Week 9: Galois groups of polynomials (14.6)

Practice Problems

- 1. Compute the Galois group of $x^3 2x + 4$ over \mathbb{Q} .
- 2. Compute the Galois group of $x^3 x + 1$ over \mathbb{Q} .
- 3. Compute the Galois group of $x^3 + x^2 2x 1$ over \mathbb{Q} .

Presentation Problems

- 1. Let p be a prime and let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree p with exactly p-2 real roots. Show that the Galois group of f(x) is isomorphic to S_p .
- 2. Compute the Galois group of $x^5 + 4x^2 5x 3$ over \mathbb{Q} .
- 3. Compute the Galois group of $x^4 2$ over \mathbb{Q} .
- 4. Compute the Galois group of $x^4 + 8x + 12$ over \mathbb{Q} .

Tricky Problems

- 1. Consider the polynomials $p_1(x) = x^5 2x^4 + x^3 + x^2 x + 1$ and $p_2(x) = x^5 x 1$. Let K_j be the splitting field of $p_j(x)$ over \mathbb{Q} . Compute $\operatorname{Gal}(K_j/\mathbb{Q})$. Show that there exists a unique quadratic extension F_j/\mathbb{Q} with $F_j \subseteq K_j$. What is this quadratic extension?
- 2. Let a and n be positive integers. Suppose that a is squarefree and that $a \nmid n$. Show that the Galois group of $x^n a$ is isomorphic to $\mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} (\mathbb{Z}/n\mathbb{Z})^{\times}$.