ML

Tema 2 — Inteligență Artificială

Alexandru Sima (332CA)

 $26~\mathrm{mai}~2025$

Rezumat

Analiza a 2 seturi mari de date — indici de calitate ai aerului și informații despre popularitatea unor știri — folosind tehnici de învățare automată, prelucrarea acestora în vederea antrenării unor modele de clasificare. Clasificarea acestora folosind **Arbori de decizie**, **Păduri aleatoare**, **Regresii logistică** și **Rețele neurale adânci**. Comparații ale performanțelor modelelor.

Cuprins

1	Pol	uarea aerului
	1.1	Analiza datelor
		1.1.1 Analiza valorică
		1.1.2 Analiza corelației atributelor
	1.2	Preprocesarea datelor
		1.2.1 Eliminarea valorilor extreme
		1.2.2 Imputarea valorilor lipsă
		1.2.3 Eliminarea atributelor redundante
		1.2.4 Normalizarea datelor
		1.2.5 Codificarea atributelor categorice și a atributului țintă
	1.3	Învățarea automată
		1.3.1 Arbori de decizie
		1.3.2 Păduri aleatoare
		1.3.3 Regresie logistică
		1.3.4 Rețele neurale adânci
	1.4	Comparații
2	Pon	pularitatea știrilor 15
_	2.1	Analiza datelor
		2.1.1 Analiza valorică
		2.1.2 Analiza corelatiei atributelor
	2.2	Preprocesarea datelor
		2.2.1 Eliminarea atributelor redundante
		2.2.2 Codificarea atributelor categorice și a atributului țintă
	2.3	Învățarea automată
	2.0	2.3.1 Arbori de decizie
		2.3.2 Păduri aleatoare
		2.3.3 Regresie logistică
		2.3.4 Retele neurale adânci
	2.4	Comparații
0	C	• ,
3	Con	ncluzii 29

1 Poluarea aerului

Primul set de date conține date despre diferiți parametri măsurați ai aerului, în peste 20.000 de orașe din întreaga lume. Prin antrenarea unui model de învățare automată, se dorește clasificarea orașelor în funcție de gradul de riscuri pentru sănătate.

1.1 Analiza datelor

1.1.1 Analiza valorică

Setul de date conține 23.463 de înregistrări, fiecare având 15 atribute, dintre care 7 numerice și 8 categorice (incluzând și atribul țintă $AQI_Category$).

Din statisticile obținute pentru atributele numerice la (1), observăm că numai $Ozone_Value$ conține valori lipsă și că plajele de valori sunt destul de variate (spre exemplu, valorile AQI_Value se situează în principal în plaja de 40-80, pe când CO_Value are valori foarte apropiate de 0). Aceste fapte se observă și trasând boxplot-ul valorilor (2), de unde se poate observa mai clar "tendințele" outlierilori: deși în anumite cazuri (CO_Value , $NO2_Value$, SO2 într-o anumită măsură), valorile mari sunt în mod flagrant eronate, în celelalte cazuri valorile sunt distribuite relativ unifom cu mult în afara plajei inter-cuartilă¹, ceea ce ar determina eliminarea a mult prea multe valori considerate outlier. De aceea, se vor considera outlieri doar valorile care depășesc $1, 5 \cdot IQR$, cu "cuartilele" mult mai depărtate: 0, 1, respectiv 0, 9.

Analizând atributele categorice la (3), se observă că există valori lipsă pentru *Ozone_Category* și *City*, deși atributul din urmă poate fi complet eliminat, fiecare coloană reprezentând câte un oraș diferit, acesta neputând fi folosit pentru niciun fel de corelație. Din histogramele atributelor realizate la (4 și 5), se observă că valorile atributelor nu sunt distribuite uniform, inclusiv în cazul **AQI_Category** (atribut țintă), ceea ce face clasificarea mai dificilă.

1.1.2 Analiza corelației atributelor

Aplicând testul Pearson pentru a determina corelația liniară dintre atributele numerice, se obține matricea din (6). Se poate presupune astfel că atributele AQI_Value , $PM25_Value$ și VOCs sunt foarte puternic corelate între ele, având coeficientul de corelație ≥ 0.98 și că atributul $NO2_Value$ nu este corelat cu niciun altul, ceea ce ar putea indica lipsa de relevanță a acestui atribut în determinarea calității aerului. Într-adevăr, primele 3 atribute sunt puternic corelate, acest fapt observându-se trasând graficele valorilor (8). Testul Pearson oferă însă doar informații despre corelația liniară, astfel că, aplicând testul Spearman, se obține matricea din (7), care arată existența unor corelații între $NO2_Value$ și alți parametri, fiind deci, până la urmă, relevant.

În ceea ce privește corelația dintre atributele categorice, analiza este complicată de inegalitatea repartiției valorilor: deși testul χ^2 de la (9) indică o corelație puternică între toate atributele, mai puțin City cu oricare altul (evident) și perechile $CO_Category$ - $NO2_Category$ și $Ozone_Category$ - $PM25_Category$, anumite corelații fiind doar aparente (10). Totuși, se remarcă o corelație pură: $PM25_Category$ - Emissions (11), deci unul dintre cele 2 atribute este superfluu. Am ales să elimin atributul $PM25_Category$.

 $^{^1{\}rm IRQ}$ — Interquartile Range; plaja de valori dintre prima (25%) și a treia (75%) cuartilă. Afișată în boxplot-uri printr-un segment.

²impropriu numite astfel

	AQI	_Value	co	_Value	Ozone	_Value	NO2	_Value
count	23463.	000000	23463.	000000	21117.	000000	23463.	000000
mean	72.	010868	1.	368367	35.	239665	43.	084153
std	56.	055220	1.	832064	28.	149280	196.	079179
min	6.	000000	0.	000000	0.	000000	0.	000000
25%	39.	000000	1.	000000	21.	000000	0.	000000
50%	55.	000000	1.	000000	31.	000000	1.	000000
75 %	79.	000000	1.	000000	40.	000000	4.	000000
max	500.	000000	133.	000000	222.	000000	1003.	063334
		PM25	_Value		VOCs		502	_
	count	23463.	000000	23463.	000000	23463.	000000	
	mean	68.	519755	185.	053110	4.	447841	
	std	54.	796443	140.	486759	5.	953601	
	min	0.	000000	12.	415670	-18.	528019	
	25%	35.	000000	103.	267345	0.	735052	
	50 %	54.	000000	142.	972272	4.	286825	
	75 %	79.	000000	204.	227896	7.	916001	
	max	500.	000000	1280.	988229	234.	692971	

Figura 1: Statistici despre atributele numerice ale setului de date

1.2 Preprocesarea datelor

Analizăm cunoștințele acumulate în urma analizei de mai sus a datelor, deducem că putem elimina anumite valori, pentru a îmbunătăti performanta modelului, fără a afecta major acuratetea.

Transformarea datelor se face folosind pipeline-uri³, pentru a fi consecventă — aceeași transformare trebuie aplicată și datelor de antrenament, și celor de test. Singura excepție este eliminarea outlierilor, care nu are sens decât pentru setul de antrenament.

1.2.1 Eliminarea valorilor extreme

Conform analizei de la (1.1.2), valorile au o dispersie foarte ridicată, deci noțiunea de outlier trebuie restricționată, pentru a nu pierde din acuratețe.

1.2.2 Imputarea valorilor lipsă

Valorile lipsă, inclusiv cele eliminate la pasul anterior, sunt imputate folosind un SimpleImputer⁴, care completează valorile lipsă folosind mediana, respectiv moda (în cazul atributelor categorice). Imputarea multivariată (prin învățarea valorilor lipsă din celelalte atribute), implementată prin IterativeImputer⁵, nu a dat rezultate mai bune, iar timpul de antrenare a crescut semnificativ.

 $^{^3 \}verb|https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline$

 $^{^{4} \}verb|https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer$

 $^{^5} https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer. \\$

Figura 2: Boxplot pentru atributele numerice ale setului de date

1.2.3 Eliminarea atributelor redundante

Conform deciziilor de la (1.1.2), se elimină atributele AQI_Value, PM25_Value și PM25_Category, datorită corelațiilor și City, datorită irelevanței.

1.2.4 Normalizarea datelor

Atributele numerice sunt normalizate folosind $StandardScaler^6$, care le transformă astfel încât să aibă media 0 și deviația standard 1. Acest pas este necesar pentru a asigura contribuția echitabilă a fiecărui atribut în regresia modeleleor de învățare. Normalizarea este importantă mai ales în cazul regresiei logistice, deoarece valori mari (cu atât mai mult exponențiate) pot eclipsa alți parametri.

1.2.5 Codificarea atributelor categorice și a atributului țintă

Inițial, am decis ca atributele categorice să fie codificate folosind $OrdinalEncoder^7$, care le transformă în numere întregi, fiecare valoare unică având un număr corespunzător, dar, codificând în schimb prin $OneHotEncoder^8$, se obțin rezultate mai bune, probabil existând o mai mare relevanță a unor valori specifice ale unei clase.

 $^{^6} https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler and the stable of the$

Thttps://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder

⁸https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder

		count	unique	top	freq
	Country	23036	175	United States of America	2872
	City	23462	23462	Marang	1
	CO_Category	21117	2	Good	21115
(Dzone_Category	23463	5	Good	21069
	NO2_Category	23463	2	Good	23448
	PM25_Category	23463	6	LO	10208
	Emissions	23463	6	LO	10208
	AQI_Category	23463	6	Good	9936

Figura 3: Statistici despre atributele categorice ale setului de date

Figura 4: Histogramă pentru atributul țintă al setului de date

1.3 Învățarea automată

1.3.1 Arbori de decizie

Pentru a antrena un model de tip arbore de decizie, se folosește $Decision Tree Classifier^9$, care îl construiește pe baza datelor de antrenament. Acesta este foarte performant, reușind, cu parametrizarea implicită, o acuratețe de $\approx 100\%$ pe setul de test, clasificând eronat, în medie, 3 intrări, conform matricei de confuzie de la (12).

1.3.2 Păduri aleatoare

Modelul de tip pădure aleatoare folosit este $RandomForestClassifier^{10}$, care reușește performanțe similare (conform (13)), având însă o performanță mai scăzută d.p.d.v. temporal ($\approx 1,6s$ vs $\approx 0,2s$).

 $^{^9 {\}tt https://scikit-learn.org/stable/modules/generated/sklearn.tree.} Decision Tree {\tt Classifier}$

 $^{^{10} \}mathtt{https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier}$

Figura 5: Histograme pentru atributele categorice ale setului de date . *City* este ignorat din motivele enuntate anterior.

1.3.3 Regresie logistică

Modelul de regresie logistică este implementat manual. Cum regresia logistică este folosită în mod obișnuit pentru clasificare binară, aceasta trebuie adaptată, realizând o clasificare de tip one-vs-rest, antrenându-se câte un regresor pentru fiecare clasa, iar clasa prezisă fiind cea a cărei regresor întoarce o valoare maximă. Nu am implementat regularizare, datele fiind în principiu normalizate, iar, prin testare, neobținându-se rezultate mai bune. Pe setul de test, se obține o acuratețe de $\approx 87\%$ (conform (14)).

1.3.4 Rețele neurale adânci

Modelul de rețea neurală adâncă folosit este $MLPClassifier^{11}$, care reușește o acuratețe de \approx 97% (conform (15)) pe setul de test, cu 2 straturi ascunse, fiecare a câte 64 de neuroni, restul

¹¹https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier

Figura 6: Corelația dintre atributele setului de date, folosind coeficientul Pearson

parametrilor fiind cei impliciți.

1.4 Comparații

Comparând performanțele modelelor, putem observa că arborii de decizie oferă cele mai bune rezultate, urmate de pădurile aleatoare, rețelele neurale și, în cele din urmă, regresia logistică. Se observă că clasele cel mai frecvent clasificate greșit sunt *Hazardous* și *Very Unhealthy*, care au și cel mai mic suport (sub 60 de valori fiecare). În particular, regresia logistică nu clasifică corect niciuna dintre aceste clase.

Class	Precision	Recall	F1-score	Support
Good	1.00	1.00	1.00	1987
Hazardous	1.00	0.97	0.99	38
Moderate	1.00	1.00	1.00	1846
Unhealthy	1.00	1.00	1.00	446
Unhealthy for Sensitive Groups	1.00	1.00	1.00	318
Very Unhealthy	0.98	1.00	0.99	58
Accuracy			1.00	4693
Macro avg	1.00	1.00	1.00	4693
Weighted avg	1.00	1.00	1.00	4693

Tabela 1: Raport de clasificare pentru arbori de decizie

Figura 7: Corelația dintre atributele setului de date, folosind coeficientul Spearman

Class	Precision	Recall	F1-score	Support
Good	1.00	1.00	1.00	1987
Hazardous	1.00	0.84	0.91	38
Moderate	1.00	1.00	1.00	1846
Unhealthy	1.00	1.00	1.00	446
Unhealthy for Sensitive Groups	1.00	1.00	1.00	318
Very Unhealthy	0.90	0.98	0.94	58
Accuracy			1.00	4693
Macro avg	0.98	0.97	0.98	$\boldsymbol{4693}$
Weighted avg	1.00	1.00	1.00	4693

Tabela 2: Raport de clasificare pentru păduri aleatoare

Class	Precision	Recall	F1-score	Support
Good	0.96	0.96	0.96	1987
Hazardous	0.00	0.00	0.00	38
Moderate	0.85	0.97	0.91	1846
Unhealthy	0.76	0.74	0.75	446
Unhealthy for Sensitive Groups	0.94	0.44	0.60	318
Very Unhealthy	0.00	0.00	0.00	58
Accuracy			0.89	4693
Macro avg	0.59	0.52	0.54	$\boldsymbol{4693}$
Weighted avg	0.88	0.89	0.87	4693

Tabela 3: Raport de clasificare pentru regresia logistică

Figura 8: Corelația liniară dintre AQI_Value și $PM25_Value$, respectiv $PM25_Value$ și VOCs

Figura 9: Testul χ^2 pentru atributele categorice ale setului de date

Figura 10: Câteva corelații puternice între atributele categorice ale setului de date, datorate inegalității

Class	Precision	Recall	F1-score	Support
Good	1.00	0.96	0.98	1987
Hazardous	0.16	0.95	0.28	38
Moderate	1.00	0.96	0.98	1846
Unhealthy	0.99	0.96	0.98	446
Unhealthy for Sensitive Groups	0.99	0.96	0.98	318
Very Unhealthy	0.96	0.90	0.93	58
Accuracy			0.96	4693
Macro avg	0.85	0.95	0.85	4693
Weighted avg	0.99	0.96	0.97	4693

Tabela 4: Raport de clasificare pentru rețele neurale adânci

Figura 11: Corelație totală între $PM25_Category$ și Emissions

Figura 12: Matricea de confuzie a modelului de tip arbore de decizie $% \left(1\right) =\left(1\right) +\left(1\right$

Figura 13: Matricea de confuzie a modelului de tip pădure aleatoare

Figura 14: Matricea de confuzie a modelului de regresie logistică

Figura 15: Matricea de confuzie a modelului de tip rețea neurală adâncă

Figura 16: Curbe de învățare și de acuratețe pentru rețea

2 Popularitatea știrilor

Al doilea set de date conține informații despre o selecție de aproape 40.000 de articole știri de pe site-ul https://www.mashable.com, cuprinzând informații precum numărul de linkuri, de vizualizări, momentul publicării, categoria articolului și date despre cuvintele folosite. Ca și în cazul setului de date anterior, se dorește clasificarea articolelor în funcție de popularitatea acestora, aceasta cerință fiind mai dificilă, deoarece volumul de date este mult mai mare.

2.1 Analiza datelor

2.1.1 Analiza valorică

Setul de date conține 39.644 de înregistrări, fiecare având 64 de atribute. 47 dintre acestea sunt numerice, iar restul de sunt categorice (incluzând atributul țintă popularity_category).

Analizând repartițiile atributelor numerice de la (17), (18), (19) și (20), se observă că singura coloană cu valori lipsă este cea de $content_density$ și, ca și în cazul anterior, că există o distribuție foarte largă a valorilor, pe intervale de ordine de mărime foarte diferite: de exemplu, $topic_relevance$ și $*_rate$ sunt rapoarte (în intervalul 0-1), pe când $keyword_best_avg_shares$ este de ordinul sutelor de mii. Având acestea în vedere, se vor considera outlierii ca în cazul setului de date precedent, apoi se va aplica o procedură de normalizare a datelor.

În ceea ce privește atributele categorice, se observă din (21) că există valori lipsă pentru channel_lifestyle și că, în afară de url care are numai valori unice (precum City în cazul poluării), toate atributele au doar 2 valori posiblie (de obicei "Yes" / "No"). De aceea, o codificare de tip one-hot nu își are rostul, adăugând câte un atribut în plus pentru fiecare valoare posibilă. Analizând histogramele de la (22), (23) și (24), se observă, din nou, o distribuție inegală, inclusiv în cazul atributului țintă **popularity_category**, fiind totuși mai uniformă decât în cazul setului de date precedent.

2.1.2 Analiza corelatiei atributelor

Analizând corelația dintre atributele numerice folosind coeficientul Pearson, se obține matricea din (25). Trasând graficele de corelație dintre atributele cu un indice ridicat ($|p| \ge 0.9$), se observă în (26) că există niște corelații date în mod eronat de outlieri: $non_stop_word_ratio$ - $uni-que_non_stop_word_ratio$ și $unique_word_ratio$ - $non_stop_word_ratio$. În schimb, corelații liniare evidente relevă din (27) între perechile $keyword_worst_max_shares$ - $keyword_worst_avg_shares$ și $content_word_count$ - $content_density$. Am ales să elimin $keyword_worst_avg_shares$ și $content_word_count$.

În ceea ce privește corelația între atributele categorice (calculată la (28)), aceasta este logică din moment ce majoritatea provin dintr-o codificare one-hot a unor atribute (de exemplu, day_monday adevărat determină implicit ca toate celelalte zile ale săptămânii să fie false). Nu are sens să eliminăm aceste atribute. Totuși, există o redundanță evidentă: day_* vs is_weekend. În funcție de scop, se poate alege păstrarea anumitor atribute. În cazul acesta, am ales să elimin is_weekend, păstrând mai multe informații (ce zi este, nu doar dacă este weekend sau nu) în speranta că se va atinge o acuratete mai mare.

2.2 Preprocesarea datelor

Modul de preprocesare a datelor este similar cu cel descris la (1.2). Singurele diferențe sunt selectarea atributelor relevante si codificarea atributelor categorice.

2.2.1 Eliminarea atributelor redundante

Conform rezultatelor de mai sus, se elimină atributele url, $is_weekend$, $keyword_worst_avg_shares$ si $content_word_count$.

2.2.2 Codificarea atributelor categorice și a atributului țintă

Atributele categorice sunt codificate folosind $OrdinalEncoder^{12}$, care le transformă în numere întregi, fiecare valoare unică având un număr corespunzător. Deoarece toate atributele categorice au doar 2 valori posibile, acest lucru nu afectează performanța modelului, iar codificarea este mai eficientă decât codificarea one-hot. Atributul țintă este, totuși, codificat folosind LabelEncoder.

2.3 Învățarea automată

2.3.1 Arbori de decizie

Modelul de tip arbore de decizie folosit este parametrizat prin:

```
min_samples_split=5
min_samples_leaf=5
criterion="entropy"
```

Acesta reuseste o acuratețe de $\approx 89\%$ pe setul de test.

2.3.2 Păduri aleatoare

Modelul de tip pădure aleatoare folosit este parametrizat prin:

```
n_estimators=500
min_samples_split=5
min_samples_leaf=5
criterion="entropy"
max_features=1.0
```

Acesta reușește o acuratețe de $\approx 89\%$ pe setul de test.

2.3.3 Regresie logistică

Modelul de regresie logistică este cel implementat la (1.3.3). Acesta reușește o acuratețe de $\approx 88\%$ pe setul de test.

2.3.4 Rețele neurale adânci

Modelul de rețea neurală adâncă este parametrizat prin:

```
iters=200
hidden_layer_sizes=[100, 100]
activation="relu"
solver="adam"
learning_rate_init=0.001
```

2.4 Comparatii

 $^{^{12} \}mathtt{https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder}$

Class	Precision	Recall	F1-score	Support
Moderately Popular	0.93	0.92	0.93	2401
Popular	0.80	0.83	0.81	1074
Slightly Popular	0.95	0.94	0.95	3799
Unpopular	0.42	0.93	0.58	218
Viral	0.93	0.42	0.58	437
Accuracy			0.89	7929
Macro avg	0.81	0.81	0.77	7929
Weighted avg	0.91	0.89	0.89	7929

Tabela 5: Raport de performanță pentru modelul de tip arbore de decizie

Class	Precision	Recall	F1-score	Support
Moderately Popular	0.94	0.92	0.93	2401
Popular	0.80	0.84	0.82	1074
Slightly Popular	0.95	0.94	0.95	3799
Unpopular	0.43	0.93	0.59	218
Viral	0.96	0.41	0.57	437
Accuracy			0.89	7929
Macro avg	0.82	0.81	0.77	7929
Weighted avg	0.91	0.89	0.89	7929

Tabela 6: Raport de performanță pentru modelul de tip pădure aleatoare

Class	Precision	Recall	F1-score	Support
Moderately Popular	0.59	0.37	0.46	2401
Popular	0.38	0.47	0.42	1074
Slightly Popular	0.73	0.72	0.72	3799
Unpopular	0.05	0.19	0.08	218
Viral	0.05	0.05	0.05	437
Accuracy			0.53	7929
Macro avg	0.36	0.36	0.35	7929
Weighted avg	0.58	0.53	0.55	7929

Tabela 7: Raport de performanță pentru modelul de regresie logistică

Class	Precision	Recall	F1-score	Support
Moderately Popular	0.70	0.70	0.70	2401
Popular	0.71	0.58	0.64	1074
Slightly Popular	0.80	0.84	0.82	3799
Unpopular	0.67	0.34	0.45	218
Viral	0.55	0.69	0.61	437
Accuracy			0.74	7929
Macro avg	0.69	0.63	0.65	7929
Weighted avg	0.74	0.74	0.74	7929

Tabela 8: Raport de performanță pentru modelul de rețeaua neurală

	ue_word_ratio	count unique	nt_word_d	nt cont	title_word_co	_published	ays_sinc	da	
	39644.000000	00000 39	39644.00	00	39644.000	644.000000	3	count	
	0.548216	14731	546.51	49	10.398	354.530471		mean	
	3.520708	07508	471.10	37	2.114	214.163767		std	
	0.000000	00000	0.00	00	2.000	8.000000		min	
	0.470870	00000	246.00	00	9.000	164.000000		25%	
	0.539226	00000	409.00	00	10.000	339.000000		50%	
	0.608696	00000	716.00	00	12.000	542.000000		75%	
	701.000000	00000	8474.00	00	23.000	731.000000		max	
	ernal_links	al_links inter	o externa	stop_ra	unique_non	p_word_ratio	non_st		
	644.000000	.000000 3964	0 39644.	544.0000) 39	39644.000000		count	
	3.293638	250110	5 192.	0.6891)	0.996469		mean	
	3.855141	415876	6 905.	3.2648		5.231231		std	
	0.000000	.000000	0 0.	0.0000)	0.000000		min	
	1.000000	.000000	9 4.	0.6257)	1.000000		25%	
	3.000000	.000000	6 8.	0.6904)	1.000000		50%	
	4.000000	.000000	0 15.	0.7546)	1.000000		75%	
	116.000000	616775 11	0 6078.	550.0000)	1042.000000		max	
	ount	keyword_cou	d_length	avg_wo	video_count	mage_count			
	0000	39644.0000	4.000000	396	39644.000000	9644.000000	count		
	3767	7.2237	4.548239		1.249874	4.544143	mean		
	9130	1.90913	0.844406		4.107855	8.309434	std		
	0000	1.0000	0.000000		0.000000	0.000000	min		
	0000	6.0000	4.478404		0.000000	1.000000	25%		
	0000	7.0000	4.664082		0.000000	1.000000	50%		
	0000	9.0000	4.854839		1.000000	4.000000	75%		
	0000	10.0000	8.041534		91.000000	128.000000	max		
est_min_sh	es keyword_b	st_avg_shares	ord_wors	res key	vorst_max_sh	s keyword_v	in_shar	keyword_worst_m	
39644.00	00	39644.000000		000	39644.00	0	44.0000	396	unt
13612.35	67	312.366967		682	1153.95	1	26.10680		ean
57986.02	87	620.783887		877	3857.99	5	69.6332		std
0.00	00	-1.000000		000	0.00	0	-1.00000		min
		141.750000		000	445.00	0	-1.00000		25%
0.00	00	141.750000							
		235.500000		000	660.00	0	-1.00000		50%
0.00 1400.00 7900.00	00				660.00 1000.00		-1.00000 4.00000		50% 75%

Figura 17: Statistici despre atributele numerice ale setului de date (1)

	keyword_best_ma	ax_shares keyword_l	pest_avg_sha	res key	word_avg_min_s	shares	keyword_av	g_max_shar
ount	396	44.000000	39644.000	000	39644.0	000000		39644.0000
mean	752324.066694		259281.938083		1117.146610			5657.2111
std	2145	02.129573	135102.247285 0.000000		1137.456951 -1.000000			6098.87195 0.00000
min		0.000000						
25%	8433	00.00000	172846.875000		0.000000			3562.1016
50%	8433	00.00000	244572.222223		1023.635611			4355.6888
75 %	8433	00.00000	330980.000000		2056.781032			6019.9539
max	8433	00.00000	843300.000000		3613.039819			298400.0000
	ı	keyword_avg_avg_sha	res ref_min	_shares	ref_max_share	s ref_a	vg_shares	
	count	39644.000	000 39644	.000000	39644.00000	0 396	544.000000	
	mean	3135.858	639 3998	.755396	10329.212662	2 64	101.697580	
	std	1318.150	397 19738	.670516	41027.57661	3 242	211.332231	
	min	0.000	000 0	0.000000	0.00000	0	0.000000	
	25%	2382.448	566 639	0.000000	1100.000000	0 9	81.187500	
	50%	2870.074	878 1200	.000000	2800.000000	0 22	200.00000	
	75%	3600.229	564 2600	.000000	8000.00000	0 52	200.00000	
	max	43567.659	946 843300	0.000000	843300.00000	0 8433	300.000000	
	t	opic_0_relevance top	oic_1_relevar	ice topi	c_2_relevance	topic_3	_relevance	
	count	39644.000000	39644.0000	000	39644.000000	39	644.000000	
	mean	0.184599	0.1412	256	0.216321		0.223770	
	std	0.262975	0.2197	707	0.282145		0.295191	
	min	0.000000	0.0000	000	0.000000		0.000000	
	25%	0.025051	0.0250	12	0.028571		0.028571	
	50%	0.033387	0.0333	845	0.040004		0.040001	
	75%	0.240958	0.1508	331	0.334218		0.375763	
	max	0.926994	0.9259	947	0.919999		0.926534	
	top	ic_4_relevance cont	ent_subjectiv	ity con	tent_sentiment	positiv	e_word_rate	e
	count	39644.000000	39644.000	000	39644.000000		39644.00000	0
	mean	0.234029	0.443	370	0.119309		0.039625	5
	std	0.289183	0.116	585	0.096931		0.017429	Э
	min	0.000000	0.000	000	-0.393750		0.000000)
	25%	0.028574	0.396	167	0.057757		0.028384	4
	50%	0.040727	0.453	457	0.119117		0.03902	3
	75%	0.399986	0.5083	333	0.177832		0.050279	Э
	max	0.927191	1.000		0.727841		0.155488	

Figura 18: Statistici despre atributele numerice ale setului de date (2)

	negative_wo	ord_rate non_neut	ral_positive_rate ı	non_neutral_nega	ative_rate	avg_positive_sentime	ent
count	39644	4.000000	39644.000000	396	44.000000	39644.0000	000
mean	(0.016612	0.682150		0.287934	0.3538	325
std	(0.010828	0.190206		0.156156	0.1045	42
min	(0.000000	0.000000		0.000000	0.0000	000
25%	0.009615		0.600000	0.185185		0.30624	
50%	0.015337		0.710526		0.280000	0.3587	755
75%	(0.021739	0.800000		0.384615	0.4114	28
max	(0.184932	1.000000		1.000000	1.000000	
	min_positive	_sentiment max_p	ositive_sentiment	avg_negative_s	entiment	min_negative_sentime	ent
count	39	9644.000000	39644.000000	396	44.000000	39644.0000	000
mean	0.095446		0.756728	-0.259524		-0.52194	
std	0.071315		0.247786	0.127726		0.290290	
min	0.000000		0.000000	-1.000000		-1.000000	
25%	0.050000		0.600000	-0.328383		-0.70000	
50%	0.100000		0.800000	-0.253333		-0.50000	
75 %	0.100000		1.000000		-0.186905	-0.3000	000
max		1.000000	1.000000		0.000000	0.0000	000
	max_n	egative_sentiment	$title_subjectivity$	title_sentiment	title_subj	ectivity_magnitude	
c	ount	39644.000000	39644.000000	39644.000000		39644.000000	
r	mean	-0.107500	0.282353	0.071425		0.341843	
	std						
		0.095373	0.324247	0.265450		0.188791	
	min	0.095373 -1.000000	0.324247 0.000000	0.265450 -1.000000		0.188791 0.000000	
	min 25%						
		-1.000000	0.000000	-1.000000		0.000000	
	25%	-1.000000 -0.125000	0.000000 0.000000	-1.000000 0.000000		0.000000 0.166667	
	25% 50%	-1.000000 -0.125000 -0.100000	0.000000 0.000000 0.150000	-1.000000 0.000000 0.000000		0.000000 0.166667 0.500000	
	25% 50% 75%	-1.000000 -0.125000 -0.100000 -0.050000 0.000000	0.000000 0.000000 0.150000 0.500000	-1.000000 0.000000 0.000000 0.150000 1.000000	content_d	0.000000 0.166667 0.500000 0.500000	
	25% 50% 75% max	-1.000000 -0.125000 -0.100000 -0.050000 0.000000	0.000000 0.000000 0.150000 0.500000 1.000000	-1.000000 0.000000 0.000000 0.150000 1.000000	content_d 35680.0	0.000000 0.166667 0.500000 0.500000 0.500000	
	25% 50% 75% max	-1.000000 -0.125000 -0.100000 -0.050000 0.000000 title_sentime	0.000000 0.000000 0.150000 0.500000 1.000000 ent_magnitude en	-1.000000 0.000000 0.000000 0.150000 1.000000 gagement_ratio		0.000000 0.166667 0.500000 0.500000 0.500000	
	25% 50% 75% max	-1.000000 -0.125000 -0.100000 -0.050000 0.000000 title_sentime	0.000000 0.000000 0.150000 0.500000 1.000000 ent_magnitude en	-1.000000 0.000000 0.000000 0.150000 1.000000 gagement_ratio	35680.0 1986.5	0.000000 0.166667 0.500000 0.500000 0.500000	
	25% 50% 75% max	-1.000000 -0.125000 -0.100000 -0.050000 0.000000 title_sentime	0.000000 0.000000 0.150000 0.500000 1.000000 ent_magnitude eng 39644.000000 0.156064	-1.000000 0.000000 0.000000 0.150000 1.000000 gagement_ratio 39644.000000 1054.066316	35680.0 1986.5 2209.1	0.000000 0.166667 0.500000 0.500000 0.500000 ensity	
	25% 50% 75% max	-1.000000 -0.125000 -0.100000 -0.050000 0.000000 title_sentime	0.000000 0.000000 0.150000 0.500000 1.000000 2nt_magnitude en: 39644.000000 0.156064 0.226294	-1.000000 0.000000 0.000000 0.150000 1.000000 gagement_ratio 39644.000000 1054.066316 3496.605663	35680.0 1986.5 2209.1 32.7	0.000000 0.166667 0.500000 0.500000 0.500000 ensity 000000 0.59830	
	25% 50% 75% max	-1.000000 -0.125000 -0.100000 -0.050000 0.000000 title_sentime count mean std min	0.000000 0.000000 0.150000 0.500000 1.000000 201_magnitude en: 39644.000000 0.156064 0.226294 0.000000	-1.000000 0.000000 0.000000 0.150000 1.000000 gagement_ratio 39644.000000 1054.066316 3496.605663 0.041667	35680.0 1986.5 2209.1 32.7	0.000000 0.166667 0.500000 0.500000 0.500000 ensity 000000 0.59830 0.01848 0.59785	
	25% 50% 75% max	-1.000000 -0.125000 -0.100000 -0.050000 0.000000 title_sentime count mean std min 25%	0.000000 0.000000 0.150000 0.500000 1.000000 ent_magnitude end 39644.00000 0.156064 0.226294 0.000000 0.000000	-1.000000 0.000000 0.000000 0.150000 1.000000 gagement_ratio 39644.000000 1054.066316 3496.605663 0.041667 220.000000	35680.0 1986.5 2209.1 32.7 746.0	0.000000 0.166667 0.500000 0.500000 0.500000 ensity 000000 0.59830 0.01848 0.59785	

Figura 19: Statistici despre atributele numerice ale setului de date (3)

Figura 20: Boxplot pentru atributele numerice ale setului de date

	count	unique	top	freq
url	39644	39644	http://mashable.com/2014/12/27/youtube-channel	1
channel_lifestyle	35680	2	N	33777
${\bf hannel_entertainment}$	39644	2	N	32587
channel_business	39644	2	N	33386
channel_social_media	39644	2	N	37321
channel_tech	39644	2	N	32298
channel_world	39644	2	N	31217
day_monday	39644	2	N	32983
day_tuesday	39644	2	N	32254
day_wednesday	39644	2	N	32209
day_thursday	39644	2	N	32377
day_friday	39644	2	N	33943
day_saturday	39644	2	N	37191
day_sunday	39644	2	N	36907
is_weekend	39644	2	N	34454
publication_period	39644	2	Weekday	34454

Figura 21: Statistici despre atributele categorice ale setului de date

Figura 22: Statistici despre atributul țintă al setului de date

Figura 23: Histograme pentru atributele categorice ale setului de date (incluzând atributul țintă). url este ignorat. (1)

Figura 24: Histograme pentru atributele categorice ale setului de date (2)

Figura 25: Corelația dintre atributele numerice ale setului de date, folosind coeficientul Pearson

Figura 26: Corelații eronate între atributele numerice ale setului de date datorate outlierilor

Figura 27: Corelații puternice între atributele numerice ale setului de date

Figura 28: Testul χ^2 pentru atributele categorice ale setului de date

Figura 29: Matricea de confuzie a modelului de tip arbore de decizie

Figura 30: Matricea de confuzie a modelului de tip pădure aleatoare

Figura 31: Matricea de confuzie a modelului de regresie logistică

Figura 32: Matricea de confuzie a modelului de tip rețea neurală adâncă

Figura 33: Curbe de învățare și de acuratețe pentru rețea

3 Concluzii

În urma analizei și a învățării automate, s-au obținut rezultate foarte bune pentru ambele seturi de date, cu o acuratețe de peste 90% în cazul poluării și de peste 70% în cazul popularității știrilor. Cele mai bune predicții au fost realizate folosind păduri aleatoare sau arbori de decizie, diferența dintre cele 2 modele fiind că arborii de decizie sunt mai rapizi, dar pădurile aleatoarea scalează mai bine la seturi de date mari, putând fi mărit numărul de arbori. Rețelele neurale au avut rezultate decente, care ar fi putut fi îmbunătățite cu costul timpului de antrenament. Acestea s-au comportat mai slab decât modelele bazate pe arbori de decizie posibil datorită atributelor seturilor de date (fiind mai facil clasificate prin decizii). Regresia liniara s-a comportat cel mai slab, aceasta fiind folosită în principal pentru clasificări binare.