

BLG 231E - Digital Circuits

Solutions for Assignment 4

1. The combinational circuit ARITHMETIC/LOGIC (**A/L**) performs the following operations depending on the value of the control inputs X, Y, and Z.

X	Y	Z	Result (O)	Cout
0	0	0	B – A	Borrow
0	0	1	A + B	Carry
0	1	0	A – 5	Borrow
0	1	1	Ф	Ф
1	0	0	$A \cdot B$	Ф
1	0	1	Ф	Ф
1	1	0	$A \oplus B$	Ф
1	1	1	Ф	Ф

The meanings of symbols are given below:

Symbol	Meaning
+	Arithmetic addition
-	Arithmetic subtraction
•	4-bit logic AND between corresponding bits of A and B: A ₃ ·B ₃ ,, A ₀ ·B ₀ .
\oplus	4-bit logic XOR between corresponding bits of A and B: $A_3 \oplus B_3$,, $A_0 \oplus B_0$.
Ф	Don't care

Design and draw this circuit using **only** the standard components and logic gates given below, <u>paying attention to the maximum number</u> allowed for the first three:

Type	Maximum number allowed
4-bit parallel adders	2
8:1 multiplexer	1
2:4 decoder	1
XOR gates	No restriction
NOT gates	No restriction
OR gates	No restriction
AND gates	No restriction

<u>Note:</u> Even though we have not specified a maximum number allowed on the last four, you should <u>try to use as few as possible</u> (also, you do not need to use all of the gates listed above). Your design should be <u>as simple as possible</u>, containing the fewest number of standard components and logic gates.

• Solution:

Design 1:

Design 2:

