Table 1: Nomenclature

Notation	Definition
G	The graph or the network (All networks considered in this paper are directed)
W, P, G_s	Water, power, gas
$I^{A o B}$	Interdependent network I of network B depending on network A (Resources flow from A to B)
\mathcal{M}	Set of networks
\mathcal{N}^m	Set of nodes in network $m, \mathcal{N}^m = N_d^m \cup N_t^m \cup N_s^m$
$\mathcal{N}_d^m, \mathcal{N}_t^m, \mathcal{N}_s^m$	Set of demand, transmission and supply nodes in network m
\mathcal{E}^m	Set of links in network m , link $e_{ij}^m, i, j \in \mathcal{N}^m$ points from node i to j
$N_+^m(i), N^m(i)$	Set of neighborhood nodes pointed out of/pointing into node i
$\xi^m(i)$	Set of closest edges relying on node i in network m
ho	The density of the water
g	acceleration of gravity
n_d, n_t, n_s	The number of demand, transmission and supply nodes
α, β	The cooling ratio and the Hazen–Williams coefficient
l	The length of a link where $l_e^m(l_{ij}^m)$ is the length of the link $e_{ij} \in \mathcal{E}$ in network m
D_{ij}	The diameter of the edge or pipeline ij
c^m	The cost of transporting resources in network m
z	The demand value of certain type of resource
p^H, p^L	The power used to overcome the height difference or the friction loss
h	The elevation where h_i denotes the elevation of node i
Pr_s, T_s	Absolute pressure and temperature in standard conditions, 520 R, 14.73 psia
H	The heating value of natural gas
a_u, b_u, c_u	The fuel consumption coefficients of generating single unit of electricity per time
η_{ij}	The adiabatic efficiency of the compressor installed at link ij
H_{ij}^{AD}	The adiabatic head of link ij
Z	The compressibility factor
R	The gas constant
K	The adiabatic exponent, c_p/c_v
e	The efficiency factor of the gas pipelines
χ	The specific gravity of gas relative to the air
ϕ	The gas compressibility, different from the gas compressibility factor
δ_1	18.0625
δ_2	2.6667
δ_3	1.0
δ_4	1.0
δ_5	0.5
Decision variables	Definition
f_{ij}	The flow along link $ij \in \mathcal{E}^W \cup \mathcal{E}^{Gs} \cup \mathcal{E}^{I^{W \to P}} \cup \mathcal{E}^{I^{Gs \to P}}$
p_i	The power load of nodes in power network $i \in \mathcal{N}^P$
p_{ij}	The power load of links $ij \in \mathcal{E}^W \cup \mathcal{E}^{Gs} \cup \mathcal{E}^{I^{W \to P}} \cup \mathcal{E}^{I^{Gs \to P}}$
Pr_i	The pressure of node $i \in \mathcal{N}^{Gs} \cup \mathcal{N}_s^P$

$$\min c^{W} \sum_{(i,j)\in E^{W}} f_{ij}l_{ij} + c^{Gs} \sum_{(i,j)\in E^{Gs}} f_{ij}l_{ij} + c^{P} \sum_{i\in N_{s}^{P}} p_{i}$$
(1)

LINEAR CONSTRAINTS

$$\sum_{j \in N_{-}^{W}(i)} f_{ji} = \sum_{j \in N_{+}^{W}(i)} f_{ij}, \forall i \in \mathcal{N}_{t}^{W}$$

$$\tag{2}$$

$$\sum_{j \in N_{-}^{W}(i)} f_{ji} = \sum_{j \in N_{+}^{W}(i)} f_{ij} + \sum_{j \in N_{-}^{I^{W} \to P}(i)} f_{ij} + z_{i}^{W}, \forall i \in \mathcal{N}_{d}^{W}$$
(3)

$$\sum_{j \in N_{-}^{Gs}(i)} f_{ji} = \sum_{j \in N_{+}^{Gs}(i)} f_{ij}, \forall i \in \mathcal{N}_t^{Gs}$$

$$\tag{4}$$

$$\sum_{j \in N_{-}^{Gs}(i)} f_{ji} = \sum_{j \in N_{+}^{Gs}(i)} f_{ij} + \sum_{j \in N_{+}^{IGs \to P}(i)} f_{ij} + z_i^{Gs}, \forall i \in \mathcal{N}_d^{Gs}$$
 (5)

$$p_{i} = \sum_{(j,k)\in\xi^{W}(i)} p_{jk} + \sum_{(j,k)\in\xi^{Gs}(i)} p_{jk} + \sum_{(j,k)\in\xi^{IP\to W}(i)} p_{jk} + \sum_{(j,k)\in\xi^{IP\to Gs}(i)} p_{jk} + z_{i}^{P}, \forall i \in \mathcal{N}_{d}^{P} \quad (6)$$

$$\bigcup_{i \in N_d^P} \xi^W(i) = \mathcal{E}^W \tag{7}$$

$$\bigcup_{i \in N_d^P} \xi^{Gs}(i) = \mathcal{E}^{Gs} \tag{8}$$

$$\bigcup_{i \in N_d^P} \xi^{I^{P \to W}}(i) = \mathcal{E}^{I^{P \to W}} \tag{9}$$

$$\bigcup_{i \in N_d^P} \xi^{I^{P \to Gs}}(i) = \mathcal{E}^{I^{P \to Gs}} \tag{10}$$

$$\sum_{i \in N_d^p} p_i = \sum_{i \in N_s^p} p_i \tag{11}$$

NONLINEAR CONSTRAINTS

$$\frac{a_u + b_u p_i + c_u p_i^2}{H} = \sum_{j \in N_-^{IGS \to P}(i)} f_{ji}, \forall i \in \mathcal{N}_s^P$$
(12)

$$H_{ij}^{AD} = \frac{ZRT_i}{(K-1)/K} ((\frac{Pr_j}{Pr_i})^{(K-1)/K} - 1), \forall (i,j) \in (\mathcal{E}^{Gs} \cup \mathcal{E}^{Gs \to P})$$
 (13)

$$p_{ij} = \frac{f_{ij}H_{ij}^{AD}}{33000n_{ii}}, \forall (i,j) \in (\mathcal{E}^{Gs} \cup \mathcal{E}^{Gs \to P})$$

$$\tag{14}$$

$$p_{ij}^{H} = \rho g f_{ij}(h_j - h_i), \forall (i, j) \in (\mathcal{E}^W \cup \mathcal{E}^{I^{W \to P}})$$
(15)

$$p_{ij}^{L} = K(f_{ij})^{1.852} = 10.654 \left(\frac{f_{ij}}{\beta}\right)^{1.852} \frac{l_{ij}}{D_{ij}}, \forall (i,j) \in (\mathcal{E}^{W} \cup \mathcal{E}^{I^{W \to P}})$$
 (16)

$$p_{ij} = p_{ij}^H + p_{ij}^L, \forall (i,j) \in (\mathcal{E}^W \cup \mathcal{E}^{I^{W \to P}})$$
(17)

$$\sum_{i \in N_{-}^{IW \to P}(j)} f_{ij} = \kappa p_j, \forall j \in \mathcal{N}_s^P$$
(18)

$$f_{ij} = \delta_1 e(D_{ij})^{\delta_2} \left(\frac{T_s}{Pr_s}\right)^{\delta_3} \left(\frac{(Pr_i)^2 - (Pr_j)^2}{(\chi)^{\delta_4} l_{ij} T\phi}\right)^{\delta_5}, \forall (i,j) \in (\mathcal{E}^{Gs} \cup \mathcal{E}^{I^{Gs \to P}})$$
(19)