ASSIGNMENT 2

DATE	26 SEPTEMEBR 2022
TEAM ID	PNT2022TMID38674
PROJECT NAME	AI BASED DISCOURSE FOR BANKING INDUSTRY
NAME	DEENADHAYALAN V

1.Download the dataset

2. Load the dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plot
import seaborn as sns
data=pd.read_csv('Churn_Modelling.csv')
```

3. perform below visualization

- . Univarient
- . Bi-varient
- . Multi-varient


```
import seaborn as sns
density = df('Exited').value_counts(normalize=True).reset_index()
sns.barplot(data=density, x='index', y='Exited', );
density

D index Exited 
0 0 0.7963
1 1 0.2037

08
07
06
05
0 04
03
02
01
00
```

```
import matplotlib.pyplot as plt

categorical = df.drop(columns=['CreditScore', 'Age', 'Tenure', 'Balance', 'EstimatedSalary'])

rows = int(np.ceil(categorical.shape[1] / 2)) - 1

# create sub-plots anf title them

fig, axes = plt.subplots(nrows=rows, ncols=2, figsize=(10,6))

axes = axes.flatten()

for row in range(rows):

cols = min(2, categorical.shape[1] - row*2)

for col in range(cols):

col_name = categorical.columns[2 * row + col]

ax = axes[row*2 + col]

sns.countplot(data=categorical, x=col_name, hue="Exited", ax=ax);

plt.tight_layout()

Activate Windows
```


4.Perform the descriptive statistics on the datase

5. Handle the missing values

6. Find the outliers and replace the outliers

7. Check the categorical columns and perform encoding

8. Split the dataset into ipdendent and dependent variables.

```
x = data.iloc[1,0:10]
y = data.iloc[1,0:10]
print(x.shape)
print(y.shape)
(7667, 10)
(7667,)
```

9. Scale the independent variable

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.25,random_state=0)
    print('x_train.shape : 'x_train.shape)
    print('y_train.shape : ',y_train.shape)
    print('x_test.shape : ',y_test.shape)

    x_train.shape : (3750, 2556)
    y_train.shape : (3750, 2556)
    y_test.shape : (1917, 2556)
    y_test.shape : (1917, 2556)
    y_test.shape : (1917,)
```