Matrix vs Tensor in Training Load Representation

1. Matrix (2D)

A matrix organizes data into **rows and columns**. It's perfect when you only want to track daily summaries.

Example: Training metrics stored as a matrix:

Day	TSS	HRV	Sleep Hours	Resting HR
1	85	62	7.5	48
2	90	58	6.0	50
3	40	72	8.0	46

- **Shape:** [days × variables]
- **Limitation:** No sense of order beyond rows. If an athlete does two sessions in one day, this structure cannot capture session order or intra-session dynamics.

2. Tensor (3D/4D+)

A tensor extends matrices into more dimensions, capturing **session-level**, **day-level**, and even **time-series level** information.

Example: Training load as a 3D tensor:

```
Tensor shape = [days × sessions × variables]
```

- Day axis: Each day in the training block.
- Session axis: Multiple sessions per day.
- Variable axis: Metrics such as TSS/TRIMP, energy per kg, HR quartiles, HRV pre/post, λHRV.

Visualization:

```
Day 1 \rightarrow Session 1 \rightarrow [TSS, TRIMP, HR quartiles, HRVpre, HRVpost...]
Day 1 \rightarrow Session 2 \rightarrow [TSS, TRIMP, HR quartiles, HRVpre, HRVpost...]
Day 2 \rightarrow Session 1 \rightarrow [ ... ]
```

You can even go further (4D/5D) by adding axes: - **Time samples within a session** (power, HR every second). - **Sport axis** (bike/run/swim). - **Context axis** (sleep, stress, body mass).

Key Differences

- Matrix = flat summary: collapses complexity into daily averages.
- **Tensor = multidimensional structure:** preserves order, context, and interactions between variables.

Takeaway

A matrix is like a training log in Excel: clear but limited. A tensor is like a 3D/4D training cube: it lets you rotate and analyze training from different perspectives — session order, physiological state, or multiday patterns — without losing information.