Học Máy

(Machine Learning)

Thân Quang Khoát

khoattq@soict.hust.edu.vn

Viện Công nghệ thông tin và Truyền thông Trường Đại học Bách Khoa Hà Nội Năm 2015

Nội dung môn học:

- Giới thiệu chung
- Các phương pháp học không giám sát
- Các phương pháp học có giám sát
 - Học dựa trên các láng giềng gần nhất (Nearest neighbors learning)
- Đánh giá hiệu năng hệ thống học máy

Các bạn phân loại thế nào?

Class a

Class b

Class a

Class a

??

Class a

Class b

Học dựa trên các láng giềng gần nhất

- Một số tên gọi khác của phương pháp học dựa trên các láng giềng gần nhất (Nearest neighbors learning)
 - Instance-based learning
 - Lazy learning
 - Memory-based learning
- Ý tưởng của phương pháp
 - Quá trình học
 - (Đơn giản là) lưu lại các ví dụ học
 - Không xây dựng một mô hình (mô tả) rõ ràng và tổng quát của hàm mục tiêu cần học
 - Đối với một ví dụ cần phân loại/dự đoán
 - Giá trị của hàm mục tiêu (một nhãn lớp, hoặc một giá trị thực)
 được suy ra từ các hàng xóm của nó.

Học dựa trên các láng giềng gần nhất

- Biểu diễn đầu vào của bài toán
 - Mỗi ví dụ x được biểu diễn là một vector n chiều trong không gian các vector $x \in \mathbb{R}^n$
 - $x = (x_1, x_2, ..., x_n)$, trong đó $x_i \in R$ là một số thực
- Có thể áp dụng được với cả 2 kiểu bài toán
 - Bài toán phân lớp (classification)
 - Hàm mục tiêu có giá trị rời rạc
 - Đầu ra của hệ thống là một trong số các giá trị rời rạc đã xác định trước (một trong các nhãn lớp)
 - Bài toán hồi quy (regression)
 - Hàm mục tiêu có giá trị liên tục
 - Đầu ra của hệ thống là một giá trị số thực

Ví dụ: bài toán phân lớp

- Xét 1 láng giềng gần nhất
 - → Gán z vào lớp c2
- Xét 3 láng giềng gần nhất
 - → Gán z vào lớp c1
- Xét 5 láng giềng gần nhất
 - → Gán z vào lớp c1

Giải thuật k-NN cho phân lớp

- Mỗi ví dụ học x được biểu diễn bởi 2 thành phần:
 - Mô tả của ví dụ: $\mathbf{x} = (x_1, x_2, ..., x_n)$, trong đó $x_i \in R$
 - Nhãn lớp : $c \in C$, với C là tập các nhãn lớp được xác định trước
- Giai đoạn học
 - Đơn giản là lưu lại các ví dụ học trong tập học: D
- Giai đoạn phân lớp: Đế phân lớp cho một ví dụ (mới) z
 - Với mỗi ví dụ học $x \in D$, tính khoảng cách giữa x và z
 - Xác định tập NB(z) các láng giềng gần nhất của z
 - ightarrowGồm k ví dụ học trong ${\it D}$ gần nhất với ${\it z}$ tính theo một hàm khoảng cách d
 - Phân z vào lớp chiếm số đông (the majority class) trong số các lớp của các ví dụ trong NB(z)

Giải thuật k-NN cho hồi quy

- Mỗi ví dụ học x được biểu diễn bởi 2 thành phần:
 - Mô tả của ví dụ: $x = (x_1, x_2, ..., x_n)$, trong đó $x_i \in R$
 - Giá trị đầu ra mong muốn: $y_x \in R$ (là một số thực)
- Giai đoạn học
 - Đơn giản là lưu lại các ví dụ học trong tập học D
- Giai đoạn dự đoán: Để dự đoán giá trị đầu ra cho ví dụ z
 - Đối với mỗi ví dụ học $x \in D$, tính khoảng cách giữa x và z
 - Xác định tập NB(z) các láng giềng gần nhất của z
 - ightarrow Gồm ${\it k}$ ví dụ học trong ${\it D}$ gần nhất với ${\it z}$ tính theo một hàm khoảng cách ${\it d}$
 - Dự đoán giá trị đầu ra đối với z: $y_z = \frac{1}{k} \sum_{x \in NB(z)} y_x$

k-NN: Các vấn đề cốt lõi

Suy nghĩ khác nhau!

k-NN: Các vấn đề cốt lõi

- Hàm khoảng cách
 - Mỗi hàm sẽ tương ứng với một cách nhìn về dữ liệu.
 - Vô hạn hàm!!!
 - Chọn hàm nào?

k-NN: Các vấn đề cốt lõi

- Chọn tập láng giềng NB(z)
 - Chọn bao nhiêu láng giềng?
 - Giới hạn chọn theo vùng?

Một hay nhiều láng giềng gần nhất?

- Việc phân lớp (hay dự đoán) chỉ dựa trên duy nhất một láng giềng gần nhất (là ví dụ học gần nhất với ví dụ cần phân lớp/dự đoán) thường không chính xác
 - Nếu ví dụ học này là một ví dụ bất thường, không điển hình (an outlier) – rất khác so với các ví dụ khác
 - Nếu ví dụ học này có nhãn lớp (giá trị đầu ra) sai do lỗi trong quá trình thu thập (xây dựng) tập dữ liệu
- Thường xét k (> 1) các ví dụ học (các láng giềng) gần nhất với ví dụ cần phân lớp/dự đoán
- Đối với bài toán phân lớp có 2 lớp, k thường được chọn là một số lẻ, để tránh cân bằng về tỷ lệ các ví dụ giữa 2 lớp
 - Ví dụ: k = 3, 5, 7, ...

Hàm tính khoảng cách (1)

Hàm tính khoảng cách d

- Đóng vai trò rất quan trọng trong phương pháp học dựa trên các láng giềng gần nhất
- Thường được xác định trước, và không thay đổi trong suốt quá trình học và phân loại/dự đoán

Lựa chọn hàm khoảng cách đ

- Các hàm khoảng cách hình học: Dành cho các bài toán có các thuộc tính đầu vào là kiểu số thực (x_i∈R)
- Hàm khoảng cách Hamming: Dành cho các bài toán có các thuộc tính đầu vào là kiểu nhị phân $(x_i \in \{0,1\})$

Hàm tính khoảng cách (2)

- Các hàm tính khoảng cách hình học (Geometry distance functions)
 - · Hàm Minkowski (p-norm):
 - · Hàm Manhattan (p = 1):
 - · Hàm Euclid (p = 2):
 - · Hàm Chebyshev $(p = \infty)$:

$$d(x,z) = \left(\sum_{i=1}^{n} \left| x_i - z_i \right|^p \right)^{1/p}$$

$$d(x,z) = \sum_{i=1}^{n} |x_i - z_i|$$

$$d(x,z) = \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2}$$

$$d(x,z) = \lim_{p \to \infty} \left(\sum_{i=1}^{n} |x_i - z_i|^p \right)^{1/p}$$
$$= \max_{i} |x_i - z_i|$$

Hàm tính khoảng cách (3)

- Hàm khoảng cách Hamming
 - Đối với các thuộc tính đầu vào là kiểu nhị phân ({0,1})
 - Ví dụ: x = (0,1,0,1,1)

$$d(x,z) = \sum_{i=1}^{n} Difference (x_i, z_i)$$

Difference
$$(a,b) = \begin{cases} 1, & \text{if } (a \neq b) \\ 0, & \text{if } (a = b) \end{cases}$$

Chuẩn hóa miền giá trị thuộc tính

Hàm tính khoảng cách Euclid:

$$d(x,z) = \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2}$$

- Giả sử mỗi ví dụ được biểu diễn bởi 3 thuộc tính: Age, Income (cho mỗi tháng), và Height (đo theo mét)
 - x = (Age=20, Income=12000, Height=1.68)
 - z = (Age=40, Income=1300, Height=1.75)
- Khoảng cách giữa x và z
 - $d(x,z) = [(20-40)^2 + (12000-1300)^2 + (1.68-1.75)^2]^{0.5}$
 - Giá trị khoảng cách bị quyết định chủ yếu bởi giá trị khoảng cách (sự khác biệt) giữa 2 ví dụ đối với thuộc tính Income
 - → Vì: Thuộc tính Income có miền giá trị rất lớn so với các thuộc tính khác
- Cần phải chuẩn hóa miền giá trị (đưa về cùng một khoảng giá trị)
 - Khoảng giá trị [0,1] thường được sử dụng
 - Đối với mỗi thuộc tính $i: x_i := x_i / \max(x_i)$

Trọng số của các thuộc tính

Hàm khoảng cách Euclid:

$$d(x,z) = \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2}$$

- Tất cả các thuộc tính có cùng (như nhau) ảnh hưởng đối với giá trị khoảng cách
- Các thuộc tính khác nhau có thể (nên) có mức độ ảnh hưởng khác nhau đối với giá trị khoảng cách
- Cần phải tích hợp (đưa vào) các giá trị trọng số của các thuộc tính trong hàm tính khoảng cách
 - w_i là trọng số của thuộc tính i:

- $d(x,z) = \sqrt{\sum_{i=1}^{n} w_{i}(x_{i} z_{i})^{2}}$
- Làm sao để xác định các giá trị trọng số của các thuộc tính?
 - Dựa trên các tri thức cụ thể của bài toán (vd: được chỉ định bởi các chuyên gia trong lĩnh vực của bài toán đang xét)
 - Bằng một quá trình tối ưu hóa các giá trị trọng số (vd: sử dụng một tập học để học một bộ các giá trị trọng số tối ưu)

Khoảng cách của các láng giềng (1)

- Xét tập NB(z) gồm k ví dụ học gần nhất với ví dụ cần phân lớp/dự đoán z
 - Mỗi ví dụ (láng giềng gần nhất) này có khoảng cách khác nhau đến z
 - Các láng giềng này có ảnh hưởng như nhau đối với việc phân lớp/dự đoán cho z? → KHÔNG!
- Nên gán các mức độ ảnh hưởng (đóng góp) của mỗi láng giềng gần nhất tùy theo khoảng cách của nó đến z
 - Mức độ ảnh hưởng cao hơn cho các láng giềng gần hơn!

Khoảng cách của các láng giềng (2)

- Gọi v là hàm xác định trọng số theo khoảng cách
 - Đối với một giá trị d(x,z) khoảng cách giữa x và z
 - v(x,z) tỷ lệ nghịch với d(x,z)
- Đối với bài toán phân lớp: $c(z) = \underset{c_j \in C}{\operatorname{arg max}} \sum_{x \in NB(z)} v(x, z).Identical \quad (c_j, c(x))$ $Identical \quad (a, b) = \begin{cases} 1, & \text{if } (a = b) \\ 0, & \text{if } (a \neq b) \end{cases}$
- Đối với bài toán dự đoán (hồi quy): $f(z) = \frac{\sum_{x \in NB(z)} v(x, z).f(x)}{\sum_{x \in NB(z)} v(x, z)}$
- Lựa chọn một hàm xác định trọng số theo khoảng cách:

$$v(x,z) = \frac{1}{\alpha + d(x,z)}$$
 $v(x,z) = \frac{1}{\alpha + [d(x,z)]^2}$ $v(x,z) = e^{-\frac{d(x,z)^2}{\sigma^2}}$

Lazy learning vs. Eager learning

- Lazy learning. Việc đánh giá hàm mục tiêu (target function)
 được hoãn lại cho đến khi xét ví dụ cần phân loại/dự đoán
 - Đánh giá (xấp xỉ) hàm mục tiêu một cách cục bộ (locally) và riêng rẽ (diferrently) cho mỗi ví dụ cần phân loại/dự đoán (tại thời điểm phân loại/dự đoán của hệ thống)
 - Tính toán nhiều lần các xấp xỉ cục bộ của hàm mục tiêu
 - Thường mất thời gian lâu hơn để đưa ra kết luận (phân lớp/dự đoán), và cần nhiều không gian nhớ hơn
 - Ví dụ: Nearest neighbor learner, Locally weighted regression
- Eager learning. Việc đánh giá hàm mục tiêu <u>được hoàn thành</u> trước khi xét đến bất kỳ ví dụ cần phân loại/dự đoán
 - Đánh giá (xấp xỉ) hàm mục tiêu một cách tổng thể (globally) đối với toàn bộ không gian các ví dự (tại thời điểm học của hệ thống)
 - Tính toán một xấp xỉ duy nhất (ở mức tổng thể) của hàm mục tiêu
 - Ví dụ: Linear regression, Support vector machines, Neural networks, ...

k-NN: Ưu nhược điểm

Các ưu điểm

- Chi phí thấp cho quá trình huấn luyện (chỉ việc lưu lại các ví dụ học)
- Hoạt động tốt với các bài toán phân loại gồm nhiều lớp
 - \rightarrow Không cần phải học c bộ phân loại cho c lớp
- Phương pháp học k-NN (k >> 1) có khả năng xử lý nhiễu cao
 - \rightarrow Phân loại/dự đoán được thực hiện dựa trên k láng giềng gần nhất
- Rất Linh động trong việc chọn hàm khoảng cách.
 - → Có thể dùng độ tương tự (similarity): cosine
 - → Có thể dùng độ đo khác, chẳng hạn Kullback-Leibler divergence, Bregman divergence, ...

Các nhược điểm

- Phải lựa chọn hàm tính khoảng cách (sự khác biệt) thích hợp với bài toán
- Chi phí tính toán (thời gian, bộ nhớ) cao tại thời điểm phân loại/dự đoán
- Có thể cho kết quả kém/sai với các thuộc tính không liên quan

k-NN: bài tập

- K-NN khác gì so với phương pháp Least squares?
- Đánh giá khả năng overfitting của phương pháp k-NN?