# 데이터 분석 개요

#### 9회 기출

- 01. 데이터가 가지고 있는 특성을 파악하기 위해 해당 변수의 분포 등을 시각화하여 분석하는 분석 방식은 무엇인가?
  - ① 전처리분석
  - ② 탐색적자료분석(EDA)
  - ③ 공간분석
  - ④ 다변량분석
- 02. 데이터 마이닝의 모델링에 대한 설명이다. 설명이 가장 잘못된 것은?
  - ① 데이터마이닝 모델링은 통계적 모델링이 아니므로 지나치게 통계적 가설이나 유의성에 집착 하지 말아야 한다.
  - ② 모델링 방법은 여러 가지가 있으므로 모델링 시 반드시 다양한 옵션을 줘서 모델링을 수행 하여 최고의 성과를 도출하여야 한다.
  - ③ 분석데이터를 학습 및 테스트 데이터로 6:4, 7:3, 8:2 비율로 상황에 맞게 실시한다.
  - ④ 성능에 집착하면 분석 모델링의 주목적인 실무 적용에 반하여 시간을 낭비할 수 있으므로 훈련 및 테스트 성능에 큰 편차가 없고 예상 성능을 만족하면 중단한다.

#### 10회 기출

- 03. 모델링 성능을 평가함에 있어, 데이터마이닝에서 활용하는 평가 기준이 아닌 것은?
  - ① 정확도(Accuracy)
  - ② 리프트(Lift)
  - ③ 디텍트 레이트(Detect Rate)
  - 4 Throughput

- 04. 탐색적 데이터 분석의 목적은 데이터를 이해하는 것이다. 다음 중 이에 대한 설명으로 가장 부적절한 것은?
  - ① 데이터에 대한 전반적인 이해를 통해 분석 가능한 데이터인지 확인하는 단계이다.
  - ② 탐색적 데이터 분석 과정은 데이터에 포함된 변수의 유형이 어떻게 되는지를 찾아가는 과정이다
  - ③ 데이터를 시각화하는 것만으로는 이상점(outlier) 식별이 잘 되지 않는다.
  - ④ 알고리즘이 학습을 얼마나 잘 하느냐 하는 것은 전적으로 데이터의 품질과 데이터에 담긴 정보량에 달려 있다.

# 05. 아래의 그림은 데이터 처리 구조를 나타내고 있다. 그림에 대한 설명으로 잘못 된 것은?



- ① 데이터를 분석에 활용하기 위해 데이터웨어하우스와 데이터마트에서 데이터를 가져 온다
- ② 신규시스템이나 DW에 포함되지 않은 데이터는 기존 운영시스템(legacy)에서 직접 데이터를 DW와 전처리 없이 바로 결합하면 된다.
- ③ ODS는 운영데이터저장소로 기존 운영시스템의 데이터가 정제된 데이터이므로 DW나 DM과 결합하여 분석에 활용할 수 있다.
- ④ 스테이지 영역에서 가져온 데이터는 정제되어 있지 않기 때문에 데이터의 전처리를 해서 DW나 DM과 결합하여 사용한다.
- 06. 최근 시각화 기법의 활용이 높아지면서 데이터의 특성을 파악하는데 많은 기여를 하고 있다. 다음 중 최근의 시각화의 발전된 형태가 아닌 것은?
  - ① 텍스트 마이닝에서의 워드 클라우드를 통한 그래프화
  - ② SNA(social network analysis)에서 집단의 특성과 관계를 그래프화
  - ③ 통계소프트웨어의 기초통계정보를 엑셀에서 그래프화
  - ④ polygon, heatmap, mosaic graph 등의 그래프 작업

| 07. |                                                                                    | .로 데이터에 있는 패턴<br>용하기 유리한 분석은 5 |                          | 분석으로 데이터가 크고 정보가         |
|-----|------------------------------------------------------------------------------------|--------------------------------|--------------------------|--------------------------|
|     | ① 시뮬레이션                                                                            | ② 통계분석                         | ③ 데이터 마이닝                | ④ 시각화                    |
| 08. | 모집단으로부터 추출 추론하는 통계를 무엇                                                             |                                | <sup>분</sup> 으로부터 모집단의 특 | 특성인 모수에 관해 통계적으로         |
|     | ① 가공 통계                                                                            | ② 기술 통계                        | ③ 통계분석                   | ④ 추론 통계                  |
| 09. | EDA의 4가지 주제                                                                        | 중 틀린 것은?                       |                          |                          |
|     | <ol> <li>종속변수 계산</li> <li>저항성의 강조</li> <li>자료변수의 재표현</li> <li>그래프를 통한 현</li> </ol> |                                |                          |                          |
| 10. |                                                                                    | 인 속성들을 시각화에 추<br>하여 인사이트를 얻는   |                          | 련 속성들을 생성하고 크기, 모양,<br>? |
|     |                                                                                    |                                |                          | ( )                      |
|     |                                                                                    |                                |                          | · ·                      |
|     |                                                                                    |                                |                          |                          |
|     |                                                                                    |                                |                          |                          |
|     |                                                                                    |                                |                          |                          |



| 01 | 2                      |
|----|------------------------|
| 02 | 2                      |
| 03 | 4                      |
| 04 | 3                      |
| 05 | 0                      |
| 06 | 3                      |
| 07 | 3                      |
| 08 | 4                      |
| 09 | •                      |
| 10 | 공간분석(spacial analysis) |
|    |                        |

- 01. EDA는 매우 시간이 많이 필요한 일로 최근에는 EDA를 자동으로 신속하게 수행해 유의미한 값만 파악해 데이터 마트로 만든 후 모델링 업무로 진행하는 게 일반적이다. (정답:②)
- 02. 반드시 다양한 옵션을 줘서 모델링을 수행하지 않고, 충분한 시간이 있으면 다양한 옵션을 줘서 시도하는 것이고 일정 성과가 나오면 해석과 활용 단계로 진행할 수 있도록 의사결정 해야 한다. (정답:②)
- 03. 데이터 마이닝에서는 정확도, 정밀도, 디텍트 레이트, 리프트 등의 값으로 판단하고 시뮬레이션에서는 Throughput, Average Waiting Time, Average Queue Length, Time in System 등의 지표가 활용된다. (정답:④)
- 04. 상자그림(Box Plot)등을 그리면 이상치를 식별하기 쉽다. (정답:③)
- 05. 신규 시스템이나 스테이징 영역의 데이터는 정제되지 않았기 때문에 정제하고 DW나 DM과 결합해야 한다. (정답:②)
- 06. 엑셀의 그래프는 최근 시각화 기술의 발전된 형태가 아니라 기존에 기술이다. (정답:③)
- 07. 대용량 데이터에서 패턴을 파악해서 예측하는 분석 방법은 데이터마이닝 방법이다. (정답:③)
- 08. 추론(추측)통계는 모집단으로부터 추출된 표본의 표본통계량으로부터 모집단의 특성인 모수에 관한 통계적으로 추론하는 절차이다. (정답:④)
- 09. EDA의 4가지 주제는 저항성의 강조, 잔차 계산, 자료변수의 재표현, 그래프를 통한 현시성이다. (정답: ①)
- 10. 지도위에 공간과 관계된 속성들을 다양한 표현으로 시각화하는 방법은 공간 분석이다. 정답: 공간분석(spacial analysis)

# R 프로그래밍 기초

## 01. R에 대한 설명으로 옳지 않은 것을 고르시오.

- ① 뉴질랜드 오클랜드 대학의 로스 이하카와 로버트 젠틀맨에 의해 시작되었다.
- ② R은 GPL (General Public License)하에 배포되는 S 프로그래밍 언어의 구현으로 GNU S 라고도 한다.
- ③ R은 통계 소프트웨어 개발과 자료 분석에 널리 사용되고 그래픽 처리 기능이 탁월한 언어이다.
- ④ R의 GNU 일반 공중 사용 허가서(GNU General Public License, GNU GPL 또는 GPL)는 자유 소프트웨어 재단에서 만든 자유 소프트웨어 라이선스이며 리눅스 커널이 이용하는 사용 허가와 동일함으로 리눅스 기반의 언어이다.

#### 8회 기출

## 02. R의 장점으로 옳지 않은 것을 고르시오.

- ① 오픈 소스이므로 사용자들이 만든 다양한 패키지들을 공유하여 사용 가능하므로 최신 알고리즘을 패키지를 통해 활용하기 쉽다.
- ② R은 사용자들이 많기 때문에 문제가 발생할 경우, 다양한 사용자들을 통해 문제를 해결하므로 다른 통계패키지에 비해 유지보수가 신속하게 이루어진다.
- ③ 함수형 언어이기 때문에 다양한 프로그램을 통해 자동화 할 수 있다.
- ④ 무료로 이용할 수 있다.

## 03. R은 함수형 언어이다. 함수형 언어에 대한 특징으로 옳지 않은 것은?

- ① 기존에 사용한 함수들을 활용하여 프로그래밍 함으로 프로그램이 더욱 깔끔하고 단축된 코드를 만들 수 있다.
- ② 함수들을 많이 활용하게 되므로 코드에 대한 수행속도가 늦은 단점이 있다.
- ③ 함수들을 활용하여 프로그래밍 함으로 코드를 단순화 할 수 있고 디버깅이 쉽다.
- ④ 병렬 프로그래밍으로 전환이 다른 프로그래밍 언어에 비해 용이하다.

## 04. 다음 중 나머지 세 개의 명령과 결과가 다른 것은?

- ① z=c(1:3, NA) is.na(z)
- ② z<-c(1:3, NA) is.na(z)
- ③ z = c(1:3, NA)z = NA
- ④ c(1.1.1.2) ==2

#### 7회 기출

## 05. 아래의 R 프로그래밍을 통해 객체 a 에 할당되는 모드가 다른 것을 고르시오.

- ① a<-c("Tom", "Yoon", "Kim")
- ② a(-c(pi, "pi", 3.14)
- ③ a(-c(3.14, pi, TRUE)
- ④ a⟨-c("A","B","A","A","B")

#### 11회 기출

## 06. 다음 중 결과가 다른 R코드는?

- ① a <- seq(1,10,1)
- ② b(-c(1,10)
- ③ c<-1:10
- 4 d(-seq(10,100,10)/10

#### 11회 기출

# 07. 다음 중 아래의 R코드를 수행한 결과에 대한 설명으로 옳은 것은?

$$> c(2, 4, 6, 8) + c(1, 3, 5, 7, 9)$$

- ① 경고 메시지와 함께 결과가 출력된다.
- ② 4개의 숫자로 이루어진 벡터가 출력된다.
- ③ 9개의 숫자로 이루어진 벡터가 출력된다.
- ④ 에러 메시지가 출력되고, 명령 수행이 중단된다.

## 08 R에서의 데이터 구조에 대한 설명 중에서 잘못된 설명을 고르시오.

- ① 단일값(scalars)는 원소가 하나인 벡터로 인식 처리하여 R프로그램에서 length(pi)의 결과는 1로 출력된다.
- ② 행렬(matrices)은 2차워의 벡터를 의미하며 R프로그램에서는 dim()을 활용하여 행렬의 구조를 정의할 수 있다.
- ③ 요인(factors)은 벡터처럼 생겼지만 원소들이 수준(level)으로 이루어져 있으며, 요인에는 주로 연속형 변수와 집단 분류로 많이 사용된다.
- ④ 행렬에서 3차원 이상 또는 n차원 이상으로 확대된 형태를 배열(arrays) 이라고 하며 dim()을 활용하여 배열의 구조를 정의 할 수 있다.

## ○9. 아래의 R 프로그램 중 리스트의 원소를 선택하는 방법이 아닌 것은 어느 것인가?

- ① a(-alist[[2]]
- ② a(-alist[["name"]]
- ③ a(-alist[2]
- 4 a (-alist\$name

#### 10회 기출

## 10. 아래의 R코드가 의미하는 것은?

> mean(x, na.rm=T)

- ① 이상값을 제외한 X의 평균
- ② 결측값을 제외한 X의 평균
- ③ 이상값을 포함한 X의 평균
- ④ 결측값을 포함한 X의 평균

#### 11. 다음 R 함수 중 열의 이름을 붙이는 함수는 무엇인가?

- ① culname ② culnames ③ colname ④ colnames

12. 아래 R코드를 수행한 결과로 적절한 것은?

- ① 에러 메시지가 출력된다.
- ② 경고 메시지가 출력된다.
- ③ 숫자 5가 출력된다.
- ④ 두 개의 원소로 이루어진 벡터가 출력된다.
- 13. 파일에서 데이터를 읽어 들여 가공한 다음, 파일로 저장하는 등 모든 측면에서 매우 직관적이고, 특히 sqldf를 이용할 때 RDBMS의 table 또는 엑셀의 피벗처럼 사용할 수 있는 테이블은 무엇인가?
  - 1) list
- 2 matrix
- ③ vector
  - 4) data frame

9회 기출

14. R에서 결측값을 가르키는 것으로 가장 적절한 것은?

- 1) Inf
- ② NaN
- (3) NA
- 4 dim

15회 기출

- 15. Carseats 데이터프레임은 400개 상점에서 판매 중인 유아용 카시트의 재료이고, Sales 변수는 해당 상점에서 판매된 카시트의 수를 나타낸다. 다음 중 R 패키지에서 Sales 변수의 표준편차를 계산하기 위한 식으로 가장 부적절한 것은?
  - ① stdev(Carseats\$Sales)
  - ② sd(Carseats\$Sales)
  - ③ sqrt(var(Carseats\$Sales))
  - 4 var(Carseats\$Sales)^(1/2)

16. 다음 중 아래 R 코드의 결과로 적절한 것은?

```
> s<-c("Monday", "Tuesday", "Wednesday")
> substr(s,1,2)
```

- ① "Mo", "Tu", "We"
- 2 "Monday" "Tuesday"
- ③ "Mo" "Tu"
- 4 "Monday"
- 17. 아래 그림과 같이 두개의 데이터 프레임 dfm1, dfm2 를 T\_name 이라는 변수로 결합하 고자하고자 할 때, 사용되는 함수는 어느 것인가?

| T_name | ×   | У   |     |        |     |  |         |     |     |     |
|--------|-----|-----|-----|--------|-----|--|---------|-----|-----|-----|
| T1     | 1.4 | 3.2 |     | T name | -   |  | T_name  | x   | v   | -   |
| T2     | 1.8 | 3.4 |     | T_name |     |  | 1_manne | ^   | ,   |     |
| 16     | 1.0 | 3.4 | 123 | T1     | 5.7 |  | T1      | 1.4 | 3.2 | 5.7 |
| T3     | 1.5 | 3.9 |     | T3     | 5.8 |  | T3      | 1.5 | 3.9 | 5.8 |
| T4     | 1.4 | 3.2 |     | 75     |     |  | TE      | 1.6 |     | 6.9 |
| T5     | 1.6 | 3.4 |     | 15     | 6.9 |  | 15      | 1.6 | 3.4 | 0.5 |
| T6     | 1.5 | 3.9 |     |        |     |  |         |     |     |     |

- ① cbind(dfm1, dfm2, by="T\_name")
- ② rbind(dfm1, dfm2, by="T\_name")
- ③ merge(dfm1,dfm2, by="T\_name")
- ④ subset(dfm1,dfm2,by ="T\_name")

#### 12회 기출

18. 아래 프로그램의 실행 결과로 다음 중 적절한 것은 무엇인가?

```
calculate<-function(a) {
   y=1
   for(i in 1:a) {
     y=y*i
   }
   print(y)
}</pre>
```

- 1) 24
- 2 20
- ③ 12
- 46

- 19. Cars93이라는 데이터프레임에 MPG.city(도심에서의 연비)라는 변수와 Origin(생산지)이라는 변수가 있다고 할 때. 데이터프레임을 생산지 별로 나누려고 한다. R 프로그램으로 적절한 것은?
  - ① split(Cars93, "Origin")
  - ② split("Cars93", "Origin")
  - 3 split(Cars93\$MPG.city, Cars93\$Origin)
  - 4 split(Cars93, by = Origin)
- 20. 아래와 같은 행렬이 있을 때, 모든 행에 합을 구하기 위한 R 프로그램 중 적절한 것은?

```
> dim(m1)<-c(4,5)
> m1
       [,1] [,2] [,3] [,4] [,5]
[1,] 82.5 79.2 89.5 85.6 80.9
[2,] 89.9 88.2 81.5 91.5 87.2
[3,] 81.9 70.3 89.2 83.2 78.9
[4,] 88.2 83.5 79.8 87.5 82.5
```

- ① apply(m1, 1, sum)
- ② apply(m1, 2, sum)
- 3 lapply(m1, sum)
- 4 sapply(m2,sum)
- 21. Cars93이라는 데이터프레임에 MPG.city(도심에서의 연비)라는 변수와 Origin(생산지)이라는 변수가 있다고 할 때, 생산지별로 MPG.city의 평균을 구하고자 한다. R 프로그래밍으로 적절한 것은?
  - ① apply(Cars93\$MPG.city, Cars93%Origin, mean)
  - ② lapply(Cars93, Cars93%Origin, mean)
  - ③ sapply(Cars93, Cars93%Origin, mean)
  - 4 tapply(Cars93\$MPG.city, Cars93%Origin, mean)

| 5호 |  |
|----|--|
|    |  |

| 5회 기출  |                                                    |                |                |   |
|--------|----------------------------------------------------|----------------|----------------|---|
| 22.    | 단어나 문장에 포함되어 있는 문자열의 길이                            | 기를 구하고자 할 때, R | 프로그램으로 적절한 것은? | ) |
|        | ① nchar("statistics")                              |                |                |   |
|        | ② length("statistics")                             |                |                |   |
|        | ③ substr("statistics")                             |                |                |   |
|        | ④ paste ("statistics")                             |                |                |   |
| 23.    | 문자열 "statistics"에서 "at"를 추출하고?                     | 가 할 때, R 프로그램으 | 로 적절한 것은?      |   |
|        | ① substr("statistics", 3, 2)                       |                |                |   |
|        | ② substr("statistics", 3, 4)                       |                |                |   |
|        | ③ strisplit("statistics", 3, 2)                    |                |                |   |
|        | ④ strsplit ("statistics", 3, 4)                    |                |                |   |
| 24.    | R을 GUI 환경에서 보다 편리하게 사용할 =                          | 수 있도록 도와주는 패   | 키지는 무엇인가?      |   |
|        | ① R stdio ② rattle                                 | ③ shiny        | ④ impala       |   |
| 10회 기출 |                                                    |                |                |   |
| 25.    | 아래 R 코드의 출력 결과는?                                   |                |                |   |
|        | > f <- function(x,a) return((x-a)^2)<br>> f(1:2,3) |                |                |   |
|        |                                                    |                | (              | ) |
| 8회 기출  |                                                    |                |                |   |
| 26.    | R에서 다음의 명령을 수행했을 때 출력되는                            | = 결과는?         | g 19           |   |
|        | x<-c(1,2,3,NA) mean(x)                             |                |                |   |
|        |                                                    |                | (              | ) |
|        |                                                    |                |                |   |

| 27 | 출력결 | 라는? |
|----|-----|-----|
|    |     |     |

| x<-1:100<br>sum(x>50) |      |
|-----------------------|------|
|                       | <br> |

28. A반과 B반 학생들이 동일한 과목을 들었다고 하자. A반과 B반 학생 모두를 대상으로 과목 별성적의 평균을 구하려고 할 때, A반 학생 데이터와 B반 학생 데이터를 class 라는 변수를 기준으로 합치려고 한다. R로 프로그램을 작성하시오.

( )

29. 아래의 표와 같이 여러 학과 학생들의 과목별 성적을 데이터 프레임으로 구성하였다. 데이터 프레임명은 test 라고 할 때, 경영학과 학생들의 데이터만 조회하고자 한다. R로 프로그래밍 하시오.

| 학과      | 학년  | 성별 | 이름   | 실용컴퓨터    | 영어회화 | 한문 | 총점  |
|---------|-----|----|------|----------|------|----|-----|
| 7-1     | 71. | 02 | VI-0 | 20 011-1 | 9시되지 | 인군 | 50  |
| 경영학과    | 1   | 여  | 김지영  | 85       | 75   | 86 | 246 |
| 경영학과    | 1   | 여  | 이소연  | 75       | 65   | 78 | 218 |
| 경영학과    | 1   | 남  | 이진혁  | 96       | 77   | 67 | 240 |
| 데이터정보학과 | 3   | 남  | 김영수  | 45       | 78   | 56 | 179 |
| 데이터정보학과 | 1   | 남  | 김민수  | 86       | 87   | 84 | 257 |
| 데이터정보학과 | 1   | 여  | 박미혜  | 100      | 92   | 96 | 288 |
| 데이터정보학과 | 1   | 남  | 최성호  | 87       | 95   | 92 | 274 |
| 영문학과    | 4   | 여  | 김동수  | 68       | 75   | 78 | 221 |
| 영문학과    | 2   | 남  | 이민지  | 99       | 86   | 86 | 271 |

| ( | 1 |
|---|---|
| ( | ) |
|   | , |

30. SQL을 활용하거나 SAS에서 porc sql로 작업하던 사용자들에게 R 프로그램에서 지원해 주는 패키지는 무엇인가?

( )



| 01 | 4 | 11 | 4 | 21 | •                               |
|----|---|----|---|----|---------------------------------|
| 02 | 2 | 12 | 3 | 22 | •                               |
| 03 | 2 | 13 | 4 | 23 | 2                               |
| 04 | 3 | 14 | 3 | 24 | 2                               |
| 05 | 3 | 15 | 1 | 25 | 41                              |
| 06 | 2 | 16 | 1 | 26 | NA                              |
| 07 | 1 | 17 | 3 | 27 | 50                              |
| 08 | 3 | 18 | 1 | 28 | merge(A,B,by="class")           |
| 09 | 3 | 19 | 3 | 29 | subset(test, subset=(학과==경영학과)) |
| 10 | 2 | 20 | 1 | 30 | sqldf()                         |

- 01. R은 윈도우, 맥, 리눅스 운영체계에서 모두 사용 가능하다. (정답:④)
- 02. R은 사용자들이 많기 때문에 문제가 발생할 경우, 다양한 사용자들을 통해 다양한 의견들을 들을 수 있으나 적절한 해 결책을 찾기 위해서는 시간과 노력이 필요합니다. SAS나 SPSS와 같은 솔루션의 경우, 문제가 발생할 경우 해당 업체를 통해 유지보수가 신속하게 이루어진다. (정답:②)
- 03. 함수형 언어이므로 적절한 함수를 적용하여 프로그래밍 하면 수행 속도도 매우 빠르게 된다. (정답:②)
- 04. ①, ②, ④의 결과는 모두 FALSE FALSE FALSE TRUE 이지만, ③의 경우에는 NA NA NA NA가 나타난다. (정답: ③)
- 05. ①, ②, ④의 결과는 모두 character 이지만, ③의 경우에는 numeric이다. ( 정답:③)
- 06. ①, ③, ④의 결과는 모두 1 2 3 4 5 6 7 8 9 10이지만, ②의 경우에는 1 10이다. (정답:②)
- 07. 아래의 R 코드를 실행시키면 '두 객체의 길이가 서로 배수관계에 있지 않습니다'라는 경고 메시지가 뜨고 결과도 출력된다.(정답:①)
- 08. 요인은 범주형 변수와 집단 분류에 많이 사용된다. (정답:③)
- 09. 보기 ③번은 리스트의 주소를 나타내는 명령어이다. (정답:③)
- 10. 해당 R 코드 중 na.rm은 결측치를 제외하느냐에 대한 물음이며, T는 TRUE로서 결측치를 제외하겠다는 의미이다. (정답:②)

- 11. colnames()는 열의 이름을 조회한다. (정답: ④)
- 12. 아래의 코드를 실행하면 숫자 5가 출력된다. (정답:③)
- 13. 데이터프레임은 관찰된 결과로 된 테이블이다. 데이터 프레임은 테이블로 된 사각형의 데이터 구조여서 열과 행이 있다. 하지만 행렬로 구현되지는 않았다. 오히려 리스트라고 볼 수 있다. 그리고 가장 자주 사용되고 편리한 데이터처리 방식이 데이터프레임이다. 특히 sqldf를 이용할 때, RDBMS의 table 또는 엑셀의 피벗처럼 사용할 수 있다. (정답:④)
- 14. Inf는 무한대, NaN은 Not a Number, dim은 행렬의 차원을 나타낸다. (정답:③)
- 15. R에서 표준편차를 계산하기 위해 사용하는 함수가 아닌 것은 stdev()함수이다. (정답:①)
- 16. 아래의 코드를 실행하면 "Mo", "Tu", "We"가 나타난다. (정답:①)
- 17. 두 개의 테이블을 하나로 변경할 때 merge 함수를 사용한다. (정답:③)
- 18. Calculate(4)를 실행 했을 때, (1). y=1, i=1 → y=1, (2). y=1, i=2 → y=2, (3). y=2, i=3 → y=6, (4). y=6, i=4 → y=24 이므로 24가 출력 ( 정답:①)
- 19. split(분석대상, 분할대상)으로 활용해야 한다. 그러므로 데이터프레임을 생산지별로 나누려면 split(Cars93\$MPG. city, Cars93\$Origin)을 활용해야 한다. ( 정답: ③ )
- 20. apply 함수에서 두 번째 인자가 1이면 행, 2이면 열의 자료를 적용한다. (정답:①)
- 21. tapply 함수에서 인자에는 정확한 위치의 변수명을 지정하고 적용할 함수를 할당해야 한다. (정답: ④)
- 22. 단어나 문장에 포함되어 있는 문자열의 길이를 구하고자 할 때는 nchar함수를 사용한다. (정답:①)
- 23. substr 함수는 추출하고자 하는 시작위치와 끝위치를 지정한다. (정답:②)
- 24. 래틀(rattle)은 R을 GUI 환경에서 보다 편리하게 사용할 수 있도록 도와주는 패키지다. 특히 컴퓨터 언어에 익숙하지 않은 초보자들이 별다른 사전지식 없이도 R을 이용할 수 있게 해준다. (정답:②)
- 25. 정답: 41
- 26. 정답: NA
- 27. 정답:50
- 28. 정답: merge(A, B, by="class")
- 29. 정답: subset(test, subset=(학과==경영학과))
- 30. 정답: saldf()