Mathématiques en algorithmique et programmation

Julien David

S3 348 - julien.david@unicaen.fr

INCROYABLE!!!!

A QUOI SERVENT LES MATHS EN INFO?

Les profs de maths détestent ce cours!

Organisation

Semaine type

- 2h de CM,
- 3h de TD, dont au plus 1h30 de maths et 1h30 d'info.

Évaluation

- un examen final
- un projet

Organisation

Mise au point pas fun

- Venir en CM sert vraiment,
- Si vous faites le projet à la dernière minute et que quelque chose se passe mal, c'est votre problème.
- Si je ne réponds pas à un mail après plusieurs jours, c'est soit qu'il est passé dans les spams, soit qu'il m'a agacé. N'hésitez pas à me réécrire.

- Il va contribuer à répandre le système décimal (à l'origine indien)
- il a écrit le premier livre d'algèbre, où il étudie la résolution des équations du premier et second degré.
- le livre ne contient aucun nombre, les équations sont décrites par des mots.
- le titre du livre contient le mot al-jabr, qui signifie "réduction", qui deviendra le mot algèbre.
- le nom al-Khwārizmī donnera le mot Algorithme

- Il va contribuer à répandre le système décimal (à l'origine indien)
- il a écrit le premier livre d'algèbre, où il étudie la résolution des équations du premier et second degré.
- le livre ne contient aucun nombre, les équations sont décrites par des mots.
- le titre du livre contient le mot al-jabr, qui signifie "réduction", qui deviendra le mot algèbre.
- le nom al-Khwārizmī donnera le mot Algorithme

- Il va contribuer à répandre le système décimal (à l'origine indien)
- il a écrit le premier livre d'algèbre, où il étudie la résolution des équations du premier et second degré.
- le livre ne contient aucun nombre, les équations sont décrites par des mots.
- le titre du livre contient le mot al-jabr, qui signifie "réduction", qui deviendra le mot algèbre.
- le nom al-Khwārizmī donnera le mot Algorithme

- Il va contribuer à répandre le système décimal (à l'origine indien)
- il a écrit le premier livre d'algèbre, où il étudie la résolution des équations du premier et second degré.
- le livre ne contient aucun nombre, les équations sont décrites par des mots.
- le titre du livre contient le mot al-jabr, qui signifie "réduction", qui deviendra le mot algèbre.
- le nom al-Khwārizmī donnera le mot Algorithme

- Il va contribuer à répandre le système décimal (à l'origine indien)
- il a écrit le premier livre d'algèbre, où il étudie la résolution des équations du premier et second degré.
- le livre ne contient aucun nombre, les équations sont décrites par des mots.
- le titre du livre contient le mot **al-jabr**, qui signifie "réduction", qui deviendra le mot **algèbre**.
- le nom al-Khwārizmī donnera le mot Algorithme

- Il va contribuer à répandre le système décimal (à l'origine indien)
- il a écrit le premier livre d'algèbre, où il étudie la résolution des équations du premier et second degré.
- le livre ne contient aucun nombre, les équations sont décrites par des mots.
- le titre du livre contient le mot **al-jabr**, qui signifie "réduction", qui deviendra le mot **algèbre**.
- le nom al-Khwārizmī donnera le mot Algorithme

Cours 1 : un brin de théorie des ensembles

Ensemble

Exemples d'ensembles

$$\{0,1,2,3\}$$

$$\{\textit{hibou}, \textit{chou}, \textit{caillou}, \textit{genou}\}$$

$$\mathbb{N}, \mathbb{R}, \mathbb{Q}, \mathbb{C}$$

$$\{\{0,1,2,3\}, \{0,3\}, \{0,1\}, \{1,2,3\}\}$$

Un **ensemble** est une collection non-ordonnée d'objets quelconques, distincts deux à deux.

Ensemble

Exemples d'ensembles

$$\{0,1,2,3\}$$

$$\{\textit{hibou},\textit{chou},\textit{caillou},\textit{genou}\}$$

$$\mathbb{N},\mathbb{R},\mathbb{Q},\mathbb{C}$$

$$\{\{0,1,2,3\},\{0,3\},\{0,1\},\{1,2,3\}\}$$

Un **ensemble** est une collection non-ordonnée d'objets quelconques, distincts deux à deux.

Ensemble

Exemples d'ensembles

$$\{0,1,2,3\} = \{0,2,1,3\}$$

$$\{\textit{hibou},\textit{chou},\textit{caillou},\textit{genou}\} = \{\textit{genou},\textit{hibou},\textit{chou},\textit{caillou}\}$$

$$\{\{0,1,2,3\},\{0,3\}\} = \{\{0,3\},\{0,1,2,3\}\}$$

Un **ensemble** est une collection **non-ordonnée** d'objets quelconques, distincts deux à deux.

Ensemble vide

L'ensemble ne contenant aucun élément est appelé **ensemble vide**. On le note \emptyset .

Appartenance

Soit un ensemble E et un objet x.

- si E contient x, on dit que x est un élément de E et on note $x \in E$,
- sinon on note $x \notin E$.

Exemples

 $\textit{hibou} \in \{\textit{hibou}, \textit{chou}, \textit{caillou}, \textit{genou}\}$

 $5\notin\{0,1,2,3\}$

Égalité

Soient deux ensembles E et F.

E et F sont égaux s'ils contiennent exactement les mêmes éléments

Ensemble des femmes présentes dans la salle Ensemble des étudiantes de L2

Définition d'ensembles

Pour définir des ensembles, on peut utiliser la notation suivante :

{ nom d'un objet | propriétés des objets de l'ensemble}

Exemple de définitions

```
\{n \mid n \in \mathbb{N} \text{ et } n \text{ est pair } \}
\{n \in \mathbb{N} : n \text{ est pair } \}
\{\{x,y\} : x,y \in \mathbb{R}, x > 0, y < 0\}
\{baleze \in Etudiants \mid note(baleze) > 18\}
```

Sous-ensemble

Soient deux ensembles E et F. On dit que E est un **sous-ensemble** de F, noté $E \subseteq F$, si

$$\forall x \in E$$
, on a $x \in F$

qu'on peut aussi écrire :

$$\forall x, x \in E \implies x \in F$$

Ensemble des personnes dans la salle

Ensemble des étudiant(e)s studieux de L2

Sous-ensemble strict

Soient deux ensembles E et F. On dit que E est un **sous-ensemble strict** de F, noté $E \subset F$, si

$$\begin{cases} \forall x \in E, \text{ on a } x \in F \\ \exists x \in F, x \notin E \end{cases}$$

Ensemble des personnes dans la salle

Ensemble des étudiant(e)s studieux de L2

Les erreurs classiques

Ce que vous ne devez JAMAIS écrire

$$\{0\} \in \{0,1,2,3\}$$

$$\emptyset \in \{0,1,2,3\}$$

$$0\subset\{0,1,2,3\}$$

Toute personne commettant l'une de ces erreurs sera immédiatement comdamnée au bûcher, à l'humiliation publique, ou à une longue révision pénible

Les erreurs classiques

Ce que vous pouvez écrire

$$\{0\}\subset\{0,1,2,3\}$$

$$\emptyset \subset \{0,1,2,3\}$$

$$0 \in \{0,1,2,3\}$$

Toute personne capable d'écrire ça correctement aura sans doute au moins un point à l'examen

Les opérations

Union

Soient deux ensembles E et F.

L'**union** de E et F, noté $E \cup F$, est un troisième ensemble contenant tous les éléments de E et F.

$$E \cup F = \{x \mid x \in E \text{ ou } x \in F\}$$

Union

Soient deux ensembles E et F.

L'**union** de E et F, noté $E \cup F$, est un troisième ensemble contenant tous les éléments de E et F.

$$E \cup F = \{x \mid x \in E \text{ ou } x \in F\}$$

Intersection

Soient deux ensembles E et F.

L'**intersection** de E et F, noté $E \cap F$, est un ensemble contenant tous les éléments appartenant simultanément à E et F.

$$E \cap F = \{x \mid x \in E \text{ et } x \in F\}$$

Intersection

Soient deux ensembles E et F.

L'**intersection** de E et F, noté $E \cap F$, est un ensemble contenant tous les éléments appartenant simultanément à E et F.

$$E \cap F = \{x \mid x \in E \text{ et } x \in F\}$$

Complémentaire

Soit E un ensemble. Son **complémentaire**, noté \overline{E} , est constitué des objets qui n'appartiennent pas à E.

$$\overline{E} = \{x \mid x \notin E\}$$

Différence

Soient deux ensembles E et F.

La **différence** entre E et F, noté $E \setminus F$, est un ensemble contenant tous les éléments appartenant à E, mais n'appartenant pas à F.

$$E \setminus F = \{x \mid x \in E \text{ et } x \notin F\}$$

Produit Cartésien

Soient deux ensembles E et F.

La **produit cartésien** de E et F, noté $E \times F$, est l'ensemble des **couples** (x, y), tels que $x \in E$ et $y \in F$:

$$E \times F = \{(x, y) \mid x \in E, y \in F\}$$

Produit Cartésien

Soient deux ensembles E et F.

La **produit cartésien** de E et F, noté $E \times F$, est l'ensemble des **couples** (x,y), tels que $x \in E$ et $y \in F$:

$$E \times F = \{(x,y) \mid x \in E, y \in F\}$$

Exemple

Soit les ensembles $X = \{1, 2, 3\}$ et $Y = \{a, b\}$, leur produit cartésien est

$$X \times Y = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$$

Produit Cartésien

Tout comme les autres opérateurs décris précédemment, il est possible de combiner plusieurs produit cartésiens.

- $A \times B \times C$ est un ensemble de **triplets**
- $A \times B \times C \times D$ est un ensemble de **quadruplets**
- produit de n ensembles : un ensemble de n-uplets ou de tuples.

Ensemble des parties

L'ensemble des parties d'un ensemble E, noté $\mathcal{P}(E)$ est l'ensemble de tous les sous-ensembles de E

$$\mathcal{P}(E) = \{S \mid S \subseteq E\}$$

Ensemble des parties

L'ensemble des parties d'un ensemble E, noté $\mathcal{P}(E)$ est l'ensemble de tous les sous-ensembles de E

$$\mathcal{P}(E) = \{S \mid S \subseteq E\}$$

Exemple

Soit l'ensemble $\{1,2,3\}$, l'ensemble de ses parties est :

$$\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,3\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$$

Cardinalité d'un ensemble

Le cardinal d'un ensemble E est le nombre d'éléments qu'il contient. On peut le noter card(E), |E| ou encore #E

Exemple

Soit les ensembles
$$X=\{1,2,3\}$$
 et $Y=\{a,b\},$
$$|X|=3,\ |Y|=2$$

$$|X\times Y|=|X|*|Y|=6$$

$$|\mathcal{P}(X)|=2^{|X|}=8$$

Relations, Fonctions et Applications

Imaginons deux ensembles : les habitants de Caen (noté C) et les animaux de la région (noté A).

Certains habitants de Caen possèdent des animaux de compagnies.

Certains animaux de compagnies appartiennent à plusieurs habitants de Caen.

Il existe donc une **relation** entre les habitants de Caen et les animaux de la région.

Dans l'example ci-dessus, la relation est décrite par :

 $\{(\textit{Gerard}, \textit{Cookie}), (\textit{Gerard}, \textit{Hercule}), (\textit{Gerard}, \textit{Moustache}), (\textit{Cunegonde}, \textit{Cookie}), (\textit{Cunegonde}, \textit{Moustache})\}$

Il existe donc une **relation** entre les habitants de Caen et les animaux de la région.

Cette relation est un triplet (C, A, X), où X est un ensemble de couples (x, y) tels que $x \in C$ et $y \in A$

Une relation de C vers A est un triplet (C, A, X) tel que :

- $X \in \mathcal{P}(C \times A)$
- C est appelé l'ensemble de départ
- A est appelé l'ensemble d'arrivée

Fonction

Soient deux ensembles E et F et une **relation** f de E vers F La relation f est une **fonction** de E vers F, si

• $\forall x \in E$, il existe **au plus** un élément $y \in F$ tel que f(x) = y

Fonction

Soient deux ensembles *E* et *F* et une **relation** *f* de *E* vers *F* La relation *f* est une **fonction** de *E* vers *F*, si

• $\forall x \in E$, il existe **au plus** un élément $y \in F$ tel que f(x) = y

La première fonction que vous ayez apprise

L'addition est une fonction $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

Domaine de définition

Le domaine/ensemble de définition d'une fonction f de E vers F, noté Def(f), est l'ensemble des éléments x de E tels qu'il existe $y \in F$ avec f(x) = y

Image et Antécedent

Soient deux ensembles E et F et une **fonction** $f: E \to F$ Soient $x \in E$ et $z \in F$ tels que f(x) = z. On dit que :

- z est l'image de x par f
- x est un antécédent z par f.

Application

Soient deux ensembles E et F et une fonction $f: E \to F$. La fonction f est une **application** si le domaine de définition est égal à E.

Image directe, Image réciproque

Soient deux ensembles E et F et une **application** $f: E \to F$. Soit $X \subseteq E$, on appelle **image directe** de X par f, l'ensemble des images des éléments de X par f, soit

Image directe, Image réciproque

Soient deux ensembles E et F et une **application** $f: E \to F$. Soit $Y \subseteq F$, on appelle **image réciproque** de Y par f, l'ensemble des antécédents des éléments de Y par f, noté $f^{-1}(Y)$ soit

$$f^{-1}(Y) = \{x \in E \mid f(x) \in Y\}$$

Quand vous programmez, vous faites surtout des fonctions? ou des applications?

Fibonacci

```
int fibonacci(int n){
   if (n == 0 || n == 1)
   return 1;
   return fibonacci(n-1) + fibonacci(n-2);
}
```

Ce programme calcule la *n*-ième valeur de la suite de Fibonacci :

$$\begin{cases} f_0 = 1, \\ f_1 = 1, \\ f_n = f_{n-1} + f_{n-2} \end{cases}$$

Fibonacci

```
int fibonacci(int n){
   if (n == 0 || n == 1)
   return 1;
   return fibonacci(n-1) + fibonacci(n-2);
}
```

Que se passe-t-il si j'appelle ce programme avec une valeur négative?

Fibonacci - Domaine de définition

```
int fibonacci(int n){
   if (n == 0 || n == 1)
   return 1;
   return fibonacci(n-1) + fibonacci(n-2);
}
```

Soit *int* l'ensemble des entiers relatifs pouvant être représentés sur 32 bits. La fonction $fibonacci: int \rightarrow int$ a pour domaine de définition

Fibonacci - Domaine de définition

Tentons ensemble de corriger ce problème en modifiant le code.

Dans les cours suivants, on verra pourquoi ces solutions sont insuffisantes er étudiant :

- la complexité algorithmique
- la représentation des nombres sur un ordinateur

Fibonacci - Domaine de définition

Tentons ensemble de corriger ce problème en modifiant le code. Dans les cours suivants, on verra pourquoi ces solutions sont insuffisantes en étudiant :

- la complexité algorithmique
- la représentation des nombres sur un ordinateur

Observons un morceau de code en JAVA 1

- que fait ce code?
- Si un développeur appelle le constructeur avec un nom égal à *nil*, que se passe-t-il?
- Si on considère qu'un niveau de couleur est une valeur entre 0 et 65535, comment faire en sorte que le développeur qui utilise vos fonctions inscrive une valeur dans cet intervalle.

Observons un morceau de code en JAVA 1

- que fait ce code?
- Si un développeur appelle le constructeur avec un nom égal à *nil*, que se passe-t-il?
- Si on considère qu'un niveau de couleur est une valeur entre 0 et 65535, comment faire en sorte que le développeur qui utilise vos fonctions inscrive une valeur dans cet intervalle.

^{1.} fichier Couleur.java

La programmation par contrat

La programmation par contrat est un paradigme de programmation, consistant à établir en ensemble de règles, ou assertions d'utilisation d'un morceau de code, formant ainsi un **contrat**.

Parmi ces règles, on va s'intéresser aux suivantes :

- les préconditions
- les postconditions

La programmation par contrat : les préconditions

Un **précondition** est une règle que le développeur va devoir respecter lors de l'appel à une fonction.

Si toutes les préconditions sont respectées par l'utilisateur, l'exécution doit s'exécuter sans erreur.

La programmation par contrat : les préconditions

```
/**

Cette fonction renvoie la n-ieme valeur de la fonction de fibonacci.

@param n est un entier.

@requires n >= 0

@return la n-ieme valeur de la fonction de fibonacci.

*/

int fibonacci(int n){

if (n == 0 || n == 1)

return 1;

return fibonacci(n-1) + fibonacci(n-2);
```

La programmation par contrat : les préconditions

Un **postcondition** est une règle que la **fonction** respecte à l'issue du calcul qu'elle a effectué.

La programmation par contrat : les postconditions

```
/**

Cette fonction renvoie la n-ieme valeur de la fonction de fibonacci.

@param n est un entier.

@requires n >= 0

@ensures fibonacci(n) > 0

@return la n-ieme valeur de la fonction de fibonacci.

*/

int fibonacci(int n){
    if (n == 0 || n == 1)
        return 1;
    return fibonacci(n-1) + fibonacci(n-2);
}
```


Genre je vais perdre mon temps à écrire un commentaire deux fois plus long que la fonction ?

Dans le monde réel

Tout dépend de votre contexte de travail

- si vous travaillez sur une application critique, oui, il est capital de prendre du temps pour sécuriser son code.
- si vous travaillez dans une entreprise qui a des moyens suffisants, il est possible de mettre en place des bonnes pratiques de ce type.
- si vous n'êtes ni dans le premier le second ça, vous n'aurez bien sûr pas le temps de faire ça.
- l'important est d'être capable de le faire et de savoir que cela existe.

Points positifs

- Il existe des outils qui permettent de créer automatiquement une documentation de votre code, à partir des commentaires.
- Si le contrat est rédigé, il peut aider à créer des tests unitaires.