A scientist carries out an experiment to investigate the quantity X, which takes the values 0, 1, 2, 3, 4, 5 or 6. He believes that the values taken by X follow a binomial distribution. He conducts 250 trials. His results are summarised in the following table.

$\boldsymbol{\mathcal{X}}$	0	1	2	3	4	5	6
Observed frequency	22	83	72	53	17	3	0

(i) Show that unbiased estimates of the mean and variance for these results are 1.876 and 1.266 respectively, correct to 3 decimal places. By evaluating the mean and variance of the distribution B(6, 0.313), explain why *X* could have this distribution. [4]

The expected frequencies corresponding to the distribution B(6, 0.313) are shown in the following table.

$\boldsymbol{\mathcal{X}}$	0	1	2	3	4	5	6
Observed frequency	22	83	72	53	17	3	0
Expected frequency	26.3	71.9	81.8	49.7	17.0	3.1	0.2

(ii) Show how the expected frequency for x = 4 is calculated.

[2]

(iii) Test at the 5% significance level whether the scientist's belief is correct.

[8]