- Não, pois ele pertence ao alfabeto.
- Não, pois só pertence ao L2.
- Sim, pois ele possui um conjunto limitado de símbolos.
- Sim, existe diferença. Pois elemento nada mais é do que uma palavra do alfabeto, já o alfabeto é um conjunto finito de símbolos.
- $\Sigma^+ = \{a, c\}$
- Sim, ϵ é uma palavra do alfabeto. E pode ser prefixo de qualquer palavra desse alfabeto, pois o conjunto vazio estando presente no alfabeto pode ser prefixo de qualquer palavra dele.

2 – a) L3 = $\{a(ba)^nb\}$

b) L4 = $\{ab^nab\}$

c) L5 = σ

d) L6 = ε

• W = 1011

• Versão que só aceitaria 1011:

O Versão que aceitaria 1011 e outros que terminam com mais de 2 números 1:

• Sim, pois para chegar no estado de aceitação é necessário passar por 101 sem nenhuma exceção.

4 -
$$\Sigma = \{a, b\}$$

L= { w | $w \in \Sigma^*$ e o antepenúltimo símbolo de w é b}

5 - Autômato finito não determinístico. O autômato da figura 2 pode ser descrito da seguinte maneira:

Palavras começadas por A^m e B^n [A^mB^n] sendo m > 0, n >= 0; e palavras começadas por B seguindas de A e B^x [BAB^x] sendo x par.

Linguagem mais formal: L: $\{A^mB^n BAB^x \mid m > 0, n >= 0 e x é par\}$.