CLAIMS

What is claimed is:

1	1.	A method for summing integrals at a target frequency of a plurality of target
2		frequencies, the method comprising the computer-implemented steps of:
3		accessing a set of pairs of I and Q correlation values corresponding to a set of data
4		blocks, wherein:
5		the set of data blocks together make up a sampled data that is associated with a
6		received signal;
7		each pair of I and Q correlation values from the set of pairs of I and Q
8		correlation values corresponds to a calculated pair of I and Q
9		correlation integrals that are integrated over one corresponding data
10		block from the set of data blocks at a plurality of frequencies from a set
11		of frequencies; and
12		selecting pairs of I and Q correlation values that correspond to calculated pairs of I
13		and Q correlation integrals that are calculated using a frequency from the set
14		of frequencies that is close to the target frequency to be selected pairs I and Q
15		correlation values;
16		weighting the selected pairs of I and Q correlation values according to a set of
17		characteristics to produce a set of weighted pairs of I and Q correlation values;
18		and
19		summing the weighted pairs of I and Q correlation values at the target frequency.

	1	۷.	A method for summing integrals for a sampled data, the method comprising the
	2		computer-implemented steps of:
	3		step A: defining R number of sets of frequencies, wherein:
	4		R is an integer value that is greater than unity;
	5		each set of frequencies from the R number of sets of frequencies is assigned an
	6		index that is unique, wherein the index ranges in value from 1 to R;
	7		step B: defining R number of sets of data blocks, wherein:
	8		each set of data blocks from the R number of sets of data blocks make up the
Attile dille	9		sampled data;
Min.	10		each set of data blocks from the R number of sets of data blocks is assigned
	11		the index that is unique, wherein the index ranges in value from 1 to R;
	12		step C: defining R number of pairs of data block-frequency sets, wherein:
	13		each pair of data block-frequency sets from the R number of pairs of data
	14		block-frequency sets is assigned the index that is unique, wherein the
	15		index ranges in value from 1 to R; and
	16		each pair of data block-frequency sets comprises a set of data blocks from the
	17		R number of sets of data blocks and a set of frequencies from the R
	18		number of sets of frequencies, wherein:
	19		the index of the pair of data block-frequency sets, the index of the set
	20		of data blocks in the pair of data block-frequency sets and the
	21		index of the set of frequencies in the pair of data block-
	22		frequency sets have identical values;

23	step D: selecting a first pair of data block-frequency sets, wherein the index of the
24	first pair of data block-frequency sets is equal to 1;
25	step E: for each data block in the first pair of data block-frequency sets, calculating a
26	pair of I and Q correlation integrals at each frequency in the first pair of data
27	block-frequency sets to produce a corresponding pair of I and Q correlation
28	values;
29	step F: selecting a next pair of data block-frequency sets to be a current pair of data
30	block-frequency sets, wherein:
31	the next pair of data block-frequency sets has not been previously selected;
32	the index of the next pair of data block-frequency sets is a next lowest index;
33	step G: from the current pair of data block-frequency sets, selecting one data block
34	that has not been previously selected from the current pair of data block-
35	frequency sets to be a selected data block and performing the steps of:
36	step H: identifying a previously selected pair of data block-frequency sets that
37	contains a subset of data blocks to be an identified pair of data block-
38	frequency sets, wherein the subset of data blocks make up the selected
39	data block;
40	step I: selecting a frequency that has not been previously selected from the
41	current pair of data block-frequency sets to be a target frequency;
42	step J: from the identified pair of data block-frequency sets, identifying a
43	frequency that is close in value to the target frequency to be an
44	identified frequency;

	45		step K: selecting pairs of I and Q correlation values that correspond to the
	46		subset of data blocks at the identified frequency to be selected pairs of
	47		I and Q correlation values;
	48		step L: for the selected data block, weighting the selected pairs of I and Q
	49		correlation values with weights to form weighted pairs of I and Q
	50		values;
	51		step M: summing the weighted pairs of I and Q values over the selected block
	52		to form weighted sums of I and Q values;
insi	53		step N: repeating steps I through N until all the frequencies from the current
dust tank	54		pair of data block-frequency sets have been selected to be the target
744, 197.	55		frequency;
	56		step O: repeating steps G through O until all the data blocks from the current pair of
	57		data block-frequency sets have been selected to be the selected data block;
	58		step P: repeating steps F through O until all the pairs of data block-frequency sets
	59		from the R number of pairs of data block-frequency sets have been selected to
	60		be the current pair of data block-frequency sets.
	1	3.	The method of Claim 2, wherein calculating pairs of I and Q correlation integrals is
	2		performed coherently by using a navigation bit information when the I and Q
	3		correlation integrals are associated with a received signal that emanated from a global
	4		positioning satellite vehicle, and wherein the navigation bit information is associated

with the global positioning satellite vehicle.

	1	4.	A method for summing integrals for a sampled data, the method comprising the
	2		computer-implemented steps of:
	3		step A: defining a first set of frequencies and a second set of frequencies;
	4		step B: defining a first set of data blocks and a second set of blocks, wherein;
	5		each set of data blocks make up the sampled data;
	6		step C: defining a first pair of data block-frequency set, wherein:
	7		the first pair of data block-frequency set comprises the first set of data blocks
	8		and the first set of frequencies;
	9		step D: defining a second pair of data block-frequency set, wherein:
ng sing ya	10		the second pair of data block-frequency set comprises the second set of data
tion has the hat had but that day	11		blocks and the second set of frequencies;
Misse Thus	12		step E: selecting the first pair of data block-frequency set;
1361141	13		step F: for each data block in the first pair of data block-frequency set, calculating a
111 (11111) 111)	14		pair of I and Q correlation integrals at each frequency in the first pair of data
T. , 11171, 1	15		block-frequency sets to produce a corresponding pair of I and Q correlation
-	16		values;
	17		step G: from the second pair of data block-frequency set, selecting one data block that
	18		has not been previously selected from the second pair of data block-frequency
	19		sets to be a selected data block and performing the steps of:
	20		step H: from the first pair of data block-frequency set, identifying a subset of
	21		data blocks make up the selected data block;
	22		step I: selecting a frequency that has not been previously selected from the
	23		second pair of data block-frequency set to be a target frequency;

24		step J: from the first pair of data block-frequency set, identifying a frequency
25		that is close in value to the target frequency to be an identified
26		frequency;
27		step K: selecting pairs of I and Q correlation values that correspond to the
28		subset of data blocks from the first pair of data block-frequency set to
29		be selected pairs of I and Q correlation values;
30		step L: for the selected data block, weighting the selected pairs of I and Q
31		correlation values with weights to form weighted pairs of I and Q
32		values;
33		step M: summing the weighted pairs of I and Q values over the selected block
34		to form weighted sums of I and Q values;
35		step N: repeating steps I through N until all the frequencies from the current
36		pair of data block-frequency sets have been selected to be the target
37		frequency; and
38		step O: repeating steps G through O until all the data blocks from the second pair of
39		data block-frequency set have been selected to be the selected data block.
1	5.	The method of Claim 4, wherein calculating pairs of I and Q correlation integrals is
2		performed coherently by using a navigation bit information when the I and Q
3		correlation integrals are associated with a received signal that emanated from a global
4		positioning satellite vehicle, and wherein the navigation bit information is associated
5		with the global positioning satellite vehicle.

1	6.	The method of Claim 6, wherein calculating pairs of I and Q correlation integrals is
2		performed coherently by using a navigation bit information when the I and Q
3		correlation integrals are associated with a received signal that emanated from a global
4		positioning satellite vehicle, and wherein the navigation bit information is associated
5		with the global positioning satellite vehicle.
1	7.	A method for estimating a carrier frequency at a target frequency, the method
2		comprising the computer-implemented steps of:
3		receiving sampled data associated with a received signal;
4		dividing a range of frequency of interest into a first set of frequency intervals and a
5		second set of frequency intervals;
6		dividing the sampled data into a set of blocks of data based on the first set of
7		frequency intervals;
8		for each data block of the set of blocks of data, calculating I and Q correlation
9		integrals associated with the sampled data at one representative frequency
10		from each frequency interval in the first set; and
11		for every frequency interval of the second set of frequency intervals, determining a
12		corresponding selected frequency in the first set of frequency intervals,
13		wherein the selected frequency is close in value to the target frequency;
14		selecting I and Q correlation integrals corresponding to each selected frequency to be
15		selected I and Q correlation integrals

16	weighting the selected pairs of I and Q correlation values according to a set of
17	characteristics to produce a set of weighted pairs of I and Q correlation values;
18	and
19	summing the weighted pairs of I and Q correlation values at the target frequency.

- 8. The method of Claim 7, wherein the received signal is from a known signal source.
- The method of Claim 7, wherein for each data block of the set of data blocks, the step
 of calculating I and Q correlation integrals comprises calculating the I and Q
 correlation integrals for each hypothesized delay value over a range of hypothesized
 delay values.
- 1 10. The method of Claim 9, further comprising the step of selecting a trial frequency
 2 value for each frequency interval of the first set of frequency intervals for calculating
 3 the I and Q correlation integrals.
- 1 11. The method of Claim 10, wherein the trial frequency value is a frequency value at a mid-point of each frequency interval.
- 1 12. The method of Claim 7, wherein the carrier frequency contains at least one frequency
 2 shift that is a member of a set of frequency shifts, wherein the set of frequency shifts
 3 include a zero frequency shift, a positive frequency shift and a negative frequency
 4 shift.

1	13.	The method of Claim 7, further comprising the steps of:
2		for each hypothesized delay value in a range of hypothesized delay values, calculating
3		a magnitude of a vector (I,Q) of correlation sums that were previously
4		summed over all the blocks of data for each frequency interval of the second
5		set of frequency intervals; and
6		determining an estimate of the carrier frequency by identifying a particular frequency
7		interval from the second set of frequency interval that has a highest magnitude
8		calculation.
1	14.	The method of Claim 7, wherein the first set of frequency intervals is a coarse grain
2		set of frequency intervals and the second set of frequency intervals is a fine grain set
3		of frequency intervals.
1	15.	The method of Claim 7, wherein a number of intervals in the first set of frequency
2		intervals is proportional to a length of the sampled data and is based on a pre-selected
3		signal-to-noise ratio.
1	16.	The method of Claim 7, wherein a number of intervals in the second set of frequency
2		intervals is proportional to a length of the sampled data.
1	17.	The method of Claim 7, wherein a range of frequency of interest is based on a pre-
2		selected frequency interval around a frequency of a known signal source from which
3		the received signal emanates.

The method of Claim 7, wherein calculating the I correlation integral and the Q

correlation integral is performed coherently by using a navigation bit information

when the received signal emanates from a global positioning satellite vehicle, wherein

the navigation bit information is associated with the global positioning satellite

vehicle.

60021-0012