Meta-Learning with Latent Embedding Optimization

Rusu et al., ICLR 2019

Outline

- This paper model Latent Embedding Optimization (LEO), an extension over the MAML model
 - ► Learn a low-dimensional latent embedding of model parameters and performs optimization-based meta learning in this space
 - Provide 2 advantages over the MAML model
 - initial parameters for new tasks are conditioned on the training data,
 which enables a task-specific starting point for adaptation
 - ★ optimizing in low-dimensional latent space is more efficient

Comparision between LEO vs MAML

- The MAML model aims to find an set of parameters that can use for many different tasks
- The LEO model initializes task-dependent set of parameters, update them in a general framework, it is more desirable

LEO Algorithm and Arch

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

1: randomly initialize θ

2: while not done do

3: Sample batch of tasks $T_i \sim p(T)$

4: for all \mathcal{T}_i do

5: Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i

6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)

7: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

8: Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the meta-update

9: end for

10: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ using each \mathcal{D}_i' and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3

11: end while

Algorithm 1 Latent Embedding Optimization

Require: Training meta-set $\mathcal{S}^{tr} \in \mathcal{T}$

Require: Learning rates α , η 1: Randomly initialize ϕ_e , ϕ_r , ϕ_d

2: Let $\phi = \{\phi_e, \phi_r, \phi_d, \alpha\}$

3: while not converged do

4: **for** number of tasks in batch **do** 5: Sample task instance $\mathcal{T}_i \sim \mathcal{S}^{tr}$

: Let $(\mathcal{D}^{tr}, \mathcal{D}^{val}) = \mathcal{T}_i$

7: Encode \mathcal{D}^{tr} to \mathbf{z} using g_{ϕ_e} and g_{ϕ_r} 8: Decode \mathbf{z} to initial params θ_i using g_{ϕ_d} 9: Initialize $\mathbf{z}' = \mathbf{z}$, $\theta_i' = \theta_i$

10: **for** number of adaptation steps **do** 11: Compute training loss $\mathcal{L}_{T_i}^{tr}(f_{\theta_i})$

Perform gradient step w.r.t. \mathbf{z}' : $\mathbf{z}' \leftarrow \mathbf{z}' - \alpha \nabla_{\mathbf{z}'} \mathcal{L}_{T_c}^{tr}(f_{\theta'})$

Decode \mathbf{z}' to obtain θ'_i using g_{ϕ_d} end for

15: Compute validation loss $\mathcal{L}_{\mathcal{T}_i}^{val}(f_{\theta_i'})$ 16: **end for**

Perform gradient step w.r.t ϕ : $\phi \leftarrow \phi - \eta \nabla_{\phi} \sum_{\mathcal{T}} \mathcal{L}_{\mathcal{T}_{\epsilon}}^{val}(f_{\theta'})$

18: end while

13:

14:

17:

d while

LEO Model

Encoding and Relation Network

$$\boldsymbol{\mu}_{n}^{e}, \boldsymbol{\sigma}_{n}^{e} = \frac{1}{NK^{2}} \sum_{k_{n}=1}^{K} \sum_{m=1}^{N} \sum_{k_{m}=1}^{K} g_{\phi_{r}} \left(g_{\phi_{e}} \left(\mathbf{x}_{n}^{k_{n}} \right), g_{\phi_{e}} \left(\mathbf{x}_{m}^{k_{m}} \right) \right)$$
$$\mathbf{z}_{n} \sim q \left(\mathbf{z}_{n} | \mathcal{D}_{n}^{tr} \right) = \mathcal{N} \left(\boldsymbol{\mu}_{n}^{e}, diag(\boldsymbol{\sigma}_{n}^{e^{2}}) \right)$$

- ▶ Encoder all examples into intermediate codes, concatentated pair-wise
- Use the relation network to learn specific code for each class, forming a Gaussian distribution
- ▶ The hidden code z is drawn from the distribution
- Decoding Network

$$\boldsymbol{\mu}_{n}^{d}, \boldsymbol{\sigma}_{n}^{d} = g_{\phi_{d}}(\mathbf{z}_{n})$$

$$\mathbf{w}_{n} \sim p(\mathbf{w}|\mathbf{z}_{n}) = \mathcal{N}\left(\boldsymbol{\mu}_{n}^{d}, diag(\boldsymbol{\sigma}_{n}^{d^{2}})\right)$$

- Decode the hidden codes into distribution's parameters, forming a Gaussian distribution
- Task-specific parameters are drawn from the resulted distribution

LEO Model

Inner-loop objective

$$\mathcal{L}_{\mathcal{T}_i}^{tr} \big(f_{\theta_i} \big) = \sum_{(\mathbf{x}, y) \in \mathcal{D}^{tr}} \left[-\mathbf{w}_y \cdot \mathbf{x} + \log \left(\sum_{j=1}^{N} e^{\mathbf{w}_j \cdot \mathbf{x}} \right) \right]$$

Outer-loop objective

$$\min_{\phi_{e},\phi_{r},\phi_{d}} \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \left[\mathcal{L}^{val}_{\mathcal{T}_{i}} \left(f_{\theta'_{i}} \right) + \beta D_{KL} \left(q(\mathbf{z}_{n}|\mathcal{D}^{tr}_{n}) || p(\mathbf{z}_{n}) \right) + \gamma || \text{stopgrad}(\mathbf{z}'_{n}) - \mathbf{z}_{n}||_{2}^{2} \right] + R$$

Thank you!