Parameter Constraints for Λ CDM Model

Amogh Srivastav

July 2024

1 Introduction

I have reproduced the plots presented in the original paper by Farooq et al. for the $\Lambda \mathrm{CDM}$ model. The contour plots for this model were generated using Matplotlib's standard library functions. In the subsequent sections, I provide a detailed description of the method, compare my results with those of the original paper, and display both my plots and those from the original publication.

2 Method: Using Matplotlib's standard library function

Initially, I developed the code for the χ^2 function and subsequently minimized it using scipy.minimize. This process yields the minimized value of the function χ^2_{\min} and the optimal values of the free parameters Ω_{mo} and Ω_{Λ} , which minimize χ^2 . After determining the best fit parameters, I employed Matplotlib's standard library function matplotlib.pyplot.subplots.contour to plot the 1σ , 2σ , and 3σ contours. The plots were based on the values of Ω_{mo} and Ω_{Λ} corresponding to $\chi^2_{\min} + 2.3$, $\chi^2_{\min} + 6.17$, and $\chi^2_{\min} + 11.8$. These best fit parameters were further used to calculate the z_{da} value, representing the deceleration-acceleration transition red-shift.

3 Result Comparison and Plots

In the table presented below, a comparison is made between the results of my work and those reported in the original paper. The computations were carried out for two values of H_0 , namely $H_0 \pm \sigma_{H_0} = 68 \pm 2.8 \,\mathrm{km \, s^{-1}}$ and $H_0 \pm \sigma_{H_0} = 73.8 \pm 2.4 \,\mathrm{km \, s^{-1}}$. The values enclosed in square brackets ([]) correspond to $H_0 \pm \sigma_{H_0} = 73.8 \pm 2.4 \,\mathrm{km \, s^{-1}}$.

Figure 1: Original Plot in Farooq et al

Attribute	Farooq et al	My Calculations
Plots	Figure 1	Figure 2
Best Fit Point	(0.29, 0.72)	(0.29, 0.72)
$(\Omega_m,\Omega_\Lambda)$	[0.32, 0.91]	[0.32, 0.91]
χ^2_{min}	18.24	18.07
	[19.30]	[19.1]
2σ intervals	$[0.15 \le \Omega_{mo} \le 0.42]$	$0.15 \le \Omega_{mo} \le 0.43$
	$[0.20 \le \Omega_{mo} \le 0.44]$	$0.19 \le \Omega_{mo} \le 0.44$
	$[0.35 \le \Omega_{\Lambda} \le 1.02]$	$[0.33 \le \Omega_{\Lambda} \le 1.01]$
	$[0.62 \le \Omega_{\Lambda} \le 1.14]$	$[0.60 \le \Omega_{\Lambda} \le 1.15]$

Table 1: Comparison of Results

Figure 1: My Plot using Matplotlib's standard library function