Алгебра

Авдеев Р. С.

Содержание

1	Лекция №1	
	1.1	Бинарные операции
	1.2	Полугруппы, моноиды, группы, коммутативные (абелевы) группы
		1.2.1 Примеры
	1.3	Порядок группы
	1.4	Примеры групп
	1.5	Подгруппы
	1.6	Описание всех подгрупп в группе целых чисел по сложению
	1.7	Циклические подгруппы
	1.8	Порядок элемента группы
	1.9	Связь между порядком элемента и порядком порождаемой им цикли-
		ческой подгруппы
	1.10	Циклические группы
	1.11	Левые смежные классы группы по подгруппе, разбиение группы на
		левые смежные классы

1 Лекция №1

Лекция 07.04.20

1.1 Бинарные операции

Пусть M — некоторое множество

Определение.

Бинарная операция на множестве M – это отображение $\circ: M \times M \mapsto M$. Пара (M, \circ) называется множеством с бинарной операцией

1.2 Полугруппы, моноиды, группы, коммутативные (абелевы) группы

Определение.

- 1. (M, \circ) называется группой, если выполнены следующие условия:
 - (a) $(a \circ b) \circ c = a \circ (b \circ c)$ ассоциативность
 - (b) \exists нейтральный элемент, то есть такой $e \in M$, что $\forall a \in M : e \circ a = a \circ e = a$
 - (c) $\forall a \in M \exists$ обратный элемент (a^{-1}) , то есть такой b, что $a \circ b = b \circ a = e$
- 2. (M, \circ) называется полугруппой, если требуется только условие (a)
- 3. (M, \circ) называется моноидом, если требуются только (a) и (b)

1.2.1 Примеры

 $(\mathbb{N},+)$ – полугруппа, но не моноид

$$(\mathbb{N} \cup \{0\}, +)$$
 – моноид

Замечание.

- 1. Примеры неассоциативных операций: ($\mathbb{Z},-$), ($\mathbb{N},a\circ b=a^b$)
- 2. Нейтральный элемент единственен (если существует)

Если e_1,e_2 – два нейтральных, то $e_1=e_1\circ e_2=e_2$

3. Обратный элемент единственен (если существует)

 b_1,b_2 – два обратных к $a\Rightarrow b_1=b_1\circ e=b_1\circ (a\circ b_2)=(b_1\circ a)\circ b_2=e\circ b_2=b_2$

4. $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$

$$(a \circ b) \circ (b^{-1} \circ a^{-1}) = a \circ (b \circ b^{-1}) \circ a^{-1} = a \circ a^{-1} = e$$

Определение.

Группа G называется коммутативной (абелевой), если $\forall a,b \in G: ab=ba$

Абстрактные группы: мультипликативная запись: ab, e, a^{-1}

Абелевы группы: аддитивная запись: a + b, 0, -a

1.3 Порядок группы

Определение.

Порядок группы G – это число элементов в ней. Обозначается |G|. G называется конечной, если $|G| < \infty$, бесконечной, если $|G| = \infty$

1.4 Примеры групп

1. Числовые аддитивные группы:

$$(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +), (\mathbb{Z}_n, +)$$

2. Числовые мультипликативные группы:

$$(\mathbb{Q}\setminus\{0\},\times), (\mathbb{R}\setminus\{0\},\times), (\mathbb{C}\setminus\{0\},\times), (\mathbb{Z}_n\setminus\{\bar{0}\},\times)$$

3. Группы матриц (операция ×):

$$GL_n(\mathbb{R}) = \{A \in \operatorname{Mat}_n(\mathbb{R}) \mid \det A \neq 0\}$$
 – полная линейная группа $SL_n(\mathbb{R}) = \{A \in \operatorname{Mat}_n(\mathbb{R}) \mid \det A = 1\}$ – специальная линейная группа

4. Группы перестановок (операция \times):

симметрическая группа
$$S_n$$
 – все перестановки длины $n, |S_n| = n!$ знакопеременная группа A_n – все чётные перестановки длины $n, |A_n| = n!/2$

1.5 Подгруппы

Определение.

Подмножество H группы G называется подгруппой, если

- 1. $e \in H$
- $2. \ a,b \in H \Rightarrow ab \in H$
- 3. $a \in H \Rightarrow a^{-1} \in H$

Несобственные подгруппы: $\{e\} \subseteq G, G \subseteq G$.

Остальные подгруппы называются собственными

Пример.

 $2\mathbb{Z}$ (все целые числа кратные 2) − подгруппа в (\mathbb{Z} , +)

1.6 Описание всех подгрупп в группе целых чисел по сложению

Предложение.

Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z}$ для некоторого $k\geqslant 0$

Доказательство.

Пусть $H \in \mathbb{Z}$ – подгруппа.

Если
$$H = \{0\}$$
, то $H = 0\mathbb{Z}$

Пусть теперь $H \neq \{0\}$. Тогда $x \in H \Leftrightarrow -x \in H$

Положим
$$k = \min(H \cap \mathbb{N})$$

Тогда $k\mathbb{Z} \subseteq H$ (если мы k сложим с собой много раз, то результат тоже будет лежать в подгруппе)

Пусть $a \in H \Rightarrow$ разделим a на k с остатком: $a = q \cdot k + r, \ 0 \leqslant r < k$

Тогда $r = \underset{\in H}{a} - q \cdot \underset{\in H}{k} \in H$

Так как k – минимальна $\Rightarrow r = 0 \Rightarrow a = q \cdot k \Rightarrow a \in k\mathbb{Z} \Rightarrow k\mathbb{Z} = H$ \Box

1.7 Циклические подгруппы

Пусть G – группа, $g \in G$, $n \in \mathbb{Z}$

$$g^{n} = \begin{cases} \underbrace{g \cdot \dots \cdot g}_{n}, & n > 0 \\ e, & n = 0 \\ \underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_{|n|}, & n < 0 \end{cases}$$

Определение.

Пусть $g \in G$. $\langle g \rangle := \{g^n \mid n \in \mathbb{Z}\}$ называется циклической подгруппой, порождаемой элементом g

д – образующий или порождающий элемент

Пример.

$$2\mathbb{Z} = \langle 2 \rangle = \langle -2 \rangle$$

1.8 Порядок элемента группы

Пусть
$$G$$
 – группа, $g \in G$ $M(g) = \{n \mid g^n = e\}$

Определение.

Порядок элемента g – это

$$\operatorname{ord}(g) := egin{cases} \min M(g), \ \operatorname{если} M(g)
eq \varnothing \\ \infty, \ \operatorname{если} M(g) = \varnothing \end{cases}$$

Замечание.

$$\operatorname{ord}(g) = 1 \Leftrightarrow g = e$$

1.9 Связь между порядком элемента и порядком порождаемой им циклической подгруппы

Предложение.

$$\operatorname{ord}(g) = |\langle g \rangle|$$

Доказательство.

Имеем
$$g^k = g^s \Rightarrow g^{k-s} = e \ (\star)$$

1.
$$\operatorname{ord}(g) = \infty \underset{(\star)}{\Rightarrow} \forall k > s : g^k \neq g^s \Rightarrow |\langle g \rangle| = \infty$$

2.
$$\operatorname{ord}(g) = m < \infty \Rightarrow$$
 элементы $g^0 = e, g^1 = g, g^2, \dots, g^{m-1}$ попарно различны (если $\exists \ k, s : g^k = g^s \Rightarrow g^{k-s} = e$, но $\operatorname{ord}(g) = m$)

$$n \in \mathbb{Z} \Rightarrow n = q \cdot m + r, \ 0 \leqslant r < m$$

$$\Rightarrow g^n = g^{qm} \cdot g^r = (g^m)^q \cdot g^r = g^r$$

$$\Rightarrow \langle g \rangle = \{e, g, g^2, \dots, g^{m-1}\} \Rightarrow |\langle g \rangle| = m = \operatorname{ord}(g) \quad \Box$$

Циклические группы 1.10

Определение.

Группа G называется циклической, если $G = \langle g \rangle$ для некоторого $g \in G$

Пример.

$$(\mathbb{Z},+) = \langle 1 \rangle$$

Замечание.

G циклична $\Leftrightarrow G$ – коммутативна и \leqslant счётна

1.11 Левые смежные классы группы по подгруппе, разбиение группы на левые смежные классы

Пусть G – группа, $H \subseteq G$ – подгруппа

Отношение L_H на G:

$$(a,b) \in L_H \Leftrightarrow a^{-1}b \in H$$

Предложение.

 L_H – отношение эквивалентности

Доказательство.

- 1. Рефлексивность: $a^{-1}a = e \in H$
- 2. Симметричность: $a^{-1}b \in H \Rightarrow b^{-1}a = (ab^{-1})^{-1} \in H$
- 3. Транзитивность: $a^{-1}b \in H, \ b^{-1}c \in H \Rightarrow a^{-1}c = a_{\in H}^{-1}b \cdot b_{\in H}^{-1}c \in H$

 $a^{-1}b \in H \Leftrightarrow b \in aH \Rightarrow$ класс элемента a это в точности множество aH.

Определение.

Множество $aH := \{ah \mid h \in H\}$ называется левым смежным классом элемента aпо подгруппе H