Resonance Tank Capacitor and Output Capacitor

Table of contents

- Resonance Tank Capacitor and Output Capacitor
 - Inputs and claculated parameters
 - Output capacitor Co
 - Formulas
 - Numerical Implementation of the Formulas
 - First proposition
 - Second proposition
 - Comparaison
 - Resonanat capacitor Cr
 - Chosing a capacitor for Cr
 - Understanding the Derating Curve of the Capacitors
 - Resonant capacitors configuration
 - References

Inputs and claculated parameters

V_In_min 360.0 V_In_max 400.0 Vo_nom 48.0 Power

```
V_In_nom 380.0 Vo_min 42.0 Vo_max 54.0 f_nom 100000.0
```

```
Lnc 3.000 Lm_uH 65.392 Ioe_rms 7.636 Re_110 22.637 Qec 0.550 fsw_min 60170.000 Ios_rms 30.545 Cr 0.0 Cr_nF 116.209 fsw_max 156220.000 Ir_rms 10.354 Lr 0.000022 n 4.000 Im_rms 6.992 L_second_uH 4.087 Lm 0.000065 Lr uH 21.797 Io 25.000 Re nom 24.901
```

Output capacitor Co

Formulas

For a resistive load, the output capacitor is determined by

$$C_o \geq C_{o_{min}} = rac{I_o}{8 \cdot f_{sw} \cdot \Delta V_{out}}$$

Where: - C_o : Output capacitance (Farads, F) - I_o : Output load current (Amperes, A) - f_{sw} : Switching frequency of the converter (Hertz, Hz) - ΔV_{out} : Maximum allowed output voltage ripple (Volts, V)

$$ESR_{max} = rac{\Delta V_{out}}{I_{rect_peak}} = rac{\Delta V_{out}}{rac{\pi}{4} \cdot I_o \cdot 2}$$

$$I_{C_o}=I_o\sqrt{rac{\pi^2}{8}-1}$$

Where: - I_{C_o} : RMS current of the capacitor @ f_sw = f_nom See page 26, 27 [

1

](#referencesID_03_1).

By default, you can found all formula of this chapeter in the same ref

For a resistive load, the output capacitor is determined by

$$C_o \geq C_{o_{min}}$$

$$C_{o_{min}} = rac{I_o}{8 \cdot f_{sw} \cdot \Delta V_{outC}}$$

Where:

• C_o : Output capacitance (Farads, F)

• I_o: Output load current (Amperes, A)

 f_{sw} : Switching frequency of the converter (Hertz, Hz)

• ΔV_{out} : Maximum allowed output voltage ripple (Volts, V)

$$ESR_{max} = rac{\Delta V_{outR}}{I_{rect_peak}}$$

$$I_{rect_peak} = rac{\pi}{4} \cdot I_o \cdot 2$$

$$I_{C_o}=I_o\sqrt{rac{\pi^2}{8}-1}$$

Where:

ullet I_{C_o} : RMS current of the capacitor @ $f_{sw}=f_{nom}$

And the total ripple voltage can be:

•
$$V_{out} \approx V_{outR} + V_{outC}$$

In this design we will verify:

$$ullet V_{outR} < rac{V_{outMax}}{2} \ ullet V_{outC} < rac{V_{outMax}}{2}$$

•
$$V_{outC} < \frac{V_{outMax}}{2}$$

See page 26, 27 [1].

By default, you can find all formulas of this chapter in the same reference.

Numerical Implementation of the Formulas

We must use fsw_min to the worst case

$${
m Io} = 25.000 \;\; {
m (A)}$$
 ${
m fsw}_{min} = 60170.000 \;\; {
m (Hz)}$ ${
m DV} = 0.250 \;\; {
m (vpp)}$

$$egin{aligned} ext{Co}_{min_{uF}} &= 1 imes 10^6 \cdot rac{ ext{Io}}{8 \cdot ext{fsw}_{min} \cdot ext{DV}} \ &= 1 imes 10^6 \cdot rac{25.000}{8 \cdot 60170.000 \cdot 0.250} \ &= 207.745 \ \ (ext{uF}) \end{aligned}$$

$$egin{aligned} ext{ESR}_{max_m} &= 1 imes 10^3 \cdot rac{ ext{DV}}{ ext{Io} \cdot rac{\pi}{2}} \ &= 1 imes 10^3 \cdot rac{0.250}{25.000 \cdot rac{3.142}{2}} \ &= 6.366 \pmod{9} \end{aligned}$$

$$egin{align} I_{Co} &= ext{Io} \cdot \sqrt{rac{{{{\left(\pi
ight)}^2}}}{8}} - 1 \ &= 25.000 \cdot \sqrt{rac{{{{\left({3.142}
ight)}^2}}}{8}} - 1 \ &= 12.086 \;\; ext{(Arms)} \end{array}$$

First proposition

B40910A8127M000 aluminum electrolytic capacitors with Temp_max = 150°C, Below a screenshoot of the datasheet [2].

Hybrid polymer aluminum electrolytic capacitors	B40910
Very high ripple current – up to 150 °C	

Technical data and ordering codes

C _R 120 Hz 20 °C μF	Case dimensions ¹⁾ d x I mm	ESR _{max} 100 kHz 20 °C Ω	I _{AC,R} 100 kHz 125 °C A	I _{AC,max} 100 kHz 135 °C A	Ordering code (composition see below)			
V _R = 63 V DC								
82	10 x 10.2 10 x 10.5	0.022	4.0	2.8	B40910A8826M***			
100	10 x 10.2 10 x 10.5	0.022	4.0	2.8	B40910A8107M***			
100	10 x 12.5 10 x 12.8	0.017	4.6	3.2	B40910B8107M***			
120	10 x 12.5 10 x 12.8	0.017	4.6	3.2	B40910A8127M***			
150	10 x 16.5 10 x 16.8	0.013	5.5	3.8	B40910A8157M***			
180	10 x 16.5 10 x 16.8	0.013	5.5	3.8	B40910A8187M***			

Figure 1: B40910A8127M000 aluminum electrolytic capacitors with Temp_max = 150°C

Let's start with a configuration of 5 capacitors in parallel

$$\begin{split} \text{Nb}_{capa} &= 6 \\ C_{capa_{nom}} &= 120 \text{ (uF)} \\ \text{Margin} &= 20 \text{ (}\backslash\%\text{)} \\ C_{capa} &= C_{capa_{nom}} \cdot \left(1 - \frac{\text{Margin}}{100}\right) = 120 \cdot \left(1 - \frac{20}{100}\right) \\ &= 96.000 \text{ (uF, Worst case)} \\ C_{eq} &= C_{capa} \cdot \text{Nb}_{capa} = 96.000 \cdot 6 \\ &= 576.000 \text{ (uF} > 208\text{uF ok)} \\ \text{ESR}_{capa} &= 17 \text{ (}\Omega @ 100\text{kHz)} \\ \text{ESR}_{eq} &= \frac{\text{ESR}_{capa}}{\text{Nb}_{capa}} = \frac{17}{6} \\ &= 2.833 \text{ (}\Omega < 6.36\text{m OK)} \\ \text{Icapa}_{max} &= 4.600 \\ \text{Ieq}_{max} &= \text{Icapa}_{max} \cdot \text{Nb}_{capa} \\ &= 4.600 \cdot 6 \end{split}$$

 $= 27.600 \ \ (@ \ Arms \ @ \ 125 \ ^{\circ}C \ 100 kHz > 12.08 Arms \ ok)$

Voltage ripples

$$\begin{split} \Delta_{V_{outC}} &= \frac{\text{Io}}{8 \cdot \text{fsw}_{min} \cdot C_{eq} \cdot 1 \times 10^{-6}} = \frac{25.000}{8 \cdot 60170.000 \cdot 576.000 \cdot 1 \times 10^{-6}} \\ &= 0.090 \text{ (V)} \\ I_{rect_{peak}} &= \text{Io} \cdot \frac{\pi}{2} = 25.000 \cdot \frac{3.142}{2} \\ \Delta_{V_{outR}} &= I_{rect_{peak}} \cdot \text{ESR}_{eq} \cdot 1 \times 10^{-3} = 39.270 \cdot 2.833 \cdot 1 \times 10^{-3} \\ \Delta_{V_{outR}} &= \Delta_{V_{outR}} + \Delta_{V_{outC}} = 0.111 + 0.090 \\ &= 0.201 \text{ (< 0.25mV)} \end{split}$$

 $= 0.201 \ (< 0.25 \text{mV})$

Self heating

Power Dissipation of Each Capacitor

$$egin{aligned} I_{each_{capa}} &= rac{I_{Co}}{ ext{Nb}_{capa}} \ &= rac{12.086}{6} \ &= 2.014 \end{aligned}$$

$$P_{selfHeating} = \mathrm{ESR}_{capa} \cdot 1 \times 10^{-3} \cdot \left(I_{each_{capa}}\right)^2$$

= $17 \cdot 1 \times 10^{-3} \cdot (2.014)^2$
= 0.069 (W)

Estimation of Thermal Resistance Rth

$$\Delta_T = 150 - 125$$
 = 25 (°C)
ESR = 0.017
 $I = 4.600 \text{ (Arms)}$
 $P_{dissip} = \text{ESR} \cdot (I)^2$
= 0.017 \cdot (4.600)^2
= 0.360 (W)

$$egin{aligned} R_{th} &= rac{\Delta_T}{P_{dissip}} \ &= rac{25}{0.360} \ &= 69.498 \ \ (^{\circ}\mathrm{C/W}) \end{aligned}$$

The self heating estimation and the max ambiant temp

$$\Delta_T = P_{selfHeating} \cdot R_{th}$$

$$= 0.069 \cdot 69.498$$

$$= 4.794 \quad (^{\circ}C => low delta temp)$$

$$egin{align} {
m Margin} &= 30 \ \ ({
m ^{\circ}C}) \ \\ T_{max} &= 150 \ \\ T_{amb_{max}} &= T_{max} - \Delta_T - {
m Margin} \ \\ &= 150 - 4.794 - 30 \ \\ &= 115.206 \ \ ({
m ^{\circ}C}) \ \end{array}$$

Voltage margin

$$egin{aligned} ext{Vo}_{max} &= 54.000 \;\; ext{(VDC)} \ V_{max_{datasheet}} &= 63 \;\; ext{(VDC)} \ ext{Voltage}_{Margin} &= 100 \cdot rac{V_{max_{datasheet}} - ext{Vo}_{max}}{V_{max_{datasheet}}} \ &= 100 \cdot rac{63 - 54.000}{63} \ &= 14.286 \;\; (ackslash \%) \end{aligned}$$

This solution is acceptable, but the voltage margin is limited.

Second proposition

EMHS101ARA331MMN0S aluminum electrolytic capacitors with Temp_max = 150°C, Below a screenshoot of the datasheet [4].

wv	Сар	Size code	ESR (Ω max./100kHz)		Rated ripple current	Part No.	
(V _{dc}) (μF)		Size code	20℃	-40°C	(mArms/125°C, 100kHz)		
100	110	KE0	0.17	2.5	920	EMHS101□RA111MKE0S	
	150	KG5	0.13	1.8	1,030	EMHS101□RA151MKG5S	
	160	LH0	0.098	1.3	1,640	EMHS101□RA161MLH0S	
	200	MH0	0.091	0.98	1,720	EMHS101□RA201MMH0S	
	240	LN0	0.063	0.80	2,230	EMHS101□RA241MLN0S	
	330	MN0	0.059	0.59	2,300	EMHS101□RA331MMN0S	

Figure 2: EMHS101ARA331MMN0S aluminum electrolytic capacitors with Temp_max = 150°C

Let's start with a configuration of 5 capacitors in parallel

$$Nb_{capa} = 10$$

$$C_{capa_{nom}} = 330 \; (uF)$$

$$Margin = 20 \ (\\%)$$

$$C_{capa} = C_{capa_{nom}} \cdot \left(1 - rac{ ext{Margin}}{100}
ight) = 330 \cdot \left(1 - rac{20}{100}
ight) \qquad = 264.000 \; ext{ (uF, Worst case)}$$

$$C_{eq} = C_{capa} \cdot \text{Nb}_{capa} = 264.000 \cdot 10$$
 = 2640.000 (uF > 208uF ok)

$$ESR_{capa} = 59 \ (\Omega @ 100 kHz)$$

$$ext{ESR}_{eq} = rac{ ext{ESR}_{capa}}{ ext{Nb}_{capa}} = rac{59}{10} = 5.900 \; \left(\Omega < 6.36 ext{m OK}
ight)$$

$$Icapa_{max} = 2.300$$

$$Ieq_{max} = Icapa_{max} \cdot Nb_{capa} = 2.300 \cdot 10$$
 = 23.000 (@ Arms)

Voltage ripples

$$\Delta_{V_{outC}} = rac{ ext{Io}}{8 \cdot ext{fsw}_{min} \cdot C_{eg} \cdot 1 imes 10^{-6}} = rac{25.000}{8 \cdot 60170.000 \cdot 2640.000 \cdot 1 imes 10^{-6}} \hspace{1cm} = 0.020$$

$$I_{rect_{peak}} = ext{Io} \cdot rac{\pi}{2} = 25.000 \cdot rac{3.142}{2} = 39.270$$

$$\Delta_{V_{outR}} = I_{rect_{peak}} \cdot \mathrm{ESR}_{eq} \cdot 1 \times 10^{-3} = 39.270 \cdot 5.900 \cdot 1 \times 10^{-3} = 0.232$$

$$egin{aligned} \Delta_{V_{out}} &= \Delta_{V_{outR}} + \Delta_{V_{outC}} \ &= 0.232 + 0.020 \ &= 0.251 \ ext{ (clause to } 0.25 ext{mV)} \end{aligned}$$

Self heating

Power Dissipation of Each Capacitor

$$I_{each_{capa}} = rac{I_{Co}}{{
m Nb}_{capa}} = rac{12.086}{10} \hspace{1.5cm} = 1.209$$

$$P_{selfHeating} = \mathrm{ESR}_{capa} \cdot 1 \times 10^{-3} \cdot \left(I_{each_{capa}}\right)^2 \ = 59 \cdot 1 \times 10^{-3} \cdot \left(1.209\right)^2 \ = 0.086 \ \mathrm{(W)}$$

Estimation of Thermal Resistance Rth

$$egin{align} \Delta_T &= 150 - 125 &= 25 \ (^\circ ext{C}) \ \\ P_{dissip} &= ext{ESR}_{capa} \cdot 1 imes 10^{-3} \cdot (ext{Icapa}_{max})^2 \\ &= 59 \cdot 1 imes 10^{-3} \cdot (2.300)^2 \\ &= 0.312 \ (ext{W}) \ \end{aligned}$$

$$R_{th} = rac{\Delta_T}{P_{dissip}} = rac{25}{0.312} = 80.100 \; (^{\circ} ext{C/W})$$

The self heating estimation and the max ambiant temp

$$\begin{split} \Delta_T &= P_{selfHeating} \cdot R_{th} = 0.086 \cdot 80.100 &= 6.903 \text{ (°C => low delta temp)} \\ \text{Margin} &= 30 \text{ (°C)} \\ T_{max} &= 150 \\ T_{amb_{max}} &= T_{max} - \Delta_T - \text{Margin} = 150 - 6.903 - 30 &= 113.097 \text{ (°C)} \\ \text{Vo}_{max} &= 54.000 \text{ (VDC)} \\ V_{max_{datasheet}} &= 100 \text{ (VDC)} \\ \text{Voltage}_{Margin} &= 100 \cdot \frac{V_{max_{datasheet}} - \text{Vo}_{max}}{V_{max_{datasheet}}} = 100 \cdot \frac{100 - 54.000}{100} &= 46.000 \text{ (\%)} \end{split}$$

Comparaison

	requirements	Solutio1	Solutio2
ESR_eq	6.37	2.83	5.90
C_eq	207.74	576.00	2640.00
leq_max	12.09	27.60	23.00
VmaxDC	54.00	63.00	100.00
Delta_V_out	0.25	0.20	0.25
C_capa	NaN	96.00	264.00
Nb_capa	NaN	6.00	10.00
P_selfHeating	NaN	0.07	0.09
T_amb_max	NaN	115.21	113.10
Voltage_Margin	NaN	14.29	46.00

The voltage margin in the first solution is limited (16% in the worst case). However, I propose we proceed with this option, given the number of parallel capacitors. Care must be taken in control to prevent any

Resonanat capacitor Cr

Chosing a capacitor for Cr

The inputs data

$$Cr_{nF} = 116.209 \text{ (nF)}$$

$$V_{In_{max}} = 400.000 \text{ (V)}$$

$$fsw_{min} = 60170.000 \text{ (Hz)}$$

The RMS voltage of the resonant capacitor

$$egin{aligned} X_{Cr} &= rac{1}{2 \cdot \pi \cdot \mathrm{fsw}_{min} \cdot \mathrm{Cr}_{nF} \cdot 1 imes 10^{-9}} \ &= rac{1}{2 \cdot 3.142 \cdot 60170.000 \cdot 116.209 \cdot 1 imes 10^{-9}} \ &= 22.761 \ \ \mathrm{(Ohm)} \end{aligned}$$

$$V_{Cr} = \text{Ir}_{rms} \cdot X_{Cr} = 10.354 \cdot 22.761$$
 = 235.672 (V)

$$V_{Cr_{rms}} = \sqrt{\left(rac{V_{In_{max}}}{2}
ight)^2 + \left(V_{Cr}
ight)^2} = \sqrt{\left(rac{400.000}{2}
ight)^2 + \left(235.672
ight)^2} \hspace{0.5cm} = 309.098 \hspace{0.2cm} ext{(vrms)}$$

Starting with the B3267*L film capacitors, the maximum rated DC voltage is 2000 V. [2].

The design value of Cr is 116.2 nF Below are some possible combinations for constructing this resonant capacitor:

	Nominal_capa_nF	Nb capas in parallel	total capa nF	error %
0	6.2	19	117.8	1.4
1	6.8	17	115.6	-0.5
2	8.2	14	114.8	-1.2
3	10.0	12	120.0	3.3
4	12.0	10	120.0	3.3
5	15.0	8	120.0	3.3
6	22.0	5	110.0	-5.3
7	33.0	4	132.0	13.6
8	47.0	2	94.0	-19.1
9	56.0	2	112.0	-3.6
10	68.0	2	136.0	17.0

The current of each element capacitor

 ${
m Ir}_{rms_1}=1.294$

The 15 nF, 15 mm, 2000 VDC TDK MKP capacitor meets both the Vrms and Irms requirements.

⊗TDK

Hz 10⁶

Figure 3: Vrms 15 nF, 15 mm, 2000 VDC TDK MKP

Below is a screenshot from the B32672L datasheet. The ref **B32672L8153** is a 15 nF capacitor.

Ordering codes and packing units (lead spacing 15 mm)

V _{RMS}	V_R	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f≤1 kHz			$w \times h \times I$	(composition see	pack		
V AC	V DC	nF	mm	below)	pcs./MOQ	pcs./MOQ	pcs./MOQ
700	2000	1.0	$5.0 \times 10.5 \times 18.0$	B32672L8102+***	4680	5200	4000
		1.2	$5.0 \times 10.5 \times 18.0$	B32672L8122+***	4680	5200	4000
		1.5	$5.0 \times 10.5 \times 18.0$	B32672L8152+***	4680	5200	4000
		2.2	$5.0 \times 10.5 \times 18.0$	B32672L8222+***	4680	5200	4000
		2.7	$5.0 \times 10.5 \times 18.0$	B32672L8272+***	4680	5200	4000
		3.3	$5.0\times10.5\times18.0$	B32672L8332+***	4680	5200	4000
		3.9	$5.0 \times 10.5 \times 18.0$	B32672L8392+***	4680	5200	4000
		4.7	$5.0 \times 10.5 \times 18.0$	B32672L8472+***	4680	5200	4000
		5.6	$6.0 \times 11.0 \times 18.0$	B32672L8562+***	3840	4400	4000
		6.2	$6.0 \times 11.0 \times 18.0$	B32672L8622+***	3840	4400	4000
		6.8	$6.0 \times 11.0 \times 18.0$	B32672L8682+***	3840	4400	4000
		8.2	$6.0 \times 12.0 \times 18.0$	B32672L8822+***	3840	4400	4000
		10	$7.0 \times 12.5 \times 18.0$	B32672L8103+***	3320	3600	4000
		12	$8.5 \times 14.5 \times 18.0$	B32672L8123+***	2720	2800	2000
		15	$8.5\times14.5\times18.0$	B32672L8153+***	2720	2800	2000
		22	$9.0 \times 17.5 \times 18.0$	B32672L8223+***	2560	2800	2000
		33	$11.0\times18.5\times18.0$	B32672L8333+***	_	2200	1200

Figure 5: B32672L8153 is a 15 nF capacitor.

The ESR and Power dissipation

Figure 6: ESR and Thermal derating

From the below

 $6.8nF\ ESR = 70\mu\Omega$

33nF ESR=
$$50\mu\Omega$$

By linear interpolation, the ESR of a 15 nF capacitor can be estimated as 63.74 $\mu\Omega$

The power dissipation of each capacitor

$$\mathrm{ESR}_u = 63.740 \; (\mu\Omega)$$

$$Ir_{rms_1} = 1.294 \text{ (Arms)}$$

$${
m Ir}_{rms_{max}}=2~{
m (Arms)}$$

$$PD_{uW} = ESR_u \cdot (Ir_{rms_1})^2 = 63.740 \cdot (1.294)^2$$
 = 106.771 (uW)

The Rth estimation

$$T_{max} = 125$$

$$T_{100} = 100$$

$$\Delta_T = T_{max} - T_{100} = 125 - 100$$
 = 25

$$PD_{uW_{max}} = ESR_u \cdot (Ir_{rms_{max}})^2 = 63.740 \cdot (2)^2$$
 = 254.962

$$R_{TH} = rac{\Delta_T}{ ext{PD}_{uW_{max}}} = rac{25}{254.962} = 0.098 \ (^{\circ} ext{C/uW})$$

Each capacitor's self-heating and the maximum permissible ambient temperature.

$$\Delta_T = PD_{uW} \cdot R_{TH} = 106.771 \cdot 0.098$$
 = 10.469 (°C)

$$T_{amb_{max}} = 125 - \Delta_T = 125 - 10.469$$
 = 114.531 (°C)

Understanding the Derating Curve of the Capacitors

One point calculation

$$Ta = 105$$

$$\Delta_T = T_{max} - {
m Ta} = 125 - 105$$
 = 20

$$ext{PD}_{uW_{max}} = rac{\Delta_T}{R_{TH}} = rac{20}{0.098} = 203.969$$

$${
m Ir}_{rms_{max_{Ta}}}=1.789$$

$${
m Fa} = rac{{
m Ir}_{rms_{maxTa}}}{{
m Ir}_{rms_{maxTa}}} = rac{1.789}{2} = 0.894$$

The same calculation is repeated to construct the derating curve.

(80.0, 125.0)

Thermal Derating from datasheet

Calculated Thermal Derating

Resonant capacitors configuration

There are two possible configurations for the resonant capacitors:

• All capacitors in parallel:

which is the classic LLC configuration and offers simplicity in layout.

• Dividing the capacitors between the high side and low side:

which helps balance HV+ and HV-.

Below is a simulation of both solutions. We can see that the voltage and current of each capacitor are almost identical in both configurations, and all other voltages and currents are also very similar.

You can donwload the LTSPICE file using this Link.

Figure 7: Simulation of resonant capacitor configurations

References

- [1] Hong Huang, *Designing an LLC Resonant Half-Bridge Power Converter*. Available: https://bbs.dianyuan.com/upload/community/2013/12/01/1385867010-65563.pdf
- [2] B40910 Aluminum electrolytic capacitors datasheet
- [3] B3267*L Film Capacitors
- [4] EMHS Aluminum electrolytic capacitors datasheet