N.1a Collatz Conjectures

Lilleigh Stevie

March 18, 2019

Conjectures:

- 1. There are more even terms than odd terms.
- 2. For some $b \in \mathbb{Z}$, an initial term in the format of 2^b creates b number of even terms, excluding the last term, 1.
- 3. For some even integers, there exist an even and an odd integer that create the integer and therefore creates two sequences to the same even integer.

Proof of 1:

Proof. This will be a proof by cases. First, let $a_0 = 2k$ be an even integer for some $k \in \mathbb{Z}$. Then the next term is,

$$a_{1n} = \frac{a_0}{2}$$
$$= \frac{2k}{2}$$
$$= k$$

Thus, a_{1n} is either even or odd. Secondly, let $a_0 = 2m + 1$ be an odd integer for some $m \in \mathbb{Z}$. Then the next term is,

$$a_{2n} = 3(a_0) + 1$$

 $= 3(2m + 1) + 1$
 $= 6m + 4$
 $= 2(3m + 2)$
 $= 2f$ $f = 3m + 2$

Thus, a_{2n} is always even. Therefore, there are more even terms than odd terms.