Mathe 03

Nick Daiber

November 7, 2024

 $\mathbf{2}$

a

Reflexivität

$$\begin{aligned} a &= (n,m) \\ nm &= nm \\ \Leftrightarrow (n,m) \sim (n,m) \\ \Leftrightarrow a \sim a \end{aligned}$$

Symmetrie

$$\begin{aligned} a &\sim b \\ \Leftrightarrow (n,m) &\sim (x,y) \\ \Leftrightarrow ny &= xm \\ \Leftarrow mx &= ny \\ \Leftrightarrow (x,y) &\sim (n,m) \\ \Leftrightarrow b &\sim a \end{aligned}$$

Transitivität

Sei $a \sim b$ und $b \sim c$ dann gilt

$$n_a m_b = n_b m_a \Leftrightarrow n_b = \frac{n_a m_b}{m_a} \tag{1}$$

$$n_b m_c = n_c m_b \tag{2}$$

$$n_b m_c \stackrel{(1)}{=} \frac{n_a m_b m_c}{m_a} \stackrel{(2)}{=} n_c m_b$$

$$\Leftrightarrow n_a m_c = n_c m_a$$

$$\Leftrightarrow a \sim c$$

.

b

Sei $a:=(n,m)\in\mathbb{Z}\times\mathbb{N}$ beliebig. Man nehme an, es existiert kein ungekürztes paar in K(a,R)

Wähle $(x, y) \in K(a, R)$ beliebig, es gilt also

$$(n,m) \sim (x,y)$$

 $\Leftrightarrow ny = xm \text{ da x,y nach Annahme nicht Teilerfremd}$
 $\Leftrightarrow n(ky') = (kx')m$
 $\Leftrightarrow k(ny') = k(x'm)$
 $\Leftrightarrow ny' = x'm$
 $\Leftrightarrow (n,m) \sim (x',y')$

Sind x', y' immernoch nicht Teilerfremd, so wiederhole man bis sie es sind. Da $a \sim (x', y') \in A$ ist $(x', y') \in K(a, R)$ ist ein Widerspruch zur Annahme

 \mathbf{c}

Zunächst wird gezeigt, dass es zu jedem $a \in A$ ein $b \in B$ mit $a \sim b$ gibt. Sei $a \in Abeliebig$ so ist a entweder gekürzt und $a \sim a \in B$ oder a := (kn, km), mit $k = \operatorname{ggT}(n, m)$.

dann gilt knm = nkm also $a \sim (n,m) \in B$. Als nächstes wird gezeigt, dass es genau ein $b \in B$ gibt mit $a \sim b$. Dafür wird angenommen, dass Elemente aus B mit a in relation stehen.

Wähle $a \in A$ beliebig und $b := (n, m), b' := (x, y) \in B$ mit $a \sim b$ und $a \sim b'$

$$\Rightarrow b \sim b'$$

$$\Leftrightarrow nx = my$$

$$\Leftrightarrow n, x, m, y | nx$$

Da n, m und x, y Teilerfremd sind, gilt (n, m) = (x, y). Es gibt also nur ein $b \in B$, das mit a in relation steht \blacksquare