Mecânica e Campo Eletromagnético

TRABALHO 1.1: MOVIMENTO DE PROJÉTEIS

Universidade de Aveiro

João Machado, Miguel Marques, Rafael Pinto

TRABALHO 1.1: MOVIMENTO DE PROJÉTEIS

Departamento de Eletrónica, Telecomunicações e Informática Universidade de Aveiro

João Machado, Miguel Marques, Rafael Pinto

(89119) jtomaspm@ua.pt, (103162) miguelgoncalvesmarques@ua.pt, (103379) rafaelpbpinto@ua.pt 11 de novembro de 2021

Índice

Resumo	4
Introdução	5
Detalhes experimentais	6
Parte A - Determinação da velocidade inicial	6
Parte B - Dependência do alcance com o ângulo de disparo	7
Parte C - Pêndulo Balístico	8
Análise e discussão	9
Cálculos da parte A	9
Análise dos resultados obtidos da parte A	10
Cálculos da parte B	10
Análise dos resultados obtidos da parte B	11
Cálculos da parte C	12
Análise dos resultados obtidos da parte C	14
Conclusões	15
Contribuição individual	16
Anexos	16

Resumo

Este trabalho prático tem como objetivos determinar a velocidade inicial do projétil através das equações do movimento, verificar a dependência do alcance com o ângulo de lançamento e determinar a velocidade inicial do projétil utilizando um pêndulo balístico.

Neste trabalho constam três partes, determinação da velocidade inicial (Parte A), dependência do ângulo com o alcance (Parte B) e pêndulo balístico (Parte C).

Para a realização deste trabalho prático recorreu-se ao *Excel* para criar tabelas onde se registaram os dados recolhidos das diferentes experiências. No final de cada experiência, efetuaram-se cálculos para chegar aos objetivos pretendidos.

No decorrer da experiência foram obtidos resultados algo diferentes dos esperados. Isto deve-se principalmente à má precisão das medições. Nas partes A e B este efeito é denotado com maior acentuação. E na parte C obtivemos um resultado preciso, ou seja com erro relativo menor que 10%.

Introdução

Este trabalho prático foi realizado para compreender melhor os conceitos da cinemática de uma partícula, abordados nas aulas teóricas. Com estas experiências pretendemos, através das equações do movimento, determinar a

velocidade inicial da esfera plástica lançada através do lançador de projéteis e compreender a relação entre o ângulo de lançamento e o alcance.

Para calcularmos a velocidade inicial do projétil (Parte A) necessitamos das equações do movimento:

1.
$$x = x_0 + v_0 t \cos \theta_0$$

2.
$$y = y_0 + v_0 t \sin \theta_0 - \frac{1}{2} g t^2$$

onde v_0 é a velocidade inicial, g é a aceleração da gravidade, t é o tempo, x_0 e y_0 são as coordenadas da posição do projétil e θ_0 é a inclinação do vetor velocidade em relação aos eixos dos x.

Partindo das equações de movimento e eliminando a variável t, obtém-se uma equação do alcance x em função do ângulo necessária para o cálculo do ângulo correspondente ao alcance máximo (Parte B):

3.
$$\theta_{\text{amax}} = \arctan \frac{1}{\sqrt{1 + \frac{2g(yf - yi)}{v0^2}}}$$

Uma vez que a altura inicial é diferente da altura final, o ângulo máximo será menor que 45°. Com este ângulo é possível calcular o alcance máximo.

Para a realização da parte C, foi utilizado, além do lançador de projéteis, um pêndulo balístico. Assumiu-se que existe conservação do momento linear após a colisão do projétil e do pêndulo, por isso, conseguimos obter a expressão da velocidade inicial em função da altura máxima atingida pelo pêndulo e das massas do pêndulo e do projétil.

Detalhes experimentais

Parte A - Determinação da velocidade inicial

Figura 1. Esquema da montagem experimental (experiência A).

Legenda:

- 1. Lançador de projéteis
- 2. Base de fixação para o Lançador de projéteis
- 3. Sensor de passagem (inicia a contagem do tempo)
- 4. Sensor de passagem (termina a contagem do tempo)
- 5. Sistema de controlo dos sensores

De forma a realizar a experiência da melhor maneira, garantiu-se que a base do lançador de projéteis estava bem fixo à mesa, bem como se o sistema de controlo estava ligado à fonte de alimentação e verificou-se que o sensor estava colocado imediatamente à saída do lançador de projéteis e que estava ligado ao sistema de controlo.

De seguida, efetuou-se a medição da distância entre os sensores. Após a medição, colocou-se a esfera no lançador de projéteis, selecionou-se o modo "short range", empurrou-se a esfera, com a ajuda de um tubo de plástico, até que o indicador amarelo se encontrasse na posição pretendida e, no sistema de controlo, selecionou-se a opção "two gates".

Após verificar que o material estava todo corretamente colocado, iniciou-se a experiência, disparando a esfera três vezes e registrando, em cada tentativa, os resultados obtidos. Após cada lançamento, verificou-se se o material estava corretamente posicionado.

Parte B - Dependência do alcance com o ângulo de disparo

Figura 2. Esquema da montagem experimental (experiência B).

Legenda:

- 1. Lançador de projéteis
- 2. Base de fixação para o lançador de projéteis
- 3. Alvo

Para garantir que a experiência se realizasse de forma ideal, garantiu-se que a base estava bem fixa à mesa e que o lançador de projéteis estava a fazer um ângulo de 30° com a horizontal.

Colocou-se um alvo a uma distância tal que a esfera caísse sobre a área do alvo. Carregou-se o lançador de projéteis, com a esfera, na posição de "short range" e efetuou-se o disparo.

Registou-se o alcance e o ângulo de lançamento e repetiu-se este processo três vezes para cada ângulo (30°, 34°, 38°, 40° e 43°).

Parte C - Pêndulo Balístico

Figura 3. Esquema da montagem experimental (experiência C).

Primeiramente, medimos as massas do projétil e do pêndulo e em seguida medimos o comprimento do pêndulo.

Carregou-se o lançador de projéteis na posição de *"short range"*, efetuou-se um disparo e mediu-se o ângulo máximo descrito pelo pêndulo.

Repetiu-se este processo cinco vezes e após cada tentativa houve o cuidado de garantir se o material estava corretamente posicionado.

Análise e discussão

Cálculos da parte A

• Média dos 3 tempos medidos e respetivo erro, Δt .

$$t_1 = 0.0619 \text{ s}$$

$$t_2 = 0.0709 \text{ s}$$

$$t_3 = 0.0770 \text{ s}$$

$$\bar{t} = (t_1 + t_2 + t_3)/3 = (0.070 \pm 0.008) \text{ s}$$

Cálculo dos desvios:

$$D_1 = |\bar{t} - t_1| = 0,0080 \text{ s}$$

$$D_2 = |\bar{t} - t_2| = 0,0010 \text{ s}$$

$$D_3 = |\bar{t} - t_3| = 0.0071 \text{ s}$$

Erro associado:

$$\Delta t = 0.008 \text{ s}$$

Cálculo da velocidade inicial, v₀, e o erro respetivo, Δv0.

Erro da velocidade inicial v₀:

$$\Delta v_0 = \Delta v_0(s, \overline{t}) = \left| \frac{\partial \Delta v_0(s, \overline{t})}{\partial s} \right| \Delta s + \left| \frac{\partial \Delta v_0(s, \overline{t})}{\partial t} \right| \Delta t = \left| \frac{1}{\overline{t}} \right| \Delta s + \left| -\frac{s}{\overline{t^2}} \right| = 0,19 \text{ m/s}$$

Cálculo da velocidade inicial v_0 :

$$v_0 = \frac{s}{\bar{t}} = \frac{0,100}{0,070} = (1,43\pm0,19) \text{ m/s}$$

Erro relativo:

$$E = \left| \frac{\Delta v_0}{v_0} \right| *100 = 13\%$$

Análise dos resultados obtidos da parte A

No final da experiência chegámos a um erro relativo de 13% em relação aos valores medidos. Este valor elevado deve-se a erros experimentais.

Como é possível observar, a diferença entre a menor(t_1 = 0,0619) e a maior (t_3 = 0,0770) medição de tempo é de 0,0151 segundos, ou seja, houve um aumento de cerca de 24%.

Isto é algo inesperado uma vez que a força de lançamento da bola foi teoricamente constante em todos os lançamentos.

Este erro experimental pode ter ocorrido devido à bola não estar totalmente encostada à boca do canhão de lançamento no instante inicial. Ao repor a bola podemos ter sido pouco cuidadosos a mexer no canhão e alteramos ligeiramente o ângulo de lançamento da bola.

Cálculos da parte B

• Média dos alcances obtidos, x_{ob} , para cada ângulo θ_0 .

Para $\theta_0 = 30^\circ$:

$$\overline{x_{ob}}$$
 = (0,740+0,728+0,742)/3 = (0,737±0,05) m

Para $\theta_0 = 34^\circ$:

$$\overline{x_{ob}}$$
 = (0,757+0,757+0,756)/3 = (0,757±0,05) m

Para θ_0 = 38°:

$$\overline{x_{ob}}$$
 = (0,765+0,765+0,749)/3 = (0,760±0,05) m

Para θ_0 = 40°:

$$\overline{x_{ob}}$$
 = (0,753+0,743+0,752)/3 = (0,749±0,05) m

Para θ_0 = 43°:

$$\overline{x_{ob}}$$
 = (0,739+0,743+0,734)/3 = (0,739±0,05) m

• Cálculo do ângulo θ_{max-ob} , correspondente ao alcance máximo observado

altura inicial = y_i - y_f = 0,26 m

$$\theta_{\text{amax}} = \text{arctg} \frac{1}{\sqrt{1 + \frac{2g(yi - yf)}{v0^2}}} = \text{arctg} \frac{1}{\sqrt{1 + \frac{2g^*0,26}{1,43^2}}} = 28,15^{\circ}(0,49 \text{ rad})$$

Erro relativo:

$$\mathsf{E} = \frac{|\mathit{valor\ obtido} - \mathit{valor\ te\'orico}|}{\mathit{valor\ te\'orico}} * 100 = \frac{|37,60-28,15|}{28,15} * 100 = 33,5\%$$

Análise dos resultados obtidos da parte B

Com o desenrolar da experiência fomos observando o alcance do projétil a aumentar, até chegarmos ao lançamento com ângulo de 40° em que o alcance volta novamente a diminuir.

Como é possível observar no gráfico acima obtivemos um ângulo para o alcance máximo experimental de 37.60°, que comparativamente ao alcance ao ângulo calculado que obteria o alcance máximo teórico, é um valor elevado.

Esta discrepância, leva-nos a acreditar que houveram problemas na recolha de dados. Este pensamento é acentuado com o cálculo do erro relativo. O resultado obtido de 33,5%, confirma as afirmações anteriores.

Para o cálculo do ângulo teórico, foi utilizado o valor da velocidade inicial obtido na experiência A. Uma vez que este já estava algo inflacionado devido a erros experimentais, influenciou bastante também o resultado obtido no cálculo teórico, o que também explica a diferença entre este e o resultado prático obtido.

Este erro experimental deve-se a fatores como o uso de fita métrica para medições precisas e a observação a olho nu do ponto de queda do projétil no ponto altura = 0m.

Cálculos da parte C

• Média dos ângulos, α , e o erro respetivo, $\Delta\alpha$.

Média:

$$\alpha = (16,00+15,50+16,00+16,50+15,50)/5 = (15,90\pm0,60)^{\circ}$$

Cálculo dos desvios:

$$D_1 = |\alpha - \alpha_1| = 0.10^{\circ}$$

$$D_2 = \left| \overline{\alpha} - \alpha_2 \right| = 0.40^{\circ}$$

$$D_3 = \left| \overline{\alpha} - \alpha_3 \right| = 0.10^{\circ}$$

$$D_4 = \left| \overline{\alpha} - \alpha_4 \right| = 0.60^{\circ}$$

$$D_5 = \left| \overline{\alpha} - \alpha_5 \right| = 0.40^{\circ}$$

Erro associado:

 $\Delta \alpha = 0.60^{\circ}$

• Determinação da altura h em função do ângulo α e do comprimento do pêndulo I.

$$\cos \alpha = \frac{I - h}{I}$$
, logo, h = $I(1 - \cos \alpha)$

Cálculo do erro associado à altura:

$$\Delta h = \Delta h(\alpha, I) = \left| \frac{\partial h}{\partial \alpha} \right| \Delta \alpha + \left| \frac{\partial h}{\partial I} \right| \Delta I = \left| I \right|^* sen \alpha |\Delta \alpha + |1 - cos \alpha| \Delta I$$

Como,

$$I = (0.3460 \pm 0.0005) \text{ m}$$

$$\alpha = (15,90\pm0,60)^{\circ} = (0,28\pm0,01)$$
rad

temos que,

$$\Delta h = 0.01 m$$

Cálculo da altura:

$$h = I(1 - \cos\alpha) = 0.3460 * (1 - \cos(15.90)) = (0.013 \pm 0.01)m$$

• Cálculo da velocidade inicial, v_0 , e o erro respetivo, $\Delta v 0$.

Cálculo do erro associado à velocidade inicial v₀:

Expressão para calcular a velocidade inicial:

$$v_0 = \frac{m+M}{m} \sqrt{2gh}$$

Onde m

Expressão para calcular o erro $\Delta v0$:

$$\Delta v_0 = \Delta v_0(m,M,h) = \left| \frac{\partial v_0}{\partial m} \right| \Delta m + \left| \frac{\partial v_0}{\partial M} \right| \Delta M + \left| \frac{\partial v_0}{\partial h} \right| \Delta h =$$

$$= \left| -\frac{\frac{M}{m^2} \sqrt{2gh}}{M} \right| \Delta m + \left| \frac{1}{m} \sqrt{2gh} \right| \Delta M + \left| \frac{m+M}{m} * \frac{g}{\sqrt{2gh}} \right| \Delta h$$

Como,

$$m = (0.06338 \pm 0.00001) \text{ kg}$$

$$M = (0.26438 \pm 0.00001) \text{ kg}$$

temos que,

$$\Delta v_0 = 0.2 \text{ m/s}$$

Cálculo da velocidade inicial v₀:

$$v_0 = \frac{0.06338 + 0.26438}{0.06338} * \sqrt{2g * 0.013} = (2.6 \pm 0.2) \text{ m/s}$$

Erro relativo:

$$E = \left| \frac{\Delta v_0}{v_0} \right| *100 = 7,7\%$$

Análise dos resultados obtidos da parte C

Comparando os valores da velocidade obtidos da parte A com os da parte C, verifica-se que a velocidade na parte C foi superior à obtida na parte A. Uma possível causa para esta discrepância é o erro humano na realização das experiências.

Como é possível observar, em relação à parte A(13%), o erro relativo calculado é bastante menor (7,7%), isto deve-se a uma melhor consistência na recolha de medições.

Podemos então considerar esta experiência um sucesso, uma vez que obtivemos um erro relativo menor que 10%, ou seja, segundo as guias de trabalho é um resultado preciso.

A diferença entre a maior(16,50°) e a menor(15,50°) medição é de 1°, ou seja houve um redução de 6% que comparativamente aos 24% obtidos na parte A, nos leva obter resultados mais coesos, e com maior certidão.

Conclusões

Nesta experiência, aplicámos os conceitos estudados em aula acerca de mecânica de partículas.

Foram realizadas 3 experiências:

Na parte A foi realizado o lançamento do projétil com o objetivo de calcular a velocidade inicial do projétil.

Na parte B, foi feita a mesma experiência, mas com ângulos de lançamento diferentes. O objetivo desta foi calcular os vários alcances produzidos pelo lançamento e chegar ao ângulo que produz o maior alcance.

Na parte C, foi realizado o lançamento do pêndulo. O objetivo desta foi calcular o ângulo produzido pelo projétil, utilizando a mesma força de lançamento que nas experiências anteriores.

Analisando os resultados obtidos, podemos concluir que devido a erros experimentais principalmente, a maioria dos resultados obtidos não foram precisos(partes A e B), à excepção dos resultados obtidos na parte C, que teve um erro relativo de 7%, cumprindo os objetivos propostos de ficar abaixo de 10%.

Contribuição individual

Todos os elementos do grupo contribuíram de forma igual para a realização do trabalho prático. Para tal, em cada aula, um dos alunos ficava encarregue pela recolha dos dados e escrita de um relatório que foi entregue no final de cada aula, e os restantes pela experiência.

Na primeira aula, o Rafael Pinto ficou encarregue de apontar os resultados obtidos num documento *Excel*, enquanto o João Machado e o Miguel Marques realizavam as tarefas propostas na parte A.

Na segunda aula, o Miguel Marques ficou encarregue de apontar os resultados obtidos num documento *Excel*, enquanto o João Machado e o Rafael Pinto realizavam as tarefas propostas na parte B e na parte C.

Na terceira aula, foi realizado o relatório sumário. O Rafael Pinto escreveu as partes de Introdução, Detalhes experimentais e Cálculos. O João Machado escreveu as partes de Resumo, Análise de dados e Conclusões. O Miguel Marques ficou encarregue pela anexação e apresentação dos ficheiros e pelo tratamento dos dados. No final, o relatório foi entregue pelo João Machado.

Anexos

Determinação da velocidade Inicial:

Distância						
Medição	L	ΔL	Média L	Área das células	Incerteza	
	mm	mm	mm	mm	mm	mm
1	100	1		100		
2	101	1	100	101	2	2
3	99	1		99		

Tempo						
Medição	t	Δt	Média	Desvio	Incerteza	
	S	S	S	S	S	
1	0.0619	0.0001		0.0619		
2	0.0709	0.0001	0.0699	0.0709	0.0001	
3	0.077	0.0001		0.0770		

Velocidade				
V	Δv Dispersão			
m/s	m/s			
1.43	0.03	2%		

Dependência do alcance com o ângulo de disparo

	Incerteza	Altura		Alcance	Alcance	Alcance	Δ			
Ângulo	do Ângulo	Inicial	Incerteza	1	2	3	Alcance	Incerteza	Desvio 1	Desvio 2
ō	<u>o</u>	m	m	m	m	m	m	m	m	m
30				0.740	0.728	0.742	0.737		0.003	0.009
34				0.757	0.757	0.756	0.757		0.000	0.000
38	0.5	0.26	0.005	0.765	0.765	0.749	0.760	0.005	0.005	0.005
40				0.753	0.743	0.752	0.749		0.004	0.006
43				0.739	0.743	0.734	0.739		0.000	0.004

Ângulo	Velocidade Inicial	Vx	Vy
<u>o</u>	m/s	m/s	m/s
30		1.24	0.72
34		1.19	0.80
38	1.43	1.13	0.88
40		1.10	0.92
42		1.06	0.96

Peso da Bola				
Incerteza				
Kg	Kg			
0.06338 0.00001				

Pêndulo Balístico: Método alternativo para determinação da velocidade inicial de um projétil

Lançamento	Ângulo	Incerteza	Δ Ângulo	Desvio	Incerteza
	ō	ō	9	9	
1	16			14.90455645	
2	15.5			14.40455645	
3	16	0.25	15.9	14.90455645	0.6
4	16.5			15.40455645	
5	15.5			14.40455645	

Pêndulo					
Comprimento Peso					
Incerteza			Incerteza		
m	m	Kg	Kg		
0.346	0.0005	0.26438	0.00001		