2A: TUTORIAL 8

School of Mathematics and Statistics

Dr. Ana Lecuona and Dr. Daniele Valeri

Semester 1 2020-21

Instructions

Access your tutorial lecture

TU11,TU12,TU13,TU14,TU15: November 16th, 09:00-10:00

TU16,TU17,TU18,TU19,TU20: November 16th, 15:00-16:00

using the Zoom plug-in in the Moodle page of the course.

Please mute yourself when you are in the main room of the meeting.

Be ready to work in groups using Microsoft Whiteboard. Having a method of writing on screen, as mouse, tablet or similar is useful. Screen sharing is allowed!

From the Moodle forum 1

Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$ be a function and let $\mathbf{d} \in \mathbb{R}^n$ be a vector. How to compute the directional derivative in the direction of \mathbf{d} ?

- Compute $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n});$
- \bullet Normalise the vector $\textbf{d} \colon \text{compute } \textbf{u} = \frac{\textbf{d}}{|\textbf{d}|}.$

(recall that if
$$\mathbf{d}=(d_1,\ldots,d_n)$$
, then $|\mathbf{d}|=\sqrt{d_1^2+\ldots d_n^2}$.)

The directional derivative is the dot product of the two vectors you just computed:

$$\frac{\partial f}{\partial \mathbf{u}} = \nabla f \cdot \mathbf{u} \,.$$

From the Moodle forum 2

Let $P \in D$. The rate of change of f at P in the direction of \mathbf{u} is

$$\frac{\partial f}{\partial \mathbf{u}}(P)$$
.

What is the maximal rate of change at P?

It is $|\nabla f(P)|$.

In which direction does it occur?

In the direction of the vector $\nabla f(P)$ (if you are asked for a unit vector direction, then you need to normalise $\nabla f(P)$ as in the previous slide).

EX SHEET 7, T8(C)

Find the rate of change of $f(x, y, z) = \sin xy + \log yz$ at $(x, y, z) = (\pi, 1, 2)$ in the direction $\mathbf{d} = (0, 1, 2)$.

(A)
$$(y \cos xy, x \cos xy + 1/y, 1/z)$$
 (B) $\frac{2-\pi}{\sqrt{5}}$

(C)
$$2-\pi$$
 (D) $(-1, -\pi+1, 1/2)$

EX SHEET 7, T8(C)

Find the rate of change of $f(x, y, z) = \sin xy + \log yz$ at $(x, y, z) = (\pi, 1, 2)$ in the direction $\mathbf{d} = (0, 1, 2)$.

(A)
$$(y \cos xy, x \cos xy + 1/y, 1/z)$$
 (B) $\frac{2-\pi}{\sqrt{5}}$ (C) $2-\pi$ (D) $(-1, -\pi + 1, 1/2)$

The unit vector in the direction of **d** is $\mathbf{u} = (0, 1, 2)/\sqrt{5}$ and

$$\nabla f(x,y,z) = (y\cos xy, x\cos xy + 1/y, 1/z).$$

Hence, $\nabla f(\pi,1,2) = (-1,-\pi+1,1/2)$. Therefore the rate of change at $(\pi,1,2)$ in the direction **d** (or in the unit vector direction **u**) is

$$\nabla f(\pi, 1, 2) \cdot \mathbf{u} = \frac{1}{\sqrt{5}} (-1, -\pi + 1, 1/2) \cdot (0, 1, 2) = \frac{2 - \pi}{\sqrt{5}}.$$

UNSEEN QUESTION

Compute the gradient of

$$f(x,y,z)=xyz.$$

(A)
$$x + y + z$$

(B)
$$(x, y, z)$$

(C)
$$(yz, xz, xy)$$

(D)
$$xy + xz + yz$$

UNSEEN QUESTION

Compute the gradient of

$$f(x,y,z)=xyz.$$

$$(A) \quad x+y+z$$

(B)
$$(x, y, z)$$

(C)
$$(yz, xz, xy)$$

(D)
$$xy + xz + yz$$

ANSWER: (C) The gradient is

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

and so in this case

$$\nabla f = (yz, xz, xy)$$
.

EX SHEET 8, T3 (RELATED)

Which one of the following vector fields is incompressible?

(A)
$$(\sin xy, \cos yz, \sin xz)$$
 (B) $(y^2z, 2xyz, xy^2)$

(C)
$$(x, y, z)/\sqrt{x^2 + y^2 + z^2}$$
 (D) (yz, xz, xy)

EX SHEET 8, T3 (RELATED)

Which one of the following vector fields is incompressible?

(A)
$$(\sin xy, \cos yz, \sin xz)$$
 (B) $(y^2z, 2xyz, xy^2)$ (C) $(x, y, z)/\sqrt{x^2 + y^2 + z^2}$ (D) (yz, xz, xy)

ANSWER: (D) A vector field is incompressible if its divergence is zero. We can check the divergence in each case:

(A)

$$\frac{\partial}{\partial x}(\sin xy) + \frac{\partial}{\partial y}(\cos yz) + \frac{\partial}{\partial z}(\sin xz) = y\cos xy - z\sin yz + x\cos xz;$$

(B)

$$\frac{\partial}{\partial x}(y^2z) + \frac{\partial}{\partial y}(2xyz) + \frac{\partial}{\partial z}(xy^2) = 0 + 2xz + 0 = 2xz;$$

EX SHEET 8, T3 (RELATED)

Which one of the following vector fields is incompressible?

(A)
$$(\sin xy, \cos yz, \sin xz)$$
 (B) $(y^2z, 2xyz, xy^2)$ (C) $(x, y, z)/\sqrt{x^2 + y^2 + z^2}$ (D) (yz, xz, xy)

ANSWER: (D) A vector field is incompressible if its divergence is zero. We can check the divergence in each case:

(C) using the nabla identity for div $(f\mathbf{F})$ and that div $\mathbf{r} = 3$ and $\nabla f(r) = f'(r)\mathbf{r}/r$ we have

$$\operatorname{div}\left(\frac{\mathbf{r}}{r}\right) = \frac{3}{r} + \mathbf{r} \cdot \left(-\frac{1}{r^3}\mathbf{r}\right) = \frac{2}{r};$$

(D)
$$\frac{\partial}{\partial x}(yz) + \frac{\partial}{\partial y}(xz) + \frac{\partial}{\partial z}(xy) = 0 + 0 + 0 = 0.$$

EX SHEET 8, T5

For the vector field $\mathbf{F} = (F_1, F_2, F_3)$ in Cartesian components, calculate

$$\nabla(\operatorname{div}\mathbf{F}) - \operatorname{curl}(\operatorname{curl}\mathbf{F}).$$

EX SHEET 8, T9(C),(D)

Let $\mathbf{r} = (x, y, z)$, $r = |\mathbf{r}|$, and let **a** be a constant vector. Calculate

div
$$((\mathbf{a} \cdot \mathbf{r}) \mathbf{r})$$
 and curl $((\mathbf{a} \cdot \mathbf{r}) \mathbf{r})$.

EX SHEET 8, T5

For the vector field $\mathbf{F} = (F_1, F_2, F_3)$ in Cartesian components, calculate

$$\nabla(\operatorname{div}\mathbf{F}) - \operatorname{curl}(\operatorname{curl}\mathbf{F}).$$

In components, we have div $\mathbf{F} = F_{1,x} + F_{2,y} + F_{3,z}$ and

$$\nabla (\text{div } \mathbf{F}) = (F_{1,xx} + F_{2,yx} + F_{3,zx}, F_{1,xy} + F_{2,yy} + F_{3,zy}, F_{1,xz} + F_{2,yz} + F_{3,zz}).$$

Moreover

curl
$$\mathbf{F} = (F_{3,y} - F_{2,z}, F_{1,z} - F_{3,x}, F_{2,x} - F_{1,y})$$

SO

curl(curl
$$\mathbf{F}$$
) = $(F_{2,xy} - F_{1,yy} - F_{1,zz} + F_{3,xz})\mathbf{i}$
+ $(F_{3,yz} - F_{2,zz} - F_{2,xx} + F_{1,yx})\mathbf{j} + (F_{1,xz} - F_{3,xx} - F_{3,yy} + F_{2,yz})\mathbf{k}$.

Then

$$\nabla(\operatorname{\mathsf{div}} \mathbf{F}) - \operatorname{\mathsf{curl}}(\operatorname{\mathsf{curl}} \mathbf{F}) = (\Delta F_1, \Delta F_2, \Delta F_3)$$
 .

EX SHEET 8, T9(C),(D)

Let $\mathbf{r} = (x, y, z)$, $r = |\mathbf{r}|$, and let **a** be a constant vector. Calculate

$$\operatorname{div}((\mathbf{a} \cdot \mathbf{r})\mathbf{r})$$
 and $\operatorname{curl}((\mathbf{a} \cdot \mathbf{r})\mathbf{r})$.

For the divergence we use the nabla identity

$$\operatorname{div}(f\mathbf{F}) = \nabla f \cdot \mathbf{F} + f \operatorname{div} \mathbf{F}$$

and note that $\nabla (\mathbf{a} \cdot \mathbf{r}) = \mathbf{a}$ and div $\mathbf{r} = 3$ so

$$\operatorname{div}\left(\left(\mathbf{a}\cdot\mathbf{r}\right)\mathbf{r}\right)=\mathbf{a}\cdot\mathbf{r}+3\mathbf{a}\cdot\mathbf{r}=4\mathbf{a}\cdot\mathbf{r}.$$

EX SHEET 8, T9(C),(D)

Let $\mathbf{r} = (x, y, z)$, $r = |\mathbf{r}|$, and let **a** be a constant vector. Calculate

div
$$((\mathbf{a} \cdot \mathbf{r}) \mathbf{r})$$
 and $\operatorname{curl} ((\mathbf{a} \cdot \mathbf{r}) \mathbf{r})$.

For the curl we use the nabla identity

$$\operatorname{curl}(f\mathbf{F}) = \nabla f \times \mathbf{F} + f \operatorname{curl} \mathbf{F}$$

and note (in addition to the results above) that $curl \mathbf{r} = \mathbf{0}$ so

$$\operatorname{curl}((\mathbf{a} \cdot \mathbf{r}) \mathbf{r}) = \mathbf{a} \times \mathbf{r}.$$