Foundations

Bin Wang

School of Software Tsinghua University

Feb. 22, 2022

Outline

- Course Information
- Getting Started
- Growth of Functions
- Recurrences
- Divide and Conquer
- Randomized Algorithms

Staff

Teacher

Name: 王斌

Email: wangbins@tsinghua.edu.cn

Telephone: 62795457

网络学堂: http://learn.tsinghua.edu.cn/

TA

黎思宇(lisiyu201695@gmail.com)

陈刚(1791259592@qq.com)

朱向阳(zhuxy20@mails.tsinghua.edu.cn)

Prerequisites

Textbook

1. CLRS, Introduction to Algorithms (3rd edition), (2009), The MIT Press.

Reference

- Anany Levitin, 算法分析与设计基础, 潘彦译, (2004), 清华大学出版社
- 王晓东, 计算机算法设计与分析, 第四版, (2012), 电子工业出版社

Prerequisites

Textbook

1. CLRS, Introduction to Algorithms (3rd edition), (2009), The MIT Press.

Reference

- Donald E. Knuth(高德纳), The Art of Computer Programming (TAOCP), vol 1, 2, 3, 4A, addison-wesley publishing company.
- http://www-cs-staff.stanford.edu/~knuth/

Prerequisites

Textbook

1. CLRS, Introduction to Algorithms (3rd edition), (2009), The MIT Press.

Reference

- http://en.wikipedia.org/
- http://www.github.com/

Topics

Course Schedule

- Foundations & Divide-and-Conquer.
- Sorting and Order Statistics.
- Opnomic Programming.
- Greedy Algorithms.
- Amortized Analysis, Heaps.
- String Matching.
- NPC, Approximation Algorithms.
- Multithreaded Algorithms.

Policy

Grading Policy

- 平时作业(30%)
- 课堂表现(10%)
- 期末考试(60%)

Collaboration Policy

- 不能抄袭
- 引用他人成果需指明出处

Policy

Homework Policy

- 编程语言: C/C++/C #/Java/Python; 作业文档: Latex/Doc;
- 没有在规定时间内提交作业者,每迟交一 天,扣10分,扣完为止;
- 交作业时漏交某些题目,每迟交一天,扣漏 交题目分数的10%,扣完为止;
- 如果提交时网络学堂有故障,请在半小时内 发邮件给助教,超过半小时按迟交处理。

What's algorithm?

Definition

An algorithm is any well-defined computational procedure that takes some value, or set of values, as **input** and produces some value, or set of values, as **output**. An algorithm is thus a sequence of computational steps that transform the input into the output.

What's algorithm?

Example

Sorting problem:

- Input: A sequence of n numbers $\langle a_1, a_2, \dots, a_n \rangle$.
- Output: A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$.

Definition

The theoretical study of computer-program performance and resource usage.

What's more important than performance?

- correctness
- programmer time
- maintainability
- robustness
- user-friendliness

Definition

The theoretical study of computer-program performance and resource usage.

What's more important than performance?

- correctness
- programmer time
- maintainability
- robustness
- user-friendliness

- Performance often draws the line between what is feasible and what is impossible.
- Analysis of algorithms helps us to understand scalability.
- Algorithmic mathematics provides a language for talking about program behavior.
- The lessons of program performance generalize to other computing resources.

- Performance often draws the line between what is feasible and what is impossible.
- Analysis of algorithms helps us to understand scalability.
- Algorithmic mathematics provides a language for talking about program behavior.
- The lessons of program performance generalize to other computing resources.

- Performance often draws the line between what is feasible and what is impossible.
- Analysis of algorithms helps us to understand scalability.
- Algorithmic mathematics provides a language for talking about program behavior.
- The lessons of program performance generalize to other computing resources.

- Performance often draws the line between what is feasible and what is impossible.
- Analysis of algorithms helps us to understand scalability.
- Algorithmic mathematics provides a language for talking about program behavior.
- The lessons of program performance generalize to other computing resources.

- Performance often draws the line between what is feasible and what is impossible.
- Analysis of algorithms helps us to understand scalability.
- Algorithmic mathematics provides a language for talking about program behavior.
- The lessons of program performance generalize to other computing resources.

Practical Use of algorithm

 The Human Genome Project has the goals of identifying all the 100,000 genes in human DNA, determining the sequences of the 3 billion chemical base pairs that make up human DNA, storing this information in databases, and developing tools for data analysis.

Practical Use of algorithm

- The Internet enables people all around the world to quickly access and retrieve large amounts of information.
- Electronic commerce enables goods and services to be negotiated and exchanged electronically.

Some questions

Given a problem, can we find an algorithm to solve it?

Not always!

Hilbert's 10th Problem

What is a good algorithm? Time is important!

Is a "good" algorithm always exist?
Not clear now!

Some questions

Given a problem, can we find an algorithm to solve it?

Not always!

Hilbert's 10th Problem

What is a good algorithm?

Time is important!

Is a "good" algorithm always exist?

Some questions

Given a problem, can we find an algorithm to solve it?

Not always!

Hilbert's 10th Problem

What is a good algorithm?

Time is important!

Is a "good" algorithm always exist?

Not clear now!

The problem of sorting

Input

A sequence of n numbers $\langle a_1, a_2, \dots, a_n \rangle$.

Output

A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$.

Example

```
Input: 8, 2, 4, 9, 3, 6.
Output: 2 3 4 6 8 9
```


The problem of sorting

Input

A sequence of n numbers $\langle a_1, a_2, \dots, a_n \rangle$.

Output

A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$.

Example

Input: 8, 2, 4, 9, 3, 6. **Output:** 2, 3, 4, 6, 8, 9.


```
INSERT-SORT(A)
   for i = 2 to A. length
        kev = A[i]
   // Insert A[i] into the sorted sequence A[1..i-1]
        i = i - 1
        while i > 0 and A[i] > key
5
              A[i + 1] = A[i]
              i = i - 1
6
        A[i + 1] = key
```


Table: Analysis of INSERT-SORT

INSERT-SORT(A)	COS	costtimes	
for $j = 2$ to A.length	<i>C</i> ₁	n	
$\mathbf{do}\ key = A[j]$	c ₂	<i>n</i> − 1	
// Insert <i>A</i> [<i>j</i>]	0	0	
i = j - 1		<i>n</i> − 1	
while $i > 0$ and $A[i] > k$			
do $A[i+1] = A[i]$	c ₆	$\sum_{j=2}^{n}(t_{j}-1)$	
i = i - 1	C ₇	$\sum_{j=2}^{n} (t_j - 1)$	
A[i+1] = key	c ₈	<i>n</i> – 1	

Analysis of INSERT-SORT

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1)$$
 $+ c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1)$
 $+ c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$

Best case

In INSERT-SORT, the best case occurs if the array is already sorted.

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)r$$

 $- (c_2 + c_4 + c_5 + c_8)$

The time can be expressed as an + b; it is thus a linear function of n

Best case

In INSERT-SORT, the best case occurs if the array is already sorted.

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n$$

 $- (c_2 + c_4 + c_5 + c_8)$

The time can be expressed as an + b; it is thus a linear function of n

Best case

In INSERT-SORT, the best case occurs if the array is already sorted.

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n$$

 $- (c_2 + c_4 + c_5 + c_8)$

The time can be expressed as an + b; it is thus a linear function of n.

Worst-case

If the array is in reverse sorted order, the worst case results.

$$T(n) = (\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2})n^2 + (c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

The time can be expressed as $an^2 + bn + c$; it is thus a **quadratic function** of n.

Worst-case

If the array is in reverse sorted order, the worst case results.

$$T(n) = (\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2})n^2 + (c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

The time can be expressed as $an^2 + bn + c$; it is thus a **quadratic function** of n.

Worst-case

If the array is in reverse sorted order, the worst case results.

$$T(n) = (\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2})n^2 + (c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

The time can be expressed as $an^2 + bn + c$; it is thus a quadratic function of n.

Running time

- The running time depends on the input: an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
- Generally, we seek upper bounds on the running time, because everybody likes a quarantee.

Machine-independent time

Random-access machine(RAM) model

- No concurrent operations.
- Each instruction takes a constant amount of time.

Asymptotic Analysis

- Ignore machine-dependent constants.
- Look at the **growth** of T(n) as $n \to \infty$.

Machine-independent time

Random-access machine(RAM) model

- No concurrent operations.
- Each instruction takes a constant amount of time.

Asymptotic Analysis

- Ignore machine-dependent constants.
- Look at the **growth** of T(n) as $n \to \infty$.

⊖-notation

Definition

```
\Theta(g(n)) = \{ f(n) : \exists c_1, c_2, n_0 \in \mathbb{R}^+, s.t. \\
\forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}
```

We say that g(n) is an **asymptotically tight** bound for f(n). Denoted as $f(n) = \Theta(g(n))$ or $f(n) \in \Theta(g(n))$.

4□ > 4□ > 4 = > 4 = > = 900

Definition

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2, n_0 \in \mathbb{R}^+, s.t. \\
\forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$$

We say that g(n) is an **asymptotically tight** bound for f(n). Denoted as $f(n) = \Theta(g(n))$ or $f(n) \in \Theta(g(n))$.

Example

$$\begin{split} \frac{1}{2} n^2 - 3n &= \Theta(n^2), & 0.001 n^3 \neq \Theta(n^2), \\ c_0 &= \Theta(1), & \sum_{i=0}^d a_i n^i &= \Theta(n^d) & (a_d > 0). \end{split}$$

Example

For all $n \geq n_0$,

$$c_1 n^2 \leq \frac{1}{2} n^2 - 3n \leq c_2 n^2$$

Dividing by n^2 yields,

$$c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$$

Choosing $c_1 = 1/14$, $c_2 = 1/2$, and $n_0 = 7$.

Example

For all $n \geq n_0$,

$$c_1 n^2 \leq \frac{1}{2} n^2 - 3n \leq c_2 n^2$$

Dividing by n^2 yields,

$$c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$$
.

Choosing $c_1 = 1/14$, $c_2 = 1/2$, and $n_0 = 7$.

Definition

When we have only an **asymptotically upper bound**, we use *O*-notation.

$$O(g(n)) = \{f(n) : \exists c, n_0 \in \mathbb{R}^+, s.t. \\ \forall n \ge n_0, 0 \le f(n) \le cg(n)\}$$

Denoted as f(n) = O(g(n)) or $f(n) \in O(g(n))$.

Definition

Ω-notation provides an **asymptotically lower bound**.

$$\Omega(g(n)) = \{f(n) : \exists c, n_0 \in \mathbb{R}^+, s.t. \\ \forall n \ge n_0, 0 \le cg(n) \le f(n)\}$$

Denoted as $f(n) = \Omega(g(n))$ or $f(n) \in \Omega(g(n))$.

Example

$$n = O(n^2), \quad 2n^2 = O(n^2), 2n^2 = \Omega(n), \quad 2n^2 = \Omega(n^2).$$

Theorem 3.1

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n) = \Theta(n^2)$$

 $\Theta(n^2) + O(n^2)$

Theorem 3.1

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n) = \Theta(n^2)$$

 $\Theta(n^2) + O(n^2)$

Theorem 3.1

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n) = \Theta(n^2)$$

 $\Theta(n^2) + O(n^2)$

Theorem 3.1

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n) = \Theta(n^2)$$

 $\Theta(n^2) + O(n^2) = \Theta(n^2)$

Definition

$$o(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0, \\ s.t. \forall n \ge n_0, 0 \le f(n) < cg(n)\}$$

Denoted as f(n) = o(g(n)). Intuitively, $\lim_{n \to \infty} \frac{f(n)}{n} = 0$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

$$\omega(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0, \\ s.t. \forall n \ge n_0, 0 \le cg(n) < f(n)\}$$

The relation $f(n) = \omega(g(n))$ implies that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

Definition

$$o(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0, \\ s.t. \forall n \ge n_0, 0 \le f(n) < cg(n)\}$$

Denoted as f(n) = o(g(n)). Intuitively,

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0.$$

$$\omega(g(n)) = \{f(n) : \forall c > 0, \exists n_0 > 0, \\ s.t. \forall n \ge n_0, 0 \le cg(n) < f(n)\}$$

The relation $f(n) = \omega(g(n))$ implies that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

Example

$$2n = o(n^2), 2n^2 \neq o(n^2),$$

 $2n^2 = \omega(n), 2n^2 \neq \omega(n^2).$

Comparison of functions

Transitivity

$$f(n) = \gamma(g(n))$$
 and $g(n) = \gamma(h(n))$ imply $f(n) = \gamma(h(n)), \ \gamma = \Theta, O, \Omega, o, \omega$

Reflexivity

$$f(n) = \Theta(f(n)), f(n) = O(f(n)), f(n) = \Omega(f(n))$$

Comparison of functions

Symmetry

$$f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$$

Transpose symmetry

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

 $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

An analogy between functions and real numbers

Asymptotic Relation	Relations between
between functions	real numbers
f(n) = O(g(n))	${\sf a} \leq {\sf b}$
$f(n) = \Omega(g(n))$	$oldsymbol{a} \geq oldsymbol{b}$
$f(n) = \Theta(g(n))$	a = b
f(n) = o(g(n))	a < b
$f(n) = \omega(g(n))$	a > b

History of notation

History of noation

- O-notation was presented by P. Bachmann in 1892.
- o-notation was invented by E. Landau in 1909 for his discussion of the distribution of prime numbers.
- Ω and Θ notations were advocated by D. Knuth in 1976.

Floors and ceilings

$$x - 1 < |x| < x < \lceil x \rceil < x + 1$$

For any integer n, $\lceil n/2 \rceil + \lfloor n/2 \rfloor = n$, and for integers a, b > 0

$$\lceil a/b \rceil \le (a+(b-1))/b, |a/b| \ge ((a-(b-1))/b)$$

Logarithms

For all real a > 0, b > 0, c > 0, and n.

$$\log_b a = \frac{1}{\log_a b}, a^{\log_b c} = c^{\log_b a}$$

$$\frac{x}{1+x} \le \ln(1+x) \le x$$

Factorials

Stirling's approximation:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

Factorials

Stirling's approximation:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

$$n! = o(n^n), n! = \omega(2^n), \lg(n!) = \Theta(n \lg n)$$

Functional iteration

$$f^{(i)}(n) = \begin{cases} n & i = 0 \\ f(f^{(i-1)}(n)) & i > 0 \end{cases}$$

The iterated logarithm function:

$$\lg^* n = \min\{i \geq 0 : \lg^{(i)} n \leq 1\}$$

Functional iteration

$$f^{(i)}(n) = \begin{cases} n & i = 0 \\ f(f^{(i-1)}(n)) & i > 0 \end{cases}$$

The iterated logarithm function:

$$\lg^* n = \min\{i \ge 0 : \lg^{(i)} n \le 1\} \lg^* 2 = 1, \lg^* 4 = 2, \lg^* 16 = 3, \lg^* 65536 = 4, \lg^* (2^{65536}) = 5.$$

Exercises

Sorting the speed of growth

$$(n-2)!$$
, $5 \lg(n+100)^{10}$, 2^{2n} , $0.001n^4 + 3n^3 + 1$, $\ln^2 n$, $\sqrt[3]{n}$, 2^n , $n!$

Which is asymptotically larger

$$\lg(\lg^* n)$$
 or $\lg^*(\lg n)$

What is recurrences?

Fibonacci numbers

 $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$

$$F(n) = \begin{cases} 0 & \text{if } n = 0, \\ 1 & \text{if } n = 1, \\ F(n-1) + F(n-2) & \text{if } n > 1. \end{cases}$$

FIBONNACI(n)

- 1 if (n = 0) return 0
- 2 if (n=1) return 1
- 3 return FIBONNACCI(n-1) + FIBONNACCI(n-2)

What is recurrences?

Definition

A recurrence is an equation or inequation that describes a function in terms of its value on smaller inputs.

What is recurrences?

History of recurrences

- In 1202, recurrences were studied by Leonardo Fibonacci (1170-1250).
- A. De Moivre (1667-1754) introduced the method of generating functions for solving recurrences.
- Bentley, Haken and Saxe presented the Master Theorem in 1980.

The substitution method

General method

- Guess the form of the solution.
- Verify by mathematical induction.

The substitution method

Example

$$T(n) = 9T(\lfloor n/3 \rfloor) + n$$

- Assume that $T(1) = \Theta(1)$
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) < cn^3$ by induction.

The substitution method

Example

$$T(n) = 9T(|n/3|) + n$$

- Assume that $T(1) = \Theta(1)$
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) \le cn^3$ by induction.

Example

$$T(n) = 9T(n/3) + n$$

$$\leq 9c(n/3)^3 + n$$

$$= (c/3)n^3 + n$$

$$= cn^3 - ((2c/3)n^3 - n)$$

$$\leq cn^3 \leftarrow desired$$

$$\leq cn^3 \leftarrow desired$$

When $((2c/3)n^3 - n) \ge 0$, it is true.

Example

$$T(n) = 9T(n/3) + n$$

 $\leq 9c(n/3)^3 + n$
 $= (c/3)n^3 + n$
 $= cn^3 - ((2c/3)n^3 - n)$
 $\leq cn^3 \leftarrow desired$

When $((2c/3)n^3 - n) \ge 0$, it is true.

Example

$$T(n) = 9T(n/3) + n$$

 $\leq 9c(n/3)^3 + n$
 $= (c/3)n^3 + n$
 $= cn^3 - ((2c/3)n^3 - n)$
 $\leq desired - residual$
 $\leq cn^3 \leftarrow desired$

When $((2c/3)n^3 - n) \ge 0$, it is true. **not tight!**

Example

A tighter upper bound?

Assume $T(k) \le ck^2$ for k < n

$$T(n) = 9T(n/3) + n$$

$$\leq 9c(n/3)^{2} + n$$

$$= cn^{2} + n$$

$$= cn^{2} - (-n)$$

$$\leq cn^{2}$$

We can never $\det -n > 0!$

Example

A tighter upper bound?

Assume $T(k) \le ck^2$ for k < n

$$T(n) = 9T(n/3) + n$$

$$\leq 9c(n/3)^{2} + n$$

$$= cn^{2} + n$$

$$= cn^{2} - (-n)$$

$$\leq cn^{2} \leftarrow \text{desired}$$

We can never get -n > 0!

Example

A tighter upper bound?

Assume $T(k) \le ck^2$ for k < n

$$T(n) = 9T(n/3) + n$$

 $\leq 9c(n/3)^2 + n$
 $= cn^2 + n$
 $= cn^2 - (-n)$
 $\leq cn^2$ Wrong!

We can never get -n > 0!

Example

A tighter upper bound ! Strengthen the inductive hypothesis: Assume $T(k) \le c_1 k^2 - c_2 k$ for k < n

$$T(n) = 9T(n/3) + n$$

$$\leq 9(c_1(n/3)^2 - c_2(n/3)) + n$$

$$= c_1n^2 - 3c_2n + n$$

Example

A tighter upper bound!

Strengthen the inductive hypothesis:

Assume
$$T(k) \le c_1 k^2 - c_2 k$$
 for $k < n$

$$T(n) = 9T(n/3) + n$$

$$\leq 9(c_1(n/3)^2 - c_2(n/3)) + n$$

$$= c_1n^2 - 3c_2n + n$$

$$= (c_1n^2 - c_2n) - (2c_2n - n)$$

$$\leq c_1n^2 - c_2n \leftarrow \text{desired}$$

Example

A tighter upper bound!
Strengthen the inductive hypothesis:

Assume
$$T(k) \le c_1 k^2 - c_2 k$$
 for $k < n$

$$T(n) = 9T(n/3) + n$$

$$\leq 9(c_1(n/3)^2 - c_2(n/3)) + n$$

$$= c_1n^2 - 3c_2n + n$$

$$= (c_1n^2 - c_2n) - (2c_2n - n)$$

$$\leq c_1n^2 - c_2n \qquad \text{Pick } c_2 > 1/2$$

Definition

Course Information

- A recursion tree models the costs of a execution of an recursive algorithm.
- Each node of a recursion tree represents the cost of a single subproblem.
- A recursion tree is good for generating a good guess, which is then verified by the substitution method.

Example

$$T(n) = T(|n/4|) + T(|n/2|) + \Theta(n^2)$$

255

$$T(n) = T(\lfloor n/4 \rfloor) + T(\lfloor n/2 \rfloor) + \Theta(n^2)$$

$$T(n) = T(\lfloor n/4 \rfloor) + T(\lfloor n/2 \rfloor) + \Theta(n^2)$$

$$T(n/4)$$
 Cn^2 $T(n/2)$

$$T(n) = T(\lfloor n/4 \rfloor) + T(\lfloor n/2 \rfloor) + \Theta(n^2)$$

$$c(n/4)^2$$
 $c(n/2)^2$
 $T(n/16)$ $T(n/8)$ $T(n/8)$ $T(n/4)$

$$T(n) = T(\lfloor n/4 \rfloor) + T(\lfloor n/2 \rfloor) + \Theta(n^2)$$

$$T(n) = T(|n/4|) + T(|n/2|) + \Theta(n^2)$$

$$c(n/4)^{2} \qquad c(n/2)^{2} - 5cn^{2}/16$$

$$c(n/16)^{2} c(n/8)^{2} c(n/8)^{2} c(n/4)^{2} - 25cn^{2}/256$$

$$O(1) \qquad T(n) = cn^{2}(1 + \frac{5}{16} + (\frac{5}{16})^{2} + (\frac{5}{16})^{3} + \dots)$$

$$= \Theta(n^{2})$$

$$T(n) = T(|n/4|) + T(|n/2|) + \Theta(n^2)$$

$$c(n/4)^{2} \qquad c(n/2)^{2} - - - 5cn^{2}/16$$

$$c(n/16)^{2} c(n/8)^{2} c(n/8)^{2} c(n/4)^{2} - 25cn^{2}/256$$

$$(n/16)^{2} c(n/8)^{2} c(n/8)^{2} c(n/4)^{2} - 25cn^{2}/256$$

$$(n/16)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} c(n/4)^{2} - 25cn^{2}/256$$

$$(n/16)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} - 25cn^{2}/256$$

$$(n/16)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} - 25cn^{2}/256$$

$$(n/16)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} - 25cn^{2}/256$$

$$(n/16)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} c(n/8)^{2} - 25cn^{2}/256$$

$$(n/16)^{2} c(n/8)^{2} c(n/8)^{2}$$

The master method applies to recurrences of the form

$$T(n) = aT(n/b) + f(n),$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Three common cases

- If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
- If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Three common cases

- 1 If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Three common cases

- If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Three common cases

- If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

- T(n) = 9T(n/3) + nWe have a = 9, b = 3, f(n) = n, and thus we have that $n^{\log_b a} = n^{\log_3 9} = n^2$. Since $f(n) = O(n^{\log_3 9 - \epsilon})$, where $\epsilon = 1$, we can apply **case 1**. The solution is $T(n) = \Theta(n^2)$.
- T(n) = T(2n/3) + 1 $a = 1, b = 3/2, f(n) = 1, f(n) = \Theta(n^{\log_b a}) = \Theta(1).$

- T(n) = 9T(n/3) + nWe have a = 9, b = 3, f(n) = n, and thus we have that $n^{\log_b a} = n^{\log_3 9} = n^2$. Since $f(n) = O(n^{\log_3 9 - \epsilon})$, where $\epsilon = 1$, we can apply **case 1**. The solution is $T(n) = \Theta(n^2)$.
- T(n) = T(2n/3) + 1 $a = 1, b = 3/2, f(n) = 1, f(n) = \Theta(n^{\log_b a}) = \Theta(1).$

Example

- T(n) = 9T(n/3) + nWe have a = 9, b = 3, f(n) = n, and thus we have that $n^{\log_b a} = n^{\log_3 9} = n^2$. Since $f(n) = O(n^{\log_3 9 - \epsilon})$, where $\epsilon = 1$, we can apply **case 1**. The solution is $T(n) = \Theta(n^2)$.
- T(n) = T(2n/3) + 1 $a = 1, b = 3/2, f(n) = 1, f(n) = \Theta(n^{\log_b a}) = \Theta(1).$

Case 2 applies. $T(n) = \Theta(\lg n)$.

Example

- T(n) = 9T(n/3) + nWe have a = 9, b = 3, f(n) = n, and thus we have that $n^{\log_b a} = n^{\log_3 9} = n^2$. Since $f(n) = O(n^{\log_3 9 - \epsilon})$, where $\epsilon = 1$, we can apply **case 1**. The solution is $T(n) = \Theta(n^2)$.
- T(n) = T(2n/3) + 1 $a = 1, b = 3/2, f(n) = 1, f(n) = \Theta(n^{\log_b a}) = \Theta(1).$

Case 2 applies, $T(n) = \Theta(\lg n)$.


```
• T(n) = 3T(n/4) + n \lg n

a = 3, b = 4, f(n) = n \lg n, f(n) =

\Omega(n^{\log_4 3 + \epsilon}), where \epsilon \approx 0.2. For sufficiently large n,

af(n/b) = 3(n/4) \lg(n/4) \le (3/4) n \lg n for c = 3/4.

By case 3, T(n) = \Theta(n \lg n).
```



```
• T(n) = 3T(n/4) + n \lg n

a = 3, b = 4, f(n) = n \lg n, f(n) =

\Omega(n^{\log_4 3 + \epsilon}), where \epsilon \approx 0.2. For sufficiently large n,

af(n/b) = 3(n/4) \lg(n/4) \le (3/4) n \lg n for c = 3/4.

By case 3. T(n) = \Theta(n \lg n).
```



```
• T(n) = 3T(n/4) + n \lg n

a = 3, b = 4, f(n) = n \lg n, f(n) =

\Omega(n^{\log_4 3 + \epsilon}), where \epsilon \approx 0.2. For sufficiently large n,

af(n/b) = 3(n/4) \lg(n/4) \le (3/4) n \lg n for c = 3/4.

By case 3, T(n) = \Theta(n \lg n).
```


Is master method omnipotent?

- When f(n) is smaller than n^{log_b a} but not polynomially smaller. This is a gap between cases 1 and 2.
- When f(n) is larger than $n^{\log_b a}$ but not **polynomially** larger. This is a gap between cases 2 and 3.
- When the regularity condition in case 3 fails to hold

Is master method omnipotent?

- When f(n) is smaller than nlog_b a but not polynomially smaller. This is a gap between cases 1 and 2.
- When f(n) is larger than $n^{\log_b a}$ but not **polynomially** larger. This is a gap between cases 2 and 3.
- When the regularity condition in case 3 fails to hold.

Is master method omnipotent?

- When f(n) is smaller than nlog_b a but not polynomially smaller. This is a gap between cases 1 and 2.
- When f(n) is larger than $n^{\log_b a}$ but not **polynomially** larger. This is a gap between cases 2 and 3.
- When the regularity condition in case 3 fails to hold.

Is master method omnipotent?

- When f(n) is smaller than nlog_b a but not polynomially smaller. This is a gap between cases 1 and 2.
- When f(n) is larger than $n^{\log_b a}$ but not **polynomially** larger. This is a gap between cases 2 and 3.
- When the regularity condition in case 3 fails to hold.

Example

$$T(n) = 2T(n/2) + n \lg n$$

 $a=2, b=2, f(n)=n \lg n$, and $n^{\log_b a}=n$. $f(n)=n \lg n$ is asymptotically larger than n, but not **polynomially** larger. The ratio $f(n)/n = \lg n$ is asymptotically less than n^{ϵ} for any positive constant ϵ .

A more general method

In 1998, Mohamad Akra and Louay Bazzi presented a more general master method:

$$T(n) = \sum_{i=1}^{k} a_i T(\lfloor n/b_i \rfloor) + f(n)$$

A more general method

This method would work on a recurrence such as $T(n) = T(\lfloor n/3 \rfloor) + T(\lfloor 2n/3 \rfloor) + O(n)$. We first find the value of p such that $\sum_{i=1}^{p} a_i b_i^{-p} = 1$. The solution to the recurrence is then

$$T(n) = \Theta(n^p) + \Theta(n^p \int_{n'}^{n} \frac{f(x)}{x^{p+1}} dx)$$

Idea of master theorem

Number of leaves

$$a^h = a^{\log_b n} = n^{\log_b a}$$

$$a^h = a^{\log_b n} = n^{\log_b a}$$

$$a^h = a^{\log_b n} = n^{\log_b a}$$

$$a^h = a^{\log_b n} = n^{\log_b a}$$

Case 1

The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.

Case 1

The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.

Case 2

The weight is approximately the same on each of the $\log_h n$ levels.

Case 2

The weight is approximately the same on each of the $\log_h n$ levels.

Case 3

The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.

Case 3

The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.

$$T(n) = \Theta(n^{\log_b a})$$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} a^i f(n/b^i)$$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} a^i f(n/b^i)$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

Since $f(n/b^j) = O((n/b^j)^{\log_b a - \epsilon})$, then
$$g(n) = \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j)$$

$$= O\left(\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a - \epsilon}\right)$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

$$\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a - \epsilon} = n^{\log_b a - \epsilon} \sum_{j=0}^{\log_b n - 1} \left(\frac{ab^{\epsilon}}{b^{\log_b a}}\right)^j$$

$$= n^{\log_b a - \epsilon} \sum_{j=0}^{\log_b n - 1} (b^{\epsilon})^j$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

$$\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a - \epsilon} = n^{\log_b a - \epsilon} \sum_{j=0}^{\log_b n - 1} \left(\frac{ab^{\epsilon}}{b^{\log_b a}}\right)^j$$

$$= n^{\log_b a - \epsilon} \sum_{j=0}^{\log_b n - 1} (b^{\epsilon})^j$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

$$\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a - \epsilon} = n^{\log_b a - \epsilon} \left(\frac{b^{\epsilon \log_b n} - 1}{b^{\epsilon} - 1}\right)$$

$$= n^{\log_b a - \epsilon} \left(\frac{n^{\epsilon} - 1}{b^{\epsilon} - 1}\right)$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

$$\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a - \epsilon} = n^{\log_b a - \epsilon} \left(\frac{b^{\epsilon \log_b n} - 1}{b^{\epsilon} - 1}\right)$$

$$= n^{\log_b a - \epsilon} \left(\frac{n^{\epsilon} - 1}{b^{\epsilon} - 1}\right)$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

$$g(n) = O\left(n^{\log_b a - \epsilon} \left(\frac{n^{\epsilon} - 1}{b^{\epsilon} - 1}\right)\right)$$

$$= O\left(n^{\log_b a - \epsilon} n^{\epsilon}\right)$$

$$= O(n^{\log_b a})$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

$$g(n) = O\left(n^{\log_b a - \epsilon} \left(\frac{n^{\epsilon} - 1}{b^{\epsilon} - 1}\right)\right)$$

$$= O\left(n^{\log_b a - \epsilon} n^{\epsilon}\right)$$

$$= O(n^{\log_b a})$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

$$g(n) = O\left(n^{\log_b a - \epsilon} \left(\frac{n^{\epsilon} - 1}{b^{\epsilon} - 1}\right)\right)$$

$$= O\left(n^{\log_b a - \epsilon} n^{\epsilon}\right)$$

$$= O(n^{\log_b a})$$

Case 1:
$$f(n) = O(n^{\log_b a} - \epsilon)$$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j)$$

$$= \Theta(n^{\log_b a}) + g(n)$$

$$= \Theta(n^{\log_b a}) + O(n^{\log_b a})$$

$$= \Theta(n^{\log_b a})$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j)$$

$$= \Theta(n^{\log_b a}) + g(n)$$

$$= \Theta(n^{\log_b a}) + O(n^{\log_b a})$$

$$= \Theta(n^{\log_b a})$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j)$$

$$= \Theta(n^{\log_b a}) + g(n)$$

$$= \Theta(n^{\log_b a}) + O(n^{\log_b a})$$

$$= \Theta(n^{\log_b a})$$

Case 2: $f(n) = \Theta(n^{\log_b a})$

We have
$$f(n/b^j) = \Theta((n/b^j)^{\log_b a})$$
, then
$$g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$$
$$= \Theta\left(\sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a}\right)$$

```
Case 2: f(n) = \Theta(n^{\log_b a})
We have f(n/b^j) = \Theta((n/b^j)^{\log_b a}), then
       \sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a} = n^{\log_b a} \sum_{j=0}^{\log_b n-1} \left(\frac{a}{b^{\log_b a}}\right)^j
```

```
Case 2: f(n) = \Theta(n^{\log_b a})
We have f(n/b^j) = \Theta((n/b^j)^{\log_b a}), then
       \sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a} = n^{\log_b a} \sum_{j=0}^{\log_b n-1} \left(\frac{a}{b^{\log_b a}}\right)^j
                                                               \log_b n - 1
                                              = n^{\log_b a} \sum_{a} 1
```

Case 2: $f(n) = \Theta(n^{\log_b a})$

```
We have f(n/b^j) = \Theta((n/b^j)^{\log_b a}), then
       \sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a} = n^{\log_b a} \sum_{j=0}^{\log_b n-1} \left(\frac{a}{b^{\log_b a}}\right)^j
                                                                 \log_b n - 1
                                               = n^{\log_b a} \sum_{a} 1
                                               = n^{\log_b a} \log_b n
```

Case 2:
$$f(n) = \Theta(n^{\log_b a})$$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$$

$$= \Theta(n^{\log_b a}) + g(n)$$

$$= \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \log_b n)$$

$$= \Theta(n^{\log_b a} \log_b n)$$

Case 2:
$$f(n) = \Theta(n^{\log_b a})$$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$$

$$= \Theta(n^{\log_b a}) + g(n)$$

$$= \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \log_b n)$$

$$= \Theta(n^{\log_b a} \log_b n)$$

Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$

$$g(n) = \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j)$$

$$\leq \sum_{j=0}^{\log_b n - 1} c^j f(n) \quad (By \ af(n/b) \leq cf(n))$$

$$\leq f(n) \sum_{j=0}^{\infty} c^j = f(n) \left(\frac{1}{1 - c}\right)$$

```
Case 3: f(n) = \Omega(n^{\log_b a + \epsilon})
T(n) = \Theta(n^{\log_b a}) + g(n)
= \Theta(n^{\log_b a}) + \Theta(f(n))
= \Theta(f(n))
```

```
Case 3: f(n) = \Omega(n^{\log_b a + \epsilon})
T(n) = \Theta(n^{\log_b a}) + g(n)
= \Theta(n^{\log_b a}) + \Theta(f(n))
= \Theta(f(n))
```

Changing variables

Changing variables

$$T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \lg n$$

- Let $m = \lg n$, then $T(2^m) = 2T(2^{m/2}) + m$.
- Let $S(m) = T(2^m)$, then S(m) = 2S(m/2) + m.
- $T(n) = T(2^m) = S(m) = \Theta(m \lg m) = \Theta(\lg n \lg \lg n).$

Changing variables

Changing variables

$$T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \lg n$$

- Let $m = \lg n$, then $T(2^m) = 2T(2^{m/2}) + m$.
- Let $S(m) = T(2^m)$, then S(m) = 2S(m/2) + m.
- $T(n) = T(2^m) = S(m) = \Theta(m \lg m) = \Theta(\lg n \lg \lg n).$

Changing variables

Changing variables

$$T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \lg n$$

- Let $m = \lg n$, then $T(2^m) = 2T(2^{m/2}) + m$.
- Let $S(m) = T(2^m)$, then S(m) = 2S(m/2) + m.
- $T(n) = T(2^m) = S(m) = \Theta(m \lg m) = \Theta(\lg n \lg \lg n).$

What is Divide and Conquer?

- Divide the problem (instance) into subproblems.
 - Conquer subproblems by solving them recursively.
- Combine subproblems solutions

What is Divide and Conquer?

- Divide the problem (instance) into subproblems.
 - Conquer subproblems by solving them recursively.
 - Combine subproblems solutions

What is Divide and Conquer?

- Divide the problem (instance) into subproblems.
 - Conquer subproblems by solving them recursively.
- Combine subproblems solutions.

- **Divide:** Trivial! We get two n/2-size subarrays.
- Conquer: Recursively sort the two subarrays.
- Combine: Linear-time merge.

- **Divide:** Trivial! We get two n/2-size subarrays.
- Conquer: Recursively sort the two subarrays.
- Combine: Linear-time merge.

- **Divide:** Trivial! We get two n/2-size subarrays.
- Conquer: Recursively sort the two subarrays.
- Combine: Linear-time merge.


```
MERGE-SORT(A,p,r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A,p,q)

4 MERGE-SORT(A,q+1,r)

5 MERGE(A,p,q,r)
```

Example

Example

Example

Example

Example

Example

- **1 Divide:** $D(n) = \Theta(1)$.
- **2** Conquer: Two subarrays = 2T(n/2).
- **Ombine:** $C(n) = \Theta(n)$.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) + \Theta(1) & \text{if } n > 1. \end{cases}$$

```
Master theorem, Case 2: \Theta(n^{\log_b a}) = \Theta(n)

T(n) = \Theta(n \lg n)
```

- **1 Divide:** $D(n) = \Theta(1)$.
- **2** Conquer: Two subarrays = 2T(n/2).
- **3** Combine: $C(n) = \Theta(n)$.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) + \Theta(1) & \text{if } n > 1. \end{cases}$$

```
Master theorem, Case 2: \Theta(n^{\log_b a}) = \Theta(n)

T(n) = \Theta(n | g | n)
```

- **1 Divide:** $D(n) = \Theta(1)$.
- **2** Conquer: Two subarrays = 2T(n/2).
- **3** Combine: $C(n) = \Theta(n)$.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) + \Theta(1) & \text{if } n > 1. \end{cases}$$

Master theorem, Case 2:
$$\Theta(n^{\log_b a}) = \Theta(n)$$

 $T(n) = \Theta(n | g | n)$

Analysis paradigm

- **1 Divide:** $D(n) = \Theta(1)$.
- **2** Conquer: Two subarrays = 2T(n/2).
- **Ombine:** $C(n) = \Theta(n)$.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) + \Theta(1) & \text{if } n > 1. \end{cases}$$

Master theorem, Case 2: $\Theta(n^{\log_b a}) = \Theta(n)$ $T(n) = \Theta(n | g | n)$

- **O** Divide: $D(n) = \Theta(1)$.
- **2** Conquer: Two subarrays = 2T(n/2).
- **3** Combine: $C(n) = \Theta(n)$.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) + \Theta(1) & \text{if } n > 1. \end{cases}$$

Master theorem, Case 2:
$$\Theta(n^{log_b a}) = \Theta(n)$$

 $T(n) = \Theta(n \lg n)$

Design paradigm

O Divide: Trivial! Check the middle element.

Subarray

Design paradigm

Example

Search 10 in the following array:

Design paradigm

- **ODIVIDE:** Trivial! Check the middle element.
- Conquer: Recursively search one subarray.
- Combine: Return the position

Example

Search 10 in the following array:

Design paradigm

- **ODIVIDE:** Trivial! Check the middle element.
- Conquer: Recursively search one subarray.
- Combine: Return the position

Example

Search 10 in the following array:

Design paradigm

- **1** Divide: Trivial! Check the middle element.
- Conquer: Recursively search one subarray.
- Combine: Return the position

Example

Search 10 in the following array:

Design paradigm

- **ODIVIDE:** Trivial! Check the middle element.
- Conquer: Recursively search one subarray.
- Combine: Return the position

Example

Search 10 in the following array:

Design paradigm

- **1 Divide:** Trivial! Check the middle element.
- Conquer: Recursively search one subarray.
- Combine: Return the position.

Example

Search 10 in the following array:

Design paradigm

- O Divide: Trivial! Check the middle element.
- Conquer: Recursively search one subarray.
- Combine: Return the position.

Example

Search 10 in the following array:

Design paradigm

- Divide: Trivial! Check the middle element.
- Conquer: Recursively search one subarray.
- Combine: Return the position.

Example

Search 10 in the following array:

- **O** Divide: $D(n) = \Theta(1)$.
- **Conquer:** Only search one subarray = T(n/2).
- **3** Combine: $\Theta(1)$.

$$T(n) = 1T(n/2) + \Theta(1)$$

Master theorem, Case 2:
$$\Theta(n^{\log_b a}) = \Theta(1)$$

 $T(n) = \Theta(\lg n)$

- **1 Divide:** $D(n) = \Theta(1)$.
- Only search one subarray = T(n/2).
- **3** Combine: $\Theta(1)$.

$$T(n) = 1T(n/2) + \Theta(1)$$

Master theorem, Case 2:
$$\Theta(n^{\log_b a}) = \Theta(1)$$

 $T(n) = \Theta(\lg n)$

- **Divide:** $D(n) = \Theta(1)$.
- **Conquer:** Only search one subarray = T(n/2).
- **3** Combine: $\Theta(1)$.

$$T(n) = 1T(n/2) + \Theta(1)$$

Master theorem, Case 2:
$$\Theta(n^{log_b a}) = \Theta(1)$$

 $T(n) = \Theta(\lg n)$

- **•** Divide: $D(n) = \Theta(1)$.
- Only search one subarray = T(n/2).
- **3** Combine: $\Theta(1)$.

$$T(n) = 1T(n/2) + \Theta(1)$$

Master theorem, Case 2:
$$\Theta(n^{log_b a}) = \Theta(1)$$

 $T(n) = \Theta(\lg n)$

- **Divide:** $D(n) = \Theta(1)$.
- Only search one subarray = T(n/2).
- **3** Combine: $\Theta(1)$.

$$T(n) = 1T(n/2) + \Theta(1)$$

Master theorem, Case 2:
$$\Theta(n^{log_ba}) = \Theta(1)$$

$$T(n) = \Theta(\lg n)$$

Naive recursive algorithm

```
FIBONNACI(n)

1 if (n = 0) return 0;

2 if (n = 1) return 1;

3 return FIBONNACCI(n - 1)

+ FIBONNACCI(n - 2);
```

Naive recursive algorithm

$$T(n) = T(n-1) + T(n-2)$$

$$T(n) = \frac{1}{n} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

$$T(n) = \Omega(\phi^n), \phi = (1 + \sqrt{5})/2$$

Naive recursive algorithm

$$T(n) = T(n-1) + T(n-2)$$

$$T(n) = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

$$T(n) = \Omega(\phi^n), \phi = (1+\sqrt{5})/2$$

Naive recursive squaring

 $F_n = \phi^n/\sqrt{5}$ rounded to the nearest integer.

•
$$T(n) = T(n/2) + \Theta(1) \Longrightarrow$$

• Unreliable!

Bottom-up

- Compute F_0, F_1, \ldots, F_n .
- \bullet $T(n) = \Theta(n)$.

Naive recursive squaring

 $F_n = \phi^n/\sqrt{5}$ rounded to the nearest integer.

- $T(n) = T(n/2) + \Theta(1) \Longrightarrow T(n) = \Theta(\lg n)$.
- Unreliable!

Bottom-up

- Compute F_0, F_1, \ldots, F_n .
- \bullet $T(n) = \Theta(n)$

Naive recursive squaring

 $F_n = \phi^n/\sqrt{5}$ rounded to the nearest integer.

- $T(n) = T(n/2) + \Theta(1) \Longrightarrow T(n) = \Theta(\lg n)$.
- Unreliable!

Bottom-up

- Compute F_0, F_1, \ldots, F_n .
- $T(n) = \Theta(n)$

Naive recursive squaring

 $F_n = \phi^n/\sqrt{5}$ rounded to the nearest integer.

- $T(n) = T(n/2) + \Theta(1) \Longrightarrow T(n) = \Theta(\lg n)$.
- Unreliable!

Bottom-up

- Compute F_0, F_1, \ldots, F_n .
- \bullet $T(n) = \Theta(n)$.

Naive recursive squaring

 $F_n = \phi^n/\sqrt{5}$ rounded to the nearest integer.

- $T(n) = T(n/2) + \Theta(1) \Longrightarrow T(n) = \Theta(\lg n)$.
- Unreliable!

Bottom-up

- Compute F_0, F_1, \dots, F_n .
- $T(n) = \Theta(n)$.

Recursive squaring

Theorem:

$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n$$

Proof.

$$\begin{bmatrix} F_2 & F_1 \\ F_1 & F_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^1$$

Inductive step($n \ge 2$):

$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} F_n & F_{n-1} \\ F_{n-1} & F_{n-2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Proof.

$$\begin{bmatrix} F_2 & F_1 \\ F_1 & F_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^1$$

Inductive step($n \ge 2$):

$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} F_n & F_{n-1} \\ F_{n-1} & F_{n-2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Recursive squaring

1 Divide: n/2

2 Conquer: Calculate $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{11/2}$

3 Combine: $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n/2} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n/2}$

 $T(n) = T(n/2) + \Theta(1) \Longrightarrow T(n) = \Theta(\lg n).$

Exercises

① Triomino拼图,用一个L型瓦片(含三个方块)覆盖一个缺少了一个方块的2ⁿ×2ⁿ的棋盘。设计此问题的分治算法并分析复杂度。

A simple example

$$23 * 14 = (2 \cdot 10^{1} + 3 \cdot 10^{0})$$

$$* (1 \cdot 10^{1} + 4 \cdot 10^{0})$$

$$= (2 * 1)10^{2} + (3 * 1 + 2 * 4)10^{1}$$

$$+ (3 * 4)10^{0}$$

$$(3 * 1 + 2 * 4) = (2 + 3) * (1 + 4)$$

$$- (2 * 1) - (3 * 4)$$

A simple example

$$23*14 = (2 \cdot 10^{1} + 3 \cdot 10^{0})$$

$$* (1 \cdot 10^{1} + 4 \cdot 10^{0})$$

$$= (2*1)10^{2} + (3*1 + 2*4)10^{1}$$

$$+ (3*4)10^{0}$$

$$(3*1 + 2*4) = (2+3)*(1+4)$$

$$- (2*1) - (3*4)$$

A general example

$$c = a * b = (a_1 10^{n/2} + a_0) * (b_1 10^{n/2} + b_0)$$

$$= (a_1 * b_1) 10^n + (a_1 * b_0 + a_0 * b_1) 10^{n/2}$$

$$+ (a_0 * b_0)$$

$$= c_2 10^n + c_1 10^{n/2} + c_0$$

$$c_4 = (a_1 + a_0) * (b_1 + b_0) - (c_2 + c_0)$$

A general example

$$c = a * b = (a_1 10^{n/2} + a_0) * (b_1 10^{n/2} + b_0)$$

$$= (a_1 * b_1) 10^n + (a_1 * b_0 + a_0 * b_1) 10^{n/2}$$

$$+ (a_0 * b_0)$$

$$= c_2 10^n + c_1 10^{n/2} + c_0$$

$$c_1 = (a_1 + a_0) * (b_1 + b_0) - (c_2 + c_0)$$

Analysis

- **1 Divide:** $D(n) = \Theta(n)$.
- ② Conquer: 3T(n/2).
- **3 Combine:** $C(n) = \Theta(n)$.

$$T(n) = 3T(n/2) + \Theta(n)$$

Case 1:
$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^{1.585})$$

Matrix multiplication

- Input: $A = [a_{ij}], B = [b_{ij}].$
- Output: $C = [c_{ij}] = A \cdot B$ $i, j = 1, 2, \dots, n$.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

$$\begin{bmatrix} c_{11} & \cdots & c_{1n} \\ c_{21} & \cdots & c_{2n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ b_{21} & \cdots & b_{2n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{bmatrix}$$

```
MATRIX-MULTIPLY(A, B)
    n = A.rows
    let C be an n \times n matrix
    for i = 1 to n
4
          for i = 1 to n
5
                c_{ii}=0
                for k = 1 to n
6
                      c_{ii} = c_{ii} + a_{ik} \cdot b_{ki}
    return C
```

```
MATRIX-MULTIPLY (A, B)
    n = A.rows
    let C be an n \times n matrix
    for i = 1 to n
                                       T(n) = \Theta(n^3)
4
          for i = 1 to n
5
                c_{ii}=0
                for k = 1 to n
6
                      c_{ii} = c_{ii} + a_{ik} \cdot b_{ki}
    return C
```

Idea of Divide and Conquer

Divide a $n \times n$ matrix multiplication into 2×2 $(n/2) \times (n/2)$ submatrix multiplication.

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$
$$C = A \cdot B$$

$$r = ae + bg$$
, $s = af + bh$,
 $t = ce + dg$, $u = cf + dh$.

Analysis

$$T(n) = T(n/2) +$$

$$f(n) = \Theta(n^2) = O(n^{\log_b a - \epsilon}) = O(n^{3 - \epsilon})$$

Analysis

$$T(n) = \frac{8}{7}T(n/2) + \frac{1}{2}T(n/2) + \frac{1}{$$

$$f(n) = \Theta(n^2) = O(n^{\log_b a - \epsilon}) = O(n^{3 - \epsilon})$$

Analysis

$$T(n) = 8T(n/2) + \Theta(n^2)$$

$$f(n) = \Theta(n^2) = O(n^{\log_b a - \epsilon}) = O(n^{3 - \epsilon})$$

Case 1:
$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^3)$$

Analysis

$$T(n) = \frac{8}{7}T(n/2) + \Theta(n^2)$$

Master theorem

$$f(n) = \Theta(n^2) = O(n^{\log_b a - \epsilon}) = O(n^{3 - \epsilon})$$
Case 1: $T(n) = \Theta(n^{\log_b a}) = \Theta(n^3)$

 $I(n) = \Theta(n^{\log_b a}) = \Theta(n^s)$ No improvment 1?

Analysis

$$T(n) = 8T(n/2) + \Theta(n^2)$$

$$f(n) = \Theta(n^2) = O(n^{\log_b a - \epsilon}) = O(n^{3 - \epsilon})$$

Case 1:
$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^3)$$

No improvment !?

$$P_1 = a \cdot (f - h)$$

 $P_2 = (a + b) \cdot h$
 $P_3 = (c + d) \cdot e$
 $P_4 = d \cdot (g - e)$
 $P_5 = (a + d) \cdot (e + h)$
 $P_6 = (b - d) \cdot (g + h)$
 $P_7 = (a - c) \cdot (e + f)$

$$r = P_5 + P_4 - P_2 + P_6$$

$$s = P_1 + P_2$$

$$t = P_3 + P_4$$

$$u = P_5 + P_1 - P_3 - P_7$$

$$P_1 = a \cdot (f - h)$$

 $P_2 = (a + b) \cdot h$
 $P_3 = (c + d) \cdot e$
 $P_4 = d \cdot (g - e)$
 $P_5 = (a + d) \cdot (e + h)$
 $P_6 = (b - d) \cdot (g + h)$
 $P_7 = (a - c) \cdot (e + f)$
 $r = P_5 + P_4 - P_2 + P_6$
 $s = P_1 + P_2$
 $t = P_3 + P_4$
 $u = P_5 + P_1 - P_3 - P_7$

$$P_1 = a \cdot (f - h)$$

 $P_2 = (a + b) \cdot h$
 $P_3 = (c + d) \cdot e$
 $P_4 = d \cdot (g - e)$
 $P_5 = (a + d) \cdot (e + h)$
 $P_6 = (b - d) \cdot (g + h)$
 $P_7 = (a - c) \cdot (e + f)$
 $r = P_5 + P_4 - P_2 + P_6$
 $s = P_1 + P_2$
 $t = P_3 + P_4$
 $u = P_5 + P_1 - P_3 - P_7$

$$P_1 = a \cdot (f - h)$$
 $P_2 = (a + b) \cdot h$
 $P_3 = (c + d) \cdot e$
 $P_4 = d \cdot (g - e)$
 $P_5 = (a + d) \cdot (e + h)$
 $P_6 = (b - d) \cdot (g + h)$
 $P_7 = (a - c) \cdot (e + f)$

$$r = P_5 + P_4 - P_2 + P_6$$

$$= (a + d)(e + h)$$

$$+ d(g - e) - (a + b)h$$

$$(b - d)(g + h)$$

$$= ae + ah + de + dh$$

$$+ dg - de - ah - bh$$

$$- bg + bh - dg - dh$$

$$= ae + bg$$

Strassen's Divide and Conquer

- **Divide:** Partition A and B into $(n/2) \times (n/2)$ submatrices.
- **Conquer:** Perform 7 multiplications of $(n/2) \times (n/2)$ submatrices recursively.
- **Combine:** Form C using + and on $(n/2) \times (n/2)$ submatrices.

$$T(n) = \frac{7}{7}T(n/2) + \Theta(n^2)$$

$$f(n)=\Theta(n^2)=O(n^{\log_b a-\epsilon})pprox O(n^{2.81-\epsilon})$$
Case 1: $T(n)=\Theta(n^{\log_b a})pprox \Theta(n^{2.81})$

$$T(n) = \frac{7}{7}T(n/2) + \Theta(n^2)$$

$$f(n) = \Theta(n^2) = O(n^{\log_b a - \epsilon}) \approx O(n^{2.81 - \epsilon})$$

Case 1:
$$T(n) = \Theta(n^{\log_b a}) \approx \Theta(n^{2.81})$$

Discussion

- The "crossover point" of Strassen's algorithm on various systems ranging from n = 400 to n = 2150.
- In 1971, Hopcroft and Kerr proved that 7 multiplications is the best for 2 × 2 partition.
- Best to date (of theoretical interest only): $\Theta(n^{2.376...})$.

Discussion

- Strassen's algorithm is often not the method of choice for matrix multiplication:
 - The constant factor hidden in the running time is larger than the simple procedure.
 - For sparse matrices, we have better algorithms.
 - Strassen's algorithm is not quite numerically stable.
 - It uses too much memories.

Problem

Given a set P of $n \ge 2$ points, we now consider the problem of finding the closest pair of points in the set.

Closest refers to the usual euclidean distance: the distance between points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

Brute-force algorithm

Simply look at all $\Theta(n^2)$ pairs of points.

Divide-and-conquer algorithm

- **Divide:** Find a vertical line / that bisects the point set P into two sets $|P_L| = \lceil |P|/2 \rceil$, $|P_R| = \lfloor |P|/2 \rfloor$.
- **Conquer:** Find the closest pairs of points in P_L and P_R .
- Combine: How?

One dimension example

$$S_1 = \{x \in S \mid x \leq m\} \ S_2 = \{x \in S \mid x > m\}$$

$$S_1 \qquad S_2 \qquad d = min\{|p_1 - p_2|, |q_1 - q_2|\} \ d_{min} = min\{d, |p_3 - q_3|\}$$

Two dimension example

$$S_1 = \{ p \in S \mid x(p) \le m \}$$

 $S_2 = \{ p \in S \mid x(p) > m \}$

$$d = \min\{d_1, d_2\}$$

Two dimension example

$$S_1 = \{ p \in S \mid x(p) \le m \}$$

 $S_2 = \{ p \in S \mid x(p) > m \}$

$$d = \min\{d_1, d_2\}$$

 $d_{\min} = \min\{d, \text{ closest }$ pair in ℓ neighborhood ℓ

Two dimension example

$$S_1 = \{ p \in S \mid x(p) \le m \}$$

 $S_2 = \{ p \in S \mid x(p) > m \}$

$$d = \min\{d_1, d_2\}$$

 $d_{\min} = \min\{d, \text{ closest pair in } \ell \text{ neighborhood } \}$

How many points in the region?

$$(x(u) - x(v))^2 + (y(u) - y(v))^2$$

 $\leq (d/2)^2 + (2d/3)^2$
 $= 25d^2/36$

How many points in the region?

$$(x(u) - x(v))^2 + (y(u) - y(v))^2$$

 $\leq (d/2)^2 + (2d/3)^2$
 $= 25d^2/36$

How many points in the region?

$$(x(u) - x(v))^2 + (y(u) - y(v))^2$$

 $\leq (d/2)^2 + (2d/3)^2$
 $= 25d^2/36$
 $\leq d^2$

How many points in the region?

$$(x(u) - x(v))^2 + (y(u) - y(v))^2$$

 $\leq (d/2)^2 + (2d/3)^2$
 $= 25d^2/36$
 $\leq d^2$

Analysis

O Divide: $D(n) = \Theta(n)$.

② Conquer: 2T(n/2).

3 Combine: $C(n) = \Theta(n)$.

Master theorem

$$T(n) = 2T(n/2) + \Theta(n)$$

Case 2: $T(n) = \Theta(n \lg n)$

Hiring Problem

Suppose that you need to hire a new office assistant from *n* candidates. After the interview, you must decide whether to hire him (her) or not. If you hire somebody, you have to pay some money.


```
HIRE-ASSISTANT(n)
   best = 0
   for i = 1 to n
3
        interview candidate i
        if candidate i is better than
                        candidate best
5
              best = i
              hire candidate i
```

Worst-case analysis

- We actually hire every candidate that we interview.
- If every hiring cost is c_h , the total hiring cost is $O(nc_h)$.

Probabilistic analysis

- Why? More practical!
- In order to perform a probabilistic analysis, we must use knowledge of, or make assumption about, the distribution of the inputs.
- We must have greater control over the order in which we interview the candidates.

Review of probability knowledge

Expectation

The **expected value(expectation)** of a discrete random variable *X* is

$$E[X] = \sum_{x} x Pr\{X = x\}.$$

Its variance is

$$V[X] = E[X - E[X]]^2 = E[X^2] - [E[X]]^2.$$

Review of probability knowledge

Expectation

Some properties:

$$E[X + Y] = E[X] + E[Y]$$
 $E[aX] = aE[X]$
 $E[XY] = E[X]E[Y]$ $V[aX] = a^2V[X]$
 $V[X + Y] = V[X] + V[Y]$

Review of probability knowledge

Conditional probability

The **conditional probability** of an event A given that another event B occurs is defined to be

$$Pr\{A|B\} = \frac{Pr\{A \cap B\}}{Pr\{B\}}$$

Hence we have $Pr\{A \cap B\} = Pr\{A|B\}Pr\{B\}$

Definition

Give a sample space S and an event A, the *indicator random variable* $I\{A\}$ associated with event A is defined as

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs,} \\ 0 & \text{if } A \text{ does not occur.} \end{cases}$$

Lemma 5.1

Given a sample space S and an event A in the sample space S, let $X_A = I\{A\}$. Then $F[X_A] = Pr\{A\}$

Definition

Give a sample space S and an event A, the *indicator random variable* $I\{A\}$ associated with event A is defined as

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs,} \\ 0 & \text{if } A \text{ does not occur.} \end{cases}$$

Lemma 5.1

Given a sample space S and an event A in the sample space S, let $X_A = I\{A\}$. Then $E[X_A] = Pr\{A\}$.

Flip a coin

$$E[X_H] = E[I\{Y = H\}]$$

= $Pr\{Y = H\} = 1/2$.

Flip n coins

$$E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$$
$$= \sum_{i=1}^{n} 1/2 = n/2$$

Flip a coin

$$E[X_H] = E[I\{Y = H\}]$$

= $Pr\{Y = H\} = 1/2$.

Flip n coins

$$E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$$

= $\sum_{i=1}^{n} 1/2 = n/2$

Definition

Let X be the number of hired persons and let X_i be

$$X_i = I\{\text{candidate } i \text{ is hired}\}$$

$$= \begin{cases} 1 & \text{if candidate } i \text{ is hired} \\ 0 & \text{if candidate } i \text{ is not hired} \end{cases}$$

and

$$X = X_1 + X_2 + \cdots + X_n$$

Hired expectation

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right]$$
$$= \sum_{i=1}^{n} E[X_i]$$
$$= \sum_{i=1}^{n} 1/i$$

$$\int_{m-1}^{n} f(x) dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x) dx$$

Hired expectation

When f(k) is a monotonically decreasing function:

$$\int_{m}^{n+1} f(x)dx \leq \sum_{k=m}^{n} f(k) \leq \int_{m-1}^{n} f(x)dx$$

$$\ln(n+1) = \int_1^{n+1} \frac{dx}{x} \le \sum_{k=1}^n \frac{1}{k} \le \int_1^n \frac{dx}{x} + 1 = \ln n + 1$$

Hired expectation

When f(k) is a monotonically decreasing function:

$$\int_{m}^{n+1} f(x)dx \leq \sum_{k=m}^{n} f(k) \leq \int_{m-1}^{n} f(x)dx$$

$$\ln(n+1) = \int_1^{n+1} \frac{dx}{x} \le \sum_{k=1}^n \frac{1}{k} \le \int_1^n \frac{dx}{x} + 1 = \ln n + 1$$

Hired expectation

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right]$$

$$= \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} 1/i$$

$$= \ln n + O(1)$$

Lemma 5.2

Assuming that the candidates are presented in a random order, algorithm HIRE-ASSISTANT has a total hiring cost of $O(c_h \ln n)$.

Randomized algorithms

```
RANDOMIZED-HIRE-ASSISTANT(n)
   randomly permute the list of candidates
   best = 0
   for i = 1 to n
        interview candidate i
5
        if candidate i is better than
                  candidate best
6
             best = i
             hire candidate i
```


Randomized algorithms

Lemma 5.3

The expected hiring cost of the procedure RANDOMIZED-HIRE-ASSISTANT is $O(c_h \ln n)$.

Randomly permuting arrays

PERMUTE-BY-SORTING(A)

- 1 n = A.length
- 2 let P[1..n] be a new array
- 3 **for** i = 1 **to** n
- $4 P[i] = RANDOM(1, n^3)$
- 5 sort A, using P as sort keys.

Example

Let A = (1, 2, 3, 4) and choose random priorities P = (10, 2, 57, 21), then the new A is (2, 1, 4, 3).

Uniform Random Permutation

Lemma 5.4

Procedure PERMUTE-BY-SORTING produces **a uniform random permutation** of the input, assuming that all priorities are distinct.

Uniform Random Permutation

Proof. $Pr\{X_{1} \cap X_{2} \cap \cdots \cap X_{n-1} \cap X_{n}\}$ $=Pr\{X_{1}\} \cdot Pr\{X_{2}|X_{1}\} \cdots Pr\{X_{n}|X_{n-1} \cap \cdots \cap X_{1}\}$ $=\left(\frac{1}{n}\right)\left(\frac{1}{n-1}\right)\cdots\left(\frac{1}{2}\right)\left(\frac{1}{1}\right)$ $=\frac{1}{n}$

A Better Random Permutation

```
RANDOMIZE-IN-PLACE(A)

1 n = A.length

2 for i = 1 to n

3 swap A[i] \leftrightarrow A[RANDOM(i, n)]
```

Lemma 5.5

Procedure RANDOMIZE-IN-PLACE computes a uniform random permutation.

A Better Random Permutation

Proof.

We use the following loop invariant: Just prior to the *i*th iteration of the **for** loop of lines 2-3, for each possible i-1-permutation, the subarray A[1..i-1] contains this i-1-permutation with probability (n-i+1)!/n!.


```
ON-LINE-MAXIMUM(k, n)
   bestscore = -\infty
   for i = 1 to k
        if score(i) > bestscore
             bestscore = score(i)
   for i = k + 1 to n
        if score(i) > bestscore
              return i
   return n
```

Analysis

$$Pr\{S\} = \sum_{i=k+1}^{n} Pr\{S_i\}$$

In order to succeed when the best-qualified applicant is the *i*th one, two things must happen.

Analysis

- The best-qualified applicant must be in position i, an event which we denote by B_i.
- The algorithm must not select any of the applicants in positions k + 1 through i − 1.
 We use O_i to denote the event.

Analysis

$$Pr\{S\} = \sum_{i=k+1}^{n} Pr\{S_i\} = \sum_{i=k+1}^{n} \frac{k}{n(i-1)}$$
$$= \frac{k}{n} \sum_{i=k+1}^{n} \frac{1}{i-1} = \frac{k}{n} \sum_{i=k}^{n-1} \frac{1}{i}$$

 $Pr\{S_i\} = Pr\{Bi \cap O_i\} = Pr\{B_i\}Pr\{O_i\}.$

Analysis

We have

$$\int_{k}^{n} \frac{1}{x} dx \leq \sum_{i=k}^{n-1} \frac{1}{i} \leq \int_{k-1}^{n-1} \frac{1}{x} dx$$

Such that

$$\frac{k}{n}(\ln n - \ln k) \le Pr\{S\} \le \frac{k}{n}(\ln(n-1) - \ln(k-1))$$

Analysis

We have

$$\int_{k}^{n} \frac{1}{x} dx \leq \sum_{i=k}^{n-1} \frac{1}{i} \leq \int_{k-1}^{n-1} \frac{1}{x} dx$$

Such that

$$\frac{k}{n}(\ln n - \ln k) \le Pr\{S\} \le \frac{k}{n}(\ln(n-1) - \ln(k-1))$$

Analysis

We get

$$\frac{d(\frac{k}{n}(\ln n - \ln k))}{dk} = \frac{1}{n}(\ln n - \ln k - 1).$$

When $\frac{1}{n}(\ln n - \ln k - 1) = 0$, $Pr\{S\}$ is maximized. Thus if we implement our strategy with k = n/e, we will succeed in hiring our best-qualified applicant with the probability at least 1/e.

Analysis

We get

$$\frac{d(\frac{k}{n}(\ln n - \ln k))}{dk} = \frac{1}{n}(\ln n - \ln k - 1).$$

When $\frac{1}{n}(\ln n - \ln k - 1) = 0$, $Pr\{S\}$ is maximized. Thus if we implement our strategy with k = n/e, we will succeed in hiring our best-qualified applicant with the probability at least 1/e.