with n trials and success probability p. Recall that $\mathbb{P} = \mathbb{P}_n$, $\mathbb{Q} = \mathbb{Q}_n$ are two probability measures on a pair of random graphs on $[n] = \{1, \ldots, n\}$. Denote \mathfrak{S}_n the set of permutations in [n] and $\mu = \mu_n$ the uniform distribution on \mathfrak{S}_n . In addition, denote by $\nu = \nu_n$ the uniform distribution on $\{-1, +1\}^n$. We will use the following notation conventions for graphs.

- Labeled graphs. Denote by \mathcal{K}_n the complete graph with vertex set [n] and edge set U_n . For any graph H, let V(H) denote the vertex set of H and let E(H) denote the edge set of H. We say H is a subgraph of G, denoted by $H \subset G$, if $V(H) \subset V(G)$ and $E(H) \subset E(G)$. We say $\varphi : V(H) \to V(S)$ is an injection, if for all $(i,j) \in E(H)$ we have $(\varphi(i), \varphi(j)) \in E(S)$. For $H, S \subset \mathcal{K}_n$, denote by $H \cap S$ the graph with vertex set given by $V(H) \cap V(S)$ and edge set given by $E(H) \cap E(S)$, and denote by $S \cup H$ the graph with vertex set given by $V(H) \cup V(S)$ and edge set given by $E(H) \cup E(S)$. For any graph H, denote the excess of H by $\tau(H) = |E(H)| |V(H)|$. Given $u \in V(H)$, define $\mathsf{Nei}_H(u)$ to be the set of neighbors of u in H. For two vertices $u, v \in V(H)$, we define $\mathsf{Dist}_H(u, v)$ to be their graph distance. Denote the diameter of a connected graph H by $\mathsf{Diam}(H) = \max_{u,v \in V(H)} \mathsf{Dist}_H(u,v)$.
- Graph isomorphisms and unlabeled graphs. Two graphs H and H' are isomorphic, denoted by $H \cong H'$, if there exists a bijection $\pi: V(H) \to V(H')$ such that $(\pi(u), \pi(v)) \in E(H')$ if and only if $(u, v) \in E(H)$. Denote by \mathcal{H} the isomorphism class of graphs; it is customary to refer to these isomorphic classes as unlabeled graphs. Let $\operatorname{Aut}(H)$ be the number of automorphisms of H (graph isomorphisms to itself). For any graph H, define $\operatorname{Fix}(H) = \{u \in V(H) : \varphi(u) = u, \forall \varphi \in \operatorname{Aut}(H)\}$.
- Induced subgraphs. For a graph H=(V,E) and a subset $A\subset V$, define $H_A=(A,E_A)$ to be the induced subgraph of H in A, where $E_A=\{(u,v)\in E:u,v\in A\}$. Also, define $H_{\backslash A}=(V,E_{\backslash A})$ to be the subgraph of H obtained by deleting all edges with both endpoints in A. Note that $E_A\cup E_{\backslash A}=E$.
- Isolated vertices. For $u \in V(H)$, we say u is an isolated vertex of H if there is no edge in E(H) incident to u. Denote $\mathcal{I}(H)$ as the set of isolated vertices of H.
- Paths, self-avoiding paths and non-backtracking paths. We say a subgraph $H \subset \mathcal{K}_n$ is a path with endpoints u, v (possibly with u = v), if there exist $w_1, \ldots, w_m \in [n] \neq u, v$ such that $V(H) = \{u, v, w_1, \ldots, w_m\}$ and $E(H) = \{(u, w_1), (w_1, w_2), \ldots, (w_m, v)\}$ (we allow the occurrence of multiple vertices or edges). We say H is a self-avoiding path if $w_0, w_1, \ldots, w_m, w_{m+1}$ are distinct (where we denote $w_0 = u$ and $w_{m+1} = v$), and we say H is a non-backtracking path if $w_{i+1} \neq w_{i-1}$ for $1 \leq i \leq m$. Denote EndP(P) as the set of endpoints of a path P.
- Cycles and independent cycles. We say a subgraph H is an m-cycle if $V(H) = \{v_1, \ldots, v_m\}$ and $E(H) = \{(v_1, v_2), \ldots, (v_{m-1}, v_m), (v_m, v_1)\}$. For a subgraph $K \subset H$, we say K is an independent m-cycle of H, if K is an m-cycle and no edge in $E(H) \setminus E(K)$ is incident to V(K). Denote $\mathcal{C}_m(H)$ as the set of independent m-cycles of H. For $H \subset S$, we define $\mathfrak{C}_m(S, H)$ to be the set of independent m-cycles in S whose vertex set is disjoint from V(H).
- Leaves. A vertex $u \in V(H)$ is called a leaf of H, if the degree of u in H is 1; denote $\mathcal{L}(H)$ as the set of leaves of H.
- Trees and rooted trees. We say a graph T = (V(T), E(T)) is a tree, if T is connected and has no cycles. We say a pair $(T, \mathfrak{R}(T))$ is a rooted tree with root $\mathfrak{R}(T)$, if T is a tree and $\mathfrak{R}(T) \in V(T)$. For a rooted tree T and $u \in V(T)$, we define $\mathsf{Dep}_T(u) = \mathsf{Dist}_T(\mathfrak{R}(T), u)$ to be