

Centerline Boundary Dice Loss for Vascular Segmentation

MICCAI 2024

Pengcheng Shi¹, Jiesi Hu^{1,2}, Yanwu Yang^{1,2}, Zilve Gao¹, Wei Liu¹, Ting Ma^{1,2}

¹Harbin Institute of Technology (Shenzhen), ²Peng Cheng Laboratory

https://github.com/PengchengShi1220/cbDice pcshi@stu.hit.edu.cn

Motivation

Challenges in Vascular Segmentation

Vascular segmentation encounters three significant challenges:

- (1) Preserving the **topology** of the vascular network to enable accurate hemodynamic analysis.
- (2) Capturing the intricate **geometric morphologies** vital for diagnosing conditions like stenosis.
- (3) Ensuring consistent width adjustments within each branch to mitigate **diameter imbalance**.

How to encompass topology, geometry, and vessel diameter consistency in vascular segmentation?

Related Works

Topology:

2020, TPAMI, A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology

2021, CVPR, clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

Geometry:

2020, MIDL, How Distance Transform Maps Boost Segmentation CNNs: An Empirical Study

2021, CVPR, Boundary IoU

2023, MICCAI, Boundary DoU

Related Works

Imbalance:

GDL =
$$1 - 2 \frac{\sum_{l=1}^{2} w_l \sum_{n} r_{ln} p_{ln}}{\sum_{l=1}^{2} w_l \sum_{n} r_{ln} + p_{ln}}$$

 $w_l = 1/(\sum_{n=1}^{N} r_{ln})^2$

2017, DLMIA, Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations

2019, MIDL, Boundary loss for highly unbalanced segmentation

2022, CMIG, Unified Focal loss: Generalising Dice and cross entropybased losses to handle class imbalanced medical image segmentation

blob loss: instance imbalance awareness

how blob loss changes loss functions' perception of sleep paralysis demons

2023, IPMI, blob loss: Instance Imbalance Aware Loss Functions for Semantic Segmentation

Limitations of centerline Dice (clDice)

$$\operatorname{Tprec}(S_P, V_L) = \frac{|S_P \cap V_L|}{|S_P|}; \quad \operatorname{Tsens}(S_L, V_P) = \frac{|S_L \cap V_P|}{|S_L|}$$

 V_P : The predicted segmentation mask. \Box

 V_L : The ground truth mask.

 S_P : The skeleton extracted from V_P .

 \mathcal{S}_L : The skeleton extracted from V_L .

Each of these elements is a binary image.

Neglect the boundary FN and FP:

The clDice is insensitive to whether the skeleton line is close to the **boundary or centered** within the vessel.

$$clDice(V_P, V_L) = 2 \times \frac{Tprec(S_P, V_L) \times Tsens(S_L, V_P)}{Tprec(S_P, V_L) + Tsens(S_L, V_P)}$$

Add boundary awareness:

Mitigate imbalance:

clDice loss needs to **be combined with Dice loss**, and as a result, it cannot avoid the bias towards larger targets.

$$\mathcal{L}_c = (1 - \alpha)(1 - soft \textbf{Dice}) + \alpha(1 - soft \textbf{clDice})$$

$$\alpha \in [0, 0.5]$$

The segmentation towards vessels with larger diameters due to the volume-based nature of the Dice metric.

The volume's sensitivity to r^2 suggests that a weighting scheme **inversely proportional to** r^2 can mitigate the bias.

Centerline boundary Dice loss

Centerline boundary Dice loss

$$\operatorname{Tprec}(S_{\mathrm{P}}, S_{\mathrm{L}}, V_{\mathrm{L}}) = \frac{|Q_{\mathrm{sp}} \cap Q_{\mathrm{vl}}|}{|Q_{\mathrm{sp}} \cap Q_{\mathrm{spvp}} \cap (U - S_{\mathrm{L}})| + |Q_{\mathrm{sp}} \cap Q_{\mathrm{slvl}}|}$$

$$\operatorname{Tsens}(S_{\mathrm{L}}, S_{\mathrm{P}}, V_{\mathrm{P}}) = \frac{|Q_{\mathrm{sl}} \cap Q_{\mathrm{vp}}|}{|Q_{\mathrm{sl}} \cap Q_{\mathrm{slvl}} \cap (U - S_{\mathrm{P}})| + |Q_{\mathrm{sl}} \cap Q_{\mathrm{spvp}}|}$$

$$\operatorname{cl-X-Dice}(V_{\mathrm{P}}, V_{\mathrm{L}}) = \frac{2 \times \operatorname{Tprec}(S_{\mathrm{P}}, S_{\mathrm{L}}, V_{\mathrm{L}}) \times \operatorname{Tsens}(S_{\mathrm{L}}, S_{\mathrm{P}}, V_{\mathrm{P}})}{\operatorname{Tprec}(S_{\mathrm{P}}, S_{\mathrm{L}}, V_{\mathrm{L}}) + \operatorname{Tsens}(S_{\mathrm{L}}, S_{\mathrm{P}}, V_{\mathrm{P}})}$$

Metric	cl	-D	cl-S	S-D	cl-N	M-D	cl-N	IS-D	cl-N	AI-D	cl-MS	SN-D	cl-M	IN-D
Dim	$2\overline{\mathrm{D}}$	3D	2D	3D	$2\overline{\mathrm{D}}$	3D	2D	3D	$2\overline{\mathrm{D}}$	3D	2D	3D	$\overline{2D}$	3D
$Q_{ m sl} \ Q_{ m sp}$			$R_{ m L}$ $R_{ m P}$				$R_{ m L}$ $R_{ m P}$	$R_{ m L}^2$ $R_{ m P}^2$		$I_{ m L}^2 \ I_{ m P}^2$	$R_{\mathrm{L,N}}$ $R_{\mathrm{P,N}}$	$R_{\rm L,N}^2 \\ R_{\rm P,N}^2$	$I_{ m L,N} \ I_{ m P,N}$	$I_{ m L,N}^2$ $I_{ m P,N}^2$
$egin{array}{c} Q_{ m vl} \ Q_{ m vp} \ Q_{ m slvl} \ Q_{ m spvp} \end{array}$		$V_{ m L} \ V_{ m P} \ S_{ m L} \ S_{ m P}$				$D_{ m L} \ D_{ m P} \ R_{ m L} \ R_{ m P}$					$D_{ m L,N} \ D_{ m P,N} \ R_{ m L,N} \ R_{ m P,N}$			

Examples:

2024, MICCAI, Centerline Boundary Dice Loss for Vascular Segmentation

Theorem proof of cl-X-Dice

$$\operatorname{Tprec}(S_{\mathcal{P}}, S_{\mathcal{L}}, V_{\mathcal{L}}) = \frac{|Q_{\operatorname{sp}} \cap Q_{\operatorname{vl}}|}{|Q_{\operatorname{sp}} \cap Q_{\operatorname{spvp}} \cap (U - S_{\mathcal{L}})| + |Q_{\operatorname{sp}} \cap Q_{\operatorname{slvl}}|}$$

$$\operatorname{Tsens}(S_{\mathcal{L}}, S_{\mathcal{P}}, V_{\mathcal{P}}) = \frac{|Q_{\operatorname{sl}} \cap Q_{\operatorname{vp}}|}{|Q_{\operatorname{sl}} \cap Q_{\operatorname{slvl}} \cap (U - S_{\mathcal{P}})| + |Q_{\operatorname{sl}} \cap Q_{\operatorname{spvp}}|}$$

$$\operatorname{cl-X-Dice}(V_{\mathcal{P}}, V_{\mathcal{L}}) = \frac{2 \times \operatorname{Tprec}(S_{\mathcal{P}}, S_{\mathcal{L}}, V_{\mathcal{L}}) \times \operatorname{Tsens}(S_{\mathcal{L}}, S_{\mathcal{P}}, V_{\mathcal{P}})}{\operatorname{Tprec}(S_{\mathcal{P}}, S_{\mathcal{L}}, V_{\mathcal{L}}) + \operatorname{Tsens}(S_{\mathcal{L}}, S_{\mathcal{P}}, V_{\mathcal{P}})}$$

Theorem 1. For vertical translations along skeleton lines without deformation, cl-M-Dice coefficient is sensitive to translations of mask V within radius R, whereas clDice remains invariant.

Proof. In 2D, cl-M-Dice is defined thus (extendable analogously to 3D):

$$\operatorname{Tprec}(S_{P}, S_{L}, V_{L}) = \frac{|S_{P} \cap D_{L}|}{|R_{P} \cap (U - S_{L})| + |S_{P} \cap R_{L}|}$$
(1)

$$Tsens(S_{L}, S_{P}, V_{P}) = \frac{|S_{L} \cap D_{P}|}{|R_{L} \cap (U - S_{P})| + |S_{L} \cap R_{P}|}$$
(2)

Under vertical translations maintaining constant radius, $|S_{\rm P} \cap R_{\rm L}|$ equals $|S_{\rm L} \cap R_{\rm P}|$. This reduces cl-M-Dice's denominator to $|R_{\rm P}|$ (and analogously for $R_{\rm L}$), making its sensitivity dependent solely on the numerator. Hence, cl-M-Dice reacts to spatial displacements of V within R. Conversely, clDice, assessing overlap between S and V, is not influenced by these variations.

Theorem 2. cl-S-Dice, unlike clDice, is sensitive to radius variations at the skeleton under deformation without perpendicular translation. In cases of complete overlap, cl-S-Dice equals clDice with a value of 1.

Proof. In 2D, cl-S-Dice is defined thus (extendable analogously to 3D):

$$\operatorname{Tprec}(S_{P}, S_{L}, V_{L}) = \frac{|R_{P} \cap V_{L}|}{|R_{P}|}, \quad \operatorname{Tsens}(S_{L}, S_{P}, V_{P}) = \frac{|R_{L} \cap V_{P}|}{|R_{L}|}$$
(3)

For clDice $\neq 1$ (partial overlap), changes in radius $(R_{\rm P}, R_{\rm L})$ affect both $|R_{\rm P} \cap V_{\rm L}|$ and $|R_{\rm L} \cap V_{\rm P}|$. Specifically, with $S = \{s_i, b_j^{\rm s} \mid i \in [1, n], j \in [1, m]\}$ and $R = \{r_i \cdot s_i, b_j^{\rm s} \mid i \in [1, n], j \in [1, m]\}$, variances in r_i at any s_i modify cl-S-Dice. When clDice = 1 (complete overlap), $|R_{\rm P} \cap V_{\rm L}| = |R_{\rm P}|$ and $|R_{\rm L} \cap V_{\rm P}| = |R_{\rm L}|$, aligning cl-S-Dice with clDice, highlighting cl-S-Dice's sensitivity to radius changes in other scenarios.

Implementation details

Differentiable Binarization:

To obtain a differentiable binarized predicted probability map of the foreground, follow these steps:

```
y_pred_fore = y_pred[:, 1:]
y_pred_fore = torch.max(y_pred_fore, dim=1, keepdim=True)[0] # C foreground channels -> 1 channel
y_pred_binary = torch.cat([y_pred[:, :1], y_pred_fore], dim=1)
y_prob_binary = torch.softmax(y_pred_binary, 1)
y_pred_prob = y_prob_binary[:, 1] # predicted probability map of foreground
```

Distance map:

We implement the Euclidean distance transform (EDT) using a **GPU-accelerated** approach with the **cupy** and **cuCIM** library.

```
pip install monai

# For CUDA 12.x
pip install cucim-cu12
pip install cupy==12.3
```

Skeletonization:

Topology-preserving skeletonization: "A Skeletonization Algorithm for Gradient-based Optimization" (ICCV, 2023). This method ensures high topological accuracy but operates at a slower speed.

Morphological skeletonization: "clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation" (CVPR, 2021). This method runs faster but offers lower topological accuracy.

Loss function:

$$\mathcal{L} = 0.5 \times \text{CE} + \frac{\alpha}{2 \times (\alpha + \beta)} \cdot \text{Dice} + \frac{\beta}{2 \times (\alpha + \beta)} \cdot \text{X}$$

where X denotes cl-X-Dice or B-DoU. Parameters α and β are non-negative numbers; with both set to 0, it reverts to CE loss.

Results

Qualitative and quantitative results

Comparative visualization of results on the TopCoW 2023 dataset. Yellow arrows mark areas of segmentation false negatives (FN), green arrows point to false positives (FP), and red arrows identify areas of misclassification.

TopCoW2024 (CTA and MRA, Deep Supervision, No Mirroring, 100epochs):

Network		Loss		Dice	Dice(Large)	Dice(Small)		
	Χ	α	β					
		1	0	<u>72.88</u>	85.82	43.77		
nnU-Net	clDice	e 1	1	72.62	83.89	<u>47.26</u>		
	cbDic	ce 1	1	73.57	<u>84.95</u>	47.98		

$\mathcal{L} = 0.5 \times \text{CE} + \frac{\alpha}{2 \times (\alpha + \beta)} \cdot \text{Dice} + \frac{\beta}{2 \times (\alpha + \beta)} \cdot \text{X}$

nnU-Net framework, No Deep Supervision, No Mirroring for TopCoW2023

NT / 1	· •			D	2000	/ 50	1 \	im a i	117.0000	(100		1	
Network	Loss		Parse 2022 (50 epochs)				TopCoW 2023 (100 epochs, classes average)					verage)	
	X	α	β	Dice	clDice	$eta^{ m err}$	NSD	Dice(L)	Dice(S)	clDice	$eta^{ m err}$	NSD(L)	NSD(S)
	_	0	0	82.55	68.91	331.5	78.51	81.51	7.012	90.10	_	89.78	14.08
	_	1	0	85.05	80.11	277.7	86.04	84.03	0	88.22	_	91.90	0
nnII Not	clDice	1	1	85.30	80.23	263.4	86.20	84.21	38.46	90.72	_	92.45	47.85
$\mathrm{nnU-Net}$	cbDice	1	1	85.46	80.76	266.1	86.57	84.11	41.55	91.34	0.96	92.21	50.42
	cbDice	1	2	84.91	80.02	275.8	85.98	84.01	43.38	91.95	0.98	91.99	54.11
	cbDice	1	3	84.97	78.98	285.6	85.26	84.18	42.68	90.63	0.95	92.67	51.76
	_	0	0	78.91	58.53	508.7	70.80	61.22	0	88.64	_	70.64	0
	_	1	0	81.94	69.87	496.9	78.33	83.19	37.32	90.18	1.40	89.55	46.36
SwinUNETR	clDice	1	1	82.06	70.12	499.4	78.80	83.16	34.72	90.03	1.31	90.73	43.65
SWIIIUNEIK	cbDice	1	1	82.19	71.04	476.5	79.36	82.29	37.34	90.21	1.43	89.51	46.49
	cbDice	1	2	81.88	69.96	469.0	78.89	82.86	38.38	90.56	1.29	90.70	48.37
	cbDice	1	3	81.59	68.62	477.5	77.54	83.09	38.85	90.24	1.27	90.67	47.52
	_	0	0	81.33	64.80	387.7	75.35	56.33	0	89.93	_	67.79	0
	_	1	0	85.08	79.39	288.5	85.49	84.52	42.37	90.44	0.99	92.30	51.82
NexToU	clDice	1	1	84.88	79.27	274.3	85.23	84.30	43.90	90.19	0.66	92.02	53.31
	cbDice	1	1	85.19	80.07	248.95	85.88	84.32	44.51	90.72	0.68	92.18	55.62
	cbDice	1	2	85.22	79.72	216.2	85.56	84.37	47.39	90.45	0.65	92.37	57.71
	cbDice	1	3	85.05	79.18	289.6	85.31	84.21	48.43	90.89	0.66	92.30	58.91
				•				•					

Time Comparisons:

Configuration	Trainer	Skeletonization Type	Epoch Time (s)
Default (CE_DC)	nnUNetTrainerNoMirroring_3d_fullres	N/A	70.3
CE_DC_CLDC	nnUNetTrainer_CE_DC_CLDC_NoMirroring_3d_fullres	Morphological (iter_=10)	86.9
CE_DC_CBDC	nnUNetTrainer_CE_DC_CBDC_NoMirroring_3d_fullres	Morphological (iter_=10)	92.6
CE_DC_CLDC	nnUNetTrainer_CE_DC_CLDC_NoMirroring_3d_fullres	Topology-Preserving	318.2
CE_DC_CBDC	nnUNetTrainer_CE_DC_CBDC_NoMirroring_3d_fullres	Topology-Preserving	324.0

2024, MICCAI, Centerline Boundary Dice Loss for Vascular Segmentation

TopCow: **Top**ology-Aware Anatomical Segmentation of the **C**ircle **o**f **W**illis for CTA and MRA

Thanks for your attention!

https://github.com/PengchengShi1220/cbDice pcshi@stu.hit.edu.cn

