Part 1

E.M.B

# Chapter 3: EQUIVALENCE RELATIONS

Mphako-Banda



#### LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- Define an equivalence relation on a set A.
- \$\int\$ Given a relation on a set A, check/show whether it is an equivalence relation.
- \*
- ÷
- ď

### Definition (3.1.1 EQUIVALENCE RELATIONS)

Define a relation  $\approx$  on a set A as an equivalence relation in A if  $\forall a, b, c \in A$  we have

- (i)  $a \approx a \, \forall a \in A$ . (reflexive property) "a is related to a"
- (ii)  $a \approx b \Rightarrow b \approx a$ . (symmetric property) "if a is related to b then b is related
- $a \approx b$   $b \approx c$   $\Rightarrow a \approx c$ . (transitive property) "a related to b about

We say a  $\approx$  b or "a equivalent to b."

is related to c"

Example: On  $A = \mathbb{Z}$  define  $\frac{a \approx b}{a}$  if  $\frac{a - b}{a}$  is a multiple of 2.



"for any integers a and b, a is related to b if a-b=2t for some integer t"

In order to define an equivalence relation we need to

- (i) define the set;
- (ii) define the rule (that satisfies the above three conditions (reflexive, symmetric and transitive properties))

#### Definition (3.1.2 EQUIVALENCE CLASS)

Let A have  $\approx$  as an equivalence relation. The equivalence class

$$[a] = \bar{a} = \{x \in A | x \approx a\}.$$
 "all x in A that are related to a"

[a] is the equivalence class of A generated by a.

Example: On  $A = \mathbb{Z}$  define  $a \approx b$  iff a - b = 2k.

$$[0] = \{0, \pm 2, \pm 4, \cdots\}$$

"4 is related to 0 since 4-0=4=2t, t=2 integer"

$$[1]=\{\pm 1,\pm 3,\cdots\}$$

"3 is related to 1 since 3-1=2=2t, t=1"

**NOTE:** 
$$[0] = [2] = [-2]$$
 and  $[1] = [-1]$ .

we say the class of 2 is equal to the class of 0 and is equal to the class of -2

an euivalence class is a set

## Example (3.1.3 Examples)

- ♠ Equality is an equivalence relation on any set A. Let a = b,  $a, b \in \mathbb{Z}$ . Then  $[a] = \{a\}$ . Equivalence classes all singleton sets.
- $\spadesuit$  Triangles in  $\mathbb{R}^2$ , congruence.  $\longleftarrow$
- $\spadesuit$  Sets in  $U, A \approx B$  iff |A| = |B|.

can you show that these are equivalence relations?

- We define  $\mathbb{Q} = \{\frac{p}{q} | q \neq 0, p, q \in \mathbb{Z}\}$ . On  $\mathbb{Q}$  define  $\approx$  as follows  $\frac{a}{b} \approx \frac{c}{d}$  iff ad = bc, where  $b \neq 0, d \neq 0, a, b, c, d \in \mathbb{Z}$ . Show that  $\approx$  is an equivalence relation on  $\mathbb{Q}$ .
- (i)  $\frac{a}{b} \approx \frac{a}{b}$  since ab = ba,  $\forall a, b \in \mathbb{Z}$  (reflexive)

Part 1

(ii) 
$$\frac{a}{b} \approx \frac{c}{d} \Rightarrow ad = bc \Rightarrow bc = ad \Rightarrow cb = da$$
  
 $\Rightarrow \frac{c}{d} \approx \frac{a}{b}$ . (symmetric)  
(iii)  $\frac{a}{b} \approx \frac{c}{d}$ ;  $\frac{c}{d} \approx \frac{e}{f} \Rightarrow ad = bc$ ;  $cf = de$ .  
 $\Rightarrow adf = bcf$  and  $bcf = bde$ 

(iii) 
$$\frac{a}{b} \approx \frac{c}{d}$$
;  $\frac{c}{d} \approx \frac{e}{f}$   $\Rightarrow$   $ad = bc$ ;  $cf = de$ .  
 $\Rightarrow$   $adf = bcf$  and  $bcf = bde$   
 $\Rightarrow$   $adf = bde$ ;  $\Rightarrow$   $af = be$  since  $d \neq 0$   
 $\Rightarrow$   $\frac{a}{b} \approx \frac{e}{f}$ . (transitive)

The equivalence classes are given by:

$$\begin{split} \left[\frac{a}{b}\right] &= \left\{\frac{x}{y} \in \mathbb{Q} \middle| \frac{x}{y} \approx \frac{a}{b}\right\} \quad b \neq 0, y \neq 0. \\ &= \left\{\frac{x}{y} \in \mathbb{Q} \middle| xb = ya\right\} \\ &= \left\{\frac{x}{y} \in \mathbb{Q} \middle| \frac{x}{y} = \frac{a}{b} \text{ if } y \neq 0 \text{ and } b \neq 0\right\} \end{split}$$

e.g

$$\left[\frac{1}{2}\right] = \{\frac{-3}{-6}, \frac{-2}{-4}, \frac{-1}{-2}, \frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \frac{4}{8}, \cdots\}$$

Hence  $\frac{24}{48} \approx \frac{1}{2}$  Equivalent not "really" equal.

"what is the equivalence class of 3?"