Elektronikpraktikum Auswertung: Versuchstag 3

Gruppe 01 Patrick Heuer Benjamin Lotter

Übersicht

- Transistorkennlinien
 - Bipolartransistor
- Transistor als elektronischer Schalter
 - Transistor steuert LED
 - Darlington Schaltung
 - Transistor Kippstufen: Blinkschaltung
- Transistor als Verstärker
 - Einfacher Common-Emitter-Verstärker
 - Optimierter Common-Emitter-Verstärker
 - Differenzverstärker

Übersicht

- Transistorkennlinien
 - Bipolartransistor
- 2 Transistor als elektronischer Schalter
 - Transistor steuert LED
 - Darlington Schaltung
 - Transistor Kippstufen: Blinkschaltung
- Transistor als Verstärker
 - Einfacher Common-Emitter-Verstärker
 - Optimierter Common-Emitter-Verstärker
 - Differenzverstärker

Ziel:

- Ausmessen der charakteristischen Daten des BC 548C Transistors
- Erstellen eines Vierquadrantenkennlinienfelds

Bipolartransistor

Übersicht

- Transistorkennlinien
 - Bipolartransistor
- Transistor als elektronischer Schalter
 - Transistor steuert LED
 - Darlington Schaltung
 - Transistor Kippstufen: Blinkschaltung
- Transistor als Verstärker
 - Einfacher Common-Emitter-Verstärker
 - Optimierter Common-Emitter-Verstärker
 - Differenzverstärker

Transistor steuert LED Schaltplan

Achtung!

 Zu hohe Spannung kann LED beschädigen

Achtung!

Zu hohe Spannung kann LED beschädigen

Widerstand R2

 Aus Spezifikationen f
ür die blaue LED:

$$U_{max} = 4.1 V$$
 $I_{max} = 20 mA$
 $\rightarrow R_{R2} \ge \frac{9V - 4.1V}{20 mA} \ge 245 \Omega$

Verwendet wurde 475Ω Widerstand

- Schalter offen:
 - kein Strom an Basis
 - kein Durchlass
 - kein Strom, LED leuchtet nicht

- Schalter offen:
 - kein Strom an Basis
 - kein Durchlass
 - kein Strom, LED leuchtet nicht
- Schalter gedrückt:
 - Strom and Basis
 - Strom von Quelle zur Masse
 - LED leuchtet

Umbau

 Schalter wurde zwischen Basis und Emitter gebaut

- Schalter offen:
 - Strom an Basis
 - LED leuchtet

Umbau

 Schalter wurde zwischen Basis und Emitter gebaut

- Schalter offen:
 - Strom an Basis
 - LED leuchtet
- Schalter gedrückt:
 - (fast) Kurzschluss zwischen Quelle und Masse
 - geringer Spannungsabfall an Transistor → wird nicht geschaltet
 - kein Strom durch LED

Erkentnisse

- Transistor kann einfache An- bzw Aus-Schaltung realisieren
- Aus-Schaltung kann nicht mit Taster alleine gebaut werden

Darlington Schaltung Schaltung

Darlington Schaltung

Widerstände

- Widerstand wie bei LED-Schaltung $R=470\Omega$
- Widerstand durch Finger: Hoher Körperwiderstand um starke Basisströme zu vermeiden

Darlington Schaltung

- Verstärkung von kleinen Strömen durch Iteration von Transistoren
- Gesamtverstärkung $B \approx B_1 \cdot B_2$

Blinkschaltung Schaltung

Farben

• Gelb: A - Masse

• Grün: B - Masse

• Lila: C - Masse

Rosa: D - Masse

- Positive Spannung an C_1
- T_1 schaltet durch $\rightarrow LED_1$ leuchtet
- A auf Masse, B auf 6.7V
- Spannung zwischen D und $A \rightarrow C_2$ wird aufgeladen

- D erreicht Sperrspannung $\rightarrow T_2$ schaltet durch
- B fällt auf Masse $\rightarrow C_1$ fällt ins Negative
- T₁ wird unterbrochen

- Positive Spannung an C_2
- T_2 schaltet durch $\rightarrow LED_2$ leuchtet
- B auf Masse, A auf 6.7V
- Spannung zwischen B und $C \rightarrow C_1$ wird aufgeladen

- C erreicht Sperrspannung $\rightarrow T_1$ schaltet durch
- A fällt auf Masse $\rightarrow C_2$ fällt ins Negative
- T₂ wird unterbrochen

Züruck beim Anfangszustand

Bemerkungen

- System "schwingt" mit $\sim 395 mHz$
- Austauschen von Bauteilen verändert Frequenz einer LED
- Weiterhin von Interesse:
 - Einschwingvorgang ("Welche LED leuchtet zuerst?")
 - Abhängigkeit des Einschwingvorgangs von den Bauteilen

Figure: Messbild mit $R_2 = 47k\Omega$

Übersicht

- Transistorkennlinien
 - Bipolartransistor
- 2 Transistor als elektronischer Schalter
 - Transistor steuert LED
 - Darlington Schaltung
 - Transistor Kippstufen: Blinkschaltung
- Transistor als Verstärker
 - Einfacher Common-Emitter-Verstärker
 - Optimierter Common-Emitter-Verstärker
 - Differenzverstärker

Funktionsprinzip

- Wechselspannung wird an U_{in} angelegt
- Spannung U_{out} ist konstant
- übersteigt U_{in} die Transistor-Schwellspannung wird der Transistor durchgeschaltet
- Fast kein
 Spannungsabfall
 zwischen Kollektor
 und Masse → U_out
 fällt stark ab

Funktionsprinzip

- Wechselspannung wird an U_{in} angelegt
- Spannung *U_{out}* ist konstant
- übersteigt U_{in} die Transistor-Schwellspannung wird der Transistor durchgeschaltet

- Berühren des Transistors verstärkt Abfall
- Erklärung: Geringerer Spannungsabfall an Transistor durch Berühren

Optimierter Common-Emitter-Verstärker

Optimierter Common-Emitter-Verstärker

- Stabilisierung des Transistors durch zusätzliche Bauelemente
- Kondensatoren wirken wie Hochpassfilter
- durch maximale Schaltfrequenz kann sich ein Tiefpass ergeben

Optimierter Common-Emitter-Verstärker Bodediagramme

Optimierter Common-Emitter-Verstärker Bodediagramme

Differenzverstärker

Differenzverstärker: Bodediagramm

Differenzverstärker: Bodediagramm

Differenzverstärker

Optimierter Differenzverstärker: Bodediagramm

Optimierter Differenzverstärker: Bodediagramm

