

1. Arithmetic

1. [Basic Arithmetic Operations](#)
2. [Multiples and Factors](#)

Basic Arithmetic Operations

Understanding the basic arithmetic operations namely Addition, Subtraction, Multiplication and Division.

About - Operation

Insight

- Components
 - **Operation:** $2 + 3$
 - **Operator:** $+$ (plus)
 - **Operands:** 2 and 3
- Properties
 - **Commutative:** $a + b = b + a$
 - **Associative:** $(a + b) + c = a + (b + c)$

About - Addition

Insight

- Plus
- Sum
- Summation
- **Totalling**
- **Counting**
- Properties
 - Commutative: $a + b = b + a$
 - Associative: $(a + b) + c = a + (b + c)$

About - Subtraction

Insight

- Minus
- **Difference**

Properties

- Not Commutative: $\mathbf{a} - \mathbf{b} \neq \mathbf{b} - \mathbf{a}$
- Not Associative: $(\mathbf{a} - \mathbf{b}) - \mathbf{c} \neq \mathbf{a} - (\mathbf{b} - \mathbf{c})$

About - Multiplication

Insight

- Product
- Shortcut of **repeated addition**
- $\mathbf{a} \times \mathbf{b} = \mathbf{a}$ times \mathbf{b} 's = $\mathbf{b} + \mathbf{b} + \mathbf{b} + \dots$ \mathbf{a} times
- Properties
 - Commutative: $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$
 - Associative: $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$

Exercises

Exercise:

Problem: Why is $\mathbf{a} \times \mathbf{b}$ always equal to $\mathbf{b} \times \mathbf{a}$?

Solution:

Visualization: Draw a grid with \mathbf{a} rows and \mathbf{b} columns and rotate the page 90 degrees so that the rows appear as columns and columns appear as rows. Now we have \mathbf{b} rows and \mathbf{a} columns.

$$\mathbf{a} \times \mathbf{b} = \mathbf{a} \text{ times } \mathbf{b}'s = \mathbf{b} \text{ times } \mathbf{a}'s = \mathbf{b} \times \mathbf{a}.$$

Exercise:

Problem: If $a \times b = c$ then why is $c \div a = b$ and $c \div b = a$?

Solution:

Note: a times b 's = b times a 's = c .

Visualization: Draw a grid with a rows and b columns, or; b rows and a columns.

If we repeatedly take away b 's then that can be done a times. Therefore $c \div b = a$.

If we repeatedly take away a 's then that can be done b times. Therefore $c \div a = b$.

About - Division

Insight

- **Sharing or Distributing equally**
- Shortcut of **repeated subtraction**
- $a \div b$ denotes b is repeatedly subtracted from a for maximum number of times.
- Components
 - **Quotient:** How much each one will get? How many times a number can be repeatedly subtracted?
 - **Remainder:** How much will remain that can not be distributed?

Properties

- Not Commutative: $a \div b \neq b \div a$
- Not Associative: $(a \div b) \div c \neq a \div (b \div c)$

Exercises

Exercise:

Problem:

If t chocolates are distributed among n students, how many chocolates each student will get?

Solution:

Visualization: Distributing equally.

Visualization: Repeatedly subtracting n chocolates from t chocolates so that each student gets one.

$$t \div n.$$

Exercise:

Problem:

If each student should get n chocolates. How many students will get chocolates if there are t chocolates?

Solution:

Visualization: Repeatedly subtracting n chocolates from t chocolates because each student should get n chocolates.

$$t \div n.$$

Multiples and Factors