Intervals, Transformations, and Slope Solution (version 71)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7, -2) \cup (3, 5)$
Negative	$(-8, -7) \cup (-2, 3)$
Increasing	$(-8, -6) \cup (2, 4)$
Decreasing	$(-6,2) \cup (4,5)$
Domain	(-8,5)
Range	(-7,7)

Intervals, Transformations, and Slope Solution (version 71)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=31$ and $x_2=76$. Express your answer as a reduced fraction.

\overline{x}	g(x)
31	63
53	31
63	76
76	53

$$\frac{g(76) - g(31)}{76 - 31} = \frac{53 - 63}{76 - 31} = \frac{-10}{45}$$

The greatest common factor of -10 and 45 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-2}{9}$$

2