

 ${\bf a.}$ Derive the Boolean expression 'X' for the logic circuit shown below:

 $\textbf{b.} \ \text{From the truth table below, determine} \ \underline{\text{the standard POS expression}}.$

the standard i OS expression				
Inputs			Output	
Α	В	С	X	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	0	

[Author] 1 OF 2

c. Determine the gate output for the input waveform in the figure below and draw the timing diagram.

d. The NAND and the negative-OR symbols represent equivalent operations, but they are functionally different. For the NOR symbol, look for at least one HIGH on the inputs to give a LOW on the output. For the negative-AND, look for two LOW's on the inputs to give a HIGH output. Using these two functional points of views, show that both gates in the figure below will produce the same output for the given inputs.

Question-3

- a. Using Boolean algebra techniques, simplify this expression: AB + A (B + C) + B (B + C)
- **b.** Convert the following Boolean expression to SOP form: $(\overline{A + B}) + C$
- c. Convert the following Boolean expression into standard POS form: (A + B + C)(B + C + D)(A + B + C + D)
- **d.** Reduce the function specified in truth table given below to its minimum SOP form By Karnaugh map and draw its circuit.

Inputs	Output
ABC	X
0 0 0	1
0 0 1	1
0 1 0	0
0 1 1	1
1 0 0	1
1 0 1	1
1 1 0	0
1 1 1	1

Question-4

Write the output expression for each circuit given below. Then Change each circuit to an equivalent AND-OR configuration. Finally develop a truth table for each of the circuit.

END OF TEST

[Author] 2 OF 2