

Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias Básicas e Ingeniería Área Académica de Matemáticas y Física

Título

Tesis que para obtener el título de

LICENCIADA EN MATEMÁTICAS APLICADAS

presenta

Alumna

bajo la dirección de Dr. Rafael Villarroel Flores Pachuca, Hidalgo. Junio de 2013.

Resumen

Abstract

Chapter 1

Representaciones de grupos

Sea $GL(n, \mathbb{C})$ el grupo de todas las matrices no singulares de grado n sobre el campo de los números complejos \mathbb{C} . Sea G un grupo. Una representación (matricial) de G es, por definición, un homomorfismo de G en $GL(n, \mathbb{C})$:

$$(A): a \to A(a) \ \mathbb{A}: a \to A(a), \text{ para todo } a \in G$$
 con

A(ab)(a)(b),

A(1) = I (la matriz identidad)

$$A(a^{-1}) = A(a)^{-1}$$

y n es el grado. Se dice que la representación es fiel, si $\mathbb A$ es biyectiva.

Ejemplo 1.1. El mapeo que a manda cada elemento de G a $1 \in \mathbb{C}$ es una representación de grado 1. Ésta es llamada la representación unitaria de G, y es denotada por 1_G .

Ejemplo 1.2. Dada una representación $a \to A(a)$, el mapeo

$$a \to P^{-1}A(a)P$$
, para todo $a \in G$

se convierte en una representación de G para cualquier matriz P no singular.

Sean $\mathbb{A}: a \to A(a)$ y $\mathbb{B}: a \to B(a)$ representaciones de G. Si exite una matriz no singular P tal que

$$B(a) = P^{-1}A(a)P$$
, para todo $a \in G$,

diremos que \mathbb{A} y \mathbb{B} son equivalentes. Representaciones equivalentes son denotadas por $\mathbb{A} \sim \mathbb{B}$. La relación \sim define una clase de equivalencia de representaciones de G.

Ejemplo 1.3. Sea S_n el grupo simétrico de grado n. Para un elemento

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ s_1 & s_2 & \cdots & s_n \end{pmatrix} \in S_n$$

sea $A(\sigma)$ la matriz cuyo *i*-ésimo renglón es (0,...,0,1,0,...,0) con 1 en el s_i -ésimo lugar:

$$A(\sigma) = (\alpha_{ij}(\sigma))$$
 $(i, j = 1, 2, ..., n)$ con
$$\alpha_{ij}(\sigma) = \begin{cases} 1 & \text{si } j = s_i \\ 0 & \text{otro caso} \end{cases}$$

El mapeo $\sigma \to A(\sigma)$ es una representación fiel de S_n .

Ejemplo 1.4. Sea G un grupo finito que consiste de los elementos $a_1, a_2, ..., a_n$ y sea S^G el grupo simétrico en G. El mapeo lleva cada elemento de $a \in G$ a la permutación

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_1 a & a_2 a & \cdots & a_n a \end{pmatrix} \in S_n^G$$

es un homomorfismo biyectivo de G a S^G . A la permutación anterior, se le asocia la matriz

$$A\left(a\right) = \left(\alpha_{ij}\left(a\right)\right)$$

con

$$\alpha_{ij}(a) = \begin{cases} 1 & \text{si } a_i a = a_j \\ 0 & \text{otro caso} \end{cases}$$

como en el ejemplo 1.3. Entonces el mapeo $a \to A(\sigma)$ convierte una representación fiel de G. Ésta representación es llamada representación regular derecha de G. Sea $\Delta(a)$

$$\alpha_{ij}(a) = \begin{cases} 1 & \text{si } a = 1 \\ 0 & \text{otro caso} \end{cases}$$

entonces

$$A(a) = \begin{pmatrix} \delta(a_1 a a_1^{-1}) & \delta(a_1 a a_2^{-1}) & \cdots & \delta(a_1 a a_n^{-1}) \\ \delta(a_2 a a_1^{-1}) & \delta(a_2 a a_2^{-1}) & \cdots & \delta(a_2 a a_n^{-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \delta(a_n a a_1^{-1}) & \delta(a_n a a_2^{-1}) & \cdots & \delta(a_n a a_n^{-1}) \end{pmatrix}$$

Si a \neq 1, cada entrada sobre la diagonal es cero.

La representación regular izquierda de G es definida similarmente usando el homomorfismo

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ aa_1 & aa_2 & \cdots & aa_n \end{pmatrix}$$

concretamente

$$A(a) = \begin{pmatrix} \delta(a_1^{-1}aa_1) & \delta(a_1^{-1}aa_2) & \cdots & \delta(a_1^{-1}aa_n) \\ \delta(a_2^{-1}aa_1) & \delta(a_2^{-1}aa_2) & \cdots & \delta(a_2^{-1}aa_n) \\ \vdots & \vdots & \ddots & \vdots \\ \delta(a_n^{-1}aa_1) & \delta(a_n^{-1}aa_2) & \cdots & \delta(a_n^{-1}aa_n) \end{pmatrix}$$

Sea $\phi: a \to \phi(a)$ un homomorfismo de G en S_n (es decir, una permutación de de G). Expresando la permutación $\phi(a)$ por la matriz A(a) como en el ejemplo 1.3, se obtiene una matriz representación $a \to A(a)$.

Sea $\mathbb{A}: a \to A(a)$ una representación de grado n. Se dice que \mathbb{A} es reducible si existe una matriz no singular, tal que

$$P^{-1}A\left(a\right)P=egin{pmatrix} B\left(a\right) & 0 \\ D\left(a\right) & C\left(a\right) \end{pmatrix}$$
, para todo $a\in G$,

donde B(a), C(a) son matrices cuadradas de grado r, s con $r \ge 1$, $s \ge 1$, r + s = n. Se observa que las representaciones

$$a \to A'(a) = \begin{pmatrix} B(a) & 0 \\ D(a) & C(a) \end{pmatrix}$$

V

$$a \to A^{''}(a) = \begin{pmatrix} C(a) & D(a) \\ 0 & C(a) \end{pmatrix}$$

son equivalentes, porque $Q^{-1}A^{'}(a) Q = A^{''}(a)$, con

$$Q = \begin{pmatrix} 0 & {\rm I_R} \\ {\rm I_S} & 0 \end{pmatrix} \qquad ({\rm I_r, I_s \ son \ las \ matrices \ identidad \ de \ grado \ r, s}).$$

Se dice que \mathbb{A} es irreducible si no es reducible. En el ejemplo 1.3, el mapeo $a \to B(a)$ y $a \to C(a)$ convierten representaciones de grado r, s, respectivamente.

Dada una representación de G, $\mathbb{A}: a \to A(a)$, y $\mathbb{B}: a \to B(a)$, con grado n, m, respectivamente, el mapeo.

$$Q = \begin{pmatrix} A(a) & 0 \\ 0 & B(a) \end{pmatrix}, \quad \text{para todo } a \in G$$

convierte en una representación de G de grado n+m. Esta representación es llamada la suma directa de \mathbb{A} y \mathbb{B} , y es denotada por $\mathbb{A} \oplus \mathbb{B}$.

Una representación $\mathbb{A}: a \to A(a)$ de G se dice completamente reducible si \mathbb{A} es equivalente a la suma directa de algunas representaciones irreducibles, es decir, existe una matriz no singular P, tal que

$$P^{-1}A(a)P = \begin{pmatrix} F_{1}(a) & & & 0 \\ & F_{2}(a) & & & \\ & & \cdot & & \\ & & & \cdot & & \\ & & & \cdot & & \\ 0 & & & F_{r}(a) \end{pmatrix},$$

donde cada $\mathbb{F}_{\exists}: a \to F_i(a) \ (i=1,2,...,r)$ es una representación irreducible de G.

Representación por matrices unitarias, y representaciones de completamente reducibles de grupos finitos

Una representación $\mathbb{A}: a \to A(a)$ de G se dice unitaria si A(a) es una matriz unitaria para todo $a \in G$, lo cual significa que $\overline{A(a)}^t A(a) = I$. Aquí $\overline{A(a)}^t$ denota la transpuesta de $\overline{A} = (\alpha_{ij})$, donde $A = (\alpha_{ij})$, y $\overline{(\alpha_{ij})}$ es el complejo conjugado de (α_{ij}) . Se pretende mostrar que cada representación de un grupo finito es equivalente a una representación unitaria y es completamente reducible.

Una matriz se dice hermitiana si $\overline{A^t} = A$, y positiva definida si $\overline{x}^t Ax > 0$

para todo vector columna x (distinto de cero).

Lema 2.1. Para cualquier matriz no singular A, $\overline{A(a)}^t A$ es una matriz hermitiana definida positiva. La suma de matrices hermitianas definidas positivas, también es hermitiana y definida positiva.

Lema 2.2. Para cualquier matriz hermitiana definida positiva A, existe una matriz triangular superior no singular C tal que $\overline{C}^t A C = I$.

Lo anterior es cierto, ya que, sea $A(\alpha_{ij})$ con (i, j = 1, 2, ..., n). Entonces $\alpha_{ji} = \overline{\alpha_{ij}}$ con (i, j = 1, 2, ..., n), $y(\alpha_{ii}) > 0$ para (i = 1, 2, ..., n).

Sea

$$A = \begin{pmatrix} \alpha & a \\ \overline{a}^t & B \end{pmatrix}, \quad (\alpha = \alpha_{11} > 0, a = (\alpha_{12}, \alpha_{13}, ..., \alpha_{1n}), B = (\alpha_{ij}) \quad (i, j = 2, ..., n))$$

sea

$$C_1 = \begin{pmatrix} \frac{1}{\sqrt{\alpha}} & -\frac{1}{\alpha} \\ 0 & I \end{pmatrix}$$

entonces,

$$\overline{C_1}^t A C_1 = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{\alpha} \overline{a}^t a + B \end{pmatrix}$$

y $-\frac{1}{\alpha}\overline{a}^ta+B$ es una matriz hermitiana definida positiva. Y la prueba se sigue usando inducción el grado de A veces.

Teorema 2.3. Sea G un grupo finito. Para una representación $\mathbb{B}: a \to F(a)$ de G, entonces exite una matriz triangular superior no singular C, tal que $C_{-1}F(a)$ C es una matriz unitaria para todo $a \in G$.

Sea

$$A = \sum_{b \in G} \overline{F(b)}^{t} F(b)$$

Entonces A es una matriz hermitiana definida positiva por el Lemma 2.1. Entonces existe una matriz triangular no singular C, tal que

$$\overline{C}^t A C = I$$

$$A = \left(\overline{C}^t\right)C^{-1}.$$

Entonces

$$\overline{F(a)}^{t} A F(a) = \sum_{b \in G} \overline{F(ba)}^{t} F(ba) = A$$

, y se obtiene

$$\overline{F\left(a\right)}^{t}(\overline{C}^{t})^{-1}C^{-1}F\left(a\right)=(\overline{C}^{t})^{-1}C^{-1}$$

, es decir

$$\overline{(C_{-1}F(a)C)}^{t}(C_{-1}F(a)^{t}C) = I$$

y $C_{-1}F(a)^tC$ es una matriz unitaria.

Teorema 2.4. Una representación de un grupo finito es completamente reducible.

Sea $\mathbb{A}: a \to A(a)$ una representación de un grupo finito de G y sea A(a) descompuesta como

$$A(a) = \begin{pmatrix} A_1(a) & * \\ 0 & A_2(a) \end{pmatrix}.$$

Por el teorema anterior, existe una matriz triangular no superior C tal que $C^{-1}A(a)C$ es una matriz unitaria. Sea $U(a)=C^{-1}A(a)C$. Como C es una matriz triangular superior, U(a) se descompone como

$$U(a) = \begin{pmatrix} U_1(a) & V(a) \\ 0 & U_2(a) \end{pmatrix}.$$

Como $\overline{U(a)}^t = U(a)^{-1} = U(a^{-1})$, se obtiene

$$\begin{pmatrix} \overline{U_1(a)} & 0 \\ \overline{V(a)}^t & \overline{U_2(a)}^t \end{pmatrix} = \begin{pmatrix} U_1(a^{-1}) & V(a^{-1}) \\ 0 & U_2(a^{-1}) \end{pmatrix}.$$

Lema 3.1. (Lema de Schur) Sea $\mathbb{A}: a \to A(a)$ y $\mathbb{B}: a \to B(a)$ representaciones irreducibles de un grupo G con grados m y n respectivamente. Sea P una matriz de $m \times n$ con la propierdad de que

$$A(a)P = PB(a)$$
, para todo $a \in G$.

Bibliography