Computer Architectures 02LSEOV 02LSEOQ [MA-ZZ]

Delivery date: Monday 29/10

Laboratory 2

Expected delivery of lab 02.zip must include:

- program 2.s and program 3.s
- this file compiled and if possible in pdf format.

Please, configure the winMIPS64 simulator with the Base Configuration provided in the following:

- Code address bus: 12
- Data address bus: 12 •
- Pipelined FP arithmetic unit (latency): 6 stages
- Pipelined multiplier unit (latency): 8 stages
- divider unit (latency): not pipelined unit, 24 clock cycles
- Forwarding is enable
- Branch prediction is disabled
- Branch delay slot is disabled
- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- Branch delay slot: 1 clock cycle.
- 1) Write an assembly program (program 2.s) for the winMIPS64 architecture described before able to implement the following piece of code described at highlevel:

Assume that the vectors v1[], v2[], are allocated previously in memory and contains 100 double precision floating point values; assume also that v2[] does not contain 0 values. Additionally, the vectors v3[], v4[], and v5[] are empty vectors also allocated in memory.

- a. Using the simulator and the *Base Configuration*, compute how many clock cycles take the program to execute.
- 2) Using the WinMIPS64 simulator, validate experimentally the Amdahl's law, defined as follows:

follows:
$$speedup_{overall} = \frac{execution_{old}}{execution_{time_{new}}} = \frac{1}{(1 - fraction_{enhanced}) + \frac{fraction_{enhanced}}{speedup_{enhanced}}}$$

- a. Using the program developed before: program 2.s
- b. Modify the processor architectural parameters related with multicycle instructions (Menu → Configure → Architecture) in the following way:

- 1) Configuration 1
 - Starting from the *Base Configuration*, change only the FP addition latency to 3
- 2) Configuration 2
 - Starting from the *Base Configuration*, change only the Multiplier latency to 4
- 3) Configuration 1
 - Starting from the *Base Configuration*, change only the division latency to 12

Compute by hand (using the Amdahl's Law) and using the simulator the speed-up for any one of the previous processor configurations. Compare the obtained results and complete the following table.

Table 1: program 2.s speed-up computed by hand and by simulation

Proc. Config.	Base config.	Config. 1	Config. 2	Config. 3
	[c.c.]			
Speed-up comp.				
By hand	<u>1</u>	1.05	1.065	<u>1.22</u>
By simulation	1	1.07	1.09	1.35

- 3) Write an assembly program (**program_3.s**) for the winMIPS64 architecture able to set the parity bit of a data array X[] allocated in memory.
 - a. the data array X[] is composed of 100 elements
 - b. every element X[i] is one byte long divided as follows:
 - $X[i]_{0-6} \rightarrow data bits$
 - $X[i]_7 \rightarrow parity bit$
 - c. consider *even parity*: the parity bit is set to 1 if the number of ones in a given set of bits (not including the parity bit) is odd
 - d. the assembly program must be able to elaborate every data as presented by the following high level piece of code:

For example, if x[i] = X001101, then it becomes $x[i] = \underline{1}001101$; on the other side, if x[i] = X011101, then it becomes $x[i] = \underline{0}011101$.

- 4) Considering the following winMIPS64 architecture:
 - Code address bus: 12
 - Data address bus: 12
 - Pipelined FP arithmetic unit (latency): 4 stages
 - Pipelined multiplier unit (latency): 8 stages
 - divider unit (latency): not pipelined unit, 12 clock cycles
 - Forwarding is enable
 - Branch prediction is disabled

- Branch delay slot is disabled
- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- Branch delay slot: 1 clock cycle.

and supposing that 50% of the data elements contain an odd number of ones in the data bits:

a. calculate by hand, how many clock cycles take the program to execute?

١.	carculate by hand, now many	elock cycles take the program to execute:
	Number of clock cycles:	2606

b. compute the same calculation using the winMIPS64 simulator.

Number of clock cycles:	2606	

5) Compare the results obtained in the points 4.a and 4.b., and provide some explanation in the case the results are different.

Eventual explanation:

Without using data linked conditional branches, the number of cycles is not affected by the number of odd or even data; the number of clock cycles is the same for any input.