МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Институт радиотехники и электроники им. В.А. Котельникова Кафедра формирования и обработки радиосигналов Дисциплина:

Формирование радиосигналов

ОТЧЕТ

По лабораторной работе №5 «ФАЗОВАЯ АВТОПОДСТРОЙКА ЧАСТОТЫ»

Группа: ЭР-11-21

Студент: Авдюшкин Г.А.

Преподаватель: Плутешко А.В.

Дата: 16.03.2025

Лабораторное задание

1. Измерение характеристики ФД

Подадим колебание от внешнего генератора на вход опорной частоты. Форма напряжения — синусоидальная. Частота 8 МГц. Средний уровень 1,6 В. Размах от минимума до максимума 3,0 В. Настроим средний уровень так, чтобы величина +Duty осциллограммы Uon была $50 \pm 2\%$. Подберем f_{on} так, чтобы частота биений на выходе Φ Д была около 50 к Γ ц.

Зависимость выходного напряжения фазового детектора от времени

Рис. 1 – График зависимости выходного напряжения ФД от времени, идеальная характеристика (желтый)

2. Измерение характеристики ГУН

Установим частоту равной 8 МГц. Замкнем кольцо ФАПЧ. Изменяя опорную частоту с шагом ± 100 кГц, заполним таблицу 1. В таблицу будем вносить только значения, соответствующие режиму синхронизма.

Таблица 1 – Характеристика управления частотой ГУН

foп,	7.8	7.9	8	8.1	8.2	8.3	8.4
МГц							
fгун ,	125	126.58	128.21	129.17	191	133.33	135.14
МГц							
Еупр,	2.85	3.16	3.47	3.78	4.1	4.4	4.7
В							

Таблица 1 (Продолжение) – Характеристика управления частотой ГУН

foп,	7.1	7.2	7.3	7.4	7.5	7.6	7.7
МГц							
f гун,	114	114.9	117	119	120.0	121.4	123.46
МГц		4			5	8	
Еупр,	0.46	0.87	1.23	1.56	1.89	2.214	2.53

По полученным данным таблицы 1 построим характеристику управления частотой ГУН.

Рис. 2 - Характеристику управления частотой ГУН

3. Измерение полосы захвата

Расчет $K_{\text{гун}}$ по двум точкам характеристики в окрестности Еупр = 2,5 В:

$$K_{\text{гун}} = \frac{f_{\text{гун2}} - f_{\text{гун1}}}{E_{\text{упр2}} - E_{\text{упр1}}}$$

$$K_{\text{гун}} = \frac{(123.46 - 121.48) \cdot 10^6}{2.53 - 2.214} = 6.26 \left[\frac{\text{М}\Gamma \text{ц}}{\text{B}} \right]$$

Включим ЧМ модуляцию. Форма модуляции — треугольная. Частота модуляции 500 Гц. Установим центральную частоту и девиацию так, чтобы частота менялась от F1 до F2. Рассчитаем пределы изменения частоты.

$$f_1 = f_{\text{оп мин}} - (E_{\text{упр мин}} + 0.1) \cdot \frac{K_{\text{гун}}}{16}$$

$$f_1 = 7.1 \cdot 10^6 - (0.46 + 0.1) \cdot \frac{6.26 \cdot 10^6}{16} = 6.88 \, [\text{МГц}]$$

$$f_2 = f_{\text{оп макс}} - (5.1 - E_{\text{упр макс}}) \cdot \frac{K_{\text{гун}}}{16}$$

$$f_2 = 8.4 \cdot 10^6 - (5.1 - 4.7) \cdot \frac{6.26 \cdot 10^6}{16} = 8.55 \, [\text{МГц}]$$

Меняя положение переключателя в поле RC-ФИЛЬТР, ознакомимся с изменением формы осциллограммы Ефд при изменении постоянной времени фильтра.

Сохраним осциллограмму Ефд для положений переключателя 4 и 6.

Зависимость выходного напряжения фазового детектора от времени

Рис. 3 — График зависимости $E_{\Phi\pi}(t)$ при положении переключателя 4, идеальная характеристика ФД без срыва слежения(желтый)

Зависимость выходного напряжения фазового детектора от времени

Рис. 4 — График зависимости $E_{\Phi\pi}(t)$ при положении переключателя 6, идеальная характеристика ФД без срыва слежения(желтый)

4. Измерение переходных процессов по частоте

Настроим ЧМ модуляцию. Форма модуляции – меандр. Частота модуляции 5 кГц. Девиацию частоты выберем, воспользовавшись следующей формулой:

$$\frac{K_{\text{гун}}}{16} \cdot 0.5 = \frac{6.26 \cdot 10^6}{16} \cdot 0.5 = 195 \, [\text{КГц}]$$

Центральную частоту генератора оставим такой же, как и в предыдущем пункте.

Меняя положение переключателя в поле RC-ФИЛЬТР, ознакомимся с формы переходных процессов $E_{\phi \pi}(t)$ при увеличении изменением постоянной времени фильтра.

Сохраним осциллограммы $E_{\rm \phi g}(t)$ и $E_{\rm ynp}(t)$ для нескольких положений переключателей.

Рис. 5 — Осциллограмма переходных процессов по частоте $E_{\phi Д}(t)$ и $E_{yпp}(t)$ при положении переключателя 1, управляющее напряжение (желтый), напряжение на выходе $\Phi Д$ (зеленый)

Рис. 6 — Осциллограмма переходных процессов по частоте $E_{\phi Д}(t)$ и $E_{yпp}(t)$ при положении переключателя 3, управляющее напряжение (желтый), напряжение на выходе $\Phi Д$ (зеленый)

Рис. 7 — Осциллограмма переходных процессов по частоте $E_{\phi Д}(t)$ и $E_{yпp}(t)$ при положении переключателя 5, управляющее напряжение (желтый), напряжение на выходе $\Phi Д$ (зеленый)

5. Измерение переходных процессов по фазе

Выключим выход внешнего генератора и выключим модуляцию. Настроим внешний генератор. Форма напряжения — меандр. Частота 5 кГц. Средний уровень 1,75 В. Размах от минимума до максимума 3,5 В. Выберем в качестве опорного колебание от внутреннего опорного генератора 8МГц. Включим выход внешнего генератора.

Меняя положение переключателя в поле RC-ФИЛЬТР, ознакомимся с изменением формы переходных процессов $E_{\rm \phi d}(t)$ при увеличении постоянной времени фильтра. Сохраним осциллограммы $E_{\rm \phi d}(t)$ и $E_{\rm ynp}(t)$ для нескольких положений переключателей.

7

Рис. 8 — Осциллограмма переходного процесса по фазе $E_{\rm фд}(t)$ и $E_{\rm упр}(t)$ при положении переключателя 1, управляющее напряжение , напряжение на выходе $\Phi Д$

Рис. 9 — Осциллограмма переходного процесса по фазе $E_{\phi \text{д}}(t)$ и $E_{\text{упр}}(t)$ при положении переключателя 1, управляющее напряжение , напряжение на выходе $\Phi \text{Д}$

Построим характеристику ФД:

Рис. 11 – характеристика ФД

Заполним таблицу, используя для расчета дифференциальные параметры характеристик в точках, соответствующих Ефд=Еупр=2.5 В.

Таблица 2 – Величины, определяющие поведение кольца ФАПЧ

Кфд, В/рад	Кгун, МГц/В	Тфапч, мкс
1.59	6.26	0.255

Значение Кфд и Тфапч определим по следующим формулам:

$$\mbox{К} \varphi \mbox{$\displaystyle \Xi$} = \frac{\mbox{E} \mbox{$\displaystyle \Pi$}}{\mbox{$\displaystyle \pi$}} = \frac{\mbox{5} \mbox{ B}}{\mbox{$\displaystyle \pi$}} = 1.59 \mbox{ B/рад}$$

$$\mbox{Т} \varphi \mbox{$\displaystyle \Pi$} \mbox{$\displaystyle \Pi$} = \frac{\mbox{$\displaystyle P$}}{\mbox{$\displaystyle 2\pi$} \cdot \mbox{Kryh} \cdot \mbox{K} \varphi \mbox{$\displaystyle \beta$}} = \frac{\mbox{$\displaystyle 16$}}{\mbox{$\displaystyle 2\pi$} \cdot \mbox{$\displaystyle 6$} \cdot \mbox{$\displaystyle 10^6$} \cdot \mbox{$\displaystyle 1,59$}} = 0.255 \mbox{ мкс}$$

Осциллограммы $E_{\Phi D}(t)$ были сняты при увеличении постоянной времени фильтра для положений 4 и 6. Рассчитаем значения постоянной времени цепи для этих положений по следующей формуле (12) и сведем их в таблицу 3:

$$\tau$$
фнч = $R_1 \cdot C_1$

где і – номер положения переключателя

Таблица 3 — Номиналы элементов RC-фильтра и рассчитанные значения постоянной времени ФНЧ τ .

i	R_1 , Om	\mathcal{C}_1 , п Φ	$ au_{ m \phi H ext{ ext{ iny H}}}$, мкс
4	300	2200	0.66
6	300	6800	2.04

Зависимость выходного напряжения фазового детектора от времени

Рис. 12 — График зависимости $E_{\Phi \mathrm{A}}(t)$ при положении переключателя 4

Зависимость выходного напряжения фазового детектора от времени

Рис. 13 — График зависимости $E_{\phi_{\mathcal{A}}}(t)$ при положении переключателя 6

По приведенным графикам на рисунках 12 и 13 определим значения полосы захвата и полосы синхронизма для положений переключателей 4 и 6 соответственно:

$$\gamma = \frac{\Pi_{\text{3ax}}}{\Pi_{\text{CMHX}}} = \frac{0.73}{1} = 0.73$$

$$\gamma = \frac{\Pi_{\text{3ax}}}{\Pi_{\text{CUHX}}} = \frac{0.58}{1} = 0.58$$

Для определения теоретического значения γ по графику зависимости нормированной полосы захвата γ от нормированной постоянной времени ФНЧ τ , приведенному в описании данной лабораторной работы, рассчитаем значение τ по следующей формуле для положений 4 и 6 соответственно:

$$\tau = \frac{\tau_{\Phi H 44}}{T_{\Phi A \Pi 4}} = \frac{0.87 \cdot 10^{-6}}{0.255 \cdot 10^{-6}} = 3.41$$

$$\tau = \frac{\tau_{\Phi H \Psi 6}}{T_{\Phi A \Pi \Psi}} = \frac{1,04 \cdot 10^{-6}}{0,255 \cdot 10^{-6}} = 4,078$$

Полученным значениям τ по графику соответствуют значения γ равные 0,73 и 0,58 для 4 и 6 положений. Полученные данные сведем в таблицу. Таблица 4 — Сравнение рассчитанных и теоретических значений γ

Номер положения переключателя, і	Рассчитанное значение у	Теоретическое значение γ
4	0,73	0,71
6	0,58	0,552

ВЫВОД

Возможной причиной различия расчетных результатов измерений от экспериментальных также может быть то, что при построении временных зависимостей переходных процессов, рассчитанных на основе дифференциальных уравнений, мы работали с математической моделью процесса, в то время как построение измеренных процессов представляет собой практическую часть исследования, выполняемую в лабораторных условиях.

Также из-за нагрева элементов при проведении лабораторной работы, получаемые результаты измерений отличаются от экспериментальных.

Несмотря на все высказанные причины отличий между экспериментально построенными зависимостями и рассчитанными по дифференциальным уравнениям, можно заметить, что форма их процессов совпадает.