Stochastically Quantized

Variational Auto-Encoders

-Mayank Jain, Shikhar Agrawal Prof. Suyash Awate

An Overview

- One noted issue of vector-quantized variational autoencoder (VQ-VAE) is that the learned discrete representation uses only a fraction of the full capacity of the codebook, also known as codebook collapse.
- We propose a new training scheme that extends the standard VAE via novel stochastic dequantization and quantization.
- In SQ-VAE, we observe a trend that the quantization is stochastic at the initial stage of the training but gradually converges toward a deterministic quantization.
- Our experiments show that SQ-VAE improves codebook utilization without using common heuristics.

Introduction

- In VQ-VAE, the encoded latent variables are quantized to their nearest neighbors in a learnable codebook, and the data samples are decoded from the quantized latent variables.
- Although VQ-VAE shares some similarities with VAE, its training does not follow the standard variational Bayes framework. Instead, it relies on carefully designed heuristics such as the use of a stop-gradient operator and the straight-through estimation of gradients.
- We propose a framework that combines stochastic quantization and VAE, called stochastically quantized VAE (SQ-VAE).
- It can address the low codebook utilization issue of VQ-VAE and can be explained within the scope of the usual variational Bayes framework.

Summarizing our approach

- SQ-VAE introduces a pair of stochastic dequantization and quantization processes in the latent space. These processes are characterized by probability distributions with trainable parameters.
- Optimizing the ELBO gradually reduces the stochasticity of the quantization process during the training, which we call self-annealing.
- In general, SQ-VAE does not impose any assumption on the data distribution; hence, we can model the stochastic quantization and dequantization processes via Gaussian distributions. (Yaay).

Background (VAE)

VAE Consider an observation $\mathbf{x} \in \mathbb{R}^D$ and a target data distribution $p_{\text{data}}(\mathbf{x})$, which models finite samples. The standard VAE consists of a stochastic encoder–decoder pair: a decoder $p_{\theta}(\mathbf{x}|\mathbf{z})$ and an approximated posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$, where θ and ϕ are trainable parameters. The latent variables $\mathbf{z} \in \mathbb{R}^{d_z}$ are assumed to follow a prior distribution $p(\mathbf{z})$. Data are generated by first sampling \mathbf{z} from the prior $p(\mathbf{z})$ then obtaining \mathbf{x} by feeding \mathbf{z} into the stochastic decoder, $p_{\theta}(\mathbf{x}|\mathbf{z})$.

The negative ELBO per sample x is expressed as
$$\mathcal{L}_{VAE}$$
 =

 $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[-\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] + D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p(\mathbf{z})).$

mapping $f_{m{ heta}}: \mathbb{R}^{d_z}
ightarrow \mathbb{R}^D$ as

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(f_{\theta}(\mathbf{z}), \sigma^2 \mathbf{I}),$$
 (2)

Background (VQ-VAE)

VQ-VAE In contrast to VAE, VQ-VAE consists of a deterministic encoder–decoder path and a trainable *codebook*. The codebook is a set \mathbf{B} , which contains K d_b -dimensional vectors $\{\mathbf{b}_k\}_{k=1}^K$. A d_z -dimensional discrete latent space related to the codebook can be interpreted as the d_z -ary Cartesian power of \mathbf{B} , $\mathbf{B}^{d_z} \subset \mathbb{R}^{d_b \times d_z}$. We denote a latent variable in \mathbf{B}^{d_z} and its ith column vector as $\mathbf{Z}_q \in \mathbf{B}^{d_z}$ and $\mathbf{z}_{q,i} \in \mathbf{B}$, respectively. The deterministic encoding process from \mathbf{x} to \mathbf{Z}_q includes a mapping $\hat{\mathbf{Z}}_q = g_{\phi}(\mathbf{x})$ with $g_{\phi} : \mathbb{R}^D \to \mathbb{R}^{d_b \times d_z}$

The objective function of VQ-VAE is
$$\mathcal{L}_{VQ} = -\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{Z}_{q}) + \|\operatorname{sg}[g_{\boldsymbol{\phi}}(\mathbf{x})] - \mathbf{Z}_{q}\|_{F}^{2} + \beta \|g_{\boldsymbol{\phi}}(\mathbf{x}) - \operatorname{sg}[\mathbf{Z}_{q}]\|_{F}^{2}, \tag{4}$$

and the quantization process of $\hat{\mathbf{Z}}_{q}$ onto $\mathbf{B}^{d_{z}}$. The quan-

where $sg[\cdot]$ denotes the stop-gradient operator and β is set between 0.1 and 2.0 (van den Oord et al., 2017). To improve

The proposed process

As a generative model, the goal of SQ-VAE is to learn a generative process $\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{Z}_{q})$ with $\mathbf{Z}_{q} \sim P(\mathbf{Z}_{q})$ to generate samples that belong to the data distribution $p_{\text{data}}(\mathbf{x})$, where $P(\mathbf{Z}_{q})$ denotes the prior distribution of the discrete latent space \mathbf{B}^{d_z} . The prior $P(\mathbf{Z}_q)$ is assumed to be an i.i.d. uniform distribution in the main training stage as in VQ-VAE, i.e., $P(\mathbf{z}_{q,i} = \mathbf{b}_k) = 1/K$ for $k \in [K]$. A second training will take place to learn $P(\mathbf{Z}_q)$ after the main training stage. Since the exact evaluation of $p_{\theta}(\mathbf{Z}_{q}|\mathbf{x})$ is intractable, the approximated posterior $q_{\phi}(\mathbf{Z}_{q}|\mathbf{x})$ is used instead.

In this setup, although we establish the can generative process following that in VQ-VAE, the construction of the encoding process from x Zq is not straightforward owing to the discrete property of Therefore, we introduce two auxiliary variables to ease the explanation: \mathbf{Z} and $\hat{\mathbf{Z}}_{\mathbf{q}}$

The proposed process (II)

variables to ease the explanation: \mathbf{Z} and \mathbf{Z}_{q} . \mathbf{Z} is the continuous variable converted from \mathbf{Z}_{q} via the dequantization

process $p_{\varphi}(\mathbf{Z}|\mathbf{Z}_{q})$, where φ indicates its parameters. Furthermore, we may derive the inverse process of $p_{\varphi}(\mathbf{Z}|\mathbf{Z}_{q})$, i.e., the stochastic quantization process $\hat{P}_{\varphi}(\mathbf{Z}_{q}|\mathbf{Z})$, from Bayes' theorem $\hat{P}_{\varphi}(\mathbf{Z}_{q}|\mathbf{Z}) \propto p_{\varphi}(\mathbf{Z}|\mathbf{Z}_{q})P(\mathbf{Z}_{q})$. On the other hand, $\hat{\mathbf{Z}}_{q}$ is defined as $\hat{\mathbf{Z}}_{q} = g_{\phi}(\mathbf{x})$, which is the output of the deter-

ministic encoder $g_{\phi}: \mathbb{R}^D \to \mathbb{R}^{d_b \times d_z}$ given a sample \mathbf{x} . Ideally, $\hat{\mathbf{Z}}_{q}$ should be close to \mathbf{Z}_{q} . Similarly, the dequantization

process of $\hat{\mathbf{Z}}_{q}$ can be written as $\mathbf{Z}|\hat{\mathbf{Z}}_{q} \sim p_{\varphi}(\mathbf{Z}|\hat{\mathbf{Z}}_{q})$. As in Figure 1, stacking the processes $p_{\varphi}(\mathbf{Z}|\hat{\mathbf{Z}}_{q})$ and $\hat{P}_{\varphi}(\mathbf{Z}_{q}|\mathbf{Z})$ connects $\hat{\mathbf{Z}}_{q}$ and \mathbf{Z}_{q} , and thus establishes the stochastic encoding process from \mathbf{x} to $\mathbf{Z}_{\mathbf{q}}$ as $Q_{\boldsymbol{\omega}}(\mathbf{Z}_{\mathbf{q}}|\mathbf{x}) := \mathbb{E}_{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})}[\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{\mathbf{q}}|\mathbf{Z})],$ where $\omega := \{\phi, \varphi\}$ and $q_{\omega}(\mathbf{Z}|\mathbf{x}) := p_{\varphi}(\mathbf{Z}|g_{\phi}(\mathbf{x}))$.

Return of the ELBO

• At this point, we can derive the ELBO for SQ-VAE:

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) \geq -\mathcal{L}_{SQ}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\omega}, \mathbf{B}) :=$$

$$\mathbb{E}_{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{q}|\mathbf{Z})} \left[\log \frac{p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{Z}_{q})p_{\boldsymbol{\varphi}}(\mathbf{Z}|\mathbf{Z}_{q})P(\mathbf{Z}_{q})}{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{q}|\mathbf{Z})} \right]$$

$$= \mathbb{E}_{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{q}|\mathbf{Z})} \left[\log \frac{p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{Z}_{q})p_{\boldsymbol{\varphi}}(\mathbf{Z}|\mathbf{Z}_{q})}{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})} \right]$$

$$+ \mathbb{E}_{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})} H(\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{q}|\mathbf{Z})) + \text{const.},$$

et al., 2020). The expectation in the first term of (5) involves the categorical distribution $\hat{P}_{\varphi}(\mathbf{Z}_{q}|\mathbf{Z})$, which can be approximated by the Gumbel–softmax relaxation (Jang et al., 2017; Maddison et al., 2017) to use the reparameterization trick in the backward pass of conventional VAE.

A thousand words...

Gaussian SQ-VAE (well... obviously)

We design Gaussian SQ-VAE by assuming that the dequantization process follows a Gaussian distribution. On the basis of the assumption, the dequantization process is modeled as

$$p_{\varphi}(\mathbf{z}_i|\mathbf{Z}_q) = \mathcal{N}(\mathbf{z}_{q,i}, \boldsymbol{\Sigma}_{\varphi}),$$
 (6)

Decoding The usual Gaussian setup is adopted in the decoding such that $p_{\theta}(\mathbf{x}|\mathbf{Z}_{q}) = \mathcal{N}(f_{\theta}(\mathbf{Z}_{q}), \sigma^{2}\mathbf{I})$, where $\sigma^{2} \in \mathbb{R}_{+}$ and θ are trainable parameters.

Encoding The encoding follows the process depicted in Figure 1, and the dequantization process applied to $\hat{\mathbf{Z}}_{q}$ is $p_{\varphi}(\mathbf{z}_{i}|\hat{\mathbf{Z}}_{q}) = \mathcal{N}(\hat{\mathbf{z}}_{q,i}, \Sigma_{\varphi})$.

Another Objective Function

Objective Function The substitution of the encoding and decoding processes above into (5) gives \mathcal{L}_{N-SO} =

$$\mathbb{E}_{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{q}|\mathbf{Z})} \left[\frac{1}{2\sigma^{2}} \|\mathbf{x} - f_{\boldsymbol{\theta}}(\mathbf{Z})\|_{2}^{2} + \mathcal{R}_{\boldsymbol{\varphi}}^{\mathcal{N}}(\mathbf{Z}, \mathbf{Z}_{q}) \right] - \mathbb{E}_{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})} H\left(\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{q}|\mathbf{Z})\right) + \frac{D}{2} \log \sigma^{2} + \text{const.}, (8)$$

where $\mathcal{R}_{\varphi}^{\mathcal{N}}(\mathbf{Z}, \mathbf{Z}_{q})$ denotes the regularization objective in Table 1, depending on the parameterization of Σ_{φ} . The derivation detail can be found in Appendix B.1.

Σφ controls the degree of stochasticity of the quantization during the training. We first consider two extreme cases, σ → ∞ and σ → 0.

Self-annealing (the proposition)

Proposition 1. Assume that $p_{\text{data}}(\mathbf{x})$ has finite support, whereas g_{ϕ} and $\{\mathbf{b}_k\}_{k=1}^K$ are bounded. Let $\boldsymbol{\omega}^* = \{\phi^*, \varphi^*\}$ be a minimizer of $\mathbb{E}_{p_{\text{data}}(\mathbf{x})} D_{\text{KL}}(Q_{\boldsymbol{\omega}}(\mathbf{Z}_q|\mathbf{x}) \parallel P_{\boldsymbol{\theta}}(\mathbf{Z}_q|\mathbf{x}))$ with fixed $\boldsymbol{\theta}$, σ^2 and $\{\mathbf{b}_k\}_{k=1}^K$. If $\sigma^2 \to 0$, then $\sigma_{\boldsymbol{\varphi}^*}^2 \to 0$.

When $\sigma \to \infty$, the first term in (8) diminishes. It is minimized when $\sigma \to \infty$. means that $P_{\varphi}(\mathbf{z}_{q,i} = \mathbf{b}_k | \mathbf{Z})$ converges to the Kronecker delta function $\delta_{k,\hat{k}}$, where $\hat{k} = \arg\min_k \|\mathbf{z}_i - \mathbf{b}_k\|_2$. This deterministic quantization is exactly the posterior categorical distribution of VQ-VAE. According to the two cases above, if σ^2 decreases gradually during the training, the quantization process will also gradually decrease its stochasticity and

Three thousand words...

Figure 2. Empirical study on the dynamics related to σ_{φ}^2 in Section 3.3. (a) The variance parameter σ_{φ}^2 (blue) decreased with σ^2 (red), where σ_0^2 and $\sigma_{\varphi,0}^2$ are their initial values. (b) Average entropy of the quantization process w.r.t. the iteration, which is obtained by Monte Carlo estimation. (c) MSE for trainable σ_{φ}^2 and various values of σ_q^2 on the test set.