Билет № 1

- 1. Уравнение Шрёдингера.
- 2. Найти химический потенциал $\mu(T, L^2/N)$

двумерного ($\varepsilon_p = \frac{p_x^2 + p_y^2}{9m}$) идеального квантового газа.

Профессор

А. В. Борисов

Билет № 11

- 1. Движение в центрально-симметричном поле.
- 2. Найти коэффициент отражения частицы от потенциальной ямы

$$U(x) = \begin{cases} -U_0 < 0, & x \in [0, a]; \\ 0, & x \notin [0, a]. \end{cases}$$

Профессор

А. В. Борисов

Билет № 2

- 1. Волновая функция.
- 2. Вычислить химический потенциал, давление идеального ультрарелятивистского ферми-газа $(\varepsilon_{\scriptscriptstyle p}=cp)\;\;$ при $T=0\;$ и средний импульс частицы (в объеме V находится N частиц).

Профессор

А. В. Борисов

Билет № 12

- 1. Атом водорода.
- 2. Найти спектр энергии и волновые функции стационарных состояний системы с гамильтонианом

$$\hat{H} = \frac{\hat{p}_1^2}{2m_1} + \frac{\hat{p}_2^2}{2m_2} + \frac{k}{2} \left(x_1^2 + x_2^2 \right) + \gamma x_1 x_2, \ \left| \gamma \right| < k.$$

Рассмотреть также частные случаи: 1) $m_1 = m_2$,

 $2) m_1 \ll m_2.$

Профессор

*Б*ор А. В. Борисов

Билет № 3

- 1. Наблюдаемые и операторы.
- 2. Вычислить теплоемкость идеального бозе-газа в области температур $|T - T_0| / T_0 \ll 1$.

Профессор

А. В. Борисов

Билет № 13

- 1. Тождественные частицы. Принцип Паули.
- 2. Состояние свободной частицы при t = 0 имеет вид: $\psi(0, x) = A \exp(-x^2/2a^2 + ik_0x)$.

Найти при t > 0 средние значения:

$$\langle x \rangle$$
, $\langle p_x \rangle$, $\langle (x - \langle x \rangle)^2 \rangle$, $\langle (p_x - \langle p_x \rangle)^2 \rangle$.

Профессор

Билет № 4

- 1. Принцип суперпозиции.
- 2. Найти среднее число фотонов, средний импульс фотона, давление и теплоемкость фотонного газа в объеме V при температуре T.

Профессор

А. В. Борисов

Билет № 14

- 1. Каноническое распределение (распределение Гиббса).
- 2. Найти коэффициент прохождения частицы через потенциальный барьер

$$U(x) = \begin{cases} U_0 > 0, & x \in [0, a]; \\ 0, & x \notin [0, a]. \end{cases}$$
Theodecop

Профессор

А. В. Борисов

Билет № 5

- 1. Соотношение неопределённостей Гейзенберга.
- 2. Вычислить большую статистическую сумму для идеального классического газа как функцию температуры T, объёма V и химического потенциала μ . Найти уравнение состояния и теплоемкость системы.

Профессор

Кор А. В. Борисов

Билет № 15

- 1. Термодинамические параметры и потенциалы.
- 2. Найти спектр энергии частицы в потенциальной яме

$$U(x) = \begin{cases} -U_0 < 0, \ |x| < a; \\ 0, \ |x| > a. \end{cases}$$
 Профессор

Билет № 6

- 1. Изменение наблюдаемых со временем.
- 2. Квантовая струна эквивалентна системе бесконечного числа независимых осцилляторов с частотами $\omega, 2\omega, 3\omega, ...$ Найти теплоемкость струны как функцию температуры T.

Профессор

А. В. Борисов

Билет № 7

- 1. Гармонический осциллятор.
- 2. Электрон движется в однородном магнитном поле $\mathbf{B}(t) = (B_0 \cos \omega t, B_0 \sin \omega t, B_1)$. При t = 0 он находился в состоянии с определенным значением $S_z = \hbar/2$. Найти вероятности возможных значений проекции спина на направление $\mathbf{n} = (\sin \alpha \cos \beta, \sin \alpha \sin \beta, \cos \alpha)$ При t > 0.

Профессор

Ум А. В. Борисов

Билет № 8

- 1. Оператор момента импульса.
- 2. Найти теплоемкость системы N независимых частиц, каждая из которых может находиться только на одном из двух уровней энергии $-\varepsilon_0$, ε_0 .

Профессор

В В. Борисов

Билет № 9

- 1. Спин.
- 2. Гармонический осциллятор при t = 0 находился в состоянии $\psi(0,x) = C \exp[-(x-a)^2/2x_0^2 + ik_0x]$, где $x_{\scriptscriptstyle 0} = \sqrt{\hbar/m\omega},\, a>0,\, k_{\scriptscriptstyle 0}>0.$ Найти при t>0 средние значения $\left\langle x\right\rangle, \quad \left\langle p_{x}\right\rangle, \quad \left\langle \left(x-\left\langle x\right\rangle\right)^{2}\right\rangle, \quad \left\langle \left(p_{x}-\left\langle p_{x}\right\rangle\right)^{2}\right\rangle.$

Профессор Боу А. В. Борисов

Билет № 10

- 1. Уравнение Паули.
- 2. Найти теплоемкость системы N независимых осцилляторов частоты ω как функцию температуры T.

Профессор

А. В. Борисов

Билет № 16

- 1. Идеальный классический газ. Распределение Больцмана.
- 2. В состоянии ψ с определенными L^2 и L_z , $\hat{m{L}}^2\psi=\hbar^2\ell\left(\ell+1
 ight)\psi,\;\hat{L}_z\psi=\hbar m\psi$, найти средние значения $\left\langle \hat{L}_{x}\right\rangle ,\ \left\langle \hat{L}_{y}\right\rangle ,\ \left\langle \hat{L}_{x}\hat{L}_{y}\right\rangle ,\ \left\langle \hat{L}_{x}^{2}\right\rangle ,\left\langle \hat{L}_{x}^{2}\right\rangle ,$

Профессор

А. В. Борисов

Билет № 17

- 1. Распределение Гиббса с переменным числом частиц.
- 2. В основном состоянии атома водорода найти плотность вероятности различных значений импульса электрона, средние значения его кинетической и потенциальной энергии.

Профессор

А. В. Борисов

Билет № 18

- 1. Распределение Ферми-Дирака. Идеальный ферми-газ.
- 2. Найти спектр энергии частицы в поле $U(x) = -g\delta(x), g > 0.$

Профессор

А. В. Борисов

Билет № 19

- 1. Распределение Бозе-Эйнштейна. Идеальный
- 2. Найти спектр энергии частицы в поле $U(x) = -g[\delta(x+a) + \delta(x-a)], g > 0.$

Профессор Бом А. В. Борисов

Билет № 20

- 1. Распределение Планка. Фотонный газ.
- 2. Используя уравнение Паули, найти спектр энергии электрона в постоянном однородном магнитном поле $B = Be_{x}$, заданном векторпотенциалом $A = xBe_y$.

Профессор

А. В. Борисов