# DEVOIR FACULTATIF

# Convexes du plan complexe

#### Définitions et notations

## • Segments complexes.

 $Si\ a,b\in\mathbb{C},\ on\ notera$ 

$$[a,b] := \{ta + (1-t)b \; ; \; t \in [0,1]\}.$$

$$\triangleright On a [a,b] \subset \mathbb{C}.$$

ightharpoonup L'ensemble [a,b] est appelé segment complexe d'extrémités a et b.

# • Parties convexes de $\mathbb{C}$ .

Soit  $X \subset \mathbb{C}$ . On dira que X est une partie convexe de  $\mathbb{C}$  quand

$$\forall (a,b) \in X^2, \ [a,b] \subset X.$$

## 1. Exemples de parties convexes.

- (a) Sans justification, donner, en les dessinant, des exemples de parties convexes et des exemples de parties non convexes.
- (b) Dans cette question, on attend des justifications rapides.
  - (i) L'ensemble vide est-il une partie convexe de  $\mathbb{C}$ ?
  - (ii) L'ensemble  $\mathbb{C}$  est-il convexe?
- (c) On note  $\mathbb{H}:=\Big\{z\in\mathbb{C}\ \Big|\ \mathrm{Im}(z)>0\Big\}$ . Montrer que  $\mathbb{H}$  est convexe.
- (d) Si  $a \in \mathbb{C}$  et si r > 0, on note

$$\mathsf{B}(a,r) := \Big\{ z \in \mathbb{C} \ \big| \ |z - a| \leqslant r \Big\}.$$

- (i) Représenter B(i, 1).
- (ii) Soient  $a \in \mathbb{C}$  et r > 0. Montrer que  $\mathsf{B}(a,r)$  est convexe.

#### **2.** Soient $n \in \mathbb{N}^*$ et $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ .

On note

$$\Delta^{n} := \left\{ (\lambda_{1}, \dots, \lambda_{n}) \in [0, 1]^{n} \, \middle| \, \sum_{i=1}^{n} \lambda_{i} = 1 \right\}.$$

$$\mathscr{H}(\alpha_{1}, \dots, \alpha_{n}) := \left\{ \sum_{i=1}^{n} \lambda_{i} \alpha_{i} \; ; \; (\lambda_{1}, \dots, \lambda_{n}) \in \Delta^{n} \right\}.$$

Montrer que  $\mathcal{H}(\alpha_1,\ldots,\alpha_n)$  est convexe.

#### 3. Intersection de parties convexes.

Soit I un ensemble non vide et soit  $(X_i)_{i\in I}$  une famille de parties de  $\mathbb{C}$ .

On suppose que pour tout  $i \in I$ ,  $X_i$  est convexe.

Montrer que 
$$\bigcap_{i=1}^n X_i$$
 est convexe.

# 4. Enveloppe convexe.

Dans cette question, on fixe  $A \subset \mathbb{C}$ , une partie quelconque de  $\mathbb{C}$ .

Le but de cette question est de montrer qu'il existe une plus petite partie convexe de  $\mathbb C$  contenant A.

(a) Commençons par regarder un exemple. On pose  $A_0 = \{1, -1, i\}$ . Sans justification, représenter la plus petite partie convexe de  $\mathbb C$  contenant  $A_0$ .

On revient au cas général et on note

$$\mathscr{C}(A) := \Big\{ X \subset \mathbb{C} \ \Big| \ A \subset X \text{ et } A \text{ est convexe} \Big\}.$$

- (b) Montrer que  $\mathscr{C}(A) \neq \varnothing$ .
- (c) On pose

$$\operatorname{conv}(A) := \bigcap_{X \in \mathscr{C}(A)} X.$$

Montrer que conv(A) est convexe.

L'ensemble  $\operatorname{conv}(A)$  est appelé l'enveloppe convexe de A.

(d) Montrer que

$$\forall X \subset \mathbb{C}, \ \Big(A \subset X \text{ et } A \text{ est convexe}\Big) \implies \operatorname{conv}(A) \subset X.$$

Ainsi, on a montré que conv(A) est la plus petite partie convexe de  $\mathbb C$  contenant A.

- 5. Soit  $n \in \mathbb{N}^*$ .
  - (a) Soit X une partie convexe de  $\mathbb{C}$  et soient  $\alpha_1, \ldots, \alpha_n \in X$ . Montrer que

$$\mathcal{H}(\alpha_1,\ldots,\alpha_n)\subset X.$$

(b) Montrer que

$$\operatorname{conv}(\{\alpha_1,\ldots,\alpha_n\}) = \mathcal{H}(\alpha_1,\ldots,\alpha_n).$$

