MATH 415: Assignment 2

Md Ismail Hossain 7th September 2022

Question 1:

We will use the Simplex method to solve the given LP problem. The problem is given as follows:

minimize
$$-5x_1 - 6x_2 - 9x_3 - 8x_4$$
 subject to
$$x_1 + 2x_2 + 3x_3 + x_4 \le 5,$$

$$x_1 + x_2 + 2x_3 + 3x_4 \le 3,$$

$$\mathbf{x} > 0$$

The standard equation form with slack variables:

minimize
$$z = -5x_1 - 6x_2 - 9x_3 - 8x_4$$

subject to $x_1 + 2x_2 + 3x_3 + x_4 + x_5 = 5$,
 $x_1 + x_2 + 2x_3 + 3x_4 + x_6 = 3$,
 $\mathbf{x} \ge 0$

Considering the initial basis as x_5 and x_6 . The dictionary is:

minimize
$$z = 0 - 5x_1 - 6x_2 - 9x_3 - 8x_4$$

subject to $x_5 = 5 - x_1 - 2x_2 - 3x_3 - x_4$,
 $x_6 = 3 - x_1 - x_2 - 2x_3 - 3x_4$,
 $\mathbf{x} \ge 0$

Solution is:

$$X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 5 \\ 3 \end{bmatrix}$$

and z = 0

In the objective function, the highest coefficient is for variable x_3 . So, x_3 is the entering variable as a basis.

As $x_3 \to 3/2$, $x_6 \to 0$, x_6 is the leaving basic variable. The new basis will be x_3, x_5 . The new dictionary will be:

minimize
$$z = -13.5 - 0.5x_1 - 1.5x_2 + 5.5x_4 + 4.5x_6$$

subject to $x_3 = 1.5 - 0.5x_1 - 0.5x_2 - 1.5x_4 - 0.5x_6$,
 $x_5 = 0.5 + 0.5x_1 - 0.5x_2 + 3.5x_4 + 1.5x_4$,
 $\mathbf{x} \ge 0$

Solution is:

$$X = \begin{bmatrix} 0 \\ 0 \\ 1.5 \\ 0 \\ 0.5 \\ 0 \end{bmatrix}$$

and
$$z = -13.5$$

In the objective function, between $x_1 \& x_2$, I choose x_2 as the new candidate to enter in the basis because, among these two negative variables, the coefficient for x_2 is higher.

 $x_2 \to 1, x_5 \to 0, x_5$ is the leaving basic variable. The new basis will be x_2, x_3 . The new dictionary will be:

minimize
$$z = -15 - 2x_1 - 5x_4 + 3x_5$$

subject to $x_2 = 1 + x_1 + 7x_4 - 2x_5 + 3x_6,$
 $x_3 = 1 - x_1 - 5x_4 + x_5 - 2x_6,$
 $\mathbf{x} \ge 0$

Solution is:

$$X = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

and z = -15

At this stage, x_4 enters the basis, and x_3 leaves because $x_4 \to 1/5$, $x_3 \to 0$.

minimize
$$z = -16 - x_1 + x_3 + 2x_5 + 2x_6$$

subject to $x_2 = 2.4 - 0.4x_1 - 1.4x_3 - 0.6x_5 + 0.2x_6,$
 $x_4 = 0.2 - 0.2x_1 - 0.2x_3 + 0.2x_5 - 0.4x_6,$
 $\mathbf{x} \ge 0$

Solution is:

$$X = \begin{bmatrix} 0 \\ 2.4 \\ 0 \\ 0.2 \\ 0 \\ 0 \end{bmatrix}$$

and z = -16

As $x_1 \to 1$, $x_4 \to 0$, x_4 is the leaving basic variable. The new basis will be x_1, x_2 . The new dictionary will be:

minimize
$$z = -17 + 2x_3 + 5x_4 + x_5 + 4x_6$$

subject to $x_1 = 1 - x_3 - 5x_4 + x_5 - 2x_6$,
 $x_2 = 2 - x_3 + 2x_4 - x_5 + x_6$,
 $\mathbf{x} \ge 0$

Solution is:

$$X = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

and
$$z = -17$$

This is the unique optimal solution because none of the variables x is able to reduce the value of an objective function and the value of z = -17 and we have to use $x_1 = 1$, $x_2 = 2$ and zero for all other x variables to get the solution.

Question 2:

 \mathbf{a}

In this LP there are a total of 4 variables and 2 constraints. So, the number of possible bases should be $\binom{4}{2} = 6$. The list of basis are (x_1, x_2) , (x_1, x_3) , (x_1, x_4) , (x_2, x_3) , (x_2, x_4) , and (x_3, x_4) .

b

Now I am going to show the dictionary, basic solution, and objective value for each of the bases shown above:

(1) Basis = (x_1, x_2) :

Dictionary:

minimize
$$z = 0 - 2x_1 - 4x_2$$
 subject to
$$x_2 = 1 - x_1 + x_3,$$

$$x_1 = 2 - 2x_2 - x_4,$$

$$\mathbf{x} \ge 0$$

Basic solution: Considering $x_3 = 0$ and $x_4 = 0$, the system of equation reduced to the following form and we solved for x_1 and x_2 .

$$x_{1} = \begin{cases} x_{2} = 1 - x_{1} \\ = 2 - 2x_{2} \end{cases} \quad x_{1} = 0$$

$$x_{2} = 1$$

$$X = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Objective value: z = -4

(2) Basis = (x_1, x_3) :

Dictionary:

minimize
$$z = 0 - 2x_1 - 4x_2$$
 subject to
$$x_3 = -1 + x_1 + x_2,$$

$$x_1 = 2 - 2x_2 - x_4,$$

$$\mathbf{x} \ge 0$$

Basic solution: Considering $x_2 = 0$ and $x_4 = 0$, the system of equation reduced to the following form and we solved for x_1 and x_3 .

4

$$x_{1} = -1 + x_{1}$$

$$= 2$$

$$x_{1} = 2$$

$$x_{1} = 2$$

$$x_{3} = 1$$

$$X = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Objective value: z = -4

(3) Basis = (x_1, x_4) :

Dictionary:

minimize
$$z = 0 - 2x_1 - 4x_2$$

subject to $x_1 = 1 - x_2 + x_3$,
 $x_4 = 2 - x_1 - 2x_2$,
 $\mathbf{x} \ge 0$

Basic solution: Considering $x_2 = 0$ and $x_3 = 0$ and we solved for x_1 and x_4 .

$$\begin{cases}
 x_1 & = 1 \\
 x_4 & = 2 - x_1
 \end{cases}
 \begin{cases}
 x_1 & = 1 \\
 x_4 & = 1
 \end{cases}$$

$$X = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Objective value: z = -2

(4) Basis = (x_2, x_3) :

Dictionary:

minimize
$$z=0-2x_1-4x_2$$
 subject to
$$x_3=-1+x_1+x_2,$$

$$x_2=1-0.5x_1-0.5x_4,$$

$$\mathbf{x}\geq 0$$

Basic solution: Considering $x_1 = 0$ and $x_4 = 0$ and we solved for x_2 and x_3 .

$$\begin{cases}
 x_3 = -1 + x_2 \\
 x_2 = 1
 \end{cases}
 \begin{cases}
 x_2 = 1 \\
 x_3 = 0
 \end{cases}$$

$$X = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Objective value: z = -4

(5) Basis = (x_2, x_4) :

Dictionary:

minimize
$$z = 0 - 2x_1 - 4x_2$$

subject to $x_2 = 1 - x_1 + x_3$,
 $x_4 = 2 - x_1 - 2x_2$,
 $\mathbf{x} \ge 0$

Basic solution: Considering $x_1 = 0$ and $x_3 = 0$ and we solved for x_2 and x_4 .

$$\begin{cases}
 x_2 &= 1 \\
 x_4 = 2 - 2x_2
 \end{cases}
 \qquad
 \begin{cases}
 x_2 = 1 \\
 x_4 = 0
 \end{cases}$$

$$X = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Objective value: z = -4 (6) Basis = (x_3, x_4) :

Dictionary:

minimize
$$z = 0 - 2x_1 - 4x_2$$
 subject to
$$x_3 = -1 + x_1 + x_2,$$

$$x_4 = 2 - x_1 - 2x_2,$$

$$\mathbf{x} \ge 0$$

Basic solution: Considering $x_1 = 0$ and $x_2 = 0$ and we solved for x_3 and x_4 .

$$x_3 = -1$$

$$x_4 = 2$$

$$x_4 = 2$$

$$x_4 = 2$$

$$X = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 2 \end{bmatrix}$$

Objective value: z = 0

 \mathbf{c}

The corresponding basis for feasible, infeasible, and degenerate solutions are given below:

Feasible: (x_1, x_4) and (x_1, x_3) as base.

<u>Infeasible:</u> (x_3, x_4) as the base.

Degenerate: (x_1, x_2) , (x_2, x_3) , and (x_2, x_4) as the base.

 \mathbf{d}

Among all of these 6 possible bases, we got the feasible solution for (x_1, x_4) and (x_1, x_3) but the objective value (z = -4) is lowest for (x_1, x_3) . So, we got our optimal solution for the basis of (x_1, x_3) .

In this sketch, the feasible region and the corner points A, B, C and D are marked. At point B the solution is infeasible. At C & D it is feasible and at point A the three degenerate solutions exist.

Question 3:

We will use the two-phase Simplex method to solve the given LP problem. The problem is given as follows:

minimize
$$-3x_1 - x_2$$

subject to $x_1 - x_2 \le -1$,
 $-x_1 - x_2 \le -3$,
 $2x_1 - x_2 \le 2$,
 $\mathbf{x} \ge 0$

The standard equation form with slack variables:

$$\begin{array}{ll} \text{minimize} & z=-3x_1-x_2\\ \\ \text{subject to} & x_1-x_2+x_3=-1,\\ & -x_1-x_2+x_4=-3,\\ & 2x_1-x_2+x_5=2,\\ & \mathbf{x}\geq 0 \end{array}$$

We cannot use x_3, x_4, x_5 as the initial basis for this problem because the solution would become infeasible in that case (we would get a negative value for x_3 and x_4). As a result, we have to use the two-phase simplex method.

Phase-I

minimize
$$W = v_1 + v_2 + v_3$$
 subject to
$$x_1 - x_2 + x_3 - v_1 = -1,$$

$$-x_1 - x_2 + x_4 - v_2 = -3,$$

$$2x_1 - x_2 + x_5 + v_3 = 2,$$

$$\mathbf{x}, \mathbf{v} \ge 0$$

Start with the initial basis as v_1, v_2, v_3 . The dictionary is:

minimize
$$W = 6 - 2x_1 - x_2 + x_3 + x_4 - x_5$$
 subject to
$$v_1 = 1 + x_1 - x_2 + x_3,$$

$$v_2 = 3 - x_1 - x_2 + x_4,$$

$$v_3 = 2 - 2x_1 + x_2 - x_5,$$

$$\mathbf{x}, \mathbf{v} \ge 0$$

Solution is:

$$X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
$$V = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

and W = 6

As $x_1 \to 1$, $v_3 \to 0$, so v_3 is the leaving basic variable and x_1 going in as basis. The new basis is (x_1, v_1, v_2) and dictionary will be:

$$\begin{split} \text{minimize} & \quad W = 4 - 2x_2 + x_3 + x_4 + v_3 \\ \text{subject to} & \quad x_1 = 1 + 0.5x_2 - 0.5x_5 - 0.5v_3, \\ & \quad v_1 = 2 - 0.5x_2 + x_3 - 0.5x_5 - 0.5v_3, \\ & \quad v_2 = 2 - 1.5x_2 + x_4 + 0.5x_5 + 0.5v_3, \\ & \quad \mathbf{x}, \mathbf{v} \geq 0 \end{split}$$

Solution is:

$$X = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
$$V = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$

and W = 4

As $x_2 \to 4/3$, $v_2 \to 0$, so v_2 out and x_2 in in basis. The new basis is (x_1, x_2, v_1) and dictionary will be:

$$\begin{split} \text{minimize} & \quad W = 1.33 + x_3 - 0.33x_4 - 0.67x_5 + 1.33v_2 + 0.33v_3 \\ \text{subject to} & \quad x_1 = 1.67 + 0.33x_4 - 0.33x_5 - 0.33v_2 - 0.33v_3, \\ & \quad x_2 = 1.33 + 0.67x_4 + 0.33x_5 - 0.67v_2 + 0.33v_3, \\ & \quad v_1 = 1.33 + x_3 - 0.33x_4 - 0.67x_5 + 0.33v_2 - 0.67v_3, \\ & \quad \mathbf{x}, \mathbf{v} \geq 0 \end{split}$$

Solution is:

$$X = \begin{bmatrix} 1.67 \\ 1.33 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 1.33 \\ 0 \\ 0 \end{bmatrix}$$

and W = 1.33

As $x_5 \to 2$, $v_1 \to 0$, so v_1 out and x_5 in in basis. The new basis is (x_1, x_2, x_5) and dictionary will be:

$$\begin{split} \text{minimize} & W = 0 + v_1 + v_2 + v_3 \\ \text{subject to} & x_1 = 1 - 0.5x_3 + 0.5x_4 + 0.5v_1 - 0.5v_2, \\ & x_2 = 2 + 0.5x_3 + 0.5x_4 - 0.5v_1 - 0.5v_2, \\ & x_5 = 2 + 1.5x_3 - 0.5x_4 - 1.5v_1 + 0.5v_2, \\ & \mathbf{x}, \mathbf{v} \geq 0 \end{split}$$

Solution is:

$$X = \begin{bmatrix} 1\\2\\0\\0\\2 \end{bmatrix}$$
$$V = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

and W = 0So, phase 1 is complete.

Phase-II

The LP is feasible. We will start phase 2 with x_1, x_2, x_5 as the basis:

minimize
$$z = -5 + x_3 - 2x_4$$

subject to $x_1 = 1 - 0.5x_3 + 0.5x_4$,
 $x_2 = 2 + 0.5x_3 + 0.5x_4$,
 $x_5 = 2 + 1.5x_3 - 0.5x_4$,
 $\mathbf{x} \ge 0$

Solution is:

$$X = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$

and z = -5

As $x_4 \to 4$, $x_5 \to 0$. So, the new basis is (x_1, x_2, x_4) and dictionary will be:

minimize
$$z = -13 - 5x_3 + 4x_5$$

subject to $x_1 = 3 + x_3 - x_5$,
 $x_2 = 4 + 2x_3 - x_5$,
 $x_4 = 4 + 3x_3 - 2x_5$,
 $\mathbf{x} \ge 0$

Solution is:

$$X = \begin{bmatrix} 3 \\ 4 \\ 0 \\ 4 \\ 0 \end{bmatrix}$$

and z = -13

Although x_3 has a negative coefficient in the objective function, we could not consider x_3 as one of the basis because none of the existing basis converts to zero even if we consider $x_3 = 0$. So, this is our optimal solution for this LP with z = -13 and $x_1 = 3, x_2 = 4, x_3 = 0, x_4 = 4$, and $x_5 = 0$.