Chapitre 2

Nombres complexes

Objectifs

- Connaître une définition des complexes, une interprétation géométrique. Savoir faire des calculs sur les complexes et résoudre les équations du second degré.
- Connaître les notions de conjugaison, de module et d'argument d'un complexe.
- Savoir calculer les racines *n*-ièmes d'un complexe.
- Connaître la fonction exponentielle complexe.
- Connaître les applications géométriques : affixes, distances, angles, transformations (similitudes directes)...

Sommaire

I)	Construction de l'ensemble des complexes	
	1) Définition	
	2) Opérations sur les complexes	
	3) Notation algébrique des complexes	
II)	Module d'un nombre complexe	
	1) Conjugué d'un nombre complexe	
	2) Module d'un complexe	
	3) Équation du second degré	
III)	Nombres complexes de module 1	
	1) Le groupe unité	
	2) Exponentielle complexe	
	3) Exponentielle d'un imaginaire pur	
	4) Formules d'Euler et de Moivre 6	
IV)	Argument d'un nombre complexe 6	
	1) Forme trigonométrique 6	
	2) Racines n-ièmes d'un nombre complexe	
V)	Représentation géométrique des complexes, applications	
	1) Affixe	
	2) Distances	
	3) Angles orientés	
	4) Transformations du plan complexe	
VI)	Annexe	
	1) Notion de groupe	
	2) Notion de corps	
	3) Morphisme de corps	
VII)	Exercices	

I) Construction de l'ensemble des complexes

1) Définition

DÉFINITION 2.1

Un nombre complexe est un couple de réels. L'ensemble des nombres complexes est donc l'ensemble \mathbb{R}^2 . On peut alors écrire $\mathbb{C} = \{(x,y) \mid x,y \in \mathbb{R}\}$, ou encore, $\forall z \in \mathbb{C}, \exists x,y \in \mathbb{R}, z = (x,y)$, de plus les réels x et y sont uniques. Le réel x est appelé partie réelle de z, noté Re(z), et le réel y est appelé partie imaginaire de z, noté Im(z).

2) Opérations sur les complexes

Nous allons définir dans \mathbb{C} , deux opérations (ou **lois de composition internes**), une addition et une multiplication. Soient z = (x, y) et z' = (x', y') deux complexes.

On définit la somme z + z' en posant : z + z' = (x + x', y + y'). On vérifie que cette loi possède des propriétés analogues à celles de l'addition des réels, à savoir :

- l'associativité : $\forall z, z', z'' \in \mathbb{C}, (z+z')+z''=z+(z'+z'').$
- la commutativité : $\forall z, z' \in \mathbb{C}, z + z' = z' + z$.
- il y a un **élément neutre** qui est le complexe (0,0): $\forall z \in \mathbb{C}, z + (0,0) = (0,0) + z = z$.
- tout complexe z possède un opposé (noté -z) : $\forall z = (x, y) \in \mathbb{C}, \ -z = (-x, -y)$ et z + (-z) =(-z)+z=(0,0).

On définit le produit $z \times z'$ (ou plus simplement zz'), en posant $z \times z' = (xx' - yy', xy' + x'y)$. On vérifie que cette loi possède des propriétés analogues à celles de la multiplication des réels, à savoir :

- l'associativité.
- la commutativité.
- existence d'un élément neutre, c'est le complexe (1,0).
- tout complexe z **non nul** (ie $z \neq (0,0)$) admet un **inverse** (noté z^{-1} ou $\frac{1}{z}$), et si z = (x, y), alors :

$$z^{-1} = (\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2})$$
 et $z \times z^{-1} = z^{-1} \times z = (1, 0)$.

– distributivité sur l'addition : $\forall z, z', z'' \in \mathbb{C}, \ z \times (z' + z'') = z \times z' + z \times z''.$

On résume l'ensemble des propriétés de ces deux lois, on disant que $(\mathbb{C}, +, \times)$ est un **corps commutatif**. On remarquera que $(\mathbb{R}, +, \times)$ et $(\mathbb{O}, +, \times)$ sont également deux corps commutatifs.

3) Notation algébrique des complexes

Plongement de \mathbb{R} dans \mathbb{C} .

⁻THÉORÈME **2.1**

La fonction $f: \mathbb{R} \to \mathbb{C}$, définie par $\forall x \in \mathbb{R}$, f(x) = (x, 0), est un morphisme de corps.

Preuve: Il nous faut montrer que f est un morphisme de corps, c'est à dire : f(x+y) = f(x) + f(y), f(xy) = f(x) + f(y)f(x)f(y) et f(1) = (1,0), ce qui ne présente pas de difficultés.

En identifiant tout réel x avec son image f(x) (ie (x,0)), on peut considérer que \mathbb{R} est inclus dans \mathbb{C} . On dit que l'on a plongé \mathbb{R} dans \mathbb{C} et on dira dorénavant que \mathbb{R} est un sous - corps de \mathbb{C} . Par exemple, le complexe (1,0) sera noté simplement 1 car (1,0) = f(1), de même, le complexe (0,0) est noté simplement 0.

DÉFINITION 2.2

Les complexes de la forme (0, y) sont appelés **imaginaires purs**, en particulier, le complexe (0, 1)est noté i. On pose donc i = (0,1). L'ensemble des imaginaires purs est noté $i\mathbb{R}$.

√THÉORÈME 2.2

On a l'égalité remarquable $i^2 = -1$. De plus tout complexe z s'écrit sous la forme z = x + iy où x est la partie réelle de z et y la partie imaginaire. C'est la **notation algébrique** de z.

Preuve: Soit x la partie réelle de z et y sa partie imaginaire, cela signifie que z = (x, y), or (x, y) = (x, 0) + (0, y) et (x,0) = x. D'autre part, $iy = (0,1) \times (y,0) = (0,y)$. On a donc bien z = x + iy.

Quelques propriétés :

a)
$$z = z' \iff \begin{cases} \operatorname{Re}(z) = \operatorname{Re}(z') \\ \operatorname{Im}(z) = \operatorname{Im}(z') \end{cases}$$
.

- b) $z \in \mathbb{R} \iff \operatorname{Im}(z) = 0$
- c) $z \in i\mathbb{R} \iff \operatorname{Re}(z) = 0$.
- d) Re(z + z') = Re(z) + Re(z') et Im(z + z') = Im(z) + Im(z').
- e) Si α est un **réel**, alors Re(αz) = α Re(z), et Im(αz) = α Im(z).
- f) Formule du binôme de Newton 1:

$$\forall z, z' \in \mathbb{C}, \ \forall n \in \mathbb{N}, \ (z + z')^n = \sum_{k=0}^n \binom{n}{k} z^k {z'}^{n-k} = \sum_{k=0}^n \binom{n}{k} z^{n-k} {z'}^k.$$

II) Module d'un nombre complexe

Conjugué d'un nombre complexe

DÉFINITION 2.3

Soit z=x+iy un complexe, on appelle **conjugué** de z, le complexe noté \overline{z} et défini par $\overline{z}=x-iy$. On a donc $Re(\overline{z}) = Re(z)$ et $Im(\overline{z}) = -Im(z)$.

Propriétés de la conjugaison :

- THÉORÈME 2.3

Soient $z, z' \in \mathbb{C}$, on a:i) $\overline{z+z'} = \overline{z} + \overline{z'}$ ii) $\overline{zz'} = \overline{z}\overline{z'}$ iii) $\overline{\overline{z}} = z$.

Preuve: En exercice.

 \hat{A} retenir : $z + \overline{z} = 2\text{Re}(z)$; $z - \overline{z} = 2i\text{Im}(z)$; $z \in \mathbb{R} \iff z = \overline{z}$; z est un imaginaire pur ssi $z = -\overline{z}$.

Module d'un complexe

Soit z = x + iy un complexe, on a $z \times \overline{z} = x^2 + y^2$ et cette quantité est un **réel positif**.

DÉFINITION 2.4

Soit $z \in \mathbb{C}$, on appelle **module** de z, le réel positif noté |z| et défini par : $|z| = \sqrt{z\overline{z}}$.

Propriétés du module :

- a) $|z| = 0 \iff z = 0$.
- b) $|\operatorname{Re}(z)| \le |z|$ et $|\operatorname{Im}(z)| \le |z|$.
- c) Si z est réel, alors son module coïncide avec sa valeur absolue.
- d) |zz'| = |z||z'|, en particulier, $\forall n \in \mathbb{N}, |z^n| = |z|^n$ (ceci reste valable pour $n \in \mathbb{Z}$ si $z \neq 0$).
- e) $|z| = |\overline{z}|$.
- f) $||z| |z'|| \le |z z'| \le |z| + |z'|$ (inégalité triangulaire).
- g) Pour mettre le complexe $\frac{z}{z'}$ sous forme algébrique, il suffit de multiplier en haut et en bas par $\overline{z'}$.

^{1.} NEWTON Isaac(1642 – 1727): mathématicien et physicien anglais.

[™]THÉORÈME 2.4

Soient z et z' deux complexes non nuls, |z+z'|=|z|+|z'| ssi il existe un **réel strictement positif** α

Preuve: Si on a $z = \alpha z'$, alors $|z + z'| = |\alpha z' + z'| = (1 + \alpha)|z'| = |z'| + \alpha|z'| = |z'| + |z|$. Réciproquement, si |z+z'| = |z| + |z'|, alors $|z+z'|^2 = (|z| + |z'|)^2$, ce qui donne en développant, $|z|^2 + |z'|^2 + 2\text{Re}(z\overline{z'}) = |z|^2 + |z'|^2 + 2|z||z'|$, on en déduit que $\text{Re}(z\overline{z'}) = |z\overline{z'}|$ ce qui prouve que $z\overline{z'}$ est un réel positif. Il suffit alors de prendre $\alpha = z\overline{z'}/|z'|^2$, c'est bien un réel strictement positif, et on a la relation voulue.

Équation du second degré

THÉORÈME 2.5

Soit $a \in \mathbb{C}$, l'équation $z^2 = a$ admet dans \mathbb{C} deux solutions opposées (toutes deux nulles lorsque

Preuve: Soit z_0 une solution, alors l'équation $z^2 = a$ équivaut à $z^2 = z_0^2$, c'est à dire à $(z - z_0)(z + z_0) = 0$, d'où $z = \pm z_0$, il reste à montrer l'existence d'une solution z_0 . Posons a=u+iv et z=x+iy, l'équation $z^2=a$ est équivalente à $x^2-y^2=u$ et 2xy=v. On doit avoir également $|z|^2=|a|$, c'est à dire $x^2+y^2=|a|$, par conséquent on a : $x^2 = \frac{u + |a|}{2}$, $y^2 = \frac{|a| - u}{2}$ et 2xy = v. **Une** solution $z_0 = x_0 + iy_0$ s'obtient en prenant : $x_0 = \sqrt{\frac{|a| + u}{2}}$ et $y_0 = \varepsilon \sqrt{\frac{|a| - u}{2}}$ avec $\varepsilon = 1$ si $v \ge 0$ et $\varepsilon = -1$ si v < 0, car on a $2x_0y_0 = \varepsilon |v| = v$.

Exemples:

- Si a est un réel strictement positif, alors v = 0 et u > 0 d'où |a| = u et donc $x_0 = \sqrt{a}$ et $y_0 = 0$, les deux solutions sont $\pm \sqrt{a}$, elles sont réelles.
- Si a est un réel strictement négatif, alors v = 0 et u < 0 d'où |a| = -u et donc $x_0 = 0$ et $y_0 = \sqrt{-a}$, les deux solutions sont $\pm i\sqrt{-a}$, ce sont des **imaginaires purs**.

- THÉORÈME 2.6

Soient $a, b, c \in \mathbb{C}$ avec $a \neq 0$, l'équation $az^2 + bz + c = 0$ admet deux solutions complexes qui sont $z_1 = \frac{-b+\delta}{2a}$ et $z_2 = \frac{-b-\delta}{2a}$ avec $\delta \in \mathbb{C}$ tel que $\delta^2 = \Delta = b^2 - 4ac$ (discriminant). De plus, lorsque les coefficients a, b, c sont réels et que le discriminant $b^2 - 4ac$ est strictement négatif, ces deux solutions sont complexes non réelles et conjuguées.

Preuve: L'équation est équivalente à : $(z + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a^2} = 0$. Posons $Z = z + \frac{b}{2a}$ et $\Delta = b^2 - 4ac$, on sait que Δ admet deux racines carrées dans \mathbb{C} , soit δ l'une d'elles ($\delta^2 = \Delta$), l'équation est équivalente à : $Z^2 = \frac{\delta^2}{4a^2}$, on en déduit que $Z=\pm rac{\delta}{2a}$ et donc $z=rac{-b\pm\delta}{2a}$. Lorsque les trois coefficients sont réels, le discriminant Δ est lui aussi un réel, s'il est strictement négatif, alors on peut prendre $\delta = i\sqrt{-\Delta}$ et les solutions sont dans ce cas $z = \frac{-b \pm i\sqrt{-\Delta}}{2a}$, on voit que celles - ci sont complexes non réelles et conjuguées.

La somme et le produit de ces deux solutions, sont donnés par les relations : $z_1 + z_2 = S = -\frac{b}{a}$ et $z_1 z_2 = P = \frac{c}{a}$. De plus on a la factorisation : $\forall z \in \mathbb{C}, az^2 + bz + c = a(z - z_1)(z - z_2)$.

Nombres complexes de module 1

1) Le groupe unité

ØDéfinition 2.5

On note \mathbb{U} l'ensemble des complexes de module $1: \mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$, c'est une partie de \mathbb{C}^* .

Il est facile de vérifier que l'ensemble \mathbb{U} :

- est stable pour la multiplication : $\forall z, z' \in \mathbb{U}, zz' \in \mathbb{U}$.
- est stable pour le passage à l'inverse : $\forall z \in \mathbb{U}, z \neq 0$ et $z^{-1} \in \mathbb{U}$.
- contient 1.

De plus, la multiplication dans \mathbb{U} est associative (elle l'est dans \mathbb{C}), on dit alors que (\mathbb{U}, \times) est un **groupe** multiplicatif. Comme la multiplication est en plus commutative, on dit que (\mathbb{U}, \times) est un groupe abélien (ou commutatif), ce groupe est parfois appelé **groupe unité** de \mathbb{C} .

Exponentielle complexe

DÉFINITION 2.6

Soit z = x + iy un nombre complexe, on appelle **exponentielle** de z le complexe noté $\exp(z)$ et défini par : $\exp(z) = e^x [\cos(y) + i \sin(y)].$

Remarques:

- Si z est réel (ie y=0), alors l'exponentielle de z correspond à l'exponentielle réelle de z. De même, si z est imaginaire pur (x = 0), alors $\exp(z) = \exp(iy) = \cos(y) + i\sin(y)$.
- $\exp(0) = 1.$
- $-\exp(-z) = \frac{1}{\exp(z)}.$
- $\operatorname{Re}(\exp(z)) = e^{\operatorname{Re}(z)} \cos(\operatorname{Im}(z))$ et $\operatorname{Im}(\exp(z)) = e^{\operatorname{Re}(z)} \sin(\operatorname{Im}(z))$.
- $-|\exp(z)| = e^{\operatorname{Re}(z)} \text{ et } \operatorname{Arg}(\exp(z)) = \operatorname{Im}(z) (2\pi).$
- $-\exp(z) = \exp(\overline{z}).$

√-THÉORÈME 2.7

La fonction exp : $\mathbb{C} \to \mathbb{C}^*$ *est* $2i\pi$ -*périodique, surjective, et vérifie :*

$$\forall z, z' \in \mathbb{C}, \ \exp(z + z') = \exp(z) \times \exp(z').$$

Preuve: Il est clair d'après la définition que $\exp(z)$ ne peut pas être nul, donc $\exp(z) \in \mathbb{C}^*$. Posons z = x + iy, $\exp(z+2i\pi)=e^x[\cos(y+2\pi)+i\sin(y+2\pi)]=\exp(z)$. Soit a un complexe non nul, l'équation $\exp(z)=a$ équivaut à $|a| = e^x$ et Arg $(a) = y \pmod{2\pi}$, donc les complexes $z = \ln(|a|) + i(y + 2k\pi)$ (où k parcourt \mathbb{Z}) sont les antécédents de a, en particulier les solutions de l'équation $\exp(z) = 1$ sont les complexes $z = 2ik\pi, k \in \mathbb{Z}$. Soit z' = x' + iy' un autre complexe, $\exp(z+z') = e^{x+x'}[\cos(y+y') + i\sin(y+y')]$, et $\exp(z)\exp(z') = e^{x+x'}[\cos(y)\cos(y') - \sin(y)\sin(y')] = e^{x+x'}[\cos(y+y') + i\sin(y+y')]$ $e^{x+x^2}[\cos(y+y')+i\sin(y+y')]$. On peut déduire de cette propriété le calcul suivant :

$$\exp(z) = \exp(z') \Longleftrightarrow \frac{\exp(z)}{\exp(z')} = 1$$
$$\iff \exp(z) \exp(-z') = 1$$
$$\iff \exp(z - z') = 1$$
$$\iff \exists k \in \mathbb{Z}, \ z = z' + 2ik\pi.$$

La propriété fondamentale de l'exponentielle complexe : $\exp(z+z')=\exp(z)\exp(z')$, est la même que celle de l'exponentielle réelle. Par analogie, $\exp(z)$ sera noté e^z . La propriété s'écrit alors :

$$e^{z+z'} = e^z \times e^{z'}$$

et on peut écrire désormais $e^{iy} = \cos(y) + i\sin(y)$.

Exponentielle d'un imaginaire pur

Pour tout **réel** x, on a $e^{ix} = \cos(x) + i\sin(x)$, et les propriétés suivantes :

- $\forall x \in \mathbb{R}, \ e^{-ix} = \cos(-x) + i\sin(-x) = \cos(x) i\sin(x) = e^{ix}.$
- $-\forall x \in \mathbb{R}, |e^{ix}| = \sqrt{\cos(x)^2 + \sin(x)^2} = 1, \text{ donc } e^{ix} \in \mathbb{U}.$

- $\forall x, y \in \mathbb{R}, e^{ix}e^{iy} = e^{i(x+y)}.$
- Soit z = x + iy un complexe de module 1, on a $x^2 + y^2 = 1$, donc il existe un réel θ (unique à 2π près) tel que $x = \cos(\theta)$ et $y = \sin(\theta)$, c'est à dire $z = e^{i\theta}$.

- Soit
$$x, y \in \mathbb{R}, e^{ix} = e^{iy} \Longleftrightarrow \begin{cases} \cos(x) &= \cos(y) \\ \sin(x) &= \sin(y) \end{cases} \Longleftrightarrow x = y \ (2\pi).$$

On peut donc énoncer le théorème suivant

-`<mark>@</mark>-THÉORÈME **2.8**

La fonction $f: \mathbb{R} \to \mathbb{U}$, définie par $\forall x \in \mathbb{R}$, $f(x) = e^{ix}$, est une application surjective qui vérifie pour tous réels x et y : $f(x + y) = f(x) \times f(y)$. De plus, $f(x) = f(y) \iff x = y$ (2π), en particulier $f(x) = 1 \iff x \in 2\pi \mathbb{Z}.$

Ce théorème permet de retrouver les formules trigonométriques.

- $-\cos(x+y) = \text{Re}(e^{i(x+y)}) = \text{Re}(e^{ix}e^{iy}) = \cos(x)\cos(y) \sin(x)\sin(y).$
- $-\sin(x+y) = \text{Im}(e^{i(x+y)}) = \text{Im}(e^{ix}e^{iy}) = \cos(x)\sin(y) + \sin(x)\cos(y).$

En posant
$$a = \frac{x+y}{2}$$
 et $b = \frac{x-y}{2}$ on obtient :

- $-\cos(x) + \cos(y) = \cos(a+b) + \cos(a-b) = 2\cos(a)\cos(b) = 2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2}).$
- $-\cos(x) \cos(y) = \cos(a+b) \cos(a-b) = -2\sin(a)\sin(b) = -2\sin(\frac{x+y}{2})\sin(\frac{x-y}{2}).$ $-\sin(x) + \sin(y) = \sin(a+b) + \sin(a-b) = 2\sin(a)\cos(b) = 2\sin(\frac{x+y}{2})\cos(\frac{x-y}{2})...\text{etc}$

4) Formules d'Euler et de Moivre

Formule de Moivre 2 : $\forall n \in \mathbb{Z}, \ \forall z \in \mathbb{C}, \ e^{nz} = [e^z]^n$. En particulier pour z = ix avec x réel, on a $e^{inx} = [\cos(x) + i\sin(x)]^n$. On en déduit que :

$$\cos(nx) = \text{Re}([\cos(x) + i\sin(x)]^n) \text{ et } \sin(nx) = \text{Im}([\cos(x) + i\sin(x)]^n).$$

À l'aide du binôme de Newton ces formules permettent d'exprimer $\cos(nx)$ et $\sin(nx)$ sous forme d'un polynôme en cos(x) et sin(x).

Exemples:

- $-\cos(4x) = \text{Re}([\cos(x) + i\sin(x)]^4) = \cos(x)^4 6\cos(x)^2\sin(x)^2 + \sin(x)^4$. En remplaçant $\sin(x)^2$ par $1 \cos(x)^2$, on pourrait obtenir cos(4x) en fonction de cos(x) uniquement.
- $-\sin(4x) = \operatorname{Im}([\cos(x) + i\sin(x)]^4) = 4\cos(x)^3\sin(x) 4\cos(x)\sin(x)^3.$

Formules d'*Euler* $^3: \forall x \in \mathbb{R}: \cos(x) = \frac{e^{ix} + e^{-ix}}{2}$ et $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$. Ces formules permettent la **linéarisation** de $\cos(x)^p \sin(x)^q$.

- $-\cos(x)^3 = \frac{(e^{ix} + e^{-ix})^3}{8} = \frac{e^{i3x} + 3e^{i2x}e^{-ix} + 3e^{ix}e^{-i2x} + e^{-i3x}}{8} = \frac{\cos(3x) + 3\cos(x)}{4}.$ $-\sin(x)^3 = \frac{(e^{ix} e^{-ix})^3}{-8i} = \frac{e^{i3x} 3e^{i2x}e^{-ix} + 3e^{ix}e^{-i2x} e^{-i3x}}{-8i} = \frac{3\sin(x) \sin(3x)}{4}.$

Argument d'un nombre complexe

Forme trigonométrique 1)

Soit $z \in \mathbb{U}$, on sait qu'il existe un réel θ (unique à 2π près) tel que $z = e^{i\theta}$. Si maintenant z est un complexe non nul quelconque alors $\frac{z}{|z|} \in \mathbb{U}$ et donc il existe un réel θ (unique à 2π près) tel que $\frac{z}{|z|} = e^{i\theta}$, c'est à dire $z = |z|e^{i\theta}$.

^{2.} MOIVRE Abraham DE (1667 - 1754): mathématicien français, il s'expatria à Londres à l'age de dix-huit ans.

^{3.} EULER Léonhard (1707 – 1783) : grand mathématicien suisse.

ØDéfinition 2.7

Soit z un complexe non nul, on appelle **argument** de z tout réel θ tel que $z = |z|e^{i\theta}$, cette égalité est appelée forme trigonométrique de z. L'ensemble des arguments de z est noté arg(z), on a donc $arg(z) = \{\theta \in \mathbb{R} \mid z = |z|e^{i\theta}\}\$, et si θ_0 est un argument de z, alors $arg(z) = \{\theta_0 + 2k\pi \mid k \in \mathbb{Z}\}\$.

DÉFINITION 2.8

Soit $z \in \mathbb{C}^*$, z possède un unique argument dans l'intervalle $]-\pi;\pi]$, par définition cet argument est appelé **argument principal** de z et noté Arg(z).

Exemples:

- $\operatorname{Arg}(i) = \frac{\pi}{2}$, $\operatorname{Arg}(j) = \frac{2\pi}{3}$. $\operatorname{si} x \in \mathbb{R}^{*+}$ alors $\operatorname{Arg}(x) = 0$ et $\operatorname{si} x \in \mathbb{R}^{*-}$ alors $\operatorname{Arg}(x) = \pi$. $\operatorname{Si} z = e^{ix} + e^{iy}$, alors :

$$z = e^{i\frac{x+y}{2}} \left[e^{i\frac{x-y}{2}} + e^{-i\frac{x-y}{2}} \right] = 2\cos(\frac{x-y}{2})e^{i\frac{x+y}{2}}$$

d'où
$$|z| = 2|\cos(\frac{x-y}{2})|$$
 et $\operatorname{Arg}(z) = \frac{x+y}{2}$ (π) .

Propriétés : Soient $z, z' \in \mathbb{C}^*$ avec $\theta = \operatorname{Arg}(z)$ et $\theta' = \operatorname{Arg}(z')$:

a)
$$z = z' \iff \begin{cases} |z| = |z'| \\ \theta = \theta'(2\pi) \end{cases}$$
.

- b) $z \in \mathbb{R}^* \iff \theta = 0 \ (\pi)$
- c) $\overline{z} = |z|e^{-i\theta}$ donc $Arg(\overline{z}) = -\theta$ (2 π).
- d) $-z = |z|e^{i(\theta+\pi)}$ donc Arg $(-z) = \theta + \pi$ (2π) .
- e) $zz' = |zz'|e^{i(\theta+\theta')}$ donc $Arg(zz') = \theta + \theta'$ (2π) .
- f) $\frac{z}{z'} = \frac{|z|}{|z'|} e^{i(\theta \theta')}$ donc $Arg(\frac{z}{z'}) = \theta \theta'$ (2 π).
- g) $\forall n \in \mathbb{Z}, z^n = |z^n|e^{in\theta} \text{ donc Arg}(z^n) = n\theta \ (2\pi).$

Remarque: Soient a,b deux réels non tous deux nuls et soit $x \in \mathbb{R}$, en posant $z = a + ib = |z|e^{i\theta}$ on obtient :

$$a\cos(x) + b\sin(x) = \operatorname{Re}(\overline{z}e^{ix}) = |z|\cos(x-\theta) = \sqrt{a^2 + b^2}\cos(x-\theta).$$

CFradin Patrick - http://mpsi.tuxfamily.org

Racines n-ièmes d'un nombre complexe

DÉFINITION 2.9

Soit a, z deux complexes et $n \in \mathbb{N}$, z est une **racine n-ième** de a lorsque $z^n = a$.

Résolution de l'équation $z^n = a$:

√ THÉORÈME 2.9 ✓ THÉORÈME 2.9 ▼ THÉORÈME 2.9 THÉOR

Soit n un entier supérieur ou égal à 2, et a un complexe non nul. L'ensemble des racines n-ièmes de a (que l'on note $R_n(a)$) est un ensemble fini de cardinal n, et pour tout argument θ de a on a :

$$R_n(a) = \left\{ \sqrt[n]{|a|} e^{i\frac{\theta + 2k\pi}{n}} / 0 \leqslant k \leqslant n - 1 \right\}.$$

Preuve: Posons pour $k \in \int 0n-1$, $z_k = \sqrt[n]{|a|}e^{i\frac{\theta+2k\pi}{n}}$, il est clair que z_k est une racine n-ième de a. Si $z_k = z_{k'}$ alors $\theta+2k\pi=\theta+2k'\pi$ $(2n\pi)$, d'où $k-k'\in n\mathbb{Z}$, or k et k' sont dans l'intervalle $[\![0..n-1]\!]$ ce qui entraîne k=k', ceci prouve que a possède au moins n racines n-ièmes : z_0, \dots, z_{n-1} .

Soit z une racine n-ième de a, l'égalité $z^n=a$ entraîne que $|z|^n=|a|$ et $n{\rm Arg}(z)=\theta$ (2π) , d'où $|z|=\sqrt[n]{|a|}$ et $\operatorname{Arg}(z) = \frac{\theta + 2k\pi}{n}, k \in \mathbb{Z}$. Effectuons la division euclidienne de k par n, il existe deux entiers q et r tels que k = nq + ravec $0 \le r \le n-1$, on a donc $\operatorname{Arg}(z) = \frac{\theta + 2r\pi}{n}$ (2π) et par conséquent $z = z_r$, ceci prouve que les seules racines n-ièmes de a sont z_0, \dots, z_{n-1} .

Cas particuliers des racines n-ièmes de l'unité :

ØDÉFINITION 2.10

Soit n un entier supérieur ou égal à deux, on note \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité, on a donc:

$$\mathbb{U}_n = \left\{z \in \mathbb{U} \ / \ z^n = 1 \right\} = \left\{e^{2ik\pi/n} \ / \ 0 \leqslant k \leqslant n-1 \right\}$$

Exercice: Montrer que (\mathbb{U}_n, \times) est un groupe.

 M_k est le point d'affixe $e^{2ik\pi/n}$ (n=7).

Soit a un complexe non nul et soit z_0 une racine n-ième de a. L'équation $z^n=a$ équivaut à $z^n=z_0^n$, ou encore $\left(\frac{z}{z_0}\right)^n=1$. On est ainsi ramené aux racines n-ièmes de l'unité, on en déduit que $z=z_0e^{i2k\pi/n}$ avec $0 \le k \le n-1$.

Représentation géométrique des complexes, applications

Le plan complexe est un plan \mathscr{P} muni d'un repère orthonormé direct $\mathscr{R}=(O,\overrightarrow{u},\overrightarrow{v})$.

1) Affixe

Chaque point M du plan complexe est repéré par ses coordonnées : une abscisse x et une ordonnée y, c'est à dire par le couple de réels (x, y). Autant dire que M est repéré par le **complexe** z = x + iy. Par définition, ce complexe est **l'affixe** du point *M*.

Réciproquement, tout complexe z est l'affixe d'un point M du plan que l'on appelle **image** de z. Les axes (O, \overrightarrow{u}) et (O, \overrightarrow{v}) sont appelés respectivement axes des réels et axe des imaginaires.

Par exemple, l'image de \overline{z} est le symétrique de l'image de z par la réflexion d'axe (O, \overline{u}) .

De la même façon, chaque vecteur du plan a des coordonnées dans la base $(\overrightarrow{u}, \overrightarrow{v})$. Si \overrightarrow{w} a pour coordonnées (x, y), cela signifie que $\overrightarrow{w} = x \overrightarrow{u} + y \overrightarrow{v}$, là encore le vecteur \overrightarrow{w} peut être représenté par le complexe x + iy, ce complexe est appelé **affixe** du vecteur \overrightarrow{w} . Réciproquement, tout complexe z est l'affixe d'un vecteur du plan. On remarquera que l'affixe d'un point M n'est autre que l'affixe du **vecteur** OM.

- *) L'affixe de la somme de deux vecteurs est la somme des affixes. Si $\alpha \in \mathbb{R}$ et si \overrightarrow{w} est le vecteur d'affixe z, alors l'affixe du vecteur $\alpha \overrightarrow{w}$ est αz .
 - *) Soit M d'affixe z et M' d'affixe z', l'affixe du vecteur $\overrightarrow{MM'}$ est z'-z.

2) Distances

Le module d'un complexe z représente dans le plan complexe la distance de l'origine O au point Md'affixe z, c'est à dire $|z| = OM = ||\overrightarrow{OM}||$.

Si \overrightarrow{w} est un vecteur d'affixe z, alors la norme de \overrightarrow{w} est $||\overrightarrow{w}|| = |z|$.

Soit M d'affixe z et M' d'affixe z', la distance de M à M' est $MM' = |\overrightarrow{MM'}| = |z' - z|$.

ØDéfinition 2.11

Soit $a \in \mathbb{C}$ et R > 0, on définit dans le plan complexe :

- le disque fermé de centre a et de rayon R : $\{M \in \mathcal{P} \mid |z-a| \leq R\}$.
- le disque ouvert de centre a et de rayon $R: \{M \in \mathcal{P} \mid |z-a| < R\}$.
- le cercle de centre a et de rayon $R: \{M \in \mathcal{P} \mid |z-a|=R\}$.

Exemples:

MPSI - Cours

- La représentation géométrique du groupe unité $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$ est le cercle de centre O et de rayon 1 : le cercle trigonométrique.
- Les points d'affixe les racines n-ièmes de l'unité $(n \ge 2)$ sont les sommets d'un polygone régulier inscrit dans le cercle unité. La longueur du coté est $2\sin(\frac{\pi}{n})$, et la longueur du centre au milieu d'un coté (l'apothème) est $\cos(\frac{\pi}{n}).$

3) Angles orientés

Soit z un complexe non nul et M le point du plan d'affixe z, l'argument principal de z est une mesure de l'angle orienté $(\overrightarrow{u}, \overrightarrow{OM})$, ce que l'on écrit $(\overrightarrow{u}, \overrightarrow{OM}) = \text{Arg}(z)$ (2π) .

Soient \overrightarrow{w} et $\overrightarrow{w'}$ deux vecteurs non nuls d'affixes respectifs z et z'. Désignons par M et M' les points d'affixes respectifs z et z', l'angle orienté entre les deux vecteurs \overrightarrow{w} et $\overrightarrow{w'}$ est :

$$(\overrightarrow{w}, \overrightarrow{w'}) = (\overrightarrow{OM}, \overrightarrow{OM'})$$

$$= (\overrightarrow{OM}, \overrightarrow{u'}) + (\overrightarrow{u'}, \overrightarrow{OM'})$$

$$= -(\overrightarrow{u'}, \overrightarrow{OM}) + (\overrightarrow{u'}, \overrightarrow{OM'})$$

$$= -\operatorname{Arg}(z) + \operatorname{Arg}(z') (2\pi)$$

$$= \operatorname{Arg}(\frac{z'}{z}) (2\pi)$$

Conséquence: Soient A, B et C trois points distincts d'affixes respectifs Z_A, Z_B et Z_C . L'affixe du vecteur \overrightarrow{AB} est $Z_B - Z_A$ et celui du vecteur \overrightarrow{AC} est $Z_C - Z_A$, par conséquent l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$ est donné par :

$$(\overrightarrow{AB}, \overrightarrow{AC}) = \operatorname{Arg}(\frac{Z_C - Z_A}{Z_B - Z_A}) (2\pi).$$

Rappels:

Produit scalaire: soient $z = x + iy = re^{i\theta}$ et $z' = x' + iy' = r'e^{i\theta'}$ deux complexes non nuls, soient \overrightarrow{w} et $\overrightarrow{w'}$ deux vecteurs d'affixes respectives z et z', alors le produit scalaire entre ces deux vecteurs est:

$$\overrightarrow{w} \cdot \overrightarrow{w'} = xx' + yy' = \operatorname{Re}(z\overline{z'}) = \operatorname{Re}(\overline{z}z') = rr' \cos(\theta' - \theta).$$

Ce produit scalaire est nul ssi $\theta' - \theta = \frac{\pi}{2} \pmod{\pi}$ ce qui revient à dire que $(\overrightarrow{w}, \overrightarrow{w'}) = \frac{\pi}{2} \pmod{\pi}$ ou encore : **les deux vecteurs sont orthogonaux**.

- **Déterminant**: soient $z = x + iy = re^{i\theta}$ et $z' = x' + iy' = r'e^{i\theta'}$ deux complexes non nuls, soient \overrightarrow{w} et $\overrightarrow{w'}$ deux vecteurs d'affixes respectives z et z', alors le déterminant entre ces deux vecteurs est :

$$\det(\overrightarrow{w}, \overrightarrow{w'}) = xy' - x'y = \operatorname{Im}(\overline{z}z') = rr'\sin(\theta' - \theta).$$

Ce déterminant est nul ssi $\theta' - \theta = 0 \pmod{\pi}$ ce qui revient à dire que $(\overrightarrow{w}, \overrightarrow{w'}) = 0 \pmod{\pi}$ ou encore : les deux vecteurs sont colinéaires.

4) Transformations du plan complexe

- L'image du point M(z) par la translation de vecteur $\overrightarrow{V}(z_0)$ a pour affixe $z'=z+z_0$.
- L'image du point M(z) par l'homothétie de centre $C(z_0)$ et de rapport $\lambda \in \mathbb{R}^*$ a pour affixe $z' = \lambda(z-z_0) + z_0$.
- L'image de M(z) par la rotation de centre $C(z_0)$ et d'angle θ a pour affixe $z'=e^{i\theta}(z-z_0)+z_0$.

Quelques transformations de \mathcal{P} dans \mathcal{P} :

- L'application $f: M(z) \mapsto M'(z)$ est **l'identité** du plan, notée $id_{\mathscr{P}}$.
- L'application $f: M(z) \mapsto M'(\overline{z})$ est la **réflexion** (ou symétrie orthogonale) par rapport à l'axe réel. C'est une **involution**.
- Soient $a \in \mathbb{C}^*$, $b \in \mathbb{C}$, et $f : M(z) \mapsto M'(az + b)$:
 - Lorsque a = 1 f est la translation de vecteur $\overrightarrow{w}(b)$.
 - Lorsque $a \neq 1$, f est la similitude directe de centre $C(z_0)$ avec $z_0 = \frac{b}{1-a}$ (point fixe de f), d'angle Arg(a) et de rapport |a|, c'est à dire :

$$CM' = |a|CM$$
, et $(\overrightarrow{CM}, \overrightarrow{CM'}) = \text{Arg}(a) \pmod{2\pi}$.

Comme $az + b = a(z - z_0) + z_0$, cette transformation est la composée (commutative) entre l'homothétie de centre $C(z_0)$, de rapport |a| et la rotation de centre $C(z_0)$, d'angle Arg(a). C'est une bijection et sa réciproque est la similitude directe de centre $C(z_0)$, de rapport $\frac{1}{|a|}$ et d'angle -Arg(a).

VI) Annexe

1) Notion de groupe

Un groupe est un ensemble non vide G muni d'une opération * (ou loi de composition) qui vérifie les propriétés suivantes :

- elle doit être interne : $\forall x, y \in G, x * y \in G$.
- elle doit être associative : $\forall x, y, z \in G, x * (y * z) = (x * y) * z$.
- elle doit posséder un élément neutre : $\exists e \in G, \forall x \in G, e*x = x*e = x$. Si la loi est une addition l'élément neutre sera noté 0_G et on parlera de groupe additif. Si la loi est une multiplication, l'élément neutre sera noté 1_G et on parlera de groupe multiplicatif. Dans le cas général l'élément neutre est souvent noté e_G .
- tout élément de G doit avoir un symétrique dans G: $\forall x \in G, \exists x' \in G, x * x' = x' * x = e_G$. En notation additive, le symétrique de x est appelé **opposé de** x et noté -x, en notation multiplicative on l'appelle **inverse de** x et on le note x^{-1} .

Lorsque toutes ces conditions sont remplies, on dit (G,*) est un groupe. Si en plus la loi * est commutative $(\forall x, y \in G, x * y = y * x)$, alors on dit que (G,*) est un **groupe abélien** (ou groupe commutatif).

Exemples

- $-(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+),(\mathbb{Q}^*,\times),(\mathbb{R}^*,\times),(\mathbb{C}^*,\times)$ sont des groupes abéliens.
- $(\mathbb{N}, +)$ et (\mathbb{Z}^*, \times) ne sont pas des groupes.
- Si $(E, +, \times)$ est un corps, alors (E, +) est un groupe abélien et (E^*, \times) est un groupe (abélien si le corps est commutatif).
- Dans $E = \mathbb{R} \setminus \{1\}$ on définit une opération en posant $\forall x, y \in E, x * y = x + y xy$. On vérifie que (E, *) est un groupe.

Quelques propriétés : Soit (G, *) un groupe :

- a) Soient $x, y \in G$, le symétrique de x * y est : (x * y)' = y' * x'.
- b) Soient $a, b \in G$, l'équation a * x = b admet comme unique solution dans G, x = a' * b.

2) Notion de corps

Un corps est un ensemble *E* muni de deux opérations (ou deux lois de composition), une addition et une multiplication. Ces deux opérations doivent vérifier les propriétés suivantes :

- Pour l'addition :
 - elle doit être **interne** : $\forall x, y \in E, x + y \in E$ (on parle alors de loi de composition interne).
 - elle doit être **associative** : $\forall x, y, z \in E, (x + y) + z = x + (y + z)$.
 - elle doit être **commutative** : $\forall x, y \in E, x + y = y + x$.
 - elle doit posséder un élément neutre : $\exists e \in E, \forall x \in E, e + x = x + e = x$. Cet élément est en général noté 0_E et appelé **zéro de** E.
 - tout élément de *E* doit avoir un **opposé** : $\forall x \in E, \exists x' \in E, x + x' = x' + x = 0_E$. L'opposé de *x* est en général noté −*x*.
- Pour la multiplication :
 - elle doit être interne : $\forall x, y \in E, xy \in E$.
 - elle doit être associative : $\forall x, y, z \in E, (xy)z = x(yz)$.
 - elle doit posséder un élément neutre : $\exists e \in E, \forall x \in E, ex = xe = x$. Cet élément est en général noté 1_E et appelé **un de** E.
 - tout élément **non nul** de *E* doit avoir un **inverse** : $\forall x \in E \setminus \{0_E\}, \exists x' \in E, xx' = x'x = 1_E$. L'inverse de *x* est en général noté x^{-1} .
- elle doit être **distributive sur l'addition** : $\forall x, y, z \in E, x(y+z) = xy + xz$ et (y+z)x = yx + zx. Lorsque toutes ces propriétés sont vérifiées, on dit $(E, +, \times)$ est un corps. Si de plus la multiplication est commutative $(\forall x, y \in E, xy = yx)$ alors on dit que $(E, +, \times)$ est un corps commutatif.

Par exemple, $(\mathbb{R}, +, \times)$, $(\mathbb{Q}, +, \times)$, $(\mathbb{C}, +, \times)$ sont des corps commutatifs, mais $(\mathbb{Z}, +, \times)$ n'est pas un corps.

Quelques propriétés : Si $(E, +, \times)$ est un corps :

a) $\forall x \in E, 0_E x = x 0_E = 0_E$.

MPSI - Cours

b)
$$\forall x, y \in E, xy = 0_E \Longrightarrow x = 0_E \text{ ou } y = 0_E.$$

3) Morphisme de corps

Soient $(E, +, \times)$ et $(F, +, \times)$ deux corps commutatifs, et soit $f: E \to F$ une application. On dit que f est un **morphisme de corps** lorsque :

- $\forall x, y \in E, f(x + y) = f(x) + f(y) \text{ et } f(xy) = f(x)f(y).$
- $f(1_E) = 1_E$.

Exemples:

- La conjugaison dans $\mathbb C$ est un morphisme de corps.
- − La fonction g de \mathbb{R} vers \mathbb{C} définie par g(x) = x est un morphisme de corps.
- La fonction $h: \mathbb{R} \to \mathbb{R}$ définie par $h(x) = x^2$ n'est pas un morphisme de corps.

Quelques propriétés : Soit $f: E \rightarrow F$ est un morphisme de corps :

- a) $f(0_E) = 0_F$.
- b) $\forall x \in E, f(-x) = -f(x)$.
- c) $\forall x \in E^*, f(x^{-1}) = f(x)^{-1}$.

VII) Exercices

★Exercice 2.1

Soit $f: \mathbb{C} \to \mathbb{C}$ définie par : $\forall z \in \mathbb{C}$, $f(z) = \frac{z+i}{z-i}$. Montrer que f induit une bijection de $\mathbb{C} \setminus \{i\}$ sur $\mathbb{C} \setminus \{1\}$, déterminer la bijection réciproque. Déterminer la forme algébrique de f(z), en déduire l'image réciproque de \mathbb{R} et de \mathbb{U} .

★Exercice 2.2

Déterminer les complexes z tels que :

- a) $z, \frac{1}{z}$ et 1-z aient le même module.
- b) $(z-i)(\overline{z}-1) \in \mathbb{R}$.
- c) $(z-i)(\overline{z}-1) \in i\mathbb{R}$.

★Exercice 2.3

- a) Soient u et v deux nombres complexes, montrer que $|u| + |v| \le |u + v| + |u v|$.
- b) Soient u et v deux nombres complexes, montrer que $|u+v|^2+|u-v|^2=2\left(|u|^2+|v|^2\right)$ (formule de parallèlogramme).
- c) Soient x, y, z, t des complexes, montrer que $|x-y| \times |z-t| \le |x-z| \times |y-t| + |x-t| \times |z-y|$ (inégalité de *Ptolémée*).

★Exercice 2.4

Déterminer le module et l'argument des complexes suivants :

$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20} \text{ et } \frac{1+e^{i\theta}}{1-e^{i\theta}}$$

★Exercice 2.5

Soit x, y, z trois réels tels que $e^{ix} + e^{iy} + e^{iz} = 0$. Montrer que $e^{i2x} + e^{i2y} + e^{i2z} = 0$.

★Exercice 2.6

Soient a, b, c trois complexes de module 1 distincts deux à deux, montrer que $\frac{a}{b} \frac{(c-b)^2}{(c-a)^2} \in \mathbb{R}_+^*$.

★Exercice 2.7

Linéariser $\sin^3(x)\cos(x)$.

★Exercice 2.8

Résoudre cos(3x) - 2cos(2x) = 0.

★Exercice 2.9

Soient a, b, c, d quatre complexes tels que a + c = b + d et a + ib = c + id. Que dire du quadrilatère formé par les quatre points d'affixes respectives a, b, c et d?

★Exercice 2.10

Soit z un complexe de module 1. Montrer que $|1+z|\geqslant 1$ ou $|1+z^2|\geqslant 1$.

★Exercice 2.11

Résoudre dans \mathbb{C} les équations suivantes :

a)
$$\frac{z+3}{z+i} = 1+i$$
 b) $(1+i)z + (z-i)\overline{z} = 2i$ c) $\overline{z}(z-i) = \frac{1+i}{1-i}$ d) $z^2 = -\overline{z}^2$ e) $8z^2 = \overline{z}$ f) $8z^2 = \overline{z} - 1$ g) $z^2 - (2+i\omega)z + i\omega + 2 - \omega = 0$ h) $z^4 - 3iz^2 + 4 = 0$ i) $z^4 = 24i - 7$ j) $z^6 = \frac{1+i\sqrt{3}}{1-i\sqrt{3}}$ k) $z^4 = \frac{1-i}{1+i\sqrt{3}}$ l) $\overline{z} = z^{n+1}$

★Exercice 2.12

Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$1 + 2z + 2z^2 + \dots + 2z^{n-1} + z^n = 0$$

b) $\begin{cases} Arg(z) &= -Arg(z+1)(2\pi) \\ |z| &= 1 \end{cases}$

c)
$$2\operatorname{Arg}(z+i) = \operatorname{Arg}(z) + \operatorname{Arg}(i)(2\pi)$$

d)
$$(z+i)^n = (z-i)^n$$
.

★Exercice 2.13

- a) Résoudre dans \mathbb{C} l'équation $(1-z)^{2n}=(1+z)^{2n}$ et calculer le produit des solutions **non nulles**.
- b) Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$, résoudre l'équation $(z+1)^n = e^{2ina}$.

★Exercice 2.14

- a) Démontrer que $\sum_{k=1}^{n} ki^{k-1} = \frac{i ni^n (n+1)i^{n+1}}{2}$.
- b) En déduire une simplification des sommes réelles :

$$S_1 = 1 - 3 + 5 - 7 + \dots + (-1)^p (2p + 1)$$
 et $S_2 = 2 - 4 + 6 - 8 + \dots + (-1)^{p+1} 2p$

★Exercice 2.15

Soit
$$u = e^{2i\frac{\pi}{7}}$$
, $S = u + u^2 + u^4$ et $T = u^3 + u^5 + u^6$.

- a) Montrer que S et T sont conjugués et que la partie imaginaire de S est positive.
- b) Calculer S + T et ST. En déduire S et T.

★Exercice 2.16

- a) Calculer la somme puis le produit des racines *n*-ièmes de l'unité.
- b) Soit ε une racine n-ième de l'unité, simplifier la somme : $\sum_{k=1}^{n} k \varepsilon^{k-1}$.

★Exercice 2.17

Simplifier les sommes suivantes :

a)
$$\sum_{k=0}^{n} C_n^k \cos(x + ky)$$
 et $\sum_{k=0}^{n} C_n^k \sin(x + ky)$ pour x et y réels.

b)
$$\sum_{k=0}^{n} \frac{\cos(kx)}{\cos(x)^k}$$
 et $\sum_{k=0}^{n} \frac{\sin(kx)}{\cos(x)^k}$ pour x réel et $\cos(x) \neq 0$.

c)
$$\sum_{k=1}^{n} \frac{1}{2^k} \cos(k \frac{\pi}{3})$$
.

d)
$$\sum_{k=0}^{n} \cos^2(kx)$$
 et $\sum_{k=0}^{n} \sin^2(kx)$

★Exercice 2.18

Déterminer dans le plan l'ensemble des points M(z) tels que les trois points A(1), M(z) et $B(+z^2)$ soient alignés.

★Exercice 2.19

Soient *A*, *B* et *C* trois points du plan d'affixes respectives *a*, *b* et *c*. Montrer que le triangle (A, B, C) est équilatéral direct ssi $a + bj + cj^2 = 0$.

★Exercice 2.20

- a) Soit *ABCD* un carré dans le plan complexe. Montrer que si *A* et *B* ont des coordonnées entières, alors il en va de même pour *C* et *D*.
- b) Peut-on trouver un triangle équilatéral dont les trois sommets ont des coordonnées entières?

★Exercice 2.21

Soient $z = e^{2i\pi/5}$.

- a) Montrer que z vérifie $z^4 + z^3 + z^2 + z + 1 = 0$.
- b) Soit $u = z + \frac{1}{z}$, Montrer que u vérifie une équation du second degré (à préciser).
- c) En déduire $\cos(\frac{2\pi}{5})$ et $\sin(\frac{2\pi}{5})$, puis $\cos(\frac{\pi}{5})$ et $\sin(\frac{\pi}{5})$.

★Exercice 2.22

Soient a, b deux réels.

- a) Montrer que $\sin^2(a) + \sin^2(b) + \sin^2(a+b) = 2 2\cos(a)\cos(b)\cos(a+b)$.
- b) Soit ABC un triangle, on note l'angle $(\overrightarrow{AB}, \overrightarrow{AC}) = a$, et par permutation circulaire b et c. Montrer que ce triangle est rectangle si et seulement si $\sin^2(a) + \sin^2(b) + \sin^2(c) = 2$.

★Exercice 2.23

Soient a, b, c, d quatre complexes de module 1 et de somme nulle. On note A, B, C, D les points d'affixes respectives a, b, c, d et on suppose que le quadrilatère (A, B, C, D) est non croisé.

- a) Montrer que ce quadrilatère est un parallèlogramme (et même un rectangle). Que dire alors des complexes a, b, c, d?
- b) Application : trouver tous les complexes a, b, c de module 1 vérifiant :

$$\begin{cases} a+b+c=1\\ abc=-1 \end{cases}$$