Classification for Math Problems

Problem Statement

We are looking to classify math problems by problem type

Processing Flow

Use of Classification

Recommend learning resources

- Future Considerations:
 - Provide answer check
 - Gamification?

Analytic Approach

Muli-output/Multilabel classification problem

• We trained a Decision Tree algorithm to perform multi-output classification of text into categories of math problems.

Data Processing

- Sourced from GitHub community called Hugging Face
- Subset of larger data set
 - 56 categories of math problems
 - We took 10,000 questions from each category
- 56 categories of math problems
 - Examples: Algebra Linear 1d, Arithmetic Add or Sub, Calculus differentiate,
 Numbers is prime, Polynomials expand
- Problems are synthetically created

Some examples of math problems

question

Θ	Find the first derivative of $2*d**4$ - $35*d**2$ - 695 wrt d.
1	Find the third derivative of -a**3*g**3*t**3 + 642*a**3*g*t**3 + 16*a**3*g*t**2 - 5*a**2*t**2 + a*g**3 wrt t.
2	What is the second derivative of 12518*f**3 + 3760*f?
3	What is the third derivative of -t**4 - 880*t**3 + 152*t**2 wrt t?
4	What is the second derivative of 2*c*n**2*z**3 + 30*c*n**2 + 2*c*n*z**2 - 2*c + n**2*z**2 - 3*n*z**3 - 2*n*z wrt n?
5	Find the first derivative of -1373*u**3 + 81 wrt u.
6	What is the derivative of -2612*k - 37?
7	Find the third derivative of w**6 - 2*w**5 + 579*w**4 - 5032*w**2.
8	What is the third derivative of -70*f**5 + 6*f**2?
9	Differentiate 745*b**4 - 287 with respect to b.
10	What is the second derivative of -600*l**4 - 5*l**3 - 6*l - 529?

	question
Θ	What is -5 - 110911?
1	What is -0.188 + -0.814?
2	Sum 259 and -46.
3	Sum -10 and -52539.
4	What is the difference between -2 and 251860
5	-9259432 + 1
6	What is 1141.09 less than 1?
7	What is -5 - 72726?
8	Total of 0.3 and 170.7.
9	Work out 29.8 + -0.18.
10	What is 19450 minus -0.8?

	question
0	Solve $0 = 4*b + b + 15$ for b.
1	Solve $-3*d = -0*d + 3$ for d.
2	Solve $-4*h + 9 = 41$ for h.
3	Solve 2514*m = 2508*m - 24 for m.
4	Solve $-7*a + 6*a = 4$ for a.
5	Solve 288*w - 298*w = -70 for w.
6	Solve -14*h = -4*h - 10 for h.
7	Solve $5*w + 3 = -2$ for w.
8	Solve $-15*f + 21*f - 12 = 0$ for f.
9	Solve -22 = 6*c - 4 for c.
10	Solve $13*z - 7*z + 30 = 0$ for z.

Model Form and Fitting

- Decision Tree algorithm:
 - LGBM Classifier (Light Gradient Boosted Machine Classifier)
- Two methods:
 - Classifier Chain and Multi Output Classifier
- Used TF-IDF measure
 - Determines how relevant a word is to a question and a category
 - Counts appearances of words in questions (Term Frequency) and across categories (Inverse Document Frequency)
 - Higher the TF-IDF score, the more relevant the word is

Model Results and Analysis

- Used Three-fold Cross Validation
- Calculated F-scores to measure accuracy of the fitted models

- F-score for LGBM with Multi Output Classifier: .949699
- F-score for LGBM with Classifier Chain: .948426

Chose LGBM with Multi Output Classifier as better model

Model Results and Analysis

Classification Report:

 Most Categories have 1.00 Precision, Recall, & F score

Some categories
 with poor scores
 likely due to related
 categories

	precision	recarr	TI-Score	support
algebralinear_1d	0.95	1.00	0.97	1938
algebra linear 1d_composed	0.84	0.85	0.84	1973
algebra_linear_2d	1.00	1.00	1.00	1949
algebralinear_2d_composed	0.86	0.85	0.85	2084
algebrapolynomial_roots	0.93	0.47	0.62	2099
algebrapolynomial_roots_composed	0.68	0.91	0.78	1915
algebrasequence_next_term	1.00	1.00	1.00	1980
algebrasequence_nth_term	1.00	1.00	1.00	2049
arithmeticadd_or_sub	1.00	0.79	0.88	2056
arithmeticadd_or_sub_in_base	1.00	1.00	1.00	1989
arithmeticadd_sub_multiple	0.85	0.99	0.91	1955
arithmeticdiv	1.00	1.00	1.00	1970
arithmeticmixed	0.95	0.67	0.78	1981
arithmeticmul	0.94	1.00	0.97	1904
arithmeticmul_div_multiple	0.80	0.93	0.86	1999
arithmeticnearest_integer_root	1.00	1.00	1.00	2007
arithmeticsimplify_surd	1.00	1.00	1.00	2091
calculusdifferentiate	0.91	0.45	0.60	2046
calculusdifferentiate_composed	0.64	0.96	0.77	1937

nerall flaccore

comparisonclosest	1.00	1.00	1.00	2097
comparison closest composed	1.00	1.00	1.00	1994
comparisonkth_biggest	1.00	1.00	1.00	2027
comparisonkth_biggest_composed	1.00	1.00	1.00	1996
comparisonpair	1.00	1.00	1.00	1979
comparisonpair_composed	1.00	1.00	1.00	1980
comparisonsort	1.00	1.00	1.00	2010
comparisonsort_composed	1.00	1.00	1.00	2013
measurementconversion	1.00	1.00	1.00	1966
measurementtime	1.00	1.00	1.00	1966
numbersbase_conversion	1.00	1.00	1.00	1960
numbersdiv_remainder	1.00	1.00	1.00	1973
numbersdiv_remainder_composed	1.00	1.00	1.00	2002
numbersgcd	1.00	1.00	1.00	1977
numbersgcd_composed	1.00	1.00	1.00	2104
numbersis_factor	1.00	1.00	1.00	1937
numbersis_factor_composed	1.00	1.00	1.00	2055
numbersis_prime	0.99	1.00	1.00	1996
numbersis_prime_composed	1.00	0.98	0.99	1993
numbers_lcm	1.00	1.00	1.00	2088

numberslcm_composed	1.00	0.99	1.00	1970
numberslist_prime_factors	1.00	1.00	1.00	2058
numberslist_prime_factors_composed	1.00	1.00	1.00	2042
numbersplace_value	0.99	1.00	1.00	2007
numbersplace_value_composed	1.00	0.99	0.99	2082
numbersround_number	1.00	1.00	1.00	1990
numbersround_number_composed	1.00	1.00	1.00	1991
polynomialsadd	0.87	0.82	0.84	2017
polynomialscoefficient_named	1.00	1.00	1.00	1932
polynomialscollect	1.00	1.00	1.00	2008
polynomials_compose	0.87	0.80	0.83	1968
polynomials_evaluate	0.99	0.92	0.96	1962
polynomialsevaluate_composed	0.91	0.92	0.92	2012
polynomialsexpand	1.00	1.00	1.00	1938
polynomialssimplify_power	1.00	1.00	1.00	1934
probability_swr_p_level_set	1.00	1.00	1.00	2026
probabilityswr_p_sequence	1.00	1.00	1.00	2028

Conclusion

- Using a LGBM Classifier Algorithm to classify math problem text into concept categories
- The model worked well with some limitations
- Could improve the model and use case of the model by making changes to the dataset
 - Changing the categories and how they are comprised
 - Adding more questions from other sources to introduce diversity of math problems

Citations

Hugging Face Datasets.

Github: https://github.com/huggingface/datasets/tree/master/datasets

Disaster Message NLP Pipeline.

Github: https://github.com/ChristopherCochet/Disaster-Message-NLP-Pipeline/blob/master/notebooks/ML%20Pipeline%20Preparation.ipynb

Text Classification in Python by Miguel

Fernandez Zafra. Url: https://towardsdatascience.com/text-classification-in-python-dd95d264c802

A gentle introduction to OCR. Url: https://towardsdatascience.com/a-gentle-introduction-to-ocr-ee1469a201aa.

Text Detection CTPN

by Shaohui Ruan. Github: https://github.com/eragonruan/text-detection-ctpn

Understanding Classification Report. Url: https://muthu.co/understanding-the-classification-report-in-sklearn/