

M1 E3A - Voie André Ampère

431

NOTES DE COURS

Enseignant:
ERIC VOURC'H & ARNAUD
BOURNEL

Rédigé par: Pierre-Antoine Comby

Table des matières

1	Ciı	rcuit po	our la transmission 2 5 Modulation à porteuse sinuosïdale	7
	1	Modul	lation d'amplitude	8
		1.1	Génération d'un signal AM à double bande latérale	8
		1.2	Démodulation par détection d'enveloppe ou cohérente	11
		1.3	Modulation AM particulière	13
	2	Modul	lation angulaire: FM et PM	14
		2.1	Principe, aspect spectral	14
		2.2	Méthode de génération d'une modulation angulaire	16
		2.3	Méthode de démodulation angulaire	16
	3	Modul	lation et bruit	16
		3.1	Différentes origines du bruit electronique	16
		3.2	Bruit dans une chaine de Quadripole	17
		3.3	Efficacité vis-à-vis du bruit en démodulation [WIP]	19

Chapitre 1 Circuit pour la transmission

Eric Vourc'h

Chapitre 2

Modulation à porteuse sinuosidale

Arnaud Bournel

Introduction et rappels

Types de modulations

Vu précedemment : On veux transposer l'information d'un signal x(t) appelé signal modulant dont le spectre est :

Définition

Signal modulé:

$$s(t) = A(t)\cos(\Phi(t)) = A(t)\cos(2\pi f_0 t + \phi(t))$$

où:

A(t) est l'amplitude instantanée

 $\Phi(t)$ est la phase instantanée

 ϕ est la déviation de phase par rapport a la porteuse

Proposition (Modulation d'amplitude)

On agit sur l'amplitude de la porteuse.

$$A(t) = k_a x(t) + k_0$$

Avec k_a et k_0 des constantes.

Proposition (Modulation de phase)

On agit sur la déviation de phase

$$\phi(t) = k_p x(t) + \phi_0$$

Proposition (Modulation de fréquence)

On agit sur la déviation de fréquence :

$$\Delta f = \frac{1}{2\pi} \frac{\mathrm{d}\phi(t)}{\mathrm{d}t} = k_F x(t)$$

1 Modulation d'amplitude

1.1 Génération d'un signal AM à double bande latérale

1.1.1 porteuse supprimée

$$x(t) \circ \longrightarrow k$$

$$k \circ \longrightarrow k$$

$$p(t) = A_0 \cos 2\pi f_0 t$$

On en déduit le spectre suivant :

$$S(f) = \frac{1}{2}kA_0X(f) * (\delta(f - f_0) + \delta(f - f_0))$$
$$= \frac{1}{2}kA_0(X(f - f_0) + X(f + f_0))$$

On peux tracer son spectre :

FIGURE 2.1 – Spectre dans le cadre de la modulation d'amplitude à porteuse supprimée On a un spectre à double bande latérales et sans présence explicite de la raie de la porteuse.

1.1.2 Modulation d'amplitude à porteuse conservée

Proposition

Le signal modulé avec porteuse conservée est de la forme :

$$s(t) = A_0(1 + mx(t))\cos(2\pi f_0 t)$$

- $e(t) = \frac{x(t)}{\max(|x(t)|)}$ $m = k.\max|x(t)|$ est le taux de modulation.

1.1.3 Sur-, et sousmodulation

FIGURE 2.2 – Différentes modulations d'amplitude a porteuse conservée

1.1.4 AM a porteuse conservée, spectre

Sans surprise:

FIGURE 2.3 – Spectre dans le cadre de la modulation d'amplitude à porteuse conservée

On retrouve le même encombrement, toujours double bande latérale.

Proposition

on défini le rapport entre puissance utile au final et la puissance émise :

$$\rho = \frac{m^2 P_e}{1 + m^2 P_e}$$

1.2 Démodulation par détection d'enveloppe ou cohérente

Système peu couteux , mais nécessite m < 1 :

FIGURE 2.4 – Circuit détecteur de crête

Proposition

Pour obtenir une bonne détection il faut :

$$\frac{1}{2\pi f_0} \ll R_1 C_1 < \frac{\sqrt{1 - m^2}}{2\pi m F_M}$$

Démonstration: issue de la préparation du TP3

 D_1 est une diode Schottky à faible tension de seuil, on la néglige donc dans le modèle de la diode considérée.

• Lorsque la diode est passante :

$$r(t) = s(t)$$

• Lorsque la diode est bloquée :

$$i_{c} = -\frac{r(t)}{R_{1}} = C_{1}\dot{r}(t)$$

$$\tau \dot{r}(t) + r(t) = 0 \quad ; \text{ avec } \tau = R_{1}C_{1}$$

$$r(t) = r_{0}e^{-\frac{t-t_{0}}{\tau}}$$

Avec r_0 valeur en début de la décharge ie $r_0 = s(t_1) = S_p(1 +$ $m\cos(\Omega t)$).

• Dans la phase de décharge : la pente de la droite de décharge est alors :

$$\left. \frac{dr(t)}{dt} \right|_{t=t_1} = -\frac{S_p}{R_1 C_1} (1 + m \cos(\Omega t))$$

• la pente de l'enveloppe vaut :

$$\left. \frac{ds(t)}{dt} \right|_{t=t_1} = -m\Omega S_p \sin(\Omega t_1)$$

Pour que la restitution soit bonne il faut que la pente de la décharge soit *légèrement* plus faible que la pente de l'enveloppe.

$$-\frac{S_p}{R_1C_1}(1+m\cos(\Omega t_1)) < -m\Omega S_p\sin(\Omega t_1)$$

$$R_1C_1 < \frac{1+m\cos(\Omega t_1)}{m\Omega\sin(\Omega t_1)}$$

On étudie donc la fonction :

$$y(t) = \frac{1 + m\cos(\Omega t)}{m\Omega\sin(\Omega t)}$$

$$\frac{dy(t)}{dt} = 0 \iff \frac{d}{dt} \left(\frac{1}{\sin(\Omega t)} + m \frac{1}{\tan(\Omega t)} \right) = 0$$

$$\iff \frac{\Omega \cos(\Omega t)}{\sin(\Omega t)^2} - m\Omega \frac{1}{\sin(\Omega t)^2} = 0$$

$$\iff \Omega t_1 = \arccos(-m)$$

Alors:

$$y(t_1) \le y(\arccos(-m)) = \frac{1 - m^2}{\Omega m \sin(\arccos(-m))} = \frac{1 - m^2}{\Omega m \sqrt{1 - m^2}} = \frac{\sqrt{1 - m^2}}{\Omega m}$$

 $\mathrm{Donc}:$

$$R_1 C_1 = \frac{\sqrt{1 - m^2}}{2\pi F m}$$

• La modulation de la sinusoïde est trop forte pour pouvoir etre suivi par le montage détecteur de crète. En effet :

$$R_1C_1 \xrightarrow{m \to 1} 0$$

• Lorsque la fréquence du signal modulant se rapproche de la fréquence de la porteuse la détection crête ne fonctionne pas non plus (phénomène de battement).

1.2.1 Démodulation AM cohérente : principe

$$s(t) \circ \longrightarrow k \circ \longrightarrow d(t)$$

$$p(t) = A_r \cos 2\pi (f_0 + \Delta f)t + \Delta \phi$$

On dispose de la porteuse à la reception (récupérer par VCO ou générée indépendamment).

$$u(t) = \frac{kA_rA_0}{2}x(t)(\cos(2\pi\Delta ft + \Delta\phi) + \cos(2\pi(2f_0 + \Delta f)t + \Delta\phi))$$

Dans le cas de la porteuse supprimée (en considérant $\Delta f = 0$ et $\Delta \phi = 0$) :

FIGURE 2.5 – Spectre des signaux considérés

En d(t) on retrouve bien x(t) a un facteur multiplicatif pres. (et une constante additive si porteuse conservée)

Remarque : si on a pas un synchronisme parfait (phase et fréquence) les spectres se superposent en effet :

$$d(t) = \frac{kA_0A_r}{2}x(t)cos(2\pi\Delta ft + \Delta\phi)$$

1.3 Modulation AM particulière

1.3.1 Modulation d'amplitude en quadrature

1.3.2 Modulation à bande latérale unique

pour réduire le support fréquenciel du signal modulé.

1.3.3 Modulation à Bande latérale atténuée

2 Modulation angulaire: FM et PM

2.1 Principe, aspect spectral

Définition -

Déviation de fréquence

$$\Delta f(t) = \frac{1}{2\pi} \frac{\mathrm{d}\phi(t)}{\mathrm{d}t} = k_F x(t)$$

Excursion en fréquence

$$\Delta f_{max} = \max |k_f x(t)|$$

$$s_{FM}(t) = A_0 \cos(2\pi f_0 t + 2\pi k_f \int_0^t x(\tau) d\tau)$$

Définition

Déviation de phase

$$\Phi(t) = k_p x(t) + \phi(0)$$

Excursion en phase

$$\Delta\Phi_{max} = \max|k_f x(t)|$$

$$s_{PM}(t) = A_0 \cos(2\pi f_0 t + 2\pi k_p x(t))$$

Proposition

Pour une modulante sinusoïdale $x(t) = A_X \cos(2\pi F_X t)$ on a :

$$s_{FM}(t) = A_0 \cos \left(2\pi f_0 t + \frac{\Delta f_{max}}{F_X} \sin(2\pi F_X t) \right)$$

 Et

$$S_{PM} = A_0 \cos \left(2\pi f_0 t + \Delta \phi_{max} \sin(2\pi F_X t)\right)$$

On défini l'indice de modulation β comme :

$$\beta = \begin{cases} \Delta \phi_{max} & \text{en PM} \\ \frac{k_F A_X}{F_X} & \text{en FM} \end{cases}$$

2.1.1 Spectre pour une modulante sinusoïdale

Théorème (identité de Bessel)

$$e^{jx\sin(y)} = \sum_{n=-\infty}^{+\infty} J_n(x)e^{jny}$$

Avec la fonction de bessel de première espèce d'indice n:

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin(\theta) - n\theta) d\theta$$

On a de plus $J_{-n}(\beta) = (-1)^n J_n(\beta)$

Ainsi on a pour le signal modulé en FM :

$$s_{FM} = A_0 \Re(e^{2j\pi f_0 t} e^{j\beta \sin(2\pi F_X t)}) = A_0 \Re\left(e^{2j\pi f_0 t} \sum_{n=-\infty}^{+\infty} J_n(x) e^{j2\pi F_x t}\right)$$

[Insert Spectre FM]

On a un encombrement en fréquence infini, mais la fonction de bessel est décroissante ainsi :

Proposition (règle de Carson)

98% de la Puissance du signal modulé se trouve dans la bande de fréquence utile B_u donnée par :

$$B_u = 2F_X(\beta + 1)$$

Cela se généralise pour tout signal x(t):

$$B_u = 2F_M(\beta_{nom} + 1) = 2\Delta f_{max} + 2F_M$$

Remarque Ce n'est qu'un des critère possibles. De manière générale le support fréquentielle en FM est plus large qu'en AM.

Dans le cas d'une phase $\phi(t) \ll \frac{\pi}{2}$ on peux faire un DL et on retrouve un spectre semblabe a celui d'une AM à double bande latérale :

$$s(t) = A_0 \Re(e^{2j\pi f_0 t} e^{j\phi(t)}) \simeq A_0 \Re(e^{2j\pi f_0 t} (1 + j\phi(t))) = A_0 \cos(2\pi f_0 t) - \phi(t) \sin(2\pi f_0 t)$$

[insert Graphics]

En FM er à DSP de bruit constante on a interet a préaccentuer les aigus et de x(t) par rapport aux graves (apres démodulation désacentuation).

2.2 Méthode de génération d'une modulation angulaire

- 2.2.1 FM par oscillateur controllé en tension
- 2.2.2 FM par régulation de fréquence porteuse
- 2.2.3 PM par réactance variable
- 2.2.4 Modulation PM à base de PLL

2.3 Méthode de démodulation angulaire

- 2.3.1 Démodulatateur a PLL
- 2.3.2 Autre démodulateurs

Démodulateur par déphasage

Démodulateur FM par comptage

3 Modulation et bruit

3.1 Différentes origines du bruit electronique

Le Bruit est une tension nusibile qui se superposant au signal utile. Les principales sources de bruits sont :

- bruit thermique
- bruit electromagnétique

Dans la suite on considère que le bruit est *additif*, centrée, ergodique, de puissance finie... On le note n(t) et $D_n(f)$ sa DSP. (TF de la fonction d'autocorrélation) ¹.

3.1.1 Bruit thermique

Le bruit thermique est issu du mouvement brownien des électrons libre dans un conducteur , proportionnel à la température (agitation thermique)

1. cf. UE 451

Proposition

On a alors v = n/2 et :

$$\langle n^2 \rangle = 4k_BTR\Delta f = 4k_BT\Re(Z)$$

$$D_n = 4k_BTR(enV^2/Hz)$$

 $D_n = 4k_BTR(enV^2/Hz) \label{eq:Dn}$ La DSP est constante (bruit blanc).

3.1.2Température équivalente

par analogie avec le bruit thermique on peux définir la température d'un bruit blanc pour d'autr source de bruit. Par exemple le bruit d'une antenne en reception : T = 300K (vers le sol), T = qqK (vers le ciel)). On parle alors d'antenne "froide" (peu de pertubation).

3.1.3 Autres bruits

bruit blanc de grenaille (Cf Schottky, 1918): nombre faible de porteur de charge franchissant une barrière de potentiel

bruit de scintillation DSP en 1/f: fluctuation de grandeur physique (densité de défaut chargé, rugosité d'interface..)

Bruit coloré DSP en f^n (traité par des ampli ,CF TD10).

Tous ces différents bruit s'ajoute pour former un DSP d'allure : [Insert graphics, plancher de bruit]

3.2 Bruit dans une chaine de Quadripole

$$u \longrightarrow H \longrightarrow v$$

Définition

D'après la formule d'interférence:

$$D_v(f) = |H(f)|^2 D_u(f) + D_p(f)$$

On défini le facteur de bruit d'un quadripole Q de fonction de transfert H:

$$F = \frac{\text{DSP de bruit total en sortie}}{\text{DSP de bruit si Q non bruyant}}$$
$$= \frac{|H(f)|^2 D_u(f) + D_p(f)}{|H(f)|^2 D_u(f)}$$
$$= 1 + \frac{D_p(f)}{|H(f)|^2 D_u(f)} \ge 1$$

On peux également définir la température équivalente de bruit du quadripôle :

Hypothèse

- Adaptation d'impédance entre Q et les connections (Z_c supposée réelle)
- ⇒ Optimisation du transfert de puissance car pas de reflexionsur Q
 - Bruit Thermique par une impédance Z_c placée en entrée de Q.

Proposition

On a:

$$D_u(f) = k_B T_e Z_c$$

$$D_p(f = |H(f)|^2 k_B T_Q Z_C)$$

$$\Longrightarrow F = 1 + \frac{T_Q}{T_e}$$

3.2.1 Quadripole en cascade

Pour deux quadripole en série de gain H_1 et H_2 :

$$u - H_1 - H_2 \longrightarrow v$$

Théorème (Formule de Friis)

Pour la mise en cascade de deux quadripoles le facteur de bruit total est :

$$F_{tot} = F_1 + \frac{1}{|H_1(f)|^2}(F_2 - 1)$$

La formule se généralise par récurrence pour N quadripoles en série :

$$F_{tot} = F_1 + \frac{1}{|H_1(f)|^2} (F_2 - 1) + \frac{1}{|H_1(f)|^2 |H_2(f)|^2} (F_3 - 1) + \dots + \frac{1}{|H_1(f)|^2 |H_2(f)|^2 |H_{N-1}(f)|^2} (F_N - 1) + \dots + \frac{1}{|H_1(f)|^2} (F_N - 1) + \dots + \frac{1}{|H_1(f)|^2$$

Remarque On a tout intêret à placer un amplificateur faible bruit (LNA ²) pour minimiser le facteur de bruit total (cf TD11).

^{2.} Low Noise Amplifier

3.2.2 Facteur de bruit et RSB

$$s_u(t) + n_u(t) \longrightarrow H \longrightarrow s_v(t) + n_v(t)$$

Proposition

Dans le cas où |H(f)| et les DSP sont indépendantes de f dans la bande de fréquence B considérée, alors :

$$F = \frac{D_{n_v}}{|H|^2 D_{n_u}} = \frac{S_{ueff^2}}{S_{veff^2}} \frac{D_{nv}}{D_{nu}} = \frac{(S/N)_{entree}}{(S/N)_{sortie}}$$

3.3 Efficacité vis-à-vis du bruit en démodulation [WIP]

3.3.1 Contexte

Modélisation du bruit (décomposition analytique transformée de hilbert)

$$n_e = \Re(n_I(t) + jn_Q(t)exp(2j2\pi f_0 t))$$

But : calculer :

$$\eta = \frac{<\alpha^2 x^2 > / < n_s^2 >}{< c^2 > < n_s^2 >}$$

3.3.2 Cas de l'AM

$$\eta = \frac{\langle n_e^2 \rangle}{(1/2)kA_1 \langle x^2 \rangle} = 2$$

efficacité faible mais garantie

Autre Modulation AM

BLU
$$\eta = 1$$

BL atténuée $\eta = \frac{2}{1+c^2}$ avec $0 \le c \le 1$

Quadrature $\eta = 2$

DB+porteuse
$$\eta = 2\frac{2k^2 < x^2 >}{1+k^2 < x^2 >}$$

3.3.3 Démodulation angulaire

généralité

Démodulation PM

$$\eta = 2k_P^2 < x^2 > \simeq 2\beta^2$$

Peux devenir $\gg 1$ mais il faut RSB grand et B_u large.

Démodulationn FM

$$\eta = 6 \frac{k_f^2 < x^2 >}{F_M^2} \simeq 6 \beta^2$$