Vizsga 2021.06.07. 10:00-10:50 (Online)

Határidő jún 7, 10:50

Pont 15

Kérdések 15

Elérhető jún 7, 10:05 - jún 7, 11:00 körülbelül 1 óra

Időkorlát 45 perc

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
LEGUTOLSÓ	1. próbálkozás	42 perc	9 az összesen elérhető 15 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen kvíz eredménye: 9 az összesen elérhető 15 pontból

Beadva ekkor: jún 7, 10:47

Ez a próbálkozás ennyi időt vett igénybe: 42 perc

Helytelen

1. kérdés 0 / 1 pont Az M := M(t, k⁻, k⁺) gépi számhalmazra vonatkozó állítások közül melyik igaz? (A) M tartalmazza a 0-t. (B) Bármely két szomszédos elem távolsága azonos. (C) M elemei ε₀-ra szimmetrikusan helyezkdenek el. (D) M páros számú elemet tartalmaz.

2. kérdés	1 / 1 pont
Az alapműveletek hibakorlátaira vonatkozó ismereteink s állítás hamis?	zerint mely
(A) Két egymáshoz közeli szám összegének képzése nen nagy mértékben az eredmény relatív hibakorlátját.	n növeli
(B) Két egymáshoz közeli szám összegének képzése nen nagy mértékben az eredmény abszolút hibakorlátját	
(C) Két egymáshoz közeli szám különbségének képzése nagy mértékben az eredmény relatív hibakorlátját.	nem növeli
(D) Két egymáshoz közeli szám különbségének képzése nagy mértékben az eredmény abszolút hibakorlátját	
О A	
ОВ	
● C	
O D	

3. kérdés	1 / 1 pont		

Az Ax = b lineáris egyenletrendszer megoldását Gauss-elimináció segítségével szeretnénk kiszámítani. Az alábbi állítások közül melyik igaz?

- (A) Ha det(A) = 0, akkor a Gauss-elimináció nem hajtható végre sor- és oszlopcsere nélkül.
- (B) Ha det(A) = 0, akkor a lineáris egyenletrendszernek biztosan nincs megoldása.
- (C) Ha $det(A) \neq 0$, akkor a Gauss-elimináció lehet, hogy nem végrehajtható sor- és oszlopcsere nélkül.
- (D) Ha $det(A) \neq 0$, akkor a lineáris egyenletrendszernek lehet, hogy két megoldása van.

_ A			
ОВ			
⊙ C			
O D			

4. kérdés 1 / 1 pont

Melyik mátrixnorma nem indukált az alábbiak közül?

- (A) $\|\cdot\|_1$
- (B) $\|\cdot\|_2$
- (C) Minden mátrixnorma indukált.
- (D) $\|\cdot\|_F$

A

	ОВ
	O C
	● D
Helytelen	5. kérdés 0 / 1 pont
	5. Refues
	Tekintsünk egy 23 pontra épülő interpolációs feladatot! Hány darab harmadrendű osztott differencia tartozik az adott osztópont rendszerhez?
	(A) 20 (B) 21 (C) 19 (D) 0
	○ A
	● B
	○ C
	O D
Helytelen	6. kérdés 0 / 1 pont

Legyenek $x_0=-1, x_1=1, x_2=4$ az interpoláció alappontjai valamint $L_2(x)$ a pontokra illeszkedő interpolációs polinom. Bővítsük az alappontok rendszerét egy új $x_3=5$ osztóponttal. Mi lesz a harmadfokú interpolációja a függvénynek az $x_0=-1, x_1=1, x_2=4, x_3=5$ alappontokra támaszkodva, ha ismerjük $f[-1,1,4,5]=\frac{2}{3}$ osztott differencia értékét?

(A)
$$L_2(x) + \frac{2}{3}(x+1)(x-1)(x-4)(x-5)$$

(B)
$$L_2(x) - x(x+1)(x-4)$$

(C)
$$L_2(x) + \frac{2}{3}(x+1)(x-1)(x-4)$$

(D)
$$L_2(x) - \frac{2}{3}(x+1)(x-1)(x-4)$$

(0)	Α
	\neg

B

C

O

7. kérdés 1/1 pont

Mely feltétel nem szükséges a Newton módszer lokális konvergenciájához?

(A)
$$f \in C^2[a, b]$$

(B)
$$\exists m > 0 : \forall x \in (a, b) : |f'(x)| < m$$

(C)
$$\exists M > 0 : \forall x \in (a, b) : |f''(x)| < M$$

(D) Mindháromra szükség van

ОА		
● B		
ОС		
O D		

8. kérdés 1 / 1 pont

Az alábbiak közül melyik intervallumon van fixpontja az $f(x) := x^3 - 3x$ függvénynek?

- (A) [2.5; 3].
- (B) [-1; -0.5].
- **(C)** [4; 5].
- **(D)** [0; 2].
- O A
 - B
 - O C
 - D

9. kérdés	1 / 1 pont

Melyik állítás igaz az *n*-fokú polinomokra tanult Horner algoritmusra?

- (A) Műveletigénye a fokszámmal négyzetes arányban nő.
- (B) Tetszőleges folytonos függvény gyökeinek meghatározására alkalmazható.
- (C) Szélsőérték meghatározására is közvetlenül alkalmazható.
- (D) Polinom deriváltjainak kiszámítására is alkalmazható.

10. kérdés 1/1 pont

Tekintsük a következő kvadratúraformulát.

$$\int_{-3}^{2} f(x) dx \approx 5 \cdot \left(A \cdot f(-3) + \frac{25}{36} f(0) + \frac{1}{12} \cdot f(2) \right)$$

Hogyan válasszuk meg az A együttható értékét, hogy interpolációs kvadratúraformulát kapjunk?

(A)
$$A = \frac{2}{3}$$
.

(B)
$$A = 0$$
.

(C)
$$A = \frac{2}{9}$$
.

(D)
$$A = \frac{9}{2}$$
.

● C	
О D	
1. kérdés	1 / 1 poi
Az alábbiak közül melyik tanult rendű konvergenciát?	tétel garantálja a legmagasabb
 (A) Húrmódszer konvergenciaté (B) Banach-féle fixponttétel (C) Newton módszer monoton (D) Mindegyik csak 1-rendű ko 	konvergenciája
(B) Banach-féle fixponttétel(C) Newton módszer monoton	konvergenciája
(B) Banach-féle fixponttétel(C) Newton módszer monoton(D) Mindegyik csak 1-rendű ko	konvergenciája
(B) Banach-féle fixponttétel(C) Newton módszer monoton(D) Mindegyik csak 1-rendű ko	konvergenciája
(B) Banach-féle fixponttétel (C) Newton módszer monoton (D) Mindegyik csak 1-rendű ko A	konvergenciája

Helytelen

Legyen az $f(x) = x^n$ függvény x_0, x_1, \ldots, x_n , $(n \ge 10)$ különböző alappontokra illesztett interpolációs polinomja $L_n(x)$! Az alábbiak közül melyik a helyes formula az interpoláció hibájára?

- (A) $f(x) L_n(x) = \frac{1}{(n+1)!} \cdot \omega_n(x)$
- (B) $f(x) L_n(x) = 0$
- (C) $f(x) L_n(x) = \omega_n(x)$
- (D) $f(x) L_n(x) = \frac{x}{(n+1)!} \cdot \omega_n(x)$
- A
- B
- C
- D

Helytelen

13. kérdés

0 / 1 pont

Legyen $t \in \mathbb{N}^+$, t > 4 és tekintsük az M(t,t,t) gépi számhalmazt! Milyen hosszú lesz tetszőleges 3 egymást követő pozitív gépi szám által kifeszített intervallum?

- (A) 1
- **(B)** 3
- (C) t
- (D) Az egymást követő *M*-beli pozitív gépi számok távolsága nem állandó, ezért nem lehet megmondani.
- A
- B

⊙ C			
O D			

Helytelen

14. kérdés 0 / 1 pont

Az alábbiak közül melyik φ függvény kontrakció a megadott intervallumon?

(A)
$$\varphi(x) = \sqrt{x+1}, x \in [1,2]$$

(B)
$$\varphi(x) = \frac{x+1}{3}, x \in [1,2]$$

- (C) Mindkettő kontrakció
- (D) Egyik sem kontrakció

ОА			
ОВ			
ОС			
● D			

15. kérdés	1 / 1 pont

Az alábbi, P értékeire vonatkozó Horner-algoritmusból adódó táblázat alapján mi lesz $(Q(3)+\frac{1}{2})\cdot P''(1)$ értéke, ahol $P(x)=Q(x)\cdot (x-1)$?

a _i	1	-9	23	-15
ξi	1	1	-8	15
$a_i^{(1)}$	1	-8	15	0
ξ_i	1	1	-7	
$a_{i}^{(2)}$	1	-7	8	
ξ_i	1	1		
$a_{i}^{(3)}$	1	-6		

- **(A)** -6
- **(B)** 6
- **(C)** -3
- **(D)** 3
- A
- O B
- C

Kvízeredmény: 9 az összesen elérhető 15 pontból