MIDTERM EXAM TOTAL MARKS: 40

DURATION: 70 MINUTES

There are a total of five problems. You have to solve the first four. Problem 5 is optional.

Problem 1 (CO1): DFA and Regular Languages (10 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

$$L_1 = \{w : w = 1^m 0^n, \text{ where } m, n \ge 0\}$$

 $L_2 = \{w : 1 \text{ does not appear at any even position in } w\}$

$$L_3 = L_1 \cap L_2$$

Now solve the following problems.

- (a) Give the state diagram for a DFA that recognizes L_1 . (3 points)
- (b) Give the state diagram for a DFA that recognizes L_2 . (3 points)
- (c) If you were to use the "cross product" construction shown in class to obtain a DFA for the language L3, how many states would it have? (1 point)
- (d) Find all four-letter strings in L₃. (1 point)
- (e) Give the state diagram for a DFA that recognizes L₃ using only three states. (2 points)

Problem 2 (CO1): Regular Expressions (10 points)

Consider the following languages over $\Sigma = \{0, 1\}$.

 $L_1 = \{w : w \text{ does not contain } 00\}$

 $L_2 = \{w : \text{every 0 in } w \text{ is preceded by at least one 1} \}$

 $L_3 = \{w : \text{the number of times 0 appears in } w \text{ is even}\}$

Now solve the following problems.

- (a) **Give** a regular expression for the language L_1 . (2 points)
- (b) Your friend claims that $L_1 = L_2$. Prove him wrong by writing down a five-letter string in $L_1 \setminus L_2$. Recall that $L_1 \setminus L_2$ contains all strings that are in L_1 but not in L_2 . (2 points)
- (c) **Give** a regular expression for the language $L_1 \setminus L_2$. (2 points)
- (d) Give a regular expression for the language L_3 . (2 points)
- (e) Give a regular expression for the language L₂ \ L₃. (2 points)

Problem 3 (CO3): Converting Regular Expressions to NFAs (10 points)

Convert the following regular expression over $\Sigma = \{e, f, g, h\}$ into an equivalent NFA. Note that $R_1 + R_2$ is the same as $R_1 \cup R_2$.

$$(\mathtt{g}^* + \mathtt{h})^* + \mathtt{e}(\mathtt{f}^*\mathtt{g})^* + \mathtt{e}\mathtt{g}(\mathtt{f}^*\mathtt{g})^*$$

MIDTERM EXAM TOTAL MARKS: 40

DURATION: 70 MINUTES

Problem 4 (CO3): Converting Finite Automata to Regular Expressions (10 points)

Convert the following DFA into an equivalent regular expression using the state elimination method. First eliminate q_2 , then q_1 , and finally q_0 . You must show work.

Problem 5 (Bonus): Even-Odd Runs (5 points)

Disclaimer: This is a bonus problem. Attempt it only after you are done with everything else. Even if you do not attempt it, you can get a perfect score. So, do not worry if you find it too hard!

A run in a string is a maximal non-empty substring consisting entirely of the same letter. For example, the string 111001111011 consists of five runs: a run of three 1s, followed by a run of two 0s, a run of four 1s, a run of one 0, and a run of two 1s. Consider the following language over {0, 1}.

 $L = \{w : \text{every run of 0s in } w \text{ has odd length and every run of 1s in } w \text{ has even length} \}$

Give a six-state DFA that recognizes *L*.

After you are done with the test, please indicate where you stand on the smiley face spectrum.

