Examen de admisión 2024

Resuelve los siguientes ejercicios. Escribe de manera clara y justifica tus argumentos.

- 1. Sean V un espacio vectorial y W un subespacio de V. ¿Existe $T:V\longrightarrow W$ transformación lineal tal que Ker(T)=W?
- 2. Dados $a, b, c \in \mathbb{R}$, sea $W(a, b, c) = \{(x, y) \mid ax^2 + by = c\} \subseteq \mathbb{R}^2$.
 - (a) ¿Para qué valores de (a, b, c) es W(a, b, c) un subespacio vectorial?
 - (b) En caso de que $W\left(a,b,c\right)$ sea un subespacio vectorial, encontrar la dimensión de este.
- 3. Sean $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ funciones derivables tales que f'(x) = g'(x) para toda $x \in \mathbb{R}$. Demuestra que existe $r \in \mathbb{R}$ tal que f(x) = g(x) + r, para toda $x \in \mathbb{R}$.
- 4. Sea $f: \mathbb{R} \to \mathbb{R}$ la función dada por $f(x) = xe^{-x}$. Describir la gráfica de f. Se deberá indicar en que partes f es creciente o decreciente, si f tiene mínimos o máximos relativos, su concavidad y su comportamiento al infinito.
- 5. Sea V el espacio vectorial de todas las funciones de \mathbb{R} a \mathbb{R} . Determina si los siguientes son subespacios de V:
 - (a) $W_1 = \{ f \in V \mid f(1) = f(3) \}$.
 - (b) $W_2 = \{ f \in V \mid f(1) = 0 \}$.
 - (c) $W_3 = \{ f \in V \mid \forall \ x \in \mathbb{R} \ (f(x) = f(-x)) \}.$
 - (d) $W_4 = \{ f \in V \mid \exists x, y \in \mathbb{R} (x \neq y) \land (f(x) = f(y)) \}.$
- 6. Sean $a, b, c, d \in \mathbb{R}$ y f la función dada por $f(x) = \frac{ax+b}{cx+d}$. ¿f tiene máximos o mínimos relativos en su dominio?
- 7. Enuncia y demuestra el Teorema de Rolle (no asuma algún otro teorema cuya prueba dependa del teorema de Rolle).
- 8. Sea $f(x) = x^3 + px + q$. Demuestra que:
 - (a) f tiene exactamente una raíz en \mathbb{R} si p > 0.
 - (b) f tiene tres raíces en \mathbb{R} si $4p^3 + 27q^2 < 0$.
- 9. Sea V el espacio vectorial de todas las funciones de \mathbb{R} a \mathbb{R} . Considera las funciones $f,g,h:\mathbb{R} \longrightarrow \mathbb{R}$ dadas por: $f(x)=2x, \ g(x)=3sin(x)$ y h(x)=4cos(x). Demuestra que el conjunto $\{f,g,h\}$ es linealmente independiente.
- 10. Demuestra que entre todos los rectángulos de la misma área, el cuadrado es el que tiene el mínimo perímetro.