

Figure 1: Cosine law.

$$\begin{split} l_{plate}^2 &= l_i^2 + l_{motor}^2 - 2l_i l_{motor} \cos \alpha \\ \alpha &= \cos^{-1} \left(\frac{l_i^2 + l_{motor}^2 - l_{plate}^2}{2l_i l_{motor}} \right) \end{split}$$

Figure 2: Motor orientations.

Figure 3: Diagram describing the plate vectors.

Figure 4: Motor A at rest.

Figure 5: Gamma absolute motor angle calculation.

Define the rotation matrix for a tilt about the X and Y axis.

$$\begin{split} ^{Body}_{plat}R &= Y_{rot} * X_{rot} \rightarrow \text{Rotation of platform w. r. t. body} \\ Y_{rot} &= \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \\ X_{rot} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix} \\ ^{B}_{p}R &= \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix} \\ ^{B}_{p}R &= \begin{bmatrix} \cos\theta & \sin\theta\sin\phi & \sin\theta\cos\phi \\ 0 & \cos\phi & -\sin\phi \\ -\sin\theta & \cos\theta\sin\phi & \cos\phi\cos\phi \end{bmatrix} \end{split}$$

Backwards-solve the rotation matrix that will transform a unit \hat{k} vector to the plane's normalized normal vector.

$$\begin{bmatrix} \cos \theta & \sin \theta \sin \phi & \sin \theta \cos \phi \\ 0 & \cos \phi & -\sin \phi \\ -\sin \theta & \cos \theta \sin \phi & \cos \phi \cos \theta \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \widehat{N} = \begin{bmatrix} N_x \\ N_y \\ N_z \end{bmatrix}$$
$$\begin{bmatrix} \sin \theta \cos \phi \\ -\sin \phi \\ \cos \phi \cos \theta \end{bmatrix} = \begin{bmatrix} N_x \\ N_y \\ N_z \end{bmatrix}$$
$$\phi = \sin^{-1}(-N_y)$$
$$\theta = \sin^{-1}(\frac{N_x}{\cos \phi})$$
$$\theta = \sin^{-1}(\frac{N_x}{\cos \phi})$$

Once that is solved, substitute in \emptyset and θ into the matrix. Then, apply that rotation to the $\overrightarrow{p_{\iota-plane}}$ vector to solve for the magnitude and direction of the rotated vector $\overrightarrow{p_{\iota-body}}$ to use in the $\overrightarrow{l_{\iota}}$ equation.

$$\overrightarrow{p_{\iota-body}} = \overset{Body}{p_{lat}}R * \overrightarrow{p_{\iota-p_{lat}}}$$

$$\overrightarrow{p_{\iota-body}} = \begin{bmatrix} \cos\theta & \sin\theta\sin\phi & \sin\theta\cos\phi \\ 0 & \cos\phi & -\sin\phi \\ -\sin\theta & \cos\theta\sin\phi & \cos\phi\cos\phi \end{bmatrix} * \overrightarrow{p_{\iota-p_{lat}}}$$

For angles $\theta_{\nu}=5^{\circ}$ and $\phi_{x}=5^{\circ}$, we can calculate \vec{N} as follows.

$$\begin{bmatrix} \sin 5^{\circ} \cos 5^{\circ} \\ -\sin 5^{\circ} \\ \cos 5^{\circ} \cos 5^{\circ} \end{bmatrix} = \begin{bmatrix} N_{x-norm} \\ N_{y-norm} \\ N_{z-norm} \end{bmatrix} = \begin{bmatrix} 0.08682 \\ -0.08716 \\ 0.99240 \end{bmatrix}$$

For angles $\theta_y = 5^\circ$ and $\phi_x = 5^\circ$, we can calculate $\overrightarrow{l_a}$ as follows for Motor A. Given $\overrightarrow{p_{a-plat}} = \begin{bmatrix} 0 \\ 15 \\ 0 \end{bmatrix}$,

$$\overrightarrow{p_{a-body}} = \begin{bmatrix} \cos 5^{\circ}, & \sin 5^{\circ}, \sin 5^{\circ}, & \sin 5^{\circ}, \cos 5^{\circ}, \\ 0 & \cos 5^{\circ}, & -\sin 5^{\circ}, \\ -\sin 5^{\circ}, & \cos 5^{\circ}, \sin 5^{\circ}, & \cos 5^{\circ}, \cos 5^{\circ} \end{bmatrix} * \begin{bmatrix} 0 \\ 15 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.11394 \\ 14.94293 \\ 1.30236 \end{bmatrix}$$

Recall,
$$\overrightarrow{l_a} = \overrightarrow{T} + \overrightarrow{p_{a-body}} - \overrightarrow{b_a}$$
. Given $\overrightarrow{T} = \begin{bmatrix} 0 \\ 0 \\ 8 \end{bmatrix}$ and $\overrightarrow{b_a} = \begin{bmatrix} 0 \\ 11 \\ 0 \end{bmatrix}$,

$$\vec{l_a} = \begin{bmatrix} 0 \\ 0 \\ 8 \end{bmatrix} + \begin{bmatrix} 0.11394 \\ 14.94293 \\ 1.30236 \end{bmatrix} - \begin{bmatrix} 0 \\ 11 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.11394 \\ 3.94293 \\ 9.30236 \end{bmatrix}$$

For a known $\vec{l_a} = \begin{bmatrix} 0.11394 \\ 3.94293 \\ 9.30236 \end{bmatrix}$, we can calculate the relative motor angle $\alpha_{plate-leg}$ as follows. Given

 $l_{motor-leg} = 5$ and $l_{plate-leg} = 8$

$$|\overrightarrow{l_a}| = \sqrt{0.11394^2 + 3.94293 + 9.30236^2} = 10.1041$$

$$\alpha_{plate-leg} = \cos^{-1}\left(\frac{{l_a}^2 + {l_{motor-leg}}^2 - {l_{plate-leg}}^2}{2{l_a}{l_{motor-leg}}}\right) = \cos^{-1}\left(\frac{10.1041^2 + 5^2 - 8^2}{2 \times 10.1041 \times 5}\right) = 51.3598^\circ$$

After obtaining the relative motor angle, we can find the angle β_a of $\overrightarrow{l_a}$ with respect to the unit \widehat{k} vector. See Figure 5 for more details.

$$\beta_a = \cos^{-1}(\frac{\hat{k} \cdot \overrightarrow{l_a}}{|\hat{k}||\overrightarrow{l_a}|}) = \cos^{-1}\left(\frac{\begin{bmatrix} 0\\0\\1\end{bmatrix} \cdot \begin{bmatrix} 0.11394\\3.94293\\9.30236\end{bmatrix}}{10.1041}\right) = 22.9784^{\circ}$$

Subtracting $\alpha_{plate-leg}$ and β_a from 90° yields the absolute motor angle γ_a w. r. t. the horizontal.

$$\gamma_a = 90^{\circ} - \alpha_{plate-leg} - \beta_a = 90^{\circ} - 51.3598^{\circ} - 22.9784 = 15.6618^{\circ}$$

For a direction vector of $\vec{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and a tilt magnitude of $\theta = 5^{\circ}$, the normal vector of the plate can be calculated. First, the axis of rotation is determined to be $\vec{v}_{rot-axis} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, which is the orthogonal vector to the direction vector in the x-y plane.

Then, the plate is tilted about this axis in the direction of the direction vector, about magnitude θ . Vector decomposition is used to determine the new, rotated direction vector.

$$\vec{v}_{rot} = \begin{bmatrix} 0.996 \\ 0 \\ -0.087 \end{bmatrix}$$

Given the rotated direction vector and the axis of rotation, these are crossed to find the third orthogonal vector, which is the normal vector to the plane.

$$\vec{N} = \vec{v}_{rot-axis} \times \vec{v}_{rot} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0.996 \\ 0 \\ -0.087 \end{bmatrix} = \begin{bmatrix} -0.087 \\ 0 \\ -0.996 \end{bmatrix}$$

The vector is multiplied by -1 to ensure the Z-direction is positive.

$$\vec{N} = \begin{bmatrix} 0.087 \\ 0 \\ 0.996 \end{bmatrix}$$

