

Class II Permissive Change FCC TEST REPORT

Product : 1:10 RC CAR(Shadow Striker)

Trade mark : N/A

Model/Type reference : KD0701(5F62DB5)

Serial Number : N/A

Report Number : EED32l001524

FCC ID : XRZKD0701 Date of Issue : May 23, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

KIDSROCK LTD

Unit 08A, 25/F Gammon House, 12 Harcout Road, Admiralty, Hong Kong, China.

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Lon Your

Reviewed by:

Date:

Eman-Li

Sheek Luo

Lab supervisor

May 23, 2016

Check No.: 2384390908

2 **Version**

00 May 23, 2016 Original	/ersion No.	Description	
	00	May 23, 2016	Original

Report No. : EED321001524

(T)

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Field Strength of the Fundamental Signal	47 CFR Part 15 Subpart C Section 15.249 (a)	ANSI C63.10-2013	PASS	
Spurious Emissions 47 CFR Part 15 Subpart C Section 15.249 (a)/15.209 ANSI C		ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.249(a)/15.205	ANSI C63.10-2013	PASS	

Remark:

The tested sample(s) and the sample information are provided by the client.

Model No.: KD0701(5F62DB5)

This test report (Ref. No.: EED32I001524) is only valid with the original test report (Ref. No.:

EED32H000542-1).

Review this report and original report, this report only the different are appearance button of the PCB location and add the storage on the remote control.

According to the declaration from the applicant, the models in this report and models in original report were identical, the different are appearance button of the PCB location and add the storage on the remote control.

Considering to the difference, pre-scan were performed on the sample in this report to find the items which can be influential to the result in the original test report for fully retest.

Therefore in this report Field Strength of the Fundamental Signal, Spurious Emissions and Restricted bands around fundamental frequency were fully retested and shown the data in this report, other tests please refer to original report EED32H000542-1.

4 Contents

							Page
1 COVER PA	GE		•••••		•••••		1
2 VERSION	•••••	•••••	•••••	•••••	•••••		2
3 TEST SUM	MARY	•••••		•••••	•••••		3
4 CONTENTS	3	•••••		•••••		•••••	4
5 GENERAL	INFORMATION.	•••••		•••••		•••••	5
5.1 CLIENT 5.2 GENER 5.3 PRODUC 5.4 TEST E 5.5 DESCRI 5.6 TEST LC 5.7 TEST F 5.8 DEVIATI 5.9 ABNORI 5.10 OTHER 5.11 MEASI 6 EQUIPMEN 7 TEST RESU	INFORMATION AL DESCRIPTION OF SPECIFICATION INVIRONMENT AND PTION OF SUPPOFOCATION ION FROM STANDAMALITIES FROM STA	DF EUT	O THIS STANDA DITIONS THE CUSTOMER DNFIDENCE LEV	RD			5 5 5 5 6 6 7 7 7
	ED SPURIOUS EM						
	CTED BANDS AROU						
	PHOTOGRAPH						
APPENDIX 2	PHOTOGRAPH	S OF EUT		•••••••		•••••	19

Page 5 of 26

5 General Information

5.1 Client Information

Applicant:	KIDSROCK LTD
Address of Applicant:	Unit 08A, 25/F Gammon House, 12 Harcout Road, Admiralty, Hong Kong, China.
Manufacturer:	KIDSROCK LTD
Address of Manufacturer:	Unit 08A, 25/F Gammon House, 12 Harcout Road, Admiralty, Hong Kong, China.
Factory:	DONGGUAN DESHEN METAL & PLASTIC PRODUCTS CO., LTD
Address of Factory:	Xiasha, No.3 Industrial Zone, Shipai Town, Dongguan City, Dongguan Province, China

5.2 General Description of EUT

Product Name:	1:10 RC CAR(Shadow Striker)	6	
Mode No.(EUT):	KD0701(5F62DB5)		
Trade Mark:	N/A		
EUT Supports Radios application:	2406MHz~2480MHz	(21)	(6)
Power Supply:	6V === (Supply with 4xAA 1.5V Alkaline	e Batteries)	

5.3 Product Specification subjective to this standard

Frequency Range:	2406MHz~2480MHz	(45)
Modulation Type:	GFSK	
Sample Type:	Portable production	
Test Power Grade:	N/A (manufacturer declare)	
Test Software of EUT:	N/A (manufacturer declare)	(3)
Antenna Type:	Integral	
Antenna Gain:	2.54dBi	
Test voltage:	DC 6V	21%
Sample Received Date:	May 19, 2016	
Sample tested Date:	May 19, 2016 to May 22, 2016	

5.4 Test Environment and Mode

Operating Environment			
Temperature:	24°C	(0,)	(6)
Humidity:	52% RH		
Atmospheric Pressure:	1010 mbar		
Test mode:	(3)	(S)	130
Transmitting mode:	Keep the EUT transmitted specific channel(s)	ed the continuous modulation t	est signal at the

5.5 Description of Support Units

The EUT has been tested independently.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

5.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

Page 6 of 26

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International (Shenzhen) Corporation. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Corporation. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Corporation., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 7 of 26

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

5.8 Deviation from Standards

None.

5.9 Abnormalities from Standard Conditions

None

5.10 Other Information Requested by the CustomerNone.

5.11 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE nower conducted	0.31dB (30MHz-1GHz)		
2	RF power, conducted	0.57dB (1GHz-18GHz)		
3	Padiated Spurious emission test	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)		
4	Conduction emission	3.6dB (9kHz to 150kHz)		
4	Conduction emission	3.2dB (150kHz to 30MHz		
5	Temperature test	0.64°C		
6	Humidity test	2.8%		
7	DC power voltages	0.025%		

Report No. : EED32I001524 **6 Equipment List**

Page 9 of 26

7 Test results and Measurement Data

7.1 Radiated Spurious Emission

Test Requirement: 47 CFR Part 15C Section 15.249 and 15.209

Test Method: ANSI C63.10

Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300KHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Receiver Setup:

Test Setup:

Antenna Tower

AE EUT

Ground Reference Plane

Test Receive

Test Receive

Test Receive

Test Receive

Test Receive

Test Receive

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Below 1GHz test procedure as below: Test Procedure: The FLIT was placed on the top of a rota

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Maximum Hold Mode.

If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Frequency

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).

Test the EUT in the lowest channel ,middle channel, the Highest channel The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	3) -	- (87)	300
0.490MHz-1.705MHz	24000/F(kHz)	/: -	- 66	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Limit (dBµV/m @3m)

Remark

Limit:
(Field strength of
the fundamental
-!I\

Limit: (Spurious Emissions)

the fu signa Test Instru	Mode: uments Used:	Transmitti Refer to s	Hz-2483.5MH ng mode ection 6 for de	94.0 114.0	ge Value Value	
lest	Results:	Pass				

Measurement Data

Field Strength Of The Fundamental Signal

Peak value:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
2406.00	32.57	3.17	34.39	77.12	78.47	114	-35.53	Pass	Н
2406.00	32.57	3.17	34.39	79.55	80.90	114	-33.10	Pass	V
2443.00	32.64	3.19	34.40	74.67	76.10	114	-37.90	Pass	4
2443.00	32.64	3.19	34.40	78.37	79.80	114	-34.20	Pass	V
2480.00	32.71	3.22	34.41	74.87	76.39	114	-37.61	Pass	Н
2480.00	32.71	3.22	34.41	76.83	78.35	114	-35.65	Pass	V

Remark: As shown in this section, for field strength of the fundamental signal measurements, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above. So, only the peak measurements were shown in the report.

Spurious Emissions

30MHz~1GHz

Page 12 of 26

		Ant	Capte	Kead		Limit	Over		
	Frea	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
-									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	40 707	15.08	1.38	1 71	24 20	40.00	10 00	Horizontal	
1	49.707	15.00	1.50	4.74	21.20	40.00	-10.00	nonizontai	
2	96.099	12.44	1.58	6.05	20.07	43.50	-23.43	Horizontal	
3	198.588	11 55	2.19	5 87	19 61	13 50	_23 89	Horizontal	
,	150.500	11.55	2.17	5.07	17.01	45.50	-25.05	HOI IZOHCAI	
4	258.326	12.60	2.36	5.24	20.20	46.00	-25.80	Horizontal	
5	574.626	18.70	3.36	6.08	28.14	46.00	-17.86	Horizontal	
_									
6 pp	916.069	22.40	4.33	5.89	32.62	46.00	-13.38	Horizontal	

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
					,	,			
1	52 575	14 74	1 41	5 48	21 63	40 00	-18 37	Vertical	
_									
2	66.266	11.61	1.44	8.72	21.77	40.00	-18.23	Vertical	
3	108.647	12.48	1.57	7.07	21.12	43.50	-22.38	Vertical	
4	224 460	42 47	2 24	F 60	20 47	46.00	25 62	W1	
4	234.168	12.1/	2.31	5.69	20.17	46.00	-25.83	Vertical	
5	460.727	17.39	3.02	5.01	25.42	46.00	-20.58	Vertical	
6 рр	625.078	19.21	3.54	5.98	28.73	46.00	-17.27	Vertical	

Above 1GHz

Test mode:	Trans	smitting	Test o	channel:	Lowest(24	·06MHz)					
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis		
1280.072	30.41	2.61	34.88	39.56	37.70	74	-36.30	Pass	Н		
1837.456	31.46	3.11	34.41	37.01	37.17	74	-36.83	Pass	Н		
4812.000	34.70	5.11	34.35	38.19	43.65	74	-30.35	Pass	H		
5747.586	35.71	6.87	34.30	32.79	41.07	74	-32.93	Pass	H		
7218.000	36.42	6.67	34.90	34.95	43.14	74	-30.86	Pass	Н		
9624.000	37.90	7.72	35.07	26.9	37.45	74	-36.55	Pass	Н		
1381.656	30.63	2.71	34.78	38.32	36.88	74	-37.12	Pass	V		
4812.000	34.70	5.11	34.35	36.51	41.97	74	-32.03	Pass	V		
5311.469	35.37	5.83	34.30	35.03	41.93	74	-32.07	Pass	V		
7218.000	36.42	6.67	34.90	33.22	41.41	74	-32.59	Pass	V		
9624.000	37.90	7.72	35.07	28.3	38.85	74	-35.15	Pass	V		
11933.470	39.58	8.46	34.38	28.09	41.75	74	-32.25	Pass	V		

Test mode:	Trans	smitting	Test c	hannel:	Middle(24	2443MHz)				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1593.340	31.04	2.91	34.60	33.02	32.37	74	-41.63	Pass	Н	
3208.660	33.41	5.58	34.52	32.71	37.18	74	-36.82	Pass	Н	
4886.000	34.86	5.08	34.33	35.03	40.64	74	-33.36	Pass	H	
5880.782	35.81	7.17	34.30	28.18	36.86	74	-37.14	Pass	H	
7329.000	36.43	6.78	34.90	24.21	32.52	74	-41.48	Pass	Н	
9772.000	38.06	7.59	35.04	23.00	33.61	74	-40.39	Pass	Н	
1280.072	30.41	2.61	34.88	34.63	32.77	74	-41.23	Pass	V	
1832.785	31.45	3.11	34.41	34.09	34.24	74	-39.76	Pass	V	
3728.625	33.00	5.48	34.58	32.66	36.56	74	-37.44	Pass	V	
4886.000	34.86	5.08	34.33	33.02	38.63	74	-35.37	Pass	V	
7329.000	36.43	6.78	34.90	29.28	37.59	74	-36.41	Pass	V	
9772.000	38.06	7.59	35.04	23.94	34.55	74	-39.45	Pass	V	

Test mode:	Trans	smitting	Test o	channel:	Highest(24	180MHz)				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1132.844	30.06	2.43	35.04	36.45	33.90	74	-40.10	Pass	Н	
1378.143	30.63	2.71	34.78	34.79	33.35	74	-40.65	Pass	Н	
3316.617	33.32	5.56	34.53	32.99	37.34	74	-36.66	Pass	H	
4960.000	35.02	5.05	34.31	30.90	36.66	74	-37.34	Pass	H	
7440.000	36.45	6.88	34.90	30.98	39.41	74	-34.59	Pass	Н	
9920.000	38.22	7.47	35.02	23.99	34.66	74	-39.34	Pass	Н	
1280.072	30.41	2.61	34.88	36.96	35.10	74	-38.90	Pass	V	
1746.251	31.31	3.04	34.48	36.54	36.41	74	-37.59	Pass	V	
4960.000	35.02	5.05	34.31	33.18	38.94	74	-35.06	Pass	V	
5895.771	35.82	7.20	34.30	29.88	38.60	74	-35.4	Pass	V	
7440.000	36.45	6.88	34.90	26.86	35.29	74	-38.71	Pass	V	
9920.000	38.22	7.47	35.02	25.73	36.40	74	-37.60	Pass	V	

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading Correct Factor
 - Correct Factor = Preamplifier Factor Antenna Factor Cable Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

7.2 Restricted bands around fundamental frequency

Test Requirement: 47 CFR Part 15C Section 15.209 and 15.205

Test Method: ANSI C63.10

Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Limit(Band Edge): Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209,

whichever is the lesser attenuation.

Frequency	Limit (dBµV/m @3m)	Remark		
30MHz-88MHz	40.0	Quasi-peak Value		
88MHz-216MHz	43.5	Quasi-peak Value		
216MHz-960MHz	46.0	Quasi-peak Value		
960MHz-1GHz	54.0	Quasi-peak Value		
Ab 4011-	54.0	Average Value		
Above 1GHz	74.0	Peak Value		

Test Setup:

Page 16 of 26

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Report No.: EED32I001524 Page 17 of 26

j. Repeat above procedures until all frequencies measured was complete. Refer to section 6 for details

Instruments Used:

Test Mode: Transmitting mode

Test Results: Pass

Teat data:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390.00	32.53	4.28	34.39	30.26	32.68	74	-41.32	Н	PK	Lowest
2390.00	32.53	4.28	34.39	30.49	32.91	74	-41.09	V	PK	Lowest
2400.00	32.55	4.30	34.39	31.04	33.50	74	-40.50	Н	PK	Lowest
2400.00	32.55	4.30	34.39	31.17	33.63	74	-40.37	V	PK	Lowest
2483.50	32.71	4.51	34.41	35.72	38.53	74	-35.47	H	PK	Highest
2483.50	32.71	4.51	34.41	36.34	39.15	74	-34.85	V	PK	Highest

Report No. : EED32I001524 Page 18 of 26

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.: KD0701(5F62DB5)

Radiated emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 19 of 26

APPENDIX 2 PHOTOGRAPHS OF EUT

Test mode No.: KD0701(5F62DB5)

Page 20 of 26

View of Product-3

View of Product-4

Page 21 of 26

View of Product-5

View of Product-6

Page 22 of 26

View of Product-8

Page 23 of 26

View of Product-10

Page 24 of 26

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

