What *really* happened in the English Industrial Revolution?

Stephen C. Bannister
Department of Economics
University of Utah
Salt Lake City, Utah 84112
USA
steve.bannister@econ.utah.edu

The Issue:

The majority view is that the English Industrial Revolution (EIR) was an institutional revolution: the English developed sufficiently better institutions and that fact, uniquely, sparked the revolution.

The Issue:

The majority view is that the English Industrial Revolution (EIR) was an institutional revolution: the English developed sufficiently better institutions and that fact, uniquely, sparked the revolution. My claim is that view is wrong, has caused misinterpreted history, and has misled development economists.

The Issue:

The majority view is that the English Industrial Revolution (EIR) was an institutional revolution: the English developed sufficiently better institutions and that fact, uniquely, sparked the revolution. My claim is that view is wrong, has caused misinterpreted history, and has misled development economists.

Instead, the data support a history of two energy revolutions that led the EIR, and suggest an *economic* explanation of its causes.

This is what the data show:

An energy consumption revolution; no "Solow" residual required

GDP/Energy regime one – 1300-1500

Black Death recovery – higher wage support, population recovery Medieval Warming Epoch – agricultural expansion, higher population

European Marriage Pattern – reduced nuptiality, higher real wage Demand and supply expansion

GDP/Energy regime two – 1500-1600

Benign climate – agriculture, real wage, population rise Beginning of first energy crisis – deforestation Demand and supply expansion

GDP/Energy regime three – 1600-1750

Little Ice Age – agricultural shrinkage Famine, Pestilence, Wars "Global Crisis" (Parker) – 30 percent global population decline "General crisis" (Hugh Trevor-Roper)

Demand and supply shrinkage
First energy revolution – substitute coal for wood

GDP/Energy regime four – 1750-1873

Second energy revolution – substitute steam power for labor power Demand and supply expansion

Demand becomes the the system constraint

Modern economic growth

Relevant price ratios induced behavioral changes

Microeconomic theory – energy revolutions one and two

$$\frac{\text{Marginal Product}_{\text{wood Joule}}}{\text{Price}_{\text{wood Joule}}} \ll \frac{\text{Marginal Product}_{\text{coal Joule}}}{\text{Price}_{\text{coal Joule}}} \tag{1}$$

Microeconomic theory – energy revolutions one and two

$$\frac{\text{Marginal Product}_{\text{wood Joule}}}{\text{Price}_{\text{wood Joule}}} \ll \frac{\text{Marginal Product}_{\text{coal Joule}}}{\text{Price}_{\text{coal Joule}}} \tag{1}$$

$$\frac{\text{Marginal Product}_{\text{labor Joule}}}{\text{Price}_{\text{labor Joule}}} \ll \frac{\text{Marginal Product}_{\text{steam Joule}}}{\text{Price}_{\text{steam Joule}}} \tag{2}$$

English Industrial Revolution, 1590 - 1876

- Modern economic growth
- Unconstrained quantity of fossil carbon energy a two-phase energy revolution led by a demand revolution
- Little statistical space for institutional or cultural events except to explain structural breaks
- Macro and micro explain a great deal
- Framework applicable across time series, space, and time

Thank you

Taxonomy of EIR explanations

Label	Examples
English exceptionalists	Landes (1969), McCloskey (2010), Mokyr (1992,2010)
Partial culturalists	Cipolla (1966), Pomeranz (2001), Allen (2009)
Primarily energetic	Cottrell (1955), Wrigley (1988,2010), Malanima (2010)
Thermodynamicists	Georgescu-Roegen (1975), Ayres (2003), Garrett (2009)

Author/time-span series of energy consumption, GDP, and population

Aggregate Supply - Aggregate Demand Four energy/GDP regimes

Desagulier manuscript

rection P p, and a Quantity of the property of the property of the point at P. This may be done 15 or 16 times in a be lifted up, and run out at P. This may be done 15 or 16 times in a be lifted up, and run out at P. This may be done 15 or 16 times in a first the manner that People ring Bells. But as no Time is to be loft, left after the manner that People ring Bells. But as no Time is to be loft, left the Mine be overflow'd by the Springs below, there must be 100 more the Mine be overflow'd by the Springs below, there must be 100 more than the property of the propert

468

FIRE-ENGINE.

Left XII that Thought must be laid aside. We'll consider therefore what can be done by Horses. As an Horse is equal to five Men, we must work 20. Horses at a time to raise the Water required; and as Horses must be reliev'd even more than Men, about 50 Horses must be kept to carry on this Work constantly, and bring down the End of the Beam b, 16 times in a Minute, and make the number of Strokes required in the Pump, the Weight of whose Rod after every Stroke will bring down the End b 2, by drawing along the Tangent i H. It is plain to any body, that tho' the Horses may be had cheaper than Men, yet that will be a very expensive way. For the next Contrivance, we'll suppose a Philosopher to come, and find a means to bring down the End of the Beam, without Men or Horses, in this manner. To the Chain H L he fixes a

English real gross domestic product, levels and per–capita

English real gross domestic product, log levels and log per-capita

Structural break comparison

Coal and wood energy sources Source: Pearson & Fouquet

Energy consumption vs. standarized GDP

Granger tests of energy/GDP dynamics

Era	Energy ~ GDP Pr(>F)	GDP ~ Energy Pr(>F)	AS/AD regime
1300 – 1500	0.0106	0.0003	EMP ¹ , Black Death:
			increasing wages,
			family income
1500 – 1600	0.1939	0.6126	Positive demand shock
1600 – 1750	0.3529	0.5185	Energy supply constraint
1750 – 1873	0.0024	0.1100	Positive supply shock:
			"virtuous" macro
			feedback cycle
1300 – 1873	0.0002	0.0361	Total study period

¹European marriage pattern (Hajnal)

English wood enegy supply constraint

Figure: Standardized English energy intensity of GDP

Figure: Log of GDP, with structural breaks

Figure: Log of population, with structural breaks

Data Sources

Data series	Year range	Geography	Source	
Energy consumption	1300 – 1873	England/Wales	Roger Fouquet (2008)	
Gross domestic product	1300 – 1700	England	Graeme Snooks (1994)	
	1741 – 1873	England/Wales	Lawrence Officer (2009)	
Population	1300 – 1540	England	Graeme Snooks (1994)	
	1541 – 1800	England	B. R. Mitchell (1988)	
	1801 – 1873	England/Wales	B. R. Mitchell (1988)	

Table: growth rates by century

Year	1300	1400	1500	1600	1700	1801	1873	Total
GDP Million								
2005 GBP	3114.7541	815.1288	994.4571	6031.953	8361.5911	18110	102811	
Century-over-century								
rate of growth		-0.738	0.220	5.066	0.386	1.166	4.677	32.008
Compounded annual								
rate of growth		-0.013	0.002	0.018	0.003	0.008	0.024	0.006
Energy consumption	1.7	1	1.3	2.2	3.6	11.6	66.1	
Century-over-century								
rate of growth		-0.412	0.300	0.692	0.636	2.222	4.698	37.882
Compounded annual								
rate of growth		-0.005	0.0026	0.005	0.005	0.012	0.024	0.006
Per-capita GDP								
2005 GBP	542	329	421	1,484	1,663	1,999	4,392	
Century-over-century								
rate of growth		-0.393	0.282	2.521	0.121	0.202	1.198	7.108
Compounded annual								
rate of growth		-0.005	0.002	0.013	0.001	0.002	0.011	0.004

Table: Energy and GDP fit tests

Test	Statistic	p-value
Pearson's correlation	0.998	
Paired t-test	5.592	4.991e-07
Chi-square	2864	0.0004998