第二次小考 解析

一、單選題: (8 小題, 每題 5 分, 共 40 分)

1. () $C_0^{10} - C_1^{10} + C_2^{10} - C_3^{10} + \dots - C_9^{10} + C_{10}^{10} =$ (A)1 (B)0 (C)2 (D)4

【龍騰自命題】

解答B

解析 因為 $C_0^{10} + C_2^{10} + C_4^{10} + \cdots + C_{10}^{10} = C_1^{10} + C_3^{10} + C_5^{10} + \cdots + C_9^{10}$ 所以 $C_0^{10} - C_1^{10} + C_2^{10} - C_3^{10} + \cdots - C_9^{10} + C_{10}^{10} = (C_0^{10} + C_2^{10} + \cdots + C_{10}^{10}) - (C_1^{10} + C_3^{10} + \cdots + C_9^{10}) = 0$

2. () $(x+y)^5$ 的二項展開式共有 (A)2項 (B)4項 (C)5項 (D)6項

【隨堂卷】

解析 $(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$

3. () 由 8 件不同的事物,任選 1 件、2 件、……或 8 件的組合總數為 (A)127 (B)128 (C)255 (D)256

【龍騰自命題】

解答 C

解析 $C_1^8 + C_2^8 + C_3^8 + \dots + C_8^8 = 2^8 - 1 = 255$

4. () $\frac{1}{12} a = C_1^{10} + C_2^{10} + \dots + C_{10}^{10}$, $b = C_1^9 + C_3^9 + C_5^9 + C_7^9 + C_9^9$, 1 a + b = (A)1279 (B)1280 (C)1565 (D)1566

【龍騰自命題】

解答 A

解析 :
$$C_0^{10} + C_1^{10} + C_2^{10} + \dots + C_{10}^{10} = 2^{10} = 1024$$

: $a = 1024 - 1 = 1023$

$$b = \frac{2^9}{2} = 2^8 = 256$$
 \Rightarrow $a+b = 1023 + 256 = 1279$

5. () 將(x+2)¹⁰展開時, x⁷之係數為 (A)64 (B)128 (C)256 (D)960

【學習卷】

解答 D

 $(x+2)^{10}$ 展開式中的一般項為 $C_r^{10} \times x^{10-r} \times 2^r = C_r^{10} \times 2^r \times x^{10-r}$ 故 x^7 之係數為 $C_3^{10} \times 2^3 = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} \times 8 = 960$

)在 $(x+\frac{3}{x})^6$ 的展開式中, x^4 的係數為 (A)18 (B)1458 (C)162 (D)486

【龍騰自命題】

解答 A

解析 $(x+\frac{3}{x})^{6}$ 的一般項為 $C_{r}^{6}x^{6-r}(\frac{3}{x})^{r}$ $x^{6-r} \cdot x^{-r} = x^{6-2r} = x^{4} \Rightarrow r = 1$

7. () $(\frac{a}{r^2} - \sqrt{3}x)^6$ 展開後常數項的係數為 270,則 $a = (A) \pm \sqrt{7}$ (B) $\pm \sqrt{5}$ (C) $\pm \sqrt{3}$ (D) $\pm \sqrt{2}$

【龍騰自命題,進階卷】

解析 $(\frac{a}{x^2} - \sqrt{3}x)^6$ 的一般項為 $C_r^6 (\frac{a}{x^2})^r (-\sqrt{3}x)^{6-r} \Rightarrow x^{-2r} \cdot x^{6-r} = x^{6-3r} = x^0 \Rightarrow r = 2$ 常數項係數= $C_2^6 \times a^2 \times (-\sqrt{3})^4 = 270$ \Rightarrow $15 \times a^2 \times 9 = 270$ \Rightarrow $a^2 = 2$ $\therefore a = \pm \sqrt{2}$

) 71⁷² 除以 100 之餘數為 (A)11 (B)21 (C)31 (D)41 8. (

【龍騰自命題,進階卷】

解析

利用二項式定理 $71^{72} = (70+1)^{72}$ $= \underbrace{\frac{C_0^{72} 70^{72} + C_1^{72} 70^{71} + C_2^{72} 70^{70} + \dots + C_{70}^{72} 70^2}_{\text{可被 }100 \, 整除} + C_{71}^{72} 70 + C_{72}^{72}}_{\text{TOM }100 \, TOM }$ \therefore 71⁷² 除以 100 之餘數,即為 C_{71}^{72} 70+ C_{72}^{72} = 5041 除以 100 之餘數 5041÷100 之餘數為 41,則所求之餘數為 41

二、填充題:(10 小題,每題 4 分,共 40 分)

1. 在 $(x+y)^9$ 的展開式中, x^4y^5 的係數為_____。

【龍騰自命題】

解答 解析

126

 $(x+y)^9$ 的一般項為 $C_r^9 x^r y^{9-r}$ $x^r y^{9-r} = x^4 y^5 \quad \Rightarrow \quad r = 4$ x^4y^5 的係數為 $C_4^9 = \frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} = 126$

2. 設 r 為整數,已知 $(x+y)^{10}$ 展開式中之第 2r+1 項與第 r+3 項係數相等,則此項係數為

【龍騰自命題】

解答 210 解析

 $(x+y)^{10}$ 展開式中,第 2r+1 項與第 r+3 項之係數相等

$$\Rightarrow$$
 $C_{2r}^{10} = C_{r+2}^{10}$ \Rightarrow $2r = r + 2$ 或 $2r + (r + 2) = 10$ \Rightarrow $r = 2$ 或 $r = \frac{8}{3}$ 但已知 r 為整數,則可得 $r = 2$ 故此項係數為 $C_{2x2}^{10} = C_{2+2}^{10} = C_4^{10} = 210$

3. 在 $(x-3)^8$ 的展開式中, x^5 的係數為____。

【龍騰自命題】

解答

-1512

$$(x-3)^8$$
的一般項為 $C_r^8 x^r (-3)^{8-r}$
 $x^r = x^5 \implies r = 5$
 x^5 的係數為 $C_5^8 (-3)^{8-5} = 56 \times (-27) = -1512$

4. 化簡 $C_0^n - C_1^n + C_2^n - C_3^n + \dots + (-1)^n C_n^n =$

【super 講義-實力評量】

解答

0

解析 由二項式定理知:

【light 講義-綜合評量】

解答 1024

解析 由公式可得
$$C_1^{11} + C_3^{11} + C_5^{11} + C_7^{11} + C_9^{11} + C_{11}^{11} = \frac{2^{11}}{2} = 1024$$

6. 設 n 為正整數,若 $500 < C_1^n + C_2^n + C_3^n + \cdots + C_n^n < 800$,則 n =

【進階卷,龍騰自命題】

解答

解析

因為
$$C_1^n + C_2^n + C_3^n + \cdots + C_n^n = 2^n - C_0^n = 2^n - 1$$

故 $500 < 2^n - 1 < 800$
即 $501 < 2^n < 801$ 又 $2^8 = 256$, $2^9 = 512$,所以 $n = 9$

7. 利用二項式定理,則 $C_0^{10} - 2 \times C_1^{10} + 2^2 \times C_2^{10} - 2^3 \times C_3^{10} + \dots + 2^{10} \times C_{10}^{10} =$

【super 講義-實力評量】

解答

解析 由二項式定理知:

$$(1-2)^{10}$$

$$= C_0^{10} \times 1^{10} + C_1^{10} \times 1^9 \times (-2) + C_2^{10} \times 1^8 \times (-2)^2 + C_3^{10} \times 1^7 \times (-2)^3 + \dots + C_{10}^{10} \times (-2)^{10}$$

$$= C_0^{10} - 2 \times C_1^{10} + 2^2 \times C_2^{10} - 2^3 \times C_3^{10} + \dots + 2^{10} \times C_{10}^{10}$$
故所求 = $(-1)^{10} = 1$

8. 在 $(x+3y)^5$ 的展開式中, x^4y 項的係數為。

【light 講義-綜合評量】

解答 15

解析

可將 x 看成第一項, 3y 看成第二項

一般項為 $C_r^5(x)^{5-r}(3y)^r$

因為求 x^4y 項,所以取r=1

組合數 C_r^5	$C_1^5 = 5$
$(x)^{5-r}$	$\left(x\right)^4 = x^4$
$(3y)^r$	$(3y)^1 = 3y$
相乘	$15x^4y$

因為 x^4y 項的係數來自於展開式中的 $C_1^5(x)^4(3y)^1 = 15x^4y$ 所以x4y項的係數為15

【super 講義-實力評量】

解答

-1080

解析

∵ (2x-3y)⁵展開式中的一般項為

9. 在 $(2x-3y)^5$ 的展開式中, x^2y^3 項的係數為

$$C_r^5 \times (2x)^{5-r} \times (-3y)^r = C_r^5 \times 2^{5-r} \times (-3)^r \times x^{5-r} \times y^r$$

∴ $\Rightarrow r = 3$, 則 x^2y^3 項的係數為 $C_3^5 \times 2^2 \times (-3)^3 = -1080$

10. 設 n 為正整數,若 $^{100} < C_{1}^{n} + C_{2}^{n} + C_{3}^{n} + \cdots + C_{n}^{n} < 200$,則 n 之值為

【super 講義-實力評量】

解答 解析

$$C_1^n + C_2^n + C_3^n + \dots + C_n^n = 2^n - 1 , \text{ [I]}$$

原式 \Rightarrow 100 < 2ⁿ -1 < 200 \Rightarrow 101 < 2ⁿ < 201 $\sqrt{2}^6 = 64$, $2^7 = 128$, $2^8 = 256$

 \therefore n=7

三、計算題:(2 小題,每題 10 分,共 20 分)

1. 利用二項式定理展開 $(x^2 - 2y)^5$ 。

【龍騰自命題】

$$x^{10} - 10x^8y + 40x^6y^2 - 80x^4y^3 + 80x^2y^4 - 32y^5$$

 $(x^{2}-2y)^{5} = C_{0}^{5}(x^{2})^{5}(-2y)^{0} + C_{1}^{5}(x^{2})^{4}(-2y)^{1} + C_{2}^{5}(x^{2})^{3}(-2y)^{2} + C_{3}^{5}(x^{2})^{2}(-2y)^{3}$ $+C_4^5(x^2)^1(-2y)^4+C_5^5(x^2)^0(-2y)^5$ $= x^{10} - 10x^8y + 40x^6y^2 - 80x^4y^3 + 80x^2y^4 - 32y^5$

2. 試求 $\left(\frac{1}{r^2}-2x\right)^6$ 展開式中 x^3 項的係數。

【課本習題】

解答 -192

 $\left(\frac{1}{x^2} - 2x\right)^6$ 展開式的一般項為 $C_r^6 \left(\frac{1}{x^2}\right)^{6-r} \left(-2x\right)^r = C_r^6 \left(x^{-2}\right)^{6-r} \left(-2\right)^r x^r = C_r^6 \left(-2\right)^r x^{-12+3r}$ 故 x^3 項的係數為 $C_5^6(-2)^5 = -192$