Мультиплексоры, демультиплексоры и коммутаторы

Мультиплексоры и демультиплексоры решают задачи направления потоков данных в программируемой логике. В зависимости от состояния управляющих сигналов мультиплексоры и демультиплексоры выбирают один из нескольких возможных путей прохождения данных.

Также мультиплексоры применяются для стробирования сигналов тактирования в целях снижения энергопотребления устройства.

Мультиплексор

Мультиплексор — это комбинационное цифровое устройство, имеющее несколько входов данных, один или более управляющих входов и один выход. Мультиплексор позволяет передавать сигнал с одного из входов данных на выход; при этом выбор желаемого входа осуществляется подачей соответствующей комбинации управляющих сигналов. У мультиплексора только один выход (см. рис. 1).

Мультиплексор имеет два типа входов: информационные (входы данных) и адресные. Каждому информационному входу присваивается уникальный номер (адрес). В процессе работы мультиплексор обеспечивает подключение одного из нескольких информационных входов к единственному выходу устройства, выбор подключаемого к выходу информационного входа определяется состоянием сигналов на управляющих (адресных) входах. Другими словами в каждый момент времени в мультиплексоре только один вход данных соединен с выходом.

Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных входов N и числом адресных входов M действует соотношение $N=2^M$, то такой мультиплексор называют полным. Если $N<2^M$, то мультиплексор называют неполным.

Пример таблицы истинности для полного мультиплексора с тремя адресными входами представлен в таблице 1. У такого мультиплексора $2^3 = 8$ входов данных.

Адресные входы могут использоваться для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, то есть могут блокировать действие всего устройства.

Рис. 1. Мультиплексор

Таблица I. Таблица истинности для полного мультиплексора с тремя адресными входами. $D_{in\,i}-i$ -й информационный вход, A_i-i -й адресный вход

A_2	A_1	A_0	D_{out}
0	0	0	D_{in0}
0	0	1	D_{in1}
0	1	0	D_{in2}
0	1	1	D_{in3}
1	0	0	D_{in4}
1	0	1	D_{in5}
1	1	0	D_{in6}
1	1	1	D_{in7}

Основное назначение мультиплексоров — управление потоками данных. Мультиплексоры также могут использоваться в делителях частоты (в современных ПЛИС так делать категорически не рекомендуется), триггерных устройствах, сдвигающих устройствах и др. Мультиплексоры могут использоваться для реализации логических функций многих переменных.

Демультиплексор

Демультиплексор — это комбинационное цифровое устройство, предназначенное для переключения сигнала с одного информационного входа на один из информационных выходов, при этом выбор желаемого выхода осуществляется подачей соответствующей комбинации управляющих (адресных) сигналов. Демультиплексор в функциональном отношении противоположен мультиплексору (см. рис. 2). В каждый момент времени только один из выходов демультиплексора соединен с входом данных.

Если между числом выходов N и числом адресных входов M действует соотношение $N=2^M$ для двоичных демультиплексоров, то такой демультиплексор называют полным. Если $N<2^M$ для двоичных демультиплексоров, то демультиплексор называют неполным. Функции демультиплексоров сходны с функциями дешифраторов. Дешифратор можно рассматривать как демультиплексор, у которого информационный вход поддерживает напряжение выходов в активном состоянии, а адресные входы выполняют роль входов дешифратора.

В таблице 2 приведена таблица истинности для полного демультиплексора с тремя адресными входами. У такого демультиплексора $2^3 = 8$ выходов данных.

Рис. 2. Демультиплексор

Таблица 2. Таблица истинности для полного демультиплексора с тремя адресными входами и восемью информационными выходами

A_2	A_1	A_0	D_{out0}	D_{out1}	D_{out2}	D_{out3}	D_{out4}	D_{out5}	D_{out6}	D _{out7}
0	0	0	D_{in}	0	0	0	0	0	0	0
0	0	1	0	D_{in}	0	0	0	0	0	0
0	1	0	0	0	D_{in}	0	0	0	0	0
0	1	1	0	0	0	D_{in}	0	0	0	0
1	0	0	0	0	0	0	D_{in}	0	0	0
1	0	1	0	0	0	0	0	D_{in}	0	0
1	1	0	0	0	0	0	0	0	D_{in}	0
1	1	1	0	0	0	0	0	0	0	D_{in}

Также, как и шифраторы с дешифраторами, мультиплексоры и демультиплексоры могут дополняться входом разрешения работы **ce** (chip enable). Работа устройства выполняется только, если на этот вход поступает активный логический сигнал. Иначе все выходы неактивны вне зависимости от состояния входов.

Коммутатор

При проектировании цифровых устройств часто возникает задача направления потока данных от одного из множества источников к одному из множества получателей. Т.е. необходимо устройство, которое подключает (коммутирует) определенные входные порты к определенным выходным портам. Эту задачу решает коммутатор.

В нашем курсе внимание будет уделено коммутатору, который в каждый момент времени работает только с одной парой входного и выходного портов. Такой коммутатор имеет N_{in} информационных входов, N_{out} информационных выходов, M_{in} и M_{out} адресных входов для выбора соединяемых входного и выходного информационных портов соответственно.

Рис. 3. Последовательное соединение мультиплексора и

	Таблица 3. Таблица истинности для коммутатора 4х4.									
	A_{in1}	A_{in0}	A _{out1}	Aouto	D_{out0}	D_{out1}	D_{out2}	D_{out3}		
	0	0	0	0	D_{in0}	0	0	0		
ĺ	0	0	0	1	0	D_{in0}	0	0		
ĺ	0	0	1	0	0	0	D_{in0}	0		
ĺ	0	0	1	1	0	0	0	D_{in0}		
ĺ	0	1	0	0	D_{in1}	0	0	0		
ĺ	0	1	0	1	0	D_{in1}	0	0		
ĺ	0	1	1	0	0	0	D_{in1}	0		
	0	1	1	1	0	0	0	D_{in1}		

1	0	0	0	D_{in2}	0	0	0
1	0	0	1	0	D_{in2}	0	0
1	0	1	0	0	0	D_{in2}	0
1	0	1	1	0	0	0	D_{in2}
1	1	0	0	D_{in3}	0	0	0
1	1	0	1	0	D_{in3}	0	0
1	1	1	0	0	0	D_{in3}	0
1	1	1	1	0	0	0	D_{in3}

Если соединить выходы демультиплексора со входами мультиплексора (см. рис. 4) при $N_{in} = N_{out}$, то получится устройство с одним информационным входом и одним информационным выходом. Такое устройство позволяет разделять (разуплотнять) один высокоскростной канал данных на множество низкоскоростных, что упрощает обработку данных в каждом низкоскоростном канале. После того, как данные обработаны, их можно снова объединить в один высокоскоростной канал. По такому принципу работают современные высокоскоростные последовательные трансиверы в FPGA.

Рис. 4. Последовательное соединение демультиплексора и мультиплексора для разуплотнения высокоскоростного канала

Особенности FPGA

Моделирование цифровых устройств

В процессе разработки цифрового устройства большую часть времени обычно занимает отладка проекта. Для этого на первых этапах отладки используют программные средства моделирования на регистровом уровне, а на последних — внутрисхемные отладчики и моделирование на физическом уровне (с учетом параметров конкретной FPGA).

Корректно выполненное моделирование устройства целиком и его отдельных частей на первых этапах отладки — залог успешной и быстрой разработки. Зафиксируем внимание на том, что в больших составных проектах тщательному тестированию подлежит не только устройство целиком, но и отдельные его блоки 1 . Также хорошим стилем разработки является разделение 2 тестбенчей и синтезируемых модулей.

Для того чтобы протестировать какой-либо модуль, разрабатывается специальный тестирующий модуль – тестбенч (test bench). Тестбенч включает в себя в качестве компонента тестируемый модуль и генерирует сигналы для всех входов тестируемого модуля. Тестбенч также может дополнительно обрабатывать сигналы с выходов тестируемого модуля (например, записывать результаты в файл). В простых тестах все входные сигналы могут создаваться непосредственно в тестбенче (сигналы сброса, тактирования, счетчики и т.д.). В более сложных

¹ В идеальном случае тестируются все компоненты устройства. В реальности – времени на всеобъемлющее тестирование может не хватить, тестируются все крупные узлы устройства.

² Использование тестирующих вставок кода (обычно, несинтезируемых) в синтезируемом модуле не является в общем случае ошибкой. При синтезе проекта в консоль будут выданы только предупреждения, а не сообщения об ошибках.

тестах удобно тестовые последовательности генерировать в какой-либо другой среде разработки (например, в Matlab) и с помощью тестбенча подавать их на тестируемый модуль.

Разработка тестбенча может выполняться на любом языке программирования цифровых устройств (VHDL, Verilog, System Verilog и др.) или графически. В отличие от модулей, подлежащих прошивке в FPGA, в тестбенчах могут применяться несинтезируемые синтаксические конструкции языков программирования (например, работа с файлами, задержки на интервалы времени).

Для моделирования работы цифровых устройств можно использовать различные симуляторы: ISim (встроенный в ISE Design Suit), Modelsim и др.