MATH130165h: Homework 5

Due May 9, 2024

Problem 1. [10 pt] Let $A \in \mathbb{R}^{n \times n}$ be a *general* square matrix and $x, b \in \mathbb{R}^n$ be vectors. Compute the gradient and Hessian of $f_1(x) = b^{\top}x$ and $f_2(x) = x^{\top}Ax$.

Problem 2. [20 pt] Let $A \in \mathbb{R}^{n \times n}$ be a *general* square matrix and $X, B \in \mathbb{R}^{n \times k}$ be two matrices. Compute the gradient of $f_1(X) = \operatorname{tr}(B^\top X), \ f_2(X) = \operatorname{tr}(X^\top A X), \ \operatorname{and} \ f_3(X) = \operatorname{tr}(B X^\top A X X^\top B X^\top)$

Problem 3. [20 pt] Show that the following conditions are equivalent for $\mu > 0$.

- 1. $g(x) = f(x) \frac{\mu}{2} ||x||^2$ is convex for all x;
- 2. $(\nabla f(x) \nabla f(y))^{\top} (x y) \ge \mu ||x y||^2$ for all x, y;
- 3. $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y) \frac{\alpha(1 \alpha)\mu}{2} ||x y||^2$ for all x, y and $\alpha \in [0, 1]$.

Problem 4. [10 pt] Suppose that f is a convex function. Show that the set of global minimizers of f is a convex set.

Problem 5. [30 pt] Consider the following minimization problem,

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} x^\top A x - x^\top b,$$

where $A \in \mathbb{R}^{n \times n}$ is a positive definite matrix, and $b \in \mathbb{R}^n$ is a vector. We apply the steepest descent method with a fixed stepsize to address the minimization problem, i.e.,

$$x_{k+1} = x_k - \alpha \nabla f(x_k),$$

where α is the constant stepsize. Please find a range for α such that the steepest descent method converges. For a fixed stepsize in the range, please prove that x_k converges to $x^* = A^{-1}b$ linearly.