Modelo de Brusselator

Teoria e Simulações

João Pedro Sousa e Pedro Saito

Computação Científica e EDOs

Universidade Federal do Rio de Janeiro

2025-07-27

Sumário	4. Simulações 21
1. Introdução 2	4.1 Birfucação de Hopf 26
1.1 Motivação Histórica 3	4.2 Evolução Temporal das
2. Aspectos Teóricos 5	Soluções 30
2.1 Dedução do Modelo 6	5. Conclusão 38
2.2 Definição 11	Referências
2.3 Pontos de Equilíbrio 12	
2.4 Análise dos Pontos de	
Equilíbrio 13	
2.5 Bifurcação de Hopf 15	
2.6 Demonstração 16	
3. Métodos Aproximados 18	

1. Introdução

1.1 Motivação Histórica

1. Introdução

Contexto: Estudo de reações autocatalíticas e com comportamento oscilatório realizado pelo químico russo *Boris Belausov* durante a década de 1950 sobre o mecanismo do **Ciclo de Krebs**.

O experimento original misturava bromato, ácido cítrico e cério, fazendo a cor da solução oscilar periodicamente. Dez anos depois, A. H. Zhabotinskii refez os testes e mostrou que as oscilações vinham das formas Ce^{3+} e Ce^{4+} do cério, descritas em um mecanismo simplificado.

$$Ce(III) \longrightarrow Ce(IV)$$
 $Ce(IV) + CHBr(COOH) \longrightarrow Ce(III) + Br^- + outros \ produtos$
Figura 1: As espécies $Ce(III)$ e $Ce(IV)$ são autocatalíticas.

A primeira reação é autocatalisada por ${\rm BrO^{-3}}$ e inibida por ${\rm Br^{-}}$; à medida que ${\rm Ce(IV)}$ é produzido, gera-se ${\rm Br^{-}}$, desacelerando a primeira reação. Assim, o equilíbrio da segunda equação é deslocado no sentido inverso, e a reação 1 no sentido direto, de modo a reiniciar o ciclo.

2. Aspectos Teóricos

O mecanismo químico com taxas que originou o modelo de Brusselator é dado por:

$$A \xrightarrow{k_1} X$$

$$2X + Y \xrightarrow{k_2} 3X$$

$$B + X \xrightarrow{k_3} Y + C$$

$$X \xrightarrow{k_4} D$$

Onde:

- As espécies X e Y são autocatalíticas.
- A, B, C, D, X, Y têm unidades de concentração.
- Reações que formam X (ou Y) geram um termo positivo $+k_n \cdot \text{concentração}$.
- Reações que consomem geram termo negativo.
- A, B, C, D são fatores externos constantes.

Com efeito, derivamos o seguinte sistema de EDOs:

$$\begin{split} \dot{x} &= k_1 A + k_2 X^2 Y - k_3 B X - k_4 X \\ \dot{y} &= k_3 B X - k_2 X^2 Y \end{split} \tag{1}$$

Agora nos resta agrupar variáveis anteriores de modo a torná-las adimensionais. Sendo assim, definiremos:

$$\tau = k_4 t, \quad X = x A \frac{k_1}{k_4}, \quad Y = y A \frac{k_1}{k_4}.$$
 (2)

Além disso, precisamos definir os grupos adimensionais:

$$a = k_2 \frac{A}{k_4^3}, \quad b = k_3 \frac{B}{k_4}.$$
 (3)

Pelo teorema da cadeia, temos para $\frac{dx}{dt}$:

$$\frac{dx}{dt} = \frac{dX}{d\tau}\frac{d\tau}{dt} = \frac{dX}{d\tau}k_4 \Rightarrow \frac{dX}{d\tau} = \frac{1}{4}\frac{dx}{dt} \tag{4}$$

e o mesmo vale para Y.

A partir disso, derivamos o sistema adimensional dado na definição:

$$k_1 A \dot{x} = k_1 A - (k_3 B + k_4) k_1 \frac{A}{k_4} x + k_2 \left(k_1 \frac{A}{k_4} x \right)^2 \left(k_1 \frac{A}{k_4} y \right)$$
 (5)

de modo que

$$\dot{x} = \frac{dx}{d\tau} \quad e \quad \dot{y} = \frac{dy}{d\tau}.$$
 (6)

Por fim, dividindo a equação anterior por k_1A chegaremos em:

Obs: Não demonstrei para o Y, porém a regra da cadeia e as substituições são análogas.

Modelo matemático para uma classe de reação autocatalítica. A dinâmica do Brusselator é dada pelo seguinte sistema de EDOs na forma adimensional:

$$\dot{x} = 1 - x(b+1) + ax^2y$$

$$\dot{y} = bx - ax^2y$$
(8)

O equilíbrio das equações ?? é dado pela resolução do sistema de EDOs:

$$\dot{x} = 1 - (b+1)x + ax^{2}y = 0$$

$$+ \dot{y} = bx - ax^{2}y = 0$$

$$\dot{x} + \dot{y} = ax^{2}y + be \cdot x + 1 - x = 0$$

$$\dot{x} + \dot{y} = 1 - x = 0$$
(9)

Desse modo, escolhendo x=1 e substituindo isso na segunda equação (5) vamos obter $y=\frac{b}{a}$. Assim, encontramos o único ponto de equilíbrio da modelo, isto é, o ponto $\left(1,\frac{b}{a}\right)$.

2. Aspectos Teóricos

A matriz Jacobiana é dada por

$$J = \begin{bmatrix} -(b+1) + 2axy & ax^2 \\ b - 2axy & -ax^2 \end{bmatrix}. \tag{10}$$

No ponto de equilíbrio $(1, \frac{b}{a})$, obtemos

$$J = \begin{bmatrix} b - 1 & a \\ -b & -a \end{bmatrix} \Rightarrow \begin{cases} p = \operatorname{tr}(J) = b - (a+1) \\ q = \det(J) = a \end{cases}$$
 (11)

Donde a equação característica segue: $\lambda^2 - p\lambda + q = 0$.

Disso, temos os seguintes casos para o ponto de equilíbrio.

2.4 Análise dos Pontos de Equilíbrio

2. Aspectos Teóricos

Δ	Característica	Classificação
$\Delta = 0$	$b>a+1$ e $\lambda_1=\lambda_2>0$	Nó Instável
	$\begin{vmatrix} b>a+1 & \text{e} \ \lambda_1=\lambda_2>0 \\ b< a+1 & \text{e} \ \lambda_1=\lambda_2<0 \end{vmatrix}$	Espiral assint. estável
$\Delta > 0$	$b>a+1 \ \mathrm{e} \ \lambda_1,\lambda_2>0$	Nó Instável
	$b>a+1 \ {\rm e} \ \lambda_1, \lambda_2>0$ b	Nó Estável
$\Delta < 0$	$b > a + 1 e \alpha > 0$	Espiral Instável
	$b < a + 1 e \alpha < 0$	Espiral Estável
	$b = a + 1 e \alpha = 0$	Centro ou Espiral Degenerado

Tabela 1: Análise dos pontos de equilíbrio.

Definição: Fenômeno no qual, ao variar um parâmetro, as trajetórias deixam de ser atraídas (ou repelidas) por um ponto fixo e passam a ser atraídas (ou repelidas) por uma solução oscilatória e periódica.

Figura 2: Mudança da classificação do ponto de equilíbrio conforme b varia.

Para ocorrer a bifurcação de Hopf, basta atender a duas condições derivadas do **Critério de Routh-Hurwitz**:

Proposição 1. Demonstrar que os autovalores da Jacobiana J são puramente imaginários e não-zero em b=a+1.

Proposição 2. Provar que a taxa de variação da variação da parte real dos autovalores é não nula em b=a+1.

É razoável achar que a bifurcação de Hopf ocorre quando b=a+1, dado que temos um **centro ou espiral degenerado**.

Obs: Para a análise de bifurcação, fixaremos o a e iremos variar o b.

2.6 Demonstração

2. Aspectos Teóricos

- (I) Os autovalores da Jacobiana J serão puramente imaginários se, e somente se, $p^2-4q<0$ e b=a+1. Como p=b-1-a, derivamos que em b=a+1, o traço p é nulo. Portanto, o discriminante $p^2-4q=-4q$ será menor que zero quando q>0.
- (II) Para um autovalor λ , a parte real é $\Re(\lambda) = \frac{1}{2}p$. Como fixamos o a, vamos provar que $\frac{\partial \Re(\lambda)}{\partial b} \neq 0$:

$$\frac{\partial \Re(\lambda)}{\partial b} = \frac{1}{2} \frac{\partial}{\partial b} [b - a - 1] = \frac{1}{2} \neq 0 \tag{12}$$

como desejávamos. Portanto, por I e II, uma bifurcação de Hopf ocorre quando b=a+1. \blacksquare

3. Métodos Aproximados

3. Métodos Aproximados

Para nossos experimentos, iremos usar o método de Rugen-Kuta de 4ª ordem.

3. Métodos Aproximados

4. Simulações

Figura 4: Soluções de Equilíbrio para $\Delta=0$ (autovalores iguais)

Figura 5: Soluções de Equilíbrio para $\Delta>0$ (autovalores reais)

Figura 6: Soluções de Equilíbrio para $\Delta < 0$ (autovalores complexos conjugados)

Figura 7: Solução de Equilíbrio para $\Delta < 0$ (autovalores imaginários)

Observamos que fixando a=1 e variando o parâmetro b, temos a formação de ciclos limites entorno do ponto de equilíbrio, que darão uma natureza periódica ao comportamento do sistema.

Figura 10: Evolução Temporal para $a=1,\,b=1.9$ e solução inical (1.1, 2)

4.2 Evolução Temporal das Soluções

4. Simulações

Na figura Figura 10, observa-se que o modelo oscila cada vez menos até convergir para a situação de equilíbrio. Isso deve a qualidade do tipo da solução em função das constantes a e b, que geram uma espiral estável em torno do ponto de equilíbrio.

Figura 11: Evolução Temporal para $a=1,\,b=2$ e solução inicial (1.0001, 2.0001)

4. Simulações

Na figura Figura 11, para $a=1,\,b=2$ e uma solução inicial suficientemente próxima da condição de equilíbrio, observamos que o sistema adquire um comportamento oscilatório periódico e regular. As curvas oscilam de forma harmônica e possuem forma senoidal.

Figura 12: Evolução Temporal para $a=1,\,b=2.2$ e solução inicial (1.1, 2.4)

4.2 Evolução Temporal das Soluções

4. Simulações

No gráfico da Figura 12, observamos que, apesar da solução de equilíbrio ser instável, o sistema converge para uma órbita periódica atratora, um ciclo limite no espaço de fases. As curvas, sob essas condições, mantém-se consideravelmente estáveis e suaves.

Figura 13: Evolução Temporal para $a=1,\,b=5$ e solução inicial (1.1, 2.1)

Por fim, a figura Figura 13 demonstra o sistema convergindo para um situação de oscilações relaxadas. Observa-se que ambas as curvas possuem um comportamento não harmônico e cujo movimento é seguido de um tempo lento de "acúmulo" seguido de um tempo rápido de "relaxação". As curvas são similares a pulsos.

5. Conclusão

O modelo de Brusselator revela como sistemas químicos simples podem exibir comportamentos dinâmicos complexos, desde equilíbrio estável até oscilações periódicas e ciclos limite. A análise do ponto de equilíbrio e da bifurcação de Hopf demonstra a transição entre regimes distintos, enquanto as simulações ilustram padrões como amortecimento, harmonia e relaxação. Esses resultados destacam a capacidade do modelo em descrever fenômenos reais, como reações oscilatórias.

Referências

- [1] S. Ault e E. Holmgreen, «Dynamics of the Brusselator». 2003.
- [2] J. Llibre e C. Valls, «Global qualitative dynamics of the Brusselator system», *Mathematics and Computers in Simulation*, vol. 170, pp. 107–114, 2020, [Online]. Disponível em: https://www.sciencedirect.com/
- [3] M. Braun, *Differential Equations and Their Applications: An Introduction to Applied Mathematics*, 2.° ed. New York: Springer-Verlag, 1978.