Матан Теормин 1

> $\Pi y cm b \{X_{\alpha}\}_{\alpha \in A}$ — Теорема 1. Законы де Моргана. мейство множеств, У — множество. Тогда

$$Y \setminus \bigcup_{\alpha \in A} X_{\alpha} = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha}), \tag{1}$$

$$Y \setminus \bigcup_{\alpha \in A} X_{\alpha} = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha}), \tag{1}$$
$$Y \setminus \bigcap_{\alpha \in A} X_{\alpha} = \bigcup_{\alpha \in A} (Y \setminus X_{\alpha}). \tag{2}$$

Обозначим через Λ и Π соответственно ле-Доказательство. вую и правую части равенства (1). По определению разности соотношение $x \in \Lambda$ означает, что $x \in Y$ и x не принадлежит объединению множеств X_{α} . По определению объединения это значит, что $x \in Y$ и x не принадлежит ни одному из множеств X_{α} , то есть

 $x \in Y \setminus X_{\alpha}$ при всех $\alpha \in A$. По определению пересечения последнее значит, что $x\in\Pi$. Равенство $\Lambda=\Pi$ доказано. Соотношение (2) доказывается аналогично.

Рис. 1: Законы де Моргана