Exercice 1.

Prouver que les applications suivantes sont des produits scalaires sur E :

1. sur $E = \mathbb{R}_2[X]$,

$$(P,Q) \mapsto \langle P|Q \rangle = P(-1)Q(-1) + P(0)Q(0) + P(1)Q(1);$$

2. pour $n \in \mathbb{N}$, sur $E = \mathbb{R}_n[X]$, pour $x_0, \ldots, x_n \in \mathbb{R}$ deux à deux distincts,

$$\Psi : (P,Q) \mapsto \sum_{k=0}^{n} P(x_k) Q(x_k);$$

3. pour $n \in \mathbb{N}$, sur $E = \mathbb{R}_n[X]$, pour $a_0, \ldots, a_n \in \mathbb{R}$,

$$(P,Q) \mapsto \phi(P,Q) = \sum_{k=0}^{n} P^{(k)}(\alpha_k) Q^{(k)}(\alpha_k);$$

4. pour $n \in \mathbb{N}$, sur $E = \mathbb{R}_n[X]$,

$$(P,Q) \mapsto \langle P|Q \rangle = \int_0^1 P(t)Q(t)dt;$$

5. sur $E = \mathcal{C}([0,1], \mathbb{R})$,

$$(f,g) \mapsto \langle f|g\rangle = \int_0^1 f(t)g(t)dt;$$

6. pour $n \in \mathbb{N}$, sur $E = M_n(\mathbb{R})$,

$$\langle A|B\rangle = tr(^tAB)$$
;

7. sur $E = \mathcal{C}^1([0,1], \mathbb{R}),$

$$(f,g)\mapsto \langle f|g\rangle = f(1)g(1) + \int_0^1 f'(t)g'(t)dt;$$

8. sur $E = C^1([0,1], \mathbb{R}),$

$$(f,g) \mapsto \langle f|g\rangle = \int_0^1 (f(t)g(t) + f'(t)g'(t))dt.$$

Exercice 2.★

On définit sur l'espace vectoriel réel E des fonctions de classe \mathcal{C}^1 de [0,1] dans \mathbb{R} ,

$$\langle f|g\rangle = f(1)g(1) + \int_0^1 f'(t)g'(t)dt.$$

- 1. Montrer que l'on définit ainsi un produit scalaire sur E.
- **2.** Etablir que $\forall f \in E$,

$$\left(f(1) + \int_0^1 f'(t)dt\right)^2 \leqslant 2\left(f^2(1) + \int_0^1 f'^2(t)dt\right)$$

EXERCICE 3.

Soient E un espace euclidien de dimension $n\in\mathbb{N}^*$ et e_1,\dots,e_n des vecteurs de E tels que

$$\forall x \in E, \|x\|^2 = \sum_{k=1}^n \langle x | e_k \rangle^2.$$

1. Montrer que

$$\forall (x,y) \in E^2, \ \langle x|y \rangle = \sum_{i=1}^n \langle x|e_i \rangle \langle y|e_i \rangle.$$

2. En déduire que

$$\forall x \in E, \ x = \sum_{i=1}^{n} \langle x | e_i \rangle e_i.$$

3. Etablir que $(e_k)_{1 \le k \le n}$ est une base orthonormée de E.

Exercice 4.★

Sur l'espace vectoriel réel $E = \mathbb{R}_2[X]$, on définit

$$\langle P|Q\rangle = P(-1)Q(-1) + P(0)Q(0) + P(1)Q(1).$$

- **1.** Montrer qu'il s'agit d'un produit scalaire.
- **2.** Trouver une base orthonormée de E par le procédé d'orthonormalisation de Schmidt appliqué à la base canonique de E.
- **3.** Trouver une *autre* base orthonormée de E en utilisant les polynômes interpolateurs de Lagrange.

Exercice 5.

Soit E un espace euclidien orienté de dimension $n \ge 1$.

- **1.** Soient \mathcal{B} et \mathcal{B}' deux bases orthonormées directes de E. Montrer que $\det_{\mathcal{B}}(\mathcal{B}') = 1$.
- **2.** En déduire que $\det_{\mathcal{B}} = \det_{\mathcal{B}'}$.
- 3. Soient x_1, \ldots, x_{n-1} n-1 vecteurs de E. Montrer que l'application $x \in E \mapsto \det_{\mathcal{B}}(x_1, \ldots, x_{n-1}, x)$ est une forme linéaire sur E.
- **4.** En déduire qu'il existe un unique vecteur $u \in E$ tel que pour tout $x \in E$, $\det_{\mathcal{B}}(x_1,\ldots,x_{n-1},x) = \langle u,x \rangle$. On appelle u le produit vectoriel des vecteur x_1,\ldots,x_{n-1} et on note $u=x_1 \wedge x_2 \wedge \ldots \wedge x_{n-1}$.
- **5.** Montrer que l'application $(x_1, \ldots, x_{n-1}) \in E^{n-1} \mapsto x_1 \wedge x_2 \wedge \ldots \wedge x_{n-1}$ est une application n-1-linéaire alternée.

EXERCICE 6.

1. Soient $n \in \mathbb{N}$ et $a \in \mathbb{R}$. Montrer que l'application $\langle .,. \rangle$ de $\mathbb{R}_n[X]^2$ dans \mathbb{R} définie par

$$\forall (P,Q) \in \mathbb{R}_n[X]^2, \ \langle P,Q \rangle = \sum_{k=0}^n \frac{P^{(k)}(a)Q^{(k)}(a)}{(k!)^2}$$

est un produit scalaire sur $\mathbb{R}_n[X]$.

2. Donner sans calcul une base orthonormale de $\mathbb{R}_n[X]$.

Exercice 7.★

Soit $E = \mathcal{C}([0, 1], \mathbb{R})$. Pour tout $(f, g) \in E^2$, on pose

$$\langle f|g\rangle = \int_0^1 f(t)g(t)dt.$$

- **1.** Prouver $\langle \cdot | \cdot \rangle$ est un produit scalaire sur E.
- 2. On pose

$$F = \{ f \in E \mid f(0) = 0 \}.$$

- **a.** Soit $f \in F^{\perp}$. Montrer que $f^2 \in F^{\perp}$.
- **b.** Prouver que $F^{\perp} = \{0\}$.
- **3.** E est-il de dimension finie?

EXERCICE 8.

 $\begin{array}{ll} \text{Montrer que } s: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathcal{M} & \longmapsto & {}^t\mathcal{M} \end{array} \right. \text{ est une symétrie orthogonale pour le} \\ \text{produit scalaire sur } \mathcal{M}_n(\mathbb{R}) \text{ pour le produit scalaire défini par } \langle A,B \rangle = \text{tr}({}^tAB) \text{ pour } A,B \in \mathcal{M}_n(\mathbb{R}). \end{array}$

EXERCICE 9.

Soit E un espace euclidien et $f \in \mathcal{L}(E)$ tel que $\forall (x,y) \in E^2$, $\langle f(x),y \rangle = \langle x,f(y) \rangle$.

- **1.** Soit \mathcal{B} une base orthonormale de E. Montrer que la matrice de f dans la base \mathcal{B} est symétrique.
- **2.** Montrer que Ker $f = (\operatorname{Im} f)^{\perp}$.

EXERCICE 10.

Soit u un vecteur unitaire d'un espace euclidien E. On note U le vecteur colonne représentant u dans une base orthonormée $\mathcal B$ de E. Déterminer la matrice de la projection orthogonale sur vect(u) dans $\mathcal B$.

Exercice 11.★★

Soient E un espace euclidien et p une projection de E. Etablir l'équivalence des trois propriétés suivantes :

- **1.** p est orthogonale ;
- 2. $\forall x, y \in E, \langle p(x)|y \rangle = \langle x|p(y) \rangle$;
- 3. $\forall x \in E, \|p(x)\| \le \|x\|.$

Exercice 12.★

On munit \mathbb{R}^4 de son produit scalaire canonique. Donner la matrice dans la base canonique du projecteur orthogonal sur le sous-espace vectoriel F d'équations,

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$$

Exercice 13.★

Soit $E = \mathbb{R}_2[X]$ muni de sa structure euclidienne canonique (ie la base canonique est orthonormée). On note F le sous-espace vectoriel de E des polynômes s'annulant en 1.

- 1. Déterminer une base de F.
- 2. Calculer $\delta = \inf_{P \in F} ||X P||$.

Exercice 14.

EXERCICE 15.

Soient $\mathfrak{m},\mathfrak{n}\in\mathbb{N}^*$. On munit $\mathcal{M}_{\mathfrak{m},1}(\mathbb{R})$ (resp. $\mathcal{M}_{\mathfrak{n},1}(\mathbb{R})$) du produit scalaire $(X,Y)\mapsto {}^tXY$.

On se donne $A \in \mathcal{M}_{m,n}(\mathbb{R})$ et $B \in \mathbb{R}^m$. On pose $E = \{\|AX - B\|^2, X \in \mathbb{R}^n\}$ et $K = \inf E$.

- 1. Justifier l'existence de K.
- 2. On considère le système linéaire (S): AX = B. On appelle *pseudo-solution* de S tout élément Y de $\mathcal{M}_{n,1}(\mathbb{R})$ tel que $\|AY B\|^2 = K$. Montrer que si (S) admet une solution, les pseudo-solutions de (S) sont les solutions de (S).
- **3.** On associe à (S) le système (S'): ${}^{t}AAX = {}^{t}AB$. Montrer qu'un élément X de $\mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (S) si et seulement si il est solution de (S').
- **4.** Montrer que rg ${}^{t}AA = rg A$.
- **5.** Montrer que si rg A = n, (S) admet une unique pseudo-solution.

Exercice 16.

Soient E un espace euclidien et x_1,\ldots,x_p des vecteurs de E. Pour $x\in E$, on pose $f(x)=\sum_{i=1}^p\|x-x_i\|^2$. Montrer que f atteint son minimum en $m=\frac{1}{p}\sum_{i=1}^pm_i$.

Exercice 17.★

Soient E un plan vectoriel euclidien orienté, r une rotation de E et s une réflexion. Calculer $s \circ r \circ s$ et $r \circ s \circ r$.

EXERCICE 18.

Soient E un espace euclidien orienté de dimension trois muni d'une base orthonormée directe

$$\mathcal{B} = (\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}).$$

On note f la rotation d'axe $\vec{u} + \vec{v} + \vec{w}$ et d'angle $\frac{2\pi}{3}$. Calculer la matrice de f relativement à la base \mathcal{B} .

Exercice 19.

Déterminer la nature et les caractéristiques de l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique vaut

$$\operatorname{mat}_{\mathfrak{B}}(\mathsf{f}) = \frac{1}{4} \left(\begin{array}{ccc} 3 & 1 & \sqrt{6} \\ 1 & 3 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & 2 \end{array} \right).$$

EXERCICE 20.

Soient E un espace euclidien et $\mathfrak{u}\in\mathcal{L}(E)$. Prouver l'équivalence des trois propriétés suivantes :

- 1. $\langle x|y\rangle = 0 \Rightarrow \langle u(x)|u(y)\rangle = 0$;
- **2.** $\exists k \ge 0, \ \forall x \in E, \ \|u(x)\| = k\|x\|;$
- 3. u est la composée d'une homothétie et d'une isométrie.

Exercice 21.

Soient H et K deux hyperplans d'un espace euclidien E. On note s_H et s_K les symétries orthogonales par rapport à H et K. Montrer que s_H et s_K commutent si et seulement si H = K ou $H^{\perp} \subset K$.

Exercice 22.

Soit E un espace euclidien orienté de dimension 3.

1. Trouver les $f \in \mathcal{L}(E)$ tels que

$$\forall u, v \in E, f(u \wedge v) = f(u) \wedge f(v)$$

2. Trouver les $f \in \mathcal{L}(E)$ tels que

$$\forall u, v \in E, f(u \wedge v) = -f(u) \wedge f(v)$$

EXERCICE 23.

Déterminer la matrice de la symétrie orthogonale par rapport au plan d'équation x + 2y - 3z = 0 dans la base canonique de \mathbb{R}^3 .

Exercice 24.

Soit E un espace euclidien de dimension 2.

- 1. On sait que la matrice d'une réflexion de E dans une base orthonormée est de la forme $\begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$. Quelle est l'interprétation géométrique de θ ?
- **2.** Déterminer une condition portant sur l'angle entre leurs axes pour que la *somme* de deux réflexions soit encore une réflexion.

Exercice 25.

Soit $\mathfrak u$ un automorphisme orthogonal d'un espace euclidien E. On pose $\nu = Id_E - \mathfrak u$.

- 1. Montrer que $\operatorname{Im} \nu$ et $\operatorname{Ker} \nu$ sont orthogonaux et supplémentaires.
- 2. Montrer que pour tout $k \in \mathbb{N}$, u^k est un automorphisme orthogonal.

EXERCICE 26.

Soit E un espace euclidien et f une application de E dans E (non supposée linéaire) telle que

$$\forall (x, y) \in E^2, \|f(x) - f(y)\| = \|x - y\|$$

Montrer que f est la composée d'une translation et d'un automorphisme orthogonal.

Exercice 27.

Soient E un espace euclidien et $f \in \mathcal{L}(E)$. On note A la matrice de f dans une base orthonormale \mathcal{B} de E. Montrer que f est une symétrie orthogonale si et seulement si A est une matrice orthogonale symétrique.

EXERCICE 28.

Soit $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathcal{O}_n(\mathbb{R})$. Montrer que

$$\sum_{1\leqslant i,j\leqslant n} |\alpha_{i,j}| \leqslant n\sqrt{n}.$$

EXERCICE 29.

Soit $O = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix}$ une matrice orthogonale réelle de taille n où A et D sont deux

blocs carrés de tailles respectives p et q. Montrer que $(\det A)^2 = (\det D)^2$.

EXERCICE 30.

Soient A et B les matrices, dans deux bases orthonormales, d'un endomorphisme d'un espace euclidien. Montrer que $tr({}^{t}AA) = tr({}^{t}BB)$.

EXERCICE 31.

- 1. Soit X une matrice colonne réelle de taille n. Montrer que ${}^tXX \in \mathbb{R}_+$ et que ${}^tXX = 0$ implique X = 0.
- 2. Soit M une matrice antisymétrique réelle de taille n. Montrer que $I_n + M$ est inversible.
- 3. On pose $A = (I_n M)(I_n + M)^{-1}$. Montrer que A est orthogonale.

Exercice 32.

Soient $n \in \mathbb{N} \setminus \{0, 1, 2\}$ et $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que A = com(A) si et seulement si A = 0 ou $A \in SO(n)$.

EXERCICE 33.

Soit $n \in \mathbb{N}^*$. On travaille dans l'espace des matrices $\mathcal{M}_n(\mathbb{R})$.

- **1.** Montrer que l'application $(A, B) \mapsto tr({}^tAB)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. Que peut-on dire de la base canonique de $\mathcal{M}_n(\mathbb{R})$.
- **2.** Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, on a $|\operatorname{tr}(A)| \leq \sqrt{n} ||A||$.
- **a.** Quel est l'orthogonal de l'espace $S_n(\mathbb{R})$ des matrices symétriques ?
 - **b.** Soit $A\in\mathcal{M}_n(\mathbb{R})$. Exprimer la distance de A à $S_n(\mathbb{R})$ en fonction des coefficients de A ?
- **4.** Soit $U \in \mathcal{O}_n(\mathbb{R})$. Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, $\|UA\| = \|AU\| = \|A\|$.
- **5.** Montrer que pour $A, B \in \mathcal{M}_n(\mathbb{R}), ||AB|| \leq ||A|| ||B||$.

Exercice 34.

Soit E un espace euclidien de dimension n et u_1,\ldots,u_{n+1} n + 1 vecteurs non nuls de E faisant un angle constant α_n deux à deux. Que vaut α_n ?

EXERCICE 35.

Soit E un espace euclidien. A une famille (x_1, \ldots, x_p) de p vecteurs de E, on associe la matrice $G_p(x_1, \ldots, x_p) = ((x_i|x_j))_{1 \leqslant i,j \leqslant p}$.

- **1.** Montrer que la famille (x_1, \ldots, x_p) est liée si et seulement si det $G_p(x_1, \ldots, x_p) = 0$.
- **2.** On suppose maintenant que la famille (x_1, \ldots, x_p) est libre et on note $F = \text{vect}(x_1, \ldots, x_p)$.
 - **a.** Soit $\mathcal{B}=(e_1,\ldots,e_p)$ une base orthonormée de F et $A=\max_{\mathcal{B}}(x_1,\ldots,x_p)$. Montrer que $G_p(x_1,\ldots,x_p)={}^tAA$.
 - **b.** En déduire que det $G_p(x_1, \ldots, x_p) > 0$.
- **3.** Soit $x \in E$. On note π la projection orthogonale sur F.
 - **a.** Montrer que det $G_{p+1}(x, x_1, ..., x_p) = \det G_{p+1}(x \pi(x), x_1, ..., x_p)$.
 - **b.** Montrer que

$$d(x,F)^2 = \frac{\det G_{p+1}(x,x_1,\ldots,x_p)}{\det G_p(x_1,\ldots,x_p)}$$

EXERCICE 36.

Soient E un espace euclidien, p un entier naturel supérieur ou égal à 2 et x_1,\ldots,x_p des vecteurs de E tels que

$$\forall i, j \in [1, p], i \neq j \implies \langle x_i, x_j \rangle < 0$$

- 1. Soient $\alpha_1,\ldots,\alpha_{p-1}$ des réels tels que $\sum_{i=1}^{p-1}\alpha_ix_i=0$. On pose $I=\{i\in [\![1,p-1]\!]\mid \alpha_i>0\}$ et $J=\{j\in [\![1,p-1]\!]\mid \alpha_j<0\}$. En considérant $u=\sum_{i\in I}\alpha_ix_i$ et $v=\sum_{j\in J}\alpha_jx_j$, montrer que l'un des ensembles I ou J est vide (on convient qu'une somme indexée sur l'ensemble vide est nulle).
- 2. Montrer que I et J sont vides.
- 3. En déduire que la famille (x_1, \ldots, x_{p-1}) est libre.

EXERCICE 37.

Soit E un espace euclidien. A toute famille (x_1, \ldots, x_p) de p vecteurs de E, on associe la matrice $G(x_1, \ldots, x_p) = (\langle x_i, x_j \rangle)_{1 \le i, j \le p}$.

- **1.** Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormée de $F = \text{vect}(x_1, \dots, x_p)$. On note $A = \text{mat}_{\mathcal{B}}(x_1, \dots, x_p)$. Montrer que $G(x_1, \dots, x_p) = {}^t AA$.
- **2.** En déduire que $(x_1, ..., x_p)$ est liée *si et seulement si* det $G(x_1, ..., x_p) = 0$ et que det $G(x_1, ..., x_p) \ge 0$.
- **3.** On se donne $x \in E$. Montrer que

$$\det G(x_1,...,x_p,x) = d(x,F)^2 \det G(x_1,...,x_p)$$

EXERCICE 38.

Soit E un espace euclidien de dimension $n\geqslant 2$. Une application $u:E\to E$ est dite antisymétrique si

$$\forall (x,y) \in E^2, \langle x, u(y) \rangle + \langle y, u(x) \rangle = 0$$

On note A(E) l'ensemble des applications antisymétriques de E.

Remarque. Rien à voir avec les applications *multilinéaires* antisymétriques! ■

- **1.** Soit $u \in A(E)$. Montrer que u est linéaire.
- **2.** Soit $u: E \to E$. Démontrer l'équivalence entre les propositions suivantes :
 - (i) u est linéaire et $\forall x \in E$, $\langle u(x), x \rangle = 0$;
 - (ii) u est antisymétrique ;
 - (iii) u est linéaire et sa matrice dans une base orthonormée est antisymétrique.
- 3. Montrer que A(E) est un \mathbb{R} -espace vectoriel et déterminer sa dimension.
- **4.** Soit $u \in A(E)$. Montrer que Im u est l'orthogonal de Ker u.
- **5.** Montrer que si F est un sous-espace vectoriel de E stable par u alors F^{\perp} est également stable par u.

EXERCICE 39.

Soient E un espace euclidien, p une projection orthogonale et $\mathcal B$ une base orthonormale de E. Montrer que la matrice A de p dans la base $\mathcal B$ est symétrique.

EXERCICE 40.

Montrer que le rang d'une matrice antisymétrique réelle est pair.

Exercice 41.

Soient E un espace euclidien et $\mathfrak{u}\in\mathcal{L}(E)$ tel que

$$\forall x \in E, \langle u(x)|x \rangle = 0.$$

Montrer que

$$(\operatorname{Ker}(\mathfrak{u}))^{\perp} = \operatorname{Im}(\mathfrak{u}).$$

Exercice 42.

Soit E un espace vectoriel euclidien de dimension n, n étant un entier naturel supérieur ou égal à 2. Soit (a,b) une famille libre de E. Soit f l'application

$$x \longmapsto \langle a|x\rangle b + \langle b|x\rangle a$$
.

1. Montrer que $f \in \mathcal{L}(E)$ et que

$$\forall (x,y) \in E^2, \langle f(x)|y \rangle = \langle x|f(y) \rangle.$$

- 2. Déterminer le noyau et le rang de f.
- **3.** On pose F = Im(f).
 - **a.** Montrer que F est un sous-espace vectoriel de E stable par f et en donner une base.
 - **b.** Déterminer la matrice de l'endomorphisme g induit par f sur F dans cette base.

Exercice 43.

Soient E un espace euclidien et $u \in \mathcal{L}(E)$ tel que

$$\forall x \in E, \|u(x)\| \leqslant \|x\|.$$

Etablir que

$$E = Ker(u - id_E) \oplus Im(u - id_E)$$
.

Exercice 44.

On pose $Q_n = (1 - X^2)^n = (1 + X)^n (1 - X)^n$ pour $n \in \mathbb{N}$.

- **1.** Montrer que $\varphi: (P,Q) \mapsto \int_{-1}^{1} P(t)Q(t) \, dt$ est un produit scalaire sur $\mathbb{R}_n[X]$. On notera $\varphi(P,Q) = \langle P,Q \rangle$ par la suite.
- 2. Soit n et k deux entiers tels que $0 \le k < n$. Montrer que $Q_n^{(k)}(-1) = Q_n^{(k)}(1) = 0$.
- **3.** On pose $P_n = Q_n^{(n)}$ pour $n \in \mathbb{N}$. Montrer que $(P_k)_{0 \le k \le n}$ est une base orthogonale de $\mathbb{R}_n[X]$.

Exercice 45.

Soit E un espace euclidien de dimension $n \in \mathbb{N}^*$ et de base orthonormée \mathcal{B} . Soient (x_1, \ldots, x_n) une famille de n vecteurs de E. Montrer que

$$|\det_{\mathcal{B}}(x_1,\ldots,x_n)| \leqslant \prod_{i=1}^n ||x_i||$$

Exercice 46.

Soit $n \ge 1$. Prouver que

$$\left[1+\frac{1}{2}+\cdots+\frac{1}{n}\right]^2 \le n\left[1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right].$$

Exercice 47.★

Soient $n \ge 1$ et $x_1, \dots, x_n > 0$. Prouver que

$$\left[\sum_{k=1}^{n} x_k\right] \left[\sum_{k=1}^{n} \frac{1}{x_k}\right] \geqslant n^2.$$

Exercice 48.★★

Soit $n \ge 2$. Prouver que

$$\frac{2}{n(n-1)} \left(\sum_{k=1}^{n-1} \frac{k}{n-k} \right)^2 \leqslant \sum_{k=1}^{n-1} \frac{k}{(n-k)^2}.$$

Exercice 49.

On considère l'ensemble E des fonctions continues et strictement positives sur $[\mathfrak{a},\mathfrak{b}].$ Montrer que :

$$\inf_{f \in E} \left(\int_{a}^{b} f(x) dx \int_{a}^{b} \frac{dx}{f(x)} \right)$$

existe et est atteint.

Exercice 50.

Soit f une fonction \mathfrak{C}^1 sur $[\mathfrak{a},\mathfrak{b}]$ à valeurs dans \mathbb{R} . On suppose $f(\mathfrak{a})=0$. Montrer que

$$\int_a^b f^2(u)du \leqslant \frac{(b-a)^2}{2} \int_a^b f^{'2}(u)du.$$