```
import pandas as pd
a=pd.read_csv("/content/drive/MyDrive/DSBDA/NHANES Weight and Height.csv")
a.head(5)
         Unnamed: 0 Weight (kg) Height (cm) BMI(kg/m**2)
                                                                   \blacksquare
      0
                   0
                              97.1
                                           160.2
                                                           37.8
                                                                   th
                              98.8
                                                           29.7
      1
                   1
                                           182.3
      2
                   2
                              74.3
                                           184.2
                                                           21.9
      3
                   3
                             103.7
                                                           30.2
                                            NaN
                              83.3
                                           177.1
                                                           26.6
      4
 Next steps: Generate code with a
                                       View recommended plots
a.columns
     Index(['Unnamed: 0', 'Weight (kg)', 'Height (cm)', 'BMI(kg/m**2)'], \ dtype='object')
a.shape
     (8388, 4)
a=a.drop("Weight (kg)",axis=1)
a.shape
     (8388, 3)
a.isnull().sum()
     Unnamed: 0
                       0
     Height (cm)
                      10
     BMI(kg/m**2)
                       0
     dtype: int64
a['Height (cm)']=a['Height (cm)'].fillna(a['Height (cm)'].mean())
a.isnull().sum()
     Unnamed: 0
                      0
     Height (cm)
BMI(kg/m**2)
                      0
                      0
     dtype: int64
{\tt import\ matplotlib.pyplot\ as\ plt}
\label{from:condition} \textit{from scipy.stats import norm}
plt.hist(a['Height (cm)'], bins=20, rwidth=0.8, density=True)
plt.title("Histogram of H")
plt.xlabel("Height in Inch")
plt.ylabel("Count")
```


import seaborn as sb

sb.boxplot(a['Height (cm)'])

a.describe()

	Unnamed: 0	Height (cm)	BMI(kg/m**2)
count	8388.000000	8388.000000	8388.000000
mean	4193.500000	166.644020	30.034859
std	2421.551362	10.070006	7.565376
min	0.000000	131.100000	14.200000
25%	2096.750000	159.100000	24.900000
50%	4193.500000	166.300000	28.800000
75%	6290.250000	173.900000	33.800000
max	8387.000000	199.600000	92.300000

Z-Score

#upper limit
ul=a['Height (cm)'].mean()+3*a['Height (cm)'].std()

11=a['Height (cm)'].mean()-3*a['Height (cm)'].std()

print(ul)

```
print(ll)
```

136.43400248553252

a.loc[(a['Height (cm)']>=ul) | (a['Height (cm)']<=ll)]

	Unnamed: 0	Height (cm)	BMI(kg/m**2)	
60	60	198.7	27.1	ılı
1906	1906	135.3	29.4	
2165	2165	131.1	35.1	
3379	3379	197.7	24.9	
4026	4026	198.4	23.8	
5815	5815	198.3	27.7	
7576	7576	199.6	29.5	

#trimming

a1=a.loc[(a['Height (cm)']<=u1) & (a['Height (cm)']>=11)]

a1

	Unnamed: 0	Height (cm)	BMI(kg/m**2)	\blacksquare
0	0	160.20000	37.8	11.
1	1	182.30000	29.7	+/
2	2	184.20000	21.9	
3	3	166.64402	30.2	
4	4	177.10000	26.6	
8383	8383	178.80000	29.5	
8384	8384	147.80000	37.9	
8385	8385	168.70000	38.2	
8386	8386	176.40000	25.5	
8387	8387	167.50000	21.3	

8381 rows × 3 columns

Next steps: Generate code with a1 View recommended plots

print("Before Trim : ",len(a))

Before Trim : 8388

After Trim: 8381

print("After Trim:",len(a1))

 $print("No \ of \ outliers \ :",len(a)-len(a1))$

No of outliers : 7

sb.boxplot(a1['Height (cm)'])


```
print("Before Trim :",len(a))
    Before Trim : 8388

print("After Trim :",len(a2))
    After Trim : 8388

##### IQR ####
import numpy as np

Q1 = np.percentile(a['Height (cm)'], 25)
Q2 = np.percentile(a['Height (cm)'], 50)  # Median
Q3 = np.percentile(a['Height (cm)'], 75)

IQR = Q3 - Q1

IQR
```

```
lower_limit=Q1-1.5*IQR
uper_limit=Q3+1.5*IQR
#trimming
aa=a.loc[(a['Height (cm)']<=uper_limit) & (a['Height (cm)']>=lower_limit)]
print("After Trimming")
sb.boxplot(aa['Height (cm)'])
     After Trimming <Axes: ylabel='Height (cm)'>
         190
         180
      Height (cm) 170
```


sb.boxplot(a['Height (cm)'])

160

150

140

<Axes: ylabel='Height (cm)'>

