Les joints d'accouplement élastiques, positifs, rigides

Contrairement aux joints d'accouplement homocinétiques destinés à transmettre de fortes puissances entre arbres dont le désalignement angulaire (ou angle de brisure) permanent est important, les joints d'accouplement élastiques, et les joints d'accouplement positifs sont des organes de correction conçus pour des désalignements limités.

Les **joints d'accouplement rigides** quant à eux, participent à la liaison de type "encastrement" entre arbres parfaitement alignés.

Défauts d'alignements des accouplements

Le choix d'un type d'accouplement dépend d'abord des défauts d'alignement pouvant exister entre les deux arbres : désalignements radial, axial, angulaire et écart en torsion.

Principaux types d'accouplements et symboles normalisés accouplements permanents accouplements temporaires accouplements accouplements accouplements cardans embrayages freins divers rigides flexibles élastiques et assimilés aucun non flexibles flexibles désalignement en torsion en torsion possible - à plateaux - joint d'Oldham - limiteurs - à ressort - joints de cardans - à disques - à disques - à denture bombée - à manchon à blocs en joints tripodes centrifuges - à tambour de couple goupillé - à soufflet... caoutchouc joints à quatre coniques... - à bande... - roues libres à douille - convertisseurs - à membrane biconique... souple... - coupleurs... dR = 0; dA = 0désalignements : désalignements : désalignement pas de pas de pas de angulaire dox $d\alpha = 0$ et $d\theta = 0$ dR, dA et da dR, dA, da et de désalignement désalignement désalignement symboles page 576

^{*} NF E 22 610, non retenu par NF EN ISO 3952-3 page 576

Accouplements à plateaux

Très utilisés, précis, résistants, assez légers, encombrants radialement, ils sont souvent frettés ou montés à la presse. La transmission du couple est en général obtenue par une série de boulons ajustés. En cas de surcharge, le cisaillement des boulons offre une certaine sécurité.

Calcul des boulons au cisaillement

Données:

C : couple à transmettre (N.mm)

 n_b : nombre de boulons (valeur empirique : $n_b \approx 0.02d + 3$)

d : diamètre du boulon (mm)

D : diamètre de répartition des boulons (mm)

Fc: force de cisaillement des boulons (N)

S_c : aire cisaillée des boulons (mm)

 R_{pg} : résistance pratique au cisaillement du matériau des

boulons (N/mm²)

(R_{pq} ≈ R_e/2 avec R_e limite élastique du matériau)

$$F_{\rm c} = \frac{2.C}{D}$$
 $R_{\rm pg} \geqslant \frac{F_{\rm c}}{S_{\rm c}} = \frac{4.F_{\rm c}}{n_{\rm b}.\pi.d^2}$

$$d \ge \left(\frac{8.C}{n_{\rm b}.D.\pi.R_{\rm pg}}\right)^{1/2}$$

Manchons à goupilles

Dans le cas des petits accouplements, c'est le plus simple. Les deux goupilles travaillent au cisaillement et offrent une certaine sécurité en cas de surcharge. Le principe de calcul est le même que précédemment

Manchons à douille biconique

Ce sont les plus récents. Ils présentent une grande facilité de montage et de démontage et permettent l'utilisation d'arbres lisses sans rainure de clavette. La transmission du couple est obtenue par adhérence après serrage des vis.

Nombreuses variantes ; des arbres de diamètres différents sont possibles

Joint d'Oldham : Il supporte uniquement des désalignements radiaux (d_R) et permet la transmission entre deux arbres parallèles présentant un léger décalage.

Le joint est construit autour de deux glissières à 90°; plusieurs variantes sont possibles.

Au cours de la rotation, le centre I du plateau intermédiaire (2) décrit un cercle de diamètre O₁0₃ (l'angle O₁IO₃ étant constamment égal à 90°).

Le joint est parfaitement homocinétique : les angles de rotation IO₁l' et IO₃l' sont constamment identiques (interceptent tous deux l'arc Il').

Accouplements à denture bombée : il supporte uniquement des désalignements angulaires (da) modérés (obtenu grâce à la forme bombée de la denture), plusieurs variantes. .

Exemple de réalisation

Mise en évidence du désalignement da

Accouplements élastiques en torsion

En plus de pièces rigides, ils se composent de parties totalement élastiques, ressorts ou blocs élastomères, permettant la flexibilité en torsion.

Ils sont conçus pour transmettre le couple en douceur (réduisent et amortissent les chocs et les irrégularités de transmission) tout en corrigeant plus ou moins les différents défauts d'alignement.

Les réalisations utilisant des éléments en élastomère (membrane, blocs...) supportent en même temps et à des degrés divers tous les types de désalignements.

Il existe de nombreuses réalisations plus ou moins concurrentes, quelques cas typiques seulement sont proposés. Seuls les désalignements permis les plus significatifs sont indiqués sur les figures.

Désalignements da et de

Ressort carré triple fil (d_{α}, d_{θ})

Grand angle da, axial da et de

plots élastomère

Désalignements da et de

Désalignement de et dR

Le tableau suivant fait un parallèle entre les 3 dispositifs (joints d'accouplement élastiques, joints d'accouplement positifs joints d'accouplement ioints d'accoup

- désalignements angulaires $\Delta \alpha$ désalignements radiaux Δr
- désalignements axiaux Δa

			Joints d'accouple	ement élastiques	Joints d'accouplement positifs		Joints d'accouplement rigides		
			Dan	s une chaîne de transr	mission de puissance,	ces joints participent à l'ac	couplement de	deux ar	tores
Nature de l'accouplement Caractère homocinétique			avec une relative élasticité torsionnelle		avec conservation de la rigidité ' torsionnelle		sans aucune liberté de mouvement relatif (liaison encastrement)		
			Non homocinétiques Transmission de puissance entre d		Non homocinétiques hormis les joints de Oldham et PK deux arbres non parfaitement alignés		Homocinétiques		
Fonction principale		Transmission de puissance entre deux arbres parfaitement alignés							
2	Amortissement des couples		Oui (présence d'un élément élastique non métallique)		Non				
Fonctions annexes	Sécurité		Oui (dans certains cas, par mesure de couple accidentel)		Non				
	Augmentation de la durée de vie des organes		Oui		Oui				
Ē.	Encaissement d'un désalignement axial		Oui		Oui				
			jš		Déformation élastique d'un élément métallique :	tôle plane soufflet		démontable	Pincement de cônes Rapprochement de coquilles Déformation de ron-
Technologie de la réalisation			Déformation élastique d'un élément en élastomère, sollicité en :	Déplacements relatifs d'éléments métalliques : (Oldham)	manchons	Adhérence	Solution d	delle(s) fendue(s) Mise en pression d'a	
					non what	Solution non démontable	Ajustement forcé Frettage Collage Soudage		
					plateaux et biellettes (PK)		Obstacle		Plateaux Douille avec clavettes ou goupilles
	Désalignements acceptés rdre de grandeur	Δα	2*			1*			
(ord		Δr	5 mm		1 mm (sauf Oldham et PK)				
	en moyenne)	Δα	6 mm		< 1 mm				