## DOKUMENTASI UTAMA VIRTUAL ZOO VERSI VZ03

Tugas Besar I Mata Kuliah IF 2210 Pemrograman Berorientasi Objek



#### Disusun oleh:

Kelompok 30 – nyo nyo
Erick Wijaya / 13515057 / K-03
Veren Iliana / 13515078 / K-03
Audry Nyonata / 13515087 / K-03
William / 13515144 / K-03

PROGRAM STUDI TEKNIK INFORMATIKA
SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA
INSTITUT TEKNOLOGI BANDUNG
2017

## **DAFTAR ISI**

| BAB I DESKRIPSI UMUM APLIKASI                       | 3  |
|-----------------------------------------------------|----|
| BAB II DAFTAR KEBUTUHAN FUNGSIONAL                  | 5  |
| BAB III RANCANGAN KELAS                             |    |
| BAB III SNAPSHOT STRUKTUR DIREKTORI / SUB DIREKTORI |    |
|                                                     |    |
| DAFTAR LAMPIRAN                                     | IU |

#### BAB I DESKRIPSI UMUM APLIKASI

Aplikasi ini adalah aplikasi permodelan kebun binatang virtual. Aplikasi dibuat dengan pemrograman berorientasikan objek menggunakan bahasa C++. Kebun binatang (Zoo) memiliki sebidang tanah yang direpresentasikan dengan sebuah matriks sel (Cell), dimana setiap Cell merepresentasikan petak tanah berukuran 1x1 m. Sebuah Cell dapat berupa habitat atau fasilitas. Habitat adalah tempat dimana binatang tinggal, sedangkan fasilitas adalah fasilitas umum untuk pengunjung kebun binatang. Habitat dapat berupa habitat darat,habitat air,dan habitat udara. Sedangkan, Facilitas dapat berupa jalan, restoran, dan taman. Terdapat jenis khusus dari jalan,yaitu pintu masuk dan pintu keluar.

Berdasarkan tempat hidupnya, binatang yang ada pada virtual zoo ini dikelompokkan menjadi 3 jenis,yaitu binatang darat, binatang air, dan binatang terbang. Pada virtual zoo versi VZ03 ini, ada binatang yang dapat hidup di 2 alam. Selain habitat, binatang juga dibedakan berdasarkan taksonominya. Taksonomi yang digunakan adalah berdasarkan pembagian kelas (konteks biologi) pada vertebrata,yaitu Mammalia, Amphibia, Reptilia, Aves, Pisces. Selain itu, binatang juga dapat digolongkan ke 3 kategori berdasarkan jenis makanannya, yaitu Carnivore, Herbivore, dan Omnivore. Terdapat minimal 20 jenis binatang yang ada pada kebun binatang.

Binatang tinggal di dalam kandang yang berada di atas satu atau lebih sel habitat sejenis yang saling berhubungan melalui sebuah "penyekat" yang bisa dibuka tutup. Kandang mencakup satu/banyak sel habitat, sedangkan satu sel habitat hanya dimiliki oleh satu kandang. Satu kandang dapat berisi lebih dari satu jenis binatang. Peletakan binatang di dalam Cage harus memperhatikan jenis habitat yang cocok untuk tempat tinggalnya, yaitu binatang darat berada pada habitat darat, binatang air pada habitat air, dan binatang terbang pada habitat udara. Pada versi VZO3 ini, ada binatang yang tidak jinak sehingga ada jenis binatang tertentu yang tidak dapat digabungkan pada 1 kandang.

Setiap binatang memiiki kemampuan interaksi, yaitu mengirimkan sebuah striung yang menggambarkan *experience* yang dapat didengar, dirasakan, atau dilihat oleh seorang pengunjung saat beredekatan dengan jenis binatang tersebut, seperti Lion "Roar..!", Tiger "Grr..!", Owl "Hoo..Hoo..". dst.

Kebun binatang ini dapat ditampilkan(dirender) pada konsol teks dengan representasi karakter tertentu. Pada versi VZ03, objek yang dapat direpresentasikan pada layar antara lain habitat air, habitat darat, habitat udara, taman, restoran, jalan, pintu masuk, pintu keluar, dan binatang.

Terdapat 2 pilihan menu berbasis teks pada program utama dari virtual zoo, yaitu:

#### 1. Display Virtual Zoo

Jika pengguna memilih menu ini, program akan menampilkan kebun binatang di atas layar. Untuk membatasi luas bidang yang akan ditampilkan, pengguna diminta memasukkan koordinat atas-kiri, dan bawah-kanan.

#### 2. Tour Virtual Zoo

Jika pengguna memilih menu ini, program akan secara acak memilih salah satu Entrance, kemudian membuat sebuah jalur tour yang dilalui pengunjung. Untuk setiap sel yang dilalui oleh pengunjung, program menampilkan serangkaian experience yang akan dialami pengunjung pada sel berdasarkan interaksi dengan binatang-binatang yang ada pada setiap kandang yang bersinggungan dengan sel tersebut. Algoritmapemilihan jalur tur dilakukan dengan memilih *next* Cell (berupa jalan) yang bersinggungan dengan *current Cell* yang belum pernah dikunjungi sebelumnya. Jika ada lebih dari

satu Cell bertipe Road yang dapat dipilih, makan dipilih secara acak. Penelusuran berhenti saat sudah tidak ada lagi jalan yang dapat dipiluh atau telah mencapai sel yang merupakan pintu keluar

3. Menghitung Makanan yang Dikonsumsi dalam Virtual Zoo Jika pengguna memilih menu ini, program akan menghitung berapa banyak makanan (daging dan sayur) yang dikonsumsi oleh semua binatang dalam Virtual Zoo setiap harinya.

# BAB II DAFTAR KEBUTUHAN FUNGSIONAL

Berikut adalah daftar kebutuhan fungsional Virtual Zoo versi VZ01

| Nomor | Deskripsi                                                               |
|-------|-------------------------------------------------------------------------|
| VZ001 | Aplikasi dapat membuat kebun binatang virtual dari input file eksternal |
| VZ002 | Aplikasi dapat menampilkan virtual zoo pada layar                       |
| VZ003 | Aplikasi menyediakan fitur tur virtual zoo                              |

#### **BAB III RANCANGAN KELAS**

Kelas Renderable adalah kelas abstrak dari segala kelas yang dapat dirender (dicetak ke layar). Kelas Renderable memiliki atribut id (karakter) dan color (warna) sedangkan metode yang dimiliki adalah metode render dan getColor, keduanya adalah fungsi virtual murni yang akan diimplementasikan pada kelas anak-anaknnya. Kelas Cell dan Cage menginherit dari kelas Renderable. Pada versi VZ02 keatas kelas Animal juga menginherit dari kelas Renderable karena animal memiliki posisi pada peta zoo. Kelas Cell adalah kelas abstrak yang merepresentasikan satuan tempat (cell) pada peta Zoo. Kelas Habitat dan Facility menginherit dari Cell dan mereka juga merupakan kelas abstrak sehingga tidak dapat diinstantiasi. Kelas Habitat memiliki 3 kelas anak, yaitu kelas LandHabitat, WaterHabitat, dan AirHabitat. Ketiga kelas ini mengimplementasikan fungsi render dan getColor. Kelas Facility memiliki 3 anak, yaitu kelas Road, Restaurant, dan Park. Ketiga kelas ini bukan abstrak dan sudah mengimplementasikan fungsi virtual kelas parentnya. Kelas Road memiliki 2 anak kelas yaitu kelas Entrance dan Exit. Kedua kelas ini merepresentasikan jalan (Road) yang adalah jalan masuk dan keluar.

Kelas Zoo adalah kelas publik yang terpisah dari kelas-kelas lain (tidak memiliki hubungan inheritance dengan kelas lain). Kelas ini memiliki atribut matrix of pointer to Cell (representasi dari peta Zoo), array of Cage (kandang yang disimpan pada Zoo), serta atribut lain seperti baris, kolom, dan banyak kandang. Kelas Zoo memiliki beberapa metode penting, diantaranya metode display untuk menampilkan peta Zoo beserta konten dari setiap Cellnya, metode Tour yang menampilkan serangkaian interaksi pengunjung dengan hewan-hewan ketika melewati Road yang ada pada matrix of pointer to Cell, dan metode ShowFood yang menampilkan total makanan yang dikonsumsi semua hewan kebun binatang yang terdiri dari daging dan sayur. Kelas Zoo memiliki metode untuk menambahkan sebuah Cage pada kebun binatang.

Kelas Cage adalah anak kelas dari Renderable yang memiliki atribut array of pointer to Animal dan array of posisi (baris dan kolom). Atribut array baris kolom merepresentasi posisi yang dicakup kelas Cage sedangkan array Animal menyimpan Animal. Kelas Cage memiliki metode untuk menghitung total makanan yang dikonsumsi hewan yang berada di dalam Cage. Selain itu, kelas ini memiliki predikat IsFull yang bernilai true apabila jumlah hewan pada cage melebihi 30% ukuran Cage. Kelas ini memiliki metode AddAnimal yang menerima sebuah Animal kemudian memasukkan Animal pada Cage sesuai atribut posisi Animal.

Kelas Animal adalah kelas abstrak dari semua kelas binatang. Atribut kelas Animal adalah nama, jenis kelamin, posisi, dan berat. Kelas ini memiliki 3 anak yaitu Land, Water, dan Flying Animal. Inheritance dilakukan secara publik dan virtual untuk menangani kasus hewan amfibi yang menginherit dari dua kelas tersebut atau lebih. Kelas Animal memiliki metode virtual murni untuk menghitung daging dan sayur yang dikonsumsi.

Kelas Taxonomy merupakan kelas basis dari klasifikasi hewan. Kelas Taxonomy memiliki 5 anak, yaitu Pisces, Amphibia, Reptilia, Aves, dan Mammalia. Kelas Taxonomy memiliki atribut ruang jantung dan dapat diperoleh dengan metode getter. Kelas Carnivore, Herbivore, dan Omnivore adalah kelas yang memiliki atribut rasio sayur dan daging yang dikonsumsi per kg berat badan.

Hewan-hewan memiliki kelasnya masing-masing (misalnya Elephant menginherit dari Herbivore, LandAnimal, dan Mammalia). Kelas-kelas hewan ini mengimplementasikan metode untuk menghitung makanan yang dikonsumsi. Kelas tersebut juga mengimplementasi metode render dan getColor, keduanya berguna untuk mencetak hewan pada layar.

## BAB IV SNAPSHOT STRUKTUR DIREKTORI / SUB DIREKTORI







Gambar 1 Snapshot Directory Virtual Zoo Versi VZ03

## **DAFTAR LAMPIRAN**

- 1. Skenario Test
- 2. Penghitungan Metriks Perangkat Lunak
- 3. Log Activity
- 4. Diagram Kelas Hasil Reverse Engineering Source Code
- 5. Hasil Pembangkitan Dokumentasi dengan Doxygen
- 6. Hasil Unit Test dengan GoogleTest
- 7. Hasil Static Code Test dengan CppCheck



## **SKENARIO TEST**

Form Penilaian Functional Test

Versi: VZ03

| Skenario                    | Keterangan | Fakta | Nilai<br>Mhs | Nilai<br>Ass |
|-----------------------------|------------|-------|--------------|--------------|
| General                     |            |       | IVIIIS       | ASS          |
| Inisiasi, View, kemudian    | OK         |       | A            |              |
| quit                        |            |       | 11           |              |
| Display Virtual Zoo         |            |       |              |              |
| Menampilkan virtual zoo     | OK         |       | A            |              |
| secara penuh dengan         | 012        |       |              |              |
| setiap binatang dan         |            |       |              |              |
| fasilitas direpresentasikan |            |       |              |              |
| dengan suatu karakter       |            |       |              |              |
| Menampilkan virtual zoo     | OK         |       | A            |              |
| dengan masukan koordinat    |            |       |              |              |
| kiri atas dan kanan bawah   |            |       |              |              |
| dengan setiap binatang dan  |            |       |              |              |
| fasilitas direpresentasikan |            |       |              |              |
| dengan suatu karakter       |            |       |              |              |
| Tour Virtual Zoo            |            | L     | I.           |              |
| Memulai tur dari suatu      | OK         |       | A            |              |
| pintu masuk                 |            |       |              |              |
| Pilihan jalan yang dilalui  | OK         |       | A            |              |
| dilakukan secara random     |            |       |              |              |
| Jalan yang dipilih adalah   | OK         |       | A            |              |
| jalan yang belum pernah     |            |       |              |              |
| dilalui                     |            |       |              |              |
| Jika pengunjung berada di   | OK         |       | A            |              |
| posisi dimana di            |            |       |              |              |
| sebelahnya terdapat suatu   |            |       |              |              |
| kandang, akan               |            |       |              |              |
| menampilkan interaksi       |            |       |              |              |
| semua hewan pada            |            |       |              |              |
| kandang tersebut            |            |       |              |              |
| Tur berakhir bila sudah     | OK         |       | A            |              |
| tidak ada lagi jalan yang   |            |       |              |              |
| dapat dipilih atau sudah    |            |       |              |              |
| berada pada pintu keluar    |            |       |              |              |
| Menghitung Makanan          |            |       |              |              |
| Virtual Zoo                 |            |       |              |              |
| Menghitung jumlah           | OK         |       | A            |              |
| makanan daging dan          |            |       |              |              |
| jumlah makanan sayuran      |            |       |              |              |
| yang dibutukan              |            |       |              |              |
| Bonus                       |            |       |              |              |

| Retrieve dari file       | OK                                     |       | A            |              |
|--------------------------|----------------------------------------|-------|--------------|--------------|
| Skenario                 | Keterangan                             | Fakta | Nilai<br>Mhs | Nilai<br>Ass |
| General                  |                                        |       |              | •            |
| Inisiasi, View, kemudian |                                        |       |              |              |
| quit                     |                                        |       |              |              |
| Display Virtual Zoo      |                                        |       |              |              |
|                          | Menampilkan peta beserta cage dan      |       |              |              |
|                          | animal nya virtual zoo                 |       |              |              |
| Tour Virtual Zoo         |                                        |       |              |              |
|                          | Menampikan interaksi pengguna dengan   |       |              |              |
|                          | hewan yang dilewati selama tour        |       |              |              |
|                          | berlangsung setelah memilih sebuah     |       |              |              |
|                          | entrance                               |       |              |              |
| Menghitung Makanan yar   | ng Dikonsumsi                          |       |              |              |
|                          | Menghitung jumlah makanan daging dan   |       |              |              |
|                          | sayuran yang dibutuhkan kebun binatang |       |              |              |
| Bonus                    |                                        |       |              |              |
| Retrieve dari file       | Mengambil data virtual zoo dari file   |       |              |              |
|                          | eksternal                              |       |              |              |

### Form Penilaian Unit Test

| Kelas / keluarga<br>kelas | Method | Kasus | OK/NO | Nilai |
|---------------------------|--------|-------|-------|-------|
|                           |        |       |       |       |
|                           |        |       |       |       |
|                           |        |       |       |       |
|                           |        |       |       |       |
|                           |        |       |       |       |

## PENGHITUNGAN METRIKS PERANGKAT LUNAK

Versi: VZ03 dengan inheritance

| No | Metriks                  | Besarnya  |
|----|--------------------------|-----------|
| 1  | Number of Packages       | 4         |
| 2  | Number of Classes        | 33        |
| 3  | Number of AbstractClass  | 18        |
| 4  | Afferent Couplings (Ca)  | 24        |
| 5  | Efferent Coupling (Ce)   | 8         |
| 6  | Abstractness (A)         | 0.3529    |
| 7  | Instability(I)           | 0.25      |
| 8. | Package Dependency Cycle | Tidak ada |
| 9. | Kelas generik            | -         |

# LOG ACTIVITY

## 1. Pembagian Peran

| Kelas        | FIle              | Designer | Implementor/Koder | Tester   |
|--------------|-------------------|----------|-------------------|----------|
| Zoo          | zoo.h, zoo.cpp    | 13515087 | 13515057          | 13515087 |
| Cage         | cage.h, cage.cpp  | 13515087 | 13515057          | 13515087 |
| Renderable   | renderable.h,     | 13515057 | 13515144          | 13515057 |
|              | renderable.cpp    |          |                   |          |
| Cell         | cell.h, cell.cpp  | 13515078 | 13515057          | 13515078 |
| Habitat      | habitat.h,        | 13515078 | 13515078          | 13515087 |
|              | habitat.cpp       |          |                   |          |
| WaterHabitat | water_habitat.h,  | 13515078 | 13515078          | 13515087 |
|              | water_habitat.cpp |          |                   |          |
| LandHabitat  | land_habitat.h,   | 13515078 | 13515078          | 13515087 |
|              | land_habitat.cpp  |          |                   |          |
| AirHabitat   | air_habitat.h,    | 13515078 | 13515078          | 13515087 |
|              | air_habitat.cpp   |          |                   |          |
| Facility     | facility.h,       | 13515087 | 13515087          | 13515057 |
|              | facility.cpp      |          |                   |          |
| Restaurant   | restaurant.h,     | 13515087 | 13515057          | 13515087 |
|              | restaurant.cpp    |          |                   |          |
| Park         | park.h, park.cpp  | 13515087 | 13515057          | 13515087 |
| Road         | road.h, road.cpp  | 13515087 | 13515057          | 13515087 |
| Entrance     | entrance.h,       | 13515087 | 13515057          | 13515087 |
|              | entrance.cpp      |          |                   |          |
| Exit         | exit.h, exit.cpp  | 13515087 | 13515057          | 13515087 |
| Omnivore     | omnivore.h,       | 13515057 | 13515078          | 13515144 |
|              | omnivore.cpp      |          |                   |          |
| Herbivore    | herbivore.h,      | 13515057 | 13515078          | 13515144 |
|              | herbivore.cpp     |          |                   |          |
| Carnivore    | carnivore.h,      | 13515057 | 13515078          | 13515144 |
|              | carnivore.cpp     |          |                   |          |
| Animal       | animal.h,         | 13515057 | 13515078          | 13515087 |
|              | animal.cpp        |          |                   |          |
| WaterAnimal  | water_animal.h,   | 13515078 | 13515078          | 13515087 |
|              | water_animal.cpp  |          |                   |          |
| LandAnimal   | land_animal.h,    | 13515078 | 13515078          | 13515087 |
|              | land_animal.cpp   |          |                   |          |
| FlyingAnimal | flying_animal.h,  | 13515078 | 13515078          | 13515087 |
|              | flying_animal.cpp |          |                   |          |
| Vertebrate   | vertebrate.h,     | 13515144 | 13515078          | 13515087 |
|              | vertebrate.cpp    |          |                   |          |
| Mammalia     | mammalia.h,       | 13515144 | 13515078          | 13515087 |
|              | mammalia.cpp      |          |                   |          |
| Pisces       | pisces.h,         | 13515144 | 13515078          | 13515087 |
|              | pisces.cpp        |          |                   |          |
| Reptilia     | reptilia.h,       | 13515144 | 13515078          | 13515087 |
|              | reptilia.cpp      |          |                   |          |

| Kelas        | FIle                 | Designer | Implementor/Koder | Tester   |
|--------------|----------------------|----------|-------------------|----------|
| Amphibia     | amphibia.h,          | 13515144 | 13515078          | 13515087 |
|              | amphibia.cpp         |          |                   |          |
| Aves         | aves.h, aves.cpp     | 13515144 | 13515078          | 13515087 |
| Elephant     | elephant.h,          | 13515087 | 13515144          | 13515057 |
| -            | elephant.cpp         |          |                   |          |
| Giraffe      | giraffe.h,           | 13515087 | 13515144          | 13515057 |
|              | giraffe.cpp          |          |                   |          |
| Lion         | lion.h, lion.cpp     | 13515087 | 13515144          | 13515057 |
| Tiger        | tiger.h, lion.cpp    | 13515087 | 13515144          | 13515057 |
| Orangutan    | orangutan.h,         | 13515087 | 13515144          | 13515057 |
|              | orangutan.cpp        |          |                   |          |
| Chimpanzee   | chimpanzee.h,        | 13515087 | 13515144          | 13515057 |
| •            | chimpanzee.cpp       |          |                   |          |
| Komodo       | komodo.h,            | 13515087 | 13515144          | 13515057 |
|              | komodo.cpp           |          |                   |          |
| Bear         | bear.h, bear.cpp     | 13515087 | 13515144          | 13515057 |
| Whale        | whale.h,             | 13515087 | 13515144          | 13515057 |
|              | whale.cpp            |          |                   |          |
| Dolphin      | dolphin.h,           | 13515087 | 13515144          | 13515057 |
| 1            | dolphin.cpp          |          |                   |          |
| Clownfish    | clownfish.h,         | 13515087 | 13515144          | 13515057 |
|              | clownfish.cpp        |          |                   |          |
| BlueTang     | bluetang.h,          | 13515087 | 13515144          | 13515057 |
| C            | bluetang.cpp         |          |                   |          |
| Piranha      | piranha              | 13515087 | 13515144          | 13515057 |
| PuffFish     | pufffish.h,          | 13515087 | 13515144          | 13515057 |
|              | pufffish.cpp         |          |                   |          |
| Eagle        | eagle.h, eagle.cpp   | 13515087 | 13515144          | 13515057 |
| Cendrawasih  | cendrawasih.h,       | 13515087 | 13515144          | 13515057 |
|              | cendrawasih.cpp      |          |                   |          |
| Owl          | owl.h, owl.cpp       | 13515087 | 13515144          | 13515057 |
| Bat          | bat.h, bat.cpp       | 13515087 | 13515144          | 13515057 |
| Macau        | macau.h,             | 13515087 | 13515144          | 13515057 |
|              | macau.cpp            |          |                   |          |
| Cockatoo     | cockatoo.h,          | 13515087 | 13515144          | 13515057 |
|              | cockatoo.cpp         |          |                   |          |
| Frog         | frog.h, frog.cpp     | 13515078 | 13515057          | 13515078 |
| Alligator    | alligator.h,         | 13515078 | 13515057          | 13515078 |
| -            | alligator.cpp        |          |                   |          |
| Hippopotamus | hippopotamus.h,      | 13515078 | 13515057          | 13515078 |
| •            | hippopotamus.cpp     |          |                   |          |
| Turtle       | turtle.h, turtle.cpp | 13515078 | 13515057          | 13515078 |
| Driver       | Driver.cpp           | 13515057 | 13515057          | 13515078 |

### Dokumentasi

| Elemen Dokumentasi             | Writer             | Reviewer          |
|--------------------------------|--------------------|-------------------|
| Deskripsi umum aplikasi        | 13515144           | 13515057          |
| Rancangan kelas                | 13515087           | 13515087          |
| Snapshot struktur direktori    | 13515087           | 13515057          |
| Skenario test                  | 13515078           | 13515144          |
| Penghitungan metriks           | 13515144, 13515078 | 13515087          |
| perangkat lunak                |                    |                   |
| Log Activity                   | 13515078, 13515144 | 13515057,13515087 |
| Diagram kelas hasil reverse    | 13515078, 13515144 | 13515087          |
| engineering source code        |                    |                   |
| Hasil pembangkitan             | 13515078, 13515087 | 13515144          |
| dokumentasi doxygen            |                    |                   |
| Hasil unit test dengan         | 13515057, 13515087 | 13515078          |
| GoogleTest                     |                    |                   |
| Hasil static code check dengan | 13515057, 13515087 | 13515078          |
| CPPCheck                       |                    |                   |

## 2. Rincian Kegiatan

| No | Tanggal  | Dari Pk       | Lokasi      | Aktivitas                      | Hasil                 |
|----|----------|---------------|-------------|--------------------------------|-----------------------|
|    |          | S.d Pk        |             |                                |                       |
| 1  | 22       | Pk. 15.50 s.d | Selasar TU  | - Membahas spesifikasi Tubes.  | Desain kelas dan      |
|    | Februari | Pk. 19.00     | STEI        | - Melakukan desain             | hubungan antar        |
|    | 2017     |               | Labtek V Lt | berorientasi objek             | kelas                 |
|    |          |               | II          | - Merancang data member        |                       |
|    |          |               |             | dan fungsi member setiap       |                       |
|    |          |               |             | kelas                          |                       |
| 2  | 23       | Pk. 09.00 s.d | Labdas VIII | - Instalasi tools              | Semua tools sudah     |
|    | Februari | Pk.11.00      | Labtek V Lt |                                | terinstall di setiap  |
|    | 2017     |               | II          |                                | laptop anggota        |
|    |          |               |             |                                | kelompok              |
| 3  | 24       | Pk. 14.00 s.d | R. 7602     | - Membahas perubahan           | Desain revisi kelas   |
|    | Februari | Pk. 15.40     | Labtek V    | spesifikasi tugas              | dan hubungan antar    |
|    | 2017     |               | Lt II       | -Merancang desain kelas        | kelas hasil perubahan |
|    |          |               |             | beserta member data dan        | spesifikasi           |
|    |          |               |             | fungsi                         |                       |
| 4  | 28       | Pk. 17.00-    | Selasar     | -Pembuatan desain dari setiap  | Implementasi kelas    |
|    | Februari | 19.00         | Basis Data  | kelas                          |                       |
|    | 2017     |               | Labtek V    |                                |                       |
|    | 237      | 71 00 00 1    | Lt II       |                                |                       |
| 5  | 2 Maret  | Pk.09.00 s.d  | Labdas      | - Pembuatan desain dari setiap |                       |
|    | 2017     | Pk.11.00      | VIII        | kelas                          |                       |
|    |          |               | Labtek V    |                                |                       |
|    |          |               | Lt II       |                                |                       |

|    | 11 Maret | Pk. 11.00     | Calagan    | Dambuatan dagain dan           |  |
|----|----------|---------------|------------|--------------------------------|--|
| 6  |          |               | Selasar    | - Pembuatan desain dan         |  |
|    | 2017     | s.d           | Basis Data | implementasi(body) dari setiap |  |
|    |          | Pk.19.30      | Labtek V   | kelas                          |  |
|    |          |               | Lt II      |                                |  |
| 7  | 12 Maret | Pk. 11.00 s.d | Selasar    | - Pembuatan desain dan         |  |
|    | 2017     | 16.00         | Basis Data | implementasi(body) dari setiap |  |
|    |          |               | Labtek V   | kelas                          |  |
|    |          |               | Lt.II      |                                |  |
|    |          | Pk. 20.00 s.d | Rumah      | - Pembuatan                    |  |
|    |          | Pk 23.59      | Veren      | implementasi(body) dari setiap |  |
|    |          |               |            | kelas                          |  |
| 8  | 13 Maret | Pk. 03.00 s.d | Rumah      | - Pembuatan                    |  |
|    | 2017     | Pk.07.00      | Veren      | implementasi(body) dari setiap |  |
|    |          |               |            | kelas                          |  |
|    |          | Pk. 20.00 s.d | Kos Erick  | - Pembuatan                    |  |
|    |          | Pk 23.59      |            | implementasi(body) dari setiap |  |
|    |          |               |            | kelas                          |  |
| 9  | 14 Maret | 03.00 s.d Pk  | Kos Erick  | Membuat program versi VZ02     |  |
|    | 2017     | 08.00         |            |                                |  |
|    | 14 Maret | 19.30 s.d Pk  | Kos Erick  | Penyusunan dokumentasi         |  |
|    | 2017     | 23.59         |            | tugas besar                    |  |
| 10 | 15 Maret | Pk 03.00 s.d. | Kos Erick  | penyusunan dokumentasi tugas   |  |
|    | 2017     | Pk 09.00      |            | besar                          |  |

Total Pengerjaan tugas : 53 jam

# DIAGRAM KELAS HASIL REVERSE ENGINEERING SOURCE CODE



Gambar 2 UMLClass Vertebrate



Gambar 3 Class Animal



Gambar 4 UML Class Renderable



Gambar 5 UML Class Carnivore, Herbivore, Omnivore

# HASIL PEMBANGKITAN DOKUMENTASI DENGAN DOXYGEN

- a -

ActivateTour(): <u>Driver</u>AddAnimal(): <u>Cage</u>

• AddCage() : **Zoo** 

• AirHabitat() : <u>AirHabitat</u>

• Alligator(): Alligator

• Amphibia(): Amphibia

• Animal(): Animal

• Aves():  $\underline{\mathbf{Aves}}$ 

- b -

• Bat() : **<u>Bat</u>** 

• Bear() : <u>**Bear**</u>

• bloodTemp : <u>Vertebrate</u>

• BlueTang(): BlueTang

- c -

• Cage(): <u>Cage</u>

• Carnivore(): Carnivore

• Cell(): Cell

• Cendrawasih(): Cendrawasih

• Chimpanzee(): Chimpanzee

 clone(): <u>AirHabitat</u>, <u>Alligator</u>, <u>Animal</u>, <u>Bat</u>, <u>Bear</u>, <u>BlueTang</u>, <u>Cell</u>, <u>Cendrawasih</u>, <u>Chimpanzee</u>, <u>Clownfish</u>, <u>Cockatoo</u>, <u>Dolphin</u>, <u>Eagle</u>, <u>Elephant</u>, <u>Entrance</u>, <u>Exit</u>, <u>Frog</u>, <u>Giraffe</u>, <u>Habitat</u>, <u>Hippopotamus</u>, <u>Komodo</u>, <u>LandHabitat</u>, <u>Lion</u>, <u>Macau</u>, <u>Orangutan</u>, <u>Owl</u>, <u>Park</u>, <u>Piranha</u>, <u>PuffFish</u>, <u>Restaurant</u>, <u>Road</u>, <u>Tiger</u>, <u>Turtle</u>, <u>WaterHabitat</u>, <u>Whale</u>

• Clownfish(): Clownfish

• Cockatoo(): Cockatoo

• col : Animal

• color : **Renderable** 

• countConsumedMeat(): <u>Alligator</u>, <u>Animal</u>, <u>Bat</u>, <u>Bear</u>, <u>BlueTang</u>, <u>Cage</u>, <u>Cendrawasih</u>, <u>Chimpanzee</u>, <u>Clownfish</u>, <u>Cockatoo</u>, <u>Dolphin</u>, <u>Eagle</u>, <u>Elephant</u>, <u>Frog</u>, <u>Giraffe</u>, <u>Hippopotamus</u>, <u>Komodo</u>, <u>Lion</u>, <u>Macau</u>, <u>Orangutan</u>, <u>Owl</u>, <u>Piranha</u>, <u>PuffFish</u>, <u>Tiger</u>, <u>Turtle</u>, <u>Whale</u>

countConsumedVeggie(): <u>Alligator</u>, <u>Animal</u>, <u>Bat</u>, <u>Bear</u>, <u>BlueTang</u>, <u>Cage</u>, <u>Cendrawasih</u>,
 <u>Chimpanzee</u>, <u>Clownfish</u>, <u>Cockatoo</u>, <u>Dolphin</u>, <u>Eagle</u>, <u>Elephant</u>, <u>Frog</u>, <u>Giraffe</u>, <u>Hippopotamus</u>,
 <u>Komodo</u>, <u>Lion</u>, <u>Macau</u>, <u>Orangutan</u>, <u>Owl</u>, <u>Piranha</u>, <u>PuffFish</u>, <u>Tiger</u>, <u>Turtle</u>, <u>Whale</u>

- d -

display(): <u>Zoo</u>Dolphin(): <u>Dolphin</u>

- e -

• Eagle(): **Eagle** 

Elephant(): <u>Elephant</u> Entrance(): <u>Entrance</u>

• Exit() : **Exit** 

- f -

• Facility(): **Facility** 

• FlyingAnimal(): FlyingAnimal

• Frog() : **Frog** 

- g -

• getAnimal() : <u>Cage</u>

• getBloodTemp() : <u>Vertebrate</u>

• getCol(): Animal, Cage

getColor(): <u>AirHabitat</u>, <u>Alligator</u>, <u>Bat</u>, <u>Bear</u>, <u>BlueTang</u>, <u>Cage</u>, <u>Cendrawasih</u>, <u>Chimpanzee</u>,
 <u>Clownfish</u>, <u>Cockatoo</u>, <u>Dolphin</u>, <u>Eagle</u>, <u>Elephant</u>, <u>Entrance</u>, <u>Exit</u>, <u>Frog</u>, <u>Giraffe</u>, <u>Hippopotamus</u>,
 <u>Komodo</u>, <u>LandHabitat</u>, <u>Lion</u>, <u>Macau</u>, <u>Orangutan</u>, <u>Owl</u>, <u>Park</u>, <u>Piranha</u>, <u>PuffFish</u>, <u>Renderable</u>,
 <u>Restaurant</u>, <u>Road</u>, <u>Tiger</u>, <u>Turtle</u>, <u>WaterHabitat</u>, <u>Whale</u>

• getHabitat() : <u>Cage</u>

• getHeartChamber() : <u>Vertebrate</u>

• getMeatRatio(): <u>Carnivore</u>, <u>Herbivore</u>, <u>Omnivore</u>

• getName() : <u>Animal</u>

• getRow(): Animal, Cage

•  $getSex() : \underline{Animal}$ 

• getSize() : <u>Cage</u>

• getTotalAnimal() : <u>Cage</u>

• getVegRatio(): <u>Carnivore</u>, <u>Herbivore</u>, <u>Omnivore</u>

getWeight(): <u>Animal</u>
 getWild(): <u>Animal</u>
 Giraffe(): <u>Giraffe</u>

- h -

• Habitat(): **Habitat** 

heartChamber : <u>Vertebrate</u>Herbivore() : <u>Herbivore</u>

• Hippopotamus(): <u>Hippopotamus</u>

- i -

- id : Renderable
- InputZoo() : **<u>Driver</u>**
- interact(): <u>Alligator</u>, <u>Animal</u>, <u>Bat</u>, <u>Bear</u>, <u>BlueTang</u>, <u>Cendrawasih</u>, <u>Chimpanzee</u>, <u>Clownfish</u>,
   <u>Cockatoo</u>, <u>Dolphin</u>, <u>Eagle</u>, <u>Elephant</u>, <u>Frog</u>, <u>Giraffe</u>, <u>Hippopotamus</u>, <u>Komodo</u>, <u>Lion</u>, <u>Macau</u>,
   <u>Orangutan</u>, <u>Owl</u>, <u>Piranha</u>, <u>PuffFish</u>, <u>Tiger</u>, <u>Turtle</u>, <u>Whale</u>
- isFull() : <u>Cage</u>

- k -

• Komodo(): Komodo

-1-

 $\bullet \quad LandAnimal(): \underline{LandAnimal}$ 

• LandHabitat(): LandHabitat

• Lion() : <u>Lion</u>

- m -

• Macau(): Macau

• Mammalia() : Mammalia

• meatRatio : <u>Carnivore</u> , <u>Herbivore</u> , <u>Omnivore</u>

• Move() : <u>Cage</u>

- n -

• name : **Animal** 

- Omnivore(): Omnivore
- operator<<: Animal, Zoo
- operator=(): <u>AirHabitat</u>, <u>Alligator</u>, <u>Animal</u>, <u>Bat</u>, <u>Bear</u>, <u>BlueTang</u>, <u>Cage</u>, <u>Carnivore</u>, <u>Cell</u>,
   <u>Cendrawasih</u>, <u>Chimpanzee</u>, <u>Clownfish</u>, <u>Cockatoo</u>, <u>Dolphin</u>, <u>Eagle</u>, <u>Elephant</u>, <u>Entrance</u>, <u>Exit</u>,
   <u>Facility</u>, <u>FlyingAnimal</u>, <u>Frog</u>, <u>Giraffe</u>, <u>Habitat</u>, <u>Herbivore</u>, <u>Hippopotamus</u>, <u>Komodo</u>,
   <u>LandAnimal</u>, <u>LandHabitat</u>, <u>Lion</u>, <u>Macau</u>, <u>Omnivore</u>, <u>Orangutan</u>, <u>Owl</u>, <u>Park</u>, <u>Piranha</u>, <u>PuffFish</u>, <u>Renderable</u>, <u>Restaurant</u>, <u>Road</u>, <u>Tiger</u>, <u>Turtle</u>, <u>WaterAnimal</u>, <u>WaterHabitat</u>, <u>Whale</u>, <u>Zoo</u>
- operator>>: <u>Animal</u>, <u>Cage</u>, <u>Zoo</u>
- operator[](): **Zoo**, **Zoo::Proxy**
- Orangutan(): Orangutan
- Owl(): <u>Owl</u>

- p -

- Park() : **Park**
- Piranha(): Piranha
- Pisces(): Pisces
- PrintFood() : <u>**Driver**</u>
- printInteract() : <u>Cage</u>
- PrintZoo(): **Driver**
- PrintZooAll() : **<u>Driver</u>**
- PuffFish(): PuffFish

- r -

- readAll(): **Zoo**
- render(): <u>AirHabitat</u>, <u>Alligator</u>, <u>Bat</u>, <u>Bear</u>, <u>BlueTang</u>, <u>Cage</u>, <u>Cendrawasih</u>, <u>Chimpanzee</u>,
   <u>Clownfish</u>, <u>Cockatoo</u>, <u>Dolphin</u>, <u>Eagle</u>, <u>Elephant</u>, <u>Entrance</u>, <u>Exit</u>, <u>Frog</u>, <u>Giraffe</u>, <u>Hippopotamus</u>,
   <u>Komodo</u>, <u>LandHabitat</u>, <u>Lion</u>, <u>Macau</u>, <u>Orangutan</u>, <u>Owl</u>, <u>Park</u>, <u>Piranha</u>, <u>PuffFish</u>, <u>Renderable</u>,
   <u>Restaurant</u>, <u>Road</u>, <u>Tiger</u>, <u>Turtle</u>, <u>WaterHabitat</u>, <u>Whale</u>
- Renderable(): Renderable
- Reptilia(): Reptilia
- Restaurant(): **Restaurant**
- Road() : <u>**Road**</u>
- row : Animal

• s : **Animal** 

• SearchAnimal() : <u>Cage</u>

• SearchPos() : <u>Cage</u>

• setCol() : <u>Animal</u>

setHabitat() : <u>Cage</u>

• setName() : Animal

• setRow() : <u>Animal</u>

• setSex() : <u>Animal</u>

• setWeight() : <u>Animal</u>

• showFood() : Zoo

• ShowMenu() : <u>**Driver**</u>

- t -

• Tiger(): <u>Tiger</u>

• Tour() : **<u>Zoo</u>** 

• Turtle(): <u>Turtle</u>

- V -

• vegRatio : <u>Carnivore</u>, <u>Herbivore</u>, <u>Omnivore</u>

• Vertebrate() : <u>Vertebrate</u>

- w -

• WaterAnimal(): WaterAnimal

• WaterHabitat() : WaterHabitat

• weight: Animal

• Whale(): Whale

• wild : **Animal** 

- z -

• Zoo:  $\underline{Zoo::Proxy}$ ,  $\underline{Zoo}$ 

- ~ -

• ~AirHabitat(): <u>AirHabitat</u>

- ~Animal(): <u>Animal</u>
- ~Cage() : <u>Cage</u>
- ~Cell() : <u>Cell</u>
- ~Entrance() : **Entrance**
- ~Exit() : **Exit**
- ~Facility() : <u>Facility</u>
- ~FlyingAnimal(): FlyingAnimal
- ~Habitat(): <u>**Habitat**</u>
- ~LandAnimal(): **LandAnimal**
- ~LandHabitat(): LandHabitat
- ~Park() : <u>**Park**</u>
- ~Renderable() : <u>Renderable</u>
- ~Restaurant() : <u>**Restaurant**</u>
- ~Road() : **<u>Road</u>**
- ~WaterAnimal(): WaterAnimal
- ~WaterHabitat(): <u>WaterHabitat</u>
- ~Zoo() : **Zoo**

### HASIL STATIC CODE TEST DENGAN CPPCHECK



