Organization Exercise Classes

- Part 1 (Lecture Marc Pollefeys)
 - Andrea Cohen, andrea.cohen@inf.ethz.ch
 - Christian Häne, chaene@inf.ethz.ch
 - Yağiz Aksoy, yaksoy@inf.ethz.ch
- Part 2 (Lecture Markus Gross)
 - Christian Schumacher, chschuma@inf.ethz.ch
 - Antoine Milliez, amilliez@inf.ethz.ch

Part 1 Schedule

TA Classes	Exercise	Assistant
Sept. 23 / Sept. 25	Background Subtraction	Christian Häne
Sept. 30 / Oct. 2	Edge Detection	Christian Häne
Oct. 7 / Oct. 9	Fourier Transform	Yağiz Aksoy
Oct. 14 / Oct. 16	PCA	Yağiz Aksoy
Oct. 21 / Oct. 23	Optical Flow	Andrea Cohen
Oct. 28 / Oct. 30	None (discussion of ex. Opt. Flow)	Andrea Cohen

Exercise 1 – Background Subtraction

Bluescreen / Greenscreen

http://www.iwatchstuff.com/images/2006/01/superman-greenscreen.jpg

http://www.theavclub.tv/behind_the_scenes/greenscreen/

Bluescreen

- Represent background with a single color value
 - Classification based on absolute distances[[r, g, b] [ro, go, bo]] < t.

Bluescreen

- Represent background with a set of color values
 - Classify new RGB values based on Mahalanobis distance

$$(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) > t$$

Covariance Matrix

$$\Sigma_{ij} = E\left[(X_i - \mu_i)(X_j - \mu_j) \right]$$

Estimation from n data points

$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})^T$$

Bluescreen

Pixelwise Color Model

- Mean and covariance for each pixel
- One threshold for all pixels (Mahalanobis distance)

Pixelwise Color Model

Matlab

Many loops and if statements can be avoided

- A.* B

reshape(A,3,3)

sum(A,3)

- Mask = A > t

A(find(A==2)) = 3

- A(:),

A(:,1)

- Accessing images from a movie
 - mov = aviread('bluescreen.avi');
 - im = mov(frameNo).cdata
- Exercise sheet
- Matlab help

