

SÍLABO MECÁNICA DE FLUIDOS I

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: VI SEMESTRE ACADÉMICO: 2017-II

I. CÓDIGO DEL CURSO : 09026506050

II. CRÉDITOS : 05

III. REQUISITOS : 09025604030 Dinámica

: 09041204040 Ecuaciones Diferenciales

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso forma parte del área curricular de Tecnología. Es de carácter teórico – práctico. Su propósito es brindar al estudiante los conceptos básicos del comportamiento de un flujo estático y en movimiento para entenderlo y ser aplicado en el diseño, construcción y supervisión de obras de infraestructura hidráulica.

La asignatura comprende las siguientes unidades de aprendizaje: I. Propiedades de los fluidos. II. Estática de fluidos. III. Cinemática y dinámica de Fluidos. IV. Flujo en Tuberías.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Cengel Y.A., Cimbala, J. (2011). Mecánica de Fluidos. Fundamentos y Aplicaciones. México: Mc Graw Hill.
- Crespo A (2009). Mecánica de Fluidos. Segunda reimpresión. España: Thomson.
- · Crowe C.T., Roberson J.A., y Elger D.F.; *Engineering Fluid Mechanics* (7a ed). Nueva York: Wilev.
- · Mott R. (2015) Mecánica de Fluidos Aplicada. México: Prentice Hall Hispanoamericana S.A.
- Pérez G. J., y Herrero, M. R. (2012). Mecánica de Fluidos. Bellisco Ediciones Técnicas y Científicas. Madrid: España,
- Potter M., y Wiggert D. (2012). *Mecánica de Fluidos*. Prentice Hall Hispanoamericana S.A.
- Scott, P. (2011). *Applied and Computational Fluid Mechanics*. Jones and Bartlett Publishers. Boston: U.S.A.
- Streeter V.L., Wylie E.B., y Keich W.B. (2012). Mecánica de Fluidos. (9na Ed.). Colombia: Mc. Graw Hill.
- · White, F.M. (2011). Mecánica de Fluidos. 6ta Ed). México: Mc Graw Hill.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: PROPIEDADES DE LOS FLUIDOS.

OBJETIVOS DE APRENDIZAJE:

- Evaluar las propiedades de los fluidos como herramienta del conocimiento de la mecánica de los fluidos.
- Aplicar las propiedades de los fluidos en la formulación de las ecuaciones básicas del equilibrio y el movimiento.

PRIMERA SEMANA

Primera sesión:

Definición y clasificación de un fluido, dimensiones y unidades.

Segunda sesión:

Fluido como un continuo, esfuerzos en los fluidos. Propiedades de los fluidos.

SEGUNDA SEMANA

Primera sesión:

Viscosidad dinámica, viscosidad cinemática, clasificación de fluidos viscosos.

Segunda sesión:

Practica dirigida. Presentación de Trabajo 1.

UNIDAD II: ESTÁTICA DE FLUIDOS

OBJETIVOS DE APRENDIZAJE:

- Aplicar las ecuaciones de equilibrio estático y dinámico.
- Demostrar esquemáticamente y analíticamente las fuerzas que ejercen un fluido y su influencia.

TERCERA SEMANA

Primera sesión:

Hidrostática.

Segunda sesión:

Fuerza de presión sobre superficies planas horizontales e inclinadas y sobre superficies curvas.

CUARTA SEMANA

Primera sesión:

Primera práctica calificada.

Segunda sesión:

Empuje y flotación: principio de Arquímedes.

QUINTA SEMANA

Primera sesión:

Fluidos en movimiento como un sólido (equilibrio relativo).

Segunda sesión:

Práctica dirigida.

SEXTA SEMANA

Primera sesión:

Campo de velocidades, líneas de corriente, trayectoria y trazas, descripción del flujo en movimiento: métodos de Euler y Lagrange.

Segunda sesión:

Práctica dirigida

UNIDAD III: CINEMÁTICA Y DINÁMICA DE FLUIDOS

OBJETIVOS DE APRENDIZAJE:

- Representar mediante ecuaciones matemáticas y gráficas el movimiento de fluidos.
- Conocer la aplicación de los principios de la física sobre la conservación de masa, cantidad de movimiento y conservación de la energía.
- Evaluar los fenómenos del movimiento en conductos cerrados y abiertos.

SÉPTIMA SEMANA

Primera sesión:

Segunda práctica calificada.

Segunda sesión:

Principios básicos de la dinámica de fluidos, análisis diferencial e integral, ecuación de continuidad en forma diferencial e integral.

OCTAVA SEMANA

Examen Parcial.

NOVENA SEMANA

Primera sesión:

Rotación de masas líquidas.

Segunda sesión:

Ecuación de cantidad del movimiento, fuerzas que actúen sobre una partícula fluida, ecuación integral y diferencial del momentum.

DÉCIMA SEMANA

Primera sesión:

Ecuaciones de Navier - Stockes: aplicaciones a flujo laminar interno incompresible y viscoso.

Segunda sesión:

Práctica dirigida.

UNDÉCIMA SEMANA

Primera sesión:

Ecuación general de conservación de la energía, ecuación de Bernoulli, ecuación de Euler.

Segunda sesión:

Tercera práctica calificada.

DUODÉCIMA SEMANA

Primera sesión:

Flujo interno, número de Reynolds: flujo laminar y turbulento, pérdidas de carga por fricción en flujo laminar y turbulento, ecuación de Darcy, diagrama de Moody, ecuación de Hazen y Williams.

Segunda sesión:

Práctica dirigida.

UNIDAD IV: FLUJO EN TUBERÍAS

OBJETIVOS DE APRENDIZAJE

- Aplicar el principio de energía a problemas de flujos en tuberías
- Se considerarán y explicarán los flujos laminares y turbulentos.
- Los problemas de flujos reales aprovechan datos experimentales y métodos semiemp\u00e4ricos

DECIMOTERCERA SEMANA

Primera sesión:

Pérdidas de carga locales, tubería simple, sistema de tuberías, línea de gradiente hidráulico y de energía, tuberías en serie, equivalentes, ramificadas y en paralelo.

Segunda sesión:

Práctica dirigida.

DÉCIMOCUARTA SEMANA

Primera sesión:

Práctica de Laboratorio.

Segunda sesión:

Cuarta práctica calificada.

DECIMOQUINTA SEMANA

Primera sesión:

Exposiciones de proyectos de investigación.

Segunda sesión:

Continuación con las exposiciones de proyectos de investigación.

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de actas de promedios finales del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

Método expositivo – interactivo. Disertación docente, exposición del estudiante.

Método de discusión guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.

Método de demostración – ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor, ecran, proyector de multimedia y una impresora

Materiales: Manual universitario, Programa, aplicaciones multimedia.

XI. EVALUACIÓN

El promedio final se obtiene con la siguiente fórmula:

PF = (2*PE+EP+EF)/4

PE = ((P1+P2+P3+P4-MN)/3 + W1 + PL)/3

PL = (Lb1+Lb2+Lb3+Lb4)/4

Donde:

PF : Promedio Final EP : Examen parcial EF : Examen Final

PE : Promedio de evaluaciones P1,...P4 : Prácticas Calificadas

MN : Menor Nota de Prácticas Calificadas.
W1 : Primer Trabajo de Investigación
PL : Promedio de Laboratorios
Lb1...Lb4 : Notas de laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

K = clave

R = relacionado Recuadro vacío = no aplica

(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería	K		
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos.			
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas, restricciones económicas, ambientales, sociales, políticas, éticas de salubridad y seguridad.	R		
(d)	Trabajar adecuadamente en un equipo multidisciplinario.			
(e)	Identificar, formular y resolver problemas de ingeniería.	K		
(f)	Comprensión de lo que es la responsabilidad ética y profesional.			
(g)	Comunicarse con su entorno, en forma efectiva.			
(h)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contexto global, económico, ambiental y social.			
(i)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.			
(j)	Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil.			
(k)	Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y ramas afines.	К		

XIII. HORAS, SESIONES, DURACIÓN

a). Horas de clases	Teoría	Práctica	Laboratorio
	4	0	2

b). Sesiones por semana: Dos sesiones.

c). Duración: 6 horas académicas de 45 minutos.

XIV. JEFE DE CURSO:

Ing. Gonzalo Fano Miranda

XV. FECHA:

La Molina, agosto 2017.