Intro to Metrics & Data Analysis with R

ECON 490 (Spring 2024)

Taylor Mackay || Email: tmackay@fullerton.edu

Overview

Stats material covered in these slides:

- Reviewing basic definitions from statistics
- Defining and describing distributions
- Defining outcome and explanatory variables

Programming material:

- Getting started with R + RStudio
- Setting up Swirl activities
- Introduction to R

Working with Data

In broad terms, what is the goal of working with data?

- Lots of potential answers...
- Trying to understand the world, make predictions, etc.

For this class (and economics broadly), we're interested in describing relationships

- What is the effect of this policy on employment?
- How will this decision affect employee retention?
- How did this marketing program affect sales?

Basic Terminology

Whenever we refer to data in this class, we mean something we can observe

- Sounds obvious...
- But we'll see why this matters later

Think of data in a spreadsheet format:

- Rows of your data are observations
- Columns of your data are variables

^	state_name 🕏	age ‡	employed [‡]	hhincome [‡]
1	california	45	1	102000
2	california	48	1	254000
3	california	2	0	360000
4	california	50	1	335300
5	california	25	1	133800
6	california	40	1	210000
7	california	5	0	157000
8	california	62	1	121600

Different Types of Variables

From the last slide, we have demographic data on a sample of people in CA

- Variables included employment status, age, and household income
- Let's characterize these variables by the values they can take

Continuous variables can take on any value (possibly within some range)

• Income is continuous – it can be \$1,000 or \$1,001, or \$10,642.10...

Discrete variables take on a limited number of values

- They might represent count data or qualitative data
- From the last slide, Employed is discrete it's either 0 or 1

Discrete Variables

In this class (and data analysis more generally), discrete data is everywhere

• How we handle discrete data depends on what information it contains

Factor variables contain qualitative information

- Different *levels* of a factor variable correspond to different characteristics
- E.g., education variable with 1 = non-HS grad, 2 = HS-grad, 3 = college-grad

Binary variables are factor variables with exactly two levels (think, "yes" or "no")

- For this class, binary variables will always equal 0 or 1
- Depending on context, might refer to them as dummy or indicator variables

Distributions

From the last slide, we have demographic data on a sample of people in CA

- Describes characteristics like employment status, age, and household income
- Not surprisingly, these factors can differ a lot across people!

The distribution of a variable tells you how often that variable takes on a given value

Whether a variable is discrete or continuous determines how we visualize it

Discrete Distributions

education	257448	
No HS	77414	30%
HS Grad	112262	44%
College Grad	67772	26%

Plotting discrete distributions is easy

 Just calculate the percentage of observations that take on each value

Education is a factor variable with 3 levels

Two options to show this distribution:

- 1. Show the percentages in a table
- 2. Create a bar graph

Continuous Distributions

Plotting continuous distributions is a bit trickier

- Income could be 100.00, or 100.01, or ...
- How do we create a table for each value?

Use *histograms* to plot continuous distributions

Divide values into *bins*, then show proportion of observations falling into each bin

 In effect, make the variable discrete to facilitate plotting (just like on the last slide)

Histogram with bins equal to \$25,000 increments

Density Plots for Continuous Distributions

On the last slide, created bins with intervals of \$25,000

- What if we made smaller bins?
- E.g., \$10,000, or \$1,000, or...

We can think about taking the limit of this thinking... where do we wind up?

The result is a *density plot*

Summarizing Distributions

Distributions contain a lot of information – how can we summarize them?

Two common methods are the *mean* (or average) and *median*

Descriptions of central tendency = ways of picking a "representative" value

Percentiles are another useful way of characterizing distributions

- The Xth percentile of a variable tells us the value for which X percent of observations are less
- The median is the 50th percentile 50% of observations are < the median

Variance and Standard Deviation

We can summarize the variability or "spread" of a variable using variance

Suppose we have a variable Y (a column of data) with n observations (rows in our data) and average value of $\overline{Y} \rightarrow$ we can define the variance of Y as:

$$Var(Y) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

The **standard deviation** of Y is the square root of its variance $\rightarrow SD(Y) = \sqrt{Var(Y)}$

Thinking about Relationships

Up to this point, we've talked about characterizing single variables

In economics (and most jobs), what we're interested in is relationships

- How is one variable related to another?
- How is changing one variable likely to impact another variable?

Next week, we'll talk about how to answer these questions

Tonight, we'll just introduce several important definitions

Characterizing Relationships

Covariance is one way of describing the relationship between two variables

• Given 2 columns of data, Y and X, with n rows and avg. values \overline{Y} and \overline{X} :

$$Cov(Y,X) = \sum_{i=1}^{n} (Y_i - \overline{Y})(X_i - \overline{X})$$

When the covariance between Y and X is:

- **Positive** it means when Y is **higher** than average, X tends to be **higher** as well
- Negative it means when Y is higher than average, X tends to be lower

Correlation

Covariance depends on the scale of X and Y – makes interpretation tricky

- Correlation is a way of measuring relationships without scale or units
- Correlations range between -1 and 1

Don't need to know the formula for correlation – in R, use corr()

- Key point is interpretation → 0 implies no (linear) relationship
- Values closer to -1 or 1 imply a stronger relationship between Y and X

NOTE: Doesn't tell us **why** variables are related (correlation ≠ causation)

Visualizing Correlation

Given two columns of data, *Y* and *X*, graph them on a scatter plot

Measure correlation using corr()

Two Important Terms

We're often specifically interested in how one variable impacts another

- For example, how does education affect income?
- This question implies "directionality" education explains variation in income

In these situations, we'll use the following terms:

- Our outcome variable is what we're trying to explain (here, income)
- Our explanatory variable drives variation in our outcome (here, education)

A Couple of Examples

Distinction between outcome and explanatory variables is important

- Imposes clarity about the goals of data analysis
- Let's cover a couple more examples

How does a company's marketing expenditures affect their sales?

- Outcome variable is sales
- Explanatory variable is the company's spending on marketing

How does incarceration affect the employment of criminal offenders?

- Outcome variable is employment status (employed vs. unemployed)
- Explanatory variable is incarceration (either yes / no or length of sentence)

Quick Note on Terminology

You might've used the following terms in other classes:

- **Dependent variable** = Y = outcome variable from prior slides
- *Independent variable* = X = explanatory variable from prior slides
- There's nothing "wrong" with these terms... but they're not very clarifying

Two benefits of the outcome vs. explanatory variable distinction:

- 1. Directly connects with regression equations
- 2. Gives you clues about which is which (less likely to mix them up!)

A bit more context for point (2) above while you're studying:

- Equations like Y = mX + b or $Y = \beta_0 + \beta_1 X$ are ways of saying Y = f(X) = "Y is a function of X"
- In other words, Y = f(X) is saying, let's use X to **explain** Y, meaning that X is our **explanatory** variable

Key Concepts for Quiz Next Week

Everything in slides is fair game, but the following concepts are important:

- 1. Defining different types of variables (continuous, factor, binary, etc.)
- 2. Showing the distribution of discrete and continuous variables
- 3. Distinguishing between outcome vs. explanatory variables

For covariance and correlation, **don't** need to memorize formulas, but you should be able to identify positively and negatively correlated variables (given either a correlation value or a scatter plot).

Why Learn R?

Some students worry a lot about the "perfect" language to learn

- As econ majors, you'll generally be applying for "generalist" roles
- If you want a programming-specific role, this might matter more

General skills developed with one language are highly portable to another:

- Thinking rigorously about inputs and desired outputs
- Asking clearly defined questions and using documentation

Why not Excel?

- Overly-forgiving for sloppy inputs & very labor-intensive to achieve real proficiency
- Learning R will make you a much more careful user of Excel, Python, etc.

Learning Curves

Getting proficient with any skill takes time

With R, slow beginning is 10-20 hours of frustration – "nothing works!"

- Packages won't load
- Error messages will be mystifying

The faster you can get through that slow beginning, the easier things will be later

Getting Started with R

Here, we'll review the "Learning to Speak R" slides

- Handout and slides are available on Canvas Week 2 Overview page
- Use these to help complete first coding activity!

Completing the First Swirl Activity

Install R + RStudio (if you haven't already) and open RStudio

Start by installing Swirl and loading the course material into R:

- 1. Use install.packages("swirl") to install Swirl package
- 2. Run library("swirl")
- 3. Run install_course("R Programming")

To access the first activity:

- 1. Run swirl() in the command line and follow the prompts
- 2. For tonight, we want to complete Lesson 1: Basic Building Blocks

General Tips for Swirl Activities

Resist the temptation to speed through activities!

- 1. Before you run a line of code, ask yourself, "what do I expect to happen?"
- 2. After you run your code, check for any surprises
- 3. Always identify where output is going (e.g., environment pane, console, etc.)

Want to close out of a Swirl activity? Type bye() in command line