LOM3251 - Vibração e Acústica

Vibration and Acoustics

Créditos-aula: 4 Créditos-trabalho: 0 Carga horária: 60 h Ativação: 01/01/2012

Departamento: Engenharia de Materiais

Curso (semestre ideal): EF (9)

Objetivos

Estudar os conceitos de propagação de ondas mecânicas e sua aplicação em análise de problemas de vibração, ondas sonoras e acústica.

Docente(s) Responsável(eis)

519033 - Carlos Yujiro Shigue

Programa resumido

Mecânica ondulatória. Vibrações. Osciladores acoplados e modos normais. Análise de Fourier. Ondas sonoras. Propriedades ondulatórias das ondas de som. Ressonância. Reverberação. Qualidades do som. Mecanismo de audição. Materiais absorventes acústicos. Controle do ruído. Normas.

Programa

Movimentos periódicos. Superposição de movimentos periódicos. Vibrações livres de sistemas físicos. Vibrações forçadas e ressonância. Osciladores acoplados e modos normais. Modos normais de sistemas contínuos. Análise de Fourier. Ondas Progressivas.

Definição de onda sonora: amplitude, frequência e comprimento de onda. Velocidade de propagação. Espectro sonoro. Análise harmônica por transformada rápida de Fourier (FFT). Propriedades ondulatórias das ondas sonoras: reflexão, refração, difração, atenuação, interferência e batimento. O fenômeno de ressonância. Reverberação. Eco. Distorção.Qualidades do som: altura, timbre e intensidade. Medida de intensidade: o decibel. Mecanismo de audição. Sensação auditiva. Acústica de ambientes. Tempos de reverberação. Inteligibilidade. Absorção do som. Materiais absorventes acústicos. Isolamento acústico. Ressonadores.

Avaliação

Método: Provas, listas de exercícios e trabalhos práticos.

Ruído. Efeitos de ruído no ser humano. Controle do ruído. Normas.

Critério: Média ponderada de duas provas escritas, trabalhos e relatórios: P1, P2 e TR. Conceito

Final = (P1 + 2P2 + TR)/4

Norma de recuperação: Aplicação de uma prova escrita dentro do prazo regimental antes do início do próximo semestre letivo. A nota da segunda avaliação será a média aritmética entre a nota da prova de recuperação e a nota final da primeira avaliação

Bibliografia

FRENCH, A. P., Vibrações e Ondas, Editora UnB, 2002.

SOTELO Jr., J.; FRANÇA, L. N. F., Introdução às Vibrações Mecânicas, Editora Edgard Blücher, 2006.

THOMSON, W. T.; DAHLEH, M. D., Theory of Vibration with Applications, Prentcie Hall, 1997.

BLACKSTOCK, D. T. Fundamentals of Physical Acoustics, Wiley-Interscience, 2000.

KINSLER, L. E. Fundamentals of Acoustics, Wiley, 1999.

FAHY, F. J. Foundations of Engineering Acoustics, Academic Press, 2000.

BISTAFA, S. R., Acústica Aplicada ao Controle de Ruído, Editora Edgard Blücher, 2006..