12. Непрекъснати функции в краен и затворен интервал. Равномерна непрекъснатост

Галина Люцканова

4 септември 2013 г.

Теорема 12.1 (на Ферма) : Ако f(x) е непрекъсната в интервала (a,b), като f(a) и f(b) имат различни знаци, тогава съществува $\xi \in (a,b)$, такова че $f(\xi) = 0$.

Доказателство:

Преди същинското доказателство нека да дадем малко разяснения по теоремата. Теоремата ни твърди следното, ако вземем две точки (a, f(a)) и (b, f(b)), като едната точка е над абцисата, другата е под нея(което означава, че или f(a) > 0, а f(b) < 0 или f(a) < 0, а f(b) > 0):

и ги свържем с непрекъсната линия, то тази линия ще пресича абцисата. Казано така, това направо си е супер логично. А сега да го докажем

<u>Следствие 12.1:</u> Нека f(x) е непрекъсната в (a,b). Тогава f(x) пробягва всички стойности между f(a) и f(b).

Доказателство:

Първо нека f(a) > f(b). А сега да разясним какво казва това следствие? Много просто, ако вземем някаква непрекъсната функция (да напомня отново това е функция, която може да се нарисува без да се вдига моливът от листа) и вземем някаква число M, което да е между f(a) и f(b) (f(a) > M > f(b)), тогава ще съществува поне едно x_0 , такова че $f(x_0) = M$. Сега да начертая за какво говоря:

На тази графика съществува точно 1 точка, която удовлетворява условието. Нека все пак да покажем, че може повече от една точка да го удовлетворява. Например:

Следствие 12.2: Ако \triangle е интервал, а f(x) е непрекъсната в \triangle , то $f(\triangle)$ също е интервал.

Доказателство:

Теорема 12.2: на Вайерщрас Ако f(x) е непрекъсната в крайния затворен интервал [a,b], то тя е ограничена и достига най-малката си и най-голямата си стойност.

Забележки:

- 1. Защо интервалът, в който функцията е непрекъсната, трябва да е краен?
 - (a) Да разгледаме функцията $f(x) = x^2$ в интервала $(-\infty, +\infty)$. Тази функция е неограничена (доказано е по-рано)
 - (б) Да разгледаме функцията $f(x)=\arctan x$ в интервала $(-\infty,+\infty)$. Тази функция не достига минималната си и максималната си стойност съответно $\frac{-\pi}{2}$ и $\frac{\pi}{2}$. Да разгледаме графиката:

Сами трябва да докажете, че $\lim_{x\to -\infty} rctg \, x = \frac{-\pi}{2}$ и че $\lim_{x\to +\infty} rctg \, x = \frac{\pi}{2}$.

- 2. Защо интервалът, в който функцията е непрекъсната, трябва да е затворен?
 - (a) Да разгледаме функцията $f(x)=\frac{1}{x}$ в интервала (0,1). Тази функция е неограничена в 0 (доказано е по-рано)
 - (б) Да разгледаме функцията $f(x) = x^3$ в интервала (0,1). Тази функция е ограничена в този интервал, но не достига минималната си и максималната си стойност съответно 0 и 1.

Доказателство:

Равномерна непрекъснатост