Controlled MCMC

February 11, 2020

Algorithm 2 Revised

- 1. input:
 - (a) $\theta_0 = \text{starting value}, \in \mathbb{R}^{d \times 1}$
 - (b) $\mu_{t=(0,...,T_1)} = \theta_0$
 - (c) $\Sigma_{t=(0,\dots,T_1)} = \text{diag } (0.01\theta_0^1, 0.01\theta_0^2, \dots, 0.01\theta_0^d)$
 - (d) $\beta = 1$ is the scale
 - (e) Set $T_1 = 199$.
 - (f) $\phi_0 = 0$
- 2. **for** $t = 1, ..., T_1$
 - (a) $\theta^* | \theta_{t-1} \sim \mathcal{N} \left(\theta_{t-1}, e^{\beta} \Sigma_t \right)$
 - (b) $\alpha_t = \min\left(1, \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)}\right)$, Symmetric proposal: Evaluate this and the accept reject step in logarithm, also reject if $\log p(\theta^*|y) = \infty$.
 - (c) If accepted: set $\theta_t = \theta^*$, $\phi_t = 1$ Else $\theta_t = \theta_{t-1}$, $\phi_t = \phi_{t-1}$
- 3. **for** $t = T_1 + 1, \dots T$
 - (a) $\delta = (t T_1)^{-0.6}$
 - (b) $\beta = \delta_t(\phi_{t-1} 0.234)$
 - (c) $\Delta_t = \theta_{t-1} \mu_{t-1}, \ \Delta_t \in \mathbb{R}^{d \times 1}$
 - (d) $\mu_t = (1 \delta)\mu_{t-1} + \delta\Delta_t$
 - (e) $\Sigma_t = (1 \delta)\Sigma_{t-1} + \delta(\Delta_t \Delta_t^T)$
 - (f) $\theta^* | \theta_{t-1} \sim \mathcal{N} \left(\theta_{t-1}, e^{\beta} \Sigma_t \right)$
 - (g) $\alpha_t = \min\left(1, \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)}\right)$, Symmetric proposal: Evaluate this and the accept reject step in logarithm, also reject if $\log p(\theta^*|y) = \infty$.
 - (h) If accepted: set $\theta_t = \theta^*, \, \phi_t = 1$ Else $\theta_t = \theta_{t-1}$, $\phi_t = \phi_{t-1}$