Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Final den 18 november 1973

1. Den fyrställiga $^8\log 2$ skriven i positionssystemet med basen 8 är, rätt avkortad: 0,2525. Vad är den fyrställiga $^8\log 4$ (rätt avkortad) skriven i samma positionssystem?

2. Den s.k. Fibonacciföljden 1, 1, 2, 3, 5, 8, ... ges genom

$$a_1 = 1, a_2 = 1$$
 och $a_{n+1} = a_n + a_{n-1}$ för $n \ge 2$.

Ange de tal i följden för vilka $a_n = n^2$.

3. ABC är en triangel där vinkeln A är rät, vinkeln B är 60° och vinkeln C är 30° . Man har tre punkter A_1, B_1, C_1 , sådana att A_1 ligger på sidan BC, B_1 på sidan AC och C_1 på sidan AB. Följande båda villkor är uppfyllda:

1) $A_1B_1C_1$ är en liksidig triangel,

2) normalerna till linjerna BC, AC och AB i punkterna A_1 B_1 resp. C_1 går genom en punkt P i det inre av triangeln.

Bestäm förhållandena mellan längderna PA_1 , PB_1 , PC_1 .

4. Låt p vara ett primtal. Bestäm alla rationella tal $\frac{a}{b} > 0$, där a och b är positiva heltal utan gemensam heltalsfaktor större än 1, sådana att

$$\frac{a}{b} + \frac{1}{p^2} = \frac{a+p}{b+p}.$$

5. Givet ett polynom f(x) av grad 2n. Man kan visa att det finns två polynom P(x) och Q(x), båda med graden n. sådana att f(x)Q(x) - P(x) blir ett polynom av typen

$$\sum_{k=2n+1}^{3n} a_k x^k.$$

Visa att kvoten $\frac{P(x)}{Q(x)}$ därvid blir entydigt bestämd.

6. Låt f vara en reellvärd funktion definierad för $x \geq 0$. Visa att om f satisfierar

1)
$$f(0) = 0$$
,

2)
$$f(x+1) = f(x) + \sqrt{x}$$
 för $x \ge 0$,

3)
$$f(x) < \frac{1}{2} \left(f\left(x - \frac{1}{2}\right) + f\left(x + \frac{1}{2}\right) \right)$$
 för $x \ge \frac{1}{2}$

så är $f\left(\frac{1}{2}\right)$ därigenom entydigt bestämd.