Predicting Long-Term Unemployment

A COMPARISON BETWEEN LOGISTIC REGRESSION AND KERNEL SVM

Malik Stromberg 29/01/2021

University of Tübingen

Outline

- 1. Introduction
- 2. Context
- 3. Method

Logistic Regression with ERM

SVM with ERM

Model Performance

- 4. Data
- 5. Results & Discussion
- 6. Limitations
- 7. Further Research
- 8. Summary

Introduction

Consequences of Unemployment

- A job-loss affects
 - Psychological well-being [15]
 - Perceived life quality [15]
 - Career quality [12]
- The lacks increase in unemployment duration
- Reemployment helps to mitigate this decline [1]
 - ightarrow It is desirable to find a new job quickly.

But some unemployed people need specific state aid to get reemployed.

Can those individuals be identified more accurately using machine learning methods in comparison to traditional approaches?

Overview

Figure 1: Workflow overview.

Context

Long-Term Unemployment as a Multidisciplinary Field

Figure 2: Conceptual model of variable groups associated with reemployment success.

Wanberg, Hough, and Song [20]

Causal Effects on Long-Term Unemployment

Publication	Country	Method	Effects	
Wanberg, Watt, and Rumsey [21]	USA	Logit	Age	
			Job seeking support	
Obben, Engelbrecht, and Thompson [17]	New Zealand	Logit	Gender	
			Ethnicity	
			Schooling	
			Regional location	
Marelli and Vakuenko [13]	Russia,	Probit	Marital status	
	Italy		Health	
			Household income	
O'Connell, McGuinness, and Kelly [16]	Ireland	Probit	Employment history	
			Willingness to move	
			Unemployment duration	
			Public transports	
Curtis, Gibbon, and Katsikitis [3]	Australia	ANOVA	In-group identification	
Kokko, Pulkkinen, and Puustinen [8]	Finland	MCA	Depressive symptoms	
			Self-control	
Lötters et al. [11]	Netherlands	Logit	Perceived Health	
			Willingness to accept a job	
Lallukka et al. [10]	Finland	Logit	Social determinants	
Krause [9]	Germany	Logit	Satisfaction	
Wanberg, Hough, and Song [20]	USA	Logit	Children in household	
			Economic hardship	
De Battisti et al. [4]	Italy	SEM	Perceived employability	
			Psychological distress	

Table 1: Causal effects on long-term unemployment suggested by past literature.

JSCI-Score

Long-term unemployment prediction model developed by Matty $_{[14]}$

Goal: Develop a score that gives information about the

risk of an unemployed individual becoming

long-term unemployed.

Country: United Kingdom

Data: Questionnaire

Feature Selection: Trying different combinations of predictors

Variables: Individual's economic need to work

Reemployment constraints

Attitudinal variables Administrative variables

Model: Logistic regression

Classification: JSCI-Score

Method

General ERM Framework

Input space: ${\cal X}$

Actual output space: \mathcal{Y}_{act}

Prediction output scpace: \mathcal{Y}_{pred}

Training data points: $(x_i, y_i)_{i=1,...,n} \in \mathcal{X} \times \mathcal{Y}_{act}$

Function space: $\mathcal{F}: \mathcal{X} \to \mathcal{Y}_{\textit{pred}}$

 $\textbf{Loss function:} \qquad \qquad \ell: \mathcal{X} \times \mathcal{Y}_{\textit{act}} \times \mathcal{Y}_{\textit{pred}} \rightarrow \mathbb{R}_{\geq 0}$

General ERM Framework

The function with the smallest empirical risk is given by

$$f_n := \underset{f \in \mathcal{F}}{\operatorname{argmin}} R_n(f) \tag{1}$$

with empirical risk

$$R_n(f) := \frac{1}{n} \sum_{i=1}^n \ell(x_i, y_i, f(x_i)).$$
 (2)

Regularized ERM Framework

 $\textbf{Hyperparameter:} \quad \lambda \in \mathbb{R}$

The regularized empirical risk is given by

$$R_{reg,n}(f) := R_n(f) + \lambda \Omega(f). \tag{3}$$

Methodological Procedure

Figure 3: Methodological procedure.

Logistic Regression with ERM

Number of selected features:

Input space: $\mathcal{X} = \mathbb{R}^d$

Actual output space: $\mathcal{Y}_{\textit{act}} = \{\pm 1\}$

Prediction output space: $\mathcal{Y}_{\textit{pred}} = \mathbb{R}$

Function space: $\mathcal{F} = \{f(x_i) = \langle w, x_i \rangle; \ w \in \mathbb{R}^d\}$

Define the logistic loss as

$$\ell_{log}(x_i, y_i, f(x_i)) := log(1 + exp(-y_i f(x_i))). \tag{4}$$

Shalev-Schwartz and Ben-David [18]

Logistic Regression with ERM

The logistic ERM problem is given by

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp\left(-y_i \langle w, x_i \rangle \right) \right). \tag{5}$$

A new data point $x_{new} \in \mathbb{R}^d$ can be classified using

$$P(x_{new}) = \frac{1}{1 + \exp(-\langle w, x_{new} \rangle)},$$
 (6)

$$y^{label} = \begin{cases} 1 & \text{if } P(x_{new}) \ge 0.5, \\ -1 & \text{if } P(x_{new}) < 0.5. \end{cases}$$
 (7)

Shalev-Schwartz and Ben-David [18]

Feature Selection with Lasso Logistic Regression

Number of considered features: D

Defining the lasso regularizer

$$\Omega_{lasso}(f) := ||w||_1 \tag{8}$$

leads to the regularized logistic ERM problem

$$\underset{w \in \mathbb{R}^{D}}{\operatorname{argmin}} \ \frac{1}{m} \sum_{i=1}^{m} \log \left(1 + \exp \left(-y_{i} \langle w, x_{i} \rangle \right) \right) + \lambda ||w||_{1}. \tag{9}$$

Tibshirani [19]

SVM with ERM

Number of selected features:

Input space: $\mathcal{X} = \mathbb{R}^d$

Prediction output space: $\mathcal{Y}_{\textit{pred}} = \mathbb{R}$

Function space: $\mathcal{F} = \{f(X) = \langle w, X \rangle + b; \ w \in \mathbb{R}^d, b \in \mathbb{R}\}$

Hyperparameter:

Define the hinge loss as

$$\ell_{hinge}(x_i, y_i, f(x_i)) := \max\{0; 1 - y_i f(x_i)\}$$
 (10)

and regularizer

$$\Omega_{ridge}(f) := ||w||^2. \tag{11}$$

Hastie, Tibshirani, and Wainwright [7]

SVM with ERM

The ERM primal problem for SVM is given by

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{C}{n} \sum_{i=1}^n \max\{0; 1 - y_i f(x_i)\} + ||w||^2. \tag{12}$$

Converting the problem to the corresponding dual problem yields

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \, \alpha_j \, y_i \, y_j \, \langle x_i, \, x_j \rangle$$
 (13a)

s.t.
$$0 \le \alpha_i \le \frac{C}{n}$$
 (13b)

$$\sum_{i=1}^{n} \alpha_i \, y_i = 0. \tag{13c}$$

Kernel SVM

Kernel function: $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

 ${\bf Hyperparameter:} \quad \sigma$

Define the Gaussian kernel as

$$k_{gauss}(x_i, x_j) := exp\left(-\frac{||x_i - x_j||^2}{2\sigma}\right)$$
 (14)

leads to the optimization problem

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \, \alpha_j \, y_i \, y_j \, \exp\left(-\frac{||x_i - x_j||^2}{2 \, \sigma}\right) \tag{15a}$$

s.t.
$$0 \le \alpha_i \le \frac{C}{n}$$
 (15b)

$$\sum_{i=1}^{n} \alpha_i \, y_i = 0, \tag{15c}$$

Cortes and Vapnik [2]

Kernel SVM

Subspace:
$$J = \{j \mid 0 < \alpha_j < \frac{C}{n}\}$$

The function value for new data point $x_{new} \in \mathbb{R}^d$ can be calculated as

$$f(x_{new}) = \sum_{i=1}^{n} \alpha_i \, y_i \, k(x_i, \, x_{new}) + \left(y_j - \sum_{i=1}^{n} y_i \, \alpha_i \, k(x_i, \, x_j) \right); \quad j \in J \ (16)$$

and classified with

$$y^{label} = \begin{cases} 1 & \text{if } f(x_{new}) \ge 0, \\ -1 & \text{if } f(x_{new}) < 0. \end{cases}$$
 (17)

Cortes and Vapnik [2]

Measuring Model Performance

- 1. Area under the ROC-curve
- 2. Emprical, test and CV risk with 0-1-loss:

$$\ell_{0-1}(x_i, y_i, y^{label}) := \begin{cases} 0 & \text{if } y_i = y^{label}, \\ 1 & \text{if } y_i \neq y^{label} \end{cases}$$
(18)

Data

German Socio-Economic Panel

- Annual multidisciplinary survey
- 30,000 individuals
- Since 2009 it seamlessly records monthly unemployment data
- 2,524 labeled observations
- 30 variables considered, including
 - Demographic variables
 - Household income
 - Worries & satisfaction
 - Health
 - Social activities
 - Reemployment constraints & perceived employability
 - Character traits

diw.de [5]

Sample in Workflow

Figure 4: Methodological procedure with sample sizes and number of independent variables.

Results & Discussion

Lasso Logistic Regression

Figure 5: Predictor weights for logistic regression depending on regularization parameter λ .

SVM Variable Importance

Figure 6: Predictor importance in SVM measured by AUC.

Feature Selection

Table 2: Selected features for logistic regression and SVM.

Performance

Measure	Logistic Regression	SVM
Empirical risk	0.3147	0.352
CV risk	0.3573	0.399
Test risk	0.3527	0.3879
Training AUC	0.74	0.7157
Test AUC	0.6628	0.732

Table 3: Performance measures for logistic regression and SVM.

ROC Curves

Figure 7: ROC curves on test data for logistic regression and kernel SVM.

Limitations

ns

Limitations

- Remarkable decline in number of observations due to high missing rate
- Anonymized individual data
- In recent years critics arose about AUC as a single variable importance measure

Further Research

Further Research

- Other machine learning approaches
- Adjust loss-function resulting in a cost-sensitive classification
- Psychological consequences

Summary

Summary

Goal: Compare predictive power of logistic regression and kernel SVM

for classification of unemployed individuals into classes of small and high risk of becoming long-term unemployed based on

individual-specific features.

Method: Feature selection: lasso regularization, importance measures

Model: Logistic regression, kernel SVM

Data: German SOEP data, 2009-2017

Result: Kernel SVM can outperform traditional approaches in predictive

power measured by AUC.

Thanks!

References

- [1] Jennie E. Brand. "The far-reaching impact of job loss and unemployment". In: *Annual Review of Sociology* 41 (2015), pp. 359–375.
- [2] Corinna Cortes and Vladimir Vapnik. "Support-vector networks". In: *Machine Learning* 20 (1995), pp. 273–297.
- [3] Elli Curtis, Peter Gibbon, and Mary Katsikitis. "Group identity and readiness to change unemployment status". In: Journal of Employment Counseling 53 (2016), pp. 50–59.

References ii

- [4] Francesca De Battisti et al. "Perceived employability and reemployment: Do job search strategies and psychological distress matter?" In: *Journal of Occupational and Organizational Psychology* 89 (2016), pp. 813–833.
- [5] diw.de. accessed 04-January-2021. URL: https://www.diw.de/en/diw_01.c.615551.en/research_ infrastructure__socio-economic_panel__soep.html.
- [6] Isabelle Guyon and André Elisseeff. "An introduction to variable and feature selection". In: Journal of Machine Learning Research 3 (2003), pp. 1157–1182.
- [7] Trevor Hastie, Robert Tibshirani, and Martin Wainwright.

 Statistical learning with sparsity: The lasso and generalizations.

 CRC Press, Taylor & Francis Group, 2015. URL: https://web.stanford.edu/~hastie/StatLearnSparsity/index.html.

References iii

- [8] Katja Kokko, Lea Pulkkinen, and Minna Puustinen. "Selection into long-term unemployment and its psychological consequences". In: International Journal of Behavioral Development 24.3 (2000), pp. 310–320.
- [9] Annabelle Krause. "Don't worry, be happy? Happiness and reemployment". In: *Journal of Economic Behavior & Organization* 96 (2013), pp. 1–20.
- [10] Tea Lallukka et al. "Determinants of long-term unemployment in early adulthood: A Finnish birth cohort study". In: SSM -Population Health 8 (2019), p. 100410.
- [11] Freek Lötters et al. "The influence of perceived health on labour participation among long term unemployed". In: Journal of Occupational Rehabilitation 23 (2013), pp. 300–308.

References iv

- [12] Anna Manzoni and Irma Mooi-Reci. "The cumulative disadvantage of unemployment: Longitudinal evidence across gender and age at first unemployment in Germany". In: PLoS ONE 15.6 (2020), e0234786.
- [13] Enrico Marelli and Elena Vakuenko. "Youth unemployment in Italy and Russia: Aggregate trends and individual determinants". In: The Economic and Labour Realtions Review 27.3 (2016), pp. 387–405.
- [14] Simon Matty. "Predicting likelihood of long-term unemployment: The development of a UK jobseekers' classification instrument". In: Working Paper No. 116, Department for Work and Pensions (2013).
- [15] Victoria Mousteri, Michael Daly, and Liam Delaney. "The scarring effect of unemployment on psychological well-being across Europe". In: Social Science Research 72 (2018), pp. 146–169.

References v

- [16] Philip J. O'Connell, Seamus McGuinness, and Elish Kelly. "The transition from short- to long-term unemployment: A statistical profiling model for Ireland". In: *The Economic and Social Review* 43.1 (2012), pp. 135–164.
- [17] James Obben, Hans-Jürgen Engelbrecht, and Wesley Thompson. "A logit model of the incidence of long-term unemployment". In: Applied Economics Letters 9.1 (2002), pp. 43–46.
- [18] Shai Shalev-Schwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge University Press, 2014. URL: http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning.
- [19] Robert Tibshirani. "Regression shrinkage and selection via the lasso". In: *Journal of the Royal Statistical Society. Series B* (Methodological) 58.1 (1996), pp. 267–288.

References vi

- [20] Connie R. Wanberg, Leatta M. Hough, and Zhaoli Song. "Predictive validity of a multidisciplinary model of reemployment success". In: *Journal of Applied Psychology* 87.6 (2002), pp. 1100–1120.
- [21] Connie R. Wanberg, John D. Watt, and Deborah J. Rumsey. "Individuals without jobs: An empirical study of job-seeking behavior and reemployment". In: *Journal of Applied Psychology* 81.1 (1996), pp. 76–87.