

i henhold til forordning (EF) nr. 1907/2006

Utstedelsesdato 16-Sep-2011 Revisjonsdato 30-Nov-2024 Revisjonsnummer 4

Avsnitt 1: IDENTIFIKASJON AV STOFFET/STOFFBLANDINGEN OG AV SELSKAPET/FORETAKET

1.1. Produktidentifikator

Beskrivelse av produkt: <u>Methylamine, 2M in methanol</u>

Cat No. : H26889 Molekylar formel C H5 N

1.2. Relevante identifiserte bruksområder for stoffet eller stoffblandingen og bruk som frarådes

Anbefalt bruk Laboratoriekjemikalier.
Frarådet bruk Laboratoriekjemikalier.
Ingen informasjon tilgjengelig

1.3. Opplysninger om leverandøren av sikkerhetsdatabladet

Firma

Thermo Fisher (Kandel) GmbH

Erlenbachweg 2 76870 Kandel Germany

Tel: +49 (0) 721 84007 280 Fax: +49 (0) 721 84007 300

E-postadresse begel.sdsdesk@thermofisher.com

1.4. Nødtelefonnummer

Giftinformasjonen Døgnåpen telefon: 22 59 13 00

Råd ved forgiftninger og forgiftningsfare.

For opplysninger i , ring: 001-800-227-6701 For opplysninger i , ring: +32 14 57 52 11

Telefonnumer i nødstilfelle, :+32 14 57 52 99 Telefonnumer i nødstilfelle, :201-796-7100

Telefonnummer, :800-424-9300 Telefonnummer, :703-527-3887

GIFTINFORMASJONSSENTRALEN Nødinformasjonstjenester

GIFTINFORMASJONSSENTRALEN - Uitsluitend bestemd om professionele hulpverleners te informeren bij acute vergiftigingen

Giftinformasjonen

Døgnåpen telefon: 22 59 13 00

Råd ved forgiftninger og forgiftningsfare.

Avsnitt 2: FAREIDENTIFIKASJON

2.1. Klassifisering av stoffet eller stoffblandingen

CLP klassifisering - Forordning (EF) nr. 1272/2008

Methylamine, 2M in methanol

Revisjonsdato 30-Nov-2024

\	1010	\mathbf{r}	+-	ror
Г١	/sis	NE	ıa	ıeı

Kategori 2 (H225) Brannfarlige væsker

Helsefarer

Akutt oral toksisitet Kategori 3 (H301) Kategori 3 (H311) Akutt dermal toksisitet Akutt innåndingstoksisitet - damper Kategori 3 (H331) Hudetsing/hudirritasjon Kategori 1 B (H314) Alvorlig øyenskade/øyeirritasjon Kategori 1 (H318) Spesifikk målorgan systemisk giftighet - (enkel utsettelse) Kategori 1 (H370)

Kategori 3 (H335)

Miljøfarer

Klassifiseringskriteriene er ikke oppfylt, basert på tilgjengelige data

Fullstendig tekst for Fareutsagn: se seksjon 16

2.2. Merkingselementer

Signalord Fare

Fareutsagn

H225 - Meget brannfarlig væske og damp

H335 - Kan forårsake irritasjon av luftveiene

H370 - Forårsaker organskader

H314 - Gir alvorlige etseskader på hud og øyne

H301 + H311 + H331 - Giftig ved svelging, hudkontakt eller innånding

Sikkerhetssetninger

P305 + P351 + P338 - VED KONTAKT MED ØYNENE: Skyll forsiktig med vann i flere minutter. Fjern eventuelle kontaktlinser dersom dette enkelt lar seg gjøre. Fortsett skyllingen

P310 - Kontakt umiddelbart GIFTINFORMASJONSSENTRALEN eller lege

P280 - Benytt vernehansker/verneklær/vernebriller/ansiktsskjerm

P301 + P330 + P331 - VED SVELGING: Skyll munnen. IKKE framkall brekning

P303 + P361 + P353 - VED HUDKONTAKT (eller håret): Tilsølte klær må fjernes straks. Skyll/dusj huden med vann

P210 - Holdes vekk fra varme, varme overflater, gnister, åpen ild og andre antenningskilder. Røyking forbudt

2.3. Andre farer

Lachrymator (tåregass) (substanser som øker tårestrømmen). Giftig for landvirveldyr

Dette produktet inneholder ingen kjente eller mistenkte hormonhermere

AVSNITT 3: Sammensetning/opplysninger om bestanddeler

Revisjonsdato 30-Nov-2024

3.2. Stoffblandinger

Komponent	CAS Nr	EC-nummer:	Velktprosent	CLP klassifisering - Forordning (EF) nr. 1272/2008
Metanol	67-56-1	200-659-6	92-93	Flam. Liq. 2 (H225) Acute Tox. 3 (H301) Acute Tox. 3 (H311) Acute Tox. 3 (H331) STOT SE 1 (H370)
Metylamin	74-89-5	EEC No. 200-820-0	7-8	Flam. liq. 1 (H224) Acute Tox. 4 (H302) Acute Tox; 4 (H332) Skin Corr. 1B (H314) Eye Dam. 1 (H318) STOT SE 3 (H335)

Komponent	Spesifikke	M-faktor	Komponentnotater
	konsentrasjonsgrenser (SCL)		
Metanol	STOT Single Exp. 1 :: >= 10	-	-
	STOT Single Exp. 2 :: 3 - < 10		
Metylamin	STOT SE 3 :: C>=5%	-	-

Fullstendig tekst for Fareutsagn: se seksjon 16

AVSNITT 4: Førstehjelpstiltak

4.1. Beskrivelse av førstehjelpstiltak

Generelle råd Øyeblikkelig legehjelp er nødvendig. Vis dette sikkerhetsdatabladet til legen.

Kontakt med øyne Skyll umiddelbart med mye vann, også under øyelokkene, i minst 15 minutter. Får man

stoffet i øynene, skyll umiddelbart med mye vann og søk legehjelp.

Hudkontakt Vask umiddelbart med mye vann i minst 15 minutter. Øyeblikkelig legehjelp er nødvendig.

Svelging IKKE framkall brekninger. Kontakt umiddelbart lege eller giftinformasjonssentralen.

Innånding Gi oksygen dersom pasienten har pustevansker. Bruk ikke munn-til-munn-metoden hvis

personen har svelget eller innåndet stoffet; gi kunstig åndedrett ved bruk av en

lommemaske utstyrt med en enveis ventil eller annet egnet medisinsk åndedrettsutstyr.

Flytt til frisk luft. Øyeblikkelig legehjelp er nødvendig.

Personlig verneutstyr for

førstehjelpere

Se til at helsepersonellet vet hvilke(t) stoff(er) som er involvert, og tar forholdsregler for å

beskytte seg selv og hindre spredning av kontamineringen.

4.2. De viktigste symptomene og virkningene, både akutte og forsinkede

Forårsaker forbrenninger i alle eksponeringsveier. Pustevansker. Produktet er etsende. Bruk av tarmskylling eller fremkalt oppkast er kontraindisert. Mulig perforering av magen eller spiserøret må undersøkes: Svelging forårsaker alvorlige hevelser, alvorlige skader på bløtvev og fare for perforasjon: Innånding av høye dampkonsentrasjoner kan forårsake symptomer som hodepine, svimmelhet, tretthet, kvalme og brekninger

4.3. Angivelse av om umiddelbar legehjelp og spesialbehandling er nødvendig

Merknader til leger Behandle symptomene.

Methylamine, 2M in methanol

Revisjonsdato 30-Nov-2024

AVSNITT 5: Brannslokkingstiltak

5.1. Slokkingsmidler

Egnede slukningsmidler

Vannspray, karbondioksid (CO2), tørrkjemikalie, alkoholbestandig skum. Vanntåke kan brukes til å avkjøle lukkede beholdere.

Brannslukningsmidler som ikke skal brukes av sikkerhetsgrunner

Ingen informasjon tilgjengelig.

5.2. Særlige farer knyttet til stoffet eller stoffblandingen

Termisk nedbrytning kan avgi irriterende gasser og damper. Produktet forårsaker forbrenninger på øyne, hud og slimhinner. Brannfarlig. Beholdere kan eksplodere ved oppvarming. Dampene kan danne eksplosive blandinger med luft. Dampene kan gå tilbake til antenningskilden og slå tilbake.

Farlige forbrenningsprodukter

Nitrogenoksider (NOx), Karbonmonoksid (CO), Karbondioksid (CO2), Termisk nedbrytning kan avgi irriterende gasser og damper.

5.3. Råd til brannmannskaper

Som ved alle branner, må det brukes selvstendig trykkpusteapparat, MSHA/NIOSH (godkjent eller tilsvarende) og fullt verneutstyr. Termisk nedbrytning kan avgi irriterende gasser og damper.

Avsnitt 6: TILTAK VED UTILSIKTET UTSLIPP

6.1. Personlige forsiktighetsregler, personlig verneutstyr og nødrutiner

Bruk påkrevd, personlig verneutstyr. Evakuer personell til sikkert område. Hold personer vekk fra av spill/lekkasje og på losiden av dem. Sørg for tilstrekkelig ventilasjon. Fjern alle antennelseskilder. Ta forholdsregler mot utladning av statisk elektrisitet.

6.2. Forsiktighetsregler med hensyn til miljø

Unngå utslipp til miljøet. Se avsnitt 12 for ytterligere økologisk informasjon.

6.3. Metoder og materialer for oppsamling og rensing

Sug opp med inert absorberende materiale. Oppbevares i egnede lukkede beholdere for avfallsbehandling. Fjern alle antennelseskilder. Bruk gnistfritt verktøy og eksplosjonssikkert utstyr.

6.4. Henvisning til andre avsnitt

Referer til vernetiltak som er oppført på liste under punkt 8 og 13.

AVSNITT 7: Håndtering og lagring

7.1. Forsiktighetsregler for sikker håndtering

Unngå innånding av tåke/damper/spray. Må ikke komme i kontakt med øyne, huden eller klær. Må ikke svelges. Kontakt lege øyeblikkelig hvis stoffet svelges. Brukes bare under en kjemisk avtrekkshette. Benytt personlig verneutstyr / ansiktsskjerm. Holdes unna åpen ild, varme flater og antenningskilder. Bruk kun gnistfritt verktøy. For å unngå antennelse av damper p.g.a. statisk elektrisitet må alle metalldeler i utstyret være jordet. Ta forholdsregler mot utladning av statisk elektrisitet.

Hygienetiltak

Må håndteres i henhold til industriell hygiene- og sikkerhetspraksis.

Methylamine, 2M in methanol

Revisjonsdato 30-Nov-2024

7.2. Vilkår for sikker lagring, herunder eventuelle uforenligheter

Emballasjen skal oppbevares på et tørt og godt ventilert sted. Holdes unna varme, gnister og ild. Eksplosjonsfarlig område.

Klasse 3

7.3. Særlig(e) sluttanvendelse(r)

Bruk i laboratorier

AVSNITT 8: Eksponeringskontroll/personlig verneutstyr

8.1. Kontrollparametere

Eksponeringsgrenser

liste kilde **EU** - Commission Directive (EU) 2019/1831 of 24 October 2019 establishing a fifth list of indicative occupational exposure limit values pursuant to Council Directive 98/24/EC and amending Commission Directive 2000/39/EC **NO** - Systematisk helse-, milj• - og sikkerhetsarbeid i virksomheter (internkontrollforskriften). Administrative normer for forurensning i arbeidsatmosfaere. Liste over administrative normer. Arbeidstilsynet

Komponent	Den europeiske unionen	U.K	Frankrike	Belgia	Spania
Metanol	TWA: 200 ppm 8 hr TWA: 260 mg/m³ 8 hr Skin	WEL - TWA: 200 ppm TWA; 266 mg/m³ TWA WEL - STEL: 250 ppm STEL; 333 mg/m³ STEL	TWA / VME: 200 ppm (8 heures). restrictive limit TWA / VME: 260 mg/m³ (8 heures). restrictive limit STEL / VLCT: 1000 ppm. restrictive limit: this value is not set by regulation and comes from a circular published by the Ministry of Labor. STEL / VLCT: 1300 mg/m³. restrictive limit: this value is not set by regulation and comes from a circular published by the Ministry of Labor. Peau	TWA: 266 mg/m³ 8 uren STEL: 250 ppm 15 minuten STEL: 333 mg/m³ 15 minuten Huid	TWA / VLA-ED: 200 ppm (8 horas) TWA / VLA-ED: 266 mg/m³ (8 horas) Piel
Metylamin			STEL / VLCT: 10 ppm. STEL / VLCT: 12 mg/m ³ .	TWA: 5 ppm 8 uren TWA: 6.6 mg/m³ 8 uren STEL: 15 ppm 15 minuten STEL: 19 mg/m³ 15 minuten	STEL / VLA-EC: 15 ppm (15 minutos). STEL / VLA-EC: 19 mg/m³ (15 minutos). TWA / VLA-ED: 5 ppm (8 horas) TWA / VLA-ED: 6.5 mg/m³ (8 horas)

Komponent	Italia	Tyskland	Portugal	Nederland	Finland
Metanol	TWA: 200 ppm 8 ore.	100 ppm TWA MAK;	STEL: 250 ppm 15	huid	TWA: 200 ppm 8
	Time Weighted Average	130 mg/m³ TWA	minutos	TWA: 100 ppm 8 uren	tunteina
	TWA: 260 mg/m ³ 8 ore.	MAKSkin absorber	TWA: 200 ppm 8 horas	TWA: 133 mg/m ³ 8 uren	TWA: 270 mg/m ³ 8
	Time Weighted Average		TWA: 260 mg/m ³ 8		tunteina
	Pelle		horas		STEL: 250 ppm 15
			Pele		minuutteina
					STEL: 330 mg/m ³ 15
					minuutteina
					lho
Metylamin		TWA: 5 ppm (8	STEL: 15 ppm 15		STEL: 10 ppm 15
		Stunden). AGW - ceiling	minutos		minuutteina
		factor 2; exposure factor	TWA: 5 ppm 8 horas		STEL: 13 mg/m ³ 15

Methylamine, 2M in methanol

Revisjonsdato 30-Nov-2024

2			minuutteina
TWA: 6.4 mg/m ³ (8			
2			
TWA: 5 ppm (8			
ruled out in individual			
cases			
TWA: 6.4 mg/m³ (8			
instantaneous value of			
10 ppm corresponding			
be exceeded; even if the			
MAK value is adhered			
to, "odor-associated"			
symptoms cannot be			
ruled out in individual			
cases			
Höhepunkt: 10 ppm			
Höhepunkt: 12.8 mg/m ³			
	TWA: 6.4 mg/m³ (8 Stunden). AGW - ceiling factor 2; exposure factor 2 TWA: 5 ppm (8 Stunden). MAK an instantaneous value of 10 ppm corresponding to 13 mg/m³ should not be exceeded; even if the MAK value is adhered to, "odor-associated" symptoms cannot be ruled out in individual cases TWA: 6.4 mg/m³ (8 Stunden). MAK an instantaneous value of 10 ppm corresponding to 13 mg/m³ should not be exceeded; even if the MAK value is adhered to, "odor-associated" symptoms cannot be ruled out in individual cases Höhepunkt: 10 ppm	TWA: 6.4 mg/m³ (8 Stunden). AGW - ceiling factor 2; exposure factor 2 TWA: 5 ppm (8 Stunden). MAK an instantaneous value of 10 ppm corresponding to 13 mg/m³ should not be exceeded;even if the MAK value is adhered to, "odor-associated" symptoms cannot be ruled out in individual cases TWA: 6.4 mg/m³ (8 Stunden). MAK an instantaneous value of 10 ppm corresponding to 13 mg/m³ should not be exceeded;even if the MAK value is adhered to, "odor-associated" symptoms cannot be ruled out in individual cases Höhepunkt: 10 ppm	TWA: 6.4 mg/m³ (8 Stunden). AGW - ceiling factor 2; exposure factor 2 TWA: 5 ppm (8 Stunden). MAK an instantaneous value of 10 ppm corresponding to 13 mg/m³ should not be exceeded;even if the MAK value is adhered to, "odor-associated" symptoms cannot be ruled out in individual cases TWA: 6.4 mg/m³ (8 Stunden). MAK an instantaneous value of 10 ppm corresponding to 13 mg/m³ should not be exceeded;even if the MAK value is adhered to, "odor-associated" symptoms cannot be ruled out in individual cases Höhepunkt: 10 ppm

Komponent	Østerrike	Danmark	Sveits	Polen	Norge
Metanol	Haut	TWA: 200 ppm 8 timer	Haut/Peau	STEL: 300 mg/m ³ 15	TWA: 100 ppm 8 timer
	MAK-KZGW: 800 ppm	TWA: 260 mg/m ³ 8 timer	STEL: 400 ppm 15	minutach	TWA: 130 mg/m ³ 8 timer
	15 Minuten	STEL: 400 ppm 15	Minuten	TWA: 100 mg/m ³ 8	STEL: 150 ppm 15
	MAK-KZGW: 1040	minutter	STEL: 520 mg/m ³ 15	godzinach	minutter. value
	mg/m ³ 15 Minuten	STEL: 520 mg/m ³ 15	Minuten		calculated
	MAK-TMW: 200 ppm 8	minutter	TWA: 200 ppm 8		STEL: 162.5 mg/m ³ 15
	Stunden	Hud	Stunden		minutter. value
	MAK-TMW: 260 mg/m ³		TWA: 260 mg/m ³ 8		calculated
	8 Stunden		Stunden		Hud
Metylamin	MAK-KZGW: 10 ppm 15	TWA: 5 ppm 8 timer	STEL: 10 ppm 15	STEL: 15 mg/m ³ 15	TWA: 10 ppm 8 timer
	Minuten	TWA: 6.4 mg/m ³ 8 timer	Minuten	minutach	TWA: 12 mg/m ³ 8 timer
	MAK-KZGW: 12 mg/m ³	STEL: 10 ppm 15	STEL: 13 mg/m ³ 15	TWA: 5 mg/m ³ 8	STEL: 20 ppm 15
	15 Minuten	minutter	Minuten	godzinach	minutter. value
	MAK-TMW: 10 ppm 8	STEL: 12.8 mg/m ³ 15	TWA: 10 ppm 8		calculated
	Stunden	minutter	Stunden		STEL: 18 mg/m ³ 15
	MAK-TMW: 12 mg/m ³ 8	Hud	TWA: 13 mg/m ³ 8		minutter. value
	Stunden		Stunden		calculated
	Ceiling: 10 ppm				
	Ceiling: 12 mg/m ³				

Komponent	Bulgaria	Kroatia	Irland	Kypros	Tsjekkia
Metanol	TWA: 200 ppm	kože	TWA: 200 ppm 8 hr.	Skin-potential for	TWA: 250 mg/m ³ 8
	TWA: 260.0 mg/m ³	TWA-GVI: 200 ppm 8	TWA: 260 mg/m ³ 8 hr.	cutaneous absorption	hodinách.
	Skin notation	satima.	STEL: 600 ppm 15 min	TWA: 200 ppm	Potential for cutaneous
		TWA-GVI: 260 mg/m ³ 8	STEL: 780 mg/m ³ 15	TWA: 260 mg/m ³	absorption
		satima.	min	_	Ceiling: 1000 mg/m ³
			Skin		
Metylamin	TWA: 12.0 mg/m ³		TWA: 5 ppm 8 hr.		TWA: 10 mg/m ³ 8
			TWA: 6 mg/m ³ 8 hr.		hodinách.
			STEL: 15 ppm 15 min		Potential for cutaneous
			STEL: 19 mg/m ³ 15 min		absorption
					Ceiling: 20 mg/m ³

Komponent	Estland	Gibraltar	Hellas	Ungarn	Island
Metanol	Nahk	Skin notation	skin - potential for	TWA: 260 mg/m ³ 8	TWA: 200 ppm 8
	TWA: 200 ppm 8	TWA: 200 ppm 8 hr	cutaneous absorption	órában. AK	klukkustundum.
	tundides.	TWA: 260 mg/m ³ 8 hr	STEL: 250 ppm	TWA: 200 ppm 8	TWA: 260 mg/m ³ 8
	TWA: 250 mg/m ³ 8	_	STEL: 325 mg/m ³	órában. AK	klukkustundum.

Methylamine, 2M in methanol

Revisjonsdato 30-Nov-2024

	tundides. STEL: 250 ppm 15 minutites. STEL: 350 mg/m³ 15 minutites.	TWA: 200 ppm TWA: 260 mg/m ³	lehetséges borön keresztüli felszívódás	Skin notation Ceiling: 400 ppm Ceiling: 520 mg/m ³
Metylamin	Nahk TWA: 10 ppm 8 tundides. TWA: 13 mg/m³ 8 tundides. STEL: 20 ppm 15 minutites. STEL: 25 mg/m³ 15 minutites.	TWA: 10 ppm TWA: 12 mg/m³		TWA: 5 ppm 8 klukkustundum. TWA: 6.4 mg/m³ 8 klukkustundum. Skin notation Ceiling: 10 ppm Ceiling: 12.8 mg/m³

Komponent	Latvia	Litauen	Luxembourg	Malta	Romania
Metanol	skin - potential for	TWA: 200 ppm IPRD	Possibility of significant	possibility of significant	Skin notation
	cutaneous exposure	TWA: 260 mg/m ³ IPRD	uptake through the skin	uptake through the skin	TWA: 200 ppm 8 ore
	TWA: 200 ppm	Oda	TWA: 200 ppm 8	TWA: 200 ppm	TWA: 260 mg/m ³ 8 ore
	TWA: 260 mg/m ³		Stunden	TWA: 260 mg/m ³	_
			TWA: 260 mg/m ³ 8		
			Stunden		
Metylamin		TWA: 10 ppm IPRD			TWA: 8 ppm 8 ore
		TWA: 13 mg/m ³ IPRD			TWA: 10 mg/m ³ 8 ore
		Oda			STEL: 12 ppm 15
		STEL: 20 ppm			minute
		STEL: 25 mg/m ³			STEL: 15 mg/m ³ 15
					minute

Komponent	Russland	Slovakiske Republikk	Slovenia	Sverige	Tyrkia
Metanol	TWA: 5 mg/m ³ 1250	Potential for cutaneous	TWA: 200 ppm 8 urah	Indicative STEL: 250	Deri
	Skin notation	absorption	TWA: 260 mg/m ³ 8 urah	ppm 15 minuter	TWA: 200 ppm 8 saat
	MAC: 15 mg/m ³	TWA: 200 ppm	Koža	Indicative STEL: 350	TWA: 260 mg/m ³ 8 saat
		TWA: 260 mg/m ³	STEL: 800 ppm 15	mg/m ³ 15 minuter	
			minutah	TLV: 200 ppm 8 timmar.	
			STEL: 1040 mg/m ³ 15	NGV	
			minutah	TLV: 250 mg/m ³ 8	
				timmar. NGV	
				Hud	
Metylamin	Skin notation	TWA: 10 ppm		Indicative STEL: 20 ppm	
	MAC: 1 mg/m ³	TWA: 13 mg/m ³	TWA: 13 mg/m ³ 8 urah	15 minuter	
			STEL: 10 ppm 15	Indicative STEL: 25	
			minutah	mg/m ³ 15 minuter	
			STEL: 13 mg/m ³ 15	TLV: 10 ppm 8 timmar.	
			minutah	NGV	
				TLV: 13 mg/m ³ 8	
				timmar. NGV	
				Hud	

Biologiske grenseverdier liste kilde

Komponent	Den europeiske unionen	Storbritannia	Frankrike	Spania	Tyskland
	unionen				
Metanol			Methanol: urine end of	Methanol: 15 mg/L urine	Methanol: 15 mg/L urine
			shift	end of shift	(end of shift)
					Methanol: 15 mg/L urine
					(for long-term
					exposures: at the end of
					the shift after several
					shifts)

Komponent	Italia	Finland	Danmark	Bulgaria	Romania
Metanol					Methanol: 6 mg/L urine
					end of shift

Kom	ponent	Gibraltar	Latvia	Slovakiske Republikk	Luxembourg	Tyrkia
Me	etanol			Methanol: 30 mg/L urine		

Methylamine, 2M in methanol

	end of exposure or work shift	
	Methanol: 30 mg/L urine after all work shifts for	
	long-term exposure	

Overvåkingsmetoder

EN 14042:2003 Tittelidentifikasjon: Luftkvalitet på arbeidsplassen. Veiledning når det gjelder anvendelse og bruk av prosedyrer for vurdering av eksponering for kjemiske og biologiske stoffer.

DNEL (Derived No Effect Level) / Avledet minimumseffektnivå (DMEL)

Se tabell for verdier

Component	Akutt effekt lokal (Hud)	Akutt effekt systemisk (Hud)	Kroniske effekter lokal (Hud)	Kroniske effekter systemisk (Hud)
Metanol		DNEL = 20mg/kg		DNEL = 20mg/kg
67-56-1 (92-93)		bw/day		bw/day
Metylamin				DNEL = 0.1mg/kg
74-89-5 (7-8)				bw/day

Component	Akutt effekt lokal (Innånding)	Akutt effekt systemisk (Innånding)		Kroniske effekter systemisk (Innånding)
Metanol 67-56-1 (92-93)	DNEL = 130mg/m ³	DNEL = 130mg/m ³	DNEL = 130mg/m ³	DNEL = 130mg/m ³
Metylamin 74-89-5 (7-8)			$DNEL = 0.427 mg/m^3$	DNEL = 0.72mg/m ³

PNEC (beregnet høyeste konsentrasjon uten virkning)

Se verdier under.

	Component	Ferskvann	Ferskvann sediment		Mikroorganismer i kloakkbehandling	` '
H	Metanol	PNEC = 20.8mg/L	PNEC = 77mg/kg	PNEC = 1540mg/L	sanlegg PNEC = 100mg/L	PNEC = 100mg/kg
	67-56-1 (92-93)		sediment dw			soil dw
	Metylamin 74-89-5(7-8)	PNEC = 0.016mg/L	PNEC = 0.776mg/kg sediment dw	PNEC = 0.016mg/L		PNEC = 0.126mg/kg soil dw

Compo	nent	Sjøvann	Sjøvann sediment	Sjøvann	Næringskjede	Luft
				intermitterende		
Meta	nol	PNEC = 2.08mg/L	PNEC = 7.7mg/kg			
67-56-1 (92-93)		sediment dw			
Metyla	ımin	PNEC =	PNEC =			
74-89-5	(7-8)	0.0016mg/L	0.0776mg/kg			
			sediment dw			

8.2. Eksponeringskontroll

Tekniske tiltak

Bruk eksplosjonssikkert elektrisk-/ventilasjons-/belysningsutstyr. Se til at det finnes øyespylingsstasjoner og sikkerhetsdusjer nær arbeidsstedet. Sørg for tilstrekkelig ventilasjon, særlig i lukkede rom.

Det bør iverksettes tiltak for kontroll av farlige stoffer ved kilden, som konstruksjonsmessige tiltak som isolerer eller innelukker prosessen, iverksetting av endringer i prosesser eller utstyr som minsker utslipp eller kontakt, og bruk av formålstjenlig utformete avtrekkssystemer

Revisjonsdato 30-Nov-2024

Methylamine, 2M in methanol Revisjonsdato 30-Nov-2024

Personlig verneutstyr

Vernebriller Vernebriller (EU-standard - EN 166)

Håndvern Vernehansker

Hanskemateriale Gjennombruddstid Hansketykkelse EU-standard Hanske kommentarer

Naturgummi Se produsentens - EN 374 (minstekrav)

Nitrilgummi anbefalinger

Neopren

PVC

Hud- og kroppsvern Langermede klær.

Inspiser hansker før bruk

Vennligst følg instruksjonene som gjelder permeabilitet og gjennombruddstid som leveres av hanskeleverandøren.

Referer til produsent / leverandør for informasjon

Sikre hansker er egnet for oppgaven; kjemisk kompatibilitet, behendighet, operasjonelle forhold, Bruker mottakelighet, f.eks allergiske reaksjoner

Vær også oppmerksom på de spesifikke lokale forholdene som produktet brukes under som for eksempel fare for kutt, skrubbsår og kontakttid

Fjern hansker med omhu unngå hud forurensning

Åndedrettsvern Hvis arbeiderne eksponeres for konsentrasjoner over eksponeringsgrensen, må de bruke

egnet, sertifisert åndedrettsvern.

For å beskytte brukeren, må åndedrettsvern passe riktig og brukes og vedlikeholdes på

korrekt måte

Storskala / bruk i nødstilfeller Bruk en respirator som er godkjent etter NIOSH/MSHA eller Europeisk standard EN 136

hvis eksponeringsgrensene overskrides eller det opptrer irritasjon eller andre symptomer

Anbefalt filtertype: Partikkelfilter etter EN 143 Ammoniakk og organiske

ammoniakkderivater filter Type K Grønn

Småskala / Laboratory bruk Bruk en respirator som er godkjent etter NIOSH/MSHA eller Europeisk standard EN

149:2001 hvis eksponeringsgrensene overskrides eller det opptrer irritasjon eller andre

På grunnlag av testdata

symptomer

Anbefalt halvmaske: - Valve filtrering: EN405; eller; Halvmaske: EN140; pluss filter,

EN141

Når RPE brukes en ansiktsmaske Form test bør gjennomføres

Miljømessige

eksponeringskontroller

Ingen informasjon tilgjengelig.

AVSNITT 9: Fysiske og kjemiske egenskaper

9.1. Opplysninger om grunnleggende fysiske og kjemiske egenskaper

Fysisk tilstand Væske

Utseende Klar

LuktIngen informasjon tilgjengeligLuktterskelIngen data er tilgjengeligSmeltepunkt/frysepunktIngen data er tilgjengeligMykgjøringspunktIngen data er tilgjengelig

Kokepunkt/kokepunktintervall 40 °C / 104 °F Antennelighet (Væske) Meget brannfarlig

Antennelighet (fast stoff, gass) lkke relevant Væske

Eksplosjonsgrenser Ingen data er tilgjengelig

Flammepunkt 7 °C / 44.6 °F Metode - Ingen informasjon tilgjengelig

SelvantennelsestemperaturIngen data er tilgjengeligSpaltingstemperaturIngen data er tilgjengelig

Methylamine, 2M in methanol

Revisjonsdato 30-Nov-2024

рΗ Ingen informasion tilgiengelig **Viskositet** Ingen data er tilgjengelig

Vannløselighet Løselig

Løselighet i andre løsemidler Ingen informasjon tilgjengelig

Partisjonskoeffisient (n-oktanol/vann)

Komponent log Pow Metanol -0.74-0.713 Metylamin

2.07 Psi @ 20 °C Damptrykk

Tetthet / Tyngdekraft 0.785

Bulktetthet Ikke relevant Væske Ingen data er tilgjengelig **Damptetthet** (Luft = 1.0)

(væske) Ikke relevant Partikkelegenskaper

9.2. Andre opplysninger

Molekylar formel C H₅ N Molekylær vekt 31.06

Eksplosive egenskaper Dampene kan danne eksplosive blandinger med luft

AVSNITT 10: Stabilitet og reaktivitet

10.1. Reaktivitet

Ingen, basert på tilgjengelig informasjon

10.2. Kjemisk stabilitet

Stabilt under normale forhold.

10.3. Risiko for farlige reaksjoner

Farlig polymerisering Farlige reaksjoner

Farlig polymerisering forekommer ikke. Ingen ved normal prosesshåndtering.

10.4. Forhold som skal unngås

Uforenlige produkter. Overoppheting, Holdes unna åpen ild, varme flater og

antenningskilder.

10.5. Uforenlige materialer

Syrer. Syreanhydrider. Syreklorider. Metaller. Reduksjonsmiddel.

10.6. Farlige nedbrytingsprodukter

Nitrogenoksider (NOx). Karbonmonoksid (CO). Karbondioksid (CO2). Termisk nedbrytning

kan avgi irriterende gasser og damper.

AVSNITT 11: Toksikologiske opplysninger

11.1. Opplysninger om toksikologiske virkninger

Produktinformasjon

(a) akutt giftighet,;

Kategori 3 Oral **Dermal** Kategori 3 Innånding Kategori 3

Toksikologidata for komponentene

Methylamine, 2M in methanol

Komponent	LD50 munn	LD50 hud	LC50 Inhalering	
Metanol	LD50 = 1187 – 2769 mg/kg (Rat)	LD50 = 17100 mg/kg (Rabbit)	LC50 = 128.2 mg/L (Rat) 4 h	
Metylamin	698 mg/kg (Rat)	-	2.9 mg/L/4h (Rat)	

(b) Hudetsende / irritasjon; Kategori 1 B

(c) alvorlig øyeskade / irritasjon; Kategori 1

(d) Sensibilisering;

Respiratorisk Ingen data er tilgjengelig Huden Ingen data er tilgjengelig

	Component	Testmetode	Prøvesorte	Studere resultat
Г	Metanol	OECD TG 406	marsvin	ikke-sensibiliserende
	67-56-1 (92-93)	Guinea Pig Maximisation Test		
		(GPMT)		

(e) mutagenitet i kjønnsceller; Ingen data er tilgjengelig

(f) kreftfremkallende; Ingen data er tilgjengelig

Det finnes ingen kjente, kreftfremkallende kjemikalier i dette produktet

(g) reproduksjonstoksisitet; Ingen data er tilgjengelig

	Component	Testmetode	Prøvesorte / Varighet	Studere resultat
	Metanol	OECD TG 416	Rotte / Innånding	NOAEC =
	67-56-1 (92-93)		2 generasion	1.3 mg/l (air)

(h) STOT-enkel eksponering; Kategori 1

Kategori 3

Resultater / Målorganer Luftveiene, Synsnerven, Sentralnervesystemet (CNS).

(i) STOT-gjentatt eksponering; Ingen data er tilgjengelig

Målorganer Ingen informasjon tilgjengelig.

(j) aspirasjonsfare; Ingen data er tilgjengelig

Andre uønskede virkninger De toksikologiske egenskapene er ikke fullstendig utforsket. Se aktuell oppføring i RTECS

for fullstendig informasjon

Symptomer / effekter, både akutte og forsinkede Produktet er etsende. Bruk av tarmskylling eller fremkalt oppkast er kontraindisert. Mulig perforering av magen eller spiserøret må undersøkes. Svelging forårsaker alvorlige hevelser, alvorlige skader på bløtvev og fare for perforasjon. Innånding av høye dampkonsentrasjoner kan forårsake symptomer som hodepine, svimmelhet, tretthet,

kvalme og brekninger.

11.2. Informasjon om andre farer

Endokrine forstyrrende egenskaper Vurdere hormonforstyrrende egenskaper for menneskers helse. Dette produktet inneholder

ingen kjente eller mistenkte hormonhermere.

AVSNITT 12: Økologiske opplysninger

ALFAAH26889

Revisjonsdato 30-Nov-2024

Revisjonsdato 30-Nov-2024

12.1. Giftighet

Økotoksisitetseffekter

Må ikke skylles ned i overflatevann eller kloakkanlegg. Ikke la materialet forurense

grunnvannsystemet. Må ikke tømmes i kloakkavløp.

Komponent	Ferskvannsfisk	vannloppe	Ferskvannsalge
Metanol	Pimephales promelas: LC50 > 10000 mg/L 96h	EC50 > 10000 mg/L 24h	
Metylamin		EC50: = 163 mg/L, 48h (Daphnia magna) EC50: 147 - 180 mg/L, 48h Static (Daphnia magna)	

Komponent	Microtox	M-faktor
Metanol	EC50 = 39000 mg/L 25 min	
	EC50 = 40000 mg/L 15 min	
	EC50 = 43000 mg/L 5 min	

12.2. Persistens og nedbrytbarhet

Persistens Persistens er lite sannsynlig, basert på tilgjengelig informasjon.

	1 6, 6 6
Component	Nedbrytbarhet
Metanol	DT50 ~ 17.2d
67-56-1 (92-93)	>94% after 20d

12.3. Bioakkumuleringsevne

Bioakkumulering er lite sannsynlig

Komponent	log Pow	Biokonsentrasjonsfaktor (BCF)
Metanol	-0.74	<10 dimensionless
Metylamin	-0.713	2860 - 6910 dimensionless

12.4. Mobilitet i jord

Produktet inneholder flyktige organiske forbindelser (VOC) som fordamper lett fra alle overflater Vil sannsynligvis være mobilt i miljøet på grunn av flyktigheten. Sprer seg hurtig i

luft

12.5. Resultater av PBT- og

vPvB-vurdering

Ingen data tilgjengelig for vurdering.

12.6. Endokrine forstyrrende

egenskaper

Opplysninger om hormonhermer

Dette produktet inneholder ingen kjente eller mistenkte hormonhermere

12.7. Andre skadelige effekter

Persistente organiske forurensende Dette produktet inneholder ikke noen kjente stoffer eller stoffer som mistenkes Ozonforbrukende potential Dette produktet inneholder ikke noen kjente stoffer eller stoffer som mistenkes

AVSNITT 13: Sluttbehandling

13.1. Avfallsbehandlingsmetoder

Avfall fra rester/ubrukte produkter Avfall klassifisert som farlig. Kast i henhold til de europeiske direktivene angående avfall og

farlig avfall. Deponeres i samsvar med lokale forskrifter.

Forurenset emballasje Kast denne beholderen til godkjent avfallsbehandlingsanlegg. Tomme beholdere inneholder

produktrester (flytende og/eller damp) og kan være farlige. Produktet og den tomme

Methylamine, 2M in methanol

beholderen må oppbevares atskilt fra varme og antenningskilder.

Europeisk avfallskatalog I henhold til Europeisk avfallsliste, er avfallskoder ikke produktspesifikke men

bruksområde-spesifikke.

Annen informasjon Avfallskoder skal tilordnes av brukeren på grunnlag av bruksområdet for produktet. Må ikke

tømmes i avløpssystem. Kan forbrennes eller deponeres på søppelplass hvis det skjer i samsvar med lokale forskrifter. Må ikke tømmes i kloakkavløp. Store mengder vil virke inn

Revisjonsdato 30-Nov-2024

på pH-en og skade vannlevende organismer.

AVSNITT 14: Transportopplysninger

IMDG/IMO

14.1. FN-nummer UN3286

14.2. FN-forsendelsesnavn Brennbar væske, toksisk, etsende , n.o.s.

Korrekt teknisk navn Methyl alcohol, Methylamine

14.3. Transportfareklasse(r)3Subsidiær fareklasse6.1, 814.4. EmballasjegruppeII

ADR

14.1. FN-nummer UN3286

14.2. FN-forsendelsesnavn Brennbar væske, toksisk, etsende , n.o.s.

Korrekt teknisk navn Methyl alcohol, Methylamine

14.3. Transportfareklasse(r)3Subsidiær fareklasse6.1, 814.4. EmballasjegruppeII

<u>IATA</u>

14.1. FN-nummer UN3286

<u>14.2. FN-forsendelsesnavn</u> Brennbar væske, toksisk, etsende , n.o.s.

Korrekt teknisk navn Methyl alcohol, Methylamine

14.3. Transportfareklasse(r)3Subsidiær fareklasse6.1, 814.4. EmballasjegruppeII

14.5. Miljøfarer Ingen farer identifisert

14.6. Særlige forsiktighetsregler ved Ingen spesielle forholdsregler er påkrevet.

<u>bruk</u>

14.7. Transport i bulk i henhold til lkke aktuelt, emballert varer

vedlegg II av MARPOL73/78 og

IBC-koden

AVSNITT 15: Opplysninger om regelverk

15.1. Særlige bestemmelser/særskilt lovgivning om sikkerhet, helse og miljø for stoffet eller stoffblandingen

Internasjonale inventarlister

Europa (EINECS/ELINCS/NLP), Kina (IECSC), Taiwan (TCSI), Korea (KECL), Japan (ENCS), Japan (ISHL), Canada (DSL/NDSL), Australia

Methylamine, 2M in methanol

Revisjonsdato 30-Nov-2024

(AICS), New Zealand (NZIoC), Filippinene (PICCS). US EPA (TSCA) - Toxic Substances Control Act, (40 CFR Part 710)

Komponent	CAS Nr	EINECS	ELINCS	NLP	IECSC	TCSI	KECL	ENCS	ISHL
Metanol	67-56-1	200-659-6	-	-	Х	X	KE-23193	X	X
Metylamin	74-89-5	200-820-0	-	-	Х	X	KE-23421	X	Х

Komponent	CAS Nr	TSCA (Toxic Substanc e Control Act)	TSCA Inventory notification - Active-Inactive	DSL	NDSL	AICS	NZIoC	PICCS
Metanol	67-56-1	X	ACTIVE	X	-	X	Х	Х
Metylamin	74-89-5	Х	ACTIVE	X	-	X	Х	X

Forkortelser: X - Oppført '-' - Not Listed KECL - NIER number or KE number (http://ncis.nier.go.kr/en/main.do)

Autorisasjon/restriksjoner i henhold til EU REACH

Komponent	CAS Nr	REACH (1907/2006) - Tillegg XIV - stoffer som krever autorisasjon	REACH (1907/2006) - Tillegg XVII - Restriksjoner på visse farlige stoffer	REACH-forordningen (EC 1907/2006) artikkel 59 - Kandidatliste over stoffer med svært stor bekymring (SVHC)
Metanol	67-56-1	-	Use restricted. See entry 69. (see link for restriction details) Use restricted. See entry 75. (see link for restriction details)	-
Metylamin	74-89-5	-	Use restricted. See entry 75. (see link for restriction details)	-

REACH-lenker

https://echa.europa.eu/substances-restricted-under-reach

Seveso III Directive (2012/18/EC)

Komponent	CAS Nr	Seveso III-direktivet (2012/18/EU) - Kvalifiserte mengder for Major Accident Varsling	Seveso III-direktivet (2012/18/EC) - Kvalifiserte Mengder for sikkerhetsrapport Krav
Metanol	67-56-1	500 tonne	5000 tonne
Metylamin	74-89-5	Ikke relevant	lkke relevant

Europaparlaments- og rådsforordning (EF) nr. 649/2012 av 4. juli 2012 om eksport og import av farlige kjemikalier Ikke relevant

Inneholder komponent(er) som oppfyller en 'definisjon' av per & polyfluoralkylsubstans (PFAS)? Ikke relevant

Vær oppmerksom på direktiv 98/24/EC av om vern av arbeidstakernes helse og sikkerhet mot fare i forbindelse med kjemisk agens på arbeidsplassen .

. Vær oppmerksom på direktiv 2000/39/EF som fastsetter en første liste over rettledende grenseverdier for yrkesmessig eksponering

Nasjonale forordninger

Methylamine, 2M in methanol

WGK klassifisering

Vannfareklasse = 2 (egenklassifisering)

Komponent	Tyskland Water Klassifisering (AwSV)	Tyskland - TA-Luft Klasse
Metanol	WGK 2	Class I: 20 mg/m³ (Massenkonzentration)
Metylamin	WGK1	Class I: 20 mg/m³ (Massenkonzentration)

Komponent	Frankrike - INRS (Tabeller over yrkessykdommer)			
Metanol	Tableaux des maladies professionnelles (TMP) - RG 84			
Metylamin	Tableaux des maladies professionnelles (TMP) - RG 49,RG 49bis			

Component	Switzerland - Ordinance on the Reduction of Risk from handling of hazardous substances preparation (SR 814.81)	Switzerland - Ordinance on Incentive Taxes on Volatile Organic Compounds (OVOC)	Switzerland - Ordinance of the Rotterdam Convention on the Prior Informed Consent Procedure
Metanol 67-56-1 (92-93)	Prohibited and Restricted Substances	Group I	

15.2. Vurdering av kjemikaliesikkerhet

Kjemisk sikkerhetsvurdering / Reports (CSA / CSR) er ikke nødvendig for blandinger

AVSNITT 16: Andre opplysninger

Full tekst for H-setningene som er omtalt i punkt 2 og 3

H224 - Ekstremt brannfarlig væske og damp

H225 - Meget brannfarlig væske og damp

H301 - Giftig ved svelging

H311 - Giftig ved hudkontakt

H331 - Giftig ved innånding

H314 - Gir alvorlige etseskader på hud og øyne

H318 - Gir alvorlig øyeskade

H370 - Forårsaker organskader

H302 - Farlig ved svelging

H332 - Farlig ved innånding

H335 - Kan forårsake irritasjon av luftveiene

Forkortelser

CAS - Chemical Abstracts Service

EINECS/ELINCS – Europeisk stoffliste over kommersielt bestående, kjemiske stoffer/EU-liste over innmeldte, kjemiske stoffer

PICCS - Filippinenes liste over kjemikalier og kjemiske stoffer

IECSC - Kina, stoffliste over kjemiske stoffer

KECL - Korea, eksisterende kjemiske stoffer og stoffer under vurdering

WEL - Administrativ norm

ACGIH - American Conference of Governmental Industrial Hygienists (Amerikansk organisasjon for statens industrihygienikere)

DNEL - Avledede ingen virkning nivå

RPE - Åndedrettsvern

LC50 - Dødelig konsentrasjon 50%

NOEC - Ingen observert effekt konsentrasjon PBT - Persistent, bioakkumulerende, Giftig

TSCA - Amerikansk lov om kontroll med toksiske stoffer, del 8(b), stoffliste

DSL/NDSL - Kanadiske lister over stoffer med lokalt/utenlandsk opphav

Revisjonsdato 30-Nov-2024

ENCS - Japan, stoffliste over bestående og nye kjemiske stoffer

AICS - Australias stoffliste over kjemiske stoffer (Australian Inventory of Chemical Substances)

NZIoC - New Zealands stoffliste

TWA - Tidsvektet gjennomsnitt

IARC - International Agency for Research on Cancer

PNEC (beregnet høyeste konsentrasjon uten virkning)

LD50 - Dødelig dose 50%

EC50 - Effektiv konsentrasjon 50%

POW - Fordelingskoeffisienten oktanol: Vann vPvB - svært persistent, svært bioakkumulerende

Methylamine, 2M in methanol

Revisjonsdato 30-Nov-2024

ADR - Europeisk avtale om internasjonal transport av farlig gods på vei

ICAO/IATA - International Civil Aviation Organization/International Air

MARPOL - Internasjonal konvensjon om hindring av forurensning fra skip

Transport Association

IMO/IMDG - International Maritime Organization/International Maritime

Dangerous Goods Code

OECD - Organisasjonen for økonomisk samarbeid og utvikling ATE - Akutt giftighet estimat

BCF - Biokonsentrasjonsfaktor (BCF)

VOC - (flyktige organiske forbindelser)

Viktigste litteraturreferanser og datakilder

https://echa.europa.eu/information-on-chemicals

Leverandører sikkerhetsdatabladet, Chemadvisor - LOLI, Merck indeks, RTECS

Klassifisering og prosedyre som brukes for avledning av klassifisering for blandinger i henhold til forordning (EF)

1272/2008 [CLP]:

Fysiske farer På grunnlag av testdata Helsefarer Beregningsmetode Miljøfarer Beregningsmetode

Opplæringsråd

Opplæring i kjemisk fare, som omfatter merking, sikkerhetsdataark, personlig verneutstyr og hygiene.

Bruk av personlig verneutstyr, inkludert korrekt valg, forenlighet, gjennombruddsterskler, pleie, vedlikehold, tilpasning og

EN-standarder.

Førstehjelp for kjemisk eksponering, inkludert bruk av øyevask og sikkerhetsdusjer.

Tilberedt av Avdeling produktsikkerhet Tel. ++049(0)7275 988687-0

Utstedelsesdato 16-Sep-2011 30-Nov-2024 Revisjonsdato Revisjonsoppsummering Ikke relevant.

Dette sikkerhetsdatabladet retter seg etter kravene til Bestemmelse (EF) nr. 1907/2006.

Ansvarsfraskrivelse

Opplysningene som er gitt i dette sikkerhetsdatabladet er korrekte, så langt vi kjenner til, og ifølge foreliggende informasjon og antakelser på utgivelsesdatoen. Opplysningene som er gitt, er bare ment å være rådgivende når det gjelder sikker håndtering, bruk, behandling, oppbevaring, transport, avhending og utslipp, og skal ikke ansees å være en garanti eller kvalitetsspesifikasjon. Opplysningene gjelder bare for de spesifikke materialene, og gjelder ikke hvis det blir brukt sammen med andre materialer eller i prosesser, bortsett fra hvis dette er angitt i teksten

Slutt på sikkerhetsdatabladet