Question1:

An *algorithm* is any well-defined computational procedure that takes some value, or set of values, as *input* and produces some value, or set of values, as *output*. An algorithm is thus a sequence of computational steps that transform the input into the output.

The analysis of algorithm is the theoretical study of computer program performance and resource usage. And a particular focus on performance. **Algorithm design** on the other hand is a specific method to create a mathematical process in problem solving processes. Key properties include input, output, finiteness, definiteness, and effectiveness.

Question 2: Insertion Sort

5; 3; 4; 15; 0; 2; 8; 16

5; 3; 4; 15; 0; 2; 8; 16 // 3 not moved

5; 4; 3; 15; 0; 2; 8; 16 // Can show multiple steps or just direct is OK as well; 4

15, 5; 4; 3; 0; 2; 8; 16

15, 5; 4; 3; 0; 2; 8; 16

15, 5; 4; 3; 2; 0; 8; 16

15, 8; 5; 4; 3; 2; 0; 16

18;15; 8; 5; 4; 3; 2; 0

Book Page 25 for Loop Invariant Properties and Time Complexities

Question 3: Merge Sort

5; 3; 4; 15; 0; 2; 8; 16

5; 3; 4; 15				0; 2; 8; 16				
5; 3		4; 15		0; 2		8; 16		
	_				_			
5	3	4	15	0	2	8	16	
5;3		15;4	15;4		2,0		16,8	
15,5,4,3				16,8,2,0				

16,15,8,5,4,3,2,0

Book Page 35 for Loop Invariant Properties and Time Complexities

T(n) = 2T(n/2) + bn = O(nlogn)

Question 4: Quick Sort

5; 3; 4; 15; 0; 2; 8; **16** // Pivot Point is 16

<u>16</u>,**3**,4,15,0,2,8,5 // 5 is replaced with 16; New pivot point is 3

<u>16</u>,4,15,8,**5**,<u>3</u>,**0**,2 // Now 5 & 0 i.e. before and after 3

<u>16</u>,15,**8**,<u>5</u>,**4**,<u>3</u>,**2**,<u>0</u> // Now 2, 4, and 8

<u>16</u>,**15**,<u>8</u>,**5**,4,<u>3</u>,**2**,0 // Sorted.

Complexity O(n^2)

Question 5: $n^2 + 50n + 6 = O(n^2)$

$$f(n) = n^2 + 50n + 6$$

 $g(n) = cn^2$

n^2 + 50n^2 +6n^2 = 57n^2

For c = 57, n_0 = 1; statement is true

Question 6: c = 13, n_0 = 2

Question 7: Give Full Marks if they write something about Big Oh, theta, and Omega

Question 8: (a) a = 7, b = 2, d = 2

Case 3: $O(n^{\log_2 7})$

(b)
$$a = 8$$
, $b = 2$, $d = 2$

Case 3: O(n^{log}₂⁸)_

(c)
$$a = 4$$
, $b = 2$, $d = 1$

Case 3: $O(n^{\log_2 4})$

Question 9:

$$T(n) = 1 + T(\frac{n}{2}); T(1) = 0$$

$$= 1 + (1 + T(\frac{n}{4}))$$

$$= 1 + 1 + (1 + T(\frac{n}{8}))$$

$$= 1 + (1 + T(\frac{n$$

Question 10:

T For all positive f(n), $f(n) + o(f(n)) = \Theta(f(n))$.

Let $f(n) = n^2$

Then, $n^2 + o(n^2) = \Theta(n^2)$, For small o, f(n) < cg(n) i.e. $o(n^2)$ should be less than n^2 . Thus, Equation is True

F For all positive f(n), g(n) and h(n), if f(n) = O(g(n)) and $f(n) = \Omega(h(n))$, then $g(n) + h(n) = \Omega(f(n))$

f(n) = n, g(n) = nlogn, h(n) = logn, Thus, $nlogn + logn = \Omega(n)$, Thus Equation is True

If f(n) = 2n, g(n) can be n or (2n-1) or any equation with linear n in order satisfy both f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ simultaneously. Thus True

T If
$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$, then we have $f(n) = g(n)$

From above statement, it is clear that f(n) and g(n) can be different