# First TCGA microarray analysis

## Ariel Hippen

### 2023-01-28

### Contents

| Cell composition by survival                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kaplan Meier curves                                                                                                                                                                                                                                                                            |
| Subtypes                                                                                                                                                                                                                                                                                       |
| Having run the TCGA microarray data through BayesPrism, this notebook compares the samples' cell type composition with their subtype annotations from the Way pipeline and the patients' survival status/time.                                                                                 |
| <pre>suppressPackageStartupMessages({     library(data.table)     library(SingleCellExperiment)     library(dplyr)     library(yaml)     library(stringr)     library(ggplot2)     library(survival)     library(ggfortify)</pre>                                                              |
| <pre>params &lt;- read_yaml("//config.yml") lata_path &lt;- params\$data_path .ocal_data_path &lt;- params\$local_data_path plot_path &lt;- params\$plot_path</pre>                                                                                                                            |
| Tot_path <- params*prot_path                                                                                                                                                                                                                                                                   |
| <pre>ccga &lt;- fread(paste(local_data_path, "deconvolution_output",</pre>                                                                                                                                                                                                                     |
| Warning in melt.data.table(tcga): id.vars and measure.vars are internally guessed when both are 'NULL'. All non-numeric/integer/logical type columns are considered id.vars, which in this case are columns [cell_type,]. Consider providing at least one of 'id' or 'measure' vars in future. |

## Cell composition



variable

```
# Switch so cell types are columns and samples are rows for easier analysis
cell_types <- tcga$cell_type

tcga$cell_type <- NULL
tcga_t <- t(as.matrix(tcga))
colnames(tcga_t) <- cell_types
tcga_t <- as.data.frame(tcga_t)</pre>
```

#### Cell composition by survival

```
# Load survival data
tcga_survival <- fread(paste(local_data_path, "TCGA", "microarray_survival.tsv",</pre>
                             sep = "/"))
tcga_survival$unique_patient_ID <- gsub("-","\\.", tcga_survival$unique_patient_ID)
# Combine survival data with %
tcga_t$unique_patient_ID <- rownames(tcga_t)</pre>
tcga_master <- full_join(tcga_survival, tcga_t)</pre>
## Joining, by = "unique_patient_ID"
tcga_master$Immune <- tcga_master$Macrophages + tcga_master$Monocytes + tcga_master$`Plasma cells` +
  tcga_master$DC + tcga_master$`NK cells` + tcga_master$pDC + tcga_master$`B cells` + tcga_master$ILC +
 tcga_master$`Mast cells`
g <- ggplot(tcga_master, mapping = aes(x=tcga_master$days_to_death, y=tcga_master$Fibroblasts)) +
  geom_point() + xlab("OS (days)") + ylab("% Fibroblasts")
plotfile <- paste(plot_path, "evaluation_plots", "microarray_survival_by_fibroblasts.png", sep = "/")</pre>
png(filename = plotfile); g; dev.off()
## Warning: Removed 10 rows containing missing values (`geom_point()`).
## pdf
##
    2
## Warning: Removed 10 rows containing missing values (`geom point()`).
```



```
g <- ggplot(tcga_master, mapping = aes(x=tcga_master$days_to_death, y=tcga_master$`Epithelial cells`))
geom_point() + xlab("OS (days)") + ylab("% Epithelial cells")
plotfile <- paste(plot_path, "evaluation_plots", "microarray_survival_by_epithelial.png", sep = "/")
png(filename = plotfile); g; dev.off()

## Warning: Removed 10 rows containing missing values (`geom_point()`).</pre>
## pdf
## 2
```

## Warning: Removed 10 rows containing missing values (`geom\_point()`).



```
g <- ggplot(tcga_master, mapping = aes(x=tcga_master$days_to_death, y=tcga_master$Immune)) +
    geom_point() + xlab("OS (days)") + ylab("% Immune")
plotfile <- paste(plot_path, "evaluation_plots", "microarray_survival_by_immune.png", sep = "/")
png(filename = plotfile); g; dev.off()

## Warning: Removed 10 rows containing missing values (`geom_point()`).

## pdf
## 2</pre>
```

## Warning: Removed 10 rows containing missing values (`geom\_point()`).



```
g <- ggplot(tcga_master, mapping = aes(x=tcga_master$days_to_death, y=tcga_master$`Endothelial cells`))
  geom_point() + xlab("OS (days)") + ylab("% Endothelial cells")
plotfile <- paste(plot_path, "evaluation_plots", "microarray_survival_by_endothelial_cells.png", sep =
png(filename = plotfile); g; dev.off()

## Warning: Removed 10 rows containing missing values (`geom_point()`).

## pdf
## 2</pre>
```

## Warning: Removed 10 rows containing missing values (`geom\_point()`).



## Kaplan Meier curves

```
# Put the samples into quartiles based on fibroblast content
ggplot(tcga_master, mapping = aes(x=Fibroblasts)) + geom_histogram()
```

## `stat\_bin()` using `bins = 30`. Pick better value with `binwidth`.



```
quantiles <- quantile(tcga_master$Fibroblasts)
q1 <- quantiles[2]
q3 <- quantiles[4]
tcga_master$high_fibro <- ifelse(tcga_master$Fibroblasts > q3, 1, 0)
# Get Kaplan-Meier curves
```

autoplot(km\_treatment)



#### **Subtypes**

```
# Compare cell type proportions of subtypes
g <- ggplot(tcga_t, mapping = aes(x=Subtype, y=Fibroblasts)) + geom_boxplot()
plotfile <- paste(plot_path, "evaluation_plots", "microarray_fibroblasts_by_subtype.png",
png(filename = plotfile); g; dev.off()

## pdf
## 2</pre>
```

g



```
g <- ggplot(tcga_t, mapping = aes(x=Subtype, y=`Epithelial cells`)) + geom_boxplot()
plotfile <- paste(plot_path, "evaluation_plots", "microarray_epithelial_by_subtype.png", sep = "/")
png(filename = plotfile); g; dev.off()

## pdf
## 2</pre>
```



```
g <- ggplot(tcga_t, mapping = aes(x=Subtype, y=Immune)) + geom_boxplot()
plotfile <- paste(plot_path, "evaluation_plots", "microarray_immune_by_subtype.png", sep = "/")
png(filename = plotfile); g; dev.off()

## pdf
## 2</pre>
```



```
g <- ggplot(tcga_t, mapping = aes(x=Subtype, y=`Endothelial cells`)) + geom_boxplot()
plotfile <- paste(plot_path, "evaluation_plots", "microarray_endothelial_by_subtype.png", sep = "/")
png(filename = plotfile); g; dev.off()

## pdf
## 2</pre>
```

