PRACTICING MATLAB

Table of Contents

Variable declaration	1
Matrix and array arithmetic	
Operations	
Indexing	
Special Matrices	. 7
Systems of Linear Equations.	

Variable declaration

Write a simple command to create the following scalar, vectors and arrays

$$a = 3$$
 $b = 0.5$ $c = -2.7$

$$u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 $v = \begin{pmatrix} -2 \\ 1.5 \\ 1 \end{pmatrix}$ $s = \begin{pmatrix} -1 \\ -0.4 \\ 2 \end{pmatrix}$ $v = \begin{pmatrix} 4 \\ -2 \\ 6 \end{pmatrix}$ $w = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 5 & 2 \\ -1 & 2 & 8 & 1 \\ 0 & 5 & 3 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0.28 & -0.45 & 0.84 & 1.01 \\ 0.83 & -0.30 & -0.45 & 1.99 \\ 0.46 & 0.83 & 0.29 & 3.03 \\ 0 & 0 & 0 & 1.00 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{pmatrix}$$

$$a = 3$$

a = 3

$$b = 0.5$$

b = 0.5000

$$c = -2.7$$

c = -2.7000

$$u = [1;2;3]$$

3

 $u = 3 \times 1$ 1 2

$$v = [-2;1.5;1]$$

v = 3x1 -2.0000 1.5000

1.0000

$$s = [-1 -0.4 2 1]$$

```
s = 1 \times 4
-1.0000 -0.4000 2.0000 1.0000
w = [4, -2, 6, 3]
w = 1 \times 4
```

 $A = [1:4; -1 \ 0 \ 5 \ 2; -1 \ 2 \ 8 \ 1; \ 0 \ 5 \ 3 \ 1]$

4 -2 6 3

B = [0.28 -0.45 0.84 1.01; 0.83 -0.30 -0.45 1.99; ... 0.46 0.83 0.29 3.03; 0 0 0 1]

C = 2×4

C = [1:4; 5:8]

Matrix and array arithmetic

Syntax

A+B A-B A*B A.*B A/B A./B A\B A\B A.\B

ans = 4×4 1.2800 1.5500 5.0100 3.8400 -0.1700 -0.3000 4.5500 3.9900 2.8300 -0.5400 8.2900 4.0300 0 5.0000 3.0000 2.0000

А - В

A + B

ans = 4x4 0.7200 2.4500 2.1600 2.9900 -1.8300 0.3000 5.4500 0.0100 -1.4600 1.1700 7.7100 -2.0300 0 5.0000 3.0000 0

A*B

ans = 4x4 3.3200 1.4400 0.8100 18.0800

```
6.4900 0.5800
   5.0600
                              28.2100
            0.9900 -1.3800
   5.5300
                            20.0400
A.*B
ans = 4 \times 4
  0.2800 -0.9000 2.5200
                            4.0400
                               3.9800
  -0.8300
            0 -2.2500
          1.6600 2.3200
  -0.4600
                               3.0300
                              1.0000
       0
             0
                        0
A/B
ans = 4 \times 4
   1.9173
           -1.1276
                     3.0415
                             -4.9083
                   1.0171
                             1.1026
   3.9415
           -3.0982
           -5.0736
                    3.5931
                              -5.4116
   5.5653
   0.2481
           -2.9133
                     5.1056
                             -8.9231
A./B
ans = 4 \times 4
  3.5714
                            3.9604
          -4.4444 3.5714
            0 -11.1111 1.0050
  -1.2048
            2.4096 27.5862 0.3300
  -2.1739
     NaN
              Inf
                       Inf
                             1.0000
A\B
ans = 4 \times 4
                   1.2046
                            -0.1137
  -0.5015
           0.7246
                            -0.0245
  -0.0302
          -0.0694 -0.0994
                            0.3686
  -0.0264
          0.2693 0.2393
   0.2303
           -0.4609 -0.2209
                             0.0167
A.\B
ans = 4 \times 4
  0.2800
          -0.2250 0.2800 0.2525
  -0.8300
            -Inf -0.0900 0.9950
  -0.4600
            0.4150 0.0362 3.0300
      NaN
                0
                         0 1.0000
A^B
ans = 4 \times 4 complex
                                     2.5164 + 0.0000i 4.0558 + 0.0000i
 1.0000 + 0.0000i 0.7320 + 0.0000i
 -0.8607 + 0.5090i Inf + 0.0000i
                                     0.4847 + 0.0000i 3.9724 + 0.0000i
  0.1253 + 0.9921i
                    1.7777 + 0.0000i
                                     1.8277 + 0.0000i 1.0000 + 0.0000i
  1.0000 + 0.0000i
                  1.0000 + 0.0000i
                                     1.0000 + 0.0000i
                                                     1.0000 + 0.0000i
A.^B
ans = 4 \times 4 complex
```

4.6000 0.6100

1.0000 + 0.0000i 0.7320 + 0.0000i

16.1400

2.0200

2.5164 + 0.0000i 4.0558 + 0.0000i

```
A'
```

```
ans = 4 \times 4
      1
              -1
                      -1
                                0
       2
               0
                       2
                               5
      3
               5
                       8
                                3
       4
               2
                       1
                                1
```

A'

```
ans = 4 \times 4
      1
             -1
                     -1
                              0
      2
              0
                      2
                              5
      3
              5
                      8
                              3
      4
              2
                      1
                              1
```

Operations

Write commands to carry out the following operations (check and analyze the operation's result)

u+v, u-v, conjugate transpose of vector u, a*v, u*v, u*v, u*v', dot product of vectors u and v, cross product of vectors u and v, dot product of vectors s and w, cross product of vectors w and w, transpose of matrix A, inverse of matrix A, A+B, A-B, matrix multiplication of A and B, array multiplication of A and B, matrix multiplication of A and C, array multiplication of C and A, w*A, A*w.

```
u+v
```

```
ans = 3x1
-1.0000
3.5000
4.0000
```

u-v

```
ans = 3x1
3.0000
0.5000
2.0000
```

u'

ans =
$$1 \times 3$$
1 2 3

```
a*v
ans = 3 \times 1
  -6.0000
  4.5000
   3.0000
u.*v
ans = 3x1
  -2
    3
    3
u.*v
ans = 3 \times 1
 -2
    3
     3
u*v'
ans = 3 \times 3
            1.5000 1.0000
3.0000 2.0000
                       1.0000
 -2.0000
  -4.0000
              4.5000 3.0000
  -6.0000
s.*w
ans = 1 \times 4
 -4.0000 0.8000 12.0000 3.0000
w.*w
ans = 1 \times 4
  16 4 36
                    9
A^(-1)
ans = 4x4
  0.5408
            -1.1939 0.7347 -0.5102
            0.0408 -0.1020 0.2653
  -0.0612
   0.0714
            -0.2143
                       0.2857
                                 -0.1429
  0.0918
             0.4388
                       -0.3469
                                 0.1020
A+B
ans = 4x4
  1.2800
            1.5500
                                  5.0100
                        3.8400
                                 3.9900
4.0300
                       4.5500
8.2900
             -0.3000
  -0.1700
             2.8300
   -0.5400
        0
              5.0000
                         3.0000
                                    2.0000
A-B
ans = 4 \times 4
  0.7200

      2.4500
      2.1600
      2.9900

      0.3000
      5.4500
      0.0100

  -1.8300
```

-1.4600 1.1700 7.7100 -2.0300

```
5.0000
                        3.0000
                                        0
A*B
ans = 4 \times 4
                        0.8100
    3.3200
              1.4400
                                  18.0800
    2.0200
              4.6000
                        0.6100
                                  16.1400
    5.0600
              6.4900
                        0.5800
                                  28.2100
    5.5300
              0.9900
                       -1.3800
                                  20.0400
A.*B
ans = 4 \times 4
   0.2800
             -0.9000
                       2.5200
                                   4.0400
   -0.8300
              0 -2.2500
                                3.9800
   -0.4600
             1.6600
                        2.3200
                                   3.0300
         0
                   0
                            0
                                   1.0000
C*A
ans = 2 \times 4
   -4
          28
                49
                      15
    -8
          64
               125
                      47
w*A
ans = 1 \times 4
     0
          35
                59
                      21
```

Indexing

4) Indexing. Write commands to extract the given element or submatrix of a given matrix

extract cell (2,4) of matrix A, extract row 2 of matrix A, extract column 4 of matrix B, to extract 3x3 submatrix from the three first rows and three first column of B.

```
x = A(2,4)

x = 2

x = A(2, :)

x = 1 \times 4
-1 = 0 = 5 = 2

x = B(:, 4)

x = 4 \times 1
```

```
1.0100
1.9900
3.0300
1.0000
```

```
x = B([1:3], [1:3])
```

```
x = 3x3
0.2800 -0.4500 0.8400
0.8300 -0.3000 -0.4500
0.4600 0.8300 0.2900
```

Special Matrices

ans = 4×4

16

9

2

7

5 11 10

3

6

13

8

12

Generate some "special" matrix using commands zeros, ones, eye, rand, radn, and magic. Analyze results.

```
zeros(5)
ans = 5 \times 5
                 0
     0
           0
                       0
                             0
     0
           0
                 0
                       0
                              0
     0
           0
                 0
                       0
                              0
     0
                              0
     0
                              0
ones(3, 2)
ans = 3 \times 2
     1
           1
     1
           1
     1
           1
eye(2, 5)
ans = 2 \times 5
           0
                 0
                       0
                              0
     1
     0
           1
                 0
                       0
                              0
rand(2)
ans = 2 \times 2
    0.6324
              0.2785
    0.0975
             0.5469
randn(4)
ans = 4 \times 4
   3.5784
            0.7254 -0.1241 0.6715
   2.7694 -0.0631 1.4897 -1.2075
   -1.3499
           0.7147 1.4090
                                0.7172
    3.0349
             -0.2050
                      1.4172
                                 1.6302
magic(4)
```

Systems of Linear Equations

One of the most important problems in technical computing is the solution of systems of simultaneous linear equations.

In matrix notation, the general problem takes the following form: Given two matrices A and B, does there exist a unique matrix X so that AX = B?

It is instructive to consider a 1-by-1 example. For example, the equation

7x = 21 has the solution x=21/7=3.

An example of a system of 3 equations with 3 unknowns is:

So as A*X=B, the solution is compute as

 $X=A\setminus B$

Solve the previous equations using this method.

$$X = A \setminus B$$

$$X = 4 \times 4$$
 -0.5015 0.7246 1.2046 -0.1137
 -0.0302 -0.0694 -0.0994 -0.0245
 -0.0264 0.2693 0.2393 0.3686
 0.2303 -0.4609 -0.2209 0.0167