

ESE 345 Computer Architecture

Multiply, Divide

MIPS Arithmetic Instructions

Instruction	Example	Meaning	Comments
add	add \$1,\$2,\$3	\$1 = \$2 + \$3	3 operands; exception possible
subtract	sub \$1,\$2,\$3	1 = 2 - 3	3 operands; exception possible
add immediate	addi \$1,\$2,100	1 = 2 + 100	+ constant; exception possible
add unsigned	addu \$1,\$2,\$3	1 = 2 + 3	3 operands; no exceptions
subtract unsigned	subu \$1,\$2,\$3	1 = 2 - 3	3 operands; no exceptions
add imm. unsign.	addiu \$1,\$2,100	1 = 2 + 100	+ constant; no exceptions
multiply	mult \$2,\$3	$Hi, Lo = \$2 \times \3	64-bit signed product
multiply unsigned	multu\$2,\$3	Hi, $Lo = \$2 \times \3	64-bit unsigned product
divide	div \$2,\$3	$L_0 = \$2 \div \$3,$	Lo = quotient, Hi = remainder
			$Hi = \$2 \mod \3
divide unsigned	divu \$2,\$3	$L_0 = \$2 \div \$3,$	Unsigned quotient & remainder
			$Hi = \$2 \mod \3
Move from Hi	mfhi \$1	1 = Hi	Used to get copy of Hi
Move from Lo	mflo \$1	$1 = L_0$	Used to get copy of Lo

MULTIPLY (Unsigned)

° Paper and pencil example (unsigned):

- ° m bits x n bits = m+n bit product
- ° Binary makes it easy:

- ° 4 versions of multiply hardware & algorithm:
 - successive refinement

Unsigned Combinational Multiplier

- Stage i accumulates A * 2 i if B_i == 1
- Q: How much hardware for 32 bit multiplier? Critical path?

How Does It Work?

- at each stage shift A left (x 2)
- use next bit of B to determine whether to add in shifted multiplicand
- accumulate 2n bit partial product at each stage

Unisigned Shift-Add Multiplier (Version 1)

64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg,
 32-bit multiplier reg

Multiplier = datapath + control

Multiply Algorithm Version 1

Start

- Product Multiplier 0000 0000 0011
- 0000 0010 0001
- 0000 0110 0000
- 0000 0110

Multiplicand 0000 0010 0000 0100 0000 1000

↓3. Shift the Multiplier register right 1 bit.

2. Shift the Multiplicand register left 1 bit.

Yes: 32 repetitions

Done

CA: Multiply, Divide

Observations on Multiply Version 1

- 1 clock per cycle => ≈ 100 clocks per multiply
 - Ratio of multiply to add 5:1 to 100:1
- 1/2 bits in multiplicand always 0
 => 64-bit adder is wasted, 32-bit "sliding window"
- 0's inserted in left of multiplicand as shifted
 least significant bits of product never changed once formed
- Instead of shifting multiplicand to left, shift product to right?

MULTIPLY HARDWARE Version 2

32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg,
 32-bit Multiplier reg

How to Think of This?

Remember original combinational multiplier:

Simply warp to let product move right...

Multiplicand stay's still and product moves right

0000 0110 0000 0010 CA: Multiply, Divide

Observations on Multiply Version 2

- Product register wastes space that exactly matches size of multiplier
 - => combine Multiplier register and Product register

MULTIPLY HARDWARE Version 3

32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg,
 (0-bit Multiplier reg)

Observations on Multiply Version 3

- 2 steps per bit because Multiplier & Product combined
- MIPS registers Hi and Lo are left and right half of Product
- Gives us MIPS instruction MultU
- How can you make it faster?
- What about signed multiplication?
 - easiest solution is to make both positive & remember whether to complement product when done (leave out the sign bit, run for 31 steps)
 - apply definition of 2's complement
 - need to sign-extend partial products and subtract at the end
 - Booth's Algorithm is elegant way to multiply signed numbers using same hardware as before and save cycles
 - can handle multiple bits at a time

Motivation for Booth's Algorithm

° Example 2 x 6 = 0010 x 0110:

```
0010
x 0110
+ 0000 shift (0 in multiplier)
+ 0010 add (1 in multiplier)
+ 0010 add (1 in multiplier)
+ 0000 shift (0 in multiplier)
00001100
```

 $^{\circ}$ ALU with add or subtract gets same result in more than one way:

$$6 = -2 + 8$$

$$0110 = -00010 + 01000 = 11110 + 01000$$

° For example

Booth's Algorithm

end of run $\begin{array}{c} \text{middle of run} \\ \hline 0 \hline 1 & 1 \\ \hline \end{array}) 1 & 0 \\ \end{array}$

Current Bit	Bit to the Right	Explanation	Example	Op
1	0	Begins run of 1s	000111 <u>10</u> 00	sub
1	1	Middle of run of 1s	00011 <u>11</u> 000	none
0	1	End of run of 1s	00 <u>01</u> 111000	add
0	0	Middle of run of 0s	0001111000	none

Originally for Speed (when shift was faster than add)

+ 10000

Replace a string of 1s in multiplier with an initial subtract when we first see a one and then later add for the bit after the last one

Booths Example (2 x 7)

Operation	Multiplicand	Product	next?
0. initial value	0010	0000 0111 0	10 -> sub
1a. P = P - m	1110	+ 1110 1110 0111 0	shift P (sign ext)
1b.	0010	1111 0 <mark>011 1</mark>	11 -> nop, shift
2.	0010	1111 10 <mark>01 1</mark>	11 -> nop, shift
3.	0010	1111 110 <mark>0</mark> 1	01 -> add
4a.	0010	+ 0010 0001 110 <mark>0</mark> 1	shift
4b.	0010	0000 1110 <mark>0</mark>	done

Booths Example (2 x -3)

Operation	Multiplicand	Product	next?
0. initial value	0010	0000 1101 0	10 -> sub
1a. P = P - m	1110	+1110 1110 1101 0	shift P (sign ext)
1b.	0010	1111 0 <mark>110 1</mark> + 0010	01 -> add
2a.		0001 0110 1	shift P
2b.	0010	0000 10 <mark>11 0</mark> + 1110	10 -> sub
3a.	0010	1110 10 <mark>11 0</mark>	shift
3b.	0010	1111 010 <mark>1 1</mark>	11 -> nop
4a		1111 010 <mark>1</mark> 1	shift
4b.	0010	1111 1010 <mark>1</mark>	done

Radix-4 Modified Booth's ⇒ Multiple representations

Once admit new symbols (i.e. $\overline{1}$), can have multiple representations of a number:

Current Bits	Bit to the Right	Explanation	Example	Recode
0 0	0	Middle of zeros	00 00 00 <u>00</u> 00	00 (0)
0 1	0	Single one	00 00 00 <u>01</u> 00	01 (1)
1 0	0	Begins run of 1s	00 01 11 <u>10</u> 00	1 0 (-2)
11	0	Begins run of 1s	00 01 11 <u>11</u> 00	01 (-1)
0 0	1	Ends run of 1s	00 <u>00</u> 11 11 00	01 (1)
0 1	1	Ends run of 1s	00 <u>01</u> 11 11 00	10 (2)
1 0	1	Isolated 0	00 11 <u>10</u> 11 00	01 (-1)
11	1	Middle of run	00 11 <mark>11</mark> 11 00	00 (0)

Divide: Paper & Pencil

```
1001 Quotient
Divisor 1000 1001010 Dividend
-1000
101
1010
-1000
10 Remainder (or Modulo result)
```

See how big a number can be subtracted, creating quotient bit on each step

```
Binary => 1 * divisor or 0 * divisor
Dividend = Quotient x Divisor + Remainder
```

3 versions of divide, successive refinement

DIVIDE HARDWARE Version 1

64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg,
 32-bit Quotient reg

Divide Algorithm Version 1 ■Takes n+1 steps for n-bit Quotient & Rem. Remainder Quotient Divisor 0000 0111 0000 0010 0000

Start: Place Dividend in Remainder

1. Subtract the Divisor register from the Remainder register, and place the result in the Remainder register.

Remainder < 0

2a. Shift the
Quotient register
to the left setting

the new rightmost

bit to 1.

2b. Restore the original value by adding the Divisor register to the Remainder register, & place the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0.

Test Remainder

3. Shift the Divisor register right1 bit.

n+1

repetition2

Remainder > 0

Stony Brook University

Yes: n+1 repetitions (n = 4 here)

No: < n+1 repetitions

Divide Algorithm I example (7 / 2)

```
Quotient
                       Divisor
Remainder
0000
      0111
            00000
                     0010
                           0000
1110
      0111
            00000
                     0010
                           0000
                     0010
                           0000
0000
      0111
            00000
            00000
                           0000
0000
      0111
                     0001
                                     Answer:
            00000
                     0001
                           0000
1111
      0111
                                      Quotient = 3
0000
      0111
            00000
                     0001
                           0000
            00000
                     0000
0000
                           1000
      0111
                                      Remainder = 1
1111
      1111
            00000
                     0000
                           1000
0000
      0111
            00000
                     0000
                           1000
0000
      0111
            00000
                     0000
                           0100
                           0100
0000
            00000
      0011
                     0000
                     0000
0000
      0011
            00001
                           0100
0000
      0011
            00001
                           0010
                     0000
0000
            00001
                     0000
                           0010
      0001
0000
      0001
            00011
                     0000
                           0010
0000
            00011
                           0010
      0001
                     0000
```


Observations on Divide Version 1

- 1/2 bits in divisor always 0
 => 1/2 of 64-bit adder is wasted
 => 1/2 of divisor is wasted
- Instead of shifting divisor to right, shift remainder to left?
- 1st step cannot produce a 1 in quotient bit (otherwise too big)
 - => switch order to shift first and then subtract, can save 1 iteration

Divide: Paper & Pencil

 Notice that there is no way to get a 1 in leading digit! (this would be an overflow, since quotient would have n+1 bits)

DIVIDE HARDWARE Version 2

32-bit Divisor reg, 32-bit ALU, 64-bit Remainder reg,
 32-bit Quotient reg

Observations on Divide Version 2

- Eliminate Quotient register by combining with Remainder as shifted left
 - Start by shifting the Remainder left as before.
 - Thereafter loop contains only two steps because the shifting of the Remainder register shifts both the remainder in the left half and the quotient in the right half
 - The consequence of combining the two registers together and the new order of the operations in the loop is that the remainder will shifted left one time too many.
 - Thus the final correction step must shift back only the remainder in the left half of the register

DIVIDE HARDWARE Version 3

32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg,
 (0-bit Quotient reg)

Observations on Divide Version 3

- Same Hardware as Multiply: just need ALU to add or subtract, and 64-bit register to shift left or shift right
- Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide
- Signed Divides: Simplest is to remember signs, make positive, and complement quotient and remainder if necessary
 - Note: Dividend and Remainder must have same sign
 - Note: Quotient negated if Divisor sign & Dividend sign disagree
 e.g., −7 ÷ 2 = −3, remainder = −1
 - What about? $-7 \div 2 = -4$, remainder = +1
- Possible for quotient to be too large: if divide 64-bit integer by 1, quotient is 64 bits ("called saturation")

Summary

- Multiply: successive refinement to see final design
 - 32-bit Adder, 64-bit shift register, 32-bit Multiplicand Register
 - Booth's algorithm to handle signed multiplies
 - There are algorithms that calculate many bits of multiply per cycle

Acknowledgements

- These slides contain material developed and copyright by:
 - Morgan Kauffmann (Elsevier, Inc.)
 - Arvind (MIT)
 - Krste Asanovic (MIT/UCB)
 - Joel Emer (Intel/MIT)
 - James Hoe (CMU)
 - John Kubiatowicz (UCB)
 - David Patterson (UCB)

