基于 PID 自动控制的暖气房屋控温模型 摘要

摘要

关键词: 元胞自动机 边缘检测 形状匹配

一、问题重述

1.1 问题背景

我国具有悠久的玻璃制作历史,玻璃是丝绸之路历史的重要物证,在考古工作中,需要对玻璃的成分进行分析,并对其种类进行鉴别。

玻璃以石英砂(主要成分为 SiO_2)作为主要原料,在制造的过程中为了降低熔点,添加不同的助熔剂进行炼制,并加入氧化钙等作为稳定剂。根据所加入助熔剂的不同,玻璃化学成分产生差异,这使得古代玻璃产生了不同的种类。例如添加铅矿石作为助熔剂的玻璃含有较高的氧化钡和氧化铅含量,常被称作铅钡玻璃;添加草木灰等作为助熔剂的玻璃,具有较高的钾含量,被称作是钾玻璃。

古代玻璃经由漫长的埋藏过程而导致风化。风化的本质是玻璃与外界环境之间产生了元素交换,导致成分发生变化。风化过程的程度不同,导致玻璃的成分,颜色发生较大变化,给考古工作带来了一定困难。我们需要利用古代玻璃采样的化学检测数据,探究风化与物质成分的变化关系,以及分类标准与成分之间的相关关系。

1.2 问题重述

经过分析整理,我们需要解决以下问题:

- 1. 分析表面风化同玻璃类型、纹饰和颜色之间的关系进行分析,并就类别分析其风化前后的化学含量统计规律,最后根据风化点的检测数据预测未风化前的物质含量。
- 2. 分析高钾玻璃和铅钡玻璃之间的类别划分规律,对每个类别选择合适的指标进行亚类的划分,给出划分的结果,并对结果进行敏感性分析。
- 3. 对所给附件中未知类别的玻璃文物化学成分进行分析,鉴定所属类别,并对分类结果进行敏感性分析。
- 4. 针对不同类别的玻璃文物样品,在不同的化学成分中分析关联关系,对这一关系的差异程 度进行分析。

二、问题分析

2.1 问题一的分析

为了解决第一小问,我们首先对原始数据进行清洗,对不满足成分性要求的数据进行剔除。为了分析便面风化与类型,纹饰,颜色之间的关系,考虑使用皮尔逊的拟合优度检验法^[?]或是方差分析^[?]等方法,分析三个因素与风化之间的关系。

2.2 问题二的分析

分析

2.3 问题三的分析

三、模型假设

1. 原因:

四、名词解释与符号说明

4.1 名词解释

1. **dada**

dsadw

2. dsadc

dasdsas

4.2 符号说明

以下是本文使用的符号以及含义:

符号	说明	单位
L_0	仓库长度	m

五、模型的建立与求解

以下将对提出的四个问题进行建模求解。

5.1 数据清洗与可视化分析

在这一部分,我们进行了一些数据预处理工作。首先对剔除不满足要求的数据,随后对缺失的数据进行填补,最后将数据进行分析统计,以更好的进行建模活动。

5.1.1 剔除异常数据

根据题目信息,需要对不满足成分性的数据进行剔除。成分性的定义为各个成分之间的加和 应该是等于 100%,但是由于种种因素这一性质不能达到。规定各个组分的加和处于 85% ~ 105% 之间的数据作为有效数据。对表单 2 中的 69 条数据进行统计,得到图(1)所示的结果。

可见数据总体分布在 87.09% ~ 102.29% 这一区间中,只有两条记录不能满足成分性,分别是 17 号采样点 71.89% 以及 15 号采样点 79.47%,将其剔除。

图 1: 附件二各采样点成分的求和

5.1.2 数据填补

在 58 份样本数据中分别说明了其编号、纹饰、类型、颜色与风化程度五项数据,其中颜色一项有四条缺失,分别位于编号 19、40、48 和 58 处。为了便于后续的分析处理,将缺失项用"未知"填补,补全了数据缺口。

5.1.3 可视化分析

为了便于后续的分析处理,我们对数据进行可视化分析。为了判断类别分布的规律,首先对文物样本在各个指标的分布情况进行分析,得到图(2)所示的结果。可见古代玻璃样本以 C 类型的纹饰为主,其次是 A 纹饰,B 纹饰的占比最小,仅占 10.34%。在类型分布上,铅钡玻璃的占比超过了三分之二,成为数量较多的一类。在颜色分布上,颜色以蓝、绿为主,可能是由于其中的 Fe^{3+} , Cu^{2+} 等离子的存在而显色^[?]。其中颜色由显现出不同的深浅,可能代表显色物质的组合以及浓度差异。

5.2 古代玻璃风化预测模型

在本部分,我们首先对古代玻璃的种类、纹饰和颜色,同风化的相关关系进行分析,利用多种方法分析出与风化关系密切的因素。随后我们就玻璃种类和风化与否来划分成分含量指标,给出成分的统计规律,随后建立模型,对古代玻璃的未风化前的元素含量做出预测。

5.2.1 古代玻璃各指标相关性分析

为了探究古代玻璃的纹饰种类、类型与颜色等因素的差异对于玻璃风化程度的影响,对这三个因素进行相关性分析。我们首先使用方差分析^[?]检验相关性。下面以检验纹饰同风化之间的关系叙述计算过程。

我们若将纹饰视作考察的因素,那么不同的纹饰 $\{A, B, C\}$ 则可以视为 r 个不同的水平,这里 r = 3,若用附件所给 58 个玻璃样本数据进行分析,在各个样本独立同分布的条件下,记录第 k 种

图 2: 玻璃样本基本信息的分布情况

纹饰中第 i 个样本的风化程度为 X_{ik} ,每种纹饰的样本数量为 n_A , n_B , n_C 。根据上述信息,可以得到水平项离差平方和(SSA)、误差项离差平方和(SSE)的统计量 SS_A 与 SS_E :

$$SS_{A} = \sum_{i=1}^{r} \sum_{i=1}^{n_{i}} (\bar{X}_{i} - \bar{X})^{2} = \sum_{i=1}^{r} n_{i} (\bar{X}_{i} - \bar{X})^{2}$$
(1)

$$SS_{E} = \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} (X_{ij} - \bar{X}_{i})^{2}$$
(2)

方差分析的基本思想是通过水平项离差平方和(SSA)、误差项离差平方和(SSE)的统计量 判断假设 H_0 : $\mu_1 = \mu_2 = \cdots = \mu_r$ 是否成立。这里的 μ 代表风化程度的均值。当上述假设成立时满足下式:

$$\frac{\mathrm{SS}_{\mathrm{A}}}{\sigma^2} \sim \chi^2(r-1), \quad \frac{\mathrm{SS}_{\mathrm{E}}}{\sigma^2} \sim \chi^2(n-r)$$

样本的方差是未知的变量,构造检验量 F 进行处理,将其消去,得到下式:

$$F = \frac{\mathrm{SS_A/df_A}}{\mathrm{SS_E/df_E}} = \frac{\mathrm{MS_A}}{\mathrm{MS_E}} \sim F(r-1, n-r) \tag{3}$$

其中 MS_A 与 MS_E 称作是均方和,以 F 的显著性大小来检验纹饰种类同风化情况之间的关联程度。在给定的显著性水平 α 下,原假设 H_0 的拒绝域为 $F \geq F_{\alpha}(r-1,n-r)$ 。而对于颜色和类型的水平与风化程度的分析方面,我们可以使用相似的方法进行分析。下面将给出三个指标相关性分析的结果。经过计算,三个因素的重要参数罗列在表(1)中。

对三个因素在显著性水平 $\alpha = 0.01, 0.05, 0.1$ 的条件下,查表 $[^2]$ 可知,类型、纹饰和颜色三个因素所得 F 值在如下对应范围内。注意到由于部分 F_{α} 的数值没有直接查到,我们利用 F_{α} 的单调

耒 1 ·	根据迷刑	纹饰和颜色的方差分析结果
77 I.		

因素 指标	类型	纹饰	颜色
SS_A	1.669	1.2023	2.288
SS_E	12.4	12.8667	11.781
MS_A	1.669	0.6011	0.2542
MS_E	0.2214	0.2339	0.2454
F	7.5373	2.5697	1.0358

性,使用临近的值进行判断。

$$F_{\text{*P}} = 7.5373 > F_{0.01}(1,40) = 7.314 > F_{0.01}(1,57) \tag{4}$$

$$F_{\text{20 fff}} = 2.5697 < F_{0.05}(2, 60) = 3.150 < F_{0.05}(2, 55)$$
 (5)

$$F_{\text{mod}} = 1.0358 < F_{0.1}(8,60) = 1.7745 < F_{0.01}(8,49) \tag{6}$$

分析其结果,可知类型这一因素的差异极显著 ($\alpha = 0.01$),而其余两个因素的差异性不强,特别是颜色这一因素,没有显著影响。因此我们认为玻璃的种类是影响风化的重要因素,纹饰种类对风化有影响,但是程度不高,颜色与风化之间的关系没有显著关系。

为了验证所得结果的正确性,使用卡方分布来验证三个因素同风化之间是否呈现出显著性。借助求解器 $^{[?]}$,统计了三因素同表面风化的交叉图(图 3),此外还计算出 χ^2 和差异性指标p 的结果,如表(2)所示。

图 3: 三个因素同风化程度的交叉图

表 2: 三个因素的卡方分析结果表

表面风化因素	χ^2	p	显著性
类型	6.880	0.009**	高显著性
纹饰	4.957	0.084	无显著性
颜色	9.432	0.307	无显著性

注: * 代表 p < 0.05, 说明具有显著性, ** 代表 p < 0.01 说明具有高显著性。

分析结果,可以观察到在三个因素中只有类型产生了高显著性,而纹饰颜色两个因素并未得出显著性结论,分析图(3a)也可直观看出玻璃类型对于风化的结果有明显差异,故可以认为我们所使用的方法具有合理性。

5.3 古代玻璃样品统计规律分析

考虑到风化过程产生了元素的交换,玻璃风化与否影响着成分含量;与此同时,玻璃的种类也会造成所含物质的差异性。为此,我们将附件表单二中的69条数据按类型和风化程度两个因素,划分为5组:高钾玻璃未风化、高钾玻璃风化、铅钡玻璃未风化、铅钡玻璃风化和铅钡玻璃严重风化。没有出现高钾玻璃的严重风化这一组别是因为原始数据中不存在,故不予记录。

随后计算各个组别的条目数量,均值与方差,最大值和最小值,还有变异系数^[?],得出基本的统计结果。计算均值的目的在于统计元素组成的普遍相似性,同时降低那些由于古代工艺所限导致的含量误差。方差反映的是成分的波动程度,由于各个指标的绝对占比有很大不同,其波动程度的衡量可以用变异系数 c_v 这一指标进行衡量,计算式如下。

$$c_{v} = \frac{\sigma}{u} \tag{7}$$

其中 σ 代表标准差, μ 代表均值。最大值最小值反应的是指标占比的分布范围,对于后续分类预测的工作具有较大作用。

由于全部表的详细信息所占篇幅太大,仅仅选取未风化的高钾玻璃指标条目(表3)在正文中展示,其余几类表将在附录中给出。分析这些指标,注意到最小值不为0的成分有两个,意味着在所有的该类样本的中都有出现该成分。存在四个成分的中位数为0,反映出大量样本未检出该成分。

表 3: 未风化高钾玻璃统计量

		<u> </u>	1+/- (10 1 -1 17)				
名称	样本量	最小值	最大值	平均值	标准差	中位数	变异系数 (CV)
二氧化硅 (SiO2)	12	59.01	87.05	67.984	8.755	65.53	12.878%
氧化钠 (Na2O)	12	0	3.38	0.695	1.287	0	185.168%
氧化钾 (K2O)	12	0	14.52	9.331	3.92	9.83	42.014%
二氧化硫 (SO2)	12	0	0.47	0.102	0.186	0	182.472%
氧化钙 (CaO)	12	0	8.7	5.332	3.092	6.095	57.993%
氧化镁 (MgO)	12	0	1.98	1.079	0.676	1.165	62.654%
氧化铝 (Al2O3)	12	3.05	11.15	6.62	2.492	6.185	37.636%
氧化铁 (Fe2O3)	12	0	6.04	1.932	1.667	2.11	86.283%
氧化铜 (CuO)	12	0	5.09	2.453	1.66	2.345	67.686%
氧化铅 (PbO)	12	0	1.62	0.412	0.589	0.155	143.074%
氧化钡 (BaO)	12	0	2.86	0.598	0.982	0	164.140%
五氧化二磷 (P2O5)	12	0	4.5	1.402	1.434	1.02	102.243%
氧化锶 (SrO)	12	0	0.12	0.042	0.048	0.02	116.157%
氧化锡 (SnO2)	12	0	2.36	0.197	0.681	0	346.410%

注: 表中除变异系数外的数据单位为百分比(%)

为了更好的判断风化前后的成分变化,对风化前后的两类玻璃的均值进行分析得到图(4)。

图 4: 元素变化情况同风化程度的关系

(b) 铅钡玻璃

分析数据,得出玻璃在风化过程中元素占比的变化情况:

- 1. 物质占比在风化过程中随过程的推进,占比呈增加或是减少态势。在风化时玻璃和外界产生物质交换,导致部分物质进入玻璃样品,或是在其余物质流失的情况下,这一物质的占比大大增加。与此同时伴随着随物质流失或是总元素含量增加,部分占比又在随风化程度减少而减少。
- 2. 就类间差异而论,高钾玻璃随风化过程的推进,二氧化硅一项的占比在上升,最终达到百分之九十以上,而其余成分都在下降。高钾玻璃的风化过程物质变化较为单一。而铅钡玻璃各项物质的占比变化情况多样,二氧化硅的占比逐步下降,而其余物质如氧化铅,氧化钡,五氧化二磷等在上升。

3. 由于玻璃所添加的助熔剂不同,在风化前的指标中可以明显看出钾、钡、铅三种氧化物的占比具有很大差异,为后续分类工作提供基础。

5.4 玻璃样品风化前含量预测模型

要预测风化样本数据之前的成分占比,在最理想的情况下,需要通过同一样本的风化数据与未风化数据构成一对正反样本。在若干对正反样本中分析风化前后的数据变化,得到稳定结果。鉴于附件数据的特点,风化数据和未风化数据的记录往往位于不同的文物样本,仅有属于铅钡玻璃的 49 和 50 号样本满足要求,难以形成成对数据。为此,根据前面分析所得的统计规律,我们提出一种基于均值的原始含量预测模型。

1. 跨样本变化比例 Δ1

首先分析不同样本上的风化前后的元素对比,这是因为该部分可利用的数据较多。为了减弱不同古代玻璃样本的成分含量差异,使用均值来计算某一类型的玻璃元素含量多少。若使用 c_{ij} 代表某一类别中第 i 条记录中的第 j 项化学成分的占比,那么对于该指标的均值可以使用以下公式计算:

$$\mu_{j} = \frac{\sum_{j=1}^{14} c_{ij}}{n} \tag{8}$$

,这里 n 代表采样点记录的数量。如果使用 μ , μ' 分别代表风化前与风化后的均值,那么可以计算出跨样本变化比例 Δ_1 。

$$\Delta_1 = \frac{\mu - \mu'}{\mu'} \,, \, \mu' > 0 \tag{9}$$

在这里需要处理 $\mu'=0$ 的情况,分析数据可知,高钾玻璃的氧化钠 (Na2O) 、氧化铅 (PbO) 、氧化钡 (BaO) 、氧化锶 (SrO)、氧化锡 (SnO2) 和二氧化硫 (SO2) 五个指标在风化过程中完全流失,无法推知其变化之前的比例。同样地,对于待预测数据中那些流失到 0 的数据也不能预测其风化前的比例。

2. 样本内变化比例 Δ2

对于同一样本上的不同风化程度数据,同样可以计算其化学成分变化比例,令风化前后的比例分别为 c,c',那么可以计算样本内变化比例 Δ_2 :

$$\Delta_2 = \frac{\sum_{i=1}^{m} (c_{ij} - c'_{ij})}{m * c'_{ii}}$$
 (10)

其中m为具有正反对比的样本数目,在附件数据中,高钾玻璃m=0,铅钡玻璃m=2。

3. 综合变化比例 Δ_0

最后我们将综合上述两个指标: 跨样本变化比例 Δ_1 与样本间变化比例 Δ_2 ,将二者以一定比例相加。

$$\Delta_{K0} = \omega_1 \cdot \Delta_{K1} + \omega_2 \cdot \Delta_{K2}$$

$$\Delta_{B0} = \Delta_{B1}$$
(11)

其中 ω 代表权重, Δ_K , Δ_B 分别代表高钾玻璃和铅钡玻璃的变化比例 在得到综合变化比例 Δ_0 后,给出风化前成分的计算方法。

$$c_{ij}^{k} = \begin{cases} (1 + \Delta_{K0}) * c_{ij}^{k} &, k = K \\ (1 + \Delta_{B0}) * c_{ij}^{k} &, k = B \end{cases}, \quad (c_{ij} > 0, \Delta_{0} > 0)$$

$$(12)$$

5.4.1 模型求解

经过上述分析和计算,在给定 $\omega_1 = 0.7$ 和 $\omega_2 = 0.3$ 的情况下,计算出高钾玻璃和铅钡玻璃各个化学元素的综合变化比例,列出表(4)。

化学成分 二氧化硅 (SiO2) 氧化钠 (Na2O) 氧化钾 (K2O) 氧化钙 (CaO) 氧化镁 (MgO) -0.2765 16.1842 4.4772 5.1287 D_{K0} Inf 5.8980 D_{B0} 1.0203 0.6466 -0.5247 -0.0684 化学成分 氧化铝 (Al2O3) 氧化铁 (Fe2O3) 氧化铜 (CuO) 氧化铅 (PbO) 氧化钡 (BaO) 0.5704 D_{K0} 2.4301 6.2906 Inf Inf 0.4379 0.1150 -0.3552 -0.4947 -0.1406 D_{B0} 化学成分 五氧化二磷 (P2O5) 氧化锶 (SrO) 氧化锡 (SnO2) 二氧化硫 (SO2) D_{K0} 4.0071 Inf Inf Inf -0.7796 -0.2834 -0.3896 -0.1929 D_{B0}

表 4: 各化学成分的变化趋势

六、敏感性分析

七、模型的评价

7.1 模型的优点

1. 采用

7.2 模型的缺点

• 利用较

附件

附件清单:

附录 i 统计规律分析结果

• 高钾玻璃风化数据统计(表5)

表 5: 风化高钾玻璃统计量

	样本量	最小值	最大值	平均值	标准差	中位数	变异系数 (CV)
二氧化硅 (SiO2)	6	92.35	96.77	93.963	1.734	93.505	1.845%
氧化钠 (Na2O)	6	0	0	0	0	0	null
氧化钾 (K2O)	6	0	1.01	0.543	0.445	0.665	81.935%
氧化钙 (CaO)	6	0.21	1.66	0.87	0.488	0.83	56.066%
氧化镁 (MgO)	6	0	0.64	0.197	0.306	0	155.752%
氧化铝 (Al2O3)	6	0.81	3.5	1.93	0.964	1.72	49.974%
氧化铁 (Fe2O3)	6	0.17	0.35	0.265	0.069	0.275	26.226%
氧化铜 (CuO)	6	0.55	3.24	1.562	0.935	1.545	59.861%
氧化铅 (PbO)	6	0	0	0	0	0	null
氧化钡 (BaO)	6	0	0	0	0	0	null
五氧化二磷 (P2O5)	6	0	0.61	0.28	0.21	0.28	74.983%
氧化锶 (SrO)	6	0	0	0	0	0	null
氧化锡 (SnO2)	6	0	0	0	0	0	null
二氧化硫 (SO2)	6	0	0	0	0	0	null

注: 表中除变异系数外的数据单位为百分比(%), null 代表无法计算变异系数。

- 铅钡玻璃未风化数据统计(表6)
- 铅钡玻璃风化数据统计(表7)
- 铅钡玻璃严重风化数据统计 (表 8)

表 6: 未风化铅钡玻璃统计量

 名称	样本量	最小值	最大值	平均值	标准差	中位数	变异系数 (CV)
氧化钠 (Na2O)	23	0	7.92	1.683	2.372	0	140.950%
氧化钾 (K2O)	23	0	1.41	0.219	0.31	0.15	141.778%
氧化钙 (CaO)	23	0	4.49	1.32	1.285	0.84	97.294%
氧化镁 (MgO)	23	0	1.67	0.64	0.547	0.71	85.372%
氧化铝 (Al2O3)	23	1.42	14.34	4.456	3.262	3.86	73.213%
氧化铁 (Fe2O3)	23	0	4.59	0.737	1.155	0	156.782%
氧化铜 (CuO)	23	0	8.46	1.432	1.97	0.65	137.586%
氧化铅 (PbO)	23	9.3	39.22	22.085	8.215	20.12	37.198%
氧化钡 (BaO)	23	2.03	26.23	9.002	5.825	8.99	64.713%
五氧化二磷 (P2O5)	23	0	6.34	1.049	1.847	0.19	176.056%
氧化锶 (SrO)	23	0	0.91	0.268	0.243	0.26	90.752%
氧化锡 (SnO2)	23	0	0.44	0.047	0.127	0	273.714%
二氧化硫 (SO2)	23	0	3.66	0.159	0.763	0	479.583%

注: 表中除变异系数外的数据单位为百分比(%), null 代表无法计算变异系数。

表 7: 风化铅钡玻璃统计量

名称	样本量	最小值	最大值	平均值	标准差	中位数	变异系数 (CV)
二氧化硅 (SiO2)	23	12.41	53.33	27.056	9.005	25.74	33.283%
氧化钠 (Na2O)	23	0	2.22	0.244	0.587	0	240.349%
氧化钾 (K2O)	23	0	1.05	0.133	0.246	0	184.408%
氧化钙 (CaO)	23	0.37	6.4	2.777	1.667	2.82	60.007%
氧化镁 (MgO)	23	0	2.73	0.687	0.719	0.59	104.803%
氧化铝 (Al2O3)	23	0.45	13.65	3.099	2.747	2.51	88.628%
氧化铁 (Fe2O3)	23	0	2.74	0.661	0.751	0.33	113.615%
氧化铜 (CuO)	23	0	10.57	2.221	2.981	0.88	134.180%
氧化铅 (PbO)	23	15.71	70.21	43.71	12.077	44.12	27.631%
氧化钡 (BaO)	23	0	32.25	10.475	7.966	8.64	76.048%
五氧化二磷 (P2O5)	23	0	12.83	4.76	3.989	3.59	83.793%
氧化锶 (SrO)	23	0	0.88	0.374	0.23	0.39	61.434%
氧化锡 (SnO2)	23	0	1.31	0.077	0.286	0	369.523%
二氧化硫 (SO2)	23	0	2.58	0.197	0.661	0	334.686%

注: 表中除变异系数外的数据单位为百分比(%)

表 8: 严重风化铅钡玻璃统计量

	样本量	最小值	最大值	<u> </u>	里 标准差	中位数	变异系数 (CV)
二氧化硅 (SiO2)	3	3.72	17.11	8.48	7.487	4.61	88.291%
氧化钠 (Na2O)	3	0	0	0	0	0	null
氧化钾 (K2O)	3	0	0.4	0.133	0.231	0	173.205%
氧化钙 (CaO)	3	0	3.19	2.067	1.792	3.01	86.712%
氧化镁 (MgO)	3	0	1.11	0.37	0.641	0	173.205%
氧化铝 (Al2O3)	3	1.11	3.65	1.98	1.447	1.18	73.065%
氧化铁 (Fe2O3)	3	0	0	0	0	0	null
氧化铜 (CuO)	3	1.34	3.6	2.693	1.194	3.14	44.346%
氧化铅 (PbO)	3	29.92	58.46	40.277	15.798	32.45	39.224%
氧化钡 (BaO)	3	0	35.45	22.023	19.225	30.62	87.294%
五氧化二磷 (P2O5)	3	6.04	14.13	9.243	4.3	7.56	46.517%
氧化锶 (SrO)	3	0.53	1.12	0.757	0.318	0.62	42.008%
氧化锡 (SnO2)	3	0	0	0	0	0	null
二氧化硫 (SO2)	3	0	15.95	10.327	8.955	15.03	86.717%

注: 表中除变异系数外的数据单位为百分比(%), null 代表无法计算变异系数。