Segon Control de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica			2019	Primavera 2019
Nom:	Cognoms:	Grup	DNI	

Duració: 1h30m. El test es recollirà en 20m. Responeu en el mateix enunciat.

Test. (3 punts) Totes les preguntes són multiresposta: Valen la meitat si hi ha un error, 0 si més.

El la figura tots els ports del switch són full duplex i 100 Mbps, la connexió WiFi entre H3 i l'AP és de 20 Mbps i els nombres enquadrats indican la VLAN configurada en cada port.

end	quadrats indican la VLAN configurada en cada port.
1.	En la figura la taula MAC del switch està buida i H1 fa un ping a S. Quantes entrades hi haurà en la taula MAC del
	switch quan H1 reb la resposta del ping? (només hi ha el tràfic generat pel ping)
ᆸ	
X	
	Totes les estacions (H1, H2, H3) envien a la màxima velocitat cap a S. Marca els ports dels switch on actuarà el control
	flux (enviarà trames de pausa):
	en cap
	en el port 1 del switch
X	en el port 2 del switch
3.	Suposa que H1, H2 i H3 es connecten al servidor de chargen de S. Estima que val la velocitat eficaç (throughput) de
	da estació.
	En totes 100/3 Mbps
	En H1 i H2 50 Mbps i en H3 20 Mbps
	En H1 i H2 40 Mbps i en H3 20 Mbps
	En H1 i H2 100 Mbps i en H3 20 Mbps
	Suposa que H1, H2 i H3 es connecten a un servidor de chargen de S. La finestra anunciada (awnd) és la mateixa en
	es les connexions. Aproximadament, el RTT que veurà TCP
	Serà el mateix en H1, H2 i H3 Serà el mateix en H1 i H2
	en H3 serà en doble que en H1
_	en H1 serà en doble que en H3
	04:12.949020 10.1.9.47.57278 > 10.1.24.40.5001: [S], seq 2881316612, win 29200, length 0
	04:12.949135 10.1.24.40.5001 > 10.1.9.47.57278: [S.], seq 2744514961, ack 2881316613, win 27360,
	ngth 0
16:	04:12.958957 10.1.9.47.57278 > 10.1.24.40.5001: [.], ack 1, win 229, length 0
	04:14.014615 10.1.24.40.5001 > 10.1.9.47.57278: [F.], seq 1, ack 520000, win 5259, length 0
-	04:14.023507 10.1.9.47.57278 > 10.1.24.40.5001: [.], ack 2, win 229, length 0
	Suposa ara que en H1 s'ha capturat el bolcat anterior (no es correspon al servidor de chargen dels apartats anteriors, i
	pocat no mostra les opcions de TCP). Digues quines afirmacions són certes
	La adreça IP de H1 és 10.1.24.40 El client és 10.1.24.40
	En total el host 10.1.9.47 ha enviat 0 bytes de dades
	La velocitat eficaç (throughput) ha estat aproximadament de 488 kbps
	El RTT és aproximadament 9ms
	Digues quines afirmacions són certes de TCP i UDP
	La capçalera de UDP és fixa i TCP variable
	Les capçaleres de UDP i TCP tenen un camp de checksum
	Les capçaleres de UDP i TCP tenen un camp amb el port font i el port destinació
	Les capçaleres de UDP i TCP tenen un camp amb el número de seqüència
	Digues quines afirmacions són certes respecte el control de congestió de TCP
	La finestra de congestió (cwnd) només s'incrementa quan es confirmen noves dades
	Quan salta l'RTO sempre es retransmet un segment
	El llindar slow start threshold pot valer 0
	Quan salta l'RTO la finestra de congestió es posa igual a 1 segment
	Digues quines afirmacions són certes
	En mode full duplex Ethernet no fa servir CSMA/CD
	En CSMA/CD les estacions esperen un temps aleatori si al escoltar el medi el troben ocupat
	En wifi no hi pot haver el mode full duplex
	Una xarxa que només té commutadors i access points wifi (amb una única VLAN) forma un únic domini broadcast

2n Control de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica			Primavera
Nom:	Cognoms:	Grup:	DNI:

S1

S₂

S3

Internet

Duración 1h30m. El test se recogerá en 20m. Responder en el mismo enunciado.

Problema 1 (3.5 puntos).

En esta red C1 descarga de S1, y C2 descarga de S2, actualizaciones de sistema > 4 GB.

Suponemos una Internet no congestionada.

Todas las conexiones son de 1 Gb/s full-duplex.

TCP MSS = 1 Kbyte.

Latencia (RTT): C-S1 1ms, C-S2 50ms, C-S3 20ms.

Las colas del router tienen tamaño 0: si hay más de un paquetes para enviar sólo se guarda uno.

Usamos unidades decimales 1 Gbps = 1000 Mbps, 1 kB = 1000 bytes

a) Determinar la ventana óptima de recepción de C1 bajando de S1 y C2 bajando de S2:

C1: Vopt = 1 Gb/s * 1ms / 8 = 125 KB

C2: Vopt = 1 Gb/s * 50 ms / 8 = 6.25 MB (50 veces más)

b) Determinar la velocidad efectiva de recepción de C1, C2 si la ventana anunciada por ambos es 50000 bytes:

C1: Vef = awnd/rtt = 50000*8 / 0.001 = 400 Mb/s

C2: Vef = awnd/rtt = 50000*8 / 0.050 = 8 Mb/s

c) Ahora está activo window scaling 7 (x2⁷) para C1 y C2, indicar cómo cambian las velocidades efectivas:

C1: Vef = 1 Gb/s (supera pero no puede ser mayor)

C2: Vef = 8 Mbps * 128 = 1 Gb/s (tampoco podría ser mayor)

d) Indica el efecto que puede tener la descarga C1-S1 en la descarga de C2-S2.

El switch separa el tráfico entre ambas transferencias y llega sin interferencia mútua a C1 y C2.

Ahora C1 y C2, además de descargar de S1 y S2 respectivamente con el window scaling anterior, descargan también un stream de video UDP de S3 que se envía a 10 Mbps.

e) Indicar el efecto que tendrán estas descargas sobre la transferencia TCP con C1 y C2 a ambos lados del router y qué rol tiene el switch?

C1: limitación C1-SW → control flujo en switch, pérdida tráfico UDP en R. (Tráfico TCP C1 ~< 1Gbps – 10 Mbps)

C2: Tráfico entrada R > 1 Gbps, pérdidas UDP, pérdidas TCP en R (TCP→control congestión) + control de flujo en switch (Tráfico TCP C2 ~< 1Gbps – 2*10 Mbps)

f) Con todo lo anterior, en qué estado estarán las conexiones TCP desde C1 y C2 hacia el final de la conexión? (SS/CA y motivo)

C1-S1: SS no hay pérdidas por el control de flujo del switch

C2-S2: CA porque hay pérdidas en TCP

g) Indica los valores de ssthres para cada conexión TCP hacia el final de la misma:

C1: ssthres = infinita (SS)

C2: awnd_{max} = 50000*128 = 6.4 MB. Se producirán pérdidas antes de enviarla junto al tráfico UDP. Por tanto por debajo de 3.2 MB

Second exam of Computer Networks (XC), Degree in Informatics Engineering		16/5/2019		Spring 2019
NAME:	SURNAME:	GRUP	ID	

Duration: 1h30m. The test will be collected in 25 minutes. Please answer the questions in the table.

Problem 2 (3.5 points)

The figure represents the network topology of a company. The network is connected to the Internet through a router (R) that connects two different LANs: (1) public and private servers, and (2) the rest of the company, including the factory, the workers and the management; the technology of the network interfaces is shown in the figure (consider the double link between the server in the factory and Sw3 as just one with the aggregated speed). The efficiency of the switches (Sw) and the bridge (Br) is 100%, that of the hubs (H) is 80% and that of the access-point (AP) is 66.7% (two thirds).

Several VLANs are created to partition the physical infrastructure and separate network traffic; VLANs configuration is shown in the figure.

In the factory (VLAN20), let us assume that the robots run an industrial application that uses UDP. Robots are always active and have data ready to transmit to the factory server. For the rest of the stations and mobile devices, let us assume that they run two types of applications, both based on TCP: the first one to download data from the servers and the second one to upload data to the servers, being in both cases negligible the amount data in the opposite direction. Periodically, workers load and download data to/from the servers. As for the stations/devices that are active, they have always data ready to transmit to the server they are connected to, whereas those not active do not transmit.

Answer the following questions in the next table for the scenarios that are given: (*i*) the bottlenecks that would be created, (*ii*) which would be the mechanism(s) that would regulate the effective speed of the stations/devices, (*iii*) the effective speed that active stations/devices would achieve.

- **A)** (0.5 points) All the HHRR, Sales and Accounting workers in VLAN22 upload data at the same time to the corresponding servers in VLAN11.
- **B)** (0.5 points) All the HHRR, Sales and Accounting workers in VLAN22 download data at the same time from the corresponding servers in VLAN11.
- **C)** (1 point) All Maintenance and Operation workers in VLAN21 upload data at the same time to their server in VLAN11.
- **D)** (1 point) Operation workers in VLAN21 download data from the server in the factory while the management in VLAN23 are downloading the last sales report from the server in VLAN11.

	Bottleneck	Flow Control	Effective speed per station/device (Mb/s)				
Q		Mechanism(s)	VLAN22	VLAN21 - Operation	VLAN21 - Maintenance	VLAN23	
A)	Br-Sw2	Br uses jabber	1 Mbps	-	-	-	
B)	Br-Sw2	Sw2 uses pause frames	1 Mbps	-	-	-	
C)	Sw4-Sw2	Sw4 uses pause frames	-	96,4 Mbps	3,6 Mbps	-	
D)	R-Sw2*	TCP	-	90 Mbps	-	33,3Mbps	

^{*}NOTE: R-Sw2 will be the bottleneck for vlan21 (increasing the capacity of the link R-Sw2, stations in vlan21 will increase their throughput). For stations in vlan23 the bottleneck is the links Sw2-Sw5, since this link limits their throughput. Increasing the capacity of this link, stations in vlan23 will increase their throughput.

E) (0.5 points: correct entry: +0.05; empty/incomplete/incorrect entry: -0.05) After the previous activity, which are the contents of the MAC table in Sw2? Answer in the following table, where the *Y/N* field specifies whether every entry would be in the MAC table; as for the *output port* field, specify it by using the name of the connected network device, e.g., *Sw3* for the interface that connects Sw2 to the factory.

MAC addresses learned in Sw2	Y/N	Output Port
VLAN11 - Sales & Account Server	N	-
VLAN11 - HHRR Server	N	-
VLAN11 - Operation and Maintenance Server	N	-
VLAN20 - Factory Server	Y	Sw3
VLAN20 - Robots	N	-
VLAN21 - Maintenance	Y	Sw4
VLAN21 - Operation	Y	Sw4
VLAN22 - Sales & Accounting	Y	Br
VLAN22 - HHRR	Y	Br
VLAN23 - Management	Y	Sw5