One Construction of a Backdoored AES-like Block Cipher and How to Break it

Arnaud Bannier & Eric Filiol filiol@esiea.fr

 ${\sf ESIEA} \\ {\sf Operational \ Cryptology \ and \ Virology \ Lab} \ ({\it C+V})^{\it O}$

Agenda

- Introduction
- 2 Description of BEA-1
 - Theoretical Background
 - BEA-1 Presentation and Details
- 3 BEA-1 Cryptanalysis
- Conclusion and Future Work

Summary of the talk

- Introduction
- 2 Description of BEA-1
- BEA-1 Cryptanalysis
- 4 Conclusion and Future Work

• Encryption systems have always been under export controls (ITAR, Wassenaar...). Considered as weapons and dual-use means.

- Encryption systems have always been under export controls (ITAR, Wassenaar...). Considered as weapons and dual-use means.
- Implementation backdoors
 - Key escrowing, key management and key distribution protocols weaknesses (refer to recent CIA leak)
 - Hackers are likely to find and use them as well

- Encryption systems have always been under export controls (ITAR, Wassenaar...). Considered as weapons and dual-use means.
- Implementation backdoors
 - Key escrowing, key management and key distribution protocols weaknesses (refer to recent CIA leak)
 - · Hackers are likely to find and use them as well
- Mathematical backdoors
 - Put a secret flaw at the design level while the algorithm remains public
 - Finding the backdoor must be an untractable problem while exploiting it must be "easy"
 - Historic cases: Crypto AG and Buehler's case (1995)
 - Extremely few open and public research in this area
 - Known existence of NSA and GCHQ research programs

- Encryption systems have always been under export controls (ITAR, Wassenaar...). Considered as weapons and dual-use means.
- Implementation backdoors
 - Key escrowing, key management and key distribution protocols weaknesses (refer to recent CIA leak)
 - Hackers are likely to find and use them as well
- Mathematical backdoors
 - Put a secret flaw at the design level while the algorithm remains public
 - Finding the backdoor must be an untractable problem while exploiting it must be "easy"
 - Historic cases: Crypto AG and Buehler's case (1995)
 - Extremely few open and public research in this area
 - Known existence of NSA and GCHQ research programs
- Sovereignty issue: can we trust foreign encryption algorithms?

Aim of our Research

- Try to answer to the key question
 - "How easy and feasible is it to design and to insert backdoors (at the mathematical level) in encryption algorithms?"

Aim of our Research

- Try to answer to the key question
 - "How easy and feasible is it to design and to insert backdoors (at the mathematical level) in encryption algorithms?"
- Explore the different possible approaches
 - The present work is a first step
 - We consider a particular case of backdoors here (linear partition of the data spaces)

Aim of our Research

- Try to answer to the key question
 - "How easy and feasible is it to design and to insert backdoors (at the mathematical level) in encryption algorithms?"
- Explore the different possible approaches
 - The present work is a first step
 - We consider a particular case of backdoors here (linear partition of the data spaces)
- For more details on backdoors and the few existing works, please refer to our ForSE 2017 paper
 - Available on https://arxiv.org/abs/1702.06475

Summary of the talk

- Introduction
- 2 Description of BEA-1
 - Theoretical Background
 - BEA-1 Presentation and Details
- BEA-1 Cryptanalysis
- 4 Conclusion and Future Work

Partition-based Trapdoors

- Based on our theoretical work (Bannier, Bodin & Filiol, 2016; Bannier & Filiol, 2017)
 - Generalization of Paterson's work (1999)

Partition-based Trapdoors

- Based on our theoretical work (Bannier, Bodin & Filiol, 2016; Bannier & Filiol, 2017)
 - Generalization of Paterson's work (1999)
- BEA-1 is inspired from the Advanced Encryption Standard (AES)
 - BEA-1 is a Substitution-Permutation Network (SPN)
 - BEA-1 stands for Backdoored Encryption Algorithm version 1

Definition (Linear Partition)

A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be *linear*.

Definition (Linear Partition)

A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be *linear*.

	\mathbb{F}_2^3			
	2	1		
3			0	
4			7	
	5	6		

Definition (Linear Partition)

A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be *linear*.

•
$$V = \{000, 101\} = \{0, 5\},$$

Definition (Linear Partition)

A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be *linear*.

•
$$V = \{000, 101\} = \{0, 5\},$$

•
$$001 + V = \{001, 100\} = \{1, 4\},\$$

Definition (Linear Partition)

A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be *linear*.

•
$$V = \{000, 101\} = \{0, 5\},$$

•
$$001 + V = \{001, 100\} = \{1, 4\},\$$

•
$$010 + V = \{010, 111\} = \{2, 7\},\$$

Definition (Linear Partition)

A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be *linear*.

•
$$V = \{000, 101\} = \{0, 5\},$$

•
$$001 + V = \{001, 100\} = \{1, 4\},\$$

•
$$010 + V = \{010, 111\} = \{2, 7\},\$$

•
$$011 + V = \{011, 110\} = \{3, 6\},\$$

Definition (Linear Partition)

A partition of \mathbb{F}_2^n made up of all the cosets of a linear subspace is said to be *linear*.

•
$$V = \{000, 101\} = \{0, 5\},$$

•
$$001 + V = \{001, 100\} = \{1, 4\},\$$

•
$$010 + V = \{010, 111\} = \{2, 7\},\$$

•
$$011 + V = \{011, 110\} = \{3, 6\},\$$

$$\mathcal{L}(V) = \{\{0,5\}, \{1,4\}, \{2,7\}, \{3,6\}\}.$$

The 16 linear partition over \mathbb{F}_2^3 :

The 16 linear partition over \mathbb{F}_2^3 :

There are 229 755 605 linear partitions over \mathbb{F}_2^{10} .

Assumption

The SPN maps \mathcal{A} to \mathcal{B} , no matter what the round keys are.

Assumption

The SPN maps \mathcal{A} to \mathcal{B} , no matter what the round keys are.

Theoretical results:

ullet ${\cal A}$ and ${\cal B}$ are linear,

Assumption

The SPN maps \mathcal{A} to \mathcal{B} , no matter what the round keys are.

Theoretical results:

- \bullet \mathcal{A} and \mathcal{B} are linear,
 - A is transformed through each step of the SPN in a deterministic way,

Assumption

The SPN maps \mathcal{A} to \mathcal{B} , no matter what the round keys are.

Theoretical results:

- \bullet \mathcal{A} and \mathcal{B} are linear,
 - A is transformed through each step of the SPN in a deterministic way,
 - At least one S-box maps a linear partition to another one.

Parameters

- BEA-1 operates on 80-bit data blocks
- 120-bit master key and twelve 80-bit round keys
- 11 rounds (the last round involves two round keys)

Parameters

- BEA-1 operates on 80-bit data blocks
- 120-bit master key and twelve 80-bit round keys
- 11 rounds (the last round involves two round keys)

Primitives & base functions

- Key schedule & key addition (bitwise XOR)
- Substitution layer (involves four S-Boxes over \mathbb{F}_2^{10})
- Diffusion layer (ShiftRows and MixColumns operations)
- Linear map $M: (\mathbb{F}_2^{10})^4 o (\mathbb{F}_2^{10})^4$

- Parameters
 - BEA-1 operates on 80-bit data blocks
 - 120-bit master key and twelve 80-bit round keys
 - 11 rounds (the last round involves two round keys)
- Primitives & base functions
 - Key schedule & key addition (bitwise XOR)
 - Substitution layer (involves four S-Boxes over \mathbb{F}_2^{10})
 - Diffusion layer (ShiftRows and MixColumns operations)
 - Linear map $M: (\mathbb{F}_2^{10})^4 o (\mathbb{F}_2^{10})^4$
- ullet S-Boxes, linear map M and pseudo-codes for the different functions are given in the ForSE 2017 paper

- Parameters
 - BEA-1 operates on 80-bit data blocks
 - 120-bit master key and twelve 80-bit round keys
 - 11 rounds (the last round involves two round keys)
- Primitives & base functions
 - Key schedule & key addition (bitwise XOR)
 - Substitution layer (involves four S-Boxes over \mathbb{F}_2^{10})
 - Diffusion layer (ShiftRows and MixColumns operations)
 - ullet Linear map $M: (\mathbb{F}_2^{10})^4 o (\mathbb{F}_2^{10})^4$
- S-Boxes, linear map M and pseudo-codes for the different functions are given in the ForSE 2017 paper
- BEA-1 is statically compliant with FIPS 140 (US NIST standard) and resists to linear/differential attacks.

BEA-1 Round Function

BEA-1 Key Schedule

Summary of the talk

- 1 Introduction
- 2 Description of BEA-1
- BEA-1 Cryptanalysis
- 4 Conclusion and Future Work

Linear Partitions and the Round Function

Wrong Key

Wrong Key

Find the output coset of $(A_2 \times B_2 \times C_2 \times D_2)^2$. There are 2^{40} possibilities.

Brute force:

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Test the 2¹⁵ saved keys

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Save the 2¹⁵ best keys:

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Brute force:

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Test the 2¹⁵ saved keys:

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Save the 2¹⁵ best keys:

$$\big(k_0^{11},k_1^{11},k_2^{11},k_3^{11},k_4^{11},k_5^{11},k_6^{11},k_7^{11}\big)$$

Brute force:

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Test the 2¹⁵ saved keys:

$$(k_0^{11},k_1^{11},k_2^{11},k_3^{11},k_4^{11},k_5^{11},k_6^{11},k_7^{11})$$

Save the 2¹⁵ best keys:

$$\big(k_0^{11},k_1^{11},k_2^{11},k_3^{11},k_4^{11},k_5^{11},k_6^{11},k_7^{11}\big)$$

Brute force:

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Test the 2¹⁵ saved keys:

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Save the 2¹⁵ best keys:

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Brute force:

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Test the 2¹⁵ saved keys:

$$\big(k_0^{11},k_1^{11},k_2^{11},k_3^{11},k_4^{11},k_5^{11},k_6^{11},k_7^{11}\big)$$

Save the 2¹⁵ best keys:

$$\big(k_0^{11},k_1^{11},k_2^{11},k_3^{11},k_4^{11},k_5^{11},k_6^{11},k_7^{11}\big)$$

Brute force:

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Test the 2¹⁵ saved keys:

$$\big(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11}\big)$$

Save the 2¹⁵ best keys:

$$\big(k_0^{11},k_1^{11},k_2^{11},k_3^{11},k_4^{11},k_5^{11},k_6^{11},k_7^{11}\big)$$

Brute force:

$$(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11})$$

Test the 2¹⁵ saved keys:

$$\big(k_0^{11}, k_1^{11}, k_2^{11}, k_3^{11}, k_4^{11}, k_5^{11}, k_6^{11}, k_7^{11}\big)$$

Save the 2¹⁵ best keys:

$$\big(k_0^{11},k_1^{11},k_2^{11},k_3^{11},k_4^{11},k_5^{11},k_6^{11},k_7^{11}\big)$$

According to the key schedule:

$$k_0^{10} = k_0^{11} \oplus k_4^{11}$$

$$k_1^{10} = k_1^{11} \oplus k_5^{11}$$

$$k_2^{10} = k_2^{11} \oplus k_6^{11}$$

$$k_3^{10} = k_3^{11} \oplus k_7^{11}$$

Test the 2^{15} saved keys:

$$\big(k_0^{11},k_1^{11},k_2^{11},k_3^{11},k_4^{11},k_5^{11},k_6^{11},k_7^{11}\big)$$

Save the best key:

$$\big(k_0^{11},k_1^{11},k_2^{11},k_3^{11},k_4^{11},k_5^{11},k_6^{11},k_7^{11}\big)$$

Observe that:

$$\begin{aligned} &(k_4^{10}, k_5^{10}, k_6^{10}, k_7^{10}) \\ &= M(k_4'^{10}, k_5'^{10}, k_6'^{10}, k_7'^{10}) \end{aligned}$$

Brute force:

$$(k_4^{\prime 10}, k_5^{\prime 10}, k_6^{\prime 10}, k_7^{\prime 10})$$

Test the 2¹⁵ saved keys:

$$(k_4^{\prime 10}, k_5^{\prime 10}, k_6^{\prime 10}, k_7^{\prime 10})$$

Save the 2¹⁵ best keys:

$$(k_4^{\prime 10}, k_5^{\prime 10}, k_6^{\prime 10}, k_7^{\prime 10})$$

Brute force:

$$(k_4^{\prime 10}, k_5^{\prime 10}, k_6^{\prime 10}, k_7^{\prime 10})$$

Test the 2¹⁵ saved keys:

$$(k_4^{\prime 10}, k_5^{\prime 10}, k_6^{\prime 10}, k_7^{\prime 10})$$

Save the 2¹⁵ best keys:

$$(k_4'^{10},k_5'^{10},k_6'^{10},k_7'^{10})$$

Brute force:

$$(k_4^{\prime 10}, k_5^{\prime 10}, k_6^{\prime 10}, k_7^{\prime 10})$$

Test the 2¹⁵ saved keys:

$$(k_4^{\prime 10}, k_5^{\prime 10}, k_6^{\prime 10}, k_7^{\prime 10})$$

Save the 2¹⁵ best keys:

$$(k_4^{\prime 10}, k_5^{\prime 10}, k_6^{\prime 10}, k_7^{\prime 10})$$

For each saved key, deduce the cipher key and test it

- Probabilities for the modified cipher
 - *S*₀, *S*₁, *S*₂: 944/1024, *S*₃: 925/1024

- Probabilities for the modified cipher
 - S_0 , S_1 , S_2 : 944/1024, S_3 : 925/1024
 - Round function: $(944/1024)^6 \times (925/1024)^2 \approx 2^{-1}$

- Probabilities for the modified cipher
 - S_0 , S_1 , S_2 : 944/1024, S_3 : 925/1024
 - Round function: $(944/1024)^6 \times (925/1024)^2 \approx 2^{-1}$
 - Full cipher: $(2^{-1})^{11} = 2^{-11}$

- Probabilities for the modified cipher
 - *S*₀, *S*₁, *S*₂: 944/1024, *S*₃: 925/1024
 - Round function: $(944/1024)^6 \times (925/1024)^2 \approx 2^{-1}$
 - Full cipher: $(2^{-1})^{11} = 2^{-11}$
 - If 30 000 plaintexts lie in the same coset, $30\,000\times 2^{-11}\approx 15$ ciphertexts lie in the same coset on average

- Probabilities for the modified cipher
 - *S*₀, *S*₁, *S*₂: 944/1024, *S*₃: 925/1024
 - Round function: $(944/1024)^6 \times (925/1024)^2 \approx 2^{-1}$
 - Full cipher: $(2^{-1})^{11} = 2^{-11}$
 - If 30 000 plaintexts lie in the same coset, $30\,000\times 2^{-11}\approx 15$ ciphertexts lie in the same coset on average
- Complexity of the cryptanalysis
 - Data: 30 000 plaintext/ciphertext pairs (2 × 300 Kb)

- Probabilities for the modified cipher
 - *S*₀, *S*₁, *S*₂: 944/1024, *S*₃: 925/1024
 - Round function: $(944/1024)^6 \times (925/1024)^2 \approx 2^{-1}$
 - Full cipher: $(2^{-1})^{11} = 2^{-11}$
 - If 30 000 plaintexts lie in the same coset, $30\,000\times 2^{-11}\approx 15$ ciphertexts lie in the same coset on average
- Complexity of the cryptanalysis
 - Data: 30 000 plaintext/ciphertext pairs (2 × 300 Kb)
 - ullet Time: pprox 10s on a laptop (Core i7, 4 cores, 2.50GHz)

- Probabilities for the modified cipher
 - S_0 , S_1 , S_2 : 944/1024, S_3 : 925/1024
 - Round function: $(944/1024)^6 \times (925/1024)^2 \approx 2^{-1}$
 - Full cipher: $(2^{-1})^{11} = 2^{-11}$
 - If 30 000 plaintexts lie in the same coset, $30\,000\times 2^{-11}\approx 15$ ciphertexts lie in the same coset on average
- Complexity of the cryptanalysis
 - Data: 30 000 plaintext/ciphertext pairs (2 × 300 Kb)
 - Time: \approx 10s on a laptop (Core i7, 4 cores, 2.50GHz)
 - ullet Probability of success >95%

Summary of the talk

- Introduction
- Description of BEA-1
- BEA-1 Cryptanalysis
- 4 Conclusion and Future Work

Conclusion

- Proposition of an AES-like backdoored algorithm (80-bit block, 120-bit key, 11 rounds)
 - The backdoor is at the design level
 - Resistant to most known cryptanalyses
 - But absolutely unsuitable for actual security
 - Illustrates the issue of using foreign encryption algorithms which might be backdoored

Conclusion

- Proposition of an AES-like backdoored algorithm (80-bit block, 120-bit key, 11 rounds)
 - The backdoor is at the design level
 - Resistant to most known cryptanalyses
 - But absolutely unsuitable for actual security
 - Illustrates the issue of using foreign encryption algorithms which might be backdoored
- Future work
 - First step in a larger research work
 - Use of more sophisticated combinatorial structures
 - Considering key space partionning
 - Other backdoored algorithms to be published. Use of zero-knowledge cryptanalysis proof

Conclusion

Thank you for your attention Questions & Answers