

	$\sigma_{0^+}^{\#1}$	$ au_0^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\sharp 1} \dagger$	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_0^{\sharp 1}$ †	0	0	0	$-\frac{1}{t_1}$

	#	1	1	3	3	3	2	16
Source constraints	SO(3) irreps	$t_0^{\#_+^2} == 0$	$t_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2\overline{\imath}k\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	$\omega_{2}^{\#1}{}_{lphaeta}$	$f_{2}^{\#1}{}_{lphaeta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{\scriptscriptstyle 2}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

Lagrangian density	$-\frac{1}{3}t_{1}\ \omega_{i}^{\alpha i}\ \omega_{\kappa\alpha}^{\ \ \kappa} + \frac{2}{3}t_{3}\ \omega_{i}^{\alpha i}\ \omega_{\kappa\alpha}^{\ \ \kappa} - t_{1}\ \omega_{i}^{\ \kappa\lambda}\ \omega_{\kappa\lambda}^{\ \ \prime} - r_{5}\ \partial_{i}\omega^{\kappa\lambda}_{\ \kappa}\partial^{i}\omega_{\lambda}^{\alpha} -$	$\frac{2}{3}r_1\partial^\beta\omega^{\theta\alpha}_{\alpha}\partial_\theta\omega_{\alpha\beta}^{\kappa}-\frac{2}{3}r_1\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\alpha\beta\theta}+\frac{2}{3}r_1\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\theta\alpha\beta}-$	$r_5\partial_{lpha}\omega_{\lambda}^{\alpha}_{}\partial_{\kappa}\omega^{\theta\kappa\lambda}+r_5\partial_{\theta}\omega_{\lambda}^{\alpha}_{}\partial_{\kappa}\omega^{\theta\kappa\lambda}-r_5\partial_{\alpha}\omega_{\lambda}^{\alpha}_{}\partial_{\kappa}\omega^{\kappa\lambda\theta}+$	$2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} - \frac{1}{2} t_1 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_{\alpha}^{\ \theta} -$	$\frac{1}{2}t_{1}\partial^{\alpha}f^{\lambda}_{\ \ }\partial^{\kappa}f_{\alpha\lambda}+\frac{1}{3}t_{1}\ \omega_{\kappa\alpha}^{\ \ \alpha}\ \partial^{\kappa}f'_{\ \ },-\frac{2}{3}t_{3}\ \omega_{\kappa\alpha}^{\ \ \alpha}\ \partial^{\kappa}f'_{\ \ },+\frac{1}{3}t_{1}\ \omega_{\kappa\lambda}^{\ \ \lambda}\ \partial^{\kappa}f'_{\ \ },-$	$\frac{2}{3}t_3\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^\kappa f'_{\;\;\prime} + \frac{2}{3}t_1\;\partial^\alpha f_{\;\kappa\alpha}\;\partial^\kappa f'_{\;\;\prime} - \frac{4}{3}t_3\;\partial^\alpha f_{\;\kappa\alpha}\;\partial^\kappa f'_{\;\;\prime} - \frac{1}{3}t_1\;\partial_\kappa f^\lambda_{\;\;\lambda}\;\partial^\kappa f'_{\;\;\prime} +$	$\frac{2}{3}t_{3}\partial_{\kappa}f^{\lambda}_{\ \ \lambda}\partial^{\kappa}f'_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{1}{3}t_1\;\omega_{_{I}\lambda}^{\lambda}\;\partial^{\kappa}f_{_{\kappa}}^{}+\frac{2}{3}t_3\;\omega_{_{\lambda}}^{}\partial^{\kappa}f_{_{\kappa}}^{I$	$rac{1}{2}t_1\partial_\kappa f^\lambda_{}\partial^\lambda f_\lambda^{}\partial^\lambda f_\lambda^{}\partial^\lambda f_{\lambda\kappa} + rac{2}{3}t_3\partial^\alpha f^\lambda_{}\partial^\kappa f_{\lambda\kappa} +$	$rac{2}{3} r_1 \partial_\kappa \omega^{lphaeta heta} \partial^\kappa \omega_{lphaeta heta}^{-rac{2}{3}} r_1 \partial_\kappa \omega^{etalphaeta} \partial^\kappa \omega_{lphaeta heta}^{+rac{2}{3}} r_1 \partial^eta \omega^{lpha\lambda}_{,} \partial_\lambda \omega_{lphaeta}^{\ \ \prime}^{-}$	$rac{8}{3} r_1 \partial^{eta} \omega_{\lambda}{}^{\lambda lpha} \partial_{\lambda} \omega_{lpha eta}{}^{\prime} + r_5 \partial_{lpha} \omega_{\lambda}{}^{lpha} \partial^{\lambda} \omega^{eta \kappa}{}^{\kappa} - r_5 \partial_{eta} \omega_{\lambda}{}^{lpha} \partial^{\lambda} \omega^{eta \kappa}{}^{\kappa}$	Added source term: $\left f^{lphaeta}\; \iota_{lphaeta} + \omega^{lphaeta\chi}\; \sigma_{lphaeta\chi} ight $
--------------------	---	---	--	--	--	--	---	---	--	---	--	--

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	<i>-t</i> ₁	
$f_{0}^{\#2}$	0	0	0	0	
$f_0^{\#1}$	-i $\sqrt{2} kt_3$	$2 k^2 t_3$	0	0	
$\omega_{0}^{\#1}$	£3	$i\sqrt{2}\ kt_3$	0	0	
	$\omega_{0}^{\#1}$ †	$f_{0}^{\#1}$ †	$f_{0}^{#2}$ †	$\omega_{0}^{\#1}\dagger$	

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}_{lpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1^{-} \ lpha}^{$ #2}	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_1^{\sharp 1} \dagger^{lpha eta}$	$k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 \left(r_1 + r_5 \right) + t_1 + 4 t_3 \right)$	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	0	$\frac{1}{3} ik (t_1 - 2t_3)$
$\omega_{1}^{\#2}\dagger^{\alpha}$	0	0	0	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	<u>t</u> 1+t3 3	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3} \bar{i} k (t_1 - 2 t_3)$	$-\frac{1}{3}\bar{i}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

Massive particle

ridosive particle						
Pole residue:	$-\frac{3(-2t_1t_3(t_1+t_3)+r_1(t_1^2+2t_3^2)+r_5(t_1^2+2t_3^2))}{2(r_1+r_5)(t_1+t_3)(-3t_1t_3+r_1(t_1+t_3)+r_5(t_1+t_3))} > 0$					
Polarisations:	3					
Square mass:	$-\frac{3t_1t_3}{2(r_1+r_5)(t_1+t_3)} > 0$					
Spin:	1					
Parity:	Odd					

 $r_1 < 0 && r_5 < -r_1 && t_1 > 0 && t_3 < -t_1 || t_3 > 0$ Unitarity conditions