

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

Escola de Engenharia Engenharia de Controle e Automação Engenharia Elétrica

DISCIPLINA: TÓPICOS EM INTELIGÊNCIA ARTIFICIAL – ENG1010	DATA: 10/12/2021		
PROFESSOR: Dr. MARCOS ANTÔNIO DE SOUSA	TURMA: A01	VALOR: 10,0	
SIAD – REDES NEURAIS ARTIFICIAIS (RNA)	PROJETO		
ATIVIDADE: A02N2 [Peso: 45% na N2 – Em equipe – com consulta] ORIENTAÇÕES PAR	03		

ESTE PROJETO 03 DEVE SER DESENVOLVIDO EM EQUIPE E A SUA APRESENTAÇÃO DEVE SER REALIZADA POR TODOS OS INTEGRANTES DA EQUIPE NA DATA INDICADA, PARA TODA A TURMA DA DISCIPLINA ENG1010. ESTE PROJETO 03 DEVE SER AVALIADO PELO PROFESSOR E PELOS ESTUDANTES MATRICULADOS NA DISCIPLINA,

ORIENTAÇÕES GERAIS:

Segue as principais orientações para organização da apresentação, qualquer dúvida procurar o professor da disciplina:

- Apresentação da equipe com filiação.

DURANTE A SUA APRESENTAÇÃO NO SEMINÁRIO.

- Objetivos do projeto desenvolvido.
- Descrição do problema estudado.
- Descrição geral dos elementos que compõem a Rede Neural Artificial (RNA).
- Descrição detalhada das variáveis de entrada e saída da RNA.
- Descrição detalhada das bases de dados de treinamento e validação do problema estudado.
- Descrição detalhada da configuração dos parâmetros da RNA.
- Listagem do código RNA implementado no MatLab.
- Descrição detalhada, em forma de tabela, de combinações de ajuste nos parâmetros da RNA.
- Descrição detalhada dos cenários de aplicação no Estudo de Caso realizado com a RNA.
- Apresentação e discussão dos resultados obtidos para o Estudo de Caso.
- Conclusões.
- Principais referências bibliográficas utilizadas.
- Mostrar a RNA funcionando em uma simulação computacional.

PROJETO 3:

APLICAÇÃO 1 [Referências Bibliográficas 1 e 2]:

Fazer a implementação do Sistema Inteligente de Apoio a Decisão baseado em Redes Neurais Artificiais (SIAD-RNA) para obter a solução do problema a seguir:

Para a confecção de um processador de imagens de ressonância magnética observou-se que a variável {y}, que mede a energia absorvida do sistema, poderia ser estimada a partir da medição de três outras grandezas {x1, x2, x3}. Entretanto, em função da complexidade do processo, sabe-se que este mapeamento é de difícil obtenção por técnicas convencionais, sendo que o modelo matemático disponível para sua representação tem fornecido resultados insatisfatórios.

Assim, a equipe de engenheiros e cientistas pretende utilizar um Perceptron MultiCamadas (PMC) como um aproximador universal de funções, tendo-se como objetivo final a estimação (após o treinamento) da energia absorvida {y} em função dos valores de x1, x2 e x3. A topologia da rede a ser implementada, constituída de duas camadas neurais, está ilustrada na Figura 1.

Figura 1 – Topologia da RNA – PMC – para o projeto da Aplicação 1 [1].

Utilizando o algoritmo de aprendizagem *backpropagation*, com as amostras de treinamento disponibilizadas no Apêndice A1 e assumindo-se também que todas as saídas já estejam normalizadas, realize as seguintes atividades:

- 1) Execute cinco treinamentos para a rede PMC da Figura 1, inicializando-se as matrizes de pesos com valores apropriados em cada treinamento. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento a fim de modificar os seus valores iniciais. Utilize a função de ativação logística (sigmoide) para todos os neurônios, com taxa de aprendizado {η} de 0,1 e precisão {ε} de 10-6. O conjunto de amostras de treinamento está disponível no Apêndice A1 [2] (será disponibilizado pelo professor no momento oportuno, já no formato adequado para a plataforma de desenvolvimento MatLab).
- 2) Registre os resultados finais dos cinco treinamentos na Tabela 1.

Tabela 1 – Resultados do Treinamentos da RNA – Aplicação 1.

Treinamento	Erro Quadrático Médio	Número Total de Épocas
1º (T1)		
2º (T2)		
3º (T3)		
4º (T4)		
5º (T5)		

- 3) Para aqueles dois treinamentos da tabela 5.2, com maiores números de épocas, trace os respectivos gráficos dos valores de erro quadrático médio {EM} em relação a cada época de treinamento. Registre os dois gráficos numa mesma tela de modo não superpostos para posterior discussões.
- 4) Fundamentado na Tabela 1 (item 2), explique de forma detalhada por que tanto o erro quadrático médio como o número total de épocas variam de treinamento para treinamento.
- 5) Para todos os treinamentos efetuados no item 2 (Tabela 1), faça a validação da rede aplicando o conjunto de teste fornecido na Tabela 2. Obtenha para cada treinamento o erro relativo médio (%) entre os valores desejados frente aqueles fornecidos pela rede, em relação a todas as amostras de teste. Forneça também a respectiva variância.

Tabela 2 – Conjunto de amostras de teste – Aplicação 1 [1].

Amostra	<i>x</i> 1	x2	x3	d	y (T1)	y (T2)	y (T3)	y (T4)	y (T5)
1	0,0611	0,2860	0,7464	0,4831					
2	0,5102	0,7464	0,0860	0,5965					
3	0,0004	0,6916	0,5006	0,5318					
4	0,9430	0,4476	0,2648	0,6843					
5	0,1399	0,1610	0,2477	0,2872					
6	0,6423	0,3229	0,8567	0,7663					
7	0,6492	0,0007	0,6422	0,5666					
8	0,1818	0,5078	0,9046	0,6601					
9	0,7382	0,2647	0,1916	0,5427					
10	0,3879	0,1307	0,8656	0,5836					
11	0,1903	0,6523	0,7820	0,6950					
12	0,8401	0,4490	0,2719	0,6790					
13	0,0029	0,3264	0,2476	0,2956					
14	0,7088	0,9342	0,2763	0,7742					
15	0,1283	0,1882	0,7253	0,4662					
16	0,8882	0,3077	0,8931	0,8093					
17	0,2225	0,9182	0,7820	0,7581					
18	0,1957	0,8423	0,3085	0,5826					
19	0,9991	0,5914	0,3933	0,7938					
20	0,2299	0,1524	0,7353	0,5012					
Erro relativo médio (%)									
	Variância (%)								

6) Indique qual das configurações finais de treinamento {T1, T2, T3, T4 ou T5} seria a mais adequada para o sistema de ressonância magnética, ou seja, qual está oferecendo a melhor generalização. Apresente justificativas fundamentadas nas análises da Tabela 2.

Deve ser feito:

- 1) Identificar os dados de entrada e saída da RNA.
- 2) Modelar (ajustar) os parâmetros da RNA.
- Implementar o SIAD-RNA no MatLab. Observação: os arquivos com os códigos também devem ser entregues.
- 4) Executar o treinamento (aprendizagem) da RNA com os dados disponibilizados no Apêndice 1. Indicar o resultado da etapa de treinamento da RNA conforme especificado na Tabela 1 (itens 2, 3 e 4).
- 5) Executar a aplicação (validação) da RNA com os dados disponibilizados na Tabela 2. Indicar o resultado da etapa de aplicação da RNA conforme especificado na Tabela 2 (itens 5 e 6).
- 6) O desenvolvimento do SIAD-RNA deve seguir as ORIENTAÇÕES GERAIS.

AVALIAÇÃO:

A avaliação deve considerar: qualidade dos SIAD-RNA desenvolvidos, qualidade das soluções apresentadas, a complexidade do problema estudado na APLICAÇÃO 1 e a desenvoltura da equipe na organização do relatório e apresentação.

A nota a ser atribuída para este PROJETO 2 deve ser composta da seguinte forma:

A1N2=0,50xNA1 + 0,50xNA2

Onde: NA1 = Nota atribuída pelo professor da disciplina ENG1010 para a APLICAÇÃO 1.

NA2 = Nota atribuída pelos alunos da disciplina ENG1010 para a APLICAÇÃO 1.

REFERÊNCIA BIBLIOGRÁFICA:

[Referência bibliográfica 1]

SILVA, I. N.; SPATTI, D. H.; FLAUZINO, R. A.. Redes neurais artificiais: para engenharia e ciências aplicadas. São Paulo, 2ª Edição, Artliber, 2016.

[Referência bibliográfica 2]

SILVA, I. N.; SPATTI, D. H.; FLAUZINO, R. A.; LIBONI, L. H. B.; ALVES, S. F. R.. Artificial Neural Networks - A Practical Course. Springer, 2017.