Algorithm 4 Optimized SAM Refinement

```
\boxed{ \textbf{Input: } \mathcal{I} \in \mathbb{R}^{H \times W \times 3}, \mathcal{S} \in \mathbb{Z}^{H \times W}, \mathcal{L} \in \mathbb{R}^{C \times H \times W}, C \in \mathbb{Z}^+, \mathcal{P} }
Output: S' \in \mathbb{Z}^{H \times W}, Q \in \mathbb{R}^N, \mathcal{L}' \in \mathbb{R}^{C \times H \times W}, \mathcal{B}' \in \mathbb{R}^{N \times 4}
   0: d \leftarrow \mathcal{S}.device, r \leftarrow 2, (h_d, w_d) \leftarrow (\lfloor H/r \rfloor, \lfloor W/r \rfloor)
    0: with no_grad() and mixed_precision(d):
    0: S_d \leftarrow \mathcal{F}_{\text{down}}(S, h_d, w_d), \mathcal{L}_d \leftarrow \mathcal{F}_{\text{down}}(\mathcal{L}, h_d, w_d)
    0: if \tau_c > 0 then
                 S_d[\max_c(\mathcal{L}_d) < \tau_c] \leftarrow C, \mathcal{M} \leftarrow \Phi(S_d, C+1) {One-hot encoding}
    0:
    0: else
                 \mathcal{M} \leftarrow \Phi(\mathcal{S}_d, C)
    0: end if
    0: \mathcal{M}_{\text{cpu}} \leftarrow \Pi_{\text{mem}}(\mathcal{M}, d), (\mathcal{R}, \mathcal{B}, \mathcal{Q}_b, \mathcal{P}) \leftarrow \text{SplitRegions}(\mathcal{M}_{\text{cpu}}, \mathcal{L}_d, \tau_c)
    0: if \forall i \in [0, C) : |\mathcal{B}_i| = 0 then return (\mathcal{S}, \emptyset, \mathcal{L}, \emptyset)
    0: end if
                b_{\text{size}} \leftarrow \min(32, \max(1, \lfloor M_{\text{free}}/(3 \cdot 10^9) \rfloor)), \mathcal{P}.\text{PrecomputeTransforms}(h_d, w_d, H, W)
                 \mathbb{I} \leftarrow \emptyset, \mathcal{B}_c, \mathcal{M}_v, \mathcal{Q}_v, \mathcal{L}_v, \mathcal{R}_f \leftarrow \emptyset, \emptyset, \emptyset, \emptyset, \emptyset  {Collections init}
    0:
                 for i \in [0, C) do
    0:
                      if |\mathcal{R}_i| > 0 then
    0:
                             (h_n, w_n) \leftarrow \mathcal{P}.\text{GetPreprocessShape}(H, W, 256), \mathcal{L}_r^i \leftarrow \mathcal{F}_{\text{resize}}(\mathcal{L}_d[i], h_n, w_n)
    0:
                             \mathcal{L}_r^i \leftarrow \mathcal{F}_{pad}(\mathcal{L}_r^i, 256 - w_n, 256 - h_n) \cdot \tau_m \cdot \mathbb{I}_{\{\mathcal{L}_r^i > \tau_c\}}
    0:
                             \mathcal{B}_t^i \leftarrow \mathcal{P}.\mathsf{TransformBoxes}(\mathcal{B}_i, h_d, w_d), \mathcal{P}_t^i \leftarrow \mathcal{P}.\mathsf{TransformPoints}(\mathcal{P}_i, h_d, w_d)
    0:
                             \mathbb{I} \leftarrow \mathbb{I} \cup \{(i, \mathcal{B}_t^i, \mathcal{P}_t^i, \mathcal{L}_r^i, \mathcal{R}_i, \mathcal{B}_i, \mathcal{P}_i)\}
    0:
                      end if
    0:
                 end for
    0:
    0:
                 for j \leftarrow 0 to |\mathbb{I}| step b_{\text{size}} do
    0:
                      \mathbb{I}_i \leftarrow \mathbb{I}[j:j+b_{\text{size}}]
    0:
                      for each (i, \mathcal{B}_t^i, \mathcal{P}_t^i, \mathcal{L}_r^i, \mathcal{R}_i, \mathcal{B}_i, \mathcal{P}_i) \in \mathbb{I}_j do
    0:
                             (\mathcal{M}_i, \mathcal{Q}_i, \mathcal{L}_i) \leftarrow \mathcal{P}.\text{Predict}(\mathcal{P}_t^i, 1, \mathcal{B}_t^i, \mathcal{L}_r^i), \mathcal{V}_i \leftarrow \{\mathcal{Q}_i > \tau_{iou}\}
    0:
                             if |\mathcal{V}_i| < |\mathcal{R}_i| then \mathcal{R}_f \leftarrow \mathcal{R}_f \cup \{\mathcal{R}_i[\neg \mathcal{V}_i]\}
    0:
    0:
                             \textbf{if} \ |\mathcal{V}_i| > 0 \ \textbf{then} \ \mathcal{M}_v \leftarrow \mathcal{M}_v \cup \{\mathcal{M}_i[\mathcal{V}_i]\}, \ \mathcal{Q}_v \leftarrow \mathcal{Q}_v \cup \{\mathcal{Q}_i[\mathcal{V}_i]\}, \ \mathcal{L}_v \leftarrow \mathcal{L}_v \cup \{\mathcal{L}_i[\mathcal{V}_i]\}, \ \mathcal{B}_c \leftarrow \mathcal{B}_c \cup \{\mathcal{B}_i[\mathcal{V}_i]\}
    0:
    0:
                      end for
   0:
                 end for
    0:
                      if |\mathcal{B}_c| > 0 then
    0:
                             with mixed_precision(d):
    0:
                             \mathcal{M}_{all} \leftarrow \text{Concat}(\mathcal{M}_v), \mathcal{Q}_{all} \leftarrow \text{Concat}(\mathcal{Q}_v), \mathcal{L}_{all} \leftarrow \mathcal{P}.\text{PostprocessMasks}(\text{Concat}(\mathcal{L}_v), H, W)
    0:
                             \mathcal{B}_{all} \leftarrow \text{Concat}(\mathcal{B}_c) \cdot r, (\mathcal{S}', \mathcal{L}') \leftarrow \text{MapRefinement}(\mathcal{M}_{all}, \sigma(\mathcal{L}_{all}), \mathcal{B}, \mathcal{L})
    0:
                             \mathcal{S}' \leftarrow \mathcal{S}' \cdot \mathbb{I}_{\{\sum_{c} \mathcal{L}'_c > 0\}} + \mathcal{S} \cdot \mathbb{I}_{\{\sum_{c} \mathcal{L}'_c = 0\}}  if |\mathcal{R}_f| > 0 then \mathcal{R}_f \leftarrow \text{Resize}(\text{Concat}(\mathcal{R}_f), H, W), (\mathcal{S}', \mathcal{L}') \leftarrow \text{MapFailedRegions}(\mathcal{S}', \mathcal{L}', \mathcal{R}_f, \mathcal{L}, \mathcal{S}) 
    0:
    0:
                             end if
    0:
    0:
                             return (S', Q_{all}, \mathcal{L}', \mathcal{B}_{all})
    0:
                      else
                             return (S, \emptyset, \mathcal{L}, \emptyset)
    0:
                      end if
    0:
```