2025-07-22 - Compare and Contrast among activation functions, loss functions, optimizers and regularization for choosing the appropriate
method for the given application
=> Gradient Descent:
0 ~ Praameters
J ~ los Fundions
(%) J(oi) Paravieters
Luss Fn
Calculation
-> Princes (Textoles):
$\theta_i := \phi_i - \prec \times \partial_{\theta_i} J(\theta_i)$
hoss ~ J(oi) Reste (d)
Reste (a)

0.0005 to 1 - Wxxi+6 $Msf = \frac{1}{n} \left(y_i - \hat{y}_i \right)^{-1}$ $\frac{\partial}{\partial v} = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - y_i \right)^2$

 $d/dw = \frac{1}{N} \sum_{i=1}^{n} (y_i - (w_{X_i + b}))^2$

-1 / = 1 = 2x (y; - (Wxi+b)) x 1/2 (y:- (v:4-1))

 $=\frac{2}{\lambda I}\sum_{i}\left(y_{i}-\left(w_{x_{i}}+b\right)\times\left(-\lambda_{i}\right)\right)$

 $= -\frac{2}{NI} \sum_{i} (x_i) \times (y_i - (y_i) + b)$

$$\frac{3}{N} = \frac{1}{N} \sum_{i} (y_{i} - (Wxx_{i} + b))$$

$$= \frac{2}{N} \sum_{i} (y_{i} - (Wx_{i} + b)) \times (-1)$$

$$\frac{3}{N} = -\frac{2}{N} \sum_{i} (y_{i} - (Wx_{i} + b))$$

=> Parameter Recalculation:

$$W = W - \left(\times \left\{ -\frac{2}{N} = (x_i) \times (y_i - (\sqrt{x_i + 4})) \right\} \right)$$

$$J = J - \left(- \left(-\frac{2}{N} \times \left\{ -\frac{2}{N} + \left\{ -\frac{2}{N} \times \left\{ -\frac{2$$