Correction de l'interrogation n°1

(Calculatrice interdite)

Exercice 1 (Question de cours)

1. Donner la relation de récurrence associée à une suite (u_n) arithmétique de raison -3.

 $u_{n+1} = u_n - 3$

2. Donner la forme explicite d'une suite (v_n) géométrique de raison 3 et telle que $v_1 = 7$.

$$u_n = 7 \times 3^{n-1}$$

Exercice 2

Exercice 2 On considère la suite
$$(u_n)$$
 définie par
$$\begin{cases} u_0 = -1 \\ u_{n+1} = 2u_n - 3 \end{cases}$$

Calculer les termes u_1, u_2 et u_3 .

$$u_1 = 2u_0 - 3 = 2 \times (-1) - 3 = -5$$

$$u_2 = 2u_1 - 3 = 2 \times (-5) - 3 = -13$$

$$u_3 = 2u_2 - 3 = 2 \times (-13) - 3 = -29$$

Exercice 3

Pour tout $n \in \mathbb{N}$, on pose dans ce qui suit des propositions P_n .

Pour chacune d'elle, donner les proposition P_0 et P_{n+1} associées.

1.
$$P_n$$
: « $u_n \leq 0$ »

$$P_0: \langle u_0 \leq 0 \rangle$$
 et $P_{n+1}: \langle u_{n+1} \leq 0 \rangle$

2.
$$P_n$$
 : « $u_n \ge u_{n+1}$ »

$$P_0: \langle u_0 \geq u_1 \rangle \text{ et } P_{n+1}: \langle u_{n+1} \geq u_{n+2} \rangle$$

3.
$$P_n$$
 : « $2^n \ge 1 + n$ »

$$P_0: (2^0 \ge 1 + 0)$$
 et $P_{n+1}: (2^{n+1} \ge 1 + (n+1))$