센서의 원리 및 응용

광 센서의 주요 종류별 특성

1. 포토 다이오드란?

- 1) 광 센서(Photo Sensor)
- 광 에너지를 전기에너지로 변환하는 광 센서의 일종
- 반도체의 P-N 접합부에 광 검출 기능을 추가한 것
 - → n형 기판 상에 p형 층을 형성시킨 PN접합부에 발생하는 광기전력 효과를 이용한 센서
- 입사광을 유효하게 이용하기 위해 표면에 반사방지막으로 산화 실리콘막이 구성

• P형에서 결선을 통해 N형으로 전류가 흐르고 빛이 조사되는 동안 외부전원 없이 전류가 흐르는 원리를 이용

2. 구조와 동작원리

- P-N 접합에 빛이 조사되면 n영역, p영역, 공핍층에서 전자-정공 쌍이 발생
- 공핍층에서 발생된 전자는 n영역으로 정공은 p영역으로 내부전계에 의해 가속

- n영역에서 발생된 전자
 - ① 전도대에 머무르고 정공은 공핍층까지 확상한 다음 전계에 의해 가속되어 p영역으로 흐름
 - ② p영역에서 발생된 정공은 가전자대에 머무르고 전자는 공핍층을 통과해 n영역으로 흐름
 - ③ 전자는 n영역의 전도대에, 정공은 p영역의 가전자대에 축적
 - ④ p영역이 (+), n영역이 (-)인 전위가 형성

3. 종류별 특성

쇼트키 포토 다이오드

- 쇼트키 효과 에 의한 금속과 반도체의 접합을 구성한 것
 전기장을 걸어줌으로써 열전자 방출에 필요한
 에너지를 감소시켜 전자의 방출을 증가시키는 효과
- 가시광선~자외선 영역의 파장 감도
- 포토 다이오드나 CCD 이미지 센서에 응용

PIN 포토 다이오드

- 전기장을 걸어줌으로써 열전자 방출에 필요한 에너지를 감소시켜 전자의 방출을 증가
- 진성층이 넓어 PN보다 더 많은 광자를 흡수할 수 있으므로 PN PD보다 더 높은 효율과 응답속도를 가짐

PN 포토 다이오드

- 입사광량과 출력전류의 직선성이 양호
- 400~1000m에서 감도가 있음
- 카메라 토출계에 주로 사용

APD(애벌란시 포토 다이오드)

- PN접합에 역바이어스를 가해 공핍층 내 고전기장을 형성한 것
 - 광캐리어가 가속되어 물질 내 원자에 차례차례로 충돌하여 2차 캐리어를 발생하는 애벌란시 현상을 효과적 이용
- 애벌란시 현상에 의해 매우 미약한 광신호 검출 가능

3. 종류별 특성

쇼트키 포토 다이오드	PIN 포토 다이오드	PN 포토 다이오드	APD(애벌란시 포토 다이오드)
특성	특성	특성	특성
고자외선 감도	•고속 응답 •입사량과 출력 전류 의 직선성 양호	•저암 전류 •입사량과 출력 전류 의 직선성 양호	고속 응답고속파에서 S/N양호증폭 기능 있음
용도	용도	용도	용도
분광 광도계, 비색계	리모컨, 팩시밀리, 광 통신(단거리)	광전 스위치, 카메라 노출계	광 통신 (단, 중거리)

4. 포토 다이오드의 장점

포토 다이오드의 상점				
장점	단점			
 전기적 노이즈가 적음 S/N비가 큼 신뢰성이 높음 소형화가 가능 전류 증폭률이 큼 기계적으로 강함 암 전류가 적음 이력현상이 없음 가격이 낮음 	 입사광에 대한 광 전류의 직선성이 나쁨 고감일수록 응답속도가 늦고 포화전압이 높음 			

5. 회로 구성

 바이어스(Bias) 출력 회로를 구성하는 회로이며, 스위치를 닫으면 적외선 발광 센서에서 빛이 발생하여 포토 다이오드에 신호를 가하면 출력으로 신호가 발생

- 광 센서는 전원회로를 분리하여 구성되며, 전기신호의 영향을 받지 않고 동작
- D1에 전류가 흘러 ON이 되면 D2의 수광센서에 빛이 도착하여 TR1의 전류를 흐르게 함으로 출력단 버저가 동작을 하는 회로

센서의 원리 및 응용

광 센서의 주요 종류별 특성

1. 포토 트랜지스터란?

- 포토 트렌지스터: NPN 접합, 또는 PNP 접합으로 구성된 광전변환센서
- 현재 가장 많이 사용되는 수광 센서 중 하나
- 최근의 포토 트랜지스터는 증폭작용이 있는 NPN 접합을 주로 사용
- 소재: 감도와 안정성이 높은 실리콘 소재의 포토 트랜지스터가 많이 생김 → 광기전력 효과와 전류 증폭 작용 → 이미터 컬렉터간에 빛의 강도에 비례한 큰 전류가 흐름
- 보통의 트랜지스터는 베이스 전극이 필요하지만 포토 트랜지스터의 경우에는 빛이 베이스 전류를 대신하기 때문에 전극이 없는 것도 있음

2. 포토 트랜지스터의 특성

- 포토 다이오드의 구성과 빛 에너지를 전기 에너지로 전환하는 기능면에서 유사
- 빛을 쪼였을 때 전류가 증폭되어 발생하므로 빛에 더 민감하고 반응속도가 느림

- 광 출력 전류가 매우 큼
- 소형이고 취급이 쉬움
- 신호가 동일 칩 내에서 증폭되어 전기적 노이즈가 적음
- 경년 변화가 거의 없고 내구성, 신호성이 좋음
- 암전류가 극히 적고 안정됨

3. 구조와 회로

- 포토 트랜지스터 구조 : N형 기판상에 P형의 베이스 영역을 형성하고 있으며, N형의 이미터 영역을 형성한 구조를 갖고 있음
- 베이스 표면에 빛이 입사하면 역 바이어스 된 베이스 컬렉터 사이에 광 전류가 흐르고 이 전류가 트랜지스터에 의해 증폭되어 출력의 값을 제어 장치에 활용

• IC : 컬렉터 전류

• IC : 포토다이오드 단란전류

• D : C-B 접합 포토다이오드

• hFE : Tr의 직류전류 증폭률

• CBC : B-C접합용량

• CBE : B-E접합용량

• CEC : E-C접합용량

4) 장점과 단점

4. 출력 특성

- PN접합부에 빛을 쪼이면 빛 에너지에 의하여 생긴 전자와 정공이 외부회로로 출력
- 빛이 입사광에 의해 전자와 정공이 생기면 역전류가 증가
- 입사광에 대응하는 출력전류가 얻어 얻어짐

5. 기본 회로 구성

- 포토 트랜지스터의 기본적인 회로
 - 이미터 출력을 이용하는 경우
 - 컬렉터 출력회로를 이용하는 경우
 - 온도보상회로를 사용하여 구성하는 경우

- 입사광과 같은 위상
- 출력 신호가 작음
- 펄스적 입사광에 적합
- 고온에서 암전류가 큼

- 입사광과 반대 위상
- 출력 신호가 큼
- 펄스적 입사광에 적합
- 고온에서 암전류가 큼

- 블리더 방식의 바이스회로
- 직류 동작점의 열적 안전성 양호
- 아날로그광의 측광에 적합
- 베이스 전류에 의해 암전류 저감

6. 포토 트랜지스터와 트랜지스터의 조합 회로

포토 트랜지스터와 트랜지스터의 조합회로에 이미터 출력 포탈 달링톤과
 소형 릴레이 구동 회로가 있음

- 포토트랜지스터의 광 전류 때문에 입사광량이 적어도 매우 큰 광 전류(IP)를 얻을 수 있음
- 시정수도 증폭되어 응답 특성이 극히 나쁘게 나타남
- 암 전류도 크게 되기 때문에 그 용도는
 오르지 저속의 광 스위치 회로로 한정

7. 응용회로

회로를 구성하여 적외선 발광 센서에 신호 → 포토 트랜지스터에서 빛을
 수신 → OP AMP를 통하여 일정한 신호의 크기로 증폭 → 출력 버저가 동작

센서의 원리 및 응용

광 센서의 주요 종류별 특성

1. 포토 인터럽터

- 1) 포토 커플러(Photocoupler)
- 포토 커플러는 빛을 매체로 한 신호 전달 장치의 총칭
- 흔히 포토 커플러라고 하면, 전기신호를 빛으로 결합시킴으로써 회로간의 인터페이스를 연결하는 포토 아이졸레이터를 말함
- 포토 인터럽터 : 포토 커플러의 일종으로 광로를 차단함으로써 물체의 위치 등을 검출하거나 계수 등을 할 수 있도록 한 센서

전기신호를 빛으로 결합시키는 장치 회로간의 인터페이스를 연결하는 센서

광로를 차단함으로써 물체의 위치 등을 검출하거나 계수 등을 할 수 있 도록 한 센서

1. 포토 인터럽터

- 2) 포토 인터럽터의 유형
- 비접촉 방식으로 물체의 유무나 위치를 감지하는데 사용

- 투과형
 - 발광부와 수광부 사이에 목표 물체를 두고 물체의 유무와 위치를 감지

- 반사형
 - 발광부와 수광부 사이에 목표 물체를 두고 물체의 유무와 위치를 감지

- 3) 포토 인터럽터의 응용 분야
- 모터의 제어와 회전하는 물체의 위치 제어에 주로 활용
- 발광부에서 발광 → 수광부에서 검출 → 왜란에 의한 영항을 제거 하기 위하여
 파형정형 → 카운터 회로를 이용하여 회전수를 카운터

2. 적외선 센서

- 적외선 센서(Infrared Ray Sensor) : 적외선을 이용해 온도, 압력, 방사선의 세기 등 물리량이나 화학량을 감지하여 신호처리가 가능한 전기량으로 변환하는 센서
- 적외선
 - 전자기파 스펙트럼 중 가시광선의 적색광보다 길고 마이크로파보다 짧은 파장, 즉 파장 0.75µm~1mm의 복사선을 가리키는 것
 - 온도센서나 자외선 센서에 비해 감도나 정확도가 높아 방범이나 화재 검지 등에 널리 사용

3. 초전형 적외선 센서

- 초전형 적외선 센서(Pvoelectric Infrared Sensor) : 초전 물질의 초전 특성을 이용한 것으로 방출되는 적외선 에너지를 검출하는 센서
- 초전특성 : 티탄산 지르콘산(PZT) 등의 결정구조의 온도변화에 대응하여 표면전하가 변화하는 특성

3. 초전형 적외선 센서

- 초전형 적외선 센서는 센서 자체의 열용량이나 방열 특성으로 결정
- 장점
 - 주파수 응답을 높일 수 있어서 교류적인 변화를 하는 적외선 감지기로서는 편리
- 단점
 - 직류 응답이 없기 때문에 직류광을 측정하는 데는 초퍼 등으로 인위적으로 단속광이 되게 해야 함
- 일반적으로 출력 임피던스가 매우 높고, 출력신호도 작기 때문에 센서 속에 FET와 같이 입력 임피던스가 높은 헤드앰프를 넣는 경우가 많음

4. 광 파이버 센서(Optical Fiber Sensor)

- 빛의 특정 입사각에 의해 전반사 하는 성질 이용
- 설치 공간을 확보하기 어려운 경우 사용

4. 광 파이버 센서(Optical Fiber Sensor)

- 광 파이버 센서의 종류 : 투과형, 직접반사형
- 투과형
 - 완전히 분리된 2개의 파이버 케이블을 사용한 것과 평행한 광 파이버 케이블을 사용하여 검출조건 등에 대하여 적당히 분할하여 사용하는 형식
 - 헤드부의 형상에 따른 구분
 - ① 일반용과 장거리 검출 및 방폭용으로 적당한 렌즈 투과형
 - ② 헤드 측면 상으로 마주보게 배치되는 구형
 - ③ 좁은 시계에서 주로 웨이퍼 검출 등에 사용되는 빔 투과형

• 직접반사형

- 평행한 2선의 광파이버 케이블이 하나의 후드에 결합되어 있는 것으로 검출물체의 반사광을 검출하는 방식
- 검출헤드 형상에 따른 구분
 - ① M3~M5정도의 후드를 갖는 일반형과
 - ② 투명체 검출을 위한 반사형
 - ③ 웨이퍼의 미세 단자 검출용에 적합한 한정 반사형
 - ④ 고정도 위치 검출을 위한 동축 반사형 등

5. 컬러 센서(Color Sensor)

- 빛의 색깔(광 에너지)의 스펙트럼 강도를 검출하는 장치
- CCD에 의한 MOS형 카메라나 기타의 수광 센서가 쓰임
- 파장을 전압으로 바꾸어서 출력한 것을 처리하여 색을 판별하는 역할
- 자동화 공정에서 색을 식별, 비디오 카메라의 화이트 밸런스 기능에 사용

- 다층형 컬러 센서 입사광 청 적 적 외 사 보호 약 A1 A2 에노드 K 캐소드
- R, G, B(빨강, 녹색, 파랑)을 기본으로 단색을 구분할 수 있는 컬러 센서
- 가시광 영역의 빛을 감지할 수 있는 센서
- PNP형 트랜지스터 구조를 이용한 센서
- 가시광 역역 뿐만 아니라 적외선 영역까지 감지가 가능