SUBSPACE IDENTIFICATION FOR LINEAR SYSTEMS

Theory - Implementation - Applications

SUBSPACE IDENTIFICATION FOR LINEAR SYSTEMS

Theory - Implementation - Applications

Peter VAN OVERSCHEE Bart DE MOOR Katholieke Universiteit Leuven Belgium

Distributors for North America:

Kluwer Academic Publishers 101 Philip Drive Assinippi Park Norwell, Massachusetts 02061 USA

Distributors for all other countries:

Kluwer Academic Publishers Group Distribution Centre Post Office Box 322 3300 AH Dordrecht, THE NETHERLANDS

ISBN-13:978-1-4613-8061-0 e-ISBN-13:978-1-4613-0465-4

DOI: 10.1007/978-1-4613-0465-4

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Copyright © 1996 by Kluwer Academic Publishers Softcover reprint of the hardcover 1st edition 1996

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo-copying, recording, or otherwise, without the prior written permission of the publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts 02061

Printed on acid-free paper.

CONTENTS

PR	EFA	CE		xi
1	INT	rodu	JCTION, MOTIVATION AND	
	GE	OMET	RIC TOOLS	1
	1.1	Models	s of systems and system identification	1
	1.2	A new	generation of system identification algorithms	6
		1.2.1	State space models are good engineering models	6
		1.2.2	How do subspace identification algorithms work?	9
		1.2.3	What's new in subspace identification?	11
		1.2.4	Some historical elements	12
	1.3	Overvi	ew	15
	1.4	Geome	tric tools	19
		1.4.1	Orthogonal projections	19
		1.4.2	Oblique projections	21
		1.4.3	Principal angles and directions	23
		1.4.4	Statistical tools	25
		1.4.5	Geometric tools in a statistical framework	27
	1.5	Conclu	sions	29
2	DE	TERM	INISTIC IDENTIFICATION	31
	2.1	Determ	ninistic systems	32
		2.1.1	Problem description	32
		2.1.2	Notation	33
	2.2	Geome	etric properties of deterministic systems	37
			Matrix input-output equations	37
		2.2.2	Main Theorem	37
		2.2.3	Geometric interpretation	44

	2.3	Relation to other algorithms	44		
		2.3.1 Intersection algorithms	45		
		2.3.2 Projection algorithms	46		
		2.3.3 Notes on noisy measurements	47		
	2.4	Computing the system matrices	50		
		2.4.1 Algorithm 1 using the states	50		
		2.4.2 Algorithm 2 using the extended observability matrix	51		
	2.5	Conclusions	55		
3	STO	OCHASTIC IDENTIFICATION	57		
	3.1	Stochastic systems	57		
		3.1.1 Problem description	57		
		3.1.2 Properties of stochastic systems	60		
		3.1.3 Notation	67		
		3.1.4 Kalman filter states	69		
		3.1.5 About positive real sequences	73		
	3.2	Geometric properties of stochastic systems	74		
		3.2.1 Main Theorem	74		
		3.2.2 Geometrical interpretation	77		
	3.3	Relation to other algorithms	77		
		3.3.1 The principal component algorithm (PC)	78		
		3.3.2 The unweighted principal component algorithm (UPC)	79		
		3.3.3 The canonical variate algorithm (CVA)	80		
		3.3.4 A simulation example	81		
	3.4	Computing the system matrices	82		
		3.4.1 Algorithm 1 using the states	82		
		3.4.2 Algorithm 2 using the extended matrices	85		
		3.4.3 Algorithm 3 leading to a positive real sequence	85		
		3.4.4 A simulation example	89		
	3.5	Conclusions	91		
1	COMBINED DETERMINISTIC-STOCHASTIC				
	IDI	IDENTIFICATION			
	4.1	Combined systems	96		
		4.1.1 Problem description	96		
		4.1.2 Notation	98		

Contents vii

		4.1.3 Kalman filter states	100
	4.2	Geometric properties of combined systems	104
		4.2.1 Matrix input-output equations	104
		4.2.2 A Projection Theorem	104
		4.2.3 Main Theorem	106
		4.2.4 Intuition behind the Theorems	109
	4.3	Relation to other algorithms	111
		4.3.1 N4SID	112
		4.3.2 MOESP	113
		4.3.3 CVA	114
		4.3.4 A simulation example	115
	4.4	Computing the system matrices	117
		4.4.1 Algorithm 1: unbiased, using the states	117
		4.4.2 Algorithm 2: biased, using the states	120
		4.4.3 Variations and optimizations of Algorithm 1	123
		4.4.4 Algorithm 3: a robust identification algorithm	128
		4.4.5 A simulation example	130
	4.5	Connections to the previous Chapters	130
	4.6	Conclusions	134
5	STA	ATE SPACE BASES AND MODEL REDUCTION	135
	5.1	Introduction	136
	5.2	Notation	137
	5.3	Frequency weighted balancing	141
	5.4	Subspace identification and frequency weighted balancing	144
		5.4.1 Main Theorem 1	145
		5.4.2 Special cases of the first main Theorem	146
		5.4.3 Main Theorem 2	147
		5.4.4 Special cases of the second main Theorem	148
		5.4.5 Connections between the main Theorems	148
	5.5	Consequences for reduced order identification	149
		5.5.1 Error bounds for truncated models	149
		5.5.2 Reduced order identification	153
	5.6	Example	155
	5.7	Conclusions	159

6	IMI	PLEMENTATION AND APPLICATIONS	161
	6.1	Numerical Implementation	
		6.1.1 An RQ decomposition	162
		6.1.2 Expressions for the geometric operations	164
		6.1.3 An implementation of the robust identification algorithm	168
	6.2	Interactive System Identification	170
		6.2.1 Why a graphical user interface?	170
		6.2.2 ISID : Where system identification and GUI meet	172
		6.2.3 Using ISID	178
		6.2.4 An overview of ISID algorithms	179
		6.2.5 Concluding remarks	181
	6.3	An Application of ISID	181
		6.3.1 Problem description	182
		6.3.2 Chain description and results	182
		6.3.3 PIID control of the process	186
	6.4	Practical examples in Matlab	189
	6.5	Conclusions	193
7	CONCLUSIONS AND OPEN PROBLEMS		
	7.1	Conclusions	197
	7.2	Open problems	198
A	PROOFS		
	A .1	Proof of formula (2.16)	201
	A.2	Proof of Theorem 6	202
	A.3	Note on the special form of the Kalman filter	205
	A.4	Proof of Theorem 8	206
	A.5	Proof of Theorem 9	207
	A.6	Proof of Theorem 11	210
	A.7	Proof of Theorem 12	214
	A.8	Proof of Lemma 2	215
	A.9	Proof of Theorem 13	218
	A.10	Proof of Corollary 2 and 3	219
	A.11	Proof of Theorem 14	220

Contents ix

В	MA	223	
	B.1	Getting started	223
	B.2	Matlab Reference	224
		B.2.1 Directory: 'subfun'	224
		B.2.2 Directory: 'applic'	226
		B.2.3 Directory: 'examples'	227
		B.2.4 Directory: 'figures'	227
C	NO	TATION	229
RE	FER	ENCES	235
IN	DEX		249

PREFACE

Ceci n'est pas une pipe. René Magritte, Belgian painter, 1898-1967.

The last 30 years or so, system identification has matured from Eykhoff's 'bag of tricks', over the impressive Ljungian theory for the user of so-called prediction-error methods, to Willems' behavioral framework. Many papers have been written, several excellent textbooks have appeared and hundreds of workshops and conferences have been organized. Specifically for the identification of linear dynamic time-invariant models from given input-output data, the collection of available methods has become immense.

So why write yet another book about this, by now, almost classical problem? Well, to start with, the problem is important! There is a growing interest in manageable mathematical models for all kinds of applications, such as simulation, prediction, fault diagnosis, quality and safety monitoring, state estimation, signal processing (direction-of-arrival algorithms (SDMA)) and last but not least, model-based control system design. And sure enough, *linear* models are very popular because of their utmost simplicity (at least at first sight).

In this book, we do not really solve a new problem. Indeed, the goal is to find dynamical models from input-output data that were generated by so-called combined deterministic-stochastic linear systems. Said in other words, data that are generated by a linear, time-invariant, finite-dimensional, dynamic system, with both deterministic and stochastic input signals (including several special cases).

What is new in this book, are the methods and algorithms for solving this 'classical' problem. The insights that will be developed, originate in a mixture of ideas, facts and algorithms from system theory, statistics, optimization theory and (numerical) linear algebra. They culminate in so-called 'subspace' methods, the name of which reflects the fact that linear models can be obtained from row and column spaces of certain matrices, calculated from input-output data. Typically, the column space of such data matrices contains information about the model, while the row spaces allow to obtain

a (Kalman filter) state sequence, directly from input-output data (i.e. without knowing the model a priori)¹. Another important aspect of this book is the development of a unifying framework, in which almost all existing subspace methods that have appeared in the literature of the last 10 years or so, have found their place.

Apart from these *conceptual* contributions, there are other advantages to subspace methods. For instance, there is no need for an explicit model parametrization, which, for multi-output linear systems is a rather complicated matter. A second numerical advantage is the elegance and computational efficiency of subspace algorithms. The dimension and numerical representation of the subspaces mentioned before, are calculated using the QR- and the singular value decomposition. These are well-understood techniques from numerical linear algebra, for which numerically robust and efficient algorithms are widely available.

Of course, we should never forget that a (mathematical) model is not the real system (think of Magritte). Even though there are still missing links in the question of guaranteed optimality of subspace methods, it is now widely accepted that they prove very useful in many applications, in which they often provide excellent models and because of their utmost user-friendliness (limited number of user-choices to deal with). They also provide (often excellent) initial guesses for non-linear iterative optimization algorithms which are used in prediction-error methods, L_2 -optimal system identification, neural nets, etc...

Finally, we have paid special attention to the development of easy accessible and user-friendly software packages, which are described in Chapter 6 (Xmath² ISID II) and Appendix B (which describes Matlab files and several demos). This book goes with a diskette that contains all of these .m files and examples.

¹Have a look at Theorems 2, 8 and 12 of this book.

²A product of Integrated Systems Incorporated, Santa Clara, CA, USA.

Mister Data, there's a subspace communication for you.

Quote from Star Trek, the Next Generation.

This book emanates from the authors' PhD theses at ESAT, the department of Electrical Engineering of the Katholieke Universiteit Leuven in Belgium. Bart's 1988 thesis contained the initial concepts and ideas for subspace identification (of course inspired by the work of many others), linking ideas from system theory (realization algorithms), linear algebra (orthogonal projections and intersections of subspaces) to numerical issues (QR and singular value decompositions). Peter's 1995 thesis, which forms the basis of this book, contains the detailed unification of all these insights, culminating in some robust subspace identification methods, together with other results such as model reduction issues, relations with other identification algorithms, etc...

The work reported on in this book would have been impossible without the support, both financial and moral, from many institutions and people.

We would like to mention the financial support from the Flemish Government (Concerted Action GOA-MIPS *Model-Based Information Processing Systems*), the National Fund for Scientific Research, the Federal Government (Interuniversity Attraction Poles IUAP-17 *Modeling and Control of Dynamic Systems* and IUAP-50 *Automation in Design and Production*) and the European Commission (Human Capital and Mobility SIMONET *System Identification and Modeling Network*).

Our gratitude also goes to the many people, who, in one way or another, directly or indirectly, have contributed to this work: Lennart Ljung and Tomas McKelvey (Linköping University, Sweden), Stephen Boyd, Thomas Kailath and Gene Golub (Stanford University, USA), Björn Ottersten, Bo Wahlberg and Anders Lindquist (Royal Institute of Technology, Stockholm), Mats Viberg (Chalmers University of Technology, Sweden), Okko Bosgra, Paul Van den Hof (Technical University Delft, The Netherlands), Manfred Deistler (Technical University of Vienna, Austria), Jan Willems (Rijksuniversiteit Groningen, The Netherlands), Jan Maciejowski (Cambridge University, England), Wally Larimore (ADAPTX, USA), Vasile Sima (Research Institute for Informatics, Romania), Torsten Söderström and Petre Stoica (Uppsala University, Sweden), Giorgio Picci (University of Padua, Italy), Jan Van Schuppen (Centrum voor Wiskunde en Informatica, The Netherlands), Michel Verhaegen (Delft University of Technology, The Netherlands) and last but not least, les amis of our sister Université Catholique de Louvain, Michel Gevers, Georges 'Jojo' Bastin et les autres. To all our colleagues and friends of our home university, including the several generations of PhD and Master students, thank you!

The constructive feedback of our industrial partners, Henk Aling and Robert Kosut (Integrated Systems Inc., CA, USA) and Ton Backx, Jobert Ludlage and Yu-Cai Zhu (Setpoint-IPCOS, the Netherlands), was instrumental in changing our view on system identification from *practical* 'real' data. To Alexandra Schmidt, we are especially in debt for her clear advise and great friendship.

Last but not least, we thank our family for their support: Our parents, parents in law, brothers and sisters, our wives Annelies (Peter's) and Hilde (Bart's), Bart's children Thomas and Hannah (for sharing with us their highly original opinions) and Peter's soon to be born child X.

It's to them all that we dedicate this book.

Peter Van Overschee Bart De Moor

Leuven, January 1, 1996.