10. 2. 2004

日本国特許庁 JAPAN PATENT OFFICE

· 別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年12月 5日

出願番号 Application Number:

特願2003-406776

[ST. 10/C]:

[JP2003-406776]

REC'D 2 7 FEB 2004

WIPO PCT

出 願 人
Applicant(s):

独立行政法人産業技術総合研究所

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 1月 9日

ページ: 1/E

【書類名】 特許願 【整理番号】 217-03631 【あて先】 特許庁長官殿 【国際特許分類】 G01N 33/483 G01N 33/68

【発明者】

【住所又は居所】 東京都江東区青海2-41-6 独立行政法人産業技術総合研究

所臨海副都心センター内

【氏名】 富井 健太郎

【特許出願人】

【識別番号】 301021533

【氏名又は名称】 独立行政法人産業技術総合研究所

【代表者】 吉川 弘之 【電話番号】 029-861-3280

【先の出願に基づく優先権主張】

【出願番号】 特願2002-377704 【出願日】 平成14年12月26日

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

タンパク質の立体構造を予測するためのタンパク質プロファイル行列間の類似性を評価するシステムであって、

前記プロファイル行列は、関連する複数のタンパク質のアミノ酸配列を多重並置させたマルチプルアライメントにおいて、各アミノ酸残基位置におけるアミノ酸種毎の出現確率 を備えたプロファイルカラムの群から構成され、

前記類似性評価システムは、以下の手段:

- (a) 立体構造を予測したいタンパク質を含む複数のタンパク質に基づいて作成される入力プロファイル行列と、立体構造が既知である複数のタンパク質に基づいて作成される対象プロファイル行列の2つのプロファイル行列を用意する手段と、
- (b) 前記入力プロファイル行列の各プロファイルカラムと、前記対象プロファイル行列 の各プロファイルカラムとの間の相関係数を、各プロファイルカラムの全部又は一部の組合せについて算出する手段と、
- (c) 前記相関係数からなるスコア行列を作成する手段とを含むシステム。

【請求項2】

請求項1記載のシステムにより作成されたスコア行列を用いることを特徴とするタンパク質立体構造の予測システム。

【請求項3】

コンピュータを、タンパク質の立体構造を予測するためのタンパク質プロファイル行列 間の類似性を評価するシステムとして機能させるためのプログラムであって、

前記プロファイル行列は、関連する複数のタンパク質のアミノ酸配列を多重並置させたマルチプルアライメントにおいて、各アミノ酸残基位置におけるアミノ酸種毎の出現確率を備えたプロファイルカラムの群から構成され、

前記類似性評価システムは、以下の手段:

- (a) 立体構造を予測したいタンパク質を含む複数のタンパク質に基づいて作成される入力プロファイル行列と、立体構造が既知である複数のタンパク質に基づいて作成される対象プロファイル行列の2つのプロファイル行列を用意する手段と、
- (b) 前記入力プロファイル行列の各プロファイルカラムと、前記対象プロファイル行列 の各プロファイルカラムとの間の相関係数を、各プロファイルカラムの全部又は一部の組合せについて算出する手段と、
- (c) 前記相関係数からなるスコア行列を作成する手段とを含むプログラム。

【請求項4】

請求項3記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。

【魯類名】明細書

【発明の名称】タンパク質立体構造予測システム

【技術分野】

[0001]

本発明は、タンパク質プロファイル行列間の類似性を評価するシステムに関するもので あり、より詳しくは、タンパク質の立体構造予測に好適に使用されるタンパク質プロファ イル行列間の類似性の評価システムに関する。

【背景技術】

[0002]

自然界にあるタンパク質は進化の過程で選択され、特定の機能を発現するに至ったが、 このタンパク質の機能はその立体構造に依存することが知られている。したがって、タン パク質の立体構造が予測できれば、その機能を予測することが可能となる。

[0003]

従来、未だ何の知見も得られていないタンパク質を調べるに際し、既に立体構造が知ら れているタンパク質との類似性をコンピュータによって測定することにより、タンパク質 の立体構造を推論ないし予測する手法が望まれていた。このような手法の1つとして、タ ンパク質プロファイル行列同士を比較する方法が、有力な手法として知られている(Rych lewski L, Jaroszewski L, Li W, Godzik A. Protein Sci (2000) Feb;9(2):232-41:非 特許文献1)。

[0004]

ここで、タンパク質プロファイル行列とは、関連するタンパク質(タンパク質ファミリ ーなど)におけるアミノ酸種の出現頻度を、そのアミノ酸残基位置毎に数値化して行列と したものである。この行列は、通常、以下の手順で作成される。すなわち、まず、関連す る複数のタンパク質のアミノ酸配列を多重並置させたマルチプルアライメントが与えられ ると、マルチプルアライメントの各アミノ酸残基位置における20種のアミノ酸の各種類 の出現数が計算される。続いて、これらの数を規格化することによって、出現確率に転換 される。この時、与えられたマルチプルアラインメントに含まれるメンバー内での相互の アミノ酸配列類似性に応じた重みが考慮された上で出現数が補正され、プロファイル行列 が作成される。

[0005]

ここで、マルチプルアライメントとは、生物学的に相互に関連しあう複数のタンパク質 のアミノ酸配列を、対応すると考えられるアミノ酸残基を揃えて並置したものをいう。マ ルチプルアライメントは、例えば、ある一配列を入力値として、既存のプログラムである PSI-BLAST(Altschul et al., Nucleic Acids Res. (1997) 25(17):3389-3402:非特許文 献 2)を用いて、配列データベースに検索をかけることや、生物学的に相互に関連しあう 複数のタンパク質のアミノ酸配列の一群を入力値として、これも既存のプログラムである CLUSTALW(Higgins D., Thompson J., Gibson T. Thompson J.D., Higgins D.G., Gibson T .J.(1994). Nucleic Acids Res. 22:4673-4680:非特許文献3)を用いることで容易に作 成することができる。また、立体構造比較などの結果から作成することも可能である。

[0006]

表1は、アミノ酸配列の長さ(アミノ酸残基数)が n であるタンパク質を基準として作 成されたマルチプルアライメントを模式的に示したものである。なお、表1中、第1列目 は個々のタンパク質の名称であり、第1行目の「 $1 \sim n$ 」は、マルチプルアライメントに おけるアミノ酸残基位置を示す。また、表1中のアルファベットはアミノ酸種を1文字標 記したものである。

[0007]

【表1】

	1. 1	2	3	4	5	6	7	Ω	•••	
20807455/14-218	M	Ī	D	H	T	-i	- 	K		$\frac{n}{G}$
19551629/13-215	I	L	D	Y	Ť	ī	ī	G	•••	\ \ \ \
16974933/15-229		M	Ď	L	Ť	T	Ī	N	•••	A
16120769/20-234		M	D	ī	Ť	Ť	1	N	•••	A

[0008]

表1の例では、例示されたアミノ酸残基位置のすべてにアミノ酸が配置されているが、アミノ酸残基位置に対応するアミノ酸残基がないとされた場合は、「・(ドット)」としてギャップを示すこともできる。表2は、表1で得られた長さがnであるマルチプルアライメントにしたがって作成されたプロファイル行列を模式的に示したものである。表2中は、プロファイル行列におけるアミノ酸残基位置を示す。

【0009】 【表2】

AA/Pos.	1	2	3	•••	n
A	0.00	0.00	0.00	•••	0.71
R	0.00	0.00	0.00	•••	0.00
N	0.00	0.00	0.00	•••	0.00
D	0.00	0.00	0.96		0.00
С	0.00	0.00	0.00	•••	0.00
Q	0.00	0.00	0.00		0.00
E	0.00	0.00	0.04		0.00
G	0.00	0.00	0.00	•••	0.29
H	0.00	0.00	0.00	• • •	0.00
I	0.29	0.29	0.00		0.00
L	0.41	0.29	0.00		0.00
K	0.00	0.00	0.00		0.00
M	0.29	0.41	0.00	•••	0.00
F	0.00	0.00	0.00	•••	0.00
Р	0.00	0.00	0.00		0.00
S	0.00	0.00	0.00	***	0.00
T	0.00	0.00	0.00		0.00
W	0.00	0.00	0.00	•••	0.00
Y	0.00	0.00	0.00	. •••	0.00
V	0.01	0.01	0.00	•••	0.00

[0010]

プロファイル行列中の各列は、関連する複数のタンパク質における、各アミノ酸残基位 置の全アミノ酸種の確率分布を表すことになる。表 3 は、表 2 に示されたプロファイル行 列のうち、残基位置が「2」であるプロファイルカラムを模式的に示したものである。 【0011】 【表3】

2
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.29
0.29
0.00
0.41
0.00
0.00
0.00
0.00
0.00
0.00
0.01

[0012]

すなわち、表2で示されるプロファイル行列では、残基位置が2におけるアラニン(A) の補正された出現確率は 0.0 であり、メチオニン(M) の補正された出現確率は 0 . 41ということになる。

[0013]

従来、2つのプロファイル行列や2つのアミノ酸配列を比較及び/又は揃えるために、 ダイナミックプログラミング (Needleman SB, Wunsch CD, J Mol Biol. (1970) Mar;48(3):443-53 :非特許文献4) が使用されてきた。アラインメントを作成する時に、比較さ れる2つのアミノ酸配列や2つのプロファイル行列中のどの残基又はプロファイルカラム を対応付させるか(そこでは残基とギャップとの対応付も含まれる)決定する必要がある が、その対応付のさせ方は非常に多数考えられる。ダイナミックプログラミングは、その 中から類似性スコアが最大となるような対応付を自動的に効率良く見出すアルゴリズムで ある。そしてまた、その対応付の結果それ自体が最終的に得たいアラインメントである。

[0014]

ダイナミックプログラミングでは、通常のアミノ酸配列比較の場合は、比較される2つ のアミノ酸配列、および、比較したい2つのアミノ酸配列の各々の残基ペアに対する類似 性スコア(類似の度合いを示す点数)から構成されるスコア行列、プロファイル行列比較 の場合は、比較される2つの代表アミノ酸配列と、比較したい2つのプロファイル行列の 、各々のプロファイルカラムのペアに対する類似性スコアから構成されるスコア行列の入 力を要求する。これらを入力することによって、ダイナミックプログラミングは、通常の アミノ酸配列比較の場合は、比較されるアミノ酸配列対のアラインメントとその最終スコ ア (類似性スコアが最大となるような最適パスを見つけることにより得られたスコア値) 、プロファイル行列比較の場合は、比較される代表アミノ酸配列のアラインメント、およ びその最終スコアが出力される。

[0015]

したがって、ダイナミックプログラミングを使用する手法によりプロファイル行列を比 較するためには、比較したい2つのプロファイル行列の類似性を精度よく評価したスコア 行列を作成する必要がある。

[0016]

2つのプロファイル間の類似の程度を示すスコア行列を算出する方法として、Rychlews kiらが開発した手法が知られている (Rychlewski et al. (2000), 9:p232-241) 。これは 、比較したいプロファイルカラムペア間の類似性スコアを、2つのプロファイルカラムを 内積したものと定義づけて算出することにより、比較したい2つのプロファイル行列間の スコア行列を作成するものである。

[0017]

たとえば、2つのプロファイル行列、 $X=x_1 x_2 \cdots x_p \cdots x_n$ (ただし、 x_p はアミ ノ酸残基位置 p におけるプロファイルカラム) および Y = y 1 y 2 … y q … y m (ただし 、yaはアミノ酸残基位置aにおけるプロファイルカラム)が与えられたとき、n行m列 のスコア行列の要素である、類似性スコアDaρ(プロファイルカラムxρおよびプロフ ァイルカラム y 。間の類似性スコア) は、下記の式によって与えられる。

[0018]

【数1】

a

[式中、xpa=プロファイルカラムxpの要素 y q a =プロファイルカラム y q の要素 j =プロファイルカラムの要素数(通常20)である。] [0019]

当該手法によれば、比較したい2つのプロファイルカラム間において、共にアミノ酸置 換が激しくない出現残基種が非常に限られている場合には、内積した値も高い数値となる ため、高い類似性スコアが与えられる事になる。このように出現残基種が非常に限られて おりアミノ酸変異が激しくない高度に保存されている残基位置は、生体内での機能的ある いは、物理化学的要請から高度に保存された箇所と考えられ、生物学的にも重要な位置で あると考えられている。上記手法では、このような領域はその類似性を精度良く評価する

ことができると考えられる。

[0020]

しかしながら、上記手法では、こうした出現残基種が限られた位置を精度良く評価する ことができる可能性があるものの、生物学的に重要な位置であっても、モチーフ内に存在 する非保存位置や、タンパク質立体構造上露出していることが重要で極性のみが重大な意 義を占める位置、あるいはその逆に埋没部分に位置し疎水性のみが保存されている位置な ど、アミノ酸置換が激しく生起していてもその置換パターンに共通性があると考えられる ような領域に関して精度良く評価することができないという問題があった。

[0021]

さらに、スコア行列の各要素(類似性スコア)の平均値は負の値である事、標準偏差も ほぼ一定値である事が望まれるため、類似性スコアに対して正規化処理を施さなければな らず、煩雑であるという問題もあった。

[0022]

従って、プロファイル行列間において、保存領域のみならず、非保存領域の類似性も評 価もできる、髙精度かつ簡便な手法の開発が望まれていた。

【非特許文献 1】 Rychlewski L, Jaroszewski L, Li W, Godzik A. Protein Sci 2000 Feb:9(2):232-41

【非特許文献 2】 Altschul et al., NucleicAcids Res. (1997) 25(17):3389-3402 【非特許文献 3】 Higgins D., Thompson J., Gibson T. Thompson J.D., Higgins D.G. , Gibson T.J. (1994). Nucleic Acids Res. 22:4673-4680

【非特許文献 4】 Needleman SB, Wunsch CD, J Mol Biol. 1970 Mar;48(3):443-53 【発明の開示】

【発明が解決しようとする課題】

[0023]

本発明は、タンパク質の立体構造を予測するための、タンパク質プロファイル行列同士 出証特2003-3110376

の類似性を評価するシステムを提供することを目的とする。

【課題を解決するための手段】

[0024]

すなわち、本発明は、次のようなタンパク質プロファイル行列間の類似性評価システム、タンパク質立体構造の予測システム、コンピュータをそれらシステムとして機能させるためのプログラム、そのプログラムを記録したコンピュータ読み取り可能な記録媒体等を提供する。

[0025]

(1) タンパク質の立体構造を予測するための、タンパク質プロファイル行列間の類似性 を評価するシステムであって、

前記プロファイル行列は、関連する複数のタンパク質のアミノ酸配列を多重並置させたマルチプルアライメントにおいて、各アミノ酸残基位置におけるアミノ酸種毎の出現確率を備えたプロファイルカラムの群から構成され、

前記類似性評価システムは、以下の手段:

- (a) 立体構造を予測したいタンパク質を含む複数のタンパク質に基づいて作成される入力プロファイル行列と、立体構造が既知である複数のタンパク質に基づいて作成される対象プロファイル行列の2つのプロファイル行列を用意する手段と、
- (b) 前記入力プロファイル行列の各プロファイルカラムと、前記対象プロファイル行列 の各プロファイルカラムとの間の相関係数を、各プロファイルカラムの全部又は一部の組 合せについて算出する手段と、
- (c) 前記相関係数からなるスコア行列を作成する手段とを含むシステム。

[0026]

(2) (1)記載のシステムにより作成されたスコア行列を用いることを特徴とするタンパク質立体構造の予測システム。

[0027]

(3) コンピュータを、タンパク質の立体構造を予測するためのタンパク質プロファイル 行列間の類似性を評価するシステムとして機能させるためのプログラムであって、

前記プロファイル行列は、関連する複数のタンパク質のアミノ酸配列を多重並置させたマルチプルアライメントにおいて、各アミノ酸残基位置におけるアミノ酸種毎の出現確率を備えたプロファイルカラムの群から構成され、

前記類似性評価システムは、以下の手段:

- (a) 立体構造を予測したいタンパク質を含む複数のタンパク質に基づいて作成される入力プロファイル行列と、立体構造が既知である複数のタンパク質に基づいて作成される対象プロファイル行列の2つのプロファイル行列を用意する手段と、
- (b) 前記入力プロファイル行列の各プロファイルカラムと、前記対象プロファイル行列 の各プロファイルカラムとの間の相関係数を、各プロファイルカラムの全部又は一部の組 合せについて算出する手段と、
- (c) 前記相関係数からなるスコア行列を作成する手段とを含むプログラム。

[0028]

(4)上記(3)記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。 【0029】

(5) タンパク質プロファイル行列間の類似性を評価する方法であって、

前記プロファイル行列は、関連する複数のタンパク質のアミノ酸配列を多重並置させたマルチプルアライメントにおいて、各アミノ酸残基位置におけるアミノ酸種毎の出現確率を備えたプロファイルカラムの群から構成され、

前記類似性評価方法は、以下のステップ:

(a) 入力プロファイル行列と、対象プロファイル行列の2つのプロファイル行列を用意するステップと、

- (b) 前記入力プロファイル行列の各プロファイルカラムと、前記対象プロファイル行列 の各プロファイルカラムとの間の相関係数を、各プロファイルカラムの全部又は一部の組 合せについて算出するステップと、
- (c) 前記相関係数からなるスコア行列を作成するステップと を含む方法。

[0030]

(6) 前記対象プロファイル行列が、立体構造が既知である複数のタンパク質に基づいて 作成されるプロファイル行列であり、前記入力プロファイル行列が、立体構造を予測した いタンパク質を含む複数のタンパク質に基づいて作成されるプロファイル行列である上記 (5) 記載の類似性評価方法。

[0031]

(7)上記 (5)又は (6)で得られたスコア行列を用いることを特徴とするタンパク質 立体構造の予測方法。

【発明の効果】

[0032]

本発明により、タンパク質プロファイル行列間の類似性を簡便かつ精度よく評価するこ とができる。本発明により得られたスコア行列は、タンパク質立体構造を予測するのに好 適に使用される。

[0033]

以下、本発明を詳細に説明する。

【発明を実施するための最良の形態】

[0034]

1. 類似度評価システム

図1は、本発明の一実施形態において使用されるハードウエア構成を示す図である。

[0035]

図1に示すように、本発明の類似性評価システムは、CPU101、ROM102、RAM103、入力部 104、情報通信送信/受信部105、出力部106、ハードディスクドライブ(HDD)107及びCD-ROM ドライブ108等を備える。

[0036]

CPU101は、情報記憶手段(例えば磁気的及び/又は光学的記録媒体)に記憶されている プログラムに従って、類似性評価システム全体を制御する。そして、入力部104などから 受け取った情報を出力部106に供給する。また、ネットワーク回線109を通じて受け取った 情報に基づいて評価処理を実行することもできる。入力部104は、キーボードやマウス等 であり、評価処理を実行する上で必要な条件又はデータを入力するときに操作される。RO M102は、本発明の類似性評価システムの動作に必要な処理を命令するプログラム等を格納 する。RAM103は、類似性評価システムにおける処理を実行する上で必要なデータを一時的 に格納する。

[0037]

送信/受信部105は、CPU101の命令に基づいて、ネットワーク回線109等との間で情報通 信(データの送受信処理)を実行するものであり、例えばモデム、ルーター等が例示され る。出力部106は、入力手段104から入力されたプロファイルデータ、その他各種条件等を 、CPU101からの命令に基づいて情報表示処理する(例えば表示画面、プリンタ)。CD-ROM ドライブ108は、CPU101の指示に基づいて、CD-ROMに格納されている類似性評価システム を機能させるためのプログラム又はデータ等を読み出し、例えばRAM103に格納する。CD-R OMの代わりに記録媒体として書き換え可能なCD-R、CD-RWを用いることもできる。その場 合には、CD-ROMドライブ108の代わりにCD-R又はCD-RW用ドライブを設ける。また、上記媒 体の他に、DVD、MOとそれらの媒体を用い、それに対応するドライブを備える構成として もよい。

[0038]

コンピュータに本発明の類似性評価システムを機能させるためのプログラムは、例えば 出証特2003-3110376

C言語等で書くことができる。従って、このソフトウエアはWindows (登録商標) 95/98/20 00、Linux (登録商標)、UNIX (登録商標)等の各種オペレーティングシステムで作動さ せることが可能である。

[0039]

図2は、本発明のプロファイル行列間類似性評価システムを含む処理手順の一例を示す フローチャートである。

図2に示すように、本発明にかかる類似性評価システムでは、まず、比較したい2つの プロファイル行列(入力プロファイル行列と対象プロファイル行列)を用意し、続いてそ れらの類似性を評価し、必要に応じて評価結果を出力する。以下、各処理について詳細に 説明する。

[0040]

(a) プロファイル行列の用意 (S 1 0)

プロファイル行列を用意するステップでは、比較したい2つのプロファイル行列が用意 (抽出) される (S11、S12)。ここで、2つのプロファイル行列のうち、一方 (対 象プロファイル行列)は、立体構造が既知である複数のタンパク質に基づいて作成された プロファイル行列(図2中、長さm)である。他方(入力プロファイル行列)は、立体構 造を予測したいタンパク質(立体構造は未知であると既知であるとを問わない)を含む複 数のタンパク質に基づいて作成されたプロファイル行列(図2中、長さn)であることが 好ましい。

[0041]

プロファイル行列の作成方法としては、上述した従来知られている方法を採用すること ができ、特に制限はない。たとえば、ある一配列を入力値として、既存のプログラムであ るPSI-BLASTを用いて、配列データベースに検索をかけてマルチプルアライメントを作成 し、このマルチプルアライメントに基づいてプロファイル行列を作成してもよい。また、 生物学的に相互に関連しあう複数のタンパク質のアミノ酸配列の一群を入力値として、既 存のプログラムであるCLUSTALWを用いてマルチプルアライメントを作成し、当該マルチプ ルアライメントに基づいてプロファイル行列を作成してもよい。また、予め作成されたマ ルチプルアライメントを入力値とし、このマルチプルアライメントに基づいて作成しても よい。

[0042]

ここで、プロファイル行列は、ある代表アミノ酸配列の全配列に基づいて作成されてい てもよく、また、代表配列中のモチーフ領域等、一部の領域に基づいて作成されていても よい。また、マルチプルアライメントを作成する際に、経験的に導出されたギャップペナ ルティーを導入してもよい。

また、必要に応じて、プロファイル行列として、アミノ酸種の出現頻度を、アミノ酸種 のランダム出現頻度で割った行列(PSSM:Gribskov, M., et al., (1987) Proc. Nat 1. Acad. Sci. USA, 84, 4355-4358) を用いてもよい。

[0043]

入力プロファイル行列は、たとえば、立体構造を予測したいタンパク質を代表アミノ酸 配列として、この配列に基づいて作成することができる。また、対象プロファイル行列に ついては、たとえば、SCOP (Murzin et al., J. Mol. Biol. 247(4):536-540 (1995)) やCATH(Orengo et al., Structure 5(8):1093-1108 (1997))といったタンパク質構造 分類データベースから取得したタンパク質のアミノ酸配列を代表配列とし、この配列に基 づいて作成することができる。こうして得られた対象プロファイル行列は、代表配列ごと に予め作成しておき、対象プロファイル行列データベースとして保持しておくことが好ま しい。

[0044]

(b) 相関係数の算出 (プロファイル行列の比較評価) (S 2 0)

続いて、プロファイル行列の類似性評価ステップでは、上記のステップで用意した入力 プロファイル行列の各プロファイルカラムと、対象プロファイル行列の各プロファイルカ

ページ: 10/

ラムとの間の類似性を、各カラムペア毎に評価をする。

[0045]

図3は、各プロファイルカラムペア毎に類似性を評価し、スコア行列を作成するステップを模式的に示した図である。

本発明において、プロファイルカラム間の類似性は、プロファイルカラム間の相関係数 を算出することによって行う。

[0046]

たとえば、入力プロファイル行列を $X=x_1 x_2 \cdots x_p \cdots x_n$ (ただし、 x_p はアミノ酸残基位置 p におけるプロファイルカラム)とし、対象プロファイル行列を $Y=y_1 y_2 \cdots y_q \cdots y_m$ (ただし、 y_q はアミノ酸残基位置 q におけるプロファイルカラム)としたときに、プロファイルカラム x_p および y_q 間の類似性スコア c_q p は、下記の式によって与えられる。

[0047]

【数2】

$$C_{pq} = \frac{\sum_{a}^{j} (x_{pa} - \overline{x}_{p})(y_{qa} - \overline{y}_{q})}{\sqrt{\sum_{a}^{j} (x_{pa} - \overline{x}_{p})^{2} \sum_{a}^{j} (y_{qa} - \overline{y}_{q})^{2}}}$$

 y_q =プロファイルカラム y_q の平均値

j=プロファイルカラムの要素数(通常20)である。]

[0048]

本発明では、プロファイルカラム間の類似性をプロファイルカラム間の相関係数によって評価する。このため、プロファイルカラム間の相関の程度によって、類似性スコアが十1から-1の値をとることになる。たとえば、2つのプロファイルカラム中の要素間に相関がある場合、即ちアミノ酸置換パターンの傾向に類似性が有る場合には、相関係数は十1に近い数値を取ることになる。また、2つのプロファイルカラムの各要素が互いにランダムな値を取っている場合、即ちアミノ酸置換パターンの傾向に相関が無い場合、相関係数は0になり、アミノ酸置換パターンの傾向が全く反対の場合、相関係数は-1になり、アミノ酸置換パターンの傾向性の類似ー非類似を非常に自然な形で表現する事が出来る。【0049】

したがって、本発明では、アミノ酸残基の保存性が高い保存領域のような相関が高い領

域では、高い類似性スコアが得られるため、保存領域の類似性を精度よく評価することが できる。

[0050]

また、本発明によれば、アミノ酸残基の保存性だけではなく、内積によって類似性を評 価する従来の方法 (Rychlewski et alら) では不可能であった領域に関する類似性評価、 たとえば、モチーフ内に存在する非保存位置や、タンパク質立体構造上露出していること が重要で極性のみが重大な意義を占める位置、あるいはその逆に埋没部分に位置し疎水性 のみが保存されている位置といった、激しいアミノ酸置換があるもののその置換パターン に共通性があると考えられる領域についての類似性をより精度良く評価することが可能で ある。

[0051]

例えば、あるzinc fingerモチーフを有する2つのプロファイル行列を比較した場合を 考えたとする。そのモチーフは

C-[DES]-x-C-x(3)-I

と表記される。これは、1,4,8番目の残基にそれぞれC,C,Iの残基が保存されており、 2番目の残基では、D又は E又は Sが出現し、3番目および、5, 6, 7番目の残基では保存残 基が特に無いことが表されている。内積によって類似性を評価する従来の方法では、この 場合、1, 2, 4, 8番目の残基位置では、高い数値を与えるが、その他の位置では低い数値 しか与えない。したがって、内積によって類似性を評価する従来の方法は、モチーフの一 部については類似性を評価しているものの、モチーフ全体の類似性については精度よく評 価なされていないということになる。

[0052]

しかしながら、本発明によれば、1, 2, 4, 8番目の残基位置に高い数値を与えるだけで なく、3, 5, 6, 7番目の残基位置においても、保存残基が特に無いという置換パターンの 類似性を評価することが可能で、これら残基位置でも高い数値を与える。したがって、本 発明によれば、モチーフ全体としてのパターン情報の全てを評価することが可能となる。

なお、本発明における類似性評価システムは、モチーフ領域に限られず、立体構造を予 測したいタンパク質の配列全体に適用することができる。すなわち、ギャップペナルティ を導入して得られたプロファイル行列間の類似性評価にも、好適に適用することができる

[0053]

さらに、本発明によれば、スコア行列の各要素(類似性スコア)の平均値および標準偏 差がほぽ一定値をとるため、類似性スコアに対する煩雑な正規化処理を施す必要がないと いうメリットもある。

[0054]

(c)スコア行列の作成

プロファイルカラム間の相関係数(類似性スコア)は、各プロファイルカラムの全部又 は一部の組合せについて算出され、これに基づいてスコア行列が作成される。スコア行列 は、類似性スコアが各プロファイルカラムの全組合せについて算出された場合は、入力プ ロファイル行列の長さを行とし、対象プロファイル行列の長さを列とする行列であり、類 似性スコアが各プロファイルカラムの一部の組合せについて算出された場合は、その組合 せの数に応じた行と列を持つ行列となる。

[0055]

図2の例では、類似性スコアは各プロファイルカラムの全組合せについて算出されてお り、入力プロファイル行列の長さがn、対象プロファイル行列の長さがmであることから 、類似性スコアはm×n個生成される(S22)。したがって、スコア行列はn行m列と なる。スコア行列は、比較したいプロファイル行列の長さ、及び算出される類似性スコア の数に応じた行列を予め定義し(S21)、定義された行列の各カラムに、各プロファイ ルカラム間の相関係数を入力することにより作成することができる(S23)。

[0056]

ページ: 12/

本発明で得られたスコア行列によって、2つのプロファイル行列の最終スコア(行列間 の類似性)を精度よく算出することができる。最終スコアは既知の手法により作成するこ とができる。たとえば、図2の例では、比較されるプロファイル行列のそれぞれの代表ア ミノ酸配列と、本発明によって得られたこれらのプロファイル行列間のスコア行列を入力 値として、ダイナミックプログラミングを用いて最適パスを算出する(S24)ことによ って最終スコアを求めることができる(S25)。

[0057]

以上の操作を、対象プロファイル行列データベースに保持してある対象プロファイル行 列のすべてに対して行うことが好ましい。

[0058]

2. タンパク質立体構造の予測 (S30)

対象プロファイル行列ごとに得られた最終スコアは、タンパク質立体構造を予測するの に好適に使用される。たとえば、以下の既知の手順にしたがって処理をされる。

[0059]

(1) 入力值

まず、予測対象配列を含む入力プロファイル行列と、立体構造が既知である代表アミノ 酸配列を含む対象プロファイル行列との最終スコア、および各代表配列の長さが入力され る。このとき、対象プロファイル行列データベース中にN本の既知代表配列があれば、N 個の最終スコアと配列長が入力されることになる。

[0060]

(2) 最終スコアの長さ依存性の補正

予測対象配列を含む入力プロファイル行列と、各既知代表配列を含む対象プロファイル 行列との最終スコアは、代表配列長に依存した関係が認められる為、次のような統計処理 を行う。まず、X軸に各代表配列の長さの自然対数をとった値、Y軸に予測対象配列を含 む入力プロファイル行列と各既知代表配列を含むプロファイル行列との最終スコアをプロ ットし、異常なはずれ値を除いて回帰直線を引く。各長さ(即ちX軸でのある値)におけ る平均値は回帰直線で表されるものとみなし、予測対象配列を含む入力プロファイル行列 と各既知代表配列を含む対象プロファイル行列との最終スコアは、平均値からのずれで評 価される。通常良く使用されるように、標準偏差を単位として、そのずれの度合いが測定 される。

[0061]

(3) ソート

平均値からのずれが(高得点側に)大きいもの程類似性が有るとみなされる。それ故、 平均値からのずれが(高得点側に)大きい順にソートされ、予測構造の候補とされる。

[0062]

(4) 予測構造としてのアライメントとスコア出力

上でソートされた順に予測構造の候補として出力される。結果全てを出力するのは無意 味なため、予測精度を考慮し経験的に求められた閾値以上の平均値からのずれを有する結 果のみを出力する。この時、予測精度の指標として、標準偏差を単位として計算される平 均値からのずれの度合いが表示される。

[0063]

予測対象配列を含む入力プロファイル行列と、各既知代表配列を含む対象プロファイル 行列とのアラインメントおよび最終スコアの結果は、ダイナミックプログラミングを用い て逐次計算された際のものを出力する。各既知代表配列は立体構造既知なので、このアラ インメント出力が立体構造予測結果に相当する。

[0064]

3. コンピュータプログラム

本発明は、コンピュータを、タンパク質の立体構造を予測するためのタンパク質プロフ ァイル行列間の類似性を評価するシステムとして機能させるためのプログラムをも提供す る。本発明のコンピュータプログラムは、以下の手段:

- ページ: 13/
- (a) 入力プロファイル行列と、対象プロファイル行列の2つのプロファイル行列を用意 する手段と、
- (b) 前記入力プロファイル行列の各プロファイルカラムと、前記対象プロファイル行列 の各プロファイルカラムとの間の相関係数を、各プロファイルカラムの全部又は一部の組 合せについて算出する手段と、
- (c) 前記相関係数からなるスコア行列を作成する手段と を含むものである。

本発明のプログラムには、上記必須の手段以外に、汎用のプログラムとして通常備えら れる汎用手段を含んでもよい。そのような手段としては、各種データの格納手段、情報の 送受信手段、ディスプレイ、プリンター等の表示・出力手段等を挙げることができる。

[0065]

4. コンピュータ用記録媒体

本発明のプログラムは、コンピュータ読み取り可能な記録媒体又はコンピュータに接続 しうる記憶手段に保存することができる。本発明のプログラムを含有するコンピュータ用 記録媒体又は記憶手段も本発明に含まれる。記録媒体又は記憶手段としては、磁気的媒体 (フレキシブルディスク、ハードディスクなど)、光学的媒体 (CD、DVDなど)、磁気光 学的媒体 (MO、MD) などが挙げられる。

【実施例】

[0066]

以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれら実施例に 限定されるものではない。

[0067]

実施例1

(1) 対象プロファイル行列データベースの構築

構造分類データベースSCOP(URL:http://scop.mrc-lmb.cam.ac.uk/scop/)releasel. 59 に基づく分類から、代表配列を取得した。その中から、単独ドメインを有し解像度2.5 A以内の構造データを有するタンパク質のアミノ酸配列948本を選択した。948本の 代表配列各々に対してPSI-BLASTとアミノ酸配列データベース(NRDB:ftp://ftp.ncbi. nlm.nih.govより取得)を用いて対象プロファイル行列を構築し、対象プロファイル行列デ ータベースを完成させた。

[0068]

ここで使用した「NRDB」には、現在知られているほぼ大部分のタンパク質アミノ酸 配列が含まれている。PSI-BLASTを使うことで、このNRDBから各代表配列に生物学的 に関連あると考えられる配列を自動的に収集し、さらにプロファイル行列も作成すること が出来る。

[0069]

(2) 入力プロファイル行列の作成

本発明にかかるシステムによって正しい構造予測がなされているかどうかを調べるため 、予測対象配列として構造が既に知られている配列、すなわち、対象プロファイル行列を 作成する際に使用した上記948本の代表配列を使用した。入力プロファイル行列は、こ れらの予測対象配列を順次使用して、対象プロファイル行列の場合と同様の操作、すなわ ち、PSI-BLASTとアミノ酸配列データベース(NRDB)を用いて構築した。

[0070]

(3) 各プロファイル行列間の比較

続いて、上記で構築された予測対象配列(本実施例では948本の各代表配列)を含む 入力プロファイル行列と、対象プロファイル行列データベース中の対象プロファイル行列 との比較が順次なされた。この際、プロファイル行列間のスコア行列の各要素(類似性ス コア)は、相関係数を用いて計算された。

こうして得られたプロファイル行列間のスコア行列を入力値として、ダイナミックプロ グラミングによってプロファイル行列間の最終スコアとアラインメントが出力された。

[0071]

各入力プロファイル行列に対して、以上の操作を対象プロファイル行列データベースに 構築されたすべての対象プロファイル行列について行った。

[0072]

(4) 最終処理及び結果出力

評価の出力は、既に説明した方法に従って、948予測について各々結果出力を行った 。すなわち、入力プロファイル行列と対象プロファイル行列との各最終スコアおよび各代 表配列の長さを入力し、最終スコアの長さ依存性の補正を行った。続いて、平均値からの ずれが(高得点側に)大きい順にソートし、ソートされた順に予測構造の候補として出力 した。

こうして出力された予測構造の候補と、既にわかっている正しい予測構造とを比較する ことにより、予測結果の信頼度と感度を算出し、この結果を図4に示した。

[0073]

比較例1

実施例1で取得した948本の代表配列を用いて、配列類似性検索として一般的に用い られているPSI-BLASTを用いて構造予測を行った。すなわち、948本の代表配 列各々に対してPSI-BLASTとアミノ酸配列データベース(NRDB:ftp://ftp.ncbi.nlm.ni h. govより取得)を用いて構築したプロファイル行列を入力値とし、948本の代表配列に 対して類似性検索を行い、予測構造の候補を出力した。

こうして出力された予測構造の候補と、既にわかっている正しい予測構造とを比較する ことにより、予測結果の信頼度と感度を算出し、この結果を図4に示した。

[0074]

比較例 2

実施例1で取得した948本の代表配列を用いて、配列類似性検索として一般的に用い られているIMPALA(Schaffer, A. A., Wolf, Y. I., Ponting, C. P., Koonin, E. V., Aravind, L., and Altschul, S. F. (1999) Bioinformatics. 015:1000-1011) を用 いて構造予測を行った。すなわち、948本の代表配列を入力値とし、948本の代表配 列各々に対して予め作成し構築したプロファイル行列データベース (実施例1で構築した 対象プロファイル行列データベースを使用した)に対して類似性検索を行い、予測構造の 候補を出力した。

こうして出力された予測構造の候補と、既にわかっている正しい予測構造とを比較する ことにより、予測結果の信頼度と感度を算出し、この結果を図4に示した。

[0075]

図4から、比較例1および2の手法に比べて、信頼度0.98以降において、本発明に かかる実施例1が常に感度で勝っていることが示される。

[0076]

比較例3

プロファイル行列間のスコア行列の各要素(類似性スコア)を、内積法(Rychlewski e t al. (2000), 9:p232-241)を用いて計算した以外は実施例1と同様の手法で予測構造の 候補を出力した。

こうして出力された予測構造の候補と、既にわかっている正しい予測構造とを比較する ことにより、予測結果の信頼度と感度を算出し、この結果を図5に示した。 [0077]

実施例2

(1) 対象プロファイル行列データベースの構築

配列は、構造分類データペースSCOP(URL:http://scop.mrc-lmb.cam.ac.uk/scop/) release1.59に基づく分類から、お互いの同一残基率が40%未満であるドメイン単位の代表 配列4381本を、SCOPの配列データベースであるASTRAL(http://astral.stanford.edu/)デ ータベースから取得した。更に、タンパク質立体構造データベースPDB(URL:http://www. rcsb.org/pdb/)に登録されているが、SCOPに未登録であるものであって、ASTRALから取得

ページ: 15/

した上記4381本の配列と非類似のものを下記 (A) ~ (D) の要領で取得し、代表配列に 加えた。このようにして選択されたアミノ酸配列各々に対して、下記(A)~(D)の要 領でPSI-BLASTとNRDBを用いて対象プロファイル行列を構築し、対象プロファイル行 列データベースを完成させた。

[0078]

(A) 対象プロファイル行列データベースAの構築

2002年5月18日時点でのPDB中のアミノ酸配列をSCOPreleasel.59の分類に基づく代表配 列に対してBLASTP(Altschul et al., Nucleic Acids Res. (1997) 25(17): 3389-3402: 非特許文献 2)をかけ、期待値が0.00001以上のものを選んだ。さらにそれらを配列のクラ スタリングを行うプログラムであるblastclustにかけ、互いの同一残基率が40%未満とな るように配列248本を選択した。このようにして選択された配列と、SCOPreleasel.59の分 類に基づく代表配列4381本との合計4629本の配列各々に対して、PSI-BLASTと2002年5月18 日時点のNRDBを用いて対象プロファイル行列を構築し、対象プロファイル行列データ ベースAを完成させた。

[0079]

(B) 対象プロファイル行列データベースBの構築

2002年6月23日時点でのPDBと2002年5月18日時点でのPDB中のアミノ酸配列の差分を上記 (A) で作成した代表配列に対してBLASTPをかけ、期待値が0.00001以上のものを選んだ 。さらにそれらをblastclustにかけ、互いの同一残基率が40%未満となるように配列49本 を選択した。このようにして選択された配列と、上記(A)で作成した代表配列との合計 4678本の配列各々に対して、PSI-BLASTと2002年6月17日時点のNRDBを用いて対象プロ ファイル行列を構築し、対象プロファイル行列データベースBを完成させた。

[0080]

(C) 対象プロファイル行列データベースCの構築

2002年7月14日時点でのPDBと2002年6月23日時点でのPDB中のアミノ酸配列の差分を上記 (B) で作成した代表配列に対してBLASTPをかけ、期待値が0.00001以上のものを選んだ 。さらにそれらをblastclustにかけ、互いの同一残基率が40%未満となるように配列23を 選択した。このようにして選択された配列と、上記(B)で作成した代表配列との合計47 01本の配列各々に対して、PSI-BLASTと2002年7月9日時点のNRDBを用いて対象プロフ ァイル行列を構築し、対象プロファイル行列データベースCを完成させた。

[0081]

(D) 対象プロファイル行列データベース D の構築

上記(C)で作成した代表配列の合計4701本の配列各々に対して、PSI-BLASTと2002年8 月6日時点のNRDBを用いて対象プロファイル行列を構築し、対象プロファイル行列デ ータベースDを完成させた。

[0082]

(2) 入力プロファイル行列の作成

配列は、隔年で行われる世界的規模で行われる構造予測コンテストの2002年度大会であ るCASP5/CAFASP3(URL:http://predictioncenter.llnl.gov/casp5/)において、構造認識部 門(通常の配列解析手法では立体構造既知であるタンパク質と明白な配列類似性を有さな いが、その構造が(実際に解かれてみると)既知立体構造との構造類似性を有する、即ち 類似性検索が困難なタンパク質に関する予測する部門)において出題された配列、すなわ ち、現在通常の配列解析手法(例えば、PSI-BLASTなど)では、立体構造既知であるタン パク質と明白な配列類似性を有さないタンパク質であり、かつ、その構造が(実際に解か れてみると)既知立体構造との構造類似性が明らかになったアミノ酸配列を用いた。具体 的には、URL:http://www.cs.bgu.ac.il/dfischer/CAFASP3/targets.htmlにおいて、下記 のターゲット番号が付されたアミノ酸配列 2 2 本を用いた。

[0083]

T0130、T0132、T0134、T0135、T0136、T0138、T0146、T0147、T0148、T0156、T0157、T01 59、T0162、T0168、T0170、T0172、T0173、T0174、T0186、T0187、T0191、T0193

[0084]

これら22本の配列各々に対して、PSI-BLASTとNRDBを用いて入力プロファイル行列 を構築し、入力プロファイル行列データベースを完成させた。

なお、NRDBとしては、2002年5月18日時点、2002年6月17日時点、2002年7月9日時点 、及び2002年8月6日時点のものの計4種類を使用し、得られた入力プロファイル行列デー タベースを、それぞれ、「入力プロファイル行列データベースA」、「入力プロファイル 行列データベースB」、「入力プロファイル行列データベースC」、及び「入力プロファ イル行列データベースD」とした。

[0085]

(3) 各プロファイル行列間の比較

続いて、上記で構築された予測対象配列を含む入力プロファイル行列データベースAの 入力プロファイル行列と、対象プロファイル行列データベースA中の対象プロファイル行 列との比較を、実施例1の「(3)各プロファイル行列間の比較」と同様の手順で行った(比較A)。

同様の操作を、入力プロファイル行列データベースBと対象プロファイル行列データベ ースBに対して、入力プロファイル行列データベースCと対象プロファイル行列データベ ースCに対して、及び、入力プロファイル行列データベースDと対象プロファイル行列デ ータベースDに対して、それぞれ行った(比較B, C, D)。

[0086]

(4) 最終処理及び結果出力

評価の出力は、既に説明した方法に従って22予測について各々結果出力を行った。即ち 、各データベースの組合せ(比較A~D)においてそれぞれ得られた、入力プロファイル 行列と対象プロファイル行列との各最終スコアおよび、各代表配列の長さを入力し、最終 スコアの長さ依存性を補正した。続いて平均値からのずれが、(高得点側に)大きい順に ソートし、ソートされた順に上位10個までを予測構造の候補として22本の配列各々に対し て出力した(出力A~D)。

こうして出力された予測構造の候補と、コンテストの予測構造投稿期間の後に公開され た実験により解かれた立体構造とを比較することで、予測結果の正確さが測定された。予 測構造評価方法の一つは、予測構造と正解構造の重ね合わせを行い、対応残基が3Åより 短い距離にある残基数を出力A~Dについて積算すること(sum値)により行われた。22 のタンパク質を構造ドメイン単位(全部で34ドメイン)で眺めた結果によれば、構造予 測コンテストCASP5/CAFASP3における上記構造認識部門において22本の配列各々に対して 上位1個の予測を考慮した時、本手法のsum値は「577」であり、これは、配列情報を用 いた他のいかなる手法よりも優れているものであった 。

また、ある閾値を設定してある入力(予測対象)配列に対する予測の成否を観測した場 合でも、22本の配列各々に対して上位1個の予測を考慮した時本手法は、予測が成功した と判断される個数を出力A~Dについて積算したもの(correct値)において、「9」と 高く、配列情報を用いた他のいかなる手法よりも優れていることが示された。

【図面の簡単な説明】

[0087]

- 【図1】本発明の一実施形態において使用されるハードウエア構成を示す図である。
- 【図2】本発明のプロファイル行列間類似性評価システムを含む処理手順の一例を示 すフローチャートである。
- 【図3】本発明のプロファイル行列間類似性評価システムにおいて、各プロファイル カラムペア毎に類似性を評価し、スコア行列を作成するステップを示す図である。
- 【図4】実施例1、比較例1及び比較例2において出力された予測結果の信頼度と感 度とをプロットした図である。
- 【図5】実施例1及び比較例3において出力された予測結果の信頼度と感度とをプロ ットした図である。

【符号の説明】

ページ: 17/E

[0088] 101:CPU、

102: ROM、 103: RAM、 104: 入力部、105: 送信/受信部、

106:出力部、 107:HDD、 108:CD-ROMドライブ、109:ネットワーク回線

【魯類名】図面【図1】

【図5】

【課題】 タンパク質の立体構造予測に好適に使用できる、タンパク質プロファイル行列間の類似性評価システムの提供。

【解決手段】 タンパク質プロファイル行列間の類似性を評価するシステムであって、プロファイル行列は、関連する複数のタンパク質のアミノ酸配列を多重並置させたマルチプルアライメントにおいて、各アミノ酸残基位置におけるアミノ酸種毎の出現確率を備えたプロファイルカラムの群から構成され、(a) 入力プロファイル行列と、対象プロファイル行列の2つのプロファイル行列を用意する手段と、(b) 前記入力プロファイル行列の各プロファイル行列を用意する手段と、(b) 前記入力プロファイル行列相関係数を、各プロファイルカラムの全部又は一部の組合せについて算出する手段と、(c) 前記相関係数からなるスコア行列を作成する手段とを含むシステムにより、上記課題を解決する。

【選択図】 図2

特願2003-406776

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-406776

受付番号

50302005591

書類名

特許願

担当官

第一担当上席

0090

作成日

平成15年12月10日

<認定情報・付加情報>

【提出日】

平成15年12月 5日

【特許出願人】

申請人

【識別番号】

301021533

【住所又は居所】

東京都千代田区霞が関1-3-1

【氏名又は名称】

独立行政法人産業技術総合研究所.

特願2003-406776

出願人履歴情報

識別番号

[301021533]

1. 変更年月日 [変更理由] 住 所 氏 名

2001年 4月 2日 新規登録 東京都千代田区霞が関1ー3ー1 独立行政法人産業技術総合研究所