Comparison of Image Processing Techniques

	Comparison						
Blurring Techniques	Blurring	Noise Reduction	Edge Preservation Artistic Effe		Sharpening		
1. Gaussian Blur	~	~					
2. Median Blur			~				
3. Bilateral Filter		V	~				
4. Box Filter	~	V					
5. Motion Blur				V			
6. Unsharp Mask					~		

Blurring Techniques

- Gaussian blur is often used to reduce noise and soften edges. It's a popular choice for general-purpose blurring.
- **Median blur** is particularly effective at removing salt-and-pepper noise (random black and white pixels). It preserves edges better than Gaussian blur.
- **Bilateral filter** is useful for preserving edges while reducing noise. It's a good choice for images with fine details.
- Box filter is a simple blurring technique that can smooth out noise. However, it can also blur edges.
- Motion blur can be used to create artistic effects or to simulate real-world motion.
- Unsharp mask is often used to enhance image details and make them appear sharper.

Edge Detection	Comparison					
Edge Detection Techniques	Sensitivity to Noise	Edge Thinness	Edge Continuity	Computational Efficiency		
1. Sobel Edge Detection	V		V			
2. Laplacian Edge Detection			V			
3. Prewitt Edge Detection	~		V	V		

4. Canny Edge Detection

Edge Detection Techniques

- **Sobel edge detection** is a simple and computationally efficient method. It's sensitive to noise and can produce double edges.
- Laplacian edge detection is less noise-sensitive than Sobel edge detection but can be more susceptible to noise. It may also produce multiple edges for a single edge.
- **Prewitt edge detection** is also a simple and computationally efficient method. It's like Sobel edge detection in terms of sensitivity to noise and the potential for double edges.
- Canny edge detection is considered one of the most robust edge detection algorithms. It's less sensitive to noise than Sobel and Laplacian, and it can produce thin, continuous edges.