

## PARUL UNIVERSITY - FACULTY OF ENGINEERING & TECHNOLOGY

Department of Applied Science & Humanities 3rd Semester B. Tech (CSE, IT) Discrete Mathematics (203191202) Tutorial-3(A) Propositional Logic

| Q.1. | Which of these sentences are propositions? What are the truth values of those that are                                                                                    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | propositions?                                                                                                                                                             |
|      | a) Boston is the capital of Massachusetts. b) Miami is the capital of Florida.                                                                                            |
|      | <b>c)</b> $2 + 3 = 5$ . <b>d)</b> $5 + 7 = 10$ .                                                                                                                          |
|      | e) $x + 2 = 11$ . f ) Answer this question.                                                                                                                               |
| Q.2  | What is the negation of each of these propositions?                                                                                                                       |
|      | a) Jennifer and Teja are friends. b) There are 13 items in a baker's dozen.                                                                                               |
|      | c) 121 is a perfect square. d) Abby sent more than 100 text messages everyday.                                                                                            |
| Q.3  | Suppose that Smartphone A has 256MBRAMand 32GB ROM, and the resolution                                                                                                    |
|      | of its camera is 8 MP; Smartphone B has 288 MB RAM and 64 GB ROM, and                                                                                                     |
|      | the resolution of its camera is 4 MP; and Smartphone C has 128 MB RAM and                                                                                                 |
|      | 32 GB ROM, and the resolution of its camera is 5 MP. Determine the truth value                                                                                            |
|      | of each of these propositions.                                                                                                                                            |
|      | a) Smartphone B has the most RAM of these three smartphones.                                                                                                              |
|      | <b>b)</b> Smartphone C has more ROM or a higher resolution camera than Smartphone B.                                                                                      |
|      | c) Smartphone B has more RAM, more ROM, and a higher resolution camera                                                                                                    |
|      | than Smartphone A.                                                                                                                                                        |
|      | d) If Smartphone B has more RAM and more ROM than Smartphone C, then it                                                                                                   |
|      | also has a higher resolution camera.                                                                                                                                      |
|      | e) Smartphone A has more RAM than Smartphone B if and only if Smartphone B                                                                                                |
|      | has more RAM than Smartphone A.                                                                                                                                           |
| Q.4  | Let <i>p</i> and <i>q</i> be the propositions "The election is decided" and "The votes have been                                                                          |
|      | counted," respectively. Express each of these compound propositions as an English                                                                                         |
|      | sentence.                                                                                                                                                                 |
|      | <b>a)</b> $\neg p$ <b>b)</b> $p \lor q$ <b>c)</b> $\neg p \land q$ <b>d)</b> $q \rightarrow p$                                                                            |
|      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                      |
|      | $\neg q \rightarrow \neg p$                                                                                                                                               |
| Q.5  | Let $p$ , $q$ , and $r$ be the propositions                                                                                                                               |
|      | p: You get an A on the final exam.                                                                                                                                        |
|      | q: You do every exercise in this book.                                                                                                                                    |
|      | r: You get an A in this class.                                                                                                                                            |
|      | Write these propositions using p, q, and r and logical connectives (including negations).                                                                                 |
|      | a) You get an A in this class, but you do not do every exercise in this book.                                                                                             |
|      | b) You get an A on the final, you do every exercise in this book, and you get an A in this                                                                                |
|      | class.                                                                                                                                                                    |
|      | c) To get an A in this class, it is necessary for you to get an A on the final.  d) You get an A on the final, but you don't do every everying in this book; nevertheless |
|      | <b>d)</b> You get an A on the final, but you don't do every exercise in this book; nevertheless, you get an A in this class.                                              |
|      | e) Getting an A on the final and doing every exercise in this book is sufficient for getting                                                                              |
|      | an A in this class.                                                                                                                                                       |
|      | f) You will get an A in this class if and only if you either do every exercise in this book or                                                                            |
|      | you get an A on the final.                                                                                                                                                |
|      | Jou Bot and I on the lines.                                                                                                                                               |

| Q.6  | Construct a truth table for each of these compound propositions.<br><b>a)</b> $((p \rightarrow q) \rightarrow r) \rightarrow s$ <b>b)</b> $(p \land q) \rightarrow (p \lor q)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | $ \begin{vmatrix} \mathbf{a}_{j} & (p + q) & (p + q) \\ \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q.7  | Find the bitwise <i>OR</i> , bitwise <i>AND</i> , and bitwise <i>XOR</i> of each of these pairs of bit strings. <b>a)</b> 00 0111 0001, 10 0100 1000 <b>b)</b> 11 1111 1111, 00 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q.8  | a) Show that $\neg p \leftrightarrow q$ and $p \leftrightarrow \neg q$ are logically equivalent.<br><b>b)</b> Show that $\neg (p \oplus q)$ and $p \leftrightarrow q$ are logically equivalent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Q.9  | Determine whether each of these compound propositions is satisfiable.<br><b>a)</b> $(p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$<br><b>b)</b> $(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q.10 | Let <i>C</i> ( <i>x</i> ) be the statement " <i>x</i> has a cat," let <i>D</i> ( <i>x</i> ) be the statement " <i>x</i> has a dog," and let <i>F</i> ( <i>x</i> ) be the statement " <i>x</i> has a ferret." Express each of these statements in terms of <i>C</i> ( <i>x</i> ), <i>D</i> ( <i>x</i> ), <i>F</i> ( <i>x</i> ), quantifiers, and logical connectives.  Let the domain consist of all students in your class.  a) A student in your class has a cat, a dog, and a ferret.  b) All students in your class have a cat, a dog, or a ferret.  c) Some student in your class has a cat and a ferret, but not a dog.  d) No student in your class has a cat, a dog, and a ferret.  e) For each of the three animals, cats, dogs, and ferrets, there is a student in your class who has this animal as a pet. |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |