Chapter 25.2: Outline

- 1. Sources and types of DNA damage
 - cellular consequences
- 2. Types of DNA repair pathways
 - Mismatch repair
 - Base-excision repair
 - Nucleotide-excision repair
 - Direct repair
 - Error-prone repair
- 3. DNA repair and cancer

Ames Test for mutagenicity

Sources of DNA damage

lonizing radiation- γ-rays and X-rays

UV radiation- UVC very potent, UVB (blocked by O₃), UVA indirectly through ROS

Oxygen radicals (ROS)- generated by UV, leaked from mitochondria, other cellular processes

Chemicals- environmental hydrocarbons- particularly cigarette smoke aflatoxin- peanut mold

Chemotherapy- by design cause DNA damage

"Superbug"...

Deinococcus radiodurans

Gram-positive bacterium

So-called polyextremophile survives: dehydration, radiation, acid, vacuum

Withstand 5000 Gy dose with no loss in viability
10 Gy is lethal to humans!

How?

Not really known but some unusual DNA repair features

- multiple copies of genome
- DNA repair different, more rapid (RecA)

Types of DNA damage that are observed

Mismatch

Mostly replication errors

Base covalent modification

Spontaneous: C to U, A to I, G to X Chemical induced: oxidation, alkylation

Breaks

single or double strand (radiation, chemicals)

Crosslinks

intrastrand vs interstrand (radiation, chemicals, chemotherapy)

DNA lesions can be mutagenic

Figure 25-28a

Lehninger Principles of Biochemistry, Fifth Edition

Multiple types of DNA lesions

Why do cells go to so much trouble to avoid U in DNA??

Chapter 25.2: Outline

- 1. Sources and types of DNA damage
 - cellular consequences
- 2. Types of DNA repair pathways
 - Mismatch repair
 - Base-excision repair
 - Nucleotide-excision repair
 - Direct repair
 - Error-prone repair
- 3. DNA repair and cancer

DNA repair systems

Strategy:

Recognize Question:

Remove Energy conservation vs.

Repair Fidelity?

Most take advantage of presence of a <u>complementary</u> <u>strand</u> (use undamaged DNA to correctly repair)

If no complementary strand (ds breaks, breaks in replication fork)- recombination (Ch 25.3)

Types of DNA repair systems

1. Mismatch repair (replication errors)

Recognize-

Problem: how does cell know correct nucleotide?

1st evidence: mix DNA strands from dam+/damstrains

System in *E. coli*: recognizes methyl strand, corrects the other one

E. coli mismatch repair system

E. coli mismatch repair system

E. coli mismatch repair system

Types of DNA repair systems

2. Base-excision repair

Recognize specific lesions

Spontaneous deamination (C to U)
Damaged bases (8-oxoG, HX, alkylation)

Important features:

DNA *N*-glycosylases: recognize and remove
Uracil N-glycosylase (Ung)
Create AP site (Apurinic, apyrimidinic)

AP endonuclease: cut DNA at site

Repair: DNAPol I in E. coli, euks other pols

DNA glycosylase causes formation of AP site

DNA glycosylases recognize specific lesions

Human UNG and DNA duplex with U-G mismatch

Parikh et al, EMBO J, 1998

Appling Biochemistry, Fig 23.10

DNA glycosylases recognize specific lesions

MjaOgg2 with DNA duplex containing 8-oxoG lesion

Faucher, Wallace and Doublié JMB 2010

Base excision repair in E. coli

Types of DNA repair systems

3. Nucleotide-excision repair

Generally removal of larger lesions (distort structure)- cyclopyrimidine dimers, base adducts

Important features:

Dual cleavage sites (on either side of damage)

Recognize: Excinuclease in all organisms

E.coli: UvrA,B,C

human: 16 polypeptides

Remove (helicase) and repair (polymerase)

Nucleotide-excision repair in *E. coli*

10

UvrABC excinuclease in E. coli

Appling Biochemistry, Fig 23.7

Types of DNA repair systems

4. Direct repair

Mechanism to repair without removal (and new DNA synthesis)

Important features:

specific enzymes for each type of damage

DNA photolyases (not in humans)

UV induced pyrimidine dimers

energy from hv→ THF → radical

Methyltransferases (AlkA, AlkB)

m¹A, m³C by AlkB

O⁶-meG by MGMT

MGMT is a "suicide enyzme"

Unnumbered 25 p1033 *Lehninger Principles of Biochemistry,* Sixth Edition © 2013 W. H. Freeman and Company

Types of DNA repair systems

5. Error-prone repair (translesion synthesis, TLS)

ds breaks, interstrand cross links: template damaged too- replication fork can't proceed

Important features:

Two methods to deal with this situation:

- 1) Recombination (Ch. 25.3)
- 2) TLS- less accurate synthesis

SOS response: LAST resort to avoid death existing proteins (UvrABC) activated new proteins (UmuC,D)→ Pol V
Mutations result! (fidelity ~ 1 error/10³ bp)

The need for error prone TLS

How do TLS polymerases bypass lesions?

Prakash, Johnson, Prakash, Ann Rev Biochem 2005

Chapter 25.2: Outline

- 1. Sources and types of DNA damage
 - cellular consequences
- 2. Types of DNA repair pathways
 - Mismatch repair
 - Base-excision repair
 - Nucleotide-excision repair
 - Direct repair
 - Error-prone repair
- 3. DNA repair and cancer

DNA repair and cancer

Mutagens are often carcinogens

Hereditary predisposition to cancer:

- Loss/damage of one copy is hereditary
- Subsequent somatic loss of 2nd allele over lifetime is required
- Several documented hereditary predispositions
 Still does NOT cause majority of cancers

Alterations to genes involved with normal cell physiology can lead to cancer

Hanahan and Weinberg, Cell (2000), The Hallmarks of Cancer 100:57-70

DNA repair and cancer

HNPCC- most common known

- defects in hMLH and hMSH: mismatch repair (human MutL Homolog, etc)
- tumor cells from patients impaired mismatch repair

BRCA1/BRCA2

- huge proteins: implicated in repair (homologous recombination), among MANY other functions

Xeroderma Pigmentosum genes (XP)

- nucleotide excision repair genes (pyr dimers especially)

DNA repair and cancer

Unwanted side effects of chemotherapy: many chemotherapy drugs are potent mutagens

cyclophosphamide	Cytoxan Alkeran	Crosslinks
melphalan		(inter/intra),
busulfan	Myleran	, , , , , , , , , , , , , , , , , , , ,
chlorambucil	Leukeran	alkylation
mitomycin	Mutamycin	
cisplatin	Platinol —	→ Crosslinks
bleomycin	Blenoxane	─ Strand
		breaks

Ch 25.2: Recap

DNA damage has important cellular consequences - mutations of many types from many sources

DNA repair pathways exist in all organisms to correct damage

- a great deal of redundancy
- "efficiency" not necessarily the goal

Defects in DNA repair processes have important consequences for human disease (cancer)