

Amrita School of Engineering, Chennai

Course Delivery Plan

Name of the Course / Code	Basic Electrical and Electronics Engineering /19EEE100	Department	Electrical and Electronics Engineering						
Credit	3	Semester / Year	I/I						
Name of the Faculty	Dr. Nikhil Kumar C S – Ph.D. IIT Madras Dr. Laksman S A – Ph.D. IIT Mandi	Pre-requisite	Kirchoff's current law, Kirchhoff voltage law, Transients and Steady State, Fleming's thump rule						
Designation / Dept	19EEE1000 (ECE & CCE)	Academic Year	2020-2021						
Course Overview	Course Overview This course tells you about the fundamental concepts of electrical engineering such as voltage, cur circuit elements, theorems, single-phase, three phase circuits and electrical machines. Basics of electr electronis circuits such as diode and operational amplifier.								

	Course Objective		Course Outcome	BTL	Weightage of BTL
1	To impart basic knowledge of electrical quantities and provide working knowledge for the analysis of DC and AC circuits		Understand the basic electric and magnetic circuits	2	0.2
2	To understand the construction and working principle of DC and AC machines.	CO 2	Analyse DC and AC circuits	4	0.3
3	To facilitate understanding of basic electronics and operational amplifier circuits	CO 3	Interpret the construction and working of different types of electrical machines	3	0.3
		CO 4	Analyse basic electronic components and circuits	4	0.2

Course Syllabus

Unit 1

Introduction to Electrical Engineering, Current and Voltage sources, Resistance, Inductance and Capacitance; Ohm's law, Kirchhoff's law, Energy and Power – Series parallel combination of R, L, C components, Voltage Divider and Current Divider Rules – Super position Theorem, Network Analysis – Mesh and Node methods- Faraday's Laws of Electro-magnetic Induction, Magnetic Circuits, Self and Mutual Inductance, Generation of sinusoidal voltage, Instantaneous, Average and effective values of periodic functions, Phasor representation. Introduction to 3-phase systems, Introduction to electric grids.

Unit 2

Electrical Machines: DC Motor: Construction, principle of operation, Different types of DC motors, Voltage equation of a motor, significance of back EMF, Speed, Torque, Torque-Speed characteristics, Output Power, Efficiency and applications. Single Phase Transformer: Construction, principle of operation, EMF Equation. Regulation and Efficiency of a Transformer. Induction Machine: Three Phase Induction Motor: Construction and Principle of Operation, Slip and Torque, Speed Characteristics. Stepper motor: Construction, principle and mode of operation.

Unit 3

PN Junction diodes, VI Characteristics, Rectifiers: Half wave, Full wave, Bridge. Zener Diode- characteristics, Optoelectronic devices. BJT – characteristics and configurations, Transistor as a Switch. Junction Field Effect Transistors - operation and characteristics, Thyristor – Operation and characteristics. Fundamentals of DIAC and TRIAC.555 Timer, Integrated circuits. Operational Amplifiers – Inverting and Non-inverting amplifier – Instrumentation amplifiers.

Textbooks / Reference

Text Books

Edward Hughes. "Electrical and Electronic Technology", 10th Edition, Pearson Education Asia, 2019.

D. P. Kothari, I J Nagrath, "Electric Machines", 5th Edition, Tata McGraw Hill, 2017.

A. P. Malvino, "Electronic Principles", 7th Edition, Tata McGraw Hill, 2007.

References

S. K. Bhattcharya, "Basic Electrical and Electronics Engineering", Pearson, 2012.

Vincent Del Toro, "Electrical Engineering Fundamentals", Prentice Hall of India Private Limited, 2nd Edition, 2003.

David A. Bell, "Electronic Devices and Circuits", 5th Edition, Oxford University Press, 2008.

Michael Tooley B. A., "Electronic circuits: Fundamentals and Applications", 3rd Edition, Elsevier Limited, 2006

K. S Suresh Kumar, "Electric Circuits and Networks" acommon book for electrical and electronics. This book deals with basic fundamentals in Electrical, Electronics,

Electromagnetics. Will get the ability to crack central government interviews.

W.H. Hayt, "Engineering Circuit Analysis" Mcgraw Hill, 2012- Problem solving skills through this book. Will get the ability to crack central government exams.

Evaluation and Grading

	Internal		External	Total			
Components	Weig	htage	Examination				
First Test (Online)	10%	30 %					
Second Test (Online)	10%						
Third Test (Online)	10%						
Continuous Assessment			conducted for 50	Internal + External = 100 %			
Quiz	10%		Marks (90 minutes.) Viva Voce				
Problem based Assignment	20%		7774 7 000				

Seminar & C	Capstone Project	10%	40 %	Weightage 30%								
	Programme Outcome (PO)											
PO 1		nowledge: Apply the kno complex engineering prob		science, engineering fundame	ntals, and an engineering specialization to							
PO 2	Problem analys	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.										
PO 3	Design/develop meet the specifi	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. set										
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.											
PO 5	Modern tool u	ısage : Create, select, a	nd apply appropriate te		odern engineering and IT tools including							
PO 6				ne contextual knowledge to the professional engineering	Assess societal, health, safety, legal and ng practice.							
PO 7	Environment	and sustainability:	Understand the imp		engineering solutions in societal and							
PO 8		,			and norms of the engineering practice.							
PO 9	Individual an multidisciplina		ion effectively as an	individual, and as a mem	ber or leader in diverse teams, and in							
PO 10	Communicatio	n: Communicate effective ble to comprehend and w			eering community and with society at large, effective presentations, and give and receive							
PO 11					e engineering and management principles anage projects and in multidisciplinary							
PO 12	Life-long lear	rning: Recognize the broadest context of tec		ne preparation and ability	to engage in independent and life-long							
PSO 1				iture systems using smart te	echnologies.							

PSO 2	Research and Innovation : Investigate new problems from fundamental kn	nowledge
-------	---	----------

	CO – PO Affinity Map														
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2	PSO 3
CO															
CO 1	3	3													
CO 2	3	3		1											
CO 3	3	3													
CO 4	3	3	3	2		1									

3 – Strong, 2 Moderate, 1 -weak

Lecture Plan

Class	Topics to be covered	Mode of Teachin g	In-Class Activities	Out- Class Student Activities (E – References)	CO Mapp ing	Refere nce
1	Introduction to Electrical Engineering, Current and Voltage sources	Microsof t Teams	Basic understanding of voltage and current		СО	TB1
2	Resistance, Inductance and Capacitance	Microsof t Teams	Explanation of circuit elements	https://ocw.mit.edu/search/ocwsearch.htm?q=Resistance%2C %20Inductance%20and%20Capacitance Search thekeywords	CO1	TB1
3	Ohm's law, law, Energy and Power	Microsof t Teams	Ohm's law, power and energy-Problems. (Quiz)	https://ocw.mit.edu/search/ocwsearch.htm?q=Resistance%2C %20Inductance%20and%20Capacitance Search thekeywords	CO1	TB1
4	Kirchhoff's Law KCL and KVL Problems	Microsof t Teams	KCL, KVL-Problems	https://ocw.mit.edu/search/ocwsearch.htm?q=Resistance%2C %20Inductance%20and%20Capacitance Search thekeywords	CO1	TB1
6	Series parallel combination of R, L, C components	Microsof t Teams	Series and parallel circuits-problems	https://ocw.mit.edu/search/ocwsearch.htm?q=Resistance%2C %20Inductance%20and%20Capacitance Search the keywords	CO1	TB1
7	Voltage Divider and Current Divider Rules	Microsof t Teams	VDR and CDR- problems Circuit based learning (Quiz-I)	https://ocw.mit.edu/search/ocwsearch.htm?q=Resistance%2C %20Inductance%20and%20Capacitance Search thekeywords	CO2	TB1
8	Super position Theorem	Microsof t Teams	Importance of super position theorem-problems Simulation based learning	https://ocw.mit.edu/search/ocwsearch.htm?q=Resistance%2C %20Inductance%20and%20Capacitance Search thekeywords	CO2	TB1, TB2, RBI
9	Network Analysis – Mesh and Node	Microsof t	Mesh and Node analysis	https://ocw.mit.edu/search/ocwsearch.htm?q=Resistance%2C %20Inductance%20and%20Capacitance Search thekeywords	CO2	TB1, TB2, RBI

	methods	Teams				
.0	Mesh and Node methods	Microsof t Teams	Understanding of Mesh and Node analysis-Problems Circuit based learning (Quiz)	https://ocw.mit.edu/search/ocwsearch.htm?q=Resistance%2C %20Inductance%20and%20Capacitance Search thekeywords	CO2	TB, TB2, RBI
11	AC analysis of RLC circuits	Microsof t Teams	Difference between DC and AC circuits Analysis of AC circuits	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-17/ Search thekeywords	CO2	TB1, TB2, RBI
12	AC Circuit Analysis Mesh and super mesh	Microsof t Teams	Mesh analysis with AC source - Problems	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-17/Search thekeywords	CO2	TB1, TB2, RBI
13	AC Circuit Analysis node and node mesh	Microsof t Teams	Mesh analysis with AC source- Problems (Assignment-I)	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-17/Search thekeywords	CO2	TB2
14	Faraday's Laws of Electro-magnetic Induction	Microsof t Teams	Basics of faradays law electromagnetic induction Circuit based learning	https://ocw.mit.edu/search/ocwsearch.htm?q=Resistance%2C %20Inductance%20and%20Capacitance	CO1	TB2
15	Magnetic Circuits - Self and Mutual Inductance	Microsof t Teams	Discussion on self and mutual inductance	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-17/Search thekeywords	CO1	TB2
16	Generation of sinusoidal voltage	Microsof t Teams	Discussion on AC source Simulation based learning	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-16/Search thekeywords	CO2	TB2
17	Instantaneous, Average and effective values of periodic functions -	Microsof t Teams	Discussion on AC source-Average, RMS values (Quiz)	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-16/Search thekeywords	CO2	TB2

18	Di-san namesantation	Mismagaf	Tutus divistion to mboson	h https://ocw.mit.edu/courses/electrical-engineering-and-computer-	CO2	TB2
18	Phasor representation	Microsof t Teams	Introduction to phasor	n https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-16/ Search keywords	CO2	162
				,		
19	Introduction to 3-phase systems	Microsof t Teams	Importance of 3-phase System Simulation based learning	https://ocw.mit.edu/search/ocwsearch.htm?q=Integrated%20circuits %20Operational%20Amplifiers%20 Search keywords	CO2	TB2
20	Introduction to electric grids	Microsof t Teams	Basic understanding of electrical grid (Assignment-II)	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-061-introduction-to-electric-power-systems-spring-2011/	CO2	TB2
21	First Test-I					
22	Electrical Machines: DC Motor: Construction, principle of operation	Microsof t Teams	Introduction to Generators and motors Circuit based learning	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO3	TB2
23	Different types of DC motors, Voltage equation of a motor, significance of back EMF, Speed, Torque, Torque-Speed characteristics	Microsof t Teams	Characteristics of DC Motor Circuit based learning	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO3	TB2
24	Output Power, Efficiency and applications	Microsof t Teams	Efficiency calculation (Quiz)	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO3	TB2
25	Single Phase Transformer:	Microsof t	Basics of transformer	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20	CO3	TB2

	Construction, principle of operation	Teams		Search keywords		
26	EMF Equation.	Microsof t Teams	Derivation of EMF equation	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO3	TB2
27	Regulation and Efficiency of a Transformer	Microsof t Teams	Efficiency calculation of Transformer (Assignment-III)	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO3	TB2
28	Induction Machine: Three Phase Induction Motor	Microsof t Teams	Basic principle of Induction machine	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO3	TB2
29	Construction and Principle of Operation,	Microsof t Teams	Discussion on operation of Induction motors Simulation based learning	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO3	TB2
30	Slip and Torque, Speed Characteristics.	Microsof t Teams	Characteristics of Induction motor	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO3	TB2
31	Stepper motor: Construction, principle and mode of operation.	Microsof t Teams	Basic working principle of stepper motor (Assignment-IV)	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO3	TB2
32	Second Test	Microsof t Teams				
33	PN Junction diodes, VI Characteristics	Microsof t	Characteristics of diode	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20	CO4	TB1

		Teams		Search keywords		
34	Rectifiers: Half wave, Full wave Bridge	Microsof t Teams	Rectifier operation	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO4	TB1
5	Zener Diode- characteristics Optoelectronic devices.	Microsof t Teams	Basics of voltage regulator (Quiz)	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO4	TB1
36	BJT – characteristics and configurations, transistor as a Switch	Microsof t Teams	Working principle of Transistor	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO4	TB1
37	Field Effect Transistors - operation and characteristics	Microsof t Teams	Working principle of FET (Assignment-V)	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO4	TB1
38	Thyristor – Operation and characteristics	Microsof t Teams	Thyristor basics	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO4	TB1
39	Fundamentals of DIAC and TRIAC.555 Timer	Microsof t Teams	Introduction to DIAC and TRIAC	https://ocw.mit.edu/search/ocwsearch.htm?q=Electrical%20Machines %3A%20DC%20Motor%3A%20Construction%2C%20principle %20of%20operation%20 Search keywords	CO4	TB1
10	Integrated circuits Operational Amplifiers	Microsof t Teams	Basics of Op-Amp	https://ocw.mit.edu/search/ocwsearch.htm?q=Integrated%20circuits %20Operational%20Amplifiers%20	CO4	TB1
1	Inverting and Non- inverting amplifier –	Microsof t Teams	Inv and Non-inv amp	https://ocw.mit.edu/search/ocwsearch.htm?q=Integrated%20circuits %20Operational%20Amplifiers%20 Search keywords	CO4	TB1
12	Instrumentation amplifiers.	Microsof t	Basics of Inst. Amp (Assignment-VI)	https://ocw.mit.edu/search/ocwsearch.htm?q=Integrated%20circuits %20Operational%20Amplifiers%20	CO4	TB1

10 | Page

		Teams		Search keywords	
43	Revision on Unit-I	Microsof t Teams	Solving Problems		
44	Revision on Unit-II	Microsof t Teams	Solving Problems		
45	Revision on Unit-III	Microsof t Teams	Discussing Concepts		
46	Third Test				

		BTL Mapping				
UNIT	Major Topics	Skill Set	СО	BTL	Weightage *	Weightage BTL**
1	Ohm's law, Kirchhoff's law, Energy and Power,. Faraday's Laws of Electro-magnetic Induction, Self and Mutual Inductance	Ability to analyze voltage, current and circuit analysis	1	2	0.5	3
	Mesh and Node voltage analysis, Network Theorems	Ability to analyze network theorems and circuit elements	2	4	0.25	

	Introduction to AC system and 1-phase and 3-phase systems, Introduction to electric grids.	Ability to analysis various types of AC circuits	2	4	0.25		
2	DC machines-Generators, motors-Working principle and characteristics	Ability to understand the principles of DC machines	3	3	0.5	3	
	Transformers-EMF equation, Regulation and efficiency of a transformer. Induction machine-working operation-Characteristics	Ability to understand the working operation of Transformers and the characteristics of 3-phase Induction machine	3	3	0.5		
3	Diode-Characteristics, Voltage regulator	Ability to analysis various types of semiconductor devices	4	4	0.5	4	
	BJT-FET-Operation and characteristics, Operating principle of Operational Amplifiers	Ability to apply BJT devices for specific applications and various types of Operational Amplifiers	4	4	0.5	·	
	Course BTL Level					3.3	

Faculty Course Mentor Academic Incharge Principal

Questions for Student Survey on Learning Outcomes

(Upon completing the module, I am able to:)

CO. No	Questions	Strongly Disagree (1)	Disagree (2)	Neutral (3)	Agree (4)	Strongly Agree (5)
CO1	Have you learned the fundamental network analysis and obtained the skills to solve circuit problem?.					
CO2	Have you learned the basics of Electric Motors and obtained the skills to solve Electric Machine problems using equivalent circuit representation?.					
CO3	Have you learned to solve electronic circuits using equivalent representation?					
CO4						
CO5						