

Y36PSI QoS Jiří Smítka Jan Kubr

QoS - co, prosím?

- Quality of Services = kvalita služeb
- Opatření snažící se zaručit koncovému uživateli doručení dat v potřebné kvalitě
- Uplatňuje se v přenosu multimédií, IP telefonii, atd.
- Kvalita služby je ovlivněna:
 - stanicemi (uživatelé, servery)
 - směrovači, přepínači
 - linkami (mezi směrovači, LAN)

Sdílení kapacity sítě

- V jednoduché síti typu Internet se všichni uživatelé dělí o prostředky sítě stejným dílem
- 100 uživatelů + linka 100 Mbit/s
 => 1 Mbit/s na jednoho uživatele
- Většinou není menší rychlost problém
- Některé aplikace (např. IP telefonie) však nemusí fungovat

Možnosti QoS

- Rezervovat přenosovou kapacitu pro daný kanál
- Nastavit vyšší prioritu některým službám (např. ssh) a zkrátit jejich odezvu
- Omezit přenos na definovaný limit (např. omezení FTP, aby bylo možno přistupovat na WWW)
- Definovat maximální zpoždění dat

Příklad sítě bez QoS

Příklad sítě s QoS

Parametry tvořící QoS

- šířka pásma = rychlost přenosu dat
- jednosměrné zpoždění
 - čas potřebný pro přenesení paketu přes fyzické médium
 - čas způsobený řazením do front
- rozptyl zpoždění
- ztrátovost paketů

Řízení provozu

- omezování provozu (traffic policing)
 - ořezávání provozu
 - absolutní přenos, průměrný přenos, špičkový přenos
 - např. token backet
- tvarování provozu (traffic shaping)
 - dodržení podmínek pro omezování provozu
 - náročné na paměť
 - změna zpoždění

Typy služeb

- rozlišované služby (DiffServ)
 - značkování paketů
 - řízení mezi sousedy
- integrované služby (IntServ)
 - rezervace prostředků
 - špatná adaptibilita
- maximální snaha (best effort)
 - původní řešení
 - nejlépe jak to jde, všem stejně

Tvarování provozu

- token bucket
- leaky bucket
- TCP
 - pozdržení potvrzení
 - zmenšení okénka

Plánovací mechanismy

- FIFO
- Prioritní FIFO
- Round Robin
- WFQ
- •

Zamezení zahlcení

- Congestion avoidance
- RED
- WRED
- omezování provozu
- oznámení o zahlcení

FIFO

Prioritní FIFO

Round Robin

2 fronty (prioritní + ostatní)

Příchod

Obsluha

2

čas

WFQ (weighted fair queuing)

Token Bucket

Leaky Bucket

odeslání paketu do sítě

Token Bucket + WFQ

Random Early Detection

Jan Kubr - Y36PSI 20 12/2009

Weighted Random Early Detection

Co na to IP protokol?

• IPv4 má v hlavičce informační pole TOS (Type of Service):

1000	minimalizuj zpoždění
0100	maximalizuj propustnost
0010	maximalizuj spolehlivost
0001	minimalizuj finanční náklady
0000	normální služba

Jan Kubr - Y36PSI 22 12/2009

ToS v aplikacích

- Telnet = $1000 \quad (zpoždění)$
- FTP control = 1000 (zpoždění)
- FTP data = 0100 (propustnost)
- DNS
 - UDP query = 1000(zpoždění)
 - TCP query = 0000
 - Zone transfer = 0100 (propustnost)
- ICMP
 - errors = 0000
 - request = 0000
 - response = 0000

TCP a řízení toku

- Efektivně lze omezovat pouze odchozí tok dat, pro příchozí tok musíme použít nepřímé metody.
- Můžeme pozdržet potvrzení a tím prodloužit RTT (round trip time)
 (pozor na timeout, který způsobí opětovné odeslání dat).
- Můžeme měnit velikost okénka.

RTT v TCP (1)

- RTT (round trip time) je doba, za kterou přijde potvrzení odeslaného datového segmentu
- Od RTT se odvozuje timeout
- Jenže jak dopředu vědět hodnotu RTT?

SampleRTT = poslední naměřený RTT EstimatedRTT = očekávaný RTT

EstimatedRTT = $(1-\alpha)$. EstimatedRTT + α . SampleRTT

 $\alpha = 0.125$

RTT v TCP (2)

TCP - Timeout

DevRTT = $(1-\beta)$. DevRTT + β . | SampleRTT-EstimatedRTT | (popisuje proměnlivost RTT, β =0,25)

TimeoutInterval = EstimatedRTT + 4 . DevRTT

Timeout se po každé ztrátě paketu zdvojnásobí.

TCP okénko I.

- ,,slow start": CongWin = 1 MSS(MSS = maximum segment size)
- po každém RTT se CongWin zdvojnásobí (s každým paketem roste o 1 MSS)
- V proměnné *Threshold* je uložena hodnota, kde "slow start" končí a začíná fáze "congestion avoidance" (zamezení zahlcení)

TCP okénko II.

- Ve fázi "congestion avoidance" roste CongWin lineárně vždy o 1 MSS.
- Při příjmu 3 duplicitních ACK (detekce ztráty) se Threshold a CongWin nastaví na polovinu poslední hodnoty CongWin.
- Timeout způsobí nastavení Threshold na polovinu CongWin a nastaví CongWin na 1 MSS.
 Poté zahájí "slow start".

IPv6 a QoS

- QoS v dnešním Internetu funguje nepovinně, jen v jeho částech.
- Zajištění QoS mezi koncovými uživateli je tedy obtížné.
- IP protokol verze 6 by měl tento nedostatek odstranit
- IPv6 má v hlavičce nová pole definující způsob zpracování a identifikace informací přenášených v síti

Odkazy

http://vrs.cuni.cz/vrs2001/prezentace/vrs2001-Smotlacha.pdf

