

Predictability of Human Development Index

Multivariate Analysis
Professor Maria do Rosário De Oliveira Silva

Pedro Sousa, 42022 André Luís, 98638 Carlos Sequeira, 87638 Sara Cruz, 79410 Pedro Dias, 39953

Outline

- Introduction.
- Data set preparation.
- Statistical Analysis.
- Principal Component Analysis.
- Clustering.
- Classification.
- Conclusion.

Introduction

 Objective: explore the World Bank data to find additional explanations predictive of the progress of HDI in the 21st century.

HDI Rank (2018)	Country	1990	1991	***	2018
170	Afghanistan	0.298	0.304		0.496
69	Albania	0.644	0.625		0.791
82	Algeria	0.578	0.582		0.759
36	Andorra	na	na		0.857
149	Angola	na	na		0.574

Country Name	Country Code	Indicator Name	1960	 2018
Arab World	ARB	Access to cl	na	 na
Arab World	ARB	Adjusted sav	na	 5.084
Arab World	ARB	Adolescent f	134.8	 46.01
Arab World	ARB	Age dependen	88.06	 61.17
Arab World	ARB	Arable land	na	 na

Table 1: Table: sample from HDI.csv file. A 212x31 matrix.

Table 2: Sample from WDIData.csv file. A 9504x66 matrix.

Data set preparation

WDI_Δ, WDI, HDI_Δ, HDI_{rank}

Data set feature reduction

Voting Poll: Take the role of decisor and get a (still large) subset of features to assess as predictors:

Applying mRMR feature reduction allowed us to further reduce the feature set to 16 variables.

mRMR 16 feature pairs.panels

Boxplots by outcome

Call:

 $PcaClassic(x = x_train, scale = TRUE)$

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 Standard deviation 2.7004 1.15461 1.04757 1.01291 0.89882 0.82673 0.68065 0.64488 0.58849 0.44083 Proportion of Variance 0.5209 0.09522 0.07839 0.07329 0.05771 0.04882 0.03309 0.02971 0.02474 0.01388 Cumulative Proportion 0.5209 0.61611 0.69450 0.76778 0.82549 0.87431 0.90740 0.93710 0.96184 0.97572

PC11 PC12 PC13 PC14
Standard deviation 0.38236 0.34945 0.24689 0.10302
Proportion of Variance 0.01044 0.00872 0.00435 0.00076
Cumulative Proportion 0.98617 0.99489 0.99924 1.00000

- 1. Choose k such that $\lambda_i \geq \bar{\lambda}$, for i = 1, ..., k k = 4
- 2. Choose k such that

$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{j=1}^{p} \lambda_j} \ge 0.8 \qquad \qquad \mathbf{k} = 5$$

Eigenvalues of each component

Call:

PcaHubert($x = x_{train}$, scale = TRUE, crit.pca.distances = 0.999) Importance of components:

PC1 PC2 PC3
Standard deviation 2.570 1.082 0.9064
Proportion of Variance 0.768 0.136 0.0955
Cumulative Proportion 0.768 0.904 1.0000

Robust PCA

Loadings Classical

Loadings Robust

Classification

	m rMRM		rMRM+ROBPCA		rMRM+PCA	
	acc	b.acc	acc	b.acc	acc	b.acc
Random Forest	45.1	58.8	37.4	54.7	44.0	58.2
Naïve Bayes	43.0	58.6	43.1	57.1	39.7	55.5
LDA	44.5	59.2	43.3	57.2	42.5	56.9
QDA	44.5	59.6	44.9	58.2	40.9	56.3
KNN	43.3	57.5	41.1	56.1	42.3	56.8

Classification

Predicting HDI_rank label with Random Forest

		Real		
Pred	Negative	Low	Medium	High
Negative	0	1	0	1
Low	4	21	10	5
Medium	1	10	16	14
High	4	7	11	17

Table 6: Confusion Matrix.

		Metric	
	Precision	Recall	F1-Score
Negative	0	0	-
Low	0.525	0.538	0.532
Medium	0.390	0.432	0.410
High	0.435	0.459	0.447

Table 7: Metrics for each class.

3	Score
Accuracy	44.3
Balanced Accuracy	57.9

Table 8: Class prediction scores (Random Forest).

Classification

Predicting clustering outcome

Classes						
Clusters	Negative	Low	Medium	High		
-	0	0	0	0		
Three	1	12	5	3		
One	6	20	18	15		
Two	2	7	14	19		

Table 9: Confusion Matrix combining clusters and classes.

	Score
Accuracy	40.2
Balanced Accuracy	55.6

Table 10: Use of clusters for prediction.

Clustering

mRMR data set

Criteria to select k:

$$BdT = \frac{\sum SSE - \sum_{i}^{k} WCSS_{i}}{\sum SSE}$$
 $BdT_{k=2} = 0.413$
 $BdT_{k=3} = 0.4885$

$$BdT_{k=2} = 0.413$$

 $BdT_{k=3} = 0.4885$

Clustering

mRMR data set

Clustering

Robust Principal Components

Conclusion

- There is low predictability of the HDI progress using WDI variables as predictors.
- The results suggest that this problem would be better tackled as a regression problem.
- Split the data into a different set of classes using different criteria and try to learn if this divisions do represent some discernible separation among the observations.

Further work

Data reduction through clustering
 Clustering theme data sets using K-means

Thank you!