ACF of SARIMA processes

PRACTICAL TIME SERIES ANALYSIS
THISTLETON AND SADIGOV

Objectives

Examine ACF of a SARIMA model in simulation

Examine ACF of a SARIMA model in theory

Example - $SARIMA(0,0,1,0,0,1)_{12}$

$$X_t = (1 + \Theta_1 B^{12})(1 + \theta_1 B) Z_t$$

Thus

$$X_t = Z_t + \theta_1 Z_{t-1} + \Theta_1 Z_{t-12} + \theta_1 \Theta_1 Z_{t-13}$$

Choose $\theta_1 = 0.7$, $\theta_1 = 0.6$, then

$$X_t = Z_t + 0.7 Z_{t-1} + 0.6 Z_{t-12} + 0.42 Z_{t-13}$$

Simulation

SARIMA(0,0,1,0,0,1)_12 Simulation

Example - $SARIMA(0,0,1,0,0,1)_{12}$

$$X_t = (1 + \Theta_1 B^{12})(1 + \theta_1 B) Z_t$$

Thus

$$X_t = Z_t + \theta_1 Z_{t-1} + \Theta_1 Z_{t-12} + \theta_1 \Theta_1 Z_{t-13}$$

Autocovariance function: $\gamma(k)$

$$\gamma(0) = Cov(X_t, X_t) = Var(X_t)$$

$$X_t = Z_t + \theta_1 Z_{t-1} + \Theta_1 Z_{t-12} + \theta_1 \Theta_1 Z_{t-13}$$

$$Var(X_t) = \sigma_Z^2 + \theta_1^2 \sigma_Z^2 + \Theta_1^2 \sigma_Z^2 + \theta_1^2 \Theta_1^2 \sigma_Z^2$$

$$\gamma(0) = (1 + \theta_1^2)(1 + \Theta_1^2)\sigma_Z^2$$

 $\gamma(1)$

$$\gamma(1) = Cov(X_t, X_{t-1})$$

$$X_t = Z_t + \theta_1 Z_{t-1} + \Theta_1 Z_{t-12} + \theta_1 \Theta_1 Z_{t-13}$$

$$X_{t-1} = Z_{t-1} + \theta_1 Z_{t-2} + \Theta_1 Z_{t-13} + \theta_1 \Theta_1 Z_{t-14}$$

$$\gamma(1) = \theta_1 \sigma_Z^2 + \theta_1 \Theta_1^2 \sigma_Z^2$$

$$\gamma(1) = \theta_1 (1 + \Theta_1^2) \sigma_Z^2$$

ACF: $\rho(1)$

$$\gamma(1) = \theta_1(1 + \Theta_1^2)\sigma_Z^2$$

$$\gamma(0) = (1 + \theta_1^2)(1 + \Theta_1^2)\sigma_Z^2$$

$$\rho(1) = \frac{\gamma(1)}{\gamma(0)} = \frac{\theta_1}{1 + \theta_1^2} \le \frac{1}{2}$$

Since $(\theta_1 - 1)^2 \ge 0$

 $\gamma(2)$

$$\gamma(2) = Cov(X_t, X_{t-2})$$

$$X_t = Z_t + \theta_1 Z_{t-1} + \Theta_1 Z_{t-12} + \theta_1 \Theta_1 Z_{t-13}$$

$$X_{t-2} = Z_{t-2} + \theta_1 Z_{t-3} + \Theta_1 Z_{t-14} + \theta_1 \Theta_1 Z_{t-15}$$

 $\gamma(2) = 0$

since $Z_t's$ are independent.

Thus

$$\rho(2) = 0$$

ACF

$$\rho(i)=0$$

when i = 2, 3, ..., 10.

$\gamma(11)$, ho(11)

$$\gamma(11) = Cov(X_t, X_{t-11})$$

$$X_t = Z_t + \theta_1 Z_{t-1} + \Theta_1 Z_{t-12} + \theta_1 \Theta_1 Z_{t-13}$$

$$X_{t-11} = Z_{t-11} + \theta_1 Z_{t-12} + \Theta_1 Z_{t-23} + \theta_1 \Theta_1 Z_{t-24}$$

$$\gamma(11) = \theta_1 \Theta_1 \sigma_Z^2$$

$$\rho(11) = \frac{\gamma(11)}{\gamma(0)} = \frac{\theta_1 \Theta_1}{(1 + \theta_1^2)(1 + \Theta_1^2)} \neq 0$$

But

$$0 < \rho(11) \le \frac{1}{4}$$

SARIMA(0,0,1,0,0,1)_12 Simulation

What We've Learned

► ACF of a SARIMA model in simulation

► ACF of a SARIMA model in theory