Relatório	dа	Experiência	dο	Pêndulo	Gravítico
Neiatorio	ua		uU	i Ciluulo	Gravitico

Turno:	Grupo:	Data:	
Número:	Nome:		
Número:	Nome:		
Número:	Nome:		

1 Trabalho preparatório a realizar ANTES da sessão de Laboratório:

1. Descreva quais os objectivos do trabalho que irá realizar na sessão de laboratório.

1.1	Objectivos do Trabalho				

1.1.1 Equações

Complete o seguinte quadro com todas as equações necessárias para calcular as grandezas, bem como as suas incertezas e a lengenda de símbolos. Numere as equações para futura referência. Indique nas tabelas qual a equação que utiliza para os cálculos.

$\bar{t} = \sqrt{\frac{2\overline{D}}{g}}$ $\sigma_{\bar{t}} = \sqrt{\frac{2}{g}} \cdot$	$\frac{1}{2\sqrt{\overline{D}}} \cdot \sigma_{\overline{D}} = \overline{t} \cdot \frac{1}{2\overline{L}}$	$_{\overline{\overline{0}}}\cdot\sigma_{\overline{D}}$	

Procedimento Experimental

Material

- Suporte do Pêndulo.
- Massas de chumbo, linha inextensível e com massa desprezável.
- Régua graduada, cronómetro, fita métrica, transferidor, balança.

Comece a sessão de laboratório por estimar o atraso e a precisão que obtém na medição do tempo com o cronómetro, tendo em conta o tempo de reacção do sistema nervoso. Para cada membro do grupo, com uma régua graduada e a ajuda de um(a) colega obtenha 15 medidas da queda da régua. A partir da média e desvio padrão obtenha o tempo de reação e a incerteza.

Ensaio	A - Distância	B - Distância	C - Distância
#	de queda [cm]	de queda [cm]	de queda [cm]
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
Média \overline{D} [m]			
Desvio padrão $\sigma_{\overline{D}}$ [m]			
Tempo de reação \bar{t} [s]			
Desvio padrão $\sigma_{\overline{t}}$ [s]			

Monte o sistema de pêndulo gravítico e obtenha o seu período para diversos comprimentos do fio L, usando a medição de N ciclos. A medição é de um intervalo de tempo e como tal os atrasos da reação compensam no início e no fim da contagem. No entando deve considerar como erro de medição o dobro do desvio padrão. Para o erro da média $\overline{\Delta t}$ deve considerar o majorante entre este erro, $2\sigma_{\overline{t}}$ e o maior desvio entre o valor $\overline{\Delta t}$ e cada ensaio individual.

Obtenha o valor de g_{exp} para estes ensaios, usando a expressão (9) do texto de apoio, bem como a respectiva incerteza experimental. Compare o valor final de g_{exp} obtido com o valor tabelado g_{tab} para Lisboa e estime o desvio à exactidão que obteve.

Angulo inicial: $\theta \simeq$	rad. Número de ciclos:	\mathcal{M} —
Angino iniciai: n ≃	rad. Numero de cicios:	/v =

Ensaio #	L: \pm [m]	L: \pm [m]	L: ± [m]	L: ± [m]
$\Delta t \; \mathrm{A} \; [\mathrm{s}]$	±	±	±	±
$\Delta t \; \mathrm{B} \; [\mathrm{s}]$	±	±	±	±
$\Delta t \in [s]$	±	±	士	土
Média $\overline{\Delta t}$ [s]	±	±	土	±
Período \overline{T} [s]	±	±	土	土
$\overline{g} \; [\mathrm{ms}^{-2}]$	土	±	土	土

Tenha em atenção os seguintes aspectos e comente-os na discussão final:

- \bullet Utilize apenas algarismos significativos (a.s.) nas tabelas. O erros devem conter no máximo 2 a.s.
- \bullet Qual a vantagem de usar na medição N ciclos do pêndulo?
- \bullet Naturalmente a massa utilizada não é pontual. Qual é o efeito na medida e incerteza do comprimento L?
- Uma massa pendurada num fio tem mais que o grau de liberdade em θ . Tente assegurar que o pêndulo oscila apenas ao longo de um plano vertical.
- Tente minimizar o efeitos de paralaxe na determinação do ângulo máximo.
- Qual a posição do pêndulo que usa para cronometrar o intervalo de tempo?

Resultados

$$g_{exp} = \underline{\qquad} \pm \underline{\qquad} [ms^{-2}]$$

Desvio à Exatidão = $\underline{\qquad}$ %, Incerteza relativa = $\underline{\qquad}$ %

Actividades adicionais, se tiver tempo

- Utilize a montagem electrónica com barreira óptica para medição precisa do período. Compare com os outros resultados.
- Verifique experimentalmente que o período do pêndulo não depende do valor da massa.
- Verifique experimentalmente a alteração do período do pêndulo para ângulos iniciais grandes. Para que valores de θ_0 o valor calculado de g' se afasta de g_{exp} com desvio $\geq 5\%$?
- Tente estimar a percentagem de energia devido ao atrito que se perde em cada ciclo

.

Análise, conclusões e comentários finais			