

Análise Descritiva

from google.colab import drive
drive.mount('/content/drive')

Pandas Dataframe

Mas é muito comum ler dados externos (como .csv) e gerar um
 Dataframe (tabela de dados)

```
import pandas as pd
auto = pd.read csv("autoinsurance.csv")
```

u	s_state	state	capital	pricelevel	Y2021	Y2022	Y2023	рор	lat	lon	Region	Division
	МІ	Michigan	Lansing	Е	5740	4386	2352	10,077,331	42.733635	-84.555328	Midwest	East North Central
	RI	Rhode Island	Providence	Е	1375	1197	1200	1,097,379	41.830914	-71.414963	Northeast	New England
	NV	Nevada	Carson City	Е	1033	1138	1164	3,104,614	39.163914	-119.766120	West	Mountain

Cada coluna pode ser interpretada com um dicionário

```
auto['Y2023'] ou auto[['Y2023','Y2022','Y2021']]
```

- Operações podem ser realizadas em vetores inteiros

```
(auto['Y2023'] + auto['Y2022'] + auto['Y2021'])/3
```

_ · · • •

Pandas Dataframe

Mostrar as primeiras e últimas linhas

auto.head(3) e auto.tail(2)

- Filtrar linhas

auto[auto['Region'] == 'Midwest']

auto[auto['Y2023']>999]

us_state	state	capital	pricelevel	Y2021	Y2022	Y2023	pop	lat	lon	Region	Division
МІ	Michigan	Lansing	Е	5740	4386	2352	10,077,331	42.733635	-84.555328	Midwest	East North Central
RI	Rhode Island	Providence	E	1375	1197	1200	1,097,379	41.830914	-71.414963	Northeast	New England
NV	Nevada	Carson City	E	1033	1138	1164	3,104,614	39.163914	-119.766120	West	Mountain
FL	Florida	Tallahassee	E	2361	2072	1092	21,538,187	30.438118	-84.281296	South	South Atlantic
NJ	New Jersey	Trenton	Е	812	979	1032	9,288,994	40.220596	-74.769913	Northeast	Middle Atlantic
DE	Delaware	Dover	Е	1200	1183	1008	989,948	39.157307	-75.519722	South	South Atlantic

[•] Tipos de Variaveis

Qualitativas Nominais

-> notas_turma['Curso']

Ordinais

-> notas_turma['Conceito']

Quantitativas

Contínuas

-> notas_turma['Nota']

Qualitativas				
categóricas				
categóricas ordenadas				
<u>Quantitativas</u>				
números inteiros				
números decimais				

Discretas

-> números inteiros

Consolidando Dados

Usamos a função **groupby()** para consolidar os dados, passando como parâmetro o critério de agrupamento, no exemplo, **'Region'**. Na sequência aplicar a função desejada, no exemplo, **mean()**. Por fim, indicar qual coluna interessa ser contada/apresentada, no exemplo, **'Y2023'**.

```
auto.groupby('Region')['Y2023'].mean()
```

	Y2023
Region	
Midwest	663.000000
Northeast	758.666667
South	696.750000
West	659.076923

.

. •

Gráficos: Barras (Comparação)

O Data frame já dispõe de uma função **plot**() passando como parâmetro o tipo (kind='bar')

> 700 600

400

200 100

```
avg premium region.plot(kind='bar')
```

Idem para múltiplas colunas

avg premium region.plot(kind='bar')

	Y2023	Y2022	Y2021
Region			
Midwest	663.000000	844.250000	1022.666667
Northeast	758.666667	789.666667	862.000000
South	696.750000	820.125000	914.625000
West	659.076923	681.307692	724.153846

Gráficos: Pizza (Proporção)

Um gráfico de pizza é usado para visualizar a proporção de categorias dentro de um conjunto de dados. Quando você executa count_state_region.plot(kind='pie'), ele cria um gráfico de pizza com base nas contagens de estados em cada região.

```
count_state_region = auto.groupby('Region')['state'].count()
count state region.plot(kind='pie')
```

Region Midwest 12 Northeast 9 South 16 West 13

Consolidando Dados

 A line plot in pandas, like life.plot(), shows trends by plotting data points over a continuous time axis (e.g., years). Each line represents a variable (e.g., percentage of life insurance ownership), with data points connected to reveal changes over time

- Exercício: Pandas
- Apresente em um gráfico de barras a quantidade total (soma) por produto
- Apresente em um gráfico de barras a quantidade total (soma) por departamento

Produto (character)	Depto (character)	Quantidade (integer)
Papel A4	ADM	3
Grampo	ADM	2
Lápis	VENDAS	3
Caneta Azul	RH	10

. .

Análise Estatística

Estatística é sobre ...

. • +

R: Medidas de Tendência Central e Dispersão

Tendência Central: Média e Mediana

```
print(auto['Y2023'].mean())
print(auto['Y2023'].median())
```


Dispersão: Desvio Padrão e Variância

```
print (auto['Y2023'].std())
print (auto['Y2023'].var())
```


Variáveis Qualitativas e Quantitativas

Qualitativas

Nominais

-> notas_turma['Curso']

Ordinais

-> notas_turma['Conceito']

Quantitativas

Continuas

-> notas_turma['Nota']

<u>Qualitativas</u>				
Nominais	categóricas			
Ordinais	categóricas ordenadas			
<u>Quantitativas</u>				
Discretas	números inteiros			
Contínuas	números decimais			

Discretas

-> números inteiros

· • +

Pode-se utilizar simplesmente o método value_counts()

```
cat_freq = auto['pricelevel'].value_counts()
cat freq
```

Daí só apresentar em gráfico de barras.

```
cat freq.plot(kind='bar')
```


Histograma: Variáveis Numéricas/Quantitativas

Χ

 Para calcular a frequência, use a funcao value_counts() combinada com a cut().

```
pd.value counts(pd.cut(auto['Y2023'],bins=[0,500,800,1000,5000],labels=['L','M','H','E']))
```

Dai basta usar .plot.bar()

```
num freq.plot(kind='bar')
```


Histograma: Variáveis Numéricas/Quantitativas

Opções mais simples podem ser pelas bibliotecas como seaborn

```
import seaborn as sns
sns.distplot(auto['Y2023'], bins=[0,500,800,1000,5000],kde=False)
```


• • + •

Basta usar a função boxplot() do seaborn.

```
auto['Y2023'].describe()
```

• E um resumo estatístico pode ser obtido com a função, describe().

```
sns.boxplot(auto['Y2023'])
```


Exercício: Estatística

+

Escolha uma base com a seguinte base de dados

Defina categorias (bins), muito baixo, baixo, médio, alto, muito alto

140,150,155,165,175,200

Apresente o histograma

Calcule os quartis

Apresente o boxplot

MATH MEN

Analytics · Resultados · Lógica

Google

ATIVIDADE (Em grupo): EDA

- Escolha uma base de dados no https://www.kaggle.com/datasets, e se familiarize com sua base
- Faca análises estatísticas
 - Apresente o histograma
 - Calcule os quartis
 - Apresente o boxplot
- Não esqueça de junto com seus códigos realizar suas análises/conclusões (use o botão de +Texto).

] · · •