SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

School of Physics

B. Tech. 1st Semester, Major Exam

Course Title: Engineering Physics

Course Code: PHL 1012	2			Time: 3hr		
Total Marks: 50				Date: 27-1	2-2023	
Note: Attempt any 04 q	uestions from s	section B. Ed	ach question o	carries 10 n	narks	
Section A:						
Q. No.1: Choose the co	errect option of	the followin	g:			
i) The idea of dual natu	re of light for a	ıll microscop	oic particles v	vas given b	y: [10 Mark	s]
a) Planck b)	Einstein	A)	de-Broglie		d) none of these	
ii) For relativistic motio	on of a particle	e, the phase	velocity will b	e equal to		
€ 20 × 20 ×	1/2	c) 2c/v		d) 2v/c		
iii) Schrodinger wave	equation is app	olicable to				
a) non-relativistic mo	otion 🕪) relat	tivistic motio	n c) neithe	r for a nor b	b d) both a and	b
iv) Who observed that	a time varying	magnetic fi	eld gives rise	to an electr	ric field?	
a Maxwell	b) Ampere		c) Oersted		d) Faraday	
v) Maxwell corrected	which one of th	he following	laws?			
Ampere's	b) Faraday's		c) Gauss'		d) None of these	
vi) Conductivity of ins	ulator is					
a) high	low		c) variable		d) None of these	
vii) Position of Fermi	level in intrinsi	ic semicondu	ictor is			
a) Below the conduction band			Above valance band			
c) Midway of the cond	luction and val	ance bands	d)	None of th	ese	
viii) In Compton effec angle	t, the maximun	n change in v	wavelength w	ill be for ph	noto scattering at a	n
a) 0°	b)90°	c)180)0	d)45	0	
ix) In Davisson-Germ	er experiment,	intensity wa	s maximum fo	or accelerat	ting voltage equal t	0
عل a)50	p) 54	c)30	0	d)70		
x) Lorentz force is ba	sed on					
a) Dot product		b	b) Cross product			
Both dot and cross products		C	d) Independent of both dot and cross products			

Section B:

Q. No.2: (a) Solve time independent Schrodinger's equation for a particle in one dimensional box. Show that its energy is given as:

$$E = \frac{n^2 \pi^2 \hbar^2}{2ml^2}$$
 [7 Marks]

(b) Prove the commutator $[x, p] = i\hbar$, where x and p, are position and momentum operators.

[3 Marks]

Q. No. 3: (a) Find the magnetic field, both inside and outside the wire, if the current is distributed in such a way that J is proportional to s, the distance from the axis.? [6 marks]

(b): Obtain the differential form of faradays law $\nabla X E = -\frac{\partial B}{\partial t}$ and write its integral form

[4 Marks]

Q. No. 4: Suppose the electric field in some region is found to be $\vec{E} = kr^3\hat{r}$, in spherical coordinates (k is some constant)

(a): Find the charge density p

[6 Marks]

Find the total charge contained in a sphere of radius R, centered at the origin. [4 Marks]

Q. No.5: (a) Obtain the time-dependent and time-dependent Schrödinger wave equation for a particle [5 Marks]

(b): Classify metals, semiconductors and insulators on the basis of energy bands in detail

[5 Marks]

Q. No.6: (a): Explain Compton effect and obtain expression for change in wave length in Compton effect.

[5 Marks]

(b): Explain Drude Lorentz free electron theory in detail?

[5 Marks]