Лекція 12. Групи.

Визначення групи

Півгрупа з одиницею, в якій для кожного елемента існує двосторонній обернений, називається групою.

Іншими словами, групою називається множина G, на якій задана бінарна операція (символ операції пропускаємо) з наступними властивостями:

- (G1) операція асоціативна: $(x \ y) \ z = x \ (y \ z)$ для всіх $x, \ y, \ z \in G$;
- (G2) G містить нейтральний (одиничний) елемент e: $e \ x = x \ e = x$ для всіх $x \in G$;
 - (G3) для кожного елемента $x \in G$ існує обернений x^{-1} , x^{-1} x = x $x^{-1} = e$.

Група, в якій операція є комутативною, тобто для будь-яких $x, y \in G$ виконується умова x y = y x, називається комутативною (абелевою) групою.

Група називається скінченною, якщо вона має скінченне число елементів. У протилежному випадку група називається нескінченною. Якщо група G скінченна, то число її елементів позначається |G| і називається порядком групи.

3 аксіом групи (G1) - (G3) випливають наступні прості наслідки.

- 1. Закон скорочення: якщо x y = x z, то y = z (ліве скорочення); якщо y x = z x, то y = z (праве скорочення);
- 2. Для кожного елемента групи обернений елемент єдиний;
- 3. Для кожної пари елементів $a, b \in G$ рівняння $a \ x = b$ та $y \ a = b$ мають єдині розв'язки.

Доведемо для прикладу закон лівого скорочення. Дійсно, припустимо, що xy = xz. Згідно з аксіомою (G3) для елемента x існує обернений x^{-1} . Домножимо ліву й праву частину рівності на x^{-1} . Тоді отримаємо $x^{-1}(xy) = x^{-1}(xz)$. Застосовуючи в лівій і правій частині (G1), маємо $(x^{-1}x)y = (x^{-1}x)z$. Значить, ey = ez і остаточно y = z.

Зауважимо, що у випадку алгебри (Z,\cdot) – множини цілих чисел з операцією множення, яка не є групою, закон лівого скорочення не виконується. Наприклад, маємо правильну рівність $0\cdot 2=0\cdot 3$, проте рівність 2=3 не виконується.

Наступні множини є групами відносно вказаних операцій:

- 1) множина **Z** цілих чисел відносно додавання;
- 2) множини $\mathbf{Q} \setminus \{0\}$, $\mathbf{R} \setminus \{0\}$, $\mathbf{C} \setminus \{0\}$ відносно множення. Позначатимемо ці групи відповідно Q^* , R^* , C^* ;
 - 3) множини **Q**, **R**, **C** відносно додавання;
- 4) множина \mathbf{C}_n (комплексних) коренів n-го степеня з одиниці відносно множення. Зокрема, у частковому випадку n=4 маємо \mathbf{C}_4 ={1, -1, i, i}. Таблиця Келі цієї групи показана в табл. 8.

Табл. 8.

•	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

- 5) множина Aut(M) всіх бієктивних відображень множини M на себе. Якщо множина M є скінченною і має n елементів, то в цьому випадку вказані бієктивні відображення називаються підстановками n елементів, а множина S_n всіх підстановок утворює групу підстановок n елементів;
- 6) множина $GL_n(\mathbb{C})$ невироджених (тобто з відмінним від нуля визначником) комплексних матриць розміру $n \times n$ відносно множення матриць.
- 7) множина невироджених (тобто з відмінним від нуля визначником) дійснозначних матриць розміру 2х2 відносно множення матриць. Для елементів цієї множини $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ та $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ маємо $A \times B \neq B \times A$, тобто група не є абелевою.

Зауважимо, що для кожного натурального числа n можна збудувати абелеву групу, яка має порядок n. Для цього треба розглянути фактор-множину $Z_n = \{\overline{0},\overline{1},\overline{2},...,\overline{n-1}\}$ класів еквівалентності цілих чисел, порівняних за модулем n. Перетворимо цю множину в групу, задавши на ній операцію додавання \oplus класів цілих чисел за модулем n. Щоб додати два класи \overline{r} і \overline{s} потрібно спочатку додати цілі числа r і s, а потім знайти остачу від ділення знайденої суми на число n. Клас знайденої остачі й буде результатом додавання класів \overline{r} і \overline{s} . Множина \mathbf{Z}_n разом із заданою на ній операцією додавання \oplus є абелевою групою, яка має порядок n.

У табл. 9 наведено таблицю Келі для операції додавання \oplus групи \mathbf{Z}_5 :

Табл. 9. Таблиця Келі для операції додавання групи ${\bf Z}_5$

\oplus	$\overline{0}$	<u>1</u>	$\overline{2}$	3	$\overline{4}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\frac{\overline{2}}{\overline{3}}$	3	$\overline{4}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	3	$\overline{4}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\frac{\overline{2}}{\overline{3}}$	$\overline{4}$	0	$\overline{1}$
$\frac{\overline{2}}{\overline{3}}$	$\frac{\overline{2}}{\overline{3}}$	$\overline{4}$	$\overline{0}$	1	$\frac{\overline{2}}{\overline{3}}$
$\overline{4}$	$\overline{4}$	$\overline{0}$	1	$\overline{2}$	3