

Deep Neural Networks

Getting your matrix dimensions right

Parameters $W^{[l]}$ and $b^{[l]}$

Vectorized implementation

Andrew Ng

Deep Neural Networks

Why deep representations?

Intuition about deep representation

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Deep Neural Networks

Building blocks of deep neural networks

Forward and backward functions

Forward and backward functions

Andrew Ng

Deep Neural Networks

Forward and backward propagation

Forward propagation for layer l

Backward propagation for layer l

Andrew Ng

Summary

Deep Neural Networks

Parameters vs Hyperparameters

What are hyperparameters?

Parameters: $\underline{W^{[1]}}$, $b^{[1]}$, $W^{[2]}$, $b^{[2]}$, $W^{[3]}$, $b^{[3]}$...

Hyperparaneters: hearning rate of

#titerations

#hidden layer

hidden layer

This with N [1] N [2]

Choice of autivortion function

dute: Momentum, minitanthe vise, regularjohns...

Applied deep learning is a very empirical process

Deep Neural Networks

What does this have to do with the brain?

Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

$$X_1$$
 X_2
 X_3
 X_4

$$\begin{split} dZ^{[L]} &= A^{[L]} - Y \\ dW^{[L]} &= \frac{1}{m} dZ^{[L]} A^{[L]^T} \\ db^{[L]} &= \frac{1}{m} np. \operatorname{sum}(dZ^{[L]}, axis = 1, keepdims = True) \\ dZ^{[L-1]} &= dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]}) \\ &\vdots \\ dZ^{[1]} &= dW^{[L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]}) \\ dW^{[1]} &= \frac{1}{m} dZ^{[1]} A^{[1]^T} \\ db^{[1]} &= \frac{1}{m} np. \operatorname{sum}(dZ^{[1]}, axis = 1, keepdims = True) \end{split}$$

Deep Neural Networks

Forward and backward propagation

Forward propagation for layer *l*

Andrew

Backward propagation for layer l

Summary

