Øving 4 - Uke 37

Oppgave 1. La n være et partall. Bevis at det er et heltall m slik at enten $n^2 = 8m$ eller $n^2 = 8m + 4$.

Oppgave 2. La n være et heltall. Bevis at det er et heltall m slik at enten $n^4 = 5m$ eller $n^4 = 5m + 1$. Tips: Benytt Proposisjon 1.9.30 i løpet av svaret ditt.

Oppgave 3. La n være et heltall. Anta at det er heltall s slik at $n = s^3$. Anta i tillegg at det er et heltall t slik at $n = t^2$. Bevis at det er et heltall m slik at enten n = 7m eller n = 7m + 1. Tips: Gjør følgende.

- (1) Bevis at det er et heltall m slik at et av de følgende utsagnene er sant:
 - (i) n = 7m;
 - (ii) n = 7m + 1;
 - (iii) n = 7m + 6.

Benytt Proposisjon 1.9.30 og antakelsen at $n = s^3$ i løpet av svaret ditt.

- (2) Bevis at det er et heltall m' slik at et av de følgende utsagnene er sant:
 - (i) n = 7m';
 - (ii) n = 7m' + 1;
 - (iii) n = 7m' + 2;
 - (iv) n = 7m' + 4;

Benytt antakelsen at $n = t^2$ i løpet av svaret ditt.

(3 Benytt Korollar 2.2.20 ved å la l være 7.

Oppgave 4. La n være et naturlig tall.

- (1) Bevis at $7n^2 + 7n + 4$ er et partall.
- (2) Bevis at $n(7n^2 + 5)$ er delelig med 6.

Tips: Benytt induksjon i beviset for (2). Sjekk i tillegg om ligningen

$$(m+1)(7m^2+14m+12) = m(7m^2+5) + (21m^2+21m+12)$$

er sann for et hvilket som helst naturlig tall, og benytt denne ligningen i løpet av svaret ditt.

Oppgave 5. La l og n være heltall. Anta at $l \mid n$. Bevis at $l \mid -n$.

Oppgave 6. La l, l', n, og n' være heltall. Anta at $l \mid n$ og $l' \mid n'$. Bevis at $l \cdot l' \mid n \cdot n'$.

Oppgave 7. La l være et heltall, og la n være et heltall slik at $n \neq 0$. Anta at $l \mid n$. Ved å benytte Proposisjon 2.5.30, bevis at $|l| \leq |n|$.