RICERCA OPERATIVA - PARTE II

ESERCIZIO 1. (9 punti) Si applichi la procedura di programmazione dinamica al seguente problema con b = 7, individuando tutte le soluzioni ottime

i	1	2	3	4	5
v_i	5	10	8	14	12
p_i	1	3	2	4	3

ESERCIZIO 2. (9 punti) Sia dato il problema vincolato

$$\min \quad f(x,y) = y \\
 y - e^{-x} \ge 0 \\
 y - e^x > 0$$

- Stabilire se è un problema di programmazione convessa;
- scriverne la funzione Lagrangiana e impostare le condizioni KKT per tale problema;
- trovare un punto che le soddisfi;
- verificare se in tale punto vale una constraint qualification;
- possiamo affermare che tale punto è un minimo globale del problema?

ESERCIZIO 3. (5 punti) Si dimostri che l'algoritmo di Ford-Fulkerson restituisce una soluzione ottima sia per il problema di flusso massimo che per il problema di taglio a costo minimo.

ESERCIZIO 4. (6 punti) Si dia la definizione di classe P e classe NP di problemi. Si dia la definizione di problema NP-completo. Fare alcuni esempi di problemi nella classe P e di problemi NP-completi. Per ciascuna delle seguenti affermazioni dire se è vera o falsa motivando la risposta:

- un problema NP-completo è sicuramente non risolvibile in tempo polinomiale;
- si consoscono solo algoritmi di complessità esponenziale per problemi NP-completi;
- $\bullet\,$ un problema $NP\text{-}\mathrm{completo}$ è sicuramente risolvibile in tempo polinomiale.