Coeficiente de concordancia.

Si se separa un conjunto de n patrones (conjunto de evaluación) que se conoce su clasificación (y_i), se requiere determinar un coeficiente que determina la bondad de esta clasificación.

Este problema también puede ser visto como la determinación de la *concordancia* entre dos o más jueces que califican a un número de sujetos en diferentes categorías.

Para crear este coeficiente se genera una tabla que contiene las proporciones conjuntas de las q categorías para los valores entregados por el modelo y los valores conocidos.

	Conjunto de evaluación				
	<i>y</i> ₁	y_2		Y_q	Total
	p_{11}	p_{12}		p_{1q}	$p_{1.}$
	p_{21}	p_{22}		p_{2q}	$P_{2.}$
	P_{q1}	P_{q2}		P_{qq}	$P_{q.}$
Total	$p_{.1}$	$p_{.2}$		pq	1

El total de proporciones en acuerdos observados es: $p_o = \sum_{i=1}^{q} p_i$

El total de proporciones de acuerdos esperados es: $p_e = \sum_{i=1}^{\infty} p_{i,i}$

El coeficiente de concordancia (coeficiente *Kappa*) entre los valores estimados por el modelo y los valores verdaderos del conjunto de evaluación es:

$$\hat{\overline{K}} = \frac{\boldsymbol{p}_o - \boldsymbol{p}_e}{1 - \boldsymbol{p}_e}$$

Este coeficiente está definido en el intervalo [1,-1].

Interpretación: -k=1: Total concrdancia.

- k=0 : No existe concordancia.

- k=-1: Total discordancia.

Existen dócimas de hipótesis e intervalos de confianza para este coeficiente.

La desviación estándar para el coeficiente es:

$$\sigma_{\kappa} = \frac{\sqrt{A + B - C}}{(1 - p_e)\sqrt{n}}$$

Con: $A = \sum_{i=1}^{q} p_{ii} [1 - (p_{i.} + p_{.i})(1 - \hat{\kappa})]^2$

$$B = (1 - \Re)^2 \sum_{i \neq j} p_{ij} (p_i + p_{j.})^2$$

$$C = \left[\Re - p_e (1 - \Re)\right]^2$$

Los intervalos de confianza para un nivel de confianza Con=1-a son:

$$\kappa \pm z_{\alpha/2} \sigma_{\kappa}$$