

CHEMISTRY Chapter 12

REACCIONES QUÍMICAS

MOTIVATING STRATEGY

¿Qué entiendes por reacciones químicas?

En una reacción química ocurre ruptura de enlaces en las sustancias iniciales denominadas reactantes y se forman nuevos enlaces que corresponden a nuevas sustancias llamadas productos.

Ecuación Química

Evidencias empíricas de una reacción química

- □ Cambio en las propiedades organolépticas (color, olor, sabor).
- Desprendimiento de gases.
- Variación de temperatura.
- Formación de precipitados.

Clasificación de las reacciones químicas

- I) Según la naturaleza de los reactantes
 - a) Reacción de adición, combinación, síntesis

$$2H_{2(g)} + O_{2(g)} \xrightarrow{\text{eléctricas}} 2H_2O_{(I)}$$

b) Reacciones de descomposición

c) Reacción de sustitución o desplazamiento simple

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

d) Reacción de sustitución doble o metátesis

II) Según la energía involucradaa) Reacción exotérmica

$$N_2 + 3H_2 \rightarrow 2NH_3 + 22 \text{ kcal/mol}$$

 $\Delta H = (-)$

b) Reacción endotérmica

$$CO_2 + 393,5 \text{ kJ/mol} \rightarrow C_{(S)} + O_{2(g)}$$

 $\Delta H = (+)$

III) Según la Reacción de combustión

a) Rxn. combustión completa

- Completa
- C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
- ✓ Mayor poder calorífico
- ✓ El oxígeno esta en cantidades adecuadas

Llama no Iuminosa

b) Rxn. de combustión incompleta

- Incompleta
- C₃H₈ + 7/2O₂ → 3CO + 4H₂O
- ✓ Menor poder calorífico
- ✓ El oxígeno esta en cantidades menores

Llama luminosa

IV) Según por el sentido de reacción

a) Rxn. Irreversible

$$2KCIO_3 \rightarrow 2KCI + O_2$$

- V) Según el número de fases
 - a) Rxn. Homogéneas

$$H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$$

b) Rxn. Reversible o

$$\lim_{N_2^+} 3H_2 \rightleftharpoons 2NH_3$$

b) Rxn. Heterogéneas

$$2Fe_{(s)} + 3O_{2(g)} \rightarrow 2Fe_2O_{3(s)}$$

- VI) Según el número de etapas para obtener una sustancia
 - a) Rxn. Monoetápicas

$$Fe_2O_{3(s)} + 3H_{2(g)} \rightarrow 2Fe_{(s)} + 3H_2O_{(v)}$$

b) Rxn. Polietápicas

$$4FeS_2+11O_2 \rightarrow 2Fe_2O_3 + 3SO_2$$

 $2SO_2 + O_2 \rightarrow 2SO_3$
 $SO_3 + H_2O \rightarrow H_2SO_4$

Balanceo de ecuaciones químicas

Método del tanteo

Sugerencia:

Orden	1.0	2.°	3.°	4.°
Elementos	Metal	No metal	Н	0

Balancee la siguiente ecuación química:

$$H_3PO_4 + Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 + H_2O$$

$$Ca_3(PO_4)_2 + H_2O$$

1° Balanceamos "Ca"

$$H_3PO_4 + 3Ca(OH)_2 \rightarrow 1Ca_3(PO_4)_2 + H_2O$$

2° Balanceamos "P"

II) Método Redox

a) Rxn. No Redox

$$1+2-1+ 1+1- 1+1- 1+2-$$
NaOH + HCl \rightarrow NaCl + H₂O

b) Rxn. Redox

1

Balancee la ecuación química por simple inspección.

C₅H₁₂ + O₂
$$\rightarrow$$
 CO₂ + H₂O

Resolución:

1 C₅H₁₂ + 8O₂ \rightarrow 5CO₂ + 6H₂O

Nota: El coeficiente 1 no se coloca, se sobreentiende. Aquí se hace presente para comparar los diversos coeficientes presentes.

¿Cuál es el coeficiente del agua después de balancear la ecuación química?

$$H_2SO_4 + NaOH \rightarrow Na_2SO_4 + H_2O$$

Resolución:

Rpta.: 2

3 Calcule la suma de todos los coeficientes después de igualar la ecuación química.

$$H_3PO_4 + Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 + H_2O$$

Resolución:

$$2 H_3PO_4 + \frac{3}{5} Ca(OH)_2 \rightarrow 1Ca_3(PO_4)_2 + 6H_2O$$

$$\Sigma$$
 Coeficientes = 2 + 3 + 1 + 6

Rpta.: 12

Determine el valor de (a+b) – (c+d) después de igualar la ecuación química.

$$a C_2H_5OH + b O_2 \rightarrow c CO_2 + d H_2O$$

Resolución:

a b c
$$3O_2 \rightarrow 2CO_2 + 3H_2O_2$$

$$(a+b) - (c+d) = (1+3) - (2+3)$$

Rpta.: -1

Después de balancear las ecuaciones químicas

I. 1 N₂ + 3 H₂
$$\rightarrow$$
 2NH₃

II.1
$$S_8 + 8 H_2 \rightarrow 8 H_2 S$$

III. 12 C +
$$7H_2$$
 + $1N_2$ + $2C_6H_5NH_2$

Calcule: a + b+ c.

$$a + b + c = 2 + 8 + 1$$

Rpta.: 11

(6)

La siderurgia o sidero metalurgia es la técnica del tratamento del mineral de hierro para obtener diferentes tipos de este o de sus aleaciones tales como el acero.

Alto horno empleado para la reducción del mineral de hierro. Advierta las temperaturas aproximadas em las diversas regiones del horno.

Entre las ecuaciones involucradas en el proceso tenemos:

I.
$$2C + 1O_2 \rightarrow 2CO$$

II.
$$Fe_2O_3+$$
 3CO \rightarrow 2 Fet 3CO₂

Determine la suma de coeficientes en cada ecuación.

Resolución:

$$\Sigma = 2 + 1 + 2 = 5$$

$$\Sigma = 1+3+2+3=9$$

7

Una reacción exotérmica se caracteriza por liberar energía en forma de calor. Es el caso de la reacción

$$C_2H_{4(g)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(g)} + 1141kJ/mol$$

De la que podemos afirmar que:

I. Como toda combustión es exotérmica.

(V)

$$A + B \rightarrow C + D + calor$$

II. Es una combustión incompleta.

(F)

$$C_XH_Y + O_2 \rightarrow CO + H_2O$$

III. La entalpia de esta reacción es negativa.

(V)

Reaccion exotérmica : $\Delta H = -\frac{1141}{J/mol}$