Московский Физико-Технический Институт

Кафедра Общей физики

Лабораторная работа №3.3.3

Опыт Милликена.

Автор:

Глеб Уваркин 615 группа Преподаватель:

Андрей Александрович Заболотных

Цель работы:

Измерение элементарного заряда методом масляных капель.

В работе используются:

Плоский конденсатор в защитном кожухе, осветитель, измерительный микроскоп, выпрямитель, электростатический вольтметр, переключатель напряжения, пульверизатор с маслом, секундомер.

1 Теоретические сведения.

Идея опыта очень проста. Если элементарный заряд действительно существует, то заряд q любого тела может принимать только дискретную последовательность значений:

$$q = 0, \pm e, \pm 2e, \pm 3e, \dots \pm ne, \dots,$$
 (1)

где e - заряд электрона. В предлагаемом опыте измеряется заряд небольших капелек масла, несущих всего несколько электронных зарядов. Сравнивая между собой заряды капель, можно убедиться, что все они кратны одному и тому же числу, которое и равно, очевидно, заряду электрона.

Для измерения заряда капель можно исследовать их движение в вертикальном электрическом поле плоского конденсатора.

Движение заряженной капли в электрическом поле зависит как от электрических сил, так и от веча капли. Вес капли может быть определён по скорости её падения в отсутствии поля.

Рассмотрим свободное падение капли. Уравнение её движения при падении имеет вид

$$m\frac{dv}{dt} = P - F_{\rm Tp},\tag{2}$$

где P - вес капли, v - её скорость, а $F_{\rm Tp}$ - сила трения капли о воздух. Сила трения сферической капли определяется формулой Стокса:

$$F_{\rm TP} = 6\pi \eta r v = k v,\tag{3}$$

где r - радиус капли, η - коэффициент внутреннего трения воздуха, $k=6\pi\eta r$.

Подставляя (3) в (2), найдём

$$m\frac{dv}{dt} = mg - kv. (4)$$

Как нетрудно убедиться, решение этого уравнения имеет вид

$$v = \frac{mg}{k} \left(1 - e^{kt/m} \right) \tag{5}$$

Установившееся значение скорости равно

$$v_{\text{yct}} = \frac{mg}{k} = \frac{\frac{4}{3}\pi r^3 g}{6\pi \eta r} = \frac{2}{9} \frac{\rho}{\eta} g r^2,$$
 (6)

здесь ρ - плотность масла. Заметим, что (6) может быть немедленно получено из (4), если положить dv/dt=0.

Как следует из (5), установление скорости происходит с постоянной времени

$$\tau = \frac{m}{k} = \frac{2}{9} \frac{\rho}{n} r^2. \tag{7}$$

<u>MIP1</u>

Время установления скорости, таким образом, быстро падает с уменьшением радиуса капли г. Для мелких капель оно столь мало, что движение капли всегда можно считать равномерным. Выражение (6) в этом случае определяет радиус капли через скорость её падения. Обозначая через h путь, пройденный каплей за время t_0 , найдём

$$r = \sqrt{\frac{9\eta h}{2\rho g t_0}}. (8)$$

Рассмотрим теперь движение капли в присутствии электрического поля. Напряжённость поля E в конденсаторе равна

$$E = \frac{V}{I},\tag{9}$$

где l - расстояние между пластинами, а V - разность потенциалов между ними, измеряемая с помощью вольтметра.

Нас будет интересовать случай, когда поле заставляет каплю подниматься. Уравнение движения при этом имеет вид

$$m\frac{dv}{dt} = \frac{qV}{l} - mg - kv, (10)$$

где q - заряд капли. Прибавление постоянного члена не изменяет постоянной времени τ , с коротой устанавливается скорость капли. Для определения установившейся скорости мы можем снова положить левую часть (10) равной нулю.

Измерим время t подъёма капли на начальную высоту. Используя равенства (4), (8) и (10), найдём, что заряд капли равен

$$q = 9\pi \sqrt{\frac{2\eta^3 h^3}{gp}} \cdot \frac{l(t_0 + t)}{V t_0^{3/2} t}.$$
 (11)

2 Экспериментальная установка.

Рис. 1: Схема экспериментальной установки для измерения заряда электрона.

Схема установки представлена на рис. 2. Масло разбрызгивается пульверизатором. капли масла попадают в конденсатор C через небольшое отверстие в верхней пластине. При этом часть из них вследствие трения о воздух приобретает случайный по абсолютной величине и знаку электрический заряд.

Напряжение на пластины подаётся с регулируемого выпрямителя и измеряется вольтметром V. Ключ позволяет менять направление поля в конденсаторе, чтобы можно было работать как с отрицательно, так и с положительно заряженными каплями. При размыкании ключа конденсатор разряжается через дополнительное сопротивление $R\approx 10 {\rm MOm}$.

Время отсчитывается по секундомеру.

Естественно, что слабые электрические силы, действующие на каплю, несущую всего один или несколько электронных зарядов, способны существенно изменить её движение в том случае, если сама она очень мала. Опыт производится поэтому с мелкими каплями, наблюдение за которыми возможно только с помощью микроскопа.

В фокальной плоскости окуляра измерительного микроскопа виден ряд горизонтальных линий, расстояние между которыми было предварительно определено с помощью объектного микрометра. Наблюдая за перемещением капли между нитями, нетрудно определить путь, пройденный каплей. Время t_0 свободного падения капли от одной выбранной линии до другой и время t её обратного подъёма, происходящего под действием сил электрического поля, измеряется секундомером.

Из постановки опыта очевидно, что дискретность заряда может быть обнаружена лишь в том случае, если ошибка δq в измерении заряда капли существенно меньше абсолютной величины заряда электрона e. Допустимая относительная ошибка опыта $\delta q/q$ должна быть поэтому много меньше e/q=1/n, где n - заряд капли, выраженный в числе зарядов электрона. Этому условию тем легче удовлетворить, чем меньше число n. В нашем случае трудно определить q с точностью лучше 5%. Заряд капли должен поэтому быть существенно меньше 20 зарядов электрона - лучше всего, если он не превосходит пяти электронных зарядов.

3 Обработка результатов.

Проведём серию измерений для 7 капель, а именно: измерим время их падения под действием силы тяжести на расстояние $h=1\,$ мм и время их подъёма под действием электрических сил также на расстояние $h=1\,$ мм.

Запишем полученные данные в таблицу 1. Для всех капель рассчитаем значения q, а также σ_q по формуле:

$$\sigma_q = q\sqrt{\frac{\sigma_V^2}{V^2} + \frac{\sigma_t^2 t_0^2}{t^2 (t_0 + t)^2} + \frac{\sigma_{t_0}^2}{4t_0^2} \left(\frac{3t + t_0}{t + t_0}\right)^2},$$

где $\sigma_V = 10$ В, $\sigma_t = \sigma_{t_0} \simeq 0.2$ с.

Таблица 1: Полученные данные.

Капля №		1			2			3	
V, B		1000			970			800	
t_0 , сек t , сек		23.7 38.7		1					
$q \cdot 10^{-19}$, Кл $\sigma_q \cdot 10^{-19}$, Кл									

Капля №		4			5			6	
V, B		980			1000			860	
t_0 , сек t , сек						16.3 15.6			
$q \cdot 10^{-19}, \mathrm{K} \pi$ $\sigma_q \cdot 10^{-19}, \mathrm{K} \pi$									

Капля №			7		
V, B			1000		
t_0 , сек t , сек	10.3 20.4	10.3 20.4	10.1 20.1	10.2 20.9	10.2 20.5
$q \cdot 10^{-19}$, Кл $\sigma_q \cdot 10^{-19}$, Кл	3.48 0.09	3.48 0.09	3.58 0.09	3.49 0.09	3.52 0.09

Усредним значения q для каждой капли, занесём данные в таблицу 2.

Таблица 2: Средние значения заряда капли.

Капля №	1	2	3	4	5	6	7
$q_{\rm cp} \cdot 10^{-19}, \ {\rm K}$ л	1.18	1.23	1.28	1.26	2.46	3.58	3.51
$\sigma_q \cdot 10^{-19}$, Кл	0.02	0.02	0.02	0.02	0.05	0.12	0.09
$\begin{array}{c} q_{\mathrm{cp}} \cdot 10^{-19}, \ \mathrm{K} \mathrm{ \pi} \\ \sigma_q \cdot 10^{-19}, \ \mathrm{K} \mathrm{ \pi} \\ \varepsilon_q, \% \end{array}$	2	2	2	2	2	3	3

Рис. 2: Полученные значения q.

Получаем, что наибольший общий делитель для всех измеренных капель равен

$$|e| \simeq (1.25 \pm 0.12) \cdot 10^{-19} \mathrm{K}$$
л $\simeq (3.75 \pm 0.36) \cdot 10^{-10}$ ед. СГСЭ $(\varepsilon \simeq 10\%)$

"Подвесим" одну из капель в электрическом поле. Определим соответствующее напряжение, отключим его и измерим время падения капли на расстояние h=0.75мм. Поменяв полярность напряжения, вернём каплю на прежнее место и снова подвесим её. Снова запишем напряжение. Повторим процедуру для данной капли несколько раз, запишем результаты в таблицу 3, оценим из этого опыта заряд капли по формуле (11), полагая время подъема $t=\infty$. По разбросу результатов (ΔV и Δt) оценим точность измерения заряда этой капли.

(11)
$$\underset{t \to \infty}{\Longrightarrow} q = 9\pi \sqrt{\frac{2\eta^3 h^3}{gp}} \cdot \frac{l}{Vt_0^{3/2}}$$
.

Таблица 3: Измерение капли.

V , B t_0 , c	680	680	680	680	680
t_0 , c	7.6	7.6	7.4	7.3	7.6
$q \cdot 10^{-19}, \ \text{Kл}$	3.49	3.49	3.63	3.70	3.49

$$q_{\rm cp} = (3.56 \pm 0.09) \cdot 10^{-19} \; {\rm K}$$
л $(\varepsilon \simeq 3\%)$

Оценим максимальный путь релаксации s в условиях эксперимента:

$$s = v_{
m yct} au = rac{1}{
m g} \left(rac{h}{t_0}
ight)^2 = rac{1}{9.8} \left(rac{10^{-3}}{9}
ight)^2 \simeq 1.26 \ {
m HM}$$

4 Вывод.

Полученное значение элементарного заряда отличается от табличного на 30%. Причиной этому могли послужить несколько факторов:

• систематическая ошибка установки(все полученные заряды не кратны табличному значению элементарного заряда)

- <u>MIPT</u>.
 - ошибка наблюдающего при выборе капли (от правильности выбора капли зависит точность измерения)
 - засвеченность окуляра, которая не позволила с высокой точностью определить время прохождения нужного расстояние каплей
 - человеческий фактор