(a)
$$\int_0^{\frac{\pi}{2}} \ln \sin(x) \, dx.$$

(b)
$$\int_0^\pi \frac{x \sin(x)}{1 + \cos^2(x)} dx$$
. Use $\int_0^a f(x) dx = \int_0^a f(a - x) dx$.

(c)
$$\int_0^{\frac{\pi}{2}} \frac{1}{1 + (tan(x))^{\sqrt{2}}} dx$$
.

(c)
$$\int_0^2 \frac{1}{1 + (tan(x))^{\sqrt{2}}} dx$$

a)
$$\int_{0}^{\frac{\pi}{2}} \ln(\sin(x)) = \int_{0}^{\frac{\pi}{2}} \ln(\sin(\frac{\pi}{2}-x)) dx = \int_{0}^{\frac{\pi}{2}} \ln(\cos(x)) dx$$

Let
$$J = \int_{0}^{\frac{\pi}{2}} h(\sin(x)) dx$$

$$2I = \int_0^{\frac{\pi}{2}} h\left(\sin(x)\right) dx + \int_0^{\frac{\pi}{2}} h\left(\cos(x)\right) dc = \int_0^{\frac{\pi}{2}} h\left(\sin(x) + \cos(x)\right) dx$$

$$= \frac{\pi}{2} \ln(\frac{1}{2}) + \frac{1}{2} \int_{0}^{\pi} \ln(\sin(u)) du$$

$$= \frac{\pi}{2} \ln(\frac{1}{2}) + \frac{1}{2} \left(\int_{0}^{\frac{\pi}{2}} \ln(\sin(u)) du + \int_{\frac{\pi}{2}}^{\pi} \ln(\sin(u)) du \right)$$

 $2\int_{0}^{7/2}h(\sin(x))dx = \frac{\pi}{2}h(\frac{1}{2}) + \int_{0}^{7/2}h(\sin(x))dx$

 $\int_0^{\pi/2} \ln \left(\operatorname{Sin}(u) \right) dx = \frac{\pi}{2} \ln \left(\frac{1}{2} \right) = -\frac{\pi}{2} \ln \left(2 \right)$

= = h(=) + 5 % (sin (u)) du

$$= \frac{\pi}{2} \ln(\frac{1}{2}) + \int_0^{\frac{\pi}{2}} \ln(\sin(2x)) dx$$

$$= \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2} \sin(2x)\right) dx = \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\right) + \ln\left(\sin(2x)\right) dx$$

n=2x du= 2

In (sin(4) is symmetric from

[0,10]

$$\int_{0}^{\pi} \frac{x \sin x}{|t \cos^{2} x|} dx = \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{|t \cos^{2} (\pi - x)|} = \int_{0}^{\pi} \frac{(\pi - x) \sin(x)}{|t \cos^{2} (x)|} dx$$

$$\int_{0}^{\pi} \frac{x \sin x}{|t \cos^{2} x|} dx = \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{|t \cos^{2} (x)|} = \int_{0}^{\pi} \frac{(\pi - x) \sin(x)}{|t \cos^{2} (x)|} dx$$

$$\int_{0}^{\pi} \frac{x \sin x}{|t \cos^{2} x|} dx = \int_{0}^{\pi} \frac{x \sin(x)}{|t \cos^{2} x|} dx = \int_{0}^{\pi} \frac{x \sin(x)}{|t \cos^{2} x|} dx = 2 I$$

$$2I = \int_{0}^{\pi} \frac{\pi}{|t \sin(x)|} dx = \int_{0}^{\pi} \frac{\pi}{|t \cos^{2} x|} dx = 2 I$$

$$2I = \int_{0}^{\pi} \frac{\pi \sin(x)}{1 + \cos^{2}(x)} dx = \pi \int_{0}^{\pi} \frac{\sin(x)}{1 + \cos^{2}(x)} dx$$

$$u = \cos x$$

$$du = -\sin(x) dx$$

$$= \pi \int_{-1}^{1} \frac{1}{1+u^2} du = \pi \int_{-1}^{1} \frac{1}{1+u^2} du = \pi \left[\frac{1}{1+u^2} du = \pi \int_{-1}^{1} \frac{1}{1+u^2} du \right]_{-1}^{1}$$

$$= \pi \int_{-1}^{1} \frac{1}{1+u^2} du = \pi \int_{-1}^{1} \frac{1}{1+u^2} du = \pi \left[\tan^{-1}(u) \right]_{-1}^{1}$$

$$= \pi \left[\frac{\pi}{4} + \frac{\pi}{4} \right] = \frac{\pi^2}{2}$$

$$I = \frac{1}{4}\pi^{2}$$

$$I = \frac{\pi}{4}\pi^{2}$$

$$\int_{0}^{\sqrt{2}} \frac{1}{1 + (\tan(x))^{\sqrt{2}}} dx \qquad \tan\left(\frac{\pi}{2} - x\right) = \cot x = \frac{1}{\tan(x)}$$

$$\int_{0}^{\sqrt{2}} \frac{1}{1 + (\tan(x))^{\sqrt{2}}} dx \qquad \int_{0}^{\sqrt{2}} \frac{1}{1 + (\tan(x))^{\sqrt{2}}} dx = \frac{1}{1 + (\tan(x))^{\sqrt{2}}} dx = \frac{1}{1 + (\tan(x))^{\sqrt{2}}}$$

$$= \frac{1}{1 + (\tan(x))^{\sqrt{2}}} dx = \int_{0}^{\sqrt{2}} \frac{1}{1 + (\tan(x))^{\sqrt{2}}} dx = \frac{1}{2}$$

$$\int_{0}^{\sqrt{2}} \frac{1}{1 + (\tan(x))^{\sqrt{2}}} dx = \int_{0}^{\sqrt{2}} \frac{1}{1 + (\tan(x))^{\sqrt{2}}} dx = \frac{\pi}{2}$$

$$\int_{0}^{\sqrt{2}} \frac{1}{1 + (\tan(x))^{\sqrt{2}}} dx = \int_{0}^{\sqrt{2}} \frac{1}{1 + (\tan(x))^{\sqrt{2}}} dx = \frac{\pi}{2}$$

2. (+15) Show work.
(a) Find a, b \(\text{R} \) \(\text{1} \) (+\sqrt{3})\(\text{1} \) = \(\sqrt{1} \) (\text{1})\(\text{1} \) (\text{1} \) Show for
$$w \in \mathbb{C}$$
 given $w^{\frac{1}{2}} + 2i = 0$.

a) (It id \(\text{1} \) \(\text{1} \) = \(\text{2} \) \(\text{1} \) \(\text{1} \) \(\text{1} \) \(\text{1} \) \(\text{2} \) \(\text{2} \) \(\text{1} \) \(\text{1} \) \(\text{2} \) \(\text{2} \) \(\text{1} \) \(\text{1} \) \(\text{2} \) \(\text{1} \) \(\text{2} \) \(\tex

(a)
$$1 + 10^{-2} + 10^{-4} + 10^{-6} + \cdots$$

(c)
$$.999\overline{9}$$

 λ) x = 396.376376

C) x= 0.9999 - ---

102= 9,9999 ---

(1.1) = 2 70

(000x=376.376.376

a) It
$$\frac{1}{(00)}$$
 t $\frac{1}{(0000)}$ t - - - .

$$\sum_{k=0}^{\infty} ar^{k} = \frac{a}{1-r}$$

$$x = \frac{306000}{499}, 306.306376... = \frac{316000}{999}$$

 $=2-6.9\cdot\frac{1}{9}=2-\frac{69}{90}=\frac{91}{70}$

4.
$$(+10)$$
 Estimate the following as the ratio of integers using the secant approximation. Show work.

a)
$$(1.1)^{\frac{1}{3}}$$

Let $x = (1.1)^{\frac{1}{3}}$ $x^3 = 1.1$, Let $f(x) = x^3 - 1.1 = 0$

 $x_n = x_{n-1} - f(x_{n-1}) - f(x_{n-2})$ $x_0 = 1$, $x_1 = 2$

 $x_2 = 2 - f(z) \frac{2 - 1}{f(z) - f(1)} = 2 - 6.9 \cdot \frac{1}{6.9 - (-0.1)}$

(b)
$$\sqrt{8.5}$$

$$\sqrt{8.5}$$

$$(1.1)^{\frac{1}{3}}$$

(a)
$$(1.1)^{\frac{1}{3}}$$

(b) $\sqrt{8.5}$

(a)
$$(1.1)^{\frac{1}{3}}$$

(a)
$$(1.1)^{\frac{1}{3}}$$

$$A) x = \sqrt{8.5} f(x) = x^2 - 8.5 = 0$$

$$x_0 = 2$$
 $f(x_0) = -4.5$
 $x_1 = 3$ $f(x_0) = 0.5$

$$\chi_2 = 3 - 0.5 \cdot \frac{3 - 2}{0.5 - (-4.5)} = 3 - \frac{1}{2} \cdot \frac{1}{5}$$

$$= 3 - \frac{1}{10} = \frac{29}{10}$$

5. (+10) Given
$$(x+y+z)^7$$
, find the expansion coefficients of the following terms. Show work.

(a)
$$x^2y^2z^3$$

(b)
$$x^3z^4$$

$$(z+y+z)^n$$
 $z^ay^bz^c$ with $a+b+c=n$ $\frac{n!}{a!b!c!}$

$$(x+y+z)^{3}$$
, where $a+b+c=7 \Rightarrow \frac{7!}{a!b!c!}$
a) $x^{2}y^{2}z^{3} \Rightarrow \frac{7!}{2!2!3!} = 210$ $= 210x^{2}y^{2}z^{3}$

$$\lambda) x^{3}z^{4} \Rightarrow \frac{7!}{3! \ 0! \ 4!} = 35$$
 $\frac{35 x^{3}z^{4}}{3! \ 0! \ 4!}$

6. (+5) Given
$$(x + 2y - 3z + 2w + 5)^{16}$$
, find the expansion coefficient of the following term. Show work.
(a) $x^2y^3z^2w^5$

$$x^{a} 2y^{b} (-3z)^{c} (2w)^{d} (5)^{e}$$
 at $b + c + d + e = 16$, $e = 4$
Multinomial coeff: $\frac{16!}{2! 3! 2! 5! 4!} = 302702400$

Numerical multiplier:
$$2^3 \cdot (-3)^2 \cdot (2)^5 \cdot 5^4 = 1440000$$

- 7. (+10) Two numbers $a, b \in \mathbb{Z}$ are relatively prime when gcd(a,b) = 1, or $\exists x, y \in \mathbb{Z}$ with ax + by = 1. Recall, c = gcd(a, b) when c|a and c|b, and for any other divisor d of a, b then d|c.
- (a) For any $n \in \mathbb{Z}^+$, prove 8n+3 and 5n+2 are relatively prime. Show work. Hint: try Euclid's algorithm
- (b) Find the gcd(250, 111) and show result as linear combination of these integers. Show work.

Show
$$gcd(8nt3, 5nt2) = 1$$

$$gcd(3n+1,2n+1) = gcd(2n+1,n)$$

 $gcd(2n+1,n) = gcd(n,1) = 1$

 $250 = (111) \cdot 2 + 28$

$$(11 = 28 \cdot 3 + 29)$$

27=111-28.3

28= 250-111.2

= 4.250 -9.117

. (±3) Write the prime i	actorization of 980	220.		
2/98220				
2 49011 0 5 1 2 45055 3 1 49011 17 1 6 3 3 7 3 1) 9 6 1 3 1	980220=	2 3 . 5	. [1 . 312	
245055				4
21490((
17 (16337				
1,961				
31 21015				