Laboratory 6

(Due date: **002**: April 6th, **003**: April 7th, **004**: April 8th)

OBJECTIVES

- ✓ Implement a Microprocessor: Control Unit and Datapath Unit.
- ✓ Describe Algorithmic State Machine (ASM) charts in VHDL.

VHDL CODING

✓ Refer to the <u>Tutorial: VHDL for FPGAs</u> for parametric code for: Register and ALU.

FIRST ACTIVITY: DESIGN OF A SMALL MICROPROCESSOR (70/100)

• Implement the following 4-bit microprocessor:

Control Circuit:

Instruction Set:

F	Operation	Function
000	load IN	IN ← Switches
001	load Rx, IN	Rx ← IN
010	copy Rx, Ry	Rx ← Ry
011	add Rx, Ry	Rx ← Rx + Ry
100	add Rx, IN	Rx ← Rx + IN
101	xor Rx, Ry	Rx ← Rx XOR Ry
110	inc Rx	$Rx \leftarrow Rx + 1$
111	load OUT, Rx	OUT ← Rx

Control Circuit: FSM

2

Arithmetic Logic Unit (ALU):

sel	Operation	Function	Unit
0000	y <= A	Transfer 'A'	
0001	y <= A + 1	Increment 'A'	
0010	y <= A - 1	Decrement 'A'	
0011	y <= B	Transfer 'B'	Arithmetic
0100	y <= B + 1	Increment 'B'	Anuimeuc
0101	y <= B - 1	Decrement 'B'	
0110	y <= A + B	Add 'A' and 'B'	
0111	y <= A - B	Subtract 'B' from 'A'	
1000	y <= not A	Complement 'A'	
1001	y <= not B	Complement 'B'	
1010	y <= A AND B	AND	
1011	y <= A OR B	OR	Logic
1100	y <= A NAND B	NAND	Logic
1101	y <= A NOR B	NOR	
1110	y <= A XOR B	XOR	
1111	y <= A XNOR B	XNOR	

- ✓ Create a new ISE Project. Select the XC7A100T-1CSG324 Artix-7 FPGA device.
- ✓ Write the VHDL code for the given circuit.
- ✓ With a 100 MHz input clock, write the VHDL testbench to test the following Assembly program:

```
load IN; IN \leftarrow 0101 (SWs = 0101)
load R1, IN; R1 \leftarrow 0101
copy R0, R1; R0 \leftarrow 0101, R1 \leftarrow 0101
inc R1; R1 \leftarrow 0110
xor R0, R1; R0 \leftarrow 0101 xor 0110 = 0011
add R0, R1; R0 \leftarrow 0011 + 0110 = 1001
load OUT, R0; OUT \leftarrow 1001
```

- Perform <u>Functional Simulation</u> and <u>Timing Simulation</u> of your design. **Demonstrate this to your TA**.
- ✓ I/O Assignment: Create the UCF file. Nexys-4: Use SW0 to SW4 for the IR input, SW5 to SW8 for the input to the IN register, BTNC for the w input, CLK100MHZ for the input clock, CPU_RESET push-button for resetn, a LED for done, and four LEDs for the output of register OUT.

SECOND ACTIVITY: TESTING (30/100)

- In order to properly test the microprocessor, we need the avoid mechanical debouncing on the pushbutton for input w. Connect the debouncer circuit (use the given files: mydebouncer.vhd, my_genpulse_sclr.vhd) on the input w.
- Note that you do not need to simulate the circuit that includes the debouncer.

- ✓ Generate and download the bitstream on the FPGA and test the Assembly Program. **Demonstrate this to your TA**.
- Submit (<u>as a .zip file</u>) all the generated files: VHDL code files, VHDL testbench (for the uP block), and UCF file to Moodle (an assignment will be created). DO NOT submit the whole ISE Project.
- > You can work in teams of up to three (3) students. Every member of the team must demonstrate Functional Simulation, Timing Simulation, and Testing using a different Assembly Program (at least 6 different instructions). Also, every team member must make a Moodle submission with a different testbench.

TA signature:	Date: