Ergodicity of Unsatisfiable Boolean Formulas

Ohad Asor

January 13, 2016

Abstract

We present some trigonometric identities that also express the solution to NP-Complete problems in forms of infinite series.

We say that a vector $\mathbf{x} \in \mathbb{C}^n$ is partitionable if there is an assignment of \pm such that it sums to zero, or more precisely: if there exists $\sigma \in \{-1,1\}^n$ such that $\langle \mathbf{x},\sigma \rangle = \sum_{k=1}^n x_k \sigma_k = 0$. We call a partition to the quentity $\langle \mathbf{x},\sigma \rangle$ given some $\sigma \in \{-1,1\}^n$. If $\langle \mathbf{x},\sigma \rangle = 0$ then we call it a zero partition. Determining whether a zero partition exists given $\mathbf{x} \in \mathbb{N}^n$ in binary (or higher) radix is a Strong NP-Complete problem. Counting the number of zero partitions is therefore a #P problem. We will therefore be interested in counting or detecting zero partitions, preferrably on a hard instances e.g. reduced from SAT problems as we will emphasize later on.

1 Main Result

Theorem 1.1. The following identities hold for $\mathbf{x} \in \mathbb{R}_+^n$:

$$\prod_{m=0}^{\infty} \exp \frac{2^{n+1} \prod_{k=1}^{n} \cos \left(\frac{2\pi x_k m}{\sum_{c=1}^{n} x_c}\right)}{2m+1} = \prod_{\sigma \in \{-1,1\}^n} \left[\frac{i \sin \langle \mathbf{x}, \sigma \rangle}{\cos \langle \mathbf{x}, \sigma \rangle - 1}\right]^{e^{-i\langle \mathbf{x}, \sigma \rangle}}$$
(1)

$$\prod_{m=0}^{\infty} \exp \frac{-2^n \prod_{k=1}^n \cos(x_k m)}{m+1} = \prod_{\sigma \in \{-1,1\}^n} \left(1 - e^{-i\langle \mathbf{x}, \sigma \rangle}\right)^{e^{i\langle \mathbf{x}, \sigma \rangle}}$$
(2)

Moreover, both (1) and (2) equal zero if and only if \mathbf{x} is partitionable.

Proof. Denote

$$f(m) = \prod_{k=1}^{n} \cos(x_k m) = 2^{-n} \sum_{\sigma \in \{-1,1\}^n} e^{i\langle \mathbf{x}, \sigma \rangle}$$

$$\tag{3}$$

as can be easily verified due to angle addition formulae. Define

$$\psi_0(z) = \sum_{m=0}^{\infty} z^m f(m) = \sum_{\sigma \in \{-1,1\}^n} \sum_{m=0}^{\infty} z^m e^{im\langle \mathbf{x}, \sigma \rangle} = 2^{-n} \sum_{\sigma \in \{-1,1\}^n} \frac{1}{1 - ze^{i\langle \mathbf{x}, \sigma \rangle}}$$
(4)

The leftmost is the realpart, while the midle is the imaginary part, both over $[0, \pi]$. The rightmost is the imaginary part over $\left[\frac{1}{100}, \pi - \frac{1}{100}\right]$

for complex |z| < 1 and due to summation of geometric progression, and write

$$\psi_0(z) + \psi_0(-z) = \sum_{m=0}^{\infty} 2z^{2m} f(2m) = 2^{-n} \sum_{\sigma \in \{-1,1\}^n} \frac{2}{1 - z^2 e^{2i\langle \mathbf{x}, \sigma \rangle}}$$
 (5)

integrating wrt z:

$$\sum_{m=0}^{\infty} \frac{2z^{2m+1}}{2m+1} f(2m) = 2^{-n} \sum_{\sigma \in \{-1,1\}^n} e^{-i\langle \mathbf{x}, \sigma \rangle} \ln \frac{ze^{i\langle \mathbf{x}, \sigma \rangle} + 1}{ze^{i\langle \mathbf{x}, \sigma \rangle} - 1}$$
 (6)

for z = 1 we get

$$\sum_{m=0}^{\infty} \frac{2^{n+1} f(2m)}{2m+1} = \sum_{\sigma \in \{-1,1\}^n} e^{-i\langle \mathbf{x}, \sigma \rangle} \ln \frac{e^{i\langle \mathbf{x}, \sigma \rangle} + 1}{e^{i\langle \mathbf{x}, \sigma \rangle} - 1}$$
 (7)

$$= \sum_{\sigma \in \{-1,1\}^n} e^{-i\langle \mathbf{x}, \sigma \rangle} \ln \left[-i \cot \frac{\langle \mathbf{x}, \sigma \rangle}{2} \right] = \sum_{\sigma \in \{-1,1\}^n} \ln \left[\frac{i \sin \langle \mathbf{x}, \sigma \rangle}{\cos \langle \mathbf{x}, \sigma \rangle - 1} \right]^{e^{-i\langle \mathbf{x}, \sigma \rangle}}$$
(8)

by exponentiation:

$$\prod_{m=0}^{\infty} \exp \frac{2^{m+1} f(2m)}{2m+1} = \prod_{\sigma \in \{-1,1\}^n} \left[\frac{i \sin \langle \mathbf{x}, \sigma \rangle}{\cos \langle \mathbf{x}, \sigma \rangle - 1} \right]^{e^{-i\langle \mathbf{x}, \sigma \rangle}}$$
(9)

it is interesting to observe the plot of $\left[\frac{i\sin x}{\cos x-1}\right]^{e^{-ix}}$ as shown in Figure 1. We therefore require \mathbf{x} to satisfy $\langle \mathbf{x}, \mathbf{1} \rangle < \pi$. This way we can see that (9) converges to zero iff \mathbf{x} is partitionable.

On a different route, beginning from (3), integrating and dividing by -z, we define:

$$\psi_1(z) \equiv -\frac{1}{z} \int_{-\infty}^{z} \psi_0(z') dz' = \sum_{m=0}^{\infty} \frac{-z^m}{m+1} f(m) = -2^{-n} \sum_{\sigma \in \{-1,1\}^n} \frac{1}{z e^{i\langle \mathbf{x}, \sigma \rangle}} \ln \frac{1}{1 - z e^{i\langle \mathbf{x}, \sigma \rangle}}$$
(10)

observe that the rhs is the Dirichlet space representation prescribed explicitly by its reproducing kernel, while 3 is on Bergman space. We also write

Leftmost is real part, middle is imaginary part, afterwards - the norm, and the rightmost is $\left|\left(1-e^{-it}\right)^{e^{it}}\right|$ - $\sqrt{\frac{t}{2\pi}}\left(1-\frac{t}{2\pi}\right)$.

$$\sum_{m=0}^{\infty} \frac{-2^n z^m}{m+1} f(m) = \ln \prod_{\sigma \in \{-1,1\}^n} \left(1 - z e^{i\langle \mathbf{x}, \sigma \rangle}\right)^{z^{-1} e^{-i\langle \mathbf{x}, \sigma \rangle}}$$
(11)

$$\implies \psi(z) \equiv e^{2^n z \psi_1(z)} = \prod_{m=0}^{\infty} \exp \frac{-2^n z^{m+1} f(m)}{m+1} = \prod_{\sigma \in \{-1,1\}^n} \left(1 - z e^{i\langle \mathbf{x}, \sigma \rangle}\right)^{\left(e^{-i\langle \mathbf{x}, \sigma \rangle}\right)}$$
(12)

and see that the zeros are determined by all possible partitions. This funtion is holomorphic over the whole complex plane and we wish to evaluate it at z=1. Since

$$\psi(1) = \prod_{m=0}^{\infty} \exp \frac{-2^n f(m)}{m+1} = \prod_{\sigma \in \{-1,1\}^n} \left(1 - e^{-i\langle \mathbf{x}, \sigma \rangle}\right)^{e^{i\langle \mathbf{x}, \sigma \rangle}} \le 2^{-2^n}$$
 (13)

since $\left| \left(1 - e^{-i\langle \mathbf{x}, \sigma \rangle} \right)^{e^{i\langle \mathbf{x}, \sigma \rangle}} \right| \leq \frac{1}{2}$ (see Figure 2), implying:

$$\sum_{m=0}^{\infty} \frac{1}{m+1} \prod_{k=1}^{n} \cos(x_k m) \le -\ln 2 \tag{14}$$

we observe the closeness to $\prod_{k} e^{\frac{(-1)^{k}}{k}} = 2$, so f(m) might sometimes be very close to the alternating harmonic sequence, implying almost maximal entropy when the set is unpartitionable and contains more partitions close to the average of the x's.