Taylor Maurer, 10/1/2020, ISE201 HW2

7.2.1 Consider the compressive strength data in Table 6.2. What proportion of the specimens exhibit compressive strength of at least 200 psi? What is the population parameter estimated here?

Answer

For the answer we are estimating the sample proportion. Our sample is of size 80, so n = 80. The number of items that belong to class $PSI \ge 200$ is 10. Therefore the estimated sample proportion is $\frac{10}{80}$ or $\frac{1}{8}$.

7.2.2 Consider the synthetic fiber in the previous exercise. (excercise 7.2.3 not 7.2.2) How is the standard deviation of the sample mean changed when the sample size is increased from n = 6 to n = 49?

Answer:

For n = 6, the standard deviation of the sample mean is given below:

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{3.5}{\sqrt{6}} = 1.42886 \tag{1}$$

Now for n = 49, the standard deviation of the sample mean is given below:

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{3.5}{\sqrt{49}} = 0.5$$
 (2)

In conclusion, the standard deviation (and variance) decreases with increasing sample amount.

7.2.5 A normal population has mean 100 and variance 25. How large must the random sample be if you want the standard error of the sample average to be 1.5?

Answer:

For a normal distribution the standard error is given by:

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} \tag{3}$$

If we need $\sigma_{\bar{X}}$ to be 1.5, we can rearrange the equation to solve for n:

$$n = \frac{\sigma^{2}}{\sigma_{\bar{X}}}$$

$$= \frac{25}{1.5^{2}}$$

$$= 11.11 = 12$$
(4)

- **7.2.7** A random sample of size n1 = 16 is selected from a normal population with a mean of 75 and a standard deviation of 8. A second random sample of size n2 = 9 is taken from another normal population with mean 70 and standard deviation 12. Let X1 and X2 be the two sample means.
 - 1. The probability that X1 X2 exceeds 4

Answer: Since we have all the information we need we can plug in values into equation 7-4. Keep

in mind to find our Z value we will be using $\bar{X}_1 - \bar{X}_2 = 4$.

$$Z = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

$$= \frac{4 - (75 - 70)}{\sqrt{8^2/16 + 12^2/9}}$$

$$= \frac{-1}{4.472}$$

$$= -0.22361$$
(5)

Using the table in the back of the book we get that Z value to correspond to a probability of 0.412936. However since we want the probability of $P(\bar{X}_1 - \bar{X}_2 > 4)$ we have to subtract by one. Thus the final probability of $P(\bar{X}_1 - \bar{X}_2 > 4) = 1 - 0.41293 = 0.58707$.

2. The probability that 3.5 leq X1 - X2 leq5.5

Answer: So now we are going to use equation 7-4, twice one for where $\bar{X}_1 - \bar{X}_2 = 3.5$ and another where $\bar{X}_1 - \bar{X}_2 = 5.5$. Then we can subtract.

 $\bar{X}_1 - \bar{X}_2 = 3.5$:

$$Z = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

$$= \frac{3.5 - (75 - 70)}{\sqrt{8^2/16 + 12^2/9}}$$

$$= \frac{-1.5}{4.472}$$

$$= -0.33542$$
(6)

Now we can say $P(\bar{X}_1 - \bar{X}_2 \le 3.5) = P(Z \le -0.33542) = 0.370700$. Now we repeat for $\bar{X}_1 - \bar{X}_2 = 5.5$:

$$Z = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

$$= \frac{5.5 - (75 - 70)}{\sqrt{8^2/16 + 12^2/9}}$$

$$= \frac{0.5}{4.472}$$

$$= 0.1118$$
(7)

Now we can say $P(\bar{X}_1 - \bar{X}_2 \le 5.5) = P(Z \le 0.1118) = 0.543795$. Now the probability that $P(3.5 \le \bar{X}_1 - \bar{X}_2 \le 5.5)$ is given by $P(\bar{X}_1 - \bar{X}_2 \le 5.5) - P(\bar{X}_1 - \bar{X}_2 \le 3.5) = 0.543795 - 0.370700 = 0.173095$.