MATH 8803: Optimal Transport: Theory and Applications

Rui Gong

September 11, 2025

Acknowledgements

These notes are based on the MATH 8803 lectures given by Professor *Tobias Ried* in Fall 2025 at Georgia Institute of Technology.

Contents

1	Intro	oduction	4
	1.1	Monge's Original Formulation of Optimal Transport	4
	1.2	The Kantorovich Optimal Transport Problem	5
	1.3	Monge VS Kantorovich	7

Introduction

Monge's Original Formulation of Optimal Transport

Consider a measure μ , another measure ν , and x, y in the supports of μ and ν respectively, what is the optimal way of moving x to y?

1. Pile and hole

- Pile and hole should have the same volume \rightarrow normalize to 1.
- ullet modern way of thinking about pile and hole: probability measure on some metric space X and Y respectively, $\mu \in \mathcal{P}(X), \nu \in \mathcal{P}(Y)$. It could be point cloud: $\mu = \sum_i \alpha_i \delta_{x_i}$; or continuous densities: $\mu(dx) = f(x)dx.$
- 2. Transport pile to hole region: Transport described by a map $T: X \to Y$. Notice that T may be discontinuous. We need T to be measurable.
- 3. Transport Cost: $c: X \times Y \to [0, \infty) \cup \{\infty\}$, where c(x, y) represents the cost of moving one unit of mass $\overline{\text{from } x \text{ to } y \text{ (how it is transported does not matter)}$. Implicit Assumption: cost only depends on initial and final. Typical cost: c(x,y) = |x-y|; $c(x,y) = |x-y|^2$; $c(x,y) = \frac{1}{|x-y|}$.
- 4. Filling the hole completely: $\mu(T^{-1}(B)) = \nu(B)$ for every measurable $B \subseteq Y$.

Definition 1.1: Push-Forward Measure

Let $\mu \in \mathcal{X}$ be a probability measure on $X, T: X \to Y$ be a measurable map between metric space X,Y. Then push-forward (or image) measure of μ under T is the measure $T_{\#}\mu$ on Y defined by $\mu(T^{-1}(B)) = T_{\#}\mu(B)$ for every $B \subseteq Y$ measurable.

A little bit of functional analysis

- $C_b(X)$: the Banach space of bounded continuous function on X endowed with the norm $||f||_{\infty} := \sup_{x \in X} |f(x)|$.
- $C_0(X) \subseteq C_b(X)$: closed subspace (w.r.t. $\|\cdot\|_{\infty}$), which is the space of continuous functions vanishing at ∞ : $f \in C_0(X)$ if $f \in C_b(X)$ and for every $\epsilon > 0$, there exists a compact set $K_{\epsilon} \subseteq X$, such that $|f| < \epsilon$ on $X \setminus K_{\epsilon}$.
- $\mathcal{M}(X)$: space of finite signed measures on X. $\lambda \in \mathcal{M}(X)$ if
 - (a) $\lambda(A) \in \mathbb{R}$ for any (Borel) measurable $A \subseteq X$.
 - (b) for every countable disjoint union $A = \bigcup_{i \in \mathbb{N}} A_i$, $A_i \cap A_j = \emptyset$ for $i \neq j$, these holds
 - $\sum_{i \in \mathbb{N}} |\lambda(A_i)| < \infty$ $\sum_{i \in \mathbb{N}} \lambda(A_i) = \lambda(A)$.

To every $\lambda \in \mathcal{M}(X)$, we can associate a unique non-negatable measure $|\lambda| \in \mathcal{M}_+(X)$ via $|\lambda|(A) := \sup\{\sum_{i \in \mathbb{N}} |\lambda(A_i)| : \sum_{i \in \mathbb{N}} |\lambda(A_$ $A = \bigcup_{i \in \mathbb{N}} A_i, A_i \cap A_j = \emptyset$ for $i \neq j$, the total variation measure of λ . $\|\lambda\| := |\lambda|(X)$ is a norm on $\mathcal{M}(X)$.

Theorem 1.2: Riesz Representation Theorem

Suppose X is separable, and locally compact. Then $\mathcal{M}(X) \cong [C_0(X)]^*$ (the dual space of $C_0(X)$). That is, every continuous linear functional $L: C_0(X) \to \mathbb{R}$ is represented in a unique way by an element of $\mathcal{M}(X)$, i.e., there exists a unique measure $\mu_L \in \mathcal{M}(X)$ s.t. $L(\varphi) = \int_X \varphi d\mu_L$.

Remark. Consider a special case of $T_{\#}\mu = \nu$; assume that T is a C^1 -diffeomorphism between X, Y and $X, Y \subseteq \mathbb{R}^d$ open, and that $\mu(dx) = f(x)dx$, $\nu(dy) = g(y)dy$. Then for any $B \subseteq \mathbb{R}^d$ measurable:

$$(T_{\#}\mu)(B) = \mu(T^{-1}(B)) = \int_{\mathbb{R}^d} \mathbb{1}_{T^{-1}(B)}(x)f(x)dx = \int_{T^{-1}(B)} f(x)dx.$$

Write $y = T(x), dy = |\det DT(x)| dx$, we can write

$$(T_{\#}\mu)(B) = \nu(B) = \int_{B} g(y)dy = \int_{T^{-1}(B)} g(T(x))|\det DT(x)|dx,$$

which implies $f(x) = g(T(x))|\det DT(x)|$ for almost every $x \in X$ (technically remark: $f \ge \alpha$ for some $\alpha > 0$ on X).

Reminder: $T_{\#}\mu = \nu$ means:

- 1. $(T_{\#}\mu)(B) = \mu(T^{-1}(B)) = \nu(B)$ for any measurable subset $B \subseteq Y$.
- 2. $\int_{y} \varphi d(T_{\#}\mu) = \int_{X} \varphi \circ T d\mu = \int_{y} \varphi d\nu, \ \forall \varphi \in C_{0}(y).$

A quick remark on the change of variables formula:

$$\int_{y} \varphi d(T_{\#}\mu) = \int_{X} \varphi(T(x))\mu(dx).$$

Definition 1.3: Monge's Optimal Tranposrt Problem

Given $\mu \in \mathcal{P}(X), \nu \in \mathcal{P}(Y)$,

$$\min I[T] = \int_{X} c(x, T(x))\mu(dx) \tag{M}$$

over all transport maps $T: X \to Y$ (i.e., all measurable maps from X to Y such that $T_{\#}\mu = \nu$).

Remark. • I is a highly nonlinear functional of T subject to the nonlinear constraint $T_{\#}\mu = \nu$.

- Functional relatively simple: depends only locally on T (or its pointwise values)
 - no coupling between different values of T.
 - without constraint could just minimize pointwise, i.e. find minimum $y_{\min}(x)$ of $y \mapsto c(x,y)$ for each x and get $T(x) = y_{\min}(x)$.
- constraint complicated: nonlocal, couples values of T. If we could restrict to smooth diffeomorphisms, problem requires solving highly nonlinear PDE. Also, it is not even clear whether T such that $T_{\#}\mu = \nu$ exists for given μ, ν .

1.2 The Kantorovich Optimal Transport Problem

Comparing to Monge's OT problem, Kantorovich OT problem allows measure splitting, so we are looking for probability measure on $X \times Y$.

- Pile and hole: $\mu \in \mathcal{P}(X), \nu \in \mathcal{P}(Y)$.
- Transport: probability measure $\gamma \in \mathcal{P}(X \times Y)$ (transport plan).

$$\gamma(A \times B) = \int_{A \times B} \gamma(dxdy)$$

is the amount of mass moved from measurable $A \subseteq X$ to measurable $B \subseteq Y$. All the mass of μ has to be transported somewhere, hence, $\gamma(A \times Y) = \mu(A)$ for all $A \subseteq X$ measurable.

• Transport cost: Let c(x, y) be the cost of moving one unit of mass from x to y, then the total cost is

$$\int_{X\times Y} c(x,y)\gamma(dxdy) = c[\gamma].$$

• Filling hole completely: $\gamma(X \times B) = \nu(B)$ for all $B \subseteq Y$ measurable. That is, the amount of mass transported to B has to be the volume of the hole in region B.

Remark. Note that, from above, $\gamma(X \times Y) = \mu(X) = \nu(Y) = 1$, so $\gamma \in \mathcal{P}(X \times Y)$, and $\gamma(A \times Y), \gamma(X \times B)$ defined marginals.

Definition 1.4: Marginals

Let $\gamma \in \mathcal{P}(X \times Y)$.

• Marginal w.r.t. $X: M_X \gamma \in \mathcal{P}(X)$ defined via

$$(M_X\gamma)(A) = \gamma(A \times Y) = \int_{A \times Y} \gamma(dxdy), \ \forall \ \textit{measurable} \ A \subseteq X,$$

• Marginal w.r.t. $Y: M_Y \gamma \in \mathcal{P}(Y)$ defined via

$$(M_Y\gamma)(B) = \gamma(X \times B) = \int_{X \times B} \gamma(dxdy), \ \forall \ \textit{measurable} \ B \subseteq Y.$$

Remark. Transport plans are probability measures on $X \times Y$ with marginals $M_X \gamma = \mu$, $M_Y \gamma = \nu$, γ is a *coupling* of the probability measure μ and ν .

Let $\Pi(\mu, \nu)$ be the set of all couplings between μ and ν .

Lemma 1.5

Let $\varphi \in L^1(X,\mu)$ and $\psi \in L^1(Y,\nu)$. Then for any coupling $\gamma \in \Pi(\mu,\nu)$. These hold

(M1)
$$\int_{X\times Y} \varphi(x)\gamma(dxdy) = \int_X \varphi(x)(M_X\gamma)(dx) = \int_X \varphi(x)\mu(dx).$$

(M2)
$$\int_{X\times Y} \psi(y) \gamma(dxdy) = \int_Y \psi(y) (M_Y \gamma)(dy) = \int_Y \psi(y) \nu(dy).$$

Proof sketch. Any function $\varphi \in L^1(X, \mu)$ can be approximated by simple functions: $\varphi = \lim_{n \to \infty} \sum_{j=1}^n \alpha_j \mathbb{1}_{A_j}$, for $A_j \subseteq X$ measurable.

$$\int_{X \times Y} \varphi(x) \gamma(dx dy) = \lim_{n \to \infty} \sum_{j=1}^{n} \alpha_j \int_{A_j \times Y} \gamma(dx dy) = \lim_{n \to \infty} \sum_{j=1}^{n} \alpha_j \mu(A_j)$$
$$= \lim_{n \to \infty} \int_X \sum_{j=1}^{n} \alpha_j \mathbb{1}_{A_j}(x) \mu(dx) = \int_X \varphi(x) \mu(dx).$$

Definition 1.6: Couplings

Let $\mu \in \mathcal{P}(X)$, $\nu \in \mathcal{P}(Y)$. A probability measure $\gamma \in \mathcal{P}(X \times Y)$ is called coupling of μ and ν if $M_X \gamma = \mu$, $M_Y \gamma = \nu$. The set of all couplings between μ and ν is called $\Pi(\mu, \nu)$.

Definition 1.7: Kantorovich Optimal Transport Problem

Given $\mu \in \mathcal{P}(X)$, $\nu \in \mathcal{P}(Y)$,

$$\min C[\gamma] = \int_{X \times Y} c(x, y) \gamma(dxdy) \tag{K}$$

over all couplings $\gamma \in \Pi(\mu, \nu)$.

Structure of (\mathcal{K}):

- (1) $\gamma \mapsto C[\gamma]$ linear function.
- (2) $M_X \gamma = \mu$, $M_Y \gamma = \nu$ linear constraints.
- (3) $\Pi(\mu, \nu)$ is a convex set: if $\gamma_1, \gamma_2 \in \Pi(\mu, \nu), \lambda \in (0, 1)$, then
 - (a) $\lambda \gamma_1 + (1 \lambda) \gamma_2 \in \mathcal{P}(X \times Y)$, since $\lambda \gamma_1(X \times Y) + (1 \lambda) \gamma_2(X \times Y) = 1$, and $\lambda \gamma_1(Z) + (1 \lambda) \gamma_2(Z) \ge 0$ for any $Z \subseteq X \times Y$ measurable.
 - (b) $(\lambda \gamma_1 + (1 \lambda)\gamma_2)(A \times Y) = \lambda \gamma_1(A \times Y) + (1 \lambda)\gamma_2(A \times Y) = \lambda \mu(A) + (1 \lambda)\mu(A) = \mu(A);$ analogously, $(\lambda \gamma_1 + (1 \lambda)\gamma_2)(X \times B) = \nu(B)$, for any $A \subseteq X, B \subseteq Y$ measurable.
 - \implies (K) is a linear programming problem. But: it is in inifinte dimensions.
- (4) Existence of couplings is trivial: independent coupling (product measure) $\gamma = \mu \otimes \nu$ defined via $\gamma(A \times B) = \mu(A)\nu(B)$ for every measurable $A \subseteq X, B \subseteq Y$, is a coupling of μ and ν .
- (5) (\mathcal{K}) is higher-dimensional than (\mathcal{M}) in the following sense: consider transport plan given by a density $\tilde{\gamma}: \mathbb{R}^{2d} \to \mathbb{R}$. Discretize \mathbb{R}^d by ℓ gridpoints then $\tilde{\gamma}$ corresponds to ℓ^2 real numbers. Transport $T: \mathbb{R}^d \to \mathbb{R}^d$ however only corresponds to ℓd real numbers. e.g. $\ell = \text{number of pixels in a 2D picture, say } \ell = 500 \times 500$, then $\ell d = 500000$, but $\ell^2 = 62.5^9$.

1.3 Monge VS Kantorovich

Kantorovish problem is a relaxation of Monge Problem in the following sense: Monge = restriction of Kantorovish to sparse plan.

$$\gamma_T(dxdy) = \delta_{T(x)}(dy)\mu(dx)$$

for $T: X \to Y$ measurable such that $T_{\#}\mu = \nu$. For any $\varphi \in C_0(X \times Y)$,

$$\int_{X\times Y} \varphi d\gamma_T = \int_{X\times Y} \varphi(x,y)\gamma_T(dx\times dy) = \int_{X\times Y} \varphi(x,y)\delta_{T(x)}(dy)\mu(dx) = \int_X \varphi(x,T(x))\mu(dx)$$
$$= \int_X \varphi((id,T)(x))\mu(dx) = \int_X \varphi\circ(id,t)d\mu = \int_{X\times Y} \varphi(x,y)[(id,T)_\#\mu](dx\times dy).$$

In other words, Monge measures that

$$\operatorname{supp} \gamma = \{(x,y) \in X \times Y : \gamma(B_{\epsilon}(x,y)) > 0 \text{ for every } \epsilon > 0\}$$
$$= \bigcap \{Z \subseteq X \times Y \text{ closed } : \gamma(Z) = 1\}$$
$$\subseteq \operatorname{graph} T = \{(x,T(x)) \in X \times Y : x \in X\}$$

Lemma 1.8

Let $T: X \to Y$ be measurable such that $T_{\#}\mu = \nu$. Then

- (i) $C[\gamma_T] = I[T]$.
- (ii) $\gamma_T \in \Pi(\mu, \nu)$
- (iii) $(\mathcal{K}) \leq (\mathcal{M})$.

Proof. (i)
$$C[\gamma_T] = \int_{X\times Y} c(x,y) \gamma_T(dx\times dy) = \int_{X\times Y} c(x,y) ((id,T)_\#\mu)(dxdy) = \int_X c(x,T(x))\mu(dx) = \int_X c(x,T(x))\mu(dx)$$

(ii) Let $A \subseteq X$, $B \subseteq Y$ measurable. Then

$$(M_X \gamma_T)(A) = \gamma_T (A \times Y) = \int_{A \times Y} d\gamma_T = \int_X \mathbb{1}_{A \times Y}(x, y) \underbrace{\gamma_T (dx \times dy)}_{((id, T)_{\#}\mu)(dxdy)}$$

$$= \int_X \underbrace{\mathbb{1}_{A \times Y}(x, T(x))}_{\mathbb{1}_A(x)} \mu(dx)$$

$$= \int_A d\mu = \mu(A)$$

$$(M_Y \gamma_T)(B) = \int_X \underbrace{\mathbb{1}_{X \times B}(x, T(x))}_{\mathbb{1}_B(x)} \mu(dx) = \int_Y \mathbb{1}_B(y)(T_{\#}\mu)(dy)$$

$$= \int_A d\nu = \mu(A)$$

(iii) By (i) and (ii),

$$(\mathcal{M}) = \inf_{T:X \to Y \text{ measurable}, T_\# \mu = \nu} I[T] = \inf_{T:X \to Y \text{ measurable}, T_\# \mu = \nu} C[\gamma_T] \geq \inf_{\gamma \in \Pi(\mu,\nu)} C[\gamma] = (\mathcal{K}),$$

by $\gamma_T \in \Pi(\mu, \nu)$.