$\Delta(1600) \ 3/2^{+}$

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$
 Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

Δ (1600) POLE POSITION

RFΔI	PART

VALUE (MeV)	DOCUMENT ID	DOCUMENT ID		COMMENT
1460 to 1560 (≈ 1510) OUR ESTIN	MATE			
1515±20	SOKHOYAN	15A	DPWA	Multichannel
$1469\!\pm\!10\!\pm\!5$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1457	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
1550	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1550 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
1498 ± 25	ANISOVICH	12A	DPWA	Multichannel
1599	SHRESTHA	12A	DPWA	Multichannel
1599	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 350 (≈ 275) OUR ESTIMAT	ΓE			
250 ± 30	SOKHOYAN	15A	DPWA	Multichannel
$314 \pm 18 \pm 8$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
400	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
200 ± 60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$230\!\pm\!50$	ANISOVICH	12A	DPWA	Multichannel
211	SHRESTHA	12A	DPWA	Multichannel
312	VRANA	00	DPWA	Multichannel

△(1600) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
10 to 40 (≈ 25) OUR ESTIMATE				
13±3	SOKHOYAN	15A	DPWA	Multichannel
$38 \pm 2 \pm 2$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
44	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
17 ± 4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
11 ± 6	ANISOVICH	12A	DPWA	Multichannel

Created: 5/30/2017 17:20

PHASE θ

 1.0 ± 0.5

VALUE (°)	DOCUMENT ID		TECN	COMMENT		
150 to 210 (≈ 180) OUR ESTIMATE						
$-155\!\pm\!20$	SOKHOYAN	15A	DPWA	Multichannel		
$173 \pm 5 \pm 5$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$		
+147	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$		
-150 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
• • • We do not use the following data for averages, fits, limits, etc. • •						
-160 ± 33	ANISOVICH	12A	DPWA	Multichannel		

△(1600) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

• • We do not use the following data for averages, fits, limits, etc.

Normalized residue in $N\pi \to \Delta(1600) \to \Delta\pi$, *P*-wave

MODULUS (%)	PHASE (°)	DOCUMENT I	DOCUMENT ID T		COMMENT	
15± 4	30 ± 35	SOKHOYAN	I 15A	DPW	A Multichannel	
• • • We do no	ot use the following da	ta for averages	, fits, li	mits, etc	5. ● ● ●	
14 ± 10	154 ± 40	ANISOVICH	12A	DPW	A Multichannel	
Normalized residue in $N\pi \rightarrow \Delta(1600) \rightarrow \Delta\pi$, F-wave MODULUS (%) DOCUMENT ID TECN COMMENT						
1.0 ± 0.5	-	SOKHOYAN				
1.0 ± 0.5	•	201111017111	13/1	/	Viuiticiiuiiiici	

△(1600) BREIT-WIGNER MASS

ANISOVICH 12A DPWA Multichannel

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT			
1500 to 1700 (≈ 1600) OUR ESTIMATE							
1520 ± 20	SOKHOYAN	15A	DPWA	Multichannel			
1600 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$			
1522 ± 13	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$			
• • • We do not use the following d	lata for averages	, fits,	limits, e	tc. • • •			
1510 ± 20	ANISOVICH	12A	DPWA	Multichannel			
1626± 8	SHRESTHA	12A	DPWA	Multichannel			
1667± 1	PENNER	02 C	DPWA	Multichannel			
1687 ± 44	VRANA	00	DPWA	Multichannel			

△(1600) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
220 to 420 (≈ 320) OUR ESTIMAT	Έ			
235± 30	SOKHOYAN	15A	DPWA	Multichannel
300 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
220± 40	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

Created: 5/30/2017 17:20

								٠.				
•	•	We do	not	use the	tollowing	data to	or averages.	tits.	limits.	etc.	• •	•

220± 45	ANISOVICH	12A	DPWA	Multichannel
225± 18	SHRESTHA	12A	DPWA	Multichannel
397± 10	PENNER	02C	DPWA	Multichannel
493± 75	VRANA	00	DPWA	Multichannel

Δ (1600) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
$\overline{\Gamma_1}$	$N\pi$	10–25 %	
Γ_2	$N\pi\pi$	75–90 %	
Γ_3	Δ (1232) π	73–83 %	
Γ_4	$arDelta(1232)\pi$, $ extit{\it P}$ -wave	72–82 %	
Γ_5	${\it \Delta}(1232)\pi$, $\it F-wave$	<2 %	
Γ_6	$N(1440)\pi$		
Γ_7	$N(1440)\pi$, $ extit{\it P}$ -wave	seen	
Γ ₈	$N\gamma$	0.001-0.035 %	
Γ_9	N γ , helicity $=1/2$	0.0–0.02 %	
Γ ₁₀	$N\gamma$, helicity=3/2	0.001–0.015 %	

Δ (1600) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ ₁ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	•
10 to 25 OUR ESTIMATE				-	
14 ± 4	SOKHOYAN	15A	DPWA	Multichannel	
18 ± 4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
21 ± 6	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following d	ata for averages	, fits,	limits, e	etc. • • •	
12±5	ANISOVICH	12A	DPWA	Multichannel	
8 ± 2	SHRESTHA	12A	DPWA	Multichannel	
13 ± 1	PENNER	02 C	DPWA	Multichannel	
28±5	VRANA	00	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi$, <i>P</i> -wave $)/\Gamma_{total}$					Γ ₄ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
77± 5	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following d	ata for averages	, fits,	limits, e	etc. • • •	
78± 6	ANISOVICH	12A	DPWA	Multichannel	
70± 3	SHRESTHA	12A	DPWA	Multichannel	
$59\!\pm\!10$	VRANA	00	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi$, <i>F</i> -wave $)/\Gamma_{ ext{total}}$					Γ_5/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
<2	SOKHOYAN	15A	DPWA	Multichannel	
HTTP://PDG.LBL.GOV	Page 3		Creat	ed: 5/30/2017	17:20

$\Gamma(N(1440)\pi)/\Gamma_{ ext{total}}$					Γ_6/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	ig data for average	es, fits,	limits, e	etc. • • •	
22±3	SHRESTHA	12A	DPWA	Multichannel	
13 ± 4	VRANA	00	DPWA	Multichannel	

Δ (1600) PHOTON DECAY AMPLITUDES AT THE POLE

$\Delta(1600) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

$MODULUS (GeV^{-1/2})$	PHASE (°)	DOCUMENT ID		TECN	COMMENT
$0.053 \!\pm\! 0.010$	130 ± 15	SOKHOYAN	15A	DPWA	Multichannel
$0.193 ^{+ 0.023}_{- 0.024}$	$^{151}_{-15}^{+9}$	ROENCHEN	14	DPWA	

$\Delta(1600) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

MODULUS ($GeV^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
$0.055\!\pm\!0.010$	152 ± 15	SOKHOYAN	15A	DPWA	Multichannel
$-0.254 {}^{+ 0.085}_{- 0.086}$	$110 + 10 \\ -6$	ROENCHEN	14	DPWA	

△(1600) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$\Delta(1600) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.045 ± 0.015 OUR ESTIMATE				
$-0.051\!\pm\!0.010$	SOKHOYAN	15A	DPWA	Multichannel
-0.018 ± 0.015	ARNDT	96	IPWA	$\gamma {\sf N} ightarrow \pi {\sf N}$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
-0.050 ± 0.009	ANISOVICH	12A	DPWA	Multichannel
0.006 ± 0.005	SHRESTHA	12A	DPWA	Multichannel
0.0	PENNER	02 D	DPWA	Multichannel

$\Delta(1600) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.035 ± 0.015 OUR ESTIMATE				
-0.055 ± 0.010	SOKHOYAN	15A	DPWA	Multichannel
$-0.025\!\pm\!0.015$	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following of	lata for averages	s, fits,	limits, e	tc. • • •
-0.040 ± 0.012	ANISOVICH	12A	DPWA	Multichannel
0.052 ± 0.008	SHRESTHA	12A	DPWA	Multichannel
-0.024	PENNER	02 D	DPWA	Multichannel

Δ (1600) FOOTNOTES

 $^{^{1}}$ Fit to the amplitudes of HOEHLER 79.

△(1600) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

SOKHOYAN PDG ROENCHEN	15A 14 14	EPJ A51 95 CP C38 070001 EPJ A50 101	V. Sokhoyan <i>et al.</i> (CBE K. Olive <i>et al.</i> D. Roenchen <i>et al.</i>	LSA/TAPS Collab.) (PDG Collab.)
Also		EPJ A51 63 (errat.)	D. Roenchen et al.	
SVARC	14	PR C89 045205	A. Svarc et al.	
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
ARNDT	06	PR C74 045205	R.A. Arndt et al.	(ĠWU)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H. Lee	(PITT, ANL)
ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Workm	an (VPI)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KÀRL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky <i>et al.</i>	(CMÚ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP

Created: 5/30/2017 17:20