Problem 10.5: The Chebyshev polynomials $T_j(x) = cos(jarccos(x))$, j = 0, 1, ..., are orthogonal with respect to the weight function $(1-x^2)^{-1/2}$ on [-1, 1]; that is $\int_{-1}^{1} T_j(x) T_k(x) (1-x^2)^{-1/2} dx = 0$ if $j \neq k$. Use the Gram-Schmidt process applied to the linearly independent set $\{1, x, x^2\}$ to construct the first three orthonormal polynomials for this weight function and show that they are indeed scalar multiples of T_0, T_1, T_2

Solution:

First let $w = (1 - x^2)^{-1/2}$. Then using the Gram-Schmidt process to construct q_0, q_1, q_2 w-orthogonal polynomials on the set $\{1, x, x^2\}$. Let $q_0 = 1$, then

$$q_1(x) = x - \frac{\langle x, 1 \rangle_w}{\langle 1, 1 \rangle_w} 1$$

$$= x - \frac{\int_{-1}^1 x(1 - x^2)^{-1/2} dx}{\int_{-1}^1 x(1 - x^2)^{-1/2} dx}$$

$$= x - \frac{0}{\pi} = x.$$

Solving for q_2 that is orthogonal to q_0, q_1 ,

$$q_{2}(x) = x^{2} - \frac{\langle x^{2}, 1 \rangle_{w}}{\langle 1, 1 \rangle_{w}} 1 - \frac{\langle x^{2}, x \rangle_{w}}{\langle x, x \rangle_{w}} x,$$

$$= x^{2} - \frac{\int_{-1}^{1} x^{2} (1 - x^{2})^{-1/2} dx}{\int_{-1}^{1} x (1 - x^{2})^{-1/2} dx} - \frac{\int_{-1}^{1} x^{3} (1 - x^{2})^{-1/2} dx}{\int_{-1}^{1} x^{2} (1 - x^{2})^{-1/2} dx} x,$$

$$= x^{2} - \frac{(\pi/2)}{\pi} - \frac{0}{\pi} x,$$

$$= x^{2} - \frac{(\pi/2)}{\pi}.$$

Finally normalizing each polynomial we get the following,

$$\hat{q}_0 = \frac{1}{\langle 1, 1 \rangle} = \frac{1}{\sqrt{(\int_{-1}^1 1 dx)}} = \frac{1}{\sqrt{2}},$$

$$\hat{q}_1 = \frac{x}{\langle x, x \rangle} = \frac{1}{\sqrt{(\int_{-1}^1 x^2 dx)}} = \frac{\sqrt{3}x}{\sqrt{2}},$$

$$(\pi/2) \qquad (\pi/2) \qquad (\pi/2)$$

$$\hat{q}_2 = \frac{x^2 - \frac{(\pi/2)}{\pi}}{\langle q_2, q_2 \rangle} = \frac{x^2 - \frac{(\pi/2)}{\pi}}{\sqrt{(\int_{-1}^1 (x^2 - \frac{(\pi/2)}{\pi})^2 dx)}} = \frac{\sqrt{30}(x^2 - \frac{(\pi/2)}{\pi})}{\sqrt{7}}.$$

Calculating the first three Chebyshev Polynomials.

$$T_0 = cos(0arccos(x)) = 1,$$

$$T_1 = cos(arccos(x)) = x$$
.

Using the double angle identity, and pythagorean theorem,

$$T_2 = cos(2arccos(x)),$$

$$= cos^2(arccos(x)) - sin^2(arccos(x)),$$

$$= x^2 - (1 - x^2),$$

$$= 2x^2 - 1.$$

Now we can see that we get the following scalar multiples,

$$T_{0} = \frac{1}{\sqrt{2}}\hat{q}_{0},$$

$$T_{1} = \frac{\sqrt{2}}{\sqrt{2}}\hat{q}_{1},$$

$$T_{2} = \frac{\sqrt{30}}{2\sqrt{7}}\hat{q}_{2}.$$

Problem 10.7: Write a MATLAB code to approximate,

$$\int_0^1 \cos(x^2) dx$$

Using composite trapezoid rule and one to approximate the integral using the composite Simpson's rule, with equally-spaced, nodes. The number of intervals n = 1/h should be and input to each code.

Do a convergence study to verify the second-order accuracy of the composite trapezoid rule and the fourth-order accuracy of the composite Simpson's Rule;

Solution:

Function:

```
function [X] = Trap(f,a,b,n)
%This function takes a function f, an interval a,b
%and a number of intervals n and returns the approximate
%integral using the composite trapezoid rule
```

```
 \begin{array}{l} x \; = \; linspace \, (\,a\,,b\,,n+1\,); \\ X \; = \; 0\,; \\ for \;\; i \; = \; 1\,:n \\ \qquad X \; = \; X \; + \; (\,x\,(\,i\,+1) \; - \; x\,(\,i\,)\,) * ((\,f\,(\,x\,(\,i\,+1)) \; + \; f\,(\,x\,(\,i\,)\,))/2\,); \\ end \\ end \\ \end{array}
```

function [X] = Simpsons(f, a, b, n)

Function:

```
%This function takes a function f, an interval a,b %and a number of intervals n and returns the approximate %integral using the composite Simpsons rule  \begin{aligned} x &= \text{linspace}\,(a\,,b\,,n+1); \\ X &= 0; \\ \text{for } i &= 1:n \\ &\quad X = X + ((x(i+1) - x(i))/6) * \\ &\quad (f(x(i)) + 4*f(((x(i+1) + x(i))/2)) + f(x(i+1))); \end{aligned}  end end
```

```
f =
  function_handle with value:
    @(x)cos(x.^2)

>> n = [1,10,100,1000,10000,100000];

>> T_h = []
  for i = 1: 6
    int = Trap(f,0,1,n(i));
    T_h = [T_h,int];
  end

>> q = quad(f,0,1,[1.e-12 1.e-12]);
>> E_h = abs(T_h' - q)'
>> ratio = E_h.*n.^2
>> table(n',T_h',E_h',ratio',
    'VariableNames',{'1\h','T_h',E_h','E_h\h^2'})
```

1/h	T_h	E_h	E_h/h^2
1	0.77015	0.13437	0.13437
10	0.90312	0.0014025	0.14025
100	0.90451	1.4025e-05	0.14025
1000	0.90452	1.4025e-07	0.14025
10000	0.90452	1.4025e-09	0.14025
100000	0.90452	1.4039e-11	0.14039

Console:

```
f =
  function_handle with value:
    @(x)cos(x.^2)

>> n = [2, 4, 8, 16, 32, 64, 128, 256];

>> T_h = []
  for i = 1: 8
      int = Simpson(f,0,1,n(i));
      T_h = [T_h, int];
  end

>> q = quad(f,0,1,[1.e-12 1.e-12]);

>> E_h = abs(T_h' - q)'

>> ratio = E_h.*n.^4

>> table(n',T_h',E_h',ratio',
    'VariableNames',{'1\h','T_h','E_h','E_h\h^2'})
```

1/h	${T}_h$	E_h	E_h/h^4
2	0.9045	2.2972e-05	0.00036755
4	0.90452	7.8693e-08	2.0145e-05
8	0.90452	1.4667e-08	6.0077e-05
16	0.90452	1.2157e-09	7.967e-05
32	0.90452	8.0618e-11	8.4534e-05
64	0.90452	5.1057e-12	8.5659e-05
128	0.90452	3.1475e-13	8.449e-05
256	0.90452	1.41e-14	6.0558e-05

Supplimental 1: Continuing with the theme that some sample points are better than others, recall that polynomial interpolation with high-order polynomials is prone to making large oscillation errors, but that this can be minimized using Chebyshev polynomials, which are the Lagrange polynomials associated with the sample points

$$x_j = \cos(\pi + (\pi j/n)), \qquad j = 0, \dots, n$$

on the interval [-1, 1]. Clenshaw-Curtis integration is integration using polynomial interpolation at these sample points.

Use the MATLAB polyfit function to perform polynomial interpolation at these sample points for n = 4, 6, 10 and then use the resulting polynomials to approximate

$$\int_{-1}^{1} x \sin(x) \ dx.$$

Compare your approximations to the exact answer (which you should compute by hand). Integration by parts!

Solution:

Computing the value of the integral by hand using integration by parts,

$$\int_{-1}^{1} x \sin(x) dx = -x \cos(x)|_{-1}^{1} - \int_{-1}^{1} -\cos(x) dx,$$

$$= -x \cos(x) - (-\sin(x))|_{-1}^{1},$$

$$= -x \cos(x) + \sin(x)|_{-1}^{1},$$

$$= -2 \cos(1) + 2 \sin(1).$$

Using the following MATLAB function to approximate the integral, with a Chebyshev polynomial interpolant of degree 4,6, and 10.

Function:

```
function [inter] = cheby_inter(f,n)
%This function takes in a function f and
%the desired order for the approximating
%polynomial interpolant n. Returns the integral
%of the polynomial interpolant from -1,1

x = [];
    for i = 0:n
        x = [x, cos(pi+((pi*i)/n))];
    end

p = polyfit(x, f(x),n);
i = polyint(p);
inter = diff(polyval(i,[-1 1]));
end
```

>>
$$f = @(x) x.*sin(x)$$

 $f =$

function_handle with value:

Supplimental 2: Recall that 5 point Gauss-Legendre integration uses sample points $[-\beta, -\alpha, 0, \alpha, \beta]$ where

$$\alpha = \frac{1}{3}\sqrt{5 - 2\sqrt{\frac{10}{7}}}$$
$$\beta = \frac{1}{3}\sqrt{5 + 2\sqrt{\frac{10}{7}}}.$$

Write a code that performs composite Gauss-Legendre integration with these sample points. Your code should have the signature

were f is the function to integrate, a and b are the endpoints of integration, and N is the

number of subintervals. Your code should perform Gauss-Legendre integration on each subinterval and add them up. Then apply your function to compute

$$\int_{-1}^{1} x \sin(x) \ dx$$

using N = 1, 2, 4, 10. Compare the results of Gauss-Legendre integration to the results you saw using Clenshaw-Curtis integration.

Solution:

Function:

```
function [Q] = glquad(f,a,b,n)
% This fuction takes a function f, an interval [a,b]
% and a number of intervals n and returns the composite
% gauss-legendre integration.
% Pulling the roots for a 5th degree legendre polynomial
syms x
roots = vpasolve(legendreP(5,x) == 0);
% intitilizing the endpoints of each sub-interval
ep = linspace(a,b,n+1);
%Casting the roots as floats instead of a symbolic variable
roots = cast(roots, 'like', ep);
% Finding the normalized roots on each sub interval.
% Each column of X is the set of roots on the ith sub-interval
X = [];
for i = 1:n
    legSub = roots*((ep(i+1) - ep(i))/2) + ((ep(i+1) + ep(i)))/2;
    X = [X legSub;];
end
% Performing guassian quadrature on each subinterval.
Q = 0;
for i = 1:n
    x = X(:, i)';
    B = [x.^0; x; x.^2; x.^3; x.^4];
    bb = [];
    A = [];
```

```
for j = 1:5

bb(j) = ((ep(i+1))^j - (ep(i))^j)/j;

end

A = B \setminus bb';

Q = Q + dot(A, f(x));

end
```

```
f =
    @(x)x.*sin(x)
>> gl_1 = glquad(f, -1, 1, 1)
>> g1_2 = glquad(f, -1, 1, 2)
>> gl_4 = glquad(f, -1, 1, 4)
>> gl_1 = 10 = glquad(f, -1, 1, 10)
>> g1 = [g1_1 g1_2 g1_4 g1_10]
gl =
   0.602337349998268
   0.602337357872820
   0.602337357879507
   0.602337357879514
\Rightarrow x = -2*\cos(1)+2*\sin(1)
   0.602337357879513
>> error = abs(gl - x)
error =
   1.0e - 08 *
   0.788124521200473
   0.000669309052626
```

- 0.000000621724894
- 0.000000022204460

Clearly we are seeing faster convergence using the Gauss-Legendre integration. Doing an approximation for n = 1, 2, ..., 10 and plotting the absolute errors against our value of n we can see that Gauss-Legendre integration reaches higher precision at lower values of n.

0 Gauss-Legendre 0 10⁰ 0 0 0 10⁻⁵ Absolute error 0 10⁻¹⁰ 0 0 0 10⁻¹⁵ 0 10⁰ 10¹ Value for n

Figure 1: Integration Technique Comparison

Problem 9.1: Use MATLAB to evaluate the second-order-accurate approximation to f''(x) for f(x) = sin(x) and $x = \pi/6$. Try $h = 10^{-1}, 10^{-2}, \dots, 10^{-16}$ and make a table of values of h, the computed finite difference quotient, and the error. Explain your results.

Solution:

Function:

```
function [X] = diff_2(f, h, x)
% This function takes a function f,
% a vector of values for h, an x value of
% interest and returns an approximation for the
% second derivative at x.
X = []; for i = 1:length(h) X(i) = ((f(x + h(i)) - 2.*f(x) + f(x - h(i)))./h(i).^2); end
end
```

$$f = @(x) \sin(x)$$
>> h = 10.^(-1.*[1:16]);
>> x = pi/6

>> X = diff_2(f,h,x);
>> E_d2 = abs(X - -.5)'

h	f''(pi/6)	E_{d2}
0.1	-0.49958	0.00041653
0.01	-0.5	4.1667e-06
0.001	-0.5	4.1674e-08
0.0001	-0.5	3.0387e-09
1e-05	-0.5	5.9648e-07
1e-06	-0.49993	6.6572e-05
1e-07	-0.49405	0.0059508
1e-08	-1.1102	0.61022
1e-09	55.5112	56.0112
1e-10	0	0.5
1e-11	0	0.5
1e-12	0	0.5
1e-13	5551115123.1258	5551115123.6258
1e-14	-555111512312.5782	555111512312.0782
1e-15	0	0.5
1e-16	-5551115123125783	5551115123125782

From our error analysis we can see that our best approximation comes when $h = 10^{-4}$. Looking at the Taylor's Theorem formula for f''(x) in Example 9.1.2 we get that,

$$f''(x) = \frac{f(x+h) - 2f(h) + f(x-h)}{h^2} - \frac{h^2}{12}f''''(v)$$

We see that the error will be $O(h^2)$. Following a similar analysis as example 9.1.1 we see that the minimum computed difference quotient is on the order of $O(\epsilon/h^2)$. Solving for h we get that $h = \epsilon^{\frac{1}{4}} \approx 10^{-4}$.

Problem 9.5: Using Taylor series, derive the error term for the approximation,

Solution:

$$f'(x) \approx \frac{1}{2h} [-3f(x) + 4f(x+h) - f(x+2h)].$$

Applying the Taylor series formula to each function, we ge the following system,

$$-3f(x) = -3f(x).$$

$$4f(x+h) = 4f(x) + 4f'(x)h + \frac{4f'(x)h^2}{2!} + \frac{4f'(x)h^3}{3!} + O(h^4).$$

$$-f(x+2h) = -f(x) - 2f'(x)h - \frac{4f'(x)h^2}{2!} - \frac{8f'(x)h^3}{3!} + O(h^4).$$

Summing over the equation we get that,

$$[-3f(x) + 4f(x+h) - f(x+2h)] = 2f'(x)h - \frac{4f'(x)h^3}{3!} + O(h^4).$$

Finally we divide the whole equation by 2h to get,

$$\frac{[-3f(x) + 4f(x+h) - f(x+2h)]}{2h} = f'(x) - \frac{2f'(x)h^2}{3!} + O(h^3).$$

Thus the error term is,

$$error = -\frac{2f'(x)h^2}{3!} + O(h^3).$$