$$\int_{\mathbb{R}} f(x) \cdot w(x) dx \approx 2 \qquad \int_{\mathbb{R}} f(x) \cdot w(x) dx = \sum_{k=1}^{n} A_{k} \cdot f(x_{2k}) + R_{n}(f)$$

Input: . f = fd. sutegrata

Input: f = fet, both f = fet. $A, b = capetele (-\infty \le a < l \le \infty)$ M = fet. pondere (W > 0), W cont. Pe(a, b) M = mr. de noduri M = mr. de noduri M = mr. M = mr.

Notatie: $(f(x), g(x)) := \int_{\infty}^{e} f(x) g(x) w(x) dx$

• $x_1 \dots x_n$ suit radacouile pol. monic (coef. dominant = 1) ortogonal $x_n \mapsto x_n = x_n \cdot x_n \cdot (x_n \cdot x_n)$

 $A_{la} = \int_{a}^{la} \frac{(\chi - \chi_{l}) \cdot ... \cdot (\chi - \chi_{la-1}) \cdot (\chi - \chi_{la+1}) \cdot ... \cdot (\chi - \chi_{m})}{(\chi_{la} - \chi_{la}) \cdot ... \cdot (\chi_{la} - \chi_{la+1}) \cdot ... \cdot (\chi_{la} - \chi_{m})} \cdot w(\chi) d\chi = \int_{a}^{la} \frac{(\chi - \chi_{la}) \cdot ... \cdot (\chi_{la} - \chi_{la+1}) \cdot ... \cdot (\chi_{la} - \chi_{m})}{(\chi_{la} - \chi_{la}) \cdot ... \cdot (\chi_{la} - \chi_{la+1}) \cdot ... \cdot (\chi_{la} - \chi_{m})} \cdot w(\chi) d\chi = \int_{a}^{la} \frac{(\chi_{la} - \chi_{la}) \cdot ... \cdot (\chi_{la} - \chi_{la+1}) \cdot ... \cdot (\chi_{la+1} - \chi_{la+1}) \cdot ... \cdot$

pol monic ortogonal m rap. W somt mic determinate de:

They (x) = (x - 12) Mar (x) - Bhiller (x), le =0, 4, 2, ... $\widetilde{I}_{-1}(x) = 0$, $\widetilde{I}_{0}(x) = 1$

 $\sqrt{k} = \frac{\left(x_{11}(x), u_{2}(x)\right)_{w}}{\left(u_{2}(x), u_{2}(x)\right)_{w}} \qquad h=0, 1, 2, \dots$ $B_{n} = \frac{(\overline{w}_{k}(x), \overline{w}_{k}(x))_{w}}{(\overline{w}_{k}(x), \overline{w}_{k}(x))_{w}}, \quad k = 1, 2, \cdots,$ $B_{n} := \int_{a}^{b} w(x) dx.$

 $\frac{(Obj: a = -b 3 : w(-x) = w(x))}{= 0} = 0$ = 0 = 0, 1, 2, ...

$$\begin{cases}
\mathcal{L}_{n+1} = -\mathcal{L}_{k} \\
\mathcal{L}_{n+1} = -\mathcal{L}_{k}
\end{cases}$$

$$\begin{cases}
\mathcal{L}_{n+1} = \mathcal{L}_{k} \\
\mathcal{L}_{n+1} = \mathcal{L}_{n}
\end{cases}$$

$$\begin{cases}
\mathcal{L}_{n+1} = \mathcal{L}_{k} \\
\mathcal{L}_{n+1} = \mathcal{L}_{n}
\end{cases}$$

$$\begin{cases}
\mathcal{L}_{n} = \mathcal{L}_{$$

w(t)	Support	Name	α_k	eta_0	$\beta_k, k \ge 1$
$\begin{array}{c} 1 \\ 1 \\ (1-t^2)^{-1/2} \\ (1-t^2)^{1/2} \end{array}$	$\begin{bmatrix} -1, 1 \\ [0, 1] \\ [-1, 1] \end{bmatrix}$	Legendre Shifted Legendre Chebyshev #1 Chebyshev #2	0 1 2 0	$\begin{array}{c} 2 \\ 1 \\ \pi \\ \frac{1}{2}\pi \end{array}$	$\frac{1/(4-k^{-2})}{1/(4(4-k^{-2}))}$ $\frac{1}{2} (k=1), \frac{1}{4} (k>1)$
$(1-t)^{-1/2}(1+t)^{1/2}$	[-1, 1]	Chebyshev #3	$\frac{1}{2} (k = 0)$ 0 $(k > 0)$	$\frac{2}{\pi}$	$\frac{4}{4}$
$(1-t)^{1/2}(1+t)^{-1/2}$	[-1, 1]	Chebyshev #4	$-\frac{1}{2}(k=0)$ $0(k>0)$	π	$\frac{1}{4}$
$(1-t^2)^{\lambda-1/2}, \ \lambda > -\frac{1}{2}$	[-1,1]	Gegenbauer	0	$\sqrt{\pi} \frac{\Gamma(\lambda + \frac{1}{2})}{\Gamma(\lambda + 1)}$	$\frac{k(k+2\lambda-1)}{4(k+\lambda)(k+\lambda-1)}$
$(1-t)^{\alpha}(1+t)^{\beta}$ $\alpha > -1, \beta > -1$ e^{-t} $t^{\alpha}e^{-t}, \alpha > -1$	$[0,\infty]$	Jacobi Laguerre	2k+1	$egin{array}{c} eta_0^J \ 1 \ \end{array}$	$egin{array}{c} eta_k^J \ k^2 \end{array}$
and the same of th	$[0,\infty]$	Generalized Laguerre	$2k + \alpha + 1$	$\Gamma(1+\alpha)$	$k(k+\alpha)$
$ t ^{2\mu} e^{-t^2}, \mu > -\frac{1}{2}$	$[-\infty,\infty]$ $[-\infty,\infty]$	Hermite Generalized Hermite	0	$\Gamma(\mu + \frac{1}{2})$	$\frac{\frac{1}{2}k}{\frac{1}{2}k} \text{ (k even)}$ $\frac{1}{2}k + \mu \text{ (k odd)}$
$\frac{1}{2\pi} e^{(2\phi - \pi)t} \Gamma(\lambda + it) ^2$ $\lambda > 0, \ 0 < \phi < \pi$	$[-\infty,\infty]$	Meixner- Pollaczek	$-\frac{k+\lambda}{\tan\phi}$	$\frac{\Gamma(2\lambda)}{(2\sin\phi)^{2\lambda}}$	$\frac{k(k+2\lambda-1)}{4\sin^2\phi}$
	$\frac{\alpha_k^J}{\beta_0^J} = \frac{\alpha_k^J}{(2k+1)^2}$	$\frac{\beta^2 - \alpha^2}{\frac{-\alpha + \beta)(2k + \alpha + \beta + 2)}{\beta + 1} \Gamma(\alpha + 1)\Gamma(\beta + 1)}}{\Gamma(\alpha + \beta + 2)}, \beta_k^J$	$= \frac{4k(k)}{(2k+\alpha+\beta)^2}$	$+\alpha$) $(k+\beta)(k+\alpha)$ $(2k+\alpha+\beta+1)(2k+\alpha+\beta+1)$	$(\alpha+\beta)$ $(2k+\alpha+\beta-1)$

^{*}If k = 0, the common factor $\alpha + \beta$ in the numerator and denominator of α_0^J should be (must be, if $\alpha + \beta = 0$) cancelled. †If k = 1, the last factors in the numerator and denominator of β_1^J should be (must be, if $\alpha + \beta + 1 = 0$) cancelled.

The first few Legendre polynomials are:

n	$P_n(x)$
0	1
1	x
2	$rac{1}{2}\left(3x^2-1 ight)$
3	$rac{1}{2}\left(5x^3-3x ight)$
4	$rac{1}{8} \left(35 x^4 - 30 x^2 + 3 ight)$
5	$rac{1}{8} \left(63 x^5 - 70 x^3 + 15 x ight)$
6	$rac{1}{16} \left(231 x^6 - 315 x^4 + 105 x^2 - 5 ight)$
7	$rac{1}{16} \left(429 x^7 - 693 x^5 + 315 x^3 - 35 x ight)$
8	$rac{1}{128} \left(6435 x^8 - 12012 x^6 + 6930 x^4 - 1260 x^2 + 35 ight)$
9	$rac{1}{128} \left(12155 x^9 - 25740 x^7 + 18018 x^5 - 4620 x^3 + 315 x ight)$
10	$rac{1}{256} \left(46189 x^{10} - 109395 x^8 + 90090 x^6 - 30030 x^4 + 3465 x^2 - 63 ight)$

 $\frac{\text{monic}}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{3}{5}$

The first few Chebyshev polynomials of the first kind are OEIS: A028297

$$egin{aligned} T_0(x) &= 1 \ T_1(x) &= x \ T_2(x) &= 2x^2 - 1 \ T_3(x) &= 4x^3 - 3x \ T_4(x) &= 8x^4 - 8x^2 + 1 \ T_5(x) &= 16x^5 - 20x^3 + 5x \ T_6(x) &= 32x^6 - 48x^4 + 18x^2 - 1 \ T_7(x) &= 64x^7 - 112x^5 + 56x^3 - 7x \ T_8(x) &= 128x^8 - 256x^6 + 160x^4 - 32x^2 + 1 \ T_9(x) &= 256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x \ T_{10}(x) &= 512x^{10} - 1280x^8 + 1120x^6 - 400x^4 + 50x^2 - 1 \ T_{11}(x) &= 1024x^{11} - 2816x^9 + 2816x^7 - 1232x^5 + 220x^3 - 11x \end{aligned}$$

The first few Chebyshev polynomials of the second kind are OEIS: A053117

$$egin{aligned} U_0(x) &= 1 \ U_1(x) &= 2x \ U_2(x) &= 4x^2 - 1 \ U_3(x) &= 8x^3 - 4x \ U_4(x) &= 16x^4 - 12x^2 + 1 \ U_5(x) &= 32x^5 - 32x^3 + 6x \ U_6(x) &= 64x^6 - 80x^4 + 24x^2 - 1 \ U_7(x) &= 128x^7 - 192x^5 + 80x^3 - 8x \ U_8(x) &= 256x^8 - 448x^6 + 240x^4 - 40x^2 + 1 \ U_9(x) &= 512x^9 - 1024x^7 + 672x^5 - 160x^3 + 10x \end{aligned}$$

These are the first few Laguerre polynomials: $\angle = 0$, $\lor \lor () = \angle - >$

n	$L_n(x)$
0	1
1	-x+1
2	$\left rac{1}{2}(x^2-4x+2) ight $
3	$\left rac{1}{6} (-x^3 + 9x^2 - 18x + 6) ight.$
4	$\left rac{1}{24} (x^4 - 16 x^3 + 72 x^2 - 96 x + 24) ight.$
5	$\left rac{1}{120} (-x^5 + 25x^4 - 200x^3 + 600x^2 - 600x + 120) ight.$
6	$\left rac{1}{720} (x^6 - 36x^5 + 450x^4 - 2400x^3 + 5400x^2 - 4320x + 720) ight $
n	$\left rac{1}{n!} ((-x)^n + n^2 (-x)^{n-1} + \dots + n(n!) (-x) + n!) ight $

The first eleven physicist's Hermite polynomials are:

$$egin{aligned} H_0(x)&=1,\ H_1(x)&=2x,\ H_2(x)&=4x^2-2,\ H_3(x)&=8x^3-12x,\ H_4(x)&=16x^4-48x^2+12,\ H_5(x)&=32x^5-160x^3+120x,\ H_6(x)&=64x^6-480x^4+720x^2-120,\ H_7(x)&=128x^7-1344x^5+3360x^3-1680x,\ H_8(x)&=256x^8-3584x^6+13440x^4-13440x^2+1680,\ H_9(x)&=512x^9-9216x^7+48384x^5-80640x^3+30240x,\ H_{10}(x)&=1024x^{10}-23040x^8+161280x^6-403200x^4+302400x^2-30240. \end{aligned}$$

Formule pentru resturi în cuadraturi gaussiene

· Gauss:

$$\int_{a}^{b} f(x)w(x)dx - \sum_{i=1}^{n} w_{i} \cdot f(x_{i}) = \frac{f^{(2n)}(\xi)}{(2n)!} \int_{a}^{b} \pi_{n}^{2}(x) \cdot w(x)dx$$

 π_n =polinomul ortogonal (în raport cu ponderea w) de grad n care este monic (coeficientul lui x^n este 1, i.e. $\pi_n(x) = (x - x_1) \cdot ... \cdot (x - x_n)$).

· Gauss-Radau:

$$\int_{a}^{b} f(x)w(x)dx - w_{1} \cdot f(a) - \sum_{i=2}^{n} w_{i} \cdot f(x_{i}) = \frac{f^{(2n-1)}(\xi)}{(2n-1)!} \int_{a}^{b} \pi_{n-1}^{2}(x) \cdot (x-a) \cdot w(x)dx$$

$$\int_{a}^{b} f(x)w(x)dx - \sum_{i=1}^{n-1} w_{i} \cdot f(x_{i}) - w_{n} \cdot f(b) = \frac{f^{(2n-1)}(\xi)}{(2n-1)!} \int_{a}^{b} \pi_{n-1}^{2}(x) \cdot (b-x) \cdot w(x)dx$$

 π_{n-1} =polinomul ortogonal (în raport cu ponderea $w_a(x)=(x-a)w(x)$,

respectiv $w_b(x)=(b-x)w(x)$) de grad n-1 care este monic (coeficientul lui x^{n-1} este 1, i.e. $\pi_{n-1}(x)=(x-x_2)\cdot\ldots\cdot(x-x_n)$, respectiv $\pi_{n-1}(x)=(x-x_1)\cdot\ldots\cdot(x-x_{n-1})$).

Gauss-Lobatto:

$$\int_{a}^{b} f(x)w(x)dx - w_{1} \cdot f(a) - \sum_{i=2}^{n-1} w_{i} \cdot f(x_{i}) - w_{n} \cdot f(b) = \frac{f^{(2n-2)}(\xi)}{(2n-2)!} \int_{a}^{b} \pi_{n-2}^{2}(x) \cdot (x-a) \cdot (b-x) \cdot w(x)dx$$

 π_{n-2} =polinomul ortogonal (în raport cu ponderea $w_{a,b}(x) = (x-a)(b-x)w(x)$) de grad n-2 care este monic (coeficientul lui x^{n-2} este 1, i.e. $\pi_{n-2}(x) = (x-x_2) \cdot ... \cdot (x-x_{n-1})$).

Problemă:

a) Găsiți o formulă de cuadratură de forma

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} \, \mathrm{d}x = A_1 f(-1) + A_2 f(x_2) + A_3 f(x_3) + A_4 f(1) + R(f) \,,$$

determinând coeficienții și nodurile necunoscute astfel încât să aibă gradul maxim de exactitate. Determinați formula restului.

(Pentru calculcul simbolic de integrale puteți folosi și

https://www.wolframalpha.com/examples/mathematics/calculus-and-analysis

- funcționează fără erori și este mai rapid).
- b) Aplicați formula de cuadratură de mai sus pentru a estima integrala

$$\int_{-1}^{1} \frac{\mathrm{e}^x}{\sqrt{1-x^2}} \, \mathrm{d}x$$

Găsiți o margine superioară a erorii de aproximare, folosind formula restului.