Pet Breed Identification Case Study Rubric

DS4002 - Lucas Vallarino - Spring 2025

Due: Monday, April 28th, 2025

Submission Format: GitHub link uploaded to Canvas and Hard Copy Turn-In

Individual Assignment

Why am I doing this? This case study allows you to apply machine learning and computer vision to real-world problems. By building a pet breed identification model, you will deepen your skills in data preprocessing, CNN modeling, and model evaluation.

What am I going to do? The link for the GitHub repository is https://github.com/lucasvg133/CS3-DS4002. You will download the Oxford-IIIT Pet Dataset from the link in the GitHub and will work with it. Using all available breeds (dogs and cats), you will preprocess image data, fine-tune a ResNet-50 model through transfer learning, and evaluate model performance. Your goal is to develop a robust CNN achieving at least 90% test accuracy. To visualize results, you will produce a confusion matrix as well as graphs that show the results of the training vs validation data accuracy and the training vs validation data loss.

Final deliverables include:

- Well documented source code: Colab notebook with comments and markdown explanations
- Confusion matrix: visual representation of true vs predicted labels
- Training vs validation accuracy graph: analyzed model generalization over time
- Training vs validation loss graph: checks for overfitting or underfitting
- Final accuracy values (results): reports the test dataset performance
- A GitHub repository: organized repository containing all project materials, code, output figures, and documentation

How will I know I have succeeded? You will meet expectations by following the criteria in the rubric below:

Spec Category	Spec Details
Formatting	 One GitHub repository organized clearly (submitted via link on Canvas) The top-level page of the repository includes: A README.md File A LICENSE.md File

README.md	 A Scripts Folder A Data Folder An Output Folder A REFERENCES.md File (if any references were used) Goal: This file serves as an orientation to everyone who comes to your repository, it should enable them to get their bearings. This should give a brief introduction to the case study and what you produced: Project overview Dataset used Structure of repo
LICENSE.md	 Goal: Goal: This file explains to a visitor the terms under which they may use and cite your repository. Select an appropriate license from the GitHub options list on repository creation. Usually, the MIT license is appropriate.
Scripts Folder	 Goal: This contains your well documented Colab notebook file that contains the code used to create your CNN model and results. The folder must have a script for analysis containing the following: The CNN model The accuracy results The confusion matrix It is optional, but recommended, to include data acquisition scripts for both data organization and pre-processing.
Data Folder	 Goal: This contains the data used for the model, NOT the original dataset. A single or multiple csv file of your cleaned and processed image data. Include a data appendix to provide an overview of the datasets and transformations applied, from raw input data to analysis data.
Output Folder	 Goal: This folder contains all of the output generated by your project, e.g. figures, tables, etc. It must include: Confusion Matrix Training vs Validation Accuracy Results Training vs Validation Loss Results

REFERENCES.md	Markdown file citing any resources used to build the model
---------------	--