### Requerimientos del Programa 6

Utilizando el **PSP 2.1** escribe un programa que:

- Lea del teclado el nombre de un archivo
- Lea de este archivo lo siguiente:
  - El primer renglón contiene un número real mayor o igual a cero, al cual llamaremos x<sub>k</sub>.
  - A partir del segundo renglón habrá en cada renglón una pareja (x, y) de dos números reales mayores o iguales a cero, separados por una coma
  - El fin del archivo marca el final de las parejas de datos
- Calcule los siguientes datos
  - La cantidad de parejas de datos leídas (N)
  - Los coeficientes de correlación  $r_{x,y}$  y  $r^2$
  - La significancia de tal correlación
  - Los parámetros de regresión lineal  $\beta_0$  y  $\beta_1$
  - Una predicción mejorada  $y_k$ , donde  $y_k = \beta_0 + \beta_1 x_k$
  - El intervalo de predicción al 70% para tal estimado
- Escriba en pantalla estos valores calculados de acuerdo con el siguiente formato:

```
N = x
xk = x.xxxxx
r = x.xxxxx
r2 = x.xxxxx
b0 = x.xxxxx
b1 = x.xxxxx
yk = x.xxxxx
xsig= x.xxxxxxxxx
ran= x.xxxxx
LS = x.xxxxx
```

#### **NOTAS:**

- ✓ Explicación de siglas: "sig" = significancia, "ran" = rango (intervalo de predicción 70%), "LS" = límite superior (UPI en inglés), "LI" = Límite inferior (LPI en inglés)
- ✓ Los valores de xk, r, r2, b0, b1, yk, ran, LS y LI se desplegarán con 5 decimales (redondeados hacia arriba en su último dígito, por ejemplo: 0.123455 se desplegará como 0.12346, mientras que 0.123454 se desplegará como 0.12345) mientras que sig se desplegará con 10 decimales (redondeado hacia arriba en su último dígito)
- ✓ "LI" no puede ser negativo

#### Otras características que *debe* cumplir el programa:

- No utilizará ningún GUI para operar (funcionará desde la consola)
- Debe estar construido con programación orientada a objetos
- Debe contar con al menos 3 clases "relevantes"
- El único código que puede ser reutilizado es el de tus programas 1 a 5
- Debe manejar apropiadamente *todas* las condiciones normales y anormales
- Debe pasar exitosamente <u>todos</u> los casos de prueba (*error máximo 0.0001*, *excepto para significancia cuyo error máximo es 0.00000001*):
  - Los diseñados por ti en la fase de diseño, y
  - Los siguientes 2 casos de prueba (es obligatorio incluirlos en el Diseño de las Pruebas):

| Objetivo de la prueba         | Instrucciones y datos de entrada  | Resultados Esperados                                                                                                                                                                   |
|-------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Probar con una lista de datos | Teclear en pantalla:<br>Arch1.txt | N = 10<br>xk = 386.00000<br>r = 0.95450<br>r2 = 0.91106<br>b0 = -22.55253<br>b1 = 1.72793<br>yk = 644.42938<br>sig= 0.0000177517<br>ran= 230.00172<br>LS = 874.43110<br>LI = 414.42766 |
| Probar con una lista de datos | Teclear en pantalla:<br>Arch2.txt | N = 14<br>xk = 149.00000<br>r = 0.91381<br>r2 = 0.83505<br>b0 = -23.43891<br>b1 = 1.42554<br>yk = 188.96720<br>sig= 0.0000049053<br>ran= 204.66397<br>LS = 393.63116<br>LI = 0.00000   |

# Explicación y <u>ejemplo</u> de cómo se realizan los cálculos (no son requerimientos)

(Tomado del curso original del PSP del Software Engineering Institute)

### **Significance**

## The significance test

The significance test determines the likelihood that a strong correlation is random, and is therefore of no practical significance.

For example, a data set with only two points will always have an  $r^2 = 1$ , but this correlation is not significant.

#### Student *t*-Distribution



## Calculating significance

The procedure for calculating the correlation significance is as follows.

1. Compute the value of *x*, such that

$$x = \frac{|r_{x,y}| \sqrt{n-2}}{\sqrt{1 - r_{x,y}^{2}}}$$

where

- $r_{x,y}$  is the correlation
- *n* is the number of data points
- 2. Find the probability p by numerically integrating the t distribution for n-2 degrees of freedom, from 0 to x.
- 3. Calculate the tail area as 1-2\*p. (The area under the curve from -x to +x is twice the area from 0 to x, or 2\*p; the remaining area in the upper and lower tails is 1-2\*p).

A tail area  $\leq 0.05$  is considered as strong evidence that there is a relationship. A tail area  $\geq 0.2$  indicates a relationship that is due to chance.

### **Prediction interval**

### Prediction interval

The prediction interval provides a likely range around the estimate.

- A 70% prediction interval gives the range within which 70% of the estimates will fall.
- It is not a forecast, only an expectation.
- It only applies if the estimate behaves like the historical data.

It is calculated from the same data used to calculate the regression parameters.

# Prediction interval procedure

To calculate the prediction interval, use the following steps.

- 1. Calculate the *Range* for a 70% interval.
- 2. Calculate the UPI as  $y_k + Range(70\%)$ .
- 3. Calculate the LPI as  $y_k Range(70\%)$  (NOTE: it can't be negative).

The formula for calculating the prediction range is

Range = 
$$t(0.35, dof)\sigma \sqrt{1 + \frac{1}{n} + \frac{(x_k - x_{avg})^2}{\sum_{i=1}^{n} (x_i - x_{avg})^2}}$$

where

- x is your historical data
- *n* is the number of historical data points
- t(0.35, dof) is the <u>value of x</u> for a t distribution for n 2 degrees of freedom where p = 0.35

The formula for calculating the standard deviation term is

$$\sigma = \sqrt{\left(\frac{1}{n-2}\right)\sum_{i=1}^{n} \left(y_i - \beta_0 - \beta_1 x_i\right)^2}$$

where

- x, y are your historical data
- *n* is the number of historical data points