Error and Sensitivty Analysis for Systems of Linear Equations Matrix Computations — CPSC 5006 E

Julien Dompierre

Department of Mathematics and Computer Science Laurentian University

Sudbury, October 6, 2010

Outline

- Read sections 2.7, 3.3, 3.4, 3.5.
- Conditioning of linear systems.
- Estimating accuracy.
- Error analysis.

Perturbation Analysis (p. 80)

Consider a linear system Ax = b. The question addressed by perturbation analysis is to determine the variation of the solution x when the data, namely A and b, undergoes small variations. A problem is **ill-conditioned** if small variations in the data lead to very large variation in the solution.

Let E, be an $n \times n$ matrix and e be an n-vector.

"Perturb" A into $A(\varepsilon) = A + \varepsilon E$ and b into $b + \varepsilon e$.

Note: $A + \varepsilon E$ is non singular for ε small enough. (Why?)

The solution $x(\varepsilon)$ of the perturbed system is such that

$$(A + \varepsilon E)x(\varepsilon) = b + \varepsilon e.$$

Perturbation Analysis (continued) (p. 81)

Let
$$\delta(\varepsilon) = x(\varepsilon) - x$$
. Then,
 $(A + \varepsilon E)\delta(\varepsilon) = (b + \varepsilon e) - (A + \varepsilon E)x = \varepsilon (e - Ex)$
 $\delta(\varepsilon) = \varepsilon (A + \varepsilon E)^{-1}(e - Ex)$.

 $x(\varepsilon)$ is differentiable at $\varepsilon=0$ and its derivative is

$$x'(0) = \lim_{\varepsilon \to 0} \frac{\delta(\varepsilon)}{\varepsilon} = A^{-1} (e - Ex).$$

A small variation $[\varepsilon E, \varepsilon e]$ will cause the solution to vary by roughly $\varepsilon x'(0) = \varepsilon A^{-1}(e - Ex)$.

The relative variation is such that

$$\frac{\|x(\varepsilon)-x\|}{\|x\|}\leq \varepsilon \|A^{-1}\|\left(\frac{\|e\|}{\|x\|}+\|E\|\right)+O(\varepsilon^2).$$

Since $||b|| \le ||A|| ||x||$, we get

$$\frac{\|x(\varepsilon)-x\|}{\|x\|} \leq \varepsilon \|A\| \|A^{-1}\| \left(\frac{\|e\|}{\|b\|} + \frac{\|E\|}{\|A\|}\right) + O(\varepsilon^2).$$

Condition Number (p. 81)

The quantity $\kappa(A) = \|A\| \|A^{-1}\|$ is called the **condition number** of the linear system with respect to the norm $\|\cdot\|$, with the convention that $\kappa(A) = \infty$ for singular A. When using the standard norms $\|\cdot\|_p$, $p = 1, \ldots, \infty$, we label $\kappa(A)$ with the same label as the associated norm. Thus,

$$\kappa_p(A) = ||A||_p ||A^{-1}||_p.$$

III-Conditioned Matrices (p. 82)

The previous inequality can be written as

$$\frac{\|x(\varepsilon)-x\|}{\|x\|} \leq \kappa(A)(\rho_A+\rho_b)+O(\varepsilon^2)$$

where

$$\rho_{A} = \varepsilon \frac{\|E\|}{\|A\|} \qquad \rho_{b} = \varepsilon \frac{\|e\|}{\|b\|}$$

represent the relative error in A and b respectively. Thus the relative error in x can be $\kappa(A)$ times the relative error in A and b.

If $\kappa(A)$ is large, then A is said to be an **ill-conditioned** matrix. Matrix with small condition numbers are said to be **well-conditioned**.

 $\kappa(A) \ge 1$ for all (submultiplicative and unitary) matrix norm.

Condition Number (p. 81)

The condition number $\kappa(\cdot)$ depends on the underlying norm and subscript used. In particular, with the 2-norm, we have

$$\kappa_2(A) = ||A||_2 ||A^{-1}||_2 = \frac{\sigma_1(A)}{\sigma_n(A)}$$

which is the ratio of largest to smallest singular values of A. This is also a measure of the elongation of the hyperellipsoid given by the set $\{Ax \text{ such that } \|x\|_2 = 1\}$.

 $\kappa_2(A)$ is defined when A is not square.

 $\kappa_2(Q) = 1$ if Q is an orthogonal matrix.

Equivalence of Condition Numbers (p. 82)

Any two condition numbers $\kappa_{\alpha}(\cdot)$ and $\kappa_{\beta}(\cdot)$ on $\mathbb{R}^{n\times n}$ are equivalent in that constants c_1 and c_2 can be found for which

$$c_1\kappa_{\alpha}(A) \leq \kappa_{\beta}(A) \leq c_2\kappa_{\alpha}(A)$$

for all A in $\mathbb{R}^{n \times n}$. For example, we have

$$\frac{1}{n}\kappa_2(A) \le \kappa_1(A) \le n\kappa_2(A),$$
$$\frac{1}{n}\kappa_{\infty}(A) \le \kappa_2(A) \le n\kappa_{\infty}(A),$$
$$\frac{1}{n^2}\kappa_1(A) \le \kappa_{\infty}(A) \le n^2\kappa_1(A).$$

If a matrix is ill-conditioned in the α -norm, it is ill-conditioned in the β -norm modulo the constants c_1 and c_2 above.

Equivalence of Matrix Norms (p. 56)

These equivalences of condition numbers (previous slide) are a consequence of the equivalence of matrix norm.

The Frobenius and p-norms (especially $p=1,2,\infty$) satisfy certain inequalities that are frequently used in analysis of matrix computations. For $A \in \mathbb{R}^{m \times n}$ we have

$$||A||_{2} \le ||A||_{F} \le \sqrt{n} \, ||A||_{2}$$

$$\max_{i,j} |a_{ij}| \le ||A||_{2} \le \sqrt{mn} \, \max_{i,j} |a_{ij}|$$

$$\frac{1}{\sqrt{n}} ||A||_{\infty} \le ||A||_{2} \le \sqrt{m} \, ||A||_{\infty}$$

$$\frac{1}{\sqrt{m}} ||A||_{1} \le ||A||_{2} \le \sqrt{n} \, ||A||_{1}$$

Determinants and Nearness of Singularity (p. 82)

It is natural to consider how well determinant size measure ill-conditioning. If $\det(A)=0$ is equivalent to singularity, then $\det(A)\approx 0$ equivalent to near singularity? No, determinant is **not** a good indication of sensitivity. Consider

$$B_n = \begin{bmatrix} 1 & -1 & -1 & \cdots & -1 \\ 0 & 1 & -1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & & 1 & -1 \\ 0 & 0 & & \cdots & 1 \end{bmatrix}$$

The matrix B_n has determinant 1, but $\kappa_{\infty}(B_n) = n 2^{n-1}$.

Determinants and Nearness of Singularity

On the other hand, a very well conditioned matrix can have very small determinant. For example

$$D_n = \operatorname{diag}(0.1, 0.1, \dots, 0.1) = \left[egin{array}{cccc} 0.1 & 0 & \cdots & 0 \ 0 & 0.1 & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & 0.1 \end{array}
ight] \in \mathbb{R}^{n \times n}.$$

The condition number $\kappa_p(D_n) = 1$ although $\det(N_n) = 10^{-n}$.

Eigenvalues and Condition Number

Small eigenvalues **do not** always give a good indication of poor conditioning. Consider matrices of the form

$$A_n = I + \alpha e_1 e_n^T$$

for large α . The inverse of A_n is

$$A_n^{-1} = I - \alpha e_1 e_n^T$$

and for the $\infty\text{-norm}$ (maximum absolute value row sum) we have

$$||A_n||_{\infty} = ||A_n^{-1}||_{\infty} = 1 + |\alpha|$$

so that

$$\kappa_{\infty}(A_n)=(1+|\alpha|)^2.$$

For a large α , this can give a very large condition number, whereas all the eigenvalues of A_n are equal to unity.

Lemma 2.3.3 (p. 58)

If $F \in \mathbb{R}^{n \times n}$ and $\|F\|_p < 1$, then I - F is non singular and

$$(I - F)^{-1} = \sum_{k=0}^{\infty} F^k$$

with

$$\|(I-F)^{-1}\|_p \leq \frac{1}{1-\|F\|_p}.$$

Rigorous Norm-Based Error Bounds (p. 83)

First need to show that A + E is non singular if A is non singular and E is small:

LEMMA (p. 58): If A is non singular and $\|A^{-1}\| \|E\| < 1$ then A + E is non-singular and

$$\|(A+E)^{-1}\| \le \frac{\|A^{-1}\|}{1-\|A^{-1}\| \|E\|}$$

Theorem (1)

Assume that (A+E)y=b+e and Ax=b and that $\|A^{-1}\|\|E\|<1$. Then A+E is non singular and

$$\frac{\|x - y\|}{\|x\|} \le \frac{\|A^{-1}\| \|A\|}{1 - \|A^{-1}\| \|E\|} \left(\frac{\|E\|}{\|A\|} + \frac{\|e\|}{\|b\|} \right)$$

Proof

Proof: From
$$(A + E)y = b + e$$
 and $Ax = b$ we get $A(y - x) = e - Ey = e - Ex - E(y - x)$. Hence:

$$y - x = A^{-1}[(e - Ex) - (E(y - x))] \rightarrow$$

$$||y - x|| \leq ||A^{-1}|| ||(e - Ex) - (E(y - x))||$$

$$\leq ||A^{-1}|| [||e - Ex|| + ||E||||y - x||]$$

So
$$||y - x||(1 - ||A^{-1}||||E||) \le ||A^{-1}||[||e|| + ||E||||x||]$$
....

Note: stated in a slightly weaker form in text. Assume that $\|E\|/\|A\| \le \delta$ and $\|e\|/\|b\| \le \delta$ and $\delta \kappa(A) < 1$ then

$$\frac{\|x - y\|}{\|x\|} \le \frac{2\delta\kappa(A)}{1 - \delta\kappa(A)}$$

Another Common Form

Theorem (2)

Let $(A + \Delta A)y = b + \Delta b$ and Ax = b where $\|\Delta A\| \le \varepsilon \|E\|$, $\|\Delta b\| \le \varepsilon \|e\|$, and assume that $\varepsilon \|A^{-1}\| \|E\| < 1$. Then

$$\frac{\|x - y\|}{\|x\|} \le \frac{\varepsilon \|A^{-1}\| \|A\|}{1 - \varepsilon \|A^{-1}\| \|E\|} \left(\frac{\|e\|}{\|b\|} + \frac{\|E\|}{\|A\|} \right)$$

Norm-wise Backward Error (p. 84)

Question: How much do we need to perturb data for an approximate solution y to be the exact solution of the perturbed system?

Norm-wise backward error for y is defined as smallest ε for which

$$(A + \Delta A)y = b + \Delta b; \quad ||\Delta A|| \le \varepsilon ||E||; \quad ||\Delta b|| \le \varepsilon ||e||$$

Denoted by $\eta_{E,e}(y)$.

y is given (some computed solution). E and e are to be selected (most likely 'directions of perturbation for A and b').

Typical choice: E = A, e = b (Explain why this is not unreasonable)

Norm-wise Backward Error

Let r = b - Ax. Then we have:

Theorem (3)

$$\eta_{E,e}(y) = \frac{\|r\|}{\|E\|\|y\| + \|e\|}$$

Norm-wise backward error is for case E = A, e = b:

$$\eta_{A,b}(y) = \frac{\|r\|}{\|A\| \|y\| + \|b\|}$$

(Show how this can be used in practice as a means to stop some iterative method which computes a sequence of approximate solutions to Ax = b.)

(Consider the 6×6 Vandermonde system Ax = b where $a_{ij} = j^{2(i-1)}$, $b = A * [1,1,\cdots,1]^T$. We perturb A by E, with $|E| \leq 10^{-10} |A|$ and b similarly and solve the system. Evaluate the backward error for this case. Evaluate the forward bound provided by Theorem 2. Comment on the results.)

Component-wise Backward Error

A few more definitions on norms...

A norm is absolute ||x|| = ||x|| for all x. (satisfied by all p-norms).

A norm is monotone if $|x| \le |y| \to ||x|| \le ||y||$.

It can be shown that these two properties are equivalent. ... and some notation:

$$\omega_{E,e}(y) = \min\{\varepsilon \mid (A + \Delta A)y = b + \Delta b, \\ |\Delta A| \leq \varepsilon E, \quad |\Delta b| \leq \varepsilon e\}$$

(where $E \ge 0, e \ge 0$) is the component-wise backward error.

Absolute Norm

Show: a function which satisfies the first two requirements of vector norms: (1) $\phi(x) \geq 0$ ($\phi(x) = 0$ iff x = 0) and (2) $\phi(\lambda x) = |\lambda|\phi(x)$) satisfies the triangle inequality iff its unit ball is convex.

(Continued) Use the above to construct a norm in \mathbb{R}^2 that is **not** absolute.

Define absolute **matrix** norms in the same way. Which of the usual norms $\|A\|_1, \|A\|_{\infty}, \|A_2\|$, and $\|A\|_F$ are absolute?

Recall that for any matrix fl(A) = A + E with $|E| \le \mathbf{u}|A|$. For an absolute matrix norm

$$\frac{\|E\|}{\|A\|} \le \mathbf{u}$$

What does this imply?

Theorem of Oettli-Prager (p. 85)

Theorem (4 Oettli-Prager)

Let r = b - Ay (residual). Then

$$\omega_{E,e}(y) = \max_{i} \frac{|r_i|}{(E|y|+e)_i}.$$
 $0/0 \to 0$
nonzero/ $0 \to \infty$

zero denominator case:

$$0/0 \rightarrow 0$$
nonzero/ $0 \rightarrow \infty$

Analogue of theorem 2:

Theorem (5)

Let Ax = b and $(A + \Delta A)y = b + \Delta b$ where $|\Delta A| \le \varepsilon E$ and $|\Delta b| < \varepsilon e$. Assume that $\varepsilon ||A^{-1}|E|| < 1$, where $||\cdot||$ is an absolute norm. Then.

$$\frac{\|x - y\|}{\|x\|} \le \frac{\varepsilon}{1 - \varepsilon \||A^{-1}|E\|} \frac{\||A^{-1}|(E|x| + e)\|}{\|x\|}$$

In addition, equality achieved to order arepsilon for infinity norm.

Implication

$$\limsup_{\varepsilon \to 0} \left\{ \frac{\|\Delta x\|_{\infty}}{\varepsilon \|x\|_{\infty}} : (A + \Delta A)(x + \Delta x) = b + \Delta b \right\}$$

is equal to

$$cond_{E,e}(A,x) \equiv \frac{\||A^{-1}|(E|x|+e)\|_{\infty}}{\|x\|_{\infty}}$$

Condition number depends on x (i.e. on right-hand side b) Special case E=|A|, e=0 yields

cond(A, x)
$$\equiv \frac{\| |A^{-1}| |A| |x| \|_{\infty}}{\|x\|_{\infty}}$$

Component-wise condition number :

$$\operatorname{cond}(A) \equiv \| |A^{-1}| |A| \|_{\infty}$$

(Redo example seen after Theorem 3, $(6 \times 6 \text{ Vandermonde system})$ using component-wise analysis.)

Example of III-Conditioning: The Hilbert Matrix

Notorious example of ill conditioning.

$$H_{n} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1} \end{bmatrix} \quad \text{i.e.,} \quad h_{ij} = \frac{1}{i+j-1}$$

i.e.,
$$h_{ij} = \frac{1}{i+j-1}$$

For
$$n = 5$$
, $\kappa_2(H_n) = 4.766.. \times 10^5$.

Let
$$b_n = H_n \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$$
.

Solution of
$$H_n x = b$$
 is $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$.

Let n = 5 and perturb $h_{5.1} = 0.2$ into 0.20001.

New solution:
$$\begin{bmatrix} 0.9937 & 1.1252 & 0.4365 & 1.876 & 0.5618 \end{bmatrix}^T$$

Estimating Condition Numbers (p. 81)

$\mathsf{Theorem}$

Let A, B be two $n \times n$ matrices with A non singular and B singular. Then

$$\frac{1}{\kappa(A)} \leq \frac{\|A - B\|}{\|A\|}$$

Proof.

B singular \rightarrow : $\exists x \neq 0$ such that Bx = 0.

$$||x|| = ||A^{-1}Ax|| \le ||A^{-1}|| ||Ax|| = ||A^{-1}|| ||(A - B)x||$$

 $\le ||A^{-1}|| ||A - B|| ||x||$

Divide both sides by $||x|| \kappa(A) = ||x|| ||A|| ||A^{-1}||$

Example: Let
$$A=\begin{bmatrix}1&1\\1&0.99\end{bmatrix}$$
 and $B=\begin{bmatrix}1&1\\1&1\end{bmatrix}$. Then
$$\frac{1}{\kappa_1(A)}\leq\frac{0.01}{2}\Rightarrow\kappa_1(A)\geq 200.$$

Distance to Singular Matrices (p. 81)

In fact it is true that

$$\frac{1}{\kappa_p(A)} = \min_{B \text{ s.t. } \det(B)=0} \frac{\|A - B\|_p}{\|A\|_p}$$

This result may be found in Kahan (1966) and shows that $\kappa_p(A)$ measures the relative *p*-norm distance from A to the set of singular matrices.

Estimating Errors From Residual Norms

Let \tilde{x} an approximate solution to system Ax = b (e.g., computed from an iterative process). We can compute the residual norm:

$$||r|| = ||b - A\tilde{x}||$$

Question: How to estimate the error $||x - \tilde{x}||$ from ||r||?

One option is to use the inequality

$$\frac{\|x-\tilde{x}\|}{\|x\|} \le \kappa(A) \frac{\|r\|}{\|b\|}.$$

We must have an estimate of $\kappa(A)$.

Proof of Inequality

First, note that $A(x - \tilde{x}) = b - A\tilde{x} = r$. So:

$$||x - \tilde{x}|| = ||A^{-1}r|| \le ||A^{-1}|| \ ||r||$$

Also note that from the relation b = Ax, we get

$$||b|| = ||Ax|| \le ||A|| \ ||x|| \to ||x|| \ge \frac{||b||}{||A||}$$

Therefore,

$$\frac{\|x - \tilde{x}\|}{\|x\|} \le \frac{\|A^{-1}\| \|r\|}{\|b\|/\|A\|} = \kappa(A) \frac{\|r\|}{\|b\|}$$

(Show that

$$\frac{\|x-\tilde{x}\|}{\|x\|} \ge \frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|}.$$

)

Theorem 6 (p. 81)

Theorem (6)

Let A be a non singular matrix and $\tilde{\mathbf{x}}$ an approximate solution to $A\mathbf{x} = \mathbf{b}$. Then for any norm $\|\cdot\|$,

$$||x - \tilde{x}|| \le ||A^{-1}|| \ ||r||$$

In addition, we have the relation

$$\frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|} \leq \frac{\|x - \tilde{x}\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}$$

in which $\kappa(A)$ is the condition number of A associated with the norm $\|\cdot\|$.

It can be shown that

$$\frac{1}{\kappa(A)} = \min_{B} \left\{ \frac{\|A - B\|}{\|A\|} \quad \text{such that } \det(B) = 0 \right\}$$

28

Iterative Refinement

Define residual vector:

$$r = b - A\tilde{x}$$

We have seen that: $x - \tilde{x} = A^{-1}r$, i.e., we have

$$x = \tilde{x} + A^{-1}r$$

Idea: Compute r accurately (double precision) then solve

$$A\delta = r$$

... and correct \tilde{x} by

$$\tilde{x} := \tilde{x} + \delta$$

... repeat if needed.

Algorithm: Iterative Refinement

```
while true
\operatorname{Compute}\ r = b - A\tilde{x}
\operatorname{Solve}\ A\delta = r
\operatorname{Compute}\ \tilde{x} := \tilde{x} + \delta
\operatorname{if}\ \|\delta\| \geq \varepsilon \|\tilde{x}\| \ \operatorname{then}\ \operatorname{break}
\operatorname{end}
```

Why does this work? Model: each solution gets m digits at most because of the conditioning: For example 3 digits. At the first iteration, the error is roughly $\approx 0.001 \times \|b\|$.

Second iteration: error in δ is roughly $0.001 \times \|r\|$, but now $\|r\|$ is much smaller than $\|b\|$. etc ...

Iterative Refinement — Analysis

Assume residual is computed exactly. Backward error analysis:

$$(A + F_k)\delta_k = r_k \quad \to \quad x_{k+1} = x_k + (A + F_k)^{-1}r_k$$

So: $r_{k+1} = b - Ax_{k+1} = \dots = F_k(A + F_k)^{-1}r_k \to$
$$\|r_{k+1}\| \le \|F_k\| \|(A + F_k)^{-1}\| \|r_k\|$$

A previous result showed that if $||F_k|| ||A^{-1}|| < 1$ then

$$||F_k|| ||(A + F_k)^{-1}|| \le \frac{||F_k|| ||A^{-1}||}{1 - ||F_k|| ||A^{-1}||}$$

So: process will converge if (suff. condition)

$$||F_k|||A^{-1}|| \le \gamma < \frac{1}{2}$$

Iterative Refinement

Important: Iterative refinement won't work when the residual r consists only of noise. When b-Ax is already very small $(\approx \varepsilon)$ it is likely to be just noise, so not much can be done because

$$\delta = A^{-1}$$
noise

Heuristic: If $\varepsilon=10^{-d}$, and $\kappa_{\infty}(A)\approx 10^q$ then each iterative refinement step will gain about d-q digits.

Iterative Refinement. A Scilab Experiment

```
n = 6
A = Hilbert(6)
b = A * ones(n,1)
inv(A)*b
B = A
B(6,1) = B(6,1) + 0.000001
x = inv(B) * b
x_{exact} = ones(n,1)
error = norm(x_exact - x, 2)
residue = b - A*x
correction = inv(B)*residue
x = x + correction
error = norm(x_exact - x, 2)
residue = b - A*x
correction = inv(B)*residue
x = x + correction
error = norm( x_exact - x, 2)
```

Repeat a couple of times...

Observation: We gain about 3 digits per iteration.