

GBI Tutorium Nr. 41

Foliensatz 14

Vincent Hahn - vincent.hahn@student.kit.edu | 7. Februar 2013

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Statistik

Kongruenzrelationen

Halbordnungen

Wiederholung

Kongruenzrelationen

Halbordnungen

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Statistik

Kongruenzrelationen

Wiederholung

Halbordnungen

3 Kongruenzrelationen

Statistiken

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Die folgenden Grafiken beziehen sich

- bei den Übungsblättern auf diejenigen, die den Übungsschein erhalten haben und
- bei der Übungsklausur auf diejenigen, die abgegeben haben.

Verlauf des Punktestands

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Verlauf der Punkteverteilung

Verlauf des Punktestands

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Mittelwert und Median des Punktestands

blau: Mittelwert, rot: Median

Punkteverteilung in der Probleklausur

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

1 Statistik

Kongruenzrelationen

Wiederholung

Halbordnungen

3 Kongruenzrelationen

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

- Jedes Problem kann von einer Turingmaschine entschieden werden.
- Warum?
- Gilt $P \subset PSPACE$?
- Gibt es endliche Akzeptoren für Sprachen L, die weniger Zustände haben als L Nerode-Äquivalenzklassen?

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

- Jedes Problem kann von einer Turingmaschine entschieden werden.
 Nein.
- Warum?
- Gilt $P \subset PSPACE$?
- Gibt es endliche Akzeptoren für Sprachen L, die weniger Zustände haben als L Nerode-Äquivalenzklassen?

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

- Jedes Problem kann von einer Turingmaschine entschieden werden.
- Warum? Siehe Halteproblem.
- Gilt $P \subset PSPACE$?
- Gibt es endliche Akzeptoren für Sprachen L, die weniger Zustände haben als L Nerode-Äquivalenzklassen?

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

- Jedes Problem kann von einer Turingmaschine entschieden werden.
- Warum?
- Gilt $P \subset PSPACE$? Ja.
- Gibt es endliche Akzeptoren für Sprachen L, die weniger Zustände haben als L Nerode-Äquivalenzklassen?

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

- Jedes Problem kann von einer Turingmaschine entschieden werden.
- Warum?
- Gilt $P \subset PSPACE$?
- Gibt es endliche Akzeptoren für Sprachen L, die weniger Zustände haben als L Nerode-Äquivalenzklassen? Nein.

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

1 Statistik

Kongruenzrelationen

Wiederholung

Halbordnungen

3 Kongruenzrelationen

Verträglichkeit

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Definition: Verträglichkeit

Es sei \equiv eine Äquivalenzrelation auf einer Menge M und $f:M\to M$ eine Abbildung. Man sagt, dass \equiv mit f verträglich ist, wenn für alle $x_1,x_2\in M$ gilt:

$$x_1 \equiv x_2 \Longrightarrow f(x_1) \equiv f(x_2)$$

Was bedeuted das anschaulich? Fallen euch Beispiele ein?

Vincent Hahn - vincent.hahn@student.kit.edu

Beispiel modulo n

(1)

Statistik

Wir kennen noch vom letzten Mal:

$$x_1 \equiv x_2 \pmod{n} \Leftrightarrow x_1 - x_2 = kn$$

Kongruenzrelationen

Wiederholung

Halbordnungen

ass x_1 und x_2 bei einer Division mit n den gleichen Rest

$$y_1 \equiv y_2 \pmod{n} \Leftrightarrow y_1 - y_2 = mn$$
 (2)

Ich behaupte es gilt

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$$
 (3)

$$1 \cdot y_1 \equiv x_2 \cdot y_2 \pmod{n} \tag{4}$$

Bewe

Statistik

Beispiel modulo n

(1)

Vincent Hahn – vincent.hahn@student.kit.edu

Wir kennen noch vom letzten Mal:

Kongruenzrelationen

Halbordnungen

Wiederholung

Das heißt auch, dass
$$x_1$$
 und x_2 bei einer Division mit n den gleichen Rest

 $x_1 \equiv x_2 \pmod{n} \Leftrightarrow x_1 - x_2 = kn$

 $v_1 \equiv v_2 \pmod{n} \Leftrightarrow v_1 - v_2 = mn$ (2)

lch behaupte es gilt

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n} \tag{3}$$

$$\cdot y_1 \equiv x_2 \cdot y_2 \pmod{n} \tag{4}$$

Beweis

haben.

Statistik

Beispiel modulo n

(1)

Vincent Hahn - vincent.hahn@student.kit.edu

Wir kennen noch vom letzten Mal:

Kongruenzrelationen

Halbordnungen

Wiederholung

Das heißt auch, dass x_1 und x_2 bei einer Division mit n den gleichen Rest

 $x_1 \equiv x_2 \pmod{n} \Leftrightarrow x_1 - x_2 = kn$

$$y_1 \equiv y_2 \pmod{n} \Leftrightarrow y_1 - y_2 = mn$$
 (2)

Ich behaupte es gilt:

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$$
 (3)

$$\cdot y_1 \equiv x_2 \cdot y_2 \pmod{n} \tag{4}$$

Beweis

haben.

Statistik

Beispiel modulo n

Vincent Hahn - vincent.hahn@student.kit.edu

Wir kennen noch vom letzten Mal:

$$x_1 \equiv x_2 \pmod{n} \Leftrightarrow x_1 - x_2 = kn$$
 (1)

Kongruenzrelationen

Das heißt auch, dass x_1 und x_2 bei einer Division mit n den gleichen Rest haben.

Halbordnungen

$$y_1 \equiv y_2 \pmod{n} \Leftrightarrow y_1 - y_2 = mn$$
 (2)

Ich behaupte es gilt:

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$$
 (3)

$$x_1 \cdot y_1 \equiv x_2 \cdot y_2 \pmod{n} \tag{4}$$

Beweis.

Beweis von (3)

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Addieren nun die beiden Gleichungen (1) und (2):

$$(x_1 + y_1) - (x_2 + y_2) = (x_1 - x_2) + (y_1 - y_2) = (k + m) n$$

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$$

Beweis von (3)

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Addieren nun die beiden Gleichungen (1) und (2):

$$(x_1 + y_1) - (x_2 + y_2) = (x_1 - x_2) + (y_1 - y_2) = (k + m) n$$

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$$

Beweis von (3)

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Addieren nun die beiden Gleichungen (1) und (2):

$$(x_1 + y_1) - (x_2 + y_2) = (x_1 - x_2) + (y_1 - y_2) = (k + m) n$$

Und wir sehen, dass gilt

$$x_1+y_1\equiv x_2+y_2\,(\mod n)$$

Beweis von (4)

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Löse Gleichung (1) nach x_1 auf und Gleichung (2) nach y_1 und multipliziere beide Seiten:

$$x_{1} \cdot y_{1} = (x_{2} + kn) \cdot (y_{2} + mn)$$

$$= x_{2} \cdot y_{2} + n(mx_{2} + ky_{2} + kmn)$$

$$x_{1} \cdot y_{1} - x_{2} \cdot y_{2} = n(mx_{2} + ky_{2} + kmn)$$

$$\iff x_{1} \cdot y_{1} \equiv x_{2} \cdot y_{2} \pmod{n}$$

Kongruenz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Damit können wir auch "nur mit Repräsentanten" der Äquivalenzklasse rechnen:

$$[2] + [3] = [2+3] = [5] = [0]$$

$$[2]\cdot[3] = [2\cdot3] = [6] = [1]$$

Nennt weitere Beispiele für die Äquivalenzrelation Kongruent Modulo i, wobei sich i bei jedem von euch erhöht.

Verträglichkeit und Kongruenzrelationen

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Die Operationen + und \cdot sind also verträglich mit unserer Relation "kongruent modulo n".

Definition: Kongruenzrelation

Eine Funktion, die mit allen gerade interessierenden Funktionen oder/und Operationen verträgich ist, nennt man auch **Kongruenzrelation**.

Kongruenz und die Nerode-Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Gegeben sei die Funktion:

Wiederholung

Statistik

$$f'_{x}:A^{*}_{/\equiv_{L}}\rightarrow A^{*}_{/\equiv_{L}}:[w]\mapsto[wx]$$

Kongruenzrelationen

Warum ist die Nerode-Äquivalenz mit dieser Abbildung verträglich?

Halbordnungen

Kongruenz und die Nerode-Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Gegeben sei die Funktion:

Otationi

$$f'_{\mathsf{X}}: \mathsf{A}^*_{/\equiv_{\mathsf{L}}} \to \mathsf{A}^*_{/\equiv_{\mathsf{L}}}: [\mathsf{w}] \mapsto [\mathsf{w}\mathsf{x}]$$

Kongruenzrelationen

Halbordnungen

Warum ist die Nerode-Äquivalenz mit dieser Abbildung verträglich? Gegeben sei $w_1 \equiv_L w_2$, das heißt nach Definition der Nerode-Äquivalenz:

$$w_1 w \in L \Leftrightarrow w_2 w \in L$$

 $(w_1 x) v \in L \Leftrightarrow w_1 (xv) \in L$
 $\Leftrightarrow w_2 (xv) \in L \text{ weil } w_1 \equiv_L w_2$
 $\Leftrightarrow (w_2 x) v \in L$

Damit ist gezeigt, dass die Nerode-Äquivalenz mit der Konkatenation verträglich ist.

Induzierte Operationen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Kongruenzrelationen

Halbordnungen

Wir wissen nun, dass $f_x: A^*: w \mapsto wx$ (Konkatenation) mit \equiv_I (Nerode-Äquivalenz) verträglich ist. Damit gilt auch:

$$A_{X}^{\epsilon\prime}:A_{/\equiv_{L}}^{*}\rightarrow A_{/\equiv_{L}}^{*}:[w]\mapsto[wx]$$

- $z_0 = [\varepsilon]$ (Startzustand) und
- $F = \{[w]|w \in L\}$ (akzeptierte Zustände)

Induzierte Operationen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Kongruenzrelationen

Halbordnungen

Wir wissen nun, dass $f_x: A^*: w \mapsto wx$ (Konkatenation) mit \equiv_I (Nerode-Äquivalenz) verträglich ist. Damit gilt auch:

$$f_{x}':A_{/\equiv_{L}}^{*}\rightarrow A_{/\equiv_{L}}^{*}:[w]\mapsto[wx]$$

Was heißt das?

- $z_0 = [\varepsilon]$ (Startzustand) und
- $F = \{[w]|w \in L\}$ (akzeptierte Zustände)

Induzierte Operationen

Vincent Hahn - vincent.hahn@student.kit.edu

Statistil

Wiederholung

Kongruenzrelationen

Halbordnungen

Wir wissen nun, dass $f_X : A^* : w \mapsto wx$ (Konkatenation) mit \equiv_L (Nerode-Äquivalenz) verträglich ist. Damit gilt auch:

$$f'_{x}:A^{*}_{/\equiv_{L}}\rightarrow A^{*}_{/\equiv_{L}}:[w]\mapsto [wx]$$

Was heißt das?

Die Nerode-Äquivalenz ist mit der Konkatenation verträglich. Damit ergibt sich auch eine Relation auf die Äquivalenzmenge $A_{/\equiv_L}^*$. (Die obige Funktion ist **wohldefiniert**.)

Damit können wir uns einen endlichen Akzeptor konstruieren, wähle:

- $z_0 = [\varepsilon]$ (Startzustand) und
- $F = \{[w] | w \in L\}$ (akzeptierte Zustände)

Induzierte Operationen

Vincent Hahn - vincent.hahn@student.kit.edu

Statistil

Wiederholung

Kongruenzrelationen

Halbordnungen

Wir wissen nun, dass $f_x : A^* : w \mapsto wx$ (Konkatenation) mit \equiv_L (Nerode-Äquivalenz) verträglich ist. Damit gilt auch:

$$f'_{x}:A^*_{/\equiv_{L}}\rightarrow A^*_{/\equiv_{L}}:[w]\mapsto [wx]$$

Was heißt das?

Die Nerode-Äquivalenz ist mit der Konkatenation verträglich. Damit ergibt sich auch eine Relation auf die Äquivalenzmenge $A_{/\equiv_L}^*$. (Die obige Funktion ist **wohldefiniert**.)

Damit können wir uns einen endlichen Akzeptor konstruieren, wähle:

- $z_0 = [\varepsilon]$ (Startzustand) und
- $F = \{[w] | w \in L\}$ (akzeptierte Zustände)

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

1 Statistik

Kongruenzrelationen

Wiederholung

Halbordnungen

3 Kongruenzrelationen

Antisymmetrie

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Definition: Antisymmetrie

Eine Relation $R \subseteq M \times M$ heißt **antisymmetrisch**, wenn für alle $x, y \in M$ gilt:

$$xRy \land yRx \Rightarrow x = y$$

Vincent Hahn – vincent.hahn@student.kit.edu

5++i

Statistik

Wiederholung

Kongruenzrelationen