9. Чисельне інтегрування

9.1. Постановка задачі чисельного інтегрування

Нехай потрібно знайти

$$I(f) = \int_{a}^{b} \rho(x)f(x) dx, \tag{1}$$

де f — задана функція, ho(x)>0 — деякий ваговий множник. Ця задача часто вимагає чисельного вирішення, оскільки

- значна кількість інтегралів типу (1) не можуть бути обчислені аналітично;
- ullet інформація про функцію f може бути задана у вигляді таблиці.

Нагадаємо, що за означенням

$$I(f) = \lim_{\Delta \to 0} \sum_{i=1}^{n} \rho(\xi_i) f(\xi_i) \Delta x_i, \tag{2}$$

де $\Delta x_i=x_i-x_{i-1}$, а $\{x_i\}_{i=0}^n$ — розбиття проміжку [a,b], $x_i\in[a,b]$, $\xi_i\in[x_{i-1},x_i]$.

Означення: Тому візьмемо як наближення таку суму, яка називається *квадратурною формулою*:

$$I_n(f) = \sum_{k=0}^n c_k f(x_k), \qquad \qquad (3)$$

де x_k — вузли квадратурної формули, а c_k — її вагові множники.

Задача полягає в тим, щоб вибрати $\{x_n,c_k\}_{k=0}^n$, так щоб похибка була найменша:

$$R_n(f) = I(f) - I_n(f) o \min$$
 (4)

Означення: Квадратурну формулу (3) називають квадратурною формулою *замкненого типу*, якщо $x_0 = a$ та $x_n = b$, і *відкритого типу*, якщо $x_0 > a$ та $x_n < b$.

Означення: Кажуть, що квадратурна формула (3) має m-ий степінь алгебраїчної точності, якщо

$$\forall f \in \pi_m: \quad R_n(f) = 0, \tag{5}$$

де π_m — множина поліномів m-го степеня, і

$$\exists P_{m+1}(x) \in \pi_{m+1}: \quad R_n(P_{m+1}) \neq 0.$$
 (6)

Цю умову можна замінити умовою

$$R_n(x^{\alpha}) = 0, \quad \alpha = \overline{0, m}, \quad R_n(x^{m+1}) \neq 0,$$
 (7)

вона більш зручна для перевірки.

Розглянемо деякі підходи до побудови квадратурних формул:

1. Інтерполяційний. Він приводить до квадратурних формул інтерполяційного типу. В інтегралі (1) покладають $f(x) \approx L_n(x)$ по деяких вузлах $\{x_k\}_{k=0}^n$ (вузли фіксовані). Тоді:

$$I_n(f)pprox I(L_n(x))=\int\limits_a^b
ho(x)\sum_{k=0}^mrac{f(x_k)\omega_n(x)}{(x-x_k)\omega_n'(x)}\,\mathrm{d}x=\sum_{k=0}^nf(x_k)\int\limits_a^b
ho(x)rac{\omega_n(x)}{(x-x_k)\omega_n'(x_k)}\,\mathrm{d}x. ~~~(8)$$

Отже вузлами цієї квадратурної формули є вузли інтерполяційного багаточлена, а вагові множники

$$c_j = \int_a^b \rho(x) \frac{\omega_n(x)}{(x - x_k)\omega_n'(x_k)} \, \mathrm{d}x \tag{9}$$

- 2. Найвищого алгебраїчного степеня точності. Вибираємо одночасно x_k і c_k з умови $R_n(x)=0$, $\alpha=\overline{0,m}$, щоб m було максимальним. Отримуємо систему нелінійних алгебраїчних рівнянь, розв'язавши яку отримуємо квадратурні формули найвищого алгебраїчного степеня точності.
- 3. Складені квадратурні формули. Проміжок [a,b] розбиваємо на підпроміжки (наприклад однокової довжини), а потім на кожному проміжку використовуємо, з невеликим степенем, формули з пункту 1 або 2. Наприклад, для формул інтерполяційного типу:

$$I(f) = \sum_{i=1}^{N} \int\limits_{x_{i-1}}^{x_i}
ho(x) f(x) \, \mathrm{d}x pprox \sum_{i=1}^{N} \sum_{k=0}^{n} c_k^i f(x_k^i) = I_h(f).$$
 (10)

Означення: Кажуть, що квадратурна формула складеного типу I_h має *порядок (степінь) точності р* по кроку h, якщо $R_h(f) = I(f) - I_h(f) = O(h^p)$.

4. *Квадратурні формули оптимальні на класі функцій*. Вибираємо $\{x_k, c_k\}$ так, щоб досягався

$$\inf_{x_k, c_k} \sup_{f \in F} R_n(f). \tag{11}$$

Це ми можемо робити, коли знаємо з яким класом функцій маємо справу.

Зауваження 1 (*про квадратурні формули інтерполяційного типу*): При підвищенні степеня інтерполяції погіршується якість наближення функції внаслідок розбіжності процесу інтерполяції:

$$|f - L_n|_C \xrightarrow[n \to \infty]{} 0.$$
 (12)

Але

$$R_n \xrightarrow[n \to \infty]{} 0.$$
 (13)

наприклад, для $f \in C([a,b]).$

І все ж таки розбіжність процесу інтерполювання дає взнаки:

$$\max_{k} |c_k| \xrightarrow[n \to \infty]{} \infty. \tag{14}$$

і це приводить до поганих наслідків чисельного інтегрування. Дійсно, розглянемо випадок, коли функція задана неточними значеннями:

$$ilde{f}\left(x_{k}
ight)=f(x_{k})+\delta_{k},\quad\left|\delta_{k}
ight|<\delta. ag{15}$$

Тоді

$$\delta I_n(f) = I_n(\tilde{f}) - I_n(f) = \sum_{k=0}^n c_k \delta_k. \tag{16}$$

Якщо всі $c_k>0$, то

$$|\delta I| = \sum_{k=0}^{n} c_k |\delta_k| \le \delta \sum_{k=0}^{n} c_k = \delta(b-a). \tag{17}$$

При $ho\equiv 1$, якщо підставити $f\equiv 1$, то отримаємо

$$b - a = \int_{a}^{b} dx = \sum_{k=0}^{n} c_{k}.$$
 (18)

При $\rho \neq 1$:

$$\sum_{k=0}^{n} c_k = \int_{a}^{b} \rho(x) \, \mathrm{d}x,\tag{19}$$

бо хоча б нульовий степінь точності будь-яка квадратурна формула повинна мати.

Нагадаємо, що

$$\max_{k} |c_k| \xrightarrow[n \to \infty]{} \infty, \tag{20}$$

а оскільки $\sum c_k > 0$, то $\exists c_k > 0$ і $\exists c_k < 0$, тому з ростом n зростає $|c_k|$, а відповідно і вплив похибки на результат. Тому не можна використовувати великі степені і використовують складені квадратурні формули.

Зауваження 2: Ясно, що квадратурні формули інтерполяційного типу мають алгебраїчний степінь точності принаймні m=n, бо ми заміняємо $f\mapsto L_n$, а якщо $f\in\pi_n$, то $f\equiv L_n$. Але виявляється, що для парних n та симетричному розташуванні вузлів інтегрування, m=n+1, тобто алгебраїчний степінь точності на одиницю вищий степеня інтерполяції.

9.2. Квадратурні формули прямокутників

Припустимо, що $ho\equiv 1$. Тоді можна побудувати такі квадратурні формули інтерполяційного типу при n=0:

- 1. лівих прямокутників: $x_0 = a$: $I_0^L = (b-a) \cdot f(a)$;
- 2. правих прямокутників: $I_0^R = (b-a) \cdot f(b)$, $x_0 = b$;
- 3. середніх прямокутників:

$$I_0 = (b-a) \cdot f(x_0), \quad x_0 = \frac{a+b}{2}$$
 (21)

Знайдемо тепер алгебраїчну степінь точності цих квадратурних формул. Для лівих прямокутників:

$$I_0^L(1) = b - a = I(1),$$
 (22)

$$I_0^L(x) = (b-a) \cdot a \neq \frac{b^2 - a^2}{2} = \int_a^b x \, \mathrm{d}x = I(x),$$
 (23)

отже степінь точності m=0. Така ж вона буде і для I_0^R . А для середніх прямокутників

$$I_0(x) = (b-a) \cdot \frac{a+b}{2} = I(x),$$
 (24)

$$I_0(x^2) = (b-a) \cdot \left(\frac{a+b}{2}\right)^2
eq \frac{b^3 - a^3}{3} = \int\limits_a^b x^2 \, \mathrm{d}x = I(x^2),$$
 (25)

тому m=1. Отож нею і будемо користуватися.

Оцінимо для неї похибку. Взагалі для формули інтерполяційного типу:

$$R_n(f) = I(f) - I_n(f) = I(f) - I(L_n) = I(f - L_n) = I(r_n) = \int_a^b r_n(x) dx,$$
 (26)

де $r_n(x)$ — залишковий член інтерполяції. Далі

$$|R_n(f)| \le (b-a) \cdot \max_x |r_n(x)| \le (b-a) \cdot \frac{M_{n+1}}{n+1} \cdot \max_x |\omega_n(x)|.$$
 (27)

Для I_0 :

$$|R_0(f)| = \left| \int_a^n r_0(x) \, \mathrm{d}x \right| \le \int_a^b |r_0(x)| \, \mathrm{d}x \le \int_a^b \frac{M_1}{1!} |x - x_0| \, \mathrm{d}x =$$

$$= M_1 \int_a^b |x - x_0| \, \mathrm{d}x \le M_1 \cdot \frac{b^2 - a^2}{4}.$$
(28)

Але це погана оцінка, вона не використовує той факт, що квадратурна формула має степінь точності на одиницю вищу. Отримаємо кращу оцінку. Маємо при $f \in C^2([a,b])$:

$$f(x) = f(x_0) + (x - x_0) \cdot f'(x_0) + \frac{(x - x_0)^2}{2} \cdot f''(\xi), \tag{29}$$

де $x_0\equiv rac{a+b}{2}$, а $\xi\in [a,b]$. Тоді

$$R_{0}(f) = \int_{a}^{b} f(x) dx \int_{a}^{b} L_{0}(x) dx = \int_{a}^{b} (f(x) - f(x_{0})) dx =$$

$$= \int_{a}^{b} \left((x - x_{0})f'(x_{0}) + \frac{(x - x_{0})^{2}}{2} f''(\xi) \right) dx =$$

$$= \int_{a}^{b} \frac{(x - x_{0})^{2}}{2} \cdot f''(\xi) dx = f''(\eta) \int_{a}^{b} \frac{(x - x_{0})^{2}}{2} dx = \frac{f''(\eta)}{24} \cdot (b - a)^{3}.$$
(30)

Таким чином

$$|R_0(f)| \le \frac{M_2}{24} \cdot (b-a)^3 \tag{31}$$

Але тут у нас немає впливу на точність (величину похибки). Тому використовують формулу складеного типу. Якщо сітка рівномірна, то складена квадратурна формула прямокутників має вигляд

$$I(f) = \sum_{i=1}^{n} \int\limits_{x_{i-1}}^{x_{i}} f(x) \, \mathrm{d}x pprox \sum_{i=1}^{N} h \cdot f(ar{x}_{i}) = I_{h}(f),$$
 (32)

де $ar{x}_i = x_{i-1/2} = x_i - h/2.$

Оцінимо похибку цієї квадратурної формули:

$$R_h(f) = I(f) - I_h(f) = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} (f(x) - f(\bar{x}_i)) \, \mathrm{d}x = \sum_{i=1}^{N} f''(\eta_i) \cdot \frac{h^3}{24},\tag{33}$$

$$|R_h(f)| \le \frac{M_2}{24} nh^3 = \frac{M_2 h^2 (b-a)}{24}.$$
 (34)

Тобто ця формула має степінь точності p=2 по кроку h. (Не слід плутати з алгебраїчним степенем точності m=1 для цієї формули).

Якщо $f(x) \in C^4([a,b])$, то

$$f(x) - f(\bar{x}_i) = f(\bar{x}_i) + (x - \bar{x}_i)f'(\bar{x}_i) + \frac{(x - \bar{x}_i)^2}{2} \cdot f''(\bar{x}_i) + \frac{(x - \bar{x}_i)^3}{6} \cdot f'''(\bar{x}_i) + \frac{(x - \bar{x}_i)^4}{24} \cdot f^{(4)}(\xi_i) - f(\bar{x}_i).$$
(35)

При непарних степенях інтеграли пропадуть і тому:

$$R_{h}(f) = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_{i}} \frac{(x - \bar{x}_{i})^{2}}{2} \cdot f''(\bar{x}_{i}) dx + \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \frac{(x - \bar{x}_{i})^{4}}{24} \cdot f^{(4)}(\xi_{i}) dx =$$

$$= \frac{h^{2}}{24} \sum_{i=1}^{N} h \cdot f''(\bar{x}_{i}) + \sum_{i=1}^{N} \frac{h^{5} \cdot f^{(4)}(\eta_{i})}{1920}.$$
(36)

Оскільки

$$\sum_{i=1}^{N} h \cdot f''(\bar{x}_i) \tag{37}$$

це квадратурна формула середніх прямокутників для f''(x) з похибкою $O(h^2)$, то

$$R_h(f) = rac{h^2}{24} \int\limits_a^b f''(x) \, \mathrm{d}x + O(h^4) = O(h^4),$$
 (38)

 $R_h(f) = \overset{\circ}{R}_h(f) + \alpha(h), \tag{39}$

де

i

$$\overset{\circ}{R}_h(f) = rac{h^2}{24} \int\limits_a^b f''(x) \, \mathrm{d}x,$$
 (40)

де $\alpha(h) = O(h^4)$.

Ця формула використовується для побудови програм, що автоматично вибирають крок інтегрування.

9.3. Формула трапеції

Нехай $x_0=a$, $x_1=b$, $L_1(x)=f(x)$. Тоді отримаємо формулу:

$$I_1(f) = \frac{b-a}{2} \cdot (f(a) + f(b)) \tag{41}$$

Формула має алгебраїчний степінь точності m=1, оскільки $I(x^2) \neq I_1(x^2)$. Це формула замкненого типу. Залишковий член:

$$R_1(f) = \int_a^b \frac{f''(\xi)(x-a)(x-b)}{2} dx = -\frac{(b-a)^3}{12} \cdot f''(\xi).$$
 (42)

Оцінка залишкового члена:

$$|R_1(f)| \le M_2 \cdot \frac{(b-a)^3}{12}. (43)$$

З геометричної точки зору замінюється площа криволінійної трапецій площею звичайної трапеції.

Складена квадратурна формула трапецій:

$$I_h(f) = \sum_{i=1}^{N} \frac{h}{2} \cdot (f(x_{i-1}) + f(x_i)) =$$

$$= \frac{h}{2} \cdot f(a) + \sum_{i=1}^{N-1} h \cdot f(x_i) + \frac{h}{2} \cdot f(b),$$
(44)

де $x_i=a+ih$, $h=rac{b-a}{N}$, $i=\overline{0,N}$ та

$$|R_h(f)| \le M_2 \cdot rac{b-a}{12} \cdot h^2, \quad f \in C^2([a,b]).$$
 (45)

Якщо $f \in C^4([a,b])$, то

$$R_h(f) = \overset{\circ}{R}_h(f) + \alpha(h), \tag{46}$$

де

$$\overset{\circ}{R}_{h}(f) = -\frac{h^{2}}{12} \int_{a}^{b} f''(x) \, \mathrm{d}x,$$
 (47)

a $lpha(h)=O(h^4).$

Задача 29: Використовуючи явний вигляд головних членів похибки складених квадратурних формул прямокутників та трапецій, побудувати лінійною комбінацією цих двох формул квадратурну формулу

четвертого степеня точності за кроком h.

9.4. Квадратурна формула Сімпсона

Нехай $x_0=a$, $x_1=rac{a+b}{2}$, $x_2=b$. Замість f використовуємо $L_2(x)$. Тоді отримаємо квадратурну формулу:

$$I_2(f)=rac{b-a}{6}igg(f(a)+4f\left(rac{a+b}{2}
ight)+f(b)igg)\,. \hspace{1.5cm} (48)$$

Це квадратурна формула Сімпсона.

Задача 30: Довести, що алгебраїчна степінь точності квадратурної формули Сімпсона m=3.

Задача 31: Довести, що для $f \in C^4([a,b])$ залишковий член квадратурної формули Сімпсона має місце представлення:

$$R_2(f) = \frac{1}{24} \int_a^b (x-a) \left(x - \frac{a+b}{2}\right)^2 (x-b) f^{(4)}(\xi) dx = \frac{f^{(4)}(\xi)}{2880} \cdot (b-a)^5, \tag{49}$$

та вірна оцінка:

$$|R_2(f)| \le \frac{M_4}{2880} \cdot (b-a)^5. \tag{50}$$

Складена квадратурна формула Сімпсона має вигляд:

$$I_{h}(f) = \sum_{i=1}^{N} \frac{h}{6} \left(f(x_{i-1}) + 4f(x_{i-1/2}) + f(x_{i}) \right) =$$

$$= \frac{h}{6} (f(x_{0}) + 4f(x_{1/2}) + 2f(x_{1}) + \dots + 2f(x_{N-1}) + 4f(x_{N-1/2}) + f(x_{N})).$$
(51)

Якщо $f \in C^4([a,b])$, то має місце оцінка:

$$|R_h(f)| \le \frac{M_4}{2880} \cdot (b-a) \cdot h^4, \quad p = 4.$$
 (52)

Якщо $f \in C^6([a,b])$, то

$$R_h(f) = \overset{\circ}{R}_h(f) + \alpha(h), \tag{53}$$

де

$$\overset{\circ}{R}_{h}(f) = \frac{h^{4}}{2880} \int_{a}^{b} f^{(4)}(x) \, \mathrm{d}x, \tag{54}$$

Задача 32: Побудувати інтерполяційну квадратурну формулу для n=3, $x_0=a$, $x_1=\frac{3a+b}{4}$, $x_2=\frac{a+3b}{4}$, $x_3=b$. Який алгебраїчний степінь точності вона має?

9.5. Принцип Рунге

Нехай задана деяка величина I (сіткова функція, інтеграл, неперервна функція). Нехай $I_h \approx I$ та $I_n \to I$ при $h \to 0$. Нехай похибка послідовності I_h представляється у вигляді:

$$R_h = I - I_h = \overset{\circ}{R}_h + \alpha(h), \tag{55}$$

де $\overset{\circ}{R}_h=C\cdot h^m$ — головний член похибки, C не залежить від h, $lpha(h)=o(h^m)$. Обчислимо $I_{h/2}$. З (55) випливає, що

$$I = I_h + Ch^m + \alpha(h), \tag{56}$$

$$I = I_{h/2} + C \cdot \frac{h^m}{2^m} + \alpha(h). \tag{57}$$

Звідси

$$I_{h/2} - I_h = \frac{Ch^m}{2^m} \cdot (2^m - 1) + \alpha(h).$$
 (58)

3 (55):

$$\overset{\circ}{R}_{h/2} = \frac{Ch^m}{2^m} = \frac{I_{h/2} - I_h}{2^m - 1},\tag{59}$$

та

$$\overset{\circ}{R}_{h} = \frac{2^{m}}{2^{m} - 1} \cdot (I_{h/2} - I_{h}). \tag{60}$$

Означення: Формула (59) носить назву *апостеріорної оцінки* похибки обчислення I за допомогою наближення $I_{h/2}$. (Апріорні оцінки це оцінки отримані до обчислення величини I_h , *апостеріорні оцінки* — під час її обчислення).

З формули (59) впливає такий алгоритм обчислення інтегралу із заданою точністю arepsilon:

- ullet обчислюємо I_h , $I_{h/2}$, $\overset{\circ}{R}_{h/2}$;
- ullet перевіряємо чи $\left| \stackrel{\circ}{R}_{h/2}
 ight| < arepsilon.$
 - $\circ~$ Якщо так, то $Ipprox I_{h/2}$;
 - Якщо ж ні, то:
 - lacksquare обчислюємо $I_{h/2}$, $I_{h/4}$, $\overset{\circ}{R}_{h/4}$;
 - lacktriangle перевіряємо $\left| \stackrel{\circ}{R}_{h/4}
 ight| < arepsilon$ і т. д.
- ullet Процес продовжуємо поки не буде виконана умова $\left|\stackrel{\circ}{R}_{h/2^k}
 ight|<arepsilon$, $k=1,2,\ldots$

Зауваження: Ми даємо оцінку не похибки, а її головного члена з точністю lpha(h), тому такий метод може давати збої, якщо не виконана умова

$$|lpha(h)| \ll \left| \stackrel{\circ}{R}_{h/2^k} \right|.$$
 (61)

За допомогою головного члена похибки можна отримати краще значення для I:

$$\tilde{I}_{h/2} = I_{h/2}^{(1)} = I_{h/2} + \overset{\circ}{R}_{h/2} = \frac{2^m}{2^m - 1} \cdot I_{h/2} - \frac{1}{2^m - 1} \cdot I_h.$$
 (62)

Це екстраполяційна формула Річардсона: $I_h - ilde{I}_{h/2} = lpha(h)$.

Для квадратурної формули трапецій p=2 і

$$I - I_h = Ch^2 + O(h^4), (63)$$

$$\overset{\circ}{R}_{h/2} = \frac{I_{h/2} - I_h}{3}.$$
 (64)

Маємо

$$R_h = -\frac{h^2}{12} \int_a^b f''(x) \, \mathrm{d}x + O(h^4) = O(h^2). \tag{65}$$

Отже, якщо застосовувати екстраполяційну формулу Річардсона, то

$$\tilde{I}_{h/2} = \frac{4}{3} \cdot I_{h/2} - \frac{1}{3} \cdot I_h, \tag{66}$$

i $I_h - ilde{I}_{h/2} = O(h^4).$

Задача 33: Написати явний вигляд квадратурної формули, яка отримується екстраполяцією Річардсона з квадратурної формули трапецій.

Якщо невідомо m, то можна використати принцип Рунге для його знаходження. Для цього використаємо I_h , $I_{h/2}$, $I_{h/4}$:

$$I_{h/2} - I_h = \frac{Ch^m}{2^m} \cdot (2^m - 1) + \alpha(h),$$
 (67)

$$I_{h/4} - I_{h/2} = \frac{Ch^m}{2^{2m}} \cdot (2^m - 1) + \alpha(h), \tag{68}$$

З точністю lpha(h) маємо

$$2^m = \frac{I_{h/2} - I_h}{I_{h/4} - I_{h/2}}. (69)$$

Звідки

$$m = \log_2\left(\frac{I_{h/2} - I_h}{I_{h/4} - I_{h/2}}\right). \tag{70}$$

Оцінка $\left|\stackrel{\circ}{R}_{h/4}
ight|<arepsilon$ — найбільш точна, тому $Ipprox I_{h/4}$.

Покажемо чому формулу прямокутників рідко використовують з принципом Рунге. Нехай точки, в яких обчислюється значення функції позначаються: в I_h — ${\color{olive}\circ}$, в $I_{h/2}$ — ${\color{olive}\times}$.

Для формули трапецій використовуються такі точки:

Для формули прямокутників:

Як бачимо для формули трапецій необхідно підраховувати нові значення в N точках, а для формули прямокутників в 2N.

Для економного використання обчислених значень функції на сітці з кроком h для формули трапецій запишемо:

$$I_h = \frac{h}{2} \left(f(a) + 2 \sum_{i=1}^{N-1} f(x_i) + f(b) \right),$$
 (71)

$$I_{h/2} = rac{h}{4} \Biggl(f(a) + 2 \sum_{i=1}^{N-1} f(x_i) + 2 \sum_{i=1}^{N-1} f(x_{i-1/2}) + f(b) \Biggr) = rac{1}{2} \cdot I_h + rac{h}{2} \sum_{i=1}^{N-1} f(x_{i-1/2}).$$
 (72)

Отже, на одному кроці принципу Рунге кількість обчислень $Q_t = O(N)$, а для $Q_r = O(2N)$.

Цей принцип застосовується і для формули Сімпсона m=4. Головна частина залишкового члена для цієї формули:

$$\overset{\circ}{R}_{h/2} = \frac{I_{h/2} - I_h}{15}. (73)$$

$$\tilde{I}_{h/2} = \frac{16}{15} \cdot I_{h/2} - \frac{1}{15} \cdot I_h, \tag{74}$$

$$I_h - \tilde{I}_{h/2} = O(h^6). \tag{75}$$

Розглянемо використання так званих *адаптивних квадратурних формул*, в яких змінний крок вибирається за принципом Рунге. Для цього запишемо формулу трапецій із змінним кроком:

$$I_h(f) = \sum_{i=1}^{N} \frac{h_i}{2} \cdot (f(x_{i-1}) + f(x_i)), \tag{76}$$

де $h_i = x_i - x_{i-1}$.

Оцінимо похибку на кожному інтервалі:

$$R_{h_i} = I_i - I_{h_i} = \int_{x_{i-1}}^{x_i} f(x) \, \mathrm{d}x - \frac{h_i}{2} (f(x_{i-1}) + f(x_i)) = -\frac{h_i^3}{6} \cdot f'(x_{i-1/2}) + O(h_i^5). \tag{77}$$

Таким чином p=3 і головний член похибки:

$$\overset{\circ}{R}_{h/2} = \frac{I_{h_i/2} - I_{h_i}}{7}. (78)$$

Умова припинення ділення навпіл проміжку $[x_{i-1}, x_i]$:

$$\left| \stackrel{\circ}{R}_{h_i/2} \right| \le \frac{\varepsilon \cdot h_i}{b - a}. \tag{79}$$

Це забезпечує точність на всьому інтервалі

$$\left| \stackrel{\circ}{R}_{h/2} \right| = \left| \sum_{i=1}^{N} R_{h_i/2} \right| \le \sum_{i=1}^{N} \frac{\varepsilon \cdot h_i}{b-a} = \varepsilon \cdot \frac{b-a}{b-a} = \varepsilon.$$
 (80)

Ще одне застосування принципу Рунге — високоточне обчислення інтегралу від достатньо гладкої функції за допомогою *таблиці Ромберга*. Для побудови цієї таблиці обчислимо за допомоги складеної квадратурної формули трапецій із сталим кроком h послідовність значень $I_h = I_h^{(0)}$, $I_{h/2} = I_{h/2}^{(0)}$, $I_{h/4} = I_{h/4}^{(0)}$, $I_{h/8} = I_{h/8}^{(0)}$, . . . які мають похибку $O(h^2)$. За допомогою екстраполяції Річардсона $G(h^2)$ з коефіцієнтами лінійної комбінації $G(h^2)$, $G(h^2)$, знову використовуємо екстраполяцію Річардсона з коефіцієнтами лінійної комбінації $G(h^2)$, знову використовуємо екстраполяцію Річардсона з коефіцієнтами лінійної комбінації $G(h^2)$, $G(h^2)$, отримаємо $G(h^2)$, отримаємо $G(h^2)$, які мають точність $G(h^2)$ і т. д.

	0	1	2	3
h	$I_h^{(0)}$			
h/2	$I_{h/2}^{\left(0 ight)}$	$I_{h/2}^{(1)}$		
h/4	$I_{h/4}^{\left(0 ight)}$	$I_{h/4}^{(1)}$	$I_{h/4}^{(2)}$	
h/8	$I_{h/8}^{\left(0 ight)}$	$I_{h/8}^{(1)}$	$I_{h/8}^{(2)}$	$I_{h/8}^{(3)}$

Означення: Отримані значення можна розмістити в такій *таблиці Ромберга*:

Всі значення крім останнього $I_{h/8}^{(3)}$ можна оцінити за принципом Рунге (див. формулу (59)). Використання формули (72) для обчислення $I_{h/2^k}^{(0)}$ та лінійні комбінації (59) дають простий та економічний алгоритм обчислення I. Початкове значення h можна брати рівним b-a, або $\frac{b-a}{n}$, де n ціле.

9.6. Квадратурні формули найвищого алгебраїчного степеня точності

Розглянемо інтеграл:

$$I(f) = \int_{a}^{b} \rho(x)f(x) dx,$$
(81)

де

$$ho(x)>0,\quad x\in[a,b],\quad \left|\int\limits_a^b
ho(x)x^i\,\mathrm{d}x
ight|<\infty$$

Розглянемо задачу побудови квадратурної формули:

$$I_n(f) = \sum_{k=1}^n c_k f(x_k),$$
 (83)

яка при заданому n була б точною для алгебраїчного багаточлена можливо більшого степеня.

Означення: Такі квадратурні формули існують, вони називаються квадратурні формули *найвищого алгебраїчного степеня точності* або формули Гауса (або Гауса-Крістофеля).

В (83) невідомими є c_k , x_k , $k=\overline{1,n}$. Їх обирають з умови, що (83) точна для будь-якого багаточлена степеня p, а це еквівалентно умові, щоб формула була точною для функції $f(x)=x^{\alpha}$, $\alpha=\overline{0,p}$. Звідси отримуємо умови:

$$I_n(x^lpha) = \int\limits_a^n
ho(x) x^lpha \,\mathrm{d}x = \sum_{k=1}^n c_k x_k^lpha, \quad lpha = 0, p.$$
 (84)

Ми хочемо отримати формули для $m o \max$. Щоб кількість рівнянь була рівною кількості невідомих нам потрібно, щоб p+1=2n.

Задача 34: Побудувати квадратурну формулу найвищого степеня точності (розв'язати систему рівнянь (84) для a=-1, b=1, ho(x)=1.

Теорема (*Гаусса*): Квадратурна формула (83) буде точною для будь-якого багаточлена степеня p=2n-1, тобто $\forall f(x)\in\pi_{2n-1}$ тоді і тільки тоді, коли виконуються умови:

1. поліном $\omega(x)=(x-x_1)(x-x_2)\dots(x-x_n)$ ортогональний з вагою $\rho(x)$ до будь-якого багаточлена степеня менше n,Q_{n-1} :

$$\int_{a}^{b} \omega(x)Q_{n-1}(x)\rho(x) dx = 0; \tag{85}$$

2. формула (83) є квадратурною формулою інтерполяційного типу, тобто коефіцієнти обчислюються за формулою:

$$c_k = \int_a^b \rho(x) \frac{\omega(x)}{(x - x_k)\omega'(x_k)} \, \mathrm{d}x. \tag{86}$$

Доведення:

1. *Необхідність*: Нехай формула (83) точна для багаточлена степеня p=2n-1, тобто $I(f)=I_n(f)$, $orall f(x)\in\pi_{2n-1}$. Тоді

$$I(f) = \int_{a}^{b} \rho(x)\omega(x)Q_{n-1}(x) dx = \sum_{k=1}^{n} c_k\omega(x_k)Q_{n-1}(x_k) = 0.$$
 (87)

Тобто виконується (85). Тепер покладемо

$$f(x) = \frac{\omega(x)}{(x - x_j)\omega'(x_j)} \in \pi_{n-1} \subset \pi_{2n-1}. \tag{88}$$

Отримаємо

$$\int_{a}^{b} \rho(x)f(x) dx = \int_{a}^{b} \rho(x) \frac{\omega(x)}{(x - x_j)\omega'(x_j)} dx =$$

$$= \sum_{k=1}^{n} c_k \frac{\omega(x_k)}{(x_k - x_j)\omega'(x_j)} = \sum_{k=1}^{n} c_k \delta_{kj} = c_j.$$
(89)

тобто виконується і умова (86).

2. *Достатність*: Нехай виконується (85) і (86). Подамо $\forall f(x) \in \pi_{2n-1}$ у вигляді

$$f(x) - \omega(x)Q_{n-1}(x) + R_{n-1}(x). \tag{90}$$

Розглянемо

$$I(f) = \int_{a}^{b}
ho(x)f(x) \, \mathrm{d}x = \int_{a}^{b}
ho(x)(\omega(x)Q_{n-1}(x) + R_{n-1}(x)) \, \mathrm{d}x = \ = \sum_{k=1}^{n} c_k \omega(x_k)Q_{n-1}(x_k) + \sum_{k=1}^{n} c_k R_{n-1}(x_k).$$
 (91)

Оскільки $R_{n-1}(x_k) = f(x_k) - \omega(x_k) Q_{n-1}(x_k) = f(x_k)$, то

$$I(f) = \sum_{k=1}^{n} c_k f(x_k) = I_n(f).$$
(92)

Тобто формула (83) є точною для будь-якого багаточлена степеня 2n-1. \square

Отже, з точністю до сталого множника багаточлени $\omega(x)$ співпадають з багаточленами n-того степеня ортогональної системи багаточленів. Ця система ортогональна на проміжку [a,b] з вагою $\rho(x)$.

Вивчимо деякі властивості квадратурних формул Гауса:

1. Покажемо, що c_k , x_k визначаються однозначно.

Представимо багаточлен $\omega(x)$ у вигляді

$$\omega(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + x^n.$$
(93)

Умови ортогональності (85) приймуть вигляд

$$\int\limits_a^b
ho(x)\omega(x)x^lpha\,\mathrm{d}x = \int\limits_a^b
ho(x)(a_0+\ldots+x^n)x^lpha\,\mathrm{d}x = 0,$$
 (94)

де lpha=0,n-1, або

$$\int_{a}^{b} \rho(x)(a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}) x^{\alpha} dx = -\int_{a}^{b} \rho(x) x^n x^{\alpha} dx.$$
 (95)

Покажемо, що відповідна однорідна система рівнянь

$$\int_{a}^{b} \rho(x)(a_0 + a_1x + \ldots + a_{n-1}x^{n-1})x^{\alpha} dx = 0, \tag{96}$$

де $lpha=\overline{0,n-1}$, має єдиний розв'язок $a_0=a_1=\ldots=a_{n-1}=0.$

Помножимо систему (96) на a_{α} і просумуємо по всіх $\alpha=0,n-1$:

$$\sum_{\alpha=0}^{n-1} a_{\alpha} \int_{a}^{b} \rho(x) (a_{0} + a_{1}x + \dots + a_{n-1}x^{n-1}) x^{\alpha} dx =
= \int_{a}^{b} \rho(x) \sum_{\alpha=0}^{n-1} \sum_{j=0}^{n-1} a_{j} a_{\alpha} x^{\alpha} x^{j} dx = \int_{a}^{b} \rho(x) \left(\sum_{j=0}^{n-1} a_{j} x^{j} \right)^{2} dx = 0.$$
(97)

Звідси і з умови $\rho(x)>0$ випливає, що $a_0=a_1=\ldots=a_{n-1}=0$. Тому і відповідна неоднорідна система має єдиний розв'язок. Отже існує єдиний багаточлен $\omega(x)$ степеня n, який ортогональний з вагою $\rho(x)$ до будь-якого багаточлена степеня n-1.

2. Покажемо, що найвищий степінь точності формули Гаусса p=2n-1. З теореми випливає, що $p\geq 2n-1$. Покажемо, що існує багаточлен степеня 2n, для якого формула не є точною. Для цього введемо функцію $f(x)=\omega^2(x)\in\pi_{2n}$. Маємо

$$I(f) = \int_{a}^{n} \rho(x)\omega^{2}(x) dx > 0, \tag{98}$$

але

$$I_n(f) = \sum_{k=1}^n c_k \omega^2(x_k) = 0.$$
 (99)

Отже, $I(f)
eq I_n(f)$. Звідси $p \leq 2n-1$, тобто p=2n-1.

3. Коефіцієнти формул Гаусса додатні, тобто $c_k>0$. Розглянемо багаточлени

$$\varphi_j = \left(\frac{\omega(x)}{(x - x_j)\omega'(x_j)}\right)^2,\tag{100}$$

які мають степінь 2n-2 і властивості:

$$\varphi_i(x_k) = \delta_{ik}, \quad I(\varphi_j) = \int_a^b \rho(x)\varphi_j(x) \, \mathrm{d}x > 0.$$
(101)

Оскільки для цих багаточленів справедлива теорема Гауса, то

$$I(\varphi_j) = I_n(\varphi_j) = \sum_{k=1}^n c_k \varphi_j(x_k) = \sum_{k=1}^n c_k \left(\frac{\omega(x)}{(x - x_j)\omega'(x_j)} \right)^2 = \sum_{k=1}^n c_k \delta_{jk}^2 = c_j.$$
 (102)

Звідси випливає, що $c_j>0$, $j=\overline{1,n}$.

Теорема: Нехай вагова функція ho(x)>0, $x\in [a,b]$, $f(x)\in C^{2n}([a,b])$. Тоді існує точка $\xi\in [a,b]$ така, що

$$R_n(f) = \frac{f^{(2n)}(\xi)}{(2n)!} \int_a^b \rho(x)\omega^2(x) \, \mathrm{d}x.$$
 (103)

Доведення: Розглянемо інтерполяційний багаточлен Ерміта з двократними вузлами

$$H_{2n-1}(x): f(x_i) = H_{2n-1}(x_i) \wedge f'(x_i) = H'_{2n-1}(x_i),$$
 (104)

де i=1,m. Для нього

$$r_{2n-1}(x) = f(x) - H_{2n-1}(x) = rac{f^{(2n)}(\xi)}{(2n)!} \cdot \omega^2(x).$$
 (105)

Звідси

$$R_{2n-1}(x) = \int\limits_a^b
ho(x) r_{2n-1}(x) \, \mathrm{d}x = rac{f^{(2n)}(\xi)}{(2n)!} \int\limits_a^b
ho(x) \omega^2(x) \, \mathrm{d}x. \quad \Box$$
 (106)

9.7. Частинні випадки квадратурної формули Гауса

1. Розглянемо відрізок [-1,1] і ваговий множник ho(x)=1, тобто виведемо формули Гауса для обчислення інтегралу

$$\int_{-1}^{1} f(x) \, \mathrm{d}x. \tag{107}$$

Щоб знайти вузли квадратурна формули розглянемо багаточлени Лежандра:

$$(n+1)L_{n+1}(x) = (2n+1)xL_n(x) - nL_{n-1}(x), (108)$$

де $L_0 = 1$, $L_1(x) = x$.

Багаточлени Лежандра задовольняють умовам теореми 1 (пункт 1), тому $\omega(x)=L_n(x)$ і вузлами квадратурної формули є корені цього багаточлена. Вагові множники цієї формули обчислюються за формулою

$$c_k = \int_{-1}^{1} \frac{\omega(x)}{(x - x_k)\omega'(x_k)} \,\mathrm{d}x,\tag{109}$$

а залишковий член

$$R_n(f) = rac{2^{2n+1}}{(2n+1)!(2n)!} \cdot rac{(n!)^2}{(2n!)} \cdot f^{(2n)}(\xi).$$
 (110)

Приклад: Побудуємо квадратурну формулу

$$\int_{0}^{1} f(x) \, \mathrm{d}x \approx \sum_{k=1}^{n} c_k f(x_k). \tag{111}$$

При n=2 потрібно знайти c_0 , c_1 , x_0 , x_1 .

 $extit{Posb'язок}$: Заміною t=2x-1 переведемо $x\in[0,1]$ на проміжок $t\in[-1,1]$. Запишемо $L_2(t)=3t^2/2-1/2$. Звідси

$$L_2(x) = \frac{3(2x-1)-1}{2} = \frac{12x^2 - 12x + 2}{6} = 6x^2 - 6x + 1 = 0.$$
 (112)

Звідси $x_1=rac{3-\sqrt{3}}{6}$, $x_2=rac{3+\sqrt{3}}{6}$. За формулою (86) знайдемо

$$c_1 = \int_0^1 \frac{x - x_2}{x_1 - x_2} \, \mathrm{d}x = \frac{1}{2},\tag{113}$$

$$c_2 = \int_0^1 \frac{x - x_1}{x_2 - x_1} \, \mathrm{d}x = \frac{1}{2}.$$
 (114)

Тобто квадратурна формула має вигляд

$$\int_{0}^{1} f(x) \, \mathrm{d}x = \frac{1}{2} \left(f\left(\frac{3 - \sqrt{3}}{6}\right) + f\left(\frac{3 + \sqrt{3}}{6}\right) \right). \tag{115}$$

2. Розглянемо відрізок [-1,1] і вагу $ho(x)=1/\sqrt{1-x^2}$, тобто виведемо формулу Гауса для обчислення інтегралу

$$I(f) = \int_{-1}^{1} \frac{f(x) \, \mathrm{d}x}{\sqrt{1 - x^2}}.$$
 (116)

Багаточлени Чебишова задовольняють умовам теореми 1 (п.1), тому

$$\omega(x) = \overline{T}_n(x) = \frac{\cos(n\arccos(x))}{2^{n-1}}.$$
(117)

Вузлами квадратурної формули є корені цього багаточлена Чебишова, тобто корені рівняння $\cos(n\arccos(x))=0$. Звідси

$$x_k = \cos\left(\frac{(2k-1)\pi}{2n}\right), \quad k = \overline{1,n}.$$
 (118)

Відповідні коефіцієнти обчислюються за формулами

$$c_k = \int_{-1}^{1} \frac{\overline{T}_n(x) \, \mathrm{d}x}{\sqrt{1 - x^2} T_n'(x) (x - x_k)} = \frac{\pi}{n},\tag{119}$$

для k=1,n.

Означення Отже, квадратурні формули найвищого степеня точності (ці формули називають формулами Ерміта) мають вигляд

$$I_n(f) = \frac{\pi}{n} \sum_{k=1}^n f(x_k),$$
 (120)

де x_k — корені багаточлена Чебишова.

Залишковий член має вигляд

$$R_n(f) = \frac{\pi}{2^{2n-1}(2n)!} \cdot f^{(2n)}(\xi). \tag{121}$$

3. Розглянемо проміжок $(-\infty,\infty)$ і вагу $\rho(x)=\exp\{-x^2\}$, тобто виведемо формулу Гауса для обчислення інтегралу

$$\int_{-\infty}^{\infty} \exp\{-x^2\} f(x) \, \mathrm{d}x. \tag{122}$$

За теорією

$$\omega(x) = H_n(x) = (-1)^n e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-x^2},\tag{123}$$

де $H_n(x)$ — багаточлени Ерміта. Багаточлени Ерміта обчислюються також за рекурентними формулами

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x), (124)$$

з початковими умовами $H_{-1}=0$, $H_{0}=1$.

Коефіцієнти квадратурної формули обчислюються за формулами

$$c_k = \frac{2^{n+1} n! \sqrt{\pi}}{(H'_n(x_k))^2} \tag{125}$$

Залишковий член

$$R_n(f) = \frac{n!\sqrt{\pi}}{2^n(2n)!} \cdot f^{(2n)}(\xi). \tag{126}$$

Наприклад: при n=1, $H_1(x)=2x$. Корінь $x_0=0$,

$$c_0 = \int_{-\infty}^{\infty} \exp\{-x^2\} \, \mathrm{d}x = \sqrt{\pi}.$$
 (127)

Квадратурна формула має вигляд:

$$I_1(x) = \sqrt{\pi}f(0). {(128)}$$

4. Розглянемо відрізок $[0,\infty]$ і ваговий множник $ho(x)=x^{lpha}e^{-x}$, тобто виведемо формулу Гауса для обчислення інтегралу

$$\int_{0}^{\infty} x^{\alpha} e^{-x} f(x) \, \mathrm{d}x. \tag{129}$$

За теорією

$$\omega(x) = L_n^{\alpha}(x) = (-1)^n x^{-\alpha} e^x \frac{d^n}{dx^n} (x^{\alpha+n} e^{-x}), \tag{130}$$

де $L_n^{lpha}(x)$ — багаточлени Лагера. Коефіцієнти обчислються за формулами

$$c_k = \frac{P(n+1)P(n+\alpha+1)}{x_k(L_n^{\alpha}(x_k))^2}. (131)$$

Залишковий член при lpha=0 рівний

$$R_n(f) = \frac{(n!)^2}{(2n)!} \cdot f^{(2n)}(\xi). \tag{132}$$

5. Інтегрування швидко осцилюючих функцій.

Розглянемо інтеграл

$$I(f) = \int_{a}^{b} f(x)e^{j\omega x} dx, \quad j^2 = -1.$$
 (133)

При великих ω застосування складених квадратурних формул інтерполяційного типу приводить до великої похибки і при малих кроках h. Розглянемо $e^{j\omega x}$ як ваговий коефіцієнт, тобто $\rho(x)=e^{j\omega x}$. Замінимо [a,b] на [-1,1]:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2} \cdot d_j, \tag{134}$$

де $d_i \in [-1,1]$, а $i = \overline{1,n}$.

Зауваження: вузли можуть бути не рівновіддалені, якщо рівновіддалені, то $d_i = -1 + 2i/2n$, $i = \overline{1,n}$.

Замінимо f(x) на інтерполяційний багаточлен Лагранжа $L_{n-1}(x)$ з вузлами x_i і отримаємо формулу

$$I_n(f) = \int_a^b L_{n-1}(x)e^{j\omega x} \,\mathrm{d}x,\tag{135}$$

яка буде точною для всіх багаточленів не вище n-1 степеня. Тобто, якщо в (135) підставити багаточлен Лагранжа, то можна обчислити інтеграл і отримати квадратурну формулу

$$S_n^{\omega}(f) = \frac{b-a}{2} \cdot \exp\left\{j\omega \cdot \frac{a+b}{2}\right\} \cdot \sum_{i=1}^n D_i\left(\omega \cdot \frac{b-a}{2}\right) f(x_i),\tag{136}$$

де

$$D_{i}(p) \int_{-1}^{1} \left(\prod_{\substack{k=1\\k\neq i}}^{n} \frac{\xi - d_{k}}{d_{i} - d_{k}} \right) \exp\{jp\xi\} \,\mathrm{d}\xi.$$
 (137)

При n=3, $d_1=-1$, $d_2=0$, $d_3=1$ це формула Філона. Можна брати і більше точок, наприклад, n=5, $d_1=-1$, $d_2=-1/2$, $d_3=0$, $d_4=1/2$, $d_5=1$.

Ці формули не потрібно застосовувати, коли немає швидко осцилюючого множника.

9.8. Обчислення невласних інтегралів

Розглянемо обчислення інтегралів з такими особливостями:

1. інтеграли другого роду, тобто

$$I = \int\limits_a^b F(x) \, \mathrm{d}x, \quad F(x) \xrightarrow[x \to a \lor x \to b]{} \infty;$$
 (138)

2. інтеграли першого роду

$$I = \int_{a}^{\infty} F(x) \, \mathrm{d}x. \tag{139}$$

Розглянемо спочатку інтеграли другого роду, тобто:

$$I = \int_{a}^{b} F(x) dx, \quad F(x) \xrightarrow[x \to a \lor x \to b]{} \infty.$$
 (140)

1. *Мультиплікативний спосіб*. Представимо підінтегральну функцію у вигляді F(x)=
ho(x)f(x), причому ho(x) — особлива, а f(x) — гладка. Далі для обчислення інтегралу

$$I = \tilde{I}(f) = \int_{a}^{b} \rho(x)f(x) dx$$
 (141)

використовуємо відповідні квадратурні формули Гаусса.

Приклад 1: Потрібно обчислити інтеграл

$$I = \int_{-1}^{1} \frac{\mathrm{d}x}{\sqrt{1 - x^4}}.$$
 (142)

Розв'язок: Точки $x=\pm 1$ є особливими.

Представимо підінтегральну функцію у вигляді:

$$F(x) = \underbrace{\frac{1}{\sqrt{1-x^2}}}_{\rho(x)} \cdot \underbrace{\frac{1}{\sqrt{1+x^2}}}_{f(x)} \tag{143}$$

отримаємо інтеграл вигляду

$$I = \int_{0}^{1} \frac{1}{\sqrt{1+x^2}} \frac{\mathrm{d}x}{\sqrt{1-x^2}},\tag{144}$$

де $ho(x)=1/\sqrt{1-x^2}$.

Далі використовуємо квадратурну формулу Ерміта (120) з попереднього пункту і обчислюємо інтеграл.

Приклад 2: Обчислити інтеграл

$$I = \int_{0}^{\pi} \ln(\sin(x)) \, \mathrm{d}x. \tag{145}$$

Розв'язок: Особливі точки x=0, $x=\pi$.

Зведемо цю особливість до степеневої:

$$\rho(x) = \frac{1}{\sqrt{x(\pi - x)}},\tag{146}$$

тоді

$$f(x) = \sqrt{x(\pi - x)} \cdot \ln(\sin(x)) \xrightarrow[x \to 0, \pi]{} 0. \tag{147}$$

Для знаходження інтегралу з таким ho(x) застосовуємо квадратурні формули Чебишова. Неприємності виникають, оскільки $f'(x) \xrightarrow[x o 0, \pi]{} \infty$ (хоча квадратурні формули даватимуть наближене значення).

Тому застосовують другий спосіб розв'язання проблеми:

- 2. Адитивний спосіб. Представимо підінтегральну функцію у вигляді $F(x)=f(x)+\psi(x)$, причому $\psi(x)$ особлива, f(x) гладка. Розбиваємо інтеграл на два: $I=I_1+I_2$.
 - 1. $I_1 = \int\limits_a^b f(x) \, \mathrm{d}x$ обчислюють чисельно (наприклад, формули Сімпсона чи трапецій),
 - 2. $I_2 = \int\limits_a^b \psi(x) \, \mathrm{d}x$ пробують обчислити аналітично (можливо апроксимувати функцію $\psi(x)$, наприклад, рядом).

Приклад 3: Обчислити інтеграл з прикладу 2.

$$I = \int_{0}^{\pi} \ln(\sin(x)) \, \mathrm{d}x,\tag{148}$$

$$I=2\int\limits_{0}^{\pi/2}\ln(\sin(x))\,\mathrm{d}x. \hspace{1.5cm} (149)$$

Представимо

$$\ln(\sin(x)) = \ln\left(\frac{\sin x}{x}\right) + \ln(x). \tag{150}$$

Отримаємо два інтеграли:

1.
$$I_1=\int\limits_a^b\ln\!\left(rac{\sin x}{x}
ight){
m d}x$$
 обчислюємо чисельно,

2.
$$I_2=\int\limits_0^{\pi/2}\ln(x)\,\mathrm{d}x=rac{\pi}{2}\Bigl(\ln\Bigl(rac{\pi}{2}\Bigr)-1\Bigr).$$

Розглянемо тепер інтеграли першого роду

$$I = \int_{a}^{\infty} F(x) \, \mathrm{d}x. \tag{151}$$

- 1. *Заміни*.
 - $\circ~$ Нехай a>0. Зробимо заміну $t=rac{x-a}{x}$, $x=rac{a}{1-t}$. Тоді

$$I = a \int_{0}^{1} F\left(\frac{a}{1-t}\right) \frac{\mathrm{d}t}{(1-t)^2},\tag{152}$$

а це інтеграл другого роду.

 $\circ~$ Якщо a=0, то робимо заміну $t=e^{-x}$, $x=-\ln(t)$, тоді

$$I = \int_{0}^{1} F(-\ln(t)) \cdot \frac{\mathrm{d}t}{t}.$$
 (153)

Знову отримуємо інтеграл другого роду.

 $\circ~$ Якщо a<0 (не можна зробити заміну $t=rac{x-a}{x}$, тому що виникає особливість в точці x=0), розбиваємо інтеграл на два:

$$I = \int_{a}^{0} F(x) dx + \int_{0}^{\infty} F(x) dx$$
 (154)

і обчислюємо за допомогою попередніх пунктів.

2. *Мультиплікативний спосіб* обчислення інтегралів першого роду ґрунтується на представлені підінтегральної функції у вигляді

$$F(x) = \rho(x)f(x),\tag{155}$$

де, наприклад,

$$\rho(x) = x^{\alpha} \cdot e^{-x}, \quad x \in [0, \infty). \tag{156}$$

Такий ваговий коефіцієнт відповідає багаточленам Лагера. При $x\in (-\infty,\infty)$, $\rho(x)=\exp\{-x^2\}$ приходимо до багаточленів Ерміта.

3. *Обрізання границі*. Ще один спосіб ґрунтується на обрізанні верхньої границі. Для цього інтеграл запишемо у вигляді

$$I = \int_{a}^{\infty} F(x) dx = \int_{a}^{b} F(x) dx + \int_{b}^{\infty} F(x) dx.$$
 (157)

Верхня границя b обчислюють з умови

$$\left| \int_{b}^{\infty} F(x) \, \mathrm{d}x \right| < \frac{\varepsilon}{2},\tag{158}$$

де arepsilon — задана точність. Для обчислення $\int\limits_a^b F(x)\,\mathrm{d}x$ використовують квадратурні формули складеного типу.

9.9. Обчислення кратних інтегралів

Розглянемо інтеграл

$$I = \int_{a}^{b} \int_{c}^{d} f(x, y) \, \mathrm{d}x \, \mathrm{d}y. \tag{159}$$

Цей інтеграл зводиться до повторного, якщо ввести

$$F(x) = \int_{c}^{d} f(x, y) \, \mathrm{d}y. \tag{160}$$

Тоді

$$I = \int_{a}^{b} F(x) \, \mathrm{d}x. \tag{161}$$

До однократних інтегралів можна застосувати квадратурну формулу середніх прямокутників. Тоді

$$Ipprox I_0=(b-a)F(ar{x})\int\limits_c^df(ar{x},y)\,\mathrm{d}ypprox (b-a)(d-c)f(ar{x},ar{y}), \hspace{1cm} (162)$$

де

$$=\frac{a+b}{2}, \quad \bar{y} = \frac{c+d}{2}.\tag{163}$$

 $\mathit{Кубатурна}\ \phi$ ормула (це формула наближеного обчислення інтегралу (159)), якщо використовується формула трапеції має вигляд

$$Ipprox I_1 = rac{(b-a)(d-c)}{4}\cdot (f(a,c)+f(b,c)+f(a,d)+f(b,a)). \hspace{1cm} (164)$$

Точність залежить від поведінки функції та від довжини інтервалів [a,b], [c,d]. Аналог формул складеного типу для (159) будується таким чином: розбиваємо D на комірки:

Тоді

$$D = \bigsqcup_{i,j} D_{i,j},\tag{165}$$

де $D_{i,j}=\{x_{i-1}\leq x\leq x_i,y_{j-1}\leq y\leq y_j\}$, а у свою чергу $x_i=a+ih_x$ для $i=\overline{0,N_x}$, і $y_j=c+jh_y$ для $j=\overline{0,N_y}$, і нарешті $h_x=rac{b-a}{N_x}$ і $h_y=rac{d-c}{N_y}$.

Тоді для кожного інтегралу по комірці застосовуємо кубатурну формулу прямокутників (164):

$$I = \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \iint\limits_{D_{i,j}} f(x,y) \,\mathrm{d}x \,\mathrm{d}y pprox I_{0,h} = \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} h_x h_y f(ar{x}_i, ar{y}_i),$$
 (166)

де $ar{x}_i = x_i - h_x/2$, а $ar{y}_j = y_j - h_y/2$.

Якщо $f(x,y)\in C^{(2)}(D)$, то $I-I_{0,h}=O(h_x^2+h_y^2)$. Степінь точності по крокам сітки — 2. Складність методу пропорційна кількості комірок: $Q=O(N_xN_y)=O(N^2)$, якщо $N\approx N_x\approx N_y$. В 3-вимірному просторі f=f(x,y,z) складність — $Q=O(N^3)$.

Якщо D не прямокутник, то замість f введемо

$$ar{f}(x,y) = egin{cases} f(x,y), & x \in D, \ 0, & x \in \Pi \setminus D, \end{cases}$$

де Π — найменший охоплюючий D прямокутник $D\subset \Pi$:

Тоді

$$I = \iint_{\Pi} \bar{f}(x, y) \, \mathrm{d}x \, \mathrm{d}y, \tag{168}$$

що розглядався вище.

Недолік такого підходу: f(x,y) може бути розривною функцією і через це низька точність обчислення інтегралу.

Наступний підхід базується на відповідній заміні змінних

$$x = x(\xi, \eta), \quad y = y(\xi, \eta), \tag{169}$$

такій, що $D\mapsto \Pi$, тоді

$$I = \iint_{\Pi} f(x(\xi, \eta), y(\xi, \eta)) J(\xi, \eta) \, \mathrm{d}\xi \, \mathrm{d}\eta, \tag{170}$$

де Π — прямокутник в площині (ξ, η) ; $J(\xi, \eta)$ — Якобіан переходу. Якщо границя області D гладка, то якобіан буде мати особливості, що також знижує швидкість збіжності.

Ще один підхід в обчисленні інтегралу по довільній області D базується на триангулювання області. Якщо область довільного вигляду, то її можна розбити на трикутники таким чином:

$$D = \bigsqcup_{k=1}^{N} D_k. \tag{171}$$

Тоді

$$I = \sum_{k=1}^{N} I_k, \quad I_k = \iint_{D_k} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$
 (172)

Застосуємо кубатурні формули до кожного $I_k pprox I_k^h$. Для цього замінимо функцію поліномом першого степеня

$$f(x,y) \approx L_1(x,y) = A + Bx + Cy. \tag{173}$$

Задача 35: Побудувати явний вигляд кубатурної формули, яка дозволяє наближено обчислити I_k по трикутнику D_k , якщо замінити $f(x,y) \approx L_1(x,y)$ на інтерполяційний багаточлен 1-го степеня.

Точність такого підходу

$$I - I^{h} = I - \sum_{k=1}^{N} I_{k}^{h} = O(h^{2}), \tag{174}$$

де $h = \max_k {
m diam} \ D_k.$

Складність обчислення інтеграла: $Q=O(h^{-2})$ для $D\subset\mathbb{R}^2$; $Q=O(h^{-3})$ для $D\subseteq\mathbb{R}^3$.

Можна згустити сітку, поділивши один трикутник D_k на чотири:

I, нарешті, розглянемо ідею методу статистичних випробувань (метод Монте-Карло) для обчислення інтегралу

$$I = \iint_{D} f(x, y) \, \mathrm{d}x \, \mathrm{d}y. \tag{175}$$

Замінимо наближено

$$I = \iint_{\Pi} \bar{f}(x, y) \, \mathrm{d}x \, \mathrm{d}y \approx \frac{1}{N} \sum_{i=1}^{N} \bar{f}(\xi_i, \eta_i) \cdot \mu(\Pi_i), \tag{176}$$

де μ — міра нп відповідному просторі, Π — найменший охоплюючий D прямокутник $D\subset\Pi$; f(x,y) — продовження функції f; ξ_i , η_i — незалежні реалізації рівномірно розподілених на [a,b] та [c,d] випадкових величин ξ та η . Складність цього методу Q=O(N). Оцінка точності — $I-I_N=O\left(1/\sqrt{N}\right)$ носить ймовірнистний характер.

- Позитивна сторона методу незалежна від розмірності складність;
- негативна низька точність.