Premières notions sur les ensembles

Exercice 1 - Ensembles définis par extension et compréhension. 1. Définir les ensembles suivants en extension :

- (a) $A = \{x \in \mathbb{Z} : 10 \le x \le 17\}$;
- (b) $B = \{x \in \mathbb{Z} : x^2 \le 24\}$;
- (c) $C = \{x \in \mathbb{Z} : 6x^2 + x 1 = 0\}$ (indice : $6x^2 + x 1 = (3x 1)(2x + 1)$);
- (d) $D = \{x \in \mathbb{R} : 6x^2 + x 1 = 0\}.$
- 2. Définir les ensembles suivants compréhension :
 - (a) $E = \{1, 2, 7, 14\}$
 - (b) $F = \{2, 5, 8, 11, 14, 17, \ldots\}$;
 - (c) $G = \{1; \frac{1}{2}; \frac{1}{4}; \frac{1}{8}; \frac{1}{16}; \frac{1}{32}; \ldots \}.$

Exercice 2 - Egalité entre ensembles. Dans chacun des cas suivants, déterminer si les ensembles sont égaux ou pas :

- 1. $A = \{x \in \mathbb{R} : x > 0\}$ et $B = \{x \in \mathbb{R} : x \ge |x|\}$;
- 2. $A = \{x \in \mathbb{R} : x \ge 0\}$ et $B = \{x \in \mathbb{R} : x \ge |x|\}$;
- 3. $A = \{x \in \mathbb{R} : x > 0\} \text{ et } B = \{x \in \mathbb{R} : x \le |x|\};$
- 4. $A = \mathbb{Z} \text{ et } B = \{x \in \mathbb{Z} : x^2 x \text{ pair}\};$
- 5. $A = \{x \in \mathbb{N} : x \le 20, x \text{ impair et non divisible par 3} \}$ et $B = \{x \in \mathbb{Z} : x \le 20 \text{ et 24 divise } x^2 1\}$.

Exercice 3 - Union et intersection. Dans chacun des cas suivants, donner faire l'union et l'intersection des ensembles *A* et *B* suivants.

- 1. $A = \{x \in \mathbb{N} : x \text{ est impair}\}\ \text{et } B = \{x \in \mathbb{N} : x \text{ est divisible par 3}\}.$
- 2. $A = \{x \in \mathbb{R} : 0 \le x \le 3\}$ et $B = \{x \in \mathbb{R} : -2 < x \le 1\}$.
- 3. $A = \{(x,y) \in \mathbb{R}^2 : x + y \le 2\}$ et $B = \{(x,y) \in \mathbb{R}^2 : 2 < 3x y\}$ (on pourra représenter le résultat sur un repère orthonormé).

Exercice 4 - Ensemble des parties. 1. Quel est le nombre d'éléments de {}? Et de {{}}?

- 2. Quel ensemble contient plus d'éléments : {1,2,3,4} ou {{1,2},{3}}?
- 3. Est-ce que $\{\} \in \{\{1,2\}, \{3,4,5\}\} \}$? Et $\{\} \subseteq \{\{1,2\}, \{3,4,5\}\} \}$?
- 4. On rappelle que $\mathcal{P}(A)$ est l'ensemble des parties de l'ensemble A. Si $A = \{\alpha\}$, déterminer $\mathcal{P}(A)$ et $\mathcal{P}(\mathcal{P}(A))$.
- 5. Est-ce qu'il existe un ensemble A tel que $\mathcal{P}(A) = \{\}$?
- 6. Soit $a \in A$. Est-ce que le suivant est toujours vrai / toujours faux / ni l'un ni l'autre (dans ce cas, donnez des exemples et contre-exemples) :

$$a \in \mathcal{P}(A)$$
 , $\{a\} \in \mathcal{P}(A)$, $a \subseteq \mathcal{P}(A)$, $\{a\} \subseteq \mathcal{P}(A)$.

Exercice 5 - Compréhension d'ensemble et lien avec la logique. Soient P(x) et Q(x) deux propriétés sur l'entier x. On définit les ensembles $A = \{x \in \mathbb{N} : P(x)\}$ et $B = \{x \in \mathbb{N} : Q(x)\}$.

1. Par exemple, on peut considérer, P(x) la propriété "x est divisible par 4" et Q(x) la propriété "x est divisible par 2". Définir les ensembles A et B par extension?

- 2. En général, si pour tout $x \in \mathbb{N}$, la propriété P(x) implique Q(x), alors quel est le rapport entre A et B?
- 3. Écrivez les ensembles $\{x \in \mathbb{N} : \neg P(x)\}$ et $\{x \in \mathbb{N} : P(x) \land Q(x)\}$ et $\{x \in \mathbb{N} : P(x) \lor \neg Q(x)\}$ à l'aide des opérateurs ensemblistes sur A et B.

Exercice 6 - Une nouvelle opération sur les ensembles. On définit un opérateur * sur les ensembles de la manière suivante :

$$A*B=\overline{A\cap B}.$$

- 1. Dessiner, sous la forme de diagramme de Venn la représentation de A * B.
- 2. Employer les lois de l'algèbre des ensembles pour démontrer les expressions suivantes :
 - (a) $A * A = \overline{A}$;
 - (b) $(A * A) * (B * B) = A \cup B$;
 - (c) $(A * B) * (A * B) = A \cap B$.

Exercice 7 - Arbres. On considère les affirmations suivantes :

- J'ai planté tous mes arbres onéreux l'an passé.
- Tous mes arbres fruitiers sont dans mon verger.
- Aucun des arbres fruitiers n'a été planté l'an passé.
- J'ai un orme, qui est un arbre onéreux, mais pas dans mon verger.

En utilisant la notion d'ensembles, dire si les affirmations suivantes sont justes ou fausses ou impossibles à répondre.

- 1. Aucun de mes arbres fruitiers n'est onéreux.
- 2. Tous mes arbres plantés l'an passé l'ont été dans le verger.
- 3. J'ai planté au moins un arbre l'an passé.

Premières notions sur les ensembles (Méthodes)

Comment définir un ensemble?

Il y a quatre façons de définir un ensemble :

- On donne la liste des éléments constituant cet ensemble, on dit qu'il est défini en *extension*.
- On donne une propriété qui caractérise les éléments constituant cet ensemble, on dit qu'il est défini en *compréhension*.
- On construit un ensemble en appliquant des opérations sur d'autres ensembles.
- On verra plus tard qu'on peu définir un ensemble par induction.

\blacksquare Comment montrer que $A \subset B$?

- Si A est défini en extension, pour tout élément de A on vérifie qu'il appartient à B.
- Si *A* et *B* sont définis en compréhension, on considère un élément *x* qui vérifie la propriété définissant les éléments de *A* et on montre qu'il vérifie aussi la propriété définissant les éléments de *B*.

r Comment montrer que $A \not\subset B$?

On exhibe un élément qui est dans *A* mais pas dans *B*.

Solution Comment montrer que A = B?

On montre que $A \subset B$ puis $B \subset A$.

Rappels sur les relations ensemblistes :

Quelques propriétés sur les opérations sur les ensembles qui doivent facilement être retrouvées à partir des diagrammes de Venn. On considère que A, B et C sont des sous-ensembles d'un univers Ω .

$$A \cap \emptyset = \emptyset \quad A \cup \emptyset = A$$

$$A \cap \Omega = A \quad A \cup \Omega = \Omega$$

$$A \cap A = A \quad A \cup A = A$$

$$A \cap B = B \cap A \quad A \cup B = B \cup A$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \quad \overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$A \cap (B \cap C) = (A \cap B) \cap C \quad A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap \overline{A} = \emptyset \quad A \cup \overline{A} = \Omega$$
Si $B \subset A$ alors $A \cap B = B$ Si $B \subset A$ alors $A \cup B = A$

Premières notions sur les ensembles (Solutions)

Correction 1 1. (a) $A = \{10, 11, 12, 13, 14, 15, 16, 17\}$;

(b)
$$B = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\};$$

(c)

$$6x^{2} + x - 1 = 0 \Leftrightarrow (3x - 1)(2x + 1) = 0$$
$$\Leftrightarrow 3x - 1 = 0 \text{ ou } 2x + 1 = 0$$
$$\Leftrightarrow x = \frac{1}{3} \text{ ou } x = -\frac{1}{2}$$

Or on remarque que $\frac{1}{3}$ et $-\frac{1}{2}$ ne sont pas des entiers, ainsi $C = \emptyset$.

- (d) D'après la question précédente, $D = \left\{-\frac{1}{2}, \frac{1}{3}\right\}$.
- 2. (a) $E = \{2^p 7^q : (p,q) \in \{0,1\}^2\}$ ou $E = \{n \in \mathbb{N} : n \text{ divise } 14\}$.
 - (b) $F = \{3n + 2 : n \in \mathbb{N}\}.$
 - (c) $G = \{\frac{1}{2^n} : n \in \mathbb{N}\}.$

Correction 2 1. A et B ne sont pas égaux : $A \neq B$. En effet, $0 \notin A$ alors que $0 \in B$. Dans les faits, $A = \mathbb{R}_+^*$ et $B = \mathbb{R}_+$.

- 2. $A \subset B$ car si $x \ge 0$ on a |x| = x.
 - $B \subset A$ car si $x \ge |x|$ alors $x \ge 0$ puisque $|x| \ge 0$.
- 3. A et B ne sont pas égaux : $A \neq B$. En effet, $0 \notin A$ alors que $0 \in B$. Dans les faits, $A = \mathbb{R}_+^*$ et $B = \mathbb{R}_-$.
- 4. A et B sont égaux : A = B. En effet, $B \subset A$ car tous les éléments de B sont par définition des éléments de $\mathbb{Z} = A$.

Soit maintenant $x \in A$, alors il y a deux possibilités :

- soit x est pair, alors il existe $p \in \mathbb{Z}$ tel que x = 2p. Donc $x^2 = 4p^2$, et

$$x^2 - x = 4p^2 - 2p = 2(2p^2 - p)$$

est pair. Dans ce cas, $x \in B$.

- Soit x est impair, alors il existe $p \in \mathbb{Z}$ tel que x = 2p + 1. Donc $x^2 = 4p^2 + 4p + 1$, et

$$x^{2} - x = 4p^{2} + 4p + 1 - 2p - 1 = 4p^{2} + 2p = 2(2p^{2} + p)$$

est pair. Dans ce cas, $x \in B$.

Par conséquent $A \subset B$, et donc A = B.

Remarque: Que ce passe t'il si on met \mathbb{N} à la place de \mathbb{Z} .

5.
$$(-5)^2 - 1 = 24$$
 donc $-5 \in B$ et $-5 \notin A$

Donc $A \neq B$.

Correction 3 1. L'ensemble des nombres entiers naturels impairs est l'ensemble des nombres entiers naturels congrus à 1, 3 ou 5 modulo 6, c'est-à-dire qui peuvent s'écrire 6p + 1, 6p + 3 ou 6p + 5, avec $p \in \mathbb{N}$.

L'ensemble des entiers naturels multiples de 3 est l'ensemble des entiers naturels congrus à 0 ou 3 modulo 6, c'est-à-dire qui peuvent s'écrire 6q ou 6q + 3, avec $q \in \mathbb{N}$.

Donc

$$A \cup B = \{x \in \mathbb{N} : x \text{ est congru à } 0, 1, 3 \text{ ou } 5 \text{ modulo } 6\}$$

= $\{x \in \mathbb{N} : \exists p \in \mathbb{N} \ x \in \{6p, 6p + 1, 6p + 3, 6p + 5\}\}.$

- 2. $A \cup B = \{x \in \mathbb{R} : -2 < x \le 3\} =]-2,3].$
- 3. $A \cup B = \{(x,y) \in \mathbb{R}^2 : y \le 2 x \text{ ou } y < 3x + 2\}.$
- 1. $A \cap B$ est l'ensemble des figures géométriques qui sont à la fois des losanges et des rectangles, c'est donc l'ensemble des carrés.
- 2. $A \cap B = \{x \in \mathbb{R} : 0 \le x \le 1\} = [0, 1].$
- 3. $A \cup B = \{(x, y) \in \mathbb{R}^2 : y \le 2 x \text{ et } y < 3x + 2\}.$

Correction 4

Correction 5

Correction 6

$$A*B=\overline{A\cap B}.$$

Précisons que tous les ensembles sont inclus dans un *univers* Ω .

1. Diagramme de Venn de A * B:

2. (a) Soit A un ensemble (inclus dans Ω), alors $A \cap A = A$ (par idempotence de l'intersection). Donc

$$A * A = \overline{A}$$
.

(b) Soient A et B deux ensembles (inclus dans Ω), alors, d'après la question précédente, $A*A=\overline{A}$ et $B*B=\overline{B}$. Par conséquent, en utilisant les (deux) lois de Morgan,

$$(A*A)*(B*B) = \overline{A}*\overline{B} = \overline{\overline{A} \cap \overline{B}} = \overline{\overline{A}} \cup \overline{\overline{B}} = A \cup B.$$

(c) Soient A et B deux ensembles (inclus dans Ω), alors, d'après la question précédente, $(A * B) * (A * B) = \overline{A * B}$. Ainsi, en utilisant les lois de Morgan,

$$(A * B) * (A * B) = \overline{\overline{A \cap B}} = A \cap B.$$

Correction 7 On distingue 4 ensembles d'arbres d'après l'énoncé :

- soit A l'ensemble des arbres fruitiers,
- soit B l'ensemble des arbres onéreux,
- soit C l'ensemble des arbres plantés l'an passé,
- soit D l'ensemble des arbres qui sont dans mon verger,

Notons également *E* l'ensemble des arbres. Les 4 ensembles *A*, *B*, *C* et *D* sont inclus dans *E*, c'est notre univers (de travail).

Les affirmations de l'énoncé nous donnent des informations sur ces ensembles :

- la première affirmation nous indique que $B \subset C$,
- la deuxième que $A \subset D$,
- la troisième que $A \cap C = \emptyset$,
- et la quatrième que $B \nsubseteq D$ et que $B \ne \emptyset$ (c'est-à-dire B contient au moins un élément).

Traduisons maintenant les assertions suivantes en termes mathématiques, et essayons de déterminer si elles sont justes, fausses ou impossibles à répondre.

- 1. Cette assertion se traduit par $A \cap B = \emptyset$. Elle est vraie car $B \subset C$ et $A \cap C = \emptyset$, ce qui implique, $A \cap B \subset A \cap C = \emptyset$.
- 2. Cette assertion se traduit par $C \subset D$. Elle est fausse car $B \nsubseteq D$ ce qui implique qu'il existe $x \in B$ tel qu $x \notin D$. Or $B \subset C$, donc $x \in C$ (et $x \notin D$).
- 3. Cette assertion se traduit par $C \neq \emptyset$. Elle est vraie car $B \neq \emptyset$, donc B contient au moins un élément, or $B \subset C$, donc C contient au moins un élément.