Лабораторна робота №1

Тема: Електричні ланцюги постійного струму.

Мета: Вивчити методи розрахунку електричних ланцюгів постійного струму. Оволодіти навичками комп'ютерної розробки та моделювання електричних ланцюгів постійного струму.

Електрична схема індивідуального завдання та початкові дані

Bap.	E1	E2	E3	R1	R2	R3	R4	R5	R6	R7	R8
2	8B(0,8)	10B(0,5)	-8A	12	4	14	6	15	4	15	12

Складемо електричну-принципову схему

Складемо схему замісну, використовуючи напрямки струмів та контурів

Складемо систему рівнянь на основі замісної схеми

Розв'яжемо дану систему рівнянь за допомогою табличного редактора Excel

3	Матриця коефіціентів при невідомих									Вільні чле	ни
4	-1	0	0	1	0	0	0	-1		0	
5	1	1	-1	0	0	0	0	0		0	
6	0	-1	0	-1	1	1	0	0		0	
7	0	0	1	0	-1	0	-1	0		0	
8	0	0	0	0	0	-1	1	1	0		
9	12	-4	0	6	0	0	0	0	0		
0	0	0	0	6	0	4	0	12	10		
1	0	4	14	0	15	0	0	0		8	
2											
3	Зворотна	Зворотна матриця								Вектор рішення	
4	7,43E+14	7,43E+14	7,43E+14	7,43E+14	7,43E+14	0,056719	-0,0225	0,016602	I1	-0,09219	Α
5	1,66E+15	1,66E+15	1,66E+15	1,66E+15	1,66E+15	-0,02992	-0,0075	0,04834	12	0,311719	Α
6	2,4E+15	2,4E+15	2,4E+15	2,4E+15	2,4E+15	0,026797	-0,03	0,064941	13	0,219531	Α
7	-3,8E+14	-3,8E+14	-3,8E+14	-3,8E+14	-3,8E+14	0,033281	0,04	-0,00098	14	0,392188	Α
8	-2,7E+15	-2,7E+15	-2,7E+15	-2,7E+15	-2,7E+15	-0,01703	0,03	-0,00684	15	0,245313	Α
9	3,95E+15	3,95E+15	3,95E+15	3,95E+15	3,95E+15	0,020391	0,0025	0,054199	16	0,458594	Α
0	5,08E+15	5,08E+15	5,08E+15	5,08E+15	5,08E+15	0,043828	-0,06	0,071777	17	-0,02578	Α
21	-1,1E+15	-1,1E+15	-1,1E+15	-1,1E+15	-1,1E+15	-0,02344	0,0625	-0,01758	18	0,484375	Α

Струми, що мають від'ємне значення мають протилежний напрямок тому, який вказали ми на схемі.

Щоб знайти спади напруги нам потрібно перемножити струми на відповідні їм опори:

$$\begin{split} &U_1 = I_1 R_1 = - \ 0,09219 \ * \ 12 = - \ 1,10628 \\ &U_2 = I_2 R_2 = \ 0,311719 \ * \ 4 = \ 1,246876 \\ &U_3 = I_3 R_3 = \ 0,219531 \ * \ 14 = \ 3,073434 \\ &U_4 = I_4 R_4 = \ 0,392188 \ * \ 6 = \ 2,353128 \\ &U_5 = I_5 R_5 = \ 0,245313 \ * \ 15 = \ 3,679695 \\ &U_6 = I_6 R_6 = \ 0,458594 \ * \ 4 = \ 1,834376 \\ &U_7 = I_7 R_7 = - \ 0,02578 \ * \ 15 = - \ 0,3867 \\ &U_8 = I_8 R_8 = \ 0,484375 \ * \ 12 = 5,8125 \end{split}$$

Для знаходження потужності використаємо формулу P = I*U $P_1 = I_1U_1 = -0,09219*(-1,10628) = 0,101987953$ $P_2 = I_2U_2 = 0,311719*1,246876 = 0,38867494$ $P_3 = I_3U_3 = 0,219531*3,073434 = 0,674714039$ $P_4 = I_4U_4 = 0,392188*2,353128 = 0,922868564$

$$P_5 = I_5 U_5 = 0,245313 * 3,679695 = 0,90267702$$

 $P_6 = I_6 U_6 = 0,458594 * 1,834376 = 0,841233827$
 $P_7 = I_7 U_7 = -0,02578 * (-0,3867) = 0,009969$
 $P_8 = I_8 U_8 = 0,484375 * 5,8125 = 2,81542969$

Перевіримо баланс потужностей

$$E_{1}I_{1} + E_{2}I_{2} = I_{1}^{2}R_{1} + I_{2}^{2}R_{2} + I_{3}^{2}R_{3} + I_{4}^{2}R_{4} + I_{5}^{2}R_{5} + I_{6}^{2}R_{6} + I_{7}^{2}R_{7} + I_{8}^{2}R_{8}$$

$$2,37967 \neq 6,65756$$

Аналіз електричної схеми в пакеті Multisim

Висновок: ми знайшли струми даної схеми використовуючи закони Кірхгофа, всі вони знаходяться в діапазоні від -0,09 до 0,48, з використанням отриманих значень ми знайшли спади напруги та потужність, значення перевірили за допомогою балансу потужностей, але він на жаль чомусь не зійшовся. Роботу даної схеми відобразили в пакеті Multisim.

Контрольні запитання

1. В електротехніці за додатній напрямок струму прийнято вважати напрямок, який збігається з напрямком джерела струму чи напруги.

- 2. Вузлом називається місце з'єднання 3-х і більше гілок. Контуром називається замкнений шлях, який проходить крізь кілька гілок і вузлів розгалуженого електричного поля.
- 3. Перший закон Кірхгофа: сума струмів, що надходять у вузол ланцюга, повинна дорівнювати сумі всіх струмів, що виходять з ланцюга. Другий закон Кірхгофа: алгебраїчна сума напруг у замкнутому циклі або сітці повинна дорівнювати нулю.
- 4. Принципова електрична схема схема, де зображуються всі складові частини, зв'язки між ними та елементи, які закінчуються вхідними та вихідними ланки електричних кіл. Замісна схема це спрощена модель електричного кола, у якій всі чинні елементи заміщені ідеальними, і є позначення напрямків струмів та контурів.
- 5. Розрахунки ланцюгів постійного струму виконуються за допомогою законів Кірхгофа, або методу контурних струмів, або методу вузлових потенціалів, або методу накладання.