0.1 Proposer une démarche permettant la détermination d'une action mécanique inconnue ou d'une loi de mouvement – PFD

Exercice 1 - Mouvement T - *

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$. On note m_1 la masse du solide 1. On note G le centre d'inertie de 1 tel que $\overrightarrow{BG} = \ell \overrightarrow{j_1}$. La pesanteur est telle que $\overrightarrow{g} = -g \overrightarrow{i_0}$. Un vérin positionné entre 1 et 0 permet d'actionner la pièce 1. On souhaite prendre en compte les frottements secs dans la liaison glissière.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer la loi du mouvement de **1** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 2 - Mouvement R *

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$. La liaison pivot est motorisée par un moteur modélisée dont l'action mécanique sur $\mathbf{1}$ est donnée par $\overrightarrow{C_m} = C_m \, \overrightarrow{k_0}$. On note m_1 la masse du solide $\mathbf{1}$ et B son centre d'inertie. La pesanteur est telle que $\overrightarrow{g} = -g \, \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer la loi du mouvement de **1** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 3 - Mouvement TT - *

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t) \overrightarrow{j_0}$. $G_1 = B$ désigne le centre d'inertie de $\mathbf{1}$, et m_1 sa masse. $G_2 = C$ désigne le centre d'inertie de $\mathbf{2}$ et m_2 sa masse

Un vérin électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un vérin électrique positionné entre **1** et **2** permet d'actionner le solide **2**.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 4 - Mouvement RR *

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec $L = 15 \, \text{mm}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = \frac{1}{2}R\overrightarrow{i_1}$, on note m_1 la masse de 1;
- G_2 désigne le centre d'inertie de **2** et $\overrightarrow{BG_2} = \frac{1}{2} L \overrightarrow{i_2}$, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un moteur électrique positionné entre **1** et **2** permet d'actionner le solide **2**.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 5 - Mouvement RT *

B2-14

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de 1;
- G₂ = B désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un moteur électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un vérin électrique positionné entre **1** et **2** permet d'actionner le solide **2**

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 6 - Mouvement RT *

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm. De plus :

- G₁ = B désigne le centre d'inertie de 1, on note m₁ la masse de 1;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un vérin électrique positionné entre 0 et 1 permet d'actionner le solide 1. Un moteur électrique positionné entre 1 et 2 permet d'actionner le solide 2.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 7 - Mouvement RR 3D **

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- G₁ = B désigne le centre d'inertie de 1, on note m₁ la masse de 1;
- G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2**.

Un moteur électrique positionné entre $\mathbf{0}$ et $\mathbf{1}$ permet d'actionner le solide $\mathbf{1}$. Un moteur électrique positionné entre $\mathbf{1}$ et $\mathbf{2}$ permet d'actionner le solide $\mathbf{2}$. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 8 - Mouvement RR 3D **

B2-14

Pas

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = \overrightarrow{H_{j_1}}$, on note m_1 la masse de 1;
- $\overrightarrow{Hj_1}$, on note m_1 la masse de 1; • $G_2 = C$ désigne le centre d'inertie de 2, on note m_2 la masse de 2.

Un moteur électrique positionné entre $\mathbf{0}$ et $\mathbf{1}$ permet d'actionner le solide $\mathbf{1}$. Un moteur électrique positionné entre $\mathbf{1}$ et $\mathbf{2}$ permet d'actionner le solide $\mathbf{2}$. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 9 - Mouvement RT - RSG **

B2-14

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de 1;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un ressort exerce une action mécanique entre les points A et B.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

0.2 Proposer une démarche permettant la détermination d'une action mécanique inconnue ou d'une loi de mouvement – PFD

Exercice 10 - Mouvement T - *

B2-14

Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer la loi du mouvement de 1 par rapport à \Re_0 .

Exercice 11 - Mouvement R *

B2-14

Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer la loi du mouvement de 1 par rapport à \mathcal{R}_0 .

Exercice 12 - Mouvement TT - *

B2-14

Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \Re_0 .

Exercice 13 - Mouvement RR *

B2-14

Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \Re_0 .

Exercice 14 - Mouvement RT *

B2-14

Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \mathcal{R}_0 .

Exercice 15 - Mouvement RT *

B2-14

Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \mathcal{R}_0 . Ce mécanisme présente deux degrés de liberté indépendants : $\lambda(t)$ et $\theta(t)$. Il est donc nécessaire d'écrire, dans le meilleur des cas, deux équations :

- une équation traduisant la mobilité de 2 par rapport à 1, soit TMD appliqué à 2 en B en projection sur $\overrightarrow{k_0}$;
- une équation traduisant la mobilité de 2+1 par rapport à 0, soit TRD appliqué à 1+2 en projection sur $\overrightarrow{i_0}$.
- On isole 2.
- BAME:
 - actions de la liaison pivot $\{\mathcal{T}(1 \to 2)\}$;
 - action de la pesanteur $\{\mathcal{T}(pes \rightarrow 2)\}$.
- **Théorème:** on applique le théorème du moment dynamique en B au solide $\mathbf{2}$ en projection sur $\overrightarrow{k_0} : \overline{\mathcal{M}(B, \text{pes} \to 2)} \cdot \overline{k_0} = \overline{\delta(B, 2/0)} \cdot \overline{k_0}$.
- Calcul de la composante dynamique : considérons le cas où la matrice d'inertie est donnée en C. On a donc $\overrightarrow{\delta(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma(C,2/0)} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[I_C(2) \overrightarrow{\Omega(2/0)} \right]_{\mathcal{R}_0}$. De plus, $\overrightarrow{\delta(B,2/0)} = \overrightarrow{\delta(C,2/0)} + \overrightarrow{BC} \wedge \overrightarrow{R_d(2/0)}$ et $\overrightarrow{R_d(2/0)} = m_2 \overrightarrow{\Gamma(C \in 2/0)}$.
- On isole 1+2.
- BAME:
 - actions de la liaison glissière $\{\mathcal{T}(0 \to 1)\}$;
 - action de la pesanteur $\{\mathcal{T}(pes \rightarrow 1)\}$;
 - action de la pesanteur $\{\mathcal{T}(pes \rightarrow 2)\}$;
 - action du vérin $\{\mathcal{T}(\text{ver} \to 1)\}$;.
- Théorème : on applique le théorème de la résultante dynamique à l'ensemble 1+2 en projection sur $\overrightarrow{i_0}$: $\overrightarrow{R(\text{ver} \to 1)} \cdot \overrightarrow{i_0} = \overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$.
- Calcul de la composante dynamique : $\overline{R_d(1+2/0)} = \overline{R_d(1/0)} + \overline{R_d(2/0)} = m_1 \overline{\Gamma(G_1 \in 1/0)} + m_2 \overline{\Gamma(G_2 \in 2/0)}$.

Exercice 16 - Mouvement RR 3D **

B2-14

Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \mathcal{R}_0 .

Exercice 17 - Mouvement RR 3D **

B2-14

Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \Re_0 .

Exercice 18 - Mouvement RT - RSG **

B2-14

Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .