TEOREMA DI FOURIER

Un segnale comunque complesso può essere scomposto come somma di segnali elementari. Questi segnali elementari sono sinusoidi di ampiezza opportuna e frequenza multipla del segnale stesso.

Per un segnale periodico s(t) = s(t + KT) con K = 1, 2, 3,... e T **Periodo** del segnale

La **SERIE DI FOURIER** in **forma trigonometrica** ha la seguente espressione:

$$s(t) = C_0 + \sum_{k=1}^{+\infty} \left(A_k \cos k\omega t + B_k \operatorname{sen} k\omega t \right) \qquad \operatorname{con} \ t\varepsilon \left(-\frac{T}{2}, +\frac{T}{2} \right)$$

dove
$$C_0 = \frac{1}{T} \int_{-T/2}^{+T/2} s(t) dt$$
; $A_k = \frac{2}{T} \int_{-T/2}^{+T/2} s(t) \cos k\omega t dt$ e $B_k = \frac{2}{T} \int_{-T/2}^{+T/2} s(t) \sin k\omega t dt$

Il segnale s(t) é rappresentato come somma di un termine costante (C_0) e di termini costituiti da segnali sinusoidali con periodo T/K, ovvero con frequenza angolare $K\omega$.

$$s(t) = C_0 + A_1 \cos\omega t + A_2 \cos 2\omega t + A_3 \cos 3\omega t + \dots + B_1 \sin\omega t + B_2 \sin 2\omega t + B_3 \sin 3\omega t + \dots$$

La più bassa frequenza, cioè $\omega = 2\pi/T$ é detta frequenza *fondamentale* del segnale s(t); le altre frequenze, tutte multiple della fondamentale vengono dette *armoniche* del segnale s(t). C_0 é detta *componente continua*.

La rappresentazione su assi ω , C_k prende il nome di **spettro di ampiezza** ed é costituito da una serie di righe di ampiezza C_k e distanziate di ω .

Nota Bene - questo perché lo spettro unilatero di Fourier di una sinusoide è una riga (delta di Dirac), di ampiezza pari a quella della sinusoide e centrata alla frequenza del segnale stesso. Lo spettro di un segnale periodico é quindi costituito da un'insieme di righe.

Figura 1. O.q. bipolare dispari a valor medio nullo di ampiezza A=1 e periodo T: prime tre componenti armoniche della serie di Fourier e relativo spettro.

Addendum

Per le funzioni **pari**: s(t) = s(-t)

Esempi di funzioni pari sono $(t^2, t^4,...)$ e cos ωt .

Per le funzioni **dispari** : s(t) = -s(-t)

Esempi di funzioni dispari sono $(t,t^3,...)$ e sen ωt .

Il prodotto di una funzione pari per una dispari dà come risultato una funzione dispari, Il prodotto di due funzioni pari o due funzioni dispari dà come risultato una funzione pari.

Sapendo che
$$\int_{-T/2}^{+T/2} funzione dispari dt = 0$$

Si può concludere che

$$\begin{array}{lll} \text{Se} & s(t) & \textbf{pari}, & B_k = 0 & \longrightarrow \Sigma \ cos \\ \text{Se} & s(t) & \textbf{dispari}, & A_k = 0 & \longrightarrow \Sigma \ sen & e \ C_0 = 0. \end{array}$$

Alcuni esempi di sviluppo in serie di Fourier sono riportati in tabella 1:

Funzione	f(t)	Sviluppo in serie
Sinusoide a una semionda. $f(t) = \begin{cases} A \cdot sen\omega t; \ 0 \le t < T/2 \\ 0 \qquad ; \ T/2 \le t < T \end{cases}$	$A \xrightarrow{f(t)} T \xrightarrow{T/2} T$	$f(t) = \frac{A}{\pi} + \frac{A}{2} \operatorname{sen} \omega t - \frac{2A}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2n\omega t}{(2n)^2 - 1}$ $\operatorname{con} \ T = 2\pi / \omega$
Sinusoide a doppia semionda. f(t) = A · senωt	$A \xrightarrow{f(t)} T \xrightarrow{T/2} T \xrightarrow{t}$	$f(t) = \frac{2A}{\pi} + \frac{4A}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2n\omega t}{(2n)^2 - 1}$
Onda quadra bipolare. $f(t) = \begin{cases} A; & 0 < t < T/2 \\ -A; & T/2 < t < T \end{cases}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f(t) = \frac{4A}{\pi} \sum_{n=1}^{\infty} \frac{\text{senn}\omega t}{n}$ per n dispari

Tabella 1. Sviluppo in serie di Fourier.

LA TRASFORMATA DI FOURIER

La trasformata di Fourier è un operatore matematico che consente di trasformare una funzione del tempo f(t) periodica o non periodica in una funzione $F(j\omega)$ di variabile complessa. Valgono le seguenti relazioni:

$$F(j\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt \qquad e \qquad f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(j\omega) e^{j\omega t} d\omega$$

La prima relazione è nota come **trasformata di Fourier** o *integrale di Fourier*, la seconda è nota come **antitrasformata di Fourier**.

Si indicano nel seguente modo: $F(j\omega) = \mathscr{F}[f(t)]$ e $f(t) = \mathscr{F}^{-1}[F(j\omega)]$

Prof. Maio Pietro

Operazione	Segnale	Trasformata di Fourier
	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$\omega X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$
	$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(\omega) e^{j\omega t} d\omega$	$\omega Y(\omega) = \int_{-\infty}^{\infty} y(t)e^{-j\omega t} dt$
1. Amplificazione	Ax(t)	$AX(\omega)$
2. Inversione asse tempi	x(-t)	$X(-\omega)$
3. Coniugazione	x*(t)	$X^*(-\omega)$
4. Anticipo o ritardo	$x(t\pm\vartheta)$	$X(\omega)e^{\pm j\omega\vartheta}$
5. Traslazione in frequenza	$x(t)e^{j\omega_0t}$	$X(\omega-\omega_0)$
6. Derivazione	$\dot{x}(t)$	$j\omega X(\omega)$
7. Integrazione	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{X(\omega)}{\mathrm{j}\omega} + \pi X(0)\delta(\omega)$
8. Convoluzione	$\int_{-\infty}^{\infty} x(\tau)y(t-\tau) \mathrm{d}\tau$	$X(\omega)Y(\omega)$
9. Prodotto	$x(t)\cdot y(t)$	$\frac{1}{2\pi}\int_{-\infty}^{\infty}X(a)Y(\omega-a)\mathrm{d}a$
0. Autocorrelazione	$\int_{-\infty}^{\infty} x(t+\tau)x^*(t)\mathrm{d}t$	$ X(\omega) ^2$
11. Mutua correlazione	$\int_{-\infty}^{\infty} x(t+\tau)y^*(t)\mathrm{d}t$	$X(\omega)Y^*(\omega)$
12. Dualità	X(t)	$2\pi x(-\omega)$

Tabella 2. Proprietà della trasformata di Fourier.

In tabella 3 sono riportati alcuni esempi di spettro di segnali più comuni per le TLC.

Tabella 3. Esempi di spettri.