Gravitational wave theory for data analysts

The theoretical minimum needed to understand GW data analysis

Space-time geometry

- Gravity is not a force but the effect of a curved space-time geometry
- Matter influences space-time geometry
- Space-time geometry guides the motion of matter
- □ Test particles follow paths of shortest lengths (geodesics) in the curved geometry

Space-time geometry

- Intrinsic geometry of a manifold is described by specifying the distance between every pair of points
- \diamond Distance between points in 3-D Euclidean space in cartesian coordinates (x, y, z)

$$\Delta s^2 = \Delta x^2 + \Delta y^2 + \Delta z^2 = (\Delta x \, \Delta y \, \Delta z) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}$$

Space-time geometry

- Intrinsic geometry of a manifold is described by specifying the distance between every pair of points
- \diamond Distance between points in 3-D Euclidean space in cartesian coordinates (x, y, z)

$$\Delta s^2 = \Delta x^2 + \Delta y^2 + \Delta z^2 = (\Delta x \, \Delta y \, \Delta z) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}$$

Distance between points in 4-D Minkowskian space-time in coordinates $x = (x^0 = ct, x^1 = x, x^2 = y, x^3 = z)$

$$\Delta s^{2} = (\Delta x^{0} \, \Delta x^{1} \, \Delta x^{2} \, \Delta x^{3}) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \Delta x^{0} \\ \Delta x^{1} \\ \Delta x^{2} \\ \Delta x^{3} \end{pmatrix} \equiv \sum_{\mu,\nu=0}^{3} \Delta x^{\mu} \Delta x^{\nu} \eta_{\mu\nu}$$

- \star The matrix with elements $\eta_{\mu\nu}$ is the flat (Minkowskian) space-time **metric tensor**

Gravitational Wave

Long wavelength approximation

GW wavelength $\lambda \gg$ separation of the two points \Rightarrow Approx. same h_{ij} at the two points

$$h(t) = \frac{\Delta L(t)}{L} = \frac{\sqrt{|Ln^{i}g_{ij}Ln^{j}| - L}}{L} = \frac{1}{2}n^{i}W_{ij}n^{j} = \frac{1}{2}\hat{n}^{T} W(t)\hat{n}$$
$$= \sum_{i,j=1}^{3} n_{i}n_{j}W_{ij} = W_{ij}(\hat{n} \otimes \hat{n})^{ij}$$

Long wavelength approximation

GW wavelength $\lambda \gg$ separation of the two points \Rightarrow Approx. same h_{ij} at the two points

$$h(t) = \frac{\Delta L(t)}{L} = \frac{\sqrt{|Ln^{i}g_{ij}Ln^{j}| - L}}{L} = \frac{1}{2}n^{i}W_{ij}n^{j} = \frac{1}{2}\hat{n}^{T} W(t)\hat{n}$$
$$= \sum_{i,j=1}^{3} n_{i}n_{j}W_{ij} = W_{ij}(\hat{n} \otimes \hat{n})^{ij}$$

Strain signal

- ► GW interferometer: Measured quantity is the difference in arm lengths
- Strain signal:

$$s(t) = W_{ij} [(\hat{n}_X \otimes \hat{n}_X)^{ij} - (\hat{n}_Y \otimes \hat{n}_Y)^{ij}]$$

Detector tensor (common notation in papers):

$$\overrightarrow{D} = \widehat{n}_X \otimes \widehat{n}_X - \widehat{n}_Y \otimes \widehat{n}_Y$$

Defined purely by the orientation of the detector arms

Wave tensor

- The wave tensor is expressed most simply in the "Wave frame"
- At the origin of the detector axes:

$$W = h_{+}(t) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + h_{\times}(t) \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$W = h_{+}(t)(\hat{x} \otimes \hat{x} - \hat{y} \otimes \hat{y}) + h_{\times}(t)(\hat{x} \otimes \hat{y} + \hat{y} \otimes \hat{x})$$

Common notation in papers:

$$\overrightarrow{W} = h_{+}(t) \overrightarrow{e}_{+} + h_{\times}(t) \overrightarrow{e}_{\times}$$

- \overrightarrow{e}_+ and $\overrightarrow{e}_\times$ are called "plus" and "cross" polarization tensors
- The wave tensor is defined purely in terms of the wave frame

Strain signal

• Detector tensor:

$$\overrightarrow{D} = \widehat{n}_X \otimes \widehat{n}_X - \widehat{n}_Y \otimes \widehat{n}_Y$$

Wave tensor:

$$\overrightarrow{W} = h_{+}(t) \overrightarrow{e}_{+} + h_{\times}(t) \overrightarrow{e}_{\times}$$

$$\overrightarrow{e}_{+} = \widehat{x} \otimes \widehat{x} - \widehat{y} \otimes \widehat{y}; \quad \overrightarrow{e}_{\times} = \widehat{x} \otimes \widehat{y} + \widehat{y} \otimes \widehat{x}$$

• Strain signal: "Contraction of wave and detector tensors"

$$s(t) = \sum_{i,j=1}^{S} W_{ij} D_{ij} = W^{ij} D_{ij} = \overrightarrow{W} : \overrightarrow{D}$$

 To use the above formula, all unit vector components must be written down in the same reference frame

Convention issues

Burst signals

• Fix the wave frame XY axes by convention

Inspiral signals

 Fix the wave frame XY axes according to binary orbit projected on the sky

Geometry of wave and detector frames

Image credit: Rakhmanov, LIGO-T060237

Strain signal

$$\overrightarrow{W} = h_{+}(t) \overrightarrow{e}_{+} + h_{\times}(t) \overrightarrow{e}_{\times}$$

$$s(t) = \overrightarrow{W} : \overrightarrow{D} = h_{+}(t) \overrightarrow{D} : \overrightarrow{e}_{+} + h_{\times}(t) \overrightarrow{D} : \overrightarrow{e}_{\times}$$

$$s(t) = h_{+}(t)F_{+}(\hat{k}) + h_{\times}(t)F_{\times}(\hat{k})$$

- $F_{+,\times}$ are called the **antenna pattern functions** of the detector and depend on the direction from which the wave is coming
 - \hat{k} is specified by the sky angles θ and ϕ
 - $\Rightarrow F_{+,\times}(\hat{k}) = F_{+,\times}(\theta,\phi)$
- Note: $h_{+,\times}(t)$ are the polarization amplitudes measured at the frame origin

Right ascension (RA) and declination (DEC) convention

Declination

Earth-centered
Earth-fixed (ECEF)
frame

Antenna patterns: L-shaped interferometer

Plotting on sphere in Matlab: github.com →LDACSchool→skyplot.m; testskyplot.m

Antenna response: L-shaped interferometer

$$s(t) = F_{+}(\underbrace{\theta, \phi}_{sky \ angle})h_{+}(t) + F_{\times}(\theta, \phi)h_{\times}(t)$$

$$F_{+}(\theta,\phi) = \frac{1}{2}(1+\cos^{2}\theta)\cos 2\phi$$

GW150914: Strain signal (Whitened)

Strain signal: General case

- $g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x)$ and $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$
- Light puls from sender (A) to point receiver (B)
 - Starting time $t_{\scriptscriptstyle S}$ and received time $t_{\scriptscriptstyle T}$
- Total distance traveled by the light pulse = add up the distance travelled over infinitesimal time intervals ⇒

$$\int_{A}^{B} \sqrt{g_{\mu\nu} dx^{\mu} dx^{\nu}} \approx |\bar{x}_{B}(t_{r}) - \bar{x}_{A}(t_{s})| + \frac{1}{2} \hat{n}_{AB} \otimes \hat{n}_{AB}: \int_{A}^{B} \overleftrightarrow{W}_{0} \left(t - ct\hat{n}_{AB}.\hat{k}/c\right) dt$$

where \hat{n}_{AB} is the unit vector pointing from A at t_S (i.e., $\bar{x}_A(t_S)$) to the **future position** of B (i.e., $\bar{x}_B(t_r)$) and \hat{k} points along the direction of the GW

• See Cornish, Rubbo, arXiv:gr-qc/0209011v4

Network of detectors

China School, AMSS, CAS, 2017

Network data analysis

- Since interferometric detectors have poor directionality, a single detector cannot be used to determine the position of GW source
- A single detector cannot be used to resolve the two polarization components
- Analysis of data from a network is essential for determining direction and polarizations

The physical setting

- Incoming GW is a plane wave
- It will hit the different detectors at different times
- time delay with respect to the arrival time at the center of the Earth is $-\bar{r}_i \cdot \hat{n}/c$
 - \bar{r}_i : position vector of the i^{th} detector
 - \hat{n} : unit vector pointing at the GW source
- Not only will different detectors see the signal at different times, they will also measure different strain signals because the source appears at different locations in the local detector frames

Network data

- ► *N* detectors
- Rotation and movement of detectors neglected

$$\begin{pmatrix} s_1(t) \\ \vdots \\ s_N(t) \end{pmatrix} = \begin{pmatrix} F_{+,1}(\theta,\phi)B(\tau_1(\theta,\phi)) & F_{\times,1}(\theta,\phi)B(\tau_1(\theta,\phi)) \\ \vdots & \vdots \\ F_{+,N}(\theta,\phi)B(\tau_N(\theta,\phi)) & F_{\times,N}(\theta,\phi)B(\tau_N(\theta,\phi)) \end{pmatrix} \begin{pmatrix} h_+(t) \\ h_\times(t) \end{pmatrix}$$

Matrix notation: $s(t) = A(\theta, \phi)h(t)$

Strain signals

$$(\theta, \phi)$$
: GW source position

$$B(\tau)[g(t)] = g(t - \tau)$$
: Time shift operator

$$h(t) = MA^{T}(\theta, \phi)s(t)$$

$$M = (A^{T}(\theta, \phi)A(\theta, \phi))^{-1}$$

 $A(\theta, \varphi)$ can become rank-deficient

⇒The inverse problem is **ill-posed**

 \Rightarrow Errors in s(t) can get magnified

GW170817: a 3-detector event

Credit: LIGO/Virgo/NASA/Leo Singer (Milky Way image: Axel Mellinger)

Moving detector strain signal

Moving and rotating detector

- LISA
 - Most signals in the frequency band of LISA will last for a year or indefinitely
- Ground-based detectors observing long-lived signals (Continuous wave sources)

Plane wave field

• Plane GW wave field:

 $h_{+,\times}^{(0)}(t)$: Wave value at origin of TT Gauge

$$h_{+,\times}(t,\bar{x}) = h_{+,\times}^{(0)} \left(t - \hat{k}.\frac{\bar{x}}{c} \right)$$

• $h_{+,\times}^{(0)}(t)$ gets transported to a position \bar{x} along \hat{k} after a time interval x/c

Strain signal: moving detector

- The detector responds to the wave tensor at the detector location
- \diamond Detector located at position $\bar{x}_d(t)$ in the plane GW wave field
- ♦ Observed strain signal:

$$s(t) = F_{+}h_{+}^{(0)} \left(t - \hat{k} \cdot \frac{\bar{x}_{d}}{c} \right) + F_{\times}h_{\times}^{(0)} \left(t - \hat{k} \cdot \frac{\bar{x}_{d}}{c} \right)$$

♦ (Assume antenna patterns are constant)

Moving detector and monochromatic source

- ightharpoonup Velocity of detector: $\bar{v}_d(t)$
- \hat{n} : Direction to GW source $(=-\hat{k};$ direction of propagation of wave)
- Source is periodic $\Rightarrow h_{+,\times}^{(0)}(t) \propto \sin(2\pi f t)$
- Strain:

$$s(t) \propto \sin\left(2\pi f\left(t + \hat{n}.\frac{\bar{x}_d(t)}{c}\right)\right)$$

► Instantaneous frequency (= time derivative of phase):

$$f(t) = f + \Delta f(= f \hat{n}. \frac{\bar{v}_d(t)}{c})$$

ightharpoonup f
ightharpoonup f(t): Doppler shift

Moving and rotating detector

- Antenna pattern functions change in time since the source moves in the detector frame
- Observed strain signal:

$$s(t) = F_{+}(t; \hat{k}) h_{+}^{(0)} \left(t - \hat{k} \cdot \frac{\bar{x}_{d}}{c} \right) + F_{\times}(t; \hat{k}) h_{\times}^{(0)} \left(t - \hat{k} \cdot \frac{\bar{x}_{d}}{c} \right)$$

- For a moving detector, the source direction is encoded in
 - ▶ The way the signal frequency gets doppler shifted
 - ▶ The way the amplitude of the signal is modulated
- > Source direction can be obtained from even a single detector

Detector response

Strain signal to detector response

- Interferometric detectors have a non-flat transfer function to the strain signal
 - ► Low frequency cutoff in resonant cavities: Control systems push mirrors to counter low-frequency disturbances and keep cavities on resonance ("Locked state" of detector)
 - ▶ Intermediate frequencies: Response goes from flat to decreasing
 - ► High frequency: Zero response at GW frequencies that match the "free spectral range" frequency (or integer multiples)

Interferometer transfer function

Calibration

- Detector transfer function is measured by shaking the mirrors with a known displacement and measuring the detector response
 - Abbot et al, Phys. Rev. D 95, 062003 (2017)
 - ► The displacement signals are sinusoids
- Calibrated data: Data with measured transfer function removed
 - ► For the frequency range that is well calibrated, data analysts do not need to know the details of the detector response
- Strain signal is sufficient for analysis of calibrated data
- ► GW Open Science Center: Public domain calibrated data from all past science runs
- https://www.gw-openscience.org/about/

Summary

Lab session: implementation of GW strain signal for static and moving detectors

Advanced topics not covered:

Strain signal when the long wavelength approximation does not hold (relevant for high frequency LISA signals; relevant for all sources in PTA band)

Non-rigid LISA

Time-delay interferometry for LISA

Please read appendix A of textbook for refresher on probability theory