No fee, petition, or certification is required. The Commissioner is authorized to charge any fee due, or credit any overcharge, as a result of this Amendment to Deposit Account No. 03-1935.

IN THE CLAIMS

Kindly amend the claims as follows.

09/996,434 - 2 - EL/2-22088/A/DIV

1-2. (cancelled).

3. (currently amended): A process for mass colouration of a polymer, which comprises adding at least one compound of the formula (I)

$$A(B)_{x} (I)$$

where x is an integer from 1 to 8,

A is the radical of a chromophore of the quinacridone, anthraquinone, perylene, indigo, quinophthalone, indanthrone, isoindolinone, isoindoline, dioxazine, azo, phthalocyanine or diketopyrrolopyrrole series, this radical being linked with x B groups via one or more heteroatoms, these heteroatoms being selected from the group consisting of N, O and S and forming part of the radical A, and

B is hydrogen or a group of the formula

althoughwherein at least one B group is not hydrogen and when x is from 2 to 8 the B groups may be identical or different.

 E_1 is oxygen or is selected from the group consisting of methylene, methyleneoxy and ethylene, each member of the group being unsubstituted or substituted by one R_5 or by 2 radicals, R_5 and R_6 , or is two separate radicals, R_7 and R_8 , R_7 being attached to the same atom as R_1 and R_8 to the same atom as R_4 ,

 E_2 is selected from the group consisting of methylene, ethylene, propylene and butylene, each member of the group being unsubstituted or substituted by one R_9 or by 2 radicals, R_9 and R_{10} , or is two separate radicals, R_{11} and R_{12} , R_{11} being attached to the same atom as R_1 and R_{12} to the same atom as R_4 ,

 G_1 is O or $N(R_{13})$,

R₁ is hydrogen, methyl, ethyl, methoxy or ethoxy,

 R_2 and R_3 are independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy,

 R_4 is hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene, C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy, C_5 - C_6 cycloalkyl, C_5 - C_6 cycloalkoxy, phenyl, phenoxy or a 5- or 6-membered, saturated or singly to triply unsaturated heterocyclic radical,

09/996,434 - 3 - EL/2-22088/A/DIV

 $R_{5},\,R_{6},\,R_{9},\,R_{10}$ and R_{12} are independently $C_{1}\text{-}C_{8}alkyl$ or $C_{1}\text{-}C_{8}alkoxy,$

or R₆ and R₉ together are a direct bond,

 R_7 and R_8 are independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy,

R₁₁ is hydrogen, C₁-C₈alkyl or C₁-C₈alkoxy,

R₁₃ is methyl or ethyl, and

R₁₄ is C₁-C₈alkyl, C₅-C₆cycloalkyl, phenyl or a 5- or 6-membered, saturated or singly to triply unsaturated heterocyclic radical,

it being possible for two methoxies attached to the same carbon atom to combine and form 1,2-ethylenedioxy, or for methoxy to combine with ethoxy attached to the same carbon atom to form 1,2- or 1,3-propylenedioxy, or for methoxy or ethoxy to combine with ethoxy attached to α - or β -enchained carbon to form dimethylmethylene,

and where additionally

- a) R_1 , R_2 , R_3 , R_7 or R_{11} is hydrogen, and
- b) when E_1 is two separate radicals R_7 and R_8 and E_2 is methylene or ethylene at least one of the following further conditions applies:

 R_1 , R_2 , R_3 , R_4 , R_7 , R_8 , R_9 or R_{10} is methoxy or ethoxy;

 R_2 , R_3 , R_4 , R_7 , R_8 , R_9 or R_{10} is secondary C_3 - C_8 alkyl or tertiary C_4 - C_8 alkyl or C_3 - C_8 alkoxy;

 R_2 , R_3 , R_7 or R_8 is C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy;

or

 R_4 is C_5 - C_6 cycloalkyl, C_5 - C_6 cycloalkoxy, phenyl, phenoxy or a 5- or 6-membered heterocyclic radical to the polymer before or during processing, the processing taking the form of extrusion, injection moulding or fibre spinning at 220 to 330°C.

- 4. (currently amended): an engineering plastic having a glass transition point (T_g) of 220 to 330°C, preferablywherein the plastic is polyolefin, polyester, polyamide or a polyimide, polysulfone, polyether sulfone, polyphenylene oxide, polyarylene sulfide, polyepoxide, polyphenylene oxide or ABS, pigmented according to claim 3.
- 5. (original): An engineering plastic according to claim 4 in the form of a fibre.
- 6. (currently amended): A process for pigmenting a porous material, which comprises at least one compound of the formula (I)

 $A(B)_x$

(l)

where x is an integer from 1 to 8,

A is the radical of a chromophore of the quinacridone, anthraquinone, perylene, indigo, quinophthalone, indanthrone, isoindoline, isoindoline, dioxazine, azo, phthalocyanine or diketopyrrolopyrrole series, this radical being linked with x B groups via one or more heteroatoms, these heteroatoms being selected from the group consisting of N, O and S and forming part of the radical A, and

B is hydrogen or a group of the formula

although wherein at least one B group is not hydrogen and when x is from 2 to 8 the B groups may be identical or different,

 E_1 is oxygen or is selected from the group consisting of methylene, methyleneoxy and ethylene, each member of the group being unsubstituted or substituted by one R_5 or by 2 radicals, R_5 and R_6 , or is two separate radicals, R_7 and R_8 , R_7 being attached to the same atom as R_1 and R_8 to the same atom as R_4 ,

 E_2 is selected from the group consisting of methylene, ethylene, propylene and butylene, each member of the group being unsubstituted or substituted by one R_9 or by 2 radicals, R_9 and R_{10} , or is two separate radicals, R_{11} and R_{12} , R_{11} being attached to the same atom as R_1 and R_{12} to the same atom as R_4 ,

 G_1 is O or $N(R_{13})$,

R₁ is hydrogen, methyl, ethyl, methoxy or ethoxy,

 R_2 and R_3 are independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy,

 R_4 is hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene, C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy, C_5 - C_6 cycloalkyl, C_5 - C_6 cycloalkoxy, phenyl, phenoxy or a 5- or 6-membered, saturated or singly to triply unsaturated heterocyclic radical,

 R_5 , R_6 , R_9 , R_{10} and R_{12} are independently C_1 - C_8 alkyl or C_1 - C_8 alkoxy,

or R₆ and R₉ together are a direct bond,

 R_7 and R_8 are independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy,

 R_{11} is hydrogen, C_1 - C_8 alkyl or C_1 - C_8 alkoxy,

R₁₃ is methyl or ethyl, and

 R_{14} is C_1 - C_8 alkyl, C_5 - C_6 cycloalkyl, phenyl or a 5- or 6-membered, saturated or singly to triply unsaturated heterocyclic radical,

it being possible for two methoxies attached to the same carbon atom to combine and form 1,2-ethylenedioxy, or for methoxy to combine with ethoxy attached to the same carbon atom to form 1,2- or 1,3-propylenedioxy, or for methoxy or ethoxy to combine with ethoxy attached to α - or

β-enchained carbon to form dimethylmethylene,

and where additionally

- a) R_1 , R_2 , R_3 , R_7 or R_{11} is hydrogen, and
- b) when E_1 is two separate radicals R_7 and R_8 and E_2 is methylene or ethylene at least one of the following further conditions applies:

 R_1 , R_2 , R_3 , R_4 , R_7 , R_8 , R_9 or R_{10} is methoxy or ethoxy;

 R_2 , R_3 , R_4 , R_7 , R_8 , R_9 or R_{10} is secondary C_3 - C_8 alkyl or tertiary C_4 - C_8 alkyl or C_3 - C_8 alkoxy;

 R_2 , R_3 , R_7 or R_8 is C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy;

or

R₄ is C₅-C₆cycloalkyl, C₅-C₆cycloalkoxy, phenyl, phenoxy or a 5- or 6-membered heterocyclic radical, in liquid form or dissolved in an inert liquid in a weight concentration of at least 25%, penetrating into the pores of the porous material and thereafter being thermally converted into a pigment of the formula

 $A(H)_x$ (VI)

wherein A and x have the same meaning as in formula (I).

- 7. (original): Material pigmented according to claim 6, selected from anodized aluminium and sintered boridic material.
- 8. (currently amended): High molecular weight organic material having a glass transition point (T_g) of 140°C to 220°C and containing in its bulk 0.1 to 10% by weight of a compound of the formula (I) A(B)_x (I)

where x is an integer from 1 to 8,

A is the radical of a chromophore of the quinacridone, anthraquinone, perylene, indigo, quinophthalone, indanthrone, isoindolinone, isoindoline, dioxazine, azo, phthalocyanine or diketopyrrolopyrrole series, this radical being linked with x B groups via one or more heteroatoms,

09/996,434 - 6 - EL/2-22088/A/DIV

these heteroatoms being selected from the group consisting of N, O and S and forming part of the radical A, and

B is hydrogen or a group of the formula

althoughwherein at least one B group is not hydrogen and when x is from 2 to 8 the B groups may be identical or different,

 E_1 is oxygen or is selected from the group consisting of methylene, methyleneoxy and ethylene, each member of the group being unsubstituted or substituted by one R_5 or by 2 radicals, R_5 and R_6 , or is two separate radicals, R_7 and R_8 , R_7 being attached to the same atom as R_1 and R_8 to the same atom as R_4 .

 E_2 is selected from the group consisting of methylene, ethylene, propylene and butylene, each member of the group being unsubstituted or substituted by one R_9 or by 2 radicals, R_9 and R_{10} , or is two separate radicals, R_{11} and R_{12} , R_{11} being attached to the same atom as R_1 and R_{12} to the same atom as R_4 .

 G_1 is O or $N(R_{13})$,

R₁ is hydrogen, methyl, ethyl, methoxy or ethoxy,

 R_2 and R_3 are independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy,

 R_4 is hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene, C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy, C_5 - C_6 cycloalkyl, C_5 - C_6 cycloalkoxy, phenyl, phenoxy or a 5- or 6-membered, saturated or singly to triply unsaturated heterocyclic radical,

 R_5 , R_6 , R_9 , R_{10} and R_{12} are independently C_1 - C_8 alkyl or C_1 - C_8 alkoxy,

or R₆ and R₉ together are a direct bond,

 R_7 and R_8 are independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy,

R₁₁ is hydrogen, C₁-C₈alkyl or C₁-C₈alkoxy,

R₁₃ is methyl or ethyl, and

R₁₄ is C₁-C₈alkyl, C₅-C₆cycloalkyl, phenyl or a 5- or 6-membered, saturated or singly to triply unsaturated heterocyclic radical,

09/996,434 - 7 - EL/2-22088/A/DIV

it being possible for two methoxies attached to the same carbon atom to combine and form 1,2-ethylenedioxy, or for methoxy to combine with ethoxy attached to the same carbon atom to form 1,2- or 1,3-propylenedioxy, or for methoxy or ethoxy to combine with ethoxy attached to α - or β -enchained carbon to form dimethylmethylene, and where additionally

- a) R_1 , R_2 , R_3 , R_7 or R_{11} is hydrogen, and
- b) when E_1 is two separate radicals R_7 and R_8 and E_2 is methylene or ethylene at least one of the following further conditions applies:

 R_1 , R_2 , R_3 , R_4 , R_7 , R_8 , R_9 or R_{10} is methoxy or ethoxy;

R₂, R₃, R₄, R₇, R₈, R₉ or R₁₀ is secondary C₃-C₈alkyl or tertiary C₄-C₈alkyl or C₃-C₈alkoxy;

 R_2 , R_3 , R_7 or R_8 is C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy;

01

 R_4 is C_5 - C_6 cycloalkyl, C_5 - C_6 cycloalkoxy, phenyl, phenoxy or a 5- or 6-membered heterocyclic radical, based on the total weight.

9. (currently amended): A thermochromic material comprising a polymer coloured in the mass by a product obtainable by partial thermal decomposition of a compound of the formula (I)

$$A(B)_{x} (I)$$

where x is an integer from 1 to 8,

A is the radical of a chromophore of the quinacridone, anthraquinone, perylene, indigo, quinophthalone, indanthrone, isoindolinone, isoindoline, dioxazine, azo, phthalocyanine or diketopyrrolopyrrole series, this radical being linked with x B groups via one or more heteroatoms, these heteroatoms being selected from the group consisting of N, O and S and forming part of the radical A, and

B is hydrogen or a group of the formula

althoughwherein at least one B group is not hydrogen and when x is from 2 to 8 the B groups may be identical or different.

 E_1 is oxygen or is selected from the group consisting of methylene, methyleneoxy and ethylene, each member of the group being unsubstituted or substituted by one R_5 or by 2 radicals, R_5 and R_6 , or

is two separate radicals, R_7 and R_8 , R_7 being attached to the same atom as R_1 and R_8 to the same atom as R_4 ,

is selected from the group consisting of methylene, ethylene, propylene and butylene, each member of the group being unsubstituted or substituted by one R_9 or by 2 radicals, R_9 and R_{10} , or is two separate radicals, R_{11} and R_{12} , R_{11} being attached to the same atom as R_1 and R_{12} to the same atom as R_4 ,

 G_1 is O or $N(R_{13})$,

R₁ is hydrogen, methyl, ethyl, methoxy or ethoxy,

 R_2 and R_3 are independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy,

 R_4 is hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene, C_1 - C_8 alkyleneoxy, C_5 - C_6 cycloalkyl, C_5 - C_6 cycloalkoxy, phenyl, phenoxy or a 5- or 6-membered, saturated or singly to triply unsaturated heterocyclic radical,

 R_5 , R_6 , R_9 , R_{10} and R_{12} are independently C_1 - C_8 alkyl or C_1 - C_8 alkoxy,

or R₆ and R₉ together are a direct bond,

 R_7 and R_8 are independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy,

R₁₁ is hydrogen, C₁-C₈alkyl or C₁-C₈alkoxy,

R₁₃ is methyl or ethyl, and

 R_{14} is C_1 - C_8 alkyl, C_5 - C_6 cycloalkyl, phenyl or a 5- or 6-membered, saturated or singly to triply unsaturated heterocyclic radical,

it being possible for two methoxies attached to the same carbon atom to combine and form

1,2-ethylenedioxy, or for methoxy to combine with ethoxy attached to the same carbon atom to form

1,2- or 1,3-propylenedioxy, or for methoxy or ethoxy to combine with ethoxy attached to α - or β -enchained carbon to form dimethylmethylene,

and where additionally

- a) R_1 , R_2 , R_3 , R_7 or R_{11} is hydrogen, and
- b) when E_1 is two separate radicals R_7 and R_8 and E_2 is methylene or ethylene at least one of the following further conditions applies:

 R_1 , R_2 , R_3 , R_4 , R_7 , R_8 , R_9 or R_{10} is methoxy or ethoxy;

R₂, R₃, R₄, R₇, R₈, R₉ or R₁₀ is secondary C₃-C₈alkyl or tertiary C₄-C₈alkyl or C₃-C₈alkoxy;

 R_2 , R_3 , R_7 or R_8 is C_1 - C_8 alkoxy- C_2 - C_8 alkylene or C_1 - C_8 alkoxy- C_2 - C_8 alkyleneoxy;

or

R₄ is C₅-C₆cycloalkyl, C₅-C₆cycloalkoxy, phenyl, phenoxy or a 5- or 6-membered heterocyclic radical

or by two compounds, selected from the group consisting of compounds of the formula (I) and pigments of the formula

 $A(H)_x$ (VI)

wherein A and x have the same meaning as in formula I.

10.(currently amended): A thermochromic material according to claim 9, which is comprised within a composite, preferably within a security item.

11-31 (cancelled).

09/996,434 - 10 - EL/2-22088/A/DIV

32. (new): A process according to claim 6 for pigmenting a porous material wherein formula (I) comprises a binary or ternary mixture including 60 to 99.9% by weight of a compound of the formula (I) and 0.1 to 40% by weight of one or two thermally more labile compounds of the same chromophore class with an A' that differs from A.

33. (new): A process according to claim 32 wherein the thermally more labile compound of the same chromophore class with an A' that differs from A is a compound of the formula

$$A' = \begin{bmatrix} O \\ O - R_{17} \end{bmatrix}_{X'}$$
 (VII),

where x' is an integer from 1 to 8 and A' is the radical of a chromophore of the quinacridone, anthraquinone, perylene, indigo, quinophthalone, indanthrone, isoindolinone, isoindoline, dioxazine, azo, phthalocyanine or diketopyrrolopyrrole series, this radical being linked with x'-COOR₁₇ groups via one or more heteroatoms, these heteroatoms being selected from the group consisting of N, O and S and forming part of the radical A' and R₁₇ being a tertiary organic group.

34. (new): A process according to claim 6 for pigmenting a porous material wherein formula (I) is a mixture according to claim 32, which is a binary mixture of 99.5 to 95% by weight of a compound of the formula (I) and 0.5 to 5% by weight of a thermally more labile compound of the same chromophore class with an A' that differs from A.

35. (new): A process according to claim 33 for pigmenting a porous material, wherein said R₁₇ radicals are selected from the group consisting of tert-butyl, tert-amyl, 2-methyl-3-buten-2-yl, 2-methyl-3-butyn-2-yl, 4-oxa-2-pentyl and 4,7-dioxa-1-methyl-2-octyl.