Gaussian Processes for Time Series Modelling

Azar Raphaela Gumede Sbonelo

2025-04-28

Dataset

CMA(k = 365)

Discussion

There are infinite models that we could use. However, since we picked up the trend using CMA(k=365) we can make an inspired guess. A second degree polynomial spline seems to be appropriate.

Let us divide the data into a train and test set in order to compare model performance.

Partition

B-Spline

Base Case

$$B_{i,0}(t) := \begin{cases} 1, & \text{if } t_i \leq t < t_{i+1} \\ 0, & \text{otherwise} \end{cases}$$

Recursive Step

$$B_{i,p}(t) := \frac{t-t_i}{t_{i+p}-t_i} B_{i,p-1}(t) + \frac{t_{i+p+1}-t}{t_{i+p+1}-t_{i+1}} B_{i+1,p-1}(t)$$

Where

t is the covariate and p is the degree of the polynomial.

Spline

Discussion

Problem

Robust use of the polynomial model requires knowledge of how the coefficients interact to control functional behaviour, which becomes unmanageable as the order of the polynomial grows.

Solution

A Gaussian Process defines a probability distribution over functions; in other words, it is an entire function from the covariate space to the real-valued output space.

Gaussian Process

