What is claimed is:

1. A method for performing a diagnostic or therapeutic procedure comprising

administering to an individual an effective amount of the compound of formula 4

5

$$R^{71}$$
 R^{72}
 R^{73}
 R^{74}
 R^{75}
 R^{76}
 R^{76}
 R^{76}
 R^{76}
 R^{77}
 R^{77}
 R^{78}
 R^{78}
 R^{78}
 R^{78}

wherein W^6 and X^6 are independently selected from the group consisting of -CR¹R², -O-, -NR³, and -S-; Y⁶ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, 10 -H₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Bm$, $(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Bm$, $-(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Bm$, $-(CH_2)_a-N(R^3)-(CH_2)_c-N(R^3) N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Bm, -(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-$ NHCO-Bm, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-CONH-Bm, <math>-CH_2-(CH_2OCH_2)_b-CH_2-(C$ 15 $CH_2-N(R^3)-(CH_2)_a-NHCO-Bm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-CH_2-(CH_2OCH_2)_d-$ CONH-Bm, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-CH_2-(CH_2OCH_2)_d-NHCO-Bm, -(CH_2)_a-$ NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; Z⁶ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ 20

aminoalkyl, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Dm$, $(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Dm$, (CH₂OCH₂)_b-CH₂-NHCO-Dm, -CH₂-<math>(CH₂OCH₂)_b-CH₂-N(R³)-(CH₂)_a-CONH-Dm,5 $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Dm, -CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_$ CH₂-(CH₂OCH₂)_d-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-NHCO-Dm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₄ is a single or a double bond; B₄, C₄, and D₄ are independently selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C=O; A₄, B₄, C₄, 10 and D₄ may together form a 6- to 12-membered carbocyclic ring or a 6- to 12membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a₆ is from 0 to 5; R¹ to R⁴, and R⁶⁷ to R⁷⁹ are independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, glucose derivatives of R groups, cyano, nitro, halogen, saccharide, peptide, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; 20 Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal a chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to 20; and b and d are

independently from 1 to 100, with the proviso that either Y^6 or Z^6 contains a biomolecule Bm or Dm, and with the proviso that when W^6 and X^6 are $C((CH_2)OH)_2$, Y^6 is not $(CH_2)_2$ -CONH-Bm,

activating the compound, and performing the diagnostic or therapeutic procedure.

5

2. The method of claim 1 comprising administering to an individual an effective amount of the compound wherein W⁶ and X⁶ are independently selected from the group consisting of -C(CH₃)₂, -C((CH₂)_aOH)CH₃, 10 $-C((CH_2)_aOH)_2$, $-C((CH_2)_aCO_2H)CH_3$, $-C((CH_2)_aCO_2H)_2$, $-C((CH_2)_aNH_2)CH_3$, C((CH₂)_aNH₂)₂, C((CH₂)_aNR³R⁴)₂, -NR³, and -S-; Y⁶ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-15 NHCO-Bm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; Z⁶ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Dm, 20 -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₄ is a single or a double bond; B₄, C₄, and D₄ are independently selected from the group consisting of -O-, -S-, NR³, (CH2)_a -CR¹R², and -CR¹; A₄, B₄, C₄, and D₄ may together form a 6- to 10-membered carbocyclic ring or a 6- to 10-membered

heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a₆ is from 0 to 3; R¹ to R⁴, and R⁶⁷ to R⁷⁹ are independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₁₂ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyhydroxyalkyl, C₅-C₁₂ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, mono- or oligosaccharide, peptide with 2 to 30 amino acid units, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a bioactive peptide containing 2 to 30 amino acid units, an antibody, a mono- or oligosaccharide, a glycopeptide, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to 10; and b and d are independently from 1 to 30, with the proviso that either Y⁶ or Z⁶ contains a biomolecule Bm or Dm.

5

10

- 3. The method of claim 2 comprising administering to an individual an effective amount of the compound wherein each of W⁶ and X⁶ is $C((CH_2)OH)_2$; Y⁶ is $-(CH_2)_2$ -CONH-Bm; Z⁶ is $-(CH_2)_2$ -CO₂H; A₄ is a single bond; A₄, B₄, C₄, and D₄ together form a 6-membered carbocyclic ring; a₆ is 1; R⁶⁷ is galactose; each R⁶⁸ to R⁷⁹ is hydrogen; and Bm is Octreotate.
- 4. The method of claim 1 wherein said procedure utilizes light of wavelength in the region of 350-1300 nm.

- 5. The method of claim 1 wherein the diagnostic procedure is optical tomography.
- 6. The method of claim 1 wherein said diagnostic procedure is fluorescence endoscopy.
- 7. The method of claim 1 further comprising monitoring a blood clearance profile of said compound by a method selected from the group consisting of fluorescence, absorbance, and light scattering, wherein light of wavelength in the region of 350-1300 nm is used.
- 8. The method of claim 1 wherein said procedure further comprises imaging and therapy, wherein said imaging and therapy is selected from the group consisting of absorption, light scattering, photoacoustic and sonofluoresence technique.
- 9. The method of claim 1 wherein said procedure is capable of diagnosing atherosclerotic plaques and blood clots.
- 10. The method of claim 1 wherein said procedure comprises administering localized therapy.
- 11. The method of claim 1 wherein said therapeutic procedure comprises photodynamic therapy.

- 12. The method of claim 1 wherein said therapeutic procedure comprises laser assisted guided surgery for the detection of micrometastases.
- 13. The method of claim 1 further comprising adding a biocompatible organic solvent at a concentration of one to fifty percent to the compound to prevent *in vivo* or *in vitro* fluorescence quenching.
- 14. The method of claim 13 wherein said compound is dissolved in a medium comprising one to fifty percent of at least one of dimethyl sulfoxide, ethyl alcohol, isopropyl alcohol, or glycerol.
- 15. The method of claim 1 wherein the compound comprises one to ten groups containing Bm, Dm, and combinations thereof providing a cooperative effect to enhance binding of the compound.
- 16. The method of claim 15 further comprising attaching a compound selected from the group consisting of a porphyrin and a photodynamic therapy agent to biomolecule Bm or Dm, and providing light of a wavelength sufficient to activate the porphyrin or phototherapy agent.
- 17. The method of claim 15 wherein the procedure monitors blood clearance of the compound to detect an abnormality.

- 18. The method of claim 15 further comprising activating the compound prior to performing the procedure.
- 19. The method of claim 1 further comprising administering a non-optical contrast agent and imaging by at least one of magnetic resonance, ultrasound, X-ray, positron emission tomography, computed tomography, and single photon emission computed tomography.
- 20. The method of claim 1 wherein the compound administered has at least one R group replaced by EDTA, DOTA, or DOTA.
- 21. The method of claim 20 wherein the compound administered further comprises a radioactive metal ion or a paramagnetic metal ion.
- 22. The method of claim 21 further comprising imaging by at least one of optical imaging or magnetic resonance imaging.
- 23. The method of claim 1 wherein the compound is administered in a formulation selected from at least one of liposomes, micelles, microcapsules, or microparticles.

- 24. A method of imaging a patient comprising administering a nonoptical contrast agent composition further comprising the compound of claim 1 and performing at least one of an optical imaging procedure or a non-optical imaging procedure.
- 25. The method of claim 24 wherein the non-optical contrast agent composition is chosen from a magnetic resonance composition, a computed tomography composition, an x-ray composition, a nuclear imaging composition, a positron emission tomography composition, a single photon emission computed tomography composition, or an ultrasound composition.
- 26. The method of claim 25 wherein the compound stablilizes or buffers the non-optical contrast agent composition.

5

- 27. A method to reduce aggregation of a dye administerable to a patient for a photodiagnostic or phototherapeutic procedure comprising adding to the dye a biocompatible organic solvent at a concentration ranging from about 1% to about 50% to reduce dye aggregation.
- 28. The method of claim 27 wherein the biocompatible organic solvent is added to a pharmaceutically acceptable formulation of the dye.
- 29. The method of claim 27 wherein the dye is dissolved or suspended in the biocompatible organic solvent.
- 30. The method of claim 27 where the biocompatible organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, glycerol, a polyol, or combinations thereof.
- 31. The method of claim 27 wherein the dye is represented by formulas 1, 2, 3, or 4.

- 32. A method to enhance fluorescence of a dye administerable to a patient for a photodiagnostic or phototherapeutic procedure comprising adding to the dye a biocompatible organic solvent at a concentration ranging from about 1% to about 50% to enhance dye fluorescence.
- 33. The method of claim 32 wherein the biocompatible organic solvent is added to a pharmaceutically acceptable formulation of the dye.
- 34. The method of claim 32 wherein the dye is dissolved or suspended in the biocompatible organic solvent.
- 35. The method of claim 32 where the biocompatible organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, glycerol, a polyol, or combinations thereof.
- 36. The method of claim 32 wherein the dye is represented by formulas 1, 2, 3, or 4.

$$R^{71}$$
 R^{72}
 R^{73}
 R^{74}
 R^{75}
 R^{76}
 R^{76}
 R^{76}
 R^{77}
 R^{69}
 R^{69}

5

wherein W⁶ and X⁶ are independently selected from the group consisting of -CR¹R², -O-, -NR³, and -S-; Y⁶ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, 10 -CH₂(CH₂OCH₂)_b-CH₂-OH₁ -(CH₂)_a-CO₂H₁ -(CH₂)_a-CONH-Bm₁ -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Bm$, $(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Bm$, (CH₂OCH₂)_b-CH₂-NHCO-Bm, -CH₂-<math>(CH₂OCH₂)_b-CH₂-N(R³)-(CH₂)_a-CONH-Bm,15 $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Bm, -CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2OCH_2)_b-(CH_2O$ CH₂-(CH₂OCH₂)_d-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-NHCO-Bm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; Z⁶ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ 20

aminoalkyl, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H -(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Dm$, $(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Dm$, (CH₂OCH₂)_b-CH₂-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-(CH₂)_a-CONH-Dm, 5 $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Dm, -CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(C$ CH₂-(CH₂OCH₂)_d-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-NHCO-Dm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₄ is a single or a double bond; B₄, C₄, and D₄ are independently selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C=O; A₄, B₄, C₄, 10 and D₄ may together form a 6- to 12-membered carbocyclic ring or a 6- to 12membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a_6 is from 0 to 5; R^1 to R^4 , and R^{67} to R^{79} are independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ 15 polyhydroxyaryl, C₁-C₁₀ aminoalkyl, glucose derivatives of R groups, cyano, nitro, halogen, saccharide, peptide, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; 20 Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, and an echogenic agent; a and c are independently from 1 to 20; and b and d are

independently from 1 to 100.

38. The method of claim 37 wherein the organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, a polyol, a glycerol, and combinations thereof.

$$R^{32}$$
 R^{33}
 R^{34}
 R^{35}
 R^{35}
 R^{36}
 R^{30}
 R^{30}

5

10

15

20

wherein W³ and X³ may be the same or different and are selected from the group consisting of -CR¹R², -O-, -NR³, -S-; Y³ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, -CH₂(CH₂OCH₂)₀-CH₂-OH, -(CH₂)₀-CO₂H, -(CH₂)₀-CONH-Bm, -CH₂-(CH₂OCH₂)₀-CH₂-CONH-Bm, -(CH₂)₀-NHCO-Bm, -CH₂-(CH₂OCH₂)₀-CH₂-NHCO-Bm, -(CH₂)₀-N(R³)-(CH₂)₀-NHCO-Bm, -(CH₂)₀-N(R³)-(CH₂)₀-NHCO-Bm, -(CH₂)₀-N(R³)-CH₂-(CH₂OCH₂)₀-CH₂-CONH-Bm, -(CH₂)₀-N(R³)-CH₂-(CH₂OCH₂)₀-CH₂-N(R³)-CH₂-(CH₂-CONH-Dm, -CH₂-(CH₂-CH₂-CONH-Dm, -CH₂-(CH₂-CONH-Dm, -CH₂-(CH₂-CONH-Dm, -CH₂-(CH₂-CONH-Dm, -CH₂-(CH₂-CONH-Dm, -CH₂-(CH₂-CONH-Dm, -CH₂-CH₂-CONH-Dm, -CH₂-(CH₂-CONH-Dm, -CH₂-CONH-Dm, -CH₂-(CH₂-CONH-Dm, -CH₂-CONH-Dm, -CH₂-(CH₂-CONH-Dm, -CH₂-CONH-Dm, -CH₂-(CH₂-CONH-Dm, -CH₂-CONH-Dm, -CH₂-CO

-CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Dm$, $(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Dm$, (CH₂OCH₂)_b-CH₂-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-(CH₂)_a-CONH-Dm, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Dm, -CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-$ 5 CH₂-(CH₂OCH₂)_d-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-NHCO-Dm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₁ is a single or a double bond; B₁, C₁, and D₁ may the same or different and are selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C=O; A₁, B₁, C₁, and D₁ may together form a 6- to 12-membered carbocyclic ring or a 10 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a_3 and b_3 independently vary from 0 to 5; R^1 to R^4 , and R²⁹ to R³⁷ are independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C5-C20 polyhydroxyaryl, C1-C10 aminoalkyl, glucose 15 derivatives of R groups, cyano, nitro, halogen, saccharide, peptide, (CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are 20 independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, a photosensitizer for phototherapy, and an echogenic agent; a and c are independently from 1 to 20;

and b and d are independently from 1 to 100.

40. The method of claim 39 wherein the organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, a polyol, a glycerol, and combinations thereof.

$$R^{49}$$
 R^{50}
 R^{51}
 R^{52}
 R^{53}
 R^{54}
 R^{54}
 R^{48}
 R^{47}
 R^{46}
 R^{46}

wherein W⁴ and X⁴ may be the same or different and are selected from the group consisting of -CR¹R², -O-, -NR³, -S-; Y⁴ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-N(R³)-(CH₂)_b-CONH-Bm, (CH₂)_a-N(R³)-(CH₂)_c-NHCO-Bm, -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-CH₂OCH₂)_b-CH₂-N(R³)-CH₂-N(R³)-CH₂-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-CH₂OCH₂-N(R³)-CH₂-CH₂OCH₂-N(R³)-CH₂-CH₂OCH₂-N(R³)-CH₂-CH₂OCH₂-N(R³)-CH₂-CH₂OCH₂-CH₂-CH₂OCH₂-CH

aminoalkyl, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Dm$, $(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Dm$, (CH₂OCH₂)_b-CH₂-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-(CH₂)_a-CONH-Dm, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2)_a-NHCO-Dm, -CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2-(CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-(CH_2 CH_2-(CH_2OCH_2)_d-CONH-Dm$, $-CH_2-(CH_2OCH_2)_b-CH_2-N(R^3)-CH_2-(CH_2OCH_2)_d-CH_2-(CH_2OCH_2)_d$ NHCO-Dm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₂ is a single or a double bond; B2, C2, and D2 may be the same or different and are selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C=O; A₂, B₂, C₂, and D₂ may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a4 and b4 independently vary from 0 to 5; R1 to R4, and R⁴⁵ to R⁵⁷ are independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, glucose derivatives of R groups, cyano, nitro, halogen, saccharide, peptide, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, a photosensitizer for

phototherapy, and an echogenic agent; a and c are independently from 1 to 20; and b and d are independently from 1 to 100.

42. The method of claim 41 wherein the organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, a polyol, a glycerol, and combinations thereof.

$$R^{61}$$
 R^{62}
 R^{63}
 R^{64}
 R^{60}
 R^{60}

wherein W⁵ and X⁵ may be the same or different and are selected from the group consisting of -CR¹R², -O-, -NR³, -S-; Y⁵ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-N(R³)-(CH₂)_c-NHCO-Bm, -(CH₂)_a-N(R³)-CH₂-CONH-Bm, -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-N(R³)-CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-N(R³)-CH₂-N(R³)-CH₂-N(R³)-CH₂-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-C

-CH₂-(CH₂OCH₂)_b-CH₂-CONH-Dm, -(CH₂)_a-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Dm, $-(CH_2)_a-N(R^3)-(CH_2)_b-CONH-Dm$, $(CH_2)_a-N(R^3)-(CH_2)_c-NHCO-Dm$, $-(CH_2)_a-N(R^3)-CH_2-(CH_2OCH_2)_b-CH_2-CONH-Dm, -(CH_2)_a-N(R^3)-CH_2-CONH-Dm, -(CH_2)_a-N(R^3)-CH_2-CNH-Dm, -(CH_2)_a-N(R^3)-CH_2-CNH-Dm, -(CH_2)_a-N(R^3)-CH_2-CNH-Dm, -(CH_2)_a-N(R^3)-CH_2-CNH-Dm, -(CH_2)_a-N(R^3)-CH_2-CNH-Dm, -(CH_2)_a-N(R^3)-CH_2-CNH-DM, -(CH_2)_a-N(R^3)-CH_2-CNH-DM, -(CH_2)_a-N(R^3)-CNH-DM, -(CH_2)_a-N(R^3)-CH_2-CNH-DM, -(CH_2)_a-N(R^3)-CH_2-CNH-DM, -(CH_2)_a-N(R^3)-CH_2-CNH-DM, -(CH_2)_a-N(R^3)-CH_2-CNH-DM, -(CH_2)_a-N(R^3)-CH_2-CNH-D$ (CH₂OCH₂)_b-CH₂-NHCO-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-(CH₂)_a-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-(CH₂)_a-NHCO-Dm, <math>-CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-CONH-Dm, -CH₂-(CH₂OCH₂)_b-CH₂-N(R³)-CH₂-(CH₂OCH₂)_d-NHCO-Dm, -(CH₂)_a-NR³R⁴, and -CH₂(CH₂OCH₂)_b-CH₂NR³R⁴; A₃ is a single or a double bond; B₃, C₃, and D₃ may be the same or different and are selected from the group consisting of -O-, -S-, -Se-, -P-, -CR¹R², -CR¹, alkyl, NR³, and -C=O; A₃, B₃, C₃, and D₃ may together form a 6- to 12-membered carbocyclic ring or a 6- to 12-membered heterocyclic ring optionally containing one or more oxygen, nitrogen, or sulfur atom; a₅ is independently from 0 to 5; R¹ to R⁴, and R⁵⁸ to R⁶⁶ are independently selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₅-C₂₀ aryl, C₁-C₁₀ alkoxyl, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, C₁-C₁₀ aminoalkyl, glucose derivatives of R groups, cyano, nitro, halogen, saccharide, peptide, -CH₂(CH₂OCH₂)_b-CH₂-OH, -(CH₂)_a-CO₂H, -(CH₂)_a-CONH-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-CONH-Bm, -(CH₂)_a-NHCO-Bm, -CH₂-(CH₂OCH₂)_b-CH₂-NHCO-Bm, -(CH₂)_a-OH and -CH₂-(CH₂OCH₂)_b-CO₂H; Bm and Dm are independently selected from the group consisting of a bioactive peptide, a protein, a cell, an antibody, an antibody fragment, a saccharide, a glycopeptide, a peptidomimetic, a drug, a drug mimic, a hormone, a metal chelating agent, a radioactive or nonradioactive metal complex, a photosensitizer for phototherapy, and an echogenic agent; a and c are independently from 1 to 20; and b and d are independently from 1 to 100.

44. The method of claim 43 wherein the organic solvent is selected from the group consisting of dimethylsulfoxide, ethyl alcohol, isopropyl alcohol, a polyol, a glycerol, and combinations thereof.