Graphes Pondérés

I - Mathématiquement

III - Recherche de chemin de poids minimal dans un graphe pondéré

1. Algorithme de Dijkstra

Parenthèse : structure de "sac"

On retrouve ces 4 fonctions:

- create
- add
- take
- is_empty

```
python
1 def whatever_first_search(G, s):
        n = len(G)
3
        visited = tous à faux
4
        bag = create
        add s bag
6
7
        while not is_empty(bag):
8
            u = take bag
9
            if not visited[u]:
10
                visited[u] = True
11
                for each v neighbor:
12
                    add v bag
```

Description de l'algorithme

```
def dijsktra(G, s):
                                                                                python
2
        n = len(G)
3
        pq = initialise une file de prio avec sommets à prio = +infini
4
        update pq s 0
        Tant que pq non vide:
6
7
            u = extract_min pq
8
            mise à jour de tab_distance[u]
9
            Pour chaque voisin v:
                min_d = prio(u) + pond(u,v)
10
11
                if v in pq && min_d < prio(v):</pre>
12
                    update pq v min_d
13
14
        renvoyer le tableau des distances
```

Correction de l'algorithme

Lemme : Soit s et t deux sommets d'un graphe orienté et pondéré G. Soit c un chemin $s=u_0,u_1,...,u_k=t$ de poids minimal de s à t. Alors quelque soit i, le chemin $s=u_0,...,u_i$ est de poids minimal de s à u_i .

Preuve : S'il y avait un meilleur chemin de s à u_i , alors on obtiendrait un meilleur chemin de s à t.

Invariant

- Si prio(u) différent de $+\infty$ alors $\exists c : \to u$ de poids prio(u)
- Si $x \notin pq$ alors pour tout voisin w de x on a prio(u) \leq prio(x) + pond(x, w)
- Lorsque u sort de la file, prio(u) = $\delta(s, u)$

Préservation de l'invariant

On suppose u différent de s

On considère c un chemin optimal de s à u.

- Sur ce chemin, on note w le premier du chemin qui est dans la file (existe car u est dans la file)
- Sur ce chemin on note x le prédécesseur de w (existe car s ∉ pq donc s différent de w)

 $\delta(s, w) \leq \text{prio } (w) \text{ par invariant}$

 $x \notin pq$ puisque w est le premier du chemin à être dans pq.

Donc par le 2ème invariant : prio $(w) \leq \text{prio } (x) + \text{pond } (x, w)$ où prio $(x) = \delta(s, w)$.

Par le lemme, le préfixe du chemin c de s à w est optimal, donc de poids $\delta(s, w)$

De même pour x, donc $\delta(s, w) = \delta(s, x) + \text{pond } (w, x)$

On met tout ensemble:

$$\delta(s, w) \leq \text{prio } (w) \leq \delta(s, w) + \text{pond } (w, x) \text{ et prio } (w) = \delta(s, w)$$

Et comme $u = \text{extract}_{\min}(pq)$.

On a prio $u \leq \operatorname{prio}(w) = \delta(s,w) = \delta(s,u) - \operatorname{pond}\ (c_2)$

Donc $\delta(s, u) \leq \delta(s, u) - \text{pond } (c_2)$

Donc pond $(c_2) = 0$

L'invariant est vérifié.

Complexité

Avant la boucle : O(n) pour initialiser la file de priorité

Boucle while: exécutée exactement une fois par sommet

Extraction du min : O(log(n))

Pour chaque voisin : O(log(n)) à cause de la mise à jour de priorité

Finalement:

$$\begin{split} O(n) + \sum_{u \in V} O\Bigg(\log(n) + \sum_{v \in \text{ voisins}} O(\log(n))\Bigg) &= O(\log(n)) + \sum_{u \in V} O(\log(n))d_+(u) \\ &= O(n\log(n)) + O(m\log(n)) \\ &= O(\log(n)(n+m)) \end{split}$$

Conclusion

• L'algorithme donne pour un sommet s : les poids minimaux et plus courts chemins de s à tous les $t \in V$.

2. Algorithme de Floyd Warshall

Introduction

- On travaille avec la matrice d'adjacence
- On va déterminer tous les plus courts chemins de s à t $\forall (s,t)$.

Première idée - Adaptation du produit matriciel

Essayons d'adapter la méthode des puissances matricielles. On note A la matrice d'adjacence du graphe et suppose :

$$A_{ij} = +\infty \text{ si } (i, j) \notin E$$

 $A_{ij} = \text{pond}(i, j)$
 $A_{jj} = 0$

On aimerait que A_{ij}^k donne le poids minimal d'un chemin de longueur au plus k de i à j.

$$A_{ij}^k = \min_{l=0}^{n-1} \left(A_{il}^{k-1} + A_{lj} \right)$$

Complexité

En supposant la multiplication matricielle modifiée en $O(n^3)$ le calcul de A^n est en $O(n^3log(n))$.

Description de l'algorithme

De manière similaire, on fractionne le problème "aller de i à j en un chemin de poids minimal" en des sous-problèmes "aller de i à j en utilisant uniquement les sommets [0, k-1] et de poids minimal".

On définit pm_{ij}^k le poids minimal d'un chemin de i à j dont les sommets intermédiaires sont dans [0, k-1].

$$\begin{split} pm^{0}_{ij} &= A_{ij} \\ pm^{k}_{ij} &= min\Big(pm^{(k-1)}_{ij}, pm^{k-1}_{i,k-1} + pm^{k-1}_{k-1,j}\Big) \end{split}$$

Complexité : $O(n^3)$

Pseudo-code: On applique la recette du cours de programmation dynamique

- Création du tableau
 - ▶ C'est un int array array
 - Convention : $T.(i).(j).(k) = pm_{ij}^k$
- Cas de base : facile

```
1  for i
2  for j
```

```
3 T.(i).(j).(0) <- ...
```

• Remplissage : ne pas se tromper dans l'ordre des boucles

```
1  for k = 1 to ...
2  for i = 0 to ...
3  for j = 0 to ...
4  T.(i).(j).(k) <- ...</pre>
```

Gain en espace : T. (i) . (j) : table 2D.

 $\text{Invariant}: T.(i).(j) = pm_{ij}^{k-1}$