# **Uncovering Subjective Models from Survey Expectations**

Chenyu (Sev) Hou <sup>1</sup> Tao Wang <sup>2</sup>

August 21, 2025

ESWC 2025. Seoul

<sup>1</sup>Simon Fraser University

<sup>2</sup>Bank of Canada

## $\pi_t$ and $\Delta U_t$ : Actual Data v.s. Expected



Correlation using 20-year rolling window with 90% CI, 1969-2023. Data from

FRED, SPF, and Michigan Survey of Consumers (MSC).

• Households perceive  $corr(\mathbb{E}\pi,\mathbb{E}u)>0$ , different from data and professionals (Bhandari et al. (2025) and Candia et al. (2020))

### $\pi_t$ and $\Delta U_t$ : Actual Data v.s. Expected



Correlation using 20-year rolling window with 90% CI, 1969-2023. Data from FRED, SPF, and Michigan Survey of Consumers (MSC).

- Households perceive  $corr(\mathbb{E}\pi,\mathbb{E}u)>0$ , different from data and professionals (Bhandari et al. (2025) and Candia et al. (2020))
- A robust pattern in survey expectations
  - All the time. Cross-section
  - Across all groups. Group
  - Not due to individual or time fixed effects.
- Growing literature with many explanations: observational equivalence in data.

- Methodology
  - 1. Test survey data patterns against model predictions under the two assumptions
    - ullet a joint sign restriction on  $\mathbb E$  correlation and between-variable serial correlation in forecast errors
    - ullet ightarrow incomplete information cannot solely lead to a positive correlation of  $\pi$  and u  $\mathbb{E}$ s
    - $\bullet \ \to subjective \ model$  is necessary to generate such expectation patterns

- Methodology
  - 1. Test survey data patterns against model predictions under the two assumptions
    - ullet a joint sign restriction on  $\mathbb E$  correlation and between-variable serial correlation in forecast errors
    - ullet  $\rightarrow$  incomplete information cannot solely lead to a positive correlation of  $\pi$  and u  $\mathbb{E}$ s
    - ullet o subjective model is necessary to generate such expectation patterns
  - 2. Structurally estimate an expectation-realization VAR to uncover the subjective model
    - $\bullet \ \to \mathsf{reject}$  the null hypothesis of the subjective model = the objective model

- Methodology
  - 1. Test survey data patterns against model predictions under the two assumptions
    - a joint sign restriction on  $\mathbb E$  correlation and between-variable serial correlation in forecast errors
    - ullet  $\rightarrow$  incomplete information cannot solely lead to a positive correlation of  $\pi$  and u  $\mathbb{E}$ s
    - ullet o subjective model is necessary to generate such expectation patterns
  - 2. Structurally estimate an expectation-realization VAR to uncover the subjective model
    - ullet ightarrow reject the null hypothesis of the subjective model = the objective model
- Additional Findings
  - Asymmetry: the perceived correlation goes from  $\pi$  to u:
    - Overpredicted  $\pi$  in  $t-1 \rightarrow$  overpredicted un in t. Not the opposite
    - Supporting evidence from self-reported news exposure and newspaper narratives

- Methodology
  - 1. Test survey data patterns against model predictions under the two assumptions
    - a joint sign restriction on  $\mathbb E$  correlation and between-variable serial correlation in forecast errors
    - ullet  $\rightarrow$  incomplete information cannot solely lead to a positive correlation of  $\pi$  and u  $\mathbb{E}$ s
    - ullet o subjective model is necessary to generate such expectation patterns
  - 2. Structurally estimate an expectation-realization VAR to uncover the subjective model
    - ullet ightarrow reject the null hypothesis of the subjective model = the objective model
- Additional Findings
  - Asymmetry: the perceived correlation goes from  $\pi$  to u:
    - ullet Overpredicted  $\pi$  in t-1 o overpredicted un in t. Not the opposite
    - Supporting evidence from self-reported news exposure and newspaper narratives
- Macro implication
  - An amplification (dampening) of supply (demand) shock responses in a textbook NK model

A Formal Test of Joint Learning

#### **Modeling framework**

- Building on the test of information rigidity in expectation formation (Coibion and Gorodnichenko, 2012; Andrade and Le Bihan, 2013)
  - A Noisy Information model with linear Gaussian noises (Lucas (1976); Woodford (2001))
  - Can be a result of Rational Inattention (Sims, 2003; Maćkowiak et al., 2018)
- Our extensions
  - Univariate -> multivariate expectation formation ("Joint learning")
  - Perceived law of motion ≠ actual law of motion ("Subjective model")
- Focus on bi-variate case:  $\pi$  and u.

#### Multivariate environment

Actual data is generated by:

$$m{L}_{t+1,t} = \underbrace{m{A}}_{ ext{Actual law of motion}} m{L}_{t,t-1} + w_{t+1,t}$$
  $w_{t+1,t} \sim N(0, \underbrace{m{Q}}_{ ext{var-cov of innovations to the state}})$ 

4

### Multivariate environment + noisy information

$$m{L}_{t+1,t} = \underbrace{m{A}}_{ ext{Actual law of motion}} m{L}_{t,t-1} + w_{t+1,t}$$
  $w_{t+1,t} \sim N(0, \underbrace{m{Q}}_{ ext{var-cov of innovations to the state}})$ 

Agents observe a noisy signal

$$m{s}_t = \underbrace{m{G}}_{ ext{Signal mixture}} m{L}_{t,t-1} + \eta_t$$
  $m{\eta}_t \sim m{N}(0, m{R})$  var-cov of noise on signal

# Multivariate environment + noisy information + subjective model

$$\mathbf{L}_{t+1,t} = \underbrace{\mathbf{A}}_{\mathbf{L}_{t,t-1}} + \mathbf{W}_{t+1,t} \tag{1}$$

Actual law of motion

$$w_{t+1,t} \sim N(0, \qquad \qquad Q \qquad \qquad ) \tag{2}$$

var-cov of innovations to the state

Noisy signal

$$\widehat{\boldsymbol{s}_{t}} = \underbrace{\boldsymbol{G}}_{\text{Signal mixture}} \boldsymbol{L}_{t,t-1} + \eta_{t} \tag{3}$$

$$\eta_t \sim N(0, \qquad \underbrace{R} )$$
 (4)

var-cov of noise on signal

Agent may also subjectively believe that:

$$\mathbf{L}_{t+1,t} = \underbrace{\hat{A}}_{\text{Perceived law of motion}} \mathbf{L}_{t,t-1} + w_{t+1,t}$$
(5)

## **Expectations dynamics**

Given the noisy signal and subjective model, expectation about  $oldsymbol{L}_{t+1,t}$  is

$$\underbrace{m{L}_{t+1,t|t}}_{\equiv \mathbb{E}_t(m{L}_{t+1,t})} = \underbrace{\hat{m{A}}}_{ ext{Perceived law of motion}} \left( (I - KG) m{L}_{t,t-1|t-1} + \underbrace{m{K}}_{ ext{Kalman gain}} m{s}_t \right)$$

#### Under FIRE:

- $\hat{A} = A$ , R = 0, KG = I.
- ullet o Expectation

$$L_{t+1,t|t}^{FIRE} = AL_{t,t-1}$$

ullet o Correlation between  $m{L}_{t+1,t|t}^{\mathit{FIRE}}$  is the same as the correlation of  $m{L}_{t,t-1}$ .



## Different causes of $corr(\mathbb{E}\pi, \mathbb{E}u) > 0$

$$\underbrace{ \boldsymbol{\mathcal{L}}_{t+1,t|t}}_{\text{Expectation at t regarding t}+1} = \hat{A}(\boldsymbol{\mathcal{L}}_{t,t-1|t-1} + K(\boldsymbol{s}_t - G\boldsymbol{\mathcal{L}}_{t,t-1|t-1}))$$

$$\boldsymbol{s}_t = G\boldsymbol{\mathcal{L}}_{t,t-1} + \epsilon_t$$

The positive correlation between elements in  $L_{t+1,t|t}$  stems from various possibilities:

- Information friction:
  - Non-diagonal G: correlated signals (e.g., Kamdar (2019) through R.I.).
  - Non-diagonal *R*: correlated noises (e.g., pessimistic heuristics and sentiment).

## Different causes of $corr(\mathbb{E}\pi, \mathbb{E}u) > 0$

$$\underbrace{ m{\mathcal{L}}_{t+1,t|t}}_{\text{Expectation at t regarding t}+1} = \hat{A}(m{\mathcal{L}}_{t,t-1|t-1} + K(m{s}_t - Gm{\mathcal{L}}_{t,t-1|t-1}))$$
 
$$m{s}_t = Gm{\mathcal{L}}_{t,t-1} + \epsilon_t$$

The positive correlation between elements in  $L_{t+1,t|t}$  stems from various possibilities:

- Information friction:
  - Non-diagonal G: correlated signals (e.g., Kamdar (2019) through R.I.).
  - Non-diagonal R: correlated noises (e.g., pessimistic heuristics and sentiment).
- Subjective model:
  - Non-diagonal  $\hat{A}$ :  $\hat{A}$  has positive off-diagonal elements.

## Different causes of $corr(\mathbb{E}\pi, \mathbb{E}u) > 0$

$$\underbrace{ m{\mathcal{L}}_{t+1,t|t}}_{\text{Expectation at t regarding t}+1} = \hat{A}(m{\mathcal{L}}_{t,t-1|t-1} + K(m{s}_t - Gm{\mathcal{L}}_{t,t-1|t-1}))$$

$$m{s}_t = Gm{\mathcal{L}}_{t,t-1} + \epsilon_t$$

The positive correlation between elements in  $L_{t+1,t|t}$  stems from various possibilities:

- Information friction:
  - Non-diagonal G: correlated signals (e.g., Kamdar (2019) through R.I.).
  - Non-diagonal R: correlated noises (e.g., pessimistic heuristics and sentiment).
- Subjective model:
  - Non-diagonal  $\hat{A}$ :  $\hat{A}$  has positive off-diagonal elements.
- These assumptions are observational equivalent in terms of expectation correlation

Resolution: Forecast error tests (Coibion and Gorodnichenko, 2012) extended to multi-variate case:

$$FE_{t+1,t|t} \equiv \boldsymbol{L}_{t+1,t} - \boldsymbol{L}_{t+1,t|t}$$

$$= \hat{A}(I - KG)FE_{t,t-1|t-1} + \underbrace{M}_{(A-\hat{A}KG-\hat{A}(I-KG))} \boldsymbol{L}_{t,t-1} + w_{t+1,t} - \hat{A}K\epsilon_{t}$$

Resolution: Forecast error tests (Coibion and Gorodnichenko, 2012) extended to multi-variate case:

$$FE_{t+1,t|t} \equiv \boldsymbol{L}_{t+1,t} - \boldsymbol{L}_{t+1,t|t}$$

$$= \hat{A}(I - KG)FE_{t,t-1|t-1} + \underbrace{M}_{(A-\hat{A}KG-\hat{A}(I-KG))} \boldsymbol{L}_{t,t-1} + w_{t+1,t} - \hat{A}K\epsilon_{t}$$

- Diagonal terms of  $\hat{A}(I-KG)$ : auto-correlation (Coibion and Gorodnichenko, 2012)
  - Non-zero diagonals indicate information rigidity

Resolution: Forecast error tests (Coibion and Gorodnichenko, 2012) extended to multi-variate case:

$$FE_{t+1,t|t} \equiv \boldsymbol{L}_{t+1,t} - \boldsymbol{L}_{t+1,t|t}$$

$$= \hat{A}(I - KG)FE_{t,t-1|t-1} + \underbrace{M}_{(A-\hat{A}KG-\hat{A}(I-KG))} \boldsymbol{L}_{t,t-1} + w_{t+1,t} - \hat{A}K\epsilon_{t}$$

- Diagonal terms of  $\hat{A}(I KG)$ : auto-correlation (Coibion and Gorodnichenko, 2012)
  - Non-zero diagonals indicate information rigidity
- Off-diagonal terms: between-correlation (Our focus)
  - ullet their signs depend on off-diagonals of  $\hat{A}$  and G

Resolution: Forecast error tests (Coibion and Gorodnichenko, 2012) extended to multi-variate case:

$$FE_{t+1,t|t} \equiv \boldsymbol{L}_{t+1,t} - \boldsymbol{L}_{t+1,t|t}$$

$$= \hat{A}(I - KG)FE_{t,t-1|t-1} + \underbrace{M}_{(A-\hat{A}KG-\hat{A}(I-KG))} \boldsymbol{L}_{t,t-1} + w_{t+1,t} - \hat{A}K\epsilon_{t}$$

- Diagonal terms of  $\hat{A}(I KG)$ : auto-correlation (Coibion and Gorodnichenko, 2012)
  - Non-zero diagonals indicate information rigidity
- Off-diagonal terms: between-correlation (Our focus)
  - ullet their signs depend on off-diagonals of  $\hat{A}$  and G
- Special case of FIRE:  $A = \hat{A}$  and  $KG = I \rightarrow \hat{A}(I KG) = \mathbf{0}$

9

# Scenario 1: correlated signals, i.e. G is non-diagonal

$$\hat{A}(I - KG) = \begin{pmatrix} \rho_1 & 0 \\ 0 & \rho_2 \end{pmatrix} \begin{pmatrix} \frac{g_2^2 \sigma_2^2 + \sigma_s^2}{m} & -\frac{g_1 g_2 \sigma_1^2}{m} \\ -\frac{g_1 g_2 \sigma_2^2}{m} & \frac{g_1^2 \sigma_1^2 + \sigma_s^2}{m} \end{pmatrix}$$

$$= \begin{pmatrix} \rho_1 \frac{g_2^2 \sigma_2^2 + \sigma_s^2}{m} & -\rho_1 \frac{g_1 g_2 \sigma_1^2}{m} \\ -\rho_2 \frac{g_1 g_2 \sigma_2^2}{m} & \rho_2 \frac{g_1^2 \sigma_1^2 + \sigma_s^2}{m} \end{pmatrix}$$
(6)

- $m = g_1^2 \sigma_1^2 + g_2^2 \sigma_2^2 + \sigma_s^2$
- $G = [g_1, g_2]$ : the vector of signals (due to "optimal signal selection")
- When signals go in the same direction,  $g_1g_2 > 0$ , the cross terms are negative.

## Scenario 2: subjective model

$$\hat{A}(I - KG) = \begin{pmatrix} \rho_1 & m_1 \\ m_2 & \rho_2 \end{pmatrix} \times \begin{pmatrix} \frac{\sigma_{1,s}^2}{\sigma_1^2 + \sigma_{1,s}^2} & 0 \\ 0 & \frac{\sigma_{2,s}^2}{\sigma_2^2 + \sigma_{2,s}^2} \end{pmatrix} \\
= \begin{pmatrix} \frac{\sigma_{1,s}^2 \rho_1}{\sigma_1^2 + \sigma_{1,s}^2} & \frac{\sigma_{2,s}^2 m_1}{\sigma_2^2 + \sigma_{2,s}^2} \\ \frac{\sigma_{1,s}^2 m_2}{\sigma_1^2 + \sigma_{1,s}^2} & \frac{\sigma_{2,s}^2 \rho_2}{\sigma_2^2 + \sigma_{2,s}^2} \end{pmatrix}$$
(7)

- $G = I_2$ : no signal correlation (can be any diagonal matrix)
- The signs of cross terms (the between-variable serial correlation of FEs) are the same as the perceived correlation

#### **Joint-learning tests for** $\pi$ **and** un

$$\begin{pmatrix}
fe_{t+1,t|t}^{\pi} \\
fe_{t+1,t|t}^{un}
\end{pmatrix} = \beta_0 + \underbrace{\begin{pmatrix}
\beta_{11} & \beta_{12} \\
\beta_{21} & \beta_{22}
\end{pmatrix}}_{\equiv \hat{A}(I-KG)} \begin{pmatrix}
fe_{t,t-1|t-1}^{\pi} \\
fe_{t,t-1|t-1}^{un}
\end{pmatrix} + \theta X_{t,t-1} + e_t \tag{8}$$

- $\beta_{12}$  and  $\beta_{21}$ : between-variable serial correlations of forecast errors
- **Predictions:** if only correlated signals but not subjective model,  $\beta_{12}$  and  $\beta_{21}$  are both negative.
- Two complications:
  - In MSC (and most household's survey),  $\mathbb{E}u$  is qualitative. We impute them following Bhandari et al. (2025). Imputation
  - Expectations are year-ahead measures, so we derive a year-ahead version of (8). Year-ahead test

#### Joint-learning tests with consensus expectations

• Joint learning: subjective model suggesting  $\pi \to un$ .

 Bottom line: information friction cannot be the only reason.

Table 1: Aggregate Test on Joint Learning, MSC v.s. SPF

|              | 00 0      |           |           |           |
|--------------|-----------|-----------|-----------|-----------|
|              | MSC       |           | SPF       |           |
|              | 1984-2023 | 1990-2018 | 1984-2023 | 1990-2018 |
|              | (1)       | (2)       | (3)       | (4)       |
| $\beta_{11}$ | 0.64***   | 0.65***   | 0.79***   | 0.76***   |
|              | (0.080)   | (0.085)   | (0.064)   | (0.093)   |
| $eta_{12}$   | -0.11     | -0.02     | 0.19      | -0.08     |
|              | (0.076)   | (0.095)   | (0.117)   | (0.199)   |
| $eta_{21}$   | 0.13***   | 0.21***   | 0.05      | 0.06      |
|              | (0.033)   | (0.063)   | (0.034)   | (0.049)   |
| $\beta_{22}$ | 0.71***   | 0.50***   | 0.63***   | 0.51***   |
|              | (0.044)   | (0.092)   | (0.060)   | (0.097)   |
| Observations | 152       | 116       | 152       | 116       |
|              |           |           |           |           |

<sup>\*</sup> The first and third columns are using the full sample 1984-2023; the second and fourth columns are results for the sub-sample 1990-2018. Newey-West standard errors are reported in brackets.

**Uncovering the Subjective Model** 

### Uncovering the subjective model using an expectation-realization VAR

- ullet Previously, we used sign restrictions to test whether  $\hat{A}$  is diagonal, relying on some additional assumptions
- Here, we directly uncover  $\hat{A}$

$$\underbrace{Y_{t+1}}_{\mathbf{L}_{t,t-1}|t-1} = \underbrace{\begin{pmatrix} \hat{A}(I - KG) & \hat{A}KG \\ \mathbf{0}_{2\times 2} & A \end{pmatrix}}_{:=\Phi} \cdot Y_t + \underbrace{\begin{pmatrix} \hat{A}K & \mathbf{0}_{2\times 2} \\ \mathbf{0}_{2\times 2} & I_{2\times 2} \end{pmatrix}}_{F} \cdot \begin{pmatrix} \eta_t \\ w_{t+1,t} \end{pmatrix} \tag{9}$$

- Φ estimated from an (un)restricted VAR
- $\hat{A} = \Phi_{1,1} + \Phi_{1,2}$  and  $\Phi_{2,2} = A$
- Identification does not rely on K and G
- Then test  $\hat{A} = A$  elementwise

## The uncovered subjective model of households and professionals

Table 2: Estimates of Joint Learning Model (9)

|                         | MSC, quarterly, (                                               | Q1 1984 - Q4 2023                     | SPF, quarterly, Q1                                              | 1984 - Q4 2023                                                 |
|-------------------------|-----------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|
| Parameters              | Estimates                                                       | Standard Errors                       | Estimates                                                       | Standard Errors                                                |
| 4                       | 0.836 -0.058                                                    | 0.053 0.057                           | 0.837 -0.056                                                    | 0.061 0.074                                                    |
| Α                       | 0.034 0.617                                                     | 0.042 0.095                           | 0.014 0.751                                                     | 0.041 0.093                                                    |
| Â                       | $\begin{bmatrix} 0.741 & -0.149 \\ 0.137 & 0.831 \end{bmatrix}$ | 0.050     0.082       0.044     0.048 | $\begin{bmatrix} 0.955 & -0.038 \\ 0.040 & 0.495 \end{bmatrix}$ | $\begin{bmatrix} 0.019 & 0.016 \\ 0.035 & 0.239 \end{bmatrix}$ |
| T-test:                 | test-stat                                                       | p-val                                 | test-stat                                                       | p-val                                                          |
| $\hat{A}_{21} > A_{21}$ | 1.581                                                           | 0.057                                 | 0.546                                                           | 0.293                                                          |

The table reports the estimates and their NW standard errors from the GMM estimation of the 4-variable VAR model. Iterative weighting matrix are used in the GMM estimation.

**Additional Evidence** 

# Expectations conditional on the type of news heard

Table 3: Panel Regression with Self-reported News

| $E\pi$  | Eun                                                                                                | $E\pi$                                                                                                                                                                                                                 | Eun                                                                                                                                                                                                                                                                                                                |
|---------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1)     | (2)                                                                                                | (3)                                                                                                                                                                                                                    | (4)                                                                                                                                                                                                                                                                                                                |
| -0.21*  | -0.06***                                                                                           | -0.21*                                                                                                                                                                                                                 | -0.05***                                                                                                                                                                                                                                                                                                           |
| (0.117) | (0.017)                                                                                            | (0.118)                                                                                                                                                                                                                | (0.017)                                                                                                                                                                                                                                                                                                            |
| 0.43*** | 0.06***                                                                                            | 0.42***                                                                                                                                                                                                                | 0.05***                                                                                                                                                                                                                                                                                                            |
| (0.085) | (0.010)                                                                                            | (0.085)                                                                                                                                                                                                                | (0.010)                                                                                                                                                                                                                                                                                                            |
| -0.03   | -0.14***                                                                                           | -0.01                                                                                                                                                                                                                  | -0.13***                                                                                                                                                                                                                                                                                                           |
| (0.056) | (0.009)                                                                                            | (0.057)                                                                                                                                                                                                                | (0.009)                                                                                                                                                                                                                                                                                                            |
| 0.05    | 0.10***                                                                                            | 0.04                                                                                                                                                                                                                   | 0.09***                                                                                                                                                                                                                                                                                                            |
| (0.054) | (0.007)                                                                                            | (0.054)                                                                                                                                                                                                                | (0.007)                                                                                                                                                                                                                                                                                                            |
| -0.03   | -0.06***                                                                                           | -0.01                                                                                                                                                                                                                  | -0.04***                                                                                                                                                                                                                                                                                                           |
| (0.071) | (0.012)                                                                                            | (0.072)                                                                                                                                                                                                                | (0.012)                                                                                                                                                                                                                                                                                                            |
| 0.02    | 0.11***                                                                                            | 0.02                                                                                                                                                                                                                   | 0.10***                                                                                                                                                                                                                                                                                                            |
|         |                                                                                                    |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                    |
| 169304  | 189158                                                                                             | 169304                                                                                                                                                                                                                 | 189158                                                                                                                                                                                                                                                                                                             |
| 0.673   | 0.677                                                                                              | 0.673                                                                                                                                                                                                                  | 0.681                                                                                                                                                                                                                                                                                                              |
| Υ       | Υ                                                                                                  | Υ                                                                                                                                                                                                                      | Υ                                                                                                                                                                                                                                                                                                                  |
| Υ       | Υ                                                                                                  | Υ                                                                                                                                                                                                                      | Υ                                                                                                                                                                                                                                                                                                                  |
| N       | N                                                                                                  | Υ                                                                                                                                                                                                                      | Υ                                                                                                                                                                                                                                                                                                                  |
|         | (1) -0.21* (0.117) 0.43*** (0.085) -0.03 (0.056) 0.05 (0.054) -0.03 (0.071) 0.02  169304 0.673 Y Y | (1) (2)  -0.21* -0.06*** (0.117) (0.017) 0.43*** 0.06*** (0.085) (0.010) -0.03 -0.14*** (0.056) (0.009) 0.05 (0.10*** (0.054) (0.007) -0.03 -0.06*** (0.071) (0.012) 0.02 (0.11***  169304 189158 0.673 (0.677 Y Y Y Y | (1) (2) (3)  -0.21* -0.06*** -0.21* (0.117) (0.017) (0.118)  0.43*** 0.06*** 0.42*** (0.085) (0.010) (0.085) -0.03 -0.14*** -0.01 (0.056) (0.009) (0.057) 0.05 0.10*** 0.04 (0.054) (0.007) (0.054) -0.03 -0.06*** -0.01 (0.071) (0.012) (0.072) 0.02 0.11*** 0.02  169304 189158 169304 0.673 0.677 0.673 Y Y Y Y |

## Consensus expectations conditional on the news exposure

Figure 1: Consensus expectations conditional on news heard





#### (b) With unfavorable employment news



Notes: Scatter plot for consensus expected inflation and unemployment each year from 1984-2023. Gray dots in all panels are expectations for individuals without employment or inflation news. Left panel: red dots are expectations conditional on hearing high inflation news. Right panel: red dots are expectations conditional on hearing high unemployment news.

## Inflation-unemployment associations in newspapers

- $P(\mathbb{I}_{i,t}(\text{Joint mention}) = 1) = \Phi(\beta_0 + \sum_k \beta_k D_{k,l,t} + \beta_\pi \pi_t + \beta_u u_t)$
- Probability of news report making association between inflation and unemployment increases significantly with realized inflation.

|             | (1)     | (2)     | (3)     |
|-------------|---------|---------|---------|
| economy     | 1.07*** | 1.07*** | 1.07*** |
|             | (0.03)  | (0.03)  | (0.03)  |
| fed         | 0.22*** | 0.21*** | 0.21*** |
|             | (0.03)  | (0.03)  | (0.03)  |
| growth      | 0.60*** | 0.61*** | 0.61*** |
|             | (0.03)  | (0.03)  | (0.03)  |
| oil price   | 0.24*** | 0.24*** | 0.24*** |
|             | (0.05)  | (0.05)  | (0.05)  |
| recession   | 0.48*** | 0.47*** | 0.47*** |
|             | (0.03)  | (0.03)  | (0.03)  |
| uncertainty | 0.14*** | 0.15*** | 0.15*** |
|             | (0.05)  | (0.05)  | (0.05)  |
| $\pi_t$     |         | 3.73*** | 3.62*** |
|             |         | (0.93)  | (0.96)  |
| $u_t$       | -0.01   |         | -0.00   |
|             | (0.01)  |         | (0.01)  |
| N           | 150465  | 150465  | 150465  |
|             |         |         |         |

Macro Implications of Subjective

Model

# Shock propagation in a textbook NK model

3-Equation NK

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa y_t + s_t$$

$$y_t = \mathbb{E}_t y_{t+1} - \frac{1}{\sigma} (i_t - \mathbb{E}_t \pi_{t+1} - \rho) + d_t$$

$$i_t = \rho + \phi_\pi \pi_t + \phi_y y_t$$

Okun's Law

$$u_t = -\chi y_t$$

Expectation formation

$$\begin{split} L_{t+1,t|t} &= \hat{A}(I - KG)L_{t,t-1|t-1} + \hat{A}KGL_{t,t-1} + \hat{A}K\eta_t \\ L_{t+1,t|t} &\equiv \begin{pmatrix} \mathbb{E}_t \pi_{t+1} \\ \mathbb{E}_t u_{t+1} \end{pmatrix} \\ L_{t,t-1} &\equiv \begin{pmatrix} \pi_t \\ u_t \end{pmatrix} \end{split}$$

## Supply shock

Figure 2: IRF in Response to Supply Shock



#### **Demand shock**

Figure 3: IRF in Response to Demand Shock



#### **Conclusion**

- Households think about macroeconomic variables jointly
- $\mathbb{E}(\pi) \uparrow \to \mathbb{E}(un) \uparrow$
- Formal tests + structural estimation suggest:
  - HH's subjective model differs from objective one.
  - Correlated expectation is not only due to information friction.
- Asymmetric reaction to inflation and unemployment (real activity) news.
  - $\bullet$   $\pi$  news triggers associations of  $\pi$  and un in expectations
  - ... as well as newspapers' narratives
- Implications for monetary policy
  - Caution on expectation management policy may have unintended contractionary effects.
  - Dampened response to demand shocks and amplified responses to supply shocks.

# **Appendix**

#### **Cross-correlation: MSC**

Table 4: Correlation MCS: more variables

|                           | (1)  | (2)     | (3)      | (4)      | (5)      |
|---------------------------|------|---------|----------|----------|----------|
| (1) inflation             | 1.00 | 0.31*** | -0.13    | -0.43*** | -0.51*** |
| $(E\pi_{t+4,t})$          |      |         |          |          |          |
| (2) unemp change          |      | 1.00    | -0.41*** | -0.64*** | -0.28*** |
| $(E\Delta un_{t+4,t})$    |      |         |          |          |          |
| (3) interest rate change  |      |         | 1.00     | 0.40***  | 0.07*    |
| $(E\Delta i_{t+4,t})$     |      |         |          |          |          |
| (4) Busi Condition change |      |         |          | 1.00     | 0.77***  |
| $(E\Delta y_{t+4,t})$     |      |         |          |          |          |
| (5) real income change    |      |         |          |          | 1.00     |
| $(E\Delta w_{t+4,t})$     |      |         |          |          |          |
|                           |      |         |          |          |          |

<sup>\* \*\*\*</sup> means significant at 1%,\*\* means 5 % and \* means 10%, data in use are quarterly 1978q1-2018q4 from MSC.

#### **Cross-correlation: FRED**

Table 5: Correlation FRED: more variables

|                      | (1)  | (2)  | (3)      | (4)      | (5)      |
|----------------------|------|------|----------|----------|----------|
| (1) CPI              | 1.00 | 0.11 | 0.38***  | -0.03    | -0.32*** |
| (2) <i>\Delta un</i> |      | 1.00 | -0.52*** | -0.79*** | -0.77*** |
| (3) <i>∆FFR</i>      |      |      | 1.00     | 0.43***  | 0.26***  |
| (4) ∆RGDP            |      |      |          | 1.00     | 0.79***  |
| (5) <i>∆w</i>        |      |      |          |          | 1.00     |
|                      |      |      |          |          |          |

 $<sup>^*</sup>$  \*\*\* means significant at 1%,\*\* means 5 % and \* means 10%, data in use are quarterly 1978q1-2018q4 from FRED.

## Time variations of the perceived correlation in consensus expectations

Estimate  $E_{i,t}\pi_{t+12,t} = \beta_0 + \beta_1 E_{i,t} u n_{t+12,t} + \theta X_{i,t} + \epsilon_{i,t}$ . Parameter of interest is  $\beta_1$ :







#### Regression by group



Cross-sectional correlation across groups

#### Controlling for individual FE and time FE

$$E_{i,t}\pi_{t+12,t} = \beta_0 + \beta_1 E_{i,t} u n_{t+12,t} + \beta_2 E_{i,t} i_{t+12,t} + \theta X_{i,t} + D_t + \mu_i + \epsilon_{i,t}$$

Table 6: FE Panel Regression

|                   | MSC      |               | SCE      |               | SPF           |
|-------------------|----------|---------------|----------|---------------|---------------|
| Unemployment up   | 0.30***  | $\hat{eta}_1$ | 0.012*** | $\hat{eta}_1$ | $-0.17^{***}$ |
|                   | (0.05)   |               | (0.002)  |               | (0.06)        |
| Unemployment down | -0.22*** |               |          |               |               |
|                   | (0.05)   |               |          |               |               |
| FE                | Υ        |               | Υ        |               | Υ             |
| Time dummy        | Υ        |               | Υ        |               | Υ             |

<sup>\*</sup> Controlling for individual and time-varying characteristics, individual fixed effect, and time-fixed effect. Standard errors are adjusted for heteroscedasticity and autocorrelation.

# Correlation of Expectations under FIRE:

• For our case  $\mathbf{L} = \begin{pmatrix} \pi_t \\ un_t \end{pmatrix}$  Empirical estimates of A from 1984-2023:

$$\begin{bmatrix} 0.87 & -0.05 \\ (0.05) & (0.06) \\ 0.02 & 0.67 \\ (0.06) & (0.11) \end{bmatrix}$$

 NW s.e. in brackets and BIC select 1 lag of VAR.



Correlation between expected variables and realized variables when A(1,2) changes under FIRE

#### **Joint Learning Test**

When it's not FIRE, maintain a simplification restriction:

#### Assumption 1

The variance-covariance matrix of prior  $\mathbf{L}_{t,t-1|t-1}^i$  is diagonal and common to each individual:

$$\Sigma := diag(\{\sigma_j^2\})$$

Consider different scenarios afore-mentioned:

- 1. When  $\hat{A}$  is diagonal, consider different G and R: Independent learning.
- 2. When  $\hat{A}$  non-diagonal: Joint learning.
  - ullet When R and G are diagonal.

#### Joint Learning Test I

#### Proposition 1

(Independent Learning) If  $\hat{A} = diag(\{a_i\}_{i=1}^n)$ , denote the off-diagonal elements of  $\hat{A}(I - KG)$  as  $\beta_{ij}$  with  $i \neq j$ . We have:

- (1)  $\beta_{ij} = 0$  if G and R are diagonal.
- (2)  $\beta_{ij} = \beta_{ji} = 0$  or  $\beta_{ij}\beta_{ji} > 0$  if G or R is non-diagonal.
  - Out test coefficient (2-d case):

$$\hat{A}(I - KG) = \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix}$$

## Joint Learning Test I

#### Proposition 1

(Independent Learning) If  $\hat{A} = diag(\{a_i\}_{i=1}^n)$ , denote the off-diagonal elements of

- $\hat{A}(I KG)$  as  $\beta_{ij}$  with  $i \neq j$ . We have:
- (1)  $\beta_{ij} = 0$  if G and R are diagonal.
- (2)  $\beta_{ij} = \beta_{ji} = 0$  or  $\beta_{ij}\beta_{ji} > 0$  if G or R is non-diagonal.
  - Independent learning + separated signals (Coibion and Gorodnichenko, 2012; Andrade and Le Bihan, 2013): zero between-correlation, non-zero auto-correlation of F.E.

$$\hat{A}(I - KG) = \begin{pmatrix} \beta_{11} \neq 0 & \beta_{12} = 0 \\ \beta_{21} = 0 & \beta_{22} \neq 0 \end{pmatrix}$$

#### Joint Learning Test I

#### Proposition 1

(Independent Learning) If  $\hat{A} = diag(\{a_i\}_{i=1}^n)$ , denote the off-diagonal elements of  $\hat{A}(I - KG)$  as  $\beta_{ij}$  with  $i \neq j$ . We have: (1)  $\beta_{ij} = 0$  if G and R are diagonal. (2)  $\beta_{ii} = \beta_{ii} = 0$  or  $\beta_{ii}\beta_{ii} > 0$  if G or R is non-diagonal.

• Independent learning + mixed signals (R.I. like in Kamdar (2019)): same signs on between-correlation of F.E.

$$\hat{A}(I - KG) = \begin{pmatrix} \beta_{11} \neq 0 & \beta_{12} <> 0 \\ \beta_{21} <> 0 & \beta_{22} \neq 0 \end{pmatrix}$$

## Joint Learning Test II: non-diagonal R

#### Corollary 1

(Non-diagonal R: correlated noises) If  $\hat{A}$  and G are diagonal and  $R = \begin{pmatrix} \sigma_{1,s}^2 & \rho \\ \rho & \sigma_{2,s}^2 \end{pmatrix}$ , the off-diagonal elements of  $\hat{A}(I - KG)$  have the same signs as  $\rho$ .

$$\hat{A}(I - KG) = \begin{pmatrix} \beta_{11} \neq 0 & sgn(\beta_{12}) = sgn(\rho) \\ sgn(\beta_{21}) = sgn(\rho) & \beta_{22} \neq 0 \end{pmatrix}$$





## Joint Learning Test II: non-diagonal G

#### Corollary 2

(Non-diagonal G: correlated signals) If  $\hat{A}$  is diagonal,  $R = \begin{pmatrix} \sigma_{1,s}^2 & 0 \\ 0 & \sigma_{2,s}^2 \end{pmatrix}$  is diagonal, and

$$G = \begin{pmatrix} g_1 & g_2 \\ 0 & g_4 \end{pmatrix}$$
, the off-diagonal elements of  $\hat{A}(I - KG)$  have the opposite signs as  $g_1g_2$ .

$$\hat{A}(I - KG) = \begin{pmatrix} \beta_{11} \neq 0 & sgn(\beta_{12}) = -sgn(g_1g_2) \\ sgn(\beta_{21}) = -sgn(g_1g_2) & \beta_{22} \neq 0 \end{pmatrix}$$



## Joint Learning Test III

#### **Proposition 2**

(Joint Learning) If off-diagonal elements of  $\hat{A}(I - KG)$  are not both zeros and of different signs, then  $\hat{A}$  is non-diagonal, regardless whether G and R are diagonal or not.

#### **Proposition 3**

(Joint Learning with separate signals) If both G and R are diagonal and  $\hat{A} = (a_{ij})_{n \times n}$  is non-diagonal, denote  $\hat{A}(I - KG) = (\beta_{ij})_{n \times n}$ . The signs of these off-diagonal elements are the same as their counterparts in  $\hat{A}$ , i.e.  $\beta_{ij}a_{ij} > 0$ .

$$\hat{A}(I - KG) = \begin{pmatrix} \beta_{11} \neq 0 & sgn(\beta_{12}) = sgn(a_{12}) \\ sgn(\beta_{21}) = sgn(a_{21}) & \beta_{22} \neq 0 \end{pmatrix}$$



## **Example I:** non-diagonal R



Off-diagonal elements of  $\hat{A}(I - KG)$  and correlation between expectations.

• A working example for illustration:

$$A = \hat{A} = \begin{bmatrix} 0.7 & 0 \\ 0 & 0.9 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 7/4 & 0 \\ 0 & 2 \end{bmatrix}, \quad R = \begin{bmatrix} 1.5 & \rho \\ \rho & 1 \end{bmatrix}, \quad G = \begin{bmatrix} 1 & 0 \\ 0 & 1/3 \end{bmatrix},$$



#### **Example II: non-diagonal** *G*



Off-diagonal elements of  $\hat{A}(I - KG)$  and correlation between expectations.

• Same working example for illustration:

$$A = \hat{A} = \begin{bmatrix} 0.7 & 0 \\ 0 & 0.9 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 7/4 & 0 \\ 0 & 2 \end{bmatrix}, \quad R = \begin{bmatrix} 1.5 & 0 \\ 0 & 1 \end{bmatrix}, \quad G = \begin{bmatrix} 1 & g_1 \\ 0 & 1/3 \end{bmatrix},$$



# **Example III:** non-diagonal $\hat{A}$ and diagonal R and G



Off-diagonal elements of  $\hat{A}(I-KG)$  and correlation between expectations.

• Same working example as before except:

$$\hat{A} = \begin{bmatrix} 0.7 & m_1 \\ 0 & 0.9 \end{bmatrix}$$



#### **Complication I: impute** *Eun*

#### Assumption 2

At each period t, survey respondent i forms a belief  $x_{i,t}$  that indicates the change of asked variable x, this belief follows a normal distribution:

$$x_{i,t} \sim N(\mu_t, \sigma_t^2)$$

The survey respondent will respond in categorical fashion:

$$category_{i,t} = \begin{cases} increase & x_{it} > b + a \\ decrease & x_{it} < b - a \\ same & x_{it} \in [-a + b, b + a] \end{cases}$$

#### **Complication I: impute** *Eun*

We want to recover  $\mu_t$ , we can observe fraction of people responding "increase"  $(f_t^u)$  and "decreasing"  $(f_t^d)$ . From normality:

$$\sigma_t = \frac{2a}{\Phi^{-1}(1 - f_t^u) - \Phi^{-1}(f_t^d)} \tag{10}$$

$$\mu_t = a + b - \sigma_t \Phi^{-1} (1 - f_t^u) \tag{11}$$

- Get a and b using average  $\sigma_t$  and  $\mu_t$  approximated by SPF. (Bhandari et al., 2025)
- Can test with  $E\pi_t$  data.



## **Complication I: impute** *Eun*

Figure 4: Recovered Expected Inflation v.s. Actual



Correlation between imputed and actual: 0.99. Back

## **Complication II: Year ahead Expectation**

• The baseline test is derived with quarter-to-quarter changes, whereas data on expectations are year-ahead. We can iterate the forecasting error equation forward:

$$FE_{t+4,t|t} = \hat{W}\hat{A}(I - KG)\hat{W}^{-1}FE_{t+3,t-1|t-1} + (I - \hat{W}\hat{A}(I - KG)\hat{W}^{-1})\mathbf{L}_{t+3,t-1} - (I + \hat{W}\hat{A}KG)\mathbf{L}_{t,t-1} + A\mathbf{L}_{t+3,t+2} - \hat{W}\hat{A}K\eta_t + w_{t+4,t+3}$$
(12)

- With  $\hat{W} = \hat{A}^3 + \hat{A}^2 + \hat{A} + I$ .
- The test results hold true as the quarterly specification. Shown with Monte Carlo.

#### **Complication II: Year ahead test**

 ${\bf Table~13:~Simulation~Results:~FIRE~or~Independent~Learning~with~Uncorrelated~Signals}$ 

| FIRE or Independent Learning: $\hat{A}=A,g_2=0,\rho=0$ |         |             |         |            |         |             |           |                       |
|--------------------------------------------------------|---------|-------------|---------|------------|---------|-------------|-----------|-----------------------|
|                                                        |         | FII         | RE      |            |         | Independen  | t Learnii | ng                    |
|                                                        | Y-ahead | l Spec (10) | Q-ahead | d Spec (6) | Y-ahead | d Spec (10) | Q-ahea    | d Spec (6             |
|                                                        | Truth   | Test        | Truth   | Test       | Truth   | Test        | Truth     | $\operatorname{Test}$ |
|                                                        | (1)     | (2)         | (3)     | (4)        | (5)     | (6)         | (7)       | (8)                   |
| $\beta_{11}$                                           | 0       | -0.01       | 0       | 0.04       | 0.54    | 0.51***     | 0.54      | 0.47***               |
|                                                        | -       | (0.03)      | -       | (0.09)     | -       | (0.09)      | -         | (0.09)                |
| $\beta_{12}$                                           | 0       | 0.03        | 0       | 0.15       | 0       | -0.14       | 0         | -0.14                 |
|                                                        | -       | (0.04)      | -       | (0.11)     | -       | (0.010)     | -         | (0.10)                |
| $\beta_{21}$                                           | 0       | 0.01        | 0       | 0.10       | 0       | -0.03       | 0         | -0.09                 |
|                                                        | -       | (0.02)      | -       | (0.09)     | -       | (0.04)      | -         | (0.11)                |
| $\beta_{22}$                                           | 0       | -0.00       | 0       | 0.18       | 0.43    | 0.49***     | 0.43      | 0.61***               |
|                                                        | -       | (0.05)      | -       | (0.12)     | -       | (0.07)      | -         | (0.11)                |

<sup>\* \*\*\*,\*\*,:</sup> Significance at 1%,5% and 10% level. Columns (2) and (6) are estimation results for year-ahead joint-learning test (10), and columns (4) and (8) are for quarter-ahead specification (6). Newey-West standard errors are reported in brackets.

## Complication II: Year ahead test

Table 14: Simulation Results: Independent Learning with Correlated Signals

|              | Independent Learning when $G$ or $R$ are non-diagonal |                   |                 |            |                 |                  |         |                       |
|--------------|-------------------------------------------------------|-------------------|-----------------|------------|-----------------|------------------|---------|-----------------------|
|              |                                                       | G non-d           | iagonal:        |            | R non-diagonal: |                  |         |                       |
|              |                                                       | $m_1 = 0,  g_2 =$ | = $0.5, \rho$ = | = 0        |                 | $m_1 = 0, g_2 =$ | =0, ho= | -2                    |
|              | Y-ahea                                                | d spec (10)       | Q-ahea          | d spec (6) | Y-ahea          | d spec (10)      | Q-ahea  | d spec (6)            |
|              | Truth                                                 | Test              | Truth           | Test       | Truth           | Test             | Truth   | $\operatorname{Test}$ |
|              | (1)                                                   | (2)               | (3)             | (4)        | (5)             | (6)              | (7)     | (8)                   |
| $\beta_{11}$ | 0.57                                                  | 0.56***           | 0.57            | 0.52***    | 0.49            | 0.43***          | 0.49    | 0.37***               |
|              | -                                                     | (0.05)            | -               | (0.08)     | -               | (0.05)           | -       | (0.09)                |
| $\beta_{12}$ | -0.14                                                 | -0.28***          | -0.10           | -0.26***   | -0.17           | -0.25***         | -0.13   | -0.24***              |
|              | _                                                     | (0.09)            | _               | (0.10)     | _               | (0.09)           | _       | (0.09)                |
| $\beta_{21}$ | -0.07                                                 | -0.10***          | -0.10           | -0.20**    | -0.09           | -0.11***         | -0.12   | -0.17                 |
|              | _                                                     | (0.04)            | _               | (0.10)     | _               | (0.04)           | _       | (0.11)                |
| $\beta_{22}$ | 0.40                                                  | 0.46***           | 0.40            | 0.55***    | 0.39            | 0.49***          | 0.39    | 0.63***               |
|              | _                                                     | (0.07)            | _               | (0.11)     | _               | (0.07)           | _       | (0.11)                |

## **Complication II: Year ahead test**

Table 15: Simulation Results: Joint Learning

|              | Joint Learning: $m_1 = 0.5$ , $G$ and $R$ are diagonal |               |                        |         |  |  |  |
|--------------|--------------------------------------------------------|---------------|------------------------|---------|--|--|--|
|              | Year-ahe                                               | ead spec (10) | Quarter-ahead spec (6) |         |  |  |  |
|              | Truth                                                  | Test          | Truth                  | Test    |  |  |  |
|              | (1)                                                    | (2)           | (3)                    | (4)     |  |  |  |
| $\beta_{11}$ | 0.54                                                   | 0.48***       | 0.54                   | 0.44*** |  |  |  |
|              | -                                                      | (0.08)        | -                      | (0.08)  |  |  |  |
| $\beta_{12}$ | 0.32                                                   | 0.49**        | 0.31                   | 0.35*** |  |  |  |
|              | -                                                      | (0.22)        | -                      | (0.10)  |  |  |  |
| $\beta_{21}$ | 0                                                      | -0.02         | 0                      | -0.08   |  |  |  |
|              | -                                                      | (0.04)        | -                      | (0.09)  |  |  |  |
| $\beta_{22}$ | 0.43                                                   | 0.54***       | 0.43                   | 0.70*** |  |  |  |
|              | -                                                      | (0.12)        | -                      | (0.14)  |  |  |  |

<sup>\* \*\*\*,\*\*,\*:</sup> Significance at 1%,5% and 10% level. Column (2)

## **Joint Estimation: Alternative Sample**

|                         | MSC, quarterly  |                 |                |                 |  |
|-------------------------|-----------------|-----------------|----------------|-----------------|--|
|                         | Q1 1984 -       | Q4 2019         | Q1 1990 - Q    | 4 2018          |  |
| Parameters              | Estimates       | Standard Errors | Estimates      | Standard Errors |  |
| Α                       | [0.807 -0.070]  | [0.059 0.114]   | [0.781 -0.060] | [0.068 0.145]   |  |
| ^                       | 0.062 0.922     | [0.022 0.072]   | [0.059 0.930]  | [0.031 0.082]   |  |
| Â                       | [0.663 -0.096]  | [0.063 0.089]   | [0.663 -0.081] | [0.080 0.094]   |  |
| Α                       | 0.189 0.807     | 0.057 0.056     | 0.271 0.769    | 0.064 0.057     |  |
| T-test:                 | test-stat       | p-val           | test-stat      | p-val           |  |
| $\hat{A}_{21}>A_{21}$   | 2.094           | 0.018           | 2.999          | 0.001           |  |
|                         |                 | SPF, qu         | ıarterly       |                 |  |
|                         | Q1 1984 - Q4 20 | 19              | Q1 1990 - Q    | 4 2018          |  |
| Parameters              | Estimates       | Standard Errors | Estimates      | Standard Errors |  |
| Α                       | [0.788 -0.070]  | [0.070 0.100]   | [0.749 -0.047] | [0.079 0.113]   |  |
| A                       | 0.048 0.906     | [0.024 0.071]   | 0.042 0.920    | [0.030 0.077]   |  |
| Â                       | [0.951 0.004]   | [0.018 0.041]   | [0.937 -0.027] | [0.021 0.030]   |  |
| Α                       | [0.026 0.787]   | 0.016 0.041     | 0.026 0.806    | 0.031 0.044     |  |
| T-Test                  | test-stat       | p-val           | test-stat      | p-val           |  |
| $\hat{A}_{21} > A_{21}$ | -0.883          | 0.811           | -0.410         | 0.659           |  |

## Joint Estimation: with Feedback loop

|                         | MSC, quarterly                                 |                 |                                                |                 |  |
|-------------------------|------------------------------------------------|-----------------|------------------------------------------------|-----------------|--|
|                         | Q1 1984 -                                      | Q4 2019         | Q1 1990 - Q                                    | 4 2018          |  |
| Parameters              | Estimates                                      | Standard Errors | Estimates                                      | Standard Errors |  |
| Α                       | [ 0.863                                        | [0.073 0.162]   | [ 0.863                                        | [0.078 0.169]   |  |
| A                       | $\begin{bmatrix} -0.003 & 0.751 \end{bmatrix}$ | [0.042 0.074]   | $\begin{bmatrix} -0.017 & 0.721 \end{bmatrix}$ | 0.042 0.076     |  |
| Â                       | [0.663 -0.096]                                 | [0.063 0.089]   | [0.663 -0.081]                                 | [0.080 0.094]   |  |
| A                       | [0.189 0.807]                                  | [0.057 0.056]   | [0.271 0.769]                                  | [0.064 0.057]   |  |
| T-test:                 | test-stat                                      | p-val           | test-stat                                      | p-val           |  |
| $\hat{A}_{21} > A_{21}$ | 2.227                                          | 0.013           | 3.112                                          | 0.001           |  |
|                         |                                                | SPF, qı         | uarterly                                       |                 |  |
|                         | Q1 1984 - Q4 20                                | 19              | Q1 1990 - Q                                    | 4 2018          |  |
| Parameters              | Estimates                                      | Standard Errors | Estimates                                      | Standard Errors |  |
| Α                       | [0.696 -0.091]                                 | [0.078 0.090]   | [0.678 -0.062]                                 | [0.086 0.107]   |  |
| A                       | 0.021 0.792                                    | [0.031 0.072]   | 0.019 0.785                                    | 0.034 0.089     |  |
| Â                       | [0.951 0.004]                                  | [0.018 0.041]   | [0.937 -0.027]                                 | [0.021 0.030]   |  |
| A                       | [0.026 0.787]                                  | [0.016 0.041]   | 0.026 0.806                                    | [0.031 0.044]   |  |
| T-Test                  | test-stat                                      | p-val           | test-stat                                      | p-val           |  |
| $\hat{A}_{21} > A_{21}$ | 0.136                                          | 0.446           | 0.1534                                         | 0.439           |  |

#### $\pi$ news drives expectations across domains but $\mathit{un}$ news is domain-specific



## Reported news in MSC

Figure 5: Type of news



Notes: Panel (a): fractions of favorable and unfavorable news reported by individuals with news in MSC. Panel (b): shares of different types of news out of total news reported each year.

#### **News** measure



Share of people that report hearing any news across time. The dashed line represents on average 60% survey participants reported hearing about some news in the past few months.

#### **News** measure





#### **Correlation conditional on news**

Table 7: Correlation Conditional on News Heard

|   | Dependent var:                   | E        |          |
|---|----------------------------------|----------|----------|
|   |                                  | (1)      | (2)      |
| - | Eun                              | 0.36***  | 0.38***  |
|   |                                  | (0.034)  | (0.047)  |
|   | Inflation fav $\times Eun$       | 0.17     | 0.16     |
|   |                                  | (0.164)  | (0.164)  |
|   | Inflation unfav $\times Eun$     | 0.36***  | 0.36***  |
|   |                                  | (0.117)  | (0.118)  |
|   | Employment fav $\times Eun$      | 0.03     | 0.03     |
|   |                                  | (0.089)  | (0.090)  |
|   | Employment unfav $\times Eun$    | -0.20*** | -0.16**  |
|   |                                  | (0.073)  | (0.074)  |
|   | Interest rate fav $\times Eun$   | -0.23**  | -0.24**  |
|   |                                  | (0.104)  | (0.104)  |
|   | Interest rate unfav $\times Eun$ | -0.16    | -0.16    |
|   |                                  | (0.114)  | (0.115)  |
|   | Industry fav $\times Eun$        |          | 0.06     |
|   |                                  |          | (0.092)  |
|   | Industry unfav $\times Eun$      |          | -0.23*** |
|   |                                  |          | (0.073)  |
|   | Demand fav $\times Eun$          |          | -0.14    |
|   |                                  |          | (0.145)  |
|   | Demand unfav $\times Eun$        |          | -0.57*** |
|   |                                  |          | (0.155)  |
|   | Gov fav $\times Eun$             |          | 0.08     |
|   |                                  |          | (0.107)  |
|   | Gov unfav $\times Eun$           |          | 0.01     |
|   |                                  |          | (0.079)  |
|   | Sentiment fav $\times Eun$       |          | 0.01     |
|   |                                  |          | (0.112)  |
|   | Sentiment unfav $\times Eun$     |          | 0.24**   |
|   |                                  |          | (0.113)  |
|   | Stock fav ×Eun                   |          | -0.11    |
|   |                                  |          | (0.085)  |
|   | Stock unfav × Eun                |          | 0.06     |
|   |                                  |          | (0.115)  |
|   | Other prices fav $\times Eun$    |          | -0.01    |
|   |                                  |          | (0.152)  |
|   | Other prices unfav $\times Eun$  |          | -0.16    |
|   |                                  |          | (0.130)  |
|   | Other real fay $\times Eun$      |          | -0.11    |
|   |                                  |          | (0.168)  |
|   | Other real unfav $\times Eun$    |          | -0.21    |
|   |                                  |          | (0.157)  |
|   | Wage fav ×Eun                    |          | -0.17    |
|   |                                  |          | (0.235)  |
|   | Wage unfav $\times Eun$          |          | 0.00     |
|   | rruge unite ADM                  |          | (0.224)  |
|   |                                  | 167346   | 167346   |
| - |                                  |          |          |
| - | Observations<br>R <sup>2</sup>   | 0.674    | 0.675    |

## Newspaper coverage of inflation and unemployment



The news coverage is defined as the sum of ratios of the word frequency divided by the total number of words in each article.

## News on inflation and unemployment is domain-specific





News coverage measured in the WSJ news archive.

## Inflation news is always labeled as bad news

 Table 7: News Coverage and Self-Reported News Exposure

| Topic        | Any News | Bad News | Good News |
|--------------|----------|----------|-----------|
| Inflation    | 0.605    | 0.627    | -0.048    |
| Unemployment | 0.373    | 0.295    | 0.153     |

#### **Topics in Inflation-Unemployment Narratives**



#### **Keywords in Different Inflation-Unemployment Narratives**



- Andrade, Philippe and Hervé Le Bihan, "Inattentive professional forecasters," *Journal of Monetary Economics*, 2013, 60 (8), 967–982.
- **Bhandari, Anmol, Jaroslav Borovička, and Paul Ho**, "Survey data and subjective beliefs in business cycle models," *Review of Economic Studies*, 2025, *92* (3), 1375–1437.
- Candia, Bernardo, Olivier Coibion, and Yuriy Gorodnichenko, "Communication and the Beliefs of Economic Agents," Working Paper 27800, National Bureau of Economic Research September 2020.
- **Coibion, Olivier and Yuriy Gorodnichenko**, "What Can Survey Forecasts Tell Us about Information Rigidities?," *Journal of Political Economy*, 2012, *120* (1), 116 159.

#### References ii

- **Kamdar, Rupal**, "The Inattentive Consumer: Sentiment and Expectations," 2019 Meeting Papers 647, Society for Economic Dynamics 2019.
- **Lucas, Robert E.**, "Econometric policy evaluation: A critique," *Carnegie-Rochester Conference Series on Public Policy*, 1976, 1, 19 46.
- Maćkowiak, Bartosz, Filip Matějka, and Mirko Wiederholt, "Dynamic rational inattention: Analytical results," *Journal of Economic Theory*, 2018, *176*, 650–692.
- **Sims, Christopher A.**, "Implications of rational inattention," *Journal of Monetary Economics*, 2003, *50* (3), 665 690. Swiss National Bank/Study Center Gerzensee Conference on Monetary Policy under Incomplete Information.
- **Woodford, Michael**, "Imperfect Common Knowledge and the Effects of Monetary Policy," Working Paper 8673, National Bureau of Economic Research December 2001.