ClearCLIP: Decomposing CLIP Representations for Dense Vision-Language Inference

Mengcheng Lan¹, Chaofeng Chen¹, Yiping Ke², Xinjiang Wang³, Litong Feng^{3*}, and Wayne Zhang³

S-Lab, Nanyang Technological University
 CCDS, Nanyang Technological University
 SenseTime Research lanm0002@e.ntu.edu.sg {chaofeng.chen, ypke}@ntu.edu.sg {wangxinjiang, fenglitong, wayne.zhang}@sensetime.com https://github.com/mc-lan/ClearCLIP

- Problem / objective
 - o CLIP 사용해서 Open-Vocabulary Semantic Segmentation
- Contribution / Key idea
 - Vision encoder의 마지막 layer에 3가지 수정을 함
 - 1. Residual connection 제거
 - 2. Self-self attention 적용
 - 3. Feed-forward network 제거

• Semantic segmentation using CLIP

- □ Noisy 하다.
- □ 이 noise는 어디서 왔으며, 어떻게 발생하였는가?

$$\mathcal{M} = \underset{c}{\operatorname{arg \, max \, cos}}(X_{\text{dense}}^{\text{visual}}, X^{\text{text}}). \tag{4}$$

Image

Analysis of segmentation results using CLIP

[질문1] 이 noise는 **어디서** 왔는가?

[정답] Residual connection

[근거] CLIP vision encoder에서 최종 layer의 (1) residual connection (2) attention output 비교 결과

LAN, Mengcheng, et al. Clearclip: Decomposing clip representations for dense vision-language inference. In: European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024. p. 143-160.

Analysis of segmentation results using CLIP

[질문2] 그렇다면, residual connection에서 noise가 어떻게 발생하였는가?

[정답] CLIP의 high-level supervision이 residual latent space에서 global feature direction을 강조하여, residual features에서의 noise가 local feature vector들이 구분하기 어렵게 만듬.

[근거](1) Residual connection과 attention output 간에 엔트로피 차이 존재.

- Residual connection의 엔트로피 -> 0, Attention output의 엔트로피 -> 1
- I.E., Residual connection map의 값 분포가 특정 채널/위치에 몰려있다.
- I.E., CLIP의 최종 output도 residual connection과 비슷한 속성으로 됨.
- (2) Residual connection map의 대부분 feature vector들의 peak값들이 특정 채널에 몰려있음.
 - I.E., Latent space에서 이 feature vector들의 방향이 유사하여, cosine similarity로 각 spatial feature vector들을 구분하기가 어려워, noise 발생

Noise가 어디서 왔는가?

□ 실험결과

- (1) 'X attn의 크기': mIoU와 양의 상관관계.
- (2) 'X res의 크기': CLIP-B/16에서 CLIP-L/14에서보다 훨씬 작은 값을 가진다.
- (3) Attention 수정: mIoU가 q-k baseline보다 CLIP-B/16에서는 일관되게 높지만, CLIP-L/14에서는 그렇지 않다. 가설
- Attention 수정은 X res의 영향(norm값)이 적을 때 효과적이다.

Fig. 2: Comparison of norms and mIoU of different attention mechanisms for CLIP-B/16 (left) and CLIP-L/14 (right). The norm curve of $X_{\rm attn}$ shows a positive correlation with the mIoU curve. A larger norm of $X_{\rm res}$ in CLIP-L/14 impedes the enhancement of performance through the revision of attention mechanisms.

• Noise가 어디서 왔는가?

- □ 가설 검증
 - (1) X res의 mIoU \rightarrow 0,
 - (2) X_attn의 mIoU > X_sum의 mIoU 인 것을 보아, residual connection은 image segmentation에 도움이 전혀 안되고 있다.
- □ 결론 CLIP을 사용했을때 segmentation map의 noise는 residual connection에서 비롯되었다.

Fig. 3: Open-vocabulary semantic segmentation using different feature maps of CLIP-B/16 model on the COCOStuff dataset. A visualization of an example (left) and quantitative results (right).

Noise가 어디서 왔는가?

Noise가 어떻게 발생하였는가 ?

- □ 실험결과
 - (1) DINO-B/16의 feature: 레이어 상관없이 엔트로피 값 일정하게 유지, CLIP-B/16의 feature: 레이어가 깊어짐에 따라 X_res와 X_sum의 엔트로피 값 급격히 (거의 0 수준까지) 감소. -> I.E., CLIP-B/16의 깊은 레이어의 X_res와 X_sum에 peak값들이 존재한다는 것.

$$H(X^{L}) = -\frac{1}{\log(hw \times d)} \sum_{i,j} p(X_{i,j}^{L}) \log p(X_{i,j}^{L}), \quad p(X_{i,j}^{L}) = \frac{e^{X_{i,j}^{L}}}{\sum_{m,n} e^{X_{m,n}^{L}}}, \quad (5)$$

(a) Entropy

Noise가 어떻게 발생하였는가?

- □ 실험결과
 - (2) DINO-B/16의 feature: 레이어 변함에 따라 최대값이 (10 이하로) 안정적으로 유지, CLIP-B/16의 feature: 레이어가 깊어짐에 따라 X_res와 X_sum의 최대값이 급격히 (초기보다 90배) 증가. -> 이것이 CLIP-B/16의 레이어가 깊어짐에 따라 X_res와 X_sum의 엔트로피 값 급격히 감소한 이유. -> I.E., X_res의 값 분포가 특정 채널/위치에 몰려있다.

● Noise가 어떻게 발생하였는가 ?

- □ 실험결과
 - (3) DINO-B/16의 feature: 각 채널 별 X_res 평균값이 안정적으로 유지, CLIP-B/16의 feature: 소수의 특정 채널이 X_res 평균값의 peak들을 지배함.
 - -> I.E., X res의 값 분포가 특정 채널에 몰려있다.
 - -> 각 feature들의 dominant channel이 같아, latent space에서 이 vector들의 방향이 유사하여, cosine similarity로 구분하기 어려움.
 - -> 이는 global 정보를 중요시하는 image recognition task에서는 괜찮지만, local 정보를 중요시하는 dense prediction task에서는 부적합.

LAN, Mengcheng, et al. Clearclip: Decomposing clip representations for dense vision-language inference. In: *European Conference on Computer Vision*. Cham: Springer Nature Switzerland, 2024. p. 143-160.

- Noise가 어떻게 발생하였는가?
 - □ 실험결과 Residual connection의 영향을 줄일수록 성능 좋아진다.
 - □ 결론
 Residual connection 제거

$$X_{\text{sum}} = X_{\text{res}} + \alpha X_{\text{attn}}$$

Fig. 6: Segmentation results w.r.t. the scaling factor α .

LAN, Mengcheng, et al. Clearclip: Decomposing clip representations for dense vision-language inference. In: *European Conference on Computer Vision*. Cham: Springer Nature Switzerland, 2024. p. 143-160.

Conclusion

- 1. Residual connection 제거
- 2. Feed-forward network 제거 (선행 연구 따라)
- 3. Query-query attention 적용 (선행 연구 따라)

$$X^{\text{visual}} = X_{\text{attn}} = \text{Proj}(\text{Attn}_{(\cdot)(\cdot)} \cdot v), \tag{6}$$

Table 1: Ablation results based on CLIP-B/16 architecture on five datasets *without* background class. RC denotes the residual connection.

Attn	RC	FFN	VOC20	Context59	Stuff	Cityscapes	ADE20k	Avg.
q- q	1	/	68.4	24.9	14.7	20.8	7.6	27.3
q- q	1	X	62.8	25.5	14.6	19.5	6.9	25.9
q- q	X	1	77.6	31.8	21.0	23.4	14.7	33.7
q- q	X	X	80.9	35.9	23.9	30.0	16.7	37.5

Table 2: Open-vocabulary semantic segmentation quantitative comparison on datasets without a background class. † denotes results directly cited from TCL [6]. SCLIP* denotes our reproduced results under the standard setting without class re-name tricks.

Methods	Encoder	VOC20	Context59	Stuff	Cityscape	ADE20k	Avg.
GroupViT [†] [44]	ViT-S/16	79.7	23.4	15.3	11.1	9.2	27.7
CoCu [42]	ViT-S/16	1 	-	13.6	15.0	11.1	-
TCL [6]	ViT-B/16	77.5	30.3	19.6	23.1	14.9	33.1
CLIP [35]	ViT-B/16	41.8	9.2	4.4	5.5	2.1	12.6
MaskCLIP [†] [56]	ViT-B/16	74.9	26.4	16.4	12.6	9.8	28.0
$ReCo^{\dagger}$ [38]	ViT-B/16	57.7	22.3	14.8	21.1	11.2	25.4
CLIPSurgery [26]	ViT-B/16	-	-	21.9	31.4	-	-
SCLIP [40]	ViT-B/16	80.4	34.2	22.4	32.2	16.1	37.1
$SCLIP^*$ [40]	ViT-B/16	78.2	33.0	21.1	29.1	14.6	35.2
ClearCLIP	ViT-B/16	80.9	35.9	23.9	30.0	16.7	37.5
CLIP [35]	ViT-L/14	15.8	4.5	2.4	2.9	1.2	5.4
MaskCLIP [56]	ViT-L/14	30.1	12.6	8.9	10.1	6.9	13.7
SCLIP [40]	ViT-L/14	60.3	20.5	13.1	17.0	7.1	23.6
ClearCLIP	ViT-L/14	80.0	29.6	19.9	27.9	15.0	34.5

Table 3: Open-vocabulary semantic segmentation quantitative comparison on datasets *with* a background class. † denotes results directly cited from TCL [6]. SCLIP* denotes our reproduced results under the standard setting without class re-name tricks.

Methods	Encoder	VOC21	Context60	Object	Avg.
GroupViT [†] [44]	ViT-S/16	50.4	18.7	27.5	32.2
SegCLIP [30]	ViT-S/16	52.6	24.7	26.5	34.6
OVSegmentor [46]	ViT-B/16	53.8	20.4	25.1	33.1
PGSeg [54]	ViT-S/16	53.2	23.8	28.7	35.2
ViewCo [36]	ViT-S/16	52.4	23.0	23.5	33.0
CoCu [42]	ViT-S/16	40.9	21.2	20.3	27.5
TCL [6]	ViT-B/16	51.2	24.3	30.4	35.3
CLIP [35]	ViT-B/16	16.2	7.7	5.5	9.8
MaskCLIP [†] [56]	ViT-B/16	38.8	23.6	20.6	27.7
$ReCo^{\dagger}$ [38]	ViT-B/16	25.1	19.9	15.7	20.2
CLIPSurgery [26]	ViT-B/16	-	29.3	-	_
GEM [3]	ViT-B/16	46.2	32.6	-	_
SCLIP [40]	ViT-B/16	59.1	30.4	30.5	40.0
SCLIP* [40]	ViT-B/16	51.4	30.5	30.0	37.3
ClearCLIP	ViT-B/16	51.8	32.6	33.0	39.1

Fig. 7: Qualitative comparison between open-vocabulary segmentation methods.