Denne uge: Insertion sort, merge sort

Senere i kurset: Heap sort, counting sort, radix sort, bucket sort

Mikkel Abrahamsen

Givet array A af n tal, byt om på rækkefølgen sådan at

$$A[0] \le A[1] \le \ldots \le A[n-1].$$

0							· · · · · · · · · · · · · · · · · · ·							
33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

Givet array A af n tal, byt om på rækkefølgen sådan at

$$A[0] \le A[1] \le \ldots \le A[n-1].$$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

Ønsket resultat:

0	_	_	9	-	•	0	•	Ü	0					
1	4	7	12	16	18	25	28	31	33	36	42	45	47	50

														14
4	18	25	28	33	45	7	12	36	1	47	42	50	16	31

_		_	-	•	_	•	•		_	_					14
4	Į	18	25	28	33	45	7	12	36	1	47	42	50	16	31

$$key = 7$$

														14
4	18	25	28	33	45	45	12	36	1	47	42	50	16	31

$$key = 7$$

					i	j								
	1													
4	18	25	28	33	45	7	12	36	1	47	42	50	16	31

$$key = 7$$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

${\it J}$	
0 1 2 3 4 5 6 7 8 9 10 11 12	13 14
4 18 25 28 33 45 45 12 36 1 47 42 50	16 31

$$key = 7$$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

$$key = 7$$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

$$key = 7$$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

$$\begin{aligned} key &= A[j] \\ i &= j-1 \\ \text{while } i \geq 0 \text{ and } A[i] > key \\ A[i+1] &= A[i] \\ i &= i-1 \\ A[i+1] &= key \end{aligned}$$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i - 1$ $A[i+1] = key$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

0														
33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

0	_	<u> </u>												
33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

```
Insertion-Sort(A,n)
for j=1 to n-1
key=A[j]
i=j-1
while i\geq 0 and A[i]>key
A[i+1]=A[i]
i=i-1
A[i+1]=key
```

$$key = 4$$

i	\dot{j}													
0	_	_	_	_	_	•	•	_	_					
33	4	25	28	45	18	7	12	36	1	47	$\overline{42}$	50	16	31

```
Insertion-Sort(A,n)
for j=1 to n-1
key=A[j]
i=j-1
while i\geq 0 and A[i]>key
A[i+1]=A[i]
i=i-1
A[i+1]=key
```

Vi begyndte med:

$$key = 4$$

 \imath

Insertion-Sort
$$(A,n)$$
for $j=1$ to $n-1$
 $key=A[j]$
 $i=j-1$
while $i\geq 0$ and $A[i]>key$
 $A[i+1]=A[i]$
 $i=i-1$
 $A[i+1]=key$


```
Insertion-Sort(A,n)
for j=1 to n-1
key=A[j]
i=j-1
while i\geq 0 and A[i]>key
A[i+1]=A[i]
i=i-1
A[i+1]=key
```

Vi begyndte med:

Insertion-Sort
$$(A,n)$$
for $j=1$ to $n-1$
 $key=A[j]$
 $i=j-1$
while $i\geq 0$ and $A[i]>key$
 $A[i+1]=A[i]$
 $i=i-1$
 $A[i+1]=key$

OBS: I CLRS bruger denne algoritme 1-indeksering. Derfor en lille forskel.

Insertion-Sort
$$(A,n)$$
 for $j=1$ to $n-1$ $key=A[j]$ c_1 n $i=j-1$ while $i\geq 0$ and $A[i]>key A[i+1]=A[i]$ c_2 j c_3 n

```
Insertion-Sort(A,n) skridt max. gange for j=1 to n-1 key=A[j] c_1 n i=j-1 while i\geq 0 and A[i]>key A[i+1]=A[i] c_2 j c_3 n
```

Køretid:
$$T(n) = c_1 n + c_3 n + c_2 \cdot 1 + c_2 \cdot 2 + \ldots + c_2 (n-1)$$

= $c_1 n + c_3 n + c_2 (1 + 2 + \ldots + (n-1)) = c_1 n + c_3 n + c_2 \cdot \frac{(n-1) \cdot n}{2}$
= $c_2/2 \cdot n^2 + (c_1 + c_3 - c_2/2) \cdot n$

$$\begin{split} & \text{Køretid: } T(n) = c_1 n + c_3 n + c_2 \cdot 1 + c_2 \cdot 2 + \ldots + c_2 (n-1) \\ &= c_1 n + c_3 n + c_2 (1 + 2 + \ldots + (n-1)) = c_1 n + c_3 n + c_2 \cdot \frac{(n-1) \cdot n}{2} \\ &= c_2 / 2 \cdot n^2 + (c_1 + c_3 - c_2 / 2) \cdot n \\ &= \boxed{\Theta(n^2)} \end{split}$$

Asymptotisk notation: Vi udelader langsomt voksende led og konstanter. Interesseret i hvordan køretiden vokser som funktion af n.

$$\begin{split} & \text{Køretid: } T(n) = c_1 n + c_3 n + c_2 \cdot 1 + c_2 \cdot 2 + \ldots + c_2 (n-1) \\ &= c_1 n + c_3 n + c_2 (1 + 2 + \ldots + (n-1)) = c_1 n + c_3 n + c_2 \cdot \frac{(n-1) \cdot n}{2} \\ &= c_2 / 2 \cdot n^2 + (c_1 + c_3 - c_2 / 2) \cdot n \\ &= \boxed{\Theta(n^2)} \end{split}$$

Asymptotisk notation: Vi udelader langsomt voksende led og konstanter. Interesseret i hvordan køretiden vokser som funktion af n.

Udfordring: Kan vi sortere hurtigere?

Antag hver halvdel af A er sorteret. Vi merger:

_	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\mid A \mid$	4	7	12	18	25	28	33	45	1	16	31	36	42	47	50

Antag hver halvdel af A er sorteret. Vi merger:

B								

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

NB: Lidt anderledes i CLRS: kopiér først halvdelene over i to andre arrays og merge tilbage i A.

Antag hver halvdel af A er sorteret. Vi merger:

_										9					
A	4	7	12	18	25	28	33	45	1	16	31	36	42	47	50

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

_	$i \atop 0$													13	
A[4	7	12	18	25	28	33	45	1	16	31	36	42	47	50

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

 $\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}$

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

 $\begin{aligned} &\mathsf{Merge}(A,p,q,r)\\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1\\ &i=p\\ &j=q+1\\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p\\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j])\\ &B[k]=A[i]\\ &i=i+1\\ &\mathsf{else}\\ &B[k]=A[j]\\ &j=j+1\\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}$

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r)\\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1\\ &i=p\\ &j=q+1\\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p\\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j])\\ &B[k]=A[i]\\ &i=i+1\\ &\mathsf{else}\\ &B[k]=A[j]\\ &j=j+1\\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r)\\ &\mathsf{let}\ B\ \mathsf{be\ an\ array\ of\ size}\ r-p+1\\ &i=p\\ &j=q+1\\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p\\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j])\\ &B[k]=A[i]\\ &i=i+1\\ &\mathsf{else}\\ &B[k]=A[j]\\ &j=j+1\\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r)\\ &\mathsf{let}\ B\ \mathsf{be\ an\ array\ of\ size}\ r-p+1\\ &i=p\\ &j=q+1\\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p\\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j])\\ &B[k]=A[i]\\ &i=i+1\\ &\mathsf{else}\\ &B[k]=A[j]\\ &j=j+1\\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Merge sort

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r)\\ &\mathsf{let}\ B\ \mathsf{be\ an\ array\ of\ size}\ r-p+1\\ &i=p\\ &j=q+1\\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p\\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j])\\ &B[k]=A[i]\\ &i=i+1\\ &\mathsf{else}\\ &B[k]=A[j]\\ &j=j+1\\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Venstre del: $A[p \dots q]$ Højre del: $A[q+1\dots r]$ Ovenstående kald: Merge(A,0,7,14)

Køretid

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Arbejde ved kald Merge $(A,0,\lfloor \frac{n}{2} \rfloor,n-1)$: n+1 iterationer af for-løkke, hver konstant tid n gange kopiering fra B til A I alt: $\Theta(n)$ tid.

Køretid

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Arbejde ved kald $\operatorname{Merge}(A,0,\lfloor \frac{n}{2} \rfloor,n-1)$: n+1 iterationer af for-løkke, hver konstant tid n gange kopiering fra B til A l alt: $\Theta(n)$ tid. Arbejde ved kald $\operatorname{Merge}(A,p,q,r)$: $\Theta(n')$ tid, hvor n'=r-p+1.

_	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

_											10				
A[33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

						IV	ierg	e 5	ort	iae					
	Mer	ge-So	ort(A	$\overline{(p,r)}$)										
	if	p <	r												
		q =	$\lfloor \frac{p+r}{2} \rfloor$												
			ge-Śc		, p, q)										
			ge-Sc	-	-										
			ge(A)	•	_	, , ,		,							
١	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	33	4	25	28	45	18	7	12	36	1	47	42	50	16	31
								·	Car	+ár h	ام دا د	اماما	بماري	roiv (+	
									30r	tér h	latvu	ieie i	reku	rsivt	
	0	1	2	3	4	۲	6	7	8	9	10	11	10	10	1 /
	0		/.	.3	4	5	n	(. X	ч	10	11	12	13	14
۱ ا		$\frac{1}{7}$	1			28		-				Ť	19	17	
1	$\frac{3}{4}$	7	12	18	25	28	33	45	1	16	31	36	42	47	50
1		i	1			28		-				Ť	42	47	
1		i	1			28		-	1	16		Ť	42	47	
1		i	1			28		-		16		Ť	42	47	
1		i	1			28		-	1	16		Ť	12	13	

Eksempel

```
\begin{aligned} &\mathsf{Merge-Sort}(A,p,r) \\ &\mathsf{if}\ p < r \\ &q = \lfloor \frac{p+r}{2} \rfloor \\ &\mathsf{Merge-Sort}(A,p,q) \\ &\mathsf{Merge-Sort}(A,q+1,p) \\ &\mathsf{Merge}(A,p,q,r) \end{aligned}
```

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```


Køretid

$$\begin{aligned} \mathsf{Merge-Sort}(A,p,r) \\ \mathsf{if} \ p < r \\ q = \lfloor \frac{p+r}{2} \rfloor \\ \mathsf{Merge-Sort}(A,p,q) \\ \mathsf{Merge-Sort}(A,q+1,p) \\ \mathsf{Merge}(A,p,q,r) \end{aligned}$$

$$T(n) = \begin{cases} c, & n = 1\\ 2T(n/2) + cn, & n > 1 \end{cases}$$

I alt: $T(n) = cn \lg n + cn$ = $\Theta(n \log n)$

Opsummering om sortering

Insertion sort: $\Theta(n^2)$ tid, kræver ikke ekstra plads.

Merge sort: $\Theta(n \log n)$ tid, kræver $\Theta(n)$ ekstra plads.

I DMA uge 4: Heap sort, bruger $\Theta(n \log n)$ tid, kræver ikke ekstra plads.

I DMA uge 6: Ikke muligt at komme under $\Theta(n \log n)$ tid hvis man kun må deducere vha. sammenligninger. Vi skal se på andre sorteringsalgoritmer som kommer under vha. smarte "snydetricks".

Hvorfor er asymptotisk køretid så praktisk?

Antag S1(A,n) og S2(A,n) begge sorterer array A af længde n. S1 har køretid $T_1(n) = n^2$ og S2 har køretid $T_2(n) = 100 \cdot n \log_2 n$. $T_1(n) = \Theta(n^2)$ og $T_2(n) = \Theta(n \log n)$.

Hvorfor er asymptotisk køretid så praktisk?

Antag S1(A, n) og S2(A, n) begge sorterer array A af længde n. S1 har køretid $T_1(n) = n^2$ og S2 har køretid $T_2(n) = 100 \cdot n \log_2 n$. $T_1(n) = \Theta(n^2)$ og $T_2(n) = \Theta(n \log n)$.

$$n=100$$
: $T_1(100)=10000$ og $T_2(100)pprox 66400$, så $rac{T_1(100)}{T_2(100)}pprox 0.15.$

Hvorfor er asymptotisk køretid så praktisk?

Antag S1(A,n) og S2(A,n) begge sorterer array A af længde n. S1 har køretid $T_1(n) = n^2$ og S2 har køretid $T_2(n) = 100 \cdot n \log_2 n$. $T_1(n) = \Theta(n^2)$ og $T_2(n) = \Theta(n \log n)$.

n=100: $T_1(100)=10000$ og $T_2(100)pprox 66400$, så

$$\frac{T_1(100)}{T_2(100)} \approx 0.15.$$

$$n=5.8\cdot 10^6$$
: $T_1(5.8\cdot 10^6)pprox 3.4\cdot 10^{13}$ og $T_2(5.8\cdot 10^6)pprox 1.3\cdot 10^{10}$, så $rac{T_1(5.8\cdot 10^6)}{T_2(5.8\cdot 10^6)}pprox 2600.$

Hvorfor er vi ligeglade med konstanter?

Hvis køretiden er $T(n) = 100n \log n$ skriver vi $T(n) = \Theta(n \log n)$. Vi igorerer konstanten 100 fordi:

- Konstanten afhænger af præcis hvordan vi tæller skridt.
- I praksis er det forskelligt hvor lang tid de basale skridt tager.
- Når n bliver stor er det vigtigste den asymptotiske opførsel.
- "Will this scale?"
- Derfor ignorerer vi også langsomt voksende led.

Hvorfor er vi ligeglade med konstanter?

Hvis køretiden er $T(n) = 100n \log n$ skriver vi $T(n) = \Theta(n \log n)$. Vi igorerer konstanten 100 fordi:

- Konstanten afhænger af præcis hvordan vi tæller skridt.
- I praksis er det forskelligt hvor lang tid de basale skridt tager.
- Når n bliver stor er det vigtigste den asymptotiske opførsel.
- "Will this scale?"
- Derfor ignorerer vi også langsomt voksende led.

P.S:

- I praksis kan vi ikke ignorere astronomiske konstanter.
- En asymptotisk langsommere algoritme kan foretrækkes hvis
 - -n aldrig bliver meget stor, eller
 - den langsommere algoritme er meget simplere og hurtig nok.
- To algoritmer med samme asymp. køretid behøver ikke være lige gode.

$$\Theta$$
, Ω og O

Vi skriver:

• $T(n) = \Omega(n \log n)$ hvis

$$c_1 \cdot n \log n \leq T(n)$$

for en konstant $c_1 > 0$.

• $T(n) = O(n \log n)$ hvis

vi overdriver
$$T(n) \leq c_2 \cdot n \log n$$

for en konstant $c_2 > 0$.

• $T(n) = \Theta(n \log n)$ hvis

hvis vi er præcise
$$c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$$

for konstanter $c_1, c_2 > 0$, dvs. $T(n) = \Omega(n \log n)$ og $T(n) = O(n \log n)$.

Skal gælde for alle store n. I praksis $n \geq 2$.