

02502 Image Analysis Week 5 - Morphology

http://courses.compute.dtu.dk/02502/

Tim B. Dyrby (tbdy@dtu.dk)
Associate Professor, DTU Compute

& Rasmus R. Paulsen (rapa@dtu.dk) Associate Professor, DTU Compute

Plenty of slides adapted from Thomas Moeslunds lectures

1. October 2019

DTU Compute

02502 - Week 5

1

Lecture 5 - What can you do after today?

- Describe the similarity between filtering and morphology
- Describe a structuring element
- Compute the dilation of a binary image
- Compute the erosion of a binary image
- Compute the opening of a binary image
- Compute the closing of a binary image
- Apply compound morphological operations to binary images
- Describe typical examples where morphology is suitable
- Remove unwanted elements from binary images using morphology
- Choose appropriate structuring elements and morphological operations based on image content

Lecture 5 - What can you do after today?

Lecture 5 - What can you do after today?

0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1	1	1	0	0

Morphology

- The science of *form, shape* and *structure*
- In biology: The form and structure of animals and plants

Common leaf morphologies

Mathematical morphology

Theorem 4.10

$$\begin{cases} \psi_m = \widetilde{\varphi} \ \widetilde{\gamma} = \widetilde{\gamma} \ \widetilde{\varphi} \ \widetilde{\gamma} = \psi \widetilde{\gamma} \\ \psi_M = \widetilde{\gamma} \widetilde{\varphi} = \widetilde{\varphi} \ \widetilde{\gamma} \ \widetilde{\varphi} = \psi \widetilde{\varphi} \\ \psi = \widetilde{\gamma} \ \psi = \widetilde{\varphi} \ \psi, \\ \widetilde{\gamma} \le \psi_m \le \psi \le \psi_M \le \widetilde{\varphi} \end{cases} ,$$

The same theorem may be restated in another way. If $\mathcal{J}d(\mathcal{B}) \neq \emptyset$ then let B_i be a family of elements of \mathcal{B} . We have $\forall B_i \in \sim B$, and thus $\widetilde{\gamma}(\forall B_i) = \forall B_i$. From the first relation above, it follows for any $\psi \in \mathcal{J}d(\mathcal{B})$, that

$$\psi (\vee B_i) = \psi \widetilde{\gamma} (\vee B_i) = \widetilde{\varphi} \widetilde{\gamma} (\vee B_i).$$

But $\widetilde{\gamma}(\vee B_i) = \vee B_i$, so that

$$\widetilde{\varphi}(\vee B_i) = \psi(\vee B_i) \in \mathcal{B}.$$

In the same way, we also obtain

$$\widetilde{\gamma}\widetilde{\varphi}(\wedge B_i) = \widetilde{\gamma}(\wedge B_i) = \psi(\wedge B_i) \in \mathcal{B}.$$

In other words, \mathcal{B} is a *complete lattice* with respect to the ordering on \mathcal{B} induced by \leq , i.e. any family B_i in \mathcal{B} has a smallest upper bound $\widetilde{\varphi}$ ($\vee B_i$) \mathcal{B} and a greatest lower bound $\widetilde{\gamma}$ ($\wedge B_i$) $\in \mathcal{B}$.

Conversely, let us assume that $\mathcal B$ is a complete lattice. Thus, for any $A\in\mathcal L$, the family $\{B:B\in\mathcal B,B\geq A\}$ has in $\mathcal B$ a greatest lower bound, which is

$$\widetilde{\gamma}(\wedge \{B : B \in \mathcal{B}, B > A\}) = \widetilde{\gamma} \ \widetilde{\varphi}(A) \in \mathcal{B}.$$

But this implies $\mathcal{B}_{\psi_M} \subseteq \mathcal{B}$ for the filter $\psi_M = \widetilde{\gamma} \ \widetilde{\varphi}$. Conversely, for any

- Developed in 1964
- Theoretical work done in Paris
- Used for classification of minerals in cut stone
- Initially used for binary images

Do not worry! We use a much less theoretical approach!

https://en.wikipedia.org/wiki/Mathematical_morphology

Relevance?

- Point wise operations (histogram)
- Filtering
- Thresholding
 - -Gives us objects that are separated by the background
- Morphology
 - –Manipulate and enhance binary objects

What can it be used for?

- Remove noise
 - Small objects
 - Fill holes
- Isolate objects
- Customized to specific shapes

How does it work?

The processing pipeline:

- Grayscale image
- Preprocessing
 - Inversion
- Threshold => Binary image
- Morphology extraction

Filtering and morphology

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	1	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

- Filtering
 - Gray level images
 - Kernel
 - Moves it over the input image
 - Creates a new output image

Filtering and morphology

Disk

Box

3x3

0	1	0
1	1	1
0	1	0

1	1	1
1	1	1
1	1	1

Filtering

- Gray level images

- Kernel
- Moves it over the input image
- Creates a new output image

- Binary images
- Structuring element (SE)
- Moves the SE over the input image
- Creates a new binary output image

1D Morphology

1D Morphology: The *hit* operation

- \bullet If $\underline{\text{just one}}$ 1 in the SE match with the input
 - output 1
- else
 - output 0

1D Morphology: The fit operation

- If <u>all</u> 1 in the SE match with the input
 - output 1
- else
 - output 0

1D Morphology: Dilation

- Dilate : To make wider or larger
- Based on the *hit* operation

1D Dilation example

Input image

Structuring Element (SE)

to make bigger

Output Image

|--|--|

The Hit operation:

- If just one 1 in the SE match with the input
 - output 1
- else
 - output 0

The object gets bigger and holes are filled!

1D Morphology: Erosion

- Erode : To wear down (Waves eroded the shore)
- Based on the *fit* operation

Input image

Structuring Element (SE)

to make smaller

Output Image

0				

The Fit operation:

- If all 1 in the SE match with the input
 - output 1
- else
 - output 0

Quiz 1: Erosion

& 63

A) 01001100 C) 00001000

Solution: C) 0 0 0 0 1 0 0 0

Solution: C) 0 0 0 0 1 0 0 0

Solution: C) 0 0 0 0 1 0 0 0

Solution: C) 0 0 0 0 1 0 0 0

Solution: C) 0 0 0 0 1 0 0 0

Structuring Element

1	1	1			
1	1	1			
1	1	1			
Box					

7x7								
		1	1	1	4			
	1	1	1	1	1	*		
1	1	1	1	1	1	1		
1	1	1	1	1	1	1		
1	1	1	1	1	1	1		
	1	1	1	1	1			
		1	1	1				

- Structuring Elements can have varying sizes
- Usually, element values are 0 or 1, but other values are possible (including none!)
- Structural Elements have an origin
- Empty spots in the Structuring Elements are don't cares!

Structuring Element Origin

0	1	0
1	1	1
0	1	0

• The origin is not always the center of the SE

1	1	1
1	1	1
1	1	1

1. October 2019 DTU Compute

Special structuring elements

0	0	0	1	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	1	0	0	0

Diamond

• Structuring elements can be customized to a specific problem

0	0	0	0	0	1	1
0	0	1	(1)	1	0	0
1	1	0	0	0	0	0

Line

Note: In case of a boundary effect as for the SE in below example then extend the input f(x,y) image with zero-padding.

Dilation on images - disk

Quiz 2: Dilation on images – box

1234

- (A) 1 0 1 1
 - B) 0 1 0 0
 - C) 0 1 1 1
 - D) 0 1 1 0
 - E) 1101

Quiz 2: Dilation on images - box

■ Mentimeter

Which operation to use: Hit or Fit?

$$g(x,y) = f(x,y) \oplus SE$$

Quiz 2: Dilation on images – box

$$g(x,y) = f(x,y) \oplus SE$$

Dilation – the effect of the SE

Input image

output image - disc

output image - box

1	1	1
1		1
1	1	1

Dilation Example

- Round structuring element (disk)
- Creates round corners

0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1	1	1	0	0

Quiz 3: Threshold and dilation

■ Mentimeter

\$ 53

- B) 17
- C) 6
- D) 3
- E) 12

Quiz 3: Threshold and dilation

How many foreground pixels are there in the resulting image?

A threshold of 200 is applied to the image and the result is a binary image. Now a dilation is performed with the structuring element below.

145	56	86	42	191
19	33	41	255	115
14	240	203	234	21 •
135	120	209	167	58
199	3	135	176	116

Erosion on images - disk

Quiz 4: Erosion on images – box

1234

A) 0010

B) 1010

C) 0 1 1 0

D) 0 1 0 0

E) 1000

Which operation to use: Hit or Fit?

$$g(x,y) = f(x,y) \ominus SE$$

Mentimeter

Quiz 4: Erosion on images – box

$$g(x,y) = f(x,y) \ominus SE$$

Erosion example

Counting Coins

- Counting these coins is difficult because they touch each other!
- Solution: Threshold and Erosion separates them!
- More on counting next time!

The size of structuring elements matters!

• Dilation (SE: box)

• Erosion (SE: box)

Compound operations

- Compound
 - made of two or more separate parts or elements
- Combining Erosion and Dilation into more advanced operations
 - -Finding the outline
 - -Opening
 - Isolate objects and remove small objects (better than Erosion)
 - Closing
 - Fill holes (better than Dilation)

Finding the outline

- 1. Dilate input image (object gets bigger)
- 2. Subtract input image from dilated image
- 3. The outline remains!

$$g(x,y) = (f(x,y) \oplus SE) - f(x,y)$$

Opening

- Motivation: Remove small objects BUT keep original size (and shape)
- Opening = Erosion + Dilation
 - Use the same structuring element!
 - Similar to erosion but less destructive
- Math:

$$g(x,y) = f(x,y) \circ SE = (f(x,y) \ominus SE) \oplus SE$$

• Opening is idempotent: Repeated operations has no further effects!

$$f(x,y) \circ SE = (f(x,y) \circ SE) \circ SE$$

Opening

$$g(x,y) = (f(x,y) \ominus SE) \oplus SE$$

Original

Opening = erosion+dilation

Eroded

Same size and shape

Dilated

Idempotent

02502 - Week 5

Opening example

• 9x3 and 3x9 Structuring Elements

Opening example

- Size of structuring element should fit into the smallest object to keep
- Structuring Element: 11 pixel disc

Histology image: Cells

Quiz 5: Compound operations

- A) 3
- B) 23
- C) 11
- D) 36
- E) 16

The compound morphological operation seen below is applied to the image.

How many foreground pixels are there in the resulting image?

$$(I \ominus SE1) \oplus SE2,$$

DTU

Closing

- Motivation: Fill holes BUT keep original size (and shape)
- Closing = Dilation + Erosion
 - Use the same structuring element!
 - Similar to dilation but less destructive
- Math:

$$g(x,y) = f(x,y) \cdot SE = (f(x,y) \oplus SE) \ominus SE$$

Closing is idempotent: Repeated operations has no further effects!

$$f(x,y) \cdot SE = (f(x,y) \cdot SE) \cdot SE$$

Closing

$$g(x,y) = (f(x,y) \oplus SE) \ominus SE$$

Closing = dilation + erosion

Note:

- Same size and shape
- Idempotent

Closing example

- Closing operation with a 22 pixel disc
- Closes small holes

October 2019 DTU Compute

Quiz 6: Closing

- A) 31
 - B) 18
 - C) 6
 - D) 35
 - E) 21

Morphological closing is applied to the image using the structuring element below.

How many foregrounds pixels are there in the resulting image?

What did we learn today? Morphology of binary images - (Chapter 6)

- Remove noise
 - Small objects
 - Fill holes
- Isolate objects
- Customized to specific shapes
- Size of SE matter

How do you like the book?

- A) Very bad book
- B) Bad book
- C) Ok book
- D) Good book
- E) Really good book

Flipped classroom TA 8-10, Lecture 10-12

- A) It really does not work
- B) It is not optimal
- C) It is ok
- D) It is fine
- E) It works very well

How much time do I spend on preparing every week?

- A) 0 minutes
- B) 0-15 minutes
- C) 15-30 minutes
- D) 30-60 minutes
- E) 1-2 hours
- F) 2-4 hours
- G) More than 4 hours

How do I feel about Matlab

- A) I simply do not get it
- B) I find it hard
- C) We are ok friends
- D) I feel confident in Matlab
- E) I write Matlab scripts even when I sleep

Next week: Blob Analysis

