UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Ciencias

Integrantes: Adrián Aguilera Moreno Sebastián Alejandro Gutierrez Medina

Compiladores

Tarea 04

(2pts.) Considera la siguiente gramática donde E es el símbolo inicial:

$$\begin{array}{ccc} E & \rightarrow & Aa \\ A & \rightarrow & BC \mid BCf \\ B & \rightarrow & b \\ C & \rightarrow & c \end{array}$$

- 1. Construye los conjuntos canónicos de items LR(0).
- 2. Con estos conjuntos construye el autómtata finito mostrando las transiciones con la función GoTo.
- 3. Muestra la tabla de parsing que se genera usando el autómata anterior.

Solución. Primero obtenemos la FNC

$$\begin{array}{ccc} E & \rightarrow & Aa \\ A & \rightarrow & BC \mid A'f \\ A' & \rightarrow & BC \\ B & \rightarrow & b \\ C & \rightarrow & c \end{array}$$

Ahora encontremos los items asociados:

$$I_0 = Closure(\{E' \rightarrow \bullet E\}) = \begin{array}{ccc} E' & \rightarrow & \bullet E \\ E & \rightarrow & \bullet Aa \\ A & \rightarrow & \bullet BC \mid \bullet A'f \\ A' & \rightarrow & \bullet BC \\ B & \rightarrow & \bullet b \\ C & \rightarrow & \bullet c \end{array}$$

Luego, para I_1

$$I_1 = GoTo(\{I_0, E\}) = E' \rightarrow E \bullet$$

así, tenemos que I_2

$$I_2 = GoTo(\{I_0, A\}) = E \rightarrow A \bullet a$$

observemos que I_3

$$I_3 = GoTo(\{I_0, A'\}) = A \rightarrow A' \bullet f$$

posteriormente, veamos que I_4

$$I_4 = GoTo(\{I_0, B\}) = \begin{array}{ccc} A & \rightarrow & B \bullet C \\ A' & \rightarrow & B \bullet C \end{array}$$

y para I_5

$$I_5 = GoTo(\{I_0, C\}) = \begin{pmatrix} A & \rightarrow & BC \bullet \\ A' & \rightarrow & BC \bullet \end{pmatrix}$$

con I_6

$$I_6 = GoTo(\{I_0, f\}) = A \rightarrow A'f \bullet$$

y para I_7

$$I_7 = GoTo(\{I_0, a\}) = E \rightarrow Aa \bullet$$

con I_8

$$I_8 = GoTo(\{I_0, b\}) = B \rightarrow b \bullet$$

Por último, tenemos que I_9

$$I_9 = GoTo(\{I_0, c\}) = C \rightarrow \bullet c$$

A continuación se presenta el autómata generado por GoTo de R(0):

Para obtener la tabla de parsing supondremos que 0 corresponde al estado de I_0 y así para cada estado. A continuación se muestra la tabla de parsing.

Estado	Acción				GoTo						
	a	b	С	f	\$	E'	E	Α	A'	В	С
0		S8	S9				1	2,7	3,6	4,5	
1					Accept						
2	r1	r1	r1								
3	r2										
4			r3								
5											
6				r4					4,5		
7	r5										
8		r6									
9			r7								

Considera la siguiente gramática donde A es el símbolo inicial:

$$\begin{array}{ccc} A & \rightarrow & bB \\ B & \rightarrow & cC \\ B & \rightarrow & cCe \\ C & \rightarrow & dA \\ A & \rightarrow & a \end{array}$$

1. (1pt.) Describe formalmente el lenguaje que acepta la gramática.

Sea
$$L$$
 el lenguaje que acepta la gramatica anterior $L = (\{A, B, C\}, \{a, b, c, d, e\}, P, A)$ $P = \{A \rightarrow bB, B \rightarrow cC, B \rightarrow cCe, C \rightarrow dA, A \rightarrow a\}$

2. (3pts.) Proporciona el autómata para construir la tabla de parsing LR(1).

Debido a que hay un conflicto en la transición de $C \to dA$ no es posible que sea LR

3. (1pt.) De ser posible, analiza una cadena no trivial y de longitud al menos 4, mostrando la secuencia de acciones del autómata mediante una tabla que incluya al menos la actualización de la cadena de entrada y la actualización de la pila.

Cadena: bcdae

Table 1: Tabla del progreso del automata

Pila del Parser	Cadena	Regla aplicada
\$A	bcdae\$	
\$Bb	bcdae\$	$A \rightarrow bB$
\$B	cdae\$	
\$eCc	cdae\$	$B \rightarrow cCe$
\$eC	dae\$	
\$eAd	dae\$	$C \to dA$
\$eA	ae\$	
\$ea	ae\$	$A \rightarrow a$
\$e	e\$	
\$	\$	
\$	\$	ACEPTADA

(3pts.) Muestra que la siguiente gramática pertenece a la clase LL(1) pero no a la clase SLR (E es el símbolo inicial).

$$E \to A \, a \, A \, b \mid B \, b \, B \, a \qquad \qquad A \to \varepsilon \qquad \qquad B \to \varepsilon$$

Solución. Nótese que la gramática dada es recursiva por la izquierda, en base a la definición marcada de LL(1). Entonces, la gramática cumple con pertencer a LL(1). Sin embargo, la gramática no cumple ser LR(1) sencillo, pues la derivación no es por la derecha.

(Hasta 1.5pts. extra) Realiza una tabla comparativa entre los estilos de parsing LL, LR0, SLR y LR1. Incluye características o descripciones breves de las coincidencias o diferencias entre ellos.

No olvides agregar las referencias, libros o páginas web, consultadas.

Table 2: Tabla comparativa de estilos de parsing

Estilo de Parsing	Características	Ventajas	Desventajas
LL	Utiliza una estrategia de análisis	Sencillo de entender y de	No puede manejar
	descendente, basada en la con-	implementar. Útil para	gramáticas ambiguas.
	strucción de una tabla de análisis	gramáticas simples.	Limitado en su capacidad
	sintáctico.		de manejar ciertos tipos
			de gramáticas.
LR0	Utiliza una estrategia de análisis	Puede manejar un amplio	No puede manejar
	descendente que utiliza un	rango de gramáticas.	gramáticas ambiguas.
	autómata finito.		Puede generar muchos
			conflictos de reducción-
			desplazamiento.
SLR	Basado en LR0, pero utiliza	Mayor capacidad para	No puede manejar ciertos
	información adicional sobre los	manejar gramáticas am-	tipos de gramáticas com-
	símbolos de entrada para resolver	biguas que LR0.	plejas.
	conflictos.		
LR1	Basado en SLR, pero utiliza	Puede manejar una	Más complejo y difícil de
	información adicional sobre los	amplia variedad de	implementar que otros es-
	símbolos de entrada y de pila	gramáticas, incluyendo	tilos de parsing. Requiere
	para resolver conflictos.	aquellas con recursión a	más memoria y tiempo de
		izquierda y ambigüedad.	procesamiento.

Entre las caracteristicas que tienen en comun estos estilos de parsing se encuentran :

- Utilizan una pila para almacenar símbolos de la gramática.
- Utilizan una tabla de análisis para decidir qué acción tomar en función del estado actual de la pila y el símbolo de entrada.
- Tienen como objetivo construir un árbol de análisis sintáctico que represente la estructura sintáctica de una cadena de entrada dada

Referencias

• "Parsing Techniques: A Practical Guide" by Dick Grune and Ceriel J.H. Jacobs.