$12a_{1142} (K12a_{1142})$

$$\begin{split} I_1^u &= \langle b-u, \ -u^{24}-u^{23}+\dots +16a+1, \ u^{25}+16u^{23}+\dots -u-1 \rangle \\ I_2^u &= \langle 31265112052u^{31}-16257768219u^{30}+\dots +84752307686b-8778222360, \\ &-11111041791u^{31}+26118385624u^{30}+\dots +84752307686a+287854854541, \\ u^{32}-u^{31}+\dots -7u+2 \rangle \\ I_3^u &= \langle b+u, \ a^4-a^3+a^2+1, \ u^2+1 \rangle \end{split}$$

Ideals for irreducible components² of X_{par}

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 65 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b - u, -u^{24} - u^{23} + \dots + 16a + 1, u^{25} + 16u^{23} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{16}u^{24} + \frac{1}{16}u^{23} + \dots + \frac{23}{8}u - \frac{1}{16} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1\\u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{16}u^{24} + \frac{1}{16}u^{23} + \dots + \frac{15}{8}u - \frac{1}{16} \\ \frac{1}{16}u^{24} + \frac{1}{16}u^{23} + \dots + \frac{1}{8}u - \frac{1}{16} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{8}u^{24} + 2u^{22} + \dots - \frac{3}{8}u - \frac{1}{8} \\ \frac{1}{6}u^{24} + \frac{1}{16}u^{23} + \dots + \frac{7}{8}u - \frac{1}{16} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{3}{16}u^{24} + \frac{3}{16}u^{23} + \dots + \frac{5}{8}u - \frac{5}{16} \\ -\frac{1}{4}u^{24} + \frac{3}{8}u^{23} + \dots - \frac{1}{8}u + \frac{5}{8} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{3}{16}u^{24} - \frac{1}{16}u^{23} + \dots + \frac{1}{8}u + \frac{23}{16} \\ -\frac{1}{8}u^{23} + \frac{1}{4}u^{22} + \dots + \frac{1}{8}u + \frac{1}{8}u + \frac{5}{8} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{16}u^{24} + \frac{1}{16}u^{23} + \dots + \frac{15}{8}u - \frac{1}{16} \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0625000u^{24} + 0.0625000u^{23} + \dots - 2.12500u^{2} + 0.937500 \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^{24} + \frac{5}{4}u^{23} + \dots + \frac{5}{4}u \frac{1}{2}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{25} - 7u^{24} + \dots + 513u - 136$
c_2, c_3, c_7 c_8	$u^{25} + 3u^{24} + \dots - 3u + 2$
c_4, c_5, c_6 c_{10}, c_{11}, c_{12}	$u^{25} + 16u^{23} + \dots - u + 1$
<i>c</i> 9	$u^{25} - 15u^{24} + \dots + 2387u - 362$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{25} - 5y^{24} + \dots - 37119y - 18496$
c_2, c_3, c_7 c_8	$y^{25} - 29y^{24} + \dots + y - 4$
$c_4, c_5, c_6 \\ c_{10}, c_{11}, c_{12}$	$y^{25} + 32y^{24} + \dots - 7y - 1$
<i>C</i> 9	$y^{25} + 11y^{24} + \dots - 420031y - 131044$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.561043 + 0.437348I		
a = -1.68535 + 0.72480I	-7.98772 - 5.54613I	-2.08956 + 7.04826I
b = -0.561043 + 0.437348I		
u = -0.561043 - 0.437348I		
a = -1.68535 - 0.72480I	-7.98772 + 5.54613I	-2.08956 - 7.04826I
b = -0.561043 - 0.437348I		
u = 0.638286		
a = 1.54532	-4.66650	2.55840
b = 0.638286		
u = 0.521660 + 0.351950I		
a = 1.52382 + 0.64449I	-0.34952 + 3.61361I	0.91371 - 9.39805I
b = 0.521660 + 0.351950I		
u = 0.521660 - 0.351950I		
a = 1.52382 - 0.64449I	-0.34952 - 3.61361I	0.91371 + 9.39805I
b = 0.521660 - 0.351950I		
u = -0.200130 + 0.529662I		
a = -1.05021 + 1.68712I	-8.41951 + 2.51161I	-3.21376 + 1.03660I
b = -0.200130 + 0.529662I		
u = -0.200130 - 0.529662I		
a = -1.05021 - 1.68712I	-8.41951 - 2.51161I	-3.21376 - 1.03660I
b = -0.200130 - 0.529662I		
u = -0.09775 + 1.44695I		
a = -0.581028 - 1.096330I	-13.25460 - 4.79321I	-7.77691 + 3.39473I
b = -0.09775 + 1.44695I		
u = -0.09775 - 1.44695I		
a = -0.581028 + 1.096330I	-13.25460 + 4.79321I	-7.77691 - 3.39473I
b = -0.09775 - 1.44695I		
u = 0.02846 + 1.45258I		
a = 0.171580 - 1.155960I	-6.93212 + 2.05900I	-4.36476 - 3.38495I
b = 0.02846 + 1.45258I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.02846 - 1.45258I		
a =	0.171580 + 1.155960I	-6.93212 - 2.05900I	-4.36476 + 3.38495I
b =	0.02846 - 1.45258I		
u =	-0.464935 + 0.201716I		
a =	-1.289760 + 0.413307I	0.912372 - 0.622752I	7.19624 + 2.63067I
b =	-0.464935 + 0.201716I		
u =	-0.464935 - 0.201716I		
a =	-1.289760 - 0.413307I	0.912372 + 0.622752I	7.19624 - 2.63067I
b =	-0.464935 - 0.201716I		
u =	0.166735 + 0.405495I		
a =	0.68732 + 1.26329I	-1.020640 - 0.969548I	-2.52284 + 1.35231I
b =	0.166735 + 0.405495I		
u =	0.166735 - 0.405495I		
a =	0.68732 - 1.26329I	-1.020640 + 0.969548I	-2.52284 - 1.35231I
b =	0.166735 - 0.405495I		
u =	0.27079 + 1.54625I		
a =	1.040560 - 0.311629I	-11.13940 + 6.44106I	-3.32238 - 2.71115I
b =			
u =	0.27079 - 1.54625I		
a =	1.040560 + 0.311629I	-11.13940 - 6.44106I	-3.32238 + 2.71115I
	0.27079 - 1.54625I		
	-0.31312 + 1.55281I		
a =	-1.136180 - 0.202662I	-13.0092 - 10.4518I	-6.37304 + 7.21331I
	-0.31312 + 1.55281I		
	-0.31312 - 1.55281I		
	-1.136180 + 0.202662I	-13.0092 + 10.4518I	-6.37304 - 7.21331I
	-0.31312 - 1.55281I		
	-0.21804 + 1.58247I		
	-0.814184 - 0.307816I	-14.4736 - 3.0731I	-8.36964 + 0.I
b =	-0.21804 + 1.58247I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.21804 - 1.58247I		
a = -0.814184 + 0.307816I	-14.4736 + 3.0731I	-8.36964 + 0.I
b = -0.21804 - 1.58247I		
u = 0.34476 + 1.56544I		
a = 1.182290 - 0.106671I	18.3511 + 13.0389I	-8.43014 - 5.93322I
b = 0.34476 + 1.56544I		
u = 0.34476 - 1.56544I		
a = 1.182290 + 0.106671I	18.3511 - 13.0389I	-8.43014 + 5.93322I
b = 0.34476 - 1.56544I		
u = 0.20347 + 1.64400I		
a = 0.678475 - 0.143846I	16.0652 + 1.5629I	-9.92611 - 0.62064I
b = 0.20347 + 1.64400I		
u = 0.20347 - 1.64400I		
a = 0.678475 + 0.143846I	16.0652 - 1.5629I	-9.92611 + 0.62064I
b = 0.20347 - 1.64400I		

 $II. \\ I_2^u = \langle 3.13 \times 10^{10} u^{31} - 1.63 \times 10^{10} u^{30} + \dots + 8.48 \times 10^{10} b - 8.78 \times 10^9, \ -1.11 \times 10^{10} u^{31} + 2.61 \times 10^{10} u^{30} + \dots + 8.48 \times 10^{10} a + 2.88 \times 10^{11}, \ u^{32} - u^{31} + \dots - 7u + 2 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.131100u^{31} - 0.308173u^{30} + \dots + 2.64660u - 3.39642 \\ -0.368900u^{31} + 0.191827u^{30} + \dots - 2.85340u + 0.103575 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.257094u^{31} - 0.416002u^{30} + \dots + 3.69092u - 3.68254 \\ -0.652251u^{31} + 0.451316u^{30} + \dots - 4.12999u + 0.211450 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0315636u^{31} - 0.0452649u^{30} + \dots + 0.291482u - 2.93870 \\ -0.0995366u^{31} + 0.262908u^{30} + \dots - 1.35511u + 0.457721 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.458023u^{31} + 0.342355u^{30} + \dots - 6.00927u + 2.47313 \\ 0.0217054u^{31} - 0.180440u^{30} + \dots + 4.15577u - 0.559030 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.220688u^{31} - 0.0368277u^{30} + \dots - 0.676663u - 2.74045 \\ 0.269259u^{31} + 0.0522139u^{30} + \dots - 2.98024u + 1.30099 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.368900u^{31} + 0.191827u^{30} + \dots + \frac{11}{2}u - \frac{7}{2} \\ -0.368900u^{31} + 0.191827u^{30} + \dots - 2.85340u + 0.103575 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0517875u^{31} - 0.317112u^{30} + \dots - 10.4579u - 1.49089 \\ -0.177073u^{31} + 0.446436u^{30} + \dots - 2.47872u + 1.73780 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -\frac{27044210812}{42376153843}u^{31} - \frac{8739385902}{42376153843}u^{30} + \dots - \frac{295063087682}{42376153843}u + \frac{92212569266}{42376153843}u^{30} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^{16} - 5u^{15} + \dots + 8u - 7)^2$
c_2, c_3, c_7 c_8	$(u^{16} - u^{15} + \dots + 2u^2 - 1)^2$
c_4, c_5, c_6 c_{10}, c_{11}, c_{12}	$u^{32} + u^{31} + \dots + 7u + 2$
<i>c</i> 9	$(u^{16} + 5u^{15} + \dots - 4u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^{16} - 7y^{15} + \dots - 344y + 49)^2$
c_2, c_3, c_7 c_8	$(y^{16} - 19y^{15} + \dots - 4y + 1)^2$
c_4, c_5, c_6 c_{10}, c_{11}, c_{12}	$y^{32} + 27y^{31} + \dots - 5y + 4$
<i>C</i> 9	$(y^{16} + 13y^{15} + \dots - 48y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.880391 + 0.506625I		
a = 1.017130 - 0.972732I	-6.29225 - 6.07197I	-4.61575 + 7.02814I
b = 0.16383 - 1.46376I		
u = -0.880391 - 0.506625I		
a = 1.017130 + 0.972732I	-6.29225 + 6.07197I	-4.61575 - 7.02814I
b = 0.16383 + 1.46376I		
u = -0.774157 + 0.692338I		
a = 0.741176 - 0.809846I	-6.89084 + 0.48968I	-6.35607 - 1.43137I
b = 0.02347 - 1.45170I		
u = -0.774157 - 0.692338I		
a = 0.741176 + 0.809846I	-6.89084 - 0.48968I	-6.35607 + 1.43137I
b = 0.02347 + 1.45170I		
u = 0.777840 + 0.542265I		
a = -0.977635 - 0.812403I	-4.30716 + 2.57669I	-0.69244 - 2.71681I
b = -0.11249 - 1.41553I		
u = 0.777840 - 0.542265I		
a = -0.977635 + 0.812403I	-4.30716 - 2.57669I	-0.69244 + 2.71681I
b = -0.11249 + 1.41553I		
u = 0.192406 + 1.054070I		
a = 0.0248167 - 0.1359550I	-4.05396	-9.09362 + 0.I
b = 0.192406 - 1.054070I		
u = 0.192406 - 1.054070I		
a = 0.0248167 + 0.1359550I	-4.05396	-9.09362 + 0.I
b = 0.192406 + 1.054070I		
u = 0.949812 + 0.504302I		
a = -1.00934 - 1.06834I	-14.4043 + 8.2886I	-6.57708 - 5.27135I
b = -0.18803 - 1.50441I		
u = 0.949812 - 0.504302I		
a = -1.00934 + 1.06834I	-14.4043 - 8.2886I	-6.57708 + 5.27135I
b = -0.18803 + 1.50441I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.060795 + 1.080160I		
a = 0.211903 + 0.762923I	-1.40282 - 1.52971I	2.72737 + 5.08772I
b = 0.159960 - 0.159944I		
u = -0.060795 - 1.080160I		
a = 0.211903 - 0.762923I	-1.40282 + 1.52971I	2.72737 - 5.08772I
b = 0.159960 + 0.159944I		
u = 0.195301 + 1.117820I		
a = -0.601834 + 0.773671I	-7.98944 + 3.12434I	-1.94060 - 3.66013I
b = -0.450162 - 0.094431I		
u = 0.195301 - 1.117820I		
a = -0.601834 - 0.773671I	-7.98944 - 3.12434I	-1.94060 + 3.66013I
b = -0.450162 + 0.094431I		
u = 0.840396 + 0.765707I		
a = -0.642609 - 0.918714I	-15.1904 - 2.2836I	-7.92472 + 0.30826I
b = 0.00756 - 1.51110I		
u = 0.840396 - 0.765707I		
a = -0.642609 + 0.918714I	-15.1904 + 2.2836I	-7.92472 - 0.30826I
b = 0.00756 + 1.51110I		
u = -0.344556 + 1.164540I		
a = -0.110939 - 0.374956I	-11.2964	-8.14780 + 0.I
b = -0.344556 - 1.164540I		
u = -0.344556 - 1.164540I		
a = -0.110939 + 0.374956I	-11.2964	-8.14780 + 0.I
b = -0.344556 + 1.164540I		
u = -0.11249 + 1.41553I		
a = 0.833628 + 0.159750I	-4.30716 - 2.57669I	-0.69244 + 2.71681I
b = 0.777840 - 0.542265I		
u = -0.11249 - 1.41553I		
a = 0.833628 - 0.159750I	-4.30716 + 2.57669I	-0.69244 - 2.71681I
b = 0.777840 + 0.542265I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.02347 + 1.45170I		
a = -0.785289 - 0.003672I	-6.89084 - 0.48968I	-6.35607 + 1.43137I
b = -0.774157 - 0.692338I		
u = 0.02347 - 1.45170I		
a = -0.785289 + 0.003672I	-6.89084 + 0.48968I	-6.35607 - 1.43137I
b = -0.774157 + 0.692338I		
u = 0.16383 + 1.46376I		
a = -0.955911 + 0.168093I	-6.29225 + 6.07197I	-4.61575 - 7.02814I
b = -0.880391 - 0.506625I		
u = 0.16383 - 1.46376I		
a = -0.955911 - 0.168093I	-6.29225 - 6.07197I	-4.61575 + 7.02814I
b = -0.880391 + 0.506625I		
u = 0.00756 + 1.51110I		
a = 0.837083 - 0.103955I	-15.1904 + 2.2836I	-7.92472 - 0.30826I
b = 0.840396 - 0.765707I		
u = 0.00756 - 1.51110I		
a = 0.837083 + 0.103955I	-15.1904 - 2.2836I	-7.92472 + 0.30826I
b = 0.840396 + 0.765707I		
u = -0.18803 + 1.50441I		
a = 1.031610 + 0.150184I	-14.4043 - 8.2886I	-6.57708 + 5.27135I
b = 0.949812 - 0.504302I		
u = -0.18803 - 1.50441I		
a = 1.031610 - 0.150184I	-14.4043 + 8.2886I	-6.57708 - 5.27135I
b = 0.949812 + 0.504302I		
u = -0.450162 + 0.094431I		
a = 2.32309 - 0.67146I	-7.98944 - 3.12434I	-1.94060 + 3.66013I
b = 0.195301 - 1.117820I		
u = -0.450162 - 0.094431I		
a = 2.32309 + 0.67146I	-7.98944 + 3.12434I	-1.94060 - 3.66013I
b = 0.195301 + 1.117820I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.159960 + 0.159944I		
a = -3.18688 + 2.04561I	-1.40282 + 1.52971I	2.72737 - 5.08772I
b = -0.060795 - 1.080160I		
u = 0.159960 - 0.159944I		
a = -3.18688 - 2.04561I	-1.40282 - 1.52971I	2.72737 + 5.08772I
b = -0.060795 + 1.080160I		

III.
$$I_3^u = \langle b+u, \ a^4-a^3+a^2+1, \ u^2+1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a \\ a - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -a^{2}u \\ -a + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a^{3} - a^{2} - 1 \\ -a^{3}u - a^{2} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a^{3}u + au \\ a^{3}u + a^{2} + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a + u \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} au \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4a^2 4a 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^4 + u^3 + u^2 + 1)^2$
$c_2, c_3, c_7 \ c_8$	$u^8 - 5u^6 + 7u^4 - 2u^2 + 1$
c_4, c_5, c_6 c_{10}, c_{11}, c_{12}	$(u^2+1)^4$
<i>c</i> 9	$u^8 - u^6 + 3u^4 - 2u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$
c_2, c_3, c_7 c_8	$(y^4 - 5y^3 + 7y^2 - 2y + 1)^2$
c_4, c_5, c_6 c_{10}, c_{11}, c_{12}	$(y+1)^8$
<i>c</i> 9	$(y^4 - y^3 + 3y^2 - 2y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = -0.351808 + 0.720342I	-3.07886 + 1.41510I	-4.17326 - 4.90874I
b = -1.000000I		
u = 1.000000I		
a = -0.351808 - 0.720342I	-3.07886 - 1.41510I	-4.17326 + 4.90874I
b = -1.000000I		
u = 1.000000I		
a = 0.851808 + 0.911292I	-10.08060 - 3.16396I	-7.82674 + 2.56480I
b = -1.000000I		
u = 1.000000I		
a = 0.851808 - 0.911292I	-10.08060 + 3.16396I	-7.82674 - 2.56480I
b = -1.000000I		
u = -1.000000I		
a = -0.351808 + 0.720342I	-3.07886 + 1.41510I	-4.17326 - 4.90874I
b = 1.000000I		
u = -1.000000I		
a = -0.351808 - 0.720342I	-3.07886 - 1.41510I	-4.17326 + 4.90874I
b = 1.000000I		
u = -1.000000I		
a = 0.851808 + 0.911292I	-10.08060 - 3.16396I	-7.82674 + 2.56480I
b = 1.000000I		
u = -1.000000I		
a = 0.851808 - 0.911292I	-10.08060 + 3.16396I	-7.82674 - 2.56480I
b = 1.000000I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^4 + u^3 + u^2 + 1)^2)(u^{16} - 5u^{15} + \dots + 8u - 7)^2$ $\cdot (u^{25} - 7u^{24} + \dots + 513u - 136)$
$c_2, c_3, c_7 \ c_8$	$(u^8 - 5u^6 + 7u^4 - 2u^2 + 1)(u^{16} - u^{15} + \dots + 2u^2 - 1)^2$ $\cdot (u^{25} + 3u^{24} + \dots - 3u + 2)$
c_4, c_5, c_6 c_{10}, c_{11}, c_{12}	$((u^2+1)^4)(u^{25}+16u^{23}+\cdots-u+1)(u^{32}+u^{31}+\cdots+7u+2)$
<i>c</i> ₉	$(u^8 - u^6 + 3u^4 - 2u^2 + 1)(u^{16} + 5u^{15} + \dots - 4u + 1)^2$ $\cdot (u^{25} - 15u^{24} + \dots + 2387u - 362)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^4 + y^3 + 3y^2 + 2y + 1)^2)(y^{16} - 7y^{15} + \dots - 344y + 49)^2$ $\cdot (y^{25} - 5y^{24} + \dots - 37119y - 18496)$
$c_2, c_3, c_7 \ c_8$	$((y^4 - 5y^3 + 7y^2 - 2y + 1)^2)(y^{16} - 19y^{15} + \dots - 4y + 1)^2$ $\cdot (y^{25} - 29y^{24} + \dots + y - 4)$
c_4, c_5, c_6 c_{10}, c_{11}, c_{12}	$((y+1)^8)(y^{25}+32y^{24}+\cdots-7y-1)(y^{32}+27y^{31}+\cdots-5y+4)$
<i>c</i> ₉	$((y^4 - y^3 + 3y^2 - 2y + 1)^2)(y^{16} + 13y^{15} + \dots - 48y + 1)^2$ $\cdot (y^{25} + 11y^{24} + \dots - 420031y - 131044)$