PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-004039

(43) Date of publication of application: 14.01.1994

(51)Int.CI.

G09G 3/28 H01J 11/02

(21)Application number : 04-161146

(22)Date of filing:

(71)Applicant : FUJITSU LTD

19.06.1992 (72)Inventor

(72)Inventor: TOMIO SHIGETOSHI

KANAZAWA GIICHI

(54) AC TYPE PLASMA DISPLAY PANEL AND DRIVING CIRCUIT THEREFOR

(57)Abstract:

PURPOSE: To provide the driving circuit of the AC type plasma display panel which is reduced in the peak current of the charging and discharging of a panel capacitance by dispersing the charging and discharging currents at the time of maintaining discharging pulses. CONSTITUTION: This driving circuit drives the AC type plasma display panel 1 in surface discharge structure equipped with X electrodes X1-XP and Y electrodes Y1-YN, and address electrodes A1-AM; and the X electrodes X1-XP and Y electrodes Y1-YN are divided into P blocks (P = 4 in the figure). Then the driving circuit has P X-side driver circuits XD1-XDP which apply high-voltage pulses to the X electrodes X1-XP, block by block, and Y-side driver circuits YD1-YDP which apply maintaining discharging pulses to the Y electrodes Y1-YN, block by block; and the P X-side driver circuits XD1-XDP and P Y-side driver circuits YD1-YDP generate pulse voltages which are out of phase with one another.

LEGAL STATUS

[Date of request for examination]

05.10.1998

[Date of sending the examiner's decision of

31.07.2001

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision 2001-15396

of rejection]

[Date of requesting appeal against examiner's

30.08.2001

			,	
	·			

(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-4039

(43)公開日 平成6年(1994)1月14日

(51)Int.Cl.⁵

識別記号

FΙ

技術表示箇所

G 0 9 G 3/28

E 8729-5G

庁内整理番号

H01J 11/02

C 9376-5E

審査請求 未請求 請求項の数2(全 6 頁)

(21)出願番号	特顯平4-161146	(71)出願人	000005223
			富士通株式会社
(22)出願日	平成 4年(1992) 6月19日		神奈川県川崎市中原区上小田中1015番地
		(72)発明者	富尾 重寿
			神奈川県川崎市中原区上小田中1015番地
			富士通株式会社内
		(72)発明者	金澤 義一
			神奈川県川崎市中原区上小田中1015番地
			富士通株式会社内
		(74)代理人	弁理士 石川 泰男
		1	

(54) 【発明の名称】 AC型プラズマディスプレイパネル及びその駅動回路

(57)【要約】

【目的】 維持放電パルス印加時の充放電電流を分散さ せることにより、パネル容量による充放電のピーク電流 を低減したAC型プラズマディスプレイパネルの駆動回 路を提供することを目的とする。

【構成】 X電極X1 ~XP 及びY電極Y1 ~YN と、 アドレス電極A1 ~AMとを備える面放電構造のAC型 プラズマディスプレイパネル1を駆動する駆動回路であ って、X電極X: ~XP 及びY電極Y: ~YN は、Pブ ロック (図1ではP=4) に分割され、X電極 $X_1 \sim X$ P に高圧パルスをブロック毎に印加するP個のX側ドラ イバ回路XD1~XDPと、Y電極Y1~YN に維持放 電パルスをブロック毎に印加するP個のY側ドライバ回 路YD1~YDPとを有して構成し、P個のX側ドライ バ回路XD1~XDP及びP個のY側ドライバ回路YD 1~YDPは、それぞれ互いに位相のずれたパルス電圧 を発生する。

本発明のAC型プラズマディスプレイパネルの駆動回路の構成図

【特許請求の範囲】

【請求項1】 維持放電を行なうための電極と、データ の書き込みを行なうためのアドレス電極とを備える面放 電構造のAC型プラズマディスプレイパネルを駆動する 駆動回路であって、

前記維持放電電極は、前記AC型プラズマディスプレイ パネル内でPブロック(Pは任意の正整数)に分割さ

前記維持放電電極に維持放電パルスをブロック毎に印加 するP個の駆動手段を有し、

前記P個の駆動手段は、互いに位相のずれた維持放電パ ルスを発生することを特徴とするAC型プラズマディス プレイパネルの駆動回路。

【請求項2】 維持放電を行なうためのX電極(X1~ XP) 及びY電極 (Y1 ~YN) と、データの書き込み を行なうためのアドレス電極 (A1 ~AM) とを備える 面放電構造のAC型プラズマディスプレイパネルを駆動 する駆動回路であって、

前記X電極 (X1 ~ XP) 及びY電極 (Y1 ~ YN) は、前記AC型プラズマディスプレイパネル内でPブロ 20 ック (Pは任意の正整数) に分割され、

前記X電極(X1 ~XP) に高圧パルスをブロック毎に 印加する P個のX側ドライバ回路 (XD1~XDP) と、前記Y電極 (Y1 ~YN) に維持放電パルスをブロ ック毎に印加するP個のY側ドライバ回路(YD1~Y DP) とを有し、

前記P個のX側ドライバ回路 (XD1~XDP) 及びP 個のY側ドライバ回路 (YD1~YDP) は、それぞれ 互いに位相のずれたパルス電圧を発生することを特徴と するAC型プラズマディスプレイパネルの駆動回路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、維持放電を行なうため の電極と、データの書き込みを行なうためのアドレス電 極とを備える面放電構造のAC型プラズマディスプレイ パネルを駆動するAC型プラズマディスプレイパネルの 駆動回路に係り、特に、維持放電パルス印加時の充放電 電流の集中を少なくすることにより、パネル容量による 充放電のピーク電流を低減したAC型プラズマディスプ レイパネルの駆動回路に関する。

[0002]

【従来の技術】図4に、従来の面放電AC型プラズマデ ィスプレイパネルの断面構造(図4(1))、及び電極 構造(図4(2))を示す。

【0003】同図において、従来の面放電AC型プラズ マディスプレイパネルは、維持放電を行なうためのX電 極X及びY電極Yk ($k=1\sim N$; Nは任意の正整数) が誘電体層52内に平行して、また、データの書き込み を行なうためのアドレス電極 A_i ($i = 1 \sim M$; Mは任 意の正整数)が対向して構成された面放電構造となって 50 て構成し、前記P個の駆動手段は、互いに位相のずれた

いる。

【0004】このように、パネル自身が容量性の構造を 持っているため、一度放電を起こすと、以降は放電開始 電圧よりも低い電圧(維持電圧)をパルス(維持放電パ ルス)で印加することにより放電を維持し続けることが できる。発光は放電時に発生する光や紫外線により蛍光 体を励起して行ない、発光輝度は放電の周波数に比例し て明るくなる。

【0005】また、この面放電AC型プラズマディスプ レイパネルを駆動する駆動回路の構成図を図5に、各部 10 の電圧波形を図6に示す。本従来例では、面放電構造の 維持放電電極は共通維持放電ドライバに接続されてお り、パネル全面に渡り、図6に示すような同位相の維持 放電パルスを印加することで維持放電を行なう。尚、維 特放電電極の内、X電極Xは共通接続でX側ドライバ回 路61に接続され、Y電極Ykは、パネルにデータを書 き込む時に線順次に書き込みパルスを印加するため、独 立に駆動が可能なY側ドライバ回路62及びY側ドライ バICYIC1~YIC4に接続されている。

[0006]

【発明が解決しようとする課題】従って、従来のAC型 プラズマディスプレイパネル及びその駆動回路では、パ ネルが大きい場合パネル容量も大きくなり、また同位相 の維持放電パルスを印加しているため、充電時及び放電 時のピーク電流はかなりの大電流となり、供給電流能力 の大きな電源が必要となり、コスト高になるという問題 があった。

【0007】また、電流供給用のコンデンサも大きくな り、ユニットの薄型化を阻害する要因となっている。更 30 に、供給電流がピークとなる時に発生する放射ノイズも 増大するため、シールド等の対策が必要となる。

【0008】本発明は、上記問題点を解決するもので、 維持放電を行なうための電極と、データの書き込みを行 なうためのアドレス電極とを備える面放電構造のAC型 プラズマディスプレイパネルを駆動する際に、維持放電 パルス印加時の充放電電流を分散させることにより、パ ネル容量による充放電のピーク電流を低減したAC型プ ラズマディスプレイパネルの駆動回路を提供することを 目的とする。

[0009]

【課題を解決するための手段】上記課題を解決するため に、本発明の第1の特徴のAC型プラズマディスプレイ パネルの駆動回路は、維持放電を行なうための電極と、 データの書き込みを行なうためのアドレス電極とを備え る面放電構造のAC型プラズマディスプレイパネルを駆 動する駆動回路であって、前記維持放電電極は、前記A C型プラズマディスプレイパネル内でPブロック (Pは 任意の正整数) に分割され、前記維持放電電極に維持放 電パルスをブロック毎に印加するP個の駆動手段を有し

維持放電パルスを発生する。

【0010】また、本発明の第2の特徴のAC型プラズ マディスプレイパネルの駆動回路は、図1に示す如く、 維持放電を行なうためのX電極X1 ~XP 及びY電極Y □ ~YN (Nは任意の正整数)と、データの書き込みを 行なうためのアドレス電極AI ~AM (Mは任意の正整 数)とを備える面放電構造のAC型プラズマディスプレ イパネル1を駆動する駆動回路であって、前記X電極X I ~XP 及びY電極YI ~YN は、前記AC型プラズマ ディスプレイパネル1内でPブロック (Pは任意の正整 数で、図1においてはP=4)に分割され、前記X電極 X1 ~XP に高圧パルスをブロック毎に印加する P個の X側ドライバ回路XD1~XDPと、前記Y電極Y1~ Yn に維持放電パルスをプロック毎に印加するP個のY 側ドライバ回路YD1~YDPとを有して構成し、前記 P個のX側ドライバ回路XD1~XDP及びP個のY側 ドライバ回路YD1~YDPは、それぞれ互いに位相の ずれたパルス電圧を発生する。

[0011]

【作用】本発明の第1及び第2の特徴のAC型プラズマ 20 ディスプレイパネルの駆動回路では、図1に示す如く、 維持放電を行なうための維持放電電極、即ちX電極XI ~XP 及びY電極YI ~YN (Nは任意の正整数)を、 AC型プラズマディスプレイパネル1内でPプロック (Pは任意の正整数で、図1においてはP=4)に分割 し、各ブロック毎に、X側ドライバ回路XD j=1~P)によりX電極X」に高圧パルスを、Y側ドライバ 回路YDj によりY電極Y1 ~YN に維持放電パルス を、それぞれ互いに位相のずれたパルス電圧として印加 するようにしている。

【0012】従って、パネル容量による充放電のピーク 電流を、従来に比べて分割プロック数(P)分の1に低 減させることができる。

[0013]

【実施例】次に、本発明に係る実施例を図面に基づいて 説明する。図1に本発明の一実施例に係るAC型プラズ マディスプレイパネルの駆動回路の構成図を示す。ま た、本実施例の駆動回路の駆動対象となるAC型プラズ マディスプレイパネル1の構成図を図2に示す。

【0014】図2に示すAC型プラズマディスプレイパ 40 ネル1は、維持放電電極を4個のプロックに分割した構 成であり、維持放電を行なうためのX電極 $X_1 \sim X_4$ 及 びY電極Y1 ~Y1000と、データの書き込みを行なうた めのアドレス電極A1 ~Am (Mは任意の正整数) とを 備えた面放電構造である。尚、スキャン方向(横ライ ン) の1000ライン (Y電極Y1 ~Y1000) は4分割 され、250ライン毎 (Y1-1~Y1-250, Y2-1~Y 2-250, Y3-1~Y3-250, Y4-1~Y4-250) のプロ ック構成となっている。

【0015】図1において、本実施例のAC型プラズマ 50 できる。

ディスプレイパネルの駆動回路は、駆動対象となるAC 型プラズマディスプレイパネル1と、X電極X1~X4 に高圧パルスをブロック毎に印加する4個のX側ドライ バ回路XD1~XD4と、維持放電パルスをブロック (250ライン) 毎に生成する4個のY側ドライバ回路 YD1~YD4と、Y側ドライバ回路YD1~YD4を 基にY電極Y1 ~Y1000に消去パルスをブロック毎に印 加するY側ドライバICYIC1~YIC4と、アドレ ス電極AI ~AM に高圧パルスを印加するアドレス側ド ライバICAIC1~AIC5と、各ドライバ回路及び ドライバICに制御信号11~14を供給して、タイミ ング制御を行なう制御回路3とから構成されている。

【0016】本実施例の動作を、図3に示す各部電圧波 形図を参照して説明する。尚、Hsync#は水平同期信号 であり、同図は1水平走査期間内の波形図である。先 ず、第1プロックの1ライン目に、放電開始電圧以上の 書き込みパルスを印加し、1ライン目の全セルを点灯さ せる。次に、データを書き込むセル(この場合は、点灯 を消去するセル) に対してアドレス電極A1 ~Au によ り選択消去パルスを印加する。消去パルスを印加しなか ったセルは、残留壁電荷により後から印加される維持放 電パルスで点灯し続けることとなる。この動作を250 ラインまで行なう。

【0017】同様に、第2、第3、及び第4ブロックも 駆動するが、それぞれ互いに位相のずれたパルス電圧波 形を印加する。以上のように、本実施例では、AC型プ ラズマディスプレイパネル1のスキャン側を4つのブロ ックに分割し、各ブロック毎に維持放電ドライバを設 け、互いに位相のずれたパルス電圧波形を印加して駆動 することとしたので、維持放電パルス印加時の充放電電 流を分散させることができ、パネル容量による充放電の ピーク電流を、従来に比べて4分の1に低減させること ができる。

[0018]

30

【発明の効果】以上説明したように、本発明によれば、 維持放電を行なうための維持放電電極、即ちX電極及び Y電極を、AC型プラズマディスプレイパネル内でPブ ロック(Pは任意の正整数)に分割し、各ブロック毎 に、X側ドライバ回路によりX電極に髙圧パルスを、Y 側ドライバ回路によりY電極に維持放電パルスを、それ ぞれ互いに位相のずれたパルス電圧として印加すること としたので、パネル容量による充放電のピーク電流を、 従来に比べて分割ブロック数 (P) 分の1に低減しうる AC型プラズマディスプレイパネルの駆動回路を提供す ることができる。

【0019】また、AC型プラズマディスプレイパネル の電極取り出しから各維持ドライバ間での距離が各ブロ ックで同じになるため、AC型プラズマディスプレイパ ネルの上下等の表示品質のバラツキも低減させることが

【図面の簡単な説明】

【図1】本発明の一実施例に係るAC型プラズマディス プレイパネルの駆動回路の構成図である。

【図2】駆動対象となるAC型プラズマディスプレイパ ネルの構成図である。

【図3】実施例の駆動回路の各部電圧波形図である。

【図4】従来の面放電AC型プラズマディスプレイパネ ルの構造図であり、図4(1)は断面構造図、図4

(2) は電極構造図である。

【図5】従来の面放電AC型プラズマディスプレイパネ 10 52…誘電体層 ルの駆動回路の構成図である。

【図6】従来の駆動回路の各部電圧波形図である。 【符号の説明】

1…AC型プラズマディスプレイパネル

2…放電セル

3…制御回路

11~14…制御信号

X, X1 ~X4 ~XP …X電極

【図1】

本発明のAC型プラズマディスプレイバネルの駆動回路の構成图

Yi ~Y1000~Yk ~YN …Y電極

Y1-1~Y1-250, …, Y4-1~Y4-250…Y電極

A1 ~Ai ~Am …アドレス電極

XD1~XD4~XDP…X側ドライバ回路

YD1~YD4~YDP…Y側ドライバ回路

YIC1~YIC4…Y側ドライバIC

AIC1~AIC5…アドレス側ドライバIC

Hsync#…水平同期信号

51…背面ガラス基板

53…前面ガラス基板

55…壁

60…AC型プラズマディスプレイパネル

61…X側ドライバ回路

62…Y側ドライバ回路

63…制御回路

71, 72, 73…制御信号

【図2】

AC 型プラズマディスプレイパネルの構成図

【図3】

契施州の転割回路の各部電圧波形図

【図5】 粧来の駆動回路の構成図

【図4】

粧来のAC型プラズマガスブレバネルの構成図

(1) 断面構成図

(2) 電極構造図

