Ridge Regression

9 questions

t
of the following is NOT a valid measure of overfitting?
Sum of parameters (w1+w2++wn)
Sum of squares of parameters (w1^2 + w2^2 + +wn^2)
Range of parameters, i.e., difference between maximum and minimum parameters
Sum of absolute values of parameters (w1 + w2 + + wn)
e regression, choosing a large penalty strength λ tends to lead to a
with (choose all that apply): High bias
Low bias
High variance
Low variance

1 point

3.

Which of the following plots best characterize the trend of bias, variance, and generalization error (all plotted over λ)?

O

O

0

1 point	
of a giv	e regression using unnormalized features, if you double the value ven feature (i.e., a specific column of the feature matrix), what ns to the estimated coefficients for every other feature? They:
0	Double
0	Half
0	Stay the same
0	Impossible to tell from the information provided
provid	nly have a small number of observations, K-fold cross validation es a better estimate of the generalization error than the cion set method. True False
	cross validation is more computationally intensive than leave- it (LOO) cross validation. True False

1 noint 7.

Assume you have a training dataset consisting of N observations and D features. You use the closed-form solution to fit a multiple linear regression model using ridge regression. To choose the penalty strength λ , you run leave-one-out (LOO) cross validation searching over L values of λ . Let Cost(N,D) be the computational cost of running ridge regression with N data points and D features. Assume the prediction cost is negligible compared to the computational cost of training the model. Which of the following represents the computational cost of your LOO cross validation procedure?

L* N * Cost(N,D)
 L* N * Cost(N-1,D)
 L* D * Cost(N-1,D)
 L* D * Cost(N,D)
 L* Cost(N-1,D)
 L* Cost(N,D)

1 point

8

Assume you have a training dataset consisting of 1 million observations. Suppose running the closed-form solution to fit a multiple linear regression model using ridge regression on this data takes 1 second. Suppose you want to choose the penalty strength λ by searching over 100 possible values. How long will it take to run leave-one-out (LOO) cross-validation for this selection task?

About 3 hoursAbout 3 daysAbout 3 yearsAbout 3 decades

1 point <u>ي</u>.

Assume you have a training dataset consisting of 1 million observations. Suppose running the closed-form solution to fit a multiple linear regression model using ridge regression on this data takes 1 second. Suppose you want to choose the penalty strength λ by searching over 100 possible values. If you only want to spend about 1 hour to select λ , what value of k should you use for k-fold cross-validation?

()	k=6
	IN C

1 question unanswered

Submit Quiz

