- O DOĞRUSAL HAREKET
 - 2.1 Konum, Yerdeğiştirme, Hız ve İvme
 - 2.2 Sabit İvmeli Hareket
 - 2.3 Serbest Düşme

Daha iyi sonuç almak için, Adobe Reader programını Tam Ekran modunda çalıştırınız.
Sayfa çevirmek/Aşağısını görmek için, farenin sol/sağ tuşlarını veya PageUp/PageDown tuşlarını kullanınız.

2.1 KONUM, YERDEĞİŞTİRME, HIZ ve İVME

Konum (x) \implies Cismin seçilen bir koordinat sistemindeki yeri.

2.1 KONUM, YERDEĞİŞTİRME, HIZ ve İVME

Konum (x) \implies Cismin seçilen bir koordinat sistemindeki yeri.

- 3-boyutlu uzayda \implies x, y, z koordinatları.
- 1-boyutlu uzayda \implies sadece x koordinati.

2.1 KONUM, YERDEĞİŞTİRME, HIZ ve İVME

Konum (x) \implies Cismin seçilen bir koordinat sistemindeki yeri.

- 3-boyutlu uzayda \implies x, y, z koordinatları.
- 1-boyutlu uzayda \implies sadece x koordinati.

Yerdeğiştirme (Δx): Cismin t_1 anındaki konumu x_1 ve daha sonraki bir t_2 anındaki konumu x_2 ise,

 $\operatorname{Hiz}(v) \implies \operatorname{Cismin birim zamanda aldığı yol.} \mathbf{v}$

 $\operatorname{Hiz}(v) \implies \operatorname{Cismin birim zamanda aldığı yol.} \bullet$

• Ortalama Hız (v_{ort}): Cismin t_1 anındaki konumu x_1 ve daha sonraki bir t_2 anındaki konumu x_2 ise,

$$v_{\text{ort}} = \frac{\text{yerde}\check{\text{giştirme}}}{\text{geçen zaman}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

 $\operatorname{Hiz}(v) \implies \operatorname{Cismin birim zamanda aldığı yol.} \bullet$

• Ortalama Hız (v_{ort}): Cismin t_1 anındaki konumu x_1 ve daha sonraki bir t_2 anındaki konumu x_2 ise,

$$v_{\text{ort}} = \frac{\text{yerde}\check{\text{giştirme}}}{\text{geçen zaman}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

- •
- Cisim pozitif yönde ilerliyorsa $(x_2 > x_1)$ \implies v_{ort} pozitif,
- Cisim negatif yönde ilerliyorsa $(x_2 < x_1) \implies v_{\text{ort}}$ negatif. •

 $\operatorname{Hiz}(v) \implies \operatorname{Cismin birim zamanda aldığı yol.} \bullet$

• Ortalama Hız (v_{ort}): Cismin t_1 anındaki konumu x_1 ve daha sonraki bir t_2 anındaki konumu x_2 ise,

$$v_{\text{ort}} = \frac{\text{yerde}\check{\text{giştirme}}}{\text{geçen zaman}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

- •
- Cisim pozitif yönde ilerliyorsa $(x_2 > x_1)$ \implies v_{ort} pozitif,
- Cisim negatif yönde ilerliyorsa ($x_2 < x_1$) \implies v_{ort} negatif. •
- \bullet Ortalama hız kullanışlı değil (iki noktada ölçmek gerekir ve x_2 noktasına varmadan hızı bilemeyiz).

Ani Hız (v): Ortalama hızın limiti.

Ani Hız (v): Ortalama hızın limiti.

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \lim_{t_2 \to t_1} \frac{x_2 - x_1}{t_2 - t_1} = \frac{dx}{dt}$$

Ani Hız (v): Ortalama hızın limiti.

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \lim_{t_2 \to t_1} \frac{x_2 - x_1}{t_2 - t_1} = \frac{dx}{dt}$$

- Kısaca hız denir.
- Konumun zamana göre türevi. Kısaca v = x' olarak da yazılır.
- Birimi: metre/saniye (m/s).
- Yine, hareketin yönü v hızının işaretine bağlıdır.

İvme (a) 👄 Hızın birim zamanda değişme miktarı. 🔻

İvme (a) \implies Hızın birim zamanda değişme miktarı. \checkmark

• Ortalama İvme (a_{ort})

Cismin t_1 anındaki hızı v_1 ve daha sonraki bir t_2 anındaki hızı v_2 ise,

$$a_{\text{ort}} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

İvme (a) 👄 Hızın birim zamanda değişme miktarı. 🔻

• Ortalama İvme (a_{ort})

Cismin t_1 anındaki hızı v_1 ve daha sonraki bir t_2 anındaki hızı v_2 ise,

$$a_{\text{ort}} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

İvmenin işareti:

- Cisim pozitif yönde ilerlerken ($v_1, v_2 > 0$),
 - Hızı artıyorsa $(v_2 > v_1) \implies \text{İvme pozitif},$
 - Hızı azalıyorsa $(v_2 < v_1) \implies \text{İvme negatif.} \bullet$

İvme (a) 👄 Hızın birim zamanda değişme miktarı. 🔻

• Ortalama İvme (a_{ort})

Cismin t_1 anındaki hızı v_1 ve daha sonraki bir t_2 anındaki hızı v_2 ise,

$$a_{\text{ort}} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

İvmenin işareti:

- Cisim pozitif yönde ilerlerken ($v_1, v_2 > 0$),
 - Hizi artiyorsa $(v_2 > v_1) \implies \text{İvme pozitif},$
 - Hızı azalıyorsa $(v_2 < v_1)$ \implies İvme negatif. •
- Cisim negatif yönde ilerlerken ($v_1, v_2 < 0$),
 - H₁z₁ art₁yorsa $(v_2 < v_1) \implies \text{İvme negatif!}$
 - Hizi azaliyorsa $(v_2 > v_1) \implies \text{ İvme pozitif.}$

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{t_2 \to t_1} \frac{v_2 - v_1}{t_2 - t_1} = \frac{dv}{dt}$$

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{t_2 \to t_1} \frac{v_2 - v_1}{t_2 - t_1} = \frac{dv}{dt}$$

• Kısaca **ivme** denir. Birimi: $metre/(sanive)^2 = m/s^2$.

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{t_2 \to t_1} \frac{v_2 - v_1}{t_2 - t_1} = \frac{dv}{dt}$$

- Kısaca **ivme** denir. Birimi: $metre/(saniye)^2 = m/s^2$.
- Hızın zamana göre 1. türevidir: a = v'
- Hız konumun 1. türevi, o halde ivme konumun 2. türevidir: a=x''

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{t_2 \to t_1} \frac{v_2 - v_1}{t_2 - t_1} = \frac{dv}{dt}$$

- Kısaca **ivme** denir. Birimi: $metre/(saniye)^2 = m/s^2$.
- Hızın zamana göre 1. türevidir: a = v'
- Hız konumun 1. türevi, o halde ivme konumun 2. türevidir: a = x''
- ullet İvmenin işareti, hareketin yönüne ve v hızının değişimine bağlıdır.

Eşit zaman aralıklarında hız değişimi aynı ise \implies $a = \text{sabit } \bullet$

Eşit zaman aralıklarında hız değişimi aynı ise \implies $a = \text{sabit } \bullet$

$$a_{\text{ort}} = \frac{v_2 - v_1}{t_2 - t_1}, \qquad v_{\text{ort}} = \frac{x_2 - x_1}{t_2 - t_1}$$

Eşit zaman aralıklarında hız değişimi aynı ise \implies $a = \text{sabit } \bullet$

$$a_{\text{ort}} = \frac{v_2 - v_1}{t_2 - t_1}, \qquad v_{\text{ort}} = \frac{x_2 - x_1}{t_2 - t_1}$$

Notasyon değiştirme:

Cisim başlangıçta $t_1=0$ anında x_0 konumlu yerden v_0 ilk hızıyla harekete başlıyor olsun. $t_2=t$ son anında x konumlu yerdeki son hızı v olsun.

$$a_{\text{ort}} = a = \frac{v - v_0}{t - 0},$$
 $v_{\text{ort}} = \frac{x - x_0}{t - 0}$
 $\rightarrow v = v_0 + at,$ $\rightarrow x = x_0 + v_{\text{ort}}t$

Eşit zaman aralıklarında hız değişimi aynı ise \implies $a = \text{sabit } \bullet$

$$a_{\text{ort}} = \frac{v_2 - v_1}{t_2 - t_1},$$
 $v_{\text{ort}} = \frac{x_2 - x_1}{t_2 - t_1}$

Notasyon değiştirme:

Cisim başlangıçta $t_1=0$ anında x_0 konumlu yerden v_0 ilk hızıyla harekete başlıyor olsun. $t_2=t$ son anında x konumlu yerdeki son hızı v olsun.

$$a_{\text{ort}} = a = \frac{v - v_0}{t - 0},$$
 $v_{\text{ort}} = \frac{x - x_0}{t - 0}$
 $\rightarrow v = v_0 + at,$ $\rightarrow x = x_0 + v_{\text{ort}}t$

$$v_{\text{ort}} = \frac{v + v_0}{2} \qquad \Longrightarrow \qquad x = x_0 + v_0 t + \frac{1}{2} a t^2$$

Zamansız hız formülü:

$$v = v_0 + at$$
 \rightarrow $t = \frac{v - v_0}{a}$ \rightarrow $x = x_0 + v_0 t + \frac{1}{2} a t^2$
 \implies $v^2 - v_0^2 = 2 a (x - x_0)$

Zamansız hız formülü:

$$v = v_0 + at$$
 \rightarrow $t = \frac{v - v_0}{a}$ \rightarrow $x = x_0 + v_0 t + \frac{1}{2} a t^2$
 \Rightarrow $v^2 - v_0^2 = 2 a (x - x_0)$

Özet:

$$v = v_0 + a t$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 (sabit ivmeli hareket)
$$v^2 - v_0^2 = 2 a (x - x_0)$$

Zamansız hız formülü:

$$v = v_0 + at \longrightarrow t = \frac{v - v_0}{a} \longrightarrow x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$\Longrightarrow v^2 - v_0^2 = 2 a(x - x_0)$$

Özet:

$$v = v_0 + a t$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 (sabit ivmeli hareket)
$$v^2 - v_0^2 = 2 a (x - x_0)$$

Özel durum: Düzgün doğrusal hareket

$$a = 0$$
 \rightarrow $v = v_0 = \text{sabit}$ ve $x = x_0 + v_0 t$

2.3 SERBEST DÜŞME

Deneysel gözlem (Galileo):

Dünya yüzeyi yakınında, dikey atılan veya serbest bırakılan tüm cisimler aynı bir sabit ivmeyle düşerler. •

2.3 SERBEST DÜŞME

Deneysel gözlem (Galileo):

Dünya yüzeyi yakınında, dikey atılan veya serbest bırakılan tüm cisimler aynı bir sabit ivmeyle düşerler.

Buna $\mathbf{yerçekimi}$ ivmesi denir ve mutlak değeri g ile gösterilir.

$$g = 9.8 \text{ m/s}^2$$

2.3 SERBEST DÜŞME

Deneysel gözlem (Galileo):

Dünya yüzeyi yakınında, dikey atılan veya serbest bırakılan tüm cisimler aynı bir sabit ivmeyle düşerler.

Buna **yerçekimi ivmesi** denir ve mutlak değeri g ile gösterilir.

$$g = 9.8 \text{ m/s}^2$$

- Hava sürtünmesi ihmal edilebildiği ölçüde doğrudur.
- Coğrafi konuma göre ufak değişiklikler gösterir.
- Yüzeyden yükseldikçe g değeri azalır.
- Problem çözümlerinde $g \approx 10 \text{ m/s}^2$ alınabilir (bağıl hata: % 2)

Serbest düşme için sabit ivmeli hareket formülleri geçerlidir.

İvmenin işareti: •

Serbest düşme için sabit ivmeli hareket formülleri geçerlidir.

İvmenin işareti: •

- g ivmesi Dünya merkezine doğru hızlandırır.
- y-ekseni keyfi olarak (yukarı veya aşağı) seçilebilir.
- Hızlanılan yön pozitif alınmışsa a = +g, negatif alınmışsa a = -g olur.

Serbest düşme için sabit ivmeli hareket formülleri geçerlidir.

İvmenin işareti: •

- g ivmesi Dünya merkezine doğru hızlandırır.
- y-ekseni keyfi olarak (yukarı veya aşağı) seçilebilir.
- Hızlanılan yön pozitif alınmışsa a = +g, negatif alınmışsa a = -g olur.

y-ekseni yukarı ise:	y-ekseni aşağı ise:	
a = -g	a = +g	(serbest düşme)
$v = v_0 - g t$	$v = v_0 + g t$	
$y = y_0 + v_0 t - \frac{1}{2} g t^2$	$y = y_0 + v_0 t - \frac{1}{2} g t^2$	