Assignment 13

M Pavan Manesh - EE20MTECH14017

Download the latex-tikz codes from

https://github.com/pavanmanesh/EE5609/tree/master/Assignment13

1 Problem

Let $\mathbf{M} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \text{ and eigen values of } \mathbf{A} \in \mathbb{Q} \right\}$

- 1) **M** is empty
 2) $\mathbf{M} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \right\}$ 3) If $\mathbf{A} \in \mathbf{M}$ then the eigen values of $\mathbf{A} \in \mathbb{Z}$ 4) If $\mathbf{A}, \mathbf{B} \in \mathbf{M}$ such that $\mathbf{AB} = \mathbf{I}$ then $|\mathbf{A}| \in \{+1, -1\}$

2 Solution

M is empty	Consider $\mathbf{A} = \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. The elements of $\mathbf{A} \in \mathbb{Z}$ and it's eigen values $1 \in \mathbb{Q}$. So, \mathbf{M} is not empty.
$\mathbf{M} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \right\}$	Let $\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ where elements of $\mathbf{A} \in \mathbb{Z}$. The characteristic equation can be written as:
	$\lambda^2 + 1 = 0 \implies \lambda = \pm i$
	We see that $\lambda \in \mathbb{C}$ which is contradicting the main definition of \mathbf{M} .So,this is not correct.
Eigen values of $\mathbf{A} \in \mathbb{Z}$	Given $A \in M$.Let λ_1, λ_2 be the eigen values of A .The characteristic polynomial can be written as:
	$\lambda^2 - tr(\mathbf{A}) \lambda + \det \mathbf{A} = 0$ where $tr(\mathbf{A}) = \lambda_1 + \lambda_2$, $\det \mathbf{A} = \lambda_1 \lambda_2$
	Given the eigen values $\lambda_1, \lambda_2 \in \mathbb{Q}$, For this to be possible the discriminant of above equation should $\in \mathbb{Z}$ $\frac{\sqrt{(\lambda_1 + \lambda_2)^2 - 4\lambda_1\lambda_2}}{\sqrt{(\lambda_1 - \lambda_2)^2} \in \mathbb{Z}}$ $\implies \lambda_1 - \lambda_2 \in \mathbb{Z}$ This is possible when both $\lambda_1, \lambda_2 \in \mathbb{Z}$.

If $AB=I$ then $ A \in \{+1,-1\}$	As $\mathbf{A}, \mathbf{B} \in \mathbf{M}$, $\Longrightarrow \mathbf{A} , \mathbf{B} \in \mathbb{Z}$ Given $\mathbf{A}\mathbf{B} = \mathbf{I} \implies \mathbf{A} \mathbf{B} = 1$ This is possible only when $ \mathbf{A} = \mathbf{B} = \pm 1$
Conclusion	options 3) and 4) are correct.