Interactive tutorial

Agathe Senellart — PhD student with Stéphanie Allassonnière

$$\mathcal{L} = \underbrace{\mathbb{E}_{q_{\phi}(z|X)}[\ln p_{\theta}(X\,|\,z)]}_{\text{Reconstruction}} - \underbrace{KL(q_{\phi}(z\,|\,x)\,|\,|\,p(z))}_{\text{Regularization}}$$

At inference, we can use observed modalities to generate a missing one

$$q_{agg}(z|X) \propto \sum_i q_i(z|X_i) \qquad \text{Mixture-of-Experts}$$

$$q_{agg}(z|X) \propto \prod_i q_i(z|X_i) \qquad \text{Product of Experts}$$

$$q_{agg}(z|X) \propto \sum_i \prod_{i \in S} q_i(z|X_i) \qquad \text{Mixture-of-Product-of Experts}$$

At inference, we can use observed modalities to generate a missing one

$$\begin{aligned} q_{agg}(z|X) &\propto \sum_i q_i(z|X_i) & \text{Mixture-of-Experts} \\ q_{agg}(z|X) &\propto \prod_i q_i(z|X_i) & \text{Product of Experts} \\ q_{agg}(z|X) &\propto \sum_i \prod_{i \in S} q_i(z|X_i) & \text{Mixture-of-Product-of Experts} \end{aligned}$$

With these models, we can do:

- Missing data imputation
- Multimodal Data Augmentation
- Use the joint representation for clustering, classification ...

A (non-exhaustive) list of methods

Used in this Tutorial

	Modèle	Aggregation	Comments
-	MVAE	Product-of-Experts	
	MMVAE	Mixture-of-Experts	
	MoPoE	Mixture-of-Product of Experts	
	MVTCAE	Product-of-Experts	Additional terms to the loss
	CRMVAE	Product-of-Experts	
	DMVAE	Product-of-Experts	Additional latent spaces
	MMVAE+	Mixture-of-Experts	
	Nexus	Joint Network	Hierarchical models
	MHVAE	Product-of-Experts	
	CMVAE	Mixture-of-Experts	
	JMVAE, JNF, TELBO	Joint Network	Uses a joint and unimodal encoders

We will use the python library:

https://multivae.readthedocs.io

Get the tutorial notebook here:

https://github.com/AgatheSenellart/summer_school_Al_Science_2025

- Download the notebook and run it locally
- Or run it on Google Colab
- Don't hesitate to ask any questions!

A few words for the end

Take home messages:

- Multimodal Variational Autoencoders are models that can be useful for missing data imputation, data augmentation and learning multimodal representations
- For generating fully synthetic samples, it can be very powerful to model the latent space of the variational auto encoder a posteriori.
- Useful libraries for VAE: Pythae and MultiVae

A few examples of medical applications:

Generating synthetic MRI from ultrasounds [Dorent et al 2023] / Unsupervised anomaly detection [Aguila et al 2023]

