What is software engineering? Why do we need it?

Dr. Kosta Damevski
CMSC 355 - Software Engineering: Spec and Design
Fall 2015

Welcome to CMSC 355

- My name: Kosta (Kostadin) Damevski
- My office: East 4253
- My e-mail: <u>kdamevski@vcu.edu</u>
- My office hours: Mondays 1:00pm 3:00pm

Course Organization

- Online Presence
 - Course schedule and slides
 - http://damevski.github.io/cmsc355
 - Assignments, assignment submission, grades, etc.
 - on Blackboard
 - Discussions
 - on Piazza

Grading is Simple

- 50% Team Project
- 30% Final Exam
- 20% Midterm

Team Project

- A semester long, agile, development project intended to illustrate concepts from class
 - Project grade is about many other aspects other than writing code
 - There will be project presentations by each team at the end of the semester
- Theme: Android Apps (Java)
- Team size: 4-5 students
- More on this very soon…

Grading the Team Project

- Individual effort
 - Some thresholds of lines of code written and issues completed ensure that things are getting done
- Group effort
 - Anonymous ratings of fellow group members at the end of each iteration
 - Can reduce iteration grade but not improve it
 - First iteration will be a warning
- Grades at the end of each iteration
- Grades on the completed project (includes presentation)

Course Plan

- Class will be for lectures, mostly
 - Cover a variety of software engineering topics
 - Some of them will be part of the team project
 - All of them will be (fair game) for the exams
 - I will likely spend a few lectures on Android
 - Things that everyone would benefit from
 - But, there is a lot you will need to learn on your own

Piazza

- For Q and A, and for team forming
 - Teaching staff and fellow students answer questions
 - If you are active on Piazza, there will be bonus points that can help you if you have a borderline grade
- Before e-mailing a question to the teaching staff, make sure it hasn't been answered on Piazza
 - Consider asking the question on Piazza
 - unless it's about grading or other personal stuff

Questions

Does the course organization make sense?

Why do we study software engineering?

- A computer is a programmable device
 - So programming it is a fundamental activity
- We ask a lot from our software
 - Complexity
 - Heterogeneous tasks
 - inside a car vs. inside a server
- Managing that complexity requires more than just programming skill

What should you expect to learn in this course?

- Methodologies
- Techniques
- Tools
- ...to build high-quality software that fits budget

Software Development Effort

Size	Example
10^2 LOC	Class Exercise
10^3 LOC	Small Project
10^4 LOC	Term Project
10^5 LOC	Business Application
10^6 LOC	Word Processor
10^7 LOC	Operating System

Engineering SW is different from engineering HW

- Q: Why so many SW disasters and no HW disasters?
 - Ariane 5 rocket explosion
 - Therac-25 lethal radiation overdose
 - Mars Climate Orbiter disintegration
 - FBI Virtual Case File project abandonment
- A: Nature of the two media and subsequent cultures that developed

Engineering SW is different from HW

- Cost of field update
 - On hardware it's very large
 - Hardware designs have to be finished before they are shipped
 - Bugs => return hardware => lost \$\$\$
 - On software it's very small
 - Expect software to get better over time
 - Bugs => wait for an upgrade
- HW decays slowly, while software can be long lasting

Software Development

The SW engineering task is split into multiple steps according to a *software development process*

Software Development Processes

Waterfall vs. Spiral vs. Agile

Summary

- We need software engineering to manage the complexity of designing software
 - A set of scientific principles and best practices
 - We will discuss these in the lectures
 - We will experience some of them in our team project
- Your task now
 - Log in to Piazza and Blackboard
 - Assignment 1 is on Blackboard

Questions

Any parting questions?