自然言語処理システム

(1) 情報検索

情報検索の概念

転置インデックス法

▶ 検索質問(検索語の集合): T₁, T₂, ...

 $T_1 \wedge T_2$: 語 T_1 と語 T_2 の両方が含まれる文書を求める

T₁VT₂:語T₁または語T₂のどちらかが含まれる文書を求める

~T₁:語T₁を含まない文書を求める

▶例

- ▶ 検索意図:「文法の学習に関する書籍や論文を探す」
- ▶ 検索質問:文法∧学習
- ▶ 検索意図:「英語以外の言語に対する文脈依存文法や文脈自由 文法の学習に関するもの」
- ▶ 検索質問:(~英語)∧(文脈依存文法∨文脈自由文法)∧学習

転置インデックス

文書と索引語

	索引語I	索引語2	索引語3	索引語4
文書Ⅰ	I	1	I	0
文書2	0	Ī	Ī	I
文書3	I	0	Ī	I
文書4	0	0	I	I

転置インデックス

	文書I	文書2	文書3	文書4
索引語Ⅰ	1	0	1	0
索引語2	Ī	I	0	0
索引語3	Ī	I	Ī	I
索引語4	0	I	I	I

検索の例

索引語1∧索引語2

索引語I 1010 = {文書I、文書3} 索引語2 I100 = {文書I、文書2}

索引語1∧索引語2 1000 = {文書1}

(索引語1∨索引語2)∧~検索語4

索引語| 1010 = {文書1、文書3}

索引語2 | 1100 = {書1、文書2}

索引語1∨索引語2 1110 = {文書1、文書2、文書3}

索引語4 0111 = {文書2、文書3、文書4}

~検索語4 I000 = {文書I}

(索引語1∨索引語2)∧~検索語4 1000 = {文書1}

転置インデックス法の拡張

文書と重みづけられた索引語

	索引語I	索引語2	索引語3	索引語4
文書Ⅰ	0.2	0.5	0.6	0
文書2	0	0.3	0.1	0.8
文書3	0.5	0	0.5	0.2
文書4	0	0	0.3	0.3

重み付けられた索引語を利用した検索

	索引語2		索引語3			順位
文書Ⅰ	0.5	+	0.6	=	1.1	I
文書2	0.3	+	0.1	=	0.4	3
文書3	0	+	0.5	=	0.5	2
文書4	0	+	0.3	=	0.3	4

ベクトル空間法

- 文書と検索質問の両方を統一的に表現する。
- この間で、距離(類似度)を定義し、似ている文書を 探し出す。

文書をベクトルの線形結合で表したもの:

$$D_{r} = \sum_{i=1}^{t} a_{i}^{r} V_{i}$$

V_i:検索語T_iに対応するベクトル

 a_i^r :文書D_rにおける索引語T_iに対する値

- ▶ 例) D_rにT_iが存在すれば1、otherwise 0
- ▶ 例)索引語T_iの重要度

検索質問をベクトルの線形結合で表したもの:

$$Q_{s} = \sum_{i=1}^{t} a_{i}^{s} V_{i}$$

類似度

$$sim(Dr,Qs) = Dr\cdot Qs$$

$$= \sum_{i,j=1}^t a_i^r a_j^s V_i \cdot V_j$$

$$= \sum_{i=1}^t a_i^r \ a_i^s$$

内積:|D_r||Q_s|cosα

$$V_i \cdot V_j = 1 \dots i = j$$

 $V_i \cdot V_j = 0 \dots i \neq j$

実際の検索

- あらかじめ各文書に対する文書ベクトルを計算しておく。
- 2. 検索質問を、検索質問ベクトルに変換する。
- 3. 検索質問と全ての文書ベクトルの類似度を計算する。
- 4. 類似度の大きい順にソートする。
- 5. 上位M位までの文書を出力する。

例

文書(D₁~D₃)と検索質問のベクトル表現

$$D_1 = 3V_1 + 2V_2 + 4V_3 + 0V_4$$

$$D_2 = IV_1 + 3V_2 + 0V_3 + 2V_4$$

$$D_3 = 2V_1 + 4V_2 + 1V_3 + 5V_4$$

$$Q = |V_1 + 0V_2 + 2V_3 + 0V_4$$

▶ 類似度計算

- \rightarrow sim(D₁,Q) = 3 [+2 0+4 2+0 0= []
- \Rightarrow sim(D₂,Q) = | | +3 0 + 0 2 + 2 0 = |

▶結果

▶ 順位1:D₁(類似度11)、順位2:D₃(類似度4)、 順位3:D₂(類似度1)

関連フィードバック法

▶ 質問ベクトルの変更(質問Q'を、より適切な質問Qに変更する)

$$Q = Q' + \frac{1}{|R|} \sum_{D_i \in R} D_i - \frac{1}{|N|} \sum_{D_j \in N} D_j$$

N_I:含まれなくなった不正解

N₂:含まれる不正解

N₃:新しく含まれる不正解

R_I:含まれなくなった正解

R₂:含まれる正解

R₃:新しく含まれる正解

R₄:含まれない正解

判定結果に対する評価 再現率(Recall Ratio)と適合率(Precision Ratio)

声現率

$$R = \frac{|C|}{|A| + |C|}$$

▶適合率

$$P = \frac{|C|}{|B| + |C|}$$

▶ F値

$$F = \frac{RP}{R+P}$$

重要語句の抽出

- ▶ 基本的には出現頻度(tf. term frequency)が多い語が重要。
- ▶ 語wの(一文章中の)頻度: tf(w)

しかし、頻出の語でも多くの文章に出現するものと、特定の文章だけに出現する語では重要さに差がある。

idf(inverse document frequency)

- ▶ 出現の偏りを表すための指標
- ▶ 特定の文章に出現する頻出語(一般的でない語)ほど重要であると考えられる。
- ▶ 語wのidf値: idf(w) = log(n/N)
 - ▶ nは文章集合(文章数N)のなかで語wが含まれる文章数。
 - ▶ n/Nは、文章中に語wが現れる生起確率
- これを重みとして出現頻度に乗じたものが tf(w)*idf(w)

値である。

文章集合として、資料の文章全体を使う。

全文検索

I. Text

$$S = s_1 s_2 s_3 ... s_n$$

 $s_i : 文字$

2. 検索する文字列

$$P = p_1 p_2 p_3 ... p_m \qquad _{(m \le n)}$$
$$p_i : 文字$$

3. 目的: iを見つける

$$s_{i-1+k} = p_k \quad (k=1,...,m)$$

アルゴリズム

```
begin
  for i := 1 until n - m + 1 do
    begin
      j := 1;
      while (p[j] = s[i + j - 1]) do
         begin
             if (j = m) then terminate with result i
           elsif (j < m) then j := j + 1;
         end;
    end;
end;
                  効率化:
```

- Knuth-Morris-Prattのアルゴリズム
- Boyer-Moorのアルゴリズム

テキストの分類 (階層的クラスタリング)

- 各テキストを一つずつクラスタとする
- 2. クラスタが一つになるまで、次を繰り返す
 - それぞれのクラスタ間の類似度を計算する
 - 2. 最も類似度の高いクラスタの組を一つのクラスタに併合する

١.		A	В	С	D	Е
	Α	•	.3	.6	.8	.9
	В	.3		.5	.7	.8
	С	.6	.5	•	.4	.1
	D	.8	.7	.4	•	.3
	Ε	.9	.8	.1	.3	•

2.

	AE	В	С	D
AE	•	.8	.6	.8
В	.8	•	.5	.7
С	.6	.5	•	.4
D	.8	.7	.4	•

併合

AE - B 0.8

階層木

3.

	ABE	С	D
ABE	•	.6	.8
С	.6	•	.4
D	.8	.4	•

併合

ABE - D 0.8

階層木

4.

	ABDE	С
ABDE	•	.6
С	.6	

併合 階層木

ABDE - C 0.6

クラスタ間の類似度の考え方

I.クラスタX、クラスタYの要素中の最も大きいもの

$$sim(X,Y) = \max_{x \in X, y \in Y} (sim(x,y))$$

2.クラスタX、クラスタYの要素中の最も小さいもの

$$sim(X,Y) = \min_{x \in X, y \in Y} (sim(x, y))$$

3.クラスタX、クラスタYの要素の平均値

$$sim(X,Y) = average(sim(x,y))$$

 $x \in X, y \in Y$

テキストの要約

- 抽出した情報をテキスト(文章)で表現する。
- ▶ 理論的(理想的)には、

文章 理解 再構成 文章生成

▶ 理解:

- ▶ 重要な部分の同定
 - 文章構造
 - □ 序論、本論、結論
 - 重要度の高い文を残す
 - □重要度の計算

パラメータ

- (1) キーワードの出現回数
- (2) 特定の表現パターンの存在
- (3) 時制(過去、現在)
- (4) 文のタイプ(主張、推測、事実、etc)
- (5) 前文との接続関係(理由、例示、 逆説、並列、対比、接続、etc)
- (6) 文章中の位置
- (7) 段落中の位置

まとめ

- ▶情報検索
 - ▶ 転置インデックス法
 - ▶ 同(重み付き)
 - ベクトル空間法
 - ▶ 関連フィードバック法
- 判定結果の評価
 - 再現率、適合率
- 重要語句の抽出
- 全文検索
- トテキストの分類
- テキストの要約

課題

文書(D₁~D₃)に対して、

- $D_1 = 3V_1 + 2V_2 + 4V_3 + 0V_4$
- $D_2 = IV_1 + 3V_2 + 0V_3 + 2V_4$
- $D_3 = 2V_1 + 4V_2 + 1V_3 + 5V_4$

次の検索質問のそれぞれについて、各文書 $(D_1 \sim D_3)$ との類似度を求めよ

- $|Q_1| = 0V_1 + 2V_2 + 2V_3 + 0V_4$
- 2. $Q_2 = |V_1 + 0V_2 + 0V_3 + 2V_4$
- 3. $Q_3 = 0V_1 + 2V_2 + 0V_3 + V_4$