Linear Algebra

一个短篇

2024年01月31日

目录

1	Vector	2
	1.1 How to prove Two-vector collinear theorem	. 2
	1.2 In three dimensions space	. 3
	1.3 Expand	
	1.4 Inner product	. 4
	1.5 Outer product	. 4
2	Matrix	5

1 Vector

1.1 How to prove Two-vector collinear theorem

Definition 1.1 (scalar multiplication of vectors)

A real number λ times a vector \boldsymbol{a} is equal to a vector $\lambda \boldsymbol{a}$:

- In the direction: when $\lambda > 0$, they are in the same direction, when $\lambda = 0$, $\lambda a = 0$, when $\lambda < 0$, they are in the opposite direction.
- $|\lambda a| = |\lambda||a|$

Theorem 1.1 (Two-vector collinear theorem)

There are two non-zero vector a, b. If it exists a real number λ , such that:

$$a \parallel b \iff b = \lambda a$$

1.1.1 Three-point collinear decision theorem

Theorem 1.2 (Three-point collinear decision theorem)

If A, B, C are collinear, then:

$$\overrightarrow{OB} = \lambda \overrightarrow{OA} + (1 - \lambda)\overrightarrow{OC}$$

Proof: Since A, B, C are collinear, we have

$$\overrightarrow{CB} \parallel \overrightarrow{AC}$$

$$\overrightarrow{CB} = \lambda \overrightarrow{AC}$$

So

$$\overrightarrow{OB} - \overrightarrow{OC} = \lambda \Big(\overrightarrow{OA} - \overrightarrow{OC} \Big)$$

Hence

$$\overrightarrow{OB} = \lambda \overrightarrow{OA} + (1-\lambda) \overrightarrow{OC}$$

1.1.2 Expand to triangle

Theorem 1.3 (Three-point collinear decision theorem in triangle)

In \triangleright_{ABC} , D is the n equal component of BC: nBD = kDC = BC.

$$\overrightarrow{AD} = \frac{n}{n+k}\overrightarrow{AB} + \frac{k}{n+k}\overrightarrow{AC}$$

Proof: We have

$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$$

$$\overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$$

Since nBD = kDC = BC, We can have

$$\overrightarrow{BC} = n\overrightarrow{AD} - n\overrightarrow{AB}$$

$$\overrightarrow{BC} = k\overrightarrow{AC} - k\overrightarrow{AD}$$

So

$$k\overrightarrow{AC} - k\overrightarrow{AD} = n\overrightarrow{AD} - n\overrightarrow{AB}$$

Hence

$$\overrightarrow{AD} = \frac{n}{n+k}\overrightarrow{AB} + \frac{k}{n+k}\overrightarrow{AC}$$

1.2 In three dimensions space

Lemma 1.1 (Fundamental theorem of space vectors)

In three dimensions, we have three noncoplanar vectors e_1, e_2, e_3 , for arbitrary vector P, exist a unique tuple (x, y, z), hence:

$$P = xe_1 + ye_2 + ze_3$$

Hence, we can define:

Definition 1.2

Let the three cross-perpendicular vector e_1, e_2, e_3 as orthogonal bases in three dimensions space, and let (x, y, z) represent vector's coordinates.

Theorem 1.4 (Fundamental theorem of cooriented quantities)

If threr are two non-collinear vector x, y, the sufficient and necessary condition that vector P is coplanar with x, y is exists the unique real pair (λ, μ) such that:

$$P = \lambda x + \mu y$$

1.3 Expand

1.3.1 Rotation of vector

Theorem 1.5

In two-dimensions space, set the angle of vector a is θ , the coordinate of a is (x, y), the length of a is $l = \sqrt{x^2 + y^2}$, then the coordinate of a can be represent as $(l\cos\theta, l\sin\theta)$, set a vector b have angle α respect to a, such that:

$$\mathbf{b} = (x\cos\alpha - y\sin\alpha, y\cos\alpha + x\sin\alpha)$$

Proof: We have angle α respect to \boldsymbol{a} , so that

$$\mathbf{b} = (l\cos(\theta + \alpha), l\sin(\theta + \alpha))$$

According to Triangle identity transformation

$$\mathbf{b} = (l\cos\theta\cos\alpha - l\sin\theta\sin\alpha, l\sin\theta\cos\alpha + l\cos\theta\sin\alpha)$$

According to $a = (l \cos \theta, l \sin \theta)$, hence

$$b = (x \cos \alpha - y \sin \alpha, y \cos \alpha + x \sin \alpha)$$

1.4 Inner product

Definition 1.3 Inner product

$$\alpha \cdot \beta = |\alpha| |\beta| \cos(\widehat{\alpha, \beta})$$

Lemma 1.2 Cordinate representation

$$\alpha \cdot \beta = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Proof: Set orthogonal bases i, j, k, we can have

$$i^2 = j^2 = k^2 = 1$$

 $i \cdot j = j \cdot k = i \cdot k = 0$

Let $\alpha = (x_1, y_1, z_1), \beta = (x_2, y_2, z_2)$ since

$$\boldsymbol{\alpha} \cdot \boldsymbol{\beta} = (x_1 \boldsymbol{i} + y_1 \boldsymbol{j} + z_1 \boldsymbol{k}) \cdot (x_2 \boldsymbol{i} + y_2 \boldsymbol{j} + z_2 \boldsymbol{k})$$

Simplify it

$$\begin{split} \alpha \cdot \beta &= (x_1 x_2) \quad \pmb{i}^2 + (x_1 y_2) \quad \pmb{i} \cdot \pmb{j} + (x_1 z_2) \quad \pmb{i} \cdot \pmb{k} \\ &+ \quad (y_1 y_2) \quad \pmb{j}^2 + (y_1 x_2) \quad \pmb{j} \cdot \pmb{i} + (y_1 z_2) \quad \pmb{j} \cdot \pmb{k} \\ &+ \quad (z_1 z_2) \pmb{k}^2 + (z_1 x_2) \quad \pmb{k} \cdot \pmb{i} + (z_1 y_2) \quad \pmb{k} \cdot \pmb{j} \\ &= x_1 x_2 + y_1 y_2 + z_1 z_2 \end{split}$$

Hence

$$\alpha \cdot \beta = x_1 x_2 + y_1 y_2 + z_1 z_2$$

1.5 Outer product

Definition 1.4 Outer product

 $\alpha \times \beta$ is a vector.

 $\alpha \times \beta$, α , β allows right hand rule.

$$|\alpha \times \beta| = |\alpha||\beta|\sin(\widehat{\alpha,\beta})$$

 $\alpha \times \beta \perp \alpha \perp \beta$

Lemma 1.3 Reverse-exchange law

$$\alpha \times \beta = -\beta \times \alpha$$

Outer product matrix representation in three dimensions

2 Matrix

Normally, I represent the unit matrix: main diagonal all equal to 1, rest all equal to 0.

Definition 2.1

Set the number of rows of a matrix X is r_X , column of it is c_X , X is arbitrary.

Homomorphic matrix : There are two matrix $A,B,r_A=r_B\wedge c_A=c_B.$

Square : There is a matrix A, $r_A = c_A$.

 ${f Main\ diagonal}$: There is a square A have n factorial, the set of the main diagonal element is

$$\left\{A_{ij} \mid i = j \in [1, n]\right\}$$

symmetric matrix: There is a square matrix of n factorials

 $A: A_{ij} = A_{ji} \ (i \in [1, n], j \in [1, n]).$

Diagonal matrix: A matrix have nonzero element only on the main diagonal, with the rest of the elements are being 0, It can represented as

$$\operatorname{diag}\{\lambda_1, \dots, \lambda_n\} \ (\lambda_n = A_{nn})$$

Triangle matrix: