What is claimed is:

1	1.	A genetically engineered plant, or portion thereof, comprising a recombinant nucleic
2		acid sequence that encodes a protein involved in Vitamin C biosynthesis.
1	2.	The genetically engineered plant of claim 1 wherein said plant, or portion thereof, is a
2		dicot.
1	3.	The genetically engineered plant of claim 1 wherein said genetically engineered plant
2		is Arabidopsis thaliana.
1	4.	The genetically engineered plant, or portion thereof, of claim 1 wherein said nucleic
2		acid comprises a polynucleotide that encodes GDP-mannose pyrophosphorylase.
1.	5.	The genetically engineered plant of claim 1 wherein said genetically engineered plant,
2		or portion thereof, is capable of overexpressing said recombinant nucleic acid.
1	6.	The genetically engineered plant of claim 1 wherein said genetically engineered plant,
2		or portion thereof, is capable of producing increased levels of Vitamin C.
1	7.	The genetically engineered plant of claim 1 wherein said genetically engineered plant
2		or portion thereof, has increased resistance to environmental stress compared to a
3		plant of the same species without said recombinant nucleic acid wherein said
4		environmental stress is selected from the group consisting of:
5		a) drought;
6		b) cold;
7		c) UV radiation;
8		d) air pollution;
9		e) salts;
10		f) heavy metals; and

11	g) reactive oxygen species.
1	8. The genetically engineered plant of claim 1 wherein said genetically engineered plant,
2	or portion thereof, is edible.
1	9. A genetically engineered plant, or portion thereof, comprising a recombinant nucleic
2	acid that encodes GDP-mannose pyrophosphorylase.
1	10. The genetically engineered plant of claim 9 wherein said genetically engineered plant,
2	or portion thereof, is a dicot.
1	11. The genetically engineered plant of claim 9 wherein said genetically engineered plant
2	is Arabidopsis thaliana.
	12. The genetically engineered plant of claim 9 wherein said genetically engineered plant,
2	or portion thereof, is capable of overexpressing said recombinant nucleic acid.
1	13. The genetically engineered plant of claim 9 wherein said genetically engineered plant,
2	or portion thereof, is capable of producing increased levels of Vitamin C.
1	14. The genetically engineered plant of claim 9 wherein said genetically engineered plant,
2	or portion thereof, has increased resistance to environmental stress compared to a
3	plant of the same species without said recombinant nucleic acid wherein said
4	environmental stress is selected from the group consisting of:
5	a) drought;
6	b) cold;
7	c) UV radiation;
8	d) air pollution;
9	e) salts;
10	f) heavy metals; and
11	g) reactive oxygen species.

1 15. The genetically engineered plant of claim 9 wherein said genetically engineered plant, 2 or portion thereof, is edible. 16. A method of increasing the endogenous level of Vitamin C produced in a plant, or 1 2 portion thereof, comprising overexpression of an enzyme crucial to Vitamin C 3 biosynthesis. 1 17. The method of claim 16 wherein said enzyme is GDP-mannose pyrophosphorylase. 18. The method of claim 16 wherein said plant, or portion thereof, is a dicot. 1 19. The method of claim 16 wherein said plant is Arabidopsis thaliana. 1 20. The method of claim 16 wherein said plant, or portion thereof, comprises increased 2 antioxidation capacity. 21. The method of claim 16 wherein said plant, or portion thereof, has increased resistance 1 to environmental stress compared to a plant of the same species without said 2 recombinant nucleic acid wherein said environmental stress is selected from the 3 group consisting of: 4 5 a) drought; 6 cold; b) 7 UV radiation; c) 8 air pollution d) 9 salts; e) heavy metals; and 10 f) 11 reactive oxygen species. g) 22. The method of claim 16 wherein said method produces a plant, or portion thereof, 1 2 which is edible.

23. A genetically engineered plant comprising a mutant gene that encodes a form of GDP-

mannose pyrophosphorylase. 2