SI112: Advanced Geometry

Spring 2018

Lecture 20-21 — May 10th, Thursday

Prof. Manolis Scribe: Liangzu

1 Lecture 20-21

1.1 Overview of This Lecture

The goal of this two lectures is to prove Hilbert's Nullstellensatz (and its consequences).

1.2 Proof of Things

Definition 1.2.1. A proper ideal I of a ring R is called *prime* if $ab \in I$ implies $a \in I$ or $b \in I$ for any elements $a, b \in R$.

Definition 1.2.2 (maximal ideal). A proper ideal m of a ring R is called maximal if $m \subset I$ implies m = I or I = R for any ideal $I \subset R$.

Example 1.2.3. The zero ideal of some ring R is prime if and only if R is an integral domain. For a field \mathbb{F} the zero ideal $0 \subset \mathbb{F}$ is prime and maximal at the same time.

Proposition 1.2.4. Let R be a ring and $I \subset R$ an ideal. Then I is prime if and only if R/I is an integral domain.

Proof. Let $a, b \in R$ (i.e., $\overline{a}, \overline{b} \in R/I$). Then

$$ab \in I \Rightarrow a \in I \text{ or } b \in I$$

is equivalent to

$$\overline{a}\overline{b} = 0 \Rightarrow \overline{a} = 0 \text{ or } \overline{b} = 0.$$

Proposition 1.2.5. Let R be a ring and m an ideal of R. Then m is a maximal ideal of the ring R if and only if R/m is a field.

Proof.

• \Rightarrow) To prove that R/m is a field, we need to show that every nonzero element in R/m is invertible. Let $a+m \in R/m$ be a nonzero element in R/m. Then Ra+m is an

1

ideal properly containing m (you should verify that Ra + m is an ideal). This means Ra + m = R. Then there exists $r \in R, \mu \in m$ such that

$$ra+\mu=1\iff ra+\mu+m=1+m\iff ra+m=1+m\iff (r+m)(a+m)=1+m.$$

This implies that a + m is invertible.

• \Leftarrow) Since R/m is a field, it must contain at least two elements: 0+m=m and 1+m. Hence, m is a proper ideal of R. Let I be an ideal properly containing m. We need to show that $I=R \iff 1 \in I$. Let $a \in I-M$. Since a+m is a nonzero element in a field, there exists an element b+m in R/M such that ab+m=(a+m)(b+m)=1+m. Hence there exists an element $\mu \in m$ such that $ab+\mu=1 \Rightarrow 1 \in I$.

The following corollary is a direct consequence of Proposition 1.2.4 and Proposition 1.2.5.

Corollary 1.2.6. Let m be a maximal ideal of a ring. Then m is prime.

Proposition 1.2.7. The ring $\mathbb{C}[x_1, x_2, \dots, x_n]$ contains a maximal ideal.

Proof.
$$\mathbb{C}[x_1, x_2, \dots, x_n]$$
 is Noetherian.

Proposition 1.2.8. Let I be a proper ideal in $\mathbb{C}[x_1, x_2, \ldots, x_n]$. Then there exists a maximal ideal $m \subset \mathbb{C}[x_1, x_2, \ldots, x_n]$ such that $I \subset m$.

Proof.
$$\mathbb{C}[x_1, x_2, \dots, x_n]$$
 is Noetherian.

Theorem 1.2.9. Let m be an ideal of $\mathbb{C}[x_1, x_2, \dots, x_n]$. Then m is maximal if and only if $m = \langle x_1 - \alpha_1, \dots, x_1 - \alpha_n \rangle$ for some $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{C}$.

Proof.

- \Rightarrow) Cor 7.10\ AM (difficult).
- \Leftarrow) It is enough to show that $\frac{\mathbb{C}[x_1, x_2, \dots, x_n]}{\langle x_1 \alpha_1, \dots, x_n \alpha_n \rangle}$ is a field. For $i = 1, 2, \dots, n$, we have $[x_i] = [\alpha_i]$ since $x_i \alpha_i \in \langle x_1 \alpha_1, \dots, x_n \alpha_n \rangle$. Hence (before this "hence", ask yourself: what is the equivalence class of $p \in \mathbb{C}[x_1, x_2, \dots, x_n]$?)

$$\frac{\mathbb{C}[x_1, x_2, \dots, x_n]}{\langle x_1 - \alpha_1, \dots, x_n - \alpha_n \rangle} \cong \mathbb{C}[\alpha_1, \alpha_2, \dots, \alpha_n] = \mathbb{C}$$

is a field.

Theorem 1.2.10 (Hilbert's Nullstellensatz, weak form). Let $T \neq \emptyset$ be a set of polynomials in $\mathbb{C}[x_1, x_2, \ldots, x_n]$. Then $Z(T) = \emptyset$, where $Z(T) = \{v \in \mathbb{C}^n : f(v) = 0, \forall f \in T\}$, if and only if the ideal I generated by T contains 1.

Proof.

• \Rightarrow) Suppose $1 \notin I$. We will show that $Z(T) \neq \emptyset$. $1 \notin I$ implying $I \neq \mathbb{C}[x_1, x_2, \dots, x_n]$, by Proposition 1.2.8 and Theorem 1.2.9, there exists a maximal ideal $m = \langle x_1 - \alpha_1, \dots, x_n - \alpha_n \rangle$ for some $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{C}$ in $\mathbb{C}[x_1, x_2, \dots, x_n]$ such that $I \subset m$. Hence $\underline{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n) \in Z(T)$: Let $\underline{p}(\underline{x}) = \sum c_w \underline{x}^w \in T \subset m$. Then

$$0 = [p(\underline{x})] = [\Sigma c_{\underline{w}} \underline{x}^{\underline{w}}] = \Sigma c_{\underline{w}} [\underline{x}]^{\underline{w}} = \underline{\alpha} = p(\underline{\alpha}).$$

• \Leftarrow) There exist $t_1, t_2, \ldots, t_l \in T, r_1, r_2, \ldots, r_l \in \mathbb{C}[x_1, x_2, \ldots, x_n]$ such that

$$r_1t_1 + r_2t_2 + \dots + r_lt_l = 1.$$

Hence $Z(T) = \emptyset$, for otherwise let $v \in Z(T)$ then we have

$$0 = r_1(v)t_1(v) + r_2(v)t_2(v) + \dots + r_l(v)t_l(v) = 1,$$

a contradiction.

Definition 1.2.11. The spectrum of a ring R, denoted by Spec(R), is the set of all prime ideals in R.

Exercise 1.2.12. Let J be an ideal of a ring R, prove that the radical

$$\sqrt{J} = \{ r \in R : r^l \in J \text{ for some } l \in \mathbb{N}^+ \}$$

of J is an ideal of R.

Let R be a ring and let $f \in R$ be such that f is not nilpotent. Note that in general f is not invertible in R. What we want to do now is to construct a ring R_f and a homomorphism $\phi: R \to R_f$ such that $\phi(f)$ is invertible in R_f . Then we may want to have some manipulations on $\phi(f)$, and return back to R (e.g., via ϕ^{-1}). The construction process is called *localization*, described as below.

Let R be a ring and let $f \in R$ be such that f is not nilpotent. Define a set $T = \{1, f, f^2, \dots\}$ and define a relation \sim on $R \times T$ by

$$(r,t) \sim (r',t') \iff \text{there is some } t'' \in T \text{ such that } t''(rt'-r't)=0.$$

The relation is an equivalence relation as you should verify.

Now consider the set $(R \times T)/\sim$ of all equivalence classes in $R \times T$ under the relation \sim and write $\frac{r}{t}$ for the class of an element $(r,t) \in R \times T$, i.e., $(R \times T)/\sim = \{\frac{r}{t} : r \in R, t \in T\}$. The set $(R \times T)/\sim$ is a ring under the standard addition and multiplication of fractional arithmetic

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}, \frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}.$$

You should first verify that these two operations are well-defined. Furthermore, it is easily checked that $\frac{0}{1}$ is the zero element and $\frac{1}{1}$ is the unit element. As a more handy notation, we will write R_f instead of $(R \times T)/\sim$.

The inclusion map $i: R \to R \times T$ maps $r \in R$ to $(r,1) \in R \times T$ and the canonical homomorphism $\pi: R \times T \to R_f$ maps $(r,t) \in R \times T$ to its equivalence class $\frac{r}{t} \in R_f$. This implies $\pi i(f)$ is invertible in R_f , as desired.

Definition 1.2.13 (localization of a ring by an element in the ring). Let R be a ring and $f \in R$ be such that f is not nilpotent. Let $T = \{1, f, f^2, \dots\}$ Then $R_f = (R \times T)/\sim$ is called the *localization* of R by f.

Theorem 1.2.14 (Hilbert's Nullstellensatz, strong form). Let J be an ideal of $\mathbb{C}[x_1, x_2, \dots, x_n]$ and let Y = Z(J). Then $I_Y = \sqrt{J}$.

Proof. Let $g \in \sqrt{J}$, i.e., there exists m such that $g^m \in J$. Then g^m vanishes on Z(J), and thus g vanishes on Z(J) ($\mathbb{C}[x_1, x_2, \ldots, x_n]$ is an integral domain). Hence $g \in I_{Z(J)}$. It remains to be shown that $I_{Z(J)} \subset \sqrt{J}$.

Suppose that the polynomial $f \in \mathbb{C}[x_1, x_2, \dots, x_n]$ vanishes on Y = Z(J), i.e., $f \in I_{Z(J)}$. If f is nilpotent, i.e., $f^m = 0 \in \sqrt{J}$ for some $m \in \mathbb{N}^+$, we are done. Now suppose f is not nilpotent.

The set of polynomials $J \cup \{1 - x_{n+1}f\} \subset \mathbb{C}[x_1, x_2, \dots, x_{n+1}]$ has no roots in \mathbb{C}^{n+1} (for otherwise there is $v = (v_1, v_2, \dots, v_{n+1}) \in \mathbb{C}^{n+1}$ such that p(v) = 0 for all $p \in J$ and $1 - v_{n+1}f(v) = 0$, implying $v \in Z(J) \iff f(v) = 0$, then 1 = 0). Then by Theorem 1.2.10, 1 is in the ideal generated by $J \cup \{1 - x_{n+1}f\}$. Hence, (a little bit tricky) there exist

$$p_1, p_2, \dots, p_s \in J,$$

 $h_1, h_2, \dots, h_s \in \mathbb{C}[x_1, x_2, \dots, x_n],$
 $h'_1, h'_2, \dots, h'_s \in \mathbb{C}[x_{n+1}],$

and

$$h \in \mathbb{C}[x_1, x_2, \dots, x_{n+1}]$$

such that

$$1 = p_1 h_1 h'_1 + p_2 h_2 h'_2 + \dots + p_s h_s h'_s + h(1 - x_{n+1} f).$$

Let $p'_i = p_i h_i \in J$ for $i = 1, 2, \dots, s$, then we have

$$1 = p'_1 h'_1 + p'_2 h'_2 + \dots + p'_s h'_s + h(1 - x_{n+1} f).$$

Now let

$$\phi : \mathbb{C}[x_{n+1}] \to (\mathbb{C}[x_{n+1}])_f = \{ \frac{g}{f^l} : g \in \mathbb{C}[x_{n+1}], l \in \mathbb{N} \}$$

be a ring homomorphism that maps $q(x_{n+1}) \in \mathbb{C}[x_{n+1}]$ to $q(\frac{1}{f}) \in (\mathbb{C}[x_{n+1}])_f$. For example, ϕ maps $q(x_{n+1}) = x_{n+1}^2 + x_{n+1}$ to $q(\frac{1}{f}) = \frac{1}{f^2} + \frac{1}{f}$. Noticing that $\phi(1) = \frac{1}{1}, \phi(x_{n+1}) = \frac{1}{f}$ and $\phi(h'_i(x_{n+1})) = h'_i(\frac{1}{f})$ for $i = 1, 2, \dots, s$, we have

$$\frac{1}{1} = p_1'(x_1, x_2, \dots, x_n)h_1'(\frac{1}{f}) + \dots + p_s'(x_1, x_2, \dots, x_n)h_s'(\frac{1}{f}).$$
(1.2.1)

Let d be the maximal degree of h_i 's. Multiplying Eq. 1.2.1 by f^d we obtain

$$\frac{f^d}{1} = p'_1(x_1, x_2, \dots, x_n)(h'_1(\frac{1}{f})f^d) + \dots + p'_s(x_1, x_2, \dots, x_n)(h'_s(\frac{1}{f})f^d).$$

Notice that for $i = 1, 2, \dots, s$, $h'_i(\frac{1}{f})f^d$ is of the form $\frac{g_i(f)}{1}$ where $g_i \in \mathbb{C}[x_{n+1}]$. There is a homomorphism $\psi : (\mathbb{C}[x_{n+1}])_f \to \mathbb{C}[x_{n+1}]$ that maps $\frac{g_i(f)}{1}$ to $g_i(f)$. Then

$$f^d = p'_1(x_1, x_2, \dots, x_n)g_1 + \dots + p'_s(x_1, x_2, \dots, x_n)g_s,$$

which means that $f^d \in J$ and hence $f \in \sqrt{J}$.

Proposition 1.2.15. Let J be an ideal of $\mathbb{C}[x_1, x_2, \dots, x_n]$. Then $Z(J) = Z(\sqrt{J})$.

Proof. We have $Z(\sqrt{J}) \subset Z(J)$ since $J \subset \sqrt{J}$. Now let $v \in Z(J)$. For each $p \in \sqrt{J}$, there is some $m \in \mathbb{N}^+$ such that $p^m \in J$, then $p^m(v) = 0 \iff (p(v))^m = 0$. Hence p(v) = 0 for $\mathbb{C}[x_1, x_2, \dots, x_n]$ is an integral domain.

Theorem 1.2.16. There is a one-to-one correspondence between closed sets of \mathbb{C}^n and radical ideals of $\mathbb{C}[x_1, x_2, \dots, x_n]$.

Proof. Let Y be closed, i.e., Y = Z(J) for some J being an ideal of $\mathbb{C}[x_1, x_2, \dots, x_n]$. Then

$$Y \mapsto I_Y = \sqrt{J} \mapsto Z(\sqrt{J}) = Z(J) = Y.$$

Remark 1.2.17. Let X be any set of \mathbb{C}^n . Then

$$X \mapsto I_X \mapsto Z(I_X) = \overline{X} \mapsto \sqrt{I_X} = I_{\overline{X}}.$$

Theorem 1.2.18 (Hartshorne\Prp I.1.5, p5). Let Y be a closed set \iff $Y = Z(J) \iff$ Y algebraic variety. Then Y can be uniquely written as $Y = Y_1 \cup \cdots \cup Y_s$, where Y_i 's are irreducible closed sets.

Proof.

Lemma 1.2.19. Let R be a ring and P a prime ideal. Let J_1, J_2, \ldots, J_s be ideals of R. If $J_1 \cap \cdots \cap J_s \subset P$, then $J_i \subset P$ for some i.

Proof. Suppose $J_i \not\subset P$ for any $i = 1, 2, \dots, s$. Then for any $i = 1, 2, \dots, s$ there is some $\alpha_1 \subset J_i$ such that $\alpha_i \notin P$. Let $\alpha = \alpha_1 \alpha_2 \cdots \alpha_s$. Then $\alpha \notin P$ since P is prime. But $\alpha \in J_1 \cap \cdots \cap J_s \subset P$ since J_i 's are ideals of R. This is a contradiction.

Definition 1.2.20 (Irreducible Space). A topological space X is called *irreducible* if X is not the union of any two proper closed sets, i.e., there are no closed subsets $Y_1, Y_2 \subsetneq X$ such that $X = Y_1 \cup Y_2$.

Theorem 1.2.21. Let Y be a closed set of \mathbb{C}^n . Then Y is irreducible if and only if I_Y is prime.

Proof.

• \Rightarrow) Let $f, g \in \mathbb{C}[x_1, x_2, \dots, x_n]$ such that $fg \in I_Y$. Then we have

$$\langle fg \rangle \subset I_Y \Rightarrow Y = \overline{Y} = Z(I_Y) \subset Z(\langle fg \rangle) = Z(fg) = Z(f) \cup Z(g),$$

which implies $Y = (Z(f) \cap Y) \cup (Z(g) \cap Y)$. Since Y is irreducible and $Z(f) \subset Y$, $Z(g) \subset Y$ are closed, either $Y = Z(f) \cap Y$ or $Y = Z(g) \cap Y$. Without loss of generality let $Y = Z(f) \cap Y$, then we have

$$Y \subset Z(f) \Rightarrow \langle f \rangle \subset \sqrt{\langle f \rangle} = I_{Z(\langle f \rangle)} = I_{Z(f)} \subset I_Y.$$

Hence I_Y is prime.

• \Leftarrow) Suppose $Y = Y_1 \cup Y_2$ where Y_1, Y_2 are closed subsets of Y. Then we have

$$I_Y = I_{Y_1 \cup Y_2} = I_{Y_1} \cap I_{Y_2} \Rightarrow I_Y \subset I_{Y_1}, I_Y \subset I_{Y_2}.$$
 (1.2.2)

By Lemma 1.2.19, we have either $I_{Y_1} \subset I_Y$ or $I_{Y_2} \subset I_Y$ and hence either

$$I_{Y_1} = I_Y \iff Y_1 = Z(I_{Y_1}) = Z(I_Y) = Y$$

or

$$I_{Y_2} = I_Y \iff Y_2 = Z(I_{Y_2}) = Z(I_Y) = Y.$$

Consequently Y is irreducible.

1.3 Further Reading

- Chapter 1, Algebraic Geometry and Commutative Algebra: https://www.springer.com/la/book/9781447148289
- Chapter 16, Abstract Algebra: Theory and Applications