Cyber SecurityRisk and ML applications

Chris G. Willcocks Durham University

Motivation

Why this lecture?

- Risk calculations can be very difficult
 - Equip with basic tools to do it
- Many modern security applications use machine learning
- Many final year security projects are based on machine learning

Why machine learning in security?

- Machine learning is function fitting
 - Fast (packet inspection)
 - Probabilistic
 - Cheap
 - Generalises well to new scenarios/threats

Lecture content

$$p(x) = \prod_{i=1}^{n} p(s_n \mid s_1, ..., s_{n-1})$$

Covered today

Risk

- Qualitative risk
- Quantitative risk
 - SLE, ARO, ALE, Bayesian Risk

ML applications

- Security datasets
- Discriminative security models
- Threat detection
- Conditional generative models and metalearning security tasks
- PassGAN & briefly ethical research

Risk and probability

Definition: Risk

The definition of risk varies based on application, but it is generally defined:

risk = asset value $\cdot p(\text{threat occurance}) \cdot \text{severity}$

Two ways to compute risk:

- Quantitative risk
- Qualitative risk

What about time?

Qualitative risk

Qualitative Risk

Traffic light grid gives immediate impression of where effort should be focused.

Advantages:

- Simple
- Not much effort
- Easy to understand

Disadvantages:

- Subjective results
- Subjective asset value
- Subjective recommendations
- Difficult to track improvements

_								
		Catastrophic	5	5	10	15		25
	S	-						
	е	Significant	4	4	8	12		20
	٧							
	е	Moderate	3	3	6	9	12	15
	r		3	3	0	Э	12	13
	i	Low	_	2	4	6	8	40
	t	LOW	2	2	4	0	0	10
	У	Negligible	1	1	2	3	4	5
			1	,		3	4	3
				1	2	3	4	5
Catastrophic		STOP			_		10.1	
Unacceptable		URGENTACTION		Improbable	Remote	Occasional	Probable	Frequent
Undesirable	ACTION							
Acceptable	MONITOR			Likelihood				
Desirable		NO ACTION	LIKeIIII00d					

Quantitative risk assessment risk with time

Definition: SLE

Single Loss Expectancy (SLE)

This is the amount that would be lost in a single occurrence of an incident:

 $SLE = asset value \cdot exposure factor$

Definition: ARO and ALE

Annual Rate of Occurrence (ARO) **Annual Loss Expectancy** (ALE)

Consider the annual rate of events.

annual loss expectancy = $SLE \cdot ARO$

Quantitative risk assessment example SLE, ARO and ALE

Small example (in practice this would be much larger)

Asset	Security Goal	Vulnerability	SLE (£/incident)	ARO (incidents/yr)	ALE (£/year)
Confidential emails	Confidentiality	Hacker MITM	£100,000	0.5	£50,000
Non-confidenti al emails (business details)	al emails Integrity Employee (business Reputation breach		£10,000	3	£30,000
	Availability	DDoS	£20,000	5	£100,000
Database	Integrity	Hardware failure	£10,000	0.5	£5,000
	Confidentiality	Hacker breach	£50,000	0.2	£10,000

Quantitative risk assessment safeguard values

Definition: safeguard value

Quantifying the value of safeguarding the risk (the value of the countermeasure):

Safeguard value = (ALE before - ALE after) - annual cost of countermeasure

Vulnerability	Counter- measure	ALE Before (£/year)	ALE After (£/year)	Countermeasure (£/year)	Safeguard value (£/year)
Phishing	Security training	£70,000	£5,000	£5,000	£60,000
DDoS	24/7 Network monitoring	£100,000	£10,000	£70,000	£20,000
Physical break in 24/7 CCTV + physical security		£10,000	£1,000	£80,000	- £71,000

Quantitative risk overview

Advantages

- Objective
- Expressed as a real number
- Help make sensible decisions
- Easy to understand
- Decisions are traceable
- Credible
- Basis for cost-benefit analysis

Disadvantages

- Complex
- Confusing to non-technical readers, sometimes even resulting in a lack of trust
- False sense of accuracy

Gathering/updating probabilistic data

Expectations & Monte Carlo sampling

Quantitative risk assessment requires expected value of the annual rate of occurrence. We can gather this empirically but it's very sensitive to sampling process (e.g. location, time, threat conditions).

We can improve our data with better priors, for example a Bayesian risk assessment with conditional probability:

$$p(\text{covid} \mid \text{symptoms}) = \frac{p(\text{symptoms} \mid \text{covid}) \cdot p(\text{covid})}{p(\text{symptoms})}$$

Security Datasets

There's a huge amount of public security datasets available:

- 1) https://github.com/shramos/Awe some-Cybersecurity-Datasets
- 2) https://github.com/jivoi/awesom
 e-ml-for-cybersecurity

But what can we do with this data?

Three types of ML model

Discriminative models:

$$p(Y \mid X)$$

Conditional generative models:

$$p(X \mid Y)$$

Generative models:

Simple threat classification

Discriminative model

annotated target label T

while(training):

```
X,T = random.sample(dataset)
Y = DNN(X)
loss = ((Y-T)**2).mean() # error
loss.backward() # calculate grads
DNN.params -= 0.01*DNN.grad # optimise
```

Example: sentiment analysis

https://huggingface.co/distilbert-baseuncased-finetuned-sst-2-english

DNN("I love kittens") \rightarrow positive DNN("I hate people!") \rightarrow negative

Threat object detection

Object detection

X = input imagesY = region proposals (boxes)

- Human operators get distracted with cluttered X-ray (miss threats)
- Every commercial flight has <u>certified explosive detection</u> <u>systems (EDS)</u>

Example: baggage security

Data (124.78 GB)

Link to Kaggle competition

State-of-the-art detection models:

GitHub link to YOLOv4 CSP

Note: the above repolinks to sub repositories

Extracting network features

Counterfeit classification

Check whether products are genuine

Anti-counterfeiting arms race

SLOW SLOW SLOW SLOW SLOW SLOW....

Traditional deep learning a production story

ML models

- Expensive data, slow

Inferring new unseen risks & tasks

Consider a massive model trained on the internet that tries to predict the next token given the previous words.

Cake recipe is 2 eggs... Tomorrow's weather is "John is a criminal as..." $p(x) = \prod_{n=1}^{\infty} p(s_n \mid s_1, ..., s_{n-1})$

Estimate the next most likely thing, "he was motivated by..."

Large-scale language model

Zero-shot metalearners allow us to create new tasks without collecting new datasets. Here's three examples, all using the same model:

https://huggingface.co/facebook/bart-l arge-mnli

- Zero-shot sales example
- Zero-shot phishing example
- <u>Criminal investigation example</u>

Modern metalearning an always updating production story

Generative modelling & ethics of ML cyber security

Adversarial models

Adversarial models can be used to generate more criminal data.

Example:

PassGAN (considered unethical)

Also make virus code, harmful traffic...

Remember which side you're on

Just because you can technically do it, doesn't mean it's ethical research.

Just because you can build a dangerous open source weapon, doesn't mean you should.

Romantic takeaways

Key points

- The threat landscape is always evolving
- Remember how easy most tools/ threats are (only a little effort)
- Security covers all levels and infrastructure of a system
 - The weakest link
- Hierarchically assess the risk
 - Understand the enemy
 - Understand the platform
 - Understand the people
- Network with the broader security community <u>and practice</u>

Key points

- Don't be careless or manage in a way that promotes carelessness
- KISS!

