Programação Linear

- Um vetor de tamanho n é um conjunto de n objetos organizados em forma de coluna.
- Considere $a=(a_1,a_2,\ldots,a_n)$ e $b=(b_1,b_2,\ldots,b_n)$, temos que

$$a + b = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

• Seja $k \in \mathbb{R}$, temos que

$$ka = (ka_1, ka_2, \ldots, ka_n)$$

• O produto interno entre os vetores a e b é dado por:

$$a^T \cdot b = \sum_{j=1}^n a_j b_j$$

- Um espaço euclidiano de dimensão n e real, \mathbb{R}^n , é uma coleção de todos os vetores com tamanho n onde os componentes do vetor são números reais.
- Um vetor $b \in \mathbb{R}^n$ é dito ser uma combinação linear de $a_1, a_2, \ldots, a_k \in \mathbb{R}^n$, se $b = \sum_{j=1}^k \lambda_j a_j$, onde $\lambda_j \in \mathbb{R}$ para $j = 1, \ldots, k$.
- Um vetor $b \in \mathbb{R}^n$ é dito ser uma combinação afim de $a_1, a_2, \ldots, a_k \in \mathbb{R}^n$, se $b = \sum_{j=1}^k \lambda_j a_j$, onde $\lambda_j \in \mathbb{R}$ para $j = 1, \ldots, k$ e $\sum_{j=1}^k \lambda_j = 1$.
- Se $\sum_{j=1}^k \lambda_j = 1$, então b é uma combinação afim de a_1, a_2, \ldots, a_k .

- Um subespaço linear S_L do \mathbb{R}^n é um subconjunto do \mathbb{R}^n tal que se $a_1, a_2 \in S_L$, então toda combinação linear de a_1 e a_2 pertencem a S_L .
- Um subespaço afim S_A do \mathbb{R}^n é um subconjunto do \mathbb{R}^n tal que se $a_1, a_2 \in S_A$, então toda combinação afim de a_1 e a_2 pertencem a S_A .
- Uma coleção de vetores, $a_1, a_2, \ldots, a_k \in \mathbb{R}^n$ são chamados linearmente independente(LI) se $\sum_{j=1}^k \lambda_j a_j = 0$ implica que $\lambda_j = 0$ para todo $j = 1, \ldots, k$.

Exemplo

Seja
$$a_1 = (1,2)$$
 e $a_2 = (-1,1)$. Temos que

$$\lambda_1(1,2) + \lambda_2(-1,1) = (0,0)$$

implica que $\lambda_1 = \lambda_2 = 0$.

• Uma coleção de vetores $a_1, a_2, \ldots, a_k \in \mathbb{R}^n$ são linearmente dependentes(LD) se existem $\lambda_1, \lambda_2, \ldots, \lambda_k$ não todos iguais a zero, tal que $\sum_{j=1}^k \lambda_j a_j = 0$.

Exemplo

Considere $a_1=(1,2,3)$, $a_2=(-1,1,-1)$ e $a_3=(0,3,2)$. Temos que a_1,a_2 e a_3 são LD, pois $\lambda_1a_1+\lambda_2a_2+\lambda_3a_3=(0,0,0)$ para $\lambda_1=\lambda_2=1$ e $\lambda_3=-1$.

• Uma coleção de vetores $a_1, a_2, \ldots, a_k \in \mathbb{R}^n$ é chamado de gerador do \mathbb{R}^n se dado algum vetor $b \in \mathbb{R}^n$, podemos encontrar escalares $\lambda_1, \lambda_2, \ldots, \lambda_k$ tal que $b = \sum_{i=1}^k \lambda_j a_j$

Exemplo

Considere $a_1=(1,0), a_2=(-1,3)$ e $a_3=(2,1)$. Os vetores a_1, a_2 e a_3 geram o \mathbb{R}^2 , já que qualquer vetor $b\in\mathbb{R}^2$ pode ser representado como uma combinação linear destes vetores.

- Uma coleção dos vetores $a_1, a_2, \ldots, a_k \in \mathbb{R}^n$ formam uma base do \mathbb{R}^n se as seguintes condições ocorrem:
 - $\mathbf{0}$ a_1, a_2, \ldots, a_k geram o \mathbb{R}^n .
 - ② se qualquer um destes vetores é deletado, a coleção formada pelos vetores restantes não geram o \mathbb{R}^n .
- As condições acima são equivalentes a:
 - **1** k = n.
 - ② $a_1, a_2, ..., a_n$ são LI.

Exemplo

Considere os vetores $a_1=(1,1)$ e $a_2=(0,1)$ do \mathbb{R}^2 . Esses dois vetores formam uma base em \mathbb{R}^2 já que k=n=2 e a_1 e a_2 são LI.

Proposição

Dado uma base a_1, a_2, \ldots, a_n do \mathbb{R}^n , qualquer vetor $b \in \mathbb{R}^n$ é representado de forma única em termos destes vetores.

- No método simplex, método utilizado para resolver um problema de programação linear, diferentes bases são geradas ao longo do processo, onde colunas saem da base para dar lugar a outras colunas.
- Devemos ter cuidado na escolha dos vetores que entram e na escolha dos vetores que deixam uma base ao longo das iterações do simplex, caso contrário, os novos vetores podem não ser LI, e não formar uma base.

Proposição

Seja $a_1, a_2, \ldots, a_k, \ldots, a_n$ uma base do \mathbb{R}^n e $b \in \mathbb{R}^n$ e $b = \sum_{j=1}^n \lambda_j a_j$. Se $\lambda_k \neq 0$ para algum $k \in \{1, 2, \ldots, n\}$, então ao se trocar a_k por b o conjunto $a_1, a_2, \ldots, b, \ldots, a_n$ é uma nova base do \mathbb{R}^n .

Exemplo

Os vetores $a_1=(1,2,1)$, $a_2=(3,0,1)$ e $a_3=(2,-2,1)$ são LI, e formam uma base do \mathbb{R}^3 . Não podemos substituir a_3 por (2,-2,0), pois a_1,a_2 e (2,-2,0) são LD e não formam uma base do \mathbb{R}^3 .

- Seja A uma matriz com m linhas e n colunas, onde cada elemento de A pertence ao \mathbb{R} , dizemos que $A \in \mathbb{R}^{m \times n}$.
- Se A e B são matrizes, $m \times n$, então C = A + B é definida por $c_{ij} = a_{ij} + b_{ij}$, para i = 1, ..., m e j = 1, ..., n.
- Seja A um matriz $m \times n$, e um escalar k, então $k \cdot A$ é uma matriz $m \times n$ cuja (i,j) entrada é $k \cdot a_{ij}$.
- Seja A uma matriz m × n e B uma matriz n × p, então o produto
 A · B é definido por uma matriz C, m × p, com

$$c_{ij} = \sum_{k=1}^n \mathsf{a}_{ik} \mathsf{b}_{kj}, \; \mathsf{para} \; i = 1, \dots, m \; \mathsf{e} \; j = 1, \dots, p.$$

- Sejam $A, B \in \mathbb{R}^{n \times n}$ tal que $A \cdot B = I$ e $B \cdot A = I$, então B é chamada de inversa de A, onde $B = A^{-1}$ e é única.
- A matriz inversa de A, se existir, é única e é denotada por A^{-1} .
- Se A possui uma inversa, A é denominada não-singular, caso contrário, A é denominada singular.
- Dado uma matriz $A \in \mathbb{R}^{n \times n}$, ela possui uma inversa se e somente se as linhas(colunas) de A são LI.
- A matriz inversa, se ela existir, pode ser obtida através de um número finito de operações elementares.

- Uma operação linha elementar em uma matriz A é uma das seguintes operações:
 - linha i e linha j são trocadas.
 - ② linha i é mulitplicada por um escala k, onde $k \neq 0$.
 - \odot linha i é substituida pela linha i adicionada a linha j vezes k.
- Operações elementares sobre as linhas(colunas) de A são equivalentes a multiplicar A por uma matriz especifica.
- Se a sequência de operações linhas reduzem A a uma matriz identidade, então a mesma sequência de operações deverão reduzir (A, I) a (I, A^{-1}) .

Exemplo

Considere a matriz

$$A = \left[\begin{array}{rrr} 2 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right].$$

Calcule a inversa de A usando operações elementares.

• Seja $A \in \mathbb{R}^{n \times n}$ cujo a entrada (i,j) é a_{ij} . O determinante de A, denotado por det A, é um número definido como:

$$\textit{det } A = \sum_{i=1}^n a_{ij} A_{ij} \; \mathsf{para \; algum} \; j \in \{1, 2, \dots, n\}$$

cujo A_{ij} é o cofator de a_{ij} que é definido como $(-1)^{i+1}$ vezes o determinante da submatriz A sem a linha da linha i e a coluna j.

Exemplo

Considere a matriz

$$A = \left[\begin{array}{rrr} 2 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right].$$

Calcule o determinante de A.

• Dado uma matriz $A \in \mathbb{R}^{n \times n}$, o cofator A_{ij} do elemento a_i de A é definido por

$$(-1)^{i+j}det(A_{ij}) = \Delta_{ij}$$

onde A_{ij} é a submatriz de A obtida pela eliminação da linha i e da coluna j. Estes cofatores formam uma nova matriz, denominada matriz dos cofatores de A.

$$\overline{A} = [\Delta_{ij}]$$

• A transposta da matriz de cofatores é denominada matriz adjunta de A, ou seja, $adj(A) = \overline{A}^T$.

• Suponha que $A \in \mathbb{R}^{n \times n}$ tenha uma inversa, temos então

$$egin{aligned} \det(A imes A^{-1}) &= \det(I_n) \ \det(A) imes \det(A^{-1}) &= 1 \ \det(A^{-1}) &= rac{1}{\det(A)} \end{aligned}$$

Proposição

Uma matriz $A \in \mathbb{R}^{n \times n}$ possui inversa, se e somente se $det(A^{-1}) = \frac{1}{det(A)}$.

Proposição

Dada uma matriz $A \in \mathbb{R}^{n \times n}$ temos que $A \times adj(A) = det(A) \times I_n$.

• A inversa de uma matriz $A \in \mathbb{R}^{n \times n}$, se existe, pode ser calculada pela fórmula

$$A^{-1} = rac{1}{det(A)}(adj(A))$$

Exemplo

Considere a matriz

$$A = \left[\begin{array}{rrr} 2 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right].$$

Calcule A⁻¹ usando a fórmula

$$A^{-1} = \frac{1}{\det(A)}(adj(A))$$

Conjunto convexo

- Um conjunto $X \in \mathbb{R}^n$ é chamado de convexo se dados dois pontos $x_1, x_2 \in X$, então $\lambda x_1 + (1 \lambda)x_2 \in X$ para $\lambda \in [0, 1]$.
- Um ponto da forma $\lambda x_1 + (1 \lambda)x_2$ onde $\lambda \in [0, 1]$ é denominado combinação convexa de x_1 e x_2 .
- Se $\lambda \in (0,1)$, então a combinação convexa é denominada estrita.
- Um ponto x ∈ X onde X é um conjunto convexo é denominado ponto extremo de X, se x não puder ser representado como uma combinação convexa estrita de dois pontos distintos de X.

Conjunto convexo

Exemplo

Exemplos de conjuntos convexos.

- $\{x: Ax = b\}$, onde A é uma matriz $m \times n$ e b é um m-vetor.
- **②** $\{x : Ax = b, x \ge 0\}$, onde A é uma matriz $m \times n$ e b é um m-vetor.
- **③** {x : $x = \lambda_1(1,0,0) + \lambda_2(1,2,1) + \lambda_3(-1,2,3)$, $\lambda_1 + \lambda_2 + \lambda_3 = 1$, $\lambda_1 \ge 0$, $\lambda_2 \ge 0$, $\lambda_3 \ge 0$ }

Função convexa

• Uma função f é dita ser convexa se a seguinte desigualdade ocorre para dois pontos x_1 e x_2 dados

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)x_2$$

para $\lambda \in [0,1]$.

• Dados x_1 e x_2 , uma função f é denominada concava se e somente se -f é convexa, ou seja,

$$f(\lambda x_1 + (1-\lambda)x_2) \ge \lambda f(x_1) + (1-\lambda)x_2$$

para $\lambda \in [0,1]$.

Hiperplano e subespaços

- Um hiperplano $H \subseteq \mathbb{R}^n$ é um conjunto da forma $H = \{x \in \mathbb{R}^n : p^T x\}$, onde p(normal ao hiperplano) é um vetor não nulo.
- Se fixamos um ponto $x_0 \in H$, então $p^T x_0 = k$, e para algum $x \in H$, temos $p^T x = k$. Subtraindo $p^T x_0 = k$ e $p^T x = k$ temos $p^T (x x_0) = 0$.
- Um hiperplano $H \in \mathbb{R}^n$ pode ser representado pelo conjunto de pontos que satisfazem $p^T(x x_0) = 0$, onde x_0 é algum ponto fixo em H.
- Um hiperplano $H \in \mathbb{R}^n$ é um conjunto convexo.

Hiperplano e subespaços

- Um hiperplano $H \in \mathbb{R}^n$ divide o \mathbb{R}^n em duas regiões, chamadas subespaços.
- Um subespaço é um conjunto de pontos forma $\{x \in \mathbb{R}^n : p^T x \le k\}$, ou $\{x \in \mathbb{R}^n : p^T x \ge k\}$, onde p é um vetor não nulo do \mathbb{R}^n e $k \in \mathbb{R}$.
- Temos que $\{x \in \mathbb{R}^n : p^T x \le k\} \cup \{x \in \mathbb{R}^n : p^T x \ge k\} = \mathbb{R}^n$.
- Considere um hiperplano $H \in \mathbb{R}^n$, fixando um ponto x_0 em H definimos dois subespaços que podem ser representados como

$$S^{\leq} = \{x \in \mathbb{R}^n : p^T(x - x_0) \geq 0\} \text{ e } S^{\geq} = \{x \in \mathbb{R}^n : p^T(x - x_0) \leq 0\}.$$

Conjunto poliedral

- Um poliedro pode ser definido como a intersecção de um número finito de subespaços.
- Um poliedro limitado e fechado é denominado um politopo.
- Já que um subespaço pode ser representado por uma desigualdade do tipo $a^ix \leq b_i$ então um poliedro pode ser representado pelo sistema

$$a^i x \leq b_i$$
 para $i = 1, \ldots, m$.

• Um poliedro pode ser representado por $\{x \in \mathbb{R}^n : Ax \leq b\}$, onde $A \in \mathbb{R}^{m \times n}$, a i-ésima linha de S é a^i e $b \in \mathbb{R}^m$.

Conjunto poliedral

Exemplo

Considere o sistema

$$-2x_{1} + x_{2} \le 4$$

$$x_{1} + x_{2} \le 3$$

$$x_{1} \le 2$$

$$x_{1} \ge 0$$

$$x_{2} \ge 0$$

Represente esse sistema no \mathbb{R}^2 .