

GRACEFT

- Especificar o comportamentno de um sistema sequencial que evolui com o tempo.
- Não esta disponível para CLPs mais antigos ou para os de pequeno porte.

MÉTODO DE CONVERSÃO DE GRAFCET EM LADDER

- Muito simples
- Confiável
- Utiliza instruções básicas disponíveis em qualquer CLP
- Pode ser utilizado como modelo para documentação do sistema, uma vez que é um método formal sistematizado
- Possibilita o trabalho em equipe de desenvol

SEQUENCIA DE PROCEDIMENTOS PARA O PROJETO

- 1.Graceft descritivo: Escrever cada etapa de operação em sequência e forneça uma identificação a cada uma.
- 2.Criação das tabelas de associações: Associa-se um bit de memoria auxiliar interna a cada transição e também um bit a cada etapa.
- 3.Graceft nível 2: Fornecer detalhes como nome e o endereço da saída do CLP.
- 4.Criação do programa Ladder a partir das equações das transições, etapa e ações.

SEQUENCIA DE PROCEDIMENTOS PARA O PROJETO

- SEÇÕES DO PROGRAMA:
- 1. Ativação da etapa inicial (first scan).
- 2. Detecção de bordas.
- 3. Equações das transições.
- 4. Desativação/ativação das etapasás
- 5. Ativação das ações associadas as etapas

ETAPAS

- Ativa nível lógica 1
- Inativa nível lógico 0
- Exemplo:
- Creamos três variáveis lógicas
- X10,X15 e X20
- XI=1 ETAPA ATIVA (I=10 OU 15 OU 20)
- Cada etapa corresponde a um bit de memoria, no CLP da
- Allen-Braklley (Rslogic 500):
- B3.0/0 =X10
- B3.0/0 =X15
- B3.0/0 =X20

ETAPAS

- Para Zelio Fost poderia ser:
- M1 =X10
- M2=X15
- M3=X20
- Para Siemens poderia ser:
- M0.1 = X10
- M0.2=X15
- M0.3=X20

ETAPA INICIAL

- Etapa que fica ativa quando o sistema é ligado.
- SIEMENS S7-200 o bit SM0.1 (FIRST SCAN)
- MICROLOGIX (Allen Bradley) o bit S1:15 (FIRST PASS)

CASO O CLP NÃO DISPONHA PODE SE IMPLENTAR:

ETAPA INICIAL

M1 E M2 inicialmente em 0. No primeiro ciclo o contacto normalmente fechado de M2 permite que M1 seja ativado. Ao final do primeirio ciclo M1 e M2 estão ativadas.

No segundo ciclo o contato da bobina auxiliar de M2 fica aberto e desliga a bobina M1, a bobina M2 fica ativa enquanto o CLP estiver ligado.

Somente no primeiro ciclo de varredura M1 fica ativo, sendo o bit sinalizador de first scan.

M2	[_{M1}
001	()
□ _{AUX}	□ _{FIRST-SCAN}
	[M2
002	()
	\square_{AUX}

ETAPA INICIAL

Se a etapa inicial é 5 esta deve ser colocada em 1 e as outras em 0. Para o exemplo da figura anterior.

Então:

$$X_5=1$$
, $X_{10}=0$, $X_{15}=0$, $X_{20}=0$

TRANSIÇÕES

- Para que uma transição ocorra, duas condições devem ser satisfeitias:
- Todas as etapas inmediamente prescedentes da transição devem estar ativadas.
- A receptividade a que está associdada deve ter nível lógica 1.
- Associar um bit a cada uma das transições:
- TJ=1 TRANSIÇÃO HABILITADA
- TJ=0 TRANSIÇÃO DESABILITADA

TRANSIÇÕES

 Se a variável de transição é habilitada, a etapa anterior (ou anteriores) é desativadas a posterior ativada.

TRANSIÇÕES

Figura 11.3 - Transições.

- Tij= Xj.C1
- Em que Tij é a transição entre as etapas Xi e Xj
- Tjk= Xj.C2
- Em que Tij é a transição entre as etapas Xj e Xk

Como regra geral:

Quando uma transição é transposta, deve desativar a etapa anterior (ou anteriores) e ativar a etapa posterior (ou posteriores).

SEQUENCIAS SIMPLES

Figura 11.5 - Sequência simples.

- A transição T1 da etapa E3 para Etapa E4:
- Ti= E3. P
- Usar funções de reset e set para desativar a etapa anterior e ativar a posterior

DIVERGÊNCIA E

DIVERGÊNCIA E CONVERGÊNCIA

DIVERGÊNCIA OR

11.3.7 Divergência OU (OR)

Figura 11.8 - Divergência OU simples.

Prioridade as transições e mutuamen te exclusivas.

CONVERGÊNCIA OR

- As ações são equacionadas com base no novo estado das etapas.
- Normalmente associadas a saídas, mas podem incidir em variáveis internas, com incremento de contadores e inicialização de temporizadores por exemplo.
- Acão normal: quando pelo menos uma das etapas a que esta associada esta ativada

$$O_i = X_i + X_j$$

 Azões condicionais: Somente são realizadas se a etapa ativa e uma (o mais) condição satisfeita

$$O_i = X_i + X_j + X_k \cdot C_c$$

Azões memorizadas: Basta que Xi ou Xj seja acionada por um único ciclo de varredura para que a ação fique ativa permanentemente, assim permanecendo enquanto não for ativada nehuma das etapas, Xk ou XI

Figura 11.12 - Ações memorizadas.

$$S(O_i) = X_i + X_j$$

$$R(O_i) = X_k + X_l$$

$$S(O_i) = X_i + X_j$$

 Acões que envolvem temporizdores: iniciar uma temporização é uma ação tipicamente interna.

$$T_m = X_k$$

 Acões com retardo para iniciar

T_m =
$$X_k$$

 $O_i = X_i + X_j + X_k \cdot Z$

 Acões limitadas no tempo, ocorrem somente durante um intervalo de tempo.

$$T_{m} = X_{k}$$

$$O_{i} = X_{i} + X_{j} + X_{k} . \overline{Z}$$

• Acão impulsional: um único ciclo de barredura.

Figura 11.16 - Ação impulsional.

Para a maioria dos CLPs a ação impulsional de contagem é automática, ou seja, o próprio contador detecta apenas a borda de subida quando a etapa é ativada. Portanto, não há necessidade de fazer uma ação impulsional adicional para tratamento dos contadores.

Uma furadeira vertical deve ser automatizada. O principio de funcionamento é o seguinte: Inicialmente, se o cabecote da furadeira estiver na posição mais alta (h) e o botão de partida (P) for presionado, deve-se ligar o motor da broca e descer em velocidadealta até encontrar o sensor de posição intermediária (b1). A partir desse ponto deve continuar descend com velocidade reducida até encontrar o sensor de posição mais baixa (b2). Atingindo o sensor, deve subir em velovidade alta até encontrar o sensor de posição mais alta (h), quando então deve desligar os motores de subida da broca. Considere duas sáida para controlar a velocidad (alta e baixa) e também duas saidas para controlar o snetido de deslocamento (sobe e desce)

 T_{01}

 T_{30}

Motor cabeçote E_1 Velocidade alta Motor broca desce **GRACEFT** Sensor de posição intermediária (b₁) NIVEL 1 Motor cabeçote E_2 Velocidade baixa desce Sensor de posição mais baixa (b₂) T_{23} Motor cabeçote Velocidade alta E_3

R

Motor broca

Botão partida e sensor de posição mais alta (P.h)

desce

Sensor de posição mais alta (h)

- TABELAS DE ASSOCIAÇÃ
 O
- Uma para as receptividades (entradas);
- Uma para as transições;
- Uma para as etapas;
- Uma para as ações (saídas) associadas às etapas.

Nivel comportamental	Nível tecnológico	Descrição
Р	11	Botão de partida
h	12	Sensor da posição mais alta
b ₁	13	Sensor da posição intermediária
b_2	14	Sensor da posição mais baixa
fs	M1	First scan

Tabela 11.1 - Receptividades (entradas).

 TABELAS DE ASSOCIAÇÃ
 O

Nivel comportamental	Nível tecnológico	Descrição
T ₀₁	M7	Transição entre as etapas 0 e 1
T ₁₂	M8	Transição entre as etapas 1 e 2
T ₂₃	M9	Transição entre as etapas 2 e 3
T ₃₀	MA	Transição entre as etapas 3 e 0

Tabela 110 T

mortamental	Nível tecnológico	Descrição
Nivel comportamental	M3	Etapa 0
Eo	M4	Etapa 1
EI	M5	Etapa 2
E2	M6	Etapa 3

Tabela 11.3 - Etapas.

 TABELAS DE ASSOCIAÇÃ
 O

Nivel comportamental	Nível tecnológico	Descrição
Nível comp Motor cabeçote desce	Q1	Motor cabeçote desce
Motor cabeçote	Q2	Velocidade alta
Velocidade alta	Q3	Velocidade baixa
Velocidade baixa	Q4	Motor cabeçote sobe
Motor cabeçote sobe Motor broca	Q5	Motor da broca

• GRAFCET NIVEL 2

Figura 11.19 - Grafcet nível 2 (tecnológico ou de implementação).

- Ativação da etapa inicial mediante o bit de início de varredura (first scan). Esse bloco só será executado uma vez.
- Detecção de bordas (neste caso especificamente não temos ações impulsionais).
- Transições. O cálculo das transições com base no estado atual e nas receptividades.
- Etapas. Desativação/ativação das etapas anteriores/posteriores às transições disparadas.
- Ações. Ativação das ações associadas às etapas.

Na Tabela 3.5 encontram-se as equações de implementação no nível comporamental e seu equivalente, nível tecnológico.

Nivel comportamental	Nível tecnológico
$T_{01} = E_0 . P. h$	M7=M3.I1.I2
$T_{12} = E_1 . b1$	M8=M4.I3
$T_{23} = E_2 . b2$	M9 = M5. I4
$T_{30} = E_3 \cdot h$	MA=M6.12

LADDER

A implementação dos passos 4.1 a 4.3 pode ser verificada na Figura 11.20.

Figura 11.20 - Implementação das equações de transições (mais first scan).

LADDER

Figura 11.21 - Implementação da função lógica: Set-E0 = first scan OU T₃₀.

Figura 11.22 - Implementação da seção de etapas.

Figura 11.22 - Implementação da seção de etapas.

Nível comportamental	Nível tecnológico
Desce = E_1+E_2	Q1 = M4 + M5
Sobe = E_3	Q4 = M6
Veloc. baixa = E ₂	Q3 = M5
Veloc. alta = E_1+E_3	Q2 = M4 + M6
Set motor broca = E ₁	SQ5 = M4
Reset motor broca = E_0	RQ5 = M3

Nível comportamental	Nível tecnológico
Desce = E_1+E_2	Q1 = M4 + M5
Sobe = E_3	Q4 = M6
Veloc. baixa = E ₂	Q3 = M5
Veloc. alta = E_1+E_3	Q2 = M4 + M6
Set motor broca = E_1	SQ5 = M4
Reset motor broca = E_0	RQ5 = M3

Figura 11.23 - Implementação das ações associadas às etapas.

TAREFA

Considere o sistema mostrado na Figura 11.24, o qual é composto por um cilindro de dupla ação com três sensores: S (posição inicial), C (centro) e D (direita). Também existem dois botões de contato momentâneo, LC e LD.

Seu funcionamento é o seguinte: ao pressionar o botão LC, o cilindro deslocase até encontrar o sensor C, quando então retorna à posição inicial (S).

Se o botão LD for pressionado depois de um segundo, o cilindro deve se deslocar até encontrar o sensor D e retornar para a posição inicial (S). Se forem pressionados simultaneamente os botões LC e LD, a prioridade é o botão LC.

Figura 11.24 - Cilindro de dupla ação.