Московский Государственный Университет имени М. В. Ломоносова

Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

КУРСОВАЯ РАБОТА

Сравнительный анализ библиотек глубокого обучения Tensorflow и PyTorch

Выполнил: студента 3 курса 323 группы Васильев Семён Михайлович

Научный руководитель: доцент, кандидат. физ.-мат. наук Попова Нина Николаевна

Москва, 2019

Оглавление

Введение	
Обзор	
Статья « Benchmarking and Analyzing Deep Neural Network Training» Deep500	
Постановка задачи	6
Метод решения	6
Экспериментальное исследование	
Собранные данные	
Анализ	
Программная реализация	12
Описание скрипта	
Описание реализованных нейронных сетей	
Заключение	14
Список литературы	

Введение

За последние два десятилетия глубокие нейронные сети привлекли к себе много внимания, так как решают некоторые классы задач, такие как классификация изображений, машинные перевод и распознавание голоса значительно эффективнее традиционных алгоритмов. По этой причине в последнее время наблюдается значительное увеличение числа алгоритмов, фреймворков и платформ предназначенных для обучения глубоких нейронных сетей.

Остро стоит вопрос эффективности алгоритмов, так как для обучения современных сетей требуется обрабатывать огромные объемы данных, а число их параметров может измеряться в миллиардах.

Фреймворки, для построения и обучения глубоких нейронных сетей, по большей части не стандартизированы, что порождает препятствия при проведении их сравнительного анализа на эффективность. Например, между параметрами описания одного и того же слоя нейронной сети в разных фреймворках может не быть взаимно-однозначного соответствия, или один и тот же параметр может иметь различные множества значений.

Все это приводит к необходимости разработки бэнчмарка, который позволил бы выявлять сильные и слабые стороны архитектур нейронных сетей, алгоритмов, применяемых при обучении, и их реализаций в различных фреймворках.

Задачей данной работы является сбор базы данных, включающей набор значений метрик, описывающих процесс обучения нескольких конкретных архитектур нейронных сетей на кластерном комплексе Polus, реализованных на основе фреймворков Tensorflow и Pytorch.

Обзор

На данный момент существует несколько работ, ставящих своей целью проведение бэнчмаркинга и сравнительного анализа фреймворков глубоко обучения, а также реализацию средств помогающих в этом.

Статья « Benchmarking and Analyzing Deep Neural Network Training».

Сотрудники университета Торонто опубликовали статью Benchmarking and Analyzing Deep Neural Network Training, в которой описывают методологию бэнчмаркинга обучения глубоких нейронных сетей.

В своей работе они предлагают набор метрик, анализ которых позволит реализации сделать выводы об эффективности одного фреймворка относительно других. Набор состоит из следующих метрик: пропускная способность модели — количество сэмплов, которое модель обрабатывает за GPU active time * 100 %, эффективность единицу времени, загруженность GPU -Total time операций точкой выполнения C C плавающей числами $\frac{actual flop count during T*100}{FLOPS peak*T}$ %, загруженность CPU - $\frac{\sum\limits_{c} total active time of core c*100}{CPU core count*total time}$

, потребление и распределение памяти, для сбора этой метрики авторами были разработаны профайлеры потребления памяти для фреймворков, которые они использовали для проведения эксперимента.

Для проведения эксперимента авторы реализовали модели, список которых приведен в таблице 1, каждая из них решает одну из следующих задач: классификация изображений, машинный перевод, обнаружение объектов, распознавание голоса, обучение с подкреплением, состязательное обучение. Для реализации нейронных сетей авторы использовали фреймворки Tensorflow, MXNet, CNTK.

Application	Model	Implementations	Dataset
Image classification	ResNet-50 Inception-v3	TensorFlow, MXNet, CNTK	ImageNet1K
Machine translation	Seq2Seq Transformer	TensorFlow, MXNet TensorFlow	IWSLT15 WMT-14
Object detection	Faster R-CNN	TensorFlow, MXNet	Pascal VOC 2007
Speech recognition	Deep Speech 2	MXNet	LibriSpeech
Adversarial learning	WGAN	TensorFlow	Downsampled ImageNet
Deep reinforcement learning	A3C	MXNet	Atari 2600

Табл. 1

На основе полученных данных авторами были сделаны некоторые выводы, например, при увеличении размера mini-batch увеличиваются пропускная способность модели и загруженность GPU, для рекуррентных нейронных сетей функция пропускной способности от размера mini-batch не сходить на имеющихся объемах памяти GPU, для сравнения фреймворков необходимо проводить исследования на разных задачах.

Deep500.

Сотрудники Швейцарской высшей технической Цюриха школы разработали мета-фреймворк Deep500 для бэнчмаркинга библиотек глубокого обучения. Deep500 интегрирован с такими фреймворками, как Tensorflow. PvTorch, Caffe2 и MXNet. Он даёт возможность использовать в процессе обучения модули из разных библиотек, поддерживается формат описания нейронных сетей ONNX, позволяет использовать собственные алгоритмы оптимизации и проверять их на корректность с помощью численного дифференцирования. Также Deep500 подсчитывает достаточно обширный набор метрик для различных этапов обучения, который включает в себя время выполнения, количество выполненных FLOPs объем пересылок, расходы, которые накладывает использование того или иного фреймворка.

Постановка задачи

Провести анализ производительности фреймворков построения и обучения нейронных сетей Tensorflow и Pytorch. Провести вычислительный эксперимент и собрать данные о процессе обучения с различными наборами значений гиперпараметров на основе системы IBM PowerAI на кластерном вычислительном комплексе IBM Polus. Разработать программное средство, позволяющий пользователю провести аналогичный эксперимент с возможностью выбора своего набора значений гиперпараметров.

Метод решения задачи

На основе каждого из двух фреймворков Tensorflow и Pytorch были реализованы две сверточные нейронные сети. Они представляют из себя адаптированные под задачи cifar-10 и cifar-100 сети AlexNet и VGG16 соответственно. В сети на основе AlexNet было увеличено количество фильтров в сверточных и количество нейронов в полносвязных слоях для усложнения сети и, как следствие, получения лучшей показательности эксперимента. В сети на основе VGG16 были убраны три последних сверточных слоя и один последний MaxPooling слой из-за слишком маленького размера изображений в выбранных наборах данных. Реализации одной и той же модели на разных фреймворках приведены к единообразному виду.

Эксперимент проводился на различных значениях гиперпараметров: pasмep mini-batch, оптимизатор, learning rate.

- Значения размера mini-batch: 250, 500, 1000, 2000, 5000 изображений 32х32 пикселя с тремя каналами цвета.
- Виды оптимизаторов: SGD, Adam, RMSProp.
- Значения learning rate: 0.01, 0.001, 0.0001.

Построены две таблицы. В первой таблице (табл. 2) приводятся данные о зависимости средней продолжительности эпохи обучения и пропускной способности модели от размера mini-batch. Во второй (табл. 3) собраны данные о зависимости точности предсказания модели на обучающей выборке на 5, 10, 15, 20, 25 и 30 эпохе обучения в зависимости от выбора оптимизатора и значения параметра learning rate. При проведение эксперимента значения размера mini-batch бралось 250. Пропуски в данных означают, что модель не обучается при заданных параметрах.

Экспериментальное исследование

Собранные данные.

Model	Framework	Optimizer	Batch size	Epoch time	Throughput
AlexNet	Tensorflow	SGD	250	6,83	7322
			500	6,1	8193
			1000	5,29	9451
			2000	5,02	9960
			5000	4,88	10255
		Adam	250	9,53	5242
			500	7,47	6693
			1000	5,96	8387
			2000	5,36	9328
			5000	5,1	9799
		RMSProp	250	8,7	5744
			500	7,01	7129
			1000	5,75	8692
			2000	5,28	9471
			5000	4,94	10116
	PyTorch	SGD	250	6,97	7120
			500	6,4	7801
			1000	5,68	8803
			2000	5,42	9210
			5000	5,15	9707
		Adam	250	8,83	5662
			500	7,34	6810
			1000	6,11	8170
			2000	5,63	8880
			5000	5,23	9558
	RMSProp	250	8,2	6093	
			500	6,99	7154
			1000	5,97	8367
			2000	5,52	9045
			5000	5,18	9642
VGG16	Tensorflow	SGD	250	7,76	6441
			500	7,12	7020
			1000	6,64	7525
			2000	6,43	7770
		5000	6,56	7616	
		Adam	250	8,23	6073
			500	7,32	6826
			1000	6,78	7366
			2000	6,47	7728
			5000	6,59	7582
		RMSProp	250	8,06	6199

		500	7,21	6929
		1000	6,73	7423
		2000	6,47	7723
		5000	6,61	7561
Torch	SGD	250	11,9	4201
		500	10,9	4579
		1000	10,3	4845
		2000	9,96	5019
		5000	9,63	5192
	Adam	250	12,11	3420
		500	10,99	4546
		1000	10,34	4835
		2000	9,99	5005
		5000	9,65	5178
	RMSProp	250	12,03	4155
		500	10,96	4561
		1000	10,3	4851
		2000	9,93	5034
		5000	9,63	5192
70			Adam 250	1000 6,73

Табл. 2

Model	Framework	Optimizer	Learning rate	Epoch 5	Epoch 10	Epoch 15	Epoch 20	Epoch 25	Epoch 30
AlexNet	llexNet Tensorflow	SGD	0,01	0,517	0,657	0,755	0,851	0,917	0.977
			0,001	0,335	0,424	0,479	0,503	0,551	0,578
			0,0001	0,139	0,211	0,264	0,278	0,291	0,307
		Adam	0,01						
			0,001						
			0,0001	0,703	0,823	0,906	0,945	0,97	0,981
		RMSProp	0,01						
			0,001						
			0,0001	0,641	0,85	0,944	0,964	0,975	0,988
	PyTorch	SGD	0,01	0,614	0,727	0,802	0,863	0,913	0,944
			0,001	0,399	0,49	0,539	0,574	0,603	0,628
		0,0001	0,249	0,265	0,289	0,307	0,327	0,346	
		Adam	0,01						
			0,001	0,692	0,76	0,804	0,838	0,872	0,885
			0,0001	0,717	0,824	0,894	0,95	0,973	0,98
		RMSProp	0,01						
			0,001	0,478	0,576	0,67	0,775	0,832	0,884
			0,0001	0,709	0,844	0,928	0,958	0,971	0,977
VGG16	Tensorflow	SGD	0,01						
		0,001							
		0,0001							
		Adam	0,01						
			0,001	0,11	0,274	0,378	0,468	0,563	0,636
		0,0001	0,153	0,296	0,395	0,473	0,547	0,633	

	RMSProp	0,01						
		0,001	0,068	0,286	0,495	0,651	0,729	0,748
		0,0001	0,098	0,205	0,312	0,438	0,575	0,704
PyTorch	SGD	0,01	0,029	0,107	0,197	0,285	0,429	0,622
		0,001	0,016	0,024	0,028	0,031	0,034	0,036
		0,0001						
	Adam	0,01						
		0,001	0,211	0,371	0,462	0,529	0,61	0,641
		0,0001	0,29	0,418	0,539	0,685	0,817	0,892
	RMSProp	0,01						
		0,001	0,124	0,275	0,443	0,626	0,731	0,785
		0,0001	0,225	0,373	0,484	0,586	0,685	0,773

Табл. 3

Анализ.

Из данных можно сделать следующие выводы.

Производительность модели зависит от размера mini-batch. Для всех приведенных реализаций нейронных сетей и всех оптимизаторов с увеличением размера mini-batch увеличивается пропускная способность модели. Это связано с меньшим количеством пересылок между основной памятью и GPU. На рис. 1 изображена зависимость пропускной способности от размера mini-batch двух реализаций модели AlexNet с оптимизатором SGD.

Обе реализации AlexNet показали примерно одинаковую производительность, в то время как, реализация VGG16 на Tensorflow имеет пропускную способность примерно в полтора раза большую, чем на PyTorch. В VGG .значительно больше сверточных слоёв, чем в AlexNet. Возможно, такая разница в производительности появилась из-за того, что операция свертки в PyTorch реализована менее эффективно, чем в Tensorflow. На рис. 2 изображена зависимость пропускной способности от размера mini-batch двух реализаций модели AlexNet и VGG16 с оптимизатором SGD.

В обоих фреймворках реализация алгоритма SGD имеет большую производительность, чем RMSProp, в среднем на 5%, а RMSProp в свою очередь быстрее Adam, в среднем на 4%. На рис. З изображена зависимость пропускной способности от размера mini-batch двух реализаций модели AlexNet с оптимизаторами SGD, Adam, RMSProp.

Модели, реализованные на PyTorch, в среднем сходятся за меньшее число эпох. Также существуют пары оптимизатор — значение learning rate, при которых модели, реализованные на PyTorch обучаются, а на Tensorflow нет. На рис. 4 изображена зависимость точности на обучающей выборке от номера эпохи двух реализаций модели VGG16 с оптимизатором RMSProp и значением learning rate 0.0001.

Рис. 4

Описание программной реализации

Описание скрипта.

Были реализованы два модуля models.py и train.py. Models.py содержит определения нейронных сетей, train.py цикл обучения.

Вызов скрипта выполняется следующим образом: python3 train.py [options]

Номер параметра	Возможные значения	Описание
1	cpu, cuda	сри — вычисления будут производиться на центральном процессоре, cuda — на GPU
2	tf, pytorch	Фреймворк, реализация на основе которого будете запущена
3	alexnet, vgg	Выбор модели
4	Целое число	Количество эпох обучения
5	Целое число	Размер mini-batch
6	sgd, adam, rmsprop	Выбор алгоритма оптимизации
7	Вещественное число	Значение параметра оптимизатора learning rate

Табл. 4

Описание реализованных нейронных сетей.

AlexNet

Layer (type)	Output Shape	Param
Layer (type)	Output Shape	Param
ReLU Linear	[-1, 8192] [-1, 10]	81,930

Total params: 78,330,250

VGG16

Layer (type)	Output Shape	Param
 Conv2d	[-1, 64, 30, 30]	1,792
ReLU	[-1, 64, 30, 30]	0
ZeroPad2d	[-1, 64, 32, 32]	0
Conv2d	[-1, 64, 30, 30]	36,928
ReLU	[-1, 64, 30, 30]	. 0
ZeroPad2d	[-1, 64, 32, 32]	0
MaxPool2d	[-1, 64, 16, 16]	0
Conv2d	[-1, 128, 14, 14]	73,856
ReLU	[-1, 128, 14, 14]	0
ZeroPad2d	[-1, 128, 16, 16]	0
Conv2d	[-1, 128, 14, 14]	147,584
ReLU	[-1, 128, 14, 14]	0
ZeroPad2d	[-1, 128, 16, 16]	0
MaxPool2d	[-1, 128, 8, 8]	Θ
Conv2d	[-1, 256, 6, 6]	295,168
ReLU	[-1, 256, 6, 6]	0
ZeroPad2d	[-1, 256, 8, 8]	0
Conv2d	[-1, 256, 6, 6]	590,080
ReLU	[-1, 256, 6, 6]	0
ZeroPad2d	[-1, 256, 8, 8]	0
Conv2d	[-1, 256, 6, 6]	590,080
ReLU	[-1, 256, 6, 6]	0
ZeroPad2d	[-1, 256, 8, 8]	0
MaxPool2d	[-1, 256, 4, 4]	0
Conv2d	[-1, 512, 2, 2]	1,180,160
ReLU	[-1, 512, 2, 2]	0
ZeroPad2d	[-1, 512, 4, 4]	0
Conv2d	[-1, 512, 2, 2]	2,359,808
ReLU	[-1, 512, 2, 2]	0
ZeroPad2d	[-1, 512, 4, 4]	0
Conv2d	[-1, 512, 2, 2]	2,359,808
ReLU	[-1, 512, 2, 2]	0
ZeroPad2d	[-1, 512, 4, 4]	0
MaxPool2d	[-1, 512, 2, 2]	0
Linear	[-1, 512]	1,049,088
ReLU	[-1, 512]	0
Linear	[-1, 100]	51,300

Total params: 8,735,652

Заключение

В ходе выполнения курсовой работы было реализовано программное средство, позволяющее провести процесс обучения одной из двух моделей нейронных сетей, реализованных средствами фреймворков PyTorch и Tensorflow. Данное программное средство даёт возможность выбора значения таких гиперпараметров, как оптимизатор, learning rate и размер mini-batch. По мере выполнения скрипт выводит значения следующих метрик: время каждой эпохи, точность и ошибка на каждой эпохе, среднее время эпохи и средняя пропускная способность.

Была собрана таблица значений метрик средняя продолжительность эпохи и средняя пропускная способность модели в зависимости от модели нейронной сети, фреймворка средствами которого эта модель реализовывалась и оптимизатора, который использовался в процессе обучения. Был проведён анализ собранных данных.

В дальнейшем планируется сделать следующее. Расширить набор метрик, которые подсчитывает реализованная программа. Добавить возможность запуска программы не только с предопределенными моделями, но и моделями спроектированными пользователем. Расширить набор поддерживаемых фреймворков.

Список литературы

- [1] «Benchmarking and Analyzing Deep Neural Network Training» http://www.cs.toronto.edu/~serailhydra/publications/tbd-iiswc18.pdf
- [2] «A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning» http://unixer.de/publications/img/deep500_ipdps19.pdf