IPv4 vs. IPv6

Advanced Computer Networks KU
Johannes Trummer, SS2007

Outline:

- IPv4
- IPv6
- migration
- IPv6 mobile support
- future issues

IP Protocol Stack

Application	Telnet, FTP,				
Transport	TCP / UDP				
Network	IPv4 / IPv6				
Link	Network Interface and Device Driver				

IP Version 4

- 32-Bit Adressing(2^32 Adresses = 4.294.967.296)
- studies say that there will not be enough adresses anymore in 2010 (just think of china, india and the upcoming mobile IP generation)

IP v4 Problems

- IP adress starvation
- Distribution of adresses (USA >50%)
- Routing is complicated
- Realization of new technologies
 (Mobile computing, real time services, multicast, security, QOS, etc.)

IP version 6 (since 1996)

- 128-bit adresses(2^128 Adresses = 3.4*10^38)
- smaller header
- options placed in extension headers
- mobile IPv6 roaming networks

comparison of headers

• IP v4:

0–3	4–7	8–11	12–15	16–18	19–23	24–27	28–31	
Version	IHL	Type of	Service		Länge			
Identifikation				Flags	Fragment-Offset			
TTL Protokoll			Prüfsumme					
Quell-IP-Adresse								
Ziel-IP-Adresse								
evtl. Optionen								

• IP v6:

comparison of headers (cont 'd)

- IP v4: every header has ALL options
 - inspected by each router
 - -> TIME ISSUE!
- IP v6: options in extension headers
 - next header pointers
 - routers don 't have to check options (except hop-by-hop)

IP version 6: extension header

- Hop-by-hop options header
- Destinations options header
- Routing header
- Fragment header
- Authentication header
- Encapsulation security payload header

IP version 6: extension header (cont'd)

IPv6 Extension Header

IP version 6: adress format

Hexadecimal:

3ffe: 0400: 0060: 004d: 0250: 04ff: fe44: b099

Without leading zeros:

3ffe: 400: 60: 4d: 250: 4ff: fe44: b099

Shortened adress format:

3ffe: 0: 0: 4d: 250: 4ff: fe44: b099

3ffe:: 4d: 250: 4ff: fe44: b099

Prefix:

3ffe: 400: 60: 4d: 250: 4ff: fe44: b099/64

IP version 6: adress types

UNICAST1 to 1, direct adressing of an IP node

- MULTICASTn to m, adressing of groups
- ANYCAST
 1 to 1-n, several nodes have same adress, received by the nearest host

IP version 6: routing / fragmenting

IP version 6: advantages

- much more adresses available (2^128)
- no fragmentation in routers
- efficient routing
- no checksum in header
- security functions (e.g. IPSEC)
- auto-configuration

IP v4 vs. V6: migration

Problems:

- IPv4 and IPv6 are not compatible
- Data exchange
- Avoid internet-breakdown when changing over
- "one day migration" is impossible

Solution:

- soft migration over time
- Coexistence of IPv4 and IPv6

IP v4 vs. V6: migration / compatibility

- Computers migrated to IPv6 can still be reached over IPv4 (Dual stack)
- IPv6 can be tunneled over IPv4 networks
- There will have to be a "long-time compatibility"

IP v6 in v4: Encapsulation

IPv6 Datagrams packed in IPv4 Datagrams

IP v6 in v4: Dual Stack (no tunneling)

Future issues

- much more mobile IP-devices and rising number of internet users (china, india)
- IPv6 is necessary for the future
- change-over is starting slowly now

Prüfungsfragen:

• Migration from IPv4 to IPv6

• IPv6 Extension Headers