CSC 503 Homework Assignment 5 Sample Solutions

Out: September 25, 2018 Due: October 3, 2018 Unity ID: jdoyle2

If using the Fitch macros to typeset proofs in first order logic, one introduces a dummy variable x by means of the command $\operatorname{\operatorname{\mathtt{Nopen}}}[x]$.

1. [20 points] Using only the basic natural deduction rules, prove the sequent

$$\forall x \forall y (\neg R(y) \rightarrow S(x)) \vdash (\exists y \neg R(y)) \rightarrow (\forall x S(x)).$$

Answer

The dummy variables can all be introduced on the same line rather than on separate lines as in the following.

2. [20 points] Using only the basic natural deduction rules, prove the sequent

$$\forall x (P(x) \to \neg R(x)) \vdash \neg (\exists x (P(x) \land R(x))).$$

Answer

3. [10 points] Using only the basic natural deduction rules, prove the sequent

$$\forall x \ P(a, f(a), x), \forall z \forall x \forall y \ (P(x, y, z) \rightarrow P(f(x), y, f(f(z)))) \vdash P(f(a), f(a), f(f(f(a)))).$$

Answer

$$\begin{array}{c|cccc} 1 & \forall x \ P(a,f(a),f(x)) & \text{Premise} \\ 2 & \forall z \forall x \forall y \ (P(x,y,z) \rightarrow P(f(x),y,f(f(z)))) & \text{Premise} \\ 3 & \forall x \forall y \ (P(x,y,f(a)) \rightarrow P(f(x),y,f(f(f(a))))) & \forall \text{e, 2} \\ 4 & \forall y \ (P(a,y,f(a)) \rightarrow P(f(a),y,f(f(f(a))))) & \forall \text{e, 3} \\ 5 & P(a,f(a),f(a)) \rightarrow P(f(a),f(a),f(f(f(a)))) & \forall \text{e, 4} \\ 6 & P(a,f(a),f(a)) & \forall \text{e, 1} \\ 7 & P(f(a),f(a),f(f(f(a)))) & \rightarrow \text{e, 5, 6} \\ \end{array}$$

4. [20 points] Using only the basic natural deduction rules, prove the sequent

$$\exists x \forall y \forall z P(x,y,z) \vdash \forall z \forall y \exists x P(x,y,z).$$

Answer

The dummy variables can all be introduced on the same line rather than on separate lines as in the following.

1	$\exists x \forall y \forall z P(x, y, z)$				Premise
2	z_0				
3		y_0			
4			x_0	$\forall y \forall z P(x_0, y, z)$	Assumption
5				$\forall z P(x_0, y_0, z)$ $P(x_0, y_0, z_0)$ $\exists x P(x, y_0, z_0)$	$\forall e, 4$
6				$P(x_0, y_0, z_0)$	$\forall e, 5$
7				$\exists x P(x, y_0, z_0)$	∃i, 6
8	$\exists x P(x, y_0, z_0)$				$\exists e, 1, 4-7$
9	$\forall y \exists x P(x, y, z_0)$				∀i, 3–8
10	$\forall z \forall y \exists x P(x, y, z)$				∀i, 2–9

5. [10 points] Using only the basic natural deduction rules, prove the sequent

$$\forall x \forall y \ [S(x,y) \to \neg S(y,x)] \vdash \forall x \ \neg S(x,x)$$

Answer

6. [20 points] Using only the basic natural deduction rules, prove the sequent

$$\forall x \forall y \forall z [(S(x,y) \land S(y,z)) \rightarrow S(x,z)], \forall x \neg S(x,x) \vdash \forall x \forall y [S(x,y) \rightarrow \neg S(y,x)]$$

Answer