Example:				R	ر می	رط	رے	d)
	Α .	B	ے	D				
	1	10	100	Х				
	ı	20	100	y		Ó	D	a -
	1	20	100	Х		(2)	a –
)	10	100	y		6	<u>্</u>	a.
	2	10	200					a -
	2		300	X			(H)	1.
	2		200			(<u>s)</u>	b -
	2.	ıD	300	×				

	_
0	a →>> b ? ✓
2	a >>> cd?
3	a ->> c? /
4	a >>> d ? /
(3)	b ->> a?

	Α	В	ے	Ð
	1	10	100	Х
	ı	20	100	ย
	ı	20	100	Х
ľ	1	10	100	y
Ī	2	IO	200	Х
ľ	ما	30	300	Х
ľ	2	30	200	Х
	2.	ιO	300	×

Example:	Emp #	Dependent,	Dep Age	Prog#5	Pname
----------	-------	------------	---------	--------	-------

Emp#	Dep	Age	Prof#	Prame
1284	Bob	2	i	ABC
1234	Bab	2	2	DEF
3456	Mary	10	3	GHI
3456	Alice	7	3	Chr.T.

Property:
$$A \longrightarrow BC \implies A \longrightarrow B$$
, $A \longrightarrow C$

2)
$$\partial \beta$$
 $R = \overline{A} \cup \overline{B}$ $A \longrightarrow \overline{B}$ and $A \longrightarrow \overline{A}$

e.g. $R(a, b, c)$
 $a \longrightarrow bc$
 $ab \longrightarrow c$
 $bc \longrightarrow a$
 $b \longrightarrow ac$
 $c \longrightarrow ab$

Rules:

i) of
$$R = (\overline{A}, \overline{B}, \overline{C})$$
 and $\overline{A} \longrightarrow \overline{B} \longrightarrow \overline{A} \longrightarrow \overline{C}$

$$A \longrightarrow B \mid C$$

8) Splitting rule does not apply.

if
$$A \longrightarrow BC \xrightarrow{+} A \longrightarrow B$$
, $A \longrightarrow C$

5)
$$R(A, B, C, D)$$

if $A \longrightarrow B$ then $A \longrightarrow CD$
if $A \longrightarrow CD$ then $A \longrightarrow B$

G) if
$$A \longrightarrow BC$$
 and $A \longrightarrow CD$
Then $A \longrightarrow C$

⇒ AB →>> D

Question: if A ->> C and B ->> C does AB ->> C?

Defn: A relation R is in 4NF if whenever

\$\overline{A} \rightarrow \overline{B}\$ is a nontrivial MVD, then \$\overline{A}\$ is a key/superkey.

(i.e., R is in 4NF if it has no non-trivial MVDs)

e.g., R(a,b,c,d) R is not in 4NF since b is not key

4NF Decomposition Algorithm
Input: R, FDS, MVDS

1 Find keys for R

2) loop until 4NF: ** select FD: A \rightarrow B or nontrivial MVD: A \rightarrow B

where A is not key/superkey

* decompose R into

RI (A, B) if $A \rightarrow B$ key (A)OF

RI (A, B) if MVD $A \rightarrow B$ key (A B)and

R2 (R-B)

```
Find FDs and MVDs, kys for RI 2 RZ
Example: Student (id) name, course#, major)
     id -> name
     id ->> course#
   Ky (id, course # major)
Start with FD: id -> name that violates
     RI (id, name) / 4NF
     R2 ( id course # major ) X 4NF nontrivial
                          nontoural
     R3 (id) coursett bourd mVD / 4NF
     Ry (id, major) towal MVD / YNF
```

Student = RI N R3 of R4 R13 R3, R4 are in 4NF

Example: