The normal-normal model

Giorgio Corani - (IDSIA, SUPSI)

Bayesian Data Analysis and Probabilistic Programming

Credits

- Chap. 5 of Bayes Rules! An Introduction to Applied Bayesian Modeling
 - https://www.bayesrulesbook.com/chapter-5.html

The Normal model

- Let Y be a continuous random variable which can take values in $(-\infty,\infty)$
- \blacksquare The variability of Y might be well represented by a Normal model $Y \sim N(\mu, \sigma^2)$

The Normal model

The Normal pdf is

$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$$

With:

$$E(Y) = Mode(Y) = \mu$$

$$Var(Y) = \sigma^{2}$$

$$SD(Y) = \sigma$$

Standard deviation σ

- lacksquare σ provides a sense of scale for Y.
- Roughly 95% of Y values are within 2 standard deviations of μ :

$$\mu \pm 2\sigma$$

■ Roughly 99% of Y values are within 3 standard deviations of μ :

$$\mu \pm 3\sigma$$

The normal model

- The Normal model is bell-shaped and symmetric around μ .
- \blacksquare As σ gets larger, the pdf becomes more spread out.
- Though a Normal variable is defined in $(-\infty, \infty)$, the plausibility of values that are more than 3 standard deviations σ from the mean μ is negligible.

Example

- The volume of the hippocampus (a part of the brain) is researched in studies about the effect of concussions.
- In the general population, both halves of the hippocampus have a volume between 3.0 and 3.5 cm³.
- Thus, the hippocampal volume is thought to vary, within the population, between 6 and 7 cm³.
- The average volume μ is thought to be between 6.4 and 6.6 cm³.

Normal prior

 \blacksquare Assuming symmetry, we formalize our prior information about μ as:

$$\mu \sim N(\mu', \sigma_\mu)$$

which in this example is:

$$\mu \sim N(6.5, 0.05)$$

- lacksquare μ' is our prior guess on the value of μ .
- \blacksquare σ_{μ} represents our uncertainty on the guess $\mu'.$
- **According to this prior**, μ lies with 95% probability in (6.4, 6.6).
- We allow the volume to range over $(-\infty, \infty)$, but values beyond $\mu \pm 3\sigma$ are given negligible probability.

Normal prior

■ There is no single right prior, but different reasonable priors.

Normal likelihood

- We now define a model for the distribution of the observations.
- We make a *second* assumption of normality.
- \blacksquare The hyppocampal volumes observed in n subjects ($y_1,y_2,...,y_n$) are normally distributed $N(\mu,\sigma).$

Normal likelihood

- \blacksquare μ is the mean volume in the population.
- $lue{\sigma}$ expresses the spread of the measures within the population.
- We expect y to vary in (6-7); we interpret this interval as $\mu \pm 2\sigma$, hence it has length of 4σ .
- We thus set σ =0.25.

Independence

- We morever assume the observations $y_1, ..., y_n$ to be independent samples from $N(\mu, \sigma)$.
- lacktriangle This is realistic: the measure y_i tells us nothing about the measure y_{i+1} (assuming they refer to different subjects)

Likelihood

Assuming independence, the joint pdf of the n measures $(y_1,y_2,...,y_n)$ is the product of the unique Normal pdfs $f(y_i\mid \mu)$:

$$f(\vec{y}|\mu) = \prod_{i=1}^{n} f(y_i|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y_i - \mu)^2}{2\sigma^2}\right].$$

The Normal-Normal model

$$\mu \sim N(\mu', \sigma_{\mu})$$
$$\vec{y} \sim N(\mu, \sigma)$$

- We treat μ' , σ_{μ} and σ as fixed numbers.
- The only parameter of the model is μ .
- **Later** we will treat also σ as a parameter.

Your turn: normal likelihood functions

 \blacksquare For a Normal random sample $y_i \sim N(\mu, \sigma)$ with σ =10 we observe:

$$y_1, y_2, y_3 = (-4.3, 0.7, -19.4)$$

lacksquare Specify and plot the corresponding likelihood function of $\mu.$

Conjugacy of the normal-normal model

- Denote the sample mean as $\bar{y} = \frac{1}{n} \sum_{i} y_{i}$.
- The posterior density of μ is normal with updated parameters:

$$\mu |\vec{y}| \sim N \left(\underbrace{\mu' \frac{\sigma^2}{n\sigma_{\mu}^2 + \sigma^2} + \bar{y} \frac{n\sigma_{\mu}^2}{n\sigma_{\mu}^2 + \sigma^2}}_{\text{posterior mean}}, \underbrace{\frac{\sigma_{\mu}^2 \sigma^2}{n\sigma_{\mu}^2 + \sigma^2}}_{\text{posterior variance}} \right).$$

Posterior mean

$$\mu | \vec{y} \sim N \left(\mu' \frac{\sigma^2}{n\sigma_{\mu}^2 + \sigma^2} + \bar{y} \frac{n\sigma_{\mu}^2}{n\sigma_{\mu}^2 + \sigma^2}, \frac{\sigma_{\mu}^2 \sigma^2}{n\sigma_{\mu}^2 + \sigma^2} \right).$$

- The posterior mean is a weighted average of the prior mean μ' and the sample mean \bar{y} .
- lacksquare As n increases, the posterior mean converges to $ar{y}$.
- \blacksquare As n increases, the posterior variance decreases.

Your turn

- Which is the posterior mean, if we did 5 measures with $\bar{y} = 6.7$?
- Which is the posterior mean, if we did 35 measures with $\bar{y} = 6.7$?

Your turn

- Let μ be the average 3 p.m. temperature in Lugano.
- Nour friend's prior understanding is that μ is around 15 degrees Celsius, though might be anywhere between 5 and 25 degrees.
- To learn about μ , he will analyze 1000 days of temperature data.
- Letting y_i denote the 3 p.m. temperature on day i, they'll assume that daily temperatures vary Normally around μ with a standard deviation of 5 degrees.
- Formalize a normal-normal model.

Treating σ as a parameter

- \blacksquare A more sophisticated approach is to treat σ as a parameter.
- We assigning a prior to it; it should cover a wide range of plausible values for σ , leaving out however values that make no sense.
- In this case there is no closed-form expression of the posterior.

Half-normal distribution

- σ is strictly positive; a suitable prior is the half-normal distribution.
- The half-normal is a Gaussian restricted to positive values.
- Sample s from a half-normal are obtained by:
 - sampling from a normal distribution
 - applying the absolute value to the sampled values
 - $s \sim |N(0,\xi)|$, where ξ is the standard deviation of the underlying normal. It is referred to as the *scale* of the half-normal.

The half-normal distribution

- The HN pdf is asymmetric and right-skewed.
- It has long tails which are much larger than the median.

Figure 1: from wikipedia

Effect of the scale parameter

■ The half-normal pdf is characterized by a scale parameter (the standard deviation of the underlying normal).

Tuning the half-normal distribution

- Nou can tune the scale of the HN by considering a plausible value of σ , and choose the scale so that it is close to the median of the HN.
- **E.g.**, assume a plausible value of σ is 7.5.
- With 95% probability the measures are lie in an interval of ± 15 around the mean.
- \blacksquare But we are uncertain about this statement, as the interval could be well of ± 30 .

Tuning the half-normal distribution

- We try different scales, until the median is about 7.5.
- Notice the long tails of the distribution, which allows to model to correct if our prior median guess (7.5) is underestimated.

```
pd.DataFrame(halfnorm.rvs(size=1000, scale=11)).describe()
##
                     0
## count
          1000.000000
##
  mean
             8.307911
## std
             6.426158
## min
             0.014810
## 25%
             3.076545
## 50%
             6.926380
## 75%
            12,150026
## max
            38,987063
```

Probabilistic model with σ as parameter

$$\begin{split} \mu &\sim N(\mu_{\mu},\sigma_{\mu}) & \text{prior beliefs about } \mu \\ \sigma &\sim \text{Half-Normal}(\sigma_{\sigma}) & \text{prior beliefs about } \sigma \\ y &\sim N(\mu,\sigma) & \text{the observation are normally distributed} \sigma \end{split}$$

- We cannot treat this model analytically, as the prior are no longer conjugates.
- We will implement it later via probabilistic programming.

Conceptual exercise

 Try to define a probabilistic model of the distribution of height of adult males in Switzerland

Prior for μ

- The mean height of the population could be 175.
- Keeping our prior broad, we state the mean height of the population to lie with 99% probability between 160 and 190 cm (the 99% interval roughly corresponds to $\mu \pm 3\sigma$).
 - $\mu \sim N(175, 5)$

Prior for σ

- We shall now assign a prior to σ . Within the population, we assume the height to lie with 99% probability between 100 and 250 (broad but realistic range).
- Hence the corresponding value of the standard deviation is (250-100)/6 = 25.

Tuning the half-normal

■ A half-normal distribution with scale 35 has roughly median 25:

```
pd.DataFrame(halfnorm.rvs(size=1000, scale=35)).describe()
##
                     0
   count
          1000.000000
            27,695765
##
  mean
## std
            19,922486
## min
             0.104277
## 25%
            12.317823
## 50%
            24.274779
## 75%
            40,009108
##
           104,680540
  max
```

Likelihood (distribution of the data)

Under the assumption of normality and independence, the likelihood is:

$$y \sim \mathcal{N}(\mu, \sigma)$$

No further specification is required.

The resulting model

$$\begin{split} \mu &\sim N(175,5) \\ \sigma &\sim \mathsf{half-normal}(35) \\ \vec{y} &\sim N(\mu,\sigma) \end{split}$$

Solution for the exercise on normal likelihood functions

■ Compute the likelihood as a function of μ for a normal sample with σ =10, given the observations:

$$y_1, y_2, y_3 = (-4.3, 0.7, -19.4)$$

Solution

```
#based on the observations, plausible values of mu
#range between -30 and 20.
mu = np.arange(-30, 20, 0.5)
sigma = 10

#a likelihood value for each value of mu
lik = norm.pdf(-4.3, loc=mu, scale=sigma)

#under independence, the likelihood of each observation multiplies
lik = lik * norm.pdf(0.7, loc=mu, scale=sigma)
lik = lik * norm.pdf(-19.4, loc=mu, scale=sigma)

plt.figure(figsize=(10, 3))
plt.plot(mu, lik)
```


Solution

- The values in the previous slide are numerically small. With more data, and more likelihood multiplication, it will become numerically untractable.
- For this reason it is numerically better to work with the log of the likelihood (log-likelihood).