Job market data acquisition

Data acquisition, extraction, and storage course (2024-2025) Prof. Pierre Senellart

Table Of Contents

 $\{01\}$ Web crawling and $\{03\}$ Storage solution scraping

> Resources and tools used Challenges encountered

 $\{02\}$ Data cleaning

Data format Challenges encountered

Elaborate on what you want to discuss.

 $\{04\}$ Final analysis

Elaborate on what you want to discuss.

{01} Web crawling and scraping

Sites considered:

welcometothejungle.com
upwork.com
linkedin.com
indeed.com

Job APIs are almost never free.

Challenges Encountered

-ox

Robots.txt Compliance

All sites disallow job scraping

```
`User-agent : *
```

disallow: /me/*

disallow: /settings/*

disallow: /users/*

disallow: */jobs?query=*`

welcometothejungle.com/robots.txt

```
`User-agent : *
# Directories
```

Disallow: /att/

Disallow: /att-old/

Disallow:

/freelancers/public/api/

Disallow: /messages/

Disallow: /*/jobs/search*

Disallow: /search/profiles/*

Disallow: /catalog-images/*`

www.upwork.com/robots.txt

CSRF Token Issues

(a unique, secret, and unpredictable value that is generated by the server-side application and shared with the client.)

Sites concerned: Upwork, LinkedIn, Indeed

- Couldn't retrieve from HTML or Cookie
- Changes at every page query and session and page refresh

cookie:

```
visitor_id=7...000; spt=e100e574- ... 6a2; G_ENABLED_IDPS=google;
_tt_enable_cookie=1; _ttp=cFIJsN...aqg6pze;
_cq_duid=1.1724497332.DDo...th7nm; __pdst=e84...c177;
IR_PI=522e6f7d-6208...97334653;
OptanonAlertBoxClosed=2024-11-08T07:38:06.710Z;
_ga=GA1.2.756219045.1724497334; ftr_ncd=6;
recognized=username; company_last_accessed=d...42;
country_code=FR; cookie_prefix=; cookie_domain=.upwork.com;
__cflb=02Di...bcGx5iHtF;
_cfuvid=DqX8RDziG5...s-1733986834830-0.0.1.1-604800000;
_upw_ses.5831=*; _cq_suid=1.173...kE0PF;
visitor_gql_token=oauth2v2_c498e5483...37a93cb;
XSRF-TOKEN=ef3e...6e7c828b0;
```

*CSRF token needed for login to the sites, impossible to use except for browser automation tools which are slower

Challenges Encountered

-ox

```
v<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 ▼<sitemap>
    <loc>https://www.welcometothejungle.com/sitemaps/job-listings.0.xml.gz</loc>
   </sitemap>
  ▼<sitemap>
    <loc>https://www.welcometothejungle.com/sitemaps/job-listings.1.xml.gz</loc>
   </sitemap>
  v<sitemap>
    <loc>https://www.welcometothejungle.com/sitemaps/job-listings.2.xml.gz</loc>
   </sitemap>

√<sitemap>

    <loc>https://www.welcometothejungle.com/sitemaps/job-listings.3.xml.gz</loc>
   </sitemap>

√<sitemap>

    <loc>https://www.welcometothejungle.com/sitemaps/job-listings.4.xml.gz</loc>
   </sitemap>

√<sitemap>

    <loc>https://www.welcometothejungle.com/sitemaps/job-listings.5.xml.qz</loc>
   </sitemap>

√<sitemap>

    <loc>https://www.welcometothejungle.com/sitemaps/job-listings.6.xml.gz</loc>
  v<sitemap>
```

Sitemap Limitations:

- Incomplete links for jobs and companies
- Compressed Format
- Multiple Sitemaps

www.welcometothejungle.com/sitemaps/index.xml.gz

Reverse Engineering API

-ox

Attempt: Reverse engineering the API for more data

Outcome: Limited info available :(

(34×30 job postings through filter search on main page)

Step 01

Crawling companies using Katana Go

katana -u https://www.welcometothejungle.com/en/companies -d 3 -o companies.txt

Discovered very useful links:

https://www.welcometothejungle.com/en/directory/x

https://www.welcometothejungle.com/en/directory/y

https://www.welcometothejungle.com/en/directory/z

Why we chose Katana Go for crawling?

- Concurrency
- Speed: Go is a compiled language
- Ease of use in terminal

github.com/projectdiscovery/katana

Data Acquisition Process

-ox

Follow and scrape companies and jobs using Scrapy

Step 02

welcometothejungle.com/en/companies/yesw
ehack/jobs

Link complies with robots.txt (disallow: */jobs?query=*) because no query.
Hooray!

Welcome to the Jungle	Find a job Find a company Media	Q Search a job, com
Jobs 7 🔾	Search only in the job title	Sort by relevance
Customer	r Success Manager (Paris ou Rennes)
	r Success Manager (Paris ou Rennes vigné · Puteaux 🗂 8 days ago)

Data Acquisition Process

-ox

https://www.welcometothejungle.com Origin: u=1, i Priority: Referer: https://www.welcometothejungle.com/ "Chromium";v="130", "Google Chrome";v="130", "Not? Sec-Ch-Ua: A Brand";v="99" Sec-Ch-Ua-Mobile: ?0 Sec-Ch-Ua-Platform: "Linux" Sec-Fetch-Dest: empty Sec-Fetch-Mode: cors Sec-Fetch-Site: same-site User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36 Wttj-User-Language: X-Csrf-Token: LX4sPzUEABQcdyMjAxoeeXI-EqlnABxRq5XKaqWAI-DFIYFL6QAM4jJ2

Step 02

Reverse Engineering to scrape companies data was impossible because of CSRF token problem again :(

Data Acquisition Process

-ox

Step 03

Scrape general info about companies using Scrapy

Being nice

```
ROBOTSTXT_OBEY = True # Obey robots.txt rules

CONCURRENT_REQUESTS = 8 # being nice

DOWNLOAD_DELAY = 3 # being nice

CONCURRENT_REQUESTS_PER_DOMAIN = 4 # being nice
```

Used css selectors unique for all pages

```
company_item["website"] =
response.css('div[data-testid="showc
ase-header-website"]
a::attr(href)').get()

job_items =
response.css('ul[data-testid="search
-results"] >
li[data-testid="search-results-list-
item-wrapper"]')
```

{ 10101010 101010 101010 101010 101010 101010 101010 101010 101010 10101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101010 101

Key	Data Type	Description
company_name	String	Name of the company.
job_title	String	Title of the job position.
location	String	Location where the job is based.
posted_date	String (Date)	Date and time when the job was posted (ISO 8601 format).
contract_type	String	Type of employment contract.
remote_status	String	Remote work policy.
job_link	String (URL)	Relative link to the job posting on the website.

Companies. json

Key	Data Type	Description
name	String	Name of the company.
sector	String	Industry sectors.
website	String (URL)	Company's website link.
year_of_founding	String (Year)	Year of founding.
employees	String (Number)	Number of employees.
gender_breakdown	Object	Gender statistics.
average_age	String (Number)	Average age of employees.
social_links	Object	Object containing social media links.
text_blocks	Object	Descriptive text fields.

{02} Data cleaning

- Attribute unique IDs
- Remove companies without name
- Split sector string into a list of sectors the company operates in
- Identification of the language of the company description

Challenges Encountered

-ox

Named Entity Recognition (NER) on the company description field. Tried to extract:

- Organizations
- Locations
- Persons
- Skills

Challenges:

- Quality of the NER model
- Extracting custom skills
- Storing semi-structured data in the relational database

{03} Storage solution - SQLite

Table:	companies
3 San 3 4 8 5	

Data Type	Description
INTEGER	Primary Key, unique identifier for each company.
TEXT	Name of the company.
TEXT	Sector(s) in which the company operates (comma-separated).
TEXT	Website URL of the company.
TEXT	Year the company was founded.
INTEGER	Number of employees in the company.
INTEGER	Percentage of female employees.
INTEGER	Percentage of male employees.
INTEGER	Average age of employees.
TEXT	Facebook link for the company.
TEXT	LinkedIn link for the company.
TEXT	Twitter link for the company.
TEXT	YouTube link for the company.
TEXT	Company description or presentation text.
TEXT	Details about what the company is looking for in candidates.
TEXT	Additional information about the company.
	INTEGER TEXT TEXT TEXT TEXT INTEGER INTEGER INTEGER INTEGER TEXT TEXT TEXT TEXT TEXT TEXT TEXT TE

{03} Storage solution - SQLite

```
Table: jobs
 Column Name
                                  Description
                    Data Type
 id
                    INTEGER
                                  Primary Key, unique identifier for each job.
                                  Foreign Key referencing companies(id), linking job to its company.
 company id
                    INTEGER
 job title
                    TEXT
                                  Title of the job.
 location
                                  Location of the job posting.
                    TEXT
 posted date
                   TEXT
                                  Date the job was posted.
                                  Type of contract (e.g., temporary, part-time, internship).
 contract type
                    TEXT
 remote status
                                  Remote working status (e.g., a few days at home, fully-remote).
                    TEXT
 job link
                    TEXT
                                  URL link to the detailed job posting.
```

Relationships

- One-to-Many: companies.id → jobs.company_id

{03} Storage solution - SQLite

- Data stored in a single file
- Relational database
- Portable and easy to integrate for practical usage
- Data used in our project has relations and is structured which indicates to use
 SQLite

{04} Analysis of the quality of the final dataset

- 203 companies were filtered out (no name provided)
- 675 companies in the final dataset
- Only 1 company duplicated was found out
- No columns with all-NaN values
- Almost 10% missing values in age info
- Gender breakdown is missing for 196 companies (with 52%/48% male to female employees ratio)

Missing values for each column in companies table

{04} Analysis of the final dataset's biases

- Average founding year is 2006 + 2463 employees on average (so, probably not much fresh startups)
- Average employees age is 32 (not much internship/new grad openings)
- Male/Female ratio is 58%/42% (and also no info for 196 companies)
- Most popular sectors: Cloud Services, Software and AI

Thank you for your attention guys 😄