Linear Regression

Professor Jie Peng, PhD

Department of Statistics

University of California, Davis

Normal Error Model

Normal Error Model

Simple regression model + Normality assumption:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \qquad i = 1, \dots, n,$$

where the error terms ϵ_i s are independently and identically distributed (i.i.d.) **Normal**(0, σ^2) random variables.

$$\implies$$
 $Y_i \sim_{independent} N(\beta_0 + \beta_1 X_i, \sigma^2).$

© Jie Peng 2025. This content is protected and may not be shared, uploaded, or distributed.

Optional Reading: MLE

Under the Normal error model:

- LS estimators $\hat{\beta}_0$, $\hat{\beta}_1$ are the maximum likelihood estimator (MLE) of β_0 , β_1 , respectively.
- ▶ The MLE of σ^2 is SSE/n.

Sampling Distributions

Under the Normal error model:

 $\hat{\beta}_0, \hat{\beta}_1$ are normally distributed (as they are linear combinations of independent Normal random variables, i.e., Y_i s):

$$\hat{\beta}_0 \sim N(\beta_0, \sigma^2\{\hat{\beta}_0\}), \quad \hat{\beta}_1 \sim N(\beta_1, \sigma^2\{\hat{\beta}_1\}).$$

- ► SSE/σ^2 follows a χ^2 distribution with n-2 degrees of freedom, denoted by $\chi^2_{(n-2)}$.
- SSE is independent with both $\hat{\beta}_0$ and $\hat{\beta}_1$.

χ^2 Distributions

Figure: χ^2 distributions: probability density function

Confidence Intervals of Regression Coefficients

Confidence Intervals for β_1

Under the Normal error model, a $(1 - \alpha)100\%$ -confidence interval for β_1 is:

$$\hat{\beta}_1 \pm t(1-\alpha/2; n-2) \cdot s\{\hat{\beta}_1\},$$

where $t(1 - \alpha/2; n - 2)$ is the $(1 - \alpha/2)100$ th percentile of $t_{(n-2)}$.

▶ The coverage probability is $1 - \alpha$:

$$P(\beta_1 \in \hat{\beta}_1 \pm t(1 - \alpha/2; n - 2) \cdot s\{\hat{\beta}_1\}) = 1 - \alpha$$

How to construct confidence intervals for β_0 ?

Figure: t distributions: probability density function¹

 $^{^1}$ t-distribution with df= ∞ is the standard normal N(0,1) distribution. ©Jie Peng 2025. This content is protected and may not be shared, uploaded, or distributed.

Optional Reading: Deriving Confidence Intervals via Pivotal Quantity

Pivotal quantities are intermediate objects used in derivations of confidence intervals:

- They involve both observed data and unknown parameters, so they are not statistics themselves.
- They have known distributions.
- More in STA200B.

Look at the following quantity:

$$\frac{\hat{\beta}_1 - \beta_1}{s\{\hat{\beta}_1\}}$$

- The numerator is the difference between the LS estimator $\hat{\beta}_1$ (an estimator) and its mean β_1 (an unknown parameter).
- ► The denominator is the standard error of $\hat{\beta}_1$ (a statistic).
- This quantity follows a known distribution, namely t_(n-2), the t-distribution with n − 2 degrees of freedom.

Remark: followed from the fact that if $Z \sim N(0,1)$, $S^2 \sim \chi^2_{(k)}$ and Z, S^2 are independent, then $\frac{Z}{\sqrt{S^2/k}} \sim t_{(k)}$.

Confidence intervals can be derived from "inverting the region under the curve":

$$P\left(\left|\frac{\hat{\beta}_1-\beta_1}{s\{\hat{\beta}_1\}}\right|\leq t(1-\alpha/2;n-2)\right)=1-\alpha\Rightarrow$$

$$P\left(\hat{\beta}_{1}-t(1-\alpha/2;n-2)s\{\hat{\beta}_{1}\} \leq \beta_{1} \leq \hat{\beta}_{1}+t(1-\alpha/2;n-2)s\{\hat{\beta}_{1}\}\right)=1-\alpha$$

Confidence Coefficient: Accuracy

- ▶ $(1 \alpha)100\%$ is called the *confidence coefficient* or the confidence level/coverage.
- Commonly used confidence coefficients are 95% (α = 0.05), 90% (α = 0.1), 99% (α = 0.01).
- Confidence coefficient reflects accuracy of the C.I.: the larger (i.e., the smaller the α), the more accurate.

Confidence Interval Width: Precision

- ► The half-width: $t(1 \alpha/2; n 2)s\{\hat{\beta}_1\}$
- The width reflects precision of the C.I.: the narrower, the more precise
- Factors influencing the precision:
 - The larger the confidence coefficient (more accurate), the wider the C.I. (less precise)
 - The larger the sample size n (more data), the narrower the C.I. (more precise)
 - The larger the SE (more uncertainty), the wider the C.I. (less precise)

Simulation Experiment

Figure: C.I.s of β_1 : Left: 90% C.I.; Right: 99% C.I.

Reading: Heights

 $ightharpoonup n = 928, \ \overline{X} = 68.316, \ \sum_{i=1}^{n} (X_i - \overline{X})^2 = 3038.761, \ \text{and}$

$$\hat{\beta}_0 = 24.54, \ \hat{\beta}_1 = 0.637, \ \textit{MSE} = 5.031.$$

- $s\{\hat{\beta}_1\} = \sqrt{\frac{5.031}{3038.761}} = 0.0407.$
- ▶ 95%-confidence interval of β_1 :

$$0.637 \pm t(0.975; 926) \times 0.0407 = 0.637 \pm 1.963 \times 0.0407$$

= [0.557, 0.717].

We are 95% confident that the regression slope is between 0.557 and 0.717.

T-tests for β_1

- Null hypothesis: $H_0: \beta_1 = \beta_1^{(0)}$, where $\beta_1^{(0)}$ is a given constant (e.g., 0).
- ▶ **T-statistic**: derived from standardization of $\hat{\beta}_1$ under H_0 :

$$T^* = rac{\hat{eta}_1 - eta_1^{(0)}}{s\{\hat{eta}_1\}}.$$

Null distribution of T*:

Under $H_0: \beta_1 = \beta_1^{(0)}$, T^* follows the $t_{(n-2)}$ distribution.

Decision Rules

At significance level α :

- ► Two-sided alternative $H_a: \beta_1 \neq \beta_1^{(0)}$: Reject H_0 if and only if $|T^*| > t(1 \alpha/2; n 2)$; Or equivalently, reject H_0 if and only if pvalue:= $P(|t_{(n-2)}| > |T^*|) < \alpha$.
- Left-sided alternative $H_a: \beta_1 < \beta_1^{(0)}$: Reject H_0 if and only if $T^* < t(\alpha; n-2)$; Or equivalently, reject H_0 if and only if pvalue:= $P(t_{(n-2)} < T^*) < \alpha$.

What about the right-sided alternative? Why are the critical value approach and the pvalue approach equivalent? How to conduct

hypothesis testing with regard to β_0 ?

Reading: Heights

Test whether there is a linear association between parent's height and child's height at significance level $\alpha=0.01$.

- ► $H_0: β_1 = 0$ vs. $H_a: β_1 \neq 0$.
- $T^* = \frac{\hat{\beta}_1 0}{s\{\hat{\beta}_1\}} = \frac{0.637}{0.0407} = 15.7.$
 - Critical value: t(1 0.01/2; 928 2) = 2.58. Since the observed $|T^*| = |15.7| > 2.58$, reject the null hypothesis at level 0.01.
- ▶ **Pvalue**: $P(|t_{(926)}| > |15.7|) \approx 0$. Since *pvalue* < $\alpha = 0.01$, reject the null hypothesis at level 0.01.
- Conclusion: There is a significant association between parent's height and child's height at level 0.01.

Mean Response

Estimation of Mean Response

Consider an (arbitrary) X value, denoted by X_h . Assume that the model holds at X_h , i.e., $Y_h = \beta_0 + \beta_1 X_h + \epsilon_h$. Then the mean response at $X = X_h$ is $E(Y_h) = \beta_0 + \beta_1 X_h$. The goal is to estimate $E(Y_h)$.

▶ What is the average height of children of 70*in* parents?

▶ An unbiased estimator of $E(Y_h) = \beta_0 + \beta_1 X_h$ is:

$$\widehat{Y}_h := \hat{\beta}_0 + \hat{\beta}_1 X_h = \overline{Y} + \hat{\beta}_1 (X_h - \overline{X}).$$

▶ Standard error of \widehat{Y}_h :

$$s\{\widehat{Y}_h\} = \sqrt{MSE\left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right]}.$$

▶ Under Normal error model $\widehat{Y}_h \sim N(E(Y_h), \sigma^2\{\widehat{Y}_h\})$.

Confidence Intervals for $E(Y_h)$

Under the Normal error model, a $(1 - \alpha)100\%$ confidence interval for $E(Y_h)$:

$$\widehat{Y}_h \pm t(1-\alpha/2; n-2) \cdot s(\widehat{Y}_h)$$

▶ The coverage probability is $1 - \alpha$:

$$P(E(Y_h) \in \widehat{Y}_h \pm t(1 - \alpha/2; n - 2) \cdot s(\widehat{Y}_h)) = 1 - \alpha$$

Reading: Heights

What is the average height of children of 70in parents?

►
$$n = 928$$
, $\overline{X} = 68.316$, $\sum_{i=1}^{n} (X_i - \overline{X})^2 = 3038.761$ and $\hat{\beta}_0 = 24.54$, $\hat{\beta}_1 = 0.637$, $MSE = 5.031$

- $\widehat{Y}_h = 24.54 + 0.637 \times 70 = 69.2$
- $s\{\widehat{Y}_h\} = \sqrt{5.031 \times \left\{ \frac{1}{928} + \frac{(70 68.316)^2}{3038.761} \right\}} = 0.1$
- ▶ 95%-confidence interval: $69.2 \pm 1.963 \times 0.1 = [69, 69.40]$
- ► We are 95% **confident** that the average height of children of 70*in* parents is between [69*in*, 69.40*in*].

Prediction

Prediction of New Outcome

Suppose instead of estimating $E(Y_h)$, we would like to predict the outcome Y_h at $X = X_h$. We still assume the model holds at X_h , i.e., $Y_h = \beta_0 + \beta_1 X_h + \epsilon_h$.

What would be the height of a (future) child of a specific 70in couple?

We can predict Y_h by the estimated mean response at $X = X_h$:

$$\widehat{Y}_h = \hat{eta}_0 + \hat{eta}_1 X_h = \overline{Y} + \hat{eta}_1 (X_h - \overline{X})$$

Note that $E(\widehat{Y}_h) = \beta_0 + \beta_1 X_h = E(Y_h)$, so \widehat{Y}_h is an unbiased predictor of Y_h .

Prediction Intervals

How reliable is this prediction?

- We can use prediction intervals to answer this question.
- In order to derive prediction intervals, we need to further assume that the error ϵ_h pertained to this specific case is uncorrelated with errors ϵ_i s associated with the observations Y_i s in the current data set.
- This is a reasonable assumption if we are predicting a future outcome.

Under the Normal error model:

• $\widehat{Y}_h - \underline{Y}_h \sim \text{Normal}(0, \sigma^2(pred_h))$, where

$$\begin{split} \sigma^2(\textit{pred}_h) &:= \textit{Var}(\widehat{Y}_h - Y_h) = \sigma^2(\widehat{Y}_h) + \sigma^2(Y_h) \\ &= \sigma^2(\widehat{Y}_h) + \sigma^2 = \sigma^2 \bigg[\mathbf{1} + \frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \bigg] \end{split}$$

► Standard error of $\widehat{Y}_h - \underline{Y}_h$ is then

$$s(\textit{pred}_{\textit{h}}) := \sqrt{\textit{MSE}\left[\frac{1}{n} + \frac{1}{n} + \frac{(X_{\textit{h}} - \overline{X})^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}\right]}$$

Prediction Intervals

Under the Normal error model, a $(1 - \alpha)100\%$ prediction interval for Y_h is:

$$\widehat{Y}_h \pm t(1-\alpha/2; n-2) \cdot s(pred_h)$$

▶ The coverage probability is $1 - \alpha$:

$$P(Y_h \in \widehat{Y}_h \pm t(1 - \alpha/2; n - 2) \cdot s(pred_h)) = 1 - \alpha$$

Optional Reading: Deriving Prediction Intervals

The derivation of prediction intervals follows the same type of calculation for the derivation of C.Is through a pivotal quantity, namely, $\frac{\widehat{Y}_h - Y_h}{s(pred_h)} \sim t_{(n-2)}$.

Prediction vs. Estimation

- Y_h is a "moving target" (random variable) vs. E(Y_h) is a fixed (non-random) quantity.
- There are two sources of variations in the prediction process: (i) variability from the predictor \widehat{Y}_h due to sampling variability of the data; (ii) variability from the target Y_h .
- In contrast, there is only one source of variation in the estimation process, i.,e., variability from the estimator \widehat{Y}_h .
- At any given X value, the prediction process has intrinsically larger variability than the estimation process => prediction intervals are wider than the corresponding confidence intervals.

Reading: Heights

What would be the predicted height of the child of a 70*in* couple?

- ► n = 928, $\overline{X} = 68.316$, $\sum_{i=1}^{n} (X_i \overline{X})^2 = 3038.761$, and $\hat{\beta}_0 = 24.54$, $\hat{\beta}_1 = 0.637$, MSE = 5.031
- ▶ Predicted height: $\widehat{Y}_h = 24.54 + 0.637 \times 70 = 69.2$
- Standard error:

$$s\{pred_h\} = \sqrt{5.031 \times \left\{1 + \frac{1}{928} + \frac{(70 - 68.316)^2}{3038.761}\right\}} = 2.25$$

- ▶ 95% prediction interval: $69.2 \pm 1.963 \times 2.25 = [64.78, 73.62]$
- ► We are 95% confident that the child's height will be between [64.78*in*, 73.62*in*].

Analysis of Variance

Analysis of Variance

- Basic idea: attributing variation in the observed data to different sources through decomposition of the total variation.
- In regression analysis, the variation in the observations comes from:
 - variation in the error terms
 - variation in X values

Partition of Total Deviation

► **Total deviation:** difference between Y_i and the sample mean \overline{Y} :

$$Y_i - \overline{Y}, \quad i = 1, \dots, n.$$

Total deviation can be decomposed into the sum of two terms:

$$Y_i - \overline{Y} = (Y_i - \widehat{Y}_i) + (\widehat{Y}_i - \overline{Y}), \quad i = 1, ..., n$$

- deviation of the observed value around the fitted regression line (residual);
- deviation of the fitted value from the sample mean;

Decomposition of Total Variation

Taking sum of squares of the total deviations and noting that the sum of the cross product terms equal to zero:

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 + \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2.$$

Decomposition of total variation:

$$SSTO = SSE + SSR$$

ANOVA: Sums of Squares

Total Sum of Squares (SSTO)

Quantify variation of the observations around the sample mean:

$$SSTO := \sum_{i=1}^{n} (Y_i - \overline{Y})^2, \quad d.f.(SSTO) = n - 1.$$

Error Sum of Squares (SSE)

Quantify variation of the observations around the fitted regression line:

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2, \quad d.f.(SSE) = n - 2.$$

Regression Sum of Squares (SSR)

Quantify variation of the fitted values around the sample mean:

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_{i} - \overline{Y})^{2} = \hat{\beta}_{1}^{2} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}, \quad d.f.(SSR) = 1.$$

- ► SSR = SSTO SSE: reduction of uncertainty in Y by utilizing the predictor X through a linear regression model
- ► The larger the fitted regression slope or the more the dispersion of the X values, the larger is SSR

Mean Squares

Sum of Squares divided by its degrees of freedom:

$$MS = SS/d.f.(SS).$$

Mean squared error:

$$MSE = \frac{SSE}{d.f.(SSE)} = \frac{SSE}{n-2}$$

Regression mean square:

$$MSR = \frac{SSR}{d.f.(SSR)} = \frac{SSR}{1}$$

ANOVA: F Tests

Expected Values of SS and MS

Under simple regression model:

Expected values of SS:

$$E(SSE) = (n-2)\sigma^2, \quad E(SSR) = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

Expected values of MS:

$$E(MSE) = \sigma^2, \qquad E(MSR) = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \overline{X})^2.$$

▶ Note that $E(MSR) \ge E(MSE)$ and "=" holds iff $\beta_1 = 0$.

Sampling Distributions of SS

Under the Normal error model:

- ► SSE ~ $\sigma^2 \chi^2_{(n-2)}$
- SSE and SSR are independent.

F Test for Linear Association between X and Y

- ► $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
- ► F ratio: $F^* = \frac{MSR}{MSE} = \frac{SSR/1}{SSE/(n-2)}$
- Null distribution of F^* : $F^* \underset{H_0:\beta_1=0}{\sim} F_{1,n-2}$.
- ▶ Decision rule at the significance level α :
 - Critical value approach:

reject
$$H_0$$
 if $F^* > F(1 - \alpha; 1, n - 2)$,

where $F(1-\alpha; 1, n-2)$ is the $(1-\alpha)100$ th percentile of the $F_{1,n-2}$ distribution.

P-value approach: reject H_0 if p-value< α where p-value= $P(F_{1,n-2} > F^*)$.

Optional Reading: Definition of F Distributions

If
$$Z_1 \sim \chi^2_{(df_1)}$$
, $Z_2 \sim \chi^2_{(df_2)}$ and Z_1, Z_2 are independent, then
$$\frac{Z_1/df_1}{Z_2/df_2} \sim F_{df_1,df_2}.$$

F Distributions

Figure: F distributions: probability density function

Relationship between F Tests and T Tests

In simple linear regression, the *F*-test is equivalent to the **two-sided** *t*-test for testing $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$. This is because:

- $F^* = (T^*)^2$
- ► $F(1-\alpha; 1, n-2) = t^2(1-\alpha/2; n-2)$

ANOVA Table for Simple Regression

Source	SS	d.f.	MS=SS/d.f.	F*
of Variation				
Regression	$SSR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$	1	MSR = SSR/1	MSR/MSE
Error	$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$	n – 2	MSE = SSE/(n-2)	
Total	$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$	n – 1		

Reading: Heights

Source	SS	d.f.	MS=SS/d.f.	F*
of Variation				
Regression	SSR = 1234	1	MSR = 1234	245
Error	SSE = 4659	926	MSE = 5.03	
Total	SSTO = 5893	927		

- Test whether there is a linear association between parent's height and child's height at significance level $\alpha = 0.01$.
- ► $F(0.99; 1, 926) = 6.66 < F^* = 245$, so reject $H_0: \beta_1 = 0$ and conclude that there is a significant linear association between parent's height and child's height.

Coefficient of Determination

Coefficient of Determination R^2

 R^2 is a descriptive measure for **linear association** between X and Y:

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$
.

► Heights: $R^2 = \frac{1234}{5893} = 0.209$. So 20% of variation in child's height may be explained by the variation in parent's height.

Properties of R²

- $ightharpoonup 0 < R^2 < 1.$
 - ► In simple linear regression, $R^2 = r_{Xy}^2$.
- If all observations fall on one straight line, then $R^2 = 1$.
 - X accounts for all variation in the observations.
- If the fitted regression line is horizontal, i.e., $\hat{\beta}_1 = 0$, then $R^2 = 0$.
 - X is of no use in explaining variation in the observations.
 - ► There is no evidence of linear association between *X* and *Y* in the data.

Figure:

Caution when Interpreting R²

Is any of the following statements true?

- ► "A large R² means that the estimated regression line must be a good fit of the data."
- "A near zero R² means that X and Y are not related."

If the relationship between *X* and *Y* is indeed linear, is any of the following statements true?

- ► "A large R² means that there must be a (statistically) significant linear association between X and Y ."
- "A near zero R² means that there is no (statistically) significant linear association between X and Y ."