

How can we represent 3D volume data for Deep Learning?

Voxels

We define a 3D grid where each voxel (or cube) can be part of the object represented in different colors

- Straight forward format that can be processed with 3D Convs
- · Resolution is limited by the grid
- High resolution objects get very large
- Processing with 3D Convs is very slow

Points

We define a list of 3D points that sit on the surface of the object represented in different colors

- Low storage size with very high resolution
- We don't know how the points are connected
- The number of points varies making it hard to represent it as an output of a neural network

Meshes

We define a list of 3D points and how they are connected to make up the surface

- Low storage size and can easily calculated normals
- Resolution usually lower than point clouds
- Even harder to learn as a neural network output because the data has order that needs to be learned

Implicit Functions

We train a fully connected neural network to represent the object through its decision boundary

- Unlimited (continuous) resolution
- Made to easily integrate with neural networks
- Storage size is currently larger than other formats
- Storage size has to be defined before training through the architecture

3D Shape Representation

Occupancy Networks, Mescheder et al. CVPR 2019

Take a 3D coordinate and predict whether or not it's inside the object

3D Shape Representation

DeepSDF, Park et al. CVPR 2019

Take a 3D coordinate and predict its distance from the surface

3D Object Representation

Take a point coordinate and predict its color in the volume or scene

Scene Rendering & View Synthesis

NeRF, Mildenhall et al. ECCV 2020

Scene Rendering & View Synthesis

NeRF, Mildenhall et al. ECCV 2020

Take a pixel coordinate and predict its color in the image

So, this is really all we need to create these cool results?

Well, almost....

Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains Tancik et al. NeurIPS 2020

NeRF, Mildenhall et al. ECCV 2020

Block-NeRF, Tancik et al., 2022

Thank You

Contact

Paul-Louis Pröve Geschäftsführer

<u>paul-louis.proeve@tensora.co</u> <u>linkedin.com/in/gopietz/</u>

Tensora GmbH Axel-Springer-Platz 3 20355 Hamburg tensora.co

