

POSTER PRESENTATION

Open Access

Enhancement mechanism of antioxidant enzyme gene expression by hydrogen molecules

Tomoya Kinjo¹, Takeki Hamasaki², Hanxu Yan¹, Hidekazu Nakanishi¹, Tomohiro Yamakawa¹, Kiichiro Teruya^{1,2}, Shigeru Kabayama³, Sanetaka Shirahata^{1,2*}

From 23rd European Society for Animal Cell Technology (ESACT) Meeting: Better Cells for Better Health Lille, France. 23-26 June 2013

Background

Redox regulation system protects our body from oxidative stress-injury and keeps redox homeostasis. The hydrogen molecules (H_2) exist as stable gas in the ordinal temperature and atmosphere. Recent study reports H_2 improve ischemia-reperfusion injury, glaucoma, Parkinson's disease and atherosclerosis of animal models. It is supposed from these improvement results that H_2 participate in reduction of the oxidation stress, however, the reaction mechanism has not been clarified thoroughly. We surmised that intracellular redox regulation system is activated by H_2 thereupon antioxidative activity is generated. Thus, we tried to find the effect of H_2 on the Nrf2 pathway, one of the redox regulation systems.

Materials and methods

HT1080 cells, a human fibrosarcoma cell line, were incubated in a gas incubator at an atmosphere of 75% $\rm N_2/20\%O_2/5\%CO_2$ or $75\%\rm H_2/20\%O_2/5\%CO_2$ for 24 h. Then, after the cells were treated with $\rm H_2O_2$ or fixative solution for 30 min or 15 min, the intracellular $\rm H_2O_2$ and Nrf2 were determined by In cell analyzer and Confocal laser microscop using a BES-H₂O₂ or anti-Nrf2 antibody, respectively. Furthermore, after extraction of mRNA from the treated HT1080 cells, the gene expressions were examined by using Real-time PCR.

Results

The quantity of intracellular H_2O_2 increased by hydrogen peroxide treatment was significantly decreased by pretreatment of H_2 . H_2 enhanced the expression of

catalase, glultathione peroxidase, Cu/Zn-superoxide dismutase, Nrf2 genes and Nrf2 protein.

Conclusions

It was suggested that H_2 induced the expression level of antioxidant enzyme genes like catalase and glutathione peroxidase by increasing the expression level of the Nrf2 protein and decreased the amount of intracellular H_2O_2 induced by the H_2O_2 treatment in HT1080 cells.

Authors' details

¹Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8581, Japan. ²Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan. ³Nihon Trim Co. Ltd., Osaka 531-0076, Japan.

Published: 4 December 2013

doi:10.1186/1753-6561-7-S6-P76

Cite this article as: Kinjo *et al.*: Enhancement mechanism of antioxidant enzyme gene expression by hydrogen molecules. *BMC Proceedings* 2013 7(Suppl 6):P76.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

Full list of author information is available at the end of the article

^{*} Correspondence: sirahata@grt.kyushu-u.ac.jp

¹Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8581. Japan