The Global Yield Gap Atlas: current and future applications

Prof. Martin van Ittersum, Plant Production Systems group and many, many collaborators

Future food production needs and possibilities

The need and possibilities for extra food is very region-specific

So, it is crucial to know where production can be increased and how

What is the Global Yield Gap Atlas (GYGA)?

The world's leading database platform on high-quality agronomic data with local to global relevance of the following data:

- $oldsymbol{1}$. Actual and potential yield and yield gap
- 2. Actual and potential water productivity
- 3. Actual and potential nutrient requirements
- 4. Underlying data on weather, soil and cropping systems
- Climate zones and Technology Extrapolation Domains (TEDs)

Coverage of GYGA

Figure 1 (above): Countries involved in GYGA

Crop	% Global area	% Global production
Rice	88%	91%
Maize	76%	86%
Wheat	60%	65%
Soybean	71%	82%

- Established in 2011
- 70+ countries across six continents and 13 majorfood crops
- Serves strategic decision making and research by public, private and non-profit sectors for yield optimisation and resource use efficiency

www.yieldgap.org
Broad usage up to 2022:
50,000 website visits per year, 30,000 data downloads

What makes GYGA's bottom -up approach unique?

GYGA team and our international network

(Not a complete overview)

Yield gaps for rainfed maize

(red and green indicate cases with largest and smallest gaps, respectively)

Resource use efficiency

Rainfed maize

GYGA updates

What has been updated/added in 2022?

- Establishment of API access (available for Gold and Platinum sponsors)
- Addition of cotton in China; wheat in China and Canada; rice in Argentina; soybean in Europe; rice in South East Asia; faba bean and peas in Europe
- Updated data cereals of 10 countries in Sub-Saharan Africa

What is in the pipeline for 2023?

- Updated data for maize, wheat, and soybean in Argentina
- Update of wheat in Australia
- Addition of sunflower in Argentina; soybean in China; soybean, wheat, maize in Paraguay; wheat in Georgia; potato in Europe
- Effects of climate change scenarios on yield gaps for cereals in SSA

Current and future applications

Can sub-Saharan Africa feed itself? 10 countries - 2050

Self-sufficiency through area expansion?

- Current area is just enough with 80%
 Yw for ten SSA countries
- Potentially available area is just sufficient with 50%Yw
- Lower yields require land that is not there!

Nitrogen input requirements

 Crop nutrient requirements will have to increase, current yields are achieved at the expense of soil nutrient mining

Example for maize: minimum N requirement for 80% of Yw

GHG emissions cereal self-sufficiency 2050

Removal C from grass, due to LUC Removal C from forest due to LUC SOC loss due to LUC

CH4 emission from rice

Fertilizer use

- Ya: yields of 2015
- Ytrend: Ya trend extrapolated to 2050
- Y50%: 50% Yw
- Y80%: 80% Yw
- All complemented with area expansion to achieve SS=1

Other food availability studies

- China rice (Yuan et al., 2021)
- SE Asia rice (Deng et al., 2019)
- Iran all crops (Soltani et al., 2020)
- Indonesia Oilpalm (Monzon et al., 2021)
- Europe (Schils et al., 2018)
- Crisis in Ukraine (De Sourza Noia Junior et al., 2022)
- Grain legume production in Europe and substitution of animal-based proteins (Van Loon et al., in prep)

- Understanding yield gaps: yield gap decomposition
- Towards agronomic and policy interventions
- Genetic yield gaps
- Extending yield gap notion to intercrops, perennials, croplivestock
- Climate change impact and adaptation

- Understanding yield gaps: yield gap decomposition
- Towards agronomic and policy interventions
- Genetic yield gaps
- Extending yield gap notion to intercrops, perennials, croplivestock
- Climate change impact and adaptation

Senapati et al. (2022) Nature Food

- Understanding yield gaps: yield gap decomposition
- Towards agronomic and policy interventions
- Genetic yield gaps
- Extending yield gap notion to intercrops, perennials, croplivestock
- Climate change impact and adaptation

- Understanding yield gaps: yield gap decomposition
- Towards agronomic and policy interventions
- Genetic yield gaps
- Extending yield gap notion to intercrops, perennials, croplivestock
- Climate change impact and adaptation

Climate change impact on rainfed potential yield of four cereals in SSA

Aggregated effect on four cereals: maize, millet, sorghum and wheat in 10 countries:

West SSA

2050: not significantly affected

• 2090: minus -25%

East SSA

• 2050: minus 6%

2090: minus 9%

Adaptation using existing cultivars of four cereals

- Decreased yield + Decrease in stability
- Decreased yield + No change or increase in stability
- No change or increase in yield + Decrease in stability
- No change or increase in yield + No change or increase in stability

Future harvest

Thank you for your attention

Explore <u>www.yieldgap.org</u>

- Reach out to us at gyga.support@wur.nl
- Or martin.vanittersum@wur.nl

