Belief Space Partitioning for Symbolic Motion Planning

Mengxue Hou¹, Tony X. Lin¹, Haomin Zhou², Wei Zhang³, Catherine R. Edwards⁴, Fumin Zhang¹

- ¹ Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- ² Mathematics, Georgia Institute of Technology, Atlanta, Georgia, USA
- ³ Mechanical & Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- ⁴ Skidaway Institute of Oceanography, University of Georgia, Savannah, Georgia, USA

AUV marine autonomy

Localize & track hotspots (courtesy Woods Hole)

Ocean sampling (courtesy Woods Hole)

Challenge in marine autonomy

Flow forecasts can contain high uncertainty

Acoustic localization contains high uncertainty due to multi-path effects and doppler spread

Problem formulation

Vehicle dynamics:

$$x_{k+1} = x_k + F(x_k, t_k) + \begin{bmatrix} V(\cos(u_k^{(1)}) - \frac{\sqrt{2}}{2} |u_k^{(2)}|) \\ V(\sin(u_k^{(1)}) - \frac{\sqrt{2}}{2} |u_k^{(2)}|) \\ u_k^{(2)} \end{bmatrix} + w_k$$

Predicted flow velocity Vehicle forward speed Noise

Control input:

$$u_k \in \mathcal{U}_{xy} \cup \mathcal{U}_z = \{ \begin{bmatrix} \frac{j\pi}{4} & 0 \end{bmatrix}^{\mathsf{T}} \}_{j=0}^7 \cup \{ \begin{bmatrix} \frac{\pi}{4} & 1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} \frac{\pi}{4} & -1 \end{bmatrix}^{\mathsf{T}} \}$$

Move Active sensing: diving & surfacing

Problem formulation

Localization signal for vehicle: $y_k \in \mathbb{R}^M, y_k^{(j)} \in \{0, 1\}$

Observation model:

$$\Pr(y_k^{(j)} = 1) = p \mathbb{1}\{||x_k - r_j|| \le R_j\} + (1 - p) \mathbb{1}\{||x_k - r_j|| > R_j\}$$

$$\Pr(y_k^{(j)} = 0) = (1 - p) \mathbb{1}\{||x_k - r_j|| \le R_j\} + p \mathbb{1}\{||x_k - r_j|| > R_j\}$$

Problem formulation

Belief state:
$$b_k = \Pr(x_k | u_{k-1}, u_{k-2}, \dots, u_1, y_k, y_{k-1}, \dots, y_1)$$

Belief dynamics: $b_{k+1} = \mathcal{L}(y_{k+1}, u_k)b_k$

Problem 1: find an approximation model of the belief dynamics

Problem 2: solve the planning problem

$$\min_{[u_0,...,u_N]} \sum_{k=1}^{N} l(b_k, u_k)$$
s.t. approx. belief dynamics,
$$b_0 = \rho_0, g(b_N) \le 0$$

Difficulty in modeling the belief dynamics

Georgia Tech Systems Research

Difficulty:

- -Nonlinear dynamics, non-Gaussian noise
- -Curse of dimensionality

Our contribution:

A novel belief partition method that allocates a fixed number of partitions over regions that the AUV most likely will visit

The partition method enables computationally efficient solutions to the continuous-state POMDP problem

Proposed belief abstraction method

Unparameterized dyn.

Belief dyn. in parameter space

Belief dyn. in symbolic space

Focused finite partition

Intuition: in many robotic applications, vehicle has zero probability to be in most of the state space.

We allocate a fixed number of partitions over regions that the system state most likely will visit

Simulated particle:
$$z_k^{(m)} = [(r_k^{(m)})^\intercal, \underline{w}_k^{(m)}]^\intercal$$
 Weight

Simulated particle \neg \vdash Centroid of partitioned cells $\min_{\mathcal{R}} \sum_{k \in [1,n]} \sum_{i \in [1,K]} \sum_{r_k^m \in \mathcal{R}_i} \operatorname{dist}(z_k^{(m)}, \mu^{(i)})$ (1)

s.t.
$$\sum_{i \in [1,K]} I\mu^{(i)} = 1, I\mu^{(i)} > 0, \forall i \in [1,K]$$

(1) can be solved using the K-means method

Identify the parameter space belief dynamics Georgia Tech

Simulate particle trajectory given a fixed control input u,

Numerically estimate the partitioned belief dynamics by:

$$T^{ij}(u) = \frac{\text{mass transported from } j \text{ to } i}{\text{total mass in } j}$$

Belief dynamics in parameter space:

$$\Theta_k = T(u_{k-1})\Theta_{k-1},$$

$$\Theta_0 = \operatorname*{arg\,min\,dist}(b_0 - \Theta^T \Phi)$$

Systems Research

Identify the symbolic space belief dynamics

CS
Georgia Tech
Systems Research

Predicates: $\mathbb{S} = \{\text{at_surf}, \text{at_depth}\} \cup \{\text{BelH}_j, \text{BelM}_j, \text{BelL}_j\}_{j=1}^K$

Active predicates: $s_k = \{s \in \mathbb{S} : \Gamma(s, \Theta_k) = 1\}$

 Γ defines a mapping from belief values to symbols:

Simulation

We derive the approximated belief dynamics using both the proposed method and the generalized cell mapping method

The symbolic planning problem is solved by the A* algorithm

Simulation

Generalized cell mapping			
Grid size	# of Pre.	Mod. time	Plan time
$10 \times 10 \times 2$	600	14.2845 s	$5.9873 \mathrm{s}$
$100 \times 100 \times 2$	6e4	15.5396	$54.3957 \; \mathrm{s}$
$150 \times 150 \times 2$	1.35e5	$16.4289 \ s$	$154.368 \; \mathrm{s}$
Proposed solution			
Grid size	# of Pre.	Mod. time	Plan time
$10 \times 10 \times 2$	120	18.3886	$3.9702 \; \mathrm{s}$
$100 \times 100 \times 2$	120	19.845 s	4.7825 s
$150 \times 150 \times 2$	120	20.5480 s	$4.9796~\mathrm{s}$

Belief state partition reduces the computational cost of symbolic planning

Conclusion

- We propose a novel belief partition method that allocate a fixed number of partitions over regions that the system state most likely will visit
- The partition method enables computationally efficient solutions to the continuous-state POMDP problem