1 Pseudo-code

(1+1) EA

- 1. Choose $s \in \{0,1\}^n$ randomly.
- 2. Produce s' by flipping each bit of s with probability 1/n.
- 3. Replace s by s' if $f(s') \ge f(s)$.
- 4. Repeat Steps 2 and 3 forever.

RLS

- 1. Choose $s \in \{0,1\}^n$ randomly.
- 2. Produce s' from s by flipping **one** randomly chosen bit.
- 3. Replace s by s' if $f(s') \ge f(s)$.
- 4. Repeat Steps 2 and 3 forever.

2 Chernoff Bound Initialisation

2.1 Expected Ones Initialisation

Given that both algorithms initialise an n-set of binary string at random specifically $X_i = \text{Unif}\{0,1\}$ for $i = 1, 2, \ldots, n$. Therefore the probability of getting 0 or 1 is the same as

$$P(X_i = 1) = P(X_i = 0) = \frac{1}{2}$$

The expected value of each X_i is

$$\mathbb{E}[X_i] = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$$

Suppose that $X = X_1 + X_2 + ... + X_n$, then the expected value of X by using the *Linearity* of Expectation is

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{n}{2}$$

If X is the summation of those values inside the binary string, then there will be expected to have $\frac{n}{2}$ ones.

2.2 Chernoff

$$\forall \delta > 0 : P(X > (1+\delta) \cdot \mathbb{E}[X]) < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mathbb{E}[X]} \quad (\bigstar)$$

$$\forall 0 < \delta < 1 : P(X < (1-\delta) \cdot \mathbb{E}[X]) < e^{-\mathbb{E}[X]\delta^2/2}$$

From the previous section, it's known that $\mathbb{E}[X] = \frac{n}{2}$, choose inequality (\bigstar) and then substitute.

$$P\left(X > (1+\delta) \cdot \frac{n}{2}\right) < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\frac{n}{2}}$$

$$\Rightarrow P\left(X > \left(\frac{1}{2} + \frac{\delta}{2}\right) \cdot n\right) < \dots$$

1

Let $2\delta' = \delta$, which is always inside the bound of $\delta > 0$. Now choose the domain of δ as $0 < \delta \le 1$. Therefore, the new domain will be $0 < 2\delta' \le 1 \Rightarrow 0 < \delta' \le \frac{1}{2}$, thus

$$P\left(X > \left(\frac{1}{2} + \delta'\right) \cdot n\right) < \left(\frac{e^{2\delta'}}{(1 + 2\delta')^{1 + 2\delta'}}\right)^{\frac{n}{2}}$$

$$\Rightarrow \dots < \rho^{\frac{n}{2}}$$

$$\Rightarrow \dots < e^{\frac{n}{2}\ln\rho}$$

Evaluate $\rho = \frac{e^{2\delta'}}{(1+2\delta')^{1+2\delta'}}$

 $\ln \rho = 2\delta' - (1 + 2\delta') \ln(1 + 2\delta') < 0$, Negative constant

Therefore,

$$P\left(X > \left(\frac{1}{2} + \delta'\right) \cdot n\right) < e^{-\Omega(n)}$$

Then,

$$\begin{split} P\left(X > \frac{2n}{3}\right) < e^{-\Omega(n)} \\ \Rightarrow 1 - P\left(X > \frac{2n}{3}\right) \leq 1 - e^{-\Omega(n)} \\ \Rightarrow P\left(X \leq \frac{2n}{3}\right) \leq 1 - e^{-\Omega(n)} \end{split}$$

This means that both algorithms with uniform random binary string initialisation will have a very high chance of having at most 2n/3 one-bits inside the initialisation. It's so high that with large n or large binary space it's almost gauranteed.

3 RLS Lower Bound

Given from the initialisation that there are expected to have 2n/3 one-bits, thus m=n/3 zero-bits needed to be flipped. Each zero-bit has a chance of being flipped is 1/n. We want to know what is the lower bound Ω that will let flipping all distinct 0-bits at least once. This is a Collector's Coupon Theorem.

3.1 Collector's Coupon Theorem

Suppose that we have n distinct cards and we draw each everytime with replacement. How many times do I expect to draw to collect all of those cards. This implies a similarity as our prolem with RLS lower bound.

From Wikipedia, let T be the total number of times to finish flipping all the 0-bits, t_i be the number of times when reaching to the i^{th} bit after i-1 bits, therefore the probability for reach. Then $T = t_k + t_{k+1} + \ldots + t_m$. The probability of each 0-bit being picked is,

$$p_i = \frac{n - (i - 1)}{n}$$

Here comes the significant point, each t_i has a $geometric\ distribution$, recall the geometric distribution from Wikipedia,

The probability distribution of the number X of Bernoulli trials needed to get one success.

So, each time t_i reflects a geometric distribution since we want to know how many times do we need to be able to pick that 0-bit, by the geometric distribution we can infer the expected value as $\mathbb{E}[t_i] = 1/p_i$, by the linearity of the Expectation,

$$\mathbb{E}[T] = \mathbb{E}[t_k] + \mathbb{E}[t_{k+1}] + \dots + \mathbb{E}[t_m]$$

$$= \frac{1}{p_k} + \frac{1}{p_{k+1}} + \dots + \frac{1}{p_m}$$

$$= \frac{n}{n - (k-1)} + \frac{n}{n-k} + \dots + \frac{n}{n - (m-1)}$$

$$= n\left(\frac{1}{n - (k-1)} + \frac{1}{n-k} + \dots + \frac{1}{n - (m-1)}\right)$$

$$= nH_{m-k}$$

$$= n\ln(m-k) + C$$

$$= n\ln(n/3 - k) + C$$

$$= n\ln(n/3 - k) + C$$

$$\mathbb{E}[T] = \Omega(n\log n)$$

By using the Theorem, we can derive a lower bound for the RLS to be $\Omega(n \log n)$.

4 (1+1)EA Lower Bound

Given the initialisation, as for the RLS the lower bound is $\Omega(n \log n)$, so we are also trying to show that for the EA it's also $\Omega(n \log n)$. We may assume that everytime we flip the 0-bit to 1-bit it's will yield a improvement. We may choose $t = (n-1) \ln n$ iterations until optimum, the reason of choosing such t maybe from more complicated mathmatical proof, since this will give a nice bound for when hitting an optimum.

4.1 Waterfall Probability

$$1-\frac{1}{n}, \quad \text{the probability of a specific bit not being flipped.}$$

$$\left(1-\frac{1}{n}\right)^t, \quad \text{the probability of a specific bit not being flipped for all t iterations}$$

$$1-\left(1-\frac{1}{n}\right)^t, \quad \text{the probability of a specific bit being flipped for all t iterations}$$

$$\left[1-\left(1-\frac{1}{n}\right)^t\right]^m, \quad \text{the probability of all m bits being flipped for all t iterations}$$

$$1-\left[1-\left(1-\frac{1}{n}\right)^t\right]^m, \quad \text{the probability of all m bits not being flipped for all t iterations}$$

The last one is called the *failure probability*.

4.2 Some Calculus

For whatever algorithms time complexity analysis, we always let n explodes or in another word let $n \to \infty$. Before that, let,

$$\frac{1}{h(n)} = \left(1 - \frac{1}{n}\right)^t$$

Then,

$$\lim_{n \to \infty} 1 - \left[1 - \frac{1}{h(n)}\right]^{n/3}$$

$$1 - \left[\lim_{n \to \infty} \left(1 - \frac{1}{h(n)}\right)^n\right]^{1/3} \quad (\circ)$$

Now, we need to analyse does h(n) grows therefore 1/h(n) will diminish and also will the power of n catch up with the diminishing. Let's analyse the h(n) first,

$$\lim_{n \to \infty} h(n) = \lim_{n \to \infty} \frac{1}{\left(1 - \frac{1}{n}\right)^t}$$

$$= \frac{1}{\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^{(n-1)\ln n}}, \quad \text{Using the Quotient Limit Law}$$

$$= \frac{1}{\lim_{n \to \infty} \left[\left(1 - \frac{1}{n}\right)^{(n-1)}\right]^{\ln n}}$$

$$= \frac{1}{\lim_{n \to \infty} \left[e^{-1}\right]^{\ln n}}, \quad \text{Classic Limits Problem check on Math Exchange}$$

$$= \frac{1}{n^{-1}}$$

$$= n$$

After analysis of h(n) it yields n, therefore with (\circ) as $n \to \infty$ it seems to yields back the Original Limits problem. So,

From
$$(\circ) \Rightarrow 1 - e^{-1/3}$$

We have found that the failure probability is constant which is $\Omega(1)$

Observation

The limit only approach the value from the side, in this case we only consider approach ∞ from the left to right, therefore as n is slowly increasing but never reach the value thus an observation arises: $\lim_{n\to\infty} \left(1-\frac{1}{h(n)}\right)^n < e^{-1}$. From $(\circ) \Rightarrow \geq 1-e^{-1/3}$, Minus sign therefore change the equality sign.

Recall that time complexity for the EA is the number of iterations until reaching the optimum, same notation as T is the total number of iterations until optimum, and we let $t = (n-1) \ln n$ iterations until optimum. Therefore if,

- $T \leq t$ meaning successfully reaching optimum.
- T > t meaning failed to reaching optimum.

Then the probability of failing to reach optimum is $P(T > t) \ge 1 - e^{-1/3} = \Omega(1)$.

Observation

To derive the \geq as the failure probability for P(T > t) can be done by observing the initialisation. As we have known that, there will be $\leq \frac{2n}{3}$ one-bits this mean that there will be $\geq \frac{n}{3}$ zero-bits. We can replace the constant $\frac{1}{3}$ with other scalar in the range of $x \in \left[\frac{1}{3}, 1\right]$, think the failure probability as $1 - e^{-x}$, thus it's increasing therefore we have that

$$P(T > t) \ge 1 - e^{-1/3}$$

Then the probability failing to reach optimum is

$$P(T > t) \ge 1 - e^{-1/3} = \Omega(1)$$

Explanation

The reason of choosing the failure probability instead of successful probability for the lower bound is because we give a candidate of t iterations, the number of iterations we want until it's the iteration of optimum. But then after some maths, it is shown that it's not sufficient enough for t iteration with a probability therefore we need some more iterations, which is the lower bound. It's the buffer of how much more is needed.

4.3 Tying Everything Together

After going through the hazard we are blessed with the result of a survival function as $1 - e^{-1/3}$, one of the properties we can harness is the monotonic decreasing essence. From Wikipedia

Every survival function is monotonically decreasing.

Using the Tail sum formula

$$\mathbb{E}[T] = \sum_{t=1}^{\infty} P(T > t)$$

$$= \sum_{t=1}^{(n-1)\ln n} P(T > t) + \sum_{k=(n-1)\ln(n)+1}^{\infty} P(T > k)$$

$$\geq \sum_{t=1}^{(n-1)\ln n} P(T > t)$$

$$\geq \sum_{t=1}^{(n-1)\ln n} \Omega(1)$$

$$\geq (n-1)\ln(n)\Omega(1)$$

$$\mathbb{E}[T] \geq \Omega(n \log n)$$

Therefore the lower bound for (1+1)EA is $\Omega(n \log n)$