

Uma prova combinatória para o Lema de Burnside

Rodrigues, Síntia Paola*

{Universidade Federal da Grande Dourados}, {UFGD} sintiapaola.14@hotmail.com

Craveiro, Irene Magalhães

{Universidade Federal da Grande Dourados}, {UFGD} irenecraveiro@ufgd.edu.br

3 de Julho de 2020

1 Introdução

Em [1] é dada a fórmula para o cálculo do número de órbitas de um grupo finito G agindo em um conjunto X, tal resultado é conhecido como "Lema de Burnside". Apesar de o Lema estar associado ao nome de Burnside, quem provou tal resultado primeiramente foi Frobenius, 1887, que, por sua vez, já era conhecido por Cauchy. Este célebre resultado não se deve a Burnside, entretanto ele cita o mesmo em seu livro, que trata de teoria dos grupos de ordem finita, atribuindo-o a Frobenius. Em algumas situações onde este lema aparece é chamado o Teorema da Contagem de Órbitas, sendo útil para contar objetos matemáticos. A ideia inicial deste trabalho é apresentar uma base da Teoria abstrata de Grupos finitos, cujo intuito é apresentar a demonstração do Lema de Burnside, para isso se fez necessário o estudo do grupo das permutações de n objetos, as classes de conjugações do grupo das permutações de n elementos, bem como observar que essas classes estão relacionadas com os conjuntos das partições de um inteiro positivo n [4].

2 Desenvolvimento

2.1 O Grupo das Permutações de n

Um grupo é definido por um conjunto não vazio dotado de uma operação que satisfaz os axiomas de associatividade, existência de elemento neutro e existência de simétricos, para isso, consulte [3].

Ao conjunto de permutações de X, indica-se por S(X) o grupo simétrico, sendo este formado por todas permutações do conjunto X. S(X) munido da composição de funções é um grupo e se X tem n elementos, então S(X) tem n! elementos, logo S(X) é denotado por S_n .

Exemplo 2.1: Seja
$$X = \{1, 2, 3\}$$
, o grupo S_3 possui 3! permutações: $f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, $f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$, $f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, $f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$, $f_6 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$.

Dessa forma, analisando a permutação f_3 observamos que a segunda linha do diagrama descreve uma permutação de S_n e interpretamos da seguinte forma: o 1 indica que 1 está no lugar de 1, o 2 está no lugar de 3, e o 3 no lugar de 2, ou seja, $1 \to 1$; $2 \to 3 \to 2$. Colocando em notação de ciclos temos $\sigma = (1)(23)$. Segue de [3] que toda $\sigma \in S_n$ se decompõe em produtos de ciclos disjuntos.

2.2 Partições de um inteiro e Classes de Conjugação de S_n

Definição 3.1: Considere $(\lambda_1, \lambda_2, ..., \lambda_k)$ tais que $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_k$ são inteiros positivos. Seja $n = \lambda_1 + \lambda_2 + ... + \lambda_k$. Dizemos que $(\lambda_1, \lambda_2, ..., \lambda_k)$ é uma partição de inteiro n, cujos λ_i , onde $1 \leq i \leq k$, são partes da partição de n. Denotamos por p(n) o número de partições de n.

^{*}Aluna de iniciação científica

Definição 3.2: Seja G um grupo agindo em X. Definimos uma relação \sim em X da seguinte forma: $\forall \ x,y\in X,\ x\sim y\Leftrightarrow \exists \ g\in G \ {\rm tal} \ {\rm que} \ g\cdot x=y.$

Teorema 3.1: O número de diferentes classes de conjugação do grupo S_n é dado por p(n).

A relação \sim na definição 3.2 é uma relação de equivalência no conjunto X. Além disso, as classes de equivalência geradas por meio da relação binária são chamadas de *órbitas* de $x \in X$, denotado por O_x , e particionam o conjunto X em conjuntos disjuntos.

2.3 Estabilizadores

Queremos apresentar uma prova combinatória para o Lema de Burniside e, para isso, se faz necessário a definição de estabilizador e do Teorema 4.1 denominado "Teorema Órbita-Estabilizador".

Definição 4.1: Seja G um grupo que age em X. O estabilizador E_x de x é definido por

$$E_x = \{ g \in G : g \cdot x = x \}.$$

Lema 4.1: Seja G um grupo agindo em X. Então, $\forall x \in X$, temos que E_x é subgrupo de G.

Teorema 4.1: Seja G um grupo que age em X. Então $\forall x \in X$, $|O_x||E_x| = |G|$, onde |G| indica a quantidade de elementos de G.

Corolário 4.1: Seja G um grupo finito que age no conjunto X. Então o número de elementos de X em cada órbita é um divisor da ordem de G.

Teorema 4.2: Seja G um grupo finito agindo em X. Então o número de órbitas distintas da ação é dado por

$$\frac{1}{|G|} \sum_{x \in X} |E_x|.$$

Definição 4.2: Seja G um grupo agindo em X, definimos o Fix de $g \in G$, denotado de Fix(g), o conjunto dos pontos fixos de g tal que

$$Fix(g) = \{x \in X : g \cdot x = x\}.$$

3 Considerações Finais

Contudo, para contar os elementos de um conjunto $A = \{(x,g) \in X \times G; g \cdot x = x\}$ pode-se fixar a coordenada x ou a coordenada g, onde $|A| = \sum_{x \in X} |E_x|$ ou $|A| = \sum_{g \in G} |Fix(g)|$, respectivamente, logo

$$\sum_{x \in X} |E_x| = \sum_{g \in G} |Fix(g)|.$$

Portanto, a partir desta conclusão e do Teorema 4.2, se estabelece o Lema de Burnside.

Teorema 4.3 (Lema de Burnside): Se G é um grupo finito agindo em um conjunto X, então o número de órbitas distintas é dado por

$$\frac{1}{|G|} \sum_{g \in G} |Fix(g)|.$$

Referências

- Bovo, E. O Teorema de Enumeração de Pólya, Generalização e Aplicações. Dissertação de Mestrado, Unicamp, 2005.
- [2] Cassimiro, D.V.R.B. Teoria enumerativa de Pólya. Dissertação de Mestrado, UFPE, 2017.
- [3] Domingues, H. H.; Iezzi, G. Álgebra moderna, 4^a edição. Atual, São Paulo, 2003.
- [4] Santos, J. P. O. Introdução à Teoria dos Números, 3a. edição. IMPA, Rio de Janeiro, 2018.
- [5] Burnside's lemma. Disponível em: https://en.wikipedia.org/wiki/Burnside%27s_lemma. Acessado em 11 de março de 2020.