MARKOV CHAIN

Markov Chains

A stochastic process containing random variables, transitioning from one state to another depending on certain assumptions and definite probabilistic rules.

Markov Property

- A Markov chain is a stochastic process, but it differs from a general stochastic process in that a Markov chain must be "memory-less
- Markov Property states that the calculated probability of a random process transitioning to the next possible state is only dependent on the current state and time and it is independent of the series of states that preceded it.

UNDERSTANDING MARKOV MODEL WITH EXAMPLE

Love Python Work Python Fast Python My Python World

Key: Unique words {love, python, work, fast, my, world}

Token: Total no of words {Love Python Work Python Fast Python My Python World}

Keys	Frequency
Love	1
Python	4
Work	1
Fast	1
My	1
World	1

CURRENT STATE	NEXT STATE
Love	Python
Python	Fast, Work ,My ,World
Work	Python
Fast	Python
Му	Python
World	None

Transition Matrix

Square matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability. It is also called a probability matrix, substitution matrix, Markov matrix or stochastic matrix

$$P = \begin{bmatrix} P_{1,1} & P_{1,2} & \dots & P_{1,j} & \dots & P_{1,S} \\ P_{2,1} & P_{2,2} & \dots & P_{2,j} & \dots & P_{2,S} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{i,1} & P_{i,2} & \dots & P_{i,j} & \dots & P_{i,S} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{S,1} & P_{S,2} & \dots & P_{S,j} & \dots & P_{S,S} \end{bmatrix}.$$