

FAST AND GUARANTEED TENSOR DECOMPOSITION VIA SKETCHING

Yining Wang, Hsiao-Yu Tung, Alex Smola and Anima Anandkumar CARNEGIE MELLON UNIVERSITY UNIVERSITY OF CALIFORNIA, IRVINE

INTRODUCTION

Tensor CP decomposition

- For an $n \times n \times n$ tensor T, find $\{\lambda_i\}$ and $\{u_i\}$ such that $\|T \sum_{i=1}^k \lambda_i u_i^{\otimes 3}\|_F^2$ is minized.
- Wide applications in data mining and statistical learning of latent variable models.

Robust tensor power method [1]

- Tensor power iteration: $u \leftarrow T(I, u, u)$.
- Challenge: $O(n^3)$ time complexity.

BACKGROUND

COUNTSKETCH [2]: random hash $h, \sigma; s(x) \in \mathbb{R}^b$:

$$[s(x)]_i = \sum_{h(j)=i} \sigma_j x_j; \quad \hat{x}_j = \sigma_j [s(x)]_{h(j)}.$$

TENSORSKETCH [3]: random $\{h_{\ell}, \sigma_{\ell}\}$; $s(T) \in \mathbb{R}^b$:

$$[s(T)]_i = \sum_{h(j_1,j_2,j_3)=i} \sigma_1(j_1)\sigma_2(j_2)\sigma_3(j_3)T_{j_1,j_2,j_3};$$

$$h(j_1, j_2, j_3) = (h_1(j_1) + h_2(j_2) + h_3(j_3)) \mod b;$$

RESULTS ON SYNTHETIC TENSOR DECOMPOSITION

Table 3: Squared residual norm on top 10 recovered eigenvectors of 1000d tensors and running time (excluding I/O and sketch building time) for plain (exact) and sketched robust tensor power methods. Two vectors are considered mismatch (wrong) if $\|\boldsymbol{v} - \hat{\boldsymbol{v}}\|_2^2 > 0.1$. A extended version is shown as Table 5 in Appendix A.

		Residual norm					No. of wrong vectors					Running time (min.)				
	$\log_2(b)$:	12	13	14	15	16	 12	13	14	15	16	12	13	14	15	16
	B=20	.40	.19	.10	.09	.08	8	6	3	0	0	.85	1.6	3.5	7.4	16.6
0.	B = 30	.26	.10	.09	.08	.07	7	5	2	0	0	1.3	2.4	5.3	11.3	24.6
	B = 40	.17	.10	.08	.08	.07	7	4	0	0	0	1.8	3.3	7.3	15.2	33.0
6	Exact	.07					0					293.	5			

• Additional experimental results on accelerated Alternating Least Squares (ALS) available in the supplementary material!

METHODS

- Important facts:
 - Linerality: $s(\mu A + \lambda B) = \mu s(A) + \lambda s(B)$.
 - Efficient tensorization: $s(x \otimes y) = s(x) * s(y) = \mathcal{F}^{-1}(\mathcal{F}(s(x)) \circ \mathcal{F}(s(y))).$
 - Approximate inner product: $\langle A, B \rangle \approx \langle s(A), s(B) \rangle = \langle \mathcal{F}(s(A)), \mathcal{F}(s(B)) \rangle$.
- A first attempt for efficiently computing v = T(I, u, u): (assuming s(T) is known)

$$v_i = T(e_i, u, u) = \langle T, e_i \otimes u \otimes u \rangle \approx \langle \mathcal{F}(s(T)), \mathcal{F}(s(e_i)) \circ \mathcal{F}(s(u)) \circ \mathcal{F}(s(u)) \rangle.$$

- Time complexity $O(n^2 + b \log b)$.
- Can we do even better?
- The "shifting" trick

$$v_i \approx \langle \mathcal{F}(s(T)), \mathcal{F}(e_i) \circ \mathcal{F}(u) \circ \mathcal{F}(u) \rangle = \langle \mathcal{F}^{-1}(\mathcal{F}(s(T)) \circ \overline{\mathcal{F}(s(u))} \circ \overline{\mathcal{F}(s(u))}), s(e_i) \rangle.$$

- $s(e_i)$ only has one non-zero element!
- Time complexity: $O(n + b \log b)$. Huge improvement over naive methods.
- Additional techniques: symmetric hashing using the complex ring, etc.; details in the paper!

RESULTS ON TOPIC MODELING

Figure 1: Left: negative log-likelihood for fast and exact tensor power method on Wikipedia dataset. Right: negative log-likelihood for collapsed Gibbs sampling, fast LDA and Gibbs sampling using Fast LDA as initialization.

Table 4: Negative log-likelihood and running time (min) on the large Wikipedia dataset for 200 and 300 topics.

k		like.	time	$\log_2 b$	iters	$\mid k \mid$	like.	time	$\log_2 b$	iters
	Spectral	7.49	34	12	-		7.39	56	13	-
200	Gibbs	6.85	561	-	30	30	6.38	818	-	30
	Hybrid	I		12	5			352	13	10

THEORETICAL RESULTS

Theorem 1: Fix a symmetric $n \times n \times n$ real tensor T and n-dimensional vector u. Let b be the sketch length and define $\varepsilon_{1,T} = T(u,u,u) - \hat{T}(u,u,u)$, $\varepsilon_{2,T} = T(I,u,u) - \hat{T}(I,u,u)$. Then the following holds:

$$|\varepsilon_{1,T}| = O_P(||T||_F/\sqrt{b}), \quad |[\varepsilon_{2,T}]_i| = O_P(||T||_F/\sqrt{b}).$$

Furthermore, for any fixed $w \in \mathbb{R}^n$, $||w||_2 = 1$ we have $\langle w, \varepsilon_{2,T}(u) \rangle = O_P(||T||_F^2/b)$.

• Complete proof and additional theoretical results for sketching based robust tensor power method can be found in the paper.

REFERENCES

- 1. A. Anandkumar, R. Ge, D. Hsu, S. Kakade and M. Telgarsky. **Tensor decompositions for learning latent variable models**. *Journal of Machine Learning Research*, 15(1):2773-2832, 2014.
- 2. M. Charikar, K. Chen and M. Farah-Colton. **Finding frequent items in data streams.** *Theoretical Computer Science*, 312(1):3-15, 2004.
- 3. N. Pham and R. Pagh. **Fast and scalable polynomial kernels via explicit feature maps**. In *KDD*, 2013.