Lecture 15: Chapter 3 Part 3

Dynamic Programming CS3310

- With an **optimization problem**, the goal is to determine an optimal series of choices from a set of possible choices.
- We have discussed several optimization problems, such as finding a shortest path from every vertex to every other vertex in a graph.
- It may seem like any optimization problem can be solved using dynamic programming. However, this isn't always true.
- The **principle of optimality** must apply in the problem.

The **principle of optimality** applies in a problem if an optimal solution to an instance of that problem always contains optimal solutions to all of its sub-instances.

What does this mean?

Consider this graph. What is the optimal path from v_1 to v_4 ?

Consider this graph. What is the optimal path from v_1 to v_4 ? [v_1 , v_2 , v_4]

Note: the *subpaths* of the optimal path are also optimal solutions to their respective sub-instances.

 \triangleright i.e. $[v_1, v_2]$ is the optimal path from v_1 to v_2 and $[v_2, v_4]$ is the optimal path from v_2 to v_4 .

The **principle of optimality** applies in a problem if an optimal solution to an instance of that problem always contains optimal solutions to all of its sub-instances.

- If the principle of optimality applies in a given problem, we can develop a recursive property that gives an optimal solution to an instance by first finding optimal solutions to sub-instances.
- i.e. if we know the shortest path from v_1 to v_2 and the shortest path from v_2 to v_4 , we know those paths combine to form the shortest path from v_1 to v_4 .
- We build our solution in a bottom-up fashion, solving lower-level sub-instances before calculating the solution to the instance.

Why the Principle of Optimality is important!

- This principle seems fairly obvious.
- However, it is necessary to show that it applies to a problem before assuming that an optimal solution can be obtained with dynamic programming.
- Consider the Longest Paths problem.
- What is the longest simple (no cycles) path from v_1 to v_4 ?

Why the Principle of Optimality is important!

- This principle seems fairly obvious.
- However, it is necessary to show that it applies to a problem before assuming that an optimal solution can be obtained with dynamic programming.
- Consider the Longest Paths problem.
- What is the longest simple (no cycles) path from v_1 to v_4 ? [v_1 , v_3 , v_2 , v_4]

Does this path contain a solution to every sub-instance?

Why the Principle of Optimality is important!

- This principle seems fairly obvious.
- However, it is necessary to show that it applies to a problem before assuming that an optimal solution can be obtained with dynamic programming.
- Consider the Longest Paths problem.
- What is the longest simple (no cycles) path from v_1 to v_4 ? [v_1 , v_3 , v_2 , v_4]

Does this path contain a solution to every sub-instance? **No!** $[v_1, v_3]$ is <u>not</u> an optimal solution to the subproblem of the longest path between v_1 and v_3 . $[v_1, v_2, v_3]$ is.

- Suppose a salesperson is planning a sales trip that includes 20 cities. Each city is connected to some of the other cities by a road. To minimize travel time, we want to determine a shortest route that starts at the salesperson's home city, visits each of the other cities exactly *once*, and ends back at the home city.
- A **tour** or **Hamiltonian Circuit** in a directed graph is a path from a vertex to itself that passes through each other vertex exactly once.
- An **optimal tour** in a weighted, directed graph is such a path of minimum length.

Which vertex should we select as the start of our tour?

Which vertex should we select as the start of our tour?

It doesn't matter!

- $ightharpoonup [v_1, v_2, v_3, v_4, v_1] = [v_2, v_3, v_4, v_1, v_2], \text{ etc.}$
- The starting vertex is irrelevant. For that reason, we will arbitrarily choose v_1 as our starting vertex.

What are the possible tours of this graph?

What are the possible tours of this graph?

- $[v_1, v_2, v_3, v_4, v_1]$ with a length of 22
- $[v_1, v_3, v_2, v_4, v_1]$ with a length of 26
- $[v_1, v_3, v_4, v_2, v_1]$ with a length of 21

The third tour is optimal. In a brute force algorithm, we consider every existing tour.

• What is the time complexity of this?

What are the possible tours of this graph?

- $[v_1, v_2, v_3, v_4, v_1]$ with a length of 22
- $[v_1, v_3, v_2, v_4, v_1]$ with a length of 26
- $[v_1, v_3, v_4, v_2, v_1]$ with a length of 21

The third tour is optimal. In a brute force algorithm, we consider every existing tour.

• What is the time complexity of this? The second vertex on a tour can be any of (n - 1) vertices. The third can be any of (n - 2), etc.

$$(n-1)(n-2) \dots 1 = (n-1)!$$

Suppose we have an optimal tour from v_1

- Let v_k be the first vertex after v_1 on that tour
- We can say that the path from v_k back to v_1 is a **subpath** of the optimal tour.
- This subpath <u>must</u> be the shortest path from v_k to v_1 that passes through each other vertex exactly once.

What does this tell us?

Suppose we have an optimal tour from v_1

- Let v_k be the first vertex after v_1 on that tour
- We can say that the path from v_k back to v_1 is a **subpath** of the optimal tour.
- This subpath <u>must</u> be the shortest path from v_k to v_1 that passes through each other vertex exactly once.

What does this tell us?

The principle of optimality applies and we can use dynamic programming!

Let:

- V = a set of all vertices in the graph
- A = a subset of V
- $D[v_i][A]$ = the length of a shortest path from v_i to v_1 that passes through each vertex in A exactly once.

For example, $D[v_2][\{v_3, v_4\}]$ = length of a shortest path from v_2 to v_1 passing through both v_3 and v_4 exactly one time.

Traveling Salesperson Problem Example

Given the following V and A:

$$V = \{v_1, v_2, v_3, v_4\}$$
$$A = \{v_3\}$$

$$D[v_2][A] = ?$$

	1	2	3	4
1	0	2	9	œ
2	1	0	6	4
 2 3 	∞	7	0	8
4	6	3	œ	0

Traveling Salesperson Problem Example

Given the following V and A:

$$V = \{v_1, v_2, v_3, v_4\}$$
$$A = \{v_3\}$$

$$D[v_2][A] = length[v_2, v_3, v_1] = \infty$$

However, given:

$$A = \{v_3, v_4\}$$

$$D[v_2][A] = ?$$

	1	2	3	4
1	0	2	9	00
2	1	0	6	4
 2 3 4 	∞	7	0	8
4	6	3	∞	0

Traveling Salesperson Problem Example

Given the following V and A:

$$V = \{v_1, v_2, v_3, v_4\}$$
$$A = \{v_3\}$$

$$D[v_2][A] = length[v_2, v_3, v_1] = \infty$$

However, given:

$$A = \{v_3, v_4\}$$

$$D[v_2][A] = min (length[v_2, v_3, v_4, v_1], length[v_2, v_4, v_3, v_1])$$

= $min (20, \infty) = 20$

Length of an optimal tour =

minimum
$$(W[1][j] + D[v_j][V - \{v_1, v_j\}])$$

- For each vertex *j* from 2 to *n*, calculate and add:
 - The weight on the edge from v_1 to v_j
 - The weight of the shortest path from v_j to v_1 that passes through every other vertex except itself and 1.
- Then, choose the minimum of these values.

	1	2	3	4
1	0	2	9	oo
2	0 1 &	0	6	4
3	∞	7	0	8
4	6	3	∞	0

Length of an optimal tour =

minimum
$$W[1][j] + D[v_j][V - \{v_1, v_j\}]$$

ightharpoonup More generally, for $j \neq 1$ and v_j not in A:

$$D[v_i][A] =$$

$$\underset{j: \ v_j \in A}{minimum} \ (W[i][j] + D[v_j][A - \{v_j\}]) \text{ if } A \neq \emptyset$$

	1	2	3	4
1	0	2	9	∞
2	1	0	6	4
3	∞	7	0	8
4	6	3	∞	0

Step One

Since this is a dynamic programming algorithm, we build our solution from the bottom up.

Which subpaths of a potential optimal tour should we calculate first?

	1	2	3	4
1	0	2	9	00
1 2 3 4	1	0	6	4
3	∞	7	0	8
4	6	3	∞	0

Step One

Since this is a dynamic programming algorithm, we build our solution from the bottom up.

Which subpaths of a potential optimal tour should we calculate first?

• The lengths of the paths from each vertex to v_1 that don't pass through any other vertices.

	1	2	3	4
1	0	2	9	00
2	1	0	6	4
2	∞	7	0	8
4	6	3	∞	0

Step One

In this case, A =the empty set.

- $D[v_2][\emptyset] = ?$
- $D[v_3][\emptyset] = ?$
- $D[v_4][\emptyset] = ?$

	1	2	3	4
1	0	2	9	00
2	1	0	6	4
3	∞	7	0	8
4	6	3	∞	0

Step One

In this case, A =the empty set.

- $D[v_2][\emptyset] = 1$
 - i.e. the length of the shortest path from v_2 to v_1 that passes through no other vertices.
- $D[v_3][\emptyset] = \infty$
- $D[v_4][\emptyset] = 6$
- Each of these simply calculates the direct weight from each vertex to v_1 .

	1	2	3	4
1	0	2	9	00
2	1	0	6	4
 2 3 4 	∞	7	0	8
4	6	3	∞	0

Step One

$$D[v_2][\emptyset] = 1 \qquad D[v_3][\emptyset] = \infty$$

$$D[v_4][\emptyset] = 6$$

Step One

$$D[v_2][\emptyset] = 1$$
 $D[v_3][\emptyset] = \infty$ $D[v_4][\emptyset] = 6$

Step Two

- Determine the lengths of the shortest paths from each vertex to v_1 that pass through 1 other vertex
- $D[v_4][\{v_2\}]$
- $D[v_2][\{v_3\}]$
- $D[v_4][\{v_3\}]$
- $D[v_2][\{v_4\}]$
- $D[v_3][\{v_4\}]$

	1	2	3	4
1	0	2	9	00
2	0 1 &	0	6	4
3	∞	7	0	8
4	6	3	∞	0

Step One

 $j:v_i \in \{v_2\}$

$$D[v_2][\emptyset] = 1 D[v_3][\emptyset] = \infty D[v_4][\emptyset] = 6$$

$$1 2 3$$

$$\bullet Determine the lengths of the shortest paths from each vertex to v_1 that pass through 1 other vertex
$$\circ Let's calculate the length of the shortest path from v_3 to v_1 that passes through v_2

$$D[v_3][\{v_2\}] =$$

$$minimum (W[3][j] + D[v_j][\{v_2\} - \{v_j\}])$$

$$4 6 3 \infty 6$$$$$$

Step One

$$D[v_2][\emptyset] = 1 D[v_3][\emptyset] = \infty D[v_4][\emptyset] = 6$$

$$1 2 3 4$$

$$Step Two$$
• Determine the lengths of the shortest paths from each vertex to v_1 that pass through 1 other vertex
• Let's calculate the length of the shortest path from v_3 to v_1 that passes through v_2

$$D[v_3][\{v_2\}] =$$

$$minimum (W[3][j] + D[v_j][\{v_2\} - \{v_j\}])$$

$$4 6 3 \infty 0$$

$$= W[3][2] + D[v_2][\emptyset] = 7 + 1 = 8$$

Chapter 3

 $j:v_i \in \{v_2\}$

Step Two

Calculating the rest, we get:

•
$$D[v_4][\{v_2\}] = 3 + 1 = 4$$

•
$$D[v_2][\{v_3\}] = 6 + \infty = \infty$$

•
$$D[v_4][\{v_3\}] = \infty + \infty = \infty$$

•
$$D[v_2][\{v_4\}] = 4 + 6 = 10$$

•
$$D[v_3][\{v_4\}] = 8 + 6 = 14$$

	1	2	3	4
1	0	2	9	∞
2	1	0	6	4
3	∞	7	0	8
4	6	3	∞	0

32

Step Three

	1	2	3	4
1	0	2	9	00
		0	6	4
3	∞	7	0	8
4	6	3	∞	0

Step Three

• Determine the lengths of the shortest paths from each vertex v_i to v_1 that pass through 2 other vertices:

- $D[v_4][\{v_2, v_3\}]$
- $D[v_3][\{v_2, v_4\}]$
- $D[v_2][\{v_3, v_4\}]$

	1	2	3	4
1	0	2	9	∞
2	1	0	6	4
 2 3 	∞	7	0	8
4	6	3	œ	0

Step Three

- Determine the lengths of the shortest paths from each vertex v_i to v_1 that pass through 2 other vertices.
 - Let's calculate the length of the shortest path from v_4 to v_1 that passes through both v_2 and v_3

	1	2	3	4
1	0	2	9	∞
2	1	0	6	4
 2 3 4 	∞	7	0	8
4	6	3	∞	0

Step Three

- Determine the lengths of the shortest paths from each vertex v_i to v_1 that pass through 2 other vertices.
 - Let's calculate the length of the shortest path from v_4 to v_1 that passes through both v_2 and v_3

=
$$min (W[4][2] + D[v_2][\{v_3\}], W[4][3] + D[v_3][\{v_2\}])$$

	1	2	3	4
1	0	2	9	∞
2	1	0	6	4
3	∞	7	0	8
4	6	3	∞	0

Step Three

two.

Chapter 3 Dynamic Programming 37

Step Three

Calculating the rest, we get:

- $D[v_3][\{v_2, v_4\}] = min(7 + 10, 8 + 4) = 12$
- $D[v_2][\{v_3, v_4\}] = min(6 + 14, 4 + \infty) = 20$

	1	2	3	4
1	0	2	9	∞
2	1	0	6	4
3	0 1 &	7	0	8
4	6	3	∞	0

Step Four

	1	2	3	4
1	0	2	9	∞
2	1	0	6	4
3	∞	7	0	8
4	6	3	∞	0

Step Four

- In this final step, we start from vertex 1
 - i.e. We determine the shortest path from v_1 to v_1 that passes through every other vertex

$$\begin{array}{ll}
minimum \\
j:v_j \in \{v_2, v_3, v_4\}
\end{array} (W[1][j] + D[v_j][\{v_2, v_3, v_4\} - \{v_j\}])$$

	1	2	3	4
1	0	2	9	00
2	1	0	6	4
3	∞	7	0	8
4	6	3	œ	0

Step Four

```
\begin{array}{l}
minimum \\
j:v_{j} \in \{v_{2}, v_{3}, v_{4}\} \\
= min (W[1][2] + D[v_{2}][\{v_{3}, v_{4}\}], \\
W[1][3] + D[v_{3}][\{v_{2}, v_{4}\}], \\
W[1][4] + D[v_{4}][\{v_{2}, v_{3}\}])
\end{array}

= min (2 + 20, 9 + 12, \infty + \infty) = 21
```

	1	2	3	4
1	0	2	9	œ
2	1	0	6	4
3	∞	7	0	8
4	6	3	00	0

- The dynamic programming solution to the traveling salesperson problem is $\Theta(n^22^n)$
 - While this is better than factorial, it's still extremely bad.
 - However, a bad algorithm is better than a terrible one!

Suppose two employees are competing for the same sales position. Their boss tells them that whoever covers a 20-city territory faster gets the position.

- One uses a brute-force to determine a route, the other uses dynamic programming. If their computers perform the basic operation in 1 microsecond:
 - Brute-force algorithm: 19! microseconds = 3857 years
 - Dynamic Programming Algorithm: $(20 1)(20 2)2^{20-3} = 45$ seconds

With a very small n, even exponential algorithms can sometimes be useful.

In-Class Exercise

Find an optimal circuit for the weighted, directed graph represented by the following matrix. Show the entries in the D array for each step.

	1	2	3	4
1	0	8	13	18
2	3	0	7	8
3	4	11	0	10
4	6	6	7	0