Handout 10: 2.8 Transformations

1. The figure below shows the graph of a function h. Make a graph of each variation of h and state the domain and range for each.

a.
$$y = 2h(x)$$

b.
$$y = h(x) + 1$$

c.
$$y = h(x - 4)$$

d.
$$y = h(2x)$$

2. Graph each piecewise-defined function.

a.
$$c(a) = \begin{cases} \sqrt{2a}, & a > 0 \\ \frac{2}{a}, & -1 \le a < 0 \\ |a| - 3, & a \le -1 \end{cases}$$

- b. $w(\theta) = n \sin(\theta)$, if $(n-1)\pi \le \theta < n\pi$ and n is an integer greater than or equal to 1.
- 3. If h(x) is symmetric about the line x = 4, what line would h(x 6) be symmetric about?
- 4. Below is a table of functional values for f(x), g(x), and h(x). g(x) and h(x) are transformations of f(x). Write the equations for g(x) and h(x) in terms of f(x).

х	f(x)	g(x)	h(x)
-5	-1562.5	-4687.5	-121.5
-4	-512	-1536	-16
-3	-121.5	-364.5	-0.5
-2	-16	-48	0
-1	-0.5	-1.5	0.5
0	0	0	16
1	0.5	1.5	121.5
2	16	48	512
3	121.5	364.5	1562.5
4	512	1536	3888
5	1562.5	4687.5	84043.5

5. Suppose the domain of f(x) is $\{x \mid -2 < x < 5\}$ and the range of f(x) is $\{y \mid y \ge 1\}$. Find the domain and range of

a.
$$y = f(x) + 5$$
 b. $y = f(x + 5)$ c. $y = 5f(x)$ d. $y = f(5x)$

b.
$$y = f(x + 5)$$

c.
$$y = 5f(x)$$

d.
$$y = f(5x)$$

6. Write an equation for each of the functions graphed below. Some may be piecewise-defined functions.

