Pontificia Universidad Católica de Chile

Facultad de Matemáticas

00

() ()

 \odot

Profesor: Héctor Pastén Vásquez

Curso: Álgebra abstracta II Fecha: 22 de mayo de 2025 Ayudante: José Cuevas Barrientos

Sigla: MAT2244

Más acerca de módulos

1. Sobre módulos

- 1. (Exámen de lucidez) Pruebe que todo grupo abeliano G posee una única estructura como \mathbb{Z} módulo.
 - 2. Sea A un anillo y M un A-módulo. Para una indeterminada x definimos el conjunto M[x] como aquel formado por las sumas formales $\sum_{j=0}^{n} m_j x^j$, donde los coeficientes $m_j \in M$.
 - a) Pruebe que M[x] es un A[x]-módulo con la suma coordenada a coordenada y el producto escalar:

$$\left(\sum_{i=0}^{p} a_i x^i\right) \left(\sum_{j=1}^{n} m_j x^j\right) = \sum_{\ell=0}^{p+n} \left(\sum_{i+j=\ell} a_i m_j\right) x^j.$$

- b) Pruebe que si $N \leq M$, entonces $N[x] \leq M[x]$ de forma canónica. En particular, si \mathfrak{a} es un ideal de A, entonces $\mathfrak{a}[x]$ es un ideal de A[x].
- c) Si \mathfrak{p} es un ideal primo de A. ¿Es cierto que $\mathfrak{p}[x]$ es primo en A[x]? ¿Y si \mathfrak{m} es maximal, será que $\mathfrak{m}[x]$ también?
- 3. Sea $0 \to M_1 \to M_2 \to M_3 \to 0$ una sucesión exacta de A-módulos.
 - a) Pruebe que si M_1 y M_3 son finitamente generados, entonces M_2 también.
 - b) Diremos que un A-módulo es **noetheriano** si todos sus A-submódulos son finitamente generados. Pruebe que M_2 es noetheriano syss M_1 y M_3 también lo son.
- 4. Sea M un A-módulo.
 - a) Pruebe que sobre un anillo noetheriano A, un A-módulo es noetheriano syss es finitamente generado.
 - b) Pruebe que sobre todo anillo (noetheriano o no) existe un módulo noetheriano no nulo. PISTA: Note que, por ejemplo, un A-módulo sería noetheriano si fuese simple, i.e., si sus únicos submódulos fueran 0 y M; así que puede tratar de buscar un A-módulo simple. \Box

2. Las serpientes y sus amigos

5. Lema de la serpiente: Considere un diagrama conmutativo de A-módulos

$$\begin{array}{ccc}
A & \xrightarrow{\psi} & B & \xrightarrow{\phi} & C & \longrightarrow & 0 \\
\downarrow^{\alpha} & & \downarrow^{\beta} & & \downarrow^{\gamma} \\
0 & \longrightarrow & A' & \xrightarrow{\psi'} & B' & \xrightarrow{\phi'} & C'
\end{array}$$

donde ambas filas son exactas, pruebe que existe un homomorfismo de A-módulos ω : ker $\gamma \to \operatorname{coker} \alpha$ tal que se induce la siguiente sucesión exacta:

$$\ker \alpha \to \ker \beta \to \ker \gamma \xrightarrow{\omega} \operatorname{coker} \alpha \to \operatorname{coker} \beta \to \operatorname{coker} \gamma.$$

6. Lema de los cinco: Dado un diagrama conmutativo de A-módulos

con filas exactas. Pruebe que si f_1, f_2, f_4, f_5 son isomorfismos, entonces f_3 también.

 $\odot \odot$

 \odot

PISTA: Emplee el lema de la serpiente.

7. Sea

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0 \tag{\Sigma}$$

una sucesión exacta de R-módulos. Pruebe que son equivalentes:

- a) Existe $h: C \to B$ tal que $g \circ h = \mathrm{Id}_C$ (esta h es ocasionalmente descrita como una «sección de g»).
- b) Existe $j: B \to A$ tal que $j \circ f = \operatorname{Id}_A$ (este j es ocasionalmente descrito como una «cosección» o «retracción de f»).
- c) Existe un isomorfismo $\phi \colon A \oplus C \to B$, de modo que $g \circ \phi \colon A \times C \to C$ es la proyección y $\phi^{-1} \circ f \colon A \to A \times C$ es la inclusión.

En cuyo caso, se dice que (Σ) se escinde o que es una sucesión escindida.

A. Ejercicios propuestos

- 1. Describa qué debe satisfacer un grupo abeliano para tener estructura natural 1 de \mathbb{Q} -módulo.
- 2. Dé un contraejemplo de un A-módulo finitamente generado M que no sea noetheriano, i.e., que posea un submódulo que no es finitamente generado. (Note que, en virtud del ejercicio 4a, el anillo debe no ser noetheriano.)
- 3. Sea A un dominio íntegro que contiene a un subcuerpo $k \subseteq A$ y tal que A es un k-espacio vectorial de dimensión finita. Pruebe que A es un cuerpo.
- 4. Se dice que un A-módulo M es descomponible si posee dos submódulos propios N_1, N_2 tales que $M \cong N_1 \oplus N_2$. Claramente todo módulo simple es indescomponible, pero el recíproco no es cierto.
 - a) Pruebe que un módulo no nulo M es descomponible syss existe un endomorfismo no nulo $\varphi \colon M \to M$ tal que $\varphi^2 = \varphi$.
 - b) (Examen de lucidez) ¿Para exactamente qué enteros n > 1 se cumple que $\mathbb{Z}/n\mathbb{Z}$ es (\mathbb{Z} -)indescomponible? ¿Para cuáles es simple?
- 5. Lema de los cuatro: Considere el diagrama conmutativo de A-módulos

con filas exactas. Supongamos que f_1 es sobreyectivo y f_4 es inyectivo. Se cumplen:

- a) Si f_2 es inyectivo, entonces f_3 también
- b) Si f_3 es sobreyectivo, entonces f_2 también

B. Comentarios adicionales

Las técnicas que involucran construir diagramas con filas/columnas exactas y aplicar lemas similares al de la serpiente se conocen como «cazando diagramas» (eng. diagram chasing). Hay varios libros dedicados a explotar esta técnica, un ejemplo es [3]. Las primeras dos ediciones de Lang [2] incluían este famoso y desventurado ejercicio:

Coja cualquier texto de álgebra homológica y pruebe todos los teoremas que contenga sin ver las demostraciones.

La traducción al ruso del libro fue incluyendo una serie de pies de página y anotaciones por el traductor. En este punto añade «Sugerimos saltarse éste ejercicio en una primera lectura.» ²

 $^{^1}$ Si bien el adjetivo «natural» es un tanto ambiguo en matemáticas, aquí tiene una connotación precisa. El lector puede probar que si un grupo abeliano G admite estructura de \mathbb{Q} -módulo, esta es única.

²Vid. https://mathoverflow.net/a/10909

REFERENCIAS 3

El álgebra homológica fue inventada y explorada principalmente por topológos algebristas al inicio del siglo XX como Samuel Eilenberg, Norman Steenrod y Jean Leray.³ En un comienzo pretendía tener aplicaciones específicas a la topología, pero probó ser de gran utilidad en el álgebra también, principalmente en el estudio de módulos con la aparición de los funtores Ext y Tor. Esta revolución fue llevada a cabo por varios matemáticos de renombre, por nombrar algunos: Eduard Čech, Henri Cartan, Nobuo Yoneda, Hyman Bass y Jean-Pierre Serre.

Referencias

- 1. ATIYAH, M. F. y MACDONALD, I. G. Introduction to Commutative Algebra (Addison-Wesley, 1969).
- 2. Lang, S. Algebra (Springer-Verlag New York, 2002).
- 3. MAC LANE, S. Homology (Springer-Verlag Berlin, 1967).

Correo electrónico: josecuevasbtos@uc.cl URL: https://josecuevas.xyz/teach/2025-1-ayud/

³Si quiere puede rastrear influencias más antiguas a David Hilbert y Henri Poincaré.