

Sichtbarkeit

COMPUTERGRAPHIK

Inhaltsverzeichnis

8 Sichtbarkeit

- 8.1 Problemstellung
- 8.2 Projektion
- 8.3 Strahlverfolgung
- 8.4 Raumteilung
- 8.5 Culling

8.1 PROBLEMSTELLUNG

- Sichtbarkeitsberechnung
 - Ihr Ziel ist die (möglichst) exakte Bestimmung der von einem gegebenen Blickpunkt aus sichtbaren bzw. unsichtbaren Teile der darzustellenden Szene
- Anforderungen
 - Wünschenswert ist hohe Interaktionsrate, so dass Eingaben des Benutzers sich direkt auf die Darstellung auswirken
 - In den meisten Fällen ist die Echtzeitausgabe der Szene nötig

- Einteilung der Verfahren:
 - Objektraumverfahren
 - prinzipiell geräteunabhängig
 - Rechengenauigkeit ist die Maschinengenauigkeit
 - Bildraumverfahren
 - geräteabhängig
 - Rechengenauigkeit ist die Auflösung des Ausgabegerätes

8.1 PROBLEMSTELLUNG

- Bestimmung der sichtbaren Objekte
 - Welches Objekt liegt dem Betrachter (Bildebene) am nächsten?
 - Notwendig für die korrekte Darstellung
 - Abhängig von der Darstellungsart

- Wireframe-Darstellung:
 - Darstellung der Begrenzungskanten von Flächen
 - Entfernung verdeckter Kanten (Hidden Line Removal, HLR)
- Flächendarstellung
 - Darstellung der Flächen
 - Hidden Surface Removal (HSR)
- Transparenzen müssen ggf. berücksichtigt werden

- Dreidimensionale Szene wird auf die Bildebene projiziert
 - Unterschiedliche Objektteile werden auf dieselbe Stelle abgebildet
 - -(x,y)-Koordinate in der Bildebene
 - Sichtbar sind diejenigen
 Objektpunkte, die dem Auge des Betrachters am nächsten gelegen sind
 - Tiefenrelation der Szene (z-Koordinate)

- Beschleunigung
 - Berechnung nicht sichtbarer Teile der Szene (Culling)
 - Nutzt Heuristiken
 - In der Regel keine exakte Lösung

Kohärenz: Ausnutzung lokaler Ähnlichkeiten

- Objektkohärenz: schneiden sich zwei Objekte nicht, so müssen auch ihre Flächen nicht auf Schnitt getestet werden
- Flächenkohärenz:
 Eigenschaften benachbarter
 Punkte auf einer Fläche ändern sich oft nur unwesentlich

- Tiefenkohärenz:
 Die Tiefe z an der Position (x, y)
 einer Fläche kann oft inkrementell berechnet werden
- Zeit-/Framekohärenz:
 Oft ändern sich nur wenige Anteile eines Frames

Wireframe-Darstellung

- Kanten der Flächen werden dargestellt
- Eigentlich verdeckte Kanten scheinen durch
- Hidden-Line-Removal:
 Entfernen verdeckter Kanten

Sichtbarkeit von Polygonen

- Projektion auf die Bildebene
- Zerlegung in Pixel
- Pixel werden im Framebuffer abgelegt
- Letztes gerastertes Polygon besetzt Pixelpositionen im Framebuffer

Sichtbarkeit von Polygonen

- Welches Polygon müsste gesehen werden?
 Das dem Beobachter am nächsten Gelegene!
- Klare Aussage, welches das nächste ist, ist nicht immer gegeben.

Sichtbarkeit von Polygonen

Sichtbarkeit: Sortierproblem

 Gleiches muss bei der Berechnung von Transparenz berücksichtigt werden

Painter's Algorithmus

- Idee: Male Polygone von hinten nach vorne
- Erfordert Tiefensortierung!
- Wenn Tiefenwerte (z-Wert) der Polygone sich überlappen, müssen Polygone geschnitten werden
 - $-n^2$ mögliche Teile!
 - Beginne mit dem (Teil-)Polygon mit größtem z-Wert

- Komplexität:
 - $O(n^2)$
 - n ist Anzahl der Dreiecke

Erste Verfahren

- Erste Lösung des Hidden-Line-Problems:
 Roberts, 1963:
 Objektraumverfahren für konvexe Objekte
- Appels Algorithmus (1967):
 Berechnet sichtbare
 Kanten/Konturen (NPR)

- Area Subdivision (divide-and conquer):
 Warnock, 1969: Ausnutzung von Flächenkohärenz durch Quadtrees
- Sample Spans:
 Watkins, 1970: Ausnutzung von Rasterzeilenkohärenz

Erste Verfahren

 Depth List:
 Newell et al., 1972:
 Prioritätslistenalgorithmus im Objektraum

 Weiler-Atherton-Algorithmus (1977):
 Sortiert Polygone n\u00e4herungsweise in der Tiefe

Divide and Conquer [Warnock 1969]

- Einfache Fälle
 - Naheste Fläche überdeckt gesamten Rasterbereich
 - Es gibt maximal eine Fläche im Rasterbereich
- Ansonsten rekursive Unterteilung bis nur noch einfache Fälle auftreten

- Aufwand:
 - $-O(n \cdot p)$
 - − p: Anzahl der Pixel
 - n: Anzahl der Polygone
- Ggf. muss Unterteilung bis auf Pixelebene durchgeführt werden
 - Fast immer bei n > p (große Szenen)
 - Entspricht dann dem Z-Buffer Algorithmus
 - aber mit Overhead

Divide and Conquer [Warnock 1969]

Scanline/Sample Span [Watkins 1970]

- Suche nach Kanten entlang der y-Scanline γ
- Sortiere Kanten nach Tiefenwerten
- Datenstruktur
 - Kantentabellen
 - Polygontabellen
 - ActiveEdge-Tabellen (AET)
- Aktualisierung der AET für jede neue Scanline γ

- Scanline γ in AET:
 - $-P_1$, P_2 Polygone

AC	AB	DE	FE
P_1 Ein	P ₁ Aus	P ₂ Ein	P ₂ Aus

Z-Buffer-Algorithmus

- [Straßer 1974, Catmull 1974]
- Bestimmt Sichtbarkeit von Pixeln (Bildraum)
- Geeignet für die Bildausgabe auf Rastergeräten
- Einfache Hardware-Unterstützung

- Arbeitsweise
 - Sucht für jeden Pixel bei Rasterung nach Polygon mit kleinstem (am weitesten vorne liegendem) z-Wert
 - Zusätzlicher Speicher
 - Z-Buffer
 - Depthbuffer
 - Speichere in jedem Pixel den bisher kleinsten aufgetretenen z-Wert

Z-Buffer-Algorithmus

- Initialisiere Framebuffer (Farbbuffer) mit Hintergrundfarbe
- Initialisiere Z-Buffer mit maximalem z-Wert
- Scan-Conversion aller Polygone in beliebiger Reihenfolge
 - Berechne z-Wert für jedes Pixel (x, y)
 im Polygon
 - $-z < z_{Buffer}$:
 - zeichne Polygonfarbe in Farbbuffer bei (x, y) ein
 - setze $z_{Buffer} = z$

- Am Ende enthält
 - der Farbbuffer das gewünschte Bild
 - der z-Buffer dessen Tiefenverteilung

Z-Buffer-Algorithmus

z-Werte codiert durch Zahlen:
 kleinere Zahl → näher am Auge

- Initialisiere Z-Buffer mit z-Wert m (ganz hinten)
- Addiere ein Polygon mit konstantem
 z-Wert 5

m	m	m	m	m	m	m	m
m	m	m	m	m	m	m	m
m	m	m	m	m	m	m	m
m	m	m	m	m	m	m	m
m	m	m	m	m	m	m	m
m	m	m	m	m	m	m	m
m	m	m	m	m	m	m	m
m	m	m	m	m	m	m	m

5	5	5	5	5	5	5	m
5	55	5	5	5	5	m	E
5	5	5	5	5	m	m	E
5	5	5	5	m	m	m	m
5	5	5	m	М	m	m	E
5	5	E	m	Е	m	m	E
5	m	m	m	m	m	m	E
m	m	m	m	m	m	m	m

Z-Buffer-Algorithmus

Addiere ein Polygon, welches das1. Polygon schneidet

Artefakte bei Pixeln mit gleichem
 z-Wert beider Polygone

5	5	5	5	5	5	5	m
5	5	5	5	5	5	m	m
5	5	5	5	5	m	m	m
5	5	5	5	m	m	m	m
5	5	5	m	m	m	m	m
5	5	m	m	m	m	m	m
5	m	m	m	m	m	m	m
m	m	m	m	m	m	m	m

5	5	5	5	5	5	5	E
5	5	5	5	5	5	Е	m
5	5	5	5	5	m	m	m
5	5	5	5	m	m	m	m
5	5	5	8	m	m	m	m
4	5	6	7	8	m	m	m
3	4	5	6	7	8	m	m
m	m	m	m	m	m	m	m

Z-Buffer-Algorithmus

- Zur Berechnung von z(x, y) für ebene Polygone (z.B. Dreiecke) entlang einer Scan-Line
 - Ebene: Ax + By + Cz + D = 0

$$-z(x,y) = -\frac{D + Ax + By}{C}$$

$$z(x + \Delta x, y) = -\frac{D + A(x + \Delta x) + By}{C}$$
$$= z(x, y) - \Delta x \cdot \frac{A}{C}$$

- Nur eine Subtraktion ist notwendig
 - $-\frac{A}{c}$ ist konstant
 - $-\Delta x = 1$

Z-Buffer-Algorithmus: Vorteile

- sehr einfache Implementierung des Algorithmus
- keine besondere Reihenfolge oder Sortierung notwendig
- keine Komplexitätsbeschränkung der Bildszene
- unabhängig von der
 Repräsentation der Objekte; es
 muss nur möglich sein, zu jedem
 Punkt der Oberfläche einen z-Wert
 zu bestimmen

- Auflösung des Z-Buffers bestimmt
 Diskretisierung der Bildtiefe
 - 20 Bit → 2²⁰ Tiefenwerte unterscheidbar

Z-Buffer-Algorithmus: Nachteile

- problematisch sind weit entfernte
 Objekte mit kleinen Details
 (perspektivische Transformation)
- Aufwändige Modifikationen notwendig für
 - Transparenz (Alpha-Buffering)
 - Antialiasing

UNIVERSITÄT LEIPZIG

- RayCasting
 - Sendet (to cast) Strahlen (ray)
 - vom Auge
 - durch alle Pixel der Bildebene
 - in den Objektraum
 - Polygon opak
 - addiere Farbwert hinzu
 - stopp
 - Polygon transparent
 - addiere Farbwert hinzu
 - stopp

- RayTracing
 - RayCasting
 - Farbwert
 - Wie RayCasting
 - Verfolge reflektierte Strahlen
 - Verfolge gebrochene Strahlen
 - globales Beleuchtungsmodell

- Berechne Schnittpunkte mit allen
 Objekten der Szene
- Objekt mit dem nächst gelegenem Schnittpunkt ist in diesem Pixel sichtbar

Schnitt des Strahls mit einer impliziten Kugel

- Strahl
 - − *e*: Augpunkt
 - -v: Sichtrichtung (Pixel -e)
 - t: Strahlparameter
 - $-r(t) = e + t \cdot v$
- Kugel

$$- \|x - m\|^2 - r^2 = 0$$

Schnitt des Strahls mit einer impliziten Kugel

- Einsetzen des Strahls r(t) für x liefert:

$$||e + t \cdot v - m||^2 - r^2 = 0$$

$$||t \cdot v + (e - m)||^2 - r^2 = 0$$

$$t^2 \cdot v \cdot v + 2 \cdot t \cdot v \cdot (e - m) + (e - m) \cdot (e - m) - r^2 = 0$$

$$(v \cdot v) \cdot t^2 + (2 \cdot v \cdot (e - m)) \cdot t + ((e - m) \cdot (e - m) - r^2) = 0$$

Schnitt des Strahls mit einer impliziten Kugel

Lösen der quadratischen
 Gleichung nach t liefert die
 Parameter von maximal 2
 Schnittpunkten

$$s_{1,2} = r(t_{1,2}) = e + t_{1,2} \cdot v$$

- Schnittpunkt mit kleinstem t>0 liegt dem Augpunkt am nächsten

Schnitt des Strahls mit einer Ebene

- Strahl
 - − *e*: Augpunkt
 - v: Sichtrichtung (Pixel e)
 - t: Strahlparameter
 - $-r(t) = e + t \cdot v$
- Ebene
 - − p: Punkt der Ebene
 - n: Normalenvektor nach außen
 - $-(x-p)\cdot n=0$

Schnitt des Strahls mit einer Ebene

- Einsetzen des Strahls r(t) für x liefert:

$$(e+t \cdot v - p) \cdot n = 0$$

$$t \cdot v \cdot n + (e-p) \cdot n = 0$$

$$t = \frac{(p-e) \cdot n}{v \cdot n}$$

Schnittpunkt

$$s = r(t) = e + t \cdot v$$

Schnitt des Strahls mit einer Ebene

- Beim Schneiden von Polygonen ist noch die Gültigkeit des Schnittpunktes zu verifizieren
- Dieser muss innerhalb des Polygons liegen

- Dreiecke
 - Bestimme Summe der Flächeninhalte der Teildreiecke
 - Ist diese Summe größer als der Flächeninhalt des ursprünglichen Dreiecks, so liegt der Punkt außerhalb
 - Achtung: Rundungsfehler!
 - Alternativ
 Bestimme die baryzentrischen
 Koordinaten des Dreiecks (a, b, c)

Baryzentrische Koordinaten

- Gegeben: Dreieck (A, B, C)
- Gesucht: Koordinaten von P
 bezüglich des Dreiecks (A, B, C)
- Ansatz:

$$P = \alpha \cdot A + \beta \cdot B + \gamma \cdot C$$

– Nebenbedingung:

$$\alpha + \beta + \gamma = 1$$

(Normalisierung)

Baryzentrische Koordinaten

$$-P = \alpha \cdot A + \beta \cdot B + \gamma \cdot C$$

– Folgerungen:

$$A = (1,0,0)$$
 $B = (0,1,0)$
 $C = (0,0,1)$

- $-\alpha = 0, \beta + \gamma = 1$: Kante B C
- $-\beta = 0$, $\alpha + \gamma = 1$: Kante A C
- $-\gamma = 0$, $\alpha + \beta = 1$: Kante A B
- $-0 \le \alpha, \beta, \gamma \le 1$: *P* liegt innerhalb
- Sonst: P liegt außerhalb

Baryzentrische Koordinaten

$$-P = \alpha \cdot A + \beta \cdot B + \gamma \cdot C$$

$$P = \alpha \cdot A + \beta \cdot B + \gamma \cdot C$$

$$= (1 - \beta - \gamma) \cdot A + \beta \cdot B + \gamma \cdot C$$

$$= A + \beta \cdot (B - A) + \gamma \cdot (C - A)$$

– Berechnung von (α, β, γ)

$$\alpha = \frac{\Delta(P, B, C)}{\Delta(A, B, C)}$$

$$\Delta(P,B,C) = \left((B-P) \times (C-P) \right) \circ \left(\frac{(B-A) \times (C-A)}{\|(B-A) \times (C-A)\|} \right)$$

Baryzentrische Koordinaten

 Effizientere Berechnung und Algorithmen: Christer Ericson.
 Real Time Collision Detection.
 Morgan Kaufman – Elsevier, 2005.

- Nachteile
 - 1 Strahl pro Pixel
 - Full HD: ca. 2 Millionen Strahlen
 - Schnitttests
 - jeder Strahl
 - jedes Objekt
 - Für typische Szenen:
 - bis zu 95% der Rechenzeit

- Beschleunigung
 - Vermeidung von unnötigen
 Schnitttests
 - Hierarchien von Bounding Volumes
 - Bounding Spheres
 - Bounding Boxes
 - Axis-Aligned Bounding Boxes
 - Raumteilung
 - Occlusion Culling

8.3 Strahlverfolgung

Hierarchien von Bounding Volumes

- Baumartige Strukturen von Bounding Volumes
 - Blätter: Objekte der Szene (Geometrie)
 - Innere Knoten: Bounding Volumes um die Objekte der Unterbäume
- Schneidet ein Strahl das Bounding Volume eines inneren Knotens nicht, so entfällt ein Test der untergeordneten Teilbäume

- Generierung guter Hierarchien ist schwierig
 - Geometrisch:
 Nach Szenenausdehnung unterteilen
 - Dichte:
 Nach Polygonschwerpunkten sortieren und unterteilen
 - Verwendung des Szenengraphen möglich

- Auch Space-Subdivision-Techniques genannt
- Der Objektraum wird in disjunkte
 Teilräume zerlegt
- Für jedes Objekt wird bestimmt, in welchen Teilräumen es sich befindet

- Standardverfahren
 - Unterteilung des Raumes durch ein festes, regelmäßiges Gitter in Zellen identischer Geometrie
 - 2D: Pixel (Picture Element)
 - Quadrate
 - 3D: Voxel (Volume Element)
 - Würfel

- Vorteile
 - Es ist sehr einfach zu bestimmen, welche Objekte (teilweise) in einem Voxel liegen
 - Ist das Voxel leer wird keine
 Schnittberechnung durchgeführt
 - Sonst: teste nur Objekte die in diesem Voxel liegen

- Nachteile
 - Auflösung von n Voxeln in jeder Dimension: n^3 Voxel
 - ⇒ günstigere Repräsentation durch Octrees

Quadtrees

- Erstes Auftreten: Ende der 1960er
 Jahren
- Octrees sind eine Erweiterung von Quadtrees
 - Ende 1970er, Anfang 1980er

- Unterteilung einer Ebene
- Erzeuge Quadrat, welches alle
 Objekte enthält (Wurzel)
- Rekursive Zerlegung
 - Enthält das Quadrat zu viele Objekte
 - Zerlege das Quadrat in vier Teile
 - Sortiere Objekte in Teilquadrate ein
 - Sonst → Stopp
- Jeder innere Knoten des Baumes besitzt genau vier Kinder

Quadtrees

- Unterteilung des Raumes, bis die Zellen maximal eine Objektreferenz enthalten
- Zugehörige Quadtree Datenstruktur, vier Generationen

Octrees

- Unterteilung des 3D-Raums analog dem Quadtree
- Erzeuge Würfel, der alle Objekte enthält (Wurzel)
- Rekursive Zerlegung
 - Enthält der Würfel zu viele Objekte
 - Zerlege den Würfel in acht Teile
 - Sortiere Objekte in Teilwürfel ein
 - Sonst → Stopp
- Jeder innere Knoten des Baumes besitzt genau acht Kinder

Octrees

43

n-ary trees

- Verallgemeinerung auf n Dimensionen
- Muss keine feste
 Unterteilungsstrategie
 repräsentieren

- Für den Fall n=1
 - kD-Tree
 - Elternknoten hat bis zu zwei Kinder
- Für den Fall n=2
 - Quadtree
- Für den Fall n=3
 - Octree

kD-Tree

- Unterteilung des Raumes, bis die Zellen maximal eine Objektreferenz enthalten
- zugehörige kD-Tree-Datenstruktur
 - acht Generationen

e = empty

r = rod

b = box

c = circle

Unterteilung einer 2D-Szene

Quadtree

kD-Tree

Binary Space-Partitioning Trees (BSP-Bäume)

- Octrees, Quadtrees und kD-Trees
 - Achsen-parallele Unterteilung
 - gleichzeitig oder abwechselnd

- BSP-Trees
 - Unterteilung durch beliebige
 (Hyper-)Ebene in zwei Unterräume

Binary Space-Partitioning Trees (BSP-Bäume)

- Können zur Unterteilung von Szenen verwendet werden
- Sind an kein Raster gebunden
- Über die relative Lage der Regionen zum Betrachter kann die Tiefenstaffelung der Objekte bestimmt werden
 - Welche Objekte können sichtbar sein?

- Eine ideale Wahl der Unterteilungsebene für BSP-Bäume liefert die PCA (Principal Component Analysis)
- Angenommen, eine komplexe Szene ist gegeben durch die Punktewolke $P_i \in \mathbb{R}^2$, (i = 1, ..., n) (z.B. Objektmittelpunkte oder Eckpunkte der Polygone)
- PCA liefert ein orthogonales Koordinatensystem e_1, e_2, e_3 dessen Ausrichtung der Punktwolke entspricht

Binary Space-Partitioning Trees (BSP-Bäume)

Wähle als Ursprung den Mittelwert
 Berechne

$$c = \frac{1}{n} \sum_{i=1}^{n} P_i$$

$$-B = \frac{1}{n-1} A^{T} A$$

$$-b_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} a_{ki} a_{kj}$$

Konstruiere Matrix der Punktwolke

$$A = \begin{pmatrix} P_{1,x} - c_x & P_{1,y} - c_y & P_{1,z} - c_z \\ P_{2,x} - c_x & P_{2,y} - c_y & P_{2,z} - c_z \\ \vdots & \vdots & \vdots \\ P_{n,x} - c_x & P_{n,y} - c_y & P_{n,z} - c_z \end{pmatrix} \qquad \begin{array}{c} -B \text{ hat} \\ -Reelle Eigenwerte } \lambda_1, \lambda_2 \\ -Reelle Eigenwerte } \lambda_2, \lambda_3 \\ -Reelle Eigenwerte } \lambda_3, \lambda_4 \\ -Reelle Eigenwerte } \lambda_4, \lambda_5 \\ -Reelle Eigenwerte } \lambda_1, \lambda_2 \\ -Reelle Eigenwerte } \lambda_2, \lambda_3 \\ -Reelle Eigenwerte } \lambda_3, \lambda_4 \\ -Reelle Eigenwerte } \lambda_4, \lambda_5 \\ -Reelle Eigenwerte } \lambda_5, \lambda_5 \\ -Reelle Eigenwerte \\ -Reelle Eigenwerte } \lambda_5, \lambda_5 \\ -Reelle Eigenwerte \\ -R$$

-B hat

- Reelle Eigenwerte $\lambda_1, \lambda_2, \lambda_3$

$$-\lambda_i \cdot e_i = B \cdot e_i$$

Binary Space-Partitioning Trees (BSP-Bäume)

- Die Eigenvektoren bilden zusammen mit dem Ursprung c das gesuchte System
- Die Ausdehnung der Punktwolke in Richtung e_i ist proportional zu $\sqrt{\lambda_i}$

Ray-Casting

- Für das Raycasting wird der Raum zunächst unterteilt
- Dann werden die Objekte in die Teilräume einsortiert

Ray-Casting

- Der Strahl läuft zum ersten Teilraum
- Ist der Teilraum leer
 - keine Schnittberechnung notwendig
- Enthält der Teilraum Objekte
 - Schnitttest mit allen enthaltenen
 Objekten
 - Schnitt
 - Fertig
 - Kein Schnitt
 - Betrachte nächsten Teilraum in Richtung der Strahls

- Culling: Entfernung nicht sichtbarer
 Objekte
- Große Szenen: Anzahl sichtbarer
 Objekte « Anzahl aller Objekte
- Zielsetzung
 - Zeitersparnis bei der Schnittpunktberechnung
 - Entfernung offensichtlich nicht sichtbarer Objekte
- Test muss erheblich "billiger" sein als Test der Sichtbarkeit

Arten

- Backfrace-Culling
 Normale zeigt nach hinten
 (wir sehen die Rückseite)
- View-Frustum-Culling
 Das Objekt liegt außerhalb des Blickfeldes
- Occlusion-Culling
 Das Objekt liegt hinter einem anderem Objekt

Backface-Culling

- Rückseiten von undurchsichtigen
 Objekten nicht sichtbar
 - Orientierung über Normalen kodiert: konsistente Berechnung wichtig
 - Bei Inkonsistenzen: Löcher in Objekten
- Wird von OpenGL unterstützt
- Sehr einfache Operation

- Klassifikation der Rückseiten
 - Normalenvektoren N_i aller Flächen
 - Normalenvektor N_i zeigt in Blickrichtung: Rückseite
 - Berechne Skalarprodukt aus Blickrichtungsvektor p und Normale N_i : $p \cdot N_i > 0$

Backface-Culling: Eigenschaften

- Anzahl der Objektpolygone wird durch Entfernen der Rückseiten durchschnittlich um etwa die Hälfte reduziert
- Aufwand zur Berechnung des Skalarprodukts sehr gering
- Besteht die Szene nur aus einem einzelnen konvexenPolyeder, so löst Backface-Culling bereits das Sichtbarkeitsproblem!

- Bei konkaven Polyedern oder Szenen, an denen mehrere Objekte beteiligt sind, kann es zu Selbst- und/oder Fremdverdeckung kommen
 - Hier werden aufwändigere Verfahren benötigt

View-Frustum-Culling

- Blickfeldtest
- Liegt Objekt (Bounding Volume) im Sichtvolumen (View Frustum)?

View-Frustum-Culling

- Berechnung
 - Schneide Bounding Volume mit dem View-Frustum
 - Einfach nach perspektivischer Transformation (Einheitswürfel)
 - Sonderfall: Bounding Volume umfasst View-Frustum
 - Hierarchischer oder linearer Test

Occlusion-Culling

– Ist Geometrie von Geometrie verdeckt?

UNIVERSITÄT Computergraphik 59

Occlusion-Culling

Gelbe/rote Bounding
 Volumes sind verdeckt

Occlusion-Culling

 Gelbe Bounding Volumes sind verdeckt

UNIVERSITÄT Computergraphik 61

- Verdeckungstest
 - Wie wird Verdeckung erkannt?
 - Wo ändert sich etwas, wenn man das Objekt darstellen würde
- Objektraum und Bildraumverfahren
 - Hierarchical Z-Buffer (Greene 1993)
 - Hierarchical Occlusion Maps (Zhang 1997)
 - Virtual Occlusion Buffer (Bartz 1999)

- Objekte von vorne nach hinten verarbeiten (Tiefensortierung)
- Verwende Bounding Volumes
 - Wenn die Hülle nicht sichtbar ist, dann auch nicht die in ihr eingeschlossene Geometrie

- Konservativ
 - Nicht exakt, aber immer auf der sicheren Seite
 - Objekte, die auf jeden Fall nicht sichtbar sind
 - Sonst darstellen
- Quantitativ/Approximativ
 - Nicht konservativ
 - Wenn nur ein geringer Anteil sichtbar ist, als verdeckt behandeln

- Hierarchische Organisation
 - AABB-Hierarchie
 - Kathedrale

- Innere Knoten
- **▲** Geometrieblätter

Occlusion-Culling

UNIVERSITÄT LEIPZIG Computergraphik 65

Occlusion-Culling

Hierarchisches Culling testet Baum beginnend an der Wurzel

Nicht sichtbar: entferne Knoten

Sichtbar: stelle Objekte im Teilbaum dar

- Unentschieden: teste Kindknoten

Occlusion-Culling

Optimiere Hüllvolumen: Reduziere Falsch-Positive [Bartz 2001]

Occlusion-Culling

Optimiere Hüllvolumen: Reduziere Falsch-Positive [Bartz 2001]

UNIVERSITÄT LEIPZIG Computergraphik 68

- Verdeckung in Stadtszenen
- Häuser haben feste
 Zimmer und Öffnungen:
 Cells and Portals
- Sichtbarkeit durch
 Portale bestimmt: PVS

- Zellen und Portale
 - [Teller 1992, Luebke 1995]
 - Berechne Nachbarschaftsgraph zwischen Zellen (durch Portale)
 - Zelle ist nur dann sichtbar, wenn sie durch (eine Folge von) Portale(n) sichtbar ist: Sichtlinie

- Zellen und Portale
 - Speichere für jede Zelle alle möglicherweise sichtbaren Zellen
 - Potentially Visible Sets (PVS)
 - Sichtbarkeit für alle Standpunkte:
 AbstractGraph

- Für allgemeines OC sind
 Softwareverfahren zu teuer
 - 1998: Einführung HP OpenGL
 Extension Occlusion-Flag (fx4)
 - 2001: NVIDIA OpenGL Extension Occlusion-Query (NV 20)
 - 2003: Occlusion-Queries in OpenGL 1.5

- Hardware-Tests
 - Occlusion-Flag:
 Binäre Antwort, ob etwas sichtbar wird
 - Occlusion-Queries:
 Quantitative Antwort, wieviel sichtbar wird

- Stop-and-Wait-Paradigma
 - Pro Frame, pro Objekt:
 - Teste Bounding Volume
 - Warte Occlusion-Antwort ab
 - Wenn sichtbar, zeichne assoziierte Geometrie
 - Sonst: entferne Objekt (culling)
 - Warten (Pipeline-Flush) führt zu Pipeline-Stall

- Multiple Queries
 - Gebündelte Queries
 - Wartet nicht auf Zwischenergebnisse
 - Kein Pipeline-Stall
 - Nutzt aber auch keine
 Zwischenergebnisse aus
 - Gesparte Stalls viel billiger als zu viel gerenderte Geometrie
 - **-** 1/10, 1/20
 - Also: Vorsortierung in gegenseitig unabhängige Objekte (sich nicht gegenseitig verdeckend)

- Vorsortierung in gegenseitig unabhängige Objekte
 - OccupancyMap Hierarchie [Staneker 2003]
 - Nutze Kohärenz
 - Reduziere Falsch-Positive
 - Günstiger Vorab-Overlap-Test
 - Spart auch redundante
 Occlusion-Queries

Occlusion-Culling

- Vorsortierung in gegenseitig unabhängige Objekte
 - Nutze mehrere OccupancyMaps (OM)

UNIVERSITÄT LEIPZIG Computergraphik 75

Occlusion-Culling

Überlappfreie Vorsortierung

UNIVERSITÄT LEIPZIG Computergraphik 76

Occlusion-Culling

Überlappfreie Vorsortierung

Occupancy Map für Gesamtfenster

Occupancy Map für 1. Mehrfachabfrage

Occupancy Map für 2. Mehrfachabfrage

Occupancy Map für 3. Mehrfachabfrage

Occupancy Map für 4. Mehrfachabfrage

UNIVERSITÄT LEIPZIG Computergraphik

Quellen

- Computergraphik, Universität Leipzig (Prof. D. Bartz)
- Graphische Datenverarbeitung I, Universität Tübingen (Prof. W. Straßer)
- Graphische Datenverarbeitung I, TU Darmstadt (Prof. M. Alexa)

78