Mark Petersen

I have used MATLAB to faciltate calculating some of the components for the metric, Christoffel symbols, curvature symbols, etc. I have attached the pdf version of the code I used as part of my work.

Exercise 1. Prove part (i) of Proposition 2.2 on pg. 90 of do Carmo. The proposition states: let $f, g \in \mathcal{D}(M)$ and X_1, X_2, Y_1, Y_2 . R is bilinear in $\mathcal{X}(M) \times \mathcal{X}(M)$, that is,

$$R(fX_1 + gX_2, Y_1) = fR(X_1, Y_1) + gR(X_2, Y_1)$$

$$R(X_1, fY_1 + gY_2) = fR(X_1, Y_1) + gR(X_1, Y_2).$$

Proof: Proof let $Z \in \mathcal{X}(M)$. The first one can be shown as

$$\begin{split} R\left(fX_{1}+gX_{2},Y_{1}\right)Z &= \nabla_{Y_{1}}\nabla_{fX_{1}+gX_{2}}Z - \nabla_{fX_{1}+gX_{2}}\nabla_{Y_{1}}Z + \nabla_{[fX_{1}+gX_{2},Y_{1}]}Z \\ &= \nabla_{Y_{1}}\left(f\nabla_{X_{1}}+g\nabla_{X_{2}}\right)Z - \left(f\nabla_{X_{1}}+g\nabla_{X_{2}}\right)\nabla_{Y_{1}}Z + \nabla_{[fX_{1},y_{1}]}Z + \nabla_{[gX_{2},Y_{1}]}Z \\ &= \left(f\nabla_{Y_{1}}\nabla_{X_{1}}+\nabla_{Y_{1}}\left(f\right)\nabla_{X_{1}}+g\nabla_{Y_{1}}\nabla_{X_{2}}+\nabla_{Y_{1}}\left(g\right)\nabla_{X_{2}} - \left(f\nabla_{X_{1}}+g\nabla_{X_{2}}\right)\nabla_{Y_{1}}\right)Z \\ &+ \left(\nabla_{f[X_{1},Y_{1}]-Y_{1}(f)X_{1}}+\nabla_{g[X_{2},Y_{1}]-Y_{1}(g)X_{2}}\right)Z \\ &= \left(f\nabla_{Y_{1}}\nabla_{X_{1}}+g\nabla_{Y_{1}}\nabla_{X_{2}} - \left(f\nabla_{X_{1}}+g\nabla_{X_{2}}\right)\nabla_{Y_{1}}+f\nabla_{[X_{1},Y_{1}]}+g\nabla_{[X_{2},Y_{2}]}\right)Z \\ &+ \left(+\nabla_{Y_{1}}\left(f\right)\nabla_{X_{1}}+\nabla_{Y_{1}}\left(g\right)\nabla_{X_{2}} - \nabla_{Y_{1}}\left(f\right)\nabla_{X_{1}} - \nabla_{Y_{1}}\left(g\right)\nabla_{X_{2}}\right)Z \\ &= \left(f\nabla_{Y_{1}}\nabla_{X_{1}}+g\nabla_{Y_{1}}\nabla_{X_{2}} - \left(f\nabla_{X_{1}}+g\nabla_{X_{2}}\right)\nabla_{Y_{1}}+f\nabla_{[X_{1},Y_{1}]}+g\nabla_{[X_{2},Y_{2}]}\right)Z \\ &= fR\left(X_{1},Y_{1}\right)Z + gR\left(X_{2},Y_{1}\right)Z. \end{split}$$

Similarly the second one is, omitting the vector field Z,

$$\begin{split} R\left(X_{1},fY_{1}+gY_{2}\right) &= \nabla_{fY_{1}+gY_{2}}\nabla_{X_{1}} - \nabla_{X_{1}}\nabla_{fY_{1}+gY_{2}} + \nabla_{[X_{1},fY_{1}+gY_{2}]} \\ &= \left(f\nabla_{Y_{1}}+g\nabla_{Y_{2}}\right)\nabla_{X_{1}} - f\nabla_{X_{1}}\nabla_{Y_{1}} - g\nabla_{X_{1}}\nabla_{Y_{2}} - \nabla_{X_{1}}\left(f\right)\nabla_{Y_{1}} - \nabla_{X_{1}}\left(g\right)\nabla_{Y_{2}} \\ &+ f\nabla_{[X_{1},Y_{1}]} + g\nabla_{[X_{1},Y_{2}]} + \nabla_{X_{1}}\left(f\right)\nabla_{Y_{1}} + \nabla_{X_{1}}\left(g\right)\nabla_{Y_{2}} \\ &= \left(f\nabla_{Y_{1}}+g\nabla_{Y_{2}}\right)\nabla_{X_{1}} - f\nabla_{X_{1}}\nabla_{Y_{1}} - g\nabla_{X_{1}}\nabla_{Y_{2}} + f\nabla_{[X_{1},Y_{1}]} + g\nabla_{[X_{1},Y_{2}]} \\ &= fR\left(X_{1},Y_{1}\right) + gR\left(X_{1},Y_{2}\right). \end{split}$$

Exercise 2. Let S_r^2 be the sphere of radius r in \mathbb{R}^3 centered at the origin. Equip S_r^2 with the metric induced by Euclidean space. Consider the coordinate charts obtained by restricting the orthogonal projection of \mathbb{R}^3 to the coordinate planes.

- 1) Compute the components of the Riemann curvature R_{ijk}^s in these coordinates.
- 2) Use this to compute the sectional curvature $K(\sigma)$ at a point $p \in S_r^2$.
- 3) Prove that $K(\sigma)$ is constant.

We will use the charts $\left\{\left(U_i^{\pm}, \varphi_i^{\pm}\right)\right\}$ defined as

$$U_j^{\pm} = \left\{ (x_1, x_2, x_3) \in S_r^2 : \pm x_j > 0 \right\}$$

$$\varphi_1^{\pm} (x_1, x_2, x_3) = (x_2, x_3)$$

$$\left(\varphi_1^{\pm}\right)^{-1} (y_1, y_2) = \left(\pm \sqrt{r^2 - y_1^2 - y_2^2}, y_1, y_2\right).$$

Since S_r^2 is embedded in \mathbb{R}^3 , the derivative of $(\varphi_i^{\pm})^{-1}$ is injective.

$$d\left(\varphi_1^{\pm}\right)^{-1} = \begin{bmatrix} -\pm \frac{y_1}{\sqrt{r^2 - y_1^2 - y_2^2}} & -\pm \frac{y_2}{\sqrt{r^2 - y_1^2 - y_2^2}} \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Let $v_1, v_2 \in T_p S_r^2$ where $p \in \varphi_1^{\pm}$, then using the induced metric we have

$$\left\langle d\left(\varphi_1^{\pm}\right)^{-1}v_1, d\left(\varphi_1^{\pm}\right)^{-1}v_2\right\rangle.$$

Thus the induced metric q in matrix form is

$$\left(d \left(\varphi_1^{\pm} \right)^{-1} \right)^{\top} d \left(\varphi_1^{\pm} \right)^{-1} = \begin{bmatrix} -\pm \frac{y_1}{\sqrt{r^2 - y_1^2 - y_2^2}} & 1 & 0 \\ -\pm \frac{y_2}{\sqrt{r^2 - y_1^2 - y_2^2}} & 0 & 1 \end{bmatrix} \begin{bmatrix} -\pm \frac{y_1}{\sqrt{r^2 - y_1^2 - y_2^2}} & -\pm \frac{y_2}{\sqrt{r^2 - y_1^2 - y_2^2}} \\ 1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{y_1^2}{(r^2 - y_1^2 - y_2^2)} + 1 & \frac{y_1 y_2}{(r^2 - y_1^2 - y_2^2)} \\ \frac{y_1 y_2}{(r^2 - y_1^2 - y_2^2)} & \frac{y_2^2}{(r^2 - y_1^2 - y_2^2)} + 1 \end{bmatrix} .$$

The computation of the Christoffel symbols is tedius, so we employed MATLAB to compute them. The Christoffel symbols are

$$\Gamma_{11}^{1} = \frac{y_1 \left(r^2 - y_2^2\right)}{\alpha}$$

$$\Gamma_{12}^{1} = \Gamma_{21}^{1} = \frac{y_1^2 y_2}{\alpha}$$

$$\Gamma_{22}^{1} = \frac{y_1 \left(r^2 - y_1^2\right)}{\alpha}$$

$$\Gamma_{11}^{2} = \frac{y_2 \left(r^2 - y_2^2\right)}{\alpha}$$

$$\Gamma_{12}^{2} = \Gamma_{21}^{2} = \frac{y_1 y_2^2}{\alpha}$$

$$\Gamma_{22}^{2} = \frac{y_2 \left(r^2 - y_1^2\right)}{\alpha}$$

$$\alpha = r^2 \left(r^2 - y_1^2 - y_2^2\right).$$

Once again using MATLAB, the coefficients of the curvature are

$$\begin{split} R_{111}^1 &= R_{221}^1 = R_{112}^1 = R_{222}^1 = R_{111}^2 = R_{221}^2 = R_{112}^2 = R_{222}^1 = 0 \\ R_{121}^1 &= \frac{-y_1 y_2}{\alpha} \\ R_{211}^1 &= \frac{y_1 y_2}{\alpha} \\ R_{122}^1 &= \frac{2y_1^2 - r^2}{\alpha} \\ R_{121}^2 &= \frac{r^2 - 2y_1^2}{\alpha} \\ R_{121}^2 &= \frac{r^2 - y_2^2}{\alpha} \\ R_{121}^2 &= \frac{y_2^2 - r^2}{\alpha} \\ R_{122}^2 &= \frac{2y_1 y_2}{\alpha} \\ R_{122}^2 &= \frac{-2y_1 y^2}{\alpha} \end{split}$$

where α has been previously defined.

Now we proceed to compute the sectional curvature $K(\sigma)$ at point $p \in S_r^2$. Since S_r^2 is two dimensional, any two linearly independent vectors in $T_pS_r^2$ will span $T_pS_r^2$. So we will use $v_1 = \frac{\partial}{\partial y_1}$ and $v_2 = \frac{\partial}{\partial y_2}$. The sectional curvature is then.

$$\begin{split} K\left(\sigma\right) &= \frac{\left(v_{1}, v_{2}, v_{1}, v_{2}\right)}{\left|v_{1} \wedge v_{2}\right|^{2}} \\ &= \frac{R_{121}^{1} g_{12} + R_{121}^{2} g_{22}}{\left\langle v_{1}, v_{1}\right\rangle \left\langle v_{2}, v_{2}\right\rangle - \left\langle v_{1}, v_{2}\right\rangle^{2}} \\ &= \frac{\left(r^{2} - y_{1}^{2} - y_{2}^{2}\right)}{\left(2r^{4} - 3r^{2}y_{1}^{2} - 3r^{2}y_{2}^{2} + y_{1}^{4} + y_{2}^{4} + y_{1}^{2}y_{2}^{2}\right)}. \end{split}$$

We now proceed to prove that the sectional curvature is constant. According to Lemma 3.4 in do Carmo, the manifold M has constant sectional curvature equal to K_0 if an only if $R = K_0 R'$ where R is the curvature of M and

$$\langle R'(X, Y, W), Z \rangle = \langle X, W \rangle \langle Y, Z \rangle - \langle Y, W \rangle \langle X, Z \rangle$$

for all $X, Y, W, Z \in T_pM$.

The curvature is

$$\left\langle R\left(\frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}\right) \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2} \right\rangle = \sum_{\ell} R_{121}^{\ell} g_{\ell 2}$$
$$= \frac{1}{r^2 - y_1^2 - y_2^2}.$$

and

$$\left\langle R'\left(\frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}, \frac{\partial}{\partial y_1}\right), \frac{\partial}{\partial y_2} \right\rangle = \left\langle \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_1} \right\rangle \left\langle \frac{\partial}{\partial y_2}, \frac{\partial}{\partial y_2} \right\rangle - \left\langle \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2} \right\rangle \left\langle \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2} \right\rangle$$

$$= \frac{\left(2r^4 - 3r^2y_1^2 - 3r^2y_2^2 + y_1^4 + y_2^4 + y_1^2y_2^2\right)}{\left(r^2 - y_1^2 - y_2^2\right)^2}.$$

From which we can see that $R = K_0 R'$. Therefore, M has constant sectional curvature.

Exercise 3. Recall the embeddings of the torus $T = \mathbb{R}/2\pi\mathbb{Z}$ is \mathbb{R}^3 and \mathbb{R}^4 given by the maps

$$\omega(\alpha, \beta) = ((\cos(\beta) + 4)\cos(\alpha), (\cos(\beta) + 4)\sin(\alpha), \sin(\beta))$$

and

$$\psi(\alpha, \beta) = (\cos(\alpha), \sin(\alpha), \cos(\beta), \sin(\beta))$$

respectively. Let T_3 be the torus equipped with the metric induced from \mathbb{R}^3 by the map ω , and let T_4 denote the torus equipped with the metric induced from \mathbb{R}^4 by the map ψ . Compute the components R_{ijk}^s of the curvature of T_3 and T_4 (in the coordinates induced by ω and ψ).

With the help of MATLAB, I get that the components R_{ijk}^s of T_3 are all zero except

$$\begin{split} R_{122}^1 &= \frac{-\left(4\cos\left(\beta\right) + 1\right)}{\left(\cos\left(\beta\right) + 4\right)^2} \\ R_{212}^1 &= -R_{122}^1 \\ R_{121}^2 &= 4\cos\left(\beta\right) + 2\cos\left(\beta\right)^2 - 1 \\ R_{211}^2 &= -R_{121}^2 \end{split}$$

The components R_{ijk}^s of T_4 are all zero. This means that the torus in \mathbb{R}^4 with the chosen embedding is flat.

Exercise 4. For a parameterized surface S in \mathbb{R}^3 given by r(u,v) we can find a unit normal at $p \in S$ by

$$N\left(p\right) = \frac{r_u \times r_v}{\|r_u \times r_v\|}.$$

The Gauss map is $N:S\to S^2$ defined by the equation above. The derivative of the map is $dN_p:T_pS\to T_{N(p)}S^2$. However, by construction we know that T_pS and $T_{N(P)}S^2$ have parallel tangent planes in \mathbb{R}^3 so we can think of dN_p as a map from $T_pS\to T_pS$. The idea is the following: For a parameterized curve $\alpha(t)$ in S such that $\alpha(0)=p$ we consider the curve $N(\alpha(t))=N(t)$ in S^2 . The tangent vector $N'(0)=dN_p(\alpha'(0))$ is a vector in T_pS . So dN_p measures how N "pulls away from" N(p).

- 1) For a plane ax + by + cz = d show that $dN \equiv 0$.
- 2) For the unit sphere with inward pointing normals show that $dN_p v = -v$.
- 3) Find dN_p for the cynlider with $r(u, v) = (\cos u, \sin u, v)$.
- 4) For the hyperbolic paraboloid $r(u,v) = (u,v,v^2 u^2)$ compute the unit normal vectors. At p = (0,0,0) show that

$$dN_n(u'(0), v'(0), 0) = (2u'(0), -2v'(0), 0).$$

So the vectors (1,0,0) and (0,1,0) are eigenvectors dN_p with eigenvalues 2 and -2 repectfully. For part 1) we can parameterize the plane as

$$r(x,y) = (ax, by, d - ax - by),$$

which implies that

$$r_x = \begin{bmatrix} a \\ 0 \\ -a \end{bmatrix}, \quad r_y = \begin{bmatrix} 0 \\ b \\ -b \end{bmatrix}.$$

Therefore

$$N\left(p\right) = \frac{r_x \times r_y}{\|r_x \times r_y\|} = \frac{ab}{\sqrt{3} \left|ab\right|} \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Since N(p) is a constant, its derivative $dN \equiv 0$. This is what we would expect since a plane is flat. We could've parameterized the plane differently, but the result is the same.

For part 2) we can parameterize the unit spere as

$$r(\phi, \theta) = (\sin(\phi)\cos(\theta), \sin(\phi)\sin(\theta), \cos(\phi))$$

which implies that

$$r_{\phi} = \begin{bmatrix} \cos(\phi)\cos(\theta) \\ \cos(\phi)\sin(\theta) \\ -\sin(\phi) \end{bmatrix}, \quad r_{\theta} = \begin{bmatrix} -\sin(\phi)\sin(\theta) \\ \sin(\phi)\cos(\theta) \\ 0 \end{bmatrix},$$

where

$$dr = [r_{\phi}, r_{\theta}] : T_{p}S \to T_{p}\mathbb{R}^{3}.$$

The metric of the first form g1 is

$$g1 = \begin{bmatrix} 1 & 0 \\ 0 & \sin^2(\phi) \end{bmatrix}.$$

The normal vector is

$$N(p) = \frac{r_{\phi} \times r_{\theta}}{\|r_{\phi} \times r_{\theta}\|} = \begin{bmatrix} \cos(\theta)\sin(\phi) \\ \sin(\theta)\sin(\phi) \\ \cos(\phi) \end{bmatrix}.$$

However, N(p) is outward pointing. To get inward pointing we negate it to get

$$N'(p) = -N(p) = \begin{bmatrix} -\cos(\theta)\sin(\phi) \\ -\sin(\theta)\sin(\phi) \\ -\cos(\phi) \end{bmatrix}.$$

Taking the partial derivative, we get the differential

$$dN'(p) = \begin{bmatrix} -\cos(\phi)\cos(\theta) & \sin(\phi)\sin(\theta) \\ -\cos(\phi)\sin(\theta) & -\sin(\phi)\cos(\theta) \\ \sin(\phi) & 0 \end{bmatrix}.$$

We can now compute the metric of the second form

$$g2 = \langle dN', dr \rangle$$

$$= \begin{bmatrix} -1 & 0 \\ 0 & -\sin^2(\phi) \end{bmatrix}.$$

Let $v=v_{i}\frac{\partial}{\partial x_{i}}$, we want to show that $dr\left(v\right)=-dN'\left(p\right)\left(v\right)$. Since dr and $dN'\left(p\right)$ are linear maps we see that $dr=-dN'\left(p\right)$; thus

$$dr(v) = -dN'(p)(v).$$

For part 3), let the surface be parameterized by $r(u, v) = (\cos(u), \sin(u), v)$. The differential is

$$dr = \begin{bmatrix} -\sin(u) & 0\\ \cos(u) & 0\\ 0 & 1 \end{bmatrix},$$

The metric of the first form g1 is

$$g1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

and

$$N(p) = \begin{bmatrix} \cos(u) \\ \sin(u) \\ 0 \end{bmatrix}.$$

Computing the differential of $N\left(p\right)$ we get

$$dN\left(p\right) = \begin{bmatrix} -\sin\left(u\right) & 0\\ \cos\left(u\right) & 0\\ 0 & 0 \end{bmatrix}.$$

We can now compute the metric of the second form

$$g2 = \langle dN', dr \rangle$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

This shows that there is no curve along the z axis which is what we would expect for a cylinder that is oriented along the z-axis.

For part 4), let the hyperbolid paraboloid be parameterized by

$$r(u, v) = (u, v, v^2 - u^2).$$

The differential is

$$dr = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -2u & 2v \end{bmatrix}.$$

The metric of the first form g1 is

$$g1 = \begin{bmatrix} 4u^2 + 1 & -4uv \\ -4uv & 4v^2 + 1 \end{bmatrix}.$$

The unit normal vector is

$$N(p) = \frac{1}{(4u^2 + 4v^2 + 1)^{1/2}} \begin{bmatrix} 2u\\ -2v\\ 1 \end{bmatrix}.$$

The differential of N(p) is

$$dN\left(p\right) = \frac{1}{\left(4u^{2} + 4v^{2} + 1\right)^{3/2}} \begin{bmatrix} 2\left(4v^{2} + 1\right) & -8uv \\ 8uv & -2\left(3u^{2} + 1\right) \\ -4u & -4v \end{bmatrix}.$$

Evaulating dN(p) at $p_0 = (0, 0, 0)$ yields

$$dN\left(p_{0}\right) = \begin{bmatrix} 2 & 0\\ 0 & -2\\ 0 & 0 \end{bmatrix}.$$

We can now compute the metric of the second form

$$g2 = \langle dN', dr \rangle$$

$$= \frac{8u^2 + 8v^2 + 2}{(4u^2 + 4v^2 + 1)^{(3/2)}} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}.$$

Using the first and second form of the metric we can calculate the Gaussian curvature at $p_0 = (0,0)$

$$\begin{split} K &= \left. g 1^{-1} g 2 \right|_{p_0} \\ &= \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}. \end{split}$$

From the Gaussian curvature we can see that the eigenvalues and eigenvectors are $\lambda \pm 2$ and $v_1 = (1,0)$ and $v_2 = (0,1)$.

Exercise 5. The eigenvalues of dN_p give the maximum and the minimum curvature of curves at p. These are called the principle curvatures of S at p. What are the principle curvatures for parts a), b), c) and d) above.

For part a) we got that $dN_p \equiv 0$, so that maximum and minimum eigen values are zero as they should be since a plane is flat

For part b) we calculated the first and second form of the metric to be

$$g1 = \begin{bmatrix} 1 & 0 \\ 0 & \sin^2{(\phi)} \end{bmatrix}, \quad g2 = \begin{bmatrix} -1 & 0 \\ 0 & -\sin^2{(\phi)} \end{bmatrix},$$

Using the first and second form of the metric we can calculate the Gaussian curvature at $p_0 = (0,0)$

$$K = g1^{-1}g2\big|_{p_0}$$
$$= \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}.$$

thus we get eigenvalues $\lambda_{1,2} = -1$ with eigenvectors $v_1 = (1,0)$ and $v_2 = (0,1)$.

For part c) we calculated the first and second form of the metric to be

$$g1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad g2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},$$

Using the first and second form of the metric we can calculate the Gaussian curvature at $p_0 = (0,0)$

$$\begin{split} K &= \left. g 1^{-1} g 2 \right|_{p_0} \\ &= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}. \end{split}$$

thus we get eigenvalues $\lambda_1=1$ and $\lambda_2=2$ with eigenvectors $v_1=(1,0)$ and $v_2=(0,1)$.

Part d) was done in the previous problem which yielded eigenvalues and eigenvectors of $\lambda \pm 2$ and $v_1 = (1,0)$ and $v_2 = (0,1)$.

Exercise 6. Let S be a parameterized surface in \mathbb{R}^3 , $p \in S$, and $dN_p : T_pS \to T_pS$ be the Gauss map. The Gaussian curvature of S at p is $\det(dN_p)$. A point in S is

- 1) elliptic if $\det(dN_p) > 0$,
- 2) hyperbolic if $\det(dN_p) < 0$,
- 3) parabolic if $\det(dN_p) = 0$, but $dN_p \neq 0$, and
- 4) planar if $dN_p = 0$.

Classify the curvature of the plane, sphere, cylindar, and the point (0,0,0) on the hyperbolic paraboloid.

In part a) of exercise 4 we found that for the plane $dN_p = 0$, thus it is planar.

In part b) of exercise 5 we found that the Gaussian curvature of the sphere is

$$K = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

and $\det(dN_{p_0}) = 1$, thus the sphere is elliptic.

In part c) of exercise 5 we found that the Gaussian curvature of the cylinder is

$$K = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

thus $\det(dN_{p_0}) = 0$. Therefore, the cynlinder is parabolic.

In part d) of exercise 5 we found that the Gaussian curvature of the hyperbolic plane is

$$K = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix},$$

thus $\det (dN_{p_0}) = -4$. Therefore the hyperbolic plane is hyperbolic.