

(19) BUNDESREPUBLIK

DEUTSCHLAND

₍₀₎ DE 43 17 655 A 1

DEUTSCHES PATENTAMT

- (21) Aktenzeichen:
- P 43 17 655.0

® Offenlegungsschrift

- Anmeldetag:
- 27. 5.93
- (3) Offenlegungstag:
- 1, 12, 94

(51) Int. Cl.⁵:

C 08 F 297/08

C 08 F 210/06 C 08 F 4/642 C 08 F 4/68 C 08 F 4/646 C 08 F 2/34

C 08 L 53/00 C 08 L 23/14 D 01 F 6/30 // C08F 4/58,4/02, C08J 5/00,5/18,B29C 47/14,51/08 (B65D 1/10,B29K

25:00)B29L7:00, 31:00

(71) Anmelder:

BASF AG, 67083 Ludwigshafen, DE

(72) Erfinder:

Langhauser, Franz, Dr., 6704 Mutterstadt, DE; Kerth, Jürgen, Dr., 6719 Carlsberg, DE; Müller, Patrick, Dr., 6750 Kaiserslautern, DE; Kersting, Meinolf, Dr., 6702 Bad Dürkheim, DE; Schweier, Günther, Dr., 6701 Friedelsheim, DE

(54) Mehrphasige Blockcopolymerisate des Propylens

Mehrphasige Blockcopolymerisate des Propylens, aus a) einem Polymerisat des Propylens mit 0 bis 5 Gew.-% weiterer C₂-C₁₀-Alk-1-ene, b) einem Copolymerisat des Propylens mit 5 bis 98 Gew.-% weiterer C₂-C₁₀-Alk-1-ene, wobei die mehrphasigen Blockcopolymerisate einen Schmelzpunkt von weniger als 155°C aufweisen und eine Steifigkeit (G-Modul) besitzen, die der folgenden Bedingung

$$G-Modul > 800 \cdot \frac{M_{a}}{M_{a}}$$
 (1)

worin $M_{a)}$ für die Menge des Propylenpolymerisats a) und M_{co} für die Menge des mehrphasigen Blockcopolymerisats steht.

Die mehrphasigen Blockcopolymerisate sind insbesondere erhältlich durch Polymerisation mit Hilfe von metallocenhaltigen Katalysatorsystemen.

Beschreibung

Die vorliegende Erfindung betrifft mehrphasige Blockcopolymerisate des Propylens, aus

a) einem Polymerisat des Propylens mit 0 bis 5 Gew.-% weiterer $C_2 - C_{10}$ -Alk-1-ene, b) einem Copolymerisat des Propylens mit 5 bis 98 Gew.-% weiterer $C_2 - C_{10}$ -Alk-1-ene,

wobei die mehrphasigen Blockcopolymerisate einen Schmelzpunkt von weniger als 155°C aufweisen und eine Steifigkeit (G-Modul) besitzen, die der folgenden Bedingung (I) gehorcht:

G-Modul > 800 .
$$\frac{M_a}{M_{co}}$$
 (I)

10

worin M_a) für die Menge des Propylenpolymerisats a) und M_{co} für die Menge des mehrphasigen Blockcopolymerisats steht.

Weiterhin betrifft die Erfindung die Verwendung der so erhaltenen mehrphasigen Blockcopolymerisate zur Herstellung von Fasern, Folien und Formkörpern sowie die hierbei erhältlichen Fasern, Folien und Formkörper aus den so erhaltenen mehrphasigen Blockcopolymerisaten als wesentliche Komponente.

Mehrphasige Blockcopolymerisate finden aufgrund ihres Eigenschaftsprofils in weiten Bereichen Verwendung, beispielsweise im Fahrzeugbau, bei der Herstellung schlagzähmodifizierter Gebrauchsgegenstände wie Hartschalenkoffer oder Kunststoffvorratsgefäßen sowie zur Herstellung von Bürofolien.

Aus der DE-A 38 27 565 und der DE-A 40 01 157 sind Copolymerisate auf der Basis von Propylen und Ethylen bekannt, die mit Titan-Trägerkatalysatoren hergestellt werden. Diese Copolymerisate weisen jedoch eine breite Molekulargewichtsverteilung auf, die aus verarbeitungstechnischen Gründen unerwünscht ist. Weiterhin zeichnen sich die aus diesen Offenlegungsschriften bekannten Copolymerisate insbesondere dann durch nicht mehr voll befriedigende mechanische Eigenschaften aus, wenn ihre Schmelzpunkte deutlich verringert sind.

Die EP-A 433 990 beschreibt ein Verfahren zur Herstellung von Blockcopolymerisaten des Propylens, wobei zur Polymerisation ein Metallocenkatalysator verwendet wurde und in der ersten Stufe des zweistufigen Verfahrens ein kristallines Propylenpolymer in flüssigem Monomeren hergestellt wurde. Die darin beschriebenen Blockcopolymerisate weisen insbesondere eine gute Tieftemperaturschlagzähigkeit auf.

Aus der DE-A 41 30 429 ist ein Verfahren zur Herstellung von mehrphasigen Blockcopolymerisaten des Propylens mit Hilfe von Metallocenkatalysatorsystemen bekannt, welches zu Blockcopolymerisaten mit befriedigenden mechanischen Eigenschaften führt. Für einige Anwendungsbereiche ist jedoch die mechanische Formbeständigkeit der bisher bekannten Copolymerisate des Propylens nicht immer ausreichend hoch. Dies ist insbesondere dann der Fall, wenn derartige Copolymerisate einen niedrigen Schmelzpunkt aufweisen, wodurch sie leichter verarbeitbar sind.

Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, den geschilderten Nachteilen abzuhelfen und neue Copolymerisate des Propylens zu entwickeln, die sich u. a. durch eine hohe mechanische Formbeständigkeit bei gleichzeitig leichter Verarbeitbarkeit auszeichnen.

Demgemäß wurden die eingangs definierten mehrphasigen Blockcopolymerisate des Propylens gefunden.

Diese bestehen aus einem Polymerisat des Propylens a) mit 0 bis 5 Gew.-%, insbesondere mit 0 bis 3 Gew.-% weiterer C_2-C_{10} -Alk-1-ene und aus einem Copolymerisat des Propylens b) mit 5 bis 98 Gew.-%, insbesondere mit 10 bis 96 Gew.-% weiterer C_2-C_{10} -Alk-1-ene. Besonders bevorzugte Blockcopolymerisate des Propylens enthalten als Polymerisat a) ein Propylenhomopolymerisat und als Copolymerisat b) ein Copolymerisat des Propylens mit 15 bis 95 Gew.-% weiterer C_2-C_{10} -Alk-1-ene. Unter der Bezeichnung C_2-C_{10} -Alk-1-ene sollen dabei insbesondere C_2-C_3 -Alk-1-ene wie beispielsweise Ethylen, But-1-en, Pent-1-en, Hex-1-en, Hept-1-en oder Oct-1-en sowie Gemische aus mehreren dieser Alk-1-ene verstanden werden. Bevorzugte C_2-C_{10} -Alk-1-ene sind Ethylen und But-1-en sowie Gemische aus beiden Alk-1-enen.

Gegebenenfalls können die erfindungsgemäßen Blockcopolymerisate auch aus zwei oder mehreren voneinander verschiedenen Copolymerisaten des Propylens b) bestehen, wobei sich diese sowohl in bezug auf den Gehalt des einpolymerisierten C_2-C_{10} -Alk-1-ens als auch in bezug auf die Art des einpolymerisierten C_2-C_{10} -Alk-1-ens unterscheiden können. Bevorzugt sind jedoch zweiphasige Blockcopolymerisate mit einem Copolymerisat b).

Die erfindungsgemäßen mehrphasigen Blockcopolymerisate weisen einen Schmelzflußindex von 0,1 bis 100 g/10 min, insbesondere von 0,5 bis 50 g/10 min, bei 230°C und unter einem Gewicht von 2,16 kg auf. Der Schmelzflußindex entspricht dabei derjenigen Menge an Polymerisat in Gramm, die innerhalb von 10 Minuten aus der nach DIN 53 735 genormten Prüfvorrichtung bei einer Temperatur von 230°C und unter einem Gewicht von 2,16 kg ausgepreßt wird.

Vorzugsweise bestehen die erfindungsgemäßen mehrphasigen Blockcopolymerisate aus 20 bis 98 Gew.-%, insbesondere aus 50 bis 90 Gew.-% des Polymerisats a) und aus 2 bis 80 Gew.-%, insbesondere aus 10 bis 50 Gew.-% des oder der Copolymerisate b).

Die erfindungsgemäßen mehrphasigen Blockcopolymerisate des Propylens sind weiterhin charakterisiert durch einen Schmelzpunkt von weniger als 155°C, insbesondere von weniger als 150°C und eine Steifigkeit (G-Modul), welche der folgenden Bedingung (I) gehorcht:

G-Modul > 800
$$\cdot \frac{M_{a}}{M_{co}}$$
 (I)

wobei M_a) für die Menge des Propylenpolymerisats a) und M_{co} für die Menge des mehrphasigen Blockcopolymerisats steht. Die Bezeichnung Menge bezieht sich dabei auf die Gewichtsmenge des Polymerisats a) bzw. des Blockcopolymerisats. Unter der Bezeichnung mehrphasiges Blockcopolymerisat soll dabei das Gesamtpolymerisat bestehend aus dem Propylenpolymerisat a) und dem Copolymerisat b) verstanden werden.

Der Schmelzpunkt des mehrphasigen Blockcopolymerisate wird dabei mittels Differential Scanning Calorimetry (DSC) bestimmt, die Steifigkeit nach DIN 53 455. Die hierbei angewandten Prüfungsverfahren sind dem durchschnittlichen Fachmann geläufig.

Die erfindungsgemäßen mehrphasigen Blockcopolymerisate des Propylens können unter Umständen neben üblichen Additiven noch pro 100 Gew.-Teile des mehrphasigen Blockcopolymerisats 0,01 bis 5 Gew.-Teile, insbesondere 0,05 bis 2 Gew.-Teile eines Nukleierungsmittels enthalten. Übliche Nukleierungsmittel sind dabei u. a. mineralische Zusatzstoffe wie Talkum, Kieselsäure oder Kaolin, organische Verbindungen wie Mono- und Polycarbonsäuren sowie deren Salze, Polymerisate wie Ethylen-Acrylester-Copolymerisate, ferner Salze von Diestern der Phosphorsäure. Als besonders bevorzugtes Nukleierungsmittel wird Dibenzylidensorbitol oder eines seiner C₁—C₈-alkylsubstituierten Derivate verwendet. Die Nukleierungsmittel werden den erfindungsgemäßen mehrphasigen Blockcopolymerisaten in üblichen Mischvorrichtungen, beispielsweise in Trommelmischern, Mühlen, Extrudern, Walzwerken oder Knetern beigemengt.

Die erfindungsgemäßen mehrphasigen Blockcopolymerisate sind erhältlich durch mehrstufige Polymerisation, wobei man bevorzugt zunächst in einer ersten Polymerisationsstufe bei Temperaturen im Bereich von 0 bis 100° C und Drücken im Bereich von 1 bis 300 bar Propylen, gegebenenfalls in Anwesenheit weiterer C_2-C_{10} -Alk-1-ene, polymerisiert und dem daraus erhältlichen Polymerisat a) anschließend in einer zweiten Polymerisationsstufe bei Temperaturen im Bereich von 0 bis 100° C und Drücken von 1 bis 300 bar ein Gemisch aus Propylen und weiteren C_2-C_{10} -Alk-1-enen hinzupolymerisiert. Besonders bevorzugte Polymerisationsbedingungen sind dabei in beiden Polymerisationsstufen Temperaturen im Bereich von 20 bis 100° C und Drücke im Bereich von 5 bis 150 bar.

Die Polymerisation kann in Lösung, in Emulsion, in Suspension, in Masse oder in der Gasphase durchgeführt werden. Besonders bevorzugt ist die Gasphasenpolymerisation, insbesondere bei Temperaturen im Bereich von 30 bis 100°C, bevorzugt 50 bis 90°C, und Drücken im Bereich von 5 bis 40 bar, bevorzugt 15 bis 35 bar.

Die zur Herstellung der erfindungsgemäßen mehrphasigen Blockcopolymerisate eingesetzten Katalysatorsysteme enthalten als aktive Bestandteile u. a. Metallocenkomplexe von Metallen der IV. und V. Nebengruppe des Periodensystems, insbesondere von Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal. Vorzugsweise werden dabei solche Komplexverbindungen verwendet, bei denen das Metallatom über π -Bindungen mit ungesättigten cyclischen Kohlenwasserstoffresten verbunden ist, beispielsweise Cyclopentadienyl-, Fluorenyl- oder Indenylgruppen. Weiterhin sind die bevorzugt eingesetzten Komplexverbindungen, dadurch gekennzeichnet, daß das Metallatom noch mit weiteren Liganden, insbesondere mit Fluor, Chlor, Brom und Iod oder einem C₁-bis C₁₀-Alkyl, beispielsweise einer Methyl-, Ethyl-, Propyl- oder Butylgruppe, verknüpft sein kann.

Besonders geeignete Metallocenkornplexe lassen sich durch folgende allgemeine Formel II kennzeichnen:

$$R^3$$
 R^2
 R^1
 R^4
 R^4
 R^5
 R^9
 R^6
 R^6
 R^7

in der die Substituenten folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal,

X Fluor, Chlor, Brom, Iod, Wasserstoff, C1- bis C10-Alkyl, C6- bis C15-Aryl oder - OR5,

wobei R⁵ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest bedeutet,

 R^1 bis R^4 und R^6 bis R^9 Wasserstoff, C_1 bis C_{10} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits C_1 - bis C_{10} -Alkyle als Substituenten tragen kann, C_6 - bis C_{15} -Aryl oder Arylalkyl, wobei gegebenenfalls auch zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische gesättigte, teilweise gesättigte oder ungesättigte Gruppen stehen können, oder $Si(R^{10})_3$ mit

R10 C1- bis C10-Alkyl, C6- bis C15-Aryl oder C3- bis C10-Cycloalkyl,

Y für

43 17 655

steht,

5

wobei Z Silicium, Germanium, Zinn oder Kohlenstoff bedeutet,

R¹¹,R¹²,R¹³,R¹⁴ Wasserstoff, C₁- bis C₁₀-Alkyl, C₃- bis C₁₀-Cycloalkyl oder C₆- bis C₁₅-Aryl, wobei gegebenenfalls auch zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können.

Von den Verbindungen der Formel II sind die jenigen besonders geeignet, in denen R1 und R6 gleich sind und für Wasserstoff oder C1- bis C10-Alkylgruppen stehen,

R4 und R9 gleich sind und für Wasserstoff, eine Methyl-, Ethyl-, iso-Propyl- oder tert-Butylgruppe stehen, R², R³, R⁷ und R⁸ die Bedeutung R³ und R⁸ C₁ bis C₄-Alkyl R² und R⁷ Wasserstoff haben oder zwei benachbarte Reste R² und R³ sowie R⁷ und R⁸ gemeinsam für 4 bis 12 C-Atome aufweisende cyclische Gruppen stehen, R11, R12 R13 und R14 für Wasserstoff oder C1- bis C8-Alkyl,

M für Zirkonium oder Hafnium und

X für Chlor stehen.

Beispiele für besonders geeignete Komplexverbindungen sind u. a.

Dimethylsilandiylbis(cyclopentadienyl)-zirkoniumdichlorid,

Dimethylsilandiylbis(indenyl)-zirkoniumdichlorid,

Dimethylsilandiylbis(tetrahydroindenyl)-zirkoniumdichlorid,

Ethylenbis(cyclopentadienyl)-zirkoniumdichlorid,

Ethylenbis(inde nyl)-zirkoniumdichlorid,

Ethylenbis(tetrahydroindenyl)zirkoniumdichlorid,

Ethylenbis(-2-methylindenyl)-zirkoniumdichlorid,

Ethylenbis(-2-methylindenyl)-hafniumdichlorid,

Ethylenbis(-2-methylbenzindenyl)-zirkoniumdichlorid,

Ethylenbis(-2-me thylbenzindenyl)-hafniumdichlorid,

Dimethylmethylen-9-fluorenylcyclopentadienyl-zirkoniumdichlorid,

Dimethylsilandiylbis(-3-tert.butyl-5-methylcyclopentadienyl)zirkoniumdichlorid,

Dimethylsilandiylbis(-3-tert.butyl-5-ethylcyclopentadienyl) zirkoniumdichlorid,

Dimethylsilandiylbis(-3-tert.butyl-5-methylcyclopentadienyl)dimethylzirkonium,

Dimethylsilandiylbis(-2-methylindenyl)-zirkoniumdichlorid,

Dimethylsilandiylbis(-2-isopropylindenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(-2-tert.-butylindenyl)-zirkoniumdichlorid,

Diethylsilandiylbis(-2-methylindenyl)-zirkoniumdibromid,

Dimethylsilandiylbis(-2-methyl-5-methylcyclopentadienyl)zirkoniumdichlorid,

Dimethylsilandiylbis(-2-ethyl-5-isopropylcyclopentadienyl)zirkoniumdichlorid,

Dimethylsilandiylbis(-2-methylbenzindenyl)-zirkoniumdichlorid, und Dimethylsilandiylbis(-2-methylindenyl)-hafniumdichlorid.

Die Synthese derartiger Komplexverbindungen kann nach an sich bekannten Methoden erfolgen, wobei die Umsetzung der entsprechend substituierten, cyclischen Kohlenwasserstoffanionen mit Halogeniden von Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal, bevorzugt ist. Beispiele für entsprechende Herstellungsverfahren sind u. a. im Journal of Organometallic Chemistry, 369 (1989), 359-370 beschrieben.

Die Metallocenkomplexe können auch in kationischer Form vorliegen, wie in der EP-A 277 003 und der

EP-A 277 004 beschrieben wird.

Neben den Metallocenkomplexen enthalten die zur Herstellung der erfindungsgemäßen Blockcopolymerisate eingesetzten Katalysatorsysteme noch oligomere Aluminiumoxidverbindungen. Geeignet sind beispielsweise offenkettige oder cyclische Alumoxanverbindungen der allgemeinen Formeln III oder IV

wobei R¹⁵ eine C₁- bis C₄-Alkylgruppe, bevorzugt Methyl- oder Ethylgruppe bedeutet und m für eine ganze Zahl von 5 bis 30, bevorzugt 10 bis 25, steht.

Die Herstellung dieser oligomeren Alumoxanverbindungen erfolgt üblicherweise durch Umsetzung einer Lösung von Trialkylaluminium mit Wasser und ist u. a. in der EP-A 284 708 und der US-A 4 794 096 beschrieben.

In der Regel liegen die dabei erhaltenen oligomeren Alumoxanverbindungen als Gemische unterschiedlich langer, sowohl linear als auch cyclischer Kettenmoleküle vor, so daß m als Mittelwert anzusehen ist. Die Alumoxanverbindungen können auch im Gemisch mit anderen Metallalkylen, bevorzugt mit Aluminiumalkylen, vorliegen.

Es hat sich als vorteilhaft erwiesen, die Komplexverbindung von Metallen der IV. und V. Nebengruppe des Periodensystems und die oligomere Alumoxanverbindung in solchen Mengen zu verwenden, daß das atomare Verhältnis zwischen Aluminium aus der oligomeren Alumoxanverbindung und dem Übergangsmetall aus der Komplexverbindung von Metallen der IV. und V. Nebengruppe des Periodensystems im Bereich von 10:1 bis 106:1, insbesondere im Bereich von 10:1 bis 106:1, liegt.

Als Lösungsmittel für diese Katalysatorsysteme werden übliche aromatische Kohlenwasserstoffe eingesetzt, bevorzugt mit 6 bis 20 C-Atomen, insbesondere Xylole und Toluol sowie deren Mischungen.

Bei der Herstellung der erfindungsgemäßen mehrphasigen Blockcopolymerisate des Propylens hat es sich als vorteilhaft erwiesen, wenn ein geträgertes Katalysatorsystem eingesetzt wird. Geeignete Trägermaterialien sind beispielsweise Kieselgele, bevorzugt solche der Formel SiO₂·a Al₂O₃, worin a für eine Zahl im Bereich von 0 bis 2 steht, vorzugsweise 0 bis 0,5; dies sind im wesentlichen Alumosilikate oder Siliciumdioxid. Vorzugsweise weisen die Träger einen Teilchendurchmesser im Bereich von 1 bis 200 μm auf, insbesondere von 30 bis 80 μm. Derartige Produkte sind im Handel erhältlich, z. B. Silica Gel 332 der Fa. Grace.

Bei einem besonders bevorzugten Verfahren zur Herstellung der erfindungsgemäßen mehrphasigen Blockcopolymerisate des Propylens stellt man zuerst das Trägermaterial für den Katalysator her, dann erfolgt die Herstellung des geträgerten Katalysatorkomplexes und anschließend die Polymerisation.

Bei der Herstellung des Trägermaterials hat es sich als vorteilhaft erwiesen, die feuchten Kieselgele in Kohlenwasserstoffen, vorzugsweise in Heptan, zu suspendieren und mit Trialkylaluminium, vorzugsweise mit Triethylaluminium, zu versetzen, zu filtrieren und zu trocknen.

Zur Herstellung des geträgerten Katalysatorkomplexes geht man vorzugsweise so vor, daß man den Metallocenkomplex der allgemeinen Formel II mit Lösungsmittel versetzt, insbesondere mit Toluol, und hierzu eine Lösung von oligomeren Alumoxanverbindungen der allgemeinen Formeln III oder IV gibt, vorzugsweise Methylalumoxan, wobei als Lösungsmittel insbesondere dasjenige verwendet wird, welches auch beim Metallocenkomplex eingesetzt wurde, also bevorzugt Toluol. Anschließend wird das Trägermaterial zugegeben, wobei das Gewichtsverhältnis von Katalysator zu Trägermaterial 10:1 bis 1000:1 ausmacht, bevorzugt 100:1 bis 500:1. Anschließend wird das Lösungsmittel entfernt und man erhält ein Katalysatorpulver.

Die eigentliche Polymerisation wird in der ersten Stufe bevorzugt in der Gasphase durchgeführt, wobei man üblicherweise in einem Autoklaven Polypropylengrieß vorlegt und mit Trialkylaluminium, vorzugsweise Triethylaluminium, welches als Cokatalysator dient, versetzt. Das Gewichtsverhältnis von Polypropylengrieß zu Trialkylaluminium beträgt i.a. 10:1 bis $10\,000:1$, bevorzugt 20:1 bis 200:1. Anschließend gibt man $30\,$ Gew.-%, bezogen auf die Menge an Trialkylaluminium, an Trägerkatalysator zu, heizt auf Temperaturen bis 100° C, bevorzugt 70° C, auf und erhöht den Innendruck durch Propylenzufuhr bis auf $50\,$ bar, vorzugsweise auf $28\,$ bar. Danach erfolgt die eigentliche Polymerisation, wobei verbrauchtes Propylen kontinuierlich durch neues Propylen ersetzt wird. Für den Fall, daß das in der ersten Polymerisationsstufe erhaltene Polymerisat a) noch weitere C_2-C_{10} -Alk-1-ene enthält, wird entsprechend kontinuierlich ein Gemisch aus Propylen und einem oder mehreren weiteren C_2-C_{10} -Alk-1-enen hinzugefügt, wobei das Partialdruckverhältnis zwischen Propylen und den weiteren C_2-C_{10} -Alk-1-enen bei 10:1 bis $10\,000:1$, bevorzugt bei 20:1 bis $10\,000:1$ bis $10\,000:1$ bevorzugt bei 10:1 bis $10\,000:1$ bevor

In Anwesenheit des in der ersten Polymerisationsstufe verwendeten Metallocenkatalysators erfolgt danach in der zweiten Polymerisationsstufe die Herstellung des Copolymerisats b), üblicherweise in Gegenwart des Polymerisats a). Dazu wird vorzugsweise das Polymerisat a) zusammen mit dem Metallocenkatalysatorsystem aus der ersten Polymerisationsstufe ausgetragen und in die zweite Polymerisationsstufe übergeführt, wo ein Gemisch aus Propylen und einem oder mehreren C_2-C_{10} -Alk-1-enen hinzupolymerisiert wird. Dabei kann es sich empfehlen, weitere Metallocenkatalysatoren der allgemeinen Formel II sowie gegebenenfalls auch Alumoxanverbindungen der allgemeinen Formeln III oder IV hinzuzufügen. Hierbei arbeitet man üblicherweise bei einem Druck von 5 bis 40 bar, insbesondere von 10 bis 40 bar, sowie einer Temperatur von 30 bis 80°C, insbesondere von 40 bis 75°C, wobei die verbrauchten Comonomere kontinuierlich durch neue Comonomere ersetzt werden. Dabei ist vorzugsweise ein Partialdruckverhältnis zwischen Propylen und dem oder den weiteren C_2-C_{10} -Alk-1-enen von 0,01 : 1 bis 100 : 1, insbesondere von 0,05 bis 20 : 1 einzustellen. Durch Veränderung des Partialdruckverhältnisses sowie durch Hinzufügen eines anderen C_2-C_{10} -Alk-1-ens können in der zweiten Polymerisationsstufe unter Umständen auch zwei oder mehrere verschiedene Copolymerisate b) hergestellt werden. Nach beendeter Polymerisation wird der Autoklav entspannt.

Neben einem Autoklaven kann das zu den erfindungsgemäßen mehrphasigen Blockcopolymerisaten führende Verfahren auch in anderen üblichen Reaktoren durchgeführt werden, beispielsweise in einer Reaktorkaskade. Das Verfahren kann sowohl kontinuierlich, halbkontinuierlich als auch diskontinuierlich ausgeführt werden.

Das Molekulargewicht der dabei erhältlichen Polymerisate kann wie üblich durch Zugabe von Reglern, insbesondere von Wasserstoff kontrolliert werden. Weiterhin ist es möglich, Inertgase wie Stickstoff oder Argon mitzuverwenden.

Die erfindungsgemäßen mehrphasigen Blockcopolymerisate des Propylens weisen einen abgesenkten Schmelzpunkt, eine enge Molmassenverteilung $\overline{Mw/Mn}$ (Verhältnis Gewichtsmittel der Molmasse — \overline{Mw} — zum Zahlenmittel der Molmasse — \overline{Mn} —) sowie eine hohe mechanische Formbeständigkeit auf, was insbeson-

dere in Form von hohen Steifigkeitswerten zum Ausdruck kommt. Die erfindungsgemäßen Blockcopolymerisate lassen sich gut verarbeiten, sind in vielen Bereichen anwendbar und eignen sich insbesondere zur Herstellung von Folien, Fasern und Formkörpern.

Beispiele

Beispiel 1

a) Herstellung des Trägermaterials

Zu einer Suspension von 20,2 g Kieselgel (Fa. Grace, SG 332, Teilchendurchmesser 20—45 µm) in 200 ml Heptan wurden bei Raumtemperatur während 30 min 56 ml einer Lösung von 6,4 g Triethylaluminium in 48 ml Heptan zugetropft. Dabei stieg die Temperatur auf 44°C an. Nach 18 Stunden Rühren bei Raumtemperatur wurde abfiltriert, zweimal mit je 30 ml Pentan gewaschen und anschließend am Ölpumpenvakuum getrocknet.

b) Herstellung der geträgerten Metallocenkomponente

Zu 50 µmol Dimethylsilandiyl-bis(2-methylbenzo[e]indenyl)zirkondichlorid (29 mg) in 20 ml Toluol wurden 13,1 ml (20 mmol) einer Lösung von Methylalumoxan in Toluol (1,53 molar, Fa. Witco GmbH) gegeben und 15 min gerührt. Anschließend wurden 5 g des Trägermaterials zugegeben und weitere 30 min gerührt. Zuletzt wurde das Lösungsmittel bei Raumtemperatur im Laufe von 4 Stunden am Ölpumpenvakuum entfernt. Es entstand ein gut rieselfähiges Katalysatorpulver.

c) Polymerisation

In einem trockenen, mit Stickstoff gespülten 10-Liter-Autoklaven wurden nacheinander 50 g Polypropylengrieß und 4,8 ml Triethylaluminium (1 molare Lösung in Heptan) gegeben und 15 min gerührt. Anschließend wurden 1,5 g des Trägerkatalysators im Stickstoff-Gegenstrom in den Reaktor gefüllt und dieser verschlossen. Bei einer Rührerdrehzahl von 350 U/min wurde auf 70°C aufgeheizt und gleichzeitig der Innendruck stufenweise durch Propylenzufuhr bis zum Enddruck von 28 bar erhöht. Anschließend wurde 1,5 Stunden polymerisiert, wobei durch die automatische Druckregelung Frischpropylen nachgeführt wurde.

Anschließend wurde in der zweiten Polymerisationsstufe Propylen und Ethylen hinzupolymerisiert. Hierzu wurde der Druck auf 7,5 bar entspannt, danach durch Ethylenzufuhr zunächst auf 15 bar erhöht und anschließend auf 9,5 bar eingestellt. Über einen Zeitraum von 30 Minuten wurde ein Gemisch aus Propylen und Ethylen kontinuierlich in der Gasphase polymerisiert, wobei ein Partialdruckverhältnis zwischen Propylen und Ethylen von 1:1 eingehalten wurde. Die Polymerisationstemperatur betrug 70°C. Nach beendeter Polymerisation wurde 10 Minuten lang auf Atmosphärendruck entspannt und das entstandene Blockcopolymerisat danach im Stickstoffstrom ausgetragen.

Beispiel 2

Es wurde analog dem Beispiel 1 polymerisiert, wobei man in der zweiten Polymerisationsstufe anstelle von 30 Minuten nur 15 Minuten polymerisierte.

Beispiel 3

Es wurde analog dem Beispiel 1 polymerisiert, wobei man in der ersten Polymerisationsstufe anstelle von 90 Minuten nur 60 Minuten lang polymerisierte.

Beispiel 4

Es wurde analog dem Beispiel 1 polymerisiert, wobei man in der ersten Polymerisationsstufe anstelle von 90 Minuten nur 60 Minuten und in der zweiten Polymerisationsstufe anstelle von 30 Minuten 45 Minuten lang polymerisierte.

Die Zusammensetzungen und Eigenschaften der mehrphasigen Blockcopolymerisate sind in der folgenden Tabelle zusammengestellt.

Die Viskosität wurde mittels eines Viskosimeters nach Ubbelohde bestimmt, der Gewichtsmittelwert \bar{M}_w und der Zahlenmittelwert \bar{M}_n durch Gelpermeationschromatographie und der Schmelzpunkt durch DSC-Messungen (Differential Scanning Calorimetry). Die Bestimmung des G-Modul erfolgte nach DIN 53455.

65

60

5

10

15

25

40

45

50

Tabelle

Beispiel	1	2	3	4	
Atomverhāltnis Aluminium:Zirkonium	800:1	800:1	800:1	800:1	
Anteil Polymerisat a) am Blockcopolymerisat [Gew%]	80	90	60	50	
Anteil Copolymerisat b) am Blockcopolymerisat [Gew%]	20	10	40	50	
<u>Produktivitāt</u> Menge Polymerisat/Menge Trägerkatalysator	2750	3210	2530	2995	
Ausbeute [g]	1833	2140	1687	1997] 2
Gewichtsmittel (Mw)	376000	310000	401000	417000	
Molmassenverhāltnis (Mw/Mn)	1,87	1,83	1,98	2,01] 2
Schmelzpunkt [°C]	144,2	145,6	143,2	143,1	
Steifiakeit (G-Modul) [N/mm²]	675	770	515	410	$\bigg] \ \ _{_{_{3}}}$

Patentansprüche

1. Mehrphasige Blockcopolymerisate des Propylens, aus

a) einem Polymerisat des Propylens mit 0 bis 5 Gew.-% weiterer C2-C10-Alk-1-ene,

b) einem Copolymerisat des Propylens mit 5 bis 98 Gew.-% weiterer C₂-C₁₀-Alk-1-ene, wobei die mehrphasigen Blockcopolymerisate einen Schmelzpunkt von weniger als 155°C aufweisen und eine Steifigkeit (G-Modul) besitzen, die der folgenden Bedingung (I) gehorcht:

$$G-Modul > 800 \cdot \frac{M_{a}}{M_{co}}$$
 (I)

worin M_a) für die Menge des Propylenpolymerisats a) und M_{∞} für die Menge des mehrphasigen Blockcopolymerisats steht.

2. Mehrphasige Blockcopolymerisate nach Anspruch 1 mit einem Schmelzflußindex von 0,1 bis 100 g/10 min, bei 230°C und unter einem Gewicht von 2,16 kg.

3. Mehrphasige Blockcopolymerisate nach den Ansprüchen 1 oder 2, enthaltend 20 bis 98 Gew.-% des Polymerisats a) und 2 bis 80 Gew.-% des Copolymerisats b).

4. Mehrphasige Blockcopolymerisate nach den Ansprüchen 1 bis 3, enthaltend pro 100 Gew.-Teile des mehrphasigen Blockcopolymerisats 0,01 bis 5 Gew.-Teile eines Nukleierungsmittels.

5. Mehrphasige Blockcopolymerisate nach den Ansprüchen 1 bis 4, wobei das Polymerisat a) ein Propylen-

homopolymerisat ist.

6. Mehrphasige Blockcopolymerisate nach den Ansprüchen 1 bis 5, erhältlich durch mehrstufige Polymerisation von Propylen und gegebenenfalls weiteren C₂—C₁₀-Alk-1-enen in Gegenwart von Katalysatorsystemen, die als aktive Bestandteile Metallocenkomplexe von Metallen der IV. und V. Nebengruppe des Periodensystems und oligomere Aluminiumoxidverbindungen enthalten.

7. Mehrphasige Blockcopolymerisate nach Anspruch 6, wobei als Metallocenkomplexe von Metallen der IV. und V. Nebengruppe des Periodensystems Metallocenkomplexe der allgemeinen Formel II:

60

35

40

50

55

$$R^3$$
 R^4
 R^4
 R^4
 R^5
 R^6
 R^8
 R^7

15

20

25

30

10

in der die Substituenten folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal,

X Fluor, Chlor, Brom, Iod, Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder - OR⁵,

wobei R⁵ C₁- bis C₁₀-Alkyl, C₆- bis C₁₃-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest bedeutet,

R¹ bis R⁴ und R⁶ bis R9 Wasserstoff, C₁ bis C₁₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits C₁- bis C₁₀-Alkyle als Substituenten tragen kann, C₆- bis C₁₅-Aryl oder Arylalkyl, wobei gegebenenfalls auch zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische gesättigte, teilweise gesättigte oder ungesättigte Gruppen stehen können, oder Si(R¹⁰)₃ mit

R¹⁰C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

Y für

$$R^{11}R^{12}Z$$
 oder $-C$

35

40

45

steht, wobei Z Silicium, Germanium, Zinn oder Kohlenstoff bedeutet,

R¹¹,R¹²,R¹³,R¹⁴ Wasserstoff, C₁- bis C₁₀-Alkyl, C₃- bis C₁₀-Cycloalkyl oder C₆- bis C₁₅-Aryl, wobei gegebenenfalls auch zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können,

eingesetzt werden und als oligomere Aluminiumoxidverbindungen offenkettige oder cyclische Alumoxanverbindungen der allgemeinen Formeln III oder IV

50

55

60

65

wobei R^{15} eine C_1 - bis C_4 -Alkylgruppe bedeutet und m für eine ganze Zahl von 5 bis 30 steht. 8. Verfahren zur Herstellung von mehrphasigen Blockcopolymerisaten gemäß den Ansprüchen 1 bis 7, wobei man in einer ersten Polymerisationsstufe bei Temperaturen im Bereich von 0 bis 100°C und Drücken im Bereich von 1 bis 300 bar Propylen, gegebenenfalls in Anwesenheit weiterer C_2 — C_{10} -Alk-1-ene, polymerisiert und dem daraus erhältlichen Polymerisat a) anschließend in einer zweiten Polymerisationsstufe bei Temperaturen im Bereich von 0 bis 100°C und Drücken im Bereich von 1 bis 300 bar ein Gemisch aus Propylen und weiteren C_2 — C_{10} -Alk-1-enen hinzupolymerisiert.

9. Verfahren nach Anspruch 8, wobei man die Polymerisation in der ersten und in der zweiten Polymerisa-

tionsstufe in der Gasphase durchführt.

10. Verwendung der mehrphasigen Blockcopolymerisate des Propylens gemäß den Ansprüchen 1 bis 7 zur Herstellung von Fasern, Folien und Formkörpern.
 11. Fasern, Folien und Formkörper, erhältlich aus den mehrphasigen Blockcopolymerisaten gemäß den Ansprüchen 1 bis 7.