(3 puntos) Juana es una becaria doctoral que utiliza un microscopio de barrido electrónico para medir la longitud de bacterias de Escherichia Coli, cultivadas a partir de una muestra de agua de río. El microscopio fue calibrado con una grilla patrón graduada cada 20 nm. A partir de las mediciones de la Tabla 1:

1.64

a. Reporte la longitud media, junto con su incerteza

b.	¿Es	posible	reducir	la	incerteza	de	la	media	tomando	
	más	medicio	ones?							

c. Suponga que se toman 90 mediciones en total, dando una desviación estándar de 0,01 µm. Si decide realizar un histograma y utilizar el criterio de Scott para elegir el ancho de cada barra, ¿cuántas barras debería tener el histograma?

Tabla	1.
Longitud	[µm]
1.47	1.48
1.60	1.57
1.65	1.39
1 47	1 /10

1.40

(1,47+1,6+1,65+1,47+1,4+1,48+1,57+		1,516	um
(1,47+1,6+1,65+1,47+1,4+1,48+1,57+1,5	39+1,49+1,64)÷10	=)	

a)
$$nm = 1.10^{-9} \text{ m}$$

$$lm = 1.10^{-6} \text{ m}$$

error instrumental =
$$20 \text{ nm} = 20,10^{-9} \text{ m}$$

 $O_{Inst} = 2.10^{-8} \text{ m}$

$$Oest = O$$

$$Oest = O$$

$$Oest = O$$

$$N$$

$$N = IO$$

$$N-I$$

Input interpretation

standard deviation {1.47, 1.6, 1.65, 1.47, 1.4, 1.48, 1.57, 1.39, 1.49, 1.64}

Result

O= 0.0935949 μm

$$= 9,76 \cdot 10^{-15} \text{ m}^2$$

$$O_{ext}^2 = \frac{O^3}{10} = 8,76 \cdot 10^{-16} \text{ m}^2$$

$$\Rightarrow \Delta x^{2} = O_{Inst}^{2} + O_{est}^{2}$$

$$= (2.10^{-8} \text{ m})^{2} + 8.76.10^{-16} \text{ m}^{2}$$

$$= 4.10^{-16} \text{ m}^2 + 8,76.10^{-16} \text{ m}^2$$

$$\Delta x^{2} = 12,76.10^{-16} \text{ m}^{2}$$

$$\Delta \times = 3,487.10^{-8}$$
 m

$$= 34,87.10^{-9}$$
 m

$$\Delta \times = 34,87$$
 nm

Longitud media: lo peré à lar mis mar unideder que AX

$$\overline{X} = (1516 \pm 35) \text{ nm}$$

$$\Delta X^{2} = O_{Inst}^{2} + O_{est}^{2}$$

$$= 2 N \rightarrow \infty$$

$$\omega = 3,49.8$$
Ancho

= 3,49.0,01 µm

 $3,49.0,01$ µm

2) (3 puntos) La ecuación de Darcy (Ec. 1) relaciona el caudal (Q) que circula por un medio poroso con la presión de fluido aplicada ΔP. El caudal, además, es proporcional a la sección A por donde circula el fluido e inversamente proporcional a la longitud del trayecto L. El medio poroso se caracteriza por una permeabilidad k que indica la "facilidad" con la que circula por el medio poroso.

$$Q = k \frac{A}{\mu L} \Delta P \tag{1}$$

- a) A partir de las siguientes mediciones independientes realizadas en un experimento con arena, obtenga el valor de la permeabilidad del medio arenoso, propagando adecuadamente las incertezas. A = (133,0 ± 2,0) cm²; ΔP = (10250 ± 10) Pa; L = (10,06 ± 0,02) cm; μ = (115,2 ± 0,4) Pa.s; Q = (1,000 ± 0,003)x10⁻¹² m³/s.
- b) La sección A se obtuvo a partir de una medición directa del diámetro del tubo. ¿Cuál fue esa medición? ¿Con qué error absoluto se obtuvo?
- c) Si tuviera que aumentar la precisión con la que calcula la permeabilidad y tiene la posibilidad de medir solo una de las variables con un instrumento de medición más preciso. ¿Qué medición realizaría nuevamente con mayor precisión?

$$\mathcal{L} = \frac{Q}{A \cdot \Delta P} = \frac{\mu \cdot L \cdot Q}{A \cdot \Delta P}$$

$$K = \frac{115}{2}$$
 Pa.s., $10,06$ cm. 1000.10^{-12} $\frac{m^3}{5}$

CA:

$$1.10^{-12} \text{ m}^3 = (1.10^{-4} \text{ m})^3$$

Cono $1 \text{ cm} = 10^{-2} \text{ m}$
 $= (10^{-2}.10^{-2}.\text{ m})^3$
 $= (10^{-2}.1 \text{ cm})^3$
 $= (10^{-6} \text{ cm})^3$

$$K = \frac{115, 2 \text{ Pa.s.}}{133 \text{ cm}^2}, \frac{10^{-6} \text{ cm}^3}{5}$$

$$K = 8,501.10^{-10} \text{ cm}^2$$

Pers obtener
$$\Delta K$$
:
$$\frac{\partial f}{\partial \mu} |_{\mu}, \Delta \mu = \frac{\mu \cdot L}{A} \cdot \frac{Q}{A}$$

$$\Delta k^2 = \left(\frac{\partial f}{\partial \mu} \middle|_{X_0} \Delta \mu\right)^2 + \left(\frac{\partial f}{\partial \xi} \middle|_{X_0} \Delta L\right)^2 + \cdots$$

$$\frac{\partial f}{\partial \mu}\Big|_{X_o} \cdot \Delta \mu = \frac{L \cdot Q}{A \cdot \Delta P}\Big|_{X_o} \cdot \Delta \mu$$

$$= \frac{10,06 \text{ cm} \cdot 10^{-6} \cdot \frac{\text{cm}^3}{5}}{133 \text{ cm}^2 \cdot 10250 \text{ Pa}} \cdot 0,4 \text{ Pa.5}$$

$$= 2,952.10^{-12} \text{ cm}^2$$

Así hago lo mismo con los 2 otros elementos del numerador (L y Q), para después pasar a los del denominador:

$$\frac{\partial f}{\partial A} |_{X_0} \cdot \Delta A = \frac{7}{3}$$

$$= A^{-2} \cdot \left(\frac{M \cdot L \cdot Q}{\Delta ?} \right) \cdot \Delta A$$

$$= \frac{1}{A} \cdot \left(\frac{M \cdot L \cdot Q}{\Delta ?} \right)$$

$$= \left(133 \right)^{-2} \cdot \frac{115, 2 \cdot Pa. s}{cm^2} \cdot \frac{10,06 \cdot cm^3}{s} \cdot \frac{10^{-6} \cdot cm^3}{s} \cdot \frac{2}{s}$$

$$= \frac{2f}{3A} |_{X_0} \cdot \Delta A = 1,278 \cdot 10^{-11} \cdot cm^2$$

$$K = 8,501.10^{-10} \text{ cm}^2$$

Para terminar, elevo cada elemento al cuadrado, los sumo, tomo raiz de la suma, y con eso tengo delta k.

b)
$$A = \pi \cdot r^2 = \pi \cdot \left(\frac{d}{2}\right)^2$$

$$A = \pi \cdot \frac{d^3}{4}$$

$$d^2 = \frac{4A}{\pi} \implies d = \frac{2}{\sqrt{\pi}} \cdot \sqrt{A}$$

$$\frac{\partial d}{\partial A} = \frac{2}{\sqrt{M}} \cdot \frac{1}{2\sqrt{A}}$$

$$\frac{\partial d}{\partial A} = \frac{1}{\sqrt{M} \cdot A}$$

Si
$$A_0 = 133 \text{ cm}^2$$
 $\Rightarrow d_0 = \frac{Z}{\sqrt{m}} \cdot \sqrt{133 \text{ cm}^2}$

$$\Delta d = \frac{\partial d}{\partial A} \Big|_{A} \cdot \Delta A$$

$$d = (13,013 \pm 0,098)$$
 cm

Deberia usar menos decimales acá? por ejemplo: $d = (13.0 \pm 0.1) \text{ cm}$

$$d = (13,0 \pm 0,1)$$
 cm

Mantengo la cantidad de cifras significativas de A (que es un lugar después de la coma)

c) Elegiría la variable con mayor error calculado en el punto A de forma que su contribución a la suma del total sea menos significativa.

3) (4 puntos) La Ley de Zipf establece una relación entre el número de apariciones de una palabra en el léxico y su rango (el rango es la posición en el ranking de palabras más frecuentes). En la tabla adjunta se indican los valores para 50 palabras. Se descubrió que la relación entre estas dos magnitudes sigue sólo una de las siguientes leyes:

$$f(k) = Ak^b \tag{2}$$

$$f(k) = Ae^{bk} (3)$$

donde f es el número de apariciones de una palabra en el léxico y k es su rango.

- a) Linealice las expresiones para realizar un ajuste lineal por cuadrados mínimos. ¿Cuáles son las nuevas variables, para cada caso?
- b) ¿Qué variable elegiría como "x" y cuál como "y"? ¿Por qué? Reporte los cálculos realizados para llegar a dicha conclusión.
- c) ¿Cuál de las dos leyes corresponde a los datos experimentales? ¿Por qué?
- d) Exprese adecuadamente el resultado del parámetro b del modelo elegido. Escriba las ecuaciones de propagación de errores que haya empleado.

a)
$$f_z(k) = A.k^b$$

 $f_z(k) = f_z(k)$
 $f_z(k) = f_z(k)$
 $f_z(k) = f_z(k)$

Water Co.		* [] [] []	10-72-10			la i la calda l		
f	k		Error f	Error k	1.13E+09	815	1.00E+07	300
9142		16	10	3	1.16E+09	818	1.00E+07	300
106370		36	1000	3	1.24E+09	818	1.00E+07	300
164870		43	1000	3	1.37E+09	856	1.00E+07	300
377630		57	1000	30	1.53E+09	872	1.00E+07	300
517170		63	1000	30	1.57E+09	914	1.00E+07	300
924860		76	1000	30	1.74E+09	916	1.00E+07	300
2.49E+06		106	10000	30	1.94E+09	958	1.00E+07	300
2.81E+06		107	10000	30	1.87E+09	965	1.00E+07	300
3.84E+06		124	10000	30	2.11E+09	994	1.00E+07	300
1.04E+07		168	100000	30				
1.12E+07		176	100000	30				
1.55E+07		190	100000	30				
1.57E+07		197	100000	30				
2.08E+07		213	100000	30				
2.74E+07		228	100000	30				
3.54E+07		256	100000	30				
3.75E+07		265	100000	30				
7.83E+07		336	100000	30				
1.05E+08		367	1000000	30				
1.66E+08		429	1000000	30				
1.65E+08		430	1000000	30				
1.97E+08		441	1000000	30				
2.03E+08		451	1000000	30				
2.98E+08		506	1000000	300				
2.77E+08		506	1000000	300				
3.36E+08		527	1000000	300				
3.00E+08		531	1000000	300				
3.58E+08		547	1000000	300				
3.78E+08		552	1000000	300				
3.92E+08		574	1000000	300				
4.83E+08		595	1000000	300				
4.91E+08		603	1000000	300				
5.81E+08		636	1000000	300				
7.47E+08		700	1000000	300				
9.07E+08		739	1000000	300				
9.18E+08		759	1000000	300				
9.37E+08		768	1000000	300				
1.08E+09		802	1.00E+07	300				
1.14E+09		806	1.00E+07	300				
1.20E+09		809	1.00E+07	300				

a)
$$f_z(k) = A.k^b$$

 $h(f_z) = h(A.k^b)$
 $h(f_z) = b.h(k) + hA$

$$lag(f_3) = lag(A, e^{b.k})$$

$$h(f_3) = b \cdot k + h A$$

Como quiero hacer un ajuste lineal donde se minimiza el error sobre la variable y, quiero elegir y de forma que sea la variable con mayor error relativo.

$$f_{z} \int h(f_{z}) = b.h(k) + hA$$

