Sistemas de inteligencia artificial TP4: Métodos de Aprendizaje NO Supervisado

Grupo 19 Integrantes:

- → Lucas Catolino
- → Matias Ricarte

Ejercicio 1.a

Redes de Kohonen

- Las neuronas se conectan consigo mismas positivamente, y con las vecinas negativamente
- Se activa una neurona (aprendizaje competitivo)
- Una sola capa de kxk neuronas
- Agrupan datos
- Limitaciones:
 - Si la entrada es muy grande es difícil bajar la dimensionalidad
 - Sólo para variables numéricas
 - No existe un criterio para elegir el k

Redes de Kohonen

El problema: dados datos geo-socio-económicos de 28 países europeos, agruparlos por características similares

	Country	Area	GDP	Inflation	Life.expect	Military	Pop.growth	Unemployment
0	Austria	83871	41600	3.5	79.91	0.8	0.03	4.2
1	Belgium	30528	37800	3.5	79.65	1.3	0.06	7.2
2	Bulgaria	110879	13800	4.2	73.84	2.6	-0.80	9.6

Experimentación

- Encontramos que usar una grilla de k = 3 no resultaba en neuronas muertas.
- Elegimos usar k = 3 para poder tener más clasificaciones para el conjunto de datos.
- Encontramos que algunos casos con k = 3 y una tasa de aprendizaje menor que 0.7 podía ocurrir que al final de las iteraciones existieran neuronas muertas.

0 · 1 1 2 0 2

1 · 3 1 1 1 0

N · 1 1 1 2 0

m · 1 1 1 1 2 0

Cantidad de elementos asociados a cada neurona, epoch = 99

k = 4

k = 5

$$k = 3$$

n=0.3

Resultados

Parámetros usados:

- k=3
- learning rate = 0.7
- R = 10

Cantidad de elementos asociados a cada neurona, epoch = 0

Parámetros usados:

- k=3
- learning rate = 0.7
- R = 10

Cantidad de elementos asociados a cada neurona, epoch = 99 Distancia promedio entre neuronas vecinas, epoch = 99

GREECE PORTUGAL SPAIN	FINLAND ITALY U.K.	GERMANY NORWAY SWEDEN
CROATIA HUNGARY POLAND	CZECH REPUBLIC IRELAND SLOVENIA	NETHERLANDS SWITZERLAND
BULGARIA ESTONIA LATVIA LITHUANIA UKRAINE	SLOVA KIA	AUSTRIA DENMARK BELGIUM ICELAND LUXEMBURG

Resultados finales

Ejercicio 1.b

- Perceptrón lineal simple
- Busca construir la primera componente principal (autovector asociado al mayor autovalor de la matriz de correlaciones)

El problema: dados datos geo-socio-económicos de 28 países europeos, calcular la primera componente principal

	Country	Area	GDP	Inflation	Life.expect	Military	Pop.growth	Unemployment
0	Austria	83871	41600	3.5	79.91	0.8	0.03	4.2
1	Belgium	30528	37800	3.5	79.65	1.3	0.06	7.2
2	Bulgaria	110879	13800	4.2	73.84	2.6	-0.80	9.6

Epochs: 5000

Learning rate: 0.0001

Epochs: 5000

Learning rate: 0.0001

sklearn (PCA)

Regla de Oja vs sklearn (PCA)

Learning rate	Error
0,000001	1,460024964
0,00001	1,603104589
0,0001	0,008344459362
0,001	0,0120035223
0,01	0,1256710671
0,1	1,410198854

Epochs= 1000

$$Error = \sqrt{\sum_{i=1}^{7} (W_i - W_i^L)^2}$$

Error vs Learning rate

Learning rate

Learning rate	Error
0,000001	1,45466362
0,00001	0,09815249681
0,0001	0,00119472466
0,001	0,0120035223
0,01	0,1256710671
0,1	1,812459308

$$Error = \sqrt{\sum_{i=1}^{7} (W_i - W_i^L)^2}$$

Error vs Learning rate

Learning rate	Error
0,000001	1,003595871
0,00001	0,01828034419
0,0001	0,001194724648
0,001	0,0120035223
0,01	0,1256710671
0,1	1,755334835

Epochs= 10000

$$Error = \sqrt{\sum_{i=1}^{7} (W_i - W_i^L)^2}$$

Error vs Learning rate

Learning rate

Ejercicio 2

- Todas las neuronas conectadas con las otras (menos consigo mismas)
- Salida binaria (activo o no)
- Una sola capa
- Llevan a un patrón
- Limitaciones:
 - o Guarda hasta el 15% de la entrada
 - Patrones de referencia aproximadamente ortogonales

El problema: almacenar 4 patrones de letras de 5x5 (1 o -1), y a partir de una entrada con ruido asociar a un patrón

Ortogonalidad:

- L, X: 1
- L, T: -3
- L, P: -1
- X, T: 1
- X, P: -5
- T, P: 3

Ruido: 0.2

Entrada sin ruido

Entrada con ruido

Época 1

Época 2

Época 3: patrón estabilizado

Ruido: 0.4

1	-1	-1	-1	1
1	-1	-1	-1	1
1	-1	1	-1	1
1	1	-1	1	1
1	-1	-1	-1	1
		- 1		

Entrada sin ruido

1	-1	-1	1	1
-1	-1	-1	-1	1
1	1	1	1	-1
1		-1	1	1
1	-1	1	1	1
E	atr	ad.	2.0	on

Entrada con ruido

1	1	1	-1	-1		
1	-1	-1	-1	1		
1	1	-1	1	1		
1	-1	-1	-1	-1		
1	1	-1	-1	-1		
Época 1						

Época 2

Época 3

Ruido: 0.6

_				
1	-1	-1	-1	1
1	1	-1	1	1
1	-1	1	-1	1
1	-1	-1	-1	1
1	-1	-1	-1	1

Entrada sin ruido

Entrada con ruido

-1

-1 -1 -1 -1

Energía frente a Época

Hopfield demostró que la red converge ya que la energía decrece, y los mínimos locales son patrones

Un estado espúreo es un mínimo (local) en la función de energía

$$H = -\sum_{j>i} w_{ij} S_i S_j$$

Patrón entrante: T con ruido 0.3

Muchas gracias

Grupo 19 Integrantes:

- → Lucas Catolino
- → Matias Ricarte