

Report No: CCIS15050034301

# FCC REPORT

**Applicant:** Shenzhen Wanchuangbo Industry Development Co., Ltd.

Address of Applicant: FLOOR 3-4, BUILDING 4, NO.7 LIPU STREET, BANTIAN

AREA, LONGGANG DISTRICT, SHENZHEN CHINA

**Equipment Under Test (EUT)** 

Product Name: Tablet PC

Model No.: CT740, CT740K, CT7+, iDeaPLAY, V740H, K7, K7+

Trade mark: iDeaUSA, VENSTAR

**FCC ID:** 2AAGR15M-02

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 20 May., 2015

**Date of Test:** 20 May., 2015 to 08 Jun., 2015

Date of report issued: 10 Jun., 2015

Test Result: PASS \*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





## **Version**

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 10 Jun., 2015 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

May Gu
Report Clerk Prepared by: 10 Jun., 2015 Date:

10 Jun., 2015 Reviewed by:

**Project Engineer** 





## 3 Contents

|   |                                                 | Page |
|---|-------------------------------------------------|------|
| 1 | 1 COVER PAGE                                    | 1    |
| 2 | 2 VERSION                                       | 2    |
| 3 | 3 CONTENTS                                      | 3    |
| 4 |                                                 | 4    |
| 5 |                                                 |      |
|   | 5.1 CLIENT INFORMATION                          |      |
|   | 5.2 GENERAL DESCRIPTION OF E.U.T. 5.3 TEST MODE |      |
|   | 5.4 LABORATORY FACILITY                         |      |
|   | 5.5 LABORATORY LOCATION                         |      |
|   | 5.6 TEST INSTRUMENTS LIST                       | 8    |
| 6 | 6 TEST RESULTS AND MEASUREMENT DATA             | 9    |
|   | 6.1 Antenna requirement                         |      |
|   | 6.2 CONDUCTED EMISSIONS                         |      |
|   | 6.3 CONDUCTED OUTPUT POWER                      |      |
|   | 6.5 CARRIER FREQUENCIES SEPARATION              |      |
|   | 6.6 HOPPING CHANNEL NUMBER                      |      |
|   | 6.7 DWELL TIME                                  |      |
|   | 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE     | 32   |
|   | 6.9 BAND EDGE                                   | 33   |
|   | 6.9.1 Conducted Emission Method                 | 33   |
|   |                                                 | 37   |
|   | 6.10 Spurious Emission                          |      |
|   |                                                 | 50   |
|   |                                                 | 57   |
| 7 | 7 TEST SETUP PHOTO                              | 62   |
| R | 8 FUT CONSTRUCTIONAL DETAILS                    | 64   |





4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna Requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(1)     | Pass   |
| 20dB Occupied Bandwidth          | 15.247 (a)(1)     | Pass   |
| Carrier Frequencies Separation   | 15.247 (a)(1)     | Pass   |
| Hopping Channel Number           | 15.247 (a)(1)     | Pass   |
| Dwell Time                       | 15.247 (a)(1)     | Pass   |
| Radiated Emission                | 15.205/15.209     | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |

Pass: The EUT complies with the essential requirements in the standard.





# **5** General Information

## 5.1 Client Information

| Applicant:               | Shenzhen Wanchuangbo Industry Development Co., Ltd.                                      |  |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Address of Applicant:    | FLOOR 3-4, BUILDING 4, NO.7 LIPU STREET, BANTIAN AREA, LONGGANG DISTRICT, SHENZHEN CHINA |  |  |  |  |  |  |
| Manufacturer:            | Shenzhen Wanchuangbo Industry Development Co., Ltd.                                      |  |  |  |  |  |  |
| Address of Manufacturer: | FLOOR 3-4, BUILDING 4, NO.7 LIPU STREET, BANTIAN AREA, LONGGANG DISTRICT, SHENZHEN CHINA |  |  |  |  |  |  |

# 5.2 General Description of E.U.T.

| Product Name:          | Tablet PC                                                                                                                                                                                             |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:             | CT740, CT740K, CT7+, iDeaPLAY, V740H, K7, K7+                                                                                                                                                         |
| Operation Frequency:   | 2402MHz~2480MHz                                                                                                                                                                                       |
| Transfer rate:         | 1/2/3 Mbits/s                                                                                                                                                                                         |
| Number of channel:     | 79                                                                                                                                                                                                    |
| Modulation type:       | GFSK, π/4-DQPSK, 8DPSK                                                                                                                                                                                |
| Modulation technology: | FHSS                                                                                                                                                                                                  |
| Antenna Type:          | Internal Antenna                                                                                                                                                                                      |
| Antenna gain:          | 1.2dBi                                                                                                                                                                                                |
| Power supply:          | Rechargeable Li-ion Battery DC3.7V-2800mAh                                                                                                                                                            |
| AC adapter:            | Model: AW010WR-0500200UU<br>Input:100-240V AC,50/60Hz 0.4A<br>Output:5V DC MAX 2.0A                                                                                                                   |
| Remark                 | Model No.CT740, CT740K, CT7+, iDeaPLAY, V740H, K7, K7+ were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being color and label. |





| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 0       | 2402MHz   | 20      | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |
| 1       | 2403MHz   | 21      | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |
| 2       | 2404MHz   | 22      | 2424MHz   | 42      | 2444MHz   | 62      | 2464MHz   |
| 3       | 2405MHz   | 23      | 2425MHz   | 43      | 2445MHz   | 63      | 2465MHz   |
| 4       | 2406MHz   | 24      | 2426MHz   | 44      | 2446MHz   | 64      | 2466MHz   |
| 5       | 2407MHz   | 25      | 2427MHz   | 45      | 2447MHz   | 65      | 2467MHz   |
| 6       | 2408MHz   | 26      | 2428MHz   | 46      | 2448MHz   | 66      | 2468MHz   |
| 7       | 2409MHz   | 27      | 2429MHz   | 47      | 2449MHz   | 67      | 2469MHz   |
| 8       | 2410MHz   | 28      | 2430MHz   | 48      | 2450MHz   | 68      | 2470MHz   |
| 9       | 2411MHz   | 29      | 2431MHz   | 49      | 2451MHz   | 69      | 2471MHz   |
| 10      | 2412MHz   | 30      | 2432MHz   | 50      | 2452MHz   | 70      | 2472MHz   |
| 11      | 2413MHz   | 31      | 2433MHz   | 51      | 2453MHz   | 71      | 2473MHz   |
| 12      | 2414MHz   | 32      | 2434MHz   | 52      | 2454MHz   | 72      | 2474MHz   |
| 13      | 2415MHz   | 33      | 2435MHz   | 53      | 2455MHz   | 73      | 2475MHz   |
| 14      | 2416MHz   | 34      | 2436MHz   | 54      | 2456MHz   | 74      | 2476MHz   |
| 15      | 2417MHz   | 35      | 2437MHz   | 55      | 2457MHz   | 75      | 2477MHz   |
| 16      | 2418MHz   | 36      | 2438MHz   | 56      | 2458MHz   | 76      | 2478MHz   |
| 17      | 2419MHz   | 37      | 2439MHz   | 57      | 2459MHz   | 77      | 2479MHz   |
| 18      | 2420MHz   | 38      | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |
| 19      | 2421MHz   | 39      | 2441MHz   | 59      | 2461MHz   |         |           |



Report No: CCIS15050034301

#### 5.3 Test mode

| Transmitting mode: | Keep the EUT in transmitting mode with worst case data rate. |
|--------------------|--------------------------------------------------------------|
| Remark             | GFSK (1 Mbps) is the worst case mode.                        |

The sample was placed 0.8m above the ground plane of 3m chamber\*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

## 5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

#### • IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

## 5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366





## 5.6 Test Instruments list

| Radiated Emission: |                                      |                                   |                             |                  |                         |                             |  |  |  |
|--------------------|--------------------------------------|-----------------------------------|-----------------------------|------------------|-------------------------|-----------------------------|--|--|--|
| Item               | Test Equipment                       | Manufacturer                      | Model No.                   | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |  |
| 1                  | 3m Semi- Anechoic<br>Chamber         | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001         | 08-23-2014              | 08-22-2017                  |  |  |  |
| 2                  | BiConiLog Antenna                    | SCHWARZBECK<br>MESS-ELEKTRONIK    | VULB9163                    | CCIS0005         | 03-28-2015              | 03-28-2016                  |  |  |  |
| 3                  | Double -ridged waveguide horn        | SCHWARZBECK<br>MESS-ELEKTRONIK    | BBHA9120D                   | CCIS0006         | 03-28-2015              | 03-28-2016                  |  |  |  |
| 4                  | EMI Test Software                    | AUDIX                             | E3                          | N/A              | N/A                     | N/A                         |  |  |  |
| 5                  | Amplifier<br>(10kHz-1.3GHz)          | HP                                | 8447D                       | CCIS0003         | 04-01-2015              | 03-31-2016                  |  |  |  |
| 6                  | Amplifier<br>(1GHz-18GHz)            | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011         | 04-01-2015              | 03-31-2016                  |  |  |  |
| 7                  | Pre-amplifier<br>(18-26GHz)          | Rohde & Schwarz                   | AFS33-18002<br>650-30-8P-44 | GTS218           | 04-01-2015              | 03-31-2016                  |  |  |  |
| 8                  | Horn Antenna                         | ETS-LINDGREN                      | 3160                        | GTS217           | 04-01-2015              | 03-31-2016                  |  |  |  |
| 9                  | Printer                              | HP                                | HP LaserJet P1007           | N/A              | N/A                     | N/A                         |  |  |  |
| 10                 | Positioning Controller               | UC                                | UC3000                      | CCIS0015         | N/A                     | N/A                         |  |  |  |
| 11                 | Spectrum analyzer<br>9k-30GHz        | Rohde & Schwarz                   | FSP                         | CCIS0023         | 03-28-2015              | 03-28-2016                  |  |  |  |
| 12                 | EMI Test Receiver                    | Rohde & Schwarz                   | ESCI                        | CCIS0002         | 03-28-2015              | 03-28-2016                  |  |  |  |
| 13                 | Loop antenna                         | Laplace instrument                | RF300                       | EMC0701          | 04-01-2015              | 03-31-2016                  |  |  |  |
| 14                 | Universal radio communication tester | Rhode & Schwarz                   | CMU200                      | CCIS0069         | 03-28-2015              | 03-28-2016                  |  |  |  |
| 15                 | Signal Analyzer                      | Rohde & Schwarz                   | FSIQ3                       | CCIS0088         | 04-08-2015              | 04-08-2016                  |  |  |  |

| Conducted Emission: |                   |                    |                       |                  |                         |                             |  |  |  |  |
|---------------------|-------------------|--------------------|-----------------------|------------------|-------------------------|-----------------------------|--|--|--|--|
| Item                | Test Equipment    | Manufacturer       | Model No.             | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |  |  |
| 1                   | Shielding Room    | ZhongShuo Electron | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | 11-10-2012              | 11-09-2015                  |  |  |  |  |
| 2                   | EMI Test Receiver | Rohde & Schwarz    | ESCI                  | CCIS0002         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 3                   | LISN              | CHASE              | MN2050D               | CCIS0074         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 4                   | Coaxial Cable     | CCIS               | N/A                   | CCIS0086         | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 5                   | EMI Test Software | AUDIX              | E3                    | N/A              | N/A                     | N/A                         |  |  |  |  |



## 6 Test results and Measurement Data

## 6.1 Antenna requirement

## Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 1.2 dBi.







## 6.2 Conducted Emissions

| <br>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |           |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--|--|--|--|
| Test Requirement:     | FCC Part 15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |           |  |  |  |  |
| Test Method:          | ANSI C63.4:2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |           |  |  |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |           |  |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |           |  |  |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kHz, Sweep time=auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |           |  |  |  |  |
| Limit:                | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |  |  |  |  |
|                       | Prequency range (MHZ)  Quasi-peak  Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |           |  |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66 to 56* | 56 to 46* |  |  |  |  |
|                       | 0.5-5     56     46       5-30     60     50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |           |  |  |  |  |
|                       | 5-30 60 50  * Decreases with the logarithm of the frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |           |  |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |           |  |  |  |  |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |           |  |  |  |  |
|                       | AUX Filter AC power Equipment E.U.T  Remark E.U.T Equipment Under Test LISN: Line impedence Stabilization Network Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           |  |  |  |  |
| Test procedure:       | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 2009on conducted measurement</li> </ol> |           |           |  |  |  |  |
| Test Instruments:     | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           |  |  |  |  |
| Test mode:            | Bluetooth (Continuous transmitting) mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           |  |  |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |           |  |  |  |  |
|                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |           |  |  |  |  |

## **Measurement Data**





#### Line:



Trace: 31

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE : Tablet PC Site Condition

EUT Model : CT740 Test Mode : BT mode
Power Rating : AC120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Garen
Remark

| Kemark      | :<br>Freq | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------|-----------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|             | MHz       | dBu₹          | <u>dB</u>      | dB            | —dBuV | dBu∇          | <u>dB</u>     |         |
| 1           | 0.150     | 18.01         | 0.27           | 10.78         | 29.06 | 56.00         | -26.94        | Average |
| 1<br>2<br>3 | 0.154     | 35.51         | 0.27           | 10.78         | 46.56 | 65.78         | -19.22        | QP      |
| 3           | 0.226     | 34.18         | 0.27           | 10.75         | 45.20 | 62.61         | -17.41        | QP      |
| 4<br>5<br>6 | 0.601     | 24.41         | 0.25           | 10.77         | 35.43 | 46.00         | -10.57        | Average |
| 5           | 0.686     | 32.57         | 0.22           | 10.77         | 43.56 | 56.00         | -12.44        | QP      |
| 6           | 0.686     | 22.55         | 0.22           | 10.77         | 33.54 | 46.00         | -12.46        | Average |
| 7<br>8<br>9 | 1.249     | 20.50         | 0.25           | 10.90         | 31.65 | 46.00         | -14.35        | Average |
| 8           | 1.527     | 29.80         | 0.26           | 10.93         | 40.99 | 56.00         | -15.01        | QP      |
| 9           | 1.928     | 30.63         | 0.26           | 10.96         | 41.85 | 56.00         | -14.15        | QP      |
| 10          | 2.567     | 15.34         | 0.27           | 10.94         | 26.55 | 46.00         | -19.45        | Average |
| 11          | 2.650     | 31.98         | 0.27           | 10.93         | 43.18 | 56.00         | -12.82        | QP      |
| 12          | 3.173     | 14.33         | 0.27           | 10.91         | 25.51 | 46.00         | -20.49        | Average |
|             |           |               |                |               |       |               |               |         |



#### Neutral:



Trace: 37

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL : Tablet PC Condition

EUT Model : CT740

Test Mode : BT mode
Power Rating : AC120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Remark

Remark

| Freq  | Read<br>Level                                                                    | LISN<br>Factor                                                                                                                                           | Cable<br>Loss                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit<br>Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Over<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz   | dBu∜                                                                             | <u>dB</u>                                                                                                                                                | <u>ap</u>                                                                                                                                                                                                                 | dBu₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | −−dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>d</u> B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.158 | 31.08                                                                            | 0.25                                                                                                                                                     | 10.78                                                                                                                                                                                                                     | 42.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.174 | 14.81                                                                            | 0.25                                                                                                                                                     | 10.77                                                                                                                                                                                                                     | 25.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -28.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.299 | 15.21                                                                            | 0.26                                                                                                                                                     | 10.74                                                                                                                                                                                                                     | 26.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -24.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.302 | 23.72                                                                            | 0.26                                                                                                                                                     | 10.74                                                                                                                                                                                                                     | 34.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -25.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.541 | 26.30                                                                            | 0.26                                                                                                                                                     | 10.76                                                                                                                                                                                                                     | 37.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -18.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.611 | 29.55                                                                            | 0.22                                                                                                                                                     | 10.77                                                                                                                                                                                                                     | 40.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -15.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.614 | 17.96                                                                            | 0.22                                                                                                                                                     | 10.77                                                                                                                                                                                                                     | 28.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -17.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.731 | 11.53                                                                            | 0.18                                                                                                                                                     | 10.78                                                                                                                                                                                                                     | 22.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -23.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.123 | 24.36                                                                            | 0.23                                                                                                                                                     | 10.88                                                                                                                                                                                                                     | 35.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.123 | 9.47                                                                             | 0.23                                                                                                                                                     | 10.88                                                                                                                                                                                                                     | 20.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -25.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.495 | 23.79                                                                            |                                                                                                                                                          | 10.92                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.762 | 8.14                                                                             | 0.28                                                                                                                                                     | 10.94                                                                                                                                                                                                                     | 19.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | MHz 0. 158 0. 174 0. 299 0. 302 0. 541 0. 611 0. 614 0. 731 1. 123 1. 123 1. 495 | Freq Level  MHz dBuV  0.158 31.08 0.174 14.81 0.299 15.21 0.302 23.72 0.541 26.30 0.611 29.55 0.614 17.96 0.731 11.53 1.123 24.36 1.123 9.47 1.495 23.79 | Freq Level Factor  MHz dBuV dB  0.158 31.08 0.25 0.174 14.81 0.25 0.299 15.21 0.26 0.302 23.72 0.26 0.541 26.30 0.26 0.611 29.55 0.22 0.614 17.96 0.22 0.731 11.53 0.18 1.123 24.36 0.23 1.123 9.47 0.23 1.495 23.79 0.26 | MHz         dBuV         dB         dB           0.158         31.08         0.25         10.78           0.174         14.81         0.25         10.77           0.299         15.21         0.26         10.74           0.302         23.72         0.26         10.74           0.541         26.30         0.26         10.76           0.611         29.55         0.22         10.77           0.614         17.96         0.22         10.77           0.731         11.53         0.18         10.78           1.123         24.36         0.23         10.88           1.123         9.47         0.23         10.88           1.495         23.79         0.26         10.92 | MHz         dBuV         dB         dB         dBuV           0.158         31.08         0.25         10.78         42.11           0.174         14.81         0.25         10.77         25.83           0.299         15.21         0.26         10.74         26.21           0.302         23.72         0.26         10.74         34.72           0.541         26.30         0.26         10.76         37.32           0.611         29.55         0.22         10.77         40.54           0.614         17.96         0.22         10.77         28.95           0.731         11.53         0.18         10.78         22.49           1.123         24.36         0.23         10.88         35.47           1.123         9.47         0.23         10.88         20.58           1.495         23.79         0.26         10.92         34.97 | MHz         dBuV         dB         dB         dBuV         dBuV           0.158         31.08         0.25         10.78         42.11         65.56           0.174         14.81         0.25         10.77         25.83         54.77           0.299         15.21         0.26         10.74         26.21         50.28           0.302         23.72         0.26         10.74         34.72         60.19           0.541         26.30         0.26         10.76         37.32         56.00           0.611         29.55         0.22         10.77         40.54         56.00           0.614         17.96         0.22         10.77         28.95         46.00           0.731         11.53         0.18         10.78         22.49         46.00           1.123         24.36         0.23         10.88         35.47         56.00           1.123         9.47         0.23         10.88         20.58         46.00           1.495         23.79         0.26         10.92         34.97         56.00 | MHz         dBuV         dB         dB         dBuV         dBuV         dB           0.158         31.08         0.25         10.78         42.11         65.56         -23.45           0.174         14.81         0.25         10.77         25.83         54.77         -28.94           0.299         15.21         0.26         10.74         26.21         50.28         -24.07           0.302         23.72         0.26         10.74         34.72         60.19         -25.47           0.541         26.30         0.26         10.74         34.72         60.01         -25.47           0.611         29.55         0.22         10.77         40.54         56.00         -15.46           0.614         17.96         0.22         10.77         28.95         46.00         -17.05           0.731         11.53         0.18         10.78         22.49         46.00         -23.51           1.123         24.36         0.23         10.88         35.47         56.00         -20.53           1.123         9.47         0.23         10.88         20.58         46.00         -25.42           1.495         23.79         0.26 |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss





# 6.3 Conducted Output Power

| Test Requirement: | FCC Part 15 C Section 15.247 (b)(3)                                                                                      |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2009 and DA00-705                                                                                             |  |
| Receiver setup:   | RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz) |  |
| Limit:            | 125 mW(21 dBm)                                                                                                           |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                    |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                         |  |
| Test mode:        | Non-hopping mode                                                                                                         |  |
| Test results:     | Pass                                                                                                                     |  |

#### **Measurement Data**

|              | GFSK mo                             | de          |        |  |
|--------------|-------------------------------------|-------------|--------|--|
| Test channel | Peak Output Power (dBm)             | Limit (dBm) | Result |  |
| Lowest       | 1.58                                | 21.00       | Pass   |  |
| Middle       | 1.40                                | 21.00       | Pass   |  |
| Highest      | 1.46                                | 21.00       | Pass   |  |
|              | π/4-DQPSK ı                         | mode        |        |  |
| Test channel | Peak Output Power (dBm) Limit (dBm) |             | Result |  |
| Lowest       | 0.87                                | 21.00       | Pass   |  |
| Middle       | 0.74                                | 21.00       | Pass   |  |
| Highest      | 0.60 21.00 P                        |             | Pass   |  |
|              | 8DPSK mode                          |             |        |  |
| Test channel | Peak Output Power (dBm)             | Limit (dBm) | Result |  |
| Lowest       | 0.74                                | 21.00       | Pass   |  |
| Middle       | 0.60                                | 21.00       | Pass   |  |
| Highest      | 0.60                                | 21.00       | Pass   |  |



## Test plot as follows:

## Modulation mode: GFSK



#### Lowest channel



## Middle channel



Highest channel



#### Modulation mode: $\pi/4$ -DQPSK



#### Lowest channel



### Middle channel



Highest channel



#### Modulation mode: 8DPSK



#### Lowest channel



#### Middle channel



Highest channel





# 6.4 20dB Occupy Bandwidth

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                   |  |
|-------------------|-----------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2009 and DA00-705                                          |  |
| Receiver setup:   | RBW=30 kHz, VBW=100 kHz, detector=Peak                                |  |
| Limit:            | NA                                                                    |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |
| Test mode:        | Non-hopping mode                                                      |  |
| Test results:     | Pass                                                                  |  |

#### **Measurement Data**

| Test channel | 20dB Occupy Bandwidth (kHz) |           |       |
|--------------|-----------------------------|-----------|-------|
| rest channel | GFSK                        | π/4-DQPSK | 8DPSK |
| Lowest       | 752                         | 1128      | 1168  |
| Middle       | 756                         | 1120      | 1168  |
| Highest      | 752                         | 1120      | 1172  |

## Test plot as follows:



## Modulation mode: GFSK



Date: 11.JUN.2015 14:29:19

#### Lowest channel



Date: 11..TUN.2015 14:30:34

## Middle channel



Date: 11.JUN.2015 14:31:52

## Highest channel



## Modulation mode: $\pi/4$ -DQPSK



Date: 11.JUN.2015 14:33:56

#### Lowest channel



Date: 11.JUN.2015 14:37:34

## Middle channel



Date: 11.JUN.2015 14:38:48

Highest channel



## Modulation mode: 8DPSK



Date: 11.JUN.2015 14:40:07

#### Lowest channel



Date: 11.JUN.2015 14:41:21

## Middle channel



Date: 11.JUN.2015 14:42:40

Highest channel





# 6.5 Carrier Frequencies Separation

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                   |  |
|-------------------|-----------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2009 and DA00-705                                          |  |
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, detector=Peak                               |  |
| Limit:            | 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)          |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |
| Test mode:        | Hopping mode                                                          |  |
| Test results:     | Pass                                                                  |  |

## **Measurement Data**





| GFSK mode    |                                      |             |        |
|--------------|--------------------------------------|-------------|--------|
| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |
| Lowest       | 1002                                 | 702.67      | Pass   |
| Middle       | 1006                                 | 702.67      | Pass   |
| Highest      | 1002                                 | 702.67      | Pass   |
|              | π/4-DQPSK mo                         | de          |        |
| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |
| Lowest       | 1002                                 | 782.67      | Pass   |
| Middle       | 1002                                 | 782.67      | Pass   |
| Highest      | 1002                                 | 782.67      | Pass   |
| 8DPSK mode   |                                      |             |        |
| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |
| Lowest       | 1002                                 | 790.67      | Pass   |
| Middle       | 1006 790.67 Pass                     |             | Pass   |
| Highest      | 1002 790.67 Pass                     |             | Pass   |

Note: According to section 6.4

| Mode      | 20dB bandwidth (kHz)<br>(worse case) | Limit (kHz)<br>(Carrier Frequencies Separation) |
|-----------|--------------------------------------|-------------------------------------------------|
| GFSK      | 756                                  | 702.67                                          |
| π/4-DQPSK | 1128                                 | 782.67                                          |
| 8DPSK     | 1172                                 | 790.67                                          |

## Test plot as follows:



## Modulation mode: GFSK



#### Lowest channel



#### Middle channel



Highest channel



## Modulation mode: $\pi/4$ -DQPSK



#### Lowest channel



#### Middle channel



Highest channel



## Modulation mode: 8DPSK



#### Lowest channel



#### Middle channel



Highest channel



# 6.6 Hopping Channel Number

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                        |  |
|-------------------|----------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2009 and DA00-705                                               |  |
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak |  |
| Limit:            | 15 channels                                                                |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane      |  |
| Test Instruments: | Refer to section 5.7 for details                                           |  |
| Test mode:        | Hopping mode                                                               |  |
| Test results:     | Pass                                                                       |  |

#### **Measurement Data:**

| Mode                   | Hopping channel numbers | Limit | Result |
|------------------------|-------------------------|-------|--------|
| GFSK, π/4-DQPSK, 8DPSK | 79                      | 15    | Pass   |









#### 8DPSK





## 6.7 Dwell Time

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                   |  |
|-------------------|-----------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2009 and KDB DA00-705                                      |  |
| Receiver setup:   | RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak                        |  |
| Limit:            | 0.4 Second                                                            |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |
| Test mode:        | Hopping mode                                                          |  |
| Test results:     | Pass                                                                  |  |

## Measurement Data (Worse case)

|           | 5.1.6  | D 11.00 / 10        | 1: "(/ 1)      | D 11   |
|-----------|--------|---------------------|----------------|--------|
| Mode      | Packet | Dwell time (second) | Limit (second) | Result |
|           | DH1    | 0.14752             |                |        |
| GFSK      | DH3    | 0.28448             | 0.4            | Pass   |
|           | DH5    | 0.31787             |                |        |
|           | 2-DH1  | 0.14432             |                |        |
| π/4-DQPSK | 2-DH3  | 0.27696             | 0.4            | Pass   |
|           | 2-DH5  | 0.31808             |                |        |
|           | 3-DH1  | 0.14944             |                |        |
| 8DPSK     | 3-DH3  | 0.27664             | 0.4            | Pass   |
|           | 3-DH5  | 0.32384             |                |        |

For GFSK,  $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.461\*(1600/(2\*79))\*31.6=147.52ms DH3 time slot=1.778\*(1600/(4\*79))\*31.6=284.48ms DH5 time slot=2.980\*(1600/(6\*79))\*31.6=317.87ms

2-DH1 time slot=0.451\*(1600/ (2\*79))\*31.6=144.32ms

2-DH3 time slot=1.731\*(1600/ (4\*79))\*31.6=276.96ms

2-DH5 time slot=2.982\*(1600/ (6\*79))\*31.6=318.08ms

3-DH1 time slot=0.467\*(1600/ (2\*79))\*31.6=149.44ms

3-DH3 time slot=1.729\*(1600/ (4\*79))\*31.6=276.64ms

3-DH5 time slot=3.036\*(1600/ (6\*79))\*31.6=323.84ms



#### Test plot as follows:









## Modulation mode: $\pi/4$ -DQPSK



#### 2-DH1



#### 2-DH3



2-DH5



## Modulation mode: 8DPSK



#### 3-DH1



#### 3-DH3



3-DH5

Report No: CCIS15050034301

## 6.8 Pseudorandom Frequency Hopping Sequence

## Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

## **EUT Pseudorandom Frequency Hopping Sequence**

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2<sup>9</sup>-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:



Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.





# 6.9 Band Edge

## 6.9.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2009 and DA00-705                                                                                                                                                                                                                                                                                                                                                            |  |
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Detector=Peak                                                                                                                                                                                                                                                                                                                                                 |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |
| Test mode:        | Non-hopping mode and hopping mode                                                                                                                                                                                                                                                                                                                                                       |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |

## Test plot as follows:



## **GFSK**

#### **Lowest Channel**



No-hopping mode

Hopping mode

#### **Highest Channel**



No-hopping mode

Hopping mode



#### $\pi/4$ -DQPSK

#### **Lowest Channel**



No-hopping mode

Hopping mode

## Highest Channel



No-hopping mode

Hopping mode



#### 8DPSK

#### **Lowest Channel**



No-hopping mode

Hopping mode

## Highest Channel



No-hopping mode

Hopping mode



## 6.9.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C                                                                                                                                                                                                                                                      | Section 15.20                                                                                                                                                                                                                           | 9 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:          | ANSI C63.4: 20                                                                                                                                                                                                                                                     | 09                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
| Test Frequency Range: | 2.3GHz to 2.5G                                                                                                                                                                                                                                                     | Hz                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
| Test site:            | Measurement D                                                                                                                                                                                                                                                      | Distance: 3m                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                          | Detector                                                                                                                                                                                                                                | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                                                                                                                                                                                             |
| ·                     | Above 1GHz                                                                                                                                                                                                                                                         | Peak                                                                                                                                                                                                                                    | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak Value                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                                                    | Peak                                                                                                                                                                                                                                    | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average Value                                                                                                                                                                                                      |
| Limit:                | Freque                                                                                                                                                                                                                                                             | ency                                                                                                                                                                                                                                    | Limit (dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remark                                                                                                                                                                                                             |
|                       | Above 1                                                                                                                                                                                                                                                            | IGHz -                                                                                                                                                                                                                                  | 54.0<br>74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average Value Peak Value                                                                                                                                                                                           |
| Test setup:           | EUT Turn Table                                                                                                                                                                                                                                                     | → 3m ← 4m                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Antenna Horn Ant Spectrum Analyzer  Ampli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tenna                                                                                                                                                                                                              |
| Test Procedure:       | ground at a 3 determine th  2. The EUT wa antenna, white tower.  3. The antenna ground to de horizontal an measuremer  4. For each sus and then the and the rota maximum resonant in the specified Ba  6. If the emissic limit specified EUT would be 10dB margin. | B meter cambe e position of the set 3 meters che was mount height is varietermine the mad vertical polant. Spected emissionate antenna was table was turnading. Ever system would be not be level of the d, then testing the ported. Of | er. The table was set to Pead from 0 decould be stop the rough of the | was rotated diation. The interference of a variable of the field the antenna was arranging from 1 rigrees to 36 at Detect Field Mode. The mode was apped and the missions the one using proper sections of the diagram of the missions the diagram of the diag | r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the function and 10dB lower than the five peak values of the nat did not have beak, quasi-peak or |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                           |
| Test mode:            | Non-hopping m                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
| Test results:         | Passed                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |
|                       |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |

## Remark:

- 1. During the test, pre-scan the GFSK,  $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





### **GFSK** mode

Test channel: Lowest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet PC Condition

EUT : CT740 Model Test mode : DH1-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

| Freq                 |      | Antenna<br>Factor |           |           |                     |                     |           |  |
|----------------------|------|-------------------|-----------|-----------|---------------------|---------------------|-----------|--|
| MHz                  | dBu₹ | <u>dB</u> /m      | <u>dB</u> | <u>dB</u> | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>dB</u> |  |
| 2390.000<br>2390.000 |      |                   |           |           |                     |                     |           |  |







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Table PC Condition

EUT Model : CT740 Test mode : DH1-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

|   | Freq                 |      | Antenna<br>Factor |    |              |                     |        |    |      |
|---|----------------------|------|-------------------|----|--------------|---------------------|--------|----|------|
| - | MHz                  | dBu₹ | $\overline{dB/m}$ | ₫B | <u>dB</u>    | $\overline{dBuV/m}$ | dBuV/m | dB | <br> |
|   | 2390.000<br>2390.000 |      |                   |    | 0.00<br>0.00 |                     |        |    |      |





Test channel: Highest

Horizontal:



Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet PC

EUT Model : CT740
Test mode : DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

| ILWIV | n :      |       |         |      |        |        |        |        |         |   |
|-------|----------|-------|---------|------|--------|--------|--------|--------|---------|---|
|       |          |       | Antenna |      |        |        | Limit  |        | D 1     |   |
|       | rreq     | rever | Factor  | Loss | ractor | rever  | Line   | Limit  | Kemark  |   |
|       | MHz      | ₫₿uѶ  | ∃dB/m   | dB   | ₫B     | dBuV/m | dBuV/m | dB     |         | - |
| 1     | 2483.500 | 19.84 | 27.52   | 5.70 | 0.00   | 53.06  | 74.00  | -20.94 | Peak    |   |
| 2     | 2483,500 | 8.05  | 27.52   | 5.70 | 0.00   | 41.27  | 54.00  | -12.73 | Average |   |







: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC Site Condition

EUT Model : CT740 Test mode : DH1-H Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

|   | Freq                 |       | Antenna<br>Factor |            |           |        |        |            |  |
|---|----------------------|-------|-------------------|------------|-----------|--------|--------|------------|--|
| - | MHz                  | —dBu∀ | <u>dB</u> /m      | d <u>B</u> | <u>dB</u> | dBu√/m | dBu√/m | <u>d</u> B |  |
|   | 2483.500<br>2483.500 |       |                   |            |           |        |        |            |  |





# π/4-DQPSK mode

Test channel: Lowest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet PC Condition

EUT Model : CT740 Test mode : 2DH1-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer:

REMARK

| Freq |                      | Antenna<br>Factor |                               |            |           |        |        |           |  |
|------|----------------------|-------------------|-------------------------------|------------|-----------|--------|--------|-----------|--|
| 2    | MHz                  | dBuV              | $-\overline{dB}/\overline{m}$ | <u>d</u> B | <u>dB</u> | dBuV/m | dBuV/m | <u>dB</u> |  |
|      | 2390.000<br>2390.000 |                   |                               |            |           |        |        |           |  |







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC : CT740 Condition

EUT Model Test mode : 2DH1-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

| אנטווניני | т .      | Read  | Antenna      | Cable | Preamp    |                     | Limit  | Over      |         |
|-----------|----------|-------|--------------|-------|-----------|---------------------|--------|-----------|---------|
|           | Freq     |       | Factor       |       |           |                     |        |           | Remark  |
|           | MHz      | dBu₹  | <u>dB</u> /m | ₫B    | <u>dB</u> | $\overline{dBuV/m}$ | dBu√/m | <u>dB</u> |         |
| 1         | 2390.000 | 17.79 | 27.58        | 5.67  | 0.00      | 51.04               | 74.00  | -22.96    | Peak    |
| 2         | 2390.000 | 7.29  | 27.58        | 5.67  | 0.00      | 40.54               | 54.00  | -13.46    | Average |





Test channel: Highest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet PC Condition

EUT : CT740 Model Test mode : 2DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer:

REMARK

| Freq |                      |       |                   | Preamp<br>Factor |            |                     |        |            |       |
|------|----------------------|-------|-------------------|------------------|------------|---------------------|--------|------------|-------|
| -    | MHz                  | —dBu∇ | $\overline{dB/m}$ | <u>d</u> B       | <u>d</u> B | $\overline{dBuV/m}$ | dBu√/m | <u>d</u> B | <br>- |
| 1 2  | 2483.500<br>2483.500 |       |                   |                  |            |                     |        |            |       |







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC Condition EUT

Model : CT740 Test mode : 2DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

|                      |      | Antenna<br>Factor |            |           |                     |        |           | Remark |
|----------------------|------|-------------------|------------|-----------|---------------------|--------|-----------|--------|
| MHz                  | dBuV |                   | <u>d</u> B | <u>ab</u> | $\overline{dBuV/m}$ | dBu√/m | <u>dB</u> |        |
| 2483.500<br>2483.500 |      |                   |            |           |                     |        |           |        |





### 8DPSK mode

Test channel: Lowest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet PC Condition

EUT Model : CT740

Test mode : 3DH1-L Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: REMARK :

| MAIN | v :       | DJ    | Antenna | Cabla | Duconn |        | Timit  | Over   |         |  |
|------|-----------|-------|---------|-------|--------|--------|--------|--------|---------|--|
|      | Freq      |       | Factor  |       |        |        |        |        |         |  |
| 9    | MHz       | dBuV  |         | dB    | dB     | dBu√/m | dBuV/m | dB     |         |  |
| 1    | 2390.000  | 17.63 | 27.58   | 5.67  | 0.00   | 50.88  | 74.00  | -23.12 | Peak    |  |
| 2    | 2390, 000 | 7.34  | 27, 58  | 5, 67 | 0.00   | 40, 59 | 54,00  | -13.41 | Average |  |







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC : CT740 Condition

EUT Model Test mode : 3DH1-L Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

| munut |          | Read | Antenna | Cable | Preamo    |        | Limit  | Over   |         |
|-------|----------|------|---------|-------|-----------|--------|--------|--------|---------|
|       | Freq     |      | Factor  |       |           |        |        |        |         |
| -     | MHz      | dBu∜ | dB/m    | dB    | <u>dB</u> | dBuV/m | dBuV/m | dB     |         |
|       | 2390.000 |      |         |       |           | 52.04  |        |        |         |
| 2     | 2390.000 | 7.33 | 27.58   | 5.67  | 0.00      | 40.58  | 54.00  | -13.42 | Average |





Test channel: Highest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet PC : CT740 Model : 3DH1-H Mode Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer:

REMARK

|   | Freq     |       | Antenna<br>Factor             |            |           |        |                     |           |         |  |
|---|----------|-------|-------------------------------|------------|-----------|--------|---------------------|-----------|---------|--|
|   | MHz      | dBu₹  | $-\overline{dB}/\overline{m}$ | <u>d</u> B | <u>dB</u> | dBuV/m | $\overline{dBuV/m}$ | <u>dB</u> |         |  |
| 1 | 2483.500 | 19.89 | 27.52                         | 5.70       | 0.00      | 53.11  | 74.00               | -20.89    | Peak    |  |
| 2 | 2483 500 | 7 99  | 27. 52                        | 5.70       | 0.00      | 41 21  | 54 00               | -12.79    | Average |  |







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC Condition

EUT : CT740 Model Test mode : 3DH1-H Mode Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer:
REMARK:

|            | Freq                 |       | Antenna<br>Factor       |                 |            |                     |                     |           | Remark |  |
|------------|----------------------|-------|-------------------------|-----------------|------------|---------------------|---------------------|-----------|--------|--|
| <u> 12</u> | MHz                  | —dBu∜ | <u>dB</u> /m            | dB              | <u>d</u> B | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>dB</u> |        |  |
| 1 2        | 2483.500<br>2483.500 |       | 500 FEEL THE CONTROL OF | 1707 N.C.VICTOR |            |                     |                     |           |        |  |



# 6.10 Spurious Emission

# 6.10.1 Conducted Emission Method

| Toot Doguiroment  | CCC Port 15 C Conting 15 247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Test Method:      | ANSI C63.4:2009 and DA00-705                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |



### **GFSK**

### Lowest channel



Date: 22.MAY.2015 18:58:33

# 30MHz~25GHz

# Middle channel



Date: 22.MAY.2015 18:55:29

30MHz~25GHz



# Highest channel



Date: 22.MAY.2015 19:01:42

30MHz~25GHz



### π/4-DQPSK

### Lowest channel



Date: 22.MAY.2015 19:07:00

# 30MHz~25GHz



Date: 22.MAY.2015 19:04:53

30MHz~25GHz



# Highest channel



Date: 22.MAY.2015 19:03:47

30MHz~25GHz



### 8DPSK

### Lowest channel



Date: 22.MAY.2015 19:09:24

# 30MHz~25GHz Middle channel



Date: 22.MAY.2015 19:11:38

30MHz~25GHz



# Highest channel



Date: 22.MAY.2015 19:16:33

30MHz~25GHz





## 6.10.2 Radiated Emission Method

| 10.2 Radiated Emission Method |                              |                 |             |         |                  |  |  |  |  |  |
|-------------------------------|------------------------------|-----------------|-------------|---------|------------------|--|--|--|--|--|
| Test Requirement:             | FCC Part 15 C Section 15.209 |                 |             |         |                  |  |  |  |  |  |
| Test Method:                  | ANSI C63.4: 2009             |                 |             |         |                  |  |  |  |  |  |
| Test Frequency Range:         | 9 kHz to 25 GHz              |                 |             |         |                  |  |  |  |  |  |
| Test site:                    | Measurement Distance: 3m     |                 |             |         |                  |  |  |  |  |  |
| Receiver setup:               | Frequency                    | Detector        | RBW         | VBW     | Remark           |  |  |  |  |  |
|                               | 30MHz-<br>1GHz               | Quasi-peak      | 120kHz      | 300kHz  | Quasi-peak Value |  |  |  |  |  |
|                               | Above 1GHz                   | Peak            | 1MHz        | 3MHz    | Peak Value       |  |  |  |  |  |
|                               | Above IGHZ                   | Peak            | 1MHz        | 10Hz    | Average Value    |  |  |  |  |  |
| Limit:                        | Freque                       | ency            | Limit (dBuV | /m @3m) | Remark           |  |  |  |  |  |
|                               | 30MHz-8                      | 8MHz            | 40.0        | )       | Quasi-peak Value |  |  |  |  |  |
|                               | 88MHz-2                      | 16MHz           | 43.         | 5       | Quasi-peak Value |  |  |  |  |  |
|                               | 216MHz-9                     | 60MHz           | 46.0        | )       | Quasi-peak Value |  |  |  |  |  |
|                               | 960MHz-                      | -1GHz           | 54.0        | )       | Quasi-peak Value |  |  |  |  |  |
|                               | Above                        | CU <sub>7</sub> | 54.0        | )       | Average Value    |  |  |  |  |  |
|                               | Above                        | GHZ             | 74.0        | )       | Peak Value       |  |  |  |  |  |
| Test setup:                   | Above 1GHz                   |                 |             |         |                  |  |  |  |  |  |





| Test Procedure:   | 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.                                                                                                                                                            |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                             |
|                   | <ol> <li>The antenna height is varied from one meter to four meters above the<br/>ground to determine the maximum value of the field strength. Both<br/>horizontal and vertical polarizations of the antenna are set to make the<br/>measurement.</li> </ol>                                                                                           |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                     |
|                   | 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                            |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                       |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                   |

#### Remark

- 1. During the test, pre-scan the GFSK,  $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.





### Measurement data:

### **Below 1GHz**

Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : Tablet PC Condition

EUT Model : CT740 Test mode : BT mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen REMARK :

| $x_{11}x_{1}x_{2}$ |         |       |                   |            |           |        |               |           |        |
|--------------------|---------|-------|-------------------|------------|-----------|--------|---------------|-----------|--------|
|                    | Freq    |       | Antenna<br>Factor |            |           |        | Limit<br>Line |           | Remark |
| _                  | MHz     | —dBuV | <u>dB</u> /m      | <u>d</u> B | <u>dB</u> | dBuV/m | dBu√/m        | <u>dB</u> |        |
| 1                  | 38.752  | 31.96 | 13.25             | 0.51       | 29.91     | 15.81  | 40.00         | -24.19    | QP     |
| 2                  | 100.934 | 34.01 | 13.06             | 0.97       | 29.52     | 18.52  | 43.50         | -24.98    | QP     |
| 2                  | 135.032 | 42.84 | 8.56              | 1.23       | 29.30     | 23.33  | 43.50         | -20.17    | QP     |
| 4                  | 153.739 | 43.35 | 8.42              | 1.33       | 29.19     | 23.91  | 43.50         | -19.59    | QP     |
| 4                  | 330.195 | 37.33 | 13.79             | 1.87       | 28.52     | 24.47  | 46.00         | -21.53    | QP     |
| 6                  | 661.151 | 40.45 | 18.67             | 2.82       | 28.75     | 33.19  | 46.00         | -12.81    | QP     |
|                    |         |       |                   |            |           |        |               |           |        |





## Horizontal:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : Tablet PC Condition

EUT Model : CT740 Test mode : BT mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

| AAAM5  |         |       |         |      |           |        |        |           |        |
|--------|---------|-------|---------|------|-----------|--------|--------|-----------|--------|
|        |         |       | Antenna |      |           |        |        |           |        |
|        | Freq    | Level | Factor  | Loss | Factor    | Level  | Line   | Limit     | Kemark |
| _      | MHz     | dBu∀  | _dB/m   | ₫B   | <u>dB</u> | dBuV/m | dBuV/m | <u>dB</u> |        |
| 1      | 71.832  | 39.23 | 8.32    | 0.80 | 29.71     | 18.64  | 40.00  | -21.36    | QP     |
| 2      | 96.099  | 34.15 | 12.90   | 0.94 | 29.55     | 18.44  | 43.50  | -25.06    | QP     |
| 3      | 190.405 | 44.81 | 10.56   | 1.37 | 28.90     | 27.84  | 43.50  | -15.66    | QP     |
| 4      | 210.786 | 44.78 | 10.90   | 1.44 | 28.76     | 28.36  | 43.50  | -15.14    | QP     |
| 5<br>6 | 330.195 | 42.63 | 13.79   | 1.87 | 28.52     | 29.77  | 46.00  | -16.23    | QP     |
| 6      | 661.151 | 42.63 | 18.67   | 2.82 | 28.75     | 35.37  | 46.00  | -10.63    | QP     |



## Above 1GHz:

| Te                 | st channel:             |                             | Lowest             |                          | Le                | vel:                   | Peak               |              |  |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |  |
| 4804.00            | 47.21                   | 31.53                       | 8.90               | 40.24                    | 47.40             | 74.00                  | -26.60             | Vertical     |  |
| 4804.00            | 47.34                   | 31.53                       | 8.90               | 40.24                    | 47.53             | 74.00                  | -26.47             | Horizontal   |  |
| Te                 | st channel:             |                             | Low                | /est                     | Le                | vel:                   | Average            |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |  |
| 4804.00            | 37.22                   | 31.53                       | 8.90               | 40.24                    | 37.41             | 54.00                  | -16.59             | Vertical     |  |
| 4804.00            | 37.52                   | 31.53                       | 8.90               | 40.24                    | 37.71             | 54.00                  | -16.29             | Horizontal   |  |

| Te                 | st channel:             |                             | Middle             |                          | Le                | vel:                   | Peak               |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4882.00            | 45.23                   | 31.58                       | 8.98               | 40.15                    | 45.64             | 74.00                  | -28.36             | Vertical     |
| 4882.00            | 45.47                   | 31.58                       | 8.98               | 40.15                    | 45.88             | 74.00                  | -28.12             | Horizontal   |
| Te                 | st channel:             |                             | Middle             |                          | Level:            |                        | Average            |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4882.00            | 35.58                   | 31.58                       | 8.98               | 40.15                    | 35.99             | 54.00                  | -18.01             | Vertical     |
| 4882.00            | 35.63                   | 31.58                       | 8.98               | 40.15                    | 36.04             | 54.00                  | -17.96             | Horizontal   |

| Te                 | st channel:             |                             | Highest            |                          | Le                | vel:                   | Peak               |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4960.00            | 45.09                   | 31.69                       | 9.08               | 40.03                    | 45.83             | 74.00                  | -28.17             | Vertical     |
| 4960.00            | 46.97                   | 31.69                       | 9.08               | 40.03                    | 47.71             | 74.00                  | -26.29             | Horizontal   |
| Te                 | st channel:             |                             | Highest            |                          | Level:            |                        | Average            |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4960.00            | 35.57                   | 31.69                       | 9.08               | 40.03                    | 36.31             | 54.00                  | -17.69             | Vertical     |
| 4960.00            | 36.76                   | 31.69                       | 9.08               | 40.03                    | 37.50             | 54.00                  | -16.50             | Horizontal   |

# Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.