# فهرست مطالب

- مفاهیم اولیه احراز اصالت پیام
- استفاده از توابع رمزنگاری در احراز اصالت پیام
- استفاده از تابع درهم ساز برای احراز اصالت پیام
  - توابع درهم ساز مهم
    - **HMAC** •

## مفهوم احراز اصالت پیام

- اطمینان از:
- صحت پیام؛ یعنی پیام دریافتی دستکاری نشده است:
  - بدون تغيير،
  - بدون درج،

**Data Integrity** 

- بدون حذف
- بدون تكرار و تغيير توالى
- این که پیام از جانب فرستنده ادعا شده ارسال شده است

**Data Origin Authentication** 

## اهمیت اصالت پیام

### در بسیاری از کاربرد ها مانند:

- تراكنشهاى مالى
- ثبت احوال و اسناد
  - بانکهای اطلاعاتی

ممكن است ارائه سرویس محرمانگی اهمیت زیادی نداشته باشد ولی اینکه محتوای اطلاعات قابل اعتماد باشند از اهمیت بسیار بالاتری برخوردار است.

# راهکارهای احراز اصالت پیام

- 🗖 رمزگذاری پیام
- متن رمز کل پیام به عنوان احراز کننده اصالت پیام
  - □ کد احراز صحت پیام (MAC)
- تابعی از متن پیام و یک کلید سری (با خروجی با اندازه ثابت) به
   عنوان احراز کننده پیام
  - 🗖 استفاده از توابع درهمساز برای احراز صحت پیام
- خروجی حاصل از نگاشت پیام به یک مقدار با طول ثابت (با استفاده از
   یک تابع درهم ساز) به عنوان احراز کننده پیام

# استفاده از رمزنگاری در احراز اصالت پیام

- رمزنگاری یک پیام و امکان بازگشایی آن می تواند به صورت مستقیم برای احراز اصالت پیام استفاده شود
- در صورت وجود کلید صحیح امکان رمزنگاری معتبر وجود دارد
  - برای پی بردن به صحت داده ها نیاز به وجود الگوی قابل شناسایی در داده ها می باشد

# کد های احراز اصالت پیام

- تولید یک برچسب با طول ثابت:
  - وابسته به پیام
  - لزوماً برگشت پذیر نیست
- نیازمند یک کلید مخفی مشترک بین طرفین
  - آنرا به اختصار MAC مینامند. نام دیگر:

"Cryptographic Checksum"

- این برچسب را به پیام اضافه میکنند.
- گیرنده خود برچسب پیام را محاسبه نموده و با برچسب ارسالی مقایسه میکند.
  - از اصالت پیام (یا اصالت فرستنده آن) اطمینان حاصل میشود.

## کد های احراز اصالت پیام

### سرویس صحت:



## کد های احراز اصالت پیام

### سرویس محرمانگی و صحت:



- ويژگيها:
- هزینه کل « ( هزینه رمز نگاری) + (هزینه تهیه MAC)
  - نیاز به دو کلید

## كدهاى احراز اصالت پيام

### • DAA (Data Authentication Algorithm)

- استاندارد NIST و ANSI X9.17
- بر اساس رمز قالبی DES و مد کاری •
- همانند رمز نگاری CBC، پیام را پردازش کرده و تنها آخرین قالب را به عنوان برچسب استفاده میکنیم.

### **DAA**





(b) Message authentication and confidentiality; authentication tied to plaintext



(c) Message authentication and confidentiality; authentication tied to ciphertext

Figure 12.4 Basic Uses of Message Authentication code (MAC)

# استفاده از توابع درهم ساز در احراز اصالت پیام

- تابع یک طرفه
- طول ورودی متغیر
- طول خروجی ثابت (نگاشت از فضای بزرگتر به فضای کوچکتر) به گونه ای که:
  - امکان نگاشت ورودی های متفاوت به یک خروجی
  - -به این رشته عصاره یا چکیده پیام (Digest) میگوییم.
    - در حالت کلی، کلیدی در کار نیست!

# امنیت توابع درهم ساز

- □ توابع درهم ساز باید یک طرفه (One-Way) باشند.
- برای یک h داده شده، باید یافتن x به گونه ایی که h = H(x) از
   لحاظ محاسباتی ناممکن باشد.
  - 🗖 مقاومت در برابر تصادم ضعیف (Weak Collision)
- برای یک X داده شده، باید یافتن Y به گونه ایی که H(y) = H(x) از
   لحاظ محاسباتی ناممکن باشد.
  - $\square$  مقاومت در برابر تصادم قوی (Strong Collision)
- یافتن X و y به گونهای که H(y) = H(x) از لحاظ محاسباتی ناممکن
   باشد.

# توابع درهم ساز و رمز نگاری متقارن

#### سرویس صحت:



# توابع درهم ساز و رمز نگاری متقارن

### سرویس محرمانگی و صحت:



# توابع درهم ساز و رمز نگاری نا متقارن

# سرویس امضاء:



## روشهای دیگر احراز اصالت پیام

- طرفین راز S را مخفیانه به اشتراک گذاشته اند.
  - بدون استفاده از رمز
    - کاربرد عملی زیاد



## مقایسه رمزنگاری و توابع درهمساز

- رمزهای قالبی:
- پیاده سازی نرم افزاری توابع درهم ساز متداول سریعتر از رمزهای قالبی قابل اجرا است.
  - دارای هزینه سخت افزاری بیشتر
  - کارایی کمتر برای داده های حجیم
  - دارای محدودیتهای صادارتی (Export Control)

## ساختار درونی تابع درهم ساز



IV = Initial value

CV = chaining variable

 $Y_i = i$ th input block

f = compression algorithm

L = number of input blocks

n = length of hash code

b = length of input block



ullet پیام به قطعات  $Y_i$  تقسیم شده است.

• IV یک رشته ثابت میباشد.

$$CV_0 = IV$$
 $CV_i = f(CV_{i-1}, Y_{i-1})$ 
 $Hash = CV_I$ 

# توابع درهم ساز مهم: MD5

- MD5: Message Digest 5 •
- -طراحی 1992 توسط Rivest، یکی از سه طراح RSA
- استفاده گسترده در گذشته، اما از کاربرد آن کاسته شده است.
  - ويژگيها:
  - پیام به قطعات ۵۱۲ بیتی تقسیم می شود
    - خروجی ۱۲۸ بیتی

### امنیت MD5

- حملات كارگر به اين الگوريتم يافت شده اند:
- Berson سال ۱۹۹۲: حمله تفاضلی به یک دور الگوریتم
- Boer و Bosselaers سال ۹۳: یافتن تصادم های مجازی
  - Dobbertin سال ۹٦: تصادم در تابع فشرده ساز

# توابع درهم ساز مهم: SHA-1

#### SHA-1: Secure Hash Algorithm – 1

- استاندارد NIST، ۱۹۹۵
- طول ورودی  $< 2^{64}$  بیت
  - طول خروجی ۱۹۰ بیت
- $\mathbf{DSS}$  استفاده شده در استاندارد امضای دیجیتال -
  - امنیت:
- در برابر حملات شناخته شده مقاومت بالایی دارد

### گونه های SHA-1

- □ نسخههای زیر نیز علاوه بر SHA-1 استاندارد شده اند:
  - SHA-512 و SHA-384 SHA-256
    - معروف به خانواده SHA-2 هستند.
  - از لحاظ ساختار و جزئيات مشابه SHA-1 هستند.

| Algorithm | Digest size | Block size | Message size | Security |
|-----------|-------------|------------|--------------|----------|
| SHA-1     | 160         | 512        | < 264        | 80 bits  |
| SHA-256   | 256         | 512        | < 264        | 128 bits |
| SHA-384   | 384         | 1024       | < 2128       | 192 bits |
| SHA-512   | 512         | 1024       | < 2128       | 256 bits |

#### **HMAC**

• HMAC یک الگوریتم احراز اصالت پیام است

• HMAC اساساً روشی برای ترکیب کردن کلید مخفی با الگوریتمهای درهم ساز فعلی می باشد.

- برای تولید چکیده پیغام، از توابع درهم استفاده شده است
  - در مقابل استفاده از رمزهای قطعه ای
  - بدلیل مزایای عملی توابع درهم ساز

#### **HMAC**



 $HMACK = H[(K+ \oplus opad) || H[(K+ \oplus ipad) || M]]$ 

Figure 9.10 HMAC Structure

| Exhaustive Search    | آزمون جامع        |
|----------------------|-------------------|
| Tag                  | برچسب             |
| Packet               | بسته              |
| Compression          | تابع فشرده ساز    |
| One way Function     | تابع يكطرفه       |
| Transaction          | تراكنش            |
| Collision            | تصادم             |
| Pseudo Collision     | تصادم های مجازی   |
| Modification         | تغيير             |
| Integrity            | صحت (تمامیت)      |
| Hash Function        | تابع درهم ساز     |
| Delete               | حذف               |
| Differential Attack  | حمله تفاضلي       |
| Birthday Attack      | حمله روز تولد     |
| Linear               | خطی               |
| Insert               | درج               |
| Frame Check Sequence | دنباله بررسى قالب |

| - I                     |                        |
|-------------------------|------------------------|
| Round                   | دور                    |
| Block Cipher            | رمز قالبي              |
| Decryption              | رمز گشایی              |
| Conventional Encryption | رمزنگاری مرسوم         |
| Collision Free          | عاری از تصادم          |
| Non-repudiation         | انکارناپذیری           |
| Unauthorized            | غير مجاز               |
| Plain text              | متن واضح               |
| Confidentiality         | محرمانگی               |
| Operation Mode          | نحوه بكارگيري          |
| Valid                   | معتبر                  |
| Infeasible              | ناممكن                 |
| MAC                     | کدهای احراز اصالت پیام |
| Error Detection Code    | کدهای تشخیص خطا        |