Linkage Tests in Upland Cotton. III ¹ R. J. Kohel²

ABSTRACT

A summary of tests of 255 linkage combinations are reported. Two new linkages were established as follows: Rd and v_s (14.22% recombination; Linkage Group XIV) and Li and v_s (10.12% recombination; Linkage Group XV). Eleven other suspected linkages are discussed, but they were either eliminated through monosomic analysis or were not adequately validated. In the latter case, current information is presented because these mutants are so difficult to manipulate that development of test populations will require several years of work.

Additional index words: Linkage groups, Chromosome identification.

R ESEARCHERS in the cotton genetics program at College Station, Tex. use both genetic and cytogenetic methods to identify the 26 chromosome pairs of cotton (Gossypium hirsutum L.). Genetic identification of the chromosomes is pursued with the use of linkage and aneuploid analyses. This paper reports the results of linkage analyses performed since the last summary in 1972 (2).

MATERIALS AND METHODS

Names of the mutants, their gene symbols, and information regarding their chromosome location and/or linkage group are summarized in Table 1. In cotton, numbers 1 to 13 are assigned to the A subgenome chromosomes and numbers 24 to 26 are assigned to the D subgenome chromosomes. Linkage groups are identified by Roman numerals in chronological order of their identification (3).

The bulk of the mutants occurred as monogenic markers in individual lines of cotton. Most were tested with our multiple marker stocks T582 and T586, so, with the exception of some of the more recent accessions, linkage tests involved dihybrid combinations. One male-sterile mutant was digenic $(ms_t ms_b)$. The three multiple marker lines used included one containing the three gland determining loci gl_1 , gl_2 , and gl_3 and the two multiple marker test lines T582 (cu, fg, cl_0, gl_1) , and T586 $(R_2, Lc_1, L^o_2, R_1, H_2, Y_1, N_1, Lg, and P_1)$. Linkage deviations were determined by chi-square analyses.

Linkage deviations were determined by chi-square analyses. Recombination values were computed by the product method (9) for dihybrid F₂ generation test combinations and the maximum likelihood method (1) for all other test combinations and pooled estimates.

RESULTS AND DISCUSSION

Results of the linkage tests are summarized in Table 2 (recessive × recessive mutant loci), Table 3 (recessive × dominant mutant loci), and Table 4 (dominant × dominant mutant loci). Data shown are recom-

bination percentages, population sizes, generation tested, and significant linkage deviations. Two close linkages were found and verified by retesting.

The first association observed was that between Rd and v_8 (14.22% recombination; Table 5). Rd has been associated with the D subgenome (Table 1). No other linkage or chromosome associations have been reported for these mutant loci; therefore, they represent a new linkage group in cotton, Linkage Group XIV.

The second close linkage observed was that between Li and v_3 (10.12% recombination; Table 5). Tests involving these loci did not indicate any other associations. Therefore, Li and v_3 are designated Linkage Group XV.

Table 1. Name, gene symbol, chromosome or subgenome, linkage group, and reference of cotton mutants involved in linkage

test.				
Name	Gene symbol(s)	Chromosome or subgenome	Linkage group	Reference
Cluster fruiting-1	cl,	16	III	2
Cup leaf	cu	A		2
Depauperate	de			4
Frego bract	fg		VI	2
Glandless stem and boll	\mathbf{gl}_i	D		2
Glandless plant	gl_2,gl_3	A,D	V, IX	2
Inverted stigma-style	st,	, —	.,	3
Mosaic leaf	mĺ	4	VIII	2
Male-sterile-2	ms,			2
Male-sterile-5.6	ms,ms			3
Miniature stigma-style	st ₂			3
Naked seed	n,			3
Open bud	οĎ			3
Pale green	pg			3
Round leaf-1	rl,		X	2
Virescent-1	v,	Α		2
Virescent-2	v ₂			3
Virescent-3	V,		XV	3, text
Virescent-4	v.			3
Virescent-8	V _A	D	XIV	5, text
Withering bract-1	bw,	A	V	2
Brown lint-1	Lc	7	I	2
Crumpled	Crp			3
Green lint	Lg	15	II	2
Laciniate leaf	L F	1	VII	2
Ligon lintless	Li	D	XV	2, text
Male-sterile-4	Ms.			2
Male-sterile-7	Ms,			3
Naked seed	N,	Α	XIII	6
Okra leaf	Lγ	15	II	2
Petal spot	Ŕ,	7	I	2
Pilose	H,	6	IV	2
Ragged leaf	Rg		X	2
Red dwarf	Rď	D	XIV	2, text
Red plant	\mathbf{R}_{i}	16	III	2
Round leaf-2	Rl,			8
Rugate	Ru			3
Smooth stem	$\mathbf{Sm_{i}}^{\mathbf{S}}$			3
Yellow petals	$\mathbf{Y_i}$	Α	XII	7
Yellow pollen	\mathbf{P}_{1}		ΧI	10

¹ Contribution from the FR, SEA, USDA, in cooperation with the Texas Agricultural Experiment Station. Received 23 Jan. 1978.

²Research geneticist, Oklahoma-Texas Area, Southern Region, FR, SEA, USDA, College Station, TX 77843.

14350633, 1978, 5, Downloaded from https://acsess.onlinelibrary.wiey.com/doi/10.2135/cropsci1978.0011183X001800050041x by North Carolina State Universit, Wiley Online Library on [21.07/2023]. See the Terms and Conditions (https://onlinelibrary.wiey.com/terms

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

	$\mathbf{v}_{\mathbf{e}}$		`	/ ₄	,	v,	•	V ₂	•	/ ₈	r	l,	р	g	0	b	1	n,	ms,	ms ₆	ms ₂	ml	st,
cl,																	44	138	50	98			55 92
cu																	63	138	50	98			49 92
de	43	90			46	86	60	91													63 76		
fg																	58	138	46	98			48 92
gľ,			41	136	42	98							39	55			51	75	49	98		45 144	
fg gl, gl, gl,	58 1	16	46	217	60	66	40	65					57									53 208	
gl,	64 1			217	56		48	65					67									57 208	
st,	37	93	53	91	53	176	39	93	53	92	40	97	45		51	83					50 87		
mĺ			52	79			58	208			63	60	58		54								
ms ₂	51 1	67			43	92	54	95					48	83	39		53	100					
ms, ms,									42	98													
n,	57	97								138					48	94							
ob	46 2	244	55	156	341	156	44	169			44	86	57	87									
pg	49	77	50	73	47	78	58	71				83											
rl,			42	94	44	80	70	93															
V ₂	47	67																					
\mathbf{v}_{ullet}		72																					
bw,	50	98																					

^{**} Chi-square linkage deviation exceeded 0.05 level of probability. † The first number for any given pair is the recombination percentage, and the second number is the population size. All linkage test populations were the F_2 generation. No recombination value is given for the v_4 - v_8 test because the two virescent expressions could not be distinguished in the segregating populations.

Table 3. Summary of cotton linkage test results between lines carrying recessive mutants with those carrying dominant mutants.†

	\mathbf{Lc}_{i}	Crp	Lg	$\mathbf{L}_{\mathbf{L}}^{\mathbf{L}}$	Li	Ms_4	Ms_{τ}	N_i	L₽	R_2
·l,							56 50			
1							46 30			
е		60 61			57 51					
;							40 30			
1		52 82			54 109‡	40 50	40 00			
i,		49 63			49 200‡	55 80	39 41			
ī,		65 63			48 200	54 80	24* 41			
·3 ·9	~ 95	56 84§	- 95		49 79§	48 93	57 147	- 95	53 95	47 95
ď	- 30	36*166	- 30		58 89	40 20	41 51	- 50	00 9 0	41 95
15,		53 85§			90 09		41 51			
ıs,ms,	× 180‡	00 003	× 175‡					1744	1854	100
t ₂	~ 139‡		- 139‡					× 174‡	× 175‡	× 180
·2 2	52 78		- 139‡ 12* 78			F1 00	40 05	- 139‡	49 194‡	45 195
)	02 10	42 008	12- 78	FD 00	40 000	51 88	49 97	- 78	46 79	54 78
		43 89§		53 99	48 90§	59 87	51 80			
g		57 49 62 61		60 86	59 74	46 48				
1		62 61		41 54	48 56	45 53				
1		40 1148		F1 1884	47 7000		38 50			
2		40 114§		51 177‡	41 120§	50 170	54 52			
3		52 123§		50 97	10*2918					
4		52 123§		52 147	41 66§	54 54	47 135			
9		54 191‡		48 95	56 208‡	48 75	46 82			
	Н,	$\mathbf{R}\mathbf{g}$	Rd	$\mathbf{R}_{\scriptscriptstyle 1}$	Rl_{z}	Ru	$\mathbf{Sm_{I}^{S}}$	\mathbf{Y}_{1}	$\mathbf{P_i}$	
1						59 34	43 97			
1						42 65	47 97			
•			49 78		35*149					
5 ₁							59 97			
1			55 31			44 71	48 97			
2			55 120		45 66	60 43				
l _a			50 120		52 66	51 43				
t _a	47 95		42 81	46 95	48 86			49 95	54 95	
1			45 119			30* 27				
183					60 122§					
ns, ms,	× 180‡			× 180‡				× 180‡	× 180‡	
t ₂	57 195‡			61 195‡				47 194‡	48 194‡	
2	63 79			51 79				54 78	46 78	
b			53 151§		35 66§	47 76				
g			56 82		46 61	43 68				
l,					36*160	42 47				
, 1						45 159	54 97			
72			48 117§		38 131§	50 127				
's			60 123§		•					
•			44 119§		58 71	45 78				
		43 144§	14*339\$		44 117§	57 90				

^{*} Chi-square linkage deviation exceeded 0.05 level of probability. \uparrow The first number for any given pair is the recombination percentage, and the second number is the population size. Linkage test populations are the backcross generation. \downarrow Indicates combined backcross and F_2 generations. Recombination values for the pooled backcross and F_2 generation were not calculated for segregation of $m_{s_1}m_{s_2}$. No direct recombination values could be calculated for segregations of the female steriles st_2 and st_3 with seed character mutants, or the segregation of N_1 and n_2 .

Linkage deviations in several other mutant combinations were statistically significant. Some of these were eliminated by tests for chromosome associations; only preliminary information is available for others because testing is difficult and verification will require several years effort. These linkage associations are discussed in the following paragraphs.

The data indicated that both Crp and Ru were linked with ml. The ml locus is associated with chromosome 4 (Table 1). Monosome tests have shown Crp to be independent of chromosome 4; therefore, the linkage test involving Crp and ml gave a false indication of linkage. Plants carrying the Ru mutant are difficult to work with because of poor seedling emergence, vigor, and seed set. I planted all the seed available to produce the 27 plants that comprised the original linkage population between ml and Ru. Not enough additional seed has been produced for another linkage test. The F₁ between monosome 4 and Ru was obtained, but it was not successfully crossed or self-pollinated. The single F₁ plant involving monosome 4 and Ru did not have any unusual phenotypic expression to indicate association. Therefore, the Ru-ml linkage will be discounted until resolved by additional testing.

The linkage indicated between ob and v_3 is also discounted. Monosome tests have placed ob on chro-

Table 4. Summary of cotton linkage test results between lines carrying dominant mutants.†

Lc,	$\mathrm{Sm}_{i}^{\mathrm{S}}$	Ru		Rl_2		Rd		Ms_7		Ms.		Li	
	56 155	52	76					50	30				
Crp Lg L l Li		47	81	50	66	48	123§	56	86	43	97	48	141
Lg	56 155	72	76				·	57	30				
LĽ		48	79	35	134‡	57	100			38	97	52	60
Li		54	99	44	90	49	122	53	88	48	109		
Ms.				48	83	62	71						
Ms,						54	167						
N,	55 155	54	76					47	30				
Lγ	49 156	50	99					53	30				
R ₂	38*155	52	87					53	30				
H,	40 156	50	99					53	30				
Rd		54	108	65	276§								
R,	50 156	50	99		_			48	109				
Rl,		44	88										
$\mathbf{Y}_{\mathbf{i}}$	44 155							47	30				
P ₁	50 155	45	87					47	30				

^{*} Chi-square linkage deviation exceeded 0.05 level of probability.

mosome 18 and v_3 was independent of this chromosome (Kohel, unpublished).

Similarly, R_2 and Sm_1^S cannot be linked. R_2 is associated with chromosome 7 and Sm_1^S is independent of that chromosome (J. E. Endrizzi, personal communication).

There were four combinations involving Rl_2 that had linkage values of 35 to 36%. The linkage deviations of Rl_2 with rl_1 and de were significant, but deviations of Rl_2 with L^L and ob were not. The extreme phenotypic expression of Rl_2 made classification of other mutants in the segregating population difficult. Rl_2 is not linked with L^L because L^L is on chromosome 1 and Rl_2 is independent of this chromosome. The apparent association Rl_2 with de was attributed to difficulty in identifying the mutants in the segregating population. The mutants rl_1 and ob are especially difficult to separate in segregating populations with Rl_2 because Rl_2 has the round-leaf expression of rl_1 and the open-bud expression of ob. Therefore, these linkage associations are discounted here although they are still being tested.

A population of 41 plants indicated the linkage of gl_3 with Ms_7 . I am repeating this test, but subsequent linkage tests by E. L. Turcotte (personal communication) did not confirm this association.

The multiple marker line T586 contains Lg, Lc_1 , and N_1 seed characters. I measured 12% recombination between Lg in T586 and n_2 . However, the segregation of N_1 prevented classification of all plants for n_2 because the latter could only be classified on n_1 n_1 plants. New populations, that do not contain the N_1 mutant, are being synthesized to test linkage of Lg with n_2 . Lg is located on chromosome 15, but no monosome 15 is available to test for chromosome association with n_2 .

4350635, 1978, 5, Downloaded from https://acsess.onlinelibrary.wiley.com/doi/10.2135/coppsci1978.0011 183X00180005001x by North Carolina State Universit, Wiley Online Library on [21.07.2023]. See the Terms and Conditions (https://oinelibrary.wiley.com/emrs-and-conditions) on Wiley Online Library for rules of tass; OA articles are governed by the applicable Cerewise Commons.

Two years of pooled data indicated no linkage between v_2 and Ru (pooled recombination value was 50.00%), although the first year data indicated that these genes were linked. However, these tests will be repeated because E. L. Turcotte (personal communication) has also reported significant linkage between these two markers. A check of the material used in the crosses and in the field classifications revealed no apparent explanation for this anomalous result. Neither mutant has been associated with a specific chromosome, so the linkage test populations will have to be reconstituted.

Table 5. Detailed analyses of three populations grown to study Rd- v_8 and Li- v_3 linkages.

Genotype					·	Chi-square ar				
	Segre	gation (no. p	olants)		Source	X ²				
	A	В	С	Total		A	В	С	Total	
V _s -Rd-	85	66	81	232	V_s vs. v_s	2.63	0.48	0.60	0.01	
V ₈ -rd rd	8	6	9	23	Rd vs. rd	0.29	0.21	0.00	0.01	
v _s v _s Rd-	3	7	13	23	Linkage	44.64	51.84	40.33	135.51	
v _s v _s rd rd	_18	<u>21</u>	22	<u>_61</u>	_					
	114	100	$\frac{22}{125}$	339	Recombination %	9.92	13.40	18.78	14.22	
Li-V	58	71	87	216	Li vs. li	2.35	0.12	0.01	1.10	
Li-v _a v _a	4	4	2	10	V_s vs. v_s	8.22	1.10	0.01	3.99	
li li V _a -	9	7	1	17	Linkage	4.48	37.56	102.54	122.75	
li li v _a v ₃	4	<u>16</u>	_28	<u>48</u>	-					
	75	98	118	291	Recombination %	26.57	12.20	2.42	10.12	

[†] The first number for any given pair is the recombination percentage, and the second number is the population size. Linkage test populations are the backcross generation. \ddagger Indicates combined backcross and F_2 generations. $\$F_2$ generation.

REFERENCES

- Allard, R. W. 1956. Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235-278.
- Kohel, R. J. 1972. Linkage tests in upland cotton, Gossypium hirsutum L. II. Crop Sci. 12:66-69.

3. ______. 1973. Genetic nomenclature in cotton. J. Hered. 64:291-294.

- 4. ——... 1973. Genetic analysis of the depauperate mutant in cotton, Gossypium hirsutum L. Crop Sci. 13:427-428.
- 5. ———. 1974. Genetic analysis of a new virescent mutant in cotton. Crop Sci. 14:525-527.

- ----, C. F. Lewis, and M. N. Christiansen. 1977. The identification of a new mutant and linkage group in cotton. I. Hered. 68:65-66.
- Percival, A. E., and R. J. Kohel. 1976. A new virescent cotton mutant linked with the marker gene Yellow petals. Crop Sci. 16:503-505.
- 8. ____, ___, and R. H. Dilday. 1976. A dominant round leaf mutant in cotton. Crop Sci. 16:794-796.
- 9. Stephens, W. L. 1939. Tables of the recombination fraction estimated from the product ratio. J. Genet. 39:171-180.
- Tayel, M. A. F., L. S. Bird, and J. D. Smith. 1973. Linkage between blight resistance and yellow pollen color genes in cotton. J. Hered. 64:208-212.