Hoja de datos de la Junta de desarrollo

Funciones

- Edge TPU System-on-Module (SoM)
- NXP i.MX 8M SoC (Quad-core Arm Cortex-A53, además de Cortex-M4F)
- Coprocesador acelerador de Google Edge TPU ML
- Coprocesador criptográfico
- Wi-Fi 2x2 MIMO (802.11b/g/n/ac 2.4/5 GHz)
- Bluetooth 4.2
- 8 GB eMMC
- 1 GB LPDDR4
- Conexiones USB
- Puerto de alimentación USB Tipo-C (5 V CC)

- Puerto USB 3.0 Tipo-C OTG
- Puerto host USB 3.0 Tipo-A
- Puerto de consola serie USB 2.0 Micro-B
- Conexiones de audio
- Conector de audio de 3,5 mm (compatible con CTIA)
- Micrófono PDM digital (x2)
- Terminal de 2,54 mm de 4 pines para altavoces estéreo
- Conexiones de vídeo
- HDMI 2.0a (tamaño completo)
- Conector FFC de 39 pines para pantalla MIPI DSI (4 carriles)
- Conector FFC de 24 pines para cámara MIPI CSI-2 (4 carriles)
- Ranura para tarjeta MicroSD
- Puerto Gigabit Ethernet
- Encabezado de expansión GPIO de 40 pines
- Soporta Mendel Linux (derivado de Debian)

Visión general

La Placa de desarrollo de Coral es un ordenador de una sola placa que es ideal cuando necesita realizar inferencias de aprendizaje automático rápido (ML) en un factor de forma pequeño. Puede utilizar la placa de desarrollo para crear prototipos de su sistema integrado y, a continuación, escalar a producción mediante el módulo Coral System-on-Module (SoM) integrado combinado con su hardware de PCB personalizado.

•

El SoM proporciona un sistema totalmente integrado, que incluye el sistema en chip (SoC) iMX 8M de NXP, memoria eMMC, RAM LPDDR4, Wi-Fi y Bluetooth, pero su potencia única proviene del coprocesador Edge TPU de Google. La TPU Edge es un pequeño ASIC diseñado por Google que proporciona inferencia de ML de alto rendimiento con un bajo costo de energía. Por ejemplo, puede ejecutar modelos de visión móvil de última generación, como MobileNet v2, a casi 400 FPS, de forma eficiente desde el punto de vista energético.

La placa base proporciona todas las conexiones periféricas que necesita para crear prototipos de un proyecto, incluidos los puertos USB 2.0/3.0, la interfaz de pantalla DSI, la interfaz de cámara CSI-2, el puerto Ethernet, los terminales de altavoz y un encabezado de E/S de 40 pines.

Principales beneficios de la Junta de Desarrollo:

- Inferencia de ML de alta velocidad y baja potencia (4 TOPS a 2 W)
- Un sistema Linux completo (que ejecuta Mendel, un derivado de Debian)
- Placa de prototipado y evaluación para el pequeño Coral SoM (40 x 48 mm)

Componentes del sistema

Available Dev Board components and features		
Feature Details		
Main system-on-chip (i.MX8N	f)	
	Quad symmetric Cortex-A53 processors:	
	32 KB L1 Instruction Cache	
	32 KB L1 Data Cache	
Arm Cortex-A53 MPCore	Support L1 cache RAMs protection with parity/ECC	
platform	Support of 64-bit Armv8-A architecture:	
	1 MB unified L2 cache	
	Support L2 cache RAMs protection with ECC	
	Frequency of 1.5 GHz	
	16 KB L1 Instruction Cache	
Arm Cortex-M4 core platform	16 KB L1 Data Cache	
	256 KB tightly coupled memory (TCM)	
	Vivante GC7000Lite	
Graphic Processing Unit (GPU)	4 shaders	
()	267 million triangles/sec	

Feature	Details		
	1.6 Gigapixel/sec		
	32 GFLOPs 32-bit or 64 GFLOPs 16-bit		
	Supports OpenGL ES 1.1, 2.0, 3.0, 3.1, Open CL 1.2, and Vulkan		
	4Kp60 HEVC/H.265 main, and main 10 decoder		
Video Processing Unit (VPU)	4Kp60 VP9 and 4Kp30 AVC/H.264 decoder (requires full system resources)		
	1080p60 MPEG-2, MPEG-4p2, VC-1, VP8, RV9, AVS, MJPEG, H.263 decoder		
	2x USB 3.0/2.0 controllers with integrated PHY interfaces		
	1x Ultra Secure Digital Host Controller (uSDHC) interfaces		
	1x Gigabit Ethernet controller with support for EEE, Ethernet AVB, and IEEE 1588		
	2x UART modules		
	2x I2C modules		
I/O connectivity	2x SPI modules		
	16x GPIO lines with interrupt capability		
	4x PWM lines		
	Input/output multiplexing controller (IOMUXC) to provide centralized pad control		
	Note: The list above is the number of signals available to the baseboard (after considering SoC signals used by the SoM).		
	Boot ROM (128 KB)		
On-chip memory	On-chip RAM (128 KB + 32 KB)		
	32/16-bit DRAM interface: LPDDR4-3200, DDR4-2400, DDR3L-1600		
External memory	8-bit NAND-Flash		
	eMMC 5.0 Flash		

Feature	Details
	SPI NOR Flash
	QuadSPI Flash with support for XIP
	HDMI Display Interface:
	HDMI 2.0a supporting one display up to 1080p
	Upscale and downscale between 4K and HD video (requires full system resources)
	20+ Audio interfaces 32-bit @ 384 kHz fs, with Time Division Multiplexing (TDM) support
	SPDIF input and output
Display	Audio Return Channel (ARC) on HDMI
	MIPI-DSI Display Interface:
	MIPI-DSI 4 channels supporting one display, resolution up to 1920 x 1080 @ 60 Hz
	LCDIF display controller
	Output can be LCDIF output or DC display controller output
	1x SPDIF input and output
Audio	2x synchronous audio interface (SAI) modules supporting I2S, AC97, TDM, and codec/DSP interfaces
	1x SAI for 8 Tx channels for HDMI output audio
	1x SPDIF input for HDMI ARC input
Camera	MIPI-CSI2 camera input (4-lane)
	Resource Domain Controller (RDC) supports four domains and up to eight regions
	Arm TrustZone (TZ) architecture
Security	On-chip RAM (OCRAM) secure region protection using OCRAM controller
	High Assurance Boot (HAB)
	Cryptographic acceleration and assurance (CAAM) module

Feature	Details	
	Secure non-volatile storage (SNVS): Secure real-time clock (RTC)	
	Secure JTAG controller (SJC)	
ML accelerator		
	ASIC designed by Google that provides high performance ML inferencing for TensorFlow Lite models	
Edge TPU coprocessor	Uses PCIe and I2C/GPIO to interface with the iMX 8M SoC	
	4 trillion operations per second (TOPS)	
	2 TOPS per watt	
Memory and storage		
	1 GB LPDDR4 SDRAM (4-channel, 32-bit bus width)	
Random access memory (SDRAM)	1600 MHz maximum DDR clock	
	Interfaces directly to the iMX 8M build-in DDR controller	
	8 GB NAND eMMC flash memory	
Flash memory (eMMC)	8-bits MMC mode	
	Conforms to JEDEC version 5.0 and 5.1	
	Meets SD/SDIO 3.0 standard	
Expandable flash (MicroSD)	Runs at 4-bits SDIO mode	
	Supports system boot from SD card	
Network & wireless		
	10/100/1000 Mbps Ethernet/IEEE 802.3 networks	
Ethernet	Reduced gigabit media-independent interface (RGMII)	
	Murata LBEE5U91CQ module:	
Wi-Fi	Wi-Fi 2x2 MIMO (802.11a/b/g/n/ac 2.4/5GHz)	

Feature	Details
	Supports PCIe host interface for W-LAN
	Murata LBEE5U91CQ module:
Bluetooth	Bluetooth 4.2 (supports Bluetooth low-energy)
	Supports UART interface
Security	
	Microchip ATECC608A cryptographic coprocessor:
Cryptographic coprocessor	Asymmetric (public/private) key cryptographic signature solution based on Elliptic Curve Cryptography and ECDSA signature protocols
Baseboard	
	40-pin I/O header (see pinout below)
	USB Micro-B for serial console
	USB 3.0 Type-A host
	Gigabit Ethernet
	4-pin stereo terminal
Comment on	3.5 mm audio jack
Connectors	USB Type-C power
	USB Type-C data
	HDMI 2.0a (full size)
	MicroSD slot
	MIPI DSI display (39-pin flat flex cable)
	MIPI CSI-2 camera (24-pin flat flex cable)

Block diagramsFigures 1 and 2 illustrate the core components on the baseboard and SoM.

Figure 1. Block diagram of the baseboard com

ponents Figure 2. Block diagram of the SoM components

Mechanical dimensions

Figure 3. Coral Dev Board dimensions

Baseboard connections

The baseboard on the Coral Dev Board provides a variety of connectors as shown in figure 4.

Figure

4. Connectors on the Coral Dev Board

Pinout de cabecera de E/S

Todos los pines de E/S en el cabezal de 40 pines son alimentados por el riel de alimentación de 3.3 V, con una impedancia programable de 40-255 ohmios, y una corriente máxima de 82 mA.

Todos los pines de E/S tienen una resistencia desplegable de 90k dentro del SoC iMX 8M que se utiliza por defecto durante el arranque, excepto los pines I2C, que en su lugar tienen un pull-up a 3.3 V en el SoM. Sin embargo, todos estos se pueden cambiar con una superposición de árbol de dispositivos que se carga después del arranque.

Puede interactuar con cada pin utilizando interfaces Linux estándar, como archivos de dispositivo (/dev) y archivos sysfs (/sys). Para obtener información de uso, consulte <u>Conectarse a los pines de</u> E/S de la placa de desarrollo.

SoC signal name	Baseboard signal	Header pins		Baseboard signal	SoC signal name
	+3.3 V power	1	2	+5 V power	
I2C2_SDA	I2C2_SDA	3	4	+5 V power	
I2C2_SCL	I2C2_SCL	5	6	Ground	
UART3_TXD	UART3_TXD	7	8	UART1_TXD	UART1_TXD
	Ground	9	10	UART1_RXD	UART1_RXD
UART3_RXD	UART3_RXD	11	12	SAI1_TXC	SAI1_TXC
GPIO6	GPIO_P13	13	14	Ground	
PWM3	PWM3	15	16	GPIO_P16	NAND_DATA03
	+3.3 V power	17	18	GPIO_P18	ECSPI2_SCLK
ECSPI1_MOSI	ECSPI1_MOSI	19	20	Ground	
ECSPI1_MISO	ECSPI1_MISO	21	22	GPIO_P22	ECSPI2_MISO
ECSPI1_SCLK	ECSPI1_SCLK	23	24	ECSPI1_SS0	ECSPI1_SS0
	Ground	25	26	ECSPI1_SS1	ECSPI1_SS1
I2C3_SDA	I2C3_SDA	27	28	I2C3_SCL	I2C3_SCL
GPIO7	GPIO_P29	29	30	Ground	
GPIO8	GPIO_P31	31	32	PWM1	PWM1
PWM2	PWM2	33	34	Ground	
SAI1_TXFS	SAI1_TXFS	35	36	GPIO_P36	ECSPI2_SS0
NAND_DATA07	GPIO_P37	37	38	SAI1_RXD0	SAI1_RXD0
	Ground	39	40	SAI1_TXD0	SAI1_TXD0

Key:

Synchronous Audio	Serial Peripheral	General Purpose	+5 V power
Interface (SAI)	Interface (SPI)	I/O (GPIO)	
Inter-Integrated Circuit (I2C)	Universal Asynchronous Receiver-Transmitter (UART)	Ground	+3.3 V power

Receptor-Transmisor asíncrono Universal (UART)

Cada módulo UARTv2 admite lo siguiente:

- Palabras de datos de 7 u 8 bits, 1 o 2 bits de parada, paridad programable (par, impar o ninguno).
- Velocidades en baudios programables de hasta 4 Mbps.
- FIFO de 32 bytes en Tx y FIFO de media palabra de 32 en Rx compatible con auto-baud.

Interfaz de audio sincrónica (SAI)

Cada módulo SAI soporta interfaces seriales dúplex completas con sincronización de tramas, tales como I2S, AC97, TDM, e interfaces codec/DSP.

Circuito interintegrado (I2C)

Interfaz serie para dispositivos externos.

Interfaz periférica serie (SPI)

Interfaz serial sincrónica mejorada de dúplex completo, con velocidad de datos de hasta 52 Mbit/s. Configurable para admitir modos maestro/esclavo, cuatro selecciones de chip para admitir múltiples periféricos.

Modulación de ancho de pulso (PWM)

Funciona con una frecuencia de 0-66 Mhz. Proporciona un contador de 16 bits y está optimizado para generar sonido a partir de imágenes de audio de muestra almacenadas. Puede conducir motores y generar tonos. Utiliza una resolución de 16 bits y un FIFO de datos 4x16 para generar sonido.

Puerto de consola serie

El puerto micro-USB (consulte "consola serie" en la figura 4) proporciona acceso a la consola serie basada en el controlador de puente CP210x USB a UART. Solo Linux y Mac son compatibles oficialmente con las conexiones de consola serie, como se indica a continuación.

Conectarse con Linux

1. Ejecute los siguientes comandos para agregar la regla udev necesaria:

```
    sudo sh -c "echo 'SUBSYSTEM==\"usb\", ATTR{idVendor}==\"0525\", MODE=\"0664\", \
    GROUP=\"plugdev\", TAG+=\"uaccess\"' >> /etc/udev/rules.d/65-edgetpu-board.rules"
    sudo udevadm control --reload-rules && udevadm trigger
```

- 6. Determine the device filename for the serial connection by running this command on your Linux computer:
- 7. dmesg | grep ttyUSB

You should see two results such as this:

```
[ 6437.706335] usb 2-13.1: cp210x converter now attached to ttyUSB0
[ 6437.708049] usb 2-13.1: cp210x converter now attached to ttyUSB1
```

8. Use the name of the *first* filename listed as a cp210x converter to open the serial console connection (this example uses ttyUSB0 as shown from above):

screen /dev/ttyUSB0 115200

Conectar con Mac

- 1. Instale el siguiente controlador de dispositivo.
 - 2. Connect with this command:

screen /dev/cu.SLAB USBtoUART 115200

Puerto HDMI

Este es un puerto HDMI 2.0a de tamaño completo.

De forma predeterminada, la salida se bloquea con una resolución de 1920 x 1080 para evitar la presión de la GPU y los costos de energía al conducir pantallas de mayor resolución.

Si su pantalla no es compatible con 1920 x 1080, puede cambiar esta configuración editando el archivo en /etc/xdg/weston/weston.ini: En la sección [output] edite el modo de línea mode=1920x1080 para que sea una resolución de su elección. También puede eliminar esta línea por completo y, a continuación, utilizará la resolución más alta admitida por el monitor (pero hacerlo puede degradar el rendimiento general del sistema si es superior a 1920x1080).

Puertos USB 3.0

Hay tres puertos USB 3.0:

- **Host USB Tipo A:** Funciona como un host USB 3.0 que puede proporcionar energía. Utilice este puerto para sus periféricos, como una cámara USB.
- **Datos USB Tipo-C:** Funciona como un puerto de dispositivo USB "en movimiento" (OTG), por lo que la placa de desarrollo aparece como un dispositivo USB a un dispositivo host conectado. Utilice este puerto para conectarse a la carcasa a través de USB o para parpadear la placa.
- **Potencia USB Tipo-C:** Utilice esto para alimentar la placa con una conexión de 2-3 A a 5 V CC. Puerto Ethernet

El puerto Gigabit Ethernet (RJ45) admite redes Ethernet/IEEE 802.3 de 10/100/1000 Mbps.

Terminal estéreo de 4 pines

Recomendamos usar un altavoz de 4 ohmios y 3 vatios. Un ohmage más alto resulta en una salida mucho más silenciosa.

El terminal estéreo es un conector terminal de 4 pines y 2,54 mm de paso para altavoces estéreo. Las funciones de alambre son las siguientes (de izquierda a derecha, como se muestra en la figura 5):

- 1: El altavoz dejó positivo
- 2: El altavoz dejó negativo
- 3: Altavoz positivo derecho
- 4: Altavoz derecho negativo

Figure 5. Stereo speaker terminals

Ranura MicroSD

La tarjeta MicroSD cumple con el estándar SD/SDIO, hasta la versión 3.0. Se puede utilizar como memoria expandida para el sistema o como disco para la imagen del sistema. Si todo el sistema falla, puede utilizar la tarjeta SD para volver a flashear U-Boot en la placa (consulte las instrucciones intermitentes).

Conector de pantalla MIPI DSI

El conector de pantalla MIPI DSI es un conector de cable flexible de 39 pines que proporciona 4 carriles con resolución de hasta 1920x1080 a 60 Hz. El pinout del conector es el siguiente.

MIPI DSI pinout

Pin #	Name
1	GND
2	TP5
3	TP20
4	TP2

Pin #	Name
21	DSI_TE
22	
23	V1V8
24	

MIPI DSI pinout

Pin #	Name
5	GND
6	MIPI_DSI_D2_P
7	MIPI_DSI_D2_N
8	GND
9	MIPI_DSI_D1_P
10	MIPI_DSI_D1_N
11	GND
12	MIPI_DSI_CLK_P
13	MIPI_DSI_CLK_N
14	GND
15	MIPI_DSI_D0_P
16	MIPI_DSI_D0_N
17	GND
18	MIPI_DSI_D3_P
19	MIPI_DSI_D3_N
20	GND

Pin #	Name
25	DISP_LEDA
26	DISP_LEDK1
27	DISP_LEDK2
28	VOP_5p5_CONN
29	VON_N5p5_CONN
30	LED_PWM
31	GND
32	GND
33	TP21
34	GND
35	DISPLAY_I2C_SCL_1V8
36	DISPLAY_I2C_SDA_1V8
37	DSI_VSP_EN
38	DSI_TS_nINT
39	DSI_RESETB

MIPI CSI-2 camera connector pinout

The MIPI CSI-2 camera connector is a 24-pin flex cable connector that's designed for the Coral Camera. The connector pinout is as follows.

Pinout for camera cable connector

Pin	Name
1	GND
2	MIPI_CSI_D0_N
3	MIPI_CSI_D0_P
4	GND
5	MIPI_CLK_N
6	MIPI_CLK_P
7	GND
8	MIPI_CSI_D1_N
9	MIPI_CSI_D1_P
10	GND
11	MIPI_CSI_D2_N
12	MIPI_CSI_D2_P

Pin	Name
13	GND
14	MIPI_CSI_D3_N
15	MIPI_CSI_D3_P
16	GND
17	CAM_PWDNB
18	CAM_CLK (NC)
19	GND
20	CAM_I2C_SCL
21	CAM_I2C_SDA
22	CAM_VSYNC (NC)
23	CAM_RESETB
24	3.3V

Figu}re 6. Camera adapter card diagram

Potencia del sistema

La placa de desarrollo de Coral debe ser alimentada por 2-3 A a 5 V CC utilizando el puerto de alimentación USB Type-C (ver <u>figura 4</u>).

El SoM tiene un PMIC primario (BD71837MWV) de Rohm para el complejo iMX 8M SoC, LPDDR4, eMMC y Wi-Fi/Bluetooth. Integra 8 reguladores de cc-CC y 7 LDO para proporcionar todos los rieles de potencia requeridos por iMX 8M SoC y periféricos de uso común.

Modo de arranque

La placa base incluye 4 interruptores (indicados en la figura 7 para controlar el modo de arranque. De forma predeterminada, se establecen para arrancar desde eMMC. Puede cambiar el modo de arranque de la siguiente manera.

Boot mode switches				
Boot mode	Switch 1	Switch 2	Switch 3	Switch 4
Serial download	Off	On	[Don't care]	[Don't care]
eMMC	On	Off	Off	Off
SD card	On	Off	On	On

Figure 7. Boot mode switches, set to boot from eMMC System reset

You can restart the system with the RESET button shown in figure 8.

Figure 8. System reset button

Software y operación

La configuración de fábrica de la placa de desarrollo solo incluye el software del gestor de arranque U-Boot en la memoria eMMC. Para utilizar la placa, necesita flashear el <u>sistema operativo Mendel</u> (un derivado de Debian Linux). Para obtener instrucciones, consulte la <u>guía de introducción</u>.

El sistema Mendel incluye software especialmente diseñado para la Junta de desarrollo y necesario para operar la TPU Edge. También incluye API de Python que facilitan la realización de inferencias con los modelos TensorFlow Lite.

Para obtener información sobre cómo crear modelos y ejecutar inferencias en la TPU perimetral, lea <u>Modelos TensorFlow en la TPU perimetral</u>.

Comportamiento LED

La junta de desarrollo tiene dos conjuntos de luces LED integradas: un LED para el estado de alimentación y un par de LED que proporcionan el estado del puerto serie.

El puerto Ethernet también tiene un par de luces LED.

LED de alimentación

El LED que proporciona el estado de alimentación se encuentra entre los puertos Power (PWR) y USB On-The-Go (OTG). Se ilumina en rojo cuando la placa se enciende y se apaga cuando se quita la alimentación o se apaga el SoC principal (por ejemplo, cuando se emite un comando sudo shutdown

LED de puerto serie

La placa tiene LED verdes y amarillos cerca del conector de la consola serial (micro-B USB), esos muestran la actividad TX/RX vía la interfaz serial. El LED verde se ilumina cuando hay actividad en la línea RX (que indica que los datos se reciben a través de la interfaz serial), mientras que el LED amarillo se ilumina cuando hay actividad en la línea TX (lo que indica que los datos se transmiten a través de la interfaz serie).

Detalles del hardware de SoM

El sistema en el módulo (SoM) incluido con la placa de desarrollo se basa en el sistema en chip iMX 8M (SoC) de NXP y contiene todo el hardware esencial del sistema, incluidas las radios Edge TPU y Wi-Fi/Bluetooth. Está conectado a la placa base de la placa de desarrollo con tres conectores de placa a placa de 100 pines.

Nota: Si está interesado en utilizar el SoM de Coral con hardware PCB personalizado (en lugar de la placa base proporcionada con la Junta de desarrollo), puede obtener más información sobre el SoM independiente en la <u>hoja de datos de Coral SoM</u>.

Figure 9 shows the dimensions of the SoM.

Figure 9. Coral SoM dimensions without the heat sink and fan Condiciones de funcionamiento recomendadas

Para garantizar un funcionamiento y un rendimiento fiables, la placa debe funcionar en el siguiente entorno:

• Temperatura: 0-50oC Solución térmica

Para mantener los niveles de calor funcionales, la Junta de desarrollo incluye un disipador de calor y un ventilador con las siguientes especificaciones:

Velocidad: 9k RPM

• Flujo de aire: 138 LPM (4.9 CFM)

• Voltaje: 5 V DC

Potencia (pico): 0,65 W

• Presión estática: 42 Pa (0,17 in-H2O)

Verified results for environmental and mechanical reliability tests

Test	Conditions	Verified
Temp cycling	Non-op, -40° C (LT) to 85° C (HT), 7 minute ramp, 23 minutes dwell, 60 minutes/cycle	200 cycles
Heat soak	Non-op, 85° C @ 85% RH	200 cycles
Audio jack cycling	50% manual plug/unplug, 50% uniaxial machine plug/unplug	1000 cycles
HDMI cycling	Manual plug/unplug	100 cycles
MicroSD cycling	Manual plug/unplug	100 cycles
Vibration	3 axes (X, Y and Z), 15 minutes per axis, 10-500 Hz. Amplitude: 2.16 Grms	45 minutes
USB-C connector cycling	Manual plug/unplug	1000 cycles
USB-A connector cycling	Manual plug/unplug	1000 cycles
Micro USB connector cycling	Manual plug/unplug	1000 cycles
Fan run life	40°C, 65% RH	70k hours

Pruebas de fiabilidad ambiental y mecánica

Dev Board certifications

Country	Agency
USA	FCC
European Union	СЕ
Hong Kong	СЕ
Japan	VCCI
Korea	KC
Ghana	NCA
Taiwan	BSMI/NCC
Australia	RCM
New Zealand	RCM
India	WPC
Thailand	NBTC
Singapore	IMDA
Oman	TRA
Philippines	NTC

Dev Board schematics, layout, and 3D files

File	Description
Coral-Dev-Board-baseboard-schematic.pdf	Baseboard schematic in PDF
Coral-Dev-Board-baseboard-schematic-Altium.zip	Baseboard schematic files in Altium format

Coral-Dev-Board-baseboard-layout- Allegro.brd	Baseboard CAD layout in BRD format
Coral-Dev-Board.STEP	Dev Board (baseboard and SoM) 3D CAD file in STEP format

Document revisions

History of changes to this document

Version	Changes
1.5 (June 2020)	Correction to MIPI-CSI2 count.
1.4 (April 2020)	Updated the 40-pin I/O header pinout to be searchable.
1.3 (January 2020)	Added information on LED behavior.

1.2 (August 2019)	Added schematic and layout files
1.1 (August 2019)	Camera cable pinout corrected.
1.0 (June 2019)	Removed SoM hardware details (now instead see the SoM datasheet) Added Edge TPU performance details Added table captions Retitled some sections Miscellaneous copy edits
Beta (March 2019)	Initial release