Exercise sheet 5: Probalign

For the following exercises on Probalign, we use an affine gap penalty with $g(k) = \alpha + \beta k = -0.5 - 0.25k$, there temperature T=1 and the similarity function $\sigma(x_i,y_i)$:

$$\sigma(x_i, y_j) = \begin{pmatrix} A & C & G & T \\ A & 2 & -1 & -1 & -1 \\ C & -1 & 2 & -1 & -1 \\ G & -1 & -1 & 2 & -1 \\ T & -1 & -1 & 2 \end{pmatrix}$$

Exercise 1

1a)

Compute the Boltzmann-weighted score for the following alignments:

(a) x: --AGCGG (b) x: AGCGG-----

Hide

Hint 1: Formulae

$$S(a) = \sum_{x_i \sim y_j \in a} \sigma(x_i, y_j) + \sum_{i=1}^{n} \operatorname{gap penalties} e^{\frac{S(a)}{T}} = \left(\prod_{x_i \sim y_j \in a} e^{\frac{\sigma(x_i, y_j)}{T}}\right) \times e^{\frac{\sum_{i=1}^{n} \operatorname{gap penalties}}{T}}$$

Hint 2 For each alignment you only need to calculate e^x once.

Hint 3: Calculations

$$\begin{array}{ll} \text{(a)} & e^{\sigma(A,A)} \times e^{3\sigma(G,G)} \times e^{\sigma(C,G)} \times e^{g(2)} \\ \text{(b)} & e^{\sigma(G,A)} \times e^{g(4)} \times e^{g(6)} \\ \end{array} \\ & = e^2 \times e^6 \times e^{-1} \times e^{-0.5 + (-0.25 \times 2)} = e^6 \\ & = e^{-1} \times e^{0.5 + (-0.25 \times 4)} \times e^{0.5 + (-0.25 \times 6)} = e^{-4.5} \end{array}$$

Solution

(a)
$$e^6 = 403.43$$

(b) $e^{-4.5} = 0.011$

(b)
$$e^{-4.5} = 0.01$$

Exercise 2

2a)

Derive the recursion formula for $Z_{i,j}^{I}$. Allow insertions after deletions and vice versa.

Hide

Solution

$$Z_{i,j}^{I} = Z_{i,j-1}^{I} \times e^{\frac{\beta}{T}} + Z_{i,j-1}^{M} \times e^{\frac{g(1)}{T}} + Z_{i,j-1}^{D} \times e^{\frac{g(1)}{T}}$$

2b)

Compute the partition function Z(T) by dynamic programming for the sequences x=ACC and y=AC. Allow insertions after deletions and vice versa. In order to simplify the computations, you can round to two digits after the decimal point.

Hide

Hint 1: Formulae Initialization:

$$\begin{split} Z_{i,0}^M &= Z_{0,j}^M = 0, Z_{0,0}^M = 1 \\ Z_{i,0}^I &= 0 \\ Z_{0,j}^D &= 0 \end{split}$$

Recursion:

$$\begin{split} Z_{i,j}^{M} &= Z_{i-1,j-1} \times e^{\frac{\sigma(x_i,y_j)}{T}} \\ Z_{i,j}^{I} &= Z_{i,j-1}^{I} \times e^{\frac{\beta}{T}} + Z_{i,j-1}^{M} \times e^{\frac{g(1)}{T}} + Z_{i,j-1}^{D} \times e^{\frac{g(1)}{T}} \\ Z_{i,j}^{D} &= Z_{i-1,j}^{D} \times e^{\frac{\beta}{T}} + Z_{i-1,j}^{M} \times e^{\frac{g(1)}{T}} + Z_{i-1,j}^{I} \times e^{\frac{g(1)}{T}} \\ Z_{i,j} &= Z_{i,j}^{M} + Z_{i,j}^{I} + Z_{i,j}^{D} \end{split}$$

Solution

$\overline{Z^{*}\{M\}}$	-	A	С
$\overline{\mathrm{C}}$	0	0.14	30.42

$\overline{Z^{}\{I\}}$	-	A	$\overline{\mathbf{C}}$
_	0	0.47	0.37
A	0	0.22	3.77
\mathbf{C}	0	0.17	2.00
\mathbf{C}	0	0.14	1.63

$\overline{Z^{}\{D\}}$	-	A	С
_	0.00	0.00	0.00
A	0.47	0.22	0.17
\mathbf{C}	0.37	3.68	2.00
C	0.29	3.10	29.85

Z	-	A	С
-	1.00	0.47	0.37
A	0.47	7.84	4.12
\mathbf{C}	0.37	4.12	61.89
\mathbf{C}	0.29	3.37	61.90

Exercise 3

The partition function of the reverse sequences $x^* = CA$ and $y^* = CCA$ is given in the matrix Z^* :

$\overline{Z^{}\{*\}}$	-	С	A
-	1.00	0.47	0.37
\mathbf{C}	0.47	7.84	4.12
\mathbf{C}	0.37	7.43	8.45
A	0.29	4.94	61.90

3a)

Find a mapping from matrix $Z_{k,l}^*$ to $Z_{i,j}'$. Which position in matrix Z^* corresponds to which position in matrix Z'?

\mathbf{Hide}

Solution $Z'_{i,j}$ is the partition function of the alignment $x_j...x_{|x|}$ with $y_i...y_{|y|}$. $Z^*_{k,l}$ is the partition function of the alignment $x_{|x|}...x_{|x|-k+1}$ with $y_{|y|}...y_{|y|-l+1}$.

$$j = |x| - l + 1 \Leftrightarrow l = |x| - j + 1$$

$$i = |y| - k + 1 \Leftrightarrow k = |y| - i + 1$$

Z^{*}	-	С	A
-	(0,0)	(0,1)	(0,2)
С	(1,0)	(1,1)	(1,2)
\mathbf{C}	(2,0)	(2,1)	(2,2)
A	(3,0)	(3,1)	(3,2)

$\overline{Z^{}\{'\}}$	-	A	С	-1
_	(0,0)	(0,1)	(0,2)	(0,3)
A	(1,0)	(1,1)	(1,2)	(1,3)
\mathbf{C}	(2,0)	(2,1)	(2,2)	(2,3)
\mathbf{C}	(3,0)	(3,1)	(3,2)	(3,3)
-	(4,0)	(4,1)	(4,2)	(4,3)

3b)

Use Z, Z^* and the mapping from Z^* to Z' to compute the probability of the alignment edges (1,1), (2,2), (3,1) and (3,2) between x and y.

Hide

Hint 1: Formulae

$$P(x_i \sim y_j | x, y) = \frac{Z_{i-1, j-1} \times e^{\frac{\sigma(x_i, y_j)}{T}} \times Z'_{i+1, j+1}}{Z(T)} Z_{i, j}^M = Z_{i-1, j-1} \times e^{\frac{\sigma(x_i, y_j)}{T}}$$

Hint 2 Mapped positions:

$$Z'_{2,2} \iff Z^*_{2,1}$$

$$Z'_{3,3} \iff Z^*_{1,0}$$

$$Z'_{4,2} \iff Z^*_{0,1}$$

$$Z'_{4,3} \iff Z^*_{0,0}$$

Solution Alignment edge (1,1):

$$P(x_1 \sim y_1 | x, y) = \frac{Z_{0,0} \times e^{\frac{\sigma(x_1, y_1)}{T}} \times Z'_{2,2}}{Z(T)} = \frac{Z_{0,0} \times e^{\frac{\sigma(x_1, y_1)}{T}} \times Z^*_{2,1}}{Z(T)} = \frac{Z_{1,1}^M \times Z^*_{2,1}}{Z(T)} = \frac{7.39 \times 7.43}{61.90} = 0.89$$

Alignment edge (2,2):

$$P(x_2 \sim y_2 | x, y) = \frac{Z_{1,1} \times e^{\frac{\sigma(x_2, y_2)}{T}} \times Z'_{3,3}}{Z(T)} = \frac{Z_{1,1} \times e^{\frac{\sigma(x_2, y_2)}{T}} \times Z^*_{1,0}}{Z(T)} = \frac{Z_{2,2}^M \times Z^*_{1,0}}{Z(T)} = \frac{57.90 \times 0.47}{61.90} = 0.44$$

Alignment edge (3,1):

$$P(x_3 \sim y_1 | x, y) = \frac{Z_{3,1}^M \times Z_{4,2}'}{Z(T)} = \frac{Z_{3,1}^M \times Z_{0,1}^*}{Z(T)} = \frac{0.14 \times 0.47}{61.90} = 0.001$$

Alignment edge (3, 2):

$$P(x_3 \sim y_2 | x, y) = \frac{Z_{3,2}^M \times Z_{4,3}'}{Z(T)} = \frac{Z_{3,1}^M \times Z_{0,0}^*}{Z(T)} = \frac{30.42 \times 1}{61.90} = 0.49$$