TekFriday - Development Role - Assignment Summary (<u>Github</u>)

Part A: Chatbot for Loan Terms

This module implements a **conversational loan assistant chatbot** using **Streamlit**. The goal was to build a simple, console-based or UI-based bot that can respond to user questions about basic loan-related terms and concepts. To enhance functionality and realism, we went beyond the minimum requirements and developed a fully interactive Streamlit-based chatbot UI.

Objective:

- Greets the user
- Accepts a question in natural language (e.g., "What is EMI?")
- Returns a predefined answer based on a knowledge base
- Responds correctly even if the input varies slightly in casing or spacing

Key Features Implemented

• Streamlit-Based UI:

- We created a web-based chatbot interface using Streamlit, styled to look like a modern chat application.
- Chat messages are stored in st.session_state, maintaining the full chat history during interaction.

• 50+ Predefined Responses:

- A dictionary of over 50 loan-related FAQs was created, covering everything from "What is EMI?" to "What is CIBIL score?", "What is a top-up loan?", and "What is foreclosure?"
- These answers were generated and validated using **ChatGPT**, ensuring coverage of relevant financial concepts.

• Input Normalization:

- All user inputs are processed through a clean_input() function that:
 - Converts text to lowercase
 - Removes punctuation
 - Normalizes multiple spaces
- This ensures that inputs like " WHAT is emi?? " are matched correctly to "what is emi".

• User-Friendly Chat Interface:

• Input box placed at the bottom of the screen (like WhatsApp)

- Chat bubbles for both user and bot messages with color distinction
- Auto-updating message thread with scrollable history

• Greeting Mechanism:

• On app start, the bot opens with a greeting message like: "Hello! I'm your Loan Assistant. You can ask me anything about loan terms."

Tech Stack:

Language: PythonFrontend: Streamlit

• Logic: Dictionary-based response system

• Message Memory: st.session_state for preserving full chat context

Files Submitted

- part_A.py: Streamlit chatbot with 50+ FAQs
- (Optional) chatbot_console.py: Command-line version (not required, but implemented for completeness)

Value Addition

This chatbot simulates a **real-world banking assistant**, and could be extended to:

- Use NLP models for dynamic responses
- Log unanswered queries for future learning
- Integrate with a database of terms or backend API
- Realistic chatbot UI with session-based message history

Part B: Loan Risk Calculator

This module implements a loan risk scoring mechanism that classifies loans into **LOW**, **MEDIUM**, or **HIGH** risk categories based on the borrower's repayment behavior and loan details.

Objective

To develop a Python-based solution that:

- Calculates a **numerical risk score** using borrower and loan data
- Classifies each loan into a risk category:
 - **LOW**: Score < 15
 - \circ **MEDIUM**: $15 \le Score \le 25$
 - **HIGH**: Score > 25

The goal is to simulate how banks or NBFCs might assess loan default probability based on simple heuristics.

Risk Score Formula Used

```
risk_score = (missed_repayments * 2) + (loan_amount /
collateral_value) + (interest / 2)
```

This formula combines behavioral and financial risk indicators:

- missed_repayments: Higher missed payments indicate unreliability
- loan_amount / collateral_value: Represents exposure risk
- interest: Higher interest can increase EMI burden and default chances

Enhancements Made

- Data Scaling for Realism:
 - The original values of missed_repayments were very large (often in lakhs), making all scores unrealistically high.
 - To align with the provided classification thresholds (15, 25), we scaled missed_repayments by 1000 for meaningful scoring.
- Separation of Logic:
 - Score calculation was done using a function:
 - calculate_risk_score(row)
 - Classification was applied using a separate function: classify_loan_risk(score)
 - This modular approach makes the code clean and reusable.
- New Columns Added:

- o risk_score: Numeric score based on the formula
- o risk_level: Category assigned based on score

Files Submitted

- part_B.ipynb: Fully annotated notebook
 - Loads main_loan_base.csv
 - o Applies risk scoring and tagging
 - Displays sample of 10 randomly selected loans for output variety

Part C: EMI Risk Tagging

This module automates the process of tagging loan records with a risk category by applying a custom risk score formula across the entire dataset using Pandas' .apply() function.

Objective

To build a function classify_risk(row) that:

- Calculates a risk score using specific loan-related fields
- Classifies each loan into **LOW**, **MEDIUM**, or **HIGH** risk
- Adds a new column risk_level to the full dataset

This part essentially scales up the logic from Part B to a full dataset, demonstrating how business logic can be embedded directly into data processing pipelines.

Risk Score Formula

The same formula from Part B is used:

```
risk_score = (missed_repayments * 2) + (loan_amount / collateral_value) + (interest / 2)
```

But with the critical adjustment:

• missed_repayments is **divided by 1000** to make the risk score compatible with classification thresholds.

Implementation Highlights

- Two-Step Function Pipeline:
 - Step 1: calculate_risk_score(row) computes the risk score
 - Step 2: classify_risk(score) assigns a category based on the score
- Applied at Scale:
 - The logic is applied to every row in main_loan_base.csv using .apply() for risk score
 - Followed by .apply() on the score column to determine risk_level
- New Columns Added:
 - o risk_score: A numeric score for each loan
 - o risk_level: One of LOW, MEDIUM, or HIGH
- Output Variety:

• A . sample(10) was used to display random rows and ensure diverse classification results, making the output visually meaningful

Tech Stack

• Language: Python

• Tools: Pandas

Output Format: Jupyter Notebook (part_C.ipynb)

Files Submitted

- part_C.ipynb: Contains:
 - o Data loading
 - Score and risk tagging logic
 - Randomized sample output with risk_score and risk_level columns

Repayment Behavior Analysis

In this analysis, repayment_base.csv was joined with main_loan_base.csv using loan_acc_num. We calculated:

- Total repaid amount
- **Repayment ratio** = total repaid / loan amount
- A binary flag **is_partially_repaid** for loans where repayment was less than 75%

This provides a quick view of borrower repayment behavior and identifies under-recovered loans.

Assumptions Made

- Only 'main_loan_base.csv' was used for Part B and C unless otherwise stated.
- `missed_repayments` were too large for the given thresholds, so they were scaled down by 1000.
- Test datasets were not used for training or evaluation, assuming they are for internal validation.
- Additional datasets like `monthly_balance_base.csv` and `repayment_base.csv` were explored optionally.
- AI-generated responses for the chatbot were generated using OpenAI's ChatGPT.