What you need aknow about Yoneda - Exercises

Emma Bach, Seminar on Functional Programming and Logic

Definition 1. A category \mathbb{C} consists of:

- a collection $|\mathbb{C}|$ of *objects*;
- for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;
- for all $A \in |\mathbb{C}|$, an identity morphism $id_A \in \mathbb{C}(A,A)$;
- for each pair of morphisms $g \in \mathbb{C}(B,C)$, $f \in \mathbb{C}(A,B)$, a morphism $g \circ f \in \mathbb{C}(A,C)$, such that composition is associative.

Definition 2. A functor $F: \mathbb{C} \to \mathbb{D}$ is a structure-preserving map between two categories:

- F maps an object $A \in |\mathbb{C}|$ to an object $F(A) \in |\mathbb{D}|$
- F maps a morphism $f \in \mathbb{C}(A, B)$ to a morphism $F(f) \in \mathbb{D}(F(A), F(B))$
- $F(id_A) = id_{F(A)}$
- $F(g \circ f) = F(g) \circ F(f)$

Definition 3. A natural transformation is a structure-preserving map between functors:

- Let $F, G : \mathbb{C} \to \mathbb{D}$ be functors.
- A natural transformation ϕ is an indexed family of morphisms for every object $A \in |\mathbb{C}|$, ϕ_A is a morphism from F(A) to G(A).
- These morphisms satisfy the *naturality condition*:

$$\forall f \in \mathbb{C}(A, B) : \phi_B \circ F(f) = G(f) \circ \phi_A$$

Exercise 1

- a) Let \leq be a reflexive, transitive order (a *preorder*) on a set M. Show that if we define objects by $|\mathbb{P}re(M,\leq)|=M$ and morphisms by $\exists! f_{x\leq y}\in \mathbb{P}re(x,y)\Leftrightarrow x\leq y$, then $\mathbb{P}re(M,\leq)$ forms a category.
- b) Let $F: \mathbb{M} \to \mathbb{M}$ be an endofunctor on \mathbb{M} . Show that F defines a monotonic function $M \to M$, i.e. $\forall x, y : x \leq y \implies F(x) \leq F(y)$.
- c) Let $F, G: M \to M$ be monotonic functions. Let ϕ be a natural transformation $F \to G$. Show that $\forall x \in M: F(x) \leq G(x)$.

Definition 4. Yoneda Lemma: There exists a natural isomorphism

$$\operatorname{Nat}(\mathbb{C}(A,-),F) \simeq F(A)$$

Definition 5. Yoneda Embedding: For every object $A \in |\mathbb{C}|$, there exists a bijective functor

$$\mathbb{C} \to \mathbb{C}(A, -)$$

Proposition 6. Any monoid M = (M, *, e) can be represented as a category \mathbb{M} with a single object *, where monoid elements are morphisms, such that composing two morphisms m and n gives the morphism corresponding to the element m * n.

Exercise 2

Use the Yoneda embedding to show that every monoid M is isomorphic to a monoid of functions $M \to M$.