

This project AIDA receives funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 776262.

Romain Dupuis KU Leuven

Physics informed Machine Learning

22 January 20120

Contributors: Romain Dupuis

1st AIDA School in Bologna

Contents

- 1) Motivations and data-informed physics
- 2) Type of knowledge injection
- 3) Gaussian Process
- 4) Physical constraints and PDE

Motivations

Why incorporating physics into ML?

Machine Learning shows great success

- Computer vision, natural language processing, autonomous vehicle
- Medicine, engineering, fluid dynamics, materials, etc.
- Full data-driven approach

Scientists can be skeptical about black-box tools

- Complex models: no interpretation
- Solutions can break natural laws

Small amount of data

- Experimental data
- Intensive simulations

Why incorporating physics into ML?

Machine Learning shows great success

- Computer vision, natural language processing, autonomous vehicle
- Medicine, engineering, fluid dynamics, materials, etc.
- Full data-driven approach

Scientists can be skeptical about black-box tools

- Complex models: no interpretation
- Solutions can break natural laws

Small amount of data

- Experimental data
- Intensive simulations

Incorporating additional knowledge

Data Informed Physics

Reduced order model

Non Linear dynamic system (Physics)

$$\frac{d\mathbf{u}}{dt} = L \mathbf{u}(t) + N(\mathbf{u}(t)), \qquad \mathbf{u} \in \mathbb{R}^n$$

Extracting low-dimensional patterns (data)

$$u(t) \approx \boldsymbol{\phi_r} \boldsymbol{a}(t), \quad \boldsymbol{\phi_r}^T \boldsymbol{\phi_r} = \boldsymbol{I}$$

 $\boldsymbol{a} \in \mathbb{R}^r \text{ with } r \ll n$

[1] Taira et al.

Low rank system

$$\frac{d\mathbf{a}}{dt} = \boldsymbol{\phi_r}^T L \boldsymbol{\phi_r} \boldsymbol{a}(t) + \boldsymbol{\phi_r}^T N (\boldsymbol{\phi_r} \boldsymbol{a}(t)), \qquad \boldsymbol{a} \in \mathbb{R}^r$$

Reduced order model

Non Linear dynamic system (Physics)

$$\frac{d\mathbf{u}}{dt} = L \mathbf{u}(t) + N(\mathbf{u}(t)), \qquad \mathbf{u} \in \mathbb{R}^n$$

Extracting low-dimensional patterns (data)

$$u(t) \approx \boldsymbol{\phi_r} \boldsymbol{a}(t), \quad \boldsymbol{\phi_r}^T \boldsymbol{\phi_r} = \boldsymbol{I}$$

 $\boldsymbol{a} \in \mathbb{R}^r \text{ with } r \ll n$

[1] Taira et al.

Low rank system

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{\phi_r^T} L \boldsymbol{\phi_r} \boldsymbol{a}(t) + \boldsymbol{\phi_r^T} N (\boldsymbol{\phi_r} \boldsymbol{a}(t)) \qquad \boldsymbol{a} \in \mathbb{R}^r$$

Physics-informed ML

Very large taxonomy

Physics informed machine learning

Knowledge-based machine learning

Theory-guided machine learning

Physics-constrained machine learning

Etc...

22 January 2020

Classical data driven framework

Classical data driven framework

Knowledge

Classical data driven framework

Type of knowledge

Which type of knowledge is integrated?

von Rued et al.

Type of knowledge

von Rued et al.

Type of knowledge

Data augmentation

Data augmentation: geometrical invariance

Data augmentation: geometrical invariance

Credit https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/

Data augmentation with simulations

Constraining the solution with the loss function

Physics guided Neural Network (Karpatne et al.)

Initial problem

- Approximate $f: X \to Y$ by a neural network f_{nn}
- \tilde{Y} is the predictor of f

Classical loss function

- $argmin Loss(\tilde{Y}, Y) + \lambda R(f_{nn})$ f_{nn}
- no guarantee that model will produce results consistent with our knowledge of physics

22 January 2020

Physics guided Neural Network (Karpatne et al.)

Initial problem

- Approximate $f: X \to Y$ by a neural network f_{nn}
- \tilde{Y} is the predictor of f

Classical loss function

- $\underset{f_{nn}}{argmin} Loss(\tilde{Y}, Y) + \lambda R(f_{nn})$
- no guarantee that model will produce results consistent with our knowledge of physics

Modified loss function

- Known relationship between Y and other physical variables Z: $\begin{cases} G(Y,Z) = 0 \\ H(Y,Z) \le 0 \end{cases}$
- $-L_{phy} = \|G(\tilde{Y}, Z)\|^2 + ReLu(H(\tilde{Y}, Z))$
- New loss: $\underset{f_{nn}}{arg}\min Loss(\tilde{Y},Y) + \lambda R(f_{nn}) + \lambda_{phy}L_{phy}$

Physics guided Neural Network (Karpatne et al.)

Initial problem

- Approximate $f: X \to Y$ by a neural network f_{nn}
- \tilde{Y} is the predictor of f

Classical loss function

- $\underset{f_{nn}}{argmin} Loss(\tilde{Y}, Y) + \lambda R(f_{nn})$
- no guarantee that model will produce results consistent with our knowledge of physics

Modified loss function

- Known relationship between Y and other physical variables Z: $\begin{cases} G(Y,Z) = 0 \\ H(Y,Z) \le 0 \end{cases}$
- $-L_{phy} = \|G(\tilde{Y}, Z)\|^2 + ReLu(H(\tilde{Y}, Z))$
- New loss: $\underset{f_{nn}}{argmin} Loss(\tilde{Y}, Y) + \lambda R(f_{nn}) + \lambda_{phy} L_{phy}$

Finding temperature profile of lakes

- Temperature measurement at various depth and time
- Various parameters: depth, air temperature, humidity, rain, is freezing, wind speed, etc.

Finding temperature profile of lakes

- Temperature measurement at various depth and time
- Various parameters: depth, air temperature, humidity, rain, is freezing, wind speed, etc.

Incorporate the knowledge of physics

- Physical relationship between the temperature, density, and depth of water
- Relationship between ρ and T is known
- Density-depth relationship: ρ cannot decrease with depth d: $\Delta \rho(i,t) = \tilde{\rho}(d_i,t) \tilde{\rho}(d_{i+1},t) \leq 0$

22 January 2020

27

Finding temperature profile of lakes

- Temperature measurement at various depth and time
- Various parameters: depth, air temperature, humidity, rain, is freezing, wind speed, etc.

Incorporate the knowledge of physics

- Physical relationship between the temperature, density, and depth of water
- Relationship between ρ and T is known
- Density-depth relationship: ρ cannot decrease with depth d: $\Delta \rho(i,t) = \tilde{\rho}(d_i,t) \tilde{\rho}(d_{i+1},t) \leq 0$

$$L_{phy} = \frac{1}{n_t(n_d - 1)} \sum_{t=1}^{n_t} \sum_{i=1}^{n_d - 1} ReLU(\Delta \rho(i, t))$$

2.6 PHY
SVM
LSBoost

1.8

1.6

0
0.2
0.4
0.6
0.8
1

Physical Inconsistency

PGNN

NN

PGNN0

2.8

(b) Results on Lake Mendota

PGNN 2.8 PGNN0 NN **PHY** 2.6 **SVM LSBoost Test RMSE** 2.4 2.2 2 1.8 1.6 0.4 0.2 0.6 8.0 **Physical Inconsistency**

(a) Results on Lake Mille Lacs

(b) Results on Lake Mendota

(a) Lake Mille Lacs on 02-October-2012

Limiting the model space

Limiting the model space

Karpatne et al

Scientific knowledge can reduce the model variance

- removing physically inconsistent solutions

22 January 2020

- without likely affecting their bias.

Gaussian Process Regression

Gaussian Process Regression

Context

- Function to learn $f: \mathbb{R}^d \to \mathbb{R}$
- Given set of inputs $X = \{x_1, ..., x_n\}$ associated to $y_1, ..., y_n$ such as $y_i = f(x_i)$

Definition of a Gaussian Process

- All values $(f(x_1), ..., f(x_n))$ are normally distributed
- Each value corresponds to a component of a n-dimensional Gaussian

Context

- Function to learn $f: \mathbb{R}^d \to \mathbb{R}$
- Given set of inputs $\mathbf{X} = \{x_1, \dots, x_n\}$ associated to y_1, \dots, y_n such as $y_i = f(x_i)$

Definition of a Gaussian Process

- All values $(f(x_1), ..., f(x_n))$ are normally distributed
- Each value corresponds to a component of a n-dimensional Gaussian

Full definition

- Mean : $\mathbb{E}[f(x)] = \mu(x)$ usually can be 0
- Covariance function Cov(f(x), f(x')) = k(x, x') with k a function called kernel
- $f(\mathbf{x}) \sim GP(0, k(\mathbf{x}, \mathbf{x}'))$

$$\begin{bmatrix} f(\mathbf{x}) \\ f(\mathbf{x}') \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}, \mathbf{x}) & k(\mathbf{x}, \mathbf{x}') \\ k(\mathbf{x}', \mathbf{x}) & k(\mathbf{x}', \mathbf{x}') \end{bmatrix}$$

22 January 2020

22 January 2020

Gaussian Process Regression: infinite dimension

22 January 2020

Gaussian Process Regression: Prior

Prior

Gaussian Process Regression: Posterior

Posterior

Conditioning the Gaussian prior on the observation

- $\mathbb{E}(f(\mathbf{x}^*)|\mathbf{X},\mathbf{Y}) = k(\mathbf{x}^*,\mathbf{X})^T \mathbf{k}(\mathbf{X},\mathbf{X})^{-1}\mathbf{Y}$
- $Var(f(x^*)|X,Y) = k(x^*,x^*) k(x^*,X)k(X,X)^{-1}k(X,x^*)$

Defining the kernel function

- Radial basis function $k(x_i, x_j) = \sigma_0^2 \exp\left(-\frac{(x_i x_j)^2}{2\theta^2}\right)$
- θ is the length scale and σ the standard deviation => Hyperparameters to optimize

 $\min_{\theta} \mathbf{Y}^T \mathbf{K}^{-1} \mathbf{Y} + \log |\mathbf{K}|$

1

Conditioning the Gaussian prior on the observation

- $\mathbb{E}(f(\mathbf{x}^*)|\mathbf{X},\mathbf{Y}) = k(\mathbf{x}^*,\mathbf{X})^T k(\mathbf{X},\mathbf{X})^{-1}\mathbf{Y}$
- $Var(f(x^*)|X,Y) = k(x^*,x^*) k(x^*,X)k(X,X)^{-1}k(X,x^*)$

Defining the kernel function

- Radial basis function $k(x_i, x_j) = \sigma_0^2 \exp\left(-\frac{(x_i x_j)^2}{2\Omega^2}\right)$
- θ is the length scale and σ the standard deviation => Hyperparameters to optimize

 $\min_{\Omega} \mathbf{Y}^T \mathbf{K}^{-1} \mathbf{Y} + \log |\mathbf{K}|$

Conditioning the Gaussian prior on the observation

- $\mathbb{E}(f(\mathbf{x}^*)|\mathbf{X},\mathbf{Y}) = k(\mathbf{x}^*,\mathbf{X})^T k(\mathbf{X},\mathbf{X})^{-1}\mathbf{Y}$
- $Var(f(x^*)|X,Y) = k(x^*,x^*) k(x^*,X)k(X,X)^{-1}k(X,x^*)$

Defining the kernel function

- Radial basis function $k(x_i, x_j) = \sigma_0^2 \exp\left(-\frac{(x_i x_j)^2}{2\Omega^2}\right)$
- θ is the length scale and σ the standard deviation => Hyperparameters to optimize

 $\min_{\Omega} \mathbf{Y}^T \mathbf{K}^{-1} \mathbf{Y} + \log |\mathbf{K}|$

Prior (hypothesis space)

- $f(\mathbf{x}) \sim GP(0, k(\mathbf{x}, \mathbf{x}'))$
- $\begin{bmatrix} f(\mathbf{x}) \\ f(\mathbf{x}') \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}, \mathbf{x}) & k(\mathbf{x}, \mathbf{x}') \\ k(\mathbf{x}', \mathbf{x}) & k(\mathbf{x}', \mathbf{x}') \end{bmatrix}$
- $k(\mathbf{x}, \mathbf{x}') = \prod_{i} \sigma_{i,0}^2 \exp\left(-\frac{(x_i x_{i'})^2}{2\theta^2}\right)$

Prior (hypothesis space)

- $f(\mathbf{x}) \sim GP(0, k(\mathbf{x}, \mathbf{x}'))$
- $\begin{bmatrix} f(\mathbf{x}) \\ f(\mathbf{x}') \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}, \mathbf{x}) & k(\mathbf{x}, \mathbf{x}') \\ k(\mathbf{x}', \mathbf{x}) & k(\mathbf{x}', \mathbf{x}') \end{bmatrix}$
- $k(\boldsymbol{x}, \boldsymbol{x}') = \prod_{i} \sigma_{i,0}^{2} \exp\left(-\frac{(x_{i} x_{i'})^{2}}{2\theta^{2}}\right)$

Training (look at data)

- Training data $\{x_i, y_i\}$ ∀ $i \in [1, n]$
- $Y \sim GP(0, K)$
- Maximum Likelihood Estimation:

$$\min_{\theta} \mathbf{Y}^T \mathbf{K}^{-1} \mathbf{Y} + \log |\mathbf{K}|$$

Prior (hypothesis space)

$$- f(\mathbf{x}) \sim GP(0, k(\mathbf{x}, \mathbf{x}'))$$

$$- \begin{bmatrix} f(\mathbf{x}) \\ f(\mathbf{x}') \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}, \mathbf{x}) & k(\mathbf{x}, \mathbf{x}') \\ k(\mathbf{x}', \mathbf{x}) & k(\mathbf{x}', \mathbf{x}') \end{bmatrix}$$

$$-k(\boldsymbol{x},\boldsymbol{x}') = \prod_{i} \sigma_{i,0}^{2} \exp\left(-\frac{(x_{i}-x_{i'})^{2}}{2\theta^{2}}\right)$$

Prediction

$$- \begin{bmatrix} f(\mathbf{x}^*) \\ \mathbf{Y} \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}^*, \mathbf{x}^*) & k(\mathbf{x}^*, \mathbf{X}) \\ k(\mathbf{X}, \mathbf{x}^*) & \mathbf{K} \end{bmatrix}$$

Training (look at data)

- Training data $\{x_i, y_i\}$ ∀ $i \in [1, n]$
- $Y \sim GP(0, K)$
- Maximum Likelihood Estimation: $\min_{\Delta} \mathbf{Y}^T \mathbf{K}^{-1} \mathbf{Y} + \log |\mathbf{K}|$

Prior (hypothesis space)

$$- f(\mathbf{x}) \sim GP(0, k(\mathbf{x}, \mathbf{x}'))$$

$$- \begin{bmatrix} f(\mathbf{x}) \\ f(\mathbf{x}') \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}, \mathbf{x}) & k(\mathbf{x}, \mathbf{x}') \\ k(\mathbf{x}', \mathbf{x}) & k(\mathbf{x}', \mathbf{x}') \end{bmatrix}$$

$$- k(\boldsymbol{x}, \boldsymbol{x}') = \prod_{i} \sigma_{i,0}^{2} \exp\left(-\frac{(x_{i} - x_{i'})^{2}}{2\theta^{2}}\right)$$

Training (look at data)

- Training data $\{x_i, y_i\}$ ∀ $i \in [1, n]$
- $Y \sim GP(0, K)$
- Maximum Likelihood Estimation: $\min_{\theta} \mathbf{Y}^T \mathbf{K}^{-1} \mathbf{Y} + \log |\mathbf{K}|$

Prediction

$$- \begin{bmatrix} f(\mathbf{x}^*) \\ \mathbf{Y} \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k(\mathbf{x}^*, \mathbf{x}^*) & k(\mathbf{x}^*, \mathbf{X}) \\ k(\mathbf{X}, \mathbf{x}^*) & \mathbf{K} \end{bmatrix}$$

Posterior

$$- f(\mathbf{x}^*)|\mathbf{X},\mathbf{Y} = \mathcal{N}(\mu(\mathbf{x}^*), Var(\mathbf{x}^*))$$

$$-\mu(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X})^T \mathbf{K}^{-1} \mathbf{Y}$$

-
$$Var(x^*) = k(x^*, x^*) - k(x^*, X)K^{-1}k(X, x^*)$$

Physics-informed ML

Limiting the model space

Gaussian Process Regression with inequality constraints

22 January 2020

Physical quantities can show properties know in advance

- Bound constraints: density, threshold, etc
- Derivative constraints: monotonicity

Constraints imposed in the mathematical formulation (Da Veiga et al.)

- Bounds: $\mathbb{E}(f(x^*)|\forall i=i,...,N;\ a_i\leq f(x_i)\leq b_i)$
- Derivative: $\mathbb{E}(f(x^*)|\forall i=i,...,N; \frac{\partial f}{\partial x_i}(x_i) \geq 0)$
- Truncated multinormal distribution

Gaussian Process Regression with inequality constraints

1st AIDA School

Da Veiga et al.

Gaussian Process Regression with inequality constraints

1st AIDA School

Da Veiga et al.

Multi fidelity GP regression

Multi fidelity GP regression

Various sources of data can be used

- Low fidelity: partially converged simulation, coarser mesh, governing equation of lower fidelity, etc.
- High fidelity: intensive simulations, measurements, etc.

Multi fidelity GP regression

Various sources of data can be used

- Low fidelity: partially converged simulation, coarser mesh, governing equation of lower fidelity, etc.
- High fidelity: intensive simulations, measurements, etc.

Main assumptions

- Correction can model the differences between cheap and expensive functions
- Cheap points X_c , y_c and expensive points X_e , y_e
- $Cov\{f_e(\mathbf{x}^i), f_c(\mathbf{x})|f_c(\mathbf{x}^i)\} = 0 \ \forall \mathbf{x} \neq \mathbf{x}^i$
- Prior assumption: $Z_e(x) = \rho Z_c(x) + Z_d(x)$

Multi fidelity GP regression

Various sources of data can be used

- Low fidelity: partially converged simulation, coarser mesh, governing equation of lower fidelity, etc.
- High fidelity: intensive simulations, measurements, etc.

Main assumptions

- Correction can model the differences between cheap and expensive functions
- Cheap points X_c , y_c and expensive points X_e , y_e
- $Cov\{f_e(x^i), f_c(x)|f_c(x^i)\} = 0 \ \forall x \neq x^i$
- Prior assumption: $Z_e(x) = \rho Z_c(x) + Z_d(x)$

Mathematical formula

- Correlation:
$$C = \begin{bmatrix} k_c(X_c, X_c) & \rho k_c(X_c, X_e) \\ \rho k_c(X_e, X_c) & \rho^2 k_c(X_e, X_e) + k_d(X_e, X_e) \end{bmatrix}$$

Multi fidelity

PDE within GPs

Incorporating physics within GPs (Raissi et al.)

22 January 2020

Burgers' equation

$$- u_t + uu_x - \left(\frac{0.01}{\pi}\right)u_{xx} = 0$$

- Boundary conditions u(t,-1) = u(t,1) = 0
- Data: Noisy measurements of initial solutions $(u(0, x) = -\sin(\pi x))$

Incorporating physics within GPs (Raissi et al.)

Burgers' equation

$$- u_t + uu_x - \left(\frac{0.01}{\pi}\right)u_{xx} = 0$$

- Boundary conditions u(t,-1) = u(t,1) = 0
- Data: Noisy measurements of initial solutions $(u(0,x) = -\sin(\pi x))$

Incorporating physics inside GPs

– Discretization:
$$u^n + \Delta t \left(u^{n-1} u_x^n - \left(\frac{0.01}{\pi} \right) u_{xx}^n \right) = u^{n-1}$$

- Prior:
$$u^n \sim GP(0, k(x, x'))$$

- Kernel
$$k^{n-1,n} = k^{n,n} + \Delta t \left(u^{n-1} k_{\chi} - \left(\frac{0.01}{\pi} \right) k_{\chi \chi} \right)$$

$$\begin{bmatrix} u^n \\ u^{n-1} \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k^{n,n} & k^{n-1,n} \\ k^{n,n-1} & k^{n-1,n-1} \end{bmatrix}$$

Incorporating physics within GPs (Raissi et al.)

Hidden Physics Models (Raissi et al., 2018b)

- Linear partial differential equation with unknown parameters λ
 - $\mathcal{L}_{x}^{\lambda}h^{n} = h^{n-1}$
- Same process to incorporate physics
 - $h^n \sim GP(0, k(x, x'))$
 - $-k^{n,n}=k$
 - $-k^{n-1,n}=\mathcal{L}_{r}^{\lambda}k$
 - $-k^{n-1,n-1} = \mathcal{L}_{r}^{\lambda} \mathcal{L}_{r}^{\lambda} k$
 - $-\lambda$ is now a hyperparameter

Hidden Physics Models (Raissi et al., 2018b)

• Linear partial differential equation with unknown parameters λ

$$- \mathcal{L}_x^{\lambda} h^n = h^{n-1}$$

- Same process to incorporate physics
 - $h^n \sim GP(0, k(x, x'))$
 - $-k^{n,n}=k$
 - $-k^{n-1,n} = \mathcal{L}_x^{\lambda} k$
 - $-k^{n-1,n-1} = \mathcal{L}_{x}^{\lambda} \mathcal{L}_{x}^{\lambda} k$
 - $-\lambda$ is now a hyperparameter
- Burgers
 - $-u_t + \lambda_1 u u_x \lambda_2 u_{xx}$
 - Training with only 2 snapshots

Hidden Physics Models (Raissi et al., 2018b)

• Linear partial differential equation with unknown parameters λ

$$- \mathcal{L}_{x}^{\lambda}h^{n} = h^{n-1}$$

Same process to incorporate physics

-
$$h^n \sim GP(0, k(x, x'))$$

$$-k^{n,n}=k$$

$$-k^{n-1,n}=\mathcal{L}_{r}^{\lambda}k$$

$$-k^{n-1,n-1} = \mathcal{L}_{x}^{\lambda} \mathcal{L}_{x}^{\lambda} k$$

 $-\lambda$ is now a hyperparameter

Burgers

$$-u_t + \lambda_1 u u_x - \lambda_2 u_{xx}$$

Training with only 2 snapshots

Physics informed GP and NN

- Solving PDE, propagating uncertainties, and inverse problem
 - Based on symbolic differentiation
 - Limited by GP capabilities
 - Can be cost efficient compared to pure physics-modeling

83

Physics informed GP and NN

- Solving PDE, propagating uncertainties, and inverse problem
 - Based on symbolic differentiation
 - Limited by GP capabilities
 - Can be cost efficient compared to pure physics-modeling

- What about Physics informed Neural Network? (Raissi et al.)
 - It also works
 - Adapted to large data and automatic differentiation

Physics informed GP and NN

Solving PDE, propagating uncertainties, and inverse problem

- Based on symbolic differentiation
- Limited by GP capabilities
- Can be cost efficient compared to pure physics-modeling

What about Physics informed Neural Network? (Raissi et al.)

- It also works
- Adapted to large data and automatic differentiation

$$f := u_t + uu_x - (0.01/\pi)u_{xx}$$

$$MSE = MSE_u + MSE_f$$

$$MSE_{u} = rac{1}{N_{u}} \sum_{i=1}^{N_{u}} |u(t_{u}^{i}, x_{u}^{i}) - u^{i}|^{2},$$

Raissi et al. provide github with Tensorflow code

$$MSE_f = rac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2.$$

And more!

DeepFluid: Generative Network for Fluid Simulation (Kim et al., 2019)

22 January 2020

And more!

- DeepFluid: Generative Network for Fluid Simulation (Kim et al., 2019)
 - Stream loss function for incompressible fluid

$$L_G(\mathbf{c}) = ||\mathbf{u}_\mathbf{c} - \nabla \times G(\mathbf{c})||_1$$

Learning also the gradient:

$$L_G(\mathbf{c}) = \lambda_{\mathbf{u}} ||\mathbf{u}_{\mathbf{c}} - \hat{\mathbf{u}}_{\mathbf{c}}||_1 + \lambda_{\nabla \mathbf{u}} ||\nabla \mathbf{u}_{\mathbf{c}} - \nabla \hat{\mathbf{u}}_{\mathbf{c}}||_1$$

And more!

DeepFluid: Generative Network for Fluid Simulation (Kim et al., 2019)

CNN $b = 6 \times 10^{-4}$ CNN $\hat{b} = 8 \times 10^{-4}$ G.t. $b = 8 \times 10^{-4}$

 $CNN b = 1 \times 10^{-3}$

Conclusion

- Coupling physics and data
 - Gain explainability
 - Physical consistency

- Need of closer collaboration with domain experts, data scientists, and computer scientists
 - Extracting knowledge, insights and discovery from data
 - Support of simulations and experiments
 - One of the AIDA's aims

- Now physics is injected into Machine Learning, we can explain models from Al
 - Next talk from Jorge about explainable Al

References

Laura von Rued et al., "Informed Machine Learning – Toward a Taxonomy of Explicit Integration of Knowledge into Machine Learning", https://arxiv.org/abs/1903.12394

Forrester, S. András, and A. J. Keane. "Engineering Design via Surrogate Modelling: a practical guide", Wiley, 2008.

Sebastien Da Veiga et al., "Gaussian process modeling with inequality constraints", In Annales de la Faculté des sciences de Toulouse: Mathématiques (Vol. 21, No. 3, pp. 529-555).

Taira et al., "Modal Analysis of Fluid Flows: An Overview", Aiaa Journal, 4013-4041.

Rasmussen et al., "Gaussian processes for machine learning", Vol 1, Cambridge MIT press, 2006

Anuj Karpatne et al., "Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data", IEEE Transactions on Knowledge and Data Engineering, 29(10), 2318-2331

Anuj Karpatne et al., "Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling", https://arxiv.org/abs/1710.11431

Mazia Raissi et al., "Numerical Gaussian Processes for time-dependent and non-linear partial differential equations", SIAM J Sci. Comput., Vol 40, No1, pp A172-A198, 2018

Raissi, M., & Karniadakis, G. E., "Hidden physics models: Machine learning of nonlinear partial differential equations", Journal of Computational Physics, 357, 125-141., 2018b

Physics Informed Deep Learning (Raissi et al.): https://maziarraissi.github.io/PINNs/

Kim, B et al., "Deep fluids: A generative network for parameterized fluid simulations", In Computer Graphics Forum (Vol. 38, No. 2, pp. 59-70), 2019

