Field Guide to Bayesian Data Analysis Tools: JAGS, PyMC, Stan

Chris Grubb MORS 84th Symposium June 2016

Who I am...

• Data Scientist at Systems Planning and Analysis, Inc.

M.S. Operations Research (George Mason University)

- You can find me on:
 - LinkedIn: https://www.linkedin.com/in/christophergrubb
 - Twitter: @channelgrubb

Approaches covered (and not covered) today

- JAGS
- PyMC
- Stan
- Bonus topics
- Languages not covered
 - <u>Church</u> MIT project, see <u>webChurch</u> for active development
 - Figaro a Scala-based project
 - Others <u>Probabilistic Programming Wiki</u> for more information and resources (including references, summer schools, et al.)

Why am I doing this presentation?

 Promote awareness of and access to Bayesian data analysis methods/tools

Give example uses of these methods/tools

Provide resources for additional learning

Landscape of Language Interfaces

	JAGS	PyMC	Stan
R			
Python			
Java			
MATLAB	*		
Julia			
Stata			

JAGS

<u>Just Another Gibbs Sampler</u>

- Modeling language; dialect of BUGS
- Primarily used with R (has MATLAB & Python interfaces)
- Documentation and examples available with <u>installer</u>, <u>available through SourceForge</u>
- R interface requires <u>rjags</u> and <u>coda</u> package used for graphical results analysis

Graphics examples from:

http://www.johnmyleswhite.com/notebook/2010/08/29/mcmc-diagnostics-in-r-with-the-coda-package/

Stan

- Distinct modeling language with <u>multiple interfaces</u>
- Excellent documentation, including a detailed language manual, a large number of examples, and well-developed case-studies
- Robust R interface + <u>Shinystan</u> (<u>online demo</u>)
- Multiple inference methods (primarily NUTS/HMC)
- Interfaces through many other languages
- Strong Bayesian data analysis community support

PyMC 3

- Bayesian modeling package written entirely in Python
- PyMC 2 still available; PyMC 3 under active development; API documentation here
- Rich (and growing) set of examples
- Multiple sampling methods: MH, NUTS/HMC, et al.
- Improved model building syntax
- Out-of-box support for model diagnostics and graphics

Bayesian Reliability

Hamada, Wilson, Reese, and Martz (2008)

- The following examples are based on Bayesian Reliability
- Modeling the failure counts of a single processor
- Problem basics: failure data were collected from 47 separate shared memory processors (SMP) over 15 months of their operation; we'll focus on SMP #2
- We'll show excerpts of implementations in PyMC3

Failures by month for SMP #2

Model 1: Homogeneous Poisson Process (HPP)

Model 1: Homogeneous Poisson Process (HPP)

Model 2: Non-Homogeneous Poisson Process using a Power Law Process model (graphical)

Model 2: Non-Homogeneous Poisson Process using a Power Law Process Model (PyMC3)

```
with pm.Model() as SMP2 model:
   # priors
   eta = pm.Gamma('eta', alpha=15, beta=1)
   phi = pm.Gamma('phi', alpha=2, beta=2)
   # Model and model error
   intensity 1 = ((SMP2 failures.b.values**phi) - (SMP2 failures.a.values**phi))/(eta**phi)
   # Data likelihood
   y = pm.Poisson('y', mu=intensity 1, observed=SMP2 failures.failures)
   SMP2 trace = pm.sample(6000, random seed=20160622)
Applied log-transform to eta and added transformed eta log to model.
Applied log-transform to phi and added transformed phi log to model.
Assigned NUTS to eta log
Assigned NUTS to phi log
 [-----] 6000 of 6000 complete in 6.7 sec
```

Results – Marginal Posteriors of $oldsymbol{\phi}$ and $oldsymbol{\eta}$

Plotting $\lambda(t)$ based on last 100 samples of MCMC trace

Simulated failure count data

 Simulated data show that in the first month there are more failures than in the 15 month

Given that E[\$\phi\$ | Data]
 ~ 0.92, we see that the failure rate improvements are modest over time

Books for your bookshelf

Sample of Web Resources

Links in addition to those directly to PyMC3, Stan, and JAGS pages

- <u>Dr. Kathryn Laskey</u> (GMU) posts the slides and assignments for her entire course on <u>Bayesian Inference and Decision Theory</u> (<-- great course!)
- <u>Dr. Andrew Gelman's blog</u> (see e.g. <u>post on Stan and PyMC</u>)
- The <u>Stan Google Group</u> is a treasure trove of discussions on not only Stan, but Bayesian modeling in general. Also, core developers and other experts are very engaging and willing to answer questions!
- Dr. Thomas Twiecki (Quantopian, key contributor to PyMC3) has a great blog with examples of PyMC3 implementations
- <u>Duke offers a course in Computational Statistics</u> based in Python, <u>which has nice resources to Python stats</u>, <u>PyMC 2 and 3</u>, and <u>adjacent projects</u>
- <u>Bayesian Methods for Hackers</u>: a popular introduction to Bayesian methods
- Martyn Plummer's <u>JAGS News blog</u>

Thank you!