Department of Mathematics Indian Institute of Technology Patna MA - 201: B.Tech. II year

Autumn Semester: 2013-14

Assignment-4: Complex Analysis

- 1. Evaluate $\int_C |z| \bar{z} dz$ where C contain $z = Re^{it}$, $0 \le t \le \pi$ and straight line $-R \le Re(z) \le R$, Im(z) = 0.
- 2^{**} . Let f(z) be continuous in a simply connected domain D and if $\oint_C f(z) dz = 0$ for every closed contour C in D then f(z) is analytic in D. (Morera Theorem)
- 3^{**} . If a function f(z) is analytic at a given point, then its derivatives of all orders are analytic there too.
- 4^{**} . If P(z) is a non constant polynomial then prove that the equation P(z) = 0 has at least one root.
- 5. Evaluate $\int_C f(z)dz$, when (i) $f(z) = \frac{z+2}{z}$, $C: z = 2e^{i\theta}$, $\pi \le \theta \le 2\pi$ (ii) $f(z) = \frac{z+2}{z}$, $C: z = 2e^{i\theta}$, $0 \le \theta \le 2\pi$ (iii) $f(z) = \pi e^{\pi \bar{z}}$, C: boundary of the square with vertices at the points 0, 1, 1+i, i, orientation of Cis in positive direction

 - (iv)** $f(z) = \bar{z}$, $C: z = \sqrt{4-y^2} + iy$ $(-2 \le y \le 2)$ (v) $f(z) = x + y^2 ixy$, C: z(t) = (t-2i), $1 \le t \le 2$, and z(t) = 2 (4-t)i, $2 \le t \le 3$ (vi) $f(z) = z^{-1+i}$, $(|z| > 0, 0 < \arg z < 2\pi)$, C: |z| = 1 taken anticlockwise
- 6. Find an upper bound for the absolute value of the integral $\int_C f(z)dz$, when
- (i) $f(z) = e^{1/z}$, C: quarter circle |z| = 1, $0 \le arg(z) \le \pi/2$ from the point 1 to the point i
- (ii) $f(z) = e^{z^2}$, C: broken lines from z = 0 to z = 1 and then from z = 1 to z = 1 + i
- (iii) $f(z) = \frac{2z^2 1}{z^4 + 5z^2 + 4}$, C: upper half of the circle |z| = r (r > 2) taken in counterclockwise direction (iv)** $f(z) = Log(z)/z^2$, C: |z| = r (r > 1) taken in counterclockwise direction (v) $f(z) = x^2 + iy^2$ C: is the line segment joining -i to i

- 7. Let $z^{1/2}$ denote the function $z^{1/2} = \sqrt{r}e^{i\theta/2}$, $(r > 0, -\pi/2 < \theta < 3\pi/2)$. Without actually finding the value of the integral, show that $\lim_{R\to\infty} \int_{C_R} \frac{z^{1/2}}{z^2+1} dz = 0$, where C_R denotes the semicircular path $z = Re^{i\theta}, (0 \le \theta \le \pi).$
- 8. Let C denotes a positively oriented circle $|z-z_0|=r$, (z_0) is any complex number, then show that $\int_C (z - z_0)^{n-1} dz = \begin{cases} 0, & \text{if } n = \pm 1, \pm 2, \dots \\ 2\pi i, & \text{if } n = 0 \end{cases}$
- 9. Evaluate $\int_B f(z)dz$, when f(z) is: (i) $\frac{1}{3z^2+1}$ (ii) $\frac{z+2}{\sin\frac{z}{2}}$ (iii) $\frac{z}{1-e^z}$ where B forms the positively oriented boundary curve of the domain between |z|=4 and the square with sides along $x = \pm 1, y = \pm 1$
- 10. Examine whether Cauchy-Goursat theorem can be applied to evaluate the integral $\int_C f(z)dz$ where
- C: |z|=1 is in anticlockwise direction and f(z) is: $(i) \frac{z^2}{z-3}$ $(ii) ze^{-z}$ (iii) sechz $(iv) \tan z$ (v) Log(z+2) $(vi) |z|^2 e^z$ $(vii) \frac{1}{|z|^3}$ $(viii) \bar{z}$
- 11. Let C be positively oriented boundary of the square whose sides along the lines $x = \pm 2$ and $y = \pm 2$. Evaluate the integral $\int_C f(z)dz$ when:
- $(i) \ f(z) = \frac{e^{-z}}{(z (i\pi/2))} \quad (ii) \ \frac{\cos z}{z(z^2 + 8)} \quad (iii) \ \frac{\cosh z}{z^4} \quad (iv) \ \frac{\tan(z/2)}{(z x_0)^2}, \ (-2 < x_0 < 2)$
- 12. Integrate $\frac{1}{z^4-1}$ over (i) |z+1|=1, (ii) |z-i|=1, each curve being taken in anticlockwise direction.

1

13. Let C be the unit circle centered at zero traversed in positive direction. Integrate over C:

$$(i) \ \frac{e^z - 1}{z} \quad (ii) \ \frac{z^3}{2z - i} \quad (iii) \ \frac{\cos z}{z - \pi} \quad (iv) \ \frac{\sin z}{z^4} \quad (v) \ \frac{1}{z \cos z} \quad (vi) \ \frac{e^z}{z^2 (z^2 - 16)} \quad (vii) \ \frac{\sinh z^2}{z^3}.$$

14. Find the value of the integral of f(z) around the circle |z-i|=2 taken in the anticlockwise direction when: (i) $f(z) = \frac{1}{z^2+4}$ (ii) $f(z) = \frac{1}{(z^2+4)^2}$

15. Evaluate $\int_C (2z-1)(z^2-z)^{-1} dz$ when:

(i)
$$C: |z| = 2$$
, positive direction (ii) $C: |z| = \frac{1}{2}$, positive direction

16. Evaluate
$$\int_C (4z^2+4z-3)^{-1}dz$$
 when:
(i) $C:|z|=1$, positive direction (ii) $C:|z+\frac{2}{3}|=1$, positive direction (iii) $|z|=3$, positive direction

17**. Suppose that $|f(z)| \le |f(z_0)|$ at each point z in some neighborhood $|z-z_0| < \epsilon$ in which f(z) is analytic. Then f(z) has the constant value $f(z_0)$ throughout that neighborhood.

18. Find the maximum modulus of following functions over the region prescribed.

(i)
$$2z + 5i$$
, $|z| \le 2$ (ii) $-iz + i$, $|z| \le 5$

(iii)
$$z^2$$
, $\{z = x + iy : 2 \le x \le 3 \text{ and } 1 \le y \le 3\}$ (iii) $Re(z^2)$, $\{z = x + iy : 2 \le x \le 3 \text{ and } 1 \le y \le 3\}$

19. Find a power series representation of the following functions centered at a point z_0 . Also find their radius of convergence.

(i)
$$\frac{1}{z^2 - 5z + 6}$$
, $z_0 = 0$ (ii) $\frac{1}{1-z}$, $z_0 = 2i$ (iii) $\frac{1}{z}$, $z_0 = 1$ (iv) $\cos z$, $z_0 = \frac{\pi}{4}$ (v) $\frac{i}{(z-i)(z-2i)}$, $z_0 = 0$ (vi) $\frac{1}{1+z}$, $z_0 = -i$ (vii) $\frac{1-z}{z-3}$, $z_0 = 1$

20. Find the radius of convergence of Taylor series of given function centered at the indicated point z_0 ,

$$\begin{array}{lll} \text{without expanding the function.} \\ (\mathrm{i}) & \frac{3-i}{1-i+z}, \ z_0 = 4-2i & (\mathrm{ii}) & \frac{4+5z}{1+z^2}, \ z_0 = 2+5i \\ (\mathrm{iii}) & \cos z, \ z_0 = \frac{\pi}{4} & (\mathrm{iv}) & \frac{i}{(z-i)(z-2i)}, \ z_0 = 0 \end{array}$$

21. Find Laurent series representation for the following functions in specified region: (i)
$$z^2 \sin(\frac{1}{z^2})$$
, $0 < |z| < \infty$ (ii) $\frac{e^z}{(z+1)^2}$, $0 < |z+1| < \infty$ (iii) $\frac{1}{(z+1)}$, $1 < |z| < \infty$

22. Give two Laurent series representation for the following functions and also specify the region of

(i)
$$\frac{1}{z^2(1-z)}$$
 (ii) $\frac{1}{z^3-z^4}$ (iii) $\frac{1}{z(z^2+1)}$ (iv) $\frac{1}{z(4-z)^2}$

23. Expand the following functions in a Laurent series valid for specified region:
(i)
$$\frac{z}{(z-1)(z-3)}$$
, $0 < |z-1| < 2$ (ii) $\frac{\cosh z - \cos z}{z^5}$, $0 < |z|$ (iii) $\frac{1}{z(z-3)}$, $0 < |z| < 3$ (iv) $\frac{1}{z(z-3)}$, $3 < |z-3|$ (v) $\frac{1}{z(z-3)}$, $1 < |z+1| < 4$ (vi) $\frac{z}{(z+1)(z-2)}$, $1 < |z| < 2$ (v) $\frac{7z-3}{z(z-1)}$, $0 < |z-1| < 1$