Contents

1	Decidability	2
2	The Next Section	3

1 Decidability

Hello welcome to the section.

Corollary 1.1. A language is decidable if \exists a non deterministic Turing Machine that recognizes it.

Theorem 1.2. A language is Turing Recognizable if and only if some enumerator enumerates it.

Theorem 1.3. The class of Fontext Free Languages is a proper subset of the Turing Recognizable languages.

Hilbert's 10th Problem: Given a polynomial with integer coeficients, does there exist an integer root to that polynomial.

 $D = \{p | \text{p is a polynomial over one variable} \}$ $F = \{p | \text{p is a polynomial over one or more variables} \}$

Theorem 1.4. The class of Turing Recognizable Languages is closed under \cup .

Proof. Let A, B be Turing Recognizable Languages.

 \exists Turing Machines $M_A, M_B, L(M_A) = A, L(M_B) = B$.

We want Turing Machine M such that $L(M) = A \cup B$

On input w, M does:

1. run M_A and M_B in parallel on w

-if M_A or M_B then halt and accept

-if M_A and M_B then halt and reject

Claim.
$$L(M) = A \cup B$$

Let
$$w \in L(M)$$
 $w \in A \cup B$ etc.....

2 The Next Section

Hello this is another section.