The Evolution of Stress-Induced Mutagenesis

Yoav Ram
Tel-Aviv University

University of Haifa-Oranim 22 May 2016

Variability in mutation rates

Between species

Average number of measurable mutations per genome per generation

Bacteria: 0.0004 Wielgoss et al. G3 2011

Flies: 0.455 Keightley et al. Gen Res 2009

Humans: 41 Lynch, PNAS 2010

Evolution in a constant environment

- Direction of selection doesn't change
- Balance between mutation and

Mutation-selection balance

- $\overline{\omega} = e^{-U}$
- High mutation rates reduce adaptedness of populations
- Selection will reduce the mutation rate to it's lowest attainable level - the reduction principle

Liberman & Feldman 1986

- What sets this level?
 - Physical or physiological constraints
 Kimura 1967
 - Cost of DNA replication fidelity
 Dawson 1999
 - *Drift barrier hypothesis* Lynch 2010

Evolution in a changing environment

- In changing environments rapid adaptation can be favored by natural selection
- The mutation rate must balance between adaptability and adaptedness

Leigh 1973

Variability in mutation rates

Within species

Mutation rate in 69 natural populations of *E. coli*

Variability in mutation rates

Within individuals

DNA polymerase error rate

Lynch 2011

Stress-induced mutagenesis

In *E. coli*:

- Error prone polymerase induced by stress responses:
 - SOS response
 - DNA damage
 - Starvation
- Mismatch repair system
- Other mechanisms:
 - Galhardo et al. 2007
 - Al Mamun, Science 2012

Evidence

Evolution of stress-induced mutagenesis

Null hypothesis

Mutagenesis is the by-product of stress

Alternative non-adaptive hypotheses

Cost of replication fidelity

Adaptive hypothesis

2nd order selection

Constant environment

Selection against generation of deleterious mutations

- number of harmful alleles

- frequency

 ω_{x} - fitness

 m_x - mutation probability

 δ - deleterious mutation β - beneficial mutation

Ram & Hadany, Evolution 2012

Constant environment

General solution

$$sign\frac{\partial \overline{\omega}}{\partial m_{\chi}} = sign\left(\overline{\omega} - \omega_{\chi}\right)$$

Increasing the mutation rate of individuals with below average fitness increases the population mean fitness

Selection doesn't always reduce the mutation rate!

Changing environments

The Red Queen hypothesis

van Valen, 1973

It takes all the running you can do, to keep in the same place.

- Lewis Carrol, Through the Looking Glass

What happens when the environment changes frequently?

Changing environments

Simulations

- Moran process
- Individual-based simulations
- 100,000 individuals
- 1,000 loci
- Asexual, Haploid
- Overlapping generations
- No recombination
- No segregation
- No mutations at mutator locus
- Environmental changes

Populations with SIM are fitter

SIM wins competitions

Conclusions

- Stress-induced mutators evolve:
 - In constant & changing environments

- 2nd order selection can lead to the evolution of stress-induced mutagenesis in asexual populations
 - Selection for evolvability

In the presence of recombination

- Recombination can:
 - Separate mutator from beneficial mutations
 - Increase non-mutator adaptation rate
 - Save constitutive mutators from deleterious mutations

In the presence of recombination

Results suggest:

- SIM > CM
- SIM >= NM
- As long as recombination is as not much stronger than mutations

Sexual populations??

Stress-induced mutagenesis under uncertainty

- Uncertainty
 - should you mutate?
- SIM decreases mean fitness
- Communication
 - Increase in mutation rate depends on population mean fitness
 - Robustness to uncertainty

Consequences of Stress-Induced Mutagenesis

How does stress-induced mutagenesis affect adaptation?

Adaptive peak shifts

Sewall Wright, 1931:

If a new adaptation requires several, separately deleterious mutations, how can it evolve?

SIM & rugged landscapes

Increasing the mutation rate in individuals below both peaks

Adaptation rate

 $\nu_{CM} \approx \tau^2 \cdot \nu_{NM}$ $\nu_{SIM} \approx \tau \cdot \nu_{NM}$

SIM Breaks the adaptability-adaptedness trade-off

Conclusions

Effects of stress-induced mutagenesis:

- SIM increases the adaptation rate without reducing the population mean fitness
- Breaks the trade-off between adaptability and adaptedness

Ram & Hadany, PRSB 2014

Predicting Microbial Growth in a Mixed Culture

Competition experiments

Strains must have a genotypic or phenotypic marker.

Problem: Laborious and costly, more so for non-model organisms.

Our Solution: Computational framework that predicts growth in mixed culture:

- 1. Fit growth models to growth curves
- 2. Predict competition results
- 3. Infer fitness

Growth curve data

Data from two experiments with *E. coli* strains: (DH5 α vs. TG1) fitted a growth model

Baranyi & Roberts, 1994

Mixed culture prediction

Summary

- 1. Fit growth models to growth curves
- 2. Predict competition results
- 3. Infer fitness

Preprint:

Ram et al. (2015) *Predicting competition results from growth curves*. bioRxiv, doi:10.1101/022640

Software website: <u>curveball.yoavram.com</u>

Future directions

- Complex growth curves:
 - Bi-phasic growth:
 - Deep stationary phase
 - Cell death
- Null model for detection of frequencydependent interactions:
 - Cooperation
 - Interference
- Compete hypothetical strains
- Predict adaptive evolution
- Interpret fitness differences

Summary

Stress-induced mutagenesis

- Can evolve due to 2nd order selection
- In constant & changing environments
- In asexual populations

Ram & Hadany, Evolution 2012

In the presence of rare recombination

Ram & Hadany, in preparation

- Increases the rate of complex adaptation rate
- Without reducing the population mean fitness
- Breaks the **trade-off** between *adaptability* and *adaptedness* Ram & Hadany, PRSB 2014

Predicting microbial growth in a mixed culture

Ram et al., bioRxiv preprint

Acknowledgments

Lilach Hadany*

Uri Obolski* Eynat Dellus-Gur* Ariel Gueijman Eyal Zinger Itzhak Khait Ohad Lewin-Epstein Marine Veits Michael Fishman

Judith Berman*

Maayan Bibi* Ella Shtifman Segal Noa Wertheimer Alex Rosenberg Adi Zisman Feng Yang

Yitzhak Pilpel

Orna Dahan Dorit Hizi Itamar Françoise **Idan Frumkin** Avihu Yona

Avigdor Eldar Ishay Ben-Zion Fran Even-Tov

Israeli **Ministry** of Science & **Technology**

CONTACT

github.com/yoavram

Manna Center Program for Food Safety & Security

The Anat Karuskopf **Fund**

