Семинар 13

• Механические волны

Поперечная волна распространяется вдоль упругого шнура со скоростью v=15 м/с. Период T колебаний точек шнура равен 1,2 с, амплитуда A=2 см. Определить:

- 1) длину волны λ ;
- 2) фазу φ колебаний, смещение ξ , скорость ξ' и ускорение ξ'' точки, отстоящей на расстоянии x=45 м от источника волн в момент t=4 c;
- 3) разность фаз $\Delta \varphi$ колебаний двух точек, лежащих на луче и отстоящих от источника волн на расстояниях x_1 =20 м и x_2 =30 м.

Ombem: $\lambda = 18 \text{ m}; \ \varphi = 5.24 \ pad = 300^{\circ}; \ \xi = 1 \ \text{cm}; \ \xi' = 9 \ \text{cm/c}; \ \xi'' = 27.4 \ \text{cm/c}^2; \ \Delta \varphi = 3.49 \ pad = 200^{\circ}$

Показать, что выражение $\xi(x,t)=A$ $\cos(\omega t-kx)$

удовлетворяет волновому уравнению $\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2}$ при

условии, что $\omega = kv$.

Плоская звуковая волна возбуждается источником колебаний частоты v=200 Гц. Амплитуда A колебаний источника равна 4 мм. Написать уравнение колебаний источника $\xi(0, t)$, если в начальный момент смещение точек источника максимально. Найти смещение $\xi(x, t)$ точек среды, находящихся на расстоянии x=100 см от источника, в момент t=0,1 с. Скорость у звуковой волны принять равной 300 м/с. Затуханием пренебречь.

Ombem: $\xi(0, t) = A\cos(2\pi vt)$; $\xi(x, t) = -2 \text{ MKM}$

В однородной среде распространяется плоская упругая волна, описываемая уравнением ξ =a $\exp(-\gamma x)*\cos(\omega t - kx)$. Положив λ =1,00 м и γ =0,100 м⁻¹, найти разность фаз $\Delta \varphi$ в точках, для которых отношение амплитуд смещения частиц среды η =1,0100.

Ombem: $\Delta \varphi = 0.6 \ pad$

Источник звука частотой v=18 к Γ μ приближается к неподвижно установленному резонатору, настроенному на акустическую волну длиной $\lambda=1,7$ см. С какой скоростью должен двигаться источник звука, чтобы возбуждаемые им звуковые волны вызвали колебания резонатора? Температура T воздуха равна 290~K.

Ombem: $U_{ucm} = 36 \text{ M/c}$

На оси х находятся приемник и источник звуковых колебаний с частотой $v_0 = 2000$ Гц. Источник совершает гармонические колебания вдоль этой оси с круговой частотой ω и амплитудой а = 50 см. При каком значении ω ширина частотного интервала, воспринимаемого неподвижным приемником, будет составлять $\Delta v =$ $200 \, \Gamma$ ц? Скорость звука $v = 340 \, \text{м/c}$.

Omeem: $\omega = 34 \, c^{-1}$