CS/B.TECH(EIE-N)/SEM-3/EC(EI)-302/2011-12 2011

ANALOG ELECTRONIC CIRCUITS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

. Choose the correct altern	ives for any ten of the following :
-----------------------------	-------------------------------------

 $10 \times 1 = 10$

- i) An ideal op-amp has CMRR and slew rate respectively
 - a) infinity and infinity
- b) zero and infinity

- c) zero and zero
- d) infinity and zero.
- ii) An astable multivibrator generates
 - a) triangular waveform
- b) sinusoidal waveform
- c) square waveform
- d) none of these.

CS/B.TECH(EIE-N)/SEWY-37/EC/EP 302/2011-12

iii)	An o	An op-amp is an open loop configuration which can be				
	used as					
	a)	Comparator	b)	Log amplifier		
	c)	Integrator	d)	Differentiator.		
iv)	Schmitt trigger is a comparator using					
	a)	negative feedback		•		
	b)	positive feedback				
	c) both positive and negative feedbacks					
	d)	none of these.				
v)	According to Barkhausen criteria in order to sustain the					
	oscillations					
	a)	loop gain of the circui	t mu	st be negligible		
	b)	loop gain of the circui	t mus	st be equal to unity		
	c)	the phase shift ar	ound	the circuit must be		
		180 degree				
	d)	none of these.				

vi)	An op-amp has a voltage gain of 500000. If the output
	voltage is 1V, the input voltage is

a) 2 mV

b) 5 mV

c) 10 mV

d) 1V.

vii) When the Q point is the centre of the ac load line, the maximum peak-to-peak output voltage equals

a) V_{CEQ}

b) 2 V_{CEQ}

c) $V_{CEQ}/2$

d) none of these.

viii) Which one of the following feedback topologies offers high input impedance?

- a) Voltage séries
- b) Voltage shunt
- c) Current series
- d) Current shunt.

ix) In phase shift oscillator the feedback circuit (lag circuit) produces phase shift of

a) 180°

b) - 270°

c) 360°

d) - 180°.

x)	For a wide range of oscillations in the audio range, the							
	preferred oscillator is							
	a)	Heartley	b)	Phase shift				
	c)	Wien-bridge	d)	Hartley and Colpitt.				
xi)	d) Astable multivibrator may be used as							
	a)	frequency to voltage converter						
	b)	voltage to frequency converter						
	d)	comparator circuit.						
xii)	xii) Transformer couple class A power amplifier pro							
	very high frequency because the							
	up							
	b) dc resistance in the collector circuit is low							
	c)	c) large signal amplifier						
	d)	none of these.						
xiii) To avoid false triggering of the NE 555 timer th				NE 555 timer the RESET				
	pin (Pin 4) is generally connected to							
	a)	Pin 8	b)	Pin 1				
	c)	Pin 3	d)	No connection (NC).				

xiv) Miller capacitance is generated in

- a) CB configuration
- b) CC configuration
- c) CE configuration
- d) All configurations.
- xv) The output gain of an emitter follower circuit is
 - a) greater than 1
- b) equal to 1

c) less than 1

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Find out the ripple factor of a full-wave rectifier.
- Find out the condition of an astable multivibrator so that its duty cycle would be less than 50% and draw the circuit diagram.
- 4. Explain how the bandwidth of an amplifier will be increased using negative feedback.
- 5. Draw the high frequency model of a transistor and define all parameters.
- 6. What is an instrumentation amplifier? How a basic differential amplifier is modified to a grounded load instrumentation amplifier?
- 7. Explain the monostable operation of NE 555 with proper circuit diagram and waveform.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 8. a) Why hybrid parameters are so called?
 - b) Draw the equivalent circuit of a transistor using h parameters. Determine input impedance, current gain and voltage gain and output admittance in terms of h parameters.
 - c) Obtain h-parameters of CE mode in terms of those of CB mode. 2 + 8 + 5
- a) Explain how it is possible to achieve better Q-point stabilization by using self bias circuit. Assume relevant assumptions.
 - b) Consider a self bias circuit with an npn silicon transistor CE configuration. The circuit is designed in such a way that the $I_C=1.5$ mA, $V_{CE}=10$ V and the stability factor is less than equal to 6. If $V_{CC}=20$ V, $V_{BE}=0.7$ V, $P_{CC}=10$ 0, $P_{CC}=10$ 0, calculate the values of $P_{CC}=10$ 0, $P_{CC}=10$ 0, P
 - c) How the operating point of a transistor can shift? How will you define the stability factors for a transistor?

- 10. a) Draw the circuit diagram of a Heartley oscillator and explain it's operation.
 - b) Draw the ac equivalent circuit of Heartley oscillator and determine the frequency of oscillation.
 - The frequency of a Heartley oscillator is to vary from 60 kHz to 120 kHz. The tuning capacitor can be changed from 100 pF to 400 pF. The transistor employed in the circuit has $h_{fe} = 90$ and $\Delta_{he} = 0.2$. Find the values of the inductances, neglecting the mutual inductance between them. 5 + 5 + 5
- 11. a) Draw the circuit diagram of a controlled transistor series regulator. Explain the circuit and the functionality of pass transistor. Write down the expression of output voltage.

 2 + 1 + 1
 - b) Design a complete + 15 V power supply starting from transformer and using 78XX series IC.

CS/B.TECH(EIE-N)/SEM-3/EC(EI)-302/2011-12

- 12. a) What are the criteria of a good Instrumentation Amplifier? Draw the circuit diagram of an Instrumentation Amplifier using transducer bridge and explain its operation.
 - b) Explain the operation of an inverting Schmitt trigger circuit.
 - c) Explain with circuit diagram the operation of voltage to current converter with grounded load. 7 + 4 + 4
- 13. Write short notes on any three of the following: 3×5
 - a) Comparator
 - b) Full-wave precision rectifier
 - c) PLL
 - d) VCO
 - e) Phase shift oscillator.