In what follows, we will need the generating functions for the series $\{P^n\}$ and $\{AP^n\}$. Let |z| < 1. Then the generating function for $\{P^n\}$ is

$$U^{(z)}(x,B) := \sum_{n=1}^{\infty} P^n(x,B) z^n$$

and the generating function for $\{{}_{A}P^{n}\}$ is

$$U_A^{(z)}(x,B) := \sum_{n=1}^{\infty} {}_A P^n(x,B) z^n.$$

By their definitions, it is easy to see that

$$U(x,B) = \sum_{n=1}^{\infty} P^{n}(x,B) = \lim_{z \uparrow 1} U^{(z)}(x,B).$$

The return probabilities $L(x, A) = P_x(\tau_A < \infty)$ satisfy

$$L(x,A) = \sum_{n=1}^{\infty} {}_{A}P^{n}(x,A) = \lim_{z \uparrow 1} U_{A}^{(z)}(x,A).$$

Now, multiply the first-entrance and last-exit decompositions by z^n and sum over n.

$$U^{(z)}(x,B) = \sum_{n=1}^{\infty} P^{n}(x,B)z^{n}$$

$$= U_{A}^{(z)}(x,B) + \sum_{n=1}^{\infty} \sum_{j=1}^{n-1} \int_{A} {}_{A}P^{j}(x,dy)P^{n-j}(y,B)z^{n}$$

$$= U_{A}^{(z)}(x,B) + \int_{A} \sum_{n=1}^{\infty} {}_{A}P^{n}(x,dy)z^{n} \sum_{m=1}^{\infty} P^{m}(y,B)z^{m}$$

$$= U_{A}^{(z)}(x,B) + \int_{A} U_{A}^{(z)}(x,dy)U^{(z)}(y,B)$$
(9)

and

$$U^{(z)}(x,B) = U_A^{(z)}(x,B) + \int_A U^{(z)}(x,dy)U_A^{(z)}(y,B).$$
 (10)

We now consider the case when the chain Φ has an atom. We will show that the chain is either recurrent or transient, in the case when Φ is ψ -irreducible. We then use the splitting techniques to classify general chains.

Lemma 3 If Φ is ψ -irreducible and has an atom $\alpha \in \mathcal{B}^+(\mathcal{X})$, then $U(\alpha, \alpha) = \infty$ if and only if $L(\alpha, \alpha) = 1$.

Proof:

Theorem 8 If Φ is ψ -irreducible and has an atom $\alpha \in \mathcal{B}^+(\mathcal{X})$ and

- (i) if α is recurrent, then every set in $\mathcal{B}^+(\mathcal{X})$ is recurrent;
- (ii) if α is transient, then there is a countable covering of \mathcal{X} by uniformly transient sets.

Proof:

Definition 24 If $A \in \mathcal{B}(\mathcal{X})$ can be covered by a countable number of uniformly transients sets, then we call A transient.

Now we will consider chains Φ that do not have an atom and use the split chain construction.

Definition 25 The chain Φ is called recurrent if it is ψ -irreducible and $U(x, A) \equiv \infty$ for every $x \in \mathcal{X}$ and every $A \in \mathcal{B}^+(\mathcal{X})$. The chain Φ is called transient if it is ψ -irreducible and \mathcal{X} is transient.

Next we will show that the split and original chains have mutually consistent recurrent/transient classifications.

Proposition 15 If Φ is ψ -irreducible and strongly aperiodic, then Φ and $\check{\Phi}$ are either both recurrent or both transient.

Proof:

Lemma 4 For $\epsilon \in (0,1)$ we have

$$\sum_{n=1}^{\infty} K_{\epsilon}^{n}(x,A) = \frac{1-\epsilon}{\epsilon} \sum_{n=0}^{\infty} P^{n}(x,A).$$

33

Proof:

Now we can prove

Proposition 16 If Φ is ψ -irreducible, then

- (i) Φ is transient if and only if each K_{ϵ} -chain is transient.
- (ii) Φ is recurrent if and only if each K_{ϵ} -chain is recurrent.

Proof: