2535

DRINKING WATER SURVEILLANCE PROGRAM

GRIMSBY WATER TREATMENT PLANT

Annual Report 1990

GRIMSBY WATER TREATMENT PLANT

DRINKING WATER SURVEILLANCE PROGRAM

ANNUAL REPORT 1990

AUGUST 1992

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1992
This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 2035 Log 92-2302-259

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

GRIMSBY WATER TREATMENT PLANT 1990 ANNUAL REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1990, 76 systems were being monitored.

The Grimsby water treatment plant is a conventional treatment plant which treats water from Lake Ontario. The process consists of coagulation, flocculation, sedimentation, filtration, taste and odour control and disinfection. This plant has a designed capacity of 20.9 x 1000 $\rm m^3/day$. The Grimsby water treatment plant serves a population of approximately 17,900.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), and organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons, specific pesticides and volatiles). Samples were analyzed for specific pesticides and chlorophenols twice a year in the spring and fall.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Grimsby water treatment plant, for the sample year 1990, produced good quality water and this was maintained in the distribution system.

TABLE A
DRINKING WATER SURVEILLANCE PROGRAM GRIMSBY WTP

SUMMARY TABLE BY SCAN

AP

RESULT 1	S GREATER INDICATES	THAN THE S THAT NO SA	TATISTI	CAL LIMIT OF S TAKEN	DETECTIO	ON AND	IS QUANTIFIA	BLE
TESTS	POSITIVE	RAW %POSITIVE	TESTS	TREATE POSITIVE %PO	ED DSITIVE	TESTS	SITE 1 POSITIVE %POS	1 OSITIVE
- 21	13	88	'n	-	8	5	м	99
18	17	76	53	28	%	2	07	95
132	115	87	132	86	7.2	228	192	*
144	69	27	144	54	37	276	129	97
88	0	0	8	0	0	88	0	0
12	0	0	12	0	0	•		•
101	0	0	101	0	0	17	0	0
204	0	0	204	0	0	127	0	0
50	0	0	9	0	0	•		•
20	0	0	20	0	0	9	0	0
174	0	0	174	54	13	174	54	13
939	214		941	502		981	388	
	RESULT 1 A * : 1 TESTS 132 132 132 144 124 127 127 137 137 137 137 137 137 137 13	RESULT IS GREATER A '.' INDICATES A '.' INDICATES TESTS POSITIVE 132 115 132 115 134 69 84 00 12 00 12 00 50 00 5174 00	RESULT IS GREATER THAN THE S A 1.1 INDICATES THAT NO SA SITE RAJE NO SITIVE XPOSITIVE	RESULT IS GREATER THAN THE STATISTICATES AND ICANO IN CAMPLE WAS AND ICANO IN	HESULT IS GREATER THAN THE STATISTICAL LIHIT OF ATIST OF	RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION OF AMPLE WAS TAKEN TESTS POSITIVE XPOSITIVE TESTS POSITIVE XPOSITIVE 15	RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND AND LAND LAND LAND LAND LAND LAND	TI OF DETECTION AND IS QUANTIFICATED THE APOSITIVE TESTS POSITIVE THE APOSITIVE TESTS POSITIVE

DRINKING WATER SURVEILLANCE PROGRAM

GRIMSBY WATER TREATMENT PLANT 1990 ANNUAL REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1990, 76 systems were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Grimsby water treatment plant in the winter of 1987. Previous annual reports have been published for 1987, 1988 and 1989.

PLANT DESCRIPTION

The Grimsby water treatment plant is a conventional treatment plant which treats water from Lake Ontario. The process consists of coagulation, flocculation, sedimentation, filtration, taste and odour control and disinfection. This plant has a designed capacity of 20.9 x 1000 $\rm m^3/day$. The Grimsby water treatment plant serves a population of approximately 17,900.

The sample day flows ranged from $6.6 \times 1000 \text{ m}^3/\text{day}$ to $8.0 \times 1000 \text{ m}^3/\text{day}$.

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

At all distribution system locations two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals, due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples therefore, were General Chemistry and Metals. The free flow

sample represented fresh water from the distribution main, since the sample tap was flushed for five minutes prior to sampling.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

Stringent DWSP sampling protocols were followed to ensure that all samples were taken in a uniform manner (see Appendix B).

Plant operating personnel routinely analyze parameters for process control (Table 2).

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), and organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons, specific pesticides and volatiles). Samples were analyzed for specific pesticides and chlorophenols twice a year in the spring and fall. Laboratory analyses were conducted at the Ministry of the Environment facilities in Rexdale, Ontario.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary break-down of the number of water samples analyzed by parameter and by water type. The number of times that a positive or trace result was detected is also reported.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 presents the results for parameters detected on at least one occasion.

Table 6 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 5 and 6. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

- THE TREATED AND DISTRIBUTED WATER;
- ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND
- POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples.

Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were reported above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C. The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of the delivered water may increase in the distribution system due to the warming effect of the soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Maximum Desirable Concentration of 15°C in 3 of 11 treated and distributed water samples with a maximum reported value of 19.0°C.

CHEMISTRY (LAB)

The ODWos indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and would possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Aesthetic or Recommended Operational Guideline of 80-100 mg/L in 12 of 12 treated and distributed water samples with a maximum reported value of 146.7 mg/L.

Turbidity in water is caused by the presence of suspended matter such as clay, silt, colloidal particles, plankton and other microscopic organisms. The most important potential health effect of turbidity is its interference with disinfection in the treatment plant and the maintenance of a chlorine residual. The ODWO Maximum Acceptable Concentration for turbidity is 1.0 Formazin Turbidity Units (FTU).

The one laboratory turbidity value of 1.5 FTU, which exceeded the Maximum Acceptable Concentration, was not confirmed by the corresponding field turbidity. The field turbidity analysis is considered more reliable.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to indicate the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant, to avoid problems in the distribution system.

Aluminum exceeded the ODWO Aesthetic or Recommended Operational Guideline of 100 ug/L in 5 of 12 treated and distributed water samples with a maximum reported value of 270.0 ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

POLYAROMATIC HYDROCARBONS (PAH)

The results of the PAH scan showed that none were detected.

PESTICIDES & PCB

The results of the PCB scan showed that none were detected.

The results of the regular pesticide scan showed that none were detected above trace levels.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs recommend, as an operational guideline, that phenolic substances in drinking water not exceed 2.0 ug/L. This limit has been set primarily to prevent undesirable taste and odours, particularly in chlorinated water. No results were reported above trace levels.

SPECIFIC PESTICIDES

The results of the specific pesticides scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane; bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THMs results are discussed.

Total THMs were found at positive levels in the 12 treated and distributed water samples analyzed with a maximum level of 39.0 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

CONCLUSIONS

The Grimsby water treatment plant, for the sample year 1990, produced good quality water and this was maintained in the distribution system.

No known health related guidelines were exceeded.

FIGURE 1

GRIMSBY WTP

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

WORKS #: 220001995
PLANT NAME: GRIMSBY WTP

DISTRICT:

WELLAND

REGION:

WEST CENTRAL

DISTRICT OFFICER : J. VOGT

UTM #: 176176504784450

PLANT SUPERINTENDENT: MR ANDREW FORBES

ADDRESS:

447 ELIZABETH STREET

GRIMSBY, ONTARIO

L3M 4H3

(416 945 4323)

MUNICIPALITY: REGIONAL MUN. OF NIAGARA

AUTHORITY:

MUNICIPAL

PLANT INFORMATION

PLANT VOLUME:

(X 1000 M3)

DESIGN CAPACITY: RATED CAPACITY:

20.910 (X 1000 M3/DAY) 19.321 (X 1000 M3/DAY)

MUNICIPALITY POPULATION HAMILTON WENTWORTH REGION 200 GRIMSBY 15,472 SMITHVILLE (WEST LINCOLN) 2,409

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
FREE CHLORINE RESIDUAL	AFTER FILTERS AFTER SETTLING TANKS TREATED WATER	EVERY 4 HOURS EVERY 4 HOURS EVERY 4 HOURS
TOTAL CHLORINE RESIDUAL	TREATED WATER	EVERY 4 HOURS
TEMPERATURE	RAW WATER	DAILY READING
TURBIDITY	TREATED WATER	EVERY 4 HOURS

Page 10

TABLE 3
ORINKING WATER SURVEILLANCE PROGRAM GRIMSBY UTP SAMPLE DAY CONDITIONS FOR 1990

POST CHLORINATION	CHLORINE	.05 .17 .25 .22 .19
DOSAGE (MG/L) COAGULATION	ALUM LIQUID	26.12 9.37 61.93 13.96 16.83
TREATMENT CHEMICAL DOSAGE (MG/L) PRE CHLORINATION COAGULATIO	CHLORINE	. 52 1.24 1.97 1.64 1.51
	FLOW (1000M3)	8.022 7.995 6.607 8.009 8.053
	DELAY * FI	3.66 5.50 3.00 6.78
)ATE	JAN 16 4AR 20 4AY 22 JUL 17 SEP 18

^{*} THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM GRIMSBY WTP
SUMMARY TABLE OF RESULTS (1990)

#TOTAL GROUP BACTERIOLOGICAL TOTAL GROUP BAC	. 0
FECAL COLIFORM MF	0
*TOTAL GROUP BACTERIOLOGICAL *TOTAL GROUP BACTERIOLOGICAL 15 13 0 5 1 0 5 3 *TOTAL GROUP BACTERIOLOGICAL 15 13 0 5 1 0 5 3 CHEMISTRY (FLD) FLD CHLORINE (COMB) 1 1 0 5 5 0 12 3 FLD CHLORINE FREE 1 1 0 5 5 0 12 4 FLD CHLORINE (TOTAL) 1 1 0 5 5 0 12 5	0
TELD CHLORINE (COMB) 1 1 0 5 5 0 12 3 FLD CHLORINE FREE 1 1 0 5 5 0 12 4 FLD CHLORINE (TOTAL) 1 1 0 5 5 0 12 5	_
CHEMISTRY (FLD) FLD CHLORINE (COMB) 1 1 0 5 5 0 12 3 FLD CHLORINE FREE 1 1 0 5 5 0 12 4 FLD CHLORINE (TOTAL) 1 1 0 5 5 0 12 5	
FLD CHLORINE (COMB) 1 1 0 5 5 0 12 3 FLD CHLORINE FREE 1 1 0 5 5 0 12 4 FLD CHLORINE (TOTAL) 1 1 0 5 5 0 12 5	
FLD TEMPERATURE 5 4 0 5 4 0 12 12 FLD TURBIDITY 5 5 0 5 5 0 4 4	0 0 0 0 0
*TOTAL SCAN CHEMISTRY (FLD) 18 17 0 29 28 0 64 40	0
CHEMISTRY (LAB)	
ALKALINITY 6 6 6 0 0 6 6 0 12 12 CALCIUM 6 6 6 0 0 6 6 0 12 12 CYANIDE 6 0 0 0 6 1 0	0 0 11 0 0 0 0 0 0 0 0 0 6 11 0 0
*TOTAL SCAN CHEMISTRY (LAB) 132 115 6 132 98 19 228 192	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM GRIMSBY WTP
SUMMARY TABLE OF RESULTS (1990)

			RAW		TREA	TED		SI	TE 1
SCAN PARAMETER	TOTAL POS	ITIVE T	RACE	TOTAL PO	SITIVE TR	ACE	TOTAL PO	SITIVE 1	RACE
METALS									
SILVER	6	0	0	6	0	0	12	0	0
ALUMINUM	6	6	0	6	6	0	12	12	0
ARSENIC	6	3	3	6	0	6	12	0	12
BARIUM	6	6	0	6	6	D	12	12	D
BORON	6	6	0	6	6	0	12	12	0
BERYLLIUM	6	0	2	6	0	1	12	0	1
CADMIUM	6	0	0	6	0	1	12	0	10
COBALT	6	0	6	6	1	5	12 12	0	12
CHROMIUM	6	1	2	6 6	Ó	6	12	7	5
COPPER I RON	6	5	1	6	0	2	12	3	8
MERCURY	6	1	à	6	2	ō	12		
MANGANESE	6	6	Ď	6	5	1	12	12	à
MOLYBDENUM	6	5	1	6	6	ò	12	12	Õ
NICKEL	6	1	5	6	Ō	5	12	4	7
LEAD	6	3	3	6	1	3	12	9	3
ANT I MONY	6	4	2	6	3	3	12	8	4
SELENIUM	6	0	0	6	0	5	12	0	8
STRONTIUM	6	6	D	6	6	0	12	12	0
TITANIUM	6	4	2	6	2	4	12	4	8
THALLIUM	6	0	. 1	6	0	0	12	0	0
URANIUM	6	0	6	6	0	6	12	0	12
VANADIUM	6	2	4	6	5	1 2	12	10 12	2
ZINC	6	6	0	6	4	2	12	12	U
*TOTAL SCAN METALS	144	69	42	144	54	55	276	129	97
*TOTAL GROUP INORGANI			42	144	24	22	210	129	91
TOTAL GROOF INORGANI	294	201	48	305	180	74	568	361	128
CHLOROAROMATICS		•							
HEXACHLOROBUTAD I ENE	6	0	0	6	0	0	6	0	0
123 TRICHLOROBENZENE	6	-0	0	6	0	0	6	0	0
1234 T-CHLOROBENZENE	6	0	0	6	0	0	6	0	D
1235 T-CHLOROBENZENE 124 TRICHLOROBENZENE	6	0	0	6	0	0	6 6	0	D D
1245 T-CHLOROBENZENE	6 6	0	0	6	0	0	6	0	0
135 TRICHLOROBENZENE	6	0	0	6	0	Ö	6	0	Ö
HCB	6	0	Ö	6	0	0	6	ŏ	Ö
HEXACHLOROETHANE	6	Ö	1	6	Ö	1	6	ŏ	ŏ
OCTACHLOROSTYRENE	6	ŏ	ò	6	Ŏ	ó	6	Ö	ō
PENTACHLOROBENZENE	6	Ö	Ō	6	Ō	Ō	6	0	0
236 TRICHLOROTOLUENE	6	0	0	6	0	0	6	0	0
245 TRICHLOROTOLUENE	6	0	0	6	D	0	6	0	0
26A TRICHLOROTOLUENE	6	0	0	6	0	0	6	0	0
*TOTAL SCAN CHLOROARD				0.4			0/		•
	84	0	1	84	0	1	84	0	0

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM GRIMSBY WTP
SUMMARY TABLE OF RESULTS (1990)

			RAW		T	REATED		12	TE 1
SCAN PARAMETER	TOTAL	POSITIVE	TRACE		POSITIVE				RACE
CHLOROPHENOLS									
234 TRICHLOROPHENOL	2	0	0	2	0	0			
2345 T-CHLOROPHENOL 2356 T-CHLOROPHENOL	2	0	0	2	0	0			•
245-TRICHLOROPHENOL	2	0	0	2	0	0		•	•
246-TRICHLOROPHENOL	2	Ō	ō	2	0	ō		:	:
PENTACHLOROPHENOL	2	0	0	2	0	0			
*TOTAL SCAN CHLOROPHE									
	12	0	0	12	0	0	0	0	0
PAH									
PHENANTHRENE	6	0	0	6	0	0	1	0.	0
ANTHRACENE	6	0	0	6	0	0	1	0	0
FLUORANTHENE PYRENE	6	0	0	6	0	0	1	0	0
BENZO(A)ANTHRACENE	6	0	0	6	0	0	1	0	0
CHRYSENE	6	0	0	6	0	0	1	0	0
DIMETH. BENZ(A)ANTHR BENZO(E) PYRENE	5	0	0	5	0	0	1	0	0
BENZO(B) FLUORANTHEN	6	0	0	6	0	0	1	0	0
PERYLENE	6	0	0	6	0	0	i	Ö	0
BENZO(K) FLUORANTHEN	6	0	0	6	0	0	1	0	0
BENZO(A) PYRENE BENZO(G,H,I) PERYLEN	6	0	0	6	0	0	1	0	0
DIBENZO(A,H) ANTHRAC	6	Ö	Ö	6	0	Ö	i	ő	0
INDENO(1,2,3-C,0) PY	6	0	0	6	0	0	1	0	0
BENZO(B) CHRYSENE CORONENE	6	0	0	6	0	0	1	0	0
*******	Ī	_		·			·	-	
*TOTAL SCAN PAH	101	0	0	101	0	0	17	0	0
		_		101	ŭ	Ū	•••	ŭ	
PESTICIDES & PCB									
ALDRIN	6	0	0	6	0	0	6	0	0
ALPHA BHC	6	ő	4	6	0	5	6	Ö	4
BETA BHC	6	0	0	6	0	0	6	0	0
ALPHA CHLORDANE	6	0	1	6	0	0	6 6	0	0
GAMMA CHLORDANE	6	ő	ő	6	0	0	6	ő	0
DIELDRIN	6	0	0	6	0	0	6	0	0
METHOXYCHLOR ENDOSULFAN 1	6	0	0	6	0	0	6 6	0	0
ENDOSULFAN II	6	0	0	6	0	0	6	0	0
ENDRIN	6	0	0	6	0	0	6	0	0
ENDOSULFAN SULPHATE	6	0	0	6	0	0	6	0	0
HEPTACHLOR EPOXIDE HEPTACHLOR	6	0	0	6	0	0	6	0	0
MIREX	6	0	0	6	0	G	6	0	0
OXYCHLORDANE	6	0	0	6	0	0	6	0	0
OPDDT PCB	6	0	0	6	0	0	6	0	0
DDD	6	0	0	6	0	0	6	0	0
PPDDE	6	0	0	6	0	0	6	0	0

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM GRIMSBY WTP
SUMMARY TABLE OF RESULTS (1990)

			RAW		T	REATED		s	ITE 1
SCAN PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
PPDDT	6	0	0	6	0	0	6	0	D
AMETRINE	6	ō	Ŏ	6	0	0			
ATRAZINE	6	0	4	6	0	3			
ATRATONE	6	0	0	6	0	0			
CYANAZINE (BLADEX)	6	0	0	6	0	0	•		•
DESETHYLATRAZINE	6	0	0	6	0	0	•	•	•
D-ETHYL SIMAZINE PROMETONE	5 6	0	0	5	0	0	•	•	•
PROPAZINE	6	0	0	6	0	0	•	•	•
PROMETRYNE	6	Õ	Ö	6	0	ő		:	:
METRIBUZIN (SENCOR)	6	Ö	Ö	6	Ŏ	Ŏ			
SIMAZINE	6	0	0	6	0	0			
ALACHLOR (LASSO)	6	0	0	6	0	0			
METOLACHLOR	6	0	0	6	0	0	:	:	:
HEXACLCYCLOPENTADIEN	1	0	0	1	0	0	1	0	0
*TOTAL SCAN PESTICIDE	204	B 0	9	204	0	8	127	0	4
PHENOLICS									
PHENOLICS	5	0	3	6	0	3			
*TOTAL SCAN PHENOLICS	5	0	3	6	0	3	0	D	0
SPECIFIC PESTICIDES		••••••							
TOXAPHENE	6	0	0	6	0	0	6	0	0
2,4,5-T	2	0	0	2	0	0			
2,4-0	2	0	0	2	0	0	•		•
2,4-DB 2,4 D PROPIONIC ACID	2	0	0	2	0	0	•		•
DICAMBA	2	0	0	2	0	0	•	•	•
PICHLORAM	ō	ŏ	ő	ō	ő	Ď	:	:	:
SILVEX	2	ō	ō	2	ō	ō			
DIAZINON	2	0	0	2	0	0			
DICHLOROVOS	2	0	0	2	0	0			
CHLORPYRIFOS ETHION	2	0	0	2	0	0			•
AZINPHOS-METHYL	0	0	0	- 0	0	0	•		•
MALATHION	2	0	ŏ	2	0	0	•	•	•
MEVINPHOS	2	ŏ	ō	2	ő	ő		:	
METHYL PARATHION	2	Ō	0	2	Ō	Ō			
METHYLTRITHION	2	0	0	2	0	0			
PARATHION PHORATE	2	0	0	2	0	0			
RELDAN	2	0	0	2	0	0	•		•
RONNEL	2	0	0	2	0	0	•		•
AMINOCARB	ō	ő	Ö	0	0	0		•	•
BENONYL	0	0	ŏ	ŏ	ŏ	ŏ			
BUX	0	0	0	0	. 0	0			
CARBOFURAN	1	0	0	1	0	0			•
CICP DIALLATE	1	0	0	1	0	0			•
DIRECTIC	1	U	0	1	0	0	•	•	•

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM GRIMSBY WTP
SUMMARY TABLE OF RESULTS (1990)

			RAW		TI	REATED			ITE 1
SCAN PARAMETER	TOTAL PO	SITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
EPTAM	1	0	0	1	0	0	•		•
IPC	1	0	0	1	0	0			
PROPOXUR	1	0	0	1	0	0	•		•
CARBARYL BUTYLATE	1	0	0	1	0	0		•	•
BOTTLATE	,	U	U		U	U	•		•
*TOTAL SCAN SPECIFIC	PESTICIDA	5							
	50	0	0	50	0	0	6	0	0
	-				-	_	_		
VOLATILES									
VOCATICES									
BENZENE	6	0	0	6	0	1	6	0	1
TOLUENE	6	0	2	6	0	1	6	0	1
ETHYLBENZENE	6	0	3	6	0	2	6	0.	
P-XYLENE	6	0	0	6	0	0	6	0	0
M-XYLENE	6	0	0	6	0	0	6	0	0
O-XYLENE	6	0	0	6	0	0	6	0	0 5
STYRENE	6	0	4	6	0	0	6	0	0
1,1 DICHLOROETHYLENE METHYLENE CHLORIDE	6	0	0	6	0	0	6	0	0
T1,2DICHLOROETHYLENE	6	0	0	6	0	0	6	0	0
1.1 DICHLOROETHANE	6	0	0	6	0	0	6	0	0
CHLOROFORM	6	ő	1	6	6	ő	6	6	ŏ
111, TRICHLOROETHANE	6	ō	1	6	0	Ō	6	0	0
1,2 DICHLOROETHANE	6	Ō	0	6	0	0	6	0	0
CARBON TETRACHLORIDE	6	0	0	6	0	0	6	0	0
1,2 DICHLOROPROPANE	6	0	0	6	0	0	6	0	0
TRICHLOROETHYLENE	6	0	0	6	0	0	6	0	0
DICHLOROBROMOMETHANE	6	0	1	6	6	0	6	6	0
112 TRICHLOROETHANE	6	0	0	6	0	0	6	0	0
CHLOROD I BROMOMETHANE	6	0	1	6	6	0	6	6	0
T-CHLOROETHYLENE	6	0	0	6	0	0	6	0	0 6
BROMOFORM	6	0	0	6	0	5	6	0	0
1122 T-CHLOROETHANE CHLOROBENZENE	6	0	0	6	0	0	6	0	0
1,4 DICHLOROBENZENE	6	0	0	6	0	0	6	0	0
1.3 DICHLOROBENZENE	6	0	0	6	0	0	6	0	0
1.2 DICHLOROBENZENE	6	0	0	6	0	0	6	0	0
ETHLYENE DIBROMIDE	6	0	ő	6	0	ő	6	0	Ö
TOTL TRIHALOMETHANES	6	0	1	6	6	Ō	6	6	0
*TOTAL SCAN VOLATILES				4.77	2.4	12	171	24	16
***************************************	174	0	14	174	24	12	174	24	16
*TOTAL GROUP ORGANIC	630	0	27	631	24	24	408	24	20
	030	U	21	031	24	24	400	24	20

KEY TO TABLE 5 and 6

- ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
- HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 2. Proposed MAC
 3. Interim MAC
 4. Aesthetic Objective (AO)
- WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)

 - 2. Suggested No-Adverse Effect Level (SNAEL)
 3. Lifetime Health Advisory
 4. EPA Ambient Water Quality Criteria
 41. EPA Ambient Water Quality Criteria for Total PAH
 - EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level

 - Aesthetic Guideline Level
 Maximum Admissable Concentration (MADC).
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL	Below Minimum Measurement Amount
<1	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
!CS	No Data: Contamination Suspected
HIL	No Data: Sample Incorrectly Labelled
IIS	No Data: Insufficient Sample
iIA	No Data: Inverted Septum
!LA	No Data: Laboratory Accident
ILD	No Data: Test Queued After Sample Discarded
INA	No Data: No Authorization To Perform Reanalysis
INP	No Data: No Procedure
!NR	No Data: Sample Not Received
! OP	No Data: Obscured Plate
! QU	No Data: Quality Control Unacceptable
! PE	No Data: Procedural Error - Sample Discarded
IPH	No Data: Sample pH Outside Valid Range
! RE	No Data: Received Empty
!RO	No Data: See Attached Report (no numeric results)
!SM	No Data: Sample Missing
ISS	No Data: Send Separate Sample Properly Preserved
!UI	No Data: Indeterminant Interference
!TX	No Data: Time Expired
A3C	Approximate, Total Count Exceeded 300 Colonies
APL	Additional Peak, Large, Not Priority Pollutant
APS	Additional Peak, Less Than, Not Priority Pollutant
CIC	Possible Contamination, Improper Cap
CRO	Calculated Result Only
PPS	Test Performed On Preserved Sample
RMP	P and M-Xylene Not Separated
RRV	Rerun Verification
RVU	Reported Value Unusual

Several Peaks, Small, Not Priority Pollutant

SPS

Λ' T#	(T06) Result Taken After # Hours
XP	Positive After X Number Of Hours
UIN	Unreliable: Indeterminate Interference
UCS	Unreliable: Contamination Suspected
UCR	Unreliable: Could Not Confirm By Reanalysi

WATER TREATMENT PLANT

	RAW	TREATED	SITE	E 1	
			STANDING	FREE FLOW	
FECAL COL	BACTERIOLOGICAL FORM MF (CT/100ML)	DE	T'N LIMIT = 0	GUIDELINE = 0 (A	1)
JAN MAR MAY JUL SEP	2 BDL 588 20 <=> 44	:	: : :	: : :	
STANDED PL	ATE CNT MF (COUNTS/ML)	DE	T'N LIMIT = 0	GUIDELINE = 500/	ML (A3)
JAN MAR MAY JUL SEP NOV		0 <=> 71 2 <=> 8 <=> 6 <=>	: : : :	1 <=> 11 1 <=> 18 12	
TOTAL COLI	FORM MF (CT/100ML)	DE	T'N LIMIT = 0	GUIDELINE = 5/10	OML(A1)
JAN MAR MAY JUL SEP	112 84 7600 15000 300	:	: : :	: : : :	
T COLIFORM	BCKGRD MF (CT/100ML)	DE	T'N LIMIT = 0	GUIDELINE = N/A	
JAN MAR MAY JUL SEP	236 276 32000 50000 9400	· · · · · · · · · · · · · · · · · · ·	:	:	

WATER TREATMENT PLANT

CHEMISTRY (FLD)
FLD CHLORINE (COMB) (MG/L)
JAN
MAR .080
MAY
JUL
SEP
NOV .050
FLD CHLORINE FREE (MG/L) DET'N LIMIT = 0 GUIDELINE = N/A JAN
JAN
MAR
MAY
JUL
SEP
NOV
FLD CHLORINE (TOTAL) (MG/L) DET'N LIMIT = 0 GUIDELINE = N/A JAN430 .000 .200 MAR .330 .530 .100 .500 JUL600 .000 .100 SEP000 .000 .000 NOV600 .000 .000 FLD PH (DMNSLESS) DET'N LIMIT = N/A GUIDELINE = 6.5-8.5(A4) JAN 7.900 7.400 7.400 MAR 7.600 7.600 7.800 7.400 MAY 7.900 7.350 7.200 7.400 MAY 7.900 7.400 7.400 7.200 SEP 7.800 7.200 SEP 7.800 7.200 SEP 7.800 7.600 NOV 7.700 7.400 7.800 7.200 SEP 7.800 7.600 NOV 7.700 7.400 7.800 7.000 FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 19.000 18.000
JAN
MAR .330 .530 .100 .500 MAY600 .000 .100 JUL500 .000 .300 SEP000 .000 .000 MOV600 .000 .000 FLD PH (DMNSLESS) DET'N LIMIT = N/A GUIDELINE = 6.5-8.5(A4) JAN 7.900 7.400 7.400 MAR 7.600 7.600 7.800 7.400 MAY 7.900 7.350 7.200 7.400 JUL 8.000 7.600 7.400 7.200 SEP7.800 7.200 NOV 7.700 7.400 7.800 7.000 FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 19.000 18.000
MAY
JUL500 .000 .300 SEP000 .000 NOV600 .000 .000 FLD PH (DMNSLESS) DET'N LIMIT = N/A GUIDELINE = 6.5-8.5(A4) JAN 7.900 7.400 7.400 MAY 7.900 7.350 7.200 7.400 JUL 8.000 7.600 7.400 7.200 SEP 7.800 7.800 7.200 SEP 7.800 7.600 NOV 7.700 7.400 7.800 7.000 FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 19.000 18.000
SEP
NOV600 .000 .000 FLD PH (DMNSLESS) DET'N LIMIT = N/A GUIDELINE = 6.5-8.5(A4) JAN 7.900 7.400 7.400 MAR 7.600 7.600 7.800 7.400 MAY 7.900 7.350 7.200 7.400 JUL 8.000 7.600 7.400 7.200 SEP 7.800 7.600 NOV 7.700 7.400 7.800 7.000 FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 19.000 18.000
FLD PH (DMNSLESS) DET'N LIMIT = N/A GUIDELINE = 6.5-8.5(A4) JAN 7.900 7.600 7.400 7.400 MAR 7.500 7.350 7.200 7.400 JUL 8.000 7.600 7.400 7.200 SEP . 7.800 7.800 7.600 NOV 7.700 7.400 7.800 7.000 FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 19.000 18.000
JAN 7.900 . 7.400 7.400 MAR 7.600 7.600 7.800 7.400 MAY 7.900 7.350 7.200 7.400 JUL 8.000 7.600 7.400 7.200 SEP . 7.800 7.600 MOV 7.700 7.400 7.800 7.000 FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 19.000 18.000
MAR 7.600 7.600 7.800 7.400 MAY 7.900 7.350 7.200 7.400 JUL 8.000 7.600 7.400 7.200 SEP
MAR 7.600 7.600 7.800 7.400 MAY 7.900 7.350 7.200 7.400 JUL 8.000 7.600 7.400 7.200 SEP . 7.800 7.600 NOV 7.700 7.400 7.800 7.000 FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 19.000 18.000
JUL 8.000 7.600 7.400 7.200 SEP . 7.800 7.600 NOV 7.700 7.400 7.800 7.000 FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 19.000 18.000
JUL 8.000 7.600 7.400 7.200 SEP . 7.800 7.600 NOV 7.700 7.400 7.800 7.000 FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 19.000 18.000
NOV 7.700 7.400 7.800 7.000 FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.000 18.000
FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 19.000 18.000
FLD TEMPERATURE (DEG.C) DET'N LIMIT = N/A GUIDELINE = 15 (A3) JAN .000 .000 16.500 5.000 MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 18.000
MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.000 18.000
MAR 3.000 3.000 15.000 7.400 MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.000 18.000
MAY 8.000 8.500 11.500 15.000 JUL 15.500 15.500 19.000 18.000
JUL 15.500 15.500 19.000 18.000
SEP 19.000 19.000
NOV 5.000 5.000 18.000 11.000
FLD TURBIDITY (FTU) DET'N LIMIT = N/A GUIDELINE = 1 (A1)
JAN 18,000 .350210
MAR 8.000 .140 .
MAY 46.000 .100350
JUL 1.000 .100

WATER TREATMENT PLANT

		RAW		TREATE	D		SITE 1				
					STAND	ING		FREE	FLOW		
	CI	HEMISTRY (LAB)									
ALKALINI	ITY (MG/L			1	DET'N LI	HIT =	0.2		GUIDELINE	= 30-50	0 (A3)
JAN			90.500		8	7.400			89.800		
MAR			98.000			7.400			97.500		
HAY	101.300		96.400			5.500			85.600		
JUL	102.200		94.800			3.300			94.200		
SEP	93.700 107.000		84.400			7.400			86.100		
	107.000		96.900			0.700			96.300	_	
	(MG/L)				DET'N LI				GUIDELINE		(F2)
JAN	42.800 41.000		42.800		4	3.600			43.900		
MAR	41.000		40.400			1.200			40.400		
HAY	44.000		39.000			2.800			42.400		
JUL	42.200		41.700			1.500			43.000		
SEP	38.000		38.600			8.800			38.600		
NOV	41.200		41.400			0.000			41.400	_	
CYANIDE	(MG/L)								GUIDELIN	E = .2	(A1)
JAN	BOL		8DL								
MAR	BDL BOL		.006								
MAY			BDL								
JUL	BDL		BDL								
SEP	BDL		BDL						•		
NOV	BDL		8DL								
	(MG/L			1	DET'N LI	MIT =	0.2		GUIDELIN	E = 250	(A3)
JAN	24.800		26.200		2	7.100			27.900		
MAR			30.600			0.900			30.100		
MAY	29.800		18.400			8.600			28.300		
JUL			25.200			5.100			25.300		
SEP			23.400 25.900			2.700			22.400		
NOV	25,000					5.400			25.500		
	(HZU)								GUIDELIN		(A3)
JAN	1.500	<7	.500 4	<t< td=""><td></td><td>1.000</td><td><7</td><td></td><td>1.500 <t< td=""><td></td><td></td></t<></td></t<>		1.000	<7		1.500 <t< td=""><td></td><td></td></t<>		
MAR	2.000	<t< td=""><td>1.000 4</td><td></td><td></td><td>1.500</td><td></td><td></td><td>1.500 <t< td=""><td></td><td></td></t<></td></t<>	1.000 4			1.500			1.500 <t< td=""><td></td><td></td></t<>		
MAY			1.500 4			2.000			3.000		
JUL			.500 ∢			.500			.500 <t< td=""><td></td><td></td></t<>		
SEP	1.500	<1	1.000 4			1.500	<1		1.500 <t< td=""><td></td><td></td></t<>		
NOV	BDL		8DL			.500	<1		1.000 <t< td=""><td></td><td></td></t<>		
CONDUCT	VITY (UMHO/	C M		(DET'N LI	MIT =	1.		GUIDELIN		(F2)
JAN	344 359		355			353			355		
MAR	359		362			364			361		
MAY	3/0		321			367			362		
JUL	332		332			329			330		
SEP	304		310			311			306		
NOV	350		355			351			349		

WATER TREATMENT PLANT

		RAW	TREATED	SITE 1	
			STANDING	FREE FLOW	
DISS ORG C	ARBON (MG/L)	DET'N LIMIT = .1	00 GUIDELINE =	5.0 (A3)
JAN.	1.900	1,400	1.600	1,400	
MAR	1.900	1.800	2.000		
MAY	4 900	1.800 2.500	2.100		
JUL	1.900	1.900	1.800		
SEP	2.000	1.600	1.600	1.600	
NOV	1.800	1.500	1.500		
FLUORIDE	(MG/L)		DET'N LIMIT = 0		= 2.4 (A1)
JAN	.140	.120	.100 .160	.100	
MAR	.140	.140	.160	.140	
MAY	.180	.100	.100	.080	
JUL	.140	.140	.140	.140	
SEP	.120	.100	.100	.120	
NOV	.140 .140 .180 .140 .120 .140	.140 .100 .120	.120	.120 .120	
HARDNESS	(MG/L)		DET'N LIMIT = 0	.5 GUIDELINE	= 80-100 (A4)
JAN	144.000	143.000	145.000	146.700	
MAR	140.000 153.000 141.300	139.000	140.000	138.000	
MAY	153.000	135.000	145.000	145.000	
JUL	141.300	138.700	138.700	141.900	
		132.000	132.000	131.000	
NOV	139.000	141.000	145.000 140.000 145.000 138.700 132.000 136.000	140.000	
	MNSLESS)		DET'N LIMIT = N	/A GUIDELINE	= N/A
JAN	1.854	1.021 2.607	3.284	1.295	
MAR	1.854 1.424	2.607	2.331	1.857	
MAY	1.002 2.774 1.807	1.235	.357	.671	
JUL	2.774	1 877	2 203	4.313	
SEP	1.807	2.012	1.263	2.389	
NOV	4.480	2.012 3.261	4.504	1.858	
LANGELIER	S INDEX (DMNS			/A GUIDELINE	= N/A
JAN	.584	.291		.269	
MAR	.552 .480 .500	.420	.366	.398	
MAY	.480	.352	.136	.242	
JUL	.500	.372	.334	.363	
SEP	.361	. 121	.108	.150	
NOV	.361 .618	.477	.481	.475	
	(MG/L)		DET'N LIMIT = 0	.1 GUIDELINE =	30 (F2)
JAN	9.000	8.900		9.000	
MAR	9.100	9.200	9.100		
MAY	10.500	9.200			
JUL	8.700	8.400	8.500	8.350	
SEP	8.600	8.700	8.600	8.300	
NOV	8.800	9.000	8.900	9.000	

WATER TREATMENT PLANT

		RAW	TREATED	SITE 1	
			STANDING	FREE FLOW	
SODIUM	(MG/L)		DET'N LIMIT =	0.2 GUIDELINE	= 200 (A4)
JAN MAR MAY JUL SEP	15.800 16.200 13.600 11.800	14.000 15.400 10.400 13.400 11.400	15.600 15.000 13.000 11.000	15.600 15.000 13.500 11.600	
	13.200 JM TOTAL (MG/L			12.800 0.002 GUIDELINE	
JAN MAR MAY JUL SEP NOV	8DL 8DL .050 .042 .014	801 801 808 <	BDL .004 .002 T .006 T BDL	BDL <1 .006 <1 <1 BDL <1 .008 <1 <1 BDL <1 .008 <1 BDL .004 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- 0.03 (F2)
NITRITI	(MG/L)	******	DET'N LIMIT =	0.001 GUIDELINE	= 1 (A1)
JAN MAR MAY JUL SEP NOV	.011 .035 .009 .009	8DL .003 < .002 < .005 .004 < .001 <	T .003 .003 T .001 T .004	<t .004="" <t<br=""><t .003="" <t<br=""><t .005<br=""><t .003="" <t<br=""><t .003="" <t<="" th=""><th></th></t></t></t></t></t>	
TOTAL	HITRATES (MG/L		DET'N LIMIT =		E = 10 (A1)
JAN MAR MAY JUL SEP NOV	.740 .315 .175	.465 .470 .325 .315 .165 .390	.560 .295 .145	.520 .300 .150	
NITROGE	N TOT KJELD (MG/L)	DET'N LIMIT =	0.02 GUIDELINE	= N/A
JAN MAR MAY JUL SEP NOV	.350 .850 .310 .320 .190	.160 .190 .200 .200 .150	.210 .210 .190 .170 .120	.250 .220 .210 .160	
	ISLESS)		DET'N LIMIT =		= 6.5-8.5(A4)
JAN MAR MAY JUL SEP NOV	8.370 8.280 8.310 8.250	8.150 8.270 8.220 8.220 8.080 8.320			

WATER TREATMENT PLANT

	RAU	I TREA	TED SITE	1
			STANDING	FREE FLOW
PHOSPHORUS	FIL REACT (MG/L)	DET'N LIMIT = 0.0005	GUIDELINE = N/A
JAN	.002	.000 <7		•
MAR	BDL	BDL	•	
MAY	.025	.000 <t< td=""><td>•</td><td></td></t<>	•	
JUL	BDL	BOL	•	•
SEP	.000 <t< td=""><td>BDL</td><td>•</td><td>•</td></t<>	BDL	•	•
NOV	.003	BDŁ	•	•
PHOSPHORUS	TOTAL (MG/L))	DET'N LIMIT = 0.002	GUIDELINE = .40 (F2)
JAN	.015	.002 <t< td=""><td></td><td></td></t<>		
MAR	.029	.004		
MAY	.132	.002 <t< td=""><td></td><td></td></t<>		
JUL	.013	.003 <t< td=""><td></td><td></td></t<>		
SEP	.028	.002 <t< td=""><td></td><td>•</td></t<>		•
NOV	.014	.002 <t< td=""><td></td><td>•</td></t<>		•
SULPHATE (MG/L)		DET'N LIMIT = .200	GUIDELINE = 500 (A3)
JAN	29.010	41.300	43.200	42.030
MAR	28.750	32.460	34.200	32.040
MAY	38.950	34.790	48.910	46.240
JUL	27.740	31.910	32.010	31.710
SEP	27.230	34.420	32.910	32.510
NOV	30.270	38.140	35.830	36.160
TURBIDITY	(FTU)		DET'N LIMIT = 0.05	GUIDELINE = 1 (A1)
JAN	2.600	.250 <t< td=""><td>.270</td><td>.310</td></t<>	.270	.310
MAR	8.800	.330	.470	.210 <t< td=""></t<>
MAY	86.000	.530	.650	.840
JUL	1.400	.300	.240 <t< td=""><td>.280</td></t<>	.280
SEP	30.000	.270	1.200	.320
NOV	8.700	1.500	.300	.210 <t< td=""></t<>

WATER TREATMENT PLANT

		RAW	TREATED		SITE 1		
			:	STANDING		FREE FLOW	
	META	ALS					-
ALUMINU	M (UG/L)		DET	N LIMIT =	0.10	GUIDELINE = 10	D (A4)
JAN		130.000		57.000		81.000	
MAR		96.000		90.000		92.000	
MAY JUL	520.000 25.000	120.000 230.000		34.000 120.000		38.000 270.000	
SEP		100.000		110.000		140.000	
NOV	66.000	52.000		19.000		53.000	
ARSENIC	(UG/L)			N LIMIT =		GUIDELINE = 25	(A1)
JAN	.780 <1 .850 <1	.230		.330		.230 <t< td=""><td></td></t<>	
MAR		.240		.210		.150 <t .250 <t< td=""><td></td></t<></t 	
MAY JUL	.650 <1	.360		.340		.390 <7	
SEP	1 100	.350	<t< td=""><td>.420</td><td><t< td=""><td>.570 <t< td=""><td></td></t<></td></t<></td></t<>	.420	<t< td=""><td>.570 <t< td=""><td></td></t<></td></t<>	.570 <t< td=""><td></td></t<>	
NOV	1.100	.390	<⊺	.470	<1	.370 <7	
BARIUM	(UG/L)			N LIMIT =	0.05	GUIDELINE = 10	000 (A2)
JAN		23.000		22.000		22.000	
MAR	25.000	23.000		22.000		22.000	
MAY	33.000 22.000	21.000 23.000		25.000 23.000		24.000	
SEP	26.000	23.000		24.000		23.000	
NOV	24.000	23.000		20.000		22.000	
BORON (UG/L)	•		N LIMIT =		GUIDELINE = 5	000 (A1)
JAN		26.000		28.000		28.000	
MAR	35.000	29.000		37.000		32.000	
MAY JUL		140.000 29.000		100.000		42.000 26.000	
SEP	39.000	29.000		31.000		35.000	
NOV		32.000		27.000		31.000	
BERYLLI	UM (UG/L)	• • • • • • • • • • • • • • • • • • • •				GUIDELINE = 68	000 (D4)
JAN	BDL	BDL		BDL		BOL	
MAR	.060 <1			BDL		BDL	
JUL	.140 <1 BOL	.170 BDL	<1	.120 BDL		BDL BDL	
SEP	BOL	BDL		BDL		BDL	
NOV	BDL	BDL		BDL		BDL	
CADMIUM	(UG/L)		DET	N LIMIT =	0.05	GUIDELINE =	5 (A1)
JAN	BOL	BDL		.130	<t< td=""><td>BDL</td><td></td></t<>	BDL	
MAR	BDL	BDL		BDL		BDL	
MAY	BDL	.060	<1	.080		.080 <7	
JUL SEP	BOL BOL	BDL BDL		.080 BDL		BDL BDL	
NOV	BDL	BOL		.190		BDL	

WATER TREATMENT PLANT

		RAW	TREATED		SITE 1			
				STANDING		REE FLOW		
COBALT (L	JG/L)		D	ET'N LIMIT =		GUIDELINE =	N/A	
JAN	.330 <t< td=""><td>.320</td><td><1</td><td>.060</td><td></td><td>BOL</td><td></td><td></td></t<>	.320	<1	.060		BOL		
MAR	.120 <t< td=""><td>1.200</td><td></td><td>.060</td><td><t< td=""><td>.060 <t< td=""><td></td><td></td></t<></td></t<></td></t<>	1.200		.060	<t< td=""><td>.060 <t< td=""><td></td><td></td></t<></td></t<>	.060 <t< td=""><td></td><td></td></t<>		
MAY	.510 <t< td=""><td>.100</td><td><1</td><td>.120</td><td><<u>⊺</u></td><td>.060 <t< td=""><td></td><td></td></t<></td></t<>	.100	<1	.120	< <u>⊺</u>	.060 <t< td=""><td></td><td></td></t<>		
JUL	.140 <t< td=""><td>.050</td><td>ব_</td><td>.090</td><td></td><td>.060 <t< td=""><td></td><td></td></t<></td></t<>	.050	ব_	.090		.060 <t< td=""><td></td><td></td></t<>		
SEP	.440 <t< td=""><td>.200</td><td><1</td><td>.230</td><td></td><td>.250 <7</td><td></td><td></td></t<>	.200	<1	.230		.250 <7		
NOA	.120 <1 .510 <7 .140 <7 .440 <7 .060 <7	BDL		.070	<1	BDL		
	(UG/L)		0	ET'N LIMIT =	0.50		50 (4	A1)
JAN	14.000	7.000		1.300	<t< td=""><td>1.600 <t< td=""><td></td><td></td></t<></td></t<>	1.600 <t< td=""><td></td><td></td></t<>		
MAR		1.700	<⊺	3.400 3.500	<7	2.600 <t< td=""><td></td><td></td></t<>		
MAY	2.500 <t< td=""><td>1.700 4.300</td><td><1</td><td>3.500</td><td><1</td><td>1.200 <t< td=""><td></td><td></td></t<></td></t<>	1.700 4.300	<1	3.500	<1	1.200 <t< td=""><td></td><td></td></t<>		
JUL	1.300 <7		-7	1.400		1.300 <t< td=""><td></td><td></td></t<>		
SEP	3.000 <t< td=""><td>1.400</td><td><t< td=""><td>1.600</td><td><1</td><td>2.500 <t< td=""><td></td><td></td></t<></td></t<></td></t<>	1.400	<t< td=""><td>1.600</td><td><1</td><td>2.500 <t< td=""><td></td><td></td></t<></td></t<>	1.600	<1	2.500 <t< td=""><td></td><td></td></t<>		
NOV	BDL	1.300	<1	.640	<t< td=""><td>1.000 <t< td=""><td></td><td></td></t<></td></t<>	1.000 <t< td=""><td></td><td></td></t<>		
	JG/L)			ET'N LIMIT =		GUIDELINE =	1000	(A3)
IAM	5 400	1 200	<t< td=""><td>340 000</td><td></td><td>3.900 <7</td><td></td><td></td></t<>	340 000		3.900 <7		
MAR	4.900 <t< td=""><td>1.500</td><td><t< td=""><td>340.000 220.000</td><td></td><td>4.000 <t< td=""><td></td><td></td></t<></td></t<></td></t<>	1.500	<t< td=""><td>340.000 220.000</td><td></td><td>4.000 <t< td=""><td></td><td></td></t<></td></t<>	340.000 220.000		4.000 <t< td=""><td></td><td></td></t<>		
MAY	6.100	.830				3.700 <t< td=""><td></td><td></td></t<>		
JUL	8,800	2,200	্ব ব্য	250.000 260.000		9.600		
SEP	18,000	2.500	<t< td=""><td>7 200</td><td></td><td>2.900 <t< td=""><td></td><td></td></t<></td></t<>	7 200		2.900 <t< td=""><td></td><td></td></t<>		
NOV	5.400 4.900 <7 6.100 8.800 18.000 4.400 <7	1.800	<t< td=""><td>620.000</td><td></td><td>3.300 <t< td=""><td></td><td></td></t<></td></t<>	620.000		3.300 <t< td=""><td></td><td></td></t<>		
	/L)					GUIDELINE =	300	(A3)
JAN	90.000	0 400	<t< td=""><td>21 000</td><td><t< td=""><td>66 000</td><td></td><td></td></t<></td></t<>	21 000	<t< td=""><td>66 000</td><td></td><td></td></t<>	66 000		
			>T	28 000	<t< td=""><td>66.000 39.000 <t< td=""><td></td><td></td></t<></td></t<>	66.000 39.000 <t< td=""><td></td><td></td></t<>		
MAY	130.000 440.000 21.000 <1 280.000	RNI		16.000	<t< td=""><td>77,000</td><td></td><td></td></t<>	77,000		
JUL	21 000 <1	BDL BDL		17.000	<t< td=""><td>78.000</td><td></td><td></td></t<>	78.000		
SEP	280 000	BDL		BDL		51.000 <t< td=""><td></td><td></td></t<>		
NOV	110.000	BDL		7.900	<t< td=""><td>41.000 <t< td=""><td></td><td></td></t<></td></t<>	41.000 <t< td=""><td></td><td></td></t<>		
		BDL						
MERCURY	(UG/L)		D	ET'N LIMIT =	0.02	GUIDELINE =	: 1	(A1)
JAN		.150				•		
MAR	BDL	BDL				•		
MAY	BDL	BDL				•		
JUL	BDL	BDL						
SEP	BDL	BDL						
	BDL			•		•		
MANGANESI	E (UG/L)		٥	ET'N LIMIT =	0.05	GUIDELINE =	50	(EA)
JAN	8.400 14.000 41.000 5.200 23.000	1.600		3.400		5.500		
MAR	14.000	.700		2.900		4.700		
MAY	41.000	1.500		5.800		11.000		
JUL	5.200	.740		5.100		5.000		
SEP	23.000	.420	<t< td=""><td>3.100</td><td></td><td>9.400</td><td></td><td></td></t<>	3.100		9.400		
NOV	8.100	.700		4.200		7.000		

WATER TREATMENT PLANT

		RAW	TREATED	SITE 1		
			STANDIN	G F	REE FLOW	
MOLYBDENL	JM (UG/L)	• • • • • • • • • • • • • • • • • • • •			GUIDELINE = N/A	λ
JAN	1.200	1.300	1.	100	1,200	
MAR	1.100 .410 <t 1.200</t 	1.500	1.	400	1.400	
HAY	.410 <t< th=""><th>1.200</th><th>1.</th><th>200</th><th>1.200</th><th></th></t<>	1.200	1.	200	1.200	
JUL	1.200	1.300		400	1.100	
SEP	.940	1.300	1.	300	1.300	
	1.100	1.100	1.	200	1.200	
	JG/L)		DET'N LIMI	T = 0.20	GUIDELINE = 350	(03)
JAN	2.800 1.300 <t 1.200 <t< th=""><th>2.000</th><th><t .="" 1.="" 19.="" 2.="" 29.<="" <t="" th=""><th>200</th><th>1.300 <t< th=""><th></th></t<></th></t></th></t<></t 	2.000	<t .="" 1.="" 19.="" 2.="" 29.<="" <t="" th=""><th>200</th><th>1.300 <t< th=""><th></th></t<></th></t>	200	1.300 <t< th=""><th></th></t<>	
MAR	1.300 <t< th=""><th>.730</th><th><t .<="" th=""><th>990 <t< th=""><th>.920 <t< th=""><th></th></t<></th></t<></th></t></th></t<>	.730	<t .<="" th=""><th>990 <t< th=""><th>.920 <t< th=""><th></th></t<></th></t<></th></t>	990 <t< th=""><th>.920 <t< th=""><th></th></t<></th></t<>	.920 <t< th=""><th></th></t<>	
HAY	1.200 <t< th=""><th>.640</th><th><t 2.<="" th=""><th>700</th><th>1.300 <t< th=""><th></th></t<></th></t></th></t<>	.640	<t 2.<="" th=""><th>700</th><th>1.300 <t< th=""><th></th></t<></th></t>	700	1.300 <t< th=""><th></th></t<>	
JUL SEP	.960 <t 1.900 <t< th=""><th>1.400</th><th><t 19.<="" th=""><th>000</th><th>1.200 <t< th=""><th></th></t<></th></t></th></t<></t 	1.400	<t 19.<="" th=""><th>000</th><th>1.200 <t< th=""><th></th></t<></th></t>	000	1.200 <t< th=""><th></th></t<>	
NOV	1.900 <1	1.400	<1 1.	000 <1	1.800 <t< th=""><th></th></t<>	
NOV	.260 <t< th=""><th>RDL</th><th>29.</th><th></th><th>RDL</th><th></th></t<>	RDL	29.		RDL	
LEAD (UG)	'L)		DET'N LIMI		GUIDELINE = 10.	(A1)
JAN	.420 <t .600 1.900 .460 <t< th=""><th>BDL</th><th>44.</th><th>000</th><th>.560</th><th></th></t<></t 	BDL	44.	000	.560	
HAR	.600	BDL .800	13.	000	.370 <7	
MAY	1.900	.800	17.	000	.370 <1	
JUL	.460 <t< th=""><th>.330</th><th><<u>T</u> 20.</th><th>000</th><th>1.300</th><th></th></t<>	.330	< <u>T</u> 20.	000	1.300	
SEP	1.300	.120	۲. ۲. ۵.	610	.380 <1	
NUV	.350 <1	.120 .150	<1 29.		.510	
ANTIHONY	(UG/L)		DET'N LIMI	T = 0.05	GUIDELINE = 14	6 (D4
JAN	.400 <t .510 .380 <t .670 .590</t </t 	.390	<₹ .	570	.530	
MAR	.510	4.600		660	.560	
MAY	.380 <t< th=""><th>.260</th><th><⊺ .</th><th>430 <t< th=""><th>.330 <7</th><th></th></t<></th></t<>	.260	<⊺ .	430 <t< th=""><th>.330 <7</th><th></th></t<>	.330 <7	
JUL	.670	.420	∢⊺ .	460 <t< th=""><th>.490 <t< th=""><th></th></t<></th></t<>	.490 <t< th=""><th></th></t<>	
SEP	.590	.610		770	.630	
NOV	.520	.570		600	.590	
SELENIUM	(UG/L)		DET'N LIMI		GUIDELINE = 10	(A1)
JAN	BDL	1.200	<7 1.	300 <t< th=""><th>1.700 <t< th=""><th></th></t<></th></t<>	1.700 <t< th=""><th></th></t<>	
MAR	BDL BDL	1.400	<t 1.<="" th=""><th>200 <t< th=""><th>BOL</th><th></th></t<></th></t>	200 <t< th=""><th>BOL</th><th></th></t<>	BOL	
MAY		1.800	<t< th=""><th>BDL BDL</th><th>2.000 <t< th=""><th></th></t<></th></t<>	BDL BDL	2.000 <t< th=""><th></th></t<>	
JUL	BDL	BDL	_	BDL	BDL	
SEP	BDL BDL	2.800	τ 1. τ 2.	800 <1	2.700 <1	
	BUL	1.000	۷۱ ۷۰		1.300 <1	
STRONTIUM	(UG/L)		DET'N LIMI		GUIDELINE = N/A	
JAN	190.000	190.000	200.		200.000	
MAR	230,000	230.000		000	240.000	
MAY	220.000 180.000 190.000	200.000	200.	000	190.000	
JUL	180.000	180.000		000	170.000	
SEP	190.000	190.000			180.000	
NOV	180.000	180.000	170.	000	180.000	

WATER TREATMENT PLANT

		RAW	TREATED		SITE 1		
				STANDING		FREE FLOW	
TITANIUM	(UG/L)		DE	T'N LIMIT =	0.50	GUIDELINE =)	I/A
JAN	3.800 <t< td=""><td>2.200</td><td><⊺</td><td>2.400</td><td><⊺</td><td>2.300 <7</td><td></td></t<>	2.200	<⊺	2.400	<⊺	2.300 <7	
MAR	6.300 15.000	2.800	<1	3.300	<1	3.500 <t< td=""><td></td></t<>	
	15.000	0 500		7.200 8.300		6.600 7.400	
JUL SEP	8.600 6.500	8.500 2.900	-7	3.000	7 T	7.400 3.200 <t< td=""><td></td></t<>	
	3.300 <t< td=""><td>1.500</td><td><t< td=""><td>1.400</td><td><1</td><td>1.400 <t< td=""><td></td></t<></td></t<></td></t<>	1.500	<t< td=""><td>1.400</td><td><1</td><td>1.400 <t< td=""><td></td></t<></td></t<>	1.400	<1	1.400 <t< td=""><td></td></t<>	
THALLIUM	(UG/L)		DE	T'N LIMIT =	0.05	GUIDELINE =	13 (04)
JAN	BDL	BDL		BDL		BDL	
MAR	BDL	BDL		BDL		BDL	
MAY	.070 <7			BDL		BOL	
JUL	BDL	BDL		BDL		BDL	
SEP	BOL	BDL		BDL		BDL	
NOV	BDL	BDL		BDL		BDL	
URANIUM (UG/L)		DE	T'N LIMIT =	0.05	GUIDELINE = '	100 (A1)
JAN	.350 <t .320 <t< td=""><td>.130</td><td><t< td=""><td>.130 .250</td><td><t< td=""><td>.170 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></t 	.130	<t< td=""><td>.130 .250</td><td><t< td=""><td>.170 <t< td=""><td></td></t<></td></t<></td></t<>	.130 .250	<t< td=""><td>.170 <t< td=""><td></td></t<></td></t<>	.170 <t< td=""><td></td></t<>	
MAR	.320 <t< td=""><td>.310</td><td><1</td><td>.250</td><td><t< td=""><td>.320 <t< td=""><td></td></t<></td></t<></td></t<>	.310	<1	.250	<t< td=""><td>.320 <t< td=""><td></td></t<></td></t<>	.320 <t< td=""><td></td></t<>	
MAY	.380 <t .210 <t< td=""><td>.310</td><td><₹</td><td>.110</td><td><t< td=""><td>.130 <t .220 <t< td=""><td></td></t<></t </td></t<></td></t<></t 	.310	<₹	.110	<t< td=""><td>.130 <t .220 <t< td=""><td></td></t<></t </td></t<>	.130 <t .220 <t< td=""><td></td></t<></t 	
JUL	.210 <t< td=""><td>.270</td><td><t< td=""><td>.150</td><td><⊺</td><td></td><td></td></t<></td></t<>	.270	<t< td=""><td>.150</td><td><⊺</td><td></td><td></td></t<>	.150	<⊺		
SEP	.340 <t< td=""><td>.200</td><td><⊺</td><td>.180</td><td><⊺</td><td>.190 <t< td=""><td></td></t<></td></t<>	.200	<⊺	.180	<⊺	.190 <t< td=""><td></td></t<>	
NOV	.390 <7	.230	<t< td=""><td>.080</td><td><1</td><td>.250 <ĭ</td><td></td></t<>	.080	<1	.250 <ĭ	
VANADIUM	(UG/L)		DE	T'N LIMIT =	0.05		'A
JAN	.430 <t .400 <t< td=""><td>1.400</td><td></td><td>.840</td><td></td><td>1.100</td><td></td></t<></t 	1.400		.840		1.100	
MAR	.400 <t< td=""><td>- 690</td><td></td><td>.790</td><td></td><td>.840</td><td></td></t<>	- 690		.790		.840	
MAY	1.000 .200 <t< td=""><td>.490 .560</td><td><1</td><td>.800</td><td></td><td>.740</td><td></td></t<>	.490 .560	<1	.800		.740	
JUL	.200 <t< td=""><td>.560</td><td></td><td>550</td><td>_</td><td>1.100</td><td></td></t<>	.560		550	_	1.100	
SEP	.650 .320 <t< td=""><td>.590</td><td></td><td>.500</td><td><1</td><td>.600</td><td></td></t<>	.590		.500	<1	.600	
NOV	.320 <1	.550		.280	<ī	.540	
ZINC (UG/	L)		DE	T'N LIMIT =	0.20	GUIDELINE = 50	000 (A3)
JAN		2.900		300.000		3.800	
MAR		1.600	<1	81.000		3.100	
MAY	8.100	1.200 3.800	<1	280.000 480.000		4.100	
JUL	2.200			480.000		9.100	
SEP	4.300	5.900		8.200 720.000		2.900	
NOV	3.500	4.500		720.000		5.300	

WATER TREATMENT PLANT

		RAW	TREATED	SITE 1	
			STAND	ING FR	EE FLOW
HEXACHLORO	CHLOROA ETHANE (NG/L	AROMATICS	DET'N LI	IMIT = 1.000	GUIDELINE = 1900 (D4)
JAN MAR MAY JUL SEP NOV	BDL BDL BDL BDL BDL 2.000 <t< th=""><th>BDL BDL BDL BDL 3.000</th><th><1</th><th>:</th><th>BDL BDL BDL BDL BDL BDL</th></t<>	BDL BDL BDL BDL 3.000	<1	:	BDL BDL BDL BDL BDL BDL

WATER TREATMENT PLANT

		RAW		TREAT	ED	SITE 1		
					STANDING	FREE	FLOW	
	PE	STICIDES	& PCB					
ALPHA BHO	(NG/L)			DET'N LIMIT = 1	1.000	GUIDELINE	= 700 (G)
JAN	1.000	<t< td=""><td>1.000</td><td><ī</td><td></td><td></td><td>BDL</td><td></td></t<>	1.000	<ī			BDL	
MAR	BDL		1.000	<1			2.000 <t< td=""><td></td></t<>	
MAY	2.000	<1	1.000	<1			2.000 <t< td=""><td></td></t<>	
JUL	1.000	<t< td=""><td>1.000</td><td><1</td><td></td><td></td><td>2.000 <t< td=""><td></td></t<></td></t<>	1.000	<1			2.000 <t< td=""><td></td></t<>	
SEP	BDL		BDL				BDL	
NOV	2.000	<1	2.000	<t< td=""><td>•</td><td></td><td>1.000 <t< td=""><td></td></t<></td></t<>	•		1.000 <t< td=""><td></td></t<>	
LINDANE ((NG/L)				DET'N LIMIT = 1	.000	GUIDELINE	= 4000 (A1)
JAN	BDL		BDL				BDL	
MAR	BDL		BDL				BDL	
MAY	1.000	<1	BDL				BDL	
JUL	BDL		BDL				BDL	
SEP	BDL		BDL				BDL	
NOV	BDL		BDL		•		BDL	
ATRAZINE	(NG/L)			DET'N LIMIT = 5	50	GUIDELINE	= 60000 (A2)
JAN	430.000	<1	130.000	<t< td=""><td></td><td></td><td></td><td></td></t<>				
MAR	BDL		BDL					
MAY	350.000	<1	BDL					
JUL	100.000	<1	100.000	<1				
SEP	110.000	<1	100.000	<1				
NOV	BDL		BDL					

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM GRIMSBY WTP 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

		RAW		TREATE	D SI	TE 1		
					STANDING	FREE FLO	OW .	
	PI	HENOLICS						
PHENOLICS	(UG/L)			DET'N LIMIT = .200	1	GUIDELINE = 2	(A4)
JAN	.400	<t< th=""><th>.400</th><th><t< th=""><th></th><th></th><th></th><th></th></t<></th></t<>	.400	<t< th=""><th></th><th></th><th></th><th></th></t<>				
MAR	IRE		.600					
MAY	.600	<1	BDL					
JUL	BDL		BDL				•	
SEP	BDL		BDL					
NOV	.600	<1	.600	<t< th=""><th></th><th></th><th></th><th></th></t<>				

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM GRIMSBY WTP 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

	RAV	, TR	EATED S	SITE 1	
			STANDING	FREE FLOW	
	VOLATILES				
BENZENE (UG/	L)		DET'N LIMIT = 0.0	5 GUIDELIN	E = 5 (A1)
JAN	BDL	BDL		BDL	
MAR	BDL	.100 <t< td=""><td></td><td>.100 <t< td=""><td></td></t<></td></t<>		.100 <t< td=""><td></td></t<>	
MAY	BDL	BDL		BDL	
JUL	BDL	BDL	•	BDL	
SEP	BDL	BDL	•	BDL	
NOV	BDL	BOL		BDL	
TOLUENE (UG/	L)		DET'N LIMIT = 0.0	5 GUIDELIN	E = 24 (A3)
JAN	BDL	BDL		BDL	
MAR	BDL	BDL	•	BDL	
MAY	BDL	BDL	•	BDL	
JUL	.100 <t< td=""><td>BDL</td><td>•</td><td>.050 <t BDL</t </td><td></td></t<>	BDL	•	.050 <t BDL</t 	
SEP NOV	.100 <t BDL</t 	.050 <t BDL</t 	•	BDL	
			·		
ETHYLBENZENE	(UG/L)		DET'N LIMIT = 0.0	5 GUIDELIN	E = 2.4 (A3)
JAN	BDL	BDL		BOL	
MAR	.100 <t< td=""><td>.250 <t< td=""><td></td><td>.100 <t< td=""><td></td></t<></td></t<></td></t<>	.250 <t< td=""><td></td><td>.100 <t< td=""><td></td></t<></td></t<>		.100 <t< td=""><td></td></t<>	
MAY	BDL	BOL	•	BDL	
JUL	BDL	.050 <t< td=""><td>•</td><td>.050 <t< td=""><td></td></t<></td></t<>	•	.050 <t< td=""><td></td></t<>	
SEP	.050 <t< td=""><td>BOL</td><td>•</td><td>BDL</td><td></td></t<>	BOL	•	BDL	
NUV	.050 <t< td=""><td>BDL</td><td>•</td><td>.050 <t< td=""><td></td></t<></td></t<>	BDL	•	.050 <t< td=""><td></td></t<>	
STYRENE (UG/	L)		DET'N LIMIT = 0.0		NE = 100 (D1)
JAN	BOL	.050 <t< td=""><td></td><td>.050 <t< td=""><td></td></t<></td></t<>		.050 <t< td=""><td></td></t<>	
MAR	.150 <t< td=""><td>.200 <t< td=""><td></td><td>.200 <t< td=""><td></td></t<></td></t<></td></t<>	.200 <t< td=""><td></td><td>.200 <t< td=""><td></td></t<></td></t<>		.200 <t< td=""><td></td></t<>	
MAY	BDL	BDL	•	BDL	
JUL	.050 <t< td=""><td>.050 <t< td=""><td>•</td><td>.050 <t< td=""><td></td></t<></td></t<></td></t<>	.050 <t< td=""><td>•</td><td>.050 <t< td=""><td></td></t<></td></t<>	•	.050 <t< td=""><td></td></t<>	
SEP	.100 <t< td=""><td>BDL</td><td>•</td><td>.050 <t< td=""><td></td></t<></td></t<>	BDL	•	.050 <t< td=""><td></td></t<>	
NOV	.100 <t< td=""><td>BDL</td><td>·</td><td>.100 <т</td><td></td></t<>	BDL	·	.100 <т	
CHLOROFORM (DET'N LIMIT = 0.1	IO GUIDELIN	= 350 (A1+)
JAN	BDL	10.700		8.400	
MAR	BDL	13.400		10.500	
MAY	BDL	25.000		10.900	
JUL	.300 <t< td=""><td>13.600</td><td></td><td>14.800</td><td></td></t<>	13.600		14.800	
SEP	BDL	17.800		10.000	
NOV	BDL	9.200	•	5.200	
111, TRICHLO	ROETHANE (UG/L)	DET'N LIMIT = 0.0	O2 GUIDELINE	= 200 (D1)
JAN	BDL	BDL		BDL	
MAR	.040 <t< td=""><td>BDL</td><td></td><td>BDL</td><td></td></t<>	BDL		BDL	
MAY	BOL	BOL		BDL	
JUL	BDL	BDL		BDL	
SEP	BDL	BDL		BDL	
NOV	BDL	BDL		BDL	

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM GRIMSBY WTP 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

	RAW	TREATED	SITE 1	
		STA	NDING	FREE FLOW
DICHLOROBROMOMETHA	NE (UG/L)	DET'N	LIMIT = 0.05	GUIDELINE = 350 (A1+)
JAN BD MAR BD		.850 .750	:	9.350 9.100
MAY BO	DL 11	.100		8.800 10.850
SEP BD NOV BC		.450 .800	:	9.500 7.200
CHLOROD I BROMOMETHA	NE (UG/L)	DET'N	LIMIT = 0.10	GUIDELINE = 350 (A1+)
JAN BO				6.700 5.400
MAY BD		.900		3.800 5.800
SEP BD	DL 9	.200 .000		6.100 6.300
BROMDFORM (UG/L		DET'N	LIMIT = 0.20	GUIDELINE = 350 (A1+)
JAN BC		.800 <t .800 <t< td=""><td></td><td>.800 <t .600 <t< td=""></t<></t </td></t<></t 		.800 <t .600 <t< td=""></t<></t
MAY BD	L	BDL .600 <t< th=""><th></th><th>.400 <t .600 <t< th=""></t<></t </th></t<>		.400 <t .600 <t< th=""></t<></t
SEP BD NOV BD		.800 <t .400 <t< th=""><th></th><th>.800 <t 1.200 <t< th=""></t<></t </th></t<></t 		.800 <t 1.200 <t< th=""></t<></t
TOTL TRIHALOMETHAN	IES (UG/L)	DET'N	LIMIT = 0.50	GUIDELINE = 350 (A1)
JAN BD MAR BD		.500 .750	:	25.250 25.600
	30 <t 31<="" th=""><th>.000 .850</th><th></th><th>23.500 32.000</th></t>	.000 .850		23.500 32.000
SEP BD NOV BD		.200 .450	:	26.450 19.800

TRACE LEVELS OF TOLUENE ARE LABORATORY ARTIFACTS DERIVED FROM THE ANALYTICAL METHODOLOGY.

TRACE LEVELS OF STYRENE ARE CONSIDERED TO BE LABORATORY ARTIFACTS RESULTING FROM THE LABORATORY SHIPPING CONTAINERS.

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
BACTERIOLOGICAL			
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	0 (A1)
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	0	500/ML (A3) N/A 5/100ML (A1)
TOTAL COLIFORM BACKGROUND MF TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML CT/100ML	0	5/100ML (A1)
TOTAL COLIFORM MEMBRANE FILTRATION	CI) IOONE	ŭ	3, 100112 (711)
CHEMISTRY (FLD)			
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A
FIELD TOTAL CHLORINE RESIDUAL	MG/L	D	N/A
FIELD FREE CHLORINE RESIDUAL FIELD PH	MG/L DMNSLESS	N/A	6 5-8 5 (A3)
FIELD TEMPERATURE	DEG.C	N/A	15.0 (A3)
FIELD TURBIDITY	FTU	N/A	1.0 (A1)
CHEMISTRY (LAB)			N/A N/A N/A 6.5-8.5 (A3) 15.0 (A3) 1.0 (A1)
ALKALINITY	MG/L	0.2	30-500 (A3)
AMMONIUM TOTAL	MG/L	0.002	0.05 (F2)
CALCIUM	MG/L	0.2	100 (F2)
CHLORIDE	MG/L	0.2	250 (A3) 5.0 (A3) 400 (F2)
COLOUR	TCU	0.5	5.0 (A3)
CONDUCTIVITY	UMHO/CM MG/L	0.001	0.2 (A1)
CYANIDE DISSOLVED ORGANIC CARBON	MG/L	0.1	5.0 (A3)
FLUORIDE	MG/L	0.01	5.0 (A3) 2.4 (A1) 80-100 (A4)
HARDNESS	MG/L	0.5	80-100 (A4)
LANGELIERS INDEX	DMNSLESS	N/A	N/A
MAGNESIUM	MG/L	0.1 0.001	30.0 (F2) 1.0 (A1)
NITRITE NITROGEN TOTAL KJELDAHL	MG/L MG/L	0.02	N/A
PH PH	DMNSLESS	N/A	65-85 (44)
PHOSPHORUS FIL REACT	MG/L	0.000	5 N/A
PHOSPHORUS TOTAL	MG/L	0.002	0.4 (F2) 200 (A4) 500 (A3)
SODIUM	MG/L	0.2	200 (A4)
SULPHATE TOTAL NITRATES	MG/L MG/L	0.2	10.0 (A1)
TURBIDITY	FTU	0.005 0.05	1.0 (A1)
CHLOROAROMATICS			
407	110.41	F 0	N/A
123 TRICHLOROBENZENE 1234 TETRACHLOROBENZENE	NG/L NG/L	5.0 1.0	N/A
1235 TETRACHLOROBENZENE	NG/L	1.0	N/A
124 TRICHLOROBENZENE	NG/L	1.0 5.0	10000 (I) 38000 (D4)
1245-TETRACHLOROBENZENE	NG/L	1.0	38000 (D4)
135 TRICHLOROBENZENE	NG/L	5.0	N/A
236 TRICHLOROTOLUENE 245 TRICHLOROTOLUENE	NG/L NG/L	5.0 5.0	N/A N/A
26A TRICHLOROTOLUENE	NG/L	5.0	N/A
HEXACHLOROBENZENE	NG/L	1.0	10 (C1)
HEXACHLOROBUTAD I ENE	NG/L	1.0	450 (D4)
HEXACHLOROCYCLOPENTAD I ENE	NG/L	5.0 1.0	206000 (D4)
HEXACHLOROETHANE OCTACHLOROSTYRENE	NG/L NG/L	1.0	1900 (D4) N/A
PENTACHLOROBENZENE	NG/L	1.0 1.0	74000 (D4)
CHLOROPHENOLS			
	No. **	100.0	N/A
234 TRICHLOROPHENOL 2345 TETRACHLOROPHENOL	NG/L NG/L	100.0 20.0	N/A N/A
2356 TETRACHLOROPHENOL	NG/L	10.0	N/A

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE

245 TRICHLOROPHENOL	NG/L	100.0	2600000 (D4)
246 TRICHLOROPHENOL	NG/L	20.0	5000 (A1)
PENTACHLOROPHENOL	NG/L	10.0	60000 (A1)
METALS			
ALUMINUM	UG/L	0.10	100 (A4)
ANTIMONY	UG/L	0.05	146 (D4)
ARSENIC	UG/L	0.10	25 (A1)
BARIUM	UG/L	0.05	1000 (A2)
BERYLLIUM	UG/L	0.05	6800 (D4)
BORON	UG/L	2.00	5000 (A1)
CADMIUM CHROMIUM	UG/L UG/L	0.05 0.50	5 (A1) 50 (A1)
COBALT	UG/L	0.02	N/A
COPPER	UG/L	0.50	1000 (A3)
IRON	UG/L	6.00	300 (A3)
LEAD	UG/L	0.05	10 (A1)
MANGANESE	UG/L	0.05	50 (A3)
MERCURY	UG/L	0.02 0.05	1 (A1) N/A
MOLYBDENUM NICKEL	UG/L UG/L	0.20	350 (D3)
SELENIUM	UG/L	1.00	10 (A1)
SILVER	UG/L	0.05	50 (A1)
STRONTIUM	UG/L	0.10	N/A
THALLIUM	UG/L	0.05	13 (D4)
TITANIUM	UG/L	0.50	N/A
URANIUM VANADIUM	UG/L UG/L	0.05 0.05	100 (A1) N/A
ZINC	UG/L	0.20	5000 (A3)
21110	00, 2	****	
PAH			
ANTHRACENE	NG/L	1.0	N/A
BENZO(A) ANTHRACENE	NG/L	20.0	N/A
BENZO(A) PYRENE	NG/L	5.0	10.0 (A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A
BENZO(B) FLUORANTHENE	NG/L	10.0	N/A
BENZO(E) PYRENE	NG/L	50.0	N/A
BENZO(G,H,I) PERYLENE BENZO(K) FLUORANTHENE	NG/L NG/L	20.0 1.0	N/A N/A
CHRYSENE	NG/L	50.0	N/A
CORONENE	NG/L	10.0	N/A
DIBENZO(A, H) ANTHRACENE	NG/L	10.0	N/A
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A
FLUORANTHENE	NG/L	20.0	42000.0 (D4)
INDENO(1,2,3-C,D) PYRENE PERYLENE	NG/L NG/L	20.0 10.0	N/A N/A
PHENANTHRENE	NG/L	10.0	N/A
PYRENE	NG/L	20.0	N/A
PESTICIDES & PCB			
ALACHLOR (LASSO)	NG/L	500.0	5000 (A2)
ALORIN	NG/L	1.0	700 (A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700 (G)
ALPHA CHLORDANE	NG/L	2.0	7000 (A1)
AMETRINE	NG/L	50.0	300000 (D3)
ATRATONE ATRAZINE	NG/L NG/L	50.0 50.0	N/A 60000 (A2)
DES ETHYL ATRAZINE	NG/L	200.0	60000 (A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300 (G)
CYANAZINE (BLADEX)	NG/L	100.0	10000 (A2)
O,P-DDD	NG/L	5.0	10 (1)
DIELDRIN	NG/L	2.0	700 (A1)
ENDOSULFAN 1 (THIODAN I)	NG/L NG/L	2.0 5.0	74000 (D4) 74000 (D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000 (04)

		DETECTION	GUIDELINE
SCAN/PARAMETER	UNIT		GOIDELINE
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A
ENDRIN	NG/L	5.0	1600 (D3) 7000 (A1)
GAMMA CHLORDANE	NG/L	2.0 1.0	3000 (A1)
HEPTACHLOR	NG/L NG/L	1.0	3000 (A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	4000 (A1)
LINDANE (GAMMA BHC) METHOXYCHLOR	NG/L	5.0	900000 (A1)
METOLACHLOR	NG/L	500.0	50000 (A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000 (A1)
MIREX	NG/L	5.0	N/A
P,P-DDD	NG/L	5.0	N/A 70000 (41)
O,P-DDT	NG/L	5.0 2.0	30000 (A1) N/A
OXYCHLORDANE	NG/L	20.0	3000 (A2)
PCB	NG/L NG/L	1.0	30000 (A1)
PPDDE PPDDT	NG/L	5.0	30000 (A1)
PROMETONE	NG/L	50.0	52500 (D3)
PROMETRYNE	NG/L	50.0	1000 (A2)
PROPAZINE	NG/L	50.0	700000 (D3)
SIMAZINE	NG/L	50.0	10000 (A2)
D-ETHYL SIMAZINE	NG/L	200.0	10000 (A2)
TOXAPHENE	NG/L	500.0	5000 (A1)
PHENOLICS			
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	2 (A4)
SPECIFIC PESTICIDES			
2,4 D PROPIONIC ACID	NG/L	100.	N/A
	NG/L	50.	280000 (A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.	100000 (A1) 18000 (B3)
24-DICHLORORPHENOXYBUTYRIC ACID (24-DB)		200. 2000.	245000 (03)
BUTYLATE (SUTAN)	NG/L NG/L	200.	90000 (A1)
CARBARYL (SEVIN) CARBOFURAN	NG/L	2000.	90000 (A1)
CHLORPYRIFOS (DURSBAN)	NG/L	20.	N/A
CICP (CHLORPROPHAM)	NG/L	2000.	350000 (G)
DIALLATE	NG/L	2000.	
DIAZINON	NG/L	20.	20000 (A1)
D1CAMBA	NG/L	50.	
DICHLOROVOS	NG/L	20. 2000.	N/A N/A
EPTAM	NG/L NG/L	200.	35000 (G)
ETHION IPC	NG/L	2000.	
MALATHION	NG/L	20.	
METHYL PARATHION	NG/L	50.	7000 (B3)
METHYLTRITHION	NG/L	20.	N/A
MEVINPHOS	NG/L	20.	
PARATHION	NG/L	20.	
PHORATE (THIMET)	NG/L	20.	
PROPOXUR (BAYGON)	NG/L	2000. 20.	
RELDAN	NG/L NG/L	20.	
RONNEL SILVEX (2,4,5-TP)	NG/L	20.	
VOLATILES			
1,1 DICHLOROETHANE	UG/L	0.10	N/A
1,1 DICHLOROETHYLENE	UG/L	0.10	
1,2 DICHLOROBENZENE	UG/L	0.05	
1,2 DICHLOROETHANE	UG/L	0.05	5 (A1)

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
1,2 DICHLOROPROPANE	UG/L	0.05	5 (D1)
1,3 DICHLOROBENZENE	UG/L	0.10	3750 (D3)
1,4 DICHLOROBENZENE	UG/L	0.10	5 (A1)
111, TRICHLOROETHANE	UG/L	0.02	200 (D1)
112 TRICHLOROETHANE	UG/L	0.05	0.6 (D4)
1122 TETRACHLOROETHANE	UG/L	0.05	0.17(D4)
BENZENE	UG/L	0.05	5 (A1)
BROMOFORM	UG/L	0.20	350 (A1+)
CARBON TETRACHLORIDE	UG/L	0.20	5 (A1)
CHLOROBENZENE	UG/L	0.10	1510 (03)
CHLOROD1BROMOMETHANE	UG/L	0.10	350 (A1+)
CHLOROFORM	UG/L	0.10	350 (A1+)
DICHLOROBROMOMETHANE	UG/L	0.05	350 (A1+)
ETHLYENE DIBROMIDE	UG/L	0.05	50 (D1)
ETHYLBENZENE	UG/L	0.05	2.4 (A3)
M-XYLENE	UG/L	0.10	300 (A3*)
METHYLENE CHLORIDE	UG/L	0.50	50 (A1)
O-XYLENE	UG/L	0.05	
P-XYLENE	UG/L	0.10	300 (A3*)
STYRENE	UG/L	0.05	
TETRACHLOROETHYLENE	UG/L	0,05	5 (D1)
TRANS 1,2 DICHLOROETHYLENE	UG/L	0.10	
TOLUENE	UG/L	0.05	24 (A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350 (A1)
TRICHLOROETHYLENE	UG/L	0.10	50 (A1)

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1990, 76 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment (MOE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
 - iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake,

discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

 ${\tt Custom\ reports\ can\ be\ generated\ from\ DWSP\ to\ meet\ MOE\ Regional\ needs\ and\ to\ respond\ to\ public\ requests.}$

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

MOE - DRINKING WATER ASSESSMENT PROGRAM (DWSP)

PARAMETER REFERENCE INFORMATION

CLASS:	HEALTH	метн	OD: POCODO	UNIT: μg/L		
SOURCE	FROM	TO	METHOD	GUIDELINE	UNIT	NOTE
CAL C	85/01			0.700	μg/L	AL
CDWG C	87/01			5.000	μg/L	MAC
EPA C	87/07			5.000	μg/L	MCL
EPAA C	80/11			6.600	μg/L	AMBIENT **
FERC C	84/05			1.000	μq/L	MCL

10.000

DESCRIPTION: NAME: BENZENE

WHO C 84/01

(B2001P)

BENZENE

CAS#: 71-43-2

MOLECULAR FORMULAE: C6H6

DETECTION LIMIT: (FOR METHOD POCODO) 0.05 µg/L

SYNONYMS: BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27).

CYCLOHEXATRIENE (41).

CHARACTERISTICS: COLOURLESS TO LIGHT-YELLOW, MOBILE, NON-POLAR LIQUID, OF HIGHLY REFRACTIVE NATURE.

AROMATIC ODOUR; VAPOURS BURN WITH SMOKING FLAME

(30).

PROPERTIES: SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41).

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATERTHRESHOLD TASTE:

0.5 mg/L IN WATER (39).

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM SOILS OR ARE DEGRADED RATHER QUICKLY (80).

SOURCES: COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY;
COAL TAR DISTILLATION (39); FOOD PROCESSING AND
TANNING INDUSTRIES; COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

VOLATILES

μg/L

GV

USES: DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY;

DEGREASING AND CLEANSING AGENT; GASOLINE.

TOXICITY: RATING: 4 (VERY TOXIC).

ACUTE: IRRITATING TO MUCOUS MEMBRANES; SYMPTOMS INCLUDE RESTLESSNESS, CONVULSIONS, EXCITEMENT, DEPRESSION; DEATH MAY FOLLOW RESPIRATORY FAILURE. CHRONIC: MAY CAUSE ANAEMIA AND LEUKAEMIA (45);

MUTAGENIC.

MODE OF ACTION: CHROMOABERRATION IN LYMPHOCYTE

CULTURES.

CARCINOGENICITY: A KNOWN HUMAN CARCINOGEN.

REMOVAL: THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN
REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION,
PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA
SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT

EXTRACTION, OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12

MELTING POINT: 5.5°C (27). BOILING POINT: 80.1°C (27).

SPECIFIC GRAVITY: 0.8790 AT 20°C (27). VAPOUR PRESSURE: 100 MM AT 26.1°C (27).

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41). LOG OCT./WATER PARTITION COEFFICIENT: 1.95 TO 2.13

(39).

CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41) SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

NOTES: EPA PRIORITY POLLUTANT.

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times
-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white

seal on cap

-do not rinse bottle, preservative

has been added

-avoid touching bottle neck or

inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with

sample)

-do <u>not</u> rinse bottle

-fill bottle completely without

bubbles

Organics

(OWOC), (OWTRI), (OAPAHX)

-1 L amber glass bottle per scan

-do <u>not</u> rinse bottle

-fill to 2 cm from top

-when 'special pesticides' are requested three extra bottles

must be filled

Cyanide -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury -250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃)
and potassium dichromate (K₂Cr₂O₇)
(Caution: HNO₃&K₂Cr₂O₇ are corrosive)

Phenols -250 mL glass bottle

-do not rinse bottle, preservative

has been added

-fill to top of label

Radionuclides -4 L plastic jug

(as scheduled) -do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization -1 L amber glass bottle; instructions

(GC/MS - once per year) as per organic

-250 mL glass bottle -do not rinse bottle

-fill completely without bubbles

Steps:

- Let sampling water tap run for an adequate time to clear the sample line.
- 2. Record time of day on submission sheet.
- 3. Record temperature on submission sheet.
- 4. Fill up all bottles as per instructions.
- Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times
-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

1. Record time of day on submission sheet.

- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- After mixing the water, record the temperature on the submission sheet.
- 5. Fill general chemistry and metals bottles.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with

white seal on cap

-do not rinse bottle, preservative

has been added

-avoid touching bottle neck or

inside of cap

-fill to top of red label as marked

Metals

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate) (OPOPUP)

-45 mL glass vial with septum
 (teflon side must be in contact

with sample)

-do not rinse bottle, preservative

has been added

-fill bottle completely without

bubbles

Organics (OWOC) (OAPAHX) -1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

