The M-N Theorem

Ian Dardik

February 23, 2022

1 Introduction

I begin with some preliminaries before introducing the M-N Theorem.

2 Preliminaries

Throughout this note we will consider a transition system $T = (I, \Delta)$ parameterized by a single sort P with identical elements (i.e. each element is interchangeable for another). Δ is the transition relation for T and we stipulate that it is in Prenex Normal Form (PNF). Φ is an inductive invariant candidate that is also in PNF, and our goal is to determine whether or not Φ is an inductive invariant for T.

Because Φ and Δ are in PNF, will also can refer directly to the matrices of these formulas as ϕ and δ respectively; i.e. ϕ and δ are propositional logic formulas parameterized by the variables that are quantified over in Φ and Δ respectively.

Because each element of P is interchangeable for another, we assume, without loss of generality, that $P = \{1, ..., |P|\}$. In other words, for two sorts P and Q, $|P| < |Q| \leftrightarrow P \subset Q$.

Another detail on the assumption that P's elements are identical: more precisely, let $\phi \wedge \delta$ be a property parameterized by the variables in sort P, and let $g: P \to P$ be injective. Then:

$$\phi \wedge \delta \leftrightarrow (\phi \wedge \delta)[P \mapsto g(P)]$$

3 Finitely Instantiated Properties (FIPs)

In this section we introduce the FIP, a key tool for proving the M-N Theorem. We prove two basic lemmas about FIPs that will come in handy later.

Definition 1. Let Φ and Δ be of two PNF formulas and let ϕ and δ be their respective matrices. Assume that Φ quantifies over $m \in \mathbb{N}$ variables while Δ quantifies over $n \in \mathbb{N}$ variables. Then a Finitely Instantiated Property (FIP) of $\Phi \wedge \Delta$ is a formula $(\phi \wedge \delta)[v_i \mapsto j]$, where each free variable v_i has been substituted for a concrete element $j \in P$.

Example:

Let $\Phi = \forall p, q \in P, \phi(p, q)$ and $\Delta = \exists p \in P, \delta(p)$. Then if |P| = 3 is a finite instantiation of T, the formulas $\phi(1,3) \wedge \delta(2)$ and $\phi(1,1) \wedge \delta(1)$ are both FIPs of $\Phi \wedge \Delta$.

Definition 2. Two FIPs $F_1 = \phi_1 \wedge \delta_1$ and $F_2 = \phi_2 \wedge \delta_2$ are equivalent iff F_1 is a permutation of F_2 .

Example:

Let |P|=3, $F_1=\phi_1(1,2)\wedge\delta(1)$, $F_2=\phi_2(2,3)\wedge\delta(2)$ and $F_3=\phi(2,2)\wedge\delta(2)$. Then $F_1\equiv F_2$ because F_1 (1 2 3) = F_2 (using cycle notation). However F_3 is a permutation of neither F_1 nor F_2 and hence is

not equivalent to both.

The notion of equivalency is important because it partitions a formula $\Phi \wedge \Delta$ into distinct classes of FIPs. In the example above, F_1 and F_2 describe the same class of property and action because each element of P is interchangeable for one another. This leads us to the following lemma that is rather intuitive:

Lemma 1. Let $\phi_1 \wedge \delta_1$ and $\phi_2 \wedge \delta_2$ both be FIPs for $\Phi \wedge \Delta$. Suppose that $\phi_1 \wedge \delta_1 \equiv \phi_2 \wedge \delta_2$. Then:

$$(\phi_1 \wedge \delta_1 \rightarrow \phi_1') \leftrightarrow (\phi_2 \wedge \delta_2 \rightarrow \phi_2')$$

Proof. Because $\phi_1 \wedge \delta_1 \equiv \phi_2 \wedge \delta_2$, there exists a cycle C such that $(\phi_1 \wedge \delta_1)$ $C = \phi_2 \wedge \delta_2$. However C is an injective map, and hence:

$$\phi_1 \wedge \delta_1 \leftrightarrow \phi_1 \wedge \delta_1[P \mapsto C(P)] = \phi_2 \wedge \delta_2$$

TODO: what about ϕ' 's?

We next introduce the FIPS operator:

Definition 3. Let Φ and Δ be PNF properties with respective matrices ϕ and δ . Suppose that Φ quantifies over $m \in \mathbb{N}$ variables while Δ quantifies over $n \in \mathbb{N}$ variables. Then:

$$FIPS(\Phi \wedge \Delta, |P|) := \{\phi(v_1, ..., v_m) \wedge \delta(w_1, ..., w_n) | v_1, ..., v_m, w_1, ..., w_n \in P\}$$

The FIPS operator simply contains every possible FIP for a given formula $\Phi \wedge \Delta$. Next, we prove this intuitive result:

Lemma 2. $FIPS(\Phi \wedge \Delta, |P|) \subseteq FIPS(\Phi \wedge \Delta, |Q|) \leftrightarrow |P| \leq |Q|$

Proof. Recall that this note we assume $|P| \leq |Q| \leftrightarrow P \subseteq Q$. We begin by showing that $|P| \leq |Q| \rightarrow \text{FIPS}(\Phi \land \Delta, |P|) \subseteq \text{FIPS}(\Phi \land \Delta, |Q|)$:

FIPS(
$$\Phi \wedge \Delta, |P|$$
) ={ $\phi(v_1, ..., v_m) \wedge \delta(w_1, ..., w_n) | v_1, ..., v_m, w_1, ..., w_n \in P$ }
 $\subseteq \{\phi(v_1, ..., v_m) \wedge \delta(w_1, ..., w_n) | v_1, ..., v_m, w_1, ..., w_n \in Q\}$
=FIPS($\Phi \wedge \Delta, |Q|$)

Where the subset step follows from the fact that $P \subseteq Q$. Next we show that $FIPS(\Phi \wedge \Delta, |P|) \subseteq FIPS(\Phi \wedge \Delta, |Q|) \rightarrow |P| \leq |Q|$. Suppose that $FIPS(\Phi \wedge \Delta, |P|) \subseteq FIPS(\Phi \wedge \Delta, |Q|)$. Then we know that

$$\{\phi(v_1, ..., v_m) \land \delta(w_1, ..., w_n) | v_1, ..., v_m, w_1, ..., w_n \in P\}$$

$$\subseteq \{\phi(v_1, ..., v_m) \land \delta(w_1, ..., w_n) | v_1, ..., v_m, w_1, ..., w_n \in Q\}$$

Which implies that $P \subseteq Q$, which in turn implies that $|P| \leq |Q|$.

4 Intuition

We will build intuition by proving the M-N Theorem for small examples. Coming soon.

5 M-N Theorem

Lemma 3. Let Φ and Δ be formulas in PNF, where Φ quantifies over $m \in \mathbb{N}$ variables and Δ quantifies over $n \in \mathbb{N}$ variables. Then every FIP of $\Delta \wedge \Phi$ that appears when |P| > m + n has an equivalent FIP that appears when |P| = m + n.

Proof. Let |P| = m + n + z where $z \in \mathbb{Z}_{>0}$. Then, because ϕ and δ are parameterized by exactly m+n variables, there must be at least z unused variables. Let $P = \{v_i\}_{i=1}^{m+n+z}$ where each v_i is a variable, let $u \leq m+n$ be the number of variables that are used in $\phi \wedge \delta$, and finally let $\{v_{i_k}\}_{k=1}^u$ be the set of variables that are used. Consider the permuation using the following cycle notation: $C = (v_{i_1}v_1)...(v_{i_u}v_u)$. Notice that $(\phi \wedge \delta)$ C only uses variables $v_1...v_u$. Since $u \leq m+n$, it must be the case that $(\phi \wedge \delta)$ C is a FIP of $\Phi \wedge \Delta$ when |P| = m+n.

Theorem 1. Let Φ and Δ be formulas in PNF, where Φ quantifies over $m \in \mathbb{N}$ variables and Δ quantifies over $n \in \mathbb{N}$ variables. Then Φ is an inductive invariant for T(P) iff it is an inductive invariant for the finite instantiation T(m+n).

Proof. It is clear that if Φ is an inductive invariant, then it must be an inductive invariant for T(m+n). We prove the opposite direction in the remainder of the proof.

We will skip the case when the finite instantiation is less than m+n and focus when it is larger for now.

Suppose that $\Phi(m+n) \wedge \Delta(m+n) \to \Phi(m+n)'$. Let k > m+n, then we must show that $\Phi(k) \wedge \Delta(k) \to \Phi(k)'$. Consider an arbitrary FIP when |P| = k: $\phi(1, ..., m) \wedge \delta(1, ..., n)$. By Lemma 4, we know that an equivalent FIP exists in T(m+n), and hence we have a cycle R and a permutation $(\phi(1, ..., m) \wedge \delta(1, ..., n) R)$ that at most contains the variables $v_1...v_{m+n}$. By Lemma 3, $(\phi(1, ..., m) \wedge \delta(1, ..., n) R) \to (\phi(1, ..., m)' R)$, which is equivalent to $\phi(1, ..., m)'$ by definition.