

ASSIGNMENT 3

SECI1013 STRUKTUR DISKRIT (DISCRETE STRUCTURE)

LECTURER: DR. NOORFA HASZLINNA BINTI MUSTAFFA

SECTION: 02

GROUP MEMBERS:

TAN YI YA
TEH RU QIAN
GOE JIE YING

A23CS0187

A23CS0191

A23CS0224

Assignment 3

1. (a) pigeanholes = 101 pigeon >pigeonholes pigeon > 101 pigeon = 102 (b) pigeon holes (m) = 5 n=m(k-1)+1 n = 5(6-1)+1

n = 26

- let say 101 students in the class will get mark from 1 of the set (0-100), then the mark will be repeated when I more student in that class So, should be at least 102 students in the class. - Should be at least 26 students for 6 students to get the same grade.
- 2. Percentage of Customers Purchasing CP) Percentage who Extended Warranty
 - (a) P(Brand 1) = 0.7
 - (b) P(brand 2) = 0.3
 - (c)pcWl Brand 1)=0.2
 - (d) P(W|Brand 1) = P(W n Brand 1)
 P(Brand 1)

$$0.2 = \frac{P(W \cap Brand \mid)}{0.7}$$

P(W \cap Brand \lambda) = 0.14

- (e) P(W| Brand 2) = 0.4 P(w1 Brand 2) = P(wn Brand 2) PCBrand 2) PCWNBrand 21= 0.12
- (f) P(W) = P(W \(\text{Brand } \text{I}) + P(W \(\text{Brand } \text{V}) =0.14+0.12= 0.76

(g) P(Brand | | W) =
$$\frac{P(W | Brand |) P(Brand |)}{P(W | Brand |) P(Brand |) + P(W | Brand |) P(Brand |)}$$

= $\frac{0.2 \times 0.7}{0.2 \times 0.7 + 0.4 \times 0.3}$
= 0.5385

- 3. (a) Vertices is point on graph (A,B,C,D)

 (b) Edges is connection between vertices. (e1,e1,e3,e4,e5,e6)

 (c) Adjacent vertices is two vertex connected by an edge.

 - (A,B connected by el)
 - Cd) Incident edge is two edges that share a common vertex Cel and e2 are incident edge as A is one of their common endpoint).
 - (e) Isolated vertex is not connected to any other vertex by an edge (E)
 - (f) Loop is a edge that connects to a vertex itself. (e6)
 - Cg) Parallel edges is two edges that connect the same two vertex. (e3 and e4)

6. 1. Both have same number of vertices (6) and same number of edges (9).

2 Both have 2 vertices with degree 4, 2 vertices with degree 3 and 2 vertices with degree 2.

$$f(a) = 6$$

$$f(c)=4$$

isomorphic

7.

- (ii) Trails

 \[\{ \rho, e_5, \text{1} \\

 \{ \rho, e_1, q, e_2, r, e_3, s, e_4, \text{2} \\

 \{ \rho, e_1, q, e_2, r, e_1, \text{2} \\

 \{ \rho, e_1, q, e_6, s, e_4, \text{2} \\

 \{ \rho, e_1, q, e_6, s, e_5, r, e_1, \text{2} \\

 \{ \rho, e_5, \text{1}, e_4, s, e_6, q, e_5, r, e_1, \text{2} \\

 \{ \rho, e_5, \text{1}, e_1, r, e_2, q, e_6, s, e_4, \text{2} \\

 \{ \rho, e_5, \text{1}, e_4, s, e_5, r, e_7, \text{2} \\

 \{ \rho, e_5, \text{1}, e_4, s, e_5, r, e_7, \text{2} \\

 \{ \rho, e_5, \text{1}, e_4, s, e_5, r, e_7, \text{2} \\

 \} \]
 - (iii) shortest path / Shortest trail

 2 p, es, t3

 Longest path

 1 p, e, q, e, s, e, r, e, t3

 2 p, e, q, ez, r, e3, s, e4, t3

 Longest trail

 2 p, es, t, e4, s, es, r, e1, t3

 2 p, e5, t, e1, r, e2, q, e6, s, e4, t3