Note: Consider the following before starting the assignment:

- A static field declared inside a class is called a class-level variable. To access this variable, use the class name and the dot operator (e.g., Integer.MAX VALUE).
- A **static method** defined inside a class is called a **class-level method**. To access this method, use the class name and the dot operator (e.g., Integer.parseInt()).
- When accessing static members within the same class, you do not need to use the class name.

1. Working with java.lang.Boolean

a. Explore the <u>Java API documentation for java.lang.Boolean</u> and observe its modifiers and super types.

Explanation: Boolean is a class in java.lang(which is a root of all classes and also "cosmic superclass") which is most important classes and pre-imported in the java. The boolean datatype is not a class in it rather defined in wrapper class(java.lang.Boolean) and has a final keyword which signifies that it cannot have a child class.

b. Declare a method-local variable status of type boolean with the value true and convert it to a String using the toString method. (Hint: Use Boolean. toString (Boolean)).

```
package in.Cdac.Boolean;

public class Q1_B {
      public static void main(String[] args)
      {
            boolean status = true;
            String str = Boolean.toString(status);
            System.out.println(str);
      }
}
```

<terminated> Q1_B [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.exe (09-Sep-2024, 11:16:25 pm – 11:16:25 pm) [pid: 5552]
t.rue

c. Declare a method-local variable strStatus of type String with the value "true" and convert it to a boolean using the parseBoolean method. (Hint: Use Boolean.parseBoolean(String)).

```
package in.Cdac.Boolean;
public class Q1_C {
    public static void main(String[] args) {
```

```
String strStatus = "true";
boolean bool = Boolean.parseBoolean(strStatus);
System.out.println(bool);
}

<terminated> Q1_C [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.exe (09-Sep-2024, 11:16:58 pm - 11:16:59 pm) [pid: 13140]
true
```

d. Declare a method-local variable strStatus of type String with the value "1" or "0" and attempt to convert it to a boolean. (Hint: parseBoolean method will not work as expected with "1" or "0").

```
package in.Cdac.Boolean;

public class Q1_D {
    public static void main(String[] args) {
        String strStatus =" 0 ";
        boolean bool = Boolean.parseBoolean(strStatus);
        System.out.println(bool);
    }
}
```

<terminated> Q1_D [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.exe
false

e. Declare a method-local variable status of type boolean with the value true and convert it to the corresponding wrapper class using Boolean.valueOf(). (Hint: Use Boolean.valueOf(boolean)).

```
package in.Cdac.Boolean;

public class Q1_E {
    public static void main(String[] args) {
        boolean status = true;
        boolean bool = Boolean.valueOf(status);
        System.out.println(bool);
    }
}
```

<terminated> Q1_E [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.exe (
true

f. Declare a method-local variable strStatus of type String with the value "true" and convert it to the corresponding wrapper class

using Boolean.valueOf(). (Hint: Use
Boolean.valueOf(String)).

```
package in.Cdac.Boolean;

public class Q1_F {
    public static void main(String[] args) {
        String strStatus ="true";
        boolean bool = Boolean.valueOf(strStatus);
        System.out.println(bool);
    }
}
```

<terminated> Q1_F [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.exetrue

g. Experiment with converting a boolean value into other primitive types or vice versa and observe the results.

Explanation: Boolean.valueOf() is same as Boolean.toString() which is used to convert String a non-primitive datatype into a primitive datatype this process is called as unboxing. This would have not worked if the string was anything other than 'true' or 'false' and would have just returned as false.

2. Working with java.lang.Byte

a. Explore the <u>Java API documentation for java.lang.Byte</u> and observe its modifiers and super types.

Explanation: Byte is a class in java.lang(which is a root of all classes and also "cosmic superclass") which is most important classes and pre-imported in the java. The byte datatype is not a class in it rather defined in wrapper class(java.lang.Byte) and has a final keyword which signifies that it cannot have a child class.

```
byte datatype----→java.lang.Byte (wrapper class)----→java.lang(superclass)
byte ranges from ------→ -128 to 127
```

b. Write a program to test how many bytes are used to represent a byte value using the BYTES field. (Hint: Use Byte. BYTES).

```
package in.Cdac.Byte;
public class Q2_B {
    public static void main(String[] args)
```

```
byte b = Byte.BYTES;
System.out.println(b);
}
```

<terminated> Q2_B [Java Application] C:\Program Files\Java\jdk-18.0.2

c. Write a program to find the minimum and maximum values of byte using the MIN_VALUE and MAX_VALUE fields. (Hint: Use Byte.MIN_VALUE and Byte.MAX_VALUE).

```
package in.Cdac.Byte;

public class Q2_C {
    public static void main(String[] args)
    {
        byte b = Byte.BYTES;
        System.out.println(Byte.MIN_VALUE);
        System.out.println(Byte.MAX_VALUE);
    }
}
```

<terminated> Q2_C [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.e -128
127

d. Declare a method-local variable number of type byte with some value and convert it to a String using the toString method. (Hint: Use Byte. toString (byte)).

```
package in.Cdac.Byte;

public class Q2_D {
    public static void byte1() {
        byte num = 45;
        String str = Byte.toString(num);
        System.out.println(str);
    }

    public static void main(String[] args) {
        byte b = Byte.BYTES;
        System.out.println(Byte.MIN_VALUE);
        System.out.println(Byte.MAX_VALUE);
        byte1();
    }
}
```

```
<terminated> Q2_D [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.e
-128
127
45
```

e. Declare a method-local variable strNumber of type String with some value and convert it to a byte value using the parseByte method. (Hint: Use Byte.parseByte (String)).

```
package in.Cdac.Byte;

public class Q2_E {
    public static void main(String[] args) {
        String strNumber = "5";
        byte b = Byte.parseByte(strNumber);
        System.out.println(b);
    }
}
```

<terminated> Q2_E [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\java 5

f. Declare a method-local variable strNumber of type String with the value "Ab12Cd3" and attempt to convert it to a byte value. (Hint: parseByte method will throw a NumberFormatException).

```
package in.Cdac.Byte;

public class Q2_F {
    public static void main(String[] args) {
        String strNumber = "Ab12Cd3";
        byte b = Byte.parseByte(strNumber);
        System.out.println(b);
    }
}
```

g. Declare a method-local variable number of type byte with some value and convert it to the corresponding wrapper class using Byte.valueOf().(Hint: Use Byte.valueOf(byte)).

```
package in.Cdac.Byte;

public class Q2_G {
    public static void main(String[] args) {
        byte b1 = 5;
        byte b = Byte.valueOf(b1);
        System.out.println(b);
    }
}
```

<terminated> Q2_G [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\java 5

h. Declare a method-local variable strNumber of type String with some byte value and convert it to the corresponding wrapper class using Byte.valueOf().(Hint: Use Byte.valueOf(String)).

```
package in.Cdac.Byte;

public class Q2_H {
     public static void main(String[] args) {
         String strNumber = "5";
         byte b = Byte.parseByte(strNumber);
         System.out.println(b);
     }
}
```

i. Experiment with converting a byte value into other primitive types or vice versa and observe the results.

3. Working with java.lang.Short

a. Explore the <u>Java API documentation for java.lang.Short</u> and observe its modifiers and super types.

Explanation: Short is a class in java.lang(which is a root of all classes and also "cosmic superclass") which is most important classes and pre-imported in the java. The short

datatype is not a class in it rather defined in wrapper class(java.lang.Short) and has a final keyword which signifies that it cannot have a child class.

b. Write a program to test how many bytes are used to represent a short value using the BYTES field. (Hint: Use Short.BYTES).

```
package in.Cdac.Short;

public class Q3_B {
      public static void main(String[] args)
      {
            System.out.println(Short.BYTES);
      }
}
```

<terminated> Q3_B [Java Application] C:\Program Files\Java\jdk-18.0.2

c. Write a program to find the minimum and maximum values of short using the MIN_VALUE and MAX_VALUE fields. (Hint: Use Short.MIN VALUE and Short.MAX VALUE).

```
package in.Cdac.Short;

public class Q3_C {
    public static void main(String[] args)
    {
        System.out.println(Short.BYTES);
        System.out.println(Short.MIN_VALUE);
        System.out.println(Short.MAX_VALUE);
}
```

```
<terminated> Q3_C [Java Application] C:\Program Files\Java\jdk-18.0.

2
-32768
32767
```

d. Declare a method-local variable number of type short with some value and convert it to a String using the toString method. (Hint: Use Short. toString (short)).

```
package in.Cdac.Short;

public class Q3_D {
    public static void main(String[] args) {
        short num = 3352;
        String n1 = Short.toString(num);
        System.out.println(n1);
    }
}
```

<terminated> Q3_D [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\java 3352

e. Declare a method-local variable strNumber of type String with some value and convert it to a short value using the parseShort method. (Hint: Use Short.parseShort(String)).

```
package in.Cdac.Short;

public class Q3_E {
      public static void main(String[] args) {
            String strNumber = "4586";
            short sh = Short.parseShort(strNumber);
            System.out.println(sh);
      }
}
```

<terminated> Q3_E [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.e
4586

f. Declare a method-local variable strNumber of type String with the value "Ab12Cd3" and attempt to convert it to a short value. (Hint: parseShort method will throw a NumberFormatException).

g. Declare a method-local variable number of type short with some value and convert it to the corresponding wrapper class using Short.valueOf().(Hint: Use Short.valueOf(short)).

```
package in.Cdac.Short;

public class Q3_G {
    public static void short1() {
        short number = 4242;
        short sh = Short.valueOf(number);
        System.out.println(sh);
    }
    public static void main(String[] args) {
        short1();
    }
}
```

<terminated> Q3_G [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\
4242

h. Declare a method-local variable strNumber of type String with some short value and convert it to the corresponding wrapper class using Short.valueOf().(Hint: Use Short.valueOf(String)).

```
package in.Cdac.Short;

public class Q3_H {
    public static void short1() {
        String strNumber = "4242";
        short sh = Short.valueOf(strNumber);
        System.out.println(sh);
    }
    public static void main(String[] args) {
        short1();
    }
}
```


- i. Experiment with converting a short value into other primitive types or vice versa and observe the results.
- 4. Working with java.lang.Integer
 - a. Explore the <u>Java API documentation for java.lang.Integer</u> and observe its modifiers and super types.

Explanation: Integer is a class in java.lang(which is a root of all classes and also "cosmic superclass") which is most important classes and pre-imported in the java. The int datatype is not a class in it rather defined in wrapper class(java.lang.Short) and has a final keyword which signifies that it cannot have a child class.

b. Write a program to test how many bytes are used to represent an int value using the BYTES field. (Hint: Use Integer.BYTES).

```
package in.Cdac.Integer;
public class Q4 B {
```

```
public static void main(String[] args) {
    int b = Integer.BYTES;
    System.out.println(b);
}
```

```
<terminated> Q4_B [Java Application] C:\Program Files\Java\jdk-18.0.2\b
```

c. Write a program to find the minimum and maximum values of intusing the MIN_VALUE and MAX_VALUE fields. (Hint: Use Integer.MIN VALUE and Integer.MAX VALUE).

```
package in.Cdac.Integer;

public class Q4_C {
    public static void main(String[] args) {
        int b = Integer.BYTES;
        System.out.println(b);
        System.out.println(Integer.MIN_VALUE);
        System.out.println(Integer.MAX_VALUE);
    }
}
```

```
<terminated> Q4_C [Java Application] C:\Program Files\Java\jdk-18.0.2\bi
4
-2147483648
2147483647
```

d. Declare a method-local variable number of type int with some value and convert it to a String using the toString method. (Hint: Use Integer.toString(int)).

```
package in.Cdac.Integer;

public class Q4_D {
    public static void main(String[] args) {
        int num = 25523523;
}
```

```
String str = Integer.toString(num);
System.out.println(str);
}
```

<terminated> Q4_D [Java Application] C:\Program Files\Java\jdk-18.0.2\bi 25523523

e. Declare a method-local variable strNumber of type String with some value and convert it to an int value using the parseInt method. (Hint: Use Integer.parseInt(String)).

```
package in.Cdac.Integer;

public class Q4_E {
    public static void main(String[] args) {
        String strNumber = "25523523";
        int b = Integer.parseInt(strNumber);
        System.out.println(b);
    }
}
```

<terminated> Q4_E [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\java\ 25523523

f. Declare a method-local variable strNumber of type String with the value "Ab12Cd3" and attempt to convert it to an int value. (Hint: parseInt method will throw a NumberFormatException).

```
package in.Cdac.Integer;

public class Q4_F {
     public static void main(String[] args) {
         String num = "Ab12Cd3";
         int str = Integer.parseInt(num);
         System.out.println(str);
     }
}
```

```
sterminated> Q4_F [Java Application] C\Program Files\Java\jdk-18.0.2\bin\javaw.exe (09-Sep-2024, 11:25:57 pm - 11:25:57 pm ) [pid: 12356]
Exception in thread "main" java.lang.NumberFormatException: For input string: "Ab12Cd3"
    at java.base/java.lang.NumberFormatException.forInputString(NumberFormatException.java:67)
    at java.base/java.lang.Integer.parseInt(Integer.java:668)
    at java.base/java.lang.Integer.parseInt(Integer.java:784)
    at in.Cdac.Integer.Q4_F.main(Q4 F.java:6)
```

g. Declare a method-local variable number of type int with some value and convert it to the corresponding wrapper class using Integer.valueOf().(Hint: Use Integer.valueOf(int)).

```
package in.Cdac.Integer;

public class Q4_G {
    public static void main(String[] args) {
        int num = 25523523;
        int b = Integer.valueOf(num);
        System.out.println(b);
    }
}
```

<terminated> Q4_G [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\java\ 25523523

h. Declare a method-local variable strNumber of type String with some integer value and convert it to the corresponding wrapper class using Integer.valueOf(). (Hint: Use Integer.valueOf(String)).

```
package in.Cdac.Integer;

public class Q4_H {
    public static void main(String[] args) {
        String strNumber = "25523523";
        int str = Integer.parseInt(strNumber);
        System.out.println(str);
    }
}
```

<terminated> Q4_H [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.ex
25523523

i. Declare two integer variables with values 10 and 20, and add them using a method from the Integer class. (Hint: Use Integer.sum(int, int)).

```
package in.Cdac.Integer;

public class Q4_I {
    public static void main(String[] args) {
        int a=10;
        int b=20;
        System.out.println(Integer.sum(a,b));
    }
}
```

<terminated> Q4_I [Java Application] C:\Program Files\Java\jdk-18.0. 30

j. Declare two integer variables with values 10 and 20, and find the minimum and maximum values using the Integer class. (Hint: Use Integer.min(int, int) and Integer.max(int, int)).

```
package in.Cdac.Integer;

public class Q4_J {
      public static void main(String[] args) {
          int a=10;
          int b=20;
          System.out.println(Integer.max(a,b));
      }
}
```

<terminated> Q4_J [Java Application] C:\Program Files\Java\jdk-18.0.2\bin 20

k. Declare an integer variable with the value 7. Convert it to binary, octal, and hexadecimal strings using methods from the Integer class. (Hint: Use Integer.toBinaryString(int), Integer.toOctalString(int), and Integer.toHexString(int)).

```
package in.Cdac.Integer;

public class Q4_K {
    public static void main(String[] args) {
        int a=7;
        System.out.println(Integer.toBinaryString(a));
        System.out.println(Integer.toOctalString(a));
        System.out.println(Integer.toHexString(a));
        System.out.println(Integer.toHexString(a));
    }
}
```

<terminated> Q4_K [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\j

```
111
7
7
```

I. Experiment with converting an int value into other primitive types or vice versa and observe the results.

5. Working with java.lang.Long

a. Explore the <u>Java API documentation for java.lang.Long</u> and observe its modifiers and super types.

Explanation: Long is a class in java.lang(which is a root of all classes and also "cosmic superclass") which is most important classes and pre-imported in the java. The long datatype is not a class in it rather defined in wrapper class(java.lang.Short) and has a final keyword which signifies that it cannot have a child class.

b. Write a program to test how many bytes are used to represent a long value using the BYTES field. (Hint: Use Long. BYTES).

```
package in.Cdac.Long;

public class Q5_B {
      public static void main(String[] args) {
           long b = Long.BYTES;
           System.out.println(b);
      }
}
```

<terminated> Q5_B [Java Application] C:\Program Files\Java\jdk-18.0.2\b

c. Write a program to find the minimum and maximum values of long using the MIN_VALUE and MAX_VALUE fields. (Hint: Use Long.MIN VALUE and Long.MAX VALUE).

```
package in.Cdac.Long;

public class Q5_C {
     public static void main(String[] args) {
          System.out.println(Long.MIN_VALUE);
          System.out.println(Long.MIN_VALUE);
    }
}
```

<terminated> Q5_C [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw

- -9223372036854775808
- -9223372036854775808

d. Declare a method-local variable number of type long with some value and convert it to a String using the toString method. (Hint: Use Long. toString (long)).

```
package in.Cdac.Long;
public class Q5_D {
    public static void main(String[] args) {
        long num = 12412;
        String str = Long.toString(num);
        System.out.println(str);
}
```

e. Declare a method-local variable strNumber of type String with some value and convert it to a long value using the parseLong method. (Hint: Use Long.parseLong (String)).

```
package in.Cdac.Long;

public class Q5_E {
    public static void main(String[] args) {
        String strNumber = "23532";
        long b = Long.parseLong(strNumber);
        System.out.println(b);
    }
}
```

<terminated> Q5_E [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw
23532

f. Declare a method-local variable strNumber of type String with the value "Ab12Cd3" and attempt to convert it to a long value. (Hint: parseLong method will throw a NumberFormatException).

g. Declare a method-local variable number of type long with some value and convert it to the corresponding wrapper class using Long.valueOf().(Hint: Use Long.valueOf(long)).

```
package in.Cdac.Long;

public class Q5_G {
    public static void main(String[] args) {
```

```
long b = 558;
long by = Long.valueOf(b);
System.out.println(by);
}
```

<terminated> Q5_G [Java Application] C:\Program Files\Java\jdk-18.0.2\bi 558

h. Declare a method-local variable strNumber of type String with some long value and convert it to the corresponding wrapper class using Long.valueOf().(Hint: Use Long.valueOf(String)).

```
package in.Cdac.Long;

public class Q5_H {
    public static void main(String[] args) {
        String strNumber = "1245";
        long b = Long.valueOf(strNumber);
        System.out.println(b);
    }
}
```

<terminated > Q5_H [Java Application] C:\Program Files\Java\jdk-18.0.2\b 1245

i. Declare two long variables with values 1123 and 9845, and add them using a method from the Long class. (Hint: Use Long.sum(long, long)).

```
package in.Cdac.Long;

public class Q5_I {
     public static void main(String[] args) {
         long a = 1123;
         long b = 9845;
         System.out.println(Long.sum(a, b));
    }
}
```

```
<terminated > Q5_I [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.exe

10968
```

j. Declare two long variables with values 1122 and 5566, and find the minimum and maximum values using the Long class. (Hint: Use Long.min(long, long) and Long.max(long, long)).

```
package in.Cdac.Long;

public class Q5_J {
    public static void main(String[] args) {
        int a=1122;
        int b=5566;
        System.out.println(Long.max(a,b));
    }
}

<terminated> Q5 J [Java Application] C:\Program Files\Java\jdk-18.0.2
```

<terminated> Q5_3 [Java Application] C:\Program Files\Java\Jdk-18.0.2 5566

k. Declare a long variable with the value 7. Convert it to binary, octal, and hexadecimal strings using methods from the Long class. (Hint: Use

```
Long.toBinaryString(long),
Long.toOctalString(long),
and
Long.toHexString(long)).
```

```
package in.Cdac.Long;

public class Q5_K {
      public static void main(String[] args) {
            long a=7;
            System.out.println(Long.toBinaryString(a));
            System.out.println(Long.toOctalString(a));
            System.out.println(Long.toHexString(a));
            System.out.println(Long.toHexString(a));
        }
}
```

```
<terminated > Q5_K [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\jara 111
7
```

I. Experiment with converting a long value into other primitive types or vice versa and observe the results.

6. Working with java.lang.Float

a. Explore the <u>Java API documentation for java.lang.Float</u> and observe its modifiers and super types.

Explanation: Float is a class in java.lang(which is a root of all classes and also "cosmic superclass") which is most important classes and pre-imported in the java. The float datatype is not a class in it rather defined in wrapper class(java.lang.Float) and has a final keyword which signifies that it cannot have a child class.

float datatype----→java.lang.Float (wrapper class)----→java.lang(superclass)

b. Write a program to test how many bytes are used to represent a float value using the BYTES field. (Hint: Use Float.BYTES).

```
package in.Cdac.Float;

public class Q6_B {
      public static void main(String[] args) {
            float b = Float.BYTES;
            System.out.println(b);
      }
}
```

<terminated> Q6_B [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\java 4.0

c. Write a program to find the minimum and maximum values of float using the MIN_VALUE and MAX_VALUE fields. (Hint: Use Float.MIN VALUE and Float.MAX VALUE).

```
package in.Cdac.Float;

public class Q6_C {
    public static void main(String[] args) {
        float b = Float.BYTES;
        System.out.println(b);
        System.out.println(Float.MIN_VALUE);
        System.out.println(Float.MAX_VALUE);
    }
}
```

<terminated > Q6_C [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw

- 4.0
- 1.4E-45
- 3.4028235E38

d. Declare a method-local variable number of type float with some value and convert it to a String using the toString method. (Hint: Use Float.toString(float)).

```
package in.Cdac.Float;
public class Q6_D {
    public static void main(String[] args) {
        float num = 12412;
        String str = Float.toString(num);
        System.out.println(str);
    }
}
```

e. Declare a method-local variable strNumber of type String with some value and convert it to a float value using the parseFloat method. (Hint: Use Float.parseFloat (String)).

```
package in.Cdac.Float;

public class Q6_E {
    public static void main(String[] args) {
        String strNumber = "23532";
        float b = Float.parseFloat(strNumber);
        System.out.println(b);
    }
}
```

```
<terminated > Q6_E [Java Application] C:\Program Files\Java\jdk-23532.0
```

f. Declare a method-local variable strNumber of type String with the value "Ab12Cd3" and attempt to convert it to a float value. (Hint: parseFloat method will throw a NumberFormatException).

```
package in.Cdac.Float;

public class Q6_F {
     public static void main(String[] args) {
          String strNumber = "Ab12Cd3";
          float b = Float.parseFloat(strNumber);
          System.out.println(b);
     }
}
```

```
cterminated> Q6 F [Java Application] C\Program Files\Java\jdk-18.0.2\bin\javaw.exe (09-Sep-2024, 11:33:39 pm - 11:33:39 pm) [pid: 3476]
Exception in thread "main" java.lang.NumberFormatException: For input string: "Ab12Cd3"
    at java.base/jdk.internal.math.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:20
    at java.base/jdk.internal.math.FloatingDecimal.parseFloat(FloatingDecimal.java:122)
    at java.base/java.lang.Float.parseFloat(Float.java:476)
    at in.Cdac.Float.Q6_F.main(Q6 F.java:6)
```

g. Declare a method-local variable number of type float with some value and convert it to the corresponding wrapper class using Float.valueOf().(Hint: Use Float.valueOf(float)).

```
package in.Cdac.Float;

public class Q6_G {
    public static void main(String[] args) {
        float b = 558.2f;
        float by = Float.valueOf(b);
        System.out.println(by);
}
```

}

```
<terminated > Q6_G [Java Application] C:\Program Files\Java\jdk-18.0.2\bir 558.2

JavaSE-1.8]
```

h. Declare a method-local variable strNumber of type String with some float value and convert it to the corresponding wrapper class using Float.valueOf().(Hint: Use Float.valueOf(String)).

```
package in.Cdac.Float;

public class Q6_H {
    public static void main(String[] args) {
        String strNumber = "1245";
        float b = Float.valueOf(strNumber);
        System.out.println(b);
    }
}
```

* \(\) \

i. Declare two float variables with values 112.3 and 984.5, and add them using a method from the Float class. (Hint: Use Float.sum(float, float)).

```
package in.Cdac.Float;

public class Q6_I {
    public static void main(String[] args) {
        float a = 112.3f;
        float b = 984.5f;
        System.out.println(Float.sum(a, b));
    }
}
```

<terminated> Q6_I [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.exe 1096.8

j. Declare two float variables with values 112.2 and 556.6, and find the minimum and maximum values using the Float class. (Hint: Use Float.min(float, float) and Float.max(float, float)).

```
package in.Cdac.Float;

public class Q6_J {
    public static void main(String[] args) {
        float a=112.2f;
        float b=556.6f;
        System.out.println(Float.min(a,b));
        System.out.println(Float.max(a,b));
    }
}
```

<terminated> Q6_J [Java Application] C:\Program Files\Java\jdk-1

112.2

556.6

k. Declare a float variable with the value -25.0f. Find the square root of this value. (Hint: Use Math.sqrt() method).

```
package in.Cdac.Float;

public class Q6_K {
    public static void main(String[] args) {
        float a= -25.0f;
        System.out.println(Math.sqrt(a));
    }
}
```

<terminated> Q6_K [Java Application] C:\Program Files\Java\jdk-18.0.2\b NaN

1. Declare two float variables with the same value, 0.0£, and divide them. (Hint: Observe the result and any special floating-point behavior).

```
package in.Cdac.Float;

public class Q6_L {
    public static void main(String[] args) {
```

```
float a = 0.0f;
float b =0.0f;
System.out.println(a/b);
}
```

<terminated> Q6_L [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\jav NaN

m. Experiment with converting a float value into other primitive types or vice versa and observe the results.

7. Working with java.lang.Double

a. Explore the <u>Java API documentation for java.lang.Double</u> and observe its modifiers and super types.

Explanation: double is a class in java.lang(which is a root of all classes and also "cosmic superclass") which is most important classes and pre-imported in the java. The double datatype is not a class in it rather defined in wrapper class(java.lang.Double) and has a final keyword which signifies that it cannot have a child class.

double datatype----→java.lang.Double (wrapper class)----→java.lang(superclass)

b. Write a program to test how many bytes are used to represent a double value using the BYTES field. (Hint: Use Double.BYTES).

```
package in.Cdac.Double;

public class Q7_B {
      public static void main(String[] args) {
            double b = Double.BYTES;
            System.out.println(b);
      }
}
```

<terminated > Q7_B [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\j
8.0

c. Write a program to find the minimum and maximum values of double using the MIN_VALUE and MAX_VALUE fields. (Hint: Use Double.MIN VALUE and Double.MAX VALUE).

d. Declare a method-local variable number of type double with some value and convert it to a String using the toString method. (Hint: Use Double.toString (double)).

```
package in.Cdac.Double;
public class Q7_D {
    public static void main(String[] args) {
        double num = 124.12;
        String str = Double.toString(num);
        System.out.println(str);
    }
}
```

1.7976931348623157E308

e. Declare a method-local variable strNumber of type String with some value and convert it to a double value using the parseDouble method. (Hint: Use Double.parseDouble (String)).

```
package in.Cdac.Double;

public class Q7_E {
    public static void main(String[] args) {
        String strNumber = "23.532";
        double b = Double.parseDouble(strNumber);
        System.out.println(b);
    }
}
```

f. Declare a method-local variable strNumber of type String with the value "Ab12Cd3" and attempt to convert it to a double value. (Hint: parseDouble method will throw a NumberFormatException).

g. Declare a method-local variable number of type double with some value and convert it to the corresponding wrapper class using Double.valueOf().(Hint: Use Double.valueOf(double)).

```
package in.Cdac.Double;

public class Q7_G {
    public static void main(String[] args) {
        double b = 558.2;
        double by = Double.valueOf(b);
        System.out.println(by);
    }
}
```

<terminated> Q7_G [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.e 558.2

h. Declare a method-local variable strNumber of type String with some double value and convert it to the corresponding wrapper class

```
package in.Cdac.Double;

public class Q7_H {
     public static void main(String[] args) {
          String strNumber = "12.45";
          double b = Double.valueOf(strNumber);
          System.out.println(b);
     }
}
```

<terminated> Q7_H [Java Application] C:\Program Files\Java\jdk-18.0.2\bir 12.45

i. Declare two double variables with values 112.3 and 984.5, and add them using a method from the Double class. (Hint: Use Double.sum(double, double)).

```
package in.Cdac.Double;

public class Q7_I {
    public static void main(String[] args) {
        double a = 112.3;
        double b = 984.5;
        System.out.println(Double.sum(a, b));
    }
}
```

<terminated> Q7_I [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.e> 1096.8

j. Declare two double variables with values 112.2 and 556.6, and find the minimum and maximum values using the Double class. (Hint: Use Double.min(double, double) and Double.max(double, double)).

```
package in.Cdac.Double;

public class Q7_J {
    public static void main(String[] args) {
```

k. Declare a double variable with the value -25.0. Find the square root of this value. (Hint: Use Math.sqrt() method).

```
package in.Cdac.Double;

public class Q7_K {
      public static void main(String[] args) {
            double a= -25.0;
            System.out.println(Math.sqrt(a));
      }
}
```

double a=112.2;

<terminated> Q7_K [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\javaw.ex

1. Declare two double variables with the same value, 0.0, and divide them. (Hint: Observe the result and any special floating-point behavior).

```
package in.Cdac.Double;

public class Q7_L {
    public static void main(String[] args) {
        double a = 0.0;
        double b =0.0;
        System.out.println(a/b);
    }
}
```

<terminated> Q7_L [Java Application] C:\Program Files\Java\jdk-18.0.2\bin\java
NaN

m. Experiment with converting a double value into other primitive types or vice versa and observe the results.

8. Conversion between Primitive Types and Strings

Initialize a variable of each primitive type with a user-defined value and convert it into String:

- First, use the toString method of the corresponding wrapper class. (e.g., Integer. toString()).
- o Then, use the valueOf method of the String class. (e.g., String.valueOf()).

```
class PTToStrings{
     public static void main(String args[])
           byte d = 127;
           String e = Byte.toString(d);
           System.out.println(e);
           String f= String.valueOf(e);
           System.out.println(f);
           short a = 32767;
           String b = Short.toString(a);
           System.out.println(b);
           String c = String.valueOf(b);
           System.out.println(c);
           int g = 1421015127;
           String h = Integer.toString(g);
           System.out.println(h);
           String i = String.valueOf(h);
           System.out.println(i);
           long j = 14210151279882388L;
           String k = Long.toString(j);
           System.out.println(k);
           String 1 = String.valueOf(k);
           System.out.println(1);
           float m = 1421015127f;
           String n = Float.toString(m);
           System.out.println(n);
           String o = String.valueOf(n);
           System.out.println(o);
           double p = 14210151279828388d;
           String q = Double.toString(p);
           System.out.println(q);
           String r = String.valueOf(q);
           System.out.println(r);
```

```
}
```

```
D:\CDAC\OOPJ\Day 2\Day 2>javac PTToStrings.java

D:\CDAC\OOPJ\Day 2\Day 2>java PTToStrings

127

127

32767

1421015127

1421015127

14210151279882388

14210151279882388

1.42101517E9

1.42101517E9

1.4210151279828388E16

1.4210151279828388E16

D:\CDAC\OOPJ\Day 2\Day 2>
```

9. Default Values of Primitive Types

Declare variables of each primitive type as fields of a class and check their default values. (Note: Default values depend on whether the variables are instance variables or static variables).

```
class Default{
           private boolean b;
           private char c;
           private byte by;
           private short s;
           private int i;
           private float f;
           private long 1;
           private double d;
           public void types(){
                 System.out.println("Default value of boolean :" + b);
                 System.out.println("Default value of char :" + c);
                 System.out.println("Default value of byte :" + by);
                 System.out.println("Default value of short :" + s);
                 System.out.println("Default value of int :" + i);
                 System.out.println("Default value of float :" + f);
                 System.out.println("Default value of long :" + 1);
                 System.out.println("Default value of double :" + d);
public class Values{
     public static void main(String args[]){
           Default d = new Default();
```

```
d.types();
}
```

```
D:\CDAC\OOPJ\Day 2\Day 2>javac Values.java

D:\CDAC\OOPJ\Day 2\Day 2>java Values

Default value of boolean :false

Default value of char :

Default value of byte :0

Default value of short :0

Default value of int :0

Default value of float :0.0

Default value of long :0

Default value of double :0.0
```

10. Arithmetic Operations with Command Line Input

Write a program that accepts two integers and an arithmetic operator (+, -, *, /) from the command line. Perform the specified arithmetic operation based on the operator provided. (Hint: Use switch-case for operations).

```
public class Calculator New {
     public static void main(String args[]){
          int num1 = Integer.parseInt(args[0]);
           System.out.println(num1);
           int num2 = Integer.parseInt(args[2]);
           System.out.println(num2);
           String operator = args[1];
           switch(operator){
                case "+":
                             System.out.println("Sum of " + num1 + " and
" + num2 + " is " + (num1+num2));
                             break;
                 case "-":
                             System.out.println("Difference of " + num1
+ " and " + num2 + " is " + (num1-num2));
                            break;
```

```
C:\Users\Priyanka\Desktop>javac Calculator_New.java
C:\Users\Priyanka\Desktop>java Calculator_New 12 + 15
12
15
Sum of 12 and 15 is 27
C:\Users\Priyanka\Desktop>java Calculator_New 12 - 15
12
15
Difference of 12 and 15 is -3
```