

Machine Learning Best Practices

Shweta Bhatt | ML GDE

Agenda

- Motivation
- ML Workflow
 - Data Collection and Preparation
 - Model Selection and Training
 - Model Validation and Error Analysis
 - Testing and Deployment
 - Retraining and Maintaining Models
- Bias vs Variance trade-off
- General best practices
- Summary

Why do we need ML best practices?

- Labelled vs unlabelled data?
- Feature Selection?
- Model Architecture?
- Model Complexity?
- Metrics?
- Hyperparameter Tuning
- Next Iteration?
- Retraining?

Image source

Our goal

Discuss some best practices that would aid in providing a direction that we can follow while making decisions when we are building ML systems.

ML Workflow: summary

Problem Understanding and Formulation

Maintenance and Active Learning

Why is problem formulation important?

It's better to solve the right problem approximately than to solve the wrong problem exactly.

— John Tukey —

AZ QUOTES

Problem Understanding and Formulation

- Define what ML problem to solve given the objectives, resources (data) and constraints
- Inputs and outcome of the model
- Metrics: ML, Business KPI
- Heuristics vs ML
- Formulation: start with a simple baseline, keep adding complexity later if required

It all starts with data

Image source

Data Collection and Preparation

- Collection: Scraping vs using an API
- Storage: Versioning, Database platform
- Processing: Cleaning + Formatting
- Verification and Validness: Consistency + Completeness

Where would you find an item quicker?

Image source

Training and prediction pipelines

Organizing Codebase

- Directory Structure
- Saving model names with parameters
- Experimentation notebooks
- Data Preprocessing
- Training scripts
- Inference/Prediction Scripts

— LICENSE	
— Makefile	<- Makefile with commands like `make data` or `make train`
- README.md	<- The top-level README for developers using this project.
├── data	
— external	<- Data from third party sources.
— interim	<- Intermediate data that has been transformed.
processed	<- The final, canonical data sets for modeling.
└─ raw	<- The original, immutable data dump.
l docs	<- A default Sphinx project; see sphinx-doc.org for details
— models	<- Trained and serialized models, model predictions, or model summaries
- notebooks	<pre><- Jupyter notebooks. Naming convention is a number (for ordering), the creator's initials, and a short `-` delimited description, e.g. `1.0-jqp-initial-data-exploration`.</pre>
references	<- Data dictionaries, manuals, and all other explanatory materials.
reports	<- Generated analysis as HTML, PDF, LaTeX, etc.
	<- Generated graphics and figures to be used in reporting
requirements.txt	<- The requirements file for reproducing the analysis environment, e.g. generated with `pip freeze > requirements.txt` <u>SOURCE</u>

```
setup.py
                  <- Make this project pip installable with `pip install -e`
                  <- Source code for use in this project.
src
    __init__.py
                  <- Makes src a Python module
                <- Scripts to download or generate data
    data
    — make dataset.py
    features
               <- Scripts to turn raw data into features for modeling
    build_features.py
   models
                <- Scripts to train models and then use trained models to make
                     predictions
       predict_model.py
    └─ train_model.py
   visualization <- Scripts to create exploratory and results oriented visualizations
    └─ visualize.py
tox.ini
                  <- tox file with settings for running tox; see tox.testrun.org
```

source

Building an image classifier (apple vs orange)

- Large labelled dataset
- Train-test split: 70%-30%
- Testing accuracy: 95%
- Accuracy on the app (real world data): 70%
- What went wrong?

How to setup dev and test sets?

Distribution

- Should reflect the data you expect to get in future (unseen data)
- Should come from the same distribution

Size

- Should be large enough to detect differences between different algorithms
- 30% of the dataset vs 1000-10000 examples

Effort

- Come up with dev and test sets quickly (if not mature applications)
- Change them quickly if you realize they are not meeting the mark

Model Building

- Feature Engineering & Selection
- Model Selection follow general rule of thumb
- Model Training early stopping, schedule training process accordingly, debugging and investigating, for example: use Tensorboard if you are using Tensorflow for implementation
- Model Validation measure performance against a benchmark
- Visualizations examine learning curves, visualize metrics

What other approaches to try?

Image source

Error Analysis

- Take a sample of 100 examples from your dev set that were misclassified by your model
- Evaluate these manually to understand the underlying causes of these errors
- Make a list of any patterns among the errors and try to categorize them
- Advantages:
 - You can evaluate how promising different directions and prioritize your ideas accordingly
 - Can save you a lot time and effort

How do you select the best model?

Image source

Evaluation Metrics

- Appropriate metrics for context and objectives of the system
- Single-number evaluation metric ⇒ decide which model works best
- Derived metric
 - E.g. F1 score, weighted average
- If N multiple metrics cannot be combined directly
 - N-1 satisfying metrics ⇒ they meet a certain value
 - 1 optimizing metric ⇒ maximize performance over this
 - E.g. running time satisfying metric, accuracy optimizing metric

Iterative Process

- Don't try to build the perfect solution in one go
- Start with something simple as quickly as possible
- Use error analysis to suggest you promising directions
- Use that to improve your existing solution

Image source

Bias vs Variance tradeoff

Our goal is to optimize for low bias and low variance

What do you interpret from this curve?

How to reduce bias?

- Increase model complexity (no. of layers/neurons) if computational power is not a limitation
- Update input features based on the feedback received from error analysis
- Reduce regularization
- Change the model architecture

Again, what do you interpret from this curve?

How to reduce variance?

- Add more data
- Add regularization
- Early stopping
- Decrease number of input features
- Decrease model complexity (number of layers/neurons)
- Update input features based on the feedback received from error analysis
- Change the model architecture

And this one?

Testing and Deployment

- Unit testing qualitative and quantitative
- Virtual Environment Setup
- Containers E.g. Docker
- Do not reinvent the wheel use open source code + tools

Maintenance and Active Learning

- Performance checks
- When to retrain?
- How to incorporate new data?

Human-centered Design Approach

- Clarity and control
- Engage with diverse set of users
- Incorporate feedback before and through project deployment

Examine raw data ⇒ Exploratory Data Analysis

Image source

Understanding limitations

- What does your model solve?
- Where does it fall short?
- Can we overcome that with some heuristics?
- Communication with the team member and stakeholders

Test, test, test

- Unit tests
- Integration tests
- Update gold standard datasets
- Quality checks

System monitoring and update

- Real world performance + feedback
- Short term vs long term solution
- When to update?
- Effects of updating: system quality, user experience

Image source

Summary

- Understand the problem well and formulate it correctly
- Define dev and test sets and metrics
- Start with a simple baseline and add complexity when required
- Understand the data and clean it adequately
- Use feedback from data and results ⇒ Error analysis
- Do not reinvent the wheel ⇒ Use open source libraries, code, tools, literature
- Carry out a quick exhaustive research before jumping to implementation
- Use visualizations to make your life better
- Test your systems thoroughly
- Deploy as per your need ⇒ web/mobile

Thank you

Questions?

Let's connect-

@shweta_bhatt8

@shweta bhatt

References

- Machine Learning Yearning by Andrew Ng
- Best Practices in Machine Learning Infrastructure-Algorithmia