Série 3

Exercice 1. Trouver les fonctions analytiques f(z) = u(x,y) + iv(x,y) qui ont pour partie réelle ou imaginaire :

- (1) $u(x,y) = x^2 y^2 + 5x + y \frac{y}{x^2 + y^2}$;
- (2) $u(x,y) = e^x(x\cos y y\sin y) + 2\sin x \sinh y + x^3 3xy^2 + y;$
- (3) $v(x,y) = 3 + x^2 y^2 \frac{y}{2(x^2+y^2)}$;
- (4) $v(x,y) = \log(x^2 + y^2) + x 2y$.

Exercise 2. Trouver une fonction continue $f: \mathbb{C} \to \mathbb{C}$ holomorphe en seulement un point.

Exercice 3. Déterminer où les fonctions suivantes sont holomorphes.

- (1) $f(x+iy) = x^2 + y^2 + 2ixy$;
- (2) $f(z) = z \operatorname{Re} z$;
- (3) $f(z) = e^z$;
- (4) $f(z) = \bar{z}$;

Exercice 4. Soit $f: U \to \mathbb{C}$ une fonction \mathcal{C}^1 (au sens de fonctions de \mathbb{R}^2 vers \mathbb{R}^2). Montrer que f est holomorphe sur U si et seulement si $\bar{\partial} f(z) = 0$ pour tout $z \in U$ et que dans ce cas $f'(z) = \partial f(z)$.

<u>Exercice 5.</u> Montrer que si $f: U \to V$ est bijective et holomorphe et si f' ne s'annule pas sur V, alors la fonction inverse f^{-1} est aussi holomorphe.

Exercice 6.

- (1) Montrer qu'il n'existe aucun de fonction $f: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ t.q. $f(z^2) = z \ \forall z \in \mathbb{C} \setminus \{0\}$;
- (2) Montrer qu'il n'existe pas de logarithme continu sur $\mathbb{C} \setminus \{0\}$.

 $\underline{\mathbf{Exercice}\ 7.}$ Trouver le rayon de convergence des séries suivantes :

- $(1) \sum_{n=0}^{\infty} z^{n!}$
- (2) $\sum_{n=0}^{\infty} n^{(-1)^n} z^n$

Exercice 8. Soit $f(z) = \sum_{k=0}^{\infty} a_k z^k$ une série convergente avec rayon de convergence R > 0. Soit $n \in \mathbb{N}$ et $j \in \{0, \dots, n-1\}$. Montrer que pour |z| < R,

$$\sum_{k=0}^{\infty} a_{j+kn} z^{j+kn} = \frac{1}{n} \sum_{u=0}^{n-1} e^{-\frac{2\pi i}{n}uj} f(e^{\frac{2\pi i}{n}u}z) .$$