Mini Project III:

Patterns in Banking Behavior

Ali Bahrami & Chunshan Feng

November 16, 2021

Goal

Determine which client segments are bringing in the most revenues and risks for the bank

- How do banks make money?
 - Net Interest Income: on interests they earn by lending borrowed money to clients
 - Interchange income: through fees paid by merchants per transaction
- How do banks lose money?
 - Default on loans (i.e. credit card loans, mortgage loans, business loans, etc.)

Agenda

- 1. Do an expolartory analysis of the bank's customer base using demographics data:
 - Income
 - Gender
 - Number of children
- 2. Customer segmentation using income in the following segments:
 - revenue: total interests paid, credit balance owed
 - revenue: total transactions made
 - risk: percent of credit spent
- 3. PCA Analysis and Radar Charts

Explore the Dataset

```
In [4]: # Age Distribution
fig = px.histogram(df_customer.age, x="age", title='Age Distribution', nbins=16)
fig.show()
```

Age Distribution


```
In [5]: # Gender Distribution
    fig = px.histogram(df_customer.gender, x="gender", title='Gender Distribution', width = 600)
    fig.show()
```

Gender Distribution


```
In [6]: # Number of children
fig = px.histogram(df_customer.nbr_children, x="nbr_children", title='Number of Children per
fig.show()
```

Number of Children per Customer


```
In [8]: # Income disparity by Gender
fig.show()
```

Income Disparity by Gender

Income Distribution by Age and Income

Clusters by Income and Transaction Amount

Group 3 (turquoise): Rewards products

Clusters using Credit Balance

Group 3 (turquoise): Premium Cashback and Rewards Card with first-year fee rebate

Customer Segments - Net Worth

Net Worth = (Checking + Savings) - Credit

Customer Segments - Risk

Group 1 (turquoise): Credit limit increase offer

PCA Analysis

In [55]:

Multi-dimensional Analysis

df_segmentation

Out[55]:

	gender	income	credit_interests	total_trans	net_worth
0	1	50890	361.26	84	1254.83
1	0	10053	14.81	54	1847.77
2	0	22690	56.93	94	-1054.51
3	1	6605	13.63	15	-134.13
4	0	55888	248.77	124	479.08
•••		•••	•••		•••
452	1	9271	79.61	62	-596.25
453	0	10244	12.21	130	-175.02
454	0	19863	41.27	18	-842.24
455	0	39942	0.00	17	0.00
456	1	142274	963.28	135	-5646.76

457 rows × 5 columns

Radar Chart

Explained Variance

Explained Variance

```
In [71]: pd.DataFrame(pca.explained_variance_ratio_).plot.bar()
   plt.legend('')
   plt.xlabel('Principal Components')
   plt.ylabel('Explained Varience');
```


Post-PCA K-Means Clustering

Post-PCA Cluster

