質問者のプライバシーを保護 する特許デーだベース検索 (研究紹介)

中川研 M2 胡 瀚林 指導教員:中川 裕志 教授

2016年7月1日

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4 参考文献

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4 参考文献

特許検索

特許検索

特許検索質問

メタノールを燃料とする車載用燃料電池システムおよび車

メタノール 水蒸気 反応 水素 透過 膜 自立 燃料 電池 システム 供給 ガスアノード カソード 空気 排出

- 検索質問は単語 (名詞) の集合である
- 質問に含む単語数が多い
 - ウェブ検索:2.35 特許検索:20.1
- 専門用語が多い

テキスト検索

- 検索質問 Q:単語の集合
- 質問Qの検索結果R(Q):文章の集合

Obfuscation Search

- 真の質問とK-1個真の質問と区別できないダ ミー質問と同時に検索する
- サーバーが真の質問を見つける確率が1/k

Obfuscation Search:例

- 実践的には長い質問に対応できない
- 質問 q' を使うことより検索の精度と再現率が下がる

目標

- 長い質問に対応できる
- 専門用語が多いダミーを生成できる
- 検索の精度と再現率を維持できる

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4 参考文献

Embellishing Text Search Queries to Protect User Privacy (PDX10)

真の質問である可能性がある質問数:K

ETS

ETS

真の質問である可能性がある質問数: $K \rightarrow K^n$

テキスト検索

Q W_1 W_2 \cdots W_n

単語 W_i に対して文章 d_j のスコア: s_{ij} 質問 Q に対して文章 d_j のスコア: $s_j = \sum_{i \in Q} s_{ij}$ スコアが上位 m 個にある文章を質問 Q の検索結果として返す

凖同型暗号

定義 (凖同型暗号)

二つの暗号文 $Enc(m_1)$, $Enc(m_2)$ が与えられた時に、 平文や秘密鍵なしで $Enc(m_1 \circ m_2)$ を計算できる暗号

例 (加算ができる凖同型暗号)

Enc(·): 暗号化 Dec(·): 復号

- ランダム性:Enc(m) ≠ Enc(m)
- $Dec(Enc(m_1) \cdot Enc(m_2)) = m_1 + m_2$
- $Dec(Enc(m)^q) = m \cdot q, \ q \in \mathbb{Z}^+$

質問検索-ETS

$$Q \begin{bmatrix} W_{1}^{(1)}, E(u_{1}^{(1)}) \\ W_{1}^{(2)}, E(u_{1}^{(2)}) \\ \vdots \\ W_{1}^{(k)}, \dot{E}(u_{1}^{(k)}) \end{bmatrix} \begin{bmatrix} W_{2}^{(1)}, E(u_{2}^{(1)}) \\ W_{2}^{(2)}, E(u_{2}^{(2)}) \\ \vdots \\ W_{2}^{(k)}, \dot{E}(u_{2}^{(k)}) \end{bmatrix} \cdots \begin{bmatrix} W_{n}^{(1)}, E(u_{n}^{(1)}) \\ W_{n}^{(2)}, E(u_{n}^{(2)}) \\ \vdots \\ W_{n}^{(k)}, \dot{E}(u_{n}^{(k)}) \end{bmatrix} u_{i}^{(k)} = \begin{cases} 0 \text{ i, } k \notin Q^{*} \\ 1 \text{ i, } k \in Q^{*} \end{cases}$$

単語 $W_i^{(k)}$ に対して文章 d_j のスコア: $s'_{ikj} = E(u_i^{(k)})^{(s_{ikj})}$ 質問 Q に対して文章 d_j のスコア: $s_j = \prod_{i,k \in Q} s'_{ikj}$ スコアが 0 ではない文章を全部返す

スクリーンショット

Synset 02068974-n 1 Jpn: 海豚 ドルフィン、イルカ 2 Eng: dolphin 3 Eng: any of various small toothed whales with a beaklike snout; larger than porpoises; Hype: toothed whale Hypo: delphinus delphis white whale grampus griseus bottlenose dolphin pilot whale sea wolf river dolphin porpoise Hmem: delphinidae SUMO: ⊂ AquaticMammal 5

- 1 synset番号(synset offset)
- 2 同義語(synonym)
- 3 定義文・例文(gloss)
- 4関連synsetとのリンク
- 5 他の言語資源とのリンク
- b 他の言語資源とのリン:
- 6 画像

単語を意味ごとに分類するデータベース リンクを持つ synset を隣に並ぶことにより、すべての名詞を一列 に並ぶ: t, b, t, ... t₁₀₀₀

単語列

単語列

スクリーンショット

- 1 synset番号(synset offset)
 2 同義語(synonym)
- 3 定義文・例文(gloss)
- 4関連synsetとのリンク
- 5他の言語資源とのリンク
- 6 画像

実体/entity 以外全部の名詞の上位語が唯一に存在する 上下位関係を枝とすると、Wordnet 中の名詞が木の形になる

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4 参考文献

クエリ分析

メ:	タノール	水蒸気	反応	水素	透過	膜	 燃料
	衡平	グンバイムシ	水力	上唇	ドアロック	沈殿	 ベーキングバウダー
ル	シタニア	ファースト	テアトル	水素	認知心理学	膜	 運転者
メ:	タノール	水蒸気	反応	長引かせること	透過	組織図	 燃料
3	分限者	カランツ	意味合	発明品	イーサネットケーブル	原稿	黒泥土

真の質問の単語は全部燃料電池と関係あるが、ダミー 単語の意味がバラバラである もし単語が意味によって分類できるなら、燃料電池と

関係がある単語が他のクラスに属する単語の数より多 いことが考えられる

Latent Semantic Analysis

潜在的意味インデキシング

単語・文書行列 A を特異値分解 $A = USV^T$ し、U、S、V の各列ベクトルを特異値が大きい順に K 個用いて A の低ランク近似 $A_K = U_K S_K V_K^T$ を得る。

このように低ランク分解によって、単語とトピックの関係を分析することができる

今回は同じ分類に属する全部の文章を1文章としてLSAを行った

主意味攻擊

メタノール	水蒸気	反応	水素	透過	膜	燃料
衡平	グンバイムシ	水力	上唇	ドアロック	沈殿	 ベーキングバウダー
ルシタニア	ファースト	テアトル	水素	認知心理学	膜	 運転者
メタノール	水蒸気	反応	長引かせること	透過	組織図	 燃料
分限者	カランツ	意味合	発明品	イーサネットケーブル	原稿	 黒泥土

主意味攻擊

Input: 質問: $Q = \{t_i\}$, 単語のトピックベクトル集合 $L = \{\ell_i\}$

1: $R = \phi$, $\ell = 0$

2: $\ell = \sum_{t_i \in Q} \ell_{t_i}$

3: $maintopic = argmax_j \ell[j]$

4: for all $bk_k \in Q$:

5: $R = R \cup max_{t_i}q_{t_i}[maintopic]$

6: return R

プライバシー分析

重複を除いた単語数	2,973,096
文章数	3, 496, 253
質問数	2,908
質問平均単語数	21.0
主意味攻擊成功率	90.1%

Prive Information Retrieval(OI07)

• 暗号などの手法を用いて質問の内容を完全に隠す

凖同型暗号

ユーザー

質問生成

```
1: Input:i*, n
2: for i = 1, ..., n : 3: if i = i^* :
```

3: If
$$I == I^*$$
:
4: $q_i = Enc(1)$

6:
$$q_i = Enc(0)$$

7: return $Q = \{q_1, \ldots, q_n\}$

復号

- 1: input:R
- 2: return Dec(R)

サーバー

結果計算

```
1: Input: Q, \{x_1, \ldots, x_n\}
```

2:
$$R = 0$$

2:
$$R = 0$$

3: **for** $i = 1, ..., n$:

4:
$$R = R \cdot q_i^{x_i}$$

Note

$$m_1 = m_2 \Rightarrow Enc(m_1) = Enc(m_2)$$

 $Dec(R) = \sum_{x_i=1} Dec(q_i) = x_{i^*}$

性能

	OBS	OBS+PIR	PIR
サーバーの協力	不要	?	必要
安全性	弱い	?	強い
スピード	速い	?	遅い

安全性はOBSより強い、スピードはPIRより速い中間 手法がほしい

国際特許分類

A61C 5/08A

セクション:A サブセクション : 61 クラス: C メイングループ:5 サブグループ:08 健康および娯楽 医学または獣医学:衛生学 歯科:口腔または歯科衛生 歯の充填または被覆 歯冠:その製造:口中での歯冠固定

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4 参考文献

Bibliography I

Rafail Ostrovsky and William E. Skeith Iii.

A Survey of Single-Database Private Information Retrieval: Techniques and Applications. In Tatsuaki Okamoto and Xiaoyun Wang, editors, *Public Key Cryptography PKC 2007*, number 4450 in Lecture Notes in Computer Science, pages 393–411. Springer Berlin Heidelberg, April 2007.

DOI: 10.1007/978-3-540-71677-8_26.

HweeHwa Pang, Xuhua Ding, and Xiaokui Xiao.

Embellishing Text Search Queries to Protect User Privacy.

Proc. VLDB Endow., 3(1-2):598–607, September 2010.