Matemática Discreta

LPO4

Universidade de Aveiro 2016/2017

http://moodle.ua.pt

Matemática Discreta

Demonstração Automática de Teoremas

Princípio da resolução

Demonstração Automática de Teoremas

Procedimento de refutação

Consiste em provar que uma fórmula é válida provando que a sua negação é inconsistente.

- Este procedimento tem por base as seguintes propriedades:
- 1) Qualquer fórmula da lógica de primeira ordem se pode transformar na forma normal prenex.
- 2) A parte da fórmula que não contém quantificadores pode transformar-se na forma normal conjuntiva.
- 3) É possível eliminar os quantificadores existenciais sem alterar as propriedades de inconsistência com recurso às designadas funções de Skolem.

Matemática Discreta

Demonstração Automática de Teoremas

Redução de formas normais prenex à forma normal de Skolem

Procedimento de redução à forma normal de Skolem: Dada a fórmula $(Q_1x_1)(Q_2x_2)...(Q_nx_n)$ M, aplicar a cada quantificador existencial Q_r as seguintes transformações:

- 1) Se nenhum quantificador universal aparece à esquerda de Q_r , então
 - Escolher uma constante c (que não figure em M).
 - Substituir x_r por c e eliminar $Q_r x_r$.
- 2) Se $Q_{s_1} \dots Q_{s_m}$ são quantificadores universais que ocorrem à esquerda de Q_r então
 - Escolher um símbolo de função f, diferente dos existentes, com m argumentos.
 - Substituir em M, x_r por $f(x_{s_1}, \ldots, x_{s_m})$.
 - Eliminar Q_rx_r.
- 3) Este procedimento deve ser aplicado a todos os quantificadores existenciais.

Exemplo

Vamos reduzir à forma normal de Skolem a seguinte fórmula:

$$(\forall x)(\exists y)(\exists z)((\neg P(x,y) \lor Q(x,z))$$

- Uma vez que $(\exists y)$ e $(\exists z)$ são precedidos por $(\forall x)$, as variáveis y e z são substituídas, respectivamente, pelas funções de uma variável f(x) e g(x).
- Logo, obtém-se

$$(\forall x)((\neg P(x, f(x)) \lor Q(x, g(x))).$$

Matemática Discreta

Princípio da resolução

Princípio da resolução de Robinson

- O princípio da resolução consiste em verificar se um dado conjunto de cláusulas S contém a cláusula vazia, ◊, ou se ela pode ser deduzida de S.
- O princípio da resolução pode ser visto como uma regra de inferência usada para gerar novas cláusulas de acordo com o seguinte procedimento:

Procedimento de resolução

- Sejam C₁ e C₂ duas cláusulas de S;
- 2. Se existe um literal L_1 em C_1 complementar relativamente a um literal L_2 de C_2 , então
 - Eliminar L_1 de C_1 e L_2 de C_2 ;
 - Construir a disjunção do que resta de C_1 e C_2 , obtendo-se uma nova cláusula designada por resolvente de C_1 e C_2 (ou consequência lógica de C_1 e C_2).

Exemplos

- $C_1 : P \vee \neg R$;
- C_2 : $Q \vee R$;
- **____**
- $C_{12}: P \vee Q \rightarrow \text{resolvente de } C_1 \in C_2.$
- $C_1: P \vee \neg Q \vee R$;
- $C_2 : \neg P \lor S$;
- **____**
- $C_{12}: \neg Q \lor R \lor S \rightarrow \text{resolvente de } C_1 \text{ e } C_2.$

Matemática Discreta

Princípio da resolução

Dedução (ou resolução)

Definição (de dedução)

Dado um conjunto de cláusulas S, uma dedução (ou resolução) de C a partir de S é uma sequência finita de cláusulas C_1, C_2, \ldots, C_k tais que cada C_i ou é uma cláusula em S ou uma resolvente de cláusulas que precedem C_i e $C_k = C$.

A dedução de \Diamond a partir de S é designada por refutação ou prova da inconsistência de S.

Exemplo

Considerando o conjunto de fórmulas

$$S = \{P \lor Q, \neg P \lor Q, P \lor \neg Q, \neg P \lor \neg Q\}$$

identificam-se as seguintes cláusulas:

 $C_1: P \lor Q; \qquad C_2: \neg P \lor Q;$ $C_3: P \vee \neg Q; \quad C_4: \neg P \vee \neg Q.$

 $C_1: P \lor Q$ $C_3: P \lor \neg Q$ $C_{12}: Q$ $C_2: \neg P \lor Q$ $C_4: \neg P \lor \neg Q$ $C_{34}: \neg Q$

 \Diamond

 $C_{12}: Q$

 $C_{34}: \neg Q$