1 Quadratic Residues

Introduction: The concept of Quadratic Residues is a fundamental tool which has ramifications in lots of other number theory places: Cryptography, Factoring, etc...

1.1 Quadratice Residues & Nonresidues

1. **Introduction:** Suppose we asked the following, given a modulus m: Which numbers are perfect squares mod m?

Ex. Let m = 7. What are the perfect squares? We could of course work backwards, squaring each value:

 $0^2 \equiv 0 \bmod 7$

 $1^2 \equiv 1 \mod 7$

 $2^2 \equiv 4 \mod 7$

 $3^2 \equiv 2 \mod 7$

 $4^2 \equiv 2 \mod 7$

 $5^2 \equiv 4 \mod 7$

 $6^2 \equiv 1 \mod 7$

Then the perfect squares are 0, 1, 2, 4 and 3, 5, 6 are not.

2. Quadratice Residues & Nonresidues - Counting

(a) **Definition:** Let m be a modulus and $a \in \mathbb{Z}$ with $\gcd(a, m) = 1$. We say a is a quadratic residue mod m if $\exists x \in \mathbb{Z}$ such that $x^2 \equiv a \mod m$. Otherwise, we say a is a quadratic nonresidue mod m if $\nexists x \in \mathbb{Z}$ such that $x^2 \equiv a \mod m$.

Ex. If m = 7 then QR:1, 2, 4, QNR:3, 5, 6, and Neither:0.

(b) **Theorem:** If p is an odd prime and $a \in \mathbb{Z}$ with $p \nmid a \implies \gcd(p, a) = 1$, then $x^2 \equiv a \mod p$ has either no solutions or exactly two solutions mod p.

Proof. If there are none, we are done. Suppose x is one solution to $x^2 \equiv a \mod p$. Claim -x is also a solution. Then $2x \equiv 0 \mod p$. Since p is odd we can do $x \equiv 0 \mod p$ which implies $p \mid x \Longrightarrow p \mid x^2$. Then, $x^2 \equiv 0 \mod p \Longrightarrow a \equiv 0 \mod p$ which contradicts $p \nmid a$.

Let's show that for any two solutions, they are negative of one another. Suppose $x_1^2 \equiv a \mod p$ and $x_2^2 \equiv a \mod p$. Then $x_1^2 - x_2^2 \equiv 0 \mod p$ so

 $p \mid (x_1^2 - x_2^2)$ so $p \mid (x_1 - x_2)(x_1 + x_2)$ so $p \mid (x_1 - x_2)$ or $p \mid (x_1 + x_2)$. If $p \mid (x_1 - x_2)$ then $x_1 \equiv x_2 \mod p$. If $p \mid (x_1 + x_2)$ then $x_1 \equiv -x_2 \mod p$. Thus, there can only be the two which are negatives of one another \square

(c) **Theorem:** Suppose p is an odd prime. Then $\exists \frac{p-1}{2}$ QR and $\exists \frac{p-1}{2}$ QNR.

Proof. If we square all of $1,2,3,\cdots,p-1$ the results will be in pairs (two of every result) the $\frac{p-1}{2}$ we do get are the QR. We miss $\frac{p-1}{2}$ results, those are the QNR.

(d) **Theorem:** Let p be an odd prime and r a primitive root mod p. Suppose $p \nmid a$, then a is a QR mod p if and only if $\operatorname{ind}_r a$ is even.

Proof.

 \rightarrow Suppose a is a quadratice residue mod p, $\exists x$ such that $x^2 \equiv a \mod p$. Then take the index of both sides to get $\operatorname{ind}_r x^2 \equiv \operatorname{ind}_r a \mod p - 1$ and so $2\operatorname{ind}_r x \equiv \operatorname{ind}_r a \mod p - 1$. From here we see $\operatorname{ind}_r a = 2\operatorname{ind}_r x + k(p-1)$ for some $k \in \mathbb{Z}$ and so since p-1 is even we know $\operatorname{ind}_r a$ is even.

 \leftarrow Suppose $\operatorname{ind}_r a$ is even. Say $\operatorname{ind}_r a = 2k$ for $k \in \mathbb{Z}$ so $r^{2k} \equiv a \mod p$ so $(r^k)^2 \equiv a \mod p$. Then, a is a quadratice residue mod p.

To illustrate: r = 3 is a primitive root mod 17.

	$a \mod 17$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ĺ	ind_3a	<u>16</u>	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

So what this theorem tells us is that a=1,2,4,8,9,13,15,16 are the quadratic residues