

Recap: Bitwise Operators

- You're already familiar with many operators in C:
 - Arithmetic operators: +, -, *, /, %
 - Comparison operators: ==, !=, <, >, <=, >=
 - Logical Operators: &&, | |, !

Bitwise operators:

- Logical operators: &, |, ~, ^,
- Bit shift operators: <<, >>

Recap: Real Numbers

Problem: unlike with the integer number line, where there are a finite number of values between two numbers, there are an *infinite* number of real number values between two numbers!

Integers between 0 and 2: 1

Real Numbers Between 0 and 2: 0.1, 0.01, 0.001, 0.0001, 0.00001,...

We need a fixed-width representation for real numbers. Therefore, by definition, we will not be able to represent all numbers.

Plan For Today

- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Disclaimer: Slides for this lecture were borrowed from

- —Nick Troccoli's Stanford CS107 class
- —Randal E. Bryant and David R. O'Hallaron's CMU 15-213 class

Lecture Plan

- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Let's Get Real

What would be nice to have in a real number representation?

- Represent widest range of numbers possible
- Flexible "floating" decimal point
- Represent scientific notation numbers, e.g. 1.2 x 10⁶
- Still be able to compare quickly
- Have more predictable over/under-flow behavior

IEEE Floating Point

Let's aim to represent numbers of the following scientific-notation-like format:

 $\chi * 2^{y}$

With this format, 32-bit floats represent numbers in the range \sim 1.2 x10⁻³⁸ to \sim 3.4 x10³⁸! Is every number between those representable? **No**.

IEEE Single Precision Floating Point

s exponent (8 bits)

fraction (23 bits)

Exponent (Binary)	Exponent (Base 10)
1111111	5
1111110	5
11111101	5
11111100	5
•••	;
0000011	;
0000010	;
0000001	5
0000000	?

s exponent (8 bits)

fraction (23 bits)

Exponent (Binary)	Exponent (Base 10)
1111111	RESERVED
1111110	;
11111101	;
11111100	;
•••	;
0000011	;
0000010	;
0000001	;
0000000	RESERVED

s exponent (8 bits)

fraction (23 bits)

Exponent (Binary)	Exponent (Base 10)
1111111	RESERVED
1111110	127
11111101	126
11111100	125
•••	•••
0000011	-124
0000010	-125
0000001	-126
0000000	RESERVED

s exponent (8 bits) fraction (23 bits)

- The exponent is **not** represented in two's complement.
- Instead, exponents are sequentially represented starting from 000...1 (most negative) to 111...10 (most positive). This makes bit-level comparison fast.
- Actual value = binary value 127 ("bias")

11111110	254 - 127 = 127
11111101	253 - 127 = 126
•••	•••
00000010	2 - 127 = -125
0000001	1 - 127 = -126

Fraction

s exponent (8 bits) fraction (23 bits)

 $\chi * 2^{y}$

• We could just encode whatever x is in the fraction field. But there's a trick we can use to make the most out of the bits we have.

An Interesting Observation

In Base 10:

$$42.4 \times 10^5 = 4.24 \times 10^6$$

$$324.5 \times 10^5 = 3.245 \times 10^7$$

$$0.624 \times 10^5 = 6.24 \times 10^4$$

We tend to adjust the exponent until we get down to one place to the left of the decimal point.

In Base 2:

$$10.1 \times 2^5 = 1.01 \times 2^6$$

$$1011.1 \times 2^5 = 1.0111 \times 2^8$$

$$0.110 \times 2^5 = 1.10 \times 2^4$$

Observation: in base 2, this means there is always a 1 to the left of the decimal point!

Fraction

s exponent (8 bits) fraction (23 bits)

 $\chi * 2^{y}$

- We can adjust this value to fit the format described previously. Then, x will always be in the format 1.XXXXXXXXX...
- Therefore, in the fraction portion, we can encode just what is to the right of the decimal point! This means we get one more digit for precision.

Value encoded = 1._[FRACTION BINARY DIGITS]_

Practice

Sign	Exponent							Frac	ction	
0	0	•••	0	0	0	1	0	1	0	•••

Is this number:

- A) Greater than 0?
- B) Less than 0?

Practice

Sign	Exponent							Frac	ction	
0	0	•••	0	0	0	1	0	1	0	•••

Is this number:

- A) Greater than 0?
- B) Less than 0?

Is this number:

- A) Less than -1?
- B) Between -1 and 1?
- C) Greater than 1?

Skipping Numbers

• We said that it's not possible to represent *all* real numbers using a fixed-width representation. What does this look like?

Float Converter

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floats and Graphics

https://www.shadertoy.com/view/4tVyDK

Let's Get Real

What would be nice to have in a real number representation?

- Represent widest range of numbers possible
- Flexible "floating" decimal point ✓
- Represent scientific notation numbers, e.g. 1.2 x 10⁶ ?
- Still be able to compare quickly ✓
- Have more predictable over/under-flow behavior ?

Representing Zero

The float representation of zero is all zeros (with any value for the sign bit)

Sign	Exponent	Fraction
any	All zeros	All zeros

• This means there are two representations for zero! 😊

Representing Small Numbers

If the exponent is all zeros, we switch into "denormalized" mode.

Sign	Exponent	Fraction
any	All zeros	Any

- We now treat the exponent as -126, and the fraction as without the leading 1.
- This allows us to represent the smallest numbers as precisely as possible.

Representing Exceptional Values

If the exponent is all ones, and the fraction is all zeros, we have +- infinity.

Sign	Exponent	Fraction
any	All ones	All zeros

- The sign bit indicates whether it is positive or negative infinity.
- Floats have built-in handling of over/underflow!
 - Infinity + anything = infinity
 - Negative infinity + negative anything = negative infinity
 - Etc.

Representing Exceptional Values

If the exponent is all ones, and the fraction is nonzero, we have **Not a Number (NaN)**

Sign			Expo	nent			Fraction
any	1	•••	•••	•••	•••	1	Any nonzero

- NaN results from computations that produce an invalid mathematical result.
 - Sqrt(negative)
 - Infinity / infinity
 - Infinity + -infinity
 - Etc.

Number Ranges

- 32-bit integer (type int):
 - > -2,147,483,648 to 2147483647
 - > Every integer in that range can be represented
- 64-bit integer (type long):
 - > -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
- 32-bit floating point (type **float**):
 - $\sim 1.2 \times 10^{-38}$ to $\sim 3.4 \times 10^{38}$
 - Not all numbers in the range can be represented (not even all integers in the range can be represented!)
 - Gaps can get quite large! (larger the exponent, larger the gap between successive fraction values)
- 64-bit floating point (type **double**):
 - $\sim 2.2 \times 10^{-308}$ to $\sim 1.8 \times 10^{308}$

Precision options

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

Visualization: Floating Point Encodings

Lecture Plan

- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac

- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers	•••				
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	•••				
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	•••				
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf

 $v = (-1)^s M 2^E$ n: E = Exp - Biasd: E = 1 - Bias

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Lecture Plan

- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Demo: Float Arithmetic

float_arithmetic.c

Floating Point Arithmetic

Is this just overflowing? It turns out it's more subtle.

```
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
```

Let's look at the binary representations for 3.14 and 1e20:

	31	30 2	23 22 0
3.14:	0	1000000	10010001111010111000011
	31	30 2	23 22 0
1e20:	0	11000001	01011010111100011101100

To add real numbers, we must align their binary points:

What does this number look like in 32-bit IEEE format?

Step 1: convert from base 10 to binary

What is 10000000000000000003.14 in binary? Let's find out!

http://web.stanford.edu/class/archive/cs/cs107/cs107.1184/float/convert.html

Step 2: find most significant 1 and take the next 23 digits for the fractional component, rounding if needed.

1 01011010111100011101100

Step 3: find how many places we need to shift **left** to put the number in 1.xxx format. This fills in the exponent component.

66 shifts -> 66 + 127 = 193

Step 4: if the sign is positive, the sign bit is 0. Otherwise, it's 1.

Sign bit is 0.

The binary representation for 1e20 + 3.14 thus equals the following:

This is the **same** as the binary representation for 1e20 that we had before!

We didn't have enough bits to differentiate between 1e20 and 1e20 + 3.14.

Is this just overflowing? It turns out it's more subtle.

```
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
```

Floating point arithmetic is not associative. The order of operations matters!

- The first line loses precision when first adding 3.14 and 1e20, as we have seen.
- The second line first evaluates 1e20 1e20 = 0, and then adds 3.14

Demo: Float Equality

float_equality.c

Float arithmetic is an issue with most languages, not just C!

http://geocar.sdf1.org/numbers.html

Let's Get Real

What would be nice to have in a real number representation?

- Represent widest range of numbers possible ✓
- Flexible "floating" decimal point ✓
- Represent scientific notation numbers, e.g. 1.2 x 10^6 \checkmark
- Still be able to compare quickly ✓
- Have more predictable over/under-flow behavior ✓

Lecture Plan

- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - •double double precision
- Conversions/Casting
 - •Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int \rightarrow float
 - Will round according to rounding mode

Ariane 5: A Bug and A Crash

- On June 4, 1996, Ariane 5 rocket self destructed just after 37 seconds after liftoff
- Cost: \$500 million
- Cause: An overflow in the conversion from a 64 bit floating point number to a 16 bit signed integer
- A design flaw:
 - 5 times faster than Ariane 4
 - Reused same software specifications from Ariane 4
 - Ariane 4 assumes horizontal velocity would never overflow a 16bit number

© Fourmy/REA/SABA/Corbis

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

```
False
• x == (int)(float) x
• x == (int)(double) x
                                     True
• f == (float)(double) f
                                     True
• d == (float) d
                                     False
• f == -(-f);
                                     True
• 2/3 == 2/3.0
                                     False
• d < 0.0 \Rightarrow ((d*2) < 0.0)
                                     True (OF?)
• d > f \Rightarrow -f > -d
                                     True
                                     True (OF?)
• d * d >= 0.0
• (d+f)-d == f
                                     False
```

Floats Summary

- IEEE Floating Point is a carefully-thought-out standard. It's complicated, but engineered for their goals.
- Floats have an extremely wide range, but cannot represent every number in that range.
- Some approximation and rounding may occur! This means you definitely don't want to use floats e.g. for currency.
- Associativity does not hold for numbers far apart in the range
- Equality comparison operations are often unwise.

Recap

- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Next time: How can a computer represent and manipulate more complex data like text?

Additional Reading

What Every Computer Scientist Should Know About Floating-Point Arithmetic

DAVID GOLDBERG

Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304

Floating-point arithmetic is considered an esotoric subject by many people. This is rather surprising, because floating-point is ubiquitous in computer systems: Almost every language has a floating-point datatype; computers from PCs to supercomputers have floating-point accelerators; most compilers will be called upon to compile floating-point algorithms from time to time; and virtually every operating system must respond to floating-point exceptions such as overflow This paper presents a tutorial on the aspects of floating-point that have a direct impact on designers of computer systems. It begins with background on floating-point representation and rounding error, continues with a discussion of the IEEE floating-point standard, and concludes with examples of how computer system builders can better support floating point.

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems Organization]: General—instruction set design; D.3.4 [Programming Languages]: Processors—compilers, optimization; G.1.0 [Numerical Analysis]: General—computer arithmetic, error analysis, numerical algorithms (Secondary) D.2.1 [Software Engineering]: Requirements/Specifications—languages; D.3.1 [Programming Languages]: Formal Definitions and Theory—semantics D.4.1 [Operating Systems]: Process Management—synchronization

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: denormalized number, exception, floating-point, floating-point standard, gradual underflow, guard digit, NaN, overflow, relative error, rounding error, rounding mode, ulp, underflow