5.12 Hàm tổng các ước số \sigma: Cho n là số nguyên dương, giá trị của $\sigma(n)$ bằng tổng các ước số của n.

$$\sigma(n) = \sum_{d|n} d$$
.

5.13 Thí dụ.

n	1	2	3	4	5	6	7	8	9	10	11	12
$\sigma(n)$	1	3	4	7	6	12	8	15	13	18	12	28

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

5.14 Hàm số các ước số τ: Cho n là số nguyên dương, giá trị của $\tau(n)$ bằng số các ước số của n.

$$\tau(n) = \sum_{d|n} 1.$$

5.15 Thí dụ.

n	1	2	3	4	5	6	7	8	9	10	11	12
$\tau(n)$	1	2	2	3	2	4	2	4	3	4	2	6

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

5.16 Mệnh đề. Cho m,n là hai số nguyên dương và (m,n)=1. Khi đó nếu d là ước dương của mn thì tồn tại duy nhất hai số nguyên dương a,b sao cho

$$a \mid m; b \mid n; d = a.b.$$

Chứng minh. phân tích m, n thành tích các thừa số nguyên tố. $n = p_1^{r_1} p_2^{r_2} ... p_r^{r_r}; m = q_1^{r_3} q_2^{r_2} ... q_s^{s_s}$. Từ (m, n) = 1, ta có $p_1, ..., p_r, q_1, ..., q_k$ là các số nguyên tố phân biệt. Theo Bổ đề 5.12 chương 1, d có dạng

$$d = p_1^{u_1} p_2^{u_2} ... p_t^{u_t} .q_1^{v_1} q_2^{v_2} ... q_k^{v_k}$$

Đặt

$$a = p_1^{u_1} p_2^{u_2} ... p_t^{u_t}; b = q_1^{v_1} q_2^{v_2} ... q_k^{v_k} \Rightarrow d = ab; a \mid m, b \mid n.$$

chứng minh duy nhất. Giả sử $d=a_1b_1=a_2b_2(a_1\mid m;a_2\mid m;b_1\mid n;b_2\mid n)$

$$\Rightarrow \begin{cases} a_1 \mid a_2b_2 & \xrightarrow{\quad (a_1,b_2)=\mathbb{I}(a_2,b_1)=1} \\ a_2 \mid a_1b_1 & & \end{cases} \begin{cases} a_1 \mid a_2 \\ a_2 \mid a_1 \end{cases} \Rightarrow a_1 = a_2 \Rightarrow b_1 = b_2.$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

5.17 Định lý. Nếu f là hàm nhân tính thì hàm $F(n) = \sum_{d|n} f(d)$ Cũng là hàm nhân tính nghĩa là nếu (m, n) = 1 thì

$$F(mn) = F(m)F(n).$$

Chứng minh. Giả sử m, n là hai số nguyên dương nguyên tố cùng nhau. Theo Mệnh đề 5.6

$$F(mn) = \sum_{d|mn} f(d) = \sum_{d_1|m:d_2|n} f(d_1d_2)$$

Từ $\left(m,n\right)\!=\!1\!\Rightarrow\!\left(d_{_{1}},d_{_{2}}\right)\!=\!1\,$ và f là hàm nhân tính, ta có

$$\sum_{d_{i}|m,d_{i}|n} f(d_{1}d_{2}) = \sum_{d_{i}|m;d_{i}|n} f(d_{1})f(d_{2}) = \sum_{d_{i}|m} \sum_{d_{i}|n} f(d_{1})f(d_{2}) = \sum_{d_{i}|m} f(d_{1})\sum_{d_{i}|n} f(d_{2}) = F(m)F(n).$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

với $m=2^2.5, n=3.7, mn=420$. Tập hợp các trớc đương của mn là: $\{1=1.1, 2=2.1, 3=1.3, 4=4.1, 5=5.1, 6=2.3, 7=7.1, 10=10.1, 12=4.3, 14=2.7, 15=5.3, 20=20.1, 21=3.7, 28=4.7, 30 10.3, 35=5.7, 42=2.21, 60=20.3, 70=10.7, 84=4.21, 105=5.21, 140=20.7, 210=10.21, 420=20.21\}.$

$$F(m=2^2.5) = f(1) + f(2) + f(4) + f(5) + f(10) + f(20).$$

$$F(n=3.7) = f(1) + f(3) + f(7) + f(21).$$

$$F(mn) = f(1)f(1) + f(2)f(1) + f(1)f(3) + f(4)f(1) +$$

$$+f(5)f(1)+f(2)f(3)+f(1)f(7)+f(10)f(1)+f(4)f(3)+$$

$$+f(5)f(3)+f(20)f(1)+f(1)f(21)+f(4)f(7)+f(10)f(3)+$$

$$+f(5)f(35)+f(2)f(21)+f(20)f(3)+f(10)f(7)+f(4)f(21)+$$

$$+f(5)f(21)+f(20)f(7)+f(10)f(21)+f(20)f(21).$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

$$= (f(1)+f(2)+f(4)+f(5)+f(10)+f(20))f(1)+$$

$$+(f(1)+f(2)+f(4)+f(5)+f(10)+f(20))f(3)+$$

$$+(f(1)+f(2)+f(4)+f(5)+f(10)+f(20))f(7)+$$

$$+(f(1)+f(2)+f(4)+f(5)+f(10)+f(20))f(21)=$$

$$(f(1)+f(2)+f(4)+f(5)+f(10)+f(20))\times$$

$$(f(1)+f(3)+f(7)+f(21))=F(m)F(n).$$

5.18 Định lý. Hàm số học σ và hàm số học τ là các hàm nhân tính.

Chứng minh. Ta có ánh xạ đồng nhất từ $\mathbb N$ vào $\mathbb N$ và hàm số học biến mọi số nguyên dương thành phần tử là các hàm nhân tính. Áp dụng Định lý 5.17 với (m, n) = 1, ta có

$$\sigma(mn) = \sum_{d|mn} d = \sum_{d,|m} d_1 \sum_{d,|n} d_2 = \sigma(m)\sigma(n).$$

$$\tau(mn) = \sum_{d,|mn|} 1 = \sum_{d,|mn|} 1 = \tau(m)\tau(n).$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

5.19 Bổ đề. Cho p là số nguyên tố và k là số nguyên dương. Khi đó

$$\sigma(p^k) = (1 + p + p^2 + ... + p^k) = \frac{p^{k+1} - 1}{p - 1}.$$

 $\sigma\!\left(p^k\right)\!=\!\left(1+p+p^2+...+p^k\right)\!=\!\frac{p^{k+\!1}\!-\!1}{p\!-\!1}.$ Chứng minh. Các ước dương của p^k là $1,p,p^2,...,p^k$ $\sigma(p^k) = (1 + p + p^2 + ... + p^k) = \frac{p^{k+1} - 1}{p-1}$

5.20 Thí dụ

$$\sigma(5^3) = 1 + 5 + 5^2 + 5^3 = 156.$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

5.21 Định lý. Cho $n = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$ là sự phân tích ra thừa số nguyên tố của n. Khi đó

$$\begin{split} \sigma(n) &= \frac{(p_1^{n_i+1}-1)}{p_1-1} \frac{(p_2^{n_i+1}-1)}{p_2-1} \dots \frac{(p_k^{n_i+1}-1)}{p_k-1} = \prod_{i=1}^k \left(\frac{p_i^{n_i+1}-1}{p_i-1}\right). \\ \tau(n) &= (n_i+1)(n_2+1) \dots (n_k+1) = \sum_{i=1}^k (n_i+1). \end{split}$$

Chứng minh. Áp dụng Định lý 5.18 và Bổ đề 5.19, ta có

$$\sigma(n) = \sigma(p_1^{n_1}) \cdots \sigma(p_k^{n_k}) = \frac{(p_1^{n_k+1} - 1)}{p_1 - 1} \cdots \frac{(p_k^{n_k+1} - 1)}{p_k - 1} = \prod_{i=1}^k \left(\frac{p_i^{n_i+1} - 1}{p_i - 1}\right).$$

kết quả sau chính là Mệnh đề 5.15 chương 1.

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

5.22 Thí dụ.

$$\sigma\left(2^{3}7^{2}11\right) = \frac{2^{4} - 1}{2 - 1} \times \frac{7^{3} - 1}{7 - 1} \times \frac{11^{2} - 1}{11 - 1} = 10260.$$

$$\tau\left(2^{3}7^{2}11\right) = 4 \times 3 \times 2 = 24.$$

Thực hành. Cho n = 114075, tính $\sigma(n)$; $\tau(n)$.

Đáp án. $\sigma(n) = 226920, \tau(n) = 36.$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

§6 Cấp của số nguyên và nghiệm nguyên thủy.

6.1 Định nghĩa. Cho a và n là hai số nguyên dương và (a, n) = 1. Số nguyên dương k nhỏ nhất sao cho $a^k \equiv 1 \pmod{n}$ được gọi là $c\hat{a}p$ của $a \mod n$. Cấp của a được kí hiệu là $ord_n a$.

6.2 Thí dụ.

a)
$$2^1 \equiv 2 \pmod{7}$$
, $2^2 \equiv 4 \pmod{7}$, $2^3 \equiv 1 \pmod{7} \rightarrow ord_7 2 = 3$.

b)
$$3^1 \equiv 3 \pmod{7}, 3^2 \equiv 2 \pmod{7}, 3^3 \equiv 6 \pmod{7},$$
 $3^4 \equiv 4 \pmod{7}, 3^5 \equiv 5 \pmod{7}, 3^6 \equiv 1 \pmod{7} \rightarrow \operatorname{ord} 73 = 6.$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

6.3 Mênh đề. Cho n và a là hai số nguyên thỏa n > 0, (a, n) = 1. khi đó $a^x \equiv 1 \pmod{n}$ khi và chỉ khi $(ord_n a)|x$.

Chứng minh. Giả sử $a^x \equiv 1 \pmod{n}$, dùng phép chia Euclid

$$x = q(ord_n a) + r, 0 \le r < (ord_n a) \Rightarrow a^x = (a^{ord_n a})^q . a^r.$$

$$\Rightarrow a^x = \left(a^{\operatorname{ord}_n a}\right)^q a^r \equiv 1^q a^r \pmod{n} \equiv a^r \pmod{n} \equiv 1 \pmod{n}.$$

Từ định nghĩa của $ord_n a$ và r < n, ta có r = 0. Vậy $ord_n a$ là ước của n.

Nếu $(ord_n a)|x$ thì $(ord_n a)k = x$. Suy ra

$$a^{x} = \left(a^{ord_{n}a}\right)^{k} \equiv 1^{k} \pmod{n} \equiv 1 \pmod{n}.$$

6.4 Hệ quả. Nếu (a, n) = 1 và n > 0 thì $ord_n a | \phi(n)$.

Chứng minh. Theo Định lý Euler $\mathbf{a}^{\phi(n)} = 1 \pmod{n}$, áp dụng 6.3 ta có $ord_n a | \phi(n)$.

6.5 Thí dụ. Tính *ord*₁₇5.

Ta có $\phi(17) = 16$, suy ra $ord_{17}5 = 1;2;4;8;16$.

$$5^2 \equiv 8 \pmod{17}; 5^4 \equiv 3 \pmod{17}; 5^8 = 13 \pmod{17};$$

$$5^{16} \equiv 1 \pmod{17} \Rightarrow ord_{17} = 16.$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

6.6 Mệnh đề. Cho (a, n) = 1, n > 0 và i, j là hai số tự nhiên. Khi đó $a^i \equiv a^j \pmod{n}$ khi và chi khi $i \equiv j \pmod{\sigma d_n a}$.

Chứng minh. giả sử j < i.

$$a^i \equiv a^j \pmod{n} \Leftrightarrow a^{i-j} \equiv 1 \pmod{n}$$

$$\leftarrow \xrightarrow{6.3} ord_n a \mid (i-j) \Leftrightarrow i \equiv j \pmod{(ord_n a)}.$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

6.7 Định nghĩa. Cho (r,n)=1,n>0. Nếu $ord_n r=\phi(n)$ thì r được gọi là nghiệm nguyên thủy của mod n.

6.8 Thí dụ. Ta có ord_{17} 5 = 16 = ϕ (17). Suy ra 5 là nghiệm nguyên thủy mod 17.

6.9 Mệnh đề. Cho (r,n)=1, n>0 và r là nghiệm nguyên thủy mod n. Khi đó r^1 , r^2 , ..., $r^{\phi(n)}$ là hệ reduced residue mod n.

Chứng minh. xét $\{r^1, r^2, \dots, r^{\phi(n)}\}$. Nếu $r^i \equiv r^j \pmod{n}$ thì $r^{(i \cdot j)} \equiv 1 \pmod{n}$. Theo 6.6 $(i - j) \equiv 1 \pmod{ord_n r}$ hay $ord_n r | (i \cdot j)$.

Từ $-ord_n r < i - j < ord_n r$, ta có i = j. Suy ra $\{r^1, r^2, \dots, r^{\phi(n)}\}$ có đúng $\phi(n)$ phần tử nguyên tổ cùng nhau với n. Do đó $\{r^1, r^2, \dots, r^{\phi(n)}\}$ là hệ reduced residue mod n.

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

6.10 Thí dụ. $\phi(9) = 6$, $ord_9 2 = 1;2;3;6$.

$$2^2 \equiv 4 \pmod{9}; 2^3 \equiv 8 \pmod{9}; 2^6 \equiv 1 \pmod{9};$$

 $\Rightarrow ord_9 2 = \phi(9).$

Suy ra 2 là nghiệm nguyên thủy mod 9. Ta có

$$2^1 \equiv 2 \pmod{9}, 2^2 \equiv 4 \pmod{9}, 2^3 \equiv 8 \pmod{9},$$

$$2^4 \equiv 7 \pmod{9}, 2^5 \equiv 5 \pmod{9}, 2^6 \equiv 1 \pmod{9}.$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

6.11 Định lý. Nếu $ord_n a = t$ và u là số nguyên dương thì

$$ord_n(a^u) = \frac{t}{(t,u)}$$
.

Chứng minh

$$(a^{u})^{\frac{t}{(t,u)}} = (a^{t})^{\frac{u}{(t,u)}} \equiv 1 \pmod{n} \Rightarrow ord_{n}(a^{u}) \left| \frac{t}{(t,u)} \right|.$$

$$(a^{u})^{k} = a^{uk} \equiv 1 \pmod{n} \Rightarrow t \mid (uk) \Rightarrow \frac{t}{(t,u)} \left| k \frac{u}{(t,u)} \right|.$$

$$\left(\frac{t}{(t,u)},\frac{u}{(t,u)}\right) = 1 \Rightarrow \frac{t}{(t,u)}|k$$

do đó
$$ord_n(a^u) = \frac{t}{(t,u)}$$
.

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

6.12 Hệ quả. Cho m là số nguyên lớn hơn 1 và $\,r$ là nghiệm nguyên thủy mod n. Khi đó

$$ord_n r^u = \phi(n) \Leftrightarrow (u, \phi(n)) = 1.$$

Chứng minh. (\rightarrow) Giả sử $ord_n r^u = \phi(n)$ Theo 6.11

$$ord_n(a^u) = \frac{ord_n a}{(u, ord_n a)} = \frac{\phi(n)}{(u, ord_n a)}.$$

$$\Rightarrow (u, ord_n a) = 1.$$

$$(\leftarrow) \qquad (r^u)^{\phi(n)} = (r^{\phi(n)})^u \equiv 1 \pmod{n}.$$

$$(r^u)^k = r^{uk} \equiv 1 \pmod{n} \Rightarrow (ord_n r = \phi(n))|uk.$$

$$(u, \phi(n)) = 1 \Rightarrow \phi(n)|k \Rightarrow ord_n(r^u) = \phi(n).$$

6.13 Định lý. Nếu số nguyên dương n có 1 nghiệm nguyên thủy thì mcó tổng cộng $\phi(\phi(n))$ nghiệm nguyên thủy không đồng dư với nhau.

Chứng minh. Giả sử r là 1 nghiệm nguyên thủy của m, theo Mệnh đề 6.9 $\{r^1, r^2, \dots, r^{\phi(n)}\}$ là hệ reduced rescidue mod n. Theo Hệ quả 6.12, r^u là nghiệm nguyên thủy mod n khi và chỉ khi $(u, \phi(n))=1$. Do đó có chính xác $\phi(\phi(n))$ nghiệm nguyên thủy mod n không đồng dư với nhau.

6.14 Thí dụ. Với m = 11. Đơn thuần tính toán 2 là nghiệm nguyên thủy mod 11. Do đó có $\phi(\phi(11)) = \phi(10) = 4$ đó là các số 1, 3, 7, 9. Các nghiệm nguyên thủy mod 11 là 2, 2³, 2⁷, 2⁹ hay 2, 8, 7, 6.

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

§7. Thặng dư bình phương.

7.1 Định nghĩa. Cho n là số nguyên dương, số nguyên a được gọi là một thặng dư bình phương mod n nếu (a, n) = 1 và phương trình đồng dư $x^2 \equiv a \pmod{n}$ có nghiệm, nói cách khác phương trình $x^2 = \bar{a}$ trong \mathbb{Z}_n có nghiệm.

7.2 Bổ đề. Cho p là số nguyên tố lẻ và a là số nguyên không chia hết cho p. Khi đó, phương trình $x^2 = \bar{a}$ trong \mathbb{Z}_n hoặc là vô nghiệm hoặc có đúng 2 nghiệm phân biệt.

Chứng minh. Theo Định lý Lagrange phương trình $x^2 = \bar{a}$ trong \mathbb{Z}_p có không quá 2 nghiệm. Nếu \bar{u} là 1 nghiệm của phương trình thì $-\bar{u}$ cũng là nghiệm. Nếu $\bar{u} = -\bar{u}$ thì $\overline{2u} = \bar{0}$, từ (2, p) = 1 ta có $\bar{u} = \bar{0}$ dẫn đến $\bar{a} = \bar{0}$ kéo theo p|a (vô lý). Vậy \bar{u} và $-\bar{u}$ là phân biệt.

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

7.3 Định lý. Nếu p là số nguyên tố lẻ thì tập $\{1, 2, ..., p-1\}$ có đúng (p-1)/2 phần tử thặng dư bình phương mod p.

Chứng minh. Xét trong \mathbb{Z}_p . Từ Bổ đề 7.2 $\forall i = 1, ..., (p-1)/2$, phương trình $x^2 = \overline{(i)^2}$ có 2^r nghiệm là $\overline{\iota}$ và $\overline{p-i}$. Suy ra

$$\left\{ (\overline{1})^2, (\overline{2})^2, ..., (\frac{p-1}{2})^2 \right\} = \left\{ (\frac{p-1}{2} + 1)^2, (\frac{p-1}{2} + 1)^2, ..., (p-1)^2 \right\}$$
Néu $i \neq j, 1 \leq i, j \leq (p-1)/2, (\overline{i})^2 = (\overline{j})^2$ thì

 $(\overline{i} + \overline{j})(\overline{i} - \overline{j}) = \overline{0} \Rightarrow \overline{i} = \overline{j} \vee \overline{i} = \overline{p-j}.$

cả 2 kết quả này đều vô lý. Suy ra

$$\left\{ \left(\overline{1}\right)^{2}, \left(\overline{2}\right)^{2}, \dots, \left(\frac{p-1}{2}\right)^{2} \right\}$$

có (p-1)/2 phần tử phân biệt.

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

7.4 Thí dụ. Tìm tất cả các thặng dư bình phương mod 11, trong tập $h op \ \{1,2,\ldots,11\}.$

Giải. (p-1)/2 = 5. $12 \equiv 1 \pmod{11}$, $1^2 \equiv 1 \pmod{11}$,

 $2^2 \equiv 4 \pmod{11}, 3^2 \equiv 9 \pmod{11}, 4^2 \equiv 5 \pmod{11},$

 $5^2 \equiv 3 \pmod{11}$.

Các phần tử thặng dư mod 11 cần tìm là {1, 4, 9, 5, 3}

Thực hành. Tìm tất cả các thặng dư bình phương mod 19, trong tập hop {1,2, ..., 19}.

Đáp án. {1, 4, 9, 16, 6, 17, 11, 7, 5}.

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

7.5. Kí hiệu Legendre. Cho p là số nguyên tố lẻ và a là số nguyên không chia hết cho p. Kí hiệu $\begin{bmatrix} a \\ p \end{bmatrix}$ được định nghĩa như sau. $\begin{bmatrix} a \\ p \end{bmatrix} = \begin{cases} 1, & \text{nếu a là thặng dư bình phương của } p \\ -1, \text{nếu a không là thặng dư bình phương của } p \end{cases}$

7.6 Thí dụ. Theo Thí dụ 7.5, $\{1, 3, 4, 5, 9\}$ là các thặng dư bình phương. Do đó

$$\begin{bmatrix} 1 \\ 11 \end{bmatrix} = \begin{bmatrix} 3 \\ 11 \end{bmatrix} = \begin{bmatrix} 4 \\ 11 \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \end{bmatrix} = \begin{bmatrix} 9 \\ 11 \end{bmatrix} = 1$$
$$\begin{bmatrix} 2 \\ 11 \end{bmatrix} = \begin{bmatrix} 6 \\ 11 \end{bmatrix} = \begin{bmatrix} 7 \\ 11 \end{bmatrix} = \begin{bmatrix} 8 \\ 11 \end{bmatrix} = \begin{bmatrix} 10 \\ 11 \end{bmatrix} = -1$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

7.7 Định lý(tiêu chuẩn Euler). Cho p là số nguyên tố lẻ và a là số nguyên không chia hết cho p. Khi đó

$$\begin{bmatrix} a \\ p \end{bmatrix} \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

Chứng minh. Xét $\begin{bmatrix} a \\ p \end{bmatrix} = 1$, khi đó tồn tại u sao cho $a \equiv u^2 \pmod{p}$. Áp dụng Định lý Fermat nhỏ, $\left(a\right)^{((p-1/2)} = u^{p-1} \equiv 1 \pmod{p}$.

Xét $\begin{bmatrix} a \\ p \end{bmatrix} = -1$, phương trình $x^2 = \overline{a}(\mathbb{Z}_p)$ vô nghiệm. Suy ra với mọi $1 \le i \le p-1$ đặt $\overline{j} = (\overline{i})^{-1} \overline{a} (1 \le j \le p-1)$ khi đó \overline{j} là duy nhất và $\overline{i} \ \overline{j} = \overline{a}$. Phân các số 1, 2, ..., p-1 thành ((p-1)/2) cặp số $u_p \ v_t$ $(t=1,2,\dots,((p-1)/2))$ sao cho $\overline{u_i},\overline{v_i}=\overline{a}$. Nhân tất cả các cặp số này lại, ta nhận được $(p-1)!\equiv a^{(p-1/2)}\pmod{p}$. Theo định lý Wilson

$$-1 \equiv (p-1)! \pmod{p} \equiv a^{(p-1/2)} \pmod{p}$$
.

7.8 Định lý. Cho p là số nguyên tố lẻ, a và b là các số nguyên không chia hết cho p. Khi đó.

a) Nếu
$$a \equiv b \pmod{p}$$
 thì $\begin{bmatrix} a \\ p \end{bmatrix} = \begin{bmatrix} b \\ p \end{bmatrix}$

b)
$$\begin{bmatrix} a \\ p \end{bmatrix} \begin{bmatrix} b \\ p \end{bmatrix} = \begin{bmatrix} ab \\ p \end{bmatrix}$$

c)
$$\begin{bmatrix} a^2 \\ p \end{bmatrix} = 1$$
.

Chứng minh.

a) Nếu $a\equiv b(mod\ p)$ thì phương trinh $x^2\equiv a(mod\ p)$ có nghiệm khi và chi khi phương trinh $x^2\equiv b(mod\ p)$ có nghiệm Do đó

$$\begin{bmatrix} a \\ p \end{bmatrix} = \begin{bmatrix} b \\ p \end{bmatrix}.$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

b) Dùng tiêu chuẩn Euler

$$\begin{bmatrix} a \\ p \end{bmatrix} \begin{bmatrix} b \\ p \end{bmatrix} \equiv a^{(p-1)/2} b^{(p-1)/2} \pmod{p} \equiv (ab)^{(p-1)/2} \pmod{p} \equiv$$

$$\begin{bmatrix} ab \\ p \end{bmatrix} \pmod{p} \Rightarrow \begin{bmatrix} a \\ p \end{bmatrix} \begin{bmatrix} b \\ p \end{bmatrix} = \begin{bmatrix} ab \\ p \end{bmatrix}.$$

c)
$$\begin{bmatrix} a^2 \\ p \end{bmatrix} = \begin{bmatrix} a \\ p \end{bmatrix}^2 = (\pm 1)^2 = 1.$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

7.9 Định lý. Nếu p là số nguyên tố lẻ thì

$$\begin{bmatrix} -1 \\ p \end{bmatrix} = \begin{cases} 1, khi \ p \equiv 1 \pmod{4} \ (p = 4k + 1) \\ -1, khi \ p \equiv -1 \pmod{4} \ (p = 4k + 3) \end{cases}$$

Chứng minh. Theo tiêu chuẩn Euler.

$$\begin{bmatrix} -1 \\ p \end{bmatrix} = (-1)^{(p-1)/2} = (-1)^{(2k+u)}$$

$$p \equiv 1 \pmod{p} \Rightarrow u = 0 \Rightarrow \begin{bmatrix} -1 \\ p \end{bmatrix} = 1.$$

$$p \equiv -1 \pmod{p} \Rightarrow u = 1 \Rightarrow \begin{bmatrix} -1 \\ p \end{bmatrix} = -1.$$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

7.10 Bổ đề Gauss. Cho p là số nguyên tố lẻ và (a,p)=1. Nếu t là số các thặng dư dương bé nhất của các số $a,2a,\dots$, ((p-1)/2)a lớn hơn p/2 thì $\begin{bmatrix} a \\ p \end{bmatrix} = (-1)^t$.

Chứng minh. Gọi $A=\left\{s_1,s_2,...,s_{(p-1)/2}\right\}$ là các thặng dư dương nhỏ nhất của tập $\{a,2a,...,((p-1)/2)a\}$, do (a,p)=1 nên \bar{a} khả nghịch trong \mathbb{Z}_p vì vậy tập A có đúng (p-1)/2 phần tử. Đặt

 $\begin{array}{l} A_i = \left\{ p - s \in A \middle| s \in A, s > p/2 \right\}, A_2 = \left\{ s \in A \middle| s < p/2 \right\}; \middle| A_i \middle| = t. \\ \text{N\'eu} \ A_1 \cap A_2 \neq \emptyset \ \text{th\'i} \ \exists si, sj; p > s_i > p/2; sj < p/2 \ \text{v\'a} \ p - s_i = s_j \\ \text{suy ra} \ p = s_i + s_j. \end{array}$

Mặt khác, trong \mathbb{Z}_p tồn tại $1 \le n, m \le (p-1)/2$ sao cho $\overline{s_i} = \overline{ma}, \overline{s_j} = \overline{na} \Rightarrow \overline{0} = \overline{p} = \overline{ma} + \overline{na} = (\overline{m} + \overline{n})\overline{a} \Rightarrow \overline{0} = \overline{m+n}.$

CHƯƠNG 2: VÀNH \mathbb{Z}_n VÀ ĐỒNG DƯ

Điều này mâu thuẫn với $1 \le n, m \le (p-1)/2$ suy ra $A_1 \cap A_2 = \emptyset$. Do đó

$$A_1 \cup A_2 = \{1, 2, ..., (p-1)/2\}.$$

Vậy ta có

$$\overline{\left(\frac{p-1}{2}\right)!} = \overline{\left(\prod_{u \in A_1} u\right) \left(\prod_{v \in A_2} v\right)} = \overline{\left(-1\right)^t s_1 s_2 \dots s_{(p-1)/2}} = \overline{\left(-1\right)^t a^{(p-1)/2} \left(\frac{p-1}{2}\right)!}$$

$$\Rightarrow \overline{(-1)^t} = \overline{a^{(p-1)/2}} \xrightarrow{\text{Euler}} \overline{\left[\begin{array}{c} a \\ p \end{array} \right]} = \overline{a^{(p-1)/2}} = \overline{(-1)^t} \Rightarrow \overline{\left[\begin{array}{c} a \\ p \end{array} \right]} = (-1)^t.$$