

High-Performance Computing

Libraries for High-Performance Computing

and other purposes

Overview

- Why use libraries?
- Where to search?
- Commercial libraries
- Special purpose libraries

02614 - Libraries

Why use libraries?

- Why should we invent the wheel again and again and again …?
- Let us (re-)use what others have developed over many years ...
- u... with
 - reliable results
 - good performance
 - a lot of manpower

January 2016

02614 - High-Performance Computing

Where to search?

- Search engines like Google
 - need to know the name quite exactly
 - or a good description of what you want to achieve
 - a lot of irrelevant hits
- A better approach:
 - go to well known websites that have collected information over years
 - □ "Trust the old men!"

Places to start a search

- □ Netlib is a collection of mathematical software, papers, and databases.
- Netlib is mainly dedicated to
 - Linear Algebra routines
 - □ the work by Jack Dongarra and friends
- up-to-date?

January 2016

02614 - High-Performance Computing

5

Places to start a search

Guide to Available Mathematical Software

□ http://gams.nist.gov/

- extensive catalog of mathematical software
- nice division into classes and subclasses of problems
- other sites use the GAMS taxonomy as well, e.g. Netlib

Places to start a search

Collected Algorithms (CALGO)

- http://calgo.acm.org/
- Algorithms published in ACM journals:
 - "This software is refereed for originality, accuracy, robustness, completeness, portability, and lasting value."

January 2016

02614 - High-Performance Computing

8

Places to start a search

Software/hardware vendors:

- Intel: http://software.intel.com/
 - look for MKL (Math Kernel Library)
- □ AMD: http://developer.amd.com/
 - □ look for ACML (Advanced Core Math Library)

Trust an "old" man

Nick Trefethen

- http://people.maths.ox.ac.uk/trefethen/
- Professor of Numerical Analysis at Oxford University Computing Laboratory
- Collection of links:
 - http://people.maths.ox.ac.uk/trefethen/tools.html

January 2016

02614 - High-Performance Computing

11

Commercial Libraries

- Numerical Algorithms Group (NAG): http://www.nag.co.uk/
 - well established general purpose library
- □ IMSL:

http://www.roguewave.com/products-services/imsl-numerical-libraries

- well established general purpose library
- Harwell Subroutine Library (HSL): http://www.hsl.rl.ac.uk/
 - free versions for academic research and teaching

A free library

GNU Scientific Library (GSL)

- http://www.gnu.org/software/gsl/
 - "A numerical library for C and C++ programmers. It is free software under the GNU General Public License."
- has a lot of features, but not always optimized
- ships with many Linux distros

January 2016

02614 - High-Performance Computing

13

Special purpose libraries

Linear Algebra

- □ LAPACK & BLAS
 - from Netlib.org or vendor
- ATLAS
 - Automatically Tuned Linear Algebra Software
 - http://math-atlas.sourceforge.net/
- GotoBLAS: fast implementation of BLAS
 - by Kazushige Goto, TACC (now: Intel)
 - now: OpenBLAS http://www.openblas.net/

Special purpose libraries

Linear Algebra

- ARPACK: library for large and sparse eigenvalue problems
 - http://www.caam.rice.edu/software/ARPACK/
 - □ ARPACK++: C++ interface to ARPACK
- MatrixMarket:
 - http://math.nist.gov/MatrixMarket/
 - collection of tools and data sets

January 2016

02614 - High-Performance Computing

15

Special purpose libraries

Fast Fourier Transforms

- □ FFTW: http://www.fftw.org/
 - □ Fastest Fourier Transform in the West
 - "FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data."
 - state-of-the-art FFT library
 - also in parallel (MPI and OpenMP)

02614 – Libraries

Special purpose libraries

Parallel Solvers:

- PETSc: Portable, Extensible Toolkit for Scientific Computation
 - http://www-unix.mcs.anl.gov/petsc/petsc-as/
- MUMPS: MUltifrontal Massively Parallel sparse direct Solver
 - http://graal.ens-lyon.fr/MUMPS/

January 2016

02614 - High-Performance Computing

17

Good advice

If in doubt, don't hesitate to ask an expert, e.g. in your local Scientific Computing/Numerical Analysis group or some researchers working with similar problems

