Complex Numbers Problems 141-150

Shiv Shankar Dayal

September 28, 2022

141. The complex numbers z_1 and z_2 such that $z_1 \neq z_2$ and $|z_1| = |z_2|$. If z_1 has positive real part and z_2 has negative imaginary part, prove that $\frac{z_1+z_2}{z_1-z_2}$ is purely imaginary.

Solution: Given,
$$|z_1|=|z_2|, Re(z_1)>0$$
 and $Im(z_1)<0$

$$\begin{split} Re\left(\frac{z_1+z_2}{z_1-z_2}\right) &= \frac{1}{2}\left(\frac{z_1+z_2}{z_1-z_2} + \frac{\overline{z_1}+\overline{z_2}}{\overline{z_1}-\overline{z_2}}\right) \\ &= \frac{1}{2}\left(\frac{2(|z_1|^2-|z_2|^2)}{|z_1-z_2|^2}\right) = 0 \end{split}$$

Thus, $\frac{z_1+z_2}{z_1-z_2}$ is purely imaginary.

142. If $A(z_1), B(z_1)$ and $C(z_3)$ are the vertices of a $\triangle ABC$ in which $\angle ABC = \frac{\pi}{4}$ and $\frac{AB}{BC} = \sqrt{2}$, then prove that the value of $z_2 = z_3 + i(z_1 - z_3)$.

$$\begin{split} & \textbf{Solution: Given, } \frac{AB}{BC} = \sqrt{2} \Rightarrow \frac{z_1 - z_2}{z_3 - z_2} = \frac{|z_1 - z_2|}{|z_3 - z_2|}.e^{i\pi/4} \\ & = \frac{AB}{BC}.e^{i\pi/4} = \sqrt{2}\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right) = 1 + i \\ & \Rightarrow z_1 - z_2 = (1+i)(z_3 - z_2) \Rightarrow z_2 = z_3 + i(z_1 - z_3) \end{split}$$

143. If $z_1z_2 \in C, z_1^2 + z_2^2 \in R, z_1(z_1^2 - 3z_2^2) = 2$ and $z_2(3z_1^2 - z_2^2) = 11$, then find the value of $z_1^2 + z_2^2$.

$$\begin{aligned} & \textbf{Solution: Given, } z_1(z_1^2-3z_2^2)=2 \text{ and } z_2(3z_1^2-z_2^2)=11 \\ & \Rightarrow z_1^3-3z_1z_2^2+iz_2(3z_1^2-z_2^2)=2+11i \Rightarrow (z_1+iz_2)^3=2+11i \text{ and } \\ & \Rightarrow z_1^3-3z_1z_2^2-iz_2(3z_1^2-z_2^2)=2-11i \Rightarrow (z_1-iz_2)^3=2-11i \end{aligned}$$
 Multiplying above equations, we get

 $(z_1^2 + z_2^2)^3 = 4 + 121 = 125 \Rightarrow z_1^2 + z_2^2 = 5$

144. If
$$\sqrt{1-c^2}=nc-1$$
 and $z=e^{i\theta}$, then find the value of $\frac{c}{2n}(1+nz)\left(1+\frac{n}{z}\right)$.

$$\begin{split} & \textbf{Solution: Given} \, \sqrt{1-c^2} = nc - 1 \Rightarrow 1 - c^2 = n^2c^2 - 2nc + 1 \Rightarrow \frac{c}{2n} = \frac{1}{1+n^2} \\ & \frac{c}{2n} (1+nz) \left(1 + \frac{n}{z}\right) = \frac{1}{1+n^2} \left[1 + n^2 + n \left(z + \frac{1}{z}\right)\right] \\ & = \frac{1}{1+n^2} \left[1 + n^2 + 2\cos\theta + n\right] = 1 + \frac{2n}{1+n^2}\cos\theta = 1 + c\cos\theta \end{split}$$

145. Consider an eclipse having its foci at $A(z_1)$ and $B(z_2)$ in the argand plane. If the eccentricity of the ellipse is e and it is known that origin is an interior point of the ellipse, then prove that $e \in \left(0, \frac{|z_1 - z_2|}{|z_1 + |z_2|}\right)$

Solution: If P(z) is any point of the ellipse, then equation of ellipse is given by

$$|z - z_1| + |z - z_2| = \tfrac{|z_1 - z_2|}{e}$$

If we put z_1 or z_2 in the above equation then L.H.S. becomes $\vert z_1-z_2\vert$.

Thus, for any interior point of the ellipse, we have $|z-z_1|+|z-z_2|<\frac{|z_1-z_2|}{e}$

If P(z) lies on the ellipse, we have $|z-z_1|+|z-z_2|=\frac{|z_1-z_2|}{e}$

It is given that origin is an internal point, so $|0-z_1|+|0-z_2|<\frac{|z_1-z_2|}{e}$

$$e\in\left(0,\tfrac{|z_1-z_2|}{|z_1|+|z_2|}\right)$$

146. If $|z-2-i|=|z|\left|\sin\left(\frac{\pi}{4}-\arg(z)\right)\right|$, then find the locus of z.

Solution: Let z = x + iy, then we have

$$|(x-2)+i(y-1)|=|z|\left|\frac{1}{\sqrt{2}}\cos\theta-\frac{1}{\sqrt{2}}\sin\theta\right|$$

whhere, $\theta = \arg(z)$

$$\Rightarrow \sqrt{(x-2)^2+(y-1)^2} = \tfrac{1}{\sqrt{2}}|x-y|$$

which is equation of a parabola.

147. Find the maximum area of the triangle formed by the complex coordinates zz_1 and z_2 , which satisfy the relation $|z-z_1|=|z-z_2|$ and $|z-\frac{z_1+z_2}{2}|\leq r$, where $r>|z_1-z_2|$.

Solution: Since $|z-z_1|=|z-z_2|$, therefore z will be one of the vertices of the isosceles triangle where base will be formed by z_1 and z_2 .

Also, since $|z-\frac{z_1+z_2}{2}| \le r$ so z will lie on the circle whose center is $\frac{z_1+z_2}{2}$ and radius is r. Thus, the distance between segment z_1z_2 will be r.

Thus, the maximum area of the triangle will be $\frac{1}{2}|z_1-z_2|.r$

148. If $z_1=a_1+ib_1$ and $z_2=a_2+ib_2$ are complex numbers such that $|z_1|=1, |z_1|=2$ and $Re(z_1z_2)=0,$ and $\omega_1=a_1+\frac{ia_2}{2}$ and $\omega_2=2b_1+ib2,$ then prove that $|\omega_1|=1, |\omega_2|=2$ and $Re(\omega_1\omega_2)=0.$

$$\begin{split} & \textbf{Solution: Given} \ |z_1| = 1 \Rightarrow a_1^2 + b_1^2 = 1, |z_2| = 2 \Rightarrow a_2^2 + b_2^2 = 4. \\ & \textbf{Also given} \ Re(z_1 z_2) = 0 \Rightarrow a_1 a_2 - b_1 b_2 = 0 \Rightarrow a_1 a_2 = b_1 b_2 \\ & \Rightarrow a_2^2 + b_2^2 = 4 a_1^2 + 4 b_1^2 \Rightarrow a_2^2 - 4 a_1^2 = 4 b_1^2 - b_2^2 \Rightarrow a_2^2 - 4 a_1^2 + 4 i a_1 a_2 = 4 b_1^2 - b_2^2 + 4 i b_1 b_2 \\ & \Rightarrow (a_2 + 2 i a_1)^2 = (2 b_1 + i b_2)^2 \Rightarrow a_2 = \pm 2 b_1 \\ & \omega_1 = a_1 + \frac{i a_2}{2} = a_1 \pm b_1 \Rightarrow |\omega_1| = \sqrt{a_1^2 + b_1^2} = 1 \\ & \omega_2 = 2 b_1 + i b_2 = \pm a_2 + i b_2 \Rightarrow |\omega_2| = \sqrt{a_2^2 + b_2^2} = 2 \\ & Re(\omega_1 \omega_2) = 2 a_1 b_1 - 2 a_2 b_2 = 0 \end{split}$$

149. Let z be a complex number and a be a be a real number such that $z^2+az+a^2=0$, then prove that i) locus of z is a pair of straight lines ii) $\arg(z)=\pm\frac{2\pi}{3}$ iii) |z|=|a|

Solution: Given $z^2+az+a^2=0 \Rightarrow z=a\omega, a\omega^2$ where ω is cube-root of unity.

Thus, it represents a pair of straight lines and $\vert z \vert = \vert a \vert$

$${
m arg}(z) = {
m arg}(a) + {
m arg}(\omega)$$
 or ${
m arg}(a) + {
m arg}(\omega^2) = \pm \frac{2\pi}{3}$

150. If
$$x+\frac{1}{x}=1$$
 and $p=x^{4000}+\frac{1}{x^{4000}}$ and q is the the digit at units place in $2^{2^n}+1, n\in N$ and $n>1$, then find $p+q$.

Solution: Given
$$x+\frac{1}{x}=1\Rightarrow x^2-x+1=0$$
. $x=-\omega,-\omega^2$ Now, for $x=-\omega,p=\omega^{4000}+\frac{1}{\omega^{4000}}=\omega+\frac{1}{\omega}=-1$ Similarly, for $x=-\omega^2,p=-1$ $2^{2^n}=2^{4k}=16^k=$ a number with last digit as $6\Rightarrow q=6+1=7$ $\Rightarrow p+q=-1+7=6$.