Module: Programmation Fonctionnelle

Enseignants de module

Série TD n°1 Les fonctions primitives récursives

Dans cette série d'exercices, nous utilisons la notation λ pour exprimer les fonctions.

Exercice 1

Montrer que les fonctions suivantes sont PR:

 $1/Z_1 = \lambda n.0$ est PR // Z_1 désigne la fonction nulle d'arité 1

2/ plus = $\lambda xy. x + y$ //"+" désigne l'opération de l'addition arithmétique

 $3/mult = \lambda xy. x * y$ //" * " désigne l'opération de la multiplication arithmétique

Exercice 2

Montrer que les fonctions suivantes sont PR

$$1/Sg = \lambda x.$$
 $\begin{cases} 0 & si \ x = 0 \\ 1 & sinon \ (x \ge 1) \end{cases}$ "sg" désigne le signe positif ou nul d'un nombre entier

$$2/ pred = \lambda x. \begin{cases} x-1 & si \ x > 0 \\ 0 & si \ x = 0 \end{cases}$$

//" — " désigne l'opération de la soustraction arithmétique

Exercice 3

1/ Montrer par récurrence que pour toute constante $k\ge 0$, la fonction constante d'arité 0, $C_k=\lambda$. k est PR

2/ Montrer que la fonction constante F_c d'arité 1 F_c=λn. c est PR

Exercice 4

Sachant que les constantes Ck sont PR, montrer que les fonctions suivantes sont PR

1/ $fact = \lambda x. x!$ //" x! " désigne le factoriel de x

2/ puis = λxy . x^y //" x^y " désigne l'opération "x puissance y"

 $3/\overline{Sg} = \lambda x.\begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{sinon} \end{cases}$ " \overline{sg} " désigne le complément du signe positif ou nul d'un entier

Exercice 5

Soit $D: N^2 \to N$ une fonction PR.

1/ Montrer que la fonction F suivante est PR

 $F: N^2 \rightarrow N$

$$(x,y) \rightarrow F(x,y) = \sum_{k=0}^{y} D(x,k)$$

2/ En déduire que la fonction $f(x)=0+x+2x+3x+...+x^2$ est PR