CLAIMS

What is claimed is:

1	1.	A method of obtaining nuclear magnetic resonance signals from a fluid obtained
2		from an earth formation, comprising:
3		(a) conveying said fluid into a nuclear magnetic resonance (NMR) sensor in a
4		borehole in said earth formation;
5		(b) enhancing a polarization of a nuclear spin of a nucleus occurring in said
6		fluid; and
7		(d) using said NMR sensor for obtaining NMR signals from said fluid.
8		
1	2.	The method of claim 1 wherein enhancing said polarization of said nuclear spin is
2		based at least in part on the Overhauser effect (OE).
3		
1	3.	The method of claim 1 wherein enhancing said polarization of said nuclear spin is
2		based at least in part on the Nuclear Overhauser Effect (NOE).
3		
1	4.	The method of claim 1 wherein enhancing said polarization of said nuclear spin is
2		based at least in part on optical pumping.
3		

414-35879 43

1	5.	The method of claim 1 wherein enhancing said polarization of said nuclear spin
2		based at least in part on a Spin Induced Nuclear Overhauser Effect (SPINOE).
1	6.	The method of claim 1 wherein enhancing said nuclear spin polarization further
2		comprises:
3		(i) introducing a polarizing agent into said fluid; and
4		(ii) polarizing a spin of said polarizing agent, and
5		(iii) transferring a polarization of said polarized agent to said nuclear spin.
6		
1	7.	The method of claim 1, further comprising conveying said sensor downhole on a
2		wireline device.
3		
1	8.	The method of claim 1, further comprising conveying said sensor downhole on a
2		measurement-while-drilling tool.
3		
1	9.	The method of claim 6, wherein said polarizing agent further comprises a noble
2		gas.
3		
1	10.	The method of claim 9, wherein said polarizing agent further comprises xenon.
2		
1	11.	The method of claim 1, wherein said nucleus occurring in said fluid further
2		comprises a carbon-13 nucleus present in at least one of: i) an aliphatic
3		hydrocarbon, ii) an aromatic hydrocarbon, iii) a connate formation fluid, and,

(iv) a mud filtrate.

ı	12.	The method of claim 6, wherein said polarizing said spin of said polarizing agent
2		further comprises a spin exchange with an intermediate material.
3		
1	13.	The method of claim 12 wherein said intermediate material comprises rubidium.
2		
1	14.	The method of claim 12 further comprising irradiating said intermediate material
2		with a laser to move electrons of said intermediate material to a higher
3		quantum state .
4		
1	15.	The method of claim 1, wherein obtaining said nuclear magnetic resonance signal
2		further comprises:
3		i) conveying said fluid within a chamber of said sensor;
4		ii) providing a substantially homogeneous static magnetic field in said
5		chamber;
6		iii) applying a radio frequency pulse sequence to said fluid with at least one
7		transmitter; and
8		iv) obtaining NMR signals from said fluid in response to said radio frequency
9		pulse sequence at at least one receiver antenna.
10		
1	16.	The method of claim 1 wherein obtaining said NMR signals further comprises
2		obtaining spin echo signals.
3		
1	17.	The method of claim 16 further comprising:

2 (i) summing amplitudes of said spin echo measurements; spectrally analyzing said summed amplitudes; 3 (ii) 4 determining whether aromatic hydrocarbons are present in said fluid (iii) 5 sample by measuring an amplitude of said spectrally analyzed summed amplitudes at about 130 parts per million shift from a ¹³C resonant 6 7 frequency and determining whether aliphatic hydrocarbons are present in 8 said fluid sample by measuring an amplitude of said spectrally analyzed 9 summed amplitudes at about 30 parts per million frequency shift from said ¹³C resonant frequency. 10 11 1 The method of claim 1 wherein said NMR signals comprise a free induction 18. 2 decay. 3 19. 1 The method of claim 1 wherein said NMR signals are CW NMR signals to obtain 2 frequency spectra from which chemical shift information is obtained to analyze 3 the chemical composition of the sample under test. 4 1 20. The method of claim 18 where the free induction decay is transformed into a 2 frequency spectrum for analyzing chemical composition from the chemical shift information. 3 4 1 21. The method of claim 1 wherein said NMR signals are associated with a nuclear

spin of ¹³C.

3		
1	22.	The method of claim 15 wherein said NMR signals are associated with a nuclear
2		spin of ¹³ C.
3		
1	23.	The method of claim 22 wherein providing said substantially homogeneous static
2		magnetic field further comprises using additional NMR signals associated with
3		¹ H.
4		
1	24.	The method of claim 15 wherein providing said substantially homogeneous static
2		magnetic field further comprises using additional NMR signals associated with
3		¹ H.
4		
1	25.	The method of claim 2 further comprising radiating RF into an ESR-active agent
2		at an ESR frequency of said agent and thereby enhancing the spin polarization
3		of atomic nuclei.
4		
1	26.	The method of claim 3 further comprising
2		changing a nuclear spin polarization of carbon-13 nuclei in said fluid by radiating
3		RF at a NMR frequency of hydrogen nuclei.
4		
1	27	A method of obtaining a parameter of interest of an earth formation comprising:

using a magnet on a nuclear magnetic resonance (NMR) sensor of a 2 (a) 3 downhole logging tool for aligning spins of nuclei in a region of interest 4 of said earth formation; polarizing nuclear spins of a polarizing agent carried in a chamber on said 5 (b) 6 logging tool; 7 introducing said polarizing agent into said earth formation and enhancing (c) 8 alignment of spins of said nuclei in said region of interest; 9 (d) applying a radio frequency (RF) pulse sequence to said earth formation 10 with at least one transmitter on said NMR sensor; and 11 (e) obtaining NMR signals from said region of interest in response to said 12 radio frequency pulse sequence at at least one receiver antenna. 13 1 28. The method of claim 27 wherein said obtained NMR signals comprise a free 2 induction decay. 3 1 29. The method of claim 27 wherein said obtained NMR signals comprise spin echo 2 signals. 3 1 30. The method of claim 29 wherein said RF pulse sequence comprises an excitation 2 pulse and a plurality of refocusing pulses. 3 The method of claim 30 wherein said excitation pulse has a tip angle of .. 1 31. substantially equal to 90°. 2

3		
1	32.	The method of claim 30 wherein said plurality of refocusing pulses have tip
2		angles substantially equal to 180°.
3		
1	33.	The method of claim 30 wherein said plurality of refocusing pulses have tip
2		angles between 90° and 180°.
3		
1	34.	The method of claim 29 further comprising using a processor associated with said
2		logging tool for obtaining a longitudinal relaxation time (T ₁) distribution of
3		said earth formation.
1	35.	The method of claim 29 further comprising using a processor associated with said
2		logging tool for obtaining a transverse relaxation time (T ₂) distribution of said
3		earth formation
4		
1	36.	The method of claim 29 wherein said parameter of interest is at least one of (i)
2		porosity, (ii) clay bound water, (iii) bound volume irreducible, and, (iv)
3		permeability.
4		
1	37.	The method of claim 27 wherein said polarizing agent comprises a noble gas.
2		
1	38.	The method of claim 27 wherein said noble gas comprises Xenon.
2		

I	39.	The method of claim 27 wherein polarizing said nuclear spins of said polarizing
2		agent further comprises a spin exchange with an intermediate material.
3		
1	40.	The method of claim 39 wherein said intermediate material comprises rubidium.
2		
1	41.	The method of claim 39 further comprising irradiating said intermediate material
2		with a laser to move electrons of said intermediate material to a higher quantum
3		state.
4		
1	42.	An apparatus for use in a borehole in an earth formation for obtaining nuclear
2		magnetic resonance signals from a fluid obtained from said formation,
3		comprising:
4		(a) a nuclear magnetic resonance sensor;
5		
6		(c) a device for enhancing a polarization of a nuclear spin of a nucleus
7		occurring in said fluid; and
8		(d) a processor for analyzing NMR signals obtained by said NMR sensor from
9		said fluid.
10		
1	43.	The apparatus of claim 42 wherein said device for enhancing said polarization of
2		said nuclear spin uses the Overhauser effect (OE).
3		

1	44.	The apparatus of claim 42 wherein said device for enhancing said polarization of
2		said nuclear spin uses the Nuclear Overhauser Effect (NOE).
3		
1	45.	The apparatus of claim 42 wherein said device for enhancing said polarization of
2		said nuclear spin uses optical pumping.
3		
1	46.	The apparatus of claim 42 wherein said device for enhancing said polarization of
2		said nuclear spin uses a Spin Induced Nuclear Overhauser Effect (SPINOE).
3		
1	47.	The apparatus of claim 42 wherein said device for enhancing said nuclear spin
2		further comprises:
3		(i) an arrangement for introducing a polarizing agent into said fluid; and
4		(ii) an arrangement for polarizing a spin of said polarizing agent,
5		
1	48.	The apparatus of claim 47, wherein said polarizing agent further comprises a
2		noble gas
1	49.	The apparatus of claim 48, wherein said polarizing agent further comprises xenon.
2		
1	50.	The apparatus of claim 42, wherein said nucleus occurring in said fluid further
2		comprises a carbon-13 nucleus present in at least one of: i) an aliphatic
3		hydrocarbon, ii) an aromatic hydrocarbon, iii) a connate formation fluid, and,
4		(iv) a mud filtrate.

1	51.	The apparatus of claim 47, wherein said polarizing said spin of said polarizing
2		agent further comprises a spin exchange with an intermediate material.
3		
1	52.	The apparatus of claim 51 wherein said intermediate material comprises
2		rubidium.
3		
1	53.	The apparatus of claim 51 further comprising a laser to move electrons from the S
2		to the P quantum state of said intermediate material.
3		
1	54.	The apparatus of claim 42, further comprising:
2		i) a fluid chamber;
3		ii) a magnet arrangement for providing a substantially homogeneous static
4		magnetic field in said chamber;
5		iii) a transmitter for applying a radio frequency magnetic field to said fluid;
6		iv) a receiver for obtaining NMR signals from said fluid in response to said
7		radio frequency magnetic field.
8		
1	55.	The apparatus of claim 42 wherein said NMR signals further comprise obtaining
2		spin echo signals.
3		
1	56.	The apparatus of claim 55 further comprising:
2		a processor for:
3		(i) summing amplitudes of said spin echo measurements;

4 (ii) spectrally analyzing said summed amplitudes; and 5 determining whether aromatic hydrocarbons are present in said fluid (iii) 6 sample by measuring an amplitude of said spectrally analyzed summed amplitudes at a first frequency shift from a ¹³C resonant frequency and 7 8 determining whether aliphatic hydrocarbons are present in said fluid 9 sample by measuring an amplitude of said spectrally analyzed summed amplitudes at a second frequency shift from said ¹³C resonant frequency. 10 11 57. 1 The apparatus of claim 42 wherein said NMR signals comprise a free 2 induction decay. 3 1 58. The apparatus of claim 57 where said processor transforms the free induction 2 decay into a frequency spectrum for analyzing chemical composition from the 3 chemical shift information. 1 59. The apparatus of claim 42 where said NMR signals comprise a CW frequency 2 spectrum for analyzing chemical composition from the chemical shift 3 information. 4 5 60. The apparatus of claim 42 wherein said NMR signals are associated with a nuclear spin of ¹³C. 2 3 1 61. The apparatus of claim 53 wherein said NMR signals are associated with a

nuclear spin of ¹³C.

1	62.	The apparatus of claim 43 wherein said NMR sensor includes a transmitter that
2		applies an RF magnetic field to said fluid at an electron spin resonance (ESR)
3		frequency of an ESR-active agent
4		
1	63.	The apparatus of claim 44 wherein said NMR sensor includes a transmitter that
2		applies an RF magnetic field to said fluid at nuclear resonance frequency of
3		hydrogen nuclei in said fluid.
4		
1	64.	An apparatus for obtaining a parameter of interest of an earth formation,
2		comprising:
3		(a) a magnet on a nuclear magnetic resonance (NMR) sensor of a
4		downhole logging tool for aligning spins of nuclei in a region of interest
5		of said earth formation;
6		(b) a chamber on said logging tool containing a polarizating agent;
7		(c) a device for polarizing spins of said polarizing agent and conveying said
8		polarizing agent into said earth formation thereby enhancing alignment of
9		spins of said nuclei in said region of interest;
10		(d) a transmitter for applying a radio frequency (RF) pulse sequence to said
11		earth formation;
12		(e) a receiver for obtaining NMR signals from said region of interest in
13		response to said radio frequency pulse; and

14 (f) a processor for determining from said NMR signals a parameter of interest 15 of said earth formation. 16 65. 1 The apparatus of claim 64 wherein said obtained NMR signals comprise a free 2 induction decay. 3 1 66. The apparatus of claim 65 wherein said obtained NMR signals comprise spin echo 2 signals 3 67. 1 The apparatus of claim 66 wherein said RF pulse sequence comprises an 2 excitation pulse and a plurality of refocusing pulses. 3 1 68. The apparatus of claim 67 wherein said excitation pulse has a tip angle of substantially equal to 90°. 2 3 69. 1 The apparatus of claim 64 wherein said processor obtains a longitudinal 2 relaxation time (T_1) distribution time of said earth formation. 3 1 70. The apparatus of claim 64 wherein said parameter of interest is at least one of (i) 2 porosity, (ii) clay bound water, (iii) bound volume irreducible, and, (iv) 3 permeability. 4 71. 1 The apparatus of claim 64 wherein said polarizing agent comprises a noble gas.

1 72. The apparatus of claim 71 wherein said noble gas comprises xenon. 2 73. 1 The apparatus of claim 64 wherein polarizing said nuclear spins of said polarizing 2 agent further comprises a spin exchange with an intermediate material. 3 1 74. The apparatus of claim 73 wherein said intermediate material comprises 2 rubidium. 3 1 75. The apparatus of claim 73 further comprising a laser for irradiating said 2 intermediate material to cause transitions from the S to the P quantum state of 3 electrons of said intermediate material. 4 A system for obtaining nuclear magnetic resonance signals from a fluid obtained 76. 1 2 from an earth formation, comprising: a logging tool including a nuclear magnetic resonance (NMR) sensor; 3 (a) 4 a conveyance device for conveying said fluid into a chamber of said (b) 5 (NMR) sensor; 6 an arrangement for enhancing a polarization of a nuclear spin of a nucleus (c) 7 occurring in said fluid; 8 a processor for determining from signals obtained by said NMR sensor a (d) 9 property of said fluid; and

1 a conveyance device for conveying said logging tool into said earth (e) 2 formation. 3 1 77. The system of claim 76 wherein said conveyance device in (c) is selected from the 2 group consisting of (i) a wireline, and, (ii) a drilling tubular, and, (iii) coiled 3 tubing. 4 78. The system of claim 76 wherein said arrangement in (c) uses at least one of (i) 1 2 the Overhauser Effect (OE), (ii) the Nuclear Overhauser Effect (NOE), (iii) 3 optical pumping or (iv) Spin Polarization Induced Nuclear Overhauser Effect 4 (SPINOE). 5 1 79. The system of claim 76 wherein said arrangement in (c) uses at least one of (i) a 2 noble gas, (ii) xenon, (iii) an alkaline metal, and, (iv) rubidium. 3 1 80. The system of claim 76 further comprising a laser for optical pumping of one of 2 (i) a noble gas, and, (ii) xenon. 3 1 81. A method of using a logging tool for analyzing a fluid of an earth formation, the method comprising: 2 3 dissolving a polarizing agent into said fluid; (a) 4 using an NMR sensor on said logging tool for obtaining NMR signals (b) 5 from said dissolved polarizing agent.

6 1 82. The method of claim 81 wherein said dissolving of said polarizing agent is done 2 in the earth formation. 83. The method of claim 81 wherein said dissolving of said polarizing agent is done 1 2 in a fluid sample chamber on said logging tool, the method further comprising 3 recovering said formation fluid from said earth formation using a fluid sampling 4 device on said logging tool. 5 The method of claim 81 wherein said NMR signals correspond to free induction 1 84. 2 decay of a nucleus of said polarizing agent. 3 85. The method of claim 84 further comprising chemical shift NMR analysis of said. 1 NMR signals. 2 3 1 86. The method of claim 81 where said NMR signals comprise of a CW frequency 2 spectrum to obtain chemical shift information.