PID studies with proto-TORCH testbeam update TORCH meeting

Martin Tat

University of Oxford

18th July 2022

Introduction

- What I presented last time:
 - Study of likelihood calculation with particle gun simulations
 - Initial studies of reconstruction and PID separation power in proto-TORCH testbeam data
 - Need a better understanding of discrepancies between simulation and data
- Today's presentation: Quick progress update
- Long term goal:
 - Prepare for PID study of next testbeam data

Beam position

Have only studied position 1 so far

Simulated hit maps

Figure 1: Track incident on top right corner (position 1)

For now I will only study MCP-B

Likelihood calculation

• Probability of photon hit with energy E_{γ} , azimuthal angle ϕ_c , time t_0 :

$$P(E_{\gamma}, \phi_c, z, t_0) = P(\phi_c)P(z)P(t_0)P(E_{\gamma})\Theta(E_{\gamma}, \phi_c, z)$$

$$= \frac{1}{2\pi} \frac{1}{r_z} P(E_{\gamma})P(t_0)\Theta(E_{\gamma}, \phi_c, z)$$

• Transform to detector coordinates (x_d, y_d) :

$$P(x_d, y_d, t_d) = P(E_{\gamma}, \phi_c, t_0)/|J|, \quad |J| = \left| \frac{\partial y_d}{\partial E_{\gamma}} \frac{\partial x_d}{\partial \phi_c} - \frac{\partial x_d}{\partial E_{\gamma}} \frac{\partial y_d}{\partial \phi_c} \right|$$

- $P(t_0)$: Gaussian PDF with $\sim 70 \, \mathrm{ps}$ time resolution
- $P(E_{\gamma})$: Frank-Tamm formula
- PID algorithm described in LHCb-PUB-2022-007

PID efficiency simulation

Figure 2: PID efficiency

Likelihood in proto-TORCH testbeam data

Figure 3: ΔLL of testbeam data

Results "out of the box" at 8 GeV: Pion efficiency: 78.6% Proton efficiency: 66.9%

Why was the proton PID performance much worse?

- Main issue: Calibration between MCP columns
 - Solution: Need to time align each MCP column in data with simulation
- Additionally: Need to account for travel time difference from TORCH to T2
- After accounting for these effects, the proton PID efficiency improved:
 - Pion efficiency: 82.7%
 - Proton efficiency: 79.0%

Why is the performance in simulation so good?

- A few small effects that should be accounted for:
 - Time resolution is simulation is too good (55 ps)
 - Each MCP column can have a different time resolution
 - Solution: Convolve time distribution from simulation with Gaussian and fit to testbeam data
- A very large effect that must be accounted for:
 - Backscattering results in a very large tail in the testbeam time distribution
 - Strategy: Convolve time distribution with a Crystal Ball instead of Gaussian

Why is the performance in simulation so good?

- In summary:
 - Separate all MCP columns in data and simulation
 - Convolve time distribution in simulation with Crystal Ball
 - Fit each MCP column in data separately
 - Use Crystal Ball position for time calibration, width for resolution effects and tails for backscattering effects

PID efficiency simulation

Figure 4: PID efficiency

PID efficiency in testbeam

Figure 5: Pion-proton PID efficiency

Sample	Testbeam data	Simulation	Without backscattering
Pion sample	82.7%	85.5%	99.0%
Proton sample	79.0%	84.6%	98.7%

Likelihod distributions in testbeam and simulation

Figure 6: Likelihood distributions

Not perfect agreement, but much better now

Summary

- Discrepancies between PID efficiencies in data and simulation previously
- Two main effects:
 - 1 Time calibration of individual MCP columns
 - Backscattering results in large tail in time distribution
- Smear simulation with Crystal Ball shape
- Agreement much better now!

Thank you for listening!