Maths: DM 10

Partie I. Le théorème de Cesàro

0. a.

Par la définition de limite:

$$\exists n_0 \in \mathbb{N}^*, \forall n \geq n_0, |u_n| \leq \frac{\varepsilon}{2}$$

b.

Soient $n_0, n \in \mathbb{N}^*$ tel que $\, n \geq n_0 \,$ alors

$$|\sigma_n| = \left|\frac{\sum_{k=1}^n u_k}{n}\right| = \left|\frac{\sum_{k=1}^{n_0-1} u_k}{n} + \frac{\sum_{k=n_0}^n u_k}{n}\right| \le \left|\frac{\sum_{k=1}^{n_0-1} u_k}{n}\right| + \left|\frac{\sum_{k=n_0}^n u_k}{n}\right| \le \frac{\sum_{k=1}^{n_0-1} |u_k|}{n} + \frac{\sum_{k=n_0}^n |u_k|}{n}$$

Ainsi on a bien:

$$\forall n\geq n_0, |\sigma_n|\leq \frac{|u_1|+|u_2|+\ldots+\left|u_{n_0-1}\right|}{n}+\frac{\left|u_{n_0}\right|+\ldots+|u_n|}{n}$$

c

Comme $\frac{1}{n} \sum_{k=1}^{n_0-1} u_k$ est une somme finis alors:

$$\frac{1}{n} \sum_{k=1}^{n_0 - 1} |u_k| \underset{n \to +\infty}{\longrightarrow} 0$$

Donc par la définition de limite:

$$\exists n_1 \in \mathbb{N}^*, \forall n \geq n_1, \frac{1}{n} \sum_{k=1}^{n_0-1} |u_k| \leq \frac{\varepsilon}{2}$$

De plus:

$$\frac{1}{n} \sum_{k=n_0}^n |u_k| \le \frac{1}{n} \sum_{k=n_0}^n \frac{\varepsilon}{2} = \frac{n-n_0+1}{2} \varepsilon \le \frac{\varepsilon}{2}$$

Poson $N = \max(n_1, n_0)$ alors :

$$\forall n \geq N, |\sigma_n| \leq \frac{1}{n} \sum_{k=1}^{n_0-1} |u_k| + \frac{1}{n} \sum_{k=n_0}^n |u_k| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \leq \varepsilon$$

Donc
$$\underbrace{\sigma_n \xrightarrow[n \to +\infty]{} 0}$$

1.

Soit $(u_n)\in\mathbb{R}^{\mathbb{N}}$ tel que $u_n\underset{n\to+\infty}{\longrightarrow} l$ et σ_n la suite des moyennes de Césàro associée à (u_n) alors : la suite (u_n-l) tend vers 0

Donc selon le résulta précédent: $\sigma_n - l \underset{n \to +\infty}{\longrightarrow} 0$

Donc: $\underbrace{\sigma_n \xrightarrow[n \to +\infty]{} l}$

2.

Soit $\left(u_{n}\right)_{n\geq1}$ la suite définie par $\forall n\in\mathbb{N},u_{n}=\left(-1\right)^{n}$

Cette suite n'admet pas de limite

Or la suite des moyennes de Césàro associé à (u_n) :

$$\sigma_n = \frac{1}{n} \sum_{k=1}^n (-1)^k = \frac{\left(-1\right)^n - 1}{2n} \underset{n \to +\infty}{\longrightarrow} 0$$

Donc σ_n converge vers 0

Ce qui contredit la réciproque

3.

Soit $A \in \mathbb{R}$ alors:

 $\exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n \geq 2A \text{ alors}$

Soit un tel n_0 et

Soit (σ_n) la suite des moyennes de Césàro de (u_n) , alors pour $n \geq n_0$:

$$\sigma_n = \frac{1}{n} \sum_{k=1}^n u_k = \frac{1}{n} \sum_{k=1}^{n_0-1} (u_k) + \frac{1}{n} \sum_{k=n_0}^n (u_k) \ge \frac{1}{n} \sum_{k=1}^{n_0-1} (u_k) + 2A \frac{n-n_0+1}{n}$$

Comme $\frac{1}{n}\sum_{k=1}^{n_0-1}(u_k)$ tend vers 0 (cf. première question) alors à partir qu'un certain rang n_1 :

$$\frac{1}{n} \sum_{k=1}^{n_0 - 1} (u_k) \ge -\frac{A}{5}$$

Et $2\frac{n-n_0+1}{n}$ tend vers 2 donc à partir d'un certain rang n_2 : $2\frac{n-n_0+1}{n}\geq\frac95$ Poson $N=\max(n_0,n_1,n_2)$

Alors pour tout $n \geq N$:

$$\sigma_n \ge -\frac{A}{5} + \frac{9}{5}A \ge \frac{8}{5}A \ge A$$

Donc σ_n diverge vers $+\infty$

4.

Supposons que (σ_n) converge vers l et

Supposons par l'absurde que (u_n) est divergante

Donc puisque u_n est croissante alors $u_n \longrightarrow +\infty$

Ainsi par la question 4, $\sigma_n \longrightarrow +\infty$ ce qui est absurde puisque σ_n converge

Ainsi \boldsymbol{u}_n converge

Partie II. Quelques appliquations

5. Le lemme de l'escalier

Soit $n \in \mathbb{N}$

Poson $\forall n \geq 2, v_n = a_n - a_{n-1}$

Selons le lemme de Césàro on a:

$$\frac{1}{n} \sum_{k=2}^{n} v_n \underset{n \to +\infty}{\longrightarrow} a$$

Or
$$\frac{1}{n}\sum_{k=2}^n v_k = \frac{1}{n}\sum_{k=2}^n a_k - a_{k-1} = \frac{a_n - a_1}{n}$$
 Or $-\frac{a_1}{n} \underset{n \to +\infty}{\longrightarrow} 0$

$$\forall n \geq n_0, \left|\frac{a_n}{n} - \frac{a_1}{n} - a\right| \leq \left|\frac{a_n}{n} - a\right| + \left|\frac{a_1}{n}\right| \leq \left|\frac{a_n}{n} - a\right| + |a_1| \leq 2|a_1| + |a|$$

ce qui est équivalant à: $\forall n \geq n_0, \left|\frac{a_n}{n} - a\right| < |a_1| + |a|$

Poson alors $\varepsilon = |a_1| + |a| > 0$

Donc
$$\forall n \ge n_0, \left| \frac{a_n}{n} - a \right| < \varepsilon$$

$$\begin{array}{l} \text{Donc } \forall n \geq n_0, \left|\frac{a_n}{n} - a\right| < \varepsilon \\ \text{Autrement dit } \frac{a_n}{n} \underset{n \rightarrow +\infty}{\longrightarrow} a \end{array}$$

6. a.

Prouvons tout d'abord que u_n converge

Comme $1+u_n^2>0$ et $\,u_1>0$ alors $\forall n\in\mathbb{N}^*,u_n>0$

Donc la suite est strictement positve et minorée par 0

Et on a

$$u_{n+1} - u_n = \frac{u_n}{1 + u_n^2} - u_n = -\frac{u_n^3}{1 + u_n^2}$$

Or comme $u_n>0$ et $\,1+u_n^2>0$ alors $-\frac{u_n^3}{1+u_n^2}<0\,$

Donc la suite est décroisante

Ainsi comme la suite est minorée et décroisante alors par le théorème de la limite monotone, (u_n) converges vers l

Par passage à la limite et par unicité de la limite dans la définition

$$l = \frac{l}{1 + l^2}$$

donc $1 + l^2 = 1$

donc $l^2 = 0$

donc l=0

Ainsi
$$\lim_{n \to +\infty} u_n = 0$$

b.

 v_n est bien définis car $u_n > 0$

$$v_n + 1 - v_n = \frac{1}{u_{n+1}^2} - \frac{1}{u_n^2} = \frac{\left(1 + u_n^2\right)^2}{u_n^2} - \frac{1}{u_n^2} = \frac{1 + 2u_n^2 + u_n^4 - 1}{u_n^2} = 2 + \underbrace{u_n^2}_{\longrightarrow 0} \underset{n \to +\infty}{\longrightarrow} 2$$

$$\underline{\text{Ainsi}} \lim_{n \to +\infty} \bigl(v_{n+1} - v_n \bigr) = 2$$

Par le lemme de l'escalier, on a: $\frac{v_n}{n} = \frac{1}{nu_n^2} \underset{n \to +\infty}{\longrightarrow} 2$

Donc
$$\frac{1}{2nu^2} \longrightarrow 1$$

Donc
$$2nu_n^2 \xrightarrow[n \to +\infty]{} 1$$

$$\begin{array}{ccc} \operatorname{Donc} \frac{1}{2nu_n^2} & \longrightarrow & 1 \\ \operatorname{Donc} 2nu_n^2 & \longrightarrow & 1 \\ \operatorname{Donc} u_n \sqrt{2n} & \longrightarrow & 2 \\ \end{array}$$

Exercice 2 : calcul des puissances d'une matrice 3×3

0. a.

Soit $X \in \mathcal{M}_{3,1}(\mathbb{R})$ et soient $a,b,c \in \mathbb{R}$ tel que $X = \begin{pmatrix} a \\ b \end{pmatrix}$

Ainsi le systeme se réécrit:

$$\begin{cases} 3a+b-c=a\\ -a+b+c=b \Leftrightarrow \begin{cases} c=-b\\ b=b\\ a=-b \end{cases}$$

Ainsi l'ensemble des solution du système est: $\left\{ \begin{pmatrix} -b \\ b \\ -b \end{pmatrix}, b \in \mathbb{R} \right\}$ Donc la matrice C_1 vaut: $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

b.

Soit $X \in \mathcal{M}_{3,1}$ et soient $a,b,c \in \mathbb{R}$ tel que $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Ainsi le systeme se réécrit:

$$\begin{cases} 3a+b-c=2a\\ -a+b+c=2b \Leftrightarrow \begin{cases} c=-2b\\ b=b\\ a=-b \end{cases}$$

Ainsi l'ensemble des solution du système est: $\left\{\begin{pmatrix} -2b \\ b \\ -b \end{pmatrix}, b \in \mathbb{R} \right\}$

Donc la matrice C_3 vaut: $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$

c.

Soit $X \in \mathcal{M}_{3,1}$ et soient $a,b,c \in \mathbb{R}$ tel que $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Ainsi le systeme se réécrit:

$$\begin{cases} 3a+b-c=\lambda a\\ -a+b+c=\lambda b \Leftrightarrow \begin{cases} 3\lambda c+b-c=\lambda^2 c\\ -\lambda c+b+c=\lambda b \end{cases} \Leftrightarrow \begin{cases} c(-\lambda^2+3\lambda-2)=0\\ b=-c\\ a=\lambda c \end{cases}$$

la première ligne force c=0 car les racines du polynome $-x^2+3x-2$ sont 2 et 1 or λ est différent de 2 et de 1

Donc la seul solution du système est X=0

Donc il n'y a pas de solution au système non nul

d.

Soit $C_2 \in \mathcal{M}_{3,1}(\mathbb{R})$ et soient $a,b,c \in \mathbb{R}$ tel que $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Ainsi le systeme se réécrit:

$$\begin{cases} 3a+b-c=1+a\\ -a+b+c=-1+b \Leftrightarrow \begin{cases} c=-1-b\\ b=b\\ a=-b \end{cases}$$

Ainsi l'ensemble des solution du système est: $\left\{\begin{pmatrix} -b \\ b \\ -1-b \end{pmatrix}, b \in \mathbb{R}\right\}$

Donc la matrice C_2 vaut: $\begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ -1 \end{pmatrix}$

1.

On a donc
$$P = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$

a

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 est une telle matrice

En effet:

$$AP = \begin{pmatrix} 3 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ -1 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 4 \\ -1 & -1 & -2 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = PT$$

b.

$$\begin{pmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ -1 & 0 & -1 & | & 0 & 1 & 0 \\ 1 & -1 & 1 & | & 0 & 0 & 1 \end{pmatrix} \underset{L_{3} \leftarrow L_{1} - L_{3}}{\Longleftrightarrow} \begin{pmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 1 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & -1 \end{pmatrix} \underset{L_{2} \leftrightarrow L_{3}}{\Longleftrightarrow} \begin{pmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & -1 \\ 0 & 0 & 1 & | & 1 & 1 & 0 \end{pmatrix}$$

Donc *P* est inversible car tous les coefficients diagonaux sont non nul, alors:

$$\begin{pmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 1 & 0 & -1 \\ 0 & 0 & 1 & | & 1 & 0 \end{pmatrix} \underset{L_2 \leftarrow L_2 - L_3}{\Longleftrightarrow} \begin{pmatrix} 1 & 0 & 0 & | & -1 & -2 & 0 \\ 0 & 1 & 0 & | & 0 & -1 & -1 \\ 0 & 0 & 1 & | & 1 & 1 & 0 \end{pmatrix}$$

Ainsi
$$P^{-1} = \begin{pmatrix} -1 & -2 & 0 \\ 0 & -1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$
Deplus on a $A = PTP^{-1}$

c.

On cherche à monter par récurance simple que $T^n = \begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{pmatrix}$

• Initialisation:

Pour n = 0:

$$T^0 = \mathrm{Id}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^0 \end{pmatrix}$$

Donc l'initialisation est vérifiée

· Hérédité:

Soit
$$n \in \mathbb{N}$$
 tel que $\forall n \in \mathbb{N}, T^n = \begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{pmatrix}$, alors:

$$T^{n+1} = T^n T = \begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & n+1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n+1} \end{pmatrix}$$

Donc l'hérédité est vérifiée

Ainsi par la principe de récurance simple
$$\forall n \in \mathbb{N}; T^n = \begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{pmatrix}$$

2.

On va prouver par récurance simple la proposition suivante $P(n): A^n = PT^nP^{-1}$

• Initialisation:

$$A^0 = \text{Id}_3 \text{ et } PT^0P^{-1} = PP^{-1} = \text{Id}_3$$

Donc l'initialisation est vérifiée

• Hérédité:

Soit $n \in \mathbb{N}$ tel que P(n) est vraie

On rappelle que
$$A = PTP^{-1}$$
 $A^{n+1} = A^nA = PT^nP^{-1}PTP^{-1} = PT^nTP^{-1} = PT^{n+1}P^{-1}$

Donc l'hérédité est vérifiée

Ainsi par principe de récurance P(n) est vraie

Donc on a:

$$\forall n \in \mathbb{N}, A^n = PT^nP^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{pmatrix} \begin{pmatrix} -1 & -2 & 0 \\ 0 & -1 & -1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2^{n+1} - 1 & 2^{n+1} - 2 - n & -n \\ 1 - 2^n & 2 - 2^n + n & n \\ 2^n - 1 & 2^n - n - 1 & 1 - n \end{pmatrix}$$

Ainsi
$$\forall n \in \mathbb{N}, A^n = \begin{pmatrix} 2^{n+1}-1 & 2^{n+1}-2-n & -n \\ 1-2^n & 2-2^n+n & n \\ 2^n-1 & 2^n-n-1 & 1-n \end{pmatrix}$$