14. pohjoismainen kilpailu 30. 3. 2000

- 1. Monellako tavalla luku 2000 voidaan kirjoittaa kolmen positiivisen, ei välttämättä eri suuren kokonaisluvun summana? (Summia 1+2+3, 3+1+2 jne. pidetään samoina.)
- 2. Henkilöt $P_1, P_2, \ldots, P_{n-1}, P_n$ istuvat pöydän ympärillä tässä järjestyksessä, ja jokaisella on jokin määrä kolikoita. Alussa P_1 :llä on yksi kolikko enemmän kuin P_2 :lla, P_2 :lla yksi kolikko enemmän kuin P_3 :lla jne., aina P_{n-1} :een asti, jolla on yksi kolikko enemmän kuin P_n :llä. Sitten P_1 antaa P_2 :lle yhden kolikon, tämä puolestaan antaa P_3 :lle kaksi kolikkoa jne., aina P_n :ään asti, joka antaa P_1 :lle n kolikkoa. Kolikkojen antamista jatketaan samalla tavalla: P_1 antaa n+1 kolikkoa P_2 :lle, P_2 antaa n+2 kolikkoa P_3 :lle; tällä tavoin prosessi jatkuu, kunnes jollakin henkilöistä ei enää ole riittävästi kolikkoja, ts. hän ei kykene antamaan pois yhtä kolikkoa enemmän kuin oli juuri saanut. Sillä hetkellä kun prosessi päättyy, havaitaan, että pöydän ääressä on kaksi naapurusta, joista toisella on tasan viisi kertaa niin paljon kolikkoja kuin toisella. Määritä pöydän ääressä istuvien ihmisten lukumäärä ja pöydän ympärillä kiertävien kolikkojen yhteismäärä.
- **3.** Kolmiossa ABC kulman B puolittaja leikkaa AC:n D:ssä ja kulman C puolittaja leikkaa AB:n E:ssä. Kulmanpuolittajat leikkaavat toisensa pisteessä O. Lisäksi OD = OE. Todista, että joko ABC on tasakylkinen tai $\angle BAC = 60^{\circ}$.
- **4.** Reaaliarvoinen funktio f on määritelty, kun $0 \le x \le 1$. Lisäksi f(0) = 0, f(1) = 1 ja

$$\frac{1}{2} \le \frac{f(z) - f(y)}{f(y) - f(x)} \le 2$$

kaikille $0 \le x < y < z \le 1$, joille z - y = y - x. Osoita, että

$$\frac{1}{7} \le f\left(\frac{1}{3}\right) \le \frac{4}{7}.$$