電磁場のハミルトニアン 0.0.1

前節での議論により、系のハミルトニアンは.

$$\hat{H}_{\text{sys}} = \int d^3k \sum_{\sigma=1}^2 \frac{\hbar \omega_{\mathbf{k}}}{2} \left(\hat{a}_{\mathbf{k}\sigma}^{\dagger} \hat{a}_{\mathbf{k}\sigma} + \hat{a}_{\mathbf{k}\sigma} \hat{a}_{\mathbf{k}\sigma}^{\dagger} \right)$$
(0.0.1)

と書けるのであった. 以下では、簡単のために、1方向成分・シングルモードの波を考える.

$$\hat{H}_{\rm sys} = \frac{\hbar\omega}{2} \left(\hat{a}^{\dagger} \hat{a} + \hat{a} \hat{a}^{\dagger} \right) \tag{0.0.2}$$

$$=\hbar\omega\left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right) \tag{0.0.3}$$

と書ける. 屈折率がnの物質中では 1 ,

$$\hat{H}_{n,\text{sys}} = \frac{\hbar\omega}{n} \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) \tag{0.0.4}$$

と書ける.

0.0.2 数学的準備

ユニタリ行列は一般に,

$$U = e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} & 0 \\ 0 & e^{-i\Psi/2} \end{pmatrix} \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$
(0.0.5)

と分解できる. 具体的にUを計算すると、

$$U = e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} & 0 \\ 0 & e^{-i\Psi/2} \end{pmatrix} \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$
(0.0.6)

$$= e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} \cos(\Theta/2) & e^{i\Psi/2} \sin(\Theta/2) \\ -e^{-i\Psi/2} \sin(\Theta/2) & e^{-i\Psi/2} \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$

$$= e^{i\Lambda/2} \begin{pmatrix} e^{i(\Psi+\Psi)/2} \cos(\Theta/2) & e^{i(\Psi-\Phi)/2} \sin(\Theta/2) \\ -e^{-i(\Psi-\Phi)/2} \sin(\Theta/2) & e^{-i(\Psi+\Phi)/2} \cos(\Theta/2) \end{pmatrix}$$
(0.0.8)

$$= e^{i\Lambda/2} \begin{pmatrix} e^{i(\Psi+\Psi)/2} \cos(\Theta/2) & e^{i(\Psi-\Phi)/2} \sin(\Theta/2) \\ -e^{-i(\Psi-\Phi)/2} \sin(\Theta/2) & e^{-i(\Psi+\Phi)/2} \cos(\Theta/2) \end{pmatrix}$$
(0.0.8)

であり、 $\alpha = \Psi + \Phi$ 、 $\beta = \Psi - \Phi$ とすると、

$$U = e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2} \cos(\Theta/2) & e^{i\beta/2} \sin(\Theta/2) \\ -e^{-i\beta/2} \sin(\Theta/2) & e^{-i\alpha/2} \cos(\Theta/2) \end{pmatrix}$$
(0.0.9)

$$= \begin{pmatrix} e^{i(\Lambda+\alpha)/2} \cos(\Theta/2) & e^{i(\Lambda+\beta)/2} \sin(\Theta/2) \\ -e^{i(\Lambda-\beta)/2} \sin(\Theta/2) & e^{i(\Lambda-\alpha)/2} \cos(\Theta/2) \end{pmatrix}$$
(0.0.10)

と書ける.

Proof. 任意 2×2 の行列は, 実数 r_{ij} と θ_{ij} を用いて,

$$M = \begin{pmatrix} r_{11}e^{i\theta_{11}} & r_{12}e^{i\theta_{12}} \\ r_{21}e^{i\theta_{21}} & r_{22}e^{i\theta_{22}} \end{pmatrix}$$
(0.0.11)

と書けて,

$$M^{\dagger}M = \begin{pmatrix} r_{11}e^{-i\theta_{11}} & r_{21}e^{-i\theta_{21}} \\ r_{12}e^{-i\theta_{12}} & r_{22}e^{-i\theta_{22}} \end{pmatrix} \begin{pmatrix} r_{11}e^{i\theta_{11}} & r_{12}e^{i\theta_{12}} \\ r_{21}e^{i\theta_{21}} & r_{22}e^{i\theta_{22}} \end{pmatrix}$$
(0.0.12)

$$= \begin{pmatrix} r_{12}e^{-it} & r_{22}e^{-it} \end{pmatrix} \begin{pmatrix} r_{21}e^{-it} & r_{22}e^{-it} \end{pmatrix}$$

$$= \begin{pmatrix} r_{11}^2 + r_{21}^2 & r_{11}r_{12}e^{-i(\theta_{11} - \theta_{12})} + r_{21}r_{22}e^{-i(\theta_{21} - \theta_{22})} \\ r_{11}r_{12}e^{i(\theta_{11} - \theta_{12})} + r_{21}r_{22}e^{i(\theta_{21} - \theta_{22})} & r_{12}^2 + r_{22}^2 \end{pmatrix}$$

$$(0.0.13)$$

¹謎である. 屈折率により波動は変化しないはずである.

$$MM^{\dagger} = \begin{pmatrix} r_{11}e^{i\theta_{11}} & r_{12}e^{i\theta_{12}} \\ r_{21}e^{i\theta_{21}} & r_{22}e^{i\theta_{22}} \end{pmatrix} \begin{pmatrix} r_{11}e^{-i\theta_{11}} & r_{21}e^{-i\theta_{21}} \\ r_{12}e^{-i\theta_{12}} & r_{22}e^{-i\theta_{22}} \end{pmatrix}$$

$$= \begin{pmatrix} r_{11}^{2} + r_{12}^{2} & r_{11}r_{21}e^{i(\theta_{11} - \theta_{21})} + r_{11}r_{22}e^{i(\theta_{12} - \theta_{22})} \\ r_{11}r_{21}e^{-i(\theta_{11} - \theta_{21})} + r_{12}r_{22}e^{-i(\theta_{12} - \theta_{22})} & r_{21}^{2} + r_{22}^{2} \end{pmatrix}$$

$$(0.0.14)$$

$$= \begin{pmatrix} r_{11}^2 + r_{12}^2 & r_{11}r_{21}e^{i(\theta_{11} - \theta_{21})} + r_{11}r_{22}e^{i(\theta_{12} - \theta_{22})} \\ r_{11}r_{21}e^{-i(\theta_{11} - \theta_{21})} + r_{12}r_{22}e^{-i(\theta_{12} - \theta_{22})} & r_{21}^2 + r_{22}^2 \end{pmatrix}$$
(0.0.15)

となる. M がユニタリ行列であることの必要十分条件は、

$$r_{11}^2 + r_{21}^2 = 1 (0.0.16)$$

$$r_{12}^2 + r_{22}^2 = 1 (0.0.17)$$

$$r_{11}^2 + r_{12}^2 = 1 (0.0.18)$$

$$r_{21}^2 + r_{22}^2 = 1 (0.0.19)$$

$$r_{11}r_{12}e^{i(\theta_{11}-\theta_{12})} + r_{21}r_{22}e^{i(\theta_{21}-\theta_{22})} = 0 (0.0.20)$$

$$r_{11}r_{21}e^{i(\theta_{11}-\theta_{21})} + r_{11}r_{22}e^{i(\theta_{12}-\theta_{22})} = 0 (0.0.21)$$

である. $M^{\dagger}M$ や MM^{\dagger} の非対角成分は複素共役になっていることに注意する. 式 (0.0.16) から式 (0.0.19) を満たす ような r_{ij} の組は,実数 Θ を用いて,

$$r_{11} = r_{22} = \cos(\Theta/2) \tag{0.0.22}$$

$$r_{12} = -r_{21} = \sin(\Theta/2) \tag{0.0.23}$$

なるものである. また, これらの r_{ij} の値を式 (0.0.20) と式 (0.0.21) に代入すると,

$$e^{i(\theta_{11}-\theta_{12})} - e^{i(\theta_{21}-\theta_{22})} = 0 (0.0.24)$$

$$-e^{i(\theta_{11}-\theta_{21})} + e^{i(\theta_{12}-\theta_{22})} = 0 (0.0.25)$$

が成立する.

$$\Phi = \theta_{11} - \theta_{12} = \theta_{21} - \theta_{22} \tag{0.0.26}$$

$$\Psi = \theta_{11} - \theta_{21} = \theta_{12} - \theta_{22} \tag{0.0.27}$$

(0.0.28)

とすると,

$$\theta_{11} = \frac{\Lambda + \Psi + \Phi}{2} \tag{0.0.29}$$

$$\theta_{12} = \frac{\Lambda + \Psi - \Phi}{2} \tag{0.0.30}$$

$$\theta_{21} = \frac{\Lambda - \stackrel{2}{\Psi} + \Phi}{2} \tag{0.0.31}$$

$$\theta_{22} = \frac{\Lambda - \Psi - \Phi}{2} \tag{0.0.32}$$

となり、式(0.0.8) を得る. つまり、任意のユニタリ行列は式(0.0.8) で書けることが示された.

実際に式 (0.0.8) がユニタリ行列であることを確かめる.

$$U^{\dagger}U = e^{-i\Lambda/2} \begin{pmatrix} e^{-i\alpha/2}\cos(\Theta/2) & -e^{i\beta/2}\sin(\Theta/2) \\ e^{-i\beta/2}\sin(\Theta/2) & e^{i\alpha/2}\cos(\Theta/2) \end{pmatrix} e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2}\cos(\Theta/2) & e^{i\beta/2}\sin(\Theta/2) \\ -e^{-i\beta/2}\sin(\Theta/2) & e^{-i\alpha/2}\cos(\Theta/2) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (0.0.33)$$

$$UU^{\dagger} = e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2}\cos(\Theta/2) & e^{i\beta/2}\sin(\Theta/2) \\ -e^{-i\beta/2}\sin(\Theta/2) & e^{-i\alpha/2}\cos(\Theta/2) \end{pmatrix} e^{-i\Lambda/2} \begin{pmatrix} e^{-i\alpha/2}\cos(\Theta/2) & -e^{i\beta/2}\sin(\Theta/2) \\ e^{-i\beta/2}\sin(\Theta/2) & e^{i\alpha/2}\cos(\Theta/2) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (0.0.34)$$

$$UU^{\dagger} = e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2}\cos(\Theta/2) & e^{i\beta/2}\sin(\Theta/2) \\ -e^{-i\beta/2}\sin(\Theta/2) & e^{-i\alpha/2}\cos(\Theta/2) \end{pmatrix} e^{-i\Lambda/2} \begin{pmatrix} e^{-i\alpha/2}\cos(\Theta/2) & -e^{i\beta/2}\sin(\Theta/2) \\ e^{-i\beta/2}\sin(\Theta/2) & e^{i\alpha/2}\cos(\Theta/2) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (0.0.34)$$

となり、U はユニタリ行列であることが分かる.

0.0.3 ビームスプリッタ行列

2 入力 2 出力のビームスプリッタを考える. E_1 と E_2 の電場が入射して, E_1' と E_2' が出力されるとする. 古典的に考 えると,

$$\begin{pmatrix} E_1' \\ E_2' \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} \tag{0.0.35}$$

と書ける.このまま電場演算子を中心に議論を進めることはいささか冗長である.なぜならば, \hat{a}_1 と \hat{a}_1^\dagger は複素共役 の関係にあるのだから、片方が定まれば自然ともう片方が定まるからだ. よって、

$$\begin{pmatrix} \hat{a}_1' \\ \hat{a}_2' \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix}$$
(0.0.36)

と書ける. B はビームスプリッタ行列という. 光子数が保存することから,

$$\hat{a}_{1}^{\dagger}\hat{a}_{1} + \hat{a}_{2}^{\dagger}\hat{a}_{2} = \hat{a}_{1}^{\dagger}\hat{a}_{1}^{\prime} + \hat{a}_{2}^{\prime\dagger}\hat{a}_{2}^{\prime} \tag{0.0.37}$$

$$= (B_{11}\hat{a}_1 + B_{12}\hat{a}_2)^{\dagger} (B_{11}\hat{a}_1 + B_{12}\hat{a}_2) + (B_{21}\hat{a}_1 + B_{22}\hat{a}_2)^{\dagger} (B_{21}\hat{a}_1 + B_{22}\hat{a}_2)$$

$$(0.0.38)$$

$$= \left(B_{11}^* \hat{a}_1^{\dagger} + B_{12}^* \hat{a}_2^{\dagger}\right) \left(B_{11} \hat{a}_1 + B_{12} \hat{a}_2\right) + \left(B_{21}^* \hat{a}_1^{\dagger} + B_{22}^* \hat{a}_2^{\dagger}\right) \left(B_{21} \hat{a}_1 + B_{22} \hat{a}_2\right) \tag{0.0.39}$$

$$= (|B_{11}|^2 + |B_{21}|^2)\hat{a}_1^{\dagger}\hat{a}_1 + (|B_{12}|^2 + |B_{22}|^2)\hat{a}_2^{\dagger}\hat{a}_2 + (B_{11}^*B_{12} + B_{21}^*B_{22})\hat{a}_1^{\dagger}\hat{a}_2 + (B_{12}^*B_{11} + B_{21}^*B_{21})\hat{a}_2^{\dagger}\hat{a}_1$$

$$(0.0.40)$$

$$= (|B_{11}|^2 + |B_{21}|^2)\hat{a}_1^{\dagger}\hat{a}_1 + (|B_{12}|^2 + |B_{22}|^2)\hat{a}_2^{\dagger}\hat{a}_2 + (B_{11}^*B_{12} + B_{21}^*B_{22})\hat{a}_1^{\dagger}\hat{a}_2 + (B_{11}^*B_{12} + B_{21}^*B_{22})^*\hat{a}_2^{\dagger}\hat{a}_1$$

$$(0.0.41)$$

となり,

$$\begin{cases} |B_{11}|^2 + |B_{21}|^2 = |B_{12}|^2 + |B_{22}|^2 = 1\\ B_{11}^* B_{12} + B_{21}^* B_{22} = 0 \end{cases}$$

$$\Leftrightarrow B^{\dagger} B = \begin{pmatrix} B_{11}^* & B_{21}^* \\ B_{12}^* & B_{22}^* \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$(0.0.42)$$

$$\Leftrightarrow B^{\dagger}B = \begin{pmatrix} B_{11}^* & B_{21}^* \\ B_{12}^* & B_{22}^* \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (0.0.43)

となればよい. つまり、ビームスプリッタ行列 B がユニタリ行列であれば良い. 0.0.2 での議論において、

$$\begin{pmatrix} e^{i\Psi/2} & 0\\ 0 & e^{-i\Psi/2} \end{pmatrix} \tag{0.0.44}$$

は2つの入力電場 E_1 , E_2 に位相差をかけること,

$$\begin{pmatrix} e^{i\Phi/2} & 0\\ 0 & e^{-i\Phi/2} \end{pmatrix} \tag{0.0.45}$$

は2つの出力電場 E'_1 , E'_2 に位相差をかけること,

$$e^{i\Lambda/2} \tag{0.0.46}$$

は2つの出力電場場 E_1' , E_2' に共通するグローバル位相を書けることに対応するから、実験のセットアップとして、

$$\Lambda = \Psi = \Phi = 0 \tag{0.0.47}$$

とすることができる. また、透過率 T と反射率 R を、

$$\sqrt{T} := \cos(\Theta/2) \tag{0.0.48}$$

$$\sqrt{R} := -\sin(\Theta/2) \tag{0.0.49}$$

と定義すれば、ビームスプリッタ行列 Bは、

$$B = \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix}$$
 (0.0.50)

$$= \begin{pmatrix} \sqrt{T} & -\sqrt{R} \\ \sqrt{R} & \sqrt{T} \end{pmatrix} \tag{0.0.51}$$

と書ける.

0.0.4 ビームスプリッタハミルトニアン