Guía 4: Reticulados terna

Definición y propiedades iniciales

- De las propiedades de s, i de un reticulado par (L, \leq) vamos a considerar:
 - Reflexividad: $x s x = x i x = x \forall x \in L$
 - Conmutatividad: $x s y = y s x \land x i y = y i x \forall x, y \in L$
 - Asociatividad: $x s (y s z) = (x s y) s z \wedge x i (y i z) = (x i y) i z \forall x, y, z \in L$
 - Absorción: $x s (x i y) = x = x i (x s y) \forall x, y \in L$
- **Reticulado terna**: un reticulado terna es una terna (L, s, i) tal que L es un conjunto no vacío y s, i son dos operaciones binarias sobre L que cumplen las propiedades de reflexividad, conmutatividad, asociatividad y absorción.
 - En este caso, decimos que L es el universo de (L, s, i)
- **Teorema de Dedekind**: Sea (L, s, i) un reticulado terna, la relación binaria sobre L definida por $x \le y \iff x \ s \ y = y$ es un orden parcial sobre L para el cual se cumple que $sup(\{x,y\}) = x \ s \ y \in inf(\{x,y\}) = x \ i \ y \ \forall x,y \in L$.
 - Nos dice que a nivel de información es lo mismo tener un reticulado par que un reticulado terna

Orden asociado a un reticulado terna

- **Definición**: Llamaremos a $\leq = \{(x,y) : x \ s \ y = y\}$ el *orden parcial asociado* a (L,s,i) y (L,\leq) será llamado el *poset asociado* a (L,s,i).
 - Notar que también tenemos que $\leq = \{(x, y) : x \ i \ y = x\}$
- Propiedades:
 - Si (L, s, i) es un reticulado terna, entonces (L, i, s) también lo es.

Reticulados terna distributivos

• **Definición**: Un reticulado terna (L,s,i) se llamará *distributivo* cuando cumpla que $x\ i\ (y\ s\ z) = (x\ i\ y)\ s\ (x\ i\ z)\ \forall x,y,z\in L\ (\ Dis_1\)$

Subreticulados terna

• Conjunto cerrado bajo operación: Si f es una operación n-aria sobre A y $S \subseteq A$, entonces diremos que S es cerrado bajo f cuando se de que $f(a_1, \ldots, a_n) \in S$ cada vez que $a_1, \ldots, a_n \in S$.

- **Subreticulado terna**: Dados reticulados terna (L, s, i) y (L', s', i'), diremos que (L, s, i) es un subreticulado terna de (L', s', i') si se dan las siguientes condiciones:
 - 1. $L \subseteq L'$
 - 2. L es cerrado bajo las operaciones s' e i'
 - 3. $s=s'|_{L^2}$ e $i=i'|_{L^2}$
- **Subuniverso**: Sea (L, s, i) un reticulado terna, un conjunto $S \subseteq L$ es llamado subuniverso de (L, s, i) si es no vacío y cerrado bajo las operaciones s e i.
 - Notar que los subuniversos de (L,s,i) son los universos de los subreticulados terna de (L,s,i).
- Propiedades:
 - Si (L,s,i) es un reticulado terna y S_1,S_2 son subuniversos de (L,s,i) tal que $S_1\cap S_2\neq \emptyset$, entonces $S_1\cap S_2$ es un subuniverso de (L,s,i)
 - Sea (L, s, i) un reticulado terna y sea \leq su orden asociado, si $S \subseteq L$ es no vacío con $(S, \leq \cap S^2)$ reticulado par con operaciones de supremo e ínfimo \hat{s}, \hat{i} , entonces (S, \hat{s}, \hat{i}) es un subreticulado terna de (L, s, i).

Homomorfismo e isomorfismo de reticulados terna

- **Homomorfismo**: Sean (L,s,i) y (L',s',i') reticulados terna, una función $F:L\to L'$ será llamada un homomorfismo de (L,s,i) en (L',s',i') si $\forall x,y\in L$ se cumple que $F(x\ s\ y)=F(x)\ s'\ F(y)$ y que $F(x\ i\ y)=F(x)\ i'\ F(y)$.
 - Escribiremos "Sea $F:(L,s,i) \to (L',s',i')$ un homomorfismo" para expresarlo.
- **Isomorfismo**: Un homomorfismo de (L, s, i) en (L', s', i') será llamado isomorfismo de (L, s, i) en (L', s', i') cuando sea biyectivo y su inversa también sea un homomorfismo.
 - Escribiremos $(L,s,i)\cong (L',s',i')$ cuando exista un isomorfismo de (L,s,i) en (L',s',i').
- Propiedades:
 - Importantísima de isomorfismos: Si $F:(L,s,i) \to (L',s',i')$ es un homomorfismo biyectivo, entonces F es un isomorfismo
 - Es decir, no hace falta chequear que ${\cal F}^{-1}$ sea un homomorfismo para ver que ${\cal F}$ es un isomorfismo.
 - Sean (L,s,i) y (L',s',i') reticulados terna y sea $F:(L,s,i) \to (L',s',i')$ un homomorfismo, entonces I_F es un subuniverso de (L',s',i').
 - Isomorfismo de reticulados terna equivale a isomorfismo de posets: Sean (L,s,i) y (L',s',i') reticulados terna y sean (L,\leq) y (L',\leq') los posets asociados, si $F:L\to L'$ es una función, entonces F es un isomorfismo de (L,s,i) en $(L',s',i')\iff F$ es un isomorfismo de (L,\leq) en (L',\leq)
 - Homomorfismo suryectivo mantiene distributividad: Si $F:(L,s,i)\to (L',s',i')$ es un homomorfismo suryectivo y (L,s,i) es distributivo, entonces (L',s',i') es distributivo.

- En particular, si $(L, s, i) \cong (L', s', i')$, entonces o ambos son distributivos, o ambos son no distributivos.
- Homomorfismo suryectivo mantiene máximo (análogo para mínimo): Sea $F:(L,s,i) \to (L',s',i')$ un homomorfismo suryectivo y a un elemento máximo de (L,s,i), entonces F(a) es un elemento máximo de (L',s',i').

Congruencias de reticulados terna

- Congruencia: Sea (L, s, i) un reticulado terna, una congruencia sobre (L, s, i) será una relación de equivalencia θ sobre L la cual cumpla que $x\theta x' \wedge y\theta y' \Rightarrow (x s y)\theta(x' s y') \wedge (x i y)\theta(x' i y')$.
 - Por ello, podemos definir en forma no ambigua sobre L/θ dos operaciones binarias \tilde{s},\tilde{i} tales que $x/\theta\tilde{s}y/\theta=(x\ s\ y)/\theta$ y $x/\theta\tilde{i}y/\theta=(x\ i\ y)/\theta$.
- Cociente: La terna $(L/\theta,\stackrel{\sim}{s},\stackrel{\sim}{i})$ es llamada el cociente de (L,s,i) sobre θ y la denotaremos con $(L,s,i)/\theta$
 - Orden parcial: Denotaremos con $\stackrel{\sim}{\le}$ al orden parcial asociado al reticulado terna $(L/ heta,\stackrel{\sim}{s},\stackrel{\sim}{i})$
- Propiedades:
 - El cociente de un reticulado terna es un reticulado terna: Sea (L,s,i) un reticulado terna y sea θ una congruencia de (L,s,i), entonces $(L/\theta,\tilde{s},\tilde{i})$ es un reticulado terna.
 - Relación entre orden parcial asociado al cociente y congruencia: Sea (L,s,i) un reticulado terna y sea θ una congruencia de (L,s,i), entonces $x/\theta \stackrel{\sim}{\le} y/\theta \iff y\theta(x\,s\,y) \ \forall x,y \in L.$
 - Cociente mantiene máximo (análogo con el mínimo): Sea (L,s,i) un reticulado terna con máximo 1, entonces si θ es una congruencia sobre (L,s,i), $1/\theta$ es el máximo de $(L,s,i)/\theta$.
 - Única congruencia con máximo y mínimo congruentes: Sea (L,s,i) un reticulado terna con máximo 1 y mínimo 0. Sea θ una congruencia sobre (L,s,i). Si $(0,1)\in\theta$, entonces $\theta=L^2$.
 - El núcleo de un homomorfismo es una congruencia: Si $F:(L,s,i) \to (L',s',i')$ es un homomorfismo, entonces ker(F) es una congruencia sobre (L,s,i)
 - La proyección canónica de una congruencia es un homomorfismo: Sea (L,s,i) un reticulado terna y sea θ una congruencia sobre (L,s,i), entonces π_{θ} es un homomorfismo de (L,s,i) en $(L/\theta,\tilde{s},\tilde{i})$ y $ker(\pi_{\theta})=\theta$.
 - Sea θ una congruencia del reticulado terna (L, s, i), si $c \in L/\theta$ entonces:
 - c es un subuniverso de (L, s, i)
 - c es un subconjunto convexo de (L,s,i). Es decir que $\forall x,y,z\in L, ((x,y\in \land x\leq z\leq y)\Rightarrow z\in c)$

- Sea (L,s,i) un reticulado terna y S un subuniverso de (L,s,i) con θ congruencia de $(S,s|_{S^2},i|_{S^2})$, entonces hay una congruencia δ de (L,s,i) tal que $\theta=\delta\cap S^2$
- El cociente de un reticulado terna distributivo es distributivo: Sea (L,s,i) un reticulado terna distributivo y θ una congruencia de (L,s,i), entonces $(L/\theta,\tilde{s},\tilde{i})$ es distributivo.
- Se mantiene el orden parcial asociado entre el reticulado terna y su cociente: Sea (L,s,i) un reticulado terna, θ una congruencia de (L,s,i) y $(L/\theta,\tilde{s},\tilde{i})$ el reticulado terna cociente, entonces dados $c,c'\in L/\theta$ tenemos que $c\overset{\sim}{\leq} c'\iff \exists x\in c,y\in c':x\leq y.$