Recommendations + Reinforcement Learning = \heartsuit

Николай Анохин

16 мая 2024 г.

Контекст

Сложности в постановке задачи рекомендаций

- 1. Оцениваем айтемы по-отдельности, а показываем по несколько (лентой)
- 2. Смещение между распределениями на обучении и применении
- 3. Модель не объясняет, почему именно эти айтемы подходят пользователю
- 4. Не учитывается долгострочный эффект рекомендаций

Долгосрочный эффект рекомендаций

Долгосрочный эффект рекомендаций

- 1. Эволюция пользователя (рекомендер влияет на пользователя)
- 2. Эволюция рекомендера (рекомендер влияет на себя)
- 3. Отложенная награда

Постановка задачи Reinforcement Learning

Markov Decision Process (MDP)

```
История H_t = O_1, A_1, R_1, \dots O_t, A_t, R_t
```

Состояние $S_t = f(H_t)$ Среда $\mathcal{P}(S_t|A_t,S_{t-1})$

Среда $\mathcal{P}(S_t|A_t,S_{t-1})$ Награда $R(S_t|S_{t-1})$

Политика $\pi(A|S)$

Кумулятивная награда $G_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \dots$

Цель: выбрать оптимальную политику

MDP:
$$(S, A, P, R)$$

$$\pi^* = \operatorname{arg\,max} \mathbb{E}_{\mathcal{P},\pi} \mathcal{G}_t$$

Рекомендации как Reinforcement Learning

RecSys	\rightarrow	RL
Пользователь	\rightarrow	Среда (environment)
Контекст	\rightarrow	Наблюдение (observation)
Рекомендательный сервис	\rightarrow	Агент (agent)
Алгоритм рекомендаций	\rightarrow	Политика (policy)
Рекомендация	\rightarrow	Действие (action)
Покупка, просмотр, клик	\rightarrow	Награда (reward)
???	\rightarrow	Эпизод (episode)

Почему RL (почти) не используется в продакшен рекомендерах?

- Огромное меняющееся пространство действий-состояний
- Отсутствие данных (сред) для проверки идей
- Дорогая реализация алгоритмов

Многорукие бандиты

Multi-armed bandit

$$Q_n(a) = \mathbb{E}[R_n \mid A_n = a]$$

$$A_n^* = \max_a Q_n(a)$$

- ε -greedy: выбираем случайную руку с вероятностью ε , иначе жадно
- ε -decay: как ε -greedy, но уменьшаем ε со временем

$$\varepsilon(n)=\frac{1}{1+n\beta}$$

Upper Confidence Bound (UCB)

$$A_n = rg \max_a \left(Q_n(a) + c \sqrt{rac{\log(n)}{N_n(a)}}
ight)$$

Варианты решений II: Gradient Bandit [BAN19c]

Политика, которая чаще выбирает "хорошие" руки

$$H(A_k)$$
 – value руки k

$$\pi(A_k) = \frac{\exp H(A_k)}{\sum_j \exp H(A_j)}$$

Обновление

$$H_{t+1}(A_t) = H_t(A_t) + \alpha (R_t - \bar{R}_t)(1 - \pi_t(A_t))$$

$$H_{t+1}(a) = H_t(a) - \alpha (R_t - \bar{R}_t) \pi_t(a), \ \forall a \neq A_t$$

Варианты решений III: Thompson Sampling

- 1. Для каждой руки оцениваем распределение награды
- 2. Семплируем значение из каждого из распределений
- 3. Выбираем руку с наибольшим значением

Сравнение алгоритмов¹

Итоги

- (В некоторых случаях) оптимально соблюдают баланс Explore/Exploit
- Простые и работают на практике для задач с небольшим количеством действий

• Не учитывают состояния среды

Симуляторы для рекомендаций

RecSim: A Configurable Simulation Platform for Recommender Systems [IHM+19]

Полная постановка RL в рекомендациях

Deep Reinforcement Learning in Large Discrete Action Spaces [DAEH+15]²

²Пример использования в рекомендациях: https://arxiv.org/abs/1811.05869

Top-K Off-Policy Correction for a REINFORCE Recommender System [CBC⁺18]

- Масштабировали алгоритм REINFORCE на огромное пространство действий.
- Применили корректировкуу смещения между logging и обучаемой политикой.
- Изобрели новую корректировку на top-k рекомендации.
- Применили все это в продакшене YouTube.

Итоги

Итоги

Постановка задачи RL очень хорошо соответствует задаче рекомендаций.

В рекомендациях все признают проблемы explore/exploit и смещений. Их решают методами, заимствованными из RL.

Придется подождать, пока RL в рекомендациях станет общей практикой.

00000

Итоги курса

В будущем рекомендательные системы будут давать релевантные, разнообразные и полезные рекомендации. Они будут учитывать долгосрочные интересы пользователей. А пользователи будут понимать, почему им что-то предлагают и смогут котролировать механизмы построения рекомендаций.

Но понадобится ваша помощь. И научная честность.

00000

Мои ожидания от этого курса

22 responses

Copy

- Хочу получить базовое введение в рекомендательные сервисы
- Хочу получить глубокие теоретические знания о задаче реко...
- Хочу научиться создавать боевые рекомендательные сервисы
- Хочу просто пройти курс, это требуется, чтобы закончить ВУЗ
- Хочется и теории и хорошей практи...
- В первую очередь очень хочу закон...

https://t.me/mlvok

0000

Литература I

- 13 solutions to multi-arm bandit problem for non-mathematicians, 2019.
- Multi-armed bandits and reinforcement learning, 2019.
- Multi-armed bandits and reinforcement learning 2, 2019.
- Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, François Belletti, and Ed H. Chi, Top-k off-policy correction for a REINFORCE recommender system. CoRR abs/1812.02353 (2018).
- Gabriel Dulac-Arnold, Richard Evans, H. V. Hasselt, Peter Sunehag, Timothy P. Lillicrap, Jonathan J. Hunt, Timothy A. Mann, Théophane Weber, Thomas Degris, and Ben Coppin, Deep reinforcement learning in large discrete action spaces, arXiv: Artificial Intelligence (2015).

00000

Литература II

Eugene le, Chih-wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing Wang, Rui Wu, and Craig Boutilier, *Recsim: A configurable simulation platform for recommender systems*, 2019, cite arxiv:1909.04847.

