TIER IV ACADEMY 自動運転システム構築塾

Day4 Autoware演習②

Autoware 演習 6:物体検出とトラッキング

この演習について

Autoware 演習1:データの記録・再生

Autoware 演習 2:センサーキャリブレーション

Autoware 演習 3 : 3 次元地図の作成

Autoware 演習 4: 自己位置推定

Autoware 演習 5: パラメータ調整

✓ Autoware 演習 6:物体検出とトラッキング

Autoware 演習 7:信号検出

Autoware 演習 8:経路生成と経路計画

Autoware 演習 9:経路追従と車両制御

Autoware 演習10:パラメータ調整

物体検出 – 概要

車両や歩行者を検出

- 3次元座標位置
- ●形状
- トラッキングID
- 障害物の種類(車両・歩行者)

物体検出 - 構成・概略図

クラスタリング - 概要・構成

- 点群データから地面の排除
- クラスタの生成
 - ✓ 形状推定
 - ✓ 姿勢推定
 - ✓ 重心推定

CloudClusterArray.msg

std_msgs/Header header CloudCluster[] clusters

CloudCluster.msg

std_msgs/Header header uint32 id //トラッキングID string label //オブジェクト名 sensor_msgs/PointCloud2 cloud //クラスタ geometry_msgs/PointStamped min_point //最小 geometry_msgs/PointStamped max_point //最大 geometry_msgs/PointStamped avg_point //平均 geometry_msgs/PointStamped centroid_point //重心 float64 estimated_angle //クラスタの方向 geometry_msgs/Vector3 dimensions //立方体の大きさ geometry_msgs/Vector3 eigen_values //固有値 geometry_msgs/Vector3[] eigen_vectors //固有ベクトル jsk_recognition_msgs/BoundingBox bounding_box

クラスタリング - 手順(1/2)

1. 「Computing」タブの 「euclidean_cluster」 のappでパラメータの確認

2. 「euclidean_cluster」を ☑して起動

クラスタリング - 手順(2/2)

3. RVizでクラスタを確認

- A) 「RViz」をクリック
- B) 「Add」ボタンをクリック
- C) 「BoundingBoxArray」を選択
- D) Rviz左のトピックリストに「BoundingBoxArray」が 追加された後、「Topic」で「/bounding_box」を選択

障害物分類 - 概要

- 手法 1:カメラとLiDARによるセンサフュージョン
- 手法 2 (今後):点群クラスタのSVM (機械学習)による判断
- カメラとLiDARによるセンサフュージョン

障害物分類 – 手順 (1/5)

●座標・投影変換:points2imageノードの起動

- 1. Calibrationファイルの読み込み
 - A) 「Sensing」タブの「Calibration Publisher」ボタンをクリック
 - B) ファイルの選択ウィンドウが表示にて、Calibration ファイルを選択
- 2. Points Image を起動
 - A) 「Points Image」ボタンをクリック

障害物分類 - 手順 (2/5)

- ●画像処理:ssdノードの起動
- 距離推定: rangingノードの起動
- トラッキング: trackingノードの起動
- 3. ssd_uncを起動
- 4. range_fusionを起動
 - A) 「range_fusion」をチェックし、表示されるウィンドウ にて「Start」ボタンをクリック
- 5. dummy(klt, kf)_trackを起動

4. range_fusionの起動

3. ssd_uncの起動

5. dummy_trackの起動

障害物分類 - 手順 (3/5)

- 6. 検出結果表示用のパネルを追加
 - A) RVizに移り、「Panels」→「Add new panel」を選択
 - B) 「Image Viewer Plugin」を選択
 - C) 「ImageViewerPlugin」の「Image Topic: 」を下図のように選択

障害物分類 - 手順 (4/5)

● 逆投影: obj reprojノードの起動

7. opj_reprojの起動

- 7. opj_reprojを起動
 - A) 「opj_reproj」をチェックし、表示されるウィンドウにて「Start」ボタンをクリック
- 8. obj_reprojの結果を表示
 - A) 「Add」ボタンを押す
 - B) By topicにて「obj_label_marker」を選択

8. (A)(B)obj_reprojectionのmarkerを追加

8. obj_reprojectionの結果を表示

障害物分類 - 手順 (5/5)

- クラスタ割当: obj fusionノードの起動
- 9. opj_fusionを起動
 - A) 「opj_reproj」をチェックし、表示されるウィンドウにて 「Start」ボタンをクリック
- 10.obj_fusionの結果を表示
 - A) 「Add」ボタンをクリック
 - B) 「BoundingBoxArray」を選択
 - C) RVizの左のトピックリストに「BoundingBoxArray」が追加されるので、「Topic」で「/obj_car/obj_pose」を選択

9. obj fusionの起動

10. obj fusionの表示

クラスタトラッキング - 概要・構成

●手法1:前回のクラスタとの差分(距離)によるトラッキング

● 手法 2 (今後):カルマンフィルタによるトラッキング

●手法3(今後):パーティクルフィルタによるトラッキング

クラスタトラッキング - 手順

- 1. 「Computing」タブの「euclidean_lidar_track」 を ☑して起動
- 2. euclidean_lidar_trackの結果を表示
 - A) 「Add」ボタンを押す
 - B) By topicにて「cloud_cluster_tracked_text」を選択

1. euclidean lidar trackの起動

2. euclidean_lidar_trackの結果表示

