Mobile Communication Networks

Exercices 5

- 1. The CDMA system IS-95 speech encoder operates at a bit rate of 9.6 kbps, with a chip rate is 1.2288 Mchips/sec.
 - a. How many chips per bit are being used?
 - b. What is the spreading factor/gain?
 - c. What is the (approximate) ratio between the bandwidth of the spread signal and the bandwidth of the original signal?
- 2. Consider the two-sender CDMA example of the slides.
 - a. Draw the reception diagram for receiver 2.
 - b. Code 1 and Code 2 are orthogonal? Why?
 - c. How many chips per bit are being used?
 - d. What is the spreading factor/gain?
 - e. Does the scheme tolerate errors in the received signal? To which extent? (Suggestion: determine the decoded signal for the case where the received signal has 1, 3, and 5 errors)
- 3. A system transmits at 30 kbps, sending 3 bits per symbol. The time between hops for a FHSS system is 0.125 ms. Is the system using slow-frequency-hop spread spectrum or fast-frequency-hop spread spectrum?
- 4. An FHSS system employs a total bandwidth of Ws = 400 MHz and an individual channel bandwidth of 100 Hz. What is the minimum number of PN bits required for each frequency hop?
- 5. An FHSS system using MFSK with M = 4 employs 1000 different frequencies.
 - a. What is the number of bits per signal element (symbol)?
 - b. What is the total number of possible carrier frequencies?
 - c. What is the total (spread) bandwidth W_s of the FHSS transmission (with respect to the bandwidth W_d of the equivalent narrowband signal)?

6. The table below illustrates the operation of an FHSS system for one complete period of the PN sequence.

Time	0	1	2	3	4	5	6	7	8	9	10	11
Input data	0	1	1	1	1	1	1	0	0	0	1	0
Frequency	f	f_1 f_3		f_{23}			22	f_8		f_{10}		
PN sequence	001			110				011				

Time	12	13	14	15	16	17	18	19	
Input data	0	1	1	1	1	0	1	0	
Frequency	f	r 1	j	r 3	f	2	f_2		
PN sequence		00)1		001				

- a. The system makes use of a form of FSK. What form of FSK is it?
- b. What is the number of bits per signal element (symbol)?
- c. What is the number of FSK frequencies?
- d. Is this a slow or fast FH system?
- e. What is the total number of possible carrier frequencies?
- f. Fill the table below with the variation of the base (or demodulated) frequency with time.

Time	0	1	2	3	4	5	6	7	8	9	10	11
Input data	0	1	1	1	1	1	1	0	0	0	1	0
Frequency	f	1	f	3	f	3						

Time	12	13	14	15	16	17	18	19
Input data	0	1	1	1	1	0	1	0
Frequency								

- 7. A multi-carrier modulation (MCM) system (OFDM system), having an assigned bandwidth *B*, resorts to *N* subcarriers for an aggregate data transmission rate of *R*.
 - a. What is the band occupied by each subcarrier?
 - b. What is, the data rate in each subcarrier (considering no adaptive modulation)?
 - c. What is, the bit duration in each subcarrier?
 - d. What would be the bit duration in an equivalent single-carrier modulation system?
 - e. What would be the data rate in an equivalent single-carrier modulation system?
 - f. So, why is MCM so important to "modern" <u>wireless</u> communication systems (think about the consequences of multipath-propagation)?