1 Vizualizácia konvergencie

Počas minimalizácie popísanej v predošlej sekcii sme taktiež ukladali body, cez ktoré metóda prechádzala. Ak označíme J^* nájdené minimum danou metódou, môžeme vizualizovať euklidovskú normu rozdielu $J(x^k)-J^*$, kde x^k je aproximácia minima v k-tej iterácii.

V nasledujúcich grafoch používame logaritmickú škálu na y-ovej osi, kde zobrazujeme $\|J(x^k)-J^*\|_2$. Na x-ovej je zobrazené poradové číslo iterácie. Bod x^k , v ktorom sa nadobúda hodnota J^* nie je zahrnutý v grafe, keďže by sme ho nevedeli vyobraziť na logaritmickej osi.

1.1 Vizualizácia konvergencie kvázinewtonovských metód

Môžeme si všimnúť, že kvázinewtonovské metódy našli aproximáciu minima za menej ako 13 iterácií. Taktiež môžeme podľa tvaru lomenej čiary odhadovať kvadratickú konvergenciu metód, no graf s takýmto malým počtom vykreslených iterácií nepodáva dostatočnú informáciu na istejší odhad.

Convergence graph - BFGS method with suboptimal step

10⁻¹
10⁻²
10⁻³
10⁻⁴
10⁻⁵
10⁻⁶
2 4 6 8 10

(b) BFGS s približne optimálnym krokom

(c) DFP s optimálnym krokom

(d) DFP s približne optimálnym krokom

1.2 Vizualizácia konvergencie gradientných metód

Vidíme, že pri gradientných metódach je počet iterácií na nájdenie aproximácie minima je rádovo vyšší (ako bolo spomenuté, gradientná metóda s konštantným krokom po 10000 iteráciách nenašla aproximáciu minima takú, ktorá by spĺňala kritérium optimality). Taktiež z grafov môžeme odhadnúť, že väčšiu časť minimalizácie konvergovali k optimu lineárne.

