

Agenda

Introduction

Euler-Lagrange Modelling

Modelling of Conservative Systems Modelling of Non-Conservative Systems Properties of Dynamical Robot Models

Robot with Two Joints

Kinematics Potential Energy Kinetic Energy Dynamics

Summary

Knowledge:

- Derive dynamical state-space models of robots as control systems
- Analyze the stability of low dimensional linear and nonlinear systems
- Analyze the observability and controllability of linear control systems
- Use a variety of controllers for underactuated robots

Skills:

- Implement simulations of control systems in software
- Create concise technical reports presenting solutions to proposed problems

Competencies:

- ► Choose appropriate modern control techniques to solve control problems in robotics
- Apply modern control techniques to control simulated underactuated robots

Introduction Course Plan

- ► Lesson 1: Euler-Lagrange Modelling
- ► Lesson 2: Simulation of Robot Dynamics
- ► Lesson 3: Modelling and Simulation of BB8 Robot
- ► Lesson 4: Stability Analysis
- ► Lesson 5: Optimal Control
- ► Lesson 6: Feedback Linearisation
- ► Lesson 7: Energy Shaping Control
- ► Lesson 8: Simulation and Implementation of Control Systems
- ► Lesson 9: Sliding Mode Control
- ► Lesson 10: Help with hand-in
- ► Lesson 11: Help with hand-in
- ► Lesson 12: Help with hand-in

Introduction

Euler-Lagrange Modelling Modelling of Conservative Systems Modelling of Non-Conservative Systems Properties of Dynamical Robot Models

Robot with Two Joints
Kinematics
Potential Energy
Kinetic Energy
Dynamics

Summary

The motion of a mechanical system from time a to b is such that the integral

$$I(t, q, \dot{q}) = \int_{a}^{b} \mathcal{L}(t, q, \dot{q}) dt,$$

where $\mathcal{L} = E_{kin} - E_{pot}$ has a stationary value. The function \mathcal{L} is called the **Lagrangian**.

Euler-Lagrange modelling can be used for finding the equations of motion of e.g. mechanical systems using the system's potential energy $E_{\rm pot}$ and kinetic energy $E_{\rm kin}$.

Euler-Lagrange modelling Generalized Coordinates

Consider a mechanical system with n degrees of freedom. The system is modelled with n generalized coordinates q_1, \ldots, q_n .

Euler-Lagrange modelling Generalized Coordinates

Consider a mechanical system with n degrees of freedom. The system is modelled with n generalized coordinates q_1, \ldots, q_n .

The generalized coordinates should be

- Minimal
- ► Independent

 If all but one coordinate is fixed then the last coordinate should take values in a continuous domain.
- ► Complete
 Should describe all configurations to any time.

Euler-Lagrange modelling Generalized Coordinates

Consider a mechanical system with n degrees of freedom. The system is modelled with n *generalized coordinates* q_1, \ldots, q_n .

The generalized coordinates should be

- ► Minimal
- ► Independent

 If all but one coordinate is fixed then the last coordinate should take values in a continuous domain.
- ► Complete
 Should describe all configurations to any time.

Generalized coordinates will most often be positions and/or angles of a mechanical system.

If q is a trajectory of a conservative mechanical system then

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = 0$$

where q is an n-dimensional vector of generalized coordinates and \mathcal{L} is the Lagrangian given by

$$\mathcal{L} = E_{\mathsf{kin}} - E_{\mathsf{pot}} \quad [\mathsf{J}]$$

where E_{pot} is the system's potential energy and E_{kin} is the system's kinetic energy.

Euler-Lagrange modelling Example: Rotational Mass-Spring System

The rotational mass-spring system has dynamics given by

$$\begin{split} I_1 \ddot{\theta}_1 &= -K_1 \theta_1 - K_2 (\theta_1 - \theta_2) \\ I_2 \ddot{\theta}_2 &= -K_2 (\theta_2 - \theta_1) \end{split} \quad \text{[Nm]} \label{eq:initial_equation}$$

where I_1, I_2 are moments of inertia [kgm²] and K_1, K_2 are stiffnesses [N/rad].

The potential and kinetic energies are

$$\begin{split} E_{\text{pot}} &= \frac{1}{2} K_1 \theta_1^2 + \frac{1}{2} K_2 (\theta_1 - \theta_2)^2 \\ E_{\text{kin}} &= \frac{1}{2} I_1 \dot{\theta}_1^2 + \frac{1}{2} I_2 \dot{\theta}_2^2 \end{split}$$

Euler-Lagrange modelling Example: Rotational Mass-Spring System

The rotational mass-spring system has dynamics given by

$$\begin{split} I_1 \ddot{\theta}_1 &= -K_1 \theta_1 - K_2 (\theta_1 - \theta_2) \\ I_2 \ddot{\theta}_2 &= -K_2 (\theta_2 - \theta_1) \end{split} \quad \text{[Nm]} \label{eq:initial_state}$$

where I_1, I_2 are moments of inertia [kgm²] and K_1, K_2 are stiffnesses [N/rad].

The potential and kinetic energies are

$$\begin{split} E_{\text{pot}} &= \frac{1}{2} K_1 \theta_1^2 + \frac{1}{2} K_2 (\theta_1 - \theta_2)^2 \\ E_{\text{kin}} &= \frac{1}{2} I_1 \dot{\theta}_1^2 + \frac{1}{2} I_2 \dot{\theta}_2^2 \end{split}$$

From Euler-Lagrange Equation with generalized coordinates $q=(q_1,q_2)=(\theta_1,\theta_2)$ we obtain

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = 0$$

where

$$\mathcal{L} = \frac{1}{2}I_1\dot{\theta}_1^2 + \frac{1}{2}I_2\dot{\theta}_2^2 - \left(\frac{1}{2}K_1\theta_1^2 + \frac{1}{2}K_2(\theta_1 - \theta_2)^2\right)$$

Euler-Lagrange modelling Example: Rotational Mass-Spring System

The rotational mass-spring system has dynamics given by

$$\begin{split} I_1 \ddot{\theta}_1 &= -K_1 \theta_1 - K_2 (\theta_1 - \theta_2) \\ I_2 \ddot{\theta}_2 &= -K_2 (\theta_2 - \theta_1) \end{split} \quad \text{[Nm]} \end{split}$$

where I_1,I_2 are moments of inertia [kgm²] and K_1,K_2 are stiffnesses [N/rad].

From Euler-Lagrange Equation with generalized coordinates $q = (q_1, q_2) = (\theta_1, \theta_2)$ we obtain

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = 0$$

where

$$\mathcal{L} = \frac{1}{2} I_1 \dot{\theta}_1^2 + \frac{1}{2} I_2 \dot{\theta}_2^2 - \left(\frac{1}{2} K_1 \theta_1^2 + \frac{1}{2} K_2 (\theta_1 - \theta_2)^2 \right)$$

This can be written as

$$\begin{bmatrix} I_1\ddot{\theta}_1 + K_1\theta_1 + K_2(\theta_1 - \theta_2) \\ I_2\ddot{\theta}_2 - K_2(\theta_1 - \theta_2) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Modelling of Non-Conservative Systems

Introduction

Euler-Lagrange Modelling

Modelling of Conservative Systems

Modelling of Non-Conservative Systems

Properties of Dynamical Robot Models

Robot with Two Joints

Kinematics Potential Energy Kinetic Energy Dynamics

Summary

Euler-Lagrange Modelling Generalized Forces

Physical systems are often affected by external controllable forces and dissipative forces such as friction. Therefore, Euler-Lagrange Equation is extended with generalized forces Q, which are not necessarily conservative.

Physical systems are often affected by external controllable forces and dissipative forces such as friction. Therefore, Euler-Lagrange Equation is extended with generalized forces Q, which are not necessarily conservative.

This extension is called *Lagrange–D'Alembert's Principle*.

Euler-Lagrange Modelling Lagrange-D'Alembert's Principle

If q is a trajectory of a mechanical system that is affected by a generalized force Q then

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} - \frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} = \boldsymbol{Q}$$

where Q is an n-dimensional vector of generalized forces. **Lagrange–D'Alembert's Principle** can be written as (for $\mathbf{q} = (q_1, q_2, \dots, q_n)$)

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_{1}} - \frac{\partial \mathcal{L}}{\partial q_{1}} = Q_{1}$$

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_{2}} - \frac{\partial \mathcal{L}}{\partial q_{2}} = Q_{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_{n}} - \frac{\partial \mathcal{L}}{\partial q_{n}} = Q_{n}$$

Example: Rotational Mass-Spring System with External Force

The above rotational mass-spring system has dynamics

$$\begin{split} I_1 \ddot{\theta}_1 &= -K_1 \theta_1 - K_2 (\theta_1 - \theta_2) \qquad \text{[Nm]} \\ I_2 \ddot{\theta}_2 &= -K_2 (\theta_2 - \theta_1) + \tau \qquad \text{[Nm]} \end{split}$$

where I_1, I_2 are moments of inertia [kgm²] and K_1, K_2 are stiffnesses [N/rad].

The potential and kinetic energies are

$$\begin{split} E_{\text{pot}} &= \frac{1}{2} K_1 \theta_1^2 + \frac{1}{2} K_2 (\theta_1 - \theta_2)^2 \\ E_{\text{kin}} &= \frac{1}{2} I_1 \dot{\theta}_1^2 + \frac{1}{2} I_2 \dot{\theta}_2^2 \end{split}$$

Example: Rotational Mass-Spring System with External Force

The above rotational mass-spring system has dynamics

$$\begin{split} I_1 \ddot{\theta}_1 &= -K_1 \theta_1 - K_2 (\theta_1 - \theta_2) & \text{[Nm]} \\ I_2 \ddot{\theta}_2 &= -K_2 (\theta_2 - \theta_1) + \tau & \text{[Nm]} \end{split}$$

where I_1, I_2 are moments of inertia [kgm 2] and K_1, K_2 are stiffnesses [N/rad].

The potential and kinetic energies are

$$\begin{split} E_{\text{pot}} &= \frac{1}{2} K_1 \theta_1^2 + \frac{1}{2} K_2 (\theta_1 - \theta_2)^2 \\ E_{\text{kin}} &= \frac{1}{2} I_1 \dot{\theta}_1^2 + \frac{1}{2} I_2 \dot{\theta}_2^2 \end{split}$$

From Euler-Lagrange Equation with generalized coordinates ${m q}=(q_1,q_2)=(\theta_1,\theta_2)$ and generalized force ${m Q}=(0, au)$ we obtain

$$rac{d}{dt}rac{\partial \mathcal{L}}{\partial \dot{m{q}}} - rac{\partial \mathcal{L}}{\partial m{q}} = m{Q}$$

where

$$\mathcal{L} = \frac{1}{2} I_1 \dot{\theta}_1^2 + \frac{1}{2} I_2 \dot{\theta}_2^2 - \left(\frac{1}{2} K_1 \theta_1^2 + \frac{1}{2} K_2 (\theta_1 - \theta_2)^2 \right)$$

Example: Rotational Mass-Spring System with External Force

The above rotational mass-spring system has dynamics

$$\begin{split} I_1 \ddot{\theta}_1 &= -K_1 \theta_1 - K_2 (\theta_1 - \theta_2) & \text{[Nm]} \\ I_2 \ddot{\theta}_2 &= -K_2 (\theta_2 - \theta_1) + \tau & \text{[Nm]} \end{split}$$

where I_1, I_2 are moments of inertia [kgm²] and K_1, K_2 are stiffnesses [N/rad].

From Euler-Lagrange Equation with generalized coordinates ${m q}=(q_1,q_2)=(\theta_1,\theta_2)$ and generalized force ${m Q}=(0, au)$ we obtain

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = Q$$

where

$$\mathcal{L} = \frac{1}{2}I_1\dot{\theta}_1^2 + \frac{1}{2}I_2\dot{\theta}_2^2 - \left(\frac{1}{2}K_1\theta_1^2 + \frac{1}{2}K_2(\theta_1 - \theta_2)^2\right)$$

This can be written as

$$\begin{bmatrix} I_1\ddot{\theta}_1 + K_1\theta_1 + K_2(\theta_1 - \theta_2) \\ I_2\ddot{\theta}_2 - K_2(\theta_1 - \theta_2) \end{bmatrix} = \begin{bmatrix} 0 \\ \tau \end{bmatrix}$$

Properties of Dynamical Robot Models

Introduction

Euler-Lagrange Modelling

Modelling of Conservative Systems
Modelling of Non-Conservative Systems
Properties of Dynamical Robot Models

Robot with Two Joints

Kinematics Potential Energy Kinetic Energy Dynamics

Summary

Properties of Dynamical Robot Models Lagrange-D'Alembert's Principle

If q is a trajectory of a mechanical system that is affected by a generalized force Q then

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = Q$$

where Q is an n-dimensional vector of generalized forces and $\mathbf{q}=(q_1,q_2,\ldots,q_n)$ is the generalized coordinate and the Lagrangian is given by

$$\mathcal{L}(q,\dot{q}) = E_{\rm kin}(q,\dot{q}) - E_{\rm pot}(q). \label{eq:loss}$$

Properties of Dynamical Robot Models Kinetic and Potential Energies

Recall from Lecture 1 that

$$E_{\mathsf{pot}}(\boldsymbol{q}) = -\sum_{i=1}^n m_{l_i} \boldsymbol{g}_0^T \boldsymbol{p}_{l_i}(\boldsymbol{q})$$
 [J]

where m_{l_i} is the mass of Link i [kg], g_0 is the gravitational acceleration in Base Frame [m/s²] and $p_{l_i}(q)$ is the position of the center of mass of Link i in Base Frame [m]; and

$$E_{\mathsf{kin}}(q,\dot{q}) = \frac{1}{2}\dot{q}^T B(q)\dot{q}$$
 [J]

where B(q) is the inertia tensor in Base Frame.

Properties of Dynamical Robot Models Gravity Torque

From Lagrange-D'Alembert's Principle, it is seen that

$$\frac{d}{dt}\frac{\partial E_{\text{kin}}}{\partial \dot{q}} - \frac{\partial E_{\text{kin}}}{\partial q} + \frac{\partial E_{\text{pot}}}{\partial q} = Q$$

where

$$\frac{\partial E_{\mathsf{pot}}}{\partial q_i} = -\sum_{i=1}^n m_{l_i} \boldsymbol{g}_0^T \underbrace{\frac{\partial \boldsymbol{p}_{l_i}(\boldsymbol{q})}{\partial q_i}}_{=J_{P_i}^{l_i}}$$

Properties of Dynamical Robot Models Gravity Torque

From Lagrange-D'Alembert's Principle, it is seen that

$$\frac{d}{dt}\frac{\partial E_{\text{kin}}}{\partial \dot{q}} - \frac{\partial E_{\text{kin}}}{\partial q} + \frac{\partial E_{\text{pot}}}{\partial q} = Q$$

where

$$\frac{\partial E_{\mathsf{pot}}}{\partial q_i} = -\sum_{i=1}^n m_{l_i} \boldsymbol{g}_0^T \underbrace{\frac{\partial \boldsymbol{p}_{l_i}(\boldsymbol{q})}{\partial q_i}}_{=J_{P_i}^{l_i}}$$

We define

$$g(q) = \begin{bmatrix} \frac{\partial E_{\mathsf{pot}}}{\partial q_1} & \frac{\partial E_{\mathsf{pot}}}{\partial q_2} & \cdots & \frac{\partial E_{\mathsf{pot}}}{\partial q_n} \end{bmatrix}^T$$

Properties of Dynamical Robot Models Moment of Inertia Term

The dynamical equation

$$\frac{d}{dt}\frac{\partial E_{\rm kin}}{\partial \dot{q}} - \frac{\partial E_{\rm kin}}{\partial q} + g(q) = Q$$

can be rewritten by exploiting that

$$\frac{\partial E_{\rm kin}}{\partial \dot{q}} = B(q) \dot{q}$$

Properties of Dynamical Robot Models Moment of Inertia Term

The dynamical equation

$$\frac{d}{dt}\frac{\partial E_{\rm kin}}{\partial \dot{q}} - \frac{\partial E_{\rm kin}}{\partial q} + g(q) = Q$$

can be rewritten by exploiting that

$$\frac{\partial E_{\rm kin}}{\partial \dot{q}} = B(q)\dot{q}$$

This implies that

$$\frac{d}{dt}\frac{\partial E_{\text{kin}}}{\partial \dot{q}} = B(q)\ddot{q} + \dot{B}(q)\dot{q}$$

Properties of Dynamical Robot Models Moment of Inertia Term

The dynamical equation

$$\frac{d}{dt}\frac{\partial E_{\rm kin}}{\partial \dot{q}} - \frac{\partial E_{\rm kin}}{\partial q} + g(q) = Q$$

can be rewritten by exploiting that

$$\frac{\partial E_{\rm kin}}{\partial \dot{q}} = B(q)\dot{q}$$

This implies that

$$\frac{d}{dt}\frac{\partial E_{\text{kin}}}{\partial \dot{q}} = B(q)\ddot{q} + \dot{B}(q)\dot{q}$$

This leads to

$$B(q)\ddot{q} + \dot{B}(q)\dot{q} - \frac{\partial E_{\text{kin}}}{\partial q} + g(q) = Q$$

Properties of Dynamical Robot Models Coriolis and Centrifugal Terms

The final two terms of

$$B(q)\ddot{q} + \dot{B}(q)\dot{q} - \frac{\partial E_{\rm kin}}{\partial q} + g(q) = Q$$

can be written as (the chain rule has been applied)

$$(\dot{B}(q)\dot{q})_i = \sum_{j=1}^n \sum_{k=1}^n \frac{\partial b_{ij}}{\partial q_k} \dot{q}_k \dot{q}_j$$

and

$$\frac{\partial E_{\rm kin}}{\partial q_i} = \frac{1}{2} \sum_{j=1}^n \sum_{k=1}^n \frac{\partial b_{jk}}{\partial q_i} \dot{q}_k \dot{q}_j$$

Properties of Euler-Lagrange Systems Euler-Lagrange Equation on Matrix Form

The robot model given by the Euler-Lagrange equation can be formulated as

$$B(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = \tau$$

where B(q) is the inertia tensor, $C(q,\dot{q})$ is a matrix containing Coriolis and centrifugal terms, g(q) is the gravity vector, and τ is the actuator torque.

Robot with Two Joints Kinematics

Introduction

Euler-Lagrange Modelling

Modelling of Conservative Systems Modelling of Non-Conservative Systems Properties of Dynamical Robot Models

Robot with Two Joints

Kinematics

Potential Energy Kinetic Energy Dynamics

Summary

Robot with Two Joints DH Parameters

The DH parameters for the robot are given in the following table.

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1
2	a_2	0	0	θ_2

Robot with Two Joints DH Parameters

The DH parameters for the robot are given in the following table.

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1
2	a_2	0	0	θ_2

Each coordinate transformation is given by

$$A_i^{i-1}(\theta_i) = \begin{bmatrix} c_i & -s_i & 0 & a_i c_i \\ s_i & c_i & 0 & a_i s_i \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where c_i (s_i) denotes $\cos(\theta_i)$ ($\sin(\theta_i)$) and c_{ij} (s_{ij}) denotes $\cos(\theta_i + \theta_j)$ ($\sin(\theta_i + \theta_j)$).

Robot with Two Joints

Center of Mass

The center of mass for Link 1 in Frame 0 is

$$\begin{bmatrix} \boldsymbol{p}_{l_1} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} c_1 & -s_1 & 0 & l_1 c_1 \\ s_1 & c_1 & 0 & l_1 s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{=A_1^0} \begin{bmatrix} -l_1 + l_{c1} \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} l_{c1} c_1 \\ l_{c1} s_1 \\ 0 \end{bmatrix}$$

Robot with Two Joints Center of Mass

The center of mass for Link 2 in Frame 0 is

$$\begin{bmatrix} \boldsymbol{p}_{l_2} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} c_{12} & -s_{12} & 0 & l_1c_1 + l_2c_{12} \\ s_{12} & c_{12} & 0 & l_1s_1 + l_2s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{=A_1^0A_2^1} \begin{bmatrix} -l_2 + l_{c2} \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} l_1c_1 + l_{c2}c_{12} \\ l_1s_1 + l_{c2}s_{12} \\ 0 \\ 1 \end{bmatrix}$$

Dynamics of Robot Jacobian

The Jacobian can be used for expressing the velocities of the center of mass of Link i as

$$\dot{m p}_{li} = J_P^{li} \dot{m q} \ m \omega_i = J_O^{li} \dot{m q}$$

where

$$\begin{split} J_P^{l_i} &= \begin{bmatrix} J_{P1}^{l_i} & J_{P2}^{l_i} & \dots & J_{Pi}^{l_i} & \mathbf{0} & \dots & \mathbf{0} \end{bmatrix} \\ J_O^{l_i} &= \begin{bmatrix} J_{O1}^{l_i} & J_{O2}^{l_i} & \dots & J_{Oi}^{l_i} & \mathbf{0} & \dots & \mathbf{0} \end{bmatrix} \end{split}$$

Dynamics of Robot

The Jacobian can be used for expressing the velocities of the center of mass of Link i as

$$\dot{m p}_{l_i} = J_P^{l_i} \dot{m q} \ m \omega_i = J_O^{l_i} \dot{m q}$$

where

$$J_P^{l_i} = \begin{bmatrix} J_{P1}^{l_i} & J_{P2}^{l_i} & \dots & J_{Pi}^{l_i} & 0 & \dots & 0 \end{bmatrix}$$

 $J_O^{l_i} = \begin{bmatrix} J_{O1}^{l_i} & J_{O2}^{l_i} & \dots & J_{Oi}^{l_i} & 0 & \dots & 0 \end{bmatrix}$

For a revolute joint it is

$$oldsymbol{J}_{Pj}^{l_i} = oldsymbol{z}_{j-1} imes (oldsymbol{p}_{l_i} - oldsymbol{p}_{j-1})$$
 and $oldsymbol{J}_{Oj}^{l_i} = oldsymbol{z}_{j-1}$

where p_{j-1} is the position vector to the origin of Frame j-1 and z_{j-1} is a unit vector in the direction of the z-axis of Frame j-1.

Dynamics of Robot Example: Jacobian (I)

For Link 1 we obtain

$$\dot{m p}_{l_1} = J_P^{l_1} \dot{m q}$$
 and $m \omega_1 = J_O^{l_1} \dot{m q}$

where

$$egin{aligned} J_P^{l_1} &= egin{bmatrix} J_{P1}^{l_1} & oldsymbol{0} \end{bmatrix} &= egin{bmatrix} z_0 imes (p_{l_1} - p_0) & oldsymbol{0} \end{bmatrix} \ J_O^{l_1} &= egin{bmatrix} J_{O1}^{l_1} & oldsymbol{0} \end{bmatrix} &= egin{bmatrix} z_0 imes oldsymbol{0} \end{bmatrix} \end{aligned}$$

Dynamics of Robot Example: Jacobian (I)

For Link 1 we obtain

$$\dot{m p}_{l_1} = J_P^{l_1} \dot{m q}$$
 and $m \omega_1 = J_O^{l_1} \dot{m q}$

where

$$egin{aligned} J_P^{l_1} &= egin{bmatrix} J_{P1}^{l_1} & oldsymbol{0} \end{bmatrix} = egin{bmatrix} oldsymbol{z}_0 imes oldsymbol{p}_{l_1} - oldsymbol{p}_0 \end{pmatrix} & oldsymbol{0} \end{bmatrix} \ J_O^{l_1} &= egin{bmatrix} J_{O1}^{l_1} & oldsymbol{0} \end{bmatrix} = egin{bmatrix} oldsymbol{z}_0 imes oldsymbol{0} \end{bmatrix} \end{aligned}$$

This implies that

$$J_{P}^{l_{1}} = \begin{bmatrix} \boldsymbol{J}_{P1}^{l_{1}} & \boldsymbol{0} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} l_{c1}c_{1} \\ l_{c1}s_{1} \\ 0 \end{bmatrix} & \boldsymbol{0} \end{bmatrix} = \begin{bmatrix} -l_{c1}s_{1} & 0 \\ l_{c1}c_{1} & 0 \\ 0 & 0 \end{bmatrix}$$
$$J_{O}^{l_{1}} = \begin{bmatrix} \boldsymbol{J}_{O1}^{l_{1}} & \boldsymbol{0} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Dynamics of Robot Example: Jacobian (II)

For Link 2 haves

$$\dot{m p}_{l_2} = J_P^{l_2} \dot{m q}$$
 and $m \omega_2 = J_O^{l_2} \dot{m q}$

where

$$egin{aligned} J_P^{l_2} &= egin{bmatrix} J_{P1}^{l_2} & J_{P2}^{l_2} \end{bmatrix} = egin{bmatrix} oldsymbol{z}_0 imes (oldsymbol{p}_{l_2} - oldsymbol{p}_0) & oldsymbol{z}_1 imes (oldsymbol{p}_{l_2} - oldsymbol{p}_1) \end{bmatrix} \ J_O^{l_2} &= egin{bmatrix} J_{O2}^{l_2} & J_{O2}^{l_2} \end{bmatrix} = egin{bmatrix} oldsymbol{z}_0 imes oldsymbol{z}_1 \end{bmatrix} \end{aligned}$$

Dynamics of Robot Example: Jacobian (II)

For Link 2 haves

$$\dot{m{p}}_{l_2} = J_P^{l_2} \dot{m{q}}$$
 and $m{\omega}_2 = J_O^{l_2} \dot{m{q}}$

where

$$egin{aligned} J_P^{l_2} &= egin{bmatrix} J_{P1}^{l_2} & J_{P2}^{l_2} \end{bmatrix} = egin{bmatrix} z_0 imes (p_{l_2} - p_0) & z_1 imes (p_{l_2} - p_1) \end{bmatrix} \ J_O^{l_2} &= egin{bmatrix} J_{O1}^{l_2} & J_{O2}^{l_2} \end{bmatrix} = egin{bmatrix} z_0 imes z_1 \end{bmatrix} \end{aligned}$$

This implies that

$$\begin{split} J_P^{l_2} &= \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} l_1c_1 + l_{c2}c_{12} \\ l_1s_1 + l_{c2}s_{12} \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{pmatrix} \begin{bmatrix} l_1c_1 + l_{c2}c_{12} \\ l_1s_1 + l_{c2}s_{12} \\ 0 \end{bmatrix} - \begin{bmatrix} l_1c_1 \\ l_1s_1 \\ 0 \end{bmatrix} \end{pmatrix} \end{bmatrix} \\ &= \begin{bmatrix} -l_1s_1 - l_{c2}s_{12} & -l_{c2}s_{12} \\ l_1c_1 + l_{c2}c_{12} & l_{c2}c_{12} \\ 0 & 0 \end{bmatrix} & \text{and } J_O^{l_2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \end{split}$$

Robot with Two Joints Potential Energy

Introduction

Euler-Lagrange Modelling

Modelling of Conservative Systems

Modelling of Non-Conservative Systems

Properties of Dynamical Robot Models

Robot with Two Joints

Potential Energy

Kinetic Energy Dynamics

Summary

The potential energy should be expressed in an inertial frame e.g. the base frame, which does not accelerate. Then the potential energy can be computed as

$$E_{\mathsf{pot}}(q) = \sum_{i=1}^{n} E_{\mathsf{pot},l_i}(q)$$
 [J]

where $E_{{\rm pot},l_i}$ is the potential energy for Link i [J].

The potential energy should be expressed in an inertial frame e.g. the base frame, which does not accelerate. Then the potential energy can be computed as

$$E_{\mathsf{pot}}(q) = \sum_{i=1}^{n} E_{\mathsf{pot},l_i}(q)$$
 [J]

where E_{pot,l_i} is the potential energy for Link i [J].

The total potential energy becomes

$$E_{\mathsf{pot}}(\boldsymbol{q}) = -\sum_{i=1}^{n} m_{l_i} \boldsymbol{g}_0^T \boldsymbol{p}_{l_i}(\boldsymbol{q}) \qquad [\mathsf{J}]$$

where m_{l_i} is the mass of Link i [kg], g_0 is the gravitational acceleration in Base Frame [m/s²] and $p_{l_i}(q)$ is the position of the center of mass of Link i in Base Frame [m].

Dynamics of Robot

Example: Potential Energy

The the considered robot manipulator's potential energy is

$$E_{\mathsf{pot}}(\boldsymbol{q}) = -\sum_{i=1}^{2} m_{l_i} \boldsymbol{g}_0^T \boldsymbol{p}_{l_i}(\boldsymbol{q})$$
 [J]

where

$$p_{l_1} = \begin{bmatrix} l_{c_1} c_1 \\ l_{c_1} s_1 \\ 0 \end{bmatrix}, \qquad p_{l_2} = \begin{bmatrix} l_1 c_1 + l_{c_2} c_{12} \\ l_1 s_1 + l_{c_2} s_{12} \\ 0 \end{bmatrix}, \qquad g_0 = \begin{bmatrix} 0 \\ -g \\ 0 \end{bmatrix}$$

Dynamics of Robot Example: Potential Energy

The the considered robot manipulator's potential energy is

$$E_{\mathsf{pot}}(\boldsymbol{q}) = -\sum_{i=1}^{2} m_{l_i} \boldsymbol{g}_0^T \boldsymbol{p}_{l_i}(\boldsymbol{q})$$
 [J]

where

$$m{p}_{l_1} = egin{bmatrix} l_{c1}c_1 \ l_{c1}s_1 \ 0 \end{bmatrix}, \qquad m{p}_{l_2} = egin{bmatrix} l_{1}c_1 + l_{c2}c_{12} \ l_{1}s_1 + l_{c2}s_{12} \ 0 \end{bmatrix}, \qquad m{g}_0 = egin{bmatrix} 0 \ -g \ 0 \end{bmatrix}$$

This gives

$$E_{pot}(q) = m_{l_1}gl_{c_1}s_1 + m_{l_2}g(l_1s_1 + l_{c_2}s_{12})$$
 [J]

Robot with Two Joints Kinetic Energy

Introduction

Euler-Lagrange Modelling

Modelling of Conservative Systems Modelling of Non-Conservative Systems Properties of Dynamical Robot Models

Robot with Two Joints

Kinematics
Potential Energy
Kinetic Energy
Dynamics

Summary

The kinetic energy should be computed in an inertial frame, e.g., Base Frame that does not accelerate; thus, the kinetic energy can be computed as

$$E_{\mathsf{kin}}(q) = \sum_{i=1}^{n} E_{\mathsf{kin},l_i}(q)$$
 [J]

where $E_{\mathrm{kin},l_{i}}$ is the kinetic energy of Link i [J].

Robot with Two Joints Kinetic Energy

The kinetic energy should be computed in an inertial frame, e.g., Base Frame that does not accelerate; thus, the kinetic energy can be computed as

$$E_{\mathsf{kin}}(q) = \sum_{i=1}^{n} E_{\mathsf{kin},l_i}(q)$$
 [J]

where E_{kin,l_i} is the kinetic energy of Link i [J].

The kinetic energy can be expressed as the sum of translational and rotational kinetic energy

$$E_{\mathsf{kin},l_i}(\boldsymbol{q}) = \frac{1}{2} m_{l_i} \dot{\boldsymbol{p}}_{l_i}^T \dot{\boldsymbol{p}}_{l_i} + \frac{1}{2} \boldsymbol{\omega}_i^T I_{l_i}(\boldsymbol{q}) \boldsymbol{\omega}_i$$

where both \dot{p}_i , ω_i and I_{l_i} are given in Base Frame.

Robot with Two Joints Kinetic Energy: Inertia Tensor

The inertia tensor I_{l_i} given in Base Frame can be computed by using an inertia tensor at the link's center of mass $(I_{l_i}^i)$

$$I_{l_i}(\boldsymbol{q}) = R_i^0(\boldsymbol{q}) I_{l_i}^i R_i^{0T}(\boldsymbol{q})$$

Robot with Two Joints Kinetic Energy: Inertia Tensor

The inertia tensor I_{l_i} given in Base Frame can be computed by using an inertia tensor at the link's center of mass $(I_{l_i}^i)$

$$I_{l_i}(\boldsymbol{q}) = R_i^0(\boldsymbol{q}) I_{l_i}^i R_i^{0T}(\boldsymbol{q})$$

This gives the following expression for the kinetic energy

$$E_{\mathsf{kin},l_i} = \frac{1}{2} m_{l_i} \dot{\boldsymbol{p}}_{l_i}^T \dot{\boldsymbol{p}}_{l_i} + \frac{1}{2} \boldsymbol{\omega}_i^T R_i^0 I_{l_i}^i R_i^{0T} \boldsymbol{\omega}_i$$

where both \dot{p}_i and ω_i are given in Base Frame.

Robot with Two Joints Kinetic Energy: Inertia Tensor

The inertia tensor I_{l_i} given in Base Frame can be computed by using an inertia tensor at the link's center of mass $(I_{l_i}^i)$

$$I_{l_i}(\boldsymbol{q}) = R_i^0(\boldsymbol{q}) I_{l_i}^i R_i^{0T}(\boldsymbol{q})$$

This gives the following expression for the kinetic energy

$$E_{\mathsf{kin},l_i} = \frac{1}{2} m_{l_i} \dot{\boldsymbol{p}}_{l_i}^T \dot{\boldsymbol{p}}_{l_i} + \frac{1}{2} \boldsymbol{\omega}_i^T R_i^0 I_{l_i}^i R_i^{0T} \boldsymbol{\omega}_i$$

where both \dot{p}_i and ω_i are given in Base Frame.

We intend to express \dot{p}_i and ω_i by the use of generalized coordinates q.

Robot with Two Joints Kinetic Energy: Jacobian

32

By using the Jacobian, the kinetic energy is expressed as

$$E_{\mathsf{kin}}(q) = \sum_{i=1}^{n} E_{\mathsf{kin},l_i} \qquad [\mathsf{J}]$$

where

$$E_{\mathsf{kin},l_i} = \frac{1}{2} m_{l_i} \dot{\boldsymbol{q}}^T J_P^{l_i T} J_P^{l_i} \dot{\boldsymbol{q}} + \frac{1}{2} \dot{\boldsymbol{q}}^T J_O^{l_i T} R_i^0 I_{l_i}^i R_i^{0T} J_O^{l_i} \dot{\boldsymbol{q}}$$

Robot with Two Joints

Example: Kinetic Energy (I)

For Link 1 the kinetic energy is

$$\begin{split} E_{\mathsf{Kin},l_1} &= \frac{1}{2} m_{l_1} \dot{\boldsymbol{q}}^T J_P^{l_1 T} J_P^{l_1} \dot{\boldsymbol{q}} + \frac{1}{2} \dot{\boldsymbol{q}}^T J_O^{l_1 T} R_1^0 I_{l_1}^1 R_1^{0 T} J_O^{l_1} \dot{\boldsymbol{q}} \\ &= \frac{1}{2} m_{l_1} \dot{\boldsymbol{q}}^T \begin{bmatrix} -l_{c_1} s_1 & l_{c_1} c_1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -l_{c_1} s_1 & 0 \\ l_{c_1} c_1 & 0 \\ 0 & 0 \end{bmatrix} \dot{\boldsymbol{q}} + \frac{1}{2} \begin{bmatrix} 0 & 0 & \dot{q}_1 \end{bmatrix} I_{l_1}^1 \begin{bmatrix} 0 \\ 0 \\ \dot{q}_1 \end{bmatrix} \\ &= \frac{1}{2} m_{l_1} l_{c_1}^2 \dot{q}_1^2 + \frac{1}{2} \begin{bmatrix} 0 & 0 & \dot{q}_1 \end{bmatrix} I_{l_1}^1 \begin{bmatrix} 0 \\ 0 \\ \dot{q}_1 \end{bmatrix} \\ &= \frac{1}{2} \dot{\boldsymbol{q}}^T \begin{bmatrix} m_{l_1} l_{c_1}^2 + I_{l_1, zz}^1 & 0 \\ 0 & 0 \end{bmatrix} \dot{\boldsymbol{q}} \end{split}$$

Robot with Two Joints

Example: Kinetic Energy (II)

For Link 2 the kinetic energy is

$$\begin{split} E_{\mathsf{kin},l_2} &= \frac{1}{2} m_{l_2} \dot{\boldsymbol{q}}^T J_P^{l_2T} J_P^{l_2} \dot{\boldsymbol{q}} + \frac{1}{2} \dot{\boldsymbol{q}}^T J_O^{l_2T} R_2^0 I_{l_2}^2 R_2^{0T} J_O^{l_2} \dot{\boldsymbol{q}} \\ &= \frac{1}{2} m_{l_2} \dot{\boldsymbol{q}}^T \begin{bmatrix} -l_1 s_1 - l_{c2} s_{12} & l_1 c_1 + l_{c2} c_{12} & 0 \\ -l_{c2} s_{12} & l_{c2} c_{12} & 0 \end{bmatrix} \begin{bmatrix} -l_1 s_1 - l_{c2} s_{12} & -l_{c2} s_{12} \\ l_1 c_1 + l_{c2} c_{12} & l_{c2} c_{12} \end{bmatrix} \dot{\boldsymbol{q}} \\ &+ \frac{1}{2} \begin{bmatrix} 0 & 0 & \dot{q}_1 + \dot{q}_2 \end{bmatrix} I_{l_2}^2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \dot{q}_1 + \dot{q}_2 \end{bmatrix} \\ &= \frac{1}{2} m_{l_2} \dot{\boldsymbol{q}}^T \begin{bmatrix} l_1^2 + l_{c2}^2 + 2 l_1 l_{c2} c_2 & l_{c2}^2 + l_1 l_{c2} c_2 \\ l_{c2}^2 + l_1 l_{c2} c_2 & l_{c2}^2 \end{bmatrix} \dot{\boldsymbol{q}} + \frac{1}{2} \begin{bmatrix} 0 & 0 & \dot{q}_1 + \dot{q}_2 \end{bmatrix} I_{l_2}^2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \dot{q}_1 + \dot{q}_2 \end{bmatrix} \\ &= \frac{1}{2} \dot{\boldsymbol{q}}^T \begin{bmatrix} m_{l_2} (l_1^2 + l_{c2}^2 + 2 l_1 l_{c2} c_2) + I_{l_2, zz}^2 & m_{l_2} (l_{c2}^2 + l_1 l_{c2} c_2) + I_{l_2, zz}^2 \\ m_{l_2} (l_{c2}^2 + l_1 l_{c2} c_2) + I_{l_2, zz}^2 & m_{l_2} (l_{c2}^2 + l_1 l_{c2} c_2) + I_{l_2, zz}^2 \end{bmatrix} \dot{\boldsymbol{q}} \end{split}$$

Robot with Two Joints Example: Kinetic and Potential Energy

The potential and kinetic energy are

$$\begin{split} E_{\text{pot}} &= m_{l_1} g l_{c1} s_1 + m_{l_2} g (l_1 s_1 + l_{c2} s_{12}) \\ E_{\text{kin}} &= \frac{1}{2} \dot{\boldsymbol{q}}^T \underbrace{ \begin{bmatrix} m_{l_1} l_{c1}^2 + I_{l_1,zz}^1 + m_{l_2} (l_1^2 + l_{c2}^2 + 2 l_1 l_{c2} c_2) + I_{l_2,zz}^2 & m_{l_2} (l_{c2}^2 + l_1 l_{c2} c_2) + I_{l_2,zz}^2 \\ & m_{l_2} (l_{c2}^2 + l_1 l_{c2} c_2) + I_{l_2,zz}^2 & m_{l_2} l_{c2}^2 + I_{l_2,zz}^2 \end{bmatrix} \dot{\boldsymbol{q}} \\ &= B(\boldsymbol{q}) \end{split}$$

where B(q) is the inertia tensor expressed in Base Frame.

Robot with Two Joints Dynamics

Introduction

Euler-Lagrange Modelling

Modelling of Conservative Systems Modelling of Non-Conservative Systems Properties of Dynamical Robot Models

Robot with Two Joints

Kinematics
Potential Energy
Kinetic Energy
Dynamics

Summary

Robot with Two Joints

Lagrange-D'Alemberts Principle

Lagrange–D'Alembert's Principle can be used for modelling the system, where q is a vector of the two joint angles, and τ_i is the torque applied at Joint i

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_1} - \frac{\partial \mathcal{L}}{\partial q_1} = \tau_1$$

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_2} - \frac{\partial \mathcal{L}}{\partial q_2} = \tau_2$$

where

$$\mathcal{L} = E_{\rm kin} - E_{\rm pot}$$

The following procedure can be used for setting up a dynamical model of a robot with n degrees of freedom

- **0.** Find the DH-parameters of the robot $(a_i, d_i, \alpha_i, \theta_i)$ for i = 1, 2, ..., n.
- **1.** Set up a kinematic model $T_n^0(q)$ of the robot.
- 2. Compute the coordinates $p_{ci}^0(q)$ for center of mass for each link (given in Base frame).
- 3. Compute the angular velocities $\omega_i^0(q,\dot{q})$ for each link (given in Base frame).
- **4.** Compute velocities $v_{ci}^0(q,\dot{q})$ for center of mass of each link (given in Base frame).
- **5.** Compute the inertia-tensor $I_{l_i}^0(q)$ for each link (given in Base frame).
- **6.** Compute the potential energy of the system $E_{pot}(q)$.
- 7. Compute the kinetic energy of the system $E_{kin}(q,\dot{q})$.
- 8. Set up the equations of motion for the system using Lagrange D'Alembert's principle.

Summary

Introduction

Euler-Lagrange Modelling

Modelling of Conservative Systems

Modelling of Non-Conservative Systems

Properties of Dynamical Robot Models

Robot with Two Joints Kinematics Potential Energy Kinetic Energy Dynamics

Summary

If q is a trajectory of a conservative mechanical system then

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = 0$$

where q is an n-dimensional vector of generalized coordinates and \mathcal{L} is the Lagrangian given by

$$\mathcal{L} = E_{\mathsf{kin}} - E_{\mathsf{pot}} \quad [\mathsf{J}]$$

where $E_{\rm pot}$ is the system's potential energy and $E_{\rm kin}$ is the system's kinetic energy.

If q is a trajectory of a mechanical system that is affected by a generalized force Q then

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} - \frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} = \boldsymbol{Q}$$

where Q is an n-dimensional vector of generalized forces. This is called **Lagrange-D'Alembert's Principle**.

The following procedure can be used for setting up a dynamical model of a serial robot manipulator with n degrees of freedom

- **0.** Find the DH-parameters of the robot $(a_i, d_i, \alpha_i, \theta_i)$ for i = 1, 2, ..., n.
- **1.** Set up a kinematic model $T_n^0(q)$ of the robot.
- 2. Compute the coordinates $p_{ci}^0(q)$ for center of mass for each link (given in Base frame).
- 3. Compute the angular velocities $\omega_i^0(q,\dot{q})$ for each link (given in Base frame).
- **4.** Compute velocities $v_{ci}^0(q, \dot{q})$ for center of mass of each link (given in Base frame).
- **5.** Compute the inertia-tensor $I_{l_i}^0(q)$ for each link (given in Base frame).
- **6.** Compute the potential energy of the system $E_{pot}(q)$.
- 7. Compute the kinetic energy of the system $E_{kin}(q, \dot{q})$.
- 8. Set up the equations of motion for the system using Lagrange D'Alembert's principle.