

(19)日本特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-236276

(P2002-236276A)

(43)公開日 平成14年8月23日 (2002.8.23)

(51)Int.Cl.⁷

G 0 2 F 1/13
1/1339

識別記号

1 0 1
5 0 5

F I

G 0 2 F 1/13
1/1339

テーマコード(参考)

1 0 1 2 H 0 8 8
5 0 5 2 H 0 8 9

審査請求 有 請求項の数 6 OL (全 9 頁)

(21)出願番号 特願2001-32170(P2001-32170)

(22)出願日 平成13年2月8日 (2001.2.8)

(71)出願人 000233077

株式会社 日立インダストリーズ
東京都足立区中川四丁目13番17号

(72)発明者 中山 幸徳

茨城県竜ヶ崎市向陽台5丁目2番 日立テ
クノエンジニアリング株式会社竜ヶ崎工場
内

(72)発明者 八幡 聰

茨城県竜ヶ崎市向陽台5丁目2番 日立テ
クノエンジニアリング株式会社竜ヶ崎工場
内

(74)代理人 100059269

弁理士 秋本 正実

最終頁に続く

(54)【発明の名称】 基板の組立方法及び組立装置

(57)【要約】

【課題】 確実に基板を組み立てることができる基板の組立方法とその装置を提供する。

【解決手段】 基板の組立装置において、大気下において前記加圧板で吸引吸着により他方の基板をその全面で保持する手段と、該他方の基板における一組の対辺の中間部を機械的に保持する手段と、該他方の基板における残りの対辺側の吸引吸着を解除してその各辺側を自由端としてから該一組の対辺の両中間部に掛けての吸引吸着を解除する手段と、真空チャンバが所望の真空度になったところで前記加圧板に静電吸着の電圧を印加する手段と、該一組の対辺の両中間部に掛けて前記加圧板で静電吸着で保持した該他方の基板の自由端となっている残りの対各辺側を、順次前記加圧板に静電吸着で保持させることで前記加圧板で静電吸着により他方の基板をその全面で保持させる手段とを有する。

【図4】

【特許請求の範囲】

【請求項1】 貼り合わせる一方の基板を真空チャンバ内の下側へ配設したテーブルに載置すると共に、該一方の基板と貼り合わせる他方の基板を前記テーブルの基板載置面と対向して配設した真空チャンバ内の加圧板に静電吸着によって保持し、該各基板を、真空中で間隔を狭め且つ当該各基板のいずれかに設けた接着剤により貼り合わせる基板の組立方法において、
大気下で該他方の基板をその上面が外側となる円筒面形の弓そりとし、該上面の中間部を減圧下において前記加圧板で静電吸着により保持し、該他方の基板の自由端となっている一方の辺部を前記加圧板で静電吸着により保持してから、該他方の基板の自由端となっている残りの辺部を前記加圧板で静電吸着により保持して前記加圧板で静電吸着により他方の基板をその全面で保持し前記一方の基板と対向させることを特徴とする基板の組立方法。

【請求項2】 貼り合わせる一方の基板を真空チャンバ内の下側へ配設したテーブルに載置すると共に、該一方の基板と貼り合わせる他方の基板を前記テーブルの基板載置面と対向して配設した真空チャンバ内の加圧板に静電吸着によって保持し、該各基板を、真空中で間隔を狭め且つ当該各基板のいずれかに設けた接着剤により貼り合わせる基板の組立方法において、
大気下において他方の基板を前記加圧板で吸引吸着により他方の基板をその全面で保持し、他方の基板を一組の対辺の中間部を機械的に保持し、残りの対辺側の吸引吸着を解除してその各辺側を自由端としてから、該一組の対辺の両中間部に掛けての吸引吸着を解除し、真空チャンバの真空化を進め、所望の真空中度のところで前記加圧板に静電吸着の電圧を印加して他方の基板を該一組の対辺の両中間部に掛けて前記加圧板で静電吸着で保持し、自由端となっている残りの対辺側を順次前記加圧板に静電吸着で保持させることで前記加圧板で静電吸着により他方の基板をその全面で保持し一方の基板と対向させることを特徴とする基板の組立方法。

【請求項3】 請求項2に記載の基板の組立方法において、他方の基板の一組の対辺の自由端となっている一方の端部を機械的に保持している中間部の位置よりも下の位置で機械的に保持してから該一組の対辺の両中間部に掛けての吸引吸着を解除することを特徴とする基板の組立方法。

【請求項4】 請求項1又は請求項2に記載の基板の組立方法において、他方の基板の自由端となっている各辺部は前記加圧板における静電吸着力が及ぶ位置まで上昇させて前記加圧板で静電吸着させることを特徴とする基板の組立方法。

【請求項5】 貼り合わせる一方の基板を真空チャンバ内の下側へ配設したテーブルに載置すると共に、該一方の基板と貼り合わせる他方の基板を前記テーブルの基板

載置面と対向して配設した真空チャンバ内の加圧板に静電吸着によって保持し、該各基板を、真空中で間隔を狭め且つ当該各基板のいずれかに設けた接着剤により貼り合わせる基板の組立装置において、

大気下において前記加圧板で吸引吸着により他方の基板をその全面で保持する手段と、

該他方の基板における一組の対辺の中間部を機械的に保持する手段と、

該他方の基板における残りの対辺側の吸引吸着を解除してその各辺側を自由端としてから該一組の対辺の両中間部に掛けての吸引吸着を解除する手段と、

真空チャンバが所望の真空中度になったところで前記加圧板に静電吸着の電圧を印加する手段と、

該一組の対辺の両中間部に掛けて前記加圧板で静電吸着で保持した該他方の基板の自由端となっている残りの対各辺側を、順次前記加圧板に静電吸着で保持させて前記加圧板で静電吸着により他方の基板をその全面で保持させる手段と、

を有することを特徴とする基板の組立装置。

【請求項6】 請求項5に記載の基板の組立装置において、前記加圧板は、該他方の基板における該一組の対辺の両中間部に掛けての領域を吸引吸着する手段とが領域から該他方の基板における残りの各対辺に掛けての領域を個別に吸引吸着する手段を備えていることを特徴とする基板の組立装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、液晶表示パネル等に用いられる基板を真空チャンバ内で貼り合わせる基板の組立方法及び組立装置に関するものである。

【0002】

【従来の技術】 液晶表示パネルの製造工程には、透明電極や薄膜トランジスタアレイなどを設けた2枚のガラス基板の間に、基板間の距離が數 μ mであるような空間を設け、その空間に液晶を封入する基板組立工程がある。この基板組立工程には、例えば特開2000-284295号公報記載のものがある。以下に従来の基板組立工程について説明する。

【0003】 まず、基板の一方の表面の周縁に、該周縁に沿って前記表面を囲うようにシール剤を塗布し、その内側に液晶を滴下する。この時、基板に滴下された液晶は、上記シール剤によって基板表面から外部に漏れないようになっている。

【0004】 次に、この基板（以下、下側基板という）を真空チャンバ内の下側のテーブル（以下、テーブルという）に載置し、静電吸着によってテーブル上に固定すると共に、この基板に対向して貼り合わせる他方の基板（以下、上側基板という）を、テーブルの上方に位置した上側のテーブル（以下、加圧板という）に静電吸着させて保持する。

【0005】以上の作業終了後、2つの基板の位置決めをしてから、テーブルもしくは加圧板の内の方を他方に向けて相対的に移動させ、シール剤の接着力を利用して貼り合わせを行う。ここで、シール剤の外周位置に接着剤を設けた後に基板を貼り合わせるようにもよい。以上のようにして、2枚のガラス基板の間に液晶が封入された基板（以下、セルという）が組み立てられる。

【0006】ここで、上記組立工程の中の一工程である、上側基板を加圧板に静電吸着させる工程について以下に説明する。上側基板の加圧板への静電吸着は、まず移載装置等により上側基板の周縁部を保持しながら上側基板を加圧板に近付け、大気中で上側基板を加圧板に吸引吸着させた後に、真空チャンバ内の減圧（真空化）を行い、所望の真空度のところで吸引吸着から静電吸着に切り替える、という手順で行われている。尚、上側基板の下面には既に表示用の各種機能膜等が設けられており、保持において何らかのものが接触すると、これら機能膜等を破損する危険性が高いという理由から、基板移載の際は、基板の周縁部を保持するようにしている。

【0007】

【発明が解決しようとする課題】しかしながら、真空チャンバ内を減圧する過程で、上側基板と加圧板との間に閉じ込められた微量の空気が放出されることによって上側基板に力が作用し、その結果、加圧板に対して上側基板が動いたり落下したりするという不具合があった。

【0008】また、上側基板と加圧板との間に空気が残っていると、静電吸着するために印加している電圧や、残っている空気の真空度や、上側基板と加圧板との距離等の条件によって、加圧板の静電吸着用電極と上側基板との間で放電が発生し、その結果、放電中の電荷の移動・消滅によって静電吸着力が失われ、上側基板が落下するという不具合があった。

【0009】ここで、上記の不具合を解消する方法として、まず上側基板の周縁部を保持した状態で真空チャンバ内の真空引きを行い、所望の真空度以下になったところで保持した上側基板を加圧板に近付け、上側基板を加圧板に静電吸着させるという方法がある。

【0010】しかしながら、この場合、基板寸法が大きくなり、更には薄板化すると、上側基板は周縁部のみを保持されているために基板中間部が自重により下方向へ撓み、その結果、周縁部を加圧板に押し付けた状態でも中間部に静電吸着力が及ばず、上側基板を確実に加圧板に静電吸着させることができないという不具合があった。また、基板寸法が小さい場合には、周縁部を保持した時に生じる中間部の僅かな撓みが残った状態で、基板の周縁部から中央に向かって上側基板が加圧板に吸着されてしまうこともあり、この場合、吸着されたガラス基板にはひずみが残るという不具合があった。このように基板にひずみが残ると、軽い応力や衝撃力によってセル

が破損したり、繰り返し応力の負荷でセルの液晶表示パネルとしての表示機能が劣化することがあるという不都合が生じる。

【0011】本発明の目的は、上記の不具合を解消し、基板が大型化あるいは薄板化しても、基板にひずみを残さず、確実に基板を組み立てることができる基板の組立方法及び組立装置を提供することである。

【0012】

【課題を解決するための手段】上述の目的を達成するため、請求項1の発明では、貼り合わせる一方の基板を真空チャンバ内の下側へ配設したテーブルに載置すると共に、該一方の基板と貼り合わせる他方の基板を前記テーブルの基板載置面と対向して配設した真空チャンバ内の加圧板に静電吸着によって保持し、該各基板を、真空中で間隔を狭め且つ当該各基板のいずれかに設けた接着剤により貼り合わせる基板の組立方法において、大気下で該他方の基板をその上面が外側となる円筒面形の弓そりとし、該上面の中間部を減圧下において前記加圧板で静電吸着により保持し、該他方の基板の自由端となっている一方の辺部を前記加圧板で静電吸着により保持してから、該他方の基板の自由端となっている残りの辺部を前記加圧板で静電吸着により保持して前記加圧板で静電吸着により他方の基板をその全面で保持し前記一方の基板と対向させる。

【0013】請求項2の発明では、貼り合わせる一方の基板を真空チャンバ内の下側へ配設したテーブルに載置すると共に、該一方の基板と貼り合わせる他方の基板を前記テーブルの基板載置面と対向して配設した真空チャンバ内の加圧板に静電吸着によって保持し、該各基板を、真空中で間隔を狭め且つ当該各基板のいずれかに設けた接着剤により貼り合わせる基板の組立方法において、大気下で他方の基板を前記加圧板で吸引吸着により他方の基板をその全面で保持し、他方の基板を一組の対辺の中間部を機械的に保持し、残りの対辺側の吸引吸着を解除してその各辺側を自由端としてから、該一組の対辺の両中間部に掛けての吸引吸着を解除し、真空チャンバの真空化を進め、所望の真空度のところで前記加圧板に静電吸着の電圧を印加して他方の基板を該一組の対辺の両中間部に掛けて前記加圧板で静電吸着で保持し、自由端となっている残りの対各辺側を順次前記加圧板に静電吸着で保持させることで前記加圧板で静電吸着により他方の基板をその全面で保持し一方の基板と対向させる。

【0014】請求項3の発明では、請求項2に記載の基板の組立方法において、他方の基板の一組の対辺の自由端となっている一方の端部を機械的に保持している中間部の位置よりも下の位置で機械的に保持してから該一組の対辺の両中間部に掛けての吸引吸着を解除する。

【0015】請求項4の発明では、請求項1又は請求項2に記載の基板の組立方法において、他方の基板の自由

端となっている各辺部は前記加圧板における静電吸着力が及ぶ位置まで上昇させて前記加圧板で静電吸着させる。

【0016】請求項5の発明では、貼り合わせる一方の基板を真空チャンバ内の下側へ配設したテーブルに載設すると共に、該一方の基板と貼り合わせる他方の基板を前記テーブルの基板載置面と対向して配設した真空チャンバ内の加圧板に静電吸着によって保持し、該各基板を、真空中で間隔を狭め且つ当該各基板のいずれかに設けた接着剤により貼り合わせる基板の組立装置において、大気下において前記加圧板で吸引吸着により他方の基板をその全面で保持する手段と、該他方の基板における一組の対辺の中間部を機械的に保持する手段と、該他方の基板における残りの対辺側の吸引吸着を解除してその各辺側を自由端としてから該一組の対辺の両中間部に掛けての吸引吸着を解除する手段と、真空チャンバが所望の真空度になったところで前記加圧板に静電吸着の電圧を印加する手段と、該一組の対辺の両中間部に掛けて前記加圧板で静電吸着で保持した該他方の基板の自由端となっている残りの対各辺側を、順次前記加圧板に静電吸着で保持させることで前記加圧板で静電吸着により他方の基板をその全面で保持させる手段とを有する。

【0017】請求項6の発明では、請求項5に記載の基板の組立装置において、前記加圧板は、該他方の基板における該一組の対辺の両中間部に掛けての領域を吸引吸着する手段とが領域から該他方の基板における残りの各対辺に掛けての領域を個別に吸引吸着する手段を備える。

【0018】

【発明の実施の形態】以下、本発明の基板組立装置の一実施形態を図1から図4を参照して詳細に説明する。図1は本発明の基板組立装置の構成を示す概略図であり、図2は図1に示した基板組立装置における真空チャンバ部の上面図である。また、図3は図2の真空チャンバ部における保持爪（保持体）機構部の構成を示す要部拡大図であり、図4は図2の真空チャンバ部におけるテーブル、加圧板及び補助爪（補助体）機構部の構成を示す図である。

【0019】本発明の基板組立装置100は、図1に示す如く、ステージ部S1と、基板組立部S2と、Z軸方向移動ステージ部S3とから構成されている。架台1上には基板組立部S2を支持するフレーム2とZ軸方向移動ステージ部S3を支持するフレーム3とがあり、架台1の上面に、ステージ部S1が備えられている。

【0020】ステージ部S1には、駆動モータ5を具備するXステージ4aが設けられており、この駆動モータ5によって、Xステージ4a上に設けられているYステージ4bを、図1のX軸方向に移動できるようにしている。また、Yステージ4bは駆動モータ6を具備しており、この駆動モータ6によって、Yステージ4b上のθ

ステージ4cを、図1のX軸及びZ軸と直交するY軸方向に移動できるようにしている。更に、駆動モータ8を具備するθステージ4c上には、シャフト9を支持する支持体9aが設けられており、前記駆動モータ8によって、支持体9aが、回転ペアリング7を介してYステージ4bに対し回転できるように構成されている。

【0021】前記シャフト9の上端には、下側基板を搭載するテーブル10が設けられている。また、アーム11を介して真空ベローズ12の下端がθステージ4cに固定されている。アーム11によって、回転ペアリング7と真空シールを有する気密保持体13とがシャフト9に対し固定されているため、シャフト9の良好な回転と気密性とを保証すると共に、シャフト9が回転しても、アーム11と真空ベローズ12とがシャフト9と共に回転しないように構成されている。

【0022】また基板組立部S2は、真空チャンバ14と、その真空チャンバ14内部に配置されたテーブル10及び加圧板15と、後述するように基板の保持および昇降を行う保持爪機構部40及び補助爪機構部60と、真空チャンバ14の出入口に設けられたゲートバルブ16とから構成されている。ここで、加圧板15は、図1に示すようにシャフト25を介してZ軸方向移動ステージ部S3に固定されている。このシャフト25は真空ベローズ26により周囲が囲まれており、真空チャンバ14内の真空状態を保持できるように構成されている。

【0023】前記真空チャンバ14の下部には真空排気するための配管20が設けられ、この配管20は切換バルブ（図示せず）を介して真空ポンプ（図示せず）に接続されている。また、真空チャンバ14の上部には、チャンバ内を真空状態から大気圧にするための配管21ならびにペント用切換バルブ22が設けられている。更に真空チャンバ14上部には、2枚の基板をずれのないように貼り合わせるための位置合わせマーク（図示せず）を観測するための窓23が設けられている。この窓23と図示していない加圧板15のマーク認識用穴とを通して、認識用カメラ24によって上下両基板の位置合わせマークのずれが測定され、得られた測定結果に基づき、両基板の位置のずれを修正する位置合わせが行われる。

【0024】ここで、真空チャンバ14部分の構成を、図4を参照して詳細に説明する。テーブル10は下側基板を真空吸着するための吸着孔を有し、各吸着孔は配管17を用いて真空チャンバ14の外部にある吸着バルブ（図示せず）に接続されている。また、テーブル10は静電吸着用の静電チャック10a～10cを備えており、正電極及び負電極へのリード線が真空チャンバ14から外部に引き出されている。

【0025】一方、加圧板15の吸引吸着孔18a, 18b, 18cは配管19a, 19b, 19cを用いて真空チャンバ14の外部にある個別吸着バルブ（図示せず）に接続されている。尚、前記各吸引吸着孔18a～18

cの吸着範囲は、例えば図4の如く、図面に向かって右、中央、左の3つに分割して設けられており、前記個別吸着バルブによって、各吸引吸着孔18a～18cの上記吸着範囲が切替えられるようになっている。また、前記各配管19a～19cには真空破壊用のバルブも接続されており、このバルブが開放されることによって基板の吸着領域が限定されたり解除されたりする。更に、加圧板15は静電吸着用の静電チャック15a～15cを備えており、正電極及び負電極へのリード線が真空チャンバ14から外部に引き出されている。

【0026】また、Z軸方向移動ステージ部S3は、Z軸方向移動ベース27とリニヤガイド28とボールネジ29と電動モータ30とから構成され、Z軸方向移動ベース27によって前記加圧板15の昇降が行われる。

【0027】尚、上記のステージ部S1、基板組立部S2及びZ軸方向移動ステージ部S3における駆動モータ5からエアシリンダ62a、62bまでの各種駆動手段は、図示しない制御装置によって制御されている。

【0028】次に、本発明の基板組立装置の保持爪機構部及び補助爪機構部について、図2から図4を参照して説明する。

【0029】図2の如く、保持爪機構部40はゲートバルブ16から見て基板の左右両側に各1つずつ、真空チャンバ14内に設けられており、一方の補助爪機構部60は、ゲートバルブ16から見て基板の手前と奥に各1つずつ、真空チャンバ14内に設けられている。

【0030】以下、保持爪機構部40の構成について説明する。保持爪41aは、保持爪41bより上側基板B1に与える撓み分（図3中寸法dに相当）だけ高い位置に配置して連結板42に固定されている。これは、後述するように、図4において点線で示した如く、保持爪41a、41bによって上側基板B1が上に凸の状態で保持されるようにするためである。ここで、前記連結板42はリニヤガイド43に取り付けられており、このリニヤガイド43は図中矢印イの方向に水平移動できるよう昇降板44に取付けられている。また、連結板42は金具45を介してリニヤガイド46に固定されており、更にリニヤガイド46は案内板47に沿って図中矢印ロの方向に昇降できるように構成されている。

【0031】上記構成を、以下詳細に説明する。前記案内板47にはボールネジ48aが貫通し、このボールネジ48aがナット48bと螺合しており、このボールネジ48aをモータ49で回すことによって、案内板47が図中矢印イ方向に水平移動できるように構成されている。更に、モータ49の回転で案内板47の下端部が振れないようにすると共に、案内板47が矢印イの方向に円滑に移動するように、リニヤガイド52が案内板47の下端部に設けられている。

【0032】これより、前記案内板47がモータ49により水平移動すると、リニヤガイド46が図中イ方向に

水平移動し、この結果、リニヤガイド46に固定されている連結板42も、昇降板44に取り付けられたりニヤガイド43を介して図中イ方向に水平移動する、即ち、連結板42に固定された保持爪41a、41bが矢印イの方向に水平移動する。

【0033】また昇降板44は、リニヤガイド50を介して、真空チャンバ14の底面から垂直に固定されている支持板51に沿って昇降できるように構成されている。昇降板44の両端にはラックギヤ54が取付けられており、このラックギア54に、モータ55の駆動力が、ネジ歯車56、シャフト57及びピニオンギヤ58を介して伝達され、昇降板44の昇降動作が行われる。以上より、昇降板44に取り付けられた連結板42が昇降動作する、即ち、連結板42に固定された保持爪41a、41bが矢印ロの方向に昇降移動する。

【0034】次に、補助爪機構部60について説明する。補助爪61a、61bはエアシリンダ62a、62bに取付けられており、昇降（図4の矢印ハ方向の移動）及び90度旋回（図2の矢印ニ方向の移動）を行うことができる。尚、上側基板B1の下面に接した場合にその下面を傷付けないようにするため、保持爪41a、41bや補助爪61a、61bの上面は、丸みを帯びた面としておくことが望ましい。

【0035】また、図1に戻って、70は以上示したステージ部S1、基板組立部S2及びZ軸移動ステージ部S3における駆動モータ5～エアシリンダ62a、62bなどの各種駆動手段へ操作信号を送出する制御装置である。そして、それら操作信号の送出の判断は、図示を省略した各種駆動手段に付設してある検出センサの出力や認識用カメラ24による両基板の位置合わせマークの測定結果などに基いて、組立装置100の操作者が行い、一部のものについては、制御装置70に組み込んであるシーケンスプログラム（後述する組立工程の適宜部分をプログラム化したもの）で実行する。

【0036】上記の如く構成された基板組立装置による基板の組立工程について、以下詳細に説明する。まず、ゲートバルブ16を開いた後、真空チャンバ14の外部に設置されている図示していない移載機の基板移載ハンドによって、膜面を下側にした上側基板B1をゲートバルブ16から真空チャンバ14内に挿入する。次に、前記基板移載ハンドによって上側基板B1の上面を加圧板15の下面に押付けると共に、加圧板15の吸引吸着孔18a～18cにより上側基板B1を吸引吸着保持する。このようにして上側基板B1を吸着保持した後、基板移載ハンドを真空チャンバ14外に退避させる。

【0037】続いて、モータ55で保持爪41a、41bを加圧板15とテーブル10との間の高さに移動させると共に、モータ49で上側基板B1を受け取れるような位置に保持爪41a、41bを移動させ、この保持爪41a、41bの上に真空チャンバ14外の基板移載ハ

ンドで下側基板B2を移載する。移載後、下側基板B2を載せた保持爪41a, 41bをテーブル10に設けた爪干涉よけ溝(図示せず)までモータ55により下降させることにより、下側基板B2がテーブル10上へ移載される。ここで、下側基板B2上面には予め枠を形成するようにシール剤が上面周縁部に塗布され、前記シール剤の枠内に所望量の液晶が滴下されている。

【0038】以上の工程終了後、保持爪41a, 41bは、モータ49によって水平にテーブル10から離れる方向に水平移動し、待機状態とする。また、基板移載ハンドを真空チャンバ14の外に退避させ、ゲートバルブ16を閉じる。

【0039】次に、補助爪61a, 61bをエアシリング62a, 62bで上昇させ、上昇端で90度旋回させた後に降下させる。これにより、下側基板B2が補助爪61a, 61bとテーブル10とで挟持された状態となる。このような状態で、テーブル10の吸引吸着配管17を用いて下側基板B2のテーブル10への真空吸着が行われる。ここで、補助爪61a, 61bとテーブル10とによって下側基板B2を挟持するのは、真空チャンバ14内の減圧を進める過程で、テーブル10と下側基板B2との間に残っている微量な空気が放出される際に、下側基板B2がテーブル10に対して動かないようになるためである。

【0040】上記の下側基板B2のテーブル10への真空吸着後、加圧板15とテーブル10との間の高さで待機していた保持爪41a, 41bを水平移動させ、保持爪41aが加圧板15に吸引吸着されている上側基板B1の下面に接触するまで、保持爪41a, 41bを上昇させる。尚、上側基板B1は加圧板15に水平に吸着されており、且つ保持爪41bが保持爪41aより距離dだけ下方に位置しているため、この時点では保持爪41bは上側基板B1の下面には接触していない状態である。

【0041】上記上側基板B1と保持爪41aとの接触後、加圧板15の3箇所の吸引吸着エリアのうち両側の吸引吸着孔18a, 18cを真空破壊し、中間部の吸着孔18bのみを吸引吸着した状態にする。これによって、上側基板B1が自重により撓み、上側基板B1の両端部が垂下した状態、即ち保持爪41aを結んだ所を中心とした上に凸の形状となり、この結果、図4の点線で示したように、上側基板B1のゲートバルブ16側の辺縁が保持爪41b上に載るようになる。このような状態になった後、加圧板15における中央の吸引吸着18bを真空破壊する。

【0042】以上の工程の後に、配管20に接続した真空ポンプを用いて真空チャンバ14内の排気を開始し、真空チャンバ14内を減圧する。減圧開始後、真空チャンバ14内の真空状態が所望の真空度に到達したら、加圧板15と上側基板B1との静電吸着、及びテーブル1

0と下側基板B2との静電吸着を行う。ここで、下側基板B2はテーブル10上に直に搭載されているので吸引吸着から静電吸着に切り替えることでそのままテーブル10上に固定される。

【0043】一方、上側基板B1は保持爪41a, 41bによって上に凸の形状になっているため、加圧板15の静電吸着を働かせただけでは上側基板B1を加圧板15に水平に吸着させることはできない。そこで、まず中間部の静電チャック15bを動作させ基板中間部の静電吸着を行う。次に、ゲートバルブ16側の補助爪61aを上昇させ、保持爪41bで撓みを抑えていた上側基板B1のゲートバルブ16側の垂れている部分を持ち上げる。こうして補助爪61aによって、静電吸着力が働く距離まで上側基板B1の垂れている部分を加圧板15に近付け、しかる後に静電チャック15aに電圧を印加すると、上側基板B1のゲートバルブ16側を加圧板15に、静電吸着によって固定保持することができる。この後、上側基板B1のゲートバルブ16と反対側の垂れている部分についても上記と同様に、補助爪61bを上昇させ静電吸着力が働く距離まで近付けた状態で静電チャック15cに電圧を掛け、加圧板15に静電吸着させることで、上側基板B1のゲートバルブ16と反対側の垂れている部分を加圧板15に静電吸着させることができる。以上のようにして、上側基板B1を加圧板15に水平に静電吸着させることができる。

【0044】ここで、上記上側基板の静電吸着工程の際に、保持爪で撓みを抑えていない側の補助爪61bを補助爪61aより先に上昇させたり、あるいは補助爪61aと補助爪61bとを同時に加圧板15に向けて上昇させたりすると、上側基板B1は保持爪41aと補助爪61a, 61bで支えた状態になるが、この時、上に凸の形状が下に凸の撓みに逆転変形してしまう。この結果、この撓み部分から加圧板15までの距離が遠くなり、上側基板B1を加圧板15に水平に静電吸着させることができなくなってしまう。よって、このような逆転変形が起こらないように、まず保持爪41bのある側の補助爪61aを上昇させる。静電チャック15aが上側基板B1のゲートバルブ16側を静電吸着てしまえば、その後補助爪61bで残りの側を上昇させても、上側基板B1は上記逆転変形現象を起こすことはなく、上側基板B1は加圧板15で水平に保持されることになる。

【0045】尚、上記静電吸着工程では、各静電チャック15a～15cへの電圧印加に順序があるが、上側基板B1が保持爪41a, 41bによって上に凸の形状であり、且つ中間部以外の垂れている部分に静電吸着力が働かないため、静電チャック15bへの電圧印加時に他の静電チャック15a, 15cに同時に電圧を印加しても良い。

【0046】以上のように、上側基板B1を加圧板15に、下側基板B2をテーブル10にそれぞれ静電吸着し

た後、補助爪61a, 61bを回転して基板の面内から退避させ、更に、保持爪41a, 41bも水平移動させて基板から離れさせた後、待機させる。

【0047】この状態で電動モータ30でZ軸方向移動ベース27を下降し、上側基板B1を下側基板B2に接近させる。この時、認識用カメラ24を用いて上下各基板B1, B2につけた位置合わせマークを検出し、基板相互の位置ずれを測定する。こうして得られた測定値を基にステージ部S1を制御し、下側基板B2の位置を所望量だけ移動することによって、上側基板B1と下側基板B2とが精度良く貼り合わせられるように、上側基板B1及び下側基板B2の位置合せを行う。

【0048】位置合わせが終了後、Z軸方向移動ベース27を更に下降し、上側基板B1を予めシール剤が塗布されている下側基板B2に重ねる。以上のようにしてシール剤で形成された枠内に液晶を封入した基板の貼り合わせが行われる。尚、この基板の貼り合わせ後に上側基板B1と下側基板B2との相対位置がずれないよう、予め基板の膜面に光硬化性の接着剤を打点塗布しておいてもよい。

【0049】上記の組立工程の後、加圧板15の静電チャック15a～15cへの電圧印加を停止し、Z軸方向移動ベース27を上昇した後、テーブル10の静電チャックへの電圧印加を停止させると共に、ベント用切換えバルブ22を開けて真空チャンバ14内を大気圧にする。

【0050】真空チャンバ14内を大気圧にした後、ゲートバルブ16を開け、テーブル10の真空吸着孔17を開放する。その後、保持爪41a, 41bでセルを持ち上げ、図示していない移載機の基板移載ハンドをセルの下に挿入してセルを基板移載ハンド上に移載し、しかる後に基板移載ハンドを後退させることによってセルを真空チャンバ14から取り出す。

【0051】ここで、上記の真空チャンバ14内を真空

状態から大気圧にする際に、真空チャンバ14内に気流が発生し、この気流によってテーブル10上のセルが移動することがある。このようにテーブル10上のセルが移動してしまった場合、保持爪41a, 41bでセルを持ち上げて基板移載ハンドに移載しようとしても、セルが保持爪41a, 41bから外れた位置にあって持ち上げられなくなってしまう。よって、真空チャンバ14内の大气解放の際には、退避してあった補助爪61a, 61bとテーブル10とによりセルを軽く挟持し、セルが移動しないようにしておくと良い。

【0052】

【発明の効果】以上述べたように、本発明の基板組立方法及び基板組立装置によれば、基板寸法が大型化し、更には薄板化しても、基板にひずみを残すことなく、寿命の長い基板を確実に組み立てることができる。

【図面の簡単な説明】

【図1】本発明の一実施形態を示す基板組立装置の構成を示す概略図である。

【図2】図1に示した基板組立装置における真空チャンバ部の上面図である。

【図3】図2で示した真空チャンバ部における保持爪機構部の構成を示す要部拡大図である。

【図4】図2で示した真空チャンバ部におけるテーブル、加圧板及び補助爪機構部の構成を示す図である。

【符号の説明】

100…基板組立装置、S1…ステージ部、S2…基板組立部、S3…Z軸方向移動ステージ部、B1…上側基板、B2…下側基板、10…テーブル（下側のテーブル）、14…真空チャンバ、15…加圧板（上側のテーブル）、15a～15c…静電チャック、18a～18c…吸引吸着孔、16…ゲートバルブ、40…保持爪機構部、41a, 41b…保持爪、60…補助爪機構部、61a, 61b…補助爪。

【図4】

【図4】

【図1】

【図1】

【図2】

【図2】

【図3】

【図3】

フロントページの続き

(72)発明者 今泉 潔

茨城県竜ヶ崎市向陽台5丁目2番 日立テ
クノエンジニアリング株式会社竜ヶ崎工場
内

(72)発明者 内藤 正美

茨城県竜ヶ崎市向陽台5丁目2番 日立テ
クノエンジニアリング株式会社竜ヶ崎工場
内

(72)発明者 齊藤 正行

茨城県竜ヶ崎市向陽台5丁目2番 日立テ
クノエンジニアリング株式会社竜ヶ崎工場
内

Fターム(参考) 2H088 FA01 FA16 FA30 HA01 MA17
2H089 NA49 NA60 QA02 QA12 TA01

