1)$                                         | $q_3 \not\equiv_a q_1$                                         | $\Rightarrow q_2 \not\equiv_{aa} q_0$            |
| $(q_2, q_1) \xrightarrow{a} (q_3, q_3)$ $(q_2, q_1) \xrightarrow{b} (q_2, q_2)$ | $(q_3, q_3)$ și $(q_2, q_2)$ sunt perechi de stări echivalente | $\Rightarrow q_2 \equiv q_1$                     |
| $(q_4, q_3) \xrightarrow{a} (q_6, q_6)$ $(q_4, q_3) \xrightarrow{b} (q_5, q_5)$ | $(q_6, q_6)$ și $(q_5, q_5)$ sunt perechi de stări echivalente | $\Rightarrow q_4 \equiv q_3$                     |
| $(q_5, q_3) \xrightarrow{a} (q_6, q_6)$ $(q_5, q_3) \xrightarrow{b} (q_5, q_2)$ | $(q_6, q_6)$ stări echivalente,<br>dar $q_5 \not\equiv_a q_2$  | $\Rightarrow q_5 \not\equiv_{ba} q_3$            |
| $(q_5, q_4) \xrightarrow{a} (q_6, q_6)$ $(q_5, q_4) \xrightarrow{b} (q_5, q_2)$ | $(q_6, q_6)$ stări echivalente,<br>dar $q_5 \not\equiv_a q_2$  | => q <sub>5</sub> ≢ <sub>ba</sub> q <sub>4</sub> |

|                | $q_0$ | $q_1$ | $q_2$ | q <sub>3</sub> | q <sub>4</sub> | q <sub>5</sub> | $q_6$ |
|----------------|-------|-------|-------|----------------|----------------|----------------|-------|
| $\mathbf{q}_0$ |       |       |       |                |                |                |       |
| q1             | aa    |       |       |                |                |                |       |
| q2             | aa    | Ø     |       |                |                |                |       |
| q3             | a     | a     | a     |                |                |                |       |
| q4             | a     | a     | a     | Ø              |                |                |       |
| q <sub>5</sub> | a     | a     | a     | ba             | ba             |                |       |
| <b>q</b> 6     | λ     | λ     | λ     | λ              | λ              | λ              |       |

Am terminat de completat tabelul și am obținut stări echivalente:  $q_1 \equiv q_2$  și  $q_3 \equiv q_4$ .

Automatul AFD minimal obținut va avea stările  $Q = \{q_0, q_{12}, q_{34}, q_5, q_6\}$ , starea inițială  $q_0$  și stările finale  $F = \{q_6\}$ . Tranzițiile le desenăm conform automatului inițial, dar ținând cont de această grupare a stărilor.

Observăm că nu există nicio stare plecând din care să nu avem drum până într-o stare finală, deci nu avem de eliminat nicio stare și acesta este automatul minimal echivalent cu cel dat.

