Métodos de Analítica II Support Vector Machines

Juan Eduardo Coba Puerto

Pontificia Universidad Javeriana

Section 1

Fronteras de Decisión

2 La vida real...

3 Kernels Comunes

Fronteras de Decisión

Separación Máxima

Section 2

Fronteras de Decisión

2 La vida real...

3 Kernels Comunes

Datos No Separables

Figure: No todos los datos son linealmente separables.

Figure: No todos los datos son linealmente separables.

Figure: No todos los datos son linealmente separables.

¡Ahora son separables!

Figure: Volvimos nuestros datos linealmente separables en una dimensión más alta

¡Ahora son separables!

Figure: Volvimos nuestros datos linealmente separables en una dimensión más alta

Section 3

1 Fronteras de Decisión

2 La vida real...

Kernels Comunes

Kernel Gaussiano - RBF

$$\kappa(X, X') = e^{-gamma||X - X'||^2}$$

$$\kappa(X, X') = e^{-\frac{||X - X'||^2}{2\sigma^2}}$$

Kernel Sigmoide

$$\kappa(X, X') = \tanh(\gamma < X, X' > +)$$

Kernel Polinomial

$$\kappa_d(X, X') = (1 + \langle X, X' \rangle)^d$$

Figure: d = 2

Kernel Polinomial

$$\kappa_d(X, X') = (1 + \langle X, X' \rangle)^d$$

Figure: d = 3