### **CLOUD COMPUTING**

Foundations of Web development

# **Chapter Objectives**

- Describe servers, server-based processing, clients, and client-based processing
- Explain client/server architecture, including tiers, cost-benefit issues, and performance considerations
- Describe the impact of the Internet on system architecture

# **Chapter Objectives**

- Explain the difference between online and batch processing
- Define network topology, and provide examples of hierarchical, star, bus, and ring network models
- Explain network protocols and licensing issues

### Introduction

- An effective system combines elements into an architecture, or design, that is flexible, cost-effective, technically sound, and able to support the information needs of the business
- System architecture translates the logical design of an information system into a physical structure that includes hardware, software, network support, and processing methods

#### Servers

- Server
- Clients
- The terms mainframe architecture and centralized system typically describe a multiuser environment where the server is significantly more powerful than the clients

#### Servers

- Background
  - In addition to centralized data processing, early systems performed all data input and output at a central location, often called a data processing center
  - Users had no input or output capability, except for printed reports that were distributed by a corporate IT department

#### Servers

- Server-based processing
  - In a centralized design, the remote user's keystrokes are transmitted to the mainframe, which responds by sending screen output back
  - Server-based processing typically uses character-based terminals which is a disadvantage
  - An Internet-based retail operation might use centralized data management
  - As server technology evolved, terminal technology also has changed dramatically

- As PC technology exploded in the mid-1980s, microcomputers quickly appeared on corporate desktops
- Users found that they could run their own word processing, spreadsheet, and database applications
- Most companies linked the stand-alone computers into networks

- Stand-Alone Computing
  - Stand-alone computing was inefficient and expensive
  - Maintaining data on individual workstations raised major concerns about data security, integrity, and consistency
  - It was impossible to protect and back up valuable business data, and companies were exposed to enormous risks
  - This led to data inconsistency and unreliability

- Local and wide area networks
  - Resolved the problems of stand-alone computing by joining clients into a local area network (LAN)
  - A wide area network (WAN) spans long distances and can connect LANs that are continents apart
  - The network is transparent
  - Compared to mainframe architecture, distributed systems increase concerns about data security and integrity

- Client-based processing
  - In a typical LAN, clients share data stored on a local server
  - In a file server design, also called a file sharing architecture, an individual LAN client has a copy of the application program installed locally, while the data is stored on a central file server
  - A file server design requires significant network resources

- · Handles user interface
- · Sends data request to server
- · Receives data files from server
- Runs application program locally to process data
- · Sends data file back to server



#### Overview

- Client/server architecture
- The client submits a request for information from the server, which carries out the operation and responds to the client
- Many early client/server systems did not produce expected savings
- Many companies had an installed base of mainframe data, called legacy data, which was difficult to access and transport to a client/server environment

#### Overview

| Characteristics of Client/Server Versus Mainframe Systems |                                                               |                                                                   |
|-----------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|
| Characteristics                                           | Client/Server                                                 | Mainframe                                                         |
| Basic architecture                                        | Very flexible                                                 | Very rigid                                                        |
| Application development                                   | Flexible<br>Fast<br>Object-oriented                           | Highly structured<br>Slow<br>Traditional                          |
| User environment                                          | PC-based<br>GUI<br>Empowers the user<br>Improves productivity | Uses terminals Text interface Constrains the user Limited options |
| Security and control features                             | Decentralized Difficult to control                            | Centralized<br>Easier to control                                  |
| Processing options                                        | Can be shared and configured in any form desired              | Cannot be modified                                                |
| Data storage options                                      | Can be distributed to place data closer to users              | All data is stored centrally                                      |
| Hardware/software integration                             | Very flexible<br>Multivendor model                            | Very rigid<br>Single proprietary vendor                           |

### Types of Clients: Fat and Thin

- Fat client thick client
- Thin client
- Most IT experts agree that thin client designs provide better performance, because program code resides on the server, near the data
- In contrast, a fat client handles more of the processing and must access and update the data more often

### Types of Clients: Fat and Thin

| Characteristic      | Fat Client                                                                                                              | Thin Client                                                                       |
|---------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Network traffic     | Higher, because the fat client must communicate more often with the server to access data and update processing results | Lower, because most interaction between code and data takes place at the server   |
| Performance         | Slower, because more network traffic is required                                                                        | Faster, because less network traffic is required                                  |
| Initial cost        | Higher, because more powerful hardware is required                                                                      | Lower, because workstation hardware requirements are not as stringent             |
| Maintenance cost    | Higher, because more program code resides on the client                                                                 | Lower, because most program code resides on the central server                    |
| Ease of development | Easier, because systems resemble traditional file-server designs where all processing was performed at the client       | More difficult, because developers must optimize the division of processing logic |

### Client/Server Tiers

- Two-tier design
- Three-tier design
- Think of the middle layer as an application server, because it provides the application logic, or business logic
- Three-tier designs also are called n-tier designs
- The middle layer is more efficient and cost-effective in large-scale systems

#### Middleware

- Enables the tiers to communicate and pass data back and forth
- Provides a transparent interface that enables system designers to integrate dissimilar software and hardware
- Can integrate legacy systems and Web-based applications

#### Cost-Benefit Issues

- Client/server systems enable the firm to scale the system in a rapidly changing environment
- Client/server computing also allows companies to transfer applications from expensive mainframes to less expensive client platforms
- Client/server systems reduce network load and improve response times

### Client/Server Performance Issues

- Client/server architecture does involve performance issues that relate to the separation of server-based data and networked clients
- In contrast to the centralized system, a client/server design separates applications and data
- Client/server systems must be designed so the client contacts the server only when necessary

### Client/Server Performance Issues

- Distributed database management system (DDBMS)
- Data stored closer to users can reduce network traffic
- The system is scalable, so new data sites can be added without reworking the system design
- The system is less likely to experience catastrophic failure

# Impact of the Internet

#### E-Commerce Strategies

- In-house development
  - If you decide to proceed with an in-house solution, you must have an overall plan to help achieve your goals
  - An in-house solution usually requires a greater initial investment, but provides more flexibility for a company that must adapt quickly in a dynamic e-commerce environment

# Impact of the Internet

#### E-Commerce Strategies

- Packaged solutions and e-commerce service providers
  - Many vendors offer turnkey systems for companies
  - Another alternative is to use an application service provider (ASP)
  - Must consider whether the advantage of lower initial cost outweighs the disadvantage of reduced flexibility later on
- Corporate portals
  - A portal is an entrance to a multifunction Web site
  - A corporate portal can provide access for customers, employees, suppliers, and the public

# Impact of the Internet

### Industry Experience and Trends

- A systems analyst confronts a bewildering array of products and strategies when constructing Internetor intranet-based systems
- A good starting point might be to consider the experience of other companies in the same industry
- This type of research can provide valuable information about a vendor's products and services

### **Processing Methods**

#### Online Processing

- Online processing systems have four typical characteristics:
  - 1. The system processes transactions completely when and where they occur
  - 2. Users interact directly with the information system
  - 3. Users can access data randomly
  - The information system must be available whenever necessary to support business functions

### **Processing Methods**

#### Batch Processing

- In a batch processing system, data is collected and processed in groups, or batches
- The IT operations group can run batch programs on a predetermined schedule without user involvement; and batch programs require significantly fewer network resources than online systems

### **Processing Methods**

#### Combined Online and Batch Processing

- Point-of-sale (POS)
- Online processing offers an inherent advantage because data is entered and validated as it occurs
- Online processing is more expensive
- Backup and recovery for online processing is more difficult
- In many situations, batch processing is cost-effective,
   less vulnerable to system disruption, and less intrusive

- A network allows the sharing of hardware, software, and data resources in order to reduce expenses and provide more capability to users
- The OSI Reference Model
  - Before you study network topology, you should have a basic understanding of the OSI (open system interconnection) model

#### The OSI Reference Model

- The OSI model consists of seven layers.
  - Application layer: provides network services requested by local workstation
  - Presentation layer: assures that data is uniformly structured and formatted for network transmission
  - Session layer: defines control structures that manage the communications link between computers
  - Transport layer: provides reliable data flow and error recovery

#### The OSI Reference Model

- The OSI model consists of seven layers.
  - Network layer: defines network addresses and determines how data is routed over the network
  - Data link layer: defines specific methods of transmitting data over the physical layer, such as defining the start and end of a data block
  - Physical layer: contains physical components that carry data, such as cabling and connecters

#### Network Modeling Tools

 As you translate the OSI logical model into a physical model of the networked system, you can use software tools, such as Microsoft Visio, which is a multipurpose drawing tool, to represent the physical structure and network components

- The way a network is configured is called the network topology
- LAN and WAN networks typically are arranged in four patterns: hierarchical, star, bus, and ring

- Hierarchical network
  - One disadvantage of a hierarchical network is that if a business adds additional processing levels, the network becomes more complex and expensive to operate and maintain
  - One advantage is that it mirrors the actual operational flow in the organization

- -Star network
  - At the center of the star, which is called the hub, the central computer manages the network
  - While a star network provides efficiency and close control, a major disadvantage of this design is that the entire network depends on the central computer



- -Bus network
  - Advantage devices can be attached or detached from the network at any point without disturbing the rest of the network
  - Disadvantage –
     performance can
     decline as users and
     devices are added,
     because all message
     traffic must flow along
     the central bus



- –Ring network
  - Used when processing is performed at local sites rather than at a central location
  - Data flows only in one direction
  - Disadvantage if a network device fails, devices downstream cannot communicate with the network



### **Network Models**

#### Network Protocols

- The network must use a protocol
- A popular network protocol is Transmission Control Protocol/Internet Protocol (TCP/IP)
- A familiar example of a TCP/IP protocol is the file transfer protocol (FTP)

### **Network Models**

### Licensing Issues

- Various types of individual and site licenses are available from software vendors
- Some vendors limit the number of users or the number of computers that can access the program simultaneously
- Carefully investigate the capabilities of network software to ensure that it can handle the anticipated system traffic

### Performance Management

- Performance management tools are designed to collect information about system resources and activity levels
- Firms such as NetScout Systems offer comprehensive performance management packages
- The NetScout Web site mentions studies that show network delays cost the industry more revenue than actual stoppages

### System Security

- First, provisions must be made to assign and monitor user IDs, passwords, and access levels
- Second, the system security tools must handle virus protection and detect any unauthorized access
- Many security management software products are available

### Fault Management, Backup, and Disaster Recovery

- The best strategy is to prevent problems before they can affect they system
- You must provide additional means, however, to deal with system faults and interruptions
- Fault management
  - Fault management includes monitoring the system for signs of trouble, logging all system failures, diagnosing the problem, and applying corrective action

- Fault Management, Backup, and Disaster Recovery
  - Backup and disaster recovery
    - Backup
    - Recovery
    - Disaster recovery plan
    - Backup and recovery planning depends on the type of system involved
    - With online systems, you must either perform backups when the system is inactive, or continuously back up the data

- Fault Management, Backup, and Disaster Recovery
  - Backup and disaster recovery
    - Another common strategy is to use a RAID (redundant array of independent disks) system
    - RAID systems are called fault-tolerant
    - Experienced IT professionals often note that the three most important system security tools are backup, backup, and more backup

- Fault Management, Backup, and Disaster Recovery
  - Backup and disaster recovery
    - Log file or journal file
    - Business insurance can help offset expenditures
    - File retention laws and regulations apply to company data
    - If a government rule specifies that a record of all payments to the company must be kept for three years, then your design must retain the data for that period

### System Design Specification

- System design specification
- Technical design specification
- Detailed design specification
- The system design specification is the baseline against which the operational system will be measured
- The system design specification varies in length

### System Design Specification

- A typical system design specification uses a structure similar to the following:
  - Executive summary
  - System components
  - System environment
  - Implementation requirements
  - Time and cost estimates
  - Appendices

### User Approval

- Users must review and approve the interface design, report and menu designs, data entry screens, source documents, and other areas of the system that affect them
- Other IT department members also need to review the system design specification
- When the system design specification is complete, you distribute the document to a target group of users, IT department personnel, and company management

#### Presentations

- The presentations give you an opportunity to explain the system, answer questions, consider comments, and secure final approval
- The first presentation is to the systems analysts, programmers, and technical support staff members
- Your next presentation is to department managers and users from departments affected by the system

#### Presentations

- The final presentation is for company management
- Key objective: to obtain management's approval and support for the next development step
- Management might reach one of three decisions: proceed with systems development, perform additional work on the systems design phase, or terminate the project

# **Chapter Summary**

- Networks allow the sharing of hardware, software, and data resources in order to reduce expenses and provide more capability to users
- The way a network is configured is called the network topology
- The system design specification presents the complete systems design for an information system