

Physique

Classe: 4ème Informatique

Chapitre: Les Oscillations Electriques libres

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

EXERCICE 1:

Les parties I, II et III sont indépendantes.

Pour étudier les oscillations électriques libres d'un circuit RLC série formé d'un condensateur de capacité C = 1 µF, d'une bobine purement inductive d'inductance L et d'un résistor de résistance R variable, on réalise le montage de la figure ci-contre.

K2 étant ouvert, on ferme l'interrupteur K1.

Le condensateur est chargé par un générateur idéal de f.é.m E.

Un oscilloscope à mémoire permet d'enregistrer les tensions

 $u_{c}(t)$ aux bornes du condensateur et u(t) aux bornes du générateur respectivement sur les voies Y1 et Y2.

EÎ

On obtient les deux courbes de la figure ci-dessous :

- 1- Reproduire le schéma du montage en faisant les connexions nécessaires avec l'oscilloscope.
- 2- Identifier les deux courbes « a » et « b ».
- **3-** Monter que le condensateur est initialement déchargé.
- **4-** Déterminer graphiquement la constante du temps τ . En déduire la valeur de la résistance R.

II. <u>Décharge du condensateur à travers le dipôle RL :</u>

Le condensateur étant chargé, on ouvre K1 et on ferme K2 à t=0.

- 1- Etablir l'équation différentielle relative à la tension u_c .
- 2- Montrer que l'énergie électromagnétique de l'oscillateur diminue au cours du temps.
- 3- Pour une résistance $R_1 = 100\Omega$, on obtient l'oscillogramme de la figure ci-dessous :

- a- Nommer le régime d'oscillation obtenu.
- **b-** Montrer qu'à la date t_1 l'énergie dans le circuit RLC est purement électrique.
- **c-** Calculer la perte d'énergie entre les dates $t_0 = 0s$ et t_1 . Quel est le dipôle responsable de cette perte ?
- **d-** Indiquer sur un schéma les signes des charges des deux armatures A et B du condensateur ainsi que le sens réel du courant dans le circuit à la date t_2 .
- **4-** Sur la figure ci-dessous, on donne 3 oscillogrammes obtenus pour 3 valeurs de la résistance : $R_2 = 200\Omega$, $R_3 = 500\Omega$ et $R_4 = 2000\Omega$.

Affecter chaque oscillogramme à la résistance correspondante et nommer à chaque fois le régime.

III. Décharge du condensateur à travers la bobine :

On élimine le résistor, on charge le condensateur puis on le branche aux bornes de la bobine. On obtient l'oscillogramme suivant :

- 1- Etablir l'équation différentielle faisant intervenir la tension u_c .
- **2-** Vérifier que $u_C = U_{C_m} \sin(\omega_0 t + \varphi)$ est solution de l'équation différentielle.
- **3-** Déterminer U_{C_m} , ω_0 et φ .
- 4- Ecrire l'expression en fonction du temps de l'intensité i du courant circulant dans le circuit.

EXERCICE 2:

Partie I

On considère le circuit électrique de la **figure 1** comportant un condensateur de capacité C, une bobine d'inductance L et de résistance négligeable, un interrupteur K et un conducteur ohmique de résistance variable. On fixe R à la valeur $R_0 = 100 \ \Omega$, Le commutateur est sur la position 1, le condensateur est chargé par le générateur de fem E. A t = 0 on bascule l'interrupteur sur la position 2. Un oscilloscope à mémoire permet d'enregistrer la tension $u_C(t) = u_{AB}(t)$ aux bornes du condensateur on obtient la courbe de la **figure 2** ci-contre :

- 1-
- a- De quel régime d'oscillations s'agit-il?
- **b-** Expliquer pourquoi ces oscillations sont dites libres amorties ?
- c- Déterminer à partir du graphe la valeur de la f.é.m E du générateur.
- 2-
- a- Etablir l'équation différentielle vérifiée par uc, montrer qu'elle s'écrit sous la forme de
 - $Uc + A\frac{d uc}{dt} + B\frac{d^2uc}{dt^2} = 0$ et déterminer les expressions de A et de B en fonctions des caractéristiques du circuit.
- **b-** Sachant que $A = 10^{-3}$ et $B = 10^{-5}$. Déterminer L et C.
- 3- Montrer que l'énergie de l'oscillateur n'est pas conservée.
- 4- En exploitant la courbe précédente, déterminer à l'instant de date t1.
- a- La valeur algébrique i de l'intensité du courant qui circule dans le circuit.
- **b-** La charge de chaque armature. Indiquer, à la date t_1 , sur un schéma le sens réel du courant dans le circuit, le sens positif choisi.
- c- Déterminer la tension **u**_B, aux bornes de la bobine.
- **d-** Calculer la valeur **E**_C de l'énergie électrostatique emmagasinée dans le condensateur et La valeur de l'énergie magnétique **Em**, emmagasinée dans la bobine à la même date **t**₁.
- e- Déduire la valeur de l'énergie W dissipée par effet joule dans le résistor R entre les instants to=0s et t1.

5- Les graphes 1, 2 et 3 correspondent à trois valeurs différentes de la résistance R notées respectivement R₁, R₂ et R₃.

- a- Comparer ces résistances.
- b- Nommer le régime dans chaque cas.
- **c-** L'un des graphes correspond au passage le plus rapide de la tension u_C de sa valeur maximale à sa valeur nulle sans effectuer d'oscillations. Lequel? donner le nom du régime correspondant.

Partie II:

On supprime le résistor, on remplace le condensateur par un deuxième de capacité C'et on le charge avec un autre générateur de fem E' puis on bascule le commutateur à la position K_2 à l'origine des dates t=0.

1- Etablir l'équation différentielle régissant les variations de la charge q du condensateur.

2-

a-Déterminer l'expression de ω_0 pour que \mathbf{q} (t) = Qm.sin ($\omega_0 \mathbf{t} + \boldsymbol{\varphi}$) soit une solution de l'équation différentielle.

b- Déterminer la valeur de la phase initiale φ .

- 3- Donner l'expression de la période propre T_0 des oscillations en fonction de L et C'.
- **4-** Montrer que l'énergie électromagnétique se conserve et qu'elle est proportionnelle au carrée de l'amplitude **Qm de q(t).**
- **5-** La variation de l'énergie magnétique **Em,** emmagasinée dans la bobine est donnée par la courbe de la figure ci- contre.
- **a-** Etablir l'expression de **Em** en fonction de q^2 .
- **b-** A partir de la **figure 3** déterminer :
- **b**₁- La valeur de l'énergie totale. Justifier.

b₂- La valeur de la capacité C' du condensateur et celle de la f.e.m E'.

EXERCICE 3:

On réalise le montage de la figure ci-contre formé par un générateur de f.é.m. E= 6V, un commutateur, un

condensateur initialement déchargé de capacité C; une bobine purement inductive d'inductance L=40mH et un résistor de résistance $R=20\Omega$. On réalise deux expériences avec ce montage :

Expérience A:

Le commutateur est sur la position 1, le condensateur est chargé par le générateur. A t=0 on bascule l'interrupteur sur la position 2. Un oscilloscope à mémoire permet d'enregistrer la tension $u_{\mathcal{C}}(t)$ aux bornes du résistor on obtient la courbe de la **figure 3** ci-dessous :

- 1- De quel régime d'oscillations s'agit-il?
- 2- Expliquer pourquoi ces oscillations sont dites libres amorties ?
- 3- Déterminer à partir du graphe la valeur de la pseudopériode T.
- 4- En admettant que la pseudopériode T est égale à la période propre de l'oscillateur, montrer que $C = 1\mu F$.
- 5- Etablir l'équation différentielle relative à $\boldsymbol{u}_{\boldsymbol{C}}$.
- **6-** Montrer que l'énergie de l'oscillateur diminue au cours du temps.
- 7- Calculer la diminution de l'énergie après

fermeture de l'interrupteur sur la position 2.

Expérience B:

On élimine le résistor, on charge le condensateur puis on place le commutateur sur la position 2. Un dispositif approprié permet de tracer les courbes donnant $u_{\mathcal{C}} = f(t)$ (voir figure 4).

- Etablir l'équation différentielle vérifiée par $\mathbf{u}_{\mathbf{c}}(\mathbf{t})$.
- La solution de l'équation différentielle est de la forme $\mathbf{u}_{c}(t)=\mathbf{U}_{cm}\sin(\omega_{0}t+\varphi_{uc})$.
- Déterminer l'expression de uc(t) en précisant les valeurs de Ucm, voet que.
- Déduire les expressions de q (t) et de i (t). b-

3-

- a- Donner l'expression de l'énergie électromagnétique E_{e,m} dans le circuit à un instant t en fonction de L,i, q et C.
- **b-** Montrer que cette énergie est constante.
- 4- La courbe de la figure 5 donne les variations de l'énergie Électrostatique $\mathbf{E}_{\mathbf{e}}$ en fonction de $\mathbf{u}_{\mathbf{c}}^2$.
- a- Justifier théoriquement l'allure de cette courbe.
- **b-** En exploitant la courbe $E_e = f(u_c^2)$ retrouver les valeurs de C,LetE.

 $u_c^2(V^2)$

36

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000