

Buck-Boost电路示于图2.26(a),因为其输出电压平均值U₀可以大于也可以小于输入电压U_d,它是一种升降压斩波电路。

- (a) Buck-Boost电路
- (b)晶体管T导通时的等效电路(c)晶体管T关断时的等效电路

电感电流连续条件下的波形如右图所示。

(1) 晶体管T导通工作模式 $(0 \le t \le t_1 = DT_s)$

$$U_d = L \frac{I_2 - I_1}{DT_S} = L \frac{2\Delta I}{DT_S} \qquad \Delta I = \frac{U_d DT_S}{2L}$$

电感电流连续条件下的波形如右图所示。

(2) 二极管D导通工作模式 $(t_1 \leq t \leq t_2 = T_s)$

$$U_0 = L \frac{2\Delta I}{T_S - DT_S} \qquad \Delta I = \frac{T_S (1 - D)U_O}{2L}$$

由(1)(2)可得:
$$\Delta I = \frac{U_{d}DT_{S}}{2L} = \frac{U_{O}T_{S}(1-D)}{2L}$$

求得

$$U_{\rm O} = \frac{DU_{\rm d}}{1-D}$$

(c)

设Buck-Boost电路中除负载外 没有损耗,可得输入平均电流为:

$$I = \frac{DI_{O}}{1 - D}$$

可得电感电流脉动量:

$$\Delta I = \frac{U_{\rm d} D T_{\rm S}}{2L}$$

电容电压的脉动量为

$$\Delta U_{C} = \frac{1}{C} \int_{0}^{t_{1}} i_{C} dt = \frac{1}{C} \int_{0}^{t_{1}} I_{O} dt = \frac{I_{O} t_{1}}{C}$$

$$\Delta U_C = \frac{I_{\rm O} D T_{\rm S}}{C}$$

Cuk电路,其输出电压平均值U₀可以大于也可以小于输入电压U_d,它也是一种升降压斩波电路。可以看作是Buck电路和Boost电路的组合。保持了Buck电路输出电流连续和Boost电路输入电流连续的优点。与Buck-Boost电路相比,Cuk电路的输入和输出电流连续,具有输出电压脉动小和对输入电源影响小的特点。

- (a) Cuk电路(b) 晶体管T导通时的等效电路
- (c) 晶体管T关断时的等效电路

- (a) Cuk电路(b) 晶体管T导通时的等效电路
- c)晶体管T关断时的等效电路

电感电流连续条件下的波形如右图所示。

(1) 晶体管T导通工作模式($0 \le t \le t_1 = DT_S$) $U_a \stackrel{+}{=}$ 对电感 L_1 有:

$$U_{d} = L_{1} \frac{I_{L12} - I_{L11}}{t_{1}} = L_{1} \frac{2\Delta I_{1}}{t_{1}}$$

$$\Delta I_{1} = \frac{U_{d}DT_{S}}{2L_{1}}$$

对电感L2有:

$$U_{C1} - U_{O} = L_{2} \frac{I_{L22} - I_{L21}}{t_{1}} = L_{2} \frac{2\Delta I_{2}}{t_{1}}$$
$$\Delta I_{2} = \frac{(U_{C1} - U_{O})DT_{S}}{2L_{2}}$$

(2) 二极管D导通工作模式($t_1 \leq t \leq t_2 = T_{\mathrm{S}}$)

对电感L₁有:

$$U_{\rm C1} - U_{\rm d} = L_{\rm l} \frac{I_{\rm L12} - I_{\rm L11}}{(t_2 - t_1)} = L_{\rm l} \frac{2\Delta I_{\rm l}}{(1 - D)T_{\rm S}}$$

$$\Delta I_1 = \frac{(1-D)T_S(U_{C1} - U_{d})}{2L_1}$$

对电感L2有:

$$U_{\rm O} = L_2 \frac{I_{\rm L22} - I_{\rm L21}}{t_2 - t_1} = L_2 \frac{2\Delta I_2}{(1 - D)T_S}$$

$$\Delta I_2 = \frac{U_O(1-D)T_S}{2L_2}$$

晶体管T导通工作模式

二极管D导通工作模式

$$\Delta I_1 = \frac{U_{\rm d}DT_S}{2L_1}$$

$$\Delta I_1 = \frac{(1-D)T_S(U_{C1} - U_{d})}{2L_1}$$

$$\Delta I_2 = \frac{(U_{\rm C1} - U_{\rm O})DT_{\rm S}}{2L_2}$$

$$\Delta I_2 = \frac{U_O(1-D)T_S}{2L_2}$$

$$U_{\rm O} = \frac{DU_{\rm d}}{1 - D}$$

表明, Cuk电路是一个升降压斩波电路。当D从零趋近于1时, U₀从零变到任意大。

设Cuk电路中除负载外没有损耗,可得输入平均电流为:

$$I = \frac{DI_{\rm O}}{1 - D}$$

电感
$$L_1$$
电流脉动量: $\Delta I_1 = \frac{U_d D}{2f_S L_1}$

电感
$$L_2$$
电流脉动量: $\Delta I_2 = \frac{U_{\rm O}(1-D)}{2f_{\rm S}L_2} = \frac{U_{\rm d}D}{2f_{\rm S}L_2}$

电容
$$C_1$$
电压的脉动量为: $\Delta U_{C1} = \frac{I_O D}{2f_S C_1}$

因为 $i_{\rm L2}=i_{\rm c}+i_{\rm 0}$,若假定负载电流 $i_{\rm 0}$ 的脉动很小而可忽略,则

 $\Delta i_{1,2} = \Delta i_{c}$ 。因为电容电流一周期的平均值为零,那么在

 $\frac{T_{\rm S}}{2}$ 时间内,电容充电或放电的电荷量为

$$\Delta Q = \frac{\Delta I_2}{2} \cdot \frac{T_S}{2}$$

因此, 电容C上电压峰-峰脉动值为

$$\Delta U_{\rm C} = \frac{\Delta Q}{2C} = \frac{\Delta I_2}{8 f_{\rm s} C}$$

可解得

$$\Delta U_{\rm C} = \frac{U_{\rm d}D}{16L_2Cf_{\rm S}^2}$$

根据 ΔI 、 ΔU_{c} 、f以及其他要求(输入和输出),依据上述公式,可大概地确定L和C值。

2.6 Sepic电路和Zeta电路

Sepic电路

图2. 30给出了Sepic电路的原理图。当开关T导通时, 输入电源 U_d 经开关T给 L_1 充电, 同时 C_1 经开关T给 L_2 充电, L_1 和 L_2 储能。当开关T截止时, U_d 、 L_1 、 C_1 、D、负载 (C_2 和R) 构成回路, U_d 和 L_1 既向负载供电, 也给 C_1 充电, 同时 L_2 经过D向负载回路释放能量。 Sepic电路的输入输出关系由下式给出:

$$U_{\rm O} = \frac{D}{1 - D} U_{\rm d}$$

2.6 Sepic电路和Zeta电路

Zeta电路

图2. 31给出了Zeta电路的原理图。当开关T导通时, 电源 U_d 经过开关T给电感 L_1 储能, C_1 经过开关T放电并给电感 L_2 充电和给负载供电。当开关T截止时, L_1 经与 C_1 、D构成的回路, 给 C_1 充电, L_2 上的能量经D转移到负载上Zeta电路的输入输出关系为:

$$U_{\rm O} = \frac{D}{1 - D} U_{\rm d}$$

2.6 Sepic电路和Zeta电路

Buck一Boost电路

Sepic电路

Cuk电路

Zeta电路

2.7 双向直流一直流变换电路

双向直流-直流变换电路的一种典型构成如图2.32所示。这种直流直流变换电路的能量可以双向流动。因为它具有将负载的能量馈送给电源的能力,在电动汽车等需要回馈能力的场合得到应用。

2.7 双向直流一直流变换电路

能量由电源U。供给负载时, 器件T₂断开,由器件T₁和二 极管D₂起着降压变换器 (Buck)的作用,电流i_方向 与图2. 32所示一致。

负载侧向电源侧馈送能量时,器件T₁断开,由器件T和二极管D₁起着升压变换器(Boost)的作用,电流i₂方向与图2.32所示相反。通常要求保持U₀⟨Uα的关系。

