Analysis I (Marciniak-Czochra)

Robin Heinemann

13. Januar 2017

Inhaltsverzeichnis

1	Ein	leitung	5	3				
2	Mei	Mengen und Zahlen						
	2.1	Logisc	he Regeln und Zeichen	3				
		2.1.1	Quantoren	3				
		2.1.2	Hinreichend und Notwendig	3				
		2.1.3	Beweistypen	4				
		2.1.4	Summenzeichen und Produktzeichen	4				
	2.2	Menge	en	5				
		2.2.1	Definition	5				
		2.2.2	Mengenrelationen	5				
		2.2.3	Potenzmenge	6				
		2.2.4	Familien von Mengen	6				
		2.2.5	Rechenregeln	6				
		2.2.6	geordneter Tupel	7				
		2.2.7	Kartesisches Produkt	7				
		2.2.8	Äquivalenzrelation	7				
	2.3	Relati	onen und Abbildungen	7				
		2.3.1	Relationen	7				
		2.3.2	Graph der Abbildung	8				
		2.3.3	Umkehrabbildung	8				
		2.3.4	Komposition	8				
		2.3.5	Identitäts Abbildung	8				
		2.3.6	Homomorphe Abbildungen	9				
	2.4	Natür	liche Zahlen	9				
		2.4.1	Peanosche Axiomensystem der natürlichen Zahlen	9				
		2.4.2	Vollständige Induktion	10				
		2.4.3	Definition Körper	11				
	2.5	Abzäh	llbarkeit	12				
		251	Abgählbarkait von Mangan	19				

	2.6	Ordnung
		2.6.1 Definition
	2.7	Maximum und Minimum einer Menge
		2.7.1 Definition
		2.7.2 Bemerkung
	2.8	Schranken
		2.8.1 Bemerkung
		2.8.2 Beispiel
	2.9	Reelle Zahlen
		2.9.1 Vollständigkeitsaxiom (Archimedes)
		2.9.2 Axiomatischer Standpunkt
		2.9.3 Bemerkung
		2.9.4 Konstruktiver Standpunkt
		2.9.5 Definition 1.37
		2.9.6 Satz 1.38
		2.9.7 Satz 1.39
		2.9.8 Definition 1.40
		2.9.9 Lemma 1.41
		2.9.10 Definition 1.42
		2.9.11 Lemma 1.44
		2.9.12 Definition 1.45 Produktzeichen
		2.9.13 Satz 1.46
		2.9.14 Definition 1.47
		2.9.15 Lemma 1.48
		2.9.16 Satz 1.49
		2.9.17 Folgerung 1.50
		2.9.18 Lemma 1.51
		2.9.19 Lemma 1.52
		2.9.20 Lemma 1.53 (Bernoullische Ungleichung)
		2.9.21 Folgerung 1.54
		2.9.22 Satz 1.55 (Existenz der m-ten Wurzel)
		2.9.23 Lemma 1.56
n	T Z	0.4
3	3.1	mplexe Zahlen24Komplexer Zahlenkörper24
	3.1	3.1.1 Beweis
	3.2	Notation
	$\frac{3.2}{3.3}$	TODO Graphische Darstellung
	3.4	
	$\frac{3.4}{3.5}$	Bemerkung
	3.6	Fundamentalsatz der Algebra
	$\frac{3.0}{3.7}$	
		Betrag
	3.8	Konjugation

4	Folgen							
	4.1	Definition 2.1 Konvergenz	26					
	4.2	Folgerung 2.2	27					
	4.3	Definition 2.3 Cauchy Folgen	27					
	4.4	Definition 2.4 Teilfolge	27					
	4.5	Rechenregeln für Grenzwerte von Folgen	32					
	4.6	Geometrische Folge	32					
	4.7	Umgebung	34					
5	Reihen (Unendliche Summen)							
	5.1	Konvergenzkriterien	38					
	5.2	Potenzreihe	43					
	5.3	Exponentialreihe	44					
6	Stetige Abbildungen							
	6.1	Grenzwert einer Funktion, Stetigkeit	45					
	6.2	Eigenschaften stetiger Funktionen	51					
	6.3	Konvergenz von Funktionen	53					
	6.4	Reellwertige stetige Funktionen	54					
7	Differentiation							
	7.1	Mittelwertsätze und Extremalbedingungen	61					
	7.2	Anwendung von MW Satz 2	64					

1 Einleitung

Webseite www.biostruct.uni-heidelberg.de/Analysis
1.php Klausurzulassung: 50% Klausur 18.2.2017 9-12 Uhr

2 Mengen und Zahlen

2.1 Logische Regeln und Zeichen

2.1.1 Quantoren

 $\forall x$ für alle x $\exists x$ es gibt (mindestens) ein x $\exists!x$ es gibt genau ein x

2.1.2 Hinreichend und Notwendig

- $A \implies B$: wenn A gilt, gilt auch B, A ist **hinreichend** für B, daraus folgt: B ist **notwendig** für A, Ungültigkeit von B impliziert die Ungültigkeit von A ($\neg B \implies \neg A$)
- $A \iff B: A$ gilt, genau dann, wenn B gilt

2.1.3 Beweistypen

Direkter Schluss $A \implies B$

Beispiel m gerade Zahl $\implies m^2$ gerade Zahl

1. Beweis m gerade $\implies \exists n \in \mathbb{N}$ sodas
s $m=2n \implies m^2=4n^2=2k,$ wobei $k=2n^2 \in \mathbb{N}\square$

Beweis der Transponierten (der Kontraposition) Zum Beweis $A \implies B$ zeigt man $\neg B \implies \neg A \ (A \implies B) \iff (\neg B) \implies (\neg A)$

Beispiel Sei $m \in \mathbb{N}$, dann gilt m^2 gerade $\implies m$ gerade

1. Beweis Wir zeigen: m ist ungerade $\implies m^2$ ungerade

$$\exists n \in \mathbb{N}: m = 2n+1 \implies m^2 = (2n+1)^2 = 2k+1, k = 2n^2+2n \in \mathbb{N} \implies m^2 \text{ ungerade} \square$$

Indirekter Schluss (Beweis durch Widerspruch) Man nimmt an, dass $A \Longrightarrow B$ nicht gilt, das heißt $A \land \neg B$ und zeigt, dass dann für eine Aussage C gelten muss $C \Longrightarrow \neg C$, also ein Widerspruch

Beispiel $\not\exists q \in \mathbb{Q} : a^2 = 2$

1. Beweis Wir nehmen an, dass $\exists a \in \mathbb{Q} : a^2 = 2$ Dann folgt: $\exists b, c \in \mathbb{Z}$ teilerfremd (ohne Einschränkung, denn sonst kürzen soweit wie möglich) mit $a = \frac{b}{c}$ Falls

$$a^2 = 2 \implies \left(\frac{b}{c}\right)^2 = 2 = \frac{b^2}{c^2} = 2 \implies b^2 = 2c^2 \implies b^2$$
 gerade $\implies b$ ist gerade (schon gezeigt) $\implies \exists d \in \mathbb{N} \text{ sodass } b = 2d \implies b^2 = 4d^2$

Außerdem $b^2=2c^2\implies 2c^2=4d^2\implies c^2=2d^2\implies c$ ist auch gerade. Also müssen b und c beide gerade sein, also nicht teilerfremd, damit haben wir einen Widerspruch hergeleitet \square

2.1.4 Summenzeichen und Produktzeichen

Summenzeichen Wir definieren für m > 0

$$\sum_{k=m}^{m} a_k := a_m + \ldots + a_n$$

falls $n \geq m$

$$\sum_{k=m}^{n} a_k := 0$$

falls n < m (sogenannten leere Summe)

Produktzeichen

$$\prod_{k=m}^{n} a_k := \begin{cases} a_m \cdot \ldots \cdot a_n & \text{falls } n \geq m \\ 1 & \text{falls } n < m \text{ (sog. leeres Produkt)} \end{cases}$$

2.2 Mengen

2.2.1 Definition

(Georg Cantor 1885) Unter einer <u>Menge</u> verstehen wir jede Zusammenfassung M von bestimmten wohl unterschiedenen Objekten (welche die Elemente von M genannt werden), zu einem Ganzen M dadurch ist charakterisiert, dass von jedem vorliegendem Objekt x feststeht, ab gilt

- $x \in M$ (x Element von M)
- $x \rightarrow \in M$ (x kein Element von M)

$$M = \{x_1, x_2, \dots, x_n\}$$

$$M = \{x \mid A(x)\} \to \text{ eine Menge } M \text{für die } x \in M \iff A(x)$$

2.2.2 Mengenrelationen

• Mengeninklusion $A \subseteq M$ (A ist eine Teilmenge von M)

$$\forall x : (x \in A \implies x \in M)$$

,
zum Beispiel $\mathbb{N}\subseteq\mathbb{Z}$

$$A = B \iff \forall x : (x \in A \iff x \in B)$$

 $A \subset M$ (strikte Teilmenge) $\iff A \subset M \land A \neq M$

 \emptyset : leere Menge $\not\exists x : x \in \emptyset$

. Wir setzen fest, dass \emptyset eine Teilmenge jeder Menge ist. Zum Beispiel

$${x \in \mathbb{R} : x^2 + 1 = 0}$$

• Durchschnitt

$$A \cap B := \{x \mid x \in A \land x \in B\}$$

• Vereinigung

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

• Differenz (auch Komplement von B in A)

$$A \setminus B := \{x \mid x \in A \land x \notin B\} := C_a B \text{ (auch } B^c\text{)}$$

2.2.3 Potenzmenge

Potenzmenge A

$$\mathcal{P}(A) := \{ B \mid B \subseteq A \}$$

Alle Teilmengen von A

Beispiel

$$\mathcal{P}(\{1,2\}) = \{\{1\}, \{2\}, \{1,2\}, \emptyset\}$$

2.2.4 Familien von Mengen

Sei I eine Indexmenge, $I \subseteq \mathbb{N}, (A_i)_{i \in I}$ eine Familie von Mengen A

Durchschnitt von A

$$\cap_{i \in I} = \{ x \mid \forall_{i \in I} \ x \in A_i \}$$

Vereinigung

$$\cup_{i \in I} = \{x \mid \exists i \in I : x \in A_i\}$$

2.2.5 Rechenregeln

A, B, C, D seien Mengen

- $\emptyset \subseteq A$
- $A \subseteq A$ Reflexivität
- $A \subseteq B, B \subseteq C \implies A \subseteq C$

Transitivität

• $A \cap B = B \cap A \setminus A \cup B = B \cup A$

Kommutativität

• $(A \cap B) \cap C = A \cap (B \cap C) \setminus (A \cup B) \cup C = A \cup (B \cup C)$

Assoziativität

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \setminus A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Eigenschaften der Komplementbildung: Seien $A, B \subseteq D(C_DA := D \setminus A)$, dann gilt

$$C_D(C_D A) = A$$

$$C_D(A \cap B) = C_D A \cup C_D B$$

$$C_D(A \cup B) = C_D A \cap C_D B$$

- Beweis:

$$x \in C_D(A \cap B) \iff x \in D \land (x \notin (A \cap B)) \iff x \in D \land (x \notin A \lor x \notin B)$$
$$\iff (x \in D \land x \notin A) \lor (x \in D \land x \notin B)$$
$$\iff (x \in D \setminus A) \lor (x \in D \setminus B) \iff x \in D \setminus (A \cup B) \square$$

- Bemerkung: Komplement kann man auch mit A^c bezeichnen

2.2.6 geordneter Tupel

Sei x_1, x_2, \ldots, x_n (nicht notwendig verschiedene) Objekte. Ein geordneter n-Tupel

$$(x_1, x_2, \dots, x_n) = (y_1, \dots, y_n) \iff x_1 = y_1, \dots, x_n = y_n$$

Beachte:

$$\{x_1, \dots, x_n\} = \{y_i, \dots, y_n\} \iff x_1 = y_1, \dots, x_n = y_n$$

2.2.7 Kartesisches Produkt

Seien

$$A_1 \times A_2 \times \ldots \times A_n = \{(x_1, x_2, \ldots, x_n) \mid x_i \in A_i, j \in \mathbb{N}, j \leq n\}$$

Beispiel

•

$$\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$$

• \mathbb{R}^n n-dimensionaler Raum von reellen Zahlen

2.2.8 Äquivalenzrelation

Eine Äquivalenzrelation auf eine Menge A ist eine Beziehung zwischen ihren Elementen (Bezeichnung: $a \sim b$), sodass

• Für jede zwei $a,b \in A$ gilt entweder $a \sim b \vee a \not\sim b$

• $a \sim a$ Reflexivität

• $a \sim b \implies b \sim a$ Symmetrie

• $a \sim b, b \sim c \implies a \sim c$ Transitivität

Mit Hilfe einer Äquivalenzrelation lassen sich die Elemente einer Menge in so genannte Äquivalenzklassen einordnen: $[a]:\{b\in A\mid b\sim a\}$

2.3 Relationen und Abbildungen

2.3.1 Relationen

Unter einer **Relation** verstehen wir eine Teilmenge $R \subseteq X \times Y$ wobei X, Y Mengen sind. Für $x \in X$ definieren wir, das **Bild** von x unter R

$$R(X) := \{ y \in Y \mid (x, y) \in R \}$$

und *Definitionsbereiche von R (bezüglich X)

$$D(R) := \{ x \in X \mid R(x) \neq \emptyset \}$$

2.3.2 Graph der Abbildung

 $R \subseteq X \times Y$ heißt Graph der Abbildung (Funktion)

$$f: X \to Y \iff D(R) = X, \forall x \in X : R(x) = \{f(x)\}\$$

also enthält R(x) genau ein Element.

X heißt Definitionsbereich von f

Y heißt Werte- oder Bildbereich von f (Bild)

 $x \in X$ heißt Argument

 $f(x) \in Y$ heißt Wert von f an der Stelle x

Beispiel $f: \mathbb{R} \to \mathbb{R}, x \to x^2$ dann ist der Graph von $f = \{(x, y) \in \mathbb{R}^2, y = x^2\}$

Bemerkung

$$M^*(x) = \{(x,y) \in \mathbb{R}^2; x = y^2\} = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y = \sqrt{x} \lor y = -\sqrt{x}\}$$

Ist kein Graph einer Funktion $\mathbb{R} \to \mathbb{R}$, denn $M^*(x) = \{\sqrt{x}, -\sqrt{x}, x \geq 0\}$ f heißt

- surjektiv, wenn gilt f(X) = Y
- injektiv, $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \implies x_1 = x_2$
- bijektiv, wenn f surjektiv und injektiv ist

2.3.3 Umkehrabbildung

Sei die Abbildung $f: X \to Y$ bijektiv. Dann definieren wir die Umkehrabbildung $f^{-1}: Y \to X$ durch $y \to x \in X$, eindeutig bestimmt durch y = f(x)

Bemerkung

$$(x,y) \in \operatorname{Graph} f \iff (y,x) \in \operatorname{Graph} f^{-1}$$

2.3.4 Komposition

Seien $f: X \to Y, g: Y \to Z$ Abbildungen. Die Komposition von g und f

$$g \circ f: X \to Z$$
 ist durch $x \to g(f(x))$ definiert

2.3.5 Identitäts Abbildung

Für jede Menge X definieren wir die identische Abbildung

$$I_d(A) = I_A : A \to A$$
, durch $x \to x$

Beispiel

•

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} = S^1$$

$$S^{n-1} := \{(x_1 \dots x_n) \in \mathbb{R}^n; \sum_{i=1}^n x_i^2 = 1\}$$

(n-1) dimensionale sphere in \mathbb{R}^n

• Seien X, Y Mengen, $M \subseteq X \times Y, f : M \to X \setminus f$ heißt Projektion, f surjektiv

$$f(M) = \{x \mid \exists y \in Y : (x, y) \in M\} = X$$

2.3.6 Homomorphe Abbildungen

Existieren auf Mengen X und Y mit gewissen Operationen \oplus_x bzw. \oplus_y (zum Beispiel Addition, Ordnungsrelation), so heißt die Abbildung $f: X \to Y$ homomorph (strukturerhaltend), wenn gilt $\forall x_1, x_2 \in X f(x_1 \oplus_x x_2) = f(x_1) \oplus_y f(x_2)$ Eine bijektive Homomorphie heißt Isomorphisumus, beziehungsweise $X \approx Y$ (äquivalent, isomorph)

2.4 Natürliche Zahlen

$$\mathbb{N} = \{1, 2, 3, \ldots\}, \ \mathbb{N}_0 := \mathbb{N} \cup \{0\}$$

2.4.1 Peanosche Axiomensystem der natürlichen Zahlen

- 1. Die Zahl 1 ist eine natürliche Zahl $1 \in \mathbb{N}$
- 2. Zu jeder natürlichen Zahl n, gibt es genau einen "Nachfolger" n'(=:n+1)
- 3. Die Zahl 1 ist kein Nachfolger einer natürlichen Zahl
- 4. $n' = m' \implies n = m$
- 5. Enthält eine Teilmenge $M\subseteq \mathbb{N}$ die Zahl 1 und von jedem $n\in m$ auch den Nachfolger n' ist $M=\mathbb{N}$

Bemerkung:

Mit Hilfe der Axiome lassen sich auf \mathbb{N} Addition (+), Multiplikation (·) und Ordnung (\leq) einführen. Wir definieren:

 $1'=2,2'=3,\ldots n+1:=m'\ n+m':=(n+m)';\ n\cdot m':=nm+n$ Man kann zeigen, dass jede Menge, welche die Peano Axiome erfüllt isomorph bezüglich Multiplikation und Addition zu $\mathbb N$ ist Wir definieren $n< m\iff \exists x\in \mathbb N:x+m=m$

2.4.2 Vollständige Induktion

Induktionsprinzip Es seien die folgende Schritte vollzogen:

- 1. Induktionsverankerung (Induktionsanfang): Die Aussage A(1) gilt
- 2. Induktionsschluss: Ist für ein $n \in \mathbb{N}$ A(n) gültig, so folgt auch die Gültigkeit von A(n+1)

Dann sind alle Aussagen $A(n), n \in \mathbb{N}$ gültig.

Beweis: Wir definieren die Teilmenge $M \subseteq \mathbb{N}$, $M := \{n \in \mathbb{N} \mid A(N) \text{ ist gültig}\}$ Die Induktionsverankerung besagt, dass $1 \in M$ und die Induktionsannahme $n \in M \implies n+1 \in M$. Folglich ist nach dem 5. Axiom von Peano $M = \mathbb{N}$

Beispiel 1 Zu Beweisen:

$$\forall n \in \mathbb{N} \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Beweis

- 1. Induktionsverankerung: $1^2 = \frac{1}{6} \cdot 1 \cdot 2 \cdot 3$
- 2. Annahme: A(n) gültig für $n \in \mathbb{N}$: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ Zu zeigen $A(n+1): 1^2 + \ldots + (n+1)^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$ $1^2 + \ldots + n^2 + (n+1)^2 = \frac{1}{2}n(n+1)(2n+1) + (n+1)^2 = (n+1)\left(\frac{1}{3}n^2 + \frac{1}{6}n + n + 1\right)$ $= \frac{1}{6}(n+1)\left(2n^2 + 7n + 6\right) = \frac{1}{6}(n+1)(2n+3)(n+2)\square$

Beispiel 2 Definition von Potenzen

$$x^0 := 1$$

$$\forall n \in \mathbb{N} x^n := x^{n-1} x$$

(iterative (rekursive) Definition)

Auf \mathbb{N} sind diese elementaren Operationen erklärt:

- Addition a + b
- Multiplikation $a \cdot b$
- (unter gewissen Voraussetzungen):
 - Subtraktion a b

- Division $\frac{a}{b}$

 $\mathbb N$ ist bezüglich "—" oder "/" nicht vollständig, das heißt n+x=m ist nicht lösbar in $\mathbb N$ Erweiterungen:

- Ganze Zahlen $\mathbb{Z} := \{0; \pm, n \in \mathbb{N}\}$ Negative Zahl (-n) ist definiert durch n + (-n) = 0
- Rationale Zahlen \mathbb{Q} (bx = y)

Man sagt, dass $(\mathbb{Q}, +, \cdot)$ einen Körper bildet.

2.4.3 Definition Körper

 \mathbb{K} sei eine Menge auf der Addition und Multiplikation sei. \mathbb{K} heißt ein Körper, wenn die folgende Axiome erfüllt sind:

• Addition: $(\mathbb{K}, +)$ ist eine kommutative Gruppe, das heißt $\forall a, b, c \in \mathbb{K}$:

1. (a+b)+c=a+(b+c)

Assoziativität

2. a + b = b + a

Kommutativität

3. $\exists ! 0 \in \mathbb{K} : a + 0 = a$

Existenz des Nullelement

 $4. \exists x \in \mathbb{K} : a + x = 0$

Existenz des Negativen

• Multiplikation: $(\mathbb{K} \setminus \{0\}, \cdot)$ ist eine kommutative Gruppe, das heißt $\forall a, b, c \in \mathbb{K}$

1. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Assoziativität

2. $a \cdot b = b \cdot a$

Kommutativität

3. $\exists ! 1 \in \mathbb{K} : a \cdot 1 = a$

Existenz des Einselement

4. Für $a \neq 0, \exists ! y \in \mathbb{K} : a \cdot y = 1$

Inverse

Verträglichkeit

1.
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

Distributivität

Satz $(\mathbb{Q}, +, \cdot)$ ist ein Körper. Definieren auf \mathbb{Q} eine Ordnung " \leq " durch

$$x \le y \iff \exists m \in \mathbb{N}_0, n \in \mathbb{N} : y - x = \frac{m}{n}$$

dann ist auch diese Ordnung mit der Addition und Multiplikation in \mathbb{Q} in folgendem Sinne verträglich (Axiom M0):

- $a \le b \implies a + c \le b + c$
- $0 < a \land 0 < b \implies 0 < a \cdot b$

Bemerkung

$$\{a \in \mathbb{Q} : a = \frac{r}{s}, r \in \mathbb{N}_0, s \in \mathbb{N}\} =: \mathbb{Q}_+(\mathbb{Q}_{\geq 0})$$

2.5 Abzählbarkeit

2.5.1 Abzählbarkeit von Mengen

Sei A eine Menge

• A heißt endlich mit |A| = n Elementen ist äquivalent zu

$$|A| = \begin{cases} A = \emptyset & n = 0 \\ \exists f : A \to \{1, \dots, n\} & f \text{ bijektiv}, n < \infty \end{cases}$$

 \bullet A heißt abzählbar unendlich genau dann wenn

$$\exists f: A \to \mathbb{N} \text{ bijektiv}$$

- A heißt über abzählbar genau dann wenn: A ist weder endlich oder abzählbar unendlich

Beispiel \mathbb{Z} ist abzählbar unendlich

Beweis Die Abbildung $f: \mathbb{Z} \to \mathbb{N}$

$$z \mapsto \begin{cases} 2z & z \ge 0 \\ -2z - 1 & x < 0 \end{cases}$$

- Surjektivität: zu zeigen $f(\mathbb{Z}) = \mathbb{N}$ Offenbar $f(\mathbb{Z}) \subseteq \mathbb{N}$. Wir zeigen $\mathbb{N} \subseteq f(\mathbb{Z})$. Sei $n \in \mathbb{N}$, finde $z \in \mathbb{Z}$ mit f(z) = n. Man unterscheide:
 - n gerade \rightarrow Wähle $z = \frac{n}{2}$
 - n ungerade $\rightarrow z = -\frac{n+1}{2}$
- Injektivität: Sei $z_1, z_2 \in \mathbb{Z}$ und $f(z_1) = f(z_2)$ ohne Beschränkung der Allgemeinheit $z_1 \leq z_2$. Entweder $z_1, z_2 \geq 0$ oder $z_1, z_2 < 0$, denn sonst währe $f(z_1)$ ungerade und $f(z_1)$ gerade **Widerspruch**. Falls

$$-z_1, z-2 \ge 0 \implies 2z_1 = f(z_1) = f(z_2) = 2z_2 \implies z_1 = z_2$$

 $-z_1, z-2 < 0 \implies -2z_1 - 1 = f(z_1) = f(z_2) = -2z_2 - 1 \implies z_1 = z_2$

Beispiel

- $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ abzählbar unendlich
- \mathbb{Q} abzählbar unendlich
- \mathbb{R} über abzählbar

Abzählbarkeit von $\mathbb{N} \times \mathbb{N}$

$$(1,1) \to (1,2) \to (2,1) \to (2,2) \to (1,3) \to (2,3) \to (3,2) \to (3,1)$$

Korollar 1.30 M_1, M_2, \dots, M_n abzählbar $\implies M_1 \times \dots \times M_n$ abzählbar.

Beweis Durch vollständige Induktion $M_1 \times (M_2 \times ... \times M_n) \approx \mathbb{N} \times \mathbb{N} \approx \mathbb{N}$

Satz Die Menge aller Folgen $f: \mathbb{N} \to \{0,1\}$ ist über abzählbar. (Zum Beispiel: $1,0,0,0,\dots,1,\dots,0,\dots$) k-te Stelle

Beweis M ist unendlich, denn die Folgen $f_k:0,\ldots,0,1,0,\ldots$ sind paarweise verschieden. Angenommen M wäre abzählbar. Sei f_1,f_2,\ldots eine Abzählung mit $f_k=(z_{knn\in\mathbb{N}})$.

 $f: 0010 \text{ Man setze } f = (z_n)_{n \in \mathbb{N}} \text{ mit}$

$$z_n := \begin{cases} 1 & z_{nn} = 0 \\ 0 & z_{nn} = 1 \end{cases}$$

Dann $f \in M$, aber $f \neq f_k \, \forall \, k \in \mathbb{N}$. Also ist M nicht abzählbar. ("Cantorsches Diagonalverfahren").

2.6 Ordnung

2.6.1 Definition

Sei A eine Menge. Relation $R \subseteq A \times A$ heißt Teilordnung (Halbordnung) auf A, wenn $\forall y, x, z \in A$ gilt:

1.
$$x \le x$$
 (Reflexivität)

2.
$$x \le y \land y \le x \implies x = y$$
 (Symmetrie)

3.
$$x \le y \land y \le z \implies x \le z$$
 (Transitivität)

Wenn außerdem noch $\forall x, y \in A$ gilt:

4.
$$x \leq y \vee y \leq x$$
 (Vergleichbarkeit je zweier Elemente)

so heißt R (totale) Ordnung auf A. (A, \leq) heißt teilweise beziehungsweise (total) geordnete Menge.

Beispiel

- 1. (\mathbb{Q}, \leq) mit der üblichen Ordnung ist eine total geordnete Menge
- 2. Wir definieren auf der Potenzmenge $\mathcal{P}(A)$ einer Menge A eine Teilordnung " \leq ":

$$B < C \iff B \subseteq C \forall B, C \in \mathcal{P}(A)$$

Beweis: 1. - 3. sind trivial, 4. geht nicht (keine Totalordnung). Wähle $B, C \in \mathcal{P}(a), B, C \neq \emptyset, B \cap C = \emptyset$. Dann gilt weder $B \subseteq C$ noch $C \subseteq B$

3. Sei $F:=\{f\mid f:A\to\mathbb{R}\}$ für eine Menge $A\subseteq\mathbb{R}$. Wir definieren $f\leq g\iff \forall\,x\in A:f(x)\leq g(x)$ (1.) - (3.) trivial, 4. gilt nicht. Falls A mehr als ein Element hat, gibt es eine Funktion, die nicht miteinander verglichen werden können.

2.7 Maximum und Minimum einer Menge

2.7.1 Definition

Sei (A, \leq) eine teilweise geordnete Menge, $a \in A$ Maximum:

$$a = \max A \iff \forall x \in A : x \le a$$

Minimum:

$$a = \max A \iff \forall x \in A : a \le x$$

2.7.2 Bemerkung

Durch die Aussagen ist a eindeutig bestimmt, denn seien:

$$a_1, a_2 \in A : \forall x \in A \begin{cases} x \le a_1 \\ x \le a_2 \end{cases} \implies \begin{cases} a_2 \le a_1 & \xrightarrow{\text{Symmetrie}} a_1 = a_2 \end{cases}$$

2.8 Schranken

Sei (A, \leq) eine (total geordnete) Menge, $B \subseteq A$

- 1. $S \in A$ heißt obere Schranke zu $B \iff \forall x \in B : x \leq S$ $S \in A$ heißt untere Schranke zu $B \iff \forall x \in B : S \leq x$
- 2. $\bar{S}(B) := \{ S \in A \mid S \text{ sist untere Schranke zu } B \}$ $\underline{S}(B) := \{ S \in A \mid S \text{ sist obere Schranke zu } B \}$
- 3. Existiert $g:=\min \underline{S}(B)$ beziehungsweise $g:=\max \bar{S}$ so sagen wir: $g=\sup B$ (kleinste obere Schranke, <u>Supremum</u>, obere "Grenze" von B in A) $g=\inf B$ (größte obere Schranke, <u>Infimum</u>, untere "Grenze" von B in A)

2.8.1 Bemerkung

1. Existiert $\max B = \bar{b}$, so folgt $\sup B = \bar{b}$, denn $\bar{b} \in \underline{S}(B)$ nach Definition.

$$s \in S(B) \implies \bar{b} \le s$$
, da $\bar{b} \in B$

Ebenso gilt: $\exists \min B = \underline{b} \implies \inf B = \underline{b}$

2.8.2 Beispiel

- 1. $B = \{\frac{1}{n} \mid n \in \mathbb{N}\}, A = \mathbb{R}, (1, \frac{1}{2}, \ldots)$
 - Es gilt $1 \in B, \forall n \in \mathbb{N}$ gilt $\frac{1}{n} \leq 1$, daher folgt $\max B = \sup B = 1$
 - Sei $s \leq 0$, dann gilt $\forall n \in \mathbb{N} : s \leq \frac{1}{n}$, also $s \in \bar{S}(B)$ Sei $s > 0 \implies s > \frac{1}{n} \iff n > \frac{1}{s}$, also $s \notin \bar{S}(B)$ Es folgt $\bar{S}(B) = \{x \in \mathbb{R} \mid s \leq 0\}$ insbesondere $0 \in \bar{S}(B)$ Ferner gilt $\forall s \in \bar{S}(B) : s \leq 0 \implies \underline{0} = \max \bar{S}(B) = \inf B$
- 2. $A = \mathbb{Q}, B = \{x \in \mathbb{Q} : 0 \le x \land x^2 \le 2\}$. Es gilt $0 = \min B = \inf B$, aber $\sup B$ existiert nicht in \mathbb{Q}

2.9 Reelle Zahlen

 $x^2=2$ hat keine Lösungen in $\mathbb Q$. Allerdings können wir $\sqrt{2}$ "beliebig gut" durch $y\in\mathbb Q$ approximieren, das heißt $\forall\,\varepsilon>0\exists y\in\mathbb Q:2-\varepsilon\leq y^2\leq 2+\varepsilon$ Das motiviert die folgende Vorstellung:

- 1. Q ist "unvollständig"
- 2. \mathbb{Q} ist "dicht" in \mathbb{R}

2.9.1 Vollständigkeitsaxiom (Archimedes)

Jede nach oben (unten) beschränkte Teilmenge hat ein Supremum oder Infimum.

2.9.2 Axiomatischer Standpunkt

Es gibt eine Menge \mathbb{R} (genannt Menge der reellen Zahlen) mit Addition, Multiplikation, Ordnung, die die Definition eines Körper und das Vollständigkeitsaxiom erfüllt und $(\mathbb{R}, +, \cdot)$ mit " \leq " eine Ordnung bildet.

2.9.3 Bemerkung

1. Bis auf Isomorphie gibt es höchstens ein solches \mathbb{R} , das heißt \mathbb{R} ein weiteres System der reellen Zahlen ist, dann \exists bijektive Abbildung $f: \mathbb{R} \to \mathbb{R}$ die bezüglich Addition, Multiplikation, Ordnung eine Homomorphie ist.

$$\forall x, y \in \mathbb{R}$$
:

$$f(x+y) = f(x) + f(y)$$
$$f(xy) = f(x)f(y)$$
$$x \le y \implies f(x) \le f(y)$$

2. \mathbb{N} (und damit auch \mathbb{Z}, \mathbb{Q}) lassen sich durch injektive Homomorphismus $g : \mathbb{N} \to \mathbb{R}$ in \mathbb{R} einbetten

$$g(\tilde{0}_{\in \mathbb{N}}) = 0_{\in \mathbb{R}}$$
$$g(\tilde{n}_{\in \mathbb{N}} + 1) = g(n_{\in \mathbb{R}}) + 1$$
$$g(1_{\in \mathbb{N}}) = 1_{\in \mathbb{R}}$$

2.9.4 Konstruktiver Standpunkt

Wir können \mathbb{R} ausgehend von \mathbb{Q} konstruieren.

Methode der Abschnitte Jede reelle Zahl wird charakterisiert durch ein "rechts offenes, unbeschränktes Intervall", dessen "rechte Grenze" die Zahl erstellt.

$$\mathbb{R} := \{ A \subseteq \mathbb{Q} \begin{cases} A \neq \emptyset \\ x \in A, y \leq x \implies y \in A \\ \forall x \in A \exists y \in A, x < y \end{cases}$$

2.9.5 Definition 1.37

•

$$x \in \mathbb{R}$$
 heißt
$$\begin{cases} \text{positiv} & 0 < x \\ \text{nicht negativ} & 0 \le x \\ \text{negativ} & x < 0 \\ \text{nicht positiv} & x \ge 0 \end{cases}$$

- Die Betragsfunktion $|\cdot|: \mathbb{R} \to \mathbb{R}$ wird definiert durch $|x| = \max\{x, -x\} = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$
- Die Vorzeichen- oder Signumfunktion

$$\operatorname{sgn}: \mathbb{R} \to \mathbb{R}, \operatorname{sgn} x = \begin{cases} \frac{x}{|x|} & x \neq 0 \\ 0 & x = 0 \end{cases} = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ 0 & x = 0 \end{cases}$$

2.9.6 Satz 1.38

1.
$$|xy| = |x||y|$$

2.
$$|x+y| \le |x| + |y|$$

Beweis:

$$|x+y|^{2} = (x+y)^{2} = x^{2} + 2xy + y^{2} = |x|^{2} + 2xy + |y|^{2}$$

$$\leq |x|^{2} + 2|xy| + |y|^{2} = |x|^{2} + 2|x||y| + |y^{2}|$$

$$= (|x| + |y|)^{2} \implies |x+y| \leq ||x| + |y|| = |x| + |y|$$

$$\square$$

$$(1)$$

3.
$$|x + y| = |x| + |y| \iff xy \ge 0$$

2.9.7 Satz 1.39

1. $||x| - |y|| \le |x - y|$ Beweis:

$$|x| = |x - y + y| \le |x - y| + |y| \implies |x| - |y| \le |x - y|$$

$$|y| = |y - x + x| \le |y - x| + |x| \implies |y| - |x| \le |x - y|$$
(4)

$$|y| = |y - x + x| \le |y - x| + |x| \implies |y| - |x| \le |x - y| \tag{4}$$

$$||x| - |y|| = \max\{|x| - |y|, |y| - |x|\} \le |x - y|$$

 $||x| - |y|| = \max\{|x| - |y|, |y| - |x|\} \le |x - y|$

2.

$$|x-y| \le \varepsilon \iff \begin{cases} x-\varepsilon \le y \le x+\varepsilon \\ y-\varepsilon \le x \le y+\varepsilon \end{cases}$$

Beweis:

$$|x - y| = \max\{x - y, y - x\} \le \varepsilon \iff \begin{cases} x - y \le \varepsilon \\ y - x \le \varepsilon \end{cases} \iff \begin{cases} x \le y + \varepsilon \\ y - x \le \varepsilon \end{cases} \iff y - \varepsilon \le x \le y + \varepsilon$$
(5)
Vertausche x und $y \implies x - \varepsilon \le x + \varepsilon$

2.9.8 Definition 1.40

Sei $a, b \in \mathbb{R}, a < b$

•
$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$
 abgeschlossenes Intervall

•
$$(a,b) := \{x \in \mathbb{R} : a < x < b\} =]a,b[$$
 offenes Intervall

•
$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}$$
 rechts-halboffenes Intervall

•
$$(a,b] := \{x \in \mathbb{R} : a < x \le b\}$$
 links-halboffenes Intervall

•
$$\varepsilon > 0, I_{\varepsilon}(x) := (x - \varepsilon, x + \varepsilon) = \{ y \in \mathbb{R} : |x - y| < \varepsilon = B_{\varepsilon}(x) \text{(Kugel)} \}$$

2.9.9 Lemma 1.41

Es gilt $y \in I_{\varepsilon}(x) \implies \exists \delta > 0 : I_{\delta}(y) \subseteq I_{\varepsilon}(x)$

Beweis Sei $y \in I_{\varepsilon}(x) \implies |x-y| < \varepsilon \iff \varepsilon - |x-y| > 0$ Wähle $0 < \delta < \varepsilon - |x-y|$. Es ist nun zu zeigen $I_{\delta}(y) \subseteq I_{\varepsilon}(x)$, das heißt $z \in I_{\delta}(y) \implies z \in I_{\varepsilon}(x)$. Es gilt

$$z \in I_{\delta}(y) \implies |z - y| < \delta$$
 (6)

$$\Rightarrow |z - x| = |z - y + y - x| \le |z - y| + |y - x| \le \delta + |x - y| < \varepsilon \tag{7}$$

$$\Longrightarrow z \in I_{\varepsilon}(x)$$

2.9.10 Definition 1.42

A, B seien geordnete Mengen, $f: A \to B$ heißt:

• monoton
$$\begin{cases} \text{wachsend} & x \leq y \implies f(x) \leq f(y) \\ \text{fallend} & x \leq y \implies f(x) \leq f(y) \end{cases}$$

• streng monoton
$$\begin{cases} \text{wachsend} & x < y \implies f(x) < f(y) \\ \text{fallend} & x < y \implies f(x) > f(y) \end{cases}$$

Beispiel 1.43 $\mathbb{R}_+ \setminus \{0\} \to \mathbb{R}_+ \setminus \{0\}, x \mapsto x^n \text{ ist streng monoton wachsend } \forall n \in \mathbb{N}$

Beweis Induktion + Axiom M0
$$\Box$$

2.9.11 Lemma 1.44

Sei $M, N \subseteq \mathbb{R}, f: M \to N$ streng monoton und bijektiv. Dann ist f^{-1} streng monoton.

Beweis Wir betrachten den Fall f streng monoton wachsend. Seien $y_1, y_2 \in N, y_1 < \infty$ $y_2, x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2).$

Behauptung
$$x_1 < x_2$$
 (sonst wäre $x_1 \ge x_2$).
Falls $x_1 > x_2 \xrightarrow{\text{streng monoton}} f(x_2) > f(x_2)$ Widerspruch zu $y_1 < y_2$
Falls $x_1 = x_2 \implies y_1 = y_2$ Widerspruch zur Annahme $y_1 < y_2$

2.9.12 Definition 1.45 Produktzeichen

Für $a \in \mathbb{R}, n \in \mathbb{N}$ definieren wir $a^n := \prod_{i=1}^n a$ und für $a \in \mathbb{R} \setminus \{0\}, n \in \mathbb{N}$ $a^{-n} := \frac{1}{a^n}$.

2.9.13 Satz 1.46

Es gilt $\forall a, b \in \mathbb{R}$ (beziehungsweise $\mathbb{R} \setminus \{0\}$), $n, m \in \mathbb{N}_0$ (beziehungsweise \mathbb{Z})

1.
$$a^n a^m = a^{n+m}$$

$$2. (a^n)^m = a^{nm}$$

$$3. (ab)^m = a^m b^m$$

Beweis Zunächst f+r $n, m \in \mathbb{N}_0$ durch Induktion nach n, dann für $n, m \in \mathbb{Z}$ (mit Hilfe der Definition von a^{-n})

2.9.14 Definition 1.47

Sei $n, k \in \mathbb{N}_0$

$$\binom{n}{k} := \prod_{j=1}^{k} \frac{n-j+1}{j}$$

2.9.15 Lemma 1.48

Sei $k, n \in \mathbb{N}_0$

1.
$$\binom{n}{k} = 0$$
 für $k > n$
 $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$ für $k \le n$

2.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 für $1 \le k \le n$

2.9.16 Satz 1.49

 $\forall n \in \mathbb{N}_0, \forall x, y \in \mathbb{R} \text{ gilt}$

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$$

Beweis Induktion:

- Induktions anfang: $n=0, (x+y)^0=1, \binom{0}{j} x^0 y^0=1$ nach Definition
- Induktions schritt $n \to n+1$:

$$(x+y)^{n+1} = (x+y)(x+y)^n$$

mit der Induktionsvoraussetzung

$$= (x+y) \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j}$$

$$= \sum_{j=0}^{n} \binom{n}{j} x^{n-j+1} y^{j} + \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j+1}$$

$$= \binom{n}{0} x^{n+1} + \sum_{j=1}^{n} \binom{n}{j} x^{n+1-j} y^{j} + \sum_{i=1}^{n} \binom{n}{i-1} x^{n-i+1} y^{i} + \binom{n}{n} y^{n+1}$$

$$= x^{n+1} + \sum_{j=1}^{n} \underbrace{\binom{n}{j} + \binom{n}{j-1}}_{\binom{n+1}{j} \text{nach Lemma } 1.48} x^{n+1-j} y^{j} + y^{n+1}$$

$$= \sum_{j=0}^{n+1} \binom{n+1}{j} x^{n+1-j} y^{j}$$

2.9.17 Folgerung 1.50

1.
$$\sum_{j=0}^{n} \binom{n}{j} = 2^n$$

2.
$$\sum_{j=0}^{n} {n \choose j} (-1)^j = \begin{cases} 0 & n \neq 0 \\ 1 & n = 0 \end{cases}$$

Beweis: Setze in Binomische Formel x = 1, y = 1 beziehungsweise y = -1

2.9.18 Lemma 1.51

Sei $m \in R$ nach oben (beziehungsweise nach unten) beschränkt Dann gilt

1.
$$s = \sup M \iff \forall \varepsilon > 0 \exists x \in M : s - \varepsilon < x (\geq s)$$

2.
$$l = \inf M \iff \forall \varepsilon > 0 \exists x \in M : (l \le) x < l + \varepsilon$$

Beweis Wir beweisen 1.

 $s \neq \sup M \iff s$ ist nicht die kleinste obere Schranke von $m \iff$ es gibt eine kleinere obere Schranke $s' = s - \varepsilon$ von $M \iff$ nicht $\forall \varepsilon > 0 \exists x \in M : x > s - \varepsilon$

2.9.19 Lemma 1.52

 \mathbb{N} ist unbeschränkt in \mathbb{R}

Beweis sonst $\exists x = \sup \mathbb{N}$ (nach Vollständigkeits Axiom), x kleinste obere Schranke $\xrightarrow{[[\text{Lemma 1.51}]]} \varepsilon = \frac{1}{2} \exists m_o \in \mathbb{N} : x - \frac{1}{2} < m_0 \implies m_0 + 1 \in \mathbb{N}, m_0 + 1 > x + \frac{1}{2} > x \implies x$ ist nicht die obere Schranke von \mathbb{N}

2.9.20 Lemma 1.53 (Bernoullische Ungleichung)

$$\forall x \in [-1, \infty), n \in \mathbb{N}_0 : (1+x)^n \ge 1 + nx$$

Beweis Beweis durch Induktion:

- IA: n = 0 klar
- IS:

$$n \to n+1: (1+x)^{n+1} = (1+x)^n (1+x)$$
 (8)

$$\geq (1+nx)(1+x) = 1 + nx^2 + (n+1)x \tag{9}$$

$$\geq 1 + (n+1)x \operatorname{da} x^2 \geq 0$$

2.9.21 Folgerung 1.54

- 1. Sei $y \in (1, \infty)$. Dann gilt $\forall c > 0 \exists n_0 \in \mathbb{N}, \forall n \geq n_0 y^n \in (c, \infty)$ ("Konvergenz" von y^n gegen 0)
- 2. Sei $y \in (-1,1)$. Dann gilt $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \, \forall n \ge n_0 : y^n \in I_{\varepsilon}(0)$ ("Konvergenz" y^n gegen 0)

Beweis

1. Für x = y - 1 > 0 gilt dann nach 2.9.20

$$\underbrace{(1+x)^n}_{y} \ge 1 + nx \implies y^n > nx$$

Nach 2.9.19 existiert für c>0 ein $n_0\in\mathbb{N}$ mit $n_0>\frac{c}{x}$

$$\forall n \ge n_0 : y^n > nx \ge n_0 x \ge \frac{c}{x} x = c \implies \forall n \ge n_0 : y^n \in (c, \infty)$$

2. Für $x = \frac{1}{|y|} > 1 \xrightarrow{\text{nach } [[1541]] \text{ mit } c = \frac{1}{\varepsilon}}$

$$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \, \forall \, n \ge n_0 : x^n > \frac{1}{\varepsilon}$$

$$\implies \frac{1}{|y^n|} > \frac{1}{\varepsilon} \implies |y^n| < \varepsilon \square$$

2.9.22 Satz 1.55 (Existenz der m-ten Wurzel)

$$\forall m \in \mathbb{N}, a \in [a, \infty) \text{ gilt } \exists! x \in [0, \infty) : x^m = a$$

Beweis (Skizze 1, 2) Wir geben ein Iterationsverfahren

$$p_3(x) = m$$
$$a_3x^3 + a_2x^2 + a_1x + a_0, a_3 > 0$$

Ohne Beschränkung der Allgemeinheit $a>0, m\geq 2, x$ muss die Gleichung $x^m-a=0$ lösen, das heißt Nullstelle der Funktion $f:[0,\infty)\to\mathbb{R}, x\mapsto x^m-a$ suchen. Diese approximieren wir nach dem **Newton Verfahren** x_0 sodass $x_0^m-a\geq 0$

$$x_n - x_{n+1} = \frac{f(x_n)}{f'(x_n)} \longleftarrow \frac{f(x_n)}{x_n - x_{n+1}} = f'(x_n)$$

$$x_{n+1} := \underbrace{x_n - \frac{f(x_n)}{f'(x_n)}}_{F(x_n)} = x_n - \frac{x_n^m - a}{mx_n^{m-1}}$$

$$= x_n \left(1 - \frac{1}{m} \left(1 - \frac{a}{x_n^m}\right)\right)$$

Hoffnung: $x_n \to x^*$ Sei $x_0^m > a$. Wir zeigen

- 1. $x_n > 0$
- $2. x_n^m \geq a$
- 3. $x_{n+1} \le x_n$

Beweis:

- 1. Induktion
- 2. Induktion
 - $n = 0, x_0^m > \implies x_0 > 0$, da $a > 0, x_0 > 0$
 - $n \rightarrow n+1$

$$x_n > 0, x_n^m \ge a \implies x_{n+1} = x_n \left(1 - \frac{1}{m} \left(1 - \frac{a}{x_n^m} \right) \right) \ge 0$$

weil

$$x_{n+1}^n = \underbrace{x_n^m}_{\geq 0} \left(1 - \frac{1}{m} \left(1 - \frac{a}{x_n^m} \right) \right)^m \underbrace{\geq}_{\text{Bernoulli}} x_n^m \left(1 - \frac{1}{m} \left(1 - \frac{a}{x_n^m} \right) \right) = 0$$

$$\implies x_{n+1} > 0$$
, da $a > 0$

3. Nach 2:

$$x_n^m \ge a \implies 0 \le 1 - \frac{1}{m} \left(1 - \frac{1}{x_n^m} \right) \le 1$$

Nach 1:

$$x_m > 0 \implies x_{n+1} = x_n \left(1 - \frac{1}{m} \left(1 - \frac{a}{x_n^m} \right) \right) < x_n$$

Wegen 1 ist $M = \{x_n : n \in \mathbb{N}_0\}$ nach unten beschränkt \Longrightarrow

$$x := \inf M$$
 existient

Wir wollen zeigen, dass $x^m = a$. Es gilt

$$x \le x_{n+1} = \left(1 - \frac{1}{m}\right)x_n + \frac{1}{m} \frac{a}{x_n^{m-1}}$$
$$\le \left(1 - \frac{1}{m}\right)x_n + \frac{a}{m} \sup\left\{\frac{1}{x_n^{m-1} \mid x \in \mathbb{N}_0}\right\}$$

4. Es gilt nach nach 2

$$a \le \inf\{x_n^m \mid n \in \mathbb{N}_0\} = (\inf\{x_n \mid n \in \mathbb{N}_0\})^m = x^m$$

und damit x > 0

Ferner gilt

$$y = \sup\{\frac{1}{x_n^{m-1}} \mid n \in \mathbb{N}_0\} = \inf\{x_n^{m-1} \mid x \in \mathbb{N}_0\}^{-1}$$

mit 2.9.23

$$= \left(\frac{1}{\inf\{x_n \mid n \in \mathbb{N}_0\}}\right)^{m-1} = \frac{1}{x^{m-1}} \implies ay \le \frac{a}{x^{m-1}}$$

5. Von oben wissen wir, dass $x \leq ay$

$$\implies x \le ay \le \frac{a}{x^{m-1}} \implies x^m \le a$$

Aus 4 und 5 folgt $x^m = a$

2.9.23 Lemma 1.56

1. Seien für $n \in \mathbb{N}_0 : y_n > 0$ und $\inf\{x_n \mid x \in \mathbb{N}_0\} > 0$ Dann gilt

$$\sup\{\frac{1}{y_n} \mid n \in \mathbb{N}_0\} = \frac{1}{\inf\{y_n \mid n \in \mathbb{N}_0\}}$$

2. Seien für $n \in \mathbb{N}_0, y_n > 0, k \in \mathbb{N}_0$. Dann gilt:

$$\inf\{y_n^k \mid n \in \mathbb{N}_0\} = (\inf\{y_n \mid n \in \mathbb{N}_0\})^k$$

(ohne Beweis)

3 Komplexe Zahlen

Motivation: $x^2 + 1 = 0$ nicht lösbar in \mathbb{R}

Wir betrachten die Menge der Paare $\{x,y\} = \mathbb{R} \times \mathbb{R}$ auf denen die Addition und Multiplikation wie folgt definiert ist:

- (KA) $\{x_1, y_1\} + \{x_2, y_2\} = \{x_1 + x_2, y_2 + y_2\}$
- (KM) $\{x_1, y_1\} \cdot \{x_2, y_2\} = \{x_1x_2 y_1y_2, x_1y_2 + x_2y_1\}$

3.1 Komplexer Zahlenkörper

- 1. Die Menge der Paare $z=\{x,y\}\in\mathbb{R}\times\mathbb{R}$ mit Addition 3 und Multiplikation 3 bildet den Körper \mathbb{C} der **komplexen Zahlen** mit den neutralen Elementen $\{0,0\}$ und $\{1,0\}$
- 2. Die Gleichung $z^2 + \{1, 0\} = \{0, 0\}$ hat in $\mathbb C$ zwei Lösungen, welche mit $i := \{0, \pm 1\}$ bezeichnet werden
- 3. Der Körper $\mathbb R$ ist mit der Abbildung $x\in\mathbb R:x\mapsto\{x,0\}\in\mathbb C$ isomorph zu einem Unterkörper von $\mathbb C$

3.1.1 Beweis

1. Die Gültigkeit des Kommutativitäts-, Assoziativs-, und Distributivitätsgesetzes verifiziert man durch Nachrechnen.

Neutrale Elemente: Wir lösen die Gleichung $a+z=\{0,0\}$ für beliebige gegebene $a\in\mathbb{C}, a=\{a_1,a_2\}$

$$\Rightarrow z = \{-a_1, -a_2\}$$

$$a \cdot z = \{1, 0\}$$

$$z = \frac{1}{a} := \{\frac{a_1}{a_1^2 + a_2^2}, -\frac{a_2}{a_1^2 + a_2^2}\}, \text{ weil } a \cdot \frac{1}{a}$$
weil $a \frac{1}{a} = \{a_1 \frac{a_1}{a_1^2 + a_2^2} + \frac{a_2^2}{a_1^2 + a_2^2}, \frac{a_1 a_2}{a_1^2 + a_2^2} - \frac{a_2 a_1}{a_1^2 + a_2^2}\}$

2. $i := \{0, 1\}$ hat die Eigenschaft

$$1 + i^2 = \{1, 0\} + \{0^2 - 1^2, 0\} = \{0, 0\} \implies 1 + i^2 = 0$$

Ähnlich $1 + (-i)^2 = 0$

3. Die Zuordnung $x \in \mathbb{R} : x \mapsto \{x,0\} \in \mathbb{C}$ bildet \mathbb{R} bijektiv auf eine Untermenge von \mathbb{C} ab, welche bezüglich der komplexen Addition und Multiplikation wieder ein Körper ist

3.2 Notation

$$z = \{x, y\} =: x + iy, \ x, y \in \mathbb{R}$$

- x ist Realteil $x = \Re z$
- y ist Imaginärteil $x = \Im z$

$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = \underbrace{x_1 + x_2}_{\Re(z_1 + z_2)} + i\underbrace{(y_1 + y_2)}_{\Im(z_1 + z_2)}$$

$$z_1 z_2 = (x_1 + iy_1)(x_1 + iy_2) = x_1 x_2 + iy_1 x_2 + iy_2 x_1 + (iy_1)(iy_2) = \underbrace{x_1 x_2 - y_1 y_2}_{\Re(z_1 z_2)} + i\underbrace{(x_1 y_2 + y_1 x_2)}_{\Im(z_1, z_2)}$$

3.3 **TODO** Graphische Darstellung

3.4 Bemerkung

Die reellen Zahlen sind durch $\Im z = 0$ charakterisiert.

$$z_1 = z_2 \implies x_1 + iy_i = x_2 + iy_2 \iff x_1 = x_2, y_1 = y_2$$

3.5 Korollar 1.59

Jede quadratische Gleichung

$$z^2 + pz + q = 0, \ p, q \in \mathbb{R}$$

besitzt in $\mathbb C$ genau zwei Lösungen

$$z_{1,2} = \begin{cases} -\frac{1}{2} \pm \frac{1}{2}\sqrt{p^2 - 4q} & p^2 \ge 4q \\ -\frac{1}{2} \pm i\frac{1}{2}\sqrt{|p^2 - 4q|} & p^2 - 4q < 0 \end{cases}$$

3.6 Fundamentalsatz der Algebra

Jede algebraische Gleichung der Form

$$z^n + \sum_{i=0}^{n-1} a_i z^i = 0$$

hat in \mathbb{C} mindestens eine Lösung. Beweis \rightarrow Funktionstheorie

3.7 Betrag

Für komplexe Zahlen lässt sich ein Absolutbetrag definieren

$$r = |z| = \sqrt{x^2 + y^2}$$

Damit:

$$x = r \cos \alpha y = r \sin \alpha z = x + iy = r(\cos \alpha + i \sin \alpha)$$
 (10)

3.8 Konjugation

Zu einem $z=x+\imath y\in\mathbb{C}$ definieren wir eine konjugierte komplexe Zahl

$$\bar{z} = x - iy \in \mathbb{C}$$

Dann gilt

$$|z|^2 = x^2 + y^2 = z\bar{z}$$

Aus der Definition:

- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\bullet \quad \overline{z_1 * z_2} = \overline{z_1} * \overline{z_2}$
- $x = \frac{z + \bar{z}}{2}$
- $y = \frac{z \bar{z}}{2i}$

4 Folgen

Eine Folge von reellen Zahlen wird gegeben durch eine Abbildung

$$\mathbb{N}_0 \to \mathbb{R}, n \mapsto x_n$$

Wir bezeichnen die Folge auch mit $(x_n)_{n\in\mathbb{N}_0}$ Topologische Struktur auf Mengen.

- Abstände in \mathbb{R}^1 Betrag $|x-y| \xrightarrow{\text{Verallgemeinerung}} \text{Norm}$ / Metrik
- Umgebung in \mathbb{R}^1 \$ ε \$-Intervall $\xrightarrow{\text{Verallgemeinerung}}$ Kugel Umgebung

Wir betrachten Folgen $\mathbb{N} \to \mathbb{R}, n \mapsto a_n \text{ (oder } \mathbb{C})$

4.1 Definition 2.1 Konvergenz

Wir sagen, dass die Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{K} (\mathbb{R} oder \mathbb{C}) gegen den Grenzwert (oder Limes) $a\in\mathbb{K}$ konvergiert

$$a_n \xrightarrow{n \to \infty} a \left(a = \lim_{n \to \infty} a_n \right)$$

wenn für beliebiges $\varepsilon>0$ von einem $n_{\varepsilon}\in\mathbb{N}$ an gilt

$$|a_n - a| < \varepsilon, n \ge n_{\varepsilon}$$

$$\iff \forall \, \varepsilon > 0 \exists n_\varepsilon \in \mathbb{N} : \forall \, n \geq n_\varepsilon a_n \in I_\varepsilon(a)$$

4.2 Folgerung 2.2

Sei $(a_n)_{n\in\mathbb{N}}$ eine monoton wachsende beziehungsweise fallende Folge reeller Zahlen $M=\{a_n\mid n\in\mathbb{N}\}$ und sei nach oben beziehungsweise unten beschränkt. Dann gilt

$$a_n \to \sup M, a_n \to \inf M$$

Beweis \rightarrow Übungen

4.3 Definition 2.3 Cauchy Folgen

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt Cauchy-Folge wenn:

$$\forall \varepsilon > 0 \exists n_{\varepsilon} \in \mathbb{N} \, \forall \, n, m \geq n_{\varepsilon} : |a_n - a_m| < \varepsilon$$

(Cauchy Kriterium)

4.4 Definition 2.4 Teilfolge

Eine Teilfolge einer gegebenen Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Auswahl $(a_{n_k})_{k\in\mathbb{N}}$, wobei a_{n_k} auch die Glieder von $(a_n)_{n\in\mathbb{N}}$ sind

Beispiel 1 Beispiel 2.5.

$$a_n = \frac{1}{m}$$

ist eine Cauchy-Folge. Für ein $\varepsilon>0$ wählen wir n_ε so dass $n_\varepsilon>\frac{1}{\varepsilon}.$ Für beliebiges $n\geq m>N$

$$|a_m - a_n| = \left| \frac{1}{m} - \frac{1}{n} \right| = \frac{n - m}{mn} \le \frac{n}{mn} = \frac{1}{m} < \frac{1}{n_{\varepsilon}} < \varepsilon \square$$

Satz 1 Jede Cauchy-Folge ist beschränkt.

Beweis. Sei $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge. Angenommen, die Folge ist nicht beschränkt. Dann gibt es eine Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ mit

$$|a_{n_k}| \xrightarrow[k \to \infty]{} \infty$$

Aus dieser Teilfolge kann man eine weitere Teilfolge

$$\left(a_{n_{k_l}}\right)_{l\in\mathbb{N}}$$

extrahieren

$$\left|a_{n_{k_{i+1}}}\right| > 2\left|a_{n_{k_{l}}}\right| \quad l \in \mathbb{N}$$

Dann gilt

$$\left| a_{n_{k_{i+1}}} - a_{n_{k_l}} \right| \ge \left| a_{n_{k_{i+1}}} \right| - \left| a_{n_{k_l}} \right| > \left| a_{n_{k_l}} \right| \xrightarrow[k \to \infty]{} \infty$$

im Widerspruch zur Cauchy-Folgen Eigenschaft.

Satz 2 Jede konvergente Folge ist Cauchy-Folge.

Beweis.

$$a_n \xrightarrow[k \to \infty]{} a \implies \forall \varepsilon > 0 \exists n_{\varepsilon} \in \mathbb{N} \, \forall n \ge n_{\varepsilon} : |a - a_n| < \frac{\varepsilon}{2}$$

$$\implies \forall n, m \in n_{\varepsilon} : |a_n - a_m| \le |a_n - a| + |a - a_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

Lemma 1. Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{K} (\mathbb{R} oder \mathbb{C}) welche gegen $a\in\mathbb{K}$ und $\tilde{a}\in\mathbb{K}$ konvergiert. Dann ist $a=\tilde{a}$.

Beweis. Beweis durch Widerspruch. Falls $|a - \tilde{a}| > 0$, dann

$$\exists n_{\varepsilon} \in \mathbb{N} \,\forall \, n \ge n_{\varepsilon} \varepsilon = |a - \tilde{a}|, |a_n - a| < \frac{\varepsilon}{2}$$

und ein m_{ε} , sodass

$$\left| a_n - \tilde{a} < \frac{\varepsilon}{2} \right| \, \forall \, n \ge m_{\varepsilon}$$

Dann für $n \ge \max\{n_{\varepsilon}, m_{\varepsilon}\}$:

$$|a - \tilde{a}| \le |a - a_n| + |a_n - \tilde{a}| < \varepsilon$$

Widerspruch
$$\implies a = \tilde{a}$$

Bemerkung1. Die Mengen Abständen heißen *vollständig*, wenn jede Cauchy-Folge in Mkonvergiert

Definition 1 Häufungwert, Häufungspunkt. Ein $a \in \mathbb{K}$ heißt Häufungswert einer Folge $(a_n)_{n \in \mathbb{N}}$ in \mathbb{K} , wenn es zu beliebigen $\varepsilon > 0$ unendlich viele Folgenelemente a_n gibt mit $|a - a_n| < \varepsilon$

Ein $a \in \mathbb{K}$ heißt Häufungspunkt einer Teilmenge M von \mathbb{K} , wenn $\forall \varepsilon > 0$ existieren unendlich viele $x \in M$, sodass $|a - x| < \varepsilon$

Beispiel 2.

- 1. $a_n = (-1)^n, n \in \mathbb{N}$
 - divergente Folge
 - besitzt 2 Häufungswerte $a^{(1)} = 1, a^{(2)} = -1$
- 2. Wir nehmen $a_n \xrightarrow[n \to \infty]{} a, b_n \xrightarrow[n \to \infty]{} b$ und definieren eine neue Folge c_n sodass

$$c_{2n} := b_n, n \in \mathbb{N}$$
$$c_{2n+1} := a_n, n \in \mathbb{N}$$

 $(c_n)_{n\in\mathbb{N}}$ hat 2 Häufungswerte a und b

Bemerkung 2. Nach 1 hat die konvergente Folge 1 Häufungswert

Lemma 2 2.11. Sei $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in \mathbb{K} und a ein Häufungswert von $(a_n)_{n\in\mathbb{N}}$, dann konvergiert $a_n \xrightarrow[n\to\infty]{} a$

Beweis. Sei $\varepsilon>0$ beliebig vorgegeben. Wir wählen $n_\varepsilon\in\mathbb{N}$ sodass

$$|a_n - a_m| < \frac{\varepsilon}{2} \, \forall \, n, m > n_{\varepsilon} \text{ (aus Cauchy-Folge)}$$

und $m_{\varepsilon} > n_{\varepsilon}$ mit

$$|a - a_{m_{\varepsilon}}| < \frac{\varepsilon}{2}$$
 (Häufungswert)

Dann folgt

$$\forall n > m_{\varepsilon} : |a - a_n| \le |a - a_{m_{\varepsilon}}| + |a_{m_{\varepsilon}} - a_n| < \varepsilon \implies a_n \xrightarrow[n \to \infty]{} a \qquad \Box$$

Satz 3. A abgeschlossen \iff (a Häufungspunkt von $A \implies a \in A$) A abgeschlossen in $M \iff M \setminus A =: CA$ offen

Beweis. $(\Leftarrow=)$:

Sei jeder Häufungspunkt von A in A $x \in CA (= \mathbb{R} \setminus A) \implies x$ kein Häufungspunkt von $A, x \not\in A$

$$\implies \varepsilon: I_{\varepsilon}(x) \cap A = \emptyset \implies \exists \varepsilon > 0: I_{\varepsilon} \subseteq CA$$

 $\implies CA$ offen $\implies A$ abgeschlossen (\implies) :

Sei A abgeschlossen, also CA offen, ist Häufungspunkt $x \notin A$ das heißt $x \in CA$, so gilt

$$\exists \varepsilon > 0 : I_{\varepsilon} \subseteq CA \implies I_{\varepsilon}(x) \cap A = \emptyset$$
lightning

Widerspruch zur Definition von Häufungspunkt \implies jeder Häufungspunkt von A ist in A

Lemma 3 2.14. Jede Folge $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}$ besitzt eine monotone Teilfolge

Beweis. Sei $B = \{n \in \mathbb{N} \mid \forall k \ge n, a_n \ge a_k\}$

• Fall 1: B unendlich. Wir zählen $B \subseteq \mathbb{N}$ monoton wachsend

$$n_0 = \min B$$

$$n_{k+1} = \min\{n \in B, n > n_k\}$$

Dann ist die Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ von $(a_n)_{n\in\mathbb{N}}$ monoton fallend

• Fall 2: B ist endlich oder leer

$$\Longrightarrow \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : n \notin B$$

das heißt

$$\exists k \leq n : a_n < a_k$$

Damit können wir definieren

$$n_{k+1} = \min\{k \ge n_k : a_{n_k} < a_k\}$$

und die Folge $(a_{n_k})_{k\in\mathbb{N}}$ ist monoton wachsend

Beispiel 3. 1. $a_n = (-1)^n \left(1 + \frac{1}{n+1}\right)$, $B = \{2n \mid n \in \mathbb{N}\}$ monoton fallend

2. $a_n = (-1)^n n, (a_{2k})_{k \in \mathbb{N}}$ ist monotone Teilfolge

Satz 4 Satz von Bolzano Weierstrass. Sei $A \subseteq \mathbb{R}$ (gilt in \mathbb{R}^n !) Folgende Aussagen sind äquivalent:

- 1. A ist beschränkt abgeschlossen
- 2. Jede Folge $(a_n)_{n\in\mathbb{N}}$ aus A hat einen Häufungswert in A
- 3. Jede Folge $(a_n)_{n\in\mathbb{N}}$ aus A besitzt eine in A konvergente Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$

Beweis. Wir zeigen $3 \implies 2 \implies 1 \implies 3$

 $3 \implies 2$:

Sei $(a_{n_k})_{k\in\mathbb{N}}$ konvergente Teilfolge von $(a_n)_{n\in\mathbb{N}}$ und $a=\lim_{k\to\infty}a_{n_k}$ a ist auch der Häufungswert der Folge $(a_n)_{n\in\mathbb{N}}$

 $2 \implies 1$:

1. Beschränktheit: Angenommen dies ist falsch. Dann

$$\exists (a_n)_{n \in \mathbb{N}} \in A : |a_n - a| \ge n \,\forall \, n \in \mathbb{N} \, (a \in A)$$

Nach Voraussetzungen hat jede diese Folge einen Häufungspunkt $x \in A$ und es gilt

$$|x - a| \ge |a_n - a| - |a_n - x| \ge n - |x - a_n|$$

Dabei gilt $|x - a_n| < 1$ für unendlich viele $n \in \mathbb{N}$ (aus Häufungswert)

$$\implies |x - a| \ge n - 1$$

Für unendlich viele $n \in \mathbb{N}$ `

2. Abgeschlossenheit: Wir nutzen Satz 3 Zu zeigen: wenn a Häufungspunkt von $A \Longrightarrow a \in A$ Für

$$I_{\frac{1}{n}}(a) = \{x \in \mathbb{R} \mid |x - a| < \frac{1}{n}\}$$

gilt

$$I_{\frac{1}{n}}(a) \cap A \neq \emptyset \implies \exists a_n \in A : |a_n - a| < \frac{1}{n}$$

Die Folge $(a_{n_k})_{k\in\mathbb{N}} \to a$, da $\frac{1}{n} \to 0$ Nach Voraussetzung hat $(a_n)_{n\in\mathbb{N}}$ einen Häufungswert $\tilde{a} \in A$. Wir zeigen $a = \tilde{a}$ Sei $\varepsilon > 0$ beliebig.

$$\exists n_{\varepsilon} \in \mathbb{N} : |a - a_{n}| < \frac{\varepsilon}{2} \, \forall \, n \ge n_{\varepsilon}$$

$$\exists m_{\varepsilon} \ge n_{\varepsilon} : |\tilde{a} - a_{m_{\varepsilon}}| < \frac{\varepsilon}{2}$$

$$\implies |a - \tilde{a}| \le |a - a_{m_{\varepsilon}}| + |a_{m_{\varepsilon}}| < \varepsilon$$

$$\implies |a - \tilde{a}| = 0$$

$$\implies \tilde{a} = a \in A$$
(Aus Häufungswert)

 $1 \implies 3$:

Sei nun $(a_n)_{n\in\mathbb{N}}$ eine Folge in A, $(a_{n_k})_{k\in\mathbb{N}}$ eine monotone Teilfolge (nach 3), (a_{n_k}) ist beschränkt, da A beschränkt ist $\Longrightarrow (a_{n_k})$ ist konvergent (4.2) Wir müssen zeigen, dass

$$a = \lim_{n \to \infty} a_{n_k} \in A$$

Angenommen $a \notin A \implies a \in \mathcal{C}A, \mathcal{C}A$ ist offen

$$\implies \exists I_{\varepsilon}(a) \subseteq \mathcal{C}A \implies I_{\varepsilon}(a) \cap A = \emptyset$$

Nun ist aber mit geeigneten $n_{\varepsilon} \in \mathbb{N}$

$$\forall n \ge n_{\varepsilon} : a_{n_k} \in I_{\varepsilon}(a) : a_{n_k} \in A \implies a_{n_k} \in I_{\varepsilon}(a) \cap A$$

Bemerkung 3. • Erweiterung zu \mathbb{R}^n möglich

- Ein Raum heißt folgenkompakt, wenn jede beschränkte Folge eine konvergente Teilfolge hat
 - Nach B-W Satz ist $\mathbb{R}(\mathbb{R}^n)$ folgenkompakt
- In \mathbb{R} alle Cauchy-Folgen konvergieren
 - Cauchy Folge in \mathbb{R} \Longrightarrow beschränkt und Wertemenge ist abgeschlossen $\xrightarrow{B-WSatz} (a_n)_{n\in\mathbb{N}}$ hat einen Häufungswert in $A \stackrel{2}{\Rightarrow}$ konvergiert gegen $a \in A$

4.5 Rechenregeln für Grenzwerte von Folgen

Satz 5. Seien $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ konvergente Folgen in $\mathbb{K}(\mathbb{R} \ oder \mathbb{C})$

$$b_0 \neq 0 \,\forall \, n \in \mathbb{N}, \lim_{n \to \infty} b_n \neq 0$$

Dann gilt:

1.
$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

2.
$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n$$

3.
$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

Satz 6 2.15. Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen in \mathbb{R} . Dann gilt

1.
$$a_n \le b_n \, \forall \, n \in \mathbb{N} \implies \lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

2.
$$|a_n| \le b_n \, \forall \, n \in \mathbb{N} \implies |\lim_{n \to \infty a_n}| \le \lim b_n$$

Beweis. 1. Sei $\varepsilon > 0$ vorgegeben

$$\exists n_{\varepsilon} : \forall n \geq n_{\varepsilon} : b_n \leq \lim_{k \to \infty} b_n + \frac{\varepsilon}{2}$$

und

$$\lim_{k \to \infty} a_k \le a_n + \frac{\varepsilon}{2}$$

$$\implies \lim_{k \to \infty} a_k \le a_n + \frac{\varepsilon}{2} \le b_n + \frac{\varepsilon}{2} \le \lim_{k \to \infty} b_k + \varepsilon \, \forall \, \varepsilon > 0$$

$$\implies \lim_{k \to \infty} a_k \le \lim_{k \to \infty} b_k$$

2. Wir wählen $a_n = |a_n|$ und müssen noch zeigen

$$\lim_{n \to \infty} |a_n| = \left| \lim_{n \to \infty} |a_n| \right|$$
 (Übung)

4.6 Geometrische Folge

Die geometrische Folge ist definiert durch

$$a_n = cq^n$$

Lemma 4 2.16. $\forall q \in \mathbb{R}, |q| < 1$ konvergiert die geometrische Folge $a_n = cq^n$ gegen Null.

Beweis. Sei $\varepsilon>0$ gegeben. Nach Annahme ist $|q|<1\implies |q|^{-1}>1,$ somit $|q|^{-1}=1+x$ für ein x>0.

Zu zeigen: $|cq^n-0|<\varepsilon$ für genug große n, das heißt

$$c\left(\frac{1}{1+x}\right)^n < \varepsilon \iff \frac{c}{\varepsilon} < (1+x)^n$$

Das Archimedisches Axiom garantiert die Existenz von $n_0 \in \mathbb{N}$:

$$n_0 > \frac{c}{x\varepsilon} - \frac{1}{x} = \frac{c - \varepsilon}{x\varepsilon}$$

$$\forall n \ge n_0 : \frac{c}{\varepsilon} = \left(\frac{c}{x\varepsilon} - \frac{1}{x}x + 1 < n_0x + 1 \le nx + 1\right)$$

daraus folgt aus der Bernoulli Ungleichung

$$\frac{c}{\varepsilon} < (1+x)^n \implies cq^n \to 0$$

Folgerung 1 2.17. Die geometrische Reihe

$$S_n = 1 + q + q^2 + \ldots + q^n = \sum_{i=0}^n q^i$$

konvergiert für |q| < 1 und $\lim_{n \to \infty} S_n = \frac{1}{1-q}$

Beweis.

zu Beweisen mit Induktion

$$(1-q)(1+q+q^{2}+\ldots+q^{n}) = 1+q^{n+1}$$

$$\implies S_{n} - \frac{1}{1-q} = \frac{1-q^{n+1}-1}{1-q} = -\frac{q^{n+1}}{1-q}$$

$$\left|S_{n} - \frac{1}{1-q}\right| = c|q|^{n} < \varepsilon \,\forall \, n \ge n_{\varepsilon}$$

 $c = \left| \frac{1}{1 - q} \right|$

$$s_n \to \frac{1}{1-q}$$

Beispiel 4 2.18.

1.
$$\lim_{n \to \infty} \frac{10^n}{n!} \le \lim_{n \to \infty} cq^n \text{ mit } |q| < 1$$

2.
$$a_n = \sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right) = \sqrt{n} \frac{n+1-1}{\sqrt{n+1}+\sqrt{n}} = \frac{\sqrt{n}}{\sqrt{n+1}} + \sqrt{n} = \frac{1}{\sqrt{1+1_n}+1} \xrightarrow{n \to \infty} \frac{1}{2}$$

3.
$$a_n = \sqrt[m]{x}$$
, x gegeben, $\xrightarrow{n \to \infty} 1$ Übungen

4.
$$a_n = \sqrt[n]{m} \xrightarrow{n \to \infty} 1$$

- 5. $a_n = \sum_{i=0}^n \frac{1}{i!}$
 - $(a_n)_{n\in\mathbb{N}}$ ist monoton wachsend
 - beschränkt: $a_n < 3 \,\forall \, n \in \mathbb{N}$
 - \implies $(a_n)_{n\in\mathbb{N}}$ konvergiert, Limes ist sogenannten Zahl e
- 6. $(a_n)_{n\in\mathbb{N}}$ rekursiv definiert: $a_0=0, a_1=1, a_n=a_{n-1}+a_{n-2}$ Fibonacci Folge

4.7 Umgebung

Definition 2 2.19. $A \subseteq \mathbb{K}$ heißt Umgebung von $a \in \mathbb{K} \iff \exists \varepsilon > 0I_{\varepsilon}(a) \subseteq A$

Folgerung 2 2.20. Aus der Definition folgt

- 1. Sei $U_i, i \in I$ Umgebung von a, so ist $\bigcup_{i \in I} U_i$ Umgebung von a
- 2. Sind U_1, \ldots, U_n Umgebung von a, so ist auch $U_1 \cap \ldots U_n$ Umgebung von a
- 3. \forall Umgebung von $a:\exists$ Umgebung von a, sodass $\forall y \in V, U$ Umgebung von y ist

Beweis. 1. Für irgendein

$$i_0 \in I \exists \varepsilon > 0 : I_{\varepsilon}(a) \subseteq U_{i_0} \subseteq \bigcup_{i \in I} U_i$$

- 2. Es gilt nach Voraussetzung $\varepsilon_1, \ldots, \varepsilon_n > 0$ mit $I_{\varepsilon_i}(a) \subseteq U_i$ für $i = 1, \ldots, n$. Folglich gilt für $\varepsilon := \min\{\varepsilon_1, \ldots, \varepsilon_n\} > 0$, $I_{\varepsilon}(a) \subseteq U_i (\forall i = 1, \ldots, n) \implies I_{\varepsilon}(a) \subseteq U_1 \cap \ldots U_n$
- 3. Nach Voraussetzung gibt es für eine Umgebung U von a ein $\varepsilon > 0$ mit $I_{\varepsilon}(a) \subseteq U$ $V := I_{\frac{\varepsilon}{2}}(a) \subseteq U$ ist ebenfalls Umgebung von a und $\forall y \in V$ gilt

$$I_{\frac{\varepsilon}{2}} \subseteq I_{\varepsilon}(x) \subseteq U, \text{ denn } \underbrace{|y-z|}_{z \in I_{\frac{\varepsilon}{2}}} < \frac{\varepsilon}{2} \implies |x-z| \le |x-y| + |x-z| < \varepsilon$$

Definition 3 2.21.

1. $A \subseteq \mathbb{K}$ ist offen $\iff \forall a \in A$ ist A die Umgebung von a (in $\mathbb{R} \ \forall a \in A \ \exists \ \varepsilon > 0 I_{\varepsilon}(a) \subseteq A$) Für Intervalle (a,b) haben wir schon gezeigt, dass sie offen sind

- 2. $A \subseteq \mathbb{K}$ heißt abgeschlossen $\iff C_{\mathbb{K}}A$ offen
- 3. Abschließung von A:

$$\bar{A} := \{ a \in \mathbb{K} \mid a \in A \lor a \text{ Häufungspunkt von } A \}$$

4. Rand von A:

$$\partial A := \{ a \in \mathbb{K} \mid \forall \text{ Umgebung } U \text{ von } a : A \cap U \neq \emptyset \land CA \cap U \neq \emptyset \}$$

Beispiel 5 2.22.

$$A = (a, b]$$

$$\bar{A} = [a, b]$$

$$\partial A = \{a, b\}$$

$$\forall \varepsilon > 0I_{\varepsilon}(a) \cap (a, b] \neq \emptyset$$

$$I_{\varepsilon}(a) \cap \mathbb{R} \setminus (a, b] \neq \emptyset$$

Sei $A = \mathbb{Q}$, dann $\bar{A} = \mathbb{R}$, $\partial A = \mathbb{R}$ denn in jedem \$\varepsilon\$\$\varepsilon\$-Intervall um eine rationale Zahl gibt es sowohl rationale als auch irrationale Zahlen Bemerkung 4.

• Die Grenzwerte und Häufungswerte kann man auch in ganz

$$\mathbb{R} \cup \{\infty\} \cup \{\infty\} =: \hat{\mathbb{R}}$$

mit einer neuen Definition von Abstand:

$$(x,y) := |\xi(x) - |\xi(y)||$$

$$\xi(x) := \begin{cases} \frac{|x|}{1+|x|} & x \in \mathbb{R} \\ \pm 1 & x = \pm \infty \end{cases}$$

- $\hat{\mathbb{R}}$ ist folgenkompakt
- Algebraische Operationen in $\hat{\mathbb{R}}$

$$x + \infty := \infty + x := \infty \,\forall \, x \in \mathbb{R} \cup \{\infty\}$$

$$x - \infty := -\infty + x := -\infty \,\forall \, x \in \mathbb{R} \cup \{-\infty\}$$

$$x \cdot \infty := \infty \cdot x := \begin{cases} \infty & \forall \, x \in \hat{\mathbb{R}}, x > 0 \\ -\infty & \forall \, x \in \hat{\mathbb{R}}, x < 0 \end{cases}$$

$$\frac{1}{\infty} = \frac{1}{-\infty} =: 0$$

Sinnlos wäre:

$$\infty - \infty, 0 \cdot \infty, 0 \cdot (-\infty), \frac{\infty}{\infty}, \dots$$

- Damit könne wir die Rechenregeln auch für Folgen in $\hat{\mathbb{R}}$ formulieren
- In $\hat{\mathbb{R}}$ hat jede Folge einen Häufungswert

Definition 4 2.23. Sei $(a_n)_{n\in\mathbb{N}}$ ein Folge von reellen Zahlen, $\emptyset \neq H \subseteq \hat{\mathbb{R}}$ die Menge der Häufungswerte von (a_n) in $\hat{\mathbb{R}}$.

Dann sei:

$$\overline{\lim} a_n := \lim_{n \to \infty} \inf a_n := \inf H$$
 (Limes inferior)
$$\underline{\lim} a_n := \lim_{n \to \infty} \sup a_n := \inf H$$
 (Limes superior)

Bemerkung 5.

1. Definition 4 kann man auch für \mathbb{R} formulieren

2.

$$a = \lim_{n \to \infty} \inf a_n \iff \forall \, \varepsilon \begin{cases} (1)\{n \mid |a - a_n| < \varepsilon\} \text{ ist unendlich (weil } a \text{ H\"{a}ufungswert ist)} \\ (2)\{n \mid a_n < a - \varepsilon\} \text{ ist endlich (} a \text{ ist kleinste H\"{a}ufungswert)} \end{cases}$$

Beispiel 6 2.24.

$$a_n = n + (-1)^n n$$

$$a_{2n+1} = 0 \,\forall \, n \implies 0 \text{ ist H\"{a}}\text{ufungswert}$$

$$a_{2n} = 4n \to \infty \implies \infty \text{ ist H\"{a}}\text{ufungswert}$$

also gilt

$$\lim_{n \to \infty} \inf a_n = 0$$
$$\lim_{n \to \infty} \sup a_n = \infty$$

Bemerkung 6.

- $a_n \to a$ in $\hat{\mathbb{R}} \iff \lim_{n \to \infty} \inf a_n = a = \lim_{n \to \infty} \sup a_n$
- $\lim_{n\to\infty} \inf a_n + \lim_{n\to\infty} \inf b_n \le \lim_{n\to\infty} \inf (a_n + b_n)$
- $\lim_{n\to\infty}\inf a_n\cdot\lim_{n\to\infty}\inf b_n\leq \lim_{n\to\infty}\inf (a_n\cdot b_n)$ für $a_n,b_n>0$
- $\lim_{n\to\infty} \sup a_n + \lim_{n\to\infty} \sup b_n \ge \lim_{n\to\infty} (a_n + b_n)$ (zum Beispiel betrachte $a_n = n^2, b_n = \frac{1}{n}$)

5 Reihen (Unendliche Summen)

Definition 5 2.19. Eine Reihe

$$\sum_{k=1}^{\infty} a_k$$

(unendliche Summe) konvergiert, wenn die Folge ihrer Partialsummen konvergiert

$$s_n = \sum_{k=1}^n \xrightarrow{n \to \infty} S_\infty < \infty$$

Beispiel 7.

1.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{n} \xrightarrow{n \to \infty} \infty$$

2.
$$S_n = \sum_{k=1}^n (-1)^k = \begin{cases} -1 & n \text{ ungerade} \\ 0 & n \text{ gerade} \end{cases}$$
 S_n $(=-1,0,-1,0,\ldots)$ konvergiert nicht

3.
$$S_n = \sum_{j=0}^n z^j = \frac{1-z^{n+1}}{1-z}$$
 Für $|z| < 1$ konvergiert $S_n \to \frac{1}{1-z} \implies \sum_{j=0}^\infty z^j = \frac{1}{1-z}$

4. Harmonische Reihe: Seien $S_n = \sum_{k=1}^n \frac{1}{k}$, Behauptung $\lim_{n \to \infty} S_n = \infty$, also divergent

Beweis von 4.

$$S_{2^{n+1}} = \sum_{k=1}^{2^{n+1}} \frac{1}{k} = 1 + \frac{1}{2} + \sum_{j=1}^{n} \sum_{k=2^{j+1}}^{2^{j+1}} \frac{1}{k} \ge 1 + \frac{1}{2} + \sum_{j=1}^{n} \sum_{\substack{k=2^{j+1} \\ 2^{j} \text{ Summanden}}}^{2^{j+1}} \frac{1}{2^{j+1}}$$

$$= 1 + \frac{1}{2} + \sum_{j=1}^{n} 2^{j} \frac{1}{2^{j+1}} = 1 + \frac{1}{2} + \sum_{j=1}^{n} \frac{1}{2} = 1 + \frac{1}{2} + \frac{1}{2} n \xrightarrow{n \to \infty} \infty$$

Satz 7. Seien $\sum_{k=0}^{\infty} a_k$, $\sum_{k=0}^{\infty} b_k$ konvergente Reihen, $\alpha \in \mathbb{R}$, dann sind auch die Reihen

$$\sum_{k=0}^{\infty} (a_k + b_k), \sum_{k=0}^{\infty} \alpha a_k$$

konvergent und es gilt

$$\sum_{k=0}^{\infty} (a_k + b_k) = \sum_{k=0}^{\infty} a_k + \sum_{k=0}^{\infty} b_k, \sum_{k=0}^{\infty} \alpha a_k = \alpha \sum_{k=0}^{\infty} a_k$$

Beweis. Aus den Rechenregeln für konvergente Folgen

5.1 Konvergenzkriterien

Cauchy Kriterium für Partialsummen besagt, dass eine Reihe genau dann konvergent ist, wenn

$$\forall \varepsilon > 0 \,\exists \, n_{\varepsilon} \in \mathbb{N} : \forall \, n > m \ge n_{\varepsilon} : |s_n - s_m| = \left| \sum_{k=m+1}^n a_k \right| < \varepsilon$$

Lemma 5 2.28 Reihenkonvergenz. Eine Reihe $\sum_{k=1}^{\infty} a_k$ kann nur dann konvergent sein, wenn ihre Partialsummen beschränkt sind und ihre Glieder eine Nullfolge bilden

Beweis. Sei
$$s_{\infty} = \sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} s_n$$
. Dann gilt

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s_\infty - s_\infty = 0$$

Die Beschränktheit der Partialsummen folgt notwendig aus der Beschränktheit konvergenter Folgen. $\hfill\Box$

Satz 8 2.29. Sei
$$(a_k)_{k\in\mathbb{N}}$$
 eine Nullfolge. Dann $\sum_{k=1}^{\infty} (a_k - a_{k+1}) = a_1$

Beweis.

$$s_n = \sum_{k=1}^n (a_k - a_{k+1}) = \sum_{k=1}^n a_k - \sum_{k=2}^{n+1} a_k = a_1 - a_{n+1} \implies |s_n - a_1| = |a_{n+1}| \xrightarrow{n \to \infty} 0$$

Beispiel 8 2.30.

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \left(\underbrace{\frac{1}{k}}_{a_k} - \underbrace{\frac{1}{k+1}}_{a_{n+1}} \right) = a_1 = \frac{1}{2}$$

Definition 6 2.31. Eine Reihe $s_{\infty} = \sum_{k=1}^{\infty} a_k$ in \mathbb{R} heißt alternierend, wenn ihre Elemente alternierende Vorzeichen haben, das heißt $a_n \cdot a_{n+1} \leq 0$

- Satz 9 2.32. 1. Eine alternierende Reihe $s_{\infty} = \sum_{k=1}^{\infty} a_k$ ist konvergent, wenn die Absolutbeträge ihrer Glieder eine monoton fallende Nullfolge bilden
 - 2. Für die Reihenreste gilt dabei die Abschätzung

$$\left| \sum_{k=m}^{\infty} a_k \right| \le |a_m|$$

Beweis. 1. Sei ohne Beschränkung der Allgemeinheit $a_1 > 0$. Dann ist $a_{2n-1} + a_{2n} \ge 0$, $a_{2n} + a_{2n+1} \ge 0$ Und folglich

$$s_{2n+1} = a_1 + a_2 + a_3 + \ldots + a_{2n} + a_{2n+1} \le s_{2n-1} \le \ldots \le s_3 \le s_1$$

$$s_{2n} = (a_1) + (a_2 + a_4) + \ldots + \left(\underbrace{a_{2n-1} + a_{2n}}_{\geq 0}\right) \geq s_{2n-2} \geq \ldots \geq s_2$$

Ferner gilt

$$s_{2n+1} - s_{2n} = a_{2n+1} \ge 0$$

und somit

$$s_2 \le \ldots \le s_{2n} \le s_{2n+1} \le \ldots \le s_1$$

 (S_{2n}) monoton wachsend, s_{2n+1} monoton fallend, beide beschränkt

$$\implies s_{2n} \xrightarrow{n \to \infty} s_*, \implies s_{2n+1} \xrightarrow{n \to \infty} s^*$$
$$s_{sn} \le s_* \le s^* \le s_{2n+1}$$

da (a_n) Nullfolge

$$|s_{2n+1} - s_{2n}| = |a_{2n+1}| \to 0$$

 $s_* = s^* = s_{\infty}$

2. Aus 1. folgt m = 2n + 1

$$0 \le s_{\infty} - s_{2n} = \sum_{k=2n+1}^{\infty} a_k = s_{\infty} - s_{2n+1} + a_{2n+1} \le a_{2n+1}$$

und sonst

$$\left| \sum_{k=2n+1}^{\infty} a_k \right| \le |a_{2n+1}|$$

Analog im Fall m = 2n

Beispiel 9 2.33.

1.
$$s_{\infty} = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \dots$$
 konvergiert nach dem Leibniz

Kriterium

$$\left| \frac{(-1)^{k-1}}{k} \right| = \frac{1}{k} \to 0 \text{ monoton}$$

2. Die Leibniz Reihe $s_{\infty}=\sum_{k=0}^{\infty}\frac{(-1)^k}{2k+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots$ konvergiert nach Leibniz Kriterium

Bemerkung 7 Monotonie ist wichtig.

$$\sum_{k=1}^{\infty} a_k \text{ mit } a_{2k} := -\frac{1}{2^k}, a_{2k-1} := \frac{1}{k}$$

ist divergent:

•
$$(1-1) + (1-1) + (1-1) + \dots = 0$$
, aber

•
$$1 + (-1 + 1) + (-1 + 1) + \dots = 1$$

Definition 7 2.34. $\sum_{k=1}^{\infty} a_k$ heißt absolut konvergent, genau dann wenn $\sum_{k=1}^{\infty} |a_k|$ konvergent ist

Satz 10 2.35. Sei $\sum_{k=1}^{\infty} |a_k|$ konvergent in \mathbb{R} . Dann ist $\sum_{k=1}^{\infty} a_k$ konvergent

Beweis. Mit Cauchy Kriterium:

$$\left| \sum_{k=m}^{n} a_k \right| \le \sum_{k=m}^{n} |a_k| < \varepsilon$$

aus der absoluten Konvergenz

Satz 11 2.36 Umordnungssatz. Sei $\sum_{k=1}^{\infty} a_k$ eine absolut konvergente Reihe in \mathbb{R} . Dann gilt für jede bijektive Abbildung $\tau: \mathbb{N} \to \mathbb{N}$

$$\sum_{k=1}^{\infty} a_{\tau(k)} = \sum_{k=1}^{\infty} a_k$$

Beweis. Ranacher für spezifische Umordnung

Beispiel 10 2.37. $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ konvergent (aber nicht absolut)

Behauptung: \exists Umordnung $\tau,$ sodass $\sum_{k=1}^{\infty} \frac{(-1)^{\tau(k)-1}}{\tau(k)}$ divergiert Beachte

$$\frac{1}{2^j+1} + \frac{1}{2^j+3} + \ldots + \frac{2 \cdot 2^j - 1}{\leq} 2^{j-1} \frac{1}{2^{j+1}} = \frac{1}{4}$$

⇒ Die Umordnung

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \left(\frac{1}{5} + \frac{1}{7}\right) - \frac{1}{6} + \underbrace{\left(\frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15}\right)}_{\geq \frac{1}{4} - \frac{1}{8} = \frac{1}{8}} - \frac{1}{8} + \ldots + \underbrace{\left(\frac{1}{2^{j} + 1} + \frac{1}{2^{j} + 3} + \ldots + \frac{1}{2^{j+1} - 1}\right)}_{> \frac{1}{4} - \frac{1}{8} = \frac{1}{8}} - \frac{1}{2^{k} + 2}$$

konvergiert nicht

Satz 12 2.38 Cauchyprodukt für Reihen. Seien $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ absolut konvergente Reihen

(in \mathbb{R} oder \mathbb{C}). Sei $c_m = \sum_{k=1}^m a_k b_{m-k}$. Dann konvergiert

$$\sum_{m=1}^{\infty} = \left(\sum_{k=1}^{\infty} a_k\right) \left(\sum_{k=1}^{\infty} b_k\right)$$

(ohne Beweis)

Satz 13 2.39 Vergleichskriterium. Gegeben seien zwei Reihen $s_{\infty} = \sum_{k=1}^{\infty} a_k, \tilde{s}_{\infty} = \sum_{k=1}^{\infty} \tilde{a}_k$

1. Gilt für fast alle $k \in \mathbb{N}$ mit einer Konstante $\alpha > 0 \quad |a_k| \le \alpha \tilde{a}_k$ (für fast alle $n \in \mathbb{N} := F$ ür alle $n \in \mathbb{N}$ außer endlich viele) so ist \tilde{s}_{∞} eine **Majorante** von s_{∞} und aus der absoluten Konvergenz von \tilde{s}_{∞} folgt auch die von s_{∞} , absolute Divergenz von s_{∞} impliziert die absolute Divergenz von \tilde{s}_{∞}

 $Beweis.\,$ ohne Beschränkung der Allgemeinheit nehmen wir an, dass die Voraussetzungen $\forall\,k\in\mathbb{N}$ gelten

1. Ist \tilde{s}_{∞} konvergent

$$\implies \sum_{k=1}^{n} |a_k| \le \alpha \sum_{k=1}^{n} |\tilde{a}_k| \le \alpha \sum_{k=1}^{\infty} \tilde{a}_k, \forall n \in \mathbb{N}$$

 $\Longrightarrow S_n$ sind beschränkt, S_∞ absolut konvergent Umgekehrt folgt aus Divergenz von \tilde{S}_∞ auch $\sum_{k=1}^\infty |a_k| \to \infty \Longrightarrow \tilde{S}_\infty$ auch Divergent

2. Aus Voraussetzung

$$\left| \frac{a_{k+1}}{\tilde{a}_{k+1}} \right| \le \left| \frac{a_{k+1}}{a_k} \right| \left| \frac{a_k}{\tilde{a}_{k+1}} \right| \le \left| \frac{\tilde{a}_{k+1}}{\tilde{a}_k} \right| \left| \frac{a_k}{\tilde{a}_{k+1}} \right| = \left| \frac{a_k}{\tilde{a}_k} \right| \le \ldots \le \left| \frac{a_1}{\tilde{a}_1} \right| =: \alpha$$

 $\implies |a_{k+1}| \le \alpha |a_k|$. Aus 1. folgt die Aussage

Korollar1 2.34 Wurzelkriterium. Eine Reihe $\sum_{k=1}^{\infty}a_k$ konvergiert absolut, wenn es ein

 $g\in(0,1)$ gibt, mit dem für f.a. (fast alle) $k\in \mathbb{R}$ gilt $\sqrt[k]{|a_k|}\le q\le 1$, beziehungsweise $\lim_{k\to\infty}\sup\sqrt{|a_k|}<1$

Wenn für unendlich viele $k \in \mathbb{N}$ gilt $\sqrt[k]{|a_k|} > 1$, beziehungsweise $|a_k| > 1$, so ist die Reihe absolut divergent.

Beweis. Nach Voraussetzung $|a_k| \leq q^k$, das heißt die konvergierende geometrische Reihe \tilde{s}_{∞} mit $q \in (0,1)$ ist Majorante für s_{∞}

Korollar 2 2.41 Quotientenkriterium. Eine Reihe $\sum_{k=0}^{\infty} a_k$ konvergiert absolut, wenn es ein $q \in (0,1)$ gibt mit dem für f.a. $k \in \mathbb{N}$ gilt

$$\left| \frac{a_{k+1}}{a_k} \right| \le q < 1$$
, bzw. $\lim_{k \to \infty} \sup \left| \frac{a_{k+1}}{a_k} \right| < 1$

Wenn für fast alle $k \in \mathbb{N}$ gilt $\left| \frac{a_{k+1}}{a_k} \right| \ge 1$, so ist die Reihe absolut divergent

Beweis. Vergleich mit

$$\tilde{s}_{\infty} \sum_{k=1}^{\infty} q^k$$

Beispiel 11 2.42.

1.
$$s_{\infty} \sum_{k=1}^{\infty} \frac{z^k}{k!}, z \in \mathbb{C}$$

Quotientenkriterium:

$$\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{z^{k+1}}{(k+1)!} \frac{k!}{z^k} \right| = \left| \frac{z}{k+1} \right|$$

Sei $k \geq 2|z| \implies \left|\frac{z}{k+1}\right| \leq \frac{1}{2} \implies s_{\infty}$ absolut konvergent.

$$2. \sum_{k=1}^{\infty} \frac{k!}{k^k}$$

$$\left| \frac{(k+1)!}{(k+1)^{k+1}} \frac{k^k}{k!} \right| = \left| \frac{k}{k+1} \right|^k = \frac{1}{\left(1 + \frac{1}{k}\right)^k} \le \frac{1}{1 + k\frac{1}{k}} = \frac{1}{2}$$

 $\implies s_{\infty}$ absolut konvergent

Bemerkung8. 1. Falls $q=1 \implies$ die Kriterien geben keine Entscheidung, zum Beispiel:

$$\sum_{k=1}^{\infty} \frac{1}{k} \vee \sum_{k=1}^{\infty} \frac{1}{k^2}$$
$$\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{k}{k+1} \right| \to 1$$
$$\left| \frac{a_{k+1}}{a_k} \right| = \frac{k^2}{(k+1)^2} \to 1$$

2. Für die Divergenz ist es wichtig, dass $\exists n_0 \, \forall \, n \geq n_0 a_n > 0$, Wir nehmen

$$a_n = \begin{cases} \frac{1}{n^2} & n = 2^k \\ 2(2^{-k})^2 & n - 1 = 2^k \\ 0 & \end{cases}$$

 $\sum a_n$ konvergiert, aber $\lim_{a_n \neq 0} \frac{a_{n+1}}{a_n} = 2$

Lemma 6 2.43 Cauchy Verdichtungssatz. Eine Reihe $s_{\infty} = \sum_{k=1}^{\infty} a_k$, mit $a_k \in \mathbb{R}_+$, die monoton fallende Nullfolge bilden hat dasselbe Konvergenzverhalten wie die verdichtete Reihe

$$\sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + \dots$$

Beweis. Wir setzen $s_n := \sum_{k=1}^n a_k, \tilde{s}_n := \sum_{k=0}^n 2^k a_{2^k}$

Für $n < 2^{k+1}$

$$S_n = a_1 + (a_2 + a_3) + \ldots + (a_{2^k} + \ldots + a_{k^{k+1}-1}) \le a_1 + 2a_2 + 4a_4 + \ldots + 2^k a_{2^k} = \tilde{s}_n$$

 \implies Konvergenz von \tilde{s}_k impliziert Konvergenz von S_n

Falls die verdichtete Reihe divergent ist, so folgt aus der für $n \geq 2^{k+1}$ gültigen Beziehung

$$s_n \ge a_1 + a_2 + (a_3 + a_4) + (a_5 + \dots + a_8) + \dots + (a_{2^k + 1} + \dots + a_{2^{k+1}})$$

 $\ge a_1 + a_2 + 2a_4 + 4a_8 + \dots + 2^k a_{2^{k+1}} \ge \frac{1}{2} \tilde{S}_{k+1}$

auch die Divergenz von S_n

5.2 Potenzreihe

$$S_{\infty} = \sum_{k=0}^{\infty} c_k (x - x_0)^k$$

mit den Koeffizienten $c_k \in \mathbb{K}$, Zentrum $x_0 \in \mathbb{K}$ und Argument $x \in \mathbb{K}$

- Die geometrische Reihe ist ein Spezialfall der allgemeinen Potenzreihe
- Unendlicher Dezimalbruch

$$0, d_1, d_2, d_3, \dots = \sum_{k=1}^{\infty} d_k 10^{-k}, d_k \in \{0, 1, \dots, 9\}$$

Satz 14 2.44 Potenzreihen. Eine Potenzreihe $\sum_{k=0}^{\infty} c_k (x-x_0)^k$ konvergiert absolut $\forall x \in \mathbb{K}$ mit der Eigenschaft

$$|x - x_0| < \rho := \frac{1}{\lim_{k \to \infty} \sup \sqrt[k]{|c_k|}}$$

 $F\ddot{u}r |x - x_0| > \rho \text{ ist sie divergent}$

Beweis. Für $x \neq x_0$ gilt

$$\lim_{k \to \infty} \sup \sqrt[k]{\left|c_k |x - x_0|^k\right|} = |x - x_0| \lim_{k \to \infty} \sup \sqrt[k]{|c_k|} = \frac{|x - x_0|}{\rho} = \begin{cases} <1 & |x - x_0| < \rho \\ >1 & |x - x_0| > \rho \end{cases}$$

Bemerkung 9. Falls $\rho = \infty$, konvergiert die Reihe $\forall x \in \mathbb{K}$ Falls $\rho = 0$, konvergiert die Reihe für kein $x \neq x_0$

- Die Konvergenz
grenze ρ ist die größt mögliche und wird Konvergenz
radius der Reihe bezeichnet
- Für $\limsup \sqrt[k]{|c_k|} = \infty$ konvergiert die Reihe für kein $x \neq x_0$ und wir setzen $\rho 0$
- Falls $\limsup \sqrt[k]{|c_k|} = 0 \implies \rho = \infty$

5.3 Exponentialreihe

$$\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

ist eine Potenzreihe. Ihr Konvergenzradius

$$\rho = \frac{1}{\lim_{n \to \infty} \sup \sqrt[n]{|a_n|}} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{1}{n!}}} = \lim_{n \to \infty} \sqrt[n]{n!} = \infty$$

Satz 15 2.45. Der Wert der exp Reihe für x = 1 ist die Eulersche Zahl e

$$\exp(1) = \sum_{k=0}^{\infty} \frac{1}{k!} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n =: e$$

Diese ist irrational

Beweis. In Übung 6.2 gezeigt

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Angenommen $e = \frac{p}{q}, p, q \in \mathbb{N}, q > 1$. Betrachte Abschätzung, für die Restgliederdarstellung von e:

$$s_{n+m} - s_n = \left(1 + \frac{1}{1!} + \dots + \frac{1}{(m+n)!}\right) - \left(1 + \frac{1}{1!} + \dots + \frac{1}{n!}\right)$$

$$= \frac{1}{(n+1)!} + \dots + \frac{1}{(m+n)!}$$

$$= \frac{1}{(n+1)!} \left(1 + \frac{1}{n+1} + \dots + \frac{1}{(n+1)^{m-1}}\right) = \frac{1}{(n+1)!} \sum_{k=0}^{m-1} \frac{1}{(n+1)^k}$$

für $x = \frac{1}{(n+1)}$ erhält man

$$= \frac{1}{(n+1)!} \frac{1-x^m}{1-x}$$

$$\leq \frac{1}{(n+1)!} \frac{1}{1-x} = \frac{1}{(n+1)!} \frac{n+1}{n}$$

Da dies für alle $m \in \mathbb{N}$, folgt

$$0 < e - s_n \le \frac{1}{n!n} \implies 0 < en! - s_n n! \le \frac{1}{n!}$$

6 Stetige Abbildungen

6.1 Grenzwert einer Funktion, Stetigkeit

Wir betrachten die Funktion

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{e^x - x}{x}$$

und wollen diese auf ganz \mathbb{R} fortsetzen, das heißt Wir suchen ein $\tilde{f}: \mathbb{R} \to \mathbb{R}$ mit $\tilde{f} \mid \mathbb{R} \setminus \{0\} = f$ und einen Wert $\tilde{f}(0) \in \mathbb{R}$

Allgemeiner überprüft man für Funktionen $f:D\subseteq\mathbb{K}\to\mathbb{K}$ die Fortsetzbarkeit auf den Abschluss $\bar{D}\subseteq\mathbb{K}$, wobei

$$\bar{D} = \{ x \in \mathbb{K} \mid x \in D \lor \text{ oder } x \text{ ist HP von D} \}$$
$$= \{ x \in \mathbb{K} \mid \exists (x_n)_{n \in \mathbb{N}} \subseteq D \land x = \lim_{n \to 0} x_n \}$$

(analog zur Plenarübung)

Definition 8 3.1. Eine Funktion $f: D \subseteq \mathbb{K} \to \mathbb{K}$ hat im Punkt $x_0 \in \overline{D}$ einen Grenzwert $a \in \mathbb{K}$, wenn alle Folgen $(x_n)_{n \in \mathbb{N}} \subseteq D$ gilt:

$$x_n \to x_0(n \to \infty) \implies f(x_n) \to a(n \to \infty)$$

Wir schreiben kurz: $\lim_{x\to x_0} f(x) = a$

Bemerkung 10. • Falls der Grenzwert existiert, ist er eindeutig.

• Ist $T \subseteq D \subseteq \mathbb{R}, T \neq \emptyset, f: D \to \mathbb{R}, x \in \overline{T}$, dann verstehen wir unter

$$\lim_{\substack{x \to x_0 \\ x \in T}} f(x)$$

den Grenzwert $\lim_{x\to x_0} f \mid T$, falls er existiert.

• Spezialfälle:

$$T_{>} := \{x \in D \mid x > x_0\} : f(x_0^+) := \lim_{\substack{x \to x_0 \\ x \in T_{>}}} f(x) = \lim_{\substack{x \to x_0^+ \\ x \in T_{>}}} f(x)$$

(rechtsseitiger Grenzwert)

$$T_{<} := \{ x \in D \mid x < x_0 \} : f(x_0^-) := \lim_{\substack{x \to x_0 \\ x \in T_{<}}} f(x) = \lim_{\substack{x \to x_0^- \\ x \in T_{<}}} f(x)$$

(linksseitiger Grenzwert)

• Existiert $\lim_{x\to x_0} f(x), x_0 \in \bar{T} \subseteq \bar{D}$, dann gilt

$$\lim_{x \to x_0 x \in T} f(x) = \lim_{x \to x_0} f(x)$$

• Es gelten die üblichen Rechenregeln für Grenzwerte $(x,\cdot,:)$

Beispiel 12 3.2. 1. $f: \mathbb{R} \setminus \{0\}, x \mapsto \frac{x}{|x|}$

$$\lim_{x \to 0^+} f(x) = 1 \land \lim_{x \to 0^-} f(x) = -1$$

Also existiert $\lim_{x\to 0} f(x)$ nicht

2. $f: \mathbb{R} \setminus \{0\}, x \mapsto \frac{e^x - 1}{x}$ Es gilt $\lim_{x \to 0} f(x) = 1$, denn für $|x| \le 1, x \ne 0$ gilt

$$|f(x) - 1| = \left| \frac{e^x - 1 - x}{x} \right| = \left| \sum_{k=2}^{\infty} \frac{x^{k-1}}{k!} \right| \le |x| \sum_{k=2}^{\infty} \frac{|x|^{k-2}}{k!} \le |x| \sum_{k=2}^{\infty} \frac{1}{k!} = |x| \underbrace{(e-2)}_{>0}$$

Für Nullfolgen $(x_n)_{n\in\mathbb{N}}\subseteq [-1,1]\setminus\{0\}$ folgt $\lim_{n\to\infty}f(x_n)=1$ Das heißt f besitzt eine Fortsetzung

$$\tilde{f}: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} \frac{e^x - 1}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

Definition 9 3.3 Asymptotisches Verhalten. Sei $\emptyset \neq D \subseteq \mathbb{R}$ nach oben (nach unten) unbeschränkt. Die Funktion $f: D \to \mathbb{R}$ hat für $x \to +\infty (x \to -\infty)$ einen Grenzwert $a \in \mathbb{R}$, wenn gilt:

$$\forall \varepsilon > 0 \,\exists y \in \mathbb{R} : |f(x) - a| < \varepsilon \,\forall x \in D, x > y(x < y)$$

Schreibweise: $\lim_{x\to\infty} f(x) = a$, oder $\lim_{x\to-\infty} f(x) = a$

Sei $x_0 \in \bar{D}$. Die Funktion f divergiert bestimmt gegen $+\infty(-\infty)$: $\iff \forall K \in \mathbb{R}_+ \exists \delta > 0 : f(x) > K(f(x) < -K) \forall x \in I_{\delta}(x_0) \cap (D \setminus \{x_0\})$

Schreibweise: $f(x) \to +\infty (f(x) \to -\infty)$ für $x \to x_0$

Beispiel 13 3.4. 1. $f: \mathbb{R} \setminus \{1\}, x \mapsto \frac{1}{x-1}$

$$\lim_{x \to \infty} \frac{1}{x} = 0 = \lim_{x \to -\infty} \frac{1}{x}$$

wir schreiben kurz $\lim_{|x|\to\infty} \frac{1}{x} = 0$

2. $\forall k \in \mathbb{N}$ gilt

$$\lim_{x \to \infty} \frac{x^k}{e^x} = 0 = \lim_{x \to -\infty} x^k e^x, \text{ denn } e^x = \exp(x) \ge \frac{x^{k+1}}{(k+1)!}, x \ge 0$$

$$\implies \frac{x^k}{e^x} \le \frac{(k+1)!}{x} \to 0 (x \to \infty)$$

$$x^k e^x = \frac{(-1)^k |x|^k}{e^{|x|}}, x < 0$$

Definition 10 3.5. Eine Funktion $f: D \subseteq \mathbb{K} \to \mathbb{K}$ heißt stetig im Punkt $x_0 \in D$, wenn gilt: Für alle Folgen $x_n \to x_0 (n \to \infty) \implies f(x_n) \to f(x_0) (n \to \infty)$ Andernfalls heißt sie unstetig in $x_0 \in D$. f heißt stetig (auf ganz D), wenn sie in jedem $x_0 \in D$ stetig ist. (insert Symbolbild hier)

Lemma 7 3.5. 1. Ist $f: D \to \mathbb{K}$ stetig, dann ist auch $f \mid T$ stetig, $T \subseteq D$

- 2. Ist $f: D \to \mathbb{K}$ stetig, so auch $\Re(f): D \to \mathbb{R}$, $\Im(f): D \to \mathbb{R}$, $|f|: D \to \mathbb{R}_+$ stetig (auf ganz D)
- 3. Sind $f, g: D \to \mathbb{K}$ stetig, so auch $f + g, f \cdot g: D \to \mathbb{K}$
- 4. Ist $f: D \to f(D) \subseteq \mathbb{K}, g: f(D) \to \mathbb{K}$ stetig in x_0 , beziehungsweise in $f(x_0) =: y_0$ so auch $f \circ f: D \to \mathbb{K}$ stetig in $x_0 \in D$:

Beweis. 1. Siehe Bemerkung zu Grenzwerte

- 2. Für z = a + ib gilt $||a| |b|| \le |a b|$ sowie $|z|^2 = a^2 + b^2 \ge a^2 \ge b^2$
- 3. Siehe Bemerkung zu Grenzwerte
- 4. Sei $(x_n)_{n\in\mathbb{N}}\subseteq D$ mit $\lim_{n\to\infty}x_n=x_0$, dann folgt aus Stetigkeit von $f:\lim_{n\to\infty}f(x_n)=f(x_0)$ $(g\circ f)(x_n)=g(f(x_n))\to g(f(x_0))=(g\circ f)(x_0)(n\to\infty)$

Lemma 8 3.7 ε/δ Kriterium. Eine Funktion $f: D \to \mathbb{K}$ ist in $x_0 \in D$ genau dann stetig, wenn es zu jedem $\varepsilon > 0$ ein $\delta = \delta(\varepsilon) > 0$ gibt, sodass Für alle $x \in D$ gilt:

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Beweis. (\iff): Gilt das ε/δ Kriterium, so ist f auch in x_0 offensichtlich stetig (\implies): Sei also f stetig in x_0 . Angenommen, dass $\$\varepsilon/\delta\$$ -Kriterium gälte nicht, das heißt es gibt ein $\varepsilon > 0$, sodass $\forall \delta > 0$ ein $x \in D$ mit $|x - x_0| < \delta$ und $|f(x) - f(x_0)| \ge \varepsilon$ gibt. Widerspruch zu

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Korollar 3 3.8. Sei $f: D \to \mathbb{K}$ stetig in $x_0 \in D$ mit $f(x_0) \neq 0$. Dann gibt es ein $\delta > 0$ mit $f(x) \neq 0$. Dann gibt es ein $\delta > 0$ mit $f(x) \neq 0 \, \forall \, x \in I_{\sigma}(x_0) \cap D$. Insbesondere ist $\frac{1}{f}: D \to \mathbb{K}$ stetig in $x_0 \in D$

Beweis. Setze $\varepsilon := |f(x_0)| > 0$. Dann gibt es ein $\delta > 0$, sodass $\forall x \in D$ mit $|x - x_0| < \delta$ folgt $|f(x) - f(x_0)| < \varepsilon$ (aus Stetigkeit von f), das heißt für $x \in I_{\sigma}(x_0) \cap D$ gilt

$$|f(x)| \ge |f(x_0)| - |f(x) - f(x_0)| > \varepsilon - \varepsilon = 0$$

Insbesondere sind Folgen $x_n \to x_0$ wohldefiniert und die Aussage resultiert aus den Rechenregeln für Folgen

Beispiel 14 3.9.

- 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = x$ ist stetig auf \mathbb{R}
- 2. Konstante Funktionen $f(x) = c \, \forall \, x \in \mathbb{R}$ sind stetig auf \mathbb{R}
- 3. Seien $a_0, \ldots, a_n \in \mathbb{R}, a_n \neq 0$, Dann heißt

$$p: \mathbb{R} \to \mathbb{R}, x \mapsto \sum_{k=0}^{n} a_k x^k$$

Polynom vom Grad $n \in \mathbb{N}_0$ und ist stetig (wegen 1. und 2. und Lemma 3.6)

4. Seien p, q Polynome, dann heißt

$$f: \{x \in \mathbb{R} \mid q(x) \neq 0\} \to \mathbb{R}, x \mapsto \frac{p(x)}{q(x)}$$

rationale Funktion und ist stetig nach 3. und Korollar 3.8

- 5. $g: \mathbb{R} \to \mathbb{R}, x \mapsto \sqrt{1+3x^2}$ ist stetig nach 3., Lemma 3.6 und Übung 5.1
- 6. $\exp:\mathbb{R}\to\mathbb{R}\setminus\{0\}, x\mapsto e^x$ ist stetig auf $\mathbb{R},$ denn für $x\neq x_0$ ist

$$e^{x} = e^{x_0}e^{x-x_0} = e^{x_0} \left(1 + \underbrace{(x-x_0)}_{\to 0} \underbrace{\frac{e^{x-x_0}-1}{(x-x_0)}}_{1}\right)$$

(nach Beispiel 3.2)

7.
$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Definition 11 3.10 Gleichmäßige Stetigkeit. Eine Abbildung $f:D\to \mathbb{K}$ heißt **gleichmäßig stetig** auf D, wenn $\forall \varepsilon>0\,\exists\,\delta=\delta(\varepsilon)<0:\forall x,y\in D:|x-y|<\delta\implies|f(x)-f(y)|<\varepsilon$

Bemerkung 11. Gleichmäßige Stetigkeit heißt, dass die δ gleichmäßig für alle Punkte $x \in D$ gewählt werden kann.

Beispiel 15 3.11.

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{1}{x}$$

- 1. f ist gleichmäßig stetig auf $A = \mathbb{R} \setminus (-a, a), a > 0$
- 2. f ist **nicht** gleichmäßig stetig auf $\mathbb{R} \setminus \{0\}$

Beweis.

$$|f(x) - f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right| = \frac{1}{|xy|} |x - y|$$

also $|f(x) - f(y)| < \varepsilon \iff |x - y| < |xy|\varepsilon$

- 1. Für $x, y \in \mathbb{R} \setminus (-a, a)$ gilt $|xy| \ge a^2$, also $|x y| < \varepsilon a^2 := \delta \implies |x y| < \varepsilon |xy|$. Daher $\forall \varepsilon > 0 \ \forall x, y \in A : |x y| < \delta := \varepsilon a^2 \implies |f(x) f(y)| < \varepsilon$
- 2. Dagegen können wir $\forall \, \delta > 0, x, y \in \mathbb{R} \setminus \{0\}$ finden wir $|x-y| < \delta$, aber $|f(x)-f(y)| \ge 1 \iff |x-y| \ge |xy|$ Sei $\delta > 0$. Wähle $n \in \mathbb{N}$, sodass $\frac{\delta}{n} < 1$. Nun gilt für

$$|x - y| = \frac{\delta}{2n}$$

$$|xy| < (|x - y| + |x|)|x|$$

für $|x| < \frac{\delta}{2n}$

$$= \left(\frac{\delta}{2n} + |x|\right)|x| < \frac{\delta^2}{2n^2}$$
$$= \frac{\delta}{n}|x - y| \le |x - y|, \text{ da } \frac{\delta}{n} \le 1$$

Definition 12 3.12 Lipschitz Stetigkeit. Eine Funktion $f: D \to \mathbb{K}$ heißt Lipschitz stetig (kurz L-stetig) auf D, wenn $\exists L > 0$ (so genannte Lipschitz Konstante), sodass

$$f(x) - f(y) \le L|x - y| \, \forall \, x, y \in D$$

Bemerkung 12. Menge von stetigen Funktionen \supset Menge von gleichmäßig stetigen Funktionen \supset Menge von Lipschitz-stetigen Funktionen

Definition 13 3.13 Satz von der gleichmäßigen Stetigkeit, Satz von Heine für folgenkompakte metrische Räume. Eine auf einer beschränkten, abgeschlossenen (das heißt kompakten) Teilmenge $D \subseteq \mathbb{K}$ stetige Funktion ist gleichmäßig stetig.

Beweis. Angenommen f ist nicht gleichmäßig stetig. Dann gibt es ein $\varepsilon > 0$, sodass $\forall n \in \mathbb{N}$ Punkte $x_n, y_n \in D$ existieren mit $|x_n - y_n| < \frac{1}{n}, |f(x_n) - f(y_n)| \ge \varepsilon$ Nach dem Satz von Bolzano-Weierstraß besitzt die beschränkte Folge $(x_n)_{n \in \mathbb{N}}$ eine kon-

Nach dem Satz von Bolzano-Weierstraß besitzt die beschränkte Folge $(x_n)_{n\in\mathbb{N}}$ eine konvergente Teilfolge $x_{n_k} \to x \in D$. Wegen $|x_n - y_n| < \frac{1}{n}$ ist auch $\lim_{k\to\infty} y_{n_k} = y = x$ Aus der Stetigkeit von f folgt, dass

$$|f(x_{n_k}) - f(y_{n_k})| \to |f(x) - f(y)| = 0$$

Bemerkung 13.

1. Wichtigkeit von Annahmen

- Abgeschlossenheit: $f(x) = x^{-1}$ für $x \in [-A, A] \setminus \{0\}$ Stetig, aber nicht gleichmäßig Stetig
- Beschränktheit: $f(x) = x^2$ für $x \in \mathbb{R}$ ist stetig, aber nicht gleichmäßig stetig auf \mathbb{R}

für
$$x = m$$
 und $y = x + \frac{1}{n}$ gilt

$$|x-y| \to 0$$
, aber $|f(x) - f(y)| = |x^2 - y^2| = |(x-y)(x+y)| = 2 + \frac{1}{n} \to 2$

2. Lipschitz-Stetigkeit von $f(x) = x^2$

$$|f(x) - f(y)| = |(x - y)(x + y)| \le L|xy|$$

wenn D beschränkt $D = [-A, A] \implies |x + y| \le 2A \implies L = 2A \implies$ Lipschitz-Stetigkeit, aber wenn $D = R \implies$ gibt keine $L < \infty$

3. Lipschitz-Stetigkeit impliziert gleichmäßige Stetigkeit, aber nicht umgekehrt. Zum Beispiel: $f(x) = \sqrt{x}, x \in [0, A]$ ist gleichmäßig stetig nach Satz 3.13, aber nicht Lipschitz-stetig in 0.

$$\left| \sqrt{x} - \sqrt{y} \right| \le L|x - y|$$

$$\left| \frac{y - x}{\sqrt{x} - \sqrt{y}} \right| > n|x - y|$$

$$\implies \exists L > 0$$

Bemerkung 14. Stetigkeit kann interpretiert werden als "lokale Approximation" durch Konstanten, das heißt Funktion f nach der Stelle x_0 durch eine Konstante $f(x_0)$ approximiert werden kann und die Fehler der Approximation $|f(x) - f(x_0)| < \varepsilon$

6.2 Eigenschaften stetiger Funktionen

Satz 16 3.14 Satz von Beschränktheit. Eine auf einer beschränkten, abgeschlossenen Teilmenge $D \subset \mathbb{K}$ stetige Funktion $f: D \to \mathbb{K}$ ist beschränkt, $\exists \, K > 0 : \sup_{x \in D} |f(x)| \leq K$

Beweis. Angenommen das eine stetige f(x) nicht beschränkt auf D ist. Dann gibt zu jedem $n \in \mathbb{N}$ ein $x_n \in D$ mit $|f(x_n)| > n$

Die Folge $(x_n)_{n\in\mathbb{N}}$ ist beschränkt (da D beschränkt). Nach dem B.-W. Satz $\exists x_{m_k} \to x \in D$ (weil D abgeschlossen ist). Aus der Stetigkeit von f

$$|f(n_k)| \xrightarrow{x \to \infty} |f(x)| < \infty$$

Widerspruch zur Annahme $f(x_m) \to \infty$

Satz 17 3.15 Satz von Extremum. Eine auf einer beschränkten, abgeschlossenen Teilmenge $D \subseteq \mathbb{K}$ stetige reellwertigen Funktion $f: D \to \mathbb{K}$ besitzt dort ein Maximum und ein Minimum, das heißt:

$$\exists x_{min}, x_{max} \in D : \sup_{x \in D} f(x) = f(x_{max}) \land \inf_{x \in D} f(x) = f(x_{min})$$

Beweis.

$$\exists\, K<\infty: K=\sup_{x\in D}<\infty$$

 \exists eine Folge $(x_n)_{n\in\mathbb{N}}\in D: f(x_n)\xrightarrow{n\to\infty} K$. Die Folge $(x_n)_{n\in\mathbb{N}}$ ist beschränkt und in D abgeschlossen

$$\implies \exists (x_{n_k})_{k \in \mathbb{K}} \in D : x_{n_k} \to x \in D$$

Aus
$$f(x_{n_k}) \xrightarrow{k \to \infty} f(x) \Longrightarrow f(x) = K$$

Analog für untere Grenze.

Definition 14 3.16 Zwischenwertsatz. Sei $f:[a,b]\to\mathbb{R}$ eine reelle stetige Funktion. Dann gibt es zu jeder $y\in[f(a),f(b)]$ ein $x\in[a,b]$ mit f(c)=y

Beweis. Betrachte die (nicht leere, beschränkte) Menge

$$A = \{x \in [a, b] \mid f(x) < y\}$$

Entweder ist dann sup A = b (und dann c = b) oder es gibt per Definition ein $x \in [a, b]$ mit $x > c \implies x \notin A \implies f(x) > y$ In beiden Fällen folgt $f(c) \leq y$

- Falls $c = b \implies y = f(c) = f(b) \implies f(c) \ge y$
- Falls $c < b \implies$ Aus Stetigkeit von f, eine monoton fallende Folge von Punkten aus A existiert, welche gegen sup A konvergiert

Aus Stetigkeit und Definition von A folgt $f(c) \leq y$. Beide zusammen genommen ergibt f(c) = y

Bemerkung 15. Die Eigenschaften von stetigen Funktionen lassen sich zusammen formulieren: Für eine auf einem abgeschlossenen, beschränkten Intervall definierte stetige Funktion ist der Bildbereich wieder ein abgeschlossenes Intervall

Lemma 9 3.17 Treppenapproximation. Jede auf einem beschränkten, abgeschlossenen Intervall [a,b] definierte $f:[a,b] \to \mathbb{R}$ lässt sich beliebig gut durch Treppenfunktion einschließen. das heißt

$$\forall \varepsilon > 0 \exists Treppen funktion \bar{\phi}_{\varepsilon}, \phi_{\varepsilon}$$

ohne Beschränkung der Allgemeinheit zu selben endlichen Zerlegung von [a,b] mit den Eigenschaften $\forall x \in [a,b]$

- $\phi_{\varepsilon} \leq f(x) \leq \bar{\phi}_{\varepsilon}(x)$
- $|\phi_{\varepsilon}(x) \bar{\phi}_{\varepsilon}(x)| < \varepsilon$

Zerlegung: ist mit Teilpunkten $a \le x_k \le b, k = 0, ..., N < \infty$ (endliche Zerlegung) $(a = x_0 \le x_1 \le ... \le x_N = b)$

Treppenfunktion ist konstant auf Intervalle $[x_1, x_{i+1}), 0 \le 1 \le N-1$

Beweis. Aus dem Satz von gleichmäßiger Stetigkeit ist f auf [a,b] gleichmäßig Stetig

$$\implies \forall \varepsilon > 0 \,\exists \, \delta_{\varepsilon} > 0 : \forall \, x \in [a, b], |x - y| < \delta_{\varepsilon} \implies |f(x) - f(y)| < \frac{\varepsilon}{2}$$

Sei $n \in \mathbb{N}$ so groß, dass $\frac{a-b}{n} < \delta \varepsilon.$ Mit den Teilpunkten

$$x_k = a + k \frac{b-a}{n}, k = 0, \dots, n$$

erhalten wir eine äquidistante Zerlegung von [a, b]

$$a = x_0 < x_1 < \ldots < x_n = b, |x_k - x_{k-a}| < \delta_{\varepsilon}$$

Dann definieren wir

$$\bar{\phi}_{\varepsilon}(x) := \sup\{f(x) \mid x_{k-1} \le x < x_k\}$$

$$\phi_{\varepsilon}(x) := \inf\{f(x) \mid x_{k-1} \le x < x_k\}$$

Nach Konstruktion gemäß $\phi_{\varepsilon}(x) \leq f(x) \leq \bar{\phi}_{\varepsilon}(x) \, \forall \, x \in [a, b]$ Nach dem Satz von Extremum $\forall [x_1, \dots, x_k] \, \exists \, \bar{\xi}_k, \xi_k$ sodass

$$f(\bar{\xi}_k) = \sup\{f(x) \mid x_{k-1} \le x \le x_k\} f(\xi_k) = \inf\{f(x) \mid x_{k-1} \le x \le x_k\}$$

Nach Wahlfreiheit von δ_{ε} gilt

$$\left|\phi_{\varepsilon}(x) - \bar{\phi}_{\varepsilon}(x)\right| = \left|f(\xi_k) - f(\bar{\xi}_k)\right| \le \left|f(\xi_k) - f(x)\right| + \left|f(x) - f(\bar{\xi}_k)\right| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$$

aus gleichmäßiger Stetigkeit

6.3 Konvergenz von Funktionen

Definition 15 3.18. Seien $f_n: D \to \mathbb{R}, n \in \mathbb{N}$ Funktionen mit einem gemeinsamen Definitionsbereich $D \subseteq \mathbb{R}$. Wir nennen die folge $(f_n)_{n \in \mathbb{N}}$ punktweise konvergenz gegener eine Funktion $f: D \to \mathbb{R}$, wenn für jedes $x \in D$ gilt $f_n(x) \xrightarrow{n \to \infty} f(x)$

Beispiel 16 3.19.

1.

$$f_n(x) = \sum_{k=0}^n \frac{x^k}{k!} \xrightarrow{n \to \infty} \sum_{k=0}^\infty \frac{x^k}{k!} = e^x$$

Hier ist $f_n(x)$ stetig und f(x) stetig.

2. $f_n(x) = 1 - x^n, x \in [0, 1] \subseteq \mathbb{R}$

$$f_n(x) \xrightarrow{n \to \infty} f(x) := \begin{cases} 1 & 0 \le x \le 1 \\ 0 & x = 1 \end{cases}$$
stetig nicht stetig

Definition 16 3.19 Gleichmäßige Konvergenz. Eine Folge von Funktionen $f_n: D \to \mathbb{R}, n \in \mathbb{N}$ heißt **gleichmäßig konvergent** gegen eine Funktion $f: D \to \mathbb{R}$, wenn

$$\forall \varepsilon > 0 \,\exists \, n_{\varepsilon} \in \mathbb{N} : n \geq n_{\varepsilon} \implies |f_n(x) - f(x)| < \varepsilon \,\forall \, x \in D$$

Satz 18 3.20 Satz von der gleichmäßigen Konvergenz. Konvergiert eine Folge stetiger Funkitonen $f_n: D \to \mathbb{R}, n \in \mathbb{N}$ gleichmäßig gegen $f: D \to \mathbb{R}$, so ist auch die Grenzfunktion f stetig.

Beweis. Seien $x_0 \in D$ und $\varepsilon > 0$ gegeben. Zu zeigen:

$$\exists \delta_{\varepsilon} > 0 : \forall x \in D|x - x_0| < \delta_{\varepsilon} ps \implies |f(x) - f(x_0)| < \varepsilon$$

Wegen der gleichmäßigen Konvergenz von $(f_n)_{n\in\mathbb{N}}$:

$$\exists x \in \mathbb{N} \,\forall \, x \in D : |f_n(x) - f(x)| < \frac{1}{3}\varepsilon$$

Aus Stetigkeit von f_n :

$$\exists \delta_{\varepsilon} > 0 Forall x \in D : |x - x_0| < \delta_{\varepsilon} \implies |f_n(x) - f_n(x_0)| < \frac{1}{3} \varepsilon$$

$$\implies \forall x \in D |f(x) - f(x_0)| \le \underbrace{|f(x) - f_n(x)|}_{< \frac{1}{3}} + \underbrace{|f_n(x) - f_n(x_0)|}_{< \frac{1}{3}} + \underbrace{|f_n(x_0) - f(x_0)|}_{< \frac{1}{3}} < \varepsilon$$

das heißt f ist stetig.

6.4 Reellwertige stetige Funktionen

Definition 17 3.21.

$$C(\mathbb{K}) := \{ f : \mathbb{K} \to \mathbb{R} \mid f \text{ ist stetig auf } \mathbb{K} \}$$

ist der Raum der stetigen reellwertigen Funktionen auf $\mathbb K$

Bemerkung 16. Seien $f, g \in C(\mathbb{K}), \lambda \in \mathbb{R}$. Dann ist auch $f + g, f \cdot g, \lambda f$ wieder eine Funktion aus $C(\mathbb{K})$. $C(\mathbb{K})$ bildet dann einen Ring.

Definition 18 3.22. Seien $f, g : \mathbb{K} \to \mathbb{R}$.

$$\max_{x \in \mathbb{K}}(f,g)(x) := \max_{x \in \mathbb{K}}(f(x),g(x)) \min_{x \in \mathbb{K}}(f,g)(x) \\ \qquad := \min_{x \in \mathbb{K}}(f(x),g(x))$$

Satz 19 3.23. $\max(f,g)$ und $\min(f,g)$ sind in $C(\mathbb{K})$ für $f,g\in C(\mathbb{K})$

Beweis. Es genügt, dass mit f auch |f| (als Komposition stetige Abbildung) stetig ist, denn

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$$

$$\min(f,g) = -\max(-f,-g)$$

Wir betrachten jetzt $C\left(\underbrace{[a,b]}_{\mathbb{K}}\right)$ und definieren

$$||f||_{\infty} := \max_{x \in [a,b]} |f(x)|$$

Definition 19 3.24. Sei \mathbb{K} ein Körper (mit dem Betrag $| \ | \)$, Sei V ein Vektorraum über \mathbb{K} .

$$\| \| : V \to \mathbb{R}$$

heißt eine **Norm** auch $V \iff$:

- (N1) $\forall x \in V : ||x|| \ge 0 \land (||x|| = 0 \iff x = 0)$
- (N2) $\forall x \in V : \alpha \in \mathbb{K} ||\alpha x|| = |\alpha| ||x||$
- (N3) $\forall x, y \in V : ||x + y|| \le ||x|| + ||y||$

(V, || ||) heißt normierter Vektorraum.

C([a,b]) ist ein Vektorraum. Die Normeigenschaften von $\| \|_{\infty}$ als Abbildung von C([a,b]) nach $[0,\infty)$ folgt direkt aus den Eigenschaften des Absolutbetrags

$$||f||_{\infty} \implies f(x) = 0 \,\forall \, x \in [a, b]$$
 (Definitheit)
$$||\alpha f|| = |\alpha| ||f||_{\infty}, \alpha \in \mathbb{R}$$
 (Homogenität)
$$||f + g||_{\infty} \leq ||f||_{\infty} + ||(||g)|_{\infty}$$
 (Dreiecksungleichung)

Wir definieren sogenannte Normkonvergenz

$$f_n \xrightarrow{n \to \infty} f$$
 in Norm $\iff \|f - f_n\|_{\infty} \xrightarrow{n \to \infty} 0$

Für $\|\,\|_{\infty}$ Konvergenz in Norm ist die gleichmäßige Konvergenz.

Lemma 10 3.25. Für eine Funktionenfolge $(f_n)_{n\in\mathbb{N}}\in C([a,b])$ ist die gleichmäßige Konvergenz gegen eine Grenzfunktion. $f:[a,b]\to\mathbb{R}$ gleichbedeutend mit $\|f_n-f\|_{\infty}\xrightarrow{n\to\infty}0$

Beweis. aus Definition.
$$\Box$$

Definition 20 3.26 Cauchy Folge von Funktionen. Eine Folge $(f_n)_{n\in\mathbb{N}}\in C([a,b])$ heißt Cauchy-Folge, wenn

$$\forall \varepsilon \exists n_{\varepsilon} \in \mathbb{N} : n, m \geq n_{\varepsilon} \implies ||f_n - f_m||_{\infty} < \varepsilon$$

Lemma 11 3.27. Eine Folge $(f_n)_{n\in\mathbb{N}}\in C([a,b])$ welche gegen eine Grenzfunktion $f\in C([a,b])$ konvergiert ist Cauchy-Folge.

Beweis. analog wie Beweis für Zahlenfolgen

Satz 20 3.28 Satz von der Vollständigkeit. $(C([a,b], \| \|_{\infty}))$ ist vollständig bezüglich der gleichmäßigen Konvergenz, das heißt jede Cauchy-Folge $(f_n)_{n\in\mathbb{N}}\in C([a,b])$ besitzt ein Limes $f\in C([a,b])$

Beweis. Sei $(f_n)_{n\in\mathbb{N}}\in C([a,b])$ eine Cauchy-Folge. Dann ist für jedes feste $x\in[a,b]$ $(f_n(x))_{n\in\mathbb{N}}$ eine Cauchy-Folge von Zahlen und besitzt einen (eindeutig bestimmten) Limes $f(x)\in\mathbb{R}$. Wir wollen zeigen, dass diese Konvergenz gleichmäßig ist. Angenommen $f_n\to f$ nicht gleichmäßig

 $\implies \exists \varepsilon > 0$ und $\forall n \in \mathbb{N}$ einen Punkt $x_n \in [a,b]$ sodass $|f_n(x_n) - f(x_n)| > \varepsilon$. Die Punktfolge $(x_n)_{n \in \mathbb{N}}$ besitzt eine konvergente Teilfolge (nach Bolzano-Weierstrass Satz, [a,b] beschränkt und abgeschlossen). Wegen der Cauchy-Folgen Eigenschaft

$$\exists n_{\varepsilon} \in \mathbb{N} : m \ge n_{\varepsilon} \implies \|f_{n_{\varepsilon}} - f_n\|_{\infty} < \frac{1}{2}\varepsilon$$

Wegen der Konvergenz $f_m(x_{n_{\varepsilon}}) \xrightarrow{n \to \infty} f(x_{n_{\varepsilon}})$:

$$\exists m_{\varepsilon} \ge n_{\varepsilon} : |f_{m_{\varepsilon}}(x_{n_{\varepsilon}}) - f(x_{n_{\varepsilon}})| < \frac{1}{2}\varepsilon$$

$$\implies |f_{n_{\varepsilon}} - f(x_{n_{\varepsilon}})| \le |f_{n_{\varepsilon}}(x_{n_{\varepsilon}}) - f_{m_{\varepsilon}}(x_{n_{\varepsilon}})| + |f_{m_{\varepsilon}}(x_{n_{\varepsilon}}) - f(x_{n_{\varepsilon}})| < \varepsilon$$

 $\implies f_n \to f$ gleichmäßig und im Wiederspruch zur Annahme. $\implies f \in C([a,b])$ (aus Satz 3.20)

Bemerkung 17. Vollständige normierte Räume werden Banach Räume genannt. C([a,b]) ist also ein Banach Raum.

Satz 21 3.29 Satz von Arzela-Ascoli. Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge von Funktionen in C([a,b]) welche gleichmäßig beschränkt und gleichmäßig stetig sind. das heißt

1.
$$\sup_{n\in\mathbb{N}} ||f_n||_{\infty} < \infty$$

2.
$$\forall \varepsilon > 0 \,\exists \, \delta_{\varepsilon} > 0 \,\forall \, n \in \mathbb{N} : \max_{\substack{x,y \in [a,b] \\ |x-a| \leq \delta_{\varepsilon}}} |f_n(x) - f_n(y)| < \varepsilon$$

Dann existiert eine Teilfolge $(f_{n_k})_{k\in\mathbb{N}}$ welche gegen ein $f\in C([a,b])$ konvergiert, das heißt

$$||f_{n_k} - f||_{\infty} \xrightarrow{k \to \infty} 0$$

Annahmen: $f_n \in C([a,b]),$

- gleichmäßig beschränkt: $\sup_{n\in\mathbb{N}} ||f_n||_{\infty} < \infty$
- gleichmäßig stetig:

$$\forall \, \varepsilon \, \exists \, \delta_{\varepsilon} > 0 \, \forall \, n \in \mathbb{N} \max_{\substack{x,y \in [a,b] \\ |x-y| \leq \delta_{\varepsilon}}} |f_n(x) - f_n(y)| < \varepsilon$$

 $Aussage \colon \exists \ eine \ Teilfolge \ (f_{n_k})_{k \in \mathbb{N}}, \ sodass \ f_{n_k} \xrightarrow{k \to \infty} f \in C([a,b])$

Beweis. Sei $(r_k)_{k\in\mathbb{N}}$ eine Folge der rationalen Punkte in [a,b]. Für jedes r_k , nach Vorraussetzung $\sup_{n\in\mathbb{N}} |f_n(r_k)| < \infty$

$$\begin{array}{llll} f_{n_1^{(1)}}, & f_{n_2^{(1)}}, & \ldots, & f_{n_k^{(1)}} & \text{konvergiert in } r_1 \\ f_{n_1^{(2)}}, & colorred f_{n_2^{(2)}}, & \ldots, & f_{n_k^{(2)}} & \text{konvergiert auch in } r_2 \\ f_{n_1^{(3)}}, & f_{n_2^{(3)}}, & \ldots, & f_{n_k^{(3)}} & \text{konvergiert auch in } r_2 \\ f_{n_1^{(k)}}, & f_{n_2^{(k)}}, & \ldots, & colorred f_{n_k^{(k)}} & \text{konvergiert auch in } r_k \\ \end{array}$$

colorredDiagonalfolge

Nach sukzessiver Anwendung des Bolzano-Weierstrass Satz bekommen wir eine Folge von Teilfolgen. Die Folgen $\left(f_{n_j^{(k)}}(r_k)\right)_{j\in\mathbb{N}}$ sind konvergent, $\left(n_j^{(k+1)}\right)_{j\in\mathbb{N}}$ ist Teilfolge von $\left(n_j^{(k)}\right)_{j\in\mathbb{N}}$. $\left(f_{n_j^{(k)}}(r_l)\right)_{j\in\mathbb{N}}$ ist konvergent für $l=1,\ldots,k$. Für die Diagnoalfolge $\left(f_{n_k^{(k)}}\right)_{k\in\mathbb{N}}$ ist dann $\left(f_{n_k^{(k)}}(r_j)\right)_{k\in\mathbb{N}}$ konvergent für alle $j\in\mathbb{N}$. Noch zu zeigen: Gleichmäßige konvergenz von dieser Diagonalfolge in allen $x\in[a,b]$. Wir bezeichnen jetzt die Diagonalfolge mit $(f_n)_{n\in\mathbb{N}}$ (erst für alle rationale r_k). Für jedes $r_k\in[a,b]$ gibt es ein $n_\varepsilon(r_k)\in\mathbb{N}$, sodass

$$|f_n(r_k) - f_m(r_k)| < \frac{1}{3}\varepsilon \,\forall \, n, m \ge n_{\varepsilon}(r_k)$$

Die gleichmäßige Stetigkeit impliziert, dass

$$\exists \, \delta_{\varepsilon} : x, y \in [a, b], |x - y| < \delta_{\varepsilon} \implies \sup_{n \in \mathbb{N}} |f_n(x) - f_n(y)| < \frac{\varepsilon}{3}$$

Wir unterteilen [a, b] in $i_k = [x_{k-1}, x_k], k = 1, \dots, n$ mit $a < x_0 < \dots < x_n = b$

$$\max_{1 \le k \le n} |x_k - x_{k-1}| \le \delta$$

Aus jedem I_k wählen wir ein $r_k \in \mathbb{Q}$. $\forall x \in I_k$ gilt dann für $n, m \ge n_\varepsilon := \max\{n_\varepsilon(r_1), \dots, n_\varepsilon(r_n)\}$

$$|f_n(x) - f_m(x)| \le \left|\underbrace{f_n(x) - f_n(r_k)}_{<\frac{1}{3}\varepsilon}\right| + \left|\underbrace{f_n(r_k) - f_m(r_k)}_{<\frac{1}{3}\varepsilon}\right| + \left|\underbrace{f_m(r_k) - f_m(x)}_{\frac{1}{3}\varepsilon}\right| < \varepsilon$$

$$\implies$$
 für $n, m \ge n_{\varepsilon}$ gilt $||f_n - f_m||_{\infty} < \varepsilon \implies (f_n)_{n \in \mathbb{N}}$ ist Cauchy-Folge im Banachraum $C([a,b]) \implies f_n \xrightarrow{n \to \infty} f$ für $f \in C([a,b])$

7 Differentiation

Definition 21 4.1 Differenzquotienten. Für eine Funktion $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$, definieren wir in einem Punkt $x_0 \in D$ einen **Differenzquotienten** durch $D_n f(x_0) := \frac{f(x_0 + h) - f(x_0)}{h}$, wobei $x_0 + h \in D$

Definition 22 4.2 Ableitung. $f: D \to \mathbb{R}$ heißt **differenzierbar** im Punkt $x_0 \in D$ mit **Ableitung** $f'(x_0)$, wenn für jede Nullfolge $(h_n)_{n\in\mathbb{N}}$ mit $x_0 + h_n \in D$, die Folge $(D_{h_n}f(x_0))_{n\in\mathbb{N}}$ konvergiert zu $f'(x_0)$

Bemerkung 18. f'(x) ist eindeutig.

Beweis. Für zwei Nulfolge h_n, h_n , sodass:

$$\lim_{n \to \infty} D_{h_n} f(x_0) = a, \lim_{n \to \infty} D_{\tilde{h}_n} f(x_0) = \tilde{a}$$

fassen wir eine Nullfolge $\{h_1, \tilde{h}_1, h_2, \tilde{h}_2, \ldots\}$ zusammen. Der zugeörige Differenzquotient konvergiert $\implies a = \tilde{a}$

Notation:

$$f'(x_0) =: \frac{\mathrm{d}f}{dx}(x_0)$$

 $f'(x_0) = \lim_{\substack{x \in D \\ x \to x_0}} \frac{f(x) - f(x_0)}{x - x_0}$

Definition 23 4.3. Eine Funktion $f: D \to \mathbb{R}$ heißt differenzierbar auf D, wenn sie in edem Punkt $x_0 \in D$ differenzierbar ist. Sie heißt stetig differenzierbar, wenn die Ableitung f' auf D eine stetige Funktion ist.

Bemerkung 19. Im Falle eines Randpunktes behalten wir einseite Stetigkeit. D = [a, b]:

- für $x_0 = a, x \downarrow a : \iff x > a \land x \to a$
- für $x_0 = b, x \uparrow b : \iff x < b \land x \to b$

Satz 22 4.4. Eine Funktion $f: D \to \mathbb{R}$ ist in einem $x_0 \in D$ genau dann differenzierbar mit Ableitung $f'(x_0)$, wenn

$$\forall \varepsilon > 0 \,\exists \, \delta_{\varepsilon} > 0 : x_0 + h \in D, |h| < \delta_{\varepsilon} \implies \left| \frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0) \right| < \varepsilon$$

Beweis. Beweis aus der Definition des Grenzwerts.

Satz 23 4.5. Eine Funktion $f: D \to \mathbb{R}$ ist genau dann in einem Punkt $x_0 \in D$ differenzierbar, wenn es eine Konstante gibt, $x \in \mathbb{R}$, sodass

$$f(x) = f(x_0) + c(x - x_0) + \omega(x), x \in D$$

mit einer Funktion $\omega: D \to \mathbb{R}$, sodass

$$\lim_{\substack{x \in D \\ x \to x_0}} = 0$$

Diese Konstante $c = f'(x_0)$

Beweis. Sei f in x differenzierbar und $\omega(x) := f(x) - f(x_0)(x - x_0)$. Dann aus differenzierbarkeit von f

$$\frac{\omega(x)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \xrightarrow{x \to x_0} 0$$

Sei umgekehrt $f(x)=f(x_0)+c(x-x_0)+\omega(x)$ mit $\lim_{x\to x_0}\frac{\omega(x)}{x\to x_0}=0$ Dann gilt:

$$\frac{f(x) - f(x_0)}{x - x_0} - c = \frac{\omega(x)}{x - x_0} \xrightarrow{x \to x_0} 0$$

das heißt f ist in x_0 differenzierbar mit Ableitung $f'(x_0)$

Bemerkung 20. Der Satz besagt, dass affin-lineare Funktion (Gerade) $g(x) = f(x_0) + f'(x_0)(x - x_0)$ approximiert die differenzierbare Funktion in $x_0 \in D$. Der Graph von g ist die tangenta an dem Graphen von f in $(x_0, f(x_0))$

Lemma 12 4.6. Eine Funktion $f: D \to \mathbb{R}$ in $x_0 \in D$ differenzierbar ist dort stetig.

Beweis.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \omega(x) \Rightarrow f(x) \xrightarrow{x \to x_0} f(x_0)$$

Bemerkung 21. Man kann die n-te Ableitung rekursiv definieren.

$$\frac{d^{n} f}{dx^{n}}(x) = f^{(n)}(x), n \ge 3$$
$$\frac{d^{2} f}{dx^{2}}(x) = f^{(2)}(x) = f''(x)$$

Beispiel 17 4.7. f(x) = |x| ist nicht in $x_0 = 0$ differenzierbar. Um dies zu sehen, betrachten wir eine Nullfolge

$$h_n = (-1)^n \frac{1}{n}, n \in \mathbb{N}$$

und

$$\frac{f(h_n) - f(0)}{h_n} = \frac{|h_n|}{h_n} = (-1)^n$$

nicht konvergent. $inx_0 \neq 0$ ist f(x) = |x| differenzierbar

Lemma 13 4.8. Für $f, g: D \to \mathbb{R}$ differenzierbar gelten die folgenden Rechenregeln:

- 1. Linearkombination ist differenzierbar $(\alpha f + \beta g)' = \alpha f' + \beta g', \alpha, \beta \in \mathbb{R}$
- 2. $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$
- 3. $g(x) \neq 0$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Beweis. 1. Aus den Eigenschaften von konvergenten Zahlenfolgen

2. Aus Definition:

$$(f \cdot g)'(x_0) = \lim_{x \to x_0} \frac{f(x)(g(x) - g(x_0)) + (g(x) - f(x_0))g(x)}{x - x_0}$$
$$= f(x_0)g'(x_0) + f'(x)g(x)$$

3. Erst $f \equiv 1$

$$(\frac{1}{g})'(x) = \lim_{x \to x_0} \left(\frac{1}{g(x)} - \frac{1}{g(x_0)} \right) \frac{1}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{g(x_0) - g(x)}{g(x)g(x_0)} \frac{1}{x - x_0}$$

$$= \lim_{x \to x_0} -\frac{g'(x_0)}{g^2(x_0)}$$

$$(\frac{f}{g})'(x_0) = (f\frac{1}{g})'(x_0) = \frac{f'g - fg'}{g^2}(x)$$

Lemma 14 4.9. Sei $f: D \to B \subseteq \mathbb{B}$ eine auf einem abgeschlossenen Definitionsbereich stetige und invertierbare Funktion mit Inverse $f^{-1}: B \to D$. Ist f in einem $x_0 \in D$ differenzierbar mit $f'(x_0) \neq 0$, so ist auch F^{-1} in einem $y_0 = f(x_0)$ differenzierbar und es gilt

$$(f^{-1})' \left(y_0 = \frac{1}{f'(x_0)}, y_0 = f(x_0) \right)$$

Beweis. Für $y_n = f(x_n), y_0 = f(x_0)$ mit $y_n \neq y_0$ und $y_n \xrightarrow{n \to \infty} y_0$. Aus Stetigkeit von f^{-1} gilt auch $x_n \xrightarrow{n \to \infty} x_0$ und $x_n \neq x_0$. Aus der Differenzierbarkeit von f in einem x_0 folgt:

$$\frac{f^{-1}(y_n) - f^{-1}(y_0)}{y_n - y_0} = \frac{x_n - x_0}{f(x_n) - f(x_0)} = \left(\frac{f(x_n) - f(x_0)}{x_n - x_0}\right)^{-1} \xrightarrow{n \to \infty} \left(f'(x_0)\right)^{-1}$$

Dies impliziert, dass f^{-1} im Punkt $y_0 = f(x_0)$ differenzierbar ist mit der Ableitung $\frac{1}{f'/x_0}$

Beispiel 18 4.10.

1.
$$\ln'(y) : f^{-1}(y) = \ln y, f(x) = e^x \implies \ln'(y) = \frac{1}{(e^x)'} = \frac{1}{e^x} = \frac{1}{y}$$

2. Umkehrfunktion des Sinus

$$y = \sin x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
$$x = \arcsin y, y \in (-1, 1) = D$$
$$\arcsin'(y) = \frac{1}{\sin'(x)} = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - \sin^2 x}} = \frac{1}{\sqrt{1 - y^2}}$$

Lemma 15 4.11 Kettenregel. Seien $g: D_g \to \mathbb{R}$, $f: D_f \to D_g \subseteq \mathbb{R}$ stetige Funktionen. Die Funktion f sei in $x_0 \in D_f$ differenzierbar und giny $_0 = f(x_0)$ differenzierbar. Dann ist die zusammengesetzte Funktion $g(f(x_0)) =: (g \circ f)(x_0)$ in x_0 differenzierbar und es gilt

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x)$$
 (Kettenregel)

Beweis.

Wir definieren eine Funktion $\Delta g: D_g \to \mathbb{R}$ durch

$$\Delta g(y) := \begin{cases} \frac{g(y) - f(y_0)}{y - y_0} & y \neq y_0 \\ g'(y) & y = y_0 \end{cases}$$

Da g in y_0 differenzierbar ist gilt

$$\lim_{y \to y_0} \Delta g(y) = g'(y_0)$$

Ferner gilt für $y \in D_g$:

$$g(y) - g(y_0) = \Delta g(y)(y - y_0)$$

Damit erhalten wir

$$(g \circ f)'(x_0) = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{\Delta g(f(x))(f(x) - f(x_0))}{x - x_0}$$

$$= \lim_{x \to x_0} \Delta g(f(x)) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = g'(f(x_0))f'(x_0) \qquad \Box$$

Beispiel 19 4.12. 1. $g(x) = f(ax + b), a, b \in \mathbb{R} \implies g'(x) = af'(ax + b)$

2.
$$x^{\alpha} = e^{\alpha \ln x} = f(g(x)) = f(g(x)), f(y) := e^{y}, g(x) := \alpha \ln(x)$$

$$(x^{\alpha})' = f'(g(x))g'(x) = e^{\alpha \ln x} \alpha x^{-1} = \alpha x^{\alpha - 1}$$

7.1 Mittelwertsätze und Extremalbedingungen

Definition 24 4.13. Die Funktion $f: D \to \mathbb{R}$ hat in einem Punkt $x_0 \in D$ ein **globales** Extremum (Minimum oder Maximum), wenn gilt

$$f(x_0) \le f(x), x \in D \lor f(x_0) \ge f(x) \forall x \in D$$

Es handelt sich um ein **lokales Extremeum** (Minimum oder Moaximum), wenn auf einer \$\delta\S\-\text{-Umgebung von } x_0\$ (das hei\text{Bt } U_\delta(x_0) = \{x \in D \ | |x - x_0| < \delta\}) gilt $f(x_0) \ge f(x) \, \forall x \in U_\delta(x_0) \, \lor f(x_0) \le f(x) \, \forall x \in U_\delta(x_0)$ Ein Extremum (globales oder lokales) hei\text{Bt strikt, wenn es das isolierteste PUnkt in } D$ beziehungsweise in <math>U_\delta(x_0)$ ist, as hei\text{Bt } $f(x_0) > f(x) \, \lor f(x_0) < f(x)$

Satz 24 4.14 Satz von Extremum. Besitz eine auf einem Intervall I = (a,b) differenzierbare Funktion ein lokales Extremum $x_0 \in I$, so gilt dort notwendig $f'(x_0) = 0$

Beweis. Habe f in x_0 ein Minimum. Dann gilt für eine $(h_n)_{n\in\mathbb{N}}$ mit $h_n>0, x_0+h_n\in U_\delta(x_0)$

$$\frac{f(x_0 + h_n) - f(x_0)}{h_n} \ge 0$$

für eine Nullfolge $(h_n)_n \in \mathbb{N}$ mit $h_n < 0, x_0 + h_n \in U_\delta(x_0)$

$$\frac{f(x_0 + h_n) - f(x_0)}{h_n} \le 0$$

Im Limes $h_n \to 0$ bekommen wir

$$f'(x_0) \le 0 \le f'(x_0) \implies f'(x_0) = 0$$

(Analog für Maximum)

Bemerkung 22. Eine stetige Funktion besitzt auf einem abgeschlossenem Interball [a, b] ein Minimum. Dieses kann in einem Randpunkt $(x_0 = aveex_0 = b)$ liegen, das heißt es ist nicht notwendig, das $f'(x_0) = 0$

Satz 25 4.15 Satz von Rolle. Wenn eine im Interball [a,b] stetige Funktion, in (a,b) differenzierbar ist und f(a) = f(b), so existiert ein $c \in (a,b)$, sodass f'(c) = 0

Beweis. • Stetige Funktion auf [a, b] nimmt ihr Maximum und Minimum

- Wenn f ist konstant $\implies f'(x) = 0$
- Wen f nicht konstant $\implies \exists x_0 \in (a,b) : f(x_0) > f(a) = f(b) \lor f(x_0) < f(a) = f(b)$
- \implies das Maximum oder Minimum ist in einem $x_0 \in (a,b)$ angenommen $\implies f'(x_0) = 0$

Satz 26 4.16 1. Mittelwertsatz. Ist f stetig in [a,b] und differenzierbar in (a,b), so $\exists c \in (a,b): f'(c) = \frac{f(b)-f(a)}{b-a}$

Beweis. Wir definieren Funktion

$$g(x) := f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$

- g ist stetig in [a, b], differenzierbar in (a, b)
- g(a) = f(a) = g(b), Satz von Rolle liefert, dass $\exists c \in (a, b) : g'(c) = 0$

$$0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} \implies f'(c) = \frac{f(b) - f(a)}{b - a}$$

Korollar 4 4.17. Sei $f:(a,b) \to \mathbb{R}$ mindestens zweimal differenzierbar mit $f'(x_0) = 0$ für ein $x_0 \in (a,b)$. Dann hat f im Fall $f''(x_0) > 0$ in x_0 ein striktes lokales Minimum und im Fall $f''(x_0) < 0$ ein striktes lokales Maximum.

Beweis. Sei f zweimal differenzierbar mit $f''(x_0) > 0$ Wegen

$$f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} > 0$$

gibt es ein $\varepsilon \in \mathbb{R}_+$, sodass f+r $0 < |x - x_0| < \varepsilon$ gilt

$$\frac{f'(x) - f'(x_0)}{x - x_0} > 0$$

mit $f'(x_0) = 0$ folgt damit

$$f'(x) < 0 \quad x \in (x_0 - \varepsilon, x_0)$$

$$f'(x) < 0 \quad x \in (x_0, x_0 + \varepsilon)$$

 \implies f ist streng monoton fallend in $x \in (x_0 - \varepsilon, x_0)$ und streng monoton wachsend in $(x_0, x_0 + \varepsilon)$, das heißt f hat in x_0 ein striktes lokales Maximum (Analog im Fall $f''(x_0) < 0$)

Bemerkung 23. Es ist keine notwendige Bedingung zum Beispiel $f(x) = x^4$ hat lokales Minimum $x_0 = 0$, aber $f''(x_0) = 0$

Definition 25 4.18. Sei I ein offenes Intervall $f: I \to \mathbb{R}$ heißt

• (streng) konvex
$$\iff \forall \lambda \in (0,1), x,y \in I : f(\lambda x + (1-\lambda)y) \leq \begin{cases} < \\ \downarrow \\ \text{streng} \end{cases} \lambda f(x) + (1-\lambda)f(y)$$

• (streng) konkab
$$\iff \forall \lambda \in (0,1), x,y \in I : f(\lambda x + (1-\lambda)y) \ge \begin{cases} > \\ > \\ \downarrow \end{cases} \lambda f(x) + (1-\lambda)f(y)$$

Beispiel 20 4.19. exp ist eine (streng) konvexe Funktion Für $\lambda \in (0,1), x < y$ gilt:

$$\exp(\lambda x + (1 - \lambda)y) = \exp(x + (1 - \lambda)(y - x)) = \exp(x)\exp((1 - \lambda)(y - x))$$

$$= \exp(x)\left(\underbrace{\lambda + 1 - \lambda}_{=1} + \sum_{j=1}^{\infty} (1 - \lambda)^{j} \frac{(y - x)^{j}}{j'}\right)$$

$$= \lambda \exp(x) + (1 - \lambda)\exp(x)\left(1 + \sum_{j=1}^{\infty} \underbrace{(1 - \lambda)^{j-1}}_{<1}\right) \frac{(y - x)^{j}}{j'}$$

$$< \lambda \exp(x) + (1 - \lambda)\exp(x)\exp(y - x) = \lambda \exp(x) + (1 - \lambda)\exp(y)$$

Korollar 5 4.20. Sei I offen, $f: I \to \mathbb{R}$ zweimal differenzierbar. Falls $f''(x) \ge 0 \,\forall \, x \in I$, so ist f konvex.

Beweis. $f''>0 \implies f'$ monoton ist wachsend. Für x=y ist $f(\lambda x+(1-\lambda)y)=\lambda f(x)+(1-\lambda)f(y)$ Ohne Beschränkung der Allgemeinheit nehmen wir $x< y, x, y\in I, \lambda\in(0,1)$. Wir setzen $x_\lambda:=\lambda x+(1-\lambda)y$ Nach dem Mittelwertsatz $\exists\,\xi\in(x,x_\lambda)$ und $\eta\in(x_\lambda,y)$ mit

aus Monotonität

$$\frac{f(x_{\lambda}) - f(x)}{x_{\lambda} - x} \stackrel{=}{=} f'(\xi) \stackrel{\uparrow}{\leq} f''(\eta) = \frac{f(y) - f(x_{\lambda})}{y - x_{\lambda}}$$

Mittelwertsatz Mittelwertsatz

Es gilt:

$$x_{\lambda} - x = \lambda x + (1 - \lambda)y - x = (1 - \lambda)(y - x)$$
$$y - x_{\lambda} = y - \lambda x - (1 - \lambda)y = \lambda(y - x)$$

Damit erhält man:

$$\frac{f(x_{\lambda}) - f(x)}{1 - \lambda} \le \frac{(f(y) - f(x_{\lambda}))}{(y - x_{\lambda})} \frac{(x_{\lambda} - x)}{1 - \lambda} = (f(y) - f(x_{\lambda})) \frac{(1 - \lambda)(y - x)}{\lambda((y - x)(1 - \lambda))} = \frac{f(y) - f(x_{\lambda})}{\lambda}$$

$$\implies f(x_{\lambda}) \le \lambda f(x) + (1 - \lambda)f(y)$$

$$\implies f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \implies f \text{ ist konvex}$$

Satz 27 2. Mittelwertsatz (verallgemeinert). Sind die Funktion f und g in [a,b] stetig und in (a,b) differenzierbar und $g'(x) \neq 0$ für $x \in (a,b)$, so gibt es ein $c \in (a,b)$ sodass

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Beweis. Wegen $g'(x) \neq 0$ bekommen wir $g(a) \neq g(b)$ (wegen Satz von Rolle). Weiter

$$\exists c \in (a,b) : \frac{g(b) - g(a)}{b - a} = g'(c) \neq 0$$

Wir definieren auf [a, b] die Funktion

$$F(x) := f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c)$$

Wir verifizieren $\underline{F(a)} = f(a) = \underline{F(b)}$. Nach dem Setz von Rolle gibt es ein $c \in (a, b)$ mit F'(c) = 0, das heißt

$$0 = F'(c) = f'(c) = \frac{f(b) - f(a)}{g(b) - g(a)}g'(c)$$

wegen $g'(c) \neq 0$:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

7.2 Anwendung von MW Satz 2

Satz 28 Regeln von L'Hospital. Es seien $f, g: I \to \mathbb{R}, I = (a, b)$ sodass $g'(x) \neq 0 \forall x I$ und

$$\lim_{x \downarrow a} \frac{f'(x)}{g'(x)} =: c \in \mathbb{R}$$

Dann gelten die Folgenden Regeln:

1. Im Fall

$$\lim_{x \downarrow a} f(x) = \lim_{x \downarrow a} g(x) = 0$$

 $ist \ g(x) \neq 0 \ in \ I \ und \ es \ gilt$

$$\lim_{x \downarrow a} \frac{f(x)}{g(x)} = c$$

2. Im Fall $f(x) \to \pm \infty$, $g(x) \to \pm \infty$ für $x \downarrow a$ ist $g(x) \neq 0$ für $a < xyx_* \leq b$ und

$$\lim x \downarrow a \frac{f(x)}{g(x)} = c$$

Beweis. 1. Wir fassen f und g als Funktion auf, die in a stetigs sind f(a) = g(a) = 0. Wegen $g'(x) \neq 0$ kann g keine weitere Nullstelle von g in I geben, das heißt $g(x) \neq 0$ in I. Satz 4.21 \Longrightarrow

$$\forall x \in I \,\exists \, \xi \in (a, x) : \frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)}$$

 \implies für $x \to a$ auch $\xi \to a$ und

$$\lim_{x \downarrow a} \frac{f(x)}{g(x)} = \lim_{\xi \downarrow a} \frac{f'(\xi)}{g'(\xi)}$$

2. Sei $\varepsilon > 0$ beliebig. Nach Vorraussetzung ist $g'(x) \neq 0$ in (a, b).

Wir wählen ein $\delta > 0$ mit $a + \delta \leq x_*$, sodass

$$\forall x \in (a, a + \delta) : f(x) \neq 0 \land g(x) \neq 0 \land \left| \frac{f'(x)}{g'(x)} - c \right| < \varepsilon$$

Für beliebigs $x, y \in (a, a + \delta)$ mit $f(x) \neq f(y)$

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(y)}{g(x) - g(y)} \frac{g(x) - g(y)}{f(x) - f(y)} \frac{f(x)}{g(x)} = \frac{f(x) - f(y)}{g(x) - g(y)} \underbrace{\frac{\left(1 - \frac{g(y)}{g(x)}\right)g(x)}{\left(1 - \frac{f(y)}{f(y)}\right)}f(x)}_{x \downarrow a \to 1} \frac{f(x)}{g(x)}$$

$$\implies \exists \, \delta_* > 0 : \forall \, x n(a, a + \delta_*) : \left| \frac{f(x)}{g(x)} - \frac{f(x) - f(y)}{g(x) - g(y)} \right| < \varepsilon$$

Für ein x sodass $a < x < \underbrace{a + \min\{\delta, \delta_*\}}_{x_*}$ bekommen wir

$$\left| \frac{f(x)}{g(x)} - c \right| < 2\varepsilon$$

Beispiel 21 4.23. $I = (0,1), f(x) = \ln(x), g(x) = x - 1, f'(x) = \frac{1}{x}, g'(x) = 1$

$$\lim_{x \to 1} \frac{f'(x)}{g'(x)} = 1, \lim_{x \uparrow 1} \frac{\ln x}{x - 1} = \lim_{x \uparrow 1} \frac{\frac{1}{x}}{1} = 1$$

Bemerkung 24. Analoge Aussagen gelten auch für $x \to \pm \infty$. Wir nehmen $y := \frac{1}{x} \to 0$ und

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \lim_{y \to 0_{\pm}} \frac{f\left(\frac{1}{x}\right)}{g\left(\frac{1}{x}\right)} = \lim_{\lambda \to \pm \infty} \frac{f'(\lambda)}{g'(\lambda)}$$

Bemerkung 25. Bei der Anwendung der Regeln von L'Hospital ist zunächst zu prüfen, ob die Limes von $\frac{f'(x)}{g'(x)}$ überhaupt existiert. zum Beispiel

$$\lim_{x \downarrow 0} \frac{x^2 \sin\left(\frac{1}{x}\right)}{\sin x} = \lim_{x \downarrow} \frac{x}{\sin x} x \sin \frac{1}{x} = 0$$

aber

$$\lim_{x \downarrow 0} \frac{2x \sin \frac{1}{x} + x^2 \cos \frac{1}{x} \left(-\frac{1}{x^2} \right)}{\cos x} = \lim_{x \downarrow 0} \frac{2x \sin \frac{1}{x} - \cos \frac{1}{x}}{\cos x} = -\lim_{x \downarrow 0} \cos \frac{1}{x}$$

der existiert nicht

Bemerkung 26. Die L'Hospital Regeln kann man auch anwenden in dem Fall

$$f(x) \to 0, g(x) \to \infty$$
 für $\lim_{x \downarrow a} f(x)g(x) = \lim_{x \downarrow} \frac{f(x)}{\frac{1}{g(x)}}$

Auch für $0^0, \infty^0, 0^\infty$

Beispiel 22 4.24. 1. $\lim_{x\downarrow 0} x^x$ Wir logarithmieren und erhalten

$$\lim_{x \downarrow 0} x \ln x = \lim_{x \downarrow 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \downarrow 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0$$

und

$$\lim_{x \downarrow 0} x^x = \lim_{x \downarrow 0} e^{x \ln x} = e^0 = 1$$

2. $\lim_{x \to 1} x^{\frac{1}{x-1}} = \lim_{e^{\frac{1}{x-1} \ln x}} \lim_{x \to 1} \frac{1}{x-1} \ln x = \lim_{x \to 1} \frac{\frac{1}{x}}{1} = 1 \implies \lim_{x \to 1} x^{\frac{1}{x-1}} = e^1 = e$