Dinac's Theorem :-

A sufficient condition For a simple graph G to have a Hamiltonian circuit is that the degree of every veriter in G be at least n/2, where n is the number of ventices in G.

We have the condition that d(v) > n/2 + ve V(G). Hence for every pair of novadjacent vertices u,v of G, $d(u)+d(v) \ge \frac{n}{2}+\frac{n}{2}=n \rightarrow 0$ We have to prove that G is Hamiltonian. If possible suppose that G is not Hamiltonian. Add edges to GI (without adding ventices) and get a supengraph G* of G such that G1* is a maximal simple graph that satisfies the condition of the theorem but G* is non-Hamiltonian such a graph G* must exist since G is non-Hamiltonian while the complete graph on V(G) is Hamiltonian. Hence, for any pair u and v of nonadjacent vertices of G*, G*+uv must contain a Hamiltonian cycle C. Their cycle c would centainly contain the edge e=uv. Cothenwise C will be a Hamiltonian cycle in G*). Then C-e is a Hamilton path u=v, v2 v3... vn=v of G*

Now, if v is adjacent to u, then vil is nonadjacent

to v, otherwise, v_1v_2 . $v_{i-1}v_n v_{n-1}v_{n-2}$ $v_{i+1}v_i v_i$ would be a Hamiltonian cycle in G^* . Hence, for each vertex adjacent to u, there is a vertex of $V - 2v_i^2$ nonadjacent to v. But then, $d(v) \leq n-1 - d(u)$ G^*

This gives that $d(u) + d(v) \leq n-1$, and therefore, $d(u) + d(v) \leq n-1$ which is a contradiction to G. So we conclude that H(G) = 1 is Hamiltonian.