

Estruturas de Dados II Algoritmo de Bellman-Ford

Prof. Leonardo C. R. Soares - leonardo.soares@ifsudestemg.edu.br
Instituto Federal do Sudeste de Minas Gerais
6 de setembro de 2024

^aEste material é fortemente baseado nas notas de aula do professor Marco Antonio Moreira de Carvalho - UFOP

Arestas de peso negativo

Para além das distâncias geográficas, caminhos mais curtos podem modelar diversas outras situações reais, incluindo aquelas que para serem modeladas necessitam de arestas cujo peso é negativo:

- Movimentações financeiras, nas quais é possível obter lucro ou prejuízo, principalmente quando há utilização de câmbio;
- ► Um taxista que recebe mais dinheiro do que gasta com combustível a cada viagem: se o táxi roda vazio, ele gasta mais do que recebe;
- ► Um entregador que necessita atravessar um pedágio e pode acabar pagando mais do que recebe para entregar encomendas;
- ► A energia gerada e consumida durante uma reação química.

Ford-Moore-Bellman?

Alguns autores denominam o algoritmo como Algoritmo de *Ford-Moore-Bellman* em homenagem aos três autores que propuseram o mesmo algoritmo em anos diferentes:

- ► Lester Ford (1956);
- ► Edward Moore (1957);
- ► Richard Bellman (1958).

Princípio

Ao invés de fechar um vértice por iteração, como o algoritmo de Dijkstra, o algoritmo de Bellman-Ford examina todos os vértices de um grafo **orientado** por iteração até que atualizações não sejam possíveis.

Em um grafo com n vértices, qualquer caminho possui no máximo n-1 arestas, portanto, cada vértice é examinado no máximo n-1 vezes.

Com esta estratégia, é possível calcular caminhos mínimos em grafos com arestas de **peso negativo**.

Assim como o algoritmo de Dijkstra, baseia-se no princípio de relaxação: uma aproximação da distância da origem até cada vértice é gradualmente atualizada por valores mais precisos até que a solução ótima seja atingida.

Princípio

Se, em alguma iteração do algoritmo os caminhos até cada um dos vértices permanecerem inalterados, não haverá atualizações nas próximas iterações e o algoritmo pode terminar.

Princípio

Se, em alguma iteração do algoritmo os caminhos até cada um dos vértices permanecerem inalterados, não haverá atualizações nas próximas iterações e o algoritmo pode terminar.

Entretanto, se houver atualizações na última iteração do algoritmo, é sinal de que há pelo menos um ciclo negativo no grafo, dado que algum caminho terá n arestas ou mais. Para este caso, o algoritmo não será capaz de retornar o caminho mínimo, a maioria das implementações retorna false para este caso e true caso contrário.

Terminologia

- $ightharpoonup \Gamma^-(i)$: Conjunto de vértices antecessores do vértice atual;
- lacktriangledown dt[i]: Vetor que armazena a distância entre o vértice de origem e o vértice i;
- ightharpoonup rot[i]: Vetor que armazena o índice do vértice anterior ao vértice i, no caminho cuja distância está armazenada em dt[i];
- ► altera: Variável booleana que indica se houve alguma atualização na iteração atual.


```
Entrada: Grafo G = (V, E) e matriz de pesos D = \{d_{ij}\} para todos os arcos (i, j)
 1 dt[1] \leftarrow 0; rot[1] \leftarrow \infty; //considerando o vértice 1 como o inicial
 2 para i \leftarrow 2 até n faca
        se \exists (1, i) \in E então rot[i] \leftarrow 1; dt[i] \leftarrow d_{1i};
        senão rot[i] \leftarrow 0; dt[i] \leftarrow \infty;
 5 fim
 6 para k \leftarrow 1 até n-1 faça
        altera ← falso:
        para i \leftarrow 2 até n faca
              para j \in \Gamma^{-}(i) faça
 9
                   se dt[i] > dt[j] + d_{ii} então
10
                         dt[i] \leftarrow dt[j] + d_{ii};
11
                        rot[i] \leftarrow j;
12
                         altera ← verdadeiro; //indica que houve alteração
13
                    fim
14
              fim
15
        fim
16
        se altera = falso então k \leftarrow n:
17
18 fim
```


INSTITUTO FEDERAL Sudeste de Minas Gerais

dt					
2	3	4	5	6	
1	3	∞	∞	∞	

rot					
2	3	4	5	6	
1	1	0	0	0	

Vetores após a inicialização do algoritmo.

$$i=2, \Gamma^{-}(i)=\{1\};$$
 $b=1, dt[1]+d_{12}=1$

dt					
2	3	4	5	6	
1	3	∞	∞	∞	

		rot		
2	3	4	5	6
1	1	0	0	0

$$i=3, \Gamma^{-}(i)=\{1, 2\};$$

$$j=1, dt[1]+d_{13}=3$$

$$j=2$$
, $dt[2]+d_{23}=2$

at						
2	3	4	5	6		
1	2	∞	∞	∞		

rot					
2	3	4	5	6	
1	2	0	0	0	

$$i=4, \Gamma^{-}(i)=\{2, 3, 5\};$$

$$j=2$$
, $dt[2]+d_{24}=4$

$$\rightarrow$$
 $j=3$, $dt[3]+d_{34}=4$

▶
$$j=5$$
, $dt[5]+d_{54}=\infty$

uι					
2	3	4	5	6	
1	2	4	∞	∞	

		rot		
2	3	4	5	6
1	2	2	0	0

$$i=5, \Gamma^{-}(i)=\{2, 6\};$$

- $> j=2, dt[2]+d_{25}=3$
- ► j=6, dt[6]+ $d_{65} = \infty$

		at		
2	3	4	5	6
1	2	4	3	∞

rot					
2	3	4	5	6	
1	2	2	2	0	

$$i=6, \Gamma^{-}(i)=\{4\};$$

$$> j=4, dt[4]+d_{46}=6$$

ατ					
2	3	4	5	6	
1	2	4	3	6	

		rot		
2	3	4	5	6
1	2	2	2	4

Iteração k=1 (final)

$$i=2, \Gamma^{-}(i)=\{1\};$$

$$\triangleright$$
 $j=1$, $dt[1]+d_{12}=1$

uι						
2	3	4	5	6		
1	2	4	3	6		

		rot		
2	3	4	5	6
1	2	2	2	4

$$i=3, \Gamma^{-}(i)=\{1, 2\};$$

$$j=1, dt[1]+d_{13}=3$$

$$j=2$$
, $dt[2]+d_{23}=2$

		at		
2	3	4	5	6
1	2	4	3	6

rot						
2	3	4	5	6		
1	2	2	2	4		

$$i=4, \Gamma^{-}(i)=\{2, 3, 5\};$$

$$j=2$$
, $dt[2]+d_{24}=4$

$$j=3$$
, $dt[3]+d_{34}=4$

$$\triangleright$$
 $j=5$, $dt[5]+d_{54}=0$

		at		
2	3	4	5	6
1	2	0	3	6

rot					
2	3	4	5	6	
1	2	5	2	4	

$$i=5, \Gamma^{-}(i)=\{2, 6\};$$

$$> j=2, dt[2]+d_{25}=3$$

$$\rightarrow$$
 $j=6$, $dt[6]+d_{65}=9$

_	at						
Γ	2	3	4	5	6		
	1	2	0	3	6		

rot						
2	3	4	5	6		
1	2	5	2	4		

$$i=6, \Gamma^{-}(i)=\{4\};$$

$$\triangleright$$
 j=4, $dt[4]+d_{46}=2$

		dt		
2	3	4	5	6
1	2	0	3	2

		rot		
2	3	4	5	6
1	2	5	2	4

Iteração k=2 (final)

Final

Na próxima iteração, em que k=3, nenhuma alteração é realizada e o algoritmo se encerra indicando que foi possível encontrar o caminho mínimo.

Ciclos de custo negativo

Bellman-Ford - Detecção

Em caminhos sem ciclos, o caminho mais longo consiste em n-1 arestas, ou iterações no laço principal do algoritmo.

Caso ocorra alguma atualização de distância na iteração n do algoritmo, é detectado um ciclo de peso negativo.

Exemplo de ciclo negativo entre os vértices 4 e 5.

Bellman-Ford

Complexidade

Em uma implementação simples, o laço principal é repetido no máximo n-1 vezes. A cada iteração, são calculados caminhos com k arestas entre a origem o os demais vértices. Para cada um dos n-1 vértices, todos os seus antecessores são examinados. O vértice original não é atualizado, logo n-2 antecessores são analisados no máximo. Logo, a complexidade é limitada por $\mathcal{O}(n^3)$.

Bellman-Ford

Complexidade

Em uma implementação simples, o laço principal é repetido no máximo n-1 vezes. A cada iteração, são calculados caminhos com k arestas entre a origem o os demais vértices. Para cada um dos n-1 vértices, todos os seus antecessores são examinados. O vértice original não é atualizado, logo n-2 antecessores são analisados no máximo. Logo, a complexidade é limitada por $\mathcal{O}(n^3)$.

Em 1970, Jin Yen^a propôs uma implementação deste método de complexidade $\mathcal{O}(nm)$.

^aYen, Jin Y. (1970). "An algorithm for finding shortest routes from all source nodes to a given destination in general networks". Quarterly of Applied Mathematics 27: 526–530.

Exercício

Execute o algoritmo de Bellman-Ford para o grafo abaixo. Considere o vértice de saída como 0:

Exercício

Execute o algoritmo de Bellman-Ford para o grafo abaixo. Considere o vértice de saída como 0:

Exercício

Execute o algoritmo de Bellman-Ford para o grafo abaixo. Considere o vértice de saída como S:

