

$$-\frac{L_{3}}{\sqrt{2}} - \frac{L_{4}}{\sqrt{2}} - \frac{L_{5}}{\sqrt{2}} - \frac{L$$

-> comsidera modo net | 2,3,4 | coima de modor ma onigem | 12,44 | = 0.

	1					- 1	110
	Oi	<i>d</i> :	ai	di.	Uffset	1 R/12 !	
021	0	de	U	1-900	41	P	OT
1-12	900	da	0	0	L2	P	1
273	-03	0	0	-900	00	R	27
3-19	-04	0	0	90	001	- <u>-</u> 15	$\frac{3}{3}$
4.76	96	72	0	0	00	- Ř -	144-
							10

$$CT = \begin{bmatrix} -C_3 \cdot S_5 - C_4 \cdot C_5 \cdot S_3 & C_4 \cdot S_3 & C_5 \cdot S_4 & C_5 \cdot S_3 \\ -C_5 \cdot S_4 & C_5 \cdot S_4 & C_5 \cdot S_3 & C_5 \cdot S_3 \\ -C_5 \cdot S_4 & C_5 \cdot S_3 & C_5 \cdot S_3 & C_5 \cdot S_3 \\ -C_5 \cdot S_4 & C_5 \cdot S_4 & C_5 \cdot S_3 & C_5 \cdot S_3 & C_5 \cdot S_3 \\ -C_5 \cdot S_4 & C_5 \cdot S_4 & C_5 \cdot S_3 & C_5 \cdot S_3 & C_5 \cdot S_3 \\ -C_5 \cdot S_4 & C_5 \cdot S_4 & C_5 \cdot S_3 & C_5 \cdot S_3 & C_5 \cdot S_3 \\ -C_5 \cdot S_4 & C_5 \cdot S_4 & C_5 \cdot S_3 & C_5 \cdot S_3 & C_5 \cdot S_3 & C_5 \cdot S_3 \\ -C_5 \cdot S_4 & C_5 \cdot S_4 & C_5 \cdot S_3 & C_5 \cdot S$$

o Cimemotica Imansa do Brago: ol e d2-) altera a pos. em y

(=)
$$|d_2 = \xi_2 - L_5 \cdot \alpha_y - L_2|$$

 $|d_1 = \xi_z - L_5 \cdot \alpha_z - L_1|$

Nula: Comhecendo/determinando 63 e 64 também é possive/ comhecen d1 e d2 combudo esta é a solução mais fiave/tondempembente do enno em 63 e 64.

o Cimematica Imvensa do pumho: Θ_3 , Θ_4 e Θ_E symboliz: $\frac{2}{G} = \frac{2}{10} \cdot \frac{1}{10} = \frac{1}{10} = \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10} = \frac{1}{10} \cdot \frac{$

$$= \begin{bmatrix} -h_z & -s_z & -a_z & d_1 - t_2 + L_1 \\ -h_x & -s_x & -a_x & -t_2 \\ N_y & s_y & a_y & d_2 - d_2 - L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(=)
$${}_{0}^{2}T = {}_{0}^{2}T = {}_{0}^{2}$$

- Schemos que: e vomos entou que os solucies possivois sou: $t_0 = \frac{som(\omega)}{cos(\omega)}$ = $\frac{som(\omega)}{cos(\omega)}$ =

$$\frac{|S_3.S4|}{|C_3.S4|} = \frac{-\alpha x}{-\alpha z} \quad (=) |O_3 = 10^{-1} (-\alpha x, -\alpha z)|$$

$$\frac{S4.S5}{-C5.S4} = \frac{Sy}{-Ny} = \frac{10}{10} \left[\frac{Sy}{-Ny} \right]$$

$$- \left| \begin{array}{ccc} C_3 \cdot S_4 &= -\alpha_Z \\ S_3 \cdot S_4 &= -\alpha_Z \end{array} \right| \left| \begin{array}{ccc} C_3^2 S_4 &= -C_3 \cdot \alpha_Z \\ S_3^2 \cdot S_4 &= -S_3 \cdot \alpha_Z \end{array} \right| \left| \begin{array}{ccc} S_4 \left(C_3^2 + S_3^2 \right) &= -C_3 \cdot \alpha_Z - S_3 \cdot \alpha_Z \\ \end{array} \right|$$

(=)
$$| S_{4} = -C_{3} \cdot \alpha_{z} - S_{3} \cdot \alpha_{x} |$$

 $| C_{4} = C_{3} \cdot \alpha_{z} - S_{3} \cdot \alpha_{x} |$
 $| C_{4} = C_{3} \cdot \alpha_{z} - S_{3} \cdot \alpha_{x} |$
 $| C_{4} = C_{3} \cdot \alpha_{z} - S_{3} \cdot \alpha_{x} |$
 $| C_{4} = C_{3} \cdot \alpha_{z} - S_{3} \cdot \alpha_{x} |$

Junneadu a cimematica Imbersa.

* Rolemboan que; Sim & + COS 0 = 1 (Regnos da trigo mometria)