Overview of social network analysis

Emphasis:

- Properties of social networks
- Important analysis tasks
- Useful measures and solution principles

More on course CS-E5740 Complex Networks

I Introduction: Types of social networks

- online networks (Twitter, LinkedIn, Facebook)
- indirect communication networks (telecommunications, email, chat messages)
- media sharing sites (Youtube, Instagram, Tiktok)
- interaction networks in professional communities (e.g., citation networks between researchers)
- networks recorded in observational studies (e.g., interactions in a class room, between animals)
- + many more! but not always data

Presentation as a graph G = (V, E)

- V set of nodes corresponding to actors
 - may have labels or content (attributes, documents)
- E set of edges corresponding to links
 - undirected (friendship) or directed ("following")
 - may have weights w_{ij}

Example by Zardi et al. (2014) node attributes: city and education edge weight = number of exchanged messages

Basic properties

Analysis tasks

- Social influence analysis (influential nodes and influence spread)
- Community detection (graph clustering)
- Link prediction (predict future links between nodes)
- Collective classification (predict missing node labels)

Il Social influence analysis

Which nodes have most influence? How influence (information, ideas, opinions) spreads?

A valuable advertising channel!

- 1. Measures for evaluating which nodes are influential:
 - centrality of a node in an undirected graph
 - prestige of a node in a directed graph
- 2. Influence propagation or diffusion models
 - given influence weights on edges and a model to evaluate total influence of a set of nodes
 - determine a set of seed nodes such that spread of influence is maximal

Measures for the centrality of node v

Degree centrality: $C_D(v) = \frac{Degree(v)}{n-1}$

Closeness centrality: $C_C(v) = \frac{1}{avg_{u \in V, u \neq v} \{Dist(v, u)\}} = \frac{n-1}{\sum_{u \in V, u \neq v} Dist(v, u)}$

Betweenness centrality: $C_B(v) = \frac{\sum_{u,w \in V, u \neq w} \frac{\#\{\text{shortest-paths(u,w) through } v\}}{\#\{\text{shortest-paths(u,w)}\}}}{\binom{n}{2}}$

Note: $C_c(v)$ may be calculated such $v \neq u$, $v \neq w$. Image: Aggarwal Fig. 19.1

III Community detection: cluster the graph

Given G = (V, E). Each edge (v_i, v_j) has weight w_{ij}

• if cost c_{ij} , transform, e.g. by $w_{ij} = \frac{1}{c_{ij}} (c_{ij} \neq 0)$

Common objective: Cluster V into groups $V_1, ..., V_K$ such that the edge-cut cost

$$cost(\mathbf{V}_1, \dots, \mathbf{V}_k) = \sum_{(v_i, v_j) \in E, v_i \in \mathbf{V}_p, v_j \in \mathbf{V}_q, p \neq q} w_{ij}$$

is minimal.

- many variants and extra constraints!
- in general NP-hard problem, but polynomially solvable, if $\forall i, j : w_{ij} = 1, K = 2$ and no balancing requirements

Example

Clustering based on both structural and content-based features

Image source: Zardi et al.: A Multi-agent homophily-based approach for community detection in social networks, ICTAI 2014

MDM course Aalto 2023 - p.9/16

Some community detection methods

- 1. Spectral clustering
- 2. Kerninghan-Lin: balanced 2-way partitioning
 - at each iteration, test a set of possible swap sequences and choose the one with greatest improvement

Step #	Vertex pair	Cost reduction	Cut cost
0	-	0	5
1	{d, g}	3	2
2	{c, f}	1	1
3	{b, h}	-2	3
4	{a, e∫	-2	5

Image source: Chang 2004

3. Girwan-Newman algorithm

- remove "bridge edges" until K connected components remain
- edges with high betweenness: large proportion of shortest paths go through them

Image source: Namtirtha et al. 2023

4. METIS algorithm

- Coarsen the graph by combining tightly interconnected nodes and parallel edges
- 2. Partition the coarsened representation (easier)
- 3. Refine partitioning when expanding graphs back

Image source: Aggarwal Fig. 19.6

IV Link prediction and node similarity

Utilize especially structural features!

Approaches:

- 1. Evaluate potential connections with **node similarity measures**
 - + easy and fast to compute
- 2. Learn a classifier for predicting links or their absence
 - + more accurate
 - computationally more expensive
- 3. Use missing value estimation methods (like matrix factorization)

Neighbourhood-based node similarity measures

(a) Many common neighbors between Alice and Bob

(normalized) number of common neighbours

- not good, if number of common neighbours small
- $Jaccard(v_i, v_j) = \frac{|S_i \cap S_j|}{|S_i \cup S_j|}$
- AdamicAdar(v_i, v_j) = $\sum_{v_k \in S_i \cap S_j} \frac{1}{\log(|S_k|)}$

 $S_i = \{v_k \mid v_k \text{ neighbour of } v_i\}$

Image source: Aggarwal Fig. 19.12

Walk-based node similarity measures

Is Alice more similar to Bob or Jim?

(b) Many indirect connections between Alice and Bob

- Personalized PageRank with teleportation to v_i
- SimRank
- Katz measure

$$Katz(v_i, v_j) = \sum_{t=0}^{\infty} \beta^t \cdot n_{ij}^{(t)}$$

 $n_{ij}^{(t)}$ = number of walks of length t between v_i and v_j

 β < 1 discount factor (punishes long walks)

Image sources

- Chang (2004): Unit 4: Circuit partitioning (lecture slides). EDA course, National Taiwan University. http://cc.ee.ntu.edu.tw/~ywchang/Courses/ EDA04/lec4.pdf
- Namtirtha et al. (2023): Placement Strategies for Water Quality Sensors Using Complex Network Theory for Continuous and Intermittent Water Distribution Systems. Water Resources Research 59(7), doi:10.1029/2022WR033112.
- Zardi et al. (2014): A Multi-agent homophily-based approach for community detection in social networks, IEEE 26th Int. Conf. Tools with Artificial Intelligence, doi: 10.1109/ICTAI.2014.81.