Study program: Computer Science, VGU Algebra

Exercise Sheet: Group

- 1. Let (G.*) be a group. Prove that
 - (a) G has only one identity element.
 - (b) For each element $a \in G$, the inverse of a is unique.
 - (c) If a * b = a * c, then b = c (cancellation property)
 - (d) $a^r * a^s = a^{r+s}$ for all $a \in G$ and $r, s \in \mathbb{Z}$.
 - (e) $(a^r)^s = a^{rs}$ for all $a \in G$ and $r, s \in \mathbb{Z}$.
 - (f) $(a*b)^{-1} = b^{-1}*a^{-1}$ for $a, b \in G$.
- 2. Consider the group $(\mathbb{Z}_{15}, +_{15})$. Find
 - (a) $\langle 3 \rangle$ and the order of the element 3.
 - (b) $\langle 10 \rangle$ and the order of the element 10.
- 3. Consider the group $(\mathbb{Z}_{12}^*, \cdot_{12})$. Find
 - (a) its order
 - (b) Draw the multiplication table for this group
 - (c) Is it cyclic?
- 4. Given a group (G, *) and $a \in G$. We define

$$C(a) = \{ b \in G : ab = ba \},\$$

and

$$Cent(G) = \{a \in G : ab = ba \text{ for all } b \in G\}.$$

Prove that C(a) and Cent(G) are subgroups of G.

- 5. How many different groups are there with
 - (a) 2 elements
 - (b) 3 elements
 - (c) 4 elements

Draw the multiplication table for each group.

- 6. Given a group $(\mathbb{Z}, +)$ and $H = \{0, \pm 3, \pm 6, \dots\}$.
 - (a) Prove that H is a subgroup of \mathbb{Z} .

- (b) Check whether the following pairs of cosets 11 + H and 7 + H; and 5 + H and -1 + H are the same or disjoint?
- (c) Find $|\mathbb{Z}:H|$
- 7. Given a group $(\mathbb{Z}_{20}^*, \cdot_{20})$ and $H = \langle 3 \rangle$.
 - (a) Find all left cosets of H in \mathbb{Z}_{20}^* .
 - (b) Find |H| and $|\mathbb{Z}_{20}^*:H|$.
- 8. Consider the group $(\mathbb{Z}_p^*, \cdot_p)$ where p is prime.
 - (a) List all elements of \mathbb{Z}_p^* .
 - (b) Prove that \mathbb{Z}_p^* is cyclic
 - (c) Show the little Fermat theorem that $a^{p-1} \equiv 1 \mod p$ for each
- 9. Prove that if $\phi(n)$ is the Euler's function of n, then

$$a^{\phi(n)} \equiv 1 \mod n$$
.

- 10. Let (G,*) be a group and $a \in G$ such that o(a) = 15. Find all the left cosets of $\langle a^5 \rangle$ in $\langle a \rangle$. What is $|\langle a \rangle : \langle a^5 \rangle|$?
- 11. Suppose that K is a proper subgroup of H and H is proper subgroup of G. If |G| = 420 and |K| = 42, what are the possible orders of H?
- 12. Prove that all subgroups of a cyclic group are cyclic groups.
- 13. Given a permutation $\sigma = 213546$ in S_6 .
 - (a) Represent σ in the cycle notation form
 - (b) Find σ^{-1} , σ^2 , σ^3 .
 - (c) Find the order of σ in S_6 .
 - (d) Find the index of $\langle \sigma \rangle$ in S_6 .
- 14. Prove that $\mathbb{Z}_2 \times \mathbb{Z}_2 \cong \mathbb{Z}_4$.
- 15. Given $\sigma = (2)(1,3) \in S_3$. Let $H = \langle \sigma \rangle$.
 - (a) Find all left cosets of H in S_3
 - (b) Find all right cosets of H in S_3
 - (c) What is |H|? what is $|S_3:H|$?
- 16. How many non-isomorphic groups are there with
 - (a) 2 elements
 - (b) 3 elements

- (c) 4 elements.
- 17. Prove that the direct product group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic if and only if gcd(m,n) = 1.
- 18. Prove the followings about group isomorphisms.
 - (a) $(\mathbb{Z}_{10}, \cdot_{10}) \cong (\mathbb{Z}_4, +_4)$
 - (b) $(\mathbb{Z}_{12}^*, \cdot_{12}) \not\cong (\mathbb{Z}_4, +_4).$
- 19. Consider the maps

$$\phi: \mathbb{Z} \to \mathbb{Z}_3 \times \mathbb{Z}_4$$

$$m \mapsto (m \mod 3, m \mod 4)$$

- (a) Prove that ϕ is a homomorphism
- (b) Find $\ker(\phi)$, $\phi(\mathbb{Z})$
- (c) Using the first isomorphism theorem to show that

$$(\mathbb{Z}_{12}, +_{12}) \cong \mathbb{Z}/12\mathbb{Z} \cong \mathbb{Z}_3 \times \mathbb{Z}_4.$$

- (d) How about are the results if $\phi: \mathbb{Z} \to \mathbb{Z}_6 \times \mathbb{Z}_4$?
- 20. Consider the group $(\mathbb{Z}_{24}, +_{24})$ and $H = \langle 8 \rangle$.
 - (a) Describe all cosets of H in \mathbb{Z}_{24}
 - (b) Find the order of the coset 14 + H in the quotient group \mathbb{Z}_{24}/H .
- 21. Prove that quotient groups of a cyclic group are cyclic.
- 22. Prove that every subgroup of index 2 is a normal subgroup.