

planetmath.org

Math for the people, by the people.

Krull valuation domain

Canonical name KrullValuationDomain
Date of creation 2013-03-22 14:55:01
Last modified on 2013-03-22 14:55:01

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 8

Author pahio (2872)
Entry type Theorem
Classification msc 13F30
Classification msc 13A18
Classification msc 12J20
Classification msc 11R99

 $Related\ topic \qquad Valuation Determined By Valuation Domain$

Theorem. Any Krull valuation $|\cdot|$ of a field K determines a unique valuation domain $R = \{a \in K : |x| \le 1\}$, whose field of fraction is K.

Proof. We first see that $1 \in R$ since |1| = 1. Let then a, b be any two elements of R. The non-archimedean triangle inequality shows that $|a-b| \le \max\{|a|, |b|\} \le 1$, i.e. that the difference a-b belongs to R. Using the http://planetmath.org/OrderedGroupmultiplication rule 4 of inequalities we obtain

$$|ab| = |a| \cdot |b| \le 1 \cdot 1 = 1$$

which shows that also the product ab is element of R. Thus, R is a subring of the field K, and so an integral domain. Let now c be an arbitrary element of K not belonging to R. This implies that 1 < |c|, whence $|c^{-1}| = |c|^{-1} < 1$ (see the http://planetmath.org/OrderedGroupinverse rule 5). Consequently, the inverse c^{-1} belongs to R, and we conclude that R is a valuation domain. The $a = \frac{a}{1}$ and $c = \frac{1}{c^{-1}}$ make evident that K is the field of fractions of R.