上一章内容简介

第四章 激光器调制

- §4-1 调制的基本概念
- §4-2 电光调制
- §4-3 声光调制
- §4-4 直接调制

第五章

脉冲激光产生原理

§5-1 概述——Q开关和锁模

§5-2 Q开关的理论分析

§5-3 调Q技术原理与装置

§5-4 锁模原理与超短脉冲产生

第五章 脉冲激光产生原理

- §5-1 概述——Q开关和锁模
 - 1. Q开关
 - 2. 导致一系列现象和新技术

1. Q开关和锁模

- 调Q技术:将激光能量集中到宽度极窄范围脉冲中发射,峰值功率提高几个数量级。
- 1961年3月:在第二届国际量子电子会议上, 休斯研究实验室的Robert W. Hellwarth(赫尔沃斯)提出了理论研究,表明通过使红宝石激光器的脉冲更可预测和可控制,可以对红宝石激光器进行重大改进。

§5-1 概述——Q开关和锁模

- 1962年: Hellwarth(赫尔沃斯)与Fred J.
 McClung(麦克鲁尔)一起证明了他的激光理论,通过使用电开关产生的峰值功率是普通红宝石激光器的100倍,第一台Q开关激光器(10ns, 0.5GW), 巨大脉冲形成技术被称为Q开关。
- 1963年初:《巴伦周刊》(Barron's magazine) 估计商业激光市场的年销售额为100万美元。
 Logan E.Hargrove, Richard L. Fork和MA Pollack实现了锁模激光器的首次演示,即带有声光调制器的氦氖激光器,锁模是激光通信的基础,也是飞秒激光器的基础。

§5-1 概述——Q开关和锁模

2.导致一系列现象和新技术

- 用光学方法产生等离子体
- 光学谐波
- 受激喇曼、受激布里渊和受 激瑞利散射
- 光子回声
- 自感应光学透明

- 光自陷
- 光参量放大
- ●高阶非线性光学效应
- ●量子系统的瞬态响应
- ●辐射寿命测量
- ●超短声波的产生

实际应用:测距、定位、光雷达(精确到)、制导、材料加工、动态全息照相、高速摄影......等

§5-2 Q开关的理论分析

- 1. Q开关激光器的速率方程及求解
- 2. 巨脉冲的峰值功率、能量和脉冲宽度
 - 巨脉冲的峰值功率
 - 巨脉冲的能量
 - 巨脉冲的脉冲宽度
- 振荡前后粒子数反转密度比对输出功率、脉冲 宽度和总体效率的影响

对于三能级激光系统:

腔内振荡光子数及各能 级上工作粒子数

$$N(t), n_2(t), n_3(t), n_1(t)$$

随时间变化

图2. Q开关激光器的动力学

Q开关激光动力学

工作原理

A、腔损耗 (1) t<0(Q开关打开前): δ'

(2)
$$t>0$$
 (Q开关打开后): δ ($\delta'>>\delta$)

B、阈值反转粒子数

(1) $t < 0: \Delta n'_{+}$

(2) t>0: Δn_+

$$(\Delta n'_t \rangle \Delta n_t) \qquad \Delta n'_t = \frac{\delta'}{S_{21}L} \qquad \Delta n_t = \frac{\delta}{S_{21}L}$$

C、泵浦速率

(1) t<0: W大

(2) t>0: W小

D、反转粒子数△n

(1)t<0: Δn增大,t=0时为 Δn=Δn_i

 $(\Delta n_t < \Delta n_i < \Delta n_t')$

(2)t>0: Δn 減小, $t=t_p$ 时为 $\Delta n=\Delta n_t$

(3)t>>0: 振荡结束时残余反转粒子数为 $\Delta n=\Delta n_e$

E、腔内光子数密度N

- (1) $0 < t < t_p$: 因 $\Delta n > \Delta n_t$ 而增强
- (2) $t>t_p$:因 $\Delta n < \Delta n_t$ 而减弱
- (3) $t=t_p$ 时,达最大 N_m

●平均单程损耗率

(1)定义
$$\delta = \frac{1}{2} ln \frac{I_0}{I_1}$$
 或 $I_1 = I_0 e^{-2\delta}$

 I_0 : 初始光强, I_1 : 往返一周后的光强

$$\delta = \frac{1}{2} \ln \frac{I_0}{I_1} \qquad \ln \frac{I_0}{I_1} = 2\delta = \ln e^{2\delta} \qquad \frac{I_0}{I_1} = e^{2\delta}$$

$$I_1 = I_0 e^{-2\delta}$$

(2)分类

- ①选择性损耗 损耗大小与横模有关,如衍射损耗
- ②非选择性损耗 损耗大小与横模无关,如输出损耗

(3)计算

由于衍射作用反射镜不能覆盖衍射光而造成的损耗

①衍射损耗
$$\delta = \frac{L\lambda}{a^2}$$

L:腔长, \(\lambda:\)光波长, a:反射镜半径

证 设初始光强为I。

则单程光强为
$$I = I_0 \left(\frac{a}{a+10} \right)^2$$

$$\delta = \ln \frac{I_0}{I} = \ln \left(\frac{a + L\theta}{a}\right)^2 = 2\ln \left(1 + \frac{L\theta}{a}\right) \approx \frac{2L\theta}{a}$$

$$\therefore \theta \approx \frac{\lambda}{2a} \qquad \therefore \delta = \frac{2L}{a} \frac{\lambda}{2a} = \frac{L\lambda}{a^2}$$

$$ln(1+x) \approx x, (x \to 0)$$

②输出损耗

由于反射镜透射光而造成的损耗

$$\delta = -\frac{1}{2} \ln r_1 r_2 \quad \mathbf{x} \qquad \delta = \frac{T}{2}$$

r₁、 r₂:两反射镜的反射率

T: 半反镜的透射率 $(r_1=1, T=1-r_2<0.05)$

证 设初始光强为I。

则往返一周光强为 $I_1 = I_0 r_1 r_2$

$$\therefore \delta = \frac{1}{2} \ln \frac{I_0}{I_0 r_1 r_2} = -\frac{1}{2} \ln r_1 r_2$$

若
$$\mathbf{r_1} = \mathbf{1}, \ \mathbf{r_2} = \mathbf{1} - \mathbf{T}$$
 $\therefore \delta = -\frac{1}{2}ln(1 - \mathbf{T})$

$$\therefore \delta = -\frac{1}{2} ln(1 - T)$$

当T<0.05
$$\delta \approx -\frac{1}{2}(-T) = \frac{T}{2}$$

腔寿命

(1)定义 腔内光强从初始值衰减到它的1/e所用时间

(2)计算
$$\tau_c = \frac{L'}{\delta c}$$

(2)计算 $\tau_c = \frac{L'}{s_c}$ L':腔的光学长度, c:真空光速

证 往返1次光强 $I_1 = I_0 e^{-2\delta}$ 往返m次光强 $I_m = I_0 e^{-2m\delta}$

光往返m次用时
$$t = \frac{2mL'}{c}$$
 $m = \frac{tc}{2L'}$

$$m = \frac{tc}{2L'}$$

$$I(t) = I_0 e^{-\frac{\delta c}{L'}t} = I_0 e^{-\frac{t}{\tau_c}} \qquad \qquad \blacksquare \qquad \qquad \tau_c = \frac{L'}{\delta c}$$

非调Q时:

$$\frac{dN}{dt} = (n_2 - n_1) \bar{\alpha} N - N \bar{\xi}$$

$$\frac{dn_2}{dt} = -(n_2 - n_1) \bar{\alpha} N - n_2 A_{21} + n_3 S_{32}$$

$$\frac{dn_3}{dt} = n_1 W_{13} - n_3 S_{32}$$

$$\frac{dn_1}{dt} = (n_2 - n_1) \bar{\alpha} N + n_2 A_{21} - n_1 W_{13}$$

$$n = n_1 + n_2 + n_3 \approx n_1 + n_2$$

$$\bar{\alpha} = \frac{A_{21}}{g}$$

....(1)

g 是腔内单位体积中的辐射波型数

上面公式物理意义

- 单位时间内由受激发射导致腔内振荡光子数的增值
 - +各种损耗机制导致光子数减少
- 单位时间内由受激发射导致能级2粒子数的减少+ 自发发射导致能级2粒子数的减少+能级3至2过渡 导致能级2粒子数的增加
- 抽运引起能级3粒子数的增加+向能级2跃迁导致能级3粒子数减少

• $\Diamond \Delta n = n_2 - n_1$ (1)式改写成:

$$\frac{dN}{dt} = \Delta n\overline{\alpha}N - N\overline{\xi} \cdots (2.1)$$

$$\frac{dn_2}{dt} = -\Delta n\overline{\alpha}N - n_2A_{21} + n_3S_{32} \cdots (2.2)$$

$$\frac{dn_3}{dt} = n_1W_{13} - n_3S_{32} \cdots (2.3)$$

$$\frac{dn_1}{dt} = \Delta n\overline{\alpha}N + n_2A_{21} - n_1W_{13} \cdots (2.4)$$

● 方程(2.2)减去(2.4),得:

$$\frac{dN}{dt} = \Delta n\overline{\alpha}N - N\overline{\xi}$$

$$\frac{d\Delta n}{dt} = n_3 S_{32} + n_1 W_{13} - 2\Delta n\overline{\alpha}N - 2n_2 A_{21}$$
(3)

对于调Q一实际激光三能级系统,在时间平均上看,能级3的粒子数可以忽略

即
$$n_3 S_{32} \approx n_1 W_{13}$$
,和 $n_3 \approx 0$ $\frac{dn_3}{dt} = 0$

(3)式可改写成:

$$\frac{dN}{dt} = \Delta n \overline{\alpha} N - N \overline{\xi} = \Delta n \frac{A_{21}}{g} N - N \overline{\xi}$$

$$\bar{\alpha} = \frac{A_{21}}{g}$$

$$\frac{d\Delta n}{dt} = 2n_1 W_{13} - 2\Delta n \overline{\alpha} N - 2n_2 A_{21}$$

$$=2n_1W_{13}-2\Delta n\frac{A_{21}}{g}N-2n_2A_{21}$$

····· (4)

● **在Q开关极短的时间内(**~10-9 s),

● 光泵和自发辐射两种过程均可忽略,即方程(4)中的

$$2n_1W_{13} \approx 0$$
 $2n_2A_{21} \approx 0$

(4)式可简化为

$$\frac{d\Delta n}{dt} = -2\Delta n \frac{A_{21}}{g} N \cdots (5.1)$$

$$\frac{dN}{dt} = (\Delta n \frac{A_{21}}{g} - \overline{\xi}) N \cdots (5.2)$$

通常难有准确的解析解。

● 在稳定振荡情况下(瞬态平衡): $\frac{dN}{dt} = 0$

则可求得稳态振荡时的阈值粒子数反转 Δn_t :

从(5.2) 式得
$$(\Delta n \frac{A_{21}}{g} - \overline{\xi}) = 0$$

$$\bar{\alpha} = \frac{A_{21}}{g}$$

$$\bar{\xi} = \frac{1}{t}$$

$$\Delta n_t = \frac{\bar{\xi}}{\bar{\alpha}} = \frac{1}{t_c} \frac{g}{A_{21}}$$

$$(6)$$

●代入(5),得

$$\frac{d\Delta n}{dt} = -2 \frac{\Delta n}{\Delta n_t} \xi N = -2 \frac{\Delta n}{\Delta n_t} \frac{N}{\tau_c}$$
 (7. 1)

$$\frac{dN}{dt} = \left(\frac{\Delta n}{\Delta n_t} - 1\right) \xi N = \left(\frac{\Delta n}{\Delta n_t} - 1\right) \frac{N}{\tau_c}$$
 (7. 2)

● 求解这一阶微分方程组(7),消去时间t,得:

$$\frac{dN}{d \triangle n} = \frac{1}{2} \left(\frac{\triangle n_t}{\triangle n} - 1 \right)$$

・ 求积分:

$$\int_{N_i}^{N'} dN = \frac{1}{2} \int_{\Delta n_i}^{\Delta n'} \left(\frac{\Delta n_t}{\Delta n} - 1\right) d\Delta n \cdots (8)$$

• $N_i \sim$ 初始光子数密度

· Δn_i ~ 振荡前达到的初始粒子数反转密度

・ 显然,当 $\Delta n = \Delta n_t$ 时,光子数达到极大值 N_{max}

$$N_{\text{max}}$$
 $\gg N_i$ 振荡开始光子数 $\gg N_e$ 振荡终结粒子数

• 与 N_{max} 相比,有: $N_i \approx 0$ $N_e \approx 0$

此时,(8)式的解为:

$$\therefore N - N' = \frac{1}{2} \Delta n_t \ln \frac{\Delta n'}{\Delta n_i} - \frac{1}{2} \Delta n' + \frac{1}{2} \Delta n_i$$

$$= \frac{1}{2} \Delta n_t \left(\frac{\Delta n_i}{\Delta n_t} - \ln \frac{\Delta n_i}{\Delta n'} - \frac{\Delta n'}{\Delta n_t}\right) \qquad (9')$$

(9') 式表达了:相应于粒子数反转密度 $\Delta n'$

时的振荡光子数密度N′(它与时间无关)

(1) 巨脉冲的峰值功率 P_p

当粒子数反转密度 $\Delta n' = \Delta n_t$ 时,光子数密度达 N_{max} ,由(9')式可得:

$$\therefore N_{\text{max}} = N_{\text{m}} \approx \frac{1}{2} \Delta n_{t} \left(\frac{\Delta n_{i}}{\Delta n_{t}} - \ln \frac{\Delta n_{i}}{\Delta n_{t}} - \frac{\Delta n_{t}}{\Delta n_{t}} \right)$$

$$1 \leftarrow \Delta n_{t}$$

$$= \frac{1}{2} \left(\Delta n_i - \Delta n_t \ln \frac{\Delta n_i}{\Delta n_t} - \Delta n_t \right)$$

$$= \frac{1}{2} \left(\Delta n_i - \Delta n_t + \Delta n_t \ln \frac{\Delta n_t}{\Delta n_i} \right) \tag{9}$$

$$N_{\text{max}} = \frac{1}{2} \Delta n_t \left(\frac{\Delta n_i}{\Delta n_t} - \ln \frac{\Delta n_i}{\Delta n_t} - 1 \right)$$

最大光子数密度

$$(e = 2.718, e^2 = 7.388)$$

$$ullet$$
 当满足 $\frac{\Delta n_i^{} - \Delta n_{\mathrm{t}}^{}}{\Delta n_i^{}} \ll 1$ 时,利用泰勒展开,

得近似表达

$$N_{\text{max}} \approx \frac{\Delta n_t}{4} \left(\frac{\Delta n_i}{\Delta n_t} - 1\right)^2 \quad \dots \quad (10)$$

● 巨脉冲峰值功率

$$P_p = N_{\text{max}} \cdot h v \cdot V \cdot \xi_1 \quad \dots \tag{11}$$

- V ~ 激活介质的体积
 ξ₁ ~ 由腔端透过所决定的单位时间内的光子衰减率

$$\xi_1 \approx \left(\frac{1}{2} \ln \frac{1}{V}\right) \frac{c}{\mu L}$$

峰值功率

● 计算公式

$$P_m = h \nu_0 N_m v ST$$

v:腔内光速 S:腔截面积 T:输出镜透过率

提高Pm的措施

 S_{21} 发射截面

(1)提高Q开关打开前、后的腔损耗之比 δ'/δ

$$\therefore \Delta n_t = \frac{G_t}{S_{21}} = \frac{\delta}{S_{21}L} \qquad S_{21}\Delta n = G_t, \qquad G_t L = \delta$$

$$\therefore \frac{\Delta n_t'}{\Delta n_t} = \frac{\delta'}{\delta} \qquad \frac{\Delta n_t'}{\Delta n_t} \qquad 越大, Q \qquad \frac{\Delta n_i}{\Delta n_t} \quad 也可以越大$$

(2)提高泵浦功率(使 Δn_i ,达到 Δn 外平)

(2) 巨脉冲的能量E

巨脉冲能量 = (脉冲起 - 止所包含的振荡光子密度)

×(腔内激活介质的体积)×(每个光子能量)

$$E = \left[\int_{N_i}^{N_e} dN = \frac{1}{2} \int_{\Delta n_i}^{\Delta n_e} \left(\frac{\Delta n_t}{\Delta n} - 1 \right) d\Delta n \right] \cdot V \cdot hv$$

$$= \frac{1}{2} \left[\left(\Delta n_i - \Delta n_e \right) + \Delta n_t \cdot \ln \frac{\Delta n_e}{\Delta n_i} \right] \cdot V \cdot hv$$

$$\left(\Delta n_e \ll \Delta n_i\right)$$

则巨脉冲的能量

$$E = \frac{1}{2} \left(\Delta n_i - \Delta n_e \right) \cdot V \cdot hv. \quad (12)$$

● 脉冲能量

$$E = E_i - E_e = \frac{1}{2} h \nu (\Delta n_i - \Delta n_e) V$$

$$E_i = \frac{1}{2} h \nu \Delta n_i V \qquad E_e = \frac{1}{2} h \nu \Delta n_e V$$

每产生一个光子,消耗2个反转粒子数

E_i(储能):储藏在工作物质中能转变为激光的初始能量

E_e(剩余能):巨脉冲结束后工作物质中的剩余能量,通过自 发辐射消耗掉

● 能量利用率

1、定义

$$\eta = \frac{E}{E_i} = \frac{E_i - E_e}{E_i} = 1 - \frac{E_e}{E_i} = 1 - \frac{\Delta n_e}{\Delta n_i}$$

● 计算曲线

$$\frac{\Delta n_i}{\Delta n_t} = -\frac{\ln(1-\eta)}{\eta}$$

η	0	0. 1	0. 5	0. 9	0. 993
$rac{\Delta n_i}{\Delta n_t}$	1	1. 054	1. 386	2. 558	5

$$\lim_{\eta \to 0} \frac{-\ln(1-\eta)}{\eta}$$

$$= \lim_{\eta \to 0} \frac{1}{1-\eta} = 1$$

● 由方程 (8) (P113)可解得

$$\Delta n_e = \Delta n_i \cdot \exp \left[\frac{\Delta n_i}{\Delta n_e} \left(\frac{\Delta n_e}{\Delta n_i} - 1 \right) \right]$$

..... (13)

(3) 巨脉冲的脉冲宽度 ΔT

从方程组(7)中的第一式

$$\frac{d\Delta n}{dt} = -2\frac{\Delta n}{\Delta n_t} \cdot \xi N \quad \dots \tag{7}$$

求得巨脉冲的时间特性:

$$\Delta \tau = \int_0^t dt = -\int_{\Delta n_i}^{\Delta n} \frac{\Delta n_t}{2\Delta n' \xi N'} d\Delta n'$$

● 把(9)式N的表达式

$$N' = N_i + \frac{1}{2} \left[\left(\triangle n_i - \triangle n' \right) + \triangle n_t \cdot \ln \frac{\triangle n'}{\triangle n_i} \right]$$

● 代入得

$$\Delta \tau = -\int_{\Delta n_i}^{\Delta n} \frac{d\Delta n'}{2\Delta n' \xi} \left[\frac{N_i}{\Delta n_t} + \frac{1}{2} \left(\frac{\Delta n_i}{\Delta n_t} - \frac{\Delta n'}{\Delta n_t} + \ln \frac{\Delta n'}{\Delta n_t} \right) \right]$$
..... (14)

● 在巨脉冲时间内,可以认为初始光子密度 N_i 小到可以忽略,且假定 ΔT 时间内,Q开关近似矩形,上式可简化为:

$$\Delta \tau \cdot \xi = -\int_{\Delta n_i}^{\Delta n} \frac{d\Delta n'}{\Delta n'_i} \frac{d\Delta n'}{\Delta n_i} - \frac{\Delta n'}{\Delta n_t} + \ln \frac{\Delta n'}{\Delta n_t}$$

..... (15)

脉冲的时间特性

(1)脉冲宽度定义

$$\Delta t = \Delta t_r + \Delta t_d$$

△tr: 上升时间(光子数密度由Nm/2升至Nm所用时间)

△td: 下降时间(光子数密度由Nm降至Nm/2所用时间)

(2)脉冲宽度计算方法

$$\Delta t_r = -\tau_c \int_{\Delta n_r}^{\Delta n_t} \frac{d\Delta n}{\Delta n \left(\frac{\Delta n_i}{\Delta n_t} - \frac{\Delta n}{\Delta n_t} + \ln \frac{\Delta n}{\Delta n_t}\right)}$$

$$\Delta t_d = -\tau_c \int_{\Delta n_t}^{\Delta n_d} \frac{d\Delta n}{\Delta n (\frac{\Delta n_i}{\Delta n_t} - \frac{\Delta n}{\Delta n_t} + \ln \frac{\Delta n}{\Delta n_t})}$$

△n_r、△n_d: 分别为 光子数密度升、 降至N_m/2时所对 应的反转粒子数 密度;

τ_c: Q开关打开后 的腔寿命。

t_p: 光子数密度达到N_m的时刻,相应反转粒子数密度为Δn_c

t_r: 光子数密度升到 N_m/2的时刻,相应反转 粒子数密度为△n_r.

t_d: 光子数密度降到 N_m/2的时刻,相应反转 粒子数密度为△n_d

$$\frac{d\Delta n}{dt} = -2\frac{\Delta n}{\Delta n_t} \frac{N}{\tau_c} \qquad N = \frac{1}{2} \Delta n_t \left(\frac{\Delta n_i}{\Delta n_t} - \ln \frac{\Delta n_i}{\Delta n} - \frac{\Delta n}{\Delta n_t}\right)$$

$$dt = -\frac{1}{2} \frac{\Delta n_t}{\Delta n} \frac{\tau_c}{N} d\Delta n = -\tau_c \frac{d\Delta n}{\Delta n \cdot \frac{2N}{\Delta n_t}} = -\tau_c \frac{d\Delta n}{\Delta n (\frac{\Delta n_i}{\Delta n_t} - \ln \frac{\Delta n_i}{\Delta n} - \frac{\Delta n}{\Delta n_t})}$$

脉冲前沿半高宽

$$\Delta t_r = \int_{t_r}^{t_p} dt = -\tau_c \int_{\Delta n_r}^{\Delta n_t} \frac{d\Delta n}{\Delta n (\frac{\Delta n_i}{\Delta n_t} - \ln \frac{\Delta n_i}{\Delta n} - \frac{\Delta n}{\Delta n_t})}$$
永冲后沿半高宽

脉冲后沿半高宽

$$\Delta t_d = \int_{t_p}^{t_d} dt = -\tau_c \int_{\Delta n_t}^{\Delta n_e} \frac{d\Delta n}{\Delta n (\frac{\Delta n_i}{\Delta n_t} - \ln \frac{\Delta n_i}{\Delta n} - \frac{\Delta n}{\Delta n_t})}$$

(3)脉冲宽度的特点

(A)增大 $\Delta n_i / \Delta n_t$, 脉冲的前、后沿均减小,其中前沿比后沿减小的更显著

- (B)脉宽与调Q时的腔寿命成正比,故腔长不宜太长、损耗也不宜太小.
- (C)最小脉宽为光在腔内往返一周所用时间

$$\Delta t_{\min} = \frac{2L}{C}$$

例1某气体激光器Q开关打开后,阈值反转粒子数及初始与阈值 反转粒子数比分别为 $\Delta n_t = 10^{22} \text{m}^{-3}$ 、 $\Delta n_i/\Delta n_t = 3$,求 N_m

解

$$N_{m} = \frac{1}{2} \Delta n_{t} \left(\frac{\Delta n_{i}}{\Delta n_{t}} - \ln \frac{\Delta n_{i}}{\Delta n_{t}} - 1 \right)$$
$$= \frac{1}{2} \times 10^{22} (3 - \ln 3 - 1) = 4.5 \times 10^{21} m^{-3}$$

例2为使调Q激光器的能量利用率达到90%,求反转粒子数比参数 $\Delta n_i/\Delta n_i$

解

$$\frac{\Delta n_i}{\Delta n_t} = -\frac{\ln(1-\eta)}{\eta} = -\frac{\ln 0.1}{0.9} = 2.558$$

例3求腔长1.5m的调Q激光器所能获得的最小脉宽

$$\Delta t_{\min} = \frac{2L}{c} = \frac{2 \times 1.5}{3 \times 10^8} = 10^{-8} s = 10 ns$$

例4 红宝石调Q激光器输出镜反射率为 r_1 =0.96,另一镜反射率在 r_2 =0.1到 r_2 =1之间变化,红宝石棒与腔长同为L=20 cm,截面积S=10mm²,红宝石发射截面 S_{21} =2.5×10⁻²⁴m²,设Q开关在反转粒子数达到 r_2 低反射率所对应的阈值时开启,求 N_m 及 P_m (光波长 λ = 6943Å,折射率n=1.76)

解
$$\delta' = -\frac{1}{2} \ln r_1 r_2$$

= $-\frac{1}{2} \ln(0.96 \times 0.1) = 1.172$

$$\mathcal{S} = \frac{1 - r_1}{2} = \frac{0.04}{2} = 0.02$$

$$\therefore \frac{\Delta n_i}{\Delta n_t} = \frac{\Delta n_t'}{\Delta n_t} = \frac{\delta'}{\delta} = \frac{1.172}{0.02} = 58.6$$

$$\Delta n_t = \frac{\delta}{S_{21}L} = \frac{0.02}{2.5 \times 10^{-24} \times 0.2} = 4 \times 10^{22} \text{m}^{-3}$$

$$N_{m} = \frac{1}{2} \Delta n_{t} \left(\frac{\Delta n_{i}}{\Delta n_{t}} - \ln \frac{\Delta n_{i}}{\Delta n_{t}} - 1 \right)$$

$$=\frac{1}{2}\times 4\times 10^{22}(58.6-\ln 58.6-1)=1.07\times 10^{24}m^{-3}$$

$$P_{m} = h \nu_{0} N_{m} v S T = \frac{h c^{2} N_{m} S T}{n \lambda}$$

$$= \frac{6.63 \times 10^{-34} \times (3 \times 10^{8})^{2} \times 1.07 \times 10^{24} \times 10 \times 10^{-6} \times 0.04}{1.76 \times 6943 \times 10^{-10}}$$

$$= 2.1 \times 10^7 W$$

● 此积分方程不易直接求解析解,但可

以根据给定的初始值
$$\frac{\triangle n_i}{\triangle n_t}$$
 ,

利用数值积分求的数值解。

表1:峰值光子数,脉冲宽度和参量的关系:

$\frac{\Delta n_i}{\Delta n_t}$	$\frac{2N_{ ext{max}}}{{\scriptscriptstyle \Delta} n_t}$	$\triangle t_1$	Δt_2	$\frac{\Delta n_i}{\Delta n_t}$	$\frac{2N_{\text{max}}}{\Delta n_t}$	$\triangle t_1$	Δt_2
1.105	0.0052	12.291	12.632	4.055	1.655	0.782	1.263
1.221	0.0214	7.960	8.437	4.482	1.982	0.702	1.186
1.350	0.0499	5.335	5.803	4.953	2.353	0.633	1.120
1.492	0.0918	3.892	4.356	5.474	2.774	0.572	1.064
1.649	0.149	3.016	3.480	6.050	3.250	0.518	1.015
1.822	0.222	2.432	2.896	6.686	3.786	0.471	0.973
2.014	0.314	2.016	2.481	7.389	4.389	0.429	0.936
2.226	0.426	1.704	2.171	8.166	5.066	0.391	0.905
2.460	0.560	1.463	1.931	9.025	5.825	0.357	0.877
2.718	0.718	1.271	1.741	9.974	6.674	0.327	0.854
3.004	0.904	1.114	1.586	11.023	7.623	0.300	0.833
3.320	1.120	0.984	1.459	12.182	8.638	0.275	0.816
3.669	1.369	0.875	1.352				

(4) 参量
$$\frac{\Delta n_i}{\Delta n_t}$$

● 在Q开关激光器的理论描述和设计中,

$$\frac{\Delta n_i}{\Delta n_t}$$
 是一个极为重要的参量。其量值直接

影响到输出功率、脉宽以及总体效率。

● 从方程(15)的数值积分表可见:

ullet 当 $\frac{\Delta n_i}{\Delta n_t}$ 增大时, 峰值光子数 N_{\max} 增加;脉冲的前

沿 Δt_1 、后沿 Δt_2 同时变窄。变化趋势近乎指数

形式,开始时显著,在 $\frac{\Delta n_i}{\Delta n_i} \approx 2$ 后,变得平缓。

• $\frac{\Delta n_i}{\Delta n_t}$ 值选得愈大愈好。

● 有两条实现途径:

・从(6)式
$$\Delta n_t = \frac{\xi}{A_{21}} g$$
 可知:

在Q突变过程中,初始的光子衰减率 ξ_i 越大, Δn_i 才能提高。振荡时的光子衰减率则应迅速减少。

----Q开关谐振腔的设计应遵循此项原则。

• 故此,可选取 $\frac{\Delta n_i}{\Delta n_i} \approx 2.7$ 把此值代入(13)式。

$$\Delta n_e = \Delta n_i \exp \left[\frac{\Delta n_i}{\Delta n_t} \left(\frac{\Delta n_e}{\Delta n_i} - 1 \right) \right]$$

• 可求得 $\triangle n_e \approx 0.08 \triangle n_i$ 故此可略去 $\triangle n_e$,并把巨脉冲能量表式(12)简化为。

$$E \approx \frac{1}{2} \triangle n_i h v V$$

- 显然,当开关处于
 - "关闭"态时,要提高 Δn_i ,必须提高光泵抽速。
 - "接通"态时,要减少 Δn_t ,必须选取合适的工作物质及腔结构

$$\Delta n_t = \frac{\xi}{A_{21}} g$$

• $E \approx \frac{1}{2} \triangle n_i h v V$ 储存在工作物质中的,可能

变为激光输出的初始能量。

• $E_e \approx \frac{1}{2} \triangle n_e h v V$ 巨脉冲发射后,工作物质

剩余的能量。

● 定义:Q开光激光器的能量利用率:

$$\eta = \frac{E - E_e}{E} = 1 - \frac{\Delta n_e}{\Delta n_i}$$
 (18)

•当
$$\frac{\Delta n_i}{\Delta n_t}$$
 选取很大值, $\frac{\Delta n_e}{\Delta n_t} \to 0$,此时 $\eta \to 1$

ullet 如果 Δn_i 很小 , $\Delta n_i \approx \Delta n_e$,这种情况 $\eta \to 0$

图2.1-3 Q开关激光脉冲建立过程

腔内光子数和粒子 反转数随时间的变化

图2.1-4 从开始振荡到球冲形成的过程

调Q脉冲数波形与 $\Delta n_f/\Delta n_i$ 的关系