Representação e Modelagem

Luis Rivera

Representação e Modelagem

- Objeto representado
 - Limitações de recursos
 - Eficiência Computacional
 - Objeto animado 300.000 polígonos de detalhe cada um
 - Tempo real é comprometido
 - Exemplo: modelagem de Terreno

Modelos de terreno

• Um terreno pode ser representados por um campo de alturas (*Height Field*) expresso através de uma função de duas variáveis:

$$H: D \subset R^2 \to R$$

$$(x, y) \to z$$

 Para visualização: associar a cada ponto do terreno informações relativas à sua textura (por exemplo, RGB)

Discretização irregular

 Exige estruturação (em geral via triangulação)

Triangulação Delounay (incremental)

Dados: $H:D\subset \mathbb{R}^2\to \mathbb{R}$, $\varepsilon\geq 0$

Encontrar

$$Q = \{q_1, q_2, ..., q_n\} \quad tal \ que \ d(H - TS_Q) \le \varepsilon$$

Redundâncias

Simplificação de superfícies

- NP-árduo
- Uso de Heurísticas

Triangulção de Delaunay

Condição de Delaunay: o círculo definido por vértices de cada triângulo não possui nenhum vértice de outros triângulos.

Rede conexa e convexa de triângulos com a condição de Delaunay.

Modelagem

- Modelagem demanda
 - Muita intuição
 - Conhecimento
 - Experiência
- Usada em muitas aplicações
 - CAD (AUTOCAD)
 - Reconstrução de sólidos
 - Trab. de Carol

Exemplo: reconstrução (Carol)

Imagens de seções transversais

Contornos de cada seção

Fechos convexos

Conexões de seções

Triangulações

Sólido reconstruído

Pivô

- Centro de Referencia Local do Objeto (SRO)
 - Cada Objeto tem um sistema de coordenado local
- Pivô
- Permite realizar as operações com o objeto
- Criado junto com o objeto

Sólidos Uni, Bi, e Tridimensionais

- Um sólido:
 - ◆ Um subconjunto fechado e limitado do Espaço Euclidiano Tridimensional: E³
- Bidimensional:
 - um polígono (no espaço Euclidiano E²)
- Unidimensional:
 - uma curva
- Sólido fechado e limitado

Sólidos Realizáveis

Propriedades

- Rigidez
 - Invariante em forma (independente de posição e orientação)
- Finita
 - Dimensão finita
- Homogeneidade
 - Mesmas propriedades nos pontos interiores
- Determinismo dos limites
 - Identificação do interior, limite e exterior
- Descritível
 - Possível de ser descrito a través de um número finito de propriedades físicas, químicas, etc.
- Operações fechadas
 - Resultado de operações sobre objetos válidos devem ser válidos

Formas de representação do Objeto

- Formas híbridas (mistura de alguns dos métodos)
 - Aramada (Wire Frame)
 - Composto por conjunto de arestas e vértices
 - Vantagem
 - Velocidade na exibição dos objetos
 - Desvantagem
 - Dificuldade de realizar algumas operações

Formas de Representação de Objetos

- Faces (ou superfícies limitantes)
 - Faces definem os contornos
 - Superfícies fechadas e orientadas
 - Extensão da modelagem 2D por contornos
 - "Boundary Representation ou B-rep"
 - Lista de polígonos orientadas
 - Aresta a_i definida por vértices $V_1 \dots V_m$ e faces $F_0 \dots F_n$.
 - 2-manifold (cada ponto tem uma vizinhança equivalente a um disco do espaço Euclidiano)
 - Objetos não 2-manifold (exemplo)

Formas de Representação de Objetos (Faces Poligonais)

- Faces definidos por Triângulos, Retângulos, etc.
 - Tesselation (ou tiling)
 - Cobrir uma área plana (como pisos, paredes, etc.)

Vértices Complanares

Voronoi Diagram

- Fácil rendering
 - Cada polígono de característica homogênea

Diagrama de Voronoi

Convex Hull

Um conjunto de ponto, cada célula Voronoi define o conjunto de pontos no plano que são próximos a cada ponto que a qualquer outro ponto.

Delaunay Triangulation

Formas de Representação de Objetos (Fórmula de Euler)

- B-Rep de poliedros simples (sem buracos) obedece a fórmula de Euler:
 - V A + F = 2
 - V: número de vértices do objeto
 - A: número de arestas
 - F: número de faces
 - Aplicado a objetos com faces não planares (cilindros)

Formas de representação do Objeto (Estrutura de Dados Baseada em Vértices)

- Uso de estrutura de dados consistente
- Lista de faces
 - Lista de vértices
 - Cada vértice por coordenada do ponto
 - Orientação: sentido horário ou antihorário (visto do exterior do objeto)

Vértices Coordenadas				

Faces	Vértices
F1	EFBA
F2	GFEH
F3	CBFG
F4	DABC
F5	HEAD
F6	DCGH

Formas de representação do Objeto (Estrutura de Dados Baseada em Arestas)

- Para faces curvas
- Lista de faces fechadas
 - Sentido horária ou anti-horária (visto do exterior)
 - Arestas orientadas

Vértices	Coorde	enadas	
A	(0,0,0)		
В	(1,0,0)		
С	(1,1,0)	Faces	Arestas
D	(0,1,0)	F1	A1 A2 A3 A4
E	(0,0,1)	F2	A9 A6 A1 A5
F	(1,0,1)	F3	A6 A10 A7 A2
G	(1,1,1)	F4	A7 A11 A8 A3
Н	(0,1,1)	F5	A12 A5 A4 A8
		F6	A9 A12 A11 A10

Aresta	Vértices	Aresta	Vértices
A1	EF	A7	BC
A2	FB	A8	AD
A3	BA	A9	HG
A4	ΑE	A10	GC
A5	EH	A11	CD
A6	FG	A12	DH

Formas de representação do Objeto (Estrutura de Dados Windeg-Edge e half Winged-edge)

- Informações das faces vizinhas são adicionadas com associações das arestas que as separam
 - Aresta EF das faces EFBA e GFEH
 - Podem representar: aresta FB a face EFBA; aresta EH a face GFEH
 - NCD (next clockwise) e NCCW (next counterclockwise)
 - Indicam as arestas que pertencem às faces vizinhas e sua orientação em relação à aresta comum às duas faces (ex. EF)

Formas de representação do Objeto (Estructura de Datos Windeg-Edge e half Winged-edge)

Aresta	Vérts	V. I1	nic. V. Final	ncw	nccw
A1	EF	E	\mathbf{F}	A2	A5
A2	FB	F	В	A3	A6
A3	BA	В	A	A4	A7
A4	ΑE	A	E	A1	A8
A5	EH	E	Н	A9	A4
A6	FG	F	G	A10	A1
A7	BC	В	C	A11	A2
A8	AD	A	D	A12	A3
A9	HG	Н	G	A6	A12
A10	GC	G	C	A7	A9
A11	CD	C	D	A8	A10
A12	DH	D	Н	A5	A11

Vértices	Coordenadas
A	(0,0,0)
В	(1,0,0)
C	(1,1,0)
D	(0,1,0)
E	(0,0,1)
F	(1,0,1)
G	(1,1,1)
Н	(0,1,1)

Face	Primeira Aresta	Sinal
F1	A1	+
F2	A9	+
F3	A6	+
F4	A7	+
F5	A12	+
F6	A9	-

Formas de representação do Objeto (Decomposição do espaço em Octree)

- Envolve o objeto por um paralelepípedo
- Dividir em 8 paralelepípedos menores (octantes = voxel)
 - Cada voxel pode ser:
 - Vazio: objeto n\u00e3o ocupa o voxel
 - Cheio: objeto ocupa o voxel
 - Parcial: objeto ocupa parte do voxel
 - Voxel Vazio é ignorado
 - Voxel Cheio é parte do objeto
 - Voxel Parcial se considera como um paralelepípedo inicial
 - Processo divisão em outros 8 voxels, etc.

Numeração das células da octree

Imagem que a octree representa

Técnicas de Modelagem Geométrica

- Modelagem
 - Manual
 - P conhecido, barato e simple: primitivas, operação booleana de objetos, etc.
 - Automática
 - Usa equipamentos especiais: scanners 3D, Fotografía 3D, etc.
 - Matemática
 - Usa descrição matemática e algorítmica: fractal, varredura, etc.

Técnicas de Modelagem Geométrica

(Instanciamento de Primitivas)

- Conjunto de formas sólidas relevantes à área de aplicação
 - Cada primitiva é um objeto simples

 Novos objetos criados por transformações geométricas (translação, escala, rotação, etc)

Técnicas de Modelagem Geométrica

(Geometría Sólida Constructiva – CSG: Constructive Solid Geometry)

- Uso de operações booleanas ou combinações de componentes sólidos
 - União, interseção e diferença
- Armazenado em árvore os operadores e primitivas simples
 - Pai: União
 - Filhos: primitivas simples ou objeto resultante de outras operações

