1. Flatness Problem
Friedmann equation: $H^2 + \frac{kc^2}{\alpha^2} = \frac{8\pi G}{3} \rho_{tot}$
we define for = $\frac{3H^2}{8\pi G}$, $\Omega_{tot} = \frac{l_{tot}}{f_{cr}}$, substitution into Friedmann equation,
$\Rightarrow \Omega + \sigma t - = \frac{kC^2}{\alpha^2 H^2} \propto \Omega^2 H^2 \square$
$\Rightarrow \frac{d}{dt} \left \Omega_{tot} - 1 \right = k c^2 \frac{d}{dt} \frac{1}{\alpha^2 H^2} = k c^2 \frac{-2}{\dot{\alpha}^3} \ddot{\alpha} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Assuming the universe is matter dominated, $a \propto t^{\frac{2}{5}}$, $H = \frac{2}{3t} \Rightarrow \frac{1}{a^2 H^2} \propto t^{\frac{2}{5}}$, use \mathbb{O} ,
the deviation of total density from critical density at 1s after the Big Bang is
$[\Omega_{tot}(S)-1]= \Omega_{tot}(t_{now})-1 (S/t_{now})^{\frac{2}{3}}\lesssim 2\times 10^{-12}$, which is very small.
An accelerating universe can help solve the flootness problem, because when \ddot{a} -0,
from eq. \odot , $ \Omega_{+}$, $ $ decrease with time and can be quite small out 1s.
Atot inf! most / DE
> time
· time
2. Horizon Problem
Comoving particle horizon $D_{ph}^{c} = \int_{0}^{t} \frac{c dt'}{\alpha(t')} = c \int_{0}^{a} \frac{da'}{a'} \frac{da'}{da'} = c \int_{0}^{a} \frac{da'}{\alpha' H(\alpha)}$
Assuming the universe is motter dominated, $a = (H_0 t)^{\frac{7}{3}}$, $H = \frac{2}{3t} \implies H = \frac{2}{3}H_0 a^{-\frac{2}{3}}C$
$\Rightarrow D_{ph}^{c} = \frac{3c}{2H_{0}} \int_{0}^{u} \frac{du'}{du'} \mathcal{Q}$
Assuming the universe is motter dominated, $a = (H_0 t)^{\frac{2}{3}}$, $H = \frac{2}{3}t$ $\implies H = \frac{2}{3}H_0 a^{-\frac{2}{3}}$ \Rightarrow $D_{ph}^c = \frac{3c}{2H_0} \int_0^a \frac{da'}{Aa'} 2$ \Rightarrow $D_{ph,today}^c / D_{ph,cmb}^c = \int_0^1 \frac{da'}{Aa'} / \int_0^{H_{100}} \frac{da'}{Aa'} = 1/\sqrt{\frac{1}{1101}} \approx 33.18$

The CMB indicates the horizon problem, because the CMB sky is smooth, homogeneous and isotropic to level of 10-5 over the entire sky, which means the CMB from different directions have come to thermal equilibrium. But the comoving particle horizon at Z=1100 is many fines smaller than today, which is just the horizon problem.

From eq. ②, we know that $D_p^c \propto \sqrt{a} = \frac{1}{a}$ an accelerating universe means a>0, so at $D_p^c = -\frac{1}{a^c} a<0$, D_p^c decrease with time, which means there is a much bigger comoving particle horizon before when CMB communicate with each other.

