Neural Networks and Optimization I

Dr. Parlett-Pelleriti

Basic Neural Network Components

- Nodes
- Weights
- Biases
- Activation Functions
- Loss
- Universal Function Approximation

Architecture

Nodes

Nodes Hold Values

Weights

Weights multiply the number in a previous node and add it to the next node

Weights

We can have multiple weights feeding into one node

Biases

Biases move the value of a node up (for positive values) or down (for negative values) no matter what the weights and previous nodes' values were

Biases

Together, nodes, weights, and biases make up the core structure of a neural network

Biases

Together, nodes, weights, and biases make up the core structure of a neural network (usually we don't show the biases, but they're there)

Nodes at the same level of depth are a **layer**

Nodes at the same level of depth are a **layer**

Nodes at the same level of depth are a **layer**

Two layers every NN must have are in **input layer** (what data is going in) and an **output layer** (what prediction is being made)

Any layer in between is a **hidden layer**.

Any layer in between is a **hidden layer**.

Math Notation

The value of a node is a **linear combination** of all the nodes in the previous layer that are connected to it.

$$\mathbf{w}^T \mathbf{x} + b$$
$$\mathbf{w} \cdot \mathbf{x} + b$$

Math Notation

The value of a node is a **linear combination** of all the nodes in the previous layer that are connected to it.

Activation Functions

Now with non-linearity!

Activation Functions

Now with non-linearity!

Activation Functions

Now with non-linearity!

Function	f(x)	Graph
ReLu	$f(x) = \max(0, x)$	ReLU Activation 3 2 1 0 -2 0 2
Leaky ReLu	$f(x) = \max(\alpha * x, x)$	Leaky ReLU Activation with $\alpha = 0.1$

Math Notation

The value of a node is a **linear combination** of all the nodes in the previous layer that are connected to it.

Math Notation

The value of a node is a **linear combination** of all the nodes in the previous layer that are connected to it.

Familiar Models as Neural Networks

Linear Regression as a NN

LINEAR REGRESSION

(as a neural network)

@CHELSE A PARLETT

Loss: $\Sigma(x_i - \hat{x})^2$

Logistic Regression as a NN

LOGISTIC REGRESSION (as a neural network) , activation fx + bias ("intercept") age 35% salary Twitch Streamer? rent weights ("coefficients")

@CHELSE A PARLETT

Loss Functions

Loss Functions

A metric that measures the performance of your model where lower is better

Common Loss Functions (continuous)

$$\frac{1}{N} \sum_{i=1}^{N} (\text{actual - predicted})^2$$

$$\frac{1}{N} \sum_{i=1}^{N} |\text{actual} - \text{predicted}|$$

Common Loss Functions (categorical)

Log Loss/ Binary Cross Entropy

$$-\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p_i) + (1 - y_i) \cdot log(1 - p_i)$$

Hinge Loss

$$\sum_{i=1}^{N} \max(0, 1 - t_i \cdot y_i)$$

Universal Function Approximation