HAM10000 皮膚鏡影像分析

408170508 資數三 賴冠羽

目錄

壹、	疾	病	內多	容言	兒明	∄.	• • •	• •	• •	• •		• •	• •	•	• •	• •	• •	2
貳、	資	料	集	苗ュ	尨.	• •	• • •	• •		• •				•	• •	• •	• •	4
參、	訓	練	過	程		• •	• • •	• •		• •				•	• •	• •	• •	5
—	`	資	料声	前處	建理		• •	• •		• •	• •	• • •		• •	• •			5
_	•	資	料土	曾强	k(d	ata	a a	ugi	mer	ıta	ti	on))	• •	• •	• • •		6
肆、	模	型	選	凙.		• •	• • •	• • •				• •		•	• •	• •		8
伍、	實	驗	結	果.		• •	• • •	• •		• •	• •			•	• •	• •	•	11
_	`	СО	nfu	ısi	on	mai	tri	Х.			• • •	• • •			• •	• • •	•	11
二	`	Gr	ad-	-CA	M			• • •			• •			• •	• •		•	12
陸、	討	論	• • •			• •	• • •							•	• •		•	14

壹、 疾病內容說明

在 HAM10000 資料中共有七種病徵如下表:

類別	名稱	英文全名	中文
0	nv	melanocytic nevi	黑素細胞痣
1	akiec	Actinic keratoses and intraepithelial carcinoma	鱗狀細胞癌
2	mel	melanoma	黑色素瘤
3	df	dermatofibroma	皮膚纖維瘤
4	bcc	basal cell carcinoma	基底細胞癌
5	vasc	vascular lesions [1]	血管病變
6	bkl	benign keratosis-like lesions [2]	良性角化病變

[1]: Kaggle 網站上對 vasc 類完整說明為 vascular lesions (angiomas, angiokeratomas, pyogenic granulomas and hemorrhage, vasc) (血管瘤、血管角質瘤、化膿性肉芽腫及出血)

[2]: Kaggle 網站上對 bkl 類完整說明為 benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses, bkl) (曬斑、脂漏性角化症(老人斑)、扁平苔藓)

七類病徵分析:

類別	名稱	外觀	顏色	圖片
0	nv	扁平、突起、 疣狀、顆粒狀	棕色、黑 色、藍色	
1	akiec	頂端為鱗狀的 硬塊,乾燥粗 糙、黏附脫屑	皮膚 带 在 色 、 , 也 些 調	
2	mel	不對稱、邊界 不均衡、破爛 或缺口	黑色或棕 褐色	
3	df	質地硬、圓形 腫物	棕紅、黄 褐、黑褐	
4	bcc	像蟲咬般,腫瘤 有時出現潰瘍出 血,周圍可見微 血管擴張	紅色、肉	
5	vasc	突出斑點、丘疹 粗糙脱屑、圓形 或略扁平的綠豆 至櫻桃大小乳頭 狀肉芽腫	紅色、暗紅 至紫色,栓 塞則轉成深 紫至黑色	9
6	bkl	約米粒大小、隆 起、粗糙斑駁的 外觀、苔蘚樣的 乾燥波紋	色、淡褐色	

貳、 資料集描述

HAM10000 資料集共有 10015 張影像,其中 train, valid, test 資料集的比例分為 6:2:2,而每個資料集中有 {nv,akiec,mel,df,bcc,vasc,bkl}共七類病徵。

各資料集詳細數據如下表:

類別	名稱	train	valid	test	合計
0	nv	4, 023	1, 341	1, 341	6, 705
1	akiec	196	65	66	327
2	mel	668	222	223	1, 113
3	df	69	23	23	115
4	bcc	308	103	103	514
5	vasc	85	29	28	142
6	bk l	660	220	219	1,099
合計	-	6,009	2,003	2,003	10, 015

參、 訓練過程

一、資料前處理

因病徵共有七類,所以在資料前處理中 class_mode 設定為 categorical,其中 valid 和 test 上資料不打亂, 因 train 資料較多,所以 suffle=True,並且在 img_shape 上則是設定(224, 224)。

```
1 train_generator = train_datagen.flow_from_dataframe(
                                                                     dataframe=train_list,
     3
                                                                     directory="",
     4
                                                                     x_col="img_path",
     5
                                                                     y_col="label",
     6
                                                                     target_size=img_shape,
                                                                     batch_size=batch_size,
                                                                     class_mode='categorical',
                                                                     shuffle=True)
    10 valid_generator = valid_datagen.flow_from_dataframe(
    11
                                                                     dataframe=valid_list,
                                                                     directory="",
    12
    13
                                                                     x_col="img_path",
    14
                                                                     y_col="label",
    15
                                                                     target_size=img_shape,
    16
                                                                     batch_size=batch_size,
    17
                                                                     class_mode='categorical',
    18
                                                                     shuffle=False)
    19 test_generator = test_datagen.flow_from_dataframe(
    20
                                                                     dataframe=test_list,
    21
                                                                     directory="",
    22
                                                                     x_col="img_path",
    23
                                                                     y_col="label",
    24
                                                                     target_size=img_shape,
    25
                                                                     batch_size=batch_size,
     26
                                                                     class_mode=None,
     27
                                                                     shuffle=False)
Found 6009 validated image filenames belonging to 7 classes.
    Found 2003 validated image filenames belonging to 7 classes.
    Found 2003 validated image filenames.
```

二、 資料增強(data augmentation)

資料增強修正過程:

順序	程式碼	準確率
1	rotation_range=5, horizontal_flip=True, vertical_flip=False, width_shift_range=0.1, height_shift_range=0.1, preprocessing_function=preprocess_input	0.825
2	shear_range = 0.1(新增) zoom_range = 0.1(新增)	0.831+00M
3	vertical_flip= True(修改)	0.725+00M

修正後圖片顯示:

針對皮膚鏡影像預測,若要使預測準確率越高,就 需要讓病變處置於影像中間。

首先將影像隨機旋轉 5 度以內(rotation_range=5), 並設定影像水平隨機翻轉(horizontal_flip=True), 接著用水平、上下小幅度平移(width_shift_range=0.1、 height_shift_range=0.1), 試著看能不能將病變處置於中央。

即使模型最後準確率僅小幅提升,但因為模型 00M, 代表準確率其實是有機會上升,於是最後決定稍微將影像 放大(zoom_range=0.1)、比例平移(shear_range=0.1),以 利病變處更能被清楚預測。

```
1 # 注意皮膚要在正中間,位置要調整
2 train_datagen = ImageDataGenerator(
                                         rotation_range=5,
4
                                         horizontal_flip=True,
                                         vertical_flip=False,
6
                                         width_shift_range=0.1,
7
                                         height_shift_range=0.1,
8
                                         shear_range = 0.1,
9
                                         zoom_range = 0.1,
10
                                         preprocessing_function=preprocess_input
11
13 valid_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
14 test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
```

肆、 模型選擇

首先先根據 https://keras.io/api/applications/,

選擇官方準確率較高的模型,並使用相同的腳本進行預測:

{ResNet50, EfficientNetB3, InceptionResNetV2}										
Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)			
ResNet50	98	74.9%	92.1%	25.6M	107	58.2	4.6			
EfficientNetB3	48	81.6%	95.7%	12.3M	210	140.0	8.8			
InceptionResNetV2	215	80.3%	95.3%	55.9M	449	130.2	10.0			

執行後 Tensorboard 成果如下圖:

由上圖透過 train_loss(橘線)可知 ResNet50 下降幅度相較平緩,在訓練集沒有學習到什麼成果。並透過 val_acc(淺藍色、綠線),比較 EfficientNetB3, InceptionResNetV2,最後得到 EfficientNetB3 成果較好。而最後三個模型準確率分別為{0.767,0.825,0.796}。

故最終使用 EfficientNetB3 以及搭配上述所修正的資料前處理、 資料增強,進行最後的模型預測。

EfficientNetB3 結構圖

(x3, x4 代表重複三、四次)

編譯模型上,使用 Global Average Pooling 2D 進行平均池化,降低參數:

模型參數:

Total params: 10,794,294 Trainable params: 10,706,991 Non-trainable params: 87,303

針對模型一共訓練2次。

第一次訓練如下圖:(1r=1e-3、batch_size=64)

```
1 pre_model.trainable = False
 1 history = model.fit_generator(train_generator,
                                        steps_per_epoch=train_steps
                                        validation_data=valid_generator;
                                        validation_steps=valid_steps,
                                        callbacks=callbacks list)
usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:6: UserWarning: `Model.fit generator` is deprecated and will be removed
                                       - 2434s 26s/step - 1oss: 0.7528 - accuracy: 0.7379 - val_loss: 0.9167 - val_accuracy: 0.7544
Epoch 2/20
94/94 [===:
                                         167s 2s/step - 1oss: 0.5223 - accuracy: 0.8065 - val_loss: 0.7370 - val_accuracy: 0.7958
Epoch 3/:
94/94 [=
                                         166s 2s/step - loss: 0.4191 - accuracy: 0.8486 - val loss: 0.6074 - val_accuracy: 0.8223
94/94 [===
                                 ====] - 164s 2s/step - 1oss: 0.3608 - accuracy: 0.8700 - val loss: 0.5411 - val accuracy: 0.8158
                                          164s 2s/step - 1oss: 0.2920 - accuracy: 0.8963 - val_loss: 0.5976 - val_accuracy: 0.8218
94/94 [===
                                         162s 2s/step - 1oss: 0.2550 - accuracy: 0.9106 - val_loss: 0.9512 - val_accuracy: 0.7838
                                    ==] - 165s 2s/step - 1oss: 0.2194 - accuracy: 0.9190 - val_loss: 0.5744 - val_accuracy: 0.8308
```

第一次訓練後 val_accuracy 已上升至 0.8308。

第二次訓練取上次訓練末五層繼續訓練,使準確率提升, 並將 lr 調降至 1e-5。

因為在資料集裡第 0 類 nv 的影像較其他類多很多,因此在第二次訓練上,將 batch_size 改為 32,讓模型在訓練過程中比較不容易被混淆。

執行結果為 00M, 最後模型的 accuracy_score 為 0.831:

```
Node: 'Adam/gradients/sub_72'
failed to allocate memory

[[{{node Adam/gradients/sub_72}}]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.

[Op:__inference_train_function_28355]
```

伍、 實驗結果

一、 confusion martix 分析

由 confusion martix 可發現,因為 nv 病例過多,所以有著很深的藍色,雖然其他類資料筆數不多,但對角線顏色都有比較深,代表著預測大致上是正確的。(如藍框)

而透過 confusion martix 也可以發現,多數病例在模型 預測上都會被預測錯誤成 nv。(如紅框)

二、 Grad-CAM

透過 confusion martix,我們了解多數病例在模型預測上都會被預測錯誤成 nv,而透過分析七類病徵,我們可以瞭解 nv 病徵為扁平、突起、疣狀、顆粒狀,顏色為棕色、黑色、藍色,通俗上常被稱作「痣」。

也因此在 Grad-CAM 上我們可以發現預測錯誤的原始圖片, 大多都因為顏色、病徵扁平被誤判成 nv。

陸、 討論

增加皮膚鏡影像

透過最後的實驗結果,我們可以了解數據太過參差不齊,nv提供太多,而df、vasc提供過少,數量相差高達60倍。所以如果要再繼續提高辨識皮膚鏡影像準確率,我認為可以跟醫院進行合作,讓醫院端提供皮膚鏡影像,增加各病徵數據量。

模型要求輸入的大小

再來是在模型訓練的過程中,因為每個模型都有其要求要輸入的大小,例如:Resnet50 需要 img_shape=224、EfficientNetB3 需要 img_shape=300、InceptionResNetV2需要 img_shape=299,但後期嘗試的時候都因為 00M 而不能繼續嘗試,實屬可惜。

了解病徵、了解為何預測錯誤

藉由這次研究皮膚鏡影像,我認為去了解每個病徵是很重要的一個動作,這樣在測試時也可以得知相似的點在哪裡,進而去加強資料增強部分,讓模型預測時能夠避免再次混淆。