Build and Analyze reactors

$$(F_A)_{inlet} - (F_A)_{outlet} + G_A = \frac{d(N_A)_{CV}}{dt}$$

$$\frac{dN_{j}}{dt} = r_{j}.V$$

$$N_{j} \text{ is a product}$$

$$N_{j} \text{ is a reactant}$$

Time, t

Lecture #2.2

- Mole balance of species j
- G_j term is important and is depends on the type of Reactor
- Mole balance equation applied to a BATCH REACTOR
- Apply mole balance to other type of reactors

GOUTAM DEO

CHEMICAL ENGINEERING DEPARTMENT

IIT KANPUR

Mole balance equation can also be applied to flow reactors

- ► Three types of "ideal" flow reactors are analyzed in the beginning
 - Continuous stirred tank reactor (CSTR)
 - Plug flow reactor (PFR)
 - Packed bed reactor (PBR)
- These ideal reactors are defined based on the flow properties inside the reactor
- ► CSTRs are assumed to be well-mixed, similar to BR
 - o T, P and C_i are same everywhere in the tank and at the exit
- ightharpoonup PFRs and PBRs have the concentration, C_j , vary axially not radially

Continuous Stirred Tank Reactor (CSTR) used for continuous operations

- Also called Vat or Back-mixed or well-mixed reactor
- Often used for liquid phase reactions
- Normally operated at steady state
- Idealized CSTRs are assumed to be perfectly mixed
 - Temperature and concentrations same everywhere in the tank and at the exit
- Non ideal systems discussed later
- Relatively easy to maintain and good temperature control

Mole balance for CSTR results in an algebraic expressions F_{io}

- Mole balance equation for j:
- $F_{j0} F_j + \int r_j dV = \frac{dN_j}{dt} = 0$ at steady state

▶ Well-mixed:

$$\int r_{j}.dV = r_{j}.V$$

► Therefore, the design eqⁿ is

$$V = \frac{F_{j0} - F_j}{-r_j}$$

ightharpoonup V is the volume required to decrease molar flowrate of j from F_{j0} to F_{j}

PFRs and PBRs (idealized axial concentration gradients) have a variety of uses

- \blacktriangleright Flow is like a plug without radial variations \rightarrow axial changes only
- Used mostly for gas-phase reactions
 - Difficult to control temperature (hot spot formation)
- ▶ PBR are used for heterogeneous catalytic reactions
 - Reaction rate based on mass of catalyst
 - Channeling/bypass (non-ideality) sometimes occurs

Mole balance for PFR/PBR results in differential equations

$$F_{i0}$$

$$i = a \text{ to } n$$

$$(F_j)_{\vee} (F_j)_{\vee + \triangle \vee} \xrightarrow{\text{For PBR}} (F_j)_{\text{W}} (F_j)_{\text{W} + \triangle \text{W}}$$

$$At \text{ steady state: } \frac{dN_i}{dt} = 0$$

$$r_j \qquad \Delta \vee \rightarrow \Delta \text{W} \qquad r'_j$$

- ▶ Mole balance for species **j** across ΔV : $(F_j)_V (F_j)_{V+\Delta V} + r_j$. $\Delta V = 0$
- ▶ Taking the limits $\Delta V \rightarrow 0$ and doing the necessary changes
- lacktriangleright The design eqn for PFR is: $rac{dF_j}{dV}=r_j$ and $V=\int_{F_{j0}}^{F_j}rac{dF_j}{r_j}$
- ▶ For PBR (we deal with W and $W+\Delta W$): $\frac{dF_j}{dW}=r_j'$ and $W=\int_{F_{j0}}^{F_j}\frac{dF_j}{r_j'}$

Design equations of PFR/PBR can be integrated to find *V* or *W*

- For PFR, $\frac{dF_j}{dV} = r_j$ can be integrated o $V = \int_{F_{j0}}^{F_j} \frac{dF_j}{r_j}$
- ▶ Where V is the volume required to decrease the molar flowrate from F_{i0} to F_i
- Similarly, for PBR $\frac{dF_j}{dW} = r'_j \rightarrow W = \int_{F_{j0}}^{F_j} \frac{dF_j}{r'_j}$
- Where W is the weight required to decrease the molar flowrate from F_{j0} to F_{j}

