EPITA

Mathématiques

Contrôle (S3)

novembre 2019

Noili:		
Prénom :		
Classe:		
NOTE:		

Contrôle 1

Durée : trois heures

Documents et calculatrices non autorisés

Exercice 1 (3 points)

1. Soit $a \in \mathbb{R}_+^* \setminus \{3\}$. Déterminer la nature de $\sum u_n$ où $u_n = \frac{(n+1)!}{1 \times 4 \times \cdots \times (3n+1)} a^n$.

3. Déterminer la nature de $\sum \frac{\sin(n)}{n(n+1)}$.

Exercice 2 (3 points)

Soit $\sum u_n$ où pour tout $n \in \mathbb{N}^*$, $u_n = \frac{(-1)^n}{\ln (\sqrt{n} + 1)}$.

1. Déterminer la nature de $\sum u_n$ (dans le cas où vous invoquez la monotonie d'une certaine suite, il faut le démontrer).

2. Quelle est la limite de $n^{1/2}|u_n|$?

. En déduire la nature de $\sum u_n $.	

Exercice 3 (3 points)

Le but de l'exercice est de déterminer la nature de $\sum u_n$ où $u_n = \sin\left(\frac{(-1)^n}{n}\right)$.

1. Sans développement limité, déterminer un équivalent immédiat de u_n . Peut-on conclure quant à la nature de la série $\sum u_n$?

2. Via un développement limité, déterminer le réel a tel que

$$u_n = \frac{(-1)^n}{n} + \frac{a(-1)^n}{n^3} + o\left(\frac{1}{n^3}\right)$$

3. En déduire la nature de $\sum u_n$.

Exercice 4 (3 points)

Soient $(a,k) \in \mathbb{R}^{*2}_+$ et la suite (p_n) définie pour tout $n \in \mathbb{N}$ par $p_n = \left(\frac{a}{a+1}\right)^n k$.

1. Soit $q \in \mathbb{R}$ tel que |q| < 1. Que vaut $\sum_{n=0}^{+\infty} q^n$?

2. Déterminer le réel k tel que p_n soit la loi de probabilité d'une variable aléatoire à valeurs dans \mathbb{N} .

3. Déterminer ensuite la fonction génératrice d'une telle variable aléatoire sur]-R,R[après avoir déterminé le rayon de convergence R de cette série entière.

Exercice 5 (3 points)

Déterminer le rayon de convergence des séries entières suivante $\sum \frac{1}{\sqrt{n}} x^n$ et $\sum \frac{n!}{(2n)!} x^n$.

Exercice 6 (3 points)

Déterminer les développements en série entière en 0 des fonctions $\ln (1 + 2x^2)$ et $\frac{e^x}{1-x}$.

Exercice 7 (3 points)

Soit X une variable aléatoire à valeurs entières dont la fonction génératrice est

$$G_X(t) = k\left(3 + 2t^2\right)^2$$

1. Déterminer la constante k.

2. Déterminer la loi de probabilité (appelée également distribution) de X.

3. Déterminer l'espérance de X.