

غوذج إجابة الامتحان التجريبي دبلوم التعليم العام

للعام الدراسي: 1446/1445هـ - 2024/2023م

الفصل الدراسي: **الأول** المادة: **الفيزياء**

الدرجة الكلية: (70)

تنبيه: نموذج الإجابة في (10) صفحة

المعلومات الإضافية	الهدف التعليمي	هدف التقويم	الصفحة	الوحدة	الدرجة	الإجابة	رقم المفردة		
-	4-1	AO1	24	الأولى	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		
- لا يمنح درجة إذا كتب كلمة (مجال) فقط. -لا يمنح درجة إذا كتب كلمة (جهد) فقط.	1-1 7-1	AO1	28 .21	الأولى	1 1	المصطلح العلمي المنطقة من الفضاء التي تتأثر فيها كتلة ما بقوة جاذبية. مجال الجاذبية جهد الجاذبية على المبذول لكل وحدة كتلة لنقل كتلة نقطية من اللانهاية إلى تلك النقطة.	2		
- درجة على التعويض في (<i>r</i> ²) - درجة على الناتج (r).	6-1	AO2	25	الأولى	1	$g = \frac{GM}{r^2}$ $r^2 = \frac{GM}{g}$ $r^2 = \frac{(6.67 \times 10^{-11}) \times (7.3 \times 10^{22})}{1.6}$ $r^2 = 3.0 \times 10^{12} m^2$ $r = 1.7 \times 10^6 m$			

الفصل الدراسي: الأول

المعلومات الإضافية	الهدف التعليمي	هدف التقويم	الصفحة	الوحدة	الدرجة	الإجابة	رقم المفردة
-	10-1	AO1	31	الأولى	1	$3.0 \times 10^3 m s^{-1}$ (1)	4
در جة على الخطوة $T^2 = rac{4\pi^2 r^2}{GM} r$		AO2	32	الأولى		$T^2 = \frac{4\pi^2}{GM}r^3$	
$R=rac{gT^2}{4\pi^2}$ على الخطوة -درجة على الخطوة					1	$T^2 = \frac{4\pi^2 r^2}{GM} r$	
	5-1					$r = \frac{GMT^2}{4\pi^2 r^2}$	5
	10-1					$\because g = \frac{G M}{r^2}$	3
					1	$r = \frac{gT^2}{4\pi^2}$	
						$r = g(\frac{T}{2\pi})^2$	
-	10-1	AO1	33	الأولى	1	164 سنة	6
د رجة على التعويض في (E_p) -در جة على الناتج.	9-1	AO2	28	الأولى	1	$E_p = \Delta \phi m$ $E_p = (\phi_{3R} - \phi_R)m$ $E_p = ((-20 \times 10^6) - (-62 \times 10^6)) \times (1200)$ $E_p = 5 \times 10^{10} \text{J}$	7

العام الدراسي :2023 -2024

القصل الدراسي : الأول

المعلومات الإضافية	الهدف التعليمي	هدف التقويم	الصفحة	الوحدة	الدرجة	الإجابة	رقم المفردة
درجة على إيجاد الكتلة (M) . درجة على إيجاد (r_2) . درجة على التعويض في (W) . درجة على الناتج (W) .	7-1 8-1	AO2 AO2 AO2 AO2	30 .23	الأولى	1	$r_{2} = 2.33 \times 10^{8} + 4.6 \times 10^{6} = 2.4 \times 10^{8} m$ $F = \frac{GMm}{r_{2}^{2}} \implies M = \frac{F r_{2}^{2}}{Gm}$ $M = \frac{1.83 \times (2.376 \times 10^{8})^{2}}{6.67X10^{-11}(360)} = 4.30X10^{24} \text{ kg}$ $W = \Delta E_{P} = E_{P2} - E_{P1}$ $W = \left(-\frac{GMm}{r_{2}}\right) - \left(-\frac{GMm}{r_{1}}\right)$ $W = -\frac{GMm}{r_{2}} + \frac{GMm}{r_{1}} \implies W = \frac{GMm}{r_{1}} - \frac{GMm}{r_{2}}$ $\implies W = GMm \left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right)$ $W = 6.67x10^{-11} (4.30X10^{24})(360) \left(\frac{1}{4.6x10^{6}} - \frac{1}{2.3 \times 10^{8}}\right)$ $W = 2.2x10^{10} \text{ J}$	8
-	3-2	AO1	51	الثانية	1	$1.6 \times 10^{-7} \text{N}$	9
د رجة على إيجاد ناتج (E_A) . -در جة على إيجاد (E_B) .	8-2	AO2	55	الثانية		$E_A = E_B$ (P) عند النقطة $E_A = \frac{Q_A}{4\pi\varepsilon_o r_A^2} = \frac{(3X10^{-12})}{(4\pi \times 8.85 \times 10^{-12})(5X10^{-2})^2}$ $E_A = 10.8 \ NC^{-1}$ $E_B = \frac{Q_B}{4\pi\varepsilon_o r_B^2} = \frac{(12X10^{-12})}{(4\pi \times 8.85 \times 10^{-12})(10X10^{-2})^2}$ $E_B = 10.8 \ NC^{-1}$ $E_T = E_A - E_B = 0$	10
-	10-2	AO1	61	الثانية	1	-5000V (i	11

العام الدراسي :2023 -2024

الفصل الدراسي: الأول

المعلومات الإضافية	الهدف التعليمي	هدف التقويم	الصفحة	الوحدة	الدرجة	الإجابة	رقم المفردة
أي عبارة تعطي المعنى الصحيح بحيث يكون شدة المجال الكهربائي $100\ NC^{-1}$	1-2	AO1	48	الثانية	1	 أي شحنة كهربائية مقدار ها (1C) تتأثر بقوة كهربائية مقدار ها (100N) . 	
- درجة على التعويض في (E ₂). - درجة على الناتج (2). - درجة على الناتج (200 <i>NC</i> ⁻¹).	4-2	AO2 AO2	49	الثانية	1 1 1	$E_{1} = \frac{V_{1}}{d_{1}}$ $E_{2} = \frac{4V_{1}}{2d_{1}}$ $\frac{E_{2}}{E_{1}} = \frac{\frac{4V_{1}}{2d_{1}}}{\frac{V_{1}}{d_{1}}}$ $\frac{E_{2}}{E_{1}} = 2$ $E_{2} = 2E_{1} = 2 \times 100 = 200NC^{-1}$	12
در جة على التعويض في (Q) . -درجة على الناتج (Q) . -درجة على التعويض في (E_p) . -درجة على الناتج (E_p) .	10-2 11-2	AO2	60 , 59	الثانية	1 1	$V = \frac{Q}{4\pi\varepsilon_{o} r}$ $Q = 4\pi\varepsilon_{o} r \times V$ $Q = 4\pi \times 8.85 \times 10^{-12} \times 0.2 \times 200$ $Q = 4.4 \times 10^{-9} C$ $E_{p} = \frac{QQ_{p}}{4\pi\varepsilon_{o} r}$ $E_{p} = \frac{(4.4X10^{-9})(1.6X10^{-19})}{4\pi \times 8.85 \times 10^{-12} \times (0.8)}$ $E_{p} = 7.9X10^{-18} \text{ J}$	13

العام الدراسي :2023 -2024

الفصل الدراسي : الأول

المادة: الفيزياء (نموذج إجابة الامتحان التجريبي)

المعلومات الإضافية	الهدف التعليمي	هدف التقويم	الصفحة	الوحدة	الدرجة	الإجابة	رقم المفردة
-	1-3	AO1	76	الثالثة	1	$C s^{-1}$ (ب	14
- درجة : على التعويض في الميل. - درجة : على ناتج (r). - يُقبل الناتج بالإشارة السالبة.	8-3	AO2	93	الثالثة	1 1	ميل المنحنى = - r ميل المنحنى $-r$ $= rac{1.2-1.6}{4-0}$ $r=0.1~\Omega$	15
-	4-3	AO1	84	الثالثة	1	2r↓ 2L	16
- درجة على ناتج المساحة. - درجة على التعويض في (V). - درجة على الناتج في (V).	2-3	AO2	80	الثالثة	1 1 1	$A = \pi \times (0.4 \times 10^{-3})^{2}$ $A = 5.0 \times 10^{-7} \text{m}^{2}$ $v = \frac{I}{\text{nqA}}$ $v = \frac{6.0}{8.0 \times 10^{28} \times 1.6 \times 10^{-19} \times 5.0 \times 10^{-7}}$ $v = 9.3 \times 10^{-4} \text{ m s}^{-1}$	17
-	9-3	AO1	97	الثالثة	1	8	18

الفصل الدراسي: الأول الغام الدراسي: 2023 - 2024

المعلومات الإضافية	الهدف التعليمي	هدف التقويم	الصفحة	الوحدة	الدرجة	الإجابة	رقم المفردة
على ناتج طول (AC) على التعويض عن (٤) بدلالة		AO2 AO2	99	الثالثة	1	طول $(AC) = AB - CB$ $AC = 1.00 - 0.34 = 0.66 \text{ m}$ $\epsilon = \frac{AC}{AB} \epsilon_0$ $\epsilon = 0.66 \epsilon_0$	19
لقانون كيرتشوف الأول $(I_1 = I_2 - I_3)$ على ناتج (I_2). على ناتج (i_2). على التعويض في: على التعويض في: (12 + (4.5 x 2) + 12). على ناتج (R).	+ I ₃₎ i+ I ₃	AO1 AO2 AO2 AO2	88	الثالثة	1 1 1 1	$I_{1} = I_{2} + I_{3}$ $: (abefa)$ $I_{0} + 14 = 3 I_{1} + (4.5 \times 2)$ $I_{1} = \frac{24 - 9}{3}$ $I_{1} = 5 A$ $I_{2} = I_{1} - I_{3} = 5 - 2 = 3 A$ $: (cdebc)$ $I_{1} = \frac{12 + 9}{3}$ $R = 7 \Omega$ $(abcdefa)$ $I_{2} = \frac{36 - 15}{3}$ $R = 7 \Omega$ $I_{3} = \frac{36 - 15}{3}$ $R = 7 \Omega$ $I_{4} = \frac{36 - 15}{3}$ $R = 7 \Omega$ $I_{5} = \frac{36 - 15}{3}$ $I_{7} = \frac{36 - 15}{3}$ $I_{7} = \frac{36 - 15}{3}$	20

الفصل الدراسي: الأول الفصل الدراسي: 2023 - 2024

المعلومات الإضافية	الهدف التعليمي	هدف التقويم	الصفحة	الوحدة	الدرجة	الإجابة	رقم المفردة
-	2-4	AO1	119	الرابعة	1	المكثف D	21
- درجة : للتعويض - درجة : للناتج	4-4	AO1	125	الرابعة	1	$C_T = C_1 + C_2$ $C_T = 2 + 4$ $C_T = 6 \mu F$ (†	22
- درجة: على الناتج	2-4	AO2	124	الرابعة	1	$Q = CV$ $Q = 6 \times 10^{-6} \times 6$ $Q = 36 \times 10^{-6} C$ (9)	
- درجة: للتعويض في (Q). - درجة : للناتج.	6-4	AO2	122	الرابعة	1 1	$W = \frac{1}{2} QV$ $Q = \frac{2W}{V}$ $Q = \frac{2 \times 9 \times 10^{-3}}{3}$	
- درجة: للتعويض في (C). - درجة : على الناتج.	6-4	AO2	122	الرابعة	1 1	$Q = 6 \times 10^{-3} C$ $W = \frac{1}{2}CV^{2}$ $C = \frac{2W}{V^{2}}$ $C = \frac{2 \times 4 \times 10^{-3}}{2^{2}}$ $C = 2 \times 10^{-3} F$ $C = 2 mF$ (4)	23

الفصل الدراسي : الأول

العام الدراسي :2023 -2024

المعلومات الإضافية	الهدف التعليمي	هدف التقويم	الصفحة	الوحدة	الدرجة	الإجابة	رقم المفردة
$(12e^{-3}=12~e^{rac{-24}{ au}}:)$ ورجة: للتعويض في (au) . (au) درجة للناتج (au) : (au) درجة للتعويض في $R=rac{8}{2 imes10^{-3}}$ درجة: للناتج (R) درجة: للناتج (R)	9-4 9-4 8-4 8-4	AO2 AO2 AO1	132	الرابعة	1 1 1	$V = V_0 e^{\frac{-t}{\tau}}$ $12e^{-3} = 12 e^{\frac{-24}{\tau}}$ $\tau = \frac{24}{3}$ $\tau = 8 s$ $\tau = RC$ $R = \frac{\tau}{C}$ $R = \frac{8}{2 \times 10^{-3}}$ $R = 4 \times 10^3 \Omega$	24
-	3-5	AO1	147	الخامسة	1	كثافة الفيض المغناطيسي.	25
-درجة على الاختيار الصحيح. -درجة على التفسير الصحيح.	1- 5	AO1	168	الخامسة	1 1	السلك (M) لأنه لن يتأثر بالقوة المغناطيسية. (أو) عندما يمر السلك (K) بمنطقة المجال المغناطيسي المنتظم تتغير كثافة الفيض المغناطيسي المؤثرة عليها، فتتولد قوة دافعة كهربائية تأثيرية بالاتجاه المعاكس له.	26
-	5-5	AO1	155	الخامسة	1	0 0	27

العام الدراسي :2023 -2024

الفصل الدراسي : الأول

المعلومات الإضافية	الهدف التعليمي	هدف التقويم	الصفحة	الوحدة	الدرجة	الإجابة	رقم المفردة
$-$ درجة على إيجاد المساحة (A). $-$ درجة على التعويض في قانون (ϕ) $-$ درجة على الناتج (ϕ) $-$ درجة على التعويض في (σ). $-$ درجة على الناتج (σ). $-$ درجة على الناتج (σ).	7-5 10-5	AO2	159 162,	الخامسة	2 1	$\phi = AB \cos \theta$ $\phi = 85 \times 10^{-2} \times 60 \times 10^{-2} \times 1.8 \times 10^{-4}$ $\phi = 9.2 \times 10^{-5} Wb$ $N = 1$ $\Delta(N\phi) = 0 - 9.2 \times 10^{-5}$ $\Delta(N\phi) = -9.2 \times 10^{-5} Wb$ $\varepsilon = \frac{-\Delta(N\phi)}{\Delta t}$ $\varepsilon = \frac{9.2 \times 10^{-5}}{0.2}$ $\varepsilon = 4.59 \times 10^{-4} V$	28
درجة على التعويض في (F_X) -درجة على التعويض في (F_Y) -درجة على التعويض في $(\frac{F_X}{F_Y})$ درجة على التعويض في $(\frac{F_X}{F_Y})$	3-5	AO2	152	الخامسة		$F_X = BILsin(90) = BIL$ $F_Y = BILsin(60^o) = BIL\frac{\sqrt{3}}{2}$ $\frac{F_X}{F_Y} = \frac{BIL}{BIL\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}$	29

الفصل الدراسي : الأول

العام الدراسي :2023 -2024

المعلومات الإضافية	الهدف التعليمي	هدف التقويم	الصفحة	الوحدة	الدرجة	الإجابة	رقم المفردة
-تُقبل المفردات بنفس المعنى.	10-5	AO1	166	الخامسة	1	أ)تنشأ أي قوة دافعة كهربائية مستحثة باتجاه معين بحيث ينتج عنها تأثيرات تقاوم التغير الذي أنتجها.	
- درجة على التعويض في (B). - درجة على الناتج.	3-5	AO2	150	الخامسة	1 1	$F = BIL$ $B = \frac{mg}{IL}$ $B = \frac{2.4 \times 10^{-3} \times 9.81}{5.6 \times 6.4 \times 10^{-2}}$ $B = 6.6 \times 10^{-2} T$	30
-	10-5	AO2		الخامسة	1	3<1<2<4 (ج	31

نهاية نموذج الإجابة ،،،