

EDUCATION

CARNEGIE MELLON UNIVERSITY

BS IN ELECTRICAL AND COMPUTER

Engineering

ADDITIONAL MAJOR IN ROBOTICS Expected May 2021 | Pittsburgh, PA Cum. GPA: 3.90 / 4.0

INTERESTS

Sensor/Image Processing Back-End Infrastructure Motion Planning and Controls Machine Learning

LINKS

Github:// Alvinosaur LinkedIn:// alvinshek Portfolio: alvinosaur.github.io/AboutMe

COURSEWORK

MACHINE LEARNING

Deep Reinforcement Learning* Intro to Deep Learning* Introduction to Machine Learning

ROBOTICS AND CONTROLS

Adaptive Control and Reinforcement Learning Planning Techniques for Robotics Computer Vision Advanced Mobile Robot Design Robot Kinematics and Dynamics

COMPUTER SCIENCE

Introduction to Embedded Systems Parallel Computer Architecture and Prog. Introduction to Computer Systems Fundamentals of Imperative Computation

SKILLS

PROGRAMMING

Python • C/C++ • Matlab • Java

SOFTWARE

CUDA • ROS • Tensorflow • Pytorch • Docker • Django • Android Studio

RESEARCH/WORK EXPERIENCE

UBER ATG | Software Engineering Intern on Motion Planning

May 2020 - August 2020 | Remote from Pittsburgh, PA

- Optimized GPU runtime of expensive cost functions
- Built full pipeline and interface using CUDA and Tensorflow in C++
- Achieved 238x speedup to make costing real-time
- Presented 1-hour talk on pros and cons of various approaches using Nvidia's profiling tools

PLANNING OVER ROUGH, UNCERTAIN TERRAIN

March 2020 - August 2020 | Github: rough_terrain_planning

- Goal: Handle uncertainty in terrain and soil interaction for off-road AV planning and replanning
- Built experimental framework to try different planners and execute plan in NREC rough terrain simulator
- Implemented and compared A* and D* Lite performance and runtime
- Used lattice motion primitives with instantaneous steer assumption and kinematic bicycle model

CANVAS CONSTRUCTION | ROBOTICS SOFTWARE INTERN

May 2019 - August 2019 | San Francisco, CA

- Compared LiDAR accuracy with point-to-plane projections in Python
- Developed point cloud feature extractor for obstacle avoidance in C++
- Designed 2D, grid-based path planner for max area coverage with obstacle avoidance in Python and C++
- Integrated feature detection and path planning with global map association into fully functional system

PRO JECTS

HIGH-SPEED DRONE FOLLOWING

April 2020 - May 2020 | Github: drone_controls

- Explored minimum snap(4th derivative of position) trajectory generation
- Implemented LQR and MPC for drone controls and compared performance
- Learned how and when to apply differential flatness to solve nonlinear controls with linear systems

AUTOMATIC SCORING FOR AXE-THROWING

September 2019 - Present | CMU

- Explored three approaches to locate and score axe tip in images for a local business under Dr. George Kantor
- Classical CV with image difference, blob detection, principal axis
- Single layer NN with vectorized image as input
- MaskRCNN for end-to-end detection and scoring

ROBOTIC AIR HOCKEY TABLE

December 2018 - January 2019 | Github: robotic_air_hockey

- Designed system architecture and state machine ranging from user interaction to sensor communications
- Built two 2 Degree-of-freedom robot arms to play against people with only camera feedback, no sensors
- Puck trajectory prediction and velocity kinematics for motion planning
- Track puck with color-filtering and Kalman Filter

^{*} Denotes current semester