Vv214 Linear Algebra Second Midterm Exam - Review class

DU Yang

SJTU-UM Joint Institute Shanghai Jiao-Tong University

April 6, 2019

Linear Space

Orthonormal Bases

Least Square Method

Linear Transformations

Determinant

Linear Space

Orthonormal Bases

Least Square Method

Linear Transformations

Determinant

Linear Space

Definition

A **linear space** V is a set endowed with a rule for (closed) addition and a rule for (closed) scalar multiplication such that these operations satisfy the following eight rules (for all f, g, h in V and all c, k in \mathbb{R}):

- 1. (f+g)+h=f+(g+h).
- 2. f + g = g + f.
- 3. There exists a neutral element n in V such that f+n=f , for all f in V. This n is unique and denoted by 0.
- 4. For each f in V there exists a g in V such that f+g=0. This g is unique and denoted by f.
- $5. \ k(f+g)=kf+kg.$
- 6. (c + k)f = cf + kf.
- 7. c(kf) = (ck)f.
- 8. 1f = f.

Inner Product Space

Definition

An **inner product** in a linear space V is a rule that assigns a real scalar (denoted by $\langle f, g \rangle$) to any pair f, g of elements of V, such that the following properties hold for all f, g, h in V, and all c in \mathbb{R} :

- 1. $\langle f, g \rangle = \langle g, f \rangle$.
- 2. $\langle f + h, g \rangle = \langle h, g \rangle + \langle f, g \rangle$.
- 3. $\langle cf, g \rangle = c \langle f, g \rangle$.
- 4. $\langle f, f \rangle \geq 0$ and $\langle f, f \rangle = 0$ if and only if f = 0.

A linear space endowed with an inner product is called an **inner product space**.

Norm, Orthogonality, Distance

Norm

$$||f|| = \sqrt{\langle f, f \rangle}.$$

Orthogonality

$$\langle f,g\rangle=0.$$

Distance

$$dist(f,g) = \|f - g\|.$$

Linear Space

Orthonormal Bases

Least Square Method

Linear Transformations

Determinant

Orthonormal Vectors

Definition

the vectors u_1, \dots, u_m in \mathbb{R}^n are called **orthonormal** if they are unit vectors and orthogonal to one another:

$$u_i \cdot u_j = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}.$$

Remarks

- 1. Orthonormal vectors are linearly independent.
- 2. Orthonormal vectors form a basis.

Orthogonal Complement

Orthogonal Complement

Consider a subspace V of \mathbb{R}^n .

$$V^{\perp} = \{ x \in \mathbb{R}^n : \langle v, x \rangle = 0, \forall v \in V \}$$

Orthogonal Projection

Consider a vector x in \mathbb{R}^n and a subspace V of \mathbb{R}^n . Then we can write in a unique way

$$x = x^{\parallel} + x^{\perp},$$

where $x^{\parallel} \in V$ and $x^{\perp} \in V^{\perp}$.

Orthogonal Complement

Remarks

- 1. $V \cap V^{\perp} = \{0\}.$
- 2. $dim(V) + dim(V^{\perp}) = dim(\mathbb{R}^n) = n$.
- 3. $(V^{\perp})^{\perp} = V$.

QR Factorization

The Gram-Schmidt process

Given linearly independent v_1, \dots, v_n , find u_1, \dots, u_n , such that

- ▶ $span\{v_1, \dots, v_n\} = span\{u_1, \dots, u_n\};$
- $\triangleright u_1, \cdots, u_n$ is an orthonormal basis.

QR Factorization

Consider an $n \times m$ matrix M with linearly independent columns.

Then there exists an $n \times m$ matrix Q whose columns are orthonormal and an upper triangular matrix R with positive diagonal entries such that

$$M = QR$$
.

This representation is unique.

Linear Space

Orthonormal Bases

Least Square Method

Linear Transformations

Determinant

Transpose

Properties

- $(AB)^T = B^T A^T;$
- $(A^T)^{-1} = (A^{-1})^T$;
- $ightharpoonup rank(A) = rank(A^T).$

Theorem

$$(imA)^{\perp} = ker(A^T).$$

Least-squares Solution

The normal equation

The least-squares solutions of the system Ax = b are the exact solution of the system

$$A^T A x = A^T b.$$

If A is invertible x is given by

$$x = (A^T A)^{-1} A^T b$$

Linear Space

Orthonormal Bases

Least Square Method

Linear Transformations

Determinant

Isomorphisms

Definition

An invertible linear transformation T is called an **isomorphism**.

Properties

- ▶ T is an isomorphism from V to $W \Leftrightarrow ker(T) = \{0\} \& im(T) = W$
- ▶ T is an isomorphism from V to $W \Rightarrow dim(V) = dim(W)$.
- ▶ $dim(V) = dim(W) \& im(T) = W \Rightarrow T$ is an isomorphism from V to W.
- ▶ dim(V) = dim(W) & $ker(T) = \{0\} \Rightarrow T$ is an isomorphism from V to W.

Coordinates

Definition

If $\mathcal{B}=(v_1,...,v_m)$ is a basis of a subspace V in \mathbb{R}^n , and $x\in V$, then $x=c_1v_1+\cdots+c_mv_m$ and $\begin{bmatrix}c_1\\\vdots\\c_m\end{bmatrix}$ is called the \mathcal{B} -coordinate

vector of x, denoted $[x]_{\mathcal{B}}$.

\mathcal{B} -matrix of a linear transformation

Matrix of Transformation

For the basis $v_1, ..., v_m$

$$x = \begin{bmatrix} v_1 & v_2 & \cdots & v_m \end{bmatrix} \begin{bmatrix} x \end{bmatrix}_{\mathcal{B}},$$

or

$$x = S[x]_{\mathcal{B}}.$$

Obtain $[x]_{\mathcal{B}}$ from x

If m = n, we can find $[x]_{\mathcal{B}}$ for arbitrary x,

$$[x]_{\mathcal{B}} = S^{-1}x.$$

The Matrix of a Linear Transformation

Definition

Consider $T: \mathbb{R}^n \to \mathbb{R}^n$ and \mathcal{B} is a basis of \mathbb{R}^n . Then the \mathcal{B} -matrix of T transforms $[x]_{\mathcal{B}}$ to $[Tx]_{\mathcal{B}}$,

$$[Tx]_{\mathcal{B}} = B[x]_{\mathcal{B}}.$$

If
$$\mathcal{B} = (v_1, ..., v_n)$$
,

$$B = \begin{bmatrix} [T(v_1)]_{\mathcal{B}} & \cdots & [T(v_n)]_{\mathcal{B}} \end{bmatrix}$$
$$= \begin{bmatrix} S^{-1}T(v_1) & \cdots & S^{-1}T(v_n) \end{bmatrix}$$
$$= S^{-1}T \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = S^{-1}TS$$

Linear Space

Orthonormal Bases

Least Square Method

Linear Transformations

Determinant

Determinant

Properties

- ▶ Division: dividing a row/column by a non zero scaler k, det(A') = det(A)/k.
- ▶ Swap: swapping two rows/columns, det(A') = -det(A).
- Addition: adding a multiple of a row/column to another row/column, det(A') = det(A).

Properties

- b det(AB) = det(A)det(B).
- $det(A^{-1}) = 1/det(A)$.

Linear Space

Orthonormal Bases

Least Square Method

Linear Transformations

Determinant

Summary

Go over

- ▶ The textbook,
- ► Homework 4-6,
- Slides and exercises on recitation classes.