10.1 Fonction cube

10.1.1 Définition et représentation graphique

Définition 1.10.

La fonction *cube* est la fonction définie sur \mathbb{R} par $x \mapsto x^3$.

Propriété 1.10.

La fonction cube est impaire donc sa courbe représentative est symétrique par rapport à l'origine du repère.

Démonstration.

- \mathbb{R} est centré en 0.
- Pour tout réel x on $(-x)^3 = (-x)(-x)(-x) = -x^3$ ce qui prouve que la fonction cube est bien impaire.

Courbe représentative.

10.1.2 Variations

Propriété 2.10. Admise

La fonction cube est strictement croissante sur $\mathbb R$:

Propriété 3.10.

Pour tous réels a et b, on a: $a^3 = b^3 \Leftrightarrow a = b$ et $a^3 > b^3 \Leftrightarrow a > b$.

Fonction inverse 10.2

Définition 2.10.

La fonction inverse est la fonction f définie sur $\mathbb{R}^* = \mathbb{R} \setminus \{0\} =]-\infty; 0[\cup]0; +\infty[$ par $f(x) = \frac{1}{x}$.

Propriété 4.10.

La fonction *inverse* est décroissante sur $]-\infty;0[$ et encore décroissante sur $]0;+\infty[$.

x	-2	-1	$-\frac{1}{2}$	$\frac{1}{2}$	1	2
f(x)	$-\frac{1}{2}$	-1	-2	2	1	$\frac{1}{2}$

Propriété 5.10.

La fonction inverse est impaire donc sa courbe représentative que l'on appelle hyperbole est symétrique par rapport à l'origine du repère.

Démonstration.