Homotopy colimits

Chris, transcribed by Soham

August 2016

1 Day 1

1.1 Preliminaries

Categories, functors, examples of categories, product, coproduct

1.2 Pushouts in Top

The pushout of the diagram

has the following universal property:

Example 1. In Top, pushout is "gluing together along C".

Let I be a (diagram) category (this is the only choice that makes sense), and let $A_{\bullet} \in \mathsf{Top}^{\mathsf{I}} = [\mathsf{I}, \mathsf{Top}]$ be a diagram in Top . We have a pair of functors

$$\begin{array}{c} \operatorname{colim}:\operatorname{Top}^{\mathsf{I}}\leftrightarrows\operatorname{Top}:\operatorname{const}\\ A_{\bullet}\mapsto\operatorname{colim}A_{\bullet}\\ \operatorname{const}T\leftarrow T \end{array}$$

Now consider that, in $\mathsf{Top}^{\mathsf{I}}$, $\mathsf{Hom}(A_{\bullet},\mathsf{const}\,T)$ consists of maps from the diagram A_{\bullet} to "trivial" diagrams, such that all the squares commute. But we defined $\mathsf{const}\,T$ in such a way that all the maps in $\mathsf{const}\,T$ are identity maps, so we get the commutativity of squares for free. We can now collapse all the copies of T to a single T, and we see that an element of $\mathsf{Hom}(A_{\bullet},\mathsf{const}\,T)$ is basically a way of mapping the diagram A_{\bullet} into T.

But these "ways" all factor through the colimit of the diagram, so all we need to uniquely specify one of these is a map $\operatorname{colim}_{\mathsf{I}} A_{\bullet} \to T$.

Putting these together, we get the remarkable fact that

$$\operatorname{Hom}_{\operatorname{Top}}(\operatorname{colim}_{\mathbf{I}}A_{ullet},T)\cong \operatorname{Hom}_{\operatorname{Top}^{\mathbf{I}}}(A_{ullet},\operatorname{const} T),$$

which, in the categorical language, finishes our proof of the fact that

$$\operatorname{colim} \dashv \operatorname{const}$$
.

Question: Can you find all the pieces (intentional vagueness) of a category, a la singular homology, by mapping in from diagram categories and ... ?

2 Day 2

2.1 Topological tools

Definition 1. Two maps $f, g \in \mathsf{Hom}_{\mathsf{Top}}(X, Y)$ are homotopic if there is a continuous map

$$H: X \times I \to Y$$

etc

Definition 2. Two spaces X, Y are homotopy equivalent if there exist maps

$$f: X \leftrightarrows Y: g$$

with $fg \sim \mathrm{id}_Y$ and $gf \sim \mathrm{id}_X$.

Example 2. Let

$$L = \bigcup_{\bullet}^{\bullet}$$

What is a map in Top^L ?

We want to find a homotopy invariant functor $hocolim : Top^I \to Top$ and look at adjunctions $\mathcal{F} : C \leftrightarrows D : \mathcal{G}$ and how they behave with respect to weak equivalences.

2.2 Model categories

A model category C has classes of

- weak equivalences $w\mathsf{C}$, "isos"
- fibrations fC, "sur"
- cofibrations coC, "inj"

such that

- C has all limits and colimits
- the classes satisfy 2-out-of-3
- cofibrations lift
- fibrations lift
- there are fibrant and cofibrant replacements
- other stuff

Examples:

- Top.
 - wTop: homotopy equivalences
 - coTop: inclusions
 - − fTop: ???
 - cofibrant replacements are mapping cylinders
- Top¹.
 - wTop: pointwise homotopy equivalences
 - *co*Top: ???
 - fTop:
 - cofibrant replacements are mapping cylinders

Definition 3. An object A in a model category C is *cofibrant* if the map into it from the initial object is a cofibration.

Why do we care?

Theorem 1 (Quillen). If $\mathcal{F}: \mathsf{C} \leftrightarrows \mathsf{D}: \mathcal{G}$ is an adjunction of model categories, such that \mathcal{G} preserves \twoheadrightarrow and $\stackrel{\sim}{\longrightarrow}$,

- \bullet $\,\mathcal{F}$ preserves cofibrations and trivial cofibrations
- \bullet \mathcal{F} preserves weak equivalences between cofibrant objects

3 Plan of attack

Given $A_{\bullet} \in \mathsf{Top}^{\mathsf{I}}$, our plan is now to:

- \bullet Find a cofibrant replacement ${A_{\bullet}}'$ of ${A_{\bullet}}$ (weakly equivalent)
- \bullet Define

$$\operatorname{hocolim} A_{\bullet} = \operatorname{colim} {A_{\bullet}}'$$

Definition 4. A small category I is a directed Reedy category if there exists a function

$$f:\mathsf{ob}I o\mathbb{N}_0$$

such that $\exists b \to a$ implies

$$f(a) > f(b)$$
.

Let $i \in I$ be an object. Define a category (I/i)'