Prof. Dr. R. Weissauer Dr. Mirko Rösner

Blatt 8 Abgabe auf Moodle bis zum 22. Januar

Die obere Halbebene ist $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$. Darauf operiert die Modulgruppe $\Gamma = \mathrm{SL}(2,\mathbb{Z})$ durch Möbius-Transformationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \langle \tau \rangle = \frac{a\tau + b}{c\tau + d} \ .$$

Seien j und $\lambda(\tau) = (e_3(\tau) - e_2(\tau))/(e_1(\tau) - e_2(\tau))$ die Modulfunktionen aus der Vorlesung. Sie können bei jeder Aufgabe die Ergebnisse der vorherigen nutzen, auch wenn Sie diese nicht bearbeitet haben. Die besten vier Aufgaben werden gewertet.

- **35.** Aufgabe: (1+1+2=4 Punkte) Sei $\phi: \Gamma/\Gamma[2] \to \text{Bij}(\{e_1, e_2, e_3\})$ der Isomorphismus aus Aufgabe 28c).
 - (a) Machen Sie diesen explizit, indem Sie $\phi(T)e_i$ und $\phi(S)e_i$ bestimmen für i=1,2,3.
 - (b) Bestimmen Sie Vertreter von $\Gamma/\Gamma[2]$ als Produkte von S und T.
 - (c) Zeigen Sie $\{\lambda|_{0}M \mid M \in \Gamma\} = \{\lambda, \lambda^{-1}, 1 \lambda, 1 \lambda^{-1}, (1 \lambda)^{-1}, \lambda/(1 \lambda)\}$.

Hinweis: Für eine Menge X bezeichnet Bij(X) die Gruppe der Bijektionen $X \to X$.

- **36.** Aufgabe: (2+2=4 Punkte) Wir entwickeln die Eisensteinreihen als Fourierreihen.
 - (a) Zeigen Sie für ganze $k \geq 2$ und $\tau \in \mathbb{H}$ die Reihenentwicklung

$$(-1)^k \sum_{n \in \mathbb{Z}} (\tau + n)^{-k} = \frac{(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} n^{k-1} \exp(2\pi i n \tau) .$$

Hinweis: Zeigen Sie zunächst den Fall k=2. Aufgaben 48, 49 aus FT1 sind nützlich.

(b) Sei G_k die Eisensteinreihe zur vollen Modulgruppe von geradem Gewicht $k \geq 4$. Für jedes $\tau \in \mathbb{H}$ gilt dann

$$G_k(\tau) = 2\zeta(k) + \frac{2(2\pi i)^k}{(k-1)!} \sum_{n=0}^{\infty} \sigma_{k-1}(n) e^{2\pi i \tau n}$$
.

Hier ist $\sigma_k(n) = \sum_{d|n} d^k$ ist die Teilersumme der k-ten Potenzen und $\zeta(k) =$ $\sum_{n=1}^\infty n^{-k}$ für $k\ge 2.$ Hinweis: Verwenden Sie eine geeignete Summationsreihenfolge.

37. Aufgabe: (4 Punkte) Seien (X, \mathfrak{U}_X) und (Y, \mathfrak{U}_Y) topologische Räume. Wir erklären die Produkttopologie $\mathfrak{U}_{X\times Y}$ auf $X\times Y$ als die Topologie erzeugt von der Basis

$$\mathcal{B} = \{ U \times V \mid U \in \mathfrak{U}_X, V \in \mathfrak{U}_V \} .$$

Zeigen Sie: Die Produkttopologie auf $\mathbb{R} \times \mathbb{R}$ ist gleich der Euklidischen Topologie.

- **38.** Aufgabe: (4 Punkte) Sei $f:(X,\mathfrak{U}_X)\to (Y,\mathfrak{U}_Y)$ eine stetige Abbildung topologischer Räume. Zeigen Sie: Ist M eine quasikompakte Teilmenge von X, dann ist auch f(M) quasikompakt.
- **39.** Aufgabe: (4 Punkte) Sei (X, \mathfrak{U}_X) ein topologischer Raum. Wir versehen $X \times X$ mit der Produkttopologie. Zeigen Sie, dass folgende Aussagen äquivalent sind:
 - (a) Die Diagonale $\Delta X = \{(x, x) \in X \times X \mid x \in X\}$ ist abgeschlossen in $X \times X$.
 - (b) (X,\mathfrak{U}_X) ist separiert.