Projekt MNUM Zadanie 2.19 Karol Mocniak

Zadanie 1.

Program do obliczania wartości własnych metodą QR w wersji bez przesunięć i z przesunięciami dla macierzy symetrycznej oraz z przesunięciami dla macierzy niesymetrycznej.

Główna funkcja zadania wywołująca funkcje rozkładów QR oraz generująca statystyki:

Algorytm obliczania wartości własnych metodą QR bez przesunięć ma nastąpującą postać:

$$A^{(k)} = Q^{(k)} R^{(k)} - faktoryzacja$$

$$A^{(k+1)} = R^{(k)} Q^{(k)}$$

$$k \to \infty, \quad A^{(k)} = V^{-1} AV = diag \{ \lambda_i \}$$

Algorytm obliczania wartości własnych metodą QR z przesunięciami ma nastąpującą postać:

$$A^{(k)} - p_k I = Q^{(k)} R^{(k)}$$

 $A^{(k+1)} = R^{(k)} Q^{(k)} + p_k I$

Za pk przyjmuje się najbliższą wartość własną podmacierzy 2x2 z prawego dolnego rogu macierzy A^(k). Po wyzerowaniu pozostałych elementów ostatniej kolumny i ostatniego wiersza otrzymuje się wartość własną znajdującą się w prawym dolnym roku macierzy. W następnym kroku bierze się pod uwagę macierz pomniejszoną o ostatnią kolumnę i wiersz.

Program

```
function [] = zadanie1()
%zadanie1 MNUM
SIZE = [5 10 20]'; %rozmiar macierzy
LOOPS = 30; %ilosc zadanych wykonan algorytmow
for k=1:3
     ItersQR = 0; %liczba iteracji algorytmem QR bez przesuniecia
     ItersQRS = 0; %liczba iteracji algorytmem QR z przesunieciem (QRS)
     Teig = 0; %czas wykonania algorytmu wbudowanego

TQR = 0; %czas wykonania algorytmu QR

TQRS = 0; %czas wykonania algorytmu QRS

loopsQR = 0; %ilosc poprawnie wykonanych iteracji alg. QR

loopsQRS = 0; %ilosc poprawnie wykonanych iteracji alg. QRS
     for i=1:LOOPS
         %DANE .
         A = rand(SIZE(k));
         %A = A'+A; %macierz symetryczna
         tol = 0.00001;
         imax = 2000;
         %funkcja matlabowa
         t_start = tic;
         [\sim, D] = eig(A);
         t elapsed = toc(t start);
         Teig = Teig + t elapsed;
         eigens = diag(D);
         %disp(sort(eigens));
```

```
%OR Z PRZESUNIECIAMI
   [eigens, iters, t elapsed, valid] = eigvalqrshifts(A, tol,imax);
   if valid == 1
       loopsQRS = loopsQRS + 1;
       ItersQRS = ItersQRS + iters;
       TQRS = TQRS + t elapsed;
   end
   %disp(sort(eigens));
   %QR BEZ PRZESUNIEC
   [eigens, iters, t elapsed, valid] = eigvalqrnoshift(A, tol, imax);
   if valid == 1
        loopsQR = loopsQR + 1;
        ItersQR = ItersQR + iters;
        TQR = TQR + t elapsed;
   end
   %disp(sort(eigens));
end
MeanQRI = ItersQR / loopsQR;
MeanQRSI = ItersQRS / loopsQRS;
MeanTeig = Teig / LOOPS;
MeanTQR = TQR / loopsQR;
MEANTQRS = TQRS / loopsQRS;
fprintf(1, '++++++++++++++\n');
fprintf(1, 'Rozmiar macierzy: dn', SIZE(k));
fprintf(1, 'QR bez przesuniec:\n');
fprintf(1, 'Srednia ilosc iteracji: %g\n', MeanQRI);
fprintf(1, 'Udane wykonania: %d z %d\n', loopsQR, LOOPS);
fprintf(1, 'Sredni czas: %g\n', MeanTQR);
fprintf(1, 'QR z przesunieciami:\n');
fprintf(1, 'Srednia ilosc iteracji: %g\n', MeanQRSI);
fprintf(1, 'Udane wykonania: %d z %d\n', loopsQRS, LOOPS);
fprintf(1, 'Sredni czas: %g\n', MEANTQRS);
fprintf(1, 'Matlab eig() sredni czas: %g\n', MeanTeig);
```

Funkcja obliczająca wartości własne metodą QR z przesunięciami (na podstawie skryptu):

end end

```
function [eigenvalues, iters, t elapsed, valid] = eigvalqrshifts(A, tol, imax)
% A - macierz
% tol - tolerancja (górna granica wartoœci) elementów zerowanych
% imax - maksymalna liczba iteracji
% eigenvalues - wektor wartosci wlasnych
% iters - liczba wszystkich wykonanych iteracji algorytmu
% t elapsed - czas dzialania funkcji
% valid - wykonanie funkcji bez przekroczenia imax
t start = tic;
valid = 1;
                            %rozmiar macierzy
n = size(A, 1);
eigenvalues = diag(zeros(n)); %alokacja pamieci na wartosci wlasne
iters = 0;
INITIALsubmatrix = A;
for k=n:-1:2
    DK = INITIALsubmatrix(1:k, 1:k); %macierz poczatkowa dla wyznaczenia
```

```
%jednej wartosci wl.
            i = 0;
            while i \le \max \&\& \max(abs(DK(k,1:k-1))) > tol
                  ev = roots([1, -(DK(k-1, k-1) + DK(k, k)), DK(k-1, k-1) *DK(k, k) - DK(k, k-1) *DK(k-1, k-1) *DK(k
1, k) ]);
                   % MAT = [a b]
                                           [c d]
                   % 1*x^2 -(a+d)*x +a*d-c*b <- tak wyglada rownanie dla macierzy 2x2
                   %gdy trzeba wyznaczyc wartosc wlasna, ktora jest pierwiastkami
                   %zerowymi tego rownania
                   if abs(ev(1)-DK(k,k)) \le abs(ev(2)-DK(k,k))
                                shift = ev(1); %przesuniecie - najblizsza DK(k,k) wartosc wlasna
                                                                               %analizowanej macierzy 2x2
                   else
                               shift = ev(2);
                  DK = DK - eye(k) * shift;
                                                                                                %macierz przesunieta
                  [Q1, R1] = qrmqs(DK);
                                                                                                      %faktoryzacja QR
                  DK = R1*Q1 + eye(k)*shift;%macierz przeksztalcona
                  i = i+1;
                  iters = iters + i;
            end
            if i > imax
                                %display('qrshifts imax exceeded program terminated');
                               valid = 0;
                               break;
            end
            eigenvalues(k) = DK(k,k);
            if k>2
                         INITIALsubmatrix=DK(1:k-1,1:k-1); %deflacja macierzy
            else
                         eigenvalues(1) = DK(1,1); %ostatnia wartosc wlasna
            end
end
t elapsed = toc(t start);
```

Rozkład QR bez przesunięć (również na podstawie skryptu MNUM):

```
function [eigenvalues, i, t elapsed, valid] = eigvalqrnoshift(D, tol, imax)
% tol - tolerancja (górna granica wartoœci) elementów zerowanych
% imax - maksymalna liczba iteracji
% eigenvalues - wektor wartosci wlasnych
% i - liczba wykonanych iteracji algorytmu
% t elapsed - czas dzialania funkcji
% valid - wykonanie funkcji bez przekroczenia imax
t start = tic;
valid = 1;
i = 1;
while i <= imax && max(max(D-diag(diag(D)))) > tol
    [Q1, R1] = qrmgs(D);
    D = R1*Q1; %macierz przekszta³cona
    i = i + 1;
end
if i > imax
    %error('imax exceeded program terminated');
    %display('qrnoshifts imax exceeded program terminated');
```

```
valid = 0;
end

eigenvalues = diag(D);
t_elapsed = toc(t_start);
end
```

Rozkład QR zmodyfikowanym algorytmem Grama-Schmidta:

```
function [ Q, R ] = qrmgs( A )
%QRmGS wyznacza rozklad QR (waski) zmodyfikowany algorytmem Grama-Schmidta
%dla macierzy mxn (m>=n) o pelnym rzedzie, rzeczywistej lub zespolonej
[m n] = size(A);
Q = zeros(m,n);
R = zeros(n,n);
d = zeros(1,n);
%rozklad z kolumnami Q ortogonalnym (nie ortonormalnymi)
for i=1:n
    Q(:,i) = A(:,i);
   R(i,i) = 1;
   d(i) = Q(:,i)'*Q(:,i);
    for j=i+1:n
        R(i,j) = (Q(:,i)'*A(:,j))/d(i);
        A(:,j) = A(:,j)-R(i,j)*Q(:,i);
    end
end
%normowanie rozkladu (kolumny Q ortonormalne)
for i=1:n
    dd = norm(Q(:,i));
    Q(:,i) = Q(:,i)/dd;
   R(i,i:n) = R(i,i:n)*dd;
end
```

Wyniki:

Dla macierzy symetrycznych:

Rozmiar macierzy: 5

QR bez przesuniec:

Srednia ilosc iteracji: 44.1 Udane wykonania: 30 z 30 Sredni czas: 0.0062635 QR z przesunieciami:

Srednia ilosc iteracji: 12.8333 Udane wykonania: 30 z 30 Sredni czas: 0.00222852

Matlab eig() sredni czas: 7.62015e-005

Rozmiar macierzy: 10

QR bez przesuniec:

Srednia ilosc iteracji: 219.033 Udane wykonania: 30 z 30 Sredni czas: 0.0792535 QR z przesunieciami:

Srednia ilosc iteracji: 23.7667

Udane wykonania: 30 z 30 Sredni czas: 0.00567859

Matlab eig() sredni czas: 9.14711e-005

Rozmiar macierzy: 20

QR bez przesuniec:

Srednia ilosc iteracji: 558.615 Udane wykonania: 26 z 30 Sredni czas: 0.76092 QR z przesunieciami:

Srednia ilosc iteracji: 45.4667 Udane wykonania: 30 z 30

Sredni czas: 0.024997

Matlab eig() sredni czas: 0.000234243

Wyniki dla macierzy niesymetrycznych:

Rozmiar macierzy: 5

QR bez przesuniec:

Srednia ilosc iteracji: NaN Udane wykonania: 0 z 30

Sredni czas: NaN QR z przesunieciami:

Srednia ilosc iteracji: 25.9667 Udane wykonania: 30 z 30 Sredni czas: 0.00374033

Matlab eig() sredni czas: 0.000110391

Rozmiar macierzy: 10

QR bez przesuniec:

Srednia ilosc iteracji: NaN Udane wykonania: 0 z 30

Sredni czas: NaN QR z przesunieciami:

Srednia ilosc iteracji: 48.8667 Udane wykonania: 30 z 30 Sredni czas: 0.0109829

Matlab eig() sredni czas: 0.000156216

Rozmiar macierzy: 20

QR bez przesuniec:

Srednia ilosc iteracji: NaN Udane wykonania: 0 z 30

Sredni czas: NaN QR z przesunieciami:

Srednia ilosc iteracji: 92.8333 Udane wykonania: 30 z 30 Sredni czas: 0.0578659

Matlab eig() sredni czas: 0.000435633

Wnioski:

Użyte algorytmy uzyskały takie same wyniki co matlabowa fukncja eig. Rozkład QR bez

przesunięć nie poradzil sobie jednak z macierzami niesymetrycznymi, jak i z nie wszystkimi macierzami symetrycznymi. Rozkład QR z przesunięciami jest o wiele bardziej uniwersalny, jest również szybszy mimo większego nakładu obliczeniowego na jeden krok ze względu na większą zbieżność.

Zadanie 2.

Wyznaczyć metodą najmniejszych kwadratów funkcję wielomianową najlepiej aproksymującą dane. Wykorzystać rozwiązanie układu równań normalnych oraz rozkład macierzy QR.

Rozwiązania układu równań normalnych:

$$A^T A a = A^T y$$

LZNK metoda QR:

$$A^{(k)} = Q^{(k)} R^{(k)} - faktoryzacja$$

 $A^{(k+1)} = R^{(k)} Q^{(k)}$
 $k \rightarrow \infty$, $A^{(k)} = V^{-1} AV = diag \{ \lambda_i \}$

Program:

Algorytm rozwiązujący równanie i zwracający rozmiar błędu:

```
function [a, residue] = equasystem(n, x, y, method)
%equasystem
% n - zadany stopien wielomianu
% x - wektor argumentow
% y - wektor wartosci
% a - wektor wyznaczonych wspolczynnikow
% ren norm - norma reszt
[m, ~] = size(x); %pobranie rozmiarow
A = zeros(m, n+1);
%display (A);
for i=1:m %wiersze
    for j=0:n %kolumny
        A(i,n+1-j) = x(i)^{(j)}; %wype<sup>3</sup>niamy odpowiednimi wartoœciami potegi x
    end
end
if strcmp(method, 'gr')
    [Q, R] = qrmqs(A); %rozklad qr metoda q-s z poprzedniego zadania
    a = R \setminus (Q'*y);
elseif strcmp(method, 'normal')
    a = (A'*A) \setminus (A'*y); %rozwiazanie ukaadu równan
    error('no method selected');
end
res = zeros(m, 1);
%obliczanie reszt
for i=1:m
    sum = 0;
    for j=1:n
        sum = sum + a(j)*x(i)^(n+1-j); % suma a*x^potega
    end
    sum = sum + a(n+1); %plus sta<sup>3</sup>a
    res(i) = y(i) - sum;
```

```
end
residue = norm(abs(res),Inf);
end
```

Wyniki:

Stopień wielomianu: 1

Residuum w układzie równań normalnych 20.7909

Residuum w rozkładzie qr 20.7909

Stopień wielomianu: 2

Residuum w układzie równań normalnych 6.75924

Residuum w rozkładzie qr 6.75924

Stopień wielomianu: 3

Residuum w układzie równań normalnych 0.633177

Residuum w rozkładzie qr 0.633177

Stopień wielomianu: 4

Residuum w układzie równań normalnych 0.659345

Residuum w rozkładzie gr 0.659345

Stopień wielomianu: 5

Residuum w układzie równań normalnych 0.467668

Residuum w rozkładzie qr 0.467668

Stopień wielomianu: 6

Residuum w układzie równań normalnych 0.560987

Residuum w rozkładzie gr 0.560987

Stopień wielomianu: 7

Residuum w układzie równań normalnych 0.560987

Residuum w rozkładzie qr 0.560987

Stopień wielomianu: 8

Residuum w układzie równań normalnych 0.452665

Residuum w rozkładzie qr 0.452665

Stopień wielomianu: 9

Residuum w układzie równań normalnych 0.452665

Residuum w rozkładzie gr 0.452665

Stopień wielomianu: 10

Residuum w układzie równań normalnych 1.44736e-010

Residuum w rozkładzie gr 1.53845e-011

Stopień wielomianu: 11

Residuum w układzie równań normalnych 1.35455e-010

Residuum w rozkładzie gr 33.0655

Metoda rozkładu QR n=1

n=3

n=5

n=11

Wnioski:

Zarówno metoda równań normalnych jak i metoda rozkładu QR dobrze odwzoruje wielomian znany na podstawie próbek. Jednak razem ze wzrostem rzędu wielomianu powiększają się błędy numeryczne (macierz A szybko traci dobre uwarunkowanie), co jest widoczne w przypadku rozkładu QR dla n=11. Biorąc pod uwagę, że dane wejściowe zostały obarczone pewnym błędem, trzeba zauważyć, że zwiększając rząd wielomiany w pewnym momencie przestaje się aproksymować oryginalną funkcję, a zaczyna tę, która najbardziej pasuje do zebranych danych. Zarówno w przypadku metody układu równań normalnych jak i qr dla rozwiązań rzędu >= 10 obliczona funkcją znacznie odbiega od poprzednio uzyskanych przebiegów.