## Web Structure Mining

The structure of a typical Web graph consists of Web pages as nodes, and hyperlinks as edges connecting between two related pages



#### Web Graph Structure

**Web Structure Mining** is the process of discovering structure information from the Web

- This type of mining can be performed either at the (intra-page) document level or at the (inter-page) hyperlink level
- The research at the hyperlink level is also called Hyperlink Analysis

#### PageRank algorithm

What is the oiginal problem? We want to rank websites in their search engine results

There are two popular algorithms to rank web pages by popularity

- 1.) HITS Hypertext Induced Topic Search
- 2.) PageRank algorithm

## Page Rank Algorithm

Page Rank Algorithm

- Hyperlink Induced Topic Search (HITS) is an algorithm used in link analysis.
- It could discover and rank the webpages relevant for a particular search.
- The idea of this algorithm originated from the fact that an ideal website should link to other relevant sites and also being linked by other important sites.

- Hyperlink Induced Topic Search (HITS) Algorithm is a Link Analysis Algorithm that rates webpages, developed by Jon Kleinberg.
- This algorithm is used to the web link-structures to discover and rank the webpages relevant for a particular search.
- HITS uses hubs and authorities to define a recursive relationship between webpages. Before understanding the HITS Algorithm, we first need to know about Hubs and Authorities.

- HITS uses hubs and authorities to define a recursive relationship between webpages.
  - Authority: A node is high-quality if many high-quality nodes link to it
  - Hub: A node is high-quality if it links to many high-quality nodes
- Given a query to a Search Engine, the set of highly relevant web pages are called Roots. They are potential Authorities.
- Pages that are not very relevant but point to pages in the Root are called Hubs. Thus, an Authority is a page that many hubs link to whereas a Hub is a page that links to many authorities.

#### HITS ALGORITHM

- Algorithm Steps
  - Initialize the hub and authority of each node with a value of
  - For each iteration, update the hub and authority of every node in the graph
  - The new authority is the sum of the hub of its parents
  - The new hub is the sum of the authority of its children
  - Normalize the new authority and hub

• Compute the Hub and Authority weights for the following graph.





• Find transpose of the matrix







Assume the initial hub weight vector is:  $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$A^{t} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Assume the initial hub weight vector is:  $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 



compute the authority weight vector

$$v = A^t \cdot u = \left[ egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 1 & 1 & 0 \end{array} 
ight] \cdot \left[ egin{array}{c} 1 \ 1 \ 1 \end{array} 
ight] \ = \left[ egin{array}{c} 0 \ 0 \ 0 \end{array} 
ight]$$



Assume the initial hub weight vector is:  $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 



compute the authority weight vector

$$v = A^{t} \cdot u = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

Assume the initial hub weight vector is:  $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 



Then update hub weight:

$$\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{v} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$

#### Results

hub weights

 $\begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$ 

authority weights





#### Results

hub weights

 $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ 

authority weights





nodes 2 is a hub since 2 > 0

#### Results

Kesuits

 $\begin{bmatrix} 2\\2\\0 \end{bmatrix}$ 

hub weights

authority weights





node 3 is the most authoritative since 0 < 2

To identify the best hub and authority for the given adjacency matrix. Calculate the hubs and authority score using hits algorithm for k = 3. The adjacency matrix is

| 0 | 1 | 1 | 1 |
|---|---|---|---|
| 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 |

Adjacency matrix with nodes

|    | N1 | N2 | N3 | N4 |
|----|----|----|----|----|
| N1 | 0  | 1  | 1  | 1  |
| N2 | 0  | 0  | 1  | 1  |
| N3 | 1  | 0  | 0  | 1  |
| N4 | 0  | 0  | 0  | 1  |
|    |    |    |    |    |

| Adjacency matrix with nodes |    | N1       | N2     | N3 | N4 |
|-----------------------------|----|----------|--------|----|----|
|                             | N1 | 0        | 1      | 1  | 1  |
|                             | N2 | 0        | 1<br>0 | 1  | 1  |
|                             | N3 | 1        | 0      | 0  | 1  |
|                             | N4 | 0        | 0      | 0  | 1  |
| Graph with nodes  N1  N3    |    | N2 N4 N4 |        |    |    |

Graph with nodes



Ranks using out degree and in degree

| Nodes | Out-degree(Hub) | In-degree(Authority) |
|-------|-----------------|----------------------|
| N1    | 3               | 1                    |
| N2    | 2               | 1                    |
| N3    | 2               | 2                    |
| N4    | 1               | 4                    |

Ranks using out degree and in degree

| Nodes | Out-degree(Hub) | In-degree(Authority) |
|-------|-----------------|----------------------|
| N1    | 3               | 1                    |
| N2    | 2               | 1                    |
| N3    | 2               | 2                    |
| N4    | 1 —             | 4                    |

HUB: N1, N2, N3{TIE}, N4

AUTHORITY: N4, N3, N2, N1 {TIE}

| Adjacency matrix, A with nodes      |      |     |    |    |    |
|-------------------------------------|------|-----|----|----|----|
| Trajacono y marmi, Tr Williamo      |      | N1  | N2 | N3 | N4 |
|                                     | N1   | 0   | 1  | 1  | 1  |
|                                     | N2   | 2 0 | 0  | 1  | 1  |
|                                     | N3   | 1   | 0  | 0  | 1  |
|                                     | N4   | 0   | 0  | 0  | 1  |
| Transpose of Matrix, A <sup>T</sup> |      | N1  | N2 | N3 | N4 |
|                                     | N1   | 0   | 0  | 1  | 0  |
|                                     | N2   | 1   | 0  | 0  | 0  |
|                                     | N3   | 1   | 1  | 0  | 0  |
|                                     | N4   | 1   | 1  | 1  | 1  |
| Assuming initial hub weight vector, | u as | 1_  |    |    |    |

Authority weight vector,  $v = A^T * u$ 

$$\begin{pmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{pmatrix}$$

$$* \begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}$$

Authority, v

Updated Hub weight vector, u = A \* v

|   |   |   |   |    | (1) |
|---|---|---|---|----|-----|
| 0 | 1 | 1 | 1 |    |     |
| 0 | 0 | 1 | 1 | *  | 1 2 |
| 1 | 0 | 0 | 1 |    | 2   |
| 0 | 0 | 0 | 1 |    | 4   |
|   |   |   |   | P. |     |

Hub, u 7
6
5
4





For k = 1

| Nodes | Hub | Authority |
|-------|-----|-----------|
| N1    | 7   | 1         |
| N2    | 6   | 1         |
| N3    | 5   | 2         |
| N4    | 4   | 4         |

HUB: N1, N2, N3, N4

AUTHORITY: N4, N3, N2, N1 {TIE}

For k = 1

| Nodes | Hub | Authority |
|-------|-----|-----------|
| N1    | 7   | 1         |
| N2    | 6   | 1         |
| N3    | 5   | 2         |
| N4    | 4   | 4         |

HUB: N1, N2, N3, N4

AUTHORITY: N4, N3, N2, N1 {TIE}

#### Calculate new Authority from K = 1

$$v_{1} = 1^{2} + 1^{2} + 2^{2} + 4^{2} = 22$$

$$= \frac{1}{\sqrt{22}}, \frac{1}{\sqrt{22}}, \frac{2}{\sqrt{22}}, \frac{4}{\sqrt{22}}$$

$$v_{1} = 0.213, 0.213, 0.426, 0.853$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$N_{1} \qquad N_{2} \qquad N_{3} \qquad N_{4}$$

For k = 1

| Nodes | Hub | Authority |
|-------|-----|-----------|
| N1    | 7   | 1         |
| N2    | 6   | 1         |
| N3    | 5   | 2         |
| N4    | 4   | 4         |

HUB: N1, N2, N3, N4

AUTHORITY: N4, N3, N2, N1 {TIE}

#### Calculate new hub from K = 1

$$u_{1} = 7^{2} + 6^{2} + 5^{2} + 4^{2} = 126$$

$$= \frac{7}{\sqrt{126}}, \frac{6}{\sqrt{126}}, \frac{5}{\sqrt{126}}, \frac{4}{\sqrt{126}}$$

$$u_{1} = 0.623, 0.535, 0.445, 0.356$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$N1 \qquad N2 \qquad N3 \qquad N4$$



#### For k = 2

| Nodes | Hub   | Authority |
|-------|-------|-----------|
| N1    | 0.623 | 0.213     |
| N2    | 0.535 | 0.213     |
| N3    | 0.445 | 0.426     |
| N4    | 0.356 | 0.853     |

HUB: N1, N2, N3, N4

AUTHORITY: N4, N3, N2, N1 {TIE}

Calculate new Authority from K = 2

$$\begin{split} v_1 &= 0.213^2 + 0.213^2 + 0.426^2 + 0.853^2 = 0.999 \\ &= \frac{0.213}{\sqrt{0.999}}, \frac{0.213}{\sqrt{0.999}}, \frac{0.426}{\sqrt{0.999}}, \frac{0.853}{\sqrt{0.999}} \\ v_1 &= 0.213, \ 0.213 \ , \ 0.426, \ 0.853 \\ & \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ N1 \qquad N2 \qquad N3 \qquad N4 \end{split}$$

Calculate new hub from K = 2

$$\begin{aligned} \mathbf{u}_1 &= 0.623^2 + 0.535^2 + 0.445^2 + 0.356^2 = 0.999 \\ &= \frac{0.623}{\sqrt{0.999}}, \frac{0.535}{\sqrt{0.999}}, \frac{0.445}{\sqrt{0.999}}, \frac{0.356}{\sqrt{0.999}} \\ \mathbf{u}_1 &= 0.623, \, 0.535 \,, \, 0.445, \, 0.356 \\ &\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ &N1 \qquad N2 \qquad \qquad N3 \qquad N4 \end{aligned}$$



For k = 2

| Nodes | Hub   | Authority |
|-------|-------|-----------|
| N1    | 0.623 | 0.213     |
| N2    | 0.535 | 0.213     |
| N3    | 0.445 | 0.426     |
| N4    | 0.356 | 0.853     |

HUB: N1, N2, N3, N4

AUTHORITY: N4, N3, N2, N1 {TIE}

WHERE Hub and authority scores have come to a consistent value FOR K2 AND K3, ALGORITHM WILL STOP.

