DYNAMICAL SYSTEMS THEORY

Dynamical systems analyzed as systems of differential equations:

$$\dot{x}(t) = \int (x(t), t) , \qquad x(t_b) = x_b,$$

(I)

where

x ∈ Rⁿ is the state vector, t∈[to, os) is time, x_o∈ Rⁿ is the initial condition,

and

f: IR" x IR - > IR" are the state dynamics or system dynamics.

- models the underlying physics of the problem at hand.

Since dynamical systems theory relies on some ideas from Analysis, will go over some preliminaries...

Definition (Continuity). A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at a point $X \in \mathbb{R}$, if for any $\varepsilon > 0$, there exists a $S(\varepsilon; X_0)$ such that if $|X-X_0| \leq S(\varepsilon; X_0)$, then $|f(x)-f(x_0)| \leq \varepsilon$.

Definition (Uniform Continuity). A function $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous in the domain $D \subset \mathbb{R}$ if for any $\epsilon > 0$, there exists a $S(\epsilon)$ such that for any $x,y \in D$ if $1x-y1 \leq S(\epsilon)$ then $1f(x)-f(y)1 \leq \epsilon$.

Abbreviations: ets - continuous.

Definition (Differentiable). A function $f: \mathbb{R} - \mathbb{R}$ is differentiable at $X_0 \in \mathbb{R}$ if the limit

$$f(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists.

Definition (continuously differentiable). A function $f: \mathbb{R} - \mathbb{R}$ is continuously differentiable at $x_0 \in \mathbb{R}$ if it is continuous at x_0 , as is its derivative at x_0 .

Notation: $C^{\circ}(R;R)$ - space of continuous functions from R to R. $C^{1}(R;R)$ - space of continuously differentiable functions from R to R.

 $C^{k}(R;R) \leftarrow \text{continuously differentiable to } k^{th} \text{ order}$ \vdots $C^{\infty}(R;R) \leftarrow \text{called space of smooth functions from } R \text{ to } R.$

for some neighborhood N(Ko). Expectity condition

Definition (Lipschitz continuous). A function $f: \mathbb{R} - \mathbb{R}$ is Lipschitz continuous in the domain $D \subset \mathbb{R}$ if is locally Lipschitz confinous for all $x_0 \in D$.

Definition (uniformly Lipschitz continuous). A function $f: \mathbb{R} \to \mathbb{R}$ is uniformly Lipschitz continuous in $D \in \mathbb{R}$ if $\exists L > 0: \forall x, y \in D$, $|f(x) - f(y)| \le L|x - y|$.

- · here there is a universal constant L such that the Lipschitz condition is governteed for all pains of points in D.
- · if the domain can be chosen so that D=R, then the function is globally Lipschiotz continuous.

Examples.

I domain matters. take tangent function

tan

D = [-1/2, 11/2]

only locally lipschitz at points

D = (-T/2, T/2)

Lipschidz etz in D

 $D = \begin{bmatrix} -\frac{\pi}{2} + \epsilon, \frac{\pi}{2} - \epsilon \end{bmatrix} \quad \text{uniform}$ $\frac{\pi}{2} > \epsilon > 0$

uniformly Lipschitz in D.

space of Lipsdidz of D cts. diff.

IXI is Lipschitz ots on IR, but not ots. diff.

why? not differentiable at x=0.

3 to see that

space of unif. ots) space of Lipschitz ets

y V3

is uniformly continuous on any compact subset DCR containing the origin. It is not Lipschötz cts on D because the derivative blows up,

$$\frac{d}{dx} x^{1/3} = \frac{1}{5} x^{-2/3}$$

at the origin. More loosely, it is its on IR but not Lipschitz its on IR.

These examples are leading to the following observations

· the Lipschitz condition can be rewritten

$$\frac{|f(x)-f(y)|}{|x-y|} \leq L$$

leading to the fact: if a function has a bounded derivative at x, then it is locally Lipschitz at x.

· As for as the relative sizes of these spaces is concerned:

space of cts _ space of Lipschitz _ space of cts. diff.

functions _ ots functions _ functions

Abbreviations

diff. - differentiable

& Notations:

loc. - local | locally

3 - there exists

Y - for all

- piecewise: when the property holds everywhere except for a finite number of locations

- globally: when the property holds over the entire domain of definition (typically IR).

These concepts can be extended to \mathbb{R}^n and \mathbb{R}^m , $f:\mathbb{R}^n \to \mathbb{R}^m$, so long as norms are defined on both spaces \mathbb{R}^n and \mathbb{R}^m , n,m>0.

Definition. A norm on IR" is a function 11.11: IR" -> IR such that

- 1) IIXII >0 Y XERM.
- 2) $\|x\| = 0$ iff x = 0
- 3) || \lambda x || = |\lambda | || || || \lambda \lambda \mathbb{R}, \times \mathbb{R} \mathbb{R}, \times \mathbb{R} \mathbb{R}^n
- 4) ||x+y|| < ||x|| + ||y|| \vert x.y \in ||R"

Norms can be induced. Let's see how this works for the space of linear maps between \mathbb{R}^n and \mathbb{R}^m , $L(\mathbb{R}^n;\mathbb{R}^m)$.

An element $f \in L(\mathbb{R}^n; \mathbb{R}^m)$ is defined by $f(x) \equiv Ax$ for some A.

if a norms are defined on $\mathbb{R}^n \notin \mathbb{R}^m$, then let y = f(x) = Ax.

The norm of f is

$$\|f\| = \|A\| = \max_{\|x\|=1} \|Ax\|$$

Nomen \mathbb{R}^n Lo norm on \mathbb{R}^m

· like finding the direction of maximal amplification under A, then using amplification factor as the value of the norm.

normally, a function f: R -> R to bounded if Ic>0: If (x) II < C Yx & R.

What happens when we have $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^m$, a function of two variables? our notion of boundedness must account for that

- · a function f(x,t) is bounded at to if Ic>o: Ilf(x,to) IKC Yx&R"
- · a function f(x,t) is uniformly bounded if Icro: Yte[to,t,], Ilf(x,t) II de .

The next two Lemmas relate Lipschitz continuity with differentiability under specific conditions.

Lemma. Let $f(x,t): D \times [t_0,t_1] \to \mathbb{R}^n$ be its on $D \subset \mathbb{R}^n$. Suppose that $D_i f(x,t)$ exists and is continuous on some compact subset $W \subset D$ and that the Jacobian is uniformly bounded, e.g., $\exists L > 0$:

|| D,f(x,t) || ≤ L \ \ (x,t) ∈ \ × [to,t,]

Then,

Ilf(x,t)-f(y,t) || ≤ L ||x-y|| \vx,y ∈ > W and te[to,t,].

* f is uniformly Lipschitz on Wx[to,t,] (in x).

Lemma. If f(x,t) and $D_i f(x,t)$ are cts on $\mathbb{R}^n \times [t_0,t_i]$, then f is globally Lipschitz in X iff $D_i f$ is uniformly bounded on $\mathbb{R}^n \times [t_0,t_i]$.

Notation: iff - if and only if $D_i f(x,t) = f(x,t)$ and $D_2 f(x,t) = f(x,t)$

So, how does this relate to (1)?

- Problem defined by (1) is an Initial Value Problem (IVP).

 Apal is to find solution to (1). We want | need for it to be unique.
- Definition. A continuous function $x: [t_0,t_1] \to \mathbb{R}^n$, satisfying $x[t_0]=x_s$, is called a solution of (1) over $t \in [t_0,t_1]$ if $\dot{x}(t)$ is defined $\forall t \in [t_0,t_1]$ and $\dot{x}(t)=f(x(t),t)$ $\forall t \in [t_0,t_1]$.

· Nonce: a solution and not the solution.

Example.
$$\dot{x}(t) = \sqrt{x(t)}$$
, $\dot{x}(0) = 0$, $\dot{x} \in \mathbb{R}^+$, $t \neq 0$.

two solutions: 1) x(t) = 02) $x(t) = \frac{1}{4}t^2$

(there are really an as of solutions)

Theorem (Cauchy/Peano Existence Theorem). If $f(x_1t)$ is its in a closed neighborhood of X_0 , $\widetilde{N}(X_0,t_0;R,T)$, then there exists a 8 < T such that the IVP has at least one its solution x(t) for $t_0 < t < t_0 + \delta$.

Notation: $\overline{N}(x_0,t_0;R,T) = \{x,t \mid |x-x_0| \leqslant R \text{ and } |t-t_0| \leqslant T\}$

· the above example is its as needed by the Existence Theorem.

Theorem (Local Extolence and Uniqueness). If f(x,t) is piecewise cts in t and locally Lipschitz cts at x_0 , then $\exists \ 8 > 0$: the dynamical system in (1) has a unique solution for $t \in [t_0, t_0 + 8]$.

Example. $\dot{x}(t) = \sqrt{x(t)}$, $\dot{x}(0) = x_0 \neq 0$, $\dot{x} \in \mathbb{R}^+$, $t \geq 0$ Then, $\dot{x}(t) = \frac{1}{4} (t + 2\sqrt{x_0})^2$ on $t \in [0, 8]$ for some 8 > 0.

Example. $\dot{x}(t)=x^2(t)$, x(0)=1, t>0.

Solution is $x(t) = -\frac{1}{t-1}$. It exists only for finite time.

The maximal possible 8 is 1, at which point there is blow-up.

really only defined on [0,8) for 0.8 = 1.

(equivalently [0,8] for 0<8<1)

· If a solution exists for all time, then the solution is called complete.

Theorem (Global Existence and Uniqueness). If f(x,t) is piecewise in the and globally Lipschitz in \mathbb{R}^n for x, then the IVP (1) is complete; a unique solution exists for (t_0, ∞) .

· this theorem is a bit conservative.

Example

As an example of the conservativeness of the prin Theorem, consider,

$$\dot{x}(t) = -x^{3}(t)$$
, $x(0) = x_{0}$,

which has the unique solution

$$x(t) = \frac{x_0}{\sqrt{2x_0^2t + 1}}$$

It is complete for any initial condition $x_0 \in \mathbb{R}^n$, but it is not globally Lipschitz.

Theorem (Global Existence and Uniqueness on a Compact Domain).

Let f(x,t) be piecewise continuous in t, winformly Lipschitz in $D \subset \mathbb{R}^n$ for all $t \ge 0$ and let $W \subset D$ compact such that $x_o \in W$.

Suppose that every solution to the IVP lies entirely in W, then there is a complete, unique solution evolving on E_0, ∞).