Ch8: Confidence Intervals

4 Oct 2011 BUSI275 Dr. Sean Ho

- Dataset description due tonight 10pm
- HW4 due Thu 10pm

Outline for today

- Making estimates on the binomial proportion
- Confidence intervals
 - On μ, with known σ
 - ullet On the binomial proportion π
 - On μ, with unknown σ
 - Student's t-distribution

Binomial sampling distribution

- For most (n,p), the binomial is approx. normal:
 - $\mu = np$, $\sigma = \sqrt{(npq)}$
- Let π be the "true" prob of success in the pop
 - p = observed prob of success in sample
- Convert from "number of successes" (x) to "probability of success" (p):

Just divide by n (total # of trials):

	# successes	prob. of success
Mean	μ = np 🗖	$\mu_p = \pi$
Std dev	σ = √(npq)	$\sigma_p = \sqrt{\frac{\pi(1-\pi)}{n}}$

Binomial example

- Assume about 70% of people like our toothpaste. We want to refine this estimate, to a precision of ±1%, with 95% confidence.
 - How many people do we need to poll?
- Prob. of success ⇒ binomial
- 95% conf. \Rightarrow z = ±1.96
 - NORMSINV(.025)
- Std. err $\sigma_p = \sqrt{((.70)(.30)/n)}$

- Putting it together: $1.96 = .01 / \sigma_{D}$

- "If we were to select another random sample from the same population, 95% of the time its mean would lie between and ."
 - Application of the SDSM
- E.g., avg income of 25 students is \$12,000.
 - Assume $\sigma = \$4,000$ (pop. SD!)
- Std err is $\sigma_{\bar{x}} = \sigma/\sqrt{n} = \800
- 95% conf. $\Rightarrow z = \pm 1.96$
- So the confidence interval is $$12k \pm (1.96)(800)$
 - We think the true mean income lies somewhere between \$10,432 and \$13,568, with 95% confidence.

Myths about confid. intervals

- Myth: "All students in this population have income between \$10.4k and \$13.5k"
- Myth: "95% of students in this population have income between \$10.4k and \$13.5k"
- Myth: "If we repeated the study, 95% of the students surveyed would have income betw...."
- Myth: "We are 95% sure the mean income of our sample of 25 students is between"

Confid. interval for binomial

- In a poll of 80 people, 60 like our product
 - Point estimate: p = 75%
- Obtain a 95% confidence interval:
 - 95% confid. $\Rightarrow z = \pm 1.96$
- Std err: $\sigma_p = \sqrt{(pq/n)} = \sqrt{(.75)(.25)/80} \approx 4.84\%$
- Put it together: $(pt estimate) \pm (z)(std err)$
 - \bullet 75% \pm (1.96)(4.84%)
- We are 95% confident that between 65.51% and 84.49% of people like our product
 - i.e., that the real proportion π is in that range

Confid. int., with unknown o

- What if we don't know the population o?
- Estimate it from the sample SD: s
 - But this adds uncertainty in estimating µ
- Use "Student's" t-distribution on SDSM
 - Similar to normal, but wider (w/uncertainty)
 - Degrees of freedom: df = n-1
 - Approaches normal as df increases

William Sealy Gosset in 1908 (Wikipedia)

t-distribution in Excel

- TDIST(*t*, *df*, *tails*)
 - t: t-score, akin to z-score (x μ) / SE
 - df: degrees of freedom, df = n-1 for now
 - tails: 1 for area in one tail, or 2 for both tails
 - Result: % area under the t-dist in tail(s)
 - ◆ TDIST(1, 20, 2) → 32.93%
- TINV(area, df)
 - Always assumes area is total in both tails
 - Result: t-score
 - TINV(0.3293, 20) → 1

Confidence interval: example

- Track sales this month at 25 stores out of 1000:
 - Average = 8000 units, SD = 1500
- Estimate the average sales this month across all 1000 stores (i.e., 95% confidence interval).
- Standard error: $s/\sqrt{n} = 1500/5 = 300$
- Only have s, not σ : so use t-dist (df=24)
 - TINV(.05, 24) \rightarrow t = ± 2.0639
- Putting it together: 8000 ± (2.0639)(300)
 - 7380.83 (round down), 8619.17 (round up)
 - With 95% confidence, the average sales this month across all stores is between 7380 and 8620 units

Project: variables & data

- Ensure your sample size is sufficient!
- Sample size = # observations
 - Not total # of numbers in the spreadsheet!
 - What is the unit of observation?
- Select fewer but more relevant variables
 - More variables = more complete model, but
 - More variables = harder for you to find significant effects during analysis
- E.g., survey with 100 questions, 20 participants:
 - Total of 2000 numbers, but sample size is only 20!

TODO

- Dataset description due tonight 10pm
- HW4 (ch5): due Thu at 10pm
 - Remember to format as a document!
 - HWs are to be individual work
- REB form due Tue 18 Oct 10pm
 - Deadline postponed a week
 - If using non-public human-subjects data, also submit printed signed copy to me
 - You may want to submit early to allow time for processing by TWU's REB (3-4 weeks)

