Clara Vieira Nelson - Trabalho de Sortings

Tabela das questões 1, 2, 3, 4 e 6 (Considerando o arquivo 1000000-aleatorios.txt)

		Bubble	Insertion	Selection	Shell	Quick	Merge
	Tempo	20 segundos	5 segundos	6 segundos	537 milissegundos	254 milissegundos	442 milissegundos
	Comparações	4999950000	2496337013	4999950000	4408861	2180941	1868927
	Atribuições	12488761043	4992774026	1384099	10317746	4326334	5506779
	Trocas	2496237014	2496237014	99999	2908855	1064637	0

Heap	Bucket	Counting	Radix	
346 milissegundos	468 milissegundos	350 milissegundos	212 milissegundos	Menor tempo: Radix e Quick
4875795	199998	300000	100005	Menos comparações: Radix e Bucket
11915214	400028	400014	3600085	Menos atribuições: Counting e Bucket
1575265	100000	100000	1200000	Menos trocas: Merge e Selection

- 5) A) Depois do primeiro particionamento com o 9 como pivô, o vetor ficaria assim:
- {7, 8, 6, 2, 4, 3, 5, 1, 9, 10} (ou seja, todos menores que 9 ficaram à esquerda, 9 foi colocado na posição correta, e maiores ou iguais estão à direita).
- B) No pior caso, que é se o pivô escolhido for o primeiro elemento (já que o vetor está ordenado) são feitas 9 chamadas recursivas principais (porque a última não chama mais nada).
- C) O pior caso do QuickSort é O(n²), o que ocorre quando o pivô escolhido é o pior possível, como o menor ou maior elemento. Nesse caso, os particionamentos ficam completamente desbalanceados: um lado sempre com n-1 elementos e o outro com 0.
- 8) As principais desvantagens da alocação estática, é o tamanho fixo definido antecipadamente, o desperdício de memória caso não se utilize toda a capacidade e a falta de flexibilidade, já que não é possível expandir ou reduzir o tamanho durante a execução do programa.

Obs: As questões 7 e 9 estão comentadas no código Main.