SIMULAZIONE ESAME SCRITTO II MODULO ELEMENTI DI MATEMATICA E ALGEBRA LINEARE

QUIZ: ogni risposta corretta vale 1 punto, sbagliata -1/2, non data 0.

- 1. Se una matrice quadrata ha rango massimo, allora è invertibile old V old F
- 2. Se A, B, C sono matrici tali che A = CB, allora le colonne di A dipendono linearmente dalle colonne di C. $\boxed{\mathbf{V} \mid \mathbf{F}}$
- 3. Il sottospazio $W = \{(2h, 2h, 2h) : h \in \mathbb{R}\}$ di \mathbb{R}^3 ha dimensione 2.
- 4. In \mathbb{R}^n , n vettori linearmente indipendenti generano tutto lo spazio. $\boxed{\mathbf{V} \mid \mathbf{F}}$
- 5. Il numero complesso (1+i)/2 è l'inverso moltiplicativo del numero complesso 1-i.
- 6. I vettori $v_1 = (1/2, -1/2, 1)$ e $v_2 = (-1, 1, -2)$ sono indipendenti in \mathbb{R}^3 .
- 7. Esistono matrici non nulle con rango 0.
- 8. I vettori (1, 1, 1, 1), (0, 1, 0, -1), (0, 0, 1, 0) di \mathbb{R}^4 sono dipendenti.
- 9. Sia A una matrice di dimensione $n \times m$. Allora vale sempre che:
 - (a) $rg(A) \leq m$.
 - (b) Se le righe di A sono dipendenti allora rg(A) = 0.
 - (c) rg(A) è il più piccolo fra n ed m.
 - (d) Se n = m allora rg(A) = n.
- 10. Se $B = (v_1, v_2, v_3, v_4)$ è una base per il sottospazio $W \leq \mathbb{R}^n$ allora:
 - (a) $B' = (v_2, v_3, v_4)$ è una base di W.
 - (b) I vettori v_2, v_3, v_4 sono indipendenti.
 - (c) Il vettore v_1 è combinazione lineare di v_2, v_3, v_4 .
 - (d) I vettori v_2, v_3, v_4 sono dipendenti.

ESERCIZI

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Considerare i seguenti vettori di \mathbb{R}^3 :

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

- (a) Dimostrare che $B = (v_1, v_2, v_3)$ è una base di \mathbb{R}^3 .
- (b) Qual è il rango della matrice A che ha come righe i vettori v_1, v_2, v_3 ?
- (c) La matrice A del punto precedente è invertibile? Se si', trovane l'inversa con il metodo delle due colonne.

- (d) Determinare le coordinate del vettore $v = \begin{bmatrix} -1/2 \\ 2 \\ 1 \end{bmatrix}$ in base B.
- 2. Considerare i seguenti sottospazi di \mathbb{R}^3 :

$$W_1 = \{(x, y, z) : x + 2y - z = 0\},$$
 $W_2 = \{(x, y, z) : \begin{cases} 2x - y = 0 \\ y + 2z = 0 \end{cases} \}$ $x + z = 0$

- (a) Determinare le equazioni parametriche di di W_1 e di W_2 e determinare se si tratta di piani, rette o punti.
- (b) Trovare una base B_1 di W_1 e una base B_2 di W_2 .
- (c) Trovare le coordinate del vettore $w = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \in W_1$ rispetto alla base B_1
- 3. Considerare il seguente sistema:

$$\begin{cases} x - y + z = -1 \\ x + y + 2z = 0 \\ 2x - 4y + z = -3 \end{cases}$$

- (a) Se il sistema ammette soluzioni, determinare lo spazio affine delle soluzioni (scritto in forma parametrica).
- (b) Trovare l'insieme delle soluzioni del sistema omogeneo associato (ovvero lo stesso sistema, ma con la colonna dei termini nulli uguale al vettore nullo).
- (c) Determinare una base dell'insieme delle soluzioni del sistema omogeneo.
- (d) Determinare il rango della matrice dei coefficienti del sistema.