Seminari 3: Compacitat i successions

Arnau Mas

11 de desembre de 2018

Problema 2

- (a) Per veure que \mathbb{N} amb aquesta topologia no és Hausdorff és suficient veure que hi ha un punt que no es pot separar de la resta. Tenim que 0 és a tot obert de la topologia diferent del buit. Així, si $n \in \mathbb{N}$ amb $n \neq 0$ i N un entorn de n, $0 \in N$. Per tant no podem separar 0 de cap altre punt. De fet no hi ha cap parella de punts separable, ja que si un obert conté un natural n també conté tot $m \leq n$.
- **(b)** La successió donada no convergeix a 0 ja que $\{0\}$ és un entorn de 0 que no conté cap punt de la successió. Tampoc convergeix a 1 ja que $\{0,1\}$ és un entorn de 1 i si $x_n \in \{0,1\}$ aleshores $x_n = 1$. Així $x_{n+1} = 2 \notin \{1,2\}$.

Si denotem $\{0,1,\ldots,n\}$ per U_n aleshores tenim $U_n\subseteq U_m$ si i només si $n\leq m,$ i $n\in U_m$ si i només si $n\leq m.$ Així, $x_n\in U_2$ per tot $n\in\mathbb{N}$. Per tot N entorn de $m\geq 2$ tenim un obert $U\subseteq N$ tal que $m\in U\subseteq N$. Per la definició de la topologia que tenim, o bé $U=U_k$ per algun $k\geq m$ o bé $U=\mathbb{N}$. En qualsevol cas, $U_m\subseteq U$, i per tant, per tot $n\in\mathbb{N}, x_n\in U_2\subseteq U_m\subseteq N$. I així $x_n\to m$ per tot $m\geq 2$.

(c) Si fem servir la notació de l'apartat anterior, tenim que

$$\bigcup_{n=0}^{\infty} U_n = \mathbb{N},$$

de manera que $\{U_n\}_{n\in\mathbb{N}}$ és un recobriment de \mathbb{N} . Veurem que no en podem extreure un subrecobriment finit, i per tant que \mathbb{N} no és compacte. En efecte, si $\{U_{n_1},\ldots,U_{n_k}\}$ és un subrecobriment finit aleshores, si $N=\max_{1\leq i\leq k}n_k$

$$\bigcup_{i=1}^k U_{n_i} = U_N \subset \mathbb{N}.$$

Per tant no podem recobrir \mathbb{N} amb un subrecobriment finit de $\{U_n\}_{n\in\mathbb{N}}$, ergo \mathbb{N} no és compacte amb aquesta topologia.

Problema 3

(a)

(b) Suposem, buscant una contradicció, que S és un subconjunt infinit d'un espai topològic compacte X que no té punts d'acumulació. Això vol dir que tot $x \in X$ té un entorn N_x tal que N_x no té punts de S tret de possiblement x. Considerem U_x l'obert tal que $x \in U_x \subseteq N_x$, que existeix per la definició d'entorn. És clar que

$$X = \bigcup_{x \in X} U_x,$$

i per tant $\{U_x\}_{x\in X}$ és un recobriment de X. Aquest recobriment, però, no té cap subrecobriment finit. En efecte, si $\{U_{x_1},\ldots,U_{x_N}\}$ és un subrecobriment finit, aquest no pot recobrir X. Això és perquè cada U_{x_k} conté, com a màxim, un punt de S, i per tant no pot ser que la seva unió contingui S, puix que és infinit. Però X és compacte, de manera que hauria de ser possible trobar un subrecobriment finit, de manera que hem arribat a contradicció.