MT 460 Midterm Review

- 1. Answer the following counting questions.
 - a. Six people run in a race. In how many ways can first, second and third places finish?
 - b. How many permutations of the letters in the word "SCIT" can you have?
 - c. Among 12 people, 4 will be selected to go to a seminar. In how many ways can this be done?
 - d. A manufacturer has 14 motors and 15 switches to choose from. In how many ways can you select 5 motors and 3 switches to build your project?
- 2. Answer the following probability questions.
 - a. What is the probability of drawing an Ace or Number card 2 from a 52 deck card deck?
 - b. Two cards are drawn from a well-shuffled deck of 52 cards. Find the probability that they are both aces if the first card is not replaced. Note: There are 4 aces available.
 - c. In a lot of 40 chairs, 10 are defective. If you pick 5 chairs at random, what is the probability that you will get at least 2 defective chairs?
 - d. You roll two dice. What is the probability that the sum is a 4 or 5?

3.	-	•	•	obability that there will be the events are independent	
4.	blue ba	lls.	andom from a box obability that it is Re	containing 10 red balls, 3 v	white balls, and 4
			wn successively. Fand blue if the ball is	ind the probability that the solution of the s	y are drawn in the
5.	Let X r	epresent the # of he	eads that can come	e sample space is S = {HH, up. Create a table for its Pr togram. Test if the sum of p	robability
х		P(x)		_	· ·

Sum

6. Find the probability distribution of boys in a family of 3 children, assuming fair probability (p=0.5). Note: This is a binomial distribution.

x	P(x)
0	
1	
2	
3	

Sum

a. What is the probability that the couple will have at least 1 boy?

b. Find the mean and standard deviation of the binomial pdf. You can use the shortcut formulas.

$$E(X) = \mu = \sum_{x} x P(x)$$
 $Var(X) = \sigma^2 = \sum_{x} (x - \mu)^2 P(x)$ $Std(X) = \sqrt{Var(X)}$

7. Suppose a game is to be played with a single die assumed fair, find mean (expectation) of *x* which denotes payout for this game.

	1 2
x	P(x)
\$0	1/6
\$20	1/6
0	1/6
\$40	1/6
0	1/6
-\$30	1/6

Sum

8.	An island reports that over a 30 year period, 150 tourists had died.				
	a.	What is the mean number of people that died per year?			
	b.	Find the probability that 1 person will die next year? Use Poisson distribution.			
9.		test is normally distributed with mean of 105 and a standard deviation of 20. What is the probability that a random person has an IQ less than 90?			
	b.	What is the probability that a random person has an IQ more than 140?			
10.		tandardized score for a college entrance test had a mean 920 and standard deviation For Stanford, they require a score of 1200 to get in. What percentage of students will not be able to get into this college?			
	b.	What score will you need to be on the top 5% of this batch of students? This is an inverse norm problem.			