Estruturas Algébricas

Aula 4

Divisão Euclidiana

Abramo Hefez

2025

Os aneis que	possuem	uma	divisão	com	resto	pequeno,	termos	que

que exploraremos nas próximas aulas.

vamos definir a seguir, possuem propriedades algébricas notáveis

Divisão Euclidiana nos inteiros

A divisão nos inteiros nem sempre é exata. Poder efetuar a divisão de dois inteiros com resto pequeno é uma propriedade importante, responsável por propriedades algébricas notáveis que os inteiros possuem.

Lema(Propriedade Arquimediana) Dados dois inteiros a e b, com $b \neq 0$, existe $n \in \mathbb{Z}$ tal que $n \cdot b \geq a$.

Prova Como $b \neq 0$, temos que $|b| \geq 1$, logo

$$|b| \cdot |a| = |b \cdot a| \ge |a| \ge a$$
.

Se b > 0, tome n = |a| e se b < 0, tome n = -|a|, e o resultado decorre da desigualdade acima.

Teorema(Divisão Euclidiana) Dados inteiros d e D com $d \neq 0$, existem inteiros q e r tais que

$$D = d \cdot q + r$$
 e $0 \le r < |d|$.

Além disso, q e r são unicamente determinados pelas condições acima.

Prova Considere o conjunto

$$S = \{x \in \mathbb{N} \cup \{0\}; \ x = D - d \cdot n \text{ para algum } n \in \mathbb{Z}\}.$$

Esse conjunto é limitado inferiormente (por 0) e não vazio, pois, pela Propriedade Arquimediana dos inteiros, existe um inteiro m tal que $m \cdot (-d) \ge -D$. Portanto, $a = D - m \cdot d \in S$.

Pelo Princípio da Boa Ordem, segue-se que S possui um menor elemento r. Logo $r=D-d\cdot q$, para algum $q\in\mathbb{Z}$. É claro que $r\geq 0$, pois $r\in S$.

Vamos agora provar que r < |d|.

Suponha por absurdo que $r \ge |d|$, logo r = |d| + s para algum inteiro s tal que $0 \le s < r$.

Portanto,

$$D = d \cdot q + |d| + s = d(q \pm 1) + s,$$

e, consequentemente,

$$s = D - d \cdot (q \pm 1) \in S$$
.

Como $s \in S$ e s < r, temos uma contradição, pois r era o menor elemento de S.

Para provar a unicidade, suponha que

$$D=d\cdot q_1+r_1=d\cdot q_2+r_2\,,$$

com $0 \le r_1 < |d|$ e $0 \le r_2 < |d|$.

Logo $0 \leq r_1 < |d|$ e $-|d| < -r_2 \leq 0$ e, portanto,

$$-|d| < r_1 - r_2 < |d|$$
, ou seja, $|r_1 - r_2| < |d|$.

Como

$$d(q_1 - q_2) = r_2 - r_1,$$

segue-se que

$$|d| \cdot |q_1 - q_2| = |r_2 - r_1| < |d|.$$

Isto só é possível se $q_1=q_2$ e $r_2=r_1$.

Portanto, o teorema nos garante que em \mathbb{Z} é sempre possível efetuar a divisão de um número D por outro número $d \neq 0$ com resto pequeno. Os números D, d, q e r são chamados, respectivamente, de **dividendo**, **divisor**, **quociente** e **resto**.

Divisão Euclidiana nos polinômios

Vamos mostrar que é possível efetuar de modo único uma divisão com resto controlado em A[x], sempre que o divisor tiver coeficiente líder invertível em A.

Recorde que se f(x) e g(x) em A[x] e se existe $h(x) \in A[x]$ tal que $f(x) = g(x) \cdot h(x)$, dizemos que f(x) é **múltiplo** de g(x) ou que g(x) **divide** f(x).

É claro por esta definição que qualquer $f(x) \in A[x]$ divide 0.

Exemplo $x^2 - 2x + 2$ divide $x^4 + 4$ em $\mathbb{Z}[x]$, assim como $x^2 + 2x + 2$ divide $x^4 + 4$, conforme visto em exemplo anterior.

O seguinte resultado é uma consequência da propriedade multiplicativa do grau em A[x].

Proposição Sejam A um anel, f(x), $g(x) \in A[x] \setminus \{0\}$. Se g(x) tem coeficiente líder invertível e divide f(x), então $\operatorname{grau}(g(x)) \leq \operatorname{grau}(f(x))$.

Prova Como g(x) divide f(x) e ambos são não nulos, então existe $h(x) \in A[x] \setminus \{0\}$ tal que f(x) = g(x)h(x). Pela propriedade multiplicativa do grau, temos

$$\operatorname{grau}(f(x)) = \operatorname{grau}(g(x)h(x))$$

= $\operatorname{grau}(g(x)) + \operatorname{grau}(h(x)) \ge \operatorname{grau}(g(x)).$

A divisão em A[x], conhecida como **divisão euclidiana**, será apresentada no resultado a seguir.

Teorema(Divisão Euclidiana) Seja A um anel comutativo e sejam $f(x), g(x) \in A[x]$, com $g(x) \neq 0$ e coeficiente líder invertível em A. Então, existem g(x) e g(x) em g(x) em

$$f(x) = g(x)q(x) + r(x),$$

onde r(x) = 0 ou grau(r(x)) < grau(g(x)).

Prova da existência Seja $g(x) = b_0 + b_1 x + \cdots + b_m x^m$, com $b_m \in A^*$.

Se f(x) = 0, então tome q(x) = r(x) = 0.

Se $f(x) \neq 0$, podemos escrever $f(x) = a_0 + a_1x + \cdots + a_nx^n$, com $a_n \neq 0$.

Se n < m, então tome q(x) = 0 e r(x) = f(x).

Podemos supor $n \ge m$. A demonstração é por indução sobre n = grau(f(x)).

 $r_1(x) = g(x)g_2(x) + r_2(x)$ com $r_2(x) = 0$ ou grau $(r_2(x)) < \operatorname{grau}(g(x))$.

Se n=0, então $0=n\geqslant m=\mathrm{grau}(g(x))$, logo m=0,

Assim, $f(x) = g(x)a_0b_0^{-1}$, com $g(x) = a_0b_0^{-1}$ e r(x) = 0.

 $f(x) = a_0 \neq 0$, $g(x) = b_0$, com $b_0^{-1} \in A$.

Logo,

coeficiente líder a_n . Logo, grau $(r_1(x)) < \text{grau}(f(x))$. Por hipótese de indução, existem $q_2(x)$ e $r_2(x)$ em A[x] tais que

Seja $f_1(x)$ o polinômio definido por $r_1(x) = f(x) - g(x)q_1(x)$, onde $q_1(x) = a_n b_m^{-1} x^{n-m}$. O polinômio $g(x) a_n b_m^{-1} x^{n-m}$ tem grau n e

do que n = grau(f(x)). Vamos mostrar que vale para f(x).

Suponhamos o resultado válido para polinômios com grau menor

 $f(x) = r_1(x) + g(x)a_nb_m^{-1}x^{m-n}$ $= (g(x)g_2(x) + r_2(x)) + g(x)a_nb_m^{-1}x^{m-n}$ $= g(x)(g_2(x) + a_n b_m^{-1} x^{m-n}) + r_2(x).$

Tomamos $q(x) = q_2(x) + a_n b_m^{-1} x^{m-n}$ e $r(x) = r_2(x)$.

Prova da unicidade Sejam $q_1(x), r_1(x), q_2(x), r_2(x)$ tais que

$$f(x) = g(x)q_1(x) + r_1(x) \stackrel{(1)}{=} g(x)q_2(x) + r_2(x)$$
, onde

(2)
$$\begin{cases} r_1(x) = 0 \text{ ou } \operatorname{grau}(r_1(x)) < \operatorname{grau}(g(x)) \text{ e} \\ r_2(x) = 0 \text{ ou } \operatorname{grau}(r_2(x)) < \operatorname{grau}(g(x)). \end{cases}$$

De (1), segue que $g(x)(q_1(x) - q_2(x)) = r_2(x) - r_1(x)$.

Se $q_1(x) \neq q_2(x)$, então $r_2(x) - r_1(x) \neq 0$, logo obtemos

$$\operatorname{grau}(\underbrace{g(x)}_{\operatorname{divisor}}) \leq \operatorname{grau}(r_2(x) - r_1(x)) \stackrel{(2)}{<} \operatorname{grau}(g(x)),$$

uma contradição.

Portanto, $q_1(x) = q_2(x)$, logo $r_1(x) = r_2(x)$.

Sejam f(x), g(x), q(x) e r(x) como no Teorema. Chamamos f(x) de **dividendo**, g(x) de **divisor**, q(x) de **quociente** e r(x) de **resto**.

Corolário Seja K um corpo. Dados $f(x), g(x) \in K[x]$, com $g(x) \neq 0$, existem q(x) e r(x) em K[x], univocamente determinados, tais que

$$f(x) = g(x)q(x)+r(x)$$
, com $r(x) = 0$, ou grau $(r(x)) < \operatorname{grau}(g(x))$.

Prova Basta aplicar o teorema, observando que em K[x] todo polinômio não nulo tem coeficiente líder invertível.

Se o coeficiente líder do divisor não for invertível, a divisão com resto pode não ser possível. Por exemplo, não se pode dividir x^2+1 por 2x+1 em $\mathbb{Z}[x]$.

A determinação do monômio de maior grau do quociente só depende dos monômios de maior grau do dividendo e do divisor.

Na divisão de polinômios devemos prestar atenção nos graus do dividendo, do divisor e do resto. Agora vamos armar e efetuar a divisão, seguindo passo a passo a demonstração do Teorema.

Armamos e resolvemos a divisão seguindo o modelo

$$\begin{array}{c|c}
f(x) & g(x) \\
\vdots & q(x)
\end{array}$$

Exemplo Sejam f(x) = 2x + 5 e $g(x) = x^2 + 2x + 4$ em $\mathbb{Z}[x]$.

(Passo 1) Temos grau(f(x)) = 1 < 2 = grau(g(x)). Nada a fazer.

(Passo 2) O quociente é q(x) = 0 e o resto é r(x) = f(x) = 2x + 5.

Exemplo Sejam $f(x) = 2x^2 + 3x + 3$ e $g(x) = x^2 + 2x + 2$ em $\mathbb{Q}[x]$.

(Passo 1) O monômio de maior grau de f(x) é $2x^2$ e o monômio de maior grau de g(x) é x^2 . O quociente da divisão de $2x^2$ por x^2 é $q_1(x)=2$.

(Passo 2) Fazemos o cálculo:

$$r_1(x) = f(x) - q_1(x)g(x) = (2x^2 + 3x + 3) - 2x^2 - 4x - 4 = -x - 1.$$

(Passo 3) Como $1 = \text{grau}(r_1(x)) < \text{grau}(g(x)) = 2$, não podemos continuar a divisão. Paramos os cálculos.

(Passo 4) Obtemos
$$q(x) = q_1(x) = 2$$
 e $r(x) = r_1(x) = -x - 1$.

Exemplo Faremos a divisão euclidiana de $f(x) = 3x^4 + 5x^3 + 2x^2 + x - 3$ por $g(x) = x^2 + 2x + 1$ em $\mathbb{Z}[x]$.

(Passo 1) O monômio de maior grau de f(x) é $3x^4$ e o monômio de maior grau de g(x) é x^2 . O quociente da divisão de $3x^4$ por x^2 é $q_1(x) = 3x^2$.

(Passo 2) Fazemos o cálculo:

divisão euclidiana.

$$r_1(x) = f(x) - q_1(x)g(x) =$$

 $(3x^4 + 5x^3 + 2x^2 + x - 3) - 3x^4 - 6x^3 - 3x^2 = -x^3 - x^2 + x - 3.$

(Passo 4) O monômio de maior grau de $r_1(x)$ é $-x^3$ e o monômio de maior grau de g(x) é x^2 . O quociente da divisão de $-x^3$ por x^2 é $q_2(x) = -x$.

(Passo 5) Fazemos o cálculo: $r_2(x) = r_1(x) - q_2(x)g(x) = (-x^3 - x^2 + x - 3) + x^3 + 2x^2 + x = x^2 + 2x - 3$

(Passo 6) Como
$$2 = \operatorname{grau}(r_2(x)) = \operatorname{grau}(g(x)) = 2$$
, podemos continuar, calculando a divisão de $r_2(x)$ por $g(x)$, pois $r_2(x)$ não é o resto da divisão euclidiana.

(Passo 7) O monômio de maior grau de $r_2(x)$ é x^2 e o monômio de maior grau de g(x) é x^2 . O quociente da divisão de x^2 por x^2 é $q_3(x)=1$.

(Passo 8) Fazemos o cálculo:

$$r_3(x) = r_2(x) - q_3(x)g(x) = (x^2 + 2x - 3) - x^2 - 2x - 1 = -4.$$

(Passo 9) Como $0 = \text{grau}(r_3(x)) < \text{grau}(g(x)) = 2$, terminamos o algoritmo, pois $r_3(x)$ é o resto da divisão euclidiana.

(Passo 10) Obtemos $q(x) = 3x^2 - x + 1 = q_1(x) + q_2(x) + q_3(x)$ e $r(x) = r_3(x) = -4$.

Domínios Euclidianos

Um **domínio euclidiano** é um domínio $(D,+,\cdot)$ no qual está definida uma função

$$\varphi \colon D \setminus \{0\} \to \mathbb{N} \cup \{0\},$$

satisfazendo a:

i) Para todos $a, b \in D$ com $b \neq 0$, existem $q, r \in D$ tais que

$$a = qb + r$$
 com $\left\{ egin{array}{l} r = 0, \ {
m ou} \ arphi(r) < arphi(b) \end{array}
ight.$

ii) Para todos $a, b \in D \setminus \{0\}, \varphi(a) \leq \varphi(ab).$

Um domínio euclidiano será denotado por $(D, +, \cdot, \varphi)$.

Portanto, conforme vimos nas aulas anteriores, temos que $(\mathbb{Z}, +, \cdot, | \cdot|)$ e $(K[x], +, \cdot, \operatorname{grau})$ são domínios euclidianos.

Outros exemplos de domínios euclidianos são dados por $(K, +, \cdot, 0)$, onde $(K, +, \cdot)$ é um corpo e φ é a função constante igual a zero.

Além de \mathbb{Z} , de K[x] e de um corpo K, existem inúmeros anéis euclidianos, vários relacionados com a Teoria dos Números. O exemplo que damos a seguir é um dos mais emblemáticos.

Proposição O domínio ($\mathbb{Z}[i], +, \cdot, N$) dos inteiros Gaussiano, junto com a função norma é um domínio euclidiano.

Prova Vimos anteriormente que a função norma satisfaz a propriedade (ii) da definição de domínio euclidiano.

O resultado estará provado se mostrarmos a seguinte afirmação: Dados $\alpha, \beta \in \mathbb{Z}[i]$ com $\beta \neq 0$, existem $q, \rho \in \mathbb{Z}[i]$ tais que

$$\alpha = \beta q + \rho$$
, com $N(\rho) < N(\beta)$.

Trata-se portanto de achar um inteiro Gaussiano q tal que

$$N(\alpha - \beta q) < N(\beta).$$

Como

$$N(\alpha - \beta q) = N(\beta)N(\alpha/\beta - q),$$
 (1)

onde $\alpha/\beta \in \mathbb{Q}(i)$, devemos então achar q tal que $N(\alpha/\beta - q) < 1$.

Escrevamos $\alpha/\beta=a+bi$, com $a,b\in\mathbb{Q}$, e sejam r e s inteiros tais que

$$|a-r| \le 1/2 \text{ e } |b-s| \le 1/2.$$
 (2)

Observe que tais pares de inteiros r e s existem e são em número de 1, 2 ou 4.

Tome q=r+si, onde (r,s) é uma solução de (2) e ponha $\rho=\alpha-\beta q$. Logo, de (1) e (2), temos que

$$N(\rho) = N(\beta) \cdot N(\alpha/\beta - q) = N(\beta) \cdot N(a - r + (b - s)i)$$

$$= N(\beta) [(a - r)^2 + (b - s)^2] \le N(\beta)[1/4 + 1/4]$$

$$= \frac{1}{2}N(\beta) < N(\beta).$$

Damos a seguir um exemplo em que há quatro soluções para os pares (q, ρ) .

Tome $\alpha = 4 + 5i$ e $\beta = 1 + i$, logo

$$\alpha/\beta = a + bi = (9 + i)/2.$$

Portanto, r e s devem satisfazer

$$|9/2 - r| \le 1/2$$
 e $|1/2 - s| \le 1/2$.

Então $r \in \{4,5\}$ e $s \in \{0,1\}$.

Portanto, são as seguintes as soluções para os pares (q, ρ) :

$$(4, i), (4 + i, 1), (5, -1) (5 + i, -i).$$

Em domínios euclidianos, as unidades se comportam de modo bem particular com relação à função φ , como podemos ver no que se segue

Lema Seja $(D, +, \cdot, \varphi)$ um domínio euclidiano. Para $u \in D \setminus \{0\}$, são equivalentes as seguintes afirmações:

- i) Existe $a \in D \setminus \{0\}$ tal que $\varphi(ua) = \varphi(a)$;
- ii) $u \in D^*$;
- iii) $\forall a \in D \setminus \{0\}$, tem-se que $\varphi(ua) = \varphi(a)$.

Prova i) $\Rightarrow ii$) Dividindo a por ua, temos

$$a = uaq + r$$
, com $r = 0$ ou $\varphi(r) < \varphi(ua)$.

Mostremos que r=0. De fato, se $r\neq 0$, então r=a(1-uq), logo

$$\varphi(r) = \varphi(a(1 - uq)) \ge \varphi(a) = \varphi(ua),$$

o que é uma contradição. Logo, a = uaq e cancelando $a \neq 0$, temos que uq = 1 e, consequentemente, $u \in D^*$.

 $ii) \Rightarrow iii)$ Suponha que $u \in D^*$, logo

$$\forall a \in D \setminus \{0\}, \ \varphi(a) \leq \varphi(ua) \leq \varphi(u^{-1}au) = \varphi(a).$$

 $\log \varphi(ua) = \varphi(a).$

$$iii) \Rightarrow i)$$
 Óbvio.

Corolário Em um domínio euclidiano, temos que

$$u \in D^* \iff \varphi(u) = \varphi(1).$$

Prova Suponha $u \in D^*$, logo por ii) $\Rightarrow iii$) temos que $\varphi(u) = \varphi(u \cdot 1) = \varphi(1)$.

Inversamente, se $\varphi(u) = \varphi(1)$, por $i) \Rightarrow ii$ temos que $u \in D^*$.

Note que se tem $\varphi(1) = \min\{\varphi(a); a \in D \setminus \{0\}\}.$

Os Anéis de Kummer

Kummer estudou os anéis da forma

$$D = \mathbb{Z}[\sqrt{\delta}] = \{a + b\sqrt{\delta}; \ a, b \in \mathbb{Z}\},\$$

com $\delta \in \mathbb{Z} \setminus \{0,1\}$ e livre de quadrados.

É um exercício mostrar que o corpo de frações deste anel é

$$\mathbb{Q}(\sqrt{\delta}) = \{x + y\sqrt{\delta}; \ x, y \in \mathbb{Q}\}.$$

Em $\mathbb{Z}[\sqrt{\delta}]$ definimos a função *norma absoluta* dada por

$$N: \quad D \quad \to \quad \mathbb{N} \cup \{0\}$$
$$a + b\sqrt{\delta} \quad \mapsto \quad |a^2 - \delta b^2|$$

Note que se $\delta < 0$, então $N(a + b\sqrt{\delta}) = a^2 - \delta b^2 \ge 0$.

Além disso, para todo $\delta \in \mathbb{Z} \setminus \{0,1\}$ e livre de quadrados,

$$N(a+b\sqrt{\delta})=0 \iff a=b=0.$$

Isto é claro se $\delta < 0$ e segue para $\delta > 0$ pelo fato de δ ser livre de quadrados.

Lema É um homomorfismo de anéis a função

$$h: D \to D.$$

 $a + b\sqrt{\delta} \mapsto a - b\sqrt{\delta}$

Prova A única propriedade não trivial a ser provada é que h é multiplicativa.

De fato,

$$h((a+b\sqrt{\delta})(c+d\sqrt{\delta})) = h(ac+bd\delta+(ad+bc)\sqrt{\delta})$$

$$= ac+\delta bd-(ad+bc)\sqrt{\delta}$$

$$= (a-b\sqrt{\delta})(c-d\sqrt{\delta})$$

$$= h(a+b\sqrt{\delta})h(c+d\sqrt{\delta}).$$

Proposição A função norma absoluta N de $D=\mathbb{Z}[\sqrt{\delta}]$ é multiplicativa.

Prova De fato, para todo $z \in D$, tem-se que N(z) = |zh(z)|. Sejam $z, z' \in D$, logo

$$N(zz') = |zz'h(zz')| = |zh(z)z'h(z')| = |zh(z)||z'h(z')| = N(z)N(z').$$

Note que da proposição acima, temos que, se $z' \neq 0$ e z é qualquer, como $N(z') \geq 1$, segue-se que N(zz') = N(z)N(z') > N(z).

Lema Em $D=\mathbb{Z}[\sqrt{\delta}]$ tem-se que u é uma unidade se, e somente se, N(u)=1.

Prova De fato, se u é uma unidade, então

$$1 = N(1) = N(uu^{-1}) \ge N(u)$$
.
Como $N(u) > 1$, temos que $N(u) = 1$.

Reciprocamente, se $u = a + b\sqrt{\delta}$, então N(u) = 1 implica que $(a + b\sqrt{\delta})(a - b\sqrt{\delta}) = \pm 1$, o que implica que u é invertível

$$(a+b\sqrt{\delta})(a-b\sqrt{\delta})=\pm 1$$
, o que implica que u é invertível. **Proposição** Se $D=\mathbb{Z}[\sqrt{\delta}]$, com $\delta<0$, então

- i) $D^* = \{\pm 1, \pm i\}$, se $\delta = -1$;
- i) $D^* = \{\pm 1, \pm i\}$, se $\delta = -1$; ii) $D^* = \{\pm 1\}$, se $\delta < -1$.

Prova (i) Suponha que $\delta=-1$. Temos que $a+b\sqrt{-1}$ é invertível se, e somente se,

$$1 = N(a + b\sqrt{-1}) = (a^2 + b^2),$$

cujas soluções são $a=\pm 1$, b=0 ou a=0 e $b=\pm 1$, o que prova a proposição neste caso.

(ii) Suponha $\delta<-1$, logo $1=N(a+b\sqrt{\delta})=(a^2+|\delta|b^2)$, cujas únicas soluções são $a=\pm 1$ e b=0.

Quando $\delta>1$, a situação é bem diferente, podendo $\mathbb{Z}[\sqrt{\delta}]^*$ ser infinito, como pode se ver no exemplo a seguir.

Exemplo As unidades de $D = \mathbb{Z}[\sqrt{2}]$.

Note que $N(1\pm\sqrt{2})=|1^2-2\cdot(\pm1)^2|=1$, logo $1\pm\sqrt{2}$ são unidades. Note também que $(1+\sqrt{2})^{-1}=1-\sqrt{2}$. Isso nos fornece as seguintes unidades de D:

As potências com expoentes inteiros de $1+\sqrt{2}$ e os seus simétricos.

Vamos mostrar que essas são todas as unidades de D. Seja u uma unidade de $\mathbb{Z}[\sqrt{2}]$. Como u, 1/u, -u e -1/u são também unidades, podemos supor que u>1 e depois tomar $\pm u$ e $\pm 1/u$.

Como a sequência $(1+\sqrt{2})^k$ para $k\geq 0$ é crescente e ilimitada, existe um $n\geq 1$ tal que

$$(1+\sqrt{2})^n \le u < (1+\sqrt{2})^{n+1},$$

$$1 \le u(1+\sqrt{2})^{-n} < 1+\sqrt{2}$$
.

Como $u(1+\sqrt{2})^{-n}$ é uma unidade e $1+\sqrt{2}$ é a menor unidade maior do que 1, devemos ter que $u(1+\sqrt{2})^{-n}=1$, ou seja, $u=(1+\sqrt{2})^n$ para algum $n\geq 1$.

Usando o mesmo argumento que foi usado na prova de que $\mathbb{Z}[i]$ é um domínio euclidiano, mostra-se que o anel $\mathbb{Z}[\sqrt{\delta}]$ é um domínio euclidiano com a norma absoluta se, e somente se, dados $a,b\in\mathbb{Q}$, existem $r,s\in\mathbb{Z}$ tais que

$$N(a-r+\delta(b-s)) = |(a-r)^2 - \delta(b-s)^2| < 1.$$

Como aplicação temos que $\mathbb{Z}[\sqrt{2}]$ e $\mathbb{Z}[\sqrt{-2}]$ são euclidianos com a norma absoluta, pois tomando $r,s\in\mathbb{Z}$ tais que $|a-r|\leq 1/2$ e $|b-s|\leq 1/2$, pela desigualdade triangular, temos que

$$N((a-r)+(b-s)\sqrt{\pm 2}) = |(a-r)^2 \mp 2(b-s)^2| \leq (a-r)^2 + 2(b-s)^2 \leq 1/4 + 2(1/4) = 3/4 < 1.$$
 (3)

Observação Prova-se que $\mathbb{Z}[\sqrt{3}]$ é um domínio euclidiano com a norma absoluta, tomando r e s inteiros tais que $|a-r| \leq 1/2$ e $|b-s| \leq 1/2$ e substituindo (3) pela seguinte designaldade:

$$N((a-r)+(b-s)\sqrt{3}) = |(a-r)^2-3(b-s)^2| \leq \max\{(a-r)^2,3(b-s)^2\} \leq \max\{1/4,3/4\} < 1.$$

Note que esse argumento não funciona para $\mathbb{Z}[\sqrt{-3}]$.

FIM DA AULA 4