

Eksempeloppgave

2014

REA3024 Matematikk R2 Eksempel på eksamen våren 2015 etter ny ordning

Ny eksamensordning

Del 1:

3 timer (uten hjelpemidler)

Del 2:

2 timer (med hjelpemidler)

Minstekrav til digitale verktøy på datamaskin:

- Graftegner
- CAS

Bokmål

Eksamensinforma	asjon
Eksamenstid:	5 timer: Del 1 skal leveres inn etter 3 timer. Del 2 skal leveres inn senest etter 5 timer.
Hjelpemidler på Del 1:	Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.
Hjelpemidler på Del 2:	Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Framgangsmåte:	Del 1 har 13 oppgaver. Del 2 har 6 oppgaver. Du skal svare på alle oppgavene i Del 1 og Del 2. Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Dersom oppgaven krever en bestemt løsningsmetode, kan en alternativ metode gi lav/noe uttelling. Bruk av digitale verktøy som «graftegner» og «CAS» skal dokumenteres med utskrift eller gjennom en IKT-basert eksamen.
Veiledning om vurderingen:	Poeng i Del 1 og Del 2 er bare veiledende i vurderingen. Karakteren blir fastsatt etter en samlet vurdering. Det betyr at sensor vurderer i hvilken grad du - viser regneferdigheter og matematisk forståelse - gjennomfører logiske resonnementer - ser sammenhenger i faget, er oppfinnsom og kan ta i bruk fagkunnskap i nye situasjoner - kan bruke hensiktsmessige hjelpemidler - forklarer framgangsmåter og begrunner svar - skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske framstillinger - vurderer om svar er rimelige
Andre opplysninger:	 Kilder for bilder, tegninger osv. Alle grafer og figurer (Utdanningsdirektoratet) Månefaser, www.astropixels.com/moon/phases2 (10.12.2013)

DEL 1: 3 timer. 36 poeng

Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt

Oppgave 1 (4 poeng)

Deriver funksjonene

- a) $f(x) = x^2 \sin x$
- b) $g(x) = e^{\cos(2x)}$
- c) $h(x) = \frac{x^2 + 1}{2x 2}$

Oppgave 2 (4 poeng)

Regn ut integralene

- a) $\int xe^x dx$
- b) $\int 4xe^{x^2}dx$
- c) $\int \frac{3x}{x^2 x 2} dx$

Oppgave 3 (2 poeng)

Bestem den generelle løsningen for differensiallikningen

$$y' + 2xy = 4x$$

Oppgave 4 (3 poeng)

Funksjonen f er gitt ved

$$f(x) = -xe^{-x^2}$$
 , $D_f = \mathbb{R}$

Nedenfor ser du grafen til f og grafen til den deriverte funksjonen f'.

Avgjør om påstandene A, B og C nedenfor er sanne. Begrunn svarene dine.

A:
$$f(x) > 0 \iff x \in \left\langle \leftarrow, -\frac{1}{\sqrt{2}} \right]$$

B:
$$f''(x) = 0 \Leftrightarrow x = -\frac{\sqrt{3}}{\sqrt{2}} \lor x = \frac{\sqrt{3}}{\sqrt{2}}$$

C:
$$f'(x) > 0 \iff f''(x) < 0$$

Oppgave 5 (3 poeng)

En uendelig geometrisk rekke er gitt ved

$$1 - \frac{x}{3} + \frac{x^2}{9} - \frac{x^3}{27} + \dots$$

- a) Bestem konvergensområdet for rekken.
- b) Bestem summen s(x) av rekken.
- c) Vis at $s(x) \neq \frac{1}{2}$

Oppgave 6 (4 poeng)

En funksjon f er gitt ved

$$f(x) = x^4 - 2x^2 + 2$$
 , $D_f = \mathbb{R}$

- a) Bestem eventuelle topp- og bunnpunkter på grafen til f.
- b) Bestem eventuelle infleksjonspunkter til f.
- c) Lag en skisse av grafen til f.

Oppgave 7 (2 poeng)

Løs likningen

$$\left(\sin x - \frac{1}{2}\right) \cdot \left(\cos x - \frac{\sqrt{2}}{2}\right) = 0 \quad , \quad x \in \left[0^{\circ}, 360^{\circ}\right)$$

Oppgave 8 (2 poeng)

En funksjon f er gitt ved

$$f(x) = x^n$$
, $D_f = \mathbb{R}$

Bruk induksjon og derivasjonsregel for produkt til å bevise påstanden

$$P(n)$$
: $f'(x) = nx^{n-1}$, $n \in \mathbb{N}$

Oppgave 9 (2 poeng)

Likningen for en kuleflate er gitt ved

$$x^2 + y^2 + z^2 + 4x - 2y - 8z - 4 = 0$$

Bestem ved regning sentrum og radius i kulen.

Oppgave 10 (3 poeng)

Funksjonene f og g er gitt ved

$$f(x) = 2x^3 - x^2 - 5x$$
 , $D_f = \mathbb{R}$
 $g(x) = -x^2 + 3x$, $D_g = \mathbb{R}$

Grafene til f og g skjærer hverandre i tre punkter.

Grafene avgrenser to områder, med arealer A_1 og A_2 .

Vis ved regning at $A_1 = A_2$

Oppgave 11 (2 poeng)

En funksjon f er gitt ved

$$f(x) = \sqrt{r^2 - x^2}$$
 , $D_f = \lceil -r, r \rceil$

Grafen til f dreies 360° om x-aksen.

Regn ut volumet av omdreiningslegemet som da framkommer. Hva oppdager du?

Oppgave 12 (3 poeng)

Vektorene $\vec{u} = [1, 2, -1]$ og $\vec{v} = [-1, 1, -2]$ er gitt.

a) Bestem $\angle(\vec{u}, \vec{v})$.

Et plan β går gjennom punktet P(2, 0, 1). Videre er $\beta \| \vec{u}$ og $\beta \| \vec{v}$.

- b) Vis at $\vec{n} = [-1, 1, 1]$ er en normalvektor til planet β .
- c) Bestem likningen til planet β .

Oppgave 13 (2 poeng)

Bestem alle eksakte løsninger til likningen

$$\cos^2 x - 3\sin^2 x = -2$$
 , $x \in [0, 2\pi]$

DEL 2: 2 timer. 24 poeng

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon

Oppgave 1 (5 poeng)

Tabellen nedenfor viser hvor stor del av månen som var synlig ved midnatt på noen utvalgte døgn på et bestemt sted i et bestemt år.

Døgn nr. (x)	1	2	3	4	5	6	10	15	20	21
Synlig del	0,25	0,18	0,11	0,06	0,02	0,00	0,11	0,57	0,99	1,00
	•					•	•			

Døgn nr. (x)	25	30	35	40	45	50	55	60	65	66
Synlig del	0,80	0,32	0,02	0,14	0,64	1,00	0,77	0,31	0,01	0,00

a) Lag en sinus-funksjon f som gir en god modell for dataene ovenfor.

Bestem perioden, amplituden og likevektslinjen.

b) Bruk graftegner til å bestemme i hvilke døgn det er halvmåne i denne perioden.

Oppgave 2 (4 poeng)

En rett linje går gjennom punktene A(0, R) og B(h, r). Se figur 1. En rett, avkortet kjegle framkommer ved å rotere linjestykket AB 360° om x-aksen. Se figur 2.

- a) Vis at linjen gjennom A og B har likningen $y = \frac{r R}{h} \cdot x + R$
- b) Bruk CAS til å vise at volumet V av den rett avkortede kjeglen er

$$V = \frac{\pi h}{3} (R^2 + Rr + r^2)$$

c) Forklar kort hvilket omdreiningslegeme vi får dersom r = 0 og dersom r = R.

Oppgave 3 (4 poeng)

Hvis en person blir liggende i vann med temperatur på 0° C, kan endringen i kroppstemperaturen K° C under visse betingelser kunne beskrives med følgende differensiallikning

$$K'(t) = -0.012K(t)$$

der t er målt i minutter.

En person faller i vannet, og vi antar at kroppstemperaturen synker etter modellen ovenfor.

- a) Bestem hvor lang tid det tar for kroppstemperaturen å synke fra 37°C til 25°C (25°C er antatt grense for å overleve).
- b) Bestem hvor fort kroppstemperaturen endrer seg 20 min etter at personen faller i vannet.

Oppgave 4 (4 poeng)

I et kvadrat med side 1 er det innskrevet et annet kvadrat med hjørner midt på sidene i det første kvadratet. I det andre kvadratet er det innskrevet et tredje kvadrat med hjørner midt på sidene i det andre kvadratet. Slik fortsetter det i en uendelig prosess. Se figur 1 nedenfor.

Vi lar A_1 , A_2 , A_3 , ... være en følge av arealer av rettvinklede trekanter. Disse danner en blå «spiral». Se figur 2 nedenfor.

A₁
A₂
A₃

Figur 1

Figur 2

- a) Vis at arealene A_1 , A_2 , A_3 , ... danner en uendelig, geometrisk og konvergent tallfølge.
- b) Bestem summen av rekken $A_1 + A_2 + A_3 + \dots$ på to måter:
 - ved hjelp av relevante formler
 - ved et geometrisk resonnement.

Oppgave 5 (4 poeng)

Thomas står i et punkt A på kanten av et sirkelformet svømmebasseng med diameter AB = 40 m. Thomas vil komme seg raskest mulig over til punkt B.

Thomas kan løpe med farten 2k m/s og svømme med farten k m/s.

Et punkt C på bassengkanten er gitt ved at $\angle AOC = \theta$ der $\theta \in [0, \pi]$. I punktet A er $\theta = 0$.

I punktet B er $\theta = \pi$. $\angle BOM = \frac{\pi - \theta}{2}$ der M er midtpunktet på BC. Se skissen nedenfor.

a) Vis at tiden som Thomas bruker for å løpe fra A til C og deretter svømme fra C til B kan beskrives av funksjonen T gitt ved

$$T(\theta) = \frac{10\theta}{k} + \frac{40\sin\left(\frac{\pi - \theta}{2}\right)}{k} \quad , \quad D_{\tau} = \left[0, \pi\right], \quad k \in \mathbb{R}^{+}$$

b) Bruk blant annet $T'(\theta)$ til å avgjøre hvordan Thomas på raskest mulig måte kan komme seg fra A til B.

Oppgave 6 (3 poeng)

En funksjon f er gitt ved

$$f(x) = ax^2 + bx + c$$
, $D_f = \mathbb{R}$

Et område er avgrenset av grafen til f og en rett linje. Skjæringspunktene mellom grafen til f og den rette linjen har x-koordinater p og q. Se skissen nedenfor.

Bruk CAS til å vise at arealet som er begrenset av grafen til f og den rette linjen bare er avhengig av differansen p-q og a (eller differansen q-p og a).

Læreplandekning for eksempeloppgaven i R2¹

Hovedområder og kompetansemål	Del 1	Del 2
Geometri		
utføre beregninger med tredimensjonale vektorer som er representert både geometrisk og på koordinatform	12	
bruke og tolke skalar- og vektorproduktet i beregning av avstander, vinkler, areal og volum	12	
bruke vektorregning til å finne liknings- og parameterframstillinger til linjer, plan og kuleflater	9	
beregne lengder, vinkler og arealer i legemer avgrenset av plan og kuleflater	12	
Algebra		
• finne og analysere rekursive og eksplisitte formler for tallmønstre med og uten digitale hjelpemidler, og gjennomføre og presentere enkle bevis knyttet til disse formlene		4
• gjennomføre og gjøre rede for induksjonsbevis	8	
summere endelige rekker med og uten digitale hjelpemidler, utlede og bruke formlene for summen av de n første leddene i aritmetiske og geometriske rekker, og bruke dette til å løse praktiske problemer		
regne med uendelige geometriske rekker med konstante og variable kvotienter, bestemme konvergensområdet for disse rekkene og presentere resultatene	5	4
Funksjoner		
forenkle og løse lineære og kvadratiske likninger i trigonometriske uttrykk ved å bruke sammenhenger mellom de trigonometriske funksjonene	7, 13	
derivere sentrale funksjoner og bruke førstederiverte og andrederiverte til å drøfte slike funksjoner	1, 4, 6	5
omforme trigonometriske uttrykk av typen a sin kx + b cos kx , og bruke dem til å modellere periodiske fenomener		
 gjøre rede for definisjonen av bestemt integral som grense for en sum og ubestemt integral som antiderivert 		
 beregne integraler av de sentrale funksjonene ved antiderivasjon og ved hjelp av variabelskifte, ved delbrøkoppspalting med lineære nevnere og ved delvis integrasjon 	2, 11	
tolke det bestemte integralet i modeller av praktiske situasjoner og bruke det til å beregne arealer av plane områder og volumer av omdreiningslegemer	10, 11	6, 2
 formulere en matematisk modell ved hjelp av sentrale funksjoner på grunnlag av observerte data, bearbeide modellen og drøfte resultat og framgangsmåte 		1, 2, 5
Differensiallikninger		
modellere praktiske situasjoner ved å omforme problemstillingen til en differensiallikning, løse den og tolke resultatet		3
Iøse lineære første ordens og separable differensiallikninger ved regning og gjøre rede for noen viktige bruksområder	3	3
Iøse andre ordens homogene differensiallikninger og bruke Newtons andre lov til å beskrive frie svingninger ved periodiske funksjoner		
 løse differensiallikninger og tegne retningsdiagrammer og integralkurver, og tolke dem ved å bruke digitale hjelpemidler 	3	3

¹ Læreplan programfag matematikk R2, <u>www.udir.no</u> (28.02.2014)

Løsningsforslag Del 1 (36 poeng)

NB! Eksamenskandidatene skal ikke ha tilgang til datamaskin under Del 1 av eksamen. Løsningsforslaget for Del 1 er utarbeidet med det formål å vise eksempler på hvordan oppgavene kan løses, om framgangsmåter, føring mv.

Oppgave 1 (1+1+2 poeng)

a)
$$f'(x) = (x^2 \sin x)' = 2x \sin x + x^2 \cos x = x(2 \sin x + x \cos x)$$

b)
$$g'(x) = (e^{\cos(2x)})' = e^{\cos(2x)} \cdot (-2\sin(2x)) = -2\sin(2x) \cdot e^{\cos(2x)}$$

c)
$$h'(x) = \left(\frac{x^2 + 1}{2x - 2}\right)' = \frac{2x \cdot (2x - 2) - (x^2 + 1) \cdot 2}{(2x - 2)^2} = \frac{4x^2 - 4x - 2x^2 - 2}{4(x - 1)^2} = \frac{2x^2 - 4x - 2}{4(x - 1)^2} = \frac{x^2 - 2x - 1}{2(x - 1)^2}$$

Oppgave 2 (1+1+2 poeng)

a) Delvis integrasjon: u = x, $v' = e^x$

$$\int uv' \, dx = uv - \int u'v \, dx = xe^x - \int 1 \cdot e^x \, dx = xe^x - e^x + C = e^x(x-1) + C$$

b) Variabelskifte: $u = x^2 \implies du = 2x dx$

$$\int 4xe^{x^{2}}dx = \int 4xe^{u} \cdot \frac{du}{2x} = \int 2e^{u} du = 2e^{u} + C = \underline{2e^{x^{2}} + C}$$

c) Delbrøkoppspalting: $x^2 - x - 2 = 0 \Leftrightarrow x = 2 \lor x = -1 \Rightarrow x^2 - x - 2 = (x - 2)(x + 1)$

$$\frac{3x}{x^2 - x - 2} = \frac{3x}{(x - 2)(x + 1)} = \frac{A}{x - 2} + \frac{B}{x + 1}$$

$$3x = A(x + 1) + B(x - 2)$$

$$x = 2 \implies 3 \cdot 2 = A \cdot 3 \iff A = 2$$

$$x = -1 \implies 3 \cdot (-1) = B \cdot (-3) \iff B = 1$$

$$\int \frac{3x}{x^2 - x - 2} dx = \int \frac{2}{x - 2} dx + \int \frac{1}{x + 1} dx = \frac{2 \ln|x - 2| + \ln|x + 1| + C}{2 \ln|x - 2|}$$

Oppgave 3 (2 poeng)

$$y' + 2xy = 4x$$
 Integrerende faktor: $e^{\int 2x dx} = e^{x^2}$

$$y' \cdot e^{x^2} + 2x \cdot e^{x^2} \cdot y = 4x \cdot e^{x^2}$$

$$(\mathbf{v} \cdot \mathbf{e}^{x^2})' = 4\mathbf{x} \cdot \mathbf{e}^{x^2}$$

$$y \cdot e^{x^2} = \int 4x \cdot e^{x^2} dx$$

$$y \cdot e^{x^2} = 2e^{x^2} + C$$
 (jf. oppgave 2 b) ovenfor)

$$y = 2 + C e^{-x^2}$$

Oppgave 4 (3 poeng)

Jf. grafen til f og grafen til f'.

A: Grafen til f viser at f(x) > 0 når x < 0. Ekvivalensen er usann.

B: f''(x) = 0 også når x = 0. Ekvivalensen er usann.

C: Dersom f''(x) < 0, minker f'(x). Dette kan skje både når f'(x) > 0 og når f'(x) < 0. Implikasjonen er usann.

Oppgave 5 (1+1+1 poeng)

Geometrisk rekke der $a_1 = 1$ med kvotient $k = -\frac{x}{3}$

a) Rekken er konvergent når -1 < k < 1

$$-1 < k < 1$$

$$-1 < -\frac{x}{3} < 1$$

$$-3 < -x < 3$$

$$3 > x > -3$$

Konvergensområde: $x \in \langle -3, 3 \rangle$.

b)
$$s(x) = \frac{a_1}{1-k} = \frac{1}{1+\frac{x}{3}} = \frac{3}{\frac{3+x}{3}}$$

c)
$$s(x) = \frac{1}{2} \iff \frac{3}{3+x} = \frac{1}{2} \iff x = 3. \quad x \in \langle -3, 3 \rangle \implies s(x) \neq \frac{1}{2}$$

Oppgave 6 (2+1+1 poeng)

a) $f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x - 1)(x + 1)$

Toppunkt: (0, f(0)) = (0, 2) Bunnpunkter: (-1, f(-1)) = (-1, 1) og (1, f(1)) = (1, 1)

b)

$$f''(x) = 12x^2 - 4 = 4(3x^2 - 1)$$

$$f''(x) = 0 \iff 3x^2 - 1 = 0 \iff x = \pm \frac{1}{\sqrt{3}}$$

Infleksjonspunktene til f er $x = \pm \frac{1}{\sqrt{3}}$, det vil si $x = \pm \frac{\sqrt{3}}{3}$

c) Skisse av grafen til f:

Kommentar: I en skisse av grafen er det formen på grafen som er viktig. Navn og skala på koordinatakser må være med. Navn på graf bør være med,

Oppgave 7 (2 poeng)

$$\left(\sin x - \frac{1}{2}\right) \cdot \left(\cos x - \frac{\sqrt{2}}{2}\right) = 0 \iff \sin x - \frac{1}{2} = 0 \lor \cos x - \frac{\sqrt{2}}{2} = 0$$

$$\Leftrightarrow \sin x = \frac{1}{2} \lor \cos x = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow x = 30^{\circ} \lor x = 45^{\circ} \lor x = 150^{\circ} \lor x = 315^{\circ}$$

Kommentar: Husk at $x \in [0^\circ, 360^\circ]$.

Oppgave 8 (2 poeng)

$$P(n): f'(x) = nx^{n-1}$$
, $n \in \mathbb{N}$

n=1 gir at f(x)=x

- 1. Sjekker P(1): $f'(x) = 1 \cdot x^0 = 1$. P(1) stemmer fordi x' = 1.
- 2. Setter n = k. Vi må vise at $P(k) \Rightarrow P(k+1)$, dvs. $(x^k)' = kx^{k-1} \Rightarrow (x^{k+1})' = (k+1)x^k$

$$(x^{k+1})' = (x^k \cdot x)'$$

$$= (x^k)' \cdot x + x^k \cdot x' \quad \text{(derivasjon av produkt)}$$

$$= (x^k)' \cdot x + x^k$$

$$= kx^{k-1} \cdot x + x^k \quad \text{(bruker } P(k))$$

$$= kx^k + x^k$$

$$= (k+1)x^k$$

Påstanden P(n) er da sann $\forall n \in \mathbb{N}$.

Oppgave 9 (2 poeng)

$$x^{2} + y^{2} + z^{2} + 4x - 2y - 8z - 4 = 0$$

 $x^{2} + 4x + 2^{2} + y^{2} - 2y + 1^{2} + z^{2} - 8z + 4^{2} = 4 + 2^{2} + 1^{2} + 4^{2}$ (fullstendige kvadraters metode)
 $(x+2)^{2} + (y-1)^{2} + (z-4)^{2} = 5^{2}$

Sentrum i kulen: S(-2, 1, 4) Radius i kulen: r = 5

Oppgave 10 (3 poeng)

x-verdier i skjæringspunkter til grafene:

$$f(x) = g(x) \iff 2x^3 - x^2 - 5x = -x^2 + 3x \iff 2x(x^2 - 4) = 0 \iff x = 0 \lor x = -2 \lor x = 2$$

$$A_1 = \int_{-2}^{0} (f(x) - g(x)) dx = \int_{-2}^{0} (2x^3 - 8x) dx = \left[\frac{1}{2}x^4 - 4x^2 \right]_{-2}^{0} = 0 - \left(\frac{1}{2}(-2)^4 - 4(-2)^2 \right) = 8$$

$$A_2 = \int_0^2 (g(x) - f(x)) dx = \int_0^2 (-2x^3 + 8x) dx = \left[-\frac{1}{2}x^4 + 4x^2 \right]_0^2 = \left(-\frac{1}{2}(2)^4 + 4(2)^2 \right) - 0 = 8$$

Utregningene viser at $A_1 = A_2$.

Oppgave 11 (2 poeng)

$$V = \pi \int_{-r}^{r} (f(x))^{2} dx = \pi \int_{-r}^{r} (r^{2} - x^{2}) dx = \pi \left[r^{2}x - \frac{1}{3}x^{3} \right]_{-r}^{r} = \pi \left(r^{3} - \frac{1}{3}r^{3} + r^{3} - \frac{1}{3}r^{3} \right) = \frac{4}{3}\pi r^{3}$$

Omdreiningslegemet er en kule med radius r. Vi har funnet den vanlige volumformelen for en kule. Volumet av en kule med radius r kan altså regnes ut ved integralet $\int \pi \cdot (r^2 - x^2) dx$.

Oppgave 12 (1+1+1 poeng)

a) La
$$\angle(\vec{u}, \vec{v}) = \angle \alpha$$
.

$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = \frac{1 \cdot (-1) + 2 \cdot 1 + (-1) \cdot (-2)}{\sqrt{1 + 4 + 1} \cdot \sqrt{1 + 1 + 4}} = \frac{3}{6} = \frac{1}{2} \implies \angle \alpha = 60^{\circ}$$

b) Normalvektor til
$$\beta$$
: $\vec{n} = \vec{u} \times \vec{v} = \begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix}, - \begin{vmatrix} 1 & -1 \\ -1 & -2 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = \begin{bmatrix} -3, 3, 3 \end{bmatrix} = 3\begin{bmatrix} -1, 1, 1 \end{bmatrix}$
Dermed er $\begin{bmatrix} -1, 1, 1 \end{bmatrix} \perp \beta$.

c) Likning for planet
$$\beta$$
:
$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

$$-1(x-2)+1(y-0)+1(z-1)=0$$

$$-x+2+y+z-1=0$$

$$[a, b, c]=[-1, 1, 1], P(x_0, y_0, z_0)=P(2)$$

$$\beta: -x+y+z+1=0$$

$$[a, b, c] = [-1, 1, 1], P(x_0, y_0, z_0) = P(2, 0, 1)$$

Oppgave 13 (2 poeng)

$$\cos^2 x - 3\sin^2 x = -2 \quad , \quad x \in \left[0, 2\pi\right]$$
$$1 - \sin^2 x - 3\sin^2 x = -2$$

$$4\sin^2 x = 3$$

$$\sin^2 x = \frac{3}{4}$$

$$\sin x = \pm \frac{\sqrt{3}}{2}$$

$$x = \frac{\pi}{3} \lor x = \frac{2\pi}{3} \lor x = \frac{4\pi}{3} \lor x = \frac{5\pi}{3}$$

Kommentar: Husk at $x \in [0, 2\pi)$.

Alternativt løsningsforslag . Oppgave 13:

$$\cos^2 x - 3\sin^2 x = -2$$
 , $x \in \lceil 0, 2\pi \rangle$

$$\cos^2 x - 3\sin^2 x = -2(\sin^2 x + \cos^2 x)$$

$$-\sin^2 x = -3\cos^2 x$$

$$tan^2 x = 3$$

$$\tan x = \pm \sqrt{3}$$

$$x = \frac{\pi}{3} \lor x = \frac{2\pi}{3} \lor x = \frac{4\pi}{3} \lor x = \frac{5\pi}{3}$$

Alternativt løsningsforslag . Oppgave 13:

$$\cos^2 x - 3\sin^2 x = -2$$
 , $x \in [0, 2\pi)$

$$\cos^2 x - 3(1 - \cos^2 x) = -2$$

$$4\cos^2 x = 1$$

$$\cos^2 x = \frac{1}{4}$$

$$\cos x = \pm \frac{1}{2}$$

$$x = \frac{\pi}{3} \lor x = \frac{2\pi}{3} \lor x = \frac{4\pi}{3} \lor x = \frac{5\pi}{3}$$

Kommentar:

Husk at $x \in [0, 2\pi)$. Vi forutsetter at elevene kan utenat de mest kjente, eksakte trigonometriske verdiene.

Løsningsforslag Del 2 (24 poeng)

NB! Alle hjelpemidler er tillatt under Del 2 av eksamen. Internett og alle former for kommunikasjon er <u>ikke tillatt</u>. Eksamenskandidatene <u>må</u> ha tilgang til datamaskin med en graftegner og CAS som installert programvare. Det kan også være nyttig med en formeleditor, men dette er ikke et krav. Det som er gjort i graftegneren og CAS <u>må</u> dokumenteres enten med utskrift eller gjennom IKT-basert eksamen. Det kan da være hensiktsmessig å bruke «skjermdump» (Print Screen).

Oppgave 1 (2+3 poeng)

a) Kommandoren SinReg på GeoGebra gir:

$$f(x) = d + a\sin(kx - \varphi) \approx 0,48 + 0,49\sin(0,21x - 2,92)$$

Periode:
$$p = \frac{2\pi}{k} = \frac{2\pi}{0,212} \approx 29,6 \text{ døgn}$$

Amplitude: $a \approx 0,49$

Likevektslinje: $y = d \approx 0.48$

Oppgave 1 fortsatt

b) Grafen til $f(x) = 0.48 + 0.49 \sin(0.21x - 2.92)$:

Skjæring mellom grafen til f og linjen g(x) = 0.5 gir halvmåne i døgn nr. 14, 28, 44 og 58.

Kommentar:

Tegner vi grafen til f med fire desimaler får vi halvmåne i døgn 13, 28, 43 og 58. Begge varianter godtas på lik linje.

Her kreves en <u>nøyaktig tegning</u> av grafen. Skala og navn på koordinataksene skal være med. Navn på grafene til f og g (gjerne hele funksjonsuttrykket som er tastet inn) bør være med.

Graftegner på datamaskin <u>skal</u> brukes i denne oppgaven. Graftegning for hånd gir lav/noe uttelling.

Oppgave 2 (2+2 poeng)

a) Den rette linjen har likningen y = ax + b.

Skjæring med y-aksen: b = R.

Stigningstall:
$$a = \frac{r - R}{h - 0} = \frac{r - R}{h}$$

Dermed er likningen for den rette linjen $y = \frac{r - R}{h} \cdot x + R$

b) Bruker CAS til å bestemme volumet av den rett, avkortede kjeglen:

▶ C	AS 🗵
1	$l:=(r-R)/h^*x+R$ $\to \ell := \frac{Rh-Rx+rx}{h}$
2	V:= π *Integral[I^2,0,h] $ \rightarrow \mathbf{V} := \frac{1}{3} \mathbf{h} \mathbf{r}^2 \pi + \frac{1}{3} \mathbf{R}^2 \mathbf{h} \pi + \frac{1}{3} \mathbf{R} \mathbf{h} \mathbf{r} \pi $
3	1/3 h r ² π + 1/3 R ² h π + 1/3 R h r π Faktoriser: $(r^2 + r R + R^2) \pi \frac{h}{3}$

Kommentar: I denne oppgaven skal kandidaten bruke CAS. Hvis ikke, oppnås lav / noe uttelling ved sensuren.

c) Hvis r = 0, går linjen gjennom A(0, R) og B(h, 0). Omdreiningslegeme: Rett kjegle. Hvis r = R, går linjen gjennom A(0, R) og B(h, R). Omdreiningslegeme: Rett sylinder.

Oppgave 3 (2+2 poeng)

a)
$$y'(t) = -0.012 \cdot y(t)$$
 Vi antar at $y(0) = 37$.

▶ C	AS 🗵
1	LøsODE[y'=-0.012*y,(0,37)]
0	\rightarrow y = 37 $e^{-3 \cdot \frac{x}{230}}$
2	Løs[37e^(-3 x / 250)=25]
0	$\approx \{x = 32.67\}$

Det tar ca. 33 min for kroppstemperaturen å synke fra 37 °C til 25 °C.

b)

3	y':=Derivert[$37e^{(-3 \times /250)}$] $\Rightarrow y' := -\frac{111}{250} e^{-\frac{3}{250} \times}$
4	(-111) / 250 e^((-3) / 250 *20)
0	≈ -0.35

Etter 20 min synker kroppstemperaturen med ca. 0,35 $^{\circ}$ C per minutt.

Oppgave 4 (2+2 poeng)

a) Symmetrien i kvadratene gir at A_1 , A_2 , A_3 , ... = $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, ...

Denne tallfølgen er uendelig, geometrisk ($k = \frac{1}{2}$) og konvergent siden -1 < k < 1.

b) Summen av rekken:
$$s = \frac{a_1}{1-k} = \frac{\frac{1}{8}}{1-\frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{2}} = \frac{1}{4}$$
 (av stort kvadrat med areal 1)

Geometrisk resonnement:

Av figuren finnes det fire «spiraler» bestående av rettvinklede trekanter. Se nedenfor. Dermed må den ene spiralen utgjøre $\frac{1}{4}$ av stort kvadrat med areal 1.

Oppgave 5 (2+2 poeng)

a) I sirkelsektoren AOC er buelengde $AC = r \cdot \theta = 20\theta$

Avstanden BC:
$$\sin\left(\frac{\pi-\theta}{2}\right) = \frac{BM}{BO} \Leftrightarrow BM = 20\sin\left(\frac{\pi-\theta}{2}\right) \Rightarrow BC = 40\sin\left(\frac{\pi-\theta}{2}\right)$$

Tidsbruk for Thomas ved å løpe langs buen AC: $T_1(\theta) = \frac{20\theta}{2k} = \frac{10\theta}{k}$

Tidsbruk for Thomas ved å svømme fra
$$C$$
 til B : $T_2(\theta) = \frac{40 \sin\left(\frac{\pi - \theta}{2}\right)}{k}$

Den samlede tidsbruken $T(\theta) = T_1(\theta) + T_2(\theta)$ for Thomas er dermed vist.

Alternativt løsningsforslag - oppgave 5 a):

Dersom kandidaten bruker periferivinkelen *OBC* og får $T(\theta) = \frac{10\theta}{k} + \frac{40\cos\left(\frac{\theta}{2}\right)}{k}$ og regner videre med dette uttrykket, godtas naturligvis dette.

b) Lokalt ekstremalpunkt er $x = \frac{\pi}{3}$:

Vi sjekker endepunktene. Siden $T(\pi) < T(0) < T\left(\frac{\pi}{3}\right)$, bruker Thomas minst tid når $\theta = \pi$.

Det er raskest for Thomas å løpe hele veien fra A til B langs bassengkanten.

Oppgave 6 (3 poeng)

Vi bestemmer først likningen for den rette linjen mellom x = p og x = q. Deretter finner vi bestemte integralet mellom den rette linjen og grafen til f mellom x = p og x = q.

▶ C	AS ×
1	$f(x) := a^*x^2 + b^*x + c$ $f(x) := a x^2 + b x + c$
2	Linje[$(p,f(p)),(q,f(q))$] $y = x (a p + a q + b) - a p q + c$
3	y = x (a p + a q + b) - a p q + c → y = -a p q + a p x + a q x + b x + c
4	l:=-apq+apx+aqx+bx+c → $\ell := -apq+apx+aqx+bx+c$
5	Faktoriser[IntegralMellom[I,f(x),p,q]] $ \rightarrow -(p-q)^3 \cdot \frac{a}{6} $

Arealet mellom grafene er kun avhengig av differansen p-q og a.

Kommentar: Dersom kandidaten får svaret $\frac{1}{6}a(q-p)^3$ godtas dette.

I denne oppgaven skal kandidaten bruke CAS. Hvis ikke, oppnås lav / noe uttelling ved sensuren.

Oppgave 6 fortsatt

Alternativ løsningsforslag - oppgave 6:

A1: Arealet under den rette linjen mellom x = p og x = q er arealet av et trapes.

A2: Areal under grafen til f mellom x = p og x = q

Det søkte areal blir da A = A1 - A2.

En slik løsning godtas naturligvis på lik linje som løsningen ovenfor:

Arealet mellom grafene er kun avhengig av differansen p - q og a.

Kommentar:

Kompleksiteten i oppgaver som krever bruk av CAS kan variere. Når CAS kreves, vil vi ha en algebraisk løsning på et problem. Noen oppgaver kan prøve om kandidaten er i stand til å bruke CAS for eksempel til å løse en likning. I andre oppgaver må kandidaten selv sette opp en likning/likningssett eller bruke og kombinere matematiske setninger/metoder og deretter bruke CAS. Noen oppgaver kan være svært arbeidskrevde uten bruk av CAS. I dette tilfellet vil bruk av CAS være svært tids- og arbeidsbesparende. I andre oppgaver kan det være vanskelig å komme fram til et svar uten bruk av CAS.

