# Cryptography Lecture 2

Arkady Yerukhimovich

August 28, 2024

### Outline

- 1 Lecture 1 Review
- Probability Review (Ch. A.3)
- 3 Perfectly-Secure Encryption (Ch. 2.1)
- 4 The One-Time Pad (Ch. 2.2)

### Lecture 1 Review

- Syllabus review
- Defining Secure Encryption

# Outline

- 1 Lecture 1 Review
- 2 Probability Review (Ch. A.3)
- 3 Perfectly-Secure Encryption (Ch. 2.1)
- 4 The One-Time Pad (Ch. 2.2)

Let  $E_1$  and  $E_2$  be events: (e.g., a coin toss comes up HEADS)

Let  $E_1$  and  $E_2$  be events: (e.g., a coin toss comes up HEADS)

•  $\overline{E}$ ,  $\neg E$  is complement of E (i.e., not E)

$$\Pr[E] = 1 - \Pr[\overline{E}]$$

Let  $E_1$  and  $E_2$  be events: (e.g., a coin toss comes up HEADS)

•  $\overline{E}$ ,  $\neg E$  is complement of E (i.e., not E)

$$\Pr[E] = 1 - \Pr[\overline{E}]$$

•  $E_1 \wedge E_2$  is conjunction (AND) of two events (i.e., they both occur)

$$\Pr[E_1 \wedge E_2] \leq \Pr[E_1]$$



Let  $E_1$  and  $E_2$  be events: (e.g., a coin toss comes up HEADS)

•  $\overline{E}$ ,  $\neg E$  is complement of E (i.e., not E)

$$\Pr[E] = 1 - \Pr[\overline{E}]$$

•  $E_1 \wedge E_2$  is conjunction (AND) of two events (i.e., they both occur)

$$\Pr[E_1 \wedge E_2] \leq \Pr[E_1]$$

•  $E_1 \vee E_2$  is disjunction (OR) of two events (i.e., at least one occurs)

$$\Pr[E_1 \vee E_2] \geq \Pr[E_1]$$

Let  $E_1$  and  $E_2$  be events: (e.g., a coin toss comes up HEADS)

•  $\overline{E}$ ,  $\neg E$  is complement of E (i.e., not E)

$$\Pr[E] = 1 - \Pr[\overline{E}]$$

•  $E_1 \wedge E_2$  is conjunction (AND) of two events (i.e., they both occur)

$$\Pr[E_1 \wedge E_2] \leq \Pr[E_1]$$

•  $E_1 \vee E_2$  is disjunction (OR) of two events (i.e., at least one occurs)

$$\Pr[E_1 \vee E_2] \geq \Pr[E_1]$$

#### Definition

 $E_1$  and  $E_2$  are independent if  $Pr[E_1 \wedge E_2] = Pr[E_1] \cdot Pr[E_2]$ 

5/21

• Conditional Probability of  $E_1$  given  $E_2$ :

$$\Pr[E_1 \mid E_2] = \frac{\Pr[E_1 \land E_2]}{\Pr[E_2]}$$

• Conditional Probability of  $E_1$  given  $E_2$ :

$$\Pr[E_1 \mid E_2] = \frac{\Pr[E_1 \land E_2]}{\Pr[E_2]}$$

• Bayes' Theorem:

If 
$$Pr[E_2] \neq 0$$
, then  $Pr[E_1 \mid E_2] = \frac{Pr[E_2 \mid E_1] \cdot Pr[E_1]}{Pr[E_2]}$ 

• Conditional Probability of  $E_1$  given  $E_2$ :

$$\Pr[E_1 \mid E_2] = \frac{\Pr[E_1 \land E_2]}{\Pr[E_2]}$$

Bayes' Theorem:

If 
$$Pr[E_2] \neq 0$$
, then  $Pr[E_1 \mid E_2] = \frac{Pr[E_2 \mid E_1] \cdot Pr[E_1]}{Pr[E_2]}$ 

Proof: By definition of conditional probability,

$$Pr[E_1 \mid E_2] \cdot Pr[E_2] = Pr[E_1 \land E_2] = Pr[E_2 \mid E_1] \cdot Pr[E_1].$$
  
So,  $Pr[E_1 \mid E_2] = \frac{Pr[E_2 \mid E_1] \cdot Pr[E_1]}{Pr[E_2]}$ 

• Law of Total Probability: If  $E_1, E_2, ..., E_n$  are a partition (non-overlapping) of all possibilities. Then, for any event A,

$$\Pr[A] = \sum_{i=1}^{n} \Pr[A \wedge E_i] = \sum_{i=1}^{n} \Pr[A \mid E_i] \cdot \Pr[E_i]$$

Proof Sketch:



• Law of Total Probability: If  $E_1, E_2, ..., E_n$  are a partition (non-overlapping) of all possibilities. Then, for any event A,

$$\Pr[A] = \sum_{i=1}^{n} \Pr[A \wedge E_i] = \sum_{i=1}^{n} \Pr[A \mid E_i] \cdot \Pr[E_i]$$

• Proof Sketch:



• Union Bound:

$$\Pr[E_1 \vee E_2] \leq \Pr[E_1] + \Pr[E_2]$$

9/21

Arkady Yerukhimovich Cryptography August 28, 2024

• Union Bound:

$$\Pr[E_1 \vee E_2] \leq \Pr[E_1] + \Pr[E_2]$$

Proof Sketch:



# Outline

- 1 Lecture 1 Review
- 2 Probability Review (Ch. A.3)
- 3 Perfectly-Secure Encryption (Ch. 2.1)
- 4 The One-Time Pad (Ch. 2.2)

# Private-key encryption





Key kMessage mEncrypt m:  $c = \text{Enc}_k(m)$ 

Key kReceive ciphertext cDecrypt c:  $m = Dec_k(c)$ 

11/21

# Security

Eve gets to observe c, but can not learn m

# **Defining Encryption Security**

### Security Guarantee

What is a successful attack?

- A learns the key k
- $\bullet$   $\mathcal{A}$  learns the message m
- ullet  ${\cal A}$  learns any character of m
- Semantic security:
   Regardless of what A knows about m, she learns no new information

#### Threat Model

What can an adversary do?

- ciphertext-only
- known-plaintext
- chosen-plaintext
- chosen-ciphertext

# **Defining Encryption Security**

### Security Guarantee

What is a successful attack?

- A learns the key k
- $\bullet$   $\mathcal{A}$  learns the message m
- ullet  ${\cal A}$  learns any character of m
- Semantic security:
   Regardless of what A knows about m, she learns no new information

#### Threat Model

What can an adversary do?

- ciphertext-only
- known-plaintext
- chosen-plaintext
- chosen-ciphertext

#### Probability Distributions:

- ullet Let M be a random variable denoting value of the message
  - ullet M ranges over plaintext space  ${\mathcal M}$
  - Distribution of M reflects A's prior knowledge of message being sent (not all messages are equally likely)

M: 000 000000 Vandom 90-6it shisy

#### Probability Distributions:

- ullet Let M be a random variable denoting value of the message
  - ullet M ranges over plaintext space  ${\mathcal M}$
  - Distribution of M reflects A's prior knowledge of message being sent (not all messages are equally likely)
- ullet Let K be a random variable denoting the key
  - ullet K ranges over keyspace  ${\mathcal K}$
  - Distribution of K is defined by Gen

#### Probability Distributions:

m = M

- ullet Let M be a random variable denoting value of the message
  - M ranges over plaintext space
  - Distribution of M reflects A's prior knowledge of message being sent (not all messages are equally likely)
- Let K be a random variable denoting the key
  - ullet K ranges over keyspace  ${\mathcal K}$
  - Distribution of K is defined by Gen
- Let C be a random variable (ranging over ciphertext space  $\mathcal{C}$ ) denoting the ciphertext. It's distribution is defined by the following experiment:
  - A key *k* is chosen using Gen
  - ullet A message m is chosen according to distribution over  ${\mathcal M}$
  - Compute  $c \leftarrow \operatorname{Enc}_k(m)$

#### Probability Distributions:

- ullet Let M be a random variable denoting value of the message
  - ullet M ranges over plaintext space  ${\mathcal M}$
  - Distribution of M reflects A's prior knowledge of message being sent (not all messages are equally likely)
- Let K be a random variable denoting the key
  - ullet K ranges over keyspace  ${\mathcal K}$
  - Distribution of K is defined by Gen
- Let C be a random variable (ranging over ciphertext space  $\mathcal{C}$ ) denoting the ciphertext. It's distribution is defined by the following experiment:
  - A key k is chosen using Gen
  - ullet A message m is chosen according to distribution over  ${\mathcal M}$
  - Compute  $c \leftarrow \operatorname{Enc}_k(m)$

#### Remember

 ${\mathcal M}$  is a space, M is a random variable, m is a value taken on by M We will often look at  $\Pr[M=m]$ 

13 / 21

#### Informal Definition

 $\mathcal{A}$  knows the distribution M over  $\mathcal{M}$ . After seeing one ciphertext c, she should learn no additional info about m.

#### Informal Definition

 $\mathcal{A}$  knows the distribution M over  $\mathcal{M}$ . After seeing one ciphertext c, she should learn no additional info about m.

Encryption scheme (Gen, Enc, Dec) with message space  $\mathcal M$  is *perfectly* secret if

#### Informal Definition

 $\mathcal{A}$  knows the distribution M over  $\mathcal{M}$ . After seeing one ciphertext c, she should learn no additional info about m.

Encryption scheme (Gen, Enc, Dec) with message space  $\mathcal M$  is *perfectly* secret if

ullet For all distributions over  ${\mathcal M}$ 

#### Informal Definition

 $\mathcal{A}$  knows the distribution M over  $\mathcal{M}$ . After seeing one ciphertext c, she should learn no additional info about m.

Encryption scheme (Gen, Enc, Dec) with message space  ${\mathcal M}$  is *perfectly secret* if

• For all distributions over  $\mathcal{M}$ , for all  $m \in \mathcal{M}$ 

#### Informal Definition

 $\mathcal{A}$  knows the distribution M over  $\mathcal{M}$ . After seeing one ciphertext c, she should learn no additional info about m.

Encryption scheme (Gen, Enc, Dec) with message space  $\mathcal M$  is *perfectly* secret if

• For all distributions over  $\mathcal{M}$ , for all  $m \in \mathcal{M}$ , for all  $c \in \mathcal{C}$  with  $\Pr[\mathcal{C} = c] > 0$ 

#### Informal Definition

 $\mathcal{A}$  knows the distribution M over  $\mathcal{M}$ . After seeing one ciphertext c, she should learn no additional info about m.

Encryption scheme (Gen, Enc, Dec) with message space  ${\mathcal M}$  is *perfectly secret* if

• For all distributions over  $\mathcal{M}$ , for all  $m \in \mathcal{M}$ , for all  $c \in \mathcal{C}$  with

Pr[
$$C = c$$
] > 0

 $C = C$ 
 $C$ 

#### Informal Definition

 $\mathcal{A}$  knows the distribution M over  $\mathcal{M}$ . After seeing one ciphertext c, she should learn no additional info about m.

Encryption scheme (Gen, Enc, Dec) with message space  ${\mathcal M}$  is *perfectly secret* if

• For all distributions over  $\mathcal{M}$ , for all  $m \in \mathcal{M}$ , for all  $c \in \mathcal{C}$  with  $\Pr[\mathcal{C} = c] > 0$ 

$$\Pr[M = m \mid C = c] = \Pr[M = m]$$

• For all pairs  $m, m' \in \mathcal{M}$ , for all  $c \in \mathcal{C}$ 

$$Pr[Enc_K(m) = c] = Pr[Enc_K(m') = c]$$

Let  $\Pi = (Gen, Enc, Dec)$  be an encryption scheme. Consider the following game between an adversary A and a challenger:

Let  $\Pi = (Gen, Enc, Dec)$  be an encryption scheme. Consider the following game between an adversary A and a challenger:

# $\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\Pi}$

- ullet  ${\mathcal A}$  outputs two messages  $m_0, m_1 \in {\mathcal M}$ , s.t.  $|m_0| = |m_1|$
- The challenger chooses  $k \leftarrow \text{Gen}$ ,  $b \leftarrow \{0,1\}$ , computes  $c \leftarrow \text{Enc}_k(m_b)$  and gives  $c \leftarrow A$
- $\mathcal{A}$  outputs a guess bit b'
- We say that  $PrivK_{\mathcal{A},\Pi}^{eav}=1$  (i.e.,  $\mathcal{A}$  wins) if b'=b.

Let  $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$  be an encryption scheme. Consider the following game between an adversary  $\mathcal A$  and a challenger:

# $\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A}.\Pi}$

- ullet  ${\mathcal A}$  outputs two messages  $m_0, m_1 \in {\mathcal M}$ , s.t.  $|m_0| = |m_1|$
- The challenger chooses  $k \leftarrow \text{Gen}$ ,  $b \leftarrow \{0,1\}$ , computes  $c \leftarrow \text{Enc}_k(m_b)$  and gives c to A
- $\mathcal{A}$  outputs a guess bit b'
- ullet We say that  $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{\Pi}}=1$  (i.e.,  $\mathcal{A}$  wins) if b'=b.

Definition: An encryption scheme  $\Pi = (Gen, Enc, Dec)$  with message space  $\mathcal M$  is *perfectly indistinguishable* if for all  $\mathcal A$  it holds that

$$\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}=1]=1/2$$

# $\mathsf{Priv}\overline{\mathsf{K}_{\mathcal{A},\Pi}^{\mathit{eav}}}$

- ullet  ${\mathcal A}$  outputs two messages  $m_0, m_1 \in {\mathcal M}$ , s.t.  $|m_0| = |m_1|$
- The challenger chooses  $k \leftarrow \text{Gen}$ ,  $b \leftarrow \{0,1\}$ , computes  $c \leftarrow \text{Enc}_k(m_b)$  and gives  $c \leftarrow A$
- $\mathcal{A}$  outputs a guess bit b'
- We say that  $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{\Pi}} = 1$  (i.e.,  $\mathcal{A}$  wins) if b' = b.

Definition: An encryption scheme  $\Pi = (Gen, Enc, Dec)$  with message space  $\mathcal M$  is *perfectly indistinguishable* if for all  $\mathcal A$  it holds that

$$\Pr[\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\Pi}=1]=1/2$$

#### Observation

Note that  $\mathcal A$  can win with probability 1/2 by just guessing b' at random. This definition says that this is the best she can do.

16 / 21

# Outline

- 1 Lecture 1 Review
- 2 Probability Review (Ch. A.3)
- 3 Perfectly-Secure Encryption (Ch. 2.1)
- 4 The One-Time Pad (Ch. 2.2)

# Perfectly Secure Encryption Definition

#### Informal Definition

 $\mathcal{A}$  knows the distribution of M over  $\mathcal{M}$ . After seeing one ciphertext c, she should learn no additional info about m.

Encryption scheme (Gen, Enc, Dec) with message space  ${\cal M}$  is perfectly secret if

• For all distributions over  $\mathcal{M}$ , for all  $m \in \mathcal{M}$ , for all  $c \in \mathcal{C}$  with  $\Pr[\mathcal{C} = c] > 0$ 

$$\Pr[M = m \mid C = c] = \Pr[M = m]$$

| XOR |   |              |  |
|-----|---|--------------|--|
| x   | y | $x \oplus y$ |  |
| 0   | 0 | 0            |  |
| 0   | 1 | 1            |  |
| 1   | 0 | 1            |  |
| 1   | 1 | 0            |  |

## One-Time Pad Encryption Scheme

 $\bullet$  Let  $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^\ell$ 

| XOR |   |              |  |
|-----|---|--------------|--|
| x   | y | $x \oplus y$ |  |
| 0   | 0 | 0            |  |
| 0   | 1 | 1            |  |
| 1   | 0 | 1            |  |
| 1   | 1 | 0            |  |

# One-Time Pad Encryption Scheme

- $\bullet$  Let  $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^\ell$
- Gen:  $k \leftarrow \mathcal{K}$

| XOR |   |              |  |
|-----|---|--------------|--|
| x   | y | $x \oplus y$ |  |
| 0   | 0 | 0            |  |
| 0   | 1 | 1            |  |
| 1   | 0 | 1            |  |
| 1   | 1 | 0            |  |

# One-Time Pad Encryption Scheme

- ullet Let  $\mathcal{M}=\mathcal{K}=\mathcal{C}=\{0,1\}^\ell$
- Gen:  $k \leftarrow \mathcal{K}$
- Enc:  $c = k \oplus m$  ( $\oplus$  denotes bitwise exclusive-OR)

| XOR |   |              |  |
|-----|---|--------------|--|
| x   | y | $x \oplus y$ |  |
| 0   | 0 | 0            |  |
| 0   | 1 | 1            |  |
| 1   | 0 | 1            |  |
| 1   | 1 | 0            |  |

# One-Time Pad Encryption Scheme

- Let  $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^{\ell}$
- Gen:  $k \leftarrow \mathcal{K}$
- Enc:  $c = k \oplus m$  ( $\oplus$  denotes bitwise exclusive-OR)
- Dec:  $m = k \oplus c$

| XOR |   |              |  |
|-----|---|--------------|--|
| x   | y | $x \oplus y$ |  |
| 0   | 0 | 0            |  |
| 0   | 1 | 1            |  |
| 1   | 0 | 1            |  |
| 1   | 1 | 0            |  |

## One-Time Pad Encryption Scheme

- ullet Let  $\mathcal{M}=\mathcal{K}=\mathcal{C}=\{0,1\}^\ell$
- Gen:  $k \leftarrow \mathcal{K}$
- Enc:  $c = k \oplus m$  ( $\oplus$  denotes bitwise exclusive-OR)
- Dec:  $m = k \oplus c$

Correctness: For all  $k \in \mathcal{K}$  and all  $m \in \mathcal{M}$ ,

$$\operatorname{Dec}_k(\operatorname{Enc}_k(m)) =$$

| XOR |   |              |  |
|-----|---|--------------|--|
| x   | y | $x \oplus y$ |  |
| 0   | 0 | 0            |  |
| 0   | 1 | 1            |  |
| 1   | 0 | 1            |  |
| 1   | 1 | 0            |  |

## One-Time Pad Encryption Scheme

- $\bullet \ \mathsf{Let} \ \mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^\ell$
- Gen:  $k \leftarrow \mathcal{K}$
- Enc:  $c = k \oplus m$  ( $\oplus$  denotes bitwise exclusive-OR)
- Dec:  $m = k \oplus c$

Correctness: For all  $k \in \mathcal{K}$  and all  $m \in \mathcal{M}$ ,

 $\mathsf{Dec}_k(\mathsf{Enc}_k(m)) = k \oplus (k \oplus m) = (k \oplus k) \oplus m = 0^\ell \oplus m = m$ 

### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$  Enc:  $c = k \oplus m$ 

### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$  Enc:  $c = k \oplus m$ 

Theorem: The OTP is perfectly secret  $(Pr[M = m \mid C = c] = Pr[M = m])$ 

 $\Pr[M=m\mid C=c]$ 

#### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$ 

Enc:  $c = k \oplus m$ 

$$Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$$

#### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$ 

Enc:  $c = k \oplus m$ 

$$Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$$

$$\Pr[C = c \mid M = m]$$

#### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$ 

Enc:  $c = k \oplus m$ 

$$Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$$

$$Pr[C = c \mid M = m] = Pr[Enc_K(m) = c]$$

#### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$ 

Enc:  $c = k \oplus m$ 

$$Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$$

$$Pr[C = c \mid M = m] = Pr[Enc_K(m) = c] = Pr[m \oplus K = c]$$

### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$ 

Enc:  $c = k \oplus m$ 

$$Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$$

$$Pr[C = c \mid M = m] = Pr[Enc_K(m) = c] = Pr[m \oplus K = c]$$
$$= Pr[K = m \oplus c] = 2^{-\ell}$$

### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$ 

Enc:  $c = k \oplus m$ 

$$Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$$

$$Pr[C = c \mid M = m] = Pr[Enc_K(m) = c] = Pr[m \oplus K = c]$$

$$= Pr[K = m \oplus c] = 2^{-\ell}$$

$$Pr[C = c]$$

#### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$ 

Enc:  $c = k \oplus m$ 

$$Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$$

$$Pr[C = c \mid M = m] = Pr[Enc_{K}(m) = c] = Pr[m \oplus K = c]$$

$$= Pr[K = m \oplus c] = 2^{-\ell}$$

$$Pr[C = c] = \sum_{m' \in \mathcal{M}} Pr[C = c \mid M = m'] \cdot Pr[M = m']$$

#### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$ 

Enc:  $c = k \oplus m$ 

$$Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$$

$$Pr[C = c \mid M = m] = Pr[Enc_{K}(m) = c] = Pr[m \oplus K = c]$$

$$= Pr[K = m \oplus c] = 2^{-\ell}$$

$$Pr[C = c] = \sum_{m' \in \mathcal{M}} Pr[C = c \mid M = m'] \cdot Pr[M = m']$$

$$= 2^{-\ell} \cdot \sum_{m' \in \mathcal{M}} Pr[M = m']$$

#### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$ 

Enc:  $c = k \oplus m$ 

$$Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$$

$$Pr[C = c \mid M = m] = Pr[Enc_{K}(m) = c] = Pr[m \oplus K = c]$$

$$= Pr[K = m \oplus c] = 2^{-\ell}$$

$$Pr[C = c] = \sum_{m' \in \mathcal{M}} Pr[C = c \mid M = m'] \cdot Pr[M = m']$$

$$= 2^{-\ell} \cdot \sum_{m' \in \mathcal{M}} Pr[M = m'] = 2^{-\ell}$$

#### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$ 

Enc:  $c = k \oplus m$ 

$$\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C \neq c]}$$

$$= \frac{2^{-\ell} \cdot \Pr[M = m]}{2^{-\ell}}$$

$$\Pr[C = c \mid M = m] = \Pr[\operatorname{Enc}_{K}(m) = c] = \Pr[m \oplus K = c]$$

$$= \Pr[K = m \oplus c] = 2^{-\ell}$$

$$\Pr[C = c] = \sum_{m' \in \mathcal{M}} \Pr[C = c \mid M = m'] \cdot \Pr[M = m']$$

$$= 2^{-\ell} \cdot \sum_{m' \in \mathcal{M}} \Pr[M = m'] = 2^{-\ell}$$

#### One-Time Pad Encryption Scheme

Gen:  $k \leftarrow \mathcal{K}$  Enc:  $c = k \oplus m$ 

$$\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$$

$$= \frac{2^{-\ell} \cdot \Pr[M = m]}{2^{-\ell}} = \Pr[M = m]$$

$$\Pr[C = c \mid M = m] = \Pr[\operatorname{Enc}_{K}(m) = c] = \Pr[m \oplus K = c]$$

$$= \Pr[K = m \oplus c] = 2^{-\ell}$$

$$\Pr[C = c] = \sum_{m' \in \mathcal{M}} \Pr[C = c \mid M = m'] \cdot \Pr[M = m']$$

$$= 2^{-\ell} \cdot \sum_{m' \in \mathcal{M}} \Pr[M = m'] = 2^{-\ell}$$

### Limitations of the One-Time Pad

The one-time pad has some critical limitations that make it not ideal for real-world use.

• Can only use a key k to encrypt at most one message

Arkady Yerukhimovich Cryptography August 28, 2024 21/21

### Limitations of the One-Time Pad

The one-time pad has some critical limitations that make it not ideal for real-world use.

- Can only use a key k to encrypt at most one message
- Need the length of the key to be as long as the message (i.e.,  $|k| \ge |m|$ )

### Limitations of the One-Time Pad

The one-time pad has some critical limitations that make it not ideal for real-world use.

- Can only use a key k to encrypt at most one message
- Need the length of the key to be as long as the message (i.e.,  $|k| \ge |m|$ )

Why?