

Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ФАКУЛЬТЕТ «Робототехники и комплексной автоматизации» ${\rm KA\Phi E Д PA}$ «Системы автоматизированного проектирования $({\rm PK-6})$ »

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине «Вычислительная математика»

Студент:	Карасев Андрей Юрьевич			
Группа:	РК6-66Б			
Тип задания:	лабораторная работа			
Тема:	Численное дифференцирование и			
	интегрирование — реализация и ана-			
	лиз			

Студент		Карасев А.Ю		
0.1740	подпись, дата	Фамилия, И.О.		
Преподаватель				
	подпись, дата	Фамилия, И.О.		

Содержание

Числе	енное дифференцирование и интегрирование — реализация и анализ	3
Зад	цание	٠
Цел	ль выполнения лабораторной работы	4
1	Реализация функции численного дифференцирования (2-й порядок)	٦
2	Зависимость абсолютной погрешности численного дифференцирования от шага дифференцирования (2-й порядок)	Ę
3	Анализ точности центральной формулы численного дифференцирования 2-го порядка (ответы на вопросы)	(
4	Реализация функции численного интегрирования (составная формула Симпсона)	7
5	Зависимость абсолютной погрешности численного интегрирования от шага интегрирования	7
6	Анализ точности составной формулы Симпсона	8
7	Вывод центральной формулы численного дифференцирования 4-го порядка	(
8 9		11
		12
10	Анализ точности центральной формулы численного дифференцирования	
		12
11		14
12	Реализация функции интегрирования с помощью квадратурной формулы	
	Гаусса 5-й степени точности	15
13	Численное доказательство 5-й степени точности квадратурной формулы	
	Γαγιστά	15
Зав	ключение	17

Численное дифференцирование и интегрирование — реализация и анализ

Задание

Даны функции:

$$g_1(x) = xe^x, (1)$$

$$g_2(x) = x^2 \sin 3x, \quad x \in [0; \pi],$$
 (2)

$$g_3(x) = \sin\frac{\pi}{x}, \quad x \in (0;1].$$
 (3)

Требуется (базовая часть)

- 1. Написать функцию diff2(x_0, h, f), которая возвращает значение первой производной функции f на основе центральной формулы численного дифференцирования 2-го порядка в точке x_0 для шага дифференцирования h.
- 2. Рассчитать производные $g_1(x)$ в точке $x_0 = 3$ и $g_3(x)$ в точке $x_0 = 0.01$ для множества значений $h \in [10^{-16}, 1]$ с помощью функции diff2. Построить log-log графики зависимости абсолютной погрешности численного дифференцирования от шага дифференцирования для двух указанных случаев.
- 3. Ответьте на вопросы согласно п. 10.
- 4. Написать функцию composite_simpson(a, b, n, f) численного интегрирования функции f на отрезке [a;b] по n узлам с помощью составной формулы Симпсона.
- 5. Рассчитать интегралы $\int_0^\pi g_2(x)dx$ и $\int_\varepsilon^1 g_3(x)dx$, где $0<\varepsilon<0.01$, с помощью составной формулы Симпсона для множества значений $n\in[3;9999]$. Постройте log-log графики зависимости абсолютной погрешности численного интегрирования от шага интегрирования.
- 6. Сравните порядок точности составной формулы Симпсона, полученный "с помощью log—log графика", с аналитическим порядком точности этой формулы. Существует ли оптимальный шаг интегрирования для данной формулы, минимизирующий достигаемую погрешность? Обсудите свой ответ.
- 7. Вывести центральную формулу численного дифференцирования 4-го порядка точности с остаточным членом, численно вычисляя первую производную f'(x) по значениям f(x) в 5-и узлах:

$$f'(x_0) = Af(x_0 - 2h) + Bf(x_0 - h) + Cf(x_0) + Df(x_0 + h) + Ef(x_0 + 2h).$$
 (4)

Продемонстрируйте, что формула действительно имеет 4-й порядок точности

Требуется (продвинутая часть)

8. Написать функцию diff4(x_0, h, f), которая возвращает значение первой производной функции f на основе центральной формулы численного дифференцирования 4-го порядка в точке x_0 для шага дифференцирования h.

- 9. Рассчитать производные $g_1(x)$ в точке $x_0 = 3$ и $g_3(x)$ в точке $x_0 = 0.01$ для множества значений $h \in [10^{16}; 1]$ с помощью функции diff4. Добавьте log-log график зависимости абсолютной погрешности численного дифференцирования от шага дифференцирования к соответствующему графику для diff2.
- 10. Ответьте на следующие вопросы, для случая применения функции diff2 (базовая часть) и для случая применения функции diff4 (продвинутая часть).
 - а) Каким образом на log-log графике можно увидеть порядок точности формулы дифференцирования? Представьте аналитическое доказательство, а также продемонстрируйте порядок точности на графике.
 - б) Совпадает ли порядок точности выведенной формулы численного дифференцирования на log-log графике с её фактическим порядком точности?
 - в) Каков оптимальный шаг дифференцирования, при котором абсолютная погрешность минимальна? С чем связано существование такого минимума? Обоснуйте свой ответ, ссылаясь на данные log—log графика.
 - г) Сравните оптимальный шаг дифференцирования и соответствующую минимально достигаемую погрешность для формул 2-го и 4-го порядка точности. Как вы думаете, чем обоснована разница между ними?
- 11. С помощью теоремы о корнях многочленов Лежандра, вывести квадратурную формулу Гаусса (далее *квадратура Гаусса*), имеющую степень точности 5. Сколько узлов необходимо для использования такой формулы?
- 12. Написать функцию gauss_quad5(f) численного интегрирования функции f с помощью квадратуры Гаусса пятой степени точности.
- 13. Доказать, что квадратура Гаусса имеет степень точности 5, с помощью следующего вычислительного эксперимента:
 - постройте последовательность полиномов $P_0(x)$, $P_1(x)$, $P_2(x)$, $P_3(x)$, $P_4(x)$, $P_5(x)$, $P_6(x)$, имеющих степени соответственно 0, 1, 2, 3, 4, 5, 6, используя случайно сгенерированные значения коэффициентов полиномов.
 - проинтегрируйте их на интервале [0;2] аналитически и с помощью функции gauss_quad5(f);
 - постройте абсолютную погрешность и сделайте вывод о степени точности выведенной квадратуры.

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы: программная реализация формул численного дифференцирования и интегрирования, оценка возникающих погрешностей.

1. Реализация функции численного дифференцирования (2-й порядок)

Центральная формула численного дифференцирования 2-го порядка некоторой функции $f(x) \in C^4[x_0 - h; x_0 + h]$ в точке x_0 для шага дифференцирования h выглядит следующим образом:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi), \tag{5}$$

где $\xi \in (x_0 - h; x_0 + h)$ – некоторая промежуточная точка между наибольшим и наименьшим из узлов.

Используя формулу (5) и полагая, что остаточный член $\frac{h^2}{6}f^{(3)}(\xi)$ достаточно мал, напишем программную реализацию. Исходный код функции представлен на листинге 1.

Листинг 1: Функция, возвращающая значение первой производной функции f в точке x_0 для шага дифференцирования h (2-й порядок точности)

- 1 def diff2(x 0, h, f):
- 2 return $(f(x_0 + h) f(x_0 h)) / (2 * h)$

2. Зависимость абсолютной погрешности численного дифференцирования (2-й порядок)

Рассчитаем погрешности численного дифференцирования при разных $h \in [10^{-16}; 1]$ для функций $g_1(x)$ и $g_3(x)$ в точках $x_0 = 3$ и $x_0 = 0.01$ соответственно. Для вычисления значений производных используем функцию diff2, разработанную в предыдущей задаче. Погрешность E(h) будем вычислять как модуль разности полученного численного значения производной и референсного точного (полученного аналитически). Результат вычислений представлен на рисунке 1.

Рис. 1. График зависимости абсолютной погрешности E численного дифференцирования от шага дифференцирования h для функций $g_1(x)$ и $g_3(x)$

3. Анализ точности центральной формулы численного дифференцирования 2-го порядка (ответы на вопросы)

Ответ на вопрос а):

Порядком точности формулы дифференцирования называют степень p, в которую возводится шаг h в остаточном члене R(h). Если записать остаточный член как

$$R(h) = h^p C, (6)$$

где C - некоторая константа. И далее (6) прологарифмировать, то получим

$$\log R(h) = p \log h + \log C. \tag{7}$$

Уравнение (7) — уравнение прямой в log—log масштабе с угловым коэффициентом p. Значит, на графике порядок точности можно определить по коэффициенту наклона линейной части функции погрешности. Продемонстрируем сказанное на получившемся в задаче 2 графике, добавив вспомогательную кривую $E(h) = h^2$, $h \in [10^{-5}; 10^{-1}]$.

Рис. 2. График зависимости абсолютной погрешности E(h) численного дифференцирования от шага дифференцирования h для функций $g_1(x)$ и $g_3(x)$ вместе со вспомогательной кривой $E(h) = h^2$

На рисунке 6 видно, что при достаточно больших h графики погрешности для $g_1(x)$ и $g_3(x)$ параллельны графику $E(h) = h^2$. Это и означает второй $(O(h^2))$ порядок точности формулы дифференцирования, совпадающий с теоретическим.

Ответ на вопрос δ):

При достаточно больших шагах дифференцирования h – да, совпадает.

Ответ на вопрос \mathbf{B}):

Из рисунка 1 видно, что обе функции погрешности E(h) имеют свой минимум. Для $g_1(x)$ и $g_3(x)$ они достигаются при $h\approx 10^{-5}$ и $h\approx 10^{-9}$ соответственно. Существование такого минимума связано с фактом вычислительной неустойчивости операции дифференцирования 1. При малых h погрешность машинного округления становится более заметной и даже начинает преобладать над погрешностью R(h) самого метода численного дифференцирования. Из-за чего дальнейшее (после достижения некоторого порогового значения) сокращение шага дифференцирования h перестаёт уменьшать полную погрешность и начинает — наоборот — увеличивать.

4. Реализация функции численного интегрирования (составная формула Симпсона)

Согласно постановке задачи, для программной реализации функции численного интегрирования возьмем за основу составную формулу Симпсона. Для некоторой функции $f(x) \in C^4[a;b]$, отрезка интегрирования [a;b], шага интегрирования $h=\frac{b-a}{n}$ и узлов $x_i=a+(i-1)h$, где количество узлов n— четное число, формула будет выглядеть следующим образом:

$$\int_{a}^{b} f(x)dx = \frac{h}{3} [f(x_1) + 2 \sum_{i=1}^{n/2-1} f(x_{2i+1}) + 4 \sum_{i=1}^{n/2} f(x_{2i}) + f(x_{n+1})] - \frac{(b-a)h^4}{180} f^{(4)}(\xi),$$

где $\xi \in (a;b)$ – некоторая точка, лежащая в интервале интегрирования.

В программной реализации для соблюдения условия четности, будем увеличивать n на единицу, если оно нечетно. Также, как и в задаче 2, полагаем, что остаточный член $\frac{(b-a)h^4}{180}f^{(4)}(\xi)$ — достаточно малая величина. Текст разработанной функции представлен на листинге 2.

Листинг 2: Функция, возвращающая значение определенного интеграла от функции f на отрезке [a;b] по n узлам

```
def composite_simpson(a, b, n, f):

if n % 2:

n += 1

x = \text{np.linspace}(a, b, n + 1)

h = (b - a) / n

return h/3. * (f(x[0]) + 2 * \text{np.sum}(f(x[2:-1:2])) + 4 * \text{np.sum}(f(x[1::2])) + f(x[-1]))
```

5. Зависимость абсолютной погрешности численного интегрирования от шага интегрирования

Рассчитаем погрешности, возникающие при численном интегрировании с использованием составной формулы Симпсона, программная реализация которой описана в предыдущей задаче. Для этого вычислим интегралы $\int_0^\pi g_2(x)dx$ и $\int_\varepsilon^1 g_3(x)dx$ (ε согласно условию

 $^{^{1}}$ Подробно рассмотрено в [1].

возьмем равным 0.005) при разных значениях $n \in [3;9999]$. Так как от n зависит шаг интегрирования $h = \frac{b-a}{n}$, то можно рассматривать прямую зависимость погрешности от шага h, т.е. E(h). Ее будем вычислять подобно тому, как было описано в задаче 2. Получили график, представленный на рисунке 3.

Рис. 3. График зависимости абсолютной погрешности E(h) численного интегрирования от шага интегрирования h для функций $g_2(x)$ и $g_3(x)$

6. Анализ точности составной формулы Симпсона

Аналогично исследованию, проведенному в задаче 3, порядок точности формулы интегрирования также можно увидеть по коэффициенту наклона линейной части E(h) на log-log графике. Добавим на график, получившийся в задаче 5, вспомогательную кривую $E(h) = h^4$, $h \in [10^{-3}; 10^{-1}]$.

Рассмотрим график погрешности E(h) для $\int_0^\pi g_2(x)dx$ на рисунке 4. Хорошо заметно, что он параллелен графику $E(h)=h^4$ при не слишком маленьких h, что соответствует теоретическому четвертому порядку точности. При $h\lesssim 10^{-3}$ погрешность перестает уменьшаться по закону $O(h^4)$ – это опять же связано с погрешностями машинного округления. Однако, в отличие от ситуации, рассмотренной в задаче 3, здесь при дальнейшем уменьшении h ошибка не будет накапливаться, она стабилизируется на уровне машинного эпсилон. Потому операция интегрирования является вычислительно устойчивой.

Оптимальным шагом в данном случае можно считать наибольшее h, при котором погрешность E(h) минимальна, т.е. $h \approx 10^{-3}$. Следует выбрать именно наибольшее значение, потому как уменьшение шага увеличивает количество арифметических операций, требуемых для вычисления, что нежелательно.

В то же время сильно отличное поведение показывает график погрешности E(h) для $\int_{0.005}^1 g_3(x) dx$. И хотя функция $g_3(x) = \sin \frac{\pi}{x}$ принадлежит классу $C^{\infty}[0.005; 1]$, в окрестности точки x = 0.005 она слишком быстро осциллирует и образует «узкие пики», при которых формула Симпсона теряет свою точность [2]. В данном случае погрешность E(h) уже невозможно асимптотически оценить как $O(h^4)$.

Рис. 4. График зависимости абсолютной погрешности E(h) численного интегрирования от шага интегрирования h для функций $g_2(x)$ и $g_3(x)$ вместе со вспомогательной кривой $E(h) = h^4$

7. Вывод центральной формулы численного дифференцирования 4-го порядка

Требуется вывести центральную формулу дифференцирования 4-го порядка точности вместе с остаточным членом, которая вычисляется по 5-и равномерно расположенным узлам. Общая идея вывода состоит в том, чтобы найти линейную комбинацию, которая будет иметь вид:

$$f'(x_0) \approx Af(x_0 - 2h) + Bf(x_0 - h) + Cf(x_0) + Df(x_0 + h) + Ef(x_0 + 2h), \tag{8}$$

где x_0 — точка, в которой ищется значение производной, h - некоторый шаг.

Рассмотрим разложение произвольной функции f(x) в ряд Тейлора² в точке x_0 до пятого порядка включительно:

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2!}f''(x_0) + \frac{(x - x_0)^3}{3!}f^{(3)}(x_0) + \frac{(x - x_0)^4}{4!}f^{(4)}(x_0) + \frac{(x - x_0)^5}{5!}f^{(5)}(\xi),$$
(9)

где $\xi \in [x_0, x]$.

Найдем значения разложения (9) в узлах $x_i = x_0 + ih$, $i = \{-2, -1, 0, 1, 2\}$. Результат расчета представлен в виде таблицы 1.

 $^{^{2}}$ Номер обучающегося $8 \mod 2 = 0$.

Таблица 1. Разложения функции f(x) в ряд Тейлора до пятого порядка в окрестности x_0 при разных x

x_i	Разложение $f(x)$ в окрестности x_0 в узле x_i
x_0-2h	$f(x_0) - 2hf'(x_0) + 2h^2f''(x_0) - \frac{4}{3}h^3f^{(3)}(x_0) + \frac{2}{3}h^4f^{(4)}(x_0) - \frac{4}{15}h^5f^{(5)}(\xi_{-2})$
$x_0 - h$	$f(x_0) - hf'(x_0) + \frac{1}{2}h^2f''(x_0) - \frac{1}{6}h^3f^{(3)}(x_0) + \frac{1}{24}h^4f^{(4)}(x_0) - \frac{1}{120}h^5f^{(5)}(\xi_{-1})$
x_0	$f(x_0)$
$x_0 + h$	$f(x_0) + hf'(x_0) + \frac{1}{2}h^2f''(x_0) + \frac{1}{6}h^3f^{(3)}(x_0) + \frac{1}{24}h^4f^{(4)}(x_0) + \frac{1}{120}h^5f^{(5)}(\xi_1)$
$x_0 + 2h$	$f(x_0) + 2hf'(x_0) + 2h^2f''(x_0) + \frac{4}{3}h^3f^{(3)}(x_0) + \frac{2}{3}h^4f^{(4)}(x_0) + \frac{4}{15}h^5f^{(5)}(\xi_2)$

В таблице
$$\frac{1}{\xi_{-2}} \in (x_0 - 2h; x_0), \xi_{-1} \in (x_0 - h; x_0), \xi_1 \in (x_0; x_0 + h)$$
 и $\xi_2 \in (x_0; x_0 + 2h)$.

Далее, подставляя получившиеся выражения из таблицы 1 в линейную комбинацию (8), получаем

$$f'(x_0) \approx A \left(f(x_0) - 2hf'(x_0) + 2h^2f''(x_0) - \frac{4}{3}h^3f^{(3)}(x_0) + \frac{2}{3}h^4f^{(4)}(x_0) - \frac{4}{15}h^5f^{(5)}(\xi_{-2}) \right) +$$

$$+ B \left(f(x_0) - hf'(x_0) + \frac{1}{2}h^2f''(x_0) - \frac{1}{6}h^3f^{(3)}(x_0) + \frac{1}{24}h^4f^{(4)}(x_0) - \frac{1}{120}h^5f^{(5)}(\xi_{-1}) \right) +$$

$$+ Cf(x_0) +$$

$$+ D \left(f(x_0) + hf'(x_0) + \frac{1}{2}h^2f''(x_0) + \frac{1}{6}h^3f^{(3)}(x_0) + \frac{1}{24}h^4f^{(4)}(x_0) + \frac{1}{120}h^5f^{(5)}(\xi_1) \right) +$$

$$+ E \left(f(x_0) + 2hf'(x_0) + 2h^2f''(x_0) + \frac{4}{3}h^3f^{(3)}(x_0) + \frac{2}{3}h^4f^{(4)}(x_0) + \frac{4}{15}h^5f^{(5)}(\xi_2) \right),$$

сгруппировав коэффициенты при производных, имеем

$$f'(x_0) \approx (A + B + C + D + E) \cdot f(x_0) +$$

$$+ (-2A - B + D + 2E) \cdot hf'(x_0) +$$

$$+ (2A + \frac{1}{2}B + \frac{1}{2}D + 2E) \cdot h^2 f''(x_0) +$$

$$+ (-\frac{4}{3}A - \frac{1}{6}B + \frac{1}{6}D + \frac{4}{3}E) \cdot h^3 f^{(3)}(x_0) +$$

$$+ (\frac{2}{3}A + \frac{1}{24}B + \frac{1}{24}D + \frac{2}{3}E) \cdot h^4 f^{(4)}(x_0) +$$

$$+ (-\frac{4}{15}A - \frac{1}{120}B + \frac{1}{120}D + \frac{4}{15}E) \cdot h^5 f^{(5)}(\xi),$$

$$(10)$$

где $\xi \in (x_0 - 2h; x_0 + 2h).$

Теперь по (10) составим систему уравнений, при которой коэффициенты перед $f(x_0)$, $f''(x_0)$, $f'''(x_0)$, $f^{(4)}(x_0)$ обнулятся, а коэффициент перед $f'(x_0)$ будет равен 1:

$$\begin{cases} A + B + C + D + E = 0 \\ -2A - B + D + 2E = \frac{1}{h} \\ 2A + \frac{1}{2}B + \frac{1}{2}D + 2E = 0 \\ -\frac{4}{3}A - \frac{1}{6}B + \frac{1}{6}D + \frac{4}{3}E = 0 \\ \frac{2}{3}A + \frac{1}{24}B + \frac{1}{24}D + \frac{2}{3}E = 0. \end{cases}$$

$$(11)$$

Решая систему (11), получаем коэффициенты

$$A = \frac{1}{12h}, \quad B = -\frac{2}{3h}, \quad C = 0, \quad D = \frac{2}{3h}, \quad E = -\frac{1}{12h}.$$

Подставляя полученные значения A, B, C, D, E в линейную комбинацию (8), получаем формулу численного дифференцирования

$$f'(x_0) = \frac{1}{12h}f(x_0 - 2h) - \frac{2}{3h}f(x_0 - h) + \frac{2}{3h}f(x_0 + h) - \frac{1}{12h}f(x_0 + 2h) + R,$$

или, приведя к общему знаменателю, более известный вид формулы:

$$f'(x_0) = \frac{f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)}{12h} + R,$$
(12)

где R – остаточный член.

Найдем остаточный член. Его можно определить, исходя из уравнения (10) и вычисленных значений A,B,C,D,E:

$$R = \left(-\frac{4}{15} \cdot \frac{1}{12h} + \frac{1}{120} \cdot \frac{2}{3h} + \frac{1}{120} \cdot \frac{2}{3h} + \frac{4}{15} \cdot \frac{1}{12h}\right) \cdot h^5 f^{(5)}(\xi) = -\frac{h^4}{30} f^{(5)}(\xi). \tag{13}$$

Теперь, подставив (13) в (12), имеем центральную формулу численного дифференцирования 4-го порядка точности для 5-и узлов вместе с ее остаточным членом:

$$f'(x_0) = \frac{f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)}{12h} - \frac{h^4}{30}f^{(5)}(\xi).$$

Видим, что степень при h в остаточном члене равняется 4-м. Следовательно, формула действительно имеет 4-й порядок точности.

8. Реализация функции численного дифференцирования (4-й порядок)

Повторим определение, согласно выводу в задаче 7. Центральная формула численного дифференцирования 4-го порядка точности функции f в точке x_0 для шага дифференцирования h определяется как

$$f'(x_0) = \frac{f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)}{12h} - \frac{h^4}{30}f^{(5)}(\xi),$$

где $\xi \in [x_0 - 2h; x_0 + 2h].$

Полагая, что остаточный член $\frac{h^4}{30}f^{(5)}(\xi)$ мал, реализуем функцию, представленную на листинге 3.

Листинг 3: Функция, возвращающая значение первой производной функции f в точке x_0 для шага дифференцирования h (4-й порядок точности)

- 1 def diff4(\times 0, h, f):
- return $(f(x \ 0-2*h) 8*f(x \ 0-h) + 8*f(x \ 0+h) f(x \ 0+2*h)) / (12*h)$

9. Зависимость абсолютной погрешности численного дифференцирования (4-й порядок)

Рассчитаем погрешности численного дифференцирования при разных $h \in [10^{-16}; 1]$ для функций $g_1(x)$ и $g_3(x)$ в точках $x_0 = 3$ и $x_0 = 0.01$ соответственно. Для вычисления значений производных используем функцию diff4, разработанную в предыдущей задаче. Погрешность E(h) будет вычисляться по принципу, описанному в задаче 2. Отразим зависимость в виде графика и дополним его графиком, полученным в задаче 2 (рисунок 1). Результат представлен на рисунке 5.

Рис. 5. График зависимости абсолютной погрешности E численного дифференцирования от шага дифференцирования h для функций $g_1(x)$ и $g_3(x)$ с использованием формул порядка точности p=2 и p=4

10. Анализ точности центральной формулы численного дифференцирования 4-го порядка (ответы на вопросы)

Ответ на вопрос а):

Аналитическое доказательство было приведено в задаче 3. Продемонстрируем порядок точности на графике для формулы численного дифференцирования 4-го порядка. Т.е. покажем, что коэффициент наклона соответствющих графиков равен 4-м. Добавим на график, полученный в задаче 9, вспомогательную кривую $E(h) = h^4, \quad h \in [10^{-4}; 10^{-1}].$

Рис. 6. График зависимости абсолютной погрешности E(h) численного дифференцирования от шага дифференцирования h для функций $g_1(x)$ и $g_3(x)$ с использованием формул порядка точности p=2 и p=4 вместе со вспомогательной кривой $E(h)=h^4$

Видно, что для формулы 4-го порядка графики погрешности E(h) для функций $g_1(x)$ и $g_3(x)$ параллельны $E(h)=h^4$. Значит, их коэффициенты наклона совпадают, что и требовалось продемонстрировать.

Ответ на вопрос δ):

Аналогично задаче 3, при достаточно больших шагах дифференцирования h – да, совпадает.

Ответ на вопрос \mathbf{B}):

Подробное обоснование существования минимума описано в задаче 3. При использовании формулы дифференцирования 4-го порядка минимальные погрешности E(h) для функций $g_1(x)$ и $g_3(x)$ достигаются соответственно при $h\approx 10^{-3}$ и $h\approx 10^{-7}$.

Ответ на вопрос Γ):

Проведем сравнение оптимального шага дифференцирования h и соответствующую минимально достижимую погрешность E(h) для формул 2-го и 4-го порядка точности. Для удобства составим таблицу 2, где $h_{min} = \arg\min_h E(h)$.

Таблица 2. Таблица сравнения оптимального шага и соответствующей минимально достижимой погрешности формул дифференцирования 2-го и 4-го порядка

Порядок формульт	g_1	(x)	$g_3(x)$		
Порядок формулы	h_{\min}	$E(h_{\min})$	h_{\min}	$E(h_{\min})$	
p=2	$\approx 10^{-5}$	$\approx 10^{-9}$	$\approx 10^{-9}$	$\approx 10^{-5}$	
p=4	$\approx 10^{-3}$	$\approx 10^{-11}$	$\approx 10^{-7}$	$\approx 10^{-6}$	

Из таблицы 2 видно, что для функций $g_1(x)$ и $g_3(x)$ оптимальные шаги h_{min} формулы 2-го порядка ($\approx 10^{-5}$ и $\approx 10^{-9}$) соответственно меньше оптимальных шагов h_{min} формулы 4-го порядка ($\approx 10^{-3}$ и $\approx 10^{-7}$). Это означает, что используя формулу большего порядка, мы добиваемся минимальной (для формулы) погрешности со сравнительно большим шагом дифференцирования h. Также сравнивая значения $E(h_{min})$ – ($\approx 10^{-9}$ и $\approx 10^{-5}$) и ($\approx 10^{-11}$ и $\approx 10^{-6}$) соответственно, можно убедиться что и сами минимальные погрешности уменьшаются с увеличением порядка точности формулы.

Отдельно стоит отметить, что при сильно малых h погрешности для формул 2-го и 4-го порядка приблизительно сравниваются. Это хорошо заметно из рисунка 5. Т.е. выбрав слишком маленькое значение шага дифференцирования, можно вовсе не получить никакого преимущества от использования формулы более высокого порядка точности.

11. Вывод квадратурной формулы Гаусса 5-й степени точности

Сформулируем теорему о корнях многочленов Лежандра, согласно лекциям [1]. Пусть $x_1, ..., x_n$ являются корнями полинома Лежандра n-ой степени $\phi_n(x)$, и пусть коэффициенты $c_1, ..., c_n$ определены следующим образом:

$$c_i = \int_{-1}^1 l_i(x)dx = \int_{-1}^1 \prod_{j=1, i \neq j}^n \frac{x - x_j}{x_i - x_j} dx.$$
 (14)

Тогда, если $P_m(x)$ является полиномом степени m < 2n, то верным является следующее равенство:

$$\int_{-1}^{1} P_m(x)dx = \sum_{i=1}^{n} c_i P_m(x_i).$$
 (15)

Поскольку равенство (15) выполняется при m < 2n, можно сделать вывод, что для получения квадратурной формулы Гаусса (далее квадратура Гаусса) 5-й степени точности, нужно взять n=3 корня многочлена Лежандра 3-й степени. Многочлен $\phi_3(x)$ выглядит следующим образом³:

$$\phi_3(x) = \frac{1}{2}(5x^3 - 3x),$$

решая, получаем корни

$$x_1 = -\sqrt{\frac{3}{5}}, x_2 = 0, x_3 = \sqrt{\frac{3}{5}}.$$

 $^{^{3}}$ Вид многочлена взят из [3].

Теперь вычислим коэффициенты c_i согласно формуле (14):

$$c_{1} = \int_{-1}^{1} \frac{x(x - \sqrt{3/5})}{(\sqrt{3/5})(2\sqrt{3/5})} dx = \frac{5}{9},$$

$$c_{2} = \int_{-1}^{1} \frac{(x + \sqrt{3/5})(x - \sqrt{3/5})}{(3/5)} dx = \frac{8}{9},$$

$$c_{3} = \int_{-1}^{1} \frac{x(x + \sqrt{3/5})}{(\sqrt{3/5})(2\sqrt{3/5})} dx = \frac{5}{9}.$$

Подставив полученные корни x_1, x_2, x_3 и коэффициенты c_1, c_2, c_3 в (15), получим искомую квадратурную формулу Гаусса 5-й степени точности:

$$\int_{-1}^{1} P(x)dx = \frac{5}{9}P\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}P(0) + \frac{5}{9}P\left(\sqrt{\frac{3}{5}}\right),\tag{16}$$

где P(x) – полином не более 5-й степени. Видим, что для ее использования требуется рассчитать значения функции в 3-х узлах.

12. Реализация функции интегрирования с помощью квадратурной формулы Гаусса 5-й степени точности

Напишем функцию, реализующую интегрирование согласно формуле, выведенной в предыдущей задаче. Исходный текст реализации представлен на листинге 4.

Листинг 4: Функция, возвращающая значение интеграла, используя квадратурную формулу Гаусса 5-й степени точности

```
def gauss_quad5(f):

return (5/9) * f(-np.sqrt(3/5)) + (8/9) * f(0) + (5/9) * f(np.sqrt(3/5))
```

13. Численное доказательство 5-й степени точности квадратурной формулы Гаусса

Предварительно, чтобы иметь возможность использовать пределы интегрирования, отличные от [-1;1], воспользуемся следующим приемом – согласно лекциям [1], интегрирование на произвольном интервале [a;b] с помощью квадратуры Гаусса реализуется с помощью замены переменных:

$$x = \frac{1}{2}[(b-a)t + a + b], \tag{17}$$

где $x \in [a;b]$ и $t \in [-1;1]$. Тогда квадратура Гаусса вычисляется следующим образом:

$$\int_{a}^{b} P(x)dx = \int_{-1}^{1} P\left(\frac{(b-a)t + a + b}{2}\right) \frac{b-a}{2} dt = \frac{b-a}{2} \int_{-1}^{1} P\left(\frac{(b-a)t + a + b}{2}\right) dt.$$
 (18)

Используя (18) и (17), напишем вспомогательную функцию замены переменной, с помощью которой будем менять пределы интегрирования квадратуры Гаусса. Получившаяся функция представлена на листинге 5.

Листинг 5: Функция замены переменной для изменения пределов интегрирования квадратуры Гаусса на произвольные

Построим последовательность полиномов $P_k(x)$, $k = \{0, ..., 6\}$ степени k по случайно полученным коэффициентам. Для этого воспользуемся функцией numpy.random.randn() для генерации серий случайных чисел (коэффициенты для удобства будем округлять до тысячных) и классом numpy.polynomial.Polynomial для генерации самих полиномов. Исходный код описанных действий приведен на листинге 6.

Листинг 6: Генерация полиномов $P_k(x)$ по случайно сгенерированным коэффициентам

```
1 generated_coeffs = [np.random.randn(n) for n in range(1, 8)]
2 generated_polynomials = [np.polynomial.Polynomial(coeffs) for coeffs in generated_coeffs]
```

Зафиксируем полученные полиномы $P_k(x)$ в таблице 3. В таблице 4 для каждого $P_k(x)$ запишем результаты вычисления интегралов $\int_0^2 P_k(x) dx$ двумя методами — аналитическим и численным, реализованным в задаче 12. Кроме того, найдем абсолютную погрешность, определяемую как модуль разности двух методов.

Подробности аналитических расчетов опустим — вычисление определенного интеграла для некоторого полинома — задача тривиальная. Для решения численным методом воспользуемся функциями gauss_quad5(f) и gauss_variable_replace(a, b, f), описанными ранее. В итоге получаем таблицу 4.

m < n < n	T		\mathbf{D} (1 1	
Таблица 3. Т	Гаршица	полиномов	$P_1 \mid r$	COCI	гучайно	сгенери	DOBSHHPIMM	KOSMONITIVE	нтами
таолица о.	таолица	HOMINION	1 6 0		I V IGHTIIO	OI OHODE	DODGITHDIMI	поэффицио	TI I COLVILL

k	$P_k(x)$
0	1.433
1	0.851 + 0.145x
2	$0.128 - 0.112x - 1.241x^2$
3	$-0.399 + 1.628x - 0.237x^2 + 1.440x^3$
4	$-1.133 - 0.729x + 0.037x^2 - 1.546x^3 + 0.374x^4$
5	$0.665 + 1.780x + 1.085x^2 + 0.675x^3 + 0.844x^4 + 0.066x^5$
6	$-1.935 - 0.111x + 0.213x^2 - 0.708x^3 + 1.326x^4 + 0.876x^5 - 2.142x^6$

Таблица 4. Сравнительная таблица значений определенного интеграла $\int_0^2 P_k(x)$, полученного численно и аналитически

Полином	Числ. интеграл	Аналит. интеграл	Абсолютная погрешность
$P_0(x)$	2.866	2.866	0
$P_1(x)$	1.992	1.992	0
$P_2(x)$	-3.2773333333333333	-3.27733	< 0.00001
$P_3(x)$	7.586	7.586	0
$P_4(x)$	-7.4157333333333333	-7.41573	< 0.00001
$P_5(x)$	16.588933333333333	16.58893	< 0.00001
$P_6(x)$	-27.59568	-27.6936	0.09792

В таблице 4 видим заметное увеличение абсолютной погрешности при интегрировании полинома 6-й степени $P_6(x)$. Это увеличение ожидаемо – рассматриваемая квадратура имеет степень точности меньше, чем степень интегрируемого полинома. Можно обратить внимание на малые погрешности для полиномов $P_2(x)$, $P_4(x)$ и $P_5(x)$, но они обусловлены погрешностью машинных вычислений, а не самого метода. Эксперимент наглядно демонстрирует теоретическую пятую степень точности рассматриваемой квадратуры Гаусса.

Заключение

- 1. Проведенные расчеты продемонстрировали, что повышение порядка формулы численного дифференцирования действительно может давать выигрыш в точности. Показано, что для каждой формулы существует свой оптимальный шаг дифференцирования слишком большой шаг дает большие погрешности самого метода, слишком маленький приводит к накоплению вычислительной погрешности. Была подтверждена вычислительная неустойчивость операции дифференцирования.
- 2. Исследование формул численного интегрирования показало, что они являются вычислительно устойчивыми, т.е. не подвержены накоплению вычислительной погрешности. Были продемонстрированы влияние на погрешность порядка и степени точности формул интегрирования.

Список использованных источников

- 1. Першин А.Ю. Лекции по курсу «Вычислительная математика». Москва, 2018-2021. C. 140. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры PK6).
- 2. Kalambet Yuri, Kozmin Yuri, Samokhin Andrey. Comparison of integration rules in the case of very narrow chromatographic peaks // Chemometrics and Intelligent Laboratory Systems. 2018. T. 179. C. 22–30. URL: https://www.sciencedirect.com/science/article/pii/S0169743917305555.

- 3. Wikipedia contributors. Legendre polynomials Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Legendre_polynomials&oldid=128364497 2025. [Online; accessed 5-April-2025].
- 4. Соколов А.П., Першин А.Ю. Инструкция по выполнению лабораторных работ (общая). Москва: Соколов, А.П., 2018-2023. С. 19. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры PK6).
- 5. Соколов, А.П. Инструкция по выполнению заданий к семинарским занятиям (общая). Москва: Соколов, А.П., 2018-2022. С. 7. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры PK6).
- 6. Першин А.Ю., Соколов А.П. Сборник задач семинарских занятий по курсу «Вычислительная математика»: Учебное-методическое пособие. [Электронный ресурс]. Москва, 2025. С. 24. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры PK6).
- 7. Першин А.Ю., Соколов А.П., Гудым А.В. Сборник постановок задач на лабораторные работы по курсу «Вычислительная математика»: Учебно-методическое пособие. [Электронный ресурс]. Москва, 2025. С. 46. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры РК6).

Выходные данные

Карасев А.Ю.Отчет о выполнении лабораторной работы по дисциплине «Вычислительная математика». [Электронный ресурс] — Москва: 2025. — 18 с. URL: https: //qitlab.sa2systems.ru (система контроля версий кафедры PK6)

2025, весенний семестр