

Sistemas Digitais (SD)

Máquinas de Estado Microprogramadas: Circuito de Dados e Circuito de Controlo

Aula Anterior

Na aula anterior:

- ▶ Memórias:
 - Circuitos e tecnologias de memória:
 - o RAM:
 - Estática
 - Dinâmica
 - o ROM
 - Planos de memória
 - Mapa de memória
 - Hierarquia de memória

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO	
17/Fev a 21/Fev	Introdução	Sistemas de Numeração		
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0	
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL	
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO	
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1	
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1	
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2	
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2	
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3	
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3	
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4	
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4	
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5	
25/Mai a 29/Mai	P6	P6	L5	

J

Sumário

Tema da aula de hoje:

- Projecto de máquinas de estados microprogramadas:
 - Circuito de dados
 - Circuito de controlo
- ► Implementação com ROMs
- Exemplos

Bibliografia:

- M. Mano, C. Kime: Secção 7.13
- G. Arroz, J. Monteiro, A. Oliveira: Secção 7.5
- G. Arroz, C. Sêrro, "Sistemas Digitais: Apontamentos das Aulas Teóricas", IST, 2005: Secções 19.1 a 19.3 (disponível no Fenix)

Circuitos Sequenciais (Revisão):

► A maioria dos circuitos de controlo apresenta nas saídas um valor que depende das entradas em <u>instantes de tempo anteriores</u>

► Este comportamento é conseguido usando elementos de memória

Circuitos Sequenciais

 Sistemas complexos, como computadores, tablets e telemóveis são também circuitos sequenciais

Porquê?

Circuito Sequencial Síncrono

Circuito Sequencial Síncrono

- A mudança de estado ocorre quando existe uma transição do <u>sinal de</u> relógio (CLK);
- O circuito combinatório define o comportamento pretendido (<u>transição</u> entre estados);
- Os valores das saídas <u>realimentadas</u> no circuito apenas são assumidos como estado na altura em que o relógio muda de nível.

- Um circuito sequencial síncrono corresponde a uma máquina de estados definida pelos seguintes componentes:
 - As possíveis combinações de entrada que controlam a máquina de estados;
 - As possíveis combinações de saída que são geradas pela máquina de estados;
 - O conjunto de entradas da máquina;
 - ▶ A função de transição de estados determina de que modo a máquina evolui entre estados, de acordo com o <u>estado presente</u> e a combinação presente nas <u>entradas</u>;
 - A função de saída determina qual a saída gerada pela máquina para um dado estado e uma dada combinação de entradas;
 - O estado no qual a máquina de estados deve iniciar o seu funcionamento.

Circuito Sequencial Síncrono

- ▶ Na prática...
 - Valor dos registos define o estado da máquina;
 - Circuito combinatório define a <u>função de transição entre estados</u> e a <u>função de saída</u>.

Máquinas de Mealy vs Máquinas de Moore

▶ Distinguem-se <u>apenas</u> no modo como as saídas são geradas:

Máquina de Mealy

Máquina de Moore

Máquinas de Mealy vs Máquinas de Moore

Máquina de Mealy

Máquina de Moore

- Máquina de Mealy o valor das saídas é função dos valores das variáveis de estado (registos) e dos valores das entradas;
- ► Máquina de Moore o valor das saídas é *unicamente* função dos valores das <u>variáveis de estado</u> (registos)

TÉCNICO Circuitos Sequenciais Síncronos (Revisão)

Exemplo – Detector de Paridade

Circuito de Dados e Circuito de Controlo

- Os sistemas digitais com alguma complexidade tornam-se difíceis de ser projectados como vulgares máquinas sequenciais síncronas, porque:
 - Diagramas de estados / tabela de estados de grande dimensão
 - Elevado número de:
 - Entradas
 - Saídas
 - o Estados.

Solução: organizar esses sistemas hierarquicamente, estabelecendo uma divisão clara entre:

- circuito de dados dá suporte ao fluxo e à manipulação de dados;
- circuito de controlo controla o circuito de dados.

Circuito de Dados e Circuito de Controlo

Circuito de Dados e Circuito de Controlo

- ► Em geral:
 - O circuito de dados (controlado) é formado por um conjunto de módulos simples, tais como contadores, registos, multiplexeres, somadores, comparadores, memórias, algumas portas lógicas, etc, podendo ser combinatório ou sequencial.
 - O circuito de controlo é sempre um circuito sequencial síncrono.

Circuito de Dados e Circuito de Controlo

➤ O circuito de controlo de um sistema complexo designa-se abstractamente por máquina de estados ou máquina algorítmica, mais simplesmente pela sigla ASM, que significa "Algorithmic State Machine".

Exemplo: acesso a um parque de estacionamento

- ▶ O acesso faz-se por uma via de sentido único, controlada na entrada e na saída pelas <u>cancelas</u> C1 a C3, pelos <u>semáforos</u> S1 a S4, e pelos <u>sensores</u> D1 a D5.
- O controlador contém um contador ascendente/descendente, que guarda a informação sobre o <u>número de carros estacionados no parque</u>.

Exemplo: acesso a um parque de estacionamento

- ► Funcionamento:
 - Quando o parque está cheio, só podem sair carros;
 - Quando não está cheio, podem entrar ou sair;
 - Porque a rua de acesso é estreita, só pode passar um carro de cada vez.

Exemplo: acesso a um parque de estacionamento

► Funcionamento:

• A saída é detectada pela presença de um carro que pisa D4. Se não há entrada em curso, o semáforo S4 fica verde e a cancela C3 abre. Em seguida, espera-se que o carro pise D5 e saia, para se fechar a cancela e colocar o semáforo S4 em vermelho. Entretanto, coloca-se o semáforo S2 a verde. Quando o carro pisa D2, abre-se C2, que se mantém aberta enquanto a viatura estiver a pisar D2. Quando o carro deixar de pisar D2, o semáforo S2 passa a vermelho e C2 fecha. Nessa altura desconta-se uma unidade no contador de lugares ocupados no parque.

Exemplo: acesso a um parque de estacionamento

- ▶ Funcionamento:
 - A entrada começa com um carro a pisar D1. Se não há saída em curso, o semáforo S1 fica verde e a cancela C1 abre, ficando aberta enquanto o carro é detectado por D1. Quando o carro deixa D1, S3 fica a verde, e quando chega a D3 a cancela C3 é aberta e o carro entra, passando S3 a vermelho e ficando o circuito à espera que D5 seja pisado. Só depois de D5 deixar de ser pisado é que C3 fecha. Nessa altura, o contador é incrementado.

Modelo do circuito de controlo

Modelo do circuito de controlo

- ▶ 6 entradas
- ▶ 9 saídas
- ▶ Quantos estados???

Fluxograma

Fluxograma do circuito de controlo

Modelo do circuito de controlo

- ▶ 6 entradas
- ▶ 9 saídas
- ▶ 11 estados

 Grande quantidade de lógica para excitar os flip-flops e as saídas do circuito

► Fluxograma/diagrama de estados complexo

SOLUÇÃO: implementação com **ROMs**

Estrutura básica de controlo por ROM

- ▶ A memória ROM substitui a lógica combinatória para gerar:
 - Estado seguinte
 - Saída do circuito

Estrutura básica de controlo por ROM

- ► Entradas da ROM (barramento de endereços):
 - Entradas externas da máquina de estados
 - Estado actual

Estrutura básica de controlo por ROM

- ► Saídas da ROM (barramento de dados):
 - Saídas para o exterior da máquina de estados
 - Saídas (comandos) internas + estado seguinte

Estrutura básica de controlo por ROM

O conteúdo de cada endereço na ROM é constituído por dois campos:

Saídas Actuais: Out(t) Estado Seguinte: Q(t+1)

Exemplo (simples)

- ▶ 3 estados:
 - A $(Q_1Q_0=00)$
 - B $(Q_1Q_0=01)$
 - C $(Q_1Q_0=10)$
- ▶ 2 entradas: I0 e I1
- ▶ 2 saídas: X e Y

Moore ou Mealy?

 Mealy, pois no estado A a variável X está activa <u>apenas</u> se I1 está inactiva (saída condicional)

Exemplo (simples)

▶ Diagrama de blocos de um controlador implementado com ROM:

► Formato de cada palavra da ROM:

Exemplo (simples)

Tabela de transição de estados

		Q1	Q0	l1	10	NQ1	NQ0	Υ	Х
Estado	Endereço	А3	A2	A1	A0	D3	D2	D1	D0
A	0	0	0	0	0	0	1	0	1
A	1	0	0	0	1	0	1	0	1
A	2	0	0	1	0	1	0	0	0
A	3	0	0	1	1	1	0	0	0
В	4	0	1	0	0	0	0	0	0
B	5	0	1	0	1	0	0	0	0
B	6	0	1	1	0	0	0	0	0
В	7	0	1	1	1	0	0	0	0
C	8	1	0	0	0	1	0	1	0
C	9	1	0	0	1	0	0	1	0
C	10	1	0	1	0	1	0	1	0
C	11	1	0	1	1	0	0	1	0
	12	1	1	0	0	×	×	×	×
	13	1	1	0	1	×	×	×	×
	14	1	1	1	0	×	×	×	×
	15	1	1	1	1	×	×	×	×

Don't care substituídos por um valor concreto:

0 ou 1

Exemplo (simples)

Tabela de transição de estados

	Joia ac	, ti c		3 -			taac		
		Q1	Q0	11	10	NQ1	NQ0	Υ	X
Estado	Endereço	А3	A2	A1	A0	D3	D2	D1	D0
A	0	0	0	0	0	0	1	0	1
A	1	0	0	0	1	0	1	0	1
A	2	0	0	1	0	1	0	0	0
A	3	0	0	1	1	1	0	0	0
В	4	0	1	0	0	0	0	0	0
В	5	0	1	0	1	0	0	0	0
В	6	0	1	1	0	0	0	0	0
В	7	0	1	1	1	0	0	0	0
C	8	1	0	0	0	1	0	1	0
C	9	1	0	0	1	0	0	1	0
C	10	1	0	1	0	1	0	1	0
C	11	1	0	1	1	0	0	1	0
	12	1	1	0	0	×	×	×	×
	13	1	1	0	1	×	×	×	×
	14	1	1	1	0	×	×	×	×
	15	1	1	1	1	×	×	×	×

Conteúdo da ROM

Endereço	Dados			
0	0101			
1	0101			
2	1000			
3	1000			
4	0000			
5	0000			
6	0000			
7	0000			
8	1010			
9	0010			
10	1010			
11	0010			
12	0000			
13	0000			
14	0000			
15	0000			

Exemplo (simples)

Conteúdo da ROM

Endereço	Dados
0	0101
1	0101
2	1000
3	1000
4	0000
5	0000
6	0000
7	0000
8	1010
9	0010
10	1010
11	0010
12	0000
13	0000
14	0000
15	0000

▶ Dimensão da ROM:

- Mínima: 12 endereços de 4 bits = 48 bits
- Normalizada: 16 endereços de 4 bits = 64 bits

Nº de endereços corresponde a uma potência inteira de 2

Próxima Aula

Tema da Próxima Aula:

- Projecto de máquinas de estados microprogramadas:
 - com endereçamento explícito
 - com endereçamento implícito
- ▶ Exemplos

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás