ROBUST STABILITY ANALYSIS FOR MIMO SYSTEMS

GOAL: ROBUST STABILITY TESTS FOR STOUCTURED OR UNSTRUCTURED UNCERTAINTY MODELS (MIMO)

APPROACH: PUT BLOCK DIAGRAM INTO "MO"
FORM AND APPLY THE SMAU
GAIN THEOREM
CTABLE! -

TYPES OF UNCERTAINTY (B)

- (i) UNSTRUCTURED: & CAN BE ANY THE MATRIX AS

 LONG AS IT IS PROPER AND STABLE, MOLLO CI

 (FULL COMPLEX PERTURBATIONS) MOST GENERAL FORM
- (ii) STRUCTURED:
 - (a) BLOCK COMPLEX: $\Delta(s) = \begin{pmatrix} \partial_1(s) & 0 \\ 0 & \partial_n(s) \end{pmatrix}$ WHERE THE Δi ARE PROPER, STABLE $||Di||_{\alpha} \leq 1$.
 - (b) BLOCK PEAL: $\Delta(s) = \begin{pmatrix} \delta_i & 0 \\ 0 & \delta_n \end{pmatrix}$ where C is the Real # Matrices

 This is the most Restrictive form

 PARAMETRIC (CHANGES IN PARAMETERS)

MOST
DIFFICULT
TO
ANALYZE

(c) MIKED: COMBO OF COMPLEX/ REAL BLOCKS

NOTE: THE VERSION OF THE SMALL GAIN THEOREM
DEPENDS ON THE TYPE OF UNCERTAINTY USED.

APPLIES TO REAL OR COMPLEX PERTURISATIONS;
LET MIS) AND DIS) BE STABLE. THEN THE M-D SYSTEM
15 RUBUSTLY STABLE (RS)

ENCLOCUE THE ORIGIN Y & (SINCE M, & STABLE)

⇒ DET (I-MS) ≠ 0 + W, S (ZEROS ARE CLOSES LOUP POLES)

PROOF: APPLY MULTIVARIABLE NYBUST THEOREM

WITH $p=0 \Rightarrow 2 = n = 0$ FOR STABILITY

SPECTRAL RADIUS CONDITION (LOMPLEX PERTURBATIONS ONLY)

LET M(s) AND Δ (s) BE STABLE. THEN THE M-A SYSTEM IS ROBUSTLY STABLE (RS) \iff $g(M\Delta) < 1 \ \forall \omega, \Delta$ PROOF

NECESSITY

(\Leftarrow)

RECALL SPECTRAL RADIUS $g(Mb) = max[\lambda; (Mb)]$ ASSUME $g(Mb) < 1 \ \forall w, b$ DET(I-Mb) = $TI_i \lambda: (I-Mb) = 0 \ (Proport of \lambda's)$

 $= \pi_i \left(1 - \lambda_i (MD) \right) = 0 \quad \text{EVALS OF } A + cI$ $= \lambda_i (A) + C$

p(mo) c1 => DET (I-MO) 70 1

(=) PROVE USING THE CONTRAPOSITIVE:

A \Rightarrow B is EQUIVALENT TO NOT(B) \Rightarrow NOT(A) NOT $g(Mb) c1 \Rightarrow$ NOT DET(I-Mb) $\neq 0$

ASSUME $g(MA) = 1 \Rightarrow \max_{i} |\lambda_{i}(MA)| = 1$

PICK A & SUCH THAT $\lambda_i(MA') = +1$ (CAN DO THIS ONLY IF A IS ALLOWED TO BE COMPLEX)

 $\Rightarrow DET(I-N\Delta) = Tri \left[1-\lambda_c(Mo)\right] = 0 \quad \Box$

NOTE: THE (E) DIRECTION HOLDS FOR BOTH
REAL AND COMPLEX PETTIRES ATT ONS

PROPOSITION FOR ANY MATRIX NORM, 9(A) = 11A11

PROOF: LET $\lambda_i(A)$ BE ANY EIGENVALUE OF A.

THEN $A v_i = \lambda_i v_i$, AND

 $|\lambda;| \|v;\| = \|\lambda;v;\| = \|Av;\| \leq \|A\| \|vi\|$ (FOR ANY VECTOR / MATRIX NORMS THAT ARE COMPATIBLE)
THUS $|\lambda;(A)| \leq \|A\|$ FOR ANY i

=) g(A) = ||A|| B

LET & BE THE SET OF ALL COMPLEX MATRICES SUCH THAT $F(b) = \| a\|_{\infty} \le 1$ (FULL COMPLEX PERTURBATION). THEN

 $\max_{\delta} g(M\delta) = \max_{\delta} \overline{f}(M\delta) = \max_{\delta} \overline{f}(M) \overline{f}(\delta) = \overline{f}(M)$

PROUF :

max
$$g(MD) \subseteq \max \overline{\sigma}(MD) \subseteq \max \overline{\sigma}(M) \overline{\sigma}(D) \subseteq \overline{\sigma}(M)$$

Proposition

 $\overline{\sigma}(AS) \subseteq \overline{\sigma}(A) \overline{\sigma}(B)$
 $\overline{\sigma}(D) \subseteq \overline{\sigma}(D) \subseteq \overline{\sigma}($

TO SHOW EQUALITY, CONSTRUCT A Δ' SUCH THAT $g(M\delta') = \overline{\tau}(M\delta')$

complex perturbation, & STABLE, 11016=1.

TAKE SVD $M = U \leq V^*$ (FOR EACH ω) AND CHOOSE $\Delta' = V U^*$ (U, V DRTHOGONAL, SVS ALL 1)

REQUIRES FULL COMPLEX

THEN $F(\delta') = 1$ AND

RECALL U*=U" AND THE EIGENVALUES OF A MATRIX

ARE INVARIANT UNDER SIMILARITY TRANSFORMATIONS.

BACK TO THE SPECTRAL RADIUS CONDITION, ASSUME & FULL COMPLEX:

NOW, RS
$$\iff$$
 3 [M(jw) Δ (jw)] < 1 \forall w, Δ (SPECTDAL PADUS CONDITION)

 \iff \forall [M(jw) Δ (jw)] < 1 \forall w, Δ Δ FULL, COMPLEX

 \iff \forall [M(jw)] < 1 \forall w

 \iff \forall \forall w

 \iff \forall \forall w

 \iff \forall \forall w

 \iff \forall w

WE HAVE PROVED THE FOLLOWING:

SMAU GAIN THEOREM (Has NORM CASE)

ASSUME D(S) IS STABLE, || DII = 1 D FULL COMPLEX.

THEN WE HAVE ROBUST STABILITY (RS)

OR EQUIVALENTLY

NOTES

(1) SGT HOLDS FOR ANY INDUCED SYSTEM NORM SATISFYING HABIT & HALL FULL COMPLEX D.

- (2) IN GENERAL, RESULT IS CONSERVATIVE SINCE PHASE INFO NOT TAKEN INTO ACCOUNT
- (3) TO GUARANTEE INTERNAL STABILITY, NEED TO

 VERIFY THERE ARE NO UNSTABLE HLODEN MODES

 (P/2 CANCELLATIONS IN RHP IN L = MA).