Kinematika 1 Dimensi: Materi dan Contoh Soal

Haikal Isa Al Mahdi

December 18, 2024

Apa yang akan kita hadapi?

Sederhananya, Kinematika 1 Dimensi mempelajari gerak benda tanpa perlu menganalisis penyebabnya dalam **Satu Dimensi**. Dengan Kata lain, dalam garis.

Walaupun demikian, bukan berarti ini akan mudah. Diperlukan kecermatan dalam menyelesaikannya.

Jarak dan Kelajuan

Beberapa hal:

- Jarak dinyatakan dalam m (meter)
- ► Kelajuan dinyatakan dalam m s⁻¹ (meter per sekon)

Namun.

- Perpindahan dinyatakan dalam m (meter)
- ► Kecepatan dinyatakan dalam m s⁻¹ (meter per sekon)

Apa bedanya? Mari kita lihat di contoh soal

Contoh Soal

Drone

Suatu Drone melaju dengan kecepatan 5 m s⁻¹ ke utara sejauh 50 meter, kemudian ke selatan dengan kecepatan yang sama sejauh 70 meter. Berapa jarak dan kelajuannya dari awal? Berapa perpindahan dan kecepatannya relatif dari posisi awal?

Contoh Soal

Solusi

Waktu yang ditempuh adalah:

$$\frac{50+70}{5}=24 \text{ s}$$

Dengan ini, jaraknya jelas 120 meter. Sementara kelajuannya

$$\frac{120}{24} = 5 \ \text{m} \, \text{s}^{-1}$$

Perpindahannya adalah 50 - 70 = -20 m. Artinya, kecepatannya adalah

$$\frac{-20}{24} = -\frac{5}{6} \text{m s}^{-1}$$

relatif dari titik asal. Di sini, kita menganggap utara sebagai positif dan selatan sebaga negatif. Pada asalnya, sah sah saja menentukan mana yang positif dan negatif asalkan konsisten.

Gerak Lurus Berubah Beraturan

Dalam banyak kasus, percepatan dapat dianggap konstan. Beberapa rumus yang penting:

- 1. $v = v_0 + at$
- 2. $v^2 = v_0^2 + 2a\Delta x$
- 3. $x = x_0 + v_0 t + \frac{at^2}{2}$

Gerak Jatuh Bebas

Gerak jatuh bebas adalah contoh dari gerak satu dimensi. di sini, kita menganggap arah ke atas sebagai positif dan arah ke bawah sebagai negatif. Artinya a=-g

Soal dan Solusi

Contoh Soal

Apabila suatu bola mula-mula dilempar secara vertikal dengan kecepatan awal v_0 . Ketinggian yang dicapai adalah h. Tentukan waktu yang diperlukan untuk sampai ke titik semula dalam g dan h. Abaikan hambatan udara

Soal dan Solusi

Solusi

Kita selesaikan

$$y = v_0 t - \frac{gt^2}{2}$$

saat y = h

$$h = v_0 t_h - \frac{g t_h^2}{2}$$

saat itu, v = 0 sehingga

$$v_0-gt_h=0$$

$$t_h = \frac{v_0}{g}$$

Artinya

$$h = \frac{v_0^2}{g} - \frac{v_0^2}{2g} = \frac{v_0^2}{2g}$$

Ini menunjukkan bahwa

$$v_0 = \sqrt{2gh}$$

Soal dan Solusi

Mengingat bahwa $2t_h = t$,

$$t = \frac{2v_0}{g} = \frac{2\sqrt{2gh}}{g} = \sqrt{\frac{8h}{g}}$$

Jadi total waktunya adalah

$$\sqrt{\frac{8h}{g}}$$

Mantap

Ternyata mudah