Introduction to Computational Physics

Excersices

Rafael Kueng, s06 707 046

1 Task 1

see ex1.cpp

1.1 square test

square plot, see fig 1 max number of points:

1.2 3d plot

```
cubeplot, see fig 2 and ex12.cpp with n = 100000; c = 3; p = 31; x_{seed} = 1 created with matlab plot3(rnd3d(:,1),rnd3d(:,2),rnd3d(:,3),'.')
```

1.3 other random number generator

see ex12.cpp, fig 3 and fig 4

2 Task 2

skech of idea, using cartesian coordinate system:

- generate a pair of homogeneous random points (x_1, x_2) , with $x_i \in [-1, 1]$
- if $x_1^2 + x_2^2 <= 1$, then return the point, otherwise reject it and try again
- if necessairy, transform to polar coordinate system

see ex1task2.cpp and plot 5.

3 Task 3

see ex12.cpp, used k = 10 bins, n = 1000 binned random numbers.

- c = 3; p = 31; $x_{\text{seed}} = 1$: $\chi^2 = 0.1$
- c = 1017; p = 8191; $x_{\text{seed}} = 154$: $\chi^2 = 5.54$
- built in rand() (using init. srand(670706)) $\chi^2 = 13.74$

Figure 1: squareplot

Figure 2: cubeplot

Figure 3: squareplot with

Figure 4: cubeplot with

Figure 5: cubeplot with