Avaliação da eficiência do modelo de Luedeking-Piret-Monod para predição da produção de enterotoxinas por Staphylococcus aureus

João Víctor Balestrin Sartor 04/07/2019

Autores:

João Víctor Balestrin Sartor

• @mustachius

✓ jvsaga@gmail.com

Departamento de Eng. de Alimentos e Eng. Química. *

Orientador:

Prof. Dr. Weber da Silva Robazza*

✓ wrobazzi@yahoo.com.br

Coorientador:

Prof. Dr. Alessandro Cazonatto Galvão*

✓ eng.a.c.galvao@gmail.com

Estrutura

Tabela de conteúdo

- 1. Staphylococcus aureus;
 - Características;
 - Patologia;
 - o Histórico de Surtos Alimentares no Brasil.
- 2. Modelagem matemática
 - o O Modelo LPM.
- 3. Materiais e Métodos.
- 4. Resultados e Discussões.
- 5. Conclusão.

Staphyloccocus aureus

O gênero Staphylococcus abrange:

- Gram positivas;
- não formadora de esporos;
- anaeróbias facultativas;
- coagulase-positivas, ou negativas;

Staphyloccocus aureus

Família contém mais de **40 espécies reconhecidas** - divididas de acordo com a capacidade de produzir, ou não, as enzimas catalase e coagulase.

- A grande maioria → coagulasenegativa.
- S. aureus \rightarrow coagulase-positivo.

Staphyloccocus aureus

Nomenclatura baseada em seu formato geométrico:

- *staphyle*→ "cacho"
- *kokkos*→ "bagas"

Condições ótimas para crescimento:

• Temperatura: 35°C

• **pH**: 7,0 ~ 7,5

• **aw**: \leq 0,8

Associado à:

- Surtos alimentares com consumo de alimentos com características variadas;
- Infecções de Pele;

Normalmente encontrado em:

- Pele;
- Mucosas;
- Interior do nariz e orelhas;

Patologia

'Fiquei paraplégica por causa de um piercing'

Quando tinha 20 anos, a jovem Layane Dias colocou um piercing no nariz e acabou infectada por uma bactéria que a deixou paraplégica.

Fonte: G1, 2019

O que é a Staphylococcus aureus, bactéria que levou à morte do neto de Lula

Entenda a bactéria que originou infecção generalizada do menino Arthur Araújo Lula da Silva, de 7 anos; diagnóstico anterior de meningite foi descartado

Ana Paula Niederauer, O Estado de S.Paulo 03 de abril de 2019 | 17h53

Fonte: O Estado de São Paulo, 2019

Enterotoxinas Estafilocócicas (SE)

• Dos vários compostos produzidos pelo *S. aureus*, o de maior interesse científico são as **enterotoxinas estafilocócicas**;

SE são compostos capazes de:

- danificar membranas celulares;
- o desencadear Síndrome do Choque Tóxico;

S. aureus é capaz de produzir 23 tipos de compostos tóxicos diferentes;

Apenas 5 são classificadas como **Enterotoxinas Estafilocócicas Clássicas** e detectadas por testes comerciais: SEA, SEB, SEC, SED, SEE.

Outras enterotoxinas também já foram sequenciadas: G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V e X.

Nomenclatura

Comitê Internacional de Nomenclatura para Superantígenos de Staphylococcus (INCSSN) recomenda que o termo **enterotoxina** seja somente utilizado para **compostos eméticos**.

Às demais toxinas designou-se o termo "Enterotoxina estafilocócica semelhante a superantígeno", ou (Staphylococcal Enterotoxin-like Superantigens - SEI).

- SEJ, SEK, ..., SEU \rightarrow SEIJ. SEIK, ..., SEIU.
 - Exceções: **SEIG, SEIH** e **SEII**, que já apresentaram atividade emética.

Enterotoxinas clássicas possuem alta resistência e não são desnaturadas durante o processo de pasteurização.

SEA e SEC são as toxinas mais associadas a casos de intoxicação.

Histórico de contaminação alimentar no Brasil

Doenças transmitidas por alimentos - DTA's

No Brasil, os casos de infecção estafilocócica não são de notificação compulsória ao Ministério da Saúde;

Surtos de Doenças Transmitidas por Alimentos - DTA devem ser registrados compulsoriamente desde 2017.

DTA - síndrome constituída de anorexia, náuseas, vômitos e/ou diarreia, acompanhada ou não de febre, relacionada à ingestão de alimentos ou água contaminados, podendo abranger tanto infecções como intoxicações alimentares.

- Podem ser causadas por bactérias, vírus, parasitas, toxinas, príons, agrotóxicos, substâncias químicas e metais pesados;
- Quadro clínico variando desde desconfortos intestinais leves, até quadros extremamente sérios com desidratações graves, diarreia sanguinolenta e insuficiência renal aguda.

Doenças transmitidas por alimentos - DTA's

Define-se como surto, um episódio em que duas ou mais pessoas apresentam os mesmos sinais/sintomas após a ingestão de alimento e/ou água proveniente da mesma fonte.

- Toda DTA → Evento de Saúde Pública ESP.
- ESP → Registro no Sistema de Informação de Agravos de Notificação (**SINAN**), em até sete dias.

Investigação

Surtos no Brasil - 2000 a 2017

Agentes mais comumente envolvidos em surtos de DTA no Brasil de 2000 a 2017

Agente	Centro-Oeste	Nordeste	Norte	Sudeste	Sul	Total
Bacillus Cereus	12	105	18	52	183	370
Clostridium perfringens	12	51	4	56	101	224
Escherichia coli	39	259	27	209	213	747
Ignorado	552	1.041	474	3.219	1.976	7.262
Inconclusivo	5	167	17	213	104	506
Rotavírus	4	41	5	192	4	246
Salmonella Enteritidis	4	4	-	81	42	131
Salmonella spp	57	102	28	188	1.163	1.538
Staphylococcus aureus	32	178	56	260	374	900
Vírus da Hepatite A	2	28	1	174	2	207

Fonte: BRASIL. Ministério da Saúde, 2019.

Modelo LPM

Equação de Luedeking-Piret (1959)

$$\frac{dP}{dt} = \alpha \frac{dX}{dt} + \beta X \tag{1}$$

Equação de Monod (1949)

$$\frac{dX}{dt} = \mu \cdot X \tag{2}$$

Velocidade de crescimento específico

$$\mu = \frac{\mu_{max} \cdot S}{K_s + S} \tag{3}$$

Garnier e Gaillet (2015)

- Constante para formação de novas células a partir de $S o Y_{x/s}$;
- Negligenciando a taxa de morte celular.

$$\frac{dS}{dt} = -q_s \cdot X \tag{4}$$

Taxa de consumo específico de substrato

$$q_s = \frac{\mu}{Y_{x/s}} \tag{5}$$

Constante de rendimento celular

$$Y_{x/s} = \frac{dX}{dS} \tag{6}$$

 $Y_{x/s}$ também pode ser utilizado para expressar a relação entre o substrato limitante e a concentração microbiana de acordo com:

$$S = \frac{1}{Y_{x/s}} \cdot (X_{max} - X) \tag{7}$$

Ao combinar as equações 1, 2 e 4

$$t = a_1 \cdot ln\left(rac{X}{X_0}
ight) + a_2 \cdot ln\left(rac{(X_{max} - X)}{(X_{max} - X_0)}
ight) \hspace{1.5cm} (8)$$

Onde a_1 e a_2 são dados pelas seguintes relações:

$$a_1 = rac{(K_s \cdot Y_{x/s} + X_{max})}{\mu_{max} \cdot X_{max}}$$
 (9)

$$a_2 = -\frac{K_s \cdot Y_{x/s}}{\mu_{max} \cdot X_{max}} \tag{10}$$

A reorganização das variáveis permite calcular μ_{max} e obter o produto entre K_S e $Y_{x/s}$ como:

$$\mu_{max} = \frac{1}{a_1 + a_2} \tag{11}$$

$$K_S \cdot Y_{x/s} = -\frac{a_2}{a_1 + a_2} X_{max} \tag{12}$$

Finalmente, a quantidade de Produto (P) formado pode ser expressa como:

$$b_1 = \alpha + \frac{\beta}{\mu_{max}} \tag{14}$$

$$b_2 = -\frac{\beta \cdot K_S \cdot Y_{x/s}}{\mu_{max}} \tag{15}$$

Parâmetros da equação de Luedeking-Piret:

$$\alpha = b_1 + \frac{b_2}{K_S \cdot Y_{x/s}} \tag{16}$$

$$\beta = -\frac{b_2 \cdot \mu_{max}}{K_s \cdot Y_{x/s}} \tag{17}$$

Objetivo Geral

Avaliar a eficácia do modelo LPM na predição de produção de enterotoxinas por *Staphylococcus aureus* em **diferentes alimentos**, em **diferentes condições.**

Objetivos específicos

- Avaliar em quais condições de temperatura o modelo obtém melhores resultados;
- Estimar a dependência dos parâmetros do modelo com as condições ambientais;
- Verificar as condições de validade do modelo.

Materiais e métodos

Dados experimentais

Pesquisa em bases de dados conhecidas:

- "Staphylococcus aureus";
- "enterotoxin";
- "production";
- "detection";
- "modeling".

Dados de crescimento e produção expressos em:

- UFC/mL
- g/mL

Get Data Graph Digitizer 2.23.0.20

Sumário de dados

8 Artigos → 55 curvas de crescimento de *S. aureus* + 55 curvas de produção de enterotoxinas.

Toxina	Curvas	
SEA	22	
SEB	3	
SEC	15	
SEC1	2	
SEC2	2	
SEH	2	
A + C + D	9	
Total	55	

Temperatura variando entre 10°C e 48°C.

Preparação do algoritmo

- Confecção de "scripts" para tratamento de dados.
 - ∘ Regressões não-lineares → algoritmo de *Levenberg-Marquardt*.
- R Project v. 3.5.3 (2019-03-11) "Great Truth"
- RStudio Version 1.1.463 (R Core Team, 2013;RStudio Team, 2018)
- Pacote *minpack.lm*

Crescimento de *S. aureus*

- Equação 8 foi ajustada à *t* e *X*.
- $X_0 \rightarrow X$ quando t apresenta o menor valor.
- $X_{max} \rightarrow$ valor ligeiramente superior ao maior valor de X.

Produção de enterotoxinas estafilocócicas

Resultados da primeira regressão não-linear foram submetidos à **Equação 13**.

Resultados e discussões

Classificação dos conjuntos de dados

- Curvas analisadas bastante heterogêneas;
- Resultados obtidos heterogêneos.

Borst e Betley (1993), Czop e Bergdoll (1974) e Otero et al. (1990) verificaram padrões de produção diferentes para cada enterotoxina.

SA	SE		
Fases de desenvolvimento bem definidas e crescimento não decrescente	Ponto de início de produção de enterotoxina bem definido e crescimento não decrescente		
Fases de desenvolvimento não tão definidas e máximo de 1 (um) ponto divergindo de crescimento não decrescente	Ponto de início de produção de enterotoxina não tão definido e pelo menos um ponto divergindo de crescimento não decrescente	3	
Fases de desenvolvimento não definidas e até 30% dos pontos divergindo de crescimento não decrescente	Ponto de início de produção de enterotoxina não tão definido e até 30% dos pontos ponto divergindo de crescimento não decrescente	2	
Fases de desenvolvimento indefinidas e mais de 30% dos pontos divergindo de crescimento não decrescente	Ponto de início de produção de enterotoxina indefinido e mais de 30% dos pontos ponto divergindo de crescimento não decrescente	1	

Exemplos de notas para SA

Exemplos de notas para SE

Distribuição das notas para SA e SE

Sumário dos resultados para a_1 , a_2 , b_1 , b_2

							Range 98%	
Parâmetro	Média	D. Padrão	C. Var	Oblíquidade	Curtose	IQR	Min	Max
a_1	255	1.346	5,3	0,93	8,1	248,0	-3.077	4.550
a_2	374	3.779	10,0	-1,50	12,0	73,0	-14.054	9.455
b_1	17	137	8,0	6,30	45,0	3,3	-117	548
b_2	4.448	35.899	8,1	7,20	53,0	4,0	-7.012	123.850

Sumário dos resultados para lpha, eta, μ e $K_S \cdot Y_{x/s}$

							Range 98%	
Parâmetro	Média	D. Padrão	C. Var	Oblíquidade	Curtose	IQR	Min	Max
μ_{max}	0,04	0,26	6,1	2,0	14	0,057	-0,58	0,97
$K_S.Y_S$	-26	120	-4,6	-6,2	42	14	-538,42	38,22
a	0,89	6,8	7,7	0,9	11	1,2	-20,1	23,91
ß	0,14	0,46	3,2	4,6	24	0,092	-0,06	2,3

Valores de referência

- Classificação de curvas permitiu relacionar os dados de entrada e saída;
- Curvas que obtiveram valores de nota 4 foram utilizadas como referência
 - SA: 5 curvas
 - SE: 8 curvas
- Determinação dos valores adequados por curvas de densidade de probabilidade.

Densidade de probabilidade para a_1 , a_2 , b_1 e b_2

Densidade de probabilidade para μ_{max} , $K_s \cdot Y_{x/s}$, lpha e eta

Sumário de probabilidade a_1 , a_2 , b_1 e b_2

Parâmetro	Min	Max	Probabilidade
a ₁	2,880	19,498	0,047
a_2	-5,251	-0,783	0,491
b_1	-0,096	31,485	0,047
b_2	-38,249	-0,655	0,322

Sumário de probabilidade μ_{max} , $K_s \cdot Y_{x/s}$, α e eta

Parâmetro	Min	Max	Probabilidade
μ_{max}	-0,694	0,120	0,783
$K_S.Y_S$	-31,666	1,879	0,614
a	-1,344	-0,258	0,216
ß	0,028	0,105	0,238

Avaliou-se o Erro Percentual Médio (EPM) mais detalhadamente devido variação dos resultados.

SE real: 0,01 ng/gSE pred: 0,19 ng/g

EPM = 1900%

Para avaliar a influência das notas:

• EPM para P < 1;

• EPM para P > 1;

Regressões lineares de EPM em função de outros parâmetros.

Regressão	Valor est.	Erro Padrão	t-value	p-value	Significância		
1) EPM (SE) + N	1) EPM (SE) + Número de pontos observados						
C. linear	-1,24E+05	5,72E+04	-2,164	3,50E-02	0,05		
N. Pontos	-1,69E+04	5.184	3,267	1,91E-03	0,01		
2) EPM (SE) + I	max						
C. linear	-3.252	2,93E+04	-0,111	0,912	-		
Pmax	3,30E+08	7,03E+07	4,699	1,90E-05	0,001		
3) EPM (SE) + I	Erros estatísticos	s					
C. linear	-3,80E+04	3,62E+04	-1,050	0,299	-		
RMSE	3,88E+05	2,35E+04	16,523	<2e-16	0,001		
MAE	-4,59E+05	2,84E+04	-16,185	<2e-16	0,001		
R2	1,47E+04	4,82E+04	0,304	0,762	-		
4) EPM (SE) + Soma das notas de SA e de SE							
C. linear	4.777	2,14E-01	22,3	<2e-16	0,001		
(SA + SE)	1,23E-04	8,67E-05	1,414	0,163	-		

Regressão	Valor est.	Erro Padrão	t-value	p - value	Significância		
1) EPM para P>	1) EPM para P>1 + Número de pontos						
C. linear	-4,29E+05	2,45E+05	-1,751	0,0889	0,1		
N. pontos	-5,37E+04	1,96E+04	2,742	0,0097	0,01		
2) EPM para P>	1 + Soma das n	otas de SA e de SH	\mathbf{E}				
C. linear	5.113	2,520e-01	20,29	<2e-16	0,001		
N. pontos	3,781e-05	3,000e-05	1,26	0,216	-		
3) EPM para P<	1 + Número de	pontos					
C. linear	-14,636	20,450	-0,716	0,4783	-		
N. pontos	-5,508	1,719	3,204	0,0027	0,01		
4) EPM para P<1 + Soma das notas de SA e de SE							
C. linear	2,4283	0,1683	14,429	<2e-16	0,001		
N. pontos	0,2980	0,1883	1,583	0,121	-		

Simulação do crescimento de *S. aureus* e produção de enterotoxinas

Simulação

Utilizou-se modelo simplificado

$$X = X_0 \cdot 2^{rac{t-tlag}{td}}$$
 $P = P_0 + log_{10} X \cdot Y_{px}$

Considerou-se:

- X_0 como 20 unidades de *S. aureus*
- *t* variando entre 0 e 500 horas.

Parâmetros da primeira simulação

Parâmetro	Valor Médio	D. Padrão
t fase lag	15,000	5
t fase exponencial	40,000	6
t fase estacionária	100,000	10
μ	0,001	5e-05
Y_{px}	0,002	5e-04
X_0	20,000	-

50/58

Comparação entre simulação e Fujikawa et al. (2006) - 32 °C

Variação de temperatura afeta crescimento bacteriano e produção de enterotoxinas.

• Nesta simulação expressa por *td*

$$td=rac{log_{10}2}{\mu}$$

Parâmetros da segunda simulação

Parâmetro	Valor Médio	D. Padrão
t fase lag	15,0	3
t fase exponencial	17,5	5
t fase estacionária	24,0	10
μ	0,0	5e-05
Y_{px}	0,0	5e-04
X_0	20,0	-

Comparação entre simulação e Fujikawa et al. (2006) - 23 °C

Conclusão

Conclusão

- Modelo LPM concebido para predizer produção de ácido láctico;
 - o condições controladas e otimizadas.
- Produção de enterotoxinas → processo sujeito a interferências diversas. -Temperatura (t);
 - Concentração inicial (X₀);
 - o Disponibilidade de substrato;
 - Presença de micro-organismos concorrentes;
 - o Condições de armazenamento do alimento;
 - etc.

Portanto:

Modelo matemático capaz de descrever produção de enterotoxinas estafilocócicas deve conter maior número de parâmetros considerados.

Conclusão

Modelo LPM pode reproduzir produção de enterotoxinas com precisão → número relativamente razoável de pontos experimentais.

A possibilidade de reproduzir os resultados com modelos que envolvam a simulação do comportamento e produção de enterotoxinas pode ser alternativa promissora

Obrigado!