Hyperparameter tuning, Batch Normalization, Programming Frameworks

10/10 points (100%)

Quiz, 10 questions

3.

J	ratulations! You passed!	Next Ite
~	1 / 1 points	
rathe	rching among a large number of hyperparameters, you should try val r than random values, so that you can carry out the search more syst ely on chance. True or False?	
	True	
0	False	
Cor	rect	
~	1 / 1 points	
2.		
	hyperparameter, if set poorly, can have a huge negative impact on tr parameters are about equally important to tune well. True or False?	aining, and so al
	True	
	False	
	raise	
Yes	rect . We've seen in lecture that some hyperparameters, such as the learr re critical than others.	ning rate, are

During hyperparameter search, whether you try to babysit one model ("Panda" strategy) or train a lot of models in parallel ("Caviar") is largely determined by:

Hyperparame [*]	ter tuning, Batcl	n Normalization,	Programming
Frameworks	Whether you use batch	or mini-batch optimization	on

10/10 points (100%)

Whether you use patch or mini-patch optimization	(100%)			
The presence of local minima (and saddle points) in your neural network				
The amount of computational power you can access				
Correct				
The number of hyperparameters you have to tune				
1/1 points				
$m{l}.$ f you think $m{eta}$ (hyperparameter for momentum) is between on 0.9 and 0.99, which of the ollowing is the recommended way to sample a value for beta?	e			
1 r = np.random.rand() 2 beta = r*0.09 + 0.9				
1 r = np.random.rand() 2 beta = 1-10**(- r - 1)				
Correct				
1 r = np.random.rand() 2 beta = 1-10**(- r + 1)				
1 r = np.random.rand() 2 beta = r*0.9 + 0.09				
	The amount of computational power you can access Correct The number of hyperparameters you have to tune 1/1 points f. fyou think β (hyperparameter for momentum) is between on 0.9 and 0.99, which of the ollowing is the recommended way to sample a value for beta? 1 r = np.random.rand() 2 beta = r*0.09 + 0.9 Correct 1 r = np.random.rand() 2 beta = 1-10**(- r - 1) Correct			

5.

Finding good hyperparameter values is very time-consuming. So typically you should do it once at the start of the project, and try to find very good hyperparameters so that you don't

Framewo		aetauningingatananarmanzation, Programming	10/10 points (100%)
Quiz, 10 questio		True	(1.007.6)
	0	False	
	Corr	ect	
	~	1 / 1 points	
		th normalization as presented in the videos, if you apply it on the \emph{l} th layer of your network, what are you normalizing?	
		$oldsymbol{a}^{[l]}$	
		$m{b}^{[l]}$	
		$W^{[l]}$	
	0	$z^{[l]}$	
	Corr	ect	
	~	1 / 1 points	
	7.	P	
		normalization formula $z_{norm}^{(i)}=rac{z^{(i)}-\mu}{\sqrt{\sigma^2+arepsilon^2+arepsilon^2}}$ why do we use epsilon?	
	0	To avoid division by zero	
	Corr	ect	
		To speed up convergence	
		To have a more accurate normalization	
		In case μ is too small	

Hyperparameter tuning, Batch Normalization, Programming Frameworks

10/10 points

Quiz, 10 question

PK2	of the following statements about γ and eta in Batch Norm are true?	(100%)
ngrilleri	They set the mean and variance of the linear variable $z^[l]$ of a given layer.	
	They set the mean and variance of the linear variable 2.0] of a given layer.	
Corre	rect	
	eta and γ are hyperparameters of the algorithm, which we tune via random sampling.	
Un-s	selected is correct	
	The optimal values are $\gamma=\sqrt{\sigma^2+arepsilon}$, and $eta=\mu$.	
Un-s	selected is correct	
	There is one global value of $\gamma\in\Re$ and one global value of $\beta\in\Re$ for each layer, and applies to all the hidden units in that layer.	
Un-s	selected is correct	
Corre	They can be learned using Adam, Gradient descent with momentum, or RMSpronot just with gradient descent.	ο,
~	1/1 points	
	raining a neural network with Batch Norm, at test time, to evaluate the neural rk on a new example you should:	
	If you implemented Batch Norm on mini-batches of (say) 256 examples, then to evaluate on one test example, duplicate that example 256 times so that you're working with a mini-batch the same size as during training.	
	Skip the step where you normalize using μ and σ^2 since a single test example cannot be normalized.	

Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - Home | Coursera

Use the most recent mini-batch's value of μ and σ^2 to perform the needed normalizations.

Hyperparameter tuning, Batch Normalization, Programming Frameworks

Quiz, 10 questions

Perform the needed normalizations, use μ and σ^2 estimated using an exponentially weighted average across mini-batches seen during training. 10/10 points (100%)

Correc	ct
~	1 / 1 points
10. Which o	f these statements about deep learning programming frameworks are true? (Check apply)
	Deep learning programming frameworks require cloud-based machines to run.
Un-sel	lected is correct
	A programming framework allows you to code up deep learning algorithms with typically fewer lines of code than a lower-level language such as Python.
Correc	ct
	Even if a project is currently open source, good governance of the project helps ensure that the it remains open even in the long term, rather than become closed or modified to benefit only one company.
Correc	ct

