

Semester: August 2021 - November 2021 Examination: In Semester Examination				
Programme code: Programme: B.Tech. Computer En	gineering	Class:SY	Semester: III (SVU 2020)	
Name of the Constituent College: K. J. Somaiya College of Engineerin	ng	Name of th departmen COMP	e t/Section/Center:	
Course Code: 116U01C305	Name of the Course: Discrete Mathematics			

	Max. Marks
Multiple Choice Questions:	10 marks
	- 0
,	
, and the second	
D) None of the above	
2. Translate $\forall x \exists y(x < y)$ in English, considering domain as a real number for both the variable.	
A) For all real number x there exists a real number y such that x is less than	
B) For every real number y there exists a real number x such that x is less	
C) For some real number x there exists a real number y such that x is less	
D) For each and every real number x and y such that x is less than y	
3. The binary relation {(1,1), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2)} on the set {1, 2, 3} is a) reflective, symmetric and transitive b) irreflexive, symmetric and transitive c) neither reflective, nor irreflexive but transitive d) irreflexive and antisymmetric	
4. The Cartesian Product B x A is equal to the Cartesian product A x B. A) True B) False	
5. The members of the set S = {x x is the square of an integer and x < 100} is	
	A) Tautology B) Contradiction C) Logical equivalence D) None of the above 2. Translate ∀x∃y(x < y) in English, considering domain as a real number for both the variable. A) For all real number x there exists a real number y such that x is less than y B) For every real number y there exists a real number x such that x is less than y C) For some real number x there exists a real number y such that x is less than y D) For each and every real number x and y such that x is less than y 3. The binary relation {(1,1), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2)} on the set {1, 2, 3} is a) reflective, symmetric and transitive b) irreflexive, symmetric and transitive c) neither reflective, nor irreflexive but transitive d) irreflexive and antisymmetric 4. The Cartesian Product B x A is equal to the Cartesian product A x B. A) True B) False 5. The members of the set S = {x x is the square of an integer and x < 100} is A) {0, 2, 4, 5, 9, 58, 49, 56, 99, 12} B) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81} C) {1, 4, 9, 16, 25, 36, 64, 81, 85, 99}

	 6. The binary relation {(1,1), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2)} on the set {1, 2, 3} is	
	C) R1R2 = {(1, 2), (1,6), (3, 2), (3, 4), (5, 4), (7, 2)} D) R1R2 = {(2,2), (3, 2), (3, 4), (5, 1), (5, 3), (7, 1)} 10. If set A and B have 3 and 4 elements respectively then the number of subsets of set (A X B) is? A) 1024 B) 2048 C) 512 D) 4096	
Q.2	Solve ANY TWO of the following:	10 marks
		(or 5+5)
(i)	Prove Following Implications using Laws of Logic:	
	$a) \sim (p \leftrightarrow q) \equiv \sim ((p \to q) \land (q \to p))$	(3 M)
	b) $((pV \sim q) \land (\sim pV \sim q)) \lor q$ is a tautology	(2 M)
(ii)	Write English Sentences corresponding to following:	

	a) $\forall x \exists y R(x,y)$ b) $\exists x \forall y R(x,y)$ c) $\forall x (\sim Q(x))$ d) $\exists y (\sim P(y))$ e) $\forall (P(x))$ Where, $P(x)$: x is even Q(x) : x is prime no. R(x,y) : $x + y$ is even	
(iii)	Show that $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{13}{24} \forall n \ge 2$	
	by mathematical induction	
Q 3	Solve ANY TWO of the following:	5+5
(i)	Let $A = \{1, 2, 3, 4, 5\}$ and R be the relation defined by a R b if and only if a < b. Compute and draw diagraphs of: R, R^2 and R^3 .	
(ii)	Let $A = \{1, 2, 3, 4\}$ $R = \{(1,1), (1,2), (2,3), (2,4), (3,4), (4,1), (4,2)\}$	
	$S = \{(3,1), (4,4), (2,3), (2,4), (1,1), (1,4)\}$	
	Determine: R o R, S o S, M _{R o R} , M _{S o S}	
(iii)	Let $A = \{1, 2, 3, 4\}$	
	$R = \{(1,1), (1,2), (1,4), (2,4), (3,1), (3,2), (4,2), (4,3), (4,4)\}$	
	Find transitive closure by using 'Warshall's Algorithm'.	