Cavallaro, Jeffery Math 275A Homework #7 Rewrite

Theorem: 5.11

Every uncountable set in a 2^{nd} countable space has a limit point.

Proof. Assume that X is a 2^{nd} countable space and assume that $A \subset X$ such that A is uncountable. Now, ABC that A has no limit points. This means that for all $a \in A$ it is the case that there exists $U \in \mathcal{U}_a$ such that $U_a \cap A = \{a\}$ and hence every $a \in A$ is an isolated point. So assume that $x,y \in A$ such that $x \neq y$. There exists $U \in \mathcal{U}_x$ and $Y \in \mathcal{U}_y$ such that $Y \neq Y$. So for any basis \mathcal{B} of X, there exists $X \in \mathcal{U}$ and $X \in \mathcal{U}$ such that $X \neq y$. Thus, $X \mapsto X \in \mathcal{U}_x$ is injective and hence $X \in \mathcal{U}_x$ is uncountable, contradicting the assumption that $X \in \mathcal{U}_x$ countable.

Therefore A contains a limit point.