

2021-2022

1. HAFTA

Dr. Öğr. Üyesi Ümit ŞENTÜRK

BİLGİSAYAR MİMARİSİNE GİRİŞ BUYRUK KÜMESİ MİMARİSİ İŞLEMCİ TASARIMI BORU HATTI DALLANMA TAHMINI BELLEK ÖNBELLEK, SANAL BELLEK ÇOK ÇEKİRDEKLİ İŞLEMCİLER **GİRİŞ ÇIKIŞ AYGITLARI**

Okuma Listesi

Gerekli

- Computer Organization and Design: The Hardware Software Interface [RISC-V Edition] David A. Patterson, John L. Hennessy
 - 1. Bölüm
- TOBB üniversitesi, Prof Dr. Oğuz ERGİN, Bilgisayar Mimarisi ve Organizasyonu dersi ders sunumları
- Padmanabhan Pillai and Kang G. Shin. 2001. Real-time dynamic voltage scaling for low-power embeddedoperating systems. SOSP '01. (http://www.sosp.org/2001/papers/pillai.pdf)
 3. bölüme (3. SIMULATIONS) kadar

 - Piazza "Resources" sekmesinde "Ek Kaynaklar" altında.

DERS İÇERİĞİ

BILGISAYAR MIMARISI

NEDEN BILGISAYAR MIMARISI?

ASKERİ ALAN

ENDÜSTRİYEL ALAN

TEKNOLOJİK GELİŞMELER

BİLGİSAYAR TÜRLERİ

Bilgisayar türleri nelerdir?

Feature	Personal mobile device (PMD)	Desktop	Server	Clusters/warehouse- scale computer	Embedded
Price of system	\$100-\$1000	\$300-\$2500	\$5000-\$10,000,000	\$100,000-\$200,000,000	\$10-\$100,000
Price of micro-processor	\$10–\$100	\$50–\$500	\$200-\$2000	\$50-\$250	\$0.01-\$100
Critical system design issues	Cost, energy, media performance, responsiveness	Price- performance, energy, graphics performance	Throughput, availability, scalability, energy	Price-performance, throughput, energy proportionality	Price, energy, application-specific performance

⁻ Hennessy, and David Goldberg. Computer Architecture: A Quantitative Approach. San Mateo, Calif: Morgan Kaufman Publishers, 1990. Print.

BİLGİSAYAR TÜRLERİ

Bilgisayar türleri nelerdir?

- 1. Kişisel Bilgisayarlar (PMD Personal Mobile Devices)
- 2. Masaüstü Bilgisayarlar (Desktop)
- 3. Sunucu (Server)
- 4. Büyük ölçekli depolama alanları (Warehouse-Scale Computers WSC)
- 5. Gömülü bilgisayarlar (Embedded)

Decimal term	Abbreviation	Value	Binary term	Abbreviation	Value	% Larger
kilobyte	KB	10 ³	kibibyte	KiB	210	2%
megabyte	MB	10 ⁶	mebibyte	MiB	2 ²⁰	5%
gigabyte	GB	10 ⁹	gibibyte	GiB	2 ³⁰	7%
terabyte	TB	1012	tebibyte	TiB	240	10%
petabyte	PB	1015	pebibyte	PiB	250	13%
exabyte	EB	1018	exbibyte	EiB	260	15%
zettabyte	ZB	1021	zebibyte	ZiB	270	18%
yottabyte	YB	1024	yobibyte	YiB	280	21%

POST-PC

BİLGİSAYAR MİMARİSİNDE 8 BÜYÜK FİKİR

Moore Tasarım Yasası

Soyutlama

Yaygın Olguyu Hızlandırma

Paralellik

Hiyerarşi

Güvenirlilik

BUYRUK KÜMESİ MİMARİSİ

MAKINE KATMANI

MİKROPROGRAM KATMANI

SAYISAL MANTIK KATMANI

FIZIKSEL AYGIT KATMANI

ELEKTRON

BUYRUK KÜMESİ MİMARİSİ

ISA (Instruction Set Architecture) ARM, MPIS, RISC-V, x86 KOMUT KÜMELERİ

MİKROİŞLEMCİ MİMARİSİ

BUYRUKLARIN DONANIMDA GERÇEKLEŞMESİ

MANTIKSAL DEVRE

MANTIKSAL KAPI, FLIP-FLOP, MUX DEVRELERİ

PROGRAMLARIN ÇALIŞTIRILMASI

Üst düzey yazılım dili (C)

```
swap(int v[], int k)
{int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
```

Çevirici (Assembly) program dili (RISC-V için)

```
swap:

slli x6, x11, 3

add x6, x10, x6

ld x5, 0(x6)

ld x7, 8(x6)

sd x7, 0(x6)

sd x5, 8(x6)

jalr x0, 0(x1)
```

Makine dili Binary (RISC-V için)

ÜST DÜZEY YAZILIM DİLİNİN AVANTAJLARI

- 1. Programcılara doğal dil ile düşünüp program oluşturmasına izin verir.
- 2. Zamandan ve koddan tasarruf
- 3. Geliştirildikleri bilgisayardan bağımsız olmaları

Bilgisayar donanımının basit fonksiyonları

1. Veri girişi

2. Veri çıkışı

3. Veri işleme

4. Veri saklama

Veri giriş cihazları

Kalvye, mikrofon

Veri çıkış cihazları

Hoparlör, LED ekran

Mikroişlemci

Bellek

Bilgisayarın Ana Bileşenleri

- 1. Giriş
- 2. Çıkış
- 3. Bellek
- 4. Veri Yolu
- 5. Denetim

Mikroişlemci

Apple iPad 2 Anakartı

NEREYE GIDIYOR BU TEKNOLOJI?

IC teknolojisi

- İşlemci içindeki transistör sayısı her geçen gün artmaktadır.
- Moore Yasası: 18-24 ayda işlemcideki transistör sayısı 2 katına çıkmaktadır.

Mikroişlemci İmalatı

- 8-12 inç çapında silikon
- 0,1 inç kalınlığında
- 1 katman transistör
- 2-10 katman bağlantı hattı
- Yalıtım katmanı

SILIKON MIMARI

- Silikon atomu 0,2 nm
- 300 mm levha
- intel 10 nm 10.th nesil
- Apple 5nm ARM A15Işıkla çalışan bilgisayar? Lamda/pi

BIR BILGISAYARIN NASIL OLMASINI ISTERIZ?

- ✓ Fiyat ?
- ✓ En/boy?
- ✓ Bellek veya disk alanı?
- ✓ Güç gereksinimi (= ısınma) ?
- ✓ Performans
- ✓ Kolayca sanallaştırma
- √ Giriş/çıkışları (I/O)
- ✓ Teknik özellikleri
- ✓ Komu seti (ISA)
- ✓ Güvenilirlik
- **√**

Başarım Nedir?

Başarım (*-ing.* performance) *a* 4. Herhangi bir eseri, oyunu, işi vb.ni ortaya koyarken gösterilen başarı.

"Benim bilgisayarım senin bilgisayarından daha iyi!"

(başarımı daha yüksek)

Bilgisayar başarımını bu **bileşenlerin** bir **fonksiyonu** belirler.

Başarım Nedir?

Uçak	Yolcu Kapasitesi	Uçuş Menzili (Mil)	Uçuş Hızı (Mil/Saat)	Yolcu Çıktısı (yolcu * Mil/Saat)
Boeing 777	375	4630	610	228.750
Boeing 747	(470)	4150	610	286.700
BAC/Sud Concorde	132	4000	1350	178.200
Douglas DC-8-50	146	8720	544	79.424
F-16	1	2622	(1500)	1500

Hangi uçağın başarımı en

iyi?- Yolcu Kapasitesi: Boeing 747

- Uçuş Menzili: Douglas DC-8-50

- Uçuş Hızı: F-16

Yolcu Çıktısı (birim zamanda taşınan yolcu): Boeing
 747

Yolcu: "En hızlı uçak en iyidir."

Havayolu Şirketi: "Masraf/yolcu oranı düşük olan uçak en

iyidir."

Başarımın tek bir ölçütü yoktur.

Başarım hedefleri kişiden kişiye değişir.

Başarım Nedir? Bilgisayar başarımı nasıl ölçülür?

• Duruma göre değişir.

trend

Sistem Başarımı Ölçümü

Yürütme Zamanı: (ing. execution time) bir işi başlangıcı ile bitişi arasında geçen süreye denir.

$$Başarım_A \sim \frac{1}{Y \ddot{u}r \ddot{u}tme\ Zamanı_A}$$

Başarım karşılaştırmalı ölçülür.

$$\frac{BaşarımA}{BaşarımB} = \tau$$

 $Y\ddot{u}r\ddot{u}tme\ Zaman_{I_{B}} > Y\ddot{u}r\ddot{u}tme\ Zaman_{I_{A}}$

$$\Rightarrow \frac{1}{Y \ddot{\mathbf{u}} r \ddot{\mathbf{u}} t me \ Zaman_{\mathbf{I}_{A}}} > \frac{1}{Y \ddot{\mathbf{u}} r \ddot{\mathbf{u}} t me \ Zaman_{\mathbf{I}_{B}}}$$

 $\Rightarrow Başarım_A > Başarım_B$

Saat Vuruş Sıklığı ve Çevrim Zamanı

Saat Vuruş Sıklığı: 1 saniyelik zaman aralığındaki çevrim sayısına denir.

Saat vuruş sıklığı =
$$\frac{1}{\text{Çevrim Zamanı}}$$

Programların Çalıştırılması

```
void swap(int[] array, int index)
{
  int temp = array[index];
  array[index] = array[index+1];
  array[index+1] = temp;
}
```


Üst düzey yazılım dilinde (Java) yazılmış program

Çevirici dil programı (RISC-V için) Çevirici

Makine dili program (RISC-V için)

Buyruk Başına Çevrim (BBÇ)

$$BB\zeta = \frac{\text{Çevrim Sayısı (program } i\text{çin})}{\text{Buyruk Sayısı}}$$

Her buyruk eşit sürede tamamlanmaz.

Yürütme Zamanı

Yürütme zamanı eşitliğine göre başarımı artırmak (yürütme zamanını azaltmak) için neler yapılabilir?

- Programın içerdiği buyruk sayısını azaltmak.
- Birim buyruk başına geçen çevrim sayısını **azaltmak.**
- İşlemcinin saat vuruş sıklığını artırmak (ya da çevrim zamanını azaltmak)

Örnek

Buyruk Türü	Α	В	C
BBÇ	1	2	3

Buyruk Sayısı						
Buyruk Türü A B C						
Program 1	2	1	2			
Program 2	4	1	1			

- Hangi program daha fazla buyruk yürütüyor?
- Hangisi daha hızlı çalışır?
- Programların BBÇ değerleri nedir?

Çalışma Süresi
$$1=(2x1)+(1x2)+(2x3)=10$$

Çalışma Süresi $2=(4x1)+(1x2)+(1x3)=9$

BBÇ1=
$$((2x1)+(1x2)+(2x3))/5=10/5=2$$

BBÇ2= $((4x1)+(1x2)+(1x3))/6=9/6=1.5$

Örnek

100 buyruktan oluşan bir programın kullandığı buyruk türleri ve bu buyruk türlerinin program içindeki oranları verilmiştir. Bu progra<u>m işlemcisi 500MHz</u> olan bir bilgisayarda kaç saniyede yürütülür?

Buyruk türü	Kullanım yüzdesi	Yürütülmesi için Gereken Çevrim Sayısı	
K	%40	1	
L	%15	3	1
М	%35	4	
N	%10	5	

$$BBC = \frac{\sum_{i=1}^{n} (Cevrim_i \times S_i)}{Toplam buyruk sayısı} = \frac{40 \times 1 + 15 \times 3 + 35 \times 4 + 10 \times 5}{100} = 2,75$$

$$Buyruk Sayısı \times BBC = 100 \times 2,75$$

Y ürütme Z amanı =
$$\frac{Buyruk Sayısı \times BBC}{Saat Sıklığı} = \frac{100 \times 2,75}{200 \times 10^6 sn} = 1,37 \ \mu sn$$

Örnek

Bir programı saat vuruş sıklığı <u>2 GHz</u> olan A bilgisayarı <u>10 saniyede</u> yürütüyor. Bu program A bilgisayarında <u>N sayıda çevrim</u> sürerken B bilgisayarında <u>1,2 N sayıda çevrimde</u> tamamlanıyor. B bilgisayarında bu programın <u>6 saniyede</u> tamamlanmasını istersek B bilgisayarının saat vuruş sıklığı ne olmalıdır?

Bilgisayar	Programın Yürütme Süresi	Programın Çevrim Sayısı	Saat Vuruş Sıklığı
Α	10 saniye	N	2 GHz
В	6 saniye	1,2 N	?

Saniye Başına İşlenen Milyon Buyruk (SBMB) (-ing. MIPS)

Saniye Başına İşlenen Milyon Buyruk (SBMB) (-ing. MIPS) bazı şirketler tarafından başarım ölçütü olarak kullanılmaktadır.

$$SBMB = \frac{Buyruk \, Sayısı}{Y \ddot{u}r \ddot{u}tme \, Zamanı} \times 10^{-6}$$

Saniye Başına İşlenen Milyon Buyruk (SBMB)

	/	SBMB başarımı ölçmede yanıltıcı					
Ayşegi		olabilir				lgisayarı	
Buyruk türü	Bu		Oldk	71111		ayısı (milyon)	BBÇ
K		8	2	K		10	2
L		4	3	L		8	3
M		2	8	M		2	8
N		4	4	N		4	4

Ayşegül ve Demre aynı işlemcilerde (saat vuruş sıklığı 200MHz) iki farklı program

$$Y \ddot{u}r \ddot{u}tme \ zamanı_{ayşeg\"{u}l} = \frac{60*10^6}{200\times10^6} = 0,3 \ sn \qquad \qquad Y \ddot{u}r \ddot{u}tme \ zamanı_D = \frac{76*10^6}{200\times10^6} = 0,38 \ sn$$

Yürütme zamanı_{aysegül} < Yürütme zamanı_{demre}

$$SBMB_{ayseg\"{u}l} = \frac{18 \times 10^6}{0.3} \times 10^{-6} = 60.0$$
 $SBMB_{demre} = \frac{24 \times 10^6}{0.38} \times 10^{-6} = 63.1$

 $SBMB_{ayseg\"{u}l} < SBMB_{demre}$

Saniye Başına İşlenen Kayan Virgül Buyruğu (SBKVB) (-ing. FLOPS)

$$SBKVB = \frac{Programdaki\ Kayan\ Virgül\ \dot{|} slemlerinin\ Sayısı}{Y \ddot{u}r \ddot{u}tme\ Zamanı} \times 10^{-6}$$

SBKVB de benzer bir şekilde gerçek bir başarım ölçütü değildir.

SPEC – Yapay Sınama Programı

Gerçek son kullanıcı programlarına benzer davranış sergileyen, sistemlerin başarımını ölçmek için kullanılan programlar.

SPEC → Standard Performance Evaluation Corporation www.spec.org

Program	Yazıldığı Dil	Açıklama	
perlbench	С	PERL programlama dili	
bzip2	C	Veri sıkıştırma	
gcc	С	C derleyicisi	
mcf	C	Tümleşik iyileştirme	
gobmk	С	Yapay zeka; "Go" oyunu oynar	
hmmer	С	Gen haritası çıkarma	
sjeng	C	Yapay zeka; satranç oynar	
libquantum	С	Quantum fiziği hesaplamaları	
h264ref	С	Video sıkıştırma	
omnetpp	C++	Ayrık olay benzetimi	
astar	C++	Yol bulma algoritmalarını çalıştırır	
xalancbmk	C++	XML işleme	

SpecInt2006 Sınama Programları

SPEC – Yapay Sınama Programı

Program	Yazıldığı Dil	Açıklama	
bwaves	Fortran	Akışkanlar dinamiği	
gamess	Fortran	Kuantum kimyası	
milc	C	Fizik; Kuantum parçacık dinamiği	
zeusmp	Fortran	Fizik/CFD	
gromacs	C/Fortran	Biyokimya/Moleküler dinamik	
cactusADM	C/Fortran	Fizik; Genel görelilik	
Leslie3d	Fortran	Akışkanlar dinamiği	
namd	C++	Biyoloji/Moleküler dinamik	
deallI	C++	Sonlu eleman analizi	
soplex	C++	Doğrusal programlama, iyileştirme	
povray	C++	Resim ışın tanıma	
calculix	C/Fortran	Yapısal mekanik	
GemsFDTD	Fortran	Hesaplanabilir elektromanyetik	
tonto	Fortran	Kuantum kimyası	
lbm	С	Akışkanlar dinamiği	
wrf	C/Fortran	Hava tahmini	
sphinx3	C	Konuşma tanıma	

SpecFP2006 Sınama Programları

SPEC – Yapay Sınama Programı İşlemci SPEC2006 sonuçları – 2020

SPEC2006 1T Estimated Results Geomean Score INT+FP

Amdahl Yasası

Hızlanma hesaplanabilir mi?

 $Hızlanma = \frac{Başarım (Geliştirmeden sonra)}{Başarım (Geliştirmeden önce)} = \frac{Yürütme zamanı (Geliştirmeden önce)}{Yürütme zamanı (Geliştirmeden sonra)}$

Gene Amdahl

Yeni Yürütme Zamanı = ((1-P) + P/H))x Eski Yürütme Zamanı

Örnek

Bir programın yürütme zamanının **%60**'ı ondalıklı sayılarla işlemlere harcanmaktadır. Bu programın üzerinde çalışacağı bilgisayarın ondalıklı sayılarla işlemleri **3 kat** hızlandırılırsa bu programın yürütme zamanı ne olur?

Hızlanma =
$$\frac{1}{(1-P) + P/H} = \frac{1}{(1-0.6) + 0.6/3} = \frac{1}{0.6} = 1.\overline{6}$$

Örnek

Ondalık sayıların **5 kat** hızlandırılması ile bir programın **3 kat** hızlanması için ondalık sayı işlemlerinin tüm program içerisindeki yüzdesinin ne olması gerekir?

Hızlanma =
$$\frac{1}{(1-P) + P/H} = 3$$
 $\Rightarrow 3 - 3P + \frac{3P}{5} = 1 \Rightarrow 2 = \frac{12P}{5}$ $\frac{1}{(1-P) + P/5} = 3$ $\Rightarrow P = \frac{10}{12} = 0.8\overline{3}$

Güç Tüketimi

Birim zamanda harcanan enerji

Güç tüketimini ne artırır?

- Saatin vuruş sıklığıSığa
- Sığa
- Gerilim

$$P = f x C x v^2$$

Güç Duvarı

- Birim alan sığan transistör sayısı
- Enerji tüketimi
- Soğutma ihtiyacı

Değişken Gerilim ve Saat Vuruş Sıklığı

$$P = f \times C \times v^2$$

Soru- Cevap Bölümü

Konu hakkındaki sorularınız.

100.000.000 tane A ve 200.000.000 tane B buyruğundan oluşan bir program Kardelen ve Papatya işlemcilerinde çalıştırılıyor.

Kardelen işlemcisinin saat frekansı 200 MHz, Papatya'nın ise 400 MHz'dir. Bu program Kardelen işlemcisinde 5, Papatya işlemcisinde 4 saniyede sonlandığına göre:

- A) Papatya Kardelen'den kaç kat daha hızlıdır?
- B) Kadelen'in hızı Papatya'nın hızının kaç katıdır?

100.000.000 tane A ve 200.000.000 tane B buyruğundan oluşan bir program Kardelen ve Papatya işlemcilerinde çalıştırılıyor.

Kardelen işlemcisinin saat frekansı 200 MHz, Papatya'nın ise 400 MHz'dir. Bu program Kardelen işlemcisinde 5, Papatya işlemcisinde 4 saniyede sonlandığına göre:

C) Programların iki işlemcide de ortalama BBÇ'si kaçtır?

100.000.000 tane A ve 200.000.000 tane B buyruğundan oluşan bir program Kardelen ve Papatya işlemcilerinde çalıştırılıyor.

Kardelen işlemcisinin saat frekansı 200 MHz, Papatya'nın ise 400 MHz'dir. Bu program Kardelen işlemcisinde 5, Papatya işlemcisinde 4 saniyede sonlandığına göre:

Buyruk Tipi	${ m BBC}_{{ m \scriptscriptstyle Kardelen}}$	$\mathbf{BBC}_{Papatya}$
A	X	Y
В	2X	3Y

D) Tabloya göre A tipi buyrukların iki işlemcideki BBÇlerinin oranı nedir?

100.000.000 tane A ve 200.000.000 tane B buyruğundan oluşan bir program Kardelen ve Papatya işlemcilerinde çalıştırılıyor.

Kardelen işlemcisinin saat frekansı 200 MHz, Papatya'nın ise 400 MHz'dir. Bu program Kardelen işlemcisinde 5, Papatya işlemcisinde 4 saniyede sonlandığına göre:

E) Programdan 50.000.000 tane A buyruğu ve 50.000.000 tane B buyruğu çıkarılarak yerine 50.000.000 tane C buyruğu yerleştiriliyor. C buyruğunun BBÇsi 1.5 olduğuna göre bu programın yeni hali iki işlemcide kaç saniyede sonlanır?

Sonraki Ders

Buyruk Kümesi Mimarisi