Muovere i primi passi con LATEX Parte 1: Le basi

Mirto Musci, PhD

Assegnista di ricerca, Università di Pavia Dipartimento di Ingegneria Industriale e dell'Informazione

6 ottobre 2017

Esempi

$$\sum_{k=1}^{k} \frac{1}{n} \int_{1}^{k+1} \frac{1}{x} dx = \ln(k+1) \tag{1}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$
 (2)

$$\int_{a}^{b} f(x)dx = F(b) - F(a) \tag{3}$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \tag{4}$$

$$r = |z| = \sqrt{x^2 + y^2} \tag{5}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}$$
 (6)

Esempi

If I speak in the tongues of men or of angels, but do not have love, I am only a resounding gong or a clanging cymbal. If I have the gift of prophecy and can fathom all mysteries and all knowledge, and if I have a faith that can move mountains, but do not have love, I am nothing. If I give all I possess to the poor and give over my body to hardship that I may boast, but do not have love, I gain nothing. Love is patient, love is kind. It does not envy, it does not boast, it is not proud. It does not dishonor others, it is not self-seeking, it is not easily angered, it keeps no record of wrongs. Love does not delight in evil but rejoices with the truth. It always protects, always trusts, always hopes, always perseveres.

Esempi

Τη πάντα διδούση καὶ ἀπολαμβανούση φύσει ὁ πεπαιδευμένος καὶ αἰδήμων λέγει· "δὸς, δ θέλεις, ἀπόλαβε, δ θέλεις". Λέγει δὲ τοῦτο οὐ καταθρασυνόμενος, ἀλλὰ πειθαρχῶν μόνον καὶ εὐνοῶν αὐτῆ.

- Marco Aurelio, Ricordi

Perché LATEX?

- Permette di realizzare documenti professionali e esteticamente appaganti
 - ► Specialmente se contengono matematica
- ▶ È stato creato da scienziati, per scienziati
 - Una comunità enorme e molto attiva
 - ... ma il suo uso è estendibile ad ogni campo
- ▶ È potentissimo ed estendibile a piacimento
 - Pacchetti per articoli scientifici, libri, presentazioni, fogli di calcolo, . . .

Come si pronuncia?

- ► T_FX è stato creato a Stanford da Donald E. Knuth
- ▶ Il nome deriva dalla radice greca di parole come $\tau \epsilon \chi \nu \dot{\eta}$ che significa *arte* o *tecnica*.
 - ▶ la pronuncia dovrebbe essere *tech* (come il tedesco *Bach*)
 - ▶ in italiano solitamente si usa *tek*
- ▶ LATEX è un set di macro per TEXcreato da Leslie Lamport
 - oramai nessuno usa più TFXbase
 - la pronuncia usuale italiana è *latek*.

Come funziona?

- Un documento LATEXè composto di testo semplice inframezzato a comandi che ne descrivono la struttura e il significato.
- L'applicazione latex compila il testo e i comandi per produrre un documento perfettamente formattato.

La rana in Spagna \emph{gracida} in campagna.

La rana in Spagna gracida in campagna.

Come funziona LATEX?

Facciamo un paragone con il signor Pippo che vuole scrivere un programma nel suo linguaggio preferito, C

- 1. Pippo scrive un documento di testo che chiamerà pippo.c.
- 2. Pippo dà sul terminale il comando gcc pippo.c
- 3. Se la compilazione dà errori, Pippo rivede il programma, lo corregge e ritorna al passo 2.
- 4. Se la compilazione ha successo, viene prodotto un file eseguibile, a.out.
- 5. Pippo prova a vedere se il programma fa ciò che desidera.

Come funziona LATEX?

Ora Pippo vuole scrivere la documentazione per il suo programma.

- 1. Pippo scrive un documento di testo che chiamerà pippo.tex.
- 2. Pippo dà sul terminale il comando

```
latex pippo.tex
```

- 3. Se la compilazione dà errori, Pippo rivede il documento, lo corregge e ritorna al passo 2.
- Se la compilazione ha successo, viene prodotto un file pippo.dvi.
- 5. Pippo chiama il visualizzatore con

```
xdvi pippo
```

e controlla che non ci siano errori concettuali.

Come funziona pdfLATEX?

Ora Pippo vuole scrivere la documentazione per il suo programma in un formato più comune.

- 1. Pippo ha già il documento di testo chiamato pippo.tex.
- 2. Pippo dà sul terminale il comando

```
pdflatex pippo.tex
```

3. Viene prodotto un file pippo.pdf.

Dato che il documento pippo.tex è lo stesso di prima, il documento finale è solo la resa in PDF di quello precedente.

Alcuni esempi di comandi...

```
\begin{itemize}
\item T\'e
\item Latte
\item Biscotti
\end{itemize}
▶ Té
▶ Latte
▶ Biscotti
```

```
\begin{figure}
\includegraphics{pulcino}
\end{figure}
```

```
\begin{equation} \\ \alpha + \beta + 1 \\ \end{equation} \\ \end{equation}
```

Immagine tratta da http://www.andy-roberts.net/writing/latex/importing_images

Un vero e proprio cambio di paradigma

- Usate i comandi per descrivere 'cio che è' e non 'ciò che appare'
- Concentratevi sul contenuto
- Lasciate fare a LATEX il suo lavoro!

Iniziamo...

► II documento LATEX minimale:

```
\documentclass{article}
\begin{document}
Ciao Mondo! % il contenuto va qui...
\end{document}
```

- ► Tutti i comandi iniziano con un backslash 🕥 .
- Ogni documenti inizia con un comando \documentclass.
- L'argomento tra parentesi graffe () indica a LATEX che tipo di documento stiamo creano: un article.
- ▶ Il simbolo di percento ② dà inizio ad un commento LATEX ignorerà il resto della riga.

Iniziamo... con Overleaf

- Overleaf è un webapp per scrivere documenti in LATEX.
- ► 'Compila' un sorgente LATEX e mostra i risultati in automatico e in tempo reale.

Clicca qui per aprire il documento di prima con **Overleaf**

Per migliore compatibilità, usate Chrome o un FireFox recente.

- ► Nel resto del corso, provate ad eseguire gli esempi, copiandoli direttamente su Overleaf.
- No, davvero, è il miglior modo di imparare!

Inserire il testo

- ► Tutto il testo di un qualunque documento va inserito tra \begin{document} e \end{document}.
- ▶ Nella maggior parte dei casi, potete inserire testo normalmente.

```
Le parole sono separate da uno o pi\`u uno o più spazi.

I paragrafi sono separati da una o pi\`u paragrafi sono separati da una o più righe vuote.
```

▶ Lo spazio nel file sorgente viene aggregato nell'output.

La rana	in Spagna	La rana in Spagna gracida
gracida in	montagna.	in montagna.

Inserire il testo: caratteri speciali

► Le virgolette richiedono attenzione: va usato un apostrofo rovesciato a sinistra e un apostrofo semplice a destra

```
Virgolette semplici: `testo'. Virgolette semplici: 'testo'.

Virgolette doppie: ``testo''. Virgolette doppie: "testo".
```

- ► Alcuni simboli comuni hanno significato speciale in LATEX:
 - simbolo percento
 cancelletto / tag
 e commerciale / ampersand
 - simbolo dollaro
- Se provate ad inserirli direttamente, otterrete un messaggio di errore. Se volete mostrar-

li nel documento dovete fare escape, precedendoli con un backslash \bigcirc

\\$\%\&\#! **\$**%&#!

Inserire il testo: gli accenti

- ▶ Dato che non scriviamo in inglese, gli accenti sono importanti.

 - \(\bar{'} \) si usa per l'accento grave \(\bar{'} \) si usa per l'accento acuto.

R\`{e}n\'{e} Descartes \'{e} noto	Rèné Descartes é noto alla
alla latina come `Cartesio'.	latina come 'Cartesio'. Fu
Fu scienziato e ``filosofo''.	scienziato e "filosofo". Morì
Mor\`{i} a Stoccolma di polmonite.	a Stoccolma di polmonite.

Altri accenti non presenti in italiano:

Dieresi: Fl\"ugel	Dieresi: Flügel
Circonflesso: H\^opital	Circonflesso: Hôpital
Tilde: Vamos a ga\~nar	Tilde: Vamos a gañar

Gestire gli errori

- ► LATEX può confondersi nel compilare un documento. Se succede, si interrompe con un messaggio di errore.
- ▶ Dovete correggere gli errori, se volete avere qualche speranza di produrre un documento.
- Per esempio, se provate a scrivere \epmh invece di \emph, \text{LTEX} si lamenterà con un errore "undefined control sequence" dato che, effettivamente, "epmh" non esiste come comando.

Qualche consiglio sugli errori

- 1. Niente panico! Succede a tutti.
- Correggeli immediatamente se quello che avete appena scritto ha causato un errore, perlomeno sapete da dove partire per il debugging.
- 3. Se ci sono errori multipli, correggeteli uno alla volta iniziando dal primo potrebbero essere errori a cascata.

Esercizio 1

Digita questo in LATEX:1

In March 2006, Congress raised that ceiling an additional \$0.79 trillion to \$8.97 trillion, which is approximately 68% of GDP. As of October 4, 2008, the "Emergency Economic Stabilization Act of 2008" raised the current debt ceiling to \$11.3 trillion.

Clicca per aprire l'esercizio in **Overleaf**

- Suggerimento: occhio ai caratteri speciali!
- Dopo qualche tentativo, cliccate qui per la soluzione

 $^{^{1} \}verb|http://en.wikipedia.org/wiki/Economy_of_the_United_States|$

Ambienti matematici: il dollaro

Come mai il dollaro è un simbolo speciale? Lo si usa per separare l'ambiente matematico dal testo.

```
% senza ambiente matematico:
Siano a e b due interi positivi diversi, e sia c = a - b + 1.

% con ambiente matematico:
Siano $a$ e $b$ due interi positivi diversi, e sia c = a - b + 1.

% con ambiente matematico:
Siano $a$ e $b$ due interi positivi diversi, e sia c = a - b + 1.
```

- I simboli dollaro vanno sempre usati in coppia un per aprire l'ambiente matematico, l'altro per chiouderlo.
- Come al solito, LATEX gestisce la spaziatura in automatico, ignorando quella dell'utente.

```
Sia y=mx+b dove \ldots Sia y=mx+b dove ...

Sia y=mx+b dove ...
```

Ambienti matematici: Notazione

▶ Usa il circon-

flesso 🕥 per gli apici e la linea bassa o *underscore* 🕞 per i pedici.

$$y = c_2 x^2 + c_1 x + c_0$$
 $y = c_2 x^2 + c_1 x + c_0$

▶ Usa le parentesi graffe ﴿ ﴾ per apici e pedici compositi.

\$F_n = F_n-1 + F_n-2\$ % oops!
$$F_n = F_n - 1 + F_n - 2$$

\$F_n = F_{n-1} + F_{n-2}\$ % ok! $F_n = F_{n-1} + F_{n-2}$

► LATEX offre molti comandi per le lettere greche e la notazione piú comune.

```
$\mu = \alpha \int_t e^{q/rt} dt$  \mu = \alpha \int_t e^{q/rt} dt  $\Omega = \sum_{k=1}^{n} \omega_k$  \Omega = \sum_{k=1}^n \omega_k
```

Ambienti matematici: Equazioni non in linea

Un'equazione lunga e complessa, andrebbe mostrata a parte usando \begin{equation} e \end{equation}.

```
Le radici di un'equazione quadratica sono date da \begin{equation} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equation}} & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \text{lend{equa
```

Attenzione: LATEX ignora gli spazi nella matematica, ma non è in grado di gestire le line vuote — non usatele!

Intermezzo: Ambienti

- equation è un ambiente un contesto sematico.
- Un comando può produrre risultati diversi in contesti diversi.

 Nota che Σ è più grande nell'ambiente equation, e che apici e pedici cambiano di posizione, nonostante si siano usati gli stessi comandi

Per inciso, avremmo potuto scrivere \$...\$ come \begin{math}...\end{math}.

Intermezzo: Ambienti

- ► I comandi \begin e \end si possono usare per creare molti ambienti diversi.
- ▶ Gli ambienti itemize ed enumerate generano liste.

\begin{itemize} % lista puntata \item Biscotti	► Biscotti
\item T\'e \end{itemize}	▶ Té
\begin{enumerate} % lista numerata \item Biscotti	1. Biscotti
\item T\'e \end{enumerate}	2. Té

Intermezzo: Pacchetti

- ► Tutti i comandi e gli ambienti mostrati fino ad adesso, sono parte di La base.
- ▶ I pacchetti sono librerie di comandi e ambienti aggiuntivi: ci sono migliaia di pacchetti liberamente disponibili.
- ▶ I pacchetti che vogliamo usare vanno caricati esplicitamente usando il comando \usepackage nel *preambolo*.
- Esempio: amsmath della American Mathematical Society.

```
\documentclass{article}
\usepackage{amsmath} % preambolo
\begin{document}
% da ora in poi possiamo usare i comandi di amsmath...
\end{document}
```

Ambienti matematici: Esempi con amsmath

▶ Usa equation* per inserire equazioni non numerate.

```
\label{eq:omegak} $$ \begin{array}{c} \begin{array}{c} \text{\coloredge} & \Omega = \sum_{k=1}^n \omega_k \\ \text{\coloredge} & \\ \text{\coloredge} & \end{array} $$ \\ \noalign{\coloredge} & \Omega = \sum_{k=1}^n \omega_k \\ \text{\coloredge} & \end{array} $$ \\ \noalign{\coloredge} & \Omega = \sum_{k=1}^n \omega_k \\ \text{\coloredge} & \Omega = \sum_{k=1}
```

▶ LATEX tratta lettere adiacenti come variabili moltiplicate tra di loro, ma non è sempre desiderabile: amsmath definisce comandi per la maggior parte delle funzioni matematiche.

```
\begin{equation*}{l} & sbagliato! \\ & min_{x,y} & (1-x)^2 + 100(y-x^2)^2 \\ & \end{equation*} & min_{x,y} & (1-x)^2 + 100(y-x^2)^2 \\ & \end_{x,y} & (1-x)^2 + 100(y-x^2)^2 \\ & \end{equation*} & min_{x,y} & (1-x)^2 + 100(y-x^2)^2 \\ & \end_{x,y} &
```

▶ Per quelle non predefinite, si usa \operatorname.

```
\label{eq:begin} $$ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \operatorname{login}\{equation*\} \\ \operatorname{beta_i} &= \\ \operatorname{frac}\{\operatorname{logeratorname}\{\operatorname{Cov}\}(R_i,R_m)\} \\ &= \\ \operatorname{logeratorname}\{\operatorname{Var}\}(R_m)\} \\ \operatorname{logeratorname}\{\operatorname{Cov}\}(R_m) \end{array} $$$ \\ \\ \begin{array}{ll} \beta_i &= \\ \overline{\operatorname{Var}(R_m)} \\ \operatorname{Var}(R_m) \end{array} $$$ \\ \\ \begin{array}{ll} \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \end{array} $$$ \\ \begin{array}{ll} \\ \operatorname{Cov}(R_i,R_m) \\ \operatorname{Var}(R_m) \\ \operatorname{Var}(R_m
```

Ambienti matematici: Esempi con amsmath

▶ Allinea una sequenza di equazioni con il simbolo di uguale

$$(x+1)^3 = (x+1)(x+1)(x+1)$$
$$= (x+1)(x^2+2x+1)$$
$$= x^3 + 3x^2 + 3x + 1$$

utilizzando l'ambiente align*.

```
\begin{align*}
(x+1)^3 &= (x+1)(x+1)(x+1) \\
&= (x+1)(x^2 + 2x + 1) \\
&= x^3 + 3x^2 + 3x + 1
\end{align*}
```

- ▶ Una ampersand (a) separa la colonna sinistra (prima di =) dalla colonna destra (dopo di =).
- ▶ Un doppio backslash 🕥 🕥 inizia una nuova linea.

Esercizio 2

Digita questo in LATEX:

Sia X_1, X_2, \ldots, X_n una serie di variabili casuali indipendenti ed identicamente distribuite con media $\mathsf{E}[X_i] = \mu$ e varianza $\mathsf{Var}[X_i] = \sigma^2 < \infty$, con media

$$S_n = \frac{1}{n} \sum_{i}^{n} X_i$$

Per n che tende ad infinito, le variabili casuali $\sqrt{n}(S_n - \mu)$ convergono in senso distribuzionale ad una gaussiana $N(0, \sigma^2)$.

Clicca per aprire questo esercizio in **Overleaf**

- ▶ Suggerimento: il comando per ∞ è \infty.
- Qui puoi trovare la mia soluzione .

Fine della prima parte

- Congratulazioni! Avete imparato a...
 - ▶ Digitare testo in LATEX.
 - Utilizzare i comandi di base.
 - Gestire gli errori via via che compaiono.
 - Scrivere belissima matematica.
 - Utilizzare alcuni degli ambienti.
 - Caricare pacchetti.
- Non è fantastico?
- Nella seconda parte, impareremo ad usare LATEX per scrivere documenti strutturati con sezioni, riferimenti incrociati, figure, tabelle e bigliografia. Alla prossima!