Mock Exam 1, Math 241, Spring 2018

- 1. Let A = (-3, 6, 4) and B = (-1, 2, 8).
 - (a) Which of the following points is on the sphere that passes through the point B and whose center is the point A.

(circle one): (A) (1,-2,2); (B) (2,1,-2); (C) (-2,1,2); (D) (1,2,2);

(b) Find an equation of the set of all points equidistant from the points *A* and *B*.

(circle one):

(A) 2x-4y+4z=8; (B) 2x+4y+4z=8;

(C) 4x-8y+8z=8; (D) 4x+8y+8z=8;

- 2. Let $\vec{a} = \langle 1, -2, 2 \rangle$, $\vec{b} = \langle 2, 5, -5 \rangle$, $\vec{c} = \langle 3, 1, 4 \rangle$
 - (a) Find the vector projection of \vec{b} onto \vec{a} .

 $\operatorname{Proj}_{\vec{a}}\vec{b}$ is (circle one):

(A) $\langle 1, -2, 2 \rangle$; (B) $\langle -1, 2, -2 \rangle$;

(C) $\langle 2, -4, 4 \rangle$; (D) $\langle -2, 4, -4 \rangle$;

(b) Find the vector projection of \vec{c} onto \vec{a} .

 $\text{Proj}_{\vec{a}}\vec{c}$ is (circle one):

(A) $\langle 1, -2, 2 \rangle$; (B) $\langle -1, 2, -2 \rangle$;

(C) $\langle 2, -4, 4 \rangle$; (D) $\langle -2, 4, -4 \rangle$;

	Area is (circle one): (A) $\frac{\sqrt{42}}{2}$; (B) $\frac{\sqrt{35}}{2}$; (C) $\sqrt{42}$; (I	D) $\sqrt{35}$;
(b) Find the volume, V, of the parallelepiped determined by the vectors \vec{a} , \vec{b} , and \vec{c} .		
	<i>V</i> is (circle one): (A) 18; (B) $\frac{21}{2}$; (C) $\sqrt{42}$;	(D) 9;
(c) Find the length of the vector projection of \vec{a} onto vector $\vec{b} \times \vec{c}$.		
	(circle one): (A) $\frac{9}{\sqrt{42}}$; (B) $\frac{21}{\sqrt{42}}$; (C) $\frac{18}{\sqrt{35}}$;	(D) $\frac{9}{\sqrt{35}}$;
4. Let P_1 be the plane of $x + 2y - 2z = 1$, and P_2 be the plane of $-4x + 2y - 4z = -6$		
(a) Find $cos(\theta)$, where θ is the angle between the planes P_1 and P_2 .		
	$\cos(\theta)$ is (circle one): (A) $\frac{4}{9}$; (B) $\frac{2}{9}$; (C) $\frac{1}{2}$;	(D) 0;
(b) The line $\vec{r}(t) = \langle 2+2t, 3+t, -1+2t \rangle$ is parallel one of the planes P_1 or P_2 . Find the distance from the line to the plane $(P_1 \text{ or } P_2)$ which it is parallel to.		
	(circle one): (A) $\sqrt{6}$; (B) $\sqrt{3}$; (C) 6;	(D) 3;
(c) The line $\vec{r}(t) = \langle 2+2t, 3+t, -1+2t \rangle$ intersects one of the planes P_1 or P_2 at a point labelled as (x_0, y_0, z_0) . Find y_0 .		
	y_0 is (circle one): (A) $\frac{2}{7}$; (B) $\frac{25}{7}$; (C) $\frac{22}{7}$;	(D) $\frac{24}{7}$;

(c) Find $\sin(\theta)$, where θ is the angle between the vectors $\text{Proj}_{\vec{a}}\vec{b}$ and $\text{Proj}_{\vec{a}}\vec{c}$.

(a) Find the Area of the parallelogram determined by the vectors \vec{b} and \vec{c} .

3. Let $\vec{a}=\langle -2,1,-3\rangle$, $\vec{b}=\langle 2,-1,-3\rangle$, and $\vec{c}=\langle 1,1,-2\rangle$.

 $\sin(\theta)$ is (circle one): (A) $\frac{1}{\sqrt{2}}$; (B) $\frac{1}{3}$; (C) $\frac{1}{\sqrt{3}}$; (D) 0;

- 5. Let P = (0, 0, -2), Q = (2, -3, 0), and R = (0, -2, -1)
 - (a) Find and equation of the plane which contains points P, Q, and R.

(circle one):

(A)
$$2x-4y-4z=8;$$
 (B) $x-2y-4z=8;$

(B)
$$x-2y-4z=8$$

(C)
$$4x-8y+8z=-16$$
; (D) $8x+8y+2z=-8$;

(D)
$$8x + 8y + 2z = -8$$
;

(b) Find the shortest vector, \vec{v} , from the plane of part (a) to the point (2, -4, -10).

 \vec{v} is (circle one):

(A)
$$\langle 2, -2, -6 \rangle$$
; (B) $\langle 2, -4, -8 \rangle$;

$$(B)$$
 $\langle 2, -4, -8 \rangle$

(C)
$$\langle 4, -4, 2 \rangle$$
; (D) $\langle -6, 2, 3 \rangle$;

$$(D) \quad \langle -6, 2, 3 \rangle$$

(c) Find the distance, D, from the point (2, -4, -10) to the plane from part (a).

D is (circle one): (A) $\sqrt{36}$; (B) $\sqrt{44}$; (C) $\sqrt{49}$;

(A)
$$\sqrt{36}$$
;

(B)
$$\sqrt{44}$$
;

(C)
$$\sqrt{49}$$
;

(D)
$$\sqrt{84}$$
;

6. Which of the following properties hold for all vectors \vec{u} and \vec{v} and scalars c and d? For each property, circle either True or False.

(a)
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

(b)
$$\vec{u} \times \vec{v} = \vec{v} \times \vec{u}$$

(c)
$$\vec{u} + \vec{v} = \vec{u} \times \vec{v}$$

(d)
$$\vec{u} \cdot \vec{u} = |\vec{u}|$$

(e)
$$\vec{u} \times \vec{u} = \vec{0}$$

(f)
$$(c+d)(\vec{u}+\vec{v}) = c\vec{u} + d\vec{v}$$

7. Sketch a contour map of $f(x, y) = x^2 - 4x + y^2 + 5$ for level curves corresponding to z = 2, 5 and 10.

8. Identify the equations of each of the following surfaces (write the letter of your selection in the box below each surface):

(A)
$$x^2 + y^2 + z^2 = 1$$

(B)
$$-x^2 + y^2 + z^2 = 1$$

(C)
$$x^2 + y^2 + z^2 = 0$$

(A)
$$x^2 + y^2 + z^2 = 1$$
 (B) $-x^2 + y^2 + z^2 = 1$ (C) $x^2 + y^2 + z^2 = 0$ (D) $x^2 + y^2 - z^2 = 0$ (E) $x^2 - y^2 - z = 0$ (F) $x^2 + y^2 - z = 0$ (G) $x^2 + y^2 + z^2 = -1$ (H) $x^2 - y^2 - z^2 = 1$

(E)
$$x^2 - y^2 - z = 0$$

(F)
$$x^2 + y^2 - z = 0$$

(G)
$$x^2 + y^2 + z^2 = -1$$

(H)
$$x^2 - y^2 - z^2 = 1$$

9. (a) Find the limit, if it exists, or show that the limit does not exist (show work that justifies your answer)

$$L = \lim_{(x,y)\to(0,0)} \frac{y^2 \sin^2 x}{x^4 + y^4}.$$

$$L =$$

(b) Find the limit, if it exists, or show that the limit does not exist (show work that justifies your answer)

$$L = \lim_{(x,y)\to(0,0)} \frac{x^2y^3}{2x^2 + y^2}.$$

$$L =$$

(c) Find the limit, if it exists, or show that the limit does not exist (show work that justifies your answer)

$$L = \lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{\sqrt{1 + x^2 + y^2} - 1}.$$

$$L =$$

10. (a) Let $f(x, y) = 3\sin(x^2)ye^{xy}$. Compute $f_x(x, y)$ and $f_y(x, y)$.

$$f_x(x,y) = ; f_y(x,y) =$$

(b) Let $g(x, y) = 3\ln(x^2 + y^2 + 1) + x^2 + y^2 + \sin(xy)$. Compute $g_{xx}(x, y), g_{xy}(x, y)$, and $g_{yy}(x, y)$.

$$g_{xx}(x,y) =$$
; $g_{xy}(x,y) =$; $g_{yy}(x,y) =$

TRIGONOMETRIC IDENTITIES

$$\sin(\theta + \phi) = \sin\theta \cos\phi + \cos\theta \sin\phi$$

$$\cos(\theta + \phi) = \cos\theta \cos\phi - \sin\theta \sin\phi$$

$$\tan(\theta + \phi) = \frac{\tan(\theta) + \tan(\phi)}{1 - \tan\theta \tan\phi}$$

$$\sin(\theta - \phi) = \sin\theta \cos\phi - \cos\theta \sin\phi$$

$$\cos(\theta - \phi) = \cos\theta \cos\phi + \sin\theta \sin\phi$$

$$\tan(\theta - \phi) = \frac{\tan(\theta) - \tan(\phi)}{1 + \tan\theta \tan\phi}$$

$$\sin(\theta) \sin(\phi) = \frac{\cos(\theta - \phi) - \cos(\theta + \phi)}{2}$$

$$\cos(\theta) \cos(\phi) = \frac{\cos(\theta - \phi) + \cos(\theta + \phi)}{2}$$

$$\sin(\theta) \cos(\phi) = \frac{\sin(\phi + \theta) - \sin(\phi - \theta)}{2}$$

$$\sin(2\theta) = 2\sin\theta \cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

$$\sin^2\theta = \frac{1 - \cos(2\theta)}{2}$$

$$\cos^2\theta = \frac{1 + \cos(2\theta)}{2}$$

$$\tan\theta = \frac{\sin(2\theta)}{1 + \cos(2\theta)}$$