Álgebra 1

Notas de Aula 1/2016¹

José Antônio O. Freitas Departamento de Matemática Universidade de Brasília - UnB

¹©♠�� Este texto está licenciado sob uma Licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 3.0 Brasil http://creativecommons.org/licenses/by-nc-sa/3.0/br/deed.pt_BR.

SUMÁRIO

1	Con	ceitos Básicos	11
	1.1	Príncipio da não contradição e do terceiro excluído	11
2	Noç	ões de Teoria de Conjuntos	13
	2.1	Conceitos básicos	13
	2.2	Descrição de um conjunto	14
	2.3	Alguns conjuntos importantes	14
	2.4	Propriedades dos conjuntos	14
		2.4.1 Propriedades da continência	15
	2.5	Relações entre conjuntos	16
3	Nún	neros Inteiros	23
	3.1	Conceitos básicos	23
		3.1.0.1 Propriedades básicas da adição e da multiplicação	23
		3.1.0.2 Propriedades básicas das desigualdades	24
	3.2	Princípio da boa ordenação	25
	3.3	Princípio da Indução Finita	25
	3.4	Divisibilidade	27
	3.5	Algoritmo de divisão de Euclides	28

SUMÁRIO 4

	3.6	Máxin	no Divisor Comum	9
	3.7	Ideais	3:	1
			3.7.0.1 Definição	1
			3.7.0.2 Propriedades	2
			3.7.0.3 Conjunto dos múltiplos de g	2
4	Rela	ções e I	Funções 38	5
	4.1	Relaçõ	őes	5
			4.1.0.1 Definição	5
	4.2	Relaçõ	ões de equivalência	6
			4.2.0.1 Definição	6
		4.2.1	Equivalência módulo R	6
		4.2.2	Classe de equivalência e conjunto quociente	7
	4.3	Funçõe	es	9
			4.3.0.1 Definição	9
			4.3.0.2 Domínio e contra-domínio	0
		4.3.1	Tipos de funções	0
		4.3.2	Composição de funções	2
			4.3.2.1 Definição	2
			4.3.2.2 Propriedades	2
		4.3.3	Função Identidade	3
			4.3.3.1 Definição	3
			4.3.3.2 Propriedades	3
5	Ope	rações e	$\frac{\mathbb{Z}}{\mathbb{Z}}$	7
	5.1	Relaçõ	$m\mathbb{Z}$ bes de congruência	
	-	5.1.1	Definição 4'	
		5.1.2	Propriedades	
		5.1.3	Classes de equivalência módulo m	
	5.2		nto quociente $\left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)$	
		3	$m\mathbb{Z}I$	

SUMÁRIO 5

		5.2.1	Elemento	s Inversíveis d	$e \frac{\mathbb{Z}}{m\mathbb{Z}}$										52
			5.2.1.1	Inversibilidade	m z .										52
6	Anéis										55				
	6.1	Defini	ções												55
	6.2	Propri	edades de	um Anel											58
	6.3	Anel d	le Integrida	ade											59
			6.3.0.1	Definição											59
	6.4	Homo	morfismo												61
			6.4.0.1	Definição											61
			6.4.0.2	Propriedades											61
		6.4.1	Epimorfis	smo, monomor	fismo e	e iso	moi	fisn	no .						62
	6.5	Ideal o	de um anel												62
			6.5.0.1	Definição											62
			6.5.0.2	Propriedades											63
		6.5.1	Congruêr	ncia módulo I											64
			6.5.1.1	Definição											64
			6.5.1.2	Propriedades									 •		64
7	Gruj	pos													67
	7.1	Defini	ção												67
	7.2			vo ou abeliano											68
	7.3	Propri	edades Im	ediatas de um	grupo										70
	7.4			rupo											70
	7.5	Subgr	upo												70
			7.5.0.1	Definição											70
			7.5.0.2	Propriedades											71
	7.6	Orden	n de um su	lbgrupo											71
	7.7	Homo	morfimos d	le Grupos											72
	7.8			utação											75
	7.9	Grupo	s Cíclicos												75

SUMÁRIO	6
Bibliografia	77
Índice Remissivo	79

Prefácio

Essas notas de Aula são referentes à matéria Álgebra 1, ministrada na UnB - Universidade de Brasília - durante o 2º Semestre de 2010 pelo professor José Antônio de O. Freitas, Departamento de Matemática. Tais notas foram transcritas e editadas pelo graduando em Ciências Econômicas Luiz Eduardo Sol R. da Silva².

É livre a reprodução, distribuição e edição deste material, desde que citadas as suas fontes e autores. Críticas e sugestões são bem vindas.

 $^{^2} luizeduardos ol@hotmail.com\\$

Notações e expressões

- ¬ Não
- ∀ Para todo
- / Tal que
- | Divide
- ⇒ Implica
- \in Pertence
- Ø Vazio
- \subseteq Contido ou igual a
- ⊇ Contém ou igual a
- ∧ E
- V Ou
- \bullet = Igual
- ≠ Diferente
- Z Números Inteiros
- R Números Reais
- • Intersecção
- > Maior que
- \geq Maior ou igual a
- $\bigcup_{i=1}^{n}$ União de n conjuntos
- $\bigsqcup_{i=1}^{n}$ União disjunta de n conjuntos

- \leftrightarrow Se, e somente se
- ⊻ Ou...,ou..., mas nunca ambos
- \rightarrow Se,... então...
- \exists Existe
- \Leftrightarrow Equivalente a
- ∉ Não pertence
- # Fim da demonstração
- N Números Naturais
- Q Números Racionais
- ⊈ Não contém ou é igual a
- União
- ⊔ União Disjunta
- < Menor que
- ≤ Menor ou igual a
- $\bigcap_{i=1}^{n}$ Intersecção de n conjuntos
- Q.E.D. (Quod Erat Demonstrandum): Como se queria demonstrar
- P.B.O.: Princípio da boa ordenação
- H.I.: Hipótese de Indução
- Mutatis Mutandis: Mudando o que tem que ser mudado

CAPÍTULO 1

CONCEITOS BÁSICOS

Definição 1.1. Uma proposição é todo conjunto de palavras ou símbolos ao qual podemos atribuir um valor lógico.

Definição 1.2. Diz-se que o valor lógico de uma proposição é "verdade" (V) se a proposição é verdadeira e ou "falsidade" (F) se a proposição é falsa.

1.1 Príncipio da não contradição e do terceiro excluído

- $1.\ Uma proposição não pode ser verdadeira e falsa ao mesmo tempo.$
- 2. Toda proposição ou é verdadeira ou é falsa, isto é, verifica-se sempre um destes casos e nunca um terceiro.

Assim esses princípios afirmam que:

"Toda proposição tem um, e um só, dos valores lógicos verdade ou falsidade."

De modo geral vamos trabalhar com proposições da forma:

1. Se \mathcal{H} , então \mathcal{T} .

Aqui \mathcal{H} é chamado de hipótese e \mathcal{T} de tese. Neste tipo de proposição iremos admitir que \mathcal{H} é uma verdade e precisaremos provar que \mathcal{T} é verdade. Ou seja precisamos construir um argumento que justifique \mathcal{T} ser verdadeira à partir do fato de \mathcal{H} ser verdadeira.

2. \mathcal{H} se, e somente se, \mathcal{T} ou \mathcal{H} se, e só se, \mathcal{T} .

Esse tipo de proposição será decomposta em duas proposições no formato anterior. Isto é:

- (a) Se \mathcal{H} , então \mathcal{T} .
- (b) Se \mathcal{T} , então \mathcal{H} .

No primeiro caso admitimos \mathcal{H} verdadeira e provamos que \mathcal{T} também é verdadeira e no segundo caso admitimos que \mathcal{T} é verdadeira e provamos que \mathcal{H} é verdadeira.

CAPÍTULO 2

NOÇÕES DE TEORIA DE CONJUNTOS

2.1 Conceitos básicos

Um conjunto é uma "coleção" ou "família" de elementos.

Usaremos letras maiúsculas do alfabeto para denotar os conjuntos e denotaremos elementos por letras minúsculas do alfabeto.

Dado um conjunto A, para indicar o fato de que x é um elemento de A, escrevemos:

$$x \in A$$
.

Para dizer que um elemento x não pertence ao conjunto A, escrevemos:

$$x \notin A$$
.

Um conjunto sem elementos é chamado de vazio ou conjunto vazio. Tal conjunto é denotado por \emptyset .

Dado um conjunto A e x um elemento, ocorre sempre o uma das seguintes situações:

$$x \in A$$
 ou $x \notin A$.

Além disso, para dois elementos $x, y \in A$, ocorre exatamente uma das seguinte situações:

$$x = y$$
 ou $x \neq y$.

2.2 Descrição de um conjunto

Um conjunto A pode ser dado pela simples listagem dos seus elementos, como por exemplo:

$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{verdade, falso\}.$$

Um conjunto também pode ser dado pela descrição das propriedades dos seus elementos, como por exemplo:

$$A = \{n \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}.$$

2.3 Alguns conjuntos importantes

- 1. $\mathbb{N} = \{0, 1, 2, 3, ...\}$ o conjunto do números naturais.
- 2. $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ o conjunto dos números inteiros.
- 3. $\mathbb{N}_0 = \{0,1,2,3,...\}$ o conjunto dos números inteiros não negativos.
- 4. R o conjunto dos números reais.
- 5. \mathbb{R}^* o conjunto dos números reais não nulos.
- 6. $\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$ o conjunto dos números racionais.

2.4 Propriedades dos conjuntos

Definição 2.1. Dados dois conjuntos A e B, dizemos que A e B são iguais se, e somente se, eles têm os mesmos elementos. Ou seja, para todo $x \in A$ temos que $x \in B$ e para todo $y \in B$ temos $y \in A$.

Se A e B são iguais, escrevemos A = B

$$\{1, 2, 3, 4\} = \{3, 2, 1, 4\}$$

$$\{1,2,3\} \neq \{2,3\}$$

Definição 2.2. Se A e B são dois conjuntos, dizemos que A é um subconjunto de B ou que A está contido em B ou que B contém A se todo elemento de A for elemento de B. Ou seja, se para todo elemento $x \in A$, temos $x \in B$. Nesse caso, escrevemos $A \subseteq B$ ou $B \supseteq A$.

Caso A seja um subconjunto de B mas não é igual a B, escrevemos:

$$A \subseteq B$$
.

Nesse caso, dizemos que A é um subconjunto próprio de B.

Para dizer que A não está contido em B, escrevemos $A \nsubseteq B$

Usando a definição de continência podemos definir igualdade de conjuntos da seguinte forma: dois conjuntos A e B são iguais se, e somente se, $A \subseteq B$ e $B \subseteq A$. Ou seja, se A = B então $A \subseteq B$ e $B \subseteq A$, por outro lado, se $A \subseteq B$ e $B \subseteq A$, então A = B.

Quando A e B não são iguais, escrevemos $A \neq B$. Para que $A \neq B$ devemos ter $A \nsubseteq B$ ou $B \nsubseteq A$.

2.4.1 Propriedades da continência

Dados conjuntos A, $B \in C$ temos:

- 1. $A \subseteq A$ (Reflexividade)
- 2. Se $A \subseteq B$ e $B \subseteq A$, então A = B. (Antissimetria)
- 3. Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$. (Transitividade)

Considere os seguintes conjuntos:

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2,4,6,\ldots\}$$

$$B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$$

Neste caso, $2 \in A$ e $2 \notin B$, logo $A \nsubseteq B$. Por outro lado, $3 \in B$ e $3 \notin A$ e com isso $B \nsubseteq A$. Portanto, dados dois conjuntos A e B, nem sempre temos $A \subseteq B$ ou $B \subseteq A$.

Proposição 2.2.1. Seja A um conjunto. Então $\emptyset \subseteq A$.

Prova: Suponha que $\emptyset \not\subseteq A$. Logo existe $x \in \emptyset$ tal que $x \notin A$. Mas por definição, o conjunto vazio não contém elementos. Logo a existência de $x \in \emptyset$ é uma contradição. Tal contradição surgiu por termos suposto que $\emptyset \not\subseteq A$. Portanto, $\emptyset \subseteq A$, como queríamos demonstrar. \diamond

2.5 Relações entre conjuntos

Definição 2.3 (Intersecção). Sejam A e B dois conjuntos. Definimos a intersecção de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem ao conjunto A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \in x \in B\}.$$

Exemplo: Sejam

$$A = \{1, 2, 3\}$$

$$B = \{2, 3, 4\}$$

$$A \cap B = \{2, 3\}.$$

Proposição 2.3.1. Sejam A e B dois conjuntos. Então

- 1. $(A \cap B) \subseteq A$;
- 2. $(A \cap B) \subseteq B$;
- 3. $A \subseteq A \cup B$;
- $A. B \subseteq A \cup B.$

Prova: Seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. De $x \in A$ segue que $A \cap B \subseteq A$ e de $x \in B$ segue que $A \cap B \subseteq B$, como queríamos demonstrar.

Definição 2.4 (União). Sejam $A \in B$ dois conjuntos. Definimos a união de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

Exemplo: Sejam

$$A = \{1, 2, 3\}$$

$$B = \{2, 3, 4\}$$

$$A \cup B = \{1, 2, 3, 4\}$$

O conceito de união (U) e intersecção (\cappa) pode ser estendido para mais de dois conjuntos.

Definição 2.5 (União e Intersecção finita de conjuntos). Sejam A_1 , ..., A_n conjuntos. Então

$$A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{k=1}^n A_k$$

é o conjunto dos elementos x tais que x pertence a pelo menos um dos conjuntos $A_1, ..., A_n$. Agora,

$$A_1 \cap \cdots \cap A_n = \bigcap_{k=1}^n A_k$$

é o conjunto dos elementos x que pertencem a todos os conjuntos $A_1, ..., A_n$ simultaneamente.

Quando a intersecção de dois ou mais conjuntos é vazia, dizemos que eles são conjuntos disjuntos.

Sejam A e B conjuntos tais que $C = A \cup B$ e $A \cap B = \emptyset$. Neste caso dizemos que C é uma união disjunta de A e B. Denotamos tal fato por

$$C = A \sqcup B$$
.

Proposição 2.5.1. Sejam A, B e C três conjuntos, então:

1.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

2.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Prova:

1. Precisamos mostrar que

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$$

Seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$, então $x \in A \cap B$. Assim, $x \in (A \cap B) \cup (A \cap C)$, ou seja, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Por outro lado, se $x \in C$, como $x \in A$, então $x \in A \cap C$ e daí $x \in (A \cap B) \cup (A \cap C)$, logo $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Portanto,

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
.

Agora, seja $x \in (A \cap B) \cup (A \cap C)$. Daí, $x \in A \cap B$ ou $x \in A \cap C$. Suponha que $x \in A \cap B$. Assim, $x \in A$ e $x \in B$. Como $x \in B$, segue que $x \in B \cup C$ e então $x \in A \cap (B \cup C)$, ou seja, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Agora, suponnha que $x \in A \cap C$. Com isso $x \in A$ e $x \in C$. Desse modo, $x \in B \cup C$ e então $x \in A \cap (B \cup C)$ e daí

$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$$

Portanto

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

como queríamos.

2. Análoga ao caso anterior.

 \Diamond

 \Diamond

Definição 2.6 (Diferença de Conjuntos). Dados dois conjuntos A e B, definimos a diferença dos conjuntos A e B, denotado A – B (ou $A \setminus B$) como sendo

$$A - B = \{x \mid x \in A \text{ e } x \notin B\}.$$

Exemplos:

1.
$$A = \{1, 2, 3, 5, 4\}, B = \{2, 3, 6, 8\}, A - B = \{1, 4, 5\}, B - A = \{6, 8\}$$

2.
$$A = \{2,4,6,8,10,...\}, B = \{3,6,9,12,15,...\}, A - B = \{2,4,8,10,14,16,...\}, B - A = \{3,9,15,21,...\}$$

Proposição 2.6.1. Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

Prova: Segue da definição de diferença de conjuntos.

Definição 2.7 (Complementar). Dados dois conjuntos A e E tais que $A \subseteq E$, definimos o complementar de A em E, denotado A^C ou $C_E(A)$, como

$$C_E(A) = \{ x \in E \mid x \notin A \}.$$

Observações:

1. Se
$$A = E$$
, então $C_A(A) = \{x \in A \mid x \notin A\} = \emptyset$.

2.
$$(A^C)^C = \{x \in E \mid x \notin A^C\} = \{x \in E \mid x \in A\} = A$$

Exemplo:

$$A = \{1, 2, 3, 4\}$$

$$E = \{1, 2, 3, 5, 4, 0, 8, 9\}$$

$$A^{C} = \{0, 5, 8, 9\}$$

Proposição 2.7.1. Sejam A, B e E conjuntos. Se $A \subseteq B \subseteq E$, então $C_E(B) \subseteq C_E(A)$.

Prova: Seja $x \in B^C$. Assim $x \notin B$ e como $A \subseteq B$, então $x \notin A$. Daí por definição $x \in A^C$, ou seja, $B^C \subseteq A^C$.

Proposição 2.7.2. Sejam A, B e E três conjunto tais que $A \subseteq E$ e $B \subseteq E$. Então:

1.
$$(A \cup B)^C = A^C \cap B^C$$

2.
$$(A \cap B)^C = A^C \cup B^C$$

Prova:

1. Seja $x \in (A \cup B)^C$. Logo $x \notin A \cup B$, assim $x \notin A$ e $x \notin B$. Daí, $x \in A^C$ e $x \in B^C$, isto é, $x \in A^C \cap B^C$. Desse modo,

$$(A \cup B)^C \subseteq A^C \cap B^C. \tag{2.1}$$

Por outro lado, se $x \in A^C \cap B^C$, então $x \in A^C$ e $x \in B^C$. Daí, $x \notin A$ e $x \notin B$, ou seja, $x \notin A \cup B$, logo $x \in (A \cup B)^C$. Desse modo

$$A^{\mathcal{C}} \cap B^{\mathcal{C}} \subseteq (A \cup B)^{\mathcal{C}}. \tag{2.2}$$

Portanto, de (2.1) e (2.2) temos

$$(A \cup B)^C = A^C \cap B^C.$$

2. Seja $x \in (A \cap B)^C$. Logo $x \notin A \cap B$, assim $x \notin A$ ou $x \notin B$. Então $x \in A^C$ ou $x \in B^C$, isto é, $x \in A^C \cup B^C$. Desse modo,

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{2.3}$$

Por outro lado, se $x \in A^C \cup B^C$, então $x \in A^C$ ou $x \in B^C$. Daí, $x \notin A$ ou $x \notin B$, ou seja, $x \notin A \cap B$, logo $x \in (A \cap B)^C$. Desse modo

$$A^{\mathcal{C}} \cup B^{\mathcal{C}} \subseteq (A \cap B)^{\mathcal{C}}. \tag{2.4}$$

Portanto, de (2.3) e (2.4) temos

$$(A \cap B)^C = A^C \cup B^C$$
.

 \Diamond

Definição 2.8 (Produto Cartesiano). Dados dois conjuntos A e B, definimos o produto cartesiano de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos (x, y) = (z, t) se, e somente se, x = z e y = t.

Em geral, $A \times B \neq B \times A$.

Exemplo:

$$A = \{1, 2\}$$

$$B = \{3\}$$

$$A \times B = \{(1, 3), (2, 3)\}$$

$$B \times A = \{(3, 1), (3, 2)\}$$

Definição 2.9 (Conjunto Partes). Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

Os elementos desse conjunto são todos os subconjuntos de A. Dizer que $Y \in \mathcal{P}(A)$ significa que $Y \subseteq A$. Particularmente, temos $\emptyset \in \mathcal{P}(A)$ e $A \in \mathcal{P}(A)$.

Exemplos:

1.
$$A = \emptyset, \mathcal{P}(A) = \{\emptyset\};$$

2.
$$B = \{x\}, \mathcal{P}(B) = \{\emptyset, B\};$$

3.
$$C = \{a, b, c\}, \mathcal{P}(C) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, C\};$$

4.
$$D = \mathbb{R}, \mathcal{P}(D) = \{X \mid X \subseteq \mathbb{R}\}, \text{ por exemplo } \mathbb{Q} \in \mathcal{P}(D).$$

CAPÍTULO 3

NÚMEROS INTEIROS

3.1 Conceitos básicos

Indicaremos por \mathbb{Z} o conjunto dos números inteiros. Portanto $\mathbb{Z}=\{0,\pm 1,\pm 2,\pm 3,\pm 4,...\}$.

3.1.0.1 Propriedades básicas da adição e da multiplicação

Admitiremos as propriedades básicas da adição e da multiplicação em \mathbb{Z} . Assim, dados $a,b,c\in\mathbb{Z}$, temos:

Multiplicação

Adição

1.
$$a + b = b + a$$

2.
$$a(b+c) = (a+b) + c$$

3.
$$a + 0 = a$$

4.
$$a + (-a) = 0$$

1.
$$ab = ba$$

2.
$$a(bc) = (ab)c$$

3.
$$a1 = a$$

4.
$$ab = 0 \rightarrow a = 0 \lor b = 0$$

5.
$$ab = 1 \rightarrow a = \pm 1 \land b = \pm 1$$

6.
$$a(b + c) = ab + ac$$

3.1.0.2 Propriedades básicas das desigualdades

Admitiremos também a relação "menor ou igual", em \mathbb{Z} , denotada por " \leq ". Dados $a, b, c \in \mathbb{Z}$, valem as seguintes propriedades:

1.
$$a \le a$$

2.
$$a \le b \land b \le a \rightarrow a = b$$

3.
$$a \le b \land b \le c \rightarrow a \le c$$

$$4. \ a \leq b \vee b \leq a$$

5.
$$a \le b \rightarrow a + c \le b + c$$

6.
$$0 \le a \land 0 \le b \rightarrow 0 \le ab$$

Para a relação "menor", cujo símbolo é "<", vale:

1. Se
$$a > 0$$
 e $b > 0$, então $ab > 0$.

2. Se
$$a > 0$$
 e $b < 0$, então $ab < 0$.

3.2 Princípio da boa ordenação

Definição 3.1 (Limite Inferior). Seja A um subconjunto não vazio de \mathbb{Z} . Dizemos que A é limitado inferiormente se existe $l \in \mathbb{Z}$ tal que $l \le x$, para todo $x \in A$.

Por exemplo:

$$A = \{-2, 0, 1, 2, 3, ...\}, B = \{..., -6, -4, -2, 0\}, C = \{8, 16, 24, 32\}$$

A e C são limitados inferiormente pois $-3 \le a, 7 \le c$, para todo $a \in A$ e para todo $c \in C$.

Definição 3.2 (Princípio da boa ordenação). Se A é um subconjunto não vazio de \mathbb{Z} e A é limitado inferiormente, então existe $a_0 \in A$ tal que $a_0 \leq x$ para todo $x \in A$.

Seja $A \neq \emptyset$, $A \subseteq \mathbb{Z}$ e A limitado inferiormente. Pelo P.B.O., existe $a_0 \in A$ tal que $a_0 \leq x$, para todo $x \in A$. Suponha que existe $a_1 \in A$ tal que $a_1 \leq x$, $x \in A$. Logo devemos ter $a_0 \leq a_1$ e além disso $a_1 \leq a_0$, daí $a_1 = a_0$. Ou seja, o elemento $a_0 \in A$ do P.B.O. é único. Chamamos a_0 de elemento mínimo ou elemento minimal.

3.3 Princípio da Indução Finita

Teorema 3.1 (Indução finita (1^a versão)). Dado $a \in \mathbb{Z}$, suponhamos que a cada inteiro $n \ge a$ esteja associada uma proposição P(n) que depende de n. Então P(n) será verdadeira para todo $n \ge a$ desde que seja possível provar o seguinte:

- 1. P(a) é verdadeira.
- 2. Dado r > a, se P(k) é verdadeira para todo k tal que $a \le k \le r$, então P(r) é verdadeira.

Teorema 3.2 (Indução finita (2^a versão)). Dado $a \in \mathbb{Z}$, suponhamos que para cada $n \ge a$ esteja associada uma proposição P(n). Então P(n) é verdadeira para todo $n \ge a$ desde que seja possível provar o seguinte:

- 1. P(a) é verdadeira.
- 2. Se P(r) é verdadeira para $r \ge a$, então P(r+1) é verdadeira.

Exemplos 3.2.1. 1. Mostre que para todo $n \in \mathbb{N}$ vale

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
.

Solução: Para n = 1, temos

$$1 = \frac{1(1+1)}{2}.$$

Agora, suponha que para $r \ge 1$, temos

$$\underbrace{1 + 2 + \dots + r = \frac{r(r+1)}{2}}_{H.I}.$$

Assim, para r+1 usando a Hipótese de Indução, obtemos

$$1 + 2 + \dots + r + (r+1) = \frac{r(r+1)}{2} + (r+1) = \frac{r(r+1) + 2(r+1)}{2}$$
$$= \frac{(r+2)(r+1)}{2}.$$

Portanto, pelo princípio da indução finita a afirmação está provada.

2. Prove que $(1+p)^n \geq 1 + np$ para todo $n \in \mathbb{N}$ e $p \geq 0$.

Solução: Para n = 1 temos

$$(1+p)^1 \ge 1+p.$$

Suponha então que para n = k temos

$$(1+p)^k \ge 1 + kp.$$

Para n = k + 1 temos

$$(1+p)^{k+1} = (1+p)^r (1+p) \ge (1+rp)(1+p)$$
$$= 1+p+rp+rp^2$$
$$\ge 1+(r+1)p.$$

Logo pelo Princípio da Indução finita a afirmação é verdadeira.

Teorema 3.3. Dado $a \in \mathbb{Z}$, suponhamos que cada inteiro $n \ge a$ esteja associado uma proposição P(n). Então P(n) será verdadeira $\forall n \ge a$ desde que seja possível provar que:

- 1. P(a) é verdadeira.
- 2. Dado que r > a, se P(k) é verdadeira para todo k tal que $a \le k \le r$, então P(r) é verdadeira

Demonstração: Seja $F = \{l \in \mathbb{Z} \mid a \leq l \text{ e } P(l) \text{ é falsa}\}$. Suponha $F \neq \emptyset$. Como F é limitado inferiormente, pelo princípio da boa ordenação, existe $l_0 \in F$ tal que $l_0 \leq x$, para todo $x \in F$. Como $l_0 \in F$, $P(l_0)$ é falsa. Mas P(a) é verdadeira, assim, $l_0 > a$. Agora, como l_0 é o mínimo de F, então P(x) é verdadeira para $a \leq x < l_0$.

Agora pelo item (2) segue que $P(l_0)$ é verdadeira, o que é uma contradição, pois verificamos anteriormente que $P(l_0)$ é falso.

Portanto $F = \emptyset$ e o teorema está demonstrado.#

3.4 Divisibilidade

Definição 3.3 (Divisão). Sejam a, b números inteiros, $b \neq \emptyset$. Dizemos que b divide a quando existe um inteiro c tal que a = bc.

Exemplos:

1. Os inteiros 1 e -1 dividem todos os números inteiros a, pois

$$a = 1a, a = (-1)(-a)$$

- 2. O número 0 não divide nenhum inteiro b, pois não existe a tal que b = 0a
- 3. Para todo $b \neq 0, b$ divide $\pm b$
- 4. Para todo inteiro $b \neq 0$, b divide 0, pois 0 = b0
- 5. 3 não divide 8, mas 17 divide 51

Notação 3.3.1 (Divisão). Quando b divide a, escrevemos b|a. Quando b não divide a, escrevemos $b \not | a$

Propriedades

- 1. $a|a, \forall a \in \mathbb{Z}$
- 2. Se $a|b \in b|a$, $a, b \ge 0 \rightarrow a = b$

De fato existe $c, d \in \mathbb{Z}/b = ca \land a = bd$. Se $a = 0 \lor b = 0$ então $b = 0 \veebar a = 0$. Podemos supor $a \neq 0$ e $b \neq 0$.

Assim

b = c(bd)

$$b(1-cd) = 0$$
. Daí, $1-cd = 0$, isto é, $cd = 1$.

Assim, $c = \pm 1 \land d = \pm 1$. Como a > 0 e b > 0, devemos ter c = d = 1. Portanto a = b

3. Se $a|b \in b|c$, então a|c

De fato,
$$b = pa \land c = bq \Rightarrow c = (pq)a$$
, ou seja, $a|c$

4. Se $a|b \in a|c$, então a|(bx + cy), para todos $x, y \in \mathbb{Z}$

Temos
$$b = ap e c = aq, p, q \in \mathbb{Z}$$

$$bx + cy = apx + aqy = a\underbrace{(px + qy)}_{\in \mathbb{Z}}$$

Logo a|(bx + cy)

3.5 Algoritmo de divisão de Euclides

Teorema 3.4 (Algoritmo de divisão de Euclides). Para quaisquer $a, b \in \mathbb{Z}$, com b > 0, existem únicos q e r inteiros tais que a = bq + r, com $0 \le r < b$.

Demonstração: Vamos mostrar primeiro a existência de q e r.

Seja $M=\{m\in\mathbb{Z}\mid m=a-bt,t\in\mathbb{Z}\}$. Temos $M\neq\emptyset$ pois $a\in M$. Seja $M^+=\{x\in M\mid x\geq 0\}$. Por definição M^+ é limitado inferiormente. Além disso, como $t\in\mathbb{Z}$ e $M^+\subseteq M$ então

 $M^+ \neq \emptyset$. Logo, pelo princípio da boa ordenação, existe $r \in M^+$ tal que $r \leq x$, para todo $x \in M^+$. Como $r \in M^+ \subseteq M$, existe $q \in \mathbb{Z}$ tal que r = a + bq. Portanto, a = bq + r, $q \in \mathbb{Z}$, com $r \geq 0$.

Precisamos provar que r < b. Para isso, suponha então que $r \ge b$. Logo $r = a - bq \ge b$, ou seja, $a - bq - b \ge 0$. Isto é, $a - b(q + 1) \ge 0$ e desse modo, $a - b(q + 1) \in M^+$.

Agora, como b>0 então bq+b>bq. Daí b(q+1)>bq. Logo -b(q+1)<-bq. Finalmente, a-b(q+1)< a-bq=r, o que é uma contradição, pois r é o mínimo de M^+ . Logo, r< b, ou seja, a=bq+r, q, $r\in \mathbb{Z}$ com $0\leq r< b$.

Falta provar a unicidade de q e r. Assim, suponha que existam $q_1, q_2, r_1, r_2 \in \mathbb{Z}$, com $0 \le r_1 < b, 0 \le r_2 < b$, tais que:

$$a = bq_1 + r_1 = bq_2 + r_2.$$

Suponha que $r_1 \neq r_2$. Suponha também que $r_1 > r_2$. Assim,

$$0 \le r_1 - r_2 = b(q_2 - q_1).$$

E daí, $q_2 - q_1 \ge 0$. Desse modo

$$r_1 = b(q_2 - q_1) + r_2.$$

Mas $r_1 \ge 0$, $q_2 - q_1 \ge 1$, daí $r_1 > b$, o que é uma contradição. Logo $r_1 = r_2$ e então $q_1 = q_2$, o que prova a unicidade.#

3.6 Máximo Divisor Comum

Definição 3.4 (Máximo Divisor Comum). Dado $a,b\in\mathbb{Z}$, dizemos que $d\in\mathbb{Z}$ é o máximo divisor comum entre a e b se

- 1. $d \ge 0$
- 2. d|a e d|b
- 3. Se d' é um inteiro tal que d'|a| e d'|b|, então d'|d|

Observações:

1. Se d e d_1 são máximos divisores comuns entre a e b, então $d = d_1$.

De fato, dados d e d_1 máximos divisores comuns de a e b, então temos que $d|a,d|b,d_1|a,d_1|b$. Mas pelo item 3 da definição temos $d|d_1$ e $d_1|d$. Agora, como $d_1 \ge 0$ e $d \ge 0$, segue que $d = d_1$

- 2. Se a = b = 0, segue que $d = d_1$
- 3. Se a = 0 e $b \neq 0$, então d = |b|
- 4. Se d é o máximo divisor comum entre a e b, então d também é o máximo divisor comum entre a e -b, -a e b e entre -a e -b.

Notação 3.4.1 (Máximo Divisor Comum). Indicaremos por mdc(a, b) o máximo divisor comum ente a e b, que já sabemos que é único quando existe.

Proposição 3.4.1. Quaisquer que sejam $a, b \in \mathbb{Z}$, existe $d \in \mathbb{Z}$ que é o máximo divisor comum entre $a \in b$.

Demonstração: Das observações anteriores podemos considerar somente o caso em que a>0 e b>0.

Seja $L=\{ax+by/x,y\in\mathbb{Z}\}$. Temos que $L\neq\emptyset$ pois tomando x=1 e y=0, temos que m=a1+b0, pelo princípio da boa ordenação, existe $d\in L^+$ tal que $d\leq x$, para todo $x\in L^+$. Mostremos que d=mdc(a,b)

- 1. $d \ge 0$ pois $d \in L^+$
- 2. Como $d \in L^+$, existem $x_0, y_0 \in \mathbb{Z}$ tais que $d = ax_0 + by_0$.

Agora usando o algoritmo da divisão de Euclides para a e d temos que existem $k, r \in \mathbb{Z}, 0 \le r < d$ tais que a = kd + r.

Assim:

$$a = k(ax_0 + by_0) + r$$

$$r = a(1 - kx_0) + b(-y_0)k$$

Daí, $r \in L$, mas $r \ge 0$, então $r \in L^+$. Como d é o mínimo de L^+ devemos ter r = 0 e assim a = kd, ou seja, d|a.

Analogamente, Mutatis Mutandis, mostra-se que d|b.

3. Seja $d \in \mathbb{Z}$ tal que d'|a e d'|b. Temos que d'|(ax + by), para $x, y \in \mathbb{Z}$, em particular, $d'|(ax_0 + by_0) = d$, ou seja, d'|d.

Portanto, d = mdc(a, b).#

Observação:

- 1. Se d = mdc(a, b), então $d = ax_0 + by_0$, onde $x_0, y_0 \in \mathbb{Z}$. Os elementos x_0 e y_0 satisfazem que tal igualdade não são únicos.
- 2. Uma igualdade do tipo $d=ax_0+by_0$ é chamada de Identidade de Bezout.

Exemplos:

(a)
$$mdc(2,3) = 1$$

 $1 = 2(-1) + 3.1 = 2.2 + 3(-1)$

(b) mdc(4,8) = 4

Considere os seguintes subconjuntos de **Z**:

$$I = \{2k \mid k \in \mathbb{Z}\} = \{0, \pm 2, \pm 4, \pm 6, ...\}$$
$$J = \{2r + 1 \mid r \in \mathbb{Z}\} = \{\pm 1, \pm 3, \pm 5, ...\}.$$

Dados quaisquer $a,b\in I$, temos $a+b\in I$. Além disso, dado $n\in \mathbb{Z}$, $na\in I$. Por outro lado, $1,3\in I$ mas $1+3=4\notin I$.

3.7 Ideais

3.7.0.1 Definição

Definição 3.5. Um subconjunto não vazio $S \subseteq \mathbb{Z}$ é chamado de um ideal de \mathbb{Z} se satisfaz as seguintes condições:

SEÇÃO 3.7 ● Ideais 32

- 1. $r_1 + r_2 \in S$, para todos $r_1, r_2 \in S$,
- 2. $nr \in S$, para todo $n \in \mathbb{Z}$ e para todo $r \in S$.

3.7.0.2 Propriedades

Seja S um ideal de **Z**. Então:

- 1. $r_1 r_2 \in S$, para todos $r_1, r_2 \in S$, pois $r_1 r_2 = r_1 + (-r_2)$.
- 2. $0 \in S$, pois 0 = r r, para qualquer $r \in S$.

Exemplos:

- 1. $S = \{2k \mid k \in \mathbb{Z}\}$ é um ideal de \mathbb{Z} .
- 2. $S=\{0\}$ e $S=\mathbb{Z}$ são ideais de $\mathbb{Z},$ chamados de ideais triviais.
- 3. Dado $a,b,c\in\mathbb{Z}$, o subconjunto $S=\{ax+by/x,y\in\mathbb{Z}\}$ é um ideal de \mathbb{Z} .

$$S \neq \emptyset$$
 pois $0 = a0 + b0 \in S$

Sejam $ax_1 + by_1, ax_2 + by_2 \in S$. Temos $(ax_1 + by_1) + (ax_2 + by_2) = a(x_1 + x_2) + b(y_1 + y_2) \in S$

Agora, sejam $ax_1 + by1 \in S$ e $n \in \mathbb{Z}$ temos

$$n(ax_1 + by_1) = a(nx_1) + b(ny_1) \in S$$

De modo geral, dados $a_1, a_2, ..., a_n$ números inteiros, o subconjunto

$$S = \{a_1x_1 + a_2x_2 + ... + a_nx_n/x_1, ..., x_n \in \mathbb{Z}\}\$$

 \acute{e} um ideal de \mathbb{Z} .

Se S é ideal de \mathbb{Z} , então $S = \{nk/n \in \mathbb{Z}\}.$

3.7.0.3 Conjunto dos múltiplos de g

Notação 3.5.1 (Conjunto dos múltiplos de g). Se $g \in \mathbb{Z}$, denotamos por $g\mathbb{Z}$, ou $\mathbb{Z}g$, o subconjunto dos inteiros que são múltiplos de g (os inteiros que são divisíveis por g). Em outras palavras

$$g\mathbb{Z} = \{gn/n \in \mathbb{Z}\} = \{0, \pm g, \pm 2g, \pm 3g, ...\}$$

Teorema 3.5. Seja S um ideal de \mathbb{Z} . Então, existe um número $g \in \mathbb{Z}$ tal que $S = g\mathbb{Z}$.

Demonstração: Se $S=\{0\}$, então tomamos g=0 e da
í $S=0\mathbb{Z}$. Se $S=\mathbb{Z}$, então g=1 e $S=1\mathbb{Z}$.

Assim podemos supor $S \neq \{0\}$ e $S \neq \mathbb{Z}$. Seja $S^+ = \{x \in S/x > 0\}$. Do ítem 2 da definição de ideal, segue que $S^+ \neq \emptyset$. Assim, pelo princípio da boa ordenação, existe $g \in S^+$ tal que $g \leq x, \forall x \in S^+$.

Como $g \in S^+ \subseteq S$ e S é um ideal de \mathbb{Z} , então $gn \in S \forall n \in \mathbb{Z}$, ou seja, $g\mathbb{Z} \subseteq S$.

Agora precisamos mostrar que a=gq, onde $q\in\mathbb{Z}$. Assim, dado $a\in S$, o algoritmo da divisão de Euclides garante que existem $q,r\in\mathbb{Z}$ tais que a=gq+r, onde $0\leq r< g$. Como $a,q,g\in S$ e S é um ideal, então $r=a-gq\in S$. Se r>0, então como r< g e g é o mínimo de S^+ obtemos uma contradição. Logo, r=0 e a=gp. Daí $S\subseteq g\mathbb{Z}$. Portanto $s=g\mathbb{Z}$.#

Exemplo: O conjunto $S=\{2x-5y/x,y\in\mathbb{Z}\}$ é ideal de \mathbb{Z} . Neste caso, $S^+=\{1,2,3,\ldots\}$. Assim, g=1 e $S=1\mathbb{Z}=\mathbb{Z}$.

CAPÍTULO 4

RELAÇÕES E FUNÇÕES

4.1 Relações

4.1.0.1 Definição

Sejam A e B dois conjuntos não vazios. Os subconjuntos de AxB são chamados relações, ou seja, uma relação em AxB é um subconjunto desse produto cartesiano.

Quando R é uma relação em $A \times B$, também dizemos que R é uma relação de A em B. Exemplos:

1. Se A= $\{0,1\}$ e B= $\{-1,0,1\}$, então AxB= $\{(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1,)\}$ São exemplos de relações:

$$R_1 = \{(0,1)\}$$

$$R_2 = \emptyset$$

$$R_3 = \{(1,-1), (1,1)\}$$

 $R_4 = A x B$

2. Se $A=B=\mathbb{R}$, então AxB é o conjunto formado por todos pares ordenados de números reais. Um exemplo de relação em $\mathbb{R} \times \mathbb{R}$ é o conjunto:

$$R=\{(x,y)\in \mathbb{R} \times \mathbb{R}/y\geq 0\}$$

4.2 Relações de equivalência

4.2.0.1 Definição

Definição 4.1 (Relação de equivalência). Seja X um conjunto não vazio e $R \subseteq X \times X$ uma relação. Dizemos que R é uma relação de equivalência se:

Reflexidade Para todo $a \in X$, $(a, a) \in R$.

Simetria Se $(a,b) \in R$, então $(b,a) \in R$.

Transitividade Se $(a,b) \in R$ e $(b,c) \in R$, então $(a,c) \in R$.

Quando $R \subseteq X \times X$ é uma relação de equivalência, dizemos que R é uma relação de equivalência em X. Quando 2 elementos $a,b \in X$ são tais que $(a,b) \in R$, dizemos que a e b são relacionados.

4.2.1 Equivalência módulo R

Notação 4.1.1 (Equivalência módulo R). Seja R uma relação de equivalência em X. Para dizermos que $(a,b) \in R$ usaremos a notação $a \equiv b(R)$, que se lê "a é equivalente a b módulo R", ou ainda a notação aRb, com o mesmo significado anterior.

Exemplos:

1. Seja X= $\{1,2,3\}$. Temos $X \times X = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$. São exemplos de relações de equivalência:

$$R_1 = X \times X$$

 $R_2 = \{(1,1), (2,2), (3,3)\}$
 $R_3 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$

- 2. Seja $X=\mathbb{Z}$ e $R\subseteq\mathbb{Z}\times\mathbb{Z}$ definida por $R=\{(x,y)\in\mathbb{Z}\times\mathbb{Z}\mid x=y\}$ R é uma relação de equivalência pois:
 - $\forall a \in \mathbb{Z}, (a, a) \in R \text{ pois a=a}$

- $(a,b) \in R \rightarrow a = b \land b = a \Leftrightarrow (b,a) \in R$
- $(a,b),(b,c) \in R \rightarrow a = b = c \Rightarrow (a,c) \in R$
- 3. Tome $R=\{(x,y)\in\mathbb{Z}\mathbb{Z}/2|(x-y)\}=\{(x,y)\in\mathbb{Z}\mathbb{Z}/x-y=2k,k\in\mathbb{Z}\}$

R é uma relação de equivalência pois:

- $\forall x \in \mathbb{Z}, xRx \text{ pois } x x = 2.0$
- $xRy \rightarrow x y = 2k \Rightarrow y x = -(x y) = 2.(-k) \Rightarrow yRx$
- $xRy \land yRz \rightarrow x-y = 2k \land y-z = 2q \Rightarrow x+z = x-y+y-z = 2k+2q = 2(k+q) \rightarrow xRz$

4.2.2 Classe de equivalência e conjunto quociente

Definição 4.2 (Classe de Equivalência). Seja R uma relação de equivalência sobre um conjunto X. Dado $a \in X$, chamamos classe de equivalência determinada por a módulo R, denotada por \bar{a} ou C(a), o subconjunto constituído pelos elementos $b \in X$ tais que bRa, ou seja, $\bar{a} = C(a) = \{a \in X/bRa\}$

Definição 4.3 (Conjunto quociente). O conjunto das classes de equivalência módulo R será denotado por X/R e é chamado conjunto quociente de X por R.

Observação: Dado um conjunto $X \neq \emptyset$ e R uma relação de equivalência em X, dado $a \in X$ como R é uma relação de equivalência, aRa, daí $\bar{a} \neq \emptyset$, pois $a \in \bar{a}$

Exemplos:

- 1. Seja $X = \{a,b,c\} \in R = \{(a,a),(b,b),(c,c),(a,c),(c,a)\}.$ Temos:
 - $\bar{a} = \{x \in X/xRa\} = \{a,c\}$
 - $\bar{b} = \{x \in X/xRb\} = \{b\}$
 - $\bar{c} = \{x \in X/xRc\} = \{a,c\}$
- 2. Seja X={1,2,3,4} e a relação de equivalência R={(1,1),(2,2),(3,3),(4,4)}
 - $\bar{1} = \{x \in X/xR1\} = \{1\}$
 - $\bar{2} = \{x \in X/xR2\} = \{2\}$

$$\bar{3} = \{x \in X/xR3\} = \{3\}$$

$$\bar{4} = \{x \in X / xR4\} = \{4\}$$

Proposição 4.3.1. Seja R uma relação de equivalência em um conjunto não vazio X, sejam $a,b\in X$. Se $\bar{a}\cap \bar{b}\neq \emptyset$, então aRb.

Demonstração: Como $\bar{a} \cap \bar{b} \neq \emptyset$, existe um $y \in \bar{a} \cap \bar{b}$, logo $y \in \bar{a} \land y \in \bar{b}$. Da definição de classe de equivalência temos que yRa e yRb. Como R é relação de equivalência temos que aRy e bRy. Por transitividade, aRb, como queríamos demonstrar.#

Proposição 4.3.2. Se $\bar{a} \cap \bar{b} \neq \emptyset$, então $\bar{a} = \bar{b}$

Demonstração: Seja $y \in \bar{a}$. Daí y
Ra. Como $\bar{a} \cap \bar{b} \neq \emptyset$, pela proposição anterior, aRb. Logo, como y
Ra e aRb, segue que yRb, ou seja, $y \in \bar{b}$. Daí $\bar{a} \subseteq \bar{b}$. Como no caso anterior, mostra-se que $\bar{b} \subseteq \bar{a}$. Portanto $\bar{a} = \bar{b}$.#

Corolário 4.0.1. As classes de equivalência são conjuntos disjuntos ou iguais.

Seja R uma relação de equivalência em $X\neq\emptyset$, dado $a\in R$. Se b
Ra, então $\bar{b}=\bar{a}$, mais ainda, se d Ra então $\bar{d}=\bar{a}=\bar{b}$. Como por exemplo:

$$X=\{a,b,c,d,e,f,g\}$$

$$\bar{a} = \{a, b, c\}$$

$$\bar{e} = \{e\}$$

$$\bar{f} = \{f, g\}$$

Definição 4.4 (Representante da Classe de Equivalência). Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado representante de C.

Proposição 4.4.1. Seja X um conjunto não vazio e R uma relação de equivalência em X. Então X é a união disjunta das classes $\bar{a}, a \in X$, ou seja,

$$X = \bigsqcup_{a \in X} \bar{a}$$

.

Demonstração: Para todo $a\in X, \bar{a}\subseteq X$, logo $\bigsqcup_{a\in X}\bar{a}\subseteq X$. Seja $b\in X$. Logo $b\in \bar{b}$, daí $b\in \bigsqcup_{a\in X}\bar{a}$, logo $X\subseteq \bigsqcup_{a\in X}\bar{a}$. Portanto, $X=\bigsqcup_{a\in X}\bar{a}.\#$ Exemplo:

Em $\mathbb{Z}x\mathbb{Z}$ considere a seguinte relação: $R = \{(a,b) \in \mathbb{Z}x\mathbb{Z}/2 | (a-b) \}$. Mostre que é uma relação de equivalência e mostre suas classes de equivalência.

- 1. Dado $a \in \mathbb{Z}$, aRa pois 2|(a-a)=0.
- 2. Se aRb, então 2|(a-b), ou seja, a-b=2k, -(a-b)=b-a=2(-k). Logo bRa.
- 3. Se aRb e bRc, então a-b=2k e b-c=2q. Logo a-b+b-c=2k+2q=2(k+q). Logo, aRc.

Portanto R é uma relação de equivalência.

Dado $a \in \mathbb{Z}$, temos:

$$\bar{a} = \{b \in \mathbb{Z}/bRa\} = \{b \in \mathbb{Z}/2 | (a-b)\} \text{ como } 2 | (a-b), \text{ temos que:}$$

$$a - b = 2k \Leftrightarrow b = a + 2r, r = -k$$

Assim, se a é ímpar, b também o é. Logo:

$$\bar{a} = \{..., -3, -1, 1, 3, ...\}$$

Agora, se a é par, b também é. Logo:

$$\bar{a} = \{..., -2, 0, 2, 4, ...\}$$

4.3 Funções

4.3.0.1 Definição

Definição 4.5 (Função). Uma função f de um conjunto A em um conjunto B é uma relação $f \subseteq A \times B$ satisfazendo:

- 1. $\forall x \in A, \exists y \in B/(x, y) \in f$
- 2. $(x_1, y_1), (x_1, y_2) \in f \rightarrow y_1 = y_2$

Geralmente, para dizer que f é uma função de A em B escrevemos $f:A\to B$.

4.3.0.2 Domínio e contra-domínio

O conjunto A é chamado de Domínio de f e o conjunto B é chamado de contra-domínio. Se $f:A\to B$ é uma função, escrevemos f(a)=b para dizer que $(a,b)\in f$ Exemplos:

- 1. Sejam $A=\{0,1,2,3\}$ e $B=\{4,5,6,7,8\}$. Quais das seguintes relações são funções?
 - $R_1 = \{(0,5), (1,6), (2,7)\}$ Não é função pois o número 3 não têm valor associado à ele.
 - $R_2 = \{(0,4), (1,5), (1,6), (2,7), (3,8)\}$ Não é função pois o valor 1 tem mais de um valor diferente associado à ele.
 - $R_3 = \{(0,4), (1,5), (2,7), (3,8)\}$ É função
 - $R_4 = \{(0,5), (1,5), (2,6), (3,7)\}$ É função
- 2. $R_5 = \{(x,y) \in \mathbb{R} \times \mathbb{R}/y^2 = x^2\}$ Não é função, pois $x = \pm \sqrt{y}$
- 3. $R_6=\{(x,y)\in\mathbb{R}\times\mathbb{R}/x^2+y^2=1\}$ Não é função pois quando $x=0,y=1\land y=-1$
- 4. $R_7 = \{(x, y) \in \mathbb{R} \times \mathbb{R} / y = x^2\}$ É função

4.3.1 Tipos de funções

Definição 4.6 (Função sobrejetora). Uma função $f:A\to B$ é sobrejetora se, e somente se, para todo $y\in B$ exista um $x\in A$ tal que f(x)=y

Definição 4.7 (Função injetora). Uma função $f:A\to B$ é injetora se, e somente se, para $a_1\neq a_2$, temos $f(a_1)\neq f(a_2), \forall a_1,a_2\in A$

Definição 4.8 (Função bijetora). Uma função $f:A\to B$ que é simultaneamente injetora e sobrejetora é chamada de bijetora ou bijetiva.

Exemplos:

1. A função $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = 3x + 1 é injetora e sobrejetora.

Dados $x_1, x_2 \in \mathbb{R}$ tais que $f(x_1) = f(x_2)$, temos:

$$3x_1 + 1 = 3x_2 + 1$$

$$x_1 = x_2$$

Logo f é injetora

Para verificar se f é sobrejetora precisamos verificar se dado $y \in \mathbb{R}$

$$\exists x \in \mathbb{R}/f(x) = y.$$

Tome $x = \frac{y-1}{3} \in \mathbb{R}$. Daí, f(x) = y. Logo f é sobrejetora.

2. A função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$ é injetora? E sobrejetora?

Não é injetora pois $f(-1) = f(1) \land 1 \neq -1$

Não é sobrejetora pois $\nexists x \in \mathbb{R}/x^2 = -1$

Dado $f:A\to B$ uma função, considere a relação $f^{-1}\subseteq BxA$ tal que $(b,a)\in f^{-1}$ se $(a,b)\in f$, ou seja, $f^{-1}(b)=a$ se f(a)=b.

Pode ocorrer que f^{-1} não seja função, mesmo f sendo uma função. Por exemplo:

$$f: \{0,1,2,3\} \to \{4,5,6,7,8\}$$
 dada por:

$$f(0) = 5$$

$$f(1) = 5$$

$$f(2) = 6$$

$$f(3) = 7$$

Neste caso, f^{-1} é dado por:

$$f^{-1}(5)=0$$

$$f^{-1}(5)=1$$

$$f^{-1}(6)=2$$

$$f^{-1}(7) = 3$$

Teorema 4.1. Dada $f:A\to B$ função tome $f^{-1}:B\to A$. Definida com o $f^{-1}(b)=a$ se f(a)=b. Então f^{-1} é uma função se, e somente se, f é bijetora.

Demonstração: Suponha f^{-1} é função. Precisamos provar que f é injetora e sobrejetora.

Dados $a_1, a_2 \in A$ tais que $f(a_1) = b = f(a_2)$. Como $f(a_1) = b$ temos $f^{-1}(b) = a_1$, além disso, $f^{-1}(b) = a_2$. Mas f^{-1} é função, daí $a_1 = a_2$, ou seja, f é injetora.

Dado $b \in B$, como f^{-1} é uma função, $\forall b \in B, f^{-1}(b) = a \in A$, logo f(a) = b e assim f é sobrejetora.

Portanto f é bijetora.

Agora suponha que f é bijetora.

Primeiramente, dado $b \in B$, como f é sobrejetora, existe $a \in A$ tal que f(a) = b, ou seja, $f^{-1}(b) = a \in A$.

Suponha que $f^{-1}(b)=a_1$ e $f^{-1}(b)=a_2$. Daí, $f(a_1)=b \wedge f(a_2)=b$. Mas f é injetora, assim $a_1=a_2$ e então $f^{-1}(b)=a_1=a_2$.

Portanto f^{-1} é função. #

4.3.2 Composição de funções

4.3.2.1 Definição

Definição 4.9 (Função Composta). Sejam $f:A\to B$ e $g:B\to C$ funções. Chama-se composta de g e f a função de A em C, denotada $g\circ f$, definida por $g\circ f:A\to C$.

Temos então que $(g \circ f)(x) = g(f(x)), \forall x \in A$.

Observação: Se $f:A\to B$ e $g:B\to A$ então existem $f\circ g$ e $g\circ f$. Porém, em geral, $f\circ g\neq g\circ f$.

4.3.2.2 Propriedades

Proposição 4.9.1. Se $f:A\to B$ e $g:B\to C$ são funções injetoras, então $g\circ f$ é injetora.

Demonstração: Dados $x_1, x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ temos que $g(f(x_1)) = g(f(x_2))$. Como g é injetora, $f(x_1) = f(x_2)$. Mas f é injetora, daí $x_1 = x_2$. Logo $g \circ f$ é injetora.#

Proposição 4.9.2. Se $f:A\to B$ e $g:B\to C$ são sobrejetoras, então $g\circ f$ é sobrejetora.

Demonstração: Temos que $g \circ f : A \to C$. Dado $z \in C$. Como g é sobrejetora, $\exists y \in B/g(y) = z$. Como f é sobrejetora, $\exists x \in A/f(x) = y$. Assim, $z = g(y) = g(f(x)) = (g \circ f)(x)$. Logo $g \circ f$ é sobrejetora.#

4.3.3 Função Identidade

4.3.3.1 Definição

Definição 4.10 (Função Identidade). Dado um conjunto $A \neq \emptyset$, a função $i_A: A \rightarrow A$ dada por $i_A(x) = (x)$ é chamada de função identidade.

Proposição 4.10.1. Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B \wedge f^{-1} \circ f = i_A$.

Demonstração: Temos $i_F: F \to F$ e $i_E: E \to E$. Além disso, $f \circ f^{-1}: F \to F$ e $f^{-1} \circ f: E \to E$, daí $D(f \circ f^{-1}) = D(i_F)^1$ e $D(f^{-1} \circ f) = D(i_E)$. Dado $x \in F$, $(f \circ f^{-1})(x) = f(f^{-1}(x)) = x = i_F(x)$. Dado $x \in E$, $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x = i_E(x)$.#

4.3.3.2 Propriedades

Proposição 4.10.2. Se $f:A\to B$ e $g:B\to A$ são funções, então:

1.
$$f \circ i_A = f, i_B \circ f = f, g \circ i_B = g, i_E \circ g = g$$

2. Se
$$g \circ f = i_A$$
, e $f \circ g = i_B$, então f e g são bijetoras e $g = f^{-1}$

Demonstração:

1. Provemos que $f \circ i_A = f$. Primeiro temos $f : A \to B$ e $i_A : A \to A$. Daí, $f \circ i_A : A \to B$, ou seja, $D(f \circ i_A) = D(f)$. Dado $x \in A$, temos $(f \circ i_A)(x) = f(i_A(x)) = f(x)$. Portanto, $f \circ i_A = f$.

2. Provemos que f é bijetora. Dados $x_1, x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja, $(g \circ f)(x_1) = (g \circ f)(x_2)$. Daí, $i_A(x_1) = i_A(x_2)$. Logo, $x_1 = x_2$, isto é, f é injetora.

 $^{{}^{1}}D(f(x))$ é o domínio da função f

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y.

Logo f é sobrejetora. Portanto f é bijetora. Analogamente, prova-se que g é bijetora. Provemos que $g = f^{-1}$. Temos $f^{-1}: B \to A$, daí, $D(g) = B = D(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in F$, $(f \circ g)(x) = (f \circ f^{-1})(x)$. Isto é, $f(g(x)) = f(f^{-1}(x))$. Portanto, $g(x) = f^{-1}(x) \forall x \in B$. Logo, $g = f^{-1}$. #

Definição 4.11. Seja $f:A\to B$ uma função.

1. Dado $P \subseteq A$, chama-se imagem direta de P, segundo f e indica-se por f(P) o subconjunto de F dado por

$$f(P) = \{ f(x) \mid x \in P \},$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

2. Dado $Q \subseteq B$, chama-se imagem inversa de Q, segundo f e indica-se por $f^{-1}(Q)$ o subconjunto de A dado por

$$f^{-1}(Q) = \{ x \in E \mid f(x) \in Q \},\$$

isto é, $f^{-1}(Q)$ é o conjunto dos elementos de A que tem imagem em Q através de f.

Exemplos:

- 1. Seja $A = \{1, 3, 5, 7, 9\}$ e $B = \{0, 1, 2, 3, \dots, 10\}$ e $f : A \to B$ dada por f(x) = x + 1. Temos que
 - $f({3,5,7}) = {f(3), f(5), f(7)} = {4,6,8}$
 - $f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2, 4, 6, 8, 10\}$
 - $f(\emptyset) = \emptyset$
 - $f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$
 - $f^{-1}(\{0,1,3,5,7,9\}) = \{x \in A \mid f(x) \in \{0,1,3,5,7,9\}\} = \emptyset$
- 2. Sejam $A=B=\mathbb{R}$ e $f:\mathbb{R}\to\mathbb{R}$ dada por $f(x)=x^2$. Temos

- $f({1,2,3}) = {1,4,9}$
- $f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$
- $f^{-1}([1,9]) = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R} \mid 1 \le x^2 \le 9\} = [-1,-3] \cup [1,3]$

Proposição 4.11.1. Seja $f:A\to B$ uma aplicação (ou função) e sejam $P,Q\subseteq E,X,Y\subseteq B$.

- 1. Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- 2. $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Demonstração:

- 1. Se $y \in f(P)$, então existe $x \in P$ tal que f(x) = y. Mas como $P \subseteq Q$, então $x \in Q$ e daí $y \in f(Q)$. Logo $f(P) \subseteq f(Q)$.
- 2. Seja $z \in f^{-1}(X \cup Y)$. Então $f(z) \in X \cup Y$. Se $f(z) \in X$, entao $z \in f^{-1}(X)$ e daí $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $f(z) \in Y$, então $z \in f^{-1}(Y)$ e assim $z \in f^{-1}(X) \cup f^{-1}(Y)$. Logo, $f^{-1}(X \cup Y) \subseteq f^{-1}(X) \cup f^{-1}(Y)$.

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Se $z \in f^{-1}(Y)$, então $f(z) \in Y$ e assim $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Logo $f^{-1}(X) \cup f^{-1}(Y) \subseteq f^{-1}(X \cup Y)$.

Portanto, $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$. #

CAPÍTULO 5

OPERAÇÕES EM
$$\frac{\mathbb{Z}}{M\mathbb{Z}}$$

Durante esse tópico, m denotará um número inteiro positivo.

5.1 Relações de congruência

5.1.1 Definição

Definição 5.1 (Congruência). Sejam $a,b\in\mathbb{Z}$, dizemos que a é congruente com b módulo m se m|(a-b). Neste caso, escrevemos $a\equiv_m b$ ou $a\equiv b \pmod{m}$.

Exemplos:

- 1. $5 \equiv 2 \pmod{3}$, pois $3 \mid (5-2)$
- 2. $3 \equiv 1 \pmod{2}$, pois $2 \mid (3-1)$
- 3. $3 \equiv 9 \pmod{3}$, pois $2 \mid (3-9)$

5.1.2 Propriedades

Proposição 5.1.1. A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

Demonstração:

- 1. $\forall a \in \mathbb{Z}, a \equiv a \pmod{m}$ pois m | (a a) (Reflexidade)
- 2. Se $a \equiv b \pmod{m}$, então $m \mid (a-b)$. Daí, $m \mid (-(a-b))$, ou seja, $m \mid (b-a)$. Daí $b \equiv a \pmod{a}$ (Simetria)
- 3. Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $m \mid (a-b)$ e $m \mid (b-c)$. Assim, $m \mid [(a-b)+(b-c)]$. Logo, $m \mid (a-c)$, isto é, $a \equiv c \pmod{m}$ (Transitividade)

Portanto é relação de equivalência. #

Teorema 5.1. A relação de congruência módulo m satisfaz as seguintes propriedades:

- 1. $a_1 \equiv b_1 \pmod{m} \Leftrightarrow a_1 b_1 \equiv 0 \pmod{m}$
- 2. Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$
- 3. Se $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 a_2 \equiv b_1 b_2 \pmod{m}$
- 4. Se $a \equiv b \pmod{m}$, então $ax \equiv bx \pmod{m}$, $\forall x \in \mathbb{Z}$
- 5. Vale a lei do cancelamento: se $d \in \mathbb{Z}$ e mdc(d, m) = 1 então $ad \equiv bd \pmod{m}$ implica $a \equiv b \pmod{m}$

Demonstração: Provemos o ítem 3

Dizer que $a \equiv b \pmod{m}$ significa dizer que existe $t \in \mathbb{Z}$ tal que a = b + tm.

Assim, existem $m,l\in\mathbb{Z}$ tais que $a_1=b_1+km, a_2=b_2+lm$. Daí

$$a_1 a_2 = b_1 b_2 + l b_1 m + k l m^2$$

$$a_1 a_2 = b_1 b_2 + \underbrace{(lb_1 + kb_2 + klm)}_{=7} m$$

Ou seja, $a_1a_2=b_1b_2+pm$, onde $p=lb_1+kb_2+klm\in\mathbb{Z}$. Portanto, $a_1a_2\equiv b_1b_2 (mod\ m)$.

Para o ítem 5, se $ad \equiv bd (mod \ m)$, então m|d(a-b). Mas, mdc(d,m)=1, logo m|(a-b), isto é, $a \equiv b (mod \ m)$.#

Como a congruência módulo m é uma relação de equivalência, podemos determinar suas classes de equivalência. Assim, dado $n \in \mathbb{Z}$, temos

$$C(n) = \{x \in \mathbb{Z}/x \equiv n \pmod{m}\}\$$

Denotaremos C(n) por $R_m(n)$ ou \bar{n} , quando não houver possibilidade de confusão.

Por exemplo, fixando m

$$R_m(0) = \{x \in \mathbb{Z}/x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z}/x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z}/x \equiv 1 (mod\ m)\} = \{x \in \mathbb{Z}/x = 1 + km, k \in \mathbb{Z}\}\$$

$$R_m(n) = \{ x \in \mathbb{Z}/x = n + km, k \in \mathbb{Z} \}$$

5.1.3 Classes de equivalência módulo m

Proposição 5.1.2. As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão euclidiana por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão euclidiana por m é n.

Demonstração: Dado $x \in \mathbb{Z}$, pela divisão de Euclides, podemos escrever x = km + r onde $0 \le r < m$. Daí, x - r = km, isto é, m|(x - r). Logo $x \in R_m(r)$. Portanto, se r = n, então $x \in R_m(n)$ e neste caso, x = km + n = n + km, ou seja, o resto da divisão euclidiana de x por m é n.#

Corolário 5.1.1. $R_m(k) = R_m(l)$ se, e somente se, $k \equiv l \pmod{m}$.

Exemplos:

- 1. Se m=2, então os possíveis restos na divisão euclidiana por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber $R_2(0)$ e $R_2(1)$
- 2. Se m=3, então os possíveis restos da divisão euclidiana são 0,1 e 2. Daí

$$R_3(0) = 3\mathbb{Z}$$

$$R_3(1) = \{x \in \mathbb{Z}/x = 3q + 1, q \in \mathbb{Z}\}\$$

$$R_3(2) = \{x \in \mathbb{Z}/x = 3q + 2, q \in \mathbb{Z}\}\$$

Proposição 5.1.3. Na relação de equivalência módulo m existem m classes de equivalência.

Demonstração: Os possíveis restos na divisão euclidiana por m são 0,1,...,(m-1). Como cada possível resto define uma classe de equivalência diferente, existem exatamente m classes de equivalência.#

5.2 Conjunto quociente $\left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)$

Notação 5.1.1 (Conjunto quociente). Fixado m inteiro positivo, denotaremos

$$R_m(0) = \bar{0}$$

$$R_m(1)=\bar{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

O conjunto quociente desta relação será denotado por $\frac{\mathbb{Z}}{m\mathbb{Z}}$ e $\frac{\mathbb{Z}}{m\mathbb{Z}} = \{\bar{0}, \bar{1}, ..., \overline{m-1}\}$

Queremos definir um meio de somar e multiplicar os elementos de $\frac{\mathbb{Z}}{m\mathbb{Z}}$. Por exemplo, em $\frac{\mathbb{Z}}{2\mathbb{Z}} = \{\bar{0}, \bar{1}\}$ temos que a soma de pares é par, soma de par com ímpar é ímpar e a soma de ímpares é par.

Podemos escrever

$$\bar{0} \oplus \bar{0} = \overline{0+0} = \bar{0}$$

$$\bar{0}\oplus\bar{1}=\overline{0+1}=\bar{1}$$

$$\overline{1} \oplus \overline{1} = \overline{1+1} = \overline{0}$$

Para multiplicação, temos

$$\bar{0}\odot\bar{0}=\overline{0.0}=\bar{0}$$

$$\bar{0}\odot\bar{1}=\overline{0.1}=\bar{0}$$

$$\bar{1}\odot\bar{1}=\overline{1.1}=\bar{1}$$

Em $\frac{\mathbb{Z}}{m\mathbb{Z}}$ definimos

$$\bar{a} \oplus \bar{b} = \overline{a+b} \tag{5.1}$$

$$\bar{a} \odot \bar{b} = \overline{a.b} \tag{5.2}$$

Para
$$\bar{a}, \bar{b} \in \frac{\mathbb{Z}}{m\mathbb{Z}}$$

Proposição 5.1.4. As operações de soma e produto definidas em (5.1) e (5.2) são independentes dos representantes das classes.

Demonstração: Dadas duas classes com representantes diferentes, $\bar{a}_1=\bar{a}_2,\ \bar{b}_1=\bar{b}_2, a_1\neq a_2, b_1\neq b_2,$ temos:

$$\overline{a_1 + b_1} = \bar{a}_1 \oplus \bar{b}_1 = \bar{a}_2 \oplus \bar{b}_2 = \overline{a_2 + b_2}$$

$$\overline{a_1b_1} = \bar{a}_1 \odot \bar{b}_1 = \bar{a}_2 \odot \bar{b}_2 = \overline{a_2b_2}$$

C.Q.D.#

Exemplo: Determine a some e multiplicação em:

$$\frac{\mathbb{Z}}{4\mathbb{Z}} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$$

Tabela 5.1: Soma						
\oplus	Ō	1	2	3		
Ō	Ō	Ī	2	3		
1	Ī	2	3	Ō		
2	2	3	Ō	Ī		
3	3	Ō	1	2		

Tabela 5.2: Multiplicação

0	Ō	Ī	2	3
Ō	Ō	Ō	Ō	Ō
Ī	Ō	Ī	2	3
2	Ō	2	Ō	2
3	Ō	3	2	Ī

5.2.1 Elementos Inversíveis de $\frac{\mathbb{Z}}{m\mathbb{Z}}$

5.2.1.1 Inversibilidade

Definição 5.2 (Inversibilidade). Um elemento $\bar{a} \in \frac{\mathbb{Z}}{m\mathbb{Z}}$ é inversível se, e somente se, existem $\bar{b} \in \frac{\mathbb{Z}}{m\mathbb{Z}}$ tal que $\bar{a} \odot \bar{b} = \bar{1}$.

Neste caso, \bar{b} é chamado inverso de \bar{a} e denotaremos $\bar{b}=(\bar{a})^{-1}$.

Quando \bar{b} existe, ele é único. De fato, dado $\bar{a} \in \frac{\mathbb{Z}}{m\mathbb{Z}}$, se existem $\bar{b}, \bar{d} \in \frac{\mathbb{Z}}{m\mathbb{Z}}$ tais que $\bar{a} \odot \bar{b} = \bar{1} = \bar{a} \odot \bar{d}$, então $\bar{b} = \bar{b} \odot \bar{1} = \bar{b} \odot (\bar{a} \odot \bar{d}) = (\bar{b} \odot \bar{a}) \odot \bar{d} = \bar{1} \odot \bar{d} = \bar{d}$.

Proposição 5.2.1. Um elemento $\bar{a} \in \frac{\mathbb{Z}}{m\mathbb{Z}}$ é inversível se, e somente se,

$$mdc(a, m) = 1$$

Demonstração: Suponha que existe $\bar{b} \in \frac{\mathbb{Z}}{m\mathbb{Z}}$ tal que $\bar{a} \odot \bar{b} = \bar{1}$. Assim, $\overline{ab} = \bar{1}$, ou seja, $ab \equiv 1 \pmod{m}$. Daí, $ab - 1 = km, k \in \mathbb{Z}$, logo ab + m(-k) = 1, e então mdc(a, m) = 1.

Agora suponha que mdc(a,m)=1. Logo, existem $x_0,y_0\in\mathbb{Z}$ tais que $ax_0+my_0=1$, isto é, $ax_0-1=m(-y_0)$. Logo $ax_0\equiv 1 \pmod{m}$, ou seja, $\overline{ax_0}=\overline{1}$. Portanto, $\overline{a}\odot \overline{x_0}=\overline{1}$.# Exemplos:

- 1. Em $\frac{\mathbb{Z}}{4\mathbb{Z}}$ existem dois elementos inversíveis que são $\bar{1}$, cujo inverso é $\bar{1}$, e o $\bar{3}$, cujo inverso é $\bar{3}$.
- 2. Em $\frac{\mathbb{Z}}{11\mathbb{Z}}$, todos elementos, exceto $\bar{0}$, possuem inverso:

O número de elementos inversíveis de $\frac{\mathbb{Z}}{m\mathbb{Z}}$ é igual a quantidade de números coprimos com m. Esse número é denotado por $\varphi(m)$ e é chamado função φ de Euler. Pode-se demonstrar que

$$\varphi(m) = m \prod_{p/m} \left(1 - \frac{1}{p} \right)$$

Onde o produto varia sobre todos os divisores primos de m, sem repetição.

Por exemplo, para $\frac{\mathbb{Z}}{100\mathbb{Z}}$ temos:

$$100 = 2^25^2$$

Daí,

$$\varphi(100) = 100\left(1 - \frac{1}{2}\right)(1 - 15) = 40$$

Logo, em $\frac{\mathbb{Z}}{100\mathbb{Z}}$ existem 40 elementos inversíveis.

Notação 5.2.1 (Conjunto dos elementos inversíveis). Denotaremos o conjunto de todos os elementos inversíveis de $\frac{\mathbb{Z}}{m\mathbb{Z}}$ por $\left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)^*$, ou ainda $U\left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)$.

Proposição 5.2.2. Sejam
$$\bar{a}, \bar{b} \in \left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)^*$$
. Então $\bar{a} \odot \bar{b} \in \left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)^*$.

Demonstração: Por uma proposição anterior, basta verificar que mdc(ab,m)=1. Para que $\bar{a}\odot\bar{b}\in\left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)^*$.

Como
$$\bar{a}, \bar{b} \in \left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)^*$$
, então $mdc(a, m) = 1$ e $mdc(b, m) = 1$.

Assim, existem $x_0, y_0, x_1, y_1 \in \mathbb{Z}$ tais que

$$ax_0 + my_0 = 1$$

$$bx_1 + my_1 = 1$$

Daí,

$$abx_0x_1 + max_0y_1 + mbx_1y_0 + m^2y_0y_1 = 1$$

$$\underbrace{abx_0x_1}_{\in \mathbb{Z}} + m\underbrace{(ax_0y_1 + bx_1y_0 + my_0y_1)}_{\in \mathbb{Z}} = 1$$

Logo,
$$mdc(ab,m)=1$$
, ou seja, $\bar{a}\odot\bar{b}\in\left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)^*.\#$

CAPÍTULO 6

ANÉIS

6.1 Definições

Definição 6.1. Um conjunto não vazio A munido de duas operações "+"e "·", chamados soma e produto, é chamado de anel quando as seguintes condições são verdadeiras:

1. Elemento Neutro: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $a \in A$ vale

$$a + 0 = 0 + a = a$$
.

2. Elemento Oposto: Para cada elemento $a \in A$, existe $b \in A$ tal que

$$a + b = b + a = 0_A$$
.

3. Associatividade: para todos $a, b, c \in A$ vale que

$$(a + b) + c = a + (b + c).$$

Essa propriedade é chamada propriedade associativa da soma.

4. Comutatividade: Para todos $a, b \in A$ vale

$$a + b = b + a$$
.

5. Distributividade: Para todos $a, b, c \in A$ vale

$$(a + b) \cdot c = a \cdot c + b \cdot c.$$

Essa propriedade é chamada distributiva em relação ao produto.

6. Distributividade: Para todos $a, b, c \in A$ vale

$$a \cdot (b + c) = a \cdot b + a \cdot c.$$

Essa é a propriedade distributiva do produto em relação à soma.

Além disso, se A satisfizer

7. Comutatividade: Para todos $a, b \in A$ vale

$$a \cdot b = b \cdot a$$
.

Dizemos que A é um anel comutativo.

8. Elemento um: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$a \cdot 1 = 1 \cdot a = a$$
.

Para todo $a \in A$, então chamamos de anel com unidade ou anel unitário. O elemento 1 é chamado de unidade de A e A é chamado de anel com unidade ou anel unitário.

9. Associatividade: Se para todos $a, b, c \in A$, vale que

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
.

Dizemos que A é um anel associativo.

Quando A, munido de duas operações "+" e "·" é um anel, ele será denotado $(A, +, \cdot)$, para indicar claramente as operações binárias em A.

Exemplo 6.1.1. Em

$$M_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$$

CAP. 6 ● Anéis 57

defina a soma como a soma usual de matrizes e defina o produto do seguinte modo: dados A e $B \in M_2(\mathbb{R})$

$$[A,B] = AB - BA$$

onde AB denota o produto usual de matrizes. Verifique que $M_2(\mathbb{R})$ com a soma usual de matrizes e produto [,] é um anel, mas não é associativo.

Solução: De fato,

1. $A \in M_2(\mathbb{R})$, existe $0_2 \in M_2(\mathbb{R})$ tal que $A + 0_2 = 0_2 + A$. A saber:

$$0_2 = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

2. Para todo $A \in M_2(\mathbb{R})$ existe $B \in M_2(\mathbb{R})$ tal que $A + B = B + A = 0_2$. A saber:

$$B = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}$$

- 3. (A + B) + C = A + (B + C) pois em \mathbb{R} vale a associatividade
- 4. A + B = B + A, pois em \mathbb{R} a soma é comutativa

5.
$$[(A + B), C] = (A + B)C - C(A + B)$$

= $AC + BC - CA - CB = AC - CA + BC - CB = [A, C] + [B, C]$

6.
$$[A, B] = AB - BA, [B, A] = BA - AB \Rightarrow [A, B] = -[B, A]$$

$$[[A,B],C] \neq [A,[B,C]]$$

Exemplos:

1. $(\mathbb{Z}, +, .), (\mathbb{Q}, +, .), (\mathbb{R}, +, .), (\mathbb{C}, +, .), \left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)$ São anéis associativos, comutativos e com unidade em $\left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)$, o elemento neutro é a classe $\bar{0}$ e a unidade é a classe $\bar{1}$. 2. Seja $A = \mathbb{Z} = \{f : \mathbb{Z} \to \mathbb{Z}/f \text{ \'e função}\}$. Dadas duas funções quaisquer $f, g \in \mathbb{Z} \times \mathbb{Z}$, definimos $f \oplus g : \mathbb{Z} \to \mathbb{Z}$ e $f \odot g : \mathbb{Z} \to \mathbb{Z}$ como:

$$(f \oplus g) = f(x) + g(x)$$
$$(f \odot g) = f(x)g(x)$$

- (a) Dado $x \in \mathbb{Z}$ $(f \oplus g)(x) = f(x) + g(x) = g(x) + f(x) = (g \oplus f)(x), \text{ portanto } f \oplus g = g \oplus f$
- (b) Dado $x \in \mathbb{Z}$ $(f \odot g)(x) = f(x)g(x) = g(x)f(x) = (g \odot f)(x), \text{ portanto } f \odot g = g \odot f$
- (c) Definida $0\mathbb{Z} \to \mathbb{Z}$ como $0(x) = 0, \forall x \in \mathbb{Z}$, temos $(f(x) \oplus 0)(x) = f(x) \oplus 0(x) = 0(x) \oplus f(x) = f(x)$

6.2 Propriedades de um Anel

1. O elemento neutro é único.

Suponha que exista
$$0_1,0_2\in A$$
 tais que
$$a+0_1=0_1+a=a;\ b+0_2=0_2+b=b,\ \mathrm{daí}\ 0_1=0_1+0_2=0_2$$

2. Para cada $a \in A$ existe um único oposto.

De fato, suponha que existam $b_1,b_2\in A$ tais que

$$a+b_1=0;\ a+b_2=0.\ \mathrm{Dai}\ b_1=b_2+0=b_1+(a+b_2)=(b_1+a)+b_2=0+b_2=b_1=b_2$$

3. Para todo $a \in A, -(-a) = a$

Dado $a \in A$, -a é oposto de a, isto é, a + (-a) = 0. Logo o oposto de (-a) é a, daí -(-a) = a.

- 4. Dados $a_1, a_2, ..., a_n \in A, n \le 2$, então $-(a_1 + a_2 + ... + a_n) = (-a_1) + (-a_2) + ... + (-a_n)$
- 5. Para todo $a, x, y \in A$, se a + x = a + y, então x = y

CAP. 6 • Anéis 59

6. Para todo $a \in A$, a0 = 0a = 0Temos 0 + 0.0 = a0 = a(0 + 0) = a0 + a0, daí

$$\underbrace{0.0}_{a0} + 0 = \underbrace{0.0}_{a0} + a0. \text{ Pela propriedade 5 } a0 = 0$$

7. Para todo $a, b \in A$, temos a(-b) = -ab

Provemos que a(-b) = -ab

$$a(-b) + ab = a((-b) + b) = a0 = 0$$
, portanto $-ab = a(-b)$

8. Para todo $a, b \in A$, ab = (-a)(-b)

6.3 Anel de Integridade

6.3.0.1 Definição

Definição 6.2 (Anel de Integridade). Um anel comutativo A é um anel de integridade quando para todos $a, b \in A$, se ab = 0, então $a = 0 \lor b = 0$. Um anel de integridade também é chamado de domínio de integridade ou simplesmente de domínio.

Se a e b são elementos não nulos de um anel A tais que ab=0, então a e b são chamados de divisores próprios de zero.

Exemplos:

- 1. Os anéis $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ são anéis de integridade.
- 2. Em geral, $\frac{\mathbb{Z}}{m\mathbb{Z}}$ não é anel de integridade, por exemplo, em $\frac{\mathbb{Z}}{4\mathbb{Z}}$, $\bar{2} \neq \bar{0}$, no entanto $\bar{2} \odot \bar{2} = \bar{4} = \bar{0}$
- 3. $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Suponha que $m=nk,\ m>n>1$ e m>k>. Logo, em $\frac{\mathbb{Z}}{m\mathbb{Z}}, \bar{n}\neq\bar{0}$ e $\bar{k}\neq\bar{0}$. Logo, se m não é primo, então $\frac{\mathbb{Z}}{m\mathbb{Z}}$ não é um anel de integridade.

Agora, suponha que m=p primo. Sejam $\bar{a},\bar{b}\in\frac{\mathbb{Z}}{m\mathbb{Z}}$ tais que $\bar{a}\odot\bar{b}=\bar{0}$, ou seja, $ab\equiv 0 (mod\ p)$. Daí p|ab. Logo $p|a\vee p|b$. Portanto, $\bar{a}=\bar{0}\vee\bar{b}=\bar{0}$. Assim, $\frac{\mathbb{Z}}{m\mathbb{Z}}$ é anel de integridade se, e somente se, m é primo.

Definição 6.3. Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um subanel quando $(B, +, \cdot)$ é um anel.

Exemplos:

- 1. Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de subanéis triviais.
- 2. Em $(\mathbb{Z}_4, \oplus, \odot)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3. No anel \mathbb{Z} , o conjunto $m\mathbb{Z}$, m > 1 é um subanel de \mathbb{Z} .

Proposição 6.3.1. Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y \in B$, e $x \cdot y \in B$ para todos $x, y \in B$.

$$(A, +, .), (B, \oplus, \odot)$$
 Anéis
$$f: A \to B$$

$$a \to f(a)$$

$$g: \mathbb{Z} \to \frac{\mathbb{Z}}{m\mathbb{Z}}$$

$$x \to \bar{x}$$

$$g(x+y) = \overline{x+y} = \bar{x} \oplus \bar{y} = g(x) \oplus g(y)$$

$$g(x+y) = g(x) \oplus g(y)$$

$$g(xy) = \overline{xy} = \bar{x} \odot \bar{y} = g(x) \odot g(y)$$

$$g(1) = \bar{1}$$

CAP. 6 ● Anéis 61

6.4 Homomorfismo

6.4.0.1 Definição

Definição 6.4 (Homomorfismo). Um homomorfismo do anel (A,+,.) no anel (B,\oplus,\odot) é uma função $f:A\to B$ que satisfaz:

1.
$$f(x + y) = f(x) + f(y), \forall x, y \in A$$

2.
$$f(xy) = f(x)f(y), \forall x, y \in A$$

Se (A,+,.) é um anel, então $f:A\to A$ dada por f(a)=a é um homomorfismo de A em A pois:

1.
$$f(x + y) = x + y = f(x) + f(y)$$

2.
$$f(xy) = xy = f(x)f(y)$$

3.
$$f(1_A) = 1_A$$

6.4.0.2 Propriedades

Proposição 6.4.1. Seja $f:A\to B$ homomorfismo do anel A no anel B. Então:

1.
$$f(0_A) = 0_B$$

2.
$$f(-a) = -f(a), \forall a \in A$$

Demonstração:

1. Da condição 1 da definição de homomorfismo, fazendo $x=y0_A$, temos

$$f(0_A + 0_A) = f(0_A) \oplus f(0_A)$$

$$\max 0_A + 0_A = 0_A. \text{ Daí}$$

$$f(0_A) = f(0_A) + f(0_A)$$

Somando $-f(0_A)$ em ambos os lados

$$f(0_A) \oplus (-f(0_A)) = (f(0_A) + f(0_A)) + (-f(0_A))$$

$$0_B = f(0_A) + 0_B$$

$$f(0_A)=0_B$$

2. Temos $0_B = f(0_A) = f(a + (-a)) = f(a) \oplus f(-a)$

Somando -f(a) em ambos os lados

$$0_B \oplus (-f(a)) = [f(a) \oplus f(-a)] + (-f(a)) - f(a) = f(-a) \oplus (f(a) \oplus (-f(a)))$$

$$f(-a) = -f(a).\#$$

Seja $f: \mathbb{Z} \to \mathbb{Z}$ um homomorfismo. Dado $n \in \mathbb{Z}, n \geq 0$. Temos daí,

$$f(n) = f(\underbrace{1 + \dots + 1}_{n \text{ vezes}}) = \underbrace{f(1) + \dots + f(1)}_{n \text{ vezes}} = nf(1) = n1$$

f(n) = n, para todo $n \in \mathbb{Z}$.

Proposição 6.4.2. Seja $f:A\to B$ um homomorfismo sobrejetor de anéis.

- 1. Se A tem unidade, então B tem unidade e $f(1_A) = 1_B$.
- 2. Se A tem unidade e $x \in A$ possui inverso multiplicativo, então f(x) tem inverso e $f(x^{-1} = (f(x))^{-1}$.

6.4.1 Epimorfismo, monomorfismo e isomorfismo

Definição 6.5 (Epimorfismo, monomorfismo e isomorfismo). Seja $f:A\to B$ um homomorfismo, onde A e B são anéis. Dizemos que

- 1. f é um epimorfismo se f for sobrejetora
- 2. f é um monomorfismo se f for injetora
- 3. f é um isomorfismo se f for bijetora
- 4. Quando A=B e f é um isomorfismo, então f é um automorfismo

6.5 Ideal de um anel

6.5.0.1 Definição

Definição 6.6 (Ideal em um anel). Seja (A, +, .) um anel comutativo. Um ideal em A é um conjunto não vazio I tal que:

CAP. 6 • Anéis 63

- 1. Para todo $a, b \in I$, devemos ter $a b \in I$.
- 2. Para todo $b \in A$ e todo $x \in I$, $bx \in I$.

Quando I=A ou $I=\{0_A\}$, I é chamado de ideal trivial.

6.5.0.2 Propriedades

Proposição 6.6.1. Seja A um anel comutativo e I um ideal de A. Então:

- 1. $0_A \in I$.
- 2. $-a \in I$ para todo $a \in I$.
- 3. Se $1_A \in I$, então I = A.

Demonstração: Temos que da definição de ideal, $ab \in I$, para todo $a,b \in I$.

Assim, dado $a \in I$, $a0_A = 0_A \in I.\#$

Demonstração: Como I é ideal, $1_Ax \in I$, para todo $x \in A$, ou seja, $x = 1_Ax \in I$ para qualquer $x \in A$, logo, $A \subseteq I$. Como $I \subseteq A$, então I = A.#

Exemplos:

- 1. Em \mathbb{Z} todos os ideais não triviais são da forma $m\mathbb{Z}, m > 1$
- 2. No anel $\frac{\mathbb{Z}}{p\mathbb{Z}}$, onde p é um número primo, os únicos ideais são os triviais $\{\bar{0}\}$ e $\frac{\mathbb{Z}}{p\mathbb{Z}}$.

Demonstração: Seja $I \subseteq \frac{\mathbb{Z}}{p\mathbb{Z}}$ um ideal, $I \neq \{\bar{0}\}$. Provemos que $I = \frac{\mathbb{Z}}{p\mathbb{Z}}$. Para isso, vamos provar que $\bar{1} \in I$. Seja $\bar{a} \in I$, $\bar{a} \neq \bar{0}$, pois $I \neq \{\bar{0}\}$. Mas como p é primo, mdc(a,p) = 1, daí existe $\bar{b} \in \frac{\mathbb{Z}}{p\mathbb{Z}}$, $\bar{b} \neq \bar{0}$, tal que $\bar{1} = \bar{a}\bar{b}$. Mas I é ideal e $\bar{a} \in I$, logo $\bar{1} = \bar{a}\bar{b} \in I$.

Portanto
$$I = \frac{\mathbb{Z}}{p\mathbb{Z}}.\#$$

3. Os únicos ideais não triviais de $\frac{\mathbb{Z}}{8\mathbb{Z}}=\{\bar{0},\bar{1},\bar{2},\bar{3},\bar{4},\bar{5},\bar{6},\bar{7}\}$ são: $I_1=\{\bar{0},\bar{2},\bar{4},\bar{6}\} \text{ e } I_2=\{\bar{0},\bar{4}\}$

Observação: Num anel (A, +, .), a diferença a - b é definida como

$$a - b = a + (-b), \ a, b \in A$$

6.5.1 Congruência módulo I

6.5.1.1 Definição

Definição 6.7 (Congruência módulo I). Seja I um ideal de um anel (A, +, .). Dizemos que x é congruente a y módulo I quando $x - y \in I$. Neste caso, escrevemos $x \equiv y \pmod{I}$.

6.5.1.2 Propriedades

Proposição 6.7.1. A congruência Módulo I é uma relação de equivalência em A timesA(A anel unitário).

Demonstração: Como $0=0_A\in I$ e para todo $x\in I, x-x=0\in I,$ então $x\equiv x \pmod{I}.$

Suponha que $x\equiv y \pmod{I}$. Então $x-y\in I$. Como $-1\in A, y-x=-(x-y)=-[(x-y)1]=(x-y)(-1)\in I$, ou seja, $y\equiv x \pmod{I}$.

Agora,
s e $x \equiv y \pmod{I}$ e $y \equiv z \pmod{I}$, então $x-y \in I$ e $y-z \in I$. Daí
, $x-z = (x-z) + (y-z) \in I$, ou seja, $x \equiv z \pmod{I}$.

Logo, é uma relação de equivalência.#

Seja $y \in A$. A classe de equivalência módulo I é

$$C(y) = \{x \in A/x \equiv y \pmod{I}\} = \{x \in A/x - y \in I\}$$

Agora, $x-y\in I$ significa que existe $t\in I$, tal que x-y=t. Logo, x=y+t, onde $t\in I$. Assim,

$$C(y) = \{y + t, t \in I\} = y + I$$

Notação 6.7.1 (Congruência Módulo I). Denotamos por y+I (ou I+y) a classe de equivalência módulo I. Denotamos por $\frac{A}{I}$ o conjunto de todas as classes de equivalência, tal conjunto é chamado quociente do anel A pelo ideal I.

Exemplos:

1. A anel e $I_1=\{0\}$ e $I_2=A$ idea
is.

(a)
$$\frac{A}{I_1}$$
; $a \in A$
 $C(a) = a + I_1 = \{a + 0\} = \{a\}$

CAP. 6 ● Anéis 65

$$\frac{A}{I_1} = \{a + I, a \in A\}$$

Tantas classes de equivalência quantos elementos em A

(b)
$$\frac{A}{I_2}$$
; $a \in A$, $I_2 = A$
 $C(a) = a + I = \{a + t/t \in I_2\}$
 $C(0_A) = 0_A + I]\{0_A + t/t \in I_2\}$
 $0_A + I = \{t/t \in I_2 = A\}$
 $\frac{A}{I_2} = \{0_A + I\}$
Apenas uma classe de equivalência

2. Seja $A=\mathbb{Z}$. Sabemos que os ideais de \mathbb{Z} são da forma $m\mathbb{Z}, m>1$. Seja $I=m\mathbb{Z}$ um ideal de \mathbb{Z} . Então

$$x \equiv y (mod \ I) \Leftrightarrow x - y \in I \Leftrightarrow x - y = mk, k \in \mathbb{Z} \Leftrightarrow m | (x - y) \Leftrightarrow x \equiv y (mod \ m)$$

Portanto,
$$\frac{\mathbb{Z}}{I} = \frac{\mathbb{Z}}{m\mathbb{Z}}$$
.

Agora seja I ideal e A anel.

$$\frac{A}{I}\{y+I/y\in A\}$$

$$y+I=\{y+t/t\in I\}$$

Vamos definir uma soma \oplus e um produto \odot em $\frac{A}{I}$ por

$$(x+I) \oplus (y+I) = (x+y) + I$$

$$(x+I)\odot(y+I)=(xy)+I$$

Verifiquemos que a soma e o produto em $\frac{A}{I}$ não dependem do representante da classe de equivalência. Dados $x+I, x_1+I, y+I, y_1+I \in \frac{A}{I}$ tais que

$$x + I = x_1 + I$$

$$y + I = y_1 + I$$

Então

$$(x+I) \oplus (y+I) = (x+y) + I$$

$$(x_1 + I) \oplus (y_1 + I) = (x_1 + y_1) + I$$

Como $x+I=x_1+I$, então $x-x_1\in I$ e como $y+I=y_1+I$, então $y=y_1\in I$. Mas I é ideal, logo $(x-x_1)+(y-y_1)=(x+y)-(x_1+y_1)\in I$, ou seja

$$(x + I) \oplus (y + I) = (x_1 + I) \oplus (y_1 + I)$$

Agora,

$$(x+I)\odot(y+I)=(xy)+I$$

$$(x_1 + I) \odot (y_1 + I) = (x_1y_1) + I$$

Como $(x-x_1)y\in I$ e $(y-y_1)x_1\in I$. Logo,

$$(x - x_1)y + (y - y_1)x_1 \in I$$

$$xy - \underbrace{x_1y + yx_1}_{=0} - y_1x_1 \in I$$

$$xy - x_1y_1 \in I$$

, ou seja, $xy + I + x_1y_1 + I$. Portanto,

$$(x + I) \odot (y - I) = (x_1 + I) \odot (y_1 + I)$$

Teorema 6.1. Seja (A, +, .) um anel associativo, comutativo e com unidade. Então, se I é um ideal de A, o quociente $\frac{A}{I}$ com as operações \oplus e \odot é um anel associativo, comutativo e com unidade. O elemento zero desse anel é a classe $0_A + I$ e o elemento um de $\frac{A}{I}$ é $1_A + I$.

CAPÍTULO 7

GRUPOS

7.1 Definição

Definição 7.1. Seja A um conjunto não vazio. Toda função $f:A\times A\to A$ é chamada de uma operação binária sobre A.

Nas considerações que faremos a seguir uma opereção binária f sobre A associa a cada par ordenado $(x,y) \in A \times A$ um elemento $f(x,y) \in A$ será denotada simplesmente por *. Assim escreveremos f(x,y) = x*y. Por exemplo a operação *: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ tal que $x*y = x^y$ está bem definida pois $x^y \in \mathbb{N}$ sempre que $x, y \in \mathbb{N}$. Observe que esta operação não pode ser definida em \mathbb{Z} pois por exemplo $2^{-1} \notin \mathbb{Z}$. Também não pode ser definida em \mathbb{Q} pois $2^{1/2} \notin \mathbb{Q}$.

Definição 7.2 (Grupo). Um grupo G é um conjunto não vazio munido de uma operação binária * tal que:

- 1. Para todo $x, y, z \in G$ temos (x * y) * z = x * (y * z). (Associatividade)
- 2. Existe $e \in G$ tal que x * e = e * x = x para todo $x \in G$. Tal elemento e é chamado de elemento neutro ou unidade.

3. Para cada $x \in G$, existe $x^{-1} \in G$ tal que $x * x^{-1} = x^{-1} * x = e$. O elemento x^{-1} é chamado de inverso ou oposto¹ de x.

Denotamos um grupo G, cuja operação binária é *, por (G,*). Quando * é a soma, dizemos que (G,*) é um grupo aditivo. Se * é a multiplicação, dizemos que (G,*) é um grupo multiplicativo.

7.2 Grupo comutativo ou abeliano

Definição 7.3 (Grupo comutativo ou abeliano). Um grupo (G,*) é chamado de grupo comutativo ou abeliano quando * é comutativa, ou seja,

$$x * y = y * x$$

para todo $x, y \in G$.

Exemplos:

- 1. $(\mathbb{Z}, +)$ é um grupo abeliano.
- 2. $(\mathbb{Q}, +)$ é um grupo abeliano.
- 3. (\mathbb{Q}^*, \cdot) é um grupo abeliano.
- 4. $(\mathbb{R}, +)$ é um grupo abeliano.
- 5. (\mathbb{R}^*, \cdot) é um grupo abeliano.
- 6. Considere o conjunto dos números reais R com a operação * definida por

$$x * y = x + y - 3$$

, $x, y \in \mathbb{R}$. Então $(\mathbb{R}, *)$ é um grupo abeliano.

$$^{1}x^{-1}\neq\frac{1}{x}$$

CAP. 7 ● Grupos 69

Solução: De fato,

$$(x * y) * z = (x + y - 3) * z = (x + y - 3) + z - 3$$
$$= x + (y - 3 + z) - 3 = x + (y + z - 3) - 3 = x * (y + z - 3)$$
$$= x * (y * z)$$

para todo $x, y, z \in \mathbb{R}$.

Agora,

$$x * y = x + y - 3 = y + x - 3 = y * x$$

para todo $x, y \in \mathbb{R}$. Logo, * é comutativa.

Para todo $x \in \mathbb{R}$, temos x * 3 = x + 3 - 3 = x. Logo, 3 é o elemento neutro de *.

Dado $x \in \mathbb{R}$, tome $x^{-1} = 6 - x$. Assim

$$x * x^{-1} = x + (6 - x) - 3 = 3$$

Logo, para $x \in \mathbb{R}$ o inverso de x por * é 6-x.

Portanto $(\mathbb{R},*)$ é um grupo comutativo.

7.
$$\left(\frac{\mathbb{Z}}{m\mathbb{Z}}, \oplus\right)$$
 é grupo.

8.
$$\left(\frac{\mathbb{Z}}{m\mathbb{Z}} - \{\bar{0}\}, \odot\right)$$
 é grupo?
$$\frac{\mathbb{Z}}{4\mathbb{Z}} - \{\bar{0}\} = \{\bar{1}, \bar{2}, \bar{3}\} = G$$
 $\bar{2} \in G$, $\bar{2} \odot \bar{2} = \bar{0} \notin G$

9.
$$\left(U\left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right),\odot\right)$$
é um grupo.

10. ver https://en.wikipedia.org/wiki/XOR_swap_algorithm

7.3 Propriedades Imediatas de um grupo

Seja (G,*) um grupo. É fácil ver que

- 1. O elemento neutro é único
- 2. Existe um único inverso para cada $x \in G$
- 3. Para todos $x,y\in G, (x*y)^{-1}=y^{-1}*x^{-1}.$ Por indução, $x_1,x_2,...,x_{n-1},x_n\in G,$

$$(x_1 * x_2 * ... * x_{n-1} * x_n)^{-1}$$

$$= \chi_n^{-1} * \chi_{n-1}^{-1} * \dots * \chi_2^{-1} * \chi_1^{-1}$$

4. Para todo $x \in G, (x^{-1})^{-1} = x$

7.4 Ordem de um Grupo

Definição 7.4 (Ordem de um grupo). Quando um grupo (G,*), G é um conjunto com um número finito de elementos, dizemos que G é um grupo finito. Denotamos por |G| o número de elementos de G que será chamado de ordem de G ou cardinalidade de G. Quando G não é finito, dizemos que G é um grupo infinito.

Exemplos:

- 1. $(\mathbb{Z}_m, +)$ é um grupo finito para todo m > 1.
- 2. $(\mathbb{Z}, +)$ é um grupo infinito.

7.5 Subgrupo

7.5.0.1 Definição

Definição 7.5 (Subgrupo). Seja (G,*) um grupo. Um subconjunto não vazio $H\subseteq G$ é um subgrupo se, e somente se, (H,*) é um grupo.

CAP. 7 ● Grupos 71

7.5.0.2 Propriedades

Proposição 7.5.1. Um subconjunto não vazio $H \subseteq G$ é um subgrupo de G se, e somente se

1. $x^{-1} \in H, \forall x \in H$

2.
$$x * y \in H, \forall x, y \in H$$

Demonstração: Se H é subgrupo, então H é um grupo. Logo 1 e 2 são satisfeitos.

Agora provemos que se H satisfaz 1 e 2, então H é grupo.

Como G é grupo, então * é associativo, logo * é associativo em H.

De 1, $\forall x \in H, x^{-1} \in H$. Mas de 2, $\forall x, y \in H, x * y \in H$. Logo, se $x \in H$, então $e = x * x^{-1} \in H$

Novamente por 1, todo elemento de H possui inverso em H.

Logo, (H, *) é um grupo.#

Exemplos:

- 1. Dado (G,*) grupo, $H=\{e\}$ e H=G são subgrupos de G, chamados de subgrupos triviais
- 2. $(\mathbb{Z}, +), H = m\mathbb{Z}, m > 1$

Então H é subgrupo de \mathbb{Z}

3.
$$G = U\left(\frac{\mathbb{Z}}{8\mathbb{Z}}\right) = \{\bar{1}, \bar{3}, \bar{5}, \bar{7}\}\$$

 (G,\odot) é um grupo

|G|=4

 $H_1 = \{\bar{1}, \bar{3}\}$ é subgrupo de G

 $H_2 = \{\bar{1}, \bar{5}\}$ é subgrupo de G

 $H_3 = \{\bar{1}, \bar{7}\}$ é subgrupo de G

7.6 Ordem de um subgrupo

Teorema 7.1 (Lagrange). Seja G um grupo finito. Se $H \subseteq G$ é um subgrupo, então |H| divide |G|.

Exemplo: Quais são as possíveis ordens dos subgrupos de um grupo de ordem 48? Seja G um grupo tal que |G|=48. Se H é um subgrupo de G, então |H| divide |G| $48=2^43$

$$|H| = 2, 3, 2^2, 2^3, 2^4, 2.3, 2^23, 2^23$$

Observação: O teorema não diz que haverá um subgrupo de ordem n para todo n tal que n||G|. Diz apenas que se H é subgrupo de G, então |H| divide |G|.

Corolário 7.1.1. Os únicos subgrupos de um grupo de ordem prima são os triviais

Demonstração: Quando |G|=p primo, temos que os únicos divisores de p positivos são 1 e p.

Então, se H é subgrupo de G, então |H|=1 ou |H|=p.

Portanto, $H = \{e\}$ ou H = G.#

7.7 Homomorfimos de Grupos

Sejam (G,*) e (H, Δ) grupos quaisquer. Considere uma função $f:G\to H$. Entre todas as possíveis funções entre G e H vamos considerar somente aquelas que satisfação a condição

$$f(x * y) = f(x) \triangle f(y)$$

para todos $x, y \in G$, ou seja, podemos determinar a imagem de f(x * y) a partir da imagem de x e de y,

Definição 7.6. Dados doi grupos (G,*) e (H, Δ) dizemos que uma função $f:G\to H$ é um homomorfismo de grupos se

$$f(x * y) = f(x) \triangle f(y)$$

para todos $x, y \in G$.

Observação 7.6.1. Sejam (G,*)e (H,\triangle) grupos e $f:G\to H$ um homomorfismo.

- 1. Se G=H, neste caso $f:G\to G$ é chamado de um endomorfimos de grupos.
- 2. Se $f:G\to H$ é uma função injetora, então dizemos que f é um monomorfismo de grupos.

CAP. 7 ● Grupos 73

3. Se $f:G\to H$ é uma função sobrejetora, então dizemos que f é um epimorfismo de grupos.

- 4. Se $f:G\to H$ é uma função bijetora, então dizemos que f é um isomorfismo de grupos.
- 5. Se $f:G\to G$ é uma função bijetora, então dizemos que f é um automorfismo de grupos.

Exemplos 7.6.1. 1. A função $f: \mathbb{Z} \to \mathbb{C}$ dada por $f(x) = i^x$ é um homomorfismo de $(\mathbb{Z}, +)$ em (\mathbb{C}, \cdot) . De fato,

$$f(x + y) = i^{x+y} = i^x \cdot i^y = f(x) \cdot f(y)$$

para todos $x, y \in \mathbb{Z}$.

2. A função $f: \mathbb{R}_+^* \to \mathbb{R}$ dada por $f(x) = \ln(x)$ é um homomorfismo de (\mathbb{R}_+^*, \cdot) em $(\mathbb{R}, +)$. De fato,

$$f(xy) = \ln(xy) = \ln(x) + \ln(y) = f(x) + f(y)$$

para todos $x, y \in \mathbb{R}_+^*$. Além disso, como $\ln(x)$ é uma função bijetora, então f é um isomorfismo de grupos.

3. Sejam m um inteiro positivo fixo. A função $f: \mathbb{Z} \to \mathbb{Z}_m$ definida por $f(x) = \overline{x}$ é um homomorfimos de $(\mathbb{Z}, +)$ em (\mathbb{Z}_m, \oplus) . De fato,

$$f(x + y) = \overline{x + y} = \overline{x} + \overline{y} = f(x) + f(y).$$

Além disso, esse homomorfismo é sobrejetor.

Proposição 7.6.1. Sejam (G,*) e (H, \triangle) grupos e $f:G\to H$ um homomorfismo. Denote por 1_G e 1_H os elementos neutros de G e H, respectivamente.

- 1. $f(1_G) = 1_H$
- 2. $f(x^{-1}) = (f(x))^{-1}$ para todo $x \in G$.

Proposição 7.6.2. Sejam I é um subgrupo de G e $f:G\to H$ um homomorfismo de grupos. Então f(I) é um subgrupo de H.

 \Diamond

Prova: Como I é um subgrupo de G, então $1_G \in G$. Agora f é um homomorfismo, logo $f(1_G) = 1_H \in f(I)$ e assim $f(I) \neq \emptyset$.

Agora, dado $y \in f(I)$ precisamos mostrar que $y^{-1} \in f(I)$. Mas se $y \in f(I)$, então y = f(x) com $x \in I$. Daí

$$y^{-1} = [f(x)]^{-1} = f(x^{-1})$$

e como I é um subgrupo de G, $x^{-1} \in I$ e como isso $y^{-1} \in f(I)$.

Finalmente, dados $y, z \in f(I)$ existem $x_1, x_2 \in I$ tais que $y = f(x_1)$ e $z = f(x_2)$. Mas f é homomorfismo, daí

$$y \triangle z = f(x_1) \triangle f(x_2) = f(x_1 * x_2)$$

e como Ié subgrupo, $x_1 * x_2 \in I.$ Logo $y \triangle z \in f(I).$

Portanto f(I) é um subgrupo de H.

Definição 7.7. Sejam (G,*) e (H, \triangle) grupos e $f:G\to H$ um homomorfismo de grupos. Chama-se de núcleo ou kernel de f e denota-se por N(f) ou $\ker(f)$ o seguinte subconjunto de G:

$$\ker(f) = \{x \in G \mid f(x) = 1_H\}.$$

Exemplos 7.7.1. 1. Considere o homomorfismo $f: \mathbb{Z} \to \mathbb{C}^*$ dado por $f(x) = i^x$. Temos

$$\ker(f) = \{x \in \mathbb{Z} \mid f(x) = 1\} = \{x \in \mathbb{Z} \mid i^x = 1\} = \{0, \pm 4, \pm 8, \cdots\} = 4\mathbb{Z}.$$

2. O núcleo do homomorfismo $f: \mathbb{R}_+^* \to \mathbb{R}$ dado por $f(x) = \ln(x)$. Temos

$$\ker(f) = \{x \in \mathbb{R}_+^* \mid f(x) = 0\} = \{x \in \mathbb{R}_+^* \mid \ln(x) = 0\} = \{1\}.$$

3. O núcleo do homomorfismo $f:\mathbb{Z}\to\mathbb{Z}_m$ dado por $f(x)=\overline{x},\ m>0$ fixo. Temos

$$\ker(f) = \{x \in \mathbb{Z} \mid f(x) = \overline{0}\} = \{x \in \mathbb{Z} \mid \overline{x} = \overline{0}\} = \{0, \pm m, \pm 2m, \cdots\}.$$

Proposição 7.7.1. Sejam $f:G\to H$ um homomorfismo de grupos. Então:

- 1. $\ker(f)$ é um subgrupo de G.
- 2. f é um monomorfismo se, e somente se, $ker(f) = \{1_G\}$.

CAP. 7 ● Grupos 75

Prova:

1. Como $f(1_G) = 1_H$, então $1_G \in \ker(f)$ e com isso $\ker(f) \neq \emptyset$. Se $x \in \ker(f)$, então $f(x^{-1}) = [f(x)]^{-1} = 1_H^{-1} = 1_H$ e daí $x^{-1} \in \ker(f)$. Finalmente se $x, y \in \ker(f)$, então $f(x * y) = f(x) \triangle f(y) = 1_H \triangle 1_H = 1_H$, ou seja, $x * y \in \ker(f)$.

Portanto $\ker(f)$ é um subgrupo de G.

2. Suponha que f é um monomorfismo de grupos. Tome $x \in \ker(f)$. Temos $f(x) = 1_H = f(1_G)$ e como f é injetora $x = 1_G$. Logo $\ker(f) = \{1_G\}$.

Agora suponha que $\ker(f) = \{1_G\}$. Sejam $x, y \in G$ tais que

$$f(x) = f(y)$$

$$f(x) \triangle f(y)^{-1} = 1_H$$

$$f(x) \triangle f(y^{-1}) = 1_H$$

$$f(x * y^{-1}) = 1_H$$

e da
í $x*y^{-1}\in\ker(f)=\{1_G\}.$ Logo $x*y^{-1}=1_G,$ isto é
,x=y. Portanto f é injetora.

 \Diamond

7.8 Grupos de Permutação

Fazer a parte de S_n .

7.9 Grupos Cíclicos

Fazer a parte de grupos cíclicos.

BIBLIOGRAFIA

- [1] H.H. Domingues, G.Iezzi: Álgebra Moderna, 2ª Ed., Atual, 1982
- [2] S. Shokranian: Álgebra 1, Ciência Moderna, 2010
- [3] Adilson Gonçalves: Introdução à Álgebra, 5ª Ed., IMPA, 2003
- [4] G. Birkhoff, S. MacLane: Álgebra Moderna Básica, 4ª Ed., Guanabara Dois, 1980
- [5] E. A. Filho: Iniciação à Lógica Matemática, Nobel, 2002

BIBLIOGRAFIA 78

ÍNDICE REMISSIVO

Ideal, 31

Números inteiros

Conjuntos limitados, 25

Princípio da boa ordenação, 25

Elemento mínimo, 25