MATH 61A Problem Set 1

Allan Zhang

January 11, 2025

Problem 1

Problem 1

Draw the truth table for $P \implies R$, and $P \implies Q$ and $Q \implies R$. Explain in words, referring to the truth tables, why the latter statement implies the former.

P	Q	R	$P \implies Q$	$Q \implies R$	$P \implies R$	Explanation	$(P \Longrightarrow Q \text{ and } Q \Longrightarrow R) \Longrightarrow (P \Longrightarrow R)$
Т	Т	Т	T	T	T	1	Τ
T	T	F	T	F	F	2	T
T	F	Τ	F	$^{\rm T}$	T	3	T
T	F	\mathbf{F}	F	$^{\mathrm{T}}$	F	4	T
F	Т	Τ	F	T	F	5	T
F	T	\mathbf{F}	T	F	T	6	T
F	F	Т	T	T	${ m T}$	7	T
F	F	F	${ m T}$	T	${ m T}$	8	T

Truth table

- 1. When P, Q, and R are all true, $P \implies Q$ and $Q \implies R$ are both true statements. $P \implies Q \land Q \implies R$ is true and true, which is true. Since $P \implies R$ is also true, we now have a true implies true statement, which is true.
- 2. In this case, $P \implies Q$ is true because true \implies true is true. $Q \implies R$ and $P \implies R$ are false because true \implies false is false. $P \implies Q \land Q \implies R$ is false because true and false is false. $P \implies R$ is false for the same reason. Now we have the statement false implies false, which is true.
- 3. $P \Longrightarrow Q$ is false because true implies false is false. $Q \Longrightarrow R$ is true because false implies true is true. $P \Longrightarrow R$ is true because true implies true is true. $P \Longrightarrow Q \land Q \Longrightarrow R$ is true and false, which is false. Now we have the statement false implies true, which is true.
- 4. $P \implies Q$ is false because false implies true is false. $Q \implies R$ is true because false implies false is true. $P \implies R$ is false because true implies false is false. $P \implies Q \land Q \implies R$ is false and true, which is false. Now we have the statement false implies false, which is true.
- 5. $P \implies Q$ is false because false implies true is false. $Q \implies R$ is true because true implies true is true. $P \implies R$ is true because false implies true is true. $P \implies Q \land Q \implies R$ is false and true, which is false. Now we have the statement false implies false, which is true.
- 6. $P \Longrightarrow Q$ is false because false implies true is true. $Q \Longrightarrow R$ is false because true implies false is false. $P \Longrightarrow R$ is true because false implies false is true. $P \Longrightarrow Q \land Q \Longrightarrow R$ is true and false, which is false. Now we have the statement false implies true, which is true.
- 7. $P \implies Q$ is true because false implies false is true. $Q \implies R$ is true because false implies true is true. $P \implies R$ is true because false implies true is true. $P \implies Q \land Q \implies R$ is true and true, which is true. Now we have the statement true implies true, which is true.
- 8. $P \implies Q$ is true because false implies false is true. $Q \implies R$ is true because false implies false is true. $P \implies R$ is true because false implies false is true. $P \implies Q \land Q \implies R$ is true and true, which is true. Now we have the statement true implies true, which is true.

1 Exercise 1.5.1

1. $\neg P$

P	$\neg P$
Т	F
F	Т

This is equivalent to P|P

P	P	P P
Т	Т	F
F	F	${ m T}$

2. $P \wedge Q$

P	Q	$P \wedge Q$
Т	Т	Т
T	F	F
F	Т	F
F	F	F

This is equivalent to (P|Q)|(P|Q)

P Q	P Q	(P Q) (P Q)
F	F	T
Γ	${ m T}$	\mathbf{F}
T	${ m T}$	\mathbf{F}
T	${ m T}$	\mathbf{F}

3. $P \lor Q$

P	Q	$P \lor Q$
Т	Т	Т
T	F	F
F	Т	F
F	F	F

We can rewrite this as $\neg(\neg P \land \neg Q)$. From the first part of the problem, we can know that $\neg P = P|P$ and $\neg Q = Q|Q$. From the second problem, we know that $P \land Q = (P|Q)|(P|Q)$. Therefore, $\neg(\neg P \land \neg Q) = ((P|P)|(P|P))|((Q|Q)|(Q|Q))$.

2 1.5.7

Find the cardinalities of the following sets

1.
$$\{1,2\} \cup \mathcal{P}(\{1,2\})$$

$$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\$$

We could have also calculated the cardinality of this set by using the general formular:

$$\begin{split} |\mathcal{P}(A)| &= 2^{|A|} \\ |\mathcal{P}(\{1,2\})| &= 2^2 = 4 \\ |\{1,2\}| &= 2 \\ \{1,2\} \cup \mathcal{P}(\{1,2\}) &= \{1,2,\emptyset,\{1\},\{2\},\{1,2\}\} = 2 + 4 \end{split}$$

There are 6 unique elements in this set, meaning the cardinality of this set is 6 2. $\{\{1\},\{2\}\}\cup\mathcal{P}(\{1,2\})$

$$\{\{1\},\{2\}\} \cup \mathcal{P}(\{1,2\}) = \{\{1\},\{2\},\emptyset,\{1\},\{2\}\} = \{\emptyset,\{1\},\{2\}\}$$

Since the union of these sets only has 3 unique elements, the cardinality of this set is 3.

3. $\{0,1,2,3\} \times \{\emptyset,\{0,1,2,3\}$

The cardinality of one set times another is the product of the cardinalities of the two sets.

$$|\{0,1,2,3\}| = 4$$

$$|\{\emptyset,\{0,1,2,3\}| = 2$$

$$|\{0,1,2,3\} \times \{\emptyset,\{0,1,2,3\}| = 4 \times 2 = 8$$

The cardinality of this set is 8.