Lic. Engenharia Informática LÓGICA EI

 Cálculo de Predicados de 1ª ordem da Lógica Clássica

José Carlos Costa

Dep. Matemática e Aplicações Universidade do Minho

23 de Maio de 2011

Introdução

A Lógica Proposicional, estudada até agora, é incapaz (ou insuficiente) para expressar certos argumentos matemáticos, tais como:

- "Todos os quadrados s\(\tilde{a}\) positivos. Como 16 \(\tilde{e}\) um quadrado, ent\(\tilde{a}\) 16 \(\tilde{e}\) positivo."
- "Existe um número real cujo quadrado é 5."

Esta segunda afirmação é do tipo "Existe um x com a propriedade P", que pode ser denotada por

$$\exists_{x} P(x).$$

Um outro exemplo é dado por

$$\forall_x \exists_y (x \cdot y = 1)$$

que significa "Para cada x existe um inverso y".

Introdução

De uma maneira geral, lidaremos com duas categorias de entidades sintácticas:

- uma para os objectos os termos (por exemplo: 5, x, $x + 2^{x+y}$).
- outra para as afirmações as fórmulas (por exemplo: ∃_x ∀_y (x · y < y)).

Tipo de linguagem

Definição

Um *tipo de linguagem* é um terno $L = (\mathcal{F}, \mathcal{R}, \mathcal{N})$, em que:

- F é um conjunto enumerável de símbolos chamados símbolos de função;
- R é um conjunto enumerável de símbolos chamados símbolos de relação ou símbolos de predicado;
- $\begin{tabular}{lll} \hline \textbf{3} & \mathcal{N} \ \'e \ uma \ funç\~ao & $\mathcal{F} \cup \mathcal{R} & \to & \mathbb{N}_0 \\ & s & \mapsto & \mathcal{N}(s) \\ \hline & designado \ a \ \textit{aridade} \ de \ s. \\ \hline \end{tabular} \ \ sendo \ \mathcal{N}(s)$

Os símbolos de função de aridade 0 são chamados constantes e o seu conjunto é vulgarmente representado por \mathcal{C} .

Para cada tipo teremos um alfabeto e uma linguagem de Cálculo de Predicados de 1ª ordem.

Tipo de linguagem

Exemplo

$$L_{Arit} = (\{0, s, +, \times\}, \{=, <\}, \mathcal{N})$$

onde $\mathcal{N}(0)=0$, $\mathcal{N}(s)=1$, $\mathcal{N}(+)=2$, $\mathcal{N}(\times)=2$, $\mathcal{N}(=)=2$ e $\mathcal{N}(<)=2$, é um tipo de linguagem.

O que poderá ser uma palavra da linguagem associada a este tipo?

Qual será o alfabeto que permite escrever todas as palavras de uma tal linguagem?

Definição

O alfabeto A_L , do Cálculo de Predicados, de um tipo de linguagem L é o conjunto formado pelos seguintes símbolos:

- símbolos de função e símbolos de predicado de L;
- 2 os conectivos proposicionais \bot , \land , \lor , \neg , \rightarrow e \leftrightarrow ;
- 3 $x_0, x_1, \ldots, x_n, \ldots$, chamados *variáveis*, formando um conjunto numerável representado por \mathcal{V} ;
- ∃ e ∀, chamados quantificador existencial e quantificador universal, respectivamente;
- **⑤** "(", ")" e ",".

L-termos

Definição

O conjunto \mathcal{T}_L dos L-termos é o subconjunto de \mathcal{A}_L^+ definido indutivamente pelas seguintes regras:

- **1** para cada $x_i \in \mathcal{V}$, $\overline{x_i \in \mathcal{T}_L}^{x_i}$;
- ② para cada $c \in C$, $\overline{c \in T_L}^c$;
- \odot para cada símbolo de função f de L, de aridade $n \ge 1$,

$$\frac{t_1 \in \mathcal{T}_L \quad \cdots \quad t_n \in \mathcal{T}_L}{f(t_1, \dots, t_n) \in \mathcal{T}_L} f$$

L-termos

Exemplo

A construção que se segue é uma árvore de formação da palavra $+(0, s(x_2))$ sobre o alfabeto $\mathcal{A}_{L_{Arit}}$.

$$egin{aligned} rac{\overline{x_2 \in \mathcal{T}_{L_{Arit}}}}{s(x_2) \in \mathcal{T}_{L_{Arit}}}^0 & rac{\overline{x_2 \in \mathcal{T}_{L_{Arit}}}}{s(x_2) \in \mathcal{T}_{L_{Arit}}}^s + \\ +(0,s(x_2)) \in \mathcal{T}_{L_{Arit}} \end{aligned}$$

Portanto, $+(0, s(x_2))$ é um L_{Arit} -termo.

Notação: Quando f é um símbolo de função de aridade 2 e t_1 e t_2 são L-termos,

$$t_1 f t_2$$
 representa o *L*-termo $f(t_1, t_2)$
Por exemplo, $0 + s(x_2) \longleftrightarrow +(0, s(x_2))$.

L-termos

Definição

Chamaremos subtermos aos sub-objectos de um L-termo

Exemplo

O conjunto dos subtermos de $0 + s(x_2)$ é

$$\{0+s(x_2),0,s(x_2),x_2\}.$$

A sequência de objectos x_2 , $s(x_2)$, 0, $0 + s(x_2)$ é uma sequência de formação de $0 + s(x_2)$.

Sendo o conjunto de *L*-termos um conjunto definido através de uma definição indutiva determinista, existe um teorema de indução estrutural para *L*-termos:

Teorema de Indução Estrutural em *L*-Termos

Seja P(t) uma propriedade que depende de um L-termo t e suponhamos que:

- para todo o $x \in \mathcal{V}$, P(x) é válida;
- 2 para todo o $c \in C$, P(c) é válida;
- **3** para todo o símbolo de função f, de aridade $n \ge 1$, e para todos os $t_1, \ldots, t_n \in \mathcal{T}_L$, se $P(t_1), \ldots, P(t_n)$ são válidas, então $P(f(t_1, \ldots, t_n))$ é válida.

Então P(t) é válida, para todo o L-termo t.

e existe um teorema de recursão estrutural para *L*-termos:

Teorema de Recursão Estrutural para L-Termos

Sejam Y um conjunto, $g_{\mathcal{V}}: \mathcal{V} \to Y$ e $g_{\mathcal{C}}: \mathcal{C} \to Y$ funções e seja, para cada símbolo de função f, de aridade $n \geq 1$, $g_f: Y^n \to Y$ uma função. Então, existe uma e uma só função $G: \mathcal{T}_L \to Y$ tal que:

- **1** para todo o $x \in \mathcal{V}$, $G(x) = g_{\mathcal{V}}(x)$;
- ② para todo o $c \in \mathcal{C}$, $G(c) = g_{\mathcal{C}}(c)$;
- **3** para todo o símbolo de função f, de aridade $n \ge 1$, e para quaisquer $t_1, ..., t_n ∈ T_L$,

$$G(f(t_1,...,t_n)) = g_f(G(t_1),...,G(t_n)).$$

Definição

O conjunto VAR(t), das *variáveis que ocorrem* num *L*-termo t, é definido, por recursão estrutural em t, como:

- **1** para todo o $x \in \mathcal{V}$, $VAR(x) = \{x\}$;
- 2 para todo o $c \in C$, $VAR(c) = \emptyset$;
- **3** para todo o símbolo de função f, de aridade $n \ge 1$, e para quaisquer $t_1, ..., t_n \in \mathcal{T}_L$,

$$VAR(f(t_1,...,t_n)) = VAR(t_1) \cup \cdots \cup VAR(t_n).$$

Exemplo

O conjunto das variáveis que ocorrem no L_{Arit} -termo $x_2 + s(x_1)$

$$VAR(x_2 + s(x_1)) = VAR(x_2) \cup VAR(s(x_1))$$

= $\{x_2\} \cup VAR(x_1)$
= $\{x_2, x_1\}.$

Definição

O L-termo que resulta da substituição, num L-termo t_0 , de uma variável x por um L-termo t, que notaremos por $t_0[t/x]$, é definido, por recursão estrutural em t_0 , como:

- 2 para todo o $c \in C$, c[t/x] = c;
- 3 para todo o símbolo de função f, de aridade $n \ge 1$, e para quaisquer $t_1, \ldots, t_n \in \mathcal{T}_L$,

$$f(t_1,...,t_n)[t/x] = f(t_1[t/x],...,t_n[t/x]).$$

Substituição de variáveis por *L-termos*

Exemplo

O resultado da substituição de x_1 por s(0) em $x_2 + s(x_1)$ é

$$(x_2 + s(x_1))[s(0)/x_1] = x_2[s(0)/x_1] + s(x_1)[s(0)/x_1]$$

= $x_2 + s(x_1[s(0)/x_1])$
= $x_2 + s(s(0))$.

Proposição

Dados *L*-termos t_1 e t_2 e dada uma variável x, se $x \notin VAR(t_1)$, então $t_1[t_2/x] = t_1$.

L-fórmulas

Definição

Uma palavra sobre o alfabeto A_L , da forma

$$R(t_1,\ldots,t_n)$$

onde $R \in \mathcal{R}$ tem aridade n e $t_1, ..., t_n \in \mathcal{T}_L$, é chamada uma L-fórmula atómica.

O conjunto das *L*-fórmulas atómicas representa-se por At_L.

Exemplo

As palavras $<(x_0, s(0))$ e $=(x_0, x_1)$, sobre o alfabeto $\mathcal{A}_{L_{Arit}}$, são L_{Arit} -fórmulas atómicas.

Notação: Quando R é um símbolo de relação de aridade 2 e t_1 e t_2 são L-termos,

 t_1Rt_2 representa a L-fórmula atómica $R(t_1, t_2)$.

Por exemplo, $x_0 < s(0) \iff \langle (x_0, s(0)).$

Definição

O conjunto das *L-fórmulas*, que notamos por \mathcal{F}_L , é o conjunto definido indutivamente, sobre o conjunto de palavras sobre \mathcal{A}_L , pelas regras:

- $\boxed{1} \qquad \overline{\perp \in \mathcal{F}_L} \stackrel{\perp}{=} ;$
- $\overline{\varphi \in \mathcal{F}_L}^{\operatorname{At}_L}$, para cada *L*-fórmula atómica φ ;
- $\frac{\varphi \in \mathcal{F}_L}{(\neg \varphi) \in \mathcal{F}_L} \neg ;$
- $\frac{\varphi \in \mathcal{F}_{L} \quad \psi \in \mathcal{F}_{L}}{(\varphi \Box \psi) \in \mathcal{F}_{L}} \Box , \text{ para cada } \Box \in \{\land, \lor, \rightarrow, \leftrightarrow\} ;$

L-fórmulas

Exemplo

Considere a palavra

$$\varphi = (\forall_{x_0}(\exists_{x_1}((\neg(x_0 < s(0))) \to (x_0 = x_1)))).$$

Será φ uma L_{Arit} -fórmula?

$$\frac{ \overline{(x_0 < s(0))} \in \mathcal{F}_{L_{Arit}}}{(\neg (x_0 < s(0))) \in \mathcal{F}_{L_{Arit}}} \xrightarrow{\operatorname{At}_{L_{Arit}}} \overline{(x_0 = x_1)} \in \mathcal{F}_{L_{Arit}}} \xrightarrow{At_{L_{Arit}}} \to \overline{((\neg (x_0 < s(0))) \to (x_0 = x_1))} \in \mathcal{F}_{L_{Arit}}} \xrightarrow{\exists_{x_1}} \overline{(\exists_{x_1}((\neg (x_0 < s(0))) \to (x_0 = x_1)))} \in \mathcal{F}_{L_{Arit}}} \xrightarrow{\forall_{x_0}} \overline{(\forall_{x_0}(\exists_{x_1}((\neg (x_0 < s(0))) \to (x_0 = x_1))))} \in \mathcal{F}_{L_{Arit}}} \xrightarrow{\forall_{x_0}} \overline{(\forall_{x_0}(x_0 \in s(0)))} \xrightarrow{\exists_{x_1}((\neg (x_0 \in s(0)))} \overline{(x_0 \in x_1))} \in \mathcal{F}_{L_{Arit}}} \xrightarrow{\forall_{x_0}} \overline{(x_0 \in s(0))} \xrightarrow{\exists_{x_1}((\neg (x_0 \in s(0)))} \overline{(x_0 \in x_1))} \in \mathcal{F}_{L_{Arit}}} \xrightarrow{\forall_{x_0}((\neg (x_0 \in s(0)))} \overline{(x_0 \in x_1)} = \overline{(x_0 \in x_1)} \xrightarrow{\exists_{x_1}((\neg (x_0 \in s(0)))} \overline{(x_0 \in x_1))} \in \mathcal{F}_{L_{Arit}}$$

L-fórmulas

Notação : Os parêntesis extremos e os parêntesis à volta de negações ou de quantificadores são geralmente omitidos. Por exemplo, para a L_{Arit} -fórmula

$$\varphi = (\forall_{\mathbf{x}_0}(\exists_{\mathbf{x}_1}((\neg(\mathbf{x}_0 < \mathbf{s}(0))) \to (\mathbf{x}_0 = \mathbf{x}_1)))).$$

do exemplo anterior,

$$\varphi \iff \forall_{x_0} \exists_{x_1} (\neg (x_0 < s(0)) \rightarrow (x_0 = x_1)).$$

Definição

Aos sub-objectos de uma L-fórmula φ chamaremos subfórmulas de φ .

Indução Estrutural para L-fórmulas

O conjunto das *L*-fórmulas encontra-se definido através de uma definição indutiva determinista. Como tal, existem os respectivos teoremas de indução e de recursão estrutural.

Teorema de Indução Estrutural em <u>L-Fórmulas</u>

Seja $P(\varphi)$ uma propriedade que depende de uma L-fórmula φ , e suponhamos que:

- $P(\perp)$ é válida;
- ② para cada $\psi \in At_L$, $P(\psi)$ é válida;
- **3** para cada $\psi \in \mathcal{F}_L$, se $P(\psi)$ é válida, então $P(\neg \psi)$ é válida;
- **4** para quaisquer $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e $\psi, \sigma \in \mathcal{F}_L$, se $P(\psi)$ e $P(\sigma)$ são válidas, então $P(\psi \Box \sigma)$ é válida;
- **⑤** para quaisquer Q ∈ {∃, ∀}, x ∈ V e $ψ ∈ F_L$, se P(ψ) é válida, então $P(Q_xψ)$ é válida.

Então $P(\varphi)$ é válida, para toda a L-fórmula φ .

Teorema de Recursão Estrutural em *L*-fórmulas

Sejam Y um conjunto e $y \in Y$ e sejam $g : At_L \to Y$, $g_{\neg} : Y \to Y$, $g_{\square} : Y \times Y \to Y$ (para cada $\square \in \{\land, \lor, \to, \leftrightarrow\}$) e

 $g_Q: Y \to Y$ (para cada $Q \in \{\exists, \forall\}$) funções. Então, existe uma e uma só função $G: \mathcal{F}_L \to Y$ tal que:

- 2 para qualquer $\varphi \in At_L$, $G(\varphi) = g(\varphi)$;
- 3 para qualquer $\varphi \in \mathcal{F}_L$, $G(\neg \varphi) = g_{\neg}(G(\varphi))$;
- **4** para quaisquer $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e $\varphi, \psi \in \mathcal{F}_L$,

$$G(\varphi \Box \psi) = g_{\Box}(G(\varphi), G(\psi));$$

5 para quaisquer $Q \in \{\exists, \forall\}$, $x \in \mathcal{V}$ e $\varphi \in \mathcal{F}_L$,

$$G(Q_{\mathsf{X}}\varphi)=g_{\mathsf{Q}}(G(\varphi)).$$

Alcance de quantificadores

Definição

Dada uma subfórmula de uma L-fórmula φ da forma $Q_x\psi$, em que $Q \in \{\exists, \forall\}$ e $x \in \mathcal{V}$, a L-fórmula ψ é chamada o *alcance* dessa ocorrência do quantificador Q_x .

Exemplo

$$\text{Em } \forall_{x_0} (\exists_{x_1} (x_0 = s(x_1)) \to (\neg (x_0 = 0) \land \exists_{x_1} (x_1 < x_0))),$$

- o alcance de \forall_{x_0} é $\exists_{x_1}(x_0 = s(x_1)) \to (\neg(x_0 = 0) \land \exists_{x_1}(x_1 < x_0));$
- ② o alcance da primeira ocorrência do quantificador \exists_{x_1} é $x_0 = s(x_1)$;
- **3** o alcance da segunda ocorrência do quantificador $\exists_{x_1} \in x_1 < x_0$.

Ocorrências livres e ocorrências ligadas

Definição

Numa L-fórmula φ , uma ocorrência numa subfórmula atómica de φ de uma variável ${\it x}$ diz-se

- livre quando essa ocorrência não está no alcance de nenhum quantificador Q_x (com Q ∈ {∃, ∀});
- ligada, caso contrário.

Denota-se

```
LIV(\varphi) = \{ variáveis que têm ocorrências livres em \varphi \};

LIG(\varphi) = \{ variáveis que têm ocorrências ligadas em \varphi \}.
```

Ocorrências livres e ocorrências ligadas

Exemplo

Seja

$$\varphi = \exists_{x_1} (\neg(\underbrace{x_0}_{(a)} < s(0)) \rightarrow \forall_{x_0} (\underbrace{x_0}_{(b)} = \underbrace{x_1}_{(c)})).$$

- A ocorrência (a) de x₀ é livre.
- A ocorrência (b) de x₀, por se encontrar no alcance do quantificador ∀x₀, é ligada.
- A ocorrência (c) de x_1 é também *ligada*, pois encontra-se no alcance do quantificador \exists_{x_1} .

Assim,

$$LIV(\varphi) = \{x_0\}$$
 e $LIG(\varphi) = \{x_0, x_1\}.$

Definição

A L-fórmula obtida por substituição numa L-fórmula φ de todas as ocorrências livres de uma variável x por um L-termo t, notada $\varphi[t/x]$, é definida por recursão estrutural em φ por:

- 2 para todo o símbolo de relação R, de aridade n, e para quaisquer $t_1, ..., t_n \in \mathcal{T}_L$,

$$R(t_1,...,t_n)[t/x] = R(t_1[t/x],...,t_n[t/x]);$$

- **3** para todo o $\psi \in \mathcal{F}_L$, $(\neg \psi)[t/x] = \neg \psi[t/x]$;
- **1** para quaisquer $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e $\psi_1, \psi_2 \in \mathcal{F}_L$,

$$(\psi_1 \square \psi_2)[t/x] = \psi_1[t/x] \square \psi_2[t/x];$$

5 para quaisquer $Q \in \{\exists, \forall\}$, $y \in \mathcal{V}$ e $\psi \in \mathcal{F}_L$,

$$(Q_y\psi)[t/x] = \left\{ egin{array}{ll} Q_y\psi & ext{se } y=x \ Q_y\psi[t/x] & ext{se } y
eq x \ . \end{array}
ight.$$

Exemplo

Seja

$$\varphi = \exists_{\mathsf{x}_1} (\neg (\mathsf{x}_0 < \mathsf{s}(0)) \to \forall_{\mathsf{x}_0} (\mathsf{x}_0 = \mathsf{x}_1)).$$

Então,

$$\varphi[s(x_1)/x_0] = \exists_{x_1}(\neg(s(x_1) < s(0)) \to \forall_{x_0}(x_0 = x_1)).$$

Definição

Uma variável ${\it x}$ diz-se ${\it substituível}$ por um ${\it L}$ -termo ${\it t}$ numa ${\it L}$ -fórmula φ , quando

 não existem ocorrências livres de x no alcance de Q_y, em que Q ∈ {∃, ∀} e y ∈ VAR(t),

ou, equivalentemente, quando

• para toda a ocorrência livre de x em φ , se essa ocorrência está no alcance de Q_V , com $Q \in \{\exists, \forall\}$, então $y \notin VAR(t)$.

Exemplo

Sejam

$$\varphi = \forall_{x_1}(x_1 < x_2) \lor \neg(x_1 < x_2)$$
 e $t = x_1 + s(x_2)$.

- x₀ é substituível por t em φ, pois x₀ não tem ocorrências livres em φ.
- x₁ é substituível por t em φ, pois a única ocorrência livre de x₁ em φ não se encontra no alcance de quantificadores.
- x₂ não é substituível por t em φ, uma vez que x₂ tem uma ocorrência livre no alcance do quantificador ∀_{x1} e x₁ ∈ VAR(t).

Em φ existem duas ocorrências livres de x_2 . Uma delas está no alcance de um único quantificador, \forall_{x_1} . A outra ocorrência não está no alcance de qualquer quantificador. Logo, x_2 é substituível por um L-termo t em φ se e só se $x_1 \notin VAR(t)$.

Observe que mesmo quando uma variável x não é substituível por um L-termo t numa L-fórmula φ , a operação de substituição de x por t em φ encontra-se definida. Por exemplo, x_2 não é substituível por $x_1 + s(x_2)$ em

$$\varphi = \forall_{\mathbf{x}_1}(\mathbf{x}_1 < \mathbf{x}_2) \vee \neg (\mathbf{x}_1 < \mathbf{x}_2)).$$

No entanto, a L_{Arit} -fórmula resultante da substituição de x_2 por $x_1 + s(x_2)$ em $\forall_{x_1}(x_1 < x_2) \lor \neg(x_1 < x_2))$ encontra-se definida e é igual a

$$\forall_{x_1}(x_1 < x_1 + s(x_2)) \vee \neg(x_1 < x_1 + s(x_2))).$$

Contudo, note que a primeira ocorrência da variável x_2 em φ , que era livre, foi substituída pelo termo $x_1 + s(x_2)$, cuja ocorrência de x_1 passou a estar ligada ao quantificador \forall_{x_1} .

Caso nada seja dito em contrário, sempre que escrevermos $\varphi[t/x]$, assumimos que a variável x é substituível pelo L-termo t na L-fórmula φ .

Proposição

Dadas uma L-fórmula φ e uma variável x e dado um L-termo t, se $x \notin LIV(\varphi)$ então $\varphi[t/x] = \varphi$.

Demonstração.

- Caso $\varphi = \bot$. Tem-se, $\varphi[t/x] = \bot[t/x] = \bot = \varphi$.
- Caso $\varphi = R(t_1, ..., t_n)$, com R um símbolo de relação, n-ário, e $t_1, ..., t_n \in \mathcal{T}_L$. Neste caso tem-se que, para quaisquer $1 \le i \le n$, $x \notin VAR(t_i)$ pois de outra forma teríamos $x \in LIV(\varphi)$, uma contradição. Portanto, para quaisquer $1 \le i \le n$, $t_i[t/x] = t_i$, donde

$$\varphi[t/x] = R(t_1, \dots, t_n)[t/x]$$

$$= R(t_1[t/x], \dots, t_n[t/x])$$

$$= R(t_1, \dots, t_n)$$

$$= \varphi.$$

Demonstração (continuação).

- Caso $\varphi = Q_y \varphi_1$, com $Q \in \{\exists, \forall\}$, $y \in \mathcal{V}$ e $\varphi_1 \in \mathcal{F}_L$.
 - i) Subcaso x = y. Então:

$$\varphi[t/x] = (Q_y \varphi_1)[t/x]
= Q_y \varphi_1
= \varphi.$$

ii) Subcaso $x \neq y$. Então:

$$\varphi[t/x] = (Q_y \varphi_1)[t/x]$$

$$= Q_y (\varphi_1[t/x])$$

$$= Q_y \varphi_1 \quad \text{por H.I., pois } x \notin LIV(\varphi_1)$$

$$= \varphi.$$

Os restantes casos são deixados como exercício.

L-Sentenças

Definição

Uma L-fórmula φ diz-se uma L-sentença, ou uma L-fórmula fechada, quando não tem ocorrências livres de variáveis, i.e., $\mathrm{LIV}(\varphi) = \emptyset$.

Corolário

Sejam φ uma L-sentença, x uma variável e t um L-termo. Então, $\varphi[t/x] = \varphi$.

L-estruturas

Definição

Uma *L*-estrutura é um par $E = (D, \overline{\ })$ onde:

- D é um conjunto n\u00e3o vazio, chamado o dom\u00e1nio de \u00bbe e e notado por dom(\u00bbe);
- - a cada constante c ∈ F de L,
 faz corresponder um elemento c de D;
 - a cada símbolo de função $f \in \mathcal{F}$ de L, de aridade $n \ge 1$, faz corresponder uma função n-ária $\overline{f} : D^n \longrightarrow D$;
 - a cada símbolo de relação $R \in \mathcal{R}$ de L, de aridade n,
 faz corresponder uma relação n-ária $\overline{R} \subseteq D^n$.

Para cada símbolo $s \in \mathcal{F} \cup \mathcal{R}$, \overline{s} chama-se a *interpretação* de s em E.

Exemplo 1

Seja $E_{Arit} = (\mathbb{N}_0, \overline{})$, onde:

- ō é o número natural zero;
- $\overline{s}: \mathbb{N}_0 \to \mathbb{N}_0$ é a função de *sucessor* em \mathbb{N}_0 ; $n \mapsto n+1$
- \mp : $\mathbb{N}_0^2 \rightarrow \mathbb{N}_0$ é a função de *adição* em \mathbb{N}_0 ; $(n,m) \mapsto n+m$
- $\overline{\times}$: $\mathbb{N}_0^2 \to \mathbb{N}_0$ é a função de *multiplicação* em \mathbb{N}_0 ; $(n,m) \mapsto n \times m$
- \equiv é a relação $\{(n, n) \mid n \in \mathbb{N}_0\}$, de *igualdade* em \mathbb{N}_0 ;
- \leq é a relação $\{(n,m) \in \mathbb{N}_0^2 \mid n < m\}$, de *inferioridade* em \mathbb{N}_0 .

Então, E_{Arit} é uma L_{Arit} -estrutura.

Exemplo 2

É também uma L_{Arit} -estrutura o par ($\{0,1\}$, $^-$), em que:

- \bullet $\overline{0} = 0;$
- $\begin{array}{cccc} \bullet & \overline{s}: \{0,1\} & \rightarrow & \{0,1\} \ ; \\ & 0 & \mapsto & 1 \\ & 1 & \mapsto & 0 \end{array}$
- $\begin{array}{ccc}
 \bullet & \overline{+}: \{0,1\}^2 & \rightarrow & \{0,1\} \\
 (x,y) & \mapsto & \begin{cases}
 0 & \text{se } x = y \\
 1 & \text{se } x \neq y
 \end{cases}$
- $\bullet \quad \overline{\times} : \ \{0,1\}^2 \quad \rightarrow \quad \{0,1\}$ $(x,y) \quad \mapsto \quad \begin{cases} 1 & \text{se } x = y = 1 \\ 0 & \text{senão} \end{cases}$
- \equiv é a relação $\{(0,0),(1,1)\};$

Atribuições

Definição

Seja $E = (D, \overline{\ })$ uma L-estrutura. Uma atribuição em E é uma função

 $a: \mathcal{V} \longrightarrow D$,

do conjunto $\mathcal V$ das variáveis para o domínio D da L-estrutura E.

Exemplo

A função

$$a^{ind}: \mathcal{V} \rightarrow \mathbb{N}_0$$

 $x_i \mapsto i$

é uma atribuição na L_{Arit} -estrutura $E_{Arit} = (\mathbb{N}_0, \overline{}).$

Valores de L-termos

Definição

Seja *a* uma atribuição numa *L*-estrutura $E = (D, \overline{\ })$ e seja $t \in \mathcal{T}_L$ um *L*-termo.

O valor de t para a atribuição a, denotado por $t[a]_E$ ou simplesmente por t[a] (quando não há dúvidas quanto à L-estrutura em causa), é o elemento de D definido, por recursão estrutural em t, como:

- **1** Para cada $x \in \mathcal{V}$, x[a] = a(x);
- 2 Para cada $c \in C$, $c[a] = \overline{c}$;
- 3 Para todo o símbolo de função f, de aridade $n \ge 1$, e para todos os $t_1, \ldots, t_n \in \mathcal{T}_L$,

$$f(t_1,\ldots,t_n)[a]=\overline{f}(t_1[a],\ldots,t_n[a]).$$

Valores de L-termos

Exemplo

Consideremos o L_{Arit} -termo $t = x_2 \times (0 + s(x_3))$ e a atribuição $a^{ind}: \mathcal{V} \to \mathbb{N}_0, \ x_i \mapsto i$, na L_{Arit} -estrutura $E_{Arit} = (\mathbb{N}_0, \overline{})$.

O valor de t para aind é

$$(x_2 \times (0 + s(x_3)))[a^{ind}] = x_2[a^{ind}] \overline{\times} (0 + s(x_3))[a^{ind}]$$

$$= a^{ind}(x_2) \overline{\times} (0[a^{ind}] \overline{+} s(x_3)[a^{ind}])$$

$$= 2 \overline{\times} (\overline{0} \overline{+} \overline{s}(x_3[a^{ind}]))$$

$$= 2 \overline{\times} (\overline{0} \overline{+} \overline{s}(a^{ind}(x_3)))$$

$$= 2 \overline{\times} (\overline{0} \overline{+} \overline{s}(3))$$

$$= 2 \times (0 + 4)$$

$$= 8 \in \mathbb{N}_0.$$

Valores de L-termos

Proposição

Seja t um L-termo e sejam a_1 e a_2 duas atribuições numa L-estrutura $E = (D, \overline{})$. Se $a_1(x) = a_2(x)$ para toda a variável $x \in VAR(t)$, então $t[a_1] = t[a_2]$.

Demonstração.

Por indução estrutural em t.

• Caso $t = x_i \in \mathcal{V}$. Então, $x_i \in VAR(t)$. Logo, por hipótese, $a_1(x_i) = a_2(x_i)$. Assim,

$$t[a_1] = x_i[a_1]$$

= $a_1(x_i)$ por (*)
= $a_2(x_i)$
= $x_i[a_2]$ por (*)
= $t[a_2]$.

(*) Definição de valor de um termo para uma atribuição.

Demonstração (continuação).

2 Caso $t = c \in C$. Então,

$$t[a_1] = c[a_1]$$

= \overline{c} por (*)
= $c[a_2]$ por (*)
= $t[a_2]$.

3 Caso $t = f(t_1, ..., t_n)$, onde $f \in \mathcal{F}_L$ é um símbolo de função de aridade $n \ge 1$ e $t_1, ..., t_n \in \mathcal{T}_L$. Então,

$$t[a_1] = f(t_1, ..., t_n)[a_1]$$

 $= \overline{f}(t_1[a_1], ..., t_n[a_1]) \text{ por (*)}$
 $= \overline{f}(t_1[a_2], ..., t_n[a_2])$
por H.I., pois VAR $(t_i) \subseteq \text{VAR}(t)$
 $= f(t_1, ..., t_n)[a_2] \text{ por (*)}$
 $= t[a_2].$

Valores de L-termos

Definição

Seja a uma atribuição numa L-estrutura $E=(D,\overline{\ })$, seja x_i uma variável e seja $d\in D$. Denotamos por $a{x_i\choose d}$ a atribuição

$$egin{aligned} ainom{x_i}{d}: \mathcal{V} &
ightarrow & D \ x_j & \mapsto & \left\{ egin{aligned} d & ext{se } i = j \ a(x_j) & ext{se } i
eq j \end{aligned}
ight.$$

Proposição

Sejam t e u dois L-termos, seja x uma variável e seja a uma atribuição numa L-estrutura. Então $t[u/x][a] = t[a\binom{x}{u[a]}]$.

Demonstração.

Por indução estrutural em t [Exercício].

Definição

Seja *a* uma atribuição numa *L*-estrutura $E = (D, \overline{\ })$ e seja $\varphi \in \mathcal{F}_L$ uma *L*-fórmula.

O valor lógico de φ para a atribuição a, denotado por $\varphi[a]_E$ ou simplesmente por $\varphi[a]$ (quando não há dúvidas quanto à L-estrutura em causa), é o elemento do conjunto $\{0,1\}$ definido, por recursão estrutural em φ , como:

- a) \perp [*a*] = 0;
- b) Para todo o símbolo de relação R de aridade n e para todos os $t_1, \ldots, t_n \in \mathcal{T}_L$,

$$R(t_1,\ldots,t_n)[a]=1$$
 se e só se $(t_1[a],\ldots,t_n[a])\in\overline{R};$

c) Para cada $\psi \in \mathcal{F}_L$, $(\neg \psi)[a] = 1 - \psi[a]$; (continua)

Definição (Continuação)

- d) Para quaisquer $\psi, \sigma \in \mathcal{F}_L$, $(\psi \wedge \sigma)[a] = min\{\psi[a], \sigma[a]\}$;
- e) Para quaisquer $\psi, \sigma \in \mathcal{F}_L$, $(\psi \vee \sigma)[a] = max\{\psi[a], \sigma[a]\}$;
- f) Para quaisquer $\psi, \sigma \in \mathcal{F}_L$, $(\psi \to \sigma)[a] = 0$ se e só se $\psi[a] = 1$ e $\sigma[a] = 0$;
- g) Para quaisquer $\psi, \sigma \in \mathcal{F}_L$, $(\psi \leftrightarrow \sigma)[a] = 1$ se e só se $\psi[a] = \sigma[a]$;
- h) Para cada $\psi \in \mathcal{F}_L$ e cada $\mathbf{x} \in \mathcal{V}$, $(\exists_{\mathbf{x}} \psi)[\mathbf{a}] = 1 \quad \text{se e s\'o se} \quad \exists_{d \in D} \ \psi[\mathbf{a} {x \choose d}] = 1$ se e s\'o se $\max \left\{ \psi[\mathbf{a} {x \choose d}] \mid d \in D \right\} = 1;$
 - i) Para cada $\psi \in \mathcal{F}_L$ e cada $x \in \mathcal{V}$, $(\forall_x \psi)[a] = 1 \quad \text{se e s\'o se} \quad \forall_{d \in D} \ \psi[a \binom{\mathsf{x}}{d}] = 1$ se e s\'o se $\min \left\{ \psi[a \binom{\mathsf{x}}{d}] \mid d \in D \right\} = 1.$

Exemplo

Seja φ a seguinte L_{Arit} -fórmula

$$\forall_{x_1}(x_1 = x_0 \vee \exists_{x_2}(x_1 = s(x_2))),$$

e seja a a atribuição a^{ind} na L_{Arit} -estrutura E_{Arit} . O valor lógico de φ para a atribuição a é 1. De facto, tem-se $\varphi[a]=1$

$$\begin{aligned} &\text{sse} & \ \forall_{n_1 \in \mathbb{N}_0} \left((x_1 = x_0 \vee \exists_{x_2} (x_1 = s(x_2))) [a \binom{x_1}{n_1}] = 1 \right) \\ &\text{sse} & \ \forall_{n_1 \in \mathbb{N}_0} \left((x_1 = x_0) [a \binom{x_1}{n_1}] = 1 \text{ ou } (\exists_{x_2} (x_1 = s(x_2))) [a \binom{x_1}{n_1}] = 1 \right) \\ &\text{sse} & \ \forall_{n_1 \in \mathbb{N}_0} \left(x_1 [a \binom{x_1}{n_1}] = x_0 [a \binom{x_1}{n_1}] \text{ ou } \exists_{n_2 \in \mathbb{N}_0} (x_1 = s(x_2)) [a \binom{x_1}{n_1} \binom{x_2}{n_2}] = 1 \right) \\ &\text{sse} & \ \forall_{n_1 \in \mathbb{N}_0} \left(n_1 = 0 \text{ ou } \exists_{n_2 \in \mathbb{N}_0} (x_1 [a \binom{x_1}{n_1} \binom{x_2}{n_2}] = s(x_2) [a \binom{x_1}{n_1} \binom{x_2}{n_2}] \right) \right) \\ &\text{sse} & \ \forall_{n_1 \in \mathbb{N}_0} \left(n_1 = 0 \text{ ou } \exists_{n_2 \in \mathbb{N}_0} (n_1 = \overline{s}(x_2 [a \binom{x_1}{n_1} \binom{x_2}{n_2}]) \right) \right) \\ &\text{sse} & \ \forall_{n_1 \in \mathbb{N}_0} (n_1 = 0 \text{ ou } \exists_{n_2 \in \mathbb{N}_0} (n_1 = n_2 + 1)). \end{aligned}$$

Dado que esta última afirmação é verdadeira, deduzimos que $\varphi[a] = 1$.

Definição

Seja *a* uma atribuição numa *L*-estrutura $E = (D, \overline{\ })$ e seja $\varphi \in \mathcal{F}_L$ uma *L*-fórmula. Diz-se que:

- E satisfaz φ para a atribuição a, e escreve-se $E \models \varphi[a]$, se o valor lógico de φ em E para a é 1, i.e., se $\varphi[a]_E = 1$.
- E $n\tilde{a}o$ satisfaz φ para a atribuiç $\tilde{a}o$ a, e escreve-se $E \not\models \varphi[a]$, se $\varphi[a]_E = 0$.

Exemplo

A L_{Arit} -estrutura E_{Arit} satisfaz a L_{Arit} -fórmula

$$\varphi = \forall_{\mathbf{x}_1}(\mathbf{x}_1 = \mathbf{x}_0 \vee \exists_{\mathbf{x}_2}(\mathbf{x}_1 = \mathbf{s}(\mathbf{x}_2))),$$

para a atribuição a^{ind} . De facto, como vimos no exemplo anterior, tem-se $\varphi[a^{ind}]_{E_{Arit}} = 1$. Podemos assim escrever

$$E_{Arit} \models \varphi[\mathbf{a}^{ind}].$$

Satisfação de L-fórmulas

Lema

Seja a uma atribuição numa L-estrutura $E = (D, \overline{})$. Então,

- i) $E \models (\exists_x \varphi)[a]$ se e só se $\exists_{d \in D} E \models \varphi[a\binom{x}{d}]$.
- ii) $E \models (\forall_x \varphi)[a]$ se e só se $\forall_{d \in D} E \models \varphi[a\binom{x}{d}]$.
- iii) $E \not\models (\exists_x \varphi)[a]$ se e só se $\forall_{d \in D} E \not\models \varphi[a \binom{x}{d}]$.
- iv) $E \not\models (\forall_x \varphi)[a]$ se e só se $\exists_{d \in D} E \not\models \varphi[a \binom{x}{d}]$.

Demonstração.

i)
$$E \models (\exists_x \varphi)[a]$$
 sse $(\exists_x \varphi)[a]_E = 1$ por def. de \models sse $\exists_{d \in D} \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}]_E = 1$ por def. de valor lógico sse $\exists_{d \in D} E \models \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}]$ por def. de \models .

Exemplo

Seja φ a seguinte L_{Arit} -fórmula

$$\exists_{x_1} \forall_{x_0} (s(x_0) = x_0 + x_1).$$

Tem-se

$$E_{Arit} \models \varphi[a^{ind}] \quad \text{sse} \quad \exists_{n_1 \in \mathbb{N}_0} \ E_{Arit} \models \forall_{x_0} (s(x_0) = x_0 + x_1)[a^{ind} \binom{x_1}{n_1}]$$

$$\text{sse} \quad \exists_{n_1 \in \mathbb{N}_0} \forall_{n_0 \in \mathbb{N}_0} \ E_{Arit} \models (s(x_0) = x_0 + x_1)[a^{ind} \binom{x_1}{n_1} \binom{x_0}{n_0}]$$

$$\text{sse} \quad \exists_{n_1 \in \mathbb{N}_0} \forall_{n_0 \in \mathbb{N}_0} (s(x_0) = x_0 + x_1)[a^{ind} \binom{x_1}{n_1} \binom{x_0}{n_0}]_{E_{Arit}} = 1.$$

$$\text{sse} \quad \exists_{n_1 \in \mathbb{N}_0} \forall_{n_0 \in \mathbb{N}_0} \ n_0 + 1 = n_0 + n_1.$$

Dado que esta afirmação é verdadeira (basta tomar $n_1 = 1$), concluimos que a L_{Arit} -estrutura E_{Arit} satisfaz a L_{Arit} -fórmula φ para a atribuição a^{ind} .

Satisfação de L-fórmulas

Teorema

Seja φ uma L-fórmula e sejam a_1 e a_2 atribuições numa L-estrutura $E = (D, \overline{})$.

- i) Se $a_1(x) = a_2(x)$ para toda a variável $x \in LIV(\varphi)$, então $E \models \varphi[a_1]$ se e só se $E \models \varphi[a_2]$.
- ii) Se x é uma variável tal que $x \notin LIV(\varphi)$, então $E \models \varphi[a_1]$ se e só se $\forall_{d \in D} E \models \varphi[a_1\binom{x}{d}]$.
- iii) Se φ é uma L-sentença, então $E \models \varphi[a_1] \quad \text{se e só se} \quad E \models \varphi[a_2].$

Demonstração.

- i) Por indução estrutural em φ [Exercício].
- ii)-iii) Imediatas por i).

Teorema

Sejam φ uma L-fórmula, $E = (D, \overline{\ })$ uma L-estrutura, a uma atribuição em E e x uma variável substituível por um L-termo t em φ . Então,

$$E \models \varphi[t/x][a]$$
 se e só se $E \models \varphi[a\begin{pmatrix} x \\ t[a] \end{pmatrix}]$.

Demonstração.

Se $x \notin LIV(\varphi)$, então $\varphi[t/x] = \varphi$ por um resultado anterior. Logo,

$$E \models \varphi[t/x][a]$$
 sse $E \models \varphi[a]$
sse $E \models \varphi[a\begin{pmatrix} x \\ t[a] \end{pmatrix}]$ pelo teorema anterior.

No caso de $x \in LIV(\varphi)$, a demonstração é feita por indução estrutural em φ [Exercício].

Definição

Sejam φ uma L-fórmula e E uma L-estrutura. Diz-se que:

- φ é válida em E, e escreve-se $E \models \varphi$, se $E \models \varphi[a]$ para toda a atribuição a em E.
- φ não é válida em E, e escreve-se $E \not\models \varphi$, se existe alguma atribuição a em E tal que $E \not\models \varphi[a]$.

Definição

Seja φ uma *L*-fórmula. Diz-se que:

- φ é (universalmente) válida, e escreve-se $\models \varphi$, se φ é válida em todas as L-estruturas, ou seja, se $E \models \varphi$ para toda a L-estrutura E.
- φ não é (universalmente) válida, e escreve-se $\not\models \varphi$, se existe alguma L-estrutura E tal que $E \not\models \varphi$.

Exemplo

A L_{Arit}-fórmula

$$\varphi = \forall_{\mathbf{x}_1}(\mathbf{x}_1 = \mathbf{s}(\mathbf{x}_1)),$$

 $n\tilde{a}o \acute{e} v\acute{a}lida$ na L_{Arit} -estrutura E_{Arit} pois, por exemplo,

$$E_{Arit} \not\models \varphi[a^{ind}].$$

Consequentemente, *φ* não é (universalmente) válida.

Note-se no entanto que φ é *válida* em algumas L_{Arit} -estruturas. Por exemplo, φ é válida numa L_{Arit} -estrutura de domínio D que interprete o símbolo de relação = como sendo a relação D^2 (ou seja, a relação universal em D).