ТЕХНОЛОГИИ ПРОГРАММИРОВАНИЯ

Практическое занятие №3. Тема: Ввод-вывод и форматирование данных

Цель: получение практических навыков работы с файлами и использования средств форматирования данных.

Основные теоретические положения

Типы данных. Строки

Определение и ввод-вывод строк

В отличие от других языков программирования, в классическом языке Си отсутствует строковый тип данных. Вместо него строка символов представляется в памяти компьютера как массив элементов типа **char**, в конце которого помещен нуль-символ '\0'. Таким образом, строка — это последовательность символов, оканчивающаяся нуль-символом. Нульсимвол как шестнадцатеричная константа представляется кодом **0х00**.

Для задания строки массив символов при объявлении инициализируется строковой константой. Это можно сделать по-разному. Следующие три строки эквивалентны:

```
char str[] = "Слово";
char str[6] = "Слово";
char str[6] = {'C', 'л', 'o', 'в', 'o','\0'};
```

Размер массива должен быть на единицу больше числа символов в строке.

Для того чтобы вывести символьную строку на экран, достаточно в операторе вывода указать только имя символьного массива:

cout<<str;</pre>

Ввод символьной строки осуществляется аналогично: в операторе ввода следует указать имя символьного массива:

cin>>str;

```
Пример, демонстрирующий ввода-вывода символьной строки:
```

```
#include <iostream>
using namespace std;
int main()
{
  char st[30];
  cout <<"Insert information of symbols: "<<endl;
  cin>>st; // ввод с клавиатуры
```

```
cout<<st; // вывод на экран
return 0;
}</pre>
```

В данном примере объявляется 30-элементный символьный массив. Чтобы его заполнить применяется простая инструкция — **cin>>st**; затем строка выводится на экран. Следует отметить, что если при вводе символов ввести пробел, то после пробела данные в программу поступать не будут, т.к. ввод осуществляется до первого разделителя, которым является пробел.

Для устранения данного неудобства применяется функция ввода строк **gets(char *string)**,

где **string** задает область памяти, в которую помещаются символы вводимой строки. Для вывода на экран используется симметричная функция **puts(char *string)**.

Пример использования указанных функций:

```
#include <iostream>
using namespace std;
int main()
{
   char str [20];
   cout<< ("Insert information: ");
   gets (str);
   puts (str);
return 0;
}</pre>
```

Строки можно формировать в массивы. Массив строк — это специальная форма двумерного массива символов. Например,

```
char str_array[3][20];
```

Данный массив предназначен для хранения 3 строк длиной 20 символов.

Задать массив символьных строк можно следующим способом:

```
char str_array[3][20]={"Пример", "задания", "строк"};
```

Получить доступ к отдельной строке довольно просто: достаточно указать только левый индекс. Например, вывод третьей строки массива **str array** производится следующим образом:

```
cin>>str array[2];
```

Пример, в котором формируются некоторые анкетные данные для трёх человек:

```
#include <iostream>
using namespace std;
int main()
{
  char name[3][10];
  char profession[3][25];
  int age[3];
```

```
for(int i=0; i<3; i++)
{
        cout <<"Введите фамилию, профессию, возраст:
";

        cin >> name[i];
        cin >> age[i];
        cout <<"\n Последний в списке: \n";
        cout<<name[2]<<" "<<pre>profession[2]<<" "<<age[2]<<'\
n';

return 0;
}
Вид экрана:
Введите фамилию, профессию, возраст: Дамир блогер 26
Введите фамилию, профессию, возраст: Анна художник 30
Введите фамилию, профессию, возраст: Иван студент 19
Последний в списке:
Иван студент 19
```

Динамическое распределение памяти

Система динамического распределения памяти — это средство получения программой некоторой области памяти во время ее выполнения.

Язык C++ содержит два оператора, **new** и **delete**, которые выполняют функции по выделению и освобождению памяти. Их формат:

переменная-указатель = **new** mun_переменной;

delete переменная-указатель;

Оператор **new** позволяет динамически выделить область памяти.

Оператор **delete** освобождает ранее динамически выделенную память.

Пример программы, которая иллюстрирует использование операторов **new** и **delete**:

```
#include <iostream>
using namespace std;
int main()
{
  int *p;
  p = new int;  // Выделение памяти для int-значения
  *p = 20;  // Занесение в эту область памяти значения 20
  cout << *p;
  delete p;  // Освобождение памяти.
return 0;
}</pre>
```

Для выделения памяти под массив следует указать его размерность. В следующем примере приведена функция, в которой выделяется память под символьный массив, в который затем копируются значения. В конце производится освобождение выделенной области памяти.

```
void employee (int num, char* st)
{
    int number=num;
    char*s=new char[num];
        for(int i=0; i<num; i++)
            s[i]=st[i];
        cout<<s<<' '<<number<<'\n';
    delete []s;
}</pre>
```

Передача символьных строк между функциями

Чтобы передать символьную строку в функцию, следует в качестве параметра функции указать символьный массив, а при вызове функции использовать имя передаваемой символьной строки. Пример.

Операции со строками

Помимо ввода/вывода со строками с помощью функций можно производить и другие операции. Функции, проводящие операции со строками, определены в заголовочном файле <cstring>.

Наиболее часто используются следующие четыре функции.

strcpy(str1,str2) – копирует строку str2 в строку str1, включая '\0'; возвращает str1. *Здесь и далее str1 и str2 принадлежат muny shar**.

strcat(str1, str2) – приписывает str2 к str1; возвращает str1.

```
strcmp(str1, str2) – сравнивает str1 и str2; возвращает <0, если
       str1 < str2; 0, если str1 = str2; и >0, если str1 > str2 (сравнение
       здесь - лексикографическое).
 strlen(str) — возвращает длину str.
Рассмотрим пример использования данных функций.
#include <iostream>
#include <cstring>
using namespace std;
int main()
{
    char str1[50];
    char str2[36];
     strcpy(str1,"To be ");
       strcpy(str2,str1);
         strcat(str1, "continue ...");
     char *ps= "Fairground";
     strncat(str2, ps, 4);
         cout << str1 <<'\n'<< str2 <<'\n';</pre>
     return 0;
}
```

На экран будет выведено:

```
To be continue ...
To be Fair
Process returned 0 (0x0)
                          execution time: 0.499 s
Press any key to continue.
```

Функции, проводящие операции со строками, приведены в таблице 3. Таблина 3

№	Функция	Описание	
1.	strcat(str1,str2)	Присоединяет str2 к str1, возвращает str1	
2.	<pre>strncat(str1,str2,n)</pre>	Присоединяет не более n символов str2 к str1, завершает строку символом '\0', возвращает str1	
3.	strcpy(str1,str2)	Копирует строку str2 в строку str1, включая '\0', возвращает str1	
4.	<pre>strncpy(str1,str2,n)</pre>	Копирует не более n символов строки str2 в строку str1, возвращает str1	
5.	strcmp(str1,str2)	Сравнивает str1и str2, возвращает значение 0, если строки эквивалентны	
6.	<pre>strncmp(str1,str2,n)</pre>	Сравнивает не более n символов строк str1 и str2, возвращает значение 0, если начальные n символов строк эквивалентны	

№	Функция	Описание		
7.	strlen(str)	Возвращает количество символов в строке str		
8.	strset(str,c) Заполняет строку str символами, код которых равен значению с, возвращает указатель на строку str			
9.	strnset(s,c,n) Заменяет первые п символов строки str символами, код которых равен с, возвращает указатель на строку str			
10.	strchr(str, symb) Ищет символ symb в строке str и возвращает указатель на первое совпадение			
11.	strrchr(str,symb)	Ищет символ symb в строке str и возвращает указатель на последнее совпадение		
12.	выполняет поиск первого вхождения в строку str1 любо из символов строки str2 и возвращает количество символов до найденного первого вхождения			
13.	strpbrk(str1,str2)	Выполняет поиск первого вхождения в строку str1 любого из символов строки str2 и возвращает указатель на найденный символ		
14.	strspn(str1,str2)	Поиск символов строки str2 в строке str1. Возвращает длину начального участка строки str1, который состоит только из символов строки str2		
15.	strstr(str1,str2)	Ищет первое вхождение подстроки str2 в строке str1		
16.	strtok(str,delim)	Ищет символы-разделители delim в строке str, возвращает указатель на последний найденный		
17.	memchr(str,c,n)	Ищет первое вхождение символа с в первых n байтах str		
18.	<pre>memcpy(dest,src,n)</pre>	Копирует n символов из src в dest		
19.	memset(str,c,n)	Копирует символ с в первые п символов строки str		
20.	<pre>memcmp(str1,str2,n)</pre>	Сравнивает первые n байтов str1 и str2		

В библиотеке **<cstring>** присутствуют функции поиска. Так, функция **strchr(s,chr)** производит поиск первого вхождения символа **chr** в строке **s**. В случае удачного поиска функция возвращает указатель на место первого вхождения символа **chr**. Если символ не найден, то возвращается ноль.

Рассмотрим пример использования функции **strchr(s, chr)**, в котором в строку "Seven Zero Null" необходимо перед словом "Null" вставить слово "One".

```
strcpy(sn,"One ");
                                    // на место "Null" ставим "One
"
           strcat(cs,str);
                                    // добавляем в конец строки
"Null"
           cout << cs << endl;</pre>
           return 0;
  }
                           Seven Zero One Null
           Вид экрана:
                           Process returned 0 (0x0)
                           Press any key to continue.
```

Тип данных «строка»

В современном стандарте С++ определен класс с функциями для организации работы со строками, который подключается с помощью директивы:

```
#include <string>.
```

В нем содержится ряд функций для работы со строками. Например, size() определяет длину строки, а insert() позволяет делать вставки в строку.

Строковая переменная, например st, объявляется следующим образом:

string st;

Некоторые возможности, которыми обладает класс string.

Инициализация строк при описании и **длина строки** (не включая завершающий нуль-символ):

```
string st( "Моя строка\n" );
cout << "Длина " << st << ": " << st.size()
  << " символов, включая символ новой строки\n";
Строка может быть задана и пустой:
string st2;
```

Для проверки того, *пуста ли строка*, можно сравнить ее длину с 0: **if** (!st.size()) // пустая

или применить метод **empty()**, возвращающий **true** для пустой строки и false для непустой:

```
if (st.empty()) // пустая
```

Третья форма создания строки инициализирует объект типа **string** другим объектом того же типа:

```
string st3( st );
```

Для *сцепления строк* используется операция сложения (+) или операция сложения с присваиванием (+=). Пусть даны две строки:

```
string sl("Привет, ");
string s2("Caнκτ-Πeтepбypr\n");
```

Мы можем получить третью строку, состоящую из конкатенации первых двух, таким образом:

```
string s3 = s1 + s2;
Если же мы хотим добавить s2 в конец s1, мы должны написать:
s1 += s2;
```

При обработке строк типа string можно использовать следующие функции:

- **s.length()** возвращает длину строки s;
- s.substr(pos, length) возвращает подстроку из строки s, начиная с номера роз длиной length символов;
- **s.empty()** возвращает значение true, если строка s пуста, false в противном случае;
- s.insert(pos, s1) вставляет строку s1 в строку s, начиная с позиции pos;
- **s.remove(pos, length)** удаляет из строки s подстроку length длиной pos символов;
- **s.find(s1, pos)** возвращает номер первого вхождения строки s1 в строку s, поиск начинается с номера pos, параметр pos может отсутствовать, в этом случае поиск идёт с начала строки;
- **s.findfirst(s1, pos)** возвращает номер первого вхождения любого символа из строки s1 в строку s, поиск начинается с номера pos, параметр pos может отсутствовать, в этом случае поиск идёт с начала строки.

Ниже приводится пример программы, работающей со string.

```
#include <string>
using namespace std;

int main() {
   string s = "Test";
   s.insert (1,"r");
   cout << s << endl;
   string *s2 = new string("Hugo");
   cout << s2->size();
   return 0;
}
```

Строчка программы **cout** << **s2->size()** демонстрирует синтаксис, когда используется указатель на строку. Она равносильна записи: **cout** << (*s2).size().

Типы данных. Структуры

include <iostream>

Общие сведения о структурах

Структура – это одна или несколько переменных (возможно, различных типов), которых для удобства работы с ними сгруппировали под одним именем. Традиционный пример структуры – анкетные сведения о человеке: год рождения, место проживания, № телефона и т.д.

Представление сведений о воздушном объекте в виде структуры, в которой заключены данные о дальности, азимуте, высоте полета:

```
struct target{
    int d;
    int b;
    float h;
};
```

Объявление структуры определяет тип данных. За правой фигурной скобкой, закрывающей список элементов, могут следовать переменные этого типа данных.

```
Например: struct target {...} jet, bomb;
```

Объявление структуры приводит к выделению памяти определенного размера. Если объявить структуру, не содержащую списка переменных, то память не резервируется, а просто описывает шаблон структуры. Если шаблон задан, то описать структурную переменную можно короче, например:

struct target alt;

что означает объявление переменной alt типа struct target.

При определении структуры ее можно инициализировать в виде списка константных выражений, например:

```
struct target alt={250, 30, 2.5};
```

запись означает, что в структуре **alt** переменной **d** (дальность) будет присвоено значение 250, **b** (азимут) 30, а **h** (высота) 2,5.

Чтобы обратиться к элементу структуры необходимо указать имя структуры и через точку – имя элемента данной структуры. Например, чтобы вывести на экран значение дальности до воздушного объекта, необходимо

записать **cout << alt.d;** Точка (•) означает оператор доступа к элементам структуры и соединяет имя структуры и имя её элемента.

Структуры и функции

Структуры могут передаваться функциям в качестве аргументов. В функцию можно передавать:

- а) компоненты структуры по отдельности;
- б) всю структуру целиком;
- в) указатель на структуру.

Возвращать функции могут отдельную переменную структуры или всю структуру целиком.

Ниже представлен пример, в котором функция используется для инициализации переменных структуры.

```
#include <iostream>
     struct target // Вначале на внешнем уровне описывается
     {
                    // шаблон структуры типа target
       int d:
       int b;
       float h;
     };
     struct target init() // Затем определяется функция init(),
     struct target temp;
                                    // которой не передаются
аргументы,
     cout<< "Insert d:";</pre>
                                  // но которая возвращает структуру
типа
     cin>> temp.d;
                               // target, предварительно заполнив ее поля
     cout <<"Insert b:";</pre>
     cin>> temp.b;
     cout<<"Insert h:";</pre>
     cin>> temp.h;
     return temp;
     int main( )
                    // В главной функции объявляется структура јеt
     struct target
                            // типа target, в которую копируется
структура,
     iet = init( );
                            // возвращаемая функцией init().
     cout<<jet.d<<endl; // Поля структуры выводятся на экран.
     cout << jet.b << endl;</pre>
     cout<< jet.h << endl;</pre>
     return 0;
     }
```

Если функции передается большая структура, то чем копировать ее целиком, эффективней передать указатель на нее. Указатели на структуры ничем не отличаются от указателей на обычные переменные. Объявление

struct target*ptr;

сообщает, что ptr – это указатель на структуру типа $struct\ target$. Если ptr указывает на структуру target, то *ptr – это сама структура, а (*ptr).d – ее элемент.

Указатели на структуры используются весьма часто, поэтому для доступа к ее элементам через указатель существует другая форма записи. Если **ptr**- указатель, то к той же переменной **d** обращаются так:

ptr -> d

В следующем примере создана функция, которая получает указатель на структурную переменную **target jet** и обнуляет значения ее полей.

Работа с файлами и форматирование данных

Форматирование данных с помощью манипуляторов

Одним из способов форматирования информации в С++ является использование манипуляторов ввода/вывода.

Манипулятор – это ключевое слово языка С++, которое применяется в выражениях ввода/вывода для управления информацией ввода/вывода. Манипуляторы различают с параметрами и без параметров. Например:

oct — установка флага oct (вывод информации в восьмеричной форме) — манипулятор без параметра;

setw(15) — задание ширины поля вывода в 15 позиции — манипулятор с параметром.

Для того чтобы в программе можно было использовать манипуляторы с параметрами, необходимо в нее включить заголовок **<iomanip>.** Некоторые манипуляторы приведены в следующей таблице.

endl	Вывод символа новой строки и очистка потока	вывод	
left	eft Установка флага left		
right	right Установка флага right		
setprecision (int p)	Задание числа цифр точности, равной р	вывод	
setw(int w)	Задание ширины поля вывода в w позиций	вывод	
skipws	Отбрасываются начальные невидимые символы	ввод	
	(пробелы, табуляции и символы новой строки)		
uppercase	Вывод символов в верхнем регистре	вывод	
WS	ws Пропуск начальных пробелов		
setfill (int ch) Задание символа заполнения			

Пример с использованием манипуляторов.

#include <iostream>

```
#include <iomanip>
int main()
{
cout<<hex <<100 << endl;
cout<<oct <<10 << endl;
cout<<setfill('X')<<setw(10)<<100;
cout<<' '<<"Red nose."<<endl;
return 0;
}</pre>
```

Первый манипулятор **hex** сообщает потоку, что необходимо выводить целые числа в шестнадцатеричной системе счисления и выводит 100 в шестнадцатеричной системе счисления. Второй манипулятор **oct** сообщает что следующий вывод данных необходимо сделать в восьмеричной СС. И выводит 10 в восьмеричной СС. В следующей строке манипулятор **setfill('X')** предписывает заполнять пустые места символом **'X'**, а **setw(10)** устанавливает ширину поля вывода, равную десяти, в которую выводится число **100** и строка **Red nose**.

Результат выполнения программы:

64 12 XXXXXXXX144 Red nose.

Организация работы с файлами

Для реализации файлового ввода/вывода в программу необходимо включить директиву: **#include <fstream>**.

При работе с файлами следует соблюдать следующий порядок.

1) Вначале необходимо создать поток для работы с файлом. Для этого объявляется его имя с соответствующим типом потока. Например:

ifstream in; - создан поток ввода из файла с именем in.

2) После создания потока, необходимо установить связь файла с потоком. Это производится с помощью функции open().

Например, для того чтобы связать созданный поток **in** с файлом, допустим с именем **one.txt**, необходимо записать:

in.open("one.txt"); - это означает, что файл one связан с потоком in (для ввода данных).

3) Сделать проверку открытия файла:

```
if(!in)
cout<<"Error of file opening";</pre>
```

4) После того, как файл открыт, работа с ним производится с помощью операторов ввода/вывода: "<<" и ">>", так же, как и со стандартными потоками **cin** и **cout**, только вместо этих потоков необходимо использовать созданные потоки. Для нашего примера ввод из файла будет обеспечиваться инструкцией:

```
in >> ...;
```

Вся информация в файле хранится в том же формате, как если бы она находилась на экране.

5) После работы с файлом его необходимо закрыть с помощью функции close(). Для нашего примера это запишется:

```
in.close();
```

Пример программы работы с файлами, в которой создается файл для вывода и в него записываются данные, после чего он закрывается. Затем файл открывается для ввода и оттуда считываются данные в заранее подготовленные переменные.

```
#include<iostream>
#include<fstream>
#include<iomanip>
using namespace std:
int main()
{
 ofstream tofile;
                            //создание потока вывода
 tofile.open("first");
                            //открытие файла
 if(!tofile)
                            //проверка открытия файла
 cout<<"Error of file opening";</pre>
 else
 {
 tofile<<"Attention!\n";</pre>
 tofile<<100<<endl;
 tofile.close();
 }
                //открытие файла для ввода
 ifstream fromfile;
                                  //создание потока ввода
 fromfile.open("first");
                                  //открытие файла
 if(!fromfile)
                             //проверка открытия
 cout<<"Error of file opening";</pre>
 else
 {
  char str[20];
                      // объявление переменных для ввода
  int num;
                      // данных из файла
  fromfile>>str>>n;
 cout<<str<<' \n'<<num<<endl;</pre>
  fromfile.close();
 return 0;
```

После завершения работы программы содержимое файла **first** будет следующим:

Attention! 100

Практические задания

Выберите один из вариантов задания.

Каждый пункт задания выполнить в виде отдельной функции.

Вариант А.

Задание 1. Используя *манипуляторы ввода-вывода, в цикле* сформировать на экране матрицу согласно индивидуальному номеру (см. таблица 4).

Задание 2. Разработать функцию преобразования *исходной строки* (согласно индивидуальному номеру, см. таблица 5), используя *только* библиотечные функции (обращение к элементам символьного массива по индексу запрещено). При этом для исходной строки *динамически* выделить память в главной функции.

Задание 3. Спроектировать структуру, описывающую характеристики «Предмета» (см. таблица 5). Создать массив из 5-ти структурных переменных и записать их в файл, как показано на примере ниже. Определить Вычисляемый показатель.

Файл Правка Формат	Вид Справка		
Ли	Дюпон	Кузьмин	
Сан	Жорж	Игорь	
Китай	Франция	Россия	
менеджер	художник	водитель	
355-13-78	786-45-45	243-55-67	

Задание 4. Разработать меню, в котором по желанию пользователя:

- а) выполнить любой пункт задания;
- b) прочитать из файла информацию о любом из «предметов»;
- с) выйти из программы.

Вариант В.

Задание 1. Используя *манипуляторы ввода-вывода, в цикле* сформировать на экране матрицу согласно индивидуальному номеру (см. таблица 4).

Задание 2. Разработать функцию преобразования *исходной строки* (согласно индивидуальному номеру, см. таблица 5), используя *только* библиотечные функции (обращение к элементам символьного массива по индексу запрещено). При этом для исходной строки динамически выделить память в главной функции.

Задание 3. Спроектировать структуру, описывающую характеристики «Предмета» (см. таблица 5). Создать массив из 3-х структурных переменных

и записать их в файл, как показано на примере ниже. Определить Вычисляемый показатель.

Файл Правка Фор	мат Вид Справка	
Ли	Дюпон	Кузьмин
Сан	Жорж	Игорь
Китай	Франция	Россия
менеджер	художник	водитель
355-13-78	786-45-45	243-55-67

Вариант С.

Задание 1. Используя *манипуляторы ввода-вывода, в цикле* сформировать на экране матрицу согласно индивидуальному номеру (см. таблица 4).

Задание 2. Разработать функцию преобразования *исходной строки* (см. таблица 5), для которой *динамически выделить память*.

Задание 3. Спроектировать структуру, описывающую характеристики «Предмета» (см. таблица 5). Создать несколько структурных переменных и записать их в файл. Определить Вычисляемый показатель.

```
1.
                                                11.
                        6.
                                                        ?
                                                           ?
                                                             ?
                                                                     7
                                                        ?
        В
                                                                   ?
                             1
                                                           ?
                                                              ?
                                                                ?
                                                                     6
                                                        ?
        C
                             2
                                                          ?
                                                                ?
                                2
                                                              ?
                                                                   ?
                                                                     5
                             3
                                3
                                   3
                                                        ?
                                                                ?
                                                                   ?
                                                          ?
                                                              ?
                                     3
                                                                     4
                                                        ?
                                4
                                   4
                                                          ?
                                                                   ?
                                                                     3
                             4
                                                                ?
                                     4
                                                              ?
                             5
                                5
                                   5
                                     5
                                                        ?
                                                           ?
                                                              ?
                                                                ?
                                                                   ?
                                                                     2
                                        5 5
2.
                        7.
                                                12.
                                                        ?
      8
                                                           ?
                                                                   ? 6
                             a
                                                        ?
                                                          ? ? ? 5
      7
                             #
                               b
                                                        ? ? ? 4
      6
                             #
                                #
                                   С
                                                        ? ? 3
      5
                            #
                                #
                                   #
                                       d
                                                        ? 2
                            #
                                #
                                       #
                                          e
                                             f
                                #
                                                        1
                                       #
                                          #
3.
                        8.
                                                13.
                   0
                                                        ?
                                                           ?
                                            0
                   1
                                                        ?
                                                                     3
                                         1
                   2
                                                        ?
                                                           ?
                                                             ?
                                                                ?
                   3
                                                        & &
                                                             &
                                                                &
                                                                     5
                   4
                                                        & & &
                                                                &
                                                                  & 6
                   5
                                                        & & & & & 7
4.
                                                14.
                        9.
                                                             ? ? ? a
                             0
                                                           ?
                                                        ? ?
                                                             ? ? b
                1
                              1
                                #
                                                        ? ? ? c
                              2
                                #
                                                        ? ? d
                              3
                                      #
                                                        ? e
                             4
                                                        f
                              5
                                         #
5.
                                                15.
                        10.
           3 5
                3 3
        ?
                                                        ? ?
                                                                   ? ?
                              0
                                                             2
     5
        ? ? ?
                                                        ?
                                                           ?
                                                              3
                                                                ?
                                                                      ?
                              #
                                1
                                                        ?
     4 ? ? ?
                                                          ?
                                                             4
                                                                ?
                                                                      ?
                                   2
     3 ? ?
                                                        ?
                                                           ?
                                                             5
                                                                ?
                                      3
     2 ?
                                                        ?
                                                                ?
                                                                      ?
                                                           ?
                                                             6
                                                                   ?
                                                                ?
     1
                                         #
                                                           ?
                                                              7
                                           5
```

```
26
16.
                       21.
                                                  ?
                             ?
                               >
                                  ? ? ?
             ? ? &
           ?
                                                  ?
                                                     ?
                                                               8
                               ?
                                          ?
              ?
                             ?
                                  ?
                                     ?
                                       7
                &
                                                  ?
                                                     ?
                                       ?
                                                               7
                             ?
      ?
                ?
                                ?
                                  ?
                                     6
                                          ?
        ? ?
              &
                   5
                                                     ?
                                                               6
                                  5
                                    ?
                                       ?
                                          ?
      ?
        ? &
             ?
                   ?
                                ?
                ?
                                                     ?
                                                       ?
                                                          ?
                                                               5
                             ?
                                  ?
                                     ?
                                       ?
                               4
                                          ?
                   ?
         & ? ?
                ?
                                                    ?
                                ? ?
                             3
        ? ? ?
                                             27.
                      22.
17.
                                                  ?
                                                     ?
                                                       ?
                                                         ? ? 6
                             0
      5
        4 3 2
                 1
                   0
                                                  ?
                                                    ? ? ? 5
                             # 1
                    1
                                                    ? ? 4
                   2
                             #
                               # 2
                                                    ? 3
                    3
                                  #
                                    3
                                                  ? 2
                   4
                                       4
                                                  1
                    5
                                  # #
                                      # 5
                                             28.
                      23.
18.
                                           0
                                                     ?
                                                       ?
                                                            ? 3
         1
                                        1
                                                     ?
                                                       ?
                                                          ?
                                                  &
                                                    &
                                                       &
                                                         &
                                                            & 5
              3
                                                    & &
                                                         &
                                                  &
                                                            & 6
                 4
                                                  & & & & & 7
                    5
                                             29.
 19.
                      24.
                                                  а
                            0
       1
                                                  # b
                            1 #
       #
         3
                                                       C
         #
            5
                                                       # d
                            3
                              #
            #
               7
                                                    #
                            4 #
                  9
                                                  # # #
                            5 # # #
                                        #
         #
           #
                 # 11
                                             30.
                      25.
 20.
        ? ?
                             0
                   6
              ? 5
                                                 ? ? ?
         ? ?
                   ?
                                                         ?
                             # 1
                                                 ? ? ? @ ? ?
                                                           ? ?
      ?
        ? ? 4
                ?
                   ?
                               # 2
                                                   9 3
        ? 3
             ?
                ?
                                                        ? ? ?
                   ?
                                    3
      ?
        2
                                                          ? ?
              ?
                                  #
           ?
                 ?
                   ?
                                     #
         ? ?
      1
                   ?
                                       # 5
```

Таблица 5

		Задани	Задание 3		
№ п/п	Исходная строка	Тип строки	Преобразование	Предмет	Вычисляемый показатель
1.	«Zero One Null»		Заменить в строке все буквы «е» на «о»	Компьютер	Экземпляр с наибольшей оперативной памятью
2.	«Zero Two Null»		Поменять местами Two и Null	Локальная сеть	Минимальная стоимость монтажа
3.	«Zero Three Null»		Определить в строке количество букв «е»	Транспортно е средство	Максимальный пробег на полном бензобаке
4.	«Zero Four Null»		Определить местоположение в строке первой буквы «u»	Программны й продукт	Последняя версия
5.	«Zero Five Null»		Изменить порядок букв в Zero на противоположный	Документ	Количество документов, выданных в прошлом году
6.	«Zero Six Null»	Символь ный массив	Изменить каждую букву строки на букву, стоящую по алфавиту на две позиции левее	Диета	Максимальное дневное количество белков
7.	«Zero Seven Null»		Добавить в строку слово Опе после Zero	Периферийн ое устройство компьютера	Минимальная цена устройства
8.	«Zero Eight Null»		Исключить из строки пробелы	Строительн ый товар	Сумма покупки
9.	«Zero Nine Null»		Поменять местами Null и Zero	Представите ль университет а	Количество студентов, обучающихся у конкретного преподавателя
10.	«One Null Zero»		Изменить порядок букв в Null на противоположный	Предприяти е малого бизнеса	Название предприятия с максимальным числом сотрудников

11.	«One One Zero»		Определить	СУБД	Количество
11.	Wone one Zero		местоположение	СУБД	СУБД заданного
			первой буквы по		
			алфавиту		производителя
12.	«One Two Zero»		Заменить все	Страховой	Количество
			строчные буквы на	полис	полисов на
			заглавные		заданную
					фамилию
13.	«One Three Zero»		Добавить слово Two	Наушники	Тип с
			после слова One		максимальным
					частотным
					диапазоном
14.	«One Four Zero»		Заменить в строке все	Недвижимос	Максимальная
			буквы «о» на «Е»	ТЬ	жилая площадь
15.	«One Five Zero»		Определить в строке	Часы	Самый дорогой
		Тип	количество букв «о»		экземпляр
16.	«One Six Zero»	string	Заменить в строке все	Телефон	Самая новая
		_	буквы «е» на «о»	1 2000	модель
17.	«One Seven Zero»		Поменять местами	Бытовая	Количество
			One и Zero	техника	товаров
					заданной фирмы
18.	«One Eight Zero»		Определить в строке	Магнитная	Количество карт
			количество букв «е»	карта для	без поездок
				проезда на	
				транспорте	
19.	«One Nine Zero»		Определить	Насекомое	Максимальный
			местоположение в		размер крыльев
			строке первой буквы		
20	- X 11 7		«e»	7.0	**
20.	«Two Null Zero»		Изменить порядок	Канцелярски	Количество
			букв в Zero на противоположный	е товары	товаров
					заданной фирмы
21.	«Two One Zero»	Символь	Изменить каждую	Товар	Сумма покупки
		ный	букву строки на		
		массив	букву, стоящую по алфавиту на четыре		
			позиции левее		
22.	«Two Two Zero»		Заменить в строке	Учащийся	Учащийся с
			слово Zero на слово		максимальным
			Two		IQ
					(коэффициентом
					интеллекта)
23.	«Two Three		Исключить из строки	Путешестви	Самый дешевый
	Zero»		пробелы	е (тур)	тур на 7 и более
					дней
24.	«Two Four Zero»		Исключить из строки	Мебель	Количество
			все буквы «о»		предметов из
	1		ı	1	

					дерева
25.	«Two Five Zero»		Вставить вместо	Программно	Продукт с
			пробелов знак	e	максимальным
			подчеркивания	обеспечение	объемом памяти
26.	«Two Six Zero»		Определить	Представлен	Минимальное
			местоположение	ие	число зрителей
			первой буквы по алфавиту		в зале
27.	«Two Seven		Изменить порядок	Запоминаю	Экземпляр с
	Zero»		букв в Seven на	щее	минимальным
			противоположный	устройство	размером
28.	«Two Eight Zero»		Добавить слово One	Принтер	Экземпляр с
			после слова Eight		наибольшей
					производительн
		Тип			остью
29.	«Two Nine Zero»	string	Заменить в строке все	Книга	Количество книг
			буквы «е» на «О»		одного автора
30.	«Three Null Zero»		Определить в строке	Телефон	Самая новая
			количество букв «е»		модель