Projektowanie Algorytmów i Metody Sztucznej Inteligencji Projekt 1

20.03.2019r.

Nazwa kursu: Projektowanie algorytmów i metod sztucznej inteligencji

Prowadzący: dr inż. Łukasz Jeleń Wykonał: Szymon Korczyński 24155 Termin: Środa 11-13

1. Wprowadzenie

Problem najkrótszej ścieżki polega na znalezieniu najkrótszej ścieżki pomiędzy dwoma wierzchołkami grafu.

Graf – sposób reprezentacji połączeń pomiędzy obiektami np. mapa, gdzie skrzyżowanie to wierzchołek grafu, natomiast droga to krawędzie. W grafie mogą występować ujemne wagi, jednak, aby było możliwe rozwiązanie problemu najkrótszej ścieżki musi zostać spełniony warunek braku cyklu o łącznej ujemnej wadze tzn. takiego połączenia pomiędzy wierzchołkami, dzięki którym całkowita droga będzie mniejsza od 0.

Również istnieją grafy skierowane, gdzie krawędzie łączą wierzchołki tylko w jedną stronę.

Do rozwiązania problemu najkrótszej ścieżki stosuje się takie algorytmy jak: Djikstry, Bellmana-Forda, A*, Floyda-Warshalla.

Oznaczenia:

- V ilość wierzchołków
- E ilość krawędzi
- 2. Opis algorytmów
 - a. Algorytm Bellmana-Forda

Algorytm może być stosowany dla grafów z wagami ujemnymi pod warunkiem, że nie występują cykle o łącznej ujemnej wadze.

Działanie algorytmu:

- Stworzenie tablicy odległości od wierzchołka początkowego oraz zainicjalizowanie jej jako nieskończoność dla wierzchołków niebędących początkowym.
- Sprawdzeniu V 1 razy wszystkich krawędzi. Początkowo wybiera się krawędzie z pierwszego wierzchołka itd.
- Gdy suma wagi krawędzi i odległośc od wierzchołka początkowego jest mniejsza od odległości do wierzchołka docelowego
- Gdy w 1 iteracji nie zostanie zmieniona żadna wartość odległości, wówczas można przerwać działanie algorytmu.

Złożoność czasowa algorytmu to O(|V||E|).

b. Algorytm Dijkstry

Algorytm może być stosowany tylko dla grafów z dodatnimi wagami.

Działanie algorytmu:

- Stworzenie tablicy odległości od wierzchołka początkowego
- Utworzenie kolejki priorytetowej wszystkich wierzchołków grafu. Priorytetem jest najkrótsza wyliczona odległość od wierzchołka wyróżnionego
- Dopóki kolejka nie jest pusta:
 - Usuwanie wierzchołka v z kolejki priorytetowej, mającego najmniejszą odległość od wierzchołka początkowego
 - Dla każdego sąsiadującego wierzchołka z v sprawdzić czy jest możliwa krótsza droga z wierzchołka początkowego.

Złożoność czasowa to algorytmu to $O(E \cdot \log V)$, przy użyciu kopca Fibonacciego. Złożoność czasowa zależy od metody wyznaczenia wierzchołka grafu o najmniejszej odległości od wierzchołka początkowego.

3. Wyniki

Algorytm Dijkstry

	Macierz czas działania w zależności od ilości elementów							
Gęstość grafu	10 [ms]	50 [ms]	100 [ms]	500 [ms]	1000 [ms]			
0,25	0,00154	0,0200	0,0708	3,77	23,99			
0,5	0,00164	0,0247	0,0886	9,66	45,79			
0,75	0,00182	0,0294	0,1241	14,76	68,28			
1	0,00241	0,0315	0,1312	11,61	31,52			
	Lista czas działania w zależności od ilości elementów							
0.25	0,00241	0,053	0,17	3,88	15,43			
0,5	0,00292	0,062	0,22	5,03	21,47			
0,75	0,00306	0,056	0,22	4,86	19,90			
1	0,00276	0,047	0,17	4,32	18,52			

Algorytm Bellmana-Forda

	Macierz czas działania w zależności od ilości elementów							
Gęstość grafu	10 [ms]	50 [ms]	100 [ms]	500 [ms]	1000 [ms]			
0,25	0,00150	0,0260	0,159	9,63	70,69			
0,5	0,00191	0,0559	0,248	26,93	122,63			
0,75	0,00242	0,0839	0,363	40,91	193,18			
1	0,00269	0,0871	0,322	31,58	61,10			
	Lista czas działania w zależności od ilości elementów							
0.25	0,00478	0,1789	0,676	14,64	48,01			
0,5	0,00624	0,2122	0,849	17,73	60,89			
0,75	0,00657	0,1859	0,762	13,74	51,81			
1	0,00508	0,1470	0,561	10,57	48,21			

4. Wnioski