Integrating Proteomics of Viral Infection and Cancer Drug Resistance to Uncover Shared Mechanisms of Cell Defense

Lucas Jang

12th year at Mill High School Krogan Lab Intern

Mentor: Mehdi Bouhaddou

About Me

- Grew Up in Millbrae, California
- Currently Attend Mills High School
- Love spending time and interacting with kids
- Enjoy theatre and performance

Cell Defense Against Virus = Cancer Cell Defense Against Cancer Drugs?

- Humans and viruses have co-evolved for millions of years.
- One of the most important properties evolved by human cells is their response to virus in order to survive.
- The Red Queen's Race illustrates this constant struggle between humans and viruses.

Driving Questions

Is a cancer cell's defense against drug treatment similar to a cell's defense against a virus?

Can this similarity reveal new drug targets to fight cancer drug resistance?

Pathogen-associated Proteins Expressed in Drug Resistant Cancer Cells

KEGG 2019 Enrichments

Higher abundance in resistant P-value < 0.01 & abs(Log2FC) > 1

Term	Overlap	p value		
Regulation of actin cytoskeleton	5/214	0.0005682921184		
Salmonella infection	3/86	0.002530717247		
Toll-like receptor signaling pathway	3/104	0.004326066064		
TNF signaling pathway	3/110	0.005059010487		
Measles	3/138	0.009439570402		
Fluid shear stress and atherosclerosis	3/139	0.009626430062		
Glutathione metabolism	2/56	0.01348185914		
Hepatitis B	3/163	0.01476751104		
Tight junction	3/170	0.01650850628		
RIG-I-like receptor signaling pathway	2/70	0.02055588695		
Epstein-Barr virus infection	3/201	0.02555489067		
Human immunodeficiency virus 1 infection	3/212	0.02929102737		
Synthesis and degradation of ketone bodies	1/10	0.03106391882		
IL-17 signaling pathway	2/93	0.03477649876		
Chagas disease (American trypanosomiasis)	2/103	0.04186022507		

Enrichr

About Epstein-Barr Virus (EBV)

- EBV infection is associated with many cancers, including gastric cancer and lymphoma.
- EBV was the first virus shown to cause cancer.

Karposi's Sarcoma-associated HerpesVirus (KSHV) Infection Upgregulates EBV Associated Proteins

Facts about KSHV

- In the same virus family as EBV: Herpesviridae.
- Known to cause Karposi's sarcoma and other cancers.

KEGG 2019 Enrichments

Higher abundance in infected P-value < 0.05 & abs(Log2FC) > 1

	`	
Term	Overlap	p value
Epstein-Barr virus infection	7/201	1.82E-06
Herpes simplex virus 1 infection	8/492	8.25E-05
Antigen processing and presentation	3/77	0.001453953641
HIF-1 signaling pathway	3/100	0.003066197306
Human immunodeficiency virus 1 infection	4/212	0.003329077805
Human cytomegalovirus infection	4/225	0.004114925302
Hepatitis C	3/155	0.0103179745
Glutathione metabolism	2/56	0.01151301931
Influenza A	3/171	0.01343613594
Neomycin, kanamycin and gentamicin biosynthesis	1/5	0.01441745034
Central carbon metabolism in cancer	2/65	0.0152937291
Human papillomavirus infection	4/330	0.01535735218
Glycolysis / Gluconeogenesis	2/68	0.01665714571
RIG-I-like receptor signaling pathway	2/70	0.01759392339
Complement and coagulation cascades	2/79	0.02207697631
E. data		

Enrichr

Data from Jeff Johnson

Enrichment of EBV Infection Across Various Cellular Conditions

Cancer Cell Lines: MDA-468, MDA-231, MCF7 Non-Cancer Cell Line: MCF10A

Conclusion: Host response to EBV may lead to oncogenesis as well as cancer drug resistance.

EBV and Drug Resistant Cancer Cells Both Activate PI3K Pathway

Epstein-Barr Virus (EBV)

Drug Resistant Cancer Cells

Predicted Changes in Kinase Activity

(from Phosphoproteomics Data)

Significantly higher in Resistant			
kinase	activity	p-value	
AKT1	3	0.001	
CSNK2A1	3	0.001	
RPS6KB1	2.69897	0.002	
SGK1	2.30103	0.005	
RPS6KA1	1.88605665	0.013	
PKMYT1	1.65757732	0.022	
STK38L	1.63827216	0.023	
CSNK2A2	1.50863831	0.031	
STK38	1.43179828	0.037	
RPS6KA3	1.4202164	0.038	
AURKA	1.39794001	0.04	
PRKG1	1.30103	0.05	

Phosphoproteomics data reveals activation of **PI3K/mTOR pathway** in cetuximab resistant cells.

Conclusions

- Drug resistant cells express Epstein-Barr related proteins.
- These proteins may contribute to the activation of the PI3K pathway.

Future Directions

- Use Network Propagation, a network analysis technique, to look for overlap between viral proteomics and cancer resistance proteomics datasets.
- This could reveal novel drug targets with strong evolutionary roots to fight cancer resistance.

What I Learned

- I learned how to code in R from no prior experience.
- I used Cytoscape to map PPI networks.
- I learned how to use Network Propagation Analysis.

Krogan Lab

Nevan Krogan** Mehdi Bouhaddou** Diego Quintero** Minkyu Kim Danielle Swaney** Manon Eckhardt Gwendolyn Jang Robyn Kaake Kelsey Haas Paige Haas Vincenzo Pierotti Ernst Pulido Margaret Soucheray** Jeff Beck Jacqueline Fabius Gina Nguyen Alexa Rocourt Jeff Johnson

Acknowledgments

