HiFi-GAN

HiFi-GAN은 이름에서 유추가 가능하듯 GAN기반의 Vocoder이다. WaveGlow보다 빠르면서도 더 좋은 품질의 raw audio를 만들 수 있다.

크게 보면 여느 GAN과 마찬가지로 Generator와 Discriminator로 구성되어있다. Generator는 그 구조가 간단하며 특별하지 않다. HiFi-GAN의 차별점은 사실상 Discriminator와 이에 대한 Loss구성에 있다.

HiFi-GAN의 Discriminator는 Multi-Period Discriminator(MPD)와 Multi-Scale Discriminator(MSD) 두 개로 이루어진다. 각각은 disjoint sample, smoothed waveform을 담당한다.

Generator부터 자세하게 살펴보자.

Generator

Figure 1: The generator upsamples mel-spectrograms up to $|k_u|$ times to match the temporal resolution of raw waveforms. A MRF module adds features from $|k_r|$ residual blocks of different kernel sizes and dilation rates. Lastly, the n-th residual block with kernel size $k_r[n]$ and dilation rates $D_r[n]$ in a MRF module is depicted.

Generator는 기본적으로 Mel-spectrogram을 input으로 받아 Raw Waveform을 output하며 전부 Convolutional layer로 이루어져있다.

inference를 위해서는 Generator에 Mel-spectrogram을 넣으면 된다.

ConvPre

아키텍쳐에는 없지만 원래 (batch_size, n_mels, sequence_length) 의 shape을 가지는 Melspectrogram을 (batch_size, upsample_initial_channel(512), sequence_length) 의 shape으로 바꾸는 conv가 하나 있다.

Upsample

WaveGlow와 마찬가지로 sequence_length를 매칭되는 raw audio의 sequence_length와 같게 맞춰주는 작업이다. (ConvTranspose1d 사용.) 한번에 수행하지는 않고 MRF와 번갈아 가며 수행한다. 이 때 채널 수는 layer를 지날 때 마다 절반씩 줄어든다.

MRF

여러개의 Residual Block으로 이루어져있다.

하나의 Residual Block안에는 dilation이 있는 conv layer들이 있고 마지막에는 Leaky ReLU를 사용한다.

ConvPost

generator는 최종적으로 Raw Waveform을 만들어야하기 때문에 채널 수를 1로 만들어주는 과정이 필요하다. ConvPost는 Conv1d 를 이용하여 해당 작업을 수행한다. (ConvPre와 마찬가지로 아키텍쳐 그림에는 없다.)

Discriminator

앞서 말했듯 Discriminator는 Multi-Period Discriminator(MPD)와 Multi-Scale Discriminator(MSD) 두 가지가 있다. 그리고 각각은 또다시 작은 sub-discriminator로 이루어져있다. MPD와 MSD는 각각 5개와 3개의 sub-discriminator를 가진다.

MSD와 MPD의 sub-discriminator 중 하나를 그림으로 보면 아래와 같다.

Figure 2: (a) The second sub-discriminator of MSD. (b) The second sub-discriminator of MPD with period 3.

기본적으로 Discriminator는 true raw audio와 generated raw audio를 받아 진위여부를 확인한다. Mel-spectrogram을 input으로 받지 않는다는 것을 염두에 두고 내용을 살펴보자.

Multi-Period Discriminator (MPD)

오른쪽에 있는 MPD부터 살펴보자.

우선 1d array형태인 raw audio를 (width x height)의 2d형태로 reshape한다. 이 때 height만을 결합하는 형태의 conv2d (kernel_size=(k, 1))를 사용한다. 이렇게하면 연속적인 내용을 학습하기보단 주기적인(periodic) 내용을 학습할 수 있다.

MPD는 5개의 sub-discriminator로 이루어져 있는데 각각이 input으로 받는 2d array는 width가 [2, 3, 5, 7, 11]로 다 소수이다. 이는 주기를 최대한 다양하게 포착하기 위함이다.

Multi-Scale Discriminator (MSD)

MPD의 sub-discriminator는 각각 disjoint sample만을 받기 때문에, 오디오 시퀀스를 연속적으로 evaluate하기 위해 MSD가 필요하다.

MSD는 각각 다른 input scale에 대해 작동하는 세개의 sub-discriminator들로 구성된다. (각각 raw audio, ×2 average-pooled audio, ×4 average-pooled audio에 대해 작동한다.) 각각의 sub-discriminator는 stride와 group을 적용한 Conv1d 와 leaky ReLU로 이루어져있다.

Loss

대부분 GAN의 Loss는 크게 Discriminator Loss와 Generator Loss 두가지로 나뉜다.

Discriminator Loss는 Discriminator가 true와 generated를 얼마나 잘 구분하는지, Generator Loss는 Generators가 만든 것을 Discriminator가 얼마나 true라고 생각하는지라고 생각하면 이해하기 쉽다.

Discriminator Loss

자세히 살펴보자.

Discriminator Loss는 간단하다.

$$\mathcal{L}_D = \mathcal{L}_{Adv}(D;G)$$

GAN Loss (For Discriminator)

$$\mathcal{L}_{Adv}(D;G) = \mathbb{E}_{(x,s)}igg[(D(x)-1)^2+(D(G(s)))^2igg]$$

수식을 한글로 풀어 써보자면.

true raw audio를 Discriminator가 true라고 생각하는 정도 + generated raw audio를 Discriminator가 fake라고 생각하는 정도.

Generator Loss

HiFi-GAN의 Generator Loss는 세가지 파트로 나뉜다.

GAN Loss (For Generator), Feature Matching Loss, Mel-Spectrogram Loss.

$$\mathcal{L}_G = \mathcal{L}_{Adv}(G;D) + \lambda_{fm}\mathcal{L}_{FM}(G;D) + \lambda_{mel}\mathcal{L}_{Mel}(G)$$

 λ_{fm} 과 λ_{mel} 는 hyperparameter로 논문에서는 각각 2와 45를 사용했다.

GAN Loss (For Generator)

$$\mathcal{L}_{Adv}(G;D) = \mathbb{E}_s igg[(D(G(s)) - 1)^2 igg]$$

where s denotes the input condition, the mel-spectrogram of the ground truth audio.

역시나 한글로 풀어보자면 다음과 같다.

Generator가 Mel-spectrogram을 input으로 받아 생성한 generated raw audio를 Discriminator가 true raw audio라고 생각하는 정도.

Feature Matching Loss

$$\mathcal{L}_{FM}(G;D) = \mathbb{E}_{(x,s)} \Bigg[\sum_{i=1}^{T} rac{1}{N_i} \|D^i(x) - D^i(G(s))\|_1 \Bigg]$$

where T denotes the number of layers in the discriminator; D^i and N_i denote the features and the number of features in the i-th layer of the discriminator, respectively.

true raw audio와 generated raw audio에 대해 모든 Discriminator layer의 output이 얼마나 비슷한지.

Mel-Spectrogram Loss

$$\mathcal{L}_{Mel}(G) = \mathbb{E}_{(x,s)}igg[\|\phi(x) - \phi(G(s))\|_1igg]$$

where ϕ is the function that transforms a waveform into the corresponding mel-spectrogram.

true raw audio를 Mel-spectrogram으로 변환한 것과 Generator가 생성한 raw audio를 Mel-spectrogram으로 변환한 것이 얼마나 비슷한지.

Final Loss

다시한번 정리하면 다음과 같다.

$$\mathcal{L}_D = \sum_{k=1}^K \mathcal{L}_{Adv}(D_k;G)$$

$$\mathcal{L}_G = \sum_{k=1}^K \left[\mathcal{L}_{Adv}(G;D_k) + \lambda_{fm} \mathcal{L}_{FM}(G;D_k)
ight] + \lambda_{mel} \mathcal{L}_{Mel}(G)$$

where D_k denotes the k-th sub-discriminator in MPD and MSD

Experiment

WaveNet, WaveGlow, MelGAN 세가지와 Ground Truth 그리고 HiFi-GAN의 3가지 버전의 모델에 대해 MOS를 비교한다.

HiFi-GAN의 3가지 버전은 hyperparameter들의 수정으로 이루어진다.

Audio Quality and Synthesis Speed

HiFi-GAN의 모든 variation이 기존의 다른 vocoder들에 비해 속도도 빠르고 MOS도 높다.

Table 1: Comparison of the MOS and the synthesis speed. Speed of n kHz means that the model can generate $n \times 1000$ raw audio samples per second. The numbers in () mean the speed compared to real-time.

Model	MOS (CI)	Speed on CPU (kHz)	Speed on GPU (kHz)	# Param (M)
Ground Truth	$4.45~(\pm 0.06)$	_	_	_
WaveNet (MoL)	$4.02 (\pm 0.08)$	-	$0.07 (\times 0.003)$	24.73
WaveGlow	$3.81 (\pm 0.08)$	4.72 (×0.21)	$501 (\times 22.75)$	87.73
MelGAN	$3.79 (\pm 0.09)$	145.52 (×6.59)	$14,238 (\times 645.73)$	4.26
HiFi-GAN $V1$	4.36 (±0.07)	31.74 (×1.43)	3,701 (×167.86)	13.92
HiFi-GAN $V2$	4.23 (±0.07)	214.97 (×9.74)	16,863 (×764.80)	0.92
HiFi-GAN $V3$	4.05 (±0.08)	296.38 (× 13.44)	26,169 (× 1,186.80)	1.46

Ablation Study

MPD, MSD, MRF, Mel-spectrogram loss, MPD의 width에 소수 사용. 위 다섯가지에 대해 Ablation Study를 진행했고 모두 효과가 있었음을 확인했다.

Table 2: Ablation study results. Comparison of the effect of each component on the synthesis quality.

Model	MOS (CI)
Ground Truth	4.57 (±0.04)
Baseline (HiFi-GAN V3)	4.10 (±0.05)
w/o MPD w/o MSD w/o MRF w/o Mel-Spectrogram Loss MPD p=[2,4,8,16,32]	$2.28 (\pm 0.09)$ $3.74 (\pm 0.05)$ $3.92 (\pm 0.05)$ $3.25 (\pm 0.05)$ $3.90 (\pm 0.05)$
MelGAN MelGAN with MPD	$2.88 (\pm 0.08)$ $3.35 (\pm 0.07)$

Generalization to Unseen Speakers

딥러닝 기반 vocoder는 기본적으로 모든 화자 데이터를 이용하여 학습하는 것은 아니기 때문에 학습에 쓰이지 않은 화자에 대한 테스트 또한 필요하다.

HiFi-GAN은 Unseen Speakers에 대해 generalize가 잘 되었음을 확인했다.

Table 3: Quality comparison of synthesized utterances for unseen speakers.

Model	MOS (CI)
Ground Truth	$3.79 (\pm 0.07)$
WaveNet (MoL)	$3.52 (\pm 0.08)$
WaveGlow	$3.52 (\pm 0.08)$
MelGAN	$3.50 (\pm 0.08)$
HiFi-GAN $V1$	3.77 (±0.07)
HiFi-GAN $V2$	3.69 (±0.07)
HiFi-GAN $V3$	3.61 (±0.07)

TTS

Text to Mel-spectrogram & Mel-spectrogram to Waveform의 전체 프로세스에 HiFi-GAN을 적용했을 때의 실험결과 또한 공유한다. Text to Mel-spectrogram에는 전혀 수정하지 않은 <u>Tacotron2</u>를 사용하며 HiFi-GAN과의 비교대상은 WaveGlow이다.

Model	MOS (CI)
Ground Truth	$4.23~(\pm 0.07)$
WaveGlow (w/o fine-tuning)	$3.69 (\pm 0.08)$
HiFi-GAN $V1$ (w/o fine-tuning) HiFi-GAN $V2$ (w/o fine-tuning) HiFi-GAN $V3$ (w/o fine-tuning)	$3.91 (\pm 0.08)$ $3.88 (\pm 0.08)$ $3.89 (\pm 0.08)$
WaveGlow (find-tuned)	3.66 (±0.08)
HiFi-GAN $V1$ (find-tuned) HiFi-GAN $V2$ (find-tuned) HiFi-GAN $V3$ (find-tuned)	4.18 (±0.08) 4.12 (±0.07) 4.02 (±0.08)

훈련된 HiFi-GAN을 이용하여 Tacotron2가 output한 Mel-spectrogram을 Waveform으로 바꾸었을 때는 Ground Truth와 MOS가 상당히 많이 차이난다. 이는 Tacotron2가 output한 Mel-spectrogram 자체가 noisy하기 때문이다. 이를 개선하기 위해 Tacotron2가 output한 Mel-spectrogram과 원래의 Ground Truth Waveform을 이용하여 fine-tuning을 진행하였고 그 결과 상당히 만족할만한 결과를 얻을 수 있었다고 한다.