

Fire Modelling of Energy-Efficient Apartment Buildings – Consideration of air-tightness and mechanical ventilation

Simo Hostikka Aalto University, Finland

Fire and Evacuation Modelling Technical Conference (FEMTC) 2016

Background

The project

Partners

- Aalto University
- Stravent Oy
- Southwest Finland Rescue Service
- Markku Kauriala Oy
- VTT Technical Research Centre of Finland Ltd.

Sponsors

- Finnish Fire Protection Fund
- Hagab AB
- Criminal Sactions Agency
- Ministry of Environment

Thanks to

- Rahul Kallada Janardhan
- Umar Riaz
- Topi Sikanen (VTT)

Fire experiments

- 3-storey apartment building in Kurikka, western Finland
- Built in 1970's.
- Windows renewed few years ago.
- Tests in a 1st floor apartment

https://www.youtube.com/watch?v=0Ss_ONolzLY

Air tightness measurements

SFS-EN 13829, Mikko Yli-Piipari / Vertia Oy

Results of the air-tightness

Direction	Δp	$\dot{V}_{ \Delta p }$	$q_{ \Delta p }$	$n_{ \Delta p }$	A_{leak}	$A_{ m leak}/A_{ m env}$
	[Pa]	$\begin{bmatrix} V_{ \Delta p } \\ [\text{m}^3/\text{s}] \end{bmatrix}$	$[\mathrm{m}^3/\mathrm{hm}^2]$	[1/h]	$[m^2]$	
Underpressure	-30	0.047	1.0	1.1	0.011	0.70×10^{-4}
Underpressure	-50	0.078	(1.7)	1.9	0.015	0.89×10^{-4}
Underpressure	-70	0.10	2.2	2.4	0.016	0.97×10^{-4}
Overpressure	30	0.091	2.0	2.2	0.022	1.4×10^{-4}
Overpressure	50	0.12	2.7	2.9	0.023	1.4×10^{-4}
Overpressure	70	0.15	3.3	3.6	0.024	1.5×10^{-4}

RakMK D3 (2012)

Requirement: q₅₀ £ 4 m³/hm²

Recommendation: q₅₀ £ 1 m³/hm²

$$\dot{V}_{leak} = A_L C_d \text{sign}(\Delta p) \left(\frac{2|\Delta p|}{\rho}\right)^{1/2}$$

NFPA 92 (2012):

Very loose: $A_{\text{leak}}/A_{\text{env}} = 12 \cdot 10^{-4}$

Loose: $A_{\text{leak}}/A_{\text{env}} = 3.5 \, 10^{-4}$

Average: $A_{\text{leak}}/A_{\text{env}} = 1.7 \cdot 10^{-4}$

Tight: $A_{\text{leak}}/A_{\text{env}} = 0.50 \text{ '} 10^{-4}$

Ventilation configurations

CLOSED OPEN NORMAL

Fire loads

Group 1 (10 tests)

3 L n-heptane

0.7 m x 0.7 m pool

Group 2 (3 tests)

PUF matress of about 3 kg

Both fires were ultrafast ($t_g < 75 \text{ s}$)

Gas temperatures

Heptane fires

PUF fires

Gas pressure

Heptane fires

PUF fires

Flow speed in exhaust duct

Test 2-4: OPEN

Test 5-7: NORMAL

BR = bathroom

C = closet

Heptane pool fires

PUF in closet, normal ventilation

12.11.2016 15

Validation of FDS modelling

Prescribed HRR
Simple HVAC
Local / bulk leakage

Additional validation data

FOA experiments by Hägglund et al. 1996 and 1998.

Heptane pool fires in concrete enclosure.

No HRR measurement.

Summary

Apartment case study

Three air-tightness levels

1. Traditional: $q50 = 3.0 \text{ m}^3/\text{m}^2\text{h}$

2. Normal: $q50 = 1.5 \text{ m}^3/\text{m}^2\text{h}$

3. Near-zero: $q50 = 0.75 \text{ m}^3/\text{m}^2\text{h}$

HRR: t²-fires medium – ultra-fast Damper configurations:

- 1. No dampers
- 2. Only inlet branch closed
- Both inlet and outlet closed

Fan configurations

- 1. On
- 2. Off and open
- 3. Off and outside damper closed

Peak pressures with medium fire

Peak pressures with fast fires

Smoke spreading to neighbours

Smoke spreading: visibility

Pressure management

Issues with the HVAC system modelling

- 1. Real systems are too complex for "engineering" the model.
- 2. Fan units are much more than just a fan. Pressure losses of the fan unit can dominate.
- 3. Real systems are always tuned and balanced for normal mode of operation. We can do the same for the FDS model, but a better tool would help.