网络信息论 2

- ① 多输入多输出(MIMO)信道
- ② 广播信道
- ③ 广义图网络

网络信息论 2

- ① 多输入多输出(MIMO)信道
- ② 广播信道
- ③ 广义图网络

多输入多输出 (MIMO) 高斯信道

MIMO 高斯信道的数学模型可以写为:

$$y = Hx + n$$
.

- $x: M \times 1$ 的发射向量, $E[xx^T] = K_x$
- ullet n: 加性高斯白噪声 (AWGN) 向量,与 x 相互独立, $n \sim \mathcal{N}(\mathbf{0}, K_n)$
- y: N×1 接收向量
- H: N×M 信道矩阵 (接收端已知)

MIMO 高斯信道容量

互信息:

$$I(\boldsymbol{X}; \, \boldsymbol{Y}) = h(\boldsymbol{Y}) - h(\boldsymbol{Y}|\boldsymbol{X})$$

$$= h(\boldsymbol{Y}) - h(\boldsymbol{H}\boldsymbol{X} + \boldsymbol{N}|\boldsymbol{X})$$

$$= h(\boldsymbol{Y}) - h(\boldsymbol{N})$$
由于 $E[\boldsymbol{Y}\boldsymbol{Y}^T] = \boldsymbol{H}\boldsymbol{K}_x\boldsymbol{H}^T + \boldsymbol{K}_n$,当 $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{K}_x)$ 时五信息最大:
$$C = \frac{1}{2}\log[\det(\boldsymbol{H}\boldsymbol{K}_x\boldsymbol{H}^T + \boldsymbol{K}_n)] - \frac{1}{2}\log[\det(\boldsymbol{K}_n)]$$

$$= \frac{1}{2}\log[\det((\boldsymbol{H}\boldsymbol{K}_x\boldsymbol{H}^T + \boldsymbol{K}_n)\boldsymbol{K}_n^{-1})]$$

$$= \frac{1}{2}\log[\det(\boldsymbol{I} + \boldsymbol{K}_n^{-1}\boldsymbol{H}\boldsymbol{K}_x\boldsymbol{H}^T)] \quad (比特/发送)$$

MIMO 高斯信道容量—收端已知发端未知 H

- 如果发端未知 H, 则无法优化 $K_x \Rightarrow K_x = \frac{P_{sum}}{M} I$ 最优
- \bullet 当 $K_n = \sigma^2 I, K_x = \frac{P_{sum}}{M} I,$ 可得

$$C = \frac{1}{2} \log \left[\det(\mathbf{I} + \frac{P_{sum}}{M\sigma^2} \mathbf{H} \mathbf{H}^T) \right]$$
 (比特/发送)

• 对大规模 MIMO 系统,通常 H 中元素独立高斯, $M,N \to \infty$,且 M=N,则 $\frac{1}{N}HH^T \to I_N$ (大数定律),因此,

$$C = \frac{N}{2} \log \left(1 + \frac{P_{sum}}{\sigma^2} \right)$$
 (比特/发送)

MIMO 高斯信道容量—收发都已知 H

- 收发都已知 H, 可在 $\operatorname{tr}\{K_x\} = P_{sum}$ 约束下,优化 K_x
- 设 M=N, 令 $H=U^T \Lambda V$ (奇异值分解), 其中 Λ 是对角矩阵, U 和 V 是酉矩阵

$$y' = \Lambda^{-1} Uy = \Lambda^{-1} UU^T \Lambda Vx + \Lambda^{-1} Un = x' + n',$$

$$\Rightarrow y_i' = x_i' + n_i', \quad \forall i = 1, \dots, N,$$

其中
$$n_i' \sim \mathcal{N}(0, \sigma_i^2/\lambda_i^2), E\{x_i'^2\} \sim \mathcal{N}(0, P_i)$$

• 功率注水: 当 $x_i \sim \mathcal{N}(0, P_i^*)$ 时达到信道容量:

$$P_{i}^{*} = (v - \sigma_{i}^{2}/\lambda_{i}^{2})^{\dagger} = \max(v - \sigma_{i}^{2}/\lambda_{i}^{2}, 0)$$

$$P_{sum} = \sum_{i=1}^{N} P_{i}^{*}$$

• 信道容量:
$$C = \frac{1}{2} \sum_{i=1}^{N} \log(1 + \frac{P_i^*}{\sigma_i^2/\lambda_i^2})$$

网络信息论 2

- ① 多输入多输出 (MIMO) 信道
- ② 广播信道
- ③ 广义图网络

广播信道

广播信道由输入字母表 \mathcal{X} , 输出字母表 \mathcal{Y}_1 与 \mathcal{Y}_2 , 以及概率转移函数 $p(y_1,y_2|x)$ 组成

一般广播信道容量依旧是个开放问题

退化广播信道

定义: 广播信道是物理退化的,如果 $p(y_1,y_2|x) = p(y_1|x)p(y_2|y_1)$,即, $X \to Y_1 \to Y_2$ 为马尔可夫链。(注: Y_1 的信道比 Y_2 好.)

定理 (退化广播信道容量区域): 在退化广播信道 $\underbrace{(X_1,X_2)}_{Y} o Y_1 o Y_2$ 发

送相互独立信息的容量区域为满足下列条件的 (R_1,R_2) 组成的凸闭包:

$$R_2 < I(X_2; Y_2)$$

 $R_1 < I(X_1; Y_1|X_2)$

 Y_2 需要恢复 X_2 ; Y_1 需要恢复 X_1 不需要 X_2 .

举例: 高斯广播信道

高斯广播信道为退化信道:

$$Y_1 = X + Z_1$$

 $Y_2 = X + Z_2 = Y_1 + Z_2'$

其中 $Z_1 \sim \mathcal{N}(0, N_1), \ Z_2' \sim \mathcal{N}(0, N_2 - N_1).$ (注: $N_2 > N_1$)

举例: 高斯广播信道

 Y_2 恢复需要 X_2 ; Y_1 恢复需要 X_1 不需要 X_2 .

叠加编码 $X = X_1 + X_2$, $\alpha \in [0,1]$, Y_1 关心 X_1 , Y_2 关心 X_2 , X_1 和 X_2 独立

● 高斯广播信道的容量区域:

$$R_1 < I(X_1; Y_1 | X_2) = I(X_1; X_1 + Z_1) = \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_1} \right),$$

$$R_2 < I(X_2; Y_2) = I(X_2; X_2 + \underbrace{X_1 + Z_1 + Z_2'}_{\text{power: } \alpha P + N_2}) = \frac{1}{2} \log \left(1 + \frac{(1 - \alpha)P}{\alpha P + N_2} \right),$$

- 好信道 (X₁ → Y₁): 先译 X₂, 消除 X₂ 的干扰, 再译 X₁
- 坏信道 (X₂ → Y₂): 把 X₁ 当干扰,直接译 X₂

举例: 高斯广播信道

退化广播信道:公共信息

广播信道的码率 (R_0, R_1, R_2) , 其中

● R₀: 公共信息码率

● R₁: 用户 1 独立信息码率

● R2: 用户 2 独立信息码率

定理: 如果码率对 (R_1,R_2) 对于退化广播信道 $X \to Y_1 \to Y_2$ 是可达的且 $R_0 < R_2$,则码率三元组 (R_0,R_1,R_2-R_0) 对具有公共信息的信道是可达的。

注: 用户2的信息可被用户1恢复,可作为公共信息。

网络信息论 2

- ① 多输入多输出 (MIMO) 信道
- ② 广播信道
- ③ 广义图网络

单跳 vs 多跳

单跳网络

点对点信道 多接入信道 广播信道

单跳 vs 多跳

● 单跳网络

- 优美完整理论
- 大多数模型容量已知

● 多跳网络

- 仍在探索中
- 一般情况容量未知
 - 可以找到可达码率,即容量的上界
- 渐近长序列 vs 网络编码

图网络: 定义

图网络由以下部分构成:

- 节点集合 N
- 连接每一对节点的边集合 \mathcal{E} : $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$
- 节点 i 到节点 j 的直边的容量 $C_{i\rightarrow j}$
- 至少一个节点有信息
- 至少一个节点需要信息,接收终端集合为 D ⊂ N

图网络: 定义

有限域

有限域 \mathbb{F}_q 是一个大小为 q 的有限集, 其中可以进行加 \oplus 、减 \ominus 、乘 \otimes 、除 \oslash :

$$\{0, 1, 2, \cdots, q-1\}$$

如果 p 是素数,则域只存在于大小为 p^m , m > 1 的情况下。特别的,存在大小为 2、4、8、16、32 等的有限域。

$$\mathbb{F}_2 = \{0, 1\} \qquad \begin{array}{c|cc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array}$$

•	0	1
0	0	0
1	0	1

有限域举例

$$\mathbb{F}_3 = \{0, 1, 2\}$$
模3操作

$$\mathbb{F}_4 = \{0, 1, 2, 3\}$$
不是模4操作

		1	_	0	
0	0	1	2	3	
1	1	0	3	2	
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	2	3	0	1	
3	3	1 0 3 2	1	0	

网络特征

● 无延迟: 所有传输同时发生

● 无错误: 接收符号与发送符号相同

● 信源产生比特流,并分割成消息 w₁, w₂, w₃...

• 一条容量为 1,2,... 的链路可以传输 1,2... 个消息

● 单播 vs 组播:

• 单播: 一个信源节点, 一个信宿节点

• 组播: 一个信源节点,多个信宿节点

● 路由 vs 网络编码

路由 vs 网络编码

网络编码:节点可以向前传播所有输 入信息

单播图网络

这个网络的容量是多少?

单播图网络

这个网络的容量是多少?

容量为 1+2=3

切割及容量

对于单播网络,一个切割 $(S,S^c$ 将所有节点 N 分割成两部分,信源节点在 S,信宿节点在 S^c 。

切割及容量

一次切割的容量为:

最大流最小割理论:单播网络的容量

推论(最大流最小割): 具有一个信源节点 $(s \in S)$ 和一个信宿节点 $(d \in S^c)$ 的网络的容量 C 为

$$C = \min_{\mathcal{S} \subset \mathcal{N}, s \in \mathcal{S}, d \in \mathcal{S}^c} C(\mathcal{S}).$$

可以通过路由达到这个容量。

最大流最小割举例

绿色线切割的边有一条是-2,将它视为 0。

组播图网络

- 消息来自一个固定的字母表 {1,2,..., M}
- 组播: 一个信源节点, 多个信宿节点
- 单一的信源节点为 s
- 所有信宿需要信息
- 信宿集合为 D ⊂ N

组播网络容量的割集上界

信源节点为 s, 信宿节点集合为 D

定理: 一个具有单一信源 $(s \in S)$ 、信宿集合 D 的组播网络的容量 C 的上界为:

$$C \leq \min_{j \in \mathcal{D}} \min_{\mathcal{S} \subset \mathcal{N}, s \in \mathcal{S}, j \in \mathcal{S}^c} C(\mathcal{S}).$$

- 从信源到一个信宿 j 的容量由最大流最小割定理给出。
- 由于所有信宿都想要信息, 容量被最坏的链路主导—对所有信宿取最小

组播网络举例

蝶形网络

- 一个信源节点有消息 M
- 两个信宿节点想要获得 M
- 每条链路容量为1

割集界限

由割集界限, C=2

最优路由

假设有三个消息 w_1, w_2, w_3

- 使用两次网络
- 传输三个消息
- 吞吐 3/2 小于割集界限 2
- 组播网中路由无法达到割集极限

最优路由

假设有三个消息 w_1, w_2, w_3

- 使用两次网络
- 传输三个消息
- 吞吐 3/2 小于割集界限 2
- 组播网络中路由无法达到割集界限

网络编码

将 $M = w_1 w_2$ 分割成两个消息

- w_i 与操作 ⊕, ⊖, ⊗, ∅ 组成一个 有限域
- 信宿接收到 w₁, w₁ ⊕ w₂
- 信宿解出 w₂:

$$w_2 = (w_1 \oplus w_2) \ominus w_1$$

- 传输两个消息只用一次网络
- 可达速率 = 2
- 网络编码可达容量!

网络编码定理

网络编码定理: 一个具有单一信源 $(s \in S)$ 、信宿集合 \mathcal{D} 的组播网络的容量 C 的上界为:

$$C \leq \min_{j \in \mathcal{D}} \min_{\mathcal{S} \subset \mathcal{N}, s \in \mathcal{S}, j \in \mathcal{S}^c} C(\mathcal{S}).$$

如果可以进行网络编码, 割集界限就是容量。

网络编码的推广

网络编码的矩阵表示

有噪/干扰的网络

- 由 N 个节点组成的通用信息网络 N。
- 在每次时间索引时, 节点 i 有一个输入值 x_i 和输出值 y_i
- 信道由条件概率分布表示:

$$p_{Y|X}(y^{(1)},\ldots,y^{(N)}|x^{(1)},\ldots,x^{(N)}),$$

此函数允许网络中存在噪声和干扰。

- 从节点 i 发送到节点 j 的消息是 w^(ij)
- 信息速率为 $R^{(ij)}$, 因此消息来自 $\{1,2,\cdots,2^{nR(ij)}\}$
- 对于解码,节点 i 使用所有输入来估计 $\hat{w}^{(i,j)}$, 出错概率为:

$$P_e^{(ij)} = \Pr(w^{(ij)} \neq \widehat{w}^{(ij)})$$

如果存在编码器和解码器,使得对所有 $i,j\in\mathcal{N},P_e^{(ij)}\to 0$ 且 $n\to\infty$,则称一组速率 $R^{(i,j)}$ 是可以实现的。

信息流的割集界限

推论(信息流的割集界限): 如果码率 $R^{(ij)}$ 可达,那么一定存在联合概率分布 $p_{\boldsymbol{X}}(\boldsymbol{x})$ 满足

$$\sum_{i \in \mathcal{S}, j \in \mathcal{S}^c} R^{(ij)} \leq I(X^{(\mathcal{S})}; Y^{(\mathcal{S}^c)} | X^{(\mathcal{S}^c)}).$$

多址接入信道的最大流最小割

$$S_1 : R_1 < I(X_1; Y|X_2)$$

$$S_2: R_2 < I(X_2; Y|X_1)$$

$$S_3: R_1 + R_2 < I(X_1, X_2; Y)$$

中继信道

中继信道:最大流最小割

总结

- MIMO 信道
- 广播信道
 - 退化广播信道
 - 重叠编码: 好信道可以恢复差信道的信息
- 广义图网络
 - 单播网络: 一个信源, 一个信宿
 - 路由 达到容量
 - 组播网络: 一个信源, 多个信宿
 - 路由不能达到容量, 网络编码达到容量
 - 必须使用足够大的域
 - 有噪/干扰的网络:
 - 割集界限应用于多接入 信道和中继信道