PEOPLE FOR THE ETHICAL TREATMENT OF SPECTRAL LINES

VINAY KASHYAP CfA/CXC/CHASC

ABSTRACT

A description of the mathematic model to estimate the counts in a *Chandra* gratings observation around the O VIII the and O VII triplet.

Keywords: spectroscopy, X-rays, methods – statistical

1. DATA

The data are lists of events collected over a duration \mathcal{T} in a source region and in a separate background region which has a geometric area $\frac{1}{r}$ of the source region. The events are marked by their observed wavelength, w,

$$Y_S = \{ \mathbf{w}_s, s = 1..N_S \} \tag{1}$$

$$Y_B = \{ \mathbf{w}_b, b = 1..N_B \} \tag{2}$$

There are ≈ 100 separate observations of Capella at high spectral resolution with *Chandra*, in various detector/grating combinations (ACIS-S+HETGS, ACIS-S+LETGS, HRC-S+LETGS). Each of these combinations provides their own quirks. ACIS-S+HETGS has the best resolution, and two arms (HEG and MEG), but has very low effective area over the wavelength region of interest. HRC-S+LETGS has much higher effective area, but also has much higher particle background. ACIS-S+LETGS has intermediate effective area, but has only two observations.

The wavelength region of interest, and some prominent O lines in that region, are shown in Table 1. The lines are located at intrinsic wavelengths ω_l , l=1..7, which could be altered when a new atomic emissivity replicate curve $\epsilon_l^{(Z)}$ is constructed.

component	wavelength ω [Å]	species	transiton
0	18.5 - 22.5	continuum	Bremss, RRC, DR
1	18.9671	O VIII	$^2\mathrm{P}_{3/2} ightarrow \ ^2\mathrm{S}_{1/2}$ (resonance)
2	18.9726	O VIII	$^2\mathrm{P}_{1/2} ightarrow \ ^2\mathrm{S}_{1/2}$ (resonance)
3	21.6020	O VII	$^{1}\mathrm{P}_{1} \rightarrow ^{1}\mathrm{S}_{0}$ (w) (1s.2p to 1s2 resonance)
4	21.8040	O VII	${}^{3}\mathrm{P}_{2} \rightarrow {}^{1}\mathrm{S}_{0} \text{ (x) (intercombination)}$
5	21.8070	O VII	${}^{3}\mathrm{P}_{1} \rightarrow {}^{1}\mathrm{S}_{0}$ (y) (intercombination)
6	22.1010	O VII	${}^{3}\mathrm{S}_{1} \rightarrow {}^{1}\mathrm{S}_{0} \ (\mathrm{z}) \ (\mathrm{forbidden})$
7	18.6270	O VII	$^{1}\mathrm{P}_{1} \rightarrow ^{1}\mathrm{S}_{0}$ (1s.3p to 1s2 resonance)

Table 1. Spectral lines of interest

2. MODEL

The Differential Emission Measure (DEM) is usually written

$$g(n_e, T) = n_e^2(T) \frac{dV(T)}{d\ln T}, \qquad (3)$$

where n_e is the electron number density and T is the temperature of the plasma. The DEM is often written as a sole function of T (see §4).

The flux from the l^{th} component is the product of the emissivity ϵ and the DEM,

$$\mathbf{f}_{l}^{(Z)}(\omega) = \epsilon_{l}^{(Z)}(\omega; n_{e}, T) \ g(n_{e}, T) \,, \tag{4}$$

where (Z) represents the $(Z)^{th}$ sample from the atomic replicates sample. When seen through an instrument with effective area $A_{eff}(\omega)$ and line response function $R(\omega \to w)$, for a duration of \mathcal{T} , and integrated over T, the estimated counts at observed wavelength w,

$$c^{(Z)}(\mathbf{w}, n_e) = \mathcal{T} \int d\mathbf{n} T \sum_{l} \int d\omega \ \mathbf{f}_l^{(Z)}(\omega; n_e, T) \ \mathbf{A}_{eff}(\omega) \ \mathbf{R}(\omega \to \mathbf{w}). \tag{6}$$

The indices l = 0..7, represent the components that are included, with 0 representing the continuum, and the others representing the lines listed in Table 1. The continuum component ϵ_0 is assumed to be independent of n_e , is identical for all (Z), and is supplied as a 2-D table on a grid of (ω, T) , while the line emissivities are delta-functions at the wavelengths $\omega_l^{(Z)}$, close to (but not necessarily identical) to those listed in Table 1.

$$\epsilon_0^{(Z)}(\omega; n_e, T) \equiv \mathcal{E}_0(\omega, T)$$
 (7)

$$\epsilon_{l>0}^{(Z)}(\omega; n_e, T) \equiv \delta(\omega - \omega_l^{(Z)}) \cdot \mathcal{E}_l^{(Z)}(n_e, T)$$
(8)

3. PROBABILITY MODEL

If $\theta = \{\theta_S, \theta_B\}$ are the model parameters for the DEM (see §4) and the background respectively,

$$p(\theta|Y_S, Y_B) \propto p(Y_S, Y_B|\theta_S, \theta_B) \ p(\theta)$$
$$\propto p(Y_S|\theta_S, \theta_B) \ p(\theta_S) \ p(\theta_B|Y_B) \ p(\theta_B). \tag{9}$$

For the background, a useful approximation is to use the $A_{eff}(\omega)$ to define the shape, and use the normalization as the sole parameter. Representing this as $A(\omega)$, the estimated background intensity,

$$b(\mathbf{w}) = norm_B \cdot \int d\omega \ \mathbf{R}(\omega \to \mathbf{w})[\mathbf{A}(\omega)] \,. \tag{10}$$

For HRC-S+LETGS, the dependence on $A(\omega)$ is negligible, and a flat $b(w) = norm_B$ is sufficient. For the likelihood,

$$p(Y_S|\theta_S, \theta_B) = \prod_{s=1}^S \text{Poisson}(1|c(\mathbf{w}_s; \theta_S) + b(\mathbf{w}_s)/r)$$

=
$$\prod_{s=1}^S (c(\mathbf{w}_s; \theta_S) + b(\mathbf{w}_s)/r) e^{-(c(\mathbf{w}_s; \theta_S) + b(\mathbf{w}_s)/r)}$$
 (11)

where the atomic replicates index (Z) has been dropped for legibility from c.

4. DEM PARAMETERIZATION

There are effectively 7 data points (6 lines and the continuum), so we are limited to estimating at most 6 parameters. Since choosing one of (Z) is a prime driver of this exercise, that implies the DEM must be parameterized by at most 5 parameters. Some possibilities are listed below.

— logNormal : norm, lnT_0 , σ_{lnT}

$$g(n_e, T) \equiv N(\ln T; \ln T_0, \sigma_{\ln T}) \propto exp\left[-\frac{(\ln T - \ln T_0)^2}{2\sigma_{\ln T}^2}\right]$$
(12)

— gamma : norm, α , β

$$g(n_e, T) \equiv \gamma(\ln T; \alpha, \beta) \propto \ln T^{\alpha} e^{-\beta \ln T}$$
 (13)

¹ The line response function for the HRC-S+LETGS can be approximated as a β -profile.

$$R(\omega \to w) \equiv \frac{1}{\left[1 + \left(\frac{\omega - w}{0.05}\right)^2\right]^{2.5}}$$
 (5)

for a bin width of $\delta w = 0.0067 \text{Å}$.

— scaled gamma : norm, α , β , γ

$$x = T^{\gamma}$$

$$g(n_e, T) \equiv \gamma(x; \alpha, \beta) \propto x^{\alpha} e^{-\beta x}$$
(14)

(15)

— Guennou models : Gaussian, tophat, AR $(T^{\alpha}, T < T_{\text{MAX}}, \text{ power law} + \text{half a Gaussian for } T > T_{\text{MAX}})$

5. UNITS

The counts c are in counts per detector bin, and the widths of the detector bins are set within the $R(\omega \to w)$.

The DEM (as in Equation 3 has units of $[cm^{-3} \ln K^{-1}]$. DEMs are often also reported in units of $[cm^{-3} K^{-1}]$, by replacing the $d\ln T$ by dT. In the solar case, the column emission measure is of interest rather than the volume emission measure, with units of $[cm^{-5} \dots]$.

The emissivities \mathcal{E} are usually in $[ergs\ cm^3\ s^{-1}]$ (in $[ph\ cm^3\ s^{-1}]$ in AtomDB). Therefore, the continuum fluxes f_0 are in $[ergs\ cm^{-2}\ s^{-1}\ bin^{-1}]$ and the line fluxes $f_{l>0}$ are in $[ergs\ cm^{-2}\ s^{-1}]$.