YILDIRIM ROKET TAKIMI KRİTİK TASARIM AŞAMASI UÇUŞ BENZETİM RAPORU

İÇİNDEKİLER İÇİNDEKİLER	2
1. KİNEMATİK ve DİNAMİK DENKLEMLER	3
1.1 İvme Denklemi	3
1.2 Hız Denklemi	3
1.3 Konum Denklemi	3
1.4 Uçuş Yolu Açısı Hesaplama Denklemi	3
2. Atmosfer Modeli	
2.2 Konum Denklemleri	Hata! Yer işareti tanımlanmamış
2.3 Uçuş Yolu Açısı Denklemi	Hata! Yer işareti tanımlanmamış.
4. Benzetimin Doğrulanması	Hata! Yer işareti tanımlanmamış

- 1. KİNEMATİK ve DİNAMİK DENKLEMLER
- 1.1 İvme Denklemi

$$a = \frac{\sum F}{m}$$

1.2 Hız Denklemi

$$v = \int a dt$$

1.3 Konum Denklemi

$$x = \int v dt$$

1.4 Uçuş Yolu Açısı Hesaplama Denklemi

$$\alpha = Arc \tan\left(\frac{z}{x}\right)$$

2. Atmosfer Modeli

Atmosfer modeli oluşturmak için kullanılan temel formüller aşağıda verilmiştir. Kaynak olarak Fluid Mechanics Frank M. White 7. Edition ders kitabı kullanılmıştır.

$$T = 15.04 - 0.00649 \times h$$

$$P = 101.29 \times \begin{bmatrix} T + 273.1 \\ 0 \\ 288.08 \end{bmatrix}^{5,256}$$

$$\rho = \frac{P}{0,2869 \times (T + 273.1)}$$

Simulinkte oluşturulan atmosfer modeli aşağıdaki görülmektedir. Yükseklik verisi (0-10000m) matlab workspacede matris olarak oluşturulmuştur. Simulinke "from workspace" komutu ile aktarılmıştır. Ayrıca modelin karmaşık olmasını engellemek için "go to" bloğu sıkça kullanılmıştır.

- Hava Yoğunluğu Deniz Seviyesi Yüksekliği Grafiği
- Ses Hızı Deniz Seviyesi Yüksekliği Grafiği

3. Motor Modeli

Simulikte oluşturulan motor modeli şekildeki gibidir.

Motor modelinde iki adet blok şema vardır. Birincisi motor itkisini modeller diğeri ise zaman bağlı atılan yakıt kütlesini modeller.

Motor itki modelinde yarışma komitesi tarafından gönderilen motor dataları zaman ve itki olarak 2 matris halinde matlab workspacede tanımlanmıştır ve "look up table" bloğu ile simulinke aktarılıp itki zaman eğrisi oluşturulmuştur.

Zamana bağlı atılan kütle modelinde yarışma komitesinin istediği gibi motor özgül itkisi kullanılarak mass flow rate hesaplanmıştır. Kullanılan formül aşağıdadır.

$$\dot{m} = \frac{I}{ISP * g}$$

M2020 motoru için ISP değeri motor kataloğunda 197.6s olarak alınmıştır.

Pro75 8429M2020-P				
Motor Data				
Brandname	Pro75 8429M2020-P	Manufacturer	Cesaroni Technology	
Man. Designation	8429M2020-P	CAR Designation	8429-M2020-P	
Test Date	4/18/2010			
Single- Use/Reload/Hybrid	Reloadable	Motor Dimensions mm	75.00 x 893.00 mm (2.95 x 35.12 in)	
Loaded Weight	7031.8 g	Total Impulse	8429.4 Ns (1895.0 lb.s)	
Propellant Weight	4349 g	Maximum Thrust	2680.4 N (602.6 lb)	
Burnout Weight	2527.3 g	Avg Thrust	2021.9 N (454.4 lb)	
Delays Tested	plugged	ISP	197.6 s	
Samples per second	1000	Burntime	4.17 s	
Notes	64-6% M			

İtki kuvveti – zaman grafiği

• Atılan kütle – zaman grafiği

4. Aerodinamik Model

Aerodinamik modelde kullanılan formül ve simulink modeli aşağıdadır.

$$F_d = \frac{1}{2}\rho C_d v^2 A$$

Modelde rho ve hız ilgili diğer bloklardan "GOTO" bloğu ile alınmıştır. Cd yarışma komitesi tarafından verilen veriler içerisinden ortalama Ma ve yüksekliğe bağlı olarak seçilmiştir.

5. Benzetimin Yapısı

Benzetim MATLAB-simulinkte yapılmıştır. TEKNOFEST roket yarışması komitesi tarafından verilen motor itki-zaman, ve aerodinamik datalar matlab workspace matris olarak eklenmiştir ve simulinkteki "from workspace" komutu ile simulinke aktarılmıştır.

2DOF bloğunda İvme, hız ve konum hesaplamaları yaparken "Discrete integrator" bloğu kullanılarak integral alınmıştır. Çözüm yöntemi olarak FORWARD EULER methodu kullanılmıştır. çözümlerde Sample time yarışma komitesinin istediği gibi 0.01s dir. Discrete integrator arayüzü aşağıdaki gibidir.

6. Benzetimin Doğrulaması

	değer
pozisyon	[0.0.0]
hız	2
Uçuş yolu açısı	85

	değer	
Başlangıç kütlesi	26.944	
Atış noktası	980	
Başlangıç yakıt kütlesi	4,659	
Özgül itki	197.6s	
İtki profili dosyası	"veri_itki_F_2022.xlsx"	
Aerodinamik veri seti	"veri_aero_Cd_2022.xlsx"	
Roket çapı	0.14	

Çıktı tablosu

	Değer
Maksimum mach sayısı	-
Tepe noktası pozisyonu	2736
Tepe noktası bileşke hızı	
Tepe noktası mach sayısı	
Tepe noktası zamanı	