2018 全国高校新能源汽车大数据创新创业大赛

大赛试题-创新组

1.1 创新组赛题 1——电动汽车动力电池充电能量预测

1. 竞赛题目 (Competition Topic):

电动汽车动力电池充电能量预测。

2. 背景介绍 (Background)

动力电池充电能量预测为动力电池衰退评估的核心问题,正确预测动力电池充电能量,对动力电池残值评估、故障检测、充电规划等有重要意义。

3. 问题描述 (Question description):

动力电池充电能量受累计行驶里程、温度等多因素耦合影响。参赛者须设计动力电池能量预测模型,对动力电池充电能量进行预测。本题给出待预测充电过程的前 n 个充电过程的充电状态及充电能量,参赛者须预测第 n+1 个充电过程的充电能量。

4. 数据说明 (Data description):

训练样本的数据格式及说明如下表所示,数据可能存在异常,需参赛者自行识别。

COLUMNS	ТҮРЕ	NOTES
vehicle_id	STRING	车辆唯一标志码
charge_start_time	INT	充电开始时间
charge_end_time	INT	充电结束时间
mileage	FLOAT	充电开始时刻车辆仪表里程 (km)

charge_start_soc	INT	充电开始时刻动力电池 SOC
charge_end_soc	INT	充电结束时刻动力电池 SOC
charge_start_U	FLOAT	充电开始时刻动力电池总电压 (V)
charge_end_U	FLOAT	充电结束时刻动力电池总电压 (V)
charge_start_I	FLOAT	充电开始时刻动力电池总电流 (A)
charge_end_I	FLOAT	充电结束时刻动力电池总电流 (A)
charge_max_temp	FLOAT	充电过程中电池系统温度探针最大值(℃)
charge_min_temp	FLOAT	充电过程中电池系统温度探针最小值(℃)
charge_energy	FLOAT	此充电过程的充电能量(kWh)

测试样本的数据格式及说明如下表所示,数据可能存在异常,需参赛者自行识别。

COLUMNS	TYPE	NOTES
vehicle_id	STRING	车辆唯一标志码
charge_start_time	INT	充电开始时间
charge_end_time	INT	充电结束时间
mileage	FLOAT	充电开始时刻车辆仪表里程(km)
charge_start_soc	INT	充电开始时刻动力电池 SOC
charge_end_soc	INT	充电结束时刻动力电池 SOC
charge_start_U	FLOAT	充电开始时刻动力电池总电压 (V)
charge_end_U	FLOAT	充电结束时刻动力电池总电压 (V)
charge_start_I	FLOAT	充电开始时刻动力电池总电流 (A)
charge_end_I	FLOAT	充电结束时刻动力电池总电流 (A)
charge_max_temp	FLOAT	充电过程中电池系统温度探针最大值(℃)
charge_min_temp	FLOAT	充电过程中电池系统温度探针最小值(℃)

提交内容的数据格式及说明如下表所示,参赛者须对充电能量进行补充,间隔符为英文逗号。

COLUMNS TYPE NOTES	
--------------------	--

vehicle_id	STRING	车辆唯一标志码
charge_energy	FLOAT	此充电过程的充电能量(kWh)

评分规则 (Evaluation) 评分公式如下:

$$e = \sqrt{\sum_{i=1}^{n} \left(\frac{r_i - a_i}{a_i}\right)^2}$$

式中, e 为评价参数, 其数值越小代表与实际答案越接近; r 为计算能量, a 为实际能量。

注意事项 (Notes)。无。

1.2 创新组赛题 2——电动汽车行驶轨迹里程计算

- 1. 竞赛题目 (Competition Topic): 电动汽车行驶轨迹里程计算。
- 2. 背景介绍 (Background)

由于种种原因,车辆上传的仪表盘里程与车辆实际行驶里程往往 存在一定的差异,通过大数据分析手段核算新能源汽车的真实行驶里 程成为国家平台监管和企业了解自身运营情况的迫切需要。

问题描述 (Question description):

根据车辆行驶轨迹坐标点计算汽车轨迹里程,本题选取无仪表里程异常数据作为提供数据。

3. 数据说明 (Data description):

本题选取正常(无中途调表现象)车辆经纬度坐标数据,参赛者须根据 GPS 点坐标计算车辆行驶里程。样本数据格式及说明如下表所示,数据可能存在异常,需参赛者自行识别。

COLUMNS	TYP E	NOTES
vehicle_id	STR ING	车辆唯一标志码
time	INT	时间
state	INT	车辆状态(1代表启动,2代表熄火,3代表其他)
GPS_1at	FLO AT	纬度
GPS_1on	FLO AT	经度

提交内容的数据格式及说明如下表所示,参赛者须对充电能量进行补充,间隔符为英文逗号。

COLUMNS	TYPE	NOTES
vehicle_id	STRING	车辆唯一标志码
track_mileage	FLOAT	轨迹里程 (km)

评分规则(Evaluation)评分公式如下:

$$e = \sqrt{\sum_{i=1}^{n} \left(\frac{r_i - a_i}{a_i}\right)^2}$$

式中, e 为评价参数, 其数值越小代表与实际答案越接近; r 为计算轨迹里程, a 为实际仪表里程。

注意事项 (Notes)。车辆运行中会存在多种工作状态。