

planetmath.org

Math for the people, by the people.

direct sum of even/odd functions (example)

 ${\bf Canonical\ name} \quad {\bf DirectSumOfEvenoddFunctions example}$

Date of creation 2013-03-22 13:34:24 Last modified on 2013-03-22 13:34:24 Owner mathcam (2727) Last modified by mathcam (2727)

Numerical id 6

Author mathcam (2727)

Entry type Example Classification msc 26A06

Related topic DirectSumOfHermitianAndSkewHermitianMatrices

Related topic ProductAndQuotientOfFunctionsSum

Example. Direct sum of even and odd functions Let us define the sets

$$F = \{f \mid f \text{ is a function from } \mathbb{R} \text{ to } \mathbb{R}\},$$

$$F_{+} = \{f \in F \mid f(x) = f(-x) \text{ for all } x \in \mathbb{R}\},$$

$$F_{-} = \{f \in F \mid f(x) = -f(-x) \text{ for all } x \in \mathbb{R}\}.$$

In other words, F contain all functions from \mathbb{R} to \mathbb{R} , $F_+ \subset F$ contain all even functions, and $F_- \subset F$ contain all odd functions. All of these spaces have a natural vector space structure: for functions f and g we define f+g as the function $x \mapsto f(x) + g(x)$. Similarly, if c is a real constant, then cf is the function $x \mapsto cf(x)$. With these operations, the zero vector is the mapping $x \mapsto 0$.

We claim that F is the direct sum of F_+ and F_- , i.e., that

$$F = F_+ \oplus F_-. \tag{1}$$

To prove this claim, let us first note that F_{\pm} are vector subspaces of F. Second, given an arbitrary function f in F, we can define

$$f_{+}(x) = \frac{1}{2} (f(x) + f(-x)),$$

 $f_{-}(x) = \frac{1}{2} (f(x) - f(-x)).$

Now f_+ and f_- are even and odd functions and $f = f_+ + f_-$. Thus any function in F can be split into two components f_+ and f_- , such that $f_+ \in F_+$ and $f_- \in F_-$. To show that the sum is direct, suppose f is an element in $F_+ \cap F_-$. Then we have that f(x) = -f(-x) = -f(x), so f(x) = 0 for all x, i.e., f is the zero vector in F. We have established equation ??.