## 國立高雄大學資訊工程學系 計算機結構考券

姓名: 學號:

- 1. (15%) Please explain the three kinds of hazards:
  - A. Structural hazards
  - B. Data hazards
  - C. Control hazards
    - Structural hazards: HW cannot support this combination of instructions (single person to fold and put clothes away)
    - <u>Data hazards</u>: Instruction depends on result of prior instruction still in the pipeline (missing sock)
    - Control hazards: Caused by delay between the fetching of instructions and decisions about changes in control flow (branches and jumps).
- 2. (15%) Please describe data hazards between which two instructions.

L.D F0, 10(R1)
ADD.D F0, F4, F6
SUB.D F10, F0, F8
MUL.D F2, F8, F10
DIV.D F8, F2, F6
S.D F2, 0(R1)

## RAW:

L.D and SUB.D

ADD.D and SUB.D

SUB.D and MUL.D

MUL.D and DIV.D

MUL.D and S.D

## WAW:

L.D and ADD.D

## WAR:

MUL.D and DIV.D

SUB.D and DIV.D

- 3. (10%) Please explain the difference between Basic Branch Prediction Buffer and Correlating Branch Predictors.
  - The previous schemes use only the recent behavior of a signal branch to predict the future behavior of the branch.
  - Correlating Branch Predicator
    - Branch predictors that use the behavior of other branches to make a predication.
- 4. (10%) Please explain Moore's Law and Amdahl's Law.

# on transistors / cost-effective integrated circuit double every N months

$$Speedup_{overall} = \frac{ExTime_{old}}{ExTime_{new}} = \frac{1}{\left(1 - Fraction_{enhanced}\right) + \frac{Fraction_{enhanced}}{Speedup_{enhanced}}}$$

5. (10%) Please explain Temporal Locality and Spatial Locality.

<u>Temporal Locality</u> (Locality in Time): If an item is referenced, it will tend to be referenced again soon (e.g., loops, reuse)

<u>Spatial Locality</u> (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon (e.g., straight-line code, array access)

- 6. (10%) Please compare the difference between dynamic scheduling and static scheduling.
  - A. With static scheduling the compiler tries to reorder these instructions during compile time to reduce pipeline stalls.
    - i. Uses less hardware
    - ii. Can use more powerful algorithms
  - B. With dynamic scheduling the hardware tries to rearrange the instructions during run-time to reduce pipeline stalls.
    - i. Simpler compiler
    - ii. Handles dependencies not known at compile time
    - iii. Allows code compiled for a different machine to run efficiently.
- 7. (12%) Assume that there are 16K bits in the Correlating Branch Prediction Buffer. Please derive the numbers of entries in (0,1), (0,2), (2,2), and (12,2) predicators.

- A. (0,1): 16K entries
- B. (0,2): 8K entries
- C. (2,2): 2K entries
- D. (12,2): 2 entry
- 8. (10%) Please describe the Drawbacks of Tomasulo.
  - (1)Many associative stores (CDB) at high speed, Performance limited by Common Data Bus
  - (2)Non-precise interrupts
- 9. (8%) In Hardware-Based Speculation design, a specific reorder buffer is needed. Please describe the purpose of the buffer as detail as possible.
  - A. In Tomasulo's algorithm, once an instruction writes its result, any subsequently issued instructions will find result in the register file
  - B. With speculation, the register file is not updated until the instruction commits
    - i. (we know definitively that the instruction should execute)
  - C. Thus, the ROB supplies operands in interval between completion of instruction execution and instruction commit
    - i. ROB is a source of operands for instructions, just as reservation stations (RS) provide operands in Tomasulo's algorithm
    - ii. ROB extends architectured registers like RS

10. (20%) Please write the contents of Instruction Status, Reservation Stations, and Register result status at clock cycle 15.



Note : FP multiply (10 EX cycles)  $\cdot$  FP add (2 EX cycles)  $\cdot$  and FP divide (40 EX cycles)  $\cdot$  load (2 EX cycles)