Chapitre II: Les quadripôles passifs

Résumé du cours

1. Introduction:

Un quadripôle passif (qui comporte des résistances des condensateurs et des bobines) de quatre bornes dont deux représentent les grandeurs d'entrée (V_I, I_I) et les deux autres représentent les grandeurs de sortie comme le montre la figure suivante :

2. Les matrices représentatives des quadripôles :

Il existe plusieurs combinaisons possibles pour relier $V_1 I_1$ à $I_2 V_2$;

2. 1. La matrice impédance [Z] :

La matrice impédance relie les tensions avec les courants comme dans les équations suivantes :

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = [Z] \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} V_1 = Z_{11}I_1 + Z_{12}I_2 \\ V_2 = Z_{21}I_1 + Z_{22}I_2 \end{cases}$$

Cette matrice est utilisée pour le calcul des impédances d'entrée et de sortie du quadripôle. On a :

$$Z_e=Z_{11}-\frac{Z_{12}Z_{21}}{Z_{22}+Z_u}\ avec\ Z_u:la\ charge$$

$$Z_s=Z_{22}-\frac{Z_{12}Z_{21}}{Z_0+Z_{11}}\ avec\ Z_g:l'imp\'edance\ d'entr\'ee\ du\ g\'en\'erateur$$

2. 2. La matrice admittance [Y]:

C'est la matrice qui représente des courants en fonction des tensions comme dans les équations suivantes :

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = [Y] \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \rightarrow \begin{cases} I_1 = Y_{11}V_1 + Y_{12}V_2 \\ I_2 = Y_{21}V_1 + Y_{22}V_2 \end{cases}$$

2. 3. La matrice de transfert [T]:

C'est la matrice qui relie les grandeurs d'entrée avec les grandeurs de sortie.

$$\begin{bmatrix} V_2 \\ I_2 \end{bmatrix} = [T] \begin{bmatrix} V_1 \\ -I_1 \end{bmatrix} \rightarrow \begin{cases} V_2 = T_{11}V_1 - T_{12}I_1 \\ I_2 = T_{21}V_1 - T_{22}I_1 \end{cases}$$

Les éléments de cette matrice sont utilisées pour le calcul des gains en tension et en courant.

$$G_I = \frac{-1}{T_{11} + T_{21} Z_u}$$

$$G_{I} = \frac{-1}{T_{11} + T_{21}Z_{u}}$$

$$G_{V} = \frac{Z_{u}}{T_{22}Z_{u} + T_{12}}$$

2. 4. La matrice hybride [h]:

$$\begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = [h] \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} \rightarrow \begin{cases} V_1 = h_{11}I_1 + h_{12}V_2 \\ I_2 = h_{21}I_1 + h_{22}V_2 \end{cases}$$

Cette matrice est utilisée dans la représentation du schéma équivalent en dynamique du transistor.

2.5 Application à l'adaptation

Pour maximiser le transfert de puissance du générateur vers la charge par intermédiaire d'un quadripôle, il faut vérifier deux conditions :

$$Z_e=Z_g^*$$
 et $Z_s=Z_u^*$

Avec:

- Z_e: L'impédance d'entrée du Q.
- Z_s: L'impédance de sortie du Q.
- Z_g: L'impédance interne du générateur.
- Z_u: La charge.

3. Les filtres:

3. 1. Définitions :

Un filtre est un quadripôle qui permet de transmettre une bande de fréquence et attenu le signal pour les fréquences rejetées par rapport à une ou plusieurs pulsations de coupure.

<u>La pulsation de coupure</u> ω_c : est définit comme étant la pulsation pour laquelle le gain maximum en tension $\left(\frac{V_2}{V_1}\right)$ est divisé par $\sqrt{2}$.

<u>La bande passante</u>: est la gamme de fréquences pour lesquelles le gain est compris entre son maximum et son maximum divisé par $\sqrt{2}$.

<u>La fonction de transfert H(I ω):</u> est le rapport entre la tension de sortie V_2 et la tension d'entrée V_1 .

On a
$$H(J\omega) = \frac{V_2}{V_1} = |H(J\omega)|e^{J\varphi}$$

 φ : phase de $H(J \omega)$

 $|H(J \omega)|$: le module de $H(J \omega)$

Le diagramme de Bode :

Le diagramme de Bode est la représentation de $H(J \omega)$ en fonction de la pulsation, le module (ou le gain), d'une part et l'argument d'autre part avec : $G_{dB} = 20 \log_{10}|H(J \omega)|$.

En pratique, cinq fonctions élémentaires suffisantes pour construire la plupart des diagrammes.

Fonction 1: $H(J \omega) = K = constante$

Le gain en dB:
 G = 20 log(K)

$$Si \begin{cases} K > 1 & G_{dB} > 0 \\ K < 1 & G_{dB} < 0 \end{cases}$$

La phase :

$$Si \begin{cases} K > 0 & \varphi = 0 \\ K < 0 & \varphi = -\pi \end{cases}$$

 $Avec: \frac{\omega}{\omega_0}$ est la pulsation réduite.

Fonction 2: $H(J \omega) = J\left(\frac{\omega}{\omega_0}\right)$

Le gain en dB:

$$G_{dB} = 20 \log \left(\frac{\omega}{\omega_0}\right)$$

La courbe est une droite de pente 20 dB/décade

La phase:

$$\varphi = +\frac{\pi}{2}$$

Fonction 3: $H(J \omega) = \frac{1}{J(\frac{\omega}{\omega_0})}$

Le gain en dB :

$$G_{dB} = -20 \log \left(\frac{\omega}{\omega_0} \right).$$

La courbe est une droite de pente $-20 \, dB/d\acute{e}cade$

La phase :

$$\varphi = -\frac{\pi}{2}$$

<u>Fonction 4:</u> $H(J \omega) = 1 + J\left(\frac{\omega}{\omega_0}\right)$

Le gain en dB :

$$\Rightarrow G_{db} = 20 \log \sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}$$

La phase:

$$\varphi = + arctg\left(\frac{\omega}{\omega_0}\right)$$

Les asymptotes :

•
$$\omega \ll \omega_0$$

$$\begin{cases} G_{dB} = 0 \ dB \\ \varphi = 0 \ rd \end{cases}$$

Fonction 5:
$$H(J \omega) = \frac{1}{1+J(\frac{\omega}{\alpha_{12}})}$$

Le gain en dB:

La phase :

$$\varphi = -arctg\left(\frac{\omega}{\omega_0}\right)$$

Les asymptotes:

$$\bullet \ \ \omega \ll \omega_0 \ \begin{cases} G_{dB} = 0 \ dB \\ \varphi = 0 \ rd \end{cases}$$

$$\omega\gg\omega_0~\left\{\begin{array}{c} G_{dB}=-20\log\left(\frac{\omega}{\omega_0}\right): droite~de~pente-20~dB/d\'ecade\\ \\ \varphi=-\frac{\pi}{2} \end{array}\right.$$

