Customer Segmentation

```
importing librares
```

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import KMeans

Data collection & Analysis

data = pd.read_csv('/content/Mall_Customers.csv')

data.head()

→		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	Male	19	15	39	ıl.
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	

Next steps: (Generate code with data View recommended plots New interactive sheet

data.shape

 \rightarrow (200, 5)

data.info()

<- < class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype			
0	CustomerID	200 non-null	int64			
1	Gender	200 non-null	object			
2	Age	200 non-null	int64			
3	Annual Income (k\$)	200 non-null	int64			
4	Spending Score (1-100)	200 non-null	int64			
dtypes: int64(4), object(1)						

memory usage: 7.9+ KB

checking missing values

data.isnull().sum()

dtype: int64

♦ What can I help you build?

⊕ ⊳

Choosing the Annual Income Column & Spending Score column

```
X = data.iloc[:,[3,4]].values
```

choosing no. of clusters

```
wcss = [] # finding wcss value for different number of clusters and WCSS -> Within Clusters Sum of Squares
for i in range(1,11):
    kmeans = KMeans(n_clusters=i,init='k-means++',random_state=42)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)
```

plotting an elbow graph

```
sns.set()
plt.plot(range(1,11),wcss)
plt.title('The Elbow Point Graph')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```


Optimum no. of Clusters = 5

Model Training(K-Means Clustering)

```
kmeans = KMeans(n_clusters=5,init='k-means++',random_state=0)
Y = kmeans.fit_predict(X)
print(Y)
```

5 clusters are there --> 0,1,2,3,4

Plotting the clusters

```
plt.figure(figsize=(8,8))
plt.scatter(X[Y==0,0], X[Y==0,1], s=50, c='green', label='Cluster 1')
plt.scatter(X[Y==1,0], X[Y==1,1], s=50, c='red', label='Cluster 2')
plt.scatter(X[Y==2,0], X[Y==2,1], s=50, c='yellow', label='Cluster 3')
```

```
pit.scatter(X[Y==4,0], X[Y==4,1], s=50, c='blue', label='Cluster 5')
```

plot the centroids

plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s=100, c='cya

plt.title('Customer Groups')
plt.xlabel('Annual Income')
plt.ylabel('Spending Score')
plt.show()

