You have two strings, \boldsymbol{a} and \boldsymbol{b} . Find a string, \boldsymbol{s} , such that:

- s can be expressed as $s = s_a + s_b$ where s_a is a non-empty substring of a and s_b is a non-empty substring of b.
- **s** is a <u>palindromic</u> string.
- The length of **s** is as long as possible.

For each of the q pairs of strings (a_i and b_i) received as input, find and print string s_i on a new line. If you're able to form more than one valid string s_i , print whichever one comes first alphabetically. If there is no valid answer, print -1 instead.

Input Format

The first line contains a single integer, q, denoting the number of queries. The subsequent lines describe each query over two lines:

- 1. The first line contains a single string denoting \boldsymbol{a} .
- 2. The second line contains a single string denoting \boldsymbol{b} .

Constraints

- $1 \le q \le 10$
- $1 \le |a|, |b| \le 10^5$
- **a** and **b** contain only lowercase English letters.
- Sum of |a| over all queries does not exceed 2×10^5
- Sum of |b| over all queries does not exceed 2×10^5

Output Format

For each pair of strings (a_i and b_i), find some s_i satisfying the conditions above and print it on a new line. If there is no such string, print -1 instead.

Sample Input

```
3
bac
bac
abc
def
jdfh
fds
```

Sample Output

```
aba
-1
dfhfd
```

Explanation

We perform the following three queries:

- 1. Concatenate $s_a =$ "a" with $s_b =$ "ba" to create s = "aba".
- 2. We're given a = "abc" and $s_a = \text{"def"}$; because both strings are composed of unique characters, we cannot use them to form a palindromic string. Thus, we print -1.
- characters, we cannot use them to form a palindromic string. Thus, we print -1.

 3. Concatenate $s_a = "dfh"$ with $s_b = "fd"$ to create s = "dfhfd". Note that we chose these particular substrings because the length of string s must be maximal.