Assessment Schedule – 2022

Calculus: Apply the algebra of complex numbers in solving problems (91577)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$\frac{12k}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} = \frac{12k-12k\sqrt{5}}{-4}$ $= -3k+3k\sqrt{5}$	Correct solution.		
(b)	$\frac{u}{v} = m^3 \operatorname{cis}\left(\frac{\pi}{3} - \frac{\pi}{5}\right)$ $= m^3 \operatorname{cis}\left(\frac{2\pi}{15}\right)$	Correct solution.		
(c)	$uv = (3+2i)(4+2i)$ $= 8+14i$ $uvw = (8+14i)(2+ki)$ $= (16-14k) + (8k+28)i$ $Arg(uvw) = \frac{\pi}{4} \text{ means Re} = Im$ $(16-14k) = (8k+28)$ $-12 = 22k$ $k = \frac{-12}{22} = \frac{-6}{11}$	(16 – 14k) + (8k + 28)i	Correct solution.	
(d)	$x-2\sqrt{x+p} = -5$ $x+5 = 2\sqrt{x+p}$ $x^{2}+10x+25 = 4(x+p)$ $x^{2}+6x+25-4p = 0$ $b^{2}-4ac = 0$ $36-4(25-4p) = 0$ $36-100+16p = 0$ $16p = 64$ $p = 4$	Correct quadratic.	Correct solution.	
(e)	$ w+z ^{2} - w-\overline{z} ^{2} = 4\operatorname{Re}(w)\operatorname{Re}(z)$ Let $w = a + bi$ and $z = c + di$ $w+z = a + bi + c + di$ $= a + c + (b+d)i$ $w-\overline{z} = a + bi - (c-d)i$ $= a - c + (b+d)i$ $ w+z ^{2} - w-\overline{z} ^{2} = (a+c)^{2} + (b+d)^{2} - ((a-c)^{2} + (b+d)^{2})$ $= a^{2} + 2ac + c^{2} + b^{2} + 2bd + d^{2} - (a^{2} - 2ac + c^{2} + b^{2} + 2bd + d^{2})$ $= 4ac$ $= 4\operatorname{Re}(w)\operatorname{Re}(z)$		Correct expanded form for $ w+z ^2 - w-\overline{z} ^2 $	Correct solution.

NCEA Level 3 Calculus (91577) 2022 — page 2 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	lr	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$(-2)^{3} - 3(-2)^{2} - 2b + 9 = 3$ $-8 - 12 - 2b + 9 = 3$ $-2b = 14$ $b = -7$	Correct solution.		
(b)	Let $z = a + bi$ a + bi + 4(a - bi) = 15 + 12i 5a - 3bi = 15 + 12i a = 3, b = -4 z = 3 - 4i	Correct solution.		
(c)	$z^{2}-6z+45$ $z+4\sqrt{z^{3}-2z^{2}+hz+180}$ $z^{3}+4z^{2}$ $-6z^{2}+hz$ $-6z^{2}-24z$ $(h+24)z+180$ $45z+180$ $\overline{0}$ $h+24=45$ $h=21$ $z^{2}-6z+45=0$ $(z-3)^{2}+36=0$ $(z-3)^{2}=-36$ $z-3=\pm 6i$ $z=3\pm 6i$	Correct value of h. OR Other solutions found correctly.	Correct value of h. AND Other solutions found algebraically.	
(d)	$w = \frac{4}{z} - 2 z = 1 - \sqrt{3}i$ $w = \frac{4}{1 - \sqrt{3}i} - 2$ $= \frac{4}{1 - \sqrt{3}i} \times \frac{1 + \sqrt{3}i}{1 + \sqrt{3}i} - 2$ $= \frac{4 + 4\sqrt{3}i}{4} - 2$ $= 1 + \sqrt{3}i - 2$ $= -1 + \sqrt{3}i$ $arg(w) = \frac{2\pi}{3} \text{ or } arg(w) = 120^{\circ}$	Correct expression for w with rationalised denominator.	Correct solution.	

(e)	$ z+i = 2 z-5i $ $ x+iy+i = 2 x+iy-5i $ $ x+(y+1)i = 2 x+(y-5)i $ $\sqrt{x^2 + (y+1)^2} = 2\sqrt{x^2 + (y-5)^2}$ $x^2 + (y+1)^2 = 4(x^2 + (y-5)^2)$ $x^2 + y^2 + 2y + 1 = 4x^2 + 4y^2 - 40y + 100$ $0 = 3x^2 + 3y^2 - 42y + 99$ $x^2 + y^2 - 14y + 33 = 0$	Correct expanded quadratic.	Correct solution.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	lr	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	4+9i correctly plotted.	Correct solution.		
(b)	$z^{2} + 6kz + 152k^{2} = 0$ $(z+3k)^{2} + 6k^{2} = 0$ $(z+3k)^{2} = -6k^{2}$ $z+3k = \pm\sqrt{6}ki$ $z = -3k \pm\sqrt{6}ki$	Correct solution.		
(c)	$z^{3} = -k^{6}i$ $= k^{6}cis\left(\frac{-\pi}{2}\right)$ Solution interval = $\frac{2\pi}{3}$ $z_{1} = k^{2}cis\left(\frac{-\pi}{6}\right)$ $z_{2} = k^{2}cis\left(\frac{3\pi}{6}\right) = k^{2}cis\left(\frac{\pi}{2}\right)$ $z_{3} = k^{2}cis\left(\frac{7\pi}{6}\right) = k^{2}cis\left(\frac{-5\pi}{6}\right)$	One correct solution.	Three correct solutions.	
(d)	$ z - z = i$ $z = a + bi$ $\sqrt{a^2 + b^2} - (a + bi) = i$ $\sqrt{a^2 + b^2} - a - bi = i$ Equating imaginary parts: $-bi = i$ $b = -1$ Equating real parts: $\sqrt{a^2 + (-1)^2} - a = 0$ $\sqrt{a^2 + 1} = a$ $a^2 + 1 = a^2$ $1 = 0$ Not possible.	Correct value of b.	Correct solution.	

(e)	$\frac{\mathbf{i}}{z} + \frac{3}{\overline{z}} = 1$	a = -3b.	Correct solution.
	$\frac{\mathbf{i}}{a+b\mathbf{i}} + \frac{3}{a-b\mathbf{i}} = 1$		
	$\frac{\mathrm{i}(a-b\mathrm{i}) + 3(a+b\mathrm{i})}{(a+b\mathrm{i})(a-b\mathrm{i})} = 1$		
	$\frac{a\mathbf{i} + b + 3a + 3b\mathbf{i}}{a^2 + b^2} = 1$		
	$\frac{b+3a}{a^2+b^2} + \frac{(a+3b)i}{a^2+b^2} = 1$		
	Equating imaginary parts:		
	a + 3b = 0 or $a = -3b$		
	Equating real parts:		
	$\frac{b+3a}{a^2+b^2}=1$		
	$b+3a=a^2+b^2$		
	$b+3a = a^2 + b^2$ $-8b = 10b^2$		
	2b(5b+4) = 0		
	$b = 0 \text{ or } b = \frac{-4}{5}$		
	If $b = 0$, then $a = -3b = 0$ not allowed		
	$b = \frac{-4}{5}$		
	$a = -3b = \frac{12}{5}$		
	$b = \frac{-4}{5}$ $a = -3b = \frac{12}{5}$ $\left(z = \frac{12}{5} - \frac{4}{5}i\right)$		

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	lu	2u	3u	lr	2r	1t with minor error(s).	1t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
0 – 6	7 – 14	15 – 20	21 – 24	