《软件分析与验证》

IMP 程序设计语言及其语义

贺飞 清华大学软件学院

2024年4月6日

上节课:一阶理论

2 / 44

- 一阶理论的定义:
 - 签名 Σ, 公理集 A
- 一些常见的一阶理论:
 - \mathcal{T}_E , \mathcal{T}_{PA} , $\mathcal{T}_{\mathbb{N}}$, $\mathcal{T}_{\mathbb{Z}}$

我们已经学习了命题逻辑、一阶逻辑和一阶理论;下面学习如何利 用逻辑精确地定义和分析程序。

对于任何一种程序设计语言,我们关心的要素包括:语法、语义、证明系统。

IMP: 一个简单的示例语言

- IMP 语言中包含了命令式程序设计语言最重要、最核心的语言要素。
- 本节课学习 IMP 语言最基本的语法和语义。后面随着学习的深入,还将在对 IMP 语言进行扩展,加入更多的语言要素。
- IMP 的证明系统将在下节课介绍。

语法

抽象语法 6 / 44

本课程不讨论程序的具体语法 (concrete syntax), 主要关注程序的抽象语法 (abstract syntax)。

- 具体语法: 从字符到程序的构成规则
- 抽象语法: 只关注有语义的单词, 是具体语法的抽象

对程序的具体语法感兴趣的同学,请参阅编译原理相关书籍。

语法范畴:

- 整数集 ℤ, 用 a, b, c 表示整数。
- 变元集 *Var*, 用 *x*, *y*, *z* 表示变元。
- 算术表达式集 AExp, 用 e 表示算术表达式。
- 布尔表达式集 BExp, 用 p,q 表示布尔表达式。
- 语句集 Stmt, 用 st 表示语句。

简单起见,这里主要讨论整数,假定所有变量都是整型。

定义

IMP 的抽象语法递归定义如下:

```
e \in AExp ::= c \in \mathbb{Z} \mid x \in Var \mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 * e_2
p \in BExp ::= \mathbf{true} \mid \mathbf{false} \mid e_1 = e_2 \mid e_1 \le e_2 \mid \neg p \mid p_1 \land p_2
st \in Stmt ::= \mathbf{skip} \mid x := e \mid st_1; st_2
\mid \mathbf{if} \ (p) \ \{st_1\} \ \mathbf{else} \ \{st_2\}
\mid \mathbf{while} \ (p) \ \{st\}
```

IMP 包含命令式程序设计语言的核心特征:

- 赋值、分支、循环、顺序等
- 未来将扩展更多的数据结构(如数组)和更复杂的程序构造 (如过程)

一阶逻辑	程序语言
项	算术表达式
原子公式	等式、关系式
公式	布尔表达式

语义

程序语义(program semantics)研究程序设计语言的含义,是以数学为工具,精确地定义和解释程序所有可能的计算行为的研究领域。

程序语义的描述方法有很多种,典型的有1:

- 指称语义 (denotational semantics), 使程序的执行效果对应数学对象, 更关心程序的执行效果而非过程;
- 操作语义 (operational semantics), 用抽象状态机描述程序执 行产生的状态改变, 适合描述程序的执行过程;
- 关系语义 (relational semantics)²,基于关系定义程序语言的语义,更适合自动程序验证;
- 公理语义 (axiomatic semantics),将程序的语义性质表示为命题,采用数理逻辑的方法研究。

¹https://en.wikipedia.org/wiki/Semantics_(computer_science)

²https://en.wikipedia.org/wiki/Kripke_semantics

```
while (!(y == 0)) {
    if (y >= 0) {
        y = y - 1;
    } else {
        y = y + 1;
    }
    x = x + 1;
}
```

• 执行该程序之后, x 的值变为 x 的 初始值和 y 的初始值的绝对值的和, y 的值变为 0。

注意: 在程序的具体语法中,赋值运算符使用 "=",关系运算符使用 "=="、">="等,逻辑运算符使用 "!"、"&&"、"||"等。

状态 (state) ³是一个从变元集到整数集的全函数

 $State: Var \rightarrow \mathbb{Z}$

- 状态就是对程序变元的一组赋值
- 除非引起歧义, 后面的讨论中将不区分状态和赋值
- 记S 为程序中所有状态的全集

例 (设程序 P 的变元集是 $\{x, y\}$)

- $s = \{x \mapsto 5, y \mapsto 7\}$ 是程序的一个状态(赋值),且 s(x) = 5, s(y) = 7。
- 如果我们总是按照先 x 再 y 的顺序确定状态赋值,上面的状态 s 可以简记为 $\langle 5,7 \rangle$ 。
- $s' = s[x \mapsto 0]$ 是赋值 (状态) s 的一个变体, 即 $s' = \langle 0, 7 \rangle$.

 $^{^3}$ 一些文献中将程序状态也称为格局(configuration),定义为二元组〈env, pc〉,其中 env 为变量赋值,对应这里的状态;pc 为下一条将被执行的语句。

考虑下面的算术表达式:

$$(x+2) * y$$

- 要确定该表达式的值,必须先确定变元 x 和 y 的赋值
- 例如,设 x = 1, y = 3,则原表达式的值为(1 + 2) * 3 = 9
- 状态是对程序所有变元(包括 x 和 y)的一组赋值
- 在给定了状态的情况下,算术表达式的值容易确定

算术表达式的语义函数 $[\cdot]^A: AExp \to (S \to \mathbb{Z}).$

定义(算术表达式的语义)

算术表达式 e 在状态 s 下的值(记作 $[e]_s^A$)递归定义如下:

- $[c]_s^A = c$, 其中 c 为整数
- $[x]_s^A = s(x)$, 其中 x 为变元
- $\bullet \ [\![e_1 e_2]\!]_s^A = [\![e_1]\!]_s^A [\![e_2]\!]_s^A$
- $\bullet \ [e_1 * e_2]_s^A = [e_1]_s^A \times [e_2]_s^A$

注意:

- 上述公式中等号左边的"+","-","*"是语法符号,等号右边的"+","-","×"分别代表整数上的加法、减法和乘法运算。
- 在不引起歧义的情况下,常常将 $[e]_s^A$ 简记为 $[e]_s$.

例

求算术表达式 (x+2)*y 在状态 $s=\{x\mapsto 1,y\mapsto 3\}$ 下的值。

解

$$\begin{aligned}
[(x+2) * y]_s^A &= [(x+2)]_s^A \times [y]_s^A \\
&= ([x]_s^A + [2]_s^A) \times [y]_s^A \\
&= (s(x) + 2) \times s(y) \\
&= (1+2) \times 3 \\
&= 9
\end{aligned}$$

考虑下面的布尔表达式:

$$(x > 2) \land (y \neq x)$$

- ullet 要确定该布尔表达式是否成立,必须先确定变元 x 和 y 的赋值
- 例如,设 x = 1, y = 3,则原布尔表达式变为 $(1 > 2) \land (3 \neq 1)$,显然不成立

布尔表达式的语义函数 $\llbracket \cdot \rrbracket^B : BExp \to (S \to \mathbb{B})$ 。

定义(布尔表达式的语义)

布尔表达式 p 在状态 s 下的值(记作 $[p]_s^B$) 递归定义如下:

$$\bullet \ \ \llbracket \mathbf{true} \rrbracket^B_s = \mathit{true}, \ \llbracket \mathbf{false} \rrbracket^B_s = \mathit{false}$$

•
$$[e_1 = e_2]_s^B = \begin{cases} true, & \text{ upp. } [e_1]_s^A = [e_2]_s^A \\ false, & \text{ upp. } [e_1]_s^A \neq [e_2]_s^A \end{cases}$$

•
$$\llbracket e_1 \leq e_2 \rrbracket_s^B = \begin{cases} true, \text{ und } \llbracket e_1 \rrbracket_s^A \leq \llbracket e_2 \rrbracket_s^A \\ false, \text{ und } \llbracket e_1 \rrbracket_s^A > \llbracket e_2 \rrbracket_s^A \end{cases}$$

•
$$\llbracket \neg p \rrbracket_s^B$$
 = $\begin{cases} true, \text{ 如果 } \llbracket p \rrbracket_s^B = false \\ false, \text{ 如果 } \llbracket p \rrbracket_s^B = true \end{cases}$

•
$$\llbracket p_1 \wedge p_2 \rrbracket_s^B = \begin{cases} true, \text{ 如果 } \llbracket p_1 \rrbracket_s^B = true \text{ 且 } \llbracket p_2 \rrbracket_s^B = true \\ false, \text{ 如果 } \llbracket p_1 \rrbracket_s^B = false \text{ 或 } \llbracket p_2 \rrbracket_s^B = false \end{cases}$$

在不引起歧义的情况下,常常将 $[e]_s^B$ 简记为 $[e]_s$.

根据上面的定义,有:

- $[e_1 = e_2]_s^B \Leftrightarrow ([e_1]_s^A = [e_2]_s^A)$
- $\bullet \ \llbracket e_1 \le e_2 \rrbracket_s^B \Leftrightarrow (\llbracket e_1 \rrbracket_s^A \le \llbracket e_2 \rrbracket_s^A)$
- $\bullet \ \llbracket \neg p \rrbracket_s^B \qquad \Leftrightarrow \neg \llbracket p \rrbracket_s^B$
- $\bullet \ \llbracket p_1 \wedge p_2 \rrbracket_s^B \Leftrightarrow \llbracket p_1 \rrbracket_s^B \wedge \llbracket p_2 \rrbracket_s^B$

如果布尔表达式 p 在状态 s 下的值为

- 真: 就称状态 s 满足 p, 记作 $s \models p$;
- 假: 就称状态 s 不满足 p, 记作 $s \not\models p$ 。

示例 22 / 44

例

计算布尔表达式 $(x>2) \land (y \neq x)$ 在状态 $s = \{x \mapsto 1, y \mapsto 3\}$ 的值。

解

$$\begin{split} \llbracket(x>2) \wedge (y \neq x) \rrbracket_s^B &\Leftrightarrow \llbracket(x>2) \rrbracket_s^B \wedge \llbracket(y \neq x) \rrbracket_s^B \\ &\Leftrightarrow (\llbracket x \rrbracket_s^A > \llbracket 2 \rrbracket_s^A) \wedge (\llbracket y \rrbracket_s^A \neq \llbracket x \rrbracket_s^A) \\ &\Leftrightarrow (s(x)>2) \wedge (s(y) \neq s(x)) \\ &\Leftrightarrow (1>2) \wedge (3 \neq 1) \\ &\Leftrightarrow false \\ &\Leftrightarrow false \end{split}$$

布尔表达式 p 可以用满足 p 的状态集合来刻画,即

$$\{s \mid s \models p\}$$

简单起见,以 $\{p\}$ 表示满足p的状态集合。

布尔表达式 p 在状态 s 下语义为真的另一种表述是 $s \in \{p\}$ 。

区别于算术表达式和布尔表达式,程序语句的语义无法在单个状态下确定。相反,程序语句的执行会导致程序状态的改变。

$$x := 5$$

$$\{x \mapsto 2, y \mapsto 1\} \qquad \{x \mapsto 5, y \mapsto 1\}$$

图: 语句执行导致程序状态的改变

- 显然,从不同状态出发执行该语句,可能得到不同的结束状态。
- 状态对 $(\{x\mapsto 2,y\mapsto 1\},\{x\mapsto 5,y\mapsto 1\})$ 代表了该语句的一种执行情况。
- 如果能够找出该语句所有可能的执行情况,也就定义了该语句的语义。

基本思想:如果从状态 s 出发执行语句 st 能够得到状态 s',那么状态对 (s,s') 就代表了语句 st 的一种可能的执行情况。语句 st 的语义可以被解释为对应其所有执行情况的状态对,即

 $\llbracket st \rrbracket = \{(s, s') \mid \mathcal{M} \ s \ \text{出发执行} \ st \ \text{可能会得到} \ s'\}$

此时,也称 s 为前状态 (prestate), s 为后状态 (poststate)。

显然, $[st] \subseteq S \times S$ 是状态集合 S 上的二元关系。

注意: 我们分别用 $[\cdot]_{,}^{A}[\cdot]_{,}^{B}[\cdot]$ 表示算术表达式、布尔表达式和程序语句的语义函数。

```
while (!(y == 0)) {
    if (y >= 0) {
        y = y - 1;
    } else {
        y = y + 1;
    }
    x = x + 1;
}
```

- 执行该程序之后,x 的值变为 x 和 y 的初始值绝对值的和,y 的值变为 0。
- 该程序的状态全集: $S = \mathbb{Z}^{\{x,y\}}$

下面通过这个例子演示程序语句关系语义的定义

注意: 在程序的具体语法中,赋值运算符使用 "=",关系运算符使用 "="、">="等,逻辑运算符使用 "!"、"&&"、"||"等。

IMP 中的语句:

$$st \in Stmt ::= \mathbf{skip} \mid x := e \mid st_1; st_2$$

 $\mid \mathbf{if} (p) \{ st_1 \} \mathbf{else} \{ st_2 \}$
 $\mid \mathbf{while} (p) \{ st \}$

空语句的语义:

$$\llbracket \mathbf{skip} \rrbracket = \{ (s, s) \mid s \in \mathcal{S} \}$$

即空语句对程序状态无影响。

赋值语句的语义:

$$[\![x := e]\!] = \{(s, s') \mid s' = s[x \mapsto [\![e]\!]_s^A]\}$$

即后状态 s' 中只有 x 的值发生改变,且被修改为表达式 e 在前状态 s 下的值。

示例程序 P_{xy} :

$$[[x := x + 1]] = \{(s, s') \mid s' = s[x \mapsto [[x + 1]]_s^A]\}$$

$$= \{(s, s') \mid s'(x) = [[x + 1]]_s^A \text{ } \text{!..} \text{!..} s'(y) = s(y)\}$$

$$= \{(s, s') \mid s'(x) = s(x) + 1 \text{ } \text{!..} \text{!..} s'(y) = s(y)\}$$

分支语句的语义:

$$\llbracket \mathbf{if} (p)\{st_1\} \mathbf{else} \{st_2\} \rrbracket = \left\{ (s, s') \middle| \begin{array}{c} s \models p \ \mathbb{H} \ (s, s') \in \llbracket st_1 \rrbracket \\ \emptyset \ s \not\models p \ \mathbb{H} \ (s, s') \in \llbracket st_2 \rrbracket \end{array} \right\}$$

即如果条件 p 在前状态 s 下成立,执行 st_1 , 否则执行 st_2 分支。

示例程序 P_{xy} :

定义(关系的组合)

设 R_1 , R_2 为定义在同一个集合 X 上的两个二元关系, R_1 和 R_2 的组合关系 $R_1 \circ R_2$ 定义为:

$$R_1 \circ R_2 ::= \{(a, b) \mid 存在c \in X, \ 使得(a, c) \in R_1, (c, b) \in R_2\}$$

例

设 R_1 , R_2 都是整数集上的"加一"关系,即

则 $R_1 \circ R_2 = \{(a, b) \mid b = a + 2\}$ 。

顺序语句的语义:

$$[st_1; st_2] = [st_1] \circ [st_2]$$

= $\{(s, s') \mid$ 存在 s'' 使得 $(s, s'') \in [st_1], (s'', s') \in [st_2]\}$

从前状态 s 出发执行 st_1 ,得到中间状态 s'',再从 s'' 出发执行 st_2 。

举例:

```
[y := y - 1; x := x + 1]
= [y := y - 1] \circ [x := x + 1]
= \{(s, s') \mid 存在 s'' 使得 (s, s'') \in [y := y - 1], (s'', s') \in [x := x + 1]\}
= \{(s, s'') \mid s'(x) = s(x) + 1, s'(y) = s(y) - 1\}
```

示例程序 P_{xy} :

[if
$$(y \ge 0)$$
 $\{y := y - 1\}$ else $\{y := y + 1\}$; $x := x + 1$]
$$= [if $(y \ge 0)$ $\{y := y - 1\}$ else $\{y := y + 1\}$] \circ $[x := x + 1]$

$$= \{(s, s'') \mid s(y) \ge 0 \text{ 且 } s''(y) = s(y) - 1 \text{ 且 } s''(x) = s(x)\}$$

$$\circ \{(s'', s') \mid s'(x) = s''(x) + 1, s'(y) = s''(y)\}$$

$$\{(s'', s') \mid s'(x) = s''(x) + 1, s'(y) = s''(y)\}$$

$$\{(s'', s') \mid s'(x) = s''(x) + 1, s'(y) = s''(y)\}$$

$$\{(s'', s') \mid s'(x) = s''(x) + 1, s'(y) = s''(y) = s(y) - 1 \text{ 且 } s''(x) = s(x)\}$$$$

$$= \left\{ (s, s') \mid s(y) \ge 0 \text{ } \text{!! } s'(y) = s(y) - 1 \text{ } \text{!! } s'(x) = s(x) + 1 \right\}$$

$$| \vec{x} | s(y) < 0 \text{ } \text{!! } s'(y) = s(y) + 1 \text{ } \text{!! } s'(x) = s(x) + 1 \right\}$$

循环语句的语义:

[while (p) $\{st\}$]

从状态 s 出发反复执行语句 st, 直至循环条件不成立。

注意:

- 条件(1)假设循环迭代 n 次之后会终止;如果循环不终止,则循环永远无法到达结束状态,对应的语义为空集。
- 当 n=0 时,不存在 $0 \le i < n$ 的状态,对条件(2)无要求。

请思考下列语句的语义:

- $\llbracket \mathbf{while} \ (\mathbf{true}) \ \{st\} \rrbracket = \emptyset$
- [while (false) $\{st\}$] = $\{(s, s) \mid s \in \mathcal{S}\}$
- $[x := x] = \{(s, s) \mid s \in \mathcal{S}\}$

请思考示例程序 P_{xy} 的语义 (以 body 代表循环体中的语句序列):

$$P_{xy} = \begin{cases} (s,s') & \text{ $ \vec{F}$ $ \vec{A}$ $ $ \vec{A}$ $ $ \vec{A}$ $ \vec{A}$ $ \vec{A}$ $ $ \vec{A}$ $$$

循环语句的语义难以确定!

定义

如果对于任意状态 s 和 s', $(s,s') \in [st_1]]$ 当且仅当 $(s,s') \in [st_2]]$, 则称语句 st_1 和 st_2 语义等价 (semantically equivalent)。

例

证明语句 x := x 和语句 while (false) $\{st\}$ 语义等价。

证明.

$$[\![x:=x]\!]=[\![\mathbf{while}\ (\mathbf{false})\ \{st\}]\!]=\{(s,s)\mid s\in\mathcal{S}\}$$

例

证明语句 while $(p)\{st\}$ 和语句 if $(p)\{st;$ while $(p)\{st\}\}$ else skip 语义等价。

证明.

- ⇒: 设 $(s,s') \in [\mathbf{while}(p)\{st\}]$,根据循环语句的语义,存在一个整数 n 和一个状态序列满足其语义定义中的三个条件,由此容易证明 $(s,s') \in [\mathbf{if}(p)\{st;\mathbf{while}(p)\{st\}\})$ else \mathbf{skip} .
- \Leftarrow : 设 $(s,s') \in [[\mathbf{if}(p)\{st;\mathbf{while}(p)\{st\}\}]$ else $\mathbf{skip}[]$,分 $[[p]]_s$ 为真和 假两种情况,分别证明 $(s,s') \in [[\mathbf{while}(p)\{st\}]]$ 。

IMP 语法:

- 算术表达式、布尔表达式
- 程序语句

IMP 语义:

- 算术表达式和布尔表达式的语义
- 程序语句的语义

• 霍尔证明系统

谢谢!