

MATILDE ALMEIDA DIANA BARROCA FILIPE GALEGO JOÃO MARQUES JOÃO TERROSO SANDRA TEIXEIRA

		Ano letivo 2023/2024
Duração do Teste: 100 minutos		
Nome do aluno:	N.º:	Turma:

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

Não é permitido o uso de calculadora.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do teste.

Nas respostas aos itens de escolha múltipla, selecione a opção correta.

Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida uma aproximação, apresente sempre o valor exato.

MATILDE ALMEIDA DIANA BARROCA FILIPE GALEGO JOÃO MARQUES JOÃO TERROSO SANDRA TEIXEIRA

- **1.** Qual dos seguintes é o conjunto-solução da equação $2\sqrt{3} 5\sqrt{7} = \sqrt{7}x$?
 - (A) $\{2\sqrt{3}-7\}$

(c) $\{2\sqrt{21} - 7\}$

(B) $\left\{ \frac{2\sqrt{21}-35}{7} \right\}$

- **(D)** $\{2\sqrt{7}-21\}$
- **2.** A expressão $(2a^6b^8)^{-\frac{1}{4}} \times \sqrt[4]{8a^{-2}}$ é igual, para quaisquer números reais positivos a e b, a:
- (A) $\sqrt{2}ab$
- **(B)** 2ab
- (C) $-\frac{\sqrt{2}}{a^2b^2}$ (D) $\frac{\sqrt{2}}{a^2b^2}$
- 3. Num referencial o.n. xOy, qual dos seguintes semiplanos representa a condição $\sim (x > -2 \land y < 1)$?

(A)

(C)

(B)

(D)

MATILDE ALMEIDA DIANA BARROCA FILIPE GALEGO JOÃO MARQUES JOÃO TERROSO SANDRA TEIXEIRA

- **4.** Na figura, está representado um retângulo [ABCD]. Sabe-se que:

 - $\overrightarrow{EB} = \overrightarrow{DG} = \frac{1}{3}\overrightarrow{AB}$ $\overrightarrow{BF} = \overrightarrow{HD} = \frac{2}{3}\overrightarrow{AD}$
- **4.1.** Mostre que o quadrilátero [EFGH] é um paralelogramo.
- **4.2.** Considere o vetor $2(\overrightarrow{HD} + \overrightarrow{EB}) + \overrightarrow{GH}$. Indique a opção com um representante do mesmo vetor.

- (A) $\vec{0}$
- (B) \overrightarrow{EF} (C) \overrightarrow{HG}
- (D) \overrightarrow{DB}
- 5. No referencial cartesiano o.n. Oxy da figura está representada uma circunferência de centro na origem $\mathcal O$ do referencial e de raio $3\sqrt{2}$.

Nessa circunferência, foi inscrito o quadrado [ABCD] e, a partir desse quadrado, foi construído o losango [BEDF], de tal modo que:

- E é o ponto médio de [AO];
- *F* é o ponto médio de [*OC*];
- a reta AB é paralela ao eixo Ox.
- **5.1.** Mostre que o vértice A do quadrado [ABCD] tem coordenadas (-3,3).
- **5.2.** Determine a razão entre a área do quadrado [ABCD] e a área do losango [BEDF] e interprete o resultado no contexto do problema.
- 5.3. Escreva uma condição que defina a região representada a sombreado.
- **5.4.** Calcule o valor exato da área delimitada pelo arco AB e pelo segmento de reta [AB].
- **6.** Seja $P(k-2, -2k+3), k \in \mathbb{R}$, um ponto do plano.

Quais são os valores de k para os quais P pertence ao quarto quadrante?

- (A) $\left| \frac{3}{2}, 2 \right|$ (B) $\left| -\infty, \frac{3}{2} \right|$ (C) $\left| 2, +\infty \right|$ (D) $\left| -1, 2 \right|$

MATILDE ALMEIDA DIANA BARROCA FILIPE GALEGO JOÃO MARQUES JOÃO TERROSO SANDRA TEIXEIRA

- 7. Considere a representação do cubo [OABDEFGH] e da pirâmide quadrangular regular [IJKLM] num referencial ortogonal e monométrico Oxyz. Sabe-se que:
 - os pontos A, D e G pertencem aos eixos Ox,
 Oy e Oz, respetivamente;
 - a aresta do cubo mede 8;
 - os pontos K, L, M e J são os pontos médios dos segmentos de reta [EF], [FG], [GH] e [HE], respetivamente;
 - o volume da pirâmide é 16.
- **7.1.** Indique as coordenadas dos pontos $A, D \in E$.
- **7.2.** Defina, através de uma condição:

7.2.1. o plano *ABE*;

7.2.2. a reta *EH*;

7.2.3. o plano *AGH* .

- **7.3.** A equação $x^2 + y^2 + z^2 + 8y 16z + 55 = 0$ é uma equação da superfície esférica que tem centro num dos pontos da figura. Indique que ponto é o centro e qual é o raio da superfície esférica.
- **7.4.** Determine as coordenadas do vértice *I* da pirâmide.

FIM

COTAÇÕES

Questão	1.	2.	3.	4.1.	4.2.	5.1.	5.2.	5.3.		
Domínio	СР	СР	СР	RC/RP	СР	RC/RP	CM	СР		
Cotação	10	10	10	15	10	15	20	15	Total	
Questão	5.4.	6.	7.1.	7.2.1.	7.2.2.	7.2.3.	7.3.	7.4.		
Domínio	RC/RP	СР	RC/RP	СР	СР	СР	RC/RP	CM		
Cotação	11	10	9	10	10	15	10	20	200	

CP – Cálculo e procedimentos

CM – Comunicação matemática

RC/RP - Raciocínio matemático/Resolução de problemas

MATILDE ALMEIDA DIANA BARROCA FILIPE GALEGO JOÃO MARQUES JOÃO TERROSO SANDRA TEIXEIRA

Proposta de resolução

1.
$$2\sqrt{3} - 5\sqrt{7} = \sqrt{7}x \Leftrightarrow \sqrt{7}x = 2\sqrt{3} - 5\sqrt{7} \Leftrightarrow x = \frac{2\sqrt{3} - 5\sqrt{7}}{\sqrt{7}} \Leftrightarrow x = \frac{2\sqrt{21} - 35}{7}$$

Resposta: (B)

2.
$$(2a^6b^8)^{-\frac{1}{4}} \times \sqrt[4]{8a^{-2}} = \frac{1}{\sqrt[4]{2a^6b^8}} \times \sqrt[4]{\frac{8}{a^2}} = \sqrt[4]{\frac{8}{2a^8b^8}} = \sqrt[4]{\frac{4}{a^8b^8}} = \frac{\sqrt[4]{2^2}}{\sqrt[4]{a^8b^8}} = \frac{\sqrt{2}}{\sqrt[4]{a^8b^8}} = \frac{\sqrt[4]{a^8b^8}} = \frac{\sqrt[4]{a^8b^8}}{\sqrt[4]{a^8b^8}} = \frac{\sqrt[4]{a^8b^8}$$

Resposta: (D)

3.
$$\sim (x > -2 \land y < 1) \Leftrightarrow \sim (x > -2) \lor \sim (y < 1) \Leftrightarrow x \le -2 \lor y \ge 1$$

Resposta: (A)

4.

4.1. O quadrilátero [EFGH] é um paralelogramo se e só se $\overrightarrow{EF} = \overrightarrow{HG}$.

Ora, $\overrightarrow{EF} = \overrightarrow{EB} + \overrightarrow{BF} = \overrightarrow{DG} + \overrightarrow{HD} = \overrightarrow{HG}$ como queríamos mostrar.

Logo, o quadrilátero [EFGH] é um paralelogramo

4.2.
$$2(\overrightarrow{HD} + \overrightarrow{EB}) + \overrightarrow{GH} = 2(\overrightarrow{HD} + \overrightarrow{DG}) + \overrightarrow{GH} = 2\overrightarrow{HG} + \overrightarrow{GH} = 2\overrightarrow{HG} - \overrightarrow{HG} = \overrightarrow{HG}$$
 Resposta: (C)

5.

5.1. [AC] é o diâmetro da circunferência. Logo, $\overline{AC} = 2 \times 3\sqrt{2} = 6\sqrt{2}$.

Aplicando o Teorema de Pitágoras ao triângulo [ABC], vem

$$\overline{AB}^2 + \overline{BC}^2 = \overline{AC}^2 \Leftrightarrow 2\overline{AB}^2 = (6\sqrt{2})^2 \Leftrightarrow 2\overline{AB}^2 = 72 \Leftrightarrow \overline{AB}^2 = 36$$

Como $\overline{AB} > 0$, vem que $\overline{AB} = 6$.

Seja A' o ponto de interseção do segmento de reta [AB] com o eixo Oy. Então, $\overline{AA'}=6$: 2=3. Assim, a abcissa do ponto $A \in -3$.

Como A é um ponto da bissetriz dos quadrantes pares, as coordenadas do ponto A são (-3,3).

5.2. Pela alínea anterior, sabemos que $A_{[ABCD]} = 36$.

$$\overline{AE} = \overline{EO} = \overline{OF} = \overline{FC} = \frac{1}{4}\overline{AC} \text{ e } \overline{AC} = \overline{BD} = 6\sqrt{2}$$

$$\overline{EF} = 2\overline{EO} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 6\sqrt{2} = 3\sqrt{2}$$

$$A_{[BFDE]} = \frac{\overline{BD} \times \overline{EF}}{2} \Leftrightarrow A_{[BFDE]} = \frac{6\sqrt{2} \times 3\sqrt{2}}{2} \Leftrightarrow A_{[BFDE]} = 18$$

$$\frac{A_{[ABCD]}}{A_{[BFDE]}} = \frac{36}{18} = 2$$

Resposta: $\frac{A_{[ABCD]}}{A_{[BFDE]}} = 2$. A área do quadrado é o dobro da área do losango.

5.3.
$$y > -x \land y \le 3 \land x^2 + y^2 \le 18$$

MATILDE ALMEIDA DIANA BARROCA FILIPE GALEGO JOÃO MARQUES JOÃO TERROSO SANDRA TEIXEIRA

5.4.
$$A = \frac{1}{4} \left(A_{circulo} - A_{[ABCD]} \right) = \frac{1}{4} \times \left(\pi \times \left(3\sqrt{2} \right)^2 - 36 \right) = \frac{1}{4} \times \left(18\pi - 36 \right) = \frac{18\pi - 36}{4} = \frac{9\pi - 18}{2}$$

Resposta: $A = \frac{9\pi - 18}{2}$

6.
$$P(k-2, -2k+3), k \in \mathbb{R}$$

Se ponto P pertence ao 4.º quadrante, então a sua abcissa é positiva e a sua ordenada é negativa.

Assim,
$$k-2 > 0 \land -2k+3 < 0 \Leftrightarrow k > 2 \land k > \frac{3}{2} \Leftrightarrow k > 2$$

Resposta: (C)

7.

7.1.
$$A(8,0,0)$$
; $D(0,-8,0)$; $E(8,-8,8)$

7.2.1.
$$ABE: x = 8$$

7.2.2.
$$EH: y = -8 \land z = 8$$

7.2.3. O plano AGH é o plano mediador do segmento de reta [OF].

Então, d(P, O) = d(P, F), sendo P(x, y, z) um ponto qualquer desse plano mediador.

$$O(0,0,0) \in F(8,0,8)$$

Assim,

$$x^2 + y^2 + z^2 = (x - 8)^2 + y^2 + (z - 8)^2 \Leftrightarrow$$

$$\Leftrightarrow x^2 + y^2 + z^2 = x^2 - 16x + 64 + y^2 + z^2 - 16z + 64 \Leftrightarrow$$

$$\Leftrightarrow 16x + 16z - 128 = 0 \Leftrightarrow$$

$$\Leftrightarrow x + z - 8 = 0$$

7.3.
$$x^2 + y^2 + z^2 + 8y - 16z + 55 = 0 \Leftrightarrow x^2 + y^2 + 8y + z^2 - 16z = -55 \Leftrightarrow$$

$$\Leftrightarrow x^2 + y^2 + 8y + 16 + z^2 - 16z + 64 = -55 + 16 + 64 \Leftrightarrow$$

$$\Leftrightarrow x^2 + (y+4)^2 + (z-8)^2 = 25$$

Resposta: O centro da circunferência é M(0, -4.8) e o raio é 5.

7.4. Sabe-se que:

$$\overline{KL} = \overline{LM} = \overline{MJ} = \overline{JK}$$

Considerando o triângulo retângulo [KFL], temos que

$$\overline{KL^2} = \overline{KF^2} + \overline{FL^2} \Leftrightarrow \overline{KL^2} = 4^2 + 4^2 \Leftrightarrow \overline{KL^2} = 32$$

Logo,
$$A_{[KLMI]} = 32$$
.

Seja I' a projeção ortogonal de I no plano EFG.

$$V_{pir\hat{a}mide} = \frac{1}{3} A_{[KLMJ]} \times \overline{II'} \Leftrightarrow 16 = \frac{1}{3} \times 32 \times \overline{II'} \Leftrightarrow \overline{II'} = \frac{3}{2}$$

A cota do ponto $I \in 8 + \frac{3}{2} = \frac{19}{2}$

Resposta: As coordenadas do ponto I são $\left(4, -4, \frac{19}{2}\right)$