Il principio di Fermat

Formulato inizialmente da P. Fermat nel 1662, il principio di Fermat (o principio di minor tempo) afferma che

Per andare da un punto a un altro, un raggio di luce segue il percorso che richiede il tempo più breve

Alcune conseguenze del principio di Fermat

1. In uno stesso mezzo i raggi di luce si propagano in linea retta

Conseguenze del principio di Fermat

2. Legge della riflessione della luce: $\theta_i = \theta_r$

3. Legge di Snell per la rifrazione della luce: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Diffrazione della luce

Quando un fascio luce passa attraverso una fenditura di dimensioni molto maggiori di λ , la direzione dei raggi non cambia.

Quando invece la fenditura ha dimensioni dell'ordine di $\lambda \sim 10^{-7}$ m, vale il principio di Huygens:

La fenditura agisce come una sorgente di onde luminose che si propagano in direzione radiale

Esperimento di Young (1801)

Domanda. Quale figura appare sullo schermo rilevatore? Risposta:

Interferenza costruttiva e distruttiva

Supponiamo che la distanza d tra le fenditure sia molto minore di L

Le frange luminose (prodotte dall'interferenza costruttiva) si trovano in corrispondenza dei valori di θ per cui

$$\Delta \ell / \lambda = 0, 1, 2, \dots$$

Le frange scure (interferenza distruttiva) corrispondono ai valori di θ per cui

$$\Delta \ell / \lambda = 0.5, 1.5, 2.5, \dots$$