Demostraciones sobre subgrupos (y un par de cosas más)

Carlos Arturo Murcia Andrade Abril 2023

Definiciones

Definición 1. Una operación binaria se dice **asociativa** si $\forall a, b, c \in G$ tiene (a * b) * c = a * (b * c).

Definición 2. Un grupo es un conjunto de elementos G cuya operación binaria "*" es cerrada $(a,b \in G \to a*b \in G)$ con un elemento especial "e" (conocido como neutro) que:

- 1. $\exists a^{-1} \forall a, \ tal \ que \ a * a^{-1} = e$
- 2. b * e = e * b = b

Además, la operación binaria es asociativa.

Definición 3. Un subconjunto S no vacío de un grupo G es un **subgrupo** de G si es un grupo bajo la operación binaria de G.

Definición 4. Dos grupos G y H son isomorfos si existe una correspondencia 1-1 $\theta: G \to H$ tal que $\theta(g_1 \times g_2) = \theta(g_1) \diamond \theta(g_2) \ \forall g_1, g_2 \in G$.

Nota: Si las operaciones \times $y \diamond$ son diferentes (por ejemplo, una es multiplicación y la otra es suma), entonces, \times hace referencia a la operación definida en G $y \diamond$ hace referencia a la operación definida en H.

Definición 5. Si θ satisface que $\theta(g_1 \times g_2) = \theta(g_1) \diamond \theta(g_2) \ \forall g_1, g_2 \in G$, pero, no existe una correspondencia 1-1, entonces, G y H forman un **homomorfismo**.

Definición 6. El **kernel** o **núcleo** de un homomorfismo mide el grado en el que un homomorfismo no es inyectivo (es decir, el grado en el que un homomorfismo no sea 1-1). $Kernel(\theta) = \{x \in G : \theta x = 1\}$

Definición 7. La imagen de un homomorfismo es el conjunto de todos los elementos de H que son la imagen de algún elemento de G. $Img(\theta) = \{y \in H, \ \theta x = y \ \forall x \in G\}$

Se puede mostrar una imagen que permita aclarar de manera más precisa tanto el kernel como la imagen de un homomorfismo.

Figura 1: El óvalo verde dentro de H representa la **imagen del homomorfismo** y el círculo rojo dentro de G representa el **kernel del homomorfismo**.

1 Probar que el kernel y la imagen de un homomorfismo son subgrupos

Solución. Para determinar que el kernel y la imagen del homomorfismo son subgrupos, es preciso verificar que cumplan con las siguientes propiedades:

- 1. Operación cerrada.
- 2. Existencia del elemento identidad.
- 3. Existencia de una inversa.

Sea $\phi: G \to H$ un homomorfismo entre los grupos G y H.

Para demostrar que $\ker(\phi)$, es un subgrupo de G, es necesario demostrar:

- 1. $\ker(\phi)$ no sea vacío: Es preciso notar que habrá elementos presentes en G que "mapearan" al elemento identidad de H. Entonces, el kernel, será un conjunto no vacío.
- 2. Si $a, b \in \ker \phi$, entonces, $a * b \in \ker \phi$: Suponga que $a, b \in \ker \phi$. Entonces $\phi(a * b) = \phi(a)\phi(b) = 1_H * 1_H = 1_H$ (por la definición de kernel), ya que a y b están en el kernel. Por lo tanto, $a * b \in \ker \phi$.
- 3. Si $a \in \ker \phi$, entonces $a^{-1} \in \ker \phi$: Suponga que $a \in \ker \phi$. Entonces $\phi(a^{-1}) = \phi(a)^{-1} = 1_H^{-1} = 1_H$, ya que ϕ es un homomorfismo y a está en el kernel. Por lo tanto, $a^{-1} \in \ker \phi$.

Entonces, el kernel del homomorfismo es un subgrupo de G.

Para demostrar que la $img(\phi)$, es un subgrupo de H, es necesario demostrar:

- 1. $img(\phi)$ no sea vacío: Es preciso notar todos los elementos de G se "mapearan" a H, por lo tanto, $img(\phi)$ no es vacío.
- 2. Si $a, b \in img(\phi)$, entonces $a * b \in img(\phi)$: Suponga que $a, b \in img(\phi)$. Entonces existen $x, y \in G$ tales que $a = \phi(x)$ y $b = \phi(y)$. Entonces $a * b = \phi(x) * \phi(y) = \phi(x * y)$, ya que ϕ es un homomorfismo. Por lo tanto, $a * b \in img(\phi)$.
- 3. Si $a \in img(\phi)$, entonces $a^{-1} \in img(\phi)$: Suponga que $a \in im \phi$. Entonces existe $x \in G$ tal que $a = \phi(x)$. Como ϕ es un homomorfismo, $\phi(x^{-1}) = \phi(x)^{-1} = a^{-1}$, por lo que $a^{-1} \in img(\phi)$.

Entonces, la imagen del homomorfismo es un subgrupo de H.

Por lo tanto, el kernel y la imagen de un homomorfismo son subgrupos. \Box