4.3, where these open questions are discussed.) You will encounter many other open questions as you read this book. The study of such problems has played and continues to play an important role in the development of many parts of discrete mathematics.

Build up your arsenal of proof methods as you work through this book.

1.8.10 **Additional Proof Methods**

In this chapter we introduced the basic methods used in proofs. We also described how to leverage these methods to prove a variety of results. We will use these proof methods in all subsequent chapters. In particular, we will use them in Chapters 2, 3, and 4 to prove results about sets, functions, algorithms, and number theory and in Chapters 9, 10, and 11 to prove results in graph theory. Among the theorems we will prove is the famous halting theorem, which states that there is a problem that cannot be solved using any procedure. However, there are many important proof methods besides those we have covered. We will introduce some of these methods later in this book. In particular, in Section 5.1 we will discuss mathematical induction, which is an extremely useful method for proving statements of the form $\forall n P(n)$, where the domain consists of all positive integers. In Section 5.3 we will introduce structural induction, which can be used to prove results about recursively defined sets. We will use the Cantor diagonalization method, which can be used to prove results about the size of infinite sets, in Section 2.5. In Chapter 6 we will introduce the notion of combinatorial proofs, which can be used to prove results by counting arguments. The reader should note that entire books have been devoted to the activities discussed in this section, including many excellent works by George Pólya ([Po61], [Po71], [Po90]).

Finally, note that we have not given a procedure that can be used for proving theorems in mathematics. It is a deep theorem of mathematical logic that there is no such procedure.

Exercises

- 1. Prove that $n^2 + 1 \ge 2^n$ when n is a positive integer with 1 < n < 4.
- 2. Use a proof by cases to show that 10 is not the square of a positive integer. [Hint: Consider two cases: (i) $1 \le x \le 3$, (*ii*) $x \ge 4$.]
- 3. Use a proof by cases to show that 100 is not the cube of a positive integer. [Hint: Consider two cases: (i) $1 \le x \le 4$, (*ii*) $x \ge 5$.]
- **4.** Prove that there are no positive perfect cubes less than 1000 that are the sum of the cubes of two positive integers.
- 5. Prove that if x and y are real numbers, then $\max(x, y) +$ min(x, y) = x + y. [Hint: Use a proof by cases, with the two cases corresponding to $x \ge y$ and x < y, respectively.]
- **6.** Use a proof by cases to show that min(a, min(b, c)) =min(min(a, b), c) whenever a, b, and c are real numbers.
- 7. Prove using the notion of without loss of generality that $\min(x, y) = (x + y - |x - y|)/2$ and $\max(x, y) = (x + y + y)/2$ |x - y| /2 whenever x and y are real numbers.
- 8. Prove using the notion of without loss of generality that 5x + 5y is an odd integer when x and y are integers of opposite parity.

- **9.** Prove the **triangle inequality**, which states that if x and y are real numbers, then $|x| + |y| \ge |x + y|$ (where |x| represents the absolute value of x, which equals x if $x \ge 0$ and equals -x if x < 0).
- 10. Prove that there is a positive integer that equals the sum of the positive integers not exceeding it. Is your proof constructive or nonconstructive?
- 11. Prove that there are 100 consecutive positive integers that are not perfect squares. Is your proof constructive or nonconstructive?
- **12.** Prove that either $2 \cdot 10^{500} + 15$ or $2 \cdot 10^{500} + 16$ is not a perfect square. Is your proof constructive or nonconstructive?
- 13. Prove that there exists a pair of consecutive integers such that one of these integers is a perfect square and the other is a perfect cube.
- 14. Show that the product of two of the numbers 65^{1000} $8^{2001} + 3^{177}$, $79^{\hat{1}212} - 9^{2399} + 2^{2001}$, and $24^{4493} - 5^{8192} +$ 7¹⁷⁷⁷ is nonnegative. Is your proof constructive or nonconstructive? [Hint: Do not try to evaluate these numbers!]
- **15.** Prove or disprove that there is a rational number x and an irrational number y such that x^y is irrational.
- **16.** Prove or disprove that if a and b are rational numbers, then a^b is also rational.

- 17. Show that each of these statements can be used to express the fact that there is a unique element x such that P(x) is true. [Note that we can also write this statement as $\exists ! x P(x)$.]
 - **a**) $\exists x \forall y (P(y) \leftrightarrow x = y)$
 - **b**) $\exists x P(x) \land \forall x \forall y (P(x) \land P(y) \rightarrow x = y)$
 - c) $\exists x (P(x) \land \forall y (P(y) \rightarrow x = y))$
- **18.** Show that if a, b, and c are real numbers and $a \ne 0$, then there is a unique solution of the equation ax + b = c.
- **19.** Suppose that *a* and *b* are odd integers with $a \neq b$. Show there is a unique integer *c* such that |a c| = |b c|.
- **20.** Show that if r is an irrational number, there is a unique integer n such that the distance between r and n is less than 1/2.
- **21.** Show that if n is an odd integer, then there is a unique integer k such that n is the sum of k-2 and k+3.
- **22.** Prove that given a real number x there exist unique numbers n and ϵ such that $x = n + \epsilon$, n is an integer, and $0 < \epsilon < 1$.
- **23.** Prove that given a real number x there exist unique numbers n and ϵ such that $x = n \epsilon$, n is an integer, and $0 < \epsilon < 1$.
- **24.** Use forward reasoning to show that if x is a nonzero real number, then $x^2 + 1/x^2 \ge 2$. [*Hint*: Start with the inequality $(x 1/x)^2 \ge 0$, which holds for all nonzero real numbers x.]
- **25.** The **harmonic mean** of two real numbers x and y equals 2xy/(x + y). By computing the harmonic and geometric means of different pairs of positive real numbers, formulate a conjecture about their relative sizes and prove your conjecture.
- **26.** The **quadratic mean** of two real numbers x and y equals $\sqrt{(x^2 + y^2)/2}$. By computing the arithmetic and quadratic means of different pairs of positive real numbers, formulate a conjecture about their relative sizes and prove your conjecture.
- *27. Write the numbers 1, 2, ..., 2n on a blackboard, where n is an odd integer. Pick any two of the numbers, j and k, write |j k| on the board and erase j and k. Continue this process until only one integer is written on the board. Prove that this integer must be odd.
- *28. Suppose that five ones and four zeros are arranged around a circle. Between any two equal bits you insert a 0 and between any two unequal bits you insert a 1 to produce nine new bits. Then you erase the nine original bits. Show that when you iterate this procedure, you can never get nine zeros. [Hint: Work backward, assuming that you did end up with nine zeros.]
- **29.** Formulate a conjecture about the decimal digits that appear as the final decimal digit of the fourth power of an integer. Prove your conjecture using a proof by cases.
- **30.** Formulate a conjecture about the final two decimal digits of the square of an integer. Prove your conjecture using a proof by cases.
- **31.** Prove that there is no positive integer n such that $n^2 + n^3 = 100$.

- **32.** Prove that there are no solutions in integers x and y to the equation $2x^2 + 5y^2 = 14$.
- **33.** Prove that there are no solutions in positive integers x and y to the equation $x^4 + y^4 = 625$.
- **34.** Prove that there are infinitely many solutions in positive integers x, y, and z to the equation $x^2 + y^2 = z^2$. [Hint: Let $x = m^2 n^2$, y = 2mn, and $z = m^2 + n^2$, where m and n are integers.]
- **35.** Adapt the proof in Example 4 in Section 1.7 to prove that if n = abc, where a, b, and c are positive integers, then $a \le \sqrt[3]{n}$, $b \le \sqrt[3]{n}$, or $c \le \sqrt[3]{n}$.
- **36.** Prove that $\sqrt[3]{2}$ is irrational.
- **37.** Prove that between every two rational numbers there is an irrational number.
- **38.** Prove that between every rational number and every irrational number there is an irrational number.
- *39. Let $S = x_1y_1 + x_2y_2 + \dots + x_ny_n$, where x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n are orderings of two different sequences of positive real numbers, each containing n elements.
 - a) Show that *S* takes its maximum value over all orderings of the two sequences when both sequences are sorted (so that the elements in each sequence are in nondecreasing order).
 - **b)** Show that *S* takes its minimum value over all orderings of the two sequences when one sequence is sorted into nondecreasing order and the other is sorted into nonincreasing order.
 - **40.** Prove or disprove that if you have an 8-gallon jug of water and two empty jugs with capacities of 5 gallons and 3 gallons, respectively, then you can measure 4 gallons by successively pouring some of or all of the water in a jug into another jug.
- **41.** Verify the 3x + 1 conjecture for these integers.
 - **a**) 6
- **b**) 7
- **c**) 17
- **d**) 21
- **42.** Verify the 3x + 1 conjecture for these integers.
 - **a**) 16
- **b**) 11
- **c**) 35
- **d**) 113
- **43.** Prove or disprove that you can use dominoes to tile the standard checkerboard with two adjacent corners removed (that is, corners that are not opposite).
- **44.** Prove or disprove that you can use dominoes to tile a standard checkerboard with all four corners removed.
- **45.** Prove that you can use dominoes to tile a rectangular checkerboard with an even number of squares.
- **46.** Prove or disprove that you can use dominoes to tile a 5×5 checkerboard with three corners removed.
- 47. Use a proof by exhaustion to show that a tiling using dominoes of a 4 × 4 checkerboard with opposite corners removed does not exist. [Hint: First show that you can assume that the squares in the upper left and lower right corners are removed. Number the squares of the original checkerboard from 1 to 16, starting in the first row, moving right in this row, then starting in the leftmost square in the second row and moving right, and so on. Remove squares 1 and 16. To begin the proof, note that square 2 is covered either by a domino laid horizontally, which

- covers squares 2 and 3, or vertically, which covers squares 2 and 6. Consider each of these cases separately, and work through all the subcases that arise.]
- *48. Prove that when a white square and a black square are removed from an 8 × 8 checkerboard (colored as in the text) you can tile the remaining squares of the checkerboard using dominoes. [Hint: Show that when one black and one white square are removed, each part of the partition of the remaining cells formed by inserting the barriers shown in the figure can be covered by dominoes.]

- **49.** Show that by removing two white squares and two black squares from an 8 × 8 checkerboard (colored as in the text) you can make it impossible to tile the remaining squares using dominoes.
- *50. Find all squares, if they exist, on an 8×8 checkerboard such that the board obtained by removing one of these squares can be tiled using straight triominoes. [Hint: First use arguments based on coloring and rotations to eliminate as many squares as possible from consideration.]
- *51. a) Draw each of the five different tetrominoes, where a tetromino is a polyomino consisting of four squares.
 - b) For each of the five different tetrominoes, prove or disprove that you can tile a standard checkerboard using these tetrominoes.
- *52. Prove or disprove that you can tile a 10×10 checkerboard using straight tetrominoes.

Key Terms and Results

TERMS

proposition: a statement that is true or false

propositional variable: a variable that represents a proposition

truth value: true or false

 $\neg p$ (negation of p): the proposition with truth value opposite to the truth value of p

logical operators: operators used to combine propositions

compound proposition: a proposition constructed by combining propositions using logical operators

truth table: a table displaying all possible truth values of propositions

- $p \lor q$ (disjunction of p and q): the proposition "p or q," which is true if and only if at least one of p and q is true
- $p \land q$ (conjunction of p and q): the proposition "p and q," which is true if and only if both p and q are true
- $p \oplus q$ (exclusive or of p and q): the proposition "p XOR q," which is true when exactly one of p and q is true
- $p \rightarrow q$ (p implies q): the proposition "if p, then q," which is false if and only if p is true and q is false

converse of p \rightarrow q: the conditional statement $q \rightarrow p$

contrapositive of $p \rightarrow q$ **:** the conditional statement $\neg q \rightarrow \neg p$

inverse of p \to q: the conditional statement $\neg p \to \neg q$

 $p \leftrightarrow q$ (biconditional): the proposition "p if and only if q," which is true if and only if p and q have the same truth value

bit: either a 0 or a 1

Boolean variable: a variable that has a value of 0 or 1

bit operation: an operation on a bit or bits

bit string: a list of bits

bitwise operations: operations on bit strings that operate on each bit in one string and the corresponding bit in the other string

logic gate: a logic element that performs a logical operation on one or more bits to produce an output bit

logic circuit: a switching circuit made up of logic gates that produces one or more output bits

tautology: a compound proposition that is always true

contradiction: a compound proposition that is always false

contingency: a compound proposition that is sometimes true and sometimes false

consistent compound propositions: compound propositions for which there is an assignment of truth values to the variables that makes all these propositions true

satisfiable compound proposition: a compound proposition for which there is an assignment of truth values to its variables that makes it true

logically equivalent compound propositions: compound propositions that always have the same truth values

predicate: part of a sentence that attributes a property to the subject

propositional function: a statement containing one or more variables that becomes a proposition when each of its variables is assigned a value or is bound by a quantifier

domain (or universe) of discourse: the values a variable in a propositional function may take

 $\exists x P(x)$ (existential quantification of P(x)): the proposition that is true if and only if there exists an x in the domain such that P(x) is true

 $\forall x P(x)$ (universal quantification of P(x)): the proposition that is true if and only if P(x) is true for every x in the domain

logically equivalent expressions: expressions that have the same truth value no matter which propositional functions and domains are used

free variable: a variable not bound in a propositional function **bound variable:** a variable that is quantified

scope of a quantifier: portion of a statement where the quantifier binds its variable

argument: a sequence of statements

argument form: a sequence of compound propositions involving propositional variables

premise: a statement, in an argument, or argument form, other than the final one

conclusion: the final statement in an argument or argument form

valid argument form: a sequence of compound propositions involving propositional variables where the truth of all the premises implies the truth of the conclusion

valid argument: an argument with a valid argument form

rule of inference: a valid argument form that can be used in the demonstration that arguments are valid

fallacy: an invalid argument form often used incorrectly as a rule of inference (or sometimes, more generally, an incorrect argument)

circular reasoning or begging the question: reasoning where one or more steps are based on the truth of the statement being proved

theorem: a mathematical assertion that can be shown to be true

conjecture: a mathematical assertion proposed to be true, but that has not been proved

proof: a demonstration that a theorem is true

axiom: a statement that is assumed to be true and that can be used as a basis for proving theorems

lemma: a theorem used to prove other theorems

corollary: a proposition that can be proved as a consequence of a theorem that has just been proved

vacuous proof: a proof that $p \rightarrow q$ is true based on the fact that p is false

trivial proof: a proof that $p \rightarrow q$ is true based on the fact that q is true

direct proof: a proof that $p \rightarrow q$ is true that proceeds by showing that q must be true when p is true

proof by contraposition: a proof that $p \rightarrow q$ is true that proceeds by showing that p must be false when q is false

proof by contradiction: a proof that p is true based on the truth of the conditional statement $\neg p \rightarrow q$, where q is a contradiction

exhaustive proof: a proof that establishes a result by checking a list of all possible cases

proof by cases: a proof broken into separate cases, where these cases cover all possibilities

without loss of generality: an assumption in a proof that makes it possible to prove a theorem by reducing the number of cases to consider in the proof

counterexample: an element x such that P(x) is false

constructive existence proof: a proof that an element with a specified property exists that explicitly finds such an element

nonconstructive existence proof: a proof that an element with a specified property exists that does not explicitly find such an element

rational number: a number that can be expressed as the ratio of two integers p and q such that $q \neq 0$

uniqueness proof: a proof that there is exactly one element satisfying a specified property

RESULTS

The logical equivalences given in Tables 6, 7, and 8 in Section 1.3.

De Morgan's laws for quantifiers.

Rules of inference for propositional calculus.

Rules of inference for quantified statements.

Review Questions

- 1. a) Define the negation of a proposition.
 - **b)** What is the negation of "This is a boring course"?
- **2. a)** Define (using truth tables) the disjunction, conjunction, exclusive or, conditional, and biconditional of the propositions *p* and *q*.
 - b) What are the disjunction, conjunction, exclusive or, conditional, and biconditional of the propositions "I'll go to the movies tonight" and "I'll finish my discrete mathematics homework"?
- **3. a)** Describe at least five different ways to write the conditional statement $p \rightarrow q$ in English.

- b) Define the converse and contrapositive of a conditional statement.
- c) State the converse and the contrapositive of the conditional statement "If it is sunny tomorrow, then I will go for a walk in the woods."
- **4. a)** What does it mean for two propositions to be logically equivalent?
 - **b)** Describe the different ways to show that two compound propositions are logically equivalent.
 - c) Show in at least two different ways that the compound propositions $\neg p \lor (r \to \neg q)$ and $\neg p \lor \neg q \lor \neg r$ are equivalent.