

Research Article

Molecular phylogeny and morphology reveal four novel species in Cordycipitaceae in China

Jing Bu^{1,2,3}, De-Ping Wei^{2,3}, Zheng-Hui Liu^{1,2,3}, Yang Yang⁴, Zhong-Liang Liu^{1,2,3}, Ji-Chuan Kang^{1,2,3}, Xing-Can Peng^{2,3,5,6}, Shi-Wen Xie^{1,2,3}, He-Gui Zhang⁴, Zhang-Jiang He^{1,2,3}, Shi-Ke Huang^{2,3,7}, Xian Zhang^{2,3,5,6}, Kevin D. Hyde^{3,5,6}, Nalin N. Wijayawardene⁸, Ting-Chi Wen^{1,2,3}

- 1 School of Pharmacy, Guizhou University, Guiyang 550025, Guizhou Province, China
- 2 State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- 3 Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- 4 Guizhou Guiwang Biotechnology Co., Ltd, Daozhen 563599, Guizhou Province, China
- 5 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- 6 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- 7 College of Resources and Environment, Zunyi Normal University, Zunyi 563000, Guizhou Province, China
- 8 Center for Yunnan Plateau Biological Resources Protection and Uilization, College of Biology and Food Engineering, Qujing Normal University, Qujing, 655011, Yunnan Province, China

Corresponding author: Ting-Chi Wen (tingchiwen@yahoo.com)

Abstract

Cordycipitaceae is a well-known family in Hypocreales, comprising numerous arthropod-pathogenic species. Many taxa in this family have been identified and described through integrated morphological and molecular analyses. In this study, phylogenetic analyses using nrLSU, ITS, nrSSU, 3P_TEF, rpb1, and rpb2 revealed a new species, Pleurodesmospora sanduensis, and a new collection of Akanthomyces baishanensis. Additionally, a concatenated 5P_TEF+3P_TEF+rpb1+MCM7 dataset was employed to clarify interspecific relationships within Samsoniella, identifying three new species: Samsoniella lurida, S. subasiatica, and S. torquatistipitata. Detailed morphological descriptions and illustrations are provided for each studied species.

Key words: Entomopathogenic fungi, four new species, morphology, phylogeny

OPEN ACCESS

Academic editor: Rajesh Jeewon Received: 17 January 2025 Accepted: 13 March 2025 Published: 9 April 2025

Citation: Bu J, Wei D-P, Liu Z-H, Yang Y, Liu Z-L, Kang J-C, Peng X-C, Xie S-W, Zhang H-G, He Z-J, Huang S-K, Zhang X, Hyde KD, Wijayawardene NN, Wen T-C (2025) Molecular phylogeny and morphology reveal four novel species in Cordycipitaceae in China. MycoKeys 116: 91–124. https://doi.org/10.3897/mycokeys.116.147006

Copyright: © Jing Bu et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International – CC BY 4.0).

Introduction

Cordycipitaceae belongs to Hypocreales (Hypocreomycetidae, Sordariomycetes), and currently it includes 38 genera. Their phylogenetic relationships have been confirmed through molecular and morphological studies (Sung et al. 2001, 2007; Zare and Gams 2016; Kepler et al. 2017; Zhang et al. 2017, 2021; Mongkolsamrit et al. 2018, 2020, 2021, 2022, 2023; Flakus et al. 2019; Wei et al. 2019; Thanakitpipattana et al. 2020, 2022; Wang et al. 2020; Chen et al. 2021a, 2025; Alves et al. 2022; Araújo et al. 2022; Crous et al. 2023a; Guerra-Mateo et al. 2023; Kobmoo et al. 2023; Custódio and Pereira 2024; Hyde et al. 2024; Khonsanit et al. 2024). Most Cordycipitaceae species are known as pathogens of insects and

spiders, while others are reported as hyperparasites on fungi and lichens or are isolated from soil, dung, air, and plant materials (Kepler et al. 2017; Wang et al. 2020; Wei et al. 2022). To adapt to the diverse hosts and habitats, members of Cordycipitaceae have evolved with a wide variety of teleomorphic and anamorphic characteristics (e.g., Akanthomyces, Samsoniella, and Pleurodesmospora).

The genus *Akanthomyces* was introduced by Lebert (1858), typifying with *A. aculeatus* (Mains 1950), and currently 60 epithets are listed in Index Fungorum (http://www.indexfungorum.org/, retrieval on 18 March 2025). Species of *Akanthomyces* are characterised by forming superficial, yellow perithecia on mycelial mat covering spider hosts and the filiform, intact ascospores (Boudier 1885; Mongkolsamrit et al. 2018). Later, the morphological diversity of *Akanthomyces* was broadened to include species with isaria-like and lecanicillium-like anamorphs based on phylogenetic evidence (Mongkolsamrit et al. 2018; Vinit et al. 2018; Chen et al. 2020a, b, 2022). The members of the genus have been reported as insect parasites, plant pathogens, fungicolous organisms, and inhabitants of peat, water, and rust (Wang et al. 2024b). Khonsanit et al. (2024) introduced four genera (i.e., *Arachnidicola*, *Lecanicillium*, *Akanthomyces*, and *Kanoksria*) to accommodate *Akanthomyces* species that are not congeneric with *Akanthomyces sensu stricto*.

Samsoniella was established by Mongkolsamrit et al. (2018) to accommodate *S. alboaurantium*, *S. aurantia*, and *S. inthanonensis* using both morphological and molecular evidence. *Samsoniella* is characterised by having yellow to orange, fleshy stromata and superficial perithecia and intact ascospores (Mongkolsamrit et al. 2018). Previous researchers have discovered 39 species that are mainly distributed in Asian countries such as China, Thailand, and Vietnam (Wang et al. 2024a). All *Samsoniella* species have been verified with molecular data, and a combination of six genes (ITS-nrSSU-nrLSU-rpb1-rpb2-3P_TEF) usually was used to study the interspecific relationship (Mongkolsamrit et al. 2018; Wang et al. 2023a, 2024a). However, the taxonomic classification of this genus is considered to be complex due to morphological plasticity, and there is a need to search for new genetic markers with higher resolution (Wang et al. 2023a).

The genus *Pleurodesmospora* was established based on *Pleurodesmospo*ra coccorum, which is featured with rostella-like phialidic conidiogenous pegs pasted in erect or procumbent conidiophores (Samson and Gams 1980). Pleurodesmospora species are morphologically indistinguishable, emphasising the importance of molecular analysis. Based on DNA phylogeny, Chen et al. (2021a) reported that Pleurodesmospora belongs to Cordycipitaceae and demonstrated that the concatenated ITS-3P_TEF or ITS-rpb1-rpb2-3P_TEF datasets were reliable in studying the interspecific relationships of this genus (Chen et al. 2021a; Yeh et al. 2021). Members of Pleurodesmospora are known to infect various arthropods, including Araneidae, mites, leafhoppers, and whiteflies (Samson and Gams 1980; Yeh et al. 2021). To date, only five species of this genus have been described: Pleurodesmospora coccorum, P. acaricola, P. lemaireae, P. lepidopterorum, and P. entomophila (Samson and Gams 1980; Chen et al. 2021a; Yeh et al. 2021; Tan and Shivas 2023, 2024). Pleurodesmospora acaricola, P. coccorum, and P. lepidopterorum (Chen et al. 2021a; Yeh et al. 2021) were reported from China, and P. lemaireae and P. entomophila were found in Australia (Tan and Shivas 2023, 2024).

During the surveys of entomopathogenic fungi in Guizhou, Liaoning, and Yunnan Provinces, we have collected seven insect specimens (including six Lepidoptera and one Hymenoptera) that were infected by fungi. Based on morphology, five specimens were determined as isaria-like species, one as pleurodesmospora-like, and another one as akanthomyces-like. Further morphology studies herein and molecular phylogenetic analyses revealed four novel species belonging to *Pleurodesmospora* and *Samsoniella* and one known species of *Akanthomyces*. New findings not only enrich the species diversity of these genera but also deepen our understanding of their morphology and ecology.

Materials and methods

Sample collection and isolation

A survey was conducted to collect dead insect specimens with fungal infections from Guizhou, Liaoning, and Yunnan provinces (China) from July to November 2023. The specimens were collected from the lower and upper surfaces of living leaves and leaf litter on the ground in evergreen and deciduous forests with less sunlight. The fresh specimens were documented and photographed in the fields using a camera on a mobile phone. Collected specimens were placed in plastic boxes and transported to the laboratory for further examination.

To prevent contamination of fresh specimens by opportunistic fungi in the humid plastic box, fungus isolation was performed on the same day as it was collected. The fresh fruiting bodies were examined using a stereomicroscope (Olympus SZX16). A small mass of conidia on the synnemata or sclerotium inside the insect host bodies was transferred to axenic potato dextrose agar (PDA) plates using a sterile needle. The cultures were incubated at room temperature until the colonies' size attained 2–3 cm. The pure colonies were chopped into tiny bits and stored in sterile water in a centrifuge tube and then submitted to the Kunming Institute of Botany Culture Collection (KUNCC). The fresh specimens were dried with allochroic silica gel and deposited in the Herbarium of Cryptogamic Kunming Institute of Botany Academia Sinica (HKAS), Chinese Academy of Sciences, Kunming, China.

Morphological studies

The macro-characteristics of the fresh specimens, such as hosts, colour and shape of stroma, and the orientation of perithecia, were recorded and measured using a stereomicroscope (Leica S9E). Micro-morphological characteristics, such as perithecia, asci, ascospores, phialides, and conidia, were removed from the stromata or synnemata and mounted on a glass slide with water, lactic acid cotton blue or congo red solution. A Nikon compound microscope (Nikon ECLIPSE Ni) was used to photograph the above-mentioned microstructures. The axenic PDA plates isolated from fresh specimens were cultured at room temperature for 10–14 days, and the colony characteristics (e.g., size, shape, texture and colour) were recorded. Details of the asexual morphological characteristics from cultures were also documented with a Nikon compound microscope (Nikon ECLIPSE Ni).

DNA extraction and polymerase chain reaction (PCR) amplification

Total genomic DNA was extracted from axenic living cultures and dry specimens using the DNA extraction kit (Omega Fungus Genomic DNA Extraction Kit, China), following the instructions of the manufacturer. Ten loci, including the internal transcribed spacers 1 and 2 along with the 5.8S rDNA (ITS), partial region of the nuclear ribosomal small subunit (nrSSU) and large subunit (nrLSU), and the largest and second-largest subunits of RNA polymerase II (rpb1 and rpb2), were amplified. Several extra gene regions, including the partial region of the 3' and the 5' end of the translation elongation factor 1-alpha gene (3P_TEF and 5P_*TEF*), the replication licensing factor 7 (*MCM7*) gene, the actin beta 1 (*ACT*) gene and the beta-tubulin (TUB) gene, were amplified for Samsoniella species (Table 2). The primer pairs used for amplification were ITS 5 and ITS 4 for ITS (White et al. 1990), NS1 and NS4 for nrSSU (White et al. 1990), LROR and LR5 for nrLSU (Vilgalys and Hester 1990), 983F and 2218R for 3P_TEF (Rehner and Buckley 2005), EF1T and EF2T for 5P_TEF (Rehner and Buckley 2005; Bischoff et al. 2006), CRPB1A and RPB1Cr for rpb1 (Castlebury et al. 2004), fRPB2-5f and fRPB2-7cR for rpb2 (Castlebury et al. 2004), Mcm7-709 and Mcm7-1348rev for MCM7 (Schmitt et al. 2009), Act-1 and Act-4R for ACT (Voigt and Wöstemeyer 2000), Bt2a and Bt1b for TUB (Glass and Donaldson 1995). All of the PCR was performed in a 25 µl reaction mixture consisting of 12.5 µl of the mixture, 7.5 µl of double distilled water, 1 µl of each primer, and 3 µl of DNA template, using a T100 Thermal Cycler (Bio-Rad). The PCR program for these six loci (nrLSU, ITS, nrSSU, 3P_TEF, rpb1, and rpb2) was outlined in Wei et al. (2021), while the PCR procedures for the 5P_TEF and MCM7 genes were respectively given by Bischoff et al. (2006) and Schmitt et al. (2009). The PCR protocols for the ACT and TUB were respectively referenced from Voigt et al. (1999) and Glass and Donaldson (1995). The PCR products were purified and sequenced at Sangon Biotech Company (Shanghai, China) with the above-mentioned primers. The newly generated sequences were submitted to GenBank for assignment of accession number.

Sequence alignment and phylogenetic analyses

The quality of the sequence chromatogram generated in this study was examined using BioEdit (Hall et al. 2011). The forward and reverse sequences were assembled using Seqman (Clewley 1995) and verified with those sequence data available in GenBank through the BLAST tool. Taxa used for phylogenetic analyses of Cordycipitaceae were selected following related articles (Chen et al. 2020c; Wang et al. 2020, 2024b) and BLAST research results of the newly generated sequences (Table 1).

In order to investigate the interspecific relationship among *Samsoniella*, a separated phylogenetic analysis based on combined four-gene (5P_*TEF*+3P_ *TEF*+*rpb1*+*MCM7*) was performed with a larger taxa sampling from this genus (Table 2). The four loci were independently aligned with reference sequences using MAFFT v.7 (http://mafft.cbrc.jp/alignment/server/). The alignments of each locus were improved using Trimal v.1.2 (Capella-Gutiérrez et al. 2009) and were concatenated using Sequence Matrix v. 1.7.8 (Vaidya et al. 2011). The final combined dataset was converted to a NEXUS file for Bayesian inference analysis and a FASTA file for maximum likelihood analysis using Aliview (Larsson 2014).

Table 1. GenBank accession numbers of the taxa used in this study.

Species	strain	nrLSU	ITS	nrSSU	3P_TEF	rpb1	rpb2	References
Akanthomyces aculeatus	HUA186145 [™]	MF416520			MF416465			Kepler et al. 2017
A. aculeatus	HUA 772	KC519370	KC519371	KC519368	KC519366			Kepler et al. 2017
A. australiensis	BRIP 72630a	OR527524	OR527516	OR512197	OR514840		OR514848	Kepler et al. 2017
A. baishanensis	CGMCC3.25673 ^T	PP179404			PP464678	PP464641	PP464655	Pu et al. 2025
A. baishanensis	CGMCC3.25674	PP179405			PP464679	PP464642	PP464656	Pu et al. 2025
A. baishanensis	HKAS144393	PQ492341	PQ492702	PQ492709	PQ499067	PQ499073	PQ499080	This study
A. bannaensis	CLZhao 34016 [™]	PP571897	PP571895				PP588774	Zhang et al. 2024
A. buriramensis	BCC 45158	ON008543			ON013546	ON013561		Khonsanit et al. 2024
A. buriramensis	BCC 47939 [™]	ON008545			ON013548	ON013563		Khonsanit et al. 2024
A. fusiformis	BCC 40756 [™]	ON008549			ON013552	ON013567	ON013576	Khonsanit et al. 2024
A. laosensis	YFCC 1910942	OQ509511	OQ509524		OQ506287	OQ511536	OQ511550	Wang et al. 2024b
A. laosensis	YFCC 1910941 [™]	OQ509510	OQ509523		OQ506286	OQ511535	OQ511549	Wang et al. 2024b
A. niveus	BCC 79887 [™]	ON008551			ON013554		ON013578	Khonsanit et al. 2024
A. niveus	BCC 40747	ON008550			ON013553	ON013568	ON013577	Khonsanit et al. 2024
A. noctuidarum	BBH 16595	MT356085	MT356073		MT477979	MT477995	MT478005	Aini et al. 2020
A. noctuidarum	BCC 47498	MT356086	MT356074		MT477980	MT477996	MT477988	Aini et al. 2020
A. noctuidarum	BCC 28571	MT356087	MT356075		MT477981	MT478009	MT478006	Aini et al. 2020
A. noctuidarum	BCC 36265 [™]	MT356084	MT356072		MT477978	MT477994	MT477987	Aini et al. 2020
A. phariformis	BCC 45148 [™]	ON008556			ON013559		ON013583	Khonsanit et al. 2024
A. pseudonoctuidarum	YFCC 1808943 [™]	OQ509512	OQ509525		OQ506288	OQ511537	OQ511551	Khonsanit et al. 2024
A. pseudonoctuidarum	YFCC 1808944	OQ509513	OQ509526		OQ506289	OQ511538	OQ511552	Khonsanit et al. 2024
A. pyralidarum	BCC 32191	MT356092	MT356081		MT477983	MT478001	MT477989	Aini et al. 2020
A. pyralidarum	BCC 40869	MT356093	MT356082		MT477984	MT478002	MT477990	Aini et al. 2020
A. pyralidarum	BCC 28816 [™]	MT356091	MT356080		MT477982	MT478000	MT478007	Aini et al. 2020
Akanthomyces sp.	BCC 76537	ON008557	ON006550		ON013560		ON013584	Aini et al. 2020
A. taiwanicus	NTUPPMCC 20-060	MT974356	MT974202		MW200213	MW200221	MW200230	Chuang et al. 2024
A. tortricidarum	BCC 28583	MT356090	MT356079		MT477986	MT477999	MT477993	Aini et al. 2020
A. tortricidarum	BCC 41868	MT356089	MT356077		MT477985	MT477998	MT478008	Aini et al. 2020
A. tortricidarum	BCC 72638 ^T	MT356088	MT356076		MT478004	MT477997	MT477992	Aini et al. 2020
A. tuberculatus	BCC 16819	GQ249987	GQ250012	GQ249962	GQ250037			Kepler et al. 2017
A. xixiuensis	XX21081764 ^T	OP693480	OP693460	OP693478	OP838887	OP838889	OP838891	Liu et al. 2024
A. xixiuensis	HKAS125851	OP693481	OP693461	OP693479	OP838888	OP838890	OP838892	Liu et al. 2024
Arachnidicola araneicola	GY 29011		MK942435			MK955945	MK955948	Chen et al. 2019
Ara. araneogenus	GZUIF DX1		KU893152			MH978181	MH978184	Chen et al. 2018
Ara. bashanensis	CQ 05621 [⊤]	OQ300420	OQ300412		OQ325024		OQ349684	Chen et al. 2023a
Ara. bashanensis	CQ 05622	OQ300421	OQ300411		OQ325025		OQ349685	Chen et al. 2023a
Ara. beibeiensis	CQ 05921 [⊤]	OQ300424	OQ300415		OQ325028		OQ349688	Chen et al. 2023a
Ara. beibeiensis	CQ 05922	OQ300427	OQ300416		OQ325029		OQ349689	Chen et al. 2023a
Ara. coccidioperitheciatus	NHJ 6709	EU369042	JN049865	EU369110	EU369025	EU369067	EU369086	Kepler et al. 2017
Ara. kanyawimiae	TBRC 7242	MF140718	MF140751		MF140838	MF140784	MF140808	Mongkolsamrit et al. 2018
Ara. kanyawimiae	TBRC 7244 [™]	MF140716	MF140752		MF140836			Mongkolsamrit et al. 2018
Ara. kanyawimiae	TBRC 7243	MF140717	MF140750		MF140837	MF140783	MF140807	Mongkolsamrit et al. 2018
Ara. kunmingensis	YFCC 1808940 [⊤]	OQ509509	OQ509522		OQ506285	OQ511534	OQ511548	Wang et al. 2024b
Ara. kunmingensis	YFCC 1808939	OQ509508	OQ509521		OQ506284	OQ511533	OQ511547	Wang et al. 2024b
Ara. subaraneicola	YFCC 2107937 [™]	OQ509514	OQ509527		OQ506290	OQ511539	OQ511553	Wang et al. 2024b

Species	strain	nrLSU	ITS	nrSSU	3P_TEF	rpb1	rpb2	References
Ara. subaraneicola	YFCC 2107938	OQ509515	OQ509528		OQ506291	OQ511540	OQ511554	Wang et al. 2024b
Ara. sulphureus	TBRC 7248 [↑]	MF140722	MF140758		MF140843	MF140787	MF140812	Mongkolsamrit et al. 2018
Ara. thailandicus	TBRC 7245 [™]	MF140719	MF140754		MF140839		MF140809	Mongkolsamrit et al. 2018
Ara. tiankengensis	KY 11571 [⊤]	ON502825	ON502848		ON525447		ON525446	Chen et al. 2023a
Ara. tiankengensis	KY 11572	ON502827	ON502821		ON525449		ON525448	Chen et al. 2023a
Ara. waltergamsii	TBRC 7252 [™]	MF140714	MF140748		MF140834	MF140782	MF140806	Mongkolsamrit et al. 2018
Beauveria bassiana	ARSEF 1564		HQ880761		HQ880974	HQ880833	HQ880905	Rehner et al. 2011
B. caledonica	ARSEF 2567 [™]	AF339520	HQ880817	NG064865	EF469057	EF469086	HQ880961	Rehner et al. 2011
B. medogensis	BUB 426	MG642846	MG642832	MG642889	MG642904	MG642859	MG642874	Imoulan et al. 2016
B. scarabaeidicola	ARSEF 5689	AF339524	JN049827	AF339574	DQ522335	DQ522380	DQ522431	Kepler et al. 2017
B. sinensis	BUB 504	MG642838	MG642825	MG642880	MG642895	MG642852	MG642865	Chen et al. 2013
Cordyceps amoene- rosea	CBS 107.73 [™]	MF416550	MH860646	AY526464	MF416494	MF416651	MF416445	Wang et al. 2020
C. amoene-rosea	CBS 729.73	MF416551	MH860794	MF416604	MF416495	MF416652	MF416446	Wang et al. 2020
C. coleopterorum	CBS 110.73 [™]	JF415988	AY624177	JF415965	JF416028	JN049903	JF416006	Kepler et al. 2017
C. farinosa	CBS 111113	MF416554	AY624181	AY526474	MF416499	MF416656	MF416450	Kepler et al. 2017
C. fumosorosea	CBS 244.31	MF416557	MH855200	MF416609	MF416503	MF416660	MF416454	Kepler et al. 2017
C. javanica	CBS 134.22	MF416558	MH854719	MF416610	MF416504	MF416661	MF416455	Kepler et al. 2017
C. militaris	OSC 93623	AY184966	JN049825	AY184977	DQ522332	DQ522377		Kepler et al. 2017
C. tenuipes	ARSEF 5135	JF415980	AY624196	MF416612	JF416020	JN049896	JF416000	Kepler et al. 2017
Kanoksria zaquensis	HMAS 246917	MT789696	MT789698	MT789700	MT797811	MT797809		Wang et al. 2023b
Kanoksria zaquensis	HMAS 246915 [⊤]	MT789697	MT789699	MT789701	MT797812	MT797810		Wang et al. 2023b
Lecanicillium araneosus	KY 11341 [⊤]	ON502832	ON502826		ON525443		ON525442	Chen et al. 2022
L. araneosus	KY 11342	ON502837	ON502844		ON525445		ON525444	Chen et al. 2022
L. attenuatus	CBS 402.78	AF339565	AJ292434	AF339614	EF468782	EF468888	EF468935	Kepler et al. 2017
L. lecanii	CBS 102067 ^T	KM283795	MH862778	KM283771	KM283818	KM283838	KM283860	Kepler et al. 2017
L. lepidopterorum	SD05152		MT705974				MT727045	Chen et al. 2020a
L. longisporum	CBS 126.27 [⊤]	KM283797	AJ292385		KM283820	KR064300	KM283862	Kepler et al. 2017
L. muscarius	MFLU 181145	MH497224	MH497223	MH497222	MH511807		MH511806	Kepler et al. 2017
L. neoaraneogenus	GZU1031Lea [⊤]			KX845705	KX845697	KX845699	KX845701	Shrestha et al. 2019
L. neocoleopterorum	GY11242		MN093297		MN097815	MN097817	MN097814	Shrestha et al. 2019
L. pissodis	CBS 118231 [™]	KM283799		KM283775	KM283822	KM283842	KM283864	Chen et al. 2020a
L. sabanensis	JCh041			KC633263	KC633274			Kepler et al. 2017
Lecanicillium sp.	YFCC 945		OQ509531		OQ506294	OQ511543	OQ511557	Wang et al. 2024b
L. uredinophilum	KACC 44082 [™]	KM283782		KM283758	KM283806	KM283828	KM283848	Wang et al. 2020
L. uredinophilum	KUN 101466	MG948307	MG948305	MG948309	MG948315	MG948311	MG948313	Wang et al. 2020
Pleurodesmospora acaricola	R. Kirschner 4968		MZ435417		LC629776			Yeh et al. 2021
P. coccorum	CBS 460.73	MH872455	MH860743					Yeh et al. 2021
P. entomophila	BRIP 72652a [™]	OR527526	OR527518		OR514842		OR514850	Tan and Shivas 2023
P. lemaireae	BRIP 76543a [™]	PQ792647	PQ806958					Tan and Shivas 2024
P. lepidopterorum	DY10502		MW826577		MW834319		MW834318	Chen et al. 2021a
P. lepidopterorum	DY10501 [™]		MW826576		MW834317	MW834315	MW834316	Chen et al. 2021a
P. sanduensis	HKAS144399 ^T	PQ492342	PQ492703	PQ492710	PQ499068	PQ499074	PQ499081	This study
Samsoniella alboaurantium	CBS 262.58 [⊤]	MG665232	AY624179		JQ425685			Mongkolsamrit et al. 2018
S. alboaurantium	CBS 240.32	JF415979	AY624178		JF416019	JN049895	JF415999	Mongkolsamrit et al. 2018
S. alpina	YFCC 5818	MN576809		MN576753	MN576979	MN576869	MN576923	Wang et al. 2020
S. alpina	YFCC 5831	MN576810		MN576754	MN576980	MN576870	MN576924	Wang et al. 2020

Species	strain	nrLSU	ITS	nrSSU	3P_TEF	rpb1	rpb2	References
S. anhuiensis	RCEF2830 [⊤]	OM268848		OM268843	OM483864	OM751889		Wang et al. 2024a
S. anhuiensis	RCEF2590	OR978316		OR978313	OR966516	OR989964		Wang et al. 2024a
S. antleroides	YFCC 6113	MN576804		MN576748	MN576974	MN576864	MN576918	Wang et al. 2020
S. antleroides	YFCC 6016 [™]	MN576803		MN576747	MN576973	MN576863	MN576917	Wang et al. 2020
S. aranea	RCEF2831	OM268849		OM268844	OM483865	OM751882	OM802500	Wang et al. 2024a
S. aranea	RCEF2868	OM268850		OM268845	OM483866	OM751883	OM802501	Wang et al. 2024a
S. asiatica	YFCC 869 [™]		OQ476473		OQ506153	OQ506195	OQ506187	Wang et al. 2023a
S. asiatica	YFCC 870		OQ476474		OQ506154	OQ506196	OQ506188	Wang et al. 2023a
S. asiatica	YFCC 871		OQ476475		OQ506155	OQ506197	OQ506189	Wang et al. 2023a
S. aurantia	TBRC 7271	MF140728	MF140764		MF140846	MF140791	MF140818	Mongkolsamrit et al. 2018
S. aurantia	TBRC 7272	MF140727	MF140763		MF140845		MF140817	Mongkolsamrit et al. 2018
S. cardinalis	YFCC 5830	MN576788		MN576732	MN576958	MN576848	MN576902	Wang et al. 2020
S. cardinalis	YFCC 6144 [™]	MN576786		MN576730	MN576956	MN576846	MN576900	Wang et al. 2020
S. coccinellidicola	YFCC 8772 [™]	ON621670		ON563166	ON676514	ON676502	ON568685	Wang et al. 2022
S. coccinellidicola	YFCC 8773	ON621671		ON563167	ON676515	ON676503	ON568686	Wang et al. 2022
S. coleopterorum	A19501 [⊤]		MT626376		MN101586	MT642600	MN101585	Chen et al. 2020c
S. cristata	YFCC 6023	MN576792	OQ476480	MN576736	MN576962	MN576852	MN576906	Wang et al. 2020
S. cristata	YFCC 7004 [™]	MN576793	OQ476481	MN576737	MN576963	MN576853	MN576907	Wang et al. 2020
S. duyunensis	DY09162	OQ363114	OQ379242		OQ398146			Chen et al. 2023b
S. duyunensis	DY07501	OR263307	OR263188		OR282780	OR282773	OR282776	Chen et al. 2023b
S. duyunensis	DY09502	OR263427	OR263189		OR282781		OR282777	Chen et al. 2023b
S. erucae	KY 11121 [⊤]	ON502835	ON502828		ON525425		ON525424	Chen et al. 2022
S. erucae	KY 11122	ON502822	ON502847		ON525427		ON525426	Chen et al. 2022
S. farinospora	YFCC 8774 [™]	ON621672		ON563168	ON676516	ON676504	ON568687	Wang et al. 2022
S. farinospora	YFCC 9051	ON621673		ON563169	ON676517	ON676505	ON568688	Wang et al. 2022
S. fusiformispora	RCEF5406	OM268851		OM268846		OM751890		Wang et al. 2024a
S. fusiformispora	RCEF2588 [⊤]	OR978315		OR978312				Wang et al. 2024a
S. guizhouensis	KY 11161 [⊤]	ON502830	ON502823		ON525429		ON525428	Chen et al. 2022
S. guizhouensis	KY 11162	ON502846	ON502845		ON525431		ON525430	Chen et al. 2022
S. haniana	YFCC 8769 [™]	ON621674		ON563170	ON676518	ON676506	ON568689	Wang et al. 2022
S. haniana	YFCC 8770	ON621675		ON563171	ON676519	ON676507	ON568690	Wang et al. 2022
S. haniana	YFCC 8771	ON621676		ON563172	ON676520	ON676508	ON568691	Wang et al. 2022
S. hepiali	Cor-4	MN576799		MN576743	MN576969	MN576859	MN576913	Wang et al. 2020
S. hepiali	YFCC 661	MN576795		MN576739	MN576965	MN576855	MN576909	Wang et al. 2020
S. hepiali	ICMM 82-2 [™]	MN576794		MN576738	MN576964	MN576854	MN576908	Wang et al. 2020
S. hymenopterorum	A19521		MN128224		MN101588	MT642603		Chen et al. 2020c
S. hymenopterorum	A19522 [™]		MN128081		MN101591	MN101589		Chen et al. 2020c
S. inthanonensis	TBRC 7915	MF140725	MF140761		MF140849	MF140790	MF140815	Mongkolsamrit et al. 2018
S. kunmingensis	YHH 16002 [™]	MN576802		MN576746	MN576972	MN576862	MN576916	Wang et al. 2020
S. lanmaoa	YFCC 6193	MN576790		MN576734	MN576960	MN576850	MN576904	Wang et al. 2020
S. lanmaoa	YFCC 6148 [⊤]	MN576789		MN576733	MN576959	MN576849	MN576903	Wang et al. 2020
S. lasiocampidarum	NTUPPMCC 20-061	MT974364	MT974211		MW200220	MW200229		Chuang et al. 2024
S. lasiocampidarum	NTUPPMCC 20- 062 ^T	MT974361	MT974208		MW200218	MW200227	MW200236	Chuang et al. 2024
S. lasiocampidarum	NTUPPMCC 20-063	MT974363	MT974210		MW200219		MW200238	Chuang et al. 2024
S. lepidopterorum	DL 10071 [⊤]		MN128076			MN101592		Chen et al. 2020c
S. lepidopterorum	DL 10072		MN128084					Chen et al. 2020c
S. lurida	HKAS144387 [™]	PQ492339	PQ492700	PQ492707	PQ499065		PQ499078	This study
S. lurida	HKAS144388	PQ492340	PQ492701	PQ492708	PQ499066	PQ499072	PQ499079	This study

Species	strain	nrLSU	ITS	nrSSU	3P_TEF	rpb1	rpb2	References
S. neopupicola	KY 11322	ON502833	ON502834		ON525435		ON525434	Chen et al. 2022
S. neopupicola	KY 11321 [⊤]	ON502839	ON502843		ON525433		ON525432	Chen et al. 2022
S. pseudogunnii	GY 407202	MZ831865	MZ831863		MZ855234		MZ855240	Chen et al. 2021b
S. pseudogunnii	GY 407201	MZ827010	MZ827470		MZ855233		MZ855239	Chen et al. 2021b
S. pseudotortricidae	YFCC 9052 [™]	ON621677		ON563173	ON676521	ON676509	ON568692	Wang et al. 2022
S. pseudotortricidae	YFCC 9053	ON621678		ON563174	ON676522	ON676510	ON568693	Wang et al. 2022
S. pupicola	DY 101682	MZ827635	MZ827008		MZ855232		MZ855238	Chen et al. 2021b
S. pupicola	DY 101681 [™]	MZ827009	MZ827085		MZ855231		MZ855237	Chen et al. 2021b
S. ramosa	YFCC 6020 [™]	MN576805		MN576749	MN576975	MN576865	MN576919	Wang et al. 2020
S. sanmingense	CGMCC3.25661	PP179392		PP177395	PP482033	PP464664	PP464647	Pu et al. 2025
S. sanmingense	CGMCC3.25662 [™]	PP179393		PP177396	PP482034	PP464665	PP464648	Pu et al. 2025
S. sapaensis	YFCC 873 [™]		OQ476489		OQ506152	OQ506194	OQ506186	Wang et al. 2023a
S. sapaensis	YFCC 872		OQ476488		OQ506151	OQ506193	OQ506185	Wang et al. 2023a
S. sinensis	YFCC 8766 [™]	ON621679		ON563175	ON676523	ON676511	ON568694	Wang et al. 2022
S. sinensis	YFCC 8767	ON621680		ON563176	ON676524	ON676512	ON568695	Wang et al. 2022
S. sinensis	YFCC 8768	ON621681		ON563177	ON676525	ON676513	ON568696	Wang et al. 2022
S. subasiatica	HKAS144400 [™]	PQ492343	PQ492704	PQ492711	PQ499069	PQ499075	PQ499082	This study
S. tiankengensis	KY 11741 [⊤]	ON502838	ON502840		ON525437		ON525436	Chen et al. 2022
S. tiankengensis	KY 11742	ON502841	ON502849		ON525439		ON525438	Chen et al. 2022
S. tortricidae	YFCC 6013	MN576807		MN576751	MN576977	MN576867	MN576921	Wang et al. 2020
S. tortricidae	YFCC 6142	MN576808		MN576752	MN576978	MN576868	MN576922	Wang et al. 2020
S. tortricidae	YFCC 6131 [⊤]	MN576806		MN576750	MN576976	MN576866	MN576920	Wang et al. 2020
S. torquatistipitata	HKAS144411 ^T	PQ492345	PQ492706	PQ492713	PQ499071	PQ499077	PQ499084	This study
S. torquatistipitata	HKAS144402	PQ492344	PQ492705	PQ492712	PQ499070	PQ499076	PQ499083	This study
S. vallis	DY091092	OR263431	OR263190		OR282783			Chen et al. 2023b
S. vallis	DY091091	OR263428	OR263191		OR282782			Chen et al. 2023b
S. vallis	DY07242	OR263308	OR263186		OR282779		OR282775	Chen et al. 2023b
S. vallis	DY07241 [™]	OR263306	OR263159		OR282778	OR282772	OR282774	Chen et al. 2023b
S. winandae	MY12469.01 [™]	OM491231	OM491228		OM687896	OM687901	OM687899	Crous et al. 2023b
S. yuanzuiensis	NTUPPMCC 20- 064 ^T	MT974359	MT974206			MW200225	MW200234	Chuang et al. 2024
S. yuanzuiensis	NTUPPMCC 20-065	MT974360	MT974207		MW200217	MW200226	MW200235	Chuang et al. 2024
S. yunnanensis	YFCC 1527 [⊤]	MN576812		MN576756	MN576982	MN576872	MN576926	Wang et al. 2020
S. yunnanensis	YFCC 1824	MN576813		MN576757	MN576983	MN576873	MN576927	Wang et al. 2020
S. yunnanensis	YFCC 7282	MN576814		MN576758	MN576984	MN576874	MN576928	Wang et al. 2020
Simplicillium Ianosoniveum	CBS 101267	AF339554	AJ292395		DQ522357	DQ522405	DQ522463	Spatafora et al. 200
Sim. lanosoniveum	CBS 704.86	AF339553			DQ522358	DQ522406	DQ522464	Spatafora et al. 2007

Note: Types are indicated by T. The newly generated sequences in this study were shown in bold.

Maximum likelihood (ML) analysis was performed using IQ-TREE 1.6.12 (Minh et al. 2020) with branch support being estimated from 1000 ultrafast bootstraps. The Bayesian inference (BI) analysis was run on MrBayes on XSEDE (3.2.7a) in the CIPRES Science Gateway. The GTR+I+G model was selected as the best-fit substitution model by MrModeltest 2.3 implemented in MrMTgui v.1.0 (Nylander 2004; Nuin 2007). Four simultaneous Markov chains were run for 100,000,000 generations, and trees were sampled every 1000 generations. Finally, phylogenetic trees were visualised using Figtree v.1.4.0 (Rambaut 2016) and edited using Adobe Illustrator 2020.

Table 2. GenBank accession numbers of the Samsoniella used in this study.

Species	strain	3P_ <i>TEF</i>	5P_TEF	rpb1	мсм7	References
Samsoniella alboaurantium	CBS 240.32	JF416019		JN049895		Mongkolsamrit et al. 2018
S. alboaurantium	CBS 262.58 [⊤]	MF416497		MF416654		Mongkolsamrit et al. 2018
S. alpina	YFCC 5818 [⊤]	MN576979	OQ506160	MN576869	OQ506229	Wang et al. 2023a
S. alpina	YFCC 5831	MN576980	OQ506161	MN576870	OQ506230	Wang et al. 2023a
S. antleroides	YFCC 6016 [™]	MN576973	OQ506162	MN576863	OQ506231	Wang et al. 2023a
S. antleroides	YFCC 6113	MN576974	OQ506163	MN576864	OQ506232	Wang et al. 2023a
S. anhuiensis	RCEF2830 [™]	OM483864		OM751889		Wang et al. 2024a
S. anhuiensis	RCEF2590	OR966516		OR989964		Wang et al. 2024a
S. aranea	RCEF2831	OM483865		OM751882		Wang et al. 2024a
S. aranea	RCEF2868	OM483866		OM751883		Wang et al. 2024a
S. asiatica	YFCC 869 [⊤]	OQ506153	OQ506164	OQ506195	OQ506233	Wang et al. 2023a
S. asiatica	YFCC 870	OQ506154	OQ506165	OQ506196	OQ506234	Wang et al. 2023a
S. asiatica	YFCC 871	OQ506155	OQ506166	OQ506197	OQ506235	Wang et al. 2023a
S. aurantia	TBRC 7271 [⊤]	MF140846		MF140791		Mongkolsamrit et al. 2018
S. aurantia	YFCC 874	OQ506157	OQ506167	OQ506199	OQ506236	Wang et al. 2023a
S. aurantia	YFCC 880	OQ506156	OQ506168	OQ506198	OQ506237	Wang et al. 2023a
S. cardinalis	YFCC 5830	MN576958	OQ506169	MN576848	OQ506238	Wang et al. 2023a
S. cardinalis	YFCC 6144 [⊤]	MN576956	OQ506170	MN576846	OQ506239	Wang et al. 2023a
S. coccinellidicola	YFCC 8772 [⊤]	ON676514		ON676502		Wang et al. 2022
S. coccinellidicola	YFCC 8773	ON676515		ON676503		Wang et al. 2022
S. coleopterorum	A19501 [⊤]	MN101586		MT642600		Chen et al. 2020c
S. cristata	YFCC 6023	MN576962	OQ506171	MN576852	OQ506240	Wang et al. 2023a
S. cristata	YFCC 7004 [⊤]	MN576963	OQ506172	MN576853	OQ506241	Wang et al. 2023a
S. duyunensis	DY09162	OQ398146				Chen et al. 2023b
S. duyunensis	DY07501	OR282780		OR282773		Chen et al. 2023b
S. duyunensis	DY09502	OR282781				Chen et al. 2023b
S. erucae	KY11121 [⊤]	ON525425				Chen et al. 2022
S. erucae	KY11122	ON525427				Chen et al. 2022
S. farinospora	YFCC 8774 [⊤]	ON676516		ON676504		Wang et al. 2022
S. farinospora	YFCC 9051	ON676517		ON676505		Wang et al. 2022
S. fusiformispora	RCEF5406			OM751890		Wang et al. 2024a
S. guizhouensis	KY11161 [⊤]	ON525429				Chen et al. 2022
S. guizhouensis	KY11162	ON525431				Chen et al. 2022
S. haniana	YFCC 8769 [™]	ON676518		ON676506		Wang et al. 2022
S. haniana	YFCC 8771	ON676520		ON676508		Wang et al. 2022
S. hepiali	ICMM 82-2 [⊤]	MN576964	OQ506173	MN576854	OQ506242	Wang et al. 2023a
S. hepiali	YFCC 868	OQ506158	OQ506175	OQ506200	OQ506244	Wang et al. 2023a
S. hepiali	YFCC 2702	MN576966	OQ506174	MN576856	OQ506243	Wang et al. 2023a
S. hymenopterorum	A19521	MN101588	3 2 3 3 3 7 7	MT642603	0 0 0 0 0 1 0	Chen et al. 2020c
S. hymenopterorum	A19522 [⊤]	MN101591		MN101589		Chen et al. 2020c
S. inthanonensis	TBRC 7915 [™]	MF140849		MF140790		Mongkolsamrit et al. 2018
S. kunmingensis	YHH 16002 [™]	MN576972		MN576862		Wang et al. 2023a
S. lanmaoa	YFCC 6148 ^T	MN576959	OQ506176	MN576849	0Q506245	Wang et al. 2023a
S. lanmaoa	YFCC 6193	MN576960	OQ506177	MN576850	OQ506246	Wang et al. 2023a
S. lasiocampidarum	NTUPPMCC 20-061	MW200220	34000177	MW200229	5000240	Chuang et al. 2024
S. lasiocampidarum	NTUPPMCC 20- 062 ^T	MW200218		MW200227		Chuang et al. 2024
S. lasiocampidarum	NTUPPMCC 20-063	MW200219				Chuang et al. 2024

Species	strain	3P_TEF	5P_TEF	rpb1	мсм7	References
S. lepidopterorum	DL 10071 [™]			MN101592		Chen et al. 2020c
S. lurida	HKAS144387 [™]	PQ499065				This study
S. lurida	HKAS144388	PQ499066		PQ499072	PV158406	This study
S. neopupicola	KY11321 [⊤]	ON525433				Chen et al. 2022
S. neopupicola	KY11322	ON525435				Chen et al. 2022
S. pseudogunii	GY407201 [⊤]	MZ855233				Chen et al. 2021b
S. pseudogunii	GY407202	MZ855234				Chen et al. 2021b
S. pseudotortricidae	YFCC 9052 [™]	ON676521		ON676509		Wang et al. 2022
S. pseudotortricidae	YFCC 9053	ON676522		ON676510		Wang et al. 2022
S. pupicola	DY101681 [⊤]	MZ855231				Chen et al. 2021b
S. pupicola	DY101682	MZ855232				Chen et al. 2021b
S. ramosa	YFCC 6020 [™]	MN576975	OQ506178	MN576865		Wang et al. 2023a
S. sanmingense	CGMCC3.25661	PP482033		PP464664		Pu et al. 2025
S. sanmingense	CGMCC3.25662	PP482034		PP464665		Pu et al. 2025
S. sapaensis	YFCC 872	OQ506151	OQ506179	OQ506193	OQ506247	Wang et al. 2023a
S. sapaensis	YFCC 873 [⊤]	OQ506152	OQ506180	OQ506194	OQ506248	Wang et al. 2023a
S. sinensis	YFCC 8766 [™]	ON676523		ON676511		Wang et al. 2022
S. sinensis	YFCC 8767	ON676524		ON676512		Wang et al. 2022
S. subasiatica	HKAS144400 [™]	PQ499069	PV158402	PQ499075	PV158407	This study
S. tiankengensis	KY11741 [⊤]	ON525437				Chen et al. 2022
S. tiankengensis	KY11742	ON525439				Chen et al. 2022
S. tortricidae	YFCC 6131 [™]	MN576976	OQ506181	MN576866	OQ506249	Wang et al. 2023a
S. tortricidae	YFCC 6142	MN576978	OQ506182	MN576868	OQ506250	Wang et al. 2023a
S. torquatistipitata	HKAS144411 [™]	PQ499071		PQ499077	PV158408	This study
S. torquatistipitata	HKAS144402	PQ499070		PQ499076	PV158409	This study
S. vallis	DY091092	OR282783				Chen et al. 2023b
S. vallis	DY091091	OR282782				Chen et al. 2023b
S. vallis	DY07242	OR282779				Chen et al. 2023b
S. vallis	DY07241 [⊤]	OR282778		OR282772		Chen et al. 2023b
S. winandae	MY12469.01 [⊤]	OM687896		OM687901		Crous et al. 2023b
S. yuanzuiensis	NTUPPMCC 20- 064 ^T			MW200225		Chuang et al. 2024
S. yuanzuiensis	NTUPPMCC 20-065	MW200217		MW200226		Chuang et al. 2024
S. yunnanensis	YFCC 1527 [⊤]	MN576982	OQ506183	MN576872	OQ506251	Wang et al. 2020, 2023a
S. yunnanensis	YFCC 1824	MN576983	OQ506184	MN576873	OQ506252	Wang et al. 2020, 2023a
Akanthomyces waltergamsii	YFCC 883	OQ506159		OQ506201	OQ506253	Wang et al. 2023a

Note: Types are indicated by T. The newly generated sequences in this study were shown in bold.

Results

Phylogenetic analyses

The six-locus dataset (nrLSU, ITS, nrSSU, 3P_TEF, rpb1, and rpb2) comprises 118 representative taxa sampled from nine genera within Cordycipitaceae, with two strains of Simplicillium lanosoniveum (CBS 101267 and CBS 704.86) selected as the outgroup. The ML tree inferred from the six-locus dataset is shown in Fig. 1, in which the seven strains generated in this study belong to three genera: Akanthomyces, Pleurodesmospora and Samsoniella. The isolate HKAS144393 clusters with Akanthomyces baishanensis (CGMCC3.25673 and CGMCC3.25674) with strong statistical support (100% SH-aLRT / 100% UFB / 1.00 PP, Fig. 1). The isolate HKAS144399 constitutes a distinct lineage which

Figure 1. Phylogram generated from maximum likelihood analysis of Cordycipitaceae based on a six-locus dataset (nrLSU, ITS, nrSSU, $3P_TEF$, rpb1 and rpb2). SH-aLRT support $\geq 75\%$, ultrafast bootstrap support (UFB) $\geq 75\%$, and PP values $\geq 95\%$ are indicated above or below branches. A hyphen (–) indicates values lower than 75% SH-aLRT, 75% UFB, and 95% PP. The isolates in this study are shown in bold red. Generic names are indicated on the right side of the tree. Ex-types are indicated by "T".

branches off the clade of *Pleurodesmospora acaricola* and *P. entomophila* with maximum support (100% SH-aLRT / 100% UFB / 1.00 PP, Fig. 1). The remaining five strains (HKAS144411, HKAS144402, HKAS144388, HKAS144402, and HKAS144400) group with species of *Samsoniella* with inadequate support.

To clarify the phylogenetic placements of the five specimens of *Samsoniella*, a separated phylogenetic tree based on four genes (5P_*TEF*+3P_*TEF*+*rp-b1+MCM7*) was constructed with larger taxa sampling from *Samsoniella*. The four-locus dataset included 79 taxa of *Samsoniella* with 3077 bp characters (737 bp for 5P_*TEF*, 986 bp for nrSSU, 725 bp for 3P_*TEF*, 629 bp for *rpb1*). *Akanthomyces waltergamsii* YFCC 883 was designated as the out-group taxon. The ML tree (Fig. 2) shows that the isolates HKAS144387 and HKAS144388 are sisters to *S. kunmingensis* and are closely related to *S. tortricidae*, with moderate support (86% SH-aLRT / 89% UFB, Fig. 2). The isolate HKAS144400 shows a sister relationship to *Samsoniella winandae* with significant support (89% SH-aLRT / 94% UFB / 0.99 PP, Fig. 2). The isolates HKAS144411 and HKAS144402 were placed in a clade distantly related to other *Samsoniella* species with strong support (98% SH-aLRT / 100% UFB / 1.00 PP, Fig. 2). The guidelines of Maharachchikumbura et al. (2021) were followed when determining whether species were novel.

Taxonomy

Akanthomyces baishanensis H.L. Pu & J.Z. Qiu, in Pu, Yang, Keyhani, Yang, Zheng, Qiu, Mao, Shang, Lin, Xiong, Lin, Lai, Huang, Yuan, Liang, Fan, Ma, Qiu & Qiu, J. Fungi 11(1, no. 28): 16 (2025)

Index Fungorum: IF903210

Fig. 3

Description. Parasitic on moth (Lepidoptera). **Sexual morph.** See Pu et al. (2025). **Asexual morph. Synnemata** arising from the moth body, white, erect, simple, subuliform (2 × 2.7 mm) or subglobose (0.2 × 0.5 mm). **Hyphae** smooth, septate, hyaline, 1.4–2.5 μm (\bar{x} = 1.8 μm, n = 30) in diam. **Conidiophores** developing from superficial hyphae of synnemata, micronematous, branched, smooth-walled, bearing solitary to clusters of phialides. **Phialides** 6–29.6 × 1.6–3.2 μm (\bar{x} = 19 × 2.7 μm, n = 30), monophialidic, trimorphic, arising from anastomosing mycelia, slender filiform in shape (Fig. 3G), or arising from conidiophores, cylindrical (Fig. 3E, H, I) or subuliform (Fig. 3F) at basal portion, tapering into a thin neck. **Conidia** 3.2–4.7 × 1.8–2.8 μm (\bar{x} = 3.9 × 2.2 μm, n = 50), forming on tip of phialides, hyaline, smooth-walled, fusiform, globose or broadly ovoid, gathering in chains.

Material examined. CHINA • Liaoning Province, Tieling City (42°17'22.3"N, 123°50'22.2"E), on a dead adult moth (Lepidoptera) on the stem of a plant, 25 August 2023, Ting-Chi Wen, HLJ2023082515 (HKAS144393).

Notes. Phylogenetic analysis based on six gene markers revealed that the specimen HKAS144393 and *Akanthomyces baishanensis* (CGMCC3.25673 and CGMCC3.25674) form a robustly supported monophyletic clade (100% SH-aL-RT / 100% UFB / 1.00 PP, Fig. 1). Both HKAS144393 and *A. baishanensis* exhibit parasitic relationships with adult moths. Notably, HKAS144393 represents a naturally occurring asexual morph characterised by trimorphic conidiogenous structures, while the asexual morph of *A. baishanensis* described by Pu et al. (2025) was obtained from culture and displayed only a single type of conidiogenous structure. Our observations demonstrate greater morphological plasticity in this species than previously recognised.

Figure 2. Phylogram generated from maximum likelihood analysis of Samsoniella based on a four-locus dataset (5P_ TEF+3P_TEF+rpb1+MCM7). SH-aLRT support \geq 75%, ultrafast bootstrap support \geq 75%, and PP values \geq 95% are indicated above or below branches. A hyphen (-) indicates values lower than 75% SH-aLRT, 75% UFB, and 95% PP. The isolates in this study are shown in bold red. Ex-types are indicated by "T".

Figure 3. Akanthomyces baishanensis (HKAS144393) **a** fungus on an adult moth **b-d** synnemata **e-k** phialides and conidia. Scale bars: 5 mm (**a**); 1 mm (**b**); 0.5 mm (**c**); 100 μm (**d**); 30 μm (**g**); 20 μm (**e**, **f**, **h**, **i**); 10 μm (**j**); 5 μm (**k**).

Pleurodesmospora sanduensis J. Bu, K.D. Hyde & T.C. Wen, sp. nov.

Index Fungorum: IF903211

Fig. 4

Etymology. In reference to the location of the type specimen, Sandu County of Guizhou Province, China.

Description. Parasitic on adult Lepidoptera. **Sexual morph.** Undetermined. **Asexual morph.** Colonies on natural specimen white, sparse, only covering the abdomen of host. Conidiophores micronematous, cylindrical, erect

Figure 4. Pleurodesmospora sanduensis (HKAS144399) a fungus on host **b**, **c** obverse (**b**) and reverse (**c**) of colony on PDA **d**–**I** conidiophore and conidiogenous cells **j**, **k**–**m** conidia adhering in a chain. Scale bars: 2 mm (a); 20 μ m (d, e, f, h, i); 10 μ m (g, j, k); 5 μ m (I, m).

or procumbent, sparsely branched, smooth, hyaline, septate, ca. 1.3–2.8 µm (\bar{x} = 2 µm, n = 30) in width, from the middle part to the distal end densely covered by numerous minute, dentiform pegs, 0.7–1.8 × 0.5–0.8 µm (\bar{x} = 1 × 0.7 µm, n = 25). *Conidia* obovoid, globose, smooth-walled, 2.7–4.8 × 1.4–2.5 µm (\bar{x} = 3.7 × 2 µm, n = 30), arranged in short chains.

Culture characteristics. colonies on PDA reaching a diameter of 42 mm in three weeks at room temperature, white, circular, velvety, flat, edge entire, surface wrinkled, with radially striate, mycelia dense at centre, becoming loose outward, reverse cream-yellow.

Type. CHINA • Guizhou Province, Qiannan Buyei and Miao Autonomous Prefecture, Sandu County, the Yaoren Mountain (25°59'41"N, 107°56'41"E, alt. 987.1 m), on a dead adult of Lepidoptera on leaf litter, 08 July 2023, Jing Bu, YRS23070803B (holotype HKAS144399, ex-holotype KUNCC24-18538).

Notes. Six-locus phylogenetic analyses show that the *Pleurodesmospora* sanduensis is separated from other species of *Pleurodesmospora* with strong statistical support (100% SH-aLRT / 100% UFB / 1.00 PP, Fig. 1). *Pleurodesmospora* sanduensis is phylogenetically closely related to *P. acaricola* and *P. entomophila*. Pairwise nucleotide differences between *P. sanduensis* and *P. entomophila* (Tan and Shivas 2023) revealed 6 bp in nrLSU, 28 bp in ITS, 25 bp in $3P_TEF$, and 74 bp in rpb2. These molecular divergences support the recognition of *P. sanduensis* as a novel species, consistent with the taxonomic thresholds proposed by Jeewon and Hyde (2016). *Pleurodesmospora* sanduensis is similar to *P. acaricola* in producing loose and white colonies covering the host. However, *Pleurodesmospora* sanduensis differs from *P. acaricola* by its larger conidia (2.7–4.8 × 1.4–2.5 μ m vs. 2.5–3 × 2 μ m) in chains, but it is solitary in *P. acaricola* (Yeh et al. 2021). Additionally, chlamydospores are observed in *P. acaricola*, while it is absent in *P. sanduensis*.

Samsoniella lurida J. Bu, K.D. Hyde & T.C. Wen, sp. nov.

Index Fungorum: IF903212

Fig. 5

Etymology. Referring to the pale stromata arising from the host, which is different from other species in *Samsoniella*.

Description. Parasitic on cocoon of Lepidoptera. **Sexual morph.** *Stromata* 6.4– 8.6 mm long, pale orange, cylindrical, unbranched or branched at base, arising from the head and end of the insect cocoon. **Stipe** cylindrical, pale orange, 0.4–0.8 mm wide. Fertile part clavate, pale orange, 2.5-3.1 × 0.6-1 mm, often with sterile tip (0.5–1.2 mm). The lateral sides had a longitudinal ditch without perithecia. **Perithe**cia superficial, crowded, broadly ovoid, $205-455 \times 144-274 \, \mu m$ ($\bar{x} = 319 \times 198 \, \mu m$, n = 15). **Asci** hyaline, cylindrical, $128-219 \times 1.4-3.6 \mu m$ ($\bar{x} = 170 \times 2.6 \mu m$, n = 20). **Ascus caps** hemispherical, hyaline, $1.2-1.8 \times 1.6-3 \mu m$ ($\overline{x} = 1.5 \times 2.5 \mu m$, n = 20). **Ascospores** filiform, hyaline, aseptate, $86-175 \times 0.4-1 \, \mu m \, (\overline{x} = 132 \times 0.7 \, \mu m)$ n = 15) wide, do not disarticulate into part-spores. Asexual morph. Synnemata arising from the middle of the host, erect, single, 1.2 × 0.2-0.35 mm, producing a mass of floccose conidia at the apex. Hyphae smooth-walled, hyaline, septate, 1.5–3.6 μ m (\bar{x} = 2.5 μ m, n = 30) wide. **Conidiophores** smooth-walled, cylindrical, verticillate, $2.3-9.1 \times 1.9-2.9 \, \mu \text{m}$ ($\bar{x} = 4.9 \times 2.3 \, \mu \text{m}$, n = 15). **Phialides** verticillate, in whorls of two to five, lageniform, 4.2–7.3 μ m ($\bar{x} = 5.7 \mu$ m, n = 30) long, basal portion cylindrical, tapering abruptly toward the apex, from 1.7–2.5 μ m (\bar{x} = 2.1 μ m, n = 30) wide (base) to 0.5–0.9 μ m (\bar{x} = 0.7 μ m, n = 30) wide (apex). **Conidia** smoothwalled, hyaline, fusiform, $1.9-2.7 \times 1.1-1.9 \, \mu m \, (\bar{x} = 2.3 \times 1.4 \, \mu m, \, n = 30)$.

Figure 5. Samsoniella lurida (HKAS144387) **a** habitat **b** stromata and synnemata arising from host **c**, **d** fertile part with perithecia **e** vertical section of perithecia **f** ascus cap **g**, **h** asci **i** ascospore **j** synnema **k**–**m** conidiophores, phialides and conidia. Scale bars: 5 mm (**b**); 3 mm (**c**, **d**); 200 μ m (**e**); 20 μ m (**f**, **g**, **h**, **i**); 0.5 mm (**j**); 30 μ m (**k**); 10 μ m (**l**, **m**).

Type. CHINA • Yunnan Province, Kunming City, Panlong District, the Longchuanqiao Forest Park (25°17'05.26"N, 102°78'07.88"E, alt. 1963.9 m), on a lepidopteran cocoon buried in soil, 20 September 2023, Jing Bu, LCQ2023092034B (holotype HKAS144387).

Additional materials examined. CHINA • Yunnan Province, Kunming, Xishan District, Tuanjie Country (25°08'61.38"N, 102°46'11.71"E, alt. 1971.2 m) on lepidopteran larva buried in soil, 17 October 2023, Jing Bu, MLSX2023101741B (HKAS144388, living culture KUNCC24-18534).

Notes. Phylogenetic analyses revealed that two specimens of *Samsoniella lurida* (HKAS144387 and HKAS144388) are closely related to *S. kunmingensis* and *S. tortricidae* (Fig. 2). Morphological comparisons demonstrate distinct characteristics among these species. *S. kunmingensis* and *S. tortricidae* produce larger, brightly coloured, multi-branched stromata with oblong-ovate to fusiform perithecia; *S. lurida* is characterised by pallid stromata and broadly ovoid perithecia (Table 3). Furthermore, *S. lurida* possesses a unique sterile tip, a feature not observed in other known *Samsoniella* species. Sequence comparisons between *S. lurida* and *S. kunmingensis* showed that there are 8 bp differences within 943 bp 3P_*TEF* and 12 bp differences within 979 bp *rpb2*. *S. lurida* differs from *S. tortricidae* by 10 bp within 943 bp 3P_*TEF* and 11 bp within 979 bp *rpb2*. Both morphological characters and molecular analyses support this fungus as a new species in *Samsoniella* (Jeewon and Hyde 2016).

Table 3. Comparison between the sexual morphs in Samsoniella. The data generated in this study are shown in bold.

Species	Host	Stromata (mm)	Fertile Part (mm)	Perithecia (µm)	Asci (µm)	Ascospores (µm)	References
S. cristata	Lepidopteran pupa	solitary or two, 25–40 long, crista- like	crista-like or subulate, 3.1–18.5 × 0.9–8.0	superficial, narrowly ovoid, 370–485 × 150–245	cylindrical,8- spored,180-356 × 3.0-4.8	bola-shaped, septate, 155–290 × 1.0–1.3	Wang et al. 2020
S. inthanonensis	Lepidopteran larva	gregarious, 20–50 long, 1–1.5 broad, cylindrical to clavate	clavate, 8–15 × 1.5–2	superficial, ovoid, 417.5–474.5 × 205–260	cylindrical, 8-spored, 300 × 2–2.5	bola-shaped, 3 or 4 septate, 221.5– 267 × 0.5–1	Mongkolsamrit et al. 2018
S. kunmingensis	Lepidopteran pupa	solitary, 23 long, cylindrical to clavate	clavate, 3.3-4.2 × 0.8-1.2	superficial, narrowly ovoid to fusiform, 330–395 × 110–185	cylindrical, 8-spored, 150– 297 × 3.0–4.6	bola-shaped, septate, 127–190 × 0.8–1.5	Wang et al. 2020
S. lanmaoa	Lepidopteran pupa	two to five, 38–69 long, palmately branched	clavate, 8.5–11.2 × 0.6–2.3	superficial, narrowly ovoid to fusiform, 360– 467 × 124–210	cylindrical, 8-spored, 160– 325 × 3.3–4.8	bola-shaped, septate, 135–260 × 0.9–1.4	Wang et al. 2020
S. lurida	Lepidopteran pupa	6.4-8.6 long, cylindrical	clavate, 2.5-3.1 × 0.6-1.0, sterile tip 0.5-1.2 wide	superficial, broadly ovoid, 205-455 × 144-274	cylindrical, 128– 219 × 1.4–3.6	filiform, aseptate, 86.1-174.7 × 0.4-1.0	This study
S. pseudotortricidae	Lepidopteran pupa	solitary to several, 20–65 long, clavate	clavate to subulate, 10−17 × 1.5−4.2	superficial, narrowly ovoid to fusiform, 285.7–313.2 × 149.2–154.9	/	/	Wang et al. 2022
S. torquatistipitata	Coleoptera	solitary, 4.4 × 0.1−0.3, clavate	clavate, 1.5 × 0.4	superficial, lageniform, 263- 353 × 174-238	cylindrical, 8-spored, up to 114-173 × 1.6-3.3	filiform, 86.2– 125.7 × 0.3–0.6	This study
S. tortricidae	Lepidopteran cocoon	gregarious, 25–60	clavate to subulate, 5–15 × 1.2–2.3	superficial, narrowly ovoid to fusiform, 350– 468 × 140–225	cylindrical, 8-spored, 170– 285 × 2.8–4.0	bola-shaped, septate, 120–235 × 0.8–1.3	Wang et al. 2020
S. winandae	Lepidopteran cocoon	multiple, 8–20 long and 0.5–2 broad, cylindrical to enlarging apically	clavate, 2-8 × 2-3	superficial, narrowly ovoid, 500–570 × 135–180	cylindrical, 8-spored, 300 × 4–5	bola shaped, 3 or 5 septate, 200– 265 × 0.5–1	Crous et al. 2023b

Samsoniella torquatistipitata J. Bu, K.D. Hyde & T.C. Wen, sp. nov.

Index Fungorum: IF903213

Fig. 6

Etymology. From the Latin "torqu", referring to the stipe of stroma, is torsional rather than cylindrical.

Description. Parasitic on ant (Hymenopteran). Sexual morph. Stroma arising from head of ant, orange, single, simple, 4.4 × 0.1-0.3 mm. Stipe fleshy, torsional, reddish-orange, up to 2.7 mm long. Fertile part cylindrical, becoming acuate toward the end, reddish-orange, 1.7 × 0.4 mm. Perithecia lageniform, superficial, $255-368 \times 163-244 \mu m$ ($\bar{x} = 288 \times 190 \mu m$, n = 5), growing on one side of fertile part. **Asci** cylindrical, hyaline, 8-spored, $114-173 \times 1.6-3.3 \ \mu m \ (\bar{x} = 135 \times 2.4 \ \mu m, \ n = 20), \ with hemispherical$ cap, $1.7-2.5 \times 1.1-1.8 \ \mu m \ (\bar{x} = 2.2 \times 1.4 \ \mu m, n = 20)$. Ascospores filiform, aseptate, hyaline, $86-125 \times 0.3-0.6 \ \mu m \ (\bar{x} = 98.6 \times 0.5 \ \mu m, \ n = 15)$, nondisarticulating. Asexual morph. produced on the cultures, hyphomycetous. Hyphae smooth, septate, hyaline, 1.2-2.0 μ m (\bar{x} = 1.6 μ m, n = 30) in diam. Conidiophores smooth-walled, cylindrical or elongated ellipsoid, verticillate with phialides in whorls of two to five or singly along the hyphae, $4.4-18.4 \times 1.7-3.9 \ \mu m \ (\bar{x} = 8.4 \times 2.7 \ \mu m, \ n = 30)$. **Phialides** lageniform, 6.1–10.7 μ m (\bar{x} = 8.0 μ m, n = 30) long, basal portion inflated, 1.8–3.5 μ m $(\bar{x} = 2.6 \, \mu \text{m}, \, \text{n} = 30)$ wide, tapering abruptly into a thin neck, $0.7-1.4 \, \mu \text{m}$ $(\bar{x} = 0.9 \,\mu\text{m}, \text{n} = 30)$ wide. **Conidia** subglobose, hyaline, $1.8 - 2.8 \,\mu\text{m}$ ($\bar{x} = 2.3 \,\mu\text{m}$, n = 50) in diam.

Culture characteristics. colonies on PDA reaching 40 mm in 14 days at room temperature, circular, flat, edge entire, mycelia dense, cottony, creamy yellow at centre, becoming white outward, with concentric rings, sporulation, reverse creamy yellow, with radially striate.

Type. CHINA • Yunnan Province, Puer City, Simao District, Plum Lake Park (22°72'66.83"N, 100°97'83.57"E, alt. 1354.5 m), on an adult ant (Hymenoptera) buried in soil, 25 October 2023, Jing Bu, DSSZ20231025110B (holotype HKAS144411, ex-holotype KUNCC24-18535).

Additional materials examined. CHINA • Yunnan Province, Puer, Simao District, Plum Lake Park (22°75'14.29"N, 100°97'73.13"E, alt. 1338.8 m), on lepidopteran cocoon buried in soil, 26 October 2023, Jing Bu, MZH20231025119B (paratype HKAS144402, ex-paratype KUNCC24-18536).

Notes. The phylogenetic tree (Fig. 2) showed that *Samsoniella torquatistipitata* constitutes a distinct clade distantly related to *S. cristata*, *S. kunmingensis*, *S. lurida*, and *S. tortricidae*. A pairwise comparison of $3P_TEF$, rpb1, MCM7, and rpb2 showed that *S. torquatistipitata* differs from *S. cristata*, *S. kunmingensis*, *S. lurida*, and *S. tortricidae* in 1–6 bp, 3–4 bp, 6–9 bp, and 4–16 bp, respectively. *Samsoniella torquatistipitata* is characterised by the small, single stroma (4.4 mm long), reddish-orange, cylindrical fertile part, superficial, lageniform perithecia, and the association with adult ants. Morphological comparisons of the novel taxa with closely related *Samsoniella* species are provided in Table 3. Both morphological characteristics and molecular analyses support this fungus as a new species in *Samsoniella* (Jeewon and Hyde 2016).

Figure 6. Samsoniella torquatistipitata (HKAS144411) a fungus on the adult ant **b** fertile part **c** vertical section of stroma **d** perithecium **e**–**g** asci **h** ascospore **i**, **j** ascus cap **k**, **l** obverse (**k**) and reverse (**l**) of colony on PDA; **m**–**r** conidiophores and phialides; **s**, **t** conidia. Scale bars: 3 mm (**a**); 1 mm (**b**); 200 μ m (**c**); 100 μ m (**d**); 50 μ m (**e**, **m**); 30 μ m (**f**, **g**, **h**); 20 μ m (**n**, **o**); 10 μ m (**i**, **j**, **p**, **q**, **r**); 3 μ m (**s**, **t**).

Samsoniella subasiatica J. Bu, K.D. Hyde & T.C. Wen, sp. nov.

Index Fungorum: IF903214

Fig. 7

Etymology. Referring to the morphology similar to Samsoniella asiatica.

Description. Parasitic on pupa of Lepidoptera. **Sexual morph**. Undetermined. **Asexual morph**. **Synnema** arising from middle part of pupa, solitary, erect, flexuous, unbranched, 2.8×0.2 mm. **Stipe** cylindrical, pale orange. **Hyphae** smoothwalled, septate, hyaline 1.3-2.8 μm ($\overline{x}=2.0$ μm, n=50). **Conidiophores** grouped together at the apex of synnema and the head of pupa, verticillate $3.6-7.4 \times 2-3$ μm ($\overline{x}=5.2 \times 2.4$ μm, n=20). **Phialides** lageniform, usually in whorls of two to five, 4.2-6.8 μm ($\overline{x}=5.6$ μm, n=50) long, globose at basal portion, tapering gradually toward the apex, from 1.8-2.4 μm ($\overline{x}=2.1$ μm, n=50) wide (base) to 0.6-1 μm ($\overline{x}=0.8$ μm, n=50) wide (apex). **Conidia** single, smooth-walled, hyaline, fusiform to oval, $1.9-2.9 \times 1.4-1.8$ μm ($\overline{x}=2.4 \times 1.6$ μm, n=50).

Culture characteristics. Colonies on PDA reaching a diameter of 27–29 mm in two weeks at room temperature, white, circular, velvety, mycelia dense, becoming loose in the outmost ring, reverse brightly yellow.

Type. CHINA • Guizhou Province, Qiannan Buyei and Miao Autonomous Prefecture, Anlong County (24°99'08.43"N, 105°59'76.06"E, alt. 1395.6 m), on lepidopteran pupa on leaf litter, 07 September 2023, Jing Bu, Al2023090717B (holotype HKAS144400, ex-holotype KUNCC24-18537).

Notes. Samsoniella subasiatica morphologically resembles S. asiatica (Wang et al. 2023a) by producing a flexuous synnema, pale orange stipe, with a mass of conidia at the apex. However, S. subasiatica differs from S. asiatica in having simple synnema and larger conidia (1.9–2.9 μ m vs. 1.1–1.8 μ m) (Table 4). The synnema of S. asiatica is branched at the base (Wang et al. 2023a). Furthermore, phylogenetic analysis based on four loci revealed that S. subasiatica is sister to S. winandae, with moderate statistical support (89% SH-aLRT / 94% UFB / 0.99 PP; Fig. 2). However, S. subasiatica can be distinguished from S. winandae by its significantly smaller synnemata and phialides (4.2–6.8 × 1.8–2.4 μ m vs. 5–12 × 2–3 μ m) (Table 4). Additionally, a comparison of nucleotide sequences between S. subasiatica and S. winandae indicated that there are 6 bp differences in $3P_TEF$, 14 bp in rpb1, and 8 bp in rpb2. Based on the recommendations made by Jeewon and Hyde (2016), we determined this fungus as a novel species.

Discussion

Morphology-phylogeny of Akanthomyces sensu lato

Akanthomyces sensu lato is a monophyletic lineage, and it was segregated into four genera, including Akanthomyces sensu stricto, Arachnidicola, Lecanicillium and Kanoksria, corresponding to their morphological and ecological traits (Khonsanit et al. 2024; Wang et al. 2024b, Fig. 1). Akanthomyces sensu stricto comprises seventeen species pathogenic to moths, characterised by white to creamy synnemata with cylindrical, papillate phialides and catenulate conidia (Aini et al. 2020; Khonsanit et al. 2024). Arachnidicola comprises twelve species primarily pathogenic to spiders, displaying isaria-like anamorphs (Mongkolsamrit et al. 2018; Chen et al. 2022; 2023a; Wang et al. 2024b), except for

Figure 7. Samsoniella subasiatica (HKAS144400) **a** habitat **b** synnema arising from pupa **c** lower and upper view of the colony on PDA **d** synnema **e**, **f** conidiophores **g**–**i** phialides **j**, **k** conidia. Scale bars: 2 mm (**b**); 1 mm (**d**); 50 μ m (**f**); 10 μ m (**g**, **h**, **i**, **j**); 2 μ m (**k**).

Akanthomyces thailandicus, which has a lecanicillium-like anamorph (Mongkolsamrit et al. 2018). Lecanicillium includes twelve species pathogenic to diverse hosts (e.g., Lepidoptera, Coleoptera, Hemiptera, spiders) with acremonium-like and verticillium-like anamorphs (Chiriví-Salomón et al. 2015; Chen et al. 2017, 2020a, 2020b, 2022; Manfrino et al. 2022). Kanoksria, a monotypic genus basal to the others, exhibits simplicillium-like anamorphs and is a hyperparasite on Ophiocordyceps sinensis (Wang et al. 2023b).

Table 4. Comparison between the asexual morphs in Samsoniella. The data generated in this study are shown in bold.

Species	Host	Synnemata (mm)	Conidiophores (µm)	Phialides	Phialides Size (µm)	Conidia (µm)	References
S. aurantia	Lepidopteran larva	25−75× 1−1.5	150 × 2−3	/	(5−)7.5(−9) × 2−3	fusiform, oval with pointed ends, (2-)2.5(-3) × 1-2	Mongkolsamrit et al. 2018
S. asiatica	Lepidopteran pupa	4-26 × 0.4-1.5	4.6-10.3 × 0.8-1.9	verticillate, in whorls of two to four, or solitary on hyphae	2.7-8.6 × 0.7-1.7, 0.6-1.1 wide at apex	fusiform or oval, 1.1–1.8 × 0.8–1.2	Wang et al. 2023a
S. cristata	Lepidopteran pupa	/	3.6-11.5 × 1.7-2.5	verticillate, in whorls of two to five, or solitary on hyphae	4.5-23.2 × 1.6-2.7, 0.5-1.1 wide at apex	fusiform or oval, 2.4–3.2 × 1.6–2.3	Wang et al. 2020
S. inthanonensis	Lepidopteran larva	/	2-3 wide	verticillate, in whorls of two to five, cylindrical basal portion	basal (4-)6.5-10(- 12) × (1-)1.5-2(3), neck (1-)2.5(-4) × 0.5-1	fusiform, (2-)3(- 3.5) × 1.5-2	Mongkolsamrit et al. 2018
S. lanmaoa	Lepidopteran pupa	/	3.8−13.3 × 1.5−2.1	verticillate, in whorls of two to six, usually solitary on hyphae	3.5-20.7 × 1.7-2.6, 0.5-1.1 wide at apex	fusiform or oval, 1.9–2.7 × 1.4–2.0	Wang et al. 2020
S. lurida	Lepidopteran pupa	1.2 × 0.2-0.35	2.3-9.1 × 1.9-2.9	verticillate, in whorls of two to five	4.2-7.3 × 1.7-2.5, 0.5-0.9 wide at apex	fusiform, 1.9-2.7 × 1.1-1.9	This study
S. pseudotortricidae	Lepidopteran pupa	/	6.6-26.5 × 1.1-2.5	verticillate, in whorls of two to five, usually solitary on hyphae	5.4-6.9 × 1.0-1.6, 0.5-0.8 wide at apex	fusiform or oval, 0.9–1.5 × 0.8–1.3	Wang et al. 2022
S. subasiatica	Lepidopteran pupa	2.8 × 0.2	3.6-7.4 × 2-3	verticillate, in whorls of two to five	4.2-6.8 × 1.8-2.4, 0.6-1.0 wide at apex	fusiform to oval, 1.9-2.9 × 1.4-1.8	This study
S. torquatistipitata	Coleopteran adult	/	4.4-18.4 × 1.7-3.9	/	6.1-10.7 × 1.8-3.5, 0.7-1.4 wide at apex	subglobose, up to 1.8-2.8 in diameter	This study
S. vallis	Lepidopteran pupa	/	11.3−22.1 × 1.3−1.4	single phialide or whorls of two to four	7.2-8.1 × 2.8-3.2	fusiform to ellipsoidal, 2.3–3.1 × 1.5–2.1	Chen et al. 2023b
S. winandae	Lepidopteran pupa and cocoon	12 × 2	/	verticillate, in whorls of two to five	5-12×2-3	ellipsoidal, 1.5−3 × 1−2	Crous et al. 2023b

In this study, we identified a moth-pathogenic species, *Akanthomyces bais-hanensis*, which exhibits the typical phialide characteristics of *Akanthomyces sensu stricto*, along with previously undescribed phialide types within this clade. Although molecular data provide precise taxonomic evidence, morphological and ecological traits remain indispensable. An integrated taxonomy approach is necessary for resolving these complex fungal groups. Furthermore, ecological features may also provide valuable insights for the identification and discovery of novel *Akanthomyces* species.

The molecular phylogeny and morphology of Samsoniella

Sexual morphs of *Samsoniella* share similarities in producing yellowish to reddish-orange, fleshy, simple to branched stromata; superficial, ovoid to fusiform perithecia; cylindrical asci with thickened apex and filiform, multiseptate, non-disarticulating ascospores (Mongkolsamrit et al. 2018). Species of this genus are indistinguishable solely based on sexual morphology. However, they can be divided into two types based on their stroma size: *Type la* includes nine species with a length of stromata more than 25 mm and is pathogenic to lepidopteran hosts (Mongkolsamrit et al. 2018; Wang et al. 2020, 2022, 2023b); *Type IIa* includes six species with a length of stromata lower than 25 mm and are pathogenic to lepidopteran and hymenopteran hosts or hyperparasitic to

Cordyceps species (Wang et al. 2020; Crous et al. 2023b) (Table 5). In this study, we introduce two new species in this group, namely, Samsoniella lurida and S. torquatistipitata, based on their sexual and asexual morphs. It is worth noting that S. torquatistipitata is pathogenic to an adult ant and has a very small, solitary, simple, reddish-orange stroma (4.4 mm in length). This is the first time to report the sexual typified species from an adult ant and contribute to the morphological diversity of Samsoniella.

The asexual morphs of *Samsoniella* have been known from 39 species. Macromorphologically, they can be categorised into two types: *Type Ib* includes 16 species which have well-developed stromata and are pathogenic to Lepidoptera, Coleoptera, Hymenoptera and *Cordyceps* sp. (Mongkolsamrit et al. 2018; Wang et al. 2020, 2022, 2023a; Chen et al. 2022, 2023b; Crous et al. 2023b; Chuang et al. 2024); *Type IIb* includes 15 species which form white colonies on the host surface and are pathogenic to Lepidoptera, Coleoptera, Hymenoptera, and spiders (Chen et al. 2020c, 2021b, 2022; Wang et al. 2020, 2022, 2024a). Our new species *S. subasiatica* was known only from its asexual morphs. This species has well-developed stroma covered with a white, powdery conidia mass, extremely resembling *S. asiatica*. However, these two species are phylogenetically distant, indicating that characteristics of asexual morphs have less taxonomic significance in interspecific demarcation.

Collectively, taxonomic inferences from phylogenetic analyses do not align with the morphological categories outlined in Table 5. The morphological plasticity of *Samsoniella* species limits their utility in taxonomy, necessitating molecular analyses for accurate species delineation (Mongkolsamrit et al. 2018). The six-locus (nrLSU+ITS+nrSSU+3P_TEF+rpb1+rpb2) phylogeny effectively resolves genetically distant species, while it struggles with closely related taxa, particularly due to the limited resolution of the ITS regions. In contrast, the four-gene (5P_TEF+3P_TEF+rpb1+MCM7, Wang et al. 2023a) dataset provides superior resolution, highlighting its importance in refining the taxonomy of *Samsoniella*.

Table 5. Morphological synopsis of Samsoniella species.

Туре	Species	Morphological characteristics	Host	References
Type la	S. antleroides, S. aurantia, S. cristata, S. inthanonensis, S. lanmaoa, S. pseudotortricidae, S. ramosa, S. sapaensis, S. tortricidae.	Stromata orange, fleshy, solitary to gregarious, simple or branched, more than 25 mm in length	Lepidoptera	Mongkolsamrit et al. 2018; Wang et al. 2020, 2022, 2023b
Type IIa	S. cardinalis, S. hepiali, S. kunmingensis, S. lurida , S. torquatistipitata, S. winandae.	Stromata orange, fleshy, solitary to gregarious, usually unbranched, less than 25 mm in length	Cordyceps sp., Lepidoptera	Wang et al. 2020; Crous et al. 2023b
Type lb	S. asiatica, S. aurantia, S. coccinellidicola, S. duyunensis, S. erucae, S. haniana, S. lasiocampidarum, S. ramosa, S. sapaensis, S. sinensis, S. subasiatica , S. tiankengensis, S. vallis, S. winandae, S. yuanzuiensis, S. yunnanensis.	Synnemata erect, terminal irregularly branched, with conidial mass at the subterminal region of synnemata, conidal mass powdery and floccose	Lepidoptera, Coleoptera, Hymenoptera, Cordyceps sp.	Mongkolsamrit et al. 2018; Wang et al. 2020, 2022, 2023a; Chen et al. 2022, 2023b; Crous et al. 2023b; Chuang et al. 2024
Type IIb	S. alpina, S. anhuiensis, S. aranea, S. coleopterorum, S. farinospora, S. formicae, S. fusiformispora, S. guizhouensis, S. hepiali, S. hymenopterorum, S. lepidopterorum, S. neopupicola, S. pupicola, S. pseudogunnii, S. sanmingense.	White colonies surround the host surface without synnemata	Lepidoptera, Coleoptera, Hymenoptera, Spider.	Chen et al. 2020c, 2021b, 2022; Wang et al. 2020, 2022, 2024a; Pu et al. 2025

Acknowledgements

We would like to thank Shaun Pennycook for checking the Latin diagnosis of the new species.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This work was supported by the National Natural Science Foundation of China (No. 31760014) and the Science and Technology Foundation of Guizhou Province (No. [2019]2451-3). Shi-Ke Huang acknowledges the Department of Education of Guizhou Province (No: [2022]310).

Author contributions

Investigation: SWX, SKH, XZ, ZHL, ZLL, YY. Resources: JCK, HGZ, ZJH, KDH. Writing - original draft: JB. Writing - review and editing: DPW, TCW, NNW, XCP.

Author ORCIDs

Jing Bu https://orcid.org/0009-0006-6861-7770

De-Ping Wei https://orcid.org/0000-0002-6576-2239

Zheng-Hui Liu https://orcid.org/0000-0001-7022-4075

Zhong-Liang Liu https://orcid.org/0009-0007-9519-1418

Ji-Chuan Kang https://orcid.org/0000-0002-6294-5793

Xing-Can Peng https://orcid.org/0000-0002-7271-7639

Zhang-Jiang He https://orcid.org/0000-0002-7120-1227

Shi-Ke Huang https://orcid.org/0000-0002-2936-396X

Xian Zhang https://orcid.org/0009-0008-0919-4303

Kevin D. Hyde https://orcid.org/0000-0002-2191-0762

Nalin N. Wijayawardene https://orcid.org/0000-0003-0522-5498

Ting-Chi Wen https://orcid.org/0000-0003-1744-5869

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information.

References

Aini AN, Mongkolsamrit S, Wijanarka W, Thanakitpipattana D, Luangsa-ard JJ, Budiharjo A (2020) Diversity of *Akanthomyces* on moths (Lepidoptera) in Thailand. MycoKeys 71: 1–22. https://doi.org/10.3897/mycokeys.71.55126

Alves VCS, Lira RA, Lima JMS, Barbosa RN, Bento DM, Barbier E, Bernard E, Souza-Motta CM, Bezerra JDP (2022) Unravelling the fungal darkness in a tropical cave: Richness

- and the description of one new genus and six new species. Fungal Systematics and Evolution 10(1): 139–167. https://doi.org/10.3114/fuse.2022.10.06
- Araújo JPM, Lebert BM, Vermeulen S, Brachmann A, Ohm RA, Evans HC, de Bekker C (2022) Masters of the manipulator: Two new hypocrealean genera, *Niveomyces* (Cordycipitaceae) and *Torrubiellomyces* (Ophiocordycipitaceae), parasitic on the zombie ant fungus *Ophiocordyceps camponoti-floridani*. Persoonia 49(1): 171–194. https://doi.org/10.3767/persoonia.2022.49.05
- Bischoff JF, Rehner SA, Humber RA (2006) *Metarhizium frigidum* sp. nov.: A cryptic species of *M. anisopliae* and a member of the *M. flavoviride* complex. Mycologia 98(5): 737–745. https://doi.org/10.1080/15572536.2006.11832645
- Boudier E (1885) Note sur un nouveau genre et quelques nouvelles especes des Pyrenomycetes. Revue Mycologique Toulouse 7: 224–227.
- Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15): 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
- Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004) Multigene phylogeny reveals new lineage for *Stachybotrys chartarum*, the indoor air fungus. Mycological Research 108(8): 864–872. https://doi.org/10.1017/S0953756204000607
- Chen MJ, Huang B, Li ZZ, Spatafora JW (2013) Morphological and genetic characterisation of *Beauveria sinensis* sp. nov. from China. Mycotaxon 124(1): 301–308. https://doi.org/10.5248/124.301
- Chen WH, Han YF, Liang ZQ, Jin D (2017) *Lecanicillium araneogenum* sp. nov., a new araneogenous fungus. Phytotaxa 305(1): 29–34. https://doi.org/10.11646/phytotaxa.305.1.4
- Chen WH, Liu C, Han YF, Liang JD, Liang ZQ (2018) *Akanthomyces araneogenum*, a new Isaria-like araneogenous species. Phytotaxa 379(1): 66–72. https://doi.org/10.11646/phytotaxa.379.1.6
- Chen WH, Liu C, Han YF, Liang JD, Tian WY, Liang ZQ (2019) *Akanthomyces araneicola*, a new araneogenous species from Southwest China. Phytotaxa 409(4): 227–232. https://doi.org/10.11646/phytotaxa.409.4.5
- Chen WH, Han YF, Liang JD, Liang ZQ (2020a) *Akanthomyces lepidopterorum*, a new lecanicillium-like species. Phytotaxa 459(2): 117–123. https://doi.org/10.11646/phytotaxa.459.2.3
- Chen WH, Han YF, Liang JD, Liang ZQ (2020b) *Akanthomyces neocoleopterorum*, a new *verticillium*-like species. Phytotaxa 432(2): 119–124. https://doi.org/10.11646/phytotaxa.432.2.2
- Chen WH, Han YF, Liang JD, Tian WY, Liang ZQ (2020c) Morphological and phylogenetic characterisations reveal three new species of *Samsoniella* (Cordycipitaceae, Hypocreales) from Guizhou, China. MycoKeys 74: 1–15. https://doi.org/10.3897/mycokeys.74.56655
- Chen WH, Han YF, Liang JD, Tian WY, Liang ZQ (2021a) Multi-gene phylogenetic evidence indicates that *Pleurodesmospora* belongs in Cordycipitaceae (Hypocreales, Hypocreomycetidae) and *Pleurodesmospora* lepidopterorum sp. nov. on pupa from China. MycoKeys 80: 45–55. https://doi.org/10.3897/mycokeys.80.66794
- Chen WH, Liang J, Ren X, Zhao J, Han Y, Liang ZQ (2021b) Cryptic diversity of *Isaria*-like species in Guizhou, China. Life 11(10): 1093. https://doi.org/10.3390/life11101093
- Chen WH, Liang JD, Ren XX, Zhao JH, Han YF, Liang ZQ (2022) Species diversity of *Cordyceps*-like fungi in the Tiankeng Karst region of China. Microbiology Spectrum 10: e01975–e22. https://doi.org/10.1128/spectrum.01975-22

- Chen WH, Liang JD, Ren XX, Zhao JH, Han YF (2023a) Study on species diversity of *Akanthomyces* (Cordycipitaceae, Hypocreales) in the Jinyun Mountains, Chongqing, China. MycoKeys 98: 299–315. https://doi.org/10.3897/mycokeys.98.106415
- Chen WH, Liang JD, Ren XX, Zhao JH, Han YF (2023b) Two new species of *Samsoniella* (Cordycipitaceae, Hypocreales) from the Mayao River Valley, Guizhou, China. MycoKeys 99: 209–226. https://doi.org/10.3897/mycokeys.99.109961
- Chen WH, Li D, Shu HL, Liang JD, Zhao JH, Tian WY, Han YF (2025) Four new araneogenous species and a new genus in Hypocreales (Clavicipitaceae, Cordycipitaceae) from the karst region of China. MycoKeys 112: 335–359. https://doi.org/10.3897/mycokeys.112.140799
- Chiriví-Salomón JS, Danies G, Restrepo S, Sanjuan T (2015) *Lecanicillium sabanense* sp. nov.(Cordycipitaceae) a new fungal entomopathogen of coccids. Phytotaxa 234(1): 63–74. https://doi.org/10.11646/phytotaxa.234.1.4
- Chuang WY, Lin YC, Shrestha B, Luangsa-ard JJ, Stadler M, Tzean SS, Wu S, Ko CC, Hsieh SY, Wu ML, Wang SC, Shen TL, Ariyawansa HA (2024) Phylogenetic diversity and morphological characterization of cordycipitaceous species in Taiwan. Studies in Mycology 109(1): 1–56. https://doi.org/10.3114/sim.2024.109.01
- Clewley JP (1995) Macintosh sequence analysis software: DNAStar's LaserGene. Molecular Biotechnology 3: 221–224. https://doi.org/10.1007/BF02789332
- Crous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Abell SE, Marney TS, Danteswari C, Darmostuk V, Denchev CM, Denchev TT, Etayo J, Gené J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Pitek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bogacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral H-O, Baturo-Cieniewska A, Begerow D, Beja-Pereira A, Bianchinotti MV, Bilaski P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, Desilva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorský A, Pusz W, Raza M, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, Liwa L, Smith ME, Stefenon VM, Strašiftáková D, Suwannarach N, Szczepaska K, Telleria MT, Tennakoon DS, Thines M, Thorn RG, Urbaniak J, Vandervegte M, Vasan V, Vila-Viçosa C, Voglmayr H, Wrzosek M, Zappelini J, Groenewald JZ (2023a) Fungal Planet description sheets: 1550-1613. Persoonia 51(1): 280-417. https://doi.org/10.3767/persoonia.2023.51.08
- Crous PW, Osieck ER, Shivas RG, Tan YP, Bishop-Hurley SL, Esteve-Raventós F, Larsson E, Luangsa-ard JJ, Pancorbo F, Balashov S, Baseia IG, Boekhout T, Chandranayaka S, Cowan DA, Cruz RHSF, Czachura P, De La Peña-Lastra S, Dovana F, Drury B, Fell J, Flakus A, Fotedar R, Jurjević Ž, Kolecka A, Mack J, Maggs-Kölling G, Mahadevakumar S, Mateos A, Mongkolsamrit S, Noisripoom W, Plaza M, Overy DP, Pitek M, Sandoval-Denis M, Vauras J, Wingfield MJ, Abell SE, Ahmadpour A, Akulov A, Alavi F, Alavi Z, Altés A, Alvarado P, Anand G, Ashtekar N, Assyov B, Banc-Prandi G, Barbosa KD, Barreto GG, Bellanger JM, Bezerra JL, Bhat DJ, Bilański P, Bose T, Bozok F, Chaves J, Costa-Rezende DH., Danteswari C, Darmostuk V, Delgado G, Denman S, Eichmeier A, Etayo J, Eyssartier G, Faulwetter S, Ganga KGG, Ghosta Y, Goh J, Góis JS, Gramaje D, Granit L, Groenewald M, Gulden G, Gusmão LFP, Hammerbacher A, Heidarian Z, Hywel-Jones N, Jankowiak R, Kaliyaperumal M,

Kaygusuz O, Kezo K, Khonsanit A, Kumar S, Kuo CH, Laessøe T, Latha KPD, Loizides M, Luo SM, Maciá-Vicente JG, Manimohan P, Marbach PAS, Marinho P, Marney TS., Marques G, Martín MP, Miller AN, Mondello F, Moreno G, Mufeeda KT, Mun HY, Nau T, Nkomo T, Okrasińska A, Oliveira JPAF, Oliveira RL, Ortiz DA, Pawłowska J, Pérez-De-Gregorio MA, Podile AR, Portugal A, Privitera N, Rajeshkumar KC, Rauf I, Rian B, Rigueiro-Rodríguez A, Rivas-Torres GF, Rodriguez-Flakus P, Romero-Gordillo M, Saar I, Saba M, Santos CD, Sarma PVSRN, Siquier JL, Sleiman S, Spetik M, Sridhar KR, Stryjak-Bogacka M, Szczepańska K, Taşikn H, Tennakoon DS, Thanakitpipattana D, Trovão J., Türkekul A, Van Iperen AL, Van T Hof P, Vasquez G, Visagie CM, Wingfield BD, Wong PTW, Yang WX, Yarar M, Yarden O, Yilmaz N, Zhang N, Zhu YN, Groenewald JZ (2023b) Fungal Planet description sheets: 1478–1549. Persoonia 50(1): 158–310. https://doi.org/10.3767/persoonia.2023.50.05

- Custódio FA, Pereira OL (2024) New treasures in Cordycipitaceae: Fungicolous fungi associated with *Pseudocercospora fijiensis* and *P. musae* in Brazil, including *Matutinistella* gen. nov. Fungal Systematics and Evolution 15(1): 133–152. https://doi.org/10.3114/fuse.2025.15.06
- Flakus A, Etayo J, Miadlikowska J, Lutzoni F, Kukwa M, Matura N, Rodriguez-Flakus P (2019) Biodiversity assessment of ascomycetes inhabiting *Lobariella* lichens in Andean cloud forests led to one new family, three new genera and 13 new species of lichenicolous fungi. Plant and Fungal Systematics 64(2): 283–344. https://doi.org/10.2478/pfs-2019-0022
- Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
- Guerra-Mateo D, Gené J, Baulin V, Cano-Lira JF (2023) Phylogeny and taxonomy of the genus *Amphichorda* (Bionectriaceae): An Update on *Beauveria*-like Strains and Description of a Novel Species from Marine Sediments. Diversity 15(7): 795. https://doi.org/10.3390/d15070795
- Hall T, Biosciences I, Carlsbad C (2011) BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences 2(1): 60–61.
- Hyde KD, Noorabadi MT, Thiyagaraja V, He MQ, Johnston PR, Wijesinghe SN, Armand A, Biketova AY, Chethana KWT, Erdoğdu M, Ge ZW, Groenewald JZ, Hongsanan S, Kušan I, Leontyev DV, Li DW, Lin CG, Liu NG, Maharachchikumbura SSN, Matočec N, May TW, McKenzie EHC, Mešić A, Perera RH, Phukhamsakda C, Piątek M, Samarakoon MC, Selcuk F, Senanayake IC, Tanney JB, Tian Q, Vizzini A, Wanasinghe DN, Wannasawang N, Wijayawardene NN, Zhao RL, Abdel-Wahab MA, Abdollahzadeh J, Abeywickrama PD, Abhinav, Absalan S, Acharya K, Afshari N, Afshan NS, Afzalinia S, Ahmadpour SA, Akulov O, Alizadeh A, Alizadeh M, Al-Sadi AM, Alves A, Alves VCS, Alves-Silva G, Antonín V, Aouali S, Aptroot A, Apurillo CCS, Arias RM, Asgari, B, Asghari R, Assis DMA, Assyov B, Atienza V, Aumentado HDR, Avasthi S, Azevedo E, Bakhshi M, Bao DF, Baral HO, Barata M, Barbosa KD, Barbosa RN, Barbosa FR, Baroncelli R, Barreto GG, Baschien C, Bennett RM, Bera I, Bezerra JDP, Bhunjun CS, Bianchinotti MV, Błaszkowski J, Boekhout T, Bonito GM, Boonmee S, Boonyuen N, Bortnikov FM, Bregant C, Bundhun D, Burgaud G, Buyck B, Caeiro MF, Cabarroi-Hernández M, Cai M Feng, Cai L, Calabon MS, Calaça FJS, Callalli M, Câmara MPS, Cano-Lira J, Cao B, 5162 Carlavilla JR, Carvalho A, Carvalho TG, Castañeda-Ruiz RF, Catania MDV, Cazabonne J, Cedeño-Sanchez M, Chaharmiri-Dokhaharani S, Chaiwan N, Chakraborty N, Cheewankoon R, Chen C, Chen J, Chen Q, Chen YP, Chinaglia S, Coelho-Nascimento CC, Coleine C, CostaRezende DH, Cortés-Pérez A, Crouch, JA, Crous PW, Cruz RHSF, Czachura P, Damm U, Darmostuk V, Daroodi Z, Das K, Das K, Davoodian N, Davydov EA, da Silva GA, da Silva IR, da Silva RMF, da Silva Santos AC, Dai DQ, Dai YC, de Groot Michiel

D, De Kesel A, De Lange R, de Medeiros EV, de Souza CFA, de Souza FA, dela Cruz TEE, Decock C, Delgado G, Denchev CM, Denchev TT, Deng YL, Dentinger BTM, Devadatha B, Dianese JC, Dima B, Doilom M, Dissanayake AJ, Dissanayake DMLS, Dissanayake LS, Diniz AG, Dolatabadi S, Dong JH, Dong W, Dong ZY, Drechsler-Santos ER, Druzhinina IS, Du TY, Dubey MK, Dutta AK, Elliott TF, Elshahed MS, Egidi E, Eisvand P, Fan L, Fan X, Fan XL, Fedosova AG, Ferro LO, Fiuza PO, Flakus A, W. Fonseca EO, Fryar SC, Gabaldón T, Gajanayake AJ, Gannibal PB, Gao F, GarcíaSánchez D, García-Sandoval R, Garrido-Benavent I, Garzoli L, Gasca-Pineda J, Gautam AK, Gené J, Ghobad-Nejhad M, Ghosh A, Giachini AJ, Gibertoni TB, Gentekaki E, Gmoshinskiy VI, GóesNeto A, Gomdola D, Gorjón SP, Goto BT, Granados-Montero MM, Griffith GW, Groenewald M, Grossart H-P, Gu ZR, Gueidan C, Gunarathne A, Gunaseelan S, Guo SL, Gusmão LFP, Gutierrez AC, Guzmán-Dávalos L, Haelewaters D, Haituk H, Halling RE, He SC, Heredia G, HernándezRestrepo M, Hosoya T, Hoog SD, Horak E, Hou CL, Houbraken J, Htet ZH, Huang SK, Huang WJ, Hurdeal VG, Hustad VP, Inácio CA, Janik P, Jayalal RGU, Jayasiri SC, Jayawardena RS, Jeewon R, Jerônimo GH, Jin J, Jones EBG, Joshi Y, Jurjević Ž, Justo A, Kakishima M, Kaliyaperumal M, Kang GP, Kang JC, Karimi O, Karunarathna SC, Karpov SA, Kezo K, Khalid AN, Khan MK, Khuna S, Khyaju S, Kirchmair M, Klawonn I, Kraisitudomsook N, Kukwa M, Kularathnage ND, Kumar S, Lachance MA, Lado C, Latha KPD, Lee HB, Leonardi M, Lestari AS, Li C, Li H. Li J, Li Q, Li Y, Li YC, Li YX, Liao CF, Lima JLR, Lima JMS, Lima NB, Lin L, Linaldeddu BT, Linn MM, Liu F, Liu JK, Liu JW, Liu S, Liu SL, Liu XF, Liu XY, Longcore JE, Luangharn T, Luangsa-ard JJ, Lu L, Lu YZ, Lumbsch HT, Luo L, Luo M, Luo ZL, Ma J, Madagammana AD, Madhushan A, Madrid H, Magurno F, Magyar D, Mahadevakumar S, Malosso E, Malysh JM, Mamarabadi M, Manawasinghe IS, Manfrino RG, Manimohan P, Mao N, Mapook A, Marchese P, Marasinghe DS, Mardones M, Marin-Felix Y, Masigol H, Mehrabi M, MehrabiKoushki M, Meiras-Ottoni A de, Melo RFR, Mendes-Alvarenga RL, Mendieta S, Meng QF, Menkis A, Menolli Jr N, Mikšík M, Miller SL, Moncada B, Moncalvo JM, Monteiro JS, Monteiro M, Mora-Montes HM, Moroz EL, Moura JC, Muhammad U, Mukhopadhyay S, Nagy GL, Najam ul Sehar A, Najafiniya M, Nanayakkara CM, Naseer A, Nascimento ECR, Nascimento SS, Neuhauser S, Neves MA, Niazi AR, Nie Yong, Nilsson RH, Nogueira PTS, Novozhilov YK, Noordeloos M, Norphanphoun C, Nuñez Otaño N, O'Donnell RP, Oehl F, Oliveira JA, Oliveira Junior I, Oliveira NVL, Oliveira PHF, Orihara T, Oset M, Pang KL, Papp V, Pathirana LS, Peintner U, Pem D, Pereira OL, Pérez-Moreno J, Pérez-Ortega S, Péter G, Pires-Zottarelli CLA, Phonemany M, Phongeun S, Pošta A, Prazeres JFSA, Quan Y, Quandt CA, Queiroz MB, Radek R, Rahnama K, Raj KNA, Rajeshkumar KC, Rajwar Soumyadeep, Ralaiveloarisoa AB, Rämä T, Ramírez-Cruz V, Rambold G, Rathnayaka AR, Raza M, Ren GC, Rinaldi AC, Rivas-Ferreiro M, Robledo GL, Ronikier A, Rossi W, Rusevska K, Ryberg M, Safi A, Salimi F, Salvador-Montoya CA, Samant B, Samaradiwakara NP, Sánchez-Castro I, Sandoval-Denis M, Santiago ALCMA, Santos ACDS, Santos LA dos, Sarma VV, Sarwar S. Savchenko A, Savchenko K, Saxena RK, Schoutteten N, Selbmann L, Ševčíková H, Sharma A, Shen HW, Shen YM, Shu YX, Silva HF, Silva-Filho AGS, Silva VSH, Simmons DR, Singh R, Sir EB, Sohrabi M, Souza FA, Souza-Motta CM, Sriindrasutdhi V, Sruthi OP, Stadler M, Stemler J, Stephenson SL, Stoyneva-Gaertner MP, Strassert JFH, Stryjak-Bogacka M, Su H, Sun YR, Svantesson S, Sysouphanthong P, Takamatsu S, Tan TH, Tanaka K, Tang C, Tang X, Taylor JE, Taylor PWJ, Tennakoon DS, Thakshila SAD, Thambugala KM, Thamodini GK, Thilanga D, Thines M, Tiago PV, Tian XG, Tian WH, Tibpromma S, Tkalčec Z, Tokarev YS, Tomšovský M, Torruella G, Tsurykau A, Udayanga D, Ulukapi M, Untereiner WA, Usman M, Uzunov BA, Vadthanarat S, Valenzuela R, Van den Wyngaert S, Van Vooren N, Velez P, Verma RK, Vieira LC Vieira WAS, Vinzelj JM, Tang AMC, Walker A, Walker AK, Wang QM, Wang Y, Wang XY, Wang ZY, Wannathes N, Wartchow F, Weerakoon G, Wei DP, Wei X,

- White JF, Wijesundara DSA, Wisitrassameewong K, Worobiec G, Wu HX, Wu N, Xiong YR, Xu B, Xu JP, Xu R, Xu RF, Xu RJ, Yadav S, Yakovchenko LS, Yang HD, Yang X, Yang YH, Yang Y, Yang YY, Yoshioka R, Youssef Noha H, Yu FM, Yu ZF, Yuan LL, Yuan Q, Zabin DA, Zamora JC, Zapata CV, Zare R, Zeng M, Zeng XY, Zhang JF, Zhang JY, Zhang S, Zhang XC, Zhao CL, Zhao H, Zhao Q, Zhao H, Zhao HJ, Zhou HM, Zhu XY, Zmitrovich IV, Zucconi L, Zvyagina E (2024) The 2024 Outline of Fungi and fungus-like taxa. Mycosphere 15(1): 5146–6239. https://doi.org/10.5943/mycosphere/15/1/25
- Imoulan A, Wu HJ, Lu WL, Li Y, Li BB, Yang RH, Wang WJ, Wang XL, Kirk PM, Yao YJ (2016) *Beauveria medogensis* sp. nov., a new fungus of the entomopathogenic genus from China. Journal of Invertebrate Pathology 139: 74–81. https://doi.org/10.1016/j.jip.2016.07.006
- Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. Mycosphere: Journal of Fungal Biology 7(11): 1669–1677. https://doi.org/10.5943/mycosphere/7/11/4
- Kepler RM, Luangsa-ard JJ, Hywel-Jones NL, Quandt CA, Sung G-H, Rehner SA, Aime MC, Henkel TW, Sanjuan T, Zare R, Chen M, Li Z, Rossman AY, Spatafora JW, Shrestha B (2017) A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8(2): 335–353. https://doi.org/10.5598/imafungus.2017.08.02.08
- Khonsanit A, Thanakitpipattana D, Mongkolsamrit S, Kobmoo N, Phosrithong N, Samson RA, Crous PW, Luangsa-ard JJ (2024) A phylogenetic assessment of *Akanthomyces sensu lato* in Cordycipitaceae (Hypocreales, Sordariomycetes): Introduction of new genera, and the resurrection of *Lecanicillium*. Fungal Systematics and Evolution 14(1): 271–305. https://doi.org/10.3114/fuse.2024.14.17
- Kobmoo N, Tasanathai K, Araújo JPM, Noisripoom W, Thanakitpipattana D, Mongkolsamrit S, Himaman W, Houbraken J, Luangsa-Ard JJ (2023) New mycoparasitic species in the genera *Niveomyces* and *Pseudoniveomyces* gen. nov. (Hypocreales: Cordycipitaceae), with sporothrix-like asexual morphs, from Thailand. Fungal Systematics and Evolution 12(1): 91–110. https://doi.org/10.3114/fuse.2023.12.07
- Larsson A (2014) AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30(22): 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
- Lebert H (1858) Ueber einige neue oder unvollkommen gekannte Krankheiten der Insekten, welche durch Entwicklung niederer Pflanzen im lebenden Körper enstehen. Zeitschrift für Wissenschaftliche Zoologie 9: 439–453.
- Liu SL, Wang XW, Li GJ, Deng CY, Rossi W, Leonardi M, Liimatainen K, Kekki T, Niskanen T, Smith ME, Ammirati J, Bojantchev D, Abdel-Wahab MA, Zhang M, Tian EJ, Lu YZ, Zhang JY, Ma J, Dutta AK, Acharya K, Du TY, Xu J, Kim JS, Lim YW, Gerlach A, Zeng NK, Han YX, Razaghi P, Raza M, Cai L, Calabon MS, Jones EBG, Saha R, Kumar TKA, Krishnapriya K, Thomas A, Kaliyaperumal M, Kezo K, Gunaseelan S, Singh SK, Singh PN, Lagashhetti AC, Pawar KS, Jiang SH, Zhang C, Zhang H, Qing Y, Bau T, Peng XC, Wen TC, Ramirez NA, Niveiro N, Li MX, Yang ZL, Wu G, Tarafder E, Tennakoon DS, Kuo CH, Silva TM, Souza-Motta CM, Bezarra JDP, He G, Ji XH, Suwannarach N, Kumla J, Lumyong S, Wannathes N, Rana S, Hyde KD, Zhou LW (2024) Fungal diversity notes. 1717–1817: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 124(1): 1–216. https://doi.org/10.1007/s13225-023-00529-0
- Maharachchikumbura SSN, Chen Y, Ariyawansa HA, Hyde KD, Haelewaters D, Perera RH, Samarakoon MC, Wanasinghe DN, Bustamante DE, Liu J, Lawrence DP, Cheewangkoon R, Stadler M (2021) Integrative approaches for species delimitation in Ascomycota. Fungal Diversity 109(1): 155–179. https://doi.org/10.1007/s13225-021-00486-6

- Mains EB (1950) Entomogenous Species of *Akanthomyces*, *Hymenostilbe* and *Insecticola* in North America. Mycologia 42(4): 566–589. https://doi.org/10.1080/0027551 4.1950.12017861
- Manfrino R, Gutierrez A, Diez Del Valle F, Schuster C, Ben Gharsa H, López Lastra C, Leclerque A (2022) First Description of *Akanthomyces uredinophilus* comb. nov. from Hemipteran Insects in America. Diversity 14(12): 1118. https://doi.org/10.3390/d14121118
- Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution 37(5): 1530–1534. https://doi.org/10.1093/molbev/msaa015
- Mongkolsamrit S, Noisripoom W, Thanakitpipattana D, Wutikhun T, Spatafora JW, Luangsa-ard JJ (2018) Disentangling cryptic species with *isaria*-like morphs in Cordycipitaceae. Mycologia 110(1): 230–257. https://doi.org/10.1080/00275514.2018.1446651
- Mongkolsamrit S, Noisripoom W, Tasanathai K, Khonsanit A, Thanakitpipattana D, Himaman W, Kobmoo N, Luangsa-ard JJ (2020) Molecular phylogeny and morphology reveal cryptic species in *Blackwellomyces* and *Cordyceps* (Cordycipitaceae) from Thailand. Mycological Progress 19(9): 957–983. https://doi.org/10.1007/s11557-020-01615-2
- Mongkolsamrit S, Noisripoom W, Pumiputikul S, Boonlarppradab C, Samson RA, Stadler M, Becker K, Luangsa-ard JJ (2021) *Ophiocordyceps flavida* sp. nov. (Ophiocordycipitaceae), a new species from Thailand associated with *Pseudogibellula formicarum* (Cordycipitaceae), and their bioactive secondary metabolites. Mycological Progress 20(4): 477–492. https://doi.org/10.1007/s11557-021-01683-y
- Mongkolsamrit S, Noisripoom W, Tasanathai K, Kobmoo N, Thanakitpipattana D, Khonsanit A, Petcharad B, Sakolrak B, Himaman W (2022) Comprehensive treatise of *Hevansia* and three new genera *Jenniferia*, *Parahevansia* and *Polystromomyces* on spiders in Cordycipitaceae from Thailand. MycoKeys 91: 113–149. https://doi.org/10.3897/mycokeys.91.83091
- Mongkolsamrit S, Sandargo B, Ebada SS, Noisripoom W, Jaiyen S, Luangsa-ard JJ, Stadler M (2023) *Bhushaniella* gen. nov. (Cordycipitaceae) on spider eggs sac: A new genus from Thailand and its bioactive secondary metabolites. Mycological Progress 22(9): 64. https://doi.org/10.1007/s11557-023-01915-3
- Nuin P (2007) MrMTgui. v 1.0. MrModelTest/ModelTest Graphical interface for Windows/Linux.
- Nylander J (2004) MrModeltest Version 2. Program distributed by the author. https://github.com/nylander/MrModeltest2
- Pu HL, Yang J, Keyhani NO, Yang LX, Zheng MH, Qiu CH, Mao YC, Shang JY, Lin YS, Xiong CJ, Lin LB, Lai PY, Huang YB, Yuan X, Liang HL, Fan LF, Ma XL, Qiu CJ, Qiu JZ (2025) Molecular phylogenetics and estimation of evolutionary divergence and biogeography of the family Cordycipitaceae (Ascomycota, Hypocreales). Journal of Fungi 11(1): 1–29. https://doi.org/10.3390/jof11010028
- Rambaut A (2016) FigTree version 1.4. 0. http://tree.bio.ed.ac.uk/software/figtree [Accessed 11 Sep. 2023]
- Rehner SA, Buckley E (2005) A *Beauveria* phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to *Cordyceps* teleomorphs. Mycologia 97(1): 84–98. https://doi.org/10.3852/mycologia.97.1.84
- Rehner SA, Minnis AM, Sung GH, Luangsa-ard JJ, Devotto L, Humber RA (2011) Phylogeny and systematics of the anamorphic, entomopathogenic genus *Beauveria*. Mycologia 103(5): 1055–1073. https://doi.org/10.3852/10-302

- Samson RA, Gams W (1980) *Pleuurodesmospora*, a new genus for the entomogenous hyphomycete gonatorrhodiella coccorum. Persoonia 11(1): 65–69.
- Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-Sackett E, Kalb K, Nelsen MP, Nelson NA, Rivas-Plata E, Shimp AD, Widhelm T, Lumbsch HT (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23(1): 35–40. https://doi.org/10.3767/003158509X470602
- Shrestha B, Kubátová A, Tanaka E, Oh J, Yoon DH, Sung JM, Sung GH (2019) Spider-pathogenic fungi within Hypocreales (Ascomycota): Their current nomenclature, diversity, and distribution. Mycological Progress 18(8): 983–1003. https://doi.org/10.1007/s11557-019-01512-3
- Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White Jr J (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Molecular Ecology 16(8): 1701–1711. https://doi.org/10.1111/j.1365-294X.2007.03225.x
- Sung GH, Spatafora JW, Zare R, Hodge KT, Gams W (2001) A revision of *Verticillium* sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. Nova Hedwigia 72(3–4): 311–328. https://doi.org/10.1127/nova.hedwigia/72/2001/311
- Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi. Studies in Mycology 57: 5–59. https://doi.org/10.3114/sim.2007.57.01
- Tan YP, Shivas R (2023) Nomenclatural novelties. Index of Australian Fungi 15:1–11. https://doi.org/10.5281/zenodo.8327643
- Tan YP, Shivas R (2024) Nomenclatural novelties. Index of Australian Fungi 49: 1–16. https://doi.org/10.5281/zenodo.14561830
- Thanakitpipattana D, Tasanathai K, Mongkolsamrit S, Khonsanit A, Lamlertthon S, Luangsa-ard JJ (2020) Fungal pathogens occurring on *Orthopterida* in Thailand. Persoonia 44(1): 140–160. https://doi.org/10.3767/persoonia.2020.44.06
- Thanakitpipattana D, Mongkolsamrit S, Khonsanit A, Himaman W, Luangsa-ard JJ, Pornputtapong N (2022) Is *Hyperdermium* congeneric with *Ascopolyporus*? Phylogenetic relationships of *Ascopolyporus* spp. (Cordycipitaceae, Hypocreales) and a new genus *Neohyperdermium* on scale insects in Thailand. Journal of Fungi 8(5): 516. https://doi.org/10.3390/jof8050516
- Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27(2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
- Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
- Vinit K, Doilom M, Wanasinghe DN, Bhat DJ, Brahmanage RS, Jeewon R, Xiao Y, Hyde KD (2018) Phylogenetic placement of *Akanthomyces muscarius*, a new endophyte record from *Nypa fruticans* in Thailand. Current Research in Environmental & Applied Mycology 8(3): 404–417. https://doi.org/10.5943/cream/8/3/10
- Voigt K, Wöstemeyer J (2000) Reliable amplification of actin genes facilitates deep-level phylogeny. Microbiological Research 155(3): 179–195. https://doi.org/10.1016/ S0944-5013(00)80031-2
- Voigt K, Cigelnik E, O'donnell K (1999) Phylogeny and PCR identification of clinically important Zygomycetes based on nuclear ribosomal-DNA sequence data. Journal of Clinical Microbiology 37(12): 3957–3964. https://doi.org/10.1128/JCM.37.12.3957-3964.1999

- Wang YB, Wang Y, Fan Q, Duan DE, Zhang GD, Dai RQ, Dai YD, Zeng WB, Chen ZH, Li DD, Tang DX, Xu ZH, Sun T, Nguyen TT, Tran NL, Dao VM, Zhang CM, Huang LD, Liu YJ, Zhang XM, Yang DR, Sanjuan T, Liu XZ, Yang ZL, Yu H (2020) Multigene phylogeny of the family Cordycipitaceae (Hypocreales): New taxa and the new systematic position of the Chinese cordycipitoid fungus *Paecilomyces hepiali*. Fungal Diversity 103: 1–46. https://doi.org/10.1007/s13225-020-00457-3
- Wang ZQ, Wang Y, Dong Q, Fan Q, Dao VM, Yu H (2022) Morphological and phylogenetic characterization reveals five new species of *Samsoniella* (Cordycipitaceae, Hypocreales). Journal of Fungi 8(7): 747. https://doi.org/10.3390/jof8070747
- Wang Y, Wang ZQ, Thanarut C, Dao VM, Wang YB, Yu H (2023a) Phylogeny and species delimitations in the economically, medically, and ecologically important genus *Samsoniella* (Cordycipitaceae, Hypocreales). MycoKeys 99: 227–250. https://doi.org/10.3897/mycokeys.99.106474
- Wang YH, Wang WJ, Wang K, Dong CH, Hao JR, Kirk PM, Yao YJ (2023b) *Akanthomyces zaquensis* (Cordycipitaceae, Hypocreales), a new species isolated from both the stroma and the sclerotium of *Ophiocordyceps sinensis* in Qinghai, China. Phytotaxa 579(3): 198–208. https://doi.org/10.11646/phytotaxa.579.3.5
- Wang T, Li J, Chang X, Li Z, Hywel-Jones NL, Huang B, Chen M (2024a) Morphology and multigene phylogeny reveal three new species of *Samsoniella* (Cordycipitaceae, Hypocreales) from spiders in China. MycoKeys 101: 329–346. https://doi.org/10.3897/mycokeys.101.111882
- Wang Y, Wang ZQ, Luo R, Souvanhnachit S, Thanarut C, Dao VM, Yu H (2024b) Species diversity and major host/substrate associations of the genus *Akanthomyces* (Hypocreales, Cordycipitaceae). MycoKeys 101: 113–141. https://doi.org/10.3897/mycokeys.101.109751
- Wei DP, Wanasinghe DN, Hyde KD, Mortimer PE, Xu J, Xiao YP, Bhunjun CS, To-anun C (2019) The genus *Simplicillium*. MycoKeys 60: 69–92. https://doi.org/10.3897/my-cokeys.60.38040
- Wei DP, Wanasinghe DN, Xu JC, To-Anun C, Mortimer PE, Hyde KD, Elgorban AM, Madawala S, Suwannarach N, Karunarathna SC, Tibpromma S, Lumyong S (2021) Three Novel Entomopathogenic Fungi From China and Thailand. Frontiers in Microbiology 11: e608991. https://doi.org/10.3389/fmicb.2020.608991
- Wei DP, Gentekaki E, Wanasinghe DN, Tang SM, Hyde KD (2022) Diversity, molecular dating and ancestral characters state reconstruction of entomopathogenic fungi in Hypocreales. Mycosphere 13(2): 281–351. https://doi.org/10.5943/mycosphere/si/1f/8
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Yeh YW, Huang YM, Hsieh CM, Kirschner R (2021) *Pleurodesmospora acaricola* sp. nov. and a new record of *Pleurodesmospora coccorum* (Cordycipitaceae, Ascomycota) in Taiwan. Taiwania 66(4): 517–525. https://doi.org/10.6165/tai.2021.66.517
- Zare R, Gams W (2016) More white *verticillium*-like anamorphs with erect conidiophores. Mycological Progress 15(10):993–1030. https://doi.org/10.1007/s11557-016-1214-8
- Zhang ZF, Liu F, Zhou X, Liu XZ, Liu SJ, Cai L (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39(1): 1–31. https://doi.org/10.3767/persoonia.2017.39.01
- Zhang ZF, Zhou SY, Eurwilaichitr L, Ingsriswang S, Raza M, Chen Q, Zhao P, Liu F, Cai L (2021) Culturable mycobiota from Karst caves in China II, with descriptions of 33 new species. Fungal Diversity 106: 29–136. https://doi.org/10.1007/s13225-020-00453-7

Zhang X, Fu Z, Lu F, Song J, Zhao C (2024) Morphological characteristics and phylogenetic analyses revealed a new invertebrate-pathogenic fungus *Akanthomyces bannaensis* (Cordycipitaceae, Ascomycota), in China. Phytotaxa 666(1): 17–30. https://doi.org/10.11646/phytotaxa.666.1.2

Supplementary material 1

Alignment of Cordycipitaceae tree-six locus

Authors: Jing Bu Data type: fas

Explanation note: The alignment of Cordycipitaceae tree that based on six locus (nrLSU, ITS, nrSSU, tef-1a, rpb1 and rpb2).

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.116.147006.suppl1

Supplementary material 2

Alignment of Samsoniella tree-five locus

Authors: Jing Bu Data type: fas

Explanation note: The alignment of Samsoniella tree based on five locus (nrLSU, nrSSU, tef-1a, rpb1 and rpb2).

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.116.147006.suppl2

Supplementary material 3

Legend for supplementary figures of single gene tree

Authors: Jing Bu Data type: docx

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.116.147006.suppl3