Baby	Physics Applications				Integrals of Hyperbolic properties		
$\int_{a}^{b} c dx = c(b - a) \qquad \int_{a}^{b} x dx =$	$= \frac{b^2}{2} - \frac{a^2}{2} \qquad \int_a^b x^2 dx = \frac{b^3}{3} - \frac{a^3}{3}$	Work Done Along a Line $W = \int_{a}^{b} F(x)dx$ $[W = force \times (x), given x = distance]$		Hooke's Law for Springs $W = \int_{a}^{b} kx dx$ $a \rightarrow b = \Delta length(spring)$		$\int sinh(u) = cosh(u) + C$	$\int cosh(u) = sinh(u) + C$
Fundamental Theorems of Baby Food		Lifting Objects $W = \int_{0}^{b} weight \cdot (height - x) dx$		Pumping Liquid $W = \int_{-\infty}^{b} weight \cdot (height - x) \cdot \Delta V \text{ olume } dx$		$\int tanh(u) = ln[cosh(u)] + C$	$\int coth(u) = ln[sinh(u)] + C$
Fund.Theorem.Calc.1 $F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$			nt Surface	Fluid Force on a Vert Plate		$\int csch(u) = \ln[\tanh(\frac{u}{2})] + C$	$\int sec(u) = tan^{-1}[sinh(u)] + C$
Integrals of Trig		$F = weight \cdot height \cdot area$		$W = \int_{a} weight \cdot (strip \ depth) \cdot$ $(length \ of \ strip) \ dx$ $\mathbf{Center \ of \ Mass} = \frac{1}{mass}$ $\overline{y} = \frac{\int_{a}^{b} (weight) \times (\frac{1}{2}) \times [f^{2}(x) - g^{2}(x)] \ dx}{\int_{a}^{b} [f(x) - g(x)] \ dx}$		$\int csch^2(u) = -coth(u) + C$	$\int sech^2(u) = tanh(u) + C$
Integrals of Trig $sin(x) dx = -cos(x) + C \qquad \int cos(x) dx = sin(x) + C$		Center of Mass = $\frac{1}{muxs}$ $\overline{x} = \frac{\int_{a}^{b} (weight) \times (x) \times [f(x) - g(x)] dx}{\int_{a}^{b} [f(x) - g(x)] dx}$				$\int csch(u)coth(u) = -coth(u) + C$	$\int sech(u)tanh(u) = -sech(u) +$
					$csch^{-1}(x) = sinh^{-1}(\frac{1}{x})$	$sech^{-1}(x) = cosh^{-1}(\frac{1}{x})$	
$an(x)dx = \ln \sec(x) + C$ $\int \cot(x) dx = \ln \sin(x) + C$		In() properties				$coth^{-1}(x) = tanh^{-1}(\frac{1}{x})$	
$\int \sec^2(x) dx = \tan(x) + C$	$\int csc^2(x)dx = -cot(x) + C$	$ln(b \cdot a) = ln(b) + ln(a)$		$ln(\frac{b}{a}) = ln(b) - ln(a)$			
		$ln(\frac{1}{x}) = -ln(x)$		$ln(x^r) = r \times ln(x)$		Derivatives of Hyperbolic properties	
$\int \sec(x) dx = \ln \left \sec(x) + \tan(x) \right $	$\int \csc(x) dx = -\ln \csc(x) + \cot(x) $	$\frac{d}{dx}ln(u) = \frac{1}{u}\frac{du}{dx}$		$\int_{u}^{1} du = \ln u + C$		$\frac{d}{dx}sinh^{-1}(u) = \frac{1}{\sqrt{1+u^2}}\frac{du}{dx}$	$\frac{d}{dx}cosh^{-1}(u) = \frac{1}{\sqrt{u^2 - 1}}\frac{du}{dx}$
$\int sec(x)tan(x) dx = sec(x) + C$	$\int \csc(x)\cot(x) \ dx = -\csc(x) + C$	$\int \frac{f'(x)}{f(x)} du = \ln f(x) + C$		$\int_{-1}^{x} \frac{1}{t} dt = \ln(x)$		$\frac{d}{dx}tanh^{-1}(u) = \frac{1}{1-u^2}\frac{du}{dx}$	$\frac{d}{dx}coth^{-1}(u) = \frac{1}{1-u^2}\frac{du}{dx}$
$\int \sec^2(x) dx = \tan(x) + C$		<i>b</i>		I 	$\frac{d}{dx}csch^{-1}(u) = -\frac{1}{ u \sqrt{1+u^2}}\frac{du}{dx}$	$\frac{d}{dx}sech^{-1}(u) = -\frac{1}{u\sqrt{1-u^2}}\frac{d}{dx}$	
J		$\int_{a} ln(.$	(x)dx = USE Integ	gration by	y Parts	Integrals of Inverse	Hyperbolic properties
Integrals of Inverse Trig		More e and In() properties			rties	$\int \frac{1}{\sqrt{n^2+n^2}} du = \sinh^{-1}(\frac{u}{a}) + C$	$\int \frac{1}{\sqrt{u^2 - a^2}} du = \cosh^{-1}(\frac{u}{a}) + C$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}(\frac{x}{a}) + C$	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} (\frac{x}{a}) + C$	$\frac{d}{dx}e^u = e^u \frac{du}{dx}$	$e^{\ln(x)} = x$		$ln\left(e^{x}\right)=x$	$\int \frac{1}{a^2 - u^2} du = \frac{1}{a} \tanh^{-1} \left(\frac{u}{a} \right) + C$	$\int_{\frac{a^2-u^2}{a^2-u^2}} du = \frac{1}{a} \coth^{-1}(\frac{u}{a}) + C$
$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \frac{y}{a} + C$		$\int e^u \ du = e^u + C$	$e^{-x} = \frac{1}{e^x}$		a ralph b production		
Area Under Curve		$e^{x_1} \cdot e^{x_2} = e^{x_1 + x_2}$	$e^{x_1}/e^{x_2} = e^{x_1-x_2}$		$(e^{x_1})^{x_2} = e^{x_1 \cdot x_2}$	$\int \frac{1}{u\sqrt{a^2+u^2}} du = -\frac{1}{a} csch^{-1} \frac{u}{a} + C$	$\int \frac{1}{u\sqrt{a^2-u^2}} du = -\frac{1}{a} \operatorname{sech}^{-1} \left(\frac{u}{a} \right)$
Top-to-bottom	Right-to-left	$a^x = e^{x \cdot \ln(a)}$	$\frac{d}{dx}a^{u} = a^{u} \ln(a)(\frac{du}{dx})$		$\int a^u \ du = \frac{a^u}{\ln(a)} + C$	Integration by Parts	
$A(x) = \int_{a} [f(x) - g(x)] dx$	$A(y) = \int_{c} [f(y) - g(y)] dy$	log() properties				$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x) dx$	
Vol. by Rotation (x-axis) $V = \int_{a}^{b} \pi \left[R(x) \right]^{2} dx$	Vol. by Rotation (y-axis) $V = \int_{0}^{d} \pi [R(y)]^{2} dy$	$log_a(b \times x) = log_a(b) + log_a(x)$ $log_a(b \times x) = log_a(b) - log_a(x)$		$\int u \times v' = uv - \int v \times du$			
Vol. by Washer Rotation	C Vol. by Washer Rotation Outer-inner (Y-Axis)	$log_a(\frac{1}{x}) = -log_a(x) \qquad log_a(x') = r$ $\frac{d}{dx}log_a u = \frac{1}{ln(a)} \frac{1}{u} \frac{du}{dx} = \frac{1}{u \times ln(a)} \frac{du}{dx}$		log	$g(x^r) = r \times log_a(x)$	$\int x^2 e^x dx$.	
Outer-inner (X-axis) $V(x) = \int_{a}^{b} \pi \left[R(x) \right]^{2} - \left[r(x) \right]^{2} dx$	$V(y) = \int_{a}^{b} \pi \left[R(y) \right]^{2} - \left[r(y) \right]^{2} dy$			$\frac{du}{u(a)} \frac{du}{dx}$	With $f(x) = x^2$ and $g(x) = e^x$, we list:		
Shell Method About Y-Axis			Hyperbolic p	roperti	es	$f(x)$ and its derivatives $g(x)$ and its integrals $x^{2} \qquad (+) \qquad e^{x}$ $2x \qquad (-) \qquad e^{x}$	
$V = \int_{a}^{b} 2\pi \left[Radius \right] \left[Height \right] dx$ $V = \int_{a}^{b} 2\pi \left[x \right] \left[f(x) \right] dx$	$V = \int_{a}^{b} 2\pi [Radius][Height] dx$ $V = \int_{c}^{d} 2\pi [y][f(y)] dx$	$sinh(x) = \frac{e^{x} - e^{-x}}{2}$ $cosh(x) = \frac{e^{x} + e^{-x}}{2}$	$tanh(x) = \frac{e^x}{e^x}$ $coth(x) = \frac{e^x}{e^x}$	+e ^{-x}	$cosh(2x) = cosh^{2}(x) + sinh^{2}(x)$ sinh(2x) = 2sinh(x)cosh(x) $cosh^{2}(x) - sinh^{2}(x) = 1$	$ \begin{array}{cccc} 2 & & & & & \\ 0 & & & & & \\ \end{array} $	
Arc Length $L(x) = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx$	Arc Length $L(y) = \int_{c}^{d} \sqrt{1 + [g'(y)]^{2}} dy$	$ cosh2(x) = \frac{cosh(2x) + 1}{2} sinh2(x) = \frac{cosh(2x) - 1}{2} $	$tanh^{2}(x) = 1 - sc$ $coth^{2}(x) = 1 + cs$		Good luck on your exam!	Integrating Powers of cos() and sin()	
	-					Qdd Powers of Cos(x) and Sin(x). $sin^2(x) + cos^2(x) = 1$	

Message from creator: if you can memorize this sheet by heart, i can

· 1000% guarantee you will do fine in Calculus I. good luck. The name mother-calculator came from the person I learned from the most (my mom) and the thing I learned from the least (using my calculator). Even Powers of Cos(x) and Sin(x) $sin^{2}(x) = \frac{1}{2} - \frac{1}{2}cos(2x)$ $cos^{2}(x) = \frac{1}{2} + \frac{1}{2}cos(2x)$

 $\mathsf{EX.}\ \int sin^4(x) dx \ = \ \int \ \left[sin^2(x) \right]^2 dx \ = \int \ \left[\ \tfrac{1}{2} - \ \tfrac{1}{2} cos(2x) \right]^2 dx$