### Information Theory lecture 1

COMSM0075 Information Processing and Brain

comsm0075.github.io

September 2020

| Information Theory                                      |
|---------------------------------------------------------|
|                                                         |
|                                                         |
| The theory of information is a theory of communication. |



## randomness



Image from wikipedia.

un expected ness

2020



## film recommendations



### film recommendations are bad







### film recommendations are bad



#### Netflix Prize



Bennett, James, and Stan Lanning. "The netflix prize." Proceedings of KDD cup and workshop. Vol. 2007. 2007.

#### Netflix Prize



Bennett, James, and Stan Lanning. "The netflix prize." Proceedings of KDD cup and workshop. Vol. 2007. 2007.

## film recommendations



# average star ratings

| 1 star | 0.016 |
|--------|-------|
| 2 star | 0.310 |
| 3 star | 0.627 |
| 4 star | 0.057 |
|        |       |

# the average star ratings mean something





mostly though they tell you it's an 'ok' film

| 0.016 |
|-------|
| 0.310 |
| 0.627 |
| 0.057 |
|       |







## the fable of Stefan





The theory of information starts with an attempt to allow us to quantify the informativeness of information, but not its salience or validity.

## Shannon's entropy

For a finite discrete distribution with random variable X, possible outcomes  $\{x_1, x_2, \dots x_n\} \in \mathcal{X}$  and a probability mass function  $p_X$  giving probabilities  $p_X(x_i)$ , the entropy is

$$H(X) = -\sum_{x_i \in \mathcal{X}} p_X(x_i) \log_2 p_X(x_i)$$

## Shannon's entropy

For a finite discrete distribution with random variable X, possible outcomes  $\{x_1, x_2, \dots x_n\} \in \mathcal{X}$  and a probability mass function  $p_X$  giving probabilities  $p_X(x_i)$ , the entropy is

$$H(X) = -\sum_{x_i \in \mathcal{X}} p_X(x_i) \log_2 p_X(x_i)$$

## Shannon's entropy

For a finite discrete distribution with random variable X, possible outcomes  $\{x_1, x_2, \dots x_n\} \in \mathcal{X}$  and a probability mass function  $p_X$  giving probabilities  $p_X(x_i)$ , the entropy is

$$H(X) = -\sum_{x_i \in \mathcal{X}} p_X(x_i) \log_2 p_X(x_i)$$

| 1 star | 0.016 |
|--------|-------|
| 0 -1   |       |
| 2 star | 0.310 |
| 3 star | 0.627 |
| 0 000. |       |
| 4 star | 0.057 |
|        | L     |

$$H(X) = -0.016 \log_2 0.016 - 0.31 \log_2 0.31$$
$$-0.627 \log_2 0.627 - 0.057 \log_2 0.057 \approx 1.28$$

Imagine instead all rankings are equally likely

| 1 star | 0.20 |
|--------|------|
| 2 star | 0.25 |
| 3 star | 0.25 |
| 4 star | 0.25 |
|        |      |

$$H(X) = -4 \times 0.25 \log_2 0.25 = 2$$

Imagine instead everything gets one stars, the Stefan-like case

$$\begin{array}{c|cccc}
1 & \text{star} & 1 \\
2 & \text{star} & 0 \\
3 & \text{star} & 0 \\
\underline{4 & \text{star}} & 0
\end{array}$$

$$H(X) = -\log_2 1 = 0$$

- ▶ deterministic H(X) = 0
- ▶ actual  $H(X) \approx 1.28$
- ► completely random H(X) = 2

