Inatel

E202

CIRCUITOS ELÉTRICOS II

Guia de Experiências de Laboratório

Aluno:			

Turma: L____

INSTITUTO NACIONAL DE TELECOMUNICAÇÕES

LABORATÓRIO DE E202 – PRIMEIRA ATIVIDADE

1.1 - Introdução: Normas do laboratório e objetivos das atividades práticas de Circuitos Elétricos II. Rápida revisão dos princípios fundamentais de segurança pessoal e de segurança para os instrumentos de medidas elétricas. Apresentação do ambiente de laboratório com seus respectivos acessórios.

1.1.1 - REGRAS GERAIS DO LABORATÓRIO.

- a) Cuidados no manuseio dos aparelhos e componentes. Não ter medo, mais ter cuidado.
- b) Sempre observar as instruções de uso dos aparelhos, de acordo com suas especificações, e aquelas dadas pelo instrutor.
- c) Manter a bancada sempre bem organizada, deixando-a assim a cada vez que encerrar as suas atividades. A organização facilita o trabalho e minimiza as possibilidades de um acidente.
- d) Antes de ligar qualquer aparelho à rede elétrica, verificar qual é a sua tensão de alimentação.
- e) Cuidado com os limites de cada aparelho: tensão máxima, corrente máxima, potência máxima, escala correta para o uso que irá fazer em cada momento etc.. Consulte as suas especificações, atenção às instruções recebidas e, na dúvida, consulte antes o instrutor.
- f) Tenha sempre uma postura adequada para um universitário, futuro engenheiro, fazendo a sua parte de forma correta na manutenção da ordem, na organização da bancada, no interesse e participação dos trabalhos, no uso sempre de roupas adequadas para atividades práticas em laboratório (conforme recomendações da própria escola) etc..

1.2 - OBJETIVOS DAS ATIVIDADES PRÁTICAS DE LABORATÓRIO DE (PRATLAB).

Permitir ao aluno treinar-se nas técnicas de montagens de circuitos elétricos e no uso dos aparelhos/instrumentos fundamentais neles empregados: multímetro, osciloscópio, fontes de tensão e de corrente a. c. e geradores de funções, em continuação ao que já foi visto em E201 - Circuitos Elétricos I. Introduzir os primeiros conceitos práticos de análise de circuitos em c. a. senoidal, regime permanente, com foco nas medições de tensão e corrente senoidais puras, suas fases, períodos, frequências, defasagem entre sinais senoidais, reatância, impedância e ressonância. Introdução a sistemas trifásicos.

1.3 – ATIVIDADES EXTRAS DE LABORATÓRIO (EXTRALAB)

Permitir ao aluno um contato prévio com os assuntos a serem tratados nas atividades Pratlab, preparando-o para um melhor aproveitamento dos trabalhos a serem realizados no laboratório.

LABORATÓRIO DE E202 – SEGUNDA ATIVIDADE

2.1 – Introdução: valores típicos de uma c. a. senoidal.			
2.2 – PARTE PRÁTICA: Medições com o uso do multímo valores típicos de uma c.a. senoidal pura: pico, pico minar a frequência, a velocidade angular, o valor m	a pico, perí	íodo e, a partir d	aí, deter-
2.2.1 – Ajustar a saída do gerador de funções para uma to de 500 Hz. Após isto, fazer as seguintes medidas e		dal de 15 V _{pp} e fr	equência
a) <u>Calcular</u> o valor eficaz da tensão ajustada no gerador (V eficaz desta mesma tensão.	V _{ef}). Com o <u>1</u>	multímetro, med	<u>ir</u> o valo
V _{ef} calculado =	[]	
V _{ef} medido =	[1	
Cálculos:			
b) Ligar na saída do gerador um resistor de 470 Ω / 1 W por ele (I_{ef}). Com o <code>multímetro</code> , <code>medir</code> o valor eficaz d			corrento
I _{ef} calculado =	[]	
I _{ef} medido =	[1	
Cálculos:			

	, <u>medir</u> o valor de pico a pico da tensa e onda vista. <u>Calcular</u> também, a part		
	V _{pp} medido =	_[1
	V _{ef} calculado =	_[1
	↑ v(t) [V]	t [s]	
Cálculos: d) Com o <u>osciloscópio</u>	, <u>medir</u> o período T da tensão na saída	a do gerado	or.
	T medido =	.[1
e) <u>Calcular</u> a frequên	cia f do sinal medido.		
Cálculos:	f calculado =	_[]
f) <u>Calcular</u> a frequênc	cia angular w do sinal medido.		
	W calculado =	[]
Cálculos:			

g) <u>Calcular</u> a fase do sinal, de acordo com o gráfico do item "c" anterior (φ).
Fase (φ) =
Cálculos:
h) Ligar na saída do gerador um resistor de 470 Ω / 1 W e medir com o uso do osciloscópio (medida feita de forma indireta) o valor eficaz da corrente por ele (I_{ef}). Calcular também esta mesma corrente.
I_{ef} medido = []
I_{ef} calculado =[
Cálculos:
i) <u>Calcular</u> a potência média dissipada no resistor de carga ligado ao gerador.
$\mathbf{P}_{med} = \underline{\hspace{1cm}}]$
Cálculos:

INSTITUTO NACIONAL DE TELECOMUNICAÇÕES

LABORATÓRIO DE E202 - TERCEIRA ATIVIDADE

3 - MONTAGEM EM PROTOBOARD ENVOLVENDO CIRCUITO INTEGRADO (CI).

3.1 - CIRCUITO A SER MONTADO.

OBSERVAÇÃO INICIAL: Esta atividade poderá ser realizada em duas aulas de laboratório (duas semanas), caso necessário. Por ser uma montagem mais trabalhosa, sua conclusão e funcionamento do circuito poderão ser feitos na semana seguinte.

Nesta atividade será montado um **pisca-pisca de potência**, ilustrado na FIG. 3.1, designação proveniente do fato de que ele irá comandar **lâmpadas de maior consumo** de energia elétrica (**maior potência**). O "chaveamento" da alimentação para a lâmpada piscar será feito diretamente por um **SCR**, que por sua vez será comandado por um circuito à base do **CI 555**. O circuito integrado **555** é um gerador de pulsos, muitas vezes identificado como o nome de "timer" (será objeto de estudo em outra disciplina).

FIG. 3.1

3.2 - IDENTIFICAÇÃO DOS COMPONENTES.

a - CI - 555.

FIG. 3.2 - CI 555

O CI-555 tem o aspecto físico apresentado na FIG. 3.2. O tipo mostrado é considerado convencional para CI´s. A contagem dos pinos é feita no sentido anti-horário a partir de uma MARCA de referência próxima ao **pino 1** ou no centro de uma de suas extremidade. Olhando o CI por cima, tal extremidade deve estar voltada para o alto, tal como aparece na Fig. 3.2.

b - **S.C.R.** (**TIRISTOR**) (SCR - <u>S</u>ilicon <u>C</u>ontrolled <u>R</u>ectifier ou Retificador Controlado de Silício)

O aspecto físico do SCR. é mostrado na FIG. 3.3 abaixo. A identificação dos seus terminais deve ser feita olhando-se o componente de frente. Neste caso, tem-se, da esquerda para a direita, os terminais referentes ao <u>C</u>ATODO, <u>A</u>NODO e <u>G</u>ATE (CAG).

FIG. 3.3

c - DIODO 1N9014

A identificação de seus terminais é feita através de uma **referência para identificar o seu CATODO**, que corresponde ao terminal **negativo**, caso ele seja polarizado no sentido de **condução**.

3.3 - PARTE PRÁTICA.

3.3.1 - Calcule:

A) Tempo em que saída fica em nível lógico alto (lâmpada ligada).

$$th = 0,693 * C(R1 + R2)$$

B) Tempo em que a saída fica em nível lógico baixo (lâmpada desligada).

$$tl = 0,693 * R2 * C$$

Tl = _____[]

C) Período e frequência do sinal.

$$t = 0.693 * C(R1 + 2R2)$$

$$F = \frac{1.44}{(R1 + 2R2) * C}$$

$$T = \underline{\qquad} [] \qquad F = \underline{\qquad} []$$

3.3.2 - Medidas:

Com o auxílio do osciloscópio, plote o sinal de saída do circuito e faça as seguintes medidas, comparando-as com o item anterior:

Obs: O cabo de medida do osciloscópio deve ser colocado no pino de saída do CI 555 e GND. Para uma melhor visualização do sinal, o time/div deve ser ajustado entre 1 a 5 segundos.

INSTITUTO NACIONAL DE TELECOMUNICAÇÕES

LABORATÓRIO DE E202 – QUARTA ATIVIDADE

<u>Continuação da 3ª Atividade</u>: Montagem prática de um circuito pisca-pisca de potência e medições das grandezas solicitadas.. Comentar discrepâncias, caso existam.

Após a montagem da parte do *protoboard*, você mesmo verificará se o circuito está montado de forma correta ou não.

PARA TAL, PROCEDER-SE DA SEGUINTE FORMA:

COM O VOLTÍMETRO DIGITAL, AJUSTE A ESCALA PARA 2 V_{DC} E FAÇA A MEDIDA DA TENSÃO SOBRE A RESISTÊNCIA R4. ESTA TENSÃO DEVERÁ VARIAR DE ZERO A \pm 1 Vdc.

Caso não esteja variando desta forma, reveja as ligações feitas, pois deve ter algo errado na montagem.

Tendo constatado funcionamento correto desta parte, o aluno deverá, mediante a interpretação do esquema, **interligar as duas partes**. Recomenda-se o **máximo de atenção e cuidado**, não se esquecendo um só momento que estamos trabalhando com **127 V**_{AC}, tensão que é <u>suficiente para provocar</u> <u>um acidente por choque elétrico</u>. Mas, não se deve confundir medo com atenção e cuidado: TENHA ATENÇÃO E CUIDADO, E NÃO MEDO.

Feita a interligação entre as duas partes, a lâmpada deverá piscar.

- a) O CIRCUITO FUNCIONOU NA PRIMEIRA MONTAGEM? _____ SIM _____ NÃO
- b) SE NÃO FUNCIONOU, DESCREVA QUAL FOI O PROBLEMA? Descrição:

INSTITUTO NACIONAL DE TELECOMUNICAÇÕES

LABORATÓRIO DE E202 – QUINTA ATIVIDADE

5.1 – RESSONÂNCIA.

OBSERVAÇÃO: Em todos os casos considerar os componentes como ideais.

- 5.2 PARTE PRÁTICA: Simular no Multisim as montagens das associações RLC série e paralela propostas, efetuando as medições solicitadas
- 5.2.1 Verificar o funcionamento da associação RLC série abaixo, operando na condição de ressonância. Ajustar sua alimentação com uma tensão senoidal de 1 V_p e $f = f_0$. Anotar os valores medidos solicitados: R L C

5.2.1.1 – Valor da tensão e da corrente em cada componente e valor da corrente total da associação.

$$V_R =$$
 $V_L =$ $V_C =$

$$I_R =$$
 $I_C =$ $I_T =$

$$V_{LC} = \underline{\hspace{1cm}}$$

5.2.1.2 – Valor da tensão na associação LC (nos terminais da associação do indutor L com o capacitor C somente).

$$V_{LC} = \underline{\hspace{1cm}}$$

5.2.1.3 – Defasagem (φ) entre a tensão total e a corrente total.

5.2.2 - Verificar o funcionamento da associação RLC paralela abaixo, operando na condição de ressonância. Ajustar sua alimentação com uma tensão senoidal de 1 V_p e $f=f_0$. Anotar os valores medidos solicitados:

$V_R = \underline{\hspace{1cm}} V_L = \underline{\hspace{1cm}} V_C = \underline{\hspace{1cm}}$	$I_{LC} = \underline{\hspace{1cm}}$
--	-------------------------------------

5.2.2.2 – Valor da corrente em R e valor da corrente total da na associação.

$$I_R = \underline{\hspace{1cm}} I_T = \underline{\hspace{1cm}}$$

5.2.2.3 – Defasagem (φ) entre a tensão total e a corrente total.

(I)	=					
Τ		 	 	 	 	 •

)

INSTITUTO NACIONAL DE TELECOMUNICAÇÕES

INSTITUTO NACIONAL DE TELECOMUNICAÇÕES

LABORATÓRIO DE E202 – SEXTA ATIVIDADE

- 6.1 RESSONÂNCIA.
- 6.2 PARTE PRÁTICA: MONTAR no protoboard as associações RLC série proposta, efetuando as medições das tensões e correntes indicadas. Alimentar com tensão senoidal de 1 $Vp\ e\ f=f_0$.

6.2.1 – Série:

 \mathbf{V}_{R} = _____ \mathbf{V}_{L} = _____ \mathbf{V}_{C} = _____

 $I_R = I_L = I_C = I_T =$

 $V_{LC} =$

6.3 - Agora repita o mesmo procedimento alterando a frequência para f=2*fo

RESPONDA:

- a) O circuito se tornou mais capacitivo ou mais indutivo. Justifique.
- b) O que deveria ser feito sem alterar a frequência para que o circuito volte para sua ressonância ?

INSTITUTO NACIONAL DE TELECOMUNICAÇÕES

LABORATÓRIO DE E202 – SÉTIMA ATIVIDADE

- 7.1 Breve discussão sobre os conceitos fundamentais de impedância.
- 7.2 PARTE PRÁTICA. Simulação no software Multisim.
- 7.2.1 Antes de ligar o potenciômetro P e o capacitor C ao circuito, calcule seus valores para que ocorra a máxima transferência de potência entre a associação RL e a carga. Em seguida, monte o circuito, ajustando no gerador de funções uma senoide com frequência f = 10 kHz e tensão de 2 V_P . Não se esqueça de aterrar o circuito.

- 7.2.2 Coloque o circuito em funcionamento. Em seguida, ligue o canal 1 do osciloscópio nos terminais da associação RL e o canal 2 na CARGA.
- 7.2.3 Com o circuito em funcionamento, comece a mexer no ajuste do potenciômetro P alterando sua resistência até que a tensão na associação RL e a tensão na associação RC tenham o mesmo valor, o que pode ser visto nos sinais dos canais 1 e 2 do osciloscópio.
- 7.2.4 Em seguida, faça as medidas a seguir solicitadas.
- a) Com o uso do osciloscópio, meça a tensão V na CARGA.

$$V =$$

b) Calcule a corrente I na CARGA.

c) Calcule a impedância Z da CARGA.

d) Verificar se o circuito opera na condição de máxima transferência de potência para a carga Z, justificando o resultado.

_____ SIM _____ NÃO

JUSTIFICATIVA:

e) No circuito abaixo, faça o gráfico de potência pela variação de RL: (Demonstre os cálculos)

INSTITUTO NACIONAL DE TELECOMUNICAÇÕES

LABORATÓRIO DE E202 – OITAVA ATIVIDADE

- 8.1 Breve discussão sobre os conceitos fundamentais de impedância.
- 8.2 PARTE PRÁTICA.
- 8.2.1 Antes de ligar o potenciômetro P e o capacitor C ao circuito, calcule seus valores para que ocorra a máxima transferência de potência entre a associação RL e a carga. Em seguida, monte o circuito, ajustando no gerador de funções uma senoide com frequência f = 4 kHz e tensão de 5 V_p. Não se esqueça de aterrar o circuito.

- 8.2.2 Coloque o circuito em funcionamento. Em seguida, ligue o canal 1 do osciloscópio nos terminais da associação RL e o canal 2 na CARGA.
- 8.2.3 Com o circuito em funcionamento, comece a mexer no ajuste do potenciômetro P alterando sua resistência até que a tensão na associação RL e a tensão na associação RC tenham o mesmo valor, o que pode ser visto nos sinais dos canais 1 e 2 do osciloscópio.
- 8.2.4 Em seguida, faça as medidas a seguir solicitadas.
- e) Com o uso do osciloscópio, meça a tensão V na CARGA.

f) Calcule a corrente I na CARGA.

g) Calcule a impedân	cia Z da CARGA.		
	Z =	[]
h) Verificar se o circo carga Z, justificano	_	e máxima transfe	rência de potência para a
	SIM		_ NÃO
JUSTIFICATIVA:			

INSTITUTO NACIONAL DE TELECOMUNICAÇÕES INSTITUTO NACIONAL DE TELECOMUNICAÇÕES

LABORATÓRIO DE E202 – NONA ATIVIDADE

Teste em bancada (3 integrantes) para fixação de todo o conteúdo, contendo parte teórica, montagem e simulação.

INSTITUTO NACIONAL DE TELECOMUNICAÇÕES INSTITUTO NACIONAL DE TELECOMUNICAÇÕES

LABORATÓRIO DE E202 – DÉCIMA ATIVIDADE

Prática individual para geração da nota NL3, conforme Plano de Ensino da disciplina.

<u>A P Ê N D I C E</u>

VALOR EFICAZ DE UMA TENSÃO ALTERNADA SENOIDAL

CONSIDERAÇÕES INICIAIS

Sabemos que um resistor puro ao ser percorrido por uma corrente elétrica irá se aquecer. Isto é o efeito da transformação da energia elétrica que lhe é fornecida em energia térmica, conhecido como Efeito Joule. Considere as duas situações abaixo descritas.

- 1) Ao aplicarmos em um resistor R uma tensão contínua pura (aquela cuja polaridade e intensidade são constantes no tempo, ou seja, não variam), a quantidade de calor produzida nele pela transformação da energia elétrica em energia térmica será também constante ao longo do tempo. Por exemplo, se a transformação de energia elétrica em calor corresponder a 5 Joules por segundo (5 J/s) ou 5 Watts (5 W) (Joule / s = Watt), ao final de 60 segundos a energia total transformada será de 5 J/s x 60 s = 300 J.
- 2) Ao aplicarmos no mesmo resistor R uma tensão alternada senoidal (aquela cuja polaridade e intensidade variam no tempo de forma senoidal), a quantidade de energia transformada também irá variar no tempo, ou seja, terá um valor diferente em cada instante de tempo, que é chamado de valor instantâneo. Se considerarmos que a tensão vai variar de zero até um valor máximo e, em seguida, diminuir até zero novamente (como ocorre em meio ciclo de uma senoide), a energia elétrica transformada em calor também terá o mesmo comportamento: vai variar de zero, quando a tensão for zero, até um valor máximo, quando a tensão for máxima, e começar a diminuir até voltar a ser zero novamente, quando a tensão voltar a ser zero. Se este intervalo de variação corresponder, por exemplo, a um tempo de 60 segundos, para se conhecer a quantidade total da energia transformada nos 60 segundos é necessário se saber quanto de energia está sendo transformado em cada intervalo de 1 segundo (conhecer os valores instantâneos) e se somar os 60 valores correspondentes aos 60 intervalos de 1 segundo existentes em 60 segundos. O cálculo feito por este procedimento não é complicado, mas é um pouco trabalhoso e envolve o conhecimento de valores do seno (ou cosseno) de alguns ângulos para se encontrar qual a energia transformada em cada 1 segundo. Alternativamente, este mesmo cálculo poderia ser feito com conhecimento de cálculo integral.
- 3) Um procedimento mais simples é fazer o cálculo usando o valor médio da energia que é transformada em calor por segundo, dentro de um determinado intervalo de tempo (no nosso exemplo, 60 segundos). O perfeito entendimento disto pressupõe o bom entendimento do que <u>significa</u> o valor médio de uma grandeza variável no tempo (e não somente se saber como ele é calculado).

Quando se tem o valor médio, o consumo total em um intervalo de x segundos é obtido simplesmente se multiplicando este valor médio pelo valor de x, mesmo procedimento usado no caso da tensão contínua pura que foi mostrado no item 1 acima. Lembrar que para uma grandeza constante no tempo, valor instantâneo, valor máximo, valor mínimo e valor médio, são todos a mesma coisa, ou seja, têm todos o mesmo valor (válido também para o valor eficaz).

Antes de prosseguirmos, vamos fazer uma comparação do que foi descrito acima com algo que conhecemos bem em nosso dia-a-dia. Suponha uma turma com 60 alunos onde todos obtêm a mesma nota em uma avaliação: 5 pontos. Para sabermos o total de pontos que a turma toda acumulou basta somarmos as 60 notas 5 que cada aluno obteve ou, o que é mais simples, multiplicarmos $60 \times 5 = 300$ pontos. Este é o caso da tensão contínua pura do item 1 acima, onde a nota 5 corresponde à energia transformada por segundo (5 J/s = 5 W) e os 60 alunos, para os quais desejamos o total de pontos acumulados (300 pontos), correspondem ao período de 60 segundos dentro do qual desejamos conhecer o total de energia transformada (300 J).

Agora suponha que cada aluno tenha tirado uma nota diferente e que desejamos saber, da mesma forma, o total de pontos acumulados pela turma: temos que conhecer cada uma das 60 notas e somá-las para obtermos o total acumulado ou, alternativamente, calcularmos a <u>média</u> da turma e multiplicá-la por 60. Este é o caso do item 2 acima, onde se deseja conhecer a energia elétrica total transformada em calor no resistor R em certo intervalo de tempo, sendo ele alimentado por uma tensão alternada senoidal, tensão esta que produzirá uma transformação de energia também variável no tempo, conforme mencionado naquele item.

.....

VALOR EFICAZ DE UMA TENSÃO ALTERNADA SENOIDAL

COMO ENCONTRÁ-LO E O QUE SIGNIFICA: PROCEDIMENTO 1

Deseja-se aquecer dois resistores de resistências \mathbf{R} iguais entre si a uma mesma temperatura, usando em um dos resistores uma tensão contínua pura E_{DC} e no outro \mathbf{R} uma tensão alternada senoidal E_{AC} . Para isto foi feita a experiência ilustrada abaixo nas **FIGURAS 1a**, **1b**, **2a** e **2b**, onde cada fonte tem os seguintes valores de tensão: **fonte de tensão alternada senoidal** com valor máximo ou valor de pico igual a E_P e **fonte de tensão contínua pura** com valor de tensão constante igual a E_{DC} , sendo E_{DC} igual ao valor de pico da tensão alternada, ou seja, $E_{DC} = E_P$.

FIG. 1a - Circuito D puro

FIG. 2a - Circuito AC senoidal

Constatou-se na experiência que as temperaturas atingidas pelos resistores não foram iguais entre si: o resistor do circuito DC se aqueceu a 50° C e o resistor do circuito AC se aqueceu a 25° C.

FIG. 1b - Circuito DC puro

FIG. 2b - Circuito AC senoidal

A grande pergunta agora é: o que fazer para que os dois resistores sejam aquecidos à mesma temperatura?

Vamos admitir que se deseje que **R** do circuito **DC** seja aquecido à mesma temperatura de **R** do circuito **AC**, ou seja, que ambos os resistores atinjam temperaturas de 25° C. Qual deve ser o novo valor da tensão do circuito **DC** para que isto ocorra?

Como sabemos, a temperatura do resistor corresponde à quantidade de energia elétrica por segundo que nele está sendo transformada em energia térmica. A quantidade de energia elétrica por segundo é a Potência Elétrica.

DETERMINAÇÃO DA NOVA TENSÃO DA FONTE DE TENSÃO CONTÍNUA PURA

Vamos chamar de E'_{DC} e de P'_{DC} a nova tensão DC e a nova potência elétrica DC que, no circuito com tensão contínua pura, farão com que a **temperatura em R passe a ser também de 25**C, tal como no circuito AC.

Na experiência realizada, a potência P_{DC} em R do circuito DC, que o aqueceu a 50° C, é:

$$P_{DC} = (E_{DC})^2 / R$$
 (1) (para R a 50° C)

A potência P'_{DC} em R do circuito DC na nova situação, onde se deseja aquecer R a 25° C, é:

$$P'_{DC} = (E'_{DC})^2 / R$$
 (2) (para R a 25°)

Na temperatura de 25º C a potência será a metade da potência na temperatura de 50º C. Assim:

$$P'_{DC} = P_{DC} / 2$$
(3)

Substituindo-se (2) e (1) em (3):

$$(E'_{DC})^2 / R = [(E_{DC})^2 / R] / 2$$
 \therefore $(E'_{DC})^2 / R = (E_{DC})^2 / 2.R$ \therefore $(E'_{DC})^2 = (E_{DC})^2 / 2$ \therefore

:.
$$E'_{DC} = E_{DC} / \sqrt{2}$$
 (4)

Mas, $E_{DC} = E_{P}$. Logo, a equação (4) pode ser escrito como:

$$\mathbf{E'_{DC}} = \mathbf{E_P} / \sqrt{2}$$

Assim, vê-se que a tensão DC que provoca em R a mesma potência provocada pela tensão AC do tipo senoidal é igual ao **valor de pico desta tensão AC dividido por raiz quadrada de dois**.

A esta relação "valor de pico / raiz de dois" é o que chamamos de VALOR EFICAZ de uma tensão (ou corrente) alternada senoidal.

E é isto que <u>significa</u> o VALOR EFICAZ de uma tensão variável no tempo: valor de uma tensão DC pura, ou seja, constante no tempo, que produz em um dado resistor de valor R, dentro de um mesmo intervalo de tempo, a mesma potência que está sendo produzida pela tensão variável no tempo. Se a forma de variação da tensão no tempo for do tipo senoidal, então o seu VALOR EFICAZ será igual ao "valor de pico desta tensão dividido por raiz quadrada de dois".

OBSERVAÇÕES

- 1) Usa-se também: $\mathbf{E}_{\text{EFICAZ}}$ ou \mathbf{E}_{EF} ou \mathbf{E}_{RMS} ou, simplesmente, \mathbf{E} (neste caso deve-se usar na unidade o subíndice EF ou RMS para se informar que se trata do valor eficaz). Por exemplo: $\mathbf{E}_{\text{RMS}} = 20$ [V] ou $\mathbf{E} = 20$ [V_{RMS}].
- 2) Esta relação $\hat{\mathbf{E}}/\sqrt{2}$ para o valor eficaz só $\underline{\mathbf{e}}$ válida para grandeza senoidal. Para outras formas de variação a relação será outra. Por exemplo: para uma variação na forma de "dente de serra" o valor eficaz $\underline{\mathbf{e}}$ o "valor máximo / raiz de três".
- 3) *Root Mean Square*, traduzido como **Valor Eficaz ou Valor Médio Quadrático**, é o nome em inglês derivado do aspecto da expressão matemática que permite o cálculo teórico deste valor.

VALOR EFICAZ DE UMA TENSÃO ALTERNADA SENOIDAL

COMO ENCONTRÁ-LO E O QUE SIGNIFICA: PROCEDIMENTO 2

Em uma experiência de laboratório foram montados dois circuitos contendo resistores de <u>resistência R</u> <u>iguais</u> entre si, sendo um alimentado por uma <u>tensão contínua pura de valor constante E_{DC} (FIG. 1) e outro alimentado por uma <u>tensão alternada senoidal de valor máximo ou de pico igual a E_P (FIG. 2). Os valores de E_{DC} e de E_P foram ajustados de tal forma que os dois resistores recebessem quantidades iguais de energia elétrica. Como esta energia será transformada em calor nos resistores, os dois atingiram exatamente a mesma temperatura (50° C). São mostrados também os gráficos representativos das tensões (E_{DC} e E_{AC}) e potências (P_{DC} e P_{AC}) nos dois circuitos.</u></u>

Observou-se nessa experiência que a potência média ($P_{M\acute{E}DIA}$) no circuito de corrente alternada era igual à metade da potência de pico ($P_{PICO} = P_P$), ou seja:

 $P_{\text{M\'eDIA}} = P_{\text{PICO}}/2$ ou $P_{\text{M\'eDIA}} = P_{\text{P}}/2$ de onde sai que: $P_{\text{P}} = 2 \times P_{\text{M\'eDIA}}$ (1)

A expressão geral que permite o cálculo de uma potência é P = E x I. Assim, em um resistor ela pode ser calculada por $P = E \times I$. Mas, no caso do resistor ela também pode ser calculada por $P = R \times I^2$ e ainda por $P = R \times I^2$ E² / R, equações que podem ser encontradas com a manipulação da expressão geral $P = E \times I e da 1^a lei$ de Ohm ($V = R \times I \text{ ou } I = V / R \text{ ou } R = V / I$).

Assim, para o circuito alimentado com corrente alternada senoidal, podemos escrever que a potência no resistor R, que é variável no tempo, tem um valor de pico (P_P) igual a:

$$P_P = (E_P)^2 / R$$
 (2)

nos valendo da expressão $P = E^2 / R$.

Substituindo (1) em (2) vem:

Para o circuito alimentado com tensão contínua pura E_{DC}, podemos escrever que a potência constante (P_{DC}) no resistor R é:

$$P_{DC} = (E_{DC})^2 / R$$
 (4)

outra vez nos valendo da expressão $P = E^2 / R$.

Como os dois resistores atingiram a mesma temperatura (50° C), conclui-se que ambos receberam a mesma quantidade de energia elétrica dentro do mesmo intervalo de tempo, já que produziram a mesma quantidade de calor.

 $\mathbf{P}_{DC} = \mathbf{P}_{M \in DIA} \dots (5)$ Isto nos leva a concluir então que:

ou seja, que temos (4) = (3). Logo, substituindo (4) e (3) em (5):

$$(E_{DC})^2 / R = (E_P)^2 / 2.R$$
 portanto $(E_{DC})^2 = (E_P)^2 / 2$ (6)

De (6) sai:
$$\sqrt{E_{1}} > 2 / \sqrt{2}$$

$$\sqrt{E_{\rm DC})^2} = \sqrt{(E_{\rm P})^2 / 2}$$
 e

$$E_{DC} = E_P / \sqrt{2}$$

Isto quer dizer que, para um mesmo intervalo de tempo, a tensão contínua pura E_{DC} que produz em um resistor R uma potência de valor igual ao valor médio da potência que é produzida no mesmo resistor R por uma tensão alternada senoidal, é igual ao valor de pico da tensão senoidal dividido por raiz de dois.

Esta relação "valor de pico / raiz de dois" é o que foi chamado de VALOR EFICAZ da tensão (ou corrente) alternada senoidal. Na língua inglesa é chamado valor RMS, letras iniciais de Root Mean Square, derivado do aspecto da expressão matemática que permite o cálculo teórico deste valor

Notações mais comuns:

$$E_{EFICAZ} = E_P / \sqrt{2} \quad [V] \quad ou \quad E_{RMS} = \hat{E} / \sqrt{2} \quad [V] \quad ou \quad E = \hat{E} / \sqrt{2} \quad [V_{EF} \quad ou \quad V_{RMS}]$$

FORMAS DE VARIAÇÃO DA TENSÃO, CORRENTE E

POTÊNCIA EM CADA UM DOS DOIS CIRCUITOS

FIG. 1 - CIRCUITO DC

A potência é, <u>em cada instante</u> de tempo, o produto entre o valor E_{DC} da tensão e o valor I_{DC} da corrente no mesmo instante. Como E_{DC} e I_{DC} são sempre constantes, durante todo o tempo a potência P_{DC} terá também valor sempre constante.

FIG. 2 - CIRCUITO AC

A potência é, <u>em cada instante</u> de tempo, o produto entre o valor E da tensão e o valor I da corrente no mesmo instante. Como E e I são variáveis no tempo, durante todo o tempo a potência P_{AC} terá também valor variável.

INSTITUTO NACIONAL DE TELECOMUNICAÇÕES

LABORATÓRIO DE E202

PRIMEIRA ATIVIDADE EXTRACLASSE

1ª ATIVIDADE EXTRACLASSE - Fazer uma análise da forma de onda do sinal senoidal dado abaixo, com identificação/cálculos de seus valores típicos: pico (Vp), pico a pico (Vpp), fase (ϕ) , período (T) e, a partir daí, determinar a frequência (f), a velocidade angular (ω) , o valor médio para meio ciclo (V_{med}) e o seu valor eficaz (V_{ef}).

DADOS: 2,5 V / div e 0,2 ms / div

RESPOSTAS:

a) Valor de pico $(V_p) =$

] b) Valor de pico a pico $(V_{pp}) =$ _____[

c) Fase $(\phi) = _____$

d) Período (T) = _____[

1

g) Valor médio de meio ciclo (V_{med}) = _____ [] h) Valor eficaz (V_{ef}) = _____ [

]

]

CÁLCULOS:

LABORATÓRIO DE E202

SEGUNDA ATIVIDADE EXTRACLASSE

2ª ATIVIDADE EXTRACLASSE - Rever conceitos de impedância.

Calcular a impedância complexa **Ż** do circuito abaixo nas situações pedidas.

2.1 - Na sua frequência de ressonância $f_{\rm 0}.$

Justifique:

2.2 - Na frequência $f = 0.5.f_0$.

Cálculos:

2.3 – Na frequência $f = 2.f_0$.

Cálculos:

LABORATÓRIO DE E202

TERCEIRA ATIVIDADE EXTRACLASSE

Monte o circuito abaixo fazendo com que ocorra a MTP (máxima transferência de potência) e responda as questões a seguir:

Cálculos:

<i>(</i> ' –			
\mathbf{c}			

a) Com o uso do multímetro, meça a tensão V eficaz na CARGA.

b) Determine a Impedância Z total do circuito. Justifique:

c)CALCULE a corrente do circuito: