____ Institute of Technological Studies of Bizerte

AY: 2022-2023 M1-S1: Dept. of Electrical Engineering

EXAM | AI-ECUE122 Teacher: A. Mhamdi 27/01/23 (09:00 \rightarrow 10:30) Time Limit: $1\frac{1}{2}$ h

This document contains 5 pages numbered from 1 to 5. Upon receiving it, verify completeness. The 4 tasks are independent and can be solved in any order you prefer. The following rules apply:

- **1** A handwritten double-sided A4 sheet is permitted.
- **2** Any electronic material, except basic calculator, is prohibited.
- **18** Mysterious or unsupported answers will not receive full credit.
- **Q** Round results to the nearest thousandth (i.e., third digit after the decimal point).

Task Nº1

20mn | (4 points)

We consider the vastly simplified model of real neuron, also known as **Threshold Logic Unit**. The processing element sums the weighted inputs $w_1x_1 + w_2x_2$, add a bias b and then applies a non linear activation function. The output transmits +1 *if and only if* the input is positive. Otherwise, it transmits -1.

Use bipolar data instead of binary data for the inputs x_1 and x_2 , i.e. ± 1 . Weights and bias are all set initially to zero: $w_1 = w_2 = b = 0$.

Consider the problem approximating an \vee (OR) gate, according to Hebbian learning rule. The learning rate η is set to 1. Reproduce and fill in the following table on your answer sheet.

x_1	x_2	b	у	Δw_1	Δw_2	Δ b	w_1	w_2	b
-1	-1	1	-1	1	1	-1	1	1	-1
-1	1	1	1	-1	1	1	0	2	0
1	-1	1	1	1	-1	1	1	1	1
1	1	1	1	1	1	1	2	2	2

Perform the following arithmetic operations.

- (a) (1 point) [0, 1] + [-6, 5] =
- (b) (1 point) [0, 1] [-6, 5] = [-5, 7]
- (c) (1 point) $[3, 4] \times [2, 2] = _{6, 8}$
- (d) (1 point) $[4, 10] \div [1, 2] =$ [2, 10]

Task Nº3

(a) (2 points) Compute the output being fired by the following neuron. f designates the tanh function.

The output is given by:

$$\mathrm{y} \ = \ \tanh \left(-3 \times 1 - 2.6 \times 0.4 + 3.7 \times 0.7 - 1.3 \times 2.8 + 1.65 \times 3.5 \right) \ = \ \tanh \left(0.685 \right)$$

It yields:

$$y = 0.594760307$$

(b) (1 point) What is the machine learning library we used in Julia to train artificial neural networks.

Flux

(c) (1 point) Given the code snippet as shown in Fig. 1, p. 4. Explain why are there 75 trainable parameters in model.

Total number of trainable parameters is

$$5 \times 8 + 8 + 8 \times 3 + 3 = 75$$

(d) (1 point) What does the factor $\mathbf{w}_{3,1}^{(1)}$ refer to, and what is its value.

 $w_{3,1}^{(1)}$ designates the synaptic weight that connects the first input to the third neuron of the hidden layer. Its values is:

$$\mathsf{w}_{3,1}^{(1)} = 0.503822$$

(e) (1 point) What is the value of synaptic weight between neuron #7 of the hidden layer and neuron #2 of the output layer.

The synaptic weight is denoted by $\mathbf{w}_{2,7}^{(2)}$, and is given by:

$$\mathsf{w}_{2,7}^{(2)} = -0.568683$$

```
~/appware/julia/julia-1.8/julia
 _/ |\__'_|_|\_'_|
julia> using Flux
julia> model = Chain(
           Dense(5 => 8, relu),
           Dense(8 => 3, \sigma)
Chain(
 Dense(5 => 8, relu),
                                        # 48 parameters
 Dense(8 => 3, \sigma),
                                        # 27 parameters
                    # Total: 4 arrays, 75 parameters, 556 bytes.
julia> model.layers[2].weight
3×8 Matrix{Float32}:
                                               ... -0.205025
 -0.313452 -0.20532
                        0.0164611
                                    0.40596
                                                               -0.486443
                                                                            0.6834
 -0.565272
           -0.422708 -0.409977
                                    0.716418
                                                  -0.0062125
                                                             -0.568683
                                                                            0.0565138
 0.201109
           -0.372519
                       0.0448279 -0.493097
                                                  -0.611313
                                                               0.0418072 -0.476514
julia> model.layers[1].weight
8×5 Matrix{Float32}:
                                    -0.0869667
                                                -0.226824
 -0.675119
             0.581365
                        0.510767
 -0.543659
            -0.553984
                       -0.111358
                                    -0.0142636
                                                -0.117261
 0.503822
            0.432929
                                                 0.509142
                        0.535884
                                    -0.536289
 -0.296016
            -0.551115
                        0.562242
                                    -0.500802
                                                -0.640758
                                                0.394754
 -0.431213
            -0.358273
                        0.502375
                                    -0.0316917
 0.597894
             0.651843
                        0.254814
                                    -0.211738
                                                 0.211448
            -0.504301
 -0.525809
                                    0.113009
                                                -0.510733
                        0.631113
 0.132268
            0.08442
                        0.0403786 -0.184404
                                                -0.552655
julia>
```

FIG. 1. Julia REPL

Task Nº4

3omn ∣ (6 points)

Suppose we have three fuzzy predicates: \mathcal{A} , \mathcal{B} and C described by these trapezoidal fuzzy sets:

x and y are fuzzy variables, each one ranges between 0 and 16. Given the following three rules:

```
\begin{split} &\Re_1 \ \ (\mathsf{x} \ \mathsf{is} \ \mathcal{A} \lor \mathsf{x} \ \mathsf{is} \ \mathcal{B}) \ \land \ !(\mathsf{y} \ \mathsf{is} \ \mathcal{C}) \to \mathsf{u} = 9 \\ &\Re_2 \ \ !(\mathsf{x} \ \mathsf{is} \ \mathcal{B}) \ \land \ (\mathsf{y} \ \mathsf{is} \ \mathcal{C}) \to \mathsf{u} = 3 \\ &\Re_3 \ \ (\mathsf{x} \ \mathsf{is} \ \mathcal{B} \lor \mathsf{x} \ \mathsf{is} \ \mathcal{C}) \ \land \ !(\mathsf{y} \ \mathsf{is} \ \mathcal{A}) \to \mathsf{u} = 16 \end{split}
```

Compute the degree of satisfaction for x = 6 & y = 10.

 $\Re_1 \ (\mu_{\mathcal{R}}(6) \max \ \mu_{\mathcal{B}}(6)) \min \ (1 - \mu_{\mathcal{C}}(10)) = (0.5 \max \ 0.12) \min \ (1 - 2/3) = 1/3$

 $\Re_2 \ (1 - \mu_{\mathcal{B}}(6)) \min \ \mu_{\mathcal{C}}(10) = (1 - 1/4) \min \ 2/3 \ = \ 2/3$

 $\Re_3 \ (\mu_{\mathcal{B}}(6) \max \ \mu_{C}(6)) \min \ (1 - \mu_{\mathcal{A}}(\mathbf{y})) = (1 / 4 \max \ 0) \min \ (1 - 0) \ = \ 1 / 4$

The final result is:

$$u^{\star} = \frac{1/3 \times 9 + 2/3 \times 3 + 1/4 \times 16}{1/3 + 2/3 + 1/4} = 7.2$$

