Prof. Walter Bolitto

Química

CURSINHO COMUNITÁRIO A-SOL 2024

Estados da matéria

Água

Estado Sólido

Estado Líquido

Ponto de fusão (PF)

Temperatura na qual um material sólido passa para o estado líquido.

Nitrogênio PF = -210°C Álcool comum PF = -112°C Água PF = 0°C Cloreto de sódio PF = 801°C

Ponto de ebulição (PE)

Temperatura na qual um material líquido passa para o estado gasoso

Nitrogênio PF = -196°C Álcool comum PF = 78°C Água PF = 100°C Cloreto de sódio PF = 1490°C

ressublimação, calor liberado

Substância Pura

Mistura

Uma amostra de matéria pode ser uma substância pura ou uma mistura

Substância pura apresenta composição definida, fixa e um conjunto característico de propriedades. Ex: Água destilada, gás carbônico

Mistura é composto de diferentes substâncias, podendo ter qualquer composição. Ex: Água do mar, ar

mol é um conjunto de 6,02.10²³ unidades

(MACKENZIE-SP-MODELO ENEM) – Uma pessoa quer tomar, de 8 em 8 horas, um comprimido contendo 450 mg de ácido acetil salicílico (C9H8O4). Essa pessoa terá ingerido, após 24 horas, um número de moléculas dessa substância igual a:

Dados: massa molar do ácido acetilsalicílico = 180 g/mol; número de Avogadro = 6,0 . 1023.

(MACKENZIE-SP-MODELO ENEM) – Uma pessoa quer tomar, de 8 em 8 horas, um comprimido contendo 450 mg de ácido acetil salicílico (C9H8O4). Essa pessoa terá ingerido, após 24 horas, um número de moléculas dessa substância igual a:

Dados: massa molar do ácido acetilsalicílico = 180 g/mol; número de Avogadro = $6,0.10^{23}$.

180 g $6,0.10^{23} moléculas$ $3.450.10^{-3} g$ x

 $x = 45 . 10^{20}$ moléculas $4,5 . 10^{21}$ moléculas

R. $4,5.10^{21}$

(MACKENZIE-SP-MODELO ENEM) – Uma pessoa quer tomar, de 8 em 8 horas, um comprimido contendo 450 mg de ácido acetil salicílico (C9H8O4). Essa pessoa terá ingerido, após 24 horas, um número de moléculas dessa substância igual a:

Dados: massa molar do ácido acetilsalicílico = 180 g/mol; número de Avogadro = $6,0.10^{23}$.

180 g $6,0.10^{23} moléculas$ $3.450.10^{-3} g$ x

 $x = 45 . 10^{20}$ moléculas $4,5 . 10^{21}$ moléculas

R. $4,5.10^{21}$

(UNIP-SP) – Um recipiente contém inicialmente 200g de água.

Após 1 hora e 40 minutos, verificou-se que, devido à evaporação, restaram 182g do líquido. Calcule o número de moléculas de água que evaporaram por segundo.

Dados: Número de Avogadro = $6,0 \cdot 10^{23}$; massas atômicas: H = 1u, O = 16u.

(UNIP-SP) – Um recipiente contém inicialmente 200g de água.

Após 1 hora e 40 minutos, verificou-se que, devido à evaporação, restaram 182g do líquido. Calcule o número de moléculas de água que evaporaram por segundo.

Dados: Número de Avogadro = $6,0.10^{23}$; massas atômicas: H = 1u, O = 16u.

 $x = 6 \times 10^{23}$ moléculas de vapor

 $6 \times 10^{23} / 6000 = 1 \times 10^{20} \text{ moléculas / segundo}$