RNNs

What is an RNN?

- Remember what the 'R' means
 - Recurrent, not recursive
- An RNN defines a computational chain
- In each step of the chain, the hidden response or *state* is computed from:
 - The previous state
 - The current input
 - Sometimes the previous output

Recursive NNs

- A topic on its own
- Recursively apply the same weights upwards in a tree, as opposed to the chain-like structure of an RNN
- Less commonly used than RNNs

Back to RNNs

- Remember that, just like in e.g. signal processing, the "time" axis could mean something else
- Think of convolutions
 - Filters move along spatial dimension(s)
- RNNs and CNNs could be used on both kinds of data (time/space)
 - Depends on the task and the kind of data you have

Two basic output modes

- Sequence to sequence
 - The input **x** and the output **o** are both sequences
- Sequence to single output
 - o Input **x** is a sequence, output **o** is a single tensor
 - Think of **o** as the "summary" of the input sequence
- Single input to sequence
 - Later

A prototypical RNN

- Now we have different (trainable) weights for the different transitions
 - U: Input to hidden, just like feedforward FCNs or CNNs

A prototypical RNN

- Now we have different (trainable) weights for the different transitions
 - W: Hidden to hidden, defining a transition to the next state

A prototypical RNN

- Now we have different (trainable) weights for the different transitions
 - V: Hidden to output, again like regular NNs, e.g. used to transform from low-/high-dimensional codes to the correct output type (e.g. classification/regression)

RNN equations

- First the pre-nonlinear activation:
 - $\mathbf{a}^t = \mathbf{W}\mathbf{h}^{t-1} + \mathbf{U}\mathbf{x}^t + \mathbf{b}^t$
- Then the non-linearity to get the state: $\mathbf{h}^t = \tanh(\mathbf{a}^t)$
- Then the transition to the output:

$$\mathbf{o}^t = \mathbf{V}\mathbf{h}^t + \mathbf{c}$$

• If we're e.g. building a classifier, we get: $\hat{\mathbf{y}}^t = \operatorname{softmax}(\mathbf{o}^t)$

RNN equations

Note that the update equations:

$$\mathbf{a}^t = \mathbf{W}\mathbf{h}^{t-1} + \mathbf{U}\mathbf{x}^t + \mathbf{b}$$
 $\mathbf{h}^t = \tanh(\mathbf{a}^t)$
 $\mathbf{o}^t = \mathbf{V}\mathbf{h}^t + \mathbf{c}$
 $\hat{\mathbf{y}}^t = \operatorname{softmax}(\mathbf{o}^t)$

- are:
 - differentiable (backprop),
 - applied at every time step t

BPTT - Backpropagation Through Time

 Backpropagation for RNNs starts like usual, namely with the delta at the output
 o:

$$abla_{\mathbf{o}^t} L = \hat{\mathbf{y}}^t - \mathbf{y}^t$$

- Note that the book uses the component-wise notation in Eq. (10.18)
- I use the assumption that the y's are one-hot encoded already, like we did in lecture 4

- Now we go back to the gradient for the hiddens
- ullet We start at the final step, called ${oldsymbol{ au}}$
- From last slide, but with au: $\nabla_{\mathbf{o}^{ au}} = \hat{\mathbf{y}}^{ au} \mathbf{y}^{ au}$
- And now one step back in the chain (not in time), exactly like in lecture 4: $\nabla_{\mathbf{h}^{\tau}} L = \mathbf{V}^{\top} \nabla_{\mathbf{o}^{\tau}} L$

Using the final hiddens gradient:

$$egin{aligned}
abla_{\mathbf{o}^ au} &= \hat{\mathbf{y}}^ au - \mathbf{y}^ au \
abla_{\mathbf{h}^ au} L &= \mathbf{V}^ op
abla_{\mathbf{o}^ au} L \end{aligned}$$

- ullet we can now go "back in time" to earlier times t< au
- The derivations are similar to regular backprop and we end up with:

$$egin{aligned}
abla_{\mathbf{h}^t} L = & \mathbf{W}^ op f'(\mathbf{h}^{t+1})
abla_{\mathbf{h}^{t+1}} L \ + \ & \mathbf{V}^ op
abla_{\mathbf{o}^t} L \end{aligned}$$

- To get all the parameter gradients, we sum up over all time steps
- First the output and hidden biases:

$$egin{aligned}
abla_{\mathbf{c}} L &= \sum_t
abla_{\mathbf{o}^t} L \
abla_{\mathbf{b}} L &= \sum_t f'(\mathbf{h}^t)
abla_{\mathbf{h}^t} L \end{aligned}$$

- To get all the parameter gradients, we sum up over all time steps
- And now the weight matrices:

$$egin{aligned}
abla_{\mathbf{V}} L &= \sum_t
abla_{\mathbf{o}^t} L \cdot (\mathbf{h}^t)^ op \
abla_{\mathbf{W}} L &= \sum_t f'(\mathbf{h}^t) \cdot
abla_{\mathbf{h}^t} L \cdot (\mathbf{h}^{t-1})^ op \
abla_{\mathbf{U}} L &= \sum_t f'(\mathbf{h}^t) \cdot
abla_{\mathbf{h}^t} L \cdot \mathbf{x}^t \end{aligned}$$

All together now:

$$egin{aligned}
abla_{\mathbf{c}} L &= \sum_t
abla_{\mathbf{o}^t} L \
abla_{\mathbf{b}} L &= \sum_t f'(\mathbf{h}^t)
abla_{\mathbf{h}^t} L \
abla_{\mathbf{V}} L &= \sum_t
abla_{\mathbf{o}^t} L \cdot (\mathbf{h}^t)^ op \
abla_{\mathbf{W}} L &= \sum_t f'(\mathbf{h}^t) \cdot
abla_{\mathbf{h}^t} L \cdot (\mathbf{h}^{t-1})^ op \
abla_{\mathbf{U}} L &= \sum_t f'(\mathbf{h}^t) \cdot
abla_{\mathbf{h}^t} L \cdot \mathbf{x}^t \end{aligned}$$

From sequence to sequence

 For some tasks, it is beneficial to know the previous output when predicting the next

From sequence to sequence

And we can of course add hidden connections also:

From single input to sequence

- The general structure is as follows:
 - Some earlier process has produced a "summary" or a context x that you want to transform into a sequence
 - In general, x can couple to all hidden states, but often only at the first time step
- During training, learn to predict the *next* output
- During testing, you have only the o's, which you use instead of the y's to drive the transitions

From context to sequence

• Here's a specific example where x is only fed into the first hidden state:

https://cs.stanford.edu/people/karpathy/deepimagesent

Encoder-decoder RNNs

- We have now seen RNNs for:
 - Sequence to sequence
 - Sequence to single output
 - Single input (context) to sequence
- What if both input/output sequences can have variable and different lengths?
 - In general, this structure is called an encoder-decoder RNN
 - These RNNs also work by summarizing the input sequence in one/multiple context vectors(s) C

These are not necessarily all active!

Bidirectional RNNs

- Uses both a forward and a backward "stream" of hidden states h and g
- The input **x** maps to both hidden streams
- Both hidden streams map to the output
- This allows for a better "holistic" understanding of the input sequence
 - Contrast this by only knowing about the past (h)

Deeper RNNs

- It's natural to consider whether an RNN could be improved by making it deeper
- Three strategies:
 - Add more hidden states that connect to each other over time (a)
 - Add non-recurrent, regular layers (b)
 - In (c), the structure in (b) is augmented with a skip connection, because (b) causes even more problems for BPTT

- Long short-term memory "cells" are a special type of hidden units for RNNs
- LSTM and similar gated units have proven much better when running the same computations through multiple time steps

 The basic principles - compared to classical RNN cells - is the use of gates

- The input is like before
 - The tanh function is standard, but any non-linearity can be used
- After all the important operations, the gates are used to control how much of the information is "passed through the gate"
 - Therefore, they are always sigmoids [0,1]

- The input gets the current input x and the previous state h
- These are squashed, often using tanh
- The input gate uses a sigmoid to weight the influence of this input for the state computation

- The state is "leaky" and is a function of the previous state
- This is much like momentum, where the current value is accumulated as a running average of the past history
- In LSTMs, however, the momentum coefficient is dynamic and implemented in the forget gate

- The output gate is trivial
- It simply controls which parts of the state are important for the current output

- On the number of parameters
- Each of the bottom blocks couples to current input and previous state with their own weights:
 U, W, U^g, W^g, U^f, W^f, U^o, W^o
- and of course bias vectors:
 b, b^g, b^f, b^o
- Add to that the increased number of non-linearities
- This makes LSTMs significantly more computationally expensive - but it pays off!

Let's take a look at the LSTM layer in pytorch:
 https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

Convolutional RNNs

- These layers allow for processing of sequences of images
- All the four weight matrix pairs are now replaced by pairs of filter banks
- Available directly in TF/Keras, but not in pytorch
 - Not hard to implement, though!

Embeddings

- A problem often encountered in RNNs is how to represent discrete inputs
- Say you want to process a sequence of words or characters
 - Example: given an input text, determine who wrote it
- Basic representation
 - Characters: raw ASCII code in [0,255]
 - Words: ???
- The solution: *embeddings*
 - First create an indexing of the N most frequent words (N being a high number)
 - Then map each of these integers in [0,N[to a high-dimensional real-valued vector
 - Neural nets like this kind of data much better than integers
 - o In pytorch, this is achieved using the Embedding layer

Embeddings

- Say you have a vocabulary of 20k most frequent words
- You can now embed these words in a 128-dimensional vector space using simple indexing
- Just randomly initialize a 20k-by-128 matrix
- Use the input word index to get the corresponding row

Embeddings

- Let's have a look:
 https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
- Note also that the initial values for the rows may not be optimal representations of the words
- Therefore, the whole matrix is actually made trainable by default, in order to improve the embeddings during training
- Taking this to the next level, you can even download pre-trained word embedding models that give you even better word vectors for your process

Last three lectures

- Sparse reading
- Papers and a bit from the book
- Limited talk from my side
- Project

Challenge

- Email spam classifier
- Bonus: Number sorter