

Arquitetura de Computadores

Prof. Marcos Grillo marcos.grillo@anhanguera.com

Apresentação da Disciplina

PLANO DE ENSINO E APRENDIZAGEM					
	CURSO: Ciência da Computação				
Disciplina: Período Letivo: Série: Periodo: Semestre de Ano de				Ano de Ingresso:	
Arquitetura de Computadores	2° sem/2013	6ª Série	Não definido	Ingresso:	2011
C.H. Teórica:	C.H. Outras: C.H. Total:		tal:		
40	20 60				

Ementa

Arquiteturas RISC e CISC. Pipeline. Paralelismo de Baixa Granularidade. Processadores Superescalares e Superpipeline. Multiprocessadores. Multicomputadores. Arquiteturas Paralelas e não Convencionais. Microprocessadores e Computadores Pessoais. Organização de Memória. Sistemas de Entrada e Saída, Sistemas de vídeo, Som e Outros.

Objetivos

Compreender e assimilar os componentes de dispositivos que compõem o computador. Formas de organização e de comunicação entre os subsistemas computacionais (processador, memória, disco e etc.)

Conhecer a estrutura de funcionamento de uma CPU. conhecer as arquiteturas de computadores do tipo CISC e RISC. Conhecer arquiteturas de computadores pessoalis, multicomputadores e multiprocessadores.

Apresentação da Disciplina

	Cronograma de Aulas			
Semana nº.	Tema			
1	Estrutura básica de um computador pessoal			
2	Estrutura e Funcionamento da CPU: conjunto de instruções			
3	Estrutura e Funcionamento da CPU: ciclo de instruções			
4	Arquitetura RISC e CISC			
5	Registradores: tipos de registradores			
6	Registradores mais utilizados em computadores pessoais			
7	Arquitetura Pipeline			
8	Atividades de Avaliação.			
9	Memorias: principal			
10	Memorias: Secundária, cache			
11	Dispositivos de entradas e saída			
12	Barramento: Tipos, arquitetura, adaptadores			
13	Sistema de video: GPU, Memórias, VGA, HDMI, 3D			
14	Sistema multimídia			
15	Análise de desempenho de computadores (Benchmark)			
16	Arquitetura de computadores com paralelismo: Cluster, Cloud.			
17	Computadores dedicados e embarcados			
18	Prova Escrita Oficial			
19	Exercícios de Revisão.			
20	Prova Substitutiva			

Literatura.

HENNESSY, J. L.. **Arquitetura de Computadores** : Uma Abordagem Quantitativa. 4° ed. São Paulo: Campus - Elsevier, 2009.

Sistema de Avaliação		
1° Avaliação - PESO 4,0	2° Avaliação - PESO 6,0	
Atividades Avaliativas a Critério do Professor	Prova Escrita Oficial	
Práticas: 3	Práticas: 3	
Teóricas: 7	Teóricas: 7	
Total: 10	Total: 10	

Cronograma de Aulas - 1ª etapa.

- Estrutura básica de um computador pessoal
- Estrutura e Funcionamento da CPU: conjunto de instruções
- Estrutura e Funcionamento da CPU: ciclo de instruções
- Arquitetura RISC e CISC
- Registradores: tipos de registradores
- Registradores mais utilizados em computadores pessoais
- Arquitetura Pipeline
- Atividades de Avaliação.

Cronograma de Aulas - 2ª etapa.

- Memórias: principal;
- Memórias: Secundária, cache;
- Dispositivos de entradas e saída;
- Barramento: Tipos, arquitetura, adaptadores;
- Sistema de vídeo;
- Sistema multimídia;
- Análise de desempenho de computadores (Benchmark);
- Arquitetura de computadores com paralelismo;
- Computadores dedicados e embarcados;
- Prova Escrita Oficial;
- Exercícios de Revisão;
- Prova Substitutiva;

Dispositivos de entrada e saída

Dispositivos de entrada

São dispositivos do meio externo que quando acionados inserem informações ao computador através de um barramento.

Exemplo:

- ▶ Teclado;
- Mouse;
- Leitores de Dados;
- Scanner;
- Webcam.

Dispositivos de Saída

São dispositivos que apresentam um resultado enviado pelo computador para ser interpretado pelo usuário (sendo ele uma pessoa ou outro dispositivo/computador)

Exemplo:

- Monitor;
- Impressora;
- Alto-falantes.

Saída de Vídeo

Ref. Clube do Hardware

VGA (Video Graphics Array)

Resolução:

800x600 (800 pixels horizontais por 600 linhas verticais)

Taxa de atualização:

70 Mhz

Clock:

25MHz ou 28MHz

Cores:

262144 (Para cada vermelho, verde e azul)

Ref.IEEE

HDMI (High-Definition Multimedia Interface)

HDMI version	1.0	1.1	1.2
Data de lançamento	9 de dezembro de 2002	20 de Maio de 2004	8 de Agosto de 2005
Clock Máximo (MHz)	165	165	165
Máximo TMDS throughput por canal (Gbit/s) (TMDS reduz a interferência)	1.65	1.65	1.65
Máxima Transferência de Audio (Mbit/s)	36.86	36.86	36.86
Máxima definição de cor (bit/px)	24	24	24
Resolução máxima	1920×1200p60	1920×1200p60	1920×1200p60

HDMI (High-Definition Multimedia Interface)

HDMI version	1.3	1.4	2.0
Data de lançamento	22 de Junho de 2006	28 de Maio de, 2009	4 de Setembro 2013
Clock Máximo (MHz)	340	340	600
Máximo TMDS throughput por canal (Gbit/s) (TMDS reduz a interferência)	3.40	3.40	6
Máxima Transferência de Audio (Mbit/s)	36.86	36.86	49.152
Máxima definição de cor (bit/px)	48	48	48
Resolução máxima	2560×1600p75	3840×2160p30	3840×2160p60

Saída Impressão

Barramento

O processador se comunica com os outros periféricos do micro através de um caminho de dados chamado barramento. Desde o lançamento do primeiro PC em 1981 até os dias de hoje, uma série de tipos de barramentos foram desenvolvidos para permitir a comunicação dos periféricos de entrada e saída com o processador. Podemos citar os seguintes barramentos:

- •ISA
- EISA
- VLB
- PCI
- AGP
- PCI Expres

Barramento

A principal diferença entre os diversos tipos de barramentos está na quantidade de bits que podem ser transmitidos por vez e na frequência de operação utilizada.

Atualmente, os dois tipos de barramentos de expansão mais rápidos do micro são os barramentos PCI e AGP. Na tabela abaixo listamos as taxas de transferência desses barramentos.

O barramento PCI-X é uma extensão do barramento PCI voltado para o mercado computadores de alta velocidade.

Site da Intel: http://www.intel.com/support/pt/processors/tools/frequencyianhanguerad/sb/cs-007627.htm

Barramento

Barramento	Clock	bits	Dados por pulso de clock	Taxa de Transferência
PCI	33 MHz	32	1	133 MB/s
PCI	66 MHz	32	1	266 MB/s
PCI	33 MHz	64	1	266 MB/s
PCI	66 MHz	64	1	533 MB/s
PCI-X 64	66 MHz	64	1	533 MB/s
PCI-X 133	133 MHz	64	1	1.066 MB/s
PCI-X 266	133 MHz	64	2	2.132 MB/s
PCI-X 533	133 MHz	64	4	4.266 MB/s
AGP x1	66 MHz	32	1	266 MB/s
AGP x2	66 MHz	32	2	533 MB/s
AGP x4	66 MHz	32	4	1.066 MB/s
AGP x8	66 MHz	32	8	2.133 MB/s

Barramento ISA

Apesar das limitações técnicas de sua especificação (16 bits e 8MHz de clock), permite que se projetem placas de expansão simples, baratas e que oferecem desempenhos suficientes para determinados periféricos, como placas fax-modem, placas de som e portas de comunicação serial e paralela.

Vale observar que o arranjo de sinais elétricos do barramento que é usado pelas placas ISA é o mesmo que o especificado pela IBM, em 1984, por ocasião do projeto do PC AT.

Barramento PCI

Motivado pelas limitações técnicas do barramento ISA (8MHz, 16 bits), a Intel, em 1992, introduziu a especificação de barramento PCI (Peripheral Component Interconnect), que permite a comunicação de palavras de 32 ou 64 bits, a 33MHz.

Mais que uma nova especificação de barramentos para PCs, o PCI possui a característica de universalidade, ou seja, pode ser aproveitado por qualquer processador em qualquer arquitetura de máquina.

Barramento AGP

"AGP", é a abreviação de "Acelerated Graphics Port", ou, numa tradução livre, porta rápida de gráficos. Como o próprio nome sugere, o AGP veio para permitir a existência das placas de vídeo 3D poderosas que temos atualmente, assim como servir como base para o lançamento de placas ainda mais potentes no futuro.

Na placa mãe, o slot AGP é o encaixe marrom que fica entre os slots PCI (brancos) e o encaixe do processador.

Barramento PCI-Express

O barramento PCI Express foi desenvolvido para substituir os barramentos PCI e AGP. Ele é compatível em termos de software com o barramento PCI, o que significa que os sistemas operacionais e drivers antigos não precisam sofrer modificações para suportar o barramento PCI Express.

O barramento PCI Express é mais um exemplo de como as transferências de dados com o micro estão migrando da comunicação paralela para a comunicação em série.

Taxas de transferências

Barramento	Taxa de Transferência		
PCI	133 MB/s		
AGP 2x	533 MB/s		
AGP 4x	1.066 MB/s		
AGP 8x	2.133 MB/s		
PCI Express x1	250 MB/s		
PCI Express x2	500 MB/s		
PCI Express x4	1.000 MB/s		
PCI Express x16	4.000 MB/s		
PCI Express x32	8.000 MB/s		

Barramento Firewire

O Firewire é um barramento serial de altíssimo desempenho que proporciona a conexão de diversos equipamentos, utilizando uma topologia flexível e proporcionando uma relação custo-benefício bastante atraente.

O barramento Firewire, criado pela Apple no início da década de 90, foi adaptado, em 1995, e padronizado pela norma IEEE 1394. Sua capacidade de comunicação pode atingir até 30 vezes a velocidade do USB (Universal Serial Bus), a idéia é parecida com a do USB: possui uma interface simples capaz de receber até 63 dispositivos, como drives de discos, câmeras digitais, televisão digital, computadores, etc.

Barramento

Placa mãe padrão

http://www.clubedohardware.com.br/printpage/Tudo-o-Que-Voce-Precisa-Saber-Sobre-Chipsets/568

http://www.intel.com/support/pt/processors/tools/frequencyid/sb/cs-007627.htm