Approaches to Practical Applications – Recurrent Neural Networks and More

Outline

- Fields where deep learning is active
- The difficulties of deep learning
- The approaches to maximizing deep learning possibilities and abilities
- Summary

Active Fields of Deep Learning

- Huge investment among Google, Facebook, Microsoft, and IBM
- Focus fields
 - Image recognition
 - Natural language processing, NLP

Image Recognition

- Most frequently incorporated with deep learning
- Started by Prof. Hinton
 - Lowest error rates ever in an image recognition competition
- Google utilizes deep learning to:
 - Auto-generate thumbnails for YouTube
 - Auto-tag and search photos in Google Photos

Image Recognition

- Mainly applied to image tagging or categorizing and robotics
- Deep learning is more suited to image processing
 - An error rate of MNIST image classification is recorded at 0.21 percent with a deep learning algorithm (http://cs.nyu.edu/~wanli/dropc/)
 - Better than human(http://arxiv.org/pdf/0710.2231v1.pdf)

Why?

- In deep neural networks, many layers are stacked and features are extracted from training data step by step at each layer
 - Image data is featured as a layered structure
 - When you look at images, you will unconsciously catch brief features first and then look into a more detailed feature
- More improvement needed
 - Understand images and their contents

Deep Structure for Image

- Local receptive fields substituted with kernels of convolutional layers were introduced to avoid networks becoming too dense
- Downsampling methods such as max-pooling were invented to avoid the overreaction of networks towards a gap of image location
- Still we can't build omnipotent models
 - No Free Lunch Theorem (NFLT) for optimization

Natural Language Processing

- Become the most active going forward
 - Not going so good like image recognition
- Google utilizes deep learning to:
 - Voice search, voice recognition
 - Google translation
- IBM Watson (Watson API)
 - Cognitive computing system that understands and learns natural language
 - Supports human decision-making
 - Extracts keywords and entities from tons of documents
 - Has functions to label documents

Feed-forward Neural Networks for NLP

- Fundamental problem of NLP
 - "to predict the next word given a specific word or words"
- Simple to describe, too many difficulties:
 - The length of each sentence is not fixed but variable, and the number of words is astronomical
 - There can be unforeseen problems such as misspelled words, acronyms, and so on
 - Sentences are sequential data, and so contain temporal information

NN Problem

- The number of neurons in each layer including the input layer needs to be fixed in advance
- The networks need to be the same size for all the sample data
- NLP: length of the input data is not fixed and can vary a lot
 - N-gram method

N-gram

Word w and history h

$$P(w_1^n) = P(w_1)P(w_2 | w_3)P(w_3 | w_1^2)...P(w_n | w_1^{n-1})$$
$$= \prod_{k=1}^n P(w_k | w_1^{k-1})$$

– Problem: we have no way of calculating the exact probability of a word following a long sequence of preceding words $P(w_n | w_{n-1})$

2 Approaches to Solve

- Original N-gram model
- Neural networks model based on N-gram

Original N-gram model

- Approximate the history with the last N words
 - Instead of computing the probability of a word given its whole history

$$P(w_{1}^{n}) = \prod_{k=1}^{n} P(w_{k} \mid w_{1}^{k-1})$$

$$\approx \prod_{k=1}^{n} P(w_{k} \mid w_{k-1})$$

$$P(w_{n} \mid w_{1}^{n-1}) \approx P(w_{n} \mid w_{n-N+1}^{n-1})$$

$$P(w_{1}^{n}) \approx \prod_{k=1}^{n} P(w_{k} \mid w_{k-N+1}^{k-1})$$

 these approximations with N-gram are based on the probabilistic model called the Markov model

Estimate N-gram Probabilities

Maximum likelihood estimation (MLE)

$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_{w} C(w_{n-1}w)} \qquad P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

Generalize MLE for N-gram

$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n)}{C(w_{n-N+1}^{n-1})}$$

Neural Network Language Model

- Neural Network Language Model (NNLM)
 - neural network models predict the conditional probability of a word wj given a specific history, hj
 - http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

NNLM

- 1-of-N coding
 - N is the size of the vocabulary, and each word in the vocabulary is an N-dimensional vector where only the index of the word is set to 1 and all the other indices to 0
- The inputs of NLMM are the indices of the n 1 previous words $h_i = w_{i-n+1}^{j-1}$
- Each word is mapped to the projection layer, for continuous space representation

NNLM

- This linear projection (activation) from a discrete to a continuous space is basically a look-up table with N × P entries, where P denotes the feature dimension
- The activation

$$d_{j} = h \left(\sum_{l=1}^{(n-1).P} m_{jl} c_{l} + b_{j} \right)$$

NNLM

Output units

$$o_i = \sum_j v_{ij} d_j + k_i$$

Probability of a word i

$$P(w_j = i \mid h_j) = \frac{\exp(o_i)}{\sum_{l=1}^{N} \exp(o_i)}$$

Deep Learning for NLP

- Problem of NNLM: still have a context?
 - Common to all the other fields that have time sequential data
 - Precipitation, stock prices, yearly crop of potatoes, movies, ...
- How would it be possible to let neural networks be trained with time sequential data?
 - Preserve the context of data: recurrent neural network (RNN)

Recurrent Neural Networks

Graphical model

Recurrent Neural Networks

- RNN has connections between hidden layers with respect to time
 - The input at time t is activated in the hidden layer at time t, preserved in the hidden layer, and then propagated to the hidden layer at time t + 1 with the input at time t + 1
 - Enables the networks to contain the states of past data and reflect them

Unfold RNN

Training RNN

 Train RNN model using the backpropagation algorithm

Backpropagation through Time (BPTT) technique

Training RNN

- Theoretically, the network at each time step should consider the whole sequence up to then
- Practically, time windows with a certain length are often applied to the model to:
 - Make the calculation less complicated
 - Prevent the vanishing gradient problem
 - The exploding gradient problem

Recurrent Neural Network Language Model (RNNLM)

 Introduced by Mikolov et al. (http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722_.pdf)

V

U

 $0 \cdots 0 1 0$

 S_t

 S_{t-1}

RNNLM

Input layer x, hidden layer s, output layer y

Hidden layer is also often called the context

layer or the state layer

Training RNNLM: Truncated BPTT

- Often truncate the time length
- Algorithm: truncated BPTT

Training RNNLM

dt is the label vector of the output, the error:

$$\delta_t^{out} = d_t - y_t$$
 $\delta_t^{hidden} = d\left(\left(\delta_t^{out}\right)^T V, t\right)$

• Unfolding time t:

$$d(x,t) = xs_t(1-s_t)$$

$$\delta_{t-\tau-1}^{hidden} = d\left(\left(\delta_{t-\tau}^{out}\right)^{T} V, t-\tau-1\right)$$

Training RNNLM

• Learning rate α , U maps each word to latent space $V_{t+1} = V_t + s_t \left(\delta_t^{out} \right)^T \alpha$

$$U_{t+1} = U_{t} + \sum_{\tau=0}^{T} w_{t-\tau} \left(\delta_{t-\tau}^{hidden} \right)^{T} \alpha$$

$$W_{t+1} = W_t + \sum_{\tau=0}^{T} w_{t-\tau-1} \left(\delta_{t-\tau}^{hidden} \right)^T \alpha$$

- Mapped word vectors contain the meaning of the words
 - "king" "man" + "woman" would return "queen"

Long Short Term Memory Networks, LSTM

- Training with the standard RNN requires the truncated BPTT
 - Can BPTT really train the model enough to reflect the whole context?
- Solve the long-term dependency problem?
 - Long short term memory (LSTM) network

LSTM

- How we can store and tell past information in the network?
 - Hidden layer unit
 - Memorize the past information within the neuron

- The neuron added here has linear activation and its value is often set to 1 => constant error carousel (CEC)
- The error stays in the neuron like a carousel and won't vanish
- CEC works as a storage cell and stores past inputs

Constant Error Carousel, CEC

- Solves the gradient vanishing problem
- Another problems: all data propagated through is stocked in the neuron, it probably stores noise data as well
 - Input weight conflicts
 - Output weight conflicts
 - Require: controls the propagation of inputs and outputs

CEC

 Solution: putting units that act like "gates" before and behind the CEC

Ideally, the gate should return the discrete value of 0 or 1 corresponding to the input, 0 when the gate is closed and 1 when open, because it is a gate, but programmatically, the gate is set to return the value in the range of 0 to 1 so that it can be well trained with BPTT.

CEC

- Memories stored in the CEC can't be refreshed easily in a few steps
 - Forget gate
 - The value preserved in the CEC is overridden with a new memory when the value of the gate takes a 0 or close to it
- LSTM memory block
 - With input, output, forget gates
 - Block, not a single neuron

LSTM Memory Block

LSTM Memory Block

- Each gate receives connections from the input units and the outputs of all the units in LSTM
- No direct connection from the CEC
 - Unable to see the true hidden state of the network: output of a block depends on the output gate
 - If the output gate is closed, none of the gates can access the CEC and it is devoid of essential information => performance problem!

LSTM Memory Block

Peephole connections

 Standard weighted connections, no errors are backpropagated from the gates through the m_{t-1}

peephole connections

$$i_{t} = \sigma \left(W_{ix} x_{t} + W_{im} m_{t-1} + W_{ic} c_{t-1} + b_{i} \right)$$

$$f_{t} = \sigma \left(W_{fx} x_{t} + W_{fm} m_{t-1} + W_{fc} c_{t-1} + b_{f} \right)$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g \left(W_{cx} x_{t} + W_{cm} m_{t-1} + b_{c} \right)$$

$$o_{t} = \sigma \left(W_{ox} x_{t} + W_{om} m_{t-1} + W_{oc} c_{t} + b_{o} \right)$$

$$m_{t} = o_{t} \odot h(c_{t})$$

$$y_t = s\left(W_{ym}m_t + b_y\right)$$

 σ denotes the sigmoid function, and s (·) the softmax function. \odot is the element-wise product of the vectors

LSTM References

- Sequence to Sequence Learning with Neural Networks (Sutskever et al., http://arxiv.org/pdf/1409.3215v3.pdf)
- Grid Long Short-Term Memory (Kalchbrenner et al., http://arxiv.org/pdf/1507.01526v1.pdf)
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al., http://arxiv.org/pdf/1502.03044v2.pdf)

Outline

- Fields where deep learning is active
- The difficulties of deep learning
- The approaches to maximizing deep learning possibilities and abilities
- Summary

Difficulties of Deep Learning

- How much deep learning is utilized in other fields?
 - Few
- Why?
 - Too many model parameters (hyper parameters)
 - Go through more trial and error to get high precision
- Great performance is supported by steady parameter-tuning

Difficulties of Deep Learning

- Deep learning often fails to train and classify data from simple problems
 - Weights can't be well optimized
 - Data quantities
- Deep learning is still far from the true Al

Outline

- Fields where deep learning is active
- The difficulties of deep learning
- The approaches to maximizing deep learning possibilities and abilities
- Summary

Approaches to Apply

- 3 categories
 - Field-oriented approach
 - Breakdown-oriented approach
 - Output-oriented approach: explores new ways of how we express the output with deep learning

This approach doesn't require new techniques or algorithms

Medicine

Tumors or cancers are detected on scanned images=> image recognition

Automobiles

- Surroundings of running cars are image sequences and text
- Self-driving cars

 George Hotz, the first person to hack the iPhone, built a self-driving car in his garage (http://www.bloomberg.com/features/2015-george-hotz-self-driving-car/)

Advert technologies

- Use user-behavior-based indicators, such as page view (PV), click through rate (CTR), and conversion rate (CVR), to estimate the effect of an ad
- Use deep learning to analyze the actual content of an ad and autogenerate ads going forward
- Profession or practice
 - Doctor, lawyer, patent attorney, and accountant
 - With NLP's precision and accuracy gets higher

- Sports
 - Movie: Moneyball
 - increased the win percentage of the team by adopting a regression model in baseball

- Similar to the approach considered in traditional machine learning algorithms
- Feature engineering is the key to improving precision in machine learning
 - Engineering under the constraints of a machine learning model
 - E.g. make inputs discrete or continuous
 - Feature engineering to increase precision by machine learning
 - · Rely on the sense of a researcher

- Deep learning doesn't have to focus on the second
- First one is the important part
 - For example, it's difficult to predict stock prices using deep learning
 - Stock prices are volatile
 - Difficult to define inputs
 - How to apply an output value
 - Enabling deep learning to handle these inputs and outputs is also said to be feature engineering in the wider sense

 Simplified stock price prediction: close price up or down

Class	Description
Class 1	Up more than 3 percent from the closing price
Class 2	Up more than 1~3 percent from the closing price
Class 3	Up more than 0~1 percent from the closing price
Class 4	Down more than 0~-1 percent from the closing price
Class 5	Down more than -1~-3 percent from the closing price
Class 6	Down more than -3 percent from the closing price

- Feature engineering for models
 - designing inputs or adjusting values to fit deep learning models
 - enabling classification by setting a limitation for the outputs
- Model engineering for features
 - Devising new neural network models or algorithms to solve problems in a focused field

Output-oriented Approach

- Gain the world's interest by thinking of ideas in creative fields
 - The world pay attention to what a machine can't do

it might be better to emphasize the point that machines make mistakes

Outline

- Fields where deep learning is active
- The difficulties of deep learning
- The approaches to maximizing deep learning possibilities and abilities
- Summary

Summary

- Deep learning algorithms for practical applications:
 NLP
- Two new deep learning models: the RNN and LSTM networks
 - Training algorithm: BPTT
- Three approaches to make the best of the deep learning ability
 - Field-oriented, breakdown-oriented, output-oriented approach

