# **KMEANS- CLUSTERING**

#### L CƠ SỞ LÍ THUYẾT

#### 1. KHÁI NIỆM

- Thuật toán K-Means là một thuật toán phân cụm (clustering) trong học máy không giám sát (unsupervised learning). Mục tiêu của K-Means là chia tập dữ liệu thành K nhóm (cụm) sao cho các điểm dữ liệu trong cùng một cụm có độ tương đồng cao, còn các cụm khác nhau thì khác biết rõ rêt.

# 2. TỔNG QUAN VỀ VỊ TRÍ TRONG THUẬT TOÁN

- 1. Khái niệm về Phân cụm (Clustering)
- Phân cụm là một kỹ thuật trong học máy không giám sát (unsupervised learning), nhằm chia tập dữ liệu thành các nhóm (cụm) sao cho:
  - Các điểm trong cùng cụm có đặc điểm giống nhau hoặc gần nhau nhất có thể.
  - Các điểm ở cụm khác nhau thì khác biệt rõ ràng.

#### 2. Mục tiêu của Phân cụm

- Khám phá mẫu (pattern) trong dữ liệu.
- **Tóm tắt, giảm kích thước dữ liệu** để dễ phân tích.
- Hỗ trợ ra quyết định trong marketing, tài chính, hoặc nhận dạng hành vi.

# 3. Vị trí của phân cụm trong học máy

- Trong học máy (Machine Learning), phân cụm thuộc **nhánh học không giám sát** (unsupervised learning):

| Loại học máy                      | Đặc điểm chính                           | Ví dụ thuật toán                           |
|-----------------------------------|------------------------------------------|--------------------------------------------|
| Học có giám sát (Supervised)      | Dữ liệu có nhãn sẫn (label)              | Hồi quy tuyến tính, KNN, Cây quyết<br>định |
| Học không giám sát (Unsupervised) | Dữ liệu không có nhãn, cần tự tìm<br>mẫu | Phân cụm (Clustering), Giảm chiều PCA      |
| Học tăng cường (Reinforcement)    | Học thông qua phần thưởng/phạt           | Q-learning, DQN                            |

# → K-Means là thuật toán tiêu biểu nhất trong nhóm phân cụm của học không giám sát.

# 4. Các phương pháp phân cụm phổ biến

| Loại phương pháp                             | Mô tả                                     | Ví dụ thuật toán             |
|----------------------------------------------|-------------------------------------------|------------------------------|
| Phân cụm phân hoạch (Partitioning)           | Chia dữ liệu thành K cụm rõ ràng          | K-Means, K-Medoids           |
| Phân cụm phân cấp (Hierarchical)             | Tạo cây phân cấp các cụm                  | Agglomerative, Divisive      |
| Phân cụm dựa trên mật độ (Density-<br>based) | Xác định cụm theo vùng có mật độ<br>cao   | DBSCAN, OPTICS               |
| Phân cụm dựa trên mô hình<br>(Model-based)   | Giả định dữ liệu theo mô hình xác<br>suất | Gaussian Mixture Model (GMM) |

#### 5. Vị trí của thuật toán K-Means

- Nằm trong nhóm phân cụm phân hoạch (Partitioning Clustering).
- Là thuật toán cơ bản, đơn giản và phổ biến nhất trong phân cụm.
- Được xem là **bước khởi đầu** cho nhiều phương pháp phân cụm nâng cao khác.

#### 6. Vai trò của K-Means trong phân cụm

- Là chuẩn so sánh (baseline) cho các thuật toán phân cụm khác.
- Dễ triển khai, nhanh, phù hợp cho dữ liệu lớn.
- Là nền tảng để hiểu các thuật toán phức tạp hơn như K-Medoids, GMM, DBSCAN.
- Phân cụm là **kỹ thuật cốt lõi trong học không giám sát**, giúp **khám phá cấu trúc ẩn trong dữ liệu**. Trong đó, **K-Means** giữ **vị trí trung tâm và nền tảng nhất**, được ứng dụng rộng rãi nhờ **đơn giản**, **hiệu quả và trực quan**.

# 3. NGUYÊN LÍ HOẠT ĐỘNG

#### 1. Muc tiêu chính

- Thuật toán K-Means hoạt động dựa trên nguyên lý phân nhóm dữ liệu thành K cụm sao cho:
  - + Các điểm trong cùng một cụm thì giống nhau nhất có thể.
  - + Các điểm ở cụm khác nhau thì khác nhau nhiều nhất có thể.

Nói cách khác, K-Means tối thiểu hóa tổng bình phương khoảng cách từ mỗi điểm dữ liệu đến tâm cụm (centroid) gần nhất.

# 2. Ý tưởng cốt lõi

K-Means tìm K điểm trung tâm (centroid) sao cho

$$J = \sum_{i=1}^K \sum_{x \in C_i} ||x - \mu_i||^2$$

được nhỏ nhất có thể, trong đó:

- $C_i$ : cụm thứ i
- μ<sub>i</sub>: tâm cụm thứ i
- $||x \mu_i||^2$ : bình phương khoảng cách từ điểm dữ liệu xđến tâm cụm  $\mu_i$

#### 3. Các bước hoạt động của K-Means

**Bước 1:** Chon số cum K

- Người dùng hoặc chuyên gia chọn trước số cụm cần chia (ví dụ: 3 cụm, 4 cụm,...).

Bước 2: Khởi tao tâm cum ban đầu

- Chọn ngẫu nhiên Kđiểm dữ liệu làm tâm cụm ban đầu (centroid).

Bước 3: Gán cụm cho từng điểm dữ liệu

- Tính khoảng cách (thường dùng Euclidean) từ mỗi điểm đến tất cả các tâm cụm,
→ Gán điểm đó vào cụm có tâm gần nhất.

Bước 4: Cập nhật lại tâm cụm

- Sau khi gán xong, tính lại tâm cụm mới bằng trung bình cộng của tất cả các điểm trong cụm đó:

$$\mu_i = \frac{1}{\mid C_i \mid} \sum_{x \in C_i} \quad x$$

Bước 5: Lặp lại

- Lặp lại Bước 3 và 4 cho đến khi:
  - Tâm cụm không thay đổi đáng kể, hoặc
  - Số vòng lặp đạt giới hạn cho phép.

Khi đó, mô hình hội tụ (đã ổn định).

4. Minh họa trực quan (mô tả bằng lời)

Ví du:

Giả sử ta có 2 cụm (K=2):

- 1. Ban đầu chọn ngẫu nhiên 2 tâm cụm.
- 2. Mỗi điểm dữ liệu "chạy" về phía tâm gần nó nhất.

- 3. Tính lại trung bình của từng cụm để cập nhật tâm mới.
- 4. Lặp đi lặp lại  $\rightarrow$  các điểm "tụ" lại quanh 2 tâm ổn định  $\rightarrow$  đó là kết quả phân cụm cuối cùng.

#### 5. Đặc điểm chính

- Khoảng cách dùng phổ biến: Euclidean (khoảng cách Euclid).
- Dừng khi hội tụ: Không còn thay đổi lớn ở tâm cụm.
- Tính chất: Dữ liệu dạng số, cụm hình cầu cho kết quả tốt nhất.

## 4. QUY TRÌNH THUẬT TOÁN

#### 1. Quy trình của thuật toán K-Means

- Thuật toán **K-Means** có quy trình gồm **5 bước chính**, được lặp lại cho đến khi kết quả ổn định (hội tụ). Dưới đây là mô tả chi tiết từng bước.

#### Bước 1: Xác định số cụm K

- Chọn số cụm (K) cần phân chia trong tập dữ liệu.
- Số K thường được **chọn trước** dựa trên kinh nghiệm hoặc các phương pháp đánh giá như **Elbow Method** hoặc **Silhouette Score**.

 $Vi\ d\mu$ : Muốn chia khách hàng thành 3 nhóm  $\rightarrow$  chọn K = 3.

### Bước 2: Khởi tao tâm cum ban đầu (Centroid)

- Chọn ngẫu nhiên K điểm dữ liệu trong tập dữ liệu làm tâm cụm ban đầu.
- Các tâm này đại diện cho vị trí trung bình của mỗi cụm.

 $Vi d\mu$ : Nếu K = 3  $\rightarrow$  chọn 3 điểm dữ liệu làm tâm cụm tạm thời.

# Bước 3: Gán điểm dữ liệu vào cụm gần nhất

- Với mỗi điểm dữ liệu, tính khoảng cách đến các tâm cụm (thường là khoảng cách Euclidean).
- Gán điểm đó vào cụm có tâm gần nhất.

Công thức khoảng cách Euclidean:

$$d(x,\mu_i) = \sqrt{\sum_{j=1}^n (x_j - \mu_{ij})^2}$$

Kết quả của bước này: mỗi điểm dữ liệu được gắn với một cụm.

#### Bước 4: Cập nhật lại tâm cụm

• Sau khi gán xong, tính lại **tâm cụm mới** bằng trung bình của tất cả các điểm trong cùng cụm:

$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

• Các tâm cụm sẽ **di chuyển** dần đến vị trí tối ưu, nơi dữ liệu trong cụm đồng nhất nhất.

# Bước 5: Kiểm tra điều kiện dừng

- So sánh tâm cụm mới với tâm cụm cũ:
  - $\circ$  Nếu **không thay đổi đáng kể**, thuật toán **hội tụ**  $\rightarrow$  **dừng lại**.
  - o Nếu **vẫn thay đổi**, quay lại **Bước 3** để tiếp tục lặp.



# Kết thúc $\rightarrow$ Xuất kết quả phân cụm

# 3. Kết quả đầu ra

Sau khi thuật toán dừng lại, ta thu được:

- K tâm cụm cuối cùng (centroids).
- Nhãn cụm của mỗi điểm dữ liệu (điểm đó thuộc cụm nào).

# 5. VÍ DỤ MINH HỌA VÀ THỰC HÀNH

| Khách hàng | Thu nhập (x) | Chi tiêu (y) |
|------------|--------------|--------------|
| A          | 5            | 2            |
| В          | 6            | 3            |
| С          | 25           | 20           |
| D          | 28           | 22           |
| Е          | 4            | 1            |
| F          | 30           | 27           |



# Tóm tắt nhanh (kết quả cuối cùng):

- Bộ điểm: A(5,2), B(6,3), C(25,20), D(28,22), E(4,1), F(30,27).
- Khởi tạo tâm: C1 = A(5,2), C2 = D(28,22).
- Kết quả phân cụm cuối cùng (cluster 1/2):

Cụm 1: A, B, E (thu nhập thấp, chi tiêu thấp)

- Cụm 2: C, D, F (thu nhập cao, chi tiêu cao)
- Tâm cụm cuối cùng (x, y):
- Centroid  $1 \approx (5.0, 2.0)$  gần nhóm A,B,E trung bình.
- Centroid  $2 \approx (27.67, 23.0)$  gần nhóm C,D,F trung bình.

# 6. KẾT LUẬN VÀ TÀI LIỆU THAM KHẢO

# 1. Kết Luận:

- Thuật toán **K-Means** là một trong những phương pháp **phân cụm dữ liệu (clustering)** phổ biến và hiệu quả nhất trong **học máy không giám sát**. Nó giúp **chia dữ liệu thành các nhóm (cụm)** dựa trên **độ tương đồng về đặc trưng**, qua đó hỗ trơ việc **phân tích, phát hiện mẫu, hoặc dư đoán xu hướng** trong nhiều lĩnh vực.
  - Qua ví dụ thực tế với dữ liệu "thu nhập chi tiêu", ta thấy K-Means có thể:
  - Nhóm các đối tượng có hành vi tương tự nhau lại với nhau (ví dụ nhóm khách hàng).
    - Giúp **hiểu rõ hơn về cấu trúc ẩn** trong dữ liệu mà không cần nhãn có sẵn.
    - Tuy nhiên, kết quả phụ thuộc vào số cụm K lựa chọn, vị trí khởi tạo ban đầu, và chỉ phù hợp khi các cụm có hình dạng tương đối tròn, cách biệt rõ.
    - Nhìn chung, **K-Means** là một công cụ mạnh mẽ, dễ triển khai và có giá trị ứng dụng cao trong thực tế như:
      - Phân khúc khách hàng (Customer Segmentation)
      - Phân loại vùng địa lý hoặc hành vi tiêu dùng
      - Nhận dạng mẫu trong dữ liệu lớn

#### 2. Tài liệu tham khảo

- 1. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). *An Introduction to Statistical Learning* (2nd ed.). Springer.
- 2. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
- 3. scikit-learn.org. "Clustering K-Means" [Online]. Available: https://scikit-learn.org/stable/modules/clustering.html#k-means
- 4. Wikipedia. "K-means clustering." [Online]. Available: https://en.wikipedia.org/wiki/K-means clustering