Seminar0

January 13, 2020

0.0.1 Seminar1 - Chemical Reactor Analysis II

T.A. Maryam Azhin, Department of Chemical and Materials Engineering, University of Alberta

Q1. For an exothermic reversible reaction occurring in an adiabatic PFR, qualitatively sketch the trends of X and T with reactor volume V. On the plot of X vs V, also indicate how the equilibrium conversion would vary with the reactor temperature. Finally, sketch how you would expect the X, X_{eq} and T to look if a well-designed heat exchange jacket with constant temperature of coolant was added to the system.

Answer

Q2. Consider a PFR with a volume of $50dm^3$, used to conduct a liquid phase system of reactions. If $k_1 = 0.05s^{-1}$ and $k_2 = 0.01s^{-1}$, $C_{A0} = 1mol/dm^3$, and the volumetric flow rate is $50dm^3/min$, find the outlet concentrations of A, D and U.

$$A \stackrel{k_1}{\to} D$$
$$A \stackrel{k_2}{\to} U$$

1.png

Answer.

```
In a liquid phase PFR. v_0 = 50 \frac{dm^3}{min} = \frac{50}{60} \frac{dm^3}{s}, C_{A0} = 1 mol/dm^3, V = 50 dm^3  \frac{dF_A}{dV} = r_A = -(k_1 + k_2)C_A   v_0 \frac{dC_A}{dV} = r_A = -(k_1 + k_2)C_A   \int_{C_{A0}}^{C_A} \frac{dC_A}{C_A} = -\frac{(k_1 + k_2)}{v_0} \int_0^V dV   C_A = C_{A0} exp(-(k_1 + k_2)\frac{V}{v_0})   C_A = 0.0273 mol/dm^3
```

```
[2]: import numpy as np
    from scipy.integrate import odeint
    CAO=1 \#mol/dm^3
    V=50 #dm^3
    k1=0.05
    k2=0.01
    V=np.linspace(0.,50.,25)
    Ca=np.zeros(len(V))
    def fun(Ca,V):
        k1 = 0.05
        k2=0.01
        v0=50./60. \#\frac{dm^3}{s}
        dcdv=-(k1+k2)/v0*Ca
        return dcdv
    init_ca=1.0
    Ca=odeint(fun,init_ca,V)
    import matplotlib.pyplot as plt
    plt.plot(V, Ca, 'b-', label='Ca(t)')
    plt.xlabel('V')
    plt.ylabel('Concentration, mol/dm^3')
```

[2]: Text(0, 0.5, 'Concentration, mol/dm^3')

Both species *D* and *U* have the same type of rate equations.

$$\frac{dF_D}{dV} = r_D = k_1 C_A = k_1 C_{A0} exp(-(k_1 + k_2) \frac{V}{\nu_0})$$
 (1)

$$\frac{dF_U}{dV} = r_U = k_1 C_A = k_2 C_{A0} exp(-(k_1 + k_2) \frac{V}{\nu_0})$$
 (2)

$$\frac{mole\ of\ D\ produced}{mole\ of\ U\ produced} = \frac{k_1}{k_2} = 5 \tag{3}$$

Also for every mole of *A* consumed, 1 total mole of products are produced.

$$C_D = (1 - 0.0273) \frac{5}{5+1} = 0.8106 \frac{mol}{dm^3}$$
 (4)

$$C_U = (1 - 0.0273) \frac{1}{5+1} = 0.1621 \frac{mol}{dm^3}$$
 (5)

[5]: k1/k2 Ca[24]

[5]: array([0.02732372])

CD = [0.81056357]

[26]:
$$CU=(1-Ca[len(Ca)-1])*k2/(k1+k2)$$

CU = [0.16211271]

Q3. A second order gas phase reaction is conducted in an adiabatic constant volume batch reactor. $A + B \rightarrow C$, $-r_A = kC_AC_B$, $k = 20\frac{dm^3}{mol.s}$ at 400K. The initial reactor temperature is 400K, and the initial pressure is 100kPa. The volume of the reactor is $500 \ dm^3$. The reactor is charged initially with 40%A, 30%B, and 30% inerts. The constant volume heat capacity of the mixture remains constant at 50J/mol/K, and the heat of reaction is constant at -10kJ/mol. If the activation energy of the reaction Ea = 0, calculate the time to reach 50% conversion, and the temperature and pressure at this conversion.

Answer.

•	Initial	Final
A	N_{A0}	$0.5N_{A0}$
В	$0.75N_{A0}$	\$0.75 N_{A0}-0.5 N_{A0} \$
C	0	\$0.5 NA_0 \$
I	$0.75N_{A0}$	\$0.75 N_{A0} \$
_		
Total	$2.5N_{A0}$	$2N_{A0}$

Adiabatic operating line:

$$T = T_0 + \frac{(-\Delta H_{rxn})X}{\sum \Theta_i C p_i}$$
 (6)

$$T = 400 + \frac{10,000}{50}X \quad at \quad X = 0.5 \quad T = 500K \tag{7}$$

$$N_{T,0} = \frac{P_0 V}{RT} = \frac{100 \ kPa * 500 \ dm^3}{8.314 \ \frac{Pa.m^3}{mol \ K} * 400 \ K} = 15.03 \ moles$$
 (8)

$$\frac{N_T}{N_{T,0}} = \frac{2N_{A,0}}{2.5N_{A0}} = 0.8 \tag{9}$$

$$P = \frac{N_T RT}{V} = \frac{15.03 * 0.8 * 8.314 * 500}{500/1000} = 10^5 Pa = 100kPa$$
 (10)

Mole balance:

$$N_{A,0}\frac{dX}{dt} = kC_A C_B C_{A0} V \frac{dX}{dt} = kC_{A0}^2 (1 - X)(\Theta_B - X)$$
(11)

$$\int_0^{X=0.5} \frac{dX}{(1-X)(\Theta_B - X)} = \frac{kC_{A0}}{V} \int_0^t = \frac{kC_{A0}t}{V}$$
 (12)

$$\frac{kC_{A0}t}{V} = \left(\frac{ln(1-X)}{(1-\Theta_B)} - \frac{ln(\Theta_B - X)}{\Theta_B(1-\Theta_B)}\right)_{0 \to X=0.5}$$
(13)

$$C_{A0} = 0.4C_{T0} = 0.4 \frac{N_{T0}}{V} = \frac{0.4 * 15.03}{500/1000} = 3.37 \text{ s}$$
 (14)

[34]: import numpy as np P0=100 #kPa V=500 #dm^3 R=8.314 #Pa.m^3/(mol.K) T0=400 #K Hrx=10000 CP=50 x=0.5 #conversion NTO=P0*V/(R*T0) T=T0+Hrx*x/CP

[35]: NTO

[35]: 400

[]:

Q4. A liquid phase elementary reaction $2A \rightarrow B$ is carried out in a CSTR with pure A in the feed. If the pre-exponential factor is $2*10^3$ L/mol/min, Ea = 40kJ/mol, $C_{A0} = 1mol/L$, $F_{A0} = 2mol/min$, C_P mix\$=25 J/mol/K \$(constant), $-\Delta H_{rxn} = 20kJ/mol$ (constant), and the feed temperature is 325K, find the CSTR volume required to achieve 10% conversion in adiabatic operation. Also find the Damkohler number for this case.

Answer.

Adiabatic operating line, neglect ΔC_v

$$T = T_0 + \frac{(-\Delta H_{rxn})X}{\sum \Theta_i C_{P1}}$$
 (15)

$$T = 325 + \frac{20000X}{25} = 325 + 800X \tag{16}$$

at
$$X = 0.1$$
 $T = 405 K$ $K(T) = 2 * 10^3 exp(\frac{-E_a}{RT}) = 1.386 * 10^{-2}$ (17)

(18)

Molar Balance:\

$$V = \frac{f_{A0}X}{-r_A} = \frac{2 * 0.1}{(1.39 * 10^{-2})C_{A0}^2(1 - X)^2}$$
 (19)

$$V = \frac{2 * 0.1}{(1.39 * 10^{-2})(1 - 0.1)^2} = 17.81 L$$
 (20)

Damkohler Number:\

$$Da = kC_{A0}\tau = (1.39 * 10^{-2}) * 1 * \frac{V}{\nu_0} = (1.39 * 10^{-2}) * 1 * \frac{V}{F_{A0}/C_{A0}}$$
(21)

$$Da = \frac{(1.39 * 10^{-2}) * 1 * 17.81}{2/1} = 0.12$$
 (22)

Q5. A constant - pressure batch reactor was charges with an equimolar feed of A and B. The reaction $A + 2B \to C$ proceeds at 900K and 2atm. The rate law is $-r_A = k_A C_A C_B$ with $k_A = 0.3 Lmol^{-1}min^{-1}$. What time is necessary to reach 0.005M concentration of the product? **Answer**. B is the limiting reactant. Therefore, $\frac{1}{2}A + B \to \frac{1}{2}C$.

Stoichiometric Table

_	Initial	Used	Final
	N_{B0} N_{B0}	-0.5 N _{B0} X _B \$-N_{B0} X_B \$	$N_{B0}(1-0.5X_B) \ N_{B0}(1-X_B)$
C	0	$0.5N_{B0} X_B$	$0.5N_{B0} X_B$

$$\epsilon_B = y_B.\delta_B = 0.5(\frac{1}{2} - (1 + \frac{1}{2})) = -0.5$$
 (23)

$$V = V_0(1 + \epsilon X_B) \frac{P_0}{P} \frac{T}{T_0} = V_0(1 - 0.5X_B)$$
 (24)

$$C_A = \frac{N_A}{V} = \frac{N_{B0}(1 - 0.5X_B)}{V_0(1 + \epsilon X_B)^{\frac{P_0}{D}} \frac{T}{T_c}} = C_{B0} \frac{1 - 0.5X_B}{1 - 0.5X_B}$$
(25)

$$C_B = \frac{N_B}{V} = C_{B0} \frac{1 - X_B}{1 - 0.5X_B} \tag{26}$$

$$C_C = \frac{N_C}{V} = 0.5C_{B0} \frac{X_B}{1 - 0.5X_B} \tag{27}$$

$$P = P_0, T = T_0 \Rightarrow C_A = C_{B0} \frac{1 - 0.5X_B}{1 - 0.5X_B} = C_{B0}$$
 (28)

$$C_{B0} = \frac{P_{B0}}{RT} = \frac{y_{B0}P_0}{RT} = \frac{0.5*2}{0.082*900} = 0.01355 \text{ M}$$

$$C_c = 0.005 = 0.5 * 0.01355 * \frac{X_B}{1 - 0.5X_B} \Rightarrow X_B = 0.539$$
 (29)

Mole Balance:\

$$N_{B0}\frac{dX_B}{dt} = -r_B * V = k_B C_A C_B V = k_B C_{B0}^2 \frac{1 - X_B}{1 - 0.5X_B} V_0 (1 - 0.5X_B)$$
(30)

$$\frac{dX_B}{dt} = \frac{C_{B0}^2}{C_{B0}} k_B (1 - X_B)$$

$$\int_0^{X_B} \frac{dX_B}{1 - X_B} = C_{B0} k_B t$$
(31)

$$ln(\frac{1}{1-X_B}) = ln(\frac{1}{1-0.539}) = 0.774$$
 and $k_B = 2k_A = 0.6 \frac{L}{mol.min}$
 $\Rightarrow t = \frac{0.774}{0.01355 * 0.6} = 95$ min

[]: