

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № __3__

Название: Исследование синхронных счетчиков

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-44Б	18.05.2021	С. Д. Параскун
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			А. Ю. Попов
		(Подпись, дата)	(И.О. Фамилия)

Цель работы — изучение принципов построения счетчиков, овладение методом синтеза синхронных счетчиков, экспериментальная оценка динамических параметров счетчиков, изучение способов наращивания разрядности синхронных счетчиков.

Задание 1.

Исследование четырехразрядного синхронно-суммирующего счетчика с параллельным переносом на Т-триггерах. Проверить работу счетчика:

- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
 - от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Построим счетчик на Т-триггерах по схеме рис.1:

Рис. 1 — Схема четырехразрядного синхронного суммирующего счетчика с параллельным переносом на Т-триггерах

Соберем схему в Multisim на базе источника тока (рис. 2) и генератора колебаний (рис. 3):

Рис. 2 — Схема четырехразрядного счетчика с ключом на разрешающем сигнале

В схеме рис. 2 при каждом переключении ключа С из 0 в 1 на счетный вход Т-триггера будет поступать сигнал 1, что изменит его состояние на противоположное и изменит состояние некоторых триггеров более старшего разряда так, что двоичное значение X4X3X2X1 увеличится на 1. Счетчик досчитает от 0 до 15 включительно и вернется в состояние 0 за 16 тактов.

Рис. 3 — Схема четырехразрядного триггера с генератором колебаний на разрешающем сигнале

Исследуем временную диаграмму схемы рис. 3.

Рис. 4 — Временная диаграмма четырехразрядного триггера

Обозначим входы:

- 1 сигнал генератора, а также сигнал на входе С и входной сигнал на младшем триггере Т0,
- 3 выходной сигнал Q0,
- term 5 входной сигнал триггера T1, совпадает с Q0,
- 4 выходной сигнал Q1, меняется на противоположный при переключении С из 0 в 1 на входе Т1 подается сигнал 1,
- 7 входной сигнал триггера T2, равен Q0 & Q1 (младшие два разряда заполнились, тогда нужен сигнал T2 = 1, который переключит более старший разряд, а младшие обнулятся на след. такте),
- 5 выходной сигнал Q2, меняется на противоположный, когда во время переключения C из 0 в 1 T2 = 1,
- 8 входной сигнал триггера Т3, равен Q0 & Q1 & Q2,
- 6 выходной сигнал Q3, меняется на противоположный, когда во время переключения C из 0 в 1 T3 = 1.

Из диаграммы видно, что счетчике досчитывает от 0 до 15 и на следующем такте возвращается в 0.

Рис. 5 — Приближенная временная диаграмма

Из рис. 5 видно, что время задержки составляет 20нс, максимальная частота счета составляет 1/(20нс) = 50 Мгц.

Вывод — с помощью Т-триггера и ЛЭ И с несколькими входами мы можем получить суммирующий счетчик с параллельным переносом любой разрядности. На каждом такте они прибавляет к результирующему значению 1, либо приводит все разряды к 0 (в случае переполнения). Частота подачи сигнала не должна превышать максимальную частоту счета для отсутствия пропусков чисел при счете.

Задание 2 (3 по методичке).

Синтезировать двоично-десятичный счетчик с заданной последовательностью состояний. Последовательность состояний счетчика задается вариантом (15), а именно: 0, 1, 3, 4, 5, 7, 11, 12, 13, 15; десятичными числами обозначены номер двоичных наборов, изображающие десятичные цифры и определяющие состояние счетчика. Начертить схему счетчика на элементах интегрального базиса (И-НЕ; И, ИЛИ, НЕ), синхронных ЈК-триггерах.

Составим таблицу переходов функции возбуждения ЈК-триггера (табл. 1).

	Время t Время t + 1							Функции возбуждения ЈК-триггера							
Q_3	Q_2	Q_1	Q_0	Q _{3*}	Q_{2*}	Q_{1*}	Q_{0*}	J_3	K ₃	J_2	K ₂	J_1	K ₁	J_0	K ₀
0	0	0	0	0	0	0	1	0	a	0	a	0	a	1	a
0	0	0	1	0	0	1	1	0	a	0	a	1	a	a	0
0	0	1	1	0	1	0	0	0	a	1	a	a	1	a	1
0	1	0	0	0	1	0	1	0	a	a	0	0	a	1	a
0	1	0	1	0	1	1	1	0	a	a	0	1	a	a	0
0	1	1	1	1	0	1	1	1	a	a	1	a	0	a	0
1	0	1	1	1	1	0	0	a	0	1	a	a	1	a	1
1	1	0	0	1	1	0	1	a	0	a	0	0	a	1	a
1	1	0	1	1	1	1	1	a	0	a	0	1	a	a	0
1	1	1	1	0	0	0	0	a	1	a	1	a	1	a	1

Табл. 1 — Таблица переходов функции

Перейдем к минимизации функции с использованием карт Карно: в склейках помимо 1 могут участвовать также а (так как они могут принимать любое значение, в т.ч. 1) и прочерки (-, так как нам не нужны данные комбинации при построении счетчика).

$J_3 = Q_2 Q_1$				
$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	0	0	0	-
01	0	0	1	-
11	a	a	a	-
10	_	-	a	-

Табл. 2 — Карта Карно для Ј₃

K_3	= (O	2 1	O_1
T • 2		К	2	Чı

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	a	a	a	-
01	a	a	a	-
11	0	0	1	-
10	_	-	0	-

Табл. 3 — Карта Карно для K₃

 $J_2 = Q_1$

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	0	0	1	-
01	a	a	a	-
11	a	a	a	-
10	_	-	1	-

Табл. 4 — Карта Карно для Ј2

 $K_2 = Q_1$

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	a	a	a	-
01	0	0	1	-
11	0	0	1	-
10	-	-	a	-

Табл. 5 — Карта Карно для К2

 $\mathbf{J}_1 = \mathbf{Q}_0$

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	0	1	a	-
01	0	1	a	-
11	0	1	a	-
10	-	-	a	-

Табл. 6 – Карта Карно для J₁

 $K_1 = Q_3 \text{ or } \sim Q_2$

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	a	a	1	-
01	a	a	0	-
11	a	a	1	-
10	-	-	1	-

Табл. 7 — Карта Карно для K₁

 $J_0 = 1$

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	1	a	a	-
01	1	a	a	-
11	1	a	a	-
10	-	-	a	-

Табл. 8 – Карта Карно для J_0

 $K_0 = Q_3 Q_1 \text{ or } \sim Q_2 Q_1$

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	a	0	1	-
01	a	0	0	-
11	a	0	1	-
10	-	-	1	-

Табл. 9 — Карта Карно для K₀

Рис. 6 — Схема, составленная по картам Карно

Выходы Q0, Q1, Q2, Q3 подключены к дешифратору, который преобразует входные четыре разряда в шестнадцатиричную цифру и отображает ее. За 10 тактов на экране высветится 0, 1, 3, 4, 5, 7, 11, 12, 13, 15, после чего вернется в 0.

Вывод — на ЈК-триггерах можно построить любой синхронный счетчик с произвольным порядком счета, синтезируя логические функции и минимизируя их с помощью карт Карно.

Задание 3 (4 по методичке).

Собрать десятичный счетчик, используя элементную базу приложения Multisim или учебного макета. Установить счетчик в начальное состояние, подав на установочные входы R соответствующий сигнал

Составим таблицу переходов функции возбуждения ЈК-триггера (табл. 10).

Время t Время t + 1						-	Функции возбуждения ЈК-триггера								
Q_3	Q_2	Q_1	Q_0	Q_{3*}	Q_{2*}	Q_{1*}	Q_{0*}	J_3	K ₃	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	0	0	0	0	1	0	a	0	a	0	a	1	a
0	0	0	1	0	0	1	1	0	a	0	a	1	a	a	1
0	0	1	1	0	1	0	0	0	a	0	a	a	0	1	a
0	1	0	0	0	1	0	1	0	a	1	a	a	1	a	1
0	1	0	1	0	1	1	0	0	a	a	0	0	a	1	a
0	1	1	0	0	1	1	1	0	a	a	0	1	a	a	1
0	1	1	1	1	0	0	0	0	a	a	0	a	0	1	a
1	0	0	0	1	0	0	1	1	a	a	1	a	1	a	1
1	0	0	1	1	0	1	0	a	0	0	a	0	a	1	a
1	0	1	0	0	0	0	0	a	1	0	a	0	a	a	1

Табл. 10 — Таблица переходов функции для десятичного счетчика

Минимизируем полученную таблицу

$J_3 = Q_2 Q_1 Q_0$)			
$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	-	-	-	-
10	a	a	_	-

Табл.11 — Карта Карно для J₃

$K_3 = Q_0$						
$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10		
00	a	a	a	a		
01	a	a	a	a		
11	_	-	-	-		
10	0	1	-	-		

Табл. 12 — Карта Карно для К₃

Τ.	_	\mathbf{O}	Ο.
J2	_	\mathbf{Q}_1	\mathbf{Q}_0

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	0	0	1	0
01	a	a	a	a
11	_	-	-	-
10	0	0	-	-

Табл. 13 — Карта Карно для Ј2

 $K_2 = Q_1 Q_0$

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	a	a	a	a
01	0	0	1	0
11	_	-	-	-
10	a	a	-	-

Табл. 14 — Карта Карно для К2

 $J_1 = \sim Q_3 Q_0$

1 (3 (4			1	
$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	0	1	a	a
01	0	1	a	a
11	_	-	-	-
10	0	0	-	-

Табл. 15 -Карта Карно для J_1

 $\mathbf{K}_1 = \mathbf{Q}_0$

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	a	a	1	0
01	a	a	0	0
11	_	-	-	-
10	a	a	-	-

Табл. 16 — Карта Карно для K₁

т		1
	_	
J()	_	

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	1	a	a	1
01	1	a	a	1
11	-	-	-	-
10	1	a	-	-

Табл. 17 – Карта Карно для J_0

 $K_0 = 1$

$Q_3Q_2\backslash Q_1Q_0$	00	01	11	10
00	a	1	1	a
01	a	1	1	a
11	-	-	-	-
10	a	1	-	-

Табл. 18 — Карта Карно для K_0

На экране дешифратора будут последовательно с каждым тактом появляться цифры от 0 до 9.

Рис. 7 — Схема, составленная по картам Карно

Вывод — на ЈК-триггерах можно построить десятичный счетчик, удобный для людей, так как мы считаем в десятичной системе счисления.

Задание 4 (5 по методичке) — повторяет задание 1.

Задание 5 (6 по методичке).

Исследование четырехразрядного синхронного суммирующего счетчика с параллельным переносом ИС K55ИE9, аналог ИС 74LS160 (рис. 8)

Рис. 8 — Счетчик ИС К55ИЕ9

Проверить работу счетчика:

- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
 - от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Рис. 9 - Схема с подачей одиночных импульсов

Рис. 10 - Схема с генератором импульсов

Рис. 11 - Временная диаграмма

Рис. 12 - Увеличенная временная диаграмма

Счетчик осуществляет десятичный счет от 0 до 9. При увеличении частоты (вплоть до 100 МГц) на логическом анализаторе задержек не наблюдается. Это может быть связано с недостаточной точностью модели. По этой причине определение времени задержки и максимальной частоты счета невозможно.

Вывод - в Multisim можно не только создавать счетчики самостоятельно при помощи моделей триггеров и логических элементов, но использовать готовые макромодели счетчиков, например, для двоично-десятичного счета.

Задание 6 (7 по методичке).

Исследование схем наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями (рис. 13) и по структуре «быстрого» счета (рис. 14)

Рис. 13 — Наращивание секций последовательным переносом между секциями

Рис. 14 — Наращивание секций по структуре «быстрого» счета

Соберем предложенные схемы. С переносом (рис. 15): выходной сигнал счетчика подается на вход секции более старшего разряда и переключает ее на единицу каждый раз, когда более младшая секция досчитывает до конца к выходам подключены дешифраторы, которые преобразуют входной сигнал в визуальную цифру от 0 до 9. Прочтение числа осуществляется справа-налево.

Рис. 15 — Результат наращивания секций последовательным переносом между секциями

Схема «быстрого» счета (рис. 16):

Рис. 16 — Результат наращивания секций по структуре «быстрого» счета

Вывод - можно при помощи наращивания разрядностей счетчиков получать многоразрядные (десятичные в данном задании) счетчики.

Вывод по лабораторной работе — в ходе выполнения заданий работы удалось получить понимание понятия счетчик, его устройства, как синтезировать на основе ЈК-, D-, Т-триггеров синхронный счетчик с произвольным порядком счета, удалось научится моделировать схемы счетчиков на основе логических элементов и готовых макросхем в программе Multisim, наращивать многоразрядные счетчики на основе счетчиков с небольшим числом разрядов.