# Option-Valuation and Application Least-Squares Monte Carlo Approach

TA: Zong-Wei Yeh

Instructor: Mi-Hsiu Chiang

Department of Money and Banking National Chengchi University

December 21, 2023

#### Tree Method versus Simulation Method

- Tree Method
  - Backward induction
  - Convergence to the BS formula according to the central limit theory (CLT)
  - Suitable for American-style derivatives (early performance allowed)
- Monte Carlo
  - Forward induction
  - Convergence to the BS formula according to the law of large numbers (LLN)
  - Suitable for path-dependent derivatives

#### Outline

- The Foundation of Least-Squares Monte Carlo Method
- 2 Implementation by Python

- 1 The Foundation of Least-Squares Monte Carlo Method
  - Introduction
  - A Numerical Example
  - Basis Regression Selection

#### Introduction

#### American Option Pricing by Simulation

- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at one path alone.

#### Introduction

- Longstaff and Schwartz (2001) think that continuation value can be estimated from the cross-sectional information in the simulation by using least squares.
- The result is a function (of the state) for estimating the continuation values.
- Use the function to estimate the continuation value for each path to determine its cash flow
- This is called the least-squares Monte Carlo (LSMC) method.

#### Introduction

- provably convergent (see Clément et al., 2002; Stentoft, 2004)
- be easily parallelized (see Doan et al., 2010; Lyuu et al., 2014; Wan et al., 2006; Zhang et al., 2011)



- Consider a 3-year American put on a non-dividend-paying stock.
- The put is exercisable at years 0, 1, 2, and 3.
- The strike price K = 105.
- The annualized riskless rate is r = 5%.
- The current stock price is 101.

#### • Stock Price paths

| Path | Year 0 | Year 1   | Year 2   | Year 3   |
|------|--------|----------|----------|----------|
| 1    | 101    | 97.6424  | 92.5815  | 107.5178 |
| 2    | 101    | 101.2103 | 105.1763 | 102.4524 |
| 3    | 101    | 105.7802 | 103.6010 | 124.5115 |
| 4    | 101    | 96.4411  | 98.7120  | 108.3600 |
| 5    | 101    | 124.2345 | 101.0564 | 104.5315 |
| 6    | 101    | 95.8375  | 93.7270  | 99.3788  |
| 7    | 101    | 108.9554 | 102.4177 | 100.9225 |
| 8    | 101    | 104.1475 | 113.2516 | 115.0994 |

• Cash-flow matrix at Year 3

| Path | Year 1 | Year 2 | Year 3 |
|------|--------|--------|--------|
| 1    | -      | -      | 0      |
| 2    | _      | _      | 2.5476 |
| 3    | _      | _      | 0      |
| 4    | _      | _      | 0      |
| 5    | _      | _      | 0.4685 |
| 6    | _      | _      | 5.6212 |
| 7    | _      | _      | 40775  |
| 8    | _      | _      | 0      |

- For each state that is in the money at year 2, we must decide whether to exercise it.
- There are 6 paths for which the put is in the money: 1,3, 4, 5, 6, 7.
- Let X denote the stock prices at year 2 for those 6 paths.
- Let Y denote the corresponding discounted future cash flows (at year 3) if the put is not exercised at year 2.

#### • Regression at year 2

| X        | Y                                                          |
|----------|------------------------------------------------------------|
| 92.5815  | 0×0.951229                                                 |
| _        | _                                                          |
| 103.6010 | $0 \times 0.951229$                                        |
| 98.7120  | $0 \times 0.951229$                                        |
| 101.0564 | $0.4685{\times}0.951229$                                   |
| 93.7270  | 5.6212×0.951229                                            |
| 102.4177 | 4.0775×0.951229                                            |
| _        | _                                                          |
|          | 92.5815<br>-<br>103.6010<br>98.7120<br>101.0564<br>93.7270 |

- We regress Y on 1, X, and  $X^2$ .
- The result is

$$\mathbb{E}(Y|X) = 22.08 - 0.313114X + 0.00106918X^2$$

•  $\mathbb{E}(Y|X)$  estimates the continuation value conditional on the stock price at year 2.

• Optimal early exercise decision at year 2

| Path | Exercise | Continuation                       |
|------|----------|------------------------------------|
| 1    | 12.4185√ | $\mathbb{E}(Y X=92.5815)=2.2558$   |
| 2    | _        | -                                  |
| 3    | 1.3990√  | $\mathbb{E}(Y X=103.6010)=1.1168$  |
| 4    | 6.2880√  | $\mathbb{E}(Y X=98.7120) = 1.5901$ |
| 5    | 3.9436√  | $\mathbb{E}(Y X=101.0564)=1.3568$  |
| 6    | 11.2730√ | $\mathbb{E}(Y X=93.7270)=2.1253$   |
| 7    | 2.5823√  | $\mathbb{E}(Y X=102.4177)=0.3326$  |
| 8    | _        | -                                  |

- When the option is exercised at time 2, the cash flow in the final column becomes zero.
- Once the option is exercised there are no further cash flows since the option can only be exercised once.

| Path | Year 0 | Year 1 | Year 2  | Year 3 |
|------|--------|--------|---------|--------|
| 1    | _      | _      | 12.4185 | 0      |
| 2    | _      | _      | 0       | 2.5476 |
| 3    | _      | _      | 1.3990  | 0      |
| 4    | _      | _      | 6.2880  | 0      |
| 5    | _      | _      | 3.9436  | 0      |
| 6    | _      | _      | 11.2730 | 0      |
| 7    | _      | _      | 2.5823  | 0      |
| 8    | -      | -      | 0       | 0      |

#### • Regression as year 1

| Path | X        | Y                          |
|------|----------|----------------------------|
| 1    | 97.6424  | 12.4185×0.951229           |
| 2    | 101.2103 | $2.5476{\times}0.951229^2$ |
| 3    | _        | _                          |
| 4    | 96.4411  | $6.2880 \times 0.951229$   |
| 5    | _        | -                          |
| 6    | 95.8375  | 11.2730×0.951229           |
| 7    | _        | -                          |
| 8    | 104.1475 | 0                          |

• Optimal early exercise decision at year 1

| Path | Exercise | Continuation                                    |
|------|----------|-------------------------------------------------|
| 1    | 7.3576   | $\mathbb{E}(Y X = 97.6424) = 8.2230\checkmark$  |
| 2    | 3.7897   | $\mathbb{E}(Y X = 101.2103) = 3.9882\checkmark$ |
| 3    | _        | -                                               |
| 4    | 8.5589   | $\mathbb{E}(Y X = 96.4411) = 9.3329\checkmark$  |
| 5    | _        | -                                               |
| 6    | 9.1625   | $\mathbb{E}(Y X = 95.8375) = 9.8304\checkmark$  |
| 7    | _        | -                                               |
| 8    | 0.8525√  | $\mathbb{E}(Y X=104.1475)=-0.5519$              |

• Cash flows at years 1, 2, & 3

| Path | Year 0 | Year 1 | Year 2  | Year 3 |
|------|--------|--------|---------|--------|
| 1    | _      | 0      | 12.4185 | 0      |
| 2    | _      | 0      | 0       | 2.5476 |
| 3    | _      | 0      | 1.3990  | 0      |
| 4    | _      | 0      | 6.2880  | 0      |
| 5    | _      | 0      | 3.9436  | 0      |
| 6    | _      | 0      | 11.2730 | 0      |
| 7    | _      | 0      | 2.5823  | 0      |
| 8    | -      | 0.8252 | 0       | 0      |

#### • Discount to Year 0

| Path    | Year 0                       |
|---------|------------------------------|
| 1       | $12.4185{\times}0.951229^2$  |
| 2       | $2.5476{\times}0.951229^3$   |
| 3       | $1.3990{\times}0.951229^2$   |
| 4       | $6.2880{\times}0.951229^2$   |
| 5       | $3.9436 \times 0.951229^2$   |
| 6       | $11.2730{\times}0.951229^2$  |
| 7       | $2.5823{\times}0.951229^2$   |
| 8       | $0.8252{\times}0.951229^{1}$ |
| Average | 4.66263                      |
|         |                              |

## Summary

- Generate stock price simulation path
- Calculate payoff at expiry
- Regression Analysis
- Estimate option value

## Basis Regression Selection

#### Alternative regression: Laguerre polynomials

$$L_0(X) = \exp\left(-\frac{X}{2}\right)$$

$$L_1(X) = \exp\left(-\frac{X}{2}\right)(1 - X)$$

$$L_2(X) = \exp\left(-\frac{X}{2}\right)(1 - 2X + \frac{X^2}{2})$$

$$L_n(X) = \exp\left(-\frac{X}{2}\right)\frac{e^X}{n!}\frac{d^n}{dX^n}(X^ne^{-X})$$

With this specification, the conditional expectation can be represented as:

$$\mathbb{E}(Y|X) = \sum_{j=1}^{n} a_j L_j(X)$$

# Implementation by Python

See code

#### References I

- Clément, E., Lamberton, D., and Protter, P. (2002). An analysis of a least squares regression method for american option pricing. *Finance and Stochastics*, 6:449–471.
- Doan, V., Gaikwad, A., Bossy, M., Baude, F., and Stokes-Rees, I. (2010). Parallel pricing algorithms for multi-dimensional bermudan/american options using monte carlo methods. *Mathematics and Computers in Simulation*, 81(3):568–577.
- Longstaff, F. A. and Schwartz, E. S. (2001). Valuing american options by simulation: a simple least-squares approach. *The Review of Financial Studies*, 14(1):113–147.

#### References II

- Lyuu, Y.-D., Wen, K.-W., and Wu, Y.-C. (2014). Performance of gpu for pricing financial derivatives: Convertible bonds. *Journal of Information Science and Engineering*, 30(1):141–155.
- Stentoft, L. (2004). Convergence of the least squares monte carlo approach to american option valuation. *Management Science*, 50(9):1193–1203.
- Wan, J. W., Lai, K., Kolkiewicz, A. W., and Tan, K. (2006). A parallel quasi-monte carlo approach to pricing american options on multiple assets. International Journal of High Performance Computing and Networking, 4(5/6):321–330.

#### References III

Zhang, N., Roux, A., and Zastawniak, T. (2011). Parallel binomial valuation of american options with proportional transaction costs. In Advanced Parallel Processing Technologies: 9th International Symposium, APPT 2011, Shanghai, China, September 26-27, 2011. Proceedings 9, pages 88–97. Springer.