1 A Teoria $\lambda \omega$

1.1 A Teoria $\lambda \omega$

Na seção anterior, foi introduzida a abstração em relação termos que podiam aceitar um tipo como parâmetro. Mas também é interessante construir tipos que aceitem tipos como parametros. Por exemplo, os tipos $\beta \to \beta$ e $\gamma \to \gamma$ possuem uma estrutura geral $\diamond \to \diamond$, com o tipo na mesma posição em relação à seta. Uma abstração em relação a \diamond faz com que seja possível descrever uma família de tipos de forma mais simples.

Para isso, será introduzido aqui um construtor de tipos que gera uma função que recebe um tipo como valor e retorna um tipo como resultado, por exemplo $\lambda\alpha:*.\alpha\to\alpha$. Quando outros tipos são aplicados a essa função, ela muda seu comportamento:

$$(\lambda \alpha : *.\alpha \to \alpha)\beta \to_{\beta} \beta \to \beta$$
$$(\lambda \alpha : *.\alpha \to \alpha)\gamma \to_{\beta} \gamma \to \gamma$$

A questão que fica é definir o tipo dessas expressões. Pois sendo $\alpha:*$ e $\alpha \to \alpha:*$, então $\lambda\alpha:*.\alpha\to\alpha:*\to *$. Logo serão adicionados tipos como $*\to *, *\to (*\to *)$, etc. à sintaxe.

Os tipos * e as setas entre * são chamados de espécies (kinds em inglês). A BNF para o conjunto de todas as espécies é:

$$\mathbb{K}=*|\mathbb{K}\to\mathbb{K}$$

A notação dos parenteses segue a notação para os tipos simples introduzida anteriormente.

O tipo de todas as espécies é denotado por \square . Sendo assim $*: \square$ e $*\to *: \square$, etc. Se κ é uma espécie, então qualquer termo M "do tipo" κ é chamado de construtor de tipos, ou somente *construtor*. Então $\alpha: *.\alpha \to \alpha$ é um construtor, assim como somente $\alpha \to \alpha$ também.

Definição 1.1 (Construtores, construtores próprios).

- 1. Se $\kappa: \square$ e $M:\kappa,$ então M é um construtor. Se $\kappa\not\equiv *,$ então M é um construtor próprio
- 2. O conjunto de todas as variedades (sorts) é $\{*, \square\}$

Para falar de uma variedade qualquer, será introduzido o simbolo \boldsymbol{s} como meta variável.

Definição 1.2 (níveis). Com essa construção, existem quatro níveis na sintaxe: Nível 1: termos Nível 2: construtores e tipos com construtores próprios Nível 3: espécies Nível 4: consiste somente em \square

Ao unir esses níveis é possível escrever correntes de juizos como $t:\sigma:*\to *:\Box$, onde $t:\sigma,\sigma:*\to *:\Box$ são juizos.

1.1.1 Regra sort e regra var em $\lambda \underline{\omega}$

É necessário escrever novas regras de inferência para $\lambda \underline{\omega}$, a primeira delas sendo a regra das espécies:

Definição 1.3 (Regra das variedades, Sort-rule). (sort) $\emptyset \vdash * : \square$

A próxima regra é a regra de que todo termo ocorrendo em um contexto é derivável naquele contexto, para isso é necessário ter como base que o tipo do termo escolhido seja bem formado, então a regra (var) vai mudar em relação às teorias vistas anteriormente:

Definição 1.4 (Var-rule).

$$(var) \ \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \ \text{se} \ x \not \in \Gamma$$

A premissa dessa regra de derivação requer que A seja ou um tipo, se $s \equiv *$, ou uma espécie (se $s \equiv \square$). Então x pode ser ou um tipo variável ou um termo variável.

Exemplo de derivação:

$$\frac{ \frac{\emptyset \vdash * : \square}{\alpha : * \vdash \alpha : *} (var)}{\alpha : *, x : \alpha \vdash x : \alpha} (var)$$

A primeira linha é formada utilizando a sort-rule, a segunda linha usa a var-rule com $s \equiv \Box$ e a terceira linha usa a var-rule com $s \equiv *$

1.1.2 A regra do enfraquecimento em $\lambda \underline{\omega}$

Somente usando as regras (var) e (sort) não é possível derivar $\alpha: *, \beta: * \vdash \alpha: *$, então é interessante desenvolver uma regra que permita fazer isso. A regra desejada seria uma regra que, partindo de $\alpha: * \vdash \alpha: *$, chegasse em $\alpha: *, \beta: * \vdash \alpha: *$. Ou seja, uma regra que adicionasse mais informação ao contexto do que o "necessario", que o enfraquecesse.

A regra do enfraquecimento segue a seguinte forma:

Definição 1.5 (Regra do enfraquecimento,
$$(weak)$$
). $(weak) \frac{\Gamma \vdash A : B \qquad \Gamma \vdash C : s}{\Gamma, x : C \vdash A : B}$ se $x \notin \Gamma$

Ou seja, assumindo que tenha sido derivado o juizo $\Gamma \vdash A : B$, é possível enfraquecer o contexto Γ ao adicionar uma declaração arbitrária no final.

Então a derivação anterior se torna:

$$\frac{ \emptyset \vdash * : \square}{\alpha : * \vdash \alpha : *} (var) \quad \frac{\emptyset \vdash * : \square}{\alpha : * \vdash * : \square} (weak)$$
$$\frac{\alpha : * \vdash \alpha : *}{\alpha : *, \beta : * \vdash \alpha : *} (weak)$$

Também é possível fazer a seguinte derivação:

$$\frac{\emptyset \vdash * : \Box \qquad \emptyset \vdash * : \Box}{\alpha : * \vdash * : \Box \qquad (weak)}$$
$$\frac{\alpha : * \vdash * : \Box}{\alpha : *, \beta : * \vdash \beta : *} (var)$$

1.1.3 A regra de formação de $\lambda \omega$

A regra de inferência para formar tipos e espécies é descrita como:

Note que não existem tipos dependentes de tipos em $\lambda \underline{\omega}$, logo não existem tipos $\Pi.$

Exemplo:

$$\frac{\cdots}{\alpha: *, \beta: * \vdash \alpha: *} (\cdots) \quad \frac{\cdots}{\alpha: *, \beta: * \vdash \beta: *} (\cdots) \\ \alpha: *, \beta: * \vdash \alpha \rightarrow \beta: *$$

As duas subárvores geradas pela regra de formação nesse caso já foram detalhadas na subseção anterior, logo foram omitidas aqui.

Exemplo:

$$\frac{\cdots}{\alpha: * \vdash * : \square} (\cdots) \quad \frac{\cdots}{\alpha: * \vdash * : \square} (\cdots)$$

$$\alpha: * \vdash * \rightarrow * : \square \quad (form)$$

1.1.4 Regras de abstração e aplicação

As regras de abstração e aplicação são definidas da seguinte forma:

Definição 1.7.

• (appl)

$$\frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash MN : B} \text{ (appl)}$$

• (abst)

$$\frac{\Gamma, x: A \vdash M: B \qquad \Gamma \vdash A \to B: s}{\Gamma \vdash \lambda x: A.M: A \to B} \text{ (abst)}$$

Exemplo: derivação de $(\lambda \alpha : *.\alpha \to \alpha)\beta$

$$\frac{? \vdash \lambda \alpha : *.\alpha \to \alpha}{? \vdash \lambda \alpha : *.\alpha \to \alpha}? \quad \frac{?}{? \vdash \beta : *}? \quad \text{(appl)}$$
$$? \vdash (\lambda \alpha : *.\alpha \to \alpha)\beta$$

A única regra que resolve o lado direito é a (var), logo o contexto deve ser também $\beta:*$:

$$\frac{?}{\frac{\beta: * \vdash \lambda \alpha: * . \alpha \to \alpha}{\beta: * \vdash (\lambda \alpha: * . \alpha \to \alpha)}? \frac{\emptyset \vdash * : \square}{\beta: * \vdash \beta: *} \text{ (var)}}{\beta: * \vdash (\lambda \alpha: * . \alpha \to \alpha)\beta}$$

Já no lado esquerdo, é necessário usar a regra (abst):

$$\frac{\beta: *, \alpha: * \vdash \alpha \to \alpha: * \quad \beta: * \vdash * \to * : \square}{\beta: * \vdash \lambda\alpha: *.\alpha \to \alpha} \text{ (abst)} \quad \frac{\emptyset \vdash * : \square}{\beta: * \vdash \beta: *} \text{ (var)}$$
$$\frac{\beta: * \vdash (\lambda\alpha: *.\alpha \to \alpha)\beta}{\beta: * \vdash (\lambda\alpha: *.\alpha \to \alpha)\beta}$$

O resto das duas subárvores do lado esquerdo se segue das derivações feitas anteriormente.

1.1.5 Regra da Conversão

A regra da conversão faz com que termos que possuem um tipo que possa ser β -reduzido a outro, possa passar a possuir o tipo mais simples:

Definição 1.8 (Regra de Conversão,
$$(form)$$
).
$$\frac{\Gamma \vdash A : B \qquad \Gamma \vdash B' : s}{\Gamma \vdash A : B'} \text{ se } B =_{\beta} B'$$

Regras de $\lambda \underline{\omega}$:

- $(sort) \emptyset \vdash * : \square$
- (*var*)

$$(var) \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \text{ se } x \notin \Gamma$$

• (*weak*)

$$(weak)$$
 $\frac{\Gamma \vdash A : B}{\Gamma \cdot x : C \vdash A : B}$ se $x \notin \Gamma$

• (*form*)

$$\frac{\Gamma \vdash A : s \qquad \Gamma \vdash B : s}{\Gamma \vdash A \to B : s} (form)$$

• (appl)

$$\frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash MN : B}$$
 (appl)

• (*abst*)

$$\frac{\Gamma, x: A \vdash M: B \qquad \Gamma \vdash A \to B: s}{\Gamma \vdash \lambda x: A.M: A \to B} \text{ (abst)}$$

• (conv)

$$\frac{\Gamma \vdash A : B \qquad \Gamma \vdash B' : s}{\Gamma \vdash A : B'} \text{ se } B =_{\beta} B'$$

1.1.6 Propriedades

O sistema $\lambda\underline{\omega}$ satisfaz a maioria das propriedades de sistemas anteriores. A única modificação necessária é no Lema da Unicidade dos tipos, pois tipos não são mais literalmente unicos, mas são únicos a menos de β -conversão:

Lema 1.1 (Unicidade dos tipos a menos de conversão). Se $\Gamma \vdash A : B_1$ e $\Gamma \vdash A : B_2$, então $B_1 =_{\beta} B_2$

1.2 O Sistema \mathcal{F}_{ω} de Girard