

SESSION #05

K-NN Algorithm

By Team 5

CONTENTS

01 K-NN이란?

02 차원의 저주

03 SVM 분류기

04실습/퀘스트

당신은 내가 다음 대선 때 어떤 후보를 뽑을지 알 수 있는 가?

내가 야당을 선호하는 지역에 살고 있다는 것을 안다면? 그런데, 지역 뿐만 아니라 나이 소득수준, 자녀 수까지 안다면?

플레이 메이커, 타고난 센스, 인기 스 그라운드의 지휘관, 중원의 지배자, 패스 마 공격수, 득점 기계, 팀의 해결사 팀의 에이스 아르헨티나 날쎈 돌이, 달리기 선수 네덜란드

나의 축구 등번호는?

나는 그라운드의 장군, 중원의 왕자, 패스는 잘하는 편

K-NN 끝

1 개념정의

K-Nearest Neighbors (K-근접이웃방법)

K-NN 알고리즘은 머신러닝 알고리즘 중의 하나 지도학습인 '분류' 와 '예측' 을 위한 알고리즘

가까운 거리에 가장 많이 분포하는 것으로 나의 데이터를 분류 하는 알고리즘

K-Nearest Neighbors (K-근접이웃방법)

주어진 x_0 에서 가장 가까운 k개의 관측치들로 x_0 에서 각 법주의 확률을 추정하고 가장 많이 나온 범주로 추정한다.

따라서 필요한 것은

- 거리를 재는 방법
- 어느 정도 가까운 거리로 할 것인가?
- 대전제: "서로 가까운 점들은 유사하다"

1 K-NN원리

K-NN의 원리(6개의 기존 데이터 A~F와 1개의 신규 데이터 N)

데이터	x좌표	у좌표	그룹
Α	1	5	•
В	2	6	•
С	4	5	•
D	5	2	A
E	6	3	<u> </u>
F	7	1	A
N	4	4	?

K=1 이라면,

거리가 1번째로 가까운 C만을 보고 신규 데이터를 분류. 따라서 N은 C와 같은 그룹인 ●로 분류된다.

K=3 이라면,

거리가 3번째로 가까운 C, D, E까지 보고 신규 데이터를 분류 **이때 그룹이 갈리면 다수결의 원칙에 따른다.** 여기서는 1 : 2가 되어 N은 ▲로 분류된다.

K-NN 특징

장점

- 개념이 단순하다.
- 비모수 방법으로써 파라미터에 대한 가정이 거의 없다.
- 일관성 있는 결과를 도출 한다.
- 이상치에 둔감하다.

단점

- 계산시간이 많이 걸린다.
- 특정 현상의 원인을 파악하는데 큰 도움이 안된다.

나. 알고리즘의 특징	
특징	설명
최고인접 다수결	기존 데이터 중 가장 유사한 K개의 데이터를 측정하여 분류
유사도(거리) 기반	유클리디언거리, 마할라노비스거리, 코사인 유사도등 활용
Lazy learning 기법	새로운 입력 값이 들어온 후 분류 시작
단순유연성	모형이 단순하며 파라미터의 가정이 거의 없음

가. KNN 알고리즘의 장점			
장점	설명		
학습 간단	- 모형이 단순하고 구현이 쉬움		
	- 모수 (parameter) 및 데이터에 대한 가정이 거의 없음		
유연한 경계	- 거리의 변형, 가중치 적용이 용이함		
	- 유클리디언, 코사인유사도, 가중치 적용, 정규화 적용 용이		
모델의 유연성	- 데이터에 대한 가정을 반영하여 변형하기에 간편		
	- 변형한 데이터의 training data set 기반 분류기 검증 용이		
높은 정확도	- 사례기반(instance based) 으로 높은 정확성 - 훈련 데이터 클 수록 클러스터 매칭의 정확성 좋아짐		

나. KNN 알고리즘의 단점			
단점	설명		
모수 k 선정 어려움	- K수에 따라 알고리즘의 성 능을 좌우하는 어려운 문제		
	- under/over fitting 의 trade off 문제 발생 요인		
공간 예측 부정확	- 공간정보 예측모델에서는 특정 이벤트의 발생이 일정하지 않고, 영향변수 많아 적용이 어려움		
거리계산 복잡성	- 모든 데이터와의 유사도, 거리 측정 수행 필요		
	- 명목변수 및 결측치를 따로 처리 필요		
	- 기존데이터의 실측값, instance 에 크게 의존		
고비용	- 모든 데이터를 메모리 기반 연산, 거리측정 필요		
	- 데이터 커질 수록 메모리 및 연산시간 증가 문제		
누이즈에 약함	- 노이즈로인해 큰 K 설정을 필요로 함		
	- 민감하고 작은 테이터 무시되는 under fitting 문제 야기		

1 KNN이란? 개념정의

KW (KNaast Naglbon) 알고리즘의 동작원리	생세		
동작원리	동작원리 상세		
	- 새로운 입력값확인		
Fregrint 확인	- 가까운데이터는 같은Libb(클러스터) 가능성큼		
	- 기존의 모든 데이터와 새로운 Figgpit 비교 준비		
	- 기존의저장되어있는데이터 셋의kkd화		
명목변수기반	서로다른 범주 데이터를 정규화수행		
그룹분류	- 분류기검사수행예시		
	데이터의 90%를 훈련데이터 10%를 테스트로 활용		
거리측정	유클리디언 거리,		
	- 새로운 Fresprint (0)와		
	기존(btal(12)) 간의거리에시		
	- 메모리 기반 Firgapin와 모든 데이터간의 거리계산		
	- 계산된 거리의 정렬수행		
K선정	- 양의정수 값정렬된 거리 중기장 가까운 1개 데이터 선정		
	- 여러k값을 모델링 후기장 성능이 좋은 k값 선정		
	- 노이즈클수록 큰k값선정이 좋음		
	- 큰K는 노이즈에 좋지만 작고 중요한 패턴을 무시 가능		
	- 작은k는 극단값 및노이즈를 허용하여 클러스터링 오류기능		
클러스터 매칭			
	- 명목데이터경우, Majority voting가반의 클라스터 매칭 수행 k개 테이터가 많이 속해있는 클라스터로 새로운 값을 분류		
	- 수치형 데이터 경우k개데이터의 평균(또는 기중평균)을 이용하여 클러스터 매칭(
	テカ· http://blog.ngu		

1 ^{채원의 제주} 개념정의

차원의 저주(Curse of Dimensionality)

차원이 증가하면 그것을 표현하기 위한 데이터 양이 기하급수적으로 증가하며 그로 인해 신뢰도가 낮아지고 러닝 타임이 길어지고 정확도가 크게 감소한다.

> - Rechard E Bellman - 데이터 시각화 세션 中

K-NN 알고리즘에서 차원의 저주

차원이 커지면, 점의 개수가 같아도 점과점 사이의 최소 거리가 점점 길어져 평균 길이와 비슷해 진다. 최소 길이와 평균길이가 비슷해 지면 K-근접이웃방법에서 '이웃'의 의미가 없어지게 된다. 즉 차원이 커질 수록 최소 길이의 의미가 없어져 이웃 점에 대한 신뢰성이 떨어지게 된다.

K-NN 알고리즘에서 차원의 저주

Big O Notation

BigO란 알고리즘의 성능과 복잡성을 설명해 준다.

흔히 Feature 또는 Dimension을 늘리는 것은 쉽다. 하지만 알고리즘 (특히 K-NN 알고리즘와 같은 lazy learning 알고리즘)에는 전혀 도움이 안된다!

목표:Best fitting line찾기

How?

How?

s.t.

$$(w \cdot x + b) \ge 1, \forall x \text{ of class } 1$$

 $(w \cdot x + b) \le -1, \forall x \text{ of class } 2$

$$\begin{aligned} \max_{\alpha} & W(\alpha) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle. \\ \text{s.t.} & \alpha_i \geq 0, \ i = 1, \dots, m \\ & \sum_{i=1}^m \alpha_i y^{(i)} = 0, \end{aligned}$$

Polynomial

$$k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j)^d$$

Gaussian Radial Basis function

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\left\|\mathbf{x}_i - \mathbf{x}_j\right\|^2}{2\sigma^2}\right)$$

Sckit Learn

```
13
14  clf = svm.SVC()
15
16  clf.fit(X_train, y_train)
17  confidence = clf.score(X_test, y_test)
18  print(confidence)
19
20  example_measures = np.array([[4,2,1,1,1,2,3,2,1]])
21  example_measures = example_measures.reshape(len(example_measures), -1)
22  prediction = clf.predict(example_measures)
23  print(prediction)
```

GroWth

Thank you