KLS Gogte Institute of Technology, Belagavi

Department of Computer Science and Engineering

SEM)

Program: B.É (Computer Science and Engineering)

Semester: III

Academic Year: 2019-20(ODD

IA Test - I

Course Title: Computer Organization

Code: 18CS35

Max. Marks: 30 (Part A: 5 marks and Part B: 25 marks) Duration: 1 Hr. 15 Mins.

Date: 17/09/2019

Instructions:	1	Part A is compulsory
	2	Part B: Answer any Five Questions.

Q.No.	PART A	[L]	[CO]	[P]	[M]
1	If k bits are used to represent address, then the address space of that computer				
	system is				
	a. k bits b. 2 ^k bits c. 2k bits d. None				
2	register points to the address of the next instruction to be fetched				
	for execution				
	a. IR b. PC c. MAR d. MDR				
3	Overflow can occur only when adding two numbers that have the same sign.	1	1	1	5
	(True/false)] 1	1	1	3
4	When I/O devices and the memory share the same address space, the				
	arrangement is called				
	a. Memory mapped I/O b. Program Controlled I/O				
	c. Shared Memory d. None				
5	Lower byte addresses are used for the more significant bytes is called as				

Q.	PART B	[L]	[CO]	[P	[M
No				O]]
-					
1.	With diagram, discuss in brief the communication between memory and processor.		1	2	5
2.	Explain the basic performance equation and SPEC rating. Discuss the ways to reduce T value.		1	1	5
3.	What is byte addressability? Explain Little endian and Big endian address assignments.		1	2	5
4.	Assume that 6 bits are used for representing the numbers. Perform the following operations and comment on whether arithmetic overflow occurs or not? i. 28+9 ii. 30-16	3	3	1	5
5.	Explain any five addressing modes with syntax and an example.		2	1	5
6.	What is an interrupt? Discuss different ways to enable and disable interrupts.		2	2	5
7.	Explain how synchronization is provided between COMPUTE and PRINT routines using interrupts.	2	2	2	5