Chapter ML:VII (continued)

VII. Bayesian Learning

- □ Approaches to Probability
- □ Conditional Probability
- Bayes Classifier
- □ Exploitation of Data
- □ Frequentist versus Subjectivist

ML:VII-96 Bayesian Learning ©STEIN/VÖLSKE 2022

Data Events

Data from a "predictor-response" setting:

```
D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} (regression) D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} (classification)
```

- D is the result of n <u>i.i.d.</u> trials. I.e., n objects are sampled independently and from the same probability distribution. All objects are characterized by a "response" variable that is either quantitative (a number y) or categorical (a class label c), and by p "predictors" (a feature vector \mathbf{x}).
- $p(\mathbf{x}_i, c_i), p(\mathbf{x}_i, c_i) := P(\mathbf{X}_i = \mathbf{x}_i, \mathbf{C}_i = c_i)$, is the probability of the joint event $\{\mathbf{X}_i = \mathbf{x}_i, \mathbf{C}_i = c_i\}$, i.e., (1) to get the vector \mathbf{x}_i , and, (2) that the respective object belongs to class c_i . The $p(\mathbf{x}_i, y_i)$ are defined analogously.
- The Y_i , C_i , and \mathbf{X}_i are i.i.d. (multivariate) random variables. Typically, the Y_i are of continuous type, the C_i of discrete type, and the variables of the random vector \mathbf{X}_i , $\mathbf{X}_i := (X_{1,i}, \dots, X_{n,i})^T$, of continuous type.

ML:VII-97 Bayesian Learning © STEIN/VÖLSKE 2022

Data Events

Data from a "predictor-response" setting:

```
D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} (regression) D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} (classification)
```

- \square *D* is the result of n <u>i.i.d.</u> trials. I.e., n objects are sampled independently and from the same probability distribution. All objects are characterized by a "response" variable that is either quantitative (a number y) or categorical (a class label c), and by p "predictors" (a feature vector \mathbf{x}).
- $p(\mathbf{x}_i, c_i), p(\mathbf{x}_i, c_i) := P(\mathbf{X}_i = \mathbf{x}_i, C_i = c_i)$, is the probability of the joint event $\{\mathbf{X}_i = \mathbf{x}_i, C_i = c_i\}$, i.e., (1) to get the vector \mathbf{x}_i , and, (2) that the respective object belongs to class c_i . The $p(\mathbf{x}_i, y_i)$ are defined analogously.
- The Y_i , C_i , and \mathbf{X}_i are i.i.d. (multivariate) <u>random variables</u>. Typically, the Y_i are of continuous type, the C_i of discrete type, and the variables of the random vector \mathbf{X}_i , $\mathbf{X}_i := (X_{1,i}, \dots, X_{p,i})^T$, of continuous type.

ML:VII-98 Bayesian Learning © STEIN/VÖLSKE 2022

Data Events (continued)

Data from an "outcome-only" setting:

- $D = \{y_1, \dots, y_n\}$ (quantitative) $D = \{c_1, \dots, c_n\}$ (categorical)
 - $extbf{ iny } D$ is the result of n <u>i.i.d.</u> trials. I.e., n outcomes are sampled independently and from the same probability distribution. All outcomes are characterized by either a number y or a class label c.
 - $p(y_i), p(y_i) := P(Y_i = y_i),$ is the probability of the event $Y_i = y_i$. $p(c_i), p(c_i) := P(C_i = c_i),$ is the probability of the event $C_i = c_i$.
 - □ The Y_i , and C_i are i.i.d. random variables. Typically, the Y_i are of continuous type and the C_i of discrete type.

ML:VII-99 Bayesian Learning © STEIN/VÖLSKE 2022

Data Events (continued)

Data from an "outcome-only" setting:

```
D = \{y_1, \dots, y_n\} (quantitative) D = \{c_1, \dots, c_n\} (categorical)
```

- \square *D* is the result of n <u>i.i.d.</u> trials. I.e., n outcomes are sampled independently and from the same probability distribution. All outcomes are characterized by either a number y or a class label c.
- $p(y_i), p(y_i) := P(Y_i = y_i),$ is the probability of the event $Y_i = y_i$. $p(c_i), p(c_i) := P(C_i = c_i),$ is the probability of the event $C_i = c_i$.
- \Box The Y_i , and C_i are i.i.d. <u>random variables</u>. Typically, the Y_i are of continuous type and the C_i of discrete type.

ML:VII-100 Bayesian Learning © STEIN/VÖLSKE 2022

Remarks:

- \Box The following remarks on the predictor-response setting are detailed for a categorical response variable c; they apply to a quantitative response variable y as well.
- \Box By experiment design, the n joint events, $\{\mathbf{X}_1 = \mathbf{x}_1, C_1 = c_1\}, \ldots, \{\mathbf{X}_n = \mathbf{x}_n, C_n = c_n\}$, generating the data D are mutually independent:

$$p(D) = p\left(\{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}\right) = \prod_{i=1,\dots,n} p(\mathbf{x}_i, c_i)$$

$$\stackrel{(1)}{=} \prod_{i=1,\dots,n} \left(p(c_i \mid \mathbf{x}_i) \cdot p(\mathbf{x}_i)\right)$$

$$= \prod_{i=1,\dots,n} p(\mathbf{x}_i) \cdot \prod_{i=1,\dots,n} p(c_i \mid \mathbf{x}_i)$$

(1) Usually *not* independent are any two events $\mathbf{X}_i = \mathbf{x}_i$ and $C_i = c_i$, i = 1, ..., n: $p(\mathbf{x}_i, c_i) \neq p(\mathbf{x}_i) \cdot p(c_i)$

For maximizing p(D), see the maximum likelihood derivation of the logistic loss $L_{\sigma}(\mathbf{w})$.

- By experiment design, the probabilities, $p(\mathbf{x}_i)$, i = 1, ..., n, are independent, i.e., the probability of the joint event $\{\mathbf{X}_1 = \mathbf{x}_1, ..., \mathbf{X}_n = \mathbf{x}_n\}$ is equal to the product of the singleton events: $p(\mathbf{x}_1, ..., \mathbf{x}_n) = \prod_{i=1,...,n} p(\mathbf{x}_i)$.
 - A consistent and unbiased estimate for $p(\mathbf{x})$ is $\hat{p}(\mathbf{x}) = |\{(\mathbf{x}, \cdot) \in D\}| \cdot \frac{1}{|D|}$.
- By experiment design, the conditional probabilities, $p(c_i | \mathbf{x}_i)$, i = 1, ..., n, are *invariant under covariate shift*, i.e., invariant under a change of $p(\mathbf{x}_i)$. That is, the classification procedure, "determination of c_i given some \mathbf{x}_i ", always runs the same way, regardless of how often \mathbf{x}_i is encountered.

ML:VII-101 Bayesian Learning © STEIN/VÖLSKE 2022

Remarks: (continued)

The invariance of $p(c_i \mid \mathbf{x}_i)$ under a covariate shift can also be understood as the fact that any two events $\mathbf{X}_i = \mathbf{x}_i$ and $(C_i = c_i \mid \mathbf{X}_i = \mathbf{x}_i)$, i = 1, ..., n are independent:

"
$$p(\mathbf{x}, (c \mid \mathbf{x}))$$
" = $p(\mathbf{x}) \cdot p(c \mid \mathbf{x}) = p(\mathbf{x}, c)$

However, this interpretation is problematic since standard probability theory does not allow a conditional event being combined with other events. See section Probability Basics of this part, conditional event algebra, and Lewis's triviality result for details.

- Within an outcome-only setting such as "flipping a coin", the object features (coin diameter, coin age, etc.) are not used as predictors. I.e., one does not model the relationship between a response variable and predictors \mathbf{x} but models (the probability of) a sequence of outcomes $D = \{y_1, \dots, y_n\}$ or $D = \{c_1, \dots, c_n\}$.
- ☐ The type of setting, be it predictor-response or outcome-only, is independent of data exploitation aspects such as
 - discriminative versus generative,
 - non-probabilistic versus probabilistic,
 - maximum likelihood versus Bayes, or
 - frequentist versus subjectivist.

ML:VII-102 Bayesian Learning © STEIN/VÖLSKE 2022

Typical Learning Settings

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

(1) RSS(w):
$$\sum (y - \mathbf{w}^T \mathbf{x})^2$$
 RSS for D

(1) RSS(w):
$$\sum_{(\mathbf{x},y)\in D} (y)$$

$$(y - \mathbf{w}^T \mathbf{x})^T$$

$$\mathbf{I}_{n(c \mid \mathbf{x} \cdot \mathbf{w})}$$

$$(c) \cdot p(c)$$

$$D = \{a, a\}$$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

$$D = \{c_1, \dots, c_n\}$$

$$D = \{c_1, \dots, c_n\}$$

$$\binom{n}{\cdot \theta^k \cdot (1-\theta)^n}$$

$$\binom{n}{k} \cdot \theta^k \cdot (1 - \theta)$$

$$\binom{k}{k} \cdot 0 \cdot (1 = 0)$$

 $D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$

Typical Learning Settings

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

$$(\mathbf{R}^T\mathbf{x})^2$$
 RSS for D u

(1)
$$BSS(\mathbf{w})$$
 $\sum (\mathbf{u} - \mathbf{w}^T \mathbf{x})^2$ RSS for D \mathbf{u}

RSS for
$$D$$
 under a linear model, parameterized by \mathbf{w} .

(1) RSS(w):
$$\sum (y - \mathbf{w}^T \mathbf{x})^2$$
 RSS for D us Least square

$$\mathbf{w}^T\mathbf{x})^2$$
 RSS for D u

$$(y - \mathbf{w}^T \mathbf{x})^2$$
 RSS for D u

ASS for
$$D$$
 under each course.

HSS for
$$D$$
 unde
Least squares $f e$

RSS for
$$D$$
 under east squares as

RSS for
$$D$$
 und
east squares

Least squares estimate:
$$\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} \mathsf{RSS}(\mathbf{w})$$

bability of
$$D$$
 und

$$v$$
 w. Maximum likelihood esti

$$v_{\mathsf{ML}} =$$

$$_{ extsf{ iny L}} = \operatorname{argmax}_{\mathrm{w} \in \mathrm{R}}$$

© STEIN/VÖLSKE 2022 ML:VII-104 Bayesian Learning

Typical Learning Settings

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

(1) RSS(w):
$$\sum (y - \mathbf{w}^T \mathbf{x})^2$$
 RSS for D

RSS for D under a linear model, parameterized by \mathbf{w} . Least squares estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} \operatorname{RSS}(\mathbf{w})$

(2)
$$p(D; \mathbf{w})$$
:
$$\prod_{(\mathbf{x}, c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$

Probability of D under a logistic model, parameterized by \mathbf{w} . Maximum likelihood estimate: $\mathbf{w}_{\mathsf{ML}} = \mathsf{argmax}_{\mathbf{w} \in \mathbf{R}^{p+1}} \, p(D; \mathbf{w})$

(3)
$$L(\mathbf{w})$$
:
$$\sum l_{\sigma}(c, \sigma(\mathbf{w}^T \mathbf{x}))$$

loss for D under a logistic model, parameterized by \mathbf{w} . Minimum loss (= maximum likelihood) estimate: $\mathbf{w} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

$$\frac{p(\mathbf{x} \mid c) \cdot p(c)}{p(\mathbf{x})}$$

Probability of c given $\mathbf x$ via Bayes's rule. Maximum a posteriori class for $\mathbf x$: $c_{\mathsf{MAP}} = \mathsf{argmax}_{c \in \{\oplus, \ominus\}} \, p(c \mid \mathbf x)$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

$$p(D;\theta)$$
: Probability of D under the parameterized by θ . Maximum

parameterized by θ . Maximum likelihood estimate: $\theta_{\rm ML} = \operatorname{argmax}_{\theta \in [0;1]} p(D;\theta)$

(6)
$$p(\theta \mid D)$$
:
$$\frac{p(D \mid \theta) \cdot p(\theta)}{p(D)}$$

Probability of θ given D via Bayes's rule. Maximum a posteriori hypothesis: $\theta_{\mathsf{MAP}} = \mathsf{argmax}_{\theta \in \{\theta_1, \theta_2\}} \, p(\theta \mid D)$

Typical Learning Settings

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

(1) RSS(w):
$$\sum (y - \mathbf{w}^T \mathbf{x})^2$$
 RSS for D

RSS for D under a linear model, parameterized by \mathbf{w} . Least squares estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} \operatorname{RSS}(\mathbf{w})$

(2)
$$p(D; \mathbf{w})$$
:
$$\prod_{(\mathbf{x}, c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$

Probability of D under a logistic model, parameterized by \mathbf{w} . Maximum likelihood estimate: $\mathbf{w}_{\mathsf{ML}} = \mathsf{argmax}_{\mathbf{w} \in \mathbf{R}^{p+1}} \, p(D; \mathbf{w})$

(3)
$$L(\mathbf{w})$$
:
$$\sum_{(\mathbf{x}.c) \in D} l_{\sigma}(c, \sigma(\mathbf{w}^T \mathbf{x}))$$

Loss for D under a logistic model, parameterized by \mathbf{w} . Minimum loss (= maximum likelihood) estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

(4)
$$p(c \mid \mathbf{x})$$
:
$$\frac{p(\mathbf{x} \mid c) \cdot p(c)}{p(\mathbf{x})}$$

Probability of c given $\mathbf x$ via Bayes's rule. Maximum a posteriori class for $\mathbf x$: $c_{\mathsf{MAP}} = \mathsf{argmax}_{c \in \{\oplus,\ominus\}} \, p(c \mid \mathbf x)$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

Probability of
$$D$$
 under the binomial distribution, parameterized by θ . Maximum likelihood estimates $\theta_{\text{ML}} = \operatorname{argmax}_{\theta \in [0:1]} p(D; \theta)$

6)
$$p(\theta \mid D)$$
: $\frac{p(D \mid \theta) \cdot p(\theta)}{p(D)}$ Probability of θ given D via Bayes's rule. Maximum a posteriori hypothesis: $\theta_{\mathsf{MAP}} = \operatorname{argmax}_{\theta \in \{\theta_1, \theta_2\}} p(\theta \mid D)$

Typical Learning Settings

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

(1) RSS(w):
$$\sum (y - \mathbf{w}^T \mathbf{x})^2$$
 RSS for D

RSS for
$$D$$
 under a linear model, parameterized by \mathbf{w} .
Least squares estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} \operatorname{RSS}(\mathbf{w})$

(2)
$$p(D; \mathbf{w})$$
:
$$\prod_{(\mathbf{x}, c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$

Probability of
$$D$$
 under a logistic model, parameterized by \mathbf{w} . Maximum likelihood estimate: $\mathbf{w}_{\mathsf{ML}} = \mathsf{argmax}_{\mathbf{w} \in \mathbf{R}^{p+1}} \, p(D; \mathbf{w})$

(3)
$$L(\mathbf{w})$$
:
$$\sum_{(\mathbf{x},c)\in D} l_{\sigma}(c,\sigma(\mathbf{w}^T\mathbf{x}))$$

Loss for
$$D$$
 under a logistic model, parameterized by \mathbf{w} . Minimum loss (= maximum likelihood) estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

(4)
$$p(c \mid \mathbf{x})$$
:
$$\frac{p(\mathbf{x} \mid c) \cdot p(c)}{p(\mathbf{x})}$$

Probability of
$$c$$
 given $\mathbf x$ via Bayes's rule. Maximum a posteriori class for $\mathbf x$: $c_{\mathsf{MAP}} = \mathsf{argmax}_{c \in \{\oplus,\ominus\}} \, p(c \mid \mathbf x)$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

Probability of
$$D$$
 under the bin parameterized by θ . Maximum θ argument θ ar

(6)
$$p(\theta \mid D)$$
:
$$\frac{p(D \mid \theta) \cdot p(\theta)}{p(D)}$$

Probability of
$$\theta$$
 given D via Bayes's rule. Maximum a posteriori hypothesis: $\theta_{\mathsf{MAP}} = \mathrm{argmax}_{\theta \in \{\theta_1, \theta_2\}} \, p(\theta \mid L)$

Typical Learning Settings

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

(1) RSS(w):
$$\sum (y - \mathbf{w}^T \mathbf{x})^2$$

RSS for D under a linear model, parameterized by \mathbf{w} . Least squares estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} \operatorname{RSS}(\mathbf{w})$

(2)
$$p(D; \mathbf{w})$$
:
$$\prod_{(\mathbf{x}, c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$

Probability of D under a logistic model, parameterized by \mathbf{w} . Maximum likelihood estimate: $\mathbf{w}_{\mathsf{ML}} = \mathsf{argmax}_{\mathbf{w} \in \mathbf{R}^{p+1}} p(D; \mathbf{w})$

(3)
$$L(\mathbf{w})$$
:
$$\sum_{(\mathbf{x}.c)\in D} l_{\sigma}(c, \sigma(\mathbf{w}^T\mathbf{x}))$$

Loss for D under a logistic model, parameterized by \mathbf{w} . Minimum loss (= maximum likelihood) estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

(4)
$$p(c \mid \mathbf{x})$$
:
$$\frac{p(\mathbf{x} \mid c) \cdot p(c)}{p(\mathbf{x})}$$

Probability of c given $\mathbf x$ via Bayes's rule. Maximum a posteriori class for $\mathbf x$: $c_{\mathsf{MAP}} = \mathsf{argmax}_{c \in \{\oplus,\ominus\}} \, p(c \mid \mathbf x)$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

(5)
$$p(D;\theta)$$
:
$$\binom{n}{k} \cdot \theta^k \cdot (1-\theta)^{n-k}$$

Probability of D under the binomial distribution, parameterized by θ . Maximum likelihood estimate: $\theta_{\text{ML}} = \operatorname{argmax}_{\theta \in [0;1]} p(D;\theta)$

(6)
$$p(\theta \mid D)$$
:
$$\frac{p(D \mid \theta) \cdot p(\theta)}{p(D)}$$

Probability of θ given D via Bayes's rule. Maximum a posteriori hypothesis: $\theta_{\mathsf{MAP}} = \mathrm{argmax}_{\theta \in \{\theta_1, \theta_2\}} \ p(\theta \mid D)$

Typical Learning Settings

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

(1) RSS(w):
$$\sum (y - \mathbf{w}^T \mathbf{x})^2$$
 RSS for D Least square

RSS for D under a linear model, parameterized by \mathbf{w} . Least squares estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} \operatorname{RSS}(\mathbf{w})$

(2)
$$p(D; \mathbf{w})$$
: $\prod p(c \mid \mathbf{x}; \mathbf{w})$

Probability of D under a logistic model, parameterized by \mathbf{w} . Maximum likelihood estimate: $\mathbf{w}_{\mathsf{ML}} = \mathsf{argmax}_{\mathbf{w} \in \mathbf{R}^{p+1}} \, p(D; \mathbf{w})$

$$\sum_{\mathbf{k}} l_{\sigma}(c, \sigma(\mathbf{w}^T \mathbf{x}))$$

Loss for D under a logistic model, parameterized by \mathbf{w} . Minimum loss (= maximum likelihood) estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

$$p(\mathbf{x} \mid c) \cdot p(c)$$

Probability of c given $\mathbf x$ via Bayes's rule. Maximum a posteriori class for $\mathbf x$: $c_{\mathsf{MAP}} = \mathsf{argmax}_{c \in \{\oplus,\ominus\}} \, p(c \mid \mathbf x)$

(4)
$$p(c \mid \mathbf{x})$$
:
$$\frac{p(\mathbf{x} \mid c) \cdot p(c)}{p(\mathbf{x})}$$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

(5)
$$p(D;\theta)$$
: Probability of D under the binomial distribution, parameterized by θ . Maximum likelihood estimate: $\theta_{\mathsf{ML}} = \operatorname{argmax}_{\theta \in [0:1]} p(D;\theta)$

(6)
$$p(\theta \mid D)$$
:
$$\frac{p(D \mid \theta) \cdot p(\theta)}{p(D)}$$
 Probability of θ given D via Bayes's rule. Maximum a posteriori hypothesis: $\theta_{\mathsf{MAP}} = \mathrm{argmax}_{\theta \in \{\theta_1, \theta_2\}} \, p(\theta \mid D)$

(3) $L(\mathbf{w})$:

Remarks (predictor-response vs. outcome-only setting):

- Predictor-response setting, $\mathbf{x} \to y$ or $\mathbf{x} \to c$. The relation between \mathbf{x} and y or c is captured by a model function $y(\mathbf{x})$. The data D is exploited to fit $y(\mathbf{x})$, which in turn means to determine a parameter w or parameter vector \mathbf{w} for $y(\mathbf{x})$. Modeling and predicting a quantitative response variable y is a regression task; modeling and predicting a categorical response variable c is a classification task.
 - An example for a categorical predictor-response setting is the classification of an email as spam $(c = \oplus)$ or ham $(c = \ominus)$, given a vector \mathbf{x} of linguistic features for that email.
 - Outcome-only setting, y_1, \ldots, y_n or c_1, \ldots, c_n . Modeling a sole outcome variable means to fit the data D using a suited distribution function, which in turn means to determine the distribution parameter θ or distribution parameters θ . Again, one can distinguish between different measurement scales, such as quantitative (y) or categorical (c).
 - An example for a categorical outcome-only setting is a coin flip experiment where one has to fit the observations (number of heads and tails) under the binomial distribution, which in turn means to determine the distribution parameter θ .
- Depending on the experiment setting, i.e., fitting of a model function vs. fitting of a distribution, either the symbol w (or w), or the symbol θ (or θ) may be used to denote the parameter (or parameter vector).

ML:VII-110 Bayesian Learning © STEIN/VÖLSKE 2022

Remarks (discriminative vs. generative approach):

- (1), (2), (3) Discriminative approach to classification. Exploit the data to determine a decision boundary. Typically, "discriminative" implies "frequentist".
 - The optimization (argmin, argmax) considers $p(\mathbf{x})$, the distribution of the independent variables \mathbf{x} , implicitly via the multiplicity of \mathbf{x} in the data D. Recall that D is a multiset of examples.
- (2), (3), (5) Maximum likelihood (ML) principle to parameter estimation.
 - (2) Recall the identities from the maximum likelihood derivation of the logistic loss $L_{\sigma}(\mathbf{w})$:

$$p(D; \mathbf{w}) = \prod_{(\mathbf{x}, c) \in D} p(\mathbf{x}, c; \mathbf{w}), \quad \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\operatorname{argmax}} \ p(D; \mathbf{w}) = \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\operatorname{argmax}} \ \prod_{(\mathbf{x}, c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$

- (1), (2) If the data comes from an exponential family and mild conditions are satisfied, least-squares estimates and maximum-likelihood estimates are identical.
- (2), (3) Probabilistic model. The conditional class probability function (CCPF), $p(c \mid \mathbf{x})$, is estimated for all feature vectors (= at all quantiles). The model is not generative since the distribution of the independent variable, $p(\mathbf{x})$, is not modeled (but of course exploited implicitly via D).

Maximizing the probability under a logistic model is equivalent to minimizing the logistic loss L_{σ} . Hence, $\mathbf{w}_{\mathsf{ML}} = \hat{\mathbf{w}}$.

ML:VII-111 Bayesian Learning © STEIN/VÖLSKE 2022

Remarks (discriminative vs. generative approach): (continued)

- Generative approach to classification. Exploit the data D (here: estimate $p(\mathbf{x} \mid c)$ and p(c) for all \mathbf{x} and c) to provide a model for the joint probability distribution, $p(\mathbf{x}, c)$, from which D is sampled.
- Generative approach. Assuming the conditions of the binomial data model, exploit the data D (here: estimate the parameter θ) to provide a model for the binomial probability distribution, p(c), from which D is sampled.
- Generative or discriminative approach. $p(\theta \mid D)$ can be estimated by either providing (\rightarrow generative) or by *not* providing (\rightarrow discriminative) a model for the probability distribution from which D is sampled.

ML:VII-112 Bayesian Learning © STEIN/VÖLSKE 2022

Remarks (ML principle vs. Bayes method):

- (1), (2), (3) \mathbf{w} (as well as θ) is not the realization of a random variable—which would come along with a distribution—but an *exogenous parameter*, which is varied in order to find the maximum probability $p(D; \mathbf{w})$ (or $p(D; \theta)$) or the minimum loss $L(\mathbf{w})$.
 - The fact that \mathbf{w} (or θ) is an exogenous parameter and not a realization of a random variable is reflected by the notation, which uses a \mathbf{w} ; \mathbf{w} instead of a \mathbf{w} | \mathbf{w} in the argument of \mathbf{p} ().
 - (4) Application of Bayes's rule, presupposing that one can estimate the likelihoods $p(\mathbf{x} \mid \cdot)$ ($p(x_j \mid \cdot)$ in case of Naive Bayes) at higher fidelity than the conditional class probabilities, $p(\cdot \mid \mathbf{x})$, from the data.
 - Under the Naive Bayes Assumption, $p(\mathbf{x} \mid c)$ is modeled as $\prod_{j=1}^{p} p(x_j \mid c)$.
 - (4), (6) Likelihoods, $p(\mathbf{x} \mid \cdot)$, $p(D \mid \cdot)$, are computed for events under alternative classes c or parameters θ . The settings differ in that an event in (4) is about a feature vector \mathbf{x} , while an event in (6) is about a sequence D. (4) may (but not need to) apply the Naive Bayes assumption to compute the likelihood $p(\mathbf{x} \mid c)$, which is a common approximation for a nominal feature space and if data are sparse. For (6), if the data originate from a coin flip experiment, the likelihood $p(D \mid \theta)$ is computed via the binomial distribution.

If the prior probabilities, p(c) or $p(\theta)$, are estimated also from D, we follow the frequentist paradigm; if the priors rely on subjective assessments we follow the subjectivist paradigm.

If we assume uniform priors, i.e., the p(c) or the $p(\theta)$ are equally probable, MAP estimates and ML estimates are equal since $p(c \mid \mathbf{x}) \propto p(\mathbf{x} \mid c)$ or $p(\theta \mid D) \propto p(D \mid \theta)$, where » \propto « means "is proportional to".

ML:VII-113 Bayesian Learning © STEIN/VÖLSKE 2022

Learning Approaches Overview

Support vector machine

- (1) Linear regression with least square estimates from D
- 2) Logistic regression via p() with ML estimates from D
- (3) Logistic regression via L() with ML estimates from D
- (4) Bayes with ML estimates from D as priors
 - (5) Probability model with ML estimate from D
 - (6) Bayes with subjective priors
- (4) Bayes with subjective priors

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

ML:VII-114 Bayesian Learning © STEIN/VÖLSKE 2022

Learning Approaches Overview (continued)

Support vector machine

- (1) Linear regression with least square estimates from D
- 2) Logistic regression via p() with ML estimates from D
- (3) Logistic regression via L() with ML estimates from D
- (4) Bayes with ML estimates from D as priors
 - (5) Probability model with ML estimate from D
 - (6) Bayes with subjective priors
- (4) Bayes with subjective priors

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

discriminative: Determine a boundary to split $D. \rightarrow No$ model for the distribution of D.

generative: Provide a model for the probability distribution from which D is sampled.

ML:VII-115 Bayesian Learning © STEIN/VÖLSKE 2022

Learning Approaches Overview (continued)

Support vector machine

- (1) Linear regression with least square estimates from D
- 2) Logistic regression via p() with ML estimates from D
- (3) Logistic regression via L() with ML estimates from D
- (4) Bayes with ML estimates from D as priors
 - (5) Probability model with ML estimate from D
 - (6) Bayes with subjective priors
- (4) Bayes with subjective priors

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

non-probabilistic: Threshold some model function (typically at zero). ightarrow Classification, Labeling

probabilistic: Estimate $p(c \mid \mathbf{x})$ at all quantiles. \rightarrow Class probability estimation, CCPF

ML:VII-116 Bayesian Learning © STEIN/VÖLSKE 2022

Learning Approaches Overview (continued)

Support vector machine

- (1) Linear regression with least square estimates from D
- (2) Logistic regression via p() with ML estimates from D
- (3) Logistic regression via L() with ML estimates from D
- (4) Bayes with ML estimates from D as priors
 - (5) Probability model with ML estimate from D
 - (6) Bayes with subjective priors
- (4) Bayes with subjective priors

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

frequentist: Consider a unique mechanism that generated the data D.

subjectivist: Specify beliefs for alternative mechanisms one of which generated *D*.

ML:VII-117 Bayesian Learning © STEIN/VÖLSKE 2022

Remarks:

- We call a data exploitation approach "generative" if it provides us with a model for the probability distribution from which D is sampled. With such a model we are able to generate arbitrary samples from the population where D is sampled from.
- □ The overview does not show all but common combinations. In particular:
 - Typically, "discriminative" implies "frequentist". The inverse does not apply: consider a Bayes classifier with priors estimated from the data.
 - Typically, "generative" implies "probabilistic". The inverse does not apply: logistic regression provides a probabilistic model to classification.
- □ Discriminative approaches are further distinguished as "non-probabilistic" or "probabilistic".
- Generative approaches are further distinguished as "frequentist" or "subjectivist".

ML:VII-118 Bayesian Learning © STEIN/VÖLSKE 2022

Chapter ML:VII (continued)

VII. Bayesian Learning

- □ Approaches to Probability
- □ Conditional Probability
- Bayes Classifier
- □ Exploitation of Data
- □ Frequentist versus Subjectivist

ML:VII-119 Bayesian Learning ©STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes [data exploitation examples]

Support vector machine

- (1) Linear regression with least square estimates from D
- (2) Logistic regression via p() with ML estimates from D
- (3) Logistic regression via L() with ML estimates from D
- (4) Bayes with ML estimates from D as priors
 - 5) Probability model with ML estimate from D
 - (6) Bayes with subjective priors
- (4) Bayes with subjective priors

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

ML:VII-120 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes [data exploitation examples] (continued)

(2)
$$\mathbf{w}_{\mathsf{ML}} = \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\mathsf{argmax}} \ \prod_{(\mathbf{x},c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$
 (logistic regression)

(4)
$$c_{\mathsf{MAP}} = \underset{c \in \{\oplus,\ominus\}}{\mathsf{argmax}} \ p(c \mid \mathbf{x})$$

Observation 1. Both approaches maximize p(D)

- (2), the "ML principle", determines the parameters \mathbf{w} of the logistic model function such that $\prod_D p(c \mid \mathbf{x})$ becomes maximum. Note that a parameter vector \mathbf{w} that maximizes $\prod_D p(c \mid \mathbf{x})$ will also maximize $\prod_D p(\mathbf{x}, c)$, and thus p(D) (under the i.i.d. assumption).
- \Box (4), the "Bayes method", determines for a given \mathbf{x} its most probable class. By choosing c_{MAP} for each \mathbf{x} , Bayes maximizes p(D) by maximizing each factor of $\prod_D p(c \mid \mathbf{x})$. Note that $p(\mathbf{x})$ is constant per factor. Recall that Naive Bayes approximates $p(\mathbf{x} \mid c)$ with $\prod_{i=1}^p p(x_i \mid c)$.

ML:VII-121 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes [data exploitation examples] (continued)

(2)
$$\mathbf{w}_{\mathsf{ML}} = \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\mathsf{argmax}} \prod_{(\mathbf{x},c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$
 (logistic regression)

(4)
$$c_{\mathsf{MAP}} = \underset{c \in \{\oplus, \ominus\}}{\mathsf{argmax}} \quad \frac{p(\mathbf{x} \mid c) \cdot p(c)}{p(\mathbf{x})}$$
 (Bayes)

Observation 1. Both approaches maximize p(D)

- (2), the "ML principle", determines the parameters \mathbf{w} of the logistic model function such that $\prod_D p(c \mid \mathbf{x})$ becomes maximum. Note that a parameter vector \mathbf{w} that maximizes $\prod_D p(c \mid \mathbf{x})$ will also maximize $\prod_D p(\mathbf{x}, c)$, and thus p(D) (under the i.i.d. assumption).
- Quantum (4), the "Bayes method", determines for a given \mathbf{x} its most probable class. By choosing c_{MAP} for each \mathbf{x} , Bayes maximizes p(D) by maximizing each factor of $\prod_D p(c \mid \mathbf{x})$. Note that $p(\mathbf{x})$ is constant per factor. Recall that Naive Bayes approximates $p(\mathbf{x} \mid c)$ with $\prod_{i=1}^p p(x_i \mid c)$.

ML:VII-122 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes [data exploitation examples] (continued)

(2)
$$\mathbf{w}_{\mathsf{ML}} = \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\mathsf{argmax}} \prod_{(\mathbf{x},c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$
 (logistic regression)

(4)
$$c_{\mathsf{MAP}} = \operatorname*{argmax}_{c \in \{\oplus,\ominus\}} \ \frac{\prod_{j=1}^p p(x_j \mid c) \cdot p(c)}{p(\mathbf{x})}$$
 (Naive Bayes)

Observation 1. Both approaches maximize p(D)

- (2), the "ML principle", determines the parameters \mathbf{w} of the logistic model function such that $\prod_D p(c \mid \mathbf{x})$ becomes maximum. Note that a parameter vector \mathbf{w} that maximizes $\prod_D p(c \mid \mathbf{x})$ will also maximize $\prod_D p(\mathbf{x}, c)$, and thus p(D) (under the i.i.d. assumption).
- \Box (4), the "Bayes method", determines for a given \mathbf{x} its most probable class. By choosing c_{MAP} for each \mathbf{x} , Bayes maximizes p(D) by maximizing each factor of $\prod_D p(c \mid \mathbf{x})$. Note that $p(\mathbf{x})$ is constant per factor. Recall that Naive Bayes approximates $p(\mathbf{x} \mid c)$ with $\prod_{i=1}^p p(x_i \mid c)$.

ML:VII-123 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes [data exploitation examples] (continued)

(2)
$$\mathbf{w}_{\mathsf{ML}} = \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\mathsf{argmax}} \prod_{(\mathbf{x},c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$
 (logistic regression)

(4)
$$c_{\mathsf{MAP}} = \underset{c \in \{\oplus,\ominus\}}{\mathsf{argmax}} \quad \prod_{j=1}^p p(x_j \mid c) \cdot p(c)$$
 (Naive Bayes)

Observation 1. Both approaches maximize p(D):

- (2), the "ML principle", determines the parameters \mathbf{w} of the logistic model function such that $\prod_D p(c \mid \mathbf{x})$ becomes maximum. Note that a parameter vector \mathbf{w} that maximizes $\prod_D p(c \mid \mathbf{x})$ will also maximize $\prod_D p(\mathbf{x}, c)$, and thus p(D) (under the i.i.d. assumption).
- \Box (4), the "Bayes method", determines for a given \mathbf{x} its most probable class. By choosing c_{MAP} for each \mathbf{x} , Bayes maximizes p(D) by maximizing each factor of $\prod_D p(c \mid \mathbf{x})$. Note that $p(\mathbf{x})$ is constant per factor. Recall that Naive Bayes approximates $p(\mathbf{x} \mid c)$ with $\prod_{i=1}^p p(x_i \mid c)$.

ML:VII-124 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes [data exploitation examples] (continued)

(2)
$$\mathbf{w}_{\mathsf{ML}} = \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\mathsf{argmax}} \prod_{(\mathbf{x}, \mathbf{c}) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$
 (logistic regression)

(4)
$$c_{\mathsf{MAP}} = \underset{c \in \{\oplus,\ominus\}}{\mathsf{argmax}} \quad \prod_{j=1}^p p(x_j \mid c) \cdot p(c)$$
 (Naive Bayes)

Observation 1. Both approaches maximize p(D):

- \Box (2), the "ML principle", determines the parameters \mathbf{w} of the logistic model function such that $\prod_D p(c \mid \mathbf{x})$ becomes maximum. Note that a parameter vector \mathbf{w} that maximizes $\prod_D p(c \mid \mathbf{x})$ will also maximize $\prod_D p(\mathbf{x}, c)$, and thus p(D) (under the i.i.d. assumption).
- Use (4), the "Bayes method", determines for a given \mathbf{x} its most probable class. By choosing c_{MAP} for each \mathbf{x} , Bayes maximizes p(D) by maximizing each factor of $\prod_D p(c \mid \mathbf{x})$. Note that $p(\mathbf{x})$ is constant per factor. Recall that Naive Bayes approximates $p(\mathbf{x} \mid c)$ with $\prod_{j=1}^p p(x_j \mid c)$.

ML:VII-125 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes [data exploitation examples] (continued)

(2)
$$\mathbf{w}_{\mathsf{ML}} = \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\mathsf{argmax}} \prod_{(\mathbf{x}, c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$
 (logistic regression)

(4)
$$c_{\mathsf{MAP}} = \underset{c \in \{\oplus,\ominus\}}{\mathsf{argmax}} \quad \prod_{j=1}^p p(x_j \mid c) \cdot p(c)$$
 (Naive Bayes)

Observation 2 (corollary). Both approaches model the covariate distribution:

- \Box (2), the "ML principle", considers $p(\mathbf{x})$, the distribution of the independent variables \mathbf{x} , implicitly via the multiplicity of \mathbf{x} in the data D. Recall that D is a multiset of examples.
- (4), the "Bayes method", as a generative approach, models $p(\mathbf{x} \mid c)$ and p(c), and hence also $p(\mathbf{x}, c)$, $p(\mathbf{x})$, and $p(c \mid \mathbf{x})$. The likelihoods, $p(\mathbf{x} \mid c)$ (or $p(x_j \mid c)$ under Naive Bayes), are estimated from D; the priors, p(c), may be estimated by subjective assessments.

ML:VII-126 Bayesian Learning © STEIN/VÖLSKE 2022

Remarks:

- Both approaches maximize p(D) by maximizing $\prod_D p(c \mid \mathbf{x})$. Estimating $p(c \mid \mathbf{x})$ is usually significantly easier than estimating $p(\mathbf{x}, c)$.
- Naive Bayes models $p(\mathbf{x} \mid c)$ as $\prod_{j=1}^p p(x_j \mid c)$, where $p(x_j \mid c)$ is estimated as $\hat{p}(x_j \mid c)$, $\hat{p}(x_j \mid c) = |\{(\mathbf{x}, c) \in D : \mathbf{x}|_j = x_j\}| / |\{(\cdot, c) \in D\}|$. Similarly, p(c) can estimated as $\hat{p}(c)$, $\hat{p}(c) = |\{(\cdot, c) \in D\}|$; but, also a dedicated (and subjective) prior probability model can be stated.
 - $p(\mathbf{x})$ can be computed with the Law of Total Probability, $p(\mathbf{x}) = \sum_{c \in \{\oplus,\ominus\}} p(\mathbf{x} \mid c) \cdot p(c)$. Note, however, that $p(\mathbf{x})$ is not required to compute c_{MAP} for \mathbf{x} .
- If for the Bayes method—aside from the likelihoods $p(x_j \mid c)$ also the class priors, p(c), are computed from D, we follow the frequentist paradigm, similar to the ML principle. Only if the values for p(c) (= the prior probability model) rely on subjective assessments, the Bayes method can be considered as subjectivist.
- □ Whether to apply the ML principle or the Bayes method is not a free choice; it depends on
 - the availability of data D,
 - the conditional strengths of the likelihoods, $p(\mathbf{x} \mid c)$,
 - the reliability of the assessments for the prior probabilities, p(c), and,
 - whether or not subjective assessments shall be considered to estimate the priors p(c).

Synonymous: covariate, independent, predictor [variable / distribution].

ML:VII-127 Bayesian Learning © STEIN/VÖLSKE 2022

Remarks: (continued)

- Observe the subtle distinction between "Bayes rule" and "Bayes method" made here. With the former we refer to the identity that connects the posterior probability, $P(A \mid B)$, and the likelihood, $P(B \mid A)$ (the "reversal of condition and consequence"). With the latter we refer to the *parameter estimation principle* where the maximum a posteriori probability is determined.
- Note that a class-conditional event " $\mathbf{X}=\mathbf{x}\mid C=c$ " does not necessarily model a cause-effect relation: the event "C=c" may cause—but does not need to cause—the event " $\mathbf{X}=\mathbf{x}$ ". Examples:
 - A disease c will cause the symptoms \mathbf{x} (but not vice versa).
 - Weather conditions x will cause the decision "*EnjoySurfing*=yes" (but not vice versa).

Similarly, also if \mathbf{x} is the independent variable of a function $y(\mathbf{x})$ that maps features to classes c, the cause-effect direction is not necessarily $\mathbf{x} \to c$, but can also be the other way around: Consider $y(\mathbf{x}) = c$ with "disease c" \to "symptoms \mathbf{x} ".

ML:VII-128 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes: Example

A multiset of examples *D*:

	URLs	Spelling errors	Spam
1	5	3	yes
2	4	1	no
3	4	3	yes
÷	:	÷	:
10	1	0	no
11	1	0	yes
÷	÷	:	:
15	1	4	no
16	1	4	yes
÷	:	:	:
20	0	4	no

Learning task:

 \Box Fit *D* to compute a classifier for feature vectors \mathbf{x} , $\mathbf{x} \notin D$.

ML:VII-129 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes: Example (continued)

A multiset of examples *D*:

	URLs	Spelling errors	Spam
1	5	3	yes
2	4	1	no
3	4	3	yes
÷	:	:	:
10	1	0	no
11	1	0	yes
:	:	:	:
15	1	4	no
16	1	4	yes
:	:	:	:
20	0	4	no

Learning task:

 \Box Fit D to compute a classifier for feature vectors \mathbf{x} , $\mathbf{x} \notin D$.

ML:VII-130 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes: Example (continued)

A multiset of examples *D*:

URLs	Spelling errors	Spam
5	3	yes
4	1	no
4	3	yes
:	:	:
1	0	no
1	0	yes
:	:	:
1	4	no
1	4	yes
:	:	:
0	4	no
	5 4 4 : 1 1 :	5 3 4 1 4 3 1 0 1 0 1 4 1 4

Learning task:

 \Box Fit *D* to compute a classifier for feature vectors \mathbf{x} , $\mathbf{x} \notin D$.

ML:VII-131 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes: Conditional Class Probabilities

Logistic regression:

 \Box Distribution of D.

ML:VII-132 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes: Conditional Class Probabilities (continued)

Logistic regression:

 \Box Hyperplane $\langle \mathbf{w}_{\mathsf{ML}}, \mathbf{x} \rangle = 0$.

ML:VII-133 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes: Conditional Class Probabilities (continued)

Logistic regression:

 $exttt{ o}$ Conditional class probabilities computed with w_{ML} , the ML estimate for w given D.

ML:VII-134 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes: Conditional Class Probabilities (continued)

Logistic regression:

Training error.

ML:VII-135 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes: Conditional Class Probabilities (continued)

Logistic regression:

Training error.

Naive Bayes:

 \Box Distribution of D.

ML:VII-136 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes: Conditional Class Probabilities (continued)

Logistic regression:

Training error.

Naive Bayes:

 \Box Conditional class probabilities computed for the respective MAP class, using p(c) estimates from D.

ML:VII-137 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes: Conditional Class Probabilities (continued)

Logistic regression:

Training error.

Naive Bayes:

Training error.

ML:VII-138 Bayesian Learning © STEIN/VÖLSKE 2022

Logistic Regression versus Naive Bayes: Conditional Class Probabilities (continued)

Logistic regression:

- Computation of a hyperplane.
- Approach: minimization of accumulated "misclassification distances" for examples in D.
- Discriminative and probabilistic.

Naive Bayes:

- Computation of a probability distribution.
- □ Basis: class-conditional feature and class frequencies in D.
- Generative (implies probabilistic).

ML:VII-139 Bayesian Learning © STEIN/VÖLSKE 2022

Remarks:

- Both approaches, logistic regression and Naive Bayes, estimate the conditional class probability function, $p(\text{Spam} \mid \mathbf{x})$ or $p(\text{Ham} \mid \mathbf{x}) = 1 p(\text{Spam} \mid \mathbf{x})$. However, the two estimation approaches follow very different concepts.
- Generalization characteristic:
 - The conditional class probability function as computed via logistic regression decides not only the feature space $\{0, 1, 2, 3, 4, 5\}^2$ but the entire \mathbf{R}^2 . (Whether that makes sense is another matter.)
 - The conditional class probability function as computed via Naive Bayes provides class probability estimates for $\mathbf{x} \in \{0,1,2,3,4,5\}^2$. The probabilities are estimated from the class-conditional feature frequencies (likelihood estimates) and class frequencies, $\hat{p}(x_1 \mid c)$, $\hat{p}(x_2 \mid c)$, and $\hat{p}(c)$, as found in D. Note that a vector $\mathbf{x} = (x_1, x_2)^T$ gets the probability of zero for class c, if x_1 or x_2 does not occur in some feature vector with class label c in D.
- □ Handling of class imbalance and covariate distribution:
 - Logistic regression considers the p(c) and the $p(\mathbf{x})$ implicitly via their multiplicity in D. I.e., the learned parameter vector \mathbf{w} has the class imbalance as well as the covariate distribution "compiled in".
 - Naive Bayes, again, estimates the p(c) and the $p(\mathbf{x})$ from the frequencies in D. More specifically, $p(\mathbf{x})$ can be estimated from $\hat{p}(x_1 \mid c)$, $\hat{p}(x_2 \mid c)$, and $\hat{p}(c)$ with the Law of Total Probability. Note that the computation of $p(\mathbf{x})$ is not necessary for a ranking (= classification without class membership probability).

ML:VII-140 Bayesian Learning © STEIN/VÖLSKE 2022

Naive Bayes: Smoothing and Continuous Likelihoods

 \sim BOARD

ML:VII-141 Bayesian Learning © STEIN/VÖLSKE 2022

Naive Bayes: Prior Probability Models

Comparison of the conditional class probability function, $p(c \mid \mathbf{x})$, under Naive Bayes for three different prior probability models (= assessments of class priors), p(c).

p(c) estimates from D

$$P_a(\mathbf{C} = \mathbf{Spam}) = \hat{p}(\mathbf{Spam}) = 0.45$$

$$P_a(\mathbf{C} = \mathsf{Ham}) = \hat{p}(\mathsf{Ham}) = 0.55$$

Subjective assessments for p(c)

$$P_b(C = \text{Spam}) = 0.6$$

$$P_b(C=Ham) = 0.4$$

$$P_c(C=Spam) = 0.8$$

$$P_c(C=Ham) = 0.2$$

Classification: Bayes Optimum versus MAP versus Ensemble

 $\sim \mathcal{BOARD}$

ML:VII-143 Bayesian Learning ©STEIN/VÖLSKE 2022

Advanced Bayesian Decision Making

Recall the Bayes rule,

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)},$$

with A and B in the role of a "hypothesis event", H=h, and a "data event", $\mathbf{D}=D$,

$$P(H=h \mid \mathbf{D}=D) = \frac{P(\mathbf{D}=D \mid H=h) \cdot P(H=h)}{P(\mathbf{D}=D)}$$

ML:VII-144 Bayesian Learning © STEIN/VÖLSKE 2022

Advanced Bayesian Decision Making (continued)

Recall the Bayes rule,

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)},$$

with A and B in the role of a "hypothesis event", H=h, and a "data event", D=D,

$$P(H=h \mid \mathbf{D}=D) = \frac{P(\mathbf{D}=D \mid H=h) \cdot P(H=h)}{P(\mathbf{D}=D)}$$

$$p(h \mid D) = \frac{p(D \mid h) \cdot p(h)}{p(D)}$$

- \square Likelihood: How well does h explain (= entail, induce, evoke) the data D?
- \square Prior: How probable is the hypothesis h a priori (= in principle)?
- \square Normalization: How probable is the observation of the data D?
- \Box Posterior: How probable is the hypothesis h when observing the data D?

Advanced Bayesian Decision Making (continued)

Recall the Bayes rule,

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)},$$

with A and B in the role of a "hypothesis event", H=h, and a "data event", D=D,

$$P(H=h \mid \mathbf{D}=D) = \frac{P(\mathbf{D}=D \mid H=h) \cdot P(H=h)}{P(\mathbf{D}=D)}$$

$$p(h \mid D) = \frac{p(D \mid h) \cdot p(h)}{p(D)}$$

- \Box Likelihood: How well does h explain (= entail, induce, evoke) the data D?
- \Box Prior: How probable is the hypothesis h a priori (= in principle)?
- \square Normalization: How probable is the observation of the data D?
- $lue{}$ Posterior: How probable is the hypothesis h when observing the data D?

Advanced Bayesian Decision Making (continued)

Recall the Bayes rule,

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)},$$

with A and B in the role of a "hypothesis event", H=h, and a "data event", D=D,

$$P(H=h \mid \mathbf{D}=D) = \frac{P(\mathbf{D}=D \mid H=h) \cdot P(H=h)}{P(\mathbf{D}=D)}$$

$$p(h \mid D) = \frac{p(D \mid h) \cdot p(h)}{p(D)}$$

- \square Likelihood: How well does h explain (= entail, induce, evoke) the data D?
- \square Prior: How probable is the hypothesis h a priori (= in principle)?
- \square Normalization: How probable is the observation of the data D?
- \square Posterior: How probable is the hypothesis h when observing the data D'

Advanced Bayesian Decision Making (continued)

Recall the Bayes rule,

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)},$$

with A and B in the role of a "hypothesis event", H=h, and a "data event", D=D,

$$P(H=h \mid \mathbf{D}=D) = \frac{P(\mathbf{D}=D \mid H=h) \cdot P(H=h)}{P(\mathbf{D}=D)}$$

$$p(h \mid D) = \frac{p(D \mid h) \cdot p(h)}{p(D)}$$

- \square Likelihood: How well does h explain (= entail, induce, evoke) the data D?
- \square Prior: How probable is the hypothesis h a priori (= in principle)?
- \square Normalization: How probable is the observation of the data D?
- \Box Posterior: How probable is the hypothesis h when observing the data D?

Remarks:

- When using the Bayes method for a predictor-response setting, then p(D), $p(D) := P(\mathbf{D} = D)$, is the probability of the data $D = \mathbf{x}$. I.e., \mathbf{D} is a random vector whose domain is the feature space \mathbf{X} .
- When using the Bayes method for an outcome-only setting, then p(D), $p(D) := P(\mathbf{D} = D)$, is the probability of the data $D = \{y_1, \dots, y_n\}$ or $D = \{c_1, \dots, c_n\}$. I.e., \mathbf{D} is a random vector whose domain is \mathbf{R}^n or C^n , where C is the set of possible classes or class labels.
- p(h) := P(H=h) (also $p(\mathbf{w})$, $p(\theta)$, or similar) is the probability of choosing a certain h, a parameter vector \mathbf{w} , or some model function as hypothesis. I.e., H is a random variable whose domain is the set H of possible hypotheses.
- \square Recall that p() is defined via P() and that the two notations can be used interchangeably, arguing about realizations of random variables and events respectively.

ML:VII-149 Bayesian Learning © STEIN/VÖLSKE 2022