Kolorowanki

Jakub Słowikowski

29 września 2022

1 Wstęp

Istnieje wiele problemów kombinatorycznych, dotyczących pokrywania planszy "płytkami". Częstym sposobem na rozwiązanie ich jest pokolorowanie planszy w sprytny sposób, ilustrujący pewne ciekawe własności.

Oprócz płytek prostokatnym, w zadaniach będziemy korzystać również z poniższych kształtów:

2 Zadanka

- **Zadanie 1.** Czy planszę 8 × 8 z usuniętymi dwoma przeciwległymi rogami możemy pokryć całkowicie dominami?
- **Zadanie 2.** Wyznacz wszystkie takie liczby całkowite dodatnie n, że szachownicę o boku n daje się rozciąć na kostki T-tetramina.
- **Zadanie 3.** Dana jest szachownica o wymiarach 2014 × 2014. Czy można tak ją pokryć kostakmi domina, aby liczba kostek ułożonych poziomo była równa liczbie kostek ułożonych pionowo?
- **Zadanie 4.** Czy kwadrat 10×10 można pokryć klockami o wymiarach 1×4 ?
- **Zadanie 5.** Pewien prostokąt pokryto klockami, z których każdy jest wymiaru 2×2 lub 1×4 . Następnie zebrano wszystkie klocki i wymieniono jeden klocek 2×2 na klocek 1×4 . Wykaż, że nie da się pokryć wyjściowego prostokąta tak otrzymanym zestawem klocków.
- **Zadanie 6.** Udowodnij, że kwadratu 9×9 nie można pokryć klockami, z których każdy jest wymiaru 1×5 lub 1×6 .
- **Zadanie 7.** Czy kwadrat 13×13 można pokryć klockami, z których każdy ma wymiary 2×2 lub 3×3 ?
- **Zadanie 8.** Rozstrzygnij, czy kwadrat o boku 2²⁰¹⁴ można podzielić na kwadraty, z których każdy ma bok 3 lub 5.
- **Zadanie 9.** Czy szachownicę 8×8 można pokryć piętnastoma L-tetraminami, składającymi się z czterech kwadratów 1×1 , oraz jednym kwadratem 2×2 ?
- **Zadanie 10.** Kwadrat o wymiarach 7×7 jest pokryty szesnastoma klockami o wymiarach 3×1 i jednym o wymiarach 1×1 . Jakie są możliwe położenia klocka 1×1 w tym kwadracie?
- **Zadanie 11.** Prostokąt pokryto L-tetraminami i S-tetraminami (wyjątkowo akceptujemy także ich odbicia pionowe!). Udowodnij, że liczba L-tetramin jest parzysta.
- **Zadanie 12.** Prostokąt $a \times b$ nazwiemy parzystym jeśli a oraz b są parzyste. Załóżmy, że plansza $n \times n$, gdzie n jest nieparzyste, pokryta jest parzystymi prostokątami i kwadratami jednostkowymi. Ustal najmniejszą możliwą liczbę kwadratów jednostkowych użytych do tego pokrycia.
- Zadanie 13. Plansza 7×7 pokryta jest P-pentominami w taki sposób, że dokładnie jedna komórka pokryta

Kolorowanki Jakub Słowikowski

jest dwoma płytkami a pozostałe komórki dokładnie jedną. Ustal wszystkie możliwe pozycje podwójnie pokrytej płytki.

Zadanie 14. Niech m, n będą liczbami całkowitymi większymi niż 2. Pokolorujmy każdą komórkę planszy $m \times n$ na biało lub na czarno. Jeśli dwie komórki o wspólnej krawędzi mają różne kolory nazywamy tą parę komórek różną. Niech S będzie liczbą różnych par na planszy $m \times n$. Udowodnij, że to czy S jest parzyste zależy wyłącznie od komórek leżących na krawędzi planszy, wyłączając te na rogach.

Zadanie 15. (IMO 2004) Ustal dla jakich m, n prostokąt $m \times n$ możemy pokryć kształtami \square .

3 Co dalej?

Ambitnych zachęcam do przerobienia zadań z podanej poniżej literatury. Bardzo ambitnych odsyłam również do skryptu Yufeia Zhao Coloring and Weights.

Literatura

- [1] Łukasz Bożyk Tilings and Colorings
- [2] Mateusz Kandybo Zadania z Kolorowania
- [3] Kwadrat nr 13
- [4] Mathematical Excalibur Volume 20, Number 3