

	1			
		Typical Parameter Value		
Parameter Symbol	Parameter Description	n-Channel	p-Channel	Units
V_{T0}	Threshold	0.7	-0.8	V
	voltage(V _{BS} =0)			
K	Transconductance	134	50	μ Α /V²
	parameter(in			
	saturation)			
γ	Bulk threshold	0.45	0.4	$V^{1/2}$
	parameter			
λ	Channel length	0.1	0.2	V ⁻¹
	modulation parameter			
$2 \phi_F $	Surface potential at	0.9	0.8	V
	strong inversion			

 $K = \mu C_{OX}$

6.1 Calculate the differential transconductance g_{md} and the differential voltage gain A_{ν} of an n-channel input differential amplifier shown in Figure 6.1 , with the parameters shown in table 6.1. Consider $I_{ss}=100\mu A$ (the drain current of M5), and $W_1/L_1=W_2/L_2=W_3/L_3=W_4/L_4=1$. Assuming all the channel lengths are equal to $1\mu m$, and $V_{DD}=5V$. If $W_1/L_1=W_2/L_2=10W_3/L_3=10W_4/L_4=10$, repeat the calculation

Figure 6.1

6.2 Calculate the maximum($V_{IC}(max)$) and the minimum input common-mode voltages ($V_{IC}(min)$), and the input common mode voltage range (ICMR) of an n-channel input differential amplifier shown in Figure 6.1, with the parameters shown in table 6.1. Assume all MOSFETs are in saturation, all the (W/L)_i are equal to $10\mu m/1\mu m$, $I_{SS}=10\mu A$, and $V_{DD}=5V$.

6.3 Find the value of the unloaded differential-transconductance, g_{md} , and the unloaded differential-voltage gain, A_v , for the p-channel input differential amplifier of Figure 6.2 when $I_{SS}=10\mu A$ and $I_{SS}=1\mu A$. What is the slew rate of the differential amplifier if a 100 pF capacitor is attached to the output? Assuming $W_1/L_1=W_2/L_2=W_3/L_3=W_4/L_4=1$, and all the channel lengths are equal to $1\mu m$. Use the transistor parameters of Table 6.1.

Figure 6.2

6.4 In the circuit of Fig 6.3, assume that $I_{SS}=1$ mA, $V_{DD}=3$ V and W/L=50/0.5 for all the transistors. And $I_{D5}=I_{D6}=0.8(I_{SS}/2)$. Assuming $\lambda \neq 0$.

- (a) Determine the voltage gain.
- (b) Calculate V_b.
- (c) If I_{SS} requires a minimum voltage of 0.4V, what is the maximum differential output swing?

Figure 6.3

- 6.5 The circuit shown in Figure 6.4 called a folded-current mirror differential amplifier and is useful for low values of power supply. Assume that all W/L values of each transistor is 100. Using the parameters shown in table 6.1,
 - a) Find the maximum input common mode voltage, $V_{IC}(max)$ and the minimum input common mode voltage, $V_{IC}(min)$. Keep all transistors in saturation for this problem.
 - b) What is the input common mode voltage range, ICMR?
 - c) Find the small signal voltage gain, v_{out}/v_{in} , if $v_{in} = v_1 v_2$.

Figure 6.4

6.6 In the circuit of Fig 6.5, assume that $I_{SS} = 0.5$ mA, $V_{DD} = 3$ V, $(W/L)_{1,2} = 50/0.5$ and $(W/L)_{3,4} = 10/0.5$. I_{SS} current is provided by NMOS, and its W/L = 50/0.5. Assuming $\lambda \neq 0$.

- a) Calculate the range of input common mode voltage.
- b) If $V_{in,CM} = 1.5V$, draw a sketch of the small signal differential voltage gain of the circuit when V_{DD} changes from 0 to 3V.
- c) If the mismatch threshold voltage of M₁ and M₂ is 1mV, calculate CMRR.
- d) If the $W_3 = 10 \mu m$ and $W_4 = 11 \mu m$, calculate CMRR.

