

Programação em Python

Análise assimptótica notação Big-O

Índice	
Introdução	3
Notações assimptóticas	4
Notação Theta (Notação Θ) :	4
Notação Omega (Notação Ω)	4
Notação Big-O (Notação O)	5

Introdução

Vimos no tópico anterior que a eficiência de um algoritmo depende da quantidade de tempo, armazenamento e outros recursos necessários para executar o algoritmo. A eficiência é medida com a ajuda de notações assimptóticas.

Um algoritmo pode não ter o mesmo desempenho para diferentes tipos de insumos. Com o aumento do tamanho da entrada, o desempenho mudará.

O estudo da mudança no desempenho do algoritmo com a mudança na ordem de tamanho de entrada é definido como **análise assimptótica**.

Notações assimptóticas

A idéia principal da análise assimptótica é ter uma medida da eficiência dos algoritmos que não dependem de constantes específicas da máquina e não requerem a implementação de algoritmos ou o tempo que leva para que os programas os comparem. Notações assimptóticas são ferramentas matemáticas para representar a complexidade temporal dos algoritmos para análise assimptótica.

Há principalmente três notações assimptóticas:

- Notação theta (notação Θ)
- Notação omega (notação Ω)
- Notação Big-O (notação O)

Notação Theta (Notação Θ):

A notação theta encerra a função por cima e por baixo. Como representa o limite superior e inferior do tempo de execução de um algoritmo, ele é usado para analisar a complexidade do caso médio de um algoritmo.

Sejam **g** e **f** a função do conjunto de números naturais para si mesmo. Diz-se que a função **f** é **0**(**g**), se houver constantes **c1**, **c2** > **0** e um número natural **n0** tal que

 $c1*g(n) \le f(n) \le c2*g(n)$ para todo $n \ge n0$

Representação matemática da notação Theta:

(g(n)) = {f(n): há constantes positivas c1, c2 e n0 de tal forma que

 $0 \le c1 * g(n) \le f(n) \le c2 * g(n)$ para todo $n \ge n0$

Nota: **⊙**(**g**) é um conjunto

A expressão acima pode ser descrita como se f(n) fosse theta de g(n), então o valor f(n) está sempre entre c1 * g(n) y c2 * g(n) para grandes valores de n (n ≥ n0). A definição de theta também exige que f(n) seja não-negativo para valores de n superiores a n0.

Uma maneira simples de obter a notação Theta de uma expressão é eliminar os termos de ordem inferior e ignorar as constantes iniciais. Por exemplo, considere a expressão $3n \ 3 + 6n \ 2 + 6000 = \Theta(n \ 3)$, a eliminação de termos de ordem inferior é sempre boa porque sempre haverá um número (n) após o qual $\Theta(n \ 3)$ tem valores superiores a $\Theta(n \ 2)$ independentemente das constantes envolvidas. Para uma função g(n) dado, denota-se que $\Theta(g(n))$ é o seguinte conjunto de funções.

Exemplos:

```
{ 100, log (2000), 10^4} pertence a \Theta(1) { (n/4), (2n+3), (n/100 + log(n))} pertence a \Theta(n) { (n^2+n), (2n^2), (n^2+log(n))} pertence a \Theta(n 2)
```

Nota: • fornece limites exatos.

Notação Omega (Notação Ω)

A notação Omega representa o limite inferior do tempo de execução de um algoritmo. Portanto, ele fornece a melhor complexidade de um algoritmo.

Sejam g e f a função do conjunto de números naturais para si mesmo. Diz-se que a função f é $\Omega(g)$, se existir uma constante c > 0 e um número natural n0 tal que

 $c*g(n) \le f(n)$ para todo $n \ge n0$

Representação matemática da notação Omega

 $\Omega(g(n)) = \{ f(n) : há constantes positivas c e n0 de tal forma que <math>0 \le cg(n) \le f(n)$ para todo

n ≥ n0 }

Considere aqui o mesmo exemplo de ordenação por inserção. A complexidade temporal do tipo de inserção pode ser escrita como $\Omega(n)$, mas esta não é uma informação muito útil sobre o tipo de inserção, pois normalmente estamos interessados no pior caso e às vezes no caso médio.

Exemplos:

{ (n^2+n), (2n^2), (n^2+log(n))} pertence a Ω (n^2) U { (n/4), (2n+3), (n/100 + log(n)) } pertence a Ω (n) U { 100, log (2000), 10^4 } pertence a Ω (1)

Nota: Aqui, U representa o sindicato, podemos escrevê-lo desta forma porque Ω fornece dimensões exatas ou inferiores.

Notação Big-O (Notação O)

A notação **Big-O** representa o limite superior no tempo de execução de um algoritmo. Portanto, ele dá o pior cenário de complexidade de um algoritmo.

Se f(n) descreve o tempo de execução de um algoritmo, f(n) é O(g(n)) se existe uma constante positiva C e n0 tal que, $0 \le f(n) \le cg(n)$ para todo $n \ge n0$

Representação matemática da notação Big-O

 $O(g(n)) = \{ f(n) : há constantes positivas c e n0 de tal forma que <math>0 \le f(n) \le cg(n)$ para todo

n ≥ n0 }

Por exemplo, considere o caso do Ordenação por inserção. Leva tempo linear na melhor das hipóteses e tempo quadrático na pior das hipóteses. Podemos dizer com segurança que a complexidade temporal do tipo de inserção é O(n 2).

Nota : **O(n 2)** também cobre o tempo linear.

Se usarmos a notação o para representar a complexidade temporal do pedido de inserção, temos que usar duas declarações para o melhor e o pior cenário:

- A complexidade do tempo no pior cenário de Gerenciamento de Inserção é O(n 2).
- A complexidade temporal da classificação da melhor caixa de inserção é O(n).

A notação **Big-O** é útil quando temos apenas um limite superior na complexidade temporal de um

algoritmo. Muitas vezes encontramos facilmente um limite superior simplesmente olhando para o algoritmo.

Exemplos:

```
{ 100 , log (2000) , 10^4 } pertence a O(1)
U { (n/4) , (2n+3) , (n/100 + log(n)) } pertence a O(n)
U { (n^2+n) , (2n^2) , (n^2+log(n))} pertence
a O(n^2)
```

Nota: aqui, **U** representa a união, podemos escrevêla desta forma porque **O** fornece limites exatos ou superiores.