BAMS 508 – Discrete Optimization Assignment 3

Gurpal Bisra, Deanna Garson

Date: November 16, 2016

Question 1

1. Solving a Cutting Stock instance. Consider the instance of the Cutting Stock problem, to satisfy the following demands for small rolls using the smallest possible number of big rolls, where each big roll has width W = 240 cm.

Small roll type:	1	2	3	4	5	6
Width (cm)	29	43	47	50	26	23
Number required (rolls)	81	56	96	94	118	121

- (a) Define the initial restriction for the Gilmore & Gomory approach, using only patterns each consisting of as many small rolls as possible of a single type. Solve its LP relaxation. Does the optimum objective value of this LP relaxation give, in general, a lower bound or an upper bound on the optimum value of the integer program? Explain.
- (b) Solve using the Restriction & Pricing (aka, Column Generation) method, starting from this initial restriction. Detail and explain your calculations.

(a) Information Provided:

- Big roll width W = 240 cm
- 4 small roll types ("standards")
 - each with width $w_i > 0$ and demand $d_i > 0$ (i = 1, ... m)
- Small Roll Types 1 can fit = $\lfloor \frac{240cm}{29cm} \rfloor$ = 8 type-1 rolls
- Small Roll Types 2 can fit = $\lfloor \frac{240cm}{43cm} \rfloor$ = 5 type-2 rolls
- Small Roll Types 3 can fit = $\lfloor \frac{240cm}{47cm} \rfloor$ = 5 type-3 rolls
- Small Roll Types 4 can fit = $\lfloor \frac{240cm}{50cm} \rfloor$ = 4 type-4 rolls
- Small Roll Types 5 can fit = $\lfloor \frac{240cm}{26cm} \rfloor$ = 9 type-5 rolls
- Small Roll Types 6 can fit = $\lfloor \frac{240cm}{23cm} \rfloor$ = 10 type-6 rolls

We are asked to define a cutting pattern $y \in Z^m$ where y_i = is the number of small rolls i in the pattern

- pattern y is feasible if its total width $c(T) = \sum_{i \in M} w_i y_i \le W$
- let c_y denote the cost of using pattern y
 - c_y = 1 to minimize the number of big rolls cut
 - $c_y = W = \sum_{i \in M} w_i y_i$ to minimize cutting waste

Integer Programming Formulation:

Decision Variables:

• let x_y = denote the number of big rolls cut according to pattern y where y = 1, 2, ... 6

Constraints:

1. Type-1 Rolls: The number of required type-1 rolls to be cut is 81.

$$8 * x_1 \ge 81$$

2. Type-2 Rolls: The number of required type-2 rolls to be cut is 56.

$$5 * x_2 \ge 56$$

3. Type-3 Rolls: The number of required type-3 rolls to be cut is 96.

$$5 * x_3 \ge 96$$

4. Type-4 Rolls: The number of required type-4 rolls to be cut is 94.

$$4 * x_4 \ge 94$$

5. Type-5 Rolls: The number of required type-5 rolls to be cut is 118.

$$9 * x_5 \ge 118$$

6. Type-6 Rolls: The number of required type-6 rolls to be cut is 121.

$$10 * x_6 \ge 121$$

Objective:

• To minimize smallest number of big rolls cut.

min Z = {
$$c_v = W = \sum_{i \in G} x_i$$
 }

An annotated version of the Excel Solver spreadsheet, for the LP relaxation, with its sensitivity report is found below:

Big roll width	W =	240	cm				Constraints				
								Value		Minimum	Slack
Small roll type:	1	2	3	4	5	6	Type-1 Roll	81	≥	81	0
Width (cm)	29	43	47	50	26	23	Type-2 Roll	56	≥	56	0
Number required (rolls)	81	56	96	94	118	121	Type-3 Roll	96	≥	96	0
# Small Rolls fit on 1 Big Roll	8	5	5	4	9	10	Type-4 Roll	94	≥	94	0
							Type-5 Roll	118	≥	118	0
Decision Variables	10.125	11.2	19.2	23.5	13.11111	12.1	Type-6 Roll	121	≥	121	0
# small rolls of type	x1	x2	x 3	x4	x5	x5	all xi are into	eger			
Objective Function	min (Z = ∑	_(i ∈ 6) x_i)								
		89.23611	total rolls								

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$12	Decision Variables W =	10.125	0	1	1E+30	1
\$C\$12	Decision Variables	11.2	0	1	1E+30	1
\$D\$12	Decision Variables cm	19.2	0	1	1E+30	1
\$E\$12	Decision Variables	23.5	0	1	1E+30	1
\$F\$12	Decision Variables	13.11111111	0	1	1E+30	1
\$G\$12	Decision Variables	12.1	0	1	1E+30	1

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$J\$7	Type-1 Roll Value	81	0.125	81	1E+30	81
\$J\$8	Type-2 Roll Value	56	0.2	56	1E+30	56
\$J\$9	Type-3 Roll Value	96	0.2	96	1E+30	96
\$J\$10	Type-4 Roll Value	94	0.25	94	1E+30	94
\$J\$11	Type-5 Roll Value	118	0.111111111	118	1E+30	118
\$J\$12	Type-6 Roll Value	121	0.1	121	1E+30	121

Hence, according to the solution for the LP relaxation, 89.23611 rolls need to be cut.

When I add a 7th constraint, as seen below, I obtain the annotated integer solution.

7. x_v integer: The number of each type of roll cut must be integer.

An annotated version of the Excel Solver spreadsheet, for the integer programming problem is found below:

Big roll width	W =	240	cm				Constraints				
								Value		Minimum	Slack
Small roll type:	1	2	3	4	5	6	Type-1 Roll	88	≥	81	7
Width (cm)	29	43	47	50	26	23	Type-2 Roll	60	≥	56	4
Number required (rolls)	81	56	96	94	118	121	Type-3 Roll	100	≥	96	4
# Small Rolls fit on 1 Big Roll	8	5	5	4	9	10	Type-4 Roll	96	≥	94	2
							Type-5 Roll	126	≥	118	8
Decision Variables	11	12	20	24	14	13	Type-6 Roll	130	≥	121	9
# small rolls of type	x1	x2	x 3	x4	x5	x5	all xi are into	eger			
Objective Function	min (Z = ∑	_(i ∈ 6) x_i)								
		94	total rolls								

The LP relaxation provides a lower bound on the optimum value of the integer program since fractions of rolls can be used as decision variable values to fulfill the constraints. Because relaxing the integrality constraints yields a linear program (the LP relaxation), to which we can find provably optimum solutions, the slack values of each constraint are 0.

(b) Next, we solve the Restriction & Pricing (aka Column Generation) method, starting from the initial restriction.

Recall from lecture: Restriction & Pricing approach, aka (Delayed) Column Generation

The Pricing Problem for Cutting Stock:

given dual prices $v \in \mathbb{R}^m$

find a cutting pattern
$$y \in \mathbb{Z}^{m_+}$$
 such that $\sum_{i \in M} w_i y_i \leq W$ and with negative reduced cost $c'_v = c_v - \sum_{i \in M} v_i y_i = 1 - \sum_{i \in M} v_i y_i$

Finding a feasible cutting pattern $y \in \mathbb{Z}^{m}_{+}$ with most negative reduced cost is equivalent to solving the integer knapsack problem:

$$\max_{y} \{ \sum_{i \in M} v_i y_i : \sum_{i \in M} w_i y_i \leq W; y \geq 0, \text{ integer} \}$$

- · so the subproblem can itself be formulated as an IP problem!
- identify a (small) subset of (potentially interesting) variables
 - e.g., all singleton subsets for set covering, packing or partitioning
- repeat
 - define the current restriction, aka the (current) Master Problem, by including known variables
 - solve the current restriction, obtaining the current LP solution x' and dual prices v
 - so x' and v satisfy Complementary Slackness
 - Pricing Problem (aka the Sub-problem): identify one (or several)
 - variable(s) with negative reduced cost (for a minimization problem)
 - these new variables are added to the current restriction
- until no variable has a negative reduced cost
- The final solution x'
 - with all variables xi not in the current restriction set to the value x' i = 0
 - is an optimal solution to the full LP (x' satisfies the LP optimality conditions)

Knapsack sub-problem 1:

- **Decision Variables:** y1, ... y6 ≥ 0 as integer
- Objective Function: max $\{\frac{1}{8}y1 + \frac{1}{5}y2 + \frac{1}{5}y3 + \frac{1}{4}y4 + \frac{1}{9}y5 + \frac{1}{10}y6\}$
- Subject To:
 - $29*y1 + 43*y2 + 47*y3 + 50*y4 + 26*y5 + 23*y6 \le 240 \text{ cm}$

Now, a determined a new cutting pattern which I will denote as:

 x_7 = big roll fits 1x type-2 rolls, 1x type-3 rolls, and 3x type-4 rolls

Then, I used this new cutting pattern as a new variable for the linear programming problem. An annotated version of the Excel Solver spreadsheet, for the LP relaxation, with its sensitivity report is found below:

Big roll width	W =	240	cm					Constraints					
									Value		Minimum	Slack	Dual Values
Small roll type:	1	2	3	4	5	6		Type-1 Roll *	81	≥	81	0	0.125000001
Width (cm)	29	43	47	50	26	23		Type-2 Roll *	56	≥	56	0	0.2
Number required (rolls)	81	56	96	94	118	121		Type-3 Roll *	96	≥	96	0	0.200000004
# Small Rolls fit on 1 Big Roll	8	5	5	4	9	10		Type-4 Roll *	94	≥	94	0	0.249999999
								Type-5 Roll "	118	≥	118	0	0.111111109
Decision Variables	10.125	4.933333	12.93333	0	13.11111	12.1	31.3333333	Type-6 Roll "	121	≥	121	0	0.099999999
# small rolls of type	x1	x2	x 3	x4	x5	x6	x7						
								all xi are inte	ger				
Objective Function	min (Z = ∑	_(i ∈ 6) x_i)										
		84.53611	total rolls										
KNAPSACK PROBLEM 1													
Decision Variables	0	1	1	3	0	0		Constraints					
# small rolls of type	y1	y2	у3	y4	у5	y6			Value		Minimum	Slack	
								Iteration 1	240	≤	240	0	
Objective Function max {	$\frac{1}{2}$ v1 + $\frac{1}{2}$ v2	$2 + \frac{1}{5}y3 + \frac{1}{4}y$	v4 + ¹ v5 +	1 v6 }				29*v1 + 43*v	/2 ± /17*v2	± 50°	*v/I + 26*v5	+ 23*v6 <	240 cm
	8' 5'	5 4	, . 9 ,-	10 , ,				25 Y1 1 45 Y	. 50	y4 . 20 y3	· 25 yo =	240 CIII	
		1.15	total rolls					All yi are inte	ger				
								All yi are inte	ger				
Initial Pattern					Pattern 5	Pattern 6		All yi are inte	ger				
Initial Pattern 1	8	Pattern 2			Pattern 5	Pattern 6		All yi are inte	ger				
Initial Pattern 1 2	8 0	Pattern 2	Pattern 3 0 0	Pattern 4 0 0		0 0		All yi are inte	ger				
Initial Pattern 1 2 3	8 0 0	Pattern 2 0 5 0	Pattern 3 0 0 5	Pattern 4 0 0 0	0	0 0 0	Pattern 7 0 1	All yi are inte	ger				
Initial Pattern 1 2 3 4	8 0	Pattern 2	Pattern 3 0 0 5	Pattern 4 0 0 0 0 4	0 0 0	0 0 0	Pattern 7 0 1 1 3	All yi are inte	eger				
Initial Pattern	8 0 0	Pattern 2 0 5 0	Pattern 3 0 0 5	Pattern 4 0 0 0	0 0 0	0 0 0	Pattern 7 0 1	All yi are inte	ger				

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$12	Decision Variables W =	10.125	0	1	1E+30	1
\$C\$12	Decision Variables	4.933333333	0	1	3	0.75
\$D\$12	Decision Variables cm	12.93333333	0	1	3	0.75
\$E\$12	Decision Variables	0	0.2	1	1E+30	0.2
\$F\$12	Decision Variables	13.11111111	0	1	1E+30	1
\$G\$12	Decision Variables	12.1	0	1	1E+30	1
\$H\$12	Decision Variables	31.33333333	0	1	0.15	0.6

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$J\$7	Type-1 Roll Value	81	0.125	81	1E+30	81
\$J\$8	Type-2 Roll Value	56	0.2	56	1E+30	24.66666667
\$J\$9	Type-3 Roll Value	96	0.2	96	1E+30	64.6666667
\$J\$10	Type-4 Roll Value	94	0.2	94	74	94
\$J\$11	Type-5 Roll Value	118	0.111111111	118	1E+30	118
\$J\$12	Type-6 Roll Value	121	0.1	121	1E+30	121

Knapsack sub-problem 2:

• **Decision Variables:** y1, ... y6 \geq 0 as integer

• Objective Function: $\max \{ \frac{1}{8} y1 + \frac{1}{5} y2 + \frac{1}{5} y3 + \frac{1}{5} y4 + \frac{1}{9} y5 + \frac{1}{10} y6 \}$

• Subject To:

• $29*y1 + 43*y2 + 47*y3 + 50*y4 + 26*y5 + 23*y6 \le 240 \text{ cm}$

Big roll width	W =	240	cm						Constraints					
Dig foil width	VV -	240	CIII						Constraints	Value		Minimum	Slack	Dual Values
Small roll type:	1	2	3	4	5	6			Type-1 Roll "	81	≥	81	0	0.125000001
Width (cm)	29	43	47	50	26	23			Type-2 Roll	56	≥	56	0	0.2
Number required (rolls)	81	56	96	94	118	121			Type-3 Roll *	96	_	96	0	0.200000004
# Small Rolls fit on 1 Big Roll	8	5	5	4	9	10			Type-4 Roll *	94	_	94	0	0.249999999
									Type-5 Roll "		≥	118	0	0.111111109
Decision Variables	10.125	0	12.93333	0	13.11111	11.60667	31.3333333	4.93333333	Type-6 Roll "	121	≥	121	0	0.099999999
# small rolls of type	x1	x2	x3	x4	x5	x 6	x7	x8	, ·					
									all xi are inte	eger				
Objective Function	min (Z = ∑	_(i ∈ 6) x_i)											
		84.04278	total rolls											
KNAPSACK PROBLEM 2														
Decision Variables	0	5	0	0	0	1			Constraints			_		
# small rolls of type	y1	y2	у3	y4	у5	y6				Value		Minimum	Slack	
									Iteration 1	238	≤	240	-2	
Objective Function	max { $\frac{1}{8}$ y1	$1 + \frac{1}{5}y2 + \frac{1}{5}$	$y3 + \frac{1}{5}y4 + \frac{1}{5}$	$\frac{1}{9}$ y5 + $\frac{1}{10}$ y6	i }				29*y1 + 43*	y2 + 47*y3 -	+ 50*	y4 + 26*y5	+ 23*y6≤	240 cm
		1.1	total rolls						All yi are inte	eger				
Initial Pattern		Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Pattern 7	Pattern 8						
1	8	0	0	0	0	0	0	0						
2	0	5	0	0	0	0	1	5						
3	0	0	5	0	0	0	1	0						
4	0	0	0	4	0	0	3	0						
5	0	0	0	0	9	0	0	0						
6	0	0	0	0	0	10	0	1						

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$12	Decision Variables W =	10.125	0	1	1E+30	1
\$C\$12	Decision Variables	0	0.1	1	1E+30	0.1
\$D\$12	Decision Variables cm	12.93333333	0	1	3.1	0.65
\$E\$12	Decision Variables	0	0.173333333	1	1E+30	0.173333333
\$F\$12	Decision Variables	13.11111111	0	1	1E+30	1
\$G\$12	Decision Variables	11.60666667	0	1	6.5	1
\$H\$12	Decision Variables	31.33333333	0	1	0.13	0.62
\$1\$12	Decision Variables	4.933333333	0	1	0.1	0.65

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$K\$7	Type-1 Roll Value	81	0.125	81	1E+30	81
\$K\$8	Type-2 Roll Value	56	0.18	56	580.3333333	24.66666667
\$K\$9	Type-3 Roll Value	96	0.2	96	1E+30	64.66666667
\$K\$10	Type-4 Roll Value	94	0.206666667	94	74	94
\$K\$11	Type-5 Roll Value	118	0.111111111	118	1E+30	118
\$K\$12	Type-6 Roll Value	121	0.1	121	1E+30	116.0666667

From solving the knapsack problem first, I determined a new cutting pattern which I will denote as: x_8 = big roll fits 5x type-2 rolls, 1x type-6 rolls

Knapsack sub-problem 3:

• **Decision Variables:** y1, ... y6 \geq 0 as integer

• Objective Function: max $\{\frac{1}{8}y1 + \frac{9}{50}y2 + \frac{1}{5}y3 + \frac{31}{150}y4 + \frac{1}{9}y5 + \frac{1}{10}y6\}$

• Subject To:

• $29*y1 + 43*y2 + 47*y3 + 50*y4 + 26*y5 + 23*y6 \le 240 \text{ cm}$

Big roll width	W =	240	cm							Constraints	Value	M	linimum[Slack	Shadow Price
Small roll type:	1	2	3	4	5	6				Type-1 Roll *	81	≥ "	81	0	0.125
Width (cm)	29	43	47	50	26	23				Type-2 Roll	56		56	0	0.18
Number required (rolls)	81	56	96	94	118	121				Type-3 Roll *	96	≥ ≥ ≥	96	0	0.2
# Small Rolls fit on 1 Big Roll	8	5	5	4	9	10				Type-4 Roll *	94	≥	94	0	0.206666667
										Type-5 Roll "	118	≥	118	0	0.111111111
Decision Variables	8.071934	0	14.0283	0	13.11111	0	25.8584906	6.02830189	16.4245283	Type-6 Roll "	121	≥	121	0	0.1
# small rolls of type	x1	x2	x 3	x4	x5	x6	x7	x8	x 9						
										all xi are inte	eger				
Objective Function	min (Z = ∑	_(i ∈ 6) x_i)												
		83.52267	total rolls												
KNAPSACK PROBLEM 3															
Decision Variables	1	0	0	1	0	7				Constraints					
# small rolls of type	y1	y2	у3	y4	y5	y6					Value	M	linimum	Slack	
										Iteration 1	240	≤	240	0	
Objective Function	max { 1/8 y	1 + 9 y2 +	$\frac{1}{5}$ y3 + $\frac{31}{150}$ y	4 + ¹ / ₉ y5 + ₁	1 0 y6 }					29*y1 + 43*y	y2 + 47*y3	+ 50*y	4 + 26*y5	+ 23*y6≤	240 cm
		1.031667	total rolls							All yi are inte	eger				
Initial Pattern			Pattern 3					Pattern 8	Pattern 9						
1	8	0	0	0	0	0	0	0	1						
2	0	5	0	0	0	0	1	5	0						
3	0	0	5	0	0	0	1	0	0						
4	0	0	0	4	0	0	3	0	1						
5	0	0	0	0	9	0	0	0	0						
6	0	0	0	0	0	10	0	1	7						

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$12	Decision Variables W =	8.071933962	0	1	5.4	0.253333333
\$C\$12	Decision Variables	0	0.095518868	1	1E+30	0.095518868
\$D\$12	Decision Variables cm	14.02830189	0	1	0.475	0.660714286
\$E\$12	Decision Variables	0	0.174528302	1	1E+30	0.174528302
\$F\$12	Decision Variables	13.11111111	0	1	1E+30	1
\$G\$12	Decision Variables	0	0.044811321	1	1E+30	0.044811321
\$H\$12	Decision Variables	25.85849057	0	1	0.132142857	0.095
\$I\$12	Decision Variables	6.028301887	0	1	0.096428571	0.660714286
\$J\$12	Decision Variables	16.4245283	0	1	0.031666667	0.675

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$L\$7	Type-1 Roll Value	81	0.125	81	1E+30	64.5754717
\$L\$8	Type-2 Roll Value	56	0.180896226	56	580.3333333	30.42857143
\$L\$9	Type-3 Roll Value	96	0.2	96	1E+30	70.14150943
\$L\$10	Type-4 Roll Value	94	0.206367925	94	91.28571429	78.31428571
\$L\$11	Type-5 Roll Value	118	0.111111111	118	1E+30	118
\$L\$12	Type-6 Roll Value	121	0.095518868	121	456.3333333	116.0666667

From solving the knapsack problem first, I determined a new cutting pattern which I will denote as: x_9 = big roll fits 1x type-1 rolls, 1x type-4 rolls, and 7x type-6 rolls.

Knapsack sub-problem 4:

- **Decision Variables:** y1, ... y6 \geq 0 as integer **Objective Function:** max { $\frac{1}{8}$ y1 + (0.180896226*y2) + $\frac{1}{5}$ y3 + (0.206367925*y4) + $\frac{1}{9}$ y5 + (0.095518868*y6) }
- Subject To:
 - $29*y1 + 43*y2 + 47*y3 + 50*y4 + 26*y5 + 23*y6 \le 240 \text{ cm}$

Big roll width	W =	240	cm							
Small roll type:	1	2	3	4	5	6				
Width (cm)	29	43	47	50	26	23				
Number required (rolls)	81	56	96	94	118	121				
# Small Rolls fit on 1 Big Roll	8	5	5	4	9	10				
Decision Variables	0	0	14.05253	0	10.25724	0	25.7373358	3.48405253	16.7879925	12.8424015
# small rolls of type	x1	x2	x 3	x4	x5	x6	x7	x8	x 9	x10
Objective Function	min (Z = ∑	_(i ∈ 6) x_i)							
		83.16156	total rolls							
KNAPSACK PROBLEM 4										
Decision Variables	5	1	0	0	2	0				
# small rolls of type	y1	y2	у3	y4	у5	y6				
Objective Function	may / 1 v1	± /0 18080)6226*v2\ +	$\frac{1}{2}$ $\sqrt{2}$ \pm $\sqrt{0}$ 2	06367925	*v4\ + 1 v5.	, + (0.0955188	68*v6\ \		
	IIIdy (y	1 (0.10005		5 93 1 (0.2	.00307323	y4), 9 A2	. (0.0555100	00 40)]		
		1.028118	total rolls							
Initial Pattern	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Pattern 7	Pattern 8	Pattern 9	Pattern 10
1	8	0	0	0	0	0	0	0	1	5
2	0	5	0	0	0	0	1	5	0	1
3	0	0	5	0	0	0	1	0	0	0
4	0	0	0	4	0	0	3	0	1	0
5	0	0	0	0	9	0	0	0	0	2
6	0	0	0	0	0	10	0	1	7	0

Constraints Type-1 Roll 7 Type-2 Roll 7	Value 81	<u>></u>	Minimum 81	Slack 0	Shadow Price 0.125 0.180896226
Type-3 Roll Type-4 Roll	96 94	≥ ≥	94	0 0 0	0.2 0.206367925
Type-5 Roll Type-6 Roll	118 121	≥ ≥	118 121	0	0.111111111 0.095518868
all xi are inte	ger				
Constraints Iteration 1	Value 240	<	Minimum 240	Slack 0	
29*y1 + 43*y	/2 + 47*y3 ·			5 + 23*y6 ≤	240 cm

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$12	Decision Variables W =	0	0.044736294	1	1E+30	0.044736294
\$C\$12	Decision Variables	0	0.096310194	1	1E+30	0.096310194
\$D\$12	Decision Variables cm	14.05253283	0	1	0.393333333	0.659880051
\$E\$12	Decision Variables	0	0.174317282	1	1E+30	0.174317282
\$F\$12	Decision Variables	10.25724411	0	1	0.59	0.126533019
\$G\$12	Decision Variables	0	0.036898061	1	1E+30	0.036898061
\$H\$12	Decision Variables	25.73733583	0	1	0.13197601	0.078666667
\$1\$12	Decision Variables	3.484052533	0	1	0.097777778	0.141931217
\$J\$12	Decision Variables	16.7879925	0	1	0.026222222	0.684444444
\$K\$12	Decision Variables	12.8424015	0	1	0.028118449	0.131111111

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$M\$7	Type-1 Roll Value	81	0.119407963	81	88.42857143	64.5754717
\$M\$8	Type-2 Roll Value	56	0.180737961	56	596.5333333	17.68571429
\$M\$9	Type-3 Roll Value	96	0.2	96	1E+30	70.26266417
\$M\$10	Type-4 Roll Value	94	0.20642068	94	53.05714286	77.94318182
\$M\$11	Type-5 Roll Value	118	0.111111111	118	1E+30	92.315197
\$M\$12	Type-6 Roll Value	121	0.096310194	121	456.3333333	119.3066667

From solving the knapsack problem first, I determined a new cutting pattern which I will denote as: x_{10} = big roll fits 5x type-1 rolls, 1x type-2 rolls, and 2x type-5 rolls.

Knapsack sub-problem 5:

- **Decision Variables:** y1, ... y6 \geq 0 as integer
- Objective Function:

 $\max \left\{ (0.119407963*y1) + (0.180737961*y2) + \frac{1}{5}y3 + (0.20642068*y4) + \frac{1}{9}y5 + (0.096310194*y6) \right\}$

- Subject To:
 - $29*y1 + 43*y2 + 47*y3 + 50*y4 + 26*y5 + 23*y6 \le 240 \text{ cm}$

l 											
Small roll type:	1	2	3	4	5	6					
Width (cm)	29	43	47	50	26	23					
Number required (rolls)	81	56	96	94	118	121					
# Small Rolls fit on 1 Big Ro	II 8	5	5	4	9	10					
Decision Variables	0	0	0	0	6.353763	0	25.7373358	3.48405253	16.7879925	12.8424015	17.565666
# small rolls of type	x1	x2	x 3	x4	x5	x 6	x7	x8	x 9	x10	x11
Objective Function	min (Z = ∑	<u>(</u> i ∈ 6) x_i									
		82.77121	total rolls								
KNAPSACK PROBLEM 5							_				
Decision Variables	0	0	4	0	2	0					
# small rolls of type	y1	y2	у3	y4	у5	y6					
Objective Function max {(0.	119407963*v1) + (0.18073	7961*v2) + ¹	v3 + (0.206	42068*v4) +	¹ v5 + (0.09	" 6310194*y6)}				
	,		-		, , ,	9 '	L				
		1.022222	total rolls								
Initial Pattern	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Pattern 7	Pattern 8	Pattern 9	Pattern 10	Pattern 11
	1 8	0	0	0	0	0	0	0	1	5	0
	2 0	5	0	0	0	0	1	5	0	1	0
	3 0	0	5	0	0	0	1	0	0	0	4
	4 0	0	0	4	0	0	3	0	1	0	0
	5 0	0	0	0	9	0	0	0	0	2	2
	6 0	0	0	0	0	10	0	1	7	0	0

Constraints					Shadow
	Value		Minimum	Slack	Price
Type-1 Roll *	81	≥	81	0	0.119407963
Type-2 Roll *	56	≥	56	0	0.180737961
Type-3 Roll *		≥		0	0.2
Type-4 Roll *			94	0	0.20642068
Type-5 Roll		≥	118	0	0.111111111
Type-6 Roll "	121	≥	121	0	0.096310194
all xi are integ	ger				
Constraints					
	Value		Minimum	Slack	
Iteration 1	240	≤	240	0	
29*y1 + 43*y	2 + 47*y3 +	- 50*	y4 + 26*y5	5 + 23*y6≤	240 cm
All yi are integ	ger				

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$12	Decision Variables W =	0	0.044819679	1	1E+30	0.044819679
\$C\$12	Decision Variables	0	0.096049614	1	1E+30	0.096049614
\$D\$12	Decision Variables cm	0	0.027777778	1	1E+30	0.027777778
\$E\$12	Decision Variables	0	0.166979362	1	1E+30	0.166979362
\$F\$12	Decision Variables	6.353762768	0	1	1.082857143	0.1
\$G\$12	Decision Variables	0	0.039503857	1	1E+30	0.039503857
\$H\$12	Decision Variables	25.73733583	0	1	0.126420455	0.084222222
\$1\$12	Decision Variables	3.484052533	0	1	0.097513228	0.142195767
\$J\$12	Decision Variables	16.7879925	0	1	0.028074074	0.682592593
\$K\$12	Decision Variables	12.8424015	0	1	0.02817086	0.14037037
\$L\$12	Decision Variables	17.56566604	0	1	0.02222222	0.505681818

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$N\$7	Type-1 Roll Value	81	0.11939754	81	88.42857143	64.5754717
\$N\$8	Type-2 Roll Value	56	0.180790077	56	596.5333333	17.68571429
\$N\$9	Type-3 Roll Value	96	0.194444444	96	114.3677298	70.26266417
\$N\$10	Type-4 Roll Value	94	0.208255159	94	53.05714286	77.94318182
\$N\$11	Type-5 Roll Value	118	0.111111111	118	1E+30	57.18386492
\$N\$12	Type-6 Roll Value	121	0.096049614	121	456.3333333	119.3066667

From solving the knapsack problem first, I determined a new cutting pattern which I will denote as: x_{11} = big roll fits 4x type-3 rolls, 2x type-5 rolls

Knapsack sub-problem 6:

- **Decision Variables:** y1, ... y6 \geq 0 as integer
- Objective Function:

 $\max \left\{ (0.119407963*y1) + (0.180737961*y2) + \frac{1}{5}y3 + (0.20642068*y4) + \frac{1}{9}y5 + (0.096310194*y6) \right\}$

- Subject To:
 - $29*y1 + 43*y2 + 47*y3 + 50*y4 + 26*y5 + 23*y6 \le 240 \text{ cm}$

Big roll width	W =	240	cm									
Small roll type:	1	2	3	4	5	6						
Width (cm)	29	43	47	50	26	23						
Number required (rolls)	81	56	96	94	118	121						
# Small Rolls fit on 1 Big Roll	8	5	5	4	9	10						
5 · · · · · · · · · · ·							05.7740000	4.04050000	10.0010105	0.4754000	47.5570475	0.04000005
Decision Variables	0	0	0	0	0_	0		4.21052632		9.1754386		9.21929825
# small rolls of type	x1	x2	х3	x4	х5	x6	х7	x8	x 9	x10	x11	x12
Objective Function	min $(Z = \Sigma)$	_(i ∈ 6) x_i)									
•	` _		total rolls									
KNAPSACK PROBLEM 6												
Decision Variables	2	0	0	0	7	0						
# small rolls of type	y1	y2	у3	y4	y5	y6						
Objective Function max {(0.119)	9407963*y1)	+ (0.180737	7961*y2) + ±	y3 + (0.2064	42068*y4) +	½ y5 + (0.09	6310194*y6)}					
		1.016573	total rolls									
Initial Pattern	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Pattern 7	Pattern 8	Pattern 9	Pattern 10	Pattern 11	Pattern 12
1	8	0	0	0	0	0	0	0	1	5	0	2
2	0	5	0	0	0	0	1	5	0	1	0	0
3	0	0	5	0	0	0	1	0	0	0	4	0
4	0	0	0	4	0	0	3	0	1	0	0	0
5	0	0	0	0	9	0	0	0	0	2	2	7
6	0	0	0	0	0	10	0	1	7	0	0	0

Constraints					Shadow
	Value		Minimum	Slack	Price
Type-1 Roll *	81	≥	81	0	0.11939754
Type-2 Roll *		≥	56	0	0.180790077
Type-3 Roll *	96	≥		0	0.194444444
Type-4 Roll *	94		94	0	0.208255159
Type-5 Roll	118		118	0	0.111111111
Type-6 Roll *	121	≥	121	0	0.096049614
all xi are inte	ger				
Constraints					
	Value		Minimum	Slack	
Iteration 1	240	≤	240	0	
29*v1 + 43*v	2 + 47*v3 -	+ 50*	*v4 + 26*v5	+ 23*v6 <	240 cm
23 12 . 40 1	2 . 47 10	. 50	14.20 10	25 ,0 _	240 0111
All yi are integ	ger				

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$12	Decision Variables W =	0	0.036297641	1	1E+30	0.036297641
\$C\$12	Decision Variables	0	0.095961887	1	1E+30	0.095961887
\$D\$12	Decision Variables cm	0	0.021098004	1	1E+30	0.021098004
\$E\$12	Decision Variables	0	0.168784029	1	1E+30	0.168784029
\$F\$12	Decision Variables	0	0.024047187	1	1E+30	0.024047187
\$G\$12	Decision Variables	0	0.040381125	1	1E+30	0.040381125
\$H\$12	Decision Variables	25.77192982	0	1	0.127747253	0.086129032
\$1\$12	Decision Variables	4.210526316	0	1	0.097465438	0.102040816
\$J\$12	Decision Variables	16.68421053	0	1	0.028709677	0.682258065
\$K\$12	Decision Variables	9.175438596	0	1	0.020215633	0.041666667
\$L\$12	Decision Variables	17.55701754	0	1	0.016873299	0.510989011
\$M\$12	Decision Variables	9.219298246	0	1	0.016572858	0.052345216

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$O\$7	Type-1 Roll Value	81	0.120462795	81	94.69387755	40.88140162
\$O\$8	Type-2 Roll Value	56	0.180807623	56	593.0967742	21.38248848
\$O\$9	Type-3 Roll Value	96	0.195780399	96	114.3677298	70.20683399
\$O\$10	Type-4 Roll Value	94	0.207803993	94	66.28571429	78.02380952
\$O\$11	Type-5 Roll Value	118	0.108439201	118	143.0849057	57.18386492
\$O\$12	Type-6 Roll Value	121	0.095961887	121	303.34	118.6193548

From solving the knapsack problem first, I determined a new cutting pattern which I will denote as: x_{12} = big roll fits 2x type-1 rolls, 5x type-5 rolls

Knapsack sub-problem 7:

- **Decision Variables:** y1, ... y6 ≥ 0 as integer
- Objective Function:

 $\max \{(0.120462795*y1) + (0.180807623*y2) + (0.195780399*y3) + (0.207803993*y4) + (0.108439201*y5) + (0.095961887*y6)\}$

• Subject To:

•
$$29*y1 + 43*y2 + 47*y3 + 50*y4 + 26*y5 + 23*y6 \le 240 \text{ cm}$$

Big roll width	W =	240	cm									
Small roll type:	1	2	3	4	5	6						
Width (cm)	29	43	47	50	26	23						
Number required (rolls)	81	56	96	94	118	121						
# Small Rolls fit on 1 Big Roll	8	5	5	4	9	10						
Decision Variables	0	0	0	0	0	0	25.7719298	4.21052632	16.6842105	9.1754386	17.5570175	9.21929825
# small rolls of type	x1	x2	x 3	x4	x5	x 6	x7	x8	x 9	x10	x11	x12
Objective Function	min (Z = ∑	(i ∈ 6) x_i										
		82.61842	total rolls									
KNAPSACK PROBLEM 7												
Decision Variables	0	5	0	0	0	1						
# small rolls of type	y1	y2	у3	y4	y5	y6						
Objective Function max {(0.11)	9407963*y1)) + (0.18073	7961*y2) + ½	y3 + (0.206	42068*y4) +	$\frac{1}{9}$ y5 + (0.09)	6310194*y6)}					
		1	total rolls									
			total lolls									
Initial Pattern	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Pattern 7	Pattern 8	Pattern 9	Pattern 10	Pattern 11	Pattern 12
1		0	0		0	0	0	0	1		0	2
2	2 0	5	0	0	Ō	Ö	1	5	0	1	0	0
		0	5	0	0	0	1	0	Ō	0	4	0
3	3 0	U										
3	3 U 4 O	0	0	4	0	0	3	0	1	0	0	0
3 4 5	-	0		4 0	0 9	0	3 0	0	1 0	0 2	0 2	0 7
# small rolls of type	9407963*y1) Pattern 1 1 8 2 0	y2) + (0.18073 1 Pattern 2	y3 7961*y2) + 1/5 total rolls Pattern 3 0 0	y4 y3 + (0.206-	y5 42068*y4) + Pattern 5 0	Pattern 6 0	Pattern 7	Pattern 8 0 5	Pattern 9 1 0 0	Pattern 10 5 1 0	Pattern 11 0 0 4	

Constraints					Shadow
	Value		Minimum	Slack	Price
Type-1 Roll *	81	≥	81	0	0.120462795
Type-2 Roll *			56	0	0.180807623
Type-3 Roll *		≥	96	0	0.195780399
Type-4 Roll *			94	0	0.207803993
Type-5 Roll *	118	≥	118	0	0.108439201
Type-6 Roll *	121	≥	121	0	0.095961887
all xi are integ	ger				
Constraints					
	Value		Minimum	Slack	
Iteration 1	238	≤	240	-2	
29*y1 + 43*y	2 + 47*y3 +	- 50³	y4 + 26*y5	5 + 23*y6≤	240 cm
All yi are inte	nor				
An yr are mie	yeı				

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$H\$12	Decision Variables	25.77192982	C	1	2.046774194	0.629120879
\$1\$12	Decision Variables	4.210526316	C	1	2.709183673	0.918202765
\$J\$12	Decision Variables	16.68421053	C	1	6.427419355	0.682258065
\$K\$12	Decision Variables	9.175438596	C	1	1.691037736	0.536725067
\$L\$12	Decision Variables	17.55701754	C	1	2.516483516	0.78288479
\$M\$12	Decision Variables	9.219298246	C	1	1.874117647	0.67260788

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$O\$7	Type-1 Roll Value	81	0.120462795	81	94.69387755	40.88140162
\$O\$8	Type-2 Roll Value	56	0.180807623	56	593.0967742	21.38248848
\$O\$9	Type-3 Roll Value	96	0.195780399	96	114.3677298	70.20683399
\$O\$10	Type-4 Roll Value	94	0.207803993	94	66.28571429	78.02380952
\$O\$11	Type-5 Roll Value	118	0.108439201	118	143.0849057	57.18386492
\$O\$12	Type-6 Roll Value	121	0.095961887	121	303.34	118.6193548

From solving the knapsack problem first, I determined a no new cutting pattern. Hence, I believe I determined all six optimum cutting patterns.

Finally, using these new values, we solved the integer programming model by adding the following constraint:

7. x_{y} integer: The number of each type of roll cut must be integer.

Big roll width	W =	240	cm									
Small roll type:	1	2	3	4	5	6						
Width (cm)	29	43	47	50	26	23						
Number required (rolls)	81	56	96	94	118	121						
# Small Rolls fit on 1 Big Roll	8	5	5	4	9	10						
Decision Variables	0	0	0	0	0	0	26	4	17	10	18	9
# small rolls of type	x1	x2	x 3	x4	x5	x 6	х7	x8	x9	x10	x11	x12
Objective Function	min (Z = ∑	_(i ∈ 6) x_i)									
		84	total rolls									

Constraints					Shadow
	Value		Minimum	Slack	Price
Type-1 Roll *	85	≥	81	4	0.120462795
Type-2 Roll *	56	≥	56	0	0.180807623
Type-3 Roll *	98	≥	96	2	0.195780399
Type-4 Roll *	95	≥	94	1	0.207803993
Type-5 Roll "	119	≥	118	1	0.108439201
Type-6 Roll *	123	≥	121	2	0.095961887
all xi are inte	ger				

Hence, according to the solution for the LP relaxation, <u>84 rolls need to be cut</u> to solve the integer programming problem using the following 6 optimized cutting patterns:

 x_7 = 26 [i.e. big roll fits 1x type-2 rolls, 1x type-3 rolls, and 3x type-4 rolls]

 x_8 = 4 [i.e. big roll fits 5x type-2 rolls, 1x type-6 rolls]

 x_9 = 17 [i.e. big roll fits 1x type-1 rolls, 1x type-4 rolls, and 7x type-6 rolls]

 x_{10} = 10 [i.e. big roll fits 5x type-1 rolls, 1x type-2 rolls, and 2x type-5 rolls]

 x_{11} = 18 [i.e. big roll fits 4x type-3 rolls, 2x type-5 rolls]

 x_{12} = 9 [i.e. big roll fits 2x type-1 rolls, 5x type-5 rolls]

Question 2

2. Product mix with learning. The Acme Company is planning the production of its two products, the popular Widget and the new SuperWidget soon to be introduced to the market. Each Widget sells for \$40 and requires \$7 for materials. Each SuperWidget will require \$8 of materials and, during the planning period, will be sold at the promotional price of \$30. Widgets and SuperWidgets each go through two machining operations. For the planning period, machine 1 is limited to a total of 320 hours and machine 2 to a total of 240 hours. Labour costs \$5 per hour on each machine. Each Widget takes four hours on machine 1, and two hours on machine 2. Producing a total of x SuperWidgets during the planning period will take a total of t(x) hours on machine 1, and the same amount t(x) on machine 2. The function t(.) is a continuous, increasing function of the cumulative production x and, because of learning effects, it grows less than linearly. Namely, the larger the accumulated production x of SuperWidgets, and the more experienced the workers will be in machining the new product. Thus t(.) is concave and increasing. Based on past experience with similar products, the following time estimates are available:

x (SuperWidgets)	0	30	60	120	240	
t(x) (hours)	0	60	96	153.6	245.76	

Assume that any quantity of both products that Acme can produce will be sold during the planning period at the specified prices. The (short-sighted) goal of the Acme Company is to produce the combination of Widgets and SuperWidgets that will maximize its total contribution margin (revenues from sales, minus materials and labour costs) for the planning period. Using an appropriate (concave and increasing) approximation for t(.), formulate as a mixed integer linear programming problem. (Note: there is no need to constrain the quantities of Widgets and SuperWidgets to be integer, a solution with fractional values is acceptable; i.e., you may use continuous variables for these.) Solve using the computer.

Below is the mathematical formulation of the mixed integer program that characterizes Acme's production problem. Given the data relating the quantity of product produced and its associated production time, we estimate the function t(x) piecewise linearly.

Decision Variables

W = number of units of Widgets produced

SW = number of units of Super Widgets produced

T = Production time required for Super Widgets given the quantity produced

U₁= binary indicator variable for whether at least 30 SW are produced

U₂=binary indicator variable for whether at least 60 SW are produced

U₃= binary indicator variable for whether at least 120 SW are produced

G₁= continuous variable indicating the quantity of SW produced below the [0,30] unit threshold

G2= continuous variable indicating the quantity of SW produced within the [30,60] unit threshold.

G3= continuous variable indicating the quantity of SW produced within the [60,120] unit threshold

G4= continuous variable indicating the quantity of SW produced above the 120 unit threshold.

Constraints

1) Machine 1 hours: total production time on machine 1 used to produced W and SW units must not exceed 320 hours.

2) **Machine 2 hours**: total production time on machine 2 used to produce U and SW units must not exceed 240 hours.

$$2W + T \le 240$$
 (hours)

3) **SW Production Intervals**: we define the support of each 'piece' of the piecewise linear production time function.

$$G1 \le 30$$
 (SW units)
 $G2 \le 30$ (SW units)
 $G3 \le 60$ (SW units)

4) **Total SW Production Quantity**: Let SW be defined by the sum of SW units produced within each support segment of the piecewise linear production time function.

$$SW = G1 + G2 + G3 + G4$$
 (units)

5) **Total SW Production Time:** Let T be defined by the sum of the G1,G2,G3 support intervals of the piecewise linear function times the respective slopes of each support's segment of the function.

$$T = 2G_1 + 1.2G_2 + 0.96G_3 + 0.768G_4$$
 (hours)

6) **Active Support Interval Sequence:** the support intervals must be activated in the correct ordinal sequence.

$$U2 \le U1$$
$$U3 \le U2$$

7) **Active Support Interval bounds**: support intervals must take on permitted values based on the given piecewise linear function, and bounds must be activated in their correct ordinal sequence.

$$30U_1 \le G1$$
 (SW units)
 $30U_2 \le G2 \le 30U_1$ (SW units)
 $60U_3 \le G3 \le 60U_2$ (SW units)
 $G4 \le 240U_3$ (SW units)

8) **Non-negativity**: All decision variables take on non-negative values.

$$W, SW, T, G1, G2, G3, G4, U1, U2, U3 \ge 0$$

9) **Binary Constraints**: Indicator variables for 'kinks' in piecewise linear production time function for SW take on values of {0,1} only.

$$U1, U2, U3 \in \{0,1\}$$

Objective

Find values of SW,W,T so as to maximize profits from the production of W and SW units

$$Maximize 3W + 22SW - 10T$$

Full Formulation

Find quantities of W,SW, and T so as to:

$$Maximize 3W + 22SW - 10T$$

```
Subject to:
                  4W + T \le 320 (Machine 1 hours)
                          2W + T \le 240
                                          (Machine 2 hours)
                                    G1 \leq 30 (SW units)
                                    G2 \leq 30 (SW units)
                                    G3 \le 60 (SW units)
              SW - G1 - G2 - G3 - G4 = 0 (SW units)
   T - 2G_1 - 1.2G_2 - 0.96G_3 - 0.768G_4 = 0
                                            (hours)
                               U2 - U1 \le 0
                                             (first and second interval activation order)
                               U3 - U2 \le 0 (second and third interval activation order)
                            30U_1 - G1 \le 0 (SW units in first interval)
                            30U_2 \le G2 \le 30U_1 (SW units in second interval)
                            60U_3 \le G3 \le 60U_2 (SW units in third interval)
                           G4 - 240U_3 \le 0 (SW units in fourth interval)
                 W, SW, T, G1, G2, G3, G4, U1, U2, U3 \ge 0 \quad (non-negativity)
                                 U1, U2, U3 \in \{0,1\} (binary)
```

Below is a graphic illustration of the piece wise linear function used to approximate T(x) based in the data given. The MIP is formulated based on the interval bounds of this function.

Solving the MIP using AMPL's Gurobi solver, I obtained the following results:

```
ampl: solve;
Gurobi 7.0.0: optimal solution; objective 2715
9 simplex iterations
plus 9 simplex iterations for intbasis
ampl: display w,sw,T;
sw = 232.5
T = 240
ampl: display u1,u2,u3;
u1 = 1
u2 = 1
u3 = 1
ampl: display g1,g2,g3,g4;
g1 = 30
g2 = 30
g3 = 60
g4 = 112.5
```

A total of 232.5 Super Widgets were produced while zero Widgets were produced. The total production time spent manufacturing Super Widgets was 240 hours (all machine 2 time available). The objective value was found to be \$2,715, which represents the maximized profits.