Tutorium 1 zu Mathematik III (Physik)

Aufgabe 1:

Sei $A := \{a, b, c\}$ eine dreielementige Menge. Beweise, daß

$$O := \{\emptyset, \{a\}, \{a,b\}, \{a,b,c\}\}$$

eine Topologie auf A ist. Finde alle $x \in A$, für welche die Identitätsabbildung zwischen zwei topologischen Räumen

$$id_A: (A, O) \to (A, \mathcal{P}(A))$$

 $y \mapsto y$

stetig in x ist.

Aufgabe 2:

Es sei $X:=\{\triangleleft,\bigcirc,\triangleright\},\ Y:=\{\blacktriangleleft,\bullet,\blacktriangleright\}$ und $f:X\to Y$ definiert durch $f(\bigcirc):=\bullet,\ f(\multimap):=\blacktriangleleft$ und $f(\triangleright):=\blacktriangleright.$ Zeige:

$$O_X := \{\emptyset, \{\triangleleft\}, X\}$$

ist eine Topologie auf X und

$$O_Y := \{\emptyset, \{\bullet\}, \{\bullet\}, \{\bullet, \blacktriangleleft\}, Y\}$$

eine Topologie auf Y. Zeige weiter:

- a) \bigcirc ist ein Häufungspunkt von $\{ \triangleleft, \triangleright \}$.
- b) (Y, O_Y) ist nicht hausdorffsch.
- c) f ist in \bigcirc nicht stetig.

Aufgabe 3:

Versehe ${\mathbb R}$ mit der Standardtopologie und zeige, daß

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} (x+1)^2 & \text{für } x < -1 \\ -x^2 + 1 & \text{für } x \in [-1, 1] \\ 2x & \text{für } x > 1 \end{cases}$$

in -1 stetig, aber in 1 nicht stetig ist.

Tutorium 2 zu Mathematik III (Physik)

Aufgabe 1:

Es sei (X, d) ein metrischer Raum und $\emptyset \neq Y \subseteq X$. Zeige:

$$\begin{aligned} \operatorname{dist}(\cdot,Y) : X &\to & [0,\infty[\\ x &\mapsto & \operatorname{dist}(x,Y) := \inf\{d(x,y) : y \in Y\} \end{aligned}$$

ist gleichmäßig stetig.

Aufgabe 2:

Bestimme den punktweisen Grenzwert $f:[1,\infty[\to \mathbb{R}$ der Funktionenfolge

$$\left(\begin{array}{ccc} f_n: [1, \infty[& \to & \mathbb{R} \\ & x & \mapsto & \frac{nx^2}{n^2 + x^2} \end{array}\right)_{n \in \mathbb{N}}.$$

Konvergiert f_n gleichmäßig?

Aufgabe 3:

Versehe \mathbb{R} mit der Standardtopologie und zeige, daß $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}$ stetig ist.

Tutorium 3 zu Mathematik III (Physik)

Aufgabe 1:

Es seien $p:\mathbb{C}\to\mathbb{C}$ und $q:\mathbb{C}\to\mathbb{C}$ Polynome. Zeige, daß

$$\begin{array}{ccc} \frac{p}{q}: \{z \in \mathbb{C}: q(z) \neq 0\} & \to & \mathbb{C} \\ & z & \mapsto & \frac{p(z)}{q(z)} \end{array}$$

stetig ist.

Aufgabe 2:

Zeige den eindimensionalen Fixpunktsatz von Brouwer: Jede stetige Funktion $f:[0,1] \rightarrow [0,1]$ besitzt einen Fixpunkt.

Aufgabe 3:

Es sei $\emptyset \neq I \subseteq \mathbb{R}$ ein Intervall. Zeige:

$$V := \{ (x, y) \in I \times I : x < y \} \tag{1}$$

ist eine zusammenhängende Teilmenge von \mathbb{R}^2 .

Anleitung: Fixiere $z = (z_1, z_2) \in V$ und betrachte zu $w = (w_1, w_2) \in V$ die Abbildung

$$\begin{array}{ccc} \alpha_w : [0,1] & \to & \mathbb{R}^2 \\ t & \mapsto & tz + (1-t)w \end{array}$$

Aufgabe 4:

Es sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig. Zeige, daß

- a) f ist injektiv
- b) f ist streng monoton

äquivalent sind.

Tutorium 4 zu Mathematik III (Physik)

Aufgabe 1:

Es sei (X, O_X) ein kompakter topologischer Raum, (Y, O_Y) ein hausdorffscher topologischer Raum und $f: X \to Y$ sei stetig und bijektiv. Zeige, daß dann f ein Homöomorphismus ist.

Aufgabe 2:

Zeige oder widerlege:

- a) Sind X, Y metrische Räume, $f: B \to Y$ stetig und $B \subseteq X$ beschränkt, so ist f(B) beschränkt.
- b) Ist $B \subseteq \mathbb{R}^d$ abgeschlossen und beschränkt und $f: B \to \mathbb{R}$ stetig, dann besitzt f(B) Infimum und Supremum.

Aufgabe 3:

Zeige, daß die Menge $K := \{(-1)^{n^2}(1+\frac{1}{n^2}) : n \in \mathbb{N}\} \cup \{-1,1\}$ in \mathbb{R} versehen mit der Standardtopologie kompakt ist.

Tutorium 5 zu Mathematik III (Physik)

Aufgabe 1:

Wir wissen, daß es solche Konstanten gibt – aber wie sehen sie aus? Finde explizite Konstanten $0 < m \le M < \infty$, so daß

$$m||x||_1 \le ||x||_2 \le M||x||_1$$

für alle $\underline{x} \in \mathbb{R}^d$ gilt.

Aufgabe 2:

Nach Lemma 13.8.6 ist $\cos |_{]-\frac{\pi}{2},\frac{\pi}{2}[}:]-\frac{\pi}{2},\frac{\pi}{2}[$ $\rightarrow \mathbb{R}$ nullstellenfrei, deshalb ist der Tangens(zweig) $x \mapsto \cos(x)$

$$\tan :] - \frac{\pi}{2}, \frac{\pi}{2}[\rightarrow \mathbb{R}$$

$$x \mapsto \tan[x] = \frac{\sin(x)}{\cos(x)}$$

wohldefiniert. Zeige:

- a) tan ist punktsymmetrisch und streng monoton steigend.
- b) tan ist stetig und bijektiv und die Umkehrfunktion arctan : $\mathbb{R} \to]-\frac{\pi}{2},\frac{\pi}{2}[$ ist stetig.

Tutoriumsblatt 7 zu Mathematik III (Physik)

Aufgabe 1: Es sei $\emptyset \neq X$ eine endliche Menge. Zeige:

a) Für das Zählmaß $\nu: \mathcal{P}(X) \to [0, \infty[$ und die Diracmaße δ_x gilt:

$$\nu = \sum_{x \in X} \delta_x$$

b) Jedes Maß $\mu: \mathcal{P}(X) \to [0, \infty]$ hat die Form

$$\mu = \sum_{x \in X} \mu(\{x\}) \delta_x.$$

Aufgabe 2:

Es sei $\emptyset \neq X$ eine nicht abzählbare Menge und

$$\mathcal{A} = \{ U \subseteq X : U \text{ abzählbar oder } X \backslash U \text{ abzählbar } \}$$

die σ -Algebra aus Beispiel 14.1.3. Zeige:

$$\begin{array}{ccc} \mu: \mathcal{A} & \to & [0,1] \\ Y & \mapsto & \left\{ \begin{array}{ll} 0 & \text{für } Y \text{ abz\"{a}hlbar} \\ 1 & \text{für } X \backslash Y \text{ abz\"{a}hlbar} \end{array} \right. \end{array}$$

definiert einen Wahrscheinlichkeitsraum (X, \mathcal{A}, μ) .

Aufgabe 3: Es seien (X, \mathcal{A}) , (Y, \mathcal{B}) und (Z, \mathcal{C}) Meßräume und $f: X \to Y$ sei $\mathcal{A} - \mathcal{B}$ -meßbar, $g: Y \to Z$ sei $\mathcal{B} - \mathcal{C}$ -meßbar. Zeige, daß $g \circ f \mathcal{A} - \mathcal{C}$ -meßbar ist.

Tutoriumssblatt 8 zu Mathematik III (Physik)

Aufgabe 1:

Es sei $X = \{0, 1, 2, 3\}$, $\mathcal{E} = \{\{0, 1\}, \{1, 2\}, \{1\}\}$, $\mathcal{F} = \{\{0, 1\}, \{1, 2\}\}$ und $\mathcal{A} = \sigma(\mathcal{E})$, $\mathcal{B} = \sigma(\mathcal{F})$ die davon erzeugten σ -Algebren.

- a) Zeige $\sigma(\mathcal{E}) = \sigma(\mathcal{F}) = \mathcal{P}(X)$.
- b) Zeige, daß durch $p(\{0,1\}) = p(\{1,2\}) = \frac{2}{3}$ und $p(\{1\}) = \frac{1}{3}$ ein eindeutiges Wahrscheinlichkeitsmaß auf $\sigma(\mathcal{E})$ definiert wird.
- c) Zeige, daß die Bedingungen $q(\{0,1\})=q(\{1,2\})=\frac{2}{3}$ nicht reichen, um ein eindeutiges Wahrscheinlichkeitsmaß auf $\sigma(\mathcal{F})$ zu definieren.

Aufgabe 2: Es sei $\mathcal{E} := \{\{1,...,2k-1\} : k \in \mathbb{N}\} \subseteq \mathcal{P}(\mathbb{N}).$

a) Zeige, daß die von \mathcal{E} erzeugte $\sigma-$ Algebra die Form

$$\sigma(\mathcal{E}) = \left\{ \bigcup_{j \in J} V_j : J \subseteq \mathbb{N} \right\}$$

mit
$$V_j := \begin{cases} \{1\} & \text{für } j = 1\\ \{2j - 2, 2j - 1\} & \text{für } j \ge 2 \end{cases}$$
 hat.

b) Es sei $\lambda > 0$. Zeige, daß durch

$$\mu(A) := e^{-\lambda} \sum_{\substack{j \in \mathbb{N} \\ A \cap V_j \neq \emptyset}} \frac{\lambda^{j-1}}{(j-1)!}$$

ein Wahrscheinlichkeitsmaß auf $\sigma(\mathcal{E})$ definiert wird.

Tutoriumsblatt 9 zu Mathematik III (Physik)

Aufgabe 1:

Es sei $\lambda: \mathcal{B}(\mathbb{R}) \to [0,\infty]$ das Borel-Lebesguemaß auf \mathbb{R} und $\delta_{\frac{1}{3}}: \mathcal{B}(\mathbb{R}) \to [0,\infty]$ das Diracmaß zum Punkt $\frac{1}{3}$. Sei $M_0:=[0,1]$ und für $n\geq 0$ entstehe M_{n+1} aus M_n durch Entfernen aller mittleren Drittel, also

$$M_{1} = M_{0} \setminus \left[\frac{1}{3}, \frac{2}{3}\right] = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

$$M_{2} = M_{1} \setminus \left(\left[\frac{1}{9}, \frac{2}{9}\right] \cup \left[\frac{7}{9}, \frac{8}{9}\right]\right) = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$

Berechne $\int_{\mathbb{R}} \mathbf{1}_{M_3} d\lambda$ und $\int_{\mathbb{R}} \mathrm{id}_{\mathbb{R}} \mathbf{1}_{M_3} d\delta_{\frac{1}{3}}$. Was erhält man allgemein bei $n \in \mathbb{N}$ für $\int_{\mathbb{R}} \mathbf{1}_{M_n} d\lambda$?

Aufgabe 2:

a) Sei (X, \mathcal{A}) ein Meßraum $f: X \to [0, \infty]$ meßbar und $x \in X$. Zeige, daß für das Dirac-Maß δ_x gilt

$$\int_X f \, \mathrm{d}\delta_x = f(x) \; .$$

b) Zeige, daß die charakteristische Funktion $\mathbf{1}_{\mathbb{Q}}$ von \mathbb{Q} bezüglich der Borel-Lebesgueschen σ -Algebra $\mathcal{B}(\mathbb{R})$ messbar ist und berechne $\int_{\mathbb{R}} \mathbf{1}_{\mathbb{Q}} d\lambda$ mit dem Borel-Lebesguemaß λ .

Aufgabe 3: Es sei (X, \mathcal{A}, μ) ein Maßraum. Zeige, daß

$$\begin{array}{ccc} \mu^*: \mathcal{P}(X) & \to & [0,\infty] \\ Q & \mapsto & \inf\{\mu(A): A \in \mathcal{A}, Q \subseteq A\} \end{array}$$

ein äußeres Maß auf X definiert.

Tutoriumsblatt 10 zu Mathematik III (Physik)

Aufgabe 1:

Betrachte den Maßraum $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$.

- a) Berechne für die Funktionenfolge $f_n = \mathbf{1}_{\left[\frac{5+n}{3}, \frac{7+n}{3}\right]}$ das Integral $\int_{\mathbb{R}} (\lim_{n \to \infty} f_n) d\lambda$ und den Grenzwert $\lim_{n \to \infty} \int_{\mathbb{R}} f_n d\lambda$. Warum kommt nicht das gleiche heraus?
- b) Zeige für $g_n = \mathbf{1}_{[-1+\frac{1}{n+1},1-\frac{1}{n+1}]} \frac{21(n+1)}{n}$ die Gleichheit

$$\int\limits_{\mathbb{R}} (\lim_{n \to \infty} g_n) d\lambda = \lim_{n \to \infty} \int\limits_{\mathbb{R}} g_n d\lambda$$

und berechne diesen Wert.

Aufgabe 2:

Betrachte den Maßraum $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ mit dem Poissonmaß μ zu einem Parameter $\lambda > 0$ gegeben durch $\mu(\{j\}) = e^{-\lambda} \frac{\lambda^{j-1}}{(j-1)!}$ für jedes $j \in \mathbb{N}$.

Bestimme die Grenzwerte $\lim_{n\to\infty}\int\limits_{\mathbb{N}}f_nd\mu$ für die Funktionenfolgen

a)
$$f_n : \mathbb{N} \to \mathbb{C}$$

 $k \mapsto \exp(\frac{i\pi \sqrt[n]{n}k}{2})\cos(\frac{k}{n})$

b)
$$f_n : \mathbb{N} \to \mathbb{R}$$

$$k \mapsto -\frac{3}{2} + \sum_{l=0}^n \frac{1}{(k+1)^l}$$

Tutoriumsblatt 11 zu Mathematik III (Physik)

Aufgabe 1:

Sind X und Y \mathbb{K} -Banachräume über demselben Körper \mathbb{K} , $U\subseteq X$ offen und $f:U\to Y$ und $g:U\to Y$ differenzierbar in $a\in U$. Dann ist für jedes $\lambda,\mu\in\mathbb{K}$ die Abbildung $\lambda f+\mu g:U\to Y$ in a differenzierbar mit

$$x \mapsto \lambda f(x) + \mu g(x)$$

$$(\lambda f + \mu g)'(a) = \lambda f'(a) + \mu g'(a). \tag{1}$$

Aufgabe 2: Es sei $\emptyset \neq I \subseteq \mathbb{R}$ ein offenes Intervall, Y ein Banchraum und $f: I \to Y$ in $a \in I$ differenzierbar. Zeige, daß f in a stetig ist.

Aufgabe 3: Es sei $A \in M(m \times n, \mathbb{C})$ und $\underline{b} \in \mathbb{C}^m$. Zeige, daß

$$\begin{array}{ccc} f: \mathbb{C}^n & \to & \mathbb{C}^m \\ \underline{x} & \mapsto & A\underline{x} + \underline{b} \end{array}$$

in jedem Punkt $\underline{a} \in \mathbb{C}^n$ differenzierbar ist und berechne (Df)(a).

Tutoriumsblatt 12 zu Mathematik III (Physik)

Aufgabe 1:

Es seien Y_1, Y_2, Z Banachräume und $\phi: Y_1 \times Y_2 \to Z$ eine stetige bilineare Abbildung.

a) Zeige, daß C > 0 existiert, so daß für alle $y = (y_1, y_2) \in Y_1 \times Y_2$ gilt:

$$||\phi[(y_1, y_2)]|| \le C||y_1|| \cdot ||y_2||.$$

b) Zeige, daß ϕ in jedem Punkt $b=(b_1,b_2)\in Y_1\times Y_2$ differenzierbar ist und für alle $y=(y_1,y_2)\in Y_1\times Y_2$ gilt :

$$\phi'(b)[y] = \phi[(b_1, y_2)] + \phi[(y_1, b_2)].$$

Aufgabe 2:

Es sei $\mathcal H$ ein reeller Hilbertraum. Zeige $F:\mathcal H\backslash\{\mathbf 0\}\to]0,\infty[$ ist differenzierbar und bestemme die Ableitung.

Aufgabe 3:

Es sei λ das Borel-Lebesguemaß auf $\mathbb R$. Zeige, daß $f:[-10,\infty[\to \mathbb R \ \lambda-integrier bar ist x \mapsto xe^{-x^2}]$

und berechne $\int_{-10}^{\infty} xe^{-x^2} dx$.

Tutoriumsblatt 13 zu Mathematik III (Physik)

Aufgabe 1:

- a) Bestimme für $a, b \in \mathbb{R}$ mit a < b den Wert des Integrals $\int_a^b e^{-x} \sin(x) dx$.
- b) Zeige, daß für jedes $a \in \mathbb{R}$ die Funktion $f: [a, \infty[\rightarrow \mathbb{R}]]$ integrierbar (bezüglich $x \mapsto e^{-x} \sin(x)$ Lebesguemaß) ist und berechne $\int\limits_a^\infty e^{-x} \sin(x) dx$.

Aufgabe 2:

- a) Bestimme die Ableitung von $\ln\left(\frac{e^x}{1+e^x}\right)$.
- b) Zeige, daß für jedes $a\in\mathbb{R}$ die Funktion $f_a:[a,\infty[\to \mathbb{R}]]$ integrierbar ist und $x\mapsto \frac{1}{1+e^x}$ bestimme $\int\limits_a^\infty \frac{1}{1+e^x}dx$.

Aufgabe 3:

Es sei X ein \mathbb{K} -Banachraum, $U \subseteq X$ offen und $f_1: U \to \mathbb{K}^d, ..., f_d: U \to \mathbb{K}^d$ seien stetig differenzierbar. Zeige, daß $H: U \to \mathbb{K}$ stetig differenzierbar ist und berechne die $x \mapsto \det(f_1(x), ..., f_d(x))$

Ableitung.

Tutoriumsblatt 14 zu Mathematik III (Physik)

Aufgabe 1:

Berechne zu $f: \mathbb{R}^3 \to \mathbb{R}^2$ die Jacobimatrix in jedem $(x,y,z) \in \mathbb{R}^3$ und zeige damit, daß f stetig differenzierbar ist.

Aufgabe 2:

Zeige, daß die Abbildung $T:C([0,1],\mathbb{R}) \to C([0,1],\mathbb{R})$ differenzierbar ist und berechne die $f\mapsto e^f$

Ableitung.

Aufgabe 3:

Es sei $U \subseteq \mathbb{K}^n$ offen, $a \in U$ und $f = (f_1, ..., f_m) : U \to \mathbb{K}^m$ in a differenzierbar. Zeige: Jede der Koeffizientenfunktionen $f_1, ..., f_m$ ist partiell differenzierbar in a und die Jacobimatrix (Jf)(a) ist die darstellende Matrix der Ableitung (Df)(a) von f in a bezüglich der Standardbasen.