RCOM (Problemas)

" Protocolos de ligação de dados"

$$(\beta)$$

$$U = \frac{1}{1+2.9}$$
 $a = \frac{T_0}{R}$ $B = \frac{L}{R} = \frac{2048}{2048} = \frac{1}{100}$

$$a = \frac{1.5m}{1m} = 1.5$$

$$U = \frac{1}{1 + 2(1,5)} = \frac{1}{4} = 25\%$$
 (effectincia)

R' (dibito binario máximo formeido pelo protocolo à camada symon)

$$a = 1,5$$

$$M=8=2^K \Rightarrow K=3$$

I,0

RR, 1

$$W = 2^{K} - 1 = 7$$

n=? (quantidade de Tramas de RR pudidas consecutivas)

$$U = 100\%$$
 $\Rightarrow W \ge 1 + 2a + n$
 $7 \ge 1 + 2(1,5) + n$
 $n \le 3 \Rightarrow n_{max} = 3$

"Protocolos de ligação de dados"

a)
$$R = ?$$
 $R = \frac{2048 \text{ bits}}{256 \text{ Kbits/s}} = 8 \text{ ms}$

$$|W_{min}| = \frac{1}{V} = \frac{100\%}{18} = \frac{1}{18} = \frac{1}{1$$

$$0 = \frac{7}{68.5} = 10,2\%$$

$$R' = R \cdot U = 256 \text{ K. } 0,102 = 26,2 \text{ Kbits/s}$$

Ь)

Selective Riject ARA porque Wielvodo (W=69) A partir de janelas maiores que 16 utiliza-se Selective Riject

K= 7 bits

Pe = 0 (%)

R' = ?

 $W < 2 + 2a \implies U = \frac{W}{1 + 2a} = \frac{64}{68,5} = 93,4(\%)$

 $W = 2^{K-1} = 2^{7-1} = 64$ (64 < 68,5) 1 + 2.a = 68,5

R = U.R = 0,934.256K = 239 Kbits/s

" Proto eolos de ligaçõe de dados"

	R = C (Kbit/s)	d(Km)	TP	To	a	1+2.0
Caro A	128	75	5,µ.75	7,5 ms	0,05	1,1
Caro B	640	750	5µ.750	1,5 m	2,5	6
Caso C	1920	2500	5µ. 2500	0,5 ms	25	51

$$L=960$$
 bits $T=\frac{1}{R}$ $a=\frac{T_{R}}{T_{R}}$

Cap A:
$$T_6 = \frac{960}{128K} = 7,5 \text{ m}$$
 $\implies a = \frac{5.40.75}{7,5 m} = 0,05$

Can B:
$$T_f = \frac{960}{640K} : 1,5 \text{ ms} \implies a = \frac{5.10.750}{1,5 \text{ m}} = 3,5$$

Caso C:
$$T_g = \frac{960}{1920K} = 0.5 \text{ ms} \implies a = \frac{5.10^{-6}.1500}{0.5 \text{ ms}} = 25$$

a) Talvez mia queitável a opçoi pelo Stop and Wait para o earo A já qui:
$$w = 1 + 2a = 1,1$$
e enta a eficiência reva: $v = \frac{1}{1+2a} = \frac{1}{1,1} \approx \frac{2,11}{1}$

Nop and wait: $w \geq 1 + 2a \approx 1$ (Para ren accitável)

b) Tal como dimonstrado pelo tabela anterior: [Caso B:] $W \ge 1 + 2.a \ge 6$ $Em 60 - Back - N : W \ge 2^k - 1 \ge 6$ $K=3 \implies W \gg 7$ Em Seletiu Riget: W = 2K-1 > 6 K= 4 => W>8 Como W é reduzido opta-u por 60-Back-N, easo forse uma janela maior que 16 optava su pon selective Regiet laso l: W > 1 + 2.a > 51 Em 60-Back-N: W= 2 x-1 = 51 K=6 => W > 63 Em seletive Ryet: W > 2 K-1 > 51 K=7 => W> 64 Opta-se pon Selvetius Rigiet, pois a jarula é de um Tamanho elivado (>16)

" Pno Toeolos de ligação de dados"

$$A = C = 10 \text{ Hbits/s}$$

$$R = C = 10 \text{ Hbits/s}$$

$$a = \frac{T_p}{T_f} = \frac{q_m}{0.2m} = 45$$

$$T_f = \frac{L}{R} = \frac{2000}{10 \text{ M}} = 0, 2 \text{ ms}$$

a)
$$U_{max}(1) = ?$$
 Stop and Whit; 60-Back-N; Selective Regiet $R' = R \cdot U = ?$

5top and Wait ARQ

$$U = \frac{\text{timpo Vital}}{\text{timpo total}} = \frac{1 - l_0}{1 + 2\alpha} \implies V_{\text{max}} = \frac{1 - 0}{1 + 2\alpha}$$

$$l_0 = 0 \implies V_{\text{max}}$$

$$V_{\text{max}} = \frac{1}{1+2.45} \approx 0.011 \approx 1.1\%$$

$$R = R.U = 10 H. 0,011 = 110 Kbts/s$$

60-Back-N ARG:

$$1 + 2 = 91$$

$$1+2a=91$$
 $W=2^{K}-1=2^{7}-1=127$

$$U = \frac{1 - l_e}{1 + 2 \cdot a \cdot l_e} \implies V_{max} = \frac{1 - 6}{1 + 2 \cdot 45.0} = \frac{1}{1} = 100\%$$

$$max = \frac{1-0}{1+2.45.0} = \frac{1}{1+2.45.0}$$

$$=\frac{1}{1}=100\%$$

$$R' = R.U = 10 M.1 = 10 M bits/s$$

Seletive Repet ARQ

$$1 + 2a = 91$$

$$W = 2^{K-1} = 2^{7-1} = 64$$

$$V = \frac{W(1-R_1)}{1+2\alpha} \Longrightarrow 0$$

$$V = \frac{W(1-P_a)}{1+2a} \implies V_{max} = \frac{W(1-0)}{1+2a} = \frac{64}{91} = \frac{64}{91}$$

b,

 $R \rightarrow \infty$

Stop and Wait ARQ:

 $R^2=?$

R = Umax. R

 $T_{R=0} = \lim_{R \to \infty} \frac{L}{R} = 0$

 $R = \lim_{R \to \infty} U_{\text{max}} \cdot R = \lim_{R \to \infty} \frac{t_R}{T_f + 2T_p} \cdot \frac{L}{T_f} \approx \frac{L}{2T_p} = \frac{111,1}{K_0! + 1/2}$

Na variante stop and Wait ARA divido ao controlo de fluxo existe um dibito máximo superion menos clivado, mas isso nacinfluencia os cálculos

60-BOCK-N ARQ:

 $R^{\prime} \approx \frac{L.W}{2Tp} = 111,1 K. 127 = 14,1 Mbits/s$

Selietive Rejiet ARG:

 $R = L = L. \omega = 111,1 K.64 = 7,1 Mb/s/s$

e)

Go-Buek-N ACK:

Selvetive Reget ACK.

$$V = \begin{cases} \frac{1 - P_{1}}{1 + 2aP_{1}}, & W > 1 + 2a \\ \frac{U(1 - P_{2})}{(1 + 2a)(1 - P_{2} + WP_{2})}, & W \ge 1 + 2a \end{cases}$$

 $V = \begin{cases} 1 - Pe & , W \ge 1 + 2a \\ W (1 - Pe) & , W < 1 + 2a \\ \hline 1 + 2a & \end{cases}$

$$Pe = 0.01$$
 e $L = 2000$ bits
 $Pe = 0.015$ e $L = 3000$ bits

U(I)\	P1 = 0 L= 2000	P1 = 1% L = 3 000	Pa = 1,5% L = 3000	<u> </u>
6BN	100%	52,1%	51,8%	
SR .	70,3%	69,6%	98,5%	

"Filas de espera"

(5)
$$C = 256$$
 Kbit/s
intensidade Traffego mídia = 0,75 $P = 0,75$
Fila espua $H/H/1$ $P = \frac{\lambda}{M}$
 $L = 4000$ bits

a)
$$T = ?$$
 $T = T_S + T_W$

T > Timpo atraso midio no sistima

$$T_{W} = \frac{N}{\mu} \qquad T_{S} = \frac{1}{\mu} \qquad N > N \text{ Numno elimentos na fida}$$

$$T_{S} = \frac{L}{e} = \frac{1}{\mu} = \frac{4000}{256 \, \text{K}} = \frac{1}{\mu}$$

$$(1-\rho)\mu \qquad M = 64 \quad (\text{suviços/s})$$

$$T = \frac{1}{(1-0.75)64} = 0.0625$$

Metade do Torranto indicado: L= 2000 bits

$$T = \frac{1}{(1 - 0,75).128} = 0,03125,$$

$$T_S = \frac{L'}{C} = \frac{1}{M} = \frac{2000}{256K} = \frac{1}{M}$$
 $M = 128 (m/n)$

$$T = \frac{1}{(1-0.75).32} = 0.125 \text{ s}$$

$$T_S = \frac{2''}{e} = \frac{1}{M} = \frac{8000}{256k} = \frac{1}{M}$$
 $M = 32$ (sn/s)

Quanto major for o tamanho dos pacotes, major una o tempo medio de atraso dos pacotes.

Se o tamanho dos pacotes diminui, minor mão timpo midio de atraso dos pacotes.

b)
$$B = 24$$
 buffers (Number Ginita) $P = 0,75$

$$P_{B} = ?$$

$$P_{B} = \frac{(0-p)p}{1-p^{B+1}}$$

Pana p = 0,75:

$$P_{B} = \frac{(1-0.75) \ 0.75^{24}}{1-0.75^{24+1}} = 2.51 \times 10^{-4}$$

Pana o easo de 256 Kbit/s o eanal
Tim a sua eapacidade todo ocupado entac p=s
, logo:

$$P = 1$$
 $P_B = \frac{1}{B+1} = \frac{1}{25} = 0.04$

Para o caso de 320 Kbit/s o conal vai tentan
paran mais do que a sua capacidade, p>>1, logo:

$$p >> 1$$
 $p = p-1 = 0,20$

$$p = \frac{320}{256} = 1,25$$

a probabilidade de bloquio, con o perso nívero buffres ??

"Filas de espera"

(6)
$$C = 512 \text{ KbH/s}$$
 $L = 256 \text{ by tws}$
= 2048/bits
 384 Kbit/s Fila M/M/1
a) $P = ?$ $N = ?$ $T = ?$ $T_s = ?$ $T_w = ?$

$$P = \frac{\lambda}{M}$$
 $T_S = \frac{L}{e} = \frac{1}{M} = \frac{2048}{512 \, \text{K}} = \frac{1}{M}$

$$384 \text{ Kbit/s} \Rightarrow \lambda = \frac{384 \text{ K}}{2048} = 187,5$$
 $\mu = 250$

$$p = \frac{187.5}{250} = 0.75 = 75\%$$

•
$$N = \frac{1}{1-p} = \frac{\lambda}{\mu-\lambda} = \frac{0.75}{1-0.75} = 3 \text{ tilizadors}$$

$$T_S = \frac{2048}{512 \, \text{K}} = 0,004 \, \text{(s)}$$
 $T_S = \frac{1}{M}$

$$T_W = \frac{N}{M} = \frac{3}{250} = 0,012 \, \text{(s)}$$

$$T = T_3 + T_w = 0,016 (s)$$

b)
$$B = 32$$
 by flow $\lambda = \frac{384 \text{ Kbit/s}}{3048} = 187,5$
 $T_S = \frac{L}{e} = 1 = 0,004$ $\lambda'' = \frac{512 \text{ Kbit/s}}{3048} = 350$
 $M = 250$ $\lambda' = \frac{187,5}{350} = 0,75$
 $M = \frac{187,5}{350} = 0,75$

$$P_{B} = \frac{(1-p)p^{B}}{1-p^{B+1}} = \frac{(1-0.75)0.75^{32}}{1-0.75^{33}} = \frac{2.5 \times 10^{-5}}{(384 \text{ Kbilly})}$$

$$p \leq 1$$

Pana
$$p=1$$
 $P_B = \frac{1}{B+1} = \frac{1}{33} = 0,0303$ (512 kbit/s)

$$P_0 = 0 \qquad P_1 = ?$$

$$L = 1024$$
 octetor
= 8192 bits

a)
$$p = ?$$
 $N = ?$ $T = ?$ $T_{s} = ?$ $T_{w} = ?$

$$P = \frac{\lambda}{\mu}$$

$$P = \frac{\lambda}{\mu}$$
 $T_5 = \frac{L}{e} = \frac{1}{\mu} = \frac{8192}{512K} = \frac{1}{\mu}$

$$P = \frac{50}{62.5} = 0.8$$

$$N = \frac{\Lambda}{1-\Lambda} = \frac{\Lambda}{\mu - \lambda} = \frac{0.8}{1-0.8} = 4$$

$$\frac{0.8}{1-0.8} = 4$$

$$T_W = \frac{N}{M} = \frac{4}{62.5} = 0.064 \text{ s}$$

$$T_5 = \frac{1}{62,5} =$$

$$T_{5} = \frac{1}{62.5} = 16 \text{ ms}$$
 $T = T_{W} + T_{5}$ $= 80 \text{ ms}$

$$P_{B} = ?$$
 $P_{B} = \frac{(1-1)^{B}}{1-10^{B+1}} = 948 \text{ M}$

$$p' = \frac{\lambda'}{\mu} = \frac{75}{62.5} = 1.2$$

Pana
$$p >> 1$$
: $P_B = \frac{p-1}{p} = \frac{1, 2-1}{1, 2} = 0, 167$

e)
$$\lambda = 100 \text{ pacotus}/s$$
 $\beta = 0.8$

i) $e = 1624 \text{ Kbit/s}$
 $\mu = 62.5$

ii) $C = 512 \text{ Kbit/s}$
 $Tw = \frac{N}{M} = \frac{4}{125}$

$$V = \frac{1}{1-p} = \frac{0.8}{1-0.8} = 4$$

$$T_{s} = \frac{1}{2} =$$

$$T_{5} = 8192 = 1 \implies \mu = 62,5$$

$$N = 4$$
 $Tw = \frac{4}{62,5} = 64 \text{ ms}$

a) Multiple To Ken A eficisina a Ma dada pon:

$$a = \frac{T_{prop}}{T_{pacota}} = 8$$

$$S = \frac{1}{1 + \frac{a}{N}}$$

$$N = 32$$

$$T_{pacota} = \frac{L}{R} = \frac{3000}{100 \text{ M}} = 30 \text{ M}$$

$$5 = \frac{1}{1 + \frac{240\mu}{30\mu}} = \frac{1}{1 + 0.25} = 0.8$$

Utilizaru Kultiple Token pongue pana a »1 a mais conveniente utilizar, em vez do single Tokkin, já que pana este a eficiência má minor. Se aumentamos os pacotes aumentariam b)

Númo elivado de pacotes Rmax=? Rmín=?

Rmax = 100 Mbit/s. 0,8 = 80 Mbit/s

Romin =)

Como a>1 no limite Trata-se la single Token:

$$5 = \frac{1}{a + \frac{9}{N}} = \frac{1}{8 + \frac{8}{32}} = 0,121$$

Rmin = 100 Mbit/s . 0,121 = 12,1 Mbit/s

$$T_{RT} = N \left(T_{pncp} + \frac{T_{pncp}}{N} \right) = 32 \cdot \left(240 \mu + \frac{240 \mu}{32} \right) = 7,92 \text{ m}$$

$$T_{R+} = N \left(\frac{T_{PREP}}{N} \right) = 32 \cdot \left(\frac{30\mu + 240\mu}{32} \right) = 1,20 \text{ my}$$

e)

L= 15 Mbits

R= 40 Mbit/s

Número pacotes: 15 Mbits = 5000 pacotus

Trotal = TRT. N=paotes = 1,20 m. 5000 = 6