Problem R-306 (C₁₀H₂₀Sn). Below is the 33.54 MHz ¹¹⁹Sn{¹H} NMR spectrum of a reaction product from the reaction shown (Quintard, J.-P.; Degueil-Castaing, M.; Dumartin, G.; Barbe, B.; Petraud, M. *J. Orgmet. Chem.* **1982**, 234, 36):

$$CH_3$$
 Me_3Sn
 H
 CH_3
 CH_3
 H
 CH_3

Estimate the ratio of the four isomeric products from the NMR spectrum. All materials are racemic.

Problem R-306 (C₁₀H₂₀Sn). Below is the 33.54 MHz ¹¹⁹Sn{¹H} NMR spectrum of a reaction product from the reaction shown (Quintard, J.-P.; Degueil-Castaing, M.; Dumartin, G.; Barbe, B.; Petraud, M. *J. Orgmet. Chem.* **1982**, 234, 36):

Estimate the ratio of the four isomeric products from the NMR spectrum. All materials are racemic.

Each of the ¹¹⁹Sn signals is coupled to the deuterium, to give overlapping 1:1:1 triplets

We would expect the ${}^2J_{SnD}$ (1-a) to be larger than ${}^4J_{SnD}$ (3-a).

The ratio of 3-d to 1-d is 1:1

The E to Z ratio is 48/100 (32/68)

Note the small isotope shift of about 2 Hz, with the 1-*d* signals upfield of the 3-*d* ones

This experiment was carried out to determine the mechanism of the nucleophilic substitution at carbon. A direct S_N2 substitution would have given ony the E-3-d isomer (inversion at carbon), so either a carbonium ion (S_N1 through the allyl cation) or, more likely, a radical mechanism ($S_{RN}1$ through the allyl radical) is involved.