

ADSP-21061 SHARC® * **DSP Microcomputer Family**

ADSP-21061

SUMMARY

High-Performance Signal Computer for Speech, Sound, **Graphics and Imaging Applications**

Super Harvard ARchitecture Computer (SHARC®)— Four Independent Buses for Dual Data, Instructions,

32-Bit IEEE Floating-Point Computation Units-Multiplier, ALU and Shifter

1 Megabit On-Chip SRAM Memory and Integrated I/O Peripherals—A Complete System-On-A-Chip Integrated Multiprocessing Features

KEY FEATURES

40 MIPS, 25 ns Instruction Rate, Single-Cycle Instruction Execution

120 MFLOPS Peak, 80 MFLOPS Sustained Performance **Dual Data Address Generators with Modulo and Bit-**Reverse Addressing

Efficient Program Sequencing with Zero-Overhead Looping: Single-Cycle Loop Setup

IEEE J TAG Standard 1149.1 Test Access Port and **On-Chip Emulation** 240-Lead PQFP Package

Pin-Compatible with ADSP-21060 (4 Mbit) and ADSP-21062 (2 MBit) 5.0 Volt Operation

Low Power (Idle 16) Mode

Flexible Data Formats and 40-Bit Extended Precision 32-Bit Single-Precision and 40-Bit Extended-Precision **IEEE Floating-Point Data Formats**

32-Bit Fixed-Point Data Format, Integer and Fractional, with 80-Bit Accumulators

Parallel Computations

Single-Cycle Multiply and ALU Operations in Parallel with **Dual Memory Read/Writes and Instruction Fetch** Multiply with Add and Subtract for Accelerated FFT **Butterfly Computation**

1024-Point Complex FFT Benchmark: 0.46 ms (18,221 Cycles)

1 Megabit Configurable On-Chip SRAM

Dual-Ported for Independent Access by Core Processor and DMA

Configurable as 32K Words Data Memory (32-Bit), 16K Words Program Memory (48-Bit) or Combinations of Both Up to 1 Mbit

Figure 1. ADSP-21061 Block Diagram

*SHARC is a registered trademark of Analog Devices, Inc.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Off-Chip Memory Interfacing

4-Gigawords Addressable (32-Bit Address)

Programmable Wait State Generation, Page-Mode DRAM Support

DMA Controller

6 DMA Channels

Background DMA Transfers at 40 MHz, in Parallel with Full-Speed Processor Execution

Performs Transfers Between ADSP-21061 Internal Memory and External Memory, External Peripherals, Host Processor, or Serial Ports

Host Processor Interface

Efficient Interface to 16- and 32-Bit Microprocessors
Host can Directly Read/Write ADSP-21061 Internal Memory

Multiprocessing

Glueless Connection for Scalable DSP Multiprocessing Architecture

Distributed On-Chip Bus Arbitration for Parallel Bus Connect of Up To 6 ADSP-21061s Plus Host 240 Mbytes/s Transfer Rate Over Parallel Bus

Serial Ports

Two 40 Mbit/s Synchronous Serial Ports Independent Transmit and Receive Functions 3- to 32-Bit Data Word Width μ-Law/A-Law Hardware Companding TDM Multichannel Mode Multichannel Signaling Protocol Enhanced Multiprocessing Features

AD SP-21061 M EM ORY M AP
TARGET BOARD CONNECTOR FOR EZ-ICE®*
PROBE
RECOMMENDED OPERATING CONDITIONS 14
ELECTRICAL CHARACTERISTICS 14
TIMING SPECIFICATIONS
M emory Read—Bus M aster
M emory Write—Bus M aster
Synchronous Read/Write—Bus Master
Synchronous Read/Write—Bus Slave
Multiprocessor Bus Request and Host Bus Request 24
Asynchronous Read/Write—Host to ADSP-2106x 26
T <u>hree-StateTi</u> ming—Bus M aster, Bus Slave,
<u>HBR</u> , <u>SBTS</u>
DMA Handshake
Serial Ports
JTAG Test Access Port and Emulation
OUTPUT DRIVE CURRENTS
POWER DISSIPATION
ENVIRONMENTAL CONDITIONS
240-LEAD METRIC POFP PIN CONFIGURATIONS 39
PACKAGE DIMENSIONS
ORDERING GUIDE

^{*}EZ-ICE is a registered trademark of Analog D evices Inc.

Figures
Figure 1. ADSP-21061 Block Diagram
Figure 2. ADSP-21061 System
Figure 3. M ultiprocessing System
Figure 4. ADSP-21062/ADSP-21062L M emory M ap
Figure 5. Target Board Connector For ADSP-2106x
EZ-ICE® Emulator (Jumpers in Place)
Figure 6. JT AG Scan Path Connections for Multiple
AD SP-2106x Systems
Figure 7. JT AG Clocktree for Multiple ADSP-2106x
Systems
Figure 8. Clock Input
Figure 9. Reset
Figure 10. Interrupts
Figure 11. Timer
Figure 12. Flags
Figure 13. M emory Read—Bus M aster
Figure 14. M emory Write—Bus M aster
Figure 15. Synchronous Read/Write—Bus Master 23
Figure 16. Synchronous Read/Write—Bus Slave
Figure 17. Multiprocessor Bus Request & Host Bus
R equest
Figure 18a. Synchronous REDY Timing 26
Figure 18b. Asynchronous Read/Write—Host to
ADSP-2106x
Figure 19. Three-State Timing
Figure 20. DM A Handshake Timing
Figure 21. External Late Frame Sync 33
Figure 22. Serial Ports
Figure 23. IEEE 11499.1 JT AG T est Access Port 35
Figure 24. Typical Drive Currents 36
Figure 25. Output Enable/Disable
Figure 26. Equivalent Device Loading for AC Measurements
(Includes All Fixtures)
Figure 27. Voltage Reference Levels for AC Measurements
(Except Output Enable/Disable)
Figure 28. Typical Output Rise Time (10%–90% V _{DD}) vs.
Load Capacitance
Load Capacitance
C apacitance
Figure 30. Typical Output Delay or Hold vs. Load Capacitance
(at M aximum C ase T emperature)

-2- REV. 0

GENERAL NOTE

This data sheet represents production released specifications for the ADSP-21061 processor for 33 MHz and 40 MHz speed grades. This data sheet also represents preliminary ac specifications for the 50 MHz speed grade of the ADSP-21061.

GENERAL DESCRIPTION

The ADSP-21061 is a member of the powerful SHARC $^{\circledcirc}$ family of floating point processors. The SHARC $^{\circledcirc}$ —Super H arvard ARchitecture C omputer—are signal processing microcomputers that offer new capabilities and levels of integration and performance. The ADSP-21061 is a 32-bit processor optimized for high performance DSP applications. The ADSP-21061 combines the ADSP-21000 DSP core with a dual-ported on-chip SRAM and an I/O processor with a dedicated I/O bus to form a complete system-in-a-chip.

Fabricated in a high-speed, low-power C M O S process, the AD SP-21061 has a 25 ns instruction cycle time operating at 40 M IPS. With its on-chip instruction cache, the processor can execute every instruction in a single cycle. T able I shows performance benchmarks for the AD SP-21061.

The ADSP-21061 SHARC $^{\odot}$ combines a high-performance floating-point DSP core with integrated, on-chip system features, including a 1 M bit SRAM memory, host processor interface, DMA controller, serial ports and parallel bus connectivity for glueless DSP multiprocessing.

Figure 1 shows a block diagram of the ADSP-21061, illustrating the following architectural features:

Computation Units (ALU, Multiplier and Shifter) with a Shared Data Register File

Data Address Generators (DAG1, DAG2)

Program Sequencer with Instruction Cache

Interval Timer

1 M bit On-Chip SRAM

External Port for Interfacing to Off-Chip M emory and Peripherals

Host Port & Multiprocessor Interface

DMA Controller

Serial Ports

ITAG Test Access Port

Figure 2 shows a typical single-processor system. A multi-processing system is shown in Figure 3.

Table I. ADSP-21061 Benchmarks (@ 40 MHz)

1024-Pt. Complex FFT (Radix 4, with Digit Reverse)	0.46 ms	18,221 C ycles
FIR Filter (per Tap)	25 ns	1 C ycle
IIR Filter (per Biquad)	100 ns	4 C ycles
Divide (y/x)	150 ns	6 C ycles
Inverse Square Root (1/ \sqrt{x})	225 ns	9 C ycles
DMA Transfer Rate	240 M bytes/s	

REV. 0 -3-

ADSP-21000 FAMILY CORE ARCHITECTURE

The ADSP-21061 includes the following architectural features of the ADSP-21000 family core. The ADSP-21061 is code and function compatible with the ADSP-21060/ADSP-21062.

Independent, Parallel Computation Units

The arithmetic/logic unit (ALU), multiplier and shifter all perform single-cycle instructions. The three units are arranged in parallel, maximizing computational throughput. Single multifunction instructions execute parallel ALU and multiplier operations. These computation units support IEEE 32-bit single-precision floating-point, extended precision 40-bit floating-point and 32-bit fixed-point data formats.

Figure 2. ADSP-21061 System

Data Register File

A general purpose data register file is used for transferring data between the computation units and the data buses, and for storing intermediate results. This 10-port, 32-register (16 primary, 16 secondary) register file, combined with the ADSP-21000 Harvard architecture, allows unconstrained data flow between computation units and internal memory.

Single-Cycle Fetch of Instruction and Two Operands

The ADSP-21061 features an enhanced H arvard architecture in which the data memory (DM) bus transfers data and the program memory (PM) bus transfers both instructions and data (see Figure 1). With its separate program and data memory buses and on-chip instruction cache, the processor can simultaneously fetch two operands and an instruction (from the cache), all in a single cycle.

Instruction Cache

The ADSP-21061 includes an on-chip instruction cache that enables three-bus operation for fetching an instruction and two data values. The cache is selective—only the instructions whose fetches conflict with PM bus data accesses are cached. This allows full-speed execution of core, looped operations such as digital filter multiply-accumulates and FFT butterfly processing.

Data Address Generators with Hardware Circular Buffers

The ADSP-21061's two data address generators (DAGs) implement circular data buffers in hardware. Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing, and are commonly used in digital filters and Fourier transforms. The ADSP-21061's two DAGs contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets, 16 secondary). The DAGs automatically handle address pointer wraparound, reducing overhead, increasing performance and simplifying implementation. Circular buffers can start and end at any memory location.

Flexible Instruction Set

The 48-bit instruction word accommodates a variety of parallel operations, for concise programming. For example, the ADSP-21061 can conditionally execute a multiply, an add, a subtract and a branch, all in a single instruction.

ADSP-21061 FEATURES

Augmenting the ADSP-21000 family core, the ADSP-21061 adds the following architectural features:

Dual-Ported On-Chip Memory

The ADSP-21061 contains 1 megabit of on-chip SRAM, organized as two banks of 0.5 M bits each. Each bank has eight 16-bit columns with 4K 16-bit words per column. Each memory block is dual-ported for single-cycle, independent accesses by the core processor and I/O processor or DMA controller. The dual-ported memory and separate on-chip buses allow two data transfers from the core and one from I/O, all in a single cycle.

On the AD SP-21061, the memory can be configured as a maximum of 32K words of 32-bit data, 64K words for 16-bit data, 16K words of 48-bit instructions (and 40-bit data) or combinations of different word sizes up to 1 megabit. All the memory can be accessed as 16-bit, 32-bit or 48-bit.

A 16-bit floating-point storage format is supported that effectively doubles the amount of data that may be stored on chip. C onversion between the 32-bit floating-point and 16-bit floating-point formats is done in a single instruction.

W hile each memory block can store combinations of code and data, accesses are most efficient when one block stores data, using the D M bus for transfers, and the other block stores instructions and data, using the PM bus for transfers. U sing the D M and PM buses in this way, with one dedicated to each memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache. Single-cycle execution is also maintained when one of the data operands is transferred to or from off-chip, via the ADSP-21061's external port.

-4- REV. 0

Off-Chip Memory and Peripherals Interface

The ADSP-21061's external port provides the processor's interface to off-chip memory and peripherals. The 4-gigaword off-chip address space is included in the ADSP-21061's unified address space. The separate on-chip buses—for program memory, data memory and I/O—are multiplexed at the external port to create an external system bus with a single 32-bit address bus and a single 48-bit (or 32-bit) data bus. The on-chip Super Harvard Architecture provides three-bus performance, while the off-chip unified address space gives flexibility to the designer.

Addressing of external memory devices is facilitated by on-chip decoding of high order address lines to generate memory bank select signals. Separate control lines are also generated for simplified addressing of page-mode DRAM. The ADSP-21061 provides programmable memory wait states and external memory acknowledge controls to allow interfacing to DRAM and peripherals with variable access, hold and disable time requirements.

Host Processor Interface

The ADSP-21061's host interface allows easy connection to standard microprocessor buses, both 16-bit and 32-bit, with little additional hardware required. Asynchronous transfers at speeds up to the full clock rate of the processor are supported. The host interface is accessed through the ADSP-21061's external port and is memory-mapped into the unified address space. Two channels of DMA are available for the host interface; code and data transfers are accomplished with low software overhead.

The host processor requests the ADSP-21061's external bus with the host bus request (\overline{HBR}), host bus grant (\overline{HBG}) and ready (REDY) signals. The host can directly read and write the internal memory of the ADSP-21061, and can access the DMA channel setup and mailbox registers. Vector interrupt support is provided for efficient execution of host commands.

DMA Controller

The ADSP-21061's on-chip DMA controller allows zero-overhead, non-intrusive data transfers without processor intervention. The DMA controller operates independently and invisibly to the processor core, allowing DMA operations to occur while the core is simultaneously executing its program instructions.

DMA transfers can occur between the ADSP-21061's internal memory and either external memory, external peripherals, or a host processor. DMA transfers can also occur between the ADSP-21061's internal memory and its serial ports. DMA transfers between external memory and external peripheral devices are another option. External bus packing to 16-, 32-or 48-bit words is performed during DMA transfers.

Six channels of D M A are available on the AD SP-21061—four via the serial ports, and two via the processor's external port (for either host processor, other AD SP-21061s, memory or I/O transfers). Programs can be downloaded to the AD SP-21061 using D M A transfers. Asynchronous off-chip peripherals can control two D M A channels using D M A Request/G rant lines $(\overline{DMAR}_{1-2}, \overline{DMAG}_{1-2})$. Other D M A features include interrupt generation upon completion of D M A transfers and D M A chaining for automatic linked D M A transfers.

Serial Ports

The ADSP-21061 features two synchronous serial ports that provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices. The serial ports can operate at the full clock rate of the processor, providing each with a maximum data rate of 40 M bit/s. Independent transmit and receive functions provide greater flexibility for serial communications. Serial port data can be automatically transferred to and from on-chip memory via DMA. Each of the serial ports offers TDM multichannel mode.

The serial ports can operate with little-endian or big-endian transmission formats, with word lengths selectable from three bits to 32 bits. They offer selectable synchronization and transmit modes as well as optional $\mu\text{-law}$ or A-law companding. Serial port clocks and frame syncs can be internally or externally generated. The serial ports also include keyword and keymask features to enhance interprocessor communication.

Multiprocessing

The ADSP-21061 offers powerful features tailored to multiprocessing DSP systems. The unified address space allows direct interprocessor accesses of each ADSP-21061's internal memory. Distributed bus arbitration logic is included on-chip for simple, glueless connection of systems containing up to six ADSP-21061s and a host processor. Master processor changeover incurs only one cycle of overhead. Bus arbitration is selectable as either fixed or rotating priority. Bus lock allows indivisible read-modify-write sequences for semaphores. A vector interrupt is provided for interprocessor commands. Maximum throughput for interprocessor data transfer is 240 M bytes/sec over the external port. Broadcast writes allow simultaneous transmission of data to all ADSP-21061s and can be used to implement reflective semaphores.

Program Booting

The internal memory of the ADSP-21061 can be booted at system power-up from either an 8-bit EPROM or a host processor. Selection of the boot source is controlled by the \overline{BMS} (Boot M emory Select), EBOOT (EPROM Boot), and LBOOT (Host Boot) pins. 32-bit and 16-bit host processors can be used for booting. See the \overline{BMS} pin in the Pin D escriptions section of this data sheet.

REV. 0 -5-

Figure 3. Multiprocessing System

-6- REV. 0

Figure 4. ADSP-21062/ADSP-21062L Memory Map

REV. 0 -7-

Porting Code from ADSP-21060 or ADSP-21062 to the ADSP-21061

The ADSP-21061 is pin compatible with the ADSP-21060/62. The ADSP-21061 pins that correspond to the Link Port pins of the ADSP-21060/62 are no-connects.

The ADSP-21061 is object code compatible with the ADSP-21060/62 except for the following functional changes:

The ADSP-21061 memory is organized into two blocks with eight columns that are 4K deep per block. The ADSP-21060/ADSP-21062 memory has 16 columns per block.

Link port functions are not available.

H and shake external port D M A pins $\overline{DMAR2}$ and $\overline{DMAG2}$ are assigned to external port D M A C hannel 6 instead of C hannel 8.

2-D DMA capability of the SPORT is not available. DMA channels 8 and 9 are not available.

The modify registers in SPORT DM A are not programmable.

On the ADSP-21061, Block 0 starts at the beginning of internal memory, normal word address 0×0002 0000. Block 1 starts at the end of Block 0, with contiguous addresses. The remaining addresses in internal memory are divided into blocks that alias into Block 1. This allows any code or data stored in Block 1 on the ADSP-21062 to retain the same addresses on the ADSP-21061—these addresses will alias into the actual Block 1 of each processor.

If you develop your application using the ADSP-21062, but will migrate to the ADSP-21061, use only the first eight columns of each memory bank. Limit your application to 8K of instructions or up to 16K of data in each bank of the ADSP-21062, or any combinations of instructions or data that does not exceed the memory bank.

DEVELOPMENT TOOLS

The ADSP-21061 is supported with a complete set of software and hardware development tools, including an EZ-ICE $^{\otimes}$ In-Circuit Emulator, EZ-K it Lite, and development software. The SHARC $^{\otimes}$ EZ-K it Lite* is a complete low cost package for DSP evaluation and prototyping. The EZ-K it Lite contains an evaluation board with an ADSP-21061 (5 V) processor and provides a serial connection to your PC . The EZ-K it Lite also includes an optimizing compiler, assembler, instruction level simulator, run-time libraries, diagnostic utilities and a complete set of example programs.

The same EZ-ICE hardware can be used for the ADSP-21060/ADSP-21062, to fully emulate the ADSP-21061, with the exception of displaying and modifying the two new SPORTS registers. The emulator will not display these two registers, but your code can use them.

Analog D evices AD SP-21000 F amily D evelopment Software includes an easy to use Assembler based on an algebraic syntax, Assembly Library/Librarian, Linker, instruction-level Simulator, an AN SI C optimizing Compiler, the CBug™ C Source—Level D ebugger and a C Runtime Library including DSP and mathematical functions. The Optimizing Compiler includes N umerical C extensions based on the work of the AN SI N umerical C Extensions Group. N umerical C provides extensions to the C language for array selections, vector math operations, complex data types, circular pointers and variably dimensioned arrays. The ADSP-21000 Family D evelopment Software is available for both the PC and Sun platforms.

The ADSP-21061 EZ-ICE $^{\circ}$ Emulator uses the IEEE 1149.1 JTAG test access port of the ADSP-21061 processor to monitor and control the target board processor during emulation. The EZ-ICE $^{\circ}$ provides full-speed emulation, allowing inspection and modification of memory, registers, and processor stacks. Nonintrusive in-circuit emulation is assured by the use of the processor's JTAG interface—the emulator does not affect target system loading or timing.

Further details and ordering information are available in the ADSP-21000 Family Hardware and Software Development Tools data sheet (ADDS-210xx-TOOLS). This data sheet can be requested from any Analog Devices sales office or distributor.

In addition to the software and hardware development tools available from Analog D evices, third parties provide a wide range of tools supporting the SHARC® processor family. Hardware tools include SHARC® PC plug-in cards multiprocessor SHARC® VME boards, and daughter and modules with multiple SHARC®s' and additional memory. These modules are based on the SHARCPAC™ module specification. Third Party software tools include an Ada compiler, DSP libraries, operating systems and block diagram design tools.

ADDITIONAL INFORMATION

This data sheet provides a general overview of the ADSP-21061 architecture and functionality. For detailed information on the ADSP-21000 Family core architecture and instruction set, refer to the ADSP-2106x SHARC $^{\text{TM}}$ User's M anual, Second Edition.

PIN DESCRIPTIONS

AD SP-21061 pin definitions are listed below. Inputs identified as synchronous (S) must meet timing requirements with respect to CLKIN (or with respect to TCK for TMS, TDI). Inputs identified as asynchronous (A) can be asserted asynchronously to CLKIN (or to TCK for \overline{TRST}).

U nused inputs should be tied or pulled to IVDD or IGND, except for ADDR $_{31-0}$, DATA $_{47-0}$, FLAG $_{3-0}$, SW and inputs that have internal pull-up or pull-down resistors (CPA, ACK, DTx,

DRx, TCLKx, RCLKx, TMS and TDI)—these pins can be left floating. These pins have a logic-level hold circuit that prevents the input from floating internally.

 $\begin{array}{ll} I = Input & S = Synchronous \\ (O/D) = Open \ D \ rain & O = O \ utput & A = A \ synchronous \end{array}$

G = G round (A/D) = A ctive D rive

T = T hree-State (when \overline{SBTS} is asserted, or when the ADSP-2106x is a bus slave)

PIN FUNCTION DESCRIPTIONS

Pin	Туре	Function
ADDR ₃₁₋₀	Ι/Ο/Τ	External Bus Address. The ADSP-21061 outputs addresses for external memory and peripherals on these pins. In a multiprocessor system the bus master outputs addresses for read/writes of the internal memory or IOP registers of other ADSP-2106xs. The ADSP-21061 inputs addresses when a host processor or multiprocessing bus master is reading or writing its internal memory or IOP registers.
DATA ₄₇₋₀	Ι/Ο/Τ	External Bus Data. The AD SP-21061 inputs and outputs data and instructions on these pins. The external data bus transfers 32-bit single-precision floating-point data and 32-bit fixed-point data over Bits 47-16. 40-bit extended-precision floating-point data is transferred over Bits 47-8 of the bus. 16-bit short word data is transferred over Bits 31-16 of the bus. Pull-up resistors on unused DATA pins are not necessary.
MS ₃₋₀	ο/τ	Memory Select Lines. These lines are asserted (low) as chip selects for the corresponding banks of external memory. Memory bank size must be defined in the ADSP-21061's system control register (SYSCON). The $\overline{\rm MS}_{3-0}$ lines are decoded memory address lines that change at the same time as the other address lines. When no external memory access is occurring the $\overline{\rm MS}_{3-0}$ lines are inactive; they are active, however, when a conditional memory access instruction is executed, whether or not the condition is true. $\overline{\rm MS}_0$ can be used with the PAGE signal to implement a bank of DRAM memory (Bank 0). In a multiprocessor system the $\overline{\rm MS}_{3-0}$ lines are output by the bus master.
RD	Ι/Ο/Τ	Memory Read Strobe. This pin is asserted (low) when the ADSP-21061 reads from external memory devices or from the internal memory of other ADSP-21061s. External devices (including other ADSP-21061s) must assert $\overline{\rm RD}$ to read from the ADSP-21061's internal memory. In a multiprocessor system $\overline{\rm RD}$ is output by the bus master and is input by all other ADSP-21061s.
WR	I/O/T	Memory Write Strobe. This pin is asserted (low) when the ADSP-21061 writes to external memory devices or to the internal memory of other ADSP-21061s. External devices must assert \overline{WR} to write to the ADSP-21061's internal memory. In a multiprocessor system \overline{WR} is output by the bus master and is input by all other ADSP-21061s.
PAGE	ол	DRAM Page Boundary. The ADSP-21061 asserts this pin to signal that an external DRAM page boundary has been crossed. DRAM page size must be defined in the ADSP-21061's memory control register (WAIT). DRAM can only be implemented in external memory Bank 0; the PAGE signal can only be activated for Bank 0 accesses. In a multiprocessor system PAGE is output by the bus master.
ADRCLK	0/Τ	Address Clock for synchronous external memories. Addresses on ADDR ₃₁₋₀ are valid before the rising edge of ADRCLK. In a multiprocessing system ADRCLK is output by the bus master.
SW	Ι/Ο/Τ	Synchronous Write Select. This signal is used to interface the ADSP-2106x to synchronous memory devices (including other ADSP-21061s). The ADSP-21061 asserts \overline{SW} (low) to provide an early indication of an impending write cycle, which can be aborted if \overline{WR} is not later asserted (e.g. in a conditional write instruction). In a multiprocessor system, \overline{SW} is output by the bus master and is input by all other ADSP-21061s to determine if the multiprocessor memory access is a read or write. \overline{SW} is asserted at the same time as the address output. A host processor using synchronous writes must assert this pin when writing to the ADSP-21061(s).
ACK	I/O/S	Memory Acknowledge. External devices can deassert ACK (low) to add wait states to an external memory access. ACK is used by I/O devices, memory controllers or other peripherals to hold off completion of an external memory access. The ADSP-21061 deasserts ACK as an output to add wait states to a synchronous access of its internal memory. In a multiprocessor system, a slave ADSP-21061 deasserts the bus master's ACK input to add wait state(s) to an access of its internal memory. The bus master has a keeper latch on its ACK pin that maintains the input at the level it was last driven to.

REV. 0 -9-

Pin	Туре	Function
SBTS	I/S	Suspend Bus Three-State External devices can assert $\overline{\mathrm{SBTS}}$ (low) to place the external bus address, data, selects, and strobes in a high impedance state for the following cycle. If the ADSP-21061 attempts to access external memory while $\overline{\mathrm{SBTS}}$ is asserted, the processor will halt and the memory access will not be completed until $\overline{\mathrm{SBTS}}$ is deasserted. $\overline{\mathrm{SBTS}}$ should only be used to recover from PAGE faults or host processor/ADSP-21061 deadlock.
\overline{IRQ}_{2-0}	I/A	Interrupt Request Lines. M ay be either edge-triggered or level-sensitive.
FLAG ₃₋₀	I/O/A	Flag Pins. Each is configured via control bits as either an input or an output. As an input, it can be tested as a condition. As an output, it can be used to signal external peripherals.
TIMEXP	0	Timer Expired . Asserted for four cycles when the timer is enabled and TCOUNT decrements to zero.
HBR	I/A	Host Bus Request M ust be asserted by a host processor to request control of the ADSP-21061's external bus. When \overline{HBR} is asserted in a multiprocessing system, the ADSP-21061 that is bus master will relinquish the bus and assert \overline{HBG} . To relinquish the bus, the ADSP-21061 places the address, data, select, and strobe lines in a high impedance state. \overline{HBR} has priority over all ADSP-21061 bus requests (\overline{BR}_{6-1}) in a multiprocessing system.
HBG	1/0	Host Bus Grant . A cknowledges an \overline{HBR} bus request, indicating that the host processor may take control of the external bus. \overline{HBG} is asserted (held low) by the ADSP-21061 until \overline{HBR} is released. In a multiprocessing system, \overline{HBG} is output by the ADSP-21061 bus master and is monitored by all others.
$\overline{\text{CS}}$	I/A	Chip Select. Asserted by host processor to select the ADSP-21061.
REDY (O/D)	0	Host Bus Acknowledge. The ADSP-2106x deasserts REDY (low) to add wait states to an asynchronous access of its internal memory or IOP registers by a host. Open drain output (O/D) by default; can be programmed in ADREDY bit of SYSCON register to be active drive (A/D). REDY will only be output if the $\overline{\text{CS}}$ and $\overline{\text{HBR}}$ inputs are asserted.
DMAR1	I/A	DMA Request 1 (DMA Channel 7).
$\overline{\text{DMAR2}}$	I/A	DMA Request 2 (DM A Channel 6).
DMAG1	0/Т	DMA Grant 1 (DM A Channel 7).
$\overline{\mathrm{DMAG2}}$	о/т	DMA Grant 2 (DM A Channel 6).
\overline{BR}_{6-1}	I/O/S	Multiprocessing Bus Requests . U sed by multiprocessing ADSP-21061s to arbitrate for bus mastership. An ADSP-21061 only drives its own $\overline{BR}x$ line (corresponding to the value of its ID $_{2-0}$ inputs) and monitors all others. In a multiprocessor system with less than six ADSP-21061s, the unused $\overline{BR}x$ pins should be tied high; the processor's own $\overline{BR}x$ line must not be tied high or low because it is an output.
ID ₂₋₀	I	Multiprocessing ID . D etermines which multiprocessing bus request $(\overline{BR1}-\overline{BR6})$ is used by ADSP-21061. ID = 001 corresponds to $\overline{BR1}$, ID = 010 corresponds to $\overline{BR2}$, etc. ID = 000 in single-processor systems. These lines are a system configuration selection which should be hardwired or only changed at reset.
RPBA	I/S	Rotating Priority Bus Arbitration Select When RPBA is high, rotating priority for multiprocessor bus arbitration is selected. When RPBA is low, fixed priority is selected. This signal is a system configuration selection which must be set to the same value on every ADSP-21061. If the value of RPBA is changed during system operation, it must be changed in the same CLKIN cycle on every ADSP-21061.
CPA (O/D)	I/O	Core Priority Access. Asserting its \overline{CPA} pin allows the core processor of an ADSP-21061 bus slave to interrupt background DMA transfers and gain access to the external bus. \overline{CPA} is an open drain output that is connected to all ADSP-2106xs in the system. The \overline{CPA} pin has an internal 5 k Ω pull-up resistor. If core access priority is not required in a system, the \overline{CPA} pin should be left unconnected.
DTx	0	Data Transmit (Serial Ports 0, 1). Each DT pin has a 50 $k\Omega$ internal pull-up resistor.
DRx	1	Data Receive (Serial Ports 0, 1). Each DR pin has a 50 k Ω internal pull-up resistor.
TCLKx	1/0	Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a 50 $k\Omega$ internal pull-up resistor.
RCLKx	1/0	Receive Clock (Serial Ports 0, 1). Each RCLK pin has a 50 k Ω internal pull-up resistor.

-10- REV. 0

Pin	Туре	Function						
TFSx	1/0	Transmit Frame Sync (Serial Ports 0, 1).						
RFSx	1/0	Receive Frame Sync (Serial Ports 0, 1).						
EBOOT	1	EPROM Boot Select. When EBOOT is high, the ADSP-21061 is configured for booting from an 8-bit EPROM. When EBOOT is low, the LBOOT and \overline{BMS} inputs determine booting mode. See table below. This signal is a system configuration selection which should be hardwired.						
LBOOT	1	Link Boot—Must be tied to GND.						
BMS	Ι/Ο/Τ*	Boot Memory Select. Output: U sed as chip select for boot EPROM devices (when EBOOT = 1, LBOOT = 0). In a multiprocessor system, \overline{BMS} is output by the bus master. Input: When low, indicates that no booting will occur and that ADSP-21061 will begin executing instructions from external memory. See table below. This input is a system configuration selection which should be hardwired.						
		*T hree-statable only in EPROM boot mode (when \overline{BMS} is an output).						
		EBOOT LBOOT \overline{BMS} Booting M ode						
		1 0 Output EPROM (Connect BMS to EPROM chip select.) 0 0 1 (Input) Host Processor 0 0 (Input) No Booting. Processor executes from external memory.						
CLKIN	1	Clock In. External clock input to the ADSP-21061. The instruction cycle rate is equal to CLKIN. CLKIN may not be halted, changed, or operated below the specified frequency.						
RESET	I/A	Processor Reset Resets the ADSP-21061 to a known state and begins execution at the program memory location specified by the hardware reset vector address. This input must be asserted (low) at power-up.						
TCK	1	Test Clock (JTAG). Provides an asynchronous clock for JTAG boundary scan.						
TMS	I/S	Test Mode Select (JTAG) . U sed to control the test state machine. T M S has a 20 $k\Omega$ internal pull-up resistor.						
TDI	I/S	Test Data Input (JTAG) . Provides serial data for the boundary scan logic. TDI has a 20 $k\Omega$ internal pull-up resistor.						
TDO	0	Test Data Output (JTAG). Serial scan output of the boundary scan path.						
TRST	I/A	Test Reset (JTAG) . Resets the test state machine. \overline{TRST} must be asserted (pulsed low) after power-up or held low for proper operation of the ADSP-21061. \overline{TRST} has a 20 k Ω internal pull-up resistor.						
$\overline{\mathrm{EMU}}$	0	Emulation Status. Must be connected to the ADSP-21061 EZ-ICE® target board connector only.						
ICSA	0	Reserved, leave unconnected.						
VDD	P	Power Supply; nominally +5.0 V dc. (30 pins)						
GND	G	Power Supply Return. (30 pins)						
NC		Do Not Connect Reserved pins which must be left open and unconnected.						

REV. 0 -11-

TARGET BOARD CONNECTOR FOR EZ-ICE® PROBE

The ADSP-21061 EZ-ICE * Emulator uses the IEEE 1149.1 JTAG test access port of the ADSP-21061 to monitor and control the target board processor during emulation. The EZ-ICE probe requires the ADSP-21061's CLKIN, TMS, TCK, TRST, TDI, TDO, \overline{EMU} , and GND signals be made accessible on the target system via a 14-pin connector (a pin strip header) such as that shown in Figure 5. The EZ-ICE* probe plugs directly onto this connector for chip-on-board emulation. You must add this connector to your target board design if you intend to use the ADSP-21061 EZ-ICE*. The length of the traces between the connector and the ADSP-21061's JT AG pins should be as short as possible.

Figure 5. Target Board Connector For ADSP-21061 EZ-ICE® Emulator (Jumpers in Place)

T he 14-pin, 2-row pin strip header is keyed at the Pin 3 location — Pin 3 must be removed from the header. The pins must be 0.025 inch square and at least 0.20 inch in length. Pin spacing should be 0.1×0.1 inches. Pin strip headers are available from vendors such as 3M , M cK enzie and Samtec.

The BTMS, BTCK, \overline{BTRST} and BTDI signals are provided so the test access port can also be used for board-level testing. When the connector is not being used for emulation, place jumpers between the Bxxx pins and the xxx pins. If the test access port will not be used for board testing, tie \overline{BTRST} to GND and tie or pull BTCK up to VDD. The \overline{TRST} pin must be asserted after power-up (through \overline{BTRST} on the connector) or held low for proper operation of the ADSP-21061. None of the Bxxx pins (Pins 5, 7, 9, 11) are connected on the EZ-ICE® probe.

The JTAG signals are terminated on the EZ-ICE $^{\otimes}$ probe as follows:

Signal	Termination
TMS	Driven through 82 Ω Resistor (16 mA/–3.2 mA Driver)
TCK	D riven at 10 M H z through 82 Ω Resistor (16 mA/– 3.2 mA D river)
TRST*	Driven through 82 Ω Resistor (16 mA/-3.2 mA Driver) (Pulled U p by On-C hip 20 $k\Omega$ Resistor)
TDI	D riven by 82 Ω Resistor (16 mA/-3.2 mA D river)
TDO	One TTL Load, 92 Ω Thevenin Termination (160/220)
CLKIN	One TTL Load, 92 Ω Thevenin Termination (160/220)
EMU	4.7 kΩ Pull-Up Resistor, One TTL Load (Open-Drain Output from the DSP)

^{*} \overline{TRST} is driven low until the EZ-ICE * probe is turned on by the emulator at software start-up. After software start-up, \overline{TRST} is driven high.

Figure 6 shows JTAG scan path connections for systems that contain multiple ADSP-21061 processors.

Figure 6. J TAG Scan Path Connections for Multiple ADSP-21061 Systems. One Driver Through 82 Ω Resistor (16 mA/-3.2 mA Driver) (Pulled Up by On-Chip 20 Ω Resistor)

-12- REV. 0

Connecting CLKIN to Pin 4 of the EZ-ICE® header is optional. The emulator only uses CLKIN when directed to perform operations such as starting, stopping and single-stepping multiple ADSP-21061s in a synchronous manner. If you do not need these operations to occur synchronously on the multiple processors, simply tie Pin 4 of the EZ-ICE® header to ground.

If synchronous multiprocessor operations are needed and CLKIN is connected, clock skew between the multiple ADSP-21061 processors and the CLKIN pin on the EZ-ICE $^{\otimes^*}$ header must be minimal. If the skew is too large, synchronous operations may be off by one cycle between processors. For synchronous multiprocessor operation TCK, TMS, CLKIN and $\overline{\rm EMU}$

should be treated as critical signals in terms of skew, and should be laid out as short as possible on your board. If T C K, T M S and C L K I N are driving a large number of A D SP-21061s (more than eight) in your system, then treat them as a clock tree using multiple drivers to minimize skew. (See Figure 7, JT AG Clock T ree, and Clock Distribution in the High Frequency Design C onsiderations section of the A D SP-2106x U ser's M anual.)

If synchronous multiprocessor operations are not needed (i.e., CLKIN is not connected), just use appropriate parallel termination on TCK and TMS. TDI, TDO, \overline{EMU} and \overline{TRST} are not critical signals in terms of skew.

Figure 7. J TAG Clocktree for Multiple ADSP-21061 Systems

REV. 0 -13-

ADSP-21061- SPECIFICATIONS RECOMMENDED OPERATING CONDITIONS

Parameter			K Grade Min Max		
V _{DD}	Supply Voltage	4.75	5.25	°C	
T _{CASE}	C ase Operating T emperature	0	+85		

See Environmental Conditions section for information on thermal specifications.

ELECTRICAL CHARACTERISTICS (5 V Supply)

Parameter		Test Conditions	Min	Мах	Units
V_{IH1}	High Level Input Voltage ¹	@ V _{DD} = max	2.0	V _{DD} + 0.5	V
V _{IH2}	High Level Input Voltage ²	@ V _{DD} = max	2.2	$V_{\rm DD} + 0.5$	V
V _{IL}	Low Level Input Voltage ^{1, 2}	@ V _{DD} = min	-0.5	0.8	V
VoH	High Level Output Voltage ³	@ V _{DD} = min, I _{OH} = - 2.0 mA ⁴	4.1	0.0	v
V _{OL}	Low Level Output Voltage ³	@ $V_{DD} = min, I_{OI} = 4.0 \text{ mA}^4$		0.4	v
I _{IH}	High Level Input Current ⁵	$\textcircled{0} V_{DD} = \text{max}, V_{IN} = V_{DD} \text{max}$		10	μA
T _{II}	Low Level Input Current ⁵	@ $V_{DD} = \max_{v} V_{IN} = 0 \text{ V}$		10	μA
I _{ILP}	Low Level Input Current ⁶	$@V_{DD} = max, V_{IN} = 0 V$		150	μA
I _{OZH}	Three-State Leakage Current ^{7, 8, 9, 10}	$\textcircled{0} V_{DD} = \text{max}, V_{IN} = V_{DD} \text{max}$		10	μA
I _{OZL}	T hree-State L eakage C urrent ⁷	ⓐ $V_{DD} = \text{max}, V_{IN} = 0 \text{ V}$		10	μA
I _{OZLC}	T hree-State L eakage C urrent ⁹	ⓐ $V_{DD} = \text{max}, V_{IN} = 0 \text{ V}$		1.5	mA
IOZLA	T hree-State L eakage C urrent ¹¹	$@V_{DD} = max, V_{IN} = 0 V$		350	μA
IOZLAR	T hree-State L eakage C urrent ¹⁰	@ $V_{DD} = \text{max}, V_{IN} = 1.5 \text{ V}$		4.0	mA
I _{OZLS}	T hree-State L eakage C urrent ⁸	ⓐ $V_{DD} = \text{max}, V_{IN} = 0 \text{ V}$		150	μA
I _{DDIN1}	Supply Current (Internal) ¹²	$t_{CK} = 25 \text{ ns, } V_{DD} = \text{max,}$		850	mA
I _{DDIN2}	Supply Current (Internal) ¹³	$t_{CK} = 25 \text{ ns, } V_{DD} = \text{max,}$		650	mA
IDDIDLE	Supply Current (Idle)14	$V_{DD} = max$		200	mA
I _{DDIDLE16}	Supply Current (Idle16) ¹⁵	$V_{DD} = max$		50	mA
CIN	Input Capacitance ^{16, 17}	$f_{IN} = 1 \text{ M H z, T}_{CASE} = 25^{\circ}\text{C, V}_{IN} = 2.5 \text{ V}$		4.7	pF

Specifications subject to change without notice.

-14-REV. 0

 $^{^{1}\!}Applies to input and bidirectional pins: \, DATA_{47-0}, \, ADDR_{31-0}, \, \overline{RD}, \, \overline{WR}, \, \overline{SW}, \, ACK, \, \overline{SBTS}, \, \overline{IRQ}_{2-0}, \, FLAG_{3-0}, \, \overline{HBG}, \, \overline{CS}, \, \overline{DMAR1}, \, \overline{DMAR2}, \, \overline{BR}_{6-1}, \, ID_{2-0}, \, RPBA, \, \overline{RPR}_{6-1}, \, \overline{RPR$ CPA, TFS0, TFS1, RFS0, RFS1, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1.

²Applies to input pins: CLKIN, RESET, TRST.

³Applies to output and bidirectional pins: DATA₄₇₋₀, ADDR₃₁₋₀, \overline{MS}_{3-0} , \overline{RD} , \overline{WR} , PAGE, ADRCLK, \overline{SW} , ACK, FLAG₃₋₀, TIMEXP, \overline{HBG} , REDY, \overline{DMAGI} , DMAG2, BR61, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, BMS, TD0, EMU, ICSA.

⁴See "Output Drive Currents" for typical drive current capabilities.
⁵Applies to input pins: ACK, SBTS, IRQ₂₋₀, HBR, CS, DMARI, DMAR2, ID₂₋₀, RPBA, EBOOT, LBOOT, CLKIN, RESET, TCK. (Note that ACK is pulled up internally with 2 k Ω during reset in a multiprocessor system, when ID $_{2.0}$ = 001 and another ADSP-2106x is not requesting bus mastership.)

⁶Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI.

⁷Applies to three-statable pins: DATA₄₇₋₀, ADDR₃₁₋₀, $\overline{\text{MS}}_{3-0}$, $\overline{\text{RD}}$, $\overline{\text{WR}}$, PAGE, ADRCLK, $\overline{\text{SW}}$, ACK, FLAG₃₋₀, REDY, $\overline{\text{HBG}}$, $\overline{\text{DMAG1}}$, $\overline{\text{DMAG2}}$, $\overline{\text{BMS}}$, TDO, BR₆₋₁, TFS_X, RFS_X, EMU. (Note that ACK is pulled up internally with 2 kΩ during reset in a multiprocessor system, when ID₂₋₀ = 001 and another ADSP-2106x is not requesting bus mastership.)

⁸Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.

⁹Applies to CPA pin.

¹⁰Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with a 2 kΩ during reset in a multiprocessor system, when ID 2.0 = 001 and another AD SP-21061 is not requesting bus mastership).

¹¹Applies to ACK pin when keeper latch enabled.

¹²Applies to V DD pins. See Power Dissipation section for calculation of external supply current (at EVDD pins) and total supply current. C onditions of operation: Executing radix-2 FFT butterfly with instruction in cache, one data operand accessed from each internal memory block, and one DMA transfer occurring from/to internal memory at $t_{CK} = 30 \text{ ns}$, $I_{DDIN} = 750 \text{ mA max}$.

¹³Applies to VDD pins. See Power Dissipation section for calculation of external supply current (at EVDD pins) and total supply current. Conditions of operations: Executing radix-2 FFT butterfly with instruction in cache, one data operand fetched from each memory block, memory at tck = 30 ns, IDDIN2 = 540 mA max.

 $^{^{14}}$ Applies to V_{DD} pins. Idle denotes AD SP-21061 state during execution of IDLE instruction.

¹⁵Applies to V_{DD} pins. Idle 16 denotes ADSP-21061 state during execution of IDLE 16 instruction.

¹⁶Applies to all signal pins.

¹⁷G uaranteed but not tested.

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage0.3 V to +7.0 V
Input Voltage0.5 V to V_{DD} + 0.5 V
Output Voltage Swing0.5 V to V_{DD} + 0.5 V
Load Capacitance 200 pF
Junction Temperature Under Bias 130°C
Storage Temperature Range65°C to +150°C
Lead Temperature (5 seconds) +280°C

*Stresses greater than those listed above may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD SENSITIVITY

The ADSP-2106x processors are ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur to devices subjected to high energy electrostatic discharges.

The ADSP-21061 processors include proprietary ESD protection circuitry to dissipate high energy discharges. Per method 3015 of MIL-STD-883, the ADSP-2106x processors have been classified as a Class 2 device.

Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Unused devices must be stored in conductive foam or shunts, and the foam should be discharged to the destination socket before devices are removed.

TIMING SPECIFICATIONS

GENERAL NOTES

This data sheet represents production released specifications for the ADSP-21061 processor for 33 MHz and 40 MHz speed grades. This data sheet also represents preliminary ac specifications for the 50 MHz speed grade of the ADSP-21061.

The specifications shown are based on a CLKIN frequency of 40 MHz ($t_{CK} = 25$ ns). The DT derating allows specifications at other CLKIN frequencies (within the min-max range of the t_{CK} specification; see Clock Input below). DT is the difference between the actual CLKIN period and a CLKIN period of 25 ns:

$$DT = t_{CK} - 25 \text{ ns}$$

U se the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, you cannot meaningfully add parameters to derive longer times.

See Figure 28 under T est C onditions for voltage reference levels.

Switching Characteristics specify how the processor changes its signals. You have no control over this timing—circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing R equirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

(O/D) = Open Drain

(A/D) = Active Drive

REV. 0 -15-

		50 MHz*		40 MHz		33.3 MHz		
Parameter		Min	Max	Min	Max	Min	Max	Units
Clock Inpu	t							
Timing Requ	irements:							
t _{CK}	CLKIN Period	20	100	25	100	30	100	ns
t _{CKL}	CLKIN Width Low	7		7		7		ns
t _{CKH}	CLKIN Width High	5		5		5		ns
t _{CKRF}	CLKIN Rise/Fall (0.4 V-2.0 V)		3		3			ns

^{*50} M H z specifications are preliminary.

Figure 8. Clock Input

Parameter	•	Min	Max	Units
Reset				
Timing Requ	uirements:			
twrst	RESET Pulse Width Low ¹	4t _{CK}		ns
t _{SRST}	RESET Setup Before CLKIN High ²	14 + DT/2	t _{ck}	ns

NOTES

²Only required if multiple ADSP-2106xs must come out of reset synchronous to CLKIN with program counters (PC) equal (i.e., for a SIM D system). Not required for multiple ADSP-2106xs communicating over the shared bus (through the external port), because the bus arbitration logic automatically synchronizes itself after reset.

Figure 9. Reset

Parameter	Min	Max	Units
$ \begin{array}{lll} \textbf{Interrupts} \\ \textbf{Timing R equirements:} \\ \textbf{t}_{\text{SIR}} & \overline{IRQ2-0} \text{ Setup Before CLKIN High}^1 \\ \textbf{t}_{\text{HIR}} & \overline{IRQ2-0} \text{ Hold Before CLKIN High}^1 \\ \textbf{t}_{\text{IPW}} & \overline{IRQ2-0} \text{ Pulse Width}^2 \\ \end{array} $	18 + 3DT/4 2 + tox	4 12 + 3DT/4	ns ns ns

NOTES

 $^{^2\!}Applies$ only if t_{SIR} and t_{HIR} requirements are not met.

Figure 10. Interrupts

-16- REV. 0

¹Applies after the power-up sequence is complete. At power-up, the processor's internal phase-locked loop requires no more than 2000 CLKIN cycles while RESET is low, assuming stable V_{DD} and CLKIN (not including start-up time of external clock oscillator).

 $^{^{1}\!\}text{O}\,\text{nly}$ required for $\overline{\text{IRQx}}$ recognition in the following cycle.

Parameter		Min	Max	Units
Timer Switching Cha	racteristics:			
t _{DTEX}	CLKIN High to TIMEXP		15	ns

Figure 11. Timer

Parameter		Min	Мах	Units
Flags Timing Requ tsfi thfi tDWRFI thfiwr	uirements: FLAG 3-0 _{IN} Setup Before CLKIN High ¹ FLAG 3-0 _{IN} Hold After CLKIN High ¹ FLAG 3-0 _{IN} D elay After RD/WR Low ¹ FLAG 3-0 _{IN} Hold After RD/WR D easserted ¹	8 + 5D T/16 0 - 5D T/16 0	5 + 7DT/16	ns ns ns ns
Switching C t _{DFO} t _{HFO} t _{DFOE} t _{DFOD}	haracteristics: FLAG3-0 _{OUT} Delay After CLKIN High FLAG3-0 _{OUT} Hold After CLKIN High CLKIN High to FLAG2-0 _{OUT} Enable CLKIN High to FLAG2-0 _{OUT} Disable	4 3	16 14	ns ns ns ns

NOTE

¹F lag inputs meeting these setup and hold times will affect conditional instructions in the following instruction cycle.

Figure 12. Flags

REV. 0 -17-

Memory Read-Bus Master

U se these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN. These specifications apply when the ADSP-21061 is the bus master accessing external memory space. These switching

characteristics also apply for bus master synchronous read/write timing (see Synchronous Read/Write - Bus M aster, below). If these timing requirements are met, the synchronous read/write timing can be ignored (and vice versa).

Parame	ter	Min	Max	Units
t _{DAD} t _{DRLD} t _{HDA}	equirements: Address, Selects D elay to D ata Valid ^{1, 2} RD L ow to D ata Valid ¹ D ata H old from Address, Selects ³	0.5	18 + DT + W 12 + 5DT/8 + W	ns ns ns
t _{H DRH} t _{DAAK} t _{DSAK}	Data Hold from \overline{RD} High ³ ACK Delay from Address, Selects ⁴ ACK Delay from \overline{RD} Low ⁴	2.0	15 + 7DT/8 +W 8 + DT/2 +W	ns ns ns
t _{DRHA}	Characteristics: Address, Selects Hold After $\overline{ m RD}$ High	0 + H		ns
t _{DARL} t _{RW}	Address, Selects to \overline{RD} L ow ² \overline{RD} Pulse Width	2 + 3DT/8 12.5 + 5DT/8	3 + W	ns ns
t _{RWR} t _{SADADC}	\overline{RD} High to \overline{WR} , \overline{RD} , \overline{DMAG}_X Low Address, Selects Setup Before ADRCLK High ²	8 + 3DT/8 + 0 + DT/4	HI	ns ns

W = (number of wait states specified in WAIT register) \times t_{CK}.

 $HI = t_{CK}$ (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).

 $H = t_{CK}$ (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0).

 $^1\!D$ ata Delay/Setup: User must meet t_{DAD} or t_{DRLD} or synchronous spec t_{SSDATI} $^2\!T$ he falling edge of $\overline{MS}x,~\overline{SW},~$ and \overline{BMS} is referenced.

⁴ÄCK Delay/Setup: User must meet t_{DAAK} or t_{DSAK} or synchronous specification t_{SACKC} for deassertion of ACK (Low), all three specifications must be met for assertion of ACK (High).

Figure 13. Memory Read—Bus Master

³D ata Hold: U ser must meet t_{HDA} or t_{HDRH} or synchronous spec t_{HSDATI}. See System Hold Time Calculation under Test Conditions for the calculation of hold times given capacitive and dc loads.

Memory Write-Bus Master

Use these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN. These specifications apply when the ADSP-21061 is the bus master accessing external memory space. These switching

characteristics also apply for bus master synchronous read/write timing (see Synchronous Read/Write-Bus Master). If these timing requirements are met, the synchronous read/write timing can be ignored (and vice versa).

Parameter		Min	Max	Units
Timing Requ	irements:			
t _{DAAK}	ACK Delay from Address, Selects ^{1, 2}		15 + 7DT/8 +W	ns
t_{DSAK}	ACK Delay from $\overline{ m WR}$ Low 1		8 + DT/2 +W	ns
Switching CI	naracteristics:			
t _{DAWH}	Address, Selects to $\overline{\mathrm{WR}}$ D easserted ²	17 + 15DT/16 +W		ns
t _{DAWL}	Address, Selects to $\overline{\mathrm{WR}}\mathrm{L}\mathrm{ow}^2$	3 + 3DT/8		ns
tww	WR Pulse Width	13 + 9DT/16 +W		ns
t _{DDWH}	D ata Setup before $\overline{ m WR}$ H igh	7 + DT/2 +W		ns
t _{DWHA}	Address Hold after WR Deasserted	1 + DT/16 + H		ns
t _{DATRWH}	D ata D isable after $\overline{\mathrm{WR}}$ D easserted ³	1 + DT/16 + H	6 + DT/16 + H	ns
twwR	$\overline{\mathrm{WR}}$ High to $\overline{\mathrm{WR}}$, $\overline{\mathrm{RD}}$, $\overline{\mathrm{DMAG}}$ x Low	8 + 7DT/16 + H		ns
t _{DDWR}	D ata D isable before $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ L ow	5 + 3D T /8 + I		ns
twoE	WR Low to Data Enabled	-1 + DT/16		ns
t _{SADADC}	Address, Selects to ADRCLK High ²	0 + DT /4		ns

W = (number of wait states specified in WAIT register) \times t_{CK}.

NOTES

³See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.

Figure 14. Memory Write—Bus Master

REV. 0 -19-

 $H = t_{CK}$ (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).

 $I = t_{CK}$ (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).

¹ACK D elay/Setup: U ser must meet t_{DAAK} or t_{DSAK} or synchronous specification t_{SACKC} for deassertion of ACK (Low), all three specifications must be met for assertion of ACK (High)

 $^{{}^{2}}$ T he falling edge of $\overline{MS}x$, \overline{SW} , and \overline{BMS} is referenced.

Synchronous Read/Write-Bus Master

U se these specifications for interfacing to external memory systems that require C L K I N — relative timing or for accessing a slave AD SP-21061 (in multiprocessor memory space). These synchronous switching characteristics are also valid during asynchronous memory reads and writes (see M emory Read—Bus M aster and M emory Write—Bus M aster).

When accessing a slave ADSP-2106x, these switching characteristics must meet the slave's timing requirements for synchronous read/writes (see Synchronous Read/Write—Bus Slave). The slave ADSP-21061 must also meet these (bus master) timing requirements for data and acknowledge setup and hold times.

Parameter		Min	Мах	Units
Timing Requ	irements:			
t _{SSDATI}	D ata Setup Before CLKIN	2 + DT/8		ns
t _{HSDATI}	Data Hold After CLKIN	3.5 - DT/8		ns
t _{DAAK}	ACK Delay After Address, MSx, SW, BMS ^{1, 2}		14 + 7 DT/8 + W	ns
tsackc	ACK Setup Before CLKIN ²	6.5 + DT/4		ns
t _{HACKC}	ACK Hold After CLKIN	-1 - DT/4		ns
Switching Cl	naracteristics:			
t _{DADRO}	Address, $\overline{MS}x$, \overline{BMS} , \overline{SW} Delay After CLKIN ¹		7 - DT/8	ns
t _{HADRO}	Address, MSx, BMS, SW Hold After CLKIN	-1 - DT/8		ns
tDPGC	PAGE Delay After CLKIN	9 + DT/8	16 + DT/8	ns
t _{DRDO}	RD High Delay After CLKIN	-1.5 - DT/8	4 - DT/8	ns
t _{DWRO}	WR High Delay After CLKIN	-2.5 - 3DT/16	4 - 3DT/16	ns
t_{DRWL}	RD/WR Low Delay After CLKIN	8 + DT/4	12 + DT/4	ns
t _{SDDATO}	D ata D elay After C L K I N		19 + 5DT/16	ns
t _{DATTR}	Data Disable After CLKIN ³	0 - DT/8	7 - DT/8	ns
tDADCCK	ADRCLK Delay After CLKIN	4 + DT/8	10 + DT/8	ns
tadrck	ADRCLK Period	t _{cK}		ns
t _{ADRCKH}	ADRCLK Width High	$(t_{CK}/2 - 2)$		ns
tadrckl	ADRCLK Width Low	$(t_{CK}/2 - 2)$		ns

W = (number of Wait states specified in WAIT register) $\times t_{CK}$.

NOTE

-20- REV. 0

¹ACK Delay/Setup: User must meet t_{DAAK} or t_{DSAK} or synchronous specification t_{SACKC} for deassertion of ACK (Low), all three specifications must be met for assertion of ACK (High)

 $^{^2}T$ he falling edge of $\overline{MS}x$, \overline{SW} , and \overline{BMS} is referenced.

³See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.

Figure 15. Synchronous Read/Write—Bus Master

REV. 0 -21-

Synchronous Read/Write—Bus Slave

U se these specifications for AD SP-21061 bus master accesses of a slave's IOP registers or internal memory (in multiprocessor

memory space). The bus master must meet these (bus slave) timing requirements.

Parameter		Min	Max	Units
Timing Requi	rements:			
t _{SADRI}	Address, SW Setup Before CLKIN	14 + DT/2		ns
t _{HADRI}	Address, SW Hold Before CLKIN		5 + DT/2	ns
t _{SRWLI}	RD/WR Low Setup Before CLKIN ¹	8.5 + 5D T/16		ns
t _{HRWLI}	RD/WR Low Hold After CLKIN	-4 - 5DT/16	8 + 7DT/16	ns
t _{RWHPI}	RD/WR Pulse High	3		ns
t _{SDATWH}	D ata Setup Before WR High	3		ns
t _{HDATWH}	Data Hold After WR High	1		ns
Switching Ch	aracteristics:			
t _{SDDATO}	Data Delay After CLKIN		19 + 5DT/16	ns
t _{DATTR}	D ata Disable After CLKIN ²	0 - DT/8	7 - DT/8	ns
tDACKAD	ACK Delay After Address, \overline{SW}^3		8	ns
t _{ACKTR}	ACK Disable After CLKIN ³	-1 - DT/8	6 - DT/8	ns

NOTES

-22- REV. 0

¹t_{SRWLI} (min) = 8.5 + 5DT/16 when Multiprocessor Memory Space Wait State (M M SWS bit in WAIT register) is disabled; when M M SWS is enabled, t_{SRWLI} (min) = 4 + DT/8.

²See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.

³t_{DACKAD} is true only if the address and \overline{SW} inputs have setup times (before CLKIN) greater than 10 + DT/8 and less than 19 + 3DT/4. If the address and \overline{SW} inputs have setup times greater than 19 + 3DT/4, then ACK is valid 14 + DT/4 (max) after CLKIN. A slave that sees an address with an M field match will respond with ACK regardless of the state of M M SWS or strobes. A slave will three-state ACK every cycle with taken and the state of M M SWS or strobes.

Figure 16. Synchronous Read/Write—Bus Slave

REV. 0 -23-

Multiprocessor Bus Request and Host Bus Request

Use these specifications for passing of bus mastership between multiprocessing ADSP-21061s (BRx) or a host processor (HBR, HBG).

Parameter		Min	Max	Units
Timing Requi	rements:			
t _{HBGRCSV}	$\overline{ m HBG}$ Low to $\overline{ m RD}/\overline{ m WR}/\overline{ m CS}$ ${\sf Valid}^1$		20+ 5DT/4	ns
t _{shbri}	HBR Setup Before CLKIN ²	20 + 3DT/4		ns
t _{h H B R I}	HBR Hold Before CLKIN ²		14 + 3DT/4	ns
t _{sh BGI}	HBG Setup Before CLKIN	13 + DT/2		ns
t _{H H BGI}	HBG Hold Before CLKIN High		6 + DT/2	ns
t _{sbri}	$\overline{\mathrm{BR}}$ x, $\overline{\mathrm{CPA}}$ Setup Before C L K I N 3	13 + DT /2		ns
t _{HBRI}	$\overline{ m BR}$ x, $\overline{ m CPA}$ Hold Before CLKIN High		6 + DT/2	ns
t _{srpbai}	RPBA Setup Before CLKIN	20 + 3DT/4		ns
t _{h rpbai}	RPBA Hold Before CLKIN		12 + 3DT/4	ns
Switching Ch	aracteristics:			
t_{DHBGO}	HBG Delay After CLKIN		7 - DT/8	ns
t _{ннвоо}	HBG Hold After CLKIN	-2 - DT/8		ns
t_{DBRO}	BRx Delay After CLKIN		5.5 - DT/8	ns
t _{HBRO}	BRx Hold After CLKIN	-2 - DT/8		ns
t _{DCPAO}	CPA Low Delay After CLKIN		6.5 - DT/8	ns
t _{trcpa}	CPA Disable After CLKIN	-2 - DT/8	4.5 - DT/8	ns
t _{DRDYCS}	REDY (O/D) or (A/D) Low from $\overline{\text{CS}}$ and $\overline{\text{HBR}}$ Low ⁴		8.5	ns
t_{TRDYHG}	REDY (O/D) Disable or REDY (A/D) High from $\overline{\text{HBG}}^4$	44 + 27DT/16		ns
t _{ardytr}	REDY (A/D) D isable from $\overline{ ext{CS}}$ or $\overline{ ext{HBR}}$ H igh ⁴		10	ns

NOTES

REV. 0 -24-

NOTES

1 For first asynchronous access after HBR and CS asserted, ADDR 31-0 must be a non-MMS value 1/2 t_{CK} before RD or WR goes low or by t_{HBGRCSV} after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the Host Processor Control of the ADSP-2106x section in the ADSP-2106x SHARC User's Manual, Second Edition.

2 Only required for recognition in the current cycle.

3 CPA assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.

 $^{^{4}(}O/D)$ = open drain, (A/D) = active drive.

Figure 17. Multiprocessor Bus Request and Host Bus Request

REV. 0 -25-

Asynchronous Read/Write-Host to ADSP-21061

U se these specifications for asynchronous host processor accesses of an ADSP-21061, after the host has asserted \overline{CS} and \overline{HBR} (low). After \overline{HBG} is returned by the ADSP-21061, the host can

drive the \overline{RD} and \overline{WR} pins to access the ADSP-21061's internal memory or IOP registers. HBR and HBG are assumed low for this timing.

Parameter		Min	Max	Units
Read Cycle				
Timing Requi	rements:			
tsadrdl	Address Setup/ $\overline{\text{CS}}$ Low Before $\overline{\text{RD}}$ Low ¹	0		ns
thadrdh	Address Hold/ $\overline{\text{CS}}$ Hold Low After $\overline{\text{RD}}$	0		ns
t _{WRWH}	RD/WR High Width	6		ns
tDRDHRDY	RD High Delay After REDY (O/D) Disable	0		ns
t _{DRDHRDY}	RD High Delay After REDY (A/D) Disable	0		ns
Switching Ch	aracteristics:			
t _{SDATRDY}	Data Valid Before REDY Disable from Low	2		ns
tordyrdl	REDY (O/D) or (A/D) Low Delay After $\overline{ m RD}$ Low		10	ns
t _{RDYPRD}	REDY (O/D) or (A/D) Low Pulse			
	Width for Read	45 + DT		ns
t _{HDARWH}	D ata D isable After $\overline{ ext{RD}}$ H igh	2	8	ns
Write Cycle				
Timing Requi				
t _{SCSWRL}	$\overline{ ext{CS}}$ Low Setup Before $\overline{ ext{WR}}$ low	0		
t _{HCSWRH}	$\overline{ ext{CS}}$ Low Hold After $\overline{ ext{WR}}$ high	0		
t _{sadwrh}	Address Setup Before $\overline{ m WR}$ High	5		ns
t _{HADWRH}	Address Hold After $\overline{ m WR}$ High	2		ns
twwrL	WR Low Width	7		ns
t _{wrwh}	$\overline{ ext{RD}}/\overline{ ext{WR}}$ High Width	6		ns
$t_{DWRHRDY}$	$\overline{ m WR}$ H igh D elay After R E D Y			
	(O/D) or (A/D) Disable	0		ns
t _{sdatwh}	D ata Setup Before $\overline{ m WR}$ H igh	3		ns
t _{HDATWH}	D ata H old After $\overline{ m WR}$ H igh	1		ns
Switching Ch	aracteristics:			
t _{DRDYWRL}	REDY (O/D) or (A/D) Low Delay			
	After $\overline{\mathrm{WR}}/\overline{\mathrm{CS}}$ Low		10	ns
t _{rdypwr}	REDY (O/D) or (A/D) Low Pulse			
	Width for Write	15		ns
t _{SRDYCK}	REDY (O/D) or (A/D) Disable to CLKIN	1 + 7DT/16	8 + 7DT/16	ns

NOTE

¹Not required if \overline{RD} and address are valid $\underline{t_{HBGRCSV}}$ after \overline{HBG} goes low. For first access after \overline{HBR} asserted, ADDR 31-0 must be a non-MMS value 1/2 $\underline{t_{CLK}}$ before \overline{RD} or \overline{WR} goes low or by $\underline{t_{HBGRCSV}}$ after \overline{HBG} goes low. This is easily accomplished by driving an upper address signal high when \overline{HBG} is asserted. See the Host Processor Control of the ADSP-2106x section in the ADSP-2106x SHARC™ User's Manual.

Figure 18a. Synchronous REDY Timing

-26- REV. 0

ADDRESS/CS tsadrdl thadrdh thadrdh

WRITE CYCLE

REDY (O/D)

REDY (A/D)

Figure 18b. Asynchronous Read/Write—Host to ADSP-2106x

REV. 0 -27-

Three-State Timing—Bus Master, Bus Slave, $\overline{\mathrm{HBR}}$, $\overline{\mathrm{SBTS}}$

These specifications show how the memory interface is disabled (stops driving) or enabled (resumes driving) relative to CLKIN and the SBTS pin. This timing is applicable to bus master transition cycles (BTC) and host transition cycles (HTC) as well as the \overline{SBTS} pin.

Parameter		Min	Max	Units
Timing Requ	irements:			
t _{stsck}	SBTS Setup Before CLKIN	12 + DT /2		ns
t _{HTSCK}	SBTS Hold Before CLKIN		6 + DT/2	ns
Switching Ch	naracteristics:			
t _{MIENA}	Address/Select Enable After CLKIN	-1 - DT/8		ns
t _{MIENS}	Strobes Enable After CLKIN ¹	-1.5 - DT/8		ns
tMIENHG	HBG Enable After CLKIN	-1.5 - DT/8		ns
t _{MITRA}	Address/Select Disable After CLKIN		0 - DT/4	ns
t _{MITRS}	Strobes Disable After CLKIN ¹		1.5 - DT/4	ns
tMITRHG	HBG Disable After CLKIN		2.0 - DT/4	ns
t _{DATEN}	D ata Enable After CLKIN ²	9 + 5DT/16		ns
t _{DATTR}	D ata Disable After CLKIN ²	0 - DT/8	7 - DT/8	ns
t _{acken}	ACK Enable After CLKIN ²	7.5 + DT/4		ns
tacktr	ACK Disable After CLKIN ²	-1 - DT/8	6 - DT/8	ns
t _{ADCEN}	ADRCLK Enable After CLKIN	-2 - DT/8		ns
t _{ADCTR}	ADRCLK Disable After CLKIN		8 - DT/4	ns
t _{MTRHBG}	M emory Interface D isable Before HBG L ow ³	0 + DT/8		ns
t _{MENHBG}	M emory Interface Enable After HBG High ³	19 + DT		ns

REV. 0 -28-

 $^{^{1}}$ Strobes = \overline{RD} , \overline{WR} , $\overline{MS}x$, \overline{SW} , PAGE, \overline{DMAG} , \overline{BMS} .

²In addition to bus master transition cycles, these specs also apply to bus master and bus slave synchronous read/write. ³M emory Interface = Address, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{MS}}$ x, $\overline{\text{SW}}$, $\overline{\text{HBG}}$, $\overline{\text{PAGE}}$, $\overline{\text{DMAG}}$ x, $\overline{\text{BMS}}$ (in EPROM boot mode).

Figure 19. Three-State Timing

REV. 0 -29-

DMA Handshake

These specifications describe the three DMA handshake modes. In all three modes DMAR is used to initiate transfers. For handshake mode, DMAG controls the latching or enabling of data externally. For external handshake mode, the data transfer is controlled by the ADDR31-0, \overline{RD} , \overline{WR} , \overline{SW} , PAGE, \overline{MS} 3-0, ACK and \overline{DMAG} signals. For Paced M aster mode, the data

transfer is controlled by ADDR31-0, \overline{RD} , \overline{WR} , \overline{MS} 3-0 and ACK (not \overline{DMAG}). For Paced M aster mode, the M emory Read-Bus M aster, M emory Write-Bus M aster, and Synchronous Read/Write-Bus M aster timing specifications for ADDR31-0, \overline{RD} , \overline{WR} , \overline{MS} 3-0, \overline{SW} , PAGE, DATA47-0 and ACK also apply.

Parameter		Min	Max	Units
Timing Requi	rements:			
t _{SDRLC}	DMARx Low Setup Before CLKIN ¹	5		ns
t _{SDRHC}	DMARx High Setup Before CLKIN ¹	5		ns
t _{WDR}	DMARx Width Low (Nonsynchronous)	6		ns
t _{SDATDGL}	Data Setup After DMAGx Low ²		10 + 5DT/8	ns
t _{HDATIDG}	D ata H old After $\overline{\mathrm{DMAG}}$ x H igh	2		ns
t _{DATDRH}	Data Valid After DMARx High ²		16 + 7DT/8	ns
t _{DMARLL}	DMARx Low Edge to Low Edge	23 + 7DT/8		ns
t _{DMARH}	DMARx Width High	6		ns
Switching Ch	aracteristics:			
t _{DDGL}	DMAGx Low Delay After CLKIN	9 + DT/4	15 + DT/4	ns
twogh	DMAGx High Width	6 + 3DT/8		ns
t _{WDGL}	DMAGx Low Width	12 + 5D T /8		ns
t _{HDGC}	DMAGx High D elay After CLKIN	-2 - DT/8	6 - DT/8	ns
t _{DADGH}	Address Select Valid to DMAGx High	17 + DT		ns
t _{DDGHA}	Address Select Hold to DMAGx High	-0.5		ns
t _{VDATDGH}	D ata Valid Before $\overline{\mathrm{DMAG}}$ x High ³	8 + 9D T /16		ns
t _{DATRDGH}	D ata Disable After DMAGx High ⁴	0	7	ns
t _{DGWRL}	$\overline{ m WR}$ Low Before $\overline{ m DMAG}$ x Low	0	2	ns
t _{DGWRH}	$\overline{\mathrm{DMAG}}$ x Low Before $\overline{\mathrm{WR}}$ High	10 + 5DT/8 + W		ns
t _{DGWRR}	WR High Before DMAGx High	1 + DT/16	3 + DT/16	ns
t _{DGRDL}	$\overline{ ext{RD}}$ Low Before $\overline{ ext{DMAG}}$ x Low	0	2	ns
t _{DRDGH}	$\overline{ ext{RD}}$ Low Before $\overline{ ext{DMAG}}$ x High	11 + 9DT/16 + W		ns
t _{DGRDR}	RD High Before DMAGx High	0	3	' ns
t _{DGWR}	\overline{DMAG} x H igh to \overline{WR} , \overline{RD} , \overline{DMAG} x L ow	5 + 3DT/8 + HI		

W = (number of wait states specified in WAIT register) \times t_{CK}.

 $HI = t_{CK}$ (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).

NOTES

-30- REV. 0

¹Only required for recognition in the current cycle.

 $^{^2}$ t_{SDATDGL} is the data setup requirement if \overline{DMARx} is not being used to hold off completion of a write. Otherwise, if \overline{DMARx} low holds off completion of the write, the data can be driven t_{DATDRH} after \overline{DMARx} is brought high.

 $^{^3}$ t_{VDATDGH} is valid if $\overline{\mathrm{DMAR}}$ x is not being used to hold off completion of a read. If $\overline{\mathrm{DMAR}}$ x is used to prolong the read, then t_{VDATDGH} = 8 + 9DT/16 + (n × t_{CK}) where n equals the number of extra cycles that the access is prolonged.

⁴See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.

Figure 20. DMA Handshake Timing

REV. 0 -31-

Serial Ports

Parameter		Min	Мах	Units
External Cla				
tsfse thfse tsdre thdre tsclkw	TFS/RFS Setup Before TCLK/RCLK ¹ TFS/RFS Hold After TCLK/RCLK ^{1, 2} Receive Data Setup Before RCLK ¹ Receive Data Hold After RCLK ¹ TCLK/RCLK Width TCLK/RCLK Period	3.5 4 1.5 4 9		ns ns ns ns ns
t _{SCLK} Internal Clo		t _{ck}		115
Timing Require t _{SFSI} t _{HFSI} t _{SDRI} t _{HDRI}	rements: TFS Setup Before TCLK ¹ ; RFS Setup Before RCLK ¹ TFS/RFS Hold After TCLK/RCLK ^{1, 2} Receive Data Setup Before RCLK ¹ Receive Data Hold After RCLK ¹	8 1 3 3		ns ns ns
External or Switching Cha t _{DFSE} t _{HOFSE}	Internal Clock aracteristics: RFS D elay After RCLK (Internally Generated RFS) ³ RFS H old After RCLK (Internally Generated RFS) ³	3	13	ns ns
External Cl	ock .			
Switching Chat t _{DFSE} t _{HOFSE} t _{DDTE} t _{HODTE}	TFS Delay After TCLK (Internally Generated TFS) ³ TFS Hold After TCLK (Internally Generated TFS) ³ Transmit Data Delay After TCLK ³ Transmit Data Hold After TCLK ³	3	13 16	ns ns ns
Internal Clo				
Switching Chatersist thorsist thotist thotists thotists thotists thotists the scenario transfer the scenario transfer the scenario transfer the scenario transfer transfer the scenario transfer	TFS Delay After TCLK (Internally Generated TFS) ³ TFS Hold After TCLK (Internally Generated TFS) ³ Transmit Data Delay After TCLK ³ Transmit Data Hold After TCLK ³ TCLK/RCLK Width	-1.5 0 (t _{SCLK} /2) - 2.5	4.5 7.5 $(t_{SCLK}/2) + 2.5$	ns ns ns ns
Enable & Ti				
Switching Chatentone todten todte todtin todtin todtti tock toptr	D ata Enable from External TCLK ³ D ata D isable from External TCLK ³ D ata Enable from Internal TCLK ³ D ata D isable from Internal TCLK ³ TCLK/RCLK D elay from CLKIN SPORT D isable After CLKIN	4.5 0	10.5 3 22 + 3DT/8 17	ns ns ns ns ns
	te Frame Sync			
t _{DDTLFSE}	D ata D elay from L ate External TFS or External RFS with MCE = 1, MFD = 0 ⁴		12	ns
t _{ddtenfs}	D ata Enable from late FS or M CE $= 1$, M FD $= 0^4$	3.5		ns

To determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame sync setup and hold, 2) data delay and data setup and hold, and 3) SCLK width.

NOTES

-32-REV. 0

¹Referenced to sample edge.

²RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external. TFS is 0 ns minimum from drive edge. 3 Referenced to drive edge. 4 M CE = 1, TFS enable and TFS valid follow $t_{DDTLFSE}$ and $t_{DDTENFS}$.

EXTERNAL RFS WITH MCE = 1, MFD = 0

LATE EXTERNAL TFS

Figure 21. External Late Frame Sync

REV. 0 -33-

DATA RECEIVE-INTERNAL CLOCK DATA RECEIVE- EXTERNAL CLOCK SAMPLE EDGE DRIVE SAMPLE DRIVE t_{SCLKIW} t_{SCLKW} **RCLK** RCLK -t_{DFSE} t_{HOFSE} t_{HOFSE} -t_{HFSE}-> RFS RFS -t_{SDRE} ► t_{HDRE} → ► t_{HDRi} > t_{SDRI} DR DR

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

Figure 22. Serial Ports

-34- REV. 0

JTAG Test Access Port and Emulation

Parameter		Min	Мах	Units	
Timing Requ	uirements:				
t _{TCK}	TCK Period	t _{cK}		ns	
t _{STAP}	TDI, TMS Setup Before TCK High	5		ns	
t _{HTAP}	TDI, TMS Hold After TCK High	6		ns	
t _{SSYS}	System Inputs Setup Before T C K L ow ¹	7		ns	
t _{HSYS}	System Inputs Hold After TCK Low ¹	18		ns	
t _{TRSTW}	TRST Pulse Width	4t _{CK}		ns	
Switching C	haracteristics:				
t _{DTDO}	TDO Delay from TCK Low		13	ns	
t _{DSYS}	System Outputs Delay After TCK Low ²		18.5	ns	

NOTES

¹System Inputs = DAT A ₄₇₋₀, ADD R ₃₁₋₀, \overline{RD} , \overline{WR} , ACK, \overline{SBTS} , \overline{SW} , \overline{HBR} , \overline{HBG} , \overline{CS} , $\overline{DMAR1}$, $\overline{DMAR2}$, \overline{BR}_{6-1} , ID ₂₋₀, RPBA, \overline{IRQ}_{2-0} , FLAG ₃₋₀, DR0, DR1, TCLK 0, TCLK 1, RCLK 0, RCLK 1, TFS0, TFS1, RFS0, RFS1, EBOOT, LBOOT, \overline{BMS} , CLK IN, \overline{RESET} .

²System Outputs = DAT A ₄₇₋₀, ADD R ₃₁₋₀, \overline{MS}_{3-0} , \overline{MS}_{3-0} , \overline{RD} , \overline{WR} , ACK, PAGE, ADRCLK, \overline{SW} , \overline{HBG} , REDY, $\overline{DMAG1}$, $\overline{DMAG2}$, \overline{BR}_{6-1} , \overline{CPA} , FLAG ₃₋₀, TIM EXP, DT0,

DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, BMS.

Figure 23. IEEE 11499.1 J TAG Test Access Port

REV. 0 -35-

OUTPUT DRIVE CURRENTS

Figure 23 shows typical I-V characteristics for the output drivers of the ADSP-21061. The curves represent the current drive capability of the output drivers as a function of output voltage.

Figure 24. Typical Drive Currents

POWER DISSIPATION

Total power dissipation has two components, one due to internal circuitry and one due to the switching of external output drivers. Internal power dissipation is dependent on the instruction execution sequence and the data operands involved. Internal power dissipation is calculated in the following way:

$$P_{INT} = I_{DDIN} \times V_{DD}$$

The external component of total power dissipation is caused by the switching of output pins. Its magnitude depends on:

- the number of output pins that switch during each cycle (O)
- the maximum frequency at which they can switch (f)
- their load capacitance (C)
- their voltage swing (V_{DD})

and is calculated by:

$$P_{EXT} = 0 \times C \times V_{DD}^2 \times f$$

The load capacitance should include the processor's package capacitance ($C_{\rm IN}$). The switching frequency includes driving the load high and then back low. Address and data pins can drive high and low at a maximum rate of $1/(2t_{\rm CK})$. The write strobe can switch every cycle at a frequency of $1/t_{\rm CK}$. Select pins switch at $1/(2t_{\rm CK})$, but selects can switch on each cycle.

Example:

Estimate P_{EXT} with the following assumptions:

- A system with one bank of external data memory RAM (32-bit)
- Four 128K ×8 RAM chips are used, each with a load of 10 pF
- External data memory writes occur every other cycle, a rate of $1/(4t_{CK})$, with 50% of the pins switching
- T he instruction cycle rate is 40 M H z (t_{CK} = 25 ns) and V_{DD} = 5.0 V.

The P_{EXT} equation is calculated for each class of pins that can drive:

Pin Type	# of Pins	% Switching	×C	×f	×V _{DD} ²	=P _{EXT}
Address	15	50	× 44.2 pF	×10 MHz	1	= 0.084 W
MS0	1	0	× 44.2 pF	×10 MHz	1	= 0.000 W
\overline{WR}	1	-	× 44.2 pF	×20 M H z	× 25 V	= 0.022 W
D ata	32	50	\times 14.7 pF	×10 M H z	× 25 V	= 0.059 W
ADDRCLK	1	-	\times 4.7 pF	×40 MHz	× 25 V	= 0.005 W

$$P_{EXT} = 0.170 \text{ W}$$

A typical power consumption can now be calculated for these conditions by adding a typical internal power dissipation:

$$P_{TOTAL} = P_{EXT} + (I_{DDIN} \times 5.0 \text{ V})$$

N ote that the conditions causing a worst-case P_{EXT} are different from those causing a worst-case P_{INT} . M aximum P_{INT} cannot occur while 100% of the output pins are switching from all ones to all zeros. Also note that it is not common for an application to have 100% or even 50% of the outputs switching simultaneously.

TEST CONDITIONS

Output Disable Time

O utput pins are considered to be disabled when they stop driving, go into a high impedance state and start to decay from their output high or low voltage. The time for the voltage on the bus to decay by ΔV is dependent on the capacitive load, C_L and the load current, I_L . This decay time can be approximated by the following equation:

$$t_{\text{DECAY}} = \frac{C_L \Delta V}{I_L}$$

The output disable time t_{DIS} is the difference between $t_{MEASURED}$ and t_{DECAY} as shown in Figure 24. The time $t_{MEASURED}$ is the interval from when the reference signal switches to when the output voltage decays ΔV from the measured output high or output low voltage. t_{DECAY} is calculated with test loads C_L and I_L , and with ΔV equal to 0.5 V.

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high impedance state to when they start driving. The output enable time t_{ENA} is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in the Output Enable/D isable diagram (Figure 24). If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

-36- REV. 0

System Hold Time Calculation

To determine the data output hold time in a particular system, first calculate t_{DECAY} using the equation given above. C hoose ΔV to be the difference between the ADSP-21061's output voltage and the input threshold for the device requiring the hold time. A typical ΔV will be 0.4 V. C_L is the total bus capacitance (per data line), and I_L is the total leakage or three-state current (per data line). The hold time will be t_{DECAY} plus the minimum disable time (i.e., t_{DATRWH} for the write cycle).

Figure 25. Output Enable/Disable

Figure 26. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

Figure 27. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Capacitive Loading

Output delays and holds are based on standard capacitive loads: 50 pF on all pins (see Figure 26). The delay and hold specifications given should be derated by a factor of 1.5 ns/50 pF for loads other than the nominal value of 50 pF. Figures 28 shows how output rise time varies with capacitance. Figure 309 shows graphically how output delays and holds vary with load capacitance. (Note that this graph or derating does not apply to output disable delays; see the previous section "Output Disable Time" under "Test Conditions.") The graphs of Figures 28, 29 and 30 may not be linear outside the ranges shown.

Figure 28. Typical Output Rise Time (10%–90% $V_{\rm DD}$) vs. Load Capacitance

Figure 29. Typical Output Rise Time (0.8 V -2.0 V) vs. Load Capacitance

Figure 30. Typical Output Delay or Hold vs. Load Capacitance (at Maximum Case Temperature) ($V_{DD} = 5 \text{ V}$)

REV. 0 -37-

ENVIRONMENTAL CONDITIONS

Thermal Characteristics

The ADSP-21061 is packaged in a 240-lead thermally enhanced PQFP. The top surface of the package contains a copper slug from which most of the die heat is dissipated. The slug is flush with the top surface of the package. Note that the copper slug is internally connected to GND through the device substrate. The ADSP-2106x is specified for a case temperature (T $_{\text{CASE}}$). To ensure that T $_{\text{CASE}}$ is not exceeded, a heat sink and/or an air flow source may be used. A heat sink should be attached with a thermal adhesive.

$$T_{CASE} = T_{AMB} + (PD \times \theta_{CA})$$

T_{CASE} = C ase temperature (measured on top surface of package)

PD = Power dissipation in W (this value depends upon the specific application; a method for calculating PD is shown under "Power Dissipation")

 $\theta_{JA} = 0.3$ °C

Airflow (Linear Ft./Min.)	0	100	200	400	600
θ _{CA} (°C/W)	10	4	8	7	6

NOTES

T his represents thermal resistance at total power of 5 W. With air flow, no variance is seen in θ_{CA} with power.

 θ_{CA} at 0 LF M varies with power: At 2 W, θ_{CA} = 14°C/W, at 3 W θ_{CA} = 11 °C/W .

-38- REV. 0

240-LEAD METRIC PQFP PIN CONFIGURATIONS

THE 240 LEAD PACKAGE CONTAINS A COPPER HEAT SLUG FLUSH WITH ITS TOP SURFACE. THE SLUG IS INTERNALLY CONNECTED TO GROUND.

Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin		Pin
No.	Name	No.	Name	No.	Name	No.	Name	No.	Name		Name
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 33 33 34 35 36 37 38 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39	TDI TRST VDD TDO TIMEXP EMU ICSA FLAG3 FLAG2 FLAG1 FLAG0 ADDR0 ADDR1 VDD ADDR2 ADDR3 ADDR4 ADDR5 ADDR6 ADDR7 VDD ADDR8 ADDR8 ADDR8 ADDR10 ADDR11	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 61 62 63 64 66 67 67 77 77 77 78 79 80 79 79 79 79 79 79 79 79 79 79 79 79 79	ADDR20 ADDR21 GND ADDR22 ADDR23 ADDR24 VDD GND VDD ADDR25 ADDR26 ADDR27 GND MS3 MS2 MS1 MS0 SW BMS ADDR28 GND VDD ADDR28 GND VDD ADDR29 ADDR29 ADDR30 ADDR31 GND SBTS DMAR2 DMAR1 HBR DT1 TCLK1 TFS1 DR1 RCLK1 RFS1 GND CPA DT0	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	TCLKO TFSO DRO RCLKO RFSO VDD GND ADRCLK REDY HBG CS RD WR GND VDD GND CLKIN ACK DMAG2 DMAG1 PAGE VDD BR6 BR5 BR4 BR3 BR2 BR1 GND VDD GND CND CND CND CND CND CND CND CND CND C	121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160	DATA41 DATA40 DATA49 VDD DATA38 DATA38 DATA37 DATA36 GND NC DATA35 DATA34 DATA33 VDD VDD GND DATA32 DATA31 DATA30 GND DATA29 DATA28 DATA27 VDD VDD DATA28 DATA27 VDD VDD DATA29 DATA21 VDD DATA22 DATA21 VDD DATA22 DATA21 VDD DATA19 DATA18 GND DATA15 VDD	161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200	DATA14 DATA13 DATA12 GND DATA49 VDD DATA8 DATA7 DATA6 GND DATA5 DATA4 DATA3 VDD DATA3 VDD CNC NC	232 233 234 235 236 237 238 239	NC N

REV. 0 -39-

PACKAGE DIMENSIONS

Dimensions shown in inches and (mm).

240-Lead Metric PQFP

NOTE: THE ACTUAL POSITION OF EACH LEAD IS WITHIN (0.08) 0.0032 FROM ITS IDEAL POSITION WHEN MEASURED IN THE LATERAL DIRECTION. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED

ORDERING GUIDE

Part Number*	Case Temperature Range	Instruction Rate	On-Chip SRAM	Operating Voltage	
AD SP-21061K S-133	0°C to +85°C	33 M H z	1 M bit	5 V	
AD SP-21061K S-160	0°C to +85°C	40 M H z	1 M bit	5 V	
AD SP-21061K S-200x	0°C to +85°C	50 M H z	1 M bit	5 V	

REV. 0 -40-