

Datasets and Preprocessing

- Facial Expression Dataset: 35887 images belonging to 7 different classes
- MirFlickr25k: 25000 images without a specific class
- Preprocessing:
 - Image resized to (160,160,3) in order to fit *FaceNet* input size
 - Creation of a *validation set* from the *training set* using 20% as *validation_split* (used in fine-tuning step)
 - Images normalization in the interval [-1,1] using mobilenet_v2.preprocess_input function to fit FaceNet expected inputs

CLASS	TRAINING SET	PUBLIC TEST SET	PRIVATE TEST SET
Angry	3995 (13.91%)	467 (13.01%)	491 (13.68%)
Disgust	436 (1.52%)	56 (1.56%)	55 (1.53%)
Fear	4097 (14.27%)	496 (13.82%)	528 (14.71%)
Нарру	7215 (25.13%)	895 (24.94%)	879 (24.49%)
Neutral	4965 (17.29%)	607 (16.91%)	626 (17.44%)
Sad	4830 (16.82%)	653 (18.19%)	594 (16.55%)
Surprise	3171 (11.04%)	415 (11.56%)	416 (11.59%)
TOTAL	28709	3589	3589

Feature Extraction Using Pretrained or Fine-Tuned FaceNet

FaceNet extracts 128
features from each
image

Features are *scaled in*[0, 1] using *minmax_scale* function

Features saved in CSV
file with image paths
for easy image display
in next steps

PP-Index Implementation

Pivot choice using K-Medoids or Random selection

Permutations database creation representing images

as permutations of pivots

Prefix Tree construction (kept in memory)

Features dataset reordering (kept on disk)

Query Search

Query *features extraction* and *prefix computation*

Search for the **smallest subtree** with enough candidates

Sequential candidates
features read in reordered
datastore using initial and
final indexes

K-NN selection using cosine similarity in original features space

Fine-Tuning FaceNet on Facial Expressions Dataset

- Addition of a dense layer of 7 neurons with softmax activation on top of the model
- *Training* the *classifier* (for comparison) for 10 epochs
- Unfreezing FaceNet completely and training for 100 epochs with lower LR using Early Stopping for Fine-Tuning

CLASS	PRECISION	RECALL	F1-SCORE	SUPPORT
Angry	0.32	0.43	0.37	467
Disgust	0.10	0.45	0.16	56
Fear	0.27	0.11	0.16	496
Нарру	0.54	0.48	0.51	895
Neutral	0.36	0.33	0.35	607
Sad	0.34	0.33	0.33	653
Surprise	0.41	0.53	0.46	415
Macro Avg	0.34	0.38	0.34	3589
Weighted Avg	0.39	0.38	0.37	3589
Accuracy			0.38	3589

CLASS	PRECISION	RECALL	F1-SCORE	SUPPORT
Angry	0.43	0.64	0.52	467
Disgust	0.60	0.38	0.46	56
Fear	0.47	0.32	0.38	496
Нарру	0.83	0.80	0.82	895
Neutral	0.63	0.47	0.54	607
Sad	0.50	0.54	0.52	653
Surprise	0.68	0.83	0.74	415
Macro Avg	0.59	0.57	0.57	3589
Weighted Avg	0.61	0.61	0.60	3589
Accuracy			0.61	3589

Comparing the Performances of the two Search Engines

- **K** = *100* (*300* Candidates)
- **Pivot Selection** = *k-medoids*
- **Pivots** = 7
- Prefix Length = 4

Query images (used in all tests):

Angry Disgust Fear Happy Neutral Sad Surprise

Pretrained FaceNet:

MAP = 17.8%

Fine-Tuned FaceNet:

MAP = 43.8%

Optimization 1: finding the best pivots-prefixes configuration

• Grid Search approach

- Number of pivots from 5 to 10
- Prefix length from 2 to number of pivots 1

• Pivots selection methods:

- Random pivot selection
- K-Medoids pivot selection
- Summary Criterion, useful for a quick evaluation:

$$Score = \frac{2}{3}MAP + \frac{1}{3}(1 - normalizedMNC)$$

- MAP: Mean Average Precision
- MNC: Mean Number of Candidates
- Normalized MNC: MNC normalized considering 300 (minimum number of candidates to be retrieved) as minimum value and 57298 (cardinality of the whole dataset, private text set excluded) as maximum value

Noticeable results:

Pivot Selection	N. Pivots	Prefix Length	M.A.P.	M.N.C.	Score
K — Medoids	7	4	45.1%	1 568	62.6%
Random	9	4	46.5%	1 475	64.4%
Runuom	10	4	50.7%	1 663	66.4%

- In general, results seem to improve as *prefix length* approaches *number of pivots*
- K-Medoids obtains best results for a lower number of pivots with respect to Random selection

Optimization 2: K-Medoids vs Random Pivot Selection

Optimization 3: Perturbation vs Non-Perturbation

 K-Medoids cannot be performed in memory on the whole dataset, so it has been performed on a random sample (25000 objects ≈ 50% of the dataset)

Pivot Selection	N. Pivots	Prefix Length	M.A.P.
K-Medoids	7	4	44.6%
Random	10	4	35.7%

K-Medoids is more robust and generally better than *random* choice for pivots selection

Perturbated queries are generated by swapping pairs of the first 3 elements in the query prefix representation
 (6 queries = 5 perturbations + 1 original query)

Perturbated Queries (M.A.P.)	Single Query (M.A.P.)
43.1%	52.2%

The performances using query perturbation with k-medoids selection are inferior probably because perturbated queries retrieves more *non-relevant* candidates but with *higher similarity* than relevant ones from the original query

Optimization 4: Multiple Indexes vs One Index

- The use of *random pivots* with **multiple indexes** showed better perforances than with a **single index**
- Using a single index or multiple indexes with
 K-Medoids doesn't make significant differences in the search

Pivot Selection	Single Index (M.A.P.)	Multiple Indexes (M.A.P.)
Random	35.7%	43%
K-Medoids	44.6%	43.8%

Web App Developement

- Colab provides a VM that runs the app, which is exposed to a public URL using flask-NGrok
- User can **query** any image
- **Web App** shows the 100 most similar images