

## RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences Second Year - Semester II Examination - February/ March 2019

## PHY2105 – QUANTUM MECHANICS

Time: One (01) hour

Answer any two questions.

Use of a non-programmable calculator is permitted.

Symbols and notations have their usual meaning.

Some fundamental constants and physical data:

Electron mass  $m_e = 9.1 \times 10^{-31} \text{ kg}$ Speed of light in vacuum  $c = 3.0 \times 10^8 \text{ m s}^{-1}$ Bohr radius  $a_0 = 0.529 \times 10^{-10} \text{ m}$ 

Planck constant  $h = 6.626 \times 10^{-34} \text{ J s}$ Electron volt (1 eV) = 1.6 x 10<sup>-19</sup> J Boltzmann constant  $k_B = 1.38 \times 10^{-23} \text{J K}^{-1}$ 

1. The total intensity I(T) radiated from a blackbody (at all wavelengths  $\lambda$ ) is equal to the integral over all wavelengths,  $0 < \lambda < \infty$ , of the Planck distribution;

$$l(\lambda, T) = \frac{2\pi h c^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda} k_B T} - 1}.$$

- (a) By changing variables to  $x = \frac{hc}{\lambda k_B T}$ , show that I(T) has the form  $I(T) = \sigma T^4$ , where  $\sigma$  is a constant independent of temperature. (20 marks)
- (b) Given that  $\int_0^\infty \frac{x^3}{(e^x-1)} dx = \frac{\pi^4}{15}$ , show that the Stephan-Boltzmann constant  $\sigma$  is  $\frac{2\pi^5 k_B^4}{15h^3c^2}$ .
- (c) Evaluate  $\sigma$  numerically and find the total power radiated from a red-hot (T=1000 K) steel ball of 1 cm radius. (15 marks)

Contd.

2. (a) i. State Heisenberg's uncertainty principle and prove that  $\Delta E.\Delta T \geq \hbar$ .

(15 marks)

- ii. Use the above relation to explain how one could describe the broadening of spectral lines. (07 marks)
- (b) An electron in the n = 2 state of a hydrogen atom remains there on average  $10^{-8}$  s before making a transition to the ground state..
  - i. Estimate the uncertainty in the energy of the n = 2 state. (06 marks)
  - ii. What fraction of the transition energy is this? (06 marks)
  - What is the width of the spectral line emitted in the transition? iii. (10 marks)
- (c) "Electron Microscope is more suitable to see objects of atomic size than an optical microscope". Justify this statement. (06 marks)
- 3. Consider a particle of mass m and energy E approaching from the left, to a one-dimensional potential step given by

$$V(x) = \begin{cases} 0 & x < 0 \\ V_0 & x > 0 \end{cases}$$

(a) Discuss the motion classically and quantum mechanically for the following cases.

ĩ.  $E < V_0$ (12 marks) ii.

 $E > V_0$ (12 marks)

- (b) Obtain the reflection and transmission coefficients. Note: The probability current density is given by  $j = \text{Re}[\psi^* \frac{\hbar}{im} \nabla \psi]$ , where Re indicates the "real part of". (18 marks)
- (c) Show that the sum of the reflection and transmission coefficients is one for a particle scattered by a potential step. (08 marks)

..END..