#### Univerza *v Ljubljani* Fakulteta *za matematiko in fizik*o



#### Oddelek za fiziko

## Franck-Hertzov poskus

Poročilo pri fizikalnem praktikumu IV

Kristofer Č. Povšič

Asistent: Jelena Vesić

### Uvod

S tem poskusom lahko pokažemo diskretnost energijskih nivojev elektronov v atomu. Plinska trioda vsebuje kapljico živega srebra Hg, plinska faza nad njo pa ima pri temperaturi  $200^{\circ}C$  tlak okoli 1kPa. V cevi pospešujemo elektrone od katode proti anodni mrežici z napetostjo  $U_1$  in jih nato lovimo s kolektorsko anodo, ki elektrone dodatno odbija z majhnim potencialom  $U_2$ . Merimo tok elektronov  $I_2$ , ki doseže kolektorsko anodo, tj. tok elektronov, ki uspejo premagati zaustavitveni potencial  $U_2$  med anodno mrežico in anodnim kolektorjem. Ko povečujemo napetost  $U_1$ , s katero pospešujemo elektrone, doseže kolektorsko anodo vedno več elektronov. A ko kinetične energije elektronov dosežejo 4.9eV - razliko  $\Delta E = E_1 - E_0$  med prvima dvema vzbujenima stanjema Hg atoma - postanejo trki neeleastični. Posledično se elektroni upočasnijo in ne dosežejo kolektorske anode. V odvisnosti od  $I_2$  vidimo značilen padec. Pri višjih napetostih, npr. 9.8V, imajo elektroni že na sredini pospeševalnega pasu kinetično energijo 4.9eV. To je dovolj, da jo izgubijo v neelastičnem trku. Od tukaj do anode mrežice spet pridobijo energijo in drugič neelastično trčijo tik ob anodni mrežici. Spet torej opazimo padec v kolektorskem toku  $I_2$ .

## Naloga

- Opazuj odvisnost toka  $I_2$  med anodno mrežico in anodnim kolektorjem v odvisnosti od negativne napetosti  $U_1$  na katodi. Spreminjaj temperaturo in posebej natančno opazuj in izmeri položaje vseh vrhov v merjenih odvisnostih. Skiciraj odvisnosti pri petih različnih temperaturah, ko se slike primerno razlikujejo, tj. približno pri temperaturah okoli 180, 160, 140, 120 °C in na koncu še pri sobni temperaturi.
- Natančno določi položaje vrhov  $U_{1,n}=U_2+n\Delta E/e_0$  pri posameznih temperaturah in rezultate vnesi v tabelo. Razlike napetosti med zaporednimi maksimumi ustrezajo energiji, ki jo izgubijo elektroni pri posameznem neelastičnem trku z atomom Hg. Določi  $\Delta E=E_1-E_0=e_0\Delta U_1$ , kjer sta  $E_1$  in  $E_0$  energiji prvega vzbujenega in osnovnega stanja elektrona v zunanji lupini Hg.

### Potrebščine

- Franck-Hertzova cev v termostatiranem ohišju
- generator žagaste napetosti in izvor izmenične napetosti za gretje katode (5.42V. 215mA)
- digitalni osciloskop (Tektronix serija 2000)
- USB ključek za shranjevanje podatkov

# Navodila in obdelava podatkov

Prižgem komoro, da se Franck-Hertzova cev začne segrevati. Pri temperaturah 180, 160, 140, 120 in 40 °C pomerim odvisnost  $U_2(U_1)$ . Pri tem je  $U_2$  le napetosti, ki je preko upora  $R=1k\Omega$  povezava s kolektorskim tokom  $I_2=U_2/R$ . Iz grafov razberemo relativne višine maksimumov kolektorskega toka  $I_2$  in pripadajoče pospeševalne napetosti  $U_1$ . Iz tega lahko nato izračunamo, da so razmiki med vrhovi:

$$\Delta E = (5.0 \pm 0.7) \text{eV}$$

# Grafi in tabele



Slika 1: Tok v odvisnosti od napetosti na kolektorski katodi. Odvisnost je izmerjena pri temperaturah 180, 160, 140, 120 ° ${\cal C}$ 



Slika 2: Graf osciloskopa pri temperaturi 180 ° ${\cal C}$ 

| $U_1[V]$ | $U_2[\mathrm{mV}]$ |
|----------|--------------------|
| -15.60   | 6.24               |
| -10.40   | 2.50               |
| -5.20    | 0.42               |
| 0.00     | -2.91              |

Tabela 1: Tabela vrednosti iz osciloskopa pri temperaturi 180 °C



Slika 3: Graf osciloskopa pri temperaturi 160 ° $\!C$ 

| $U_1[V]$ | $U_2[\mathrm{mV}]$ |
|----------|--------------------|
| -15.60   | 10.37              |
| -10.40   | 6.34               |
| -5.20    | 0.58               |
| 0.00     | -4.61              |

Tabela 2: Tabela vrednosti iz osciloskopa pri temperaturi 160 ° ${\cal C}$ 



Slika 4: Graf osciloskopa pri temperaturi 140 ° ${\cal C}$ 

| $U_1[V]$ | $U_2[\mathrm{mV}]$ |
|----------|--------------------|
| -15.60   | 25.28              |
| -10.40   | 14.22              |
| -5.20    | 0.00               |
| 0.00     | -7.90              |

Tabela 3: Tabela vrednosti iz osciloskopa pri temperaturi 140 °C



Slika 5: Graf osciloskopa pri temperaturi 120 °C

| $U_1[V]$ | $U_2[\mathrm{mV}]$ |
|----------|--------------------|
| -7.28    | 44.80              |
| -5.20    | -224.00            |
| 0.00     | -268.80            |
| 5.20     | -313.60            |
| 10.40    | -313.60            |

Tabela 4: Tabela vrednosti iz osciloskopa pri temperaturi 120 ° ${\cal C}$ 



Slika 6: Graf osciloskopa pri temperaturi 40 ° $\!C$