

CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

EDENILSON SAN'ANNA DOS SANTOS – CB3020626
HADILTON DE OLIVEIRA SAVI - CB3021173
GUILHERME BARBOSA OLIVEIRA – CB3023184
LUIZ USTAVO UIMARAES DA SILVA SANTOS – CB3020649

SENSOR DE GÁS GLP TECNOLOGIAS, CARACTERISTICAS E APLICAÇÕES

EDENILSON SAN'ANNA DOS SANTOS HADILTON DE OLIVEIRA SAVI GUILHERME BARBOSA OLIVEIRA LUIZ GUSTAVO GUIMARAES DA SILVA SANTOS

SENSOR DE GÁS GLP TECNOLOGIAS, CARACTERISTICAS E APLICAÇÕES

Trabalho apresentado como requisito parcial para aprovação na disciplina Automação Predial e Domótica do Curso Superior em Automação Industrial do IFSP Campus Cubatão.

Prof. Me. Arnaldo de Carvalho Junior

RESUMO

O trabalho aborda o tema dos sensores, dispositivos essenciais para a captação de informações do ambiente e sua conversão em sinais elétricos que podem ser processados por sistemas eletrônicos. Inicialmente, são apresentados os conceitos básicos sobre sensores, incluindo sua definição, funcionamento e a importância da tecnologia sensorial em diversas áreas da indústria e da sociedade. O documento classifica os sensores em diferentes tipos, como sensores de temperatura, pressão, umidade, movimento, entre outros, detalhando seus princípios de operação e aplicações específicas. Além disso, são exploradas as principais tecnologias utilizadas nesses dispositivos, incluindo sensores analógicos e digitais, bem como os métodos de calibração e manutenção para garantir a precisão das medições. Outro aspecto abordado é a aplicação dos sensores em setores estratégicos, como a automação industrial, a medicina, a Internet das Coisas (IoT) e os veículos autônomos. O trabalho destaca como esses dispositivos desempenham um papel fundamental na modernização de processos, garantindo maior eficiência, segurança e qualidade em diversas atividades humanas. Por fim, o documento conclui ressaltando a crescente evolução dos sensores e seu impacto na inovação tecnológica, apontando tendências futuras, como sensores inteligentes e integrados a redes de comunicação avançadas.

Palavras-chave: Sensores, Automação e Tecnologia.

SUMÁRIO

1.0	INTRODUÇÃO	5
2.0	DESENVOLVIMENTO	6
3.0	PROJETO DE ARDUÍNO UTILIZADO	13
4.0	CONCLUSÃO	15

1.0 INTRODUÇÃO

Os dispositivos de detecção de vazamento de gás são sensores essenciais para a segurança em ambientes industriais, comerciais e residenciais, projetados para identificar a presença de gases inflamáveis ou tóxicos na atmosfera. Esses sensores operam por meio da medição da concentração do gás-alvo no ambiente, utilizando diferentes princípios de detecção, como sensores catalíticos, semicondutores, eletroquímicos e infravermelhos.

Grandezas e Unidades de Medida

A principal grandeza monitorada por esses dispositivos é a concentração de gás, geralmente expressa em:

- Partes por milhão (ppm): Indica a quantidade de moléculas do gás presente em um milhão de partes de ar.
- Percentual do Limite Inferior de Explosividade (LEL%): Refere-se à fração da concentração mínima necessária para que a mistura gás-ar se torne inflamável.
 Sensores de segurança normalmente disparam alertas em torno de 10 a 20% do LEL, garantindo a prevenção antes da atmosfera atingir níveis críticos.

Princípio de Funcionamento dos Sensores

Dependendo da aplicação, os detectores utilizam diferentes tecnologias para identificar a presença de gases:

- Sensores Catalíticos (Pellistor): baseiam-se na oxidação catalítica do gás sobre um filamento aquecido. A reação exotérmica altera a resistência elétrica do elemento sensor, proporcionalmente à concentração de gás. São adequados para detectar gases combustíveis como metano (CH₄), propano (C₃H₈) e butano (C₄H₁₀).
- Sensores Semicondutores: utilizam óxidos metálicos semicondutores (SnO₂, por exemplo) cuja condutividade elétrica varia conforme a interação com moléculas de gás. Possuem alta sensibilidade e são amplamente empregados para detectar vazamentos de GLP, hidrogênio e monóxido de carbono.
- Sensores Eletroquímicos: utilizam uma célula eletroquímica onde o gás reage com eletrodos, gerando uma corrente elétrica proporcional à concentração detectada. São amplamente usados para detectar gases tóxicos como CO, H₂S e NO₂.

- Sensores Infravermelhos (NDIR Non-Dispersive Infrared): baseiam-se na absorção de radiação infravermelha por moléculas de gás em comprimentos de onda específicos. São altamente seletivos, estáveis e usados para monitorar gases como CO₂ e hidrocarbonetos.
- Mecanismos de Segurança: quando a concentração do gás ultrapassa um limiar de segurança predefinido, o detector aciona alarmes visuais e sonoros para alertar operadores, sistemas de ventilação automática, reduzindo a concentração do gás, atuação em válvulas de corte, interrompendo o fluxo de gás para evitar explosões ou intoxicações.

A escolha do sensor adequado depende do tipo de gás a ser monitorado, da sensibilidade necessária e das condições ambientais do local de instalação.

2.0 DESENVOLVIMENTO

Detecção Rápida e Precisa de Gás GLP

Os sensores de gás liquefeito de petróleo (GLP) são projetados para detectar rapidamente a presença de gases inflamáveis, como o propano e o butano. A rapidez na detecção é essencial para evitar situações de risco, como vazamentos que podem levar a explosões ou intoxicações. Sensores modernos utilizam elementos semicondutores que reagem à presença de gases, alterando sua resistência elétrica e permitindo que um sistema de monitoramento atue imediatamente para alertar sobre o perigo.

Alta Sensibilidade à Mistura de Propano e Butano

O gás GLP é composto principalmente por uma mistura de propano (C_3H_8) e butano (C_4H_{10}), sendo essencial que o sensor tenha alta sensibilidade para detectar pequenas concentrações desses gases no ambiente. Sensores de alta precisão conseguem identificar concentrações muito baixas (medidas em ppm – partes por milhão), garantindo que qualquer vazamento seja detectado antes que se torne um problema sério.

Integração Fácil com Microcontroladores (Arduino, ESP32, etc.)

Muitos sensores de gás GLP, como os da série MQ (exemplo: MQ-2, MQ-5), são projetados para serem facilmente conectados a microcontroladores populares, como Arduino, ESP32 e Raspberry Pi. Isso permite que os sensores sejam utilizados em projetos de automação residencial, sistemas de segurança e monitoramento industrial. A interface de saída do sensor pode ser analógica (fornecendo uma tensão

proporcional à concentração do gás) ou digital (ativando um alarme quando um determinado nível de gás é atingido).

Vida Útil Longa e Baixo Consumo de Energia

Sensores modernos são projetados para operar de maneira eficiente, com baixo consumo de energia, o que os torna ideais para aplicações em dispositivos alimentados por bateria. Além disso, sua vida útil pode variar entre 5 a 10 anos, dependendo do modelo e das condições de uso. Isso garante um funcionamento confiável a longo prazo sem necessidade de substituições frequentes.

Essas características fazem dos sensores de gás GLP uma solução essencial para ambientes industriais, cozinhas, veículos movidos a GLP e sistemas de segurança residencial.

Smart Homes – Integração com Assistentes Virtuais para Notificações

A implementação de IoT em residências inteligentes permite a comunicação entre sensores, dispositivos conectados e assistentes virtuais (Amazon Alexa, Google Assistant, Apple Siri).

Componentes Técnicos:

Sensores de Detecção:

- Sensores de temperatura e umidade (DHT11, DHT22, BME280).
- Sensores de presença (PIR, mmWave).
- Sensores de vazamento de gás ou água (MQ-2, MQ-5, YL-83).

Módulos de Comunicação:

- Wi-Fi (ESP8266, ESP32) para conectividade com a rede doméstica.
- Zigbee/Z-Wave (CC2531, Sonoff Bridge) para comunicação de baixo consumo com dispositivos locais.
- Bluetooth Low Energy (BLE) (nRF52, ESP32) para integração com smartphones.

Plataformas e Protocolos:

- MQTT (Message Queuing Telemetry Transport) para comunicação entre sensores e servidores na nuvem.
- HTTP/REST API para envio de dados para assistentes virtuais.
- Plataformas de Gestão: AWS IoT, Google Cloud IoT, Home Assistant, OpenHAB.

Fluxo de Funcionamento:

- O sensor detecta um evento (exemplo: vazamento de gás).
- O microcontrolador processa os dados e transmite via MQTT para um broker na nuvem.
- A plataforma IoT analisa os dados e envia notificações via Webhooks para os assistentes virtuais.
- O assistente virtual pode acionar alarmes, enviar mensagens ou ativar dispositivos conectados.

Smart Buildings – Sistemas de Ventilação Automatizados para Vazamentos

Os edifícios inteligentes utilizam redes de sensores para monitorar ambientes em tempo real e ativar sistemas de ventilação automaticamente.

Componentes Técnicos:

Sensores Ambientais:

- Sensores de CO₂ (MH-Z19B).
- Sensores de qualidade do ar (SGP30, BME680).
- Sensores de vazamento de gás inflamável (MQ-2, MQ-7).

Controladores e Atuação:

- Microcontroladores (ESP32, Arduino Mega, STM32).
- CLPs (Controladores Lógico-Programáveis) para controle de exaustores e válvulas.
- Relés SSR para acionamento de motores de ventilação.

Protocolos de Comunicação:

- Modbus RTU/TCP para comunicação entre sensores e CLPs.
- BACnet/IP para integração com sistemas prediais.
- LoRaWAN/NB-IoT para transmissão de dados em redes de longo alcance.

Fluxo de Funcionamento:

- O sensor detecta níveis elevados de gás ou baixa qualidade do ar.
- O microcontrolador ou CLP processa a informação e decide a ação.
- O comando é enviado para os exaustores via relés ou interfaces Modbus/BACnet.
- A central de gestão do edifício recebe um alerta e registra o evento para análise futura.

Indústria e Comércio – Monitoramento de Vazamento em Tempo Real

Fábricas e cozinhas industriais utilizam sensores de IoT para detecção precoce de vazamentos de gases combustíveis, vapores tóxicos e líquidos.

Componentes Técnicos:

- Sensores de Detecção:
- Sensores de vazamento de gás (MQ-5, MQ-6, MQ-9).
- Sensores ultrassônicos para detecção de vazamento de líquidos (HC-SR04, JSN-SR04T).
- Sensores ópticos de nível (infrared water level sensor).

Protocolos de Comunicação:

- LPWAN (Low Power Wide Area Network): LoRa, Sigfox, NB-IoT para monitoramento remoto.
- WirelessHART/ISA100.11a: Comunicação segura e robusta para ambientes industriais.
- EtherNet/IP e Profinet: Para integração com sistemas SCADA e MES.

<u>Integração com Plataformas Industriais:</u>

- SCADA (Supervisory Control and Data Acquisition): Monitoramento em tempo real.
- ERP/MES (Manufacturing Execution System): Correlação de eventos com produção.
- IA para Análise Preditiva: Modelos de machine learning para prever falhas antes que ocorram.

Fluxo de Funcionamento:

- Sensores detectam um vazamento e enviam dados para um gateway.
- O gateway processa as leituras e transmite via LPWAN para o servidor SCADA/MES.
- O sistema de monitoramento emite alertas e pode desligar válvulas automaticamente.
- Os dados são armazenados para análise de tendências e manutenção preditiva.

Tipos de Sensores e suas características

Sensores de Óxido de Metal Semicondutor (MOS): esses sensores operam com base na modificação das propriedades elétricas de um material semicondutor quando exposto ao gás-alvo.

Princípio de Funcionamento:

- Utilizam materiais semicondutores, geralmente dióxido de estanho (SnO₂) dopado com outros óxidos metálicos para aprimorar a seletividade e sensibilidade.
- Em presença de ar, moléculas de oxigênio adsorvem na superfície do semicondutor, capturando elétrons e aumentando a resistência do material.
- Quando o gás GLP entra em contato, ocorre a oxidação dos hidrocarbonetos na superfície do sensor, reduzindo a barreira de potencial e, consequentemente, a resistência elétrica.

Características:

- Rápida resposta e recuperação.
- Baixo custo de fabricação.
- Sensibilidade ajustável via dopagem e tratamentos superficiais.
- Dependência de temperatura, exigindo um elemento de aquecimento para operação eficiente (~200-400°C).

Sensores Eletroquímicos: esses sensores baseiam-se em reações redox para converter a concentração do gás em uma corrente elétrica mensurável.

Princípio de Funcionamento:

- Compostos catalíticos, como platina ou paládio, promovem a oxidação do gás
 GLP no eletrodo de trabalho.
- A reação gera íons e elétrons que fluem através de um eletrólito, produzindo uma corrente elétrica proporcional à concentração do gás.
- Um eletrodo de referência estabiliza o potencial, garantindo medições precisas.

Características:

- Alta seletividade e sensibilidade.
- Baixo consumo de energia, operando sem necessidade de aquecimento.
- Vida útil limitada devido ao consumo dos reagentes químicos.
- Influência da umidade e temperatura na resposta.

Sensores Catalíticos: baseiam-se na combustão catalítica do gás para gerar mudanças térmicas que alteram a resistência de um elemento sensor.

Princípio de Funcionamento:

- Compostos catalisadores, como platina ou ródio, promovem a oxidação do GLP em temperaturas relativamente baixas (~500°C).
- A reação exotérmica aumenta a temperatura do sensor, alterando sua resistência elétrica.
- Um par de resistores (um ativo e outro de referência) forma um circuito de ponte de Wheatstone para medir a variação de resistência causada pela combustão do gás.

Características:

- Alta precisão e ampla faixa de detecção.
- Resposta linear em relação à concentração de gás.
- Necessidade de proteção contra envenenamento catalítico (por exemplo, exposição a compostos de enxofre pode desativar o catalisador).
- Consumo de energia relativamente alto devido à necessidade de aquecimento contínuo.

Sensor MQ-2

Princípio de Funcionamento: O MQ-2 é um sensor semicondutor que utiliza dióxido de estanho (SnO₂) como material sensível. Em atmosferas limpas, a resistência do SnO₂ é alta. Na presença de gases combustíveis, a resistência diminui proporcionalmente à concentração do gás, permitindo a detecção.

Especificações Técnicas:

<u>Gases Detectados:</u> GLP, metano, propano, butano, hidrogênio, álcool, gás natural e fumaça.

Faixa de Detecção: 300 a 10.000 ppm.

Tensão de Operação: 5V DC.

Corrente de Aquecimento: ≤180 mA.

Potência de Aquecimento: ≤900 mW.

Tempo de Resposta: ≤10 segundos.

Tempo de Recuperação: ≤30 segundos.

Resistência do Aquecedor: $31\Omega \pm 3\Omega$.

Sensibilidade: Rs (ar)/Rs (1000 ppm isobutano) ≥ 5.

Dimensões: 32 x 20 x 15 mm.

<u>Aplicações:</u> Utilizado em sistemas de detecção de vazamento de gás, alarmes de incêndio e projetos de automação residencial.

<u>Preço:</u> No mercado brasileiro, o módulo sensor MQ-2 é encontrado por aproximadamente R\$ 20 a R\$ 30.

Sensor MQ-6

Princípio de Funcionamento: Semelhante ao MQ-2, o MQ-6 utiliza SnO₂ como material sensível. Sua resistência varia conforme a presença de gases combustíveis, especialmente GLP, permitindo a detecção.

Especificações Técnicas:

Gases Detectados: GLP, metano, propano e outros gases inflamáveis.

Faixa de Detecção: 300 a 10.000 ppm.

Tensão de Operação: 5V DC.

Corrente de Aquecimento: ≤180 mA.

Potência de Aquecimento: ≤900 mW.

Tempo de Resposta: ≤10 segundos.

<u>Tempo de Recuperação</u>: ≤30 segundos. <u>Resistência do Aquecedor:</u> 31Ω ± 3Ω.

Sensibilidade: Rs (ar)/Rs (1000 ppm isobutano) ≥ 5.

Dimensões: 32 x 20 x 15 mm.

<u>Aplicações:</u> Ideal para detecção de vazamentos de GLP em ambientes domésticos e industriais.

Preço: O módulo sensor MQ-6 pode ser adquirido por valores entre R\$ 20 e R\$ 35 no mercado brasileiro.

Sensor MQ-9

Princípio de Funcionamento: O MQ-9 possui um elemento sensor de SnO₂ que opera em diferentes temperaturas para detectar diversos gases. Em temperaturas mais baixas, é sensível ao monóxido de carbono (CO); em temperaturas mais altas, detecta gases inflamáveis como GLP e metano.

Especificações Técnicas:

<u>Gases Detectados:</u> Monóxido de carbono (CO), GLP, metano e outros gases inflamáveis.

Faixa de Detecção: 100 a 10.000 ppm.

Tensão de Operação: 5V DC.

Corrente de Aquecimento: ≤180 mA.

Potência de Aquecimento: ≤900 mW.

Tempo de Resposta: ≤10 segundos.

Tempo de Recuperação: ≤30 segundos.

Resistência do Aquecedor: $31\Omega \pm 3\Omega$.

Sensibilidade: Rs (ar)/Rs (100 ppm CO) ≥ 5.

Dimensões: 35 x 22 x 15 mm.

<u>Aplicações:</u> Utilizado em sistemas de detecção de monóxido de carbono e vazamentos de gases inflamáveis em ambientes internos.

Preço: O módulo sensor MQ-9 é comercializado no Brasil por aproximadamente R\$ 25 a R\$ 40.

Sensor NDIR (Infravermelho Não Dispersivo)

Princípio de funcionamento: Absorção seletiva de radiação infravermelha por gases específicos, baseada na Lei de Beer-Lambert.

<u>Faixa de detecção:</u> Varia conforme o modelo, podendo cobrir desde ppm até % em volume.

<u>Gases detectados:</u> Dióxido de carbono (CO_2), metano (CH_4), óxido nitroso (N_2O), entre outros.

Tensão de operação: Normalmente entre 3.3V e 12V DC.

Tempo de resposta: Rápido, geralmente <30s.

Saída: Sinal digital ou analógico dependendo do modelo.

Aplicações: Monitoramento ambiental, detecção de CO₂ em estufas e HVAC, segurança em atmosferas controladas, aplicações industriais de precisão.

Vantagens: Alta precisão, longa vida útil, baixa influência de temperatura e umidade.

<u>Desvantagens:</u> Custo elevado em comparação aos sensores semicondutores, necessidade de calibração periódica.

3.0 PROJETO DE ARDUÍNO UTILIZADO

```
// C++ code
//
void setup()
{
Serial.begin(9600);
}
void loop()
```

```
{
int valor = analogRead (A0);
if(valor >= 970 && valor < 1000){
tone(6,1000);
delay(1000);
noTone(6);
delay(500);
}else if(valor >= 1000){
tone(6,2000);
delay(1000);
noTone(6);
delay(500);
} else{
noTone(6);
}
Serial.println(valor);
}
```

Figura 1 – Projeto Sensor de Gás

Fonte: Os Autores

Figura 2 – Vista Esquemática do Projeto Sensor de Gás

Fonte: Os Autores

Figura 3 – Componentes utilizados no Projeto Sensor de Gás

Nome	Quantidade	Componente
UArduíno UNO 3	1	Arduino Uno R3
RResistor	1	1 kΩ Resistor
PIEZOPiezo	1	Piezo
GASSensor de Gás	1	Sensor de gás
RResistor 2	1	100 kΩ Resistor
S1	1	Botão

Fonte: Os Autores

4.0 CONCLUSÃO

Os sensores de gás GLP desempenham um papel crítico na mitigação de riscos associados a vazamentos de gases inflamáveis, prevenindo explosões e intoxicações. A integração desses dispositivos com sistemas inteligentes e plataformas de Internet das Coisas (IoT) amplia significativamente sua eficiência operacional, permitindo monitoramento remoto, automação de respostas emergenciais e análise preditiva de vazamentos.

Com a evolução da tecnologia, sensores baseados em princípios semicondutores (SnO₂), catalíticos e infravermelhos (NDIR) estão se tornando mais precisos e confiáveis, reduzindo alarmes falsos e melhorando a detecção seletiva de gases específicos. Além disso, a conectividade por meio de protocolos como LoRa, NB-IoT e Zigbee permite a comunicação eficiente em larga escala, mesmo em ambientes industriais ou residenciais com baixa infraestrutura de rede.

A incorporação de machine learning e inteligência artificial nos sistemas de detecção de GLP possibilita a calibração automática dos sensores, prolongando sua vida útil e melhorando sua adaptabilidade a diferentes condições ambientais. Esses avanços não apenas tornam a tecnologia mais acessível, mas também aprimoram a segurança em casas, edifícios e indústrias, consolidando um ecossistema mais seguro e eficiente para o uso de GLP.

O futuro desses sensores caminha para um cenário onde a automação total e a conectividade em tempo real permitirão respostas mais ágeis e precisas, minimizando riscos e otimizando o consumo energético. Assim, os sensores de gás GLP, impulsionados pela IoT, não apenas protegem vidas e patrimônios, mas também representam um passo significativo rumo a um ambiente mais seguro e inteligente.

Os sensores de GLP em automação industrial representam um avanço essencial para a segurança operacional, conformidade regulatória e otimização de processos. A implementação de sensores inteligentes, conectados a redes IoT e integrados a sistemas SCADA/PLCs, proporciona um controle preciso e em tempo real, permitindo respostas automáticas a vazamentos, minimizando riscos de explosões e reduzindo custos com manutenção corretiva.

5.0 REFERÊNCIAS BIBLIOGRÁFICAS

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660.

Kashyap, P., Agarwal, A., & Singh, Y. (2020). IoT-Based Smart Home Automation Systems: A Review. Journal of Ambient Intelligence and Humanized Computing, 11, 3893–3916.

Alur, R. (2015). Principles of Cyber-Physical Systems. MIT Press.

HANWEI ELECTRONICS CO. Datasheet do sensor MQ-2. Disponível em: https://www.hwsensor.com

ESPRESSIF SYSTEMS. ESP32 Technical Reference Manual. Disponível em: https://www.espressif.com

ARDUINO. Arduino Guide for Gas Sensors. Disponível em: https://www.arduino.cc

IEC 60079-29-1:2016 - Gas detectors – Performance requirements of detectors for flammable gases.

ABNT NBR 15320:2016 - Detectores de gases inflamáveis e tóxicos – Requisitos e métodos de ensaio.

KIMOTHI, S. K. Sensors and Transducers. PHI Learning, 2011.

JÚNIOR, J. C. et al. Sensores para Detecção de Gases Inflamáveis: Princípios de Funcionamento e Aplicações. Revista Brasileira de Instrumentação e Controle, 2019.

CLIFFORD, M. J. Gas Sensors: Principles, Operation, and Applications. CRC Press, 2019.