O Princípio da Indução e suas Aplicações

Leonardo R. do Nascimento Eduardo F. Fernandes

17 de novembro de 2018

Resumo

Neste trabalho mostraremos diversas utilizações do princípio de indução em Ciência da Computação, por meio da solução de dois probelmas propostos.

1 Introdução

O trabalho será divido em tres partes, que serão respectivamente a solução dos exercícios, do primeiro problema e a solução do segundo problema.

2 Exercícios

1.Prove:

a)
$$n^2 < 2^n$$
, para $n \ge 5$

Prova por indução:

a.**Base da indução:** a propriedade tem que ser verdadeira para o primeiro número da condição $(n \ge 5)$, que é o 5.

$$P(5) = 5^2 < 2^5 \Longrightarrow 25 < 32$$
, que é trivialmente verdadeiro. \checkmark

A partir disso iremos para o proximo passo da nossa prova, o **passo indutivo**, nele assumimos a **hipótese indutiva**(P(n) como verdadeira, a fim de provar P(n+1).Desta maneira:

$$P(n+1): (n+1)^2 < 2^{(n+1)} \Longrightarrow n^2 + 2n + 1 < 2 * 2^n \Longrightarrow n^2 + 2n + 1 < 2^n + 2^n$$

Por hipotese de indução: $n^2 < 2^n \Longrightarrow n^2 + 2\mathbf{n} + \mathbf{1} < 2^n + 2\mathbf{n} + \mathbf{1}$.

Por tanto: consideramos substituir $n^2 + 2n + 1$ por $2^n + 2n + 1$.

Obtemos: $2^n + 2n + 1 < 2^n + 2^n \iff 2n + 1 < 2^n$.

Por isso $n^2 + 2n + 1 < 2^{n+1}$ **pois** $2^n + 2n + 1 < 2^{n+1}$, provando que a propriedade vale para P(n+1).

- b) n! > 2n, para $n \ge 4$ Prova por indução:
- a. Base da indução: a propriedade tem que ser verdadeira para o primeiro número da condição $(n \ge 4)$, que é o 5. \checkmark
- $P(4) = 4! > 2*4 \iff 2*4 > 8$ A partir disso iremos para o proximo passo da nossa prova, o passo indutivo, nele assumimos a hipótese indutiva(P(n) como verdadeira, a fim de provar P(n+1).

Desta maneira: P(n+1) = (n+1)! > 2(n+1)= n!(n+1) > 2(n+1) já que: n! > 2 para $n \ge 4$

A prova é verdadeira.√

c)
$$\forall n \in \mathbb{N}, (n^3 - n)$$
 é divisivel por 3. $(n^3 - n) = \mathbb{N}.$

a. Base indutiva:

$$P(0) = (0^3 - 0)/3 = \mathbb{N}\checkmark$$

b.Passo indutivo: Hipotese de indução: $P(n) = (n^3 - n)/3 = \mathbb{N}$, logo P(n+1) = T?

$$P(n+1) = [(n+1)^3 - (n+1)]/3 = \mathbb{N}$$

$$P(n+1) = [n^3 - 3n^2 + 3n + 1 - (n+1)]/3 = \mathbb{N}$$

$$P(n+1) = (n^3 - n + 3n^2 + 3n)/3 = \mathbb{N}$$

$$P(n+1) = (n^3 - n)/3 + n^2 + n = \mathbb{N}$$

Ora, $P(n) = (n^3 - n)/3$ é nossa Hipotese de indução e sabemos que ela é \mathbb{N} , $(n^2 + n)$ tambem resulta em um \mathbb{N} , portanto soma de \mathbb{N} resulta em \mathbb{N} . A prova é verdadeira. \checkmark

d)"A Soma dos primeiros n primeiros numeros impares = 2n - 1" 1 + 3 + ... + (2n - 1) é uma PA de r = 2.

Soma PA =
$$(a_1 + a_n)n/2$$

- a. Base da indução: $P(1) = (1+1)1/2 = 1 = (2*1) 1 \checkmark$
- b.Passo indutivo: Hipotese de indução: $P(n) = (a_1 + a_n)n/2$

$$P(n+1) = 1 + [1 + ((n+1) - 1)2](n+1) = (n+1)^2$$

$$P(n+1) = [1+2n+1](n+1)/2 = (n+1)^2$$

$$P(n+1) = 2n+1/2 = (n+1)^2$$

$$P(n+1) = (n+1)^2 = (n+1^2) \checkmark$$

f)

$$a_0 := 0$$

 $a_1 := 1$
 $a_{i+2} := 2a_{i+1} - a_i$

Hipotese de indução:

$$a_n = 0, n = 0$$

 $a_n = 1, n = 1$
 $a_n = 2(n-1) - (n-2)$, se $n \ge 2$
base da indução:
 a_1 e a_2 \checkmark

$$a_2 = 2 * (2-1) - (2-2) = 2 = 2a_1(2) - a_0(0) \checkmark$$

passo indutivo:

$$\begin{split} &P(n+1) = 2(n+1-1) - (n+1-2) = 2a_n - a_{n-1} \\ &2n - (n-1) = 2[2(n-1) - (n-2)] - [2(n-1-1) - (n-1-2)] \\ &2n - (n-1) = 2[(2n-2) - (n-2)] - [2(n-2) - (n-3)] \\ &2n - n + 1 = 2(n) - [2n - 4 - n + 3] \\ &n + 1 = 2n - (n-1) \\ &n + 1 = n + 1 \checkmark \end{split}$$

2)"Todo numero natural \geq 2 pode ser escrito como produto de primos"

De fato não consegui usar o produtório como hipótese de indução. proponho uma outra, nela H.I.: a*b=a qualquer número natural ≥ 2 , sendo a e b produtos de números primos ou propriamente números primos.[Entre 2,n]

$$1 < a < n$$

$$1 < b < n$$

base indutiva: 2 = 2(A base indutiva é simplesmente o primeiro primo ≥ 2 que pode ser escrito sozinho.) \checkmark

passo indutivo: Existem duas situações para P(n+1).

Na primeira n+1 é primo e assim como caso base, n+1=n+1

Na segunda situação n+1 não é primo, portanto

n+1=a*b, [1 < a < (n+1); 1 < b < (n+1)], pois n+1 não é primo então tem mais algum divisor diferente dele e 1.

portanto a e b estão entre [2,n] e são produto de primos ou primos. concluimos que n+1 = produto de primos(ou primo¹) * produto de primos(¹) = produto de primos. É aqui que a ideia de Indução Forte entra, o fato da hipotese de indução generalizar para todos os casos entre [2,n] nos permite aplicar a propriedade para n+1, a indução matemática neste caso não seria suficiente.

3 Problema 1:

Prove a equivalência entre os princípios da indução forte (PIF) e da indução matemática (PIM).

Para provar essa equivalência começo apontando que a literatura nos diz que a indução Forte é uma variação da indução matemática e utilizada onde esta não abrange algum desafio matemático. Ou seja se fosse representado em um diagrama de Venn a indução Forte seria um circulo maior e dentro deste estaria contido um circulo menor, a indução matemática, a relação seria sobre qual sistema abrange mais provas. O caso base dos dois métodos é semelhante e trivialmente equivalentes.√ Passo indutivo: Uma propriedade P vale para todos numeros entre [1,n] e então vale para n+1(Como vimos no caso dos primos), se vale para todos incluindo n, então P(n) = Verdadeiro e por consequentemente P(n+1) = Também é verdadeiro.Logo são equivalentes, quando PIF prova um problema, dentro da hipotese está o PIM.√

4 Problema 2:

Provar a correção do algoritmo de ordenação de listas conhecido como *insertion sort*, ou ordenação por inserção. O pseudocódigo deste algoritmo é dado a seguir:

$$InsertionSort(l) = \begin{cases} l, & \text{se } l = [], \\ Insert(h,InsertionSort(l')), & \text{se } l = h :: 1' \end{cases}$$

$$Insert(x,l) = \begin{cases} x :: [], & \text{se } l = [], \\ x :: l, & \text{se } l = h :: 1' \text{ e } x \leq h \end{cases}$$

Solução: Para provar que o algoritmo *InsertionSort(l)* ordena corretamente uma lista, primeiramente temos que definir uma função que verifica a ordenação de uma lista qualquer, e posteriormente verificar se essa função retorna verdade para qualquer lista l aplicada na função *InsrtionSort(l)* por meio de indução na estrutura de l.

$$isSorted(l) = \begin{cases} true, & \text{se } l = [] \text{ ou se } l = h::[], \\ isSorted(l'), & \text{se } h \le car(l') \\ false, & \text{else} \end{cases}$$

Indução estrutural em l :

Base da Indução (BI):

l = [] (lista vazia):

 $isSorted(InsertionSort(I)) \stackrel{inst}{=} isSorted(InsertionSort([])) \stackrel{def}{=} isSorted([]) \stackrel{def}{=} true \; \checkmark \\$

Passo Indutivo (PI): Provar que isSorted(InsertionSort(1)) = true Hipótese de Indução (HI): isSorted(InsertionSort(1')) = true

```
l = h :: 1':
isSorted(InsertionSort(h :: 1)) \( \frac{\text{def}}{=} \) isSorted(Insert(h, InsertionSort(1')))
```

Pela hipótese de indução sabemos que a lista sublinhada já está ordenada, nos resta avaliar a função Insert. Ficaremos então com dois casos possiveis

caso 1 : se 1' = x :: xs e $h \le x$:

Pela definição de Insert, Insert(h, InsertionSort(1'))) retornará uma lista ordenada ✓

caso 2 se l' = x :: xs e $h \ge x$:

Nesse caso, onde h é maior que o primeiro elemento da lista l', não há, na definição da função Insert um tratamento para específico para este caso. Portanto temos um caso indefinido. Concluimos assim que o algoritmo de ordenação insertion sort é incompleto.