CSI - 3105 Design & Analysis of Algorithms Course 11

Jean-Lou De Carufel

Fall 2019

Minimum Spanning Tree

We are given a graph G = (V, E) that is undirected and connected. Each edge $\{u, v\} \in E$ has a weight wt(u, v).

We want to compute a subgraph G' of G such that

- The vertex set of G' is V,
- G' is connected,
- and weight(G') is minimum, where

weight(G') = sum of weights of edges in G'.

Minimum Spanning Tree

We are given a graph G = (V, E) that is undirected and connected. Each edge $\{u, v\} \in E$ has a weight wt(u, v).

We want to compute a subgraph G' of G such that

- The vertex set of G' is V,
- G' is connected,
- and weight(G') is minimum, where

$$weight(G') = sum of weights of edges in G'.$$

We can prove that G' must be a tree (connected and no cycles). Do you see why?

G' is called a *Minimum Spanning Tree of G* (MST of G).

Example:

Example:

- The vertex set of G' is V,
- *G'* is connected,
- and weight(G') is minimum, where

weight(G') = sum of weights of edges in G'.

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 勿 へ ②

Fundamental Lemma

Lemma

Let G = (V, E) be an undirected and connected graph, where each edge $\{u, v\} \in E$ has a weight wt(u, v).

Split V into A and B. Let $\{u,v\} \in E$ be a shortest edge connecting A and B. Then there is an MST of G that contains $\{u,v\}$.

Proof:

Example:

Lemma: Split V into A and B.

Let {v, v} be a shortest edge connecting

A and B. Then there is an MST of G

that contains the edge {v, v}.

proof: Let T be an MST of G. If §u, v3 is an edge of T, we are done. Assume §u, v3 is not an edge of T.

Since T is connected, there is a path in T between u and N.

From the previous lemma, any algorithm that follows this greedy scheme is guaranteed to work:

- $X = \{ \}$ //edges picked so far
- Repeat until |X| = |V| 1
 - Pick a set S such that X has no edge between S and $V \setminus S$.
 - Let $e \in E$ be a minimum-weight edge between S and $V \setminus S$.
 - $X = X \cup \{e\}$

About the Union-Find Data Structure

Before presenting a first algorithm to compute an MST, we first open a parenthesis and study a data structure called *Union-find*.

Given *n* sets, each of size one,

$$A_1 = \{1\}, \quad A_2 = \{2\}, \quad \cdots \quad A_n = \{n\},$$

process a sequence of operations, where each operation is one of

Union(
$$A$$
, B , C):
Set $C = A \cup B$
 $A = \{ \}$
 $B = \{ \}$

Find(x):

Return the name of the set that contains x.

The sequence consists of

n-1 **Union** operations

m Find operations

which can be done in any arbitrary order.

We are interested in the total time to process any such sequence.

Store each set in a list:

- the list has a pointer to the head and a pointer to the tail
- the first node stores the name of the set
- each other node stores one element of the set
- each node u stores two pointers:
 next(u) the next node in the list
 back(u) first node in the list

$$A = \{1, 4, 5, 7, 9\}$$

Start: for each set $A = \{x\}$:

Union(A, B, C):

Append the list B at the end of the list A, do some pointer arithmetic, change the name in the head of the new list from A to C.

4 D > 4 A > 4 B > 4 B > B 904 A

Union(A, B, C):

Time = $O(\ell) = O(\text{size of } B)$

4 □ → 4 同 → 4 三 → 4 三 → 9 Q ○

Find(x): follow the back pointer from the node storing x to the head of the list and return the name stored at the head.

$$\mathsf{Time} = O(1)$$

Example:

Union	Time
$\{2\},\{1\}$	1
$\{3\}, \{2, 1\}$	2
$\{4\}, \{3, 2, 1\}$	3
:	:
${n}, {n-1, n-2,, 2, 1}$	n-1

Example:

Union	Time
$\{2\}, \{1\}$	1
$\{3\}, \{2, 1\}$	2
$\{4\},\{3,2,1\}$	3
<u>:</u>	:
${n}, {n-1, n-2,, 2, 1}$	n-1

Total time = $1 + 2 + 3 + ... + n - 1 = O(n^2)$.

Better solution:

for each list, the head stores

- name of the set
- size of the set

Find(x) takes O(1) time, as before.

Union(*A*, *B*, *C*):

If $|A| \geq |B|$:

If |A| < |B|:

Time = $O(\min\{|A|, |B|\}) = O(\text{number of back-pointers that are changed})$

Total time = total number of back-pointer changes $=\sum$ total number of times that back(x) is changed

Total time = total number of back-pointer changes $= \sum_{x=1}^{n} \text{total number of times that back}(x) \text{ is changed}$

Consider an element x. How many times do we change back(x)?

Total time = total number of back-pointer changes $\frac{n}{n}$

$$=\sum_{x=1}^{\infty} total number of times that back(x) is changed$$

Consider an element x. How many times do we change back(x)?

Start: x is in a set of size 1.

Total time = total number of back-pointer changes

$$= \sum_{x=1}^{n} \text{total number of times that back}(x) \text{ is changed}$$

Consider an element x. How many times do we change back(x)?

Start: x is in a set of size 1.

First time that back(x) is changed:

the set containing x is merged with a set of size ≥ 1 .

Hence, the new set containing x has size ≥ 2 .

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

Third time that back(x) is changed:

the set containing x is merged with a set of size ≥ 4 .

Hence, the new set continuing x has size ≥ 8 .

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

Third time that back(x) is changed:

the set containing x is merged with a set of size ≥ 4 .

Hence, the new set continuing x has size ≥ 8 .

etc.

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

Third time that back(x) is changed:

the set containing x is merged with a set of size ≥ 4 .

Hence, the new set continuing x has size ≥ 8 .

etc.

Since there are n elements, back(x) is changed $\leq log_2(n)$ times.

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

Third time that back(x) is changed:

the set containing x is merged with a set of size ≥ 4 .

Hence, the new set continuing x has size ≥ 8 .

etc.

Since there are n elements, back(x) is changed $\leq log_2(n)$ times.

Therefore, the total time for n-1 **Union** operations = $O(n \log(n))$.

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

Third time that back(x) is changed:

the set containing x is merged with a set of size ≥ 4 .

Hence, the new set continuing x has size ≥ 8 .

etc.

Since there are n elements, back(x) is changed $\leq log_2(n)$ times.

Therefore, the total time for n-1 **Union** operations = $O(n \log(n))$.

Conclusion: Any sequence of n-1 **Union** and m **Find** operations takes $O(m+n\log(n))$ time.

