Eksamen på Økonomistudiet. Vinteren 2012 - 2013

MATEMATIK B

1. årsprøve

Tirsdag den 8. januar 2013

(3 timers skriftlig prøve med hjælpemidler. Dog må der ikke medbringes lommeregnere eller anvendes nogen form for elektroniske hjælpemidler)

Københavns Universitet. Økonomisk Institut

1. årsprøve 2013 V-1B ex

Skriftlig eksamen i Matematik B

Tirsdag den 8. jaunar 2013

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert talpar $(u, v) \in \mathbf{R}^2$ betragter vi den symmetriske 3×3 matrix

$$A(u,v) = \left(\begin{array}{ccc} u & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & v \end{array} \right).$$

- (1) Udregn determinanten for matricen A(u, v), og bestem de talpar $(u, v) \in \mathbb{R}^2$, så matricen A(u, v) er regulær.
- (2) Udregn de ledende hovedunderdeterminanter for matricen A(u, v), og bestem de talpar $(u, v) \in \mathbb{R}^2$, så matricen A(u, v) er positiv definit.
- (3) Vis, at matricen A(u, v) ikke er negativ definit for noget talpar $(u, v) \in \mathbb{R}^2$.
- (4) Bestem egenværdierne for matricen A(u, v). (De vil afhænge af parametrene u og v.)
- (5) Bestem egenværdierne for matricen A(2,5).
- (6) Bestem egenrummene for matricen A(2,5).
- (7) Bestem en diagonalmatrix D og en ortogonal matrix Q, så

$$D = Q^{-1}AQ.$$

Opgave 2. Vi betragter mængden

$$D = \{(x, y) \in \mathbf{R}^2 \mid x > 0 \land y > 0\}$$

og funktionen $f: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in D : f(x,y) = 2x^2 - \sqrt{x} - \sqrt{y} + y.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in D$.

- (2) Vis, at funktionen f har netop et stationært punkt, og bestem dette punkt.
- (3) Bestem Hessematricen H(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in D$.

Vis dernæst, at funktionen f er strengt konveks overalt på definitionsmængden D.

- (4) Bestem værdimængden R(f) for f.
- (5) Betragt funktionen $g: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in D : g(x,y) = e^{f(x,y)}.$$

Vis, at funktionen g er konveks.

Opgave 3. Vi betragter differentialligningen

(*)
$$\frac{dx}{dt} + 6\cos(2t)x = 4t^3 e^{t^4 - 3\sin(2t)}.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til differentialligningen (*), så betingelsen $\tilde{x}(0) = 1066$ er opfyldt.
- (3) Udregn differentialkvotienten

$$\frac{d\tilde{x}}{dt}(0)$$
.

Opgave 4. I vektorrummet \mathbb{R}^4 , som er forsynet med det sædvanlige indre produkt (prikproduktet), betragter vi vektorerne

$$a = (1, 2, -1, 3)$$
 og $b = (0, 2, 2, 8)$.

- (1) Bestem afstanden d(a,b) = ||a-b||.
- (2) Bestem mængden

$$M = \{ x = (x_1, x_2, x_3, x_4) \in \mathbf{R}^4 \mid a \cdot x = 0 \land b \cdot x = 0 \}.$$

(3) Vis, at mængden M er et underrum i vektorrummet $\mathbf{R}^4.$