Side Channel Attacks https://powcoder.com

AES Implementation

```
static const u32 Te0[256] = {
                                        0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
  s0 = GETU32(in
                     ) ^ rk[0];
                                        0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
   S1 = GETOJZ(III + 4) TK[1];
                                        0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
   s2 = GETU32(in + 8) ^ rk[2];
                                        0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,
   s3 = GETU32(in + 12) ^ rk[3];
#ifdef FULL UNROLL
                                        0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U,
   /* round 1: */
                                        0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU,
   t0 = Te0[s0 >> 24D^Te1[(s1 >> 24D^Te1)]
                                        Ax Project Px 1344 d4 2 lb 0x5fa2a2fdU, 0x45afafeaU,
   t1 = Te0[s1 >> 24] ^ Te1[(s2 >>>
                                         0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU,
   t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 
   t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 13)]
   /* round 2: */
   s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[8];
   s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[10];
   s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[11];
   /* round 3: */
   t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[12];
   t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[13];
   t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[14];
   t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[15];
   /* round 4: */
   s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[16];
```

AES T-table access

```
static const u32 Te0[256] = {
    0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
    0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
    0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
    0xe7fefe10U 0xb5d7d762U 0xddababe6U 0xec76760aU
```

Assignment Project Exam Help

```
s0 = plaintextps://peycoder.com
t0 = Te0[s0>>24]
Add WeChat powcoder
```

- Assume we know the plaintext and the index (s0>>24)
 - We can recover the most significant byte of the key

AES Implementation

• If we know the plaintext and all of the indices in the first round we can recover the key.

The Microarchitecture

CPU vs. Memory

Processor

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Memory Latency

500 ns

8*2600 MHz

63 ns

Bridging the gap

Cache utilises locality to bridge the gap

- Divides memory into ignosent Project Exam Help
- Stores recently used lines://powcoder.com

- In a cache hit, data is retrieved

 Add WeChat powcoder from the cache
- In a cache miss, data is retrieved from memory and inserted to the cache

Set Associative Caches

• Memory lines map to cache sets. Multiple lines map to the same set.

Assignment Project Exam Help

• Sets consist of ways. A

memory line can be stored in powcoder.com
any of the ways of the settlite Chat powcoder
maps to.

• When a cache miss occurs, one of the lines in the set is evicted.

The Prime+Probe Attack

- Allocate a cache-sized memory buffer
- Prime: fills the cache with the Project Exam Help contents of the buffer https://powcoder.com
- Probe: measure the time to access each cache set Add WeChat powcoder
 - Slow access indicates victim access to the set
- The probe phase primes the cache for the next round

Memory

Sample Victim: Data Rattle

```
volatile char buffer[4096];
int main (instigment project by help
  for (;;) {
    for (int https://powcodercopeo; i++)
      buffer [800 Wethat powcoder
    for (int i = 0; i < 64000; i++)
      buffer[1800] += i;
```

Cache Fingerprint of the Rattle Program

AES T-tables and cache lines

```
static const u32 Te0[256] =
    0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
    0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
                                                          Cache Line 0
    0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
    0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,
    0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U,
    0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU,
                                                          Cache Line 1
    0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU,
    0x239c9cbfU, 0x53a4a4f7U, 0xe4727266U, 0x9bc0c05bU
    0x75b7b7c2U, 0xe1fdfd1t8, 4x3d9393aeU/Jox4t2t262664U1
    0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU,
                                                          Cache Line 2
    0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xe2717193U, 0xabd8d873UUQS231PG3V,C
    0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU,
    0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U,
    0х0е070709U, 0х24121236 Add Wall hat poxionde Cache Line 3
    0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU,
    0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU,
    0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU,
                                                          Cache Line 4
    0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU,
    0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U,
    0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU,
    0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU,
                                                          Cache Line 5
    0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU,
    0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU,
    0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U,
    0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U,
    0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U.
    Ava05050f0II Av703c3c44II Av250f0fhall Av4ha0a0a2II
```

AES T-tables and cache lines

```
0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
                                                         Cache Line 0
0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,
0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U,
0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU,
                                                         Cache Line 1
0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU,
0x239c9cbfU, 0x53a4a4f7U, 0xe4727266U, 0x9bc0c05bU,
0x75b7b7c2U, 0xe1faftile5.10x3b93baeU, 0x4t262666U.1
0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU,
                                                         Cache Line 2
0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xe2717193U, 0xabd8d873UUQ231DQ3W,
0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU,
0x30181828U, 0x379696a1U, 0x9a05050fU, 0x2f9a9ab5U, Add WeChat powcoder
```

- If 0≤plaintext[0]^key[0]<16, Cache Line 0 is accessed.
- What if plaintext[0]^key[0]≥16?

Analysing the AES Implementation

```
s0 = GETU32(in
                            ) ^ rk[0];
     s1 = GETU32(in +
                           4) ^ rk[1];
     s2 = GETU32(in +
                           8) ^ rk[2];
     s3 = GETU32(in + 12) ^ rk[3];
#ifdef FULL_UNROLL
                              Assignment Project Exam Help
     /* round 1: */
                                                                             8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[ 4];
     t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 16)]  
     t1 = Te0[s1 >> 24] ^ Te1[(shttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2[(sbttp\6)/poxtcode2](sbttp\6)
                                                                             8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[ 5];
     t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) 6 6xff)
                                                                             8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[ 6];
     t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 16)]  
                                                                             8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[ 7]:
     /* round 2: */
                                                                                & 0xff] ^ Te3[t3 & 0xff]
     s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[ 9];
     s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[10];
     s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[11];
     /* round 3: */
     t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[12];
     t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[13];
     t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[14];
     t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[15];
     /* round 4: */
     s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[16];
```

Analysing the AES Implementation

```
s0 = GETU32(in
    s1 = GETU32(in +
    s2 = GETU32(in +
    s3 = GETU32(in + 12)
#ifdef FULL_UNROLL
    /* round 1: */
      = Te0[s0 >> 24] ^
    t1 = Te0[s1 >> 24]
    t2 = Te0[s2 >> 24] ^ Te
    t3 = Te0[s3 >> 24] ^ Te
    /* round 2: */
    s0 = Te0[t0 >> 24] ^ Te
    s1 = Te0[t1 >> 24] ^ Te
    s2 = Te0[t2 >> 24] ^ Te
    s3 = Te0[t3 >> 24] ^ Te
    /* round 3: */
    t0 = Te0[s0 >> 24] ^ Te
    t1 = Te0[s1 >> 24] ^ Te
    t2 = Te0[s2 >> 24] ^ Te
    t3 = Te0[s3 >> 24] ^ Te
    /* round 4: */
    s0 = Te0[t0 >> 24] ^ Te
```

- Each round, TeO is accessed 4 times
- AES has 10 rounds
 - Te0 is accessed 40 times in an AES
- Assignmentyptiject Exam Help
 - ntline/first/accessmisses Cache Line 0
 - Atach fellowing aggess misses Cache Line 0 with a probability of 15/16
 - The probability that all accesses miss Cache Line 0 is about 8%

Prime+Probe Attack on AES

- Repeat 1000000 times:
 - Generate a random plaintext
 - Prime the cache
 - Encrypt the plaintext
 - results

- For each plaintext byte
 - Partition results based on the most significant half of a plaintext byte
- Assignment Project Fx and Helpet with the slowest
 - https://pawerdgecaccess time for each
- Probe the cache and record Weenat powcoder
 - Identify the most significant half of the corresponding key byte

PP Attack on AES - Results

PP Attack on AES - More Results

What's now?

- Recover the second half of the key
 - Second round attack similar but with ugly maths
- How to perform the attack

• Easy: use Mastik: Assignment Project Exam Help

http://cs.adg

- How to defend?
 - Later...

```
https://powcoder.com
i < NSAMPLES; i++) {
Add Welled Wcoder;
AES_encrypt(input, output, &aeskey);
ll_bprobe(ll, tmp);
for (int j = 0; j < 64; j++)
results[i*64+map[j]] = tmp[j];
for (int j = 0; j < 32; j++)
rec[i][j] = input[j];
}
```

The FLUSH+RELOAD Technique

- Leaks information on victim access to shared memory.
- Spy monitors victim's access to shared code
 - Spy can determine what victim does
 - Spy can infer the data the dictive Cope pates corder

Code Sharing

 Recall that programs that run the same executable can share the code

Assignment Project Exam Help

Code is Data

• In Von Neumann architectures code is a type of data

Assignment Project Exam Help

Cache Consistency

- Memory and cache can be in inconsistent states
 - Rare, but possiblessignment Project Exam Help
- Solution: Flushing the cachecoder.com contents

 Add WeChat powcoder
 - Ensures that the next load is served from the memory

Processor

Cache

Memory

FLUSH+RELOAD

- FLUSH memory line
- Wait a bit
- Measure time to Arigonal Project Exam Help https://powcoder.com

Add WeChat powcoder

- slow-> no access
- fast-> access
- Repeat

Memory

The RSA Encryption System

The RSA encryption is a public key cryptographic scheme

Key Generation:

- Select random primes p and q
- Calculate N = pq
- Select a public exponent e(=65537)
- Compute $d=e^{-1} \mod \varphi(N)$
- (*N*, *e*) is the public key
- (p, q, d) is the private key

Schnorr Signatures


```
(A, \alpha) = \text{keypair}()
A
(R, r) = \text{keypair}()
e = \text{Hash}(R, M)
e = \frac{\text{https://powcoder.com}}{\text{Add WeChat powcoder}}
```

$$R=g^s \cdot A^e \pmod{p}$$

 $e=?\text{Hash}(R,M)$

GnuPG 1.4.13 Exponentiation

```
Operation
                                                       \boldsymbol{x}
x \leftarrow 1
for i \leftarrow |d|-1 downto 0 do
  x \leftarrow x^2 mod Assignment Project Exam Helphe private
  if (d_i = 1) then
                                       Multiply
     x = xC \mod \frac{\text{https://powcoder.com}}{\text{https://powcoder.com}}
                                                         key is
                                                    encoded in
   endif
                       Add WeChat Soweoder
done
                                       realice
                                                   the sequence
                                       Square
return x
                                                   of operations
 Example:
 11^5 \mod 100 =
        161,051 mod 100 = 51
```

Flush+Reload on GnuPG 1.4.13

FR vs. PP

- Flush+Reload tends to be more accurate
- Prime+Probe has less prerequisites

Assignment Project Exam Help

https://powcoder.com

Variants

- Prime+Probe
 - Instruction cache
 - Last-level cache
 - TLB, BPU
 - Prime+Abort
- Flush+Reload
 - Flush-Flush
 - Evict+Reload

- Evict+Time
- CacheBleed

Assignment Project Exam Help AM rows

https://powcoder.Poefetch Channel

Countermeasures - System Level

- Avoid sharing hardware
 - Goes against modern software deployment trends
- Safe hardware implementations
 - Limited applicability Assignment Project Exam Help
- Hardware partitioning
 - Partial support (if any)
- State sanitisation
 - Partial support (if any)
- Hardware randomisation
 - Not currently supported
- Clock randomisation
 - Ineffective

https://powcoder.com

Software Countermeasures

- Preloading
 - Read all of the AES tables prior to decryption
 - Ineffective against asynchronous adversaries Assignment Project Exam Help
- AES S-table implementation https://powcoder.com
 - A single table of size 256 bytes
 - Reduces chance of missing a cache inewcoder

GnuPG 1.4.14 Square and Multiply Always

```
x \leftarrow 1
                                         x \leftarrow 1
                                        for i \leftarrow |d|-1 downto 0 do
for i \leftarrow |d|-1 downto 0 do
  x \leftarrow x^2 \mod A ssignment Project Exam Leppod n
  if (d_i = 1) then https://powerder.com x = xC \mod n if (d_i = 1) then
                      Add WeChat powcoder 1
   endif
                                            endif
done
return x
                                         done
                                         return x
```

Constant-Time Programming

- A programming style that avoids:
 - Instructions whose timing depends on secret data
 - Conditional execution based on secret data
 - Memory access to addresses that depend on secret data https://powcoder.com

Eliminating Conditional Statements

```
if (condition)

t = f1()

else t = f2()

Assignment Project HaamfH()

https://powcoder.comf2()

t = f2()

Add WeChat powcoder
```

Implementing select

Case 1: condition evaluates to 0 or 1

```
mask = condition - 1
return (t1 & mask)
Assignment Project Exam Help
```

• Case 2: condition (c) evaluates to 0 or non-0

```
mask = ((c ^ (c-1)) & ~c)>>32
Add WeChat powcoder
return (t1 & ~mask) | (t2 & mask)
```

Caveats

- The result of select depends on secret data. Anything that depends on it also depends on secret data.
 - In particular, swapping pointers using select does not produce constant-time code
- https://powcoder.com
 The choices of processor, languages and compiler matter
 In most processors, division is not constant-time

 - In some processors multiplication is not constant-time
 - Compiler optimisations may kill constant-time code
 - These issues have been exploited