

Reference

NBSIR 82-2550

Stopping Powers and Ranges of Electrons and Positrons

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC 20234

August 1982

Prepared for:

Office of Standard Reference Data National Bureau of Standards Washington, DC 20234

Office of Health and Environmental Research Department of Energy Washington, DC 20545

fice of Naval Research lington, Virginia 22217

. U56 32-2550 1932

100

WATKONAL BUREAU OF BTANDARDS DORART

AUG 1 9 1982

100 C 100

10763 - 6

NBSIR 82-2550

Stopping Powers and Ranges of Electrons and Positrons

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC 20234

August 1982

Prepared for:

Office of Standard Reference Data National Bureau of Standards Washington, DC 20234

Office of Health and Environmental Research Department of Energy Washington, DC 20545

Office of Naval Research Arlington, Virginia 22217

Stopping Powers and Ranges of Electrons and Positrons

M. J. Berger and S. M. Seltzer

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC 20234

August 1982

Prepared for:

Office of Standard Reference Data National Bureau of Standards Washington, DC 20234

Office of Health and Environmental Research Department of Energy Washington, DC 20545

Office of Naval Research Arlington, Virginia 22217

STOPPING POWERS AND RANGES OF ELECTRONS AND POSITRONS

M. J. Berger and S. M. Seltzer Center for Radiation Research National Bureau of Standards Washington, D.C. 20234

ABSTRACT

Tables of stopping powers and related data are given for electrons in 25 elements and 46 mixtures and compounds, and for positrons in 8 materials. The tables include: (1) collision stopping powers (ionization and excitation losses); (2) radiative stopping powers (bremsstrahlung losses); (3) total stopping powers; (4) ranges (rectified pathlengths computed in the continuous-slowing-down approximation); (5) radiation yields (fraction of initial electron energy converted to bremsstrahlung in the course of slowing down); and (6) the logarithmic derivatives of all these quantities with respect to the mean excitation energy of the medium (the key parameter of the Bethe stopping power formula). The results are tabulated at 81 energies between 1000 MeV and 10 keV. Collision stopping powers for electrons in materials of low atomic number are given also for energies down to 1 keV. The principal new ingredients in the preparation of the tables are: (1) improved values of the mean excitation energies for elements and compounds, derived from stopping-power and range measurements and from semi-empirical oscillator-strength distributions and dielectric-response functions; (2) density-effect corrections evaluated according to the method of Sternheimer, using up-to-date input parameters; and (3) use of new theoretical cross sections of Pratt and Tseng for electron-nucleus bremsstrahlung and of Haug for electron-electron bremsstrahlung.

Key words: Collision stopping power, electrons, positrons, radiation yield, radiative stopping power, range.

These tables were prepared as input for a report on stopping power to be written by a committee sponsored by the International Commission on Radiation Units and Measurements (ICRU). The ICRU sponsors of this committee are A. Allisy and R. S. Caswell. The committee members are H. H. Andersen, M. J. Berger (chairman), H. Bichsel, J. A. Dennis, M. Inokuti, D. Powers, and J. E. Turner. Consultants to the committee are S. M. Seltzer and R. M. Sternheimer. All of the above have made important contributions to this work. It should be emphasized that this report is a draft submitted to the ICRU, and may be revised before being included in an ICRU document.

We would like to acknowledge the financial support for this work provided by the NBS Office of Standard Reference Data, the Office of Health and Environmental Research of the Department of Energy, and the Office of Naval Research.

Last but not least we would like to thank Mrs. Gloria Wiersma for her editorial help in the preparation of the manuscript.

TABLE OF CONTENTS

	ABSTRACT
1.	INTRODUCTION
2.	FORMULAS FOR THE COLLISION STOPPING POWER
3.	METHODS FOR ESTIMATING MEAN EXCITATION ENERGIES
4.	SELECTION OF MEAN EXCITATION ENERGIES FOR ELEMENTS
5.	SELECTION OF MEAN EXCITATION ENERGIES FOR COMPOUNDS
6.	DENSITY EFFECT
7.	RESTRICTED COLLISION STOPPING POWER
8.	ELECTRON COLLISION STOPPING POWERS AT LOW ENERGIES
9.	RADIATIVE STOPPING POWER
10.	RANGES AND RADIATION YIELDS
11.	MISCELLANEOUS COMPARISONS
	REFERENCES
	TABLES TO ACCOMPANY TEXT
	FIGURES
	MAIN STOPPING-POWER AND RANGE TABLES

1. INTRODUCTION

- Purpose and scope. In radiation physics, chemistry, biology, and medicine, it is often important to have accurate information about the stopping power of various media for charged particles, that is, the average rate at which the charged particles lose energy along their tracks. The purpose of this report is to supply up-to-date stopping-power information, with emphasis on the requirements of biomedical dosimetry. The contents of this report are the following: (a) In Sections 2 to 6, topics are reviewed which are pertinent to the evaluation of stopping powers for any charged particle within the framework of the Bethe theory. 1 These include shell corrections, the determination of mean excitation energies from experimental data, the use of the Bragg additivity rule for compounds, and the density-effect correction. Recommended values of mean excitation energies are given in Table 4.3 for elemental substances and in Table 5.5 for compounds and mixtures. (b) In Sections 7 to 11, topics are reviewed which are pertinent mainly or entirely to electrons. include the radiative stopping power due to the emission of bremsstrahlung, and the information on electron collision stopping power at energies below 10 keV where the Bethe theory is no longer fully applicable. (c) In Section 12, electron stopping-power tables are presented for 25 elements and 46 compounds and mixtures, covering the energy region from 10 keV to 1000 MeV. These tables also include the range (rectified pathlength) and the radiation yield (fraction of electron kinetic energy converted to bremsstrahlung as the electrons slow down to rest), both computed in the continuous-slowing-down approximation.² Such data are also given for positrons in a few materials.
- 1.2. Background. For electrons it is customary to separate the total stopping power into two components: (a) the collision stopping power, which is the average energy loss per unit pathlength due to inelastic Coulomb collisions with bound atomic electrons of the medium resulting in ionization and excitation; (b) the radiative stopping power, which is the average energy loss per unit pathlength due to the emission of bremsstrahlung in the electric field of the atomic nucleus and of the atomic electrons. The separation of the electron stopping power into two components is useful for two reasons. First, the methods used for the evaluation of the two components are quite different. Second, the energy going into the ionization and excitation of atoms is absorbed in the medium rather close to the electron track, whereas most of the energy lost in the form of bremsstrahlung travels far from the track before being absorbed. This distinction is important when attention

¹The results obtained will be applied to the tabulation of stopping powers for heavy charged particles in a future report.

²In this approximation, energy-loss fluctuations are disregarded, and the rate of energy loss at any point along the track is assumed to be equal to the stopping power.

³The nomenclature "collision stopping power" and "radiative stopping power" is that adopted by the International Commission on Radiation Units and Measurements (ICRU, 1980).

In the literature, the collision stopping power is often referred to as stopping power, with the adjective "collision" omitted, especially in circumstances where the radiative stopping power is negligible. The collision stopping power is sometimes also called "ionization loss." Numerically, but not conceptually, the collision stopping power is identical with the "linear energy transfer" (more precisely, the unrestricted linear energy transfer LET $_{\infty}$) often used in radiobiology (see, e.g., ICRU, 1970).

The excitations contributing to the collision stopping power include not only electronic excitations but also vibrational and rotational excitations of molecules; however, the latter two processes are relatively unimportant above the threshold energy for electronic excitation. Charged particles also lose some energy in elastic collisions with atoms. The transfer of recoil energy to atoms in such events is proportional to the ratio of the mass of the incident particle to the mass of the atom. This mode of energy loss is therefore unimportant for electrons except at extremely low energies where the cross sections for electronic, vibrational, and rotational energy losses become very small. For incident heavy particles, however, elastic collisions with atoms constitute a significant mode of energy loss, and give rise to a so-called "nuclear stopping power" which will be discussed in a future report on heavy charged particles.

is focussed on the energy "imparted locally" to the medium along the track rather than on the energy lost by the incident electron. Actually, even a part of the energy lost in ionizing collisions is converted to kinetic energy of secondary electrons, and is thus carried some distance away from the primary electron track. In order to estimate energy imparted locally in a crude but simple manner, it is therefore useful to introduce a restricted collision stopping power defined as the average energy loss per unit pathlength due to excitation events and due to ionization events in which the energy transferred to secondary electrons is smaller than some chosen limit. Some data on restricted stopping powers are also given in this report.

Even though electron stopping powers and ranges are widely used, they are rarely measured and must be obtained from stopping-power theory. All previous tables as well as the tables in this report contain collision stopping powers for electrons at energies above 10 keV evaluated according to the theory of Bethe (1930, 1932, 1933). The energy of 10 keV is a commonly accepted lower limit for the applicability of the theory. The principal non-trivial quantity describing the properties of the medium in Bethe's stopping-power formula is the mean excitation energy, which is a logarithmic average of the excitation energies of the medium weighted by the corresponding oscillator strengths. Except for elements with very low atomic number the mean excitation energies in eV are approximately equal to 10 ° Z. Accurate ab initio calculations of mean excitation energies are possible at present only for simple atomic gases. For most materials it is necessary to determine mean excitation energies from experimental data. Another important quantity in the stopping-power formula, not contained in Bethe's original theory, is the density-effect correction, which takes into account the reduction of the collision stopping power due to the polarization of the medium by relativistic charged particles (Fermi, 1940). All of the tabulations including the present one have relied on the method of Sternheimer (1952) for the evaluation of the density-effect correction.

The first extensive electron stopping-power and range tables were calculated by Nelms, first without and later with the density-effect correction (Nelms, 1956, 1958). The tables of Berger and Seltzer (1964, 1966) included not only the collision stopping power but also the radiative stopping power. The latter was evaluated by a combination of bremsstrahlung cross sections given by Bethe and Heitler (1934) and empirical corrections recommended by Koch and Motz (1959). Pages $et\ al.\ (1972)$ in their tables used the same mean excitation energies and bremsstrahlung cross sections as those of Berger and Seltzer, but evaluated the density-effect correction with somewhat different input parameters.

- 1.3. New features. The principal new aspects of this work are the following:
- (a) A careful review has been made of the mean excitation energies derived from the analysis of stopping-power and range measurements, and from semi-empirical dipole oscillator-strength distributions for gases or dielectric-response functions for liquids and solids.
- (b) In the extraction of mean excitation energies from measured stopping powers and ranges, use has been made of empirical shell corrections recently developed by Bichsel (unpublished) as an extension of his earlier work (Bichsel, 1961, 1963, 1972).
- (c) For compounds for which no direct experimental information is available, the mean excitation energies have been calculated as weighted sums of the mean excitation energies of the atomic constituents (Bragg additivity). The required mean excitation energies of the constituents have been adjusted to take into account, at least approximately, the effects of chemical binding and the physical state of aggregation.
- (d) The Main Tables indicate the sensitivity of the electron collision stopping power, range, and bremsstrahlung yield to a change of the mean excitation energy. This enables the reader to make the appropriate adjustments if he prefers values of the mean excitation energy different from those adopted in this report.
- (e) The density-effect correction has been re-evaluated according to the dispersion model of Sternheimer (1952). Rather than using Sternheimer's earlier results or the universal fit given by Sternheimer and Peierls (1971), we have evaluated the density effect using as input the mean excitation energies adopted in this report and values of the binding energies for atomic subshells from Carlson (1975).

(f) The radiative stopping power has been calculated with improved theoretical bremsstrahlung cross sections. For bremsstrahlung in the field of the atomic nucleus, cross sections were obtained as follows: (i) At energies up to 2 MeV, recent theoretical results were used that are based on the solution of the Dirac equation and numerical evaluation of the pertinent matrix elements (Tseng and Pratt, 1971; Pratt et al., 1977). (ii) Above 50 MeV, use was made of cross sections in the high-energy approximation (Davies, Bethe, and Maximon, 1954; Olsen, 1955), evaluated with improved form-factor screening corrections derived from Hartree-Fock wave functions. (iii) In the energy region from 2 to 50 MeV, it has been found possible to construct reliable cross sections by interpolating with respect to electron energy, using the accurate low- and high-energy theoretical results as anchor points. The less important process of bremsstrahlung in the field of the atomic electrons was taken into account according to the theory of Haug (1975) augmented by a screening correction.

2. FORMULAS FOR THE COLLISION STOPPING POWER

2.1. General formulas. In this section various formulas of the Bethe theory and its elaborations will be stated briefly without derivation. For a detailed discussion of stopping-power theory the reader is referred to the many excellent reviews in the literature, e.g., Bohr (1948), Bethe and Ashkin (1953), Uehling (1954), Fano (1963), Inokuti (1971), Jackson (1975), Sigmund (1975), and Ahlen (1980).

The linear collision stopping power, with dimensions of energy/length, will be denoted as - $(dE/dx)_{COl}$ or S_{COl} . We shall find it convenient to consider also the corresponding mass collision stopping power, S_{COl}/ρ , where ρ is the density of the medium. The change from linear to mass stopping power largely removes the dependence on the density, except for a residual dependence due to the density-effect correction. With S_{COl} in MeV/cm and ρ in g/cm^3 , S_{COl}/ρ has units of MeV/ (g/cm^2) .

The collision stopping power is due to energy transfers from the incident particle to bound atomic electrons. We denote by $d\sigma/dW$ the cross section (per atomic electron) for inelastic collisions resulting in an energy transfer of magnitude W. The mass collision stopping power can then be expressed as

$$\frac{1}{\rho} S_{col} = \frac{N_a Z}{A} \int W \frac{d\sigma}{dW} dW \qquad . \tag{2.1}$$

The leading factor, $N_a Z/A$, represents the number of atomic electrons per gram of the medium. $N_a = 6.022045 \times 10^{23} \text{ mol}^{-1}$ is Avogadro's number, and Z and A are the atomic number and atomic weight.

Following the formulation of Uehling (1954), we now discuss the results of Bethe's evaluation of the stopping-power expression (2.1). These results are applicable to electrons and positrons, mesons, protons, alpha particles and to fully-stripped heavy ions. The energy transfers W to atomic electrons in inelastic collisions are divided into two classes, depending on whether they are smaller or larger than some value $W_{\rm C}$ which must satisfy two conditions: (a) $W_{\rm C}$ must be large compared to the binding energies of the atomic electrons of the stopping medium. (b) The impact parameters associated with energy losses smaller than $W_{\rm C}$ must be large compared to atomic dimensions. The mass collision stopping power is expressed as the sum of two components,

$$\frac{1}{\rho} S_{co1} = \frac{1}{\rho} S_{co1} (W < W_c) + \frac{1}{\rho} S_{co1} (W > W_c) . \qquad (2.2)$$

The main result of the Bethe theory, applicable to electrons and heavy charged particles, is that

$$\frac{1}{\rho} S_{co1}(W < W_c) = \frac{2\pi N_a r_e^2 mc^2}{\beta^2} \frac{Z}{A} z^2 \left[k_n \frac{2mc^2 \beta^2 W_c}{(1 - \beta^2) I^2} - \beta^2 \right] , \qquad (2.3)$$

where N_a is Avogadro's number, r_e is the classical electron radius, mc^2 is the electron rest energy, β is the velocity of the incident particle (projectile) divided by the velocity of light, z is the projectile charge in units of the charge of the electron, Z and A are the atomic number and atomic weight of the target atoms, and I is the mean excitation energy. Note that (Particle Data Group, 1980)

$$2\pi N_a r_e^2 mc^2 = (2\pi) (6.022045 \times 10^{23} mol^{-1}) (7.940775 \times 10^{-26} cm^2) (0.5110034 MeV)$$

= 0.153536 MeV cm² mol⁻¹.

Equation (2.3) is valid when the velocity of the projectile is large compared to the velocities of the atomic electrons. Applied to the electrons in the K shell this implies the requirement that $(Z/137\beta) \ll 1$. The stopping-power component due to close collisions is evaluated as if the atomic electrons were free and at rest:

$$\frac{1}{\rho} S_{\text{col}}(W > W_{\text{c}}) = N_{\text{a}} \frac{Z}{A} \int_{W_{\text{c}}}^{W_{\text{m}}} W \frac{d\sigma}{dW} dW , \qquad (2.4)$$

where $d\sigma/dW$ is now the differential cross section for energy transfer W in a collision with a free electron, and where

$$W_{m} = 2\tau(\tau + 2)mc^{2}/[1 + 2(\tau + 1)(m/M) + (m/M)^{2}]$$
 (2.5)

is the largest possible energy transfer, with τ the kinetic energy of the projectile in units of its rest mass, and m/M the ratio of the electron mass to that of the projectile.

2.2. Stopping-power formula for heavy charged particles. Formulas for heavy charged particles are given here because they are needed for the analysis of experimental data to obtain mean excitation energies. When $m \ll M$ Eq (2.5) can be approximated by

$$W_{\rm m} = 2\tau(\tau + 2) \text{ mc}^2 = \frac{2\text{mc}^2 \beta^2}{1 - \beta^2} . \qquad (2.6)$$

The differential scattering cross section is (Uehling, 1954; Fano, 1963)

$$d\sigma = \frac{2\pi r_e^2 mc^2}{\beta^2} z^2 \frac{dW}{W^2} (1 - \beta^2 W/W_m) . \qquad (2.7)$$

Combining Eqs (2.2) to (2.7), one obtains the result

$$\frac{1}{\rho} S_{col} = \frac{4\pi N_a r_e^2 mc^2}{\beta^2} \frac{Z}{A} z^2 \left[g_n \frac{2 mc^2 \beta^2}{(1 - \beta^2)I} - \beta^2 \right] . \qquad (2.8)$$

As expected for a consistent treatment, the quantity W_{C} which separates hard and soft collisions does not appear explicitly in Eq (2.8).

The accuracy of the stopping-power formula is improved by the addition of the following corrections:

- (1) A shell correction, which compensates for the fact that the projectile velocity is not necessarily large compared to the velocity of the target electrons;
- (2) A density-effect correction which accounts for the reduction of the stopping power due to the polarization of the medium; and
 - (3) Corrections which represent departures from the first Born approximation.

Following Lindhard (1976), Andersen et al. (1977) and Ritchie and Brandt (1978), the collision stopping-power formula is written as

$$\frac{1}{\rho} S_{co1} = \frac{4\pi N_a r_e^2 mc^2}{\beta^2} \frac{Z}{A} z^2 L(\beta) , \qquad (2.9)$$

where $L(\beta)$, the stopping number per atomic electron, is expressed as the sum of three terms,

$$L(\beta) = L_0 + zL_1 + z^2L_2 . (2.10)$$

The first term,

$$L_{o}(\beta) = \ln \left(\frac{2mc^{2} \beta^{2}}{1 - \beta^{2}} \right) - \beta^{2} - \ln I - \frac{C}{Z} - \frac{\delta}{2} ,$$
 (2.11)

adds to Eq (2.8) a shell correction, C/Z, and a density-effect correction $\delta/2$. These corrections will be discussed further in Sections 3.2 and 6, respectively.

The second and third terms in Eq (2.10) extend the treatment beyond the first Born approximation. The term zL₁ is often referred to as the "z³ correction." Because of the appearance of an odd power of z, the stopping power for particles with positive and negative charge will differ, and this was in fact first observed by Barkas et al. (1956). For this reason, following Lindhard (1976), we shall refer to the zL₁ term as the Barkas correction. It was first calculated by Ashley, Ritchie, and Brandt (1972, 1973) in a semi-classical approximation, using a harmonic-oscillator model and assuming that only distant collisions contribute to the effect. The assumed minimum impact parameter (approximately equal to the orbital radius of the atomic electrons) is not precisely specified by the theory, and its value must be adjusted on the basis of experimental stopping-power data. Other derivations of the Barkas correction have been given by Jackson and McCarthy (1972) who used a somewhat different quantum-mechanical cut-off parameter, by Hill and Merzbacher (1974) who carried out a quantum-mechanical perturbation calculation for distant collisions, and by Lindhard (1976) on the basis of his free-electron-gas model. These theories lead to results essentially equivalent to those of Ashley, Ritchie, and Brandt, especially in view of the adjustable value of the minimum impact parameter. We shall in this report use the theoretical results of Ashley et al., as given by them in terms of a numerical function F which is defined such that

$$zL_1 = \frac{zZ\alpha^3}{\beta^3} F(b\alpha\sqrt{Z}/\beta) , \qquad (2.12)$$

where α = 1/137.03604 is the fine-structure constant. The multiplier b in the argument of F is related to the choice of the minimum impact parameter, and usually has a value between 1 and 2 (see, e.g., Table 3.4).

The name "shell correction" arose because the correction was calculated separately for interactions with atomic electrons in different shells, starting with the treatment of K-shell electrons by Livingston and Bethe (1937).

The correction term z^2L_2 in Eq (2.10) is contained in an extension of Bethe's stopping-power formula due to Bloch (1933), and will therefore be called the Bloch correction. Bloch's formula is based on a quantum-mechanical impact-parameter method that takes into account, approximately, the perturbation of the wave functions of the atomic electrons due to the incident particle. The correction has the form

$$z^{2}L_{2} = \psi(1) - \text{Re } \psi(1 + iy)$$
 , (2.13)

where $y = z\alpha/\beta$ and where ψ is the logarithmic derivative of the gamma function. Using properties of this function (see, e.g., p. 259 in Abramowitz and Stegun, 1964) one can transform Eq (2.13) into

$$z^{2}L_{2} = -y^{2} \sum_{n=1}^{\infty} [n(n^{2} + y^{2})]^{-1} . \qquad (2.14)$$

For very small y, the Bloch correction is negligible. For y >> 1, the value of z^2L_2 can be shown to approach - 0.577 - $^{\ell}n$ y. When this asymptotic value is added to the stopping number (square brackets in Eq (2.8)), the resulting stopping formula is the same as the classical formula of Bohr (1913).

2.3. Stopping-power formulas for electrons and positrons. For electrons, large energy transfers to atomic electrons (considered as free) are governed by the Møller (1932) cross section,

$$d\sigma = \frac{2\pi r_e^2 mc^2}{\beta^2} \frac{dW}{W^2} \left[1 + \frac{W^2}{(T-W)^2} + \frac{\tau^2}{(\tau+1)^2} \frac{W}{T}^2 - \frac{(2\tau+1)}{(\tau+1)^2} \frac{W}{(T-W)} \right]$$
 (2.15)

where τ = T/mc² is the kinetic energy of the incident electron in units of its rest mass. The Møller cross section, valid when 137 β >> 1, takes into account relativity and spin effects as well as exchange effects associated with the indistinguishability of the incident and target electrons. By convention, the collision stopping-power pertains to the faster of the two electrons emerging from the collision. The maximum possible energy transfer W_m , while equal to T according to Eq (2.5), is therefore taken to be equal to T/2. With the Møller cross section, and using Eqs (2.1), (2.2), and (2.4), one obtains the following formulas for the electron mass collision stopping power (Rohrlich and Carlson, 1953; Uehling, 1954):

$$\frac{1}{\rho} S_{col} = \frac{2\pi N_a r_e^2 mc^2}{\beta^2} \frac{Z}{A} \left[\ln(T/I)^2 + \ln(1 + \tau/2) + F(\tau) - \delta \right] , \qquad (2.16)$$

where

$$F^{-}(\tau) = (1-\beta^{2}) [1 + \tau^{2}/8 - (2\tau+1) \ln 2]$$
 (2.17)

One half times the quantity in square brackets in Eq (2.16) is the stopping number per atomic electron, $L(\beta)$, and is analogous to the stopping number $L(\beta)$ for protons in Eq (2.9). For positrons, energy transfers larger than W_C are treated by the Bhabha (1936) cross section (given by Eq (10) in Uehling, 1954). There are no exchange effects, and the maximum possible energy transfer is W_m = T. The mass collision stopping-power formula for positrons is similar to that for electrons, except that F^- is replaced by

 $^{^5}$ The factor 1/2 arises because it is conventional to use 2π for electrons and 4π for heavy charged particles in the leading factor of the stopping-power formula.

$$F^{+}(\tau) = 2 \ln 2 - (\beta^{2}/12) \left[23 + 14/(\tau+2) + 10/(\tau+2)^{2} + 4/(\tau+2)^{3} \right] \qquad (2.18)$$

Some remarks are necessary regarding the absence of shell corrections from the electron stopping-power formula, Eq (2.16). For heavy particles, such corrections have been developed on the basis of the assumption that the projectile particle can be considered equivalent to a perturbing potential whose center moves with constant velocity. This assumption, while satisfied for protons down to rather low velocities, is much less applicable to electrons, so that there is no sound theoretical basis for extending the available shell-correction theory to electrons.

Corrections to the Bethe theory, analogous to shell corrections for stopping power, have been discussed by Inokuti (1971) in regard to excitation cross sections. He indicates that these corrections contain an additive term proportional to the ratio of electron to projectile mass, m/M, such that the corrections can be expected to be significantly larger for electrons than for protons. It seems likely that this will also be the case for stopping-power shell corrections.

We have attempted to make a rough estimate of the possible error in the calculated electron stopping power due to the omission of a shell correction term, assuming, arbitrarily, that the error is twice as large as the reduction of the proton stopping power for protons with the same velocity. At an electron energy of lookeV, the error is then estimated to be $\sim 0.3\%$ for H_2O , $\sim 0.7\%$ for $A^{\&}$, $\sim 1.3\%$ for Cu, $\sim 2\%$ for Ag, and $\sim 3\%$ for Au. At 10 keV, the corresponding error estimates are $\sim 2\%$ for H_2O , $\sim 4\%$ for $A^{\&}$, $\sim 9\%$ for Cu, $\sim 12\%$ for Ag, and $\sim 21\%$ for Au. The use of Eq (2.16) is questionable at energies below 10 keV. However, for low-Z materials such as water, air, or plastics, the evidence presented later in Section 8 suggests that the errors may amount to $\sim 3\%$ at 5 keV, $\sim 7\%$ at 2 keV, and 10 to 15% at 1 keV.

3. METHODS FOR ESTIMATING MEAN EXCITATION ENERGIES

In order to obtain accurate values of the mean excitation energy I, it is necessary to take into account the specific electronic structure of the atom, molecule, or solid of interest. Accurate ab initio calculations of I are available for some atomic gases. For other materials one must rely on semi-empirical methods for determining I, using data available from two sources: stopping-power and range measurements, usually for protons and alpha particles; and dielectric-response functions (for solids) and oscillator-strength distributions (for gases), which can often be obtained from cross sections for the interaction of photons with the medium of interest.

Only moderate accuracy of the mean excitation energy is required for the determination of the electron collision stopping power. Let ΔS_{COl} be the uncertainty of S_{COl} corresponding to an uncertainty ΔI of I. From Eq (2.16) it can be seen that at low energies, where the density-effect correction is negligible, $\Delta S_{\text{COl}}/S_{\text{Col}} = -(\Delta I/I)/L$, where the stopping number L ranges in value from $\gtrsim 3$ at 10 keV to ~ 15 at 1000 MeV. At high energies the I-dependence of the density-effect correction is such as to reduce the I-dependence of the collision stopping power further; in fact, in the limit of extremely high energies the collision stopping power becomes independent of I (see Section 6). Figure 3.1 gives the ratio of logarithmic derivatives $-(dS_{\text{Col}}/S_{\text{Col}})/(dI/I)$ as a function of electron kinetic energy, for a few materials. The value of this ratio decreases with increasing electron energy. The bends in the curves for water at ~ 0.5 MeV, and for air at ~ 25 MeV, are due to the sudden onset of the density-effect correction for nonconducting media.

3.1. Use of oscillator-strength and dielectric data. The use of such data is growing in importance; they are becoming more plentiful and allow the determination of I-values as accurately as from the best stopping-power measurements. The accuracy results in part from the fact that the oscillator-strength distributions are subject to various sum rules which act as constraints in the evaluation of experimental data and provide connections to other measurable physical quantities. The theory underlying the use of oscillator-strength and dielectric data has been reviewed by Fano (1963) and Inokuti and Turner (1978).

For gases, the mean excitation energy can be obtained from the expression

$$\ln I = \int_0^\infty \frac{df}{dE} \ln E \ dE / \int_0^\infty \frac{df}{dE} \ dE , \qquad (3.1)$$

where df/dE is the density of optical dipole oscillator strength per unit energy of excitation above the ground state.

A variety of methods has been used to evaluate Eq (3.1). For a dilute gas of free atoms, systematic calculations of oscillator-strength distributions and I-values, based on the use of Hartree-Slater central potentials and a single-electron model, have been carried out by Dehmer et al. (1975) for atomic numbers Z up to 18, and have been continued by Inokuti et al. (1981) for Z up to 38. Critical evaluations of experimental oscillator-strength distributions for atomic and molecular gases, based on the use of photo-electric cross sections and inelastic electron scattering cross sections, have been obtained by various authors, for example, Zeiss et al. (1975; 1977a,b; 1980). Another semi-empirical method, denoted here as M(n) fit, makes use of the moments $M(n) = \int_{-\infty}^{\infty} df/dE \ E^{n}dE$ of the oscillator-strength distribution (Dalgarno, 1960). Noting that $dE^{n}/dn = E^{n} \ell n E$, one can transform Eq (3.1) into

$$\ln I = \frac{1}{M(0)} \left[\frac{dM(n)}{dn} \right]_{n=0} . \qquad (3.2)$$

According to the Thomas-Kuhn sum rule, M(0) = Z. The moments M(2), M(1), and M(-1) are calculated theoretically, and M(-2) is obtained from experimental polarizability data. By fitting these moments, an analytical function M(n) is obtained which is then differentiated to get ℓnI .

I-values for 9 gases, obtained according to Eq (3.1) by various theoretical and semi-empirical methods, are given in Table 3.1, which is an adaptation and slight extension of Table V in Dehmer et αl . (1975). The most accurate I-values are those derived with the use of semi-empirical oscillator-strength distributions.

The values of the ratio I/Z obtained in the systematic calculations of Dehmer $et\ al.$ (1975) and Inokuti $et\ al.$ (1981) show a periodic variation with Z, which is interpreted as due to atomic shell structure. Quite similar variations are found when I-values are calculated on the basis of the local-plasma approximation of Lindhard and Scharff (1953). According to this model the mean excitation energy is obtained from the equation

$$\ln I = (1/Z) \int_0^\infty 4\pi r^2 n_0(r) \ln(\gamma \hbar \omega_0) dr , \qquad (3.3)$$

where

$$\omega_{\rm O} = (4\pi \ {\rm e}^2 \ {\rm n}_{\rm O}({\rm r})/{\rm m})^{\frac{1}{2}}$$
 (3.4)

is the plasma frequency corresponding to a electron density $n_{Q}(r)$ at a distance r from the nucleus, \hbar is Planck's constant divided by 2π , and γ is a free parameter for which the value $\sqrt{2}$ is recommended. As pointed out by Dehmer *et al.* (1975), the use of Eqs (3.3) and (3.4) is equivalent to assuming an approximate oscillatorstrength distribution

$$\frac{\mathrm{df}}{\mathrm{dE}} = \langle \delta(E - \gamma \hbar \omega_{0}(r)) \rangle , \qquad (3.5)$$

where the brackets denote the ground state expectation value and δ is a delta function. Expression (3.3) was evaluated by Bichsel and Laulainer (1971), by Chu and Powers (1972), and by Ziegler (1980), with electron density distributions derived from Hartree-Slater wave functions. Ziegler has also extended the calculations to solids, using solid-state wave functions.

Figure 3.2 shows the irregular Z-dependence of I/Z as calculated by Dehmer et al., and by Inokuti et al., from theoretical oscillator-strength distributions, and by Chu and Powers and by Ziegler according to the local-plasma approximation. In order to make the two types of results comparable, the local-plasma results are given for γ = 1. As will be shown later in Section 4, the Z-dependence of the experimental I/Z ratios has similar irregularities. Moreover, the calculated and experimental I/Z ratios can be brought into rather good agreement with $\gamma \sim 1.3$.

The use of optical dipole oscillator-strength distributions is justified only for dilute gases for which there is only a weak correlation between the positions of the electrons in the medium. For condensed materials the mean excitation energy can be obtained from an alternative equation, in terms of the dielectric-response function $\epsilon(\omega)$ of the medium (Fano, 1956, 1963):

$$\ln I = (2/\pi\omega_p^2) \int_0^\infty d\omega \ \omega \ \text{Im}[-1/\epsilon(\omega)] \ \ln(\hbar\omega) , \qquad (3.6)$$

where $\boldsymbol{\omega}_{p}^{}$ is the plasma frequency. The corresponding plasma energy 6 is

$$\hbar \omega_{\rm p} = (4\pi \ \hbar^2 \ e^2 \ n_{\rm e}/m)^{\frac{1}{2}} = 28.816 (\rho Z/A)^{\frac{1}{2}} \ eV$$
 , (3.7)

where n is the total number of electrons per unit volume, and e is the charge of the electron.

The dielectric-response function is complex-valued; for non-magnetic materials, its real and imaginary parts, $\epsilon_1(\omega)$ and $\epsilon_2(\omega)$, can be expressed in terms of the real and imaginary parts, $n(\omega)$ and $\kappa(\omega)$, of the refractive index:

$$\epsilon_{1}(\omega) = n^{2}(\omega) - \kappa^{2}(\omega)$$

$$\epsilon_{2}(\omega) = 2n(\omega) \kappa(\omega)$$

$$(3.8)$$

It is therefore possible to obtain $\epsilon(\omega)$ from optical data, and just as in the case of oscillator-strength distributions there are sum rules which serve as consistency checks for experimental data.

The dielectric-response function for aluminum has been evaluated by Shiles $et\ al.\ (1980)$ by a dispersion analysis involving the use of the reflectance, ellipsometric and transmission optical data from many experiments, and also the use of electron energy-loss data. These authors obtained an I-value of $165.7\ \pm\ 1.0\ {\rm eV}$ for aluminum. Mean excitation energies for various compounds, obtained in a similar manner (but usually with less abundant optical data) will be discussed in Section 5.

3.2. Use of stopping-power and range data. There is an abundant experimental literature on stopping powers and ranges for protons and alpha particles (see, e.g., Andersen and Ziegler, 1977; Ziegler, 1977; Andersen, 1977). The extraction of mean excitation energies from such data would be a routine matter if it were not for the fact that the stopping-power theory contains correction terms which are not always known with the accuracy desirable. From measured stopping-power data, the mean excitation energy can be determined by inverting Eq (2.9):

$$\ln I = \ln \left(\frac{2 mc^2 \beta^2}{1 - \beta^2} \right) - \beta^2 - x - \left(\frac{S_{col}}{\rho} \right)_{expt} / \left(\frac{4 \pi N_a r_e^2 mc^2}{\beta^2} \frac{Z}{A} z^2 \right) , \qquad (3.9)$$

⁶The plasma energy specified in terms of Eq (3.7) is a nominal value calculated with the electron density for all atomic electrons. It is larger than the plasma energy used to describe collective excitations (plasmons) which is calculated with the density of participating electrons.

where

$$x = \frac{C}{Z} + \frac{\delta}{2} - zL_1 - z^2L_2 \tag{3.10}$$

is the total correction, combining the shell correction, density-effect correction, Barkas correction, and Bloch correction.

Let ΔS_{COl} denote the uncertainty of the measured value of S_{COl} , and let Δx denote the uncertainty of the correction term x. Assuming that the two uncertainties can be combined quadratically, the overall uncertainty of the estimated I-value is

$$\Delta I = I \cdot [(\Delta S_{col}/S_{col})^2 L_{exp}^2 + (\Delta x)^2]^{\frac{1}{2}}$$
 (3.11)

where L_{exp} is the experimental stopping number (last term in Eq (3.9)). When range data are used to determine I-values, the error analysis is more complicated, and must take into account the uncertainty of the experimental range value as well as the uncertainties of the correction term x at all energies up to the initial projectile energy.

In the evaluation of the correction x we have followed a procedure suggested by H. Bichsel, earlier versions of which have been described by Bichsel (1961, 1963, 1972). Included in the procedure are the evaluation of the Barkas correction according to Ashley, Ritchie, and Brandt (1972,1973), the Bloch correction according to Eq (2.14), and the shell correction by the method outlined below.

3.2.1. Bichsel's shell corrections. The total shell correction C is the sum of the contributions C_K , C_L , ... from the different atomic shells. Theoretical values calculated with hydrogenic wave functions are available for C_K (Walske, 1952; Khandelwal, 1968), for C_L (Walske, 1956; Bichsel, 1967; Khandelwal, 1968), and for C_M (Khandelwal and Merzbacher, 1966). The error due to the use of hydrogenic wave functions is expected to be relatively minor for the K shell, more serious for the L shell (particularly for atomic numbers $Z \lesssim 30$) and probably even greater for the M shell.

Extension of the calculations to higher shells, with use of improved wave functions, is possible but would be very laborious. Bichsel instead adopts a semiempirical scaling procedure with parameters that are determined by experimental stopping-power data. He assumes that the dependence of C_M on the particle velocity is similar to that of C_L , except for scale factors, and also extends this assumption to the higher shells. The Walske result for the L shell, $C_L(\theta_L,\eta_L)$, depends on the atomic number through the parameter θ_L and on the particle energy through the quantity

$$\eta_{L} = (\beta/\alpha Z^*)^2 , \qquad (3.12)$$

where $Z^* = Z - 4.15$ is the effective nuclear charge for the L shell. The M-shell correction is calculated from the scaling relation

$$C_{M} = V_{M} C_{L} (\theta_{L}, H_{M}^{\eta}_{L}) , \qquad (3.13)$$

where V_M is equal to 1/8 times the number of electrons in the M shell, and where H_M is an adjustable parameter. Analogous scaling relations are used for the NM shell and for a combined 0-P shell.

For
$$Z = 3$$
, 4, 5, 6, 7, 8, 9. , 10 $d = 1.72$, 2.09, 2.48, 2.82, 3.16, 3.53, 3.84, 4.24.

 $^{^7 \}mbox{For Z} < 10$, Eq (3.13) is also applied to the incompletely filled L shell, with V_L as defined above and H_L = 1. For low atomic numbers, the effective charge Z* for the L shell has in this work been set equal to Z - d, with values of d taken from Clementi and Raimondi (1963).

The scaling parameters H_n (for n = M, N, and 0-P), the parameter b of the Ashley-Ritchie-Brandt theory for the Barkas correction, and the mean excitation I were determined by Bichsel in a two-stage procedure. First he chose values of I, b, and the H_n 's by trial and error for a small number of key elements so as to obtain the best possible agreement between calculated and measured stopping powers and ranges for protons and alpha particles, taking into account all available data. The parameters thus chosen for C, $A\ell$, Cu, Ag, and Au are given in Table 3.2. They are of course not unique, but provide a good fit to the data. Table 3.3 gives illustrative values, for the same elements, of the shell corrections, Barkas corrections, Bloch corrections, and the stopping number per electron. The relative contributions of the various corrections to the proton stopping number for gold are indicated in Fig. 3.3 where it can be seen that at energies above 500 MeV the density-effect correction is more important than the shell correction.

The second stage of Bichsel's procedure consists of interpolating the parameters $H_{\rm n}$ vs. Z, to obtain values for all elements. His interpolation scheme is given in Table 3.4 which also lists recommended b-values for all elements. The shell corrections thus obtained exhibit small irregularities as functions of Z, especially at low proton energies. Before being used in the present work they were smoothed graphically. The smoothed shell corrections of Bichsel, plotted vs. Z, are shown in Fig. 3.4 for various proton energies from 2 MeV to 100 MeV. Bichsel's shell corrections as functions of the proton energy are given in Fig. 3.5 for various elements.

3.2.2. Comparison of Bichsel's and Bonderup's shell correction. Theoretical shell corrections have been derived by Bonderup (1967) on the basis of the statistical gas model of Lindhard and Scharff (1953) and Lindhard and Winther (1964). The theoretical shell corrections, plotted against atomic number, are shown in Fig. 3.4 and can be seen to agree rather well with Bichsel's empirical shell corrections for atomic numbers Z up to ~50. With increasing Z the Bonderup corrections continue to increase whereas those of Bichsel reach a peak and then decrease.

To investigate the influence of the adopted shell corrections we now consider the high-energy proton range measurements of Barkas and von Friesen (1961) and the low- and intermediate-energy stopping-power measurements of Burkig and MacKenzie (1957), Sørensen and Andersen (1973) and Ishiwari $et\ al.$ (1979) for the elements Cu, Pb, and U.

The proton energy in the Barkas-von Friesen experiment had the nominal value of 750 MeV but was uncertain by one or two MeV. Using the measured proton range value of 273.29 g/cm² in aluminum, and using the accurate value $I_{A\ell}$ = 166 eV from Shiles et al. (1980), one estimates the beam energy to have been 749.0 MeV. With this energy one obtains the I-values shown in Table 3.5, which are estimated to have an uncertainty of ~ 10 eV. The use of Bonderup's rather then Bichsel's shell corrections would lower the I-values for Pb and U by a few eV but leave that for Cu unchanged. It is interesting to note that the omission of the density-effect correction would have a much greater influence on I than the change of shell corrections.

Table 3.6 compares I-values deduced from medium-energy as well as high-energy experiments. It can be seen that for copper the same I-value is obtained (within the estimated uncertainties) regardless of the type of shell correction that is used. For lead and uranium, however, the use of the Bonderup shell correction leads to estimated I-values for lead and uranium that are ~ 10 percent lower for the medium-energy experiments than for the high-energy experiment. With Bichsel's shell corrections, approximately the same I-value is obtained regardless of energy. Inasmuch as the mean excitation energy is a material constant independent of the projectile energy, we have adopted Bichsel's shell corrections as providing the better representation of the experimental situation. 9

 $^{^8}$ A similar turning over of the curve of shell correction vs. atomic number is also characteristic of the empirical shell corrections given by Andersen and Ziegler (1977) which lie between the Bonderup and Bichsel shell corrections.

⁹It may be noted that Andersen and Nielsen (1981) also find that the Bonderup shell correction for protons in gold at energies from 2 to 7 MeV is larger than the empirical shell correction which they deduce from their stopping-power measurements. These authors suggest that the discrepancy may be due to the non-relativistic treatment of inner-shell electrons in Bonderup's theory.

4. SELECTION OF MEAN EXCITATION ENERGIES FOR ELEMENTS

Using Eq (3.9) with shell corrections from Bichsel, the Barkas correction according to Ashley, Ritchie, and Brandt, and the Bloch correction, we have extracted I-values for a large number of elements from 22 experiments. The data are mainly for protons with energies ≥ 5 MeV, so that the value of the correction term $x = C/Z + \delta/2 - zL_1 - z^2L_2$ is in general small compared to the stopping number (see Table 3.3). The measurements that were analyzed are listed in Table 4.1. The deduced I-values and their uncertainties are given in Table 4.2. The overall uncertainties have been calculated according to Eq (3.11), combining quadratically (a) the experimental uncertainties, and (b) an assumed 10-percent uncertainty of the correction term x.

Several of the experiments listed in Table 4.1 provide stopping-power ratios relative to a reference material. Burkig and MacKenzie (1957) and Nakano $et\ al$. (1963) measured stopping-power ratios relative to aluminum. We have interpreted these by assuming the stopping-power for aluminum to be that calculated with an I-value of 166 eV as obtained by Shiles $et\ al$. (1980) from dielectric data. The experiments of Bakker and Segrè (1951) and of Thompson (1952) give stopping-power ratios with respect to copper, which we have analyzed assuming an I-value of 322 eV for copper consistent with various other experimental results. The experiment of Nordin and Henkelman (1979) gives stopping-power ratios relative to liquid water, which have been analyzed assuming for water an I-value of 75 eV derived by Ritchie $et\ al$. (1978) and Ashley (1982a) from dielectric data. The measurement uncertainties entered into Eq (3.11) have been augmented to include the uncertainties of the calculated stopping powers of the reference materials.

The experimental results of Thompson were also analyzed relative to water instead of copper, and those of Nordin and Henkelman relative to aluminum instead of water. This changed the deduced I-values by only a fraction of one percent, and an average of the values with the two reference materials was taken. The I-values from the experiment of Bakker and Segrè, when analyzed with respect to aluminum instead of copper, changed significantly, and both sets of I-values are given in Table 4.2.

The final choices of mean excitation for elements were made as follows. (a) For the gases H_2 , H_2 , H

We have also estimated I-values for elements for which no experimental information is available. Following Andersen and Ziegler (1977) we have done this by imitating the local Z-dependence as predicted by the results of calculations done in the local-plasma approximation (see Fig. 3.2). The following interpolation scheme was used. Denoting calculated I-values by $I_{\rm C}({\rm Z})$, experimental values by $I({\rm Z})$ and interpolated values by $I_{\rm int}({\rm Z})$, we have assumed that

$$I_{int}(z) = I_{c}(z) \left\{ \frac{I(z_{1})}{I_{c}(z_{1})} \frac{z_{2} - z}{z_{2} - z_{1}} + \frac{I(z_{2})}{I_{c}(z_{2})} \frac{z - z_{1}}{z_{2} - z_{1}} \right\}, \qquad (4.1)$$

where Z_1 and Z_2 are the closest atomic numbers, with experimental I-values, that bracket the atomic number Z of interest. Either Z, Z_1 , and Z_2 pertain to gases, in which case the required values of I_C are taken from the results of Chu and Powers (1972) obtained with free-atom wave functions, or Z, Z_1 , and Z_2 pertain to solids in which case the values of I_C are taken from the results of Ziegler (1980) obtained with solid-state wave functions (the version indicated by Ziegler as first-order solid with continuous interstitials).

The value I = 700 eV listed in Table 3.1 for radon, obtained by Bell and Dalgarno (1965) by a "M(n) fit" (see Section 3.1), is expected to be inaccurate because of a numerical error in the moment M(-1) and because of neglected relativistic effects. The adopted value I = 794 eV was estimated by extrapolating the ratios $I(Z)/I_C(Z)$ for rare gases to Z=86.

Table 4.3 gives the adopted I-values, and the corresponding ratios I/Z, for all elements. The estimated uncertainties of the I-values are given only for experimentally-based I-values. These uncertainties are intended to take into account both the uncertainties of individual experimental results and the scatter of the results from different experiments. The interpolated I-values are enclosed in parentheses. To indicate the irregular Z-dependence of the adopted mean excitation energies, a plot of I/Z vs. Z is shown in Fig. 4.1.

As a check on the acceptability of the adopted I-values and correction terms to the stopping-power formula, we demonstrate in Figs. (4.2) to (4.5) that close fits are obtained to a large body of experimental stopping-power data. Comparisons are made in terms of the ratio of the experimental to the calculated stopping power. Figure 4.2, taken from Bichsel and Porter (1982), pertains to protons and alpha particles in N_2 and O_2 . Figure 4.3 pertains to proton stopping power at energies up to 20 MeV in Al, Cu, Ag, Au, Pb, and U. Figures 4.4 and 4.5 pertain to the proton stopping-power measurements of Ishiwari et al. (1979) at 6.5 MeV, and those of Burkig and MacKenzie (1957) at 19.8 MeV, in many elements.

For a few elements, the I-values adopted in this report are compared in Table 4.4 with I-values recommended in eleven earlier papers.

5. SELECTION OF MEAN EXCITATION ENERGIES FOR COMPOUNDS

The experimental information on I-values for compounds is steadily increasing. I-values for many gases have been determined by Zeiss $et\ al.\ (1975,\ 1977a,b)$, Thomas and Meath (1977), and Jhanwar $et\ al.\ (1981)$ from semi-empirical dipole oscillatorstrength distributions. For liquid water and for various plastics, I-values have been obtained by Ritchie $et\ al.\ (1978)$, Ashley (1979) and Painter $et\ al.\ (1980)$ from dielectric data. I-values for a large number of condensed compounds, obtained under uniform conditions, can be deduced from an experiment by Thompson (1952) who measured the pathlengths traveled by protons while slowing down from 340 MeV to 200 MeV in many organic liquids, in water, and in a few solids. Thompson showed that the ratios of these pathlengths to the pathlength in a reference material (copper) can be interpreted as reciprocals of the corresponding stopping-power ratios at an intermediate energy. We have re-analyzed Thompson's data, applying small multiple-scattering corrections according to a procedure of Bichsel (1954) and shell corrections for copper, to obtain stopping-power ratios relative to copper at $267.5\ \text{MeV}$.

There are many compounds of interest for which one needs to estimate I-values in the absence of direct experimental information. It has been known since the early work of Bragg and Kleeman (1905) that the collision stopping-power of a compound can be approximated by the weighted sum of the stopping powers of the atomic constituents of the compound. For the mass collision stopping power $S_{\rm COl}/\rho$, the additivity rule takes the form

$$\frac{1}{\rho} S_{\text{col}} = \sum_{j} w_{j} \frac{1}{\rho} S_{\text{col}} , \qquad (5.1)$$

where w_j is the fraction by weight of the j'th atomic constituent. This additivity rule is equivalent to replacing, in the stopping-power formula Eq (2.16), the quantities Z/A, I, and δ by

¹⁰The uncertainties of the I-values in Table 4.3 are figures of merit, arrived at by subjective judgements, and with a meaning that is not easily defined. One possible interpretation would be the following. If, in the future, the measurement accuracy and theoretical analysis are sufficiently improved so that I-values can be determined with an accuracy an order of magnitude better than at present, we expect that for at least 90 percent of the cases in Table 4.3 the future I-values will lie within the limits of uncertainty given in this report.

$$Z/A = \sum_{j} w_{j} (Z_{j}/A_{j}) , \qquad (5.2)$$

$$\ln I = \left[\sum_{j} w_{j} (Z_{j}/A_{j}) \ln I_{j} \right] / \langle Z/A \rangle , \qquad (5.3)$$

$$\delta = \left[\sum_{j} w_{j} (Z_{j}/A_{j}) \delta_{j} \right] / \langle Z/A \rangle , \qquad (5.4)$$

where Z_j , A_j , I_j , and δ_j pertain to the j'th constituent. It should be noted that $\langle Z/A \rangle$ is equal to the total number of electrons in the molecule divided by the molecular weight. The use of $\langle \delta \rangle$ calculated from Eq (5.4) is in general not a good approximation, and it is preferable to calculate the density-effect correction directly for the compound of interest (see Section 6.3).

The application of this additivity rule requires the choice of appropriate values for the mean excitation energies of the constituents. The simplest procedure, often used in the past, is to take the same I-values for the atomic constituents of a compound as for the corresponding elemental substances. This introduces some error because of the neglect of molecular binding effects. An additional error may be incurred when elemental I-values for gases (e.g., oxygen) are applied to the constituents of solid compounds.

The accuracy of the additivity rule can be improved by assigning I-values to the constituents which are not unique but take on various values depending on the type of compound and on the physical state of aggregation of the medium. When carried to an extreme this is equivalent to abandoning additivity and treating each compound separately. However, it is possible to find simple rules for assigning I-values to atomic constituents with which the I-values for a large number of compounds can be represented satisfactorily. We have adopted such an assignment scheme which is given in Table 5.1.

A more elaborate assignment scheme was developed earlier by Thompson (1952) who interpreted his experimental stopping powers for various compounds in terms of the stopping powers (and I-values) of atomic constituents in various chemical environments. We have extracted I-values from Thompson's stopping powers for atomic constituents, and have thus obtained the up-dated Thompson assignment scheme given in Table 5.2. In this scheme, different I-values are assigned to constituents depending on the type of chemical bond involved. Thompson's conclusions as to the influence of bond types on the I-values of atomic constituents in organic liquids are quite plausible. However, the available data base is not sufficient to pin these distinctions down with great precision, and there is a need for further experiments similar to Thompson's.

Mean excitation energies for organic solids and other compounds have also been estimated by Brandt (1956, 1958, 1960) on the basis of experimental data and theoretical considerations. Brandt (1960) used as an initial approximation free-atom I-values for atomic constituents according to a formula of Jensen (1937), modified these values to take into account the valence states (aromatic, aliphatic, ...) of atomic constituents, and then assumed Bragg additivity. Brandt also applied a "low-energy density-effect" correction which raised the mean excitation energy for the compound as a whole. His valence-state corrections and density-effect corrections were obtained from theoretical polarization data for atoms and experimental molar-refractivity data for molecular compounds. As will be shown later in the comparison in Table 5.6, Brandt's theoretical I-values for low-Z compounds are not very different from those adopted in the present work. However, his I-values for compounds containing high-Z constituents tend to be too low, a fact already noted by Brandt with respect to photographic emulsion.

Table 5.3 lists the presently available experimental I-values, and their origin, for 13 gases, 27 liquids, and 14 solids. The table also gives the differences between these I-values and corresponding Bragg-additivity I-values obtained with our adopted assignment scheme and that of Thompson. In most cases these differences are smaller than the estimated experimental uncertainties. There are large discrepancies

in only two cases, for liquid dichloroethane and for paraffin wax. 11 For gases our assignment scheme works particularly well. For liquids it is slightly inferior to Thompson's scheme, but for solids it is somewhat better.

Thompson's scheme includes more chemical detail than ours but on the whole works no better and is more complicated to apply. We have therefore used our scheme (Table 5.1) for the prediction of I-values in the absence of experimental data. For compounds with the constituents H, C, N, and O (and perhaps also F and Cl) such predictions have a sound empirical basis. One would expect that the errors associated with such predictions will have the same order of magnitude as the differences between experimental and Bragg-additivity I-values in Table 5.3. The situation is less clear in regard to condensed materials with atomic constituents other than those listed above. Our assignment scheme uses for these other constituents I-values that are 13 percent larger than the corresponding I-values for condensed elemental substances as given in Table 4.3. This increase was found to be required to obtain a good approximation to the rather accurately known experimental I-values for Al2O3, SiO2, and photographic emulsion, and is also consistent with the less certain experimental data for LiF and CaF2. In the absence of other information we have assumed that the 13-percent increase should also be applied to the constituents of other compounds such as sodium iodide and cesium iodide.

Certain composite materials, for example tissue-equivalent gases, pyrex glass, and human tissues, have constituent molecules whose I-values are known independently from experiments. In order to take advantage of this information, we have treated such composite materials via a Bragg rule for the combination of atomic and molecular constituents. For human tissues, a prominent constituent with a known I-value is water. In Table 5.4, the water content and I-values for various types of tissue are given.

Table 5.5 lists the adopted mean excitation energies, densities and elemental compositions for the 46 compounds and mixtures for which electron stopping-power tables are given in this report. The symbol + indicates I-values derived directly from experimental data or I-values for mixtures (such as air) all of whose constituents have experimentally determined I-values. The symbol ++ indicates I-values derived by applying the additivity rule to molecular constituents one or more of which have experimentally determined I-values. In all other cases, the I-values were obtained from the additivity rule, Eq (5.3), with constituent I-values from Table 5.1.

A letter grade (A, B, or C) is given next to each I-value in Table 5.5, to indicate the relative quality of these data. The assignment of these grades was based on the information contained in Table 5.3, but also involved subjective judgements. For the most part the following guidelines were followed. Direct experimental I-values were given the grade A unless the experimental uncertainty was greater than 5 percent, in which case they were given the grade B. I-values for low-Z gas compounds were given the grade A. I-values for condensed compounds were given the grade B if the constituents consisted predominantly of the elements H, C, N, O, F, or CL. The grade C was given to I-values for condensed compounds which contain mainly other constituents whose I-values were adjusted upward by the 13-percent rule. We would assign an estimated uncertainty of $\lesssim 5$ percent with grade A, 5 to 10 percent with grade B, and 10 to 15 percent with grade C. In order to indicate how the recommended I-values for compounds have changed over the years, a comparison with previously recommended values is given in Table 5.6.

For electrons, the dependence of the collision stopping power on the state of aggregation can be expressed completely through the mean excitation energy, provided the Bethe stopping-power theory (without shell corrections) is applicable. This dependence is indicated in Table 5.7 for a few elements and compounds. It should be noted that the values for molecular gases, liquids and solids are empirical, whereas those for "atomic gases" are from theoretical oscillator-strength distributions.

¹¹Because the experimental I-value for paraffin wax is inconsistent with those for other straight-chain hydrocarbons (n-pentane, n-hexane, n-heptane, and polyethylene), we have adopted the I-value of 55.9 eV, using the Bragg-additivity values according to Table 5.1. This is the only case in which the Bragg-additivity value was adopted in preference to the experimental value.

¹²Concerning the meaning that might be attached to the estimated uncertainties, see footnote 10.

6. DENSITY EFFECT

6.1. General equations. The passage of a charged particle through a medium results in the polarization of atoms in the medium, and this polarization in turn screens the electric field acting on the particle so as to reduce the stopping power. This reduction is particularly strong in dense media, and is therefore called the density effect. The greater the particle velocity, the greater is the density effect because, by virtue of the Lorentz contraction, distant collisions become more important. In fact, at very high energies the density-effect correction to the stopping power is significant even in dilute gases.

The density effect was first predicted by Swann (1938) and calculated by Fermi (1940). The results of such a calculation depend on the model used for representing the dielectric properties of the medium. Whereas Fermi used only one dispersion frequency, more realistic models were developed by Wick (1943), Halpern and Hall (1948), and Sternheimer (1952). Sternheimer introduced a procedure for making the dielectric model consistent with the (experimentally known) mean excitation energy for the medium, which is essential for obtaining accurate results.

As shown by Fano (1956, 1963), the density-effect correction can be expressed as follows in terms of the dielectric-response function $\epsilon(\omega)$ of the medium:

$$\delta = (2/\pi\omega_{\rm p}^{2}) \int_{0}^{\infty} \omega \ d\omega \ {\rm Im}[-1/\epsilon(\omega)] \ {\rm ln}(1 + {\rm l}^{2}/\omega^{2}) - ({\rm l}/\omega_{\rm p})^{2} \ (1 - \beta^{2}) \ , \ (6.1)$$

where ω_p is the plasma frequency, proportional to the square root of the density, given by Eq (3.7). The quantity ℓ is defined, as a function of β , as the root of the equation

$$1 - \beta^2 \epsilon(i\ell) = 0 . \qquad (6.2)$$

It can be shown that in the limit $\beta \rightarrow 1$

$$\delta \rightarrow \ln \left[(\hbar \omega_{\rm p})^2 / (1 - \beta^2) I^2 \right] - 1 \qquad (6.3)$$

When this result is inserted into the stopping-power Eqs (2.9) or (2.16), the mean excitation energy I disappears from the final result. Thus in the limit of very high energies, the stopping power depends on the properties of the medium only through the plasma energy $\hbar \omega_p$, and therefore only on the density and the ratio Z/A.

In the solution of Eq (6.2), a difference arises between conducting and non-conducting media. For conductors, the dielectric-response function is such that the equation has a root for any value of β . The density effect is then present, though small, even at arbitrarily low energies. For insulators, however, a root exists only above a minimum value of $\beta_0 = \epsilon(0)^{\frac{1}{2}}$, which is a property of the material, and there is no density effect for $\beta < \beta_0$.

The most accurate method of evaluating the density-effect correction is to use semi-empirical dielectric-response functions in Eqs (6.1) and (6.2). This has recently been done by Inokuti and Smith (1982) for aluminum, and by Ashley (1982b) for water. Reliable and complete dielectric-response functions for other materials are scarce, and in general one must rely on Sternheimer's method, which -- although more approximate -- will be shown below to give results in very good agreement with those of Inokuti and Smith and of Ashley.

6.2. Sternheimer's model. As discussed by Fano (1963), Sternheimer's model can be related to Eqs (6.1) and (6.2) as follows. In Eq (6.1) one sets ϵ = 1/(1 - α_L), where

$$\alpha_{L}(\omega) = (\hbar \omega_{p})^{2} \sum_{n=1}^{N} \frac{f_{nL}}{E_{nL} - (\hbar \omega)^{2} - i\gamma_{L} \hbar \omega}$$
(6.4)

is the longitudinal polarizability expressed in terms of the energy levels E_{nL} of single atoms and the corresponding oscillator strengths $\text{f}_{nL}.$ In the limit in which the damping constant γ_L \rightarrow 0, the resulting expression for δ becomes

$$\delta = \sum_{n=1}^{N} f_{nL} \ln[1 + (\hbar l)^{2}/E_{nL}^{2}] - (l/\omega_{p})^{2} (1 - \beta^{2}) . \qquad (6.5)$$

In Eq (6.2), one sets ϵ = 1 + α_T , where α_T is the transverse polarizability and is given by an expression similar to Eq (6.4) but with different energy levels E_{nT} , oscillator strengths f_{nT} , and damping term γ_T . In the limit $\gamma_T \rightarrow 0$, Eq (6.2) is then transformed into

$$\alpha_{T}(i\ell) = (\hbar \omega_{p})^{2} \sum_{n=1}^{N} \frac{f_{nT}}{E_{nT}^{2} + (\hbar \ell)^{2}} = \frac{1}{\beta^{2}} - 1$$
 (6.6)

The following approximations are now made:

- a. The distinction between the longitudinal and transverse oscillator strengths \mathbf{f}_{nL} and \mathbf{f}_{nT} is disregarded, and both are approximated by \mathbf{f}_n , the fraction of electrons in the n'th atomic shell.
 - b. The energy levels are assumed to be

$$E_{nT} = \mu_{St} E_n , \qquad (6.7)$$

$$E_{nL} = \left[\mu_{St}^{2} E_{n}^{2} + f_{n}(\hbar \omega_{p})^{2}\right]^{\frac{1}{2}} , \qquad (6.8)$$

where the E_n 's are atomic energy levels. The quantity μ_{St} is the <u>Sternheimer factor</u> and is given a value such that the equation

$$\sum_{n=1}^{N} f_n \ln \left[\mu_{St}^2 E_n^2 + f_n (\hbar \omega_p)^2 \right]^{\frac{1}{2}} = \ln I$$
 (6.9)

is satisfied. The dielectric model is then consistent with the mean excitation energy I (as known from experimental data), and the density-effect correction δ calculated according to Eq (6.5) goes into the correct asymptotic limit, Eq (6.3), for very high particle energies. The values of $\mu_{\mbox{St}}$ typically range from 1.5 to 2.5.

For conductors, the electrons in the outermost shell, n = N, are considered to be conduction electrons, and the corresponding binding energy E_N is set equal to zero. This has the consequence that Eq (6.6) has a solution for arbitrarily small values of β . For insulators, on the other hand, Eq (6.6) has a solution only for velocities greater than β_O given by

$$\frac{1}{\beta_0^2} - 1 = \sum_{n=1}^{N} \frac{f_n}{\mu_{St}^2 E_n^2 / (\hbar \omega_p)^2} . \qquad (6.10)$$

As a final refinement, which makes little difference except for liquid H₂, a Lorentz-Lorenz correction is applied (Sternheimer, 1952), through the replacement of $f_n(\hbar\omega_p)^2$ in Eqs (6.8) and (6.9) by λ_n $f_n(\hbar\omega_p)^2$, where λ_N = 1 for conductors, and λ_n = 2/3 in all other cases.

6.3 <u>Numerical evaluation</u>. The evaluation is done by first solving Eq (6.9) for μ_{St} , then Eq (6.6) for ℓ as a function of β , and substituting the value of ℓ into Eq (6.5). Such calculations using I-values current at the time, were carried

out by Sternheimer (1952, 1956, 1966, 1967) and Sternheimer and Peierls (1971) for many materials. The results were reported in terms of a useful approximation formula for δ . In the present work we have systematically re-evaluated δ using the I-values adopted in the present report and atomic binding energies from Appendix 1 of Carlson (1975). The number of conduction electrons for metals and semi-conductors was taken to be equal to the lowest valence number. Compounds have been treated as insulators. For compounds, the sums with respect to n in the various equations were extended to include all atoms in the compound. Departures from simple Bragg additivity were taken into account by using the appropriate density and mean excitation energy for the compound. We have used the direct numerical output of the calculations rather than an analytical approximation formula when computing the stopping-power tables. These values of δ are listed in the Main Tables.

Values of δ for a few media, calculated by the method of Sternheimer described above, are shown in Fig. 6.1. When expressed as functions of the particle kinetic energy in units of the rest mass, these results are applicable to any charged particle. Table 6.1 gives illustrative results regarding the percent reduction of the electron collision stopping power due to the density effect.

Figure 6.2 shows the difference between the δ -value of Inokuti and Smith (1982) and the corresponding Sternheimer value for aluminum, and Fig. 6.3 shows the difference between the δ -value of Ashley (1982b) and the corresponding Sternheimer value for water. In both cases the differences are positive at some energies and negative at others. For aluminum the absolute value of the difference is always smaller than ~ 0.04 , and for water it is always smaller than ~ 0.09 . Figure 6.4 shows the percent amount by which the electron collision stopping power is changed when the more exact density-effect corrections of Inokuti and Smith or of Ashley are replaced by Sternheimer's corrections. It can be seen that the absolute percent difference is smaller than 0.2 percent for aluminum and smaller than 0.5 percent for water. The very satisfactory agreement in the cases of aluminum and water gives one confidence that Sternheimer's results will be accurate in general. 14

6.4. Complications for inhomogeneous media. The theory for the density effect is designed for media that are homogeneous and isotropic. In some cases of practical interest these conditions are not met. An important case is that of graphite, a porous material consisting of somewhat loosely packed graphite crystallites arranged in a layered structure with a dielectric-response function that is a direction-dependent tensor (Raether, 1980). The crystallite density is 2.265 g/cm², whereas the bulk density may range from 1.5 to 1.9 g/cm², depending on the method by which the graphite is manufactured. Typical densities for reactor-grade graphite are 1.7 to 1.8 g/cm³. The porosity structure is complicated (Gmelin, 1968), including "micropores" ranging in diameter from 2 to 60 nanometers, and "macropores" ranging in diameter up to 20 micrometers. It is not clear what density value should be used in a simple theory which neglects all these complications. In the stopping-power tables we give results for densities of 1.7 and 2.265 g/cm³. At energies above a few MeV, the use of the higher density would decrease the collision stopping power by more than one percent.

Another case of interest is photographic emulsion. The standard emulsion considered here consists of low-Z gel (17.4% by weight, average density 1.29 g/cm³) and silver halides (82.6% by weight, average density 6.47 g/cm³). Two extreme approaches can be considered: (a) The density effect can be calculated as if the emulsion were homogeneous, with the bulk density 3.185 g/cm³; this is what was done to produce the tabulated results. (b) The emulsion can be considered to be inhomogeneous, and the density effect can be calculated separately for the two components, gel and silver halides, with the proper density for each. The use of method (b) instead of (a) would lower the collision stopping power by 0.2% at 1 MeV, 0.4% at 10 MeV, 0.8% at 100 MeV and 0.7% at 1000 MeV.

Similar considerations can also be applied to A-150 tissue-equivalent plastic which consists of an inhomogeneous mixture of polyethylene, nylon, carbon black and calcium fluoride (Smathers $et\ al.$, 1977). In this case the use of method (b) instead of (a) would lower the collision stopping power by no more than 0.1%.

¹³Updated parameters for Sternheimer's approximation formula will be given in a forthcoming paper (Sternheimer, Seltzer, and Berger, 1982).

¹⁴The evidence from high-energy charged-particle penetration data also confirms the accuracy of Sternheimer's method (see, e.g., Crispin and Fowler, 1970).

7. RESTRICTED COLLISION STOPPING POWER

In radiation dosimetry and in radiobiological modeling (track-structure theory) one may want to know the fraction of the energy lost by an electron that is absorbed "locally" in the medium in the vicinity of the electron track. To obtain this fraction accurately one must carry out transport calculations that take into account (a) the initial energy spectrum and angular distribution of the secondary electrons set in motion in ionization events, and (b) the penetration, diffusion and slowing down of the secondary electrons. A simple, approximate answer can be obtained in terms of the fraction $L(T,\Delta)/S_{\text{COl}}(T)$, where $L(T,\Delta)$ is the restricted collision stopping power. (The symbol $L(T,\Delta)$ used here should not be confused with the stopping number L discussed in Sections 2 and 3.) This quantity is defined as the mean energy loss per unit pathlength due to collisions involving energy transfers W, from the incident electron to the medium, that are smaller than some chosen cut-off Δ . The kinetic energy of the secondary electrons from ionization events is then also smaller than Δ , and the range for an electron of energy Δ roughly specifies the region around the track of the incident electron within which energy is absorbed "locally". The significance of the concept of restricted stopping power, and possible extensions and generalizations, are discussed in an ICRU report on linear energy transfer (ICRU, 1970).

An application of restricted collision stopping powers occurs in the Bragg-Gray theory of cavity ionization as formulated by Spencer and Attix (1955), in which the cut-off energy Δ serves to specify the dimension of the cavity. Another application occurs in the Monte Carlo simulation of electron tracks. In such a calculation, energy-loss straggling can be taken into account approximately, with reduced computational effort, by limiting random sampling to large energy transfers, which are rare, and by treating the numerous small energy transfers in the continuous-slowing-down approximation with use of a restricted collision stopping power.

In order to obtain an expression for the restricted collision stopping power, one must replace the maximum energy transfer W_{m} in the integral in Eq (2.4) by Δ . The results for electrons and positrons (indicated by superscripts - and +) are:

$$\frac{1}{\rho} L^{\pm}(T, \Delta) = \frac{2\pi N_a r_e^2 mc^2}{\beta^2} \frac{Z}{A} \left[\ln(T/I)^2 + \ln(1 + \tau/2) + G^{\pm}(\tau, \eta) - \delta \right] . \tag{7.1}$$

Equation (7.1) is similar to Eq (2.16), and the various symbols have the same meaning, except that the functions $F^{\pm}(\tau)$ are replaced by $G^{\pm}(\tau,\eta)$. For electrons,

$$G^{-}(\tau,\eta) = -1-\beta^{2} + \ln[4(1-\eta)\eta] + (1-\eta)^{-1}$$

$$+ (1-\beta^{2})[\tau^{2}\eta^{2}/2 + (2\tau+1) \ln(1-\eta)]$$
(7.2)

where $\eta = \Delta/T$ is the fractional energy cut-off. For positrons

$$G^{+}(\tau,\eta) = \ln 4\eta - \beta^{2}[1 + (2 - u^{2}) \eta - (3 + u^{2})(u\tau/2) \eta^{2} + (1 + u\tau)(u^{2}\tau^{2}/3) \eta^{3} - (u^{3}\tau^{3}/4) \eta^{4}], \qquad (7.3)$$

where $u = (\tau + 2)^{-1}$. We note that $G^{-}(\tau, 1/2) = F^{-}(\tau)$ and that $G^{+}(\tau, 1) = F^{+}(\tau)$, so that $L^{-}(T, T/2) = S_{col}^{-}(T)$ and $L^{+}(T, T) = S_{col}^{+}(T)$.

A condition for the validity of Eq (7.1) is that the cut-off energy Δ be larger than the binding energies of the atomic electrons in the target material. For the K- and L-shell electrons of high-Z materials this condition is difficult to satisfy for Δ -values of practical interest. Tables 7.1 and 7.2 give the ratios of the restricted to the total collision stopping power for electrons and positrons in seven substances, for cut-off energies $\Delta = 100$, 10 and 1 keV. The results shown are limited to cases for which Δ is larger than the L-shell binding energy and at least

comparable with the K-shell binding energy. The results for Pb for Δ = 100 keV, for Ag and Cu for Δ = 10 keV, and for Al for Δ = 1 keV have been included for completeness, but may be inaccurate.

Excluded from the definition of restricted stopping power used above is the reduction of the collision stopping power due to the escape of Auger electrons, which may occur subsequent to inner-shell ionization. For water, graphite, and air, the results in Tables 7.1 and 7.2 are not affected by this possibility, because the K-shell binding energies of these materials are $\sim 1/2$ keV. However, for these materials it would not be accurate to use Eq (7.1) with a cut-off energy as low as 100 eV, as is sometimes done in radiobiological calculations.

8. ELECTRON COLLISION STOPPING POWERS AT LOW ENERGIES

There is an energy below which the concept of an electron collision stopping power loses its usefulness. The lower the electron kinetic energy, the larger is the fraction of the energy lost, on the average, in a single inelastic collision. For example, it can be shown (Paretzke and Berger, 1978) that the average fractional energy loss in a collision with a water molecule in vapor is 0.5 percent at 10 keV, 3.6 percent at 1 keV, 6.4 percent at 0.5 keV, and 22 percent at 0.1 keV. The continuous-slowing-down approximation, i.e., the use of a stopping power to describe the gradual energy loss along the electron track, ceases to be meaningful at energies below several hundred eV. The evaluations of low-energy electron stopping powers found in the literature have often extended down to lower energies (typically 20 eV), but such results have significance mainly as a summary description of low-energy energy-loss cross sections.

- Calculations for gases. There have been considerable advances in recent years in the knowledge of electron-impact ionization and excitation cross sections at energies from 10 keV down to a few eV. The need for such data has arisen in two contexts: in the evaluation of semi-empirical oscillator-strength distributions such as those referred to in Table 3.1, and in the calculation of electron energy degradation spectra which take into account the slowing down of electrons and the buildup of successive generations of secondary electrons from ionization events. The often incomplete and sparse experimental data have been supplemented by estimated cross sections obtained by theoretical modeling, the adopted cross sections have been subjected to consistency checks in the form of sum rules, and comprehensive sets of cross sections have been assembled for a number of gases. This approach, and the results obtained, have been described by Green and Miller (1974), Fano (1975), and Inokuti, Douthat, and Rau (1976). For atmospheric gases, cross sections have been given by Jackman et αl . (1977) where references to earlier work of Green and co-workers can also be found. From knowledge of the total cross sections for ionization and excitation, and the ionization cross section differential in the energy transferred to secondary electrons, one can readily construct collision stopping powers according to Eq (2.1).
- 8.2. Calculations for solids and liquids. Almost all of these calculations have been based on the approach of Lindhard (1954), Fano (1956), and Ritchie (1959). The stopping properties of the medium are expressed in terms of a complex-valued dielectric-response function ϵ (K, ω) that depends on the momentum transfer \hbar K and energy transfer $\hbar\omega$. The collision stopping power is proportional to a double integral, with respect to K and ω , over the quantity (ω/K) Im[-1/ ϵ (K, ω)].

In the so-called statistical model, the dielectric-response function is calculated according to the local-plasma approximation (free electron gas model) of Lindhard (1954), which has already been mentioned in Section 3 in connection with the evaluation of the mean excitation energy. The dielectric-response function has been calculated by Ashley, Ritchie and collaborators using a variety of models, adapted to conductors, semi-conductors and insulators, that take into account single-electron excitations as well as collective excitations (plasmons). Whenever possible, experimental optical data were used to obtain the dielectric-response function in the limit of zero momentum transfer, ϵ (0, ω). It was still necessary, however, to obtain ϵ (K, ω) for non-zero K through theoretical extrapolation, guided by the requirement that very large energy transfers should be described by the Rutherford cross section, or by the Møller cross section when exchange is taken into account. Usually the

 $^{^{15}\}epsilon$ (0, ω) is sufficient for the calculation of the mean excitation energy I according to Eq (3.6).

contribution to the stopping power from inner-shell electrons has been evaluated with the use of theoretical atomic generalized oscillator strengths, which is justified on the basis that the wave functions of the inner-shell electrons are insensitive to the state of aggregation of the medium.

Tables of electron collision stopping powers have been given by Ashley et al. (1975) for Al and Al₂O₃; Ashley et al. (1976a) and Tung et al. (1979) for Al, Si, Ni, Cu, Ag and Au; Ashley et al. (1976b) for Ge and GaAs; Tung et al. (1976) for Si and SiO₂; Ashley et al. (1978) for polystyrene; Ritchie et al. (1978) for water; Ashley et al. (1979) for Al; Painter et al. (1980) for polyethylene; Ashley (1980) for various organic solids, Ashley and Anderson (1981) for SiO₂; and Ashley (1982a) for water. Other calculations based on the use of Lindhard's statistical model have been reported by Sugiyama (1976).

8.3. Comparison of stopping powers. The case of water is especially interesting because comparisons can be made between stopping powers from different authors for water vapor as well as liquid water. In the left-hand panel of Fig. 8.1, for water vapor, curve 1 is from Paretzke and Berger (1978), 16 curve 2 is from Green, 17 and curve 3 is from the Bethe theory, Eq (2.16), with I = 71.6 eV. Curves 1 and 2 both lie below the Bethe curve 3, but the differences are smaller than 10% down to \sim 400 eV. Curves 1 and 2 agree rather closely down to \sim 150 eV, but diverge at lower energies. The main reason for this divergence lies with the total ionization cross section which Green took from the experiment of Schutten et al. (1966) whereas Berger relied also on those of Märk and Egger (1976) below 150 eV.

In the right panel in Fig. 8.1, for liquid water, curve 4 is from Kutcher and Green (1976), curve 5 is from Ritchie et al. (1978), curve 6 from Ashley (1982a), and curve 7 is from the Bethe theory with I = 75 eV. The calculations leading to curves 4, 5, and 6 all take into account collective excitations (plasmons) and use the experimental optical data of Heller et al. (1974) on uv absorption in liquid water. Ashley constructed the dielectric function for liquid water from an insulator model fixed by the available optical data, and treated ionization from the K shell by theoretical generalized oscillator strengths. As explained by Ashley, the main difference between his calculation and the earlier work of Ritchie et al. consists of an improved treatment of exchange effects, which results in a lowering of the peak of the stopping-power curve at ~ 120 eV by 25 percent. The formalism for obtaining the collision stopping power in terms of the dielectric response functions is a Bornapproximation theory. The uncertainties resulting from the use of this approximation could easily be 10 percent at 100 eV and even greater at lower energies. The peak of the stopping-power curve 6 of Ashley is 13 percent above the corresponding value for water vapor (curve 1). It is not clear whether this difference is significant, because it lies within the combined limits of uncertainties for the liquid and vapor results.

Figure 8.2 compares collision stopping powers in H_2 gas calculated by Green 17 and by Spencer and Pal (1978). Also shown are curves obtained with the Bethe formula for H_2 gas (I = 19.2 eV) and for liquid hydrogen (I = 21.8 eV). The results of Green and of Spencer and Pal are in good agreement down to ~ 30 eV; both of these results deviate significantly from the Bethe theory only below ~ 200 eV. Also shown in Fig. 8.2 is a stopping-power curve for air which was constructed from the results of Green 17 for N_2 , O_2 , Ar, and CO_2 . Again there is good agreement with the Bethe formula down to 200 eV. An earlier stopping-power curve for air, calculated by Green and Peterson (1968), coincides with curve 5 in Fig. 8.2 down to 1 keV, and is 10 percent lower at 0.1 keV. Using the Green-Peterson stopping powers and taking into account multiple elastic-scattering deflections, depth-dose curves have been calculated for an air medium irradiated by 12-keV and 5-keV electrons (Berger et $\alpha 1$., 1970). These results are in good agreement with measurements in air by Grün (1957) and in nitrogen by Cohn and Caledonia (1970).

¹⁶Curve 1 is the result of a calculation by Berger given in Fig. 4 of Paretzke and Berger (1978). That figure also shows stopping-power curves obtained independently by Paretzke, and by Olivero, Stagat and Green (1972). These curves are all quite similar to curves 1 and 2 in Fig. 8.2 at energies down to ~ 150 eV.

¹⁷Green has calculated (and communicated to us in January 1978) collision stopping powers from 15 keV down to a few eV, based on the cross sections given in Jackman $et\ al.$ (1977) and on cross sections for other gases compiled by his group. In the case of water vapor, Green's results are an updated version of stopping powers (energy-loss functions) given earlier by Olivero, Stagat, and Green (1972).

Figure 8.3 shows stopping-power results of Ashley (1982c) for polyethylene, and results of Ashley $et\ al.$ (1978) for polystyrene obtained from dielectric-response functions constructed with the use of optical data for the valence electrons. Similar results for silicon dioxide, from Ashley and Anderson (1981), are shown in Fig. 8.4.

Figure 8.5 compares stopping-power curves for aluminum and gold from the Bethe theory with calculations of Ashley $et\ al.$ (1976a) obtained with a statistical model of the dielectric-response function, without differentiating between inner- and outer-shell electrons. Also shown is a stopping-power curve for aluminum calculated by Ashley $et\ al.$ (1979) with further refinements. These refinements include the limitation of the dielectric-response function modeling to conduction electrons, consideration of damping and core polarizability, and the use of atomic generalized oscillator strengths from Hartree-Slater wave functions for inner-shell electrons. It can be seen that the differences between the simple and refined calculations for aluminum are not very great.

Other comparisons and analyses of low-energy stopping-power data can be found in Iskef $et\ al.\ (1980)$, and in Waibel and Grosswendt (1980).

An experimental investigation of electron stopping power in air and collodion 18 was carried out by Cole (1969). For collodion the experiment consisted of determining the foil thicknesses for which the number transmitted was 5 percent of that in the incident beam. For air the experiment consisted of measuring characteristic depths such that only 1 percent of the ionization in air occurred at greater depths. Cole considered these foil thicknesses and characteristic depths as "ranges". With this somewhat arbitrary definition of ranges he fitted his data for collodion and air by a single polynomial curve of range vs. incident electron energy (with a stated accuracy of 10 percent) and obtained the stopping power by differentiating this curve with respect to energy.

Cole's results suggest that, in the case of air and collodion, gas-solid stopping-power differences, if any, are small. This is consistent with the later findings of Schou (1979) and Sørensen and Schou (1978), based on the analysis of their electron penetration measurements in liquid nitrogen at 1 to 3 keV, that the stopping powers in liquid are at most a few percent higher than the stopping powers in gas.

The results of Cole are compared in Table 8.1 with the stopping powers for cellulose nitrate from the Bethe theory, and for air from the Bethe theory and from the calculation of Green. There is close agreement between experimental and theoretical results down to ~ 400 eV. Below this energy the experimental values are higher, by 19 percent at 100 eV and much more at lower energies.

The significance of Cole's results is obscured by two uncertainties. First, a considerable error must have resulted from the numerical differentiation of his range-energy curve, especially at low energies. Second, his analysis neglected the effect of multiple-scattering angular deflections which make the pathlength traveled by electrons greater than the depth of penetration. Thus multiple scattering would tend to make the apparent stopping power determined by Cole larger than the true stopping power, by an amount that is expected to increase as the electron energy decreases.

The comparisons in Figs. 8.1 to 8.5 indicate that the differences between the stopping-power values from the Bethe theory and those from more elaborate low-energy treatments are often rather small, even at energies where the conditions of applicability of the Bethe theory are no longer satisfied. We therefore give in Table 8.2 a set of stopping-power values for selected materials covering the energy region from 10 keV to 1 keV. We estimate that at 1 keV the departures of the correct stopping powers from the tabulated results will be no greater than \sim (I/7) percent, where I is the mean excitation energy in eV.

¹⁸Collodion is a plastic prepared as a suspension of cellulose nitrate in ether and alcohol. The estimated mean excitation energy of cellulose nitrate is 87.0 eV, a value rather close to that for air, 85.7 eV.

9. RADIATIVE STOPPING POWER

The <u>mass radiative</u> <u>stopping power</u> can be expressed in terms of bremsstrahlung cross sections as

$$-\frac{1}{\rho}\left(\frac{dE}{dx}\right)_{rad} = \frac{1}{\rho} S_{rad}(T) =$$

$$= \frac{N_a}{A} \left[\int_0^T k \frac{d\sigma_n}{dk} dk + Z \int_0^{T'} k \frac{d\sigma_e}{dk} dk \right] , \qquad (9.1)$$

where $d\sigma_n/dk$ is the differential cross section for the emission of a photon of energy k due to the interaction of the electron with the screened Coulomb field of the atomic nucleus, and $d\sigma_e/dk$ is the corresponding cross section due to the Coulomb interaction with one of the atomic electrons. The upper limit of the energy of the photons that can be emitted in electron-electron interactions is

$$T' = mc^2 T[T + 2mc^2 - \beta(T + mc^2)]^{-1}$$
 (9.2)

It is convenient to introduce dimensionless, scaled, radiative energy-loss cross sections

$$\phi_{\text{rad}}^{(n)} = (\alpha \ r_e^2 \ Z^2)^{-1} \int_0^T (k/E) \frac{d\sigma_n}{dk} \ dk$$
 , (9.3)

and

$$\phi_{\text{rad}}^{(e)} = (\alpha r_e^2)^{-1} \int_0^{T'} (k/E) \frac{d\sigma_e}{dk} dk , \qquad (9.4)$$

where α is the fine-structure constant, and E = T + mc² is the total energy of the electron. In terms of these quantities the radiative stopping power can be written as

$$\frac{1}{\rho} S_{rad}(T) = \frac{N_a}{A} \alpha r_e^2 E Z^2 \phi_{rad}^{(n)}(T) \left[1 + (1/Z) \phi_{rad}^{(e)}(T) / \phi_{rad}^{(n)}(T) \right] . \tag{9.5}$$

The ratio $\phi_{rad}^{(e)}/\phi_{rad}^{(n)}$ has in previous work usually been assumed to be unity. As will be shown below, this ratio is actually slightly higher than 1 at high energies, falls to \sim 0.5 at 700 keV, and tends to vanish at low energies. 19

For compounds we assume that additivity is a good approximation, and set

$$\frac{1}{\rho} S_{rad}(T) = \sum_{j} w_{j} \frac{1}{\rho_{j}} S_{rad,j}(T) , \qquad (9.6)$$

where w_j is the fraction by weight of the j'th constituent.

¹⁹According to Joseph and Rohrlich (1958), the vanishing at very low energies is due to the lack of an electric dipole moment for the electron-electron system.

9.1. Electron-nucleus bremsstrahlung

9.1.1. High-energy region. For $T \geq 50$ MeV, the bremsstrahlung cross section was evaluated from the analytical expressions of Davies, Bethe, and Maximon (1954), and Olsen (1955). This formula corrects the Bethe (1934) Born-approximation result through the inclusion of a Coulomb correction f(Z) derived with the use of Sommerfeld-Maue wave functions. The formula is based on the high-energy approximation, i.e., the assumption that the energies of the electron both before and after the bremsstrahlung event are large compared to the electron rest energy. The cross section has the form

$$k \frac{d\sigma_{n}}{dk} = 4\alpha r_{e}^{2} Z^{2} \sum_{i=1}^{2} g_{i}(E,k) \left[e_{i} + \int_{q_{o}}^{1} h_{i}(q) [1-F(q,Z)]^{2} dq - f(Z) \right] , \qquad (9.7)$$

where q is the momentum transfer and

$$q_0 = mc^2 k/[2E(E - k)]$$
 (9.8)

the minimum momentum transfer (with both in units of mc). The Coulomb correction is given by

$$f(Z) = (\alpha Z)^2 \sum_{n=1}^{\infty} [n(n^2 + \alpha^2 Z^2)]^{-1}$$
 (9.9)

The other quantities in Eq (9.7) are defined as follows:

$$g_{1} = 1 + (E - k)^{2}/E^{2}$$

$$g_{2} = -2(E - k)/3E$$

$$e_{1} = 1$$

$$e_{2} = 5/6$$

$$h_{1} = (q - q_{0})^{2}/q^{3}$$

$$h_{2} = q^{3} - 6q_{0}^{2} q ln(q/q_{0})$$

$$+ 3q_{0}^{2} q - 4q_{0}^{3}/q^{4}$$

$$(9.10)$$

F(q,Z) is the atomic form factor, normalized such that F(0,Z) = 1. For $1 \le Z \le 6$ the atomic form factor was taken from the non-relativistic calculations of Hubbell et al. (1975) which include electron-correlation effects; for Z > 6 it was taken from the work of Hubbell and Øverbø (1979) which is relativistic but omits correlation effects.

9.1.2. Low-energy region. For $T \le 2$ MeV, use was made of work by Pratt et~al. (1977) which constitutes a significant advance over the Born-approximation theory of Bethe and Heitler. In this work, the bremsstrahlung process is treated as a single-electron transition in a self-consistent screened central potential. Electron wave functions are obtained in partial wave-function expansions through the numerical solution of the Dirac equation, and the matrix elements for the bremsstrahlung cross section are evaluated numerically from the wave functions. The required amount of computation is very large, especially in view of the large number of partial waves which have to be included, so that results have been obtained so far only for a limited number of materials and energies. The theory underlying the computations and initial numerical results were given by Tseng and Pratt (1971). Further numerical results for electrons with energies from 1 to 500 keV were published by Lee et~al. (1976), and for 1- and 2-MeV electrons by Kissel and MacCallum (1977). An extensive set of data for all elements $2 \le Z \le 92$, including bremsstrahlung cross sections differential in photon energy as well as the total energy-weighted cross section was prepared by Pratt et~al. (1977) through elaborate interpolation procedures. A few

exploratory calculations, for 5- and 10-MeV electrons in Al and U, have recently been published by Tseng and Pratt (1979) which involve the calculation of selected terms in the partial wave expansions and interpolation between them. We have used the tables of Pratt et al. (1977) to obtain $\phi_{\rm rad}^{(n)}$ and have derived values for Z = 1 and for Z = 93 to 100 by extrapolation.

9.1.3. Intermediate energy region. For T between 2 and 50 MeV, the scaled radiative energy-loss cross section has only a mild dependence on Z and on the electron energy T. Being anchored down firmly below 2 MeV and above 50 MeV, the curve of $\phi_{\rm rad}^{\rm int}({\rm T})$ vs. T in the gap region can readily be obtained by interpolation. We have done this using a cubic-spline least-squares algorithm of Powell (1967). Typical results of this interpolation for Z = 1, 6, 13, 29, 47 and 79 are shown in Fig. 9.1. The results of the interpolation have been found to be quite insensitive to the choice of the upper cut-off energy for the gap region. A shift from 50 to 100 MeV would change the integrated cross section in the gap region by less than 1 percent, and a shift down to 20 MeV would change it less than 3 percent.

In four cases (A ℓ and U at 5 and 10 MeV) the radiative energy-loss cross sections can also be derived directly from the differential bremsstrahlung cross sections of Tseng and Pratt (1979), and are found to agree to within 1-2 percent with our interpolated results.

9.2. Electron-electron bremsstrahlung

9.2.1. <u>High-energy region</u>. For $T \geq 50$ MeV, a combination of three cross-section formulas was used. The first is the Bethe-Heitler (1934) Born-approximation result which disregards screening and was derived in the high-energy approximation:

$$k \left(\frac{d\sigma_e}{dk}\right)_{RH} = 4\alpha r_e^2 \left[g_1(E,k) + g_2(E,k)\right] \left[\ln(1/q_0) - 1/2\right] ,$$
 (9.11)

where g_1 , g_2 , and q_0 have the same meaning as in Eqs (9.7) to (9.10). The second formula used is that of Wheeler and Lamb (1939), also based on the first Born and high-energy approximations, which treats screening with use of the incoherent scattering function S(q,Z):

$$k \left(\frac{d\sigma_{e}}{dk}\right)_{WL} = 4\alpha r_{e}^{2} \sum_{i=1}^{2} g_{i}(E,k) \left[e_{i} + \int_{q_{o}}^{1} h_{i}(q) S(q,Z) dq\right] \qquad (9.12)$$

It can be seen that this equation can be obtained from Eq (9.7) by setting Z = 1 and replacing $[1 - F(q,Z)]^2$ by S(q,Z). In Eq (9.12), S(q,Z) is normalized such that $S(\infty,Z) = 1$. We have taken the incoherent scattering function from Hubbell et al. (1975). The third cross section used is one derived by Haug (1975) in lowest order perturbation theory, without consideration of screening effects, but treating recoil and exchange effects accurately. Haug also considered the Coulomb correction (departure from Born approximation) but found it unimportant at high energies. Haug's calculation is expressed in complicated formulas (his Eqs 2.15, Al and A2) which are too lengthy to be reproduced here. We have used numerical values given in Haug's paper.

Taking Haug's cross section as initial approximation, we have assumed that the electron-electron differential bremsstrahlung cross section is

$$\frac{d\sigma_{e}}{dk} = \left(\frac{d\sigma_{e}}{dk}\right)_{HG} + \left[\left(\frac{d\sigma_{e}}{dk}\right)_{WL} - \left(\frac{d\sigma_{e}}{dk}\right)_{BH}\right] , \qquad (9.13)$$

where the first term incorporates an exchange correction and the terms in square brackets constitute a screening correction. This treatment can be justified on the basis that the two corrections are almost independent of each other, with exchange affecting mainly large momentum transfers and screening mainly small momentum transfers.

9.2.2. Low-energy region. For $T \leq 2$ MeV, we have assumed that

$$\frac{\phi_{\text{rad}}^{(e)}}{\phi_{\text{rad}}^{(n)}} = \int_{0}^{T'} dk \ k \left(\frac{d\sigma_{e}}{dk}\right)_{\text{HG}} / \int_{0}^{T} dk \ f_{E} \ k \left(\frac{d\sigma_{e}}{dk}\right)_{\text{BHSR}}, \qquad (9.14)$$

where $(d\sigma_e/dk)_{HG}$ is again Haug's cross section with exchange and no screening, and where $(d\sigma_e/dk)_{BHSR}$ is the cross section without screening derived by Bethe and Heitler (1934), Sauter (1934), and Racah (1934) in the Born approximation but without invoking the high-energy approximation. The so-called <u>Elwert factor</u>

$$f_F = \beta[1 - \exp(-2\pi\alpha Z/\beta)] / \beta'[1 - \exp(-2\pi\alpha Z/\beta')]$$
, (9.15)

which depends on the electron velocities β and β ' before and after the collision, is an approximate Coulomb correction due to Elwert (1939). For the electron-electron bremsstrahlung cross section in the numerator of Eq (9.14) a Coulomb correction was not considered necessary. Equation (9.14) is valid to the extent that screening does not change the ratio of radiative energy-loss cross sections significantly.

9.2.3. Intermediate energy region. With $\phi^{(e)}_{rad}$ determined for $T \leq 2$ MeV and for $T \geq 50$ MeV, the quantity $\phi^{(n)}_{rad}(T) \left[1 + (1/2)\phi^{(e)}_{rad}(T)/\phi^{(n)}_{rad}(T)\right]$ was obtained in the gap region, 2 to 50 MeV, by the same interpolation procedure previously used in Section 9.1.3 for $\phi^{(n)}_{rad}(T)$. This completed the evaluation of $\phi^{(e)}_{rad}(T)$ and of the total radiative stopping power according to Eq (9.5).

The ratio $\phi_{rad}^{(e)}(T)/\phi_{rad}^{(n)}(T)$ is shown in Fig. 9.2 for hydrogen, carbon and gold as a function of electron energy.

9.3. Accuracy and comparison with experiments. Pratt et al. (1977) estimate the uncertainty of their differential bremsstrahlung cross sections to be no greater than 10 percent. It seems plausible that the radiative stopping power, obtained as an integral over these cross sections, has a smaller uncertainty, perhaps 5 percent. Comparisons are made in Fig. 9.3 between calculated radiative stopping powers in five materials at energies up to 2.5 MeV, and corresponding results derived from bremsstrahlung measurements. There is good agreement, within the limits of experimental error, with the results of Aiginger (1966), Rester and Dance²⁰ (1967) and Rester and Edmonson (1972); the theoretical results are lower than those from the earlier measurements of Motz (1955) and Motz and Placious (1958).²¹

The high-energy theory of Davies, Bethe, and Maximon (1954) and Olsen (1955) provides the cross section not only for bremsstrahlung but also for the closely related process of pair production. Whereas there is a scarcity of experimental bremsstrahlung measurements above 2.5 MeV, there are sufficient data to assess the accuracy of the pair production cross section. According to Hubbell $et\ al.\ (1980)$, the theoretical pair production cross sections above ~ 50 MeV are confirmed by experiments to within 1-2 percent.

In the transition region between 2 MeV and 50 MeV we expect our interpolated results to have an accuracy of 3-5 percent.

10. RANGES AND RADIATION YIELDS

The ranges and radiation yields given in this report were obtained in the continuous-slowing-down approximation (c.s.d.a.). In this approximation energy-loss fluctuations are neglected, and electrons are assumed to lose energy continuously along their track, with a mean energy loss per unit pathlength given by the stopping power. The c.s.d.a. range (in units of g cm $^{-2}$) is evaluated from the expression

²⁰Also private communication from D. Rester (1967).

²¹Rester and Edmonson (1972) suggest that an incomplete background correction in the experiment of Motz accounts for this discrepancy.

$$r_o(T_o \to T_f) = \rho \int_{T_f}^{T_o} [S_{col}(T) + S_{rad}(T)]^{-1} dT$$
, (10.1)

and represents the average pathlength 22 traveled by an electron as it slows down from an initial energy T_0 to a final energy T_f . The choice of T_f should, in principle, be adapted to the purpose for which the range is to be used. For example, if one wanted to know how far electrons can travel while they are capable of ionizing atoms of the medium, it would be appropriate to set T_f equal to the lowest atomic ionization potential.

The stopping powers needed for the evaluation of r_0 from Eq (10.1) are available from the Bethe theory only down to some intermediate energy T_i , and the part of the integral from $T=T_i$ to T_f must be obtained by an approximate estimate. Fortunately this residual range is relatively small so that a simple approximation is sufficient. We have followed Nelms (1956) in assuming that the integrand $[S_{col}(T) + S_{rad}(T)]^{-1}$ is zero at T=0 and can be interpolated linearly to its value at $T=T_i$. The range is then given by

$$r_o(T_o \to T_f) = r_o(T_o \to T_i) + \rho[S_{col}(T_i) + S_{rad}(T_i)]^{-1} \int_{T_f}^{T_i} (T/T_i) dT$$
, (10.2)

where the first term is calculated according to Eq (10.1), and the second term is the residual range. In the range tables we give results obtained with T_i = 1 keV and T_f = 0.

For some materials it is possible to avoid the crude approximation used above for residual ranges below 1 keV, and to rely instead on estimated low-energy stopping powers. We have made such calculations for water vapor, polystyrene, aluminum and gold, using data from Figs. 8.1, 8.3, and 8.5. As shown in Table 10.1, the ranges $r_0\left(T_0\to 0\right)$ from Eq (10.2), for initial energies T_0 = 10 keV, actually are quite close numerically to the more accurate ranges calculated with a final energy $T_f\cong 10$ eV.

The radiation yield (also called bremsstrahlung efficiency) is the fraction of the initial energy $T_{\rm O}$ of an electron that is converted to bremsstrahlung energy as the electron slows down to rest. The c.s.d.a. yield is given by

$$Y(T_o) = \frac{1}{T_o} \int_0^{T_o} [S_{co1}(T) + S_{rad}(T)]^{-1} S_{rad}(T) dT$$
 (10.3)

In the evaluation of this expression one is again faced with the difficulty that neither S_{col} nor S_{rad} is known accurately below an intermediate energy T_i = 1 keV. We have made the assumption that $S_{rad} \left(S_{col} + S_{rad} \right)^{-1}$ is zero at T = 0 and increases linearly to its value at T = T_i .

11. MISCELLANEOUS COMPARISONS

11.1 <u>Positron-electron differences</u>. For the collision stopping power and range, differences arise because of the use of the Bhabha cross section instead of the Møller cross sections for large energy transfers. Table 11.1 shows ratios of positron stopping powers to electron stopping powers, and ratios of positron ranges

 $^{^{22}}$ This is actually only an approximation, but a very close one. For example, we have determined through Monte Carlo transport calculations that in a water medium the actual mean pathlength down to a final energy T_f = 12.6 eV is ~ 1 percent greater than $r_0(T_0 \rightarrow T_f)$ for $T_0 \gtrsim 10$ keV.

to electron ranges, for a representative set of materials.²³ Table 11.2 gives the ratio of the restricted collision stopping power for positrons to that for electrons in water.

In our tabulations, the radiative stopping power for positrons has been assumed to be the same as that for electrons, which is a good approximation at energies above, say, 10 MeV. However, it should be mentioned that exploratory calculations by Feng $et\ al.\ (1981)$, employing the same method as that previously used by them for electrons, indicate significant differences between positrons and electrons in regard to the differential bremsstrahlung cross sections in oxygen and uranium at 500, 50, and 10 keV.

11.2. Comparison of calculated and experimental stopping powers. There is available only a limited amount of experimental data pertaining to the total stopping power (collision plus radiative). Comparisons with measurements by Paul and Reich (1950) at 2.8 and 4.7 MeV and by Ziegler (1958) at 32 MeV are given in Table 11.3. The experimental and calculated results agree, within the limits of experimental uncertainty, at 2.8 and 32 MeV, but not at 4.7 MeV. Table 11.4 presents comparisons with stopping-power ratios (relative to Be and Al) measured by Westermark (1961) and by Hereford (1948). Experimental and theoretical values agree within the limits of experimental uncertainty.

In Figs. 11.1 and 11.2 collision stopping powers measured by Kalil $et\ al.$ (1959) and Ishigure $et\ al.$ (1978) in aluminum and by Ziemer $et\ al.$ (1959) in copper are compared with results from the Bethe theory. These figures show Fano plots, i.e., plots of stopping power vs. energy in a scaled representation in which the Bethe formula gives a straight line. The experimental results of Kalil $et\ al.$ for aluminum between 10 keV and 1 MeV, and those of Ziemer $et\ al.$ for copper between 200 keV and 1 MeV cluster around the theoretical straight lines, but the dispersion of the experimental points is considerable.

11.3. Comparisons with previous calculations. Differences between the stopping powers, ranges, and radiation yields from this report and those from earlier tables by Berger and Seltzer (1964, 1966) and Pages $et\ al.$ (1972) are shown in Table 11.5 for a few materials. Whereas the differences in regard to the collision stopping power amount to only a few percent, the differences in regard to the radiative stopping power and radiation yield are much larger, especially at energies below \sim 1 MeV, due to the change from Bethe-Heitler bremsstrahlung cross sections to the more accurate results of Pratt $et\ al.$ (1977).

²³The positron ranges used to compute the range ratios in Table 11.1 pertain to the case in which the positron slows down to rest before being annihilated. If one included the possibility of positron annihilation in flight, the positron ranges would be slightly decreased. From results given by Heitler (1947) one can conclude that the shortening of the positron range in lead would amount to 1.7 percent at 0.511 MeV, 4.2 percent at 5.11 MeV, 4.0 percent at 51.1 MeV, and 3.1 percent at 511 MeV.

REFERENCES

- Abramowitz, M. and Stegun, I. (1964). <u>Handbook of Mathematical Functions</u>, National Bureau of Standards, Applied Mathematics Series-55.
- Ahlen, S. P. (1980). "Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles," Rev. Mod. Phys. 52, 121.
- Aiginger, H. (1966). "Elektron-Bremsstrahlungs-Wirkungsquerschnitte von 180- und 300-keV Elektronen," Z. f. Phys. 197, 8.
- Andersen, H. H. (1977). <u>Bibliography and Index of Experimental Range and Stopping Power Data</u>, Pergamon Press, New York.
- Andersen, H. H., Bak, J. F., Knudsen, H. and Nielsen, B. R. (1977). "Stopping power of Al, Cu, and Au for MeV hydrogen, helium and lithium ions. Z_1^3 and Z_1 proportional deviations from the Bethe formula," Phys. Rev. A16, 1929.
- Andersen, H. H., Hanke, C. C., Simonsen, H., Sørensen, H. and Vajda, P. (1968). "Stopping power of the elements A = 20 through Z = 30 for 5-12-MeV protons and deuterons," Phys. Rev. 175, 389.
- Andersen, H. H., Hanke, C. C., Sørensen, H. and Vajda, P. (1967). "Stopping power of Be, Al, Cu, Ag, Pt and Au for 5-12-MeV protons and deuterons," Phys. Rev. <u>153</u>, 338.
- Andersen, H. H. and Nielsen, B. R. (1981). "The stopping power of gold in the Bethe region," Nucl. Instr. Meth. 191, 475.
- Andersen, H. H., Simonsen, H. Sørensen, H. and Vajda, P. (1969). "Stopping power of Zr, Gd and Ta for 5-12-MeV protons and deuterons. Further evidence of an oscillatory behavior of the excitation potential," Phys. Rev. <u>186</u>, 372.
- Andersen, H. H. and Ziegler, J. F. (1977). <u>Hydrogen: Stopping Powers and Ranges in All Elements</u>, Pergamon Press, New York.
- Ashley, J. C. (1979). "Mean excitation energy of polystyrene," Phys Rev. <u>B19</u>, 5429.
- Ashley, J. C. (1980). "Inelastic interactions of low-energy electrons with organic solids: Simple formulae for mean free paths and stopping powers," IEEE Trans. Nucl. Sci. Vol. NS-27, 1454.
- Ashley, J. C. (1982a). "Stopping power of liquid water for low-energy electrons," Radiat. Res. 89, 25.
- Ashley, J. C. (1982b). "Density effect in liquid water," Radiat. Res. 89, 32.
- Ashley, J. C. (1982c). "Energy losses and inelastic mean free paths of low-energy electrons in polyethylene," Radiat. Res. 90, 433.
- Ashley, J. C. and Anderson, V. E. (1981). "Interaction of low-energy electrons with silicon dioxide," J. Electron Spectroscopy and Related Phenomena, 24, 127.
- Ashley, J. C., Ritchie, R. H. and Brandt, W. (1972). "Z₁ effect in the stopping power of matter for charged particles," Phys. Rev. <u>B5</u>, 2393.
- Ashley, J. C., Ritchie, R. H. and Brandt, W. (1973). "Z³ dependent stopping power and range contributions," Phys. Rev. <u>A8</u>, 2402.
- Ashley, J. C., Tung, C. J. and Ritchie, R. H. (1975). "Electron interaction cross sections in Al and Al₂O₃; calculations of mean free paths, stopping powers, and electron slowing-down spectra," IEEE Trans. Nucl. Sci. Vol. NS-22, 2533.
- Ashley, J. C., Tung, C. J., Ritchie, R. H. and Anderson, V. E. (1976a). "Calculations of mean free paths and stopping powers of low energy electrons (< 10 keV) in solids using a statistical model," IEEE Trans. Nucl. Sci. Vol. NS-23, 1833.

- Ashley, J. C., Tung, C. J. and Ritchie, R. H. (1976b). "Inverse mean free path, stopping power, csda range and straggling in Ge and GaAs for electrons of energy 10 keV," Rome Air Development Center Report RADC-TR-76-350.
- Ashley, J. C., Tung, C. J. and Ritchie, R. H. (1978). "Inelastic interactions of electrons with polystyrene: calculations of mean free paths, stopping powers, and csda ranges," IEEE Trans. Nucl. Sci. Vol. NS-25, 1566.
- Ashley, J. C., Tung, C. J. and Ritchie, R. H. (1979). "Electron inelastic mean free paths and energy losses in solids, 1. Aluminum metal," Surface Sci. 81 409.
- Bader, M., Pixley, R. E., Moser, F. J. and Whaling, W. (1956). "Stopping cross sections of solids for protons, 50-600 keV," Phys. Rev. <u>103</u>, 32.
- Bakker, C. J. and Segrè, E. (1951). "Stopping power and energy loss for ion pair production for 340-MeV protons," Phys. Rev. 81, 489.
- Barkas, W. H., Barrett, P. H., Cuer, P., Heckman, H., Smith, F. M. and Ticho, H. K. (1958). "The range-energy relation in emulsion," Nuovo Cimento <u>8</u>, 186.
- Barkas, W. H., Birnbaum, W. and Smith, F. M. (1956). "Mass ratio method applied to the measurement of L-meson masses and the energy balance in pion decay," Phys. Rev. 101, 778 (1956).
- Barkas, W. H. and von Friesen, S. (1961). "High-velocity range and energy-loss measurements in A ℓ , Cu, Pb, U and emulsion," Nuovo Cimento (Suppl) $\underline{19}$, 41.
- Barkas, W. H. (1963). Nuclear Research Emulsions, Vol. 1, Academic Press, New York.
- Bell, K. L. and Kingston, A. E. (1967). "Some properties of atomic helium," Proc. Phys. Soc. (London), 90, 901.
- Bell, R. J. and Dalgarno, A. (1965). "Stopping powers and straggling in neon, argon and krypton," Proc. Phys. Soc. (London), 86, 375.
- Bell, R. J. and Dalgarno, A. (1966). "Stopping powers and straggling in the rare gases," Proc. Phys. Soc. (London), 89, 55.
- Berger, M. J. and Seltzer, S. M. (1964). "Tables of energy losses and ranges of electrons and positrons," pp. 205-268, NAS-NRC publ. 1133, National Academy of Sciences-National Research Council, Washington; also NASA Publication SP-3012, National Aeronautics and Space Administration (1964).
- Berger, M. J. and Seltzer, S. M. (1966). "Additional stopping power and range tables for protons, mesons and electrons," NASA SP-3036, National Aero-nautics and Space Administration.
- Berger, M. J., Seltzer, S. M. and Maeda, K. (1970). "Energy deposition by auroral electrons in the atmosphere," J. Atmos. Terr. Phys. 32, 1015.
- Besenbacher, F., Andersen, H. H., Hvelplung, P. and Knudsen, H. (1979). "Stopping power of swift hydrogen and helium ions in gases," Mat. Fys. Medd. Vid. Selsk. 40 No. 3.
- Bethe, H. (1930). "Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie," Ann. Phys. 5 325.
- Bethe, H. (1932). "Bremsformel für Elektronen relativistischer Geschwindigkeit," Z. f. Phys. <u>76</u>, 293.
- Bethe, H. (1933). "Quantenmechanik der Ein- und Zwei-Elektronenprobleme," pp. 273-560, Handbuch der Physik, Vol. 24/1, Springer, Berlin.
- Bethe, H. A. (1934). "The influence of screening on the creation and stopping of electrons," Proc. Cambr. Philos. Soc. 30, 524.
- Bethe, H. A. and Ashkin, J. (1953). "Passage of radiations through matter," Vol. I, <u>Experimental Nuclear Physics</u> (ed. E. Segrè), Wiley, New York.

- Bethe, H. and Heitler, W. (1934). "On the stopping of fast particles and on the creation of positive electrons," Proc. Roy. Soc. <u>A146</u>, 83.
- Bhabha, H. J. (1936). "The scattering of positrons by electrons with exchange on Dirac's theory of the positron," Proc. Roy. Soc. A154, 195.
- Bichsel, H. (1961). "Higher shell corrections in stopping power," University of Southern California, Physics Dept. Technical Report No. 3.
- Bichsel, H. (1963). "Passage of charged particles through matter," pp. 8-20 to 8-47, American Institute of Physics. Handbook, 2nd Edition, American Institute of Physics.
- Bichsel, H. (1967). "The L-shell correction in stopping power," University of Southern California Report, USC-136-120.
- Bichsel, H. (1968). "Charged particle interactions," p. 157, Radiation Dosimetry, Vol. 1, 2nd Edition (F. H. Attix, W. C. Roesch, eds.), Academic Press, New York.
- Bichsel, H. (1972). "Passage of charged particles through matter," pp. 8-142 to 8-189, American Institute of Physics Handbook, 3rd Edition, American Institute of Physics.
- Bichsel, H. (1978). "Physical data used in charged particle dosimetry," AAPM Charged Particle Beam Task Group Workshop, Los Alamos Scientific Laboratory.
- Bichsel, H. and Hilko, R. H. (1980). "Measurement of the energy loss of alpha particles in carbon dioxide," Helv. Phys. Acta. <u>53</u>, 655.
- Bichsel, H. and Laulainen, N. S. (1971). "Mean excitation energies of stopping power for atoms," Bull. Am. Phys. Soc. <u>16</u>, 842.
- Bichsel, H. and Porter, L. E. (1982). "The stopping power of protons and alpha particles in H_2 , He, N_2 , O_2 , CH_4 and air," Phys. Rev. A <u>25</u>, 2455.
- Bichsel, H. and Tschalär, C. (1965). "Range difference measurements for protons in C, Al, sapphire, Si, quartz, Ge and Ag," Bull. Am. Phys. Soc. <u>II</u>, 723.
- Bloch, F. (1933). "Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie," Ann. Phys. 16, 285.
- Bohr, N. (1913). "On the theory of the decrease of velocity of moving electrified particles on passing through matter," Phil. Mag. 25, 10.
- Bohr, N. (1948). "The penetration of atomic particles through matter," Mat. Fys. Medd. Dan. Vid. Selsk. <u>18</u>, (8).
- Bonderup, E. (1967). "Stopping of swift protons evaluated from statistical atomic model," Mat. Fys. Medd. Dan. Vid. Selsk. 35, No. 17.
- Bourland, P. D., Chu, W. K. and Powers, D. (1971). "Stopping cross section of gases for alpha particles from 0.3 to 2.0 MeV," Phys. Rev. B3, 3625.
- Bragg, W. H. and Kleeman, R. (1905). "On the alpha particles of radium and their loss of range in passing through various atoms and molecules," Phil. Mag. $\underline{10}$, 318.
- Brandt, W. (1956). "Stopping power and valence states," Phys. Rev. 104, 691.
- Brandt, W. (1958). "Survey of stopping power," Health Phys. 1, 11.
- Brandt, W. (1960). "Energy loss and range of charged particles in compounds,"
 Research Report, Radiation Physics Laboratory, E. I. du Pont and Co., Wilmington,
 Del.
- Brolley, J. E., Jr. and Ribe, F. L. (1955). "Energy loss by 8.86-MeV deuterons and 4.43-MeV protons," Phys. Rev. <u>98</u>, 1112.

- Brown, L. M. (1950). "Asymptotic expression for the stopping power of K electrons," Phys. Rev. 79 297.
- Burkig, V. C. and MacKenzie, K. R. (1957). "Stopping power of some metallic elements for 19.8 MeV protons," Phys. Rev. <u>106</u>, 848.
- Carlson, T. A. (1975). Photoelectron and Auger Spectroscopy, Plenum Press, New York and London.
- Chan, Y. M. and Dalgarno, A. (1965a). "The stopping powers of atoms and molecules," Proc. Roy. Soc. A285, 457.
- Chan, Y. M. and Dalgarno, A. (1965b). "The dipole spectrum and properties of helium," Proc. Phys. Soc. (London), <u>86</u>, 777.
- Chilton, A. B., Cooper, J. N. and Harris, J. C. (1954). "The stopping power of various elements for protons of energies from 400 to 1050 keV," Phys. Rev. 93, 413.
- Chu, W. K. and Powers, D. (1972). "Calculation of mean excitation energy for all elements," Phys. Lett. 40A, 23.
- Clementi, E. and Raimondi, D. L. (1963). "Atomic screening constants from SCF functions," J. Chem. Phys. 38, 2686.
- Cohn, A. and Caledonia, G. (1970). "Spatial distribution of fluorescent radiation emission caused by an electron beam." J. Appl. Phys. 41, 3767.
- Cole, A. (1969). "Absorption of 20-eV to 50,000-eV electron beams in air and plastic," Radiat. Res. 38, 7.
- Condensed Chemical Dictionary (1977). 9th Edition (revised by G. G. Hawley)

 Van Nostrand Reinhold Co., New York.
- CRC Handbook of Chemistry and Physics (1979). 60th Edition (R. C. Weast, ed.) CRC Press, Boca Raton, Florida.
- Crispin, A. and Fowler, G. N. (1970). "Density effect in the ionization energy loss of fast charged particles in matter," Rev. Mod. Phys. 42 290.
- Dalgarno, A. (1960). "The stopping powers of atoms," Proc. Phys. Soc. (London) 76, 422.
- Dalgarno, A., Degges, T. and Williams, D. A. (1967). "Dipole properties of molecular nitrogen," Proc. Phys. Soc. (London), 92, 291.
- Dalton, P. and Turner, J. E. (1968). "New evaluation of mean excitation energies for use in radiation dosimetry," Health Phys. 15, 257.
- Davies, H., Bethe, H. A. and Maximon, L. C. (1954). "Theory of bremsstrahlung and pair production. II. Integral cross section for pair production," Phys. Rev. 93, 788.
- Dehmer, J. L., Inokuti, M. and Saxon, R. P. (1975). "Systematics of moments of dipole oscillator-strength distributions for atoms for the first and second row," Phys. Rev. A12, 102.
- Eggarter, E. (1975). "Comprehensive optical and collision data for radiation action, II. Ar," J. Chem. Phys. $\underline{62}$, 833.
- Elwert, G. (1939). "Verschärfte Berechnung der Intensität und Polarisation im kontinuierlichen Röntgenspektrum," Ann. Phys. 34, 178.
- Fano, U. (1956). "Atomic theory of electromagnetic interactions in dense materials," Phys. Rev. $\underline{103}$, 1202.
- Fano, U. (1963). "Penetration of protons, alpha particles and mesons," Ann. Rev. Nucl. Sci. 13, 1.

- Fano, U. (1975). "Platzman's analysis of the delivery of radiation energy to molecules," Radiat. Res. 64, 217.
- Fano, U. and Turner, J. E. (1964). "Contributions to the theory of shell corrections," NAS-NRC Publ. 1133, 49.
- Feng, I. J., Pratt, R. H. and Tseng, H. K. (1981). "Positron bremsstrahlung," Pitt-256, U. of Pittsburg.
- Fermi, E. (1940). "The ionization loss of energy in gases and in condensed materials," Phys. Rev. 57 485.
- Ford, A. L. and Browne, J. C. (1973). "Direct-resolvent-operator computations on the hydrogen-molecule dynamic polarizability, Rayleigh, and Raman scattering." Phys. Rev. 7A, 418.
- Garbincius, P. H. and Hyman, L. G. (1970). "Range-energy relation in hydrogen," Phys. Rev. A, 2, 1834.
- Garcia, J. D. (1966). "Radiative corrections to the energies of atoms and molecules," Phys. Rev. 147, 66.
- Gerhart, D. E. (1975). "Comprehensive optical and collision data for radiation action. I. H_2 ," J. Chem. Phys. <u>62</u>, 821.
- Gmelins Handbuch der Anorganischen Chemie (1968). Kohlenstoff, Teil B-Lieferung 2, 8th Edition, Verlag Chemie, Weinheim.
- Goodman, L. J. (1969). "A modified tissue equivalent liquid," Health Phys. 16, 763.
- Goodman, L. J. (1978). "Density and composition uniformity of A-150 tissue-equivalent plastic," Phys. Biol. Med. 23, 753.
- Green, A. E. S. and Miller, J. H. (1974). "Atomic and molecular effects in the physical state," Physical Mechanisms in Radiation Biology (R. D. Cooper and R. W. Wood, eds.), Report CONF-721001, U.S. Atomic Energy Commission, pp. 68-111.
- Green, A. E. S. and Peterson, L. R. (1968). "Energy loss function for electrons and protons in planetary gases," J. Geophys. Res. <u>73</u>, 233.
- Greene, D., Major, J. and Law, J. (1973). "The G-value for the ferrous sulphate dosimeter for 14-MeV neutrons," Phys. Med. Biol. 18, 369.
- Grün, A. E. (1957). "Lumineszenz-photometrische Messungen der Energieabsorption in Strahlungsfeld von Elektronenquellen. Eindimensionaler Fall in Luft," Z. f. Naturf. 12a, 89.
- Halpern, O. and Hall, H. (1948). "The ionization loss of energy of fast charged particles in gases and condensed bodies," Phys Rev. 73 477.
- Hanke, C. C. and Bichsel, H. (1970). "Precision energy loss measurements for natural alpha particles in argon," Mat. Fys. Medd. Dan. Vid. Selsk. 38, No. 3.
- Hanke, C. and Laursen, J. (1978). "Stopping cross section of alpha particles for 1.0 to 8.5 MeV in $\rm H_2$, He, $\rm N_2$, $\rm O_2$, Ne, Kr and Xe," Nucl. Instr. Meth. $\underline{151}$, 253.
- Haug, E. (1975). "Bremsstrahlung and pair production in the field of free electrons," Z. f. Naturforsch. 30a, 1099.
- Heitler, W. (1947). The Quantum Theory of Radiation, 2nd Edition, Oxford University Press, London.
- Heller, J. M., Hamm, R. N., Birkhoff, R. D. and Painter, L. R. (1974). "Collective oscillation in liquid water," J. Chem. Phys. 60, 3483.
- Hereford, F. L. (1948). "The specific primary ionization and energy loss of fast electrons in matter," Phys. Rev. 74, 574.

- Hill, K. W. and Merzbacher, E. (1974). "Polarization in distant Coulomb collisions of charged particles with atoms," Phys. Rev. A 9, 156.
- Holden, N. E. (1979). "Atomic weights of the elements," (prepared for Commission on Atomic Weights, IUPAP), Pure and Appl. Chem. <u>51</u>, 405.
- Hoyer, U. and Wäffler, H. (1971). "Der atomare Bremsquerschnitt von H₂, D₂, He, N₂, and A für α -Teilchen im Umladungsgebiet," Z. Naturf. 26a, 592.
- Hubbell, J. H. (1969). "Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV," NSRDS-NBS 29.
- Hubbell, J. H., Veigele, W. J., Briggs, E. A., Brown, R. T., Cromer, D. T. and Howerton, R. J. (1975). "Atomic form factors, incoherent scattering functions, and photon scattering cross sections," J. Phys. and Chem. Reference Data 4, 471; errata in 6, 615 (1977).
- Hubbell, J. H. and Øverbø, I. (1979). "Relativistic atomic form factors and photon coherent scattering cross sections," J. Phys. and Chem. Reference Data 8, 69.
- Hubbell, J. H., Gimm, H. A. and Øverbø, I. (1980). "Pair, triplet, and total atomic cross sections for 1-MeV to 100-GeV photons in elements A = 1 to 100," J. Phys. and Chem. Reference Data 9, 1023.
- ICRP (1975). "Report of the task group on reference man," <u>International Commission</u> of <u>Radiological Protection</u>, Pergamon Press, New York.
- ICRU (1964). ICRU Report 10b, "Physical aspects of irradiation. Recommendations of the International Commission on Radiological Units and Measurements," published as National Bureau of Standards Handbook 85.
- ICRU (1970). ICRU Report 16, "Linear energy transfer," International Commission on Radiation Units and Measurements, Washington, D.C.
- ICRU (1977). ICRU Report 26, "Neutron dosimetry for biology and medicine," International Commission on Radiation Units and Measurements, Washington, D.C.
- ICRU (1980). ICRU Report 33, "Radiation quantities and units," International Commission on Radiation Units and Measurements, Washington, D.C.
- Inokuti, M. (1971). "Inelastic collisions of fast charged particles with atoms and molecules the Bethe theory revisited," Rev. Mod. Phys. <u>43</u> 297.
- Inokuti, M., Dehmer, J. L., Baer, T. and Hanson, J. D. (1981). "Oscillator-strength moments, stopping powers, and total inelastic scattering cross sections of all atoms through strontium," Phys. Rev. A 23, 95.
- Inokuti, M., Douthat, D. A. and Rau, A. R. P. (1976). "Degradation spectra and ionization yields of electrons in gases," pg. 977, Proc. Fifth Symposium on Microdosimetry, EUR 5452 d-e-f, Euratom.
- Inokuti, M. and Smith, D. Y. (1982). "Fermi density effect on the stopping power of metallic aluminum," Phys. Rev. B 25, 61.
- Inokuti, M. and Turner, J. E. (1978). "Mean excitation energies for stopping power as derived from oscillator-strength distributions," pg. 675, Proc. Sixth Symposium on Microdosimetry, Vol. I, Harwood Academic Publishers, Ltd., New York.
- Ishigure, N., Mori, C. and Watanabe, T. (1978). "Electron stopping power in aluminum in the energy region from 2 to 10.9 keV," J. Phys. Soc. Japan $\underline{44}$, 973.
- Ishiwari, R., Shiomi, N. and Sakamoto, N. (1979). "Stopping powers of Be, Al, Ti, V, Fe, Co, Ni, Cu, Zn, Mo, Rh, Ag, Sn, Ta, Pt and Au for 6.75 MeV protons," Phys. Letters 75A, 112.
- Iskef, H., Thwaites, D. I. and Watt, D. E. (1980). "Stopping power of low energy electrons (< 10 keV)," p. 201, Proc. Seventh Symposium on Microdosimethy, Vol. I, Harweed Academic Publishers, Ltd., New York.

- Jackman, C. H., Garvey, R. H. and Green, A. E. S. (1977). "Electron impact on atmospheric gases. I. Updated cross sections," J. Geophys. Res <u>82</u>, 5081.
- Jackson, J. D. (1975). Classical Electro-Dynamics, 2nd Edition, Wiley, New York.
- Jackson, J. D. and McCarthy, R. L. (1972). "Z³ corrections to energy loss and range," Phys. Rev. B6, 4131.
- Janni, J. F. (1966). "Calculations of energy loss, range, pathlength, straggling, multiple scattering, and the probability of inelastic nuclear collisions for 0.1 to 1000-MeV protons," AFWL-TR-65-150, Air Force Weapons Laboratory.
- Janni, J. F. (1980). "A comprehensive set of adjusted ionization potentials," Trans. Amer. Nucl. Soc. 34 653.
- Jensen, H. (1937). "Eigenschwingungen eines Fermi-Gases und Anwendung auf die Blochsche Bremsformel für schnelle Teilchen," Z. f. Phys. 106, 620.
- Jhanwar, B. L., Meath, W. J. and MacDonald, J. C. F. (1981). "Dipole oscillator strength distributions and sums for C_2H_6 , C_3H_n , n- C_4H_{10} , n- C_5H_{12} , n- C_6H_{14} , n- C_7H_{16} , and n- C_8H_{18} ," Can. J. Phys. $\underline{59}$, 185.
- Joseph J. and Rohrlich, F. (1958). "Pair production and bremsstrahlung in the field of free and bound electrons," Rev. Mod. Phys. 30, 354.
- Kalil, F., Stone, W. G., Hubbell, Jr., H. H. and Birkhoff, R. D. (1959). "Stopping power of thin aluminum foils for 12 to 127 keV electrons," Oak Ridge National Laboratory Report ORNL-2731.
- Kerr, G. D., Hain, L. M., Underwood, N. and Walthers, A. W. (1966). "Molecular stopping cross sections of air, N_2 , Kr, CO_2 and CH_4 for alpha particles," Health Phys. $\underline{12}$, 1475.
- Khandelwal, G. S. and Merzbacher, E. (1966). "Stopping power of M electrons," Phys. Rev. 144, 349.
- Khandelwal, G. S. (1968). "Shell corrections for K- and L-electrons," Nucl. Phys. A 116, 97.
- Kissel, L. and MacCallum, G. (1977). "Benchmark bremsstrahlung energy spectrum data for 1 and 2 MeV," PITT-179, U. of Pittsburgh.
- Koch, H. W. and Motz, J. W. (1959). "Bremsstrahlung cross-section formulas and related data," Rev. Mod. Phys. 31, 920.
- Kutcher, G. J. and Green, A. E. S. (1976). "A model for energy deposition in liquid water," Radiat. Res. 67, 408.
- Langhoff, P. W. and Yates, A. C. (1972). "Moment theory bounds on the mean energies of stopping, straggling, and molecular excitation," J. Phys. B: Atom. Molec. Phys. $\underline{5}$, 1071.
- Langley, R. A. (1975). "Stopping cross sections for helium and hydrogen in H $_2$, N $_2$, O $_2$ and H $_2$ S (0.3 2.5 MeV)," Phys. Rev. B, $\underline{12}$, 3575.
- Lee, C. M., Kissel, L. and Pratt, R. H. (1976). "Electron bremsstrahlung spectrum," 1-500 keV, Phys. Rev. A 13, 1714.
- Lindhard, J. (1954). "On the properties of a gas of charged particles," Mat. Fys. Medd. Dan. Vid. Selsk. 28, 1.
- Lindhard, J. (1976). "The Barkas effect, or z_1^3 z_1^4 corrections to stopping of swift charged particles," Nucl. Instr. Meth. 132, 1.
- Lindhard, J. and Scharff, M. (1953). "Energy loss in matter by fast particles of low charge," Mat. Fys. Medd. Dan. Vid. Selsk. 34, No. 15.

- Lindhard, J. and Winther, A. (1964). "Stopping power of electron gas and equipartition rule," Mat. Fys. Medd. Dan. Vid. Selsk. 34, No. 4.
- Livingston, M. S. and Bethe, H. A. (1937). "Nuclear physics," Rev. Mod. Phys. $\underline{9}$ 282.
- Märk, T. D. and Egger, F. (1976). "Cross section for single ionization of H_2O and D_2O by electron impact from threshold up to 170 eV," Int. J. Mass Spectrometry and Phys. 20, 89.
- Martin, F. W. and Northcliffe, L. C. (1962). "Energy loss and effective charge of He, C, and Ar ions below 10 MeV/amu in gases," Phys. Rev. 128, 1166.
- McGuire, E. J. (1971). "Inelastic scattering of electrons and protons by the elements He to Ne," Phys. Rev. A3, 267.
- Miller, W. F. (1956). "A theoretical study of excitation and ionization by electrons in helium and the mean energy per ion pair," Ph.D. Dissertation, Purdue University, Lafayette, Ind.
- Møller, C. (1932). "Zur Theorie des Durchgangs schneller Elektronen durch Materie," Ann. Phys. <u>14</u>, 568.
- Motz, J. W. (1955). "Bremsstrahlung differential cross-section measurements for 0.5-and 1.0-MeV electrons," Phys. Rev. 100, 1560.
- Motz, J. W. and Placious, R. C. (1958). "Bremsstrahlung cross-section measurements for 50-keV electrons," Phys. Rev. 109, 235.
- Nakano, G. H., MacKenzie, K. R. and Bichsel, H. (1963). "Relative stopping power of some metallic elements for 28.7 MeV protons," Phys. Rev. 132, 291.
- NAS-NRC (1964). Studies in Penetration of Charged Particles in Matter, Committee on Nuclear Science, Subcommittee on Penetration of Charged Particles, Publ. 1133, Washington, D.C.
- NCRP (1961). "Stopping powers for use with cavity chambers," National Council on Radiation Protection, published as National Bureau of Standards Handbook 79.
- Nelms, A. T. (1956). "Energy loss and range of electrons and positrons," National Bureau of Standards Circular 577.
- Nelms, A. T. (1958). "Energy loss and range of electrons and positrons," Supplement to National Bureau of Standards Circular 577.
- Nordin, J. A. and Henkelman, R. M. (1979). "Measurement of stopping power ratios for 60-MeV positive or negative pions," Phys. Med. Biol. <u>24</u>, 781.
- Olivero, J., Stagat, R. W. and Green, A. E. S. (1972). "Electron deposition water vapor, with atmospheric applications," J. Geophys. Res. 77, 4797.
- Olsen, H. (1955). "Outgoing and ingoing waves in final states and bremsstrahlung," Phys. Rev. <u>99</u>, 1335.
- Pages, L, Bertel, E., Joffre, H. and Sklavenitis, L. (1972). "Energy loss, range and bremsstrahlung yield for 10-keV to 100-MeV electrons in various elements and chemical compounds," Atomic Data $\underline{4}$, 1.
- Painter, L. R., Arakawa, E. T., Williams, W. and Ashley, J. C. (1980). "Optical properties of polyethylene: measurement and applications," Radiat. Res. <u>83</u>, 1.
- Paretzke, H. G. and Berger, M. J. (1978). "Stopping power and energy degradation for electrons in water vapor," pg. 749, Proc. Sixth Symposium on Microdosimetry, Vol. II, Harwood Academic Publishers, New York.
- Particle Data Group (1980). "Review of particle properties," Rev. Mod. Phys. 52, S1.

- Paul, W. and Reich, H. (1950). "Energieverlust schneller Elektronen in Be, C, $\rm H_2O$, Fe und Pb," Z. Phys. 127, 429.
- Porter, L. E., Naylor, H. and Duder, J. C. (1978). "Stopping power of polystyrene for 2.2 to 5.9-MeV protons," Nucl. Instr. Meth. <u>155</u>, 25.
- Powell, M. J. D. (1967). "Curve fitting by cubic splines," Atomic Energy Research Establishment (Harwell, England) Report TP 307.
- Pratt, R. H., Tseng, H. K., Lee, C. M., Kissel, L., MacCallum, C. and Riley, M. (1977). "Bremstrahlung energy spectra from electrons of kinetic energy 1 keV \leq T₁ \leq 2000 keV incident on neutral atoms 2 \leq Z \leq 92 keV," Atomic Data and Nuclear Data Tables 20, 175; errata in 26, 477 (1981).
- Racah, G. (1934). "Sopra l'Irradiazione Nell'Urto di Particelle Veloci," Nuovo Cimento 11, 461.
- Raether, H. (1980). <u>Excitation of Plasmons</u> and <u>Interband Transitions by Electrons</u>, Springer, Berlin-Heidelberg-New York.
- Reactor Handbook (1962). Vol. I, 2nd Edition (C. R. Tipton, Jr., ed.), Interscience, New York.
- Rester, D. H. and Dance, W. E. (1967). "Bremsstrahlung cross-section measurements at incident electron energies of 1.0, 1.7 and 2.5 MeV," Phys. Rev. <u>161</u>, 85.
- Rester, D. H. and Edmonson, N. (1972). "Bremsstrahlung cross-section measurements at an incident electron energy of 0.2 MeV on Al, Cu and Au," Phys. Rev. A6, 1405.
- Reynolds, H. K., Dunbar, D. N. F., Wenzel, W. A., and Whaling, W. (1953). "The stopping cross section of gases for protons, 30-600 keV," Phys. Rev. 92, 742.
- Ritchie, R. H. (1959). "Interaction of charged particles with a degenerate Fermi-Dirac gas," Phys. Rev. 114, 644.
- Ritchie, R. H. and Brandt, W. (1978). "Projectile charge dependence of stopping powers," Phys. Rev. A17, 2102.
- Ritchie, R. H., Hamm, R. N., Turner, J. E. and Wright, H. A. (1978). "The interaction of swift electrons with liquid water," pg. 345, Proc. Sixth Symposium on Microdosimetry, Vol. I. Harwood Academic Publishers, Ltd., New York.
- Rohrlich, F. and Carlson, B. C. (1953). "Positron-electron differences in energy loss and multiple scattering," Phys. Rev. 93, 38.
- Rossi, H. H. and Failla, G. (1956). "Tissue-equivalent ionization chambers," Nucleonics 14 (2) 32.
- Rotondi, E. (1968). "Energy loss of alpha particles in tissue," Radiat. Res. 33, 1.
- Sauter, F. (1934). "Über die Bremsstrahlung schneller Elektronen," Ann. Phys. 20,
- Saxon, R. P. (1973). "Total cross sections of inelastic scattering of charged particles by atoms and molecules. VII. Neon atom," Phys. Rev. A8, 839.
- Schou, J. (1979). "Studies on keV and eV electrons," Ris∮ National Laboratory Report R-391.
- Schutten, J., DeHeer, A. J., Mustafa, H. R., Boerboom, A. J. H. and Kistemaker, J. (1966). "Gross and partial ionization cross sections for electrons in water vapor in the energy range 0.1-20 keV," J. Chem. Phys. 44, 3924.
- Shiles, E., Sasaki, T., Inokuti, M. and Smith, D. Y. (1980). "Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminum," Phys. Rev B 22, 1612.

- Shimamura, I., Watanabe, T., Natori, M. and Matsuzawa, M. (1973). "Progress Report VI, Research group on atoms and molecules," Japan (unpublished).
- Sigmund, P. (1975). "Energy loss of charged particles in solids," pp. 3-117,
 Radiation Damage Processes in Materials (C. H. Dupuy, ed.) Noordhoff, Leyden.
- Smathers, J. B., Otte, V. A., Smith, A. R., Almond, P. R., Attix, F. H. Spokas, J. J., Quam, W. M. and Goodman, L. J. (1977). "Composition of A-150 tissue-equivalent plastic," Med. Phys. 4, 74.
- Sørensen, H. and Andersen, H. H. (1973). "Stopping Power of Al, Cu, Ag, Au, Pb and U for 5-18-MeV protons and deuterons," Phys. Rev. B 8, 1854.
- Sørensen, H. and Schou, J. (1978). "Interaction between solid nitrogen and 1-3-keV electrons," J. Appl. Phys. 49, 5311.
- Spencer, L. V. and Attix, F. H. (1955). "A theory of cavity ionization," Radiat. Res. 3, 239.
- Spencer, L. V. and Pal, R. (1978). "Numerical solution of the electron slowing down equation for molecular hydrogen," National Bureau of Standards Report NBSIR 78-1523.
- Srdoč, D. (1970). "Experimental technique of measurement of microscopic energy distribution in irradiated matter using Rossi counters," Radiat. Res. 43, 302.
- Sternheimer, R. M. (1952). "The density effect for the ionization loss in various materials," Phys. Rev. 88, 851.
- Sternheimer, R. M. (1956). "Density effect for the ionization loss in various materials," Phys. Rev. 103, 511.
- Sternheimer, R. M. (1966). "Density effect for the ionization loss of charged particles," Phys. Rev. $\underline{145}$, 247.
- Sternheimer, R. M. (1967). "Density effect for the ionization loss of charged particles," Phys. Rev. 164, 349.
- Sternheimer, R. M. and Peierls, R. F. (1971). "General expression for the density effect for the ionization loss of charged particles," Phys. Rev. B $\underline{3}$, 3681.
- Sternheimer, R. M., Seltzer, S. M. and Berger, M. J. (1982). "Density effect for the ionization loss of charged particles," to be published.
- Streitweiser, A., Jr. and Heathcock, C. H. (1976). <u>Introduction to Organic Chemistry</u>, MacMillan, New York.
- Sugiyama, H. (1976). "Energy loss and range of electrons below 10 keV," Japanese J. of Appl. Phys. 15, 1779.
- Swann, W. F. G. (1938). "Theory of energy loss of high energy particles," J. Franklin Inst. 226, 598.
- Swint, J. B., Prior, R. M. and Ramirez, J. J. (1970). "Energy loss of protons in gases," Nucl. Instr. Meth. 80, 134.
- Thomas, G. F. and Meath, W. J. (1977). "Dipole spectrum, sums and properties of ground-state methane and their relation to the molar refractivity and dispersion energy constant," Molec. Phys. 34, 113.
- Thompson, T. J. (1952). "Effect of chemical structure on stopping powers for highenergy protons," Report UCRL-1910, University of California Radiation Laboratory.
- Tschalär, C. and Bichsel, H. (1968). "Mean excitation potential of light compounds," Phys. Rev. 175, 476.
- Tseng, H. K. and Pratt, R. H. (1971). "Exact screened calculations of atomic-field bremsstrahlung," Phys. Rev. A3, 100.

- Tseng, H. K. and Pratt, R. H. (1979). "Electron bremsstrahlung energy spectra above 2 MeV," Phys. Rev. A 19, 1525.
- Tung, C. J., Ashley, J. C., Anderson, V. E. and Ritchie, R. H. (1976). "Inverse mean free path, stopping power, csda range and straggling in silicon and silicon dioxide for electrons of energy ≤ 10 keV," Rome Air Development Center, Report RADC-TR-76-125.
- Tung, C. J., Ashley, J. C. and Ritchie, R. H. (1979). "Range of low-energy electrons in solids," IEEE Trans. Nucl. Sci., Vol. NS-26, 4874
- Turner, J. E., Roecklein, P. D. and Vora, R. B. (1970). "Mean excitation energies for chemical elements," Health Phys. 18, 159.
- Uehling, E. A. (1954). "Penetration of heavy charged particles in matter," Annual Rev. Nucl. Sci. 4, 315.
- Victor, G. A. and Dalgarno, A. (1969). "Dipole properties of molecular hydrogen," J. Chem. Phys. 50, 2535.
- Waibel, E. and Grosswendt, B. (1980). "Stopping power and energy range relation for low-energy electrons in nitrogen and methane," p. 267, Proc. Seventh Symposium on Microdosimetry, Vol. I, Harwood Academic Publishers, Ltd., New York.
- Walske, M. C. (1952). "The stopping power of K electrons," Phys. Rev. 88, 1283.
- Walske, M. C. (1956). "Stopping power of L-electrons," Phys. Rev. 101, 940.
- Wenzel, W. A. and Whaling, W. (1952). "The stopping cross section of D_2O ice," Phys. Rev. 87, 499.
- Westermark, T. (1961). "Some measurements on energy loss of 2.8 MeV electrons in light elements and compounds," Ark. Kemi 17, 101.
- Wheeler, J. A. and Lamb, W. E. (1939). "Influence of atomic electrons on radiation and pair production," Phys. Rev. <u>55</u>, 858; errata in <u>101</u>, 1836 (1956).
- White, D. R. (1978). "Tissue substitutes in experimental radiation physics," Med. Phys. 467.
- Wick, G. C. (1943). "Sul frenamento delle particelle veloci," Nuovo Cimento, 1, 302.
- Wolke, R. L., Bishop, W. N., Eibhler, E., Johnson, N. R. and O'Kelley, G. D. (1963).
 "Ranges and stopping cross sections of low-energy tritons," Phys. Rev. 129,
 2591.
- Yates, A. C. and Langhoff, P. W. (1970). "Bounds for oscillator-strength sums from approximate quadratures," Phys. Rev. Lett. 25, 1317.
- Zeiss, G. D., Meath, W. J., MacDonald, J. C. F. and Dawson, D. J. (1975). "Dipole spectrum of water vapor and its relation to energy loss of fast charged particles," Radiat. Res. 63, 64.
- Zeiss, G. D., Meath, W. J., MacDonald, J. C. F. and Dawson, D. J. (1977a). "Dipole oscillator strength distributions, sums and some related properties for Li, N, O, $\rm H_2$, $\rm N_2$, $\rm O_2$, $\rm NH_3$, $\rm H_2O$, NO and $\rm N_2O$," Can. J. Phys. $\underline{55}$, 2080.
- Zeiss, G. D., Meath, W. J., MacDonald, J. C. F. and Dawson, D. J. (1977b). "Accurate evaluation of stopping and straggling mean excitation energies for N, O, $\rm H_2$, $\rm N_2$, $\rm O_2$, NO, NH₃, $\rm H_2O$, and $\rm N_2O$ using dipole oscillator strength distributions. A test of the validity of Bragg's rule," Radiat. Res. $\rm 70$, 284.
- Zeiss, G. D., Meath, W. J., MacDonald, J. C. F. and Dawson, D. J. (1980). "On the Additivity of atomic and molecular dipole properties and dispersion energies using H, N, O, H₂, N₂, O₂, NO, N₂O, NH₃ and H₂O as models," Molec. Phys. 39, 1055.

- Ziegler, B. (1958). "Energieverlust und Energiestreuung schneller Elektronen in Be, C und Al," Z Phys. 151, 556.
- Ziegler, J. F. (1977). <u>Helium: Stopping Powers and Ranges in all Elemental Matter</u>, Pergamon Press, New York.
- Ziegler, J. F. (1980). "The stopping and ranges of ions in matter," Vol. 5, Handbook of Stopping Cross Sections for Energetic Ions in all Elements, Pergamon Press, New York.
- Ziemer, P. L., Johnson, R. M. and Birkhoff, R. D. (1959). "Measurement of stopping power of copper by calorimetric methods," Oak Ridge National Laboratory Report ORNL-2775.
- Zrelov, V. P., Kruglov, S. P., Mus, K. F., Savel'ev, V. D. and Sulek, P. (1974).
 "Determination of the average excitation I copper ion from the ionization range of 660-MeV protons," Yad. Fiz. 19, 1276; Sov. J. Nucl. Phys. 19, 653.

Table 3.1 Mean excitation energies obtained from moments of dipole oscillator-strength distributions (OSD). Results are for atoms unless indicated otherwise.

	²	theory	N N 2	02	theory				
Remarks	M(n) fit for H, semi-empirical OSD for H moment theory for H, theoretical OSD for H, semi-empirical OSD for H, semi-empirical OSD for H	semi-empirical OSD semi-empirical OSD M(n) fit variation-perturbation variation-perturbation M(n) fit M(n) fit moment theory theoretical OSD moment theory theoretical OSD	semi-empirical OSD for theoretical OSD theoretical OSD semi-empirical OSD for	theoretical OSD theoretical OSD semi-empirical OSD for O ₂	M(n) fit Semi-empirical OSD theoretical OSD moment theory moment theory variation-perturbation theory semi-empirical OSD theoretical OSD	M(n) fit moment theory theoretical OSD semi-empirical OSD	M(n) fit theoretical OSD	M(n) fit	M(n) fit
	N. K. E. E. K. Z.	THE THE WAY SEE THE THE	X C C X	% द द	# X K E E E K K E	S E T S	五章	Σ	Σ
Reference	Garcia (1966) Victor and Dalgarno (1969) Langhoff and Yates (1972) Ford and Browne (1973) Gerhart (1975) Zeiss et al. (1977a,b)	Miller (1956) Bell and Kingston (1967) Dalgarno (1960) Chan and Dalgarno (1965a) Garcia (1966) Bell and Dalgarno (1966) Yates and Langhoff (1970) McGuire (1971) Langhoff and Yates (1972) Dehmer et al. (1975)	Dalgarno et αl . (1967) McGuire (1971) Dehmer et αl . (1975) Zeiss et αl . (1977a,b)	McGuire (1971) Dehmer <i>et al.</i> (1975) Zeiss <i>et al.</i> (1977a,b)	Bell and Dalgarno (1965) Bell and Dalgarno (1966) McGuire (1971) Yates and Langhoff (1970) Langhoff and Yates (1972) Shimamura et al. (1973) Saxon (1973) Dehmer et al. (1975)	Bell and Dalgarno (1965) Langhoff and Yates (1972) Dehmer <i>et al.</i> (1975) Eggarter (1975)	Bell and Dalgarno (1965) Dehmer et $al.$ (1975)	Bell and Dalgarno (1965)	Bell and Dalgarno (1965)
I (eV)	19.5 ± 0.5 18.6 18.7 ± 0.2 19.21 19.2 19.2	41.8 42.48 41.7 42.0 42.1 42.19 39.42.0 ± 0.36 42.1 42.1 42.1 42.1 38.82	82.1 77 76.91 81.84 ± 0.82	99.2 93.5 95.02 ± 0.95	150 136.5 124 123 ± 20 129 ± 34 125 137	220 111 ± 52 177.4 179	360 328.3	450	700
	±	쁖	z	0	Ne	Ar	r r	Xe	R

Table 3.2 Numerical values of parameters adopted by Bichsel to fit measured stopping-power and range data for protons and alpha particles.

ပ	78	0.5	1.0									
Parameter	I, eV b	٨	· 壬	× ±	» ±	, V _{OP}	5					
Remarks	M(n) fit for H ₂ semi-empirical OSD for H ₂ moment theory for H ₂ theoretical OSD for H ₃	semi-empirical OSD for H ₂	semi-empirical OSD semi-empirical OSD M/s fit	M(n) fit M(n) fit M(n) fit	moment theory theoretical OSD moment theory theoretical OSD	semi-empirical OSD for N ₂ theoretical OSD theoretical OSD semi-empirical OSD for N ₂	theoretical OSD theoretical OSD semi-empirical OSD for O ₂	M(n) fit semi-empirical OSD theoretical OSD moment theory moment theory variation-perturbation theory semi-empirical OSD theoretical OSD	M(n) fit moment theory theoretical OSD semi-empirical OSD	M(n) fit theoretical OSD	M(n) fit	M(n) fit
Reference	Garcia (1966) Victor and Dalgarno (1969) Langhoff and Yates (1972) Ford and Browne (1973)	Zeiss <i>et al.</i> (1977a,b)	Miller (1956) Bell and Kingston (1967)	Chan and Dalgarno (1965a) Chan and Dalgarno (1965b) Garcia (1966) Bell and Dalgarno (1966)	Yates and Langhoff (1970) McGuire (1971) Langhoff and Yates (1972) Dehmer <i>et al.</i> (1975)	Dalgarno <i>et al.</i> (1967) McGuire (1971) Dehmer <i>et al.</i> (1975) Zeiss <i>et al.</i> (1977a,b)	McGuire (1971) Dehmer <i>et al.</i> (1975) Zeiss <i>et al.</i> (1977a,b)	Bell and Dalgarno (1965) Bell and Dalgarno (1966) McGuire (1971) Yates and Langhoff (1970) Langhoff and Yates (1972) Shimamura et al. (1973) Saxon (1973) Dehmer et al. (1975)	Bell and Dalgarno (1965) Langhoff and Yates (1972) Dehmer <i>et al.</i> (1975) Eggarter (1975)	Bell and Dalgarno (1965) Dehmer et $al.$ (1975)	Bell and Dalgarno (1965)	Bell and Dalgarno (1965)
I (eV)	19.5 ± 0.5 18.6 18.7 ± 0.2 19.2	19.26 ± 0.19	41.8	42.0 42.1 42.19 39	42.0 ± 0.36 42.1 42.1 ± 1.3 38.82	82.1 77 76.91 81.84 ± 0.82	99.2 93.5 95.02 ± 0.95	150 136.5 124 123 ± 20 129 ± 34 125 137	220 111 ± 52 177.4 179	360 328.3	450	700

3.998

4.0

6.175

12.0

2.25

2.25

2.25

0.375

1.30

1.35

1.35

1.4

790

470

322

166

Au

Ag

ವ

Ag

1.0 1.0

1.0 0.1

1.0 1.0

1.0 0. 2.375

150.0

15.956

21.4

4.0

2.375

Table 3.3 Shell correction C/Z, Barkas correction z L₁, Bloch correction z^2L_2 , and total correction $x=(C/Z)_{tot}-z$ L₁ - z^2L_2 , evaluated at various proton energies with the computer program of Bichsel. L is the stopping number per electron computed with these corrections.

Table 3.4 Bichsel's formulas for evaluating the parameters $\rm\,V_n$ and $\rm\,H_n$ in Eq (3.13). Also given is a list of values of the parameter $\rm\,b$ in the Ashley-Ritchie-

Brandt theory of the Barkas correction (see Eq (2.12)).

40 < Z ≤ 60

1.054 for

8

7 > (

for

1.34

8

< 7

 $(z - 4.15)^2/(z - 14)^2$ for

for 2 ≤ 40

二 = 1

for

= 1.11

모

< 7

for

2.0

32

< 7

for

	for 7 < 10	2 7 4 4 5 5	12 for $10 < Z \le 18$	$(9/4)$ HF $(Z - 4.15)^2/(Z - 14)^2$ Fo		$H_{2} = 0$ for $7 \le 32$	2,2,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1	(16/4) HG (Z - 4.15)~/(Z - 26)~ 1	$H_{-} = 0$ for $7 < 60$	3 (150 for 2 > 60			for 2 < 2	(Z - 2)/8 for $2 < Z < 10$	for Z > 10		for 2 < 10		(2 - 10)/8 for 10 < 2 < 28	8 for Z > 28		for 2 < 32	$(Z - 28)/8$ for $32 < Z \le 60$	8 for Z > 60		for Z ≤ 60		(2 - 60)/8 for $2 > 60$		
H ₂ = 1	0 = 'H	က က	12	7/6)		H. H	b .	/ 9L)	0 # - H	s :	150		•	V ₂ = 0		-	•	٧٠ = 0		- 7)	18/8		$V_4 = 0$	- z)	32/8		V _c = 0		- 7)		
Au	-0.0571	-0.0751	0.2034	0.1229	-0.0149	0.0954	1.6084		-0.0340	0.0115	0.2681	0.0564	-0.0047	0.2164	2.6596		-0.0221	0.0450	0.2374	0.0326	-0.0026	0.2074	3.2732		-0.0127	0.0590	0.1985	0.0194	-0.0016	0.1807	3.7890
Ag	-0.0640	0.0044	0.2850	0.1110	-0.0149	0.1784	2.0347		-0.0243	0.0972	0.2698	0.0444	-0.0047	0.2301	3.1652		-0.0051	0.1009	0.2154	0.0238	-0.0026	0.1942	3.8058		0.0081	0.0844	0.1677	0.0139	-0.0016	0.1547	4.3336
3	-0.0528	0.1284	0.2650	0.1006	-0.0149	0.1793	2.4225		0.0073	0.1286	0.1904	0.0349	-0.0047	0.1688	3.6046		0.0279	0.0872	0.1488	0.0181	-0.0026	0.1333	4.2447		0.0350	0.0374	0.1126	0.0103	-0.0016	0.1173	4.7632
ΑĶ	0.0480	0.1278	0.1796	0.0734	-0.0149	0.1211	3.1432		0.0716	0.0403	0.1131	0.0213	-0.0047	0.1567	4.3395		0.0526	0.0213	0.0745	0.0105	-0.0026	0.0666	4.9741		0.0360	0.0127	0.0491	0.0058	-0.0016	0.0449	5,4848
٥	0.1255	0.0173	0.1428	0.0390	-0.0149	0.1187	3.9009		0.0493	0.0051	0.0543	0.0109	-0.0047	0.0481	5.1431		0.0268	0.0027	0.0295	0.0053	-0.0026	0.0268	5.7690		0.0160	0.0017	0.0177	0.0029	-0.0016	0.0164	6.2686
Correction 2 MeV	C/Z) _K	$(c/z)^{\Gamma}$	(c/2) _{tot}	; - [-]	, ² L,	J		6.5 MeV	(c/z) ^K	(c/z)	(c/z)	z L1	2 ² L2	,		12 MeV	(c/z) _K	(z/z)	C/Z)tot	را	, ⁴ L ₂	1		19.8 MeV	(C/Z)K	(z/z)	(c/Z)tot	ر ًا	, ² L ₂		

0.6 H₂ 1.8 in compounds

۵

9.0

4. 6. 1.4 1.35

8

 * Proton energies are pertinent to the analysis of stopping-power measurements in Figs. 4.3, 4.4, and 4.5.

Table 3.5 Analysis of range measurements of Barkas and von Friesen (1961). I-values are evaluated assuming that I_{AL} = 166 eV, which implies a proton energy of 749.0 MeV. The experimental proton ranges were 314.9 g/cm² for Cu, 415.6 g/cm² for Pb, and 432.5 g/cm² for U, and have an estimated uncertainty of 0.1%. The corresponding uncertainties of the I-values are 3 eV for Cu and 6 eV for Pb and U.

		I, eV	
Method of Analysis	Cu	РЬ	U
Bichsel shell correction, with density-effect correction	314.3	821.2	889.2
Bichsel shell correction, without density-effect correction	334.6	832.4	920.2
Bonderup shell correction, with density-effect correction	314.6	818.3	884.8

Table 3.6. Comparison of mean excitation energies I extracted from proton stopping-power and range measurements with the use of Bichsel's and Bonderup's shell corrections. The estimated uncertainties of the I-values are those resulting from the uncertainties of the measurements. The measurements are from the experiments listed in Table 4.1.

I(eV), derived with use of

				Bichsel's Correction	ons		onderup's Correcti	ons
	Reference	T (MeV)	Cu	Pb	U	Cu	Pb	U
Stopping- power Measurements	a a b a a a a	3 6 6.5 9 12 15 18 19.8	316±3 317±3 327±4 319±3 319±5 319±5 318±6 325±5	818± 9 814±12+ 830± 7+ 810±14 806±16 803±17 800±17	910±14 898±18 - 886±20 881±22 878±24 877±25	310±3 314±3 325±5 318±4 319±5 320±6 320±6 325±6	745± 9 736±12 751± 7 738±14 742±16 746±17 747±18 798±20	805±14 790±18 - 789±20 794±22 799±24 806±25
Range Measurements	d	7 49 → 0	314±10	821±10	889±10	315±10	818±10	885±10

^aSørensen and Andersen (1973)

^bIshiwari et al. (1979)

^cBurkig and MacKenzie (1957)

dBarkas and von Friesen (1961)

[†]From preliminary results of Ishiwari, Shiomi, and Sakamoto (private communication, January 1982).

Table 4.1 List of stopping-power and range experiments from which mean excitation energies were deduced. S indicates stopping-power, R indicates range.

Abbrev.	Reference	Type of Data
Bak 51	Bakker and Segrè (1951)	S rel. to Cu, 300-MeV protons
Tho 52	Thompson (1952)	Partial proton range (rel. to Cu), 340-200 MeV
Bro 5 5	Brolley and Ribe (1955)	S, 4.45 MeV
Bur 5 7	Burkig and MacKenzie (1957)	S rel. to Al, 19.8-MeV protons
Bar 61	Barkas and von Friesen (1961)	R, 750-MeV protons
Mar 62	Martin and Northcliffe (1962)	S, 4 to 40-MeV alpha particles
Nak 63	Nakano, MacKenzie, and Bichsel (1963)	S rel. to AL, 28.7-MeV protons
Bic 65	Bichsel and Tschalär (1967)	R, 3- to 30-MeV protons
Tsc 68	Tschalär and Bichsel (1968)	R, 3- to 30-MeV protons
And 67	Andersen, Hanke, Sørensen, and Vajda (1967)	S, 4.5- to 12-MeV protons
And 68	Andersen, Hanke, Simonsen, Sørensen, and Vajda (1968)	S, 5- to 12-MeV protons
And 69	Andersen, Simonsen, Sørenson, and Vajda (1969)	S, 5- to 12-MeV protons
Gar 70	Garbincius and Hyman (1970)	R, 12- to 40-MeV protons
Swi 70	Swint, Prior, and Ramirez (1970)	S, 0.4- to 3.4-MeV protons
Han 70	Hanke and Bichsel (1970)	S, 1- to 9-MeV alpha particles
Sør 73	Sørensen and Andersen (1973)	S, 5- to 18-MeV protons
Zre 7 4	Zrelov, Kruglov, Mus, Savel'ev, and Sulek (1974)	R, 600-MeV protons
And 77	Andersen, Bak, Knudsen, and Nielsen (1977)	S, 0.8- to 7.2-MeV protons
Nor 79	Nordin and Henkelman (1979)	S, 60-MeV pions
Ish 79	Ishiwari, Shiomi, and Sakamoto (1979)	S, 6.5-MeV protons
Bes 79	Besenbacher, Andersen, Hvelplund, and Knudsen (1979)	S, 40-keV to 1-MeV protons, 100-keV to 1.2-MeV alpha particles
And 81	Andersen and Nielsen (1981)	S, 0.8- to 7.2-MeV protons

Table 4.2 Mean excitation energies, I(eV), deduced from the stopping-power and range measurements listed in Table 4.1. For the references marked (*), the I-values and their uncertainties are those given by the experimenters. In all other cases the I-values have been obtained by the method described in the text, using Bichsel's shell corrections. The quoted uncertainties were estimated according to Eq (3.9), taking into account the measurement uncertainties as well as an assumed 10-percent uncertainty of the correction term x.

Reference H ₂ Bro 55 19 ± * Mar 62 18.33 Swi 70 Han 70	2.6	He 43 ± 5	N ₂ 88 ± 9 79 ± 7 76 ± 9	GASES 0_2 95 ± 8 90 ± 10	Ne 129 ± 11 138 ± 13	Ar 190 ± 15 190 ± 7 188 ± 10	Kr 346 ± 26 333 ± 26	Xe 466 ± 30
17.6		40.7	86.7	102.1	139	194	376	497

	Si			173±1			
	Ag	181±16		167±1 159±3	158±4 167±4	167±9 166±3	
	(1iqfid)	90,5±2,6 104.3±3.4					
SOLIDS	(graphite) (liquid) (liquid)						
IQUIDS AND SOLIDS	C raphite)	91.7±8.6 83.3±7.6	80.0±2.4			70.8±4.0	
ρΙΊ	Be (g	42.1±4.2 73.5±6.0 91.7±8.6 38.0±3.6 67.0±6.1 83.3±7.6	58.6±1.4	63.3±1.1		63.8±1.0	
	'n	42.1±4.2 38.0±3.6	69.0±2.3				
	(1 iqbid)	22.3±1.6		9			
	Reference H ₂ (liquid)	Bak 51 ^a Bak 51 ^b Tho 52	Bur 57 Nak 63 * Bic 65	* Tsc 68 And 67	Spr	Nor 79 Ish 79	

Ã	272±7
ప	257±7
>	251±4 259±5 238±4 243±5
Ξ	234±9 229±4 228±4 234+4
Sc	216±5
Ca	188±20 194±5
Reference	Bur 57 Nak 63 And 68 Ish 79

Table 4.2 Continued

				=								= 5		21				18				. 67		=		± 31	
ge				320 F Oce						Ag	468 ±	509 ±		466 ±	472 ±	3		± 727			-	931 ±	898	₹ 688		877 ±	
		7			9				7		11				12			27	52	12			7				
5		+1			+1				+1	Pd	+1				+1	Ta			+1 +		두		+				
		336			320				335	~	470				466	-		5	783	733	_		786	3			
	27	. o F	- ~	7	9	ω •	4 C	8 2	7		91				=				٥	2		09	32	20		23	190
3	+1 +1		-1 +1	+1	+1	+1 -	+ 14	1 +1	+1	ے	+1				+1	-		ş	+	1	ما		+1 +			+1	
	294 320	325	339	326	318	318	320	310	327	뜐	448				452	3			102	3	윤	825	35.5	821		800	830
		9	7		9				9		15				2		42	28		15			7		21	28	5 5
=		+1	+1		+1				+1	웊	+1				+1	Sn		+1 +1		+1	Æ		+		+1 +		+1 +
		317	323		30				316	E	430 ±				419	S	541	500 499		482	¥		785	3	842	794	824
			ω.		9				9		6							=		150			7		α	2	
3			+1		+1				+1		+1					_		+1		+1	یا		+		+	-1	
			295		296				299	£	417					In		488		496	7		776		VOO	5	
	23	9			2			0	9				0		100			=		120			20	2	24		
n n	+1 +1	+1			+1			+1	+1	١,			+1		+1	_		+1		+1	١,		+		+1		
	284	296			279			286	285	Zr			380		406	3		469		465	Ir		757	5	832		
S	a to									es						es	42				es	a t					
1	25		. 69							Suc				73		Suc	519		88		Suc.	5	27.5		63		
Kererences	Bak Bak Tho	Bur	Sak S	And	And	Spr	2 2	Nor	sh	References	Bur	ak	And	Spr	sh	References	Bak	E &	Nak	sh	References	Bak	Bak	ar	Nak	20	Ish
ě		0		k H eT	-	1		. ~	_	Ret	ж	_ •	٠ حد	U) E	-	Ref	ш.		_ =		e l	ш,			_ =	,	- 9

Relative to Cu (I = 322 eV).

 D Relative to A2 (I = 166 eV).

Grom preliminary stopping-power data of Ishiwari, Shiomi, and Sakamoto (private communication, January 1982).

Table 4.3 Atomic number, weight, and mean excitation energies for elemental substances. Unless noted otherwise, the I-values are for substances in the condensed phase. The uncertainties ΔI attempt to take into account the uncertainties of the underlying measurements, the errors inherent in the analysis of the measurements, and the dispersion of the I-values derived from various sources. I-values in parentheses have been estimated by interpolation of I/Z vs. Z, or by extrapolation for Z > 92.

<u>Z</u>	Element	Symbol	A , α g/mol	<u>I, eV</u>	∆I, eV	I/Z, eV
1	hydrogen	Н	1.0079	19.2 molecular gas 21.8 liquid	0.4 1.6	19.2 21.8
2	helium	He	4.00260	41.8 gas	0.8	20.9
3	lithium	Li	6.941	40.0	5	13.3
					3	15.9
4	beryllium	Be	9.01218	63.7	8	
5	boron	В	10.81	76.0		15.2
6	carbon	C	12.011	78.0 graphite	7	13.0
7	nitrogen	N	14.0067	82.0 molecular gas	2	11.7
8	oxygen	0	15.9994	95.0 molecular gas	2	11.9
9	fluorine	F	18.998403	(115) gas		11.5.
10	neon	Ne	20.179	137 gas	4	13.7
11	sodium	Na	22.98977	(149)		13.6
12	magnesium	Mg	24.305	(156)		13.0
13	aluminum	Al	26.98154	166	2	12.8
14	silicon	Si	28.0855	173	3	12.4
15	phosphorus	Р	30.97376	(173)		11.5
16	sulfur	\$	32.06	(180)		11.3
17	chlorine	Cl	35.453	(174) gas		10.2
18	argon	Ar	39.948	188 gas	10	10.4
19	potassium	K	39.0983	(190)		10.0
20	calcium	Ca	40.08	191	8	9.6
21	scandium	Sc	44.9559	216	8	10.3
22	titanium	Ti	47.88	233	5	10.6
23	vanadium	γ	50.9415	245	7	10.7
24	chromium	Cr	51.996	257	10	10.7
25	manganese	Mn	54.9380	272	10	10.9
26	iron	Fe	55.847	286	9	11.0
27	cobalt	Со	58.9332	297	9	11.0
28	nickel	Ni	58.69	311	10	11.1
29	copper	Cu	63.546	322	10	11.1
30	zinc	Zn	65.38	330	10	11.0
31	gallium	Ga	69.72	(334)		10.8
	J		<u>-</u>	,,		

Table 4.	3 Continued					
<u>Z</u>	Element	Symbol	A, a g/mol	I, eV	ΔI, eV	I/Z, eV
32	germanium	Ge	72.59	350	11	10.4
33	arsenic	As	74.9216	(347)		10.5
34	selenium	Se	78.96	(348)		10.2
35	bromine	Br	79.904	(343) gas (357) condensed		9.8 10.2
36	krypton	Kr	83.80	352 gas	25	9.8
37	rubidium	RЬ	85.4678	(363)		9.8
38	strontium	Sr	87.62	(366)		9.6
39	yttrium	Υ	88.9059	(379)		9.7
40	zirconium	Zr	91.22	393	15	9.8
41	niobium	Nb	92.9064	417	15	10.2
42	molybdenum	Мо	95.94	424	15	10.1
43	technetium	98 _{Tc}	97.907	(428)		10.0
44	ruthenium	Ru	101.07	(441)		10.0
45	rhodium	Rh	102.9055	449	20	10.0
46	palladium	Pd	106.42	470	20	10.2
47	silver	Ag	107.868	470	10	10.0
48	cadmium	Cd	112.41	469	20	9.8
49	indium	In	114.82	488	20 .	10.0
5 0	tin	Sn	. 118.69	488	15	9.8
51	antimony	Sb	121.75	(487)		9.5
52	tellurium	Te	127.60	(485)		9.3
53	iodine	I	126.9045	(474) gas (491) condensed		8.9 9.3
54	xenon	Хе	131.29	482 gas	30	8.9
5 5	cesium	Cs	132.9054	(488)		8.9
56	barium	Ba	137.33	(491)		8.8
57	lanthanum	La	138.9055	(501)		8.8
5 8	cerium	Ce	140.12	(523)		. 8.8
59	praseodymium	Pr	140.9077	(535)		9.1
60	neodymium	Nd	144.24	(546)		9.1
61	promethium	145 _{Pm}	144.913	(560)		9.2
62	samarium	Sm	150.36	(574)		9.3
63	europium	Eu	151.96	(580)		9.2
64	gadolinium	Gd	157.25	591	20	9.2
65	terbium	Tb	158.9254	(614)		9.4
66	dysprosium	Dy	162.50	(628)		9.5
6 7	holmium	Но	164.9304	(650)		9.7

Table 4.3 Continued

lable 4	4.3 Continued					
<u>Z</u>	Element	Symbol	A, a g/mol	I, eV	ΔI, eV	I/Z, eV
68	erbium	Er	167.26	(658)		9.7
69	thulium	Tm	168.9342	(674)		9.8
70	ytterbium	Yb	173.04	(684)		9.8
71	lutetium	Lu	174.967	(694)		9.8
72	hafnium	Hf	178.49	(705)		9.8
73	tantalum	Ta	180.9479	718	30	9.8
74	tungsten	W	183.85	727	30	9.8
7 5	rhenium	Re	186.207	(736)		9.8
76	osmium	0s	190.2	(746)		9.8
77	iridium	Ir	192.22	757	30	9.8
78	platinum	Pt	195.08	790	30	10.1
7 9	gold	Au	196.9665	790	30	10.0
80	mercury	Hg	200.59	(800)		10.0
81	thallium	TL	204.383	(810)		10.0
82	lead	Pb	207.2	823	30	10.0
83	bismuth	Bi	208.9804	(823)		9.9
84	polonium	209 _{Po}	208.982	(830)		9.9
85	astatine	210 _{At}	209.987	(825)		9.7
86	radon	222 _{Rn}	222.018	(794) gas		9.2
87	francium	223 _{Fr}	223.020	(827)		9.5
88	radium	Ra	226.0254	(826)		9.4
89	actinium	Ac	227.0278	(841)		9.4
90	thorium	Th	232.0381	(847)		9.4
91	protactinium	Pa	231.0359	(878)		9.6
92	uranium	U	238.0289	890	30	9.7
93	neptunium	Np	237.0482	(902)		9.7
94	plutonium	239 _{Pu}	239.052	(921)		9.8
95	americium	243 _{Am}	243.061	(934)		9.8
96	curium	247 _{Cm}	247.070	(939)		9.8
97	berkelium	247 _{Bk}	247.070	(952)		9.8
98	californium	251 _{Cf}	251.080	(966)		9.9
99	einsteinium	252 _{Es}	252.083	(980)		9.9
100	fermium	257 _{Fm}	257.095	(994)		9.9

 $^{^{}lpha}$ The atomic weights A are those recommended by the Commission on Atomic Weights of the International Union of Pure and Applied Chemistry (Holden, 1979). The values are for naturally occurring isotopic mixtures, unless a particular isotope is indicated.

Table 4.4 Comparison of mean excitation energies for elements recommended in various publications. Values are given in units of eV.

	H ₂ (gas)	C (graphite)	N ₂ (gas)	0 ₂ (gas)	AR	n	Ag	4
NCRP (1961)	•	78.4		•	164	306	462	812
Fano (1963) ^a	18.3	81	•	•	163	315	478	820
NAS-NRC (1964) ^a	18.7	78	82	88	163	312	480	795
Janni $(1966)^a$	18.3	77.3	87.5	88.9	163	318	459	779
Bichsel (1968)	18	78	78	100	164	322	475	820
Turner et al. $(1970)^a$	18.2	81.2	9.68	101	163	316	466	167
Bichsel (1972)	19.2	78	78	93	991	319	475	813
Andersen & Ziegler (1977)	18.8	77.3	86.7	7.76	162	322	466	759
Ahlen (1980)	18.5	79.0	82	98.5	164	317	469	793
Ziegler (1980)	19	79	98	66	162	330	470	761
Janni $(1980)^{\alpha}$	20.4	73.8	8.76	116	160	321	462	788
Values adopted here	19.2	78.0	82.0	95.0	166	322	470	823

^These references give values of I_{adj} . I-values have been obtained from the relation &n I = &n I_{adj} - (C/Z) $_{\beta=1}$, with (C/Z) $_{\beta=1}$ taken from Fano and Turner (1964).

Tab

Tab															
nt							II								
d in the preser compounds.															
nergies adoptec onstituents of	GASES	I (eV)	19.2	70	82	76		LIQUIDS AND SOLIDS	I(eV)	19.2	18	82	106	112	180
Mean excitation energies adopted in the present work for atomic constituents of compounds.	GA	Constituent	π	J	Z	0		LIQUIDS A	Constituent	x	ပ	Z	0	L	CL
Table 5.1.															

ituents of condensed opping-power ratios relative he analysis assumes tering corrections. The s measurement uncertainties the data analysis.	I (eV)	19.0 ± 0.8	16.0 ± 0.8	81.1 ± 2.5	79.8 ± 2.3	69.0 ± 3.7	105.7 ±10.6	81.9 ± 7.0	104.6 ± 9.2	94.4 ± 4.9	179.7 ± 11.9
Mean excitation energies for atomic constituents of condensed organic compounds, from an analysis of stopping-power ratios relative to copper measured by Thompson (1952). The analysis assumes I _C = 322 eV, and includes multiple-scattering corrections. The uncertainties take into account Thompson's measurement uncertainties as well as the uncertainties inherent in the data analysis.	Position in Compound	saturated	unsaturated	saturated	unsaturated	highly chlorinated	amines, nitrates, etc.	in ring	-0-	=0	all
Table 5.2. Mean excitations organic compute compute to copper measurements of the second contract of the second co	Constituent	=			U		2	=	c		73

1.13 x I, where I is the I-value for the element in the condensed phase given in Table 4.3.

Others

Table 5.3. Mean excitation energies for compounds.

value deduced from experiments.	percent uncertainty, estimated from the uncertainty of the measurements and from the errors inherent in the data analysis.	percent amount by which Bragg-rule value differs from experimental value. The heading BRAGG(1) indicates results obtained with the I-values for constituents from Table 5.1, and BRAGG(2) those obtained with the I-values according to Thompson from Table 5.2.
I _{expt} :	$^{\Delta I}$ expt :	$^{\Delta I}$ fit :

	∆I _{fit} BRAGG(1)	- 1.3%	- 1.0	4.4	0.2	- 0.4	- 0.8	0.0	2.2	2.7	9.0 -	0.4	- 0.2	- 2.0
spunoc	$^{\Delta I}$ expt	+ 5%	+ 2	+ 2	± 2	± 2	+ 2	+ 2	+ 2	+ 2	+ 2	+ 2	+ 2	+ 2
A. Gas Compounds	lexpt (eV)	53.7	48.3	85.0	45.4	49.2	49.1	41.7	87.8	84.9	49.5	48.2	47.1	71.6
	Footnote	a	q	0 4	q	q	q	đ	a	a	q	9	q	ø
	Compound	ammonia, NH ₃	butane, CaHlo	carbon dioxide, CO2	ethane, C ₂ H ₆	heptane, C _{7H16}	hexane, C ₆ H ₁₄	methane, CH ₄	nitric oxide, NO	nitrous oxide, N ₂ 0	octane, C ₈ H ₁₈	pentane, C ₅ H ₁₂	propane, C3H8	water, H ₂ 0

Footnotes for Table 5.3. A

|--|

^aFrom Zeiss *et al.* (1975, 1977a,b)

Table 5.3. Continued

ன்	Liquid Compounds	spunodu		
Compound	lexpt (eV)	$^{\Delta I}expt$	ΔI BRAGG(1)	$^{\Delta I}$ fit (1) BRAGG(2)
acetone, C ₃ H ₆ O	64.2	% **	3.0 %	- 0.4 %
aniline, C ₆ H ₅ NH ₂	66.2	ر ه د	0.2	0.1
benzene, C ₆ H ₆	63.4	د ا	4.0	0.1
n-butyl alcohol, C4HgOH	59.9	က +I	1.0	9.0
carbon tetrachloride, $CC\ell_4$	166.3	ص +1	1.5	0.1
72°	89.1	ده +۱	1.5	- 1.0
chloroform, $CHCk_3$	156.0	က +I	2.2	0.5
cyclohexane, C ₆ H ₁₂	56.4	ص +۱	0.2	0.0
1,2-dichlorobenzene, C ₆ H ₄ C _{1/2}	106.5	ص +ا	1.6	- 0.2
dichlorodiethyl ether, C4C22H80	103.3	+ 4	- 0.3	- 0.5
1,2-dichloroethane, $C_2C_2H_4$	111.9	+ 4	11.0	8.9
diethyl ether, $(C_2H_5)_2^0$	0.09	د ع	6.0	0.4
ethyl alcohol, C ₂ H ₅ OH	65.9	ص +۱	0.4	- 0.3
glycerol, $c_3 H_5 (OH)_3$	72.6	ص +۱	0.8	0.1
n-heptane, C ₇ H ₁₆	54.4	რ +I	0.1	- 0.1
n-hexane, C ₆ H ₁₄	54.0	ص +۱	0.2	0.0
methanol, CH ₃ OH	9.79	۴۱	- 1.9	- 2.7
nitrobenzene, C ₆ H ₅ NO ₂	75.8	د ۱+	2.2	4.8
n-pentane, C ₅ H ₁₂	53.6	د ۱+	0.2	- 0.1
n-propyl alcohol, C ₃ H ₇ OH	1.19	د ۱+	0.7	0.2
pyridine, C ₅ H ₅ N	66.2	ص +۱	3.3	0.0
styrene, C ₈ H ₈	64.0	۳ +۱	3.0	- 0.9
tetrachloroethylene, C_2C_4	159.2	ص +۱	0.3	- 2.1
toluene, C ₇ H ₈	62.5	ص +ا	2.9	- 0.1
trichloroethylene, C ₂ Ck ₃ H	148.1	د ع	1.0	- 0.9
water, H ₂ 0	75.0 ^a	ص +ا	0.4	6.0 -
xylene, C ₈ H ₁₀	8.19	د ا+	2.7	9.0

 $[^]b$ From Jhanwar et al. (1981)

 $^{^{\}rm C}$ From alpha-particle stopping-power measurements of Bichsel and Hilko (1980). Note that an analysis of the stopping-power results of Bader et~al. (1956) for protons with energies between 300 and 400 keV leads to a value of 88.7 \pm 7.1 eV.

 $d_{\rm From}$ Thomas and Meath (1977).

Table 5.3. Continued

Footnotes for Table 5.3. B

* Experimental I-value was obtained in our analysis of Thompson's (1952) measurement of partial proton ranges. ^{2}A compromise among the following experimental results: 75.4 \pm 1.9 eV from our analysis of Thompson's (1952) measurements relative to Cu, assuming $I_{\text{Cu}}=322$ eV; 74.6 \pm 2.7 eV from an analysis of the 61-MeV pion stopping-power measurements of Nordin and Henkelman (1979); 75 eV from Ritchie et aL. (1978); and 75.4 eV from J. Ashley (1982a), both values derived from empirically-based models of the dielectric-response function for liquid water.

Table 5.3. Continued

C. Solid Compounds

			:	:	
Compound	tnote	expt	Footnote lexpt ^{Δ1} expt	^{∆1} fit BRAGG(1) BR	^{∆l} fit BRAGG(1) BRAGG(2)
adenine, C _E H _S N _E	а	71.4	+ 2	2.9 %	4.1 %
guanine, C _c H _c N _c O	a	75.0	+	1.7	2.8
Nylon, type 6, (C ₆ H ₁₁ NO),	9	63.9	9+	1.7	2.9
paraffin wax, C ₂₅ H ₅₂	q	48.3	7 =	15.7	15.6
polyethylene, $(c_2H_4)_n$	o	57.4	8 0 +I	- 1.6	- 1.7
polymethyl methacrylate, (C _K H _R O ₂), d	, d	74.0	+ 4	- 4.2	- 6.3
polystyrene, (C ₈ H ₈),	w =	68.7	+ 4	4.1	- 6.5
A-150 tissue-equivalent plastic	q	65.1	∓ 16	- 1.5	
aluminum oxide, A2,03	4-0	145.2	+1	- 1.8	
calcium fluoride, ČaF,	В	991	& +i	- 4.7	
lithium fluoride, LiF	В	94	& +I	- 5.0	
photographic emulsion	n	331	က +I	- 3.0	
polytetrafluoroethylene, "Teflon," b	9	99.1	9+1	4.2	
لوک ^ا ر) silicon dioxide, SiO	4-	f 139.2	بر ا+	1.3	

Table 5.3. Continued

Footnotes for Table 5.3. C

 $^{2}\mathrm{From}$ dielectric-response function, J. Ashley (private communication, 1981).

 $^b{\rm From~61-MeV}$ pion stopping-power measurements relative to ${\rm H_2O}$ of Nordin and Henkelman (1979) assuming ${\rm I_{H_2O}}$ = 75.0 eV.

^CPainter et al. (1980) give a value 62.2 eV from their dielectric-response function measurements. Thompson's (1952) 267.5-MeV proton stopping-power measurements lead to a value of 52.5 \pm 1.5 eV. The adopted value 57.4 eV is an average.

 d Bichsel (private communication) has revised the Tschalär-Bichsel (1968) value for PMMA (see footnote f) from 74.2 to 73.5 eV by applying z^3 and z^4 corrections. Our analysis of the Nordin-Henkelman data (see footnote b) gives a value 74.4 \pm 4.7 eV. The adopted value, 74.0 eV, is an average.

 e The value 68.7 eV is from Ashley's (1979) evaluation of the dielectric-response function. This value is close to the average of 71 \pm 2 eV derived by Porter et $\alpha l.$ (1978) from proton stopping-power measurements at 2.2 - 5.9 MeV, and of 65.2 \pm 1.9 eV derived from Thompson's measurements at 267.5 MeV.

 $^{f}\mathrm{From}$ range measurements of Tschalär and Bichsel (1968) with 3- to 30-MeV protons.

 $^{9}{\rm From}$ stopping-power results of Bader et~al. (1956) for protons with energies between 300 and 400 keV.

 $^h{\rm From\ range\ measurements}$ of Barkas $et\ al.$ (1958) using various charged particles with equivalent proton energies up to 700 MeV.

Table 5.4. Mean excitation energies, water content and other properties of selected human tissues. For the tissues labeled "ICRP" the compositions, densities and water content were taken from Tables 105 and 108 of ICRP (1975). For the tissues labeled "ICRU" the composition was taken from ICRU (1964); because this reference does not give other properties, the densities and water content were assumed to be the same as for corresponding ICRP soft or bone tissue.

Substance	I (eV)	Density (g/cm ³)	<z a=""></z>	Water Content (% by weight)
H ₂ 0	75.0	1.00	0.55509	
ICRP adipose tissue	63.2	0.92	0.55847	15.3
ICRP skin	72.6	1.10	0.54933	61.5
ICRP brain	73.3	1.03	0.55423	78.6
ICRP testes	75.0	1.04	0.55108	80.0
ICRP blood	75.1	1.06	0.54995	80.0
ICRP lung	75.2	1.05	0.54965	78.0
ICRP skeletal muscle	75.3	1.04	0.54938	78.6
ICRP cortical bone	106.7	1.85	0.52130	15.0
ICRU striated muscle	74.6	1.04	0.55005	78.6
ICRU compact bone	92.1	1.85	0.53010	15.0

Table 5.5. Recommended mean excitation energies I for compounds and mixtures of the indicated composition.

Material	<z a=""></z>	Density* (g/cm ³)	I Gr§	(cc	Composition enstituent Z : fraction by weight)	
A-150 TISSUE-EQUIVALENT PLASTIC a	0.549031	1.127E+00	65.1 + B	1: 0.101327		052316
ACETYLENE, C ₂ H ₂	0.537680	1.097E-03	58.2 A	9: 0.017422 1: 0.077418	20: 0.018378 6: 0.922582	
AOIPOSE TISSUE (ICRP) b	0.558468	9.200E-01	63.2++B	1: 0.119477 11: 0.000500	6: 0.637240 7: 0.007970 8: 0.	232333
				17: 0.001190 30: 0.000020		000730
AIR, DRY (NEAR SEA LEVEL) C	0.499190	1.205E-03	85.7 A	6: 0.000124	7: 0.755267 8: 0.231781 18: 0.	012827
ALUMINUM OXIDE, AR ₂ O ₃	0.490382	3.970E+00	145.2+ A	8: 0.470749	13: 0.529251	A7000E
B-100 BONE-EQUIVALENT PLASTIC	0.527397	1.450E+00	85.9++B	1: 0.065471 9: 0.167411	6: 0.536945 7: 0.021500 8: 0. -20: 0.176589	.032035
BONE, COMPACT (ICRU)	0.530103	1.850E+00	91.9**B	1: 0.063984 12: 0.002000		.410016 .147000
BONE, CORTICAL (ICRP)	0.521299	1.850E+00	106.4**B	1: 0.047234 12: 0.002200 30: 0.000100		.446096 .209930
C-552 AIR-EQUIVALENT PLASTIC ^f	0.499687	1.760E+00	86.8++B	1: 0.024680 14: 0.003973	6: 0.501610 8: 0.004527 9: 0.	465209
CALCIUM FLUORIDE, CaF ₂	0.486700	3.180E+00	166.0+ B	9: 0.486659	20: 0.513341	
CARBON DIOXIOE, CO ₂	0.499889	1.842E-03	85.0 + A	6: 0.272916	8: 0.727084	
CELLULOSE NITRATE, C6H7.709.6N2.3 CERIC SULFATE OOSIMETER SOLUTION	0.514237	1.490E+00 1.030E+00	87.0 B	1: 0.029216		.578212
	0.332763	1.0302+00	76.7··A	1: 0.107596 58: 0.002001	7. 0.000800 8. 0.874776 18. 0.	.014627
CESIUM IODIDE, CSI		4.510E+00	553.1 C	53: 0.488451	55: 0.511549	
ETHYLENE, C ₂ H ₄ FERROUS SULFATE DOSIMETER SOLUTION ^h		1.175E-03 1.024E+00	50.7 A	1: 0.143711	6: 0.856289 7: 0.000027 8: 0.878636 11: 0.	.000022
GLASS, BOROSILICATE ("PYREX", CORNING 7740)		2.230E+00		16: 0.012968	17: 0.000034 26: 0.000054	
			134.0**A	5: 0.040061 14: 0.377220	19: 0.003321	.011644
"KAPTON" POLYIMIOE FILM, (C ₂₂ H ₁₀ N ₂ O ₅) _n LITHIUM FLUORIDE, L1F	0.512644	1.420E+00 2.635E+00	79.6 B	1: 0.026362 3: 0.267585	6: 0.691133 7: 0.073270 8: 0. 9: 0.732415	.209235
LITHIUM TETRABORATE, Li ₂ B ₆ O ₇	0.484869	2.440E+00	94.6 C	3: 0.082085	5: 0.255680 8: 0.662235	
METHANE, CH ₄	0.623340	6.672E-04	41.7+ A	1: 0.251306	6: 0.748694	
MUSCLE. SKELETAL (ICRP) ^b	0.549378	1.040E+00	75.3++A	1: 0.100637 11: 0.000750 17: 0.000790	12: 0.000190 15: 0.001800 16: 0	.754773 .002410 .000040
MUSCLE, STRIATED (ICRU)®	0.550051	1.040E+00	74.7.**A	30: 0.000050 1: 0.101997 11: 0.000800	6: 0.123000 7: 0.035000 8: 0	.729003 .005000
MUSCUE FOUTHALENT LYOURS HITH SUSPECT	A E48381	1 1105100	76 7444	19: 0.003000	6: 0.156214 7: 0.035451 8: 0	.710100.
MUSCLE-EQUIVALENT LIQUID, WITH SUCROSE MUSCLE-EQUIVALENT LIQUID, WITHOUT SUCROSE A	0.548281	1.110E+00 1.070E+00	74.3**A 74.2**A	1: 0.098234		.742522
NYLON. TYPE 6 AND TYPE 6/6, (C6H11ON)		1.140E+00	63.9+ A	1: 0.097976		.141389
PARAFFIN WAX, C ₂₅ H ₅₂	0.572748		55.9 B	1: 0.148605	6: 0.851395	
PHOTOGRAPHIC EMULSION 2	0.454532	3.815E+00	331.0+ A	1: 0.014100 16: 0.001890	*** * **** *** * **** * *** * *	.066101
PLASTIC SCINTILLATOR (VINYLTOLUENE BASED)	0.541415	1.032E+00	64.7 B	1: 0.085000		
POLYCARBONATE, "MAKROLON", (C16H14O3)		1.200E+00	73.1 B	1: 0.055491	6: 0.755751 8: 0.188758	
POLYETHYLENE, (C ₂ H ₄) _n	0.570337	9.400E-01	57.4+ B	1: 0.143711	6: 0.856289	
POLYETHYLENE TEREPTHALATE, O"MYLAR; (C10H804)			78.7 B			
POLYMETHYL METHACRYLATE, P (C ₅ H ₈ O ₂) _n		1.190E+00	74.0 + A			
POLYPROPYLEME, (C ₃ H ₅) _n POLYSTYREME, ^q (C ₈ H ₈) _n		9.000E-01 1.060E+00				
POLYTETRAFLUOROETHYLENE," "TEFLON", (C2F4)		2.200E+00			· · · · · · · · · · · · · · · · · · ·	
POLYVINYL CHLORIDE, (C2H3CL)n		1.300E+00		1: 0.048380	· ·	
PROPANE, C3H8	0.589620	1.879E-03	47.1 A	1: 0.182855	6: 0.817145	
SILICON DIOXIDE, SIO2	0.499298	2.320E+00	139.2+ A	8: 0.532565	14: 0.467435	
SODIUM 1001DE, NaI	0.426968	3.667E+00	452.0 C	11: 0.153373		
STILBENE, C ₁₄ H ₁₂		9.707E-01	67.7 B	1: 0.067101		606700
TISSUE-EQUIVALENT GAS (METHANE BASED)		1.064E-03				.406780
TISSUE-EQUIVALENT GAS (PROPANE BASED) ^T TOLUENE, C ₇ H ₈		1.826E-03 8.669E-01			·	
WATER, LIQUID, H ₂ O		1.000E+00				
WATER VAPOR, H ₂ O	0.555087	7.562E-04	71.6 * A	1: 0.111894	8: 0.888106	

Table 5.5 Footnotes

*Gas densities are for a pressure of 1 atm and a temperature of 20° C. Values for densities are taken from *Handbook* of Chemistry and Physics (1979), The Fordensed Chemical Distionary (1977), The *Heastor Handbook* (1960), manufacturers and suppliers literature, or from reports of other authors. Due to computer preparation of the tables, the densities are given to four figures, even though in some cases the values are significant to only two or three (usually indicated by the presence of terminal zeros); the number following the "E" indicates the power of 10. In some cases, the value given is nominal, representing the mid-point of a range of densities. Density enters into the calculation of the mass collision stopping power only in the evaluation of the density-effect correction.

[†]Unless indicated otherwise, the adopted mean excitation energies were obtained by the application of the Bragg additivity rule, Eq (5.3), using I-values for elemental constituents given in Table 5.1. A plus (+) indicates a direct experimental mean excitation energy for the compound, taken from Table 5.3. The mean excitation energies for air and methane-based TE gas are indicated as experimentally because these mixtures consist of constituents all of which have experimentally determined I-values. A double plus (++) indicates that the material was treated as a mixture of compounds, of which some -- but not all -- have experimentally determined I-values.

 $^\S{\rm The}$ letter grade A, B, or C following the I-value is a qualitative indication of the estimated uncertainty as discussed in the text.

 $^{\rm d}$ Smathers et~al.(1977) and Goodman (1978): 45.14% polyethylene ((C2H4)n), 35.32% nylon (duPont Elvamide 8062M), 16.06% carbon, and 3.85% calcium fluoride (CaF₂), by weight.

 $^b\mathrm{From\ Tables\ 105\ and\ 108\ of\ ICRP\ (1979).}$

^cHandbook of Chemistry and Physics (1979): 78.09% $\rm N_2$, 20.95% $\rm O_2$, 0.93% Ar, and 0.03% $\rm CO_2$, by volume.

 $^d{\rm ICRU~Report~26~(1977)}\colon 30.0\%$ polyethylene ((C2H4)n), 21.6% nylon (duPont Elvamide 8062M), 14.0% carbon, and 34.4% calcium fluoride (CaF2), by weight.

[©]Composition from ICRU Report 10b (1964). Water content and density taken from Table 10s of ICRP (1975). $f_{\rm ICRU}$ Report 26 (1977): 78.4% polyvinylidene fluoride ((C2H2F2)_n), 20.75% carbon, and 0.85% silicon dioxide (SiO_2), by weight.

 g 0.015 molar ceric anmonium sulfate in 0.8N sulfuric acid aqueous solution: 95.183% $\rm H_2$ 0, 3.914% $\rm H_2SO_4$, and 0.903% $\rm Ce(SO_4)_2$ * 2(NH $_4$) $_2$ SO $_4$ * 2H $_2$ 0, by weight.

 h 0.001 molar ferrous ammonium sulfate in 0.8N sulfuric acid aqueous solution. According to Greene, Major, and Law (1973): 96.0% h 20, 3.9% h 204, 0.039% Fe(NH₄)₂(SO₄)₂ $^+$ 6H₂0, and 0.006% NaC£, by weight.

 $^{\dot{\iota}}$ Hubbell (1969): 80.9% SiO₂, 12.9% B₂O₃, 3.8% Na₂O, 2.2% A $^{}$ L₂O₃, and 0.4% K₂O, by weight.

 j Rossi and Failla (1956): 56.9% H20, 28.4% glycerol (C₃H₈O₃), 7.6% urea (C0(NH₂)₂), and 7.1% sucrose (C₁₂H₂₂O₁₁), by weight.

 k Goodman (1969): 65.6% H₂0, 26.8% glycerol (C₃H₈O₃), and 7.6% urea (CO(NH₂)₂) by weight.

standard nuclear research emulsion, as given in Table 3.5.1 of Barkas (1958).

"Composition (based on vinyltoluene, C9H1Q) and density is characteristic of "NE 102", "NE 110," "NE 111," "NE 113," "NE 114," "Pilot B," "Pilot F," "Pilot U," and "Pilot Y" plastic scintillators produced by Nuclear Enterprises, Inc.

'Also known as "Lexan".

PAlso known as "Melinex".

PAlso known as "Lucite," "Plexiglas," "Perspex," PMMA resist.

^qAlso known as "Styrofoam," "Styron".

"Also known as "Halon".

 $^{\rm S}{\rm Rossi}$ and Failla (1956): 64.4% methane (CH $_{\rm 4}$), 32.4% CO $_{\rm 2}$, and 3.2% N $_{\rm 2}$, by volume.

 t Srdoč (1970): 55.0% propane (C $_3$ H $_8$), 39.6% CO $_2$, and 5.4% N $_2$, by volume.

"Nitrated cellulose, with approximate composition ($C_6H_10^0S_5$) - 2.3(0H) + + 2.3 (0NO₂), used in the preparation of plastics (celluloid) and lacquers; from page 728 of Streitweiser and Heathcock (1976).

Comparison of mean excitation energies for compounds recommended in various publications. Values are given in eV. Table 5.6.

Material	Formula	Adopted here	Pages <i>et al.</i> (1972)	Dalton and Turner (1968)	NAS-NRC (1964)	Brandt (1958)
propane, liquid	C3H8	52.0 ± 3.9	50.4	51.2	50.3	51.5
polyethylene	(C ₂ H ₄) _n	57.4 [†] ± 4.6	54.7	55.8	54.6	59.6
nylon, type 6/6	$(c_6H_{11}^{ON})_n$	$63.9^{\dagger} \pm 2.6$	62.3	ı	ı	62.0
polystyrene	(C ₈ H ₈)	68.7^{+} 2.7	63.7	65.5	63.6	65.1
polymethyl methacrylate	$(c_5 H_8 0_2)_n$	74.0 [†] ± 1.5	65.7	69.2	9.59	0.69
water, liquid	H ₂ 0	75.0 [†] ± 3.0	65.3	71.3	65.1	72.5
polyoxymethylene	(cH ₂ 0) _n	77.4 ± 5.8	8.69		•	9.97
air		85.7 [‡] ± 1.7	8.38	92.9	8.98	•
polyvinyl chloride	(c ₂ H ₃ c _k) _n	108 ± 8	112.5	•	1	112.7
saran	$(c_2 H_2 c_2)_n$	134 ± 10	1	ı	•	145.6
"Freon-1381"	CF ₃ Br	210 ± 25	•	1	204.7	171.6
photographic emulsion		331 [†] ± 10	ı		320	263.1
sodium iodide	NaI	452 ± 50	433	411	433	•
cesium iodide	CsI	553 ± 65	523	1		,

[†]Experimental value (see Table 5.3).

Table 5.7. Dependence of the mean excitation energy on the state of aggregation of the medium.

Substance		Mean E	excitation	Energy	/ I (eV))	
	Atomic gas ^a (a)	Molecular gas ^b (b)	Liquid ^c (c)	Solid ^đ (d)	(b)/(a)	Ratios (c)/(b)	(d)/(a)
1 _H	15.0	19.2	21.8		1.28	1.14	
⁶ c	62.0			78			1.26
⁷ N	76.9	82.0	90.5		1.07	1.10	
8 ₀ 13 _A l	93.5	95.0	104.3		1.02	1.10	
	124			166			1.34
¹⁴ Si	132			173			1.32
	182			233			1.28
²⁶ Fe	226			286			1.26
29 _{Cu}	274			322			1.18
32 _{Ge}	292			350			1.20
H ₂ 0		71.6	75.0			1.05	
C ₃ H ₈ , propane		47.1	52.0			1.10	
C ₅ H ₁₂ , pentane		48.2	53.6			1.11	
C ₆ H ₁₄ , hexane		49.1	54.0			1.10	
C7H ₁₆ , heptane		49.2	54.4			1.11	

^aTheoretical: from Brown (1950) for H; from Dehmer *et al.* (1975) for C, N, 0, A ℓ , and Si; and from Inokuti *et al.* (1981) for Ti, Fe, Cu, and Ge.

^bFrom Tables 3.1, 5.3, and 5.5.

^cFrom Tables 4.2 and 5.3.

dFrom Table 5.5.

Table 6.1 Percent reduction of collision stopping power due to density effect calculated according to the method of Sternheimer.

xe ρ=5.485×10 ⁻³ g/cm ³	8.3	0.9	3.4	1.8	0.7	0.0							
air p=1.205x10 ⁻³ g/cm ³	.11.8	9,3	5.0	3.4	1.0								
Au ρ=19.32 g/cm ³	27.4	25.0	21.5	18.7	15.7	11.9	1.6	6.5	3.6	2.1	1.2	0.5	0.2
H ₂ 0 (liquid) P=1.0 g/cm ³	29.3	27.2	24.1	21.5	18.6	14.6	11.5	8.2	3.9	1.2			
graphite ^{b} $p=2.265 \text{ g/cm}^3$	30.9	29.0	26.0	23.5	20.6	16.4	13.3	10.4	6.7	4.1	2.2	0.8	0.3
graphite $^{\alpha}$ p=1.70 g/cm ³	30.2	28.2	25.2	22.6	19.7	15.6	12.6	9.7	6.1	3.7	1.9	9.0	0.3
	1000	200	200	100	20	20	10	2	2	_	0.5	0.2	0.1

 $^{a}\mathrm{Typical}$ bulk density of reactor-grade graphite $^{b}\mathrm{Graphite}$ crystallite density

Table 7.2. $L^-(T,\Delta)/S^-_{col}(T).$ Results were calculated using density-effect corrections obtained from Sternheimer's method. Ratio of restricted to total collision stopping power for electrons Table 7.1.

 $L^+(T,\Delta)/S_{col}^+(T)$. Results were calculated using density-effect corrections obtained from Sternheimer's method.

Ratio of restricted to total collision stopping power for positrons,

Air		0.8061 0.7316 0.6570	0.8213 0.7436 0.6659	0.8395 0.7552 0.6705	0.8546 0.7637 0.6721	0.8728 0.7747 0.6752	0.9028 0.7947 0.6830	0.9285 0.8139 0.6921	0.9526 0.8334 0.7020	0.9784 0.8561 0.7131	1.0000 0.8744 0.7222	1.0000 0.8994 0.7354	1.0000 0.9480 0.7627	1.0000 1.0000 0.7925
н ₂ 0	(liquid)	0.7623 0.6709 0.5795	0.7836 0.6896 0.5954	0.8131 0.7149 0.6163	0.8369 0.7349 0.6322	0.8627 0.7568 0.6494	0.9001 0.7890 0.6742	0.9286 0.8141 0.6925	0.9533 0.8360 0.7065	0.9787 0.8585 0.7179	1.0000 0.8766 0.7271	1.0000 0.9013 0.7404	1.0000 0.9491 0.7677	1.0000
2		0.7371	0.7576	0.7856	0.8085	0.8338	0.8723	0.9047	0.9355	0.9697	1.0000	1.0000	1.0000	1.0000
A ₉		0.7388	0.7602	0.7897	0.8136 0.6971	0.8392	0.8779	0.9100	0.9399	0.9722	1.0000	1.0000	1.0000	1.0000
3		0.7403	0.7619	0.7917	0.8156 0.7003	0.8421	0.8818	0.9137	0.9429	0.9739	1.0000	1.0000	1.0000	1.0000
Αĉ		0.7535 0.6587 0.5639	0.7751 0.6774 0.5796	0.8053 0.7030 0.6003	0.8297 0.7232 0.6160	0.8556 0.7442 0.6312	0.8926 0.7731 0.6496	0.9217 0.7960 0.6626	0.9482 0.8181 0.6745	0.9764 0.8426 0.6861	1.0000 0.8620 0.6947	1.0000 0.8886 0.7070	1.0000 0.9416 0.7335	1.0000 1.0000 0.7636
ر ن	(1.7 g/cm ³)	0.7583 0.6654 0.5725	0.7801 0.6845 0.5888	0.8104 0.7107 0.6107	0.8344 0.7308 0.6265	0.8599 0.7518 0.6421	0.8973 0.7830 0.6650	0.9265 0.8085 0.6833	0.9522 0.8320 0.6995	0.9785 0.8569 0.7147	1.0000 0.8757 0.7250	1.0000 0.9006 0.7387	1.0000 0.9488 0.7662	1.0000 1.0000 0.7960
	(keV) (1	00 00 1	9 9 1	5 5 -	9 9 1	9 2 1	00 01 10	90°-	82-	92 62 -	00 00 1	00 01 01	2 100 1	100 10 1
-	(MeV)	90	20	50	9	ស	2	-	0.5	0.2	0.1	0.05	0.02	0.01
Air		0.7895 0.7164 0.6434	0.8038 0.7277 0.6516	0.8205 0.7377 0.6550	0.8344 0.7450 0.6557	0.8520 0.7550 0.6579	0.8836 0.7750 0.6658	0.9149 0.7973 0.6776	0.9505 0.8259 0.6951	1.0000 0.8699 0.7247	1.0000 0.9058 0.7503	1.0000 0.9435 0.7789	1.0000 1.0000 0.8237	1.0000 1.0000 0.8650
	(liquid)	0.7431 0.7895 0.6540 0.7164 0.5649 0.6434												
	(liquid)													
н ₂ 0	(liquid)	0.7431 0.6540 0.5649	0.7635	0.7917 0.6957 0.5998	0.8148 0.7149 0.6149	0.8406 0.7361 0.6315	0.8805 0.7689 0.6568	0.9150 0.7976 0.6780	0.9512 0.8285 0.6997	1.0000 0.8721 0.7294	1.0000 0.9076 0.7549	1.0000 0.9446 0.7833	1.0000 1.0000 0.8278	1.0000 1.0000 0.8686
Pb H ₂ 0	(liquid)	0.7167 0.7431 0.6540 0.5649	0.7358 0.7635 0.6717 0.5800	0.7620 0.7917 0.6957 0.5998	0.7836 0.8148 0.7149 0.6149	0.8081 0.8406 0.7361 0.6315	0.8483 0.8805 0.7689 0.6568	0.8873 0.9150 0.7976 0.6780	0.9329 0.9512 0.8285 0.6997	1.0000 1.0000 0.8721 0.7294	1.0000 1.0000 0.9076 0.7549	1.0000 1.0000 0.9446 0.7833	1.0000 1.0000 1.0000 0.8278	1.0000 1.0000 1.0000 0.8686
Ag Pb H ₂ 0	(liquid)	0.7184 0.7167 0.7431 0.6207 0.5540 0.5649	0.7404 0.7385 0.7358 0.7635 0.6397 0.6371 0.6177 0.5800	0.7685 0.7665 0.7620 0.7917 0.6618 0.6588 0.6957 0.5998	0.7914 0.7892 0.7836 0.8148 0.6788 0.6754 0.7149 0.6149	0.8174 0.8142 0.8081 0.8406 0.6977 0.6924 0.7361 0.6315	0.8592 0.8547 0.8483 0.8805 0.7277 0.7192 0.7689 0.6568	0.8977 0.8935 0.8873 0.9150 0.7564 0.7462 0.7976 0.6780	0.9405 0.9374 0.9329 0.9512 0.7907 0.7799 0.8285 0.6997	1.0000 1.0000 1.0000 1.0000 0.8721 0.8721 0.7294	1.0000 1.0000 1.0000 1.0000 0.9076 0.8841 0.8759 0.37549	1.0000 1.0000 1.0000 1.0000 0.946 0.9289 0.9232 0.946	1.0000 1.0000 1.0000 1.0000 1.0000 0.8278	1.0000 1.0000 1.0000 1.0000 1.0000 0.8686
$A\ell$ Cu Ag Pb H_2^0		0.7200 0.7184 0.7167 0.7431 0.6229 0.6207 0.5640 0.5649	0.7545 0.7404 0.7385 0.7358 0.7635 0.6592 0.6397 0.6371 0.6717 0.5640 0.5800	0.7833 0.7685 0.7665 0.7620 0.7917 0.6835 0.6618 0.6588 0.6957 0.5836 0.6518 0.6588	0.8068 0.7914 0.7892 0.7836 0.8148 0.7026 0.6788 0.6754 0.7149 0.5984 0.6149	0.8325 0.8174 0.8142 0.8081 0.8406 0.7228 0.6977 0.6924 0.7361 0.6129 0.6315	0.8717 0.8592 0.8547 0.8483 0.8805 0.7520 0.7277 0.7192 0.7689 0.6316 0.6568	0.9070 0.8977 0.8935 0.8873 0.9150 0.7784 0.7564 0.7462 0.7976 0.6475	0.9460 0.9405 0.9374 0.9329 0.9512 0.8100 0.7907 0.7799 0.8285 0.6672 0.697	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8574 0.8422 0.8322 0.8721 0.6984 0.7294	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8961 0.8841 0.8759 0.9076 0.7245	1.0000 1.0000 1.0000 1.0000 1.0000 0.9370 0.9289 0.9232 0.9446 0.7536 0.7833	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8278	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8686
$A\ell$ Cu Ag Pb H_2^0	(keV) (1.7 g/cm ³) (liquid)	0.7338 0.7200 0.7184 0.7167 0.7431 0.6415 0.6229 0.6207 0.6540 0.5492 0.6549	0.7545 0.7404 0.7385 0.7358 0.7635 0.6592 0.6397 0.6371 0.6717 0.5640 0.5800	0.7833 0.7685 0.7665 0.7620 0.7917 0.6835 0.6618 0.6588 0.6957 0.5836 0.6518 0.6588	0.8120 0.8068 0.7914 0.7892 0.7836 0.8148 0.7106 0.7026 0.6788 0.6754 0.7149 0.6091 0.5984 0.6149	0.8374 0.8325 0.8174 0.8142 0.8081 0.8406 0.7308 0.7228 0.6977 0.6924 0.7361 0.6129 0.6129	0.8717 0.8592 0.8547 0.8483 0.8805 0.7520 0.7277 0.7192 0.7689 0.6316 0.6568	0.9070 0.8977 0.8935 0.8873 0.9150 0.7784 0.7564 0.7462 0.7976 0.6475	0.9460 0.9405 0.9374 0.9329 0.9512 0.8100 0.7907 0.7799 0.8285 0.6672 0.697	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8574 0.8422 0.8322 0.8721 0.6984 0.7294	1.0000 1.0000 1.0000 1.0000 1.0000 0.9076 0.8961 0.8841 0.8759 0.9076 0.7245	1.0000 1.0000 1.0000 1.0000 1.0000 0.9370 0.9289 0.9232 0.9446 0.7536 0.7833	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8278	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8439 0.8686

Table 8.1 Comparison of experimental and calculated collision stopping powers in air and collodion. Results are given in units of $MeV/(g\ cm^{-2})$.

	Calc	culated Results	5	Experimental Results of Cole (1969)
T (keV)	cellulose nitrate	air ^a	air ^b	collodion & air ^c
10 0	3.74	3.63		
60	5.26	5.11		5.3
40	7.04	6.85		7.1
20	11.9	11.6		12.0
10	20.3	19.8	20.4	20
6	30.0	29.2	30.1	29
4	40.6	39.5	40.5	39
2	66.8	65.0	65.8	65
1	105	103	97.9	106
0.6	141	137	139	145
0.4	170	166	170	170
0.2			216	230
0.1			218	260
0.06			170	260
0.04			104	140
0.02			26.0	110

 $[^]a$ According to Bethe theory, Eq (2.16). In the comparison, cellulose nitrate is considered equivalent to collodion (see footnote 18).

 $[^]b$ Green (see footnote 17).

 $^{^{}c}$ Cole's results are the same for collodion and air.

Table 8.2 Collision stopping power, in MeV/(g cm $^{-2}$), for low-Z materials, calculated according to the Bethe formula, Eq (2.16), at energies from 10 to 1 keV.

T (keV)	Н ₂	He	Be	C graph		N ₂		02	Ne	e A	ı	Si	Ar
10 8 6 5 4 3 2 1.5	51.3 61.9 77.8 90.2 108 136 188 235 321	5 27.1 3 34.0	22.2 27.7 31.9 37.8 46.9	2 23 7 29 9 34 8 40 9 50 0 66	.9 .8 .3 .5 .1 .9	20.0 23.7 29.5 33.9 40.0 49.4 66.0 80.3		19.4 23.0 28.6 32.7 38.6 47.5 63.1 76.5 98.6	20. 25. 29. 34. 42. 55.	9 19 9 23 5 27 6 31 3 38 4 50 2 59	.4 .9 .2 .8 .7 .2	27.9 32.5 39.5 51.1 60.5	15.0 17.6 21.6 24.6 28.7 34.7 44.7 52.7 64.7
	T (keV) ;	A-150 a plastic	cetylene	adipose tissue	Air		Al ₂ 03		B-100 lastic	bone (ICRU)	bone (ICRP	C-552) plastic	
	10 8 6 5 4 3 2 1.5	22.9 27.3 34.1 39.2 46.5 57.6 77.5 94.9	23.0 27.3 34.2 39.4 46.7 58.0 78.2 96.1	23.5 27.9 34.9 40.2 47.6 59.1 79.5 97.4 128	19.8 23.5 29.2 33.5 39.5 48.8 65.0 79.0		17.3 20.4 25.2 28.8 33.7 41.1 53.7 64.1 80.3		20.9 24.8 30.8 35.4 41.8 51.5 68.7 83.5	20.7 24.5 30.5 35.0 41.2 50.8 67.5 81.9	19.7 23.3 29.0 33.2 39.0 47.9 63.4 76.5 98.0	19.7 23.4 29.1 33.4 39.5 48.7 64.8 78.8	
	T (keV)	CaF ₂	co ₂ - c	cellulose nitrate		?	thylen	S	errous ulfate olution	glass (Pyrex)	Kaptoi	n LiF	
	10 8 6 5 4 3 2 1.5	16.7 19.6 24.2 27.5 32.2 39.1 50.7 60.2 74.6	19.6 23.3 29.0 33.3 39.3 48.4 64.4 78.2	20.3 24.1 30.0 34.4 40.6 50.1 66.8 81.2	22.4 26.6 33.1 38.0 45.0 55.6 74.4 90.7		25.0 29.8 37.3 43.0 51.1 63.7 86.1 106		22.4 26.6 33.2 38.1 45.1 55.8 74.6 90.9	17.9 21.1 26.1 29.8 34.9 42.7 55.9 67.0 84.5	20.6 24.5 30.5 35.0 41.4 51.2 68.3 83.3 108	18.0 21.3 26.5 30.4 35.8 44.1 58.6 71.0 91.6	
T (keV)	methane	muscle (ICRP)	muscle (ICRU)	ME (with	liquid sucrose)	ME liq (witho su c ro	ut	nylor type 6			plastic intillator	poly- carbonate
10 8 6 5 4 3 2 1.5	28.3 33.8 42.4 49.0 58.3 72.8 98.9 122 163	22.3 26.5 33.1 38.0 44.9 55.6 74.4 90.7	22.4 26.6 33.2 38.1 45.1 55.8 74.6 91.1	2 3 3 4 5	2.3 6.5 3.1 8.0 5.0 5.7 4.5 1.0		22.4 26.6 33.2 38.2 45.2 55.9 74.8 91.3		23.0 27.4 34.2 39.3 46.6 57.8 77.7 95.2	25.3 30.2 37.9 43.7 51.9 64.6 87.6 108 143		22.7 27.0 33.7 38.7 45.9 56.9 76.5 93.7	21.5 25.6 31.9 36.7 43.4 53.7 71.9 87.8
	T (keV)	poly- ethylene	PMMA		oly- pylene		poly styre		Teflor	PVC		propane	
	10 8 6 5 4 3 2 1.5	24.4 29.1 36.4 41.9 49.7 61.8 83.3 102 135	22.0 26.1 32.6 37.4 44.3 54.8 73.4 89.6	2 3 4 4 6 8	3.8 8.4 5.5 0.9 8.5 0.2 1.1 9.5		22.2 26.4 33.0 38.0 44.9 55.7 74.7 91.4		18.4 21.8 27.1 31.1 36.6 45.1 59.8 72.3 93.0	19.3 22.9 28.4 32.4 38.2 46.9 62.0 74.8 95.7		26.2 31.2 39.2 45.2 53.7 66.9 90.7 112	
	T (keV)	Si0 ₂	stilben	(me	gas thane sed)		TE ga (propa based	ne	toluene	e wate (liqui		water vapor	
	10 8 6 5 4 3 2 1.5	17.8 21.0 26.0 29.6 34.7 42.4 55.5 66.3 83.4	22.1 26.3 32.8 37.7 44.7 55.4 74.3 90.9	2 3 3 4 5 7	3.2 7.6 4.5 9.6 7.0 8.3 8.5 6.2		23.3 27.8 34.7 40.0 47.4 58.9 79.3 97.2		22.9 27.2 34.0 39.1 46.4 57.6 77.4 94.9	22.6 26.8 33.4 38.4 45.4 56.2 75.2 91.8		22.8 27.1 33.8 38.8 45.9 56.9 76.2 93.1	

is Dependence of the c.s.d.a. range on the assumed residual range at 1 keV. The quantity given is the ratio $\rm r_o/r_o$. The value $\rm r_o$ is calculated according to Eq (10.2). The more accurate value obtained by computing the residual range using stopping powers from Figs. 8.1, 8.3, or 8.5. Table 10.1.

Material	Tf			T_0 , keV			
	(ev)	_	2	2	10	20	50
H20a	4.5	302	84.4	17.8	5.96	2.46	1.29
H20ª	12.6	1.78	1.22	1.043	1.013	1.004	1.001
$polystyrene^b$	10.0	1.31	1.087	1.017	1.005	1.002	1.000
$A \ell \ell^{C}$	10.0	1.71	1.20	1.044	1.014	1.004	1.001
Au ^d	10.0	0.851	0.941	0.980	0.992	0.997	0.999

 $\alpha_{\rm Curve}$ 1, Fig. 8.1.

 b Curve 3, Fig. 8.3.

^cCurve 2, Fig. 8.5.

 $d_{\rm Curve~4,~Fig.~8.5.}$

Table 11.1 Positron/electron collision stopping power and range ratios. The density-effect correction was taken from Inokuti and Smith (1982) for At, from Ashley (1982b) for H₂O, and was calculated according to Sternheimer for the other materials.

	Air	0.981	0.981	0.980	0.979	0.978	0.977	976.0	0.974	0.975	0.979	0.990	1.016	1.039	1.060	1.086	1.104
	H ₂ 0 (liq.)	0.977	0.976	0.975	0.975	0.974	0.973	0.973	0.972	0.974	0.979	0.990	1.016	1.039	1.059	1.084	1.101
	Pb	0.975	0.974	0.973	0.973	0.971	0.969	0.968	0.968	0.968	0.973	0.989	1.025	1.059	1.094	1.144	1.192
S _{co1} (T)/S _{co1} (T	A9	0.975	0.974	0.973	0.972	0.972	0.971	0.969	0.969	0.969	0.975	0.989	1.023	1.054	1.083	1.123	1.158
S _{co1} (no	0.975	0.974	0.973	0.973	0.972	0.971	0.971	0.970	0.971	0.977	0.991	1.023	1.051	1.077	1.112	1.142
	A&	0.976	0.976	0.975	0.974	0.973	0.972	0.971	0.971	0.972	0.977	0.989	1.018	1.043	1.067	1.097	1.119
	(1.7 g/cm ³)	0.976	0.976	0.975	0.974	0.974	0.972	0.972	0.972	0.974	0.978	0.990	1.016	1.039	1.060	1.084	1.102
	T (MeV) (1	1000	200	200	100	20	50	10	2	2	_	0.5	0.2	0.1	0:05	0.05	0.01

Air	1.009	1.014	1.020	1.022	1.023	1.022	1.017	1.007	0.991	996.0	0.947	0.930	0.908	0.892
H20 (1iq.)	1.010	1.016	1.022	1.025	1.025	1.023	1.017	1.007	0.992	0.967	0.948	0.931	0.911	0.895
Pb	1.007	1.009	1.014	1.017	1.020	1.021	1.016	1.005	0.985	0.948	0.917	0.882	0.824	0.756
$r_0^+(T)/r_0^-(T)$	1.008	1.01	1.016	1.020	1.023	1.022	1.017	1.006	0.987	0.953	0.926	0.900	0.862	0.822
Cu	1.008	1.012	1.017	1.021	1.023	1.023	1.017	1.005	0.987	0.955	0.932	0.909	0.876	0.846
Aß	1.009	1.014	1.021	1.024	1.025	1.024	1.017	1.007	0.991	0.962	0.940	0.921	0.895	0.873
C 1.7 g/cm ³)	1.010	1.016	1.023	1.025	1.025	1.024	1.017	1.007	0.991	996.0	0.947	0.931	0.910	0.894
T (MeV) (1000 500	200	20	20	10	2	2	_	0.5	0.2	0.1	0.05	0.02	0.01

Table 11.2 Comparison of positron/electron collision stopping-power ratios and restricted-stopping-power ratios in liquid water. Results were calculated using density-effect corrections obtained from Sternheimer's method.

—	$S_{CO1}^{+}(T)/S_{CO1}^{-}(T)$		$L^{+}(T,\Delta)/L^{-}(T,\Delta)$	
(MeV)		∆=100 keV	Δ=10 keV	∆=1 keV
100	0.975	1.000	1.000	1.000
10	0.973	0.999	1.000	1.000
_	0.979	0.994	0.999	1.000
0.5	0.990	0.992	0.999	1.000
0.2	1.016	0.994	1.000	1.000
0.15	1.025	1.012	1.001	1.000
0.1	1.039	1.039	1.003	1.000
0.05	1.059	1.059	1.011	1.001
0.05	1.083	1.083	1.028	1.005
0.015	1.090	1.090	1.056	1.007
0.01	1.101	1.101	1.101	1.011

materials. Results for graphite were calculated using a density Comparison of experimental and calculated total stopping powers. The density-effect correction was taken from Ashley (1982b) for ${\rm H}_2{\rm O},$ and was calculated according to Sternheimer for the other of 1.7 g/cm³. Table 11.3

		S, MeV/	S, MeV/(g cm ⁻²)	
Material	Electron Energy (MeV)	Calculated	Experimental	Ref.
Be	2.8	1.49	1.45 ± 0.06	a
	4.7	1.55	1.73 ± 0.12	а
	32	2.03	2.0 ± 0.1	p
graphite	2.8	1.65	1.53 ± 0.08	a
(1.7 g/cm ³⁾	4.7	1.72	1.89 ± 0.16	a
	32	2.44	2.4 ± 0.1	p
a.	2.8	1.46	1.43 ± 0.10	a
	4.7	1.62	1.94 ± 0.19	ø
P _b	2.8	1.38	1.32 ± 0.10	a
	4.7	1.66	2.04 ± 0.22	a
liquid H ₂ 0	2.8	1.88	1.83 ± 0.10	a
	4.7	1.96	2.43 ± 0.20	a

 $^{^{\}it a}$ Experimental results of Paul and Reich (1950).

Comparison of experimental and calculated stopping-power ratios. Results pertain to total stopping power including collision and radiation losses. The density-effect correction was taken from Inokuti and Smith (1982) for $\mathbb{A}^{\mathbb{Z}}$, from Ashley (1982b) for H_2O , and was calculated according to Sternheimer for the other materials. Table 11.4

	Electron	Stopping-Power Ratio	wer Ratio
Materials	Energy (MeV)	Calculated	Experimental Westermark (1961)
Li/Be	2.8	1.029	1.051 ± 0.021
graphite ^a /Be	2.8	1.104	1.090 ± 0.022
Na/Be	2.8	1.068	1.073 ± 0.022
Mg/Be	2.8	1.088	1.092 ± 0.016
A½/Be	2.8	1.050	1.050 ± 0.016
Si/Be	2.8	1.085	1.059 ± 0.016
K/Be	2.8	1.079	1.066 ± 0.020
LiH ^b /Be	2.8	1.176	1.167 ± 0.018
liquid H ₂ O/A&	2.8	1.200	1.224 ± 0.013
n-heptane c /A lpha	2.8	1.272	1.263 ± 0.019
methanol ^d /Al	2.8	1.224	1.216 ± 0.019
benzene ^e /Al	2.8	1.168	1.178 ± 0.018
toluene f /A $^{\ell}$	2.8	1.180	1.187 ± 0.018
	Electron	Stopping-Power Ratio	ower Ratio
Materials	Energy (MeV)	Calculated	Experimental Hereford (1948)
liquid H ₂ O/graphite	1.4	1.145	1.17 ± 0.02
	1.6	1.143	1.16 ₹ 0.02
	7.4	1.134	1.16 ± 0.02
	0.6	1.133	1.14 ± 0.02

Density 1.7 g/cm³.

 b Actual composition 96.0% LiH, 3.25% Li, and 0.75% Na by weight (Westermark, 1961). Density 0.82 g/cm³; $\langle Z/A\rangle = 0.50072;$ I = 37.0 eV.

 $^{\text{C}}_{7}_{\text{H}_{1}}_{\text{G}}$; density 0.68376 g/cm³; $\langle Z/A \rangle = 0.57882$; I = 54.4 eV. $^{\text{C}}_{4}_{\text{CH}_{3}}$ 0H; density 0.7914 g/cm³; $\langle Z/A \rangle = 0.56176$; I = 67.6 eV.

 $\langle Z/A \rangle = 0.53768; I = 63.4 eV.$ ec₆H₆; density 0.87865 g/cm³;

⁷C₆H₅CH₃; density 0.8669 g/cm³; ⟨Z/A⟩ = 0.54265; I = 62.5 eV.

 $^{^{}b}$ Experimental results of Ziegler (1958).

Table 11.5 Comparison of data given in earlier electron stopping-power and range tables with results of the present work. The comparisons are presented in terms of the percent deviations of the results given by Berger and Seltzer (1964) and of Pages et al. (1972) from the results calculated here, for the collision stopping power, radiative stopping power, total stopping power, csda range and radiation yield.

Percent Deviations for Water (liquid)

			Stoppin	g Power			cs Ran	da	Radia	
	Co11	ision	Radi	ative	To	tal	Kuii	ye.	1 '''	· i u
T (MeV)	$\frac{1}{\rho}$ S _c	o1(T)	$\frac{1}{\rho}$ S _r	ad ^(T)	$\frac{1}{\rho}$ S	(T)	r	(T)	Y(T)
(1.01)	B&S	Pages	B&S	Pages	B&S	Pages	B&S	Pages	B&S	Pages
0.01	2.8	2.8	30.0	29.1	2.8	2.7	-3.1	-14.3	32.3	15.3
0.1	2.0	1.9	22.6	25.6	2.0	1.9	-2.2	-2.3	18.7	20.3
1	1.7	1.6	34.9	38.1	1.9	1.9	-1.9	-1.9	35.5	39.2
10	1.2	2.7	0.8	-0.6	1.2	2.5	-1.7	-2.2	2.4	1.0
100	0.0	5.1	-1.3	2.3	-0.6	3.6	-0.2	-2.8	-0.8	-2.2
1000	0.0		-1.9		-1.7		0.8		-0.3	

aDensity effect calculated according to Sternheimer in B&S, Pages; according to Ashley (1982b) in present work.

Percent Deviations for Air

0.01	-0.3	-0.3	28.6	27.6	-0.3	-0.3	0.3	-11.9	35.2	16.7
0.1	-0.2	-0.2	21.0	24.2	-0.1	-0.2	0.2	0.0	20.0	21.6
1	-0.1	-0.2	34.3	38.3	0.1	0.1	0.0	-0.1	37.4	41.5
10	-0.1	-0.1	0.8	-0.7	0.0	-0.2	-0.1	0.0	4.1	3.4
100	0.7	-1.3	-1.3	2.2	-0.3	0.4	0.2	0.6	-0.9	1.3
1000	0.0		-1.9		-1.8		0.8		-0.4	

Percent Deviations for $Aluminum^b$

			Stoppin	g Power			cs Ran	da	Radia Yie	
	Co11	ision	Radi	ative	To	tal	Kai	ige	1	ıu
T (MeV)	$\frac{1}{\rho}$ S _C	o1 ^(T)	$\frac{1}{\rho}$ s _r	ad ^(T)	$\frac{1}{\rho}$ S	(T)	r	(T)	Y(T)
(1101)	B&S	Pages	B&S	Pages	B&S	Pages	B&S	Pages	B&S	Pages
0.01	0.5	-0.6	31.1	30.0	0.5	-0.6	-0.6	-13.8	40.8	22.0
0.1	0.4	-0.5	21.8	24.1	0.4	-0.5	-0.4	0.2	18.4	21.0
1	0.5	-0.6	38.4	41.2	1.0	0.0	-0.9	0.1	39.6	44.2
10	-0.1	0.0	0.4	-1.2	0.0	-0.2	-0.3	-0.1	3.6	2.6
100	0.2	0.4	-0.1	2.8	0.0	2.0	0.0	-0.2	-0.2	0.2
1000	0.1		-0.3		-0.3		0.0		0.0	

^bDensity effect calculated according to Sternheimer in B&S, Pages; according to Inokuti and Smith in present work.

Percent Deviations for Gold

0.01	-0.3	-0.4	115.3	104.7	0.0	-0.1	0.3	-27.3	176.7	108.7
0.1	0.0	-0.2	32.9	35.2	0.7	0.6	-0.4	-1.1	42.2	43.4
1	1.4	0.0	27.3	31.3	4.3	3.5	-3.0	-2.5	26.9	31.0
10	1.6	0.3	5.6	1.3	3.5	0.8	-4.3	-1.2	6.2	2.1
100	0.6	0.5	1.3	2.3	1.2	2.2	-2.2	1.4	0.3	-0.5
1000	0.1		1.0		1.0		-1.7		0.0	

Fig. 3.1. Percent increase (decrease) of the collision stopping power for electrons resulting from a 1-percent decrease (increase) of the mean excitation energy.

Fig. 3.2. Theoretical mean excitation energies for elements.

Fig. 3.3. Relative contribution of the shell correction C/Z, Barkas correction zL, Bloch correction z^2L_Z, and density-effect correction $\delta/2$ to the stopping number L for protons (z = 1) in gold.

Fig. 3.4. Shell corrections for protons as functions of the atomic number. The solid curves represent the semi-empirical shell corrections of Bichsel, and the dashed curves the theoretical shell corrections of Bonderup (1967).

Fig. 3.5. Semi-empirical shell corrections of Bichsel for selected elements, as functions of the proton energy.

Fig. 4.1. Ratio of the mean excitation energy $\, {\bf I} \,$ to the atomic number $\, {\bf Z} \,$ for elements.

Fig. 4.3. Ratio of experimental to calculated proton stopping powers.

Fig. 4.4. Ratio of experimental to calculated proton stopping powers at 6.5 MeV.

Experimental data are from Ishiwari (1979).

Fig. 4.5. Ratio of experimental to calculated proton stopping powers at 19.8 MeV. Experimental data are from Burkig and MacKenzie (1957).

Fig. 6.2. Difference between the density-effect correction δ_{DRF} calculated by Inokuti and Smith (1982) using a semiemptrical dielectric function for aluminum, and the corresponding value δ_{St} obtained by Sternheimer's method. The latter was calculated with I = 165.7 eV, to match the I-value found by Shiles et al. (1980) for aluminum.

Fig. 6.1 Sternheimer density-effect correction 6, as function of the particle energy.

Lower scale: for electrons, as function of kinetic energy T in MeV.

mass.

Fig. 6.3. Difference between the density-effect correction δ_{DRF} calculated by Ashley (1982b) using a semi-empirical dielectric function for water, and the corresponding value δ_{St} obtained by Sternheimer's method. The latter was calculated with I = 75.4 eV, to match the I-value for water found by Ashley.

Fig. 6.4. Percent amount by which the electron collision stopping power in aluminum and water is changed, when the density-effect corrections of Inokuti and Smith (1982) for aluminum and that of Ashley (1982b) for water are replaced by density-effect corrections calculated according to Sternheimer.

Fig. 8.1. Calculated electron collision stopping power below 10 keV in water.

Curv	2 3 4	water vapor water vapor water vapor liquid water liquid water	Berger (see footnote 16) Green (see footnote 17) Bethe formula, Eq (2.16), with Kutcher and Green (1976) Ritchie et al. (1978)	I = 71.6 eV
	6	liquid water	Ashley (1982a)	
	7	liquid water	Rethe formula, Fg (2.16), with	I = 75.0 eV

Fig. 8.3. Calculated electron collision stopping power below 10 keV in polyethylene and polystyrene.

Curve 1 Polyethylene Ashley (1982c), with implied I-value of 62.2 eV

2a Polyethylene Bethe formula, Eq (2.16), with I = 57.4 eV

2b Polyethylene Bethe formula, Eq (2.16), with I = 62.2 eV

3 Polystyrene Ashley et al. (1978)

4 Polystyrene Bethe formula, Eq (2.16), with I = 68.7 eV.

Ac

field of the atomic nucleus. Points below 2 MeV are from the calcula-Fig. 9.1. Radiative energy-loss cross section $\phi_{rad}^{(n)}$ for bremsstrahlung in the tions of Pratt et al. (1977), and points above 50 MeV are from highenergy theory of Davies, Bethe, and Maximon (1954) and Olsen (1955). Curves are from a least-squares fit to the theoretical points.

Fig. 9.3. Comparison of theoretical radiative stopping power, calculated according to Eq (9.1), with experimental results.

- Motz (1955) and Motz and Placious (1958), for Be, Al, and Au. Aiginger (1966), for Al₂O₃ and Au. Rester and Dance (1967), Rester and Edmonson (1972) and Rester (private communication) for Al, Cu, Sn, and Au.

Fig. 11.1 Comparison of theoretical and experimental values of the stopping power in aluminum.

Fig. 11.2 Comparison of theoretical and experimental values of the stopping power in copper.

Theoretical results: 1 Ashley et al. (1976a) 2 Bethe formula, Eq (2.16), with I = 322 eV

Experimental results: O Ziemer et al. (1959)

Arrangement of Tables

- A. <u>Electrons in elemental substances</u>. Data are given for electrons in the following elemental substances, in order of increasing atomic number:
 - H_2 , He, Be, C(graphite), N_2 , O_2 , Ne, Al, Si, Ar, Ti, Fe, Cu, Ge, Kr, Mo, Ag, Sn, Xe, Gd, W, Pt, Au, Pb, U.
- B. <u>Electrons in mixtures and compounds</u>. Data are given for electrons in mixtures and compounds, arranged in the same sequence in which they are listed in Table 5.5.
- C. <u>Positrons in selected materials</u>. Data are given for positrons in graphite, aluminum, copper, silver, lead, air, polymethylmethacrylate, and water.

Content of Tables

The name of the material, the mean excitation energy I (in eV) and the density ρ (in g/cm³) are given at the head of each table. For gases, the densities are for a pressure of 1 atmosphere (101.325 kPa) and a temperature of 20°°C.

The principal information in each table includes the mass collision stopping power, $1/\rho$ S_{col}, the mass radiative stopping power, $1/\rho$ S_{rad}, and the total mass stopping power, $1/\rho$ S_{col} + $1/\rho$ S_{rad}, all in units of MeV/(g cm⁻²); the c.s.d.a. range, r_o, in units of g cm⁻²; and the radiation yield, Y.

The auxiliary information given includes the density-effect correction δ , and the ratio $d(\log)/d(\log I)$, where the blank space stands for collision stopping power, c.s.d.a. range or radiation yield. This ratio of logarithmic derivatives can be interpreted as the percent change in the respective quantities that would result from a l percent change of the mean excitation energy.

Stopping powers, ranges, and yields are expressed in exponential notation, with the number that follows the letter E indicating powers of 10.

Accuracy

Above 100 keV, the uncertainty of the collision stopping power is estimated to be 1 to 2 percent; between 100 keV and 10 keV, the uncertainty is expected to be 2 to 3 percent in low-Z materials, and 5 to 10 percent in high-Z materials. The uncertainty of the radiative stopping powers is estimated to be \sim 2 percent above 50 MeV, 2 to 5 percent between 50 and 2 MeV, and \sim 5 percent below 2 MeV.

Note on Treatment of Density Effect

The standard procedure used for all materials was to evaluate the density-effect correction to the collision stopping power according to the method of Sternheimer. Electron results using the density-effect correction of Inokuti and Smith (1982) for aluminum, and the density-effect of Ashley (1982b) for water are also given; these are indicated by an asterisk (*) at the head of the tables.

When comparisons are made, e.g., in terms of stopping-power ratios, between the stopping power for water and that for other materials such as tissues, tissue-equivalent materials, ferrous sulfate dosimeter solution or plastics, it is recommended that water results with the Sternheimer density-effect correction be used for the sake of consistency.

For graphite two tables are given: one for a graphite crystallite density of $2.265~\rm g/cm^3$, and the other for a typical bulk density of $1.7~\rm g/cm^3$. It is recommended that these results be interpolated to the appropriate bulk density for the graphite of interest.

ELECTRONS IN HYDROGEN

I = 19.2 eV DENSITY = 8.375E-05 g/cm³ (20°C)

ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(l CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm²/g	MeV cm ² /g	MeV cm ² /g	g/cm²					
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	5.125E+01 4.271E+01 3.682E+01 3.249E+01 2.917E+01 2.439E+01 2.110E+01 1.870E+01	9.702E-04 9.793E-04 9.881E-04 9.964E-04 1.004E-03 1.019E-03 1.034E-03	5.125E+01 4.271E+01 3.682E+01 3.249E+01 2.917E+01 2.439E+01 2.110E+01 1.870E+01	1.076E-04 1.613E-04 2.245E-04 2.970E-04 3.783E-04 5.667E-04 7.878E-04 1.040E-03	1.029E-05 1.242E-05 1.450E-05 1.654E-05 1.854E-05 2.246E-05 2.628E-05 3.003E-05	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.156 -0.151 -0.147 -0.144 -0.141 -0.137 -0.134	0.172 0.166 0.161 0.158 0.154 0.149 0.145 0.142	0.172 0.166 0.161 0.157 0.154 0.149 0.145 0.142
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	1.424E+01 1.327E+01 1.245E+01 1.114E+01 1.015E+01	1.061E-03 1.074E-03 1.088E-03 1.101E-03 1.113E-03 1.138E-03 1.164E-03	1.687E+01 1.542E+01 1.424E+01 1.327E+01 1.245E+01 1.114E+01 1.015E+01 9.368E+00	1.322E-03 1.632E-03 1.970E-03 2.334E-03 2.724E-03 3.575E-03 4.517E-03 5.543E-03	3.371E-05 3.733E-05 4.090E-05 4.443E-05 4.791E-05 5.475E-05 6.146E-05 6.806E-05	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.129 -0.127 -0.126 -0.124 -0.123 -0.121 -0.119	0.140 0.138 0.136 0.134 0.133 0.130 0.128 0.126	0.139 0.137 0.135 0.134 0.132 0.130 0.127 0.126
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	7.590E+00 6.819E+00 6.266E+00 5.851E+00 5.275E+00 4.898E+00	1.216E-03 1.285E-03 1.357E-03 1.433E-03 1.511E-03 1.677E-03 1.852E-03 2.038E-03	8.738E+00 7.592E+00 6.820E+00 6.267E+00 5.852E+00 5.276E+00 4.899E+00 4.637E+00	6.650E-03 9.732E-03 1.322E-02 1.705E-02 2.118E-02 2.021E-02 4.007E-02 5.057E-02	7.457E-05 9.050E-05 1.061E-04 1.215E-04 1.367E-04 1.670E-04 1.971E-04 2.273E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.116 -0.113 -0.111 -0.109 -0.108 -0.105 -0.103 -0.102	0.125 0.121 0.119 0.117 0.115 0.113 0.111	0.124 0.121 0.118 0.116 0.115 0.112 0.110
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	4.302E+00 4.193E+00 4.109E+00 4.042E+00 3.945E+00 3.883E+00	2.232E-03 2.436E-03 2.648E-03 2.869E-03 3.096E-03 3.573E-03 4.076E-03 4.603E-03	4.447E+00 4.305E+00 4.196E+00 4.111E+00 4.045E+00 3.949E+00 3.887E+00	6.159E-02 7.303E-02 8.480E-02 9.684E-02 1.091E-01 1.341E-01 1.597E-01 1.856E-01	2.577E-04 2.884E-04 3.194E-04 3.508E-04 3.825E-04 4.471E-04 5.133E-04 5.809E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.100 -0.099 -0.098 -0.097 -0.096 -0.094 -0.093	0.107 0.106 0.105 0.104 0.103 0.102 0.100	0.106 0.105 0.103 0.102 0.101 0.100 0.098 0.097
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	3.787E+00 3.788E+00 3.802E+00 3.823E+00 3.873E+00 3.924E+00	5.152E-03 6.614E-03 8.190E-03 9.862E-03 1.162E-02 1.534E-02 1.931E-02 2.348E-02	3.821E+00 3.794E+00 3.796E+00 3.812E+00 3.835E+00 3.888E+00 3.943E+00 3.997E+00	2.117E-01 2.774E-01 3.433E-01 4.090E-01 4.744E-01 6.039E-01 7.316E-01 8.575E-01	6.501E-04 8.289E-04 1.016E-03 1.209E-03 1.409E-03 1.824E-03 2.257E-03 2.703E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.090 -0.088 -0.086 -0.085 -0.083 -0.081 -0.079 -0.078	0.098 0.096 0.094 0.093 0.091 0.089 0.088 0.086	0.096 0.093 0.091 0.089 0.088 0.086 0.084
4.0000 4.5000 5.0000 5.5000 7.0000 8.0000 9.0000	4.063E+00 4.103E+00 4.140E+00 4.175E+00 4.239E+00 4.295E+00	2.782E-02 3.230E-02 3.693E-02 4.166E-02 4.651E-02 5.647E-02 6.675E-02 7.731E-02	4.047E+00 4.095E+00 4.140E+00 4.182E+00 4.222E+00 4.295E+00 4.361E+00 4.422E+00	9.818E-01 1.105E+00 1.226E+00 1.346E+00 1.465E+00 1.700E+00 1.931E+00 2.159E+00	3.162E-03 3.631E-03 4.108E-03 4.593E-03 5.084E-03 6.083E-03 7.101E-03 8.133E-03	0.0 0.0 0.0 0.0 0.0 -0.0 0.0 0.0	-0.077 -0.076 -0.075 -0.074 -0.074 -0.072 -0.071	0.085 0.084 0.083 0.082 0.082 0.080 0.079 0.078	0.081 0.080 0.079 0.078 0.077 0.076 0.074
10.0000 12.5000 15.0000 17.5000 20.0000 30.0000 35.0000	4.488E+00 4.569E+00 4.638E+00 4.698E+00 4.799E+00 4.881E+00	8.809E-02 1.159E-01 1.448E-01 1.744E-01 2.046E-01 2.667E-01 3.305E-01	4.479E+00 4.604E+00 4.714E+00 4.813E+00 4.903E+00 5.065E+00 5.212E+00 5.347E+00	2.383E+00 2.934E+00 3.470E+00 3.995E+00 4.510E+00 5.513E+00 6.485E+00 7.432E+00	9.177E-03 1.183E-02 1.451E-02 1.722E-02 1.994E-02 2.540E-02 3.084E-02 3.625E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.070 -0.068 -0.067 -0.066 -0.065 -0.064 -0.063	0.077 0.075 0.074 0.073 0.071 0.070 0.068 0.067	0.072 0.070 0.069 0.068 0.066 0.064 0.063 0.061
40.0000 45.0000 50.0000 55.0000 70.0000 80.0000 90.0000	5.055E+00 5.091E+00 5.120E+00 5.144E+00 5.183E+00 5.213E+00	4.615E-01 5.283E-01 5.959E-01 6.640E-01 7.326E-01 8.713E-01 1.011E+00 1.153E+00	5.471E+00 5.583E+00 5.686E+00 5.784E+00 5.876E+00 6.054E+00 6.225E+00 6.391E+00	8.357E+00 9.261E+00 1.015E+01 1.102E+01 1.188E+01 1.355E+01 1.518E+01 1.677E+01	4.161E-02 4.693E-02 5.221E-02 5.745E-02 6.264E-02 7.288E-02 8.293E-02 9.277E-02	1.250E-02 6.872E-02 1.504E-01 2.452E-01 3.459E-01 5.514E-01 7.513E-01 9.405E-01	-0.052 -0.041 -0.033 -0.027 -0.023 -0.017 -0.013 -0.010	0.065 0.063 0.060 0.058 0.055 0.050 0.046	0.060 0.056 0.051 0.047 0.043 0.036 0.031
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000	5.301E+00 5.333E+00 5.359E+00 5.381E+00 5.417E+00 5.446E+00	1.295E+00 1.654E+00 2.017E+00 2.383E+00 2.752E+00 3.496E+00 4.246E+00 5.001E+00	6.554E+00 6.955E+00 7.350E+00 7.742E+00 8.133E+00 8.913E+00 9.692E+00 1.047E+01	1.831E+01 2.202E+01 2.551E+01 2.882E+01 3.198E+01 3.785E+01 4.322E+01 4.819E+01	1.024E-01 1.255E-01 1.473E-01 1.679E-01 1.873E-01 2.231E-01 2.552E-01 2.842E-01	1.118E+00 1.513E+00 1.849E+00 2.140E+00 2.396E+00 2.828E+00 3.186E+00 3.489E+00	-0.008 -0.005 -0.004 -0.003 -0.002 -0.001 -0.001	0.040 0.034 0.030 0.027 0.024 0.021 0.018	0.023 0.017 0.013 0.010 0.008 0.006 0.005
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	5.509E+00 5.526E+00 5.540E+00 5.554E+00 5.577E+00 5.598E+00	5.760E+00 6.522E+00 7.286E+00 8.053E+00 8.821E+00 1.036E+01 1.191E+01 1.346E+01	1.125E+01 1.203E+01 1.281E+01 1.359E+01 1.438E+01 1.594E+01 1.751E+01	5.279E+01 5.709E+01 6.111E+01 6.490E+01 7.508E+01 8.107E+01 8.654E+01	3.106E-01 3.347E-01 3.568E-01 3.771E-01 3.960E-01 4.298E-01 4.592E-01 4.853E-01	3.753E+00 3.987E+00 4.196E+00 4.386E+00 4.559E+00 4.866E+00 5.132E+00 5.367E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.015 0.014 0.013 0.012 0.012 0.011 0.010 0.009	0.003 0.002 0.002 0.002 0.002 0.001 0.001
1000.000	5.632E+00	1.502E+01	2.065E+01	9.157E+01	5.084E-01	5.577E+00	-0.000	0.009	0.001

ELECTRONS IN HELIUM

I = 41.8 eV DENSITY = 1.663E-04 g/cm³ (20°C)

ENERGY		OPPING POWER RADIATIVE	R	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	COLL	g)/d(l CSDA	RAD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.267E+01 1.898E+01 1.642E+01 1.453E+01 1.307E+01 1.097E+01 9.521E+00 8.457E+00	9.941E-04 9.995E-04 1.005E-03 1.010E-03 1.020E-03 1.029E-03	2.267E+01 1.898E+01 1.642E+01 1.453E+01 1.307E+01 1.097E+01 9.522E+00 8.458E+00	2.467E-04 3.678E-04 5.098E-04 6.720E-04 8.537E-04 1.273E-03 1.764E-03 2.322E-03	2.412E-05 2.890E-05 3.352E-05 3.802E-05 4.242E-05 5.096E-05 5.923E-05 6.727E-05	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.178 -0.171 -0.166 -0.162 -0.159 -0.154 -0.150	0.200 0.191 0.185 0.180 0.176 0.169 0.164 0.160	0.200 0.191 0.185 0.180 0.176 0.169 0.164 0.160
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800	7.642E+00 6.996E+00 6.471E+00 6.035E+00 5.669E+00 4.638E+00 4.287E+00		7.643E+00 6.997E+00 6.472E+00 6.037E+00 5.670E+00 5.085E+00 4.639E+00 4.288E+00	2.945E-03 3.630E-03 4.374E-03 5.174E-03 6.029E-03 7.896E-03 9.958E-03 1.220E-02	7.510E-05 8.277E-05 9.029E-05 9.766E-05 1.049E-04 1.191E-04 1.328E-04 1.462E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.144 -0.141 -0.139 -0.138 -0.136 -0.133 -0.131	0.157 0.154 0.152 0.150 0.148 0.145 0.145	0.157 0.154 0.152 0.150 0.148 0.144 0.142 0.140
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3500	4.003E+00 3.486E+00 3.137E+00 2.887E+00 2.700E+00 2.439E+00 2.269E+00 2.150E+00	1.157E-03 1.207E-03 1.260E-03 1.316E-03 1.375E-03 1.499E-03 1.632E-03 1.774E-03	4.004E+00 3.487E+00 3.139E+00 2.889E+00 2.701E+00 2.441E+00 2.270E+00 2.152E+00	1.462E-02 2.134E-02 2.891E-02 3.723E-02 4.619E-02 6.573E-02 8.702E-02 1.097E-01	1.593E-04 1.910E-04 2.215E-04 2.511E-04 2.800E-04 3.363E-04 3.914E-04 4.457E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.128 -0.124 -0.122 -0.119 -0.118 -0.115 -0.112	0.138 0.134 0.131 0.129 0.127 0.124 0.121 0.119	0.138 0.134 0.131 0.128 0.126 0.123 0.120 0.118
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	2.064E+00 2.000E+00 1.952E+00 1.914E+00 1.884E+00 1.842E+00 1.815E+00	2.245E-03 2.416E-03 2.592E-03 2.961E-03	2.066E+00 2.002E+00 1.954E+00 1.916E+00 1.845E+00 1.818E+00 1.801E+00	1.334E-01 1.580E-01 1.833E-01 2.092E-01 2.355E-01 2.891E-01 3.437E-01 3.990E-01	4.997E-04 5.536E-04 6.076E-04 6.619E-04 7.165E-04 8.269E-04 9.389E-04 1.053E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.109 -0.107 -0.106 -0.104 -0.103 -0.101 -0.100 -0.098	0.117 0.116 0.114 0.113 0.112 0.110 0.109 0.107	0.116 0.114 0.113 0.112 0.110 0.108 0.106 0.105
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.787E+00 1.777E+00 1.780E+00 1.789E+00 1.801E+00 1.827E+00 1.854E+00	5.306E-03 6.515E-03 7.793E-03 9.132E-03 1.196E-02 1.495E-02	1.791E+00 1.782E+00 1.787E+00 1.797E+00 1.810E+00 1.839E+00 1.869E+00 1.898E+00	4.547E-01 5.947E-01 7.349E-01 8.744E-01 1.013E+00 1.287E+00 1.557E+00 1.822E+00	1.168E-03 1.465E-03 1.773E-03 2.089E-03 2.414E-03 3.085E-03 3.779E-03 4.491E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.097 -0.094 -0.092 -0.090 -0.089 -0.087 -0.085 -0.083	0.106 0.104 0.102 0.100 0.098 0.096 0.094 0.093	0.103 0.101 0.098 0.096 0.095 0.092 0.090 0.088
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.903E+00 1.925E+00 1.946E+00 1.965E+00 1.983E+00 2.015E+00 2.043E+00 2.069E+00	2.134E-02 2.469E-02 2.813E-02 3.165E-02 3.523E-02 4.260E-02 5.018E-02 5.793E-02	1.925E+00 1.950E+00 1.974E+00 1.997E+00 2.018E+00 2.057E+00 2.093E+00 2.126E+00	2.084E+00 2.342E+00 2.597E+00 2.848E+00 3.098E+00 4.070E+00 4.544E+00	5.218E-03 5.957E-03 6.706E-03 7.465E-03 8.231E-03 9.781E-03 1.135E-02 1.293E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.082 -0.081 -0.080 -0.079 -0.078 -0.077 -0.075	0.091 0.090 0.089 0.088 0.087 0.086 0.084	0.086 0.085 0.084 0.083 0.082 0.080 0.079
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	2.092E+00 2.141E+00 2.182E+00 2.216E+00 2.247E+00 2.297E+00 2.339E+00 2.374E+00	6.584E-02 8.617E-02 1.071E-01 1.286E-01 1.505E-01 1.952E-01 2.410E-01 2.875E-01	2.157E+00 2.227E+00 2.289E+00 2.345E+00 2.397E+00 2.493E+00 2.580E+00 2.662E+00	5.011E+00 6.151E+00 7.258E+00 8.337E+00 9.391E+00 1.144E+01 1.341E+01	1.453E-02 1.855E-02 2.258E-02 2.662E-02 3.064E-02 3.863E-02 4.651E-02 5.426E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.074 -0.072 -0.071 -0.069 -0.068 -0.067 -0.066	0.082 0.080 0.078 0.077 0.075 0.073 0.071	0.076 0.074 0.072 0.071 0.069 0.067 0.065 0.063
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.405E+00 2.432E+00 2.456E+00 2.478E+00 2.498E+00 2.53E+00 2.564E+00 2.589E+00	3.346E-01 3.822E-01 4.303E-01 4.786E-01 5.272E-01 6.252E-01 7.239E-01 8.231E-01	2.739E+00 2.814E+00 2.886E+00 2.956E+00 3.025E+00 3.158E+00 3.288E+00 3.412E+00	1.717E+01 1.897E+01 2.072E+01 2.243E+01 2.410E+01 2.734E+01 3.044E+01 3.343E+01	6.187E-02 6.933E-02 7.665E-02 8.382E-02 9.085E-02 1.045E-01 1.176E-01	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.142E-02	-0.064 -0.063 -0.063 -0.062 -0.062 -0.061 -0.060 -0.048	0.068 0.067 0.066 0.065 0.064 0.062 0.061 0.059	0.062 0.060 0.059 0.058 0.057 0.055 0.054 0.051
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000	2.609E+00 2.644E+00 2.668E+00 2.686E+00 2.700E+00 2.722E+00 2.738E+00 2.752E+00	9.229E-01 1.174E+00 1.427E+00 1.681E+00 1.937E+00 2.451E+00 2.967E+00 3.486E+00	3.532E+00 3.818E+00 4.095E+00 4.367E+00 4.637E+00 5.173E+00 5.705E+00 6.237E+00	3.631E+01 4.311E+01 4.943E+01 5.534E+01 6.090E+01 7.110E+01 8.030E+01 8.868E+01	1.423E-01 1.708E-01 1.970E-01 2.213E-01 2.439E-01 2.844E-01 3.200E-01 3.514E-01	7.841E-02 2.879E-01 5.234E-01 7.535E-01 9.696E-01 1.356E+00 1.688E+00 1.976E+00	-0.039 -0.024 -0.017 -0.012 -0.009 -0.006 -0.004	0.057 0.051 0.047 0.043 0.039 0.034 0.031 0.028	0.048 0.039 0.032 0.027 0.023 0.017 0.013
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.763E+00 2.773E+00 2.781E+00 2.789E+00 2.796E+00 2.808E+00 2.818E+00 2.828E+00	4.006E+00 4.527E+00 5.049E+00 5.573E+00 6.097E+00 7.147E+00 8.199E+00 9.253E+00	6.768E+00 7.300E+00 7.831E+00 8.362E+00 8.892E+00 9.955E+00 1.102E+01 1.208E+01	9.637E+01 1.035E+02 1.101E+02 1.163E+02 1.221E+02 1.327E+02 1.422E+02 1.509E+02	3.794E-01 4.047E-01 4.275E-01 4.482E-01 4.672E-01 5.008E-01 5.297E-01 5.547E-01	2.230E+00 2.457E+00 2.661E+00 2.847E+00 3.017E+00 3.321E+00 3.584E+00 3.818E+00	-0.002 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001	0.026 0.024 0.023 0.022 0.021 0.019 0.018 0.017	0.009 0.007 0.006 0.006 0.005 0.004 0.003
1000.0000	2.836E+00	1.031E+01	1.314E+01	1.588E+02	5.768E-01	4.027E+00	-0.000	0.016	0.003

ELECTRONS IN BERYLLIUM

I = 63.7 eV DENSITY = 1.848E+00 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(le	RAD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.862E+01 1.564E+01 1.356E+01 1.202E+01 1.083E+01 9.113E+00 7.923E+00 7.047E+00	1.815E-03 1.819E-03 1.823E-03 1.827E-03 1.831E-03 1.849E-03 1.849E-03	1.863E+01 1.564E+01 1.356E+01 1.202E+01 1.084E+01 9.115E+00 7.925E+00 7.049E+00	3.033E-04 4.504E-04 6.226E-04 8.187E-04 1.038E-03 1.544E-03 2.134E-03 2.804E-03	5.437E-05 6.488E-05 7.496E-05 8.472E-05 9.419E-05 1.125E-04 1.300E-04	5.100E-04 7.492E-04 1.031E-03 1.354E-03 1.718E-03 2.564E-03 3.560E-03 4.701E-03	-0.193 -0.185 -0.179 -0.174 -0.170 -0.164 -0.159	0.219 0.209 0.201 0.195 0.190 0.183 0.177 0.172	0.218 0.208 0.201 0.195 0.190 0.182 0.177 0.172
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.375E+00 5.841E+00 5.407E+00 5.047E+00 4.743E+00 4.257E+00 3.887E+00 3.594E+00	1.870E-03 1.880E-03 1.891E-03 1.902E-03 1.914E-03 1.937E-03 1.961E-03 1.987E-03	6.376E+00 5.843E+00 5.409E+00 5.049E+00 4.745E+00 4.259E+00 3.889E+00 3.596E+00	3.551E-03 4.371E-03 5.262E-03 6.219E-03 7.241E-03 9.471E-03 1.193E-02 1.461E-02	1.634E-04 1.794E-04 1.951E-04 2.104E-04 2.253E-04 2.545E-04 2.826E-04 3.100E-04	5.978E-03 7.387E-03 8.920E-03 1.057E-02 1.234E-02 1.619E-02 2.043E-02 2.504E-02	-0.153 -0.150 -0.148 -0.146 -0.144 -0.141 -0.139 -0.137	0.168 0.165 0.162 0.160 0.158 0.154 0.151	0.168 0.165 0.162 0.160 0.158 0.154 0.151
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.358E+00 2.926E+00 2.634E+00 2.424E+00 2.266E+00 2.046E+00 1.901E+00 1.800E+00	2.014E-03 2.085E-03 2.160E-03 2.241E-03 2.326E-03 2.507E-03 2.704E-03 2.914E-03	3.360E+00 2.928E+00 2.636E+00 2.426E+00 2.269E+00 2.049E+00 1.904E+00 1.803E+00	1.749E-02 2.549E-02 3.451E-02 4.442E-02 5.508E-02 7.836E-02 1.037E-01 1.308E-01	3.366E-04 4.005E-04 4.614E-04 5.200E-04 6.769E-04 6.865E-04 7.924E-04 8.961E-04	2.997E-02 4.354E-02 5.858E-02 7.478E-02 9.188E-02 1.280E-01 1.658E-01 2.043E-01	-0.135 -0.131 -0.128 -0.126 -0.124 -0.120 -0.118	0.147 0.142 0.139 0.136 0.134 0.130 0.127	0.146 0.142 0.138 0.136 0.133 0.129 0.127 0.124
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.726E+00 1.670E+00 1.627E+00 1.593E+00 1.566E+00 1.527E+00 1.501E+00 1.483E+00	3.137E-03 3.372E-03 3.618E-03 3.875E-03 4.139E-03 4.693E-03 5.277E-03 5.886E-03	1.729E+00 1.673E+00 1.631E+00 1.597E+00 1.571E+00 1.532E+00 1.506E+00 1.489E+00	1.591E-01 1.885E-01 2.188E-01 2.498E-01 2.814E-01 3.459E-01 4.118E-01 4.786E-01	9.985E-04 1.100E-03 1.202E-03 1.304E-03 1.406E-03 1.612E-03 2.033E-03	2.432E-01 2.819E-01 3.204E-01 3.583E-01 3.956E-01 4.682E-01 5.379E-01 6.047E-01	-0.114 -0.112 -0.110 -0.109 -0.108 -0.105 -0.103	0.123 0.122 0.120 0.119 0.118 0.115 0.113	0.122 0.120 0.118 0.117 0.116 0.113 0.111
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.471E+00 1.455E+00 1.450E+00 1.451E+00 1.455E+00 1.466E+00 1.477E+00 1.489E+00	6.520E-03 8.201E-03 1.000E-02 1.190E-02 1.388E-02 1.806E-02 2.247E-02 2.707E-02	1.477E+00 1.463E+00 1.460E+00 1.463E+00 1.469E+00 1.484E+00 1.500E+00 1.516E+00	5.460E-01 7.162E-01 8.873E-01 1.058E+00 1.229E+00 1.568E+00 1.903E+00 2.234E+00	2.248E-03 2.799E-03 3.370E-03 3.958E-03 4.562E-03 5.810E-03 7.104E-03 8.434E-03	6.687E-01 8.178E-01 9.534E-01 1.078E+00 1.194E+00 1.405E+00 1.596E+00	-0.099 -0.095 -0.090 -0.086 -0.082 -0.074 -0.066 -0.059	0.110 0.107 0.104 0.101 0.099 0.094 0.090 0.086	0.107 0.103 0.100 0.096 0.093 0.087 0.081 0.076
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.499E+00 1.508E+00 1.517E+00 1.525E+00 1.532E+00 1.554E+00 1.555E+00	3.182E-02 3.672E-02 4.174E-02 4.687E-02 5.211E-02 6.283E-02 7.386E-02 8.514E-02	1.531E+00 1.545E+00 1.559E+00 1.572E+00 1.584E+00 1.607E+00 1.628E+00	2.563E+00 2.888E+00 3.210E+00 3.529E+00 3.846E+00 4.473E+00 5.091E+00 5.701E+00	9.795E-03 1.118E-02 1.259E-02 1.402E-02 1.546E-02 1.840E-02 2.138E-02 2.439E-02	1.936E+00 2.090E+00 2.235E+00 2.372E+00 2.502E+00 2.743E+00 2.962E+00 3.161E+00	-0.052 -0.045 -0.040 -0.035 -0.031 -0.025 -0.020 -0.016	0.082 0.078 0.074 0.071 0.067 0.062 0.057 0.053	0.070 0.065 0.061 0.056 0.052 0.045 0.039 0.034
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.572E+00 1.589E+00 1.602E+00 1.613E+00 1.623E+00 1.639E+00 1.652E+00 1.663E+00	9.664E-02 1.262E-01 1.566E-01 1.878E-01 2.194E-01 2.840E-01 3.499E-01 4.166E-01	1.669E+00 1.715E+00 1.759E+00 1.801E+00 1.842E+00 1.923E+00 2.002E+00 2.079E+00	6.304E+00 7.782E+00 9.221E+00 1.063E+01 1.200E+01 1.465E+01 1.720E+01 1.965E+01	2.743E-02 3.509E-02 4.280E-02 5.050E-02 5.815E-02 7.323E-02 8.792E-02 1.022E-01	3.344E+00 3.743E+00 4.079E+00 4.368E+00 4.622E+00 5.051E+00 5.404E+00 5.705E+00	-0.013 -0.009 -0.006 -0.005 -0.004 -0.002 -0.002	0.049 0.042 0.036 0.032 0.029 0.024 0.021	0.030 0.023 0.018 0.014 0.012 0.008 0.006 0.005
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.672E+00 1.680E+00 1.687E+00 1.694E+00 1.700E+00 1.711E+00 1.720E+00 1.728E+00	4.841E-01 5.523E-01 6.209E-01 6.900E-01 7.595E-01 8.995E-01 1.041E+00	2.156E+00 2.232E+00 2.308E+00 2.384E+00 2.460E+00 2.610E+00 2.761E+00 2.911E+00	2.201E+01 2.429E+01 2.650E+01 2.863E+01 3.069E+01 3.464E+01 4.189E+01	1.160E-01 1.293E-01 1.422E-01 1.547E-01 1.667E-01 1.896E-01 2.110E-01 2.311E-01	5.967E+00 6.198E+00 6.406E+00 6.594E+00 6.766E+00 7.071E+00 7.336E+00 7.570E+00	-0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000	0.016 0.015 0.014 0.013 0.012 0.011 0.010 0.009	0.004 0.003 0.003 0.002 0.002 0.002 0.001
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.735E+00 1.751E+00 1.763E+00 1.774E+00 1.783E+00 1.798E+00 1.811E+00 1.821E+00	1.325E+00 1.685E+00 2.048E+00 2.412E+00 2.779E+00 3.516E+00 4.256E+00 5.000E+00	3.061E+00 3.436E+00 3.811E+00 4.186E+00 4.561E+00 5.314E+00 6.067E+00 6.821E+00	4.524E+01 5.295E+01 5.985E+01 6.611E+01 7.183E+01 8.197E+01 9.077E+01 9.854E+01	2.500E-01 2.926E-01 3.296E-01 3.621E-01 3.910E-01 4.401E-01 4.805E-01 5.144E-01	7.780E+00 8.223E+00 8.587E+00 8.894E+00 9.160E+00 9.605E+00 9.969E+00	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.008 0.007 0.006 0.006 0.005 0.005 0.004	0.001 0.001 0.001 0.000 0.000 0.000 0.000
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.830E+00 1.838E+00 1.845E+00 1.852E+00 1.858E+00 1.868E+00 1.878E+00 1.886E+00	5.746E+00 6.494E+00 7.242E+00 7.993E+00 8.744E+00 1.025E+01 1.176E+01 1.327E+01	7.576E+00 8.332E+00 9.088E+00 9.845E+00 1.060E+01 1.212E+01 1.364E+01 1.515E+01	1.055E+02 1.118E+02 1.175E+02 1.228E+02 1.277E+02 1.365E+02 1.443E+02 1.513E+02	5.434E-01 5.685E-01 5.905E-01 6.099E-01 6.273E-01 6.571E-01 6.818E-01 7.026E-01	1.054E+01 1.078E+01 1.099E+01 1.118E+01 1.135E+01 1.166E+01 1.193E+01 1.216E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.003 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
000.0000	1.893E+00	1.478E+01	1.667E+01	1.575E+02	7.204E-01	1.237E+01	-0.000	0.002	0.000

ELECTRONS IN CARBON (GRAPHITE)

I = 78.0 eV DENSITY = 2.265E+00 g/cm³

ENERGY	ST COLLISION	OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(l CSDA	RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.014E+01 1.694E+01 1.471E+01 1.305E+01 1.177E+01 9.911E+00 8.624E+00 7.677E+00	3.150E-03 3.161E-03 3.168E-03 3.172E-03 3.176E-03 3.184E-03 3.194E-03 3.204E-03	2.014E+01 1.694E+01 1.471E+01 1.305E+01 1.177E+01 9.915E+00 8.628E+00 7.680E+00	2.820E-04 4.179E-04 5.768E-04 7.576E-04 9.596E-04 1.424E-03 1.967E-03 2.582E-03	8.665E-05 1.036E-04 1.199E-04 1.355E-04 1.506E-04 1.796E-04 2.074E-04 2.340E-04	2.766E-03 3.543E-03 4.353E-03 5.195E-03 6.068E-03 7.907E-03 9.864E-03 1.194E-02	-0.200 -0.191 -0.185 -0.179 -0.175 -0.168 -0.163	0.229 0.218 0.210 0.203 0.198 0.189 0.183 0.177	0.228 0.217 0.209 0.202 0.197 0.189 0.182 0.177
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.948E+00 6.370E+00 5.899E+00 5.508E+00 5.177E+00 4.650E+00 4.247E+00 3.929E+00	3.215E-03 3.228E-03 3.241E-03 3.255E-03 3.270E-03 3.303E-03 3.375E-03	6.951E+00 6.373E+00 5.902E+00 5.511E+00 5.181E+00 4.653E+00 4.250E+00 3.932E+00	3.268E-03 4.020E-03 4.836E-03 5.713E-03 6.650E-03 8.691E-03 1.094E-02 1.339E-02	2.597E-04 2.847E-04 3.090E-04 3.328E-04 4.559E-04 4.009E-04 4.443E-04 4.862E-04	1.412E-02 1.640E-02 1.879E-02 2.127E-02 2.384E-02 2.926E-02 3.500E-02 4.105E-02	-0.156 -0.153 -0.150 -0.148 -0.145 -0.142 -0.139 -0.136	0.173 0.170 0.166 0.164 0.161 0.157 0.154 0.151	0.173 0.169 0.166 0.163 0.161 0.157 0.153
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.671E+00 3.201E+00 2.883E+00 2.654E+00 2.482E+00 2.241E+00 2.083E+00 1.972E+00	3.414E-03 3.523E-03 3.640E-03 3.764E-03 3.896E-03 4.179E-03 4.489E-03 4.820E-03	3.675E+00 3.205E+00 2.887E+00 2.658E+00 2.486E+00 2.245E+00 2.087E+00 1.977E+00	1.603E-02 2.334E-02 3.158E-02 4.062E-02 5.036E-02 7.160E-02 9.474E-02 1.194E-01	5.270E-04 6.246E-04 7.173E-04 8.061E-04 8.919E-04 1.056E-03 1.215E-03 1.369E-03	4.738E-02 6.429E-02 8.253E-02 1.019E-01 1.221E-01 1.644E-01 2.086E-01 2.537E-01	-0.133 -0.128 -0.124 -0.120 -0.116 -0.110 -0.105 -0.100	0.148 0.142 0.138 0.134 0.131 0.126 0.121	0.148 0.142 0.137 0.134 0.130 0.125 0.120 0.116
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.891E+00 1.830E+00 1.782E+00 1.745E+00 1.716E+00 1.672E+00 1.643E+00 1.623E+00	5.173E-03 5.545E-03 5.935E-03 6.340E-03 6.759E-03 7.637E-03 8.559E-03 9.523E-03	1.896E+00 1.835E+00 1.788E+00 1.752E+00 1.722E+00 1.680E+00 1.651E+00 1.632E+00	1.452E-01 1.721E-01 1.997E-01 2.279E-01 2.567E-01 3.156E-01 3.757E-01 4.366E-01	1.521E-03 1.671E-03 1.821E-03 1.971E-03 2.121E-03 2.423E-03 2.728E-03 3.037E-03	2.992E-01 3.447E-01 3.899E-01 4.347E-01 4.788E-01 5.648E-01 6.476E-01 7.272E-01	-0.096 -0.092 -0.089 -0.086 -0.084 -0.079 -0.076	0.114 0.111 0.108 0.105 0.103 0.099 0.095 0.092	0.112 0.108 0.105 0.102 0.100 0.095 0.091 0.088
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.609E+00 1.590E+00 1.584E+00 1.584E+00 1.587E+00 1.598E+00 1.611E+00 1.623E+00	1.053E-02 1.318E-02 1.602E-02 1.901E-02 2.213E-02 2.870E-02 3.561E-02 4.281E-02	1.619E+00 1.603E+00 1.600E+00 1.603E+00 1.609E+00 1.627E+00 1.646E+00	4.981E-01 6.534E-01 8.096E-01 9.657E-01 1.121E+00 1.430E+00 1.736E+00 2.038E+00	3.350E-03 4.151E-03 4.978E-03 5.828E-03 6.700E-03 8.497E-03 1.035E-02 1.225E-02	8.034E-01 9.803E-01 1.140E+00 1.285E+00 1.417E+00 1.651E+00 1.854E+00 2.033E+00	-0.070 -0.065 -0.062 -0.059 -0.057 -0.054 -0.051	0.090 0.084 0.080 0.077 0.074 0.070 0.067	0.085 0.078 0.074 0.070 0.067 0.062 0.059
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.636E+00 1.647E+00 1.658E+00 1.667E+00 1.676E+00 1.693E+00 1.707E+00	5.026E-02 5.792E-02 6.576E-02 7.378E-02 8.193E-02 9.865E-02 1.158E-01 1.334E-01	1.686E+00 1.705E+00 1.723E+00 1.741E+00 1.758E+00 1.791E+00 1.823E+00 1.853E+00	2.336E+00 2.631E+00 2.923E+00 3.211E+00 3.497E+00 4.061E+00 4.614E+00 5.158E+00	1.419E-02 1.616E-02 1.815E-02 2.016E-02 2.219E-02 2.628E-02 3.041E-02 3.456E-02	2.194E+00 2.340E+00 2.474E+00 2.598E+00 2.713E+00 2.924E+00 3.114E+00 3.287E+00	-0.047 -0.045 -0.043 -0.042 -0.040 -0.037 -0.033 -0.030	0.062 0.060 0.058 0.057 0.055 0.053 0.050	0.054 0.052 0.050 0.048 0.047 0.044 0.041
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.730E+00 1.753E+00 1.770E+00 1.785E+00 1.797E+00 1.816E+00 1.832E+00 1.845E+00	1.513E-01 1.971E-01 2.444E-01 2.927E-01 3.417E-01 4.417E-01 5.435E-01 6.466E-01	1.881E+00 1.950E+00 2.015E+00 2.077E+00 2.139E+00 2.258E+00 2.375E+00 2.491E+00	5.694E+00 6.999E+00 8.260E+00 9.482E+00 1.067E+01 1.294E+01 1.510E+01	3.872E-02 4.914E-02 5.949E-02 6.973E-02 7.981E-02 9.943E-02 1.183E-01 1.363E-01	3.446E+00 3.798E+00 4.101E+00 4.367E+00 4.604E+00 5.012E+00 5.353E+00 5.646E+00	-0.028 -0.022 -0.017 -0.014 -0.011 -0.008 -0.005 -0.004	0.046 0.042 0.038 0.035 0.032 0.028 0.024	0.036 0.031 0.027 0.023 0.020 0.016 0.012 0.010
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.856E+00 1.865E+00 1.874E+00 1.881E+00 1.888E+00 1.900E+00 1.911E+00 1.920E+00	7.508E-01 8.559E-01 9.617E-01 1.068E+00 1.175E+00 1.391E+00 1.608E+00 1.826E+00	2.606E+00 2.721E+00 2.835E+00 2.949E+00 3.063E+00 3.291E+00 3.519E+00 3.746E+00	1.912E+01 2.100E+01 2.280E+01 2.452E+01 2.612E+01 2.934E+01 3.227E+01 3.503E+01	1.535E-01 1.699E-01 1.856E-01 2.007E-01 2.150E-01 2.420E-01 2.667E-01 2.896E-01	5.902E+00 6.130E+00 6.335E+00 6.521E+00 6.691E+00 7.258E+00 7.491E+00	-0.003 -0.003 -0.002 -0.002 -0.002 -0.001 -0.001	0.020 0.018 0.017 0.016 0.015 0.013 0.012 0.011	0.008 0.007 0.006 0.005 0.005 0.004 0.003
100.0000 125.0000 150.0000 200.0000 200.0000 300.0000 350.0000	1.928E+00 1.945E+00 1.960E+00 1.972E+00 1.982E+00 1.999E+00 2.013E+00 2.025E+00	2.046E+00 2.598E+00 3.155E+00 3.714E+00 4.276E+00 5.405E+00 7.678E+00	3.974E+00 4.544E+00 5.115E+00 5.686E+00 6.258E+00 7.405E+00 8.553E+00 9.703E+00	3.762E+01 4.350E+01 4.868E+01 5.331E+01 5.750E+01 6.484E+01 7.112E+01 7.660E+01	3.108E-01 3.575E-01 3.971E-01 4.312E-01 4.609E-01 5.103E-01 5.499E-01 5.826E-01	7.699E+00 8.142E+00 8.505E+00 8.811E+00 9.077E+00 9.522E+00 9.886E+00 1.019E+01	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.011 0.009 0.008 0.008 0.007 0.006 0.006	0.002 0.002 0.001 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	2.035E+00 2.044E+00 2.052E+00 2.066E+00 2.066E+00 2.078E+00 2.088E+00 2.097E+00	8.820E+00 9.964E+00 1.111E+01 1.226E+01 1.340E+01 1.570E+01 1.801E+01 2.031E+01	1.085E+01 1.201E+01 1.316E+01 1.432E+01 1.547E+01 1.778E+01 2.010E+01 2.241E+01	8.147E+01 8.585E+01 8.983E+01 9.347E+01 9.683E+01 1.029E+02 1.081E+02	6.101E-01 6.335E-01 6.539E-01 6.718E-01 6.876E-01 7.144E-01 7.363E-01 7.546E-01	1.046E+01 1.070E+01 1.091E+01 1.110E+01 1.127E+01 1.158E+01 1.185E+01 1.208E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.005 0.005 0.005 0.004 0.004 0.004 0.004	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.106E+00	2.262E+01	2.473E+01	1.171E+02	7.703E-01	1.229E+01	-0.000	0.004	0.000

ELECTRONS IN CARBON (GRAPHITE)

I = 78.0 eV DENSITY = 1.700E+00 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(DELIA)	E033	KANGE	11550
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.014E+01 1.694E+01 1.471E+01 1.305E+01 1.177E+01 9.913E+00 8.626E+00 7.679E+00	3.150E-03 3.161E-03 3.168E-03 3.172E-03 3.176E-03 3.184E-03 3.194E-03 3.204E-03	2.014E+01 1.695E+01 1.471E+01 1.305E+01 1.177E+01 9.916E+00 8.629E+00 7.682E+00	2.820E-04 4.179E-04 5.767E-04 7.575E-04 9.595E-04 1.424E-03 1.966E-03 2.582E-03	8.665E-05 1.036E-04 1.199E-04 1.355E-04 1.506E-04 1.796E-04 2.073E-04 2.340E-04	1.920E-03 2.481E-03 3.073E-03 3.695E-03 4.347E-03 5.736E-03 7.236E-03 8.843E-03	-0.200 -0.191 -0.185 -0.180 -0.176 -0.169 -0.164	0.229 0.218 0.210 0.203 0.198 0.189 0.183 0.178	0.228 0.217 0.209 0.202 0.197 0.189 0.183 0.177
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.950E+00 6.372E+00 5.901E+00 5.510E+00 5.179E+00 4.652E+00 4.249E+00 3.931E+00	3.215E-03 3.228E-03 3.241E-03 3.255E-03 3.270E-03 3.303E-03 3.375E-03	6.953E+00 6.375E+00 5.904E+00 5.513E+00 5.183E+00 4.655E+00 4.253E+00 3.935E+00	3.267E-03 4.019E-03 4.835E-03 5.712E-03 6.648E-03 1.094E-02 1.339E-02	2.597E-04 2.847E-04 3.090E-04 3.327E-04 4.008E-04 4.441E-04 4.860E-04	1.055E-02 1.236E-02 1.425E-02 1.624E-02 1.832E-02 2.271E-02 2.740E-02 3.237E-02	-0.156 -0.153 -0.151 -0.149 -0.147 -0.143 -0.140 -0.137	0.174 0.170 0.167 0.164 0.162 0.158 0.154 0.152	0.173 0.170 0.167 0.164 0.162 0.158 0.154
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.674E+00 3.204E+00 2.886E+00 2.657E+00 2.485E+00 2.245E+00 2.087E+00 1.977E+00	3.414E-03 3.523E-03 3.640E-03 3.764E-03 3.896E-03 4.179E-03 4.489E-03 4.820E-03	3.677E+00 3.207E+00 2.890E+00 2.661E+00 2.489E+00 2.249E+00 2.092E+00 1.981E+00	1.602E-02 2.333E-02 3.156E-02 4.059E-02 5.032E-02 7.152E-02 9.462E-02 1.192E-01	5.268E-04 6.243E-04 7.168E-04 8.055E-04 8.911E-04 1.055E-03 1.213E-03 1.367E-03	3.760E-02 5.166E-02 6.694E-02 8.320E-02 1.003E-01 1.363E-01 1.740E-01 2.129E-01	-0.135 -0.130 -0.126 -0.123 -0.120 -0.115 -0.110	0.149 0.144 0.140 0.136 0.133 0.129 0.125 0.121	0.149 0.143 0.139 0.136 0.133 0.128 0.123
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.896E+00 1.835E+00 1.788E+00 1.752E+00 1.722E+00 1.679E+00 1.650E+00 1.631E+00	5.173E-03 5.545E-03 5.935E-03 6.340E-03 6.759E-03 7.637E-03 8.559E-03 9.523E-03	1.901E+00 1.841E+00 1.794E+00 1.758E+00 1.729E+00 1.687E+00 1.659E+00 1.640E+00	1.450E-01 1.718E-01 1.993E-01 2.274E-01 2.561E-01 3.147E-01 3.745E-01 4.352E-01	1.518E-03 1.668E-03 1.817E-03 1.966E-03 2.115E-03 2.416E-03 2.719E-03 3.026E-03	2.524E-01 2.922E-01 3.321E-01 3.719E-01 4.114E-01 4.891E-01 5.648E-01 6.382E-01	-0.102 -0.099 -0.095 -0.092 -0.090 -0.085 -0.081	0.118 0.115 0.113 0.110 0.108 0.104 0.101 0.098	0.116 0.113 0.110 0.108 0.105 0.101 0.096 0.093
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.617E+00 1.599E+00 1.593E+00 1.594E+00 1.597E+00 1.608E+00 1.621E+00	1.053E-02 1.318E-02 1.602E-02 1.901E-02 2.213E-02 2.870E-02 3.561E-02 4.281E-02	1.627E+00 1.612E+00 1.609E+00 1.613E+00 1.619E+00 1.637E+00 1.657E+00	4.964E-01 6.509E-01 8.062E-01 9.614E-01 1.116E+00 1.423E+00 1.727E+00 2.027E+00	3.337E-03 4.133E-03 4.954E-03 5.799E-03 6.665E-03 8.450E-03 1.029E-02	7.091E-01 8.756E-01 1.028E+00 1.167E+00 1.295E+00 1.522E+00 1.720E+00 1.894E+00	-0.074 -0.069 -0.064 -0.059 -0.055 -0.052 -0.050	0.095 0.089 0.085 0.081 0.078 0.073 0.069 0.067	0.090 0.083 0.078 0.073 0.070 0.065 0.061 0.058
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.647E+00 1.658E+00 1.669E+00 1.679E+00 1.689E+00 1.706E+00 1.720E+00	5.026E-02 5.792E-02 6.576E-02 7.378E-02 8.193E-02 9.865E-02 1.158E-01 1.334E-01	1.697E+00 1.716E+00 1.735E+00 1.753E+00 1.771E+00 1.804E+00 1.836E+00	2.323E+00 2.616E+00 2.906E+00 3.193E+00 3.476E+00 4.036E+00 4.585E+00 5.125E+00	1.410E-02 1.606E-02 1.803E-02 2.003E-02 2.204E-02 2.610E-02 3.020E-02 3.432E-02	2.051E+00 2.193E+00 2.323E+00 2.443E+00 2.555E+00 2.758E+00 2.939E+00 3.104E+00	-0.048 -0.047 -0.045 -0.044 -0.042 -0.040 -0.037 -0.035	0.064 0.062 0.060 0.059 0.057 0.055 0.053	0.055 0.053 0.051 0.050 0.048 0.046 0.043 0.041
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.745E+00 1.769E+00 1.787E+00 1.803E+00 1.816E+00 1.836E+00 1.852E+00 1.865E+00	1.513E-01 1.971E-01 2.444E-01 2.927E-01 3.417E-01 4.417E-01 5.435E-01 6.466E-01	1.896E+00 1.966E+00 2.032E+00 2.095E+00 2.157E+00 2.278E+00 2.396E+00 2.512E+00	5.657E+00 6.952E+00 8.202E+00 9.414E+00 1.059E+01 1.284E+01 1.498E+01	3.845E-02 4.877E-02 5.903E-02 6.918E-02 7.917E-02 9.861E-02 1.173E-01 1.351E-01	3.256E+00 3.591E+00 3.879E+00 4.133E+00 4.361E+00 4.755E+00 5.088E+00 5.376E+00	-0.032 -0.027 -0.022 -0.018 -0.015 -0.011 -0.008 -0.006	0.049 0.045 0.041 0.038 0.035 0.031 0.028 0.025	0.039 0.035 0.031 0.027 0.024 0.019 0.016 0.013
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.877E+00 1.886E+00 1.895E+00 1.903E+00 1.910E+00 1.922E+00 1.932E+00	7.508E-01 8.559E-01 9.617E-01 1.068E+00 1.175E+00 1.391E+00 1.608E+00 1.826E+00	2.627E+00 2.742E+00 2.857E+00 2.971E+00 3.085E+00 3.313E+00 3.541E+00 3.768E+00	1.897E+01 2.083E+01 2.262E+01 2.433E+01 2.598E+01 2.911E+01 3.203E+01 3.477E+01	1.522E-01 1.685E-01 1.841E-01 1.991E-01 2.133E-01 2.401E-01 2.648E-01 2.875E-01	5.628E+00 5.854E+00 6.057E+00 6.241E+00 6.411E+00 6.712E+00 6.974E+00 7.206E+00	-0.005 -0.004 -0.003 -0.003 -0.002 -0.002 -0.001	0.023 0.021 0.020 0.018 0.017 0.016 0.014	0.011 0.009 0.008 0.007 0.006 0.005 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	1.950E+00 1.967E+00 1.982E+00 1.993E+00 2.004E+00 2.021E+00 2.035E+00 2.047E+00	2.046E+00 2.598E+00 3.155E+00 3.714E+00 4.276E+00 5.405E+00 6.540E+00 7.678E+00	3.996E+00 4.566E+00 5.136E+00 5.708E+00 6.280E+00 7.426E+00 8.575E+00 9.725E+00	3.735E+01 4.319E+01 4.835E+01 5.297E+01 5.714E+01 6.446E+01 7.072E+01 7.619E+01	3.087E-01 3.553E-01 3.948E-01 4.288E-01 4.585E-01 5.080E-01 5.476E-01 5.804E-01	7.415E+00 7.857E+00 8.219E+00 8.525E+00 8.791E+00 9.236E+00 9.599E+00 9.907E+00	-0.001 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000	0.012 0.011 0.010 0.009 0.008 0.007 0.007	0.003 0.002 0.002 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.057E+00 2.066E+00 2.074E+00 2.082E+00 2.088E+00 2.100E+00 2.110E+00 2.120E+00	8.820E+00 9.964E+00 1.111E+01 1.226E+01 1.340E+01 1.570E+01 1.801E+01 2.031E+01	1.088E+01 1.203E+01 1.318E+01 1.434E+01 1.549E+01 1.780E+01 2.012E+01 2.243E+01	8.105E+01 8.542E+01 8.938E+01 9.302E+01 9.637E+01 1.024E+02 1.124E+02	6.079E-01 6.314E-01 6.519E-01 6.698E-01 6.856E-01 7.125E-01 7.346E-01 7.530E-01	1.017E+01 1.041E+01 1.062E+01 1.081E+01 1.098E+01 1.129E+01 1.156E+01 1.179E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.006 0.005 0.005 0.005 0.005 0.005 0.004	0.001 0.000 0.000 0.000 0.000 0.000 0.000
000.000	2.128E+00	2.262E+01	2.475E+01	1.166E+02	7.687E-01	1.200E+01	-0.000	0.004	0.000

I = 82.0 eV DENSITY = 1.165E-03 g/cm^3 (20° C)

					_				
ENERGY	COLLISION	OPPING POWE	TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(l CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²					
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.995E+01 1.679E+01 1.458E+01 1.294E+01 1.168E+01 9.838E+00 8.564E+00 7.626E+00	3.711E-03 3.729E-03 3.740E-03 3.747E-03 3.753E-03 3.762E-03 3.770E-03	1.996E+01 1.680E+01 1.459E+01 1.295E+01 1.168E+01 9.842E+00 8.568E+00 7.629E+00	2.851E-04 4.223E-04 5.825E-04 7.648E-04 9.684E-04 1.437E-03 1.983E-03 2.603E-03	1.023E-04 1.227E-04 1.421E-04 1.608E-04 1.789E-04 2.135E-04 2.465E-04 2.781E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.202 -0.194 -0.187 -0.182 -0.178 -0.171 -0.166	0.232 0.221 0.213 0.206 0.200 0.192 0.185 0.180	0.230 0.220 0.211 0.205 0.200 0.191 0.185 0.180
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800	6.904E+00 6.331E+00 5.865E+00 5.477E+00 5.150E+00 4.628E+00 4.229E+00 3.914E+00	3.790E-03 3.803E-03 3.816E-03 3.831E-03 3.846E-03 3.881E-03 3.920E-03	6.908E+00 6.335E+00 5.868E+00 5.481E+00 5.154E+00 4.632E+00 4.233E+00 3.918E+00	3.293E-03 4.049E-03 4.870E-03 5.753E-03 6.694E-03 8.745E-03 1.101E-02 1.347E-02	3.086E-04 3.382E-04 3.669E-04 3.949E-04 4.222E-04 4.751E-04 5.260E-04 5.752E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.159 -0.156 -0.154 -0.152 -0.150 -0.147 -0.144 -0.142	0.176 0.173 0.170 0.167 0.165 0.161 0.158 0.155	0.176 0.172 0.169 0.167 0.164 0.160 0.157 0.155
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	3.660E+00 3.195E+00 2.881E+00 2.655E+00 2.486E+00 2.251E+00 2.097E+00 1.991E+00	4.005E-03 4.127E-03 4.259E-03 4.400E-03 4.550E-03 4.874E-03 5.227E-03 5.606E-03	3.664E+00 3.199E+00 2.885E+00 2.660E+00 2.491E+00 2.256E+00 2.103E+00 1.996E+00	1.611E-02 2.344E-02 3.169E-02 4.073E-02 5.046E-02 7.162E-02 9.462E-02 1.191E-01	6.229E-04 7.368E-04 8.447E-04 9.477E-04 1.047E-03 1.236E-03 1.418E-03 1.593E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.140 -0.136 -0.132 -0.130 -0.128 -0.124 -0.121	0.152 0.148 0.144 0.141 0.139 0.135 0.132	0.152 0.147 0.144 0.141 0.138 0.134 0.131 0.128
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.914E+00 1.857E+00 1.813E+00 1.779E+00 1.753E+00 1.716E+00 1.693E+00 1.679E+00	6.009E-03 6.436E-03 6.882E-03 7.347E-03 7.827E-03 8.831E-03 9.889E-03 1.099E-02	1.920E+00 1.863E+00 1.820E+00 1.787E+00 1.761E+00 1.725E+00 1.703E+00 1.690E+00	1.446E-01 1.711E-01 1.982E-01 2.260E-01 2.542E-01 3.116E-01 3.700E-01 4.289E-01	1.765E-03 1.935E-03 2.103E-03 2.271E-03 2.438E-03 2.773E-03 3.109E-03 3.447E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.117 -0.115 -0.114 -0.112 -0.111 -0.109 -0.107 -0.105	0.127 0.126 0.124 0.123 0.121 0.119 0.117 0.116	0.126 0.124 0.122 0.121 0.119 0.117 0.115 0.113
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.670E+00 1.665E+00 1.670E+00 1.681E+00 1.693E+00 1.721E+00 1.749E+00 1.775E+00	1.214E-02 1.518E-02 1.842E-02 2.184E-02 2.540E-02 3.290E-02 4.078E-02 4.899E-02	1.683E+00 1.680E+00 1.688E+00 1.702E+00 1.719E+00 1.754E+00 1.790E+00 1.824E+00	4.883E-01 6.371E-01 7.856E-01 9.331E-01 1.079E+00 1.367E+00 1.649E+00	3.788E-03 4.655E-03 5.541E-03 6.444E-03 7.364E-03 9.243E-03 1.116E-02 1.311E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.104 -0.101 -0.098 -0.096 -0.095 -0.092 -0.090 -0.088	0.114 0.111 0.109 0.107 0.105 0.102 0.100 0.098	0.111 0.108 0.105 0.103 0.101 0.097 0.095 0.093
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.799E+00 1.821E+00 1.842E+00 1.861E+00 1.879E+00 1.911E+00 1.940E+00 1.965E+00	5.747E-02 6.620E-02 7.512E-02 8.423E-02 9.352E-02 1.125E-01 1.320E-01	1.857E+00 1.888E+00 1.917E+00 1.945E+00 1.972E+00 2.024E+00 2.072E+00 2.117E+00	2.198E+00 2.465E+00 2.728E+00 2.987E+00 3.242E+00 3.742E+00 4.231E+00 4.708E+00	1.509E-02 1.708E-02 1.909E-02 2.110E-02 2.312E-02 2.718E-02 3.124E-02 3.530E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.087 -0.085 -0.084 -0.083 -0.082 -0.081 -0.080 -0.078	0.096 0.095 0.094 0.093 0.091 0.090 0.088 0.086	0.091 0.089 0.088 0.086 0.085 0.083 0.081
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000	1.988E+00 2.038E+00 2.079E+00 2.113E+00 2.144E+00 2.194E+00 2.235E+00 2.266E+00	1.723E-01 2.244E-01 2.780E-01 3.327E-01 3.884E-01 5.016E-01 6.169E-01 7.336E-01	2.161E+00 2.262E+00 2.356E+00 2.446E+00 2.532E+00 2.696E+00 2.852E+00 3.000E+00	5.176E+00 6.306E+00 7.388E+00 8.430E+00 9.434E+00 1.135E+01 1.315E+01	3.934E-02 4.938E-02 5.926E-02 6.894E-02 7.842E-02 9.672E-02 1.142E-01 1.308E-01	0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.661E-03 6.591E-02	-0.077 -0.076 -0.074 -0.073 -0.072 -0.070 -0.061 -0.050	0.085 0.082 0.080 0.078 0.076 0.073 0.071	0.078 0.075 0.072 0.070 0.068 0.065 0.062 0.057
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	2.290E+00 2.310E+00 2.327E+00 2.342E+00 2.355E+00 2.377E+00 2.395E+00 2.411E+00	8.515E-01 9.704E-01 1.090E+00 1.211E+00 1.332E+00 1.575E+00 1.821E+00 2.067E+00	3.142E+00 3.281E+00 3.417E+00 3.552E+00 3.686E+00 4.216E+00 4.478E+00	1.649E+01 1.804E+01 1.954E+01 2.097E+01 2.235E+01 2.497E+01 2.742E+01 2.972E+01	1.467E-01 1.619E-01 1.765E-01 1.904E-01 2.038E-01 2.290E-01 2.523E-01 2.740E-01	1.474 \(\hat{E}-01\) 2.393 \(\hat{E}-01\) 3.344 \(\hat{E}-01\) 4.291 \(\hat{E}-01\) 5.217 \(\hat{E}-01\) 6.973 \(\hat{E}-01\) 8.590 \(\hat{E}-01\) 1.008 \(\hat{E}+00\)	-0.043 -0.038 -0.034 -0.032 -0.029 -0.026 -0.024 -0.023	0.064 0.061 0.058 0.056 0.054 0.050 0.047	0.052 0.047 0.044 0.040 0.037 0.032 0.029
100.0000 125.0000 150.0000 200.0000 250.0000 350.0000	2.424E+00 2.453E+00 2.475E+00 2.494E+00 2.510E+00 2.537E+00 2.558E+00 2.575E+00	2.315E+00 2.939E+00 3.567E+00 4.198E+00 6.832E+00 6.106E+00 7.385E+00 8.668E+00	4.740E+00 5.392E+00 6.042E+00 6.693E+00 7.343E+00 8.643E+00 9.943E+00	3.189E+01 3.684E+01 4.121E+01 4.514E+01 4.871E+01 5.498E+01 6.037E+01 6.509E+01	2.941E-01 3.389E-01 3.771E-01 4.103E-01 4.394E-01 4.883E-01 5.278E-01 5.606E-01	1.144E+00 1.443E+00 1.695E+00 1.911E+00 2.102E+00 2.427E+00 2.699E+00 2.934E+00	-0.022 -0.020 -0.019 -0.018 -0.017 -0.016 -0.015	0.042 0.038 0.035 0.032 0.030 0.027 0.025 0.024	0.024 0.019 0.017 0.015 0.013 0.011 0.009 0.008
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	2.590E+00 2.603E+00 2.614E+00 2.624E+00 2.633E+00 2.648E+00 2.660E+00 2.671E+00	9.955E+00 1.124E+01 1.253E+01 1.383E+01 1.512E+01 1.771E+01 2.031E+01 2.290E+01	1.254E+01 1.385E+01 1.515E+01 1.645E+01 1.775E+01 2.036E+01 2.297E+01 2.558E+01	6.930E+01 7.309E+01 7.654E+01 7.971E+01 8.264E+01 8.789E+01 9.251E+01 9.664E+01	5.883E-01 6.122E-01 6.330E-01 6.513E-01 6.675E-01 6.952E-01 7.180E-01 7.371E-01	3.142E+00 3.329E+00 3.499E+00 3.657E+00 4.067E+00 4.303E+00 4.515E+00	-0.013 -0.012 -0.011 -0.010 -0.009 -0.008 -0.006 -0.005	0.023 0.021 0.021 0.020 0.019 0.018 0.017	0.007 0.007 0.006 0.006 0.005 0.004 0.004
1000.0000	2.681E+00	2.550E+01	2.818E+01	1.004E+02	7.534E-01	4.707E+00	-0.005	0.016	0.003

ELECTRONS IN OXYGEN

I = 95.0 eV DENSITY = $1.332E-03 \text{ g/cm}^3 (20^{\circ} \text{ C})$

ENERGY		OPPING POWER	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	d(lo	g)/d(l CSDA	ogI) RAD
MeV	MeV cm²∕g	MeV cm²/g	MeV cm ² /g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0125 0.0150 0.0175 0.0200 0.0250 0.0300	1.937E+01 1.632E+01 1.419E+01 1.260E+01 1.138E+01 9.595E+00 8.359E+00 7.447E+00	4.267E-03 4.298E-03 4.316E-03 4.328E-03 4.336E-03 4.347E-03 4.356E-03 4.365E-03	1.937E+01 1.633E+01 1.419E+01 1.261E+01 1.138E+01 9.600E+00 8.363E+00 7.452E+00	2.950E-04 4.362E-04 6.009E-04 7.882E-04 9.973E-04 1.478E-03 2.037E-03 2.672E-03	1.207E-04 1.449E-04 1.681E-04 1.903E-04 2.118E-04 2.529E-04 2.919E-04 3.293E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.209 -0.199 -0.193 -0.187 -0.183 -0.176 -0.170	0.241 0.229 0.220 0.213 0.207 0.198 0.191 0.185	0.239 0.227 0.218 0.211 0.206 0.197 0.190 0.185
0.0450 0.0500 0.0550 0.0600 0.0700	6.746E+00 6.189E+00 5.735E+00 5.358E+00 5.039E+00 4.530E+00 4.142E+00 3.835E+00	4.376E-03 4.388E-03 4.402E-03 4.417E-03 4.434E-03 4.471E-03 4.512E-03 4.558E-03	6.750E+00 6.193E+00 5.739E+00 5.362E+00 5.044E+00 4.535E+00 4.146E+00 3.839E+00	3.378E-03 4.153E-03 4.992E-03 5.894E-03 6.856E-03 8.951E-03 1.126E-02 1.377E-02	3.653E-04 4.001E-04 4.339E-04 4.668E-04 4.988E-04 5.608E-04 6.204E-04 6.779E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.163 -0.160 -0.157 -0.155 -0.153 -0.150 -0.147 -0.145	0.181 0.177 0.174 0.171 0.169 0.165 0.161	0.180 0.177 0.174 0.171 0.169 0.164 0.161
0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	3.586E+00 3.133E+00 2.826E+00 2.606E+00 2.441E+00 2.211E+00 2.061E+00 1.957E+00	4.607E-03 4.741E-03 4.889E-03 5.048E-03 5.215E-03 5.578E-03 5.975E-03 6.402E-03	3.591E+00 3.137E+00 2.831E+00 2.611E+00 2.446E+00 2.217E+00 2.067E+00 1.963E+00	1.647E-02 2.394E-02 3.235E-02 4.157E-02 5.147E-02 7.302E-02 9.642E-02 1.213E-01	7.337E-04 8.666E-04 9.921E-04 1.112E-03 1.227E-03 1.447E-03 1.656E-03 1.859E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.143 -0.138 -0.135 -0.132 -0.130 -0.127 -0.124	0.156 0.151 0.147 0.144 0.142 0.138 0.134	0.156 0.151 0.147 0.144 0.141 0.137 0.134
0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.882E+00 1.826E+00 1.784E+00 1.751E+00 1.725E+00 1.690E+00 1.667E+00 1.654E+00	6.856E-03 7.335E-03 7.838E-03 8.362E-03 8.904E-03 1.004E-02 1.122E-02 1.247E-02	1.889E+00 1.833E+00 1.791E+00 1.759E+00 1.734E+00 1.700E+00 1.679E+00	1.473E-01 1.742E-01 2.018E-01 2.299E-01 2.586E-01 3.169E-01 3.761E-01 4.359E-01	2.057E-03 2.253E-03 2.446E-03 2.639E-03 2.831E-03 3.215E-03 3.600E-03 3.987E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.119 -0.117 -0.116 -0.114 -0.113 -0.111 -0.109 -0.107	0.130 0.128 0.126 0.125 0.124 0.121 0.119 0.118	0.128 0.126 0.125 0.123 0.122 0.119 0.117
1.2500 1.5000 1.7500 2.0000 2.5000	1.646E+00 1.641E+00 1.647E+00 1.658E+00 1.671E+00 1.679E+00 1.727E+00 1.753E+00	1.376E-02 1.718E-02 2.084E-02 2.468E-02 2.869E-02 3.711E-02 4.598E-02 5.519E-02	1.659E+00 1.658E+00 1.667E+00 1.682E+00 1.699E+00 1.736E+00 1.773E+00 1.808E+00	4.961E-01 6.469E-01 7.973E-01 9.466E-01 1.094E+00 1.386E+00 1.671E+00	4.377E-03 5.366E-03 6.376E-03 7.405E-03 8.452E-03 1.059E-02 1.276E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.105 -0.102 -0.100 -0.098 -0.096 -0.093 -0.091	0.116 0.113 0.111 0.108 0.107 0.104 0.101 0.099	0.113 0.110 0.107 0.104 0.102 0.099 0.096
4.5000 5.0000 5.5000 6.0000 7.0000 8.0000	1.777E+00 1.799E+00 1.820E+00 1.839E+00 1.857E+00 1.889E+00 1.918E+00 1.944E+00	6.471E-02 7.448E-02 8.449E-02 9.470E-02 1.051E-01 1.264E-01 1.482E-01	1.842E+00 1.874E+00 1.905E+00 1.934E+00 1.962E+00 2.016E+00 2.066E+00 2.114E+00	2.224E+00 2.493E+00 2.758E+00 3.018E+00 3.275E+00 3.777E+00 4.267E+00 4.746E+00	1.720E-02 1.945E-02 2.171E-02 2.398E-02 2.626E-02 3.081E-02 3.536E-02 3.990E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.088 -0.086 -0.085 -0.084 -0.083 -0.082 -0.080 -0.079	0.098 0.096 0.095 0.094 0.092 0.091 0.089 0.087	0.092 0.090 0.088 0.087 0.086 0.084 0.082
12.5000 15.0000 17.5000	1.967E+00 2.016E+00 2.057E+00 2.092E+00 2.122E+00 2.173E+00 2.214E+00 2.246E+00	1.932E-01 2.514E-01 3.112E-01 3.723E-01 4.343E-01 5.606E-01 6.890E-01 8.189E-01	2.160E+00 2.268E+00 2.368E+00 2.464E+00 2.556E+00 2.733E+00 2.903E+00 3.065E+00	5.214E+00 6.343E+00 7.421E+00 8.456E+00 9.452E+00 1.134E+01 1.312E+01	4.441E-02 5.558E-02 6.652E-02 7.720E-02 8.762E-02 1.076E-01 1.266E-01	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.989E-03 4.425E-02	-0.078 -0.076 -0.075 -0.074 -0.073 -0.071 -0.065 -0.054	0.086 0.083 0.081 0.079 0.077 0.074 0.071	0.079 0.075 0.073 0.070 0.068 0.065 0.062 0.057
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.272E+00 2.292E+00 2.310E+00 2.325E+00 2.338E+00 2.361E+00 2.379E+00 2.395E+00	9.502E-01 1.083E+00 1.216E+00 1.350E+00 1.484E+00 1.755E+00 2.028E+00 2.302E+00	3.222E+00 3.375E+00 3.526E+00 3.675E+00 3.823E+00 4.116E+00 4.407E+00 4.697E+00	1.638E+01 1.790E+01 1.935E+01 2.074E+01 2.207E+01 2.459E+01 2.694E+01 2.914E+01	1.617E-01 1.779E-01 1.934E-01 2.082E-01 2.224E-01 2.488E-01 2.732E-01 2.957E-01	1.129E-01 1.940E-01 2.804E-01 3.682E-01 4.554E-01 6.239E-01 7.819E-01 9.288E-01	-0.047 -0.041 -0.037 -0.034 -0.031 -0.028 -0.025 -0.023	0.065 0.062 0.059 0.057 0.055 0.051 0.048	0.053 0.048 0.045 0.041 0.038 0.033 0.030
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.409E+00 2.437E+00 2.460E+00 2.478E+00 2.494E+00 2.520E+00 2.541E+00 2.558E+00	2.577E+00 3.270E+00 3.967E+00 4.668E+00 5.371E+00 6.784E+00 8.202E+00 9.625E+00	4.986E+00 5.707E+00 6.427E+00 7.146E+00 7.865E+00 9.304E+00 1.074E+01 1.218E+01	3.120E+01 3.589E+01 4.001E+01 4.370E+01 4.703E+01 5.287E+01 5.787E+01 6.223E+01	3.165E-01 3.624E-01 4.013E-01 4.348E-01 4.640E-01 5.127E-01 5.517E-01 5.840E-01	1.065E+00 1.366E+00 1.622E+00 1.843E+00 2.038E+00 2.369E+00 2.644E+00 2.879E+00	-0.022 -0.019 -0.018 -0.017 -0.016 -0.015 -0.015	0.043 0.038 0.035 0.033 0.031 0.028 0.026	0.024 0.020 0.017 0.015 0.013 0.011 0.009 0.008
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.573E+00 2.586E+00 2.597E+00 2.608E+00 2.617E+00 2.633E+00 2.646E+00 2.658E+00	1.105E+01 1.248E+01 1.391E+01 1.534E+01 1.678E+01 1.965E+01 2.252E+01 2.540E+01	1.362E+01 1.507E+01 1.651E+01 1.795E+01 1.939E+01 2.228E+01 2.517E+01 2.805E+01	6.611E+01 6.960E+01 7.277E+01 7.568E+01 7.835E+01 8.316E+01 8.738E+01 9.114E+01	6.111E-01 6.343E-01 6.544E-01 6.721E-01 6.878E-01 7.144E-01 7.361E-01 7.544E-01	3.086E+00 3.271E+00 3.438E+00 3.592E+00 3.733E+00 3.989E+00 4.215E+00 4.418E+00	-0.013 -0.013 -0.012 -0.011 -0.011 -0.010 -0.008 -0.008	0.023 0.022 0.021 0.020 0.020 0.019 0.018 0.017	0.007 0.006 0.006 0.005 0.005 0.004 0.004
1000.0000	2.668E+00	2.827E+01	3.094E+01	9.454E+01	7.699E-01	4.603E+00	-0.007	0.017	0.003

I = 137.0 eV DENSITY = 8.385E-04 g/cm^3 (200 C)

ENERGY	COLLISION	OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(5051111			1200
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.773E+01 1.500E+01 1.307E+01 1.164E+01 1.052E+01 8.898E+00 7.768E+00 6.932E+00	5.273E-03 5.340E-03 5.384E-03 5.416E-03 5.439E-03 5.470E-03 5.492E-03 5.510E-03	1.774E+01 1.500E+01 1.308E+01 1.164E+01 1.053E+01 8.904E+00 7.773E+00 6.938E+00	3.265E-04 4.804E-04 6.595E-04 8.625E-04 1.089E-03 1.607E-03 2.210E-03 2.892E-03	1.622E-04 1.951E-04 2.266E-04 2.569E-04 2.862E-04 3.422E-04 3.953E-04 4.461E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.226 -0.215 -0.207 -0.201 -0.196 -0.188 -0.182	0.266 0.251 0.240 0.232 0.225 0.214 0.206 0.200	0.262 0.248 0.237 0.229 0.223 0.212 0.204 0.198
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.288E+00 5.775E+00 5.357E+00 5.009E+00 4.715E+00 4.244E+00 3.884E+00 3.599E+00	5.526E-03 5.543E-03 5.559E-03 5.577E-03 5.595E-03 5.634E-03 5.679E-03 5.727E-03	6.293E+00 5.781E+00 5.362E+00 5.014E+00 4.720E+00 4.250E+00 3.890E+00 3.605E+00	3.650E-03 4.480E-03 5.379E-03 6.344E-03 7.373E-03 9.610E-03 1.207E-02 1.475E-02	4.949E-04 5.420E-04 5.876E-04 6.319E-04 6.750E-04 7.580E-04 8.374E-04 9.138E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.173 -0.170 -0.167 -0.164 -0.162 -0.158 -0.155 -0.153	0.194 0.190 0.186 0.183 0.180 0.176 0.172 0.169	0.193 0.189 0.186 0.183 0.180 0.175 0.171 0.168
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.369E+00 2.948E+00 2.663E+00 2.458E+00 2.304E+00 2.090E+00 1.950E+00 1.854E+00	5.781E-03 5.934E-03 6.106E-03 6.296E-03 6.500E-03 6.945E-03 7.432E-03 7.956E-03	3.375E+00 2.954E+00 2.669E+00 2.464E+00 2.310E+00 2.097E+00 1.958E+00 1.862E+00	1.762E-02 2.557E-02 3.449E-02 4.426E-02 5.475E-02 7.754E-02 1.023E-01 1.285E-01	9.875E-04 1.163E-03 1.327E-03 1.484E-03 1.634E-03 1.920E-03 2.192E-03 2.456E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.150 -0.146 -0.142 -0.139 -0.137 -0.133 -0.129 -0.127	0.166 0.160 0.156 0.152 0.150 0.145 0.142 0.139	0.165 0.160 0.155 0.152 0.149 0.144 0.140
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.784E+00 1.732E+00 1.693E+00 1.663E+00 1.639E+00 1.607E+00 1.587E+00 1.575E+00	8.511E-03 9.096E-03 9.707E-03 1.034E-02 1.100E-02 1.236E-02 1.380E-02 1.530E-02	1.792E+00 1.741E+00 1.703E+00 1.673E+00 1.650E+00 1.619E+00 1.601E+00 1.590E+00	1.559E-01 1.842E-01 2.133E-01 2.429E-01 2.730E-01 3.342E-01 3.964E-01 4.591E-01	2.713E-03 2.965E-03 3.215E-03 3.463E-03 3.709E-03 4.200E-03 4.691E-03 5.184E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.125 -0.123 -0.121 -0.119 -0.118 -0.115 -0.113	0.136 0.134 0.132 0.131 0.129 0.127 0.125 0.123	0.135 0.133 0.131 0.129 0.127 0.124 0.122 0.120
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.568E+00 1.565E+00 1.572E+00 1.584E+00 1.598E+00 1.626E+00 1.654E+00 1.681E+00	1.686E-02 2.100E-02 2.542E-02 3.008E-02 3.493E-02 4.513E-02 5.586E-02 6.701E-02	1.585E+00 1.586E+00 1.598E+00 1.614E+00 1.633E+00 1.672E+00 1.710E+00	5.221E-01 6.799E-01 8.370E-01 9.927E-01 1.147E+00 1.449E+00 1.745E+00 2.034E+00	5.678E-03 6.929E-03 8.202E-03 9.497E-03 1.081E-02 1.349E-02 1.621E-02 1.897E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.110 -0.106 -0.104 -0.101 -0.099 -0.096 -0.094 -0.092	0.121 0.118 0.115 0.113 0.111 0.108 0.105 0.103	0.118 0.114 0.111 0.108 0.106 0.102 0.099 0.097
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.705E+00 1.727E+00 1.748E+00 1.767E+00 1.785E+00 1.817E+00 1.845E+00 1.870E+00	7.852E-02 9.033E-02 1.024E-01 1.147E-01 1.273E-01 1.529E-01 2.058E-01	1.783E+00 1.817E+00 1.850E+00 1.882E+00 1.912E+00 1.970E+00 2.024E+00 2.076E+00	2.317E+00 2.595E+00 2.868E+00 3.136E+00 3.399E+00 3.915E+00 4.415E+00 4.903E+00	2.174E-02 2.454E-02 2.733E-02 3.014E-02 3.294E-02 3.853E-02 4.410E-02 4.963E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.091 -0.089 -0.088 -0.087 -0.086 -0.084 -0.083 -0.082	0.101 0.099 0.098 0.097 0.095 0.093 0.091	0.094 0.093 0.091 0.089 0.088 0.086 0.083
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.893E+00 1.942E+00 1.983E+00 2.017E+00 2.047E+00 2.098E+00 2.139E+00 2.174E+00	2.330E-01 3.026E-01 3.739E-01 4.466E-01 5.204E-01 6.703E-01 8.226E-01 9.766E-01	2.126E+00 2.245E+00 2.357E+00 2.464E+00 2.568E+00 2.768E+00 2.962E+00 3.151E+00	5.379E+00 6.523E+00 7.609E+00 8.646E+00 9.640E+01 1.151E+01 1.326E+01	5.510E-02 6.854E-02 8.159E-02 9.423E-02 1.065E-01 1.297E-01 1.515E-01	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.081 -0.079 -0.077 -0.076 -0.074 -0.073 -0.071	0.088 0.085 0.082 0.080 0.078 0.075 0.072	0.080 0.076 0.073 0.071 0.068 0.065 0.061 0.059
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.204E+00 2.231E+00 2.255E+00 2.277E+00 2.277E+00 2.329E+00 2.355E+00 2.376E+00	1.132E+00 1.289E+00 1.446E+00 1.605E+00 1.764E+00 2.084E+00 2.406E+00 2.729E+00	3.336E+00 3.520E+00 3.701E+00 3.881E+00 4.060E+00 4.413E+00 4.761E+00 5.105E+00	1.644E+01 1.790E+01 1.928E+01 2.060E+01 2.186E+01 2.422E+01 2.640E+01 2.843E+01	1.910E-01 2.090E-01 2.259E-01 2.420E-01 2.571E-01 2.852E-01 3.107E-01 3.340E-01	0.0 0.0 0.0 0.0 0.0 2.873E-02 9.312E-02 1.741E-01	-0.069 -0.068 -0.068 -0.067 -0.066 -0.054 -0.045 -0.039	0.067 0.065 0.064 0.062 0.061 0.058 0.055 0.053	0.056 0.054 0.052 0.050 0.049 0.045 0.041 0.037
 100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.393E+00 2.427E+00 2.452E+00 2.472E+00 2.488E+00 2.515E+00 2.536E+00 2.554E+00	3.054E+00 3.871E+00 4.693E+00 5.518E+00 6.347E+00 8.010E+00 9.680E+00 1.135E+01	5.447E+00 6.298E+00 7.144E+00 7.990E+00 8.835E+01 1.053E+01 1.222E+01 1.391E+01	3.033E+01 3.459E+01 3.832E+01 4.162E+01 4.460E+01 4.978E+01 5.418E+01 5.802E+01	3.554E-01 4.021E-01 4.412E-01 4.745E-01 5.033E-01 5.508E-01 6.195E-01	2.624E-01 4.888E-01 7.045E-01 9.031E-01 1.085E+00 1.403E+00 1.674E+00 1.908E+00	-0.035 -0.028 -0.023 -0.021 -0.019 -0.016 -0.015 -0.014	0.051 0.046 0.042 0.040 0.037 0.034 0.032 0.030	0.034 0.028 0.023 0.020 0.018 0.014 0.012 0.010
400.0000 450.0000 550.0000 550.0000 600.0000 700.0000 800.0000	2.568E+00 2.581E+00 2.593E+00 2.603E+00 2.612E+00 2.628E+00 2.642E+00 2.655E+00	1.303E+01 1.471E+01 1.639E+01 1.808E+01 1.976E+01 2.313E+01 2.651E+01 2.989E+01	1.560E+01 1.729E+01 1.899E+01 2.068E+01 2.237E+01 2.576E+01 2.915E+01 3.254E+01	6.141E+01 6.445E+01 6.721E+01 6.973E+01 7.206E+01 7.622E+01 7.987E+01 8.311E+01	6.453E-01 6.673E-01 6.863E-01 7.029E-01 7.176E-01 7.42E-01 7.625E-01 7.794E-01	2.114E+00 2.298E+00 2.464E+00 2.616E+00 2.755E+00 3.003E+00 3.220E+00 3.413E+00	-0.013 -0.013 -0.012 -0.012 -0.012 -0.011 -0.011	0.028 0.027 0.026 0.025 0.024 0.023 0.022	0.009 0.008 0.007 0.007 0.006 0.005 0.005
000.0000	2.665E+00	3.327E+01	3.594E+01	8.603E+01	7.937E-01	3.587E+00	-0.010	0.020	0.004

ELECTRONS IN ALUMINUM

I = 166.0 eV DENSITY = 2.699E+00 g/cm³

ENERGY	COLLISION	OPPING POWER RADIATIVE	TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(10 CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm²/g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(DLLIK)	2000	KANOL	11550
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.649E+01 1.398E+01 1.220E+01 1.088E+01 9.844E+00 8.338E+00 7.287E+00 6.509E+00	6.559E-03 6.700E-03 6.798E-03 6.871E-03 6.926E-03 7.004E-03 7.059E-03 7.100E-03	1.650E+01 1.398E+01 1.221E+01 1.088E+01 9.851E+00 8.345E+00 7.294E+00 6.516E+00	3.539E-04 5.192E-04 7.111E-04 9.284E-04 1.170E-03 1.724E-03 2.367E-03 3.093E-03	2.132E-04 2.583E-04 3.016E-04 3.435E-04 3.840E-04 4.616E-04 5.353E-04 6.058E-04	3.534E-04 4.937E-04 6.538E-04 8.332E-04 1.031E-03 1.483E-03 2.005E-03 2.593E-03	-0.236 -0.224 -0.216 -0.209 -0.203 -0.195 -0.188 -0.183	0.281 0.265 0.252 0.243 0.235 0.224 0.215 0.208	0.275 0.260 0.248 0.239 0.232 0.221 0.212 0.206
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	5.909E+00 5.430E+00 5.039E+00 4.714E+00 4.439E+00 3.998E+00 3.661E+00 3.394E+00	7.133E-03 7.162E-03 7.191E-03 7.217E-03 7.243E-03 7.295E-03 7.350E-03 7.411E-03	5.916E+00 5.437E+00 5.046E+00 4.721E+00 4.446E+00 4.005E+00 3.668E+00 3.401E+00	3.900E-03 4.783E-03 5.738E-03 6.763E-03 7.855E-03 1.023E-02 1.284E-02 1.568E-02	6.736E-04 7.390E-04 8.022E-04 8.636E-04 9.232E-04 1.038E-03 1.147E-03 1.252E-03	3.246E-03 3.960E-03 4.732E-03 5.560E-03 6.440E-03 8.351E-03 1.045E-02 1.271E-02	-0.179 -0.175 -0.172 -0.170 -0.167 -0.163 -0.160 -0.157	0.202 0.198 0.194 0.190 0.187 0.182 0.178	0.201 0.196 0.192 0.189 0.186 0.181 0.177 0.173
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.177E+00 2.781E+00 2.513E+00 2.513E+00 2.320E+00 2.174E+00 1.972E+00 1.839E+00 1.747E+00	7.476E-03 7.659E-03 7.865E-03 8.096E-03 8.344E-03 8.888E-03 9.487E-03 1.013E-02	3.185E+00 2.789E+00 2.521E+00 2.328E+00 2.183E+00 1.981E+00 1.849E+00 1.757E+00	1.872E-02 2.714E-02 3.659E-02 4.693E-02 5.804E-02 8.217E-02 1.083E-01 1.361E-01	1.353E-03 1.593E-03 1.816E-03 2.028E-03 2.231E-03 2.616E-03 2.982E-03 3.335E-03	1.513E-02 2.175E-02 2.907E-02 3.694E-02 4.525E-02 6.280E-02 8.116E-02 9.997E-02	-0.155 -0.150 -0.146 -0.143 -0.140 -0.136 -0.132 -0.129	0.171 0.165 0.160 0.157 0.154 0.149 0.145	0.170 0.164 0.160 0.156 0.153 0.148 0.144
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.680E+00 1.630E+00 1.592E+00 1.563E+00 1.540E+00 1.507E+00 1.486E+00 1.473E+00	1.082E-02 1.154E-02 1.230E-02 1.309E-02 1.390E-02 1.560E-02 1.739E-02 1.925E-02	1.691E+00 1.642E+00 1.604E+00 1.576E+00 1.554E+00 1.522E+00 1.503E+00 1.492E+00	1.652E-01 1.952E-01 2.260E-01 2.575E-01 2.894E-01 3.545E-01 4.206E-01 4.874E-01	3.678E-03 4.016E-03 4.349E-03 4.680E-03 5.009E-03 5.664E-03 6.319E-03 6.976E-03	1.190E-01 1.380E-01 1.569E-01 1.757E-01 1.943E-01 2.307E-01 2.661E-01 3.005E-01	-0.127 -0.125 -0.123 -0.121 -0.119 -0.116 -0.113	0.139 0.137 0.135 0.133 0.132 0.129 0.127	0.138 0.135 0.133 0.131 0.130 0.126 0.124
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.465E+00 1.457E+00 1.460E+00 1.466E+00 1.475E+00 1.475E+00 1.510E+00 1.526E+00	2.119E-02 2.630E-02 3.177E-02 3.752E-02 4.350E-02 5.605E-02 6.924E-02 8.292E-02	1.486E+00 1.484E+00 1.491E+00 1.504E+00 1.518E+00 1.549E+00 1.580E+00 1.609E+00	5.546E-01 7.231E-01 8.912E-01 1.058E+00 1.224E+00 1.550E+00 1.869E+00 2.183E+00	7.636E-03 9.306E-03 1.101E-02 1.274E-02 1.449E-02 1.808E-02 2.173E-02 2.544E-02	3.339E-01 4.138E-01 4.898E-01 5.632E-01 6.349E-01 7.757E-01 9.145E-01 1.051E+00	-0.108 -0.103 -0.097 -0.092 -0.087 -0.077 -0.067 -0.059	0.122 0.118 0.114 0.111 0.108 0.102 0.096 0.091	0.119 0.113 0.109 0.105 0.101 0.093 0.085 0.079
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.540E+00 1.552E+00 1.564E+00 1.574E+00 1.583E+00 1.599E+00 1.613E+00 1.625E+00	9.702E-02 1.115E-01 1.263E-01 1.413E-01 1.567E-01 1.879E-01 2.200E-01 2.526E-01	1.637E+00 1.664E+00 1.690E+00 1.715E+00 1.739E+00 1.787E+00 1.833E+00 1.877E+00	2.491E+00 2.794E+00 3.092E+00 3.386E+00 3.675E+00 4.242E+00 4.795E+00 5.334E+00	2.918E-02 3.296E-02 3.675E-02 4.055E-02 4.436E-02 5.197E-02 5.955E-02 6.708E-02	1.183E+00 1.311E+00 1.433E+00 1.550E+00 1.661E+00 1.868E+00 2.055E+00 2.226E+00	-0.052 -0.047 -0.042 -0.039 -0.036 -0.032 -0.029	0.086 0.082 0.078 0.074 0.071 0.066 0.061	0.072 0.067 0.062 0.058 0.054 0.048 0.043 0.039
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.636E+00 1.658E+00 1.676E+00 1.691E+00 1.704E+00 1.726E+00 1.743E+00 1.757E+00	2.858E-01 3.706E-01 4.574E-01 5.459E-01 6.357E-01 8.180E-01 1.003E+00 1.190E+00	1.921E+00 2.029E+00 2.134E+00 2.237E+00 2.340E+00 2.544E+00 2.746E+00 2.947E+00	5.861E+00 7.127E+00 8.328E+00 9.472E+00 1.056E+01 1.261E+01 1.450E+01	7.454E-02 9.281E-02 1.105E-01 1.275E-01 1.438E-01 1.745E-01 2.027E-01 2.287E-01	2.384E+00 2.727E+00 3.016E+00 3.265E+00 3.484E+00 3.857E+00 4.168E+00 4.435E+00	-0.025 -0.022 -0.020 -0.018 -0.017 -0.016 -0.014	0.054 0.048 0.044 0.040 0.037 0.033 0.030 0.028	0.035 0.030 0.026 0.023 0.021 0.018 0.015 0.014
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.769E+00 1.780E+00 1.789E+00 1.797E+00 1.805E+00 1.818E+00 1.829E+00 1.838E+00	1.379E+00 1.569E+00 1.761E+00 1.953E+00 2.147E+00 2.535E+00 2.927E+00 3.320E+00	3.148E+00 3.349E+00 3.550E+00 3.751E+00 3.951E+00 4.353E+00 4.755E+00 5.158E+00	1.790E+01 1.944E+01 2.089E+01 2.226E+01 2.356E+01 2.597E+01 2.817E+01 3.019E+01	2.528E-01 2.751E-01 2.959E-01 3.152E-01 3.333E-01 3.662E-01 3.953E-01 4.214E-01	4.669E+00 4.878E+00 5.068E+00 5.241E+00 5.401E+00 5.687E+00 5.938E+00 6.161E+00	-0.012 -0.010 -0.009 -0.009 -0.008 -0.006 -0.005	0.026 0.024 0.023 0.022 0.021 0.019 0.018 0.017	0.012 0.011 0.010 0.009 0.009 0.007 0.006 0.006
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.847E+00 1.864E+00 1.879E+00 1.890E+00 1.900E+00 1.917E+00 1.931E+00 1.943E+00	3.714E+00 4.707E+00 5.705E+00 6.708E+00 7.714E+00 9.734E+00 1.176E+01 1.380E+01	5.561E+00 6.571E+00 7.583E+00 8.598E+00 9.614E+00 1.165E+01 1.369E+01 1.574E+01	3.205E+01 3.618E+01 3.972E+01 4.282E+01 4.557E+01 5.028E+01 5.424E+01 5.764E+01	4.448E-01 4.945E-01 5.346E-01 5.678E-01 5.958E-01 6.406E-01 6.751E-01 7.027E-01	6.363E+00 6.794E+00 7.150E+00 7.452E+00 7.716E+00 8.157E+00 8.519E+00 8.826E+00	-0.004 -0.003 -0.002 -0.001 -0.001 -0.001 -0.000	0.016 0.014 0.013 0.012 0.011 0.010 0.010 0.009	0.005 0.004 0.003 0.003 0.002 0.002 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.952E+00 1.961E+00 1.969E+00 1.976E+00 1.983E+00 1.994E+00 2.004E+00	1.583E+01 1.787E+01 1.992E+01 2.196E+01 2.401E+01 2.811E+01 3.221E+01 3.631E+01	1.778E+01 1.983E+01 2.189E+01 2.394E+01 2.599E+01 3.010E+01 3.421E+01 3.833E+01	6.063E+01 6.329E+01 6.569E+01 6.787E+01 6.988E+01 7.345E+01 7.656E+01 7.932E+01	7.253E-01 7.443E-01 7.604E-01 7.744E-01 7.866E-01 8.069E-01 8.233E-01 8.367E-01	9.091E+00 9.326E+00 9.536E+00 9.726E+00 9.900E+00 1.021E+01 1.047E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.009 0.008 0.008 0.008 0.007 0.007 0.007	0.001 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	2.021E+00	4.042E+01	4.244E+01	8.180E+01	8.481E-01	1.092E+01	-0.000	0.006	0.000

I = 166.0 eV DENSITY = 2.699E+00 g/cm³

		•		22	2.0772.0	o g. a			
ENERGY	COLLISION	OPPING POWE RADIATIVE	TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
MeV 0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0350	MeV cm ² /g 1.649E+01 1.398E+01 1.220E+01 1.088E+01 9.845E+00 8.339E+00 7.288E+00 6.510E+00	MeV cm ² /g 6.559E-03 6.700E-03 6.798E-03 6.871E-03 6.926E-03 7.004E-03 7.100E-03	MeV cm ² /g 1.650E+01 1.398E+01 1.221E+01 1.088E+01 9.851E+00 8.346E+00 7.295E+00 6.517E+00	g/cm ² 3.539E-04 5.192E-04 7.111E-04 9.284E-04 1.170E-03 1.724E-03 2.367E-03 3.093E-03	2.132E-04 2.583E-04 3.016E-04 3.435E-04 3.840E-04 4.615E-04 5.353E-04 6.058E-04	1.456E-04 2.266E-04 3.253E-04 4.413E-04 5.747E-04 8.925E-04 1.276E-03 1.720E-03	-0.236 -0.224 -0.216 -0.209 -0.203 -0.195 -0.188	0.281 0.265 0.252 0.243 0.235 0.224 0.215 0.208	0.275 0.260 0.248 0.239 0.232 0.221 0.212
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	5.909E+00 5.431E+00 5.040E+00 4.715E+00 4.439E+00 3.999E+00 3.661E+00 3.394E+00	7.133E-03 7.162E-03 7.191E-03 7.217E-03 7.243E-03 7.295E-03 7.350E-03 7.411E-03	5.916E+00 5.438E+00 5.047E+00 4.722E+00 4.447E+00 4.006E+00 3.609E+00	3.900E-03 4.782E-03 5.738E-03 6.763E-03 7.855E-03 1.023E-02 1.284E-02	6.736E-04 7.389E-04 8.022E-04 8.635E-04 9.231E-04 1.038E-03 1.147E-03 1.252E-03	2.219E-03 2.773E-03 3.391E-03 4.080E-03 4.842E-03 6.497E-03 8.162E-03 9.701E-03	-0.179 -0.175 -0.172 -0.170 -0.167 -0.163 -0.160 -0.157	0.202 0.198 0.194 0.190 0.187 0.182 0.178	0.201 0.196 0.192 0.189 0.186 0.181 0.177
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.178E+00 2.782E+00 2.514E+00 2.320E+00 2.175E+00 1.973E+00 1.840E+00 1.748E+00	7.476E-03 7.659E-03 7.865E-03 8.096E-03 8.344E-03 8.888E-03 9.487E-03	3.186E+00 2.790E+00 2.521E+00 2.329E+00 2.184E+00 1.982E+00 1.850E+00	1.872E-02 2.713E-02 3.659E-02 4.692E-02 5.802E-02 8.214E-02 1.083E-01 1.361E-01	1.353E-03 1.592E-03 1.816E-03 2.028E-03 2.231E-03 2.615E-03 2.981E-03 3.333E-03	1.138E-02 1.738E-02 2.450E-02 3.142E-02 3.876E-02 5.485E-02 7.180E-02 8.931E-02	-0.155 -0.150 -0.146 -0.143 -0.140 -0.136 -0.132 -0.129	0.171 0.165 0.160 0.157 0.154 0.149 0.145	0.170 0.164 0.160 0.156 0.153 0.148 0.144
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.681E+00 1.631E+00 1.594E+00 1.564E+00 1.541E+00 1.508E+00 1.487E+00	1.082E-02 1.154E-02 1.230E-02 1.309E-02 1.399E-02 1.560E-02 1.739E-02	1.692E+00 1.643E+00 1.606E+00 1.577E+00 1.555E+00 1.524E+00 1.505E+00 1.493E+00	1.651E-01 1.951E-01 2.259E-01 2.573E-01 2.893E-01 3.543E-01 4.203E-01 4.871E-01	3.676E-03 4.013E-03 4.346E-03 4.677E-03 5.005E-03 5.660E-03 6.314E-03 6.970E-03	1.072E-01 1.252E-01 1.433E-01 1.614E-01 1.794E-01 2.151E-01 2.503E-01 2.848E-01	-0.127 -0.125 -0.123 -0.121 -0.119 -0.116 -0.113	0.139 0.137 0.135 0.133 0.132 0.129 0.127	0.138 0.135 0.133 0.131 0.130 0.126 0.124
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.466E+00 1.458E+00 1.460E+00 1.467E+00 1.475E+00 1.492E+00 1.509E+00 1.525E+00	2.119E-02 2.630E-02 3.177E-02 3.752E-02 4.350E-02 5.605E-02 6.924E-02 8.292E-02	1.487E+00 1.485E+00 1.492E+00 1.504E+00 1.518E+00 1.548E+00 1.579E+00 1.608E+00	5.542E-01 7.226E-01 8.906E-01 1.057E+00 1.223E+00 1.549E+00 1.869E+00 2.183E+00	7.630E-03 9.299E-03 1.100E-02 1.273E-02 1.449E-02 1.807E-02 2.173E-02 2.544E-02	3.188E-01 4.014E-01 4.814E-01 5.594E-01 6.359E-01 7.845E-01 9.273E-01 1.064E+00	-0.108 -0.103 -0.097 -0.092 -0.087 -0.077 -0.067 -0.059	0.122 0.118 0.114 0.111 0.108 0.102 0.096 0.091	0.119 0.113 0.109 0.105 0.101 0.093 0.085 0.079
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.539E+00 1.552E+00 1.563E+00 1.574E+00 1.583E+00 1.600E+00 1.614E+00 1.627E+00	9.702E-02 1.115E-01 1.263E-01 1.413E-01 1.567E-01 1.879E-01 2.200E-01 2.526E-01	1.636E+00 1.663E+00 1.690E+00 1.715E+00 1.740E+00 1.788E+00 1.834E+00 1.879E+00	2.491E+00 2.794E+00 3.092E+00 3.386E+00 3.675E+00 4.242E+00 4.794E+00 5.333E+00	2.919E-02 3.297E-02 3.676E-02 4.056E-02 4.436E-02 5.197E-02 5.954E-02 6.706E-02	1.194E+00 1.318E+00 1.436E+00 1.548E+00 1.654E+00 1.853E+00 2.033E+00 2.199E+00	-0.052 -0.047 -0.042 -0.039 -0.036 -0.032 -0.029	0.086 0.082 0.078 0.074 0.071 0.066 0.061 0.057	0.072 0.067 0.062 0.058 0.054 0.048 0.043 0.039
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.638E+00 1.661E+00 1.679E+00 1.694E+00 1.707E+00 1.728E+00 1.744E+00	2.858E-01 3.706E-01 4.574E-01 5.459E-01 6.357E-01 8.180E-01 1.003E+00	1.924E+00 2.031E+00 2.136E+00 2.240E+00 2.343E+00 2.546E+00 2.747E+00 2.948E+00	5.859E+00 7.123E+00 8.323E+00 9.466E+00 1.056E+01 1.260E+01 1.449E+01 1.625E+01	7.451E-02 9.274E-02 1.104E-01 1.273E-01 1.436E-01 1.743E-01 2.025E-01 2.285E-01	2.352E+00 2.690E+00 2.977E+00 3.227E+00 3.449E+00 3.829E+00 4.147E+00 4.421E+00	-0.025 -0.022 -0.020 -0.018 -0.017 -0.016 -0.014 -0.013	0.054 0.048 0.044 0.040 0.037 0.033 0.030 0.028	0.035 0.030 0.026 0.023 0.021 0.018 0.015 0.014
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.770E+00 1.780E+00 1.789E+00 1.797E+00 1.804E+00 1.816E+00 1.827E+00 1.837E+00	1.379E+00 1.569E+00 1.761E+00 1.953E+00 2.147E+00 2.535E+00 2.927E+00 3.320E+00	3.149E+00 3.349E+00 3.550E+00 3.750E+00 3.950E+00 4.352E+00 4.754E+00 5.156E+00	1.789E+01 1.943E+01 2.088E+01 2.225E+01 2.355E+01 2.596E+01 2.816E+01 3.018E+01	2.526E-01 2.750E-01 2.957E-01 3.151E-01 3.332E-01 3.661E-01 4.214E-01	4.663E+00 4.878E+00 5.073E+00 5.250E+00 5.413E+00 5.705E+00 5.960E+00 6.186E+00	-0.012 -0.010 -0.009 -0.009 -0.008 -0.006 -0.005	0.026 0.024 0.023 0.022 0.021 0.019 0.018 0.017	0.012 0.011 0.010 0.009 0.009 0.007 0.006 0.006
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	1.845E+00 1.862E+00 1.876E+00 1.888E+00 1.888E+00 1.915E+00 1.929E+00 1.941E+00	3.714E+00 4.707E+00 5.705E+00 6.708E+00 7.714E+00 9.734E+00 1.176E+01 1.380E+01	5.559E+00 6.569E+00 7.581E+00 8.596E+00 9.612E+00 1.165E+01 1.369E+01	3.204E+01 3.618E+01 3.972E+01 4.281E+01 4.56E+01 5.028E+01 5.423E+01 5.764E+01	4.449E-01 4.946E-01 5.347E-01 5.679E-01 5.959E-01 6.407E-01 7.028E-01	6.390E+00 6.823E+00 7.180E+00 7.482E+00 7.745E+00 8.186E+00 8.547E+00 8.853E+00	-0.004 -0.003 -0.002 -0.001 -0.001 -0.001 -0.000	0.016 0.014 0.013 0.012 0.011 0.010 0.010	0.005 0.004 0.003 0.003 0.002 0.002 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.951E+00 1.959E+00 1.967E+00 1.974E+00 1.981E+00 1.992E+00 2.002E+00 2.011E+00	1.583E+01 1.787E+01 1.992E+01 2.196E+01 2.401E+01 2.811E+01 3.221E+01 3.631E+01	1.778E+01 1.983E+01 2.188E+01 2.394E+01 2.599E+01 3.010E+01 3.421E+01 3.833E+01	6.063E+01 6.329E+01 6.569E+01 6.787E+01 6.987E+01 7.345E+01 7.656E+01 7.932E+01	7.255E-01 7.444E-01 7.605E-01 7.745E-01 7.867E-01 8.070E-01 8.234E-01 8.368E-01	9.118E+00 9.352E+00 9.562E+00 9.751E+00 9.924E+01 1.050E+01 1.073E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.009 0.008 0.008 0.008 0.007 0.007 0.007	0.001 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	2.019E+00	4.042E+01	4.244E+01	8.180E+01	8.482E-01	1.094E+01	-0.000	0.006	0.000

 $^{^{\}star}$ Evaluated with the density-effect correction of Inokuti and Smith (1982).

ELECTRONS IN SILICON

I = 173.0 eV DENSITY = 2.330E+00 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²					
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0350	1.689E+01 1.432E+01 1.251E+01 1.115E+01 1.010E+01 8.556E+00 7.480E+00 6.682E+00	7.255E-03 7.431E-03 7.555E-03 7.648E-03 7.720E-03 7.822E-03 7.892E-03 7.946E-03	1.690E+01 1.433E+01 1.252E+01 1.116E+01 1.011E+01 8.564E+00 7.487E+00 6.690E+00	3.461E-04 5.074E-04 6.946E-04 9.065E-04 1.142E-03 1.682E-03 2.308E-03 3.016E-03	2.289E-04 2.780E-04 3.252E-04 3.709E-04 4.151E-04 5.000E-04 5.807E-04 6.579E-04	1.037E-03 1.332E-03 1.641E-03 1.963E-03 2.298E-03 3.007E-03 3.766E-03 4.572E-03	-0.238 -0.226 -0.217 -0.210 -0.205 -0.196 -0.189 -0.184	0.284 0.268 0.255 0.245 0.238 0.225 0.216 0.209	0.278 0.262 0.251 0.241 0.234 0.223 0.214 0.207
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.067E+00 5.576E+00 5.175E+00 4.842E+00 4.559E+00 4.107E+00 3.761E+00 3.487E+00	7.988E-03 8.026E-03 8.061E-03 8.061E-03 8.022E-03 8.123E-03 8.185E-03 8.248E-03 8.317E-03	6.075E+00 5.584E+00 5.183E+00 4.850E+00 4.568E+00 4.116E+00 3.769E+00 3.496E+00	3.802E-03 4.661E-03 5.591E-03 6.590E-03 7.653E-03 9.964E-03 1.251E-02	7.322E-04 8.038E-04 8.731E-04 9.402E-04 1.006E-03 1.131E-03 1.251E-03 1.366E-03	5.424E-03 6.320E-03 7.257E-03 8.235E-03 9.251E-03 1.139E-02 1.368E-02	-0.180 -0.176 -0.173 -0.170 -0.168 -0.163 -0.160 -0.157	0.204 0.199 0.195 0.191 0.188 0.183 0.178	0.202 0.197 0.193 0.190 0.187 0.182 0.177
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	3.265E+00 2.859E+00 2.583E+00 2.385E+00 2.236E+00 2.028E+00 1.892E+00 1.797E+00	8.389E-03 8.591E-03 8.821E-03 9.076E-03 9.349E-03 9.951E-03 1.062E-02	3.274E+00 2.867E+00 2.592E+00 2.394E+00 2.245E+00 2.038E+00 1.903E+00 1.809E+00	1.822E-02 2.642E-02 3.561E-02 4.566E-02 5.646E-02 7.991E-02 1.054E-01 1.323E-01	1.476E-03 1.737E-03 1.981E-03 2.212E-03 2.433E-03 2.852E-03 3.248E-03 3.631E-03	1.861E-02 2.538E-02 3.271E-02 4.050E-02 4.868E-02 6.592E-02 8.402E-02 1.027E-01	-0.154 -0.149 -0.145 -0.141 -0.138 -0.133 -0.129 -0.125	0.171 0.165 0.160 0.156 0.153 0.148 0.143	0.171 0.164 0.159 0.155 0.152 0.147 0.142 0.138
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.729E+00 1.677E+00 1.638E+00 1.608E+00 1.585E+00 1.551E+00 1.529E+00	1.209E-02 1.290E-02 1.374E-02 1.461E-02 1.551E-02 1.740E-02 1.938E-02 2.145E-02	1.741E+00 1.690E+00 1.652E+00 1.623E+00 1.600E+00 1.568E+00 1.549E+00 1.537E+00	1.606E-01 1.897E-01 2.197E-01 2.502E-01 2.812E-01 3.444E-01 4.086E-01 4.734E-01	4.003E-03 4.368E-03 4.728E-03 5.085E-03 5.441E-03 6.148E-03 6.855E-03 7.564E-03	1.216E-01 1.407E-01 1.599E-01 1.790E-01 1.980E-01 2.355E-01 2.721E-01 3.077E-01	-0.122 -0.119 -0.116 -0.114 -0.112 -0.108 -0.105 -0.102	0.137 0.134 0.132 0.130 0.128 0.124 0.121 0.119	0.135 0.132 0.129 0.127 0.125 0.121 0.118 0.115
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.507E+00 1.500E+00 1.502E+00 1.509E+00 1.518E+00 1.538E+00 1.558E+00	2.360E-02 2.927E-02 3.533E-02 4.171E-02 4.833E-02 6.223E-02 7.682E-02 9.197E-02	1.531E+00 1.529E+00 1.538E+00 1.551E+00 1.567E+00 1.600E+00 1.634E+00	5.386E-01 7.022E-01 8.652E-01 1.027E+00 1.188E+00 1.503E+00 1.812E+00 2.115E+00	8.275E-03 1.007E-02 1.190E-02 1.376E-02 1.565E-02 1.949E-02 2.340E-02	3.424E-01 4.248E-01 5.020E-01 5.747E-01 6.439E-01 7.743E-01 8.976E-01	-0.100 -0.094 -0.090 -0.086 -0.082 -0.075 -0.069	0.116 0.111 0.107 0.104 0.101 0.096 0.091 0.087	0.112 0.106 0.101 0.097 0.094 0.087 0.082 0.076
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.591E+00 1.605E+00 1.618E+00 1.629E+00 1.639E+00 1.657E+00 1.672E+00	1.076E-01 1.236E-01 1.399E-01 1.566E-01 1.735E-01 2.081E-01 2.435E-01 2.795E-01	1.699E+00 1.729E+00 1.758E+00 1.786E+00 1.813E+00 1.865E+00 1.916E+00	2.412E+00 2.704E+00 2.991E+00 3.273E+00 4.095E+00 4.624E+00 5.139E+00	3.134E-02 3.535E-02 3.937E-02 4.340E-02 4.742E-02 5.546E-02 7.136E-02	1.131E+00 1.243E+00 1.351E+00 1.456E+00 1.557E+00 1.748E+00 1.925E+00 2.088E+00	-0.057 -0.051 -0.047 -0.043 -0.040 -0.034 -0.030 -0.027	0.083 0.080 0.076 0.073 0.070 0.065 0.061 0.058	0.071 0.067 0.063 0.059 0.056 0.049 0.045
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.697E+00 1.721E+00 1.740E+00 1.756E+00 1.769E+00 1.791E+00 1.809E+00 1.824E+00	3.161E-01 4.098E-01 5.057E-01 6.033E-01 7.023E-01 9.035E-01 1.108E+00 1.314E+00	2.013E+00 2.130E+00 2.245E+00 2.359E+00 2.472E+00 2.695E+00 2.917E+00 3.139E+00	5.642E+00 6.849E+00 7.992E+00 9.078E+00 1.011E+01 1.205E+01 1.383E+01 1.548E+01	7.919E-02 9.833E-02 1.168E-01 1.345E-01 1.514E-01 1.832E-01 2.123E-01 2.391E-01	2.239E+00 2.574E+00 2.858E+00 3.105E+00 3.323E+00 4.003E+00 4.268E+00	-0.025 -0.021 -0.019 -0.017 -0.016 -0.015 -0.013	0.054 0.048 0.044 0.040 0.037 0.033 0.030	0.037 0.031 0.026 0.023 0.021 0.017 0.015 0.013
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.837E+00 1.848E+00 1.858E+00 1.866E+00 1.874E+00 1.888E+00 1.900E+00	1.523E+00 1.733E+00 1.944E+00 2.156E+00 2.369E+00 2.798E+00 3.230E+00 3.663E+00	3.360E+00 3.581E+00 3.802E+00 4.023E+00 4.244E+00 5.129E+00 5.573E+00	1.702E+01 1.847E+01 1.982E+01 2.110E+01 2.231E+01 2.455E+01 2.659E+01 2.846E+01	2.638E-01 2.865E-01 3.077E-01 3.273E-01 3.457E-01 3.789E-01 4.083E-01 4.344E-01	4.501E+00 4.709E+00 4.897E+00 5.068E+00 5.226E+00 5.509E+00 5.757E+00 5.979E+00	-0.011 -0.010 -0.009 -0.009 -0.008 -0.007 -0.006 -0.005	0.026 0.024 0.023 0.022 0.021 0.019 0.018 0.017	0.012 0.011 0.010 0.009 0.008 0.007 0.006
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	1.918E+00 1.937E+00 1.952E+00 1.964E+00 1.975E+00 1.975E+00 2.006E+00 2.018E+00	4.099E+00 5.193E+00 6.294E+00 7.401E+00 8.511E+00 1.074E+01 1.298E+01 1.522E+01	6.017E+00 7.130E+00 8.246E+00 9.365E+00 1.049E+01 1.273E+01 1.498E+01	3.019E+01 3.400E+01 3.726E+01 4.010E+01 4.262E+01 5.056E+01 5.367E+01	4.580E-01 5.076E-01 5.474E-01 5.803E-01 6.079E-01 6.520E-01 6.859E-01 7.129E-01	6.179E+00 6.606E+00 6.960E+00 7.261E+00 7.524E+00 7.964E+00 8.325E+00 8.631E+00	-0.004 -0.003 -0.002 -0.002 -0.001 -0.001 -0.001	0.016 0.014 0.013 0.012 0.011 0.010 0.010	0.005 0.004 0.003 0.003 0.002 0.002 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.029E+00 2.038E+00 2.046E+00 2.053E+00 2.060E+00 2.072E+00 2.082E+00 2.091E+00	1.747E+01 1.972E+01 2.197E+01 2.423E+01 2.648E+01 3.100E+01 3.553E+01 4.006E+01	1.950E+01 2.176E+01 2.402E+01 2.628E+01 2.854E+01 3.308E+01 3.761E+01 4.215E+01	5.639E+01 5.882E+01 6.101E+01 6.299E+01 6.482E+01 7.090E+01 7.341E+01	7.350E-01 7.535E-01 7.692E-01 7.828E-01 7.946E-01 8.144E-01 8.302E-01 8.433E-01	8.897E+00 9.131E+00 9.341E+00 9.531E+00 9.705E+00 1.001E+01 1.028E+01 1.051E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.009 0.008 0.008 0.008 0.008 0.007 0.007	0.001 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	2.099E+00	4.459E+01	4.669E+01	7.567E+01	8.542E-01	1.072E+01	-0.000	0.007	0.000

ELECTRONS IN ARGON

I = 188.0 eV DENSITY = 1.662E-03 g/cm³ (20° C)

ENERGY		OPPING POWER RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	OgI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²		(DELIA)	1033	KAROL	1166
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0350	1.497E+01 1.271E+01 1.110E+01 9.907E+00 8.974E+00 7.610E+00 6.657E+00 5.950E+00	8.167E-03 8.444E-03 8.647E-03 8.803E-03 8.926E-03 9.107E-03 9.237E-03 9.334E-03	1.498E+01 1.271E+01 1.111E+01 9.916E+00 8.983E+00 7.619E+00 6.666E+00 5.959E+00	3.921E-04 5.740E-04 7.849E-04 1.024E-03 1.289E-03 1.896E-03 2.599E-03 3.394E-03	2.846E-04 3.487E-04 4.108E-04 4.712E-04 5.299E-04 6.430E-04 7.511E-04 8.547E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.243 -0.231 -0.222 -0.215 -0.209 -0.200 -0.193 -0.187	0.292 0.274 0.261 0.251 0.243 0.230 0.221 0.214	0.284 0.268 0.255 0.246 0.238 0.226 0.218 0.211
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	5.404E+00 4.969E+00 4.614E+00 4.317E+00 4.067E+00 3.666E+00 3.358E+00 3.115E+00	9.415E-03 9.482E-03 9.540E-03 9.593E-03 9.642E-03 9.733E-03 9.821E-03 9.909E-03	5.414E+00 4.978E+00 4.623E+00 4.327E+00 4.077E+00 3.675E+00 3.368E+00 3.125E+00	4.276E-03 5.240E-03 6.283E-03 7.402E-03 8.593E-03 1.118E-02 1.403E-02 1.712E-02	9.546E-04 1.051E-03 1.144E-03 1.235E-03 1.323E-03 1.492E-03 1.654E-03 1.808E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.183 -0.179 -0.176 -0.173 -0.171 -0.167 -0.163 -0.160	0.208 0.203 0.199 0.195 0.192 0.186 0.182 0.178	0.205 0.200 0.196 0.193 0.190 0.185 0.180 0.177
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.918E+00 2.557E+00 2.312E+00 2.136E+00 2.004E+00 1.821E+00 1.701E+00 1.618E+00	1.000E-02 1.025E-02 1.052E-02 1.081E-02 1.113E-02 1.182E-02 1.258E-02 1.340E-02	2.928E+00 2.567E+00 2.323E+00 2.147E+00 2.015E+00 1.832E+00 1.713E+00 1.631E+00	2.042E-02 2.958E-02 3.985E-02 5.106E-02 6.309E-02 8.920E-02 1.175E-01 1.474E-01	1.957E-03 2.307E-03 2.633E-03 2.940E-03 3.233E-03 3.784E-03 4.303E-03 4.799E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.158 -0.153 -0.149 -0.146 -0.143 -0.139 -0.135 -0.132	0.175 0.169 0.164 0.160 0.157 0.152 0.148 0.145	0.174 0.168 0.163 0.159 0.156 0.151 0.147
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.558E+00 1.514E+00 1.480E+00 1.455E+00 1.435E+00 1.408E+00 1.391E+00	1.427E-02 1.519E-02 1.616E-02 1.716E-02 1.820E-02 2.036E-02 2.264E-02 2.502E-02	1.572E+00 1.529E+00 1.497E+00 1.472E+00 1.453E+00 1.428E+00 1.414E+00 1.406E+00	1.787E-01 2.109E-01 2.440E-01 2.777E-01 3.119E-01 3.814E-01 4.518E-01 5.227E-01	5.280E-03 5.749E-03 6.211E-03 6.667E-03 7.119E-03 8.015E-03 9.794E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.130 -0.128 -0.126 -0.124 -0.122 -0.120 -0.117	0.142 0.140 0.138 0.136 0.135 0.132 0.129 0.127	0.141 0.138 0.136 0.134 0.132 0.129 0.127
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.376E+00 1.375E+00 1.383E+00 1.394E+00 1.407E+00 1.434E+00 1.460E+00	2.748E-02 3.399E-02 4.094E-02 4.822E-02 5.581E-02 7.168E-02 8.831E-02 1.056E-01	1.404E+00 1.409E+00 1.424E+00 1.442E+00 1.463E+00 1.505E+00 1.548E+00 1.589E+00	5.939E-01 7.718E-01 9.483E-01 1.123E+00 1.295E+00 1.632E+00 1.959E+00 2.278E+00	1.068E-02 1.291E-02 1.517E-02 1.744E-02 1.973E-02 2.436E-02 2.903E-02 3.370E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.114 -0.110 -0.107 -0.105 -0.103 -0.099 -0.097 -0.095	0.126 0.122 0.119 0.116 0.114 0.111 0.108 0.105	0.122 0.118 0.114 0.111 0.109 0.104 0.101 0.098
4.0000 5.0000 5.0000 6.0000 7.0000 8.0000 9.0000	1.506E+00 1.526E+00 1.545E+00 1.562E+00 1.579E+00 1.608E+00 1.634E+00 1.657E+00	1.233E-01 1.415E-01 1.600E-01 1.789E-01 1.981E-01 2.373E-01 2.773E-01 3.181E-01	1.629E+00 1.668E+00 1.705E+00 1.771E+00 1.777E+00 1.845E+00 1.911E+00 1.975E+00	2.589E+00 2.892E+00 3.189E+00 3.479E+00 3.763E+00 4.315E+00 4.848E+00 5.363E+00	3.837E-02 4.303E-02 4.766E-02 5.227E-02 5.684E-02 6.588E-02 7.476E-02 8.347E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.093 -0.092 -0.090 -0.089 -0.088 -0.087 -0.085 -0.084	0.103 0.101 0.099 0.098 0.096 0.094 0.092 0.090	0.096 0.093 0.091 0.090 0.088 0.085 0.083
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000	1.678E+00 1.722E+00 1.759E+00 1.790E+00 1.818E+00 1.864E+00 1.901E+00 1.931E+00	3.595E-01 4.651E-01 5.733E-01 6.833E-01 7.949E-01 1.021E+00 1.251E+00 1.484E+00	2.037E+00 2.187E+00 2.332E+00 2.474E+00 2.613E+00 2.885E+00 3.152E+00 3.415E+00	5.861E+00 7.045E+00 8.151E+00 9.192E+00 1.018E+01 1.200E+01 1.365E+01 1.518E+01	9.200E-02 1.126E-01 1.320E-01 1.505E-01 1.680E-01 2.004E-01 2.296E-01 2.563E-01	0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.376E-04 2.311E-02	-0.083 -0.081 -0.079 -0.077 -0.076 -0.074 -0.071 -0.063	0.088 0.084 0.081 0.079 0.076 0.072 0.069 0.066	0.078 0.074 0.070 0.067 0.064 0.060 0.056
40.0000 45.0000 50.0000 55.0000 70.0000 80.0000 90.0000	1.956E+00 1.977E+00 1.995E+00 2.011E+00 2.025E+00 2.050E+00 2.071E+00 2.089E+00	1.718E+00 1.954E+00 2.192E+00 2.430E+00 2.670E+00 3.152E+00 3.637E+00 4.125E+00	3.674E+00 3.931E+00 4.187E+00 4.441E+00 4.695E+00 5.202E+00 5.708E+00 6.214E+00	1.659E+01 1.790E+01 1.913E+01 2.029E+01 2.139E+01 2.341E+01 2.525E+01 2.692E+01	2.807E-01 3.031E-01 3.238E-01 3.431E-01 3.610E-01 3.934E-01 4.220E-01 4.474E-01	6.443E-02 1.144E-01 1.680E-01 2.226E-01 2.769E-01 3.820E-01 4.807E-01 5.729E-01	-0.057 -0.053 -0.050 -0.048 -0.046 -0.043 -0.041	0.063 0.061 0.059 0.056 0.055 0.052 0.049	0.048 0.045 0.042 0.039 0.037 0.033 0.030
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.105E+00 2.138E+00 2.164E+00 2.185E+00 2.204E+00 2.234E+00 2.257E+00	4.614E+00 5.845E+00 7.083E+00 8.326E+00 9.573E+00 1.208E+01 1.459E+01	6.719E+00 7.982E+00 9.247E+00 1.051E+01 1.178E+01 1.431E+01 1.685E+01 1.938E+01	2.847E+01 3.188E+01 3.479E+01 3.732E+01 3.957E+01 4.341E+01 4.663E+01 4.940E+01	4.702E-01 5.183E-01 5.569E-01 5.887E-01 6.155E-01 6.583E-01 6.911E-01 7.174E-01	6.588E-01 8.510E-01 1.018E+00 1.166E+00 1.301E+00 1.541E+00 1.754E+00 1.947E+00	-0.038 -0.036 -0.034 -0.032 -0.030 -0.027 -0.024 -0.021	0.045 0.041 0.039 0.036 0.035 0.032 0.030 0.029	0.025 0.021 0.018 0.016 0.015 0.012 0.010 0.009
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.291E+00 2.304E+00 2.315E+00 2.325E+00 2.334E+00 2.349E+00 2.361E+00 2.372E+00	1.963E+01 2.216E+01 2.469E+01 2.722E+01 2.975E+01 3.483E+01 3.990E+01 4.499E+01	2.192E+01 2.446E+01 2.700E+01 2.954E+01 3.209E+01 3.718E+01 4.227E+01 4.736E+01	5.182E+01 5.398E+01 5.592E+01 5.769E+01 5.932E+01 6.221E+01 6.473E+01 6.696E+01	7.389E-01 7.569E-01 7.722E-01 7.854E-01 8.163E-01 8.319E-01 8.447E-01	2.125E+00 2.290E+00 2.444E+00 2.587E+00 2.721E+00 2.966E+00 3.184E+00 3.380E+00	-0.019 -0.017 -0.016 -0.014 -0.013 -0.011 -0.010 -0.009	0.027 0.026 0.026 0.025 0.024 0.023 0.022 0.021	0.008 0.007 0.007 0.006 0.006 0.005 0.004
1000.0000	2.382E+00	5.007E+01	5.245E+01	6.897E+01	8.554E-01	3.558E+00	-0.009	0.021	0.003

ELECTRONS IN TITANIUM

I = 233.0 eV DENSITY = $4.540E+00 \text{ g/cm}^3$

	ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(l CSDA	RAD
	MeV	MeV cm²∕g	MeV cm²/g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
	0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.447E+01 1.231E+01 1.078E+01 9.634E+00 8.737E+00 7.424E+00 6.503E+00 5.819E+00	9.835E-03 1.025E-02 1.056E-02 1.080E-02 1.099E-02 1.129E-02 1.150E-02 1.167E-02	1.447E+01 1.232E+01 1.079E+01 9.644E+00 8.748E+00 7.435E+00 6.514E+00 5.831E+00	4.104E-04 5.983E-04 8.157E-04 1.061E-03 1.334E-03 1.956E-03 2.677E-03 3.490E-03	3.509E-04 4.319E-04 5.109E-04 5.878E-04 6.629E-04 8.081E-04 9.472E-04 1.081E-03	2.037E-03 2.585E-03 3.148E-03 3.727E-03 4.320E-03 5.551E-03 6.838E-03 8.181E-03	-0.256 -0.242 -0.232 -0.224 -0.218 -0.208 -0.200 -0.194	0.313 0.293 0.278 0.266 0.257 0.243 0.232	0.303 0.284 0.270 0.259 0.250 0.237 0.227
	0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	5.290E+00 4.867E+00 4.522E+00 4.234E+00 3.990E+00 3.598E+00 3.298E+00 3.060E+00	1.180E-02 1.192E-02 1.202E-02 1.210E-02 1.218E-02 1.233E-02 1.246E-02 1.259E-02	5.301E+00 4.879E+00 4.534E+00 4.246E+00 4.002E+00 3.611E+00 3.311E+00 3.073E+00	4.390E-03 5.375E-03 6.439E-03 7.579E-03 8.793E-03 1.143E-02 1.433E-02	1.210E-03 1.335E-03 1.456E-03 1.574E-03 1.689E-03 1.909E-03 2.119E-03 2.321E-03	9.578E-03 1.103E-02 1.253E-02 1.407E-02 1.567E-02 1.899E-02 2.247E-02 2.611E-02	-0.189 -0.185 -0.181 -0.178 -0.175 -0.170 -0.166 -0.163	0.217 0.212 0.207 0.203 0.199 0.193 0.188 0.183	0.214 0.208 0.204 0.200 0.196 0.191 0.186 0.182
	0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.867E+00 2.514E+00 2.274E+00 2.101E+00 1.971E+00 1.789E+00 1.670E+00 1.588E+00	1.272E-02 1.306E-02 1.341E-02 1.379E-02 1.419E-02 1.506E-02 1.600E-02 1.702E-02	2.880E+00 2.527E+00 2.287E+00 2.115E+00 1.985E+00 1.804E+00 1.686E+00 1.605E+00	2.083E-02 3.013E-02 4.056E-02 5.195E-02 6.416E-02 9.067E-02 1.194E-01 1.498E-01	2.514E-03 2.971E-03 3.396E-03 3.796E-03 4.176E-03 4.892E-03 5.563E-03 6.204E-03	2.987E-02 3.978E-02 5.023E-02 6.105E-02 7.212E-02 9.467E-02 1.174E-01 1.402E-01	-0.160 -0.153 -0.148 -0.144 -0.140 -0.134 -0.129 -0.125	0.180 0.172 0.166 0.162 0.158 0.151 0.146	0.178 0.171 0.165 0.160 0.156 0.150 0.145 0.145
	0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.528E+00 1.483E+00 1.449E+00 1.423E+00 1.402E+00 1.373E+00 1.355E+00 1.343E+00	1.811E-02 1.925E-02 2.044E-02 2.169E-02 2.297E-02 2.566E-02 2.848E-02 3.141E-02	1.546E+00 1.502E+00 1.470E+00 1.445E+00 1.425E+00 1.399E+00 1.383E+00 1.374E+00	1.816E-01 2.144E-01 2.481E-01 2.824E-01 3.173E-01 3.881E-01 4.601E-01 5.326E-01	6.824E-03 7.428E-03 8.021E-03 8.607E-03 9.186E-03 1.034E-02 1.148E-02 1.261E-02	1.629E-01 1.855E-01 2.080E-01 2.304E-01 2.526E-01 2.969E-01 3.407E-01 3.841E-01	-0.121 -0.118 -0.115 -0.112 -0.109 -0.104 -0.100 -0.096	0.138 0.135 0.133 0.130 0.128 0.123 0.120 0.116	0.136 0.133 0.130 0.127 0.124 0.120 0.116 0.112
	1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.335E+00 1.328E+00 1.330E+00 1.336E+00 1.343E+00 1.359E+00 1.376E+00 1.391E+00	3.446E-02 4.250E-02 5.107E-02 6.006E-02 6.940E-02 8.894E-02 1.094E-01	1.370E+00 1.371E+00 1.381E+00 1.396E+00 1.412E+00 1.448E+00 1.485E+00 1.521E+00	6.055E-01 7.881E-01 9.699E-01 1.150E+00 1.328E+00 2.019E+00 2.351E+00	1.375E-02 1.662E-02 1.951E-02 2.244E-02 2.539E-02 3.137E-02 3.740E-02 4.345E-02	4.270E-01 5.317E-01 6.321E-01 7.277E-01 8.183E-01 9.855E-01 1.136E+00 1.271E+00	-0.092 -0.084 -0.078 -0.073 -0.070 -0.064 -0.060 -0.057	0.113 0.107 0.102 0.097 0.093 0.087 0.082 0.078	0.108 0.100 0.094 0.089 0.084 0.076 0.071
	4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.405E+00 1.418E+00 1.430E+00 1.441E+00 1.451E+00 1.469E+00 1.485E+00 1.498E+00	1.523E-01 1.746E-01 1.974E-01 2.205E-01 2.440E-01 2.919E-01 3.408E-01 3.906E-01	1.557E+00 1.593E+00 1.627E+00 1.661E+00 1.695E+00 1.761E+00 1.825E+00 1.889E+00	2.676E+00 2.993E+00 3.304E+00 3.608E+00 3.906E+00 4.485E+00 5.042E+00 5.581E+00	4.949E-02 5.552E-02 6.152E-02 6.747E-02 7.337E-02 8.502E-02 9.643E-02 1.076E-01	1.395E+00 1.509E+00 1.615E+00 1.713E+00 1.806E+00 1.975E+00 2.129E+00 2.271E+00	-0.054 -0.052 -0.050 -0.048 -0.047 -0.044 -0.041	0.075 0.072 0.069 0.067 0.065 0.062 0.059	0.063 0.059 0.057 0.054 0.052 0.049 0.045
	10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.510E+00 1.535E+00 1.555E+00 1.571E+00 1.584E+00 1.606E+00 1.622E+00 1.636E+00	4.411E-01 5.701E-01 7.019E-01 8.361E-01 9.721E-01 1.248E+00 1.528E+00 1.811E+00	1.952E+00 2.105E+00 2.257E+00 2.407E+00 2.556E+00 2.854E+00 3.150E+00 3.447E+00	6.102E+00 7.335E+00 8.481E+00 9.554E+00 1.056E+01 1.241E+01 1.408E+01	1.185E-01 1.445E-01 1.690E-01 1.919E-01 2.134E-01 2.527E-01 2.875E-01 3.187E-01	2.402E+00 2.696E+00 2.953E+00 3.182E+00 3.746E+00 4.050E+00 4.313E+00	-0.036 -0.030 -0.026 -0.023 -0.020 -0.016 -0.014 -0.013	0.054 0.049 0.045 0.042 0.039 0.035 0.032	0.040 0.035 0.031 0.027 0.024 0.020 0.017 0.014
	40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.648E+00 1.658E+00 1.667E+00 1.675E+00 1.683E+00 1.696E+00 1.707E+00	2.096E+00 2.384E+00 2.673E+00 2.963E+00 3.255E+00 3.843E+00 4.433E+00 5.027E+00	3.744E+00 4.042E+00 4.340E+00 4.639E+00 4.938E+00 5.538E+00 6.140E+00 6.743E+00	1.699E+01 1.827E+01 1.946E+01 2.058E+01 2.162E+01 2.353E+01 2.525E+01 2.680E+01	3.467E-01 3.721E-01 3.952E-01 4.163E-01 4.357E-01 4.702E-01 5.000E-01 5.260E-01	4.545E+00 4.752E+00 4.939E+00 5.110E+00 5.266E+00 5.547E+00 5.792E+00 6.010E+00	-0.011 -0.010 -0.010 -0.009 -0.009 -0.008 -0.007 -0.006	0.027 0.026 0.024 0.023 0.022 0.021 0.019 0.018	0.013 0.011 0.010 0.009 0.009 0.007 0.006
1 1 2 2 3	00.0000 25.0000 50.0000 75.0000 00.0000 50.0000 600.0000 50.0000	1.724E+00 1.742E+00 1.756E+00 1.768E+00 1.778E+00 1.794E+00 1.808E+00 1.819E+00	5.623E+00 7.122E+00 8.629E+00 1.014E+01 1.166E+01 1.471E+01 1.777E+01 2.084E+01	7.348E+00 8.864E+00 1.039E+01 1.191E+01 1.344E+01 1.651E+01 1.958E+01 2.266E+01	2.822E+01 3.132E+01 3.392E+01 3.617E+01 3.814E+01 4.149E+01 4.427E+01 4.664E+01	5.490E-01 5.963E-01 6.332E-01 6.630E-01 6.876E-01 7.262E-01 7.551E-01 7.778E-01	6.206E+00 6.626E+00 6.974E+00 7.270E+00 7.529E+00 7.965E+00 8.323E+00 8.627E+00	-0.006 -0.005 -0.004 -0.003 -0.002 -0.002 -0.001	0.018 0.016 0.015 0.014 0.013 0.012 0.011	0.005 0.004 0.003 0.003 0.003 0.002 0.002
455678	00.0000 50.0000 600.0000 50.0000 00.0000 00.0000 00.0000	1.828E+00 1.837E+00 1.844E+00 1.851E+00 1.857E+00 1.868E+00 1.878E+00 1.886E+00	2.391E+01 2.698E+01 3.006E+01 3.315E+01 3.623E+01 4.241E+01 4.859E+01 5.478E+01	2.574E+01 2.882E+01 3.191E+01 3.500E+01 3.809E+01 4.428E+01 5.047E+01 5.666E+01	4.871E+01 5.055E+01 5.219E+01 5.369E+01 5.769E+01 5.749E+01 5.960E+01 6.147E+01	7.962E-01 8.113E-01 8.241E-01 8.351E-01 8.446E-01 8.603E-01 8.728E-01 8.831E-01	8.891E+00 9.125E+00 9.334E+00 9.524E+00 9.697E+00 1.000E+01 1.027E+01	-0.001 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000	0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008	0.001 0.001 0.001 0.001 0.001 0.001 0.001
0	00.000	1.893E+00	6.097E+01	6.286E+01	6.315E+01	8.916E-01	1.072E+01	-0.000	0.008	0.001

ELECTRONS IN IRON

I = 286.0 eV DENSITY = 7.874E+00 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(le CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²					
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.388E+01 1.185E+01 1.040E+01 9.310E+00 8.456E+00 7.199E+00 6.316E+00 5.658E+00	1.138E-02 1.193E-02 1.235E-02 1.269E-02 1.296E-02 1.338E-02 1.369E-02 1.394E-02	1.390E+01 1.186E+01 1.041E+01 9.323E+00 8.469E+00 7.213E+00 6.330E+00 5.672E+00	4.329E-04 6.284E-04 8.539E-04 1.108E-03 1.390E-03 2.032E-03 2.774E-03 3.610E-03	4.203E-04 5.188E-04 6.151E-04 7.092E-04 8.013E-04 9.800E-04 1.152E-03 1.317E-03	2.474E-03 3.157E-03 3.866E-03 4.602E-03 5.365E-03 6.975E-03 8.696E-03 1.053E-02	-0.270 -0.255 -0.244 -0.235 -0.228 -0.217 -0.209 -0.202	0.338 0.314 0.297 0.284 0.273 0.257 0.245 0.235	0.324 0.302 0.286 0.274 0.264 0.249 0.239 0.230
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	5.149E+00 4.741E+00 4.408E+00 4.129E+00 3.893E+00 3.514E+00 3.223E+00 2.992E+00	1.414E-02 1.431E-02 1.446E-02 1.459E-02 1.471E-02 1.493E-02 1.512E-02 1.531E-02	5.163E+00 4.756E+00 4.422E+00 4.144E+00 3.908E+00 3.529E+00 3.238E+00 3.007E+00	4.536E-03 5.546E-03 6.637E-03 7.806E-03 9.050E-03 1.175E-02 1.471E-02 1.792E-02	1.478E-03 1.633E-03 1.784E-03 1.930E-03 2.073E-03 2.348E-03 2.611E-03 2.863E-03	1.248E-02 1.455E-02 1.673E-02 1.902E-02 2.143E-02 2.657E-02 3.211E-02 3.801E-02	-0.196 -0.192 -0.188 -0.184 -0.181 -0.175 -0.170	0.228 0.222 0.216 0.212 0.207 0.200 0.195 0.190	0.223 0.217 0.212 0.208 0.204 0.198 0.192 0.187
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.804E+00 2.460E+00 2.226E+00 2.057E+00 1.930E+00 1.753E+00 1.636E+00 1.556E+00	1.548E-02 1.593E-02 1.639E-02 1.687E-02 1.736E-02 1.842E-02 1.956E-02 2.079E-02	2.820E+00 2.476E+00 2.242E+00 2.074E+00 1.947E+00 1.771E+00 1.656E+00 1.576E+00	2.136E-02 3.085E-02 4.149E-02 5.310E-02 6.556E-02 9.257E-02 1.218E-01 1.528E-01	3.106E-03 3.679E-03 4.212E-03 4.714E-03 5.190E-03 6.085E-03 6.923E-03 7.720E-03	4.422E-02 6.070E-02 7.794E-02 9.538E-02 1.127E-01 1.467E-01 1.797E-01 2.116E-01	-0.162 -0.154 -0.148 -0.143 -0.139 -0.133 -0.128	0.185 0.177 0.170 0.164 0.160 0.152 0.147 0.142	0.183 0.175 0.168 0.162 0.158 0.151 0.145
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.497E+00 1.453E+00 1.420E+00 1.394E+00 1.374E+00 1.345E+00 1.327E+00 1.316E+00	2.209E-02 2.346E-02 2.489E-02 2.638E-02 2.791E-02 3.112E-02 3.448E-02 3.797E-02	1.519E+00 1.477E+00 1.445E+00 1.421E+00 1.402E+00 1.376E+00 1.362E+00 1.354E+00	1.851E-01 2.186E-01 2.528E-01 2.877E-01 3.231E-01 3.952E-01 4.683E-01 5.420E-01	8.489E-03 9.236E-03 9.968E-03 1.069E-02 1.140E-02 1.281E-02 1.420E-02 1.559E-02	2.427E-01 2.731E-01 3.027E-01 3.317E-01 3.601E-01 4.152E-01 4.682E-01 5.195E-01	-0.120 -0.117 -0.114 -0.112 -0.109 -0.105 -0.101 -0.098	0.138 0.135 0.132 0.130 0.127 0.123 0.120 0.117	0.136 0.133 0.129 0.127 0.124 0.120 0.116 0.112
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.308E+00 1.302E+00 1.304E+00 1.310E+00 1.317E+00 1.333E+00 1.349E+00 1.365E+00	4.160E-02 5.117E-02 6.137E-02 7.206E-02 8.315E-02 1.063E-01 1.306E-01	1.350E+00 1.353E+00 1.365E+00 1.382E+00 1.400E+00 1.440E+00 1.480E+00 1.520E+00	6.159E-01 8.011E-01 9.851E-01 1.167E+00 1.347E+00 1.699E+00 2.042E+00 2.375E+00	1.697E-02 2.044E-02 2.393E-02 2.745E-02 3.099E-02 3.812E-02 4.527E-02 5.243E-02	5.690E-01 6.865E-01 7.962E-01 8.990E-01 9.959E-01 1.174E+00 1.333E+00	-0.095 -0.088 -0.082 -0.077 -0.073 -0.067 -0.062 -0.059	0.114 0.108 0.103 0.099 0.095 0.089 0.084 0.080	0.109 0.102 0.096 0.091 0.086 0.079 0.073 0.068
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.378E+00 1.391E+00 1.403E+00 1.414E+00 1.424E+00 1.442E+00 1.457E+00	1.814E-01 2.077E-01 2.346E-01 2.619E-01 2.896E-01 3.460E-01 4.036E-01 4.622E-01	1.560E+00 1.599E+00 1.638E+00 1.676E+00 1.713E+00 1.788E+00 1.861E+00 1.933E+00	2.700E+00 3.016E+00 3.325E+00 3.627E+00 3.922E+00 4.493E+00 5.042E+00 5.569E+00	5.954E-02 6.661E-02 7.361E-02 8.053E-02 8.738E-02 1.008E-01 1.139E-01 1.266E-01	1.610E+00 1.730E+00 1.842E+00 1.946E+00 2.043E+00 2.219E+00 2.377E+00 2.521E+00	-0.056 -0.054 -0.052 -0.050 -0.049 -0.046 -0.044	0.076 0.073 0.071 0.069 0.066 0.063 0.060	0.064 0.061 0.058 0.056 0.053 0.050 0.047
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.483E+00 1.509E+00 1.529E+00 1.546E+00 1.560E+00 1.583E+00 1.600E+00	5.216E-01 6.731E-01 8.279E-01 9.852E-01 1.145E+00 1.468E+00 2.126E+00	2.005E+00 2.182E+00 2.357E+00 2.531E+00 2.704E+00 3.050E+00 3.396E+00 3.741E+00	6.077E+00 7.272E+00 8.374E+00 9.397E+00 1.035E+01 1.209E+01 1.365E+01	1.389E-01 1.681E-01 1.951E-01 2.202E-01 2.435E-01 2.854E-01 3.221E-01 3.546E-01	2.652E+00 2.942E+00 3.192E+00 3.610E+00 3.956E+00 4.251E+00 4.508E+00	-0.040 -0.036 -0.032 -0.029 -0.026 -0.021 -0.018	0.055 0.051 0.047 0.044 0.041 0.037 0.034 0.032	0.041 0.037 0.033 0.029 0.027 0.022 0.019 0.016
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	1.627E+00 1.638E+00 1.647E+00 1.655E+00 1.663E+00 1.663E+00 1.687E+00	2.460E+00 2.797E+00 3.135E+00 3.475E+00 3.816E+00 4.503E+00 5.193E+00 5.887E+00	4.087E+00 4.434E+00 4.782E+00 5.130E+00 5.479E+00 6.178E+00 6.880E+00 7.584E+00	1.633E+01 1.750E+01 1.859E+01 1.959E+01 2.054E+01 2.226E+01 2.379E+01 2.517E+01	3.834E-01 4.094E-01 4.328E-01 4.540E-01 4.735E-01 5.077E-01 5.370E-01 5.625E-01	4.736E+00 4.941E+00 5.126E+00 5.295E+00 5.451E+00 5.729E+00 5.973E+00 6.189E+00	-0.014 -0.013 -0.012 -0.011 -0.010 -0.009 -0.008	0.030 0.028 0.027 0.025 0.024 0.023 0.021	0.014 0.013 0.012 0.011 0.010 0.003 0.007 0.006
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.705E+00 1.723E+00 1.738E+00 1.750E+00 1.760E+00 1.777E+00 1.791E+00 1.802E+00	6.584E+00 8.336E+00 1.010E+01 1.187E+01 1.364E+01 1.720E+01 2.077E+01 2.435E+01	8.289E+00 1.006E+01 1.184E+01 1.362E+01 1.540E+01 1.898E+01 2.256E+01 2.615E+01	2.643E+01 2.917E+01 3.146E+01 3.342E+01 3.515E+01 4.048E+01 4.254E+01	5.848E-01 6.303E-01 6.655E-01 6.937E-01 7.169E-01 7.528E-01 7.797E-01 8.006E-01	6.384E+00 6.801E+00 7.146E+00 7.440E+00 7.696E+00 8.128E+00 8.484E+00 8.787E+00	-0.007 -0.006 -0.005 -0.004 -0.004 -0.003 -0.002	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.012	0.006 0.005 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.812E+00 1.820E+00 1.828E+00 1.835E+00 1.841E+00 1.852E+00 1.862E+00 1.871E+00	2.793E+01 3.152E+01 3.512E+01 3.871E+01 4.231E+01 4.951E+01 5.673E+01 6.394E+01	2.974E+01 3.334E+01 3.694E+01 4.055E+01 4.415E+01 5.137E+01 5.859E+01 6.581E+01	4.433E+01 4.592E+01 4.734E+01 4.863E+01 4.981E+01 5.191E+01 5.373E+01 5.534E+01	8.174E-01 8.313E-01 8.430E-01 8.530E-01 8.616E-01 8.758E-01 8.871E-01 8.963E-01	9.050E+00 9.283E+00 9.491E+00 9.680E+00 9.853E+00 1.016E+01 1.043E+01	-0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000	0.012 0.011 0.011 0.011 0.011 0.010 0.010	0.001 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	1.878E+00	7.116E+01	7.304E+01	5.678E+01	9.040E-01	1.087E+01	-0.000	0.009	0.001

ELECTRONS IN COPPER

I = 322.0 eV DENSITY = 8.960E+00 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(le	RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm ² /g	g/cm²		(DLL IA)	1033	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.318E+01 1.127E+01 9.904E+00 8.874E+00 8.066E+00 6.877E+00 6.040E+00 5.416E+00	1.213E-02 1.277E-02 1.327E-02 1.366E-02 1.399E-02 1.449E-02 1.488E-02 1.518E-02	1.319E+01 1.128E+01 9.917E+00 8.887E+00 8.080E+00 6.892E+00 6.055E+00 5.431E+00	4.601E-04 6.658E-04 9.028E-04 1.170E-03 1.465E-03 2.138E-03 2.914E-03 3.788E-03	4.701E-04 5.814E-04 6.904E-04 7.972E-04 9.019E-04 1.105E-03 1.301E-03 1.491E-03	1.244E-03 1.585E-03 1.938E-03 2.304E-03 2.683E-03 3.481E-03 4.334E-03 5.247E-03	-0.280 -0.263 -0.251 -0.242 -0.235 -0.223 -0.214 -0.208	0.354 0.328 0.310 0.295 0.284 0.266 0.253 0.243	0.337 0.314 0.297 0.284 0.273 0.257 0.246 0.237
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	4.931E+00 4.544E+00 4.226E+00 3.961E+00 3.736E+00 3.375E+00 3.098E+00 2.877E+00	1.543E-02 1.564E-02 1.583E-02 1.600E-02 1.615E-02 1.641E-02 1.665E-02 1.688E-02	4.947E+00 4.560E+00 4.242E+00 3.977E+00 3.753E+00 3.392E+00 3.114E+00 2.894E+00	4.754E-03 5.808E-03 6.946E-03 8.164E-03 9.459E-03 1.227E-02 1.535E-02 1.868E-02	1.674E-03 1.852E-03 2.025E-03 2.194E-03 2.358E-03 2.674E-03 2.977E-03 3.267E-03	6.220E-03 7.259E-03 8.365E-03 9.542E-03 1.080E-02 1.354E-02 1.664E-02 2.013E-02	-0.202 -0.197 -0.193 -0.189 -0.186 -0.180 -0.175 -0.171	0.235 0.229 0.223 0.218 0.214 0.207 0.201 0.196	0.230 0.224 0.218 0.214 0.210 0.203 0.198 0.193
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	2.698E+00 2.370E+00 2.146E+00 1.984E+00 1.861E+00 1.691E+00 1.579E+00 1.501E+00	1.710E-02 1.763E-02 1.816E-02 1.870E-02 1.926E-02 2.045E-02 2.172E-02 2.307E-02	2.715E+00 2.387E+00 2.164E+00 2.002E+00 1.881E+00 1.711E+00 1.601E+00 1.524E+00	2.225E-02 3.211E-02 4.314E-02 5.517E-02 6.807E-02 9.603E-02 1.263E-01 1.584E-01	3.547E-03 4.208E-03 4.822E-03 5.401E-03 5.950E-03 6.981E-03 7.945E-03 8.860E-03	2.404E-02 3.583E-02 5.053E-02 6.758E-02 8.595E-02 1.236E-01 1.603E-01 1.958E-01	-0.167 -0.157 -0.149 -0.141 -0.135 -0.127 -0.121	0.191 0.182 0.174 0.168 0.162 0.152 0.145 0.139	0.189 0.180 0.172 0.165 0.159 0.150 0.143 0.137
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.444E+00 1.402E+00 1.370E+00 1.345E+00 1.326E+00 1.298E+00 1.281E+00 1.270E+00	2.450E-02 2.600E-02 2.757E-02 2.919E-02 3.087E-02 3.437E-02 3.803E-02 4.185E-02	1.469E+00 1.428E+00 1.398E+00 1.375E+00 1.357E+00 1.357E+00 1.319E+00 1.312E+00	1.918E-01 2.263E-01 2.617E-01 2.978E-01 3.345E-01 4.089E-01 4.843E-01 5.604E-01	9.741E-03 1.060E-02 1.143E-02 1.226E-02 1.307E-02 1.467E-02 1.625E-02 1.782E-02	2.302E-01 2.635E-01 2.958E-01 3.273E-01 3.581E-01 4.173E-01 4.739E-01 5.280E-01	-0.112 -0.109 -0.106 -0.104 -0.101 -0.097 -0.094	0.135 0.131 0.127 0.124 0.122 0.117 0.113 0.110	0.132 0.127 0.124 0.121 0.118 0.113 0.109 0.105
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.263E+00 1.257E+00 1.259E+00 1.265E+00 1.273E+00 1.289E+00 1.305E+00	4.580E-02 5.623E-02 6.733E-02 7.896E-02 9.103E-02 1.162E-01 1.425E-01 1.697E-01	1.309E+00 1.313E+00 1.327E+00 1.344E+00 1.364E+00 1.405E+00 1.448E+00 1.490E+00	6.367E-01 8.276E-01 1.017E+00 1.204E+00 1.389E+00 1.750E+00 2.101E+00 2.441E+00	1.938E-02 2.328E-02 2.720E-02 3.113E-02 3.509E-02 4.302E-02 5.095E-02 5.885E-02	5.799E-01 7.011E-01 8.121E-01 9.149E-01 1.011E+00 1.186E+00 1.343E+00	-0.088 -0.083 -0.078 -0.074 -0.071 -0.065 -0.060 -0.056	0.107 0.101 0.097 0.093 0.090 0.084 0.079 0.076	0.102 0.095 0.090 0.085 0.081 0.075 0.069
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.334E+00 1.346E+00 1.358E+00 1.368E+00 1.378E+00 1.379E+00 1.411E+00 1.424E+00	1.976E-01 2.261E-01 2.552E-01 2.847E-01 3.146E-01 3.756E-01 4.378E-01 5.009E-01	1.531E+00 1.573E+00 1.613E+00 1.653E+00 1.693E+00 1.771E+00 1.849E+00 1.925E+00	2.772E+00 3.094E+00 3.408E+00 3.715E+00 4.013E+00 4.591E+00 5.143E+00 5.673E+00	6.668E-02 7.443E-02 8.209E-02 8.965E-02 9.710E-02 1.117E-01 1.258E-01 1.394E-01	1.617E+00 1.738E+00 1.850E+00 1.954E+00 2.052E+00 2.229E+00 2.388E+00 2.532E+00	-0.053 -0.051 -0.049 -0.047 -0.046 -0.043 -0.041 -0.040	0.072 0.069 0.067 0.065 0.063 0.059 0.056	0.061 0.058 0.055 0.052 0.050 0.046 0.043
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.436E+00 1.462E+00 1.482E+00 1.499E+00 1.513E+00 1.537E+00 1.555E+00	5.650E-01 7.282E-01 8.949E-01 1.064E+00 1.236E+00 1.583E+00 2.291E+00	2.001E+00 2.190E+00 2.377E+00 2.563E+00 2.764E+00 3.120E+00 3.491E+00 3.861E+00	6.183E+00 7.376E+00 8.472E+00 9.484E+00 1.043E+01 1.213E+01 1.365E+01 1.501E+01	1.526E-01 1.837E-01 2.122E-01 2.385E-01 2.628E-01 3.061E-01 3.437E-01	2.664E+00 2.951E+00 3.194E+00 3.407E+00 3.597E+00 4.209E+00 4.456E+00	-0.038 -0.035 -0.033 -0.030 -0.028 -0.024 -0.021	0.052 0.048 0.044 0.042 0.039 0.036 0.033	0.039 0.034 0.031 0.028 0.026 0.022 0.019
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.582E+00 1.593E+00 1.603E+00 1.611E+00 1.619E+00 1.632E+00 1.643E+00 1.653E+00	2.650E+00 3.012E+00 3.375E+00 3.740E+00 4.107E+00 4.844E+00 5.586E+00 6.330E+00	4.233E+00 4.605E+00 4.978E+00 5.351E+00 5.725E+00 6.476E+00 7.229E+00 7.983E+00	1.624E+01 1.738E+01 1.842E+01 1.939E+01 2.029E+01 2.193E+01 2.339E+01 2.471E+01	4.059E-01 4.320E-01 4.554E-01 4.766E-01 4.959E-01 5.298E-01 5.587E-01 5.836E-01	4.676E+00 4.874E+00 5.054E+00 5.219E+00 5.372E+00 5.646E+00 6.100E+00	-0.016 -0.015 -0.013 -0.012 -0.011 -0.010 -0.009 -0.008	0.029 0.027 0.026 0.025 0.024 0.022 0.021	0.015 0.013 0.012 0.011 0.010 0.009 0.008 0.007
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	1.661E+00 1.679E+00 1.694E+00 1.706E+00 1.716E+00 1.733E+00 1.747E+00 1.758E+00	7.079E+00 8.958E+00 1.085E+01 1.275E+01 1.465E+01 1.847E+01 2.230E+01 2.613E+01	8.740E+00 1.064E+01 1.254E+01 1.445E+01 1.637E+01 2.020E+01 2.404E+01 2.789E+01	2.591E+01 2.850E+01 3.066E+01 3.251E+01 3.414E+01 3.688E+01 3.915E+01 4.108E+01	6.054E-01 6.498E-01 6.838E-01 7.110E-01 7.332E-01 7.676E-01 7.932E-01 8.131E-01	6.292E+00 6.705E+00 7.046E+00 7.336E+00 7.590E+00 8.017E+00 8.370E+00	-0.008 -0.006 -0.005 -0.004 -0.003 -0.003	0.019 0.018 0.016 0.016 0.015 0.014 0.013 0.012	0.006 0.005 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.768E+00 1.776E+00 1.784E+00 1.791E+00 1.797E+00 1.808E+00 1.818E+00	2.998E+01 3.382E+01 3.767E+01 4.153E+01 4.539E+01 5.311E+01 6.083E+01 6.856E+01	3.174E+01 3.560E+01 3.946E+01 4.332E+01 4.718E+01 5.491E+01 6.265E+01 7.039E+01	4.276E+01 4.424E+01 4.558E+01 4.679E+01 4.789E+01 5.156E+01 5.306E+01	8.291E-01 8.422E-01 8.532E-01 8.626E-01 8.708E-01 8.842E-01 8.948E-01 9.034E-01	8.931E+00 9.162E+00 9.369E+00 9.558E+00 9.730E+00 1.004E+01 1.030E+01	-0.002 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001	0.012 0.012 0.011 0.011 0.011 0.010 0.010	0.002 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	1.833E+00	7.629E+01	7.813E+01	5.441E+01	9.106E-01	1.074E+01	-0.000	0.009	0.001

ELECTRONS IN GERMANIUM

I = 350.0 eV DENSITY = 5.323E+00 g/cm³

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(le CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(DEB1M)	1033	KANOL	11000
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.243E+01 1.065E+01 9.367E+00 8.400E+00 7.641E+00 6.521E+00 5.731E+00 5.142E+00	1.267E-02 1.339E-02 1.395E-02 1.439E-02 1.475E-02 1.532E-02 1.575E-02 1.609E-02	1.244E+01 1.066E+01 9.381E+00 8.414E+00 7.655E+00 6.536E+00 5.747E+00 5.158E+00	4.908E-04 7.087E-04 9.593E-04 1.241E-03 1.553E-03 2.263E-03 3.081E-03 4.001E-03	5.171E-04 6.413E-04 7.631E-04 8.825E-04 9.996E-04 1.227E-03 1.447E-03 1.659E-03	5.175E-04 6.632E-04 8.152E-04 9.734E-04 1.138E-03 1.484E-03 1.853E-03 2.244E-03	-0.286 -0.269 -0.257 -0.247 -0.240 -0.228 -0.219	0.367 0.340 0.319 0.304 0.292 0.273 0.260 0.249	0.347 0.322 0.304 0.291 0.280 0.263 0.251 0.242
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	4.685E+00 4.318E+00 4.018E+00 3.768E+00 3.555E+00 3.213E+00 2.950E+00 2.742E+00	1.638E-02 1.663E-02 1.684E-02 1.704E-02 1.722E-02 1.755E-02 1.784E-02 1.811E-02	4.701E+00 4.335E+00 4.035E+00 3.785E+00 3.572E+00 3.231E+00 2.968E+00 2.760E+00	5.018E-03 6.127E-03 7.323E-03 8.604E-03 9.964E-03 1.291E-02 1.615E-02 1.965E-02	1.864E-03 2.064E-03 2.258E-03 2.447E-03 2.632E-03 2.989E-03 3.330E-03 3.659E-03	2.656E-03 3.089E-03 3.541E-03 4.013E-03 4.502E-03 5.535E-03 6.634E-03 7.795E-03	-0.206 -0.201 -0.197 -0.194 -0.191 -0.185 -0.181	0.241 0.234 0.228 0.223 0.219 0.212 0.206 0.201	0.235 0.228 0.223 0.218 0.214 0.208 0.202 0.198
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.572E+00 2.262E+00 2.050E+00 1.898E+00 1.783E+00 1.624E+00 1.520E+00 1.447E+00	1.837E-02 1.900E-02 1.960E-02 2.020E-02 2.081E-02 2.208E-02 2.344E-02 2.488E-02	2.591E+00 2.281E+00 2.070E+00 1.918E+00 1.804E+00 1.646E+00 1.543E+00 1.472E+00	2.339E-02 3.371E-02 4.525E-02 5.782E-02 7.127E-02 1.004E-01 1.318E-01 1.650E-01	3.976E-03 4.725E-03 5.422E-03 6.077E-03 6.697E-03 7.854E-03 8.930E-03 9.947E-03	9.014E-03 1.230E-02 1.588E-02 1.973E-02 2.381E-02 3.258E-02 4.209E-02 5.225E-02	-0.174 -0.168 -0.163 -0.158 -0.155 -0.149 -0.144	0.197 0.188 0.182 0.177 0.173 0.166 0.161	0.194 0.186 0.180 0.175 0.171 0.164 0.159 0.154
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.395E+00 1.357E+00 1.328E+00 1.305E+00 1.288E+00 1.263E+00 1.248E+00 1.239E+00	2.641E-02 2.802E-02 2.971E-02 3.146E-02 3.326E-02 4.095E-02 4.504E-02	1.422E+00 1.385E+00 1.357E+00 1.337E+00 1.321E+00 1.300E+00 1.289E+00 1.284E+00	1.996E-01 2.353E-01 2.718E-01 3.089E-01 3.465E-01 4.229E-01 5.001E-01 5.779E-01	1.092E-02 1.186E-02 1.278E-02 1.369E-02 1.458E-02 1.633E-02 1.805E-02 1.976E-02	6.300E-02 7.432E-02 8.619E-02 9.857E-02 1.114E-01 1.386E-01 1.673E-01	-0.135 -0.132 -0.128 -0.125 -0.122 -0.116 -0.111	0.153 0.149 0.146 0.144 0.141 0.137 0.133 0.129	0.150 0.147 0.144 0.141 0.138 0.133 0.128 0.124
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.234E+00 1.231E+00 1.235E+00 1.242E+00 1.268E+00 1.268E+00 1.300E+00	4.926E-02 6.036E-02 7.213E-02 8.442E-02 9.714E-02 1.236E-01 1.512E-01	1.283E+00 1.291E+00 1.307E+00 1.326E+00 1.347E+00 1.391E+00 1.436E+00 1.480E+00	6.558E-01 8.501E-01 1.043E+00 1.233E+00 1.420E+00 1.785E+00 2.139E+00 2.482E+00	2.145E-02 2.567E-02 2.989E-02 3.411E-02 3.833E-02 4.676E-02 5.516E-02 6.348E-02	2.282E-01 3.083E-01 3.894E-01 4.695E-01 5.474E-01 6.953E-01 8.323E-01 9.593E-01	-0.102 -0.092 -0.085 -0.080 -0.075 -0.068 -0.063 -0.058	0.125 0.118 0.112 0.106 0.102 0.094 0.089 0.084	0.120 0.111 0.103 0.097 0.091 0.082 0.075 0.070
4.0000 5.0000 5.0000 6.0000 7.0000 8.0000 9.0000	1.314E+00 1.327E+00 1.338E+00 1.349E+00 1.359E+00 1.376E+00 1.391E+00	2.089E-01 2.387E-01 2.691E-01 2.999E-01 3.312E-01 3.949E-01 4.598E-01 5.257E-01	1.523E+00 1.566E+00 1.608E+00 1.649E+00 1.670E+00 1.771E+00 1.851E+00 1.930E+00	2.815E+00 3.138E+00 3.454E+00 3.761E+00 4.060E+00 4.638E+00 5.190E+00 5.719E+00	7.171E-02 7.984E-02 8.786E-02 9.575E-02 1.035E-01 1.187E-01 1.333E-01	1.077E+00 1.188E+00 1.292E+00 1.389E+00 1.481E+00 1.651E+00 1.805E+00	-0.055 -0.052 -0.049 -0.047 -0.045 -0.042 -0.040 -0.038	0.080 0.076 0.073 0.070 0.068 0.064 0.060 0.057	0.065 0.061 0.058 0.055 0.052 0.048 0.044
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.416E+00 1.441E+00 1.461E+00 1.477E+00 1.492E+00 1.515E+00 1.533E+00 1.548E+00	5.926E-01 7.631E-01 9.373E-01 1.114E+00 1.294E+00 2.029E+00 2.029E+00	2.009E+00 2.204E+00 2.398E+00 2.592E+00 2.786E+00 3.173E+00 3.952E+00	6.227E+00 7.415E+00 8.502E+00 9.504E+00 1.043E+01 1.212E+01 1.360E+01 1.493E+01	1.611E-01 1.931E-01 2.224E-01 2.493E-01 2.741E-01 3.182E-01 3.564E-01 3.897E-01	2.074E+00 2.357E+00 2.597E+00 2.806E+00 2.991E+00 3.311E+00 3.583E+00 3.820E+00	-0.036 -0.033 -0.031 -0.029 -0.028 -0.025 -0.022	0.055 0.050 0.046 0.043 0.041 0.037 0.034 0.032	0.039 0.034 0.030 0.027 0.025 0.021 0.018 0.016
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.561E+00 1.572E+00 1.581E+00 1.590E+00 1.598E+00 1.611E+00 1.622E+00 1.631E+00	2.781E+00 3.162E+00 3.545E+00 3.930E+00 4.316E+00 5.093E+00 5.874E+00 6.658E+00	4.342E+00 4.734E+00 5.127E+00 5.520E+00 5.914E+00 6.704E+00 7.495E+00 8.289E+00	1.614E+01 1.724E+01 1.826E+01 1.920E+01 2.007E+01 2.166E+01 2.307E+01 2.434E+01	4.191E-01 4.452E-01 4.687E-01 4.899E-01 5.092E-01 5.429E-01 5.716E-01 5.963E-01	4.031E+00 4.222E+00 4.396E+00 4.556E+00 4.704E+00 4.971E+00 5.206E+00 5.417E+00	-0.018 -0.016 -0.015 -0.014 -0.013 -0.011 -0.010 -0.009	0.030 0.028 0.027 0.026 0.025 0.023 0.022	0.015 0.013 0.012 0.011 0.010 0.009 0.008 0.007
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.640E+00 1.658E+00 1.672E+00 1.684E+00 1.710E+00 1.710E+00 1.724E+00 1.735E+00	7.445E+00 9.420E+00 1.141E+01 1.340E+01 1.540E+01 1.940E+01 2.342E+01 2.744E+01	9.085E+00 1.108E+01 1.308E+01 1.508E+01 1.709E+01 2.111E+01 2.514E+01 2.918E+01	2.549E+01 2.798E+01 3.005E+01 3.183E+01 3.339E+01 3.601E+01 4.003E+01	6.178E-01 6.614E-01 6.948E-01 7.214E-01 7.430E-01 7.765E-01 8.014E-01 8.206E-01	5.607E+00 6.015E+00 6.352E+00 6.640E+00 6.891E+00 7.315E+00 7.664E+00 7.961E+00	-0.008 -0.007 -0.006 -0.005 -0.005 -0.004 -0.003 -0.003	0.020 0.019 0.017 0.016 0.016 0.015 0.014 0.013	0.006 0.005 0.004 0.004 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.744E+00 1.753E+00 1.760E+00 1.767E+00 1.773E+00 1.784E+00 1.793E+00 1.801E+00	3.148E+01 3.552E+01 3.956E+01 4.360E+01 4.765E+01 5.576E+01 6.387E+01 7.199E+01	3.322E+01 3.727E+01 4.132E+01 4.537E+01 4.943E+01 5.754E+01 6.566E+01 7.379E+01	4.163E+01 4.305E+01 4.433E+01 4.548E+01 4.654E+01 4.841E+01 5.003E+01 5.147E+01	8.361E-01 8.488E-01 8.594E-01 8.685E-01 8.763E-01 8.893E-01 9.078E-01	8.220E+00 8.449E+00 8.655E+00 8.842E+00 9.014E+00 9.318E+00 9.582E+00 9.815E+00	-0.002 -0.002 -0.002 -0.001 -0.001 -0.001 -0.001	0.013 0.012 0.012 0.012 0.011 0.011 0.011	0.002 0.001 0.001 0.001 0.001 0.001 0.001
000.0000	1.808E+00	8.011E+01	8.192E+01	5.276E+01	9.147E-01	1.002E+01	-0.001	0.010	0.001

ELECTRONS IN KRYPTON

I = 352.0 eV DENSITY = $3.478E-03 \text{ g/cm}^3 (20^{\circ} \text{ C})$

ENERGY		OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.		g_)/d(1	
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²	IILLD	CORR. (DELTA)	LOSS	CSDA RANGE	RAD YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.210E+01 1.036E+01 9.116E+00 8.175E+00 7.437E+00 6.347E+00 5.579E+00 5.006E+00	1.344E-02 1.427E-02 1.491E-02 1.543E-02 1.586E-02 1.654E-02 1.707E-02 1.750E-02	1.211E+01 1.038E+01 9.131E+00 8.191E+00 7.452E+00 6.364E+00 5.596E+00 5.024E+00	5.046E-04 7.285E-04 9.860E-04 1.276E-03 1.596E-03 2.325E-03 3.165E-03 4.110E-03	5.575E-04 6.946E-04 8.296E-04 9.624E-04 1.093E-03 1.348E-03 1.594E-03 1.833E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.287 -0.270 -0.257 -0.248 -0.240 -0.228 -0.219	0.368 0.340 0.320 0.305 0.292 0.274 0.260 0.250	0.347 0.322 0.304 0.291 0.280 0.263 0.251 0.242
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	4.561E+00 4.205E+00 3.913E+00 3.669E+00 3.462E+00 3.129E+00 2.874E+00 2.671E+00	1.785E-02 1.816E-02 1.844E-02 1.869E-02 1.891E-02 1.932E-02 1.969E-02 2.003E-02	4.579E+00 4.223E+00 3.931E+00 3.688E+00 3.481E+00 3.149E+00 2.893E+00 2.691E+00	5.154E-03 6.292E-03 7.521E-03 8.835E-03 1.023E-02 1.326E-02 1.658E-02 2.016E-02	2.065E-03 2.292E-03 2.512E-03 2.727E-03 2.938E-03 3.345E-03 4.113E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.207 -0.202 -0.198 -0.195 -0.191 -0.186 -0.182 -0.178	0.242 0.235 0.229 0.224 0.219 0.212 0.206 0.201	0.235 0.228 0.223 0.219 0.215 0.208 0.203 0.198
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.506E+00 2.204E+00 1.999E+00 1.851E+00 1.740E+00 1.585E+00 1.484E+00 1.415E+00	2.035E-02 2.111E-02 2.182E-02 2.252E-02 2.322E-02 2.465E-02 2.617E-02 2.777E-02	2.527E+00 2.225E+00 2.021E+00 1.873E+00 1.763E+00 1.610E+00 1.510E+00 1.442E+00	2.400E-02 3.459E-02 4.640E-02 5.928E-02 7.305E-02 1.028E-01 1.350E-01 1.689E-01	4.476E-03 5.337E-03 6.139E-03 6.893E-03 7.606E-03 8.936E-03 1.017E-02 1.133E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.175 -0.169 -0.164 -0.160 -0.157 -0.152 -0.147 -0.144	0.197 0.189 0.183 0.178 0.174 0.168 0.163	0.194 0.186 0.180 0.176 0.172 0.165 0.160 0.156
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.365E+00 1.328E+00 1.300E+00 1.279E+00 1.263E+00 1.241E+00 1.229E+00	2.947E-02 3.125E-02 3.311E-02 3.504E-02 3.703E-02 4.116E-02 4.547E-02 4.996E-02	1.394E+00 1.359E+00 1.333E+00 1.314E+00 1.300E+00 1.283E+00 1.274E+00 1.272E+00	2.042E-01 2.405E-01 2.777E-01 3.154E-01 3.537E-01 4.312E-01 5.094E-01 5.880E-01	1.244E-02 1.351E-02 1.455E-02 1.557E-02 1.657E-02 1.853E-02 2.045E-02 2.234E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.141 -0.139 -0.136 -0.134 -0.133 -0.129 -0.127 -0.124	0.155 0.153 0.150 0.148 0.146 0.143 0.140	0.153 0.150 0.147 0.145 0.143 0.139 0.136
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.219E+00 1.221E+00 1.230E+00 1.242E+00 1.255E+00 1.282E+00 1.307E+00 1.330E+00	5.459E-02 6.673E-02 7.957E-02 9.297E-02 1.068E-01 1.356E-01 1.656E-01	1.273E+00 1.288E+00 1.310E+00 1.335E+00 1.362E+00 1.473E+00 1.527E+00	6.666E-01 8.620E-01 1.055E+00 1.244E+00 1.429E+00 1.789E+00 2.135E+00 2.468E+00	2.421E-02 2.884E-02 3.342E-02 3.796E-02 4.247E-02 5.139E-02 6.018E-02 6.882E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.122 -0.118 -0.115 -0.112 -0.110 -0.106 -0.103	0.135 0.130 0.127 0.123 0.121 0.116 0.113	0.131 0.125 0.121 0.117 0.114 0.109 0.104
4.0000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.352E+00 1.371E+00 1.389E+00 1.406E+00 1.425E+00 1.474E+00 1.497E+00	2.282E-01 2.605E-01 2.933E-01 3.267E-01 3.605E-01 4.293E-01 5.708E-01	1.580E+00 1.632E+00 1.683E+00 1.733E+00 1.782E+00 1.879E+00 2.067E+00	2.790E+00 3.102E+00 3.403E+00 3.696E+00 3.981E+00 4.527E+00 5.046E+00 5.541E+00	7.729E-02 8.560E-02 9.374E-02 1.017E-01 1.095E-01 1.247E-01 1.392E-01 1.531E-01	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.099 -0.097 -0.096 -0.095 -0.093 -0.092 -0.090 -0.089	0.107 0.104 0.102 0.100 0.099 0.095 0.093 0.090	0.098 0.095 0.092 0.090 0.088 0.084 0.081
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.516E+00 1.559E+00 1.594E+00 1.624E+00 1.650E+00 1.694E+00 1.729E+00	6.430E-01 8.269E-01 1.015E+00 1.206E+00 1.399E+00 1.792E+00 2.191E+00 2.595E+00	2.159E+00 2.386E+00 2.609E+00 2.830E+00 3.050E+00 3.486E+00 3.921E+00 4.353E+00	6.014E+00 7.115E+00 8.116E+00 9.036E+00 9.887E+00 1.142E+01 1.277E+01 1.398E+01	1.665E-01 1.978E-01 2.262E-01 2.521E-01 2.760E-01 3.183E-01 3.548E-01 3.867E-01	0.0 0.0 0.0 0.0 0.0 0.0 7.431E-03 3.031E-02	-0.087 -0.085 -0.083 -0.081 -0.080 -0.078 -0.072 -0.068	0.088 0.084 0.080 0.077 0.074 0.069 0.066 0.063	0.075 0.070 0.065 0.061 0.058 0.053 0.048
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.782E+00 1.803E+00 1.822E+00 1.838E+00 1.853E+00 1.879E+00 1.901E+00	3.002E+00 3.413E+00 3.825E+00 4.240E+00 4.656E+00 5.493E+00 7.179E+00	4.785E+00 5.216E+00 5.647E+00 6.078E+00 6.509E+00 7.372E+00 8.235E+00 9.098E+00	1.508E+01 1.608E+01 1.700E+01 1.785E+01 1.865E+01 2.009E+01 2.137E+01 2.253E+01	4.149E-01 4.400E-01 4.626E-01 4.831E-01 5.017E-01 5.344E-01 5.623E-01 5.864E-01	6.047E-02 9.396E-02 1.289E-01 1.643E-01 1.998E-01 2.700E-01 3.388E-01 4.061E-01	-0.064 -0.062 -0.060 -0.058 -0.056 -0.053 -0.050 -0.048	0.060 0.058 0.056 0.054 0.052 0.050 0.047	0.041 0.038 0.035 0.033 0.031 0.028 0.025 0.023
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000	1.936E+00 1.970E+00 1.996E+00 2.017E+00 2.034E+00 2.062E+00 2.084E+00 2.102E+00	8.027E+00 1.015E+01 1.229E+01 1.444E+01 1.659E+01 2.091E+01 2.524E+01 2.958E+01	9.963E+00 1.212E+01 1.429E+01 1.646E+01 1.863E+01 2.297E+01 2.732E+01 3.168E+01	2.358E+01 2.585E+01 2.774E+01 2.937E+01 3.080E+01 3.321E+01 3.521E+01 3.690E+01	6.076E-01 6.506E-01 6.837E-01 7.102E-01 7.320E-01 7.658E-01 7.911E-01 8.108E-01	4.721E-01 6.316E-01 7.830E-01 9.258E-01 1.060E+00 1.304E+00 1.521E+00	-0.046 -0.041 -0.037 -0.034 -0.031 -0.027 -0.025 -0.023	0.044 0.041 0.038 0.036 0.035 0.033 0.031	0.021 0.018 0.016 0.014 0.012 0.010 0.008 0.007
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	2.117E+00 2.130E+00 2.141E+00 2.151E+00 2.160E+00 2.176E+00 2.190E+00 2.201E+00	3.392E+01 3.827E+01 4.262E+01 4.698E+01 5.134E+01 6.007E+01 6.881E+01 7.755E+01	3.604E+01 4.040E+01 4.476E+01 4.913E+01 5.350E+01 6.225E+01 7.100E+01 7.975E+01	3.838E+01 3.969E+01 4.087E+01 4.193E+01 4.291E+01 4.464E+01 4.614E+01 4.747E+01	8.266E-01 8.397E-01 8.507E-01 8.601E-01 8.683E-01 8.817E-01 8.924E-01 9.011E-01	1.887E+00 2.045E+00 2.189E+00 2.322E+00 2.445E+00 2.667E+00 2.864E+00 3.042E+00	-0.021 -0.020 -0.019 -0.018 -0.016 -0.015	0.029 0.028 0.027 0.026 0.026 0.025 0.024 0.023	0.007 0.006 0.005 0.005 0.005 0.004 0.003
1000.0000	2.211E+00	8.630E+01	8.851E+01	4.866E+01	9.084E-01	3.203E+00	-0.014	0.023	0.003

ELECTRONS IN MOLYBDENUM

I = 424.0 eV DENSITY = 1.022E+01 g/cm³

ENERGY	COLLISION	OPPING POWER	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(10 CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(DELIA)	1033	KANGL	IILLD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.167E+01 1.003E+01 8.843E+00 7.945E+00 7.238E+00 6.192E+00 5.452E+00 4.898E+00	1.524E-02 1.627E-02 1.709E-02 1.776E-02 1.832E-02 1.922E-02 1.992E-02 2.050E-02	1.168E+01 1.004E+01 8.860E+00 7.963E+00 7.256E+00 6.211E+00 5.472E+00 4.918E+00	5.319E-04 7.636E-04 1.029E-03 1.327E-03 1.657E-03 2.404E-03 3.264E-03 4.230E-03	6.528E-04 8.148E-04 9.749E-04 1.133E-03 1.288E-03 1.593E-03 1.889E-03 2.177E-03	7.953E-04 1.029E-03 1.275E-03 1.535E-03 1.807E-03 2.389E-03 3.017E-03 3.692E-03	-0.303 -0.284 -0.270 -0.260 -0.251 -0.238 -0.228 -0.221	0.402 0.369 0.345 0.327 0.312 0.291 0.275 0.263	0.373 0.344 0.323 0.308 0.295 0.277 0.264 0.253
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	4.467E+00 4.122E+00 3.838E+00 3.601E+00 3.400E+00 3.076E+00 2.826E+00 2.628E+00	2.099E-02 2.142E-02 2.181E-02 2.216E-02 2.247E-02 2.305E-02 2.357E-02 2.404E-02	4.488E+00 4.143E+00 3.860E+00 3.623E+00 3.422E+00 3.099E+00 2.850E+00 2.652E+00	5.296E-03 6.457E-03 7.708E-03 9.046E-03 1.047E-02 1.354E-02 1.691E-02 2.055E-02	2.458E-03 2.732E-03 3.000E-03 3.262E-03 3.519E-03 4.017E-03 4.497E-03 4.961E-03	4.410E-03 5.169E-03 5.969E-03 6.807E-03 7.681E-03 9.535E-03 1.152E-02 1.362E-02	-0.214 -0.203 -0.205 -0.201 -0.198 -0.192 -0.187 -0.183	0.254 0.246 0.240 0.234 0.229 0.221 0.214 0.209	0.245 0.238 0.232 0.227 0.223 0.216 0.210 0.204
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	2.467E+00 2.171E+00 1.970E+00 1.825E+00 1.715E+00 1.563E+00 1.463E+00 1.394E+00	2.449E-02 2.551E-02 2.646E-02 2.737E-02 2.826E-02 3.005E-02 3.192E-02 3.388E-02	2.492E+00 2.197E+00 1.996E+00 1.852E+00 1.743E+00 1.593E+00 1.495E+00 1.427E+00	2.445E-02 3.517E-02 4.714E-02 6.016E-02 7.409E-02 1.042E-01 1.367E-01 1.709E-01	5.409E-03 6.474E-03 7.469E-03 8.406E-03 9.292E-03 1.095E-02 1.248E-02 1.391E-02	1.584E-02 2.180E-02 2.830E-02 3.523E-02 4.252E-02 5.795E-02 7.422E-02 9.109E-02	-0.180 -0.173 -0.167 -0.163 -0.159 -0.153 -0.147 -0.143	0.204 0.195 0.188 0.183 0.178 0.171 0.165 0.160	0.200 0.192 0.185 0.180 0.175 0.168 0.162 0.157
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.344E+00 1.307E+00 1.279E+00 1.257E+00 1.240E+00 1.217E+00 1.203E+00 1.194E+00	3.593E-02 3.808E-02 4.032E-02 4.264E-02 4.502E-02 4.996E-02 5.510E-02 6.043E-02	1.380E+00 1.345E+00 1.319E+00 1.300E+00 1.285E+00 1.267E+00 1.258E+00 1.255E+00	2.066E-01 2.433E-01 2.809E-01 3.191E-01 3.578E-01 4.362E-01 5.155E-01 5.951E-01	1.529E-02 1.661E-02 1.789E-02 1.915E-02 2.038E-02 2.279E-02 2.514E-02 2.746E-02	1.084E-01 1.259E-01 1.437E-01 1.615E-01 1.794E-01 2.151E-01 2.505E-01 2.854E-01	-0.139 -0.135 -0.132 -0.129 -0.126 -0.122 -0.117 -0.113	0.156 0.153 0.150 0.147 0.144 0.140 0.136 0.133	0.153 0.150 0.146 0.143 0.141 0.136 0.131
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.190E+00 1.187E+00 1.192E+00 1.200E+00 1.209E+00 1.228E+00 1.246E+00 1.262E+00	6.592E-02 8.032E-02 9.550E-02 1.113E-01 1.276E-01 1.615E-01 1.967E-01 2.329E-01	1.255E+00 1.268E+00 1.288E+00 1.311E+00 1.337E+00 1.389E+00 1.442E+00 1.495E+00	6.748E-01 8.731E-01 1.069E+00 1.261E+00 1.450E+00 1.817E+00 2.170E+00 2.511E+00	2.974E-02 3.538E-02 4.095E-02 4.646E-02 5.193E-02 6.272E-02 7.333E-02 8.373E-02	3.198E-01 4.028E-01 4.816E-01 5.563E-01 6.275E-01 7.606E-01 8.838E-01 9.994E-01	-0.110 -0.103 -0.097 -0.093 -0.088 -0.081 -0.075	0.129 0.123 0.117 0.113 0.109 0.102 0.097 0.092	0.124 0.116 0.110 0.104 0.099 0.091 0.085 0.079
4.0000 4.5000 5.5000 6.0000 7.0000 8.0000 9.0000	1.277E+00 1.290E+00 1.302E+00 1.313E+00 1.322E+00 1.340E+00 1.355E+00 1.367E+00	2.699E-01 3.077E-01 3.461E-01 3.851E-01 4.246E-01 5.049E-01 5.867E-01 6.697E-01	1.547E+00 1.598E+00 1.648E+00 1.698E+00 1.747E+00 1.845E+00 1.941E+00 2.037E+00	2.840E+00 3.158E+00 3.466E+00 3.765E+00 4.055E+00 5.140E+00 5.643E+00	9.392E-02 1.039E-01 1.136E-01 1.232E-01 1.325E-01 1.505E-01 1.677E-01 1.841E-01	1.109E+00 1.212E+00 1.311E+00 1.406E+00 1.496E+00 1.666E+00 1.822E+00 1.966E+00	-0.065 -0.061 -0.057 -0.054 -0.051 -0.046 -0.042 -0.039	0.088 0.084 0.081 0.078 0.075 0.070 0.066 0.063	0.074 0.070 0.066 0.062 0.059 0.053 0.049
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.379E+00 1.402E+00 1.421E+00 1.437E+00 1.450E+00 1.471E+00 1.488E+00 1.502E+00	7.538E-01 9.680E-01 1.187E+00 1.409E+00 1.634E+00 2.091E+00 2.555E+00 3.024E+00	2.133E+00 2.370E+00 2.608E+00 2.845E+00 3.084E+00 3.562E+00 4.043E+00 4.526E+00	6.123E+00 7.234E+00 8.239E+00 9.157E+00 1.000E+01 1.151E+01 1.282E+01 1.399E+01	1.999E-01 2.362E-01 2.689E-01 2.984E-01 3.252E-01 3.721E-01 4.118E-01 4.459E-01	2.100E+00 2.398E+00 2.653E+00 2.877E+00 3.075E+00 3.418E+00 3.707E+00 3.959E+00	-0.037 -0.032 -0.029 -0.027 -0.025 -0.022 -0.019 -0.017	0.060 0.054 0.050 0.046 0.043 0.039 0.036 0.033	0.041 0.035 0.030 0.027 0.024 0.020 0.017 0.015
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.514E+00 1.524E+00 1.533E+00 1.541E+00 1.561E+00 1.561E+00 1.572E+00	3.497E+00 3.974E+00 4.453E+00 4.935E+00 5.419E+00 6.392E+00 7.370E+00 8.352E+00	5.011E+00 5.498E+00 5.987E+00 6.477E+00 6.968E+00 7.953E+00 8.942E+00 9.933E+00	1.504E+01 1.599E+01 1.687E+01 1.767E+01 1.841E+01 1.976E+01 2.094E+01 2.200E+01	4.756E-01 5.017E-01 5.249E-01 5.457E-01 5.644E-01 5.968E-01 6.240E-01 6.472E-01	4.182E+00 4.382E+00 4.564E+00 4.730E+00 4.884E+00 5.160E+00 5.403E+00 5.619E+00	-0.015 -0.014 -0.013 -0.012 -0.011 -0.009 -0.008 -0.007	0.031 0.030 0.028 0.027 0.026 0.025 0.023	0.013 0.012 0.011 0.010 0.009 0.008 0.007 0.006
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	1.589E+00 1.606E+00 1.619E+00 1.631E+00 1.641E+00 1.657E+00 1.670E+00	9.339E+00 1.181E+01 1.430E+01 1.680E+01 1.931E+01 2.433E+01 2.936E+01 3.441E+01	1.093E+01 1.342E+01 1.592E+01 1.843E+01 2.095E+01 2.598E+01 3.103E+01 3.609E+01	2.296E+01 2.502E+01 2.673E+01 2.819E+01 2.946E+01 3.160E+01 3.336E+01 3.485E+01	6.673E-01 7.075E-01 7.379E-01 7.618E-01 7.811E-01 8.108E-01 8.326E-01 8.494E-01	5.814E+00 6.231E+00 6.575E+00 6.868E+00 7.124E+00 7.553E+00 7.907E+00 8.208E+00	-0.007 -0.006 -0.005 -0.004 -0.004 -0.003 -0.002	0.021 0.020 0.019 0.018 0.017 0.016 0.015	0.005 0.004 0.003 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.690E+00 1.698E+00 1.705E+00 1.712E+00 1.718E+00 1.728E+00 1.737E+00 1.745E+00	3.946E+01 4.452E+01 4.959E+01 5.466E+01 5.973E+01 6.988E+01 8.004E+01 9.022E+01	4.115E+01 4.622E+01 5.129E+01 5.637E+01 6.145E+01 7.161E+01 8.178E+01 9.196E+01	3.615E+01 3.729E+01 3.832E+01 3.925E+01 4.010E+01 4.160E+01 4.291E+01 4.406E+01	8.627E-01 8.737E-01 8.828E-01 8.906E-01 8.973E-01 9.082E-01 9.169E-01 9.239E-01	8.469E+00 8.701E+00 8.909E+00 9.097E+00 9.269E+00 9.575E+00 9.840E+00 1.007E+01	-0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001	0.014 0.013 0.013 0.013 0.012 0.012 0.012 0.011	0.001 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	1.753E+00	1.004E+02	1.021E+02	4.509E+01	9.297E-01	1.028E+01	-0.000	0.011	0.001

ELECTRONS IN SILVER

I = 470.0 eV DENSITY = 1.050E+01 g/cm³

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(lo CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm²/g	MeV cm²/g	MeV cm²/g	g/cm²		(DLLIN)	1033	KANOL	ILLED
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.125E+01 9.687E+00 8.556E+00 7.696E+00 7.017E+00 6.011E+00 5.297E+00 4.763E+00	1.634E-02 1.754E-02 1.849E-02 1.927E-02 1.992E-02 2.099E-02 2.184E-02 2.254E-02	1.127E+01 9.704E+00 8.574E+00 7.715E+00 7.037E+00 6.032E+00 5.319E+00 4.786E+00	5.577E-04 7.976E-04 1.072E-03 1.380E-03 1.720E-03 2.490E-03 3.375E-03 4.368E-03	7.226E-04 9.040E-04 1.084E-03 1.261E-03 1.437E-03 1.781E-03 2.117E-03 2.444E-03	1.126E-03 1.445E-03 1.781E-03 2.135E-03 2.508E-03 3.312E-03 4.203E-03 5.190E-03	-0.313 -0.292 -0.278 -0.267 -0.258 -0.244 -0.233 -0.225	0.424 0.387 0.361 0.341 0.325 0.302 0.285 0.272	0.389 0.357 0.335 0.318 0.305 0.285 0.271 0.260
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	4.347E+00 4.012E+00 3.738E+00 3.508E+00 3.313E+00 2.999E+00 2.756E+00 2.563E+00	2.314E-02 2.367E-02 2.414E-02 2.458E-02 2.497E-02 2.569E-02 2.634E-02 2.693E-02	4.370E+00 4.036E+00 3.762E+00 3.533E+00 3.338E+00 3.024E+00 2.782E+00 2.590E+00	5.463E-03 6.655E-03 7.939E-03 9.312E-03 1.077E-02 1.392E-02 1.737E-02 2.110E-02	2.764E-03 3.077E-03 3.383E-03 3.684E-03 3.979E-03 4.552E-03 5.106E-03 5.643E-03	6.284E-03 7.495E-03 8.836E-03 1.032E-02 1.196E-02 1.573E-02 2.022E-02 2.543E-02	-0.219 -0.213 -0.208 -0.204 -0.200 -0.193 -0.186 -0.181	0.262 0.253 0.246 0.240 0.235 0.225 0.218	0.251 0.244 0.237 0.232 0.227 0.219 0.212 0.206
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.406E+00 2.117E+00 1.920E+00 1.778E+00 1.671E+00 1.522E+00 1.424E+00 1.356E+00	2.748E-02 2.875E-02 2.990E-02 3.098E-02 3.203E-02 3.413E-02 3.628E-02 3.852E-02	2.434E+00 2.146E+00 1.950E+00 1.809E+00 1.703E+00 1.556E+00 1.460E+00 1.395E+00	2.509E-02 3.607E-02 4.832E-02 6.165E-02 7.591E-02 1.067E-01 1.400E-01 1.750E-01	6.163E-03 7.402E-03 8.564E-03 9.661E-03 1.070E-02 1.264E-02 1.443E-02	3.125E-02 4.754E-02 6.453E-02 8.111E-02 9.702E-02 1.270E-01 1.550E-01 1.816E-01	-0.176 -0.166 -0.159 -0.154 -0.149 -0.143 -0.138	0.206 0.194 0.186 0.179 0.173 0.164 0.158 0.153	0.201 0.190 0.181 0.175 0.169 0.161 0.154
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.308E+00 1.271E+00 1.244E+00 1.223E+00 1.207E+00 1.184E+00 1.170E+00 1.162E+00	4.085E-02 4.328E-02 4.580E-02 4.840E-02 5.107E-02 5.659E-02 6.233E-02 6.827E-02	1.348E+00 1.315E+00 1.290E+00 1.271E+00 1.258E+00 1.241E+00 1.233E+00 1.230E+00	2.115E-01 2.491E-01 2.875E-01 3.266E-01 3.661E-01 4.462E-01 5.271E-01 6.084E-01	1.772E-02 1.927E-02 2.076E-02 2.222E-02 2.365E-02 2.643E-02 2.914E-02 3.179E-02	2.070E-01 2.315E-01 2.552E-01 2.783E-01 3.007E-01 3.438E-01 3.851E-01 4.246E-01	-0.130 -0.126 -0.123 -0.121 -0.119 -0.114 -0.111	0.148 0.145 0.141 0.139 0.136 0.132 0.128 0.125	0.145 0.141 0.137 0.135 0.132 0.127 0.123 0.119
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.158E+00 1.156E+00 1.161E+00 1.169E+00 1.178E+00 1.197E+00 1.215E+00 1.232E+00	7.439E-02 9.038E-02 1.072E-01 1.247E-01 1.428E-01 1.802E-01 2.190E-01 2.589E-01	1.232E+00 1.246E+00 1.268E+00 1.294E+00 1.321E+00 1.377E+00 1.434E+00	6.896E-01 8.915E-01 1.090E+00 1.286E+00 1.477E+00 1.848E+00 2.203E+00 2.545E+00	3.441E-02 4.082E-02 4.711E-02 5.330E-02 5.942E-02 7.144E-02 8.317E-02 9.461E-02	4.626E-01 5.520E-01 6.346E-01 7.116E-01 7.836E-01 9.157E-01 1.035E+00 1.143E+00	-0.105 -0.099 -0.094 -0.090 -0.086 -0.081 -0.076	0.122 0.116 0.111 0.107 0.103 0.097 0.092 0.088	0.116 0.109 0.103 0.099 0.094 0.087 0.082 0.077
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.248E+00 1.261E+00 1.274E+00 1.286E+00 1.296E+00 1.315E+00 1.331E+00	2.997E-01 3.412E-01 3.834E-01 4.263E-01 4.696E-01 5.577E-01 6.474E-01 7.384E-01	1.547E+00 1.603E+00 1.658E+00 1.712E+00 1.76E+00 1.873E+00 2.083E+00	2.874E+00 3.192E+00 3.499E+00 4.083E+00 4.633E+00 5.152E+00 5.645E+00	1.057E-01 1.166E-01 1.271E-01 1.374E-01 1.474E-01 1.667E-01 1.849E-01 2.023E-01	1.243E+00 1.337E+00 1.425E+00 1.508E+00 1.587E+00 1.735E+00 1.873E+00 2.001E+00	-0.069 -0.066 -0.063 -0.060 -0.058 -0.054 -0.050	0.085 0.082 0.079 0.076 0.074 0.070 0.067 0.063	0.073 0.069 0.066 0.063 0.060 0.055 0.051
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.357E+00 1.382E+00 1.402E+00 1.418E+00 1.432E+00 1.455E+00 1.472E+00	8.305E-01 1.065E+00 1.304E+00 1.547E+00 1.794E+00 2.293E+00 2.800E+00 3.313E+00	2.188E+00 2.447E+00 2.707E+00 2.966E+00 3.226E+00 3.748E+00 4.272E+00 4.800E+00	6.113E+00 7.193E+00 8.164E+00 9.046E+00 9.854E+00 1.129E+01 1.254E+01	2.188E-01 2.567E-01 2.904E-01 3.207E-01 3.480E-01 3.954E-01 4.353E-01 4.693E-01	2.121E+00 2.392E+00 2.630E+00 2.841E+00 3.030E+00 3.359E+00 3.638E+00 3.880E+00	-0.043 -0.037 -0.033 -0.030 -0.028 -0.024 -0.022 -0.020	0.061 0.055 0.051 0.047 0.045 0.040 0.037 0.035	0.044 0.038 0.033 0.029 0.026 0.021 0.018 0.016
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.499E+00 1.510E+00 1.519E+00 1.528E+00 1.535E+00 1.548E+00 1.559E+00	3.831E+00 4.352E+00 4.876E+00 5.403E+00 5.932E+00 6.995E+00 8.065E+00 9.139E+00	5.330E+00 5.862E+00 6.395E+00 6.930E+00 7.467E+00 8.543E+00 9.624E+00 1.071E+01	1.463E+01 1.553E+01 1.634E+01 1.709E+01 1.779E+01 1.904E+01 2.014E+01 2.113E+01	4.988E-01 5.246E-01 5.474E-01 5.677E-01 5.860E-01 6.176E-01 6.440E-01 6.664E-01	4.094E+00 4.287E+00 4.462E+00 4.622E+00 4.771E+00 5.038E+00 5.274E+00 5.484E+00	-0.018 -0.017 -0.015 -0.014 -0.013 -0.012 -0.010 -0.009	0.033 0.031 0.030 0.029 0.028 0.026 0.025	0.014 0.013 0.011 0.010 0.010 0.008 0.007 0.006
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	1.577E+00 1.594E+00 1.608E+00 1.620E+00 1.630E+00 1.646E+00 1.659E+00	1.022E+01 1.293E+01 1.565E+01 1.838E+01 2.112E+01 2.661E+01 3.211E+01 3.763E+01	1.179E+01 1.452E+01 1.725E+01 2.000E+01 2.275E+01 2.825E+01 3.377E+01 3.930E+01	2.202E+01 2.392E+01 2.550E+01 2.684E+01 2.802E+01 3.160E+01 3.297E+01	6.858E-01 7.245E-01 7.535E-01 7.763E-01 7.948E-01 8.22E-01 8.435E-01 8.594E-01	5.675E+00 6.084E+00 6.424E+00 6.713E+00 6.966E+00 7.392E+00 7.742E+00 8.040E+00	-0.008 -0.007 -0.006 -0.005 -0.005 -0.004 -0.003	0.023 0.021 0.020 0.019 0.018 0.017 0.016 0.015	0.006 0.005 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.679E+00 1.688E+00 1.695E+00 1.702E+00 1.708E+00 1.718E+00 1.727E+00 1.735E+00	4.316E+01 4.869E+01 5.422E+01 5.976E+01 6.531E+01 7.641E+01 8.751E+01 9.863E+01	4.483E+01 5.037E+01 5.592E+01 6.147E+01 6.702E+01 7.813E+01 8.924E+01 1.004E+02	3.416E+01 3.521E+01 3.616E+01 3.701E+01 3.779E+01 3.917E+01 4.036E+01 4.142E+01	8.720E-01 8.823E-01 8.908E-01 8.981E-01 9.044E-01 9.147E-01 9.228E-01 9.293E-01	8.299E+00 8.529E+00 8.735E+00 8.922E+00 9.093E+00 9.397E+00 9.661E+00 9.894E+00	-0.002 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001	0.015 0.014 0.014 0.014 0.013 0.013 0.013	0.001 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	1.743E+00	1.098E+02	1.115E+02	4.237E+01	9.347E-01	1.010E+01	-0.001	0.012	0.001

ELECTRONS IN TIN

I = 488.0 eV DENSITY = 7.310E+00 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(l CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm 2/g	MeV cm²/g	MeV cm²/g	g/cm ²		(DELIA)	4033	KANGE	11240
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0350	1.075E+01 9.263E+00 8.186E+00 7.366E+00 6.719E+00 5.759E+00 5.078E+00 4.567E+00	1.645E-02 1.769E-02 1.869E-02 1.951E-02 2.021E-02 2.134E-02 2.224E-02 2.299E-02	1.077E+01 9.281E+00 8.205E+00 7.386E+00 6.740E+00 5.781E+00 5.100E+00 4.590E+00	5.861E-04 8.371E-04 1.124E-03 1.446E-03 1.801E-03 2.605E-03 3.528E-03 4.564E-03	7.576E-04 9.496E-04 1.140E-03 1.329E-03 1.515E-03 1.882E-03 2.239E-03 2.589E-03	6.966E-04 8.851E-04 1.079E-03 1.279E-03 1.484E-03 1.910E-03 2.358E-03 2.827E-03	-0.316 -0.296 -0.281 -0.269 -0.260 -0.246 -0.236	0.434 0.395 0.367 0.347 0.330 0.306 0.289 0.276	0.395 0.362 0.339 0.322 0.308 0.288 0.274 0.263
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	4.169E+00 3.850E+00 3.587E+00 3.367E+00 3.181E+00 2.880E+00 2.649E+00 2.465E+00	2.364E-02 2.422E-02 2.473E-02 2.520E-02 2.564E-02 2.642E-02 2.713E-02 2.778E-02	4.193E+00 3.874E+00 3.612E+00 3.393E+00 3.206E+00 2.907E+00 2.676E+00 2.492E+00	5.705E-03 6.947E-03 8.285E-03 9.714E-03 1.123E-02 1.451E-02 1.810E-02 2.198E-02	2.931E-03 3.266E-03 3.595E-03 3.917E-03 4.233E-03 4.849E-03 5.445E-03 6.023E-03	3.316E-03 3.826E-03 4.355E-03 4.904E-03 5.473E-03 6.667E-03 7.935E-03 9.276E-03	-0.221 -0.216 -0.211 -0.207 -0.203 -0.197 -0.192 -0.188	0.265 0.256 0.249 0.243 0.238 0.229 0.222 0.216	0.254 0.246 0.240 0.235 0.230 0.222 0.215 0.210
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	2.315E+00 2.039E+00 1.852E+00 1.717E+00 1.615E+00 1.473E+00 1.380E+00	2.838E-02 2.975E-02 3.100E-02 3.216E-02 3.328E-02 3.550E-02 3.776E-02 4.010E-02	2.343E+00 2.069E+00 1.883E+00 1.749E+00 1.648E+00 1.508E+00 1.418E+00 1.356E+00	2.612E-02 3.752E-02 5.021E-02 6.401E-02 7.876E-02 1.106E-01 1.448E-01 1.809E-01	6.584E-03 7.920E-03 9.172E-03 1.035E-02 1.147E-02 1.356E-02 1.548E-02 1.729E-02	1.069E-02 1.451E-02 1.875E-02 2.338E-02 2.838E-02 3.942E-02 5.166E-02 6.492E-02	-0.184 -0.177 -0.171 -0.166 -0.161 -0.154 -0.148	0.211 0.201 0.193 0.187 0.182 0.174 0.168 0.162	0.205 0.196 0.189 0.183 0.178 0.171 0.164 0.159
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.269E+00 1.235E+00 1.209E+00 1.189E+00 1.174E+00 1.152E+00 1.140E+00 1.132E+00	4.252E-02 4.505E-02 4.766E-02 5.035E-02 5.311E-02 5.881E-02 6.472E-02 7.083E-02	1.312E+00 1.280E+00 1.257E+00 1.239E+00 1.227E+00 1.211E+00 1.204E+00 1.203E+00	2.185E-01 2.571E-01 2.965E-01 3.366E-01 3.772E-01 4.593E-01 5.421E-01 6.252E-01	1.900E-02 2.065E-02 2.224E-02 2.379E-02 2.530E-02 2.825E-02 3.111E-02 3.391E-02	7.898E-02 9.366E-02 1.088E-01 1.243E-01 1.399E-01 1.717E-01 2.036E-01 2.354E-01	-0.137 -0.133 -0.129 -0.126 -0.122 -0.117 -0.112	0.158 0.154 0.150 0.147 0.144 0.138 0.134	0.154 0.150 0.146 0.142 0.139 0.133 0.128
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.128E+00 1.127E+00 1.132E+00 1.140E+00 1.149E+00 1.168E+00 1.186E+00 1.203E+00	7.712E-02 9.354E-02 1.108E-01 1.287E-01 1.472E-01 1.855E-01 2.251E-01 2.659E-01	1.205E+00 1.220E+00 1.243E+00 1.269E+00 1.297E+00 1.354E+00 1.412E+00 1.469E+00	7.083E-01 9.146E-01 1.118E+00 1.317E+00 1.512E+00 1.889E+00 2.251E+00 2.598E+00	3.666E-02 4.340E-02 4.998E-02 5.646E-02 6.284E-02 7.534E-02 8.750E-02 9.933E-02	2.669E-01 3.436E-01 4.168E-01 4.863E-01 5.525E-01 6.753E-01 7.874E-01 8.904E-01	-0.105 -0.098 -0.092 -0.088 -0.084 -0.078 -0.074	0.126 0.119 0.113 0.108 0.104 0.098 0.092 0.088	0.120 0.111 0.105 0.099 0.094 0.087 0.080 0.075
4.0000 4.5000 5.5000 6.0000 7.0000 8.0000 9.0000	1.218E+00 1.232E+00 1.244E+00 1.256E+00 1.266E+00 1.285E+00 1.301E+00 1.315E+00	3.075E-01 3.499E-01 3.930E-01 4.366E-01 4.808E-01 5.706E-01 6.620E-01 7.547E-01	1.526E+00 1.582E+00 1.637E+00 1.692E+00 1.747E+00 1.856E+00 1.963E+00 2.070E+00	2.932E+00 3.254E+00 3.564E+00 3.865E+00 4.155E+00 4.711E+00 5.234E+00 5.730E+00	1.108E-01 1.220E-01 1.329E-01 1.434E-01 1.537E-01 1.734E-01 1.920E-01 2.097E-01	9.857E-01 1.075E+00 1.158E+00 1.236E+00 1.311E+00 1.449E+00 1.576E+00 1.695E+00	-0.067 -0.064 -0.062 -0.060 -0.058 -0.054 -0.051	0.084 0.081 0.078 0.076 0.073 0.069 0.066 0.063	0.071 0.067 0.064 0.061 0.059 0.054 0.050
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.328E+00 1.353E+00 1.374E+00 1.390E+00 1.404E+00 1.426E+00 1.444E+00	8.486E-01 1.087E+00 1.331E+00 1.578E+00 1.829E+00 2.338E+00 2.854E+00 3.376E+00	2.176E+00 2.441E+00 2.705E+00 2.969E+00 3.233E+00 3.764E+00 4.298E+00 4.834E+00	6.202E+00 7.286E+00 8.258E+00 9.140E+00 9.947E+00 1.138E+01 1.262E+01 1.372E+01	2.265E-01 2.649E-01 2.990E-01 3.295E-01 3.570E-01 4.045E-01 4.782E-01	1.805E+00 2.057E+00 2.279E+00 2.478E+00 2.658E+00 2.974E+00 3.244E+00 3.480E+00	-0.045 -0.040 -0.035 -0.032 -0.029 -0.025 -0.022	0.061 0.055 0.051 0.048 0.045 0.041 0.038 0.035	0.044 0.038 0.033 0.029 0.026 0.022 0.019 0.016
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.471E+00 1.481E+00 1.491E+00 1.499E+00 1.506E+00 1.519E+00 1.530E+00 1.540E+00	3.902E+00 4.433E+00 4.966E+00 5.503E+00 6.041E+00 7.124E+00 8.213E+00 9.307E+00	5.373E+00 5.914E+00 6.457E+00 7.002E+00 7.547E+00 8.643E+00 9.743E+00 1.085E+01	1.470E+01 1.559E+01 1.639E+01 1.714E+01 1.783E+01 1.906E+01 2.015E+01 2.112E+01	5.075E-01 5.332E-01 5.558E-01 5.760E-01 5.941E-01 6.253E-01 6.514E-01 6.736E-01	3.689E+00 3.878E+00 4.049E+00 4.206E+00 4.351E+00 4.612E+00 4.843E+00 5.050E+00	-0.019 -0.017 -0.016 -0.015 -0.014 -0.013 -0.011	0.033 0.031 0.030 0.029 0.028 0.026 0.025 0.024	0.014 0.013 0.012 0.011 0.010 0.008 0.007
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	1.548E+00 1.565E+00 1.579E+00 1.590E+00 1.600E+00 1.616E+00 1.629E+00 1.639E+00	1.040E+01 1.316E+01 1.593E+01 1.872E+01 2.150E+01 2.710E+01 3.270E+01 3.832E+01	1.195E+01 1.473E+01 1.751E+01 2.031E+01 2.310E+01 2.871E+01 3.433E+01 3.996E+01	2.200E+01 2.388E+01 2.544E+01 2.676E+01 2.792E+01 2.985E+01 3.144E+01 3.279E+01	6.927E-01 7.307E-01 7.593E-01 7.817E-01 7.998E-01 8.274E-01 8.475E-01 8.630E-01	5.237E+00 5.640E+00 5.976E+00 6.263E+00 6.513E+00 6.936E+00 7.284E+00 7.581E+00	-0.009 -0.007 -0.006 -0.005 -0.005 -0.004 -0.003	0.023 0.021 0.020 0.019 0.018 0.017 0.016 0.016	0.006 0.005 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.649E+00 1.657E+00 1.664E+00 1.670E+00 1.676E+00 1.687E+00 1.695E+00	4.395E+01 4.958E+01 5.522E+01 6.086E+01 6.651E+01 7.781E+01 8.913E+01 1.004E+02	4.560E+01 5.124E+01 5.688E+01 6.253E+01 6.819E+01 7.950E+01 9.082E+01 1.021E+02	3.396E+01 3.500E+01 3.592E+01 3.676E+01 3.753E+01 3.888E+01 4.006E+01 4.110E+01	8.753E-01 8.854E-01 8.938E-01 9.009E-01 9.070E-01 9.170E-01 9.249E-01 9.313E-01	7.839E+00 8.067E+00 8.272E+00 8.458E+00 8.629E+00 8.931E+00 9.194E+00 9.427E+00	-0.003 -0.002 -0.002 -0.002 -0.002 -0.001 -0.001	0.015 0.015 0.014 0.014 0.014 0.013 0.013	0.002 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	1.710E+00	1.118E+02	1.135E+02	4.202E+01	9.366E-01	9.635E+00	-0.001	0.012	0.001

ELECTRONS IN XENON

I = 482.0 eV DENSITY = $5.485E-03 \text{ g/cm}^3 (20^{\circ} \text{ C})$

ENERGY	ST	OPPING POWE	D	CSDA	RADIATION	DENS.EFF.	d(1a	g)/d(1	n a T)
	COLLISION	RADIATIVE	TOTAL	RANGE	YIELD	CORR.	COLL LOSS	CSDA RANGE	RAD YIELD
MeV 0.0100	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²	7.837E-04	0.0	0.715	0 / 71	. 701
0.0125	9.078E+00 8.022E+00	1.686E-02 1.820E-02 1.927E-02	1.055E+01 9.097E+00 8.041E+00	5.971E-04 8.531E-04 1.146E-03	9.869E-04 1.189E-03	0.0 0.0 0.0	-0.315 -0.295 -0.280	0.431 0.393 0.365	0.391 0.359 0.337
0.0175 0.0200	7.218E+00 6.583E+00	2.016E-02 2.092E-02	7.238E+00 6.604E+00	1.474E-03 1.836E-03	1.389E-03 1.588E-03	0.0	-0.269 -0.260	0.345	0.320
0.0250 0.0300 0.0350	5.641E+00 4.974E+00 4.473E+00	2.216E-02 2.315E-02	5.664E+00 4.997E+00	2.657E-03 3.600E-03	1.979E-03 2.361E-03	0.0	-0.246 -0.236	0.305	0.287
0.0330	4.473E+00 4.083E+00	2.399E-02 2.471E-02	4.497E+00 4.108E+00	4.656E-03 5.821E-03	2.736E-03 3.104E-03	0.0	-0.228 -0.221	0.275	0.261
0.0450	3.770E+00 3.513E+00	2.535E-02 2.593E-02	3.796E+00 3.539E+00	7.089E-03 8.454E-03	3.464E-03 3.818E-03	0.0	-0.216 -0.211	0.256	0.245
0.05 5 0 0.0600 0 .0700	3.298E+00 3.115E+00 2.821E+00	2.646E-02 2.695E-02 2.784E-02	3.324E+00 3.142E+00 2.849E+00	9.913E-03 1.146E-02 1.48!E-02	4.166E-03 4.508E-03 5.175E-03	0.0 0.0 0.0	-0.207	0.243 0.237 0.229	0.234 0.229 0.222
0.0800	2.594E+00 2.414E+00	2.864E-02 2.938E-02	2.623E+00 2.443E+00	1.847E-02 2.243E-02	5.822E-03 6.450E-03	0.0	-0.198 -0.193 -0.189	0.222	0.215
0.1000	2.267E+00	3.006E-02	2.298E+00	2.665E-02	7.060E-03	0.0	-0.185	0.211	0.206
0.1250 0.1500 0.1750	1.998E+00 1.815E+00 1.683E+00	3.161E-02 3.300E-02 3.429E-02	2.030E+00 1.848E+00 1.717E+00	3.827E-02 5.121E-02 6.527E-02	8.517E-03 9.886E-03 1.118E-02	0.0 0.0 0.0	-0.178 -0.173 -0.169	0.201 0.194 0.188	0.197 0.190 0.184
0.2000 0.2500	1.584E+00 1.445E+00	3.554E-02 3.797E-02	1.619E+00 1.483E+00	8.028E-02 1.126E-01	1.240E-02 1.468E-02	0.0	-0.165 -0.159	0.184 0.176	0.180
0.3000	1.355E+00 1.293E+00	4.042E-02 4.295E-02	1.396E+00 1.336E+00	1.475E-01 1.841E-01	1.678E-02 1.875E-02	0.0	-0.155 -0.151	0.171	0.167
0.4000 0.4500	1.249E+00 1.216E+00	4.555E-02 4.824E-02	1.294E+00 1.264E+00	2.222E-01 2.613E-01	2.062E-02 2.240E-02	0.0	-0.148 -0.145	0.162	0.159
0.5000	1.192E+00 1.173E+00	5.103E-02 5.389E-02	1.243E+00 1.227E+00	3.012E-01 3.417E-01	2.412E-02 2.579E-02	0.0	-0.142	0.156	0.153
0.6000 0.7000 0.8000	1.159E+00 1.140E+00 1.130E+00	5.681E-02 6.285E-02 6.910E-02	1.216E+00 1.203E+00 1.199E+00	3.826E-01 4.654E-01 5.487E-01	2.742E-02 3.057E-02 3.362E-02	0.0 0.0 0.0	-0.138 -0.135 -0.132	0.152 0.148 0.144	0.148 0.144 0.140
0.9000	1.124E+00	7.555E-02	1.200E+00	6.321E-01	3.659E-02	0.0	-0.129	0.142	0.137
1.0000 1.2500 1.5000	1.122E+00 1.126E+00 1.135E+00	8.217E-02 9.943E-02 1.176E-01	1.204E+00 1.225E+00 1.253E+00	7.153E-01 9.213E-01 1.123E+00	3.949E-02 4.654E-02 5.337E-02	0.0 0.0 0.0	-0.127 -0.123 -0.119	0.139 0.134 0.130	0.134 0.128 0.123
1.7500	1.147E+00 1.160E+00	1.364E-01 1.557E-01	1.284E+00 1.316E+00	1.320E+00 1.513E+00	6.004E-02 6.657E-02	0.0	-0.116	0.126	0.119
2.5000	1.186E+00 1.211E+00	1.958E-01 2.373E-01	1.382E+00 1.448E+00	1.883E+00 2.237E+00	7.927E-02 9.153E-02	0.0	-0.110 -0.107	0.118	0.109
3.5000 4.0000	1.233E+00 1.254E+00	2.798E-01 3.233E-01	1.513E+00 1.577E+00	2.574E+00 2.898E+00	1.034E-01 1.148E-01	0.0	-0.104	0.110	0.100
4.5000 5.0000	1.273E+00 1.290E+00	3.675E-01 4.124E-01	1.640E+00 1.703E+00	3.209E+00 3.508E+00	1.259E-01 1.366E-01	0.0	-0.100 -0.099	0.105 0.102	0.093
5.5000 6.0000 7.0000	1.306E+00 1.321E+00	4.580E-01 5.040E-01	1.764E+00 1.825E+00	3.796E+00 4.075E+00	1.470E-01 1.571E-01	0.0	-0.097 -0.096 -0.094	0.100 0.098 0.094	0.088 0.085 0.081
8.0000	1.348E+00 1.372E+00 1.393E+00	5.976E-01 6.927E-01 7.893E-01	1.946E+00 2.065E+00 2.182E+00	4.606E+00 5.104E+00 5.575E+00	1.764E-01 1.945E-01 2.117E-01	0.0 0.0 0.0	-0.092 -0.091	0.091	0.077
10.0000	1.412E+00	8.870E-01	2.299E+00	6.022E+00	2.279E-01	0.0	-0.090	0.086	0.071
12.5000 15.0000 17.5000	1.453E+00 1.487E+00 1.515E+00	1.136E+00 1.389E+00 1.647E+00	2.589E+00 2.876E+00 3.162E+00	7.046E+00 7.962E+00 8.790E+00	2.649E-01 2.977E-01 3.269E-01	0.0 0.0 0.0	-0.087 -0.085 -0.084	0.081 0.077 0.074	0.060
20.000 0 25.00 0 0	1.540E+00 1.581E+00	1.907E+00 2.436E+00	3.447E+00 4.017E+00	9.547E+00 1.089E+01	3.532E-01 3.988E-01	2.396E-03 2.422E-02	-0.080 -0.074	0.071	0.053
30.0000 35.0000	1.613E+00 1.640E+00	2.973E+00 3.517E+00	4.586E+00 5.156E+00	1.205E+01 1.308E+01	4.370E-01 4.697E-01	5.614E-02 9.173E-02	-0.070 -0.067	0.063	0.042
40.0000 45.0000	1.662E+00 1.682E+00	4.064E+00 4.616E+00	5.727E+00 6.299E+00	1.400E+01 1.483E+01	4.980E-01 5.229E-01	1.286E-01 1.660E-01	-0.065 -0.062	0.057	0.035
50.0000 55.0000 60.0000	1.700E+00 1.716E+00 1.730E+00	5.171E+00 5.730E+00 6.290E+00	6.871E+00 7.445E+00 8.020E+00	1.559E+01 1.629E+01 1.694E+01	5.449E-01 5.646E-01 5.823E-01	2.033E-01 2.405E-01 2.775E-01	-0.060 -0.059 -0.057	0.053 0.051 0.050	0.030 0.028 0.026
70.0000	1.754E+00 1.775E+00	7.417E+00 8.551E+00	9.172E+00 1.033E+01	1.810E+01 1.913E+01	6.130E-01 6.387E-01	3.504E-01 4.215E-01	-0.054 -0.051	0.047	0.024
90.0000	1.793E+00	9.689E+00	1.148E+01	2.005E+01	6.606E-01	4.905E-01	-0.049	0.044	0.020
100.0000 125.0000 150.0000	1.809E+00 1.841E+00 1.867E+00	1.083E+01 1.370E+01 1.659E+01	1.264E+01 1.554E+01 1.846E+01	2.088E+01 2.266E+01 2.413E+01	6.796E-01 7.177E-01 7.465E-01	5.571E-01 7.131E-01 8.546E-01	-0.047 -0.043 -0.040	0.042 0.039 0.037	0.015
175.0000	1.888E+00 1.905E+00	1.949E+01 2.239E+01	2.137E+01 2.430E+01	2.539E+01 2.649E+01	7.693E-01 7.877E-01	9.836E-01 1.102E+00	-0.038 -0.036	0.035 0.034	0.011
250.0000	1.934E+00 1.957E+00	2.821E+01 3.405E+01	3.015E+01 3.601E+01	2.833E+01 2.985E+01 3.113E+01	8.160E-01 8.368E-01 8.529E-01	1.313E+00 1.499E+00 1.665E+00	-0.033 -0.031 -0.029	0.032 0.031 0.029	0.009 0.007 0.006
350.0000 400.0000	1.976E+00 1.992E+00	3.990E+01 4.576E+01	4.188E+01 4.775E+01	3.225E+01	8.658E-01	1.816E+00	-0.027	0.028	0.006
450.0000 500.0000	2.005E+00 2.017E+00	5.163E+01 5.750E+01	5.363E+01 5.952E+01 6.540E+01	3.324E+01 3.412E+01 3.492E+01	8.763E-01 8.851E-01 8.926E-01	1.956E+00 2.086E+00 2.208E+00	-0.025 -0.023 -0.022	0.028 0.027 0.026	0.005 0.005 0.004
550.0000 600.0000 700.0000	2.027E+00 2.036E+00 2.052E+00	6.337E+01 6.926E+01 8.102E+01	7.129E+01 8.308E+01	3.566E+01 3.695E+01	8.991E-01 9.097E-01	2.322E+00 2.532E+00	-0.021	0.026 0.025	0.004
800.0000	2.066E+00 2.077E+00	9.280E+01 1.046E+02	9.487E+01 1.067E+02	3.808E+01 3.907E+01	9.181E-01 9.249E-01	2.722E+00 2.894E+00	-0.017 -0.016	0.024 0.024	0.003
000.000	2.087E+00	1.164E+02	1.185E+02	3.996E+01	9.306E-01	3.052E+00	-0.015	0.023	0.003

ELECTRONS IN GADOLINIUM

I = 591.0 eV DENSITY = 7.900E+00 g/cm³

ENERGY	COLLISION	OPPING POWER RADIATIVE	TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(le	RAD
MeV	MeV cm ² /g	MeV cm²/g Me	V cm²/g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	9.753E+00 8.440E+00 7.481E+00 6.747E+00 6.165E+00 5.299E+00 4.681E+00 4.216E+00	2.008E-02 8. 2.140E-02 7. 2.250E-02 6. 2.345E-02 6. 2.501E-02 5. 2.628E-02 4.	771E+00 460E+00 502E+00 769E+00 189E+00 324E+00 707E+00 244E+00	6.627E-04 9.385E-04 1.253E-03 1.604E-03 1.991E-03 2.866E-03 3.867E-03 4.988E-03	9.223E-04 1.164E-03 1.406E-03 1.646E-03 1.885E-03 2.357E-03 2.821E-03 3.278E-03	2.078E-03 2.671E-03 3.295E-03 3.950E-03 4.637E-03 7.705E-03 9.430E-03	-0.337 -0.313 -0.297 -0.284 -0.273 -0.258 -0.246 -0.237	0.491 0.442 0.407 0.381 0.361 0.331 0.310	0.430 0.391 0.364 0.344 0.328 0.305 0.288 0.276
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	3.853E+00 3.561E+00 3.321E+00 3.120E+00 2.948E+00 2.672E+00 2.459E+00 2.289E+00	2.916E-02 3. 2.993E-02 3. 3.064E-02 3. 3.130E-02 2. 3.251E-02 2. 3.360E-02 2.	882E+00 590E+00 351E+00 150E+00 980E+00 705E+00 492E+00 324E+00	6.221E-03 7.562E-03 9.005E-03 1.054E-02 1.218E-02 1.571E-02 1.956E-02 2.372E-02	3.727E-03 4.170E-03 4.605E-03 5.035E-03 5.458E-03 6.288E-03 7.097E-03 7.885E-03	1.128E-02 1.324E-02 1.530E-02 1.746E-02 1.970E-02 2.439E-02 2.926E-02 3.424E-02	-0.230 -0.223 -0.218 -0.213 -0.209 -0.202 -0.197 -0.192	0.282 0.272 0.263 0.256 0.250 0.239 0.231 0.224	0.266 0.257 0.250 0.244 0.239 0.230 0.222 0.216
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.151E+00 1.896E+00 1.723E+00 1.597E+00 1.503E+00 1.371E+00 1.285E+00 1.225E+00	3.765E-02 1. 3.952E-02 1. 4.124E-02 1. 4.287E-02 1. 4.601E-02 1. 4.912E-02 1.	186E+00 934E+00 .762E+00 639E+00 546E+00 417E+00 334E+00 278E+00	2.816E-02 4.037E-02 5.394E-02 6.868E-02 8.440E-02 1.183E-01 1.547E-01 1.931E-01	8.655E-03 1.050E-02 1.224E-02 1.390E-02 1.547E-02 1.840E-02 2.111E-02 2.365E-02	3.927E-02 5.187E-02 6.425E-02 7.632E-02 8.808E-02 1.108E-01 1.327E-01 1.538E-01	-0.187 -0.179 -0.173 -0.168 -0.163 -0.156 -0.151	0.218 0.207 0.198 0.191 0.185 0.177 0.170	0.211 0.200 0.192 0.186 0.180 0.172 0.165 0.160
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.183E+00 1.151E+00 1.127E+00 1.109E+00 1.095E+00 1.075E+00 1.064E+00 1.057E+00	5.875E-02 1. 6.211E-02 1. 6.553E-02 1. 6.903E-02 1. 7.619E-02 1. 8.356E-02 1.	.238E+00 .210E+00 .189E+00 .174E+00 .164E+00 .152E+00 .148E+00	2.329E-01 2.737E-01 3.154E-01 3.578E-01 4.006E-01 4.870E-01 5.740E-01 6.611E-01	2.605E-02 2.835E-02 3.055E-02 3.269E-02 3.476E-02 4.260E-02 4.632E-02	1.743E-01 1.943E-01 2.138E-01 2.328E-01 2.514E-01 2.876E-01 3.223E-01 3.556E-01	-0.142 -0.138 -0.135 -0.132 -0.130 -0.125 -0.121	0.160 0.156 0.152 0.149 0.147 0.142 0.138 0.134	0.155 0.151 0.148 0.145 0.142 0.137 0.132 0.128
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.054E+00 1.054E+00 1.060E+00 1.069E+00 1.079E+00 1.079E+00 1.116E+00 1.133E+00	1.190E-01 1. 1.399E-01 1. 1.616E-01 1. 1.839E-01 1. 2.299E-01 1. 2.773E-01 1.	.153E+00 .173E+00 .200E+00 .231E+00 .262E+00 .328E+00 .394E+00	7.481E-01 9.631E-01 1.174E+00 1.380E+00 1.580E+00 1.966E+00 2.334E+00 2.684E+00	4.994E-02 5.868E-02 6.707E-02 7.520E-02 8.312E-02 9.840E-02 1.130E-01 1.271E-01	3.878E-01 4.637E-01 5.337E-01 5.989E-01 6.600E-01 7.725E-01 8.746E-01 9.689E-01	-0.115 -0.109 -0.104 -0.100 -0.096 -0.090 -0.085 -0.081	0.131 0.124 0.119 0.114 0.111 0.104 0.099 0.095	0.125 0.117 0.111 0.106 0.101 0.094 0.087 0.082
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.148E+00 1.162E+00 1.174E+00 1.186E+00 1.196E+00 1.215E+00 1.231E+00	4.258E-01 1 4.770E-01 1 5.288E-01 1 5.811E-01 1 6.874E-01 1 7.954E-01 2	.524E+00 .588E+00 .651E+00 .715E+00 .777E+00 .902E+00 .026E+00	3.020E+00 3.341E+00 3.650E+00 3.947E+00 4.234E+00 4.777E+00 5.287E+00 5.766E+00	1.406E-01 1.535E-01 1.661E-01 1.781E-01 1.898E-01 2.119E-01 2.325E-01 2.519E-01	1.057E+00 1.139E+00 1.217E+00 1.291E+00 1.361E+00 1.492E+00 1.612E+00 1.723E+00	-0.077 -0.074 -0.071 -0.068 -0.066 -0.062 -0.059 -0.056	0.091 0.087 0.084 0.082 0.079 0.075 0.072	0.078 0.074 0.070 0.067 0.064 0.059 0.054 0.051
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.257E+00 1.284E+00 1.304E+00 1.322E+00 1.337E+00 1.360E+00 1.379E+00 1.394E+00	1.298E+00 2 1.585E+00 2 1.877E+00 3 2.172E+00 3 2.771E+00 4	.273E+00 .581E+00 .889E+00 .198E+00 .508E+00 .131E+00 .758E+00	6.218E+00 7.249E+00 8.164E+00 8.986E+00 9.732E+00 1.104E+01 1.217E+01 1.316E+01	2.701E-01 3.112E-01 3.471E-01 3.787E-01 4.068E-01 4.546E-01 4.941E-01 5.272E-01	1.826E+00 2.056E+00 2.255E+00 2.433E+00 2.593E+00 2.875E+00 3.119E+00 3.334E+00	-0.054 -0.049 -0.046 -0.042 -0.040 -0.035 -0.031	0.066 0.060 0.056 0.053 0.050 0.045 0.042	0.048 0.041 0.037 0.033 0.030 0.025 0.022 0.019
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.407E+00 1.418E+00 1.428E+00 1.436E+00 1.444E+00 1.457E+00 1.468E+00 1.478E+00	5.240E+00 6 5.869E+00 7 6.502E+00 7 7.136E+00 8 8.414E+00 9 9.698E+00 1	.022E+00 .658E+00 .297E+00 .938E+00 .580E+00 .871E+00 .117E+01 .247E+01	1.404E+01 1.482E+01 1.554E+01 1.620E+01 1.680E+01 1.789E+01 1.884E+01 1.969E+01	5.556E-01 5.802E-01 6.018E-01 6.209E-01 6.379E-01 6.672E-01 6.914E-01 7.118E-01	3.528E+00 3.704E+00 3.865E+00 4.014E+00 4.152E+00 4.400E+00 4.621E+00 4.818E+00	-0.026 -0.024 -0.022 -0.020 -0.019 -0.017 -0.016 -0.015	0.038 0.036 0.034 0.033 0.032 0.030 0.029 0.028	0.017 0.015 0.014 0.013 0.012 0.010 0.009 0.008
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.487E+00 1.504E+00 1.518E+00 1.530E+00 1.540E+00 1.556E+00 1.568E+00 1.579E+00	1.554E+01 1 1.881E+01 2 2.210E+01 2 2.539E+01 2 3.199E+01 3 3.861E+01 4	.377E+01 .704E+01 .033E+01 .363E+01 .693E+01 .355E+01 .018E+01	2.045E+01 2.208E+01 2.342E+01 2.456E+01 2.555E+01 2.721E+01 2.857E+01 2.972E+01	7.293E-01 7.640E-01 7.898E-01 8.099E-01 8.260E-01 8.506E-01 8.684E-01 8.820E-01	4.997E+00 5.384E+00 5.707E+00 5.984E+00 6.228E+00 6.641E+00 6.983E+00 7.275E+00	-0.013 -0.011 -0.010 -0.008 -0.007 -0.006 -0.005 -0.004	0.027 0.025 0.024 0.023 0.022 0.020 0.019	0.007 0.006 0.005 0.004 0.004 0.003 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.588E+00 1.596E+00 1.603E+00 1.610E+00 1.615E+00 1.626E+00 1.634E+00	5.853E+01 6 6.518E+01 6 7.184E+01 7 7.850E+01 8 9.183E+01 9 1.052E+02 1	.346E+01 .012E+01 .678E+01 .345E+01 .011E+01 .346E+01 .068E+02 .202E+02	3.072E+01 3.160E+01 3.239E+01 3.311E+01 3.376E+01 3.491E+01 3.591E+01 3.680E+01	8.928E-01 9.016E-01 9.089E-01 9.151E-01 9.204E-01 9.291E-01 9.359E-01 9.415E-01	7.530E+00 7.756E+00 7.958E+00 8.142E+00 8.311E+00 8.610E+00 8.871E+00 9.101E+00	-0.004 -0.004 -0.003 -0.003 -0.003 -0.002 -0.002	0.018 0.018 0.017 0.017 0.016 0.016 0.015	0.002 0.002 0.002 0.001 0.001 0.001 0.001
1000.0000	1.649E+00	1.319E+02 1	.335E+02	3.758E+01	9.460E-01	9.308E+00	-0.002	0.015	0.001

ELECTRONS IN TUNGSTEN

I = 727.0 eV DENSITY = 1.930E+01 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(1	RAD
MeV	MeV cm²/g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	8.974E+00 7.806E+00 6.945E+00 6.281E+00 5.753E+00 4.961E+00 4.394E+00 3.966E+00	1.977E-02 2.165E-02 2.320E-02 2.450E-02 2.563E-02 2.752E-02 2.908E-02 3.042E-02	8.993E+00 7.828E+00 6.968E+00 6.306E+00 5.779E+00 4.989E+00 4.423E+00 3.996E+00	7.489E-04 1.048E-03 1.387E-03 1.765E-03 2.179E-03 3.114E-03 4.181E-03 5.372E-03	1.076E-03 1.357E-03 1.639E-03 1.920E-03 2.200E-03 2.756E-03 3.304E-03 3.846E-03	9.911E-04 1.263E-03 1.544E-03 1.834E-03 2.133E-03 2.758E-03 3.417E-03 4.109E-03	-0.362 -0.335 -0.316 -0.302 -0.290 -0.273 -0.260 -0.250	0.595 0.524 0.475 0.439 0.412 0.372 0.345 0.324	0.487 0.435 0.401 0.376 0.357 0.329 0.309 0.294
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	3.631E+00 3.360E+00 3.137E+00 2.950E+00 2.791E+00 2.533E+00 2.335E+00 2.176E+00	3.160E-02 3.267E-02 3.364E-02 3.454E-02 3.539E-02 3.694E-02 3.834E-02 3.964E-02	3.662E+00 3.393E+00 3.171E+00 2.985E+00 2.826E+00 2.570E+00 2.373E+00 2.216E+00	6.681E-03 8.101E-03 9.627E-03 1.125E-02 1.298E-02 1.669E-02 2.075E-02 2.511E-02	4.381E-03 4.908E-03 5.430E-03 5.944E-03 6.453E-03 7.453E-03 8.430E-03 9.385E-03	4.834E-03 5.591E-03 6.378E-03 7.195E-03 8.041E-03 9.817E-03 1.170E-02 1.369E-02	-0.242 -0.236 -0.230 -0.225 -0.221 -0.214 -0.208 -0.203	0.309 0.296 0.286 0.277 0.269 0.257 0.247 0.239	0.283 0.273 0.265 0.258 0.252 0.243 0.235 0.228
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.047E+00 1.808E+00 1.646E+00 1.528E+00 1.439E+00 1.315E+00 1.234E+00 1.178E+00	4.084E-02 4.355E-02 4.595E-02 4.814E-02 5.021E-02 5.414E-02 5.797E-02 6.179E-02	2.088E+00 1.852E+00 1.692E+00 1.576E+00 1.490E+00 1.370E+00 1.292E+00 1.240E+00	2.977E-02 4.253E-02 5.668E-02 7.202E-02 8.835E-02 1.235E-01 1.611E-01 2.007E-01	1.032E-02 1.257E-02 1.470E-02 1.673E-02 1.865E-02 2.226E-02 2.558E-02 2.870E-02	1.577E-02 2.139E-02 2.755E-02 3.420E-02 4.131E-02 5.677E-02 7.370E-02 9.188E-02	-0.198 -0.190 -0.183 -0.177 -0.172 -0.163 -0.156 -0.149	0.233 0.220 0.210 0.203 0.196 0.186 0.178 0.172	0.222 0.211 0.202 0.196 0.190 0.180 0.173 0.166
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.138E+00 1.108E+00 1.085E+00 1.068E+00 1.055E+00 1.036E+00 1.025E+00 1.019E+00	6.565E-02 6.956E-02 7.353E-02 7.755E-02 8.162E-02 8.993E-02 9.841E-02 1.071E-01	1.203E+00 1.177E+00 1.159E+00 1.146E+00 1.136E+00 1.126E+00 1.124E+00	2.416E-01 2.836E-01 3.265E-01 3.699E-01 4.137E-01 5.022E-01 5.911E-01 6.800E-01	3.164E-02 3.443E-02 3.712E-02 3.971E-02 4.221E-02 4.702E-02 5.161E-02 5.602E-02	1.111E-01 1.310E-01 1.515E-01 1.723E-01 1.932E-01 2.352E-01 2.768E-01 3.176E-01	-0.143 -0.138 -0.134 -0.130 -0.126 -0.120 -0.114	0.166 0.161 0.157 0.153 0.149 0.143 0.138	0.160 0.155 0.151 0.147 0.143 0.136 0.130
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.016E+00 1.016E+00 1.021E+00 1.029E+00 1.037E+00 1.055E+00 1.072E+00 1.087E+00	1.159E-01 1.387E-01 1.624E-01 1.868E-01 2.117E-01 2.630E-01 3.158E-01 3.698E-01	1.132E+00 1.154E+00 1.183E+00 1.215E+00 1.249E+00 1.318E+00 1.388E+00	7.686E-01 9.875E-01 1.201E+00 1.410E+00 1.613E+00 2.003E+00 2.372E+00 2.724E+00	6.030E-02 7.051E-02 8.022E-02 8.955E-02 9.856E-02 1.158E-01 1.321E-01	3.575E-01 4.528E-01 5.416E-01 6.242E-01 7.015E-01 8.423E-01 9.684E-01 1.083E+00	-0.106 -0.099 -0.094 -0.089 -0.086 -0.080 -0.075	0.129 0.120 0.114 0.109 0.104 0.097 0.092 0.087	0.121 0.111 0.104 0.098 0.093 0.085 0.078
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.101E+00 1.114E+00 1.126E+00 1.136E+00 1.146E+00 1.163E+00 1.178E+00	4.248E-01 4.806E-01 5.372E-01 5.945E-01 6.523E-01 7.697E-01 8.890E-01 1.010E+00	1.526E+00 1.595E+00 1.663E+00 1.731E+00 1.798E+00 1.933E+00 2.067E+00 2.201E+00	3.059E+00 3.380E+00 3.687E+00 3.981E+00 4.265E+00 4.801E+00 5.301E+00 5.770E+00	1.625E-01 1.766E-01 1.902E-01 2.032E-01 2.157E-01 2.393E-01 2.612E-01 2.816E-01	1.188E+00 1.286E+00 1.378E+00 1.463E+00 1.544E+00 1.694E+00 1.830E+00 1.955E+00	-0.068 -0.065 -0.063 -0.061 -0.059 -0.055 -0.052	0.083 0.080 0.077 0.074 0.072 0.068 0.064	0.069 0.065 0.061 0.058 0.056 0.051 0.047
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.203E+00 1.227E+00 1.247E+00 1.263E+00 1.277E+00 1.299E+00 1.316E+00 1.331E+00	1.132E+00 1.443E+00 1.759E+00 2.081E+00 2.406E+00 3.065E+00 3.735E+00 4.412E+00	2.335E+00 2.670E+00 3.006E+00 3.343E+00 3.682E+00 4.364E+00 5.051E+00 5.743E+00	6.211E+00 7.212E+00 8.094E+00 8.882E+00 9.594E+00 1.084E+01 1.190E+01 1.283E+01	3.006E-01 3.432E-01 3.800E-01 4.120E-01 4.403E-01 4.881E-01 5.270E-01 5.595E-01	2.070E+00 2.324E+00 2.544E+00 2.737E+00 2.910E+00 3.212E+00 3.471E+00 3.698E+00	-0.048 -0.043 -0.040 -0.037 -0.035 -0.031 -0.027 -0.025	0.059 0.054 0.050 0.047 0.044 0.040 0.038	0.041 0.035 0.031 0.028 0.025 0.021 0.018
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.343E+00 1.353E+00 1.362E+00 1.371E+00 1.378E+00 1.391E+00 1.401E+00	5.096E+00 5.784E+00 6.477E+00 7.174E+00 7.873E+00 9.280E+00 1.070E+01	6.439E+00 7.138E+00 7.840E+00 8.544E+00 9.251E+00 1.067E+01 1.210E+01 1.353E+01	1.365E+01 1.439E+01 1.506E+01 1.567E+01 1.623E+01 1.724E+01 1.812E+01 1.890E+01	5.871E-01 6.109E-01 6.316E-01 6.500E-01 6.662E-01 6.940E-01 7.169E-01 7.362E-01	3.901E+00 4.084E+00 4.252E+00 4.405E+00 4.548E+00 4.804E+00 5.031E+00 5.233E+00	-0.023 -0.021 -0.019 -0.018 -0.017 -0.015 -0.014	0.034 0.032 0.031 0.030 0.029 0.027 0.026 0.025	0.014 0.013 0.012 0.011 0.010 0.008 0.007
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.419E+00 1.436E+00 1.449E+00 1.460E+00 1.470E+00 1.485E+00 1.498E+00	1.355E+01 1.713E+01 2.074E+01 2.436E+01 2.798E+01 3.525E+01 4.254E+01 4.984E+01	1.496E+01 1.857E+01 2.219E+01 2.582E+01 2.945E+01 3.674E+01 4.404E+01 5.135E+01	1.960E+01 2.110E+01 2.233E+01 2.337E+01 2.428E+01 2.579E+01 2.704E+01 2.809E+01	7.526E-01 7.850E-01 8.090E-01 8.276E-01 8.425E-01 8.651E-01 8.814E-01 8.938E-01	5.417E+00 5.812E+00 6.141E+00 6.423E+00 6.670E+00 7.088E+00 7.433E+00 7.728E+00	-0.012 -0.010 -0.008 -0.007 -0.006 -0.005 -0.004	0.024 0.022 0.021 0.020 0.020 0.018 0.018 0.017	0.006 0.005 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.517E+00 1.525E+00 1.532E+00 1.538E+00 1.544E+00 1.554E+00 1.562E+00 1.570E+00	5.715E+01 6.446E+01 7.178E+01 7.911E+01 8.645E+01 1.011E+02 1.158E+02 1.305E+02	5.866E+01 6.599E+01 7.331E+01 8.065E+01 8.799E+01 1.027E+02 1.174E+02 1.321E+02	2.900E+01 2.980E+01 3.052E+01 3.117E+01 3.176E+01 3.281E+01 3.372E+01 3.453E+01	9.036E-01 9.116E-01 9.183E-01 9.239E-01 9.287E-01 9.366E-01 9.427E-01	7.984E+00 8.212E+00 8.416E+00 8.601E+00 8.770E+00 9.071E+00 9.333E+00 9.564E+00	-0.003 -0.003 -0.003 -0.003 -0.002 -0.002 -0.002 -0.002	0.016 0.016 0.016 0.015 0.015 0.015 0.014	0.002 0.001 0.001 0.001 0.001 0.001 0.001
000.0000	1.576E+00	1.452E+02	1.468E+02	3.524E+01	9.518E-01	9.771E+00	-0.001	0.014	0.001

ELECTRONS IN PLATINUM

I = 790.0 eV DENSITY = 2.145E+01 g/cm³

ENERGY		OPPING POWE RADIATIVE	R Total	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	COLL	g)/d(1	RAD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	8.646E+00 7.538E+00 6.717E+00 6.083E+00 5.577E+00 4.816E+00 4.270E+00 3.857E+00	2.017E-02 2.215E-02 2.377E-02 2.515E-02 2.635E-02 2.838E-02 3.005E-02 3.149E-02	8.666E+00 7.560E+00 6.741E+00 6.108E+00 5.603E+00 4.845E+00 4.300E+00 3.889E+00	7.943E-04 1.104E-03 1.455E-03 1.845E-03 2.273E-03 3.236E-03 4.334E-03 5.559E-03	1.144E-03 1.441E-03 1.739E-03 2.037E-03 2.334E-03 2.923E-03 3.507E-03 4.084E-03	1.084E-03 1.393E-03 1.717E-03 2.059E-03 2.418E-03 3.190E-03 4.039E-03 4.967E-03	-0.373 -0.345 -0.325 -0.310 -0.297 -0.279 -0.266 -0.256	0.665 0.579 0.520 0.476 0.444 0.397 0.365 0.341	0.520 0.460 0.421 0.393 0.371 0.340 0.319 0.303
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	3.533E+00 3.272E+00 3.056E+00 2.875E+00 2.720E+00 2.471E+00 2.277E+00 2.123E+00	3.277E-02 3.392E-02 3.497E-02 3.595E-02 3.687E-02 3.856E-02 4.008E-02 4.149E-02	3.566E+00 3.306E+00 3.091E+00 2.911E+00 2.757E+00 2.509E+00 2.317E+00 2.165E+00	6.904E-03 8.361E-03 9.927E-03 1.160E-02 1.336E-02 1.717E-02 2.132E-02 2.579E-02	4.654E-03 5.218E-03 5.775E-03 6.326E-03 6.870E-03 7.943E-03 8.992E-03 1.002E-02	5.979E-03 7.076E-03 8.259E-03 9.528E-03 1.088E-02 1.382E-02 1.702E-02 2.043E-02	-0.247 -0.240 -0.234 -0.229 -0.224 -0.216 -0.210 -0.204	0.323 0.309 0.297 0.287 0.279 0.265 0.254	0.290 0.280 0.272 0.264 0.258 0.247 0.239
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	1.998E+00 1.766E+00 1.607E+00 1.493E+00 1.406E+00 1.286E+00 1.207E+00 1.153E+00	4.279E-02 4.575E-02 4.836E-02 5.075E-02 5.300E-02 5.727E-02 6.141E-02 6.552E-02	2.040E+00 1.811E+00 1.656E+00 1.543E+00 1.459E+00 1.343E+00 1.268E+00 1.218E+00	3.055E-02 4.360E-02 5.807E-02 7.374E-02 9.042E-02 1.262E-01 1.646E-01 2.049E-01	1.102E-02 1.345E-02 1.575E-02 1.579E-02 2.002E-02 2.393E-02 2.753E-02 3.090E-02	2.399E-02 3.320E-02 4.250E-02 5.170E-02 6.076E-02 7.850E-02 9.586E-02 1.130E-01	-0.200 -0.190 -0.183 -0.177 -0.173 -0.165 -0.159 -0.153	0.238 0.224 0.213 0.205 0.198 0.188 0.180 0.174	0.225 0.213 0.204 0.197 0.191 0.181 0.174 0.168
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.114E+00 1.085E+00 1.063E+00 1.047E+00 1.035E+00 1.017E+00 1.008E+00 1.002E+00	6.965E-02 7.381E-02 7.803E-02 8.230E-02 8.662E-02 9.538E-02 1.043E-01	1.183E+00 1.159E+00 1.142E+00 1.129E+00 1.121E+00 1.113E+00 1.112E+00 1.115E+00	2.466E-01 2.893E-01 3.328E-01 3.768E-01 4.213E-01 5.109E-01 6.008E-01 6.906E-01	3.408E-02 3.711E-02 4.000E-02 4.278E-02 4.547E-02 5.062E-02 5.552E-02 6.021E-02	1.300E-01 1.468E-01 1.636E-01 1.803E-01 1.971E-01 2.304E-01 2.637E-01 2.970E-01	-0.149 -0.145 -0.141 -0.137 -0.134 -0.128 -0.123	0.169 0.164 0.160 0.156 0.153 0.147 0.142 0.138	0.162 0.158 0.154 0.150 0.147 0.141 0.135
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	9.995E-01 1.000E+00 1.007E+00 1.015E+00 1.024E+00 1.042E+00 1.059E+00	1.226E-01 1.465E-01 1.711E-01 1.964E-01 2.223E-01 2.754E-01 3.299E-01 3.857E-01	1.122E+00 1.147E+00 1.178E+00 1.211E+00 1.246E+00 1.317E+00 1.389E+00 1.460E+00	7.800E-01 1.001E+00 1.216E+00 1.425E+00 1.629E+00 2.019E+00 2.389E+00 2.740E+00	6.474E-02 7.551E-02 8.568E-02 9.541E-02 1.048E-01 1.226E-01 1.394E-01	3.300E-01 4.116E-01 4.907E-01 5.668E-01 6.395E-01 7.751E-01 8.987E-01 1.012E+00	-0.114 -0.105 -0.098 -0.093 -0.088 -0.081 -0.076	0.134 0.126 0.119 0.113 0.109 0.101 0.095 0.090	0.126 0.117 0.109 0.103 0.097 0.088 0.081 0.075
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.088E+00 1.101E+00 1.112E+00 1.123E+00 1.132E+00 1.150E+00 1.164E+00 1.177E+00	4.425E-01 5.001E-01 5.586E-01 6.177E-01 6.774E-01 7.985E-01 9.215E-01	1.531E+00 1.601E+00 1.671E+00 1.740E+00 1.810E+00 1.948E+00 2.086E+00 2.224E+00	3.074E+00 3.393E+00 3.699E+00 3.992E+00 4.274E+00 4.806E+00 5.302E+00 5.767E+00	1.705E-01 1.850E-01 1.989E-01 2.121E-01 2.248E-01 2.710E-01 2.916E-01	1.117E+00 1.214E+00 1.305E+00 1.391E+00 1.472E+00 1.622E+00 1.759E+00 1.884E+00	-0.068 -0.065 -0.063 -0.060 -0.058 -0.055 -0.052 -0.049	0.085 0.082 0.079 0.076 0.073 0.069 0.065 0.062	0.070 0.066 0.062 0.059 0.056 0.051 0.047
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.189E+00 1.213E+00 1.232E+00 1.248E+00 1.262E+00 1.284E+00 1.301E+00	1.172E+00 1.493E+00 1.819E+00 2.151E+00 2.486E+00 3.167E+00 3.858E+00 4.557E+00	2.361E+00 2.706E+00 3.051E+00 3.399E+00 3.748E+00 4.451E+00 5.160E+00 5.873E+00	6.203E+00 7.191E+00 8.061E+00 8.837E+00 9.537E+00 1.076E+01 1.180E+01 1.271E+01	3.108E-01 3.536E-01 3.905E-01 4.226E-01 4.508E-01 4.984E-01 5.371E-01 5.692E-01	2.000E+00 2.256E+00 2.477E+00 2.671E+00 2.845E+00 3.148E+00 3.407E+00 3.634E+00	-0.047 -0.043 -0.040 -0.037 -0.034 -0.031 -0.027 -0.025	0.060 0.054 0.051 0.047 0.045 0.041 0.038 0.036	0.041 0.035 0.031 0.027 0.025 0.021 0.018 0.016
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.328E+00 1.338E+00 1.347E+00 1.355E+00 1.363E+00 1.375E+00 1.386E+00 1.395E+00	5.263E+00 5.973E+00 6.689E+00 7.408E+00 8.130E+00 9.583E+00 1.104E+01 1.251E+01	6.590E+00 7.312E+00 8.036E+00 8.763E+00 9.493E+00 1.096E+01 1.243E+01 1.391E+01	1.351E+01 1.423E+01 1.489E+01 1.548E+01 1.603E+01 1.701E+01 1.787E+01 1.863E+01	5.965E-01 6.200E-01 6.405E-01 6.586E-01 6.746E-01 7.019E-01 7.244E-01 7.433E-01	3.837E+00 4.020E+00 4.187E+00 4.341E+00 4.483E+00 4.740E+00 4.966E+00 5.169E+00	-0.023 -0.021 -0.019 -0.018 -0.017 -0.015 -0.014 -0.013	0.034 0.032 0.031 0.030 0.029 0.028 0.026 0.025	0.014 0.012 0.011 0.010 0.010 0.008 0.007 0.007
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.403E+00 1.420E+00 1.433E+00 1.444E+00 1.454E+00 1.469E+00 1.482E+00	1.399E+01 1.769E+01 2.141E+01 2.515E+01 2.89E+01 3.640E+01 4.393E+01 5.146E+01	1.539E+01 1.911E+01 2.285E+01 2.659E+01 3.035E+01 3.787E+01 4.541E+01 5.295E+01	1.931E+01 2.076E+01 2.196E+01 2.297E+01 2.385E+01 2.532E+01 2.653E+01 2.755E+01	7.594E-01 7.911E-01 8.145E-01 8.327E-01 8.472E-01 8.692E-01 8.851E-01 8.972E-01	5.352E+00 5.747E+00 6.076E+00 6.357E+00 6.604E+00 7.022E+00 7.367E+00 7.662E+00	-0.012 -0.010 -0.008 -0.007 -0.006 -0.005 -0.004	0.024 0.023 0.022 0.021 0.020 0.019 0.018 0.017	0.006 0.005 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.501E+00 1.509E+00 1.515E+00 1.522E+00 1.527E+00 1.537E+00 1.546E+00 1.553E+00	5.901E+01 6.656E+01 7.412E+01 8.168E+01 8.925E+01 1.044E+02 1.196E+02	6.051E+01 6.807E+01 7.563E+01 8.320E+01 9.078E+01 1.059E+02 1.211E+02	2.843E+01 2.921E+01 2.990E+01 3.053E+01 3.111E+01 3.213E+01 3.301E+01 3.379E+01	9.067E-01 9.145E-01 9.209E-01 9.264E-01 9.310E-01 9.387E-01 9.446E-01 9.494E-01	7.918E+00 8.145E+00 8.349E+00 8.534E+00 8.704E+00 9.005E+00 9.266E+00 9.497E+00	-0.003 -0.003 -0.003 -0.003 -0.002 -0.002 -0.002	0.017 0.016 0.016 0.016 0.015 0.015 0.014	0.002 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	1.560E+00	1.499E+02	1.515E+02	3.448E+01	9.534E-01	9.705E+00	-0.001	0.014	0.001

ELECTRONS IN GOLD

I = 790.0 eV DENSITY = 1.932E+01 g/cm³

						_			
ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(la CSDA RANGE	OgI) RAD YIELD
MeV	MeV cm²/g	MeV cm²/g	MeV cm ² /g	g/cm ²		(DELIA)	2033	KANOL	11660
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	8.673E+00 7.562E+00 6.739E+00 6.103E+00 5.595E+00 4.832E+00 4.284E+00 3.870E+00	2.036E-02 2.237E-02 2.402E-02 2.543E-02 2.666E-02 2.872E-02 3.043E-02 3.190E-02	8.694E+00 7.585E+00 6.763E+00 6.128E+00 5.622E+00 4.861E+00 4.315E+00 3.902E+00	7.917E-04 1.101E-03 1.450E-03 1.839E-03 2.266E-03 3.226E-03 4.320E-03 5.541E-03	1.150E-03 1.449E-03 1.749E-03 2.050E-03 2.349E-03 2.945E-03 3.534E-03 4.117E-03	6.025E-04 7.709E-04 9.470E-04 1.131E-03 1.323E-03 1.735E-03 2.183E-03 2.673E-03	-0.373 -0.345 -0.325 -0.310 -0.298 -0.279 -0.266 -0.256	0.665 0.579 0.520 0.476 0.444 0.397 0.365 0.341	0.519 0.460 0.421 0.392 0.371 0.340 0.319 0.303
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	3.545E+00 3.283E+00 3.067E+00 2.885E+00 2.730E+00 2.480E+00 2.286E+00 2.132E+00	3.321E-02 3.439E-02 3.547E-02 3.647E-02 3.741E-02 3.914E-02 4.070E-02 4.214E-02	3.579E+00 3.318E+00 3.102E+00 2.922E+00 2.768E+00 2.519E+00 2.327E+00 2.174E+00	6.880E-03 8.333E-03 9.893E-03 1.155E-02 1.331E-02 1.711E-02 2.124E-02 2.569E-02	4.694E-03 5.264E-03 5.828E-03 6.385E-03 6.936E-03 8.022E-03 9.084E-03 1.012E-02	3.208E-03 3.791E-03 4.427E-03 5.121E-03 5.877E-03 7.597E-03 9.624E-03 1.199E-02	-0.248 -0.241 -0.235 -0.230 -0.225 -0.217 -0.211	0.324 0.309 0.298 0.288 0.279 0.266 0.255 0.246	0.291 0.280 0.272 0.265 0.258 0.248 0.239 0.232
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	2.006E+00 1.773E+00 1.614E+00 1.499E+00 1.412E+00 1.291E+00 1.212E+00 1.157E+00	4.348E-02 4.651E-02 4.920E-02 5.164E-02 5.395E-02 5.833E-02 6.256E-02 6.677E-02	2.049E+00 1.819E+00 1.663E+00 1.550E+00 1.466E+00 1.349E+00 1.274E+00 1.224E+00	3.044E-02 4.343E-02 5.784E-02 7.343E-02 9.004E-02 1.257E-01 1.639E-01 2.040E-01	1.114E-02 1.360E-02 1.593E-02 1.815E-02 2.027E-02 2.423E-02 2.789E-02 3.132E-02	1.471E-02 2.288E-02 3.231E-02 4.212E-02 5.187E-02 7.074E-02 8.883E-02 1.063E-01	-0.200 -0.189 -0.181 -0.174 -0.169 -0.161 -0.155	0.239 0.224 0.213 0.204 0.197 0.186 0.178 0.171	0.226 0.213 0.203 0.196 0.189 0.179 0.171 0.165
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.118E+00 1.089E+00 1.067E+00 1.051E+00 1.038E+00 1.021E+00 1.011E+00 1.006E+00	7.099E-02 7.524E-02 7.954E-02 8.389E-02 8.828E-02 9.720E-02 1.063E-01	1.189E+00 1.164E+00 1.147E+00 1.135E+00 1.127E+00 1.119E+00 1.118E+00 1.122E+00	2.455E-01 2.880E-01 3.313E-01 3.751E-01 4.194E-01 5.085E-01 5.980E-01 6.873E-01	3.455E-02 3.762E-02 4.056E-02 4.338E-02 4.612E-02 5.134E-02 5.630E-02 6.105E-02	1.234E-01 1.401E-01 1.566E-01 1.729E-01 1.891E-01 2.209E-01 2.524E-01 2.835E-01	-0.145 -0.142 -0.138 -0.135 -0.132 -0.126 -0.122	0.166 0.161 0.157 0.154 0.150 0.145 0.145	0.160 0.155 0.151 0.147 0.144 0.138 0.133
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.004E+00 1.005E+00 1.011E+00 1.020E+00 1.029E+00 1.048E+00 1.065E+00 1.080E+00	1.249E-01 1.491E-01 1.741E-01 1.998E-01 2.260E-01 2.799E-01 3.352E-01 3.917E-01	1.129E+00 1.154E+00 1.186E+00 1.220E+00 1.255E+00 1.327E+00 1.400E+00 1.472E+00	7.762E-01 9.954E-01 1.209E+00 1.417E+00 1.619E+00 2.006E+00 2.373E+00 2.721E+00	6.563E-02 7.651E-02 8.678E-02 9.658E-02 1.060E-01 1.239E-01 1.408E-01	3.143E-01 3.903E-01 4.643E-01 5.361E-01 6.052E-01 7.354E-01 8.551E-01 9.655E-01	-0.113 -0.105 -0.098 -0.092 -0.088 -0.081 -0.075	0.132 0.124 0.118 0.112 0.107 0.100 0.094 0.089	0.124 0.115 0.108 0.101 0.096 0.087 0.080 0.074
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.095E+00 1.107E+00 1.119E+00 1.130E+00 1.139E+00 1.157E+00 1.172E+00 1.185E+00	4.492E-01 5.077E-01 5.668E-01 6.267E-01 6.872E-01 8.098E-01 9.343E-01 1.061E+00	1.544E+00 1.615E+00 1.686E+00 1.756E+00 1.827E+00 1.967E+00 2.106E+00 2.245E+00	3.053E+00 3.370E+00 3.673E+00 3.963E+00 4.242E+00 4.770E+00 5.261E+00 5.721E+00	1.721E-01 1.866E-01 2.005E-01 2.138E-01 2.265E-01 2.505E-01 2.727E-01 2.933E-01	1.068E+00 1.163E+00 1.253E+00 1.337E+00 1.417E+00 1.565E+00 1.699E+00 1.823E+00	-0.067 -0.064 -0.062 -0.059 -0.057 -0.054 -0.051	0.084 0.081 0.078 0.075 0.072 0.068 0.065 0.062	0.069 0.065 0.061 0.058 0.055 0.050 0.046
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.196E+00 1.221E+00 1.240E+00 1.256E+00 1.270E+00 1.292E+00 1.310E+00 1.325E+00	1.188E+00 1.513E+00 1.843E+00 2.179E+00 2.518E+00 3.207E+00 4.615E+00	2.385E+00 2.733E+00 3.083E+00 3.435E+00 4.500E+00 5.217E+00 5.939E+00	6.153E+00 7.132E+00 7.992E+00 8.760E+00 9.453E+00 1.066E+01 1.169E+01	3.125E-01 3.554E-01 3.922E-01 4.243E-01 4.525E-01 5.000E-01 5.386E-01 5.707E-01	1.937E+00 2.191E+00 2.409E+00 2.602E+00 2.775E+00 3.075E+00 3.331E+00 3.556E+00	-0.046 -0.042 -0.039 -0.036 -0.034 -0.030 -0.027	0.059 0.054 0.050 0.047 0.044 0.040 0.037 0.035	0.040 0.034 0.030 0.027 0.024 0.020 0.018 0.015
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.337E+00 1.347E+00 1.356E+00 1.367E+00 1.372E+00 1.385E+00 1.395E+00	5.329E+00 6.049E+00 6.772E+00 7.500E+00 8.232E+00 9.702E+00 1.118E+01 1.267E+01	6.666E+00 7.396E+00 8.129E+00 8.865E+00 9.604E+00 1.109E+01 1.258E+01	1.339E+01 1.410E+01 1.474E+01 1.533E+01 1.587E+01 1.684E+01 1.769E+01 1.844E+01	5.979E-01 6.214E-01 6.418E-01 6.598E-01 6.758E-01 7.031E-01 7.255E-01 7.443E-01	3.757E+00 3.939E+00 4.105E+00 4.257E+00 4.399E+00 4.653E+00 5.080E+00	-0.022 -0.021 -0.019 -0.018 -0.017 -0.015 -0.014	0.033 0.032 0.031 0.030 0.029 0.027 0.026 0.025	0.014 0.012 0.011 0.010 0.009 0.008 0.007 0.006
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	1.413E+00 1.430E+00 1.443E+00 1.455E+00 1.464E+00 1.480E+00 1.492E+00	1.416E+01 1.791E+01 2.168E+01 2.546E+01 2.925E+01 3.685E+01 4.447E+01 5.210E+01	1.557E+01 1.934E+01 2.312E+01 2.692E+01 3.072E+01 3.833E+01 4.596E+01 5.360E+01	1.911E+01 2.055E+01 2.173E+01 2.273E+01 2.360E+01 2.506E+01 2.625E+01 2.725E+01	7.603E-01 7.919E-01 8.153E-01 8.334E-01 8.479E-01 8.697E-01 8.856E-01 8.976E-01	5.262E+00 5.656E+00 5.983E+00 6.264E+00 6.510E+00 7.271E+00 7.564E+00	-0.012 -0.010 -0.008 -0.007 -0.007 -0.005 -0.004	0.024 0.023 0.021 0.020 0.020 0.019 0.018 0.017	0.006 0.005 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.511E+00 1.519E+00 1.526E+00 1.532E+00 1.538E+00 1.548E+00 1.557E+00 1.564E+00	5.974E+01 6.739E+01 7.504E+01 8.270E+01 9.036E+01 1.057E+02 1.210E+02	6.125E+01 6.891E+01 7.656E+01 8.423E+01 9.190E+01 1.072E+02 1.226E+02	2.812E+01 2.889E+01 2.958E+01 3.020E+01 3.077E+01 3.178E+01 3.265E+01 3.342E+01	9.071E-01 9.148E-01 9.213E-01 9.267E-01 9.313E-01 9.389E-01 9.449E-01 9.497E-01	7.820E+00 8.047E+00 8.251E+00 8.436E+00 8.605E+00 8.905E+00 9.167E+00 9.398E+00	-0.003 -0.003 -0.003 -0.003 -0.002 -0.002 -0.002	0.017 0.016 0.016 0.015 0.015 0.015 0.014	0.002 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	1.571E+00	1.518E+02	1.533E+02	3.410E+01	9.536E- 0 1	9.605 E+00	-0.001	0.014	0.001

ELECTRONS IN LEAD

I = 823.0 eV DENSITY = 1.135E+01 g/cm³

ENERGY	COLLISION	OPPING POWE	R Total	CSDA RANGE	RADIATION YIELD	DENS.EFF.	d(lo	g)/d(le CSDA	ogI) RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm²/g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	8.428E+00 7.357E+00 6.561E+00 5.946E+00 5.453E+00 4.714E+00 4.182E+00 3.779E+00	2.045E-02 2.251E-02 2.421E-02 2.566E-02 2.693E-02 2.908E-02 3.086E-02 3.240E-02	8.448E+00 7.379E+00 6.585E+00 5.971E+00 5.480E+00 4.743E+00 4.213E+00 3.812E+00	8.253E-04 1.143E-03 1.502E-03 1.901E-03 2.339E-03 3.323E-03 4.444E-03 5.694E-03	1.191E-03 1.500E-03 1.810E-03 2.121E-03 2.432E-03 3.051E-03 3.664E-03 4.271E-03	4.841E-04 6.147E-04 7.491E-04 8.872E-04 1.029E-03 1.324E-03 1.633E-03 1.956E-03	-0.379 -0.350 -0.329 -0.314 -0.301 -0.283 -0.269 -0.259	0.713 0.615 0.549 0.501 0.464 0.413 0.378 0.352	0.539 0.475 0.432 0.402 0.379 0.347 0.324 0.308
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	3.463E+00 3.208E+00 2.997E+00 2.821E+00 2.670E+00 2.426E+00 2.237E+00 2.087E+00	3.376E-02 3.500E-02 3.613E-02 3.718E-02 3.817E-02 3.998E-02 4.162E-02 4.313E-02	3.497E+00 3.243E+00 3.034E+00 2.858E+00 2.708E+00 2.466E+00 2.279E+00 2.130E+00	7.066E-03 8.552E-03 1.015E-02 1.185E-02 1.365E-02 1.752E-02 2.175E-02 2.629E-02	4.872E-03 5.467E-03 6.055E-03 6.638E-03 7.214E-03 8.349E-03 9.461E-03 1.055E-02	2.294E-03 2.646E-03 3.011E-03 3.390E-03 3.783E-03 4.608E-03 5.485E-03 6.413E-03	-0.250 -0.243 -0.238 -0.232 -0.228 -0.220 -0.214 -0.209	0.333 0.317 0.305 0.294 0.285 0.271 0.260 0.251	0.295 0.284 0.276 0.268 0.262 0.251 0.242 0.235
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	1.964E+00 1.738E+00 1.583E+00 1.471E+00 1.387E+00 1.269E+00 1.193E+00 1.140E+00	4.454E-02 4.772E-02 5.054E-02 5.312E-02 5.555E-02 6.015E-02 6.460E-02 6.900E-02	2.008E+00 1.785E+00 1.633E+00 1.524E+00 1.442E+00 1.329E+00 1.257E+00 1.209E+00	3.113E-02 4.438E-02 5.905E-02 7.492E-02 9.180E-02 1.280E-01 1.668E-01 2.074E-01	1.162E-02 1.419E-02 1.664E-02 1.896E-02 2.118E-02 2.533E-02 2.917E-02 3.276E-02	7.392E-03 1.005E-02 1.300E-02 1.623E-02 1.971E-02 2.736E-02 3.579E-02 4.484E-02	-0.205 -0.196 -0.189 -0.183 -0.178 -0.170 -0.163 -0.157	0.243 0.229 0.218 0.210 0.203 0.193 0.185 0.178	0.229 0.217 0.208 0.201 0.195 0.186 0.178
0.4000 0.4500 0.5500 0.5500 0.6000 0.7000 0.8000 0.9000	1.102E+00 1.074E+00 1.053E+00 1.037E+00 1.026E+00 1.009E+00 1.000E+00 9.957E-01	7.340E-02 7.781E-02 8.228E-02 8.677E-02 9.132E-02 1.005E-01 1.098E-01	1.175E+00 1.152E+00 1.135E+00 1.124E+00 1.117E+00 1.110E+00 1.110E+00	2.494E-01 2.924E-01 3.361E-01 3.804E-01 4.250E-01 5.149E-01 6.050E-01 6.949E-01	3.614E-02 3.935E-02 4.241E-02 4.536E-02 4.820E-02 5.363E-02 5.877E-02 6.369E-02	5.437E-02 6.426E-02 7.442E-02 8.479E-02 9.529E-02 1.166E-01 1.380E-01	-0.153 -0.148 -0.144 -0.141 -0.138 -0.132 -0.128	0.173 0.168 0.164 0.160 0.157 0.151 0.146	0.166 0.162 0.157 0.154 0.150 0.144 0.139 0.134
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	9.939E-01 9.966E-01 1.004E+00 1.014E+00 1.024E+00 1.064E+00 1.063E+00	1.290E-01 1.537E-01 1.792E-01 2.053E-01 2.319E-01 2.866E-01 3.427E-01 3.999E-01	1.123E+00 1.150E+00 1.183E+00 1.219E+00 1.256E+00 1.331E+00 1.406E+00 1.480E+00	7.843E-01 1.004E+00 1.219E+00 1.427E+00 1.629E+00 2.016E+00 2.381E+00 2.728E+00	6.842E-02 7.960E-02 9.009E-02 1.001E-01 1.096E-01 1.277E-01 1.447E-01	1.809E-01 2.337E-01 2.854E-01 3.360E-01 3.855E-01 4.817E-01 5.743E-01 6.631E-01	-0.120 -0.113 -0.107 -0.102 -0.097 -0.089 -0.083 -0.078	0.138 0.130 0.124 0.118 0.114 0.106 0.100	0.130 0.121 0.114 0.108 0.103 0.094 0.086 0.080
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.095E+00 1.108E+00 1.120E+00 1.132E+00 1.142E+00 1.160E+00 1.175E+00 1.189E+00	4.582E-01 5.174E-01 5.773E-01 6.379E-01 6.991E-01 8.233E-01 9.495E-01	1.553E+00 1.626E+00 1.698E+00 1.769E+00 1.841E+00 1.983E+00 2.125E+00 2.266E+00	3.057E+00 3.372E+00 3.673E+00 3.962E+00 4.239E+00 4.762E+00 5.249E+00 5.705E+00	1.761E-01 1.906E-01 2.045E-01 2.177E-01 2.304E-01 2.543E-01 2.765E-01 2.970E-01	7.479E-01 8.289E-01 9.061E-01 9.798E-01 1.050E+00 1.182E+00 1.304E+00	-0.073 -0.070 -0.067 -0.064 -0.061 -0.057 -0.054 -0.051	0.091 0.087 0.083 0.080 0.078 0.073 0.069 0.066	0.075 0.070 0.066 0.063 0.060 0.054 0.050 0.046
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.201E+00 1.226E+00 1.246E+00 1.262E+00 1.277E+00 1.299E+00 1.318E+00 1.332E+00	1.206E+00 1.535E+00 1.870E+00 2.210E+00 2.554E+00 3.252E+00 3.961E+00 4.678E+00	2.407E+00 2.761E+00 3.116E+00 3.472E+00 3.830E+00 4.551E+00 5.278E+00 6.011E+00	6.133E+00 7.102E+00 7.954E+00 8.713E+00 9.399E+00 1.059E+01 1.161E+01 1.250E+01	3.162E-01 3.589E-01 3.955E-01 4.274E-01 4.555E-01 5.028E-01 5.412E-01 5.731E-01	1.523E+00 1.759E+00 1.964E+00 2.147E+00 2.310E+00 2.596E+00 2.841E+00 3.055E+00	-0.049 -0.044 -0.041 -0.038 -0.036 -0.032 -0.029	0.063 0.058 0.053 0.050 0.047 0.043 0.040	0.043 0.037 0.032 0.029 0.026 0.022 0.019 0.016
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.345E+00 1.356E+00 1.365E+00 1.374E+00 1.381E+00 1.395E+00 1.406E+00	5.402E+00 6.132E+00 6.865E+00 7.603E+00 8.345E+00 9.836E+00 1.134E+01 1.284E+01	6.747E+00 7.488E+00 8.231E+00 8.977E+00 9.726E+00 1.123E+01 1.274E+01	1.329E+01 1.399E+01 1.463E+01 1.521E+01 1.574E+01 1.670E+01 1.753E+01 1.828E+01	6.002E-01 6.235E-01 6.439E-01 6.618E-01 6.777E-01 7.048E-01 7.270E-01 7.457E-01	3.247E+00 3.420E+00 3.579E+00 3.725E+00 3.861E+00 4.107E+00 4.326E+00 4.521E+00	-0.025 -0.023 -0.021 -0.020 -0.019 -0.017 -0.015 -0.014	0.036 0.034 0.033 0.032 0.031 0.029 0.028 0.027	0.015 0.013 0.012 0.011 0.010 0.009 0.008 0.007
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.423E+00 1.441E+00 1.455E+00 1.466E+00 1.476E+00 1.491E+00 1.504E+00	1.436E+01 1.816E+01 2.198E+01 2.582E+01 2.966E+01 3.737E+01 4.509E+01 5.283E+01	1.578E+01 1.960E+01 2.344E+01 2.729E+01 3.114E+01 4.660E+01 5.435E+01	1.894E+01 2.036E+01 2.153E+01 2.251E+01 2.337E+01 2.480E+01 2.598E+01 2.697E+01	7.617E-01 7.931E-01 8.164E-01 8.343E-01 8.488E-01 8.705E-01 8.862E-01 8.982E-01	4.699E+00 5.083E+00 5.404E+00 5.679E+00 5.921E+00 6.330E+00 6.670E+00 6.960E+00	-0.013 -0.011 -0.010 -0.009 -0.008 -0.006 -0.005	0.026 0.024 0.023 0.022 0.021 0.020 0.019 0.018	0.006 0.005 0.004 0.004 0.003 0.003 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	1.523E+00 1.531E+00 1.538E+00 1.544E+00 1.550E+00 1.560E+00 1.568E+00	6.058E+01 6.833E+01 7.609E+01 8.386E+01 9.163E+01 1.072E+02 1.227E+02	6.210E+01 6.986E+01 7.763E+01 8.540E+01 9.318E+01 1.087E+02 1.243E+02 1.399E+02	2.783E+01 2.859E+01 2.927E+01 2.988E+01 3.044E+01 3.143E+01 3.229E+01 3.305E+01	9.077E-01 9.153E-01 9.217E-01 9.271E-01 9.317E-01 9.393E-01 9.452E-01 9.500E-01	7.213E+00 7.438E+00 7.640E+00 7.824E+00 7.92E+00 8.290E+00 8.550E+00 8.780E+00	-0.004 -0.004 -0.003 -0.003 -0.003 -0.002 -0.002	0.018 0.017 0.017 0.017 0.016 0.016 0.015	0.002 0.001 0.001 0.001 0.001 0.001 0.001
000.000	1.583E+00	1.539E+02	1.555E+02	3.373E+01	9.539E-01	8.986E+00	-0.002	0.015	0.001

ELECTRONS IN URANIUM

I = 890.0 eV DENSITY = 1.895E+01 g/cm³

	ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(10 CSDA RANGE	ogI) RAD YIELD
	MeV	MeV cm²/g	MeV cm ² /g	MeV cm²/g	g/cm²					
	0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	7.984E+00 6.986E+00 6.241E+00 5.662E+00 5.198E+00 4.499E+00 3.995E+00 3.613E+00	2.101E-02 2.327E-02 2.516E-02 2.679E-02 2.822E-02 3.067E-02 3.273E-02 3.452E-02	8.005E+00 7.009E+00 6.266E+00 5.688E+00 5.226E+00 4.530E+00 4.028E+00 3.648E+00	8.979E-04 1.233E-03 1.611E-03 2.030E-03 2.489E-03 3.520E-03 4.694E-03 6.000E-03	1.292E-03 1.628E-03 1.968E-03 2.310E-03 2.653E-03 3.340E-03 4.025E-03 4.707E-03	1.810E-03 2.324E-03 2.863E-03 3.423E-03 4.006E-03 5.231E-03 6.526E-03 7.882E-03	-0.391 -0.360 -0.338 -0.321 -0.308 -0.289 -0.274 -0.263	0.848 0.719 0.631 0.569 0.521 0.455 0.411 0.380	0.589 0.510 0.459 0.424 0.397 0.360 0.335 0.317
	0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	3.313E+00 3.070E+00 2.870E+00 2.701E+00 2.557E+00 2.325E+00 2.144E+00 2.001E+00	3.612E-02 3.756E-02 3.888E-02 4.011E-02 4.127E-02 4.339E-02 4.531E-02 4.709E-02	3.349E+00 3.108E+00 2.909E+00 2.741E+00 2.598E+00 2.368E+00 2.190E+00 2.048E+00	7.433E-03 8.984E-03 1.065E-02 1.242E-02 1.429E-02 1.833E-02 2.273E-02 2.746E-02	5.384E-03 6.056E-03 6.724E-03 7.385E-03 8.041E-03 9.337E-03 1.061E-02 1.186E-02	9.289E-03 1.074E-02 1.222E-02 1.372E-02 1.525E-02 1.834E-02 2.147E-02 2.462E-02	-0.254 -0.247 -0.241 -0.235 -0.231 -0.223 -0.216	0.356 0.337 0.322 0.310 0.299 0.282 0.269 0.259	0.302 0.291 0.281 0.273 0.266 0.255 0.246 0.238
	0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	1.833E+00 1.666E+00 1.518E+00 1.411E+00 1.330E+00 1.218E+00 1.144E+00 1.093E+00	4.875E-02 5.249E-02 5.585E-02 5.894E-02 6.184E-02 6.735E-02 7.263E-02 7.781E-02	1.932E+00 1.719E+00 1.574E+00 1.470E+00 1.392E+00 1.285E+00 1.217E+00 1.171E+00	3.249E-02 4.626E-02 6.149E-02 7.795E-02 9.544E-02 1.329E-01 1.730E-01 2.149E-01	1.308E-02 1.605E-02 1.888E-02 2.159E-02 2.417E-02 2.903E-02 3.355E-02 3.777E-02	2.776E-02 3.560E-02 4.336E-02 5.103E-02 5.860E-02 7.344E-02 8.794E-02 1.021E-01	-0.206 -0.196 -0.189 -0.183 -0.178 -0.170 -0.164 -0.158	0.250 0.234 0.222 0.213 0.206 0.194 0.186 0.179	0.232 0.219 0.209 0.202 0.195 0.185 0.178
	0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.057E+00 1.031E+00 1.011E+00 9.956E-01 9.842E-01 9.690E-01 9.604E-01 9.560E-01	8.294E-02 8.805E-02 9.316E-02 9.828E-02 1.034E-01 1.137E-01 1.241E-01	1.140E+00 1.119E+00 1.104E+00 1.094E+00 1.088E+00 1.083E+00 1.084E+00	2.582E-01 3.025E-01 3.475E-01 3.931E-01 4.389E-01 5.311E-01 6.234E-01 7.154E-01	4.175E-02 4.553E-02 4.913E-02 5.259E-02 5.591E-02 6.223E-02 6.817E-02 7.382E-02	1.160E-01 1.296E-01 1.430E-01 1.561E-01 1.691E-01 1.945E-01 2.192E-01 2.434E-01	-0.154 -0.150 -0.146 -0.143 -0.140 -0.135 -0.130 -0.127	0.173 0.168 0.164 0.160 0.157 0.151 0.146	0.166 0.161 0.157 0.153 0.150 0.144 0.138 0.134
	1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	9.544E-01 9.572E-01 9.649E-01 9.744E-01 9.844E-01 1.004E+00 1.022E+00	1.452E-01 1.721E-01 1.995E-01 2.275E-01 2.559E-01 3.139E-01 3.732E-01 4.338E-01	1.100E+00 1.129E+00 1.164E+00 1.202E+00 1.240E+00 1.318E+00 1.396E+00 1.473E+00	8.068E-01 1.031E+00 1.249E+00 1.461E+00 1.665E+00 2.056E+00 2.425E+00 2.774E+00	7.921E-02 9.184E-02 1.035E-01 1.145E-01 1.249E-01 1.444E-01 1.625E-01 1.795E-01	2.672E-01 3.246E-01 3.799E-01 4.332E-01 4.847E-01 5.832E-01 6.762E-01 7.645E-01	-0.123 -0.116 -0.110 -0.104 -0.100 -0.092 -0.086 -0.081	0.138 0.130 0.124 0.119 0.114 0.107 0.101 0.096	0.130 0.121 0.114 0.108 0.103 0.094 0.087
	4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.054E+00 1.067E+00 1.079E+00 1.090E+00 1.100E+00 1.117E+00 1.132E+00 1.145E+00	4.955E-01 5.580E-01 6.214E-01 6.856E-01 7.504E-01 8.818E-01 1.015E+00	1.549E+00 1.625E+00 1.700E+00 1.775E+00 1.850E+00 1.999E+00 2.147E+00 2.296E+00	3.105E+00 3.420E+00 3.721E+00 4.008E+00 4.284E+00 4.804E+00 5.287E+00 5.737E+00	1.955E-01 2.106E-01 2.250E-01 2.387E-01 2.518E-01 2.764E-01 2.990E-01 3.199E-01	8.488E-01 9.294E-01 1.007E+00 1.081E+00 1.152E+00 1.287E+00 1.412E+00 1.529E+00	-0.076 -0.073 -0.069 -0.066 -0.063 -0.058 -0.054	0.091 0.087 0.084 0.081 0.078 0.074 0.070	0.076 0.071 0.067 0.064 0.060 0.055 0.050
	10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.157E+00 1.180E+00 1.199E+00 1.215E+00 1.228E+00 1.250E+00 1.266E+00 1.280E+00	1.288E+00 1.636E+00 1.991E+00 2.352E+00 2.717E+00 3.457E+00 4.208E+00 4.967E+00	2.444E+00 2.816E+00 3.191E+00 3.567E+00 3.945E+00 4.706E+00 5.474E+00 6.248E+00	6.159E+00 7.111E+00 7.945E+00 8.685E+00 9.352E+00 1.051E+01 1.149E+01 1.235E+01	3.394E-01 3.825E-01 4.193E-01 4.511E-01 4.790E-01 5.258E-01 5.636E-01 5.948E-01	1.639E+00 1.886E+00 2.102E+00 2.294E+00 2.467E+00 2.768E+00 3.026E+00 3.252E+00	-0.048 -0.043 -0.039 -0.036 -0.034 -0.030 -0.027 -0.024	0.063 0.058 0.053 0.050 0.047 0.043 0.040	0.043 0.036 0.032 0.028 0.025 0.021 0.018 0.015
	40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.292E+00 1.302E+00 1.311E+00 1.319E+00 1.326E+00 1.338E+00 1.349E+00 1.357E+00	5.733E+00 6.505E+00 7.282E+00 8.063E+00 8.847E+00 1.043E+01 1.201E+01	7.025E+00 7.807E+00 8.593E+00 9.382E+00 1.017E+01 1.176E+01 1.336E+01 1.497E+01	1.310E+01 1.378E+01 1.439E+01 1.495E+01 1.546E+01 1.637E+01 1.717E+01	6.212E-01 6.438E-01 6.635E-01 6.808E-01 6.961E-01 7.221E-01 7.435E-01 7.614E-01	3.453E+00 3.635E+00 3.802E+00 3.954E+00 4.096E+00 4.351E+00 4.577E+00 4.779E+00	-0.022 -0.021 -0.019 -0.018 -0.017 -0.015 -0.013	0.036 0.034 0.033 0.032 0.031 0.029 0.028 0.027	0.014 0.012 0.011 0.010 0.009 0.008 0.007 0.006
1 1 2 2 3	00.0000 25.0000 50.0000 75.0000 200.0000 250.0000 350.0000	1.365E+00 1.382E+00 1.395E+00 1.405E+00 1.414E+00 1.429E+00 1.441E+00 1.451E+00	1.521E+01 1.924E+01 2.329E+01 2.736E+01 3.144E+01 3.962E+01 4.782E+01 5.604E+01	1.658E+01 2.062E+01 2.469E+01 2.877E+01 3.286E+01 4.105E+01 4.926E+01 5.749E+01	1.851E+01 1.986E+01 2.096E+01 2.190E+01 2.271E+01 2.407E+01 2.518E+01 2.612E+01	7.766E-01 8.064E-01 8.285E-01 8.455E-01 8.591E-01 8.795E-01 8.943E-01 9.055E-01	4.962E+00 5.357E+00 5.685E+00 5.966E+00 6.213E+00 6.30E+00 6.975E+00 7.268E+00	-0.011 -0.010 -0.008 -0.007 -0.006 -0.005 -0.004	0.026 0.024 0.023 0.022 0.021 0.020 0.019	0.006 0.005 0.004 0.003 0.003 0.002 0.002
678	00.0000 50.0000 50.0000 50.0000 50.0000 700.0000 700.0000	1.460E+00 1.467E+00 1.474E+00 1.480E+00 1.486E+00 1.495E+00 1.503E+00 1.511E+00	6.426E+01 7.250E+01 8.074E+01 8.899E+01 9.724E+01 1.137E+02 1.303E+02	6.572E+01 7.397E+01 8.221E+01 9.047E+01 9.872E+01 1.152E+02 1.318E+02 1.483E+02	2.693E+01 2.765E+01 2.829E+01 2.887E+01 2.940E+01 3.034E+01 3.115E+01 3.186E+01	9.144E-01 9.215E-01 9.275E-01 9.325E-01 9.369E-01 9.439E-01 9.494E-01 9.538E-01	7.525E+00 7.752E+00 7.956E+00 8.141E+00 8.310E+00 8.611E+00 8.872E+00 9.103E+00	-0.003 -0.003 -0.003 -0.002 -0.002 -0.002 -0.002	0.018 0.017 0.017 0.017 0.016 0.016 0.016	0.001 0.001 0.001 0.001 0.001 0.001 0.001
10	00.000	1.517E+00	1.633E+02	1.648E+02	3.250E+01	9.575E-01	9.310E+00	-0.001	0.015	0.001

ELECTRONS IN A-150 TISSUE-EQUIVALENT PLASTIC

I = 65.1 eV DENSITY = 1.127E+00 g/cm³

ENERGY		OPPING POWER	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(l	RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm ² /g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.294E+01 1.927E+01 1.671E+01 1.482E+01 1.335E+01 1.124E+01 9.769E+00 8.691E+00	3.156E-03 3.174E-03 3.188E-03 3.197E-03 3.205E-03 3.219E-03 3.232E-03 3.245E-03	2.295E+01 1.927E+01 1.671E+01 1.482E+01 1.336E+01 1.124E+01 9.772E+00 8.694E+00	2.463E-04 3.657E-04 5.054E-04 6.646E-04 8.426E-04 1.253E-03 1.731E-03 2.275E-03	7.529E-05 9.048E-05 1.050E-04 1.191E-04 1.327E-04 1.588E-04 1.838E-04 2.079E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.193 -0.186 -0.180 -0.175 -0.171 -0.165 -0.160 -0.156	0.220 0.210 0.202 0.196 0.191 0.183 0.178 0.173	0.219 0.209 0.201 0.195 0.190 0.183 0.177 0.173
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.863E+00 7.206E+00 6.671E+00 6.228E+00 5.853E+00 5.256E+00 4.800E+00 4.441E+00	3.258E-03 3.273E-03 3.287E-03 3.302E-03 3.319E-03 3.352E-03 3.388E-03 3.427E-03	7.866E+00 7.209E+00 6.675E+00 6.231E+00 5.857E+00 5.259E+00 4.803E+00 4.444E+00	2.880E-03 3.545E-03 4.267E-03 5.043E-03 5.871E-03 7.677E-03 9.669E-03 1.184E-02	2.311E-04 2.537E-04 2.756E-04 2.971E-04 3.180E-04 3.586E-04 3.977E-04 4.356E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.153 -0.151 -0.148 -0.147 -0.145 -0.142 -0.139 -0.137	0.169 0.166 0.163 0.161 0.159 0.155 0.152 0.149	0.169 0.166 0.163 0.160 0.158 0.155 0.152 0.149
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.150E+00 3.620E+00 3.262E+00 3.005E+00 2.812E+00 2.544E+00 2.369E+00 2.247E+00	3.467E-03 3.578E-03 3.697E-03 3.824E-03 3.959E-03 4.247E-03 4.563E-03 4.901E-03	4.153E+00 3.623E+00 3.265E+00 3.009E+00 2.816E+00 2.548E+00 2.373E+00 2.252E+00	1.417E-02 2.064E-02 2.792E-02 3.592E-02 4.452E-02 6.325E-02 8.362E-02 1.053E-01	4.723E-04 5.602E-04 6.436E-04 7.234E-04 8.003E-04 9.476E-04 1.089E-03 1.226E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.135 -0.132 -0.129 -0.126 -0.124 -0.121 -0.118 -0.106	0.147 0.143 0.139 0.137 0.134 0.131 0.128 0.125	0.147 0.142 0.139 0.136 0.134 0.130 0.127
0.4000 0.4500 0.5500 0.5500 0.6000 0.7000 0.8000 0.9000	2.156E+00 2.086E+00 2.033E+00 1.991E+00 1.957E+00 1.908E+00 1.874E+00 1.851E+00	5.260E-03 5.639E-03 6.036E-03 6.448E-03 6.875E-03 7.768E-03 8.706E-03 9.687E-03	2.161E+00 2.092E+00 2.039E+00 1.997E+00 1.964E+00 1.915E+00 1.883E+00 1.860E+00	1.280E-01 1.515E-01 1.757E-01 2.005E-01 2.258E-01 2.774E-01 3.300E-01 3.835E-01	1.361E-03 1.495E-03 1.628E-03 1.761E-03 1.895E-03 2.164E-03 2.436E-03 2.711E-03	2.969E-02 6.264E-02 9.751E-02 1.337E-01 1.708E-01 2.464E-01 3.223E-01 3.975E-01	-0.088 -0.082 -0.077 -0.072 -0.068 -0.061 -0.056 -0.052	0.120 0.114 0.109 0.105 0.101 0.094 0.089 0.084	0.118 0.111 0.106 0.101 0.096 0.088 0.082 0.076
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.834E+00 1.812E+00 1.803E+00 1.802E+00 1.804E+00 1.814E+00 1.827E+00 1.839E+00	1.071E-02 1.341E-02 1.630E-02 1.934E-02 2.252E-02 2.920E-02 3.625E-02 4.358E-02	1.845E+00 1.825E+00 1.819E+00 1.821E+00 1.827E+00 1.843E+00 1.863E+00 1.883E+00	4.375E-01 5.739E-01 7.111E-01 8.485E-01 9.856E-01 1.258E+00 1.528E+00	2.990E-03 3.706E-03 4.447E-03 5.209E-03 7.609E-03 9.281E-03 1.100E-02	4.712E-01 6.472E-01 8.100E-01 9.601E-01 1.099E+00 1.346E+00 1.561E+00	-0.049 -0.043 -0.039 -0.036 -0.034 -0.031 -0.029 -0.028	0.080 0.072 0.066 0.061 0.057 0.052 0.048 0.045	0.071 0.062 0.056 0.051 0.047 0.041 0.038 0.035
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.852E+00 1.863E+00 1.874E+00 1.884E+00 1.9911E+00 1.926E+00 1.939E+00	5.116E-02 5.896E-02 6.695E-02 7.511E-02 8.341E-02 1.004E-01 1.179E-01	1.903E+00 1.922E+00 1.941E+00 1.959E+00 1.977E+00 2.011E+00 2.044E+00 2.075E+00	2.059E+00 2.320E+00 2.579E+00 2.836E+00 3.090E+00 3.591E+00 4.084E+00 4.570E+00	1.275E-02 1.453E-02 1.633E-02 1.816E-02 2.000E-02 2.372E-02 2.748E-02 3.127E-02	1.922E+00 2.077E+00 2.218E+00 2.349E+00 2.470E+00 2.691E+00 2.887E+00 3.064E+00	-0.026 -0.025 -0.024 -0.024 -0.023 -0.021 -0.020 -0.018	0.043 0.041 0.039 0.038 0.036 0.034 0.032	0.033 0.031 0.030 0.029 0.027 0.026 0.024 0.023
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.951E+00 1.975E+00 1.995E+00 2.010E+00 2.024E+00 2.046E+00 2.063E+00 2.077E+00	1.540E-01 2.007E-01 2.488E-01 2.979E-01 3.478E-01 4.496E-01 5.532E-01 6.582E-01	2.105E+00 2.176E+00 2.243E+00 2.308E+00 2.372E+00 2.495E+00 2.616E+00 2.735E+00	5.048E+00 6.216E+00 7.348E+00 8.446E+00 9.515E+00 1.157E+01 1.353E+01	3.508E-02 4.461E-02 5.411E-02 6.352E-02 7.282E-02 9.097E-02 1.085E-01 1.253E-01	3.227E+00 3.582E+00 3.885E+00 4.150E+00 4.385E+00 4.788E+00 5.126E+00 5.417E+00	-0.017 -0.014 -0.011 -0.010 -0.008 -0.006 -0.004	0.029 0.027 0.024 0.022 0.021 0.018 0.016 0.014	0.021 0.019 0.016 0.014 0.013 0.010 0.008 0.007
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.089E+00 2.100E+00 2.109E+00 2.118E+00 2.125E+00 2.139E+00 2.151E+00 2.161E+00	7.643E-01 8.714E-01 9.792E-01 1.088E+00 1.197E+00 1.416E+00 1.638E+00 1.860E+00	2.854E+00 2.971E+00 3.089E+00 3.205E+00 3.322E+00 3.555E+00 3.788E+00 4.021E+00	1.718E+01 1.890E+01 2.055E+01 2.214E+01 2.367E+01 2.658E+01 2.931E+01 3.187E+01	1.414E-01 1.569E-01 1.717E-01 1.860E-01 1.996E-01 2.254E-01 2.491E-01 2.712E-01	5.671E+00 5.897E+00 6.101E+00 6.286E+00 6.456E+00 6.758E+00 7.020E+00 7.253E+00	-0.003 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001	0.013 0.012 0.011 0.011 0.010 0.009 0.008 0.008	0.006 0.005 0.004 0.004 0.003 0.003 0.002
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.170E+00 2.189E+00 2.204E+00 2.218E+00 2.229E+00 2.248E+00 2.263E+00 2.276E+00	2.084E+00 2.647E+00 3.214E+00 3.784E+00 4.357E+00 5.508E+00 6.665E+00 7.826E+00	4.254E+00 4.836E+00 5.418E+00 6.002E+00 6.586E+00 7.756E+00 8.928E+00 1.010E+01	3.429E+01 3.979E+01 4.468E+01 4.906E+01 5.303E+01 6.002E+01 7.129E+01	2.917E-01 3.373E-01 3.763E-01 4.100E-01 4.396E-01 4.891E-01 5.291E-01 5.623E-01	7.461E+00 7.903E+00 8.265E+00 8.571E+00 8.837E+00 9.281E+00 9.645E+00 9.952E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.007 0.006 0.005 0.005 0.005 0.004 0.004	0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.288E+00 2.298E+00 2.307E+00 2.315E+00 2.332E+00 2.335E+00 2.346E+00 2.356E+00	8.990E+00 1.016E+01 1.132E+01 1.249E+01 1.367E+01 1.601E+01 1.836E+01 2.072E+01	1.128E+01 1.245E+01 1.363E+01 1.481E+01 1.599E+01 1.835E+01 2.071E+01 2.307E+01	7.597E+01 8.019E+01 8.402E+01 8.754E+01 9.079E+01 9.662E+01 1.018E+02 1.063E+02	5.903E-01 6.143E-01 6.352E-01 6.536E-01 6.699E-01 6.977E-01 7.204E-01 7.396E-01	1.022E+01 1.045E+01 1.066E+01 1.085E+01 1.103E+01 1.134E+01 1.160E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.003 0.003 0.003 0.003 0.003 0.003 0.002	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.365E+00	2.307E+01	2.544E+01	1.104E+02	7.559E-01	1.205E+01	-0.000	0.002	0.000

I = 58.2 eV DENSITY = $1.097E-03 \text{ g/cm}^3 (200 \text{ C})$

ENERGY	ST(COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	d(lo COLL	g)/d(l	ogI) RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.296E+01 1.927E+01 1.670E+01 1.480E+01 1.333E+01 1.121E+01 9.739E+00 8.661E+00	2.982E-03 2.992E-03 2.999E-03 3.004E-03 3.008E-03 3.017E-03 3.027E-03	2.296E+01 1.927E+01 1.670E+01 1.480E+01 1.333E+01 1.121E+01 9.742E+00 8.664E+00	2.455E-04 3.649E-04 5.047E-04 6.641E-04 8.423E-03 1.733E-03 2.279E-03	7.143E-05 8.568E-05 9.932E-05 1.125E-04 1.252E-04 1.497E-04 1.731E-04 1.956E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.189 -0.182 -0.176 -0.171 -0.168 -0.162 -0.157 -0.154	0.214 0.205 0.198 0.192 0.187 0.180 0.174	0.213 0.204 0.197 0.191 0.187 0.179 0.174 0.169
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.833E+00 7.176E+00 6.642E+00 6.199E+00 5.825E+00 5.229E+00 4.774E+00 4.416E+00	3.048E-03 3.061E-03 3.074E-03 3.088E-03 3.103E-03 3.135E-03 3.169E-03 3.206E-03	7.836E+00 7.179E+00 6.645E+00 6.202E+00 5.829E+00 5.232E+00 4.777E+00 4.419E+00	2.886E-03 3.554E-03 4.279E-03 5.058E-03 5.890E-03 7.705E-03 9.708E-03 1.189E-02	2.174E-04 2.385E-04 2.591E-04 2.792E-04 2.989E-04 3.371E-04 3.739E-04 4.095E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.151 -0.148 -0.146 -0.144 -0.142 -0.140 -0.137 -0.135	0.166 0.163 0.160 0.158 0.156 0.152 0.149 0.147	0.166 0.163 0.160 0.158 0.155 0.152 0.149 0.147
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.126E+00 3.597E+00 3.240E+00 2.984E+00 2.792E+00 2.525E+00 2.351E+00 2.229E+00	3.244E-03 3.350E-03 3.463E-03 3.584E-03 3.711E-03 3.985E-03 4.284E-03 4.604E-03	4.129E+00 3.600E+00 3.244E+00 2.988E+00 2.796E+00 2.529E+00 2.355E+00 2.234E+00	1.423E-02 2.074E-02 2.808E-02 3.612E-02 4.478E-02 6.365E-02 8.418E-02 1.060E-01	4.441E-04 5.270E-04 6.058E-04 6.812E-04 7.540E-04 8.937E-04 1.028E-03 1.158E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.133 -0.130 -0.127 -0.124 -0.122 -0.119 -0.117	0.145 0.141 0.137 0.135 0.132 0.129 0.126	0.144 0.140 0.137 0.134 0.132 0.128 0.125 0.123
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.142E+00 2.076E+00 2.027E+00 1.988E+00 1.958E+00 1.915E+00 1.888E+00 1.871E+00	4.945E-03 5.304E-03 5.680E-03 6.071E-03 6.475E-03 7.322E-03 8.212E-03 9.142E-03	2.147E+00 2.082E+00 2.032E+00 1.994E+00 1.965E+00 1.923E+00 1.897E+00	1.289E-01 1.525E-01 1.769E-01 2.017E-01 2.270E-01 2.785E-01 3.309E-01 3.838E-01	1.286E-03 1.413E-03 1.539E-03 1.664E-03 1.790E-03 2.041E-03 2.295E-03 2.550E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.113 -0.111 -0.110 -0.108 -0.107 -0.105 -0.103 -0.102	0.122 0.120 0.119 0.118 0.116 0.114 0.113	0.121 0.119 0.117 0.116 0.115 0.112 0.110
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.861E+00 1.853E+00 1.857E+00 1.868E+00 1.881E+00 1.910E+00 1.939E+00	1.011E-02 1.267E-02 1.541E-02 1.830E-02 2.132E-02 2.766E-02 3.435E-02 4.132E-02	1.871E+00 1.865E+00 1.873E+00 1.886E+00 1.902E+00 1.938E+00 1.974E+00 2.008E+00	4.372E-01 5.711E-01 7.049E-01 8.380E-01 9.699E-01 1.230E+00 1.486E+00 1.737E+00	2.808E-03 3.466E-03 4.139E-03 4.829E-03 5.532E-03 6.973E-03 8.450E-03 9.955E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.100 -0.097 -0.095 -0.093 -0.092 -0.089 -0.087 -0.085	0.110 0.107 0.105 0.103 0.102 0.099 0.097	0.107 0.104 0.101 0.099 0.097 0.094 0.092
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.993E+00 2.017E+00 2.039E+00 2.059E+00 2.078E+00 2.113E+00 2.144E+00 2.171E+00	4.852E-02 5.593E-02 6.353E-02 7.129E-02 7.919E-02 9.539E-02 1.120E-01	2.041E+00 2.073E+00 2.102E+00 2.131E+00 2.158E+00 2.208E+00 2.256E+00 2.300E+00	1.984E+00 2.227E+00 2.467E+00 2.703E+00 2.936E+00 3.394E+00 4.281E+00	1.148E-02 1.303E-02 1.458E-02 1.615E-02 1.773E-02 2.090E-02 2.409E-02 2.729E-02	0.0 0.0 0.0 0.0 0.0 0.0	-0.084 -0.083 -0.082 -0.081 -0.080 -0.079 -0.077 -0.076	0.094 0.092 0.091 0.090 0.089 0.087 0.086 0.084	0.088 0.087 0.085 0.084 0.083 0.081 0.080
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	2.196E+00 2.249E+00 2.293E+00 2.330E+00 2.363E+00 2.413E+00 2.448E+00 2.476E+00	1.464E-01 1.909E-01 2.367E-01 2.331E-01 3.311E-01 4.282E-01 5.270E-01 6.271E-01	2.342E+00 2.440E+00 2.530E+00 2.614E+00 2.694E+00 2.841E+00 2.975E+00 3.103E+00	4.712E+00 5.757E+00 6.763E+00 7.735E+00 8.677E+00 1.048E+01 1.220E+01 1.385E+01	3.049E-02 3.847E-02 4.638E-02 5.419E-02 6.188E-02 7.689E-02 9.142E-02 1.055E-01	0.0 0.0 0.0 0.0 2.424E-05 5.648E-02 1.676E-01 2.951E-01	-0.075 -0.074 -0.072 -0.071 -0.069 -0.052 -0.042 -0.036	0.083 0.081 0.079 0.077 0.075 0.071 0.067 0.063	0.077 0.074 0.072 0.070 0.068 0.062 0.055 0.049
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.498E+00 2.517E+00 2.533E+00 2.547E+00 2.560E+00 2.581E+00 2.600E+00 2.616E+00	7.284E-01 8.306E-01 9.334E-01 1.037E+00 1.141E+00 1.351E+00 1.562E+00 1.774E+00	3.226E+00 3.347E+00 3.466E+00 3.584E+00 3.701E+00 3.932E+00 4.162E+00 4.390E+00	1.543E+01 1.695E+01 1.842E+01 1.984E+01 2.121E+01 2.383E+01 2.630E+01 2.864E+01	1.190E-01 1.321E-01 1.448E-01 1.570E-01 1.689E-01 1.914E-01 2.124E-01 2.321E-01	4.244E-01 5.501E-01 6.699E-01 7.833E-01 8.903E-01 1.087E+00 1.263E+00 1.422E+00	-0.032 -0.029 -0.027 -0.025 -0.024 -0.022 -0.021	0.059 0.056 0.053 0.050 0.048 0.045 0.042 0.039	0.044 0.040 0.036 0.034 0.031 0.027 0.025 0.022
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.630E+00 2.659E+00 2.683E+00 2.702E+00 2.719E+00 2.746E+00 2.767E+00 2.784E+00	1.988E+00 2.525E+00 3.067E+00 3.611E+00 4.158E+00 5.258E+00 6.362E+00 7.471E+00	4.618E+00 5.185E+00 5.750E+00 6.314E+00 6.877E+00 8.003E+00 9.129E+00 1.026E+01	3.086E+01 3.597E+01 4.054E+01 4.469E+01 5.522E+01 6.106E+01 6.623E+01	2.507E-01 2.925E-01 3.289E-01 3.609E-01 3.894E-01 4.379E-01 5.115E-01	1.567E+00 1.880E+00 2.142E+00 2.369E+00 2.569E+00 2.912E+00 3.201E+00 3.454E+00	-0.019 -0.018 -0.017 -0.016 -0.015 -0.013 -0.012	0.037 0.034 0.031 0.029 0.027 0.024 0.022	0.020 0.017 0.015 0.013 0.012 0.010 0.009 0.008
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.799E+00 2.811E+00 2.822E+00 2.832E+00 2.840E+00 2.855E+00 2.867E+00 2.878E+00	8.583E+00 9.697E+00 1.081E+01 1.193E+01 1.305E+01 1.529E+01 1.754E+01	1.138E+01 1.251E+01 1.364E+01 1.476E+01 1.589E+01 1.815E+01 2.040E+01 2.266E+01	7.085E+01 7.504E+01 7.887E+01 8.239E+01 8.566E+01 9.154E+01 1.014E+02	5.403E-01 5.653E-01 5.872E-01 6.066E-01 6.240E-01 6.537E-01 6.785E-01 6.993E-01	3.679E+00 3.882E+00 4.067E+00 4.237E+00 4.395E+00 4.680E+00 4.930E+00 5.154E+00	-0.009 -0.008 -0.007 -0.006 -0.005 -0.004 -0.003	0.020 0.019 0.018 0.017 0.016 0.015 0.015	0.007 0.006 0.005 0.005 0.004 0.004 0.003
000.0000	2.887E+00	2.203E+01	2.492E+01	1.056E+02	7.173E-01	5.356E+00	-0.002	0.013	0.003

ELECTRONS IN ADIPOSE TISSUE (ICRP)

I = 63.2 eV DENSITY = 9.200E-01 g/cm³

ENERGY	ST COLLISION	OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	d(lo	g)/d(le	ogI) RAD
MeV	MeV cm ² /g	MeV cm ² /g		g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.347E+01 1.971E+01 1.709E+01 1.515E+01 1.365E+01 1.148E+01 9.984E+00 8.881E+00	3.168E-03 3.184E-03 3.194E-03 3.201E-03 3.207E-03 3.217E-03 3.227E-03 3.238E-03	2.347E+01 1.971E+01 1.709E+01 1.515E+01 1.365E+01 1.149E+01 9.987E+00 8.884E+00	2.406E-04 3.574E-04 4.940E-04 6.497E-04 8.237E-04 1.225E-03 1.693E-03 2.225E-03	7.396E-05 8.884E-05 1.031E-04 1.168E-04 1.301E-04 1.556E-04 1.800E-04 2.034E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.192 -0.184 -0.179 -0.174 -0.170 -0.164 -0.159 -0.156	0.218 0.209 0.201 0.195 0.190 0.182 0.177 0.172	0.217 0.207 0.200 0.194 0.189 0.182 0.176 0.172
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	8.034E+00 7.362E+00 6.816E+00 6.362E+0 5.979E+00 5.369E+00 4.903E+00 4.535E+00	3.249E-03 3.262E-03 3.275E-03 3.290E-03 3.305E-03 3.338E-03 3.373E-03 3.411E-03	8.037E+00 7.365E+00 6.819E+00 6.365E+00 5.983E+00 5.372E+00 4.906E+00 4.539E+00	2.818E-03 3.468E-03 4.175E-03 4.934E-03 5.745E-03 7.513E-03 9.464E-03 1.159E-02	2.260E-04 2.480E-04 2.693E-04 2.902E-04 3.106E-04 3.501E-04 3.881E-04 4.250E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.153 -0.150 -0.148 -0.146 -0.144 -0.141 -0.139 -0.137	0.168 0.165 0.162 0.160 0.158 0.154 0.151 0.149	0.168 0.165 0.162 0.160 0.158 0.154 0.151 0.148
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.238E+00 3.696E+00 3.330E+00 3.068E+00 2.871E+00 2.597E+00 2.418E+00 2.294E+00	3.452E-03 3.562E-03 3.681E-03 3.808E-03 3.943E-03 4.232E-03 4.547E-03 4.885E-03	4.241E+00 3.700E+00 3.334E+00 3.071E+00 2.875E+00 2.601E+00 2.422E+00 2.299E+00	1.387E-02 2.020E-02 2.734E-02 3.517E-02 4.359E-02 6.194E-02 8.190E-02 1.031E-01	4.608E-04 5.464E-04 6.277E-04 7.055E-04 7.806E-04 9.244E-04 1.062E-03 1.196E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.135 -0.131 -0.128 -0.126 -0.124 -0.120 -0.118 -0.116	0.147 0.142 0.139 0.136 0.134 0.130 0.127 0.125	0.146 0.142 0.138 0.136 0.133 0.130 0.127 0.124
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.204E+00 2.135E+00 2.081E+00 2.039E+00 2.005E+00 1.954E+00 1.921E+00 1.897E+00	5.244E-03 5.623E-03 6.020E-03 6.433E-03 6.860E-03 7.753E-03 8.692E-03 9.674E-03	2.209E+00 2.141E+00 2.087E+00 2.045E+00 2.011E+00 1.962E+00 1.929E+00 1.907E+00	1.253E-01 1.483E-01 1.720E-01 1.962E-01 2.209E-01 2.712E-01 3.227E-01 3.748E-01	1.328E-03 1.458E-03 1.588E-03 1.718E-03 1.848E-03 2.109E-03 2.374E-03 2.642E-03	0.0 1.471E-02 4.184E-02 7.141E-02 1.028E-01 1.691E-01 2.381E-01 3.080E-01	-0.115 -0.090 -0.084 -0.078 -0.074 -0.066 -0.060	0.123 0.120 0.115 0.111 0.107 0.100 0.094 0.089	0.122 0.118 0.113 0.107 0.103 0.094 0.087 0.081
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.880E+00 1.858E+00 1.849E+00 1.848E+00 1.850E+00 1.860E+00 1.872E+00 1.885E+00	1.070E-02 1.340E-02 1.629E-02 1.934E-02 2.252E-02 2.921E-02 3.626E-02 4.360E-02	1.891E+00 1.871E+00 1.865E+00 1.867E+00 1.873E+00 1.889E+00 1.908E+00	4.275E-01 5.605E-01 6.944E-01 8.284E-01 9.621E-01 1.228E+00 1.491E+00	2.915E-03 3.612E-03 4.334E-03 5.078E-03 5.842E-03 7.421E-03 9.055E-03 1.073E-02	3.776E-01 5.471E-01 7.067E-01 8.554E-01 9.936E-01 1.242E+00 1.459E+00 1.652E+00	-0.051 -0.044 -0.039 -0.036 -0.033 -0.030 -0.028 -0.026	0.084 0.075 0.069 0.064 0.060 0.053 0.049 0.046	0.076 0.066 0.058 0.052 0.048 0.042 0.037 0.034
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.897E+00 1.909E+00 1.920E+00 1.930E+00 1.939E+00 1.956E+00 1.972E+00 1.985E+00	5.120E-02 5.901E-02 6.701E-02 7.518E-02 8.350E-02 1.005E-01 1.181E-01 1.360E-01	1.948E+00 1.968E+00 1.987E+00 2.005E+00 2.023E+00 2.057E+00 2.057E+00 2.121E+00	2.010E+00 2.265E+00 2.518E+00 2.769E+00 3.017E+00 3.507E+00 3.990E+00 4.465E+00	1.245E-02 1.419E-02 1.596E-02 1.774E-02 1.955E-02 2.319E-02 2.688E-02 3.059E-02	1.825E+00 1.981E+00 2.125E+00 2.257E+00 2.379E+00 2.601E+00 2.798E+00 2.976E+00	-0.025 -0.024 -0.023 -0.022 -0.022 -0.020 -0.019 -0.018	0.043 0.041 0.039 0.037 0.036 0.034 0.032	0.032 0.030 0.029 0.027 0.026 0.025 0.023
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.997E+00 2.022E+00 2.042E+00 2.059E+00 2.073E+00 2.095E+00 2.113E+00 2.128E+00	1.542E-01 2.010E-01 2.492E-01 2.984E-01 3.485E-01 4.505E-01 5.544E-01 6.597E-01	2.151E+00 2.223E+00 2.291E+00 2.357E+00 2.421E+00 2.546E+00 2.668E+00 2.788E+00	4.933E+00 6.076E+00 7.183E+00 8.259E+00 9.305E+01 1.132E+01 1.507E+01	3.432E-02 4.368E-02 5.300E-02 6.225E-02 7.138E-02 8.923E-02 1.065E-01 1.230E-01	3.137E+00 3.491E+00 3.790E+00 4.050E+00 4.282E+00 4.679E+00 5.012E+00 5.299E+00	-0.017 -0.014 -0.012 -0.010 -0.009 -0.007 -0.005 -0.004	0.029 0.026 0.024 0.022 0.021 0.018 0.016	0.021 0.018 0.016 0.015 0.013 0.011 0.009 0.008
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	2.141E+00 2.152E+00 2.161E+00 2.170E+00 2.178E+00 2.192E+00 2.203E+00 2.214E+00	7.661E-01 8.734E-01 9.815E-01 1.090E+00 1.200E+00 1.420E+00 1.642E+00 1.865E+00	2.907E+00 3.025E+00 3.143E+00 3.260E+00 3.377E+00 3.611E+00 3.845E+00 4.079E+00	1.683E+01 1.851E+01 2.013E+01 2.170E+01 2.320E+01 2.607E+01 2.875E+01 3.127E+01	1.389E-01 1.542E-01 1.688E-01 1.829E-01 1.964E-01 2.218E-01 2.454E-01 2.673E-01	5.551E+00 5.776E+00 5.979E+00 6.163E+00 6.32E+00 6.632E+00 6.894E+00 7.126E+00	-0.003 -0.003 -0.002 -0.002 -0.002 -0.001 -0.001	0.013 0.012 0.012 0.011 0.010 0.009 0.008 0.008	0.007 0.006 0.005 0.004 0.004 0.003 0.003
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000	2.223E+00 2.242E+00 2.258E+00 2.272E+00 2.283E+00 2.302E+00 2.318E+00 2.331E+00	2.089E+00 2.653E+00 3.222E+00 3.794E+00 4.368E+00 5.522E+00 6.682E+00 7.845E+00	4.312E+00 4.896E+00 5.480E+00 6.065E+00 6.651E+00 7.824E+00 9.000E+00 1.018E+01	3.366E+01 3.910E+01 4.392E+01 4.825E+01 5.219E+01 5.911E+01 6.507E+01 7.029E+01	2.877E-01 3.330E-01 3.718E-01 4.050E-01 4.350E-01 5.245E-01 5.578E-01	7.334E+00 7.775E+00 8.137E+00 8.444E+00 8.709E+00 9.154E+00 9.518E+00 9.825E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.007 0.006 0.006 0.005 0.005 0.004 0.004	0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.343E+00 2.353E+00 2.362E+00 2.370E+00 2.378E+00 2.391E+00 2.402E+00 2.413E+00	9.012E+00 1.018E+01 1.135E+01 1.253E+01 1.370E+01 1.605E+01 1.841E+01 2.077E+01	1.136E+01 1.253E+01 1.371E+01 1.490E+01 1.608E+01 1.844E+01 2.081E+01 2.318E+01	7.494E+01 7.913E+01 8.294E+01 8.643E+01 8.966E+01 9.547E+01 1.006E+02	5.859E-01 6.100E-01 6.311E-01 6.496E-01 6.660E-01 6.939E-01 7.169E-01 7.362E-01	1.009E+01 1.033E+01 1.054E+01 1.073E+01 1.090E+01 1.121E+01 1.148E+01 1.171E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.422E+00	2.313E+01	2.555E+01	1.092E+02	7.526E-01	1.192E+01	-0.000	0.002	0.000

ELECTRONS IN AIR, DRY (NEAR SEA LEVEL)

I = 85.7 eV DENSITY = $1.205E-03 \text{ g/cm}^3 (20 ^{\circ} \text{ C})$

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(lo CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm²/g	MeV cm²/g	MeV cm ² /g	g/cm²		(522111)	2000	KANO E	
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.975E+01 1.663E+01 1.445E+01 1.283E+01 1.157E+01 9.753E+00 8.492E+00 7.563E+00	3.897E-03 3.921E-03 3.937E-03 3.946E-03 3.954E-03 3.966E-03 3.976E-03 3.986E-03	1.976E+01 1.663E+01 1.445E+01 1.283E+01 1.158E+01 9.757E+00 8.496E+00 7.567E+00	2.883E-04 4.269E-04 5.886E-04 7.726E-04 9.781E-04 1.451E-03 2.001E-03 2.626E-03	1.082E-04 1.299E-04 1.506E-04 1.706E-04 1.898E-04 2.267E-04 2.618E-04 2.955E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.204 -0.195 -0.189 -0.184 -0.179 -0.173 -0.167 -0.163	0.235 0.223 0.215 0.208 0.202 0.194 0.187 0.182	0.233 0.222 0.213 0.207 0.201 0.193 0.186 0.181
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.848E+00 6.281E+00 5.819E+00 5.435E+00 5.111E+00 4.593E+00 4.198E+00 3.886E+00	3.998E-03 4.011E-03 4.025E-03 4.040E-03 4.057E-03 4.093E-03 4.133E-03 4.175E-03	6.852E+00 6.285E+00 5.823E+00 5.439E+00 5.115E+00 4.597E+00 4.202E+00 3.890E+00	3.322E-03 4.085E-03 4.912E-03 5.801E-03 6.750E-03 8.817E-03 1.110E-02 1.357E-02	3.280E-04 3.594E-04 3.900E-04 4.197E-04 4.488E-04 5.049E-04 5.590E-04 6.112E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.160 -0.157 -0.155 -0.153 -0.151 -0.147 -0.145	0.178 0.174 0.171 0.168 0.166 0.162 0.159 0.156	0.177 0.174 0.171 0.168 0.166 0.162 0.158 0.156
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.633E+00 3.172E+00 2.861E+00 2.637E+00 2.470E+00 2.236E+00 2.084E+00 1.978E+00	4.222E-03 4.348E-03 4.485E-03 4.633E-03 4.789E-03 5.126E-03 5.495E-03 5.890E-03	3.637E+00 3.177E+00 2.865E+00 2.642E+00 2.474E+00 2.242E+00 2.089E+00 1.984E+00	1.623E-02 2.362E-02 3.193E-02 4.103E-02 5.082E-02 7.212E-02 9.527E-02 1.199E-01	6.618E-04 7.826E-04 8.968E-04 1.006E-03 1.111E-03 1.311E-03 1.502E-03 1.688E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.140 -0.136 -0.133 -0.131 -0.128 -0.125 -0.122	0.153 0.149 0.145 0.142 0.140 0.136 0.133	0.153 0.148 0.145 0.142 0.139 0.135 0.132 0.129
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.902E+00 1.845E+00 1.802E+00 1.769E+00 1.743E+00 1.706E+00 1.683E+00 1.669E+00	6.311E-03 6.757E-03 7.223E-03 7.708E-03 8.210E-03 9.258E-03 1.036E-02	1.908E+00 1.852E+00 1.809E+00 1.776E+00 1.751E+00 1.715E+00 1.694E+00	1.456E-01 1.722E-01 1.995E-01 2.274E-01 2.558E-01 3.135E-01 3.722E-01 4.315E-01	1.869E-03 2.048E-03 2.225E-03 2.401E-03 2.577E-03 2.929E-03 3.283E-03 3.638E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.118 -0.116 -0.114 -0.113 -0.112 -0.109 -0.107 -0.106	0.128 0.126 0.125 0.123 0.122 0.120 0.118 0.116	0.127 0.125 0.123 0.122 0.120 0.118 0.115 0.114
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.661E+00 1.655E+00 1.661E+00 1.672E+00 1.684E+00 1.712E+00 1.740E+00 1.766E+00	1.271E-02 1.588E-02 1.927E-02 2.284E-02 2.656E-02 3.437E-02 4.260E-02 5.115E-02	1.674E+00 1.671E+00 1.680E+00 1.694E+00 1.711E+00 1.747E+00 1.783E+00 1.817E+00	4.912E-01 6.408E-01 7.900E-01 9.382E-01 1.085E+00 1.374E+00 1.658E+00 1.935E+00	3.997E-03 4.906E-03 5.836E-03 6.784E-03 7.748E-03 9.716E-03 1.173E-02 1.377E-02	0.0 0.0 0.0 0.0 0.0 0.0	-0.104 -0.101 -0.099 -0.097 -0.095 -0.092 -0.090 -0.088	0.115 0.112 0.109 0.107 0.106 0.103 0.100 0.098	0.112 0.108 0.106 0.103 0.101 0.098 0.095 0.093
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.790E+00 1.812E+00 1.833E+00 1.852E+00 1.870E+00 1.902E+00 1.931E+00 1.956E+00	5.999E-02 6.908E-02 7.838E-02 8.787E-02 9.754E-02 1.173E-01 1.376E-01	1.850E+00 1.882E+00 1.911E+00 1.940E+00 1.968E+00 2.020E+00 2.068E+00 2.115E+00	2.208E+00 2.476E+00 2.740E+00 2.999E+00 3.255E+00 4.246E+00 4.724E+00	1.583E-02 1.792E-02 2.001E-02 2.211E-02 2.422E-02 2.845E-02 3.269E-02 3.692E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.087 -0.086 -0.084 -0.083 -0.083 -0.081 -0.080 -0.079	0.097 0.095 0.094 0.093 0.092 0.090 0.088 0.087	0.091 0.089 0.088 0.086 0.085 0.083 0.081
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.979E+00 2.029E+00 2.069E+00 2.104E+00 2.134E+00 2.185E+00 2.226E+00 2.257E+00	1.795E-01 2.337E-01 2.895E-01 3.464E-01 4.042E-01 5.219E-01 6.417E-01 7.630E-01	2.159E+00 2.262E+00 2.359E+00 2.451E+00 2.539E+00 2.707E+00 2.868E+00 3.020E+00	5.192E+00 6.323E+00 7.405E+00 8.444E+00 9.446E+00 1.135E+01 1.315E+01	4.113E-02 5.156E-02 6.181E-02 7.185E-02 8.167E-02 1.006E-01 1.186E-01	0.0 0.0 0.0 0.0 0.0 0.0 7.636E-03 5.984E-02	-0.078 -0.076 -0.074 -0.073 -0.072 -0.070 -0.062 -0.052	0.085 0.083 0.080 0.078 0.076 0.073 0.071	0.078 0.075 0.072 0.070 0.068 0.065 0.062 0.057
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.282E+00 2.302E+00 2.319E+00 2.334E+00 2.347E+00 2.369E+00 2.387E+00 2.403E+00	8.855E-01 1.009E+00 1.133E+00 1.258E+00 1.384E+00 1.637E+00 1.892E+00 2.148E+00	3.167E+00 3.311E+00 3.452E+00 3.592E+00 3.731E+00 4.006E+00 4.279E+00 4.551E+00	1.646E+01 1.801E+01 1.948E+01 2.090E+01 2.227E+01 2.486E+01 2.727E+01 2.954E+01	1.520E-01 1.676E-01 1.825E-01 1.968E-01 2.104E-01 2.361E-01 2.598E-01 2.818E-01	1.378E-01 2.266E-01 3.192E-01 4.120E-01 5.029E-01 6.762E-01 8.365E-01 9.842E-01	-0.044 -0.039 -0.035 -0.032 -0.030 -0.027 -0.025 -0.023	0.064 0.061 0.059 0.056 0.054 0.050 0.047	0.052 0.048 0.044 0.040 0.037 0.033 0.029 0.026
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.417E+00 2.445E+00 2.468E+00 2.486E+00 2.52E+00 2.529E+00 2.550E+00 2.567E+00	2.405E+00 3.053E+00 3.705E+00 4.360E+00 5.018E+00 7.667E+00 8.998E+00	4.822E+00 5.498E+00 6.173E+00 6.847E+00 7.520E+00 8.868E+00 1.022E+01 1.157E+01	3.167E+01 3.652E+01 4.081E+01 4.465E+01 5.425E+01 5.425E+01 6.410E+01	3.022E-01 3.474E-01 3.859E-01 4.192E-01 4.972E-01 5.365E-01 5.691E-01	1.120E+00 1.419E+00 1.670E+00 1.887E+00 2.078E+00 2.403E+00 2.675E+00 2.909E+00	-0.022 -0.020 -0.019 -0.018 -0.017 -0.016 -0.015	0.042 0.038 0.035 0.032 0.030 0.028 0.026	0.024 0.020 0.017 0.015 0.013 0.011 0.009 0.008
400.0000 450.0000 500.0000 550.0000 700.0000 800.0000 900.0000	2.582E+00 2.595E+00 2.606E+00 2.616E+00 2.625E+00 2.641E+00 2.653E+00 2.664E+00	1.033E+01 1.167E+01 1.301E+01 1.435E+01 1.569E+01 1.838E+01 2.107E+01 2.376E+01	1.292E+01 1.427E+01 1.562E+01 1.697E+01 1.832E+01 2.102E+01 2.372E+01 2.643E+01	6.819E+01 7.187E+01 7.522E+01 7.829E+01 8.112E+01 8.622E+01 9.069E+01 9.468E+01	5.967E-01 6.203E-01 6.409E-01 6.589E-01 6.750E-01 7.022E-01 7.247E-01 7.435E-01	3.116E+00 3.302E+00 3.472E+00 3.628E+00 3.772E+00 4.034E+00 4.267E+00 4.477E+00	-0.013 -0.012 -0.011 -0.010 -0.010 -0.008 -0.007 -0.006	0.023 0.022 0.021 0.020 0.019 0.018 0.017	0.007 0.007 0.006 0.006 0.005 0.004 0.004
1000.0000	2.674E+00	2.646E+01	2.913E+01	9.829E+01	7.595E-01	4.668E+00	-0.005	0.016	0.003

ELECTRONS IN ALUMINUM OXIDE

I = 145.2 eV DENSITY = 3.970E+00 g/cm³

ENERGY	ST COLLISION	OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DEMS.EFF.	d(lo	g)/d(l	ogI) RAD
MeV	MeV cm ² /g	MeV cm²/g	MeV cm ² /g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.731E+01 1.465E+01 1.278E+01 1.138E+01 1.029E+01 8.709E+00 7.605E+00 6.789E+00	5.480E-03 5.569E-03 5.629E-03 5.674E-03 5.707E-03 5.753E-03 5.786E-03 5.812E-03	1.732E+01 1.466E+01 1.278E+01 1.138E+01 1.030E+01 8.715E+00 7.611E+00 6.795E+00	3.351E-04 4.927E-04 6.758E-04 8.835E-04 1.115E-03 1.645E-03 2.261E-03 2.957E-03	1.714E-04 2.068E-04 2.407E-04 2.734E-04 3.050E-04 3.656E-04 4.231E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.229 -0.218 -0.210 -0.203 -0.198 -0.190 -0.184 -0.179	0.270 0.255 0.244 0.235 0.228 0.217 0.208 0.202	0.266 0.251 0.241 0.232 0.225 0.215 0.207
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.160E+00 5.658E+00 5.249E+00 4.909E+00 4.621E+00 4.161E+00 3.809E+00 3.530E+00	5.835E-03 5.856E-03 5.878E-03 5.899E-03 5.921E-03 5.965E-03 6.014E-03 6.068E-03	6.165E+00 5.664E+00 5.255E+00 4.915E+00 4.627E+00 4.167E+00 3.815E+00 3.536E+00	3.731E-03 4.578E-03 5.495E-03 6.480E-03 7.529E-03 9.811E-03 1.232E-02 1.505E-02	5.310E-04 5.820E-04 6.315E-04 6.795E-04 7.262E-04 8.162E-04 9.023E-04 9.850E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.175 -0.171 -0.169 -0.166 -0.164 -0.160 -0.157	0.197 0.192 0.189 0.185 0.182 0.178 0.174	0.195 0.191 0.188 0.184 0.182 0.177 0.173
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.305E+00 2.892E+00 2.613E+00 2.412E+00 2.262E+00 2.052E+00 1.912E+00 1.815E+00	6.126E-03 6.285E-03 6.464E-03 6.661E-03 6.871E-03 7.330E-03 7.834E-03 8.376E-03	3.311E+00 2.898E+00 2.619E+00 2.419E+00 2.269E+00 2.059E+00 1.920E+00 1.823E+00	1.797E-02 2.608E-02 3.517E-02 4.512E-02 5.581E-02 7.902E-02 1.042E-01 1.310E-01	1.065E-03 1.254E-03 1.432E-03 1.600E-03 1.762E-03 2.068E-03 2.360E-03 2.643E-03	0.0 0.0 0.0 0.0 0.0 1.094E-03 2.440E-02 4.961E-02	-0.152 -0.147 -0.143 -0.140 -0.138 -0.125 -0.113 -0.107	0.167 0.162 0.157 0.154 0.151 0.146 0.139 0.133	0.167 0.161 0.157 0.153 0.150 0.145 0.137
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.744E+00 1.691E+00 1.650E+00 1.618E+00 1.593E+00 1.557E+00 1.533E+00 1.517E+00	8.954E-03 9.563E-03 1.020E-02 1.086E-02 1.155E-02 1.298E-02 1.449E-02	1.753E+00 1.700E+00 1.660E+00 1.629E+00 1.605E+00 1.570E+00 1.547E+00 1.533E+00	1.590E-01 1.879E-01 2.177E-01 2.481E-01 2.791E-01 3.421E-01 4.063E-01 4.712E-01	2.919E-03 3.191E-03 3.460E-03 3.728E-03 3.995E-03 4.529E-03 5.064E-03 5.603E-03	7.609E-02 1.034E-01 1.314E-01 1.597E-01 1.883E-01 2.455E-01 3.026E-01 3.589E-01	-0.102 -0.097 -0.094 -0.090 -0.087 -0.082 -0.078	0.128 0.123 0.119 0.116 0.113 0.108 0.103 0.099	0.125 0.120 0.116 0.112 0.109 0.103 0.097 0.093
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.507E+00 1.494E+00 1.492E+00 1.501E+00 1.514E+00 1.528E+00 1.541E+00	1.769E-02 2.201E-02 2.662E-02 3.148E-02 3.653E-02 4.714E-02 5.829E-02 6.987E-02	1.524E+00 1.516E+00 1.519E+00 1.527E+00 1.537E+00 1.561E+00 1.586E+00 1.611E+00	5.367E-01 7.013E-01 8.661E-01 1.030E+00 1.193E+00 1.516E+00 1.834E+00 2.147E+00	6.147E-03 7.528E-03 8.942E-03 1.039E-02 1.186E-02 1.488E-02 1.798E-02 2.113E-02	4.143E-01 5.479E-01 6.744E-01 7.938E-01 9.069E-01 1.116E+00 1.306E+00	-0.071 -0.064 -0.059 -0.054 -0.050 -0.044 -0.040	0.096 0.089 0.083 0.079 0.075 0.069 0.064 0.060	0.089 0.081 0.075 0.070 0.065 0.058 0.053
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.553E+00 1.564E+00 1.575E+00 1.584E+00 1.593E+00 1.609E+00 1.622E+00 1.634E+00	8.181E-02 9.407E-02 1.066E-01 1.194E-01 1.324E-01 1.590E-01 2.140E-01	1.635E+00 1.658E+00 1.681E+00 1.704E+00 1.725E+00 1.767E+00 1.808E+00	2.455E+00 2.759E+00 3.058E+00 3.353E+00 3.645E+00 4.218E+00 4.777E+00 5.324E+00	2.433E-02 2.756E-02 3.081E-02 3.408E-02 3.735E-02 4.392E-02 5.049E-02 5.704E-02	1.638E+00 1.785E+00 1.921E+00 2.048E+00 2.167E+00 2.384E+00 2.578E+00 2.754E+00	-0.033 -0.031 -0.029 -0.027 -0.026 -0.024 -0.022	0.057 0.054 0.051 0.049 0.047 0.044 0.041	0.045 0.041 0.039 0.037 0.035 0.031 0.029 0.027
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.645E+00 1.667E+00 1.685E+00 1.700E+00 1.713E+00 1.734E+00 1.750E+00 1.764E+00	2.422E-01 3.145E-01 3.886E-01 4.642E-01 5.409E-01 6.968E-01 8.552E-01 1.015E+00	1.887E+00 1.982E+00 2.074E+00 2.164E+00 2.254E+00 2.431E+00 2.606E+00 2.780E+00	5.859E+00 7.152E+00 8.385E+00 9.565E+00 1.070E+01 1.283E+01 1.482E+01 1.668E+01	6.354E-02 7.956E-02 9.516E-02 1.103E-01 1.249E-01 1.527E-01 1.786E-01 2.026E-01	2.914E+00 3.263E+00 3.557E+00 3.812E+00 4.038E+00 4.424E+00 4.747E+00 5.025E+00	-0.019 -0.017 -0.015 -0.013 -0.012 -0.010 -0.008 -0.007	0.037 0.033 0.030 0.028 0.026 0.023 0.021 0.019	0.025 0.021 0.019 0.017 0.015 0.013 0.011 0.010
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.776E+00 1.786E+00 1.795E+00 1.803E+00 1.810E+00 1.822E+00 1.833E+00 1.842E+00	1.177E+00 1.340E+00 1.504E+00 1.669E+00 1.835E+00 2.168E+00 2.503E+00 2.841E+00	2.953E+00 3.126E+00 3.299E+00 3.472E+00 3.645E+00 3.990E+00 4.337E+00 4.683E+00	1.842E+01 2.007E+01 2.162E+01 2.310E+01 2.451E+01 2.713E+01 2.953E+01 3.175E+01	2.251E-01 2.461E-01 2.657E-01 2.842E-01 3.015E-01 3.333E-01 3.617E-01 3.873E-01	5.269E+00 5.487E+00 5.684E+00 5.864E+00 6.029E+00 6.323E+00 6.581E+00 6.809E+00	-0.006 -0.005 -0.005 -0.004 -0.004 -0.003 -0.002	0.018 0.016 0.015 0.015 0.014 0.013 0.012 0.011	0.008 0.008 0.007 0.006 0.006 0.005 0.004 0.003
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.851E+00 1.868E+00 1.882E+00 1.894E+00 1.904E+00 1.921E+00 1.935E+00 1.947E+00	3.179E+00 4.030E+00 4.887E+00 5.747E+00 6.611E+00 8.345E+00 1.009E+01	5.030E+00 5.898E+00 6.769E+00 7.641E+00 8.515E+00 1.027E+01 1.202E+01 1.378E+01	3.381E+01 3.839E+01 4.235E+01 4.582E+01 4.892E+01 5.426E+01 5.876E+01 6.264E+01	4.106E-01 4.602E-01 5.008E-01 5.346E-01 5.634E-01 6.098E-01 6.460E-01 6.750E-01	7.015E+00 7.452E+00 7.812E+00 8.117E+00 8.382E+00 8.825E+00 9.188E+00 9.495E+00	-0.002 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000	0.010 0.009 0.008 0.008 0.007 0.007 0.006	0.003 0.002 0.002 0.002 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.957E+00 1.966E+00 1.974E+00 1.981E+00 1.988E+00 1.999E+00 2.009E+00	1.358E+01 1.533E+01 1.709E+01 1.885E+01 2.060E+01 2.412E+01 2.765E+01 3.117E+01	1.554E+01 1.730E+01 1.906E+01 2.083E+01 2.259E+01 2.612E+01 2.966E+01 3.319E+01	6.605E+01 6.910E+01 7.185E+01 7.436E+01 7.667E+01 8.078E+01 8.437E+01 8.756E+01	6.990E-01 7.191E-01 7.364E-01 7.513E-01 7.644E-01 7.864E-01 8.041E-01 8.187E-01	9.761E+00 9.996E+00 1.021E+01 1.040E+01 1.057E+01 1.088E+01 1.115E+01 1.138E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.005 0.005 0.005 0.005 0.005 0.004 0.004	0.001 0.001 0.001 0.000 0.000 0.000 0.000
000.0000	2.026E+00	3.470E+01	3.673E+01	9.042E+01	8.311E-01	1.159E+01	-0.000	0.004	0.000

ELECTRONS IN B-100 BONE-EQUIVALENT PLASTIC

I = 85.9 eV DENSITY = 1.450E+00 g/cm³

ENERGY COI		PPING POWER	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
MeV MeV	/ cm²/g	MeV cm ² /g	MeV cm ² /g	g/cm²					
0.0125 1.3 0.0150 1.3 0.0175 1.3 0.0200 1.3 0.0250 1.3 0.0300 8.3	086E+01 756E+01 525E+01 354E+01 222E+01 030E+01 967E+00	4.477E-03 4.559E-03 4.618E-03 4.664E-03 4.700E-03 4.754E-03 4.796E-03 4.830E-03	2.086E+01 1.756E+01 1.526E+01 1.355E+01 1.222E+01 1.030E+01 8.972E+00 7.991E+00	2.731E-04 4.043E-04 5.574E-04 7.317E-04 9.263E-04 1.374E-03 1.895E-03 2.487E-03	1.143E-04 1.389E-04 1.626E-04 1.856E-04 2.080E-04 2.511E-04 2.923E-04 3.319E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.204 -0.196 -0.189 -0.184 -0.179 -0.173 -0.168 -0.164	0.235 0.223 0.215 0.208 0.202 0.194 0.187 0.182	0.232 0.221 0.213 0.206 0.201 0.192 0.186 0.181
0.0450 6.0 0.0550 6.0 0.0550 5.0 0.0600 5.0 0.0700 4.0	232E+00 533E+00 145E+00 739E+00 397E+00 850E+00 433E+00	4.860E-03 4.888E-03 4.914E-03 4.939E-03 4.963E-03 5.013E-03 5.063E-03 5.116E-03	7.237E+00 6.637E+00 6.150E+00 5.744E+00 5.402E+00 4.855E+00 4.438E+00 4.109E+00	3.146E-03 3.868E-03 4.651E-03 5.493E-03 6.392E-03 8.348E-03 1.051E-02 1.285E-02	3.702E-04 4.073E-04 4.434E-04 4.785E-04 5.127E-04 5.789E-04 6.424E-04 7.036E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.160 -0.157 -0.155 -0.153 -0.151 -0.148 -0.145	0.178 0.174 0.171 0.168 0.166 0.162 0.159 0.156	0.177 0.173 0.170 0.168 0.165 0.161 0.158
0.1250 3.0 0.1500 3.0 0.1750 2.0 0.2000 2.0 0.2500 2.0	337E+00 350E+00 021E+00 785E+00 608E+00 862E+00 201E+00	5.170E-03 5.318E-03 5.479E-03 5.651E-03 5.835E-03 6.231E-03 6.665E-03 7.131E-03	3.842E+00 3.355E+00 3.027E+00 2.791E+00 2.614E+00 2.368E+00 2.208E+00 2.096E+00	1.537E-02 2.236E-02 3.023E-02 3.884E-02 4.811E-02 6.827E-02 9.019E-02 1.135E-01	7.628E-04 9.036E-04 1.036E-03 1.162E-03 1.283E-03 1.513E-03 1.732E-03 1.943E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.066E-03	-0.141 -0.136 -0.133 -0.131 -0.129 -0.125 -0.122	0.154 0.149 0.145 0.142 0.140 0.136 0.133	0.153 0.148 0.144 0.141 0.139 0.135 0.132
0.4500 1.5 0.5000 1.8 0.5500 1.8 0.6000 1.8 0.7000 1.0	942E+00 393E+00 355E+00 325E+00 780E+00	7.626E-03 8.149E-03 8.695E-03 9.263E-03 9.852E-03 1.108E-02 1.237E-02 1.372E-02	2.013E+00 1.950E+00 1.902E+00 1.864E+00 1.835E+00 1.791E+00 1.762E+00 1.743E+00	1.378E-01 1.631E-01 1.891E-01 2.156E-01 2.427E-01 2.979E-01 3.542E-01 4.113E-01	2.150E-03 2.353E-03 2.555E-03 2.757E-03 2.958E-03 3.360E-03 3.766E-03 4.174E-03	2.983E-02 5.881E-02 8.971E-02 1.219E-01 1.548E-01 2.222E-01 2.901E-01 3.577E-01	-0.095 -0.089 -0.083 -0.079 -0.075 -0.069 -0.063 -0.059	0.124 0.119 0.114 0.110 0.107 0.100 0.094 0.090	0.122 0.116 0.111 0.106 0.102 0.094 0.088 0.083
1.2500 1.0 1.5000 1.0 1.7500 1.0 2.0000 1.0 2.5000 1.3	715E+00 697E+00 691E+00 691E+00 695E+00 706E+00 719E+00 733E+00	1.512E-02 1.882E-02 2.279E-02 2.695E-02 3.129E-02 4.041E-02 4.999E-02 5.995E-02	1.731E+00 1.715E+00 1.714E+00 1.718E+00 1.726E+00 1.747E+00 1.769E+00 1.793E+00	4.688E-01 6.141E-01 7.599E-01 9.057E-01 1.051E+00 1.339E+00 1.623E+00 1.904E+00	4.587E-03 5.639E-03 6.721E-03 7.830E-03 8.964E-03 1.130E-02 1.369E-02 1.614E-02	4.242E-01 5.840E-01 7.331E-01 8.714E-01 9.997E-01 1.230E+00 1.432E+00 1.612E+00	-0.056 -0.049 -0.045 -0.042 -0.039 -0.036 -0.033	0.086 0.078 0.072 0.067 0.063 0.058 0.053	0.078 0.069 0.062 0.057 0.053 0.047 0.043
4.5000 1.5 5.0000 1.5 5.5000 1.5 6.0000 1.7 7.0000 1.8	757E+00 768E+00 779E+00 788E+00 306E+00 321E+00	7.022E-02 8.077E-02 9.156E-02 1.026E-01 1.138E-01 1.367E-01 1.601E-01 1.841E-01	1.816E+00 1.838E+00 1.860E+00 1.881E+00 1.902E+00 1.942E+00 1.981E+00 2.018E+00	2.181E+00 2.455E+00 2.725E+00 2.993E+00 3.257E+00 3.777E+00 4.287E+00 4.787E+00	1.863E-02 2.115E-02 2.370E-02 2.626E-02 2.883E-02 3.401E-02 3.921E-02 4.442E-02	1.773E+00 1.920E+00 2.054E+00 2.179E+00 2.294E+00 2.504E+00 2.692E+00 2.862E+00	-0.030 -0.029 -0.028 -0.027 -0.026 -0.024 -0.023	0.048 0.045 0.044 0.042 0.041 0.038 0.036	0.037 0.035 0.034 0.032 0.031 0.029 0.027 0.026
12.5000 1.8 15.0000 1.8 17.5000 1.9 20.0000 1.9 30.0000 1.9	846 E+00 870 E+00 890 E+00 906 E+00 920 E+00 942 E+00 959 E+00 973 E+00	2.084E-01 2.708E-01 3.348E-01 4.002E-01 4.665E-01 6.014E-01 7.385E-01 8.774E-01	2.054E+00 2.141E+00 2.225E+00 2.306E+00 2.386E+00 2.543E+00 2.698E+00 2.851E+00	5.278E+00 6.470E+00 7.615E+00 8.719E+00 9.784E+00 1.181E+01 1.372E+01 1.552E+01	4.961E-02 6.250E-02 7.518E-02 8.759E-02 9.972E-02 1.230E-01 1.451E-01 1.659E-01	3.017E+00 3.359E+00 3.650E+00 3.905E+00 4.131E+00 4.522E+00 4.850E+00 5.133E+00	-0.020 -0.017 -0.014 -0.012 -0.011 -0.008 -0.007 -0.005	0.033 0.030 0.028 0.025 0.024 0.021 0.019 0.017	0.024 0.021 0.019 0.017 0.015 0.012 0.010 0.009
45.0000 1.0 50.0000 2.0 55.0000 2.0 60.0000 2.0 70.0000 2.0 80.0000 2.0	986E+00 996E+00 006E+00 014E+00 022E+00 035E+00 046E+00	1.018E+00 1.159E+00 1.301E+00 1.44E+00 1.588E+00 1.878E+00 2.169E+00 2.462E+00	3.003E+00 3.155E+00 3.307E+00 3.458E+00 3.610E+00 3.913E+00 4.216E+00 4.519E+00	1.723E+01 1.886E+01 2.040E+01 2.183E+01 2.330E+01 2.596E+01 2.842E+01 3.071E+01	1.856E-01 2.043E-01 2.219E-01 2.386E-01 2.545E-01 2.839E-01 3.106E-01 3.350E-01	5.381E+00 5.602E+00 5.802E+00 5.983E+00 6.150E+00 6.447E+00 6.705E+00 6.934E+00	-0.005 -0.004 -0.004 -0.003 -0.003 -0.002 -0.002	0.016 0.015 0.014 0.013 0.012 0.011 0.010	0.008 0.007 0.006 0.005 0.005 0.004 0.003
125.0000 2.0 150.0000 2.0 175.0000 2.2 200.0000 2.2 250.0000 2.3 300.0000 2.3	065E+00 084E+00 099E+00 112E+00 123E+00 142E+00 157E+00 163E+00	2.757E+00 3.497E+00 4.243E+00 4.993E+00 5.745E+00 7.256E+00 8.774E+00 1.030E+01	4.822E+00 5.582E+00 6.343E+00 7.105E+00 7.868E+00 9.398E+00 1.093E+01 1.247E+01	3.285E+01 3.767E+01 4.187E+01 4.559E+01 4.893E+01 5.474E+01 5.967E+01 6.395E+01	3.574E-01 4.060E-01 4.464E-01 4.807E-01 5.102E-01 5.586E-01 5.969E-01 6.280E-01	7.139E+00 7.576E+00 7.934E+00 8.238E+00 8.502E+00 8.944E+00 9.306E+00 9.612E+00	-0.002 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000	0.009 0.008 0.007 0.007 0.006 0.006 0.005	0.003 0.002 0.002 0.001 0.001 0.001 0.001
450.0000 2. 500.0000 2. 550.0000 2. 600.0000 2. 700.0000 2. 800.0000 2.	180E+00 15E+00 158E+00 206E+00 213E+00 226E+00 237E+00 246E+00	1.182E+01 1.335E+01 1.408E+01 1.642E+01 1.795E+01 2.102E+01 2.410E+01 2.718E+01	1.400E+01 1.554E+01 1.708E+01 1.862E+01 2.016E+01 2.325E+01 2.634E+01 2.943E+01	6.773E+01 7.112E+01 7.418E+01 7.699E+01 7.957E+01 8.418E+01 8.822E+01 9.181E+01	6.540E-01 6.760E-01 6.949E-01 7.114E-01 7.260E-01 7.505E-01 7.704E-01 7.870E-01	9.878E+00 1.011E+01 1.032E+01 1.051E+01 1.069E+01 1.099E+01 1.126E+01 1.150E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.005 0.004 0.004 0.004 0.004 0.004 0.003	0.001 0.001 0.000 0.000 0.000 0.000 0.000
1000.0000 2.	255 E+00	3.026E+01	3.252E+01	9.504E+01	8.010E-01	1.171E+01	-0.000	0.003	0.000

ELECTRONS IN BONE, COMPACT (ICRU)

I = 91.9 eV DENSITY = 1.850E+00 g/cm³

ENERGY		OPPING POWE	R TOTAL	CSDA	RADIATION	DENS.EFF.	d(lo COLL	g)/d(l CSDA	ogI) RAD
MeV	COLLISION MeV cm ² /g	RADIATIVE MeV cm ² /g	MeV cm ² /g	RANGE g/cm ²	YIELD	(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.068E+01 1.742E+01 1.514E+01 1.344E+01 1.213E+01 1.023E+01 8.912E+00 7.939E+00	4.793E-03 4.880E-03 4.942E-03 4.989E-03 5.026E-03 5.080E-03 5.121E-03 5.155E-03	2.068E+01 1.742E+01 1.514E+01 1.345E+01 1.214E+01 1.024E+01 8.917E+00 7.944E+00	2.761E-04 4.084E-04 5.628E-04 7.383E-04 9.343E-04 1.385E-03 1.910E-03 2.505E-03	1.236E-04 1.501E-04 1.756E-04 2.004E-04 2.244E-04 2.706E-04 3.148E-04 3.572E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.207 -0.198 -0.191 -0.186 -0.182 -0.175 -0.169	0.239 0.227 0.218 0.211 0.205 0.196 0.190 0.184	0.236 0.224 0.216 0.209 0.203 0.195 0.188 0.183
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.190E+00 6.596E+00 6.112E+00 5.709E+00 5.370E+00 4.827E+00 4.412E+00 4.035E+00	5.184E-03 5.211E-03 5.237E-03 5.263E-03 5.288E-03 5.338E-03 5.390E-03 5.445E-03	7.196E+00 6.601E+00 6.117E+00 5.715E+00 5.375E+00 4.832E+00 4.417E+00 4.090E+00	3.168E-03 3.894E-03 4.682E-03 5.528E-03 6.431E-03 8.397E-03 1.056E-02 1.292E-02	3.982E-04 4.379E-04 4.764E-04 5.139E-04 5.504E-04 6.210E-04 6.887E-04 7.540E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.162 -0.159 -0.156 -0.154 -0.152 -0.149 -0.146	0.180 0.176 0.173 0.170 0.168 0.164 0.160 0.158	0.179 0.175 0.172 0.170 0.167 0.163 0.160 0.157
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	3.820E+00 3.336E+00 3.010E+00 2.775E+00 2.595E+00 2.354E+00 2.104E+00 2.07 E+00	5.502E-03 5.657E-03 5.826E-03 6.007E-03 6.200E-03 7.075E-03 7.567E-03	3.825E+00 3.342E+00 3.015E+00 2.781E+00 2.605E+00 2.361E+00 2.201E+00 2.087E+00	1.545E-02 2.247E-02 3.037E-02 3.901E-02 4.832E-02 6.855E-02 9.053E-02 1.139E-01	8.171E-04 9.670E-04 1.108E-03 1.242E-03 1.371E-03 1.615E-03 1.848E-03 2.072E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.843E-02	-0.142 -0.138 -0.135 -0.132 -0.130 -0.126 -0.118 -0.096	0.155 0.150 0.147 0.143 0.141 0.137 0.134 0.127	0.155 0.150 0.146 0.143 0.140 0.136 0.133 0.126
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.3000 0.9000	1.936E+00 1.932E+00 1.833E+00 1.845E+00 1.815E+00 1.770E+00 1.740E+00	8.090E-03 8.643E-03 9.221E-03 9.823E-03 1.045E-02 1.175E-02 1.311E-02 1.454E-02	2.004E+00 1.941E+00 1.893E+00 1.855E+00 1.825E+00 1.782E+00 1.753E+00	1.384E-01 1.637E-01 1.898E-01 2.165E-01 2.437E-01 2.992E-01 3.558E-01 4.132E-01	2.292E-03 2.509E-03 2.724E-03 2.939E-03 3.153E-03 3.582E-03 4.014E-03 4.449E-03	6.250E-02 9.798E-02 1.342E-01 1.710E-01 2.079E-01 2.817E-01 3.548E-01 4.265E-01	-0.089 -0.084 -0.079 -0.075 -0.071 -0.066 -0.061	0.121 0.116 0.111 0.107 0.103 0.096 0.091 0.086	0.119 0.112 0.107 0.102 0.098 0.091 0.084 0.079
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.705E+00 1.686E+00 1.680E+00 1.681E+00 1.624E+00 1.624E+00 1.709E+00	1.602E-02 1.995E-02 2.414E-02 2.854E-02 3.313E-02 4.277E-02 5.289E-02 6.341E-02	1.721E+00 1.706E+00 1.705E+00 1.709E+00 1.718E+00 1.739E+00 1.762E+00 1.786E+00	4.711E-01 6.171E-01 7.638E-01 9.103E-01 1.056E+00 1.346E+00 1.631E+00 1.913E+00	4.889E-03 6.009E-03 7.161E-03 8.341E-03 9.547E-03 1.202E-02 1.457E-02	4.964E-01 6.626E-01 8.160E-01 9.575E-01 1.088E+00 1.323E+00 1.527E+00 1.709E+00	-0.054 -0.048 -0.044 -0.041 -0.039 -0.035 -0.033 -0.031	0.083 0.075 0.069 0.065 0.061 0.056 0.052 0.049	0.075 0.066 0.060 0.055 0.051 0.046 0.042 0.039
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.735E+00 1.747E+00 1.753E+00 1.768E+00 1.778E+00 1.775E+00 1.810E+00 1.823E+00	7.427E-02 8.541E-02 9.680E-02 1.084E-01 1.202E-01 1.444E-01 1.692E-01	1.809E+00 1.832E+00 1.855E+00 1.877E+00 1.898E+00 1.939E+00 1.979E+00 2.018E+00	2.191E+00 2.466E+00 2.737E+00 3.005E+00 3.270E+00 3.791E+00 4.301E+00 4.802E+00	1.981E-02 2.248E-02 2.517E-02 2.788E-02 3.060E-02 3.607E-02 4.156E-02 4.705E-02	1.872E+00 2.020E+00 2.156E+00 2.282E+00 2.399E+00 2.611E+00 2.801E+00 2.972E+00	-0.030 -0.029 -0.027 -0.026 -0.025 -0.024 -0.022	0.046 0.044 0.043 0.041 0.040 0.037 0.035 0.034	0.037 0.035 0.033 0.032 0.031 0.028 0.027
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.835E+00 1.860E+00 1.879E+00 1.896E+00 1.909E+00 1.931E+00 1.949E+00 1.963E+00	2.202E-01 2.860E-01 3.537E-01 4.226E-01 4.926E-01 6.351E-01 7.799E-01 9.264E-01	2.055E+00 2.146E+00 2.233E+00 2.318E+00 2.402E+00 2.566E+00 2.729E+00 2.890E+00	5.293E+00 6.483E+00 7.625E+00 8.724E+00 9.783E+01 1.180E+01 1.369E+01 1.547E+01	5.252E-02 6.608E-02 7.939E-02 9.240E-02 1.051E-01 1.294E-01 1.523E-01 1.739E-01	3.129E+00 3.473E+00 3.765E+00 4.021E+00 4.247E+00 4.637E+00 4.965E+00 5.247E+00	-0.019 -0.017 -0.014 -0.012 -0.011 -0.008 -0.007 -0.006	0.032 0.029 0.027 0.025 0.023 0.021 0.018 0.017	0.024 0.021 0.019 0.017 0.015 0.012 0.010
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.976E+00 1.986E+00 1.996E+00 2.004E+00 2.012E+00 2.025E+00 2.037E+00 2.047E+00	1.074E+00 1.224E+00 1.374E+00 1.525E+00 1.676E+00 1.982E+00 2.289E+00 2.598E+00	3.050E+00 3.210E+00 3.369E+00 3.529E+00 3.688E+00 4.007E+00 4.326E+00 4.645E+00	1.715E+01 1.875E+01 2.027E+01 2.172E+01 2.310E+01 2.570E+01 2.811E+01 3.034E+01	1.943E-01 2.134E-01 2.316E-01 2.487E-01 2.649E-01 2.949E-01 3.221E-01 3.468E-01	5.495E+00 5.716E+00 5.915E+00 6.097E+00 6.263E+00 6.559E+00 6.817E+00 7.046E+00	-0.005 -0.004 -0.004 -0.003 -0.003 -0.003 -0.002	0.016 0.014 0.014 0.013 0.012 0.011 0.010	0.008 0.007 0.006 0.005 0.005 0.004 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.056E+00 2.075E+00 2.090E+00 2.103E+00 2.114E+00 2.133E+00 2.148E+00 2.160E+00	2.909E+00 3.690E+00 4.476E+00 5.266E+00 6.059E+00 7.652E+00 9.251E+00 1.086E+01	4.965E+00 5.765E+00 6.566E+00 7.369E+00 8.173E+00 9.784E+00 1.140E+01 1.302E+01	3.242E+01 3.709E+01 4.115E+01 4.474E+01 4.796E+01 5.354E+01 5.827E+01 6.238E+01	3.694E-01 4.184E-01 4.590E-01 4.932E-01 5.226E-01 5.707E-01 6.085E-01 6.392E-01	7.251E+00 7.688E+00 8.046E+00 8.350E+00 8.614E+00 9.057E+00 9.419E+00 9.726E+00	-0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000	0.009 0.008 0.007 0.007 0.006 0.006 0.005	0.003 0.002 0.002 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.171E+00 2.181E+00 2.189E+00 2.197E+00 2.204E+00 2.217E+00 2.228E+00 2.237E+00	1.246E+01 1.407E+01 1.569E+01 1.730E+01 1.892E+01 2.216E+01 2.540E+01 2.864E+01	1.464E+01 1.626E+01 1.788E+01 1.950E+01 2.112E+01 2.437E+01 2.763E+01 3.088E+01	6.600E+01 6.924E+01 7.217E+01 7.485E+01 7.731E+01 8.171E+01 8.556E+01 8.898E+01	6.647E-01 6.863E-01 7.048E-01 7.210E-01 7.352E-01 7.591E-01 7.785E-01 7.947E-01	9.991E+00 1.023E+01 1.044E+01 1.063E+01 1.080E+01 1.111E+01 1.137E+01	$ \begin{array}{c} -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \end{array} $	0.005 0.004 0.004 0.004 0.004 0.004 0.004	0.001 0.001 0.000 0.000 0.000 0.000 0.000
000.0000	2.246E+00	3.189E+01	3.414E+01	9.206E+01	8.083E-01	1.182E+01	-0.000	0.003	0.000

ELECTRONS IN BONE, CORTICAL (ICRP)

I = 106.4 eV DENSITY = 1.850E+00 g/cm³

ENERGY	ST COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	COLL	g)/d(l	RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.971E+01 1.663E+01 1.447E+01 1.286E+01 1.161E+01 9.804E+00 8.546E+00 7.618E+00	5.461E-03 5.579E-03 5.664E-03 5.728E-03 5.778E-03 5.853E-03 5.907E-03 5.951E-03	1.972E+01 1.664E+01 1.447E+01 1.287E+01 1.162E+01 9.810E+00 8.552E+00 7.624E+00	2.909E-04 4.295E-04 5.911E-04 7.747E-04 9.795E-04 1.450E-03 1.997E-03 2.618E-03	1.468E-04 1.787E-04 2.095E-04 2.393E-04 2.683E-04 3.242E-04 3.775E-04 4.287E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.214 -0.204 -0.197 -0.191 -0.187 -0.179 -0.174 -0.169	0.248 0.235 0.226 0.218 0.212 0.202 0.195 0.190	0.244 0.232 0.223 0.216 0.210 0.200 0.194 0.188
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.903E+00 6.335E+00 5.872E+00 5.488E+00 5.163E+00 4.643E+00 4.246E+00 3.932E+00	5.989E-03 6.022E-03 6.054E-03 6.084E-03 6.113E-03 6.171E-03 6.230E-03 6.292E-03	6.909E+00 6.341E+00 5.879E+00 5.494E+00 5.169E+00 4.649E+00 4.252E+00 3.939E+00	3.308E-03 4.064E-03 4.884E-03 5.764E-03 6.703E-03 8.748E-03 1.100E-02 1.345E-02	4.781E-04 5.259E-04 5.723E-04 6.175E-04 6.614E-04 7.463E-04 8.276E-04 9.059E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.166 -0.163 -0.160 -0.158 -0.156 -0.152 -0.149 -0.147	0.185 0.181 0.178 0.175 0.172 0.168 0.164 0.161	0.184 0.180 0.177 0.174 0.171 0.167 0.164
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.678E+00 3.215E+00 2.901E+00 2.676E+00 2.507E+00 2.272E+00 2.119E+00 2.011E+00	6.356E-03 6.530E-03 6.719E-03 6.923E-03 7.140E-03 8.129E-03 8.685E-03	3.685E+00 3.221E+00 2.908E+00 2.683E+00 2.514E+00 2.280E+00 2.127E+00 2.020E+00	1.607E-02 2.336E-02 3.155E-02 4.051E-02 5.015E-02 7.111E-02 9.386E-02 1.180E-01	9.814E-04 1.161E-03 1.329E-03 1.489E-03 1.641E-03 1.931E-03 2.206E-03 2.471E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.920E-03	-0.145 -0.141 -0.137 -0.134 -0.132 -0.128 -0.125	0.159 0.154 0.150 0.147 0.144 0.140 0.137	0.158 0.153 0.149 0.146 0.143 0.139 0.136
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.931E+00 1.871E+00 1.825E+00 1.789E+00 1.760E+00 1.718E+00 1.690E+00 1.671E+00	9.276E-03 9.901E-03 1.055E-02 1.124E-02 1.194E-02 1.341E-02 1.495E-02 1.657E-02	1.941E+00 1.881E+00 1.836E+00 1.800E+00 1.772E+00 1.732E+00 1.705E+00 1.688E+00	1.433E-01 1.695E-01 1.964E-01 2.239E-01 2.519E-01 3.090E-01 3.673E-01 4.262E-01	2.730E-03 2.984E-03 3.236E-03 3.487E-03 3.737E-03 4.237E-03 4.740E-03 5.245E-03	3.411E-02 6.200E-02 9.146E-02 1.219E-01 1.531E-01 2.166E-01 2.806E-01 3.442E-01	-0.098 -0.092 -0.087 -0.083 -0.079 -0.073 -0.068 -0.063	0.127 0.122 0.118 0.113 0.110 0.103 0.098 0.093	0.125 0.119 0.114 0.109 0.105 0.098 0.092 0.086
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.658E+00 1.642E+00 1.637E+00 1.639E+00 1.643E+00 1.656E+00 1.670E+00 1.684E+00	1.824E-02 2.267E-02 2.740E-02 3.237E-02 3.755E-02 4.840E-02 5.981E-02 7.165E-02	1.677E+00 1.665E+00 1.665E+00 1.671E+00 1.681E+00 1.704E+00 1.730E+00 1.755E+00	4.857E-01 6.354E-01 7.857E-01 9.356E-01 1.085E+00 1.380E+00 1.671E+00 1.958E+00	5.755E-03 7.052E-03 8.382E-03 9.743E-03 1.113E-02 1.398E-02 1.689E-02 1.987E-02	4.069E-01 5.580E-01 6.994E-01 8.310E-01 9.534E-01 1.174E+00 1.368E+00	-0.060 -0.053 -0.049 -0.045 -0.043 -0.039 -0.036	0.089 0.082 0.076 0.071 0.067 0.061 0.057	0.082 0.073 0.066 0.061 0.057 0.051 0.046
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.697E+00 1.709E+00 1.720E+00 1.731E+00 1.740E+00 1.758E+00 1.773E+00	8.386E-02 9.638E-02 1.092E-01 1.222E-01 1.355E-01 1.626E-01 1.904E-01 2.188E-01	1.781E+00 1.805E+00 1.829E+00 1.853E+00 1.876E+00 1.921E+00 1.964E+00 2.006E+00	2.241E+00 2.520E+00 2.795E+00 3.067E+00 3.335E+00 3.862E+00 4.377E+00 4.880E+00	2.288E-02 2.592E-02 2.898E-02 3.206E-02 3.514E-02 4.133E-02 4.752E-02 5.369E-02	1.697E+00 1.839E+00 1.970E+00 2.091E+00 2.203E+00 2.408E+00 2.591E+00 2.757E+00	-0.033 -0.031 -0.030 -0.029 -0.028 -0.026 -0.025 -0.023	0.051 0.049 0.047 0.045 0.044 0.041 0.039 0.037	0.040 0.038 0.036 0.035 0.033 0.031 0.029 0.028
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.799E+00 1.824E+00 1.844E+00 1.860E+00 1.874E+00 1.897E+00 1.915E+00	2.476E-01 3.214E-01 3.971E-01 4.742E-01 5.525E-01 7.117E-01 8.735E-01 1.037E+00	2.046E+00 2.145E+00 2.241E+00 2.335E+00 2.427E+00 2.609E+00 2.788E+00 2.966E+00	5.374E+00 6.567E+00 7.707E+00 8.800E+00 9.850E+00 1.184E+01 1.369E+01	5.983E-02 7.497E-02 8.974E-02 1.041E-01 1.180E-01 1.446E-01 1.694E-01	2.908E+00 3.241E+00 3.525E+00 3.773E+00 3.994E+00 4.375E+00 4.696E+00 4.973E+00	-0.022 -0.019 -0.016 -0.014 -0.013 -0.010 -0.008 -0.007	0.036 0.032 0.030 0.028 0.026 0.023 0.021 0.019	0.026 0.023 0.020 0.018 0.017 0.014 0.012
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.942E+00 1.952E+00 1.962E+00 1.970E+00 1.978E+00 1.992E+00 2.003E+00 2.013E+00	1.202E+00 1.369E+00 1.537E+00 1.705E+00 1.875E+00 2.215E+00 2.558E+00 2.903E+00	3.144E+00 3.321E+00 3.498E+00 3.676E+00 3.853E+00 4.207E+00 4.561E+00 4.916E+00	1.707E+01 1.861E+01 2.008E+01 2.147E+01 2.280E+01 2.529E+01 2.757E+01 2.968E+01	2.143E-01 2.347E-01 2.538E-01 2.718E-01 2.888E-01 3.199E-01 3.480E-01 3.733E-01	5.217E+00 5.434E+00 5.631E+00 5.810E+00 5.974E+00 6.267E+00 6.523E+00 6.749E+00	-0.006 -0.005 -0.005 -0.004 -0.004 -0.003 -0.003	0.017 0.016 0.015 0.014 0.014 0.013 0.012 0.011	0.009 0.008 0.007 0.006 0.006 0.005 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.022E+00 2.041E+00 2.056E+00 2.069E+00 2.080E+00 2.093E+00 2.113E+00 2.126E+00	3.249E+00 4.120E+00 4.997E+00 5.878E+00 6.762E+00 8.537E+00 1.032E+01 1.211E+01	5.272E+00 6.161E+00 7.053E+00 7.947E+00 8.842E+00 1.064E+01 1.243E+01 1.423E+01	3.164E+01 3.602E+01 3.981E+01 4.315E+01 4.613E+01 5.128E+01 5.563E+01 5.938E+01	3.964E-01 4.459E-01 4.865E-01 5.205E-01 5.495E-01 5.966E-01 6.333E-01 6.630E-01	6.953E+00 7.387E+00 7.743E+00 8.046E+00 8.309E+00 9.111E+00 9.417E+00	-0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000	0.010 0.009 0.008 0.008 0.007 0.007 0.006 0.006	0.003 0.003 0.002 0.002 0.002 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.136E+00 2.146E+00 2.154E+00 2.162E+00 2.169E+00 2.181E+00 2.192E+00 2.202E+00	1.390E+01 1.569E+01 1.749E+01 1.929E+01 2.109E+01 2.470E+01 2.831E+01 3.192E+01	1.604E+01 1.784E+01 1.964E+01 2.145E+01 2.326E+01 2.688E+01 3.050E+01 3.412E+01	6.269E+01 6.564E+01 6.831E+01 7.075E+01 7.299E+01 7.698E+01 8.047E+01 8.357E+01	6.875E-01 7.081E-01 7.258E-01 7.412E-01 7.547E-01 7.773E-01 7.956E-01 8.108E-01	9.683E+00 9.917E+00 1.013E+01 1.032E+01 1.049E+01 1.080E+01 1.107E+01	$ \begin{array}{c} -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \end{array} $	0.005 0.005 0.005 0.005 0.005 0.004 0.004	0.001 0.001 0.001 0.001 0.000 0.000 0.000
1000.0000	2.210E+00	3.553E+01	3.774E+01	8.636E+01	8.235E-01	1.151E+01	-0.000	0.004	0.000

ELECTRONS IN C-552 AIR-EQUIVALENT PLASTIC

I = 86.8 eV DENSITY = $1.760E+00 \text{ g/cm}^3$

ENERGY	5.7	OPPING POWE	D	CSDA	RADIATION	DENS.EFF.	dClo	g)/d(1	(Inc
	COLLISION	RADIATIVE	TOTAL	RANGE	YIELD	CORR. (DELTA)	COLL	CSDA RANGE	RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²	1 0665-06	0.0	-0.205	0.235	0.233
0.0100 0.0125 0.0150	1.972E+01 1.660E+01 1.442E+01	3.767E-03 3.794E-03 3.812E-03	1.972E+01 1.661E+01 1.443E+01	2.890E-04 4.277E-04 5.897E-04	1.046E-04 1.257E-04 1.458E-04	0.0	-0.196 -0.189	0.224	0.222
0.0175	1.281E+01 1.156E+01	3.824E-03 3.834E-03	1.281E+01 1.156E+01	7.739E-04 9.797E-04	1.652E-04 1.839E-04	0.0	-0.184 -0.180	0.208	0.207
0.0250 0.0300 0.0350	9.741E+00 8.482E+00 7.554E+00	3.848E-03 3.860E-03 3.871E-03	9.745E+00 8.486E+00 7.558E+00	1.453E-03 2.004E-03 2.630E-03	2.199E-04 2.541E-04 2.869E-04	0.0 0.0 0.0	-0.173 -0.168 -0.164	0.194 0.188 0.182	0.193 0.187 0.182
0.0400	6.841E+00	3.883E-03	6.845E+00	3.326E-03	3.185E-04	0.0	-0.160	0.178	0.178
0.0450 0.0500 0.0550	6.274E+00 5.813E+00 5.429E+00	3.896E-03 3.909E-03 3.924E-03	6.278E+00 5.816E+00 5.433E+00	4.090E-03 4.918E-03 5.809E-03	3.491E-04 3.789E-04 4.078E-04	0.0 0.0 0.0	-0.158 -0.155 -0.153	0.174 0.171 0.169	0.174 0.171 0.168
0.0600	5.106E+00 4.589E+00	3.939E-03 3.973E-03	5.110E+00 4.593E+00	6.758E-03 8.827E-03	4.360E-04 4.907E-04	0.0	-0.151 -0.148	0.166	0.166
0.0800	4.194E+00 3.882E+00	4.010E-03 4.050E-03	4.198E+00 3.886E+00	1.111E-02 1.359E-02	5.431E-04 5.938E-04	0.0	-0.145 -0.143	0.159	0.159
0.1000 0.1250	3.630E+00 3.170E+00	4.093E-03 4.214E-03	3.634E+00 3.174E+00	1.625E-02 2.364E-02	6.429E-04 7.599E-04	0.0	-0.141 -0.137	0.154	0.153
0.1500 0.1750 0.2000	2.859E+00 2.635E+00 2.468E+00	4.347E-03 4.490E-03 4.643E-03	2.863E+00 2.640E+00 2.473E+00	3.196E-02 4.107E-02 5.086E-02	8.705E-04 9.762E-04 1.078E-03	0.0 0.0 0.0	-0.133 -0.131 -0.129	0.145 0.142 0.140	0.145 0.142 0.139
0.2500 0.3000	2.235E+00 2.083E+00	4.974E-03 5.336E-03	2.240E+00 2.088E+00	7.218E-02 9.535E-02	1.272E-03 1.458E-03	0.0	-0.125 -0.122	0.136 0.133	0.135
0.3500	1.977E+00 1.899E+00	5.723E-03 6.134E-03	1.983E+00 1.906E+00	1.200E-01 1.457E-01	1.639E-03 1.815E-03	0.0 1.229E-02	-0.121	0.130	0.129
0.4500 0.5000	1.840E+00 1.794E+00	6.567E-03 7.020E-03	1.847E+00 1.801E+00	1.724E-01 1.998E-01	1.990E-03 2.164E-03	3.896E-02 6.802E-02	-0.091 -0.085	0.122	0.119
0.5500 0.6000 0.7000	1.758E+00 1.729E+00 1.687E+00	7.491E-03 7.977E-03 8.995E-03	1.765E+00 1.737E+00 1.696E+00	2.279E-01 2.564E-01 3.147E-01	2.337E-03 2.510E-03 2.858E-03	9.881E-02 1.308E-01 1.972E-01	-0.080 -0.076 -0.069	0.113 0.109 0.102	0.109 0.104 0.096
0.8000	1.659E+00 1.639E+00	1.006E-02 1.118E-02	1.669E+00 1.650E+00	3.742E-01 4.345E-01	3.209E-03 3.564E-03	2.651E-01 3.331E-01	-0.063 -0.059	0.096	0.089
1.0000	1.626E+00 1.608E+00	1.234E-02 1.542E-02	1.638E+00 1.623E+00	4.953E-01 6.488E-01	3.923E-03 4.840E-03	4.005E-01 5.636E-01	-0.055 -0.048	0.087	0.079
1.5000 1.7500	1.602E+00 1.602E+00	1.871E-02 2.218E-02	1.620E+00 1.624E+00	8.030E-01 9.572E-01	5.787E-03 6.760E-03	7.168E-01 8.594E-01	-0.043 -0.040	0.072	0.062
2.0000 2.5000 3.0000	1.605E+00 1.615E+00 1.627E+00	2.581E-02 3.342E-02 4.144E-02	1.630E+00 1.648E+00 1.668E+00	1.111E+00 1.416E+00 1.717E+00	7.758E-03 9.814E-03 1.194E-02	9.920E-01 1.231E+00 1.441E÷00	-0.037 -0.034 -0.031	0.063 0.057 0.052	0.052 0.045 0.041
3.5000 4.0000	1.639E+00 1.650E+00	4.978E-02 5.840E-02	1.689E+00 1.709E+00	2.015E+00	1.411E-02 1.632E-02	1.627E+00 1.794E+00	-0.029	0.049	0.038
4.5000 5.0000	1.661E+00 1.671E+00	6.726E-02 7.633E-02	1.729E+00 1.748E+00	2.310E+00 2.601E+00 2.888E+00	1.857E-02 2.084E-02	1.947E+00 2.086E+00	-0.027 -0.026	0.044	0.033
5.5000 6.0000 7.0000	1.681E+00 1.690E+00 1.705E+00	8.559E-02 9.501E-02 1.143E-01	1.766E+00 1.785E+00 1.320E+00	3.173E+00 3.454E+00 4.009E+00	2.314E-02 2.544E-02 3.010E-02	2.215E+00 2.335E+00 2.552E+00	-0.025 -0.024	0.041	0.030
8.0000 9.0000	1.719E+00 1.731E+00	1.341E-01 1.543E-01	1.853E+00 1.886E+00	4.554E+00 5.089E+00	3.478E-02 3.948E-02	2.745E+00 2.920E+00	-0.022 -0.021 -0.020	0.037 0.035 0.033	0.027 0.025 0.024
10.0000	1.742E+00 1.765E+00	1.748E-01 2.275E-01	1.917E+00 1.993E+00	5.614E+00 6.893E+00	4.419E-02 5.590E-02	3.080E+00 3.428E+00	-0.018	0.032	0.023
15.0000	1.783E+00 1.799E+00	2.817E-01 3.370E-01	2.065E+00 2.135E+00	8.125E+00 9.316E+00	6.748E-02 7.886E-02	3.724E+00 3.981E+00	-0.014 -0.012	0.026	0.018
20.0000 25.0000 30.0000	1.811E+00 1.832E+00 1.848E+00	3.931E-01 5.073E-01 6.235E-01	2.204E+00 2.339E+00 2.472E+00	1.047E+01 1.267E+01 1.475E+01	9.002E-02 1.116E-01 1.321E-01	4.210E+00 4.602E+00 4.932E+00	-0.010 -0.008 -0.006	0.023 0.020 0.018	0.014 0.012 0.010
35.0000	1.862E+00	7.412E-01	2.603E+00	1.672E+01	1.516E-01	5.216E+00	-0.005	0.016	0.008
40.0000 45.0000 50.0000	1.873E+00 1.883E+00 1.892E+00	8.601E-01 9.799E-01 1.101E+00	2.733E+00 2.863E+00 2.992E+00	1.859E+01 2.038E+01 2.209E+01	1.702E-01 1.878E-01 2.045E-01	5.466E+00 5.689E+00 5.890E+00	-0.004 -0.003 -0.003	0.015 0.014 0.013	0.007 0.006 0.006
55.0000	1.900E+00 1.907E+00	1.222E+00 1.344E+00	3.122E+00 3.251E+00	2.372E+01 2.529E+01	2.204E-01 2.356E-01	6.073E+00 6.241E+00	-0.002 -0.002	0.012	0.005
70.0000 80.0000 90.0000	1.919E+00 1.930E+00 1.939E+00	1.589E+00 1.836E+00 2.085E+00	3.509E+00 3.766E+00 4.024E+00	2.825E+01 3.100E+01 3.357E+01	2.639E-01 2.898E-01 3.135E-01	6.540E+00 6.801E+00 7.032E+00	-0.002 -0.001 -0.001	0.010 0.010 0.009	0.004 0.003 0.003
100.0000	1.948E+00 1.965E+00	2.335E+00 2.962E+00	4.282E+00 4.928E+00	3.598E+01 4.142E+01	3.353E-01 3.831E-01	7.239E+00 7.680E+00	-0.001 -0.001	0.008	0.002
150.0000 175.0000	1.979E+00 1.991E+00	3.595E+00 4.230E+00	5.574E+00 6.222E+00	4.619E+01 5.043E+01	4.233E-01 4.575E-01	8.042E+00 8.348E+00	-0.000	0.007	0.001
200.0000 250.0000 300.0000	2.002E+00 2.019E+00 2.033E+00	4.869E+00 6.151E+00 7.438E+00	6.870E+00 8.169E+00 9.471E+00	5.425E+01 6.092E+01	4.872E-01 5.361E-01 5.751E-01	8.613E+00 9.058E+00	-0.000	0.006	0.001
350.0000	2.045E+00	8.730E+00	1.077E+01	6.660E+01 7.154E+01	6.070E-01	9.421E+00 9.729E+00	-0.000	0.005	0.001
400.0000 450.0000 500.0000	2.055E+00 2.064E+00 2.072E+00	1.002E+01 1.132E+01 1.262E+01	1.208E+01 1.339E+01 1.469E+01	7.592E+01 7.985E+01 8.342E+01	6.337E-01 6.564E-01 6.760E-01	9.995E+00 1.023E+01 1.044E+01	-0.000 -0.000 -0.000	0.004 0.004 0.004	0.000 0.000 0.000
550.0000 600.0000	2.080E+00 2.086E+00	1.392E+01 1.522E+01	1.600E+01 1.731E+01	8.668E+01 8.968E+01	6.931E-01 7.083E-01	1.063E+01 1.080E+01	-0.000 -0.000	0.004	0.000
700.0000 800.0000 900.0000	2.098E+00 2.108E+00 2.117E+00	1.783E+01 2.044E+01 2.305E+01	1.993E+01 2.255E+01 2.517E+01	9.506E+01 9.978E+01 1.040E+02	7.339E-01 7.548E-01 7.722E-01	1.111E+01 1.138E+01 1.161E+01	-0.000 -0.000 -0.000	0.003 0.003 0.003	0.000 0.000 0.000
000.0000	2.126E+00	2.567E+01	2.779E+01	1.078E+02	7.869E-01	1.183E+01	-0.000	0.003	0.000

ELECTRONS IN CALCIUM FLUORIDE

I = 166.0 eV DENSITY = $3.180E+00 \text{ g/cm}^3$

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²					
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.666E+01 1.412E+01 1.233E+01 1.099E+01 9.945E+00 8.424E+00 7.363E+00 6.577E+00	7.284E-03 7.499E-03 7.657E-03 7.778E-03 7.874E-03 8.016E-03 8.118E-03 8.197E-03	1.667E+01 1.413E+01 1.233E+01 1.099E+01 9.953E+00 8.432E+00 7.371E+00 6.585E+00	3.503E-04 5.139E-04 7.039E-04 9.190E-04 1.158E-03 1.706E-03 2.343E-03 3.062E-03	2.300E-04 2.809E-04 3.301E-04 3.778E-04 4.243E-04 5.138E-04 5.993E-04 6.813E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.236 -0.224 -0.216 -0.209 -0.203 -0.195 -0.188 -0.183	0.281 0.265 0.253 0.243 0.235 0.224 0.215 0.208	0.275 0.259 0.248 0.239 0.231 0.220 0.212
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	5.970E+00 5.487E+00 5.093E+00 4.764E+00 4.86E+00 4.041E+00 3.701E+00 3.432E+00	8.263E-03 8.319E-03 8.370E-03 8.416E-03 8.453E-03 8.541E-03 8.621E-03 8.704E-03	5.979E+00 5.495E+00 5.101E+00 4.773E+00 4.495E+00 4.050E+00 3.709E+00 3.440E+00	3.860E-03 4.733E-03 5.678E-03 6.693E-03 7.773E-03 1.012E-02 1.271E-02	7.604E-04 8.368E-04 9.109E-04 9.829E-04 1.053E-03 1.188E-03 1.316E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.179 -0.175 -0.172 -0.170 -0.167 -0.163 -0.160 -0.157	0.202 0.198 0.194 0.190 0.187 0.182 0.178	0.200 0.196 0.192 0.189 0.186 0.181 0.177
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.213E+00 2.814E+00 2.544E+00 2.349E+00 2.203E+00 2.000E+00 1.867E+00 1.774E+00	8.788E-03 9.016E-03 9.265E-03 9.534E-03 9.821E-03 1.045E-02 1.113E-02	3.222E+00 2.823E+00 2.553E+00 2.359E+00 2.213E+00 2.011E+00 1.878E+00 1.786E+00	1.851E-02 2.684E-02 3.617E-02 4.638E-02 5.733E-02 8.111E-02 1.069E-01 1.342E-01	1.559E-03 1.840E-03 2.102E-03 2.350E-03 2.586E-03 3.033E-03 3.455E-03 3.859E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.037E-03 1.737E-02	-0.155 -0.150 -0.146 -0.143 -0.140 -0.136 -0.125 -0.119	0.171 0.165 0.161 0.157 0.154 0.149 0.145	0.170 0.164 0.160 0.156 0.153 0.148 0.143
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.706E+00 1.656E+00 1.617E+00 1.587E+00 1.563E+00 1.528E+00 1.506E+00 1.491E+00	1.266E-02 1.348E-02 1.435E-02 1.525E-02 1.618E-02 1.812E-02 2.016E-02 2.229E-02	1.719E+00 1.669E+00 1.631E+00 1.602E+00 1.579E+00 1.547E+00 1.526E+00 1.513E+00	1.628E-01 1.923E-01 2.226E-01 2.536E-01 2.850E-01 3.491E-01 4.142E-01 4.800E-01	4.252E-03 4.638E-03 5.017E-03 5.394E-03 5.768E-03 6.512E-03 7.256E-03 8.002E-03	3.256E-02 5.026E-02 7.003E-02 9.144E-02 1.141E-01 1.623E-01 2.128E-01 2.645E-01	-0.113 -0.107 -0.103 -0.098 -0.094 -0.087 -0.081 -0.076	0.135 0.131 0.128 0.124 0.121 0.115 0.110	0.133 0.129 0.125 0.121 0.117 0.110 0.104 0.099
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.481E+00 1.470E+00 1.468E+00 1.471E+00 1.477E+00 1.491E+00 1.506E+00 1.520E+00	2.450E-02 3.034E-02 3.658E-02 4.313E-02 4.995E-02 6.423E-02 7.922E-02 9.476E-02	1.505E+00 1.500E+00 1.505E+00 1.515E+00 1.527E+00 1.555E+00 1.585E+00 1.615E+00	5.463E-01 7.128E-01 8.793E-01 1.045E+00 1.209E+00 1.534E+00 1.852E+00 2.165E+00	8.752E-03 1.065E-02 1.258E-02 1.456E-02 1.656E-02 2.065E-02 2.481E-02 2.903E-02	3.167E-01 4.459E-01 5.700E-01 6.875E-01 7.980E-01 9.994E-01 1.178E+00 1.338E+00	-0.072 -0.064 -0.059 -0.054 -0.051 -0.047 -0.044	0.102 0.093 0.087 0.082 0.078 0.071 0.066 0.063	0.095 0.085 0.078 0.072 0.067 0.060 0.055
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.533E+00 1.545E+00 1.557E+00 1.567E+00 1.577E+00 1.594E+00 1.610E+00 1.623E+00	1.108E-01 1.272E-01 1.439E-01 1.610E-01 1.783E-01 2.137E-01 2.499E-01 2.868E-01	1.644E+00 1.673E+00 1.701E+00 1.728E+00 1.755E+00 1.808E+00 1.859E+00 1.910E+00	2.472E+00 2.773E+00 3.070E+00 3.361E+00 3.649E+00 4.210E+00 4.755E+00 5.286E+00	3.328E-02 3.755E-02 4.183E-02 4.611E-02 5.038E-02 5.889E-02 6.732E-02 7.566E-02	1.482E+00 1.614E+00 1.735E+00 1.848E+00 1.953E+00 2.144E+00 2.316E+00 2.472E+00	-0.039 -0.038 -0.037 -0.035 -0.034 -0.032 -0.030 -0.028	0.060 0.057 0.055 0.053 0.051 0.048 0.046	0.048 0.045 0.043 0.041 0.040 0.037 0.035 0.033
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.635E+00 1.660E+00 1.679E+00 1.695E+00 1.709E+00 1.731E+00 1.748E+00 1.762E+00	3.243E-01 4.199E-01 5.180E-01 6.177E-01 7.189E-01 9.243E-01 1.133E+00 1.344E+00	1.959E+00 2.079E+00 2.197E+00 2.313E+00 2.428E+00 2.655E+00 2.881E+00 3.106E+00	5.803E+00 7.041E+00 8.210E+00 9.319E+00 1.037E+01 1.234E+01 1.415E+01 1.582E+01	8.388E-02 1.039E-01 1.231E-01 1.415E-01 1.590E-01 1.917E-01 2.217E-01 2.491E-01	2.615E+00 2.931E+00 3.203E+00 3.442E+00 3.656E+00 4.026E+00 4.338E+00 4.609E+00	-0.027 -0.023 -0.020 -0.018 -0.016 -0.013 -0.011	0.042 0.038 0.035 0.033 0.031 0.027 0.025 0.023	0.031 0.027 0.024 0.022 0.019 0.016 0.014 0.012
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.774E+00 1.784E+00 1.793E+00 1.802E+00 1.809E+00 1.822E+00 1.833E+00 1.843E+00	1.557E+00 1.771E+00 1.987E+00 2.204E+00 2.422E+00 2.860E+00 3.301E+00 3.744E+00	3.331E+00 3.555E+00 3.780E+00 4.005E+00 4.231E+00 4.682E+00 5.134E+00 5.587E+00	1.738E+01 1.883E+01 2.019E+01 2.148E+01 2.269E+01 2.494E+01 2.698E+01 2.884E+01	2.742E-01 2.974E-01 3.189E-01 3.388E-01 3.574E-01 3.909E-01 4.205E-01 4.468E-01	4.848E+00 5.061E+00 5.253E+00 5.429E+00 5.590E+00 5.878E+00 6.130E+00 6.353E+00	-0.008 -0.007 -0.007 -0.006 -0.006 -0.005 -0.004	0.021 0.020 0.019 0.018 0.017 0.016 0.015 0.014	0.010 0.009 0.008 0.007 0.007 0.006 0.005 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.851E+00 1.869E+00 1.884E+00 1.896E+00 1.906E+00 1.923E+00 1.937E+00	4.189E+00 5.308E+00 6.434E+00 7.565E+00 8.699E+00 1.098E+01 1.326E+01	6.040E+00 7.177E+00 8.317E+00 9.460E+00 1.061E+01 1.290E+01 1.520E+01 1.750E+01	3.056E+01 3.436E+01 3.759E+01 4.041E+01 4.290E+01 4.717E+01 5.074E+01 5.380E+01	4.703E-01 5.198E-01 5.594E-01 5.919E-01 6.192E-01 6.627E-01 6.959E-01 7.224E-01	6.554E+00 6.983E+00 7.336E+00 7.636E+00 7.898E+00 8.337E+00 8.697E+00 9.003E+00	-0.003 -0.003 -0.002 -0.002 -0.001 -0.001 -0.001	0.013 0.012 0.011 0.010 0.009 0.009 0.008 0.008	0.004 0.003 0.003 0.002 0.002 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.959E+00 1.968E+00 1.976E+00 1.983E+00 1.990E+00 2.001E+00 2.011E+00 2.020E+00	1.785E+01 2.015E+01 2.246E+01 2.476E+01 2.707E+01 3.169E+01 3.631E+01 4.094E+01	1.981E+01 2.212E+01 2.443E+01 2.675E+01 2.906E+01 3.369E+01 4.296E+01	5.648E+01 5.887E+01 6.102E+01 6.297E+01 6.477E+01 6.796E+01 7.074E+01 7.320E+01	7.440E-01 7.620E-01 7.773E-01 7.905E-01 8.021E-01 8.212E-01 8.366E-01 8.492E-01	9.268E+00 9.502E+00 9.712E+00 9.902E+00 1.008E+01 1.038E+01 1.088E+01	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.007 0.007 0.007 0.006 0.006 0.006 0.006	0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000
1000.0000	2.028E+00	4.557E+01	4.760E+01	7.542E+01	8.598E-01	1.109E+01	-0.000	0.005	0.000

ELECTRONS IN CARBON DIOXIDE

I = 85.0 eV DENSITY = 1.842E-03 g/cm³ (200°C)

ENERGY	ST	OPPING POWE	R	CSDA	RADIATION	DENS.EFF.		g)/d(l	
MeV	COLLISION MeV cm ² /g	RADIATIVE MeV cm ² /q	TOTAL MeV cm ² /g	RANGE g/cm ²	YIELD	CORR. (DELTA)	LOSS	CSDA RANGE	RAD YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0350	1.981E+01 1.668E+01 1.449E+01 1.286E+01 1.160E+01 9.780E+00 8.515E+00 7.583E+00	3.962E-03 3.988E-03 4.003E-03 4.012E-03 4.019E-03 4.029E-03 4.039E-03 4.048E-03	1.982E+01 1.668E+01 1.449E+01 1.287E+01 1.161E+01 9.784E+00 8.519E+00 7.587E+00	2.874E-04 4.255E-04 5.868E-04 7.703E-04 9.752E-04 1.446E-03 1.996E-03 2.619E-03	1.096E-04 1.316E-04 1.526E-04 1.728E-04 1.924E-04 2.298E-04 2.654E-04 2.994E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.204 -0.195 -0.189 -0.183 -0.179 -0.172 -0.167 -0.163	0.234 0.223 0.214 0.207 0.202 0.193 0.187 0.182	0.232 0.221 0.213 0.206 0.201 0.192 0.186 0.181
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.866E+00 6.297E+00 5.834E+00 5.449E+00 5.124E+00 4.605E+00 4.208E+00 3.895E+00	4.059E-03 4.072E-03 4.085E-03 4.100E-03 4.116E-03 4.152E-03 4.192E-03 4.235E-03	6.870E+00 6.301E+00 5.838E+00 5.453E+00 5.128E+00 4.609E+00 4.212E+00 3.900E+00	3.313E-03 4.074E-03 4.899E-03 5.786E-03 6.732E-03 8.793E-03 1.107E-02 1.354E-02	3.323E-04 3.641E-04 3.950E-04 4.251E-04 4.545E-04 5.113E-04 5.659E-04 6.187E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.160 -0.157 -0.155 -0.152 -0.151 -0.147 -0.145	0.177 0.174 0.171 0.168 0.166 0.162 0.158 0.156	0.177 0.173 0.170 0.168 0.165 0.161 0.158 0.155
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	3.642E+00 3.180E+00 2.868E+00 2.644E+00 2.476E+00 2.242E+00 2.089E+00 1.983E+00	4.282E-03 4.409E-03 4.548E-03 4.697E-03 4.855E-03 5.196E-03 5.570E-03 5.970E-03	3.646E+00 3.184E+00 2.873E+00 2.648E+00 2.480E+00 2.247E+00 2.094E+00 1.989E+00	1.619E-02 2.356E-02 3.184E-02 4.092E-02 5.069E-02 7.194E-02 9.504E-02 1.196E-01	6.698E-04 7.920E-04 9.074E-04 1.018E-03 1.124E-03 1.326E-03 1.520E-03 1.707E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.140 -0.136 -0.133 -0.131 -0.128 -0.125 -0.122	0.153 0.149 0.145 0.142 0.139 0.136 0.132 0.130	0.153 0.148 0.144 0.141 0.139 0.135 0.132 0.129
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.906E+00 1.849E+00 1.806E+00 1.773E+00 1.747E+00 1.710E+00 1.687E+00 1.673E+00	6.397E-03 6.847E-03 7.319E-03 7.810E-03 8.318E-03 9.381E-03 1.050E-02 1.167E-02	1.913E+00 1.856E+00 1.813E+00 1.781E+00 1.755E+00 1.719E+00 1.698E+00 1.685E+00	1.452E-01 1.718E-01 1.991E-01 2.269E-01 2.552E-01 3.128E-01 3.714E-01 4.305E-01	1.890E-03 2.071E-03 2.250E-03 2.428E-03 2.606E-03 2.962E-03 3.319E-03 3.678E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.118 -0.116 -0.114 -0.113 -0.112 -0.109 -0.107 -0.106	0.128 0.126 0.125 0.123 0.122 0.120 0.118 0.116	0.127 0.125 0.123 0.121 0.120 0.117 0.115 0.113
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.665E+00 1.659E+00 1.664E+00 1.675E+00 1.588E+00 1.716E+00 1.744E+00	1.288E-02 1.609E-02 1.952E-02 2.314E-02 2.690E-02 3.482E-02 4.315E-02 5.181E-02	1.677E+00 1.675E+00 1.684E+00 1.698E+00 1.715E+00 1.7551E+00 1.787E+00 1.822E+00	4.900E-01 6.393E-01 7.882E-01 9.361E-01 1.083E+00 1.371E+00 1.654E+00 1.931E+00	4.041E-03 4.960E-03 5.899E-03 6.857E-03 7.831E-03 9.821E-03 1.185E-02 1.392E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.104 -0.101 -0.099 -0.097 -0.095 -0.092 -0.090 -0.088	0.115 0.112 0.109 0.107 0.105 0.103 0.100 0.098	0.112 0.108 0.105 0.103 0.101 0.098 0.095 0.093
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.794E+00 1.816E+00 1.837E+00 1.856E+00 1.874E+00 1.906E+00 1.935E+00	6.077E-02 6.996E-02 7.938E-02 8.899E-02 9.877E-02 1.188E-01 1.394E-01	1.855E+00 1.886E+00 1.916E+00 1.945E+00 1.973E+00 2.025E+00 2.074E+00 2.121E+00	2.203E+00 2.470E+00 2.733E+00 2.992E+00 3.247E+00 3.748E+00 4.236E+00 4.712E+00	1.600E-02 1.810E-02 2.022E-02 2.234E-02 2.448E-02 2.875E-02 3.302E-02 3.729E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.087 -0.086 -0.084 -0.083 -0.083 -0.081 -0.080 -0.079	0.097 0.095 0.094 0.093 0.092 0.090 0.088 0.087	0.091 0.089 0.088 0.086 0.085 0.083 0.081
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.983E+00 2.033E+00 2.074E+00 2.108E+00 2.139E+00 2.187E+00 2.222E+00 2.249E+00	1.817E-01 2.366E-01 2.930E-01 3.506E-01 4.091E-01 5.281E-01 6.493E-01 7.719E-01	2.165E+00 2.269E+00 2.367E+00 2.459E+00 2.548E+00 2.715E+00 2.872E+00 3.021E+00	5.179E+00 6.306E+00 7.385E+00 8.421E+00 9.420E+00 1.132E+01 1.311E+01	4.154E-02 5.206E-02 6.240E-02 7.252E-02 8.241E-02 1.015E-01 1.196E-01 1.370E-01	0.0 0.0 0.0 0.0 0.0 0.0 2.736E-02 1.133E-01 2.215E-01	-0.078 -0.076 -0.074 -0.073 -0.072 -0.059 -0.048 -0.041	0.085 0.082 0.080 0.078 0.076 0.073 0.068 0.065	0.078 0.075 0.072 0.070 0.068 0.063 0.057
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.271E+00 2.289E+00 2.305E+00 2.319E+00 2.331E+00 2.352E+00 2.369E+00 2.384E+00	8.958E-01 1.021E+00 1.146E+00 1.273E+00 1.400E+00 1.656E+00 1.913E+00 2.172E+00	3.167E+00 3.310E+00 3.451E+00 3.591E+00 3.731E+00 4.007E+00 4.282E+00 4.557E+00	1.642E+01 1.797E+01 1.945E+01 2.087E+01 2.223E+01 2.482E+01 2.723E+01 2.949E+01	1.535E-01 1.693E-01 1.844E-01 1.989E-01 2.127E-01 2.387E-01 2.627E-01 2.848E-01	3.361E-01 4.504E-01 5.614E-01 6.680E-01 7.697E-01 9.585E-01 1.130E+00 1.285E+00	-0.036 -0.033 -0.030 -0.028 -0.026 -0.024 -0.022	0.061 0.058 0.055 0.053 0.050 0.047 0.044 0.041	0.046 0.042 0.038 0.035 0.033 0.029 0.025 0.023
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.398E+00 2.425E+00 2.447E+00 2.466E+00 2.481E+00 2.507E+00 2.527E+00 2.544E+00	2.432E+00 3.087E+00 3.745E+00 4.408E+00 5.072E+00 6.408E+00 7.749E+00 9.094E+00	4.830E+00 5.512E+00 6.193E+00 6.873E+00 7.554E+00 8.914E+00 1.028E+01 1.164E+01	3.163E+01 3.647E+01 4.074E+01 4.457E+01 4.804E+01 5.413E+01 5.935E+01 6.392E+01	3.054E-01 3.509E-01 3.896E-01 4.230E-01 4.523E-01 5.011E-01 5.404E-01 5.730E-01	1.427E+00 1.737E+00 1.996E+00 2.220E+00 2.417E+00 2.752E+00 3.032E+00 3.274E+00	-0.020 -0.019 -0.018 -0.017 -0.016 -0.015 -0.014	0.039 0.035 0.032 0.030 0.028 0.026 0.024 0.022	0.021 0.017 0.015 0.013 0.012 0.010 0.008 0.007
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.559E+00 2.571E+00 2.582E+00 2.591E+00 2.600E+00 2.615E+00 2.627E+00 2.638E+00	1.044E+01 1.179E+01 1.315E+01 1.450E+01 1.586E+01 1.857E+01 2.129E+01 2.401E+01	1.300E+01 1.436E+01 1.573E+01 1.709E+01 1.846E+01 2.118E+01 2.392E+01 2.665E+01	6.798E+01 7.164E+01 7.496E+01 7.801E+01 8.083E+01 8.588E+01 9.032E+01 9.428E+01	6.004E-01 6.240E-01 6.445E-01 6.624E-01 7.055E-01 7.278E-01 7.465E-01	3.489E+00 3.681E+00 3.857E+00 4.018E+00 4.168E+00 4.438E+00 4.677E+00 4.891E+00	-0.011 -0.010 -0.010 -0.009 -0.008 -0.007 -0.006 -0.005	0.021 0.020 0.019 0.019 0.018 0.017 0.016	0.007 0.006 0.005 0.005 0.005 0.004 0.003
000.0000	2.647E+00	2.673E+01	2.938E+01	9.785E+01	7.624E-01	5.086E+00	-0.004	0.015	0.003

ELECTRONS IN CELLULOSE NITRATE

I = 87.0 eV DEMSITY = 1.490E+00 g/cm^3

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	d(lo	g)/d(l CSDA	ogI) RAD
MeV	MeV cm ² /q	MeV cm ² /q		g/cm²	11000	(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.028E+01 1.708E+01 1.484E+01 1.317E+01 1.189E+01 1.002E+01 8.725E+00 7.771E+00	3.800E-03 3.824E-03 3.837E-03 3.847E-03 3.853E-03 3.863E-03 3.872E-03 3.882E-03	2.029E+01 1.708E+01 1.484E+01 1.318E+01 1.189E+01 1.002E+01 8.729E+00 7.775E+00	2.809E-04 4.158E-04 5.733E-04 7.524E-04 9.524E-04 1.412E-03 1.949E-03 2.557E-03	1.029E-04 1.234E-04 1.431E-04 1.620E-04 1.802E-04 2.152E-04 2.485E-04 2.803E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.205 -0.196 -0.189 -0.184 -0.180 -0.173 -0.168 -0.164	0.236 0.224 0.215 0.209 0.203 0.194 0.188 0.182	0.234 0.222 0.214 0.207 0.202 0.193 0.187 0.182
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800	7.037E+00 6.454E+00 5.930E+00 5.585E+00 5.252E+00 4.721E+00 4.314E+00 3.994E+00	3.893E-03 3.906E-03 3.919E-03 3.934E-03 3.950E-03 3.985E-03 4.024E-03 4.066E-03	7.041E+00 6.458E+00 5.984E+00 5.589E+00 5.256E+00 4.725E+00 4.318E+00 3.998E+00	3.234E-03 3.976E-03 4.781E-03 5.647E-03 6.570E-03 8.580E-03 1.080E-02 1.321E-02	3.111E-04 3.409E-04 3.698E-04 4.254E-04 4.786E-04 5.298E-04 5.792E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.160 -0.158 -0.155 -0.153 -0.151 -0.148 -0.145 -0.143	0.178 0.175 0.171 0.169 0.166 0.162 0.159 0.156	0.178 0.174 0.171 0.168 0.166 0.162 0.159 0.156
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	3.734E+00 3.261E+00 2.941E+00 2.711E+00 2.539E+00 2.299E+00 2.143E+00 2.034E+00	4.111E-03 4.235E-03 4.370E-03 4.515E-03 4.669E-03 4.999E-03 5.361E-03 5.749E-03	3.739E+00 3.265E+00 2.945E+00 2.716E+00 2.544E+00 2.304E+00 2.148E+00 2.040E+00	1.580E-02 2.298E-02 3.106E-02 3.992E-02 4.944E-02 7.016E-02 9.268E-02 1.166E-01	6.271E-04 7.416E-04 8.499E-04 9.533E-04 1.053E-03 1.243E-03 1.425E-03 1.601E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.141 -0.137 -0.134 -0.131 -0.129 -0.125 -0.122	0.154 0.149 0.145 0.142 0.140 0.136 0.133	0.154 0.149 0.145 0.142 0.139 0.135 0.132
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.956E+00 1.896E+00 1.850E+00 1.813E+00 1.783E+00 1.741E+00 1.712E+00 1.692E+00	6.162E-03 6.597E-03 7.054E-03 7.530E-03 8.022E-03 9.050E-03 1.013E-02	1.962E+00 1.903E+00 1.857E+00 1.820E+00 1.792E+00 1.750E+00 1.722E+00	1.416E-01 1.675E-01 1.941E-01 2.213E-01 2.490E-01 3.056E-01 3.632E-01 4.216E-01	1.773E-03 1.943E-03 2.112E-03 2.281E-03 2.449E-03 2.789E-03 3.131E-03 3.477E-03	0.0 8.343E-03 3.198E-02 5.810E-02 8.611E-02 1.460E-01 2.090E-01 2.734E-01	-0.118 -0.096 -0.091 -0.085 -0.080 -0.072 -0.066 -0.061	0.128 0.125 0.121 0.117 0.113 0.106 0.100	0.127 0.124 0.118 0.114 0.109 0.101 0.093 0.087
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.678E+00 1.660E+00 1.654E+00 1.654E+00 1.657E+00 1.667E+00 1.680E+00 1.692E+00	1.244E-02 1.554E-02 1.887E-02 2.237E-02 2.602E-02 3.368E-02 4.176E-02 5.016E-02	1.691E+00 1.675E+00 1.673E+00 1.676E+00 1.683E+00 1.701E+00 1.721E+00	4.806E-01 6.293E-01 7.787E-01 9.280E-01 1.077E+00 1.372E+00 1.665E+00 1.953E+00	3.828E-03 4.724E-03 5.649E-03 6.600E-03 7.575E-03 9.584E-03 1.166E-02 1.378E-02	3.380E-01 4.966E-01 6.473E-01 7.886E-01 9.206E-01 1.159E+00 1.368E+00	-0.056 -0.049 -0.044 -0.040 -0.037 -0.033 -0.031	0.090 0.081 0.074 0.069 0.065 0.058 0.054	0.082 0.071 0.064 0.058 0.053 0.046 0.041
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.704E+00 1.715E+00 1.726E+00 1.735E+00 1.745E+00 1.761E+00 1.775E+00	5.883E-02 6.775E-02 7.688E-02 8.620E-02 9.569E-02 1.151E-01 1.351E-01	1.763E+00 1.783E+00 1.803E+00 1.822E+00 1.840E+00 1.876E+00 1.910E+00	2.239E+00 2.521E+00 2.800E+00 3.076E+00 3.349E+00 3.887E+00 4.415E+00 4.934E+00	1.594E-02 1.814E-02 2.035E-02 2.259E-02 2.485E-02 2.940E-02 3.398E-02 3.857E-02	1.721E+00 1.873E+00 2.012E+00 2.140E+00 2.258E+00 2.473E+00 2.663E+00 2.835E+00	-0.028 -0.027 -0.026 -0.025 -0.024 -0.023 -0.022 -0.021	0.047 0.045 0.043 0.041 0.040 0.037 0.035 0.034	0.035 0.033 0.032 0.030 0.029 0.027 0.026 0.024
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.800E+00 1.824E+00 1.843E+00 1.859E+00 1.873E+00 1.895E+00 1.912E+00	1.762E-01 2.294E-01 2.842E-01 3.401E-01 3.969E-01 5.126E-01 6.303E-01 7.495E-01	1.976E+00 2.053E+00 2.127E+00 2.199E+00 2.270E+00 2.407E+00 2.542E+00 2.676E+00	5.444E+00 6.685E+00 7.881E+00 9.036E+00 1.016E+01 1.229E+01 1.431E+01 1.623E+01	4.317E-02 5.464E-02 6.599E-02 7.716E-02 8.812E-02 1.093E-01 1.295E-01	2.991E+00 3.331E+00 3.619E+00 3.870E+00 4.093E+00 4.478E+00 4.802E+00 5.083E+00	-0.020 -0.017 -0.015 -0.013 -0.012 -0.009 -0.007 -0.006	0.032 0.029 0.027 0.025 0.024 0.021 0.019	0.023 0.021 0.019 0.017 0.016 0.013 0.011
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	1.938E+00 1.948E+00 1.958E+00 1.966E+00 1.973E+00 1.986E+00 1.997E+00 2.007E+00	8.699E-01 9.913E-01 1.113E+00 1.236E+00 1.360E+00 1.609E+00 1.859E+00 2.111E+00	2.808E+00 2.940E+00 3.071E+00 3.202E+00 3.333E+00 3.595E+00 4.118E+00	1.805E+01 1.980E+01 2.146E+01 2.305E+01 2.458E+01 2.747E+01 3.016E+01 3.267E+01	1.671E-01 1.845E-01 2.010E-01 2.168E-01 2.318E-01 2.599E-01 2.856E-01 3.091E-01	5.330E+00 5.552E+00 5.751E+00 5.934E+00 6.101E+00 6.399E+00 6.660E+00 6.891E+00	-0.005 -0.004 -0.003 -0.003 -0.002 -0.002 -0.001	0.016 0.015 0.014 0.013 0.012 0.011 0.010 0.009	0.008 0.007 0.006 0.006 0.005 0.004 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.015E+00 2.033E+00 2.048E+00 2.060E+00 2.071E+00 2.089E+00 2.103E+00 2.115E+00	2.364E+00 3.000E+00 3.641E+00 4.285E+00 4.932E+00 6.232E+00 7.537E+00 8.846E+00	4.379E+00 5.034E+00 5.689E+00 6.346E+00 7.003E+00 8.320E+00 9.640E+00 1.096E+01	3.502E+01 4.034E+01 4.501E+01 4.917E+01 5.292E+01 5.946E+01 6.504E+01 6.990E+01	3.309E-01 3.785E-01 4.186E-01 4.528E-01 4.825E-01 5.316E-01 5.707E-01 6.027E-01	7.098E+00 7.538E+00 7.899E+00 8.205E+00 8.471E+00 8.915E+00 9.279E+00 9.586E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.009 0.008 0.007 0.006 0.006 0.005 0.005	0.003 0.002 0.002 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.126E+00 2.135E+00 2.143E+00 2.151E+00 2.158E+00 2.170E+00 2.181E+00 2.190E+00	1.016E+01 1.147E+01 1.279E+01 1.411E+01 1.543E+01 1.807E+01 2.072E+01 2.337E+01	1.228E+01 1.361E+01 1.493E+01 1.626E+01 1.759E+01 2.024E+01 2.290E+01 2.556E+01	7.421E+01 7.807E+01 8.158E+01 8.479E+01 8.774E+01 9.304E+01 9.768E+01 1.018E+02	6.296E-01 6.524E-01 6.722E-01 6.895E-01 7.047E-01 7.305E-01 7.516E-01 7.692E-01	9.853E+00 1.009E+01 1.030E+01 1.049E+01 1.066E+01 1.097E+01 1.124E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.004 0.004 0.004 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.198E+00	2.602E+01	2.822E+01	1.055E+02	7.841E-01	1.168E+01	-0.000	0.003	0.000

ELECTRONS IN CERIC SULFATE DOSIMETER SOLUTION

I = 76.7 eV DENSITY = 1.030E+00 g/cm³

ENERGY	ST COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(l	RAD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.237E+01 1.881E+01 1.633E+01 1.449E+01 1.307E+01 1.101E+01 9.577E+00 8.525E+00	3.996E-03 4.031E-03 4.052E-03 4.067E-03 4.078E-03 4.094E-03 4.108E-03 4.120E-03	2.237E+01 1.882E+01 1.633E+01 1.449E+01 1.307E+01 1.101E+01 9.581E+00 8.529E+00	2.538E-04 3.762E-04 5.193E-04 6.821E-04 8.640E-04 1.283E-03 1.771E-03 2.325E-03	9.703E-05 1.169E-04 1.360E-04 1.543E-04 1.721E-04 2.061E-04 2.385E-04 2.696E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.200 -0.191 -0.185 -0.180 -0.176 -0.169 -0.164 -0.161	0.229 0.218 0.209 0.203 0.198 0.189 0.183 0.178	0.226 0.216 0.208 0.202 0.197 0.189 0.182 0.178
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.717E+00 7.075E+00 6.553E+00 6.119E+00 5.753E+00 5.169E+00 4.722E+00 4.370E+00	4.134E-03 4.148E-03 4.164E-03 4.180E-03 4.198E-03 4.236E-03 4.278E-03 4.324E-03	7.721E+00 7.079E+00 6.557E+00 6.123E+00 5.757E+00 5.173E+00 4.727E+00 4.374E+00	2.942E-03 3.620E-03 4.354E-03 5.144E-03 5.987E-03 7.823E-03 9.848E-03 1.205E-02	2.996E-04 3.286E-04 3.568E-04 3.843E-04 4.111E-04 5.129E-04 5.611E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.157 -0.155 -0.152 -0.150 -0.148 -0.145 -0.143	0.174 0.171 0.168 0.165 0.163 0.159 0.156	0.174 0.170 0.167 0.165 0.163 0.159 0.156 0.153
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.085E+00 3.566E+00 3.215E+00 2.963E+00 2.773E+00 2.511E+00 2.339E+00 2.219E+00	4.373E-03 4.505E-03 4.649E-03 4.803E-03 4.966E-03 5.316E-03 5.700E-03 6.111E-03	4.090E+00 3.570E+00 3.219E+00 2.967E+00 2.778E+00 2.516E+00 2.344E+00 2.226E+00	1.442E-02 2.099E-02 2.838E-02 3.648E-02 4.520E-02 6.418E-02 8.481E-02 1.067E-01	6.079E-04 7.196E-04 8.253E-04 9.263E-04 1.023E-03 1.209E-03 1.386E-03 1.558E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.138 -0.134 -0.131 -0.129 -0.127 -0.123 -0.120 -0.118	0.151 0.146 0.143 0.140 0.137 0.134 0.131	0.151 0.146 0.142 0.139 0.137 0.133 0.130
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.133E+00 2.069E+00 2.021E+00 1.981E+00 1.950E+00 1.904E+00 1.873E+00 1.852E+00	6.548E-03 7.009E-03 7.492E-03 7.995E-03 8.515E-03 9.602E-03 1.074E-02	2.140E+00 2.076E+00 2.028E+00 1.989E+00 1.959E+00 1.914E+00 1.884E+00 1.863E+00	1.297E-01 1.534E-01 1.778E-01 2.027E-01 2.280E-01 2.797E-01 3.324E-01 3.858E-01	1.726E-03 1.892E-03 2.056E-03 2.220E-03 2.383E-03 2.712E-03 3.043E-03 3.377E-03	0.0 0.0 0.0 1.324E-02 3.214E-02 7.786E-02 1.307E-01 1.876E-01	-0.116 -0.114 -0.109 -0.094 -0.088 -0.078 -0.070	0.126 0.125 0.123 0.120 0.117 0.110 0.105 0.099	0.125 0.123 0.121 0.118 0.114 0.106 0.099 0.093
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.837E+00 1.816E+00 1.810E+00 1.809E+00 1.812E+00 1.822E+00 1.834E+00 1.847E+00	1.318E-02 1.646E-02 1.997E-02 2.367E-02 2.752E-02 3.561E-02 4.413E-02 5.299E-02	1.850E+00 1.833E+00 1.830E+00 1.833E+00 1.839E+00 1.858E+00 1.879E+00 1.900E+00	4.397E-01 5.756E-01 7.121E-01 8.487E-01 9.849E-01 1.255E+00 1.523E+00 1.788E+00	3.716E-03 4.582E-03 5.476E-03 6.395E-03 7.337E-03 9.281E-03 1.129E-02 1.334E-02	2.470E-01 3.983E-01 5.470E-01 6.891E-01 8.234E-01 1.069E+00 1.287E+00	-0.059 -0.050 -0.043 -0.039 -0.035 -0.031 -0.028 -0.026	0.095 0.085 0.077 0.071 0.067 0.059 0.054 0.050	0.087 0.075 0.066 0.059 0.054 0.046 0.040
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.859E+00 1.870E+00 1.881E+00 1.891E+00 1.900E+00 1.917E+00 1.932E+00 1.945E+00	6.214E-02 7.154E-02 8.117E-02 9.099E-02 1.010E-01 1.215E-01 1.425E-01 1.639E-01	1.921E+00 1.942E+00 1.962E+00 1.982E+00 2.001E+00 2.038E+00 2.074E+00 2.109E+00	2.049E+00 2.308E+00 2.564E+00 2.818E+00 3.069E+00 3.564E+00 4.050E+00 4.529E+00	1.544E-02 1.757E-02 1.972E-02 2.190E-02 2.409E-02 2.851E-02 3.296E-02 3.743E-02	1.656E+00 1.815E+00 1.961E+00 2.095E+00 2.219E+00 2.444E+00 2.642E+00 2.819E+00	-0.024 -0.023 -0.022 -0.022 -0.021 -0.020 -0.019 -0.019	0.046 0.044 0.042 0.040 0.038 0.036 0.034	0.034 0.031 0.029 0.028 0.027 0.025 0.023
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.957E+00 1.982E+00 2.003E+00 2.020E+00 2.035E+00 2.059E+00 2.078E+00 2.093E+00	1.858E-01 2.418E-01 2.994E-01 3.583E-01 4.180E-01 5.397E-01 6.635E-01 7.889E-01	2.143E+00 2.224E+00 2.302E+00 2.378E+00 2.453E+00 2.598E+00 2.741E+00 2.882E+00	4.999E+00 6.144E+00 7.249E+00 8.317E+00 9.352E+00 1.133E+01 1.320E+01	4.191E-02 5.308E-02 6.415E-02 7.504E-02 8.573E-02 1.065E-01 1.262E-01 1.451E-01	2.980E+00 3.328E+00 3.619E+00 3.870E+00 4.092E+00 4.471E+00 4.790E+00 5.066E+00	-0.018 -0.016 -0.015 -0.014 -0.013 -0.011 -0.009 -0.007	0.030 0.028 0.026 0.024 0.022 0.020 0.018 0.017	0.021 0.019 0.017 0.016 0.015 0.013 0.011
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.106E+00 2.118E+00 2.128E+00 2.137E+00 2.145E+00 2.159E+00 2.171E+00 2.181E+00	9.155E-01 1.043E+00 1.172E+00 1.301E+00 1.431E+00 1.693E+00 1.956E+00 2.221E+00	3.022E+00 3.161E+00 3.300E+00 3.438E+00 3.576E+00 3.852E+00 4.127E+00 4.402E+00	1.668E+01 1.830E+01 1.984E+01 2.133E+01 2.275E+01 2.545E+01 2.796E+01 3.030E+01	1.630E-01 1.801E-01 1.963E-01 2.118E-01 2.266E-01 2.543E-01 2.796E-01 3.030E-01	5.309E+00 5.527E+00 5.724E+00 5.904E+00 6.070E+00 6.365E+00 6.623E+00 6.853E+00	-0.006 -0.005 -0.004 -0.004 -0.003 -0.003 -0.002	0.016 0.015 0.014 0.013 0.012 0.011 0.010	0.009 0.008 0.007 0.006 0.006 0.005 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.191E+00 2.210E+00 2.226E+00 2.240E+00 2.251E+00 2.270E+00 2.286E+00 2.299E+00	2.487E+00 3.156E+00 3.830E+00 4.507E+00 5.187E+00 6.553E+00 7.926E+00 9.302E+00	4.678E+00 5.367E+00 6.056E+00 6.747E+00 7.438E+00 8.824E+00 1.021E+01 1.160E+01	3.250E+01 3.749E+01 4.187E+01 4.578E+01 4.931E+01 5.547E+01 6.074E+01 6.533E+01	3.245E-01 3.718E-01 4.117E-01 4.459E-01 4.755E-01 5.247E-01 5.639E-01 5.962E-01	7.059E+00 7.497E+00 7.857E+00 8.162E+00 8.427E+00 8.871E+00 9.234E+00 9.541E+00	-0.001 -0.001 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000	0.009 0.008 0.007 0.006 0.006 0.005 0.005	0.003 0.002 0.002 0.002 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.310E+00 2.320E+00 2.329E+00 2.337E+00 2.345E+00 2.358E+00 2.369E+00 2.379E+00	1.068E+01 1.206E+01 1.345E+01 1.484E+01 1.622E+01 1.900E+01 2.178E+01 2.457E+01	1.299E+01 1.438E+01 1.578E+01 1.717E+01 1.857E+01 2.136E+01 2.415E+01 2.695E+01	6.940E+01 7.305E+01 7.637E+01 7.941E+01 8.221E+01 8.723E+01 9.162E+01 9.554E+01	6.232E-01 6.462E-01 6.662E-01 6.837E-01 6.991E-01 7.252E-01 7.466E-01	9.807E+00 1.004E+01 1.025E+01 1.044E+01 1.062E+01 1.092E+01 1.119E+01 1.143E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.004 0.004 0.004 0.003 0.003	0.001 0.001 0.000 0.000 0.000 0.000 0.000
000.0000	2.388E+00	2.736E+01	2.975E+01	9.907E+01	7.795E-01	1.164E+01	-0.000	0.003	0.000

ELECTRONS IN CESIUM IODIDE

I = 553.1 eV DENSITY = 4.510E+00 g/cm³

ENERGY		OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	CORR.	COLL	g)/d(1 CSDA	RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0275 0.0250 0.0300 0.0350	1.019E+01 8.803E+00 7.795E+00 7.025E+00 6.415E+00 5.509E+00 4.864E+00 4.379E+00	1.704E-02 1.839E-02 1.948E-02 2.038E-02 2.114E-02 2.240E-02 2.340E-02 2.425E-02	1.020E+01 8.821E+00 7.814E+00 7.045E+00 6.437E+00 5.531E+00 4.887E+00	6.284E-04 8.928E-04 1.195E-03 1.532E-03 1.904E-03 2.745E-03 3.709E-03 4.789E-03	8.286E-04 1.039E-03 1.247E-03 1.454E-03 1.658E-03 2.060E-03 2.454E-03 2.839E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.330 -0.307 -0.291 -0.279 -0.269 -0.254 -0.243	0.469 0.424 0.392 0.368 0.350 0.322 0.303 0.288	0.419 0.382 0.356 0.337 0.322 0.300 0.284 0.272
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	4.001E+00 3.697E+00 3.447E+00 3.238E+00 3.060E+00 2.773E+00 2.552E+00 2.376E+00	2.498E-02 2.563E-02 2.621E-02 2.675E-02 2.724E-02 2.814E-02 2.896E-02 2.970E-02	4.026E+00 3.723E+00 3.474E+00 3.265E+00 3.087E+00 2.802E+00 2.581E+00 2.406E+00	5.978E-03 7.271E-03 8.662E-03 1.015E-02 1.172E-02 1.513E-02 1.885E-02 2.287E-02	3.216E-03 3.586E-03 3.949E-03 4.306E-03 4.656E-03 5.339E-03 6.001E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.228 -0.222 -0.218 -0.213 -0.210 -0.203 -0.198 -0.194	0.277 0.267 0.259 0.253 0.247 0.237 0.230	0.263 0.255 0.248 0.242 0.237 0.229 0.222
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.233E+00 1.970E+00 1.791E+00 1.661E+00 1.564E+00 1.429E+00 1.340E+00 1.279E+00	3.039E-02 3.196E-02 3.337E-02 3.467E-02 3.593E-02 3.839E-02 4.087E-02 4.342E-02	2.264E+00 2.002E+00 1.824E+00 1.696E+00 1.600E+00 1.467E+00 1.381E+00 1.322E+00	2.716E-02 3.895E-02 5.206E-02 6.630E-02 8.149E-02 1.142E-01 1.494E-01 1.865E-01	7.268E-03 8.757E-03 1.015E-02 1.147E-02 1.272E-02 1.505E-02 1.719E-02	0.0 0.0 0.0 0.0 0.0 0.0 2.448E-04 4.939E-03 1.113E-02	-0.190 -0.183 -0.177 -0.173 -0.169 -0.161 -0.154 -0.148	0.218 0.208 0.200 0.194 0.189 0.181 0.174	0.212 0.202 0.195 0.189 0.185 0.177 0.170
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.235E+00 1.202E+00 1.178E+00 1.159E+00 1.145E+00 1.126E+00 1.114E+00 1.108E+00	4.606E-02 4.879E-02 5.161E-02 5.449E-02 5.745E-02 6.355E-02 6.987E-02 7.639E-02	1.281E+00 1.251E+00 1.229E+00 1.214E+00 1.202E+00 1.189E+00 1.184E+00	2.249E-01 2.645E-01 3.048E-01 3.457E-01 3.871E-01 4.708E-01 5.551E-01 6.396E-01	2.110E-02 2.292E-02 2.468E-02 2.638E-02 2.804E-02 3.127E-02 3.439E-02 3.743E-02	1.844E-02 2.646E-02 3.493E-02 4.373E-02 5.275E-02 7.128E-02 9.021E-02 1.094E-01	-0.143 -0.139 -0.135 -0.132 -0.129 -0.124 -0.120	0.164 0.160 0.156 0.152 0.149 0.144 0.140	0.160 0.155 0.151 0.148 0.145 0.139 0.134 0.130
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.105E+00 1.106E+00 1.113E+00 1.123E+00 1.133E+00 1.154E+00 1.173E+00 1.191E+00	8.308E-02 1.005E-01 1.189E-01 1.379E-01 1.574E-01 1.979E-01 2.399E-01 2.829E-01	1.188E+00 1.207E+00 1.232E+00 1.261E+00 1.291E+00 1.352E+00 1.413E+00	7.239E-01 9.329E-01 1.138E+00 1.339E+00 1.535E+00 1.913E+00 2.275E+00 2.621E+00	4.041E-02 4.766E-02 5.470E-02 6.159E-02 6.835E-02 8.154E-02 9.431E-02 1.067E-01	1.286E-01 1.767E-01 2.245E-01 2.717E-01 3.183E-01 4.090E-01 4.962E-01 5.797E-01	-0.113 -0.106 -0.101 -0.096 -0.091 -0.084 -0.079 -0.074	0.133 0.126 0.120 0.115 0.111 0.104 0.098 0.094	0.126 0.118 0.111 0.106 0.101 0.093 0.086 0.080
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.207E+00 1.221E+00 1.234E+00 1.246E+00 1.257E+00 1.277E+00 1.293E+00 1.308E+00	3.268E-01 3.715E-01 4.169E-01 4.630E-01 5.095E-01 6.041E-01 7.003E-01	1.534E+00 1.593E+00 1.651E+00 1.709E+00 1.767E+00 1.881E+00 1.994E+00 2.106E+00	2.954E+00 3.274E+00 3.582E+00 3.879E+00 4.167E+00 4.716E+00 5.232E+00 5.720E+00	1.187E-01 1.303E-01 1.416E-01 1.525E-01 1.631E-01 1.834E-01 2.025E-01 2.206E-01	6.592E-01 7.349E-01 8.070E-01 8.758E-01 9.414E-01 1.064E+00 1.178E+00 1.283E+00	-0.071 -0.067 -0.065 -0.062 -0.060 -0.057 -0.054 -0.051	0.090 0.086 0.083 0.080 0.078 0.073 0.070	0.076 0.071 0.068 0.064 0.062 0.057 0.052 0.049
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.321E+00 1.348E+00 1.370E+00 1.388E+00 1.403E+00 1.427E+00 1.466E+00	8.967E-01 1.148E+00 1.404E+00 1.665E+00 1.928E+00 2.463E+00 3.006E+00	2.218E+00 2.497E+00 2.774E+00 3.053E+00 3.331E+00 3.890E+00 4.451E+00 5.016E+00	6.182E+00 7.244E+00 8.194E+00 9.052E+00 9.836E+00 1.122E+01 1.242E+01 1.348E+01	2.377E-01 2.768E-01 3.112E-01 3.420E-01 3.695E-01 4.171E-01 4.567E-01 4.904E-01	1.381E+00 1.602E+00 1.798E+00 1.973E+00 2.134E+00 2.420E+00 2.668E+00 2.888E+00	-0.049 -0.044 -0.040 -0.037 -0.034 -0.029 -0.026	0.064 0.059 0.054 0.051 0.048 0.044 0.040	0.046 0.040 0.035 0.032 0.028 0.024 0.020 0.018
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.474E+00 1.485E+00 1.495E+00 1.503E+00 1.511E+00 1.524E+00 1.536E+00 1.546E+00	4.109E+00 4.667E+00 5.228E+00 5.792E+00 6.359E+00 7.498E+00 8.644E+00 9.795E+00	5.583E+00 6.152E+00 6.723E+00 7.296E+00 7.870E+00 9.023E+00 1.018E+01 1.134E+01	1.443E+01 1.528E+01 1.606E+01 1.677E+01 1.743E+01 1.862E+01 1.966E+01 2.059E+01	5.195E-01 5.448E-01 5.672E-01 5.871E-01 6.049E-01 6.356E-01 6.612E-01 6.830E-01	3.085E+00 3.264E+00 3.427E+00 3.577E+00 3.716E+00 3.967E+00 4.188E+00 4.387E+00	-0.021 -0.020 -0.018 -0.017 -0.016 -0.015 -0.013	0.036 0.034 0.033 0.031 0.030 0.029 0.027 0.026	0.016 0.014 0.013 0.012 0.011 0.009 0.008 0.007
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.554E+00 1.572E+00 1.586E+00 1.598E+00 1.608E+00 1.624E+00 1.637E+00 1.648E+00	1.095E+01 1.385E+01 1.677E+01 1.970E+01 2.264E+01 2.852E+01 3.443E+01 4.034E+01	1.251E+01 1.543E+01 1.836E+01 2.130E+01 2.424E+01 3.015E+01 3.607E+01 4.199E+01	2.143E+01 2.323E+01 2.471E+01 2.597E+01 2.707E+01 2.892E+01 3.043E+01 3.172E+01	7.016E-01 7.388E-01 7.668E-01 7.886E-01 8.062E-01 8.330E-01 8.526E-01 8.677E-01	4.567E+00 4.957E+00 5.283E+00 5.562E+00 5.808E+00 6.223E+00 6.567E+00 6.860E+00	-0.011 -0.009 -0.008 -0.007 -0.006 -0.005 -0.004	0.025 0.023 0.022 0.021 0.020 0.019 0.018 0.017	0.007 0.005 0.004 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.657E+00 1.665E+00 1.672E+00 1.679E+00 1.685E+00 1.695E+00 1.704E+00	4.627E+01 5.220E+01 5.813E+01 6.407E+01 7.002E+01 8.192E+01 9.383E+01 1.057E+02	4.792E+01 5.386E+01 5.981E+01 6.575E+01 7.171E+01 8.361E+01 9.553E+01 1.075E+02	3.283E+01 3.381E+01 3.469E+01 3.549E+01 3.622E+01 3.751E+01 3.863E+01 3.961E+01	8.796E-01 8.893E-01 8.975E-01 9.044E-01 9.103E-01 9.200E-01 9.276E-01 9.338E-01	7.115E+00 7.342E+00 7.545E+00 7.729E+00 7.898E+00 8.198E+00 8.459E+00 8.690E+00	-0.003 -0.003 -0.003 -0.002 -0.002 -0.002 -0.002 -0.001	0.017 0.016 0.016 0.015 0.015 0.015 0.014 0.014	0.002 0.002 0.001 0.001 0.001 0.001 0.001
1600.0000	1.719E+00	1.177E+02	1.194E+02	4.050E+01	9.389E-01	8.897E+00	-0.001	0.013	0.001

ELECTRONS IN ETHYLENE

I = 50.7 eV DENSITY = 1.175E-03 g/cm³ (20°C)

ENERGY		OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(1 CSDA	RAD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm²/g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0350	2.499E+01 2.095E+01 1.814E+01 1.607E+01 1.447E+01 1.215E+01 1.056E+01 9.382E+00	2.837E-03 2.847E-03 2.854E-03 2.860E-03 2.864E-03 2.873E-03 2.883E-03 2.894E-03	2.499E+01 2.095E+01 1.814E+01 1.607E+01 1.447E+01 1.216E+01 1.056E+01 9.385E+00	2.248E-04 3.345E-04 4.631E-04 6.098E-04 7.741E-04 1.153E-03 1.596E-03 2.099E-03	6.226E-05 7.476E-05 8.675E-05 9.831E-05 1.095E-04 1.311E-04 1.517E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.184 -0.177 -0.172 -0.167 -0.164 -0.158 -0.154	0.208 0.199 0.192 0.187 0.182 0.175 0.170	0.207 0.198 0.191 0.186 0.182 0.175 0.170
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	8.482E+00 7.768E+00 7.188E+00 6.707E+00 6.301E+00 5.654E+00 5.160E+00 4.771E+00	2.905E-03 2.918E-03 2.931E-03 2.945E-03 2.960E-03 2.992E-03 3.025E-03	8.485E+00 7.771E+00 7.191E+00 6.710E+00 6.304E+00 5.657E+00 5.163E+00 4.774E+00	2.660E-03 3.277E-03 3.946E-03 4.667E-03 5.436E-03 7.114E-03 8.967E-03 1.098E-02	1.908E-04 2.095E-04 2.277E-04 2.455E-04 2.629E-04 2.967E-04 3.293E-04 3.609E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.148 -0.145 -0.143 -0.141 -0.140 -0.137 -0.135 -0.133	0.162 0.159 0.157 0.154 0.152 0.149 0.146	0.162 0.159 0.156 0.154 0.152 0.149 0.146 0.144
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.457E+00 3.884E+00 3.497E+00 3.220E+00 3.012E+00 2.723E+00 2.534E+00 2.402E+00	3.099E-03 3.201E-03 3.312E-03 3.429E-03 3.553E-03 3.820E-03 4.110E-03 4.420E-03	4.460E+00 3.887E+00 3.501E+00 3.223E+00 3.015E+00 2.727E+00 2.538E+00 2.407E+00	1.315E-02 1.918E-02 2.598E-02 3.343E-02 4.146E-02 7.801E-02 9.827E-02	3.916E-04 4.652E-04 5.352E-04 6.024E-04 6.672E-04 7.918E-04 9.116E-04 1.028E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.131 -0.127 -0.125 -0.122 -0.120 -0.117 -0.115	0.142 0.138 0.135 0.132 0.130 0.127 0.124	0.142 0.137 0.134 0.132 0.129 0.126 0.123 0.121
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.307E+00 2.236E+00 2.182E+00 2.141E+00 2.108E+00 2.061E+00 2.032E+00 2.013E+00	4.750E-03 5.098E-03 5.462E-03 5.841E-03 6.233E-03 7.053E-03 7.915E-03 8.816E-03	2.312E+00 2.241E+00 2.188E+00 2.146E+00 2.114E+00 2.068E+00 2.040E+00 2.022E+00	1.195E-01 1.415E-01 1.641E-01 1.871E-01 2.106E-01 2.585E-01 3.072E-01 3.565E-01	1.143E-03 1.256E-03 1.369E-03 1.482E-03 1.595E-03 1.821E-03 2.049E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.111 -0.109 -0.108 -0.107 -0.105 -0.103 -0.102 -0.100	0.120 0.118 0.117 0.116 0.115 0.113 0.111	0.119 0.117 0.116 0.114 0.113 0.111 0.109 0.107
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	2.002E+00 1.992E+00 1.996E+00 2.007E+00 2.021E+00 2.051E+00 2.082E+00 2.111E+00	9.754E-03 1.224E-02 1.490E-02 1.770E-02 2.062E-02 2.678E-02 3.327E-02 4.004E-02	2.011E+00 2.004E+00 2.011E+00 2.024E+00 2.041E+00 2.078E+00 2.115E+00 2.151E+00	4.061E-01 5.307E-01 6.553E-01 7.792E-01 9.022E-01 1.145E+00 1.383E+00	2.511E-03 3.104E-03 3.712E-03 4.335E-03 4.971E-03 6.275E-03 7.613E-03 8.977E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.099 -0.096 -0.094 -0.092 -0.091 -0.088 -0.086	0.108 0.106 0.103 0.102 0.100 0.098 0.096	0.106 0.103 0.100 0.098 0.096 0.093 0.091 0.089
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	2.139E+00 2.164E+00 2.187E+00 2.209E+00 2.229E+00 2.266E+00 2.298E+00 2.327E+00	4.704E-02 5.424E-02 6.162E-02 6.916E-02 7.684E-02 9.259E-02 1.088E-01 1.253E-01	2.186E+00 2.218E+00 2.249E+00 2.278E+00 2.306E+00 2.358E+00 2.407E+00 2.453E+00	1.848E+00 2.075E+00 2.299E+00 2.520E+00 2.738E+00 3.167E+00 3.587E+00 3.998E+00	1.036E-02 1.177E-02 1.318E-02 1.461E-02 1.604E-02 1.894E-02 2.185E-02 2.477E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.083 -0.082 -0.081 -0.080 -0.079 -0.078 -0.077	0.092 0.091 0.090 0.089 0.088 0.086 0.085	0.087 0.086 0.085 0.083 0.082 0.080 0.079 0.077
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	2.354E+00 2.410E+00 2.456E+00 2.496E+00 2.529E+00 2.577E+00 2.612E+00 2.639E+00	1.422E-01 1.855E-01 2.301E-01 2.757E-01 3.220E-01 4.166E-01 5.129E-01 6.105E-01	2.496E+00 2.595E+00 2.687E+00 2.772E+00 2.851E+00 2.994E+00 3.125E+00 3.249E+00	4.402E+00 5.384E+00 6.331E+00 7.247E+00 8.136E+00 9.846E+00 1.148E+01 1.305E+01	2.770E-02 3.500E-02 4.227E-02 4.945E-02 5.655E-02 7.047E-02 8.401E-02 9.717E-02	0.0 0.0 0.0 0.0 1.778E-02 1.288E-01 2.760E-01 4.292E-01	-0.075 -0.073 -0.071 -0.070 -0.059 -0.044 -0.036 -0.031	0.082 0.080 0.078 0.076 0.074 0.069 0.064	0.076 0.074 0.071 0.069 0.067 0.059 0.051
40.0000 45.0000 50.0000 55.0000 70.0000 80.0000 90.0000	2.660E+00 2.679E+00 2.695E+00 2.709E+00 2.722E+00 2.743E+00 2.762E+00 2.778E+00	7.092E-01 8.088E-01 9.092E-01 1.010E+00 1.112E+00 1.316E+00 1.522E+00 1.730E+00	3.370E+00 3.488E+00 3.604E+00 3.719E+00 3.833E+00 4.060E+00 4.284E+00 4.508E+00	1.456E+01 1.602E+01 1.743E+01 1.879E+01 2.012E+01 2.265E+01 2.505E+01 2.733E+01	1.099E-01 1.223E-01 1.343E-01 1.459E-01 1.572E-01 1.786E-01 1.988E-01 2.178E-01	5.780E-01 7.191E-01 8.516E-01 9.757E-01 1.092E+00 1.304E+00 1.492E+00	-0.027 -0.025 -0.023 -0.022 -0.021 -0.019 -0.018 -0.017	0.056 0.053 0.050 0.047 0.045 0.042 0.039 0.037	0.040 0.036 0.033 0.030 0.028 0.024 0.022 0.020
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.792E+00 2.822E+00 2.845E+00 2.865E+00 2.881E+00 2.908E+00 2.930E+00 2.947E+00	1.938E+00 2.463E+00 2.991E+00 3.523E+00 4.057E+00 5.131E+00 6.210E+00 7.294E+00	4.730E+00 5.284E+00 5.837E+00 6.388E+00 6.939E+00 8.040E+00 9.140E+00 1.024E+01	2.949E+01 3.449E+01 3.899E+01 4.308E+01 4.684E+01 5.352E+01 5.935E+01 6.452E+01	2.357E-01 2.763E-01 3.119E-01 3.434E-01 3.716E-01 4.198E-01 4.598E-01 4.936E-01	1.816E+00 2.148E+00 2.425E+00 2.664E+00 2.875E+00 3.235E+00 3.539E+00 3.802E+00	-0.017 -0.015 -0.014 -0.013 -0.012 -0.011 -0.009 -0.008	0.035 0.031 0.028 0.026 0.025 0.022 0.020 0.019	0.018 0.015 0.013 0.012 0.011 0.009 0.008 0.007
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.962E+00 2.974E+00 2.985E+00 2.995E+00 3.004E+00 3.019E+00 3.031E+00 3.042E+00	8.380E+00 9.469E+00 1.056E+01 1.165E+01 1.275E+01 1.494E+01 1.713E+01 1.933E+01	1.134E+01 1.244E+01 1.354E+01 1.465E+01 1.575E+01 1.796E+01 2.016E+01 2.237E+01	6.915E+01 7.336E+01 7.721E+01 8.076E+01 8.405E+01 9.000E+01 9.525E+01 9.995E+01	5.226E-01 5.479E-01 5.702E-01 5.900E-01 6.077E-01 6.382E-01 6.635E-01 6.850E-01	4.036E+00 4.246E+00 4.438E+00 4.613E+00 4.775E+00 5.065E+00 5.320E+00 5.547E+00	-0.007 -0.006 -0.005 -0.004 -0.004 -0.003 -0.002	0.018 0.017 0.016 0.015 0.015 0.014 0.013	0.006 0.005 0.005 0.004 0.004 0.003 0.003
1000.0000	3.052E+00	2.153E+01	2.458E+01	1.042E+02	7.035E-01	5.751E+00	-0.002	0.012	0.002

ELECTRONS IN FERROUS SULFATE DOSIMETER SOLUTION

I = 76.4 eV DENSITY = 1.024E+00 g/cm³

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	COLL	g)/d(1 CSDA_	RAD
MeV	MeV cm²/g	MeV cm ² /g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.241E+01 1.885E+01 1.636E+01 1.452E+01 1.309E+01 1.102E+01 9.594E+00 8.540E+00	3.961E-03 3.993E-03 4.012E-03 4.025E-03 4.034E-03 4.047E-03 4.058E-03 4.069E-03	2.241E+01 1.885E+01 1.636E+01 1.452E+01 1.309E+01 1.103E+01 9.598E+00 8.544E+00	2.533E-04 3.755E-04 5.183E-04 6.808E-04 8.624E-04 1.280E-03 1.768E-03 2.321E-03	9.615E-05 1.158E-04 1.346E-04 1.527E-04 1.702E-04 2.037E-04 2.356E-04 2.662E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.200 -0.191 -0.185 -0.180 -0.176 -0.169 -0.164	0.228 0.217 0.209 0.203 0.197 0.189 0.183 0.178	0.226 0.216 0.208 0.202 0.196 0.188 0.182 0.177
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	7.730E+00 7.087E+00 6.564E+00 6.129E+00 5.763E+00 5.177E+00 4.730E+00 4.377E+00	4.081E-03 4.094E-03 4.108E-03 4.123E-03 4.140E-03 4.176E-03 4.216E-03	7.734E+00 7.091E+00 6.568E+00 6.134E+00 5.767E+00 5.181E+00 4.734E+00 4.381E+00	2.937E-03 3.613E-03 4.347E-03 5.135E-03 5.976E-03 7.810E-03 9.832E-03 1.203E-02	2.957E-04 3.242E-04 3.520E-04 3.790E-04 4.053E-04 4.563E-04 5.053E-04 5.527E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.157 -0.154 -0.152 -0.150 -0.148 -0.145 -0.142	0.174 0.171 0.168 0.165 0.163 0.159 0.156 0.153	0.173 0.170 0.167 0.165 0.162 0.159 0.155 0.153
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.092E+00 3.571E+00 3.220E+00 2.967E+00 2.778E+00 2.514E+00 2.342E+00 2.223E+00	4.307E-03 4.436E-03 4.577E-03 4.728E-03 4.888E-03 5.233E-03 5.611E-03 6.017E-03	4.096E+00 3.576E+00 3.224E+00 2.972E+00 2.783E+00 2.520E+00 2.348E+00 2.229E+00	1.439E-02 2.095E-02 2.833E-02 3.643E-02 4.513E-02 6.408E-02 8.468E-02 1.066E-01	5.986E-04 7.083E-04 8.120E-04 9.111E-04 1.007E-03 1.189E-03 1.363E-03 1.532E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.138 -0.134 -0.131 -0.129 -0.127 -0.123 -0.120 -0.118	0.151 0.146 0.143 0.140 0.137 0.134 0.131	0.150 0.146 0.142 0.139 0.137 0.133 0.130
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	2.137E+00 2.072E+00 2.023E+00 1.984E+00 1.953E+00 1.907E+00 1.876E+00 1.854E+00	6.448E-03 6.904E-03 7.381E-03 7.878E-03 8.392E-03 9.466E-03 1.060E-02	2.143E+00 2.079E+00 2.031E+00 1.992E+00 1.961E+00 1.916E+00 1.886E+00	1.295E-01 1.532E-01 1.775E-01 2.024E-01 2.277E-01 2.793E-01 3.319E-01 3.852E-01	1.697E-03 1.860E-03 2.022E-03 2.183E-03 2.344E-03 2.667E-03 2.994E-03 3.324E-03	0.0 0.0 0.0 1.262E-02 3.136E-02 7.687E-02 1.295E-01 1.864E-01	-0.116 -0.114 -0.110 -0.094 -0.088 -0.078 -0.070	0.126 0.124 0.123 0.120 0.117 0.110 0.105 0.099	0.125 0.123 0.121 0.118 0.114 0.106 0.099 0.093
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.839E+00 1.819E+00 1.812E+00 1.812E+00 1.815E+00 1.825E+00 1.837E+00 1.849E+00	1.300E-02 1.625E-02 1.972E-02 2.338E-02 2.719E-02 3.520E-02 4.363E-02 5.240E-02	1.852E+00 1.835E+00 1.832E+00 1.835E+00 1.842E+00 1.860E+00 1.881E+00 1.902E+00	4.390E-01 5.747E-01 7.111E-01 8.475E-01 9.835E-01 1.254E+00 1.521E+00	3.658E-03 4.512E-03 5.394E-03 6.302E-03 7.233E-03 9.153E-03 1.114E-02 1.317E-02	2.457E-01 3.970E-01 5.458E-01 6.880E-01 8.225E-01 1.068E+00 1.286E+00	-0.059 -0.050 -0.043 -0.039 -0.035 -0.031 -0.028	0.095 0.085 0.077 0.071 0.067 0.059 0.054	0.087 0.075 0.066 0.059 0.054 0.046 0.040
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.861E+00 1.873E+00 1.883E+00 1.893E+00 1.903E+00 1.919E+00 1.934E+00	6.147E-02 7.078E-02 8.032E-02 9.004E-02 9.995E-02 1.202E-01 1.410E-01 1.623E-01	1.923E+00 1.944E+00 1.964E+00 1.983E+00 2.002E+00 2.040E+00 2.075E+00 2.110E+00	2.047E+00 2.306E+00 2.561E+00 2.815E+00 3.066E+00 3.561E+00 4.047E+00 4.524E+00	1.524E-02 1.735E-02 1.948E-02 2.163E-02 2.380E-02 2.818E-02 3.259E-02 3.702E-02	1.657E+00 1.816E+00 1.962E+00 2.096E+00 2.220E+00 2.445E+00 2.643E+00 2.821E+00	-0.024 -0.023 -0.022 -0.022 -0.021 -0.020 -0.019 -0.018	0.046 0.044 0.042 0.040 0.038 0.036 0.033	0.033 0.031 0.029 0.028 0.026 0.025 0.023
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.959E+00 1.985E+00 2.005E+00 2.022E+00 2.037E+00 2.061E+00 2.080E+00 2.096E+00	1.840E-01 2.395E-01 2.966E-01 3.549E-01 4.142E-01 5.348E-01 6.575E-01 7.818E-01	2.143E+00 2.224E+00 2.302E+00 2.377E+00 2.451E+00 2.596E+00 2.738E+00 2.878E+00	4.995E+00 6.139E+00 7.244E+00 8.313E+00 9.348E+01 1.133E+01 1.320E+01	4.145E-02 5.252E-02 6.349E-02 7.430E-02 8.491E-02 1.055E-01 1.251E-01	2.982E+00 3.330E+00 3.621E+00 3.873E+00 4.095E+00 4.474E+00 5.070E+00	-0.018 -0.016 -0.015 -0.014 -0.013 -0.010 -0.009 -0.007	0.030 0.028 0.025 0.024 0.022 0.020 0.018 0.017	0.021 0.019 0.017 0.016 0.015 0.013 0.011
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.109E+00 2.120E+00 2.130E+00 2.139E+00 2.147E+00 2.161E+00 2.173E+00 2.184E+00	9.073E-01 1.034E+00 1.161E+00 1.290E+00 1.418E+00 1.678E+00 1.939E+00 2.201E+00	3.016E+00 3.154E+00 3.292E+00 3.429E+00 3.566E+00 3.839E+00 4.112E+00 4.385E+00	1.668E+01 1.830E+01 1.986E+01 2.134E+01 2.277E+01 2.548E+01 2.799E+01 3.035E+01	1.617E-01 1.786E-01 1.948E-01 2.103E-01 2.250E-01 2.525E-01 2.778E-01 3.010E-01	5.313E+00 5.531E+00 5.728E+00 5.908E+00 6.073E+00 6.369E+00 6.627E+00 6.857E+00	-0.006 -0.005 -0.004 -0.004 -0.003 -0.003 -0.002	0.016 0.015 0.014 0.013 0.012 0.011 0.010	0.009 0.008 0.007 0.006 0.006 0.005 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.193E+00 2.213E+00 2.229E+00 2.242E+00 2.253E+00 2.273E+00 2.288E+00 2.301E+00	2.465E+00 3.129E+00 3.797E+00 4.468E+00 5.143E+00 6.497E+00 7.858E+00 9.222E+00	4.658E+00 5.342E+00 6.026E+00 6.710E+00 7.396E+00 8.770E+00 1.015E+01 1.152E+01	3.256E+01 3.757E+01 4.197E+01 4.590E+01 4.945E+01 5.565E+01 6.094E+01 6.557E+01	3.225E-01 3.698E-01 4.096E-01 4.437E-01 4.734E-01 5.226E-01 5.619E-01 5.942E-01	7.063E+00 7.501E+00 7.861E+00 8.167E+00 8.432E+00 8.876E+00 9.239E+00 9.546E+00	-0.001 -0.001 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000	0.009 0.008 0.007 0.006 0.006 0.005 0.005	0.003 0.002 0.002 0.002 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.313E+00 2.323E+00 2.332E+00 2.340E+00 2.347E+00 2.361E+00 2.372E+00 2.382E+00	1.059E+01 1.196E+01 1.333E+01 1.471E+01 1.608E+01 2.160E+01 2.436E+01	1.290E+01 1.428E+01 1.567E+01 1.705E+01 1.843E+01 2.120E+01 2.397E+01 2.674E+01	6.966E+01 7.334E+01 7.669E+01 7.974E+01 8.256E+01 8.762E+01 9.205E+01 9.600E+01	6.213E-01 6.444E-01 6.644E-01 6.819E-01 6.974E-01 7.236E-01 7.451E-01 7.630E-01	9.812E+00 1.005E+01 1.026E+01 1.045E+01 1.062E+01 1.093E+01 1.120E+01 1.143E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.004 0.004 0.004 0.003 0.003	0.001 0.001 0.000 0.000 0.000 0.000 0.000
1000.0000	2.391E+00	2.713E+01	2.952E+01	9.956E+01	7.782E-01	1.164E+01	-0.000	0.003	0.000

ELECTRONS IN GLASS, BOROSILICATE ("PYREX", CORNING 7740)

I = 134.0 eV DENSITY = 2.230E+00 g/cm³

	ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
	MeV	MeV cm ² /g	MeV cm²/g	MeV cm ² /g	g/cm²		(555)			
	0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.787E+01 1.511E+01 1.317E+01 1.172E+01 1.060E+01 8.962E+00 7.822E+00 6.980E+00	5.400E-03 5.488E-03 5.548E-03 5.593E-03 5.626E-03 5.674E-03 5.707E-03 5.735E-03	1.788E+01 1.512E+01 1.317E+01 1.173E+01 1.060E+01 8.968E+00 7.828E+00 6.986E+00	3.237E-04 4.764E-04 6.540E-04 8.556E-04 1.080E-03 1.595E-03 2.194E-03 2.871E-03	1.632E-04 1.971E-04 2.296E-04 2.610E-04 2.914E-04 3.495E-04 4.048E-04 4.578E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.225 -0.214 -0.206 -0.200 -0.195 -0.187 -0.181	0.264 0.250 0.239 0.230 0.223 0.213 0.205 0.199	0.260 0.246 0.236 0.228 0.221 0.211 0.203 0.197
	0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.331E+00 5.814E+00 5.393E+00 5.042E+00 4.746E+00 4.272E+00 3.909E+00 3.622E+00	5.759E-03 5.781E-03 5.803E-03 5.824E-03 5.847E-03 5.893E-03 5.943E-03 5.997E-03	6.336E+00 5.820E+00 5.398E+00 5.048E+00 4.752E+00 4.278E+00 3.915E+00 3.628E+00	3.624E-03 4.448E-03 5.341E-03 6.300E-03 7.321E-03 9.544E-03 1.199E-02 1.465E-02	5.087E-04 5.579E-04 6.055E-04 6.518E-04 6.968E-04 7.837E-04 8.668E-04 9.467E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.172 -0.169 -0.166 -0.164 -0.162 -0.158 -0.155	0.194 0.189 0.186 0.182 0.180 0.175 0.171 0.168	0.192 0.188 0.185 0.182 0.179 0.174 0.170
	0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.390E+00 2.966E+00 2.679E+00 2.473E+00 2.318E+00 2.102E+00 1.962E+00 1.864E+00	6.055E-03 6.215E-03 6.393E-03 6.588E-03 6.796E-03 7.250E-03 7.749E-03 8.286E-03	3.396E+00 2.972E+00 2.685E+00 2.479E+00 2.325E+00 2.110E+00 1.970E+00 1.873E+00	1.750E-02 2.540E-02 3.427E-02 4.398E-02 5.440E-02 7.706E-02 1.016E-01 1.277E-01	1.024E-03 1.207E-03 1.379E-03 1.542E-03 1.698E-03 1.995E-03 2.277E-03 2.549E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.150 -0.145 -0.142 -0.139 -0.136 -0.132 -0.129	0.165 0.159 0.155 0.152 0.149 0.145 0.141 0.138	0.164 0.159 0.155 0.151 0.148 0.144 0.140 0.137
	0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.793E+00 1.739E+00 1.698E+00 1.665E+00 1.640E+00 1.603E+00 1.579E+00 1.563E+00	8.857E-03 9.461E-03 1.009E-02 1.075E-02 1.143E-02 1.285E-02 1.434E-02 1.590E-02	1.802E+00 1.749E+00 1.708E+00 1.676E+00 1.651E+00 1.616E+00 1.593E+00 1.579E+00	1.549E-01 1.831E-01 2.121E-01 2.416E-01 2.717E-01 3.330E-01 3.953E-01 4.584E-01	2.814E-03 3.075E-03 3.333E-03 3.590E-03 3.846E-03 4.359E-03 4.873E-03 5.391E-03	8.985E-03 2.665E-02 4.637E-02 6.760E-02 8.997E-02 1.371E-01 1.860E-01 2.359E-01	-0.110 -0.105 -0.100 -0.095 -0.091 -0.085 -0.080 -0.075	0.135 0.130 0.126 0.123 0.119 0.114 0.108 0.104	0.133 0.128 0.124 0.119 0.115 0.109 0.103 0.098
,	1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.552E+00 1.540E+00 1.538E+00 1.541E+00 1.547E+00 1.561E+00 1.576E+00 1.590E+00	1.751E-02 2.179E-02 2.636E-02 3.117E-02 3.617E-02 4.668E-02 5.771E-02 6.918E-02	1.570E+00 1.561E+00 1.564E+00 1.572E+00 1.583E+00 1.608E+00 1.634E+00	5.220E-01 6.818E-01 8.418E-01 1.001E+00 1.160E+00 1.473E+00 1.782E+00 2.085E+00	5.913E-03 7.240E-03 8.599E-03 9.990E-03 1.141E-02 1.431E-02 1.729E-02 2.032E-02	2.859E-01 4.090E-01 5.271E-01 6.390E-01 7.448E-01 9.392E-01 1.114E+00 1.273E+00	-0.072 -0.064 -0.059 -0.055 -0.052 -0.047 -0.043	0.100 0.092 0.086 0.082 0.078 0.071 0.066 0.063	0.093 0.084 0.077 0.072 0.067 0.060 0.055
	4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.604E+00 1.616E+00 1.627E+00 1.637E+00 1.647E+00 1.664E+00 1.678E+00 1.691E+00	8.102E-02 9.315E-02 1.056E-01 1.182E-01 1.311E-01 1.574E-01 1.844E-01 2.119E-01	1.685E+00 1.709E+00 1.733E+00 1.756E+00 1.778E+00 1.821E+00 1.863E+00 1.903E+00	2.384E+00 2.679E+00 2.970E+00 3.256E+00 3.539E+00 4.095E+00 4.638E+00 5.169E+00	2.339E-02 2.649E-02 2.961E-02 3.275E-02 3.590E-02 4.222E-02 4.853E-02 5.483E-02	1.419E+00 1.554E+00 1.679E+00 1.797E+00 1.907E+00 2.110E+00 2.292E+00 2.458E+00	-0.037 -0.035 -0.033 -0.031 -0.030 -0.027 -0.025 -0.023	0.059 0.057 0.054 0.052 0.050 0.047 0.044 0.042	0.047 0.045 0.042 0.040 0.038 0.035 0.032 0.030
	10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.703E+00 1.726E+00 1.746E+00 1.761E+00 1.775E+00 1.797E+00 1.814E+00 1.828E+00	2.399E-01 3.115E-01 3.850E-01 4.599E-01 5.360E-01 6.906E-01 8.477E-01 1.007E+00	1.943E+00 2.038E+00 2.131E+00 2.221E+00 2.311E+00 2.487E+00 2.662E+00 2.835E+00	5.689E+00 6.945E+00 8.145E+00 9.294E+00 1.040E+01 1.248E+01 1.442E+01	6.109E-02 7.653E-02 9.159E-02 1.062E-01 1.204E-01 1.474E-01 1.725E-01 1.961E-01	2.611E+00 2.945E+00 3.229E+00 3.476E+00 3.695E+00 4.071E+00 4.388E+00 4.661E+00	-0.022 -0.019 -0.017 -0.015 -0.014 -0.011 -0.010	0.040 0.036 0.033 0.030 0.028 0.025 0.025	0.028 0.024 0.021 0.019 0.017 0.014 0.012 0.011
	40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.840E+00 1.851E+00 1.860E+00 1.868E+00 1.876E+00 1.876E+00 1.900E+00 1.909E+00	1.167E+00 1.329E+00 1.491E+00 1.655E+00 1.819E+00 2.150E+00 2.483E+00 2.817E+00	3.007E+00 3.179E+00 3.351E+00 3.523E+00 3.695E+00 4.039E+00 4.383E+00 4.727E+00	1.796E+01 1.957E+01 2.111E+01 2.256E+01 2.395E+01 2.653E+01 2.891E+01 3.111E+01	2.180E-01 2.386E-01 2.579E-01 2.761E-01 2.932E-01 3.246E-01 3.527E-01 3.782E-01	4.901E+00 5.115E+00 5.309E+00 5.486E+00 5.649E+00 5.940E+00 6.194E+00 6.420E+00	-0.007 -0.006 -0.006 -0.005 -0.005 -0.004 -0.003 -0.003	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.012	0.010 0.009 0.008 0.007 0.006 0.005 0.005
1	100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.918E+00 1.936E+00 1.950E+00 1.963E+00 1.973E+00 1.970E+00 2.004E+00 2.016E+00	3.153E+00 3.998E+00 4.848E+00 5.702E+00 6.559E+00 8.280E+00 1.001E+01	5.071E+00 5.934E+00 6.798E+00 7.665E+00 8.532E+00 1.027E+01 1.201E+01 1.376E+01	3.315E+01 3.770E+01 4.163E+01 4.510E+01 4.819E+01 5.352E+01 5.802E+01 6.190E+01	4.013E-01 4.508E-01 4.914E-01 5.254E-01 5.543E-01 6.011E-01 6.377E-01 6.671E-01	6.624E+00 7.058E+00 7.415E+00 7.718E+00 7.982E+00 8.424E+00 8.786E+00 9.093E+00	-0.002 -0.002 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000	0.011 0.010 0.009 0.009 0.008 0.007 0.007	0.004 0.003 0.002 0.002 0.002 0.001 0.001
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	2.027E+00 2.036E+00 2.044E+00 2.051E+00 2.058E+00 2.069E+00 2.080E+00 2.089E+00	1.348E+01 1.522E+01 1.696E+01 1.870E+01 2.045E+01 2.394E+01 2.744E+01 3.094E+01	1.550E+01 1.725E+01 1.900E+01 2.075E+01 2.251E+01 2.601E+01 2.952E+01 3.303E+01	6.532E+01 6.838E+01 7.114E+01 7.366E+01 7.597E+01 8.010E+01 8.371E+01 8.691E+01	6.914E-01 7.119E-01 7.295E-01 7.447E-01 7.581E-01 7.804E-01 7.985E-01 8.135E-01	9.359E+00 9.594E+00 9.804E+00 9.994E+00 1.017E+01 1.048E+01 1.098E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.006 0.006 0.005 0.005 0.005 0.005 0.005	0.001 0.001 0.001 0.001 0.001 0.000 0.000
10	000.000	2.097E+00	3.445E+01	3.654E+01	8.978E+01	8.261E-01	1.119E+01	-0.000	0.004	0.000

ELECTRONS IN "KAPTON" POLYIMIDE FILM

I = 79.6 eV DENSITY = 1.420E+00 g/cm^3

ENERGY	COLLISION	OPPING POWE RADIATIVE	TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
MeV 0.010(0.0125 0.015(0.0175 0.020(0.025(0.035(0.035(5 1.732E+01 0 1.504E+01 5 1.335E+01 0 1.204E+01 0 1.014E+01 0 8.828E+00	MeV cm ² /g 3.368E-03 3.383E-03 3.392E-03 3.494E-03 3.413E-03 3.422E-03 3.432E-03	MeV cm ² /g 2.059E+01 1.733E+01 1.504E+01 1.335E+01 1.204E+01 1.015E+01 8.832E+00 7.864E+00	g/cm ² 2.760E-04 4.089E-04 5.642E-04 7.410E-04 9.385E-04 1.393E-03 1.923E-03 2.524E-03	9.020E-05 1.081E-04 1.251E-04 1.416E-04 1.574E-04 1.879E-04 2.169E-04 2.448E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.201 -0.193 -0.186 -0.181 -0.177 -0.170 -0.165 -0.161	0.231 0.219 0.211 0.205 0.199 0.191 0.184 0.179	0.229 0.218 0.210 0.204 0.198 0.190 0.184 0.179
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800	7.116E+00 0.6.525E+00 0.6.044E+00 0.5.644E+00 0.5.307E+00 0.4.768E+00 0.4.357E+00	3.443E-03 3.456E-03 3.469E-03 3.484E-03 3.499E-03 3.532E-03 3.569E-03	7.119E+00 6.528E+00 6.047E+00 5.647E+00 5.310E+00 4.772E+00 4.360E+00 4.036E+00	3.193E-03 3.928E-03 4.724E-03 5.580E-03 6.494E-03 8.485E-03 1.068E-02 1.307E-02	2.717E-04 2.978E-04 3.232E-04 3.480E-04 3.721E-04 4.190E-04 4.640E-04 5.076E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.158 -0.155 -0.153 -0.151 -0.149 -0.146 -0.143	0.175 0.172 0.169 0.166 0.164 0.160 0.157	0.175 0.171 0.168 0.166 0.164 0.160 0.157 0.154
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3500	0 3.290E+00 0 2.967E+00 0 2.735E+00 0 2.560E+00 0 2.318E+00 0 2.159E+00	3.649E-03 3.763E-03 3.886E-03 4.018E-03 4.157E-03 4.457E-03 4.784E-03 5.135E-03	3.773E+00 3.294E+00 2.971E+00 2.739E+00 2.564E+00 2.322E+00 2.164E+00 2.055E+00	1.563E-02 2.275E-02 3.076E-02 3.955E-02 4.899E-02 6.955E-02 9.190E-02 1.156E-01	5.499E-04 6.511E-04 7.469E-04 8.385E-04 9.267E-04 1.096E-03 1.257E-03 1.414E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.139 -0.135 -0.132 -0.129 -0.127 -0.124 -0.121	0.152 0.147 0.143 0.141 0.138 0.134 0.131 0.129	0.151 0.147 0.143 0.140 0.138 0.134 0.130 0.128
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	0 1.906E+00 0 1.859E+00 0 1.821E+00 0 1.791E+00 0 1.747E+00 0 1.717E+00	5.509E-03 5.903E-03 6.316E-03 6.745E-03 7.189E-03 8.119E-03 9.096E-03 1.012E-02	1.974E+00 1.912E+00 1.865E+00 1.828E+00 1.798E+00 1.755E+00 1.726E+00 1.707E+00	1.405E-01 1.662E-01 1.927E-01 2.198E-01 2.474E-01 3.038E-01 3.613E-01 4.195E-01	1.568E-03 1.720E-03 1.872E-03 2.023E-03 2.175E-03 2.480E-03 2.789E-03 3.101E-03	1.309E-02 4.101E-02 7.122E-02 1.031E-01 1.361E-01 2.042E-01 2.735E-01 3.426E-01	-0.095 -0.089 -0.083 -0.078 -0.074 -0.067 -0.062 -0.057	0.125 0.120 0.115 0.111 0.107 0.100 0.094 0.090	0.123 0.117 0.112 0.107 0.102 0.094 0.088 0.082
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.5000	0 1.663E+00 0 1.657E+00 0 1.657E+00 0 1.657E+00 0 1.660E+00 0 1.670E+00 0 1.683E+00	1.118E-02 1.399E-02 1.700E-02 2.017E-02 2.347E-02 3.041E-02 3.773E-02 4.535E-02	1.693E+00 1.677E+00 1.674E+00 1.677E+00 1.683E+00 1.701E+00 1.721E+00	4.784E-01 6.269E-01 7.761E-01 9.254E-01 1.074E+00 1.370E+00 1.662E+00	3.417E-03 4.227E-03 5.063E-03 5.923E-03 6.806E-03 8.625E-03 1.050E-02 1.243E-02	4.109E-01 5.751E-01 7.282E-01 8.700E-01 1.001E+00 1.237E+00 1.442E+00 1.624E+00	-0.054 -0.048 -0.043 -0.040 -0.038 -0.035 -0.032 -0.031	0.085 0.077 0.071 0.066 0.062 0.056 0.052 0.049	0.077 0.067 0.061 0.055 0.051 0.046 0.041 0.039
4.000 4.500 5.000 5.500 6.000 7.000 8.000 9.000	0 1.719E+00 0 1.730E+00 0 1.740E+00 0 1.749E+00 0 1.765E+00 0 1.780E+00	5.322E-02 6.132E-02 6.961E-02 7.807E-02 8.669E-02 1.044E-01 1.225E-01	1.761E+00 1.780E+00 1.799E+00 1.818E+00 1.836E+00 1.870E+00 1.902E+00 1.934E+00	2.237E+00 2.519E+00 2.798E+00 3.075E+00 3.3348E+00 4.418E+00 4.940E+00	1.439E-02 1.639E-02 1.840E-02 2.044E-02 2.249E-02 2.664E-02 3.082E-02 3.503E-02	1.788E+00 1.936E+00 2.072E+00 2.197E+00 2.314E+00 2.526E+00 2.715E+00 2.886E+00	-0.029 -0.028 -0.027 -0.026 -0.025 -0.024 -0.022	0.047 0.045 0.043 0.041 0.040 0.038 0.036	0.036 0.034 0.033 0.032 0.030 0.029 0.027 0.025
10.000 12.500 15.000 17.500 20.000 25.000 30.000 35.000	0 1.828E+00 0 1.847E+00 0 1.862E+00 0 1.875E+00 0 1.896E+00 0 1.913E+00	1.599E-01 2.084E-01 2.582E-01 3.091E-01 3.609E-01 4.664E-01 5.737E-01 6.824E-01	1.964E+00 2.036E+00 2.105E+00 2.171E+00 2.236E+00 2.363E+00 2.486E+00 2.609E+00	5.453E+00 6.703E+00 7.910E+00 9.079E+00 1.021E+01 1.239E+01 1.445E+01	3.924E-02 4.978E-02 6.024E-02 7.057E-02 8.074E-02 1.005E-01 1.195E-01 1.376E-01	3.043E+00 3.387E+00 3.681E+00 3.939E+00 4.168E+00 4.564E+00 4.897E+00 5.184E+00	-0.019 -0.016 -0.014 -0.011 -0.010 -0.007 -0.005 -0.004	0.033 0.030 0.027 0.025 0.023 0.020 0.018	0.024 0.021 0.019 0.017 0.015 0.012 0.010 0.008
40.000 45.000 50.000 55.000 70.000 80.000 90.000	0 1.948E+00 0 1.957E+00 0 1.965E+00 0 1.972E+00 0 1.984E+00 0 1.995E+00	7.923E-01 9.031E-01 1.015E+00 1.127E+00 1.240E+00 1.467E+00 1.696E+00	2.730E+00 2.851E+00 2.971E+00 3.091E+00 3.212E+00 3.451E+00 3.691E+00 3.931E+00	1.829E+01 2.008E+01 2.180E+01 2.345E+01 2.503E+01 2.504E+01 3.084E+01	1.549E-01 1.714E-01 1.872E-01 2.023E-01 2.167E-01 2.438E-01 2.686E-01 2.915E-01	5.437E+00 5.662E+00 5.864E+00 6.049E+00 6.218E+00 6.519E+00 6.781E+00 7.013E+00	-0.003 -0.003 -0.002 -0.002 -0.002 -0.001 -0.001	0.015 0.014 0.013 0.012 0.011 0.010 0.009	0.007 0.006 0.005 0.005 0.004 0.003 0.003
100.000 125.000 150.000 175.000 200.000 250.000 300.000 350.000	0 2.031E+00 0 2.046E+00 0 2.058E+00 0 2.068E+00 0 2.086E+00 0 2.101E+00	2.157E+00 2.739E+00 3.325E+00 3.914E+00 4.506E+00 5.695E+00 6.889E+00 8.088E+00	4.170E+00 4.770E+00 5.371E+00 5.972E+00 6.574E+00 7.781E+00 8.990E+00 1.020E+01	3.593E+01 4.153E+01 4.647E+01 5.088E+01 5.487E+01 6.185E+01 6.783E+01 7.304E+01	3.128E-01 3.596E-01 3.993E-01 4.333E-01 4.630E-01 5.124E-01 5.520E-01 5.846E-01	7.221E+00 7.663E+00 8.025E+00 8.331E+00 8.597E+00 9.042E+00 9.405E+00 9.713E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.008 0.007 0.006 0.006 0.005 0.005 0.004	0.002 0.002 0.001 0.001 0.001 0.001 0.001
400.000 450.000 500.000 550.000 600.000 700.000 800.000 900.000	0 2.133E+00 0 2.141E+00 0 2.148E+00 0 2.155E+00 0 2.167E+00 0 2.178E+00	9.289E+00 1.049E+01 1.170E+01 1.291E+01 1.411E+01 1.654E+01 1.896E+01 2.139E+01	1.141E+01 1.263E+01 1.384E+01 1.505E+01 1.627E+01 1.870E+01 2.114E+01 2.357E+01	7.768E+01 8.184E+01 8.562E+01 8.908E+01 9.228E+01 9.801E+01 1.030E+02 1.075E+02	6.120E-01 6.354E-01 6.557E-01 6.735E-01 6.893E-01 7.160E-01 7.378E-01	9.979E+00 1.021E+01 1.043E+01 1.062E+01 1.079E+01 1.110E+01 1.136E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.000	0 2.196E+00	2.382E+01	2.601E+01	1.115E+02	7.716E-01	1.181E+01	-0.000	0.003	0.000

ELECTRONS IN LITHIUM FLUORIDE

I = 94.0 eV DENSITY = 2.635E+00 g/cm³

ENERGY	COLLISION	OPPING POWE	TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(le CSDA RANGE	OgI) RAD YIELD
MeV 0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300	MeV cm ² /g 1.796E+01 1.513E+01 1.315E+01 1.168E+01 1.055E+01 8.894E+00 7.748E+00	MeV cm ² /g 3.678E-03 3.712E-03 3.735E-03 3.750E-03 3.762E-03 3.779E-03 3.792E-03	MeV cm ² /g 1.796E+01 1.514E+01 1.316E+01 1.169E+01 1.055E+01 8.898E+00 7.751E+00	g/cm ² 3.181E-04 4.704E-04 6.480E-04 8.501E-04 1.076E-03 1.594E-03 2.198E-03	1.117E-04 1.344E-04 1.561E-04 1.770E-04 1.973E-04 2.360E-04 2.729E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.208 -0.199 -0.192 -0.187 -0.182 -0.175	0.240 0.228 0.219 0.212 0.206 0.197 0.190	0.238 0.226 0.217 0.211 0.205 0.196 0.190
0.0350 0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.902E+00 6.252E+00 5.736E+00 5.315E+00 4.965E+00 4.670E+00 4.198E+00 3.838E+00 3.553E+00	3.804E-03 3.815E-03 3.827E-03 3.840E-03 3.853E-03 3.867E-03 3.898E-03 3.932E-03	6.906E+00 6.256E+00 5.739E+00 5.319E+00 4.969E+00 4.674E+00 4.202E+00 3.842E+00 3.557E+00	2.883E-03 3.645E-03 4.480E-03 5.386E-03 6.359E-03 7.397E-03 9.659E-03 1.215E-02 1.486E-02	3.082E-04 3.423E-04 4.071E-04 4.382E-04 4.684E-04 5.269E-04 5.831E-04 6.372E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.166 -0.162 -0.160 -0.157 -0.155 -0.153 -0.150 -0.147	0.185 0.181 0.177 0.174 0.171 0.169 0.164 0.161 0.158	0.184 0.180 0.176 0.173 0.171 0.168 0.164 0.161 0.158
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.323E+00 2.903E+00 2.619E+00 2.415E+00 2.261E+00 2.048E+00 1.907E+00 1.809E+00	4.011E-03 4.125E-03 4.253E-03 4.392E-03 4.540E-03 4.863E-03 5.215E-03 5.592E-03	3.327E+00 2.907E+00 2.623E+00 2.419E+00 2.266E+00 2.053E+00 1.912E+00 1.814E+00	1.777E-02 2.584E-02 3.492E-02 4.486E-02 5.555E-02 7.881E-02 1.041E-01 1.310E-01	6.896E-04 8.143E-04 9.321E-04 1.045E-03 1.153E-03 1.360E-03 1.558E-03 1.750E-03	0.0 0.0 0.0 0.0 0.0 0.0 6.058E-03 2.136E-02 3.978E-02	-0.142 -0.138 -0.135 -0.130 -0.130 -0.118 -0.112	0.156 0.151 0.147 0.144 0.141 0.136 0.131 0.126	0.155 0.150 0.147 0.143 0.141 0.135 0.130 0.125
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.737E+00 1.683E+00 1.642E+00 1.609E+00 1.583E+00 1.546E+00 1.521E+00 1.503E+00	5.992E-03 6.412E-03 6.852E-03 7.308E-03 7.779E-03 8.765E-03 9.800E-03 1.088E-02	1.743E+00 1.690E+00 1.649E+00 1.517E+00 1.555E+00 1.530E+00 1.514E+00	1.591E-01 1.883E-01 2.183E-01 2.489E-01 2.801E-01 3.437E-01 4.086E-01 4.743E-01	1.939E-03 2.125E-03 2.310E-03 2.495E-03 2.679E-03 3.048E-03 3.419E-03 3.794E-03	6.095E-02 8.445E-02 1.098E-01 1.367E-01 1.648E-01 2.236E-01 2.846E-01 3.467E-01	-0.100 -0.095 -0.090 -0.086 -0.082 -0.075 -0.070	0.122 0.118 0.115 0.112 0.108 0.103 0.098 0.094	0.120 0.116 0.112 0.108 0.104 0.098 0.092 0.087
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.491E+00 1.476E+00 1.471E+00 1.471E+00 1.474E+00 1.483E+00 1.493E+00 1.503E+00	1.200E-02 1.499E-02 1.818E-02 2.154E-02 2.505E-02 3.244E-02 4.021E-02 4.830E-02	1.504E+00 1.491E+00 1.489E+00 1.493E+00 1.499E+00 1.515E+00 1.533E+00 1.552E+00	5.406E-01 7.077E-01 8.756E-01 1.043E+00 1.210E+00 1.542E+00 1.870E+00 2.194E+00	4.173E-03 5.141E-03 6.138E-03 7.163E-03 8.214E-03 1.038E-02 1.262E-02 1.491E-02	4.093E-01 5.644E-01 7.142E-01 8.568E-01 9.917E-01 1.240E+00 1.461E+00 1.660E+00	-0.060 -0.052 -0.046 -0.041 -0.037 -0.032 -0.028	0.090 0.082 0.075 0.070 0.066 0.059 0.054 0.049	0.083 0.073 0.066 0.059 0.054 0.047 0.041 0.037
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.513E+00 1.523E+00 1.531E+00 1.539E+00 1.547E+00 1.560E+00 1.572E+00 1.583E+00	5.666E-02 6.524E-02 7.402E-02 8.298E-02 9.211E-02 1.108E-01 1.299E-01 1.494E-01	1.570E+00 1.588E+00 1.605E+00 1.622E+00 1.639E+00 1.671E+00 1.702E+00	2.515E+00 2.832E+00 3.145E+00 3.455E+00 3.761E+00 4.365E+00 4.958E+00 5.541E+00	1.725E-02 1.962E-02 2.202E-02 2.444E-02 2.687E-02 3.178E-02 3.672E-02 4.168E-02	1.839E+00 2.003E+00 2.154E+00 2.293E+00 2.422E+00 2.655E+00 2.861E+00 3.046E+00	-0.024 -0.022 -0.021 -0.020 -0.019 -0.018 -0.017	0.046 0.044 0.041 0.039 0.038 0.035 0.033	0.034 0.031 0.029 0.027 0.026 0.024 0.022 0.020
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.592E+00 1.612E+00 1.629E+00 1.642E+00 1.654E+00 1.673E+00 1.688E+00 1.700E+00	1.693E-01 2.201E-01 2.723E-01 3.256E-01 3.797E-01 4.896E-01 6.014E-01 7.146E-01	1.761E+00 1.832E+00 1.901E+00 1.968E+00 2.034E+00 2.163E+00 2.289E+00 2.415E+00	6.113E+00 7.504E+00 8.844E+00 1.014E+01 1.139E+01 1.377E+01 1.602E+01 1.814E+01	4.663E-02 5.894E-02 7.108E-02 8.299E-02 9.463E-02 1.171E-01 1.384E-01 1.585E-01	3.214E+00 3.577E+00 3.881E+00 4.143E+00 4.374E+00 4.769E+00 5.099E+00 5.383E+00	-0.016 -0.014 -0.013 -0.011 -0.010 -0.008 -0.007 -0.005	0.029 0.026 0.024 0.022 0.021 0.018 0.017 0.015	0.019 0.017 0.015 0.014 0.013 0.011 0.009 0.008
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.711E+00 1.720E+00 1.728E+00 1.736E+00 1.742E+00 1.754E+00 1.764E+00	8.289E-01 9.441E-01 1.060E+00 1.177E+00 1.294E+00 1.530E+00 1.767E+00 2.006E+00	2.540E+00 2.664E+00 2.788E+00 2.912E+00 3.036E+00 3.283E+00 3.531E+00 3.778E+00	2.016E+01 2.208E+01 2.392E+01 2.567E+01 2.735E+01 3.052E+01 3.346E+01 3.619E+01	1.776E-01 1.957E-01 2.129E-01 2.292E-01 2.447E-01 2.735E-01 2.998E-01 3.238E-01	5.633E+00 5.856E+00 6.057E+00 6.240E+00 6.707E+00 6.707E+00 6.968E+00 7.199E+00	-0.004 -0.004 -0.003 -0.003 -0.002 -0.002 -0.001	0.014 0.013 0.012 0.011 0.011 0.010 0.009 0.008	0.007 0.006 0.005 0.005 0.004 0.004 0.003 0.003
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.780E+00 1.796E+00 1.809E+00 1.820E+00 1.830E+00 1.846E+00 1.859E+00 1.870E+00	2.245E+00 2.848E+00 3.455E+00 4.065E+00 4.677E+00 5.907E+00 7.142E+00 8.381E+00	4.025E+00 4.644E+00 5.264E+00 5.885E+00 6.507E+00 7.753E+00 9.001E+00 1.025E+01	3.876E+01 4.453E+01 4.959E+01 5.408E+01 5.811E+01 6.514E+01 7.112E+01 7.633E+01	3.459E-01 3.941E-01 4.343E-01 4.686E-01 4.982E-01 5.468E-01 5.854E-01 6.170E-01	7.406E+00 7.847E+00 8.209E+00 8.515E+00 8.780E+00 9.225E+00 9.588E+00 9.896E+00	-0.001 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.008 0.007 0.006 0.006 0.005 0.005 0.004	0.002 0.002 0.001 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.879E+00 1.888E+00 1.895E+00 1.902E+00 1.908E+00 1.919E+00 1.929E+00 1.937E+00	9.622E+00 1.087E+01 1.211E+01 1.336E+01 1.461E+01 1.711E+01 1.961E+01 2.211E+01	1.150E+01 1.275E+01 1.401E+01 1.526E+01 1.651E+01 1.902E+01 2.154E+01 2.405E+01	8.093E+01 8.505E+01 8.879E+01 9.221E+01 9.536E+01 1.010E+02 1.059E+02	6.433E-01 6.656E-01 6.849E-01 7.018E-01 7.166E-01 7.417E-01 7.621E-01 7.791E-01	1.016E+01 1.040E+01 1.061E+01 1.080E+01 1.097E+01 1.128E+01 1.155E+01	$ \begin{array}{c} -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \end{array} $	0.004 0.004 0.004 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	1.945E+00	2.462E+01	2.656E+01	1.143E+02	7.935E-01	1.199E+01	-0.000	0.003	0.000

ELECTRONS IN LITHIUM TETRABORATE

I = 94.6 eV DENSITY = 2.440E+00 g/cm^3

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	COLL	g)/d(l CSDA	ogI) RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm ² /g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.880E+01 1.584E+01 1.377E+01 1.223E+01 1.104E+01 9.311E+00 8.111E+00 7.227E+00	3.547E-03 3.569E-03 3.582E-03 3.591E-03 3.598E-03 3.608E-03 3.617E-03 3.627E-03	1.880E+01 1.584E+01 1.377E+01 1.223E+01 1.104E+01 9.315E+00 8.115E+00 7.230E+00	3.040E-04 4.494E-04 6.192E-04 8.122E-04 1.028E-03 1.523E-03 2.100E-03 2.754E-03	1.039E-04 1.245E-04 1.442E-04 1.632E-04 1.815E-04 2.166E-04 2.499E-04 2.819E-04	0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0	-0.208 -0.199 -0.192 -0.187 -0.183 -0.176 -0.170	0.241 0.229 0.220 0.212 0.207 0.198 0.191 0.185	0.239 0.227 0.218 0.211 0.206 0.197 0.190
0.0400 0.0450 0.0550 0.0550 0.0650 0.0700 0.0800	6.546E+00 6.005E+00 5.565E+00 5.199E+00 4.890E+00 4.396E+00 4.019E+00 3.721E+00	3.638E-03 3.649E-03 3.662E-03 3.676E-03 3.692E-03 3.725E-03 3.761E-03 3.801E-03	6.550E+00 6.009E+00 5.569E+00 5.203E+00 4.893E+00 4.400E+00 4.022E+00 3.725E+00	3.482E-03 4.280E-03 5.145E-03 6.074E-03 7.066E-03 9.226E-03 1.161E-02 1.419E-02	3.128E-04 3.426E-04 3.716E-04 3.999E-04 4.274E-04 4.808E-04 5.321E-04 5.816E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.163 -0.160 -0.157 -0.155 -0.153 -0.150 -0.147 -0.145	0.181 0.177 0.174 0.171 0.169 0.165 0.161	0.180 0.177 0.174 0.171 0.168 0.164 0.161 0.158
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	3.480E+00 3.040E+00 2.742E+00 2.528E+00 2.368E+00 2.145E+00 1.999E+00 1.895E+00	3.843E-03 3.959E-03 4.086E-03 4.222E-03 4.365E-03 4.675E-03 5.013E-03 5.376E-03	3.484E+00 3.043E+00 2.746E+00 2.533E+00 2.373E+00 2.150E+00 2.004E+00 1.900E+00	1.697E-02 2.468E-02 3.335E-02 4.285E-02 5.306E-02 7.527E-02 9.941E-02 1.251E-01	6.297E-04 7.444E-04 8.528E-04 9.564E-04 1.056E-03 1.246E-03 1.428E-03 1.605E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.258E-03 3.457E-02	-0.142 -0.138 -0.135 -0.132 -0.130 -0.126 -0.107 -0.099	0.156 0.151 0.147 0.144 0.142 0.138 0.133	0.156 0.151 0.147 0.144 0.141 0.137 0.132 0.125
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.819E+00 1.762E+00 1.717E+00 1.683E+00 1.655E+00 1.615E+00 1.588E+00 1.569E+00	5.763E-03 6.171E-03 6.598E-03 7.044E-03 7.504E-03 8.467E-03 9.479E-03 1.054E-02	1.825E+00 1.768E+00 1.724E+00 1.690E+00 1.663E+00 1.597E+00 1.580E+00	1.519E-01 1.798E-01 2.085E-01 2.378E-01 2.676E-01 3.285E-01 3.907E-01 4.536E-01	1.779E-03 1.951E-03 2.121E-03 2.292E-03 2.463E-03 2.806E-03 3.152E-03 3.501E-03	6.442E-02 9.625E-02 1.294E-01 1.633E-01 1.979E-01 2.679E-01 3.381E-01 4.076E-01	-0.092 -0.087 -0.082 -0.078 -0.075 -0.069 -0.064 -0.060	0.121 0.116 0.112 0.108 0.104 0.098 0.093 0.089	0.119 0.113 0.108 0.104 0.100 0.092 0.087 0.081
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.557E+00 1.540E+00 1.534E+00 1.535E+00 1.538E+00 1.548E+00 1.560E+00 1.572E+00	1.164E-02 1.455E-02 1.766E-02 2.094E-02 2.435E-02 3.153E-02 3.909E-02 4.695E-02	1.568E+00 1.554E+00 1.552E+00 1.556E+00 1.562E+00 1.580E+00 1.599E+00	5.172E-01 6.775E-01 8.385E-01 9.994E-01 1.160E+00 1.478E+00 1.793E+00 2.104E+00	3.856E-03 4.761E-03 5.695E-03 6.655E-03 7.638E-03 9.663E-03 1.175E-02 1.389E-02	4.759E-01 6.398E-01 7.928E-01 9.349E-01 1.067E+00 1.305E+00 1.514E+00	-0.056 -0.050 -0.045 -0.042 -0.039 -0.035 -0.033	0.085 0.077 0.071 0.067 0.063 0.057 0.053 0.050	0.077 0.068 0.062 0.057 0.053 0.047 0.042 0.039
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.583E+00 1.593E+00 1.603E+00 1.612E+00 1.621E+00 1.636E+00 1.649E+00	5.508E-02 6.342E-02 7.197E-02 8.069E-02 8.958E-02 1.078E-01 1.264E-01	1.638E+00 1.657E+00 1.675E+00 1.693E+00 1.710E+00 1.744E+00 1.775E+00	2.411E+00 2.714E+00 3.014E+00 3.311E+00 3.605E+00 4.184E+00 4.752E+00 5.311E+00	1.607E-02 1.828E-02 2.051E-02 2.277E-02 2.504E-02 2.962E-02 3.423E-02 3.886E-02	1.869E+00 2.023E+00 2.163E+00 2.293E+00 2.415E+00 2.635E+00 2.831E+00 3.008E+00	-0.029 -0.027 -0.026 -0.025 -0.024 -0.022 -0.021 -0.019	0.047 0.045 0.043 0.041 0.040 0.037 0.035 0.033	0.037 0.035 0.033 0.031 0.030 0.028 0.026 0.024
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.671E+00 1.693E+00 1.710E+00 1.725E+00 1.737E+00 1.757E+00 1.772E+00 1.785E+00	1.649E-01 2.148E-01 2.660E-01 3.184E-01 3.716E-01 4.798E-01 5.900E-01 7.015E-01	1.836E+00 1.908E+00 1.976E+00 2.043E+00 2.109E+00 2.237E+00 2.362E+00 2.487E+00	5.860E+00 7.195E+00 8.483E+00 9.727E+00 1.093E+01 1.323E+01 1.541E+01 1.747E+01	4.349E-02 5.505E-02 6.648E-02 7.774E-02 8.878E-02 1.102E-01 1.305E-01	3.170E+00 3.524E+00 3.823E+00 4.083E+00 4.314E+00 4.710E+00 5.042E+00 5.329E+00	-0.018 -0.015 -0.013 -0.011 -0.010 -0.008 -0.006 -0.005	0.032 0.029 0.026 0.024 0.023 0.020 0.018 0.016	0.023 0.020 0.018 0.016 0.014 0.012 0.010 0.008
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	1.796E+00 1.806E+00 1.814E+00 1.822E+00 1.829E+00 1.841E+00 1.851E+00 1.860E+00	8.142E-01 9.278E-01 1.042E+00 1.157E+00 1.273E+00 1.506E+00 1.740E+00 1.976E+00	2.611E+00 2.734E+00 2.856E+00 2.979E+00 3.102E+00 3.346E+00 3.591E+00 3.836E+00	1.943E+01 2.130E+01 2.309E+01 2.481E+01 2.645E+01 2.955E+01 3.244E+01 3.513E+01	1.683E-01 1.858E-01 2.025E-01 2.183E-01 2.334E-01 2.616E-01 2.873E-01 3.110E-01	5.580E+00 5.805E+00 6.007E+00 6.191E+00 6.360E+00 6.660E+00 6.922E+00 7.154E+00	-0.004 -0.003 -0.003 -0.002 -0.002 -0.001 -0.001	0.015 0.014 0.013 0.012 0.011 0.010 0.009	0.007 0.006 0.005 0.005 0.004 0.003 0.003
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.868E+00 1.885E+00 1.899E+00 1.910E+00 1.920E+00 1.937E+00 1.951E+00 1.962E+00	2.212E+00 2.808E+00 3.408E+00 4.011E+00 4.616E+00 5.832E+00 7.053E+00 8.279E+00	4.080E+00 4.693E+00 5.306E+00 5.921E+00 6.536E+00 7.769E+00 9.004E+00 1.024E+01	3.766E+01 4.337E+01 4.838E+01 5.283E+01 5.685E+01 6.386E+01 6.983E+01 7.503E+01	3.328E-01 3.805E-01 4.206E-01 4.549E-01 4.846E-01 5.336E-01 5.726E-01 6.046E-01	7.361E+00 7.803E+00 8.165E+00 8.471E+00 8.737E+00 9.181E+00 9.545E+00 9.853E+00	-0.001 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.008 0.007 0.006 0.006 0.005 0.005 0.005	0.002 0.002 0.001 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.972E+00 1.981E+00 1.989E+00 1.996E+00 2.002E+00 2.014E+00 2.024E+00 2.033E+00	9.507E+00 1.074E+01 1.197E+01 1.320E+01 1.444E+01 1.691E+01 1.939E+01 2.187E+01	1.148E+01 1.272E+01 1.396E+01 1.520E+01 1.644E+01 1.893E+01 2.141E+01 2.390E+01	7.964E+01 8.378E+01 8.753E+01 9.096E+01 9.413E+01 9.979E+01 1.048E+02 1.092E+02	6.313E-01 6.541E-01 6.738E-01 6.911E-01 7.063E-01 7.320E-01 7.530E-01 7.704E-01	1.012E+01 1.035E+01 1.056E+01 1.076E+01 1.093E+01 1.124E+01 1.150E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.004 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.040E+00	2.435E+01	2.639E+01	1.132E+02	7.853E-01	1.195E+01	-0.000	0.003	0.000

ELECTRONS IN METHANE

I = 41.7 eV DENSITY = 6.672E-04 g/cm³ (20° C)

	ENERGY	COLLISION	OPPING POWE RADIATIVE	TOTAL	CSDA RANGE	RADIATION YIELD	DEHS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	OgI) RAD YIELD
	MeV 0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	MeV cm ² /g 2.829E+01 2.369E+01 2.049E+01 1.813E+01 1.631E+01 1.369E+01 1.188E+01 1.055E+01	MeV cm ² /g 2.603E-03 2.612E-03 2.620E-03 2.625E-03 2.630E-03 2.651E-03 2.662E-03	MeV cm ² /g 2.829E+01 2.369E+01 2.049E+01 1.813E+01 1.632E+01 1.369E+01 1.188E+01 1.056E+01	g/cm ² 1.977E-04 2.947E-04 4.085E-04 5.385E-04 6.840E-04 1.020E-03 1.413E-03 1.861E-03	5.026E-05 6.045E-05 7.022E-05 7.967E-05 8.884E-05 1.065E-04 1.234E-04 1.397E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.178 -0.171 -0.166 -0.162 -0.159 -0.154 -0.149	0.200 0.191 0.185 0.180 0.176 0.169 0.164 0.160	0.199 0.191 0.184 0.179 0.175 0.169 0.164 0.160
	0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	9.536E+00 8.730E+00 8.075E+00 7.532E+00 7.074E+00 6.344E+00 5.788E+00 5.349E+00	2.674E-03 2.687E-03 2.700E-03 2.714E-03 2.728E-03 2.759E-03 2.791E-03 2.826E-03	9.539E+00 8.733E+00 8.078E+00 7.534E+00 7.077E+00 6.347E+00 5.790E+00 5.352E+00	2.360E-03 2.908E-03 3.504E-03 4.146E-03 4.831E-03 6.326E-03 7.978E-03 9.777E-03	1.556E-04 1.710E-04 1.860E-04 2.006E-04 2.150E-04 2.429E-04 2.698E-04 2.960E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.144 -0.141 -0.139 -0.138 -0.136 -0.133 -0.131	0.157 0.154 0.152 0.150 0.148 0.145 0.142	0.157 0.154 0.152 0.150 0.148 0.145 0.142 0.140
	0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.995E+00 4.350E+00 3.915E+00 3.603E+00 3.369E+00 3.044E+00 2.831E+00 2.683E+00	2.862E-03 2.960E-03 3.066E-03 3.178E-03 3.297E-03 3.550E-03 3.826E-03 4.121E-03	4.998E+00 4.353E+00 3.918E+00 3.606E+00 3.372E+00 3.047E+00 2.835E+00 2.687E+00	1.171E-02 1.709E-02 2.316E-02 2.983E-02 3.701E-02 5.266E-02 6.971E-02 8.785E-02	3.214E-04 3.825E-04 4.407E-04 4.966E-04 5.508E-04 6.550E-04 7.554E-04 8.534E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.128 -0.124 -0.122 -0.119 -0.118 -0.115 -0.112	0.138 0.134 0.131 0.129 0.127 0.124 0.121 0.119	0.138 0.134 0.131 0.128 0.126 0.123 0.120 0.118
	0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.576E+00 2.496E+00 2.435E+00 2.388E+00 2.351E+00 2.298E+00 2.264E+00 2.243E+00	4.434E-03 4.764E-03 5.109E-03 5.467E-03 5.839E-03 6.616E-03 7.432E-03 8.287E-03	2.580E+00 2.501E+00 2.440E+00 2.393E+00 2.357E+00 2.305E+00 2.272E+00 2.251E+00	1.069E-01 1.266E-01 1.468E-01 1.675E-01 1.886E-01 2.315E-01 2.752E-01 3.195E-01	9.500E-04 1.046E-03 1.141E-03 1.236E-03 1.332E-03 1.523E-03 1.717E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.109 -0.107 -0.106 -0.104 -0.103 -0.101 -0.100 -0.098	0.117 0.116 0.114 0.113 0.112 0.110 0.109 0.107	0.116 0.114 0.113 0.112 0.110 0.108 0.107 0.105
	1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	2.230E+00 2.217E+00 2.221E+00 2.232E+00 2.247E+00 2.280E+00 2.314E+00 2.345E+00	9.176E-03 1.153E-02 1.405E-02 1.671E-02 1.949E-02 2.534E-02 3.152E-02 3.795E-02	2.239E+00 2.229E+00 2.235E+00 2.249E+00 2.267E+00 2.306E+00 2.345E+00 2.383E+00	3.640E-01 4.760E-01 5.881E-01 6.996E-01 8.103E-01 1.029E+00 1.244E+00	2.110E-03 2.614E-03 3.133E-03 3.665E-03 4.208E-03 5.325E-03 6.473E-03 7.645E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.097 -0.094 -0.092 -0.090 -0.089 -0.087 -0.085 -0.083	0.106 0.104 0.101 0.100 0.098 0.096 0.094 0.092	0.104 0.101 0.098 0.096 0.094 0.092 0.089 0.088
	4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	2.375E+00 2.403E+00 2.428E+00 2.452E+00 2.474E+00 2.514E+00 2.549E+00 2.581E+00	4.462E-02 5.148E-02 5.852E-02 6.571E-02 7.303E-02 8.805E-02 1.035E-01 1.193E-01	2.420E+00 2.454E+00 2.487E+00 2.517E+00 2.547E+00 2.602E+00 2.653E+00 2.700E+00	1.664E+00 1.869E+00 2.071E+00 2.271E+00 2.469E+00 2.857E+00 3.238E+00 3.611E+00	8.837E-03 1.004E-02 1.127E-02 1.250E-02 1.374E-02 1.624E-02 1.876E-02 2.130E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.082 -0.081 -0.080 -0.079 -0.078 -0.077 -0.075 -0.074	0.091 0.090 0.088 0.087 0.087 0.085 0.084 0.082	0.086 0.085 0.083 0.082 0.081 0.079 0.078 0.077
	10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	2.610E+00 2.671E+00 2.722E+00 2.765E+00 2.803E+00 2.863E+00 2.904E+00 2.935E+00	1.354E-01 1.767E-01 2.194E-01 2.629E-01 3.073E-01 3.977E-01 4.899E-01 5.835E-01	2.745E+00 2.848E+00 2.941E+00 3.028E+00 3.110E+00 3.261E+00 3.394E+00 3.519E+00	3.978E+00 4.872E+00 5.736E+00 6.573E+00 7.388E+00 8.957E+00 1.046E+01 1.191E+01	2.385E-02 3.022E-02 3.657E-02 4.288E-02 4.912E-02 6.139E-02 7.336E-02 8.505E-02	0.0 0.0 0.0 0.0 0.0 3.726E-02 1.461E-01 2.797E-01	-0.074 -0.072 -0.070 -0.069 -0.068 -0.053 -0.041 -0.033	0.081 0.079 0.077 0.075 0.074 0.071 0.066 0.062	0.075 0.073 0.071 0.069 0.068 0.063 0.056 0.049
	40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.960E+00 2.981E+00 2.998E+00 3.014E+00 3.027E+00 3.051E+00 3.070E+00 3.087E+00	6.781E-01 7.736E-01 8.698E-01 9.667E-01 1.064E+00 1.260E+00 1.458E+00 1.657E+00	3.638E+00 3.754E+00 3.868E+00 3.980E+00 4.091E+00 4.311E+00 4.528E+00 4.744E+00	1.330 E+01 1.466 E+01 1.597 E+01 1.724 E+01 1.848 E+01 2.086 E+01 2.312 E+01	9.644E-02 1.075E-01 1.183E-01 1.288E-01 1.391E-01 1.587E-01 1.773E-01	4.187E-01 5.553E-01 6.865E-01 8.112E-01 9.293E-01 1.146E+00 1.341E+00	-0.028 -0.025 -0.023 -0.021 -0.019 -0.017 -0.016 -0.015	0.058 0.055 0.052 0.049 0.047 0.043 0.040	0.044 0.039 0.036 0.032 0.030 0.026 0.023
	100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	3.102E+00 3.133E+00 3.158E+00 3.178E+00 3.196E+00 3.224E+00 3.247E+00 3.266E+00	1.857E+00 2.361E+00 2.869E+00 3.890E+00 4.926E+00 5.964E+00 7.005E+00	4.959E+00 5.494E+00 6.027E+00 6.558E+00 7.089E+00 8.150E+00 9.211E+00 1.027E+01	2.734E+01 3.213E+01 3.647E+01 4.045E+01 4.411E+01 5.069E+01 5.645E+01 6.159E+01	2.116E-01 2.499E-01 2.838E-01 3.142E-01 3.415E-01 3.888E-01 4.284E-01 4.623E-01	1.677E+00 2.023E+00 2.312E+00 2.560E+00 2.778E+00 3.148E+00 3.457E+00 3.724E+00	-0.014 -0.013 -0.012 -0.011 -0.011 -0.010 -0.008 -0.008	0.035 0.031 0.028 0.026 0.024 0.022 0.020	0.018 0.015 0.013 0.011 0.010 0.008 0.007 0.006
	400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	3.282E+00 3.295E+00 3.307E+00 3.318E+00 3.328E+00 3.344E+00 3.358E+00 3.370E+00	8.051E+00 9.099E+00 1.015E+01 1.120E+01 1.225E+01 1.436E+01 1.648E+01 1.859E+01	1.133E+01 1.239E+01 1.346E+01 1.452E+01 1.558E+01 1.771E+01 1.983E+01 2.196E+01	6.622E+01 7.044E+01 7.431E+01 7.789E+01 8.121E+01 8.723E+01 9.256E+01 9.735E+01	4.916E-01 5.173E-01 5.400E-01 5.603E-01 5.785E-01 6.100E-01 6.364E-01 6.589E-01	3.959E+00 4.169E+00 4.360E+00 4.535E+00 4.696E+00 4.985E+00 5.238E+00 5.464E+00	-0.007 -0.006 -0.005 -0.005 -0.004 -0.003 -0.003	0.017 0.016 0.016 0.015 0.014 0.014 0.013 0.012	0.006 0.005 0.005 0.004 0.004 0.003 0.003
1	000.000	3.381E+00	2.071E+01	2.409E+01	1.017E+02	6.784E-01	5.668E+00	-0.002	0.012	0.002

ELECTRONS IN MUSCLE, SKELETAL (ICRP)

I = 75.3 eV DENSITY = 1.040E+00 g/cm³

ENERGY		OPPING POWE RADIATIVE	TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(l CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²					
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.231E+01 1.876E+01 1.628E+01 1.445E+01 1.303E+01 1.097E+01 9.547E+00 8.498E+00	3.835E-03 3.863E-03 3.880E-03 3.892E-03 3.901E-03 3.913E-03 3.924E-03 3.934E-03	2.231E+01 1.877E+01 1.629E+01 1.445E+01 1.303E+01 1.098E+01 9.551E+00 8.502E+00	2.543E-04 3.771E-04 5.205E-04 6.838E-04 8.662E-04 1.286E-03 1.776E-03 2.332E-03	9.366E-05 1.127E-04 1.310E-04 1.485E-04 1.655E-04 1.980E-04 2.290E-04 2.587E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.199 -0.191 -0.184 -0.179 -0.175 -0.169 -0.164	0.228 0.217 0.209 0.202 0.197 0.189 0.183 0.178	0.226 0.215 0.207 0.201 0.196 0.188 0.182 0.177
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.692E+00 7.052E+00 6.531E+00 6.099E+00 5.733E+00 5.151E+00 4.706E+00 4.355E+00	3.946E-03 3.959E-03 3.973E-03 3.988E-03 4.004E-03 4.079E-03 4.122E-03	7.696E+00 7.056E+00 6.535E+00 6.102E+00 5.737E+00 5.155E+00 4.710E+00 4.359E+00	2.951E-03 3.631E-03 4.368E-03 5.160E-03 6.006E-03 7.848E-03 9.881E-03 1.209E-02	2.874E-04 3.151E-04 3.421E-04 3.683E-04 3.939E-04 4.435E-04 4.912E-04 5.373E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.157 -0.154 -0.152 -0.150 -0.148 -0.145 -0.142 -0.140	0.174 0.170 0.167 0.165 0.162 0.159 0.155 0.153	0.173 0.170 0.167 0.164 0.162 0.158 0.155 0.155
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.071E+00 3.552E+00 3.203E+00 2.951E+00 2.763E+00 2.501E+00 2.329E+00 2.211E+00	4.168E-03 4.294E-03 4.431E-03 4.579E-03 4.734E-03 5.070E-03 5.438E-03 5.832E-03	4.075E+00 3.557E+00 3.207E+00 2.956E+00 2.768E+00 2.506E+00 2.335E+00 2.216E+00	1.447E-02 2.106E-02 2.848E-02 3.662E-02 4.537E-02 6.442E-02 8.513E-02 1.071E-01	5.821E-04 6.889E-04 7.899E-04 8.865E-04 9.795E-04 1.157E-03 1.327E-03 1.492E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.138 -0.134 -0.131 -0.129 -0.126 -0.123 -0.120 -0.118	0.150 0.146 0.142 0.139 0.137 0.133 0.130	0.150 0.145 0.142 0.139 0.137 0.133 0.129 0.127
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.125E+00 2.061E+00 2.012E+00 1.972E+00 1.941E+00 1.895E+00 1.863E+00 1.842E+00	6.252E-03 6.694E-03 7.158E-03 7.642E-03 8.141E-03 9.186E-03 1.028E-02	2.131E+00 2.068E+00 2.019E+00 1.980E+00 1.949E+00 1.904E+00 1.874E+00 1.853E+00	1.302E-01 1.540E-01 1.785E-01 2.035E-01 2.290E-01 2.809E-01 3.339E-01 3.876E-01	1.653E-03 1.812E-03 1.970E-03 2.128E-03 2.285E-03 2.602E-03 2.921E-03 3.244E-03	0.0 0.0 2.181E-03 2.071E-02 4.241E-02 9.262E-02 1.488E-01 2.084E-01	-0.116 -0.114 -0.102 -0.091 -0.085 -0.076 -0.068 -0.062	0.126 0.124 0.122 0.119 0.115 0.109 0.103 0.098	0.125 0.123 0.121 0.117 0.112 0.104 0.097 0.091
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.827E+00 1.806E+00 1.799E+00 1.799E+00 1.801E+00 1.812E+00 1.824E+00 1.836E+00	1.262E-02 1.578E-02 1.916E-02 2.271E-02 2.642E-02 3.421E-02 4.241E-02 5.095E-02	1.839E+00 1.822E+00 1.818E+00 1.821E+00 1.828E+00 1.846E+00 1.866E+00 1.887E+00	4.418E-01 5.784E-01 7.158E-01 8.532E-01 9.903E-01 1.263E+00 1.532E+00	3.571E-03 4.408E-03 5.272E-03 6.162E-03 7.074E-03 8.956E-03 1.090E-02 1.289E-02	2.697E-01 4.245E-01 5.750E-01 7.181E-01 8.529E-01 1.098E+00 1.316E+00	-0.057 -0.048 -0.042 -0.038 -0.035 -0.031 -0.028 -0.026	0.093 0.083 0.076 0.070 0.065 0.058 0.053 0.049	0.085 0.073 0.065 0.058 0.053 0.045 0.040 0.036
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.848E+00 1.860E+00 1.870E+00 1.880E+00 1.889E+00 1.906E+00 1.921E+00	5.977E-02 6.883E-02 7.811E-02 8.758E-02 9.722E-02 1.170E-01 1.372E-01	1.908E+00 1.928E+00 1.948E+00 1.968E+00 1.987E+00 2.023E+00 2.058E+00 2.092E+00	2.062E+00 2.323E+00 2.580E+00 2.836E+00 3.089E+00 3.587E+00 4.077E+00	1.493E-02 1.699E-02 1.908E-02 2.119E-02 2.332E-02 2.761E-02 3.194E-02 3.629E-02	1.683E+00 1.842E+00 1.986E+00 2.120E+00 2.243E+00 2.466E+00 2.664E+00 2.840E+00	-0.025 -0.023 -0.023 -0.022 -0.021 -0.020 -0.019	0.046 0.043 0.041 0.039 0.038 0.035 0.033	0.033 0.031 0.029 0.028 0.027 0.025 0.023 0.022
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.946E+00 1.971E+00 1.992E+00 2.009E+00 2.023E+00 2.047E+00 2.066E+00 2.081E+00	1.790E-01 2.331E-01 2.887E-01 3.455E-01 4.032E-01 5.208E-01 6.403E-01 7.615E-01	2.125E+00 2.205E+00 2.281E+00 2.354E+00 2.427E+00 2.568E+00 2.706E+00 2.842E+00	5.033E+00 6.188E+00 7.303E+00 8.382E+00 9.428E+00 1.143E+01 1.333E+01	4.065E-02 5.152E-02 6.231E-02 7.294E-02 8.339E-02 1.037E-01 1.230E-01	3.001E+00 3.348E+00 3.640E+00 3.892E+00 4.115E+00 4.497E+00 4.818E+00 5.096E+00	-0.018 -0.016 -0.015 -0.013 -0.012 -0.010 -0.008 -0.007	0.030 0.027 0.025 0.024 0.022 0.020 0.018	0.021 0.019 0.017 0.016 0.015 0.013 0.011
40.0000 45.0000 50.0000 55.0000 70.0000 80.0000 90.0000	2.094E+00 2.105E+00 2.115E+00 2.124E+00 2.132E+00 2.146E+00 2.158E+00 2.168E+00	8.838E-01 1.007E+00 1.131E+00 1.256E+00 1.382E+00 1.635E+00 1.889E+00 2.145E+00	2.978E+00 3.112E+00 3.247E+00 3.380E+00 3.514E+00 3.780E+00 4.047E+00 4.313E+00	1.685E+01 1.849E+01 2.006E+01 2.157E+01 2.302E+01 2.577E+01 2.832E+01 3.071E+01	1.592E-01 1.760E-01 1.920E-01 2.073E-01 2.219E-01 2.492E-01 2.743E-01 2.974E-01	5.341E+00 5.560E+00 5.758E+00 5.938E+00 6.105E+00 6.401E+00 6.660E+00 6.890E+00	-0.006 -0.005 -0.004 -0.003 -0.003 -0.002 -0.002	0.015 0.014 0.013 0.013 0.012 0.011 0.010 0.009	0.008 0.007 0.007 0.006 0.005 0.004 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.177E+00 2.197E+00 2.212E+00 2.226E+00 2.237E+00 2.256E+00 2.271E+00 2.284E+00	2.402E+00 3.049E+00 3.701E+00 4.356E+00 5.013E+00 6.334E+00 7.661E+00 8.992E+00	4.580E+00 5.246E+00 5.913E+00 6.581E+00 7.250E+00 8.590E+00 9.932E+00 1.128E+01	3.296E+01 3.806E+01 4.255E+01 4.655E+01 5.017E+01 5.650E+01 6.191E+01 6.663E+01	3.188E-01 3.659E-01 4.056E-01 4.398E-01 4.694E-01 5.187E-01 5.581E-01 5.905E-01	7.096E+00 7.536E+00 7.896E+00 8.202E+00 8.467E+00 8.911E+00 9.274E+00 9.581E+00	-0.001 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000	0.009 0.008 0.007 0.006 0.006 0.005 0.005	0.003 0.002 0.002 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.296E+00 2.306E+00 2.315E+00 2.323E+00 2.330E+00 2.343E+00 2.354E+00 2.364E+00	1.033E+01 1.166E+01 1.300E+01 1.434E+01 1.568E+01 1.568E+01 2.106E+01 2.376E+01	1.262E+01 1.397E+01 1.532E+01 1.667E+01 1.801E+01 2.072E+01 2.342E+01 2.612E+01	7.082E+01 7.458E+01 7.800E+01 8.113E+01 8.401E+01 8.918E+01 9.372E+01 9.776E+01	6.177E-01 6.409E-01 6.610E-01 6.787E-01 6.943E-01 7.207E-01 7.423E-01 7.603E-01	9.848E+00 1.008E+01 1.029E+01 1.048E+01 1.066E+01 1.097E+01 1.123E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.004 0.004 0.004 0.003 0.003	0.001 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.373E+00	2.645E+01	2.883E+01	1.014E+02	7.756E-01	1.168E+01	-0.000	0.003	0.000

ELECTRONS IN MUSCLE, STRIATED (ICRU)

I = 74.7 eV DENSITY = 1.040E+00 g/cm³

ENERGY		OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(00017)	2000		
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0350	2.237E+01 1.881E+01 1.633E+01 1.449E+01 1.306E+01 1.100E+01 9.571E+00 8.519E+00	3.816E-03 3.844E-03 3.862E-03 3.873E-03 3.882E-03 3.894E-03 3.905E-03	2.238E+01 1.882E+01 1.633E+01 1.449E+01 1.307E+01 1.100E+01 9.575E+00 8.523E+00	2.536E-04 3.759E-04 5.190E-04 6.818E-04 8.638E-04 1.283E-03 1.771E-03 2.326E-03	9.293E-05 1.119E-04 1.300E-04 1.474E-04 1.642E-04 1.965E-04 2.273E-04 2.568E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.199 -0.190 -0.184 -0.179 -0.175 -0.169 -0.164	0.227 0.216 0.208 0.202 0.197 0.188 0.182 0.177	0.225 0.215 0.207 0.201 0.196 0.188 0.182 0.177
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.711E+00 7.069E+00 6.547E+00 6.113E+00 5.747E+00 5.163E+00 4.717E+00 4.365E+00	3.928E-03 3.941E-03 3.955E-03 3.970E-03 3.986E-03 4.022E-03 4.061E-03 4.104E-03	7.715E+00 7.073E+00 6.551E+00 6.117E+00 5.751E+00 5.167E+00 4.721E+00 4.369E+00	2.944E-03 3.621E-03 4.356E-03 5.147E-03 5.991E-03 7.829E-03 9.857E-03 1.206E-02	2.853E-04 3.128E-04 3.396E-04 3.657E-04 3.911E-04 4.404E-04 4.878E-04 5.336E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.157 -0.154 -0.152 -0.150 -0.148 -0.145 -0.145	0.173 0.170 0.167 0.164 0.162 0.158 0.155 0.153	0.173 0.169 0.167 0.164 0.162 0.158 0.155 0.155
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.080E+00 3.561E+00 3.210E+00 2.958E+00 2.769E+00 2.506E+00 2.335E+00 2.215E+00	4.150E-03 4.275E-03 4.412E-03 4.558E-03 4.714E-03 5.048E-03 5.415E-03 5.808E-03	4.084E+00 3.565E+00 3.214E+00 2.962E+00 2.774E+00 2.511E+00 2.340E+00 2.221E+00	1.443E-02 2.101E-02 2.841E-02 3.653E-02 4.526E-02 6.427E-02 8.494E-02 1.069E-01	5.780E-04 6.841E-04 7.845E-04 8.805E-04 9.728E-04 1.149E-03 1.318E-03 1.482E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.138 -0.134 -0.131 -0.128 -0.126 -0.123 -0.120 -0.118	0.150 0.146 0.142 0.139 0.137 0.133 0.130	0.150 0.145 0.142 0.139 0.136 0.132 0.129 0.127
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.129E+00 2.065E+00 2.016E+00 1.976E+00 1.945E+00 1.898E+00 1.866E+00 1.845E+00	6.226E-03 6.666E-03 7.129E-03 7.610E-03 8.108E-03 9.148E-03 1.024E-02 1.139E-02	2.136E+00 2.072E+00 2.023E+00 1.984E+00 1.953E+00 1.907E+00 1.877E+00	1.299E-01 1.537E-01 1.781E-01 2.031E-01 2.285E-01 2.803E-01 3.332E-01 3.868E-01	1.642E-03 1.801E-03 1.957E-03 2.114E-03 2.271E-03 2.585E-03 2.903E-03 3.224E-03	0.0 0.0 4.240E-03 2.378E-02 4.634E-02 9.798E-02 1.553E-01 2.158E-01	-0.116 -0.114 -0.098 -0.090 -0.084 -0.075 -0.068 -0.062	0.126 0.124 0.122 0.118 0.115 0.108 0.102 0.097	0.125 0.123 0.120 0.116 0.112 0.104 0.096 0.090
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.830E+00 1.809E+00 1.802E+00 1.801E+00 1.804E+00 1.814E+00 1.826E+00 1.839E+00	1.257E-02 1.572E-02 1.908E-02 2.263E-02 2.632E-02 3.408E-02 4.225E-02 5.076E-02	1.842E+00 1.825E+00 1.821E+00 1.824E+00 1.830E+00 1.848E+00 1.869E+00 1.890E+00	4.409E-01 5.774E-01 7.146E-01 8.518E-01 9.886E-01 1.261E+00 1.530E+00	3.550E-03 4.382E-03 5.242E-03 6.127E-03 7.035E-03 8.907E-03 1.084E-02 1.283E-02	2.778E-01 4.339E-01 5.852E-01 7.289E-01 8.641E-01 1.110E+00 1.327E+00	-0.057 -0.048 -0.042 -0.038 -0.035 -0.031 -0.028 -0.026	0.092 0.083 0.075 0.070 0.065 0.058 0.053 0.049	0.084 0.073 0.064 0.057 0.052 0.045 0.040
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.851E+00 1.862E+00 1.873E+00 1.883E+00 1.892E+00 1.909E+00 1.924E+00 1.937E+00	5.954E-02 6.857E-02 7.782E-02 8.725E-02 9.686E-02 1.165E-01 1.367E-01	1.910E+00 1.931E+00 1.951E+00 1.970E+00 1.989E+00 2.026E+00 2.061E+00 2.094E+00	2.059E+00 2.319E+00 2.577E+00 2.832E+00 3.084E+00 3.583E+00 4.072E+00 4.553E+00	1.485E-02 1.690E-02 1.898E-02 2.108E-02 2.320E-02 2.747E-02 3.178E-02 3.611E-02	1.695E+00 1.853E+00 1.998E+00 2.131E+00 2.255E+00 2.478E+00 2.675E+00 2.852E+00	-0.024 -0.023 -0.023 -0.022 -0.021 -0.020 -0.019 -0.018	0.046 0.043 0.041 0.039 0.038 0.035 0.033	0.033 0.031 0.029 0.028 0.027 0.025 0.023
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.949E+00 1.974E+00 1.995E+00 2.012E+00 2.026E+00 2.050E+00 2.068E+00 2.084E+00	1.784E-01 2.323E-01 2.877E-01 3.443E-01 4.018E-01 5.189E-01 7.588E-01	2.127E+00 2.206E+00 2.282E+00 2.356E+00 2.428E+00 2.569E+00 2.706E+00 2.842E+00	5.027E+00 6.181E+00 7.295E+00 8.373E+00 9.418E+00 1.142E+01 1.332E+01	4.045E-02 5.128E-02 6.202E-02 7.261E-02 8.302E-02 1.032E-01 1.225E-01	3.013E+00 3.361E+00 3.652E+00 3.905E+00 4.128E+00 4.511E+00 4.833E+00 5.111E+00	-0.018 -0.016 -0.015 -0.013 -0.012 -0.010 -0.008 -0.007	0.030 0.027 0.025 0.024 0.022 0.020 0.018 0.016	0.021 0.019 0.017 0.016 0.015 0.012 0.011 0.009
40.0000 45.0000 50.0000 55.0000 70.0000 80.0000 90.0000	2.097E+00 2.108E+00 2.118E+00 2.126E+00 2.134E+00 2.148E+00 2.160E+00 2.171E+00	8.807E-01 1.004E+00 1.127E+00 1.252E+00 1.377E+00 1.629E+00 1.883E+00 2.138E+00	2.977E+00 3.111E+00 3.245E+00 3.378E+00 3.512E+00 3.777E+00 4.043E+00 4.308E+00	1.684E+01 1.848E+01 2.005E+01 2.156E+01 2.301E+01 2.576E+01 2.832E+01 3.071E+01	1.585E-01 1.753E-01 1.913E-01 2.065E-01 2.211E-01 2.484E-01 2.735E-01 2.965E-01	5.356E+00 5.576E+00 5.774E+00 5.955E+00 6.121E+00 6.418E+00 6.677E+00 6.907E+00	-0.005 -0.005 -0.004 -0.003 -0.003 -0.002 -0.002	0.015 0.014 0.013 0.013 0.012 0.011 0.010 0.009	0.008 0.007 0.007 0.006 0.005 0.004 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.180E+00 2.199E+00 2.215E+00 2.228E+00 2.240E+00 2.259E+00 2.274E+00 2.287E+00	2.394E+00 3.039E+00 3.688E+00 4.341E+00 4.996E+00 6.313E+00 7.635E+00 8.962E+00	4.574E+00 5.238E+00 5.903E+00 6.569E+00 7.236E+00 8.571E+00 9.909E+00 1.125E+01	3.297E+01 3.807E+01 4.256E+01 4.658E+01 5.020E+01 5.654E+01 6.196E+01 6.670E+01	3.179E-01 3.649E-01 4.046E-01 4.388E-01 4.684E-01 5.177E-01 5.571E-01 5.895E-01	7.113E+00 7.553E+00 7.913E+00 8.219E+00 8.484E+00 8.928E+00 9.291E+00 9.598E+00	-0.001 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000	0.009 0.008 0.007 0.006 0.006 0.005 0.005	0.003 0.002 0.002 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.299E+00 2.309E+00 2.317E+00 2.325E+00 2.333E+00 2.346E+00 2.357E+00 2.367E+00	1.029E+01 1.162E+01 1.296E+01 1.430E+01 1.563E+01 1.831E+01 2.099E+01 2.368E+01	1.259E+01 1.393E+01 1.528E+01 1.662E+01 1.797E+01 2.066E+01 2.335E+01 2.605E+01	7.089E+01 7.467E+01 7.809E+01 8.123E+01 8.412E+01 8.931E+01 9.386E+01 9.791E+01	6.168E-01 6.400E-01 6.602E-01 6.778E-01 6.935E-01 7.199E-01 7.416E-01 7.596E-01	9.865E+00 1.010E+01 1.031E+01 1.050E+01 1.067E+01 1.098E+01 1.125E+01 1.148E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.004 0.004 0.003 0.003 0.003	0.001 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.376E+00	2.637E+01	2.874E+01	1.016E+02	7.750E-01	1.170E+01	-0.000	0.003	0.000

ELECTRONS IN MUSCLE-EQUIVALENT LIQUID, WITH SUCROSE

I = 74.3 eV DENSITY = 1.110E+00 g/cm³

ENERGY		OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	d(lo COLL	g)/d(1 CSDA	ogI) RAD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.233E+01 1.877E+01 1.629E+01 1.445E+01 1.303E+01 1.098E+01 9.549E+00 8.499E+00	3.749E-03 3.774E-03 3.789E-03 3.799E-03 3.807E-03 3.818E-03 3.827E-03	2.233E+01 1.878E+01 1.630E+01 1.446E+01 1.304E+01 1.098E+01 9.553E+00 8.503E+00	2.541E-04 3.767E-04 5.201E-04 6.833E-04 8.657E-04 1.285E-03 1.775E-03 2.331E-03	9.164E-05 1.102E-04 1.280E-04 1.451E-04 1.617E-04 1.934E-04 2.235E-04 2.525E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.198 -0.190 -0.184 -0.179 -0.175 -0.168 -0.164	0.227 0.216 0.208 0.202 0.196 0.188 0.182 0.177	0.225 0.215 0.207 0.201 0.195 0.187 0.181 0.177
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	7.693E+00 7.052E+00 6.531E+00 6.099E+00 5.733E+00 5.150E+00 4.705E+00 4.354E+00	3.848E-03 3.861E-03 3.874E-03 3.889E-03 3.905E-03 3.940E-03 3.979E-03 4.021E-03	7.696E+00 7.056E+00 6.535E+00 6.102E+00 5.737E+00 5.154E+00 4.709E+00 4.358E+00	2.950E-03 3.630E-03 4.367E-03 5.159E-03 6.005E-03 7.847E-03 9.880E-03 1.209E-02	2.804E-04 3.074E-04 3.337E-04 3.593E-04 3.843E-04 4.326E-04 4.792E-04 5.241E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.157 -0.154 -0.151 -0.149 -0.148 -0.144 -0.142	0.173 0.170 0.167 0.164 0.162 0.158 0.155 0.152	0.173 0.169 0.166 0.164 0.162 0.158 0.155 0.152
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	4.070E+00 3.552E+00 3.202E+00 2.950E+00 2.762E+00 2.500E+00 2.329E+00 2.210E+00	4.066E-03 4.190E-03 4.325E-03 4.469E-03 4.622E-03 4.951E-03 5.311E-03 5.698E-03	4.074E+00 3.556E+00 3.206E+00 2.955E+00 2.767E+00 2.505E+00 2.334E+00 2.215E+00	1.447E-02 2.106E-02 2.848E-02 3.662E-02 4.538E-02 6.444E-02 8.516E-02 1.072E-01	5.678E-04 6.720E-04 7.707E-04 8.651E-04 9.559E-04 1.130E-03 1.296E-03 1.457E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.138 -0.134 -0.131 -0.128 -0.126 -0.123 -0.120 -0.118	0.150 0.146 0.142 0.139 0.137 0.133 0.130	0.150 0.145 0.142 0.139 0.136 0.132 0.129 0.127
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.124E+00 2.060E+00 2.010E+00 1.970E+00 1.938E+00 1.891E+00 1.859E+00 1.837E+00	6.109E-03 6.543E-03 6.997E-03 7.470E-03 7.960E-03 8.983E-03 1.006E-02	2.130E+00 2.066E+00 2.017E+00 1.977E+00 1.946E+00 1.900E+00 1.869E+00	1.302E-01 1.541E-01 1.786E-01 2.036E-01 2.291E-01 2.812E-01 3.343E-01 3.881E-01	1.615E-03 1.771E-03 1.925E-03 2.080E-03 2.234E-03 2.545E-03 2.859E-03 3.176E-03	0.0 0.0 1.519E-02 3.828E-02 6.393E-02 1.207E-01 1.821E-01 2.460E-01	-0.116 -0.113 -0.092 -0.086 -0.081 -0.072 -0.065	0.126 0.124 0.121 0.117 0.113 0.106 0.100	0.125 0.123 0.119 0.114 0.109 0.101 0.094 0.087
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.822E+00 1.801E+00 1.793E+00 1.793E+00 1.795E+00 1.805E+00 1.817E+00 1.830E+00	1.235E-02 1.545E-02 1.876E-02 2.224E-02 2.587E-02 3.351E-02 4.155E-02 4.992E-02	1.834E+00 1.816E+00 1.812E+00 1.815E+00 1.821E+00 1.839E+00 1.859E+00	4.424E-01 5.795E-01 7.174E-01 8.553E-01 9.928E-01 1.266E+00 1.537E+00	3.498E-03 4.321E-03 5.171E-03 6.046E-03 6.944E-03 8.797E-03 1.071E-02	3.108E-01 4.720E-01 6.269E-01 7.730E-01 9.100E-01 1.158E+00 1.377E+00	-0.055 -0.047 -0.041 -0.037 -0.034 -0.030 -0.027 -0.026	0.090 0.081 0.073 0.068 0.063 0.056 0.051	0.082 0.071 0.062 0.056 0.051 0.044 0.039 0.035
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.842E+00 1.853E+00 1.863E+00 1.873E+00 1.883E+00 1.899E+00 1.914E+00	5.857E-02 6.746E-02 7.656E-02 8.585E-02 9.531E-02 1.147E-01 1.346E-01	1.900E+00 1.920E+00 1.940E+00 1.959E+00 1.978E+00 2.014E+00 2.049E+00 2.082E+00	2.069E+00 2.330E+00 2.589E+00 2.846E+00 3.100E+00 3.601E+00 4.093E+00 4.577E+00	1.468E-02 1.671E-02 1.877E-02 2.085E-02 2.294E-02 2.718E-02 3.144E-02 3.573E-02	1.747E+00 1.905E+00 2.050E+00 2.184E+00 2.308E+00 2.531E+00 2.729E+00 2.906E+00	-0.024 -0.023 -0.022 -0.022 -0.021 -0.020 -0.019 -0.018	0.045 0.042 0.040 0.038 0.037 0.035 0.033	0.033 0.030 0.029 0.027 0.026 0.024 0.023
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.939E+00 1.964E+00 1.984E+00 2.001E+00 2.016E+00 2.039E+00 2.057E+00 2.072E+00	1.756E-01 2.287E-01 2.832E-01 3.390E-01 3.957E-01 5.111E-01 6.285E-01 7.474E-01	2.115E+00 2.193E+00 2.268E+00 2.340E+00 2.411E+00 2.550E+00 2.686E+00 2.820E+00	5.054E+00 6.215E+00 7.336E+00 8.421E+00 9.473E+00 1.149E+01 1.340E+01	4.003E-02 5.076E-02 6.141E-02 7.192E-02 8.224E-02 1.023E-01 1.215E-01 1.398E-01	3.067E+00 3.416E+00 3.709E+00 3.963E+00 4.187E+00 4.572E+00 4.895E+00 5.175E+00	-0.018 -0.016 -0.014 -0.013 -0.012 -0.009 -0.008	0.030 0.027 0.025 0.023 0.022 0.019 0.018 0.016	0.021 0.019 0.017 0.016 0.014 0.012 0.011 0.009
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.085E+00 2.096E+00 2.106E+00 2.115E+00 2.123E+00 2.137E+00 2.148E+00 2.159E+00	8.676E-01 9.887E-01 1.111E+00 1.233E+00 1.357E+00 1.605E+00 1.855E+00 2.107E+00	2.953E+00 3.085E+00 3.217E+00 3.348E+00 3.479E+00 3.742E+00 4.003E+00 4.265E+00	1.695E+01 1.860E+01 2.019E+01 2.172E+01 2.318E+01 2.595E+01 2.853E+01 3.095E+01	1.573E-01 1.740E-01 1.899E-01 2.050E-01 2.196E-01 2.468E-01 2.717E-01 2.948E-01	5.422E+00 5.642E+00 5.841E+00 6.023E+00 6.189E+00 6.487E+00 6.747E+00 6.977E+00	-0.005 -0.004 -0.004 -0.003 -0.003 -0.002 -0.002	0.015 0.014 0.013 0.012 0.012 0.010 0.010 0.009	0.008 0.007 0.006 0.006 0.005 0.004 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000	2.168E+00 2.187E+00 2.203E+00 2.216E+00 2.227E+00 2.246E+00 2.262E+00 2.275E+00	2.359E+00 2.995E+00 3.635E+00 4.278E+00 4.924E+00 6.221E+00 7.525E+00 8.833E+00	4.527E+00 5.182E+00 5.837E+00 6.494E+00 7.151E+00 8.468E+00 9.787E+00 1.111E+01	3.323E+01 3.839E+01 4.293E+01 4.699E+01 5.066E+01 5.707E+01 6.256E+01 6.736E+01	3.161E-01 3.630E-01 4.027E-01 4.368E-01 4.664E-01 5.157E-01 5.552E-01 5.877E-01	7.184E+00 7.624E+00 7.985E+00 8.291E+00 8.556E+00 9.00E+00 9.364E+00 9.671E+00	-0.001 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000	0.008 0.007 0.007 0.006 0.006 0.005 0.005	0.003 0.002 0.002 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.286E+00 2.296E+00 2.305E+00 2.313E+00 2.320E+00 2.333E+00 2.344E+00 2.354E+00	1.014E+01 1.146E+01 1.277E+01 1.409E+01 1.541E+01 1.805E+01 2.069E+01 2.334E+01	1.243E+01 1.375E+01 1.508E+01 1.640E+01 1.773E+01 2.038E+01 2.304E+01 2.570E+01	7.161E+01 7.543E+01 7.890E+01 8.208E+01 8.501E+01 9.027E+01 9.488E+01 9.899E+01	6.150E-01 6.383E-01 6.585E-01 6.762E-01 6.919E-01 7.184E-01 7.401E-01 7.583E-01	9.938E+00 1.017E+01 1.038E+01 1.057E+01 1.075E+01 1.106E+01 1.132E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.004 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.363E+00	2.599E+01	2.835E+01	1.027E+02	7.737E-01	1.177E+01	-0.000	0.003	0.000

ELECTRONS IN MUSCLE-EQUIVALENT LIQUID, WITHOUT SUCROSE

I = 74.2 eV DENSITY = 1.070E+00 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(l CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²					
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.241E+01 1.884E+01 1.635E+01 1.451E+01 1.308E+01 1.102E+01 9.584E+00 8.530E+00	3.777E-03 3.803E-03 3.818E-03 3.829E-03 3.836E-03 3.847E-03 3.857E-03 3.867E-03	2.241E+01 1.885E+01 1.636E+01 1.451E+01 1.309E+01 1.102E+01 9.588E+00 8.534E+00	2.531E-04 3.753E-04 5.181E-04 6.807E-04 8.625E-04 1.281E-03 1.769E-03 2.323E-03	9.194E-05 1.106E-04 1.285E-04 1.456E-04 1.623E-04 1.941E-04 2.244E-04 2.535E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.198 -0.190 -0.184 -0.179 -0.175 -0.168 -0.164	0.227 0.216 0.208 0.202 0.196 0.188 0.182 0.177	0.225 0.214 0.207 0.200 0.195 0.187 0.181 0.177
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.721E+00 7.078E+00 6.555E+00 6.121E+00 5.754E+00 5.169E+00 4.722E+00 4.370E+00	3.878E-03 3.890E-03 3.904E-03 3.919E-03 3.935E-03 3.970E-03 4.009E-03	7.725E+00 7.082E+00 6.559E+00 6.125E+00 5.758E+00 5.173E+00 4.726E+00 4.374E+00	2.939E-03 3.616E-03 4.351E-03 5.140E-03 5.983E-03 7.819E-03 9.844E-03 1.205E-02	2.815E-04 3.086E-04 3.350E-04 3.607E-04 3.858E-04 4.343E-04 4.811E-04 5.262E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.156 -0.154 -0.151 -0.149 -0.148 -0.144 -0.142	0.173 0.170 0.167 0.164 0.162 0.158 0.155 0.155	0.173 0.169 0.166 0.164 0.162 0.158 0.155 0.155
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	4.085E+00 3.565E+00 3.213E+00 2.961E+00 2.772E+00 2.509E+00 2.337E+00 2.218E+00	4.097E-03 4.221E-03 4.357E-03 4.502E-03 4.656E-03 4.987E-03 5.350E-03 5.739E-03	4.089E+00 3.569E+00 3.218E+00 2.966E+00 2.777E+00 2.514E+00 2.342E+00 2.223E+00	1.441E-02 2.098E-02 2.838E-02 3.649E-02 4.521E-02 6.420E-02 8.485E-02 1.068E-01	5.700E-04 6.747E-04 7.737E-04 8.684E-04 9.596E-04 1.134E-03 1.301E-03 1.462E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.138 -0.134 -0.131 -0.128 -0.126 -0.123 -0.120	0.150 0.146 0.142 0.139 0.137 0.133 0.130 0.128	0.150 0.145 0.142 0.139 0.136 0.132 0.129 0.127
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.131E+00 2.067E+00 2.018E+00 1.978E+00 1.946E+00 1.899E+00 1.867E+00 1.845E+00	6.152E-03 6.589E-03 7.047E-03 7.523E-03 8.016E-03 9.046E-03 1.013E-02 1.126E-02	2.138E+00 2.074E+00 2.025E+00 1.985E+00 1.954E+00 1.908E+00 1.877E+00	1.297E-01 1.535E-01 1.779E-01 2.029E-01 2.283E-01 2.801E-01 3.330E-01 3.866E-01	1.621E-03 1.777E-03 1.932E-03 2.087E-03 2.242E-03 2.553E-03 2.867E-03 3.185E-03	0.0 0.0 8.567E-03 2.960E-02 5.348E-02 1.074E-01 1.666E-01 2.287E-01	-0.116 -0.115 -0.094 -0.088 -0.083 -0.074 -0.066 -0.061	0.126 0.124 0.121 0.118 0.114 0.107 0.101 0.096	0.124 0.123 0.120 0.115 0.111 0.102 0.095 0.089
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.830E+00 1.809E+00 1.802E+00 1.801E+00 1.804E+00 1.814E+00 1.826E+00 1.838E+00	1.244E-02 1.555E-02 1.888E-02 2.239E-02 2.605E-02 3.373E-02 4.183E-02 5.025E-02	1.842E+00 1.825E+00 1.821E+00 1.823E+00 1.830E+00 1.847E+00 1.868E+00 1.888E+00	4.406E-01 5.771E-01 7.143E-01 8.516E-01 9.885E-01 1.260E+00 1.530E+00	3.508E-03 4.332E-03 5.184E-03 6.061E-03 6.960E-03 8.815E-03 1.073E-02 1.270E-02	2.922E-01 4.510E-01 6.045E-01 7.498E-01 8.863E-01 1.134E+00 1.353E+00 1.548E+00	-0.056 -0.047 -0.041 -0.037 -0.034 -0.030 -0.027	0.091 0.082 0.074 0.069 0.064 0.057 0.052	0.083 0.072 0.063 0.057 0.052 0.044 0.039 0.035
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.850E+00 1.861E+00 1.872E+00 1.882E+00 1.891E+00 1.908E+00 1.923E+00	5.896E-02 6.790E-02 7.706E-02 8.641E-02 9.593E-02 1.154E-01 1.354E-01	1.909E+00 1.929E+00 1.949E+00 1.968E+00 1.987E+00 2.023E+00 2.058E+00 2.092E+00	2.059E+00 2.320E+00 2.578E+00 2.833E+00 3.086E+00 3.584E+00 4.074E+00 4.556E+00	1.471E-02 1.674E-02 1.880E-02 2.089E-02 2.299E-02 2.723E-02 3.150E-02 3.580E-02	1.723E+00 1.882E+00 2.028E+00 2.162E+00 2.286E+00 2.510E+00 2.708E+00 2.885E+00	-0.024 -0.023 -0.022 -0.022 -0.021 -0.020 -0.019 -0.018	0.045 0.042 0.040 0.039 0.037 0.035 0.033	0.033 0.030 0.029 0.027 0.026 0.024 0.023 0.022
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.948E+00 1.973E+00 1.993E+00 2.010E+00 2.025E+00 2.048E+00 2.067E+00 2.082E+00	1.767E-01 2.301E-01 2.850E-01 3.411E-01 3.982E-01 5.143E-01 6.324E-01 7.520E-01	2.124E+00 2.203E+00 2.278E+00 2.351E+00 2.423E+00 2.562E+00 2.699E+00 2.834E+00	5.031E+00 6.186E+00 7.302E+00 8.382E+00 9.429E+00 1.144E+01 1.334E+01	4.010E-02 5.085E-02 6.152E-02 7.204E-02 8.238E-02 1.025E-01 1.217E-01 1.400E-01	3.046E+00 3.395E+00 3.687E+00 3.940E+00 4.164E+00 4.548E+00 4.871E+00 5.149E+00	-0.018 -0.016 -0.014 -0.013 -0.012 -0.010 -0.008 -0.006	0.030 0.027 0.025 0.023 0.022 0.020 0.018 0.016	0.021 0.019 0.017 0.016 0.014 0.012 0.011 0.009
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.095E+00 2.106E+00 2.116E+00 2.125E+00 2.133E+00 2.146E+00 2.158E+00 2.169E+00	8.729E-01 9.949E-01 1.118E+00 1.241E+00 1.365E+00 1.615E+00 1.866E+00 2.119E+00	2.968E+00 3.101E+00 3.233E+00 3.366E+00 3.498E+00 3.761E+00 4.025E+00 4.288E+00	1.687E+01 1.852E+01 2.010E+01 2.161E+01 2.307E+01 2.582E+01 2.839E+01 3.080E+01	1.575E-01 1.742E-01 1.901E-01 2.053E-01 2.198E-01 2.470E-01 2.720E-01 2.950E-01	5.395E+00 5.615E+00 5.814E+00 5.995E+00 6.161E+00 6.459E+00 6.718E+00 6.948E+00	-0.005 -0.004 -0.004 -0.003 -0.003 -0.002 -0.002	0.015 0.014 0.013 0.012 0.012 0.011 0.010 0.009	0.008 0.007 0.006 0.006 0.005 0.004 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.178E+00 2.197E+00 2.213E+00 2.226E+00 2.238E+00 2.257E+00 2.272E+00 2.285E+00	2.373E+00 3.013E+00 3.657E+00 4.304E+00 4.954E+00 6.259E+00 7.570E+00 8.886E+00	4.551E+00 5.210E+00 5.870E+00 6.530E+00 7.191E+00 8.515E+00 9.842E+00 1.117E+01	3.306E+01 3.819E+01 4.271E+01 4.675E+01 5.040E+01 5.678E+01 6.223E+01 6.700E+01	3.164E-01 3.633E-01 4.030E-01 4.371E-01 4.668E-01 5.160E-01 5.555E-01 5.880E-01	7.155E+00 7.595E+00 7.955E+00 8.261E+00 8.526E+00 8.971E+00 9.334E+00 9.641E+00	-0.001 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000	0.008 0.007 0.007 0.006 0.006 0.005 0.005	0.003 0.002 0.002 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.296E+00 2.306E+00 2.315E+00 2.323E+00 2.331E+00 2.344E+00 2.355E+00	1.020E+01 1.153E+01 1.285E+01 1.417E+01 1.550E+01 1.816E+01 2.082E+01 2.348E+01	1.250E+01 1.383E+01 1.516E+01 1.650E+01 1.783E+01 2.050E+01 2.317E+01 2.585E+01	7.123E+01 7.503E+01 7.848E+01 8.164E+01 8.455E+01 8.978E+01 9.437E+01 9.845E+01	6.153E-01 6.386E-01 6.588E-01 6.765E-01 6.921E-01 7.187E-01 7.585E-01	9.908E+00 1.014E+01 1.035E+01 1.054E+01 1.072E+01 1.103E+01 1.129E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.004 0.004 0.003 0.003 0.003	0.001 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.374E+00	2.615E+01	2.852E+01	1.021E+02	7.739E-01	1.174E+01	-0.000	0.003	0.000

ELECTRONS IN NYLON, TYPE 6 AND TYPE 6/6

I = 63.9 eV DENSITY = 1.140E+00 g/cm³

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	d(lo	g)/d(1 CSDA	ogI) RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm ² /g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.298E+01 1.930E+01 1.673E+01 1.483E+01 1.337E+01 1.125E+01 9.778E+00 8.698E+00	3.164E-03 3.178E-03 3.187E-03 3.194E-03 3.199E-03 3.208E-03 3.218E-03	2.298E+01 1.930E+01 1.674E+01 1.484E+01 1.337E+01 1.125E+01 9.781E+00 8.701E+00	2.458E-04 3.651E-04 5.046E-04 6.636E-04 8.414E-04 1.251E-03 1.729E-03 2.272E-03	7.558E-05 9.072E-05 1.052E-04 1.192E-04 1.327E-04 1.586E-04 1.834E-04 2.072E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.193 -0.185 -0.179 -0.174 -0.170 -0.164 -0.160	0.219 0.209 0.201 0.195 0.191 0.183 0.177	0.218 0.208 0.201 0.195 0.190 0.182 0.177 0.172
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	7.869E+00 7.211E+00 6.676E+00 6.232E+00 5.857E+00 5.259E+00 4.803E+00 4.443E+00	3.239E-03 3.252E-03 3.265E-03 3.279E-03 3.295E-03 3.327E-03 3.363E-03 3.401E-03	7.872E+00 7.214E+00 6.679E+00 6.235E+00 5.860E+00 5.262E+00 4.806E+00 4.446E+00	2.877E-03 3.542E-03 4.263E-03 5.038E-03 5.866E-03 7.670E-03 9.662E-03 1.183E-02	2.302E-04 2.526E-04 2.743E-04 2.955E-04 3.162E-04 3.564E-04 3.951E-04 4.326E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.153 -0.150 -0.148 -0.146 -0.144 -0.141 -0.139	0.169 0.165 0.163 0.160 0.158 0.154 0.151	0.168 0.165 0.162 0.160 0.158 0.154 0.151
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.152E+00 3.621E+00 3.263E+00 3.006E+00 2.813E+00 2.544E+00 2.369E+00 2.247E+00	3.441E-03 3.551E-03 3.669E-03 3.796E-03 3.930E-03 4.218E-03 4.532E-03 4.868E-03	4.155E+00 3.625E+00 3.266E+00 3.009E+00 2.817E+00 2.549E+00 2.374E+00 2.252E+00	1.416E-02 2.063E-02 2.791E-02 3.590E-02 4.450E-02 6.322E-02 8.359E-02 1.052E-01	4.690E-04 5.561E-04 6.388E-04 7.179E-04 7.943E-04 7.9406E-04 1.081E-03 1.217E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.135 -0.131 -0.128 -0.126 -0.124 -0.121 -0.118 -0.106	0.147 0.142 0.139 0.136 0.134 0.130 0.128	0.146 0.142 0.139 0.136 0.133 0.130 0.127
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	2.156E+00 2.086E+00 2.032E+00 1.990E+00 1.956E+00 1.906E+00 1.872E+00 1.849E+00	5.226E-03 5.604E-03 5.999E-03 6.410E-03 6.836E-03 7.726E-03 8.661E-03 9.639E-03	2.161E+00 2.092E+00 2.038E+00 1.996E+00 1.963E+00 1.914E+00 1.881E+00 1.859E+00	1.279E-01 1.515E-01 1.757E-01 2.005E-01 2.258E-01 2.774E-01 3.301E-01 3.836E-01	1.351E-03 1.484E-03 1.617E-03 1.750E-03 1.883E-03 2.151E-03 2.422E-03 2.696E-03	3.157E-02 6.655E-02 1.032E-01 1.409E-01 1.793E-01 2.572E-01 3.350E-01 4.119E-01	-0.087 -0.080 -0.075 -0.070 -0.066 -0.060 -0.055 -0.051	0.119 0.114 0.109 0.104 0.100 0.093 0.087 0.083	0.117 0.111 0.105 0.100 0.095 0.087 0.080 0.075
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.832E+00 1.809E+00 1.801E+00 1.799E+00 1.82E+00 1.811E+00 1.823E+00 1.836E+00	1.066E-02 1.335E-02 1.623E-02 1.927E-02 2.244E-02 2.910E-02 3.612E-02 4.343E-02	1.843E+00 1.823E+00 1.817E+00 1.819E+00 1.824E+00 1.840E+00 1.859E+00 1.879E+00	4.377E-01 5.742E-01 7.116E-01 8.492E-01 9.865E-01 1.259E+00 1.530E+00	2.975E-03 3.689E-03 4.428E-03 5.190E-03 5.972E-03 7.587E-03 9.258E-03 1.097E-02	4.872E-01 6.664E-01 8.319E-01 9.843E-01 1.125E+00 1.375E+00 1.594E+00	-0.048 -0.042 -0.038 -0.035 -0.033 -0.030 -0.028 -0.027	0.078 0.070 0.064 0.060 0.056 0.051 0.047	0.070 0.061 0.054 0.049 0.046 0.040 0.036
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.848E+00 1.859E+00 1.870E+00 1.880E+00 1.889E+00 1.906E+00 1.921E+00 1.934E+00	5.100E-02 5.878E-02 6.674E-02 7.488E-02 8.317E-02 1.002E-01 1.176E-01 1.354E-01	1.899E+00 1.918E+00 1.937E+00 1.955E+00 1.973E+00 2.006E+00 2.039E+00 2.070E+00	2.062E+00 2.324E+00 2.583E+00 2.840E+00 3.095E+00 3.597E+00 4.579E+00	1.272E-02 1.450E-02 1.631E-02 1.813E-02 1.997E-02 2.370E-02 2.746E-02 3.125E-02	1.959E+00 2.115E+00 2.258E+00 2.390E+00 2.513E+00 2.735E+00 2.932E+00 3.110E+00	-0.025 -0.024 -0.023 -0.023 -0.022 -0.020 -0.019 -0.018	0.041 0.039 0.038 0.036 0.035 0.033 0.031	0.032 0.030 0.029 0.027 0.026 0.025 0.023
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.946E+00 1.970E+00 1.990E+00 2.006E+00 2.019E+00 2.041E+00 2.058E+00 2.072E+00	1.536E-01 2.002E-01 2.482E-01 2.973E-01 3.472E-01 4.488E-01 5.523E-01 6.571E-01	2.099E+00 2.170E+00 2.238E+00 2.303E+00 2.366E+00 2.490E+00 2.610E+00 2.729E+00	5.058E+00 6.229E+00 7.363E+00 8.465E+00 9.536E+00 1.160E+01 1.356E+01	3.505E-02 4.459E-02 5.410E-02 6.352E-02 7.283E-02 9.100E-02 1.085E-01 1.253E-01	3.273E+00 3.630E+00 3.933E+00 4.197E+00 4.431E+00 4.834E+00 5.171E+00 5.461E+00	-0.016 -0.014 -0.011 -0.010 -0.008 -0.006 -0.004	0.028 0.026 0.023 0.022 0.020 0.018 0.016 0.014	0.021 0.018 0.016 0.014 0.013 0.010 0.008 0.007
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	2.085E+00 2.095E+00 2.104E+00 2.113E+00 2.1121E+00 2.134E+00 2.145E+00 2.156E+00	7.631E-01 8.700E-01 9.777E-01 1.086E+00 1.195E+00 1.414E+00 1.635E+00 1.858E+00	2.848E+00 2.965E+00 3.082E+00 3.199E+00 3.316E+00 3.548E+00 4.013E+00	1.722E+01 1.894E+01 2.060E+01 2.219E+01 2.372E+01 2.64E+01 2.937E+01 3.194E+01	1.415E-01 1.570E-01 1.718E-01 1.861E-01 1.997E-01 2.255E-01 2.493E-01 2.713E-01	5.715E+00 5.942E+00 6.145E+00 6.331E+00 6.500E+00 6.802E+00 7.065E+00 7.297E+00	-0.003 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001	0.013 0.012 0.011 0.010 0.010 0.009 0.008 0.007	0.006 0.005 0.004 0.004 0.003 0.003 0.002
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.165E+00 2.184E+00 2.199E+00 2.212E+00 2.224E+00 2.224SE+00 2.258E+00 2.271E+00	2.081E+00 2.643E+00 3.209E+00 3.779E+00 4.351E+00 5.500E+00 6.655E+00 7.814E+00	4.245E+00 4.827E+00 5.409E+00 5.991E+00 6.574E+00 7.742E+00 8.913E+00 1.008E+01	3.436E+01 3.988E+01 4.477E+01 4.916E+01 5.314E+01 6.014E+01 6.615E+01 7.143E+01	2.919E-01 3.375E-01 3.765E-01 4.102E-01 4.398E-01 4.893E-01 5.293E-01 5.624E-01	7.506E+00 7.948E+00 8.310E+00 8.617E+00 8.88E+00 9.327E+00 9.691E+00 9.999E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.007 0.006 0.005 0.005 0.005 0.004 0.004	0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.282E+00 2.292E+00 2.301E+00 2.309E+00 2.316E+00 2.329E+00 2.341E+00 2.351E+00	8.976E+00 1.014E+01 1.131E+01 1.248E+01 1.364E+01 1.599E+01 1.833E+01 2.068E+01	1.126E+01 1.243E+01 1.361E+01 1.478E+01 1.596E+01 1.832E+01 2.067E+01 2.303E+01	7.612E+01 8.034E+01 8.418E+01 8.771E+01 9.096E+01 9.680E+01 1.019E+02 1.065E+02	5.904E-01 6.145E-01 6.354E-01 6.538E-01 6.701E-01 6.978E-01 7.206E-01 7.397E-01	1.027E+01 1.050E+01 1.071E+01 1.071E+01 1.090E+01 1.108E+01 1.138E+01 1.165E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.003 0.003 0.003 0.003 0.003 0.003 0.002	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.359E+00	2.303E+01	2.539E+01	1.107E+02	7.560E-01	1.210E+01	-0.000	0.002	0.000

ELECTRONS IN PARAFFIN WAX

I = 55.9 eV DENSITY = 9.300E-01 g/cm³

ENERGY		OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(1 CSDA	RAD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.464E+01 2.067E+01 1.791E+01 1.587E+01 1.429E+01 1.201E+01 1.044E+01 9.282E+00	2.826E-03 2.837E-03 2.844E-03 2.849E-03 2.854E-03 2.863E-03 2.873E-03 2.884E-03	2.464E+01 2.067E+01 1.791E+01 1.587E+01 1.430E+01 1.202E+01 1.044E+01 9.285E+00	2.285E-04 3.398E-04 4.701E-04 6.187E-04 7.849E-04 1.168E-03 1.616E-03 2.125E-03	6.305E-05 7.565E-05 8.772E-05 9.936E-05 1.106E-04 1.323E-04 1.531E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.188 -0.180 -0.175 -0.170 -0.167 -0.161 -0.156 -0.153	0.213 0.203 0.196 0.190 0.186 0.178 0.173 0.168	0.212 0.202 0.195 0.190 0.185 0.178 0.172 0.168
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	8.394E+00 7.689E+00 7.117E+00 6.641E+00 6.241E+00 5.601E+00 5.113E+00 4.729E+00	2.895E-03 2.908E-03 2.921E-03 2.935E-03 2.950E-03 2.981E-03 3.014E-03 3.050E-03	8.396E+00 7.692E+00 7.119E+00 6.644E+00 6.243E+00 5.604E+00 5.116E+00 4.732E+00	2.692E-03 3.315E-03 3.991E-03 4.719E-03 5.496E-03 7.190E-03 9.060E-03 1.110E-02	1.924E-04 2.112E-04 2.295E-04 2.473E-04 2.648E-04 2.988E-04 3.315E-04 3.632E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.150 -0.147 -0.145 -0.143 -0.142 -0.139 -0.136	0.165 0.162 0.159 0.157 0.155 0.151 0.148 0.146	0.165 0.161 0.159 0.157 0.155 0.151 0.148
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.418E+00 3.851E+00 3.469E+00 3.195E+00 2.989E+00 2.703E+00 2.515E+00 2.385E+00	3.088E-03 3.190E-03 3.300E-03 3.418E-03 3.542E-03 3.807E-03 4.097E-03 4.406E-03	4.421E+00 3.855E+00 3.472E+00 3.198E+00 2.992E+00 2.706E+00 2.520E+00 2.390E+00	1.328E-02 1.936E-02 2.622E-02 3.373E-02 4.182E-02 7.864E-02 9.905E-02	3.941E-04 4.680E-04 5.382E-04 6.056E-04 6.707E-04 7.957E-04 9.159E-04 1.033E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.449E-03	-0.133 -0.129 -0.126 -0.124 -0.122 -0.119 -0.116	0.144 0.140 0.136 0.134 0.132 0.128 0.126	0.144 0.139 0.136 0.133 0.131 0.127 0.125 0.122
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	2.287E+00 2.213E+00 2.156E+00 2.111E+00 2.074E+00 2.021E+00 1.984E+00 1.959E+00	4.736E-03 5.083E-03 5.446E-03 5.824E-03 6.215E-03 7.033E-03 7.893E-03 8.792E-03	2.292E+00 2.218E+00 2.161E+00 2.116E+00 2.081E+00 2.028E+00 1.992E+00 1.968E+00	1.204E-01 1.426E-01 1.655E-01 1.889E-01 2.127E-01 2.614E-01 3.112E-01 3.617E-01	1.148E-03 1.263E-03 1.377E-03 1.491E-03 1.606E-03 1.838E-03 2.072E-03 2.310E-03	3.426E-02 6.887E-02 1.055E-01 1.434E-01 1.823E-01 2.614E-01 3.408E-01 4.193E-01	-0.085 -0.079 -0.073 -0.069 -0.065 -0.058 -0.053	0.117 0.111 0.106 0.102 0.098 0.091 0.086 0.081	0.115 0.108 0.103 0.098 0.093 0.085 0.078 0.073
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.941E+00 1.916E+00 1.906E+00 1.904E+00 1.906E+00 1.915E+00 1.927E+00 1.940E+00	9.728E-03 1.221E-02 1.486E-02 1.765E-02 2.057E-02 2.671E-02 3.319E-02	1.951E+00 1.928E+00 1.921E+00 1.922E+00 1.926E+00 1.942E+00 1.960E+00 1.980E+00	4.128E-01 5.418E-01 6.718E-01 8.019E-01 9.319E-01 1.190E+00 1.447E+00	2.552E-03 3.172E-03 3.815E-03 4.478E-03 5.159E-03 6.569E-03 8.031E-03 9.533E-03	4.962E-01 6.794E-01 8.485E-01 1.004E+00 1.147E+00 1.403E+00 1.625E+00 1.821E+00	-0.046 -0.040 -0.037 -0.034 -0.032 -0.029 -0.027 -0.026	0.077 0.069 0.063 0.058 0.055 0.049 0.045 0.042	0.068 0.059 0.053 0.048 0.044 0.039 0.035
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.952E+00 1.964E+00 1.975E+00 1.985E+00 1.995E+00 2.012E+00 2.027E+00 2.040E+00	4.693E-02 5.411E-02 6.148E-02 6.900E-02 7.667E-02 9.238E-02 1.085E-01	1.999E+00 2.018E+00 2.036E+00 2.054E+00 2.071E+00 2.104E+00 2.135E+00 2.165E+00	1.952E+00 2.201E+00 2.448E+00 2.692E+00 2.934E+00 3.413E+00 3.885E+00 4.350E+00	1.107E-02 1.263E-02 1.422E-02 1.583E-02 1.745E-02 2.074E-02 2.406E-02 2.742E-02	1.997E+00 2.156E+00 2.302E+00 2.436E+00 2.561E+00 2.787E+00 3.169E+00	-0.024 -0.023 -0.023 -0.022 -0.021 -0.019 -0.018 -0.017	0.040 0.038 0.037 0.035 0.034 0.032 0.030	0.031 0.029 0.028 0.027 0.026 0.024 0.022
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	2.052E+00 2.077E+00 2.097E+00 2.113E+00 2.127E+00 2.149E+00 2.167E+00 2.181E+00	1.419E-01 1.851E-01 2.296E-01 2.751E-01 3.214E-01 4.157E-01 5.118E-01 6.093E-01	2.194E+00 2.262E+00 2.326E+00 2.388E+00 2.448E+00 2.565E+00 2.678E+00 2.791E+00	4.809E+00 5.931E+00 7.021E+00 8.081E+00 9.115E+00 1.111E+01 1.302E+01	3.080E-02 3.929E-02 4.779E-02 5.625E-02 6.462E-02 8.107E-02 9.701E-02 1.124E-01	3.336E+00 3.699E+00 4.008E+00 4.277E+00 4.515E+00 4.924E+00 5.265E+00 5.558E+00	-0.015 -0.012 -0.010 -0.008 -0.007 -0.005 -0.004 -0.003	0.027 0.025 0.022 0.021 0.019 0.016 0.015 0.013	0.020 0.017 0.015 0.013 0.012 0.009 0.007
40.0000 45.0000 50.0000 55.0000 70.0000 80.0000 90.0000	2.194E+00 2.205E+00 2.214E+00 2.223E+00 2.231E+00 2.245E+00 2.257E+00 2.268E+00	7.078E-01 8.072E-01 9.074E-01 1.008E+00 1.110E+00 1.314E+00 1.519E+00 1.726E+00	2.902E+00 3.012E+00 3.122E+00 3.231E+00 3.341E+00 3.559E+00 3.776E+00 3.994E+00	1.660E+01 1.829E+01 1.992E+01 2.150E+01 2.302E+01 2.592E+01 2.865E+01 3.122E+01	1.273E-01 1.416E-01 1.554E-01 1.686E-01 1.814E-01 2.057E-01 2.282E-01 2.492E-01	5.815E+00 6.042E+00 6.247E+00 6.433E+00 6.604E+00 6.907E+00 7.170E+00 7.403E+00	-0.002 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001	0.012 0.011 0.010 0.009 0.009 0.008 0.007	0.005 0.004 0.004 0.003 0.003 0.002 0.002
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.277E+00 2.297E+00 2.313E+00 2.327E+00 2.339E+00 2.358E+00 2.374E+00 2.388E+00	1.934E+00 2.458E+00 2.986E+00 3.517E+00 4.050E+00 5.122E+00 6.199E+00 7.280E+00	4.211E+00 4.755E+00 5.299E+00 5.843E+00 6.388E+00 7.480E+00 8.573E+00 9.668E+00	3.366E+01 3.924E+01 4.422E+01 4.871E+01 5.280E+01 6.003E+01 6.627E+01 7.176E+01	2.689E-01 3.130E-01 3.510E-01 3.842E-01 4.134E-01 4.629E-01 5.032E-01 5.368E-01	7.612E+00 8.054E+00 8.417E+00 8.724E+00 8.990E+00 9.435E+00 9.798E+00 1.011E+01	$ \begin{array}{c} -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \end{array} $	0.006 0.005 0.005 0.004 0.004 0.004 0.003	0.001 0.001 0.001 0.001 0.001 0.000 0.000
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.400E+00 2.410E+00 2.419E+00 2.428E+00 2.435E+00 2.449E+00 2.461E+00 2.471E+00	8.365E+00 9.452E+00 1.054E+01 1.163E+01 1.272E+01 1.491E+01 1.710E+01 1.930E+01	1.076E+01 1.186E+01 1.296E+01 1.406E+01 1.516E+01 1.736E+01 1.956E+01 2.177E+01	7.666E+01 8.108E+01 8.511E+01 8.881E+01 9.224E+01 9.840E+01 1.038E+02 1.087E+02	5.654E-01 5.900E-01 6.116E-01 6.306E-01 6.475E-01 6.763E-01 7.002E-01 7.202E-01	1.037E+01 1.061E+01 1.082E+01 1.101E+01 1.118E+01 1.149E+01 1.176E+01 1.199E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.003 0.003 0.003 0.002 0.002 0.002 0.002	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.480E+00	2.149E+01	2.397E+01	1.130E+02	7.374E-01	1.220E+01	-0.000	0.002	0.000

ELECTRONS IN PHOTOGRAPHIC EMULSION

I = 331.0 eV DENSITY = 3.815E+00 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(l CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²					
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.302E+01 1.114E+01 9.798E+00 8.782E+00 7.984E+00 6.810E+00 5.983E+00 5.366E+00	1.310E-02 1.396E-02 1.463E-02 1.518E-02 1.565E-02 1.639E-02 1.697E-02	1.304E+01 1.116E+01 9.813E+00 8.797E+00 8.000E+00 6.827E+00 6.000E+00 5.383E+00	4.664E-04 6.745E-04 9.140E-04 1.184E-03 1.482E-03 2.161E-03 2.945E-03 3.826E-03	4.991E-04 6.250E-04 7.494E-04 8.722E-04 9.934E-04 1.231E-03 1.462E-03 1.687E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.282 -0.266 -0.253 -0.244 -0.237 -0.225 -0.216	0.359 0.332 0.313 0.298 0.286 0.269 0.256	0.338 0.315 0.298 0.285 0.274 0.258 0.247 0.238
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	4.887E+00 4.504E+00 4.190E+00 3.928E+00 3.706E+00 3.3349E+00 3.075E+00 2.857E+00	1.786E-02 1.822E-02 1.854E-02 1.884E-02 1.910E-02 1.959E-02 2.003E-02 2.044E-02	4.905E+00 4.522E+00 4.209E+00 3.947E+00 3.725E+00 3.369E+00 3.095E+00 2.878E+00	4.801E-03 5.863E-03 7.011E-03 8.238E-03 9.543E-03 1.237E-02 1.547E-02 1.883E-02	1.906E-03 2.121E-03 2.330E-03 2.536E-03 2.737E-03 3.128E-03 3.506E-03 3.870E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.204 -0.200 -0.196 -0.192 -0.189 -0.184 -0.180	0.238 0.231 0.225 0.221 0.216 0.209 0.204 0.199	0.231 0.225 0.220 0.215 0.211 0.205 0.200 0.195
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.680E+00 2.356E+00 2.136E+00 1.978E+00 1.858E+00 1.693E+00 1.585E+00 1.509E+00	2.081E-02 2.169E-02 2.251E-02 2.329E-02 2.405E-02 2.560E-02 2.721E-02 2.890E-02	2.701E+00 2.378E+00 2.159E+00 2.001E+00 1.883E+00 1.718E+00 1.612E+00 1.537E+00	2.242E-02 3.232E-02 4.338E-02 5.543E-02 6.833E-02 9.622E-02 1.263E-01	4.224E-03 5.064E-03 5.850E-03 6.592E-03 7.294E-03 8.606E-03 9.822E-03 1.097E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.408E-02	-0.173 -0.167 -0.162 -0.159 -0.155 -0.150 -0.147 -0.127	0.195 0.187 0.181 0.176 0.172 0.166 0.161 0.155	0.191 0.184 0.178 0.173 0.170 0.163 0.159 0.152
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.453E+00 1.412E+00 1.381E+00 1.356E+00 1.338E+00 1.311E+00 1.295E+00 1.284E+00	3.066E-02 3.251E-02 3.443E-02 3.642E-02 4.269E-02 4.711E-02 5.168E-02	1.484E+00 1.444E+00 1.415E+00 1.393E+00 1.376E+00 1.354E+00 1.354E+00 1.336E+00	1.913E-01 2.254E-01 2.604E-01 2.960E-01 3.322E-01 4.055E-01 4.797E-01 5.544E-01	1.206E-02 1.312E-02 1.415E-02 1.516E-02 1.615E-02 1.809E-02 2.000E-02 2.187E-02	3.297E-02 5.225E-02 7.178E-02 9.146E-02 1.112E-01 1.505E-01 1.895E-01 2.278E-01	-0.121 -0.117 -0.113 -0.109 -0.106 -0.101 -0.097 -0.094	0.149 0.144 0.140 0.136 0.133 0.127 0.122 0.118	0.146 0.141 0.136 0.132 0.128 0.122 0.116 0.112
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.278E+00 1.274E+00 1.278E+00 1.285E+00 1.294E+00 1.312E+00 1.331E+00	5.640E-02 6.874E-02 8.177E-02 9.534E-02 1.094E-01 1.385E-01 1.687E-01	1.335E+00 1.343E+00 1.360E+00 1.380E+00 1.403E+00 1.451E+00 1.499E+00	6.293E-01 8.162E-01 1.001E+00 1.184E+00 1.363E+00 1.714E+00 2.053E+00 2.381E+00	2.373E-02 2.833E-02 3.289E-02 3.742E-02 4.193E-02 5.089E-02 5.974E-02 6.848E-02	2.652E-01 3.551E-01 4.394E-01 5.186E-01 5.933E-01 7.310E-01 8.560E-01 9.707E-01	-0.090 -0.084 -0.080 -0.076 -0.073 -0.067 -0.063	0.114 0.107 0.102 0.097 0.094 0.087 0.083	0.108 0.100 0.093 0.088 0.084 0.077 0.072 0.067
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.363E+00 1.377E+00 1.390E+00 1.401E+00 1.412E+00 1.431E+00 1.448E+00	2.317E-01 2.642E-01 2.973E-01 3.309E-01 3.649E-01 5.045E-01 5.760E-01	1.595E+00 1.641E+00 1.687E+00 1.732E+00 1.777E+00 1.865E+00 1.952E+00 2.038E+00	2.699E+00 3.008E+00 3.309E+00 3.601E+00 3.886E+00 4.436E+00 4.960E+00 5.461E+00	7.708E-02 8.554E-02 9.385E-02 1.020E-01 1.100E-01 1.256E-01 1.406E-01	1.077E+00 1.175E+00 1.268E+00 1.355E+00 1.437E+00 1.590E+00 1.729E+00 1.856E+00	-0.057 -0.054 -0.052 -0.050 -0.048 -0.045 -0.043	0.075 0.072 0.070 0.068 0.066 0.062 0.059 0.056	0.063 0.060 0.057 0.055 0.052 0.049 0.045
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.475E+00 1.502E+00 1.523E+00 1.540E+00 1.555E+00 1.579E+00 1.598E+00 1.613E+00	6.485E-01 8.331E-01 1.022E+00 1.213E+00 1.407E+00 1.802E+00 2.202E+00 2.606E+00	2.123E+00 2.335E+00 2.545E+00 2.754E+00 2.963E+00 3.381E+00 3.800E+00 4.220E+00	5.942E+00 7.064E+00 8.089E+00 9.033E+00 9.909E+00 1.149E+01 1.288E+01	1.690E-01 2.015E-01 2.312E-01 2.584E-01 2.834E-01 3.277E-01 3.659E-01	1.975E+00 2.240E+00 2.471E+00 2.675E+00 2.858E+00 3.178E+00 3.689E+00	-0.038 -0.034 -0.031 -0.028 -0.026 -0.023 -0.020 -0.018	0.054 0.049 0.046 0.043 0.040 0.036 0.033	0.040 0.035 0.031 0.027 0.025 0.021 0.018 0.016
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.626E+00 1.638E+00 1.648E+00 1.657E+00 1.655E+00 1.678E+00 1.690E+00	3.015E+00 3.426E+00 3.840E+00 4.256E+00 4.674E+00 5.513E+00 7.206E+00	4.641E+00 5.064E+00 5.488E+00 5.913E+00 6.338E+00 7.192E+00 8.048E+00 8.906E+00	1.526E+01 1.629E+01 1.724E+01 1.812E+01 1.893E+01 2.041E+01 2.173E+01 2.291E+01	4.286E-01 4.547E-01 4.781E-01 4.992E-01 5.183E-01 5.518E-01 5.801E-01 6.045E-01	3.899E+00 4.089E+00 4.261E+00 4.419E+00 4.565E+00 4.828E+00 5.059E+00 5.266E+00	-0.017 -0.016 -0.015 -0.014 -0.013 -0.011 -0.010	0.029 0.028 0.027 0.025 0.025 0.023 0.022 0.021	0.014 0.013 0.012 0.011 0.010 0.008 0.007
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	1.709E+00 1.728E+00 1.743E+00 1.755E+00 1.766E+00 1.783E+00 1.797E+00 1.808E+00	8.056E+00 1.019E+01 1.234E+01 1.450E+01 1.666E+01 2.100E+01 2.535E+01 2.970E+01	9.766E+00 1.192E+01 1.409E+01 1.625E+01 1.843E+01 2.278E+01 2.714E+01 3.151E+01	2.398E+01 2.629E+01 2.822E+01 2.987E+01 3.131E+01 3.375E+01 3.576E+01 3.747E+01	6.258E-01 6.688E-01 7.017E-01 7.279E-01 7.492E-01 7.820E-01 8.064E-01 8.252E-01	5.453E+00 5.855E+00 6.190E+00 6.476E+00 6.726E+00 7.147E+00 7.495E+00 7.791E+00	-0.009 -0.007 -0.006 -0.005 -0.005 -0.004 -0.003	0.020 0.018 0.017 0.016 0.015 0.014 0.014	0.006 0.005 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.818E+00 1.827E+00 1.835E+00 1.842E+00 1.848E+00 1.859E+00 1.869E+00 1.878E+00	3.407E+01 3.844E+01 4.281E+01 4.719E+01 5.157E+01 6.034E+01 7.790E+01	3.589E+01 4.027E+01 4.465E+01 4.903E+01 5.342E+01 6.220E+01 7.099E+01	3.895E+01 4.027E+01 4.145E+01 4.251E+01 4.349E+01 4.522E+01 4.673E+01 4.806E+01	8.404E-01 8.528E-01 8.632E-01 8.720E-01 8.797E-01 8.923E-01 9.023E-01 9.104E-01	8.048E+00 8.276E+00 8.481E+00 8.666E+00 9.138E+00 9.401E+00 9.633E+00	-0.003 -0.002 -0.002 -0.002 -0.002 -0.001 -0.001	0.012 0.012 0.012 0.011 0.011 0.011 0.010 0.010	0.002 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	1.885E+00	8.669E+01	8.858E+01	4.924E+01	9.171E-01	9.841E+00	-0.001	0.010	0.001

ELECTRONS IN PLASTIC SCINTILLATOR (VINYLTOLUENE BASED)

I = 64.7 eV DENSITY = 1.032E+00 g/cm³

	ENERGY	COLLISION	OPPING POWER	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	COLL	g)/d(l	RAD
	MeV	MeV cm ² /g	MeV cm 2/g	MeV cm ² /g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
	0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.265E+01 1.902E+01 1.650E+01 1.463E+01 1.318E+01 1.109E+01 9.642E+00 8.578E+00	2.965E-03 2.975E-03 2.982E-03 2.987E-03 2.992E-03 3.000E-03 3.010E-03 3.021E-03	2.265E+01 1.903E+01 1.650E+01 1.463E+01 1.318E+01 1.109E+01 9.645E+00 8.581E+00	2.495E-04 3.704E-04 5.120E-04 6.732E-04 8.535E-04 1.269E-03 1.754E-03 2.305E-03	7.219E-05 8.650E-05 1.002E-04 1.134E-04 1.262E-04 1.507E-04 1.742E-04 1.967E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.193 -0.185 -0.179 -0.175 -0.171 -0.165 -0.160 -0.156	0.220 0.210 0.202 0.196 0.191 0.183 0.177 0.173	0.218 0.209 0.201 0.195 0.190 0.183 0.177 0.172
	0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.760E+00 7.112E+00 6.584E+00 6.146E+00 5.777E+00 5.187E+00 4.737E+00 4.382E+00	3.032E-03 3.045E-03 3.058E-03 3.072E-03 3.087E-03 3.119E-03 3.153E-03 3.189E-03	7.763E+00 7.115E+00 6.587E+00 6.150E+00 5.780E+00 5.190E+00 4.740E+00 4.386E+00	2.918E-03 3.592E-03 4.323E-03 5.109E-03 5.948E-03 7.778E-03 9.797E-03 1.199E-02	2.186E-04 2.398E-04 2.604E-04 2.805E-04 3.002E-04 3.384E-04 3.753E-04 4.109E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.153 -0.151 -0.148 -0.146 -0.145 -0.142 -0.139 -0.137	0.169 0.166 0.163 0.161 0.158 0.155 0.152 0.149	0.169 0.165 0.163 0.160 0.158 0.155 0.152 0.149
	0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.095E+00 3.572E+00 3.219E+00 2.965E+00 2.775E+00 2.510E+00 2.337E+00 2.217E+00	3.228E-03 3.333E-03 3.446E-03 3.566E-03 3.693E-03 4.264E-03 4.583E-03	4.099E+00 3.575E+00 3.222E+00 2.969E+00 2.779E+00 2.514E+00 2.342E+00 2.222E+00	1.435E-02 2.091E-02 2.830E-02 3.639E-02 4.511E-02 6.409E-02 8.474E-02 1.067E-01	4.456E-04 5.286E-04 6.074E-04 6.828E-04 7.557E-04 8.953E-04 1.029E-03 1.160E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.135 -0.131 -0.128 -0.126 -0.124 -0.121 -0.118 -0.117	0.147 0.143 0.139 0.137 0.134 0.131 0.128 0.126	0.147 0.142 0.139 0.136 0.134 0.130 0.127 0.125
	0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.129E+00 2.061E+00 2.009E+00 1.967E+00 1.934E+00 1.853E+00 1.853E+00	4.923E-03 5.281E-03 5.655E-03 6.045E-03 6.448E-03 7.291E-03 8.178E-03 9.105E-03	2.134E+00 2.066E+00 2.014E+00 1.973E+00 1.941E+00 1.893E+00 1.861E+00 1.839E+00	1.297E-01 1.535E-01 1.780E-01 2.031E-01 2.87E-01 2.809E-01 3.342E-01 3.883E-01	1.288E-03 1.415E-03 1.541E-03 1.668E-03 1.795E-03 2.051E-03 2.310E-03 2.572E-03	1.600E-02 4.447E-02 7.551E-02 1.084E-01 1.426E-01 2.134E-01 2.854E-01 3.574E-01	-0.092 -0.086 -0.080 -0.075 -0.071 -0.064 -0.059 -0.055	0.121 0.116 0.112 0.107 0.104 0.097 0.091 0.086	0.120 0.114 0.108 0.103 0.099 0.091 0.084 0.079
	1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.814E+00 1.792E+00 1.784E+00 1.783E+00 1.785E+00 1.796E+00 1.808E+00 1.821E+00	1.007E-02 1.262E-02 1.535E-02 1.823E-02 2.124E-02 2.756E-02 3.423E-02 4.117E-02	1.824E+00 1.804E+00 1.799E+00 1.801E+00 1.807E+00 1.823E+00 1.842E+00	4.429E-01 5.808E-01 7.196E-01 8.586E-01 9.72E-01 1.273E+00 1.546E+00 1.816E+00	2.839E-03 3.521E-03 4.228E-03 4.956E-03 5.704E-03 7.249E-03 8.848E-03 1.049E-02	4.284E-01 5.989E-01 7.575E-01 9.041E-01 1.040E+00 1.282E+00 1.493E+00 1.680E+00	-0.051 -0.045 -0.041 -0.038 -0.036 -0.033 -0.031	0.082 0.074 0.058 0.063 0.059 0.054 0.050	0.074 0.064 0.058 0.053 0.049 0.043 0.039
	4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.833E+00 1.845E+00 1.856E+00 1.866E+00 1.875E+00 1.892E+00 1.907E+00 1.921E+00	4.835E-02 5.574E-02 6.331E-02 7.105E-02 7.892E-02 9.507E-02 1.116E-01 1.286E-01	1.882E+00 1.901E+00 1.919E+00 1.937E+00 1.954E+00 1.988E+00 2.019E+00 2.049E+00	2.083E+00 2.347E+00 2.609E+00 2.868E+00 3.125E+00 3.632E+00 4.132E+00 4.623E+00	1.217E-02 1.387E-02 1.560E-02 1.735E-02 1.911E-02 2.268E-02 2.629E-02 2.993E-02	1.848E+00 2.000E+00 2.139E+00 2.268E+00 2.387E+00 2.604E+00 2.798E+00 2.973E+00	-0.028 -0.027 -0.026 -0.025 -0.024 -0.022 -0.021 -0.019	0.044 0.042 0.041 0.039 0.038 0.036 0.034	0.034 0.033 0.031 0.030 0.029 0.027 0.025 0.024
	10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.932E+00 1.957E+00 1.976E+00 1.992E+00 2.005E+00 2.027E+00 2.043E+00 2.058E+00	1.459E-01 1.902E-01 2.359E-01 2.826E-01 3.301E-01 4.268E-01 5.254E-01 6.252E-01	2.078E+00 2.147E+00 2.212E+00 2.274E+00 2.335E+00 2.453E+00 2.569E+00 2.683E+00	5.108E+00 6.291E+00 7.438E+00 8.553E+00 9.637E+00 1.173E+01 1.372E+01	3.359E-02 4.275E-02 5.191E-02 6.099E-02 8.755E-02 1.045E-01 1.209E-01	3.134E+00 3.487E+00 3.788E+00 4.051E+00 4.286E+00 4.689E+00 5.028E+00 5.319E+00	-0.018 -0.015 -0.012 -0.010 -0.008 -0.006 -0.004 -0.003	0.031 0.028 0.025 0.023 0.022 0.019 0.017 0.015	0.023 0.020 0.017 0.015 0.013 0.011 0.009 0.007
	40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.069E+00 2.080E+00 2.089E+00 2.097E+00 2.105E+00 2.118E+00 2.129E+00 2.139E+00	7.262E-01 8.281E-01 9.306E-01 1.034E+00 1.138E+00 1.347E+00 1.557E+00 1.769E+00	2.796E+00 2.908E+00 3.020E+00 3.131E+00 3.243E+00 3.465E+00 3.687E+00 3.909E+00	1.745E+01 1.920E+01 2.089E+01 2.251E+01 2.408E+01 2.707E+01 2.986E+01 3.250E+01	1.366E-01 1.517E-01 1.662E-01 1.801E-01 1.935E-01 2.187E-01 2.421E-01 2.638E-01	5.574E+00 5.801E+00 6.005E+00 6.191E+00 6.361E+00 6.663E+00 6.926E+00 7.159E+00	-0.003 -0.002 -0.002 -0.001 -0.001 -0.001 -0.001	0.014 0.012 0.012 0.011 0.010 0.009 0.008 0.008	0.006 0.005 0.004 0.004 0.003 0.003 0.003
1 1 2 2 3	00.0000 25.0000 50.0000 75.0000 00.0000 50.0000 50.0000	2.148E+00 2.167E+00 2.182E+00 2.195E+00 2.207E+00 2.225E+00 2.240E+00 2.253E+00	1.982E+00 2.518E+00 3.058E+00 3.601E+00 4.147E+00 5.243E+00 6.345E+00 7.451E+00	4.130E+00 4.685E+00 5.241E+00 5.797E+00 6.353E+00 7.468E+00 8.585E+00 9.704E+00	3.499E+01 4.066E+01 4.571E+01 5.024E+01 5.436E+01 6.161E+01 6.785E+01 7.332E+01	2.841E-01 3.292E-01 3.679E-01 4.015E-01 4.310E-01 4.805E-01 5.207E-01 5.540E-01	7.367E+00 7.810E+00 8.172E+00 8.479E+00 8.745E+00 9.190E+00 9.554E+00 9.861E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.007 0.006 0.006 0.005 0.005 0.004 0.004	0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000
4 5 6 7 8	00.0000 50.0000 00.0000 50.0000 00.0000 00.0000 00.0000	2.264E+00 2.274E+00 2.283E+00 2.291E+00 2.298E+00 2.311E+00 2.322E+00 2.332E+00	8.560E+00 9.671E+00 1.078E+01 1.190E+01 1.302E+01 1.525E+01 1.749E+01	1.082E+01 1.195E+01 1.307E+01 1.419E+01 1.531E+01 1.756E+01 1.981E+01 2.206E+01	7.820E+01 8.260E+01 8.660E+01 9.027E+01 9.366E+01 9.975E+01 1.051E+02	5.822E-01 6.065E-01 6.276E-01 6.462E-01 6.627E-01 6.908E-01 7.140E-01 7.334E-01	1.013E+01 1.036E+01 1.057E+01 1.076E+01 1.094E+01 1.125E+01 1.151E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.003 0.003 0.003 0.003 0.003 0.003 0.002	0.000 0.000 0.000 0.000 0.000 0.000 0.000
10	00.000	2.341E+00	2.198E+01	2.432E+01	1.142E+02	7.500E-01	1.196E+01	-0.000	0.002	0.000

ELECTRONS IN POLYCARBONATE, "MAKROLON", "LEXAN"

I = 73.1 eV DENSITY = 1.200E+00 g/cm³

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	d(lo	g)/d(l CSDA	ogI) RAD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.153E+01 1.810E+01 1.571E+01 1.393E+01 1.256E+01 1.058E+01 9.202E+00 8.190E+00	3.240E-03 3.254E-03 3.263E-03 3.270E-03 3.275E-03 3.284E-03 3.293E-03 3.304E-03	2.153E+01 1.810E+01 1.571E+01 1.394E+01 1.257E+01 1.058E+01 9.205E+00 8.193E+00	2.634E-04 3.906E-04 5.393E-04 7.086E-04 8.978E-04 1.333E-03 1.842E-03 2.419E-03	8.291E-05 9.938E-05 1.151E-04 1.303E-04 1.450E-04 1.731E-04 2.000E-04 2.258E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.198 -0.190 -0.183 -0.178 -0.174 -0.168 -0.163	0.226 0.215 0.207 0.201 0.196 0.188 0.181	0.225 0.214 0.206 0.200 0.195 0.187 0.181 0.176
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	7.412E+00 6.795E+00 6.293E+00 5.876E+00 5.524E+00 4.962E+00 4.533E+00 4.194E+00	3.315E-03 3.327E-03 3.340E-03 3.355E-03 3.370E-03 3.403E-03 3.477E-03	7.416E+00 6.798E+00 6.296E+00 5.879E+00 5.527E+00 4.965E+00 4.536E+00 4.198E+00	3.061E-03 3.766E-03 4.531E-03 5.354E-03 6.231E-03 8.144E-03 1.025E-02	2.507E-04 2.749E-04 2.984E-04 3.213E-04 3.437E-04 3.872E-04 4.290E-04 4.695E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.156 -0.153 -0.151 -0.149 -0.147 -0.144 -0.142	0.173 0.169 0.166 0.164 0.162 0.158 0.155	0.172 0.169 0.166 0.164 0.161 0.158 0.154 0.152
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.920E+00 3.421E+00 3.084E+00 2.842E+00 2.660E+00 2.407E+00 2.242E+00 2.128E+00	3.518E-03 3.629E-03 3.749E-03 3.877E-03 4.013E-03 4.304E-03 4.623E-03 4.964E-03	3.924E+00 3.425E+00 3.088E+00 2.846E+00 2.664E+00 2.412E+00 2.247E+00 2.133E+00	1.502E-02 2.186E-02 2.957E-02 3.802E-02 4.711E-02 6.691E-02 8.843E-02 1.113E-01	5.088E-04 6.028E-04 6.919E-04 7.772E-04 8.594E-04 1.017E-03 1.168E-03 1.314E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.137 -0.134 -0.131 -0.128 -0.126 -0.123 -0.120	0.150 0.145 0.142 0.139 0.137 0.133 0.130 0.128	0.149 0.145 0.141 0.138 0.136 0.132 0.129 0.126
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.044E+00 1.980E+00 1.930E+00 1.891E+00 1.859E+00 1.813E+00 1.782E+00	5.327E-03 5.710E-03 6.112E-03 6.529E-03 6.961E-03 7.864E-03 8.813E-03 9.806E-03	2.050E+00 1.986E+00 1.936E+00 1.897E+00 1.866E+00 1.821E+00 1.791E+00	1.352E-01 1.600E-01 1.855E-01 2.116E-01 2.382E-01 2.925E-01 3.479E-01 4.041E-01	1.458E-03 1.600E-03 1.741E-03 1.883E-03 2.025E-03 2.310E-03 2.599E-03 2.891E-03	5.680E-03 3.196E-02 6.091E-02 9.181E-02 1.241E-01 1.913E-01 2.602E-01 3.293E-01	-0.098 -0.089 -0.083 -0.078 -0.074 -0.067 -0.061 -0.057	0.125 0.120 0.115 0.111 0.107 0.100 0.094 0.089	0.123 0.117 0.112 0.107 0.102 0.094 0.087 0.082
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.746E+00 1.726E+00 1.719E+00 1.718E+00 1.721E+00 1.731E+00 1.744E+00 1.757E+00	1.084E-02 1.357E-02 1.650E-02 1.958E-02 2.279E-02 2.955E-02 3.667E-02 4.408E-02	1.757E+00 1.739E+00 1.735E+00 1.738E+00 1.744E+00 1.761E+00 1.781E+00	4.608E-01 6.039E-01 7.479E-01 8.919E-01 1.036E+00 1.321E+00 1.603E+00 1.883E+00	3.187E-03 3.946E-03 4.730E-03 5.537E-03 6.365E-03 8.075E-03 9.842E-03 1.165E-02	3.978E-01 5.631E-01 7.177E-01 8.611E-01 9.941E-01 1.233E+00 1.441E+00 1.626E+00	-0.053 -0.047 -0.042 -0.039 -0.037 -0.033 -0.031 -0.030	0.085 0.077 0.070 0.065 0.062 0.056 0.051	0.077 0.067 0.060 0.055 0.050 0.045 0.040 0.038
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.769E+00 1.780E+00 1.791E+00 1.801E+00 1.811E+00 1.827E+00 1.842E+00 1.855E+00	5.174E-02 5.962E-02 6.770E-02 7.594E-02 8.434E-02 1.015E-01 1.192E-01 1.373E-01	1.821E+00 1.840E+00 1.859E+00 1.877E+00 1.895E+00 1.929E+00 1.961E+00 1.992E+00	2.159E+00 2.432E+00 2.702E+00 2.970E+00 3.235E+00 3.758E+00 4.272E+00 4.778E+00	1.350E-02 1.538E-02 1.728E-02 1.921E-02 2.115E-02 2.506E-02 2.902E-02 3.300E-02	1.792E+00 1.942E+00 2.080E+00 2.207E+00 2.325E+00 2.539E+00 2.730E+00 2.903E+00	-0.028 -0.027 -0.026 -0.025 -0.024 -0.023 -0.021	0.046 0.044 0.042 0.040 0.039 0.037 0.035 0.033	0.035 0.033 0.032 0.031 0.029 0.028 0.026
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.867E+00 1.891E+00 1.910E+00 1.926E+00 1.939E+00 1.961E+00 1.978E+00 1.992E+00	1.557E-01 2.029E-01 2.515E-01 3.011E-01 3.516E-01 4.544E-01 5.591E-01 6.652E-01	2.022E+00 2.094E+00 2.162E+00 2.227E+00 2.291E+00 2.415E+00 2.537E+00 2.657E+00	5.276E+00 6.491E+00 7.665E+00 8.805E+00 9.911E+00 1.204E+01 1.598E+01	3.699E-02 4.699E-02 5.693E-02 6.677E-02 7.648E-02 9.539E-02 1.136E-01 1.310E-01	3.061E+00 3.408E+00 3.704E+00 3.963E+00 4.193E+00 4.590E+00 4.924E+00 5.212E+00	-0.019 -0.016 -0.013 -0.011 -0.009 -0.007 -0.005 -0.004	0.032 0.029 0.026 0.024 0.023 0.020 0.018	0.023 0.020 0.018 0.016 0.014 0.012 0.009 0.008
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.003E+00 2.014E+00 2.023E+00 2.031E+00 2.038E+00 2.051E+00 2.062E+00 2.072E+00	7.724E-01 8.805E-01 9.894E-01 1.099E+00 1.209E+00 1.431E+00 1.654E+00 1.879E+00	2.776E+00 2.894E+00 3.012E+00 3.130E+00 3.247E+00 3.482E+00 3.717E+00 3.951E+00	1.782E+01 1.959E+01 2.128E+01 2.291E+01 2.448E+01 2.745E+01 3.023E+01 3.284E+01	1.477E-01 1.637E-01 1.789E-01 1.936E-01 2.076E-01 2.339E-01 2.582E-01 2.807E-01	5.464E+00 5.689E+00 5.892E+00 6.077E+00 6.246E+00 6.547E+00 6.809E+00 7.041E+00	-0.003 -0.003 -0.002 -0.002 -0.002 -0.001 -0.001	0.015 0.013 0.012 0.012 0.011 0.010 0.009 0.008	0.007 0.006 0.005 0.005 0.004 0.003 0.003
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.081E+00 2.099E+00 2.114E+00 2.127E+00 2.138E+00 2.156E+00 2.171E+00 2.183E+00	2.105E+00 2.673E+00 3.245E+00 3.820E+00 4.398E+00 5.560E+00 6.726E+00 7.897E+00	4.185E+00 4.772E+00 5.359E+00 5.947E+00 6.536E+00 7.715E+00 8.897E+00 1.008E+01	3.530E+01 4.089E+01 4.583E+01 5.025E+01 5.426E+01 6.130E+01 6.733E+01 7.260E+01	3.016E-01 3.478E-01 3.871E-01 4.210E-01 4.507E-01 5.001E-01 5.400E-01 5.729E-01	7.249E+00 7.691E+00 8.053E+00 8.360E+00 8.625E+00 9.070E+00 9.434E+00 9.741E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.008 0.007 0.006 0.006 0.005 0.005 0.004	0.002 0.001 0.001 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.194E+00 2.204E+00 2.212E+00 2.220E+00 2.227E+00 2.239E+00 2.250E+00 2.260E+00	9.071E+00 1.025E+01 1.143E+01 1.261E+01 1.379E+01 1.615E+01 1.852E+01 2.089E+01	1.127E+01 1.245E+01 1.364E+01 1.483E+01 1.601E+01 1.839E+01 2.077E+01 2.315E+01	7.729E+01 8.151E+01 8.535E+01 8.886E+01 9.211E+01 9.793E+01 1.030E+02 1.076E+02	6.006E-01 6.244E-01 6.450E-01 6.631E-01 6.791E-01 7.064E-01 7.288E-01 7.475E-01	1.001E+01 1.024E+01 1.045E+01 1.064E+01 1.082E+01 1.113E+01 1.139E+01 1.163E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.003 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.268E+00	2.327E+01	2.554E+01	1.117E+02	7.634E-01	1.184E+01	-0.000	0.003	0.000

ELECTRONS IN POLYETHYLENE

I = 57.4 eV DENSITY = 9.400E-01 g/cm³

ENERGY	COLLISION		TOTAL	CSDA RANGE	RADIATION YIELD	DEMS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(l CSDA RANGE	ogI) RAD YIELD
MeV 0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	MeV cm ² /g 2.441E+01 2.049E+01 1.775E+01 1.573E+01 1.417E+01 1.191E+01 1.035E+01 9.206E+00	MeV cm ² /g 2.837E-03 2.847E-03 2.854E-03 2.864E-03 2.864E-03 2.873E-03 2.894E-03	MeV cm ² /g 2.442E+01 2.049E+01 1.776E+01 1.573E+01 1.417E+01 1.192E+01 1.036E+01 9.209E+00	g/cm ² 2.308E-04 3.430E-04 4.745E-04 6.244E-04 7.921E-04 1.179E-03 1.630E-03 2.143E-03	6.391E-05 7.666E-05 8.887E-05 1.007E-04 1.121E-04 1.340E-04 1.550E-04 1.752E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.189 -0.181 -0.176 -0.171 -0.167 -0.161 -0.157 -0.153	0.214 0.204 0.197 0.191 0.187 0.179 0.174 0.169	0.213 0.203 0.196 0.191 0.186 0.179 0.173 0.169
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	8.325E+00 7.627E+00 7.060E+00 6.589E+00 6.191E+00 5.557E+00 5.074E+00 4.692E+00	2.905E-03 2.918E-03 2.931E-03 2.945E-03 2.960E-03 2.992E-03 3.025E-03 3.061E-03	8.328E+00 7.630E+00 7.063E+00 6.592E+00 6.194E+00 5.560E+00 5.077E+00 4.696E+00	2.715E-03 3.343E-03 4.025E-03 4.758E-03 5.541E-03 7.249E-03 9.134E-03 1.118E-02	1.948E-04 2.138E-04 2.323E-04 2.503E-04 2.680E-04 3.023E-04 3.354E-04 3.675E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.150 -0.148 -0.146 -0.144 -0.142 -0.139 -0.137	0.166 0.162 0.160 0.157 0.155 0.152 0.149	0.165 0.162 0.160 0.157 0.155 0.152 0.149
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.384E+00 3.822E+00 3.443E+00 3.171E+00 2.967E+00 2.683E+00 2.497E+00 2.368E+00	3.099E-03 3.201E-03 3.312E-03 3.429E-03 3.553E-03 3.820E-03 4.110E-03 4.420E-03	4.387E+00 3.825E+00 3.446E+00 3.174E+00 2.970E+00 2.687E+00 2.501E+00 2.373E+00	1.339E-02 1.952E-02 2.642E-02 3.399E-02 4.215E-02 5.991E-02 7.923E-02 9.979E-02	3.987E-04 4.733E-04 5.443E-04 6.124E-04 6.782E-04 8.045E-04 9.258E-04 1.044E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.133 -0.129 -0.127 -0.124 -0.122 -0.119 -0.116 -0.109	0.144 0.140 0.137 0.134 0.132 0.129 0.126 0.124	0.144 0.140 0.137 0.134 0.132 0.128 0.125 0.123
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.272E+00 2.199E+00 2.142E+00 2.097E+00 2.061E+00 2.008E+00 1.972E+00	4.750E-03 5.098E-03 5.462E-03 5.841E-03 6.233E-03 7.053E-03 7.915E-03 8.816E-03	2.277E+00 2.204E+00 2.147E+00 2.103E+00 2.068E+00 2.016E+00 1.980E+00 1.956E+00	1.213E-01 1.437E-01 1.667E-01 1.902E-01 2.142E-01 2.632E-01 3.133E-01 3.641E-01	1.160E-03 1.276E-03 1.391E-03 1.506E-03 1.622E-03 1.856E-03 2.092E-03 2.332E-03	2.626E-02 5.906E-02 9.409E-02 1.307E-01 1.683E-01 2.453E-01 3.231E-01 4.002E-01	-0.087 -0.081 -0.075 -0.070 -0.066 -0.060 -0.054	0.118 0.113 0.108 0.104 0.100 0.093 0.087 0.082	0.116 0.110 0.104 0.099 0.095 0.087 0.080 0.074
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.930E+00 1.905E+00 1.895E+00 1.893E+00 1.895E+00 1.905E+00 1.917E+00 1.930E+00	9.754E-03 1.224E-02 1.490E-02 1.770E-02 2.062E-02 2.678E-02 3.327E-02 4.004E-02	1.940E+00 1.917E+00 1.910E+00 1.911E+00 1.916E+00 1.932E+00 1.950E+00 1.970E+00	4.155E-01 5.452E-01 6.759E-01 8.068E-01 9.375E-01 1.197E+00 1.455E+00	2.575E-03 3.200E-03 3.848E-03 4.516E-03 5.203E-03 6.623E-03 8.095E-03 9.608E-03	4.759E-01 6.568E-01 8.243E-01 9.785E-01 1.121E+00 1.375E+00 1.596E+00 1.791E+00	-0.047 -0.041 -0.037 -0.034 -0.032 -0.029 -0.027	0.078 0.070 0.064 0.059 0.055 0.050 0.046	0.069 0.060 0.054 0.049 0.045 0.039 0.036
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.942E+00 1.954E+00 1.965E+00 1.975E+00 1.984E+00 2.002E+00 2.017E+00 2.030E+00	4.704E-02 5.424E-02 6.162E-02 6.916E-02 7.684E-02 9.259E-02 1.088E-01 1.253E-01	1.989E+00 2.008E+00 2.026E+00 2.044E+00 2.061E+00 2.094E+00 2.126E+00 2.156E+00	1.963E+00 2.213E+00 2.461E+00 2.706E+00 2.950E+00 3.431E+00 3.905E+00 4.372E+00	1.116E-02 1.273E-02 1.433E-02 1.594E-02 1.758E-02 2.089E-02 2.424E-02 2.762E-02	1.966E+00 2.124E+00 2.269E+00 2.402E+00 2.527E+00 2.751E+00 2.952E+00 3.132E+00	-0.025 -0.024 -0.023 -0.022 -0.021 -0.020 -0.018 -0.017	0.041 0.039 0.037 0.036 0.035 0.032 0.031	0.031 0.029 0.028 0.027 0.026 0.024 0.023 0.021
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	2.042E+00 2.067E+00 2.087E+00 2.103E+00 2.117E+00 2.139E+00 2.157E+00 2.171E+00	1.422E-01 1.855E-01 2.301E-01 2.757E-01 3.220E-01 4.166E-01 5.129E-01 6.105E-01	2.184E+00 2.253E+00 2.317E+00 2.379E+00 2.439E+00 2.556E+00 2.670E+00 2.782E+00	4.833E+00 5.960E+00 7.054E+00 8.119E+00 9.157E+00 1.116E+01 1.307E+01	3.102E-02 3.956E-02 4.811E-02 5.661E-02 6.503E-02 8.156E-02 9.759E-02 1.131E-01	3.298E+00 3.660E+00 3.967E+00 4.235E+00 4.473E+00 4.880E+00 5.221E+00 5.514E+00	-0.016 -0.013 -0.010 -0.009 -0.007 -0.005 -0.004	0.028 0.025 0.023 0.021 0.019 0.017 0.015 0.013	0.020 0.017 0.015 0.013 0.012 0.009 0.008 0.006
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.184E+00 2.195E+00 2.204E+00 2.213E+00 2.221E+00 2.235E+00 2.247E+00 2.257E+00	7.092E-01 8.088E-01 9.092E-01 1.010E+00 1.112E+00 1.316E+00 1.522E+00 1.730E+00	2.893E+00 3.004E+00 3.114E+00 3.223E+00 3.333E+00 3.551E+00 3.769E+00 3.987E+00	1.667E+01 1.837E+01 2.000E+01 2.158E+01 2.310E+01 2.601E+01 2.874E+01 3.132E+01	1.280E-01 1.424E-01 1.562E-01 1.695E-01 1.824E-01 2.067E-01 2.293E-01 2.504E-01	5.770E+00 5.997E+00 6.202E+00 6.388E+00 6.558E+00 6.861E+00 7.125E+00 7.357E+00	-0.002 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001	0.012 0.011 0.010 0.010 0.009 0.008 0.007	0.005 0.005 0.004 0.003 0.003 0.002 0.002
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.267E+00 2.287E+00 2.303E+00 2.316E+00 2.328E+00 2.348E+00 2.364E+00 2.377E+00	1.938E+00 2.463E+00 2.991E+00 3.523E+00 4.057E+00 5.131E+00 6.210E+00 7.294E+00	4.205E+00 4.749E+00 5.294E+00 5.839E+00 6.385E+00 7.479E+00 8.574E+00 9.671E+00	3.376E+01 3.936E+01 4.434E+01 4.883E+01 5.293E+01 6.015E+01 6.639E+01 7.188E+01	2.701E-01 3.142E-01 3.523E-01 3.855E-01 4.148E-01 4.642E-01 5.045E-01 5.381E-01	7.566E+00 8.009E+00 8.371E+00 8.678E+00 8.944E+00 9.389E+00 9.753E+00	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.006 0.005 0.005 0.004 0.004 0.004 0.003	0.002 0.001 0.001 0.001 0.001 0.000 0.000
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.389E+00 2.399E+00 2.409E+00 2.417E+00 2.425E+00 2.438E+00 2.450E+00 2.460E+00	8.380E+00 9.469E+00 1.056E+01 1.165E+01 1.275E+01 1.494E+01 1.713E+01	1.077E+01 1.187E+01 1.297E+01 1.407E+01 1.517E+01 1.738E+01 1.958E+01 2.179E+01	7.678E+01 8.120E+01 8.523E+01 8.893E+01 9.235E+01 9.851E+01 1.039E+02	5.667E-01 5.913E-01 6.128E-01 6.318E-01 6.487E-01 6.775E-01 7.012E-01	1.033E+01 1.056E+01 1.077E+01 1.096E+01 1.114E+01 1.171E+01 1.171E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.003 0.003 0.003 0.002 0.002 0.002 0.002	0.000 0.000 0.000 0.000 0.000 0.000 0.000
000.0000	2.469E+00	2.153E+01	2.400E+01	1.131E+02	7.383E-01	1.216E+01	-0.000	0.002	0.000

ELECTRONS IN POLYETHYLENE TEREPTHALATE, "MYLAR"

I = 78.7 eV DENSITY = 1.400E+00 g/cm³

ENERGY		OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	d(lo COLL	g)/d(l CSDA	ogI) RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm ² /g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.095E+01 1.762E+01 1.530E+01 1.358E+01 1.225E+01 1.032E+01 8.978E+00 7.993E+00	3.431E-03 3.448E-03 3.459E-03 3.466E-03 3.471E-03 3.481E-03 3.490E-03 3.500E-03	2.095E+01 1.763E+01 1.530E+01 1.358E+01 1.225E+01 1.032E+01 8.982E+00 7.997E+00	2.712E-04 4.019E-04 5.545E-04 7.283E-04 9.224E-04 1.369E-03 1.890E-03 2.481E-03	9.013E-05 1.081E-04 1.252E-04 1.417E-04 1.577E-04 1.882E-04 2.174E-04 2.454E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.201 -0.192 -0.186 -0.181 -0.177 -0.170 -0.165	0.230 0.219 0.211 0.204 0.199 0.190 0.184 0.179	0.228 0.218 0.210 0.203 0.198 0.190 0.183 0.179
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.236E+00 6.635E+00 6.145E+00 5.739E+00 5.396E+00 4.848E+00 4.430E+00 4.100E+00	3.511E-03 3.524E-03 3.537E-03 3.552E-03 3.567E-03 3.601E-03 3.637E-03 3.677E-03	7.239E+00 6.638E+00 6.149E+00 5.742E+00 5.399E+00 4.852E+00 4.433E+00 4.103E+00	3.139E-03 3.862E-03 4.645E-03 5.487E-03 6.386E-03 8.344E-03 1.050E-02 1.285E-02	2.724E-04 2.986E-04 3.240E-04 3.488E-04 3.731E-04 4.200E-04 4.652E-04 5.089E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.158 -0.155 -0.153 -0.151 -0.149 -0.146 -0.143	0.175 0.171 0.168 0.166 0.164 0.160 0.157 0.154	0.174 0.171 0.168 0.166 0.163 0.159 0.156 0.153
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.832E+00 3.345E+00 3.016E+00 2.780E+00 2.603E+00 2.356E+00 2.195E+00 2.083E+00	3.719E-03 3.835E-03 3.960E-03 4.094E-03 4.235E-03 4.540E-03 4.873E-03 5.230E-03	3.836E+00 3.349E+00 3.020E+00 2.784E+00 2.607E+00 2.361E+00 2.200E+00 2.088E+00	1.537E-02 2.238E-02 3.026E-02 3.890E-02 4.819E-02 6.841E-02 9.040E-02 1.138E-01	5.513E-04 6.527E-04 7.487E-04 8.405E-04 9.290E-04 1.098E-03 1.260E-03 1.417E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.139 -0.135 -0.132 -0.129 -0.127 -0.124 -0.121	0.151 0.147 0.143 0.140 0.138 0.134 0.131 0.129	0.151 0.146 0.143 0.140 0.137 0.133 0.130 0.128
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.001E+00 1.938E+00 1.889E+00 1.851E+00 1.821E+00 1.776E+00 1.745E+00	5.610E-03 6.011E-03 6.431E-03 6.868E-03 7.320E-03 8.265E-03 9.259E-03 1.030E-02	2.007E+00 1.944E+00 1.896E+00 1.858E+00 1.828E+00 1.754E+00 1.755E+00	1.382E-01 1.635E-01 1.896E-01 2.162E-01 2.434E-01 2.988E-01 3.554E-01 4.127E-01	1.571E-03 1.724E-03 1.875E-03 2.027E-03 2.179E-03 2.484E-03 2.793E-03 3.106E-03	9.379E-03 3.706E-02 6.709E-02 9.882E-02 1.318E-01 1.999E-01 2.694E-01 3.390E-01	-0.094 -0.089 -0.083 -0.078 -0.074 -0.067 -0.061 -0.057	0.125 0.120 0.116 0.111 0.107 0.100 0.094 0.090	0.124 0.118 0.112 0.107 0.103 0.094 0.088 0.082
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.710E+00 1.690E+00 1.684E+00 1.683E+00 1.686E+00 1.697E+00 1.709E+00	1.138E-02 1.424E-02 1.730E-02 2.052E-02 2.388E-02 3.094E-02 3.838E-02 4.612E-02	1.721E+00 1.705E+00 1.701E+00 1.704E+00 1.710E+00 1.710E+00 1.728E+00 1.748E+00	4.706E-01 6.167E-01 7.635E-01 9.104E-01 1.057E+00 1.348E+00 1.636E+00 1.920E+00	3.422E-03 4.233E-03 5.070E-03 5.931E-03 6.815E-03 8.637E-03 1.052E-02 1.245E-02	4.077E-01 5.734E-01 7.283E-01 8.719E-01 1.005E+00 1.244E+00 1.453E+00 1.638E+00	-0.053 -0.047 -0.042 -0.039 -0.037 -0.033 -0.031 -0.030	0.085 0.077 0.070 0.066 0.062 0.056 0.052	0.077 0.067 0.060 0.055 0.051 0.045 0.041 0.038
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.734E+00 1.745E+00 1.756E+00 1.766E+00 1.775E+00 1.775E+00 1.792E+00 1.806E+00 1.819E+00	5.413E-02 6.236E-02 7.079E-02 7.940E-02 8.816E-02 1.061E-01 1.245E-01 1.434E-01	1.788E+00 1.808E+00 1.827E+00 1.845E+00 1.863E+00 1.898E+00 1.931E+00 1.963E+00	2.201E+00 2.479E+00 2.755E+00 3.027E+00 3.296E+00 3.828E+00 4.351E+00 4.864E+00	1.441E-02 1.641E-02 1.843E-02 2.047E-02 2.253E-02 2.669E-02 3.088E-02 3.509E-02	1.804E+00 1.955E+00 2.093E+00 2.220E+00 2.339E+00 2.553E+00 2.744E+00 2.917E+00	-0.028 -0.027 -0.026 -0.025 -0.024 -0.023 -0.022	0.046 0.044 0.042 0.040 0.039 0.037 0.035 0.033	0.035 0.033 0.032 0.031 0.029 0.027 0.026 0.024
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.831E+00 1.855E+00 1.874E+00 1.889E+00 1.903E+00 1.924E+00 1.941E+00 1.955E+00	1.626E-01 2.118E-01 2.625E-01 3.142E-01 3.68E-01 4.740E-01 5.830E-01 6.934E-01	1.993E+00 2.066E+00 2.136E+00 2.204E+00 2.270E+00 2.398E+00 2.524E+00 2.648E+00	5.370E+00 6.601E+00 7.791E+00 8.943E+00 1.006E+01 1.220E+01 1.424E+01 1.617E+01	3.931E-02 4.986E-02 6.034E-02 7.069E-02 8.087E-02 1.007E-01 1.196E-01 1.378E-01	3.075E+00 3.420E+00 3.715E+00 3.972E+00 4.201E+00 4.595E+00 4.927E+00 5.213E+00	-0.019 -0.016 -0.014 -0.012 -0.010 -0.007 -0.006 -0.004	0.032 0.029 0.026 0.024 0.023 0.020 0.018 0.016	0.023 0.020 0.018 0.016 0.015 0.012 0.010 0.008
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.967E+00 1.977E+00 1.986E+00 1.994E+00 2.001E+00 2.014E+00 2.025E+00 2.035E+00	8.051E-01 9.177E-01 1.031E+00 1.145E+00 1.260E+00 1.490E+00 1.723E+00 1.957E+00	2.772E+00 2.894E+00 3.017E+00 3.139E+00 3.261E+00 3.504E+00 3.748E+00 3.991E+00	1.801E+01 1.978E+01 2.147E+01 2.310E+01 2.466E+01 2.762E+01 3.038E+01 3.296E+01	1.551E-01 1.716E-01 1.874E-01 2.025E-01 2.169E-01 2.440E-01 2.688E-01 2.918E-01	5.464E+00 5.689E+00 5.891E+00 6.075E+00 6.244E+00 6.544E+00 6.806E+00 7.038E+00	-0.004 -0.003 -0.002 -0.002 -0.002 -0.001 -0.001	0.015 0.014 0.013 0.012 0.011 0.010 0.009	0.007 0.006 0.005 0.005 0.004 0.003 0.003
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.043E+00 2.062E+00 2.076E+00 2.089E+00 2.100E+00 2.118E+00 2.132E+00 2.145E+00	2.191E+00 2.782E+00 3.378E+00 3.976E+00 4.577E+00 5.784E+00 6.997E+00 8.214E+00	4.235E+00 4.844E+00 5.454E+00 6.065E+00 6.676E+00 7.902E+00 9.129E+00	3.539E+01 4.091E+01 4.577E+01 5.011E+01 5.404E+01 6.092E+01 6.680E+01 7.194E+01	3.130E-01 3.598E-01 3.995E-01 4.336E-01 4.632E-01 5.126E-01 5.522E-01 5.848E-01	7.245E+00 7.687E+00 8.049E+00 8.355E+00 8.621E+00 9.065E+00 9.429E+00 9.737E+00	-0.001 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.008 0.007 0.006 0.006 0.005 0.005 0.004	0.002 0.002 0.001 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.155E+00 2.165E+00 2.173E+00 2.181E+00 2.188E+00 2.200E+00 2.211E+00 2.220E+00	9.434E+00 1.066E+01 1.188E+01 1.311E+01 1.433E+01 1.679E+01 1.926E+01 2.172E+01	1.159E+01 1.282E+01 1.405E+01 1.529E+01 1.652E+01 1.899E+01 2.147E+01 2.394E+01	7.650E+01 8.060E+01 8.432E+01 8.773E+01 9.088E+01 9.652E+01 1.015E+02	6.121E-01 6.356E-01 6.559E-01 6.736E-01 6.894E-01 7.161E-01 7.379E-01 7.562E-01	1.000E+01 1.024E+01 1.045E+01 1.064E+01 1.081E+01 1.112E+01 1.139E+01 1.162E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
000.0000	2.229E+00	2.419E+01	2.641E+01	1.099E+02	7.717E-01	1.183E+01	-0.000	0.003	0.000

ELECTRONS IN POLYMETHYL METHACRYLATE, "LUCITE", "PERSPEX", "PLEXIGLAS"

I = 74.0 eV DENSITY = 1.190E+00 g/cm³

ENERGY	COLLISION	OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	d(lo	g)/d(l	ogI) RAD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.198E+01 1.848E+01 1.604E+01 1.423E+01 1.283E+01 1.080E+01 9.400E+00 8.367E+00	3.332E-03 3.349E-03 3.359E-03 3.366E-03 3.372E-03 3.382E-03 3.391E-03 3.401E-03	2.198E+01 1.849E+01 1.604E+01 1.423E+01 1.284E+01 1.081E+01 9.404E+00 8.370E+00	2.580E-04 3.826E-04 5.282E-04 6.940E-04 8.792E-04 1.306E-03 1.803E-03 2.368E-03	8.329E-05 9.993E-05 1.158E-04 1.311E-04 1.460E-04 1.744E-04 2.015E-04 2.275E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.198 -0.190 -0.184 -0.179 -0.175 -0.168 -0.163	0.227 0.216 0.208 0.201 0.196 0.188 0.182 0.177	0.225 0.215 0.207 0.201 0.195 0.187 0.181 0.177
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.573E+00 6.942E+00 6.429E+00 6.003E+00 5.644E+00 5.070E+00 4.631E+00 4.286E+00	3.413E-03 3.425E-03 3.438E-03 3.453E-03 3.468E-03 3.502E-03 3.538E-03 3.577E-03	7.576E+00 6.946E+00 6.433E+00 6.007E+00 5.647E+00 5.073E+00 4.635E+00 4.289E+00	2.997E-03 3.687E-03 4.436E-03 5.241E-03 6.100E-03 7.972E-03 1.004E-02 1.228E-02	2.526E-04 2.770E-04 3.007E-04 3.238E-04 3.464E-04 3.901E-04 4.322E-04 4.729E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.156 -0.154 -0.151 -0.149 -0.147 -0.144 -0.142	0.173 0.170 0.167 0.164 0.162 0.158 0.155 0.155	0.173 0.169 0.166 0.164 0.162 0.158 0.155 0.155
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.006E+00 3.496E+00 3.152E+00 2.904E+00 2.719E+00 2.461E+00 2.292E+00 2.175E+00	3.619E-03 3.732E-03 3.855E-03 3.987E-03 4.126E-03 4.425E-03 4.751E-03 5.101E-03	4.010E+00 3.500E+00 3.155E+00 2.908E+00 2.723E+00 2.465E+00 2.297E+00 2.180E+00	1.470E-02 2.140E-02 2.894E-02 3.721E-02 4.610E-02 6.547E-02 8.653E-02 1.089E-01	5.125E-04 6.070E-04 6.966E-04 7.824E-04 8.650E-04 1.023E-03 1.175E-03 1.322E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.138 -0.134 -0.131 -0.128 -0.126 -0.123 -0.120	0.150 0.145 0.142 0.139 0.137 0.133 0.130	0.150 0.145 0.142 0.139 0.136 0.132 0.129 0.127
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.090E+00 2.026E+00 1.975E+00 1.935E+00 1.903E+00 1.856E+00 1.825E+00 1.803E+00	5.474E-03 5.867E-03 6.278E-03 6.707E-03 7.149E-03 8.076E-03 9.050E-03 1.007E-02	2.096E+00 2.032E+00 1.981E+00 1.942E+00 1.910E+00 1.864E+00 1.834E+00 1.813E+00	1.323E-01 1.566E-01 1.815E-01 2.070E-01 2.330E-01 2.860E-01 3.401E-01 3.950E-01	1.466E-03 1.609E-03 1.751E-03 1.892E-03 2.035E-03 2.320E-03 2.609E-03 2.902E-03	0.0 1.466E-02 4.112E-02 6.992E-02 1.005E-01 1.650E-01 2.321E-01 3.001E-01	-0.117 -0.092 -0.086 -0.081 -0.076 -0.068 -0.062 -0.057	0.126 0.122 0.118 0.113 0.109 0.102 0.096 0.091	0.125 0.120 0.115 0.110 0.105 0.097 0.090 0.083
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.788E+00 1.767E+00 1.760E+00 1.759E+00 1.762E+00 1.772E+00 1.784E+00 1.797E+00	1.113E-02 1.393E-02 1.693E-02 2.009E-02 2.338E-02 3.031E-02 3.761E-02 4.521E-02	1.799E+00 1.781E+00 1.776E+00 1.779E+00 1.785E+00 1.802E+00 1.822E+00 1.842E+00	4.504E-01 5.902E-01 7.308E-01 8.715E-01 1.012E+00 1.291E+00 1.567E+00 1.839E+00	3.199E-03 3.959E-03 4.744E-03 5.553E-03 6.383E-03 8.096E-03 9.868E-03 1.168E-02	3.679E-01 5.330E-01 6.887E-01 8.339E-01 9.689E-01 1.212E+00 1.425E+00 1.613E+00	-0.053 -0.046 -0.041 -0.038 -0.035 -0.032 -0.029 -0.028	0.087 0.078 0.071 0.066 0.062 0.056 0.051	0.078 0.068 0.060 0.055 0.050 0.044 0.039 0.036
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.809E+00 1.821E+00 1.832E+00 1.842E+00 1.851E+00 1.868E+00 1.883E+00 1.896E+00	5.307E-02 6.115E-02 6.943E-02 7.788E-02 8.648E-02 1.041E-01 1.222E-01	1.862E+00 1.882E+00 1.901E+00 1.920E+00 1.938E+00 1.972E+00 2.005E+00 2.037E+00	2.109E+00 2.376E+00 2.641E+00 2.903E+00 3.162E+00 3.673E+00 4.176E+00	1.354E-02 1.542E-02 1.733E-02 1.926E-02 2.120E-02 2.513E-02 2.910E-02 3.309E-02	1.783E+00 1.936E+00 2.077E+00 2.207E+00 2.327E+00 2.545E+00 2.739E+00 2.914E+00	-0.027 -0.025 -0.025 -0.024 -0.023 -0.022 -0.020 -0.019	0.045 0.043 0.041 0.039 0.038 0.036 0.034	0.034 0.032 0.030 0.029 0.028 0.026 0.025 0.023
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.908E+00 1.932E+00 1.952E+00 1.968E+00 1.982E+00 2.004E+00 2.022E+00 2.036E+00	1.596E-01 2.079E-01 2.577E-01 3.086E-01 3.603E-01 4.656E-01 5.728E-01 6.815E-01	2.067E+00 2.140E+00 2.210E+00 2.277E+00 2.342E+00 2.470E+00 2.595E+00 2.718E+00	5.158E+00 6.346E+00 7.496E+00 8.610E+00 9.693E+00 1.177E+01 1.375E+01	3.710E-02 4.712E-02 5.709E-02 6.695E-02 7.667E-02 9.561E-02 1.138E-01 1.313E-01	3.073E+00 3.421E+00 3.716E+00 3.974E+00 4.202E+00 4.596E+00 4.927E+00 5.212E+00	-0.018 -0.015 -0.013 -0.011 -0.010 -0.007 -0.006 -0.005	0.031 0.028 0.025 0.024 0.022 0.019 0.017	0.022 0.020 0.017 0.016 0.014 0.012 0.010 0.008
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.049E+00 2.059E+00 2.069E+00 2.077E+00 2.085E+00 2.098E+00 2.109E+00 2.120E+00	7.912E-01 9.020E-01 1.013E+00 1.126E+00 1.238E+00 1.465E+00 1.694E+00	2.840E+00 2.961E+00 3.082E+00 3.203E+00 3.323E+00 3.563E+00 3.804E+00 4.044E+00	1.743E+01 1.915E+01 2.081E+01 2.240E+01 2.393E+01 2.684E+01 2.955E+01 3.210E+01	1.480E-01 1.639E-01 1.792E-01 1.939E-01 2.079E-01 2.342E-01 2.585E-01 2.810E-01	5.463E+00 5.687E+00 5.889E+00 6.072E+00 6.241E+00 6.541E+00 6.803E+00 7.034E+00	-0.004 -0.003 -0.003 -0.002 -0.002 -0.001 -0.001	0.014 0.013 0.012 0.012 0.011 0.010 0.009 0.008	0.007 0.006 0.005 0.005 0.004 0.004 0.003
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.128E+00 2.147E+00 2.163E+00 2.176E+00 2.187E+00 2.205E+00 2.220E+00 2.233E+00	2.155E+00 2.737E+00 3.323E+00 3.912E+00 4.503E+00 5.692E+00 6.887E+00 8.085E+00	4.284E+00 4.884E+00 5.486E+00 6.087E+00 6.690E+00 7.897E+00 9.107E+00 1.032E+01	3.450E+01 3.996E+01 4.479E+01 4.912E+01 5.303E+01 5.990E+01 7.095E+01	3.019E-01 3.481E-01 3.874E-01 4.213E-01 4.509E-01 5.004E-01 5.402E-01 5.731E-01	7.242E+00 7.683E+00 8.045E+00 8.351E+00 8.617E+00 9.061E+00 9.425E+00 9.733E+00	-0.001 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000	0.008 0.007 0.006 0.006 0.005 0.005 0.004	0.002 0.002 0.001 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.244E+00 2.254E+00 2.263E+00 2.271E+00 2.278E+00 2.291E+00 2.302E+00 2.312E+00	9.286E+00 1.049E+01 1.170E+01 1.290E+01 1.411E+01 1.653E+01 1.896E+01 2.139E+01	1.153E+01 1.274E+01 1.396E+01 1.518E+01 1.639E+01 1.882E+01 2.126E+01 2.370E+01	7.553E+01 7.965E+01 8.340E+01 8.684E+01 9.000E+01 9.569E+01 1.007E+02	6.008E-01 6.246E-01 6.452E-01 6.633E-01 6.793E-01 7.066E-01 7.289E-01 7.476E-01	9.999E+00 1.023E+01 1.044E+01 1.064E+01 1.081E+01 1.112E+01 1.138E+01 1.162E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.003 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.320E+00	2.382E+01	2.614E+01	1.092E+02	7.636E-01	1.183E+01	-0.000	0.003	0.000

ELECTRONS IN POLYPROPYLENE

I = 59.2 eV DENSITY = 9.000E-01 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(la CSDA RANGE	OgI) RAD YIELD
MeV	MeV cm ² /g	MeV cm²/g	MeV cm ² /g	g/cm²					
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.383E+01 2.000E+01 1.733E+01 1.536E+01 1.384E+01 1.164E+01 1.011E+01 8.995E+00	2.883E-03 2.893E-03 2.900E-03 2.905E-03 2.910E-03 2.919E-03 2.929E-03 2.939E-03	2.383E+01 2.000E+01 1.734E+01 1.536E+01 1.384E+01 1.164E+01 1.012E+01 8.998E+00	2.366E-04 3.516E-04 4.863E-04 6.398E-04 8.115E-04 1.207E-03 1.669E-03 2.195E-03	6.658E-05 7.985E-05 9.254E-05 1.048E-04 1.167E-04 1.394E-04 1.612E-04 1.822E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.190 -0.182 -0.177 -0.172 -0.168 -0.162 -0.158 -0.154	0.215 0.206 0.198 0.193 0.188 0.180 0.175 0.170	0.214 0.205 0.198 0.192 0.187 0.180 0.174 0.170
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	8.136E+00 7.454E+00 6.900E+00 6.440E+00 6.052E+00 5.433E+00 4.960E+00 4.588E+00	2.951E-03 2.963E-03 2.976E-03 2.991E-03 3.006E-03 3.037E-03 3.071E-03	8.139E+00 7.457E+00 6.903E+00 6.443E+00 6.055E+00 5.436E+00 4.963E+00 4.591E+00	2.780E-03 3.422E-03 4.120E-03 4.870E-03 5.671E-03 7.418E-03 9.347E-03 1.144E-02	2.025E-04 2.223E-04 2.415E-04 2.602E-04 2.786E-04 3.142E-04 3.485E-04 3.818E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.151 -0.149 -0.146 -0.145 -0.143 -0.140 -0.137	0.166 0.163 0.161 0.158 0.156 0.153 0.150 0.147	0.166 0.163 0.160 0.158 0.156 0.152 0.149 0.147
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.287E+00 3.738E+00 3.367E+00 3.101E+00 2.902E+00 2.624E+00 2.443E+00 2.317E+00	3.145E-03 3.248E-03 3.360E-03 3.478E-03 3.603E-03 3.872E-03 4.165E-03 4.478E-03	4.290E+00 3.741E+00 3.370E+00 3.105E+00 2.905E+00 2.628E+00 2.447E+00 2.322E+00	1.370E-02 1.997E-02 2.703E-02 3.477E-02 4.310E-02 6.126E-02 8.102E-02 1.020E-01	4.141E-04 4.915E-04 5.651E-04 6.357E-04 7.038E-04 8.345E-04 9.601E-04 1.082E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.134 -0.130 -0.127 -0.125 -0.123 -0.119 -0.117	0.145 0.141 0.138 0.135 0.133 0.129 0.126	0.145 0.140 0.137 0.134 0.132 0.128 0.126 0.123
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.225E+00 2.153E+00 2.098E+00 2.055E+00 2.020E+00 1.969E+00 1.934E+00 1.910E+00	4.812E-03 5.163E-03 5.531E-03 5.914E-03 6.310E-03 7.138E-03 8.009E-03 8.919E-03	2.229E+00 2.159E+00 2.104E+00 2.061E+00 2.027E+00 1.976E+00 1.942E+00 1.919E+00	1.240E-01 1.468E-01 1.703E-01 1.943E-01 2.188E-01 2.688E-01 3.199E-01 3.717E-01	1.202E-03 1.322E-03 1.440E-03 1.559E-03 1.679E-03 1.919E-03 2.163E-03 2.409E-03	1.122E-02 3.973E-02 7.098E-02 1.042E-01 1.388E-01 2.107E-01 2.841E-01 3.575E-01	-0.091 -0.085 -0.079 -0.074 -0.070 -0.063 -0.057 -0.053	0.121 0.116 0.111 0.107 0.103 0.096 0.090 0.085	0.119 0.113 0.108 0.103 0.098 0.090 0.083 0.077
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.893E+00 1.869E+00 1.860E+00 1.859E+00 1.861E+00 1.871E+00 1.883E+00 1.896E+00	9.867E-03 1.238E-02 1.506E-02 1.789E-02 2.084E-02 2.706E-02 3.361E-02 4.044E-02	1.903E+00 1.882E+00 1.876E+00 1.877E+00 1.882E+00 1.898E+00 1.917E+00 1.936E+00	4.240E-01 5.563E-01 6.894E-01 8.227E-01 9.557E-01 1.220E+00 1.483E+00 1.742E+00	2.660E-03 3.303E-03 3.969E-03 4.656E-03 5.361E-03 6.821E-03 8.332E-03 9.886E-03	4.300E-01 6.045E-01 7.670E-01 9.173E-01 1.056E+00 1.305E+00 1.521E+00	-0.049 -0.043 -0.039 -0.036 -0.034 -0.031 -0.029 -0.027	0.081 0.072 0.066 0.062 0.058 0.052 0.048	0.072 0.063 0.056 0.051 0.047 0.041 0.037 0.035
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.908E+00 1.920E+00 1.931E+00 1.941E+00 1.951E+00 1.968E+00 1.983E+00 1.997E+00	4.751E-02 5.477E-02 6.222E-02 6.984E-02 7.759E-02 9.348E-02 1.098E-01 1.265E-01	1.956E+00 1.975E+00 1.993E+00 2.011E+00 2.028E+00 2.062E+00 2.093E+00 2.123E+00	1.999E+00 2.253E+00 2.505E+00 2.755E+00 3.003E+00 3.492E+00 3.973E+00 4.447E+00	1.147E-02 1.309E-02 1.473E-02 1.639E-02 1.806E-02 2.145E-02 2.488E-02 2.834E-02	1.885E+00 2.040E+00 2.183E+00 2.314E+00 2.456E+00 2.658E+00 2.855E+00 3.033E+00	-0.026 -0.025 -0.024 -0.023 -0.022 -0.021 -0.019 -0.018	0.042 0.040 0.039 0.037 0.036 0.034 0.032	0.032 0.031 0.029 0.028 0.027 0.025 0.024 0.022
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	2.008E+00 2.033E+00 2.053E+00 2.069E+00 2.083E+00 2.105E+00 2.123E+00 2.137E+00	1.435E-01 1.872E-01 2.322E-01 2.782E-01 3.249E-01 4.202E-01 5.173E-01 6.158E-01	2.152E+00 2.221E+00 2.285E+00 2.347E+00 2.408E+00 2.525E+00 2.640E+00 2.753E+00	4.915E+00 6.059E+00 7.168E+00 8.248E+00 9.299E+00 1.133E+01 1.326E+01	3.182E-02 4.056E-02 4.930E-02 5.798E-02 6.658E-02 8.343E-02 9.975E-02 1.155E-01	3.196E+00 3.553E+00 3.856E+00 4.122E+00 4.357E+00 4.762E+00 5.101E+00 5.392E+00	-0.017 -0.014 -0.011 -0.009 -0.008 -0.005 -0.004 -0.003	0.029 0.026 0.024 0.022 0.020 0.018 0.016 0.014	0.021 0.018 0.016 0.014 0.013 0.010 0.008 0.007
40.0000 45.0000 50.0000 55.0000 70.0000 80.0000 90.0000	2.149E+00 2.160E+00 2.170E+00 2.178E+00 2.186E+00 2.200E+00 2.211E+00 2.222E+00	7.153E-01 8.157E-01 9.169E-01 1.019E+00 1.121E+00 1.327E+00 1.535E+00	2.865E+00 2.976E+00 3.086E+00 3.197E+00 3.307E+00 3.527E+00 3.746E+00 3.966E+00	1.690E+01 1.861E+01 2.026E+01 2.185E+01 2.339E+01 2.632E+01 2.907E+01 3.166E+01	1.307E-01 1.453E-01 1.593E-01 1.728E-01 1.858E-01 2.104E-01 2.333E-01 2.546E-01	5.648E+00 5.875E+00 6.079E+00 6.265E+00 6.435E+00 6.738E+00 7.001E+00 7.233E+00	-0.002 -0.002 -0.002 -0.001 -0.001 -0.001 -0.001	0.013 0.012 0.011 0.010 0.010 0.009 0.008 0.007	0.006 0.005 0.004 0.004 0.003 0.003 0.002
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.231E+00 2.250E+00 2.266E+00 2.280E+00 2.291E+00 2.310E+00 2.326E+00 2.339E+00	1.954E+00 2.483E+00 3.015E+00 3.551E+00 4.089E+00 5.171E+00 6.259E+00 7.350E+00	4.185E+00 4.733E+00 5.282E+00 5.831E+00 6.380E+00 7.482E+00 8.585E+00 9.689E+00	3.412E+01 3.973E+01 4.473E+01 4.923E+01 5.333E+01 6.056E+01 6.679E+01 7.227E+01	2.745E-01 3.189E-01 3.572E-01 3.905E-01 4.199E-01 4.694E-01 5.096E-01 5.432E-01	7.442E+00 7.884E+00 8.247E+00 8.553E+00 8.819E+00 9.264E+00 9.628E+00 9.936E+00	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.007 0.006 0.005 0.005 0.004 0.004 0.004	0.002 0.001 0.001 0.001 0.001 0.001 0.000
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.351E+00 2.361E+00 2.370E+00 2.378E+00 2.386E+00 2.399E+00 2.411E+00 2.421E+00	8.444E+00 9.541E+00 1.064E+01 1.174E+01 1.284E+01 1.505E+01 1.726E+01 1.947E+01	1.080E+01 1.190E+01 1.301E+01 1.412E+01 1.523E+01 1.745E+01 1.967E+01 2.189E+01	7.716E+01 8.157E+01 8.558E+01 8.927E+01 9.268E+01 9.881E+01 1.042E+02 1.090E+02	5.716E-01 5.961E-01 6.175E-01 6.364E-01 6.531E-01 6.817E-01 7.053E-01 7.251E-01	1.020E+01 1.044E+01 1.065E+01 1.084E+01 1.101E+01 1.132E+01 1.159E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.003 0.003 0.003 0.003 0.003 0.002 0.002	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.430E+00	2.169E+01	2.412E+01	1.134E+02	7.421E-01	1.203E+01	-0.000	0.002	0.000

ELECTRONS IN POLYSTYRENE

I = 68.7 eV DENSITY = 1.060E+00 g/cm³

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	d(lo	g)/d(l CSDA	og I) RAD
MeV	MeV cm²/g	MeV cm²/g		g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0350	2.223E+01 1.868E+01 1.621E+01 1.437E+01 1.296E+01 1.091E+01 9.485E+00 8.440E+00	2.982E-03 2.992E-03 2.999E-03 3.004E-03 3.008E-03 3.017E-03 3.027E-03	2.224E+01 1.869E+01 1.621E+01 1.438E+01 1.296E+01 1.091E+01 9.488E+00 8.443E+00	2.546E-04 3.777E-04 5.218E-04 6.859E-04 8.694E-04 1.292E-03 1.785E-03 2.345E-03	7.406E-05 8.869E-05 1.027E-04 1.162E-04 1.292E-04 1.543E-04 1.782E-04 2.013E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.195 -0.187 -0.181 -0.176 -0.172 -0.166 -0.162 -0.158	0.223 0.212 0.205 0.198 0.193 0.185 0.179 0.175	0.221 0.211 0.204 0.198 0.193 0.185 0.179
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	7.637E+00 7.000E+00 6.481E+00 6.051E+00 5.688E+00 4.666E+00 4.317E+00	3.048E-03 3.061E-03 3.074E-03 3.088E-03 3.103E-03 3.135E-03 3.169E-03 3.206E-03	7.640E+00 7.003E+00 6.484E+00 6.054E+00 5.691E+00 5.111E+00 4.669E+00 4.320E+00	2.968E-03 3.653E-03 4.395E-03 5.194E-03 6.047E-03 7.905E-03 9.955E-03 1.218E-02	2.235E-04 2.452E-04 2.662E-04 2.867E-04 3.068E-04 3.458E-04 3.834E-04 4.197E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.155 -0.152 -0.150 -0.148 -0.146 -0.143 -0.140	0.171 0.167 0.165 0.162 0.160 0.156 0.153 0.151	0.170 0.167 0.164 0.162 0.160 0.156 0.153 0.150
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.034E+00 3.520E+00 3.172E+00 2.923E+00 2.735E+00 2.475E+00 2.305E+00 2.187E+00	3.244E-03 3.350E-03 3.463E-03 3.584E-03 3.711E-03 3.985E-03 4.284E-03 4.604E-03	4.038E+00 3.523E+00 3.176E+00 2.926E+00 2.739E+00 2.479E+00 2.309E+00 2.192E+00	1.458E-02 2.124E-02 2.873E-02 3.695E-02 4.579E-02 6.504E-02 8.598E-02 1.082E-01	4.550E-04 5.396E-04 6.199E-04 6.967E-04 7.709E-04 9.131E-04 1.050E-03 1.182E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.136 -0.132 -0.129 -0.127 -0.125 -0.122 -0.119 -0.117	0.148 0.144 0.140 0.138 0.135 0.132 0.129 0.127	0.148 0.144 0.140 0.137 0.135 0.131 0.128 0.125
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	2.101E+00 2.035E+00 1.984E+00 1.943E+00 1.911E+00 1.864E+00 1.832E+00	4.945E-03 5.304E-03 5.680E-03 6.071E-03 6.475E-03 7.322E-03 8.212E-03 9.142E-03	2.106E+00 2.040E+00 1.990E+00 1.950E+00 1.918E+00 1.871E+00 1.840E+00	1.315E-01 1.557E-01 1.805E-01 2.059E-01 2.318E-01 2.846E-01 3.385E-01 3.932E-01	1.312E-03 1.441E-03 1.570E-03 1.699E-03 1.827E-03 2.087E-03 2.349E-03 2.615E-03	2.729E-03 2.688E-02 5.420E-02 8.383E-02 1.152E-01 1.810E-01 2.492E-01 3.179E-01	-0.102 -0.090 -0.084 -0.079 -0.074 -0.067 -0.061	0.124 0.119 0.115 0.111 0.107 0.100 0.094 0.089	0.123 0.117 0.112 0.107 0.102 0.094 0.088 0.082
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.794E+00 1.773E+00 1.766E+00 1.765E+00 1.768E+00 1.778E+00 1.791E+00 1.804E+00	1.011E-02 1.267E-02 1.541E-02 1.830E-02 2.132E-02 2.766E-02 3.435E-02 4.132E-02	1.804E+00 1.786E+00 1.781E+00 1.783E+00 1.789E+00 1.806E+00 1.825E+00	4.484E-01 5.878E-01 7.281E-01 8.684E-01 1.008E+00 1.287E+00 1.562E+00 1.835E+00	2.885E-03 3.577E-03 4.293E-03 5.030E-03 5.788E-03 7.352E-03 8.970E-03 1.063E-02	3.862E-01 5.515E-01 7.064E-01 8.501E-01 9.834E-01 1.222E+00 1.431E+00 1.616E+00	-0.053 -0.046 -0.042 -0.039 -0.037 -0.034 -0.031	0.085 0.077 0.070 0.065 0.062 0.056 0.051	0.077 0.067 0.060 0.055 0.050 0.045 0.041 0.038
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.816E+00 1.828E+00 1.839E+00 1.849E+00 1.859E+00 1.876E+00 1.891E+00	4.852E-02 5.593E-02 6.353E-02 7.129E-02 7.919E-02 9.539E-02 1.120E-01	1.865E+00 1.884E+00 1.902E+00 1.920E+00 1.938E+00 1.971E+00 2.003E+00 2.033E+00	2.104E+00 2.371E+00 2.635E+00 2.897E+00 3.156E+00 3.667E+00 4.171E+00 4.666E+00	1.233E-02 1.405E-02 1.580E-02 1.757E-02 1.936E-02 2.297E-02 2.662E-02 3.029E-02	1.782E+00 1.932E+00 2.070E+00 2.197E+00 2.316E+00 2.531E+00 2.722E+00 2.896E+00	-0.029 -0.027 -0.026 -0.025 -0.025 -0.023 -0.021 -0.020	0.046 0.044 0.042 0.040 0.039 0.037 0.035 0.033	0.035 0.034 0.032 0.031 0.030 0.028 0.026 0.025
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.916E+00 1.940E+00 1.960E+00 1.975E+00 1.989E+00 2.010E+00 2.027E+00 2.041E+00	1.464E-01 1.909E-01 2.367E-01 2.835E-01 3.311E-01 4.282E-01 5.270E-01 6.271E-01	2.062E+00 2.131E+00 2.196E+00 2.259E+00 2.320E+00 2.439E+00 2.554E+00 2.669E+00	5.155E+00 6.347E+00 7.502E+00 8.625E+00 9.717E+00 1.182E+01 1.382E+01	3.399E-02 4.325E-02 5.249E-02 6.166E-02 7.072E-02 8.844E-02 1.056E-01 1.220E-01	3.054E+00 3.403E+00 3.702E+00 3.963E+00 4.196E+00 4.596E+00 4.933E+00 5.223E+00	-0.019 -0.015 -0.013 -0.010 -0.009 -0.006 -0.005 -0.003	0.032 0.029 0.026 0.024 0.022 0.019 0.017	0.023 0.020 0.018 0.016 0.014 0.011 0.009 0.008
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.053E+00 2.064E+00 2.073E+00 2.081E+00 2.089E+00 2.102E+00 2.113E+00 2.123E+00	7.284E-01 8.306E-01 9.334E-01 1.037E+00 1.141E+00 1.351E+00 1.562E+00 1.774E+00	2.782E+00 2.894E+00 3.006E+00 3.118E+00 3.230E+00 3.452E+00 3.675E+00 3.897E+00	1.757E+01 1.933E+01 2.103E+01 2.266E+01 2.424E+01 2.723E+01 3.004E+01 3.268E+01	1.378E-01 1.530E-01 1.676E-01 1.816E-01 1.951E-01 2.204E-01 2.439E-01 2.658E-01	5.478E+00 5.704E+00 5.908E+00 6.093E+00 6.263E+00 6.565E+00 6.828E+00 7.060E+00	-0.003 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001	0.014 0.013 0.012 0.011 0.011 0.010 0.009 0.008	0.006 0.005 0.005 0.004 0.004 0.003 0.002
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.132E+00 2.151E+00 2.166E+00 2.179E+00 2.190E+00 2.208E+00 2.223E+00 2.236E+00	1.988E+00 2.525E+00 3.067E+00 3.611E+00 4.158E+00 5.258E+00 6.362E+00 7.471E+00	4.120E+00 4.676E+00 5.233E+00 5.790E+00 6.348E+00 7.466E+00 8.586E+00 9.707E+00	3.518E+01 4.087E+01 4.592E+01 5.046E+01 5.458E+01 6.184E+01 6.808E+01 7.355E+01	2.861E-01 3.314E-01 3.701E-01 4.037E-01 4.333E-01 4.828E-01 5.229E-01 5.562E-01	7.269E+00 7.711E+00 8.073E+00 8.380E+00 8.646E+00 9.091E+00 9.454E+00 9.762E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.008 0.006 0.006 0.005 0.005 0.004 0.004	0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.247E+00 2.257E+00 2.266E+00 2.274E+00 2.281E+00 2.293E+00 2.304E+00 2.314E+00	8.583E+00 9.697E+00 1.081E+01 1.193E+01 1.305E+01 1.529E+01 1.754E+01	1.083E+01 1.195E+01 1.308E+01 1.420E+01 1.533E+01 1.758E+01 1.984E+01 2.210E+01	7.842E+01 8.282E+01 8.681E+01 9.048E+01 9.387E+01 9.996E+01 1.053E+02 1.101E+02	5.843E-01 6.085E-01 6.296E-01 6.482E-01 6.646E-01 6.926E-01 7.157E-01 7.350E-01	1.003E+01 1.026E+01 1.047E+01 1.066E+01 1.084E+01 1.115E+01 1.141E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.323E+00	2.203E+01	2.436E+01	1.144E+02	7.515E-01	1.186E+01	-0.000	0.002	0.000

ELECTRONS IN POLYTETRAFLUOROETHYLENE, "TEFLON"

I = 99.1 eV DENSITY = 2.200E+00 g/cm³

ENERGY	ST COLLISION	OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	d(lo	g)/d(l	ogI) RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm²/g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.843E+01 1.553E+01 1.351E+01 1.200E+01 1.084E+01 9.141E+00 7.965E+00 7.098E+00	4.211E-03 4.247E-03 4.271E-03 4.287E-03 4.300E-03 4.316E-03 4.329E-03 4.341E-03	1.843E+01 1.554E+01 1.351E+01 1.201E+01 1.084E+01 9.146E+00 7.970E+00 7.102E+00	3.105E-04 4.589E-04 6.320E-04 8.287E-04 1.048E-03 1.553E-03 2.140E-03 2.806E-03	1.249E-04 1.502E-04 1.743E-04 1.975E-04 2.199E-04 2.629E-04 3.037E-04 3.428E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.210 -0.201 -0.194 -0.189 -0.184 -0.177 -0.172	0.243 0.231 0.222 0.215 0.209 0.199 0.192 0.187	0.241 0.229 0.220 0.213 0.207 0.198 0.192 0.186
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.430E+00 5.900E+00 5.468E+00 5.109E+00 4.806E+00 4.321E+00 3.951E+00 3.658E+00	4.353E-03 4.366E-03 4.380E-03 4.395E-03 4.410E-03 4.444E-03 4.483E-03 4.525E-03	6.435E+00 5.904E+00 5.472E+00 5.113E+00 4.810E+00 4.325E+00 3.955E+00 3.663E+00	3.547E-03 4.359E-03 5.239E-03 6.185E-03 7.194E-03 9.391E-03 1.181E-02 1.444E-02	3.805E-04 4.169E-04 4.522E-04 4.865E-04 5.200E-04 5.847E-04 6.467E-04 7.065E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.164 -0.161 -0.158 -0.156 -0.154 -0.151 -0.148 -0.145	0.182 0.179 0.175 0.173 0.170 0.166 0.163 0.160	0.182 0.178 0.175 0.172 0.170 0.166 0.162 0.159
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	3.421E+00 2.989E+00 2.697E+00 2.487E+00 2.330E+00 2.111E+00 1.968E+00 1.869E+00	4.571E-03 4.700E-03 4.844E-03 5.000E-03 5.167E-03 5.530E-03 5.928E-03 6.353E-03	3.426E+00 2.994E+00 2.702E+00 2.492E+00 2.335E+00 2.117E+00 1.974E+00 1.875E+00	1.727E-02 2.511E-02 3.392E-02 4.357E-02 5.395E-02 7.651E-02 1.010E-01 1.271E-01	7.643E-04 9.021E-04 1.032E-03 1.156E-03 1.275E-03 1.503E-03 1.721E-03 1.931E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.143 -0.139 -0.136 -0.133 -0.131 -0.127 -0.124 -0.122	0.157 0.152 0.148 0.145 0.143 0.138 0.135 0.133	0.157 0.152 0.148 0.145 0.142 0.138 0.134
0.4000 0.4500 0.5000 0.5500 0.6600 0.7000 0.8000	1.797E+00 1.742E+00 1.699E+00 1.665E+00 1.639E+00 1.600E+00 1.573E+00	6.805E-03 7.279E-03 7.775E-03 8.291E-03 8.823E-03 9.937E-03 1.111E-02	1.804E+00 1.749E+00 1.707E+00 1.674E+00 1.647E+00 1.610E+00 1.585E+00	1.543E-01 1.824E-01 2.114E-01 2.410E-01 2.711E-01 3.326E-01 4.587E-01	2.137E-03 2.341E-03 2.543E-03 2.744E-03 2.945E-03 3.347E-03 3.753E-03 4.162E-03	2.294E-03 2.338E-02 4.753E-02 7.398E-02 1.022E-01 1.623E-01 2.253E-01 2.896E-01	-0.108 -0.097 -0.091 -0.085 -0.081 -0.073 -0.067	0.130 0.126 0.121 0.117 0.113 0.106 0.101 0.095	0.129 0.123 0.118 0.113 0.109 0.101 0.094 0.088
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.543E+00 1.527E+00 1.522E+00 1.522E+00 1.525E+00 1.535E+00 1.546E+00 1.558E+00	1.360E-02 1.697E-02 2.057E-02 2.437E-02 2.834E-02 3.667E-02 4.544E-02 5.456E-02	1.557E+00 1.544E+00 1.542E+00 1.546E+00 1.553E+00 1.572E+00 1.592E+00	5.227E-01 6.841E-01 8.462E-01 1.008E+00 1.169E+00 1.490E+00 1.806E+00 2.118E+00	4.575E-03 5.631E-03 6.719E-03 7.837E-03 8.983E-03 1.134E-02 1.377E-02	3.541E-01 5.127E-01 6.637E-01 8.056E-01 9.382E-01 1.178E+00 1.390E+00	-0.058 -0.050 -0.045 -0.041 -0.038 -0.034 -0.031	0.091 0.082 0.075 0.070 0.066 0.059 0.054 0.051	0.083 0.072 0.065 0.059 0.054 0.047 0.042
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.569E+00 1.579E+00 1.589E+00 1.598E+00 1.606E+00 1.621E+00 1.635E+00	6.399E-02 7.367E-02 8.357E-02 9.367E-02 1.040E-01 1.250E-01 1.466E-01 1.686E-01	1.633E+00 1.653E+00 1.672E+00 1.692E+00 1.710E+00 1.746E+00 1.781E+00 1.815E+00	2.426E+00 2.730E+00 3.031E+00 3.328E+00 3.622E+00 4.201E+00 4.768E+00 5.324E+00	1.879E-02 2.136E-02 2.395E-02 2.656E-02 2.919E-02 3.447E-02 3.978E-02 4.509E-02	1.748E+00 1.902E+00 2.043E+00 2.173E+00 2.294E+00 2.512E+00 2.706E+00 2.880E+00	-0.028 -0.027 -0.026 -0.025 -0.024 -0.023 -0.021	0.048 0.045 0.043 0.042 0.040 0.038 0.036	0.036 0.034 0.032 0.031 0.029 0.027 0.026 0.024
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000	1.657E+00 1.679E+00 1.697E+00 1.712E+00 1.724E+00 1.745E+00 1.761E+00 1.774E+00	1.910E-01 2.483E-01 3.071E-01 3.672E-01 4.281E-01 5.521E-01 6.781E-01 8.056E-01	1.848E+00 1.927E+00 2.004E+00 2.079E+00 2.152E+00 2.297E+00 2.439E+00 2.579E+00	5.870E+00 7.194E+00 8.466E+00 9.691E+00 1.087E+01 1.312E+01 1.523E+01 1.723E+01	5.040E-02 6.355E-02 7.648E-02 8.913E-02 1.015E-01 1.252E-01 1.476E-01 1.687E-01	3.039E+00 3.385E+00 3.677E+00 3.930E+00 4.155E+00 4.541E+00 4.866E+00 5.146E+00	-0.019 -0.017 -0.015 -0.013 -0.012 -0.009 -0.008	0.032 0.029 0.027 0.025 0.023 0.021 0.019	0.023 0.020 0.018 0.017 0.015 0.013 0.011 0.009
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	1.785E+00 1.795E+00 1.803E+00 1.811E+00 1.818E+00 1.830E+00 1.840E+00	9.344E-01 1.064E+00 1.195E+00 1.326E+00 1.458E+00 1.724E+00 1.991E+00 2.260E+00	2.719E+00 2.859E+00 2.998E+00 3.137E+00 3.276E+00 3.554E+00 4.109E+00	1.911E+01 2.091E+01 2.262E+01 2.425E+01 2.580E+01 2.874E+01 3.144E+01 3.396E+01	1.886E-01 2.075E-01 2.253E-01 2.421E-01 2.581E-01 2.878E-01 3.147E-01 3.392E-01	5.394E+00 5.614E+00 5.814E+00 5.996E+00 6.163E+00 6.461E+00 6.721E+00 6.952E+00	-0.005 -0.004 -0.003 -0.003 -0.003 -0.002 -0.002	0.016 0.015 0.014 0.013 0.012 0.011 0.010	0.008 0.007 0.006 0.006 0.005 0.004 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000	1.857E+00 1.874E+00 1.887E+00 1.899E+00 1.909E+00 1.926E+00 1.939E+00	2.530E+00 3.209E+00 3.893E+00 4.580E+00 5.269E+00 6.655E+00 8.045E+00 9.440E+00	4.387E+00 5.083E+00 5.780E+00 6.479E+00 7.178E+00 8.580E+00 9.984E+00 1.139E+01	3.632E+01 4.161E+01 4.622E+01 5.030E+01 5.396E+01 6.033E+01 6.572E+01 7.041E+01	3.616E-01 4.104E-01 4.508E-01 4.851E-01 5.146E-01 5.629E-01 6.010E-01 6.319E-01	7.159E+00 7.599E+00 7.960E+00 8.266E+00 8.531E+00 8.976E+00 9.339E+00 9.646E+00	-0.001 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000	0.009 0.008 0.007 0.007 0.006 0.006 0.005	0.003 0.002 0.002 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.960E+00 1.969E+00 1.977E+00 1.984E+00 1.990E+00 2.002E+00 2.012E+00 2.020E+00	1.084E+01 1.224E+01 1.364E+01 1.504E+01 1.645E+01 1.926E+01 2.208E+01 2.490E+01	1.280E+01 1.421E+01 1.562E+01 1.703E+01 1.844E+01 2.126E+01 2.409E+01 2.692E+01	7.455E+01 7.825E+01 8.161E+01 8.468E+01 8.750E+01 9.254E+01 9.696E+01 1.009E+02	6.577E-01 6.796E-01 6.984E-01 7.148E-01 7.292E-01 7.535E-01 7.732E-01 7.896E-01	9.913E+00 1.015E+01 1.036E+01 1.055E+01 1.072E+01 1.103E+01 1.130E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.005 0.004 0.004 0.004 0.004 0.004 0.003	0.001 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.028E+00	2.772E+01	2.975E+01	1.044E+02	8.035E-01	1.174E+01	-0.000	0.003	0.000

ELECTRONS IN POLYVINYL CHLORIDE

I = 108.2 eV DENSITY = 1.300E+00 g/cm³

ENERGY		OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(l CSDA	RAD
MeV	MeV cm²/g	MeV cm ² /g	MeV cm ² /g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.930E+01 1.628E+01 1.416E+01 1.259E+01 1.137E+01 9.601E+00 8.370E+00 7.462E+00	5.953E-03 6.106E-03 6.218E-03 6.302E-03 6.369E-03 6.468E-03 6.539E-03 6.595E-03	1.930E+01 1.629E+01 1.417E+01 1.260E+01 1.138E+01 9.608E+00 8.377E+00 7.468E+00	2.974E-04 4.390E-04 6.041E-04 7.916E-04 1.001E-03 1.481E-03 2.040E-03 2.673E-03	1.617E-04 1.977E-04 2.326E-04 2.665E-04 2.995E-04 3.630E-04 4.237E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.214 -0.205 -0.198 -0.192 -0.187 -0.180 -0.174	0.249 0.236 0.227 0.219 0.213 0.203 0.196 0.190	0.245 0.232 0.223 0.216 0.210 0.201 0.194 0.189
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.762E+00 6.206E+00 5.753E+00 5.376E+00 5.058E+00 4.549E+00 4.160E+00 3.853E+00	6.641E-03 6.681E-03 6.717E-03 6.751E-03 6.783E-03 6.846E-03 6.908E-03 6.972E-03	6.769E+00 6.213E+00 5.759E+00 5.383E+00 6.065E+00 4.556E+00 4.167E+00 3.860E+00	3.378E-03 4.150E-03 4.987E-03 5.885E-03 6.844E-03 8.930E-03 1.123E-02 1.372E-02	5.384E-04 5.928E-04 6.457E-04 6.970E-04 7.470E-04 8.434E-04 9.356E-04 1.024E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.166 -0.163 -0.161 -0.158 -0.156 -0.153 -0.150 -0.147	0.186 0.182 0.178 0.175 0.173 0.168 0.165 0.162	0.184 0.180 0.177 0.174 0.172 0.168 0.164 0.161
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.604E+00 3.150E+00 2.843E+00 2.623E+00 2.457E+00 2.227E+00 2.077E+00 1.972E+00	7.040E-03 7.222E-03 7.424E-03 7.642E-03 7.877E-03 8.387E-03 8.949E-03 9.554E-03	3.611E+00 3.157E+00 2.851E+00 2.630E+00 2.465E+00 2.235E+00 2.086E+00 1.982E+00	1.641E-02 2.384E-02 3.219E-02 4.134E-02 5.117E-02 7.254E-02 9.575E-02 1.204E-01	1.110E-03 1.312E-03 1.501E-03 1.680E-03 1.852E-03 2.176E-03 2.484E-03 2.780E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.145 -0.141 -0.138 -0.135 -0.132 -0.129 -0.126 -0.123	0.159 0.154 0.150 0.147 0.144 0.140 0.137	0.159 0.153 0.149 0.146 0.144 0.139 0.136 0.133
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.896E+00 1.838E+00 1.793E+00 1.758E+00 1.730E+00 1.690E+00 1.663E+00 1.645E+00	1.020E-02 1.088E-02 1.159E-02 1.233E-02 1.310E-02 1.469E-02 1.637E-02 1.813E-02	1.907E+00 1.849E+00 1.805E+00 1.770E+00 1.743E+00 1.704E+00 1.679E+00 1.663E+00	1.461E-01 1.728E-01 2.001E-01 2.281E-01 2.566E-01 3.147E-01 3.738E-01 4.337E-01	3.068E-03 3.351E-03 3.631E-03 3.910E-03 4.187E-03 4.741E-03 5.296E-03 5.855E-03	7.976E-03 3.082E-02 5.539E-02 8.121E-02 1.079E-01 1.629E-01 2.189E-01 2.747E-01	-0.102 -0.097 -0.092 -0.088 -0.084 -0.078 -0.073	0.131 0.126 0.122 0.118 0.114 0.108 0.103 0.098	0.129 0.124 0.119 0.114 0.110 0.103 0.097 0.092
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.633E+00 1.618E+00 1.615E+00 1.618E+00 1.623E+00 1.638E+00 1.653E+00 1.669E+00	1.995E-02 2.476E-02 2.990E-02 3.530E-02 4.092E-02 5.270E-02 7.791E-02	1.653E+00 1.643E+00 1.645E+00 1.653E+00 1.664E+00 1.690E+00 1.718E+00	4.940E-01 6.458E-01 7.980E-01 9.496E-01 1.100E+00 1.399E+00 1.692E+00	6.418E-03 7.846E-03 9.308E-03 1.080E-02 1.232E-02 1.543E-02 1.861E-02 2.184E-02	3.299E-01 4.627E-01 5.867E-01 7.018E-01 8.087E-01 1.001E+00 1.170E+00 1.321E+00	-0.066 -0.060 -0.056 -0.053 -0.051 -0.047 -0.044	0.094 0.087 0.081 0.077 0.073 0.068 0.064 0.060	0.087 0.078 0.072 0.067 0.063 0.057 0.053
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.683E+00 1.696E+00 1.708E+00 1.720E+00 1.730E+00 1.749E+00 1.765E+00	9.114E-02 1.047E-01 1.186E-01 1.327E-01 1.471E-01 1.764E-01 2.065E-01 2.371E-01	1.774E+00 1.801E+00 1.827E+00 1.853E+00 1.877E+00 1.925E+00 1.971E+00 2.016E+00	2.265E+00 2.544E+00 2.820E+00 3.092E+00 3.360E+00 3.886E+00 4.399E+00 4.901E+00	2.511E-02 2.841E-02 3.172E-02 3.504E-02 3.837E-02 4.503E-02 5.168E-02 5.830E-02	1.458E+00 1.583E+00 1.699E+00 1.807E+00 1.908E+00 2.095E+00 2.264E+00 2.420E+00	-0.040 -0.039 -0.037 -0.036 -0.034 -0.031 -0.029 -0.027	0.058 0.055 0.054 0.052 0.050 0.048 0.045 0.043	0.048 0.045 0.044 0.042 0.040 0.037 0.035 0.033
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.791E+00 1.817E+00 1.837E+00 1.853E+00 1.866E+00 1.889E+00 1.906E+00 1.921E+00	2.683E-01 3.479E-01 4.295E-01 5.127E-01 5.971E-01 7.686E-01 1.119E+00	2.060E+00 2.165E+00 2.266E+00 2.366E+00 2.464E+00 2.657E+00 2.849E+00 3.040E+00	5.391E+00 6.575E+00 7.704E+00 8.783E+00 9.819E+00 1.177E+01 1.359E+01	6.486E-02 8.101E-02 9.672E-02 1.119E-01 1.267E-01 1.546E-01 1.806E-01 2.048E-01	2.564E+00 2.888E+00 3.168E+00 3.415E+00 3.636E+00 4.017E+00 4.337E+00 4.613E+00	-0.024 -0.020 -0.017 -0.014 -0.012 -0.010 -0.009 -0.007	0.041 0.037 0.034 0.031 0.029 0.026 0.023	0.031 0.026 0.023 0.020 0.018 0.015 0.012 0.011
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.933E+00 1.944E+00 1.953E+00 1.962E+00 1.969E+00 1.983E+00 1.995E+00 2.005E+00	1.297E+00 1.476E+00 1.657E+00 1.838E+00 2.020E+00 2.387E+00 2.756E+00 3.127E+00	3.230E+00 3.420E+00 3.610E+00 3.800E+00 3.990E+00 4.370E+00 4.750E+00 5.132E+00	1.688E+01 1.839E+01 1.981E+01 2.116E+01 2.244E+01 2.484E+01 2.703E+01 2.906E+01	2.273E-01 2.484E-01 2.681E-01 2.866E-01 3.040E-01 3.358E-01 3.643E-01 3.899E-01	4.854E+00 5.069E+00 5.263E+00 5.440E+00 5.602E+00 5.890E+00 6.142E+00 6.365E+00	-0.007 -0.006 -0.006 -0.005 -0.005 -0.005 -0.004 -0.004	0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.012	0.009 0.008 0.007 0.007 0.006 0.005 0.005
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.014E+00 2.033E+00 2.048E+00 2.061E+00 2.072E+00 2.090E+00 2.104E+00 2.117E+00	3.499E+00 4.436E+00 5.379E+00 6.326E+00 7.276E+00 9.185E+00 1.110E+01 1.302E+01	5.513E+00 6.469E+00 7.427E+00 8.386E+00 9.347E+00 1.127E+01 1.321E+01 1.514E+01	3.094E+01 3.512E+01 3.872E+01 4.189E+01 4.471E+01 4.958E+01 5.367E+01 5.720E+01	4.132E-01 4.628E-01 5.033E-01 5.371E-01 5.658E-01 6.122E-01 6.482E-01 6.771E-01	6.566E+00 6.995E+00 7.348E+00 7.649E+00 7.910E+00 8.349E+00 8.710E+00 9.015E+00	-0.003 -0.003 -0.002 -0.002 -0.001 -0.001 -0.001	0.012 0.010 0.010 0.009 0.008 0.008 0.007	0.004 0.003 0.002 0.002 0.002 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.127E+00 2.137E+00 2.145E+00 2.153E+00 2.159E+00 2.172E+00 2.182E+00 2.191E+00	1.495E+01 1.688E+01 1.881E+01 2.074E+01 2.268E+01 2.655E+01 3.043E+01 3.431E+01	1.708E+01 1.901E+01 2.095E+01 2.289E+01 2.484E+01 2.872E+01 3.261E+01	6.031E+01 6.308E+01 6.559E+01 6.787E+01 6.997E+01 7.371E+01 7.987E+01	7.010E-01 7.211E-01 7.383E-01 7.531E-01 7.662E-01 7.880E-01 8.056E-01 8.202E-01	9.281E+00 9.515E+00 9.725E+00 9.915E+00 1.009E+01 1.040E+01 1.066E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.006 0.006 0.006 0.005 0.005 0.005	0.001 0.001 0.001 0.001 0.001 0.000 0.000
000.0000	2.200E+00	3.820E+01	4.040E+01	8.247E+01	8.324E-01	1.111E+01	-0.000	0.005	0.000

ELECTRONS IN PROPANE

I = 47.1 eV DENSITY = $1.879E-03 \text{ g/cm}^3 (20^{\circ} \text{ C})$

ENERGY	COLLISION	OPPING POWE RADIATIVE	TOTAL	CSDA RANGE	RADIATION	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²					
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.618E+01 2.194E+01 1.899E+01 1.681E+01 1.513E+01 1.271E+01 1.103E+01 9.806E+00	2.752E-03 2.762E-03 2.769E-03 2.774E-03 2.779E-03 2.789E-03 2.799E-03 2.810E-03	2.618E+01 2.194E+01 1.899E+01 1.681E+01 1.514E+01 1.271E+01 1.104E+01 9.808E+00	2.142E-04 3.189E-04 4.418E-04 5.820E-04 7.390E-04 1.101E-03 1.525E-03 2.006E-03	5.755E-05 6.916E-05 8.028E-05 9.102E-05 1.014E-04 1.215E-04 1.407E-04 1.592E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.182 -0.175 -0.170 -0.165 -0.162 -0.156 -0.152 -0.149	0.205 0.196 0.189 0.184 0.180 0.173 0.168 0.164	0.204 0.195 0.189 0.184 0.179 0.173 0.167 0.163
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	8.863E+00 8.116E+00 7.509E+00 7.005E+00 6.580E+00 5.903E+00 5.387E+00 4.980E+00	2.821E-03 2.834E-03 2.847E-03 2.861E-03 2.876E-03 2.907E-03 2.940E-03 2.975E-03	8.866E+00 8.119E+00 7.511E+00 7.008E+00 6.583E+00 5.906E+00 5.390E+00 4.983E+00	2.543E-03 3.133E-03 3.774E-03 4.464E-03 5.201E-03 6.808E-03 8.583E-03 1.051E-02	1.771E-04 1.945E-04 2.114E-04 2.280E-04 2.442E-04 2.757E-04 3.061E-04 3.356E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.146 -0.144 -0.142 -0.140 -0.138 -0.136 -0.133	0.160 0.157 0.155 0.153 0.151 0.147 0.145	0.160 0.157 0.155 0.152 0.150 0.147 0.144
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.652E+00 4.052E+00 3.648E+00 3.358E+00 3.141E+00 2.839E+00 2.641E+00 2.504E+00	3.013E-03 3.114E-03 3.222E-03 3.338E-03 3.460E-03 3.722E-03 4.007E-03 4.311E-03	4.655E+00 4.056E+00 3.652E+00 3.362E+00 3.144E+00 2.842E+00 2.645E+00 2.508E+00	1.259E-02 1.837E-02 2.488E-02 3.203E-02 3.973E-02 5.651E-02 7.479E-02 9.423E-02	3.643E-04 4.330E-04 4.984E-04 5.612E-04 6.219E-04 7.386E-04 8.509E-04 9.603E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.130 -0.126 -0.123 -0.121 -0.119 -0.116 -0.114	0.140 0.136 0.133 0.131 0.129 0.125 0.123	0.140 0.136 0.133 0.130 0.128 0.125 0.122 0.120
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	2.404E+00 2.330E+00 2.274E+00 2.230E+00 2.196E+00 2.147E+00 2.116E+00 2.096E+00	4.635E-03 4.976E-03 5.334E-03 5.705E-03 6.089E-03 6.894E-03 7.739E-03 8.623E-03	2.409E+00 2.335E+00 2.279E+00 2.236E+00 2.202E+00 2.154E+00 2.124E+00 2.105E+00	1.146E-01 1.357E-01 1.574E-01 1.795E-01 2.021E-01 2.480E-01 2.948E-01 3.421E-01	1.068E-03 1.174E-03 1.281E-03 1.386E-03 1.492E-03 1.705E-03 1.920E-03 2.137E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.110 -0.108 -0.107 -0.106 -0.105 -0.103 -0.101 -0.100	0.119 0.117 0.116 0.115 0.114 0.112 0.110 0.109	0.118 0.116 0.115 0.113 0.112 0.110 0.108 0.106
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	2.084E+00 2.073E+00 2.078E+00 2.088E+00 2.103E+00 2.134E+00 2.166E+00 2.196E+00	9.544E-03 1.198E-02 1.459E-02 1.734E-02 2.021E-02 2.626E-02 3.263E-02 3.928E-02	2.094E+00 2.085E+00 2.092E+00 2.106E+00 2.123E+00 2.160E+00 2.199E+00 2.235E+00	3.898E-01 5.095E-01 6.293E-01 7.484E-01 8.666E-01 1.100E+00 1.330E+00	2.356E-03 2.914E-03 3.488E-03 4.075E-03 4.675E-03 5.907E-03 7.171E-03 8.462E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.098 -0.095 -0.093 -0.091 -0.090 -0.087 -0.086 -0.084	0.107 0.105 0.103 0.101 0.099 0.097 0.095 0.093	0.105 0.102 0.099 0.097 0.096 0.093 0.090 0.088
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	2.224E+00 2.250E+00 2.274E+00 2.297E+00 2.318E+00 2.356E+00 2.389E+00 2.419E+00	4.616E-02 5.323E-02 6.049E-02 6.790E-02 7.546E-02 9.094E-02 1.068E-01 1.231E-01	2.270E+00 2.304E+00 2.335E+00 2.365E+00 2.393E+00 2.447E+00 2.496E+00 2.542E+00	1.777E+00 1.996E+00 2.211E+00 2.424E+00 2.634E+00 3.047E+00 3.452E+00 3.849E+00	9.772E-03 1.110E-02 1.244E-02 1.379E-02 1.515E-02 1.790E-02 2.066E-02 2.343E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.083 -0.081 -0.080 -0.080 -0.079 -0.077 -0.076	0.092 0.091 0.089 0.088 0.087 0.086 0.084	0.087 0.085 0.084 0.083 0.082 0.080 0.079
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	2.446E+00 2.505E+00 2.551E+00 2.586E+00 2.613E+00 2.655E+00 2.685E+00 2.710E+00	1.397E-01 1.823E-01 2.262E-01 2.710E-01 3.167E-01 4.097E-01 5.045E-01 6.007E-01	2.586E+00 2.687E+00 2.777E+00 2.857E+00 2.930E+00 3.064E+00 3.190E+00 3.310E+00	4.239E+00 5.187E+00 6.102E+00 6.989E+00 7.853E+00 9.521E+00 1.112E+01 1.266E+01	2.621E-02 3.316E-02 4.007E-02 4.695E-02 5.376E-02 6.721E-02 8.035E-02 9.314E-02	0.0 0.0 1.733E-02 8.510E-02 1.770E-01 3.825E-01 5.859E-01 7.756E-01	-0.074 -0.073 -0.061 -0.049 -0.041 -0.032 -0.027	0.082 0.080 0.077 0.074 0.070 0.063 0.058 0.053	0.076 0.073 0.070 0.065 0.059 0.049 0.042 0.036
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.730E+00 2.747E+00 2.763E+00 2.776E+00 2.788E+00 2.809E+00 2.828E+00 2.843E+00	6.979E-01 7.960E-01 8.948E-01 9.944E-01 1.094E+00 1.296E+00 1.499E+00	3.428E+00 3.543E+00 3.657E+00 3.770E+00 3.883E+00 4.105E+00 4.326E+00 4.546E+00	1.414E+01 1.558E+01 1.697E+01 1.831E+01 1.962E+01 2.212E+01 2.450E+01 2.675E+01	1.056E-01 1.176E-01 1.294E-01 1.407E-01 1.517E-01 1.728E-01 1.926E-01 2.113E-01	9.500E-01 1.110E+00 1.257E+00 1.393E+00 1.519E+00 1.746E+00 1.946E+00 2.125E+00	-0.022 -0.020 -0.019 -0.018 -0.017 -0.016 -0.015	0.050 0.047 0.044 0.042 0.040 0.037 0.034 0.032	0.032 0.029 0.026 0.024 0.023 0.020 0.018 0.016
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.857E+00 2.886E+00 2.909E+00 2.928E+00 2.944E+00 2.970E+00 2.991E+00 3.008E+00	1.909E+00 2.426E+00 2.947E+00 3.471E+00 3.998E+00 5.056E+00 6.121E+00 7.189E+00	4.766E+00 5.312E+00 5.856E+00 6.399E+00 6.942E+00 8.027E+00 9.111E+00 1.020E+01	2.890E+01 3.386E+01 3.835E+01 4.243E+01 4.618E+01 5.287E+01 5.871E+01 6.390E+01	2.289E-01 2.690E-01 3.043E-01 3.356E-01 3.636E-01 4.117E-01 4.517E-01 4.856E-01	2.287E+00 2.637E+00 2.928E+00 3.180E+00 3.402E+00 3.783E+00 4.103E+00 4.381E+00	-0.014 -0.013 -0.012 -0.011 -0.010 -0.008 -0.007	0.030 0.027 0.025 0.023 0.021 0.019 0.017 0.016	0.015 0.013 0.011 0.010 0.009 0.007 0.006 0.005
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	3.022E+00 3.034E+00 3.044E+00 3.054E+00 3.062E+00 3.077E+00 3.090E+00 3.101E+00	8.260E+00 9.334E+00 1.041E+01 1.149E+01 1.257E+01 1.473E+01 1.689E+01	1.128E+01 1.237E+01 1.345E+01 1.454E+01 1.563E+01 1.781E+01 1.998E+01 2.216E+01	6.856E+01 7.279E+01 7.666E+01 8.024E+01 8.355E+01 8.954E+01 9.484E+01 9.959E+01	5.148E-01 5.402E-01 5.626E-01 5.826E-01 6.005E-01 6.313E-01 6.569E-01 6.787E-01	4.626E+00 4.845E+00 5.044E+00 5.225E+00 5.392E+00 5.392E+00 5.949E+00 6.180E+00	-0.005 -0.004 -0.003 -0.003 -0.002 -0.002 -0.001	0.015 0.014 0.014 0.013 0.013 0.012 0.011 0.011	0.005 0.004 0.004 0.003 0.003 0.003 0.002 0.002
000.0000	3.111E+00	2.123E+01	2.434E+01	1.039E+02	6.975E-01	6.387E+00	-0.001	0.010	0.002

ELECTRONS IN SILICON DIOXIDE

I = 139.2 eV DENSITY = 2.320E+00 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA Range	RADIATION YIELD	DENS.EFF.	COLL	g)/d(1 CSDA	RAD
MeV	MeV cm ² /g	MeV cm²/g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.780E+01 1.506E+01 1.313E+01 1.169E+01 1.057E+01 8.939E+00 7.804E+00 6.965E+00	5.664E-03 5.762E-03 5.830E-03 5.880E-03 5.918E-03 5.971E-03 6.009E-03 6.039E-03	1.781E+01 1.506E+01 1.313E+01 1.169E+01 1.057E+01 8.945E+00 7.810E+00 6.971E+00	3.255E-04 4.788E-04 6.570E-04 8.592E-04 1.084E-03 1.601E-03 2.201E-03 2.880E-03	1.716E-04 2.074E-04 2.417E-04 2.749E-04 3.069E-04 3.684E-04 4.268E-04 4.827E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.227 -0.216 -0.208 -0.202 -0.196 -0.188 -0.182	0.267 0.252 0.241 0.232 0.225 0.215 0.207	0.263 0.248 0.238 0.230 0.223 0.213 0.205 0.199
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	6.318E+00 5.803E+00 5.383E+00 5.033E+00 4.738E+00 4.265E+00 3.904E+00 3.618E+00	6.065E-03 6.089E-03 6.112E-03 6.135E-03 6.159E-03 6.207E-03 6.259E-03 6.315E-03	6.324E+00 5.809E+00 5.389E+00 5.040E+00 4.744E+00 4.271E+00 3.910E+00 3.624E+00	3.634E-03 4.460E-03 5.355E-03 6.315E-03 7.338E-03 1.201E-02 1.467E-02	5.365E-04 5.884E-04 6.387E-04 6.876E-04 7.351E-04 8.267E-04 9.143E-04 9.985E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.174 -0.170 -0.167 -0.165 -0.163 -0.159 -0.156 -0.153	0.195 0.191 0.187 0.184 0.181 0.176 0.172 0.169	0.194 0.190 0.186 0.183 0.180 0.175 0.172
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	3.386E+00 2.963E+00 2.677E+00 2.471E+00 2.316E+00 2.101E+00 1.961E+00 1.864E+00	6.375E-03 6.541E-03 6.727E-03 6.930E-03 7.148E-03 7.622E-03 8.144E-03 8.706E-03	3.393E+00 2.969E+00 2.683E+00 2.478E+00 2.323E+00 2.109E+00 1.969E+00 1.872E+00	1.753E-02 2.544E-02 3.432E-02 4.403E-02 5.446E-02 7.713E-02 1.017E-01 1.278E-01	1.080E-03 1.272E-03 1.453E-03 1.624E-03 1.789E-03 2.100E-03 2.396E-03 2.682E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.151 -0.146 -0.142 -0.140 -0.137 -0.133 -0.130	0.166 0.160 0.156 0.153 0.150 0.145 0.142	0.165 0.160 0.156 0.152 0.149 0.144 0.141
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.792E+00 1.738E+00 1.697E+00 1.665E+00 1.639E+00 1.603E+00 1.579E+00 1.563E+00	9.304E-03 9.935E-03 1.060E-02 1.128E-02 1.199E-02 1.348E-02 1.504E-02 1.667E-02	1.801E+00 1.748E+00 1.708E+00 1.676E+00 1.651E+00 1.616E+00 1.594E+00 1.579E+00	1.550E-01 1.832E-01 2.122E-01 2.417E-01 2.718E-01 3.331E-01 3.954E-01 4.585E-01	2.960E-03 3.233E-03 3.504E-03 3.774E-03 4.042E-03 4.579E-03 5.118E-03 5.659E-03	1.344E-02 3.175E-02 5.190E-02 7.343E-02 9.597E-02 1.431E-01 1.919E-01 2.413E-01	-0.110 -0.104 -0.100 -0.096 -0.092 -0.086 -0.081	0.135 0.130 0.126 0.123 0.119 0.114 0.109 0.104	0.133 0.128 0.123 0.119 0.116 0.109 0.103 0.098
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.552E+00 1.540E+00 1.538E+00 1.542E+00 1.548E+00 1.563E+00 1.578E+00 1.593E+00	1.836E-02 2.283E-02 2.761E-02 3.264E-02 3.787E-02 4.886E-02 6.039E-02 7.238E-02	1.570E+00 1.563E+00 1.566E+00 1.575E+00 1.586E+00 1.612E+00 1.639E+00	5.220E-01 6.817E-01 8.416E-01 1.001E+00 1.159E+00 1.472E+00 1.780E+00 2.082E+00	6.206E-03 7.593E-03 9.013E-03 1.046E-02 1.194E-02 1.497E-02 1.807E-02 2.123E-02	2.907E-01 4.118E-01 5.276E-01 6.371E-01 7.405E-01 9.306E-01 1.102E+00 1.258E+00	-0.073 -0.066 -0.061 -0.057 -0.054 -0.049 -0.045 -0.041	0.101 0.093 0.087 0.083 0.079 0.072 0.068 0.064	0.094 0.085 0.078 0.073 0.068 0.061 0.056
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.606E+00 1.619E+00 1.630E+00 1.641E+00 1.650E+00 1.667E+00 1.682E+00 1.695E+00	8.475E-02 9.743E-02 1.104E-01 1.236E-01 1.371E-01 1.646E-01 1.927E-01 2.214E-01	1.691E+00 1.716E+00 1.741E+00 1.764E+00 1.787E+00 1.832E+00 1.875E+00 1.916E+00	2.380E+00 2.674E+00 2.963E+00 3.248E+00 3.530E+00 4.082E+00 5.150E+00	2.442E-02 2.765E-02 3.089E-02 3.415E-02 3.742E-02 4.397E-02 5.052E-02 5.704E-02	1.402E+00 1.535E+00 1.659E+00 1.776E+00 1.885E+00 2.087E+00 2.269E+00 2.435E+00	-0.038 -0.036 -0.034 -0.032 -0.030 -0.028 -0.025 -0.024	0.061 0.058 0.055 0.053 0.051 0.048 0.045	0.049 0.046 0.043 0.041 0.039 0.036 0.033
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000	1.706E+00 1.730E+00 1.749E+00 1.765E+00 1.779E+00 1.801E+00 1.818E+00 1.833E+00	2.507E-01 3.254E-01 4.021E-01 4.803E-01 5.596E-01 7.209E-01 8.847E-01 1.050E+00	1.957E+00 2.056E+00 2.152E+00 2.246E+00 2.338E+00 2.522E+00 2.703E+00 2.883E+00	5.666E+00 6.912E+00 8.101E+00 9.238E+00 1.033E+01 1.239E+01 1.430E+01	6.352E-02 7.948E-02 9.502E-02 1.101E-01 1.247E-01 1.523E-01 2.021E-01	2.587E+00 2.921E+00 3.205E+00 3.452E+00 3.671E+00 4.047E+00 4.362E+00 4.635E+00	-0.022 -0.019 -0.017 -0.015 -0.014 -0.012 -0.010 -0.009	0.041 0.036 0.033 0.031 0.029 0.025 0.023	0.028 0.025 0.022 0.019 0.017 0.015 0.013
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	1.845E+00 1.855E+00 1.865E+00 1.873E+00 1.880E+00 1.894E+00 1.905E+00	1.218E+00 1.386E+00 1.556E+00 1.727E+00 1.898E+00 2.243E+00 2.590E+00 2.938E+00	3.063E+00 3.242E+00 3.421E+00 3.600E+00 3.778E+00 4.136E+00 4.494E+00 4.853E+00	1.778E+01 1.936E+01 2.086E+01 2.229E+01 2.364E+01 2.617E+01 2.849E+01 3.063E+01	2.245E-01 2.455E-01 2.651E-01 2.835E-01 3.008E-01 3.325E-01 3.609E-01 3.865E-01	4.874E+00 5.089E+00 5.282E+00 5.459E+00 5.621E+00 5.911E+00 6.165E+00 6.391E+00	-0.008 -0.007 -0.006 -0.005 -0.005 -0.004 -0.003	0.020 0.018 0.017 0.016 0.016 0.014 0.013 0.012	0.010 0.009 0.008 0.007 0.007 0.006 0.005
100.0000 125.0000 150.0000 200.0000 200.0000 300.0000 350.0000	1.923E+00 1.941E+00 1.956E+00 1.968E+00 1.978E+00 1.996E+00 2.010E+00 2.022E+00	3.288E+00 4.169E+00 5.055E+00 5.945E+00 6.839E+00 8.633E+00 1.043E+01	5.212E+00 6.110E+00 7.011E+00 7.913E+00 8.817E+00 1.063E+01 1.244E+01	3.262E+01 3.705E+01 4.086E+01 4.422E+01 4.721E+01 5.237E+01 5.671E+01 6.046E+01	4.097E-01 4.593E-01 4.999E-01 5.337E-01 5.625E-01 6.090E-01 6.452E-01 6.742E-01	6.594E+00 7.027E+00 7.384E+00 7.687E+00 7.951E+00 8.393E+00 8.755E+00 9.062E+00	-0.003 -0.002 -0.001 -0.001 -0.001 -0.000 -0.000	0.012 0.010 0.010 0.009 0.008 0.008 0.007	0.004 0.003 0.002 0.002 0.002 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	2.032E+00 2.041E+00 2.049E+00 2.057E+00 2.063E+00 2.075E+00 2.086E+00 2.095E+00	1.405E+01 1.586E+01 1.768E+01 1.950E+01 2.131E+01 2.496E+01 3.225E+01	1.608E+01 1.790E+01 1.973E+01 2.155E+01 2.338E+01 2.703E+01 3.069E+01 3.434E+01	6.376E+01 6.670E+01 6.936E+01 7.179E+01 7.401E+01 7.799E+01 8.146E+01 8.454E+01	6.982E-01 7.184E-01 7.357E-01 7.507E-01 7.638E-01 7.858E-01 8.036E-01 8.182E-01	9.328E+00 9.563E+00 9.773E+00 9.963E+00 1.014E+01 1.044E+01 1.071E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.006 0.006 0.006 0.005 0.005 0.005	0.001 0.001 0.001 0.001 0.001 0.000 0.000
1000.0000	2.103E+00	3.590E+01	3.800E+01	8.730E+01	8.306E-01	1.116E+01	-0.000	0.005	0.000

ELECTRONS IN SODIUM IODIDE

I = 452.0 eV DENSITY = 3.667E+00 g/cm³

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(l CSDA	RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.116E+01 9.603E+00 8.477E+00 7.622E+00 6.948E+00 5.949E+00 5.241E+00 4.711E+00	1.518E-02 1.632E-02 1.723E-02 1.798E-02 1.862E-02 1.967E-02 2.050E-02 2.120E-02	1.117E+01 9.619E+00 8.494E+00 7.640E+00 6.966E+00 5.968E+00 5.262E+00 4.733E+00	5.598E-04 8.018E-04 1.079E-03 1.390E-03 1.733E-03 2.511E-03 3.406E-03 4.410E-03	6.717E-04 8.429E-04 1.013E-03 1.181E-03 1.348E-03 1.675E-03 1.996E-03 2.309E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.309 -0.289 -0.275 -0.264 -0.255 -0.242 -0.232 -0.224	0.416 0.380 0.355 0.336 0.320 0.298 0.281 0.269	0.382 0.351 0.330 0.314 0.301 0.282 0.268 0.257
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	4.299E+00 3.968E+00 3.696E+00 3.469E+00 3.276E+00 2.965E+00 2.726E+00 2.536E+00	2.180E-02 2.234E-02 2.282E-02 2.326E-02 2.367E-02 2.442E-02 2.509E-02 2.571E-02	4.321E+00 3.990E+00 3.719E+00 3.492E+00 3.300E+00 2.990E+00 2.751E+00 2.562E+00	5.517E-03 6.723E-03 8.022E-03 9.410E-03 1.088E-02 1.407E-02 1.757E-02 2.134E-02	2.616E-03 2.917E-03 3.212E-03 3.502E-03 3.786E-03 4.342E-03 4.880E-03 5.402E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.218 -0.213 -0.208 -0.204 -0.201 -0.195 -0.191 -0.187	0.259 0.251 0.244 0.239 0.234 0.225 0.218 0.213	0.249 0.242 0.236 0.231 0.226 0.219 0.213 0.208
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.382E+00 2.098E+00 1.905E+00 1.766E+00 1.661E+00 1.516E+00 1.421E+00 1.355E+00	2.628E-02 2.760E-02 2.878E-02 2.989E-02 3.096E-02 3.306E-02 3.519E-02 3.739E-02	2.408E+00 2.126E+00 1.934E+00 1.796E+00 1.692E+00 1.549E+00 1.456E+00 1.393E+00	2.536E-02 3.646E-02 4.882E-02 6.225E-02 7.661E-02 1.076E-01 1.410E-01 1.761E-01	5.910E-03 7.120E-03 8.258E-03 9.332E-03 1.035E-02 1.225E-02 1.400E-02 1.565E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.129E-03	-0.183 -0.176 -0.171 -0.167 -0.163 -0.158 -0.153 -0.146	0.208 0.199 0.192 0.186 0.182 0.175 0.169	0.203 0.195 0.188 0.183 0.178 0.171 0.166 0.162
0.4000 0.4500 0.5000 0.5550 0.6000 0.7000 0.8000	1.308E+00 1.273E+00 1.247E+00 1.227E+00 1.211E+00 1.190E+00 1.178E+00 1.170E+00	3.967E-02 4.204E-02 4.448E-02 4.698E-02 5.486E-02 5.486E-02 6.037E-02	1.348E+00 1.315E+00 1.291E+00 1.274E+00 1.261E+00 1.245E+00 1.238E+00 1.236E+00	2.126E-01 2.502E-01 2.886E-01 3.276E-01 3.671E-01 4.469E-01 5.275E-01 6.084E-01	1.721E-02 1.871E-02 2.016E-02 2.157E-02 2.295E-02 2.562E-02 2.822E-02 3.076E-02	5.582E-03 1.097E-02 1.711E-02 2.388E-02 3.119E-02 4.711E-02 4.711E-02 6.443E-02 8.284E-02	-0.141 -0.137 -0.134 -0.131 -0.128 -0.122 -0.118 -0.113	0.160 0.157 0.153 0.150 0.147 0.142 0.138 0.134	0.157 0.153 0.149 0.146 0.143 0.138 0.133
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.167E+00 1.167E+00 1.173E+00 1.182E+00 1.192E+00 1.212E+00 1.230E+00 1.247E+00	7.189E-02 8.714E-02 1.031E-01 1.198E-01 1.369E-01 1.725E-01 2.093E-01 2.471E-01	1.239E+00 1.254E+00 1.276E+00 1.302E+00 1.329E+00 1.384E+00 1.439E+00	6.892E-01 8.899E-01 1.088E+00 1.282E+00 1.472E+00 1.840E+00 2.195E+00 2.536E+00	3.326E-02 3.936E-02 4.533E-02 5.120E-02 5.700E-02 6.838E-02 7.949E-02 9.034E-02	1.021E-01 1.530E-01 2.065E-01 2.610E-01 3.159E-01 4.239E-01 5.275E-01 6.258E-01	-0.110 -0.102 -0.095 -0.089 -0.085 -0.077 -0.071	0.131 0.124 0.118 0.113 0.108 0.101 0.095 0.090	0.125 0.116 0.109 0.103 0.098 0.089 0.082 0.076
4.0000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.263E+00 1.277E+00 1.289E+00 1.301E+00 1.311E+00 1.330E+00 1.347E+00 1.361E+00	2.857E-01 3.250E-01 3.649E-01 4.055E-01 4.464E-01 5.297E-01 7.005E-01	1.548E+00 1.601E+00 1.654E+00 1.706E+00 1.758E+00 1.860E+00 1.961E+00 2.062E+00	2.864E+00 3.182E+00 3.489E+00 3.787E+00 4.075E+00 4.628E+00 5.152E+00 5.649E+00	1.009E-01 1.112E-01 1.213E-01 1.311E-01 1.407E-01 1.591E-01 1.766E-01 1.933E-01	7.184E-01 8.057E-01 8.881E-01 9.660E-01 1.040E+00 1.177E+00 1.301E+00	-0.064 -0.061 -0.058 -0.056 -0.054 -0.051 -0.049 -0.047	0.086 0.082 0.079 0.076 0.074 0.070 0.066 0.063	0.071 0.067 0.064 0.061 0.058 0.053 0.049
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.374E+00 1.401E+00 1.423E+00 1.441E+00 1.456E+00 1.480E+00 1.499E+00 1.514E+00	7.876E-01 1.009E+00 1.235E+00 1.465E+00 1.697E+00 2.169E+00 2.648E+00 3.133E+00	2.162E+00 2.410E+00 2.658E+00 2.906E+00 3.153E+00 3.649E+00 4.147E+00 4.647E+00	6.122E+00 7.217E+00 8.204E+00 9.103E+00 9.929E+00 1.140E+01 1.269E+01 1.382E+01	2.092E-01 2.458E-01 2.785E-01 3.080E-01 3.347E-01 3.813E-01 4.206E-01 4.544E-01	1.522E+00 1.759E+00 1.964E+00 2.147E+00 2.312E+00 2.605E+00 2.858E+00 3.081E+00	-0.045 -0.041 -0.038 -0.035 -0.032 -0.028 -0.025	0.061 0.055 0.051 0.048 0.046 0.041 0.038 0.036	0.043 0.038 0.034 0.030 0.028 0.023 0.023 0.020
40.0000 45.0000 50.0000 55.0000 70.0000 80.0000 90.0000	1.527E+00 1.539E+00 1.548E+00 1.557E+00 1.565E+00 1.579E+00 1.590E+00	3.622E+00 4.114E+00 4.609E+00 5.107E+00 5.607E+00 6.612E+00 7.623E+00 8.639E+00	5.149E+00 5.652E+00 6.158E+00 6.664E+00 7.172E+00 8.191E+00 9.213E+00 1.024E+01	1.485E+01 1.577E+01 1.662E+01 1.740E+01 1.812E+01 1.943E+01 2.058E+01 2.161E+01	4.837E-01 5.095E-01 5.324E-01 5.529E-01 5.713E-01 6.033E-01 6.301E-01 6.530E-01	3.281E+00 3.463E+00 3.628E+00 3.780E+00 3.921E+00 4.175E+00 4.399E+00 4.600E+00	-0.020 -0.019 -0.017 -0.016 -0.015 -0.014 -0.013 -0.012	0.034 0.032 0.031 0.029 0.028 0.027 0.025 0.024	0.016 0.014 0.013 0.012 0.011 0.009 0.008 0.007
100.0000 125.0000 150.0000 200.0000 250.0000 350.0000	1.609E+00 1.627E+00 1.641E+00 1.653E+00 1.663E+00 1.680E+00 1.693E+00 1.704E+00	9.659E+00 1.222E+01 1.479E+01 1.738E+01 1.997E+01 2.516E+01 3.037E+01 3.560E+01	1.127E+01 1.385E+01 1.644E+01 1.903E+01 2.163E+01 2.684E+01 3.207E+01 3.730E+01	2.254E+01 2.454E+01 2.619E+01 2.760E+01 2.883E+01 3.091E+01 3.261E+01 3.405E+01	6.727E-01 7.123E-01 7.422E-01 7.658E-01 7.848E-01 8.140E-01 8.354E-01 8.519E-01	4.782E+00 5.174E+00 5.502E+00 5.783E+00 6.029E+00 6.445E+00 6.790E+00 7.083E+00	-0.011 -0.009 -0.008 -0.007 -0.006 -0.005 -0.004	0.023 0.022 0.020 0.019 0.018 0.017 0.016 0.016	0.007 0.005 0.004 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	1.714E+00 1.722E+00 1.729E+00 1.736E+00 1.742E+00 1.753E+00 1.762E+00	4.082E+01 4.606E+01 5.130E+01 5.654E+01 6.178E+01 7.229E+01 8.280E+01 9.332E+01	4.254E+01 4.778E+01 5.303E+01 5.827E+01 6.353E+01 7.404E+01 8.456E+01 9.509E+01	3.531E+01 3.641E+01 3.741E+01 3.831E+01 3.913E+01 4.058E+01 4.185E+01 4.296E+01	8.651E-01 8.759E-01 8.848E-01 8.925E-01 8.991E-01 9.098E-01 9.183E-01 9.252E-01	7.339E+00 7.566E+00 7.769E+00 7.954E+00 8.123E+00 8.423E+00 8.684E+00 8.915E+00	-0.003 -0.003 -0.003 -0.002 -0.002 -0.002 -0.002 -0.001	0.015 0.015 0.014 0.014 0.014 0.013 0.013	0.002 0.002 0.001 0.001 0.001 0.001 0.001
1000.0000	1.777E+00	1.038E+02	1.056E+02	4.396E+01	9.309E-01	9.122E+00	-0.001	0.012	0.001

ELECTRONS IN STILBENE

I = 67.7 eV DENSITY = 9.707E-01 g/cm³

	ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
	MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²					
	0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.209E+01 1.856E+01 1.610E+01 1.428E+01 1.287E+01 1.083E+01 9.418E+00 8.380E+00	3.004E-03 3.014E-03 3.021E-03 3.026E-03 3.031E-03 3.039E-03 3.049E-03 3.059E-03	2.209E+01 1.856E+01 1.610E+01 1.428E+01 1.287E+01 1.083E+01 9.421E+00 8.383E+00	2.561E-04 3.801E-04 5.251E-04 6.904E-04 8.751E-04 1.300E-03 1.797E-03 2.361E-03	7.507E-05 8.992E-05 1.041E-04 1.178E-04 1.310E-04 1.565E-04 1.808E-04 2.041E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.195 -0.187 -0.181 -0.176 -0.172 -0.166 -0.161	0.222 0.212 0.204 0.198 0.193 0.185 0.179 0.174	0.221 0.211 0.203 0.197 0.192 0.184 0.178
	0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.582E+00 6.949E+00 6.435E+00 6.007E+00 5.646E+00 5.071E+00 4.631E+00 4.285E+00	3.070E-03 3.083E-03 3.096E-03 3.110E-03 3.126E-03 3.157E-03 3.191E-03 3.228E-03	7.585E+00 6.953E+00 6.438E+00 6.010E+00 5.650E+00 5.074E+00 4.635E+00 4.288E+00	2.989E-03 3.678E-03 4.426E-03 5.231E-03 6.089E-03 7.961E-03 1.003E-02 1.227E-02	2.267E-04 2.487E-04 2.700E-04 2.909E-04 3.113E-04 3.508E-04 3.889E-04 4.258E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.154 -0.152 -0.149 -0.147 -0.146 -0.143 -0.140 -0.138	0.170 0.167 0.164 0.162 0.160 0.156 0.153	0.170 0.167 0.164 0.161 0.159 0.156 0.153 0.150
	0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.005E+00 3.493E+00 3.148E+00 2.901E+00 2.715E+00 2.456E+00 2.287E+00 2.170E+00	3.267E-03 3.373E-03 3.487E-03 3.608E-03 3.736E-03 4.011E-03 4.312E-03 4.633E-03	4.008E+00 3.497E+00 3.152E+00 2.904E+00 2.718E+00 2.460E+00 2.292E+00 2.175E+00	1.469E-02 2.139E-02 2.894E-02 3.722E-02 4.613E-02 6.553E-02 8.663E-02 1.091E-01	4.616E-04 5.474E-04 6.288E-04 7.068E-04 7.820E-04 9.262E-04 1.065E-03 1.199E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.136 -0.132 -0.129 -0.127 -0.125 -0.121 -0.119	0.148 0.144 0.140 0.137 0.135 0.131 0.129 0.126	0.148 0.143 0.140 0.137 0.135 0.131 0.128 0.125
	0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.085E+00 2.020E+00 1.969E+00 1.930E+00 1.898E+00 1.851E+00 1.819E+00	4.975E-03 5.336E-03 5.714E-03 6.107E-03 6.513E-03 7.364E-03 8.258E-03 9.193E-03	2.090E+00 2.026E+00 1.975E+00 1.936E+00 1.904E+00 1.858E+00 1.827E+00 1.807E+00	1.325E-01 1.568E-01 1.819E-01 2.074E-01 2.335E-01 2.867E-01 3.410E-01 3.960E-01	1.331E-03 1.462E-03 1.592E-03 1.722E-03 1.852E-03 2.115E-03 2.381E-03 2.650E-03	0.0 1.936E-02 4.453E-02 7.225E-02 1.019E-01 1.648E-01 2.305E-01 2.971E-01	-0.110 -0.092 -0.086 -0.081 -0.076 -0.068 -0.063	0.124 0.120 0.116 0.112 0.108 0.101 0.096 0.091	0.123 0.118 0.113 0.108 0.104 0.096 0.089 0.083
	1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.782E+00 1.761E+00 1.754E+00 1.753E+00 1.756E+00 1.767E+00 1.780E+00 1.793E+00	1.017E-02 1.274E-02 1.550E-02 1.840E-02 2.143E-02 2.780E-02 3.452E-02 4.152E-02	1.792E+00 1.774E+00 1.770E+00 1.772E+00 1.778E+00 1.795E+00 1.814E+00 1.834E+00	4.516E-01 5.920E-01 7.331E-01 8.743E-01 1.015E+00 1.295E+00 1.572E+00 1.846E+00	2.923E-03 3.622E-03 4.346E-03 5.092E-03 7.438E-03 9.074E-03 1.075E-02	3.636E-01 5.253E-01 6.774E-01 8.190E-01 9.504E-01 1.186E+00 1.393E+00 1.576E+00	-0.054 -0.047 -0.043 -0.040 -0.037 -0.034 -0.032	0.086 0.078 0.071 0.066 0.063 0.057 0.052 0.049	0.078 0.068 0.061 0.056 0.051 0.045 0.041 0.038
	4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.805E+00 1.817E+00 1.828E+00 1.838E+00 1.847E+00 1.864E+00 1.879E+00 1.893E+00	4.875E-02 5.620E-02 6.383E-02 7.162E-02 7.956E-02 9.582E-02 1.125E-01 1.296E-01	1.854E+00 1.873E+00 1.891E+00 1.909E+00 1.927E+00 1.960E+00 1.992E+00 2.022E+00	2.118E+00 2.386E+00 2.652E+00 2.915E+00 3.175E+00 3.690E+00 4.196E+00 4.694E+00	1.247E-02 1.421E-02 1.598E-02 1.776E-02 1.957E-02 2.321E-02 2.689E-02 3.061E-02	1.740E+00 1.889E+00 2.025E+00 2.151E+00 2.269E+00 2.481E+00 2.671E+00 2.843E+00	-0.029 -0.028 -0.027 -0.026 -0.025 -0.024 -0.022	0.047 0.044 0.043 0.041 0.040 0.037 0.036 0.034	0.036 0.034 0.033 0.031 0.030 0.028 0.027 0.025
	10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.904E+00 1.929E+00 1.948E+00 1.964E+00 1.978E+00 1.979E+00 2.016E+00 2.030E+00	1.470E-01 1.917E-01 2.377E-01 2.847E-01 3.325E-01 4.300E-01 5.292E-01 6.297E-01	2.051E+00 2.121E+00 2.186E+00 2.249E+00 2.310E+00 2.429E+00 2.545E+00 2.660E+00	5.185E+00 6.383E+00 7.544E+00 8.672E+00 9.768E+00 1.188E+01 1.389E+01	3.433E-02 4.368E-02 5.300E-02 6.224E-02 7.138E-02 1.065E-01 1.230E-01	3.001E+00 3.347E+00 3.643E+00 3.903E+00 4.134E+00 4.533E+00 4.869E+00 5.158E+00	-0.019 -0.016 -0.013 -0.011 -0.009 -0.006 -0.005	0.032 0.029 0.027 0.025 0.023 0.020 0.018 0.016	0.024 0.021 0.018 0.016 0.014 0.012 0.009 0.008
	40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000	2.042E+00 2.052E+00 2.061E+00 2.069E+00 2.077E+00 2.090E+00 2.101E+00 2.111E+00	7.314E-01 8.339E-01 9.372E-01 1.041E+00 1.146E+00 1.356E+00 1.568E+00	2.773E+00 2.886E+00 2.998E+00 3.110E+00 3.222E+00 3.446E+00 3.669E+00 3.892E+00	1.765E+01 1.942E+01 2.112E+01 2.276E+01 2.434E+01 2.734E+01 3.015E+01 3.279E+01	1.390E-01 1.542E-01 1.689E-01 1.830E-01 1.965E-01 2.220E-01 2.456E-01 2.675E-01	5.412E+00 5.638E+00 5.842E+00 6.027E+00 6.197E+00 6.499E+00 6.761E+00 6.994E+00	-0.003 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001	0.015 0.013 0.012 0.012 0.011 0.010 0.009 0.008	0.007 0.006 0.005 0.004 0.004 0.003 0.003
1 1 2 2 3	00.0000 25.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.120E+00 2.138E+00 2.153E+00 2.166E+00 2.177E+00 2.195E+00 2.210E+00 2.223E+00	1.996E+00 2.535E+00 3.079E+00 3.625E+00 4.174E+00 5.277E+00 6.386E+00 7.499E+00	4.115E+00 4.673E+00 5.232E+00 5.791E+00 6.351E+00 7.473E+00 8.596E+00 9.722E+00	3.529E+01 4.099E+01 4.604E+01 5.058E+01 5.470E+01 6.195E+01 6.819E+01 7.365E+01	2.879E-01 3.333E-01 3.721E-01 4.058E-01 4.353E-01 4.849E-01 5.249E-01 5.582E-01	7.202E+00 7.644E+00 8.006E+00 8.313E+00 8.579E+00 9.024E+00 9.387E+00 9.695E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.008 0.007 0.006 0.005 0.005 0.004 0.004	0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000
2 515161	400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	2.234E+00 2.244E+00 2.252E+00 2.260E+00 2.267E+00 2.280E+00 2.291E+00 2.300E+00	8.614E+00 9.733E+00 1.085E+01 1.197E+01 1.310E+01 1.535E+01 1.760E+01 1.985E+01	1.085E+01 1.198E+01 1.310E+01 1.423E+01 1.536E+01 1.763E+01 1.989E+01 2.216E+01	7.852E+01 8.290E+01 8.689E+01 9.055E+01 9.393E+01 1.000E+02 1.053E+02	5.863E-01 6.105E-01 6.315E-01 6.500E-01 6.664E-01 6.943E-01 7.173E-01 7.365E-01	9.962E+00 1.020E+01 1.041E+01 1.060E+01 1.077E+01 1.108E+01 1.135E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.003 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 (000.000	2.309E+00	2.211E+01	2.442E+01	1.144E+02	7.530E-01	1.179E+01	-0.000	0.002	0.000

ELECTRONS IN TISSUE-EQUIVALENT GAS (METHANE BASED)

I = 61.2 eV DENSITY = 1.064E-03 g/cm³ (20°C)

ENERGY		OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	d(lo	g)/d(1 CSDA	ogI) RAD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.325E+01 1.952E+01 1.692E+01 1.500E+01 1.352E+01 1.137E+01 9.882E+00 8.789E+00	3.402E-03 3.421E-03 3.433E-03 3.441E-03 3.447E-03 3.457E-03 3.467E-03 3.477E-03	2.326E+01 1.953E+01 1.693E+01 1.500E+01 1.352E+01 1.137E+01 9.885E+00 8.792E+00	2.426E-04 3.605E-04 4.984E-04 6.556E-04 8.314E-03 1.237E-03 1.710E-03 2.247E-03	7.986E-05 9.606E-05 1.116E-04 1.265E-04 1.410E-04 1.687E-04 1.952E-04 2.206E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.191 -0.183 -0.178 -0.173 -0.169 -0.163 -0.159	0.217 0.207 0.200 0.194 0.189 0.181 0.176	0.215 0.206 0.199 0.193 0.188 0.181 0.175 0.171
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800	7.950E+00 7.285E+00 6.743E+00 6.294E+00 5.915E+00 5.310E+00 4.849E+00 4.485E+00	3.488E-03 3.501E-03 3.514E-03 3.529E-03 3.544E-03 3.578E-03 3.614E-03 3.654E-03	7.953E+00 7.288E+00 6.747E+00 6.298E+00 5.919E+00 5.314E+00 4.853E+00 4.489E+00	2.846E-03 3.504E-03 4.217E-03 4.985E-03 5.805E-03 7.591E-03 9.564E-03 1.171E-02	2.452E-04 2.690E-04 2.922E-04 3.148E-04 3.368E-04 3.796E-04 4.208E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.152 -0.149 -0.147 -0.145 -0.143 -0.141 -0.138 -0.136	0.167 0.164 0.161 0.159 0.157 0.153 0.150 0.148	0.167 0.164 0.161 0.159 0.157 0.153 0.150 0.148
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	4.191E+00 3.655E+00 3.293E+00 3.033E+00 2.838E+00 2.567E+00 2.390E+00 2.267E+00	3.696E-03 3.812E-03 3.937E-03 4.071E-03 4.213E-03 4.518E-03 4.851E-03 5.208E-03	4.195E+00 3.659E+00 3.297E+00 3.037E+00 2.842E+00 2.572E+00 2.395E+00 2.272E+00	1.402E-02 2.042E-02 2.764E-02 3.556E-02 4.408E-02 6.263E-02 8.282E-02 1.043E-01	4.994E-04 5.920E-04 6.797E-04 7.638E-04 8.447E-04 9.998E-04 1.148E-03 1.293E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.134 -0.130 -0.128 -0.125 -0.123 -0.120 -0.117 -0.115	0.146 0.142 0.138 0.136 0.133 0.130 0.127	0.146 0.141 0.138 0.135 0.133 0.129 0.126 0.124
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	2.178E+00 2.112E+00 2.061E+00 2.022E+00 1.992E+00 1.949E+00 1.921E+00	5.587E-03 5.988E-03 6.407E-03 6.844E-03 7.296E-03 8.241E-03 9.233E-03 1.027E-02	2.184E+00 2.118E+00 2.068E+00 2.029E+00 1.999E+00 1.957E+00 1.931E+00	1.268E-01 1.500E-01 1.739E-01 1.983E-01 2.232E-01 2.738E-01 3.253E-01 3.773E-01	1.434E-03 1.574E-03 1.713E-03 1.851E-03 1.990E-03 2.267E-03 2.546E-03 2.826E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.113 -0.112 -0.110 -0.109 -0.108 -0.106 -0.104 -0.102	0.123 0.121 0.120 0.118 0.117 0.115 0.113	0.122 0.120 0.118 0.117 0.115 0.113 0.111
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.894E+00 1.886E+00 1.890E+00 1.901E+00 1.915E+00 1.945E+00 1.975E+00 2.003E+00	1.135E-02 1.421E-02 1.727E-02 2.049E-02 2.385E-02 3.091E-02 3.835E-02 4.610E-02	1.905E+00 1.900E+00 1.908E+00 1.922E+00 1.939E+00 1.976E+00 2.013E+00 2.049E+00	4.297E-01 5.612E-01 6.926E-01 8.232E-01 9.527E-01 1.208E+00 1.459E+00	3.110E-03 3.831E-03 4.569E-03 5.324E-03 6.093E-03 7.668E-03 9.280E-03 1.092E-02	0.0 0.0 0.0 0.0 0.0 0.0	-0.101 -0.098 -0.096 -0.094 -0.092 -0.089 -0.087	0.111 0.108 0.105 0.104 0.102 0.099 0.097	0.108 0.105 0.102 0.100 0.098 0.095 0.092 0.090
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	2.030E+00 2.054E+00 2.077E+00 2.098E+00 2.117E+00 2.153E+00 2.184E+00 2.212E+00	5.411E-02 6.234E-02 7.077E-02 7.938E-02 8.815E-02 1.061E-01 1.246E-01 1.434E-01	2.084E+00 2.116E+00 2.147E+00 2.177E+00 2.205E+00 2.259E+00 2.308E+00 2.355E+00	1.947E+00 2.185E+00 2.420E+00 2.651E+00 2.879E+00 3.327E+00 4.194E+00	1.258E-02 1.426E-02 1.596E-02 1.766E-02 1.938E-02 2.282E-02 2.628E-02 2.974E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.084 -0.083 -0.082 -0.081 -0.080 -0.079 -0.078 -0.077	0.094 0.093 0.091 0.090 0.089 0.087 0.086 0.085	0.089 0.087 0.086 0.084 0.083 0.081 0.080
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	2.237E+00 2.292E+00 2.337E+00 2.375E+00 2.408E+00 2.462E+00 2.501E+00 2.530E+00	1.626E-01 2.119E-01 2.626E-01 3.144E-01 3.671E-01 4.743E-01 5.835E-01 6.942E-01	2.400E+00 2.504E+00 2.599E+00 2.689E+00 2.775E+00 2.937E+00 3.085E+00 3.225E+00	4.614E+00 5.634E+00 6.613E+00 7.559E+00 8.474E+00 1.022E+01 1.188E+01 1.347E+01	3.320E-02 4.180E-02 5.032E-02 5.870E-02 6.694E-02 8.296E-02 9.838E-02 1.132E-01	0.0 0.0 0.0 0.0 0.0 1.908E-02 1.033E-01 2.153E-01	-0.076 -0.074 -0.072 -0.071 -0.070 -0.059 -0.046 -0.039	0.083 0.081 0.079 0.077 0.075 0.072 0.068 0.064	0.077 0.074 0.072 0.070 0.068 0.064 0.058 0.051
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	2.554E+00 2.573E+00 2.590E+00 2.605E+00 2.618E+00 2.640E+00 2.658E+00 2.674E+00	8.060E-01 9.188E-01 1.032E+00 1.147E+00 1.261E+00 1.493E+00 1.725E+00 1.960E+00	3.360E+00 3.492E+00 3.622E+00 3.751E+00 3.879E+00 4.132E+00 4.384E+00 4.634E+00	1.499E+01 1.645E+01 1.785E+01 1.921E+01 2.052E+01 2.302E+01 2.537E+01 2.759E+01	1.275E-01 1.413E-01 1.546E-01 1.674E-01 1.798E-01 2.032E-01 2.250E-01 2.454E-01	3.356E-01 4.562E-01 5.735E-01 6.861E-01 7.934E-01 9.924E-01 1.172E+00 1.336E+00	-0.034 -0.030 -0.027 -0.025 -0.024 -0.021 -0.020 -0.019	0.060 0.057 0.054 0.052 0.049 0.046 0.043	0.046 0.042 0.038 0.035 0.032 0.028 0.025 0.022
100.0000 125.0000 150.0000 200.0000 250.0000 300.0000 350.0000	2.688E+00 2.717E+00 2.741E+00 2.760E+00 2.776E+00 2.803E+00 2.825E+00 2.843E+00	2.195E+00 2.787E+00 3.384E+00 3.984E+00 4.586E+00 5.796E+00 7.012E+00 8.232E+00	4.883E+00 5.505E+00 6.124E+00 6.743E+00 7.362E+00 8.599E+00 9.837E+00 1.107E+01	2.969E+01 3.451E+01 3.881E+01 4.270E+01 5.625E+01 5.252E+01 5.796E+01 6.274E+01	2.645E-01 3.074E-01 3.445E-01 3.770E-01 4.058E-01 4.546E-01 4.945E-01 5.280E-01	1.485E+00 1.809E+00 2.081E+00 2.315E+00 2.520E+00 2.870E+00 3.162E+00 3.414E+00	-0.018 -0.016 -0.015 -0.014 -0.014 -0.012 -0.011	0.038 0.034 0.031 0.029 0.027 0.024 0.022 0.021	0.020 0.017 0.014 0.013 0.011 0.009 0.008 0.007
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	2.858E+00 2.871E+00 2.882E+00 2.892E+00 2.901E+00 2.917E+00 2.930E+00 2.941E+00	9.456E+00 1.068E+01 1.191E+01 1.314E+01 1.437E+01 1.683E+01 1.930E+01 2.177E+01	1.231E+01 1.355E+01 1.479E+01 1.603E+01 1.727E+01 1.975E+01 2.223E+01 2.472E+01	6.702E+01 7.089E+01 7.442E+01 7.767E+01 8.067E+01 8.608E+01 9.085E+01 9.512E+01	5.565E-01 5.811E-01 6.027E-01 6.218E-01 6.388E-01 6.679E-01 6.920E-01 7.123E-01	3.636E+00 3.836E+00 4.017E+00 4.184E+00 4.338E+00 4.614E+00 4.859E+00 5.077E+00	-0.009 -0.009 -0.008 -0.007 -0.007 -0.005 -0.005	0.020 0.019 0.018 0.017 0.017 0.016 0.015 0.014	0.006 0.006 0.005 0.005 0.004 0.004 0.003
1000.0000	2.951E+00	2.425E+01	2.720E+01	9.897E+01	7.297E-01	5.275E+00	-0.003	0.014	0.003

ELECTRONS IN TISSUE-EQUIVALENT GAS (PROPANE BASED)

I = 59.5 eV DENSITY = 1.826E-03 g/cm³ (20° C)

ENERGY		OPPING POWE	R Total	CSDA RANGE	RADIATION YIELD	DENS.EFF.	d(lo	g)/d(l CSDA	ogI) RAD
MeV	MeV cm ² /g		MeV cm ² /g		11200	(DELTA)	LOSS	RANGE	YÏËLD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.340E+01 1.964E+01 1.702E+01 1.509E+01 1.359E+01 1.143E+01 9.933E+00 8.834E+00	3.274E-03 3.290E-03 3.301E-03 3.308E-03 3.314E-03 3.323E-03 3.333E-03 3.343E-03	2.340E+01 1.964E+01 1.703E+01 1.509E+01 1.359E+01 1.143E+01 9.937E+00 8.837E+00	2.410E-04 3.581E-04 4.952E-04 6.516E-04 8.264E-04 1.229E-03 1.700E-03 2.235E-03	7.648E-05 9.195E-05 1.068E-04 1.210E-04 1.348E-04 1.614E-04 1.867E-04 2.110E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.190 -0.182 -0.177 -0.172 -0.168 -0.162 -0.158	0.215 0.206 0.198 0.193 0.188 0.180 0.175 0.170	0.214 0.205 0.198 0.192 0.187 0.180 0.174 0.170
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800	7.990E+00 7.321E+00 6.776E+00 6.325E+00 5.944E+00 5.335E+00 4.872E+00 4.506E+00	3.355E-03 3.367E-03 3.381E-03 3.395E-03 3.410E-03 3.443E-03 3.479E-03 3.518E-03	7.993E+00 7.324E+00 6.780E+00 6.328E+00 5.947E+00 5.339E+00 4.875E+00 4.509E+00	2.830E-03 3.485E-03 4.195E-03 4.959E-03 5.775E-03 7.553E-03 9.516E-03 1.165E-02	2.345E-04 2.573E-04 2.795E-04 3.012E-04 3.223E-04 4.029E-04 4.411E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.151 -0.149 -0.147 -0.145 -0.143 -0.140 -0.138 -0.135	0.167 0.163 0.161 0.158 0.156 0.153 0.150 0.147	0.166 0.163 0.160 0.158 0.156 0.152 0.150 0.147
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	4.210E+00 3.671E+00 3.307E+00 3.046E+00 2.850E+00 2.578E+00 2.400E+00 2.276E+00	3.559E-03 3.672E-03 3.794E-03 4.061E-03 4.357E-03 4.680E-03 5.026E-03	4.214E+00 3.675E+00 3.311E+00 3.050E+00 2.854E+00 2.582E+00 2.404E+00 2.281E+00	1.395E-02 2.033E-02 2.751E-02 3.540E-02 4.388E-02 6.236E-02 8.247E-02 1.039E-01	4.783E-04 5.672E-04 6.515E-04 7.322E-04 8.100E-04 9.592E-04 1.102E-03 1.241E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.134 -0.130 -0.127 -0.125 -0.123 -0.119 -0.117	0.145 0.141 0.138 0.135 0.133 0.129 0.126 0.124	0.145 0.141 0.137 0.134 0.132 0.128 0.126 0.123
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	2.187E+00 2.120E+00 2.069E+00 2.030E+00 1.999E+00 1.956E+00 1.928E+00 1.911E+00	5.394E-03 5.782E-03 6.189E-03 6.612E-03 7.050E-03 7.965E-03 8.927E-03 9.934E-03	2.192E+00 2.126E+00 2.075E+00 2.037E+00 2.006E+00 1.964E+00 1.937E+00 1.921E+00	1.262E-01 1.494E-01 1.732E-01 1.976E-01 2.223E-01 2.727E-01 3.240E-01 3.759E-01	1.378E-03 1.512E-03 1.646E-03 1.780E-03 1.913E-03 2.180E-03 2.449E-03 2.720E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.113 -0.111 -0.110 -0.108 -0.107 -0.105 -0.103 -0.102	0.122 0.121 0.119 0.118 0.117 0.115 0.113 0.112	0.121 0.119 0.118 0.116 0.115 0.113 0.111 0.109
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.901E+00 1.892E+00 1.897E+00 1.908E+00 1.921E+00 1.951E+00 1.981E+00 2.010E+00	1.098E-02 1.375E-02 1.671E-02 1.984E-02 2.309E-02 2.994E-02 3.716E-02 4.468E-02	1.912E+00 1.906E+00 1.914E+00 1.927E+00 1.944E+00 1.981E+00 2.018E+00 2.054E+00	4.281E-01 5.592E-01 6.901E-01 8.203E-01 9.495E-01 1.204E+00 1.454E+00	2.994E-03 3.690E-03 4.404E-03 5.133E-03 5.877E-03 7.399E-03 8.959E-03 1.055E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.100 -0.098 -0.095 -0.093 -0.092 -0.089 -0.087 -0.086	0.110 0.107 0.105 0.103 0.102 0.099 0.097	0.107 0.104 0.102 0.099 0.098 0.095 0.092 0.090
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	2.036E+00 2.060E+00 2.083E+00 2.104E+00 2.123E+00 2.159E+00 2.190E+00 2.218E+00	5.245E-02 6.044E-02 6.862E-02 7.698E-02 8.550E-02 1.029E-01 1.208E-01	2.088E+00 2.121E+00 2.152E+00 2.181E+00 2.209E+00 2.262E+00 2.311E+00 2.357E+00	1.941E+00 2.179E+00 2.413E+00 2.644E+00 2.871E+00 3.319E+00 4.184E+00	1.216E-02 1.379E-02 1.543E-02 1.708E-02 1.874E-02 2.208E-02 2.543E-02 2.879E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.084 -0.083 -0.082 -0.081 -0.080 -0.079 -0.078 -0.076	0.094 0.092 0.091 0.090 0.089 0.087 0.086 0.084	0.088 0.087 0.085 0.084 0.083 0.081 0.080 0.078
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	2.244E+00 2.298E+00 2.343E+00 2.381E+00 2.410E+00 2.454E+00 2.486E+00 2.512E+00	1.578E-01 2.057E-01 2.549E-01 3.053E-01 3.565E-01 4.607E-01 5.669E-01 6.744E-01	2.401E+00 2.504E+00 2.598E+00 2.686E+00 2.767E+00 2.915E+00 3.053E+00 3.186E+00	4.605E+00 5.624E+00 6.604E+00 7.550E+00 8.467E+00 1.023E+01 1.190E+01 1.350E+01	3.215E-02 4.051E-02 4.879E-02 5.695E-02 6.499E-02 8.071E-02 9.592E-02 1.106E-01	0.0 0.0 0.0 7.537E-03 5.064E-02 1.907E-01 3.525E-01 5.139E-01	-0.076 -0.074 -0.072 -0.064 -0.054 -0.041 -0.034 -0.030	0.083 0.081 0.079 0.077 0.074 0.068 0.063	0.077 0.074 0.072 0.069 0.065 0.056 0.049
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.532E+00 2.550E+00 2.565E+00 2.578E+00 2.591E+00 2.612E+00 2.629E+00 2.645E+00	7.831E-01 8.928E-01 1.003E+00 1.114E+00 1.226E+00 1.451E+00 1.677E+00 1.905E+00	3.315E+00 3.443E+00 3.568E+00 3.693E+00 3.817E+00 4.062E+00 4.307E+00 4.550E+00	1.504E+01 1.652E+01 1.795E+01 1.933E+01 2.066E+01 2.320E+01 2.559E+01 2.785E+01	1.248E-01 1.385E-01 1.517E-01 1.644E-01 1.766E-01 1.999E-01 2.216E-01 2.419E-01	6.676E-01 8.118E-01 9.464E-01 1.072E+00 1.189E+00 1.403E+00 1.593E+00 1.763E+00	-0.027 -0.024 -0.023 -0.021 -0.020 -0.019 -0.018 -0.017	0.055 0.052 0.049 0.046 0.044 0.041 0.038 0.036	0.038 0.034 0.031 0.029 0.027 0.023 0.021 0.019
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	2.658E+00 2.687E+00 2.709E+00 2.728E+00 2.774E+00 2.770E+00 2.791E+00 2.808E+00	2.134E+00 2.710E+00 3.291E+00 3.874E+00 4.460E+00 5.638E+00 6.822E+00 8.009E+00	4.792E+00 5.397E+00 6.000E+00 6.602E+00 7.205E+00 8.408E+00 9.612E+00 1.082E+01	2.999E+01 3.490E+01 3.929E+01 4.326E+01 5.330E+01 5.886E+01 6.376E+01	2.610E-01 3.037E-01 3.408E-01 3.733E-01 4.020E-01 4.508E-01 4.909E-01 5.244E-01	1.917E+00 2.251E+00 2.529E+00 2.769E+00 2.980E+00 3.341E+00 3.644E+00 3.907E+00	-0.017 -0.015 -0.014 -0.013 -0.012 -0.011 -0.010 -0.008	0.034 0.030 0.028 0.026 0.024 0.022 0.020 0.019	0.017 0.015 0.013 0.011 0.010 0.008 0.007 0.006
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.822E+00 2.834E+00 2.845E+00 2.854E+00 2.854E+00 2.877E+00 2.890E+00 2.901E+00	9.200E+00 1.039E+01 1.159E+01 1.279E+01 1.398E+01 1.638E+01 1.879E+01 2.119E+01	1.202E+01 1.323E+01 1.443E+01 1.564E+01 1.685E+01 1.926E+01 2.168E+01 2.409E+01	6.814E+01 7.211E+01 7.573E+01 7.905E+01 8.213E+01 8.768E+01 9.257E+01 9.695E+01	5.530E-01 5.778E-01 5.994E-01 6.186E-01 6.357E-01 6.650E-01 6.893E-01 7.097E-01	4.140E+00 4.349E+00 4.539E+00 4.713E+00 4.873E+00 5.161E+00 5.414E+00 5.640E+00	-0.007 -0.006 -0.006 -0.005 -0.004 -0.003 -0.003	0.018 0.017 0.016 0.015 0.015 0.014 0.013 0.013	0.006 0.005 0.004 0.004 0.004 0.003 0.003
1000.0000	2.910E+00	2.360E+01	2.651E+01	1.009E+02	7.273E-01	5.843E+00	-0.002	0.012	0.002

ELECTRONS IN TOLUENE

I = 62.5 eV DENSITY = 8.669E-01 g/cm³

ENERGY		OPPING POWE		CSDA	RADIATION	DENS.EFF.	d(1o	g_)/d(l	
MeV		RADIATIVE MeV cm ² /g	TOTAL MeV cm ² /a	RANGE q/cm ²	YIELD	CORR. (DELTA)	COLL LOSS	CSDA RANGE	RAD YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.285E+01 1.919E+01 1.664E+01 1.475E+01 1.329E+01 1.118E+01 9.719E+00 8.645E+00	2.960E-03 2.970E-03 2.977E-03 2.982E-03 2.986E-03 2.995E-03 3.005E-03	2.286E+01 1.919E+01 1.664E+01 1.475E+01 1.329E+01 1.118E+01 9.722E+00 8.648E+00	2.470E-04 3.669E-04 5.072E-04 6.671E-04 8.459E-04 1.258E-03 1.739E-03 2.285E-03	7.135E-05 8.552E-05 9.908E-05 1.122E-04 1.248E-04 1.491E-04 1.724E-04 1.948E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.192 -0.184 -0.178 -0.174 -0.170 -0.164 -0.159 -0.155	0.218 0.208 0.201 0.195 0.190 0.182 0.176	0.217 0.207 0.200 0.194 0.189 0.182 0.176
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	7.820E+00 7.166E+00 6.634E+00 6.192E+00 5.819E+00 5.225E+00 4.771E+00 4.413E+00	3.026E-03 3.039E-03 3.052E-03 3.067E-03 3.082E-03 3.113E-03 3.147E-03 3.184E-03	7.823E+00 7.169E+00 6.637E+00 6.195E+00 5.823E+00 5.228E+00 4.774E+00 4.417E+00	2.894E-03 3.563E-03 4.288E-03 5.069E-03 7.718E-03 9.723E-03 1.190E-02	2.164E-04 2.374E-04 2.579E-04 2.778E-04 2.974E-04 3.353E-04 3.718E-04 4.072E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.152 -0.150 -0.148 -0.146 -0.144 -0.141 -0.138 -0.136	0.168 0.165 0.162 0.160 0.158 0.154 0.151 0.148	0.168 0.164 0.162 0.159 0.157 0.154 0.151
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.124E+00 3.597E+00 3.241E+00 2.985E+00 2.793E+00 2.527E+00 2.353E+00 2.232E+00	3.222E-03 3.327E-03 3.440E-03 3.560E-03 3.687E-03 3.960E-03 4.258E-03 4.576E-03	4.127E+00 3.600E+00 3.244E+00 2.989E+00 2.797E+00 2.531E+00 2.357E+00 2.236E+00	1.425E-02 2.076E-02 2.809E-02 3.614E-02 4.480E-02 6.365E-02 8.417E-02 1.060E-01	4.415E-04 5.238E-04 6.020E-04 6.769E-04 7.492E-04 8.878E-04 1.021E-03 1.150E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.135 -0.131 -0.128 -0.126 -0.123 -0.120 -0.118	0.146 0.142 0.139 0.136 0.134 0.130 0.127 0.125	0.146 0.142 0.138 0.135 0.133 0.129 0.126 0.124
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.144E+00 2.077E+00 2.024E+00 1.983E+00 1.950E+00 1.901E+00 1.868E+00 1.845E+00	4.915E-03 5.273E-03 5.647E-03 6.036E-03 7.281E-03 8.167E-03 9.092E-03	2.149E+00 2.082E+00 2.030E+00 1.989E+00 1.956E+00 1.908E+00 1.876E+00 1.855E+00	1.288E-01 1.525E-01 1.768E-01 2.017E-01 2.271E-01 2.788E-01 3.317E-01 3.853E-01	1.277E-03 1.403E-03 1.528E-03 1.654E-03 1.780E-03 2.033E-03 2.289E-03 2.549E-03	0.0 2.097E-02 4.725E-02 7.602E-02 1.066E-01 1.715E-01 2.389E-01 3.071E-01	-0.108 -0.090 -0.084 -0.079 -0.074 -0.067 -0.061	0.123 0.119 0.114 0.110 0.106 0.100 0.094 0.089	0.122 0.117 0.112 0.107 0.102 0.094 0.087 0.081
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.830E+00 1.808E+00 1.800E+00 1.799E+00 1.801E+00 1.812E+00 1.824E+00 1.837E+00	1.006E-02 1.261E-02 1.534E-02 1.821E-02 2.121E-02 2.753E-02 3.419E-02 4.112E-02	1.840E+00 1.820E+00 1.815E+00 1.817E+00 1.823E+00 1.839E+00 1.858E+00 1.878E+00	4.395E-01 5.762E-01 7.138E-01 8.515E-01 9.889E-01 1.262E+00 1.533E+00 1.800E+00	2.812E-03 3.488E-03 4.187E-03 4.908E-03 5.648E-03 7.177E-03 8.760E-03 1.039E-02	3.751E-01 5.402E-01 6.953E-01 8.395E-01 9.733E-01 1.213E+00 1.423E+00 1.609E+00	-0.053 -0.046 -0.041 -0.038 -0.036 -0.033 -0.031 -0.029	0.085 0.076 0.070 0.065 0.061 0.055 0.051 0.048	0.076 0.067 0.059 0.054 0.050 0.044 0.040
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.849E+00 1.861E+00 1.872E+00 1.882E+00 1.892E+00 1.909E+00 1.924E+00	4.830E-02 5.568E-02 6.324E-02 7.097E-02 7.883E-02 9.496E-02 1.115E-01 1.285E-01	1.898E+00 1.917E+00 1.935E+00 1.953E+00 1.971E+00 2.004E+00 2.036E+00 2.066E+00	2.065E+00 2.327E+00 2.587E+00 2.844E+00 3.099E+00 3.602E+00 4.097E+00	1.205E-02 1.374E-02 1.545E-02 1.718E-02 1.893E-02 2.247E-02 2.604E-02 2.965E-02	1.776E+00 1.927E+00 2.066E+00 2.193E+00 2.312E+00 2.528E+00 2.720E+00 2.894E+00	-0.028 -0.027 -0.026 -0.025 -0.024 -0.022 -0.021	0.045 0.043 0.041 0.040 0.038 0.036 0.034 0.033	0.035 0.033 0.031 0.030 0.029 0.027 0.025 0.024
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.949E+00 1.974E+00 1.994E+00 2.010E+00 2.023E+00 2.045E+00 2.062E+00 2.076E+00	1.457E-01 1.900E-01 2.357E-01 2.823E-01 3.297E-01 4.264E-01 5.248E-01 6.246E-01	2.095E+00 2.164E+00 2.229E+00 2.292E+00 2.353E+00 2.471E+00 2.587E+00 2.701E+00	5.065E+00 6.239E+00 7.377E+00 8.483E+00 9.560E+00 1.163E+01 1.361E+01	3.327E-02 4.236E-02 5.143E-02 6.044E-02 6.935E-02 8.678E-02 1.036E-01 1.199E-01	3.053E+00 3.403E+00 3.701E+00 3.962E+00 4.195E+00 4.595E+00 4.932E+00 5.221E+00	-0.018 -0.015 -0.012 -0.010 -0.009 -0.006 -0.005 -0.003	0.031 0.028 0.026 0.024 0.022 0.019 0.017	0.023 0.020 0.018 0.016 0.014 0.011 0.009 0.007
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.088E+00 2.099E+00 2.108E+00 2.116E+00 2.124E+00 2.137E+00 2.149E+00 2.159E+00	7.254E-01 8.273E-01 9.297E-01 1.033E+00 1.137E+00 1.345E+00 1.556E+00	2.814E+00 2.926E+00 3.038E+00 3.149E+00 3.260E+00 3.483E+00 3.704E+00 3.926E+00	1.732E+01 1.906E+01 2.073E+01 2.35E+01 2.391E+01 2.688E+01 2.966E+01 3.228E+01	1.355E-01 1.505E-01 1.649E-01 1.787E-01 1.920E-01 2.171E-01 2.404E-01 2.621E-01	5.476E+00 5.702E+00 5.906E+00 6.091E+00 6.261E+00 6.563E+00 6.825E+00 7.058E+00	-0.003 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001	0.014 0.013 0.012 0.011 0.010 0.009 0.009 0.008	0.006 0.005 0.005 0.004 0.004 0.003 0.002 0.002
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.168E+00 2.186E+00 2.202E+00 2.215E+00 2.226E+00 2.245E+00 2.260E+00 2.273E+00	1.980E+00 2.516E+00 3.055E+00 3.598E+00 4.143E+00 5.238E+00 6.339E+00 7.444E+00	4.148E+00 4.702E+00 5.257E+00 5.813E+00 6.369E+00 7.483E+00 8.599E+00 9.717E+00	3.476E+01 4.042E+01 4.544E+01 4.996E+01 5.407E+01 6.131E+01 6.754E+01 7.300E+01	2.823E-01 3.273E-01 3.659E-01 3.994E-01 4.289E-01 4.784E-01 5.186E-01 5.520E-01	7.266E+00 7.708E+00 8.071E+00 8.377E+00 8.643E+00 9.088E+00 9.452E+00 9.759E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.007 0.006 0.006 0.005 0.005 0.004 0.004	0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.284E+00 2.294E+00 2.303E+00 2.311E+00 2.318E+00 2.331E+00 2.342E+00 2.352E+00	8.552E+00 9.662E+00 1.077E+01 1.189E+01 1.300E+01 1.524E+01 1.747E+01 1.972E+01	1.084E+01 1.196E+01 1.308E+01 1.420E+01 1.532E+01 1.757E+01 1.982E+01 2.207E+01	7.787E+01 8.226E+01 8.626E+01 8.993E+01 9.332E+01 9.941E+01 1.048E+02 1.095E+02	5.802E-01 6.045E-01 6.257E-01 6.444E-01 6.609E-01 6.891E-01 7.124E-01 7.319E-01	1.003E+01 1.026E+01 1.047E+01 1.066E+01 1.084E+01 1.114E+01 1.141E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.360E+00	2.196E+01	2.432E+01	1.139E+02	7.485E-01	1.186E+01	-0.000	0.002	0.000

ELECTRONS IN WATER, LIQUID

I = 75.0 eV DENSITY = 1.000E+00 g/cm³

ENERGY	COLLISION	OPPING POWE RADIATIVE	R Total	CSDA Range	RADIATION YIELD	DENS.EFF.	COLL	g)/d(1 CSDA	RAD
MeV	MeV cm²/g	MeV cm ² /g	MeV cm ² /g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.256E+01 1.897E+01 1.647E+01 1.461E+01 1.317E+01 1.109E+01 9.653E+00 8.592E+00	3.898E-03 3.927E-03 3.944E-03 3.955E-03 3.963E-03 3.974E-03 3.984E-03 3.994E-03	2.257E+01 1.898E+01 1.647E+01 1.461E+01 1.318E+01 1.110E+01 9.657E+00 8.596E+00	2.515E-04 3.728E-04 5.147E-04 6.761E-04 8.566E-04 1.272E-03 1.756E-03 2.306E-03	9.408E-05 1.133E-04 1.316E-04 1.492E-04 1.663E-04 1.990E-04 2.301E-04 2.599E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.199 -0.190 -0.184 -0.179 -0.175 -0.169 -0.164	0.227 0.217 0.208 0.202 0.197 0.189 0.182 0.177	0.225 0.215 0.207 0.201 0.196 0.188 0.182 0.177
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.777E+00 7.130E+00 6.603E+00 6.166E+00 5.797E+00 5.207E+00 4.757E+00 4.402E+00	4.005E-03 4.018E-03 4.031E-03 4.046E-03 4.062E-03 4.098E-03 4.138E-03 4.181E-03	7.781E+00 7.134E+00 6.607E+00 6.170E+00 5.801E+00 5.211E+00 4.762E+00 4.407E+00	2.919E-03 3.591E-03 4.320E-03 5.103E-03 5.940E-03 7.762E-03 9.773E-03 1.196E-02	2.886E-04 3.165E-04 3.435E-04 3.698E-04 3.955E-04 4.452E-04 4.931E-04 5.393E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.157 -0.154 -0.152 -0.150 -0.148 -0.145 -0.142 -0.140	0.173 0.170 0.167 0.165 0.162 0.158 0.155 0.155	0.173 0.170 0.167 0.164 0.162 0.158 0.155 0.155
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.115E+00 3.591E+00 3.238E+00 2.984E+00 2.793E+00 2.528E+00 2.355E+00 2.235E+00	4.228E-03 4.355E-03 4.494E-03 4.643E-03 4.801E-03 5.141E-03 5.514E-03 5.913E-03	4.120E+00 3.596E+00 3.242E+00 2.988E+00 2.798E+00 2.533E+00 2.360E+00 2.241E+00	1.431E-02 2.083E-02 2.817E-02 3.622E-02 4.487E-02 6.372E-02 8.421E-02 1.060E-01	5.841E-04 6.912E-04 7.926E-04 8.894E-04 9.826E-04 1.161E-03 1.331E-03 1.496E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.138 -0.134 -0.131 -0.128 -0.126 -0.123 -0.120 -0.118	0.150 0.146 0.142 0.139 0.137 0.133 0.130	0.150 0.145 0.142 0.139 0.136 0.132 0.129
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.148E+00 2.083E+00 2.034E+00 1.995E+00 1.963E+00 1.917E+00 1.886E+00	6.339E-03 6.787E-03 7.257E-03 7.747E-03 8.254E-03 9.312E-03 1.043E-02 1.159E-02	2.154E+00 2.090E+00 2.041E+00 2.003E+00 1.972E+00 1.926E+00 1.896E+00 1.876E+00	1.288E-01 1.523E-01 1.766E-01 2.013E-01 2.265E-01 2.778E-01 3.302E-01 3.832E-01	1.658E-03 1.818E-03 1.976E-03 2.134E-03 2.292E-03 2.608E-03 2.928E-03 3.251E-03	0.0 0.0 0.0 1.103E-02 2.938E-02 7.435E-02 1.267E-01 1.835E-01	-0.116 -0.114 -0.111 -0.094 -0.088 -0.078 -0.070 -0.064	0.126 0.124 0.123 0.120 0.117 0.110 0.105 0.099	0.125 0.123 0.121 0.118 0.114 0.106 0.099 0.093
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.849E+00 1.829E+00 1.822E+00 1.821E+00 1.824E+00 1.834E+00 1.846E+00 1.858E+00	1.280E-02 1.600E-02 1.942E-02 2.303E-02 2.678E-02 3.468E-02 4.299E-02 5.164E-02	1.862E+00 1.845E+00 1.841E+00 1.844E+00 1.850E+00 1.868E+00 1.889E+00 1.910E+00	4.367E-01 5.717E-01 7.075E-01 8.432E-01 9.785E-01 1.247E+00 1.514E+00	3.579E-03 4.416E-03 5.281E-03 6.171E-03 7.085E-03 8.969E-03 1.092E-02 1.291E-02	2.428E-01 3.944E-01 5.437E-01 6.866E-01 8.218E-01 1.069E+00 1.288E+00	-0.059 -0.049 -0.043 -0.038 -0.035 -0.030 -0.027 -0.025	0.095 0.085 0.077 0.071 0.066 0.059 0.054 0.049	0.087 0.075 0.066 0.059 0.053 0.045 0.040
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.870E+00 1.882E+00 1.892E+00 1.902E+00 1.911E+00 1.928E+00 1.943E+00 1.956E+00	6.058E-02 6.976E-02 7.917E-02 8.876E-02 9.854E-02 1.185E-01 1.391E-01	1.931E+00 1.951E+00 1.971E+00 1.971E+00 2.010E+00 2.047E+00 2.082E+00 2.116E+00	2.037E+00 2.295E+00 2.550E+00 2.802E+00 3.052E+00 4.030E+00 4.506E+00	1.495E-02 1.702E-02 1.911E-02 2.123E-02 2.336E-02 2.766E-02 3.200E-02 3.636E-02	1.660E+00 1.821E+00 1.967E+00 2.102E+00 2.227E+00 2.453E+00 2.652E+00 2.831E+00	-0.024 -0.023 -0.022 -0.021 -0.021 -0.020 -0.019 -0.018	0.046 0.043 0.041 0.039 0.038 0.035 0.033	0.033 0.031 0.029 0.027 0.026 0.024 0.023
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.968E+00 1.993E+00 2.014E+00 2.031E+00 2.046E+00 2.070E+00 2.089E+00 2.105E+00	1.814E-01 2.362E-01 2.926E-01 3.501E-01 4.086E-01 5.277E-01 6.489E-01 7.716E-01	2.149E+00 2.230E+00 2.306E+00 2.381E+00 2.454E+00 2.598E+00 2.738E+00 2.876E+00	4.975E+00 6.117E+00 7.219E+00 8.286E+00 9.320E+00 1.130E+01 1.317E+01	4.072E-02 5.163E-02 6.243E-02 7.309E-02 8.355E-02 1.039E-01 1.233E-01	2.992E+00 3.341E+00 3.633E+00 3.885E+00 4.107E+00 4.487E+00 4.806E+00 5.082E+00	-0.018 -0.016 -0.015 -0.014 -0.013 -0.010 -0.009	0.030 0.027 0.025 0.024 0.022 0.020 0.018 0.017	0.020 0.019 0.017 0.016 0.015 0.013 0.011
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.118E+00 2.129E+00 2.139E+00 2.148E+00 2.156E+00 2.170E+00 2.182E+00 2.193E+00	8.955E-01 1.021E+00 1.146E+00 1.273E+00 1.400E+00 1.656E+00 1.914E+00 2.173E+00	3.013E+00 3.150E+00 3.286E+00 3.421E+00 3.556E+00 4.096E+00 4.366E+00	1.665E+01 1.828E+01 1.983E+01 2.132E+01 2.276E+01 2.547E+01 2.799E+01 3.035E+01	1.594E-01 1.762E-01 1.923E-01 2.076E-01 2.222E-01 2.496E-01 2.747E-01 2.978E-01	5.326E+00 5.544E+00 5.741E+00 5.921E+00 6.087E+00 6.383E+00 6.641E+00 6.871E+00	-0.006 -0.005 -0.004 -0.004 -0.003 -0.002 -0.002	0.015 0.014 0.014 0.013 0.012 0.011 0.010 0.009	0.009 0.008 0.007 0.006 0.006 0.005 0.004 0.003
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.202E+00 2.222E+00 2.238E+00 2.251E+00 2.263E+00 2.282E+00 2.297E+00 2.311E+00	2.434E+00 3.089E+00 3.749E+00 4.412E+00 5.078E+00 6.416E+00 7.760E+00 9.107E+00	4.636E+00 5.311E+00 5.987E+00 6.663E+00 7.341E+00 8.698E+00 1.006E+01	3.258E+01 3.761E+01 4.204E+01 4.600E+01 4.957E+01 5.582E+01 6.116E+01 6.583E+01	3.192E-01 3.662E-01 4.060E-01 4.401E-01 4.698E-01 5.190E-01 5.584E-01 5.908E-01	7.077E+00 7.516E+00 7.876E+00 8.182E+00 8.447E+00 8.891E+00 9.254E+00 9.561E+00	-0.001 -0.001 -0.001 -0.001 -0.000 -0.000 -0.000	0.009 0.008 0.007 0.006 0.006 0.005 0.005	0.003 0.002 0.002 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.322E+00 2.332E+00 2.341E+00 2.349E+00 2.357E+00 2.370E+00 2.381E+00 2.391E+00	1.046E+01 1.181E+01 1.317E+01 1.453E+01 1.589E+01 1.861E+01 2.133E+01 2.406E+01	1.278E+01 1.414E+01 1.551E+01 1.688E+01 1.824E+01 2.098E+01 2.371E+01 2.645E+01	6.996E+01 7.368E+01 7.705E+01 8.014E+01 8.299E+01 8.810E+01 9.258E+01 9.657E+01	6.180E-01 6.412E-01 6.613E-01 6.789E-01 6.945E-01 7.209E-01 7.425E-01	9.827E+00 1.006E+01 1.027E+01 1.046E+01 1.064E+01 1.094E+01 1.121E+01 1.145E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.004 0.004 0.004 0.003 0.003	0.001 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.400E+00	2.679E+01	2.919E+01	1.002E+02	7.759E-01	1.166E+01	-0.000	0.003	0.000

ELECTRONS IN WATER, LIQUID (*)

I = 75.0 eV DENSITY = 1.000E+00 g/cm³

ENERGY	ST COLLISION	OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(l	RAD
MeV	MeV cm²/g	MeV cm ² /g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.256E+01 1.897E+01 1.647E+01 1.461E+01 1.317E+01 1.109E+01 9.653E+00 8.592E+00	3.898E-03 3.927E-03 3.944E-03 3.955E-03 3.963E-03 3.974E-03 3.984E-03 3.994E-03	2.257E+01 1.898E+01 1.647E+01 1.461E+01 1.318E+01 1.110E+01 9.657E+00 8.596E+00	2.515E-04 3.728E-04 5.147E-04 6.761E-04 8.566E-04 1.272E-03 1.756E-03 2.306E-03	9.408E-05 1.133E-04 1.316E-04 1.492E-04 1.663E-04 1.990E-04 2.301E-04 2.599E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.199 -0.190 -0.184 -0.179 -0.175 -0.169 -0.164	0.227 0.217 0.208 0.202 0.197 0.189 0.182 0.177	0.225 0.215 0.207 0.201 0.196 0.188 0.182 0.177
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800	7.777E+00 7.130E+00 6.603E+00 6.166E+00 5.797E+00 5.207E+00 4.757E+00 4.402E+00	4.005E-03 4.018E-03 4.031E-03 4.046E-03 4.062E-03 4.098E-03 4.138E-03 4.181E-03	7.781E+00 7.134E+00 6.607E+00 6.170E+00 5.801E+00 5.211E+00 4.762E+00 4.407E+00	2.919E-03 3.591E-03 4.320E-03 5.103E-03 5.940E-03 7.762E-03 9.773E-03 1.196E-02	2.886E-04 3.165E-04 3.435E-04 3.698E-04 3.955E-04 4.452E-04 4.931E-04 5.393E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.157 -0.154 -0.152 -0.150 -0.148 -0.145 -0.142	0.173 0.170 0.167 0.165 0.162 0.158 0.155 0.153	0.173 0.170 0.167 0.164 0.162 0.158 0.155 0.155
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.115E+00 3.591E+00 3.238E+00 2.984E+00 2.793E+00 2.528E+00 2.355E+00 2.233E+00	4.228E-03 4.355E-03 4.494E-03 4.643E-03 4.801E-03 5.141E-03 5.514E-03 5.913E-03	4.120E+00 3.596E+00 3.242E+00 2.988E+00 2.798E+00 2.533E+00 2.360E+00 2.239E+00	1.431E-02 2.083E-02 2.817E-02 3.622E-02 4.487E-02 6.372E-02 8.421E-02 1.060E-01	5.841E-04 6.912E-04 7.926E-04 8.894E-04 9.826E-04 1.161E-03 1.331E-03 1.497E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.187E-03 1.051E-02	-0.138 -0.134 -0.131 -0.128 -0.126 -0.123 -0.120 -0.118	0.150 0.146 0.142 0.139 0.137 0.133 0.130 0.128	0.150 0.145 0.142 0.139 0.136 0.132 0.129
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	2.145E+00 2.079E+00 2.028E+00 1.988E+00 1.956E+00 1.910E+00 1.879E+00 1.858E+00	6.339E-03 6.787E-03 7.257E-03 7.747E-03 8.254E-03 9.312E-03 1.043E-02 1.159E-02	2.152E+00 2.086E+00 2.035E+00 1.996E+00 1.965E+00 1.919E+00 1.890E+00	1.288E-01 1.524E-01 1.767E-01 2.015E-01 2.268E-01 2.783E-01 3.308E-01 3.841E-01	1.659E-03 1.819E-03 1.978E-03 2.137E-03 2.295E-03 2.614E-03 2.935E-03 3.260E-03	2.188E-02 3.663E-02 5.424E-02 7.393E-02 9.538E-02 1.422E-01 1.925E-01 2.448E-01	-0.116 -0.114 -0.111 -0.094 -0.088 -0.078 -0.070	0.126 0.124 0.123 0.120 0.117 0.110 0.105 0.099	0.125 0.123 0.121 0.118 0.114 0.106 0.099 0.093
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.844E+00 1.825E+00 1.820E+00 1.821E+00 1.825E+00 1.837E+00 1.850E+00	1.280E-02 1.600E-02 1.942E-02 2.303E-02 2.678E-02 3.468E-02 4.299E-02 5.164E-02	1.857E+00 1.841E+00 1.839E+00 1.844E+00 1.851E+00 1.871E+00 1.893E+00 1.916E+00	4.378E-01 5.731E-01 7.090E-01 8.448E-01 9.801E-01 1.249E+00 1.514E+00 1.777E+00	3.588E-03 4.428E-03 5.293E-03 6.183E-03 7.094E-03 8.973E-03 1.091E-02 1.290E-02	2.983E-01 4.331E-01 5.648E-01 6.911E-01 8.119E-01 1.036E+00 1.238E+00 1.419E+00	-0.059 -0.049 -0.043 -0.038 -0.035 -0.030 -0.027 -0.025	0.095 0.085 0.077 0.071 0.066 0.059 0.054 0.049	0.087 0.075 0.066 0.059 0.053 0.045 0.040
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.877E+00 1.889E+00 1.900E+00 1.910E+00 1.919E+00 1.936E+00 1.951E+00	6.058E-02 6.976E-02 7.917E-02 8.876E-02 9.854E-02 1.185E-01 1.391E-01	1.937E+00 1.958E+00 1.979E+00 1.999E+00 2.018E+00 2.055E+00 2.090E+00 2.124E+00	2.037E+00 2.293E+00 2.547E+00 2.799E+00 3.048E+00 3.539E+00 4.021E+00 4.496E+00	1.493E-02 1.698E-02 1.907E-02 2.117E-02 2.329E-02 2.757E-02 3.189E-02 3.623E-02	1.585E+00 1.738E+00 1.880E+00 2.011E+00 2.133E+00 2.355E+00 2.736E+00	-0.024 -0.023 -0.022 -0.021 -0.021 -0.020 -0.019 -0.018	0.046 0.043 0.041 0.039 0.038 0.035 0.033	0.033 0.031 0.029 0.027 0.026 0.024 0.023
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000	1.976E+00 2.000E+00 2.020E+00 2.037E+00 2.051E+00 2.074E+00 2.092E+00 2.107E+00	1.814E-01 2.362E-01 2.926E-01 3.501E-01 4.086E-01 5.277E-01 6.489E-01 7.716E-01	2.157E+00 2.237E+00 2.313E+00 2.387E+00 2.459E+00 2.601E+00 2.741E+00 2.878E+00	4.963E+00 6.101E+00 7.200E+00 8.264E+00 9.295E+00 1.127E+01 1.314E+01 1.492E+01	4.058E-02 5.145E-02 6.222E-02 7.286E-02 8.331E-02 1.036E-01 1.230E-01	2.900E+00 3.257E+00 3.558E+00 3.819E+00 4.050E+00 4.444E+00 4.773E+00 5.056E+00	-0.018 -0.016 -0.015 -0.014 -0.013 -0.010 -0.009	0.030 0.027 0.025 0.024 0.022 0.020 0.018 0.017	0.020 0.019 0.017 0.016 0.015 0.013 0.011
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	2.120E+00 2.131E+00 2.141E+00 2.149E+00 2.157E+00 2.171E+00 2.183E+00 2.194E+00	8.955E-01 1.021E+00 1.146E+00 1.273E+00 1.400E+00 1.656E+00 1.914E+00 2.173E+00	3.015E+00 3.151E+00 3.287E+00 3.422E+00 3.558E+00 3.828E+00 4.097E+00 4.367E+00	1.662E+01 1.824E+01 1.980E+01 2.129E+01 2.272E+01 2.543E+01 2.795E+01 3.032E+01	1.592E-01 1.760E-01 1.920E-01 2.074E-01 2.220E-01 2.494E-01 2.745E-01 2.976E-01	5.305E+00 5.527E+00 5.726E+00 5.908E+00 6.074E+00 6.372E+00 6.631E+00 6.861E+00	-0.006 -0.005 -0.004 -0.004 -0.003 -0.002 -0.002	0.015 0.014 0.014 0.013 0.012 0.011 0.010 0.009	0.009 0.008 0.007 0.006 0.006 0.005 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000	2.203E+00 2.223E+00 2.239E+00 2.252E+00 2.264E+00 2.283E+00 2.298E+00 2.312E+00	2.434E+00 3.089E+00 3.749E+00 4.412E+00 5.078E+00 6.416E+00 7.760E+00 9.107E+00	4.637E+00 5.312E+00 5.988E+00 6.664E+00 7.342E+00 8.699E+00 1.006E+01 1.142E+01	3.254E+01 3.757E+01 4.200E+01 4.596E+01 4.953E+01 5.578E+01 6.112E+01 6.578E+01	3.190E-01 3.661E-01 4.058E-01 4.400E-01 4.696E-01 5.189E-01 5.583E-01 5.907E-01	7.067E+00 7.505E+00 7.864E+00 8.170E+00 8.434E+00 9.243E+00 9.551E+00	-0.001 -0.001 -0.001 -0.001 -0.000 -0.000 -0.000	0.009 0.008 0.007 0.006 0.006 0.005 0.005	0.003 0.002 0.002 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.323E+00 2.333E+00 2.342E+00 2.350E+00 2.357E+00 2.370E+00 2.382E+00 2.392E+00	1.046E+01 1.181E+01 1.317E+01 1.453E+01 1.589E+01 1.861E+01 2.133E+01 2.406E+01	1.278E+01 1.415E+01 1.551E+01 1.688E+01 1.824E+01 2.098E+01 2.371E+01 2.645E+01	6.992E+01 7.364E+01 7.701E+01 8.010E+01 8.295E+01 8.806E+01 9.254E+01 9.653E+01	6.179E-01 6.411E-01 6.612E-01 6.788E-01 6.944E-01 7.208E-01 7.424E-01	9.818E+00 1.005E+01 1.027E+01 1.046E+01 1.063E+01 1.094E+01 1.121E+01 1.145E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.004 0.004 0.004 0.003 0.003	0.001 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.400E+00	2.679E+01	2.919E+01	1.001E+02	7.758E-01	1.166E+01	-0.000	0.003	0.000

 $^{^{\}star}$ Evaluated with the density-effect correction of Ashley (1982b).

ELECTRONS IN WATER VAPOR

I = 71.6 eV DENSITY = 7.562E-04 g/cm³ (20°C)

ENERGY	COLLISION	OPPING POWE RADIATIVE	TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	PAD YIELD
MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²					
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.277E+01 1.914E+01 1.661E+01 1.473E+01 1.328E+01 1.118E+01 9.726E+00 8.656E+00	3.898E-03 3.927E-03 3.944E-03 3.955E-03 3.963E-03 3.974E-03 3.984E-03 3.994E-03	2.277E+01 1.914E+01 1.661E+01 1.474E+01 1.329E+01 1.119E+01 9.730E+00 8.660E+00	2.489E-04 3.691E-04 5.097E-04 6.699E-04 8.488E-04 1.261E-03 1.742E-03 2.287E-03	9.311E-05 1.121E-04 1.303E-04 1.479E-04 1.648E-04 1.973E-04 2.282E-04 2.578E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.197 -0.189 -0.183 -0.178 -0.174 -0.167 -0.163 -0.159	0.225 0.214 0.206 0.200 0.195 0.187 0.181 0.176	0.223 0.213 0.205 0.199 0.194 0.186 0.180 0.175
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.834E+00 7.181E+00 6.650E+00 6.209E+00 5.836E+00 5.242E+00 4.789E+00 4.431E+00	4.005E-03 4.018E-03 4.031E-03 4.046E-03 4.062E-03 4.098E-03 4.138E-03 4.181E-03	7.838E+00 7.185E+00 6.654E+00 6.213E+00 5.841E+00 5.246E+00 4.793E+00 4.435E+00	2.895E-03 3.563E-03 4.286E-03 5.065E-03 7.706E-03 9.703E-03 1.187E-02	2.863E-04 3.140E-04 3.409E-04 3.670E-04 3.926E-04 4.420E-04 4.896E-04 5.355E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.156 -0.153 -0.151 -0.149 -0.147 -0.144 -0.141	0.172 0.169 0.166 0.163 0.161 0.157 0.154 0.152	0.172 0.168 0.165 0.163 0.161 0.157 0.154 0.151
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.142E+00 3.614E+00 3.257E+00 3.001E+00 2.809E+00 2.542E+00 2.368E+00 2.247E+00	4.228E-03 4.355E-03 4.494E-03 4.643E-03 4.801E-03 5.141E-03 5.514E-03 5.913E-03	4.146E+00 3.618E+00 3.262E+00 3.006E+00 2.814E+00 2.548E+00 2.374E+00 2.253E+00	1.421E-02 2.069E-02 2.799E-02 3.598E-02 4.459E-02 6.333E-02 8.370E-02 1.054E-01	5.801E-04 6.866E-04 7.874E-04 8.837E-04 9.765E-04 1.154E-03 1.323E-03 1.488E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.137 -0.133 -0.130 -0.128 -0.126 -0.122 -0.119 -0.117	0.149 0.145 0.141 0.138 0.136 0.132 0.130 0.127	0.149 0.144 0.141 0.138 0.136 0.132 0.129 0.126
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.159E+00 2.094E+00 2.045E+00 2.007E+00 1.977E+00 1.934E+00 1.908E+00 1.891E+00	6.339E-03 6.787E-03 7.257E-03 7.747E-03 8.254E-03 9.312E-03 1.043E-02 1.159E-02	2.166E+00 2.101E+00 2.052E+00 2.014E+00 1.985E+00 1.944E+00 1.918E+00 1.903E+00	1.280E-01 1.515E-01 1.756E-01 2.002E-01 2.52E-01 2.761E-01 3.279E-01 3.803E-01	1.649E-03 1.808E-03 1.965E-03 2.122E-03 2.279E-03 2.592E-03 2.907E-03 3.224E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.115 -0.114 -0.112 -0.111 -0.109 -0.107 -0.105 -0.104	0.125 0.123 0.122 0.121 0.119 0.117 0.115 0.114	0.124 0.122 0.120 0.119 0.118 0.115 0.113
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.881E+00 1.874E+00 1.880E+00 1.891E+00 1.905E+00 1.936E+00 1.966E+00	1.280E-02 1.600E-02 1.942E-02 2.303E-02 2.678E-02 3.468E-02 4.299E-02 5.164E-02	1.894E+00 1.890E+00 1.899E+00 1.914E+00 1.932E+00 1.970E+00 2.009E+00	4.330E-01 5.652E-01 6.972E-01 8.284E-01 9.584E-01 1.215E+00 1.466E+00 1.713E+00	3.544E-03 4.356E-03 5.187E-03 6.036E-03 8.665E-03 1.047E-02 1.230E-02	0.0 0.0 0.0 0.0 0.0 0.0	-0.102 -0.099 -0.097 -0.095 -0.093 -0.091 -0.089 -0.087	0.112 0.110 0.107 0.105 0.104 0.101 0.099 0.097	0.110 0.106 0.104 0.101 0.099 0.096 0.094
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	2.022E+00 2.046E+00 2.069E+00 2.090E+00 2.110E+00 2.146E+00 2.178E+00 2.206E+00	6.058E-02 6.976E-02 7.917E-02 8.876E-02 9.854E-02 1.185E-01 1.391E-01	2.082E+00 2.116E+00 2.148E+00 2.179E+00 2.209E+00 2.265E+00 2.317E+00 2.366E+00	1.955E+00 2.193E+00 2.427E+00 2.658E+00 2.886E+00 3.333E+00 3.770E+00 4.197E+00	1.416E-02 1.604E-02 1.792E-02 1.982E-02 2.172E-02 2.555E-02 2.938E-02 3.321E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.086 -0.084 -0.083 -0.082 -0.081 -0.080 -0.079 -0.078	0.095 0.094 0.093 0.091 0.090 0.089 0.087 0.086	0.090 0.088 0.087 0.085 0.084 0.082 0.080
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	2.232E+00 2.286E+00 2.332E+00 2.370E+00 2.404E+00 2.460E+00 2.507E+00 2.544E+00	1.814E-01 2.362E-01 2.926E-01 3.501E-01 4.086E-01 5.277E-01 6.489E-01 7.716E-01	2.413E+00 2.523E+00 2.624E+00 2.721E+00 2.813E+00 2.988E+00 3.155E+00 3.316E+00	4.616E+00 5.628E+00 6.600E+00 7.535E+00 8.439E+00 1.016E+01 1.179E+01 1.334E+01	3.703E-02 4.652E-02 5.587E-02 6.505E-02 7.405E-02 9.147E-02 1.081E-01 1.240E-01	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.481E-02	-0.077 -0.075 -0.073 -0.072 -0.071 -0.069 -0.068 -0.058	0.084 0.082 0.079 0.077 0.076 0.073 0.071	0.077 0.074 0.072 0.070 0.068 0.065 0.062 0.059
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.574E+00 2.598E+00 2.617E+00 2.634E+00 2.649E+00 2.674E+00 2.694E+00 2.711E+00	8.955E-01 1.021E+00 1.146E+00 1.273E+00 1.400E+00 1.656E+00 1.914E+00 2.173E+00	3.469E+00 3.618E+00 3.764E+00 3.907E+00 4.049E+00 4.330E+00 4.608E+00 4.884E+00	1.481E+01 1.622E+01 1.758E+01 1.888E+01 2.014E+01 2.252E+01 2.476E+01 2.687E+01	1.392E-01 1.537E-01 1.677E-01 1.811E-01 1.940E-01 2.184E-01 2.410E-01 2.620E-01	6.811E-02 1.414E-01 2.242E-01 3.108E-01 3.984E-01 5.703E-01 7.335E-01 8.863E-01	-0.049 -0.042 -0.037 -0.033 -0.030 -0.026 -0.023	0.065 0.063 0.060 0.057 0.055 0.051 0.048	0.055 0.051 0.047 0.043 0.040 0.035 0.031 0.027
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	2.726E+00 2.756E+00 2.779E+00 2.779E+00 2.815E+00 2.843E+00 2.865E+00 2.883E+00	2.434E+00 3.089E+00 3.749E+00 4.412E+00 5.078E+00 6.416E+00 7.760E+00 9.107E+00	5.159E+00 5.845E+00 6.528E+00 7.211E+00 7.894E+00 9.258E+00 1.062E+01 1.199E+01	2.886E+01 3.341E+01 3.746E+01 4.110E+01 4.441E+01 5.025E+01 5.529E+01 5.972E+01	2.817E-01 3.256E-01 3.634E-01 3.963E-01 4.252E-01 4.741E-01 5.138E-01 5.469E-01	1.029E+00 1.345E+00 1.614E+00 1.848E+00 2.053E+00 2.402E+00 2.692E+00 2.939E+00	-0.019 -0.017 -0.015 -0.014 -0.014 -0.013 -0.012	0.043 0.038 0.035 0.032 0.030 0.027 0.025 0.023	0.025 0.020 0.017 0.014 0.013 0.010 0.009 0.008
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.899E+00 2.912E+00 2.924E+00 2.935E+00 2.945E+00 2.962E+00 2.977E+00 2.989E+00	1.046E+01 1.181E+01 1.317E+01 1.453E+01 1.589E+01 1.861E+01 2.133E+01 2.406E+01	1.336E+01 1.473E+01 1.609E+01 1.746E+01 1.883E+01 2.157E+01 2.431E+01 2.705E+01	6.367E+01 6.723E+01 7.048E+01 7.346E+01 7.622E+01 8.117E+01 8.554E+01 8.944E+01	5.750E-01 5.992E-01 6.203E-01 6.390E-01 6.555E-01 6.838E-01 7.072E-01 7.268E-01	3.156E+00 3.348E+00 3.522E+00 3.681E+00 3.827E+00 4.088E+00 4.318E+00 4.524E+00	-0.011 -0.011 -0.010 -0.010 -0.009 -0.008 -0.008	0.022 0.021 0.020 0.020 0.019 0.018 0.017 0.016	0.007 0.006 0.006 0.005 0.005 0.004 0.004
1000.0000	3.000E+00	2.679E+01	2.979E+01	9.296E+01	7.435E-01	4.711E+00	-0.006	0.016	0.003

POSITRONS IN CARBON (GRAPHITE)

I = 78.0 eV DENSITY = 2.265E+00 g/cm³

	ENERGY	COLLISION	OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(l CSDA RANGE	ogI) RAD YIELD
	MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm²					
	0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.219E+01 1.857E+01 1.605E+01 1.419E+01 1.276E+01 1.069E+01 9.266E+00 8.218E+00	3.150E-03 3.161E-03 3.168E-03 3.172E-03 3.176E-03 3.184E-03 3.194E-03 3.204E-03	2.219E+01 1.857E+01 1.605E+01 1.420E+01 1.276E+01 1.070E+01 9.269E+00 8.221E+00	2.520E-04 3.757E-04 5.210E-04 6.869E-04 8.730E-04 1.303E-03 1.807E-03 2.381E-03	7.749E-05 9.323E-05 1.083E-04 1.229E-04 1.371E-04 1.644E-04 1.905E-04 2.158E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.182 -0.175 -0.170 -0.166 -0.163 -0.158 -0.154	0.204 0.196 0.189 0.184 0.180 0.173 0.168 0.164	0.203 0.195 0.188 0.183 0.179 0.173 0.168 0.164
	0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.414E+00 6.777E+00 6.260E+00 5.831E+00 5.469E+00 4.893E+00 4.453E+00 4.107E+00	3.215E-03 3.228E-03 3.241E-03 3.255E-03 3.270E-03 3.303E-03 3.375E-03	7.417E+00 6.781E+00 6.263E+00 5.834E+00 5.473E+00 4.896E+00 4.456E+00 4.110E+00	3.022E-03 3.728E-03 4.496E-03 5.324E-03 6.209E-03 8.146E-03 1.029E-02 1.263E-02	2.403E-04 2.641E-04 2.874E-04 3.101E-04 3.324E-04 4.179E-04 4.587E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.148 -0.146 -0.144 -0.142 -0.141 -0.139 -0.137	0.161 0.158 0.156 0.154 0.152 0.149 0.147	0.161 0.158 0.156 0.154 0.152 0.149 0.147
	0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.827E+00 3.317E+00 2.973E+00 2.726E+00 2.541E+00 2.280E+00 2.107E+00 1.986E+00	3.414E-03 3.523E-03 3.640E-03 3.764E-03 4.179E-03 4.489E-03 4.820E-03	3.830E+00 3.320E+00 2.977E+00 2.730E+00 2.545E+00 2.284E+00 2.111E+00 1.990E+00	1.515E-02 2.219E-02 3.017E-02 3.895E-02 4.845E-02 6.926E-02 9.209E-02 1.165E-01	4.985E-04 5.942E-04 6.855E-04 7.735E-04 8.587E-04 1.023E-03 1.182E-03 1.338E-03	0.0 0.0 0.0 0.0 0.0 3.446E-02 7.681E-02 1.205E-01	-0.133 -0.131 -0.128 -0.127 -0.123 -0.097 -0.089 -0.084	0.143 0.139 0.137 0.135 0.133 0.124 0.116	0.143 0.139 0.136 0.134 0.132 0.123 0.114 0.108
	0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.897E+00 1.830E+00 1.778E+00 1.738E+00 1.705E+00 1.657E+00 1.624E+00 1.602E+00	5.173E-03 5.545E-03 5.935E-03 6.340E-03 6.759E-03 7.637E-03 8.559E-03 9.523E-03	1.902E+00 1.836E+00 1.784E+00 1.744E+00 1.712E+00 1.665E+00 1.633E+00 1.611E+00	1.422E-01 1.690E-01 1.967E-01 2.250E-01 2.540E-01 3.133E-01 3.740E-01 4.356E-01	1.492E-03 1.645E-03 1.798E-03 1.951E-03 2.104E-03 2.413E-03 2.726E-03 3.042E-03	1.650E-01 2.097E-01 2.543E-01 2.986E-01 3.424E-01 4.282E-01 5.111E-01 5.909E-01	-0.079 -0.075 -0.072 -0.069 -0.066 -0.062 -0.059	0.105 0.100 0.096 0.093 0.090 0.085 0.081 0.078	0.102 0.097 0.093 0.089 0.086 0.080 0.076
	1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.586E+00 1.563E+00 1.555E+00 1.555E+00 1.555E+00 1.564E+00 1.575E+00 1.587E+00	1.053E-02 1.318E-02 1.602E-02 1.901E-02 2.213E-02 2.870E-02 3.561E-02 4.281E-02	1.596E+00 1.576E+00 1.571E+00 1.572E+00 1.577E+00 1.593E+00 1.611E+00 1.630E+00	4.980E-01 6.558E-01 8.147E-01 9.739E-01 1.133E+00 1.448E+00 1.760E+00 2.069E+00	3.363E-03 4.185E-03 5.033E-03 5.906E-03 6.800E-03 8.643E-03 1.055E-02 1.249E-02	6.675E-01 8.458E-01 1.007E+00 1.153E+00 1.287E+00 1.524E+00 1.730E+00 1.913E+00	-0.054 -0.050 -0.047 -0.045 -0.043 -0.040 -0.038 -0.036	0.075 0.069 0.065 0.062 0.059 0.055 0.052	0.069 0.063 0.058 0.055 0.052 0.048 0.045 0.042
	4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.598E+00 1.609E+00 1.619E+00 1.628E+00 1.637E+00 1.652E+00 1.665E+00 1.677E+00	5.026E-02 5.792E-02 6.576E-02 7.378E-02 8.193E-02 9.865E-02 1.158E-01 1.334E-01	1.649E+00 1.667E+00 1.685E+00 1.702E+00 1.719E+00 1.751E+00 1.781E+00 1.810E+00	2.374E+00 2.675E+00 2.974E+00 3.269E+00 3.561E+00 4.138E+00 4.704E+00 5.261E+00	1.448E-02 1.649E-02 1.853E-02 2.059E-02 2.267E-02 2.686E-02 3.109E-02 3.534E-02	2.077E+00 2.226E+00 2.364E+00 2.492E+00 2.612E+00 2.831E+00 3.029E+00 3.210E+00	-0.034 -0.032 -0.031 -0.029 -0.028 -0.025 -0.022	0.048 0.046 0.044 0.043 0.042 0.039 0.037	0.040 0.038 0.037 0.035 0.034 0.031 0.029 0.027
	10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.687E+00 1.708E+00 1.725E+00 1.738E+00 1.750E+00 1.768E+00 1.783E+00 1.796E+00	1.513E-01 1.971E-01 2.444E-01 2.927E-01 3.417E-01 4.417E-01 5.435E-01 6.466E-01	1.838E+00 1.905E+00 1.969E+00 2.031E+00 2.091E+00 2.210E+00 2.327E+00 2.442E+00	5.809E+00 7.145E+00 8.435E+00 9.686E+00 1.090E+01 1.322E+01 1.543E+01 1.753E+01	3.960E-02 5.027E-02 6.087E-02 7.134E-02 8.165E-02 1.017E-01 1.209E-01	3.377E+00 3.745E+00 4.059E+00 4.334E+00 4.577E+00 4.993E+00 5.339E+00 5.636E+00	-0.017 -0.013 -0.010 -0.008 -0.006 -0.004 -0.003 -0.002	0.034 0.030 0.027 0.024 0.022 0.019 0.017	0.025 0.021 0.017 0.015 0.013 0.010 0.008 0.006
	40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.806E+00 1.816E+00 1.824E+00 1.832E+00 1.838E+00 1.850E+00 1.861E+00 1.870E+00	7.508E-01 8.559E-01 9.617E-01 1.068E+00 1.175E+00 1.391E+00 1.608E+00 1.826E+00	2.557E+00 2.672E+00 2.786E+00 2.900E+00 3.014E+00 3.241E+00 3.469E+00 3.696E+00	1.953E+01 2.144E+01 2.327E+01 2.503E+01 2.672E+01 2.992E+01 3.290E+01 3.569E+01	1.568E-01 1.735E-01 1.894E-01 2.046E-01 2.192E-01 2.465E-01 2.715E-01 2.946E-01	5.894E+00 6.124E+00 6.330E+00 6.517E+00 6.688E+00 6.992E+00 7.256E+00 7.489E+00	-0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001	0.014 0.012 0.012 0.011 0.010 0.009 0.008 0.008	0.005 0.004 0.004 0.003 0.003 0.002 0.002
1 1 2 2 3	100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 350.0000	1.878E+00 1.895E+00 1.910E+00 1.921E+00 1.932E+00 1.949E+00 1.963E+00 1.975E+00	2.046E+00 2.598E+00 3.155E+00 3.714E+00 4.276E+00 5.405E+00 7.678E+00	3.924E+00 4.494E+00 5.064E+00 5.636E+00 6.208E+00 7.354E+00 8.503E+00 9.653E+00	3.832E+01 4.427E+01 4.951E+01 5.418E+01 5.841E+01 6.580E+01 7.212E+01 7.763E+01	3.159E-01 3.629E-01 4.027E-01 4.368E-01 4.665E-01 5.158E-01 5.553E-01 5.878E-01	7.698E+00 8.141E+00 8.504E+00 8.811E+00 9.077E+00 9.522E+00 9.886E+00 1.019E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.007 0.006 0.006 0.005 0.005 0.004 0.004	0.001 0.001 0.001 0.001 0.001 0.000 0.000
2 5 6 7 8	400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	1.985E+00 1.994E+00 2.002E+00 2.009E+00 2.016E+00 2.028E+00 2.038E+00 2.047E+00	8.820E+00 9.964E+00 1.111E+01 1.226E+01 1.340E+01 1.570E+01 1.801E+01 2.031E+01	1.080E+01 1.196E+01 1.311E+01 1.427E+01 1.542E+01 1.773E+01 2.005E+01 2.236E+01	8.253E+01 8.692E+01 9.091E+01 9.457E+01 9.794E+01 1.040E+02 1.140E+02	6.151E-01 6.385E-01 6.587E-01 6.764E-01 6.920E-01 7.186E-01 7.584E-01	1.046E+01 1.070E+01 1.091E+01 1.110E+01 1.127E+01 1.158E+01 1.185E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
(000.000	2.055E+00	2.262E+01	2.468E+01	1.183E+02	7.739E-01	1.229E+01	-0.000	0.002	0.000

POSITRONS IN CARBON (GRAPHITE)

I = 78.0 eV DENSITY = 1.700E+00 g/cm³

ENERGY	COLLISION	OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DEMS.EFF.	COLL	g)/d(l	RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.219E+01 1.856E+01 1.605E+01 1.419E+01 1.276E+01 1.069E+01 9.260E+00 8.212E+00	3.150E-03 3.161E-03 3.168E-03 3.172E-03 3.176E-03 3.184E-03 3.194E-03 3.204E-03	2.219E+01 1.857E+01 1.605E+01 1.419E+01 1.276E+01 1.069E+01 9.264E+00 8.215E+00	2.520E-04 3.758E-04 5.211E-04 6.871E-04 8.732E-04 1.303E-03 1.807E-03 2.382E-03	7.750E-05 9.324E-05 1.083E-04 1.229E-04 1.371E-04 1.644E-04 1.906E-04 2.159E-04	1.920E-03 2.481E-03 3.073E-03 3.695E-03 4.347E-03 5.736E-03 7.236E-03 8.843E-03	-0.182 -0.175 -0.170 -0.165 -0.162 -0.157 -0.153 -0.149	0.204 0.195 0.189 0.184 0.179 0.173 0.168 0.164	0.203 0.194 0.188 0.183 0.179 0.172 0.167 0.163
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.408E+00 6.771E+00 6.254E+00 5.824E+00 5.462E+00 4.885E+00 4.445E+00 4.098E+00	3.215E-03 3.228E-03 3.241E-03 3.255E-03 3.270E-03 3.303E-03 3.375E-03	7.412E+00 6.775E+00 6.257E+00 5.828E+00 5.465E+00 4.888E+00 4.448E+00 4.101E+00	3.024E-03 3.730E-03 4.499E-03 5.328E-03 6.214E-03 8.153E-03 1.030E-02 1.265E-02	2.404E-04 2.642E-04 2.875E-04 3.103E-04 3.327E-04 3.762E-04 4.183E-04 4.593E-04	1.055E-02 1.236E-02 1.425E-02 1.624E-02 1.832E-02 2.271E-02 2.740E-02 3.237E-02	-0.147 -0.144 -0.142 -0.141 -0.139 -0.136 -0.134	0.160 0.157 0.155 0.153 0.151 0.148 0.145 0.143	0.160 0.157 0.155 0.153 0.151 0.148 0.145 0.143
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.817E+00 3.306E+00 2.960E+00 2.712E+00 2.525E+00 2.265E+00 2.094E+00 1.975E+00	3.414E-03 3.523E-03 3.640E-03 3.764E-03 3.896E-03 4.179E-03 4.489E-03 4.820E-03	3.820E+00 3.309E+00 2.964E+00 2.716E+00 2.529E+00 2.270E+00 2.099E+00 1.979E+00	1.517E-02 2.224E-02 3.024E-02 3.907E-02 4.862E-02 6.957E-02 9.253E-02 1.171E-01	4.992E-04 5.953E-04 6.872E-04 7.758E-04 8.618E-04 1.028E-03 1.188E-03 1.345E-03	3.760E-02 5.166E-02 6.694E-02 8.320E-02 1.003E-01 1.363E-01 1.740E-01 2.129E-01	-0.130 -0.126 -0.123 -0.121 -0.118 -0.114 -0.110	0.141 0.137 0.134 0.131 0.129 0.125 0.121 0.118	0.141 0.136 0.133 0.130 0.128 0.124 0.120 0.117
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.887E+00 1.821E+00 1.770E+00 1.730E+00 1.698E+00 1.651E+00 1.619E+00 1.597E+00	5.173E-03 5.545E-03 5.935E-03 6.340E-03 6.759E-03 7.637E-03 8.559E-03 9.523E-03	1.892E+00 1.827E+00 1.776E+00 1.777E+00 1.705E+00 1.659E+00 1.628E+00 1.607E+00	1.430E-01 1.699E-01 1.976E-01 2.261E-01 2.552E-01 3.147E-01 3.756E-01 4.374E-01	1.500E-03 1.654E-03 1.807E-03 1.961E-03 2.114E-03 2.424E-03 2.737E-03 3.054E-03	2.524E-01 2.922E-01 3.321E-01 3.719E-01 4.114E-01 4.891E-01 5.648E-01 6.382E-01	-0.102 -0.099 -0.096 -0.094 -0.091 -0.086 -0.082 -0.079	0.116 0.113 0.111 0.109 0.107 0.104 0.100 0.098	0.114 0.112 0.109 0.107 0.105 0.100 0.097 0.093
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	1.582E+00 1.561E+00 1.553E+00 1.552E+00 1.555E+00 1.564E+00 1.576E+00 1.589E+00	1.053E-02 1.318E-02 1.602E-02 1.901E-02 2.213E-02 2.870E-02 3.561E-02 4.281E-02	1.592E+00 1.574E+00 1.569E+00 1.571E+00 1.577E+00 1.593E+00 1.612E+00 1.631E+00	5.000E-01 6.580E-01 8.172E-01 9.765E-01 1.135E+00 1.451E+00 1.763E+00 2.071E+00	3.376E-03 4.198E-03 5.046E-03 5.918E-03 6.812E-03 8.653E-03 1.055E-02 1.250E-02	7.091E-01 8.756E-01 1.028E+00 1.167E+00 1.295E+00 1.522E+00 1.720E+00 1.894E+00	-0.076 -0.070 -0.066 -0.063 -0.060 -0.056 -0.054	0.095 0.090 0.085 0.082 0.079 0.074 0.070	0.090 0.084 0.079 0.075 0.071 0.066 0.062 0.059
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.600E+00 1.612E+00 1.622E+00 1.632E+00 1.641E+00 1.658E+00 1.672E+00 1.685E+00	5.026E-02 5.792E-02 6.576E-02 7.378E-02 8.193E-02 9.865E-02 1.158E-01 1.334E-01	1.651E+00 1.670E+00 1.688E+00 1.706E+00 1.723E+00 1.756E+00 1.788E+00 1.818E+00	2.376E+00 2.677E+00 2.975E+00 3.270E+00 3.561E+00 4.136E+00 4.700E+00 5.255E+00	1.448E-02 1.649E-02 1.852E-02 2.057E-02 2.264E-02 2.682E-02 3.102E-02 3.525E-02	2.051E+00 2.193E+00 2.323E+00 2.443E+00 2.555E+00 2.758E+00 2.939E+00 3.104E+00	-0.050 -0.048 -0.046 -0.045 -0.044 -0.041 -0.038 -0.036	0.065 0.063 0.061 0.060 0.058 0.056 0.054 0.052	0.057 0.055 0.053 0.051 0.050 0.047 0.045 0.042
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.696E+00 1.720E+00 1.738E+00 1.754E+00 1.766E+00 1.787E+00 1.803E+00 1.816E+00	1.513E-01 1.971E-01 2.444E-01 2.927E-01 3.417E-01 4.417E-01 5.435E-01 6.466E-01	1.847E+00 1.917E+00 1.983E+00 2.046E+00 2.108E+00 2.228E+00 2.346E+00 2.462E+00	5.800E+00 7.129E+00 8.411E+00 9.652E+00 1.086E+01 1.316E+01 1.535E+01 1.743E+01	3.949E-02 5.007E-02 6.058E-02 7.095E-02 8.116E-02 1.010E-01 1.200E-01	3.256E+00 3.591E+00 3.879E+00 4.133E+00 4.361E+00 4.755E+00 5.088E+00 5.376E+00	-0.033 -0.028 -0.023 -0.019 -0.016 -0.011 -0.008 -0.006	0.050 0.046 0.042 0.039 0.036 0.032 0.028	0.040 0.036 0.031 0.028 0.025 0.020 0.016
40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.827E+00 1.837E+00 1.845E+00 1.853E+00 1.860E+00 1.872E+00 1.882E+00 1.892E+00	7.508E-01 8.559E-01 9.617E-01 1.068E+00 1.175E+00 1.391E+00 1.608E+00 1.826E+00	2.578E+00 2.692E+00 2.807E+00 2.921E+00 3.035E+00 3.263E+00 3.490E+00 3.718E+00	1.941E+01 2.131E+01 2.313E+01 2.488E+01 2.655E+01 2.973E+01 3.269E+01 3.547E+01	1.556E-01 1.722E-01 1.880E-01 2.031E-01 2.176E-01 2.447E-01 2.696E-01 2.925E-01	5.628E+00 5.854E+00 6.057E+00 6.241E+00 6.411E+00 6.712E+00 6.974E+00 7.206E+00	-0.005 -0.004 -0.003 -0.003 -0.002 -0.002 -0.001	0.023 0.022 0.020 0.019 0.018 0.016 0.015	0.011 0.010 0.008 0.007 0.006 0.005 0.004
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	1.900E+00 1.917E+00 1.931E+00 1.943E+00 1.954E+00 1.971E+00 1.985E+00 1.997E+00	2.046E+00 2.598E+00 3.155E+00 3.714E+00 4.276E+00 5.405E+00 6.540E+00 7.678E+00	3.946E+00 4.516E+00 5.086E+00 5.658E+00 6.230E+00 7.376E+00 8.525E+00 9.675E+00	3.808E+01 4.400E+01 4.921E+01 5.387E+01 5.808E+01 6.545E+01 7.175E+01	3.138E-01 3.607E-01 4.003E-01 4.344E-01 4.641E-01 5.135E-01 5.530E-01 5.856E-01	7.415E+00 7.857E+00 8.219E+00 8.525E+00 8.791E+00 9.236E+00 9.599E+00 9.907E+00	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.013 0.011 0.010 0.009 0.008 0.007 0.007	0.003 0.002 0.002 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.007E+00 2.016E+00 2.024E+00 2.031E+00 2.038E+00 2.050E+00 2.060E+00 2.069E+00	8.820E+00 9.964E+00 1.111E+01 1.226E+01 1.340E+01 1.570E+01 1.801E+01 2.031E+01	1.083E+01 1.198E+01 1.313E+01 1.429E+01 1.544E+01 1.775E+01 2.007E+01 2.238E+01	8.213E+01 8.652E+01 9.050E+01 9.415E+01 9.752E+01 1.036E+02 1.088E+02	6.129E-01 6.363E-01 6.566E-01 6.744E-01 6.901E-01 7.167E-01 7.385E-01	1.017E+01 1.041E+01 1.062E+01 1.081E+01 1.098E+01 1.129E+01 1.156E+01 1.179E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.006 0.006 0.005 0.005 0.005 0.005 0.005	0.001 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.077E+00	2.262E+01	2.470E+01	1.178E+02	7.723E-01	1.200E+01	-0.000	0.004	0.000

POSITRONS IN ALUMINUM

I = 166.0 eV DENSITY = 2.699E+00 g/cm³

ENERGY	COLLISION	DPPING POWE RADIATIVE	R Total	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(l CSDA RANGE	ogI) RAD YIELD
MeV 0.0100	MeV cm^2/g 1.846E+01	MeV cm^2/g 6.559E-03	MeV cm^2/g 1.847E+01	g/cm ² 3.090E-04	1.867E-04	0.0	-0.211	0.243	0.239
0.0125	1.554E+01	6.700E-03	1.555E+01	4.572E-04	2.280E-04	0.0	-0.202	0.231	0.228
0.0150	1.349E+01	6.798E-03	1.350E+01	6.303E-04	2.679E-04	0.0	-0.195	0.222	0.219
0.0175	1.197E+01	6.871E-03	1.198E+01	8.273E-04	3.066E-04	0.0	-0.190	0.215	0.212
0.0200	1.080E+01	6.926E-03	1.080E+01	1.047E-03	3.442E-04	0.0	-0.186	0.209	0.207
0.0250	9.087E+00	7.004E-03	9.094E+00	1.554E-03	4.166E-04	0.0	-0.179	0.200	0.198
0.0300	7.900E+00	7.059E-03	7.907E+00	2.145E-03	4.858E-04	0.0	-0.174	0.194	0.192
0.0350	7.026E+00	7.100E-03	7.033E+00	2.817E-03	5.524E-04	0.0	-0.170	0.188	0.187
0.0400	6.352E+00 5.817E+00	7.133E-03 7.162E-03	6.359E+00 5.825E+00	3.566E-03 4.389E-03	6.166E-04 6.787E-04	0.0	-0.167 -0.164	0.184	0.183 0.179
0.0500	5.382E+00	7.191E-03	5.389E+00	5.282E-03	7.391E-04	0.0	-0.162	0.177	0.176
0.0550	5.020E+00	7.217E-03	5.027E+00	6.244E-03	7.978E-04	0.0	-0.160	0.175	0.174
0.0600	4.714E+00	7.243E-03	4.721E+00	7.271E-03	8.551E-04	0.0	-0.158	0.172	0.172
0.0700	4.225E+00	7.295E-03	4.233E+00	9.512E-03	9.657E-04	0.0	-0.155	0.169	0.168
0.0800	3.852E+00 3.557E+00	7.350E-03 7.411E-03	3.859E+00 3.565E+00	1.199E-02 1.469E-02	1.072E-03 1.174E-03	0.0	-0.152 -0.150	0.165	0.165
0.1000	3.319E+00	7.476E-03	3.326E+00	1.760E-02	1.273E-03	0.0	-0.148	0.160	0.160
0.1250	2.884E+00	7.659E-03	2.891E+00	2.569E-02	1.509E-03	0.0	-0.145	0.156	0.155
0.1500	2.590E+00	7.865E-03	2.598E+00	3.484E-02	1.730E-03	0.0	-0.142	0.153	0.152
0.1750	2.378E+00	8.096E-03	2.387E+00	4.490E-02	1.942E-03	0.0	-0.140	0.150	0.149
0.2000 0.2500 0.3000	2.220E+00 2.000E+00 1.855E+00	8.344E-03 8.888E-03 9.487E-03	2.228E+00 2.009E+00 1.865E+00	5.575E-02 7.947E-02 1.054E-01	2.145E-03 2.534E-03 2.904E-03	0.0 0.0 0.0 7.102E-03	-0.138 -0.134 -0.126	0.148 0.144 0.140	0.147 0.143 0.139
0.3500 0.4000 0.4500	1.754E+00 1.681E+00	1.013E-02 1.082E-02	1.765E+00 1.692E+00	1.330E-01 1.619E-01	3.263E-03 3.614E-03	1.706E-02 2.867E-02	-0.122	0.137	0.135
0.5000 0.5500 0.6000	1.627E+00 1.585E+00 1.553E+00 1.527E+00	1.154E-02 1.230E-02 1.309E-02 1.390E-02	1.638E+00 1.597E+00 1.566E+00 1.541E+00	1.920E-01 2.229E-01 2.545E-01 2.867E-01	3.959E-03 4.300E-03 4.639E-03 4.977E-03	4.148E-02 5.517E-02 6.950E-02 8.429E-02	-0.115 -0.112 -0.110 -0.108	0.131 0.128 0.126 0.124	0.129 0.126 0.124 0.121
0.7000	1.490E+00	1.560E-02	1.506E+00	3.524E-01	5.650E-03	1.147E-01	-0.104	0.120	0.117
0.8000	1.467E+00	1.739E-02	1.484E+00	4.194E-01	6.323E-03	1.458E-01	-0.100	0.117	0.114
0.9000	1.451E+00	1.925E-02	1.471E+00	4.871E-01	6.999E-03	1.771E-01	-0.097	0.115	0.111
1.0000	1.441E+00	2.119E-02	1.463E+00	5.553E-01	7.678E-03	2.084E-01	-0.095	0.112	0.108
1.2500	1.431E+00	2.630E-02	1.457E+00	7.267E-01	9.394E-03	2.862E-01	-0.088	0.107	0.101
1.5000	1.431E+00	3.177E-02	1.463E+00	8.980E-01	1.114E-02	3.630E-01	-0.082	0.102	0.096
1.7500	1.436E+00	3.752E-02	1.473E+00	1.068E+00	1.292E-02	4.393E-01	-0.077	0.098	0.091
2.0000	1.443E+00	4.350E-02	1.486E+00	1.237E+00	1.472E-02	5.153E-01	-0.072	0.095	0.087
2.5000	1.459E+00	5.605E-02	1.515E+00	1.570E+00	1.840E-02	6.671E-01	-0.062	0.088	0.079
3.0000	1.474E+00	6.924E-02	1.544E+00	1.897E+00	2.216E-02	8.175E-01	-0.053	0.083	0.071
3.5000	1.489E+00	8.292E-02	1.571E+00	2.218E+00	2.596E-02	9.643E-01	-0.046	0.077	0.065
4.0000	1.501E+00	9.702E-02	1.598E+00	2.534E+00	2.981E-02	1.106E+00	-0.041	0.073	0.059
4.5000	1.513E+00	1.115E-01	1.624E+00	2.844E+00	3.368E-02	1.240E+00	-0.037	0.069	0.054
5.0000	1.523E+00	1.263E-01	1.649E+00	3.150E+00	3.758E-02	1.368E+00	-0.033	0.065	0.050
5.5000	1.533E+00	1.413E-01	1.674E+00	3.451E+00	4.148E-02	1.490E+00	-0.031	0.062	0.046
6.0000	1.541E+00	1.567E-01	1.698E+00	3.747E+00	4.538E-02	1.605E+00	-0.029	0.059	0.043
7.0000	1.556E+00	1.879E-01	1.744E+00	4.328E+00	5.319E-02	1.817E+00	-0.025	0.055	0.038
8.0000	1.570E+00	2.200E-01	1.790E+00	4.894E+00	6.096E-02	2.009E+00	-0.023	0.051	0.034
9.0000	1.581E+00	2.526E-01	1.834E+00	5.446E+00	6.867E-02	2.184E+00	-0.021	0.048	0.031
10.0000 12.5000	1.592E+00 1.614E+00	2.858E-01 3.706E-01	1.877E+00 1.984E+00	5.985E+00 7.280E+00	7.631E-02 9.498E-02	2.343E+00 2.690E+00	-0.020 -0.018	0.045	0.028
15.0000	1.631E+00	4.574E-01	2.089E+00	8.508E+00	1.130E-01	2.982E+00	-0.016	0.036	0.021
17.5000	1.646E+00	5.459E-01	2.192E+00	9.676E+00	1.303E-01	3.233E+00	-0.015	0.033	0.019
20.0000	1.659E+00	6.357E-01	2.295E+00	1.079E+01	1.469E-01	3.454E+00	-0.014	0.031	0.017
25.0000	1.680E+00	8.180E-01	2.498E+00	1.288E+01	1.781E-01	3.830E+00	-0.013	0.027	0.014
30.0000 35.0000	1.697E+00 1.711E+00	1.003E+00 1.190E+00	2.700E+00 2.901E+00	1.480E+01 1.659E+01	2.068E-01 2.331E-01	4.143E+00 4.412E+00	-0.011 -0.010	0.025	0.012
40.0000	1.723E+00	1.379E+00	3.102E+00	1.826E+01	2.575E-01	4.649E+00	-0.009	0.021	0.010
45.0000	1.733E+00	1.569E+00	3.303E+00	1.982E+01	2.800E-01	4.860E+00	-0.008	0.020	0.009
50.0000	1.742E+00	1.761E+00	3.503E+00	2.129E+01	3.009E-01	5.051E+00	-0.007	0.019	0.008
55.0000	1.750E+00	1.953E+00	3.704E+00	2.268E+01	3.204E-01	5.226E+00	-0.007	0.018	0.007
60.0000	1.758E+00	2.147E+00	3.904E+00	2.399E+01	3.386E-01	5.387E+00	-0.006	0.017	0.007
70.0000	1.770E+00	2.535E+00	4.306E+00	2.643E+01	3.716E-01	5.676E+00	-0.005	0.016	0.006
80.0000	1.781E+00	2.927E+00	4.708E+00	2.865E+01	4.009E-01	5.928E+00	-0.004	0.015	0.005
90.0000	1.791E+00	3.320E+00	5.110E+00	3.069E+01	4.270E-01	6.153E+00	-0.003	0.014	0.004
100.0000	1.799E+00	3.714E+00	5.513E+00	3.257E+01	4.505E-01	6.356E+00	-0.003	0.013	0.004
125.0000	1.816E+00	4.707E+00	6.523E+00	3.673E+01	5.002E-01	6.790E+00	-0.002	0.012	0.003
150.0000	1.830E+00	5.705E+00	7.535E+00	4.030E+01	5.402E-01	7.147E+00	-0.001	0.011	0.002
175.0000	1.842E+00	6.708E+00	8.550E+00	4.341E+01	5.732E-01	7.450E+00	-0.001	0.010	0.002
200.0000	1.852E+00	7.714E+00	9.566E+00	4.617E+01	6.010E-01	7.714E+00	-0.001	0.009	0.002
250.0000	1.869E+00	9.734E+00	1.160E+01	5.091E+01	6.456E-01	8.156E+00	-0.001	0.008	0.001
300.0000	1.883E+00	1.176E+01	1.364E+01	5.488E+01	6.798E-01	8.518E+00	-0.000	0.008	0.001
350.0000	1.894E+00	1.380E+01	1.569E+01	5.830E+01	7.071E-01	8.825E+00	-0.000	0.007	0.001
400.0000	1.904E+00	1.583E+01	1.774E+01	6.129E+01	7.295E-01	9.091E+00	-0.000	0.007	0.001
450.0000	1.913E+00	1.787E+01	1.979E+01	6.396E+01	7.483E-01	9.326E+00	-0.000	0.007	0.001
500.0000	1.921E+00	1.992E+01	2.184E+01	6.636E+01	7.642E-01	9.536E+00	-0.000	0.007	0.001
550.0000 600.0000 700.0000 800.0000	1.928E+00 1.934E+00 1.946E+00 1.956E+00	2.196E+01 2.401E+01 2.811E+01 3.221E+01	2.389E+01 2.594E+01 3.005E+01 3.416E+01	6.855E+01 7.056E+01 7.414E+01 7.726E+01	7.780E-01 7.900E-01 8.101E-01 8.262E-01	9.726E+00 9.900E+00 1.021E+01 1.047E+01	-0.000 -0.000 -0.000	0.006 0.006 0.006	0.001 0.001 0.000 0.000
900.0000	1.964E+00 1.972E+00	3.631E+01 4.042E+01	3.828E+01 4.239E+01	8.002E+01 8.250E+01	8.395E-01 8.507E-01	1.071E+01 1.092E+01	-0.000	0.005	0.000

POSITRONS IN COPPER

I = 322.0 eV DENSITY = 8.960E+00 g/cm³

ENERGY		OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR.	COLL	g)/d(1 CSDA	ogI) RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0350	1.505E+01 1.275E+01 1.113E+01 9.915E+00 8.970E+00 7.588E+00 6.622E+00 5.906E+00	1.213E-02 1.277E-02 1.327E-02 1.366E-02 1.399E-02 1.449E-02 1.488E-02 1.518E-02	1.506E+01 1.276E+01 1.114E+01 9.929E+00 8.984E+00 7.603E+00 6.637E+00 5.921E+00	3.891E-04 5.702E-04 7.804E-04 1.019E-03 1.284E-03 1.891E-03 2.597E-03 3.396E-03	4.006E-04 5.011E-04 6.003E-04 6.979E-04 7.940E-04 9.819E-04 1.164E-03 1.341E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.245 -0.233 -0.224 -0.217 -0.211 -0.203 -0.196 -0.191	0.293 0.276 0.263 0.253 0.245 0.233 0.223	0.283 0.267 0.255 0.246 0.239 0.227 0.219
0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	5.353E+00 4.912E+00 4.552E+00 4.252E+00 3.999E+00 3.592E+00 3.281E+00 3.034E+00	1.543E-02 1.564E-02 1.583E-02 1.600E-02 1.615E-02 1.641E-02 1.665E-02 1.688E-02	5.369E+00 4.928E+00 4.568E+00 4.268E+00 4.015E+00 3.609E+00 3.297E+00 3.051E+00	4.285E-03 5.258E-03 6.313E-03 7.446E-03 8.655E-03 1.129E-02 1.419E-02 1.735E-02	1.513E-03 1.681E-03 1.845E-03 2.005E-03 2.162E-03 2.466E-03 2.758E-03 3.039E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.187 -0.184 -0.181 -0.178 -0.176 -0.172 -0.169 -0.167	0.211 0.206 0.202 0.198 0.195 0.190 0.186 0.183	0.207 0.203 0.199 0.196 0.193 0.188 0.184
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000	2.835E+00 2.469E+00 2.222E+00 2.040E+00 1.904E+00 1.714E+00 1.590E+00 1.503E+00	1.710E-02 1.763E-02 1.816E-02 1.870E-02 1.926E-02 2.045E-02 2.172E-02 2.307E-02	2.852E+00 2.487E+00 2.240E+00 2.059E+00 1.923E+00 1.735E+00 1.612E+00 1.526E+00	2.074E-02 3.017E-02 4.078E-02 5.245E-02 6.503E-02 9.250E-02 1.225E-01 1.544E-01	3.312E-03 3.960E-03 4.567E-03 5.143E-03 5.694E-03 6.737E-03 7.721E-03 8.660E-03	0.0 0.0 2.607E-03 2.460E-02 4.545E-02 8.470E-02 1.217E-01 1.572E-01	-0.165 -0.160 -0.141 -0.131 -0.128 -0.122 -0.117 -0.113	0.180 0.174 0.169 0.161 0.154 0.145 0.138	0.178 0.172 0.167 0.159 0.153 0.143 0.136
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.440E+00 1.393E+00 1.358E+00 1.330E+00 1.308E+00 1.276E+00 1.256E+00	2.450E-02 2.600E-02 2.757E-02 2.919E-02 3.087E-02 3.437E-02 3.803E-02 4.185E-02	1.465E+00 1.419E+00 1.385E+00 1.359E+00 1.339E+00 1.310E+00 1.294E+00 1.284E+00	1.879E-01 2.226E-01 2.582E-01 2.947E-01 3.318E-01 4.074E-01 4.842E-01 5.618E-01	9.567E-03 1.045E-02 1.132E-02 1.217E-02 1.301E-02 1.467E-02 1.631E-02 1.795E-02	1.916E-01 2.249E-01 2.573E-01 2.889E-01 3.198E-01 3.794E-01 4.363E-01 4.907E-01	-0.110 -0.107 -0.104 -0.102 -0.100 -0.096 -0.093 -0.090	0.129 0.125 0.122 0.120 0.117 0.113 0.110	0.126 0.123 0.119 0.116 0.114 0.109 0.106 0.102
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.234E+00 1.225E+00 1.225E+00 1.236E+00 1.236E+00 1.251E+00 1.266E+00 1.280E+00	4.580E-02 5.623E-02 6.733E-02 7.896E-02 9.103E-02 1.162E-01 1.425E-01 1.697E-01	1.280E+00 1.281E+00 1.293E+00 1.309E+00 1.327E+00 1.367E+00 1.409E+00	6.398E-01 8.352E-01 1.030E+00 1.222E+00 1.412E+00 1.783E+00 2.143E+00 2.493E+00	1.957E-02 2.362E-02 2.768E-02 3.176E-02 3.585E-02 4.404E-02 5.222E-02 6.035E-02	5.430E-01 6.652E-01 7.772E-01 8.810E-01 9.779E-01 1.155E+00 1.314E+00	-0.087 -0.082 -0.077 -0.073 -0.070 -0.064 -0.060 -0.056	0.104 0.099 0.094 0.091 0.088 0.082 0.078	0.099 0.093 0.088 0.084 0.080 0.074 0.068 0.064
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.294E+00 1.306E+00 1.317E+00 1.327E+00 1.337E+00 1.354E+00 1.369E+00	1.976E-01 2.261E-01 2.552E-01 2.847E-01 3.146E-01 3.756E-01 4.378E-01 5.009E-01	1.491E+00 1.532E+00 1.572E+00 1.612E+00 1.651E+00 1.729E+00 1.806E+00 1.883E+00	2.833E+00 3.164E+00 3.486E+00 3.800E+00 4.107E+00 4.698E+00 5.264E+00 5.806E+00	6.841E-02 7.638E-02 8.424E-02 9.199E-02 9.962E-02 1.145E-01 1.290E-01	1.590E+00 1.712E+00 1.825E+00 1.929E+00 2.027E+00 2.206E+00 2.366E+00 2.510E+00	-0.053 -0.050 -0.048 -0.047 -0.045 -0.043 -0.041 -0.039	0.071 0.068 0.066 0.064 0.062 0.058 0.055 0.053	0.060 0.057 0.054 0.052 0.050 0.046 0.043
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.394E+00 1.418E+00 1.439E+00 1.455E+00 1.469E+00 1.492E+00 1.510E+00 1.525E+00	5.650E-01 7.282E-01 8.949E-01 1.064E+00 1.236E+00 1.583E+00 1.936E+00 2.291E+00	1.959E+00 2.147E+00 2.333E+00 2.519E+00 2.705E+00 3.076E+00 3.446E+00 3.817E+00	6.327E+00 7.546E+00 8.662E+00 9.693E+00 1.065E+01 1.238E+01 1.392E+01	1.563E-01 1.880E-01 2.169E-01 2.436E-01 2.681E-01 3.119E-01 3.497E-01 3.829E-01	2.642E+00 2.931E+00 3.176E+00 3.390E+00 3.581E+00 3.913E+00 4.197E+00 4.445E+00	-0.038 -0.035 -0.032 -0.030 -0.027 -0.024 -0.020 -0.018	0.051 0.047 0.044 0.041 0.039 0.035 0.032 0.030	0.038 0.034 0.030 0.028 0.025 0.021 0.018 0.016
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	1.538E+00 1.548E+00 1.558E+00 1.566E+00 1.573E+00 1.587E+00 1.598E+00 1.607E+00	2.650E+00 3.012E+00 3.375E+00 3.740E+00 4.107E+00 4.844E+00 5.586E+00 6.330E+00	4.188E+00 4.560E+00 4.933E+00 5.306E+00 6.430E+00 7.183E+00 7.938E+00	1.655E+01 1.769E+01 1.874E+01 1.972E+01 2.063E+01 2.229E+01 2.376E+01 2.508E+01	4.121E-01 4.382E-01 4.617E-01 4.829E-01 5.021E-01 5.359E-01 5.647E-01 5.895E-01	4.666E+00 4.865E+00 5.046E+00 5.212E+00 5.365E+00 5.639E+00 5.880E+00 6.094E+00	-0.016 -0.014 -0.013 -0.012 -0.011 -0.010 -0.009 -0.008	0.028 0.027 0.026 0.025 0.024 0.022 0.021 0.020	0.014 0.013 0.012 0.011 0.010 0.008 0.007 0.007
100.0000 125.0000 150.0000 200.0000 200.0000 300.0000 350.0000	1.616E+00 1.634E+00 1.648E+00 1.660E+00 1.670E+00 1.687E+00 1.701E+00	7.079E+00 8.958E+00 1.085E+01 1.275E+01 1.465E+01 1.847E+01 2.230E+01 2.613E+01	8.695E+00 1.059E+01 1.250E+01 1.441E+01 1.632E+01 2.015E+01 2.400E+01 2.784E+01	2.628E+01 2.888E+01 3.105E+01 3.292E+01 3.455E+01 3.730E+01 3.957E+01 4.150E+01	6.111E-01 6.551E-01 6.888E-01 7.157E-01 7.377E-01 7.716E-01 7.969E-01 8.165E-01	6.288E+00 6.701E+00 7.042E+00 7.333E+00 7.587E+00 8.015E+00 8.368E+00 8.668E+00	-0.007 -0.006 -0.005 -0.005 -0.004 -0.003 -0.003	0.019 0.017 0.016 0.015 0.015 0.014 0.013 0.012	0.006 0.005 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	1.722E+00 1.731E+00 1.738E+00 1.745E+00 1.751E+00 1.762E+00 1.772E+00 1.780E+00	2.998E+01 3.382E+01 3.767E+01 4.153E+01 4.539E+01 5.311E+01 6.083E+01 6.856E+01	3.170E+01 3.555E+01 3.941E+01 4.327E+01 4.714E+01 5.487E+01 6.260E+01 7.034E+01	4.318E+01 4.467E+01 4.601E+01 4.722E+01 4.832E+01 5.029E+01 5.199E+01 5.350E+01	8.322E-01 8.451E-01 8.560E-01 8.652E-01 8.733E-01 8.864E-01 8.969E-01 9.053E-01	8.930E+00 9.161E+00 9.369E+00 9.557E+00 9.729E+01 1.030E+01 1.053E+01	-0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001	0.012 0.011 0.011 0.011 0.011 0.010 0.010	0.001 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	1.787E+00	7.629E+01	7.808E+01	5.485E+01	9.124E-01	1.074E+01	-0.000	0.009	0.001

POSITRONS IN SILVER

I = 470.0 eV DENSITY = 1.050E+01 g/cm³

ENERGY		OPPING POWE RADIATIVE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	d(lo	g)/d(1 CSDA	ogI) RAD
MeV	MeV cm²/g	MeV cm ² /g	MeV cm²/g	g/cm²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	1.303E+01 1.110E+01 9.726E+00 8.690E+00 7.880E+00 6.689E+00 5.853E+00 5.231E+00	1.634E-02 1.754E-02 1.849E-02 1.927E-02 1.992E-02 2.099E-02 2.184E-02 2.254E-02	1.305E+01 1.112E+01 9.744E+00 8.709E+00 7.900E+00 6.710E+00 5.875E+00 5.254E+00	4.587E-04 6.670E-04 9.078E-04 1.180E-03 1.482E-03 2.171E-03 2.970E-03 3.871E-03	6.026E-04 7.651E-04 9.272E-04 1.088E-03 1.248E-03 1.564E-03 1.874E-03 2.178E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.270 -0.256 -0.245 -0.237 -0.230 -0.220 -0.212	0.334 0.312 0.295 0.282 0.272 0.257 0.246 0.237	0.317 0.296 0.282 0.270 0.261 0.248 0.238
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	4.749E+00 4.364E+00 4.049E+00 3.786E+00 3.564E+00 3.206E+00 2.932E+00 2.715E+00	2.314E-02 2.367E-02 2.414E-02 2.458E-02 2.497E-02 2.569E-02 2.634E-02 2.693E-02	4.773E+00 4.388E+00 4.073E+00 3.811E+00 3.589E+00 3.232E+00 2.958E+00 2.742E+00	4.872E-03 5.965E-03 7.149E-03 8.419E-03 9.772E-03 1.271E-02 1.595E-02 1.947E-02	2.477E-03 2.771E-03 3.060E-03 3.345E-03 3.625E-03 4.172E-03 4.704E-03 5.222E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.201 -0.197 -0.194 -0.191 -0.189 -0.184 -0.181	0.230 0.224 0.219 0.215 0.211 0.205 0.200 0.196	0.224 0.218 0.214 0.210 0.207 0.201 0.197 0.193
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.537E+00 2.210E+00 1.989E+00 1.829E+00 1.709E+00 1.542E+00 1.433E+00 1.357E+00	2.748E-02 2.875E-02 2.990E-02 3.098E-02 3.203E-02 3.413E-02 3.628E-02 3.852E-02	2.564E+00 2.239E+00 2.018E+00 1.860E+00 1.741E+00 1.576E+00 1.469E+00 1.395E+00	2.324E-02 3.372E-02 4.551E-02 5.844E-02 7.235E-02 1.026E-01 1.356E-01	5.727E-03 6.940E-03 8.090E-03 9.183E-03 1.023E-02 1.219E-02 1.403E-02 1.576E-02	5.406E-03 2.558E-02 4.392E-02 6.093E-02 7.694E-02 1.068E-01 1.348E-01	-0.159 -0.155 -0.151 -0.147 -0.144 -0.139 -0.135	0.191 0.180 0.172 0.167 0.162 0.155 0.150	0.188 0.177 0.169 0.164 0.159 0.152 0.147 0.143
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	1.302E+00 1.261E+00 1.230E+00 1.206E+00 1.188E+00 1.161E+00 1.145E+00 1.135E+00	4.085E-02 4.328E-02 4.580E-02 4.840E-02 5.107E-02 6.233E-02 6.827E-02	1.343E+00 1.304E+00 1.276E+00 1.255E+00 1.239E+00 1.218E+00 1.207E+00 1.203E+00	2.071E-01 2.449E-01 2.837E-01 3.232E-01 3.633E-01 4.448E-01 5.273E-01 6.104E-01	1.742E-02 1.902E-02 2.057E-02 2.208E-02 2.357E-02 2.647E-02 2.929E-02 3.206E-02	1.867E-01 2.112E-01 2.349E-01 2.580E-01 2.804E-01 3.237E-01 4.048E-01	-0.128 -0.125 -0.123 -0.120 -0.118 -0.115 -0.111	0.142 0.139 0.136 0.134 0.132 0.128 0.125	0.139 0.136 0.133 0.131 0.129 0.125 0.121 0.118
1.0000 1.2500 1.5000 1.7500 2.0000 3.0000 3.5000	1.129E+00 1.124E+00 1.127E+00 1.134E+00 1.142E+00 1.160E+00 1.177E+00 1.194E+00	7.439E-02 9.038E-02 1.072E-01 1.247E-01 1.428E-01 1.802E-01 2.190E-01 2.589E-01	1.203E+00 1.214E+00 1.234E+00 1.259E+00 1.285E+00 1.340E+00 1.396E+00	6.935E-01 9.005E-01 1.105E+00 1.305E+00 1.502E+00 1.883E+00 2.249E+00 2.600E+00	3.478E-02 4.145E-02 4.799E-02 5.442E-02 6.075E-02 7.317E-02 8.526E-02 9.703E-02	4.429E-01 5.328E-01 6.158E-01 6.931E-01 7.656E-01 8.983E-01 1.018E+00	-0.105 -0.100 -0.095 -0.091 -0.087 -0.081 -0.077	0.119 0.114 0.109 0.105 0.102 0.096 0.092	0.115 0.108 0.103 0.098 0.094 0.087 0.082 0.077
4.0000 4.5000 5.0000 6.0000 7.0000 8.0000 9.0000	1.208E+00 1.222E+00 1.234E+00 1.245E+00 1.256E+00 1.274E+00 1.290E+00 1.303E+00	2.997E-01 3.412E-01 3.834E-01 4.263E-01 4.696E-01 5.577E-01 6.474E-01 7.384E-01	1.508E+00 1.563E+00 1.618E+00 1.672E+00 1.725E+00 1.832E+00 1.937E+00 2.042E+00	2.937E+00 3.263E+00 3.577E+00 3.882E+00 4.176E+00 4.738E+00 5.269E+00 5.772E+00	1.085E-01 1.196E-01 1.304E-01 1.409E-01 1.511E-01 1.708E-01 1.894E-01 2.070E-01	1.228E+00 1.322E+00 1.410E+00 1.494E+00 1.573E+00 1.722E+00 1.860E+00 1.989E+00	-0.070 -0.066 -0.064 -0.061 -0.058 -0.054 -0.050	0.084 0.081 0.079 0.076 0.074 0.070 0.066 0.063	0.073 0.069 0.066 0.063 0.060 0.055 0.051
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.315E+00 1.340E+00 1.360E+00 1.376E+00 1.379E+00 1.412E+00 1.429E+00	8.305E-01 1.065E+00 1.304E+00 1.547E+00 1.794E+00 2.293E+00 2.800E+00 3.313E+00	2.146E+00 2.405E+00 2.664E+00 2.923E+00 3.183E+00 3.705E+00 4.230E+00 4.757E+00	6.250E+00 7.349E+00 8.336E+00 9.232E+00 1.005E+01 1.151E+01 1.277E+01 1.388E+01	2.237E-01 2.621E-01 2.963E-01 3.268E-01 3.543E-01 4.019E-01 4.418E-01 4.758E-01	2.110E+00 2.383E+00 2.621E+00 2.833E+00 3.023E+00 3.352E+00 3.632E+00 3.874E+00	-0.043 -0.037 -0.033 -0.030 -0.028 -0.024 -0.022	0.061 0.055 0.051 0.047 0.045 0.040 0.037	0.044 0.038 0.033 0.029 0.026 0.021 0.018 0.016
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	1.456E+00 1.467E+00 1.476E+00 1.484E+00 1.489E+00 1.505E+00 1.516E+00 1.525E+00	3.831E+00 4.352E+00 4.876E+00 5.403E+00 5.932E+00 6.995E+00 8.065E+00 9.139E+00	5.287E+00 5.818E+00 6.352E+00 6.887E+00 7.424E+00 8.500E+00 9.580E+00 1.066E+01	1.488E+01 1.578E+01 1.660E+01 1.736E+01 1.806E+01 1.932E+01 2.042E+01 2.141E+01	5.052E-01 5.309E-01 5.536E-01 5.739E-01 5.921E-01 6.234E-01 6.496E-01 6.718E-01	4.089E+00 4.282E+00 4.457E+00 4.618E+00 4.767E+00 5.035E+00 5.271E+00 5.482E+00	-0.018 -0.017 -0.015 -0.014 -0.013 -0.012 -0.010 -0.009	0.033 0.031 0.030 0.029 0.028 0.026 0.025 0.024	0.014 0.013 0.011 0.010 0.010 0.008 0.007 0.006
100.0000 125.0000 150.0000 175.0000 200.0000 250.0000 300.0000 350.0000	1.533E+00 1.551E+00 1.565E+00 1.576E+00 1.586E+00 1.602E+00 1.615E+00	1.022E+01 1.293E+01 1.565E+01 1.838E+01 2.112E+01 2.661E+01 3.211E+01 3.763E+01	1.175E+01 1.448E+01 1.721E+01 1.995E+01 2.270E+01 2.821E+01 3.373E+01 3.926E+01	2.230E+01 2.422E+01 2.580E+01 2.715E+01 2.832E+01 3.029E+01 3.191E+01 3.329E+01	6.910E-01 7.292E-01 7.579E-01 7.804E-01 7.985E-01 8.263E-01 8.465E-01 8.621E-01	5.672E+00 6.082E+00 6.422E+00 6.712E+00 6.965E+00 7.391E+00 7.741E+00 8.039E+00	-0.008 -0.007 -0.006 -0.005 -0.005 -0.004 -0.003 -0.003	0.023 0.021 0.020 0.019 0.018 0.017 0.016 0.015	0.006 0.005 0.004 0.003 0.003 0.002 0.002
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000	1.636E+00 1.644E+00 1.651E+00 1.658E+00 1.664E+00 1.664E+00 1.684E+00	4.316E+01 4.869E+01 5.422E+01 5.976E+01 6.531E+01 7.641E+01 8.751E+01 9.863E+01	4.479E+01 5.033E+01 5.588E+01 6.142E+01 6.697E+01 7.808E+01 8.920E+01 1.003E+02	3.448E+01 3.553E+01 3.647E+01 3.732E+01 3.810E+01 3.949E+01 4.068E+01 4.174E+01	8.745E-01 8.846E-01 8.930E-01 9.002E-01 9.063E-01 9.164E-01 9.244E-01 9.308E-01	8.299E+00 8.528E+00 8.735E+00 8.922E+00 9.093E+00 9.397E+00 9.661E+00 9.894E+00	-0.002 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001	0.015 0.014 0.014 0.014 0.013 0.013 0.013	0.001 0.001 0.001 0.001 0.001 0.001 0.001
1000.0000	1.699E+00	1.098E+02	1.114E+02	4.269E+01	9.361E-01	1.010E+01	-0.001	0.012	0.001

POSITRONS IN LEAD

I = 823.0 eV DENSITY = 1.135E+01 g/cm³

	ENERGY		OPPING POWER	TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(l CSDA RANGE	ogI) RAD YIELD
	MeV	MeV cm²/g	MeV cm ² /g	MeV cm²/g	g/cm²		(DELIA)	LU33	KANGE	11660
	0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0350	1.005E+01 8.641E+00 7.623E+00 6.847E+00 6.236E+00 5.329E+00 4.685E+00 4.203E+00	2.045E-02 2.251E-02 2.421E-02 2.566E-02 2.693E-02 2.908E-02 3.086E-02 3.240E-02	1.007E+01 8.664E+00 7.647E+00 6.873E+00 6.263E+00 5.358E+00 4.716E+00 4.235E+00	6.238E-04 8.925E-04 1.200E-03 1.546E-03 1.927E-03 2.794E-03 3.791E-03 4.912E-03	9.433E-04 1.217E-03 1.495E-03 1.774E-03 2.055E-03 2.617E-03 3.178E-03 3.738E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.318 -0.298 -0.284 -0.273 -0.264 -0.250 -0.241 -0.233	0.432 0.394 0.367 0.347 0.331 0.308 0.291 0.278	0.387 0.356 0.335 0.319 0.306 0.287 0.273 0.263
	0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	3.827E+00 3.526E+00 3.278E+00 3.071E+00 2.895E+00 2.611E+00 2.393E+00 2.220E+00	3.376E-02 3.500E-02 3.613E-02 3.718E-02 3.817E-02 3.998E-02 4.162E-02 4.313E-02	3.861E+00 3.561E+00 3.314E+00 3.108E+00 2.933E+00 2.651E+00 2.435E+00 2.263E+00	6.150E-03 7.500E-03 8.957E-03 1.052E-02 1.217E-02 1.577E-02 1.971E-02 2.397E-02	4.296E-03 4.850E-03 5.402E-03 5.950E-03 6.495E-03 7.574E-03 8.639E-03 9.688E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.227 -0.222 -0.218 -0.214 -0.211 -0.206 -0.201 -0.198	0.268 0.260 0.253 0.247 0.242 0.234 0.227	0.255 0.248 0.242 0.237 0.233 0.225 0.219
	0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	2.079E+00 1.820E+00 1.644E+00 1.517E+00 1.421E+00 1.287E+00 1.200E+00 1.140E+00	4.454E-02 4.772E-02 5.054E-02 5.312E-02 5.555E-02 6.015E-02 6.460E-02 6.900E-02	2.123E+00 1.867E+00 1.694E+00 1.570E+00 1.476E+00 1.347E+00 1.265E+00 1.209E+00	2.854E-02 4.114E-02 5.523E-02 7.059E-02 8.703E-02 1.226E-01 1.610E-01 2.015E-01	1.072E-02 1.324E-02 1.565E-02 1.796E-02 2.019E-02 2.439E-02 2.831E-02 3.199E-02	0.0 0.0 0.0 0.0 7.387E-04 8.466E-03 1.693E-02 2.596E-02	-0.195 -0.189 -0.184 -0.180 -0.173 -0.166 -0.160	0.217 0.208 0.201 0.195 0.191 0.182 0.176 0.171	0.210 0.202 0.196 0.191 0.186 0.178 0.172 0.166
	0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.097E+00 1.065E+00 1.041E+00 1.022E+00 1.008E+00 9.887E-01 9.772E-01	7.340E-02 7.781E-02 8.228E-02 8.677E-02 9.132E-02 1.005E-01 1.098E-01 1.193E-01	1.170E+00 1.142E+00 1.123E+00 1.109E+00 1.099E+00 1.089E+00 1.087E+00 1.090E+00	2.435E-01 2.868E-01 3.310E-01 3.758E-01 4.211E-01 5.126E-01 6.045E-01 6.964E-01	3.549E-02 3.881E-02 4.200E-02 4.507E-02 4.804E-02 5.371E-02 5.908E-02 6.421E-02	3.545E-02 4.530E-02 5.543E-02 6.577E-02 7.627E-02 9.756E-02 1.191E-01 1.406E-01	-0.151 -0.147 -0.144 -0.141 -0.138 -0.133 -0.128 -0.125	0.166 0.162 0.158 0.155 0.152 0.147 0.143 0.139	0.161 0.157 0.154 0.150 0.147 0.142 0.137 0.132
	1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000 3.5000	9.675E-01 9.676E-01 9.737E-01 9.822E-01 9.916E-01 1.011E+00 1.028E+00 1.044E+00	1.290E-01 1.537E-01 1.792E-01 2.053E-01 2.319E-01 2.866E-01 3.427E-01 3.999E-01	1.096E+00 1.121E+00 1.153E+00 1.187E+00 1.224E+00 1.297E+00 1.371E+00 1.444E+00	7.879E-01 1.014E+00 1.233E+00 1.447E+00 1.655E+00 2.051E+00 2.426E+00 2.782E+00	6.915E-02 8.081E-02 9.173E-02 1.021E-01 1.120E-01 1.307E-01 1.482E-01 1.647E-01	1.621E-01 2.153E-01 2.673E-01 3.183E-01 3.683E-01 4.653E-01 5.586E-01 6.481E-01	-0.121 -0.114 -0.108 -0.103 -0.098 -0.090 -0.084 -0.078	0.135 0.128 0.122 0.117 0.113 0.105 0.099	0.129 0.120 0.113 0.108 0.102 0.094 0.086 0.080
	4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.059E+00 1.072E+00 1.084E+00 1.095E+00 1.105E+00 1.123E+00 1.138E+00 1.151E+00	4.582E-01 5.174E-01 5.773E-01 6.379E-01 6.991E-01 8.233E-01 9.495E-01 1.077E+00	1.517E+00 1.589E+00 1.661E+00 1.733E+00 1.804E+00 1.946E+00 2.087E+00 2.228E+00	3.119E+00 3.441E+00 (3.749E+00 4.044E+00 4.326E+00 4.860E+00 5.356E+00 5.820E+00	1.803E-01 1.951E-01 2.093E-01 2.228E-01 2.357E-01 2.600E-01 2.824E-01 3.032E-01	7.335E-01 8.149E-01 8.926E-01 9.667E-01 1.038E+00 1.170E+00 1.293E+00 1.406E+00	-0.074 -0.070 -0.067 -0.065 -0.062 -0.058 -0.055 -0.052	0.090 0.086 0.083 0.080 0.077 0.073 0.069 0.066	0.075 0.070 0.067 0.063 0.060 0.054 0.050
	10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.163E+00 1.188E+00 1.208E+00 1.224E+00 1.238E+00 1.261E+00 1.279E+00 1.293E+00	1.206E+00 1.535E+00 1.870E+00 2.210E+00 2.554E+00 3.252E+00 3.961E+00 4.678E+00	2.369E+00 2.723E+00 3.077E+00 3.434E+00 3.792E+00 4.513E+00 5.240E+00 5.972E+00	6.255E+00 7.238E+00 8.101E+00 8.870E+00 9.563E+00 1.077E+01 1.180E+01 1.269E+01	3.225E-01 3.655E-01 4.023E-01 4.343E-01 4.624E-01 5.096E-01 5.796E-01	1.512E+00 1.749E+00 1.955E+00 2.138E+00 2.302E+00 2.589E+00 2.834E+00 3.048E+00	-0.050 -0.045 -0.041 -0.038 -0.036 -0.032 -0.029	0.063 0.057 0.053 0.050 0.047 0.043 0.040	0.043 0.037 0.032 0.029 0.026 0.022 0.019 0.016
	40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	1.306E+00 1.317E+00 1.326E+00 1.335E+00 1.342E+00 1.355E+00 1.366E+00 1.376E+00	5.402E+00 6.132E+00 6.865E+00 7.603E+00 8.345E+00 9.836E+00 1.134E+01 1.284E+01	6.708E+00 7.448E+00 8.192E+00 8.938E+00 9.687E+00 1.119E+01 1.270E+01	1.348E+01 1.419E+01 1.483E+01 1.541E+01 1.595E+01 1.691E+01 1.775E+01 1.849E+01	6.065E-01 6.296E-01 6.497E-01 6.674E-01 6.832E-01 7.099E-01 7.319E-01 7.504E-01	3.241E+00 3.414E+00 3.574E+00 3.720E+00 3.857E+00 4.103E+00 4.322E+00 4.518E+00	-0.025 -0.023 -0.022 -0.020 -0.019 -0.017 -0.015 -0.014	0.036 0.034 0.033 0.032 0.031 0.029 0.028 0.027	0.015 0.013 0.012 0.011 0.010 0.009 0.008 0.007
1 1 2 2 3	00.0000 25.0000 50.0000 75.0000 00.0000 50.0000 50.0000 50.0000	1.384E+00 1.401E+00 1.415E+00 1.426E+00 1.436E+00 1.452E+00 1.464E+00 1.475E+00	1.436E+01 1.816E+01 2.198E+01 2.582E+01 2.966E+01 3.737E+01 4.509E+01 5.283E+01	1.574E+01 1.956E+01 2.340E+01 2.725E+01 3.110E+01 3.882E+01 4.656E+01 5.431E+01	1.916E+01 2.058E+01 2.175E+01 2.274E+01 2.359E+01 2.503E+01 2.621E+01 2.720E+01	7.661E-01 7.971E-01 8.199E-01 8.376E-01 8.518E-01 8.731E-01 8.886E-01 9.003E-01	4.696E+00 5.080E+00 5.401E+00 5.677E+00 5.919E+00 6.329E+00 6.668E+00 6.959E+00	-0.013 -0.011 -0.010 -0.009 -0.008 -0.006 -0.005	0.026 0.024 0.023 0.022 0.021 0.020 0.019 0.018	0.006 0.005 0.004 0.004 0.003 0.003 0.002
55678	00.0000 50.0000 00.0000 50.0000 00.0000 00.0000 00.0000	1.484E+00 1.491E+00 1.498E+00 1.505E+00 1.510E+00 1.520E+00 1.529E+00 1.536E+00	6.058E+01 6.833E+01 7.609E+01 8.386E+01 9.163E+01 1.072E+02 1.227E+02	6.206E+01 6.982E+01 7.759E+01 8.536E+01 9.314E+01 1.087E+02 1.243E+02 1.398E+02	2.806E+01 2.882E+01 2.950E+01 3.011E+01 3.067E+01 3.167E+01 3.253E+01	9.096E-01 9.171E-01 9.234E-01 9.287E-01 9.332E-01 9.406E-01 9.511E-01	7.212E+00 7.437E+00 7.639E+00 7.823E+00 7.991E+00 8.290E+00 8.550E+00 8.780E+00	-0.004 -0.004 -0.003 -0.003 -0.003 -0.002 -0.002	0.018 0.017 0.017 0.017 0.016 0.016 0.015	0.002 0.001 0.001 0.001 0.001 0.001 0.001
0	00.000	1.543E+00	1.539E+02	1.554E+02	3.396E+01	9.549E-01	8.986E+00	-0.002	0.015	0.001

POSITRONS IN AIR, DRY (NEAR SEA LEVEL)

I = 85.7 eV DENSITY = 1.205E-03 g/cm³ (20°C)

	ENERGY	COLLISION	OPPING POWER	R	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(lo CSDA RANGE	ogI) RAD YIELD
	MeV	MeV cm ² /g	MeV cm ² /g	MeV cm ² /g	g/cm ²		(525177)	2000	ILANO E	
	0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.180E+01 1.825E+01 1.578E+01 1.396E+01 1.256E+01 1.053E+01 9.126E+00 8.096E+00	3.897E-03 3.921E-03 3.937E-03 3.946E-03 3.954E-03 3.966E-03 3.976E-03 3.986E-03	2.180E+01 1.825E+01 1.579E+01 1.397E+01 1.256E+01 1.053E+01 9.130E+00 8.100E+00	2.571E-04 3.830E-04 5.307E-04 6.995E-04 8.885E-04 1.325E-03 1.837E-03 2.419E-03	9.658E-05 1.167E-04 1.359E-04 1.545E-04 1.725E-04 2.072E-04 2.404E-04 2.723E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.185 -0.178 -0.173 -0.169 -0.165 -0.160 -0.156	0.208 0.199 0.193 0.187 0.183 0.176 0.171 0.167	0.207 0.198 0.192 0.186 0.182 0.176 0.171
	0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	7.306E+00 6.680E+00 6.171E+00 5.749E+00 5.393E+00 4.826E+00 4.393E+00 4.052E+00	3.998E-03 4.011E-03 4.025E-03 4.040E-03 4.057E-03 4.093E-03 4.133E-03 4.175E-03	7.310E+00 6.684E+00 6.175E+00 5.753E+00 5.397E+00 4.830E+00 4.397E+00 4.056E+00	3.070E-03 3.787E-03 4.566E-03 5.405E-03 6.303E-03 8.266E-03 1.044E-02 1.281E-02	3.032E-04 3.333E-04 3.626E-04 3.912E-04 4.192E-04 4.735E-04 5.261E-04 5.771E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.150 -0.148 -0.146 -0.144 -0.143 -0.140 -0.138 -0.137	0.164 0.161 0.158 0.156 0.154 0.151 0.149 0.147	0.163 0.160 0.158 0.156 0.154 0.151 0.149 0.146
	0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	3.776E+00 3.274E+00 2.935E+00 2.692E+00 2.510E+00 2.257E+00 2.091E+00 1.976E+00	4.222E-03 4.348E-03 4.485E-03 4.633E-03 4.789E-03 5.126E-03 5.495E-03 5.890E-03	3.780E+00 3.278E+00 2.940E+00 2.697E+00 2.515E+00 2.262E+00 2.097E+00 1.982E+00	1.537E-02 2.250E-02 3.057E-02 3.947E-02 4.908E-02 7.013E-02 9.314E-02 1.177E-01	6.267E-04 7.458E-04 8.593E-04 9.683E-04 1.074E-03 1.276E-03 1.471E-03 1.660E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.135 -0.132 -0.130 -0.128 -0.126 -0.124 -0.122	0.145 0.141 0.138 0.136 0.134 0.132 0.129 0.127	0.145 0.141 0.138 0.136 0.134 0.131 0.129 0.127
	0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	1.893E+00 1.831E+00 1.784E+00 1.748E+00 1.719E+00 1.678E+00 1.652E+00 1.636E+00	6.311E-03 6.757E-03 7.223E-03 7.708E-03 8.210E-03 9.258E-03 1.036E-02 1.151E-02	1.899E+00 1.838E+00 1.791E+00 1.755E+00 1.727E+00 1.687E+00 1.663E+00 1.648E+00	1.435E-01 1.703E-01 1.978E-01 2.261E-01 2.548E-01 3.134E-01 3.731E-01 4.336E-01	1.846E-03 2.030E-03 2.212E-03 2.394E-03 2.575E-03 2.939E-03 3.304E-03 3.671E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.118 -0.117 -0.116 -0.114 -0.113 -0.111 -0.109 -0.108	0.126 0.124 0.123 0.122 0.121 0.119 0.118 0.116	0.125 0.123 0.122 0.121 0.120 0.118 0.116 0.114
	1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.626E+00 1.617E+00 1.621E+00 1.630E+00 1.642E+00 1.668E+00 1.695E+00 1.720E+00	1.271E-02 1.588E-02 1.927E-02 2.284E-02 2.656E-02 3.437E-02 4.260E-02 5.115E-02	1.639E+00 1.633E+00 1.640E+00 1.653E+00 1.669E+00 1.703E+00 1.738E+00	4.945E-01 6.474E-01 8.002E-01 9.521E-01 1.103E+00 1.399E+00 1.690E+00 1.975E+00	4.041E-03 4.980E-03 5.939E-03 6.916E-03 7.910E-03 9.936E-03 1.200E-02 1.410E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.107 -0.104 -0.101 -0.099 -0.097 -0.095 -0.092	0.115 0.113 0.110 0.109 0.107 0.104 0.102 0.100	0.113 0.110 0.107 0.105 0.103 0.100 0.097
	4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.744E+00 1.766E+00 1.786E+00 1.805E+00 1.823E+00 1.854E+00 1.883E+00 1.908E+00	5.999E-02 6.908E-02 7.838E-02 8.787E-02 9.754E-02 1.173E-01 1.376E-01	1.804E+00 1.835E+00 1.865E+00 1.893E+00 1.920E+00 1.972E+00 2.020E+00 2.066E+00	2.255E+00 2.529E+00 2.800E+00 3.066E+00 3.328E+00 4.343E+00 4.832E+00	1.622E-02 1.836E-02 2.051E-02 2.266E-02 2.483E-02 2.916E-02 3.349E-02 3.782E-02	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.089 -0.088 -0.087 -0.086 -0.085 -0.083 -0.082 -0.081	0.099 0.097 0.096 0.095 0.094 0.092 0.090	0.093 0.091 0.090 0.089 0.087 0.085 0.083
	10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.931E+00 1.980E+00 2.020E+00 2.055E+00 2.085E+00 2.136E+00 2.176E+00 2.208E+00	1.795E-01 2.337E-01 2.895E-01 3.464E-01 4.042E-01 5.219E-01 6.417E-01 7.630E-01	2.110E+00 2.214E+00 2.310E+00 2.401E+00 2.489E+00 2.657E+00 2.818E+00 2.971E+00	5.311E+00 6.467E+00 7.573E+00 8.634E+00 9.656E+00 1.160E+01 1.343E+01 1.515E+01	4.212E-02 5.278E-02 6.323E-02 7.346E-02 8.345E-02 1.210E-01 1.383E-01	0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.636E-03 5.984E-02	-0.080 -0.078 -0.076 -0.075 -0.074 -0.072 -0.064 -0.053	0.087 0.084 0.082 0.080 0.078 0.075 0.072 0.069	0.080 0.077 0.074 0.072 0.070 0.066 0.063 0.058
	40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.232E+00 2.252E+00 2.269E+00 2.284E+00 2.297E+00 2.319E+00 2.337E+00 2.353E+00	8.855E-01 1.009E+00 1.133E+00 1.258E+00 1.384E+00 1.637E+00 1.892E+00 2.148E+00	3.118E+00 3.261E+00 3.403E+00 3.542E+00 3.681E+00 3.956E+00 4.229E+00 4.501E+00	1.680E+01 1.836E+01 1.986E+01 2.130E+01 2.269E+01 2.531E+01 2.775E+01 3.005E+01	1.548E-01 1.706E-01 1.857E-01 2.001E-01 2.139E-01 2.398E-01 2.637E-01 2.858E-01	1.378E-01 2.266E-01 3.192E-01 4.120E-01 5.029E-01 6.762E-01 8.365E-01 9.842E-01	-0.045 -0.040 -0.036 -0.033 -0.031 -0.027 -0.025 -0.023	0.066 0.063 0.060 0.057 0.055 0.051 0.048	0.053 0.049 0.045 0.041 0.038 0.033 0.030
1 1 2 2 3	00.0000 25.0000 50.0000 75.0000 200.0000 250.0000 350.0000	2.367E+00 2.395E+00 2.418E+00 2.436E+00 2.452E+00 2.479E+00 2.500E+00 2.517E+00	2.405E+00 3.053E+00 3.705E+00 4.360E+00 5.018E+00 6.340E+00 7.667E+00 8.998E+00	4.772E+00 5.448E+00 6.122E+00 6.796E+00 7.470E+00 8.818E+00 1.017E+01 1.152E+01	3.220E+01 3.710E+01 4.143E+01 4.530E+01 4.881E+01 5.496E+01 6.024E+01 6.486E+01	3.063E-01 3.517E-01 3.904E-01 4.237E-01 4.529E-01 5.016E-01 5.409E-01 5.734E-01	1.120E+00 1.419E+00 1.670E+00 1.887E+00 2.078E+00 2.403E+00 2.675E+00 2.909E+00	-0.022 -0.020 -0.019 -0.018 -0.017 -0.016 -0.015	0.043 0.039 0.036 0.033 0.031 0.028 0.026	0.024 0.020 0.017 0.015 0.013 0.011 0.009 0.008
955678	00.0000 50.0000 50.0000 50.0000 00.0000 00.0000 00.0000	2.532E+00 2.545E+00 2.556E+00 2.566E+00 2.575E+00 2.575E+00 2.603E+00 2.614E+00	1.033E+01 1.167E+01 1.301E+01 1.435E+01 1.569E+01 1.838E+01 2.107E+01 2.376E+01	1.286E+01 1.422E+01 1.557E+01 1.692E+01 1.827E+01 2.097E+01 2.367E+01 2.638E+01	6.896E+01 7.266E+01 7.602E+01 7.910E+01 8.194E+01 8.705E+01 9.153E+01 9.553E+01	6.008E-01 6.243E-01 6.447E-01 6.627E-01 6.786E-01 7.057E-01 7.279E-01 7.466E-01	3.116E+00 3.302E+00 3.472E+00 3.628E+00 3.772E+00 4.034E+00 4.267E+00 4.477E+00	-0.013 -0.012 -0.011 -0.011 -0.010 -0.008 -0.007 -0.006	0.023 0.022 0.021 0.021 0.020 0.019 0.018 0.017	0.007 0.007 0.006 0.006 0.005 0.005 0.004
10	00.000	2.624E+00	2.646E+01	2.908E+01	9.914E+01	7.625E-01	4.668E+00	-0.005	0.017	0.003

I = 74.0 eV DENSITY = 1.190E+00 g/cm³

ENERGY		OPPING POWE	R TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF.	COLL	g)/d(l CSDA_	RAD
MeV	MeV cm²/g	MeV cm²/g	MeV cm²/g	g/cm ²		(DELTA)	LOSS	RANGE	YIELD
0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.419E+01 2.023E+01 1.749E+01 1.546E+01 1.390E+01 1.164E+01 1.009E+01 8.943E+00	3.332E-03 3.349E-03 3.359E-03 3.366E-03 3.372E-03 3.382E-03 3.391E-03 3.401E-03	2.419E+01 2.024E+01 1.749E+01 1.546E+01 1.390E+01 1.164E+01 1.009E+01 8.947E+00	2.309E-04 3.444E-04 4.777E-04 6.301E-04 8.009E-04 1.196E-03 1.659E-03 2.186E-03	7.461E-05 9.003E-05 1.048E-04 1.191E-04 1.330E-04 1.598E-04 1.854E-04 2.101E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.180 -0.174 -0.169 -0.165 -0.161 -0.156 -0.152 -0.149	0.202 0.194 0.187 0.182 0.178 0.172 0.167 0.163	0.201 0.193 0.186 0.182 0.177 0.171 0.166 0.163
0.0400 0.0450 0.0550 0.0550 0.0600 0.0700 0.0800 0.0900	8.068E+00 7.374E+00 6.810E+00 6.343E+00 5.949E+00 5.321E+00 4.842E+00 4.465E+00	3.413E-03 3.425E-03 3.438E-03 3.453E-03 3.468E-03 3.502E-03 3.538E-03 3.577E-03	8.071E+00 7.377E+00 6.814E+00 6.347E+00 5.953E+00 5.325E+00 4.846E+00 4.469E+00	2.775E-03 3.424E-03 4.130E-03 4.891E-03 5.705E-03 7.485E-03 9.457E-03 1.161E-02	2.340E-04 2.573E-04 2.800E-04 3.022E-04 3.240E-04 4.073E-04 4.471E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.147 -0.145 -0.143 -0.141 -0.140 -0.138 -0.136	0.160 0.157 0.155 0.153 0.151 0.148 0.146	0.159 0.157 0.155 0.153 0.151 0.148 0.145 0.143
0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.161E+00 3.606E+00 3.232E+00 2.963E+00 2.762E+00 2.482E+00 2.300E+00 2.173E+00	3.619E-03 3.732E-03 3.855E-03 3.987E-03 4.126E-03 4.425E-03 4.751E-03 5.101E-03	4.164E+00 3.609E+00 3.235E+00 2.967E+00 2.766E+00 2.487E+00 2.304E+00 2.178E+00	1.393E-02 2.040E-02 2.774E-02 3.582E-02 4.456E-02 6.370E-02 8.463E-02 1.070E-01	4.859E-04 5.791E-04 6.682E-04 7.538E-04 8.368E-04 9.967E-04 1.151E-03 1.301E-03	0.0 0.0 0.0 0.0 0.0 0.0	-0.133 -0.130 -0.127 -0.126 -0.124 -0.122 -0.120 -0.118	0.142 0.138 0.136 0.134 0.132 0.129 0.127 0.125	0.142 0.138 0.135 0.133 0.131 0.129 0.126 0.124
0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000	2.081E+00 2.011E+00 1.956E+00 1.912E+00 1.877E+00 1.826E+00 1.791E+00	5.474E-03 5.867E-03 6.278E-03 6.707E-03 7.149E-03 8.076E-03 9.050E-03 1.007E-02	2.086E+00 2.017E+00 1.962E+00 1.919E+00 1.885E+00 1.834E+00 1.800E+00	1.305E-01 1.549E-01 1.800E-01 2.058E-01 2.321E-01 2.859E-01 3.410E-01 3.969E-01	1.449E-03 1.595E-03 1.741E-03 1.887E-03 2.033E-03 2.328E-03 2.626E-03 2.928E-03	0.0 1.466E-02 4.112E-02 6.992E-02 1.005E-01 1.650E-01 2.321E-01 3.001E-01	-0.118 -0.093 -0.087 -0.082 -0.077 -0.069 -0.063 -0.058	0.124 0.120 0.116 0.112 0.108 0.102 0.096 0.091	0.123 0.119 0.114 0.109 0.104 0.096 0.090 0.084
1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.750E+00 1.726E+00 1.716E+00 1.714E+00 1.716E+00 1.724E+00 1.736E+00 1.748E+00	1.113E-02 1.393E-02 1.693E-02 2.009E-02 2.338E-02 3.031E-02 4.521E-02	1.761E+00 1.740E+00 1.733E+00 1.734E+00 1.739E+00 1.755E+00 1.773E+00	4.535E-01 5.964E-01 7.405E-01 8.847E-01 1.029E+00 1.315E+00 1.598E+00	3.235E-03 4.019E-03 4.830E-03 5.664E-03 6.520E-03 8.286E-03 1.011E-02 1.198E-02	3.679E-01 5.330E-01 6.887E-01 8.339E-01 9.689E-01 1.212E+00 1.425E+00 1.613E+00	-0.054 -0.047 -0.042 -0.039 -0.036 -0.033 -0.030	0.086 0.078 0.071 0.066 0.062 0.056 0.051	0.078 0.068 0.061 0.055 0.051 0.045 0.040
4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.759E+00 1.770E+00 1.781E+00 1.791E+00 1.800E+00 1.816E+00 1.831E+00 1.844E+00	5.307E-02 6.115E-02 6.943E-02 7.788E-02 8.648E-02 1.041E-01 1.222E-01	1.812E+00 1.832E+00 1.850E+00 1.869E+00 1.8669E+00 1.920E+00 1.953E+00	2.156E+00 2.431E+00 2.702E+00 2.971E+00 3.237E+00 3.763E+00 4.279E+00 4.787E+00	1.389E-02 1.583E-02 1.779E-02 1.977E-02 2.177E-02 2.581E-02 2.988E-02 3.398E-02	1.783E+00 1.936E+00 2.077E+00 2.207E+00 2.327E+00 2.545E+00 2.739E+00 2.914E+00	-0.027 -0.026 -0.025 -0.024 -0.024 -0.022 -0.021	0.045 0.043 0.041 0.040 0.038 0.036 0.034	0.035 0.033 0.031 0.030 0.029 0.027 0.025 0.024
10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.855E+00 1.880E+00 1.899E+00 1.915E+00 1.929E+00 1.951E+00 1.968E+00 1.983E+00	1.596E-01 2.079E-01 2.577E-01 3.086E-01 3.603E-01 4.656E-01 5.728E-01 6.815E-01	2.015E+00 2.088E+00 2.157E+00 2.224E+00 2.289E+00 2.417E+00 2.541E+00 2.664E+00	5.287E+00 6.506E+00 7.684E+00 8.825E+00 9.933E+00 1.206E+01 1.600E+01	3.809E-02 4.836E-02 5.856E-02 6.865E-02 7.859E-02 9.792E-02 1.165E-01 1.342E-01	3.073E+00 3.421E+00 3.716E+00 3.974E+00 4.202E+00 4.596E+00 4.927E+00 5.212E+00	-0.019 -0.016 -0.014 -0.012 -0.010 -0.008 -0.006 -0.005	0.031 0.028 0.026 0.024 0.022 0.020 0.018 0.016	0.023 0.020 0.018 0.016 0.014 0.012 0.010 0.008
40.0000 45.0000 50.0000 60.0000 70.0000 80.0000 90.0000	1.995E+00 2.005E+00 2.015E+00 2.023E+00 2.031E+00 2.044E+00 2.055E+00	7.912E-01 9.020E-01 1.013E+00 1.126E+00 1.238E+00 1.465E+00 1.694E+00 1.924E+00	2.786E+00 2.907E+00 3.028E+00 3.149E+00 3.269E+00 3.509E+00 3.750E+00 3.990E+00	1.783E+01 1.959E+01 2.127E+01 2.289E+01 2.445E+01 2.740E+01 3.016E+01 3.274E+01	1.512E-01 1.674E-01 1.830E-01 1.978E-01 2.120E-01 2.387E-01 2.632E-01 2.859E-01	5.463E+00 5.687E+00 5.889E+00 6.072E+00 6.241E+00 6.541E+00 6.803E+00 7.034E+00	-0.004 -0.003 -0.003 -0.002 -0.002 -0.001 -0.001	0.015 0.014 0.013 0.012 0.011 0.010 0.009 0.009	0.007 0.006 0.006 0.005 0.004 0.004 0.003
100.0000 125.0000 150.0000 200.0000 200.0000 300.0000 350.0000	2.074E+00 2.093E+00 2.108E+00 2.121E+00 2.133E+00 2.151E+00 2.166E+00 2.179E+00	2.155E+00 2.737E+00 3.323E+00 3.912E+00 4.503E+00 5.692E+00 6.887E+00 8.085E+00	4.230E+00 4.830E+00 5.431E+00 6.033E+00 6.636E+00 7.843E+00 9.053E+00 1.026E+01	3.518E+01 4.070E+01 4.558E+01 4.995E+01 5.390E+01 6.082E+01 6.675E+01 7.193E+01	3.069E-01 3.534E-01 3.928E-01 4.268E-01 5.65E-01 5.059E-01 5.456E-01 5.783E-01	7.242E+00 7.683E+00 8.045E+00 8.351E+00 8.617E+00 9.061E+00 9.425E+00 9.733E+00	-0.001 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000	0.008 0.007 0.006 0.006 0.005 0.005 0.004	0.002 0.002 0.001 0.001 0.001 0.001 0.001
400.0000 450.0000 500.0000 550.0000 600.0000 700.0000 800.0000 900.0000	2.190E+00 2.200E+00 2.209E+00 2.217E+00 2.224E+00 2.237E+00 2.248E+00 2.257E+00	9.286E+00 1.049E+01 1.170E+01 1.290E+01 1.411E+01 1.653E+01 2.139E+01	1.148E+01 1.269E+01 1.391E+01 1.512E+01 1.634E+01 1.877E+01 2.121E+01 2.364E+01	7.654E+01 8.068E+01 8.444E+01 8.789E+01 9.107E+01 9.678E+01 1.018E+02 1.062E+02	6.059E-01 6.295E-01 6.499E-01 6.679E-01 6.838E-01 7.108E-01 7.329E-01 7.514E-01	9.999E+00 1.023E+01 1.044E+01 1.064E+01 1.081E+01 1.112E+01 1.138E+01 1.162E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000.0000	2.266E+00	2.382E+01	2.608E+01	1.103E+02	7.672E-01	1.183E+01	-0.000	0.003	0.000

POSITRONS IN WATER, LIQUID

I = 75.0 eV DENSITY = 1.000E+00 g/cm³

	ENERGY		OPPING POWE RADIATIVE	TOTAL	CSDA RANGE	RADIATION YIELD	DENS.EFF. CORR. (DELTA)	d(lo COLL LOSS	g)/d(1 CSDA RANGE	ogI) RAD YIELD
	MeV 0.0100 0.0125 0.0150 0.0175 0.0200 0.0250 0.0300 0.0350	2.483E+01 2.077E+01 1.795E+01 1.587E+01 1.427E+01 1.196E+01 1.036E+01 9.185E+00	MeV cm ² /g 3.893E-03 3.927E-03 3.944E-03 3.955E-03 3.963E-03 3.974E-03 3.984E-03 3.994E-03	MeV cm ² /g 2.484E+01 2.078E+01 1.796E+01 1.588E+01 1.427E+01 1.196E+01 1.036E+01 9.189E+00	g/cm ² 2.250E-04 3.356E-04 4.654E-04 7.801E-04 1.165E-03 1.615E-03 2.129E-03	8.425E-05 1.020E-04 1.191E-04 1.356E-04 1.515E-04 1.823E-04 2.117E-04 2.400E-04	0.0 0.0 0.0 0.0 0.0 0.0	-0.181 -0.174 -0.169 -0.165 -0.162 -0.157 -0.153	0.202 0.194 0.188 0.183 0.179 0.172 0.167	0.201 0.193 0.187 0.182 0.178 0.171 0.167 0.163
	0.0400 0.0450 0.0500 0.0550 0.0600 0.0700 0.0800 0.0900	8.286E+00 7.574E+00 6.995E+00 6.516E+00 6.111E+00 5.466E+00 4.974E+00 4.587E+00	4.005E-03 4.018E-03 4.031E-03 4.046E-03 4.062E-03 4.098E-03 4.138E-03	8.290E+00 7.578E+00 6.999E+00 6.520E+00 6.115E+00 5.470E+00 4.979E+00 4.591E+00	2.703E-03 3.334E-03 4.021E-03 4.762E-03 5.555E-03 7.287E-03 9.207E-03 1.130E-02	2.673E-04 2.939E-04 3.199E-04 3.452E-04 3.700E-04 4.181E-04 4.646E-04 5.098E-04	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.147 -0.145 -0.143 -0.142 -0.140 -0.138 -0.136	0.160 0.157 0.155 0.153 0.151 0.148 0.146	0.160 0.157 0.155 0.153 0.151 0.148 0.146
	0.1000 0.1250 0.1500 0.1750 0.2000 0.2500 0.3000 0.3500	4.274E+00 3.704E+00 3.320E+00 3.044E+00 2.838E+00 2.551E+00 2.363E+00 2.233E+00	4.228E-03 4.355E-03 4.494E-03 4.643E-03 4.801E-03 5.141E-03 5.913E-03	4.279E+00 3.709E+00 3.325E+00 3.049E+00 2.843E+00 2.556E+00 2.368E+00 2.238E+00	1.356E-02 1.986E-02 2.700E-02 3.487E-02 4.337E-02 6.199E-02 8.236E-02 1.041E-01	5.538E-04 6.594E-04 7.601E-04 8.569E-04 9.506E-04 1.131E-03 1.304E-03 1.473E-03	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.133 -0.130 -0.128 -0.126 -0.124 -0.122 -0.120 -0.118	0.142 0.139 0.136 0.134 0.132 0.129 0.127	0.142 0.138 0.136 0.133 0.132 0.129 0.126 0.125
	0.4000 0.4500 0.5000 0.5500 0.6000 0.7000 0.8000 0.9000	2.138E+00 2.068E+00 2.014E+00 1.971E+00 1.937E+00 1.886E+00 1.851E+00 1.827E+00	6.339E-03 6.787E-03 7.257E-03 7.747E-03 8.254E-03 9.312E-03 1.043E-02	2.145E+00 2.075E+00 2.021E+00 1.979E+00 1.945E+00 1.895E+00 1.862E+00 1.839E+00	1.270E-01 1.507E-01 1.751E-01 2.001E-01 2.256E-01 2.777E-01 3.310E-01 3.851E-01	1.638E-03 1.802E-03 1.965E-03 2.128E-03 2.290E-03 2.617E-03 2.947E-03 3.280E-03	0.0 0.0 0.0 1.103E-02 2.938E-02 7.435E-02 1.267E-01 1.835E-01	-0.116 -0.115 -0.113 -0.095 -0.090 -0.080 -0.072 -0.065	0.124 0.122 0.121 0.119 0.116 0.110 0.104 0.099	0.123 0.121 0.120 0.117 0.113 0.106 0.099 0.093
	1.0000 1.2500 1.5000 1.7500 2.0000 2.5000 3.0000	1.810E+00 1.786E+00 1.777E+00 1.775E+00 1.776E+00 1.785E+00 1.796E+00 1.808E+00	1.280E-02 1.600E-02 1.942E-02 2.303E-02 2.678E-02 3.468E-02 4.299E-02 5.164E-02	1.823E+00 1.802E+00 1.796E+00 1.798E+00 1.803E+00 1.820E+00 1.839E+00 1.859E+00	4.397E-01 5.777E-01 7.167E-01 8.559E-01 9.947E-01 1.271E+00 1.544E+00 1.815E+00	3.618E-03 4.483E-03 5.375E-03 6.294E-03 7.235E-03 9.177E-03 1.118E-02 1.324E-02	2.428E-01 3.944E-01 5.437E-01 6.866E-01 8.218E-01 1.069E+00 1.288E+00	-0.060 -0.050 -0.044 -0.039 -0.036 -0.031 -0.028	0.095 0.085 0.078 0.072 0.067 0.059 0.054 0.050	0.087 0.076 0.067 0.060 0.054 0.046 0.041
	4.0000 4.5000 5.0000 5.5000 6.0000 7.0000 8.0000 9.0000	1.819E+00 1.830E+00 1.840E+00 1.849E+00 1.858E+00 1.875E+00 1.889E+00 1.902E+00	6.058E-02 6.976E-02 7.917E-02 8.876E-02 9.854E-02 1.185E-01 1.391E-01	1.879E+00 1.899E+00 1.919E+00 1.938E+00 1.957E+00 1.993E+00 2.028E+00 2.062E+00	2.082E+00 2.347E+00 2.609E+00 2.868E+00 3.125E+00 3.631E+00 4.128E+00 4.617E+00	1.533E-02 1.746E-02 1.961E-02 2.179E-02 2.398E-02 2.840E-02 3.285E-02 3.732E-02	1.660E+00 1.821E+00 1.967E+00 2.102E+00 2.227E+00 2.453E+00 2.652E+00 2.831E+00	-0.024 -0.023 -0.022 -0.022 -0.021 -0.020 -0.019	0.047 0.044 0.042 0.040 0.038 0.036 0.034	0.034 0.031 0.030 0.028 0.027 0.025 0.023
	10.0000 12.5000 15.0000 17.5000 20.0000 25.0000 30.0000 35.0000	1.914E+00 1.939E+00 1.959E+00 1.976E+00 1.991E+00 2.015E+00 2.034E+00 2.049E+00	1.814E-01 2.362E-01 2.926E-01 3.501E-01 4.086E-01 5.277E-01 6.489E-01 7.716E-01	2.095E+00 2.175E+00 2.252E+00 2.327E+00 2.400E+00 2.542E+00 2.683E+00 2.821E+00	5.098E+00 6.269E+00 7.398E+00 8.490E+00 9.548E+01 1.157E+01 1.349E+01	4.180E-02 5.297E-02 6.403E-02 7.492E-02 8.561E-02 1.063E-01 1.261E-01	2.992E+00 3.341E+00 3.633E+00 3.885E+00 4.107E+00 4.487E+00 4.806E+00 5.082E+00	-0.018 -0.017 -0.015 -0.014 -0.013 -0.011 -0.009 -0.007	0.030 0.028 0.026 0.024 0.023 0.020 0.018 0.017	0.021 0.019 0.017 0.016 0.015 0.013 0.011
	40.0000 45.0000 50.0000 55.0000 60.0000 70.0000 80.0000 90.0000	2.062E+00 2.074E+00 2.084E+00 2.093E+00 2.101E+00 2.115E+00 2.127E+00 2.137E+00	8.955E-01 1.021E+00 1.146E+00 1.273E+00 1.400E+00 1.656E+00 1.914E+00 2.173E+00	2.958E+00 3.094E+00 3.230E+00 3.366E+00 3.501E+00 3.771E+00 4.041E+00 4.311E+00	1.703E+01 1.869E+01 2.027E+01 2.178E+01 2.324E+01 2.599E+01 2.855E+01 3.095E+01	1.629E-01 1.799E-01 1.962E-01 2.117E-01 2.265E-01 2.541E-01 2.795E-01 3.028E-01	5.326E+00 5.544E+00 5.741E+00 5.921E+00 6.087E+00 6.383E+00 6.641E+00 6.871E+00	-0.006 -0.005 -0.004 -0.004 -0.003 -0.003 -0.002	0.016 0.015 0.014 0.013 0.012 0.011 0.010	0.009 0.008 0.007 0.006 0.006 0.005 0.004
1 1 2 2 3	00.0000 25.0000 50.0000 75.0000 00.0000 50.0000 00.0000 50.0000	2.147E+00 2.166E+00 2.182E+00 2.195E+00 2.207E+00 2.226E+00 2.242E+00 2.255E+00	2.434E+00 3.089E+00 3.749E+00 4.412E+00 5.078E+00 6.416E+00 7.760E+00 9.107E+00	4.580E+00 5.255E+00 5.931E+00 6.608E+00 7.285E+00 8.642E+00 1.000E+01 1.136E+01	3.320E+01 3.829E+01 4.277E+01 4.676E+01 5.036E+01 6.65E+01 6.203E+01 6.671E+01	3.243E-01 3.716E-01 4.115E-01 4.456E-01 4.753E-01 5.244E-01 5.637E-01 5.959E-01	7.077E+00 7.516E+00 7.876E+00 8.182E+00 8.447E+00 8.891E+00 9.254E+00 9.561E+00	-0.001 -0.001 -0.001 -0.001 -0.000 -0.000 -0.000	0.009 0.008 0.007 0.007 0.006 0.005 0.005	0.003 0.002 0.002 0.002 0.001 0.001 0.001
4 5 6 7 8	00.0000 50.0000 00.0000 50.0000 00.0000 00.0000 00.0000	2.266E+00 2.276E+00 2.285E+00 2.294E+00 2.301E+00 2.314E+00 2.326E+00 2.336E+00	1.046E+01 1.181E+01 1.317E+01 1.453E+01 1.589E+01 1.861E+01 2.133E+01 2.406E+01	1.273E+01 1.409E+01 1.545E+01 1.682E+01 1.819E+01 2.092E+01 2.366E+01 2.640E+01	7.087E+01 7.460E+01 7.799E+01 8.109E+01 8.395E+01 8.907E+01 9.356E+01 9.756E+01	6.229E-01 6.460E-01 6.659E-01 6.834E-01 6.938E-01 7.250E-01 7.463E-01 7.641E-01	9.827E+00 1.006E+01 1.027E+01 1.046E+01 1.064E+01 1.094E+01 1.121E+01 1.145E+01	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	0.004 0.004 0.004 0.004 0.004 0.003 0.003	0.001 0.001 0.000 0.000 0.000 0.000 0.000
0	00.0000	2.345E+00	2.679E+01	2.914E+01	1.012E+02	7.793E-01	1.166E+01	-0.000	0.003	0.000

N D D 1 1 4 2 1 1 1 2 1 7 1 1					
U.S. DEPT. OF COMM.	1. PUBLICATION OR REPORT NO.	2. Gov't. Accession No.	3. Recipient's Accession No.		
BIBLIOGRAPHIC DATA SHEET	NBSIR 82-2550	. *			
4. TITLE AND SUBTITLE			5. Publication Date		
STADDING DOWERS	AND RANGES OF ELECTRONS AN	D DOCITIONS	August 1982		
STOPPING POWERS	AND RANGES OF ELECTRONS AT	ID POSTIKONS	6. Performing Organization Code		
7. AUTHOR(S) Martin J	. Berger and Stephen M. Sel	tzer	8. Performing Organ, Report No.		
9. PERFORMING ORGANIZATIO	ON NAME AND ADDRESS		10. Project/Task/Work Unit No.		
NATIONAL BUREAU OF DEPARTMENT OF COMM WASHINGTON, DC 20234			11. Contract/Grant No.		
12. SPONSORING ORGANIZATION	ON NAME AND COMPLETE ADDRESS (Street	et, City, State, ZIP)	13. Type of Report & Period Covered		
U.S. Dep. of Washington,					
washing con,	a las las 1 /	14. Sponsoring Agency Code			

15. SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

Tables of stopping powers and related data are given for electrons in 37 elements and 60 compounds, and for positrons in 8 materials. The tables include (1) collision stopping powers (2) radiative stopping powers, (3) total stopping powers, (4) ranges (computed in the continuous-slowingdown approximation), (5) radiation yields (fraction of electron energy converted into bremsstrahlung), and (6) the logarithmic derivatives of all these quantities with respect to the mean excitation energy of the medium. These results are given at 81 energies between 1000 MeV and 10 keV. Restricted collision stopping powers are tabulated for selected materials, with cut-off energies of 1, 10 and 100 keV. The principal new ingredients in the preparation of these tables were: (1) a revision and updating of the mean excitation energies which enter into the Bethe stopping-power formula, on the basis of the best available data from stopping-power measurements and analyses of experimental oscillator-strength distributions and dielectricresponse functions; (2) use of the general formulation of Sternheimer and Peierls for the density-effect correction to the collision stopping power; and (3) use of theoretical bremsstrahlung cross sections of Tseng and Pratt.

11. KEY WORDS is to twelve entries; alphabetical order: capitalize only the first letter of the first key word unless a proper name; returned by semicel has

Collision stopping power, electrons, positrons, radiation yield, radiative stopping power, range.

18. AVAILABILITY X Unlimited	19. SECURITY CLASS (THIS REPORT)	21. NO. OF PRINTED PAGES
For Official Distribution. Do Not Release to NTIS	UNCLASSIFIED	164
Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC 20402, SD Stock No. SN003-003-	20. SECURITY CLASS (THIS PAGE)	2?. Price
Order From National Technical Information Service (NTIS), Springfield, VA. 22161	UNCLASSIFIED	\$15.00

