Propriedades dos hidrocarbonetos

Gases, líquidos ou sólidos com baixo ponto de ebulição

Sem as INTERAÇÕES INTERMOLECULARES, todas as substâncias seriam gases

Interações / intermoleculares

Polaridade das ligações e da estrutura molecular (polaridade molecular)

Ligações covalentes apolares

Os elétrons são igualmente compartilhados pelos átomos da ligação

Ocorre somente quando dois átomos idênticos se ligam

Ligações covalentes polares

Um dos átomos exerce uma maior atração sobre os elétrons do que o outro

Sentido do deslocamento da densidade eletrônica

A diferença de eletronegatividade entre dois átomos é uma medida da polaridade de ligação

- Diferença próxima a <u>zero</u> ligações covalentes apolares
- Diferença próxima a três ligações iônicas

Átomo eletronegativo:

- ✓ Afinidade eletrônica muito negativa;
- ✓ Energia de ionização elevada.

Polaridade molecular

DEPENDE DA GEOMETRIA MOLECULAR

O <u>dipolo molecular</u> total é dado como uma soma dos dipolos individuais das ligações

Grandeza vetorial

Depende da orientação e magnitude dos dipolos individuais da ligação

Moléculas apolares ($\mu = 0$)

Polaridade molecular

Pirâmide trigonal

Moléculas polares (µ ≠ 0)

Molécula (AB)	μ	Geometria
HF	1,78	linear
HCl	1,07	linear
HBr	0,79	linear
HI	0,38	linear
H_2	0	linear
CO	0,11	linear
Molécula (AB ₂)	μ	Geometria
H_2O	1,85	angular
H_2S	0,95	angular
CO_2	0	linear
Molécula (AB ₃)	μ	Geometria
NH_3	1,47	piramide trigonal
BF ₃	0	trigonal plana
Molécula (AB ₄)	μ	Geometria
CH ₄	0	tetraédrica
CH ₃ Cl	1,92	tetraédrica
CH ₂ Cl ₂	1,60	tetraédrica
CHCl ₃	1,04	tetraédrica
CCl ₄	0	tetraédrica

Interações intermoleculares em moléculas neutras

- ✓ Interações dipolo-dipolo;
- ✓ Interações de dispersão de London (dipolo induzido-dipolo induzido);
- ✓ Ligações de hidrogênio.

Interações dipolo-dipolo

Ocorre entre moléculas polares, ou seja, com um dípolo resultante

Para moléculas com tamanhos similares, a intensidade das atrações intermoleculares aumenta com o aumento da polaridade

Ligações de hidrogênio

São atrações do tipo dipolo-dipolo únicas, visto que ocorrem entre um átomo de hidrogênio, ligado diretamente a um átomo muito eletronegativo X, e um par de elétrons de outro átomo Y, também bastante eletronegativo

Os átomos X e Y são: F, O e N Eletronegatividade de Pauling: F = 4,0O = 3,5N = 3,0

Mais fortes que as interações dipolo-dipolo e dipolo induzido-dipolo induzido

Interações dipolo induzido-dipolo induzido

Moléculas apolares

Dipolo induzido:

Os hidrocarbonetos possuem somente ligações do tipo C-C e C-H. Como a diferença entre as eletronegatividades dos átomos de carbono e hidrogênio é muito pequena, estes compostos são considerados apolares.

Uma molécula perturba a densidade eletrônica da outra, fazendo aparecer dipolos momentâneos que se orientam e originam esta interação fraca

As interações dipolo induzido-dipolo induzido e as propriedades dos hidrocarbonetos

- Líquido deve vencer as forças de atração para separar-se e formar um vapor;
- Quando mais intensas as forças de atração, maior o PE.

Apesar de ser uma interação fraca, possui um efeito cumulativo e varia proporcionalmente com o número de contatos moleculares presentes na molécula

Com o aumento do número de carbonos ocorre um aumento nas interações intermoleculares e, consequentemente, no ponto de ebulição e na densidade dos hidrocarbonetos

Quais são os hidrocarbonetos que compõem cada uma das frações do petróleo?

Gás residual: C₁ a C₂

GLP (gás liquefeito de petróleo): C₃ a C₅

Gasolina: C₆ a C₁₀

Querosene: C₁₁ a C₁₂

Óleo combustível leve (diesel): C₁₃ a C₁₇

Óleos combustíveis: C₁₈ a C₂₅

Óleo lubrificante leve: C₂₆ a C₃₀

Óleo lubrificante médio: C₃₁ a C₃₄

Óleo lubrificante pesado: C₃₅ a C₃₈

Resíduo: $> C_{38}$

Aumento da temperatura de ebulição

Maior dificuldade em separar as moléculas

Maior atração entre as moléculas (interação intermoleculares mais intensas)

Intensidade das interações intermoleculares está relacionada com o tamanho da cadeia carbônica

As interações dipolo induzido-dipolo induzido e as propriedades dos hidrocarbonetos

Hidrocarbonetos ramificados apresentam menores pontos de ebulição quando comparados com hidrocarbonetos de cadeia normal com a mesma massa molecular (mesmo n° de átomos de carbono)

Solubilidade e viscosidade dos hidrocarbonetos

Solubilidade

Hidrocarbonetos
são considerados
compostos
apolares, por isso,
são solúveis em
substâncias
apolares

Viscosidade

Aumenta com aumento do nº de átomos de carbono nos hidrocarbonetos

Moléculas longas tendem a ter dificuldade de se deslocar uma em relação a outra, gerando uma resistência para fluir