Poland, Kraków, AGH-UST: a 6-slide intro

Sławomir Zieliński, PhD slawek@agh.edu.pl

Who am I

- I started to work at AGH University in 1997 (during my 3rd year of study)
- I was graduated (MSc) in 2000
- I do research and teaching in subjects related to computer networking
- I'm the first Cisco Networking Academy instructor in Poland
 - I've got two Instructor Excellence Advanced Level awards,
 - (more importantly) together with Łukasz Czekierda
 we provide CCNP trainings for future Cisco employees (30+ yearly)
- I finished my PhD in 2009
 - it was about dynamic deployment of peer-to-peer networks

About Kraków & Poland

- Poland: somewhere north-east from Spain (a bit more to the east)
 - more precisely: about 3250km drive
- 7 neighbour countries
- 38,5 mln inhabitants (#34)
- GDP per capita PPP (IMF 2016): #43 (27 764\$)
- Kraków? Choose a colour, please...

About Kraków & Poland

- Kraków (50N, 20E):
- former capital city of Poland (formally until 1795, in fact until 1596)
- no, there are no white bears in the streets
 (in fact, there are no bears in the streets at all)
- 760.000 citizens (growing)
- 31 universities; 180.000 students (growing)

About AGH University

- The university was established in 1919
 - there are about 2000 professors,
 and about 39.000 students (22% of Kraków students)
 - there are 16 faculties (15 of them technical)
- We've been constantly ranked #4-6 in Poland overall...
- ... and we've been constantly ranked #1 in IT

the networking lab is here

My goals

- To present and discuss the way we teach people
 - I'm going to present a sample lecture
- (maybe) To present and discuss the list of courses offered to our students
- (maybe) To present and discuss the main project
 (Małopolska Educational Cloud) I've been working on
- To encourage some of you to visit my country, city and university
 - I personally would like to know (and please be bold) what you know/think about Poland, etc.

addressing protocol changes accompanying mechanisms

figures based on Cisco Systems Networking Academy icons S.Zieliński,

Topics for today

- (1) IPv4 deficiencies
- (2) IPv6 addressing
- (3) neighbor discovery
- (4) autoconfiguration
- (5) tunnelling
- (6) IPv6 packet structure
- (7) IPv6 protocol optimizations
- (8) Mobile IPv6

Sources

- RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
- RFC 3587: IPv6 Global Unicast Address Format
- RFC 4291: IPv6 Addressing Architecture
- RFC 3177: IAB/IESG Recommendations on IPv6 Address Allocations to Sites
- RFC 3879: Deprecating Site Local Addresses
- RFC 3697: IPv6 Flow Label Specification
- RFC 2675: IPv6 Jumbograms
- RFC 4294: IPv6 Node Requirements
- RFC 3484: Default Address Selection for IPv6
- RFC 4311: Host-to-Router Load Sharing
- RFC 2991: Multipath Issues in Unicast and Multicast Next-Hop Selection
- RFC 2464: Transmission of IPv6 Packets over Ethernet Networks
- RFC 4861: Neighbor Discovery for IPv6
- RFC 2462: IPv6 Stateless Address Autoconfiguration
- RFC 4191: Router Preferences and More-Specific Routes
- RFC 4311: IPv6 Host-to-Router Load Sharing
- RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
- www.cisco.com: Implementing IPv6 for Cisco IOS Software
- cisco.customerelearning.com: IPv6

IPv4 address space exhaustion

- What techniques are (or were) used to conserve IPv4 address space?
 - VLSM (Variable Length Subnet Masks),
 - CIDR (Classless Inter-Domain Routing),
 - _xDSL was here DHCP (Dynamic Host Configuration Protocol)
 - NAT (Network Address Translation) with overloading and private address space
- If there were no IPv4 address space conservation mechanisms in place, it would have been exhausted in 1995(!)

Hamachi – what's that?

IPv4 deficiencies

Was IPv4 designed for "Internet" or "internet"?

IPv4 does not address the following:

- security: privacy, confidentiality, ...
- device autoconfiguration,
- diversity of connected devices ← ???

IPv4 PDU hardware processing is not easy:

- routers sometimes need to slice (fragment) packets,
- the definition of IPv4 is de facto fixed (e.g., it is hard to add new options)

The decision: the protocol is going to be redesigned

100.00% 90.00% 80.00%

> 70.00% 60.00%

> 50.00% 40.00% 30.00%

20.00%

10.00%

Brain reset

- Which of the following protocols is used to conserve IPv4 address space?
 - CIDR
 - DHCP
 - NAT
 - ARIN
- What options are implemented in IPv4?

Larger address space virtues

- Better reachability of devices
- Ability to use arbitrarily chosen L4 protocol
- Ability to configure direct secured link (without intermediary devices)

IPv6 address assignment

Archimedes' estimation of the number of sand grains in the universe: hai myriakismyriostas periodou myriakismyrioston arithmon myriai myriades, means about 1063 ... so - the IPv6 addressing space is insufficient, because 2128 is a little above 3,4*1038 (8)

IPv6 address space

IPv6 address

Full notation:

hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh

64 bits: network

64 bits: host

- 128 bits \rightarrow 2¹²⁸=3,4*10³⁸ possible addresses

- - example: 2001:0dbd:8000:6561::/32

IPv6 address notation

- Full notation: 2001:0db8:0000:0000:0000:0000:0800:012a
- Without leading zeros: 2001:db8:0:0:0:0:800:12a
- Abbreviated notation (with ::): 2001:db8::800:12a
- Erroneous notation:

2031::130F.9C0:876A:130B

Globally unique addresses

• Structure:

- SLA = site level aggregator (RFC 2374) → now "subnet ID"
- EUI = extended universal identifier (IEEE standard)
- Addresses beginning with 2000::/16 E000::/16
 (currently only 2000::/16, 001xxxxxx in binary)
 are assigned by IANA (Internet Assigned Numbers Authority)

Site local addresses

- Functionally equal to IPv4 private (RFC 1918) addresses
 - routers cannot forward packets with source/destination addresses of that pool outside a certain domain
 - prefix: FEC0::/10 (1111 1110 11)
 - although it ispossible to use 54 bits for subnet address, it is recommended to use only 16 - the same bits that are used for subnet address in global addresses
 - the format:

1111 1110 11	0	subnet	interface ID

- **DEPRECATED**: RFC 3879
- RFC 4193: Unique Local IPv6 Unicast Addresses FC00::/8
 - ... no comments ...

Link local addresses

- Used for autoconfiguration and neighbor discovery
 - local nodes do not need global addresses; link local addresses are enough
 - link-local means "no router between"
 - prefix: FE80::/10 (1111 1110 10)
 - format:

1111 1110 10	0	Λ	interface ID
ևուս ուսս ով	U	l O	interface ID

- interface IDs are created in various ways, depending on L2 technology
 - Ethernet based on MAC
 - ISDN based on E.164

Interface ID generation methods

- Autoconfiguration based on 64-bit L2 address (EUI-64)
- Autoconfiguration based on 48-bit L2 address (MAC)
- Autoconfiguration using DHCP
- Manual configuration
- Autoconfiguration based on pseudo-random number
- Autoconfiguration based on cryptographic methods (CGA = cryptographically generated address)

Ethernet interface ID

Result: **EUI-64** (extended universal identifier)

Current address space usage

Addresses are assigned from 1/8 of the overall address space

RFC 6890: Special-Purpose IP Address Registries

- ::/128 unspecified

loopback - ::1/128

- 64:ff9b::/96 for IPv4 – IPv6 (RFC 6052) translators

- ::ffff:0:0/96 IPv4 mapped address

- 100::/64 discard-only (for RTBH, RFC 3882, RFC 5635)

- 2001:db8::/32 documentation

- 2002::/16 6to4 tunnels

Current address space usage

bgp.potaroo.net (24.04.2017):

- 987003 IPv6 users in Poland, i.e., 3,53% of Polish Internet users...

- other countries:

Russia: 1,26%, 8,45%, Romania: Czech Rep.: 10,2%, Switzerland: 34,9%, 55,4% Belgium:

What about Spain? and Portugal? ... well: 0,57% (217572), and 26,6% (1840308)

This means: you've got homework to do...

Globally routed IPv6 prefixes

Source: http://bgp.potaroo.net/v6/as2.0/index.html

Globally routed IPv4 prefixes

Source: http://bgp.potaroo.net/as2.0/bgp-active.html

Load balancing

- Host can use multiple routers
 - RFC 2461: round-robin
 - problem #1: no route characteristics are taken into account
 - problem #2: synchronization
- Recommended reading: RFC 4311, RFC 2991

IPv6 address space

IPv6 addresses unicast (single host) multicast (group of hosts) anycast (any host from a specific group)

Multicast

- Denotes a group of interfaces
 - typically the interfaces belong to different hosts
 - format:
 - prefix: FF00::/8 (1111 1111)
 - lifetime (4b), scope (4b)

multicast from the FF02::/16 range is well-known (assigned by IANA), link-local

Multicast addresses

group ID

Scopes:

- interface-local: something like multicast loopback
- link-local: inside local LAN (not forwarded by routers)
- site-local: inside a domain
- admin-local: something in between link and site local
- organization-local: inside an organization
- 0: silently dropped by any device
- F: reserved, but in practice equivalent to E (global)

Multicast addresses ctd.

Some permanent (well-known) addresses:

- "all hosts in the LAN"
- "all routers in the LAN"
- "all RIPng routers"
ff02::1
ff02::2
ff02::9

- ...

 The meaning (and application) of some multicast addresses does not depend on their scope, e.g.:

```
- FF01::101 - "all NTP servers on the same interface"
```

- FF02::101 "all NTP servers on the same link"
- FF05::101 "all NTP servers in the same site"

- ...

 Temporary (transient) addresses meaning can be different in different networks

Reserved multicast addresses

- ff0*::/16 don't even try to use them (RESERVED) ©
- Each node is obliged to receive the following multicasts:
 - ff01::1, ff02::1 all nodes (interface local & link local),
 - ff02::1:ffxx:xxxx/104 (solicited node multicast address)
 - substitute 'x' with 24 least significant bits of any node address
 - ff02::1:FF24:2424 example: is a solicited node multicast for 2025:01::3624:2424
- Routers have also to listen for ff01::2, ff02::2, ff05::2 (all-routers multicast)

"What you have" addresses

- GLOP what is that?
 - according to uncle Google:"sticky and amorphous matter, typically something unpleasant"
- Correct answer: a range of multicast addresses defined by the AS number (e.g., AS 3172 → 233.12.100.0/24)
- IPv6 has a similar concept, prefix-based multicast

There are more multicast address types to find @ ...

IPv6 address space

Anycast address

- Syntactically identical to unicasts
- Identifies a set of interfaces
 - the interfaces typically belong to different hosts
- Application:
 - identification, e.g., of a set of database servers,
 - identification of a time synchronization service,
 - ...
- IP packet destined for an anycast is forwarded to the nearest interface of the group
 - the distance is defined by routing protocols

Anycast address

- Anycast cannot be used as a source address (!) for session initiation
 - typical configuration: anycast is configured on a loopback interface,
 so it is not the first-choice address for new sessions
- Example: subnet-router anycast (e.g., 2001:db8:1:1::/64)
 - interface ID is "0"
- An interesting application: anycast sinkholes
 - a sinkhole is a place that receives all unwelcome/suspected traffic and drops/analyzes it
 - in a large network the forwarded traffic consumes
 a significant amount of bandwidth → we need more sinkholes
 - anycast sinkhole simplifies the configuration, because multiple sinkholes can be identified with a single address
- Other applications: DNS, NTP, syslog, RADIUS, Kerberos, ...

Anycast addresses

- Problem: how can a host announce its anycast address?
- Solution: using a dynamic routing protocol
- Effect: the host becomes a router
- RFC 4294 definitions:
 - **IPv6 Node**: a device that implements IPv6
 - **IPv6 Router**: a node that forwards IPv6 packets
 - not explicitly addressed to itself
 - IPv6 Host: any node that is not a router

Brain reset

- How many times are IPv6 addresses longer than IPv4 ones?
 - 2
 - 4
 - 6
 - 8
- How can a host obtain a link-local address?

IPv6 Neighbor Discovery, SLAAC

IPv6 Neighbor Discovery

- Potential uses:
 - IPv6 node discovery
 - e.g., in case of router "disappearance" hosts actively search for another
 - L2 address discovery
- The functionality is similar to:
 - ARP
 - ICMP (subset)
- ND is based on L2 multicasts

Solicited node multicast

- Every node needs to belong to the following multicast groups:
 - ff01::1, ff02::1 all nodes multicast,
 - ff02::1:ffxx:xxxx/104 solicited node multicast (replace 'x' with 24 least significant bits of any unicast or anycast address served by the device)

example: if a host has an address fe80::be:deaf

it needs to listen on multicast ff02::1:ffbe:deaf

What MAC address will be used for that IPv6 multicast?

IPv6 Neighbor Discovery (ARP?)

IPv6 address

IPv6 ND - DAD (gratuituous ARP?)

No response is good news ...

IPv6 Router Discovery (IRDP?)

Router Advertisement:

ICMPv6 type = 134

Src = router's address (link-local)

Dst = all-nodes multicast (FF02::1)

Data= options, network prefix, validity, flags

Routers send out their advertisements periodically.

A host does not need to wait for an advertisement (it can send out "router solicitation").

What will be the destination address of a router solicitation message?

Autokonfiguracja

- Autokonfiguracja bezstanowa (stateless)
 - podstawa: duża przestrzeń adresowa pozwala na zrealizowanie mechanizmu "plug and play" dla hostów IPv6 przypisującego adresy IP z zachowaniem globalnej jednoznaczności
 - algorytm działania:
 - ogłoszenie routera zawiera m.in. 64-bitowy prefiks sieci
 - host dopełnia prefiks własnym 64-bitowym identyfikatorem
 - taki proces jest szczególnie użyteczny w przypadku urządzeń mobilnych
 - można w ten sposób dość łatwo przeadresować sieć
 - wystarczy rozesłanie nowego prefiksu przez router
 - jeśli host nie znajdzie routera, próbuje znaleźć serwer DHCP
 - FF02::1:2 "all DHCP agents"
 - FF05::1:3 "all DHCP servers"

Autokonfiguracja - rozszerzenia

- RFC 4941: Privacy Extensions for Stateless Address Autoconfiguration in IPv6
 - problem: generowane adresy IPv6 są niezmienne, co ułatwia pracę podsłuchiwaczom...
 - sposób rozwiązania: zmieniać adresy, tzn. skomplikować procedurę ich automatycznego tworzenia i utrudnić identyfikację urządzenia
 - składowe rozwiązania:
 pseudorandom bazujący również na globalnym prefiksie + MD5
- Ale... po co podsłuchiwać? Scenariusz:
 - 1. host Telefon jest używany w sieci karczmy Rzym...
 - 2. właściciel karczmy, niejaki Dzierżymord, instaluje tam co nieco, i zapamiętuje dolne 64 bity adresu IPv6 hosta Telefon
 - 3. host Telefon wędruje do sieci BardzoWażnejFirmy (BWF) ma nowy prefiks (znany w okolicy), ale "dół" mu się nie zmienia
 - 4. Dzierżymord zdalnie aktywuje co nieco i kontaktuje się z szefostwem BWF w celu uzyskania nieuprawnionych korzyści finansowych...

$IPv4 \leftrightarrow IPv6$

- There is no transition date set ©
- There are quite a few mechanisms for IPv6 ←→ IPv4 communication
 - IPv6 islands and tunnels
 - IPv6 to/from IPv4 protocol translators
 - (hopefully) IPv4 islands ...
- The basic element: a dual-stack system

"6in4" tunnels

"6to4" tunnels

IPv6 network prefix:

2002:c0a8:6301::/48

IPv6 network prefix:

2002:c0a8:1e01::/48

- Uses a dedicated, reserved address space (2002::/16)
- 32 bits of prefix contain IPv4 address of the destination router

Translators

- Allow IPv6 to/from IPv4 communication
- They do not require any additional configuration on the hosts
- Problems (header): path MTU, fragmentation
- Example technologies:
 - NAT-PT, NAPT-PT
 RFC 2766; deprecated in RFC 4966,
 - NAT64 (RFC 6146) stateful (!)
 - SIIT (RFC 6145,6791) stateless translation of IP/ICMP
 - 464XLAT (RFC 6877) IPv4 islands over IPv6 "sea?" communication

0

IPv6 Packet

[IPv4] Problem #1: fragmentation

- Fragmentation can occur multiple times
 - it can result in <u>really small</u> fragments
 - each of the fragments is a separate IP packet
 → checksum, header, routing...
- IPv6: Hosts are obliged to implement path MTU discovery
- IPv6: minimum MTU 1280 (IPv4: 68), recommended 1500
 - if the link layer does not support such MTU,
 it needs to provide fragmentation & de-fragmentation mechanisms

[IPv4] Problem #2: QoS

- Basic metrics: bandwidth, delay, jitter, packet loss
- Typical approaches: best effort, IntServ, DiffServ
 - (except the first) they need data stream identification
- A stream is identified with (parts of) information from L3 and L4 (!)
- Each of the routers processes the packets independently
 - no signalization protocol,
 - separate identification of streams → more CPU power needed

[IPv4] Problem #3: Options

- There is a way to define a proprietary option...
- ... but there is also an obligation to process each of the options on every L3 forwarding device...
- Side effect: variable header length

IPv6 packet

- Basic assumption: we need to simplify processing
 - 64-bit alignment,
 - no header recalculation on routers

Simplified (compared to IPv4)

total length		type of service	header len	version
fragment offset	flags	ication	identific	
header checksum		protocol	to live	time
	address	source		
	n address	destinatio		
padding		options		
24 3	16	8	8	0
flow label		class	traffic	version
eader hop limit	next	llength	payload	
	address ·			
		300100		
	n address	destinatio		

Fragmentation – possible, but only at the sender node

version	header len	type of servi	ce		total	length	
	identif		fla	gs	fr	agment	offset
time	to live	protocol			header o	checksur	n
		9	source addre	SS			
		des	stination add	ress			
		opti	ions				padding
0		8	16			24	
version	traffic	class	<u> </u>		flow label	<u>i</u>	
	payload	llength		next	header		hop limit
		S	source addre	SS			
		des	stination add	ress			

Header length is constant, 40 octets

	9 9 9							_
version	header len	type of	service		total	length		
	identif	ication		flags	fr	agment of	ffset	
time t	o live	prot	ocol		header o	checksum		
			source	address				
			destinatio	n address				
			options				padding	
0		8		16		24		32
version	traffic	class			flow label			
	payload	l length		next	header	h	op limit	
			··· SOURCA	address				
			3001CE					
								_
			··· destinatio	n address				

• Options (if any) are placed in extension headers

	(11 5111	/ /						_
version	header len	type of	service		total	length		
	identifi	cation		flags	fr	agment off	fset	
time	to live	prot	ocol		header o	checksum		
			source	address				
			destinatio	n address				
			options				padding	
0		3		16		24		3
version	traffic	class			flow label	<u> </u>		1
70101011	payload			next	header	ho	p limit	
			source	address				
								\dashv
			··· destination	n address				

• There is no header checksum

<u> </u>	5 110 11	caaci ci	CCRSGIII					
he	ader len	type of	service		total	length		7
	identif	ication		flags	fr	agment o	ffset	
to li	ive	prot	ocol		header	checksum		
			source	address				
			destination	on address				
			options				padding	
		8		16		24		3
		<u> </u>	Г					-
ersion traffic class					flow label	.		4
	payload	d length		next	header	<u> h</u>	op limit	4
			source	address				
								4
			···· destination	on address				

www.ki.agh.edu.pl S.Zieliński, AGH 2017

IPv6 header

Some fields have similar (or identical) meaning

					<u> </u>			_
version	header len	type of	service		total	length		
	identif	ication		flags	fr	agment o	ffset	
time	to live	prot	tocol		header	checksum		
			source	address				7
			destinatio	n address				
			options				padding	
								7
0		0		16	7	24		27
U		8		16		24		32
version	traffic	class			flow label	•		٦
	payload	llength	•	next header hop limit			op limit	7
	. ,			•		•	•	7
			Source	address				""
								"
								7
								"
			uestinatio	n address				
								_

IPv6 packet options

- "next header" identifies either an additional option header or a L4 header
- In the unlikely case of IPv6/IP6 tunneling, the field can point even to an additional IPv6 header

IPv6 options

- Currenty a few options are standardized:
 - Hop-by-Hop Options
 - Routing
 - Fragment
 - Destination Options

Authentication
 RFC 2402

Encapsulating Security Payload
 RFC 2406 IPSec

Mobility Header

- Most of them are not processed by routers
 - exceptions: Hop-by-Hop Options Header, Routing Header
- The sequence of options is also standardized

• Some fields have similar (or identical) meaning

				1	1) Incum		
version	header len	type of	service		total	length	
	identif	ication		flags	fr	agment o	ffset
time	to live	prot	cocol		header o	checksum	
			source	address			
			destination	on address			
			options				padding
0		8		16		24	
version	traffic	class					
	payload	d length		next	header	h	op limit
			source	address			
			destination	on address			

Some fields have similar (or identical) meaning

version	header len	type of	service	e total length				\Box
	identifi			flags		agment o	ffset	
time	to live	prot	ocol			checksum		
			source	address				
			destinati	on address				
			options				padding	
0		3		16		24		3
version	traffic	class			flow label	<u> </u>		
	payload			next	header	h	op limit	
			··· source	address				
			destinati	on address				

Some fields have similar (or identical) meaning

00111	e neras m		.a. (3. i.	a ci i ci ca i	,	9		
version	header len	type of s	service		total	length		
	identific	cation		flags	fr	ragment	offset	
time	to live	proto	ocol		header	checksur	m	
	†		source	address				
			destinatio	n address				
			options				padding	
0	8	B		16		24		
version	traffic	class			flow label		<u> </u>	
	payload	length		next	header		hop limit	
			SOURCE	address				
			504166					
								_
			destination	n address				
				444. 655				

U	0		10		24	3
version	traffic class			flow label		
	payload length		next	header	hop limit	
		··· source	address			
						4
		··· destinatio	n address			
						- 1

- traffic flow: a sequence of packets forwarded from a specific source to a specific destination
 - IPv4 routers identify flows based on IP addresses, L4 protocol number and port numbers
 - problems: fragmentation, encryption
 - in case of IPv6 such approach would be even more complicated; we do not have an all-headers-length field

0	8	16		24	3
version	traffic class		flow labe	el	
	payload length		next header	hop limit	
		source ad	dress		
		··· destination a	address		
1					

- flow label is used by traffic sources to mark the distinct flows
 - IPv6 identifies flows based only on L3 layer information
 - no need to analyze or even know L4 PDU
 - we finally can implement and deploy our own L4 protocol
- Source hosts SHOULD assign new labels to the flows
- Routers SHOULD NOT modify the labels

IPv6 Mobility

- ... only key concepts, really ...
- no agent discovery,
- no registration,
- no hierarchical mobility,
- no ...

Mobile IPv4 - sketched

- CN sends a packet to MN
- the packet is intercepted by HA
- HA forwards it to FA
- FA forwards it to MN

0

1. CN sends a packet to MN

source IP: CN destination IP: MN

data

2. The packet is intercepted by HA

source IP: CN destination IP: MN

data

figures based on Cisco Systems Networking Academy icons www.ki.agh.edu.pl S.Zieliński, AGH 2017

3. HA forwards the packet to FA

source IP: HA destination IP: FA

source IP: CN destination IP: MN

data

data

The packet is tunnelled to FA, more precisely – to the CoA (care-of address).

4. FA forwards the packet to MN

source IP: CN destination IP: MN

data

FA decapsulates the packet and forwards it to the destination (MN).

$MN \rightarrow CN$

Packets from MN to CN are routed normally, without tunnelling, etc. FA is a default gateway for MN.

The whole scenario is called "triangle routing".

Mobile IPv6 (RFC 3775, 3776)

• IPv6:

- separates "locator" from "identifier",
- new header, called "mobility header" and a new type of routing header are defined
- Mobile IPv6 does not use FA
 - uses co-located CoA only (the tunnel ends at the MN)

Locator != Identifier

- Locator = localizes the host (tunnel endpoint, CoA)
 - topologically correct in FN,
 - created, e.g., with SLAAC,
 - used for communicating with HN,
 - MN communicates the HA to create a tunnel to itself

typical

- Identifier = identifies the host (connection endpoint)
 - persistent,
 - globally unique,
 - used for communicating with other hosts
- Could CN forward packets directly to MN?
 - Yes there is a Routing Header in IPv6...
 - ... but CN needs to know the CoA

optional

0

Routing Header

Example:

Source Address = S

Destination Address = **I1**

Destination / taaress ==			
Next Header = xx	Hdr Ext Len = 6	Routing Type = 0	Segments Left = 3
Address[1] = I2			
Address[2] = I3			
Address[3] = D			

Example:


```
Source Address = S

Destination Address = S

Next Header = S

Address[1] = S

Address[2] = S

Address[3] = S

Address[3] = S
```

Router I1 exchanges the first entry with the destination address and decreases the counter value.

• Example:

Routing Header

III III

Router I1 exchanges the first entry with the destination address and decreases the counter value.

Example:

Source Address = S

Destination Address = **I3**

Next Header = xx | Hdr Ext Len = 6 | Routing Type = 0 | Segments Left = (1)

Address[1] = I1

Address[2] = 12

Address[3] = D

Router I2 exchanges the destination address with the second entry.

Example:

Source Address = S

Destination Address = **I3**

Next Header = xx | Hdr Ext Len = 6 | Routing Type = 0 | Segments Left = 1

Address[1] = I1

Address[2] = I2

Address[3] = D

The next router is not on the list, so it does not modify anything

Example:

Source Address = S

Destination Address = D

Next Header = xx | Hdr Ext Len = 6 | Routing Type = 0 | Segments Left = 0

Address[1] = I1

Address[2] = I2

Address[3] = $\mathbf{13}$

Router I3 exchanges the destination address with the last entry. In Mobile IPv6, D could be the MN.

To sum up...

- (1) IPv4 deficiencies:
 addressing, (in)security, no autoconfiguration;
 NAT is a workaround, not a solution
- (2) IPv6 addressing hierarchical, designed with L2 in mind
- (3) neighbor discovery a bunch of mechanisms for various purposes
- (4) autoconfiguration stateless (SLAAC) or stateful (DHCP)
- (5) tunnelling
 the way to interconnect IPv6 islands through IPv4 mud sea
- (6,7) IPv6 packet structure & protocol optimizations designed so that routers can operate on L3 only
- (8) Mobile IPv6

briefly touched; something to read about during summer holidays ;-)

Sources (again)

- RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
- RFC 3587: IPv6 Global Unicast Address Format
- RFC 4291: IPv6 Addressing Architecture
- RFC 3177: IAB/IESG Recommendations on IPv6 Address Allocations to Sites
- RFC 3879: Deprecating Site Local Addresses
- RFC 3697: IPv6 Flow Label Specification
- RFC 2675: IPv6 Jumbograms
- **RFC 4294: IPv6 Node Requirements**
- RFC 3484: Default Address Selection for IPv6
- RFC 4311: Host-to-Router Load Sharing
- RFC 2991: Multipath Issues in Unicast and Multicast Next-Hop Selection
- RFC 2464: Transmission of IPv6 Packets over Ethernet Networks
- **RFC 4861: Neighbor Discovery for IPv6**
- RFC 2462: IPv6 Stateless Address Autoconfiguration
- RFC 4191: Router Preferences and More-Specific Routes
- RFC 4311: IPv6 Host-to-Router Load Sharing
- RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
- www.cisco.com: Implementing IPv6 for Cisco IOS Software
- cisco.customerelearning.com: IPv6

To be continued

Recommended reading:

- RINA (Recursive Internet Network Infrastructure)
- NDN (Named Data Networking)