Modal Logic

kankanray

Contents

L	Basi	c Concepts	j
	1.1	Relational Structures	

1 Basic Concepts

1.1 Relational Structures

Definition 1.1. A relational structure \mathfrak{F} is a tuple, where the first component is a non-empty set W called *universe*, and remaining components are relations on W. We assume there is at least one relation on W.

In the following 2 definitions, we assume W be a non-empty set and R a binary relation on W.

Definition 1.2. $R^+ := \bigcap \{R' | R' \text{ is a transitive binary relation on } W \text{ and } R \subseteq R'\}$, is called the *transitive closure* of R.

Definition 1.3. $R^* := \bigcap \{R' | R' \text{ is a reflexive transitive binary relation on } W$ and $R \subseteq R'\}$, is called the *reflexive transitive closure* of R.

Note that transitive closure of a binary relation has nice *finite steps* property, see Exercise 1.1.3.

Definition 1.4. A tree \mathfrak{T} is a structural structure (T,S) where:

- (i) T, the set of nodes, contains a unique $r \in T$ (root), such that $\forall t \in TS^*rt$.
- (ii)For every $t \neq r$, there is a unique $t' \in T$, such that St't
- (iii) $\forall t \neg S^+tt$, so S is acyclic.

Question 1.1. Why we define tree like that?