

Military Institute of Science and Technology

Department of Electrical, Electronic and Communication Engineering

Assignment

VLSI II Laboratory [EECE-458]

Submitted by,

Md. Shahriar Abid Swapnil ID: 202216058. Section – A EECE-20

Submission date: 11.08.2025

Introduction to Cadence Virtuoso

Cadence Virtuoso is an advanced Electronic Design Automation (EDA) platform for analog, digital, and mixed-signal IC design. It supports the full custom design flow, from schematic capture to physical layout and post-layout verification. Core capabilities include parameterized cell (PCell) creation, constraint-driven layout editing, and integration with simulation tools (Spectre, APS) for pre- and post-layout analysis. The Virtuoso Layout Suite enables DRC, LVS, and parasitic extraction using integrated verification engines. Designers can optimize area, performance, and power while ensuring fabrication compliance through foundry-provided PDKs. Its tight coupling between schematic, layout, and simulation accelerates design closure and minimizes costly re-spins.

Introduction to Configurable Logic Block (CLB)

A Configurable Logic Block (CLB) is a fundamental logic unit in FPGAs and reconfigurable digital ICs. It typically contains:

- Look-Up Tables (LUTs) implement arbitrary combinational logic by storing truth table outputs.
- Flip-Flops/Latches provide sequential storage for state machines and pipelining.
- Multiplexers enable routing flexibility within the block.
- Programmable interconnects connect CLBs to each other and to global routing. Modern CLBs support wide-input LUTs (6–8 inputs), distributed RAM, and shift-register modes. They are configured via bitstreams generated from synthesis and place-and-route tools, enabling rapid prototyping and post-deployment reprogramming. CLB architecture directly impacts FPGA density, speed, and power efficiency.

Schematic, symbol and layouts

All the necessary schematics, symbols and layouts of the used gates, logics are shown with proper graphics and values.

a. 2 input NAND

area of the layout is = 14.85 μm^2

b. 3 input NAND

area of this layout = 21.45 μm^2

c. Inverter

Area of the layout = $4.579 \mu m^2$

d. 2:1 MUX

Area of the layout = $72.859 \mu m^2$

e. 8:1 MUX

Area of the layout = $890.07 \mu m^2$

f. SRAM

Area of the layout = $17.25 \mu m^2$

g. SRAM 8bit

area of the layout = $395.52 \ \mu m^2$

h. D positive edge flipflop

area of the layout = 200.2242 μm^2

i. CLB

Area of the layout = 2176.52 μm^2

Average power consumed by the CLB is 16.43 µW

Average energy Is 357.8x10⁻¹⁵ J

