

基于深度学习的黑烟车自动识别系统的研究与实现

答辩人:张世杰

导师:吴刚 副教授、熊庆文 教授

专业:空间信息与数字技术 学号:2015302580088

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

研究背景

- 黑烟尾气含200余种化学物质,**空气细小颗粒物超标**与光化学污染的罪魁祸首。
- 2018年7月3日,国务院发布《打赢蓝天保卫战三年行动计划》,柴油车辆成重点监督对象。
- 长期以来,交管部门通过**逢车必查**的检测手段查找黑烟车,需要尾气检测设备, 拦车检测**效率低**,道路交通**更加繁忙**。

基于深度学习的黑烟车自动识别系统的研究与实现

- 得益于数据的丰富和计算硬件的发展,深度学习应用条件日渐成熟,炙手可热。
- · 卷积神经网络(CNN)的出现,展示了<mark>图像特征自动提取</mark>的巨大潜力,变革了 计算机视觉研究的方向。
- 近年来,层级更深、表现更优的**网络结构**不断涌现,速度更快、识别更准的**目标 检测算法**相继问世。

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

研究现状

国内江绮鸿、李文松等人[1]利用黑烟 尾气中颗粒物对可见光中绿光吸收较 多这一原理来进行黑烟尾气识别,具 体做法是通过CCD传感器远距离探测 机动车尾气管判定是否冒烟,根据 DSP数据信号的有烟无烟,以及烟羽 **背后的深色和浅色**目标之间对比度的 差异,来衡量黑烟尾气的黑度。该方 法本质上还是**物理方法**,需要相关传 感器的支持,其实际工作识别准确率 能达到72%。

应用现状

国内有相关部门黑烟车自动识别系统使 用的报道,但并未对系统实现方案进行 过多详细介绍。

自动抓拍超排放黑烟车,智能识别系统年内上岗

2019年05月10日 10:29

来源: 齐鲁壹点

O人参与 O评论

网易首页 > 新闻中心 > 滚动新闻 > 正文

高新区运用黑烟抓拍系统让黄标车和黑烟车无处可

2016-09-29 15:38:00 来源: 西安新闻网(西安)

▲ 举报

青岛首套黑烟车抓拍"神器"在高新区上岗 预计下半 年正式启用

2019-05-12 11:04 半岛网

阅读 (33510) 🔡 扫描到手机

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

数据收集

一类图片(234)

- 来自国内搜索引擎
- 多为公交车、柴油车

二类图片(287)

来自国外搜索引擎

部分有两个黑烟排口

黑烟夸张,更黑更浓

000001.jpg

000003.jpg

000004.jpg

000009.jpg 000010.jpg

000011.jpg

000012.jpg

000007.jpg

000008.jpg

000013.jpg

000014.jpg

000015.jpg

000017.jpg

000018.jpg

000019.jpg

100027.jpg

100029.jpg

100032.jpg

100033.jpg

100028.jpg

100034.jpg

100035.jpg

100036.jpg

100037.jpg

100038.jpg

数据处理

图像标注

• 离线图像增广:扩充数据集大小为2605

• 在线图像增广:增强模型泛化能力

研究背景

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

原图

右旋转

左旋转

亮度增加

裁切

对比度

直方图均衡化

左右翻转

目标检测算法

研究背景

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

- One stage: 速度快,准确度低,代表YOLO、SSD。
- Two stage: 准确度高,速度慢,代表Faster R-CNN。
- SSD综合YOLO和Faster R-CNN,不牺牲准确度的前提下,提升了速度。

训练方式 迁移学习(transfer learning)

研究背景

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

- 显著减少迭代次数
- 模型表现更稳定
- 更强的泛化能力

其他

研究背景

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

• 优化算法:小批量随机梯度下降

• 激活函数:ReLU而非Sigmoid

• Early Stopping:每个epoch对validation data进行检验,保留最好结果

• Weight Decay:减小不重要的参数对最后结果的影响

• Dropout:随机去掉一些节点,避免过拟合

• 输入图像大小:512*512

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

最佳网络结构

- Mobilenet: 小巧高效, 训练更快
- · Vgg16: 反复使用vgg块构建
- Resnet50: 使用残差块构建,较深的深度

10

epoch(132 batches/epoch, batch size=16)

15

25

20

0.70

0.65

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

最佳批大小

batch size小:大方差,容易脱离local minimal,训练时间更长

batch size大:可借助GPU矩阵运算加速,训练时间短

显存允许的情况下,尽量使用更大的batch size

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

最佳学习率

learning rate: 决定模型收敛状态

learning rate过大:每次迭代后网络参数修改幅度过大,导致损失函

数震荡无法收敛

learning rate过小:使模型收敛速度过慢,显著增加训练时间。

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

一类图检测效果

400

- 正确识别较远、较小、较淡的黑烟尾气
- 位置预测准确

1000500

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

二类图检测效果

400

500

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

误识别

运动模糊下的树

图像前方的人

较黑的阴影

图像前方的人头

较黑的倒影

图像前方的人头

研究及应用现状

数据收集处理

训练策略

模型优化

实验结果

总结展望

结论

最终使用SSD目标检测算法,特征提取网络使用resnet50_v1,小批量随机梯度下降的batch size为16,learning rate为0.001,对在PASCALVOC数据集上预训练的模型进行微调,迭代30个epoch后得到的最佳模型在测试集上的mAP为0.9752。

不足

- 数据集还有较大的提升空间,可以加入更多的来自实际应用场景的图片, 涵盖更多的天气、夜晚、远景图片。
- 针对不同的应用场景,可以发掘各应用场景的特点,针对这些特点对算法进一步改进,提高模型检测能力。
- 实际应用中,黑烟车检测是基于视频的,视频相较于图像,多了**时间维度**的信息以及更多的**上下文相关性**,这可以进一步对模型进行扩展。

THANKS FOR LISTENING