Artificial Intelligence, Blockchain, e Criptovalute nello Sviluppo Software

Lezione 5: Cognitive Models in Software

Development – acquisition, retention, and use of
information

Giancarlo Succi
Dipartimento di Informatica – Scienza e Ingegneria
Università di Bologna
g.succi@unibo.it

Structure of the lecture

- The concept of cognition
- Early models
 - Attribution theory
 - The naïve scientist
 - Stereotypes
 - Heuristics
- Impulsive / Reflective model
- Implications for software production
- Everything we discuss here are **working hypotheses**: we have to remember that working hypotheses even if later proved to be wrong, helped the progress of science and technology, e.g., celestial spheres

Refer to https://en.wikipedia.org/wiki/Celestial_spheres

A working hypothesis

Schema huius præmissæ divisionis Sphærarum.

 $Picture\ taken\ from\ \texttt{https://en.wikipedia.org/wiki/Celestial_spheres}$

Cognition

- Our goal in this lecture is to present some paradigms discussing:
 - how information is acquired and stored
 - how such information is then used to make decisions
- In this context we review existing models of knowledge throughout their historical evolution

Storing information

- There have been proposals to divide the storage of information in the human brain in two (or three) parts:
 - short term memory
 - (working memory)
 - long term memory
- we will now shortly review such concepts

General Model

Picture taken from Camina Eduardo, Güell Francisco (2017). "The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins." Frontiers in Pharmacology 8

Short Term Memory

- Short term memory is a function of the brain finalized of storing information ready to be used for a short amount of time
- The time-span for storage of such information is of the order of 18 seconds
- Repetition helps in increasing the time the information is stored there
- Capacity is believed to be of 7 ± 2 elements
- Some researchers include in it the working memory

Taken from https://en.wikipedia.org/wiki/Short-term_memory
Camina Eduardo, Güell Francisco (2017). "The Neuroanatomical, Neurophysiological and Psychological
Basis of Memory: Current Models and Their Origins." Frontiers in Pharmacology 8

7 / 21

Working Memory (1/2)

- There are hypotheses that separated from the short term memory there is a memory retaining information for the specific purpose of making computations
- Such memory is called working memory
- There are proposals suggesting that it is multicomponent

Taken from https://en.wikipedia.org/wiki/Working_memory. The picture is credited there to come from Baddeley AD, Hitch G (1974). Bower GH (ed.). "Working Memory. Psychology of Learning and Motivation." Vol. 2. Academic Press. pp. 47-89.

Working Memory (2/2)

- There are also hypotheses that the working memory is part of the long term memory
- Information is extracted from there with a kind of cashing mechanism

Taken from https://en.wikipedia.org/wiki/Working_memory. The picture is credited there to come from Ericsson KA, Kintsch W (April 1995). "Long-term working memory." Psychological Review. 102 (2): 211-245.

Using knowledge

- We now review a series of models of know the knowledge is used to performs actions
- We focus on
 - attribution theory and the naïve scientist
 - the cognitive miser
 - the motivated tactician
- considering a historical evolution

Attribution theory (1/2)

- How do individuals attribute properties to entities they perceive?
- How do individuals attribute causes for what happens around them?
- Attribution bias/error
- Locus of causality
 - Internal attribution
 - attribution of the cause to self
 - External attribution
 - attribution of the cause to the environment

Taken from https://en.wikipedia.org/wiki/Attribution_(psychology)
Heider, F (1944). "Social perception and phenomenal causality." Psychological Review. 51 (6): 358-374.

Attribution theory (2/2)

- Typical biases:
 - internal attribution:
 - positive own situations
 - negative situations of others
 - external attribution
 - negative own situations
 - positive situations of others
- Self-determination and feeling of autonomy

Taken from https://en.wikipedia.org/wiki/Attribution_(psychology)
Heider, F (1944). "Social perception and phenomenal causality." Psychological Review. 51(6):358-374.

The Naïve Scientist

- Humans tries to provide a simple and rational explanation of all the details of the world around them
- They use the information available to them that they try to compose like in a puzzle
- When doing so they perform attributions

Taken from https://en.wikipedia.org/wiki/Cognitive_miser

Duane T. Wegener and Richard E. Petty (1998) "The naive scientist revisited: Naive theories and social judgment" Social Cognition. 16(1):1

Stereotypes

- Humans are not always able to handle complexity
- Understanding complexity requires effort
- A stereotype is a reconstruction of the reality where complex details are simplified
- Stereotypes are reinforced by looking a facts that from a simplistic perspective correspond to such stereotype
- Stereotypes simplify the thinking process

Taken from https://en.wikipedia.org/wiki/Cognitive_miser

Heuristics (1/4)

- Heuristics are another approach to cope with complexity
- We can define them as:
 - a fast answer to
 - a problem requiring for its full solution a complex procedure
 - answer that might be occasionally wrong
- People rely in heuristics to save time and effort

Taken from https://en.wikipedia.org/wiki/Cognitive_miser
Kahneman, Daniel and Tversky, Amos (1973) "On the psychology of prediction." Psychological Review.
80 (4): 237–251

Heuristics (2/4)

- There are multiple kinds of heuristics:
 - representativeness heuristics:
 - people tend to generalize distributions ignoring the real rules of statistics.

A cab was involved in a hit and run accident at night. Two cab companies, the Green and the Blue, operate in the city. 85% of the cabs in the city are Green and 15% are Blue. A witness identified the cab as Blue. The court tested the reliability of the witness under the same circumstances that existed on the night of the accident and concluded that the witness correctly identified each one of the two colours 80% of the time and failed 20% of the time. What is the probability that the cab involved in the accident was Blue rather than Green knowing that this witness identified it as Blue?

(Tversky and Kahneman (1982) as quoted in wikipedia)

Taken from https://en.wikipedia.org/wiki/Representativeness_heuristic

Gilovich, T., & Savitsky, K. (2002). Like goes with like: The role of representativeness in erroneous and pseudo-scientific beliefs. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.), Heuristics and biases: The psychology of intuitive judgment (pp. 617-624). Cambridge University Press.

Tversky, A., & Kahneman, D. (1982). Evidential impact of base rates. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under Uncertainty: Heuristics and Biases. Cambridge University Press

Heuristics (3/4)

- There are multiple kinds of heuristics:
 - availability heuristic:
 - "if something can be recalled, it must be important" (wikipedia)
 - people build their beliefs on facts that come to their mind faster – typically most recent facts
 - people make assumption on distributions on entities, events, etc. based on the frequencies of items of them coming to their minds

Taken from https://en.wikipedia.org/wiki/Availability_heuristic
Kahneman, Daniel and Tversky, Amos (1973) "On the psychology of prediction." Psychological Review.
80 (4): 237-251

Heuristics (4/4)

- There are multiple kinds of heuristics:
 - anchoring or adjustment heuristic:
 - people based their opinion on a reference impression (the anchor) and then readjust it based on new information
 - often the reference impression is the first impression (but sometimes also the last)
 - can be effective in requirement negotiation

Taken from https://en.wikipedia.org/wiki/Anchoring_(cognitive_bias)
Kahneman, Daniel and Tversky, Amos (1974) "Judgment under Uncertainty: Heuristics and Biases."
Science. 185 (4157): 1124-1131

Yasseri, T., Reher, J. (2022) "Fooled by facts: quantifying anchoring bias through a large-scale experiment." Journal of Computational Social Science. 5: 1001–1021

The Cognitive Miser

- The theory of cognitive miser clusters observations and theories about how people reason on facts
- It includes the concepts of stereotypes and heuristics
- It is centered on the idea that people tend to be miser (scrooge) in using their cognitive resources when analysing facts and building knowledge
- The essence is that people make decisions trying to minimize their effort

Taken from https://en.wikipedia.org/wiki/Cognitive_miser

The Motivated Tactician and the Meaning Seeker

- We can perceive the naïve scientist and the cognitive miser as two extremes of a continuous of positions on how the mind works
- It has been also proposed that there are also people who may select which option to follow based on the context in which they are
 - this gives raise to the concept of motivated tactician
- there is also the proposal rooted on the concept of Kant categories that are used to represent knowledge as a kind of point in a space of multiple dimensions (the categories)
 - the concept of the **meaning seeker** consider people in the quest for a comprehensive understanding of the work

Taken from https://en.wikipedia.org/wiki/Cognitive miser

- Modeling the human mind
- Emulating the human mind
 - Vision
 - Natural language processing
 - Reasoning
 - o ...
- Computational intelligence
 - Data science
 - Fuzzy models
 - Machine learning
 - Granular computing
 - o ...
- Automated reasoning and formal models