

Lecture 8: Random Processes, Part I

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

May 5, 2021

Roadmap

- A lot of applications in engineering systems
- Basics on Random Process
- Bernoulli Process
- Poisson Process
- Use of Bernoulli and Poisson Processes
 - Coding of both processes
 - Merge and Split
- Markov Chain

Roadmap

- A lot of applications in engineering systems
- Basics on Random Process
- Bernoulli Process
- Poisson Process
- Use of Bernoulli and Poisson Processes
 - Coding of both processes
 - Merge and Split
- Markov Chain

Things that evolve in time

Many probabilistic experiments that evolve in time

 Random process is a mathematical model for it.

Things that evolve in time

KAIST EE

- Many probabilistic experiments that evolve in time
 - Sequence of daily prices of a stock
 - Sequence of scores in football
 - Sequence of failure times of a machine
 - Sequence of traffic loads in Internet
- Random process is a mathematical model for it.

• A random process is a sequence of random variables indexed by time.

- A random process is a sequence of random variables indexed by time.
- Time: discrete or continuous

- A random process is a sequence of random variables indexed by time.
- Time: discrete or continuous
- Notation
 - $(X_t)_{t\in\mathcal{T}}$ or $\Big(X(t)\Big)_{t\in\mathcal{T}},$ where $\mathcal{T}=\mathbb{R}$ (continuous) or $\mathcal{T}=\{0,1,2,\ldots\}$ (discrete)

- A random process is a sequence of random variables indexed by time.
- Time: discrete or continuous
- Notation
 - $(X_t)_{t\in\mathcal{T}}$ or $\Big(X(t)\Big)_{t\in\mathcal{T}}$, where $\mathcal{T}=\mathbb{R}$ (continuous) or $\mathcal{T}=\{0,1,2,\ldots\}$ (discrete)
 - For the discrete case, we also often use $(X_n)_{n\in\mathbb{Z}_+}$.

- A random process is a sequence of random variables indexed by time.
- Time: discrete or continuous
- Notation
 - $(X_t)_{t\in\mathcal{T}}$ or $\Big(X(t)\Big)_{t\in\mathcal{T}},$ where $\mathcal{T}=\mathbb{R}$ (continuous) or $\mathcal{T}=\{0,1,2,\ldots\}$ (discrete)
 - For the discrete case, we also often use $(X_n)_{n\in\mathbb{Z}_+}$.
 - We will use all of them, unless confusion arises.

- A random process is a sequence of random variables indexed by time.
- Time: discrete or continuous
- Notation
 - $(X_t)_{t\in\mathcal{T}}$ or $\Big(X(t)\Big)_{t\in\mathcal{T}}$, where $\mathcal{T}=\mathbb{R}$ (continuous) or $\mathcal{T}=\{0,1,2,\ldots\}$ (discrete)
 - For the discrete case, we also often use $(X_n)_{n\in\mathbb{Z}_+}$.
 - We will use all of them, unless confusion arises.
- For a fixed time t, X_t is a random variable.

- A random process is a sequence of random variables indexed by time.
- Time: discrete or continuous
- Notation
 - $(X_t)_{t\in\mathcal{T}}$ or $\Big(X(t)\Big)_{t\in\mathcal{T}}$, where $\mathcal{T}=\mathbb{R}$ (continuous) or $\mathcal{T}=\{0,1,2,\ldots\}$ (discrete)
 - For the discrete case, we also often use $(X_n)_{n\in\mathbb{Z}_+}$.
 - We will use all of them, unless confusion arises.
- For a fixed time t, X_t is a random variable.
- The values that X_t can take: discrete or continuous

4 Types of Random Processes

- Types of time and value

- (a) continuous time, continuous value
- (b) continuous time, discrete value
- (c) discrete time, continuous value
- (d) discrete time, discrete value

Roadmap

- A lot of applications in engineering systems
- Basics on Random Process
- Bernoulli Process
- Poisson Process
- Use of Bernoulli and Poisson Processes
 - Coding of both processes
 - Merge and Split
- Markov Chain

• At each minute, we toss a coin with probability of head 0 .

- At each minute, we toss a coin with probability of head 0 .
 - Sequence of lottery wins/looses
 - Customers (each second) to a bank
 - Clicks (at each time slot) to server

- At each minute, we toss a coin with probability of head 0 .
 - Sequence of lottery wins/looses
 - Customers (each second) to a bank
 - Clicks (at each time slot) to server
- A sequence of independent Bernoulli trials X_1, X_2, \ldots ,
 - We call index 1, 2, ... time slots (or simply slots)

0 0 1 0 0 0 0 1 0 1 1 0 0 0

- At each minute, we toss a coin with probability of head 0 .
 - Sequence of lottery wins/looses
 - Customers (each second) to a bank
 - Clicks (at each time slot) to server
- A sequence of independent Bernoulli trials X_1, X_2, \ldots ,
 - We call index 1, 2, ... time slots (or simply slots)

Discrete time, discrete value

- At each minute, we toss a coin with probability of head 0 .
 - Sequence of lottery wins/looses
 - Customers (each second) to a bank
 - Clicks (at each time slot) to server
- A sequence of independent Bernoulli trials X_1, X_2, \ldots ,
 - We call index 1, 2, ... time slots (or simply slots)

- Discrete time, discrete value
- One of the simplest random processes
- A type of "arrival" process

• Question. We've already studied a sequence of Bernoulli rvs X_1, X_2, \ldots, X_n . What's the difference?

- Question. We've already studied a sequence of Bernoulli rvs X_1, X_2, \dots, X_n . What's the difference?
- Physical difference: infinite sequence of X_1, X_2, \ldots, \ldots

- Question. We've already studied a sequence of Bernoulli rvs X_1, X_2, \dots, X_n . What's the difference?
- Physical difference: infinite sequence of X_1, X_2, \ldots, \ldots
 - Sample space? set of all outcomes?

- Question. We've already studied a sequence of Bernoulli rvs X_1, X_2, \dots, X_n . What's the difference?
- Physical difference: infinite sequence of X_1, X_2, \ldots, \ldots
 - Sample space? set of all outcomes?
 - an outcome: an infinite sequence of sample values $x_1, x_2, \ldots, e.g., (0,1,1,0,0,1,\ldots)$

- Question. We've already studied a sequence of Bernoulli rvs X_1, X_2, \ldots, X_n . What's the difference?
- Physical difference: infinite sequence of X_1, X_2, \ldots, \ldots
 - Sample space? set of all outcomes?
 - an outcome: an infinite sequence of sample values $x_1, x_2, \ldots, e.g., (0,1,1,0,0,1,\ldots)$
- Semantic difference: Understand i in X_i as time. Also, interesting questions from the random process point of view.

- Question. We've already studied a sequence of Bernoulli rvs X_1, X_2, \dots, X_n . What's the difference?
- Physical difference: infinite sequence of X_1, X_2, \ldots, \ldots
 - Sample space? set of all outcomes?
 - an outcome: an infinite sequence of sample values $x_1, x_2, \ldots, e.g., (0,1,1,0,0,1,\ldots)$
- Semantic difference: Understand i in X_i as time. Also, interesting questions from the random process point of view.
 - Dependence: How X_1, X_2, \ldots are related to each other as a time series

- Question. We've already studied a sequence of Bernoulli rvs X_1, X_2, \ldots, X_n . What's the difference?
- Physical difference: infinite sequence of X_1, X_2, \ldots, \ldots
 - Sample space? set of all outcomes?
 - an outcome: an infinite sequence of sample values $x_1, x_2, \ldots, e.g., (0,1,1,0,0,1,\ldots)$
- Semantic difference: Understand i in X_i as time. Also, interesting questions from the random process point of view.
 - Dependence: How X_1, X_2, \ldots are related to each other as a time series
 - Long-term behavior: What is the fraction of times that a machine is idle?

- Question. We've already studied a sequence of Bernoulli rvs X_1, X_2, \ldots, X_n . What's the difference?
- Physical difference: infinite sequence of X_1, X_2, \ldots, \ldots
 - Sample space? set of all outcomes?
 - an outcome: an infinite sequence of sample values $x_1, x_2, \ldots, e.g., (0,1,1,0,0,1,\ldots)$
- Semantic difference: Understand i in X_i as time. Also, interesting questions from the random process point of view.
 - Dependence: How X_1, X_2, \ldots are related to each other as a time series
 - Long-term behavior: What is the fraction of times that a machine is idle?
 - Other interesting questions, depending on the target random process

- Question. We've already studied a sequence of Bernoulli rvs X_1, X_2, \ldots, X_n . What's the difference?
- Physical difference: infinite sequence of X_1, X_2, \ldots, \ldots
 - Sample space? set of all outcomes?
 - an outcome: an infinite sequence of sample values $x_1, x_2, \ldots, e.g., (0,1,1,0,0,1,\ldots)$
- Semantic difference: Understand i in X_i as time. Also, interesting questions from the random process point of view.
 - Dependence: How X_1, X_2, \ldots are related to each other as a time series
 - Long-term behavior: What is the fraction of times that a machine is idle?
 - Other interesting questions, depending on the target random process
- Next: Key questions and answers about Bernoulli process

(Q1) # of arrivals in *n* slots?

(Q1) # of arrivals in
$$n$$
 slots?
• $S_n = X_1 + X_2 + \cdots + X_n$

(Q1) # of arrivals in n slots?

- $S_n = X_1 + X_2 + \cdots + X_n$
- $S_n \sim Bin(n,p)$

(Q1) # of arrivals in n slots?

- $S_n = X_1 + X_2 + \cdots + X_n$
- $S_n \sim Bin(n, p)$
- $\mathbb{E}(S_n) = np$, $var(S_n) = np(1-p)$

- (Q1) # of arrivals in n slots?
- $S_n = X_1 + X_2 + \cdots + X_n$
- $S_n \sim Bin(n, p)$
- $\mathbb{E}(S_n) = np$, $var(S_n) = np(1-p)$
- (Q2) # of slots T_1 until the first arrival?

- (Q1) # of arrivals in n slots?
- $S_n = X_1 + X_2 + \cdots + X_n$
- $S_n \sim Bin(n, p)$
- $\mathbb{E}(S_n) = np$, $var(S_n) = np(1-p)$
- (Q2) # of slots T_1 until the first arrival?
- $T_1 \sim \textit{Geom}(p)$

- (Q1) # of arrivals in n slots?
- $S_n = X_1 + X_2 + \cdots + X_n$
- $S_n \sim Bin(n, p)$
- $\mathbb{E}(S_n) = np$, $var(S_n) = np(1-p)$
- (Q2) # of slots T_1 until the first arrival?
- *T*₁ ∼ *Geom*(*p*)
- $\mathbb{E}(T_1) = 1/p$, $\text{var}(T_1) = \frac{1-p}{p^2}$

Number of arrivals and Time until the first arrival

- (Q1) # of arrivals in n slots?
- $S_n = X_1 + X_2 + \cdots + X_n$
- $S_n \sim Bin(n, p)$
- $\mathbb{E}(S_n) = np$, $var(S_n) = np(1-p)$
- (Q2) # of slots T_1 until the first arrival?
- *T*₁ ∼ *Geom*(*p*)
- $\mathbb{E}(T_1) = 1/p$, $var(T_1) = \frac{1-p}{p^2}$

T₁ is geometric? Memoryless

Number of arrivals and Time until the first arrival

(Q1) # of arrivals in n slots?

•
$$S_n = X_1 + X_2 + \cdots + X_n$$

- $S_n \sim Bin(n, p)$
- $\mathbb{E}(S_n) = np$, $var(S_n) = np(1-p)$

(Q2) # of slots T_1 until the first arrival?

- *T*₁ ∼ *Geom*(*p*)
- $\mathbb{E}(T_1) = 1/p$, $\text{var}(T_1) = \frac{1-p}{p^2}$

- *T*₁ is geometric? Memoryless
- Conditioned no first arrival at some time, what's the distribution of the remaining time until the first arrival?
- Still, geometric.

Number of arrivals and Time until the first arrival

(Q1) # of arrivals in n slots?

•
$$S_n = X_1 + X_2 + \cdots + X_n$$

- $S_n \sim Bin(n, p)$
- $\mathbb{E}(S_n) = np$, $var(S_n) = np(1-p)$

(Q2) # of slots T_1 until the first arrival?

- *T*₁ ∼ *Geom*(*p*)
- $\mathbb{E}(T_1) = 1/p$, $var(T_1) = \frac{1-p}{p^2}$

- *T*₁ is geometric? Memoryless
- Conditioned no first arrival at some time, what's the distribution of the remaining time until the first arrival?
- Still, geometric.
- But, more than that, as we will see.
 Independence across time slots leads to many useful properties, allowing the quick solution of many problems.

(Q3)
$$U = X_1 + X_2 \perp \!\!\!\perp V = X_5 + X_6$$
?

(Q3)
$$U = X_1 + X_2 \perp \!\!\!\perp V = X_5 + X_6$$
?

- Yes
- Because X_i s are independent

(Q3)
$$U = X_1 + X_2 \perp \!\!\!\perp V = X_5 + X_6$$
?

- Yes
- Because X_i s are independent

(Q4) The process $(X_n)_{n=6}^{\infty}$?

(Q3)
$$U = X_1 + X_2 \perp \!\!\! \perp V = X_5 + X_6$$
?

- Yes
- Because X_i s are independent

(Q4) The process $(X_n)_{n=6}^{\infty}$?

• $(X_1,\ldots,X_5) \perp \!\!\!\perp (X_n)_{n=6}^{\infty}$

(Q3)
$$U = X_1 + X_2 \perp \!\!\! \perp V = X_5 + X_6$$
?

- Yes
- Because X_i s are independent

(Q4) The process $(X_n)_{n=6}^{\infty}$?

- $(X_1,\ldots,X_5) \perp \!\!\!\perp (X_n)_{n=6}^{\infty}$
- Fresh-start after a deterministic time *n*

(Q3)
$$U = X_1 + X_2 \perp \!\!\!\perp V = X_5 + X_6$$
?

- Yes
- Because X_i s are independent

(Q4) The process $(X_n)_{n=6}^{\infty}$?

- $(X_1, ..., X_5) \perp \!\!\! \perp (X_n)_{n=6}^{\infty}$
- Fresh-start after a deterministic time n
- If you watch the on-going Bernoulli process(p) from some time n, you still see the same Bernoulli process(p).

(Q5) The process $(X_N, X_{N+1}, X_{N+2}, ...)$? Fresh-start even after random N?

Examples of N

- Examples of N
- **E1**. Time of 3rd arrival

- Examples of N
- **E1.** Time of 3rd arrival
- **E2.** First time when 3 consecutive arrivals have been observed

- Examples of N
- **E1.** Time of 3rd arrival
- **E2.** First time when 3 consecutive arrivals have been observed
- E3. Time just before 3 consecutive arrivals

- Examples of N
- **E1.** Time of 3rd arrival
- **E2.** First time when 3 consecutive arrivals have been observed
- E3. Time just before 3 consecutive arrivals

- Difference of N from n
 - The time when I watch the on-going Bernoulli process is random.

- Examples of N
- **E1.** Time of 3rd arrival
- **E2.** First time when 3 consecutive arrivals have been observed
- E3. Time just before 3 consecutive arrivals

(Q5) The process $(X_N, X_{N+1}, X_{N+2}, ...)$? Fresh-start even after random N?

- Examples of N
- **E1.** Time of 3rd arrival
- **E2.** First time when 3 consecutive arrivals have been observed
- E3. Time just before 3 consecutive arrivals

E1. When I watch the process, N has been already determined. Yes

- Examples of N
- **E1.** Time of 3rd arrival
- **E2.** First time when 3 consecutive arrivals have been observed
- **E3**. Time just before 3 consecutive arrivals

- **E1.** When I watch the process, N has been already determined. Yes
- E2. Same as E1. Yes

- Examples of N
- **E1**. Time of 3rd arrival
- **E2.** First time when 3 consecutive arrivals have been observed
- **E3**. Time just before 3 consecutive arrivals

- **E1.** When I watch the process, N has been already determined. Yes
- E2. Same as E1. Yes
- E3. Need the future knowledge. '111' does not become random. No

- Examples of N
- **E1**. Time of 3rd arrival
- **E2.** First time when 3 consecutive arrivals have been observed
- E3. Time just before 3 consecutive arrivals

- **E1.** When I watch the process, N has been already determined. Yes
- E2. Same as E1. Yes
- E3. Need the future knowledge. '111' does not become random. No
 - The question of N = n? can be answered just from the knowledge about $X_1, X_2, ..., X_n$? Then, Yes! (see pp. 301 for more formal description)

• Regard an arrival as business of a server

- Regard an arrival as business of a server
- First busy period B_1 : starts with the first busy slot and ends just before the first subsequent idle slot

- Regard an arrival as business of a server
- First busy period B_1 : starts with the first busy slot and ends just before the first subsequent idle slot

• (Q6) Distribution of B_1 ?

- Regard an arrival as business of a server
- First busy period B_1 : starts with the first busy slot and ends just before the first subsequent idle slot

- (Q6) Distribution of B_1 ?
- N: time of the first busy slot. Fresh-start after N.

- Regard an arrival as business of a server
- First busy period B_1 : starts with the first busy slot and ends just before the first subsequent idle slot

- (Q6) Distribution of B_1 ?
- *N*: time of the first busy slot. Fresh-start after *N*.
- B_1 is geometric with parameter (1-p)

- Regard an arrival as business of a server
- First busy period B_1 : starts with the first busy slot and ends just before the first subsequent idle slot

- (Q6) Distribution of B_1 ?
- *N*: time of the first busy slot. Fresh-start after *N*.
- B_1 is geometric with parameter (1-p)
- Question: What about the second busy period B_2 ? B_3 , B_4 ?

• Time of the first arrival $Y_1 \sim geom(p)$

- Time of the first arrival $Y_1 \sim geom(p)$
 - (Q7) Time of the k-th arrival Y_k ?

• Time of the first arrival $Y_1 \sim geom(p)$

(Q7) Time of the k-th arrival Y_k ?

-
$$T_k = Y_k - Y_{k-1}$$
: k -th inter-arrival $(k \geq 2, \ T_1 = Y_1)$

• Time of the first arrival $Y_1 \sim geom(p)$

(Q7) Time of the k-th arrival Y_k ?

-
$$T_k = Y_k - Y_{k-1}$$
: k -th inter-arrival ($k \geq 2, \ T_1 = Y_1$)

-
$$Y_k = T_1 + T_2 + \ldots + T_k$$
.

Time of the first arrival Y₁ ~ geom(p)
 (Q7) Time of the k-th arrival Yk?

-
$$T_k = Y_k - Y_{k-1}$$
: k -th inter-arrival ($k \geq 2, \ T_1 = Y_1$)

$$-Y_k = T_1 + T_2 + \ldots + T_k.$$

• After each T_k , the fresh-start occurs.

Time of the first arrival Y₁ ~ geom(p)
 (Q7) Time of the k-th arrival Yk?

-
$$T_k = Y_k - Y_{k-1}$$
: k -th inter-arrival ($k \geq 2, \ T_1 = Y_1$)

$$-Y_k = T_1 + T_2 + \ldots + T_k.$$

- After each T_k , the fresh-start occurs.
- $\{T_i\}$ are i.i.d. and $\sim geom(p)$

• Time of the first arrival $Y_1 \sim geom(p)$ (Q7) Time of the k-th arrival Y_k ?

-
$$T_k = Y_k - Y_{k-1}$$
: k -th inter-arrival ($k \geq 2, \ T_1 = Y_1$)

$$-Y_k = T_1 + T_2 + \ldots + T_k.$$

- After each T_k , the fresh-start occurs.
- $\{T_i\}$ are i.i.d. and $\sim geom(p)$
- $\mathbb{E}[Y_k] = \frac{k}{p}$, $\operatorname{var}[Y_k] = \frac{k(1-p)}{p^2}$

PMF of Y_k

- $Y_k = T_1 + T_2 + \ldots + T_k$.
- $\{T_i\}$ are i.i.d. and $\sim geom(p)$

PMF of Y_k

- $Y_k = T_1 + T_2 + \ldots + T_k$.
- $\{T_i\}$ are i.i.d. and $\sim geom(p)$

$$\mathbb{P}(Y_k=t)=\mathbb{P}\Big(X_k=1 ext{ and } k-1 ext{ arrivals during the first } t-1 ext{ slots}\Big)$$

PMF of Y_k

- $Y_k = T_1 + T_2 + \ldots + T_k$.
- $\{T_i\}$ are i.i.d. and $\sim geom(p)$

$$\mathbb{P}(Y_k = t) = \mathbb{P}\Big(X_k = 1 \text{ and } k-1 \text{ arrivals during the first } t-1 \text{ slots}\Big)$$
 $= \mathbb{P}\Big(X_k = 1\Big) \cdot \mathbb{P}\Big(k-1 \text{ arrivals during the first } t-1 \text{ slots}\Big)$

PMF of Y_k

- $Y_k = T_1 + T_2 + \ldots + T_k$.
- $\{T_i\}$ are i.i.d. and $\sim geom(p)$

$$\mathbb{P}(Y_k = t) = \mathbb{P}\Big(X_k = 1 \text{ and } k - 1 \text{ arrivals during the first } t - 1 \text{ slots}\Big)$$

$$= \mathbb{P}\Big(X_k = 1\Big) \cdot \mathbb{P}\Big(k - 1 \text{ arrivals during the first } t - 1 \text{ slots}\Big)$$

$$= p \times \binom{t - c}{k - 1} p^{k - 1} (1 - p)^{t - k} = \binom{t - c}{k - 1} p^k (1 - p)^{t - k}, \quad t = k, k + 1, \dots$$

PMF of Y_k

- $Y_k = T_1 + T_2 + \ldots + T_k$.
- $\{T_i\}$ are i.i.d. and $\sim geom(p)$

$$\begin{split} \mathbb{P}(Y_k = t) &= \mathbb{P}\Big(X_k = 1 \text{ and } k-1 \text{ arrivals during the first } t-1 \text{ slots}\Big) \\ &= \mathbb{P}\Big(X_k = 1\Big) \cdot \mathbb{P}\Big(k-1 \text{ arrivals during the first } t-1 \text{ slots}\Big) \\ &= p \times \binom{t-c}{k-1} p^{k-1} (1-p)^{t-k} = \binom{t-c}{k-1} p^k (1-p)^{t-k}, \quad t = k, k+1, \dots \end{split}$$

• Y_k is called Pascal rv with parameter (k, p).

PMF of Y_k

- $Y_k = T_1 + T_2 + \ldots + T_k$.
- $\{T_i\}$ are i.i.d. and $\sim geom(p)$

$$\begin{split} \mathbb{P}(Y_k = t) &= \mathbb{P}\Big(X_k = 1 \text{ and } k-1 \text{ arrivals during the first } t-1 \text{ slots}\Big) \\ &= \mathbb{P}\Big(X_k = 1\Big) \cdot \mathbb{P}\Big(k-1 \text{ arrivals during the first } t-1 \text{ slots}\Big) \\ &= p \times \binom{t-c}{k-1} p^{k-1} (1-p)^{t-k} = \binom{t-c}{k-1} p^k (1-p)^{t-k}, \quad t = k, k+1, \dots \end{split}$$

- Y_k is called Pascal rv with parameter (k, p).
- Pascal(1, p) = Geometric(p)

Roadmap

- A lot of applications in engineering systems
- Basics on Random Process
- Bernoulli Process
- Poisson Process
- Use of Bernoulli and Poisson Processes
 - Coding of both processes
 - Merge and Split
- Markov Chain

 Very useful to both continuous and discrete random processes that are "twins" and share the key properties.

- Very useful to both continuous and discrete random processes that are "twins" and share the key properties.
 - Independence between what happens in a different time region

- Very useful to both continuous and discrete random processes that are "twins" and share the key properties.
 - Independence between what happens in a different time region
 - Memoryless and fresh-start property

- Very useful to both continuous and discrete random processes that are "twins" and share the key properties.
 - Independence between what happens in a different time region
 - Memoryless and fresh-start property
- Choose one of discrete or continuous versions for our modeling convenience.

- Very useful to both continuous and discrete random processes that are "twins" and share the key properties.
 - Independence between what happens in a different time region
 - Memoryless and fresh-start property
- Choose one of discrete or continuous versions for our modeling convenience.
- Question. How do we design the continuous analog of Bernoulli process?

- Very useful to both continuous and discrete random processes that are "twins" and share the key properties.
 - Independence between what happens in a different time region
 - Memoryless and fresh-start property
- Choose one of discrete or continuous versions for our modeling convenience.
- Question. How do we design the continuous analog of Bernoulli process?
 - Key idea: Making it as a of a sequence of Bernoulli processes

- Very useful to both continuous and discrete random processes that are "twins" and share the key properties.
 - Independence between what happens in a different time region
 - Memoryless and fresh-start property
- Choose one of discrete or continuous versions for our modeling convenience.
- Question. How do we design the continuous analog of Bernoulli process?
 - Key idea: Making it as a limiting system of a sequence of Bernoulli processes

- Very useful to both continuous and discrete random processes that are "twins" and share the key properties.
 - Independence between what happens in a different time region
 - Memoryless and fresh-start property
- Choose one of discrete or continuous versions for our modeling convenience.
- Question. How do we design the continuous analog of Bernoulli process?
 - Key idea: Making it as a limiting system of a sequence of Bernoulli processes
- Need a "modeling sense" to make this possible. It's a good practice for engineers!

Continuous twin

- Continuous twin
 - Key point: Understand the number of arrivals over a given interval $[0, \tau]$.

- Continuous twin
 - Key point: Understand the number of arrivals over a given interval $[0, \tau]$.
 - Assume that it has some arrival rate λ (# of arrivals/unit time).

- Continuous twin
 - Key point: Understand the number of arrivals over a given interval $[0, \tau]$.
 - Assume that it has some arrival rate λ (# of arrivals/unit time).
 - We know how to handle Bernoulli process with discrete time slots.

- Continuous twin
 - Key point: Understand the number of arrivals over a given interval $[0, \tau]$.
 - Assume that it has some arrival rate λ (# of arrivals/unit time).
 - We know how to handle Bernoulli process with discrete time slots.
- Divide $[0, \tau]$ into slots whose length $= \delta$. Then, n = # of slots $= \frac{\tau}{\delta}$.

- Continuous twin
 - Key point: Understand the number of arrivals over a given interval $[0, \tau]$.
 - Assume that it has some arrival rate λ (# of arrivals/unit time).
 - We know how to handle Bernoulli process with discrete time slots.
- Divide $[0, \tau]$ into slots whose length $= \delta$. Then, n = # of slots $= \frac{\tau}{\delta}$.

• What's the limit as $\delta \to 0$ (equivalently, $n \to \infty$)

• Now, our design idea: during one time slot of length δ ,

 $\mathbb{P}(1 \text{ arrival}) \propto \text{arrival rate and slot length}$

- Now, our design idea: during one time slot of length δ ,

 $\mathbb{P}(\text{1 arrival}) \propto \text{arrival rate and slot length}$ $\mathbb{P}(\geq \text{2 arrivals}) \propto \text{something, but very small}$


```
\begin{split} \mathbb{P}(1 \text{ arrival}) &\propto \text{arrival rate and slot length} \\ \mathbb{P}(\geq 2 \text{ arrivals}) &\propto \text{something, but very small} \\ &\quad \text{for small sloth length} \\ \mathbb{P}(0 \text{ arrival}) &= 1 - \mathbb{P}(1 \text{ arrival or } \geq 2 \text{ arrivals}) \end{split}
```


$$\mathbb{P}(1 ext{ arrival}) \propto ext{arrival rate and slot length}$$
 $\mathbb{P}(\geq 2 ext{ arrivals}) \propto ext{something, but very small}$ for small sloth length $\mathbb{P}(0 ext{ arrival}) = 1 - \mathbb{P}(1 ext{ arrival or } \geq 2 ext{ arrivals})$

$$\mathbb{P}(1 ext{ arrival}) = \lambda \delta$$

$$\begin{array}{c} \mathbb{P}(1 \text{ arrival}) \propto \text{arrival rate and slot length} \\ \mathbb{P}(\geq \! 2 \text{ arrivals}) \propto \text{something, but very small} \\ \text{ for small sloth length} \\ \mathbb{P}(0 \text{ arrival}) = 1 - \mathbb{P}(1 \text{ arrival or } \geq \! 2 \text{ arrivals}) \end{array}$$

$$\mathbb{P}(1 ext{ arrival}) = \lambda \delta$$
 $\mathbb{P}(\geq 2 ext{ arrivals}) = 0$

$$\mathbb{P}(1 ext{ arrival}) \propto ext{ arrival rate and slot length}$$
 $\mathbb{P}(\geq \! 2 ext{ arrivals}) \propto ext{ something, but very small}$ for small sloth length $\mathbb{P}(0 ext{ arrival}) = 1 - \mathbb{P}(1 ext{ arrival or } \geq \! 2 ext{ arrivals})$

$$\mathbb{P}(1 ext{ arrival}) = \lambda \delta$$
 $\mathbb{P}(\geq 2 ext{ arrivals}) = 0$ $\mathbb{P}(0 ext{ arrival}) = 1 - \lambda \delta$

$$\begin{array}{c} \mathbb{P}(1 \text{ arrival}) \propto \text{arrival rate and slot length} \\ \mathbb{P}(\geq \! 2 \text{ arrivals}) \propto \text{something, but very small} \\ \text{ for small sloth length} \\ \mathbb{P}(0 \text{ arrival}) = 1 - \mathbb{P}(1 \text{ arrival or } \geq \! 2 \text{ arrivals}) \end{array}$$

$$\mathbb{P}(1 ext{ arrival}) = \lambda \delta + o(\delta)$$

 $\mathbb{P}(\geq 2 ext{ arrivals}) = o(\delta)$
 $\mathbb{P}(0 ext{ arrival}) = 1 - \lambda \delta + o(\delta)$

$$\mathbb{P}(1 ext{ arrival}) \propto ext{arrival rate and slot length}$$
 $\mathbb{P}(\geq \! 2 ext{ arrivals}) \propto ext{something, but very small}$ for small sloth length $\mathbb{P}(0 ext{ arrival}) = 1 - \mathbb{P}(1 ext{ arrival or } \geq \! 2 ext{ arrivals})$

$$\mathbb{P}(1 ext{ arrival}) = \lambda \delta + o(\delta)$$

 $\mathbb{P}(\geq 2 ext{ arrivals}) = o(\delta)$
 $\mathbb{P}(0 ext{ arrival}) = 1 - \lambda \delta + o(\delta)$

- $o(\delta)$: some function that goes to zero faster than δ goes to zero.
 - Thus, for very small δ , $o(\delta)$ becomes negligible.
 - Example: $o(\delta) = \delta^{\alpha}$, where any $\alpha > 1$

• Our interest: Prob. of k arrivals over $[0, \tau]$

- Our interest: Prob. of k arrivals over $[0, \tau]$
- Given "small" δ , # of arrivals \sim Binomial(n, p), where $n = \tau/\delta$ and $p = \lambda\delta$

- Our interest: Prob. of k arrivals over $[0, \tau]$
- Given "small" δ , # of arrivals \sim Binomial(n, p), where $n = \tau/\delta$ and $p = \lambda\delta$
- As $\delta \to \infty$, $np = \tau/\delta \times \lambda \delta = \lambda \tau$.

- Our interest: Prob. of k arrivals over $[0, \tau]$
- Given "small" δ , # of arrivals \sim Binomial(n, p), where $n = \tau/\delta$ and $p = \lambda\delta$
- As $\delta \to \infty$, $np = \tau/\delta \times \lambda \delta = \lambda \tau$.
- # of arrivals over $[0, \tau]$, $\sim Poisson(\lambda \tau)$

- Our interest: Prob. of k arrivals over $[0, \tau]$
- Given "small" δ , # of arrivals \sim Binomial(n, p), where $n = \tau/\delta$ and $p = \lambda\delta$
- As $\delta \to \infty$, $np = \tau/\delta \times \lambda \delta = \lambda \tau$.
- # of arrivals over $[0, \tau]$, $\sim Poisson(\lambda \tau)$
- This is a continuous twin process of Bernous process, which we call Poisson process.

• N_s : number of arrivals over the interval [0, s].

- N_s : number of arrivals over the interval [0, s].
- (Independence) If s < t, the number $N_t N_s$ of arrivals over [s, t] is independent of the times of arrivals during [0, s].

- N_s : number of arrivals over the interval [0, s].
- (Independence) If s < t, the number $N_t N_s$ of arrivals over [s, t] is independent of the times of arrivals during [0, s].
 - Thus, N_s can be a random variable over any interval of length s.

Poisson Process: Formalism

- N_s : number of arrivals over the interval [0, s].
- (Independence) If s < t, the number $N_t N_s$ of arrivals over [s, t] is independent of the times of arrivals during [0, s].
 - Thus, N_s can be a random variable over any interval of length s.
- (Small interval probability) The probabilities $\mathbb{P}(k,s)$ satisfy:

$$\mathbb{P}(0,s) = 1 - \lambda \tau + o(s)$$

 $\mathbb{P}(1,s) = \lambda s + o_1(s)$
 $\mathbb{P}(k,s) = o_k(s)$ for $k = 2,3,...,$

where

$$\lim_{s\to 0}\frac{o(s)}{s}=0,\quad \lim_{s\to 0}\frac{o_k(s)}{s}=0$$

Poisson Process: $\mathbb{P}(k,\tau)$, N_{τ} , and T

Poisson Process: $\mathbb{P}(k,\tau)$, N_{τ} , and T

$$\mathbb{P}(k,\tau) = e^{-\lambda \tau} \frac{(\lambda \tau)^k}{k!}, \quad k = 0, 1, 2, \dots$$

Poisson Process: $\overline{\mathbb{P}(k,\tau)}$, N_{τ} , and \overline{T}

• (Q1) Number of arrivals of any interval with length $\tau \sim Poisson(\lambda \tau)$, i.e.,

$$\mathbb{P}(k,\tau) = e^{-\lambda \tau} \frac{(\lambda \tau)^k}{k!}, \quad k = 0, 1, 2, \dots$$

• $\mathbb{E}[\mathit{N}_{ au}] = \lambda au$ and $\mathrm{var}[\mathit{N}_{ au}] = \lambda au$

Poisson Process: $\mathbb{P}(k,\tau)$, N_{τ} , and T

$$\mathbb{P}(k,\tau) = e^{-\lambda \tau} \frac{(\lambda \tau)^k}{k!}, \quad k = 0, 1, 2, \dots$$

- $\mathbb{E}[N_{ au}] = \lambda au$ and $\text{var}[N_{ au}] = \lambda au$
- (Q2) Time of first arrival T

Poisson Process: $\mathbb{P}(k,\tau)$, N_{τ} , and T

$$\mathbb{P}(k,\tau) = e^{-\lambda \tau} \frac{(\lambda \tau)^k}{k!}, \quad k = 0, 1, 2, \dots$$

- $\mathbb{E}[N_{ au}] = \lambda au$ and $\text{var}[N_{ au}] = \lambda au$
- (Q2) Time of first arrival T

$$F_T(t) = \mathbb{P}(T \le t) = 1 - \mathbb{P}(T > t) = 1 - P(0, t) = 1 - e^{-\lambda t}$$

Poisson Process: $\mathbb{P}(k, \tau)$, N_{τ} , and T

$$\mathbb{P}(k,\tau) = e^{-\lambda \tau} \frac{(\lambda \tau)^k}{k!}, \quad k = 0, 1, 2, \dots$$

- $\mathbb{E}[N_{ au}] = \lambda au$ and $\text{var}[N_{ au}] = \lambda au$
- (Q2) Time of first arrival T

$$F_{\mathcal{T}}(t) = \mathbb{P}(\mathcal{T} \leq t) = 1 - \mathbb{P}(\mathcal{T} > t) = 1 - P(0, t) = 1 - e^{-\lambda t}$$
 $f_{\mathcal{T}}(t) = \frac{dF_{\mathcal{T}}(t)}{dt} = \lambda e^{-\lambda t}, \quad t \geq 0.$

Poisson Process: $\mathbb{P}(k, au),\ extstyle{N}_{ au},\ ext{and}\ extstyle{T}$

$$\mathbb{P}(k,\tau) = e^{-\lambda \tau} \frac{(\lambda \tau)^k}{k!}, \quad k = 0, 1, 2, \dots$$

- $\mathbb{E}[N_{ au}] = \lambda au$ and $\text{var}[N_{ au}] = \lambda au$
- (Q2) Time of first arrival T

$$egin{aligned} F_{\mathcal{T}}(t) &= \mathbb{P}(\mathcal{T} \leq t) = 1 - \mathbb{P}(\mathcal{T} > t) = 1 - P(0,t) = 1 - e^{-\lambda t} \ f_{\mathcal{T}}(t) &= rac{dF_{\mathcal{T}}(t)}{dt} = \lambda e^{-\lambda t}, \quad t \geq 0. \end{aligned}$$

- $T \sim expo(\lambda)$. Thus $\mathbb{E}[T] = 1/\lambda$ and $var[T] = 1/\lambda^2$
 - Continuous twin of geometric rv in Bernoulli process
 - Memoryless

- Receive emails according to a Poisson process at rate $\lambda=5$ messages per hour
- Mean and variance of mails received during a day

P[one new message in the next hour]

 \bullet $\mathbb{P}[\text{exactly two msgs during each of the next three hours}]$

- Receive emails according to a Poisson process at rate $\lambda=5$ messages per hour
- Mean and variance of mails received during a day
 - -5*24 = 120
- $\mathbb{P}[\text{one new message in the next hour}]$

 \bullet $\mathbb{P}[\text{exactly two msgs during each of the next three hours}]$

- Receive emails according to a Poisson process at rate $\lambda=5$ messages per hour
- Mean and variance of mails received during a day

$$-5*24 = 120$$

P[one new message in the next hour]

$$-\mathbb{P}(1,1) = \frac{(5\cdot 1)^1 e^{-5\cdot 1}}{1!} = 5e^{-5}$$

ullet $\mathbb{P}[\text{exactly two msgs during each of the next three hours}]$

- Receive emails according to a Poisson process at rate $\lambda=5$ messages per hour
- Mean and variance of mails received during a day

$$-5*24 = 120$$

 \bullet $\mathbb{P}[\text{one new message in the next hour}]$

$$-\mathbb{P}(1,1) = \frac{(5\cdot1)^1e^{-5\cdot1}}{1!} = 5e^{-5}$$

ullet $\mathbb{P}[\text{exactly two msgs during each of the next three hours}]$

$$-\left(\frac{5^2e^{-5}}{2!}\right)^3$$

• Remind. Similar property for Bernoulli processes, but here no time slots.

- Remind. Similar property for Bernoulli processes, but here no time slots.
- Fresh-start at determinsitic time: Start watching at time t, then you see the Poisson process, independent of what has happened in the past.

- Remind. Similar property for Bernoulli processes, but here no time slots.
- Fresh-start at determinsitic time: Start watching at time t, then you see the Poisson process, independent of what has happened in the past.
- Fresh-start at random time: Similarly holds. For example, when you start watching at random time T_1 (time of first arrival)

- Remind. Similar property for Bernoulli processes, but here no time slots.
- Fresh-start at determinsitic time: Start watching at time t, then you see the Poisson process, independent of what has happened in the past.
- Fresh-start at random time: Similarly holds. For example, when you start watching at random time T_1 (time of first arrival)
- (Q3) The k-th arrival time Y_k ?

- Remind. Similar property for Bernoulli processes, but here no time slots.
- Fresh-start at determinsitic time: Start watching at time t, then you see the Poisson process, independent of what has happened in the past.
- Fresh-start at random time: Similarly holds. For example, when you start watching at random time T_1 (time of first arrival)
- (Q3) The k-th arrival time Y_k ?
- k-th inter-arrival time $T_k = Y_k = Y_{k-1}, k \ge 2$, and $T_1 = Y_1$.

- Remind. Similar property for Bernoulli processes, but here no time slots.
- Fresh-start at determinsitic time: Start watching at time t, then you see the Poisson process, independent of what has happened in the past.
- Fresh-start at random time: Similarly holds. For example, when you start watching at random time T_1 (time of first arrival)
- (Q3) The k-th arrival time Y_k ?
- k-th inter-arrival time $T_k = Y_k = Y_{k-1}, k \ge 2$, and $T_1 = Y_1$.
- $Y_k = T_1 + T_2 + \cdots + T_k$ is sum of i.i.d. exponential rvs.

- Remind. Similar property for Bernoulli processes, but here no time slots.
- Fresh-start at determinsitic time: Start watching at time t, then you see the Poisson process, independent of what has happened in the past.
- Fresh-start at random time: Similarly holds. For example, when you start watching at random time T_1 (time of first arrival)
- (Q3) The k-th arrival time Y_k ?
- k-th inter-arrival time $T_k = Y_k = Y_{k-1}, k \ge 2$, and $T_1 = Y_1$.
- $Y_k = T_1 + T_2 + \cdots + T_k$ is sum of i.i.d. exponential rvs.
- $\mathbb{E}[Y_k] = k/\lambda$ and $var[Y_k] = k/\lambda^2$

• For a given δ , prob of k-th arrival over $[y, y + \delta]$.

• For a given δ , $\delta \cdot f_{Y_k}(y)$: prob of k-th arrival over $[y, y + \delta]$.

- For a given δ , $\delta \cdot f_{Y_k}(y)$: prob of k-th arrival over $[y, y + \delta]$.
- When δ is small, only one arrival occurs. Thus,

$$\delta \cdot f_{Y_k}(y) =$$

- For a given δ , $\delta \cdot f_{Y_k}(y)$: prob of k-th arrival over $[y, y + \delta]$.
- When δ is small, only one arrival occurs. Thus,

$$\delta \cdot f_{Y_k}(y) = \mathbb{P}\Big(ext{an arrival over } [y,y+\delta]\Big) imes \mathbb{P}\Big(k-1 ext{ arrivals before } y\Big)$$

- For a given δ , $\delta \cdot f_{Y_k}(y)$: prob of k-th arrival over $[y, y + \delta]$.
- When δ is small, only one arrival occurs. Thus,

$$\delta \cdot f_{Y_k}(y) = \mathbb{P}\Big(ext{an arrival over }[y,y+\delta]\Big) imes \mathbb{P}\Big(k-1 ext{ arrivals before } y\Big) \ pprox \lambda\delta imes \mathbb{P}(k-1,y) = \lambda\delta imes rac{\lambda^{k-1}y^{k-1}e^{-\lambda y}}{(k-1)!}$$

PDF of Y_{ν}

- For a given δ , $\delta \cdot f_{Y_k}(y)$: prob of k-th arrival over $[y, y + \delta]$.
- When δ is small, only one arrival occurs. Thus,

$$\delta \cdot f_{Y_k}(y) = \mathbb{P}\Big(ext{an arrival over } [y,y+\delta]\Big) imes \mathbb{P}\Big(k-1 ext{ arrivals before } y\Big)$$

$$pprox \lambda \delta imes \mathbb{P}(k-1,y) = \lambda \delta imes rac{\lambda^{k-1}y^{k-1}e^{-\lambda y}}{(k-1)!}$$

$$f_{Y_k}(y) = rac{\lambda^k y^{k-1}e^{-\lambda y}}{(k-1)!}, \quad y \geq 0.$$

PDF of Y_{ν}

- For a given δ , $\delta \cdot f_{Y_k}(y)$: prob of k-th arrival over $[y, y + \delta]$.
- When δ is small, only one arrival occurs. Thus,

$$\delta \cdot f_{Y_k}(y) = \mathbb{P}\Big(ext{an arrival over } [y,y+\delta]\Big) imes \mathbb{P}\Big(k-1 ext{ arrivals before } y\Big)$$

$$pprox \lambda \delta imes \mathbb{P}(k-1,y) = \lambda \delta imes rac{\lambda^{k-1}y^{k-1}e^{-\lambda y}}{(k-1)!}$$

$$f_{Y_k}(y) = rac{\lambda^k y^{k-1}e^{-\lambda y}}{(k-1)!}, \quad y \geq 0.$$

This is called Erlang rv.

26 / 36

- For a given δ , $\delta \cdot f_{Y_k}(y)$: prob of k-th arrival over $[y, y + \delta]$.
- When δ is small, only one arrival occurs. Thus,

$$\delta \cdot f_{Y_k}(y) = \mathbb{P}\Big(ext{an arrival over } [y,y+\delta]\Big) imes \mathbb{P}\Big(k-1 ext{ arrivals before } y\Big)$$

$$pprox \lambda \delta imes \mathbb{P}(k-1,y) = \lambda \delta imes rac{\lambda^{k-1}y^{k-1}e^{-\lambda y}}{(k-1)!}$$

$$f_{Y_k}(y) = rac{\lambda^k y^{k-1}e^{-\lambda y}}{(k-1)!}, \quad y \geq 0.$$

- This is called Erlang rv.
- Time of first arrival: geometric / exponential
- Time of k-th arrivals: Pascal / Erlang

Poisson Process vs. Bernoulli Process

-
$$n = \tau/\delta$$
, $p = \lambda \delta$, $np = \lambda \tau$

	POISSON	BERNOULLI
Times of Arrival	Continuous	Discrete
PMF of # of Arrivals	Poisson	Binomial
Interarrival Time CDF	Exponential	Geometric
Arrival Rate	$\lambda/\mathrm{unit\ time}$	$p/\mathrm{per}\ \mathrm{trial}$

- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.

- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.

```
(Q1) \mathbb{P}(\text{fishing time} > 2 \text{ hours})
```


- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.

```
(Q1) \mathbb{P}(\text{fishing time} > 2 \text{ hours})
Method 1: \mathbb{P}(0,2)
```


- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.

```
(Q1) \mathbb{P}(\text{fishing time} > 2 \text{ hours})
Method 1: \mathbb{P}(0,2)
Method 2: \mathbb{P}(T_1 > 2)
```


- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.

```
(Q1) \mathbb{P}(\text{fishing time} > 2 \text{ hours})

Method 1: \mathbb{P}(0,2)

Method 2: \mathbb{P}(T_1 > 2)

(Q2) \mathbb{P}(2 < \text{fishing time} < 5)
```


- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.

```
(Q1) \mathbb{P}(\text{fishing time} > 2 \text{ hours})

Method 1: \mathbb{P}(0,2)

Method 2: \mathbb{P}(T_1 > 2)
(Q2) \mathbb{P}(2 < \text{fishing time} < 5)

Method 1: \mathbb{P}(0,2)(1 - \mathbb{P}(0,3))
```


- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.

```
(Q1) \mathbb{P}(\text{fishing time} > 2 \text{ hours})
Method 1: \mathbb{P}(0, 2)
Method 2: \mathbb{P}(T_1 > 2)
```

(Q2) $\mathbb{P}(2 < \text{fishing time} < 5)$ Method 1: $\mathbb{P}(0,2)(1 - \mathbb{P}(0,3))$ Method 2: $\mathbb{P}(2 < T_1 < 5)$

- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.

```
(Q1) \mathbb{P}(\text{fishing time} > 2 \text{ hours})
Method 1: \mathbb{P}(0, 2)
Method 2: \mathbb{P}(T_1 > 2)
```

(Q2) $\mathbb{P}(2 < \text{fishing time} < 5)$ Method 1: $\mathbb{P}(0,2)(1 - \mathbb{P}(0,3))$ Method 2: $\mathbb{P}(2 < \mathcal{T}_1 < 5)$

(Q3) $\mathbb{P}(Catch at least two fish)$

- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.
- (Q1) $\mathbb{P}(\text{fishing time} > 2 \text{ hours})$ Method 1: $\mathbb{P}(0,2)$ Method 2: $\mathbb{P}(T_1 > 2)$
- (Q2) $\mathbb{P}(2 < \text{fishing time} < 5)$ Method 1: $\mathbb{P}(0,2)(1 - \mathbb{P}(0,3))$ Method 2: $\mathbb{P}(2 < T_1 < 5)$
- (Q3) $\mathbb{P}(\text{Catch at least two fish})$ Method $1:\sum_{k=2}^{\infty} = 1 - \mathbb{P}(0,2) - \mathbb{P}(1,2)$

- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.
- (Q1) $\mathbb{P}(\text{fishing time} > 2 \text{ hours})$ Method 1: $\mathbb{P}(0,2)$
 - Method 2: $\mathbb{P}(T_1 > 2)$
- (Q2) $\mathbb{P}(2 < \text{fishing time} < 5)$
 - Method 1: $\mathbb{P}(0,2)(1-\mathbb{P}(0,3))$
- Method 2: $\mathbb{P}(2 < T_1 < 5)$
- (Q3) $\mathbb{P}(\text{Catch at least two fish})$
 - Method 1: $\sum_{k=2}^{\infty} = 1 \mathbb{P}(0,2) \mathbb{P}(1,2)$
 - Method 2: $\mathbb{P}(Y_k \leq 2)$

- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.
- (Q1) $\mathbb{P}(\text{fishing time} > 2 \text{ hours})$ Method 1: $\mathbb{P}(0,2)$

Method 2: $\mathbb{P}(T_1 > 2)$

(Q2) $\mathbb{P}(2 < \text{fishing time} < 5)$

Method 1: $\mathbb{P}(0,2)(1-\mathbb{P}(0,3))$

Method 2: $\mathbb{P}(2 < T_1 < 5)$ (Q3) $\mathbb{P}(Catch at least two fish)$

Method $1:\sum_{k=2}^{\infty} = 1 - \mathbb{P}(0,2) - \mathbb{P}(1,2)$

Method 2: $\mathbb{P}(Y_k < 2)$

(Q4) $\mathbb{E}[\text{future fi. time}|\text{already fished for 3h}]$

- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.
- (Q1) $\mathbb{P}(\text{fishing time} > 2 \text{ hours})$ Method 1: $\mathbb{P}(0,2)$
- Method 2: $\mathbb{P}(T_1 > 2)$ (Q2) $\mathbb{P}(2 < \text{fishing time} < 5)$

Method 1: $\mathbb{P}(0,2)(1-\mathbb{P}(0,3))$

Method 2: $\mathbb{P}(2 < T_1 < 5)$

(Q3) $\mathbb{P}(Catch at least two fish)$ Method $1:\sum_{k=2}^{\infty} = 1 - \mathbb{P}(0,2) - \mathbb{P}(1,2)$

Method 2: $\mathbb{P}(Y_k < 2)$

(Q4) Effuture fi. time already fished for 3h Fresh-start. So. $\mathbb{E}[exp(\lambda)] = 1/\lambda = 1/0.6$

- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.
- (Q1) $\mathbb{P}(\text{fishing time} > 2 \text{ hours})$ Method 1: $\mathbb{P}(0,2)$ Method 2: $\mathbb{P}(T_1 > 2)$
- (Q2) $\mathbb{P}(2 < \text{fishing time} < 5)$ Method 1: $\mathbb{P}(0,2)(1 - \mathbb{P}(0,3))$ Method 2: $\mathbb{P}(2 < T_1 < 5)$
- (Q3) $\mathbb{P}(\text{Catch at least two fish})$ Method $1:\sum_{k=2}^{\infty} = 1 - \mathbb{P}(0,2) - \mathbb{P}(1,2)$ Method $2: \mathbb{P}(Y_k \leq 2)$

(Q4) $\mathbb{E}[\text{future fi. time}|\text{already fished for 3h}]$ Fresh-start. So, $\mathbb{E}[\exp(\lambda)] = 1/\lambda = 1/0.6$ (Q5) $\mathbb{E}[\text{F=total fishing time}]$

- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.
- (Q1) $\mathbb{P}(\text{fishing time} > 2 \text{ hours})$ Method 1: $\mathbb{P}(0, 2)$
- Method 2: $\mathbb{P}(T_1 > 2)$ (Q2) $\mathbb{P}(2 < \text{fishing time} < 5)$

Method 1: $\mathbb{P}(0,2)(1-\mathbb{P}(0,3))$ Method 2: $\mathbb{P}(2 < T_1 < 5)$

(Q3) $\mathbb{P}(\text{Catch at least two fish})$ Method $1:\sum_{k=2}^{\infty} = 1 - \mathbb{P}(0,2) - \mathbb{P}(1,2)$ Method $2: \mathbb{P}(Y_k < 2)$ (Q4) $\mathbb{E}[\text{future fi. time}|\text{already fished for 3h}]$ Fresh-start. So, $\mathbb{E}[\exp(\lambda)] = 1/\lambda = 1/0.6$

(Q5)
$$\mathbb{E}[F=\text{total fishing time}]$$

$$2 + \mathbb{E}[F - 2] = 2 + \mathbb{P}(F = 2) \cdot 0 + \\ \mathbb{P}(F > 2) \cdot \mathbb{E}[F - 2|F > 2]$$
$$= 2 + \mathbb{P}(0, 2) \cdot \frac{1}{\lambda}$$

- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.
- (Q1) $\mathbb{P}(\text{fishing time} > 2 \text{ hours})$ Method 1: $\mathbb{P}(0, 2)$

Method 2: $\mathbb{P}(T_1 > 2)$

(Q2) $\mathbb{P}(2 < \text{fishing time} < 5)$

Method 1: $\mathbb{P}(0,2)(1-\mathbb{P}(0,3))$ Method 2: $\mathbb{P}(2 < T_1 < 5)$

(Q3) $\mathbb{P}(\text{Catch at least two fish})$ Method $1:\sum_{k=2}^{\infty} = 1 - \mathbb{P}(0,2) - \mathbb{P}(1,2)$ Method $2:\mathbb{P}(Y_k < 2)$ (Q4) $\mathbb{E}[\text{future fi. time}|\text{already fished for 3h}]$ Fresh-start. So, $\mathbb{E}[\exp(\lambda)] = 1/\lambda = 1/0.6$

(Q5) $\mathbb{E}[F=\text{total fishing time}]$

$$2 + \mathbb{E}[F - 2] = 2 + \mathbb{P}(F = 2) \cdot 0 + \\ \mathbb{P}(F > 2) \cdot \mathbb{E}[F - 2|F > 2]$$
$$= 2 + \mathbb{P}(0, 2) \cdot \frac{1}{\lambda}$$

(Q6) $\mathbb{E}[\text{number of fish}] = \lambda \cdot 2 + \mathbb{P}(0,2) \cdot 1$

Roadmap

- A lot of applications in engineering systems
- Basics on Random Process
- Bernoulli Process
- Poisson Process
- Use of Bernoulli and Poisson Processes
 - Coding of both processes
 - Merge and Split
- Markov Chain

Coding: Bernoulli Process and Poisson Process

- Inter-arrival times facilitates coding of both processes

Alternative Description of the Bernoulli Process

- 1. Start with a sequence of independent geometric random variables T_1 , T_2 ,..., with common parameter p, and let these stand for the interarrival times.
- 2. Record a success (or arrival) at times T_1 , $T_1 + T_2$, $T_1 + T_2 + T_3$, etc.

Alternative Description of the Poisson Process

- 1. Start with a sequence of independent exponential random variables T_1, T_2, \ldots , with common parameter λ , and let these stand for the interarrival times.
- 2. Record an arrival at times T_1 , $T_1 + T_2$, $T_1 + T_2 + T_3$, etc.

• $X \sim Poisson(\mu), Y \sim Poisson(\nu),$

- $X \sim Poisson(\mu), Y \sim Poisson(\nu),$
- (Q1) $X \perp \!\!\!\perp Y$?

- $X \sim Poisson(\mu), Y \sim Poisson(\nu),$
- (Q1) *X* ⊥⊥ *Y*?
- (Q2) Distribution of X + Y?
 - Complex convolution, but any other easy way?

- $X \sim Poisson(\mu), Y \sim Poisson(\nu),$
- (Q1) $X \perp \!\!\!\perp Y$?
- (Q2) Distribution of X + Y?
 - Complex convolution, but any other easy way?
- X can be regarded as the number of arrivals of Poisson process with rate 1 over the time interval of length μ .

- $X \sim Poisson(\mu), Y \sim Poisson(\nu),$
- (Q1) $X \perp \!\!\!\perp Y$?
- (Q2) Distribution of X + Y?
 - Complex convolution, but any other easy way?
- X can be regarded as the number of arrivals of Poisson process with rate 1 over the time interval of length μ .
- Consecutive intervals of length μ and ν

- $X \sim Poisson(\mu), Y \sim Poisson(\nu),$
- (Q1) *X* ⊥⊥ *Y*?
- (Q2) Distribution of X + Y?
 - Complex convolution, but any other easy way?
- X can be regarded as the number of arrivals of Poisson process with rate 1 over the time interval of length μ .
- Consecutive intervals of length μ and u
- (Q1) *X* ⊥⊥ *Y*? Yes

- $X \sim Poisson(\mu), Y \sim Poisson(\nu),$
- (Q1) *X* ⊥⊥ *Y*?
- (Q2) Distribution of X + Y?
 - Complex convolution, but any other easy way?
- X can be regarded as the number of arrivals of Poisson process with rate 1 over the time interval of length μ .
- Consecutive intervals of length μ and ν
- (Q1) *X* ⊥⊥ *Y*? Yes
- (Q2) Distribution of X + Y? $Poisson(\mu + \nu)$

 Split Bernoulli(p) into two processes with biased coin of head probability q

 Merge Bernoulli(p) and Bernoulli(q) into one.

- Split Bernoulli(p) into two processes with biased coin of head probability q
- Split decisions are independent of arrivals

 Merge Bernoulli(p) and Bernoulli(q) into one.

- Split Bernoulli(p) into two processes with biased coin of head probability q
- Split decisions are independent of arrivals
- Split processes: also Bernoulli processes
- Bernoulli(pq) and Bernoulli(p(1-q))

 Merge Bernoulli(p) and Bernoulli(q) into one.

- Split Bernoulli(p) into two processes with biased coin of head probability q
- Split decisions are independent of arrivals
- Split processes: also Bernoulli processes
- Bernoulli(pq) and Bernoulli(p(1-q))

- Merge Bernoulli(p) and Bernoulli(q) into one.
- Collided arrival is regarded just one arrival in the merged process

- Split Bernoulli(p) into two processes with biased coin of head probability q
- Split decisions are independent of arrivals
- Split processes: also Bernoulli processes
- Bernoulli(pq) and Bernoulli(p(1-q))

- Merge Bernoulli(p) and Bernoulli(q) into one.
- Collided arrival is regarded just one arrival in the merged process
- Merged process: Bernoulli(1 - (1 - p)(1 - q))

• Split Poisson process (λ) into two processes

• Merge from Poisson process (λ_1) and Poisson process (λ_2)

- Split Poisson process (λ) into two processes
 - Split based on the coin tossing with probability of head p

• Merge from Poisson process (λ_1) and Poisson process (λ_2)

- Split Poisson process (λ) into two processes
 - \circ Split based on the coin tossing with probability of head p
 - \circ Poisson process $(p\lambda)$ and Poisson process $((1-p)\lambda)$
- Merge from Poisson process (λ_1) and Poisson process (λ_2)

- Split Poisson process (λ) into two processes
 - \circ Split based on the coin tossing with probability of head p
 - Poisson process $(p\lambda)$ and Poisson process $((1-p)\lambda)$
- Merge from Poisson process (λ_1) and Poisson process (λ_2)
 - \circ Split based on the coin tossing with probability of head p

- Split Poisson process (λ) into two processes
 - Split based on the coin tossing with probability of head p
 - \circ Poisson process $(p\lambda)$ and Poisson process $((1-p)\lambda)$
- Merge from Poisson process (λ_1) and Poisson process (λ_2)
 - $\circ~$ Split based on the coin tossing with probability of head p
 - Poisson process $(\lambda_1 + \lambda_2)$

- Split Poisson process (λ) into two processes
 - Split based on the coin tossing with probability of head p
 - \circ Poisson process $(p\lambda)$ and Poisson process $((1-p)\lambda)$
- Merge from Poisson process (λ_1) and Poisson process (λ_2)
 - \circ Split based on the coin tossing with probability of head p
 - Poisson process $(\lambda_1 + \lambda_2)$
 - \circ Bernoulli process of small interval δ

$$\mathbb{P}(\text{0 arrivals in the merged process}) \approx (1 - \lambda_1 \delta)(1 - \lambda_2 \delta) = 1 - (\lambda_1 + \lambda_2)\delta + o(\delta)$$

$$\mathbb{P}(\text{1 arrivals in the merged process}) \approx \lambda_1 \delta(1 - \lambda_2 \delta) + \lambda_2 \delta(1 - \lambda_1 \delta) = (\lambda_1 + \lambda_2)\delta + o(\delta)$$

1. Two independent light bulbs have life times T_a and T_b of exponential distributions with λ_a and λ_b .

- 1. Two independent light bulbs have life times T_a and T_b of exponential distributions with λ_a and λ_b .
- (Q) Distribution of $Z = \min\{T_a, T_b\}$?

- 1. Two independent light bulbs have life times T_a and T_b of exponential distributions with λ_a and λ_b .
- (Q) Distribution of $Z = \min\{T_a, T_b\}$?
- T_a and T_b are the first arrival times of two Poisson processes of λ_a and λ_b .

- 1. Two independent light bulbs have life times T_a and T_b of exponential distributions with λ_a and λ_b .
- (Q) Distribution of $Z = \min\{T_a, T_b\}$?
- T_a and T_b are the first arrival times of two Poisson processes of λ_a and λ_b .

- 1. Two independent light bulbs have life times T_a and T_b of exponential distributions with λ_a and λ_b .
- (Q) Distribution of $Z = \min\{T_a, T_b\}$?
- T_a and T_b are the first arrival times of two Poisson processes of λ_a and λ_b .
- Z is the first arrival time of merged Poisson process $(\lambda_a + \lambda_b)$.

- 1. Two independent light bulbs have life times T_a and T_b of exponential distributions with λ_a and λ_b .
- (Q) Distribution of $Z = \min\{T_a, T_b\}$?
- T_a and T_b are the first arrival times of two Poisson processes of λ_a and λ_b .
- Z is the first arrival time of merged Poisson process $(\lambda_a + \lambda_b)$.
- Thus, $Z \sim exp(\lambda_a + \lambda_b)$

- 1. Two independent light bulbs have life times T_a and T_b of exponential distributions with λ_a and λ_b .
- (Q) Distribution of $Z = \min\{T_a, T_b\}$?
- T_a and T_b are the first arrival times of two Poisson processes of λ_a and λ_b .
- Z is the first arrival time of merged Poisson process $(\lambda_a + \lambda_b)$.
- Thus, $Z \sim exp(\lambda_a + \lambda_b)$

2. Three independent light bulbs have life times T of exponential distribution with λ .

- 1. Two independent light bulbs have life times T_a and T_b of exponential distributions with λ_a and λ_b .
- (Q) Distribution of $Z = \min\{T_a, T_b\}$?
- T_a and T_b are the first arrival times of two Poisson processes of λ_a and λ_b .
- Z is the first arrival time of merged Poisson process $(\lambda_a + \lambda_b)$.
- Thus, $Z \sim exp(\lambda_a + \lambda_b)$

- 2. Three independent light bulbs have life times T of exponential distribution with λ .
- (Q) $\mathbb{E}[\text{time until the last bulb burns out}]$?

- 1. Two independent light bulbs have life times T_a and T_b of exponential distributions with λ_a and λ_b .
- (Q) Distribution of $Z = \min\{T_a, T_b\}$?
- T_a and T_b are the first arrival times of two Poisson processes of λ_a and λ_b .
- Z is the first arrival time of merged Poisson process $(\lambda_a + \lambda_b)$.
- Thus, $Z \sim exp(\lambda_a + \lambda_b)$

- 2. Three independent light bulbs have life times T of exponential distribution with λ .
- (Q) $\mathbb{E}[\text{time until the last bulb burns out}]$?
- Poisson process(3 λ) $\xrightarrow{\text{1st burn out}}$ Poisson process(2 λ) $\xrightarrow{\text{2st burn out}}$ Poisson process(λ)

- 1. Two independent light bulbs have life times T_a and T_b of exponential distributions with λ_a and λ_b .
- (Q) Distribution of $Z = \min\{T_a, T_b\}$?
- T_a and T_b are the first arrival times of two Poisson processes of λ_a and λ_b .
- Z is the first arrival time of merged Poisson process $(\lambda_a + \lambda_b)$.
- Thus, $Z \sim exp(\lambda_a + \lambda_b)$

- 2. Three independent light bulbs have life times T of exponential distribution with λ .
- (Q) $\mathbb{E}[\text{time until the last bulb burns out}]$?
- Poisson process(3 λ) $\xrightarrow{1st burn out}$ Poisson process(2 λ) $\xrightarrow{2st burn out}$ Poisson process(λ)
- T₁: time until the first burn-out, T₂: time until the second burn-out, T₃: time until the third burn-out

- 1. Two independent light bulbs have life times T_a and T_b of exponential distributions with λ_a and λ_b .
- (Q) Distribution of $Z = \min\{T_a, T_b\}$?
- T_a and T_b are the first arrival times of two Poisson processes of λ_a and λ_b .
- Z is the first arrival time of merged Poisson process $(\lambda_a + \lambda_b)$.
- Thus, $Z \sim exp(\lambda_a + \lambda_b)$

- 2. Three independent light bulbs have life times T of exponential distribution with λ .
- (Q) $\mathbb{E}[\text{time until the last bulb burns out}]$?
- Poisson process(3 λ) $\xrightarrow{1st \ burn \ out}$ Poisson process(2 λ) $\xrightarrow{2st \ burn \ out}$ Poisson process(λ)
- T₁: time until the first burn-out, T₂: time until the second burn-out, T₃: time until the third burn-out
- $T_1 \sim exp(3\lambda)$, $T_2 \sim exp(2\lambda)$, $T_3 \sim exp(\lambda)$

$$\mathbb{E}\Big[T_1+T_2+T_3\Big]=\frac{1}{3\lambda}+\frac{1}{2\lambda}+\frac{1}{\lambda}$$

Questions?

Review Questions

1