MAPSI — cours 8 : Échantillonnage et MCMC

Pierre-Henri Wuillemin & Christophe Gonzales

LIP6 / ISIR - Sorbonne Université, France

Échantillonnage en statistique

L'échatillonnage (méthodes de Monte Carlo) proposent une simulation stochastique pour le calcul d'intégrales (ou d'équations différentielles).

enticles).
$$E_P(f) = \int f(x) \cdot P(x) dx \approx \frac{1}{N} \sum_{i \leq N} f(X_i), \forall i, X_i \text{ iid, suivant } P$$

Il s'avère que l'intégration (ou l'équivalent discret : **la somme**) est une opération fondamentale dans les statistiques :

- À partir de posterior $\propto L \times P$, calculer la constante de normalisation (Z): $\int L \times P$ car posterior $=\frac{L \times P}{\int L \times P}$
- Marginaliser une distribution jointe : $P(x_2) = \int P(x_1, x_2) dx_1$
- Statistiques sur une distribution :
 - Moyenne de P: f(x) = x
 - Moment d'ordre 2 de $P: f(x) = x^2$
 - $P(A): f(X) = \mathbf{1}_A$

Calcul (un peu tiré par les cheveux) de π par échantillonnage

$$\pi = \int_{\bigcirc} dx = \int_{\square} 1_{\bigcirc}(x) dx \propto \int_{\square} p(x).1_{\bigcirc}(x) dx$$

où p distribution uniforme sur \square .

Méthode : on jette des cailloux dans le carré. Hypothèse : les jets suivent une distribution uniformes d'où

$$\frac{1}{N} \sum_{i < N} 1_{\bigcirc}(X_i) = \frac{\textit{NbJets}_{\textit{Cercle}}}{\textit{NbJets}_{\textit{Total}}} = \frac{\pi \cdot R^2}{(2 \cdot R)^2} = \frac{\pi}{4}$$

6 jets dans le cercle sur 10 jets en tout $\Rightarrow \hat{\pi}_{10} = 2.4$ 89 jets dans le cercle sur 100 jets en tout $\Rightarrow \hat{\pi}_{100} = 3.57$ 750 jets dans le cercle sur 1000 jets en tout $\Rightarrow \hat{\pi}_{1000} = 3$ 7852 jets dans le cercle sur 10000 jets en tout $\Rightarrow \hat{\pi}_{10000} = 3$.1408

Plan du cours nº9

- Échantillonnage d'une loi discrète
- Rejection sampling
- MCMC : Metropolis-Hastings
- MCMC : échantillonneur de Gibbs

Échantillonnage avec une distribution discrète

Problème : échantillonner selon :

- Solution :
 - Calculer la cumulative :

$$F(X_i) = \sum_{Y \le X_i} \overset{\circ}{\pi}(Y) = \boxed{0.2 \quad 0.3 \quad 0.6 \quad 1}$$

- ② Tirer un nombre z selon une distribution uniforme sur [0,1[
- **③** Soit *i* tel que $F(X_{i-1}) \le z < F(X_i)$ (en posant $X_0 = 0$)
- Renvoyer X_i

Échantillonnage d'une loi normale

• Faire la cumulative de la fonction de densité (cf. table)

Il existe des algos dédiés performants (Ziggurat, Box-Muller)

Distributions complexes: Rejection Sampling

Hypothèses:

- $\frac{\infty}{\pi}$ (·) difficile à échantillonner
- Mais pour tout $x \in X$, $\overset{\infty}{\pi}(x)$ facile à calculer
- $q(\cdot)$ facile à échantillonner
- il existe $k \in \mathbb{R}$ tel que $\overset{\infty}{\pi}(x) \leq k \times q(x)$ pour tout $x \in X$

Distributions complexes: Rejection Sampling

Algorithme « rejection sampling »:

- Tirer un nombre z selon $q(\cdot)$
- ② Calculer $m_q = k \times q(z)$
- **3** Tirer un nombre u selon une loi uniforme sur $[0, m_q]$
- **3** Accepter z si $u \leq_{\pi}^{\infty} (z) = m_{\tilde{\pi}}$

Distributions complexes: Rejection Sampling

Avantage: fonction de partition inconnue

$$\bullet \ \overset{\infty}{\pi}(x) = \frac{1}{Z_p} p(x)$$

- Seul p(x) connu
- Nouvelle règle : $k \times q(x) \ge p(x)$ pour tout x
- Rejection sampling \Longrightarrow échantillon $\langle z_1, \ldots, z_n \rangle \sim \hat{\tilde{\pi}}(\cdot)$

$$\bullet \ \hat{\pi}(z) \propto q(z) \times \frac{p(z)}{k \times q(z)}$$

$$\bullet \ \hat{\pi}(z) \propto \frac{p(z)}{k} \propto p(z) \propto \hat{\pi}(z)$$

on peut échantillonner sans connaître la fonction de partition

Distributions complexes : Rejection Sampling

Calcul du taux d'acceptation :

$$P(ext{acceptation}) = \int q(z) imes rac{m_{\infty}(z)}{m_q(z)} dz$$

$$= \int q(z) imes rac{\widetilde{\pi}(z)}{k imes q(z)} dz$$

$$= rac{1}{k} \int \widetilde{\pi}(z) dz = rac{1}{k}$$

Exemple précédent : $k \approx 2 \Longrightarrow$ seulement 1 z sur 2 accepté !

k augmente exponentiellement avec la dimension de $\overset{\circ}{\pi}(\cdot)$!

Principe de l'échantillonnage par MCMC

MCMC: Markov Chain Monte Carlo

- lacktriangle But : échantillonner selon une loi $\overset{\infty}{\pi}(\cdot)$
- Principe: construire une suite (X_i) de variables aléatoires tirées selon des lois $\widehat{\pi}_i(\cdot)$ tendant vers $\widehat{\pi}(\cdot)$ et sélectionner un échantillon $\langle x_i, \ldots, x_{m+i} \rangle$ ou sous-échantillonner: $\langle x_{\sigma(i)}, \ldots, x_{\sigma(m+i)} \rangle \Longrightarrow \approx \text{i.i.d.}$
- Solution : construire une chaîne de Markov de loi stationnaire $\overset{\sim}{\pi}(\cdot)$

Loi stationnaire

• soit $P(X_{t+1}|X_t)$ la probabilité de transition (chaîne homogène)

Loi stationnaire $\overset{\infty}{\pi}(\cdot)$

$$\overset{\infty}{\pi}(x) = \int_{y} P(x|y) \overset{\infty}{\pi}(y) dy$$

ici, on connaît $\overset{\infty}{\pi}(\cdot)$ et on cherche $P(\cdot|\cdot)$

Problème:

sous quelles conditions $P(\cdot|\cdot)$ existe-t-elle?

Ergodicité?

Une condition possible

Réversibilité

$$\overset{\infty}{\pi}(x)P(y|x) = \overset{\infty}{\pi}(y)P(x|y), \ \forall x, y$$

propriété également connue sous le nom de « detailed balance »

conséquence :

$$\int_{y} P(x|y) \overset{\infty}{\pi}(y) dy = \int_{y} P(y|x) \overset{\infty}{\pi}(x) dy$$
$$= \overset{\infty}{\pi}(x) \int_{y} P(y|x) dy$$
$$= \overset{\infty}{\pi}(x)$$

 $\Longrightarrow \overset{\infty}{\pi}(\cdot)$ loi stationnaire!

• En général, $\overset{\infty}{\pi}(x)P(y|x) \neq \overset{\infty}{\pi}(y)P(x|y)$

Interpretation de $\pi(x)P(y|x) > \pi(y)P(x|y)$

Le processus markovien va évoluer plus souvent de x vers y que de y vers $x \Longrightarrow$ non réversible.

Correction : diminuer P(y|x) ou augmenter P(x|y)

 \implies créer deux nombres $\alpha(x, y)$ et $\alpha(y, x)$ tels que :

$$\tilde{\pi}(x)P(y|x)\alpha(x,y) = \tilde{\pi}(y)P(x|y)\alpha(y,x)$$

 \bigcap on veut que $P(y|x)\alpha(x,y)$ soit une probabilité de transition!

Remarque :
$$y = x \Longrightarrow \overset{\infty}{\pi}(x)P(x|x)\alpha(x,x) = \overset{\infty}{\pi}(x)P(x|x)\alpha(x,x)$$

pour tout $\alpha(x,x)$

Si
$$P(x|x)\alpha(x,x) = 1 - \int_{y \neq x} P(y|x)\alpha(x,y)dy$$
, on a bien une proba!

$$P(x|x)\alpha(x,x) = 1 - \int_{y \neq x} P(y|x)\alpha(x,y)dy$$

Pour assurer que $P(x|x)\alpha(x,x) \ge 0$, on impose $\alpha(x,y) \le 1$

$$\widetilde{\pi}(x)P(y|x) > \widetilde{\pi}(y)P(x|y)
\widetilde{\pi}(x)P(y|x)\alpha(x,y) = \widetilde{\pi}(y)P(x|y)\alpha(y,x)$$

$$\implies$$
 pour augmenter $P(x|y)$, on fixe $\alpha(y,x)=1$

$$\Longrightarrow \overset{\infty}{\pi}(x)P(y|x)\alpha(x,y) = \overset{\infty}{\pi}(y)P(x|y)$$

$$\implies \alpha(x,y) = \frac{\overset{\sim}{\pi}(y)P(x|y)}{\overset{\sim}{\pi}(x)P(y|x)}$$

Résumé:

• Si $\overset{\infty}{\pi}(x)P(y|x) > \overset{\infty}{\pi}(y)P(x|y)$:

Fixer
$$\alpha(x, y) = \frac{\overset{\infty}{\pi}(y)P(x|y)}{\overset{\infty}{\pi}(x)P(y|x)}$$
 et $\alpha(y, x) = 1$

• Par symétrie, si $\overset{\infty}{\pi}(x)P(y|x)<\overset{\infty}{\pi}(y)P(x|y)$:

Fixer
$$\alpha(x, y) = 1$$
 et $\alpha(y, x) = \frac{\frac{\pi}{\pi}(x)P(y|x)}{\frac{\pi}{\pi}(y)P(x|y)}$

Intérprétation de α : probabilité de mouvement

 $\alpha(x, y) =$ la probabilité de réaliser la transition de x vers y

 \implies à l'étape t, on a 2 choix :

- transiter de x vers un y avec la probabilité $P(y|x)\alpha(x,y)$
- ne pas réaliser de transition

Résumé

si
$$\alpha(x,y) = \min \left\{ 1, \frac{\overset{\infty}{\pi}(y)P(x|y)}{\overset{\infty}{\pi}(x)P(y|x)} \right\}$$
 alors :

$$\overset{\infty}{\pi}(x)P(y|x)\alpha(x,y)=\overset{\infty}{\pi}(y)P(x|y)\alpha(y,x)$$

 \Longrightarrow réversibilité \Longrightarrow $\overset{\infty}{\pi}(\cdot)$ distribution stationnaire

Algorithme de Metropolis-Hastings

Metropolis-Hastings

Algorithme pour générer x_{t+1} à partir de x_t :

- ① tirer z selon la distribution $P(\cdot|x_t)$
- itirer un nombre *u* selon une loi uniforme sur [0, 1[
- renvoyer $x_{t+1} = \begin{cases} z & \text{si } u \leq \alpha(x_t, z) \\ x_t & \text{sinon} \end{cases}$

Références :

- N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller et E. Teller (1953) "Equations of State Calculations by Fast Computing Machines".
 Journal of Chemical Physics, 21 (6), pp. 1087–1092
- W.K. Hastings (1970) "Monte Carlo Sampling Methods Using Markov Chains and Their Applications". Biometrika, 57 (1), pp. 97–109

Choix de $P(\cdot|x_t)$

- $P(\cdot|x_t)$ doit être simple à échantillonner
- 1ère possibilité [Metropolis et al. (1953), Müller (1993)] $P(z|x_t) = q(z-x_t)$ avec $q(\cdot)$ densité multivariée autrement dit $z = x_t + y$ avec $y \sim q(\cdot)$

 $q(\cdot)$ indépendante de x_t !

⇒ random walk chain

- choix possible de $q(\cdot)$: loi normale
- si q est symmétrique : q(y) = q(-y) et

$$\alpha(x_t, z) = \min \left\{ 1, \frac{\frac{\infty}{\pi}(z)P(x_t|z)}{\frac{\infty}{\pi}(x_t)P(z|x_t)} \right\} = \min \left\{ 1, \frac{\frac{\infty}{\pi}(z)}{\frac{\infty}{\pi}(x_t)} \right\}$$

Choix de $P(\cdot|x_t)$

• 2ème possibilité [Hastings (1970)]

$$P(z|x) = q(z)$$
 avec $q(\cdot)$ densité multivariée

⇒ independent chain

- ⇒ généralisation de rejection sampling
- 3ème possibilité : l'algorithme Langevin [Roberts et Rosenthal (1998)]

$$z = x_t + \frac{\sigma^2}{2} \nabla \log(\tilde{\pi}(x_t)) + \sigma y \text{ avec } y \sim q(\cdot)$$

 σ : facteur d'échelle

🚺 II existe plein d'autres possibilités. . .

Choix de l'étalement/variance de $P(\cdot|x_t)$

important pour la vitesse de convergence

Influence de l'étalement

- Taux d'acceptation
- Région couverte par la chaîne de Markov

Choix de l'étalement/variance de $P(\cdot|x_t)$

Roberts, Gelman, Gilks (1994)

- cadre : random walk
- ullet affiner l'étalement de $P(\cdot|x_t)$ pour obtenir un taux d'acceptation pprox 0,45
- $\overset{\infty}{\pi}$ et $P(\cdot|\cdot)$: lois normales n-dimensionnelles affiner l'étalement de $P(\cdot|x_t)$ pour obtenir un taux d'acceptation $\approx 0,23$ lorsque n tend vers $+\infty$

Müller (1993)

Random walk \Longrightarrow taux d'acceptation \approx 0,5.

Initialisation et burn in

Initialisation:

Partir de n'importe quelle valeur x_0

 ζ au départ l'échantillon ne suit pas $\overset{\infty}{\pi}(\cdot)$

⇒ burn in nécessaire :

Ne conserver dans l'échantillon que les x_t pour $t > t_0$

En général, t_0 est de l'ordre de quelques milliers

Metropolis-Hastings par bloc

• supposons que $x_t = (x_t^1, x_t^2)$

Précédemment :

• stationnarité : $\overset{\infty}{\pi}(x_{t+1}) = \int_{x_t} P(x_{t+1}|x_t) \overset{\infty}{\pi}(x_t) dx_t$

Maintenant:

- $P(x_{t+1}|x_t) = P(x_{t+1}^1, x_{t+1}^2|x_t^1, x_t^2)$
- stationnarité :

$$\tilde{\pi}(x_{t+1}^1, x_{t+1}^2) = \int_{x_t^1} \int_{x_t^2} P(x_{t+1}^1, x_{t+1}^2 | x_t^1, x_t^2) \, \tilde{\pi}(x_t^1, x_t^2) \, dx_t^1 \, dx_t^2$$

• Or
$$P(x_{t+1}|x_t) = P(x_{t+1}^2|x_{t+1}^1, x_t^1, x_t^2) \times P(x_{t+1}^1|x_t^1, x_t^2)$$

= $P(x_{t+1}^2|x_{t+1}^1, x_t^2) \times P(x_{t+1}^1|x_t^1, x_t^2)$ (prop. Markov)

Metropolis-Hastings par bloc : stationnarité

$$\overset{\circ}{\pi}(x_{t+1}^2, x_{t+1}^2) = \int_{x_t^1} \int_{x_t^2} P(x_{t+1}^2 | x_{t+1}^1, x_t^2) \times P(x_{t+1}^1 | x_t^1, x_t^2) \overset{\circ}{\pi}(x_t^1, x_t^2) dx_t^1 dx_t^2$$

Rappel : stationnarité pour 1 variable

$$\widetilde{\pi}(x_{t+1}) = \int_{x_t} P(x_{t+1}|x_t) \ \widetilde{\pi}(x_t) dx_t$$

Stationnarité par bloc

Généralisation en rajoutant toutes les variables sauf celle en x_{t+1}^i à droite des signes de conditionnement :

$$\bullet \ \ \overset{\infty}{\pi}(x_{t+1}^1|y^2) = \int_{x_t^1} P(x_{t+1}^1|x_t^1,y^2) \ \overset{\infty}{\pi}(x_t^1|y^2) dx_t^1 \text{ pour tout } y^2$$

$$\bullet \ \ \overset{\infty}{\pi}(x_{t+1}^2|y^1) = \int_{x_t^2} P(x_{t+1}^2|x_t^2,y^1) \ \overset{\infty}{\pi}(x_t^2|y^1) dx_t^2 \text{ pour tout } y^1$$

Metropolis-Hastings par bloc : stationnarité

conséquences de la stationnarité par bloc :

$$\begin{split} &\int_{X_{t}^{1}} \int_{X_{t}^{2}} P(X_{t+1}^{2}|X_{t+1}^{1},X_{t}^{2}) \times P(X_{t+1}^{1}|X_{t}^{1},X_{t}^{2}) \stackrel{\pi}{\pi} (X_{t}^{1},X_{t}^{2}) dX_{t}^{1} dX_{t}^{2} \\ &= \int_{X_{t}^{1}} \int_{X_{t}^{2}} P(X_{t+1}^{2}|X_{t+1}^{1},X_{t}^{2}) \times P(X_{t+1}^{1}|X_{t}^{1},X_{t}^{2}) \stackrel{\pi}{\pi} (X_{t}^{1}|X_{t}^{2}) \stackrel{\pi}{\pi} (X_{t}^{2}) dX_{t}^{1} dX_{t}^{2} \\ &= \int_{X_{t}^{2}} \int_{X_{t}^{1}} P(X_{t+1}^{2}|X_{t+1}^{1},X_{t}^{2}) \times P(X_{t+1}^{1}|X_{t}^{1},X_{t}^{2}) \stackrel{\pi}{\pi} (X_{t}^{1}|X_{t}^{2}) \stackrel{\pi}{\pi} (X_{t}^{2}) dX_{t}^{1} dX_{t}^{2} \\ &= \int_{X_{t}^{2}} P(X_{t+1}^{2}|X_{t+1}^{1},X_{t}^{2}) \left[\int_{X_{t}^{1}} P(X_{t+1}^{1}|X_{t}^{1},X_{t}^{2}) \stackrel{\pi}{\pi} (X_{t}^{1}|X_{t}^{2}) dX_{t}^{1} \right] \stackrel{\pi}{\pi} (X_{t}^{2}) dX_{t}^{2} \\ &= \int_{X_{t}^{2}} P(X_{t+1}^{2}|X_{t+1}^{1},X_{t}^{2}) \stackrel{\pi}{\pi} (X_{t+1}^{1}|X_{t}^{2}) \stackrel{\pi}{\pi} (X_{t}^{2}) dX_{t}^{2} \qquad \text{(stationnarité par bloc)} \\ &= \int_{X_{t}^{2}} P(X_{t+1}^{2}|X_{t+1}^{1},X_{t}^{2}) \stackrel{\pi}{\pi} (X_{t}^{2}|X_{t+1}^{1}) \stackrel{\pi}{\pi} (X_{t+1}^{1}) dX_{t}^{2} \qquad \text{(stationnarité par bloc)} \\ &= \frac{\pi}{\pi} (X_{t+1}^{2}|X_{t+1}^{1}) \stackrel{\pi}{\pi} (X_{t+1}^{1}) = \stackrel{\pi}{\pi} (X_{t+1}^{1},X_{t+1}^{2}) \qquad \text{(stationnarité par bloc)} \end{aligned}$$

Metropolis-Hastings par bloc

Conclusion du transparent précedent

Stationnarité par bloc ->> Stationnarité de la loi jointe

Metropolis-Hastings par bloc

Algorithme pour générer $x_{t+1} = (x_{t+1}^1, \dots, x_{t+1}^n)$ à partir de x_t :

- **1** Choisir une permutation $\sigma: \{1, \ldots, n\} \mapsto \{1, \ldots, n\}$
- ② pour tout $i \in \{1, ..., n\}$ faire:
 - **1** Posons $y = (x_{t+1}^{\sigma(1)}, \dots, x_{t+1}^{\sigma(i-1)}, x_t^{\sigma(i+1)}, \dots, x_t^{\sigma(n)})$
 - **1** tirer $z^{\sigma(i)}$ selon la distribution $P(\cdot|x_t^{\sigma(i)}, y)$

 - u tirer un nombre u selon une loi uniforme sur [0, 1]

Échantillonneur de Gibbs

Échantillonneur de Gibbs

- Metropolis-Hastings par bloc
- Choix de la proba de transition : $P(z^{\sigma(i)}|x_t^{\sigma(i)},y) = \hat{x}(z^{\sigma(i)}|y)$

Conséquence :

$$\alpha(x_t^{\sigma(i)}, z^{\sigma(i)}|y) = \min\left\{1, \frac{\pi(z^{\sigma(i)}|y)P(x_t^{\sigma(i)}|z^{\sigma(i)}, y)}{\pi(x_t^{\sigma(i)}|y)P(z^{\sigma(i)}|x_t^{\sigma(i)}, y)}\right\} = 1$$

 $\implies z^{\sigma(i)}$ est toujours accepté

Échantillonneur de Gibbs

Algorithme

Algorithme pour générer $x_{t+1} = (x_{t+1}^1, \dots, x_{t+1}^n)$ à partir de x_t :

- **①** choisir une permutation $\sigma : \{1, ..., n\} \mapsto \{1, ..., n\}$
- ② pour tout $i \in \{1, ..., n\}$ faire:
 - **o** posons $y = (x_{t+1}^{\sigma(1)}, \dots, x_{t+1}^{\sigma(i-1)}, x_t^{\sigma(i+1)}, \dots, x_t^{\sigma(n)})$
 - tirer $x_{t+1}^{\sigma(i)}$ selon la distribution $\hat{\pi}(\cdot|y)$