Tutorial 3 Question

- Text: Ch. 43: Pr. 48.
- $1.85~\mu{\rm Ci}$ of $^{57}_{27}{
 m Co}$, what would be the dose rate (${
 m rad/day}$) $_{27}^{57}$ Co emits $122~\mathrm{keV}$ γ -rays. If a $70~\mathrm{kg}$ person swallowed percent of the γ -ray energy is deposited in the body. averaged over the whole body? Assume that 50
- Other information: 9
- $1 \text{ keV} = 1.60 \times 10^{-16} \text{ J.}$
- Cobalt-57 has a half-life of 270 days.

Solution, contd

emitted per decay. To calculate the energy absorbed we We are given the activity of the sample and the energy first need the total number of decays in a day,

$$\Delta N = \left| \frac{dN}{dt} \right| \Delta t$$

$$= 1.85 \times 10^{-6} \text{ Ci} \times \frac{3.70 \times 10^{10} \text{ decays/s}}{1 \text{ Ci}} \times 1 \text{ day} \times \frac{86400 \text{ s}}{1 \text{ day}}$$

$$5.91 \times 10^9$$
 decays.

(This assumes that the half-life of $577^{\circ}\mathrm{Co}$ is much longer than a day, so that the activity is roughly constant throughout the day.) UBC Physics 102: Tutorial 3, July 4, 2003 - p. 3/4

3

Solution

The absorbed dose is $|\operatorname{dose}_{\operatorname{abs}} = E/m|$. We want to find the dose rate,

dose rate =
$$\frac{\text{dose}_{abs}}{\Delta t} = \frac{E}{m \Delta t}$$

where $\Delta t = 1 \, \mathrm{day}$.

 $m=70 \mathrm{\ kg}$ so all we need to find is the energy absorbed We are given the mass of the absorbing material, E over interval Δt . 9

UBC Physics 102: Tutorial 3, July 4, 2003 -p. 1/4

UBC Physics 102: Tutorial 3, July 4, 2003 - p. 2/4

Solution, contd

Given the number of decays and the energy emitted per decay we can calculate the total energy absorbed (50 percent of the emitted energy),

$$E~=~50\% \times \Delta N \times ({
m energy~per~decay})$$

$$= 0.50 \times 5.91 \times 10^{9} \text{ decays} \times 122 \text{ keV} \times \frac{1.60 \times 10^{-16} \text{ J}}{1 \text{ keV}}$$

= 5.77 × 10⁻⁵ J.

So the dose rate is

dose rate =
$$\frac{E}{m \Delta t} = \frac{5.77 \times 10^{-5} \text{ J}}{70 \text{ kg} \times 1 \text{ day}} \times \frac{1 \text{ rad}}{0.01 \text{ J/kg}}$$

 $8.24 \times 10^{-5} \text{ rad/day.}$ UBC Physics 102: Tutorial 3, July 4, 2003 - p. 44