Modelo de búsqueda con reclutamiento

Jonathan Garita

Motivación

• ¿Qué determina el nivel de empleo y desempleo en la economía

CUADRO 3. PRINCIPAL PROBLEMA DEL PAIS

Problema	Porcentaje
Costo de la vida y situación económica	36.7%
Desempleo	20.5%
Corrupción	18.2%
Pobreza	6.6%
Inseguridad y delincuencia	4.2%
Mala gestión del gobierno	4.3%
Situación fiscal del país	2.1%
Otros	7.4%

Fuente: Encuesta de Opinión Pública CIEP-UCR marzo 22 de 2022

- Modelo neoclásico:
 - Oferta y demanda laboral. El desempleo involuntario no existe
 - El «desempleo» es ocio
 - Excesos de oferta y demanda se corrigen mediante movimientos en el salario

- Modelo DMP:
 - Fricciones generan desempleo involuntario
- ¿Cómo explicar las fluctuaciones del desempleo sobre el ciclo económico?
 - Importante para el diseño de política pública
- Vamos a basarnos en DMP para establecer un modelo que sea empíricamente implementable y ayude a entender las fluctuaciones del desempleo

Figura 1: EE.UU.: Tasa de desempleo y de vacantes

1. Modelo de emparejamiento

Oferta laboral

- Asuma que $L^s(\theta, w) = L^s(\theta)$
- Sea H > 0 el tamaño de la fuerza laboral
 - H = L + U
- Sea s la tasa de separación y $f(\theta)$ la tasa de encuentro del empleo
- ullet Sea $u=\frac{U}{H}$ y $v=\frac{V}{H}$ la tasa de desempleo y de vacancia, respectivamente
- **Supuesto**: Los flujos del mercado laboral se balancean:

$$\underbrace{s \cdot L}_{\text{Flujo de entrada}} = \underbrace{f(\theta) \cdot U}_{\text{Flujo de salida}}$$

■ En estado estacionario:

$$u = \frac{s}{s + f(\theta)}$$

Además:

$$s \cdot L = f(\theta) \cdot U$$
$$s \cdot L = f(\theta) \cdot (H - L)$$
$$(s + f(\theta)) \cdot L = f(\theta) \cdot H$$

■ Entonces:

$$L^{s}(\theta) = \frac{f(\theta)}{s + f(\theta)}H$$

Equivalentemente:

$$L^{s}(\theta) = \frac{1}{1 + s/f(\theta)}H$$

- Como $f(\theta) = m(U, V)/U = m(1, \theta) = \theta m(1/\theta, 1) = \theta q(\theta)$, entonces $f'(\theta) > 0$
- $\blacksquare \ \, \text{Además, l} \\ \text{im}_{U \to \infty} \, m(U,V) = \\ \text{l} \\ \text{im}_{V \to \infty} \, m(U,V) = \\ \infty \text{, entonces l} \\ \text{im}_{\theta \to \infty} \, m(1,\theta) = \\ \text{l} \\ \text{im}_{\theta \to \infty} \, f(\theta) = \\ \infty \\ \text{l} \\ \text{im}_{\theta \to \infty} \, f(\theta) = \\ \infty \\ \text{l} \\ \text{im}_{\theta \to \infty} \, f(\theta) = \\ \infty \\ \text{l} \\ \text{im}_{\theta \to \infty} \, f(\theta) = \\ \infty \\ \text{l} \\ \text{im}_{\theta \to \infty} \, f(\theta) = \\ \infty \\ \text{l} \\ \text{im}_{\theta \to \infty} \, f(\theta) = \\ \infty \\ \text{l} \\ \text{im}_{\theta \to \infty} \, f(\theta) = \\ \infty \\ \text{l} \\ \text{im}_{\theta \to \infty} \, f(\theta) = \\ \infty \\ \text{l} \\ \text{im}_{\theta \to \infty} \, f(\theta) = \\ \infty \\ \text{l} \\ \text{im}_{\theta \to \infty} \, f(\theta) = \\ \infty \\ \text{l} \\ \text{im}_{\theta \to \infty} \, f(\theta) = \\ \infty \\ \text{l} \\$
- Entonces:
 - $L^s(\theta)$ es creciente en θ
 - $L^{s}(0) = 0$
 - $L^{s}(\theta) < H$ dado que $\frac{f(\theta)}{s+f(\theta)} < 1$
 - $\lim_{\theta \to \infty} L^s(\theta) = H$ dado que $\lim_{\theta \to \infty} f(\theta) = \infty$

- Estática comparativa:
 - Si $\uparrow s \Rightarrow L^s(\theta)$ se contrae
 - Si $\uparrow H \Rightarrow L^s(\theta)$ se expande

Demanda laboral

■ Una empresa representativa dedica parte de su demanda laboral a la producción (*N*) y la otra parte como reclutadores (*R*):

$$L = N + R$$

V : puestos vacantes creados por empresas (demanda laboral)

r > 0: el costo de reclutamiento: número de reclutadores necesarios para mantener una vacante abierta por unidad de tiempo

 $\tau \equiv R/N$ el cociente reclutador-productor

¿Qué es τ ?

- La empresa pierde $s \cdot L$ trabajadores por unidad de tiemop
- Suponga que los flujos son balanceados
 - El número de personas que deja la empresa = el número que son reclutados
- Entonces, se deben reclutar *sL* personas
 - La empresa debe postear suficientes vacantes V para asegurar $s \cdot L$ reclutamientos
- lacktriangle Cada vacante se llena con probabilidad $q(heta) \Rightarrow$ la empresa debe postear $V = rac{s \cdot L}{q(heta)}$
- Entonces:

$$R = r \cdot V = r \frac{s \cdot L}{q(\theta)} = \frac{r \cdot s}{q(\theta)} (R + N)$$

 $^{^{1}}q(\theta) \cdot V = reclutamientos = s \cdot L$

Por lo que:

$$\frac{R}{N} \equiv \tau = \frac{r \cdot s}{q(\theta)} (1 + \tau)$$

$$\Rightarrow \tau(\theta) = \frac{r \cdot s}{q(\theta) - r \cdot s}$$

Propiedades de $\tau(\theta)$

- La tasa de encuentro $q(\theta) = m(U, V)/V = m(1/\theta, 1)$
 - $q(\theta) > 0$ y $q'(\theta) < 0$
 - $q(0) \rightarrow \infty$
 - $q(\infty) \to 0$
- Entonces, para $\tau(\theta) = \frac{r \cdot s}{q(\theta) r \cdot s}$
 - $\tau(0) = 0$
 - $\tau'(\theta) > 0$
 - $\tau(\theta)$ está definido para $(0, \theta^m)$, con $q(\theta^m) = r \cdot s$

La empresa

■ La función de producción de la empresa es

$$y = aN^{\alpha}$$

y producto

a tecnología, productividad del trabajo

 $\alpha \in (0,1]$ retorno marginal del trabajo

lacktriangle Suponga que P=1 (precio de bienes y servicios como el numerario –unidad de cuenta)

• Los costos laborales de la empresa son:

$$wL = w(R + N)$$
$$= w(1 + \tau(\theta))N$$

■ El problema de la empresa es

$$\max_{N>0} \pi(N) = aN^{\alpha} - w[1 + \tau(\theta)]N$$

• Las condiciones de primer orden implican que

$$N^{1-\alpha} = \frac{a\alpha}{w(1+\tau(\theta))}$$

$$N[1+\tau(\theta)] = \left(\frac{a\alpha}{w(1+\tau(\theta))}\right)^{\frac{1}{1-\alpha}} [1+\tau(\theta)]$$

$$L = \left[\frac{a\alpha(1+\tau(\theta))^{1-\alpha}}{w(1+\tau(\theta))}\right]^{\frac{1}{1-\alpha}}$$

■ Por tanto:

$$L^{d}(\theta, w) = \left[\frac{a\alpha}{w(1+\tau(\theta))^{\alpha}}\right]^{\frac{1}{1-\alpha}}$$

- Para $L^d(\theta, w)$ se tiene que:
 - $L^d(0,w) = \left[\frac{a\alpha}{w}\right]^{\frac{1}{1-\alpha}}$
 - Dado que $\tau(\theta)$ es creciente, $\frac{\partial L^d}{\partial \theta} < 0$
 - En $\theta = \theta^m$, $\tau(\theta) \to \infty$, por lo que $L^d(\theta^m, w) = 0$

- Estática comparativa:
 - ullet $\uparrow w \Rightarrow \downarrow L^d(\theta)$ (incremento salarial)
 - $\uparrow a \Rightarrow \uparrow L^d(\theta)$ (aumento en productividad)

Emparejamiento y equilibrio

• Las empresas maximizan ganancias dado θ . Quieren emplear:

$$L^{d}(\theta, w) = \left[\frac{a\alpha}{w(1+\tau(\theta))^{\alpha}}\right]^{\frac{1}{1-\alpha}}$$

• Los trabajadores esperan un nivel de empleo, dado θ , de:

$$L^{s}(\theta) = \frac{f(\theta)}{s + f(\theta)}H$$

• En estado estacionario:

$$u = \frac{s}{s + f(\theta)}$$

- ¿Cuál es la condición de equilibrio en este modelo?
 - θ tal que se garantizan las tres ecuaciones anteriores
 - ullet Consistencia interna: el nivel de estrechez heta que las empresas y personas trabajadoras toman como dado y es realizado

$$\underbrace{\frac{V(\theta)}{U(\theta)}}_{\text{estrechez realizada}} = \underbrace{\theta}_{\text{estrechez tomada como dada}}$$

■ Recordando que:

$$V(\theta) = \frac{s \cdot L^{d}(\theta)}{q(\theta)}$$
$$U(\theta) = H - L^{s}(\theta)$$

Entonces:

$$\frac{s \cdot L^d(\theta)}{q(\theta)} \times \frac{1}{H - L^s(\theta)} = \theta$$

Como $q(\theta) = f(\theta)/\theta$ y

$$H - L^{s}(\theta) = H\left(1 - \frac{f(\theta)}{s + f(\theta)}\right)$$
$$= H\left(\frac{s}{s + f(\theta)}\right)$$

Por tanto:

$$\frac{s \cdot L^{d}(\theta) \cdot \theta}{f(\theta)} \times \frac{1}{H} \left(\frac{s + f(\theta)}{s} \right) = \theta$$

$$\Leftrightarrow \frac{L^{d}(\theta)}{\frac{f(\theta)}{s + f(\theta)}H} = 1$$

$$\Leftrightarrow L^{d}(\theta) = L^{s}(\theta)$$

• Es decir, en equilibrio, $L^d(\theta) = L^s(\theta)$

 \blacksquare Encontrando θ^* , el empleo de equilibrio es:

$$L^* = L^d(\theta^*) = L^s(\theta^*)$$
$$L^* = \frac{f(\theta^*)}{s + f(\theta^*)}H$$

■ El desempleo de equilibrio es:

$$U^* = H - L^*$$

$$U^* = \frac{s}{s + f(\theta^*)} H$$

■ La tasa de desempleo en equilibrio es:

$$u^* = \frac{s}{s + f\left(\theta^*\right)}$$

• El empleo productivo (no reclutadores) viene dado por:

$$N^* = \frac{L^*}{1 + \tau(\theta^*)}$$

$$N^* = \frac{1}{1 + \tau(\theta^*)} \frac{f(\theta^*)}{s + f(\theta^*)} H$$

• El empleo de reclutadores es:

$$R^* = \tau (\theta^*) N^*$$

$$R^* = \frac{\tau (\theta^*)}{1 + \tau (\theta^*)} \frac{f (\theta^*)}{s + f (\theta^*)} H$$

 $\quad \bullet \quad \tau(\theta) \text{ se obtiene de } L^* = N^* + R^*$