Package 'sams'

October 14, 2022

October 14, 2022
Type Package
Title Merge-Split Samplers for Conjugate Bayesian Nonparametric Models
Version 0.4.3
Description Markov chain Monte Carlo samplers for posterior simulations of conjugate Bayesian non parametric mixture models. Functionality is provided for Gibbs sampling as in Algorithm 3 of Neal (2000) <doi:10.1080 10618600.2000.10474879="">, restricted Gibbs mergesplit sampling as described in Jain & Neal (2004) <doi:10.1198 1061860043001="">, and sequentially-allocated mergesplit sampling <doi:10.1080 00949655.2021.1998502="">, as well as summary and utility functions.</doi:10.1080></doi:10.1198></doi:10.1080>
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Depends R (>= $3.5.0$)
Imports graphics, stats
NeedsCompilation no
Author Spencer Newcomb [aut], David B. Dahl [ctb, cre] (https://orcid.org/0000-0002-8173-1547)
Maintainer David B. Dahl <dahl@stat.byu.edu></dahl@stat.byu.edu>
Repository CRAN
Date/Publication 2022-04-19 19:20:02 UTC
R topics documented:
asCanonical

2 asCanonical

psmMergeSplit_base	
psmMergeSplit	
psm	
poch	
partitionEntropy	
p6_mvn	
p6_big_bern	
p6_bern	
p18_mvn	
p18_bern	
nealAlgorithm3	
nClusters	
joinExistingCluster	
isCanonical	
getThetas	
dCRP	
clusterWithItem	

Description

Coerce a Vector of Cluster Labels to Canonical Form

Usage

asCanonical(partition)

Arguments

partition A numeric vector representing a set partition of the integers 1, ..., n using cluster labels

Value

A numeric vector representing partition, but now in canonical form.

asClusterLabels 3

asClusterLabels	Coerce a Set Partition in List Structure to Numeric Vectors of Cluster
	Label

Description

Coerce a Set Partition in List Structure to Numeric Vectors of Cluster Label

Usage

```
asClusterLabels(partition)
```

Arguments

partition A list representing a set partition of the integers 1, ..., n

Value

A numeric vector representing the set partition using cluster labels.

asSetPartition	Coerce a Set Partition as Numeric Vectors of Cluster Labels to a List
	Structure

Description

Coerce a Set Partition as Numeric Vectors of Cluster Labels to a List Structure

Usage

```
asSetPartition(partition)
```

Arguments

partition A numeric vector representing a partition of the integers 1, ..., n using cluster labels

Value

The set partition in a list structure.

4 clusterProportions

clusterProportions

Compute the Proportion of Items in Each Cluster for All Partitions

Description

Compute the Proportion of Items in Each Cluster for All Partitions

Usage

```
clusterProportions(partitions)
```

Arguments

partitions

A matrix, with each row representing a set partition of the integers 1, ..., n as cluster labels

Value

A matrix whose columns represent the cumulative proportion of the data that correspond to that cluster.

```
# Neal (2000) model and data
nealData <- c(-1.48, -1.40, -1.16, -1.08, -1.02, 0.14, 0.51, 0.53, 0.78)
mkLogPosteriorPredictiveDensity <- function(data = nealData,</pre>
                                              sigma2 = 0.1^2,
                                              mu0 = 0,
                                              sigma02 = 1) {
 function(i, subset) {
    posteriorVariance <- 1 / ( 1/sigma02 + length(subset)/sigma2 )</pre>
   posteriorMean <- posteriorVariance * ( mu0/sigma02 + sum(data[subset])/sigma2 )</pre>
   posteriorPredictiveSD <- sqrt(posteriorVariance + sigma2)</pre>
    dnorm(data[i], posteriorMean, posteriorPredictiveSD, log=TRUE)
 }
}
logPostPredict <- mkLogPosteriorPredictiveDensity()</pre>
nSamples <- 500L
partitions <- matrix(0, nrow=nSamples, ncol=length(nealData))</pre>
for ( i in 2:nSamples ) {
 partitions[i,] <- nealAlgorithm3(partitions[i-1,], logPostPredict, mass = 1.0, nUpdates = 2)</pre>
clusterProportions(partitions)
```

clusterTrace 5

clusterTrace

Plot Traces of Cluster Sizes

Description

Plot Traces of Cluster Sizes

Usage

```
clusterTrace(
  partitions,
  plot.cols = rep("black", ncol(partitions)),
  plot.title = ""
)
```

Arguments

partitions A matrix, with each row a numeric vector cluster labels

plot.cols A character vector of valid color names, whose length represents the maximum number of stacked traces to be plotted

plot.title A character string to be used as the main title on the trace plot

```
# Neal (2000) model and data
nealData <- c(-1.48, -1.40, -1.16, -1.08, -1.02, 0.14, 0.51, 0.53, 0.78)
mkLogPosteriorPredictiveDensity <- function(data = nealData,</pre>
                                              sigma2 = 0.1^2,
                                              mu0 = 0,
                                              sigma02 = 1) {
 function(i, subset) {
    posteriorVariance <- 1 / ( 1/sigma02 + length(subset)/sigma2 )</pre>
   posteriorMean <- posteriorVariance * ( mu0/sigma02 + sum(data[subset])/sigma2 )</pre>
   posteriorPredictiveSD <- sqrt(posteriorVariance + sigma2)</pre>
    dnorm(data[i], posteriorMean, posteriorPredictiveSD, log=TRUE)
 }
}
logPostPredict <- mkLogPosteriorPredictiveDensity()</pre>
nSamples <- 500L
partitions <- matrix(0, nrow=nSamples, ncol=length(nealData))</pre>
for ( i in 2:nSamples ) {
 partitions[i,] <- nealAlgorithm3(partitions[i-1,], logPostPredict, mass = 1.0, nUpdates = 2)</pre>
}
clusterTrace(partitions, plot.title = "Neal (2000) Data")
```

6 createNewCluster

clusterWithItem

Identify Which Cluster Contains a Given Item

Description

Identify Which Cluster Contains a Given Item

Usage

```
clusterWithItem(i, partition)
```

Arguments

i Item index as an integer vector of length one

partition Set partition of the integers 1, ..., n represented as either a numeric vector of

cluster labels, or a list containing subsets of these integers

Value

A list consisting of

which An integer representing which cluster i belongs to

cluster The subset of indices that correspond to the same cluster as i

createNewCluster

Create a New Cluster with Given Item

Description

Create a New Cluster with Given Item

Usage

```
createNewCluster(i, partition)
```

Arguments

i Item index as an integer vector of length one

partition Set partition of the integers 1, ..., n represented as either a numeric vector of

cluster labels, or a list containing subsets of these integers

Value

Updated partition with a new cluster.

dCRP 7

dCRP	Compute Probability Mass of a Partition Under the Two Parameter
	Chinese Restaurant Process (CRP)

Description

Compute Probability Mass of a Partition Under the Two Parameter Chinese Restaurant Process (CRP)

Usage

```
dCRP(partition, mass = 1, discount = 0, log = FALSE)
```

Arguments

partition	A numeric vector of cluster labels, or a matrix whose rows are numeric vectors of cluster labels
mass	A numeric value indicating the mass parameter in the CRP, which must be greater than the -discount argument
discount	A numeric value on the interval [0,1), indicating the discount parameter of the two parameter CRP
log	A logical value indicating whether results should be returned on the log scale

Value

A numeric vector of probabilities, or log probabilities if log = TRUE.

8 isCanonical

Get theta Parameters from a Numeric Vector of Cluster Labels and Unique phi Values	getThetas	Get theta Parameters from a Numeric Vector of Cluster Labels and Unique phi Values
--	-----------	--

Description

Get theta Parameters from a Numeric Vector of Cluster Labels and Unique phi Values

Usage

```
getThetas(partition, phi)
```

Arguments

partition A numeric vector representing a partition of the integers 1, ..., n using cluster

labels

phi A list of unique model parameters whose length must equal the number of

unique cluster labels in partition

Value

A numeric vector of model parameters $theta_1, ..., theta_n$.

isCanonical Check if a Vector of Cluster Labels is in Canonical Form

Description

Check if a Vector of Cluster Labels is in Canonical Form

Usage

```
isCanonical(partition)
```

Arguments

partition A numeric vector representing a partition of the integers 1, ..., n using cluster

labels

Value

Logical, indicating whether partition is in canonical form.

joinExistingCluster 9

joinExistingCluster

Join Item to an Existing Cluster

Description

Join Item to an Existing Cluster

Usage

```
joinExistingCluster(i, join, partition)
```

Arguments

i Item index as an integer vector of length onejoin Label or index of cluster that i must join

partition Set partition of the integers 1, ..., n represented as either a numeric vector of

cluster labels, or a list containing subsets of these integers

Value

Updated partition.

nClusters

Count the Number of Clusters in a Set Partition

Description

Count the Number of Clusters in a Set Partition

Usage

```
nClusters(partition)
```

Arguments

partition

A numeric vector representing a partition of the integers 1, ..., n using cluster

labels

Value

The number of clusters in the given set partition as a numeric vector of length one.

```
p <- c(0,1,1,2,3,2,4,4,2)
nClusters(p)</pre>
```

10 nealAlgorithm3

nealAlgorithm3

Conjugate Gibbs Sampler for a Partition

Description

Algorithm 3 from Neal (2000) to update the state of a partition based on the "Chinese Restaurant Process" (CRP) prior and a user-supplied log posterior predictive density function, with additional functionality for the two parameter CRP prior.

Usage

```
nealAlgorithm3(
  partition,
  logPosteriorPredictiveDensity = function(i, subset) 0,
  mass = 1,
  discount = 0,
  nUpdates = 1L
)
```

Arguments

partition A numeric vector of cluster labels representing the current partition.

logPosteriorPredictiveDensity

A function taking an index i (as a numeric vector of length one) and a subset of integers subset, and returning the natural logarithm of $p(y_i|y_subset)$, i.e., that item's contribution to the log integrated likelihood given a subset of the other items. The default value "turns off" the likelihood, resulting in prior simulation

(rather than posterior simulation).

mass A specification of the mass (concentration) parameter in the CRP prior. Must be

greater than the -discount argument.

discount A numeric value on the interval [0,1) corresponding to the discount parameter

in the two parameter CRP prior. Set to zero for the usual, one parameter CRP

prior.

effect of thinning the Markov chain.

Value

A numeric vector giving the updated partition encoded using cluster labels.

References

Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. *Journal of computational and graphical statistics*, 9(2), 249-265.

p18_bern 11

Examples

```
nealData <- c(-1.48, -1.40, -1.16, -1.08, -1.02, 0.14, 0.51, 0.53, 0.78)
mkLogPosteriorPredictiveDensity <- function(data = nealData,</pre>
                                               sigma2 = 0.1^2,
                                               mu0 = 0,
                                               sigma02 = 1) {
  function(i, subset) {
    posteriorVariance <- 1 / ( 1/sigma02 + length(subset)/sigma2 )</pre>
    posteriorMean <- posteriorVariance * ( mu0/sigma02 + sum(data[subset])/sigma2 )</pre>
    posteriorPredictiveSD <- sqrt(posteriorVariance + sigma2)</pre>
    dnorm(data[i], posteriorMean, posteriorPredictiveSD, log=TRUE)
  }
}
logPostPredict <- mkLogPosteriorPredictiveDensity()</pre>
nSamples <- 1000L
partitions <- matrix(0, nrow = nSamples, ncol = length(nealData))</pre>
for (i in 2:nSamples) {
 partitions[i,] <- nealAlgorithm3(partitions[i-1,], logPostPredict, mass = 1.0, nUpdates = 1)</pre>
}
# convergence and mixing diagnostics
nSubsets \leftarrow apply(partitions, 1, function(x) length(unique(x)))
mean(nSubsets)
sum(acf(nSubsets)$acf) - 1 # Autocorrelation time
entropy <- apply(partitions, 1, partitionEntropy)</pre>
plot.ts(entropy)
```

p18_bern

Multivariate Independent Bernoulli Data (p = 18)

Description

Multivariate categorical data, generated as five clusters of independent variables with different success probabilities.

```
p18_bern_1
p18_bern_2
p18_bern_3
```

12 p18_mvn

Format

```
An object of class data. frame with 100 rows and 18 columns.
```

An object of class data. frame with 100 rows and 18 columns.

An object of class data. frame with 100 rows and 18 columns.

p18_corr_mvn

Correlated Multivariate Normal Data (p = 18)

Description

Multivariate continuous data, generated as five clusters with an AR(1) correlation structure determining the common covariance matrix for each observation.

Usage

```
p18_corr_mvn_1
p18_corr_mvn_2
p18_corr_mvn_3
```

Format

An object of class matrix (inherits from array) with 100 rows and 18 columns.

An object of class matrix (inherits from array) with 100 rows and 18 columns.

An object of class matrix (inherits from array) with 100 rows and 18 columns.

p18_mvn

Independent Multivariate Normal Data (p = 18)

Description

Multivariate continuous data, generated as five clusters of independent variables with different means.

```
p18_mvn_1
p18_mvn_2
p18_mvn_3
```

p6_bern 13

Format

An object of class matrix (inherits from array) with 100 rows and 18 columns.

An object of class matrix (inherits from array) with 100 rows and 18 columns.

An object of class matrix (inherits from array) with 100 rows and 18 columns.

p6_bern

 $Multivariate\ Independent\ Bernoulli\ Data\ (p = 6)$

Description

Multivariate categorical data, generated as five clusters of independent variables with different success probabilities.

Usage

```
p6_bern_1
p6_bern_2
p6_bern_3
```

Format

An object of class data. frame with 100 rows and 6 columns.

An object of class data. frame with 100 rows and 6 columns.

An object of class data. frame with 100 rows and 6 columns.

p6_big_bern

Large Sample Multivariate Independent Bernoulli Data (p = 6)

Description

Multivariate categorical data, generated as five clusters of independent variables with different success probabilities.

```
p6_big_bern_1
p6_big_bern_2
p6_big_bern_3
```

14 partitionEntropy

Format

An object of class data. frame with 1000 rows and 6 columns.

An object of class data. frame with 1000 rows and 6 columns.

An object of class data. frame with 1000 rows and 6 columns.

p6_mvn

Independent Multivariate Normal Data (p = 6)

Description

Multivariate continuous data, generated as five clusters of independent variables with different means.

Usage

```
p6_mvn_1
```

p6_mvn_2

p6_mvn_3

Format

An object of class matrix (inherits from array) with 100 rows and 6 columns.

An object of class matrix (inherits from array) with 100 rows and 6 columns.

An object of class matrix (inherits from array) with 100 rows and 6 columns.

partitionEntropy

Calculate the Entropy of a Set Partition

Description

Calculate the Entropy of a Set Partition

Usage

```
partitionEntropy(partition)
```

Arguments

partition

A numeric vector representing a partition of the integers 1, ..., n using cluster labels

poch 15

Value

Calculated partition entropy as a numeric vector of length one

Examples

```
p <- c(0,0,0,1,1,2) \# n = 6, 3 unique clusters partitionEntropy(p)
```

poch

Compute the Pochhammer Symbol (Rising Factorials) With Increment

Description

Compute the Pochhammer Symbol (Rising Factorials) With Increment

Usage

```
poch(x, y = NULL, n = 1, log = FALSE)
```

Arguments

X	Non-negative numeric value
У	Non-negative real value representing increment parameter for Pochhammer function. If NULL, there is no increment (i.e. $y=1$).
n	Non-negative integer representing subscript in Pochhammer symbol
log	Logical value indicating whether to return results on log scale

Value

A numeric value indicating the result of Pochhammer function.

```
# effect of increment parameter
poch(5, y = NULL, n = 3, log = FALSE)
poch(5, y = 1, n = 3, log = FALSE)
poch(5, y = 1:4, n = 3, log = FALSE)

# increment being NULL is equivalent to ratio of gamma functions
a <- 7
b <- 3
out1 <- poch(a, y = NULL, n = b, log = FALSE)
out2 <- gamma(a + b) / gamma(a)</pre>
```

16 psm

psm

Compute the Posterior Pairwise Similarity for All Pairs of Items

Description

Compute the Posterior Pairwise Similarity for All Pairs of Items

Usage

```
psm(partitions)
```

Arguments

partitions

A matrix, with each row a numeric vector cluster labels

Value

A symmetric matrix of pairwise similarities based on the partitions given.

```
# Neal (2000) model and data
nealData <- c(-1.48, -1.40, -1.16, -1.08, -1.02, 0.14, 0.51, 0.53, 0.78)
mkLogPosteriorPredictiveDensity <- function(data = nealData,</pre>
                                               sigma2 = 0.1^2,
                                               mu0 = 0,
                                               sigma02 = 1) {
  function(i, subset) {
    posteriorVariance <- 1 / ( 1/sigma02 + length(subset)/sigma2 )</pre>
    posteriorMean <- posteriorVariance * ( mu0/sigma02 + sum(data[subset])/sigma2 )</pre>
    posteriorPredictiveSD <- sqrt(posteriorVariance + sigma2)</pre>
    dnorm(data[i], posteriorMean, posteriorPredictiveSD, log=TRUE)
}
logPostPredict <- mkLogPosteriorPredictiveDensity()</pre>
nSamples <- 500L
partitions <- matrix(0, nrow=nSamples, ncol=length(nealData))</pre>
for ( i in 2:nSamples ) {
 partitions[i,] <- nealAlgorithm3(partitions[i-1,], logPostPredict, mass = 1.0, nUpdates = 2)</pre>
}
psm(partitions)
```

psmMergeSplit 17

psmMergeSplit	Merge-Split Sampling for a Partition Based on Sequential Allocation
	Informed by Pairwise Similarities

Description

Merge-split proposals for conjugate "Chinese Restaurant Process" (CRP) mixture models using sequentially-allocated elements. Allocation is performed with weights derived from a previously-calculated pairwise similarity matrix, and optionally complemented with "restricted Gibbs" scans as discussed in Jain & Neal (2004).

Usage

```
psmMergeSplit(
  partition,
  psm,
  logPosteriorPredictiveDensity = function(i, subset) 0,
  t = 1,
  mass = 1,
  discount = 0,
  nUpdates = 1L,
  selectionWeights = NULL
)
```

Arguments

t

partition A numeric vector of cluster labels representing the current partition.

psm A matrix of previously-calculated pairwise similarity probabilities for each pair

of data indices.

logPosteriorPredictiveDensity

A function taking an index i (as a numeric vector of length one) and a subset of integers subset, and returning the natural logarithm of $p(y_i|y_subset)$, i.e., that item's contribution to the log integrated likelihood given a subset of the other items. The default value "turns off" the likelihood, resulting in prior simulation (rather than posterior simulation).

A non-negative integer indicating the number of restricted Gibbs scans to per-

form for each merge/split proposal.

mass A specification of the mass (concentration) parameter in the CRP prior. Must be

greater than the -discount argument.

discount A numeric value on the interval [0,1) corresponding to the discount parameter

in the two-parameter CRP prior.

nUpdates An integer giving the number of merge-split proposals before returning. This

has the effect of thinning the Markov chain.

selectionWeights

A matrix or data frame whose first two columns are the unique pairs of data indices, along with a column of weights representing how likely each pair is to be selected at the beginning of each merge-split update.

18 psmMergeSplit

Value

partition A numeric vector giving the updated partition encoded using cluster labels.

accept The acceptance rate of the Metropolis-Hastings proposals, i.e. the number of accepted proposals divided by nUpdates.

References

Jain, S., & Neal, R. M. (2004). A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. *Journal of computational and Graphical Statistics*, 13(1), 158-182.

```
# Neal (2000) model and data
nealData <- c(-1.48, -1.40, -1.16, -1.08, -1.02, 0.14, 0.51, 0.53, 0.78)
mkLogPosteriorPredictiveDensity <- function(data = nealData,</pre>
                                               sigma2 = 0.1^2,
                                               mu0 = 0,
                                               sigma02 = 1) {
  function(i, subset) {
    posteriorVariance <- 1 / ( 1/sigma02 + length(subset)/sigma2 )</pre>
    posteriorMean <- posteriorVariance * ( mu0/sigma02 + sum(data[subset])/sigma2 )</pre>
    posteriorPredictiveSD <- sqrt(posteriorVariance + sigma2)</pre>
    dnorm(data[i], posteriorMean, posteriorPredictiveSD, log=TRUE)
  }
}
logPostPredict <- mkLogPosteriorPredictiveDensity()</pre>
nSamples <- 1100L
nBurn <- 100
partitions <- matrix(0, nrow=nSamples, ncol=length(nealData))</pre>
# initial draws to inform similarity matrix
for ( i in 2:nBurn ) {
  partitions[i,] <- nealAlgorithm3(partitions[i-1,],</pre>
                                     logPostPredict,
                                     mass = 1,
                                     nUpdates = 1)
}
# Generate pairwise similarity matrix from initial draws
psm.mat <- psm(partitions[1:nBurn,])</pre>
accept <- 0
for ( i in (nBurn+1):nSamples ) {
  ms <- psmMergeSplit(partitions[i-1,],</pre>
                       psm.mat,
                       logPostPredict,
                       t = 1,
                       mass = 1.0,
```

psmMergeSplit_base 19

```
nUpdates = 1)
partitions[i,] <- ms$partition
accept <- accept + ms$accept
}
accept / (nSamples - nBurn) # post burn-in M-H acceptance rate
nSubsets <- apply(partitions, 1, function(x) length(unique(x)))
mean(nSubsets)
sum(acf(nSubsets)$acf)-1 # Autocorrelation time
entropy <- apply(partitions, 1, partitionEntropy)
plot.ts(entropy)</pre>
```

psmMergeSplit_base

Base Functionality for the psmMergeSplit Function

Description

Merge-split proposals for conjugate "Chinese Restaurant Process" (CRP) mixture models using sequentially-allocated elements. Allocation is performed with weights derived from a previously-calculated pairwise similarity matrix.

Usage

```
psmMergeSplit_base(
  partition,
  psm,
  logPosteriorPredictiveDensity = function(i, subset) 0,
  mass = 1,
  discount = 0,
  nUpdates = 1L,
  selectionWeights = NULL
)
```

Arguments

partition

A numeric vector of cluster labels representing the current partition.

psm

A matrix of previously-calculated pairwise similarity probabilities for each pair of data indices.

logPosteriorPredictiveDensity

A function taking an index i (as a numeric vector of length one) and a subset of integers subset, and returning the natural logarithm of $p(y_i|y_subset)$, i.e., that item's contribution to the log integrated likelihood given a subset of the other items. The default value "turns off" the likelihood, resulting in prior simulation (rather than posterior simulation).

mass

A specification of the mass (concentration) parameter in the CRP prior. Must be greater than the -discount argument.

discount A numeric value on the interval [0,1) corresponding to the discount parameter

in the two-parameter CRP prior.

nUpdates An integer giving the number of merge-split proposals before returning. This

has the effect of thinning the Markov chain.

selectionWeights

A matrix or data frame whose first two columns are the unique pairs of data indices, along with a column of weights representing how likely each pair is to be selected at the beginning of each merge-split update.

Value

partition A numeric vector giving the updated partition encoded using cluster labels.

accept The acceptance rate of the Metropolis-Hastings proposals, i.e. the number of accepted proposals divided by nUpdates.

See Also

```
psmMergeSplit
```

restrictedGibbsMergeSplit

Merge-Split Sampling for a Partition Based on Restricted Gibbs Scans

Description

Merge-split proposals for conjugate "Chinese Restaurant Process" (CRP) mixture models using restricted Gibbs scans from a uniformly random launch state, as presented in Jain & Neal (2004), with additional functionality for the two parameter CRP prior.

Usage

```
restrictedGibbsMergeSplit(
  partition,
  logPosteriorPredictiveDensity = function(i, subset) 0,
  t = 1,
  mass = 1,
  discount = 0,
  nUpdates = 1L,
  selectionWeights = NULL
)
```

Arguments

partition

A numeric vector of cluster labels representing the current partition.

logPosteriorPredictiveDensity

A function taking an index i (as a numeric vector of length one) and a subset of integers subset, and returning the natural logarithm of $p(y_i|y_subset)$, i.e., that item's contribution to the log integrated likelihood given a subset of the other items. The default value "turns off" the likelihood, resulting in prior simulation (rather than posterior simulation).

A non-negative integer indicating the number of restricted Gibbs scans to perform for each merge/split proposal.

A specification of the mass (concentration) parameter in the CRP prior. Must be greater than the -discount argument.

A numeric value on the interval [0,1) corresponding to the discount parameter in the two parameter CRP prior.

nUpdates An integer giving the number of merge-split proposals before returning. This has the effect of thinning the Markov chain.

selectionWeights

A matrix or data frame whose first two columns are the unique pairs of data indices, along with a column of weights representing how likely each pair is to be selected at the beginning of each merge-split update.

Value

t

mass

partition An integer vector giving the updated partition encoded using cluster labels.

accept The acceptance rate of the Metropolis-Hastings proposals, i.e. the number accepted proposals divided by nUpdates.

References

Jain, S., & Neal, R. M. (2004). A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. *Journal of computational and Graphical Statistics*, 13(1), 158-182.

```
nSamples <- 1000L
partitions <- matrix(0, nrow = nSamples, ncol = length(nealData))</pre>
accept <- 0
for ( i in 2:nSamples ) {
 ms <- restrictedGibbsMergeSplit(partitions[i-1,],</pre>
                                    logPostPredict,
                                    t = 1,
                                    mass = 1.0,
                                    nUpdates = 2)
 partitions[i,] <- ms$partition</pre>
 accept <- accept + ms$accept</pre>
}
accept / nSamples # M-H acceptance rate
# convergence and mixing diagnostics
nSubsets <- apply(partitions, 1, function(x) length(unique(x)))</pre>
mean(nSubsets)
sum(acf(nSubsets)$acf)-1 # Autocorrelation time
entropy <- apply(partitions, 1, partitionEntropy)</pre>
plot.ts(entropy)
```

 ${\tt seqAllocatedMergeSplit}$

Merge-split Sampling for a Partition Based on Sequential Allocation of Items

Description

Merge-split proposals for conjugate "Chinese Restaurant Process" (CRP) mixture models using sequential allocation of items, as originally described in Dahl (2003), with additional functionality for the two parameter CRP prior, as well as complementing these allocations with restricted Gibbs scans such as those discussed in Jain & Neal (2004).

```
seqAllocatedMergeSplit(
  partition,
  logPosteriorPredictiveDensity = function(i, subset) 0,
  t = 1,
  mass = 1,
  discount = 0,
  nUpdates = 1L,
  selectionWeights = NULL
)
```

Arguments

partition A numeric vector of cluster labels representing the current partition. logPosteriorPredictiveDensity

A function taking an index i (as a numeric vector of length one) and a subset of integers subset, and returning the natural logarithm of $p(y_i|y_subset)$, i.e., that item's contribution to the log integrated likelihood given a subset of the other items. The default value "turns off" the likelihood, resulting in prior simulation (rather than posterior simulation).

t A non-negative integer indicating the number of restricted Gibbs scans to perform for each merge/split proposal.

mass A specification of the mass (concentration) parameter in the CRP prior. Must be

greater than the -discount argument.

discount A numeric value on the interval [0,1) corresponding to the discount parameter

in the two parameter CRP prior.

nUpdates An integer giving the number of merge-split proposals before returning. This

has the effect of thinning the Markov chain.

selectionWeights

A matrix or data frame whose first two columns are the unique pairs of data indices, along with a column of weights representing how likely each pair is to be selected at the beginning of each merge-split update.

Value

partition An integer vector giving the updated partition encoded using cluster labels.

accept The acceptance rate of the Metropolis-Hastings proposals, i.e. the number accepted proposals divided by nUpdates.

References

Dahl, D. B. (2003). An improved merge-split sampler for conjugate Dirichlet process mixture models. Technical Report, 1, 086. Jain, S., & Neal, R. M. (2004). A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. *Journal of computational and Graphical Statistics*, 13(1), 158-182.

```
}
logPostPredict <- mkLogPosteriorPredictiveDensity()</pre>
nSamples <- 1000L
partitions <- matrix(0, nrow = nSamples, ncol = length(nealData))</pre>
accept <- 0
for ( i in 2:nSamples ) {
  ms <- seqAllocatedMergeSplit(partitions[i-1,],</pre>
                                 logPostPredict,
                                  t = 1,
                                 mass = 1.0,
                                 nUpdates = 2)
  partitions[i,] <- ms$partition</pre>
  accept <- accept + ms$accept</pre>
}
accept / nSamples # M-H acceptance rate
# convergence and mixing diagnostics
nSubsets <- apply(partitions, 1, function(x) length(unique(x)))</pre>
mean(nSubsets)
sum(acf(nSubsets)$acf)-1 # Autocorrelation time
entropy <- apply(partitions, 1, partitionEntropy)</pre>
plot.ts(entropy)
```

 $seqAllocatedMergeSplit_base$

Base Functionality for the seqAllocatedMergeSplit Function

Description

Merge-split proposals for conjugate "Chinese Restaurant Process" (CRP) mixture models using sequential allocation of items, as originally described in Dahl (2003), with additional functionality for the two parameter CRP prior.

```
seqAllocatedMergeSplit_base(
  partition,
  logPosteriorPredictiveDensity = function(i, subset) 0,
  mass = 1,
  discount = 0,
  nUpdates = 1L,
  selectionWeights = NULL
)
```

simpleMergeSplit 25

Arguments

partition A numeric vector of cluster labels representing the current partition.

logPosteriorPredictiveDensity

A function taking an index i (as a numeric vector of length one) and a subset of integers subset, and returning the natural logarithm of $p(y_i|y_subset)$, i.e., that item's contribution to the log integrated likelihood given a subset of the other items. The default value "turns off" the likelihood, resulting in prior simulation

(rather than posterior simulation).

mass A specification of the mass (concentration) parameter in the CRP prior. Must be

greater than the -discount argument.

discount A numeric value on the interval [0,1) corresponding to the discount parameter

in the two-parameter CRP prior.

nUpdates An integer giving the number of merge-split proposals before returning. This

has the effect of thinning the Markov chain.

selectionWeights

A matrix or data frame whose first two columns are the unique pairs of data indices, along with a column of weights representing how likely each pair is to be selected at the beginning of each merge-split update.

Value

partition An integer vector giving the updated partition encoded using cluster labels.

accept The acceptance rate of the Metropolis-Hastings proposals, i.e. the number accepted proposals divided by nUpdates.

References

Dahl, D. B. (2003). An improved merge-split sampler for conjugate Dirichlet process mixture models. Technical Report, 1, 086.

See Also

 ${\tt seqAllocatedMergeSplit}$

 ${\it simple Merge Split} \qquad {\it Merge - Split Sampling for a Partition Using Uniformly Random Allo-cation}$

Description

Merge-split proposals for conjugate "Chinese Restaurant Process" (CRP) mixture models using uniformly random allocation of items, as presented in Jain & Neal (2004), with additional functionality for the two parameter CRP prior.

26 simpleMergeSplit

Usage

```
simpleMergeSplit(
  partition,
  logPosteriorPredictiveDensity = function(i, subset) 0,
  mass = 1,
  discount = 0,
  nUpdates = 1L,
  selectionWeights = NULL
)
```

Arguments

partition A numeric vector of cluster labels representing the current partition.

logPosteriorPredictiveDensity

A function taking an index i (as a numeric vector of length one) and a subset of integers subset, and returning the natural logarithm of $p(y_i|y_subset)$, i.e., that item's contribution to the log integrated likelihood given a subset of the other items. The default value "turns off" the likelihood, resulting in prior simulation

(rather than posterior simulation).

mass A specification of the mass (concentration) parameter in the CRP prior. Must be

greater than the -discount argument.

discount A numeric value on the interval [0,1) corresponding to the discount parameter

in the two parameter CRP prior.

nUpdates An integer giving the number of merge-split proposals before returning. This

has the effect of thinning the Markov chain.

selectionWeights

A matrix or data frame whose first two columns are the unique pairs of data indices, along with a column of weights representing how likely each pair is to be selected at the beginning of each merge-split update.

Value

partition An integer vector giving the updated partition encoded using cluster labels.

accept The acceptance rate of the Metropolis-Hastings proposals, i.e. the number accepted proposals divided by nUpdates.

References

Jain, S., & Neal, R. M. (2004). A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. *Journal of computational and Graphical Statistics*, 13(1), 158-182.

sizeOfLargestCluster 27

sizeOfLargestCluster

Calculate the Number of Items in the Largest Cluster of a Set Partition

Description

Calculate the Number of Items in the Largest Cluster of a Set Partition

Usage

```
sizeOfLargestCluster(partition)
```

Arguments

partition

A numeric vector representing a partition of the integers 1, ..., n using cluster labels

Value

The number of items in the largest cluster of the given partition as a numeric vector of length one.

Examples

```
p <- c(0,1,1,1,1,1,2)
sizeOfLargestCluster(p)</pre>
```

transformedWeights

Enumerate Transformed Weights for Choosing i and j Non-Uniformly

Description

Enumerate Transformed Weights for Choosing i and j Non-Uniformly

Usage

```
transformedWeights(m, fn = function(x) x, eps = 1e-12)
```

Arguments

m A	Samare	matrix o	١f	nairwise	simil	laril	ities	between i	tems
111 1	Square	maura c	,,	pair wisc	311111	ıaıı	itics	oct w cen i	terms

fn A function that maps pairwise similarities. Default is the identity function.

eps A numeric value close to 0 to give some nonzero weight to pairs of items with 0

or 1 pairwise similarity

Index

* datasets	p6_bern_1 (p6_bern), 13
p18_bern, 11	p6_bern_2 (p6_bern), 13
p18_corr_mvn, 12	p6_bern_3 (p6_bern), 13
p18_mvn, 12	p6_big_bern, 13
p6_bern, 13	p6_big_bern_1 (p6_big_bern), 13
p6_big_bern, 13	p6_big_bern_2(p6_big_bern), 13
p6_mvn, 14	p6_big_bern_3 (p6_big_bern), 13
	p6_mvn, 14
asCanonical, 2	p6_mvn_1 (p6_mvn), 14
asClusterLabels,3	p6_mvn_2 (p6_mvn), 14
asSetPartition, 3	p6_mvn_3 (p6_mvn), 14
	partitionEntropy, 14
clusterProportions, 4	poch, 15
clusterTrace, 5	psm, 16
clusterWithItem, 6	psmMergeSplit, 17, 20
createNewCluster,6	<pre>psmMergeSplit_base, 19</pre>
dCRP, 7	restrictedGibbsMergeSplit,20
	restricted assisting spire, 20
getThetas, 8	<pre>seqAllocatedMergeSplit, 22, 25</pre>
	<pre>seqAllocatedMergeSplit_base, 24</pre>
isCanonical, 8	<pre>simpleMergeSplit, 25</pre>
joinExistingCluster,9	sizeOfLargestCluster, 27
JOINEXISCINGCIUSCEI, 9	
nClusters,9	transformedWeights, 27
nealAlgorithm3, 10	
,	
o18_bern, 11	
o18_bern_1 (p18_bern), 11	
o18_bern_2 (p18_bern), 11	
o18_bern_3 (p18_bern), 11	
o18_corr_mvn, 12	
o18_corr_mvn_1 (p18_corr_mvn), 12	
o18_corr_mvn_2 (p18_corr_mvn), 12	
o18_corr_mvn_3 (p18_corr_mvn), 12	
o18_mvn, 12	
o18_mvn_1 (p18_mvn), 12	
o18_mvn_2 (p18_mvn), 12	
o18_mvn_3 (p18_mvn), 12	
of hern 13	