

OLAP Docking

Uma solução OLAP para análise de experimentos de docagem molecular: Aplicação com a enzima InhA.

Sumário

- 1. Introdução
 - a. Dinâmica Molecular
 - b. Docagem Molecular
- 2. Identificação de métricas
- 3. Solução proposta
 - a. Processo de Extração
 - b. Resíduos relevantes
 - c. Processo de Transformação
 - d. Construção do modelo
 - e. Processo de Carga
- 4. Resultados obtidos
- Conclusões
- 6. Referências

Introdução

- Processo de desenvolvimento racional de novos fármacos (RDD);
- Experimentos in-silico;
- Alto custo (1,2 bilhões de dólares);
- Processo demorado (12 anos).

Dinâmica Molecular

- Utilizado para representar a flexibilidade da proteína receptora;
- Conjunto de snapshots (conformação);
- Cada snapshot representa um instante de tempo;
 - Posicionamento dos átomos
 - Coordenadas variáveis

Docagem Molecular

- Objetivo principal é identificar novos candidatos a fármaco ou melhorar compostos já existentes.
 - Potenciais inibidores da proteína receptora
- Simulações entre proteína receptora e ligantes
 - Analisar interações (ligações)
- Docagem Molecular utilizando Dinâmica Molecular:

Docagem Molecular

- Dados resultantes de experimentos são analisados de forma manual.
- Especialista de domínio segue um protocolo de avaliação para identificar as ligações estáveis.
- Dados resultantes crescem de acordo com a dinâmica utilizada.

Resultado:

- Lista de resíduos
 Lista de átomos
- Posicionamento por Snapshot Coordenadas X, Y e Z
- Melhor FEB do ligante
- Melhor RMSD do ligante

Identificação de Métricas

1. FEB

- Energia livre de ligação;
- Termodinâmica;
- Quanto menor o valor, mais estável é a ligação.

2. RMSD

- Root-mean-square Deviation;
- Comparar o posicionamento inicial do ligante, proposto pelo especialista de domínio, com o posicionamento após a execução da docagem.

3. Número de contatos

 Ligações estabelecidas entre ligante e os principais resíduos da molécula receptora.

Identificação de Métricas

- Os contatos entre o ligante e o resíduo são medidos através da distância entre seus átomos.
 - Coordenada X, Y e Z de cada átomo
 - Angström (Å) é a medida de comprimento usada para expressar a

2,72 Å

De todas as distâncias, considerase apenas a menor

OLAP:

- Solução que permite analisar os dados de forma flexível
 - Roll-up (Consolidação)
 - Drill-down
- Multidimensionalidade;
- Cruzamento de dados;
- Cubo de dados
 - Análise de informações
 - Relatórios

 Utilizado na esfera estratégica das organizações com foco nas áreas financeiras, vendas, marketing e etc;

- Análisar resultados de múltiplos experimentos de docagem;
- Identificar padrões baseados em histórico de dados;
- Responder questões relevantes para o negócio;
- Pela literatura não há registro do uso deste tipo de tecnologia para endereçar questões relacionadas à docagem molecular.

Definição de questões de negócio:

- Entrevistas com os especialistas do LABIO;
- Identificação de questões relevantes;
- Flexibilidade para uso em diversos cenários.

Questões identificadas:

- 1. Associar um grupo para cada conformação.
- Identificar o comportamento das conformações baseado nas métricas de FEB e RMSD.
- Identificar conformações/grupos que possuem o maior número de contatos com os ligantes.
- 4. Com base no item 3, identificar quais são os resíduos mais importantes.
- 5. Com base no item 3, identificar quais grupos possuem melhores valores de FEB e RMSD.

FATO

 Compreende as chaves das dimensões e as métricas FEB, RMSD e o número de contatos dos principais ligantes.

DIM Ligante

Representação dos ligantes utilizados nos experimentos.

DIM Grupo

 Agrupamento de conformações que o LABIO utiliza em seus experimentos, baseados no posicionamento de cada conformação.

DIM Tempo

Representação do tempo em picosegundos.

DIM Modelo Dinâmico

Quais dinâmicas foram utilizadas para um determinado experimento.

DIM Experimento

 Pode possuir um mesmo experimento utilizando diferentes algoritmos de docagem e também versões de software de docagem diferente.

DIM R1 ... DIM R10

Resíduos considerados mais relevantes para um experimento.

Processo de Extração

Data set CSV

- Data set resultante da simulação de docagem:
 - 3100 linhas
 - 12335 colunas
- Composição:
 - 3.100 Snapshots
 - 268 Resíduos
 - 4.008 Átomos (Cada um com X, Y e Z)
 - Ligantes TCL e ETH
 - FEB e RMSD.
- Script para remover espaços em branco no arquivo para otimizar o tempo de execução dos processos de transformação.
 - Original com 550 MB
 - Redução para 250 MB

Processo de Extração

Residuos Relevantes

- Critérios definidos:
 - Ligações com distâncias entre 2 e 4 Ångströms são consideradas um contato;
 - Para cada resíduo, somente átomos sem hidrogênio são calculados;
 - Para cada snapshot, todos os resíduos são calculados.
- Distância dos átomos pelo cálculo da distância Euclidiana:

$$d(R, L) = \sqrt{(r_x - l_x)^2 + (r_y - l_y)^2 + (r_z - l_z)^2}$$

- Critérios de mensuração:
 - Quanto mais ligações estabelecer, mais relevante o resíduo se torna para o experimento de docagem;
 - Comparar resíduos com uma lista existente no LABIO.

- Segregação do arquivo gerado no processo de extração em dois:
 - Um arquivo apenas para o resíduo NAH e o ligante TCL;
 - Outro arquivo contendo todo o restante exceto o resíduo NAH.
- Script para identificar os resíduos:
 - Cálcula a distância Euclidiana entre átomos do ligante e do receptor;
 - Ignora o cálculo para átomos de hidrogênio.
- Sumarização do número de contatos de cada resíduo com o ligante em um único arquivo.
- Tempo de execução das rotinas de transformação para o cenário descrito foi de ~35 minutos em um Intel Core i5 (2.5GHz)

Output do script que calcula as distâncias:

```
виле верине правительные при при выправнить на при выправнить на при situation of the state of 
Snapshot, Residuo, Ligante, Distancia, Classificacao
1, SER 93, ETH, 3, 94, 2-4
1, SER 93, ETH, 3, 45, 2-4
1, SER 93, ETH, 3.65, 2-4
1, SER 93, ETH, 2.79, 2-4
1, SER 93, ETH, 3.66, 2-4
1, SER 93, ETH, 3.86, 2-4
1, SER 93, ETH, 2.81, 2-4
1, SER 93, ETH, 3, 31, 2-4
1, SER 93, ETH, 2.01, 2-4
1, ILE 94, ETH, 3.95, 2-4
1, ILE 94, ETH, 3, 94, 2-4
1, ILE 94, ETH, 3.28, 2-4
1, ILE 94, ETH, 3.78, 2-4
1, ILE 94, ETH, 3.77, 2-4
1, ILE 94, ETH, 3, 07, 2-4
1, ILE 94, ETH, 2, 99, 2-4
```

Dados sumarizados:

```
Total,Snapshot,Residuo,Ligante,Classificacao
1,1000,PHE_96,ETH,2-4
1,1000,SER_122,ETH,2-4
1,1001,ALA_190,ETH,2-4
1,1001,LYS_164,ETH,2-4
```

- Resultado:
 - Identificados 15 resíduos comuns para os ligantes TCL e ETH.
- Comparação dos resultados com a listagem do LABIO:
 - Resíduos mais relevantes baseados em histórico de experimentos;
 - 10 dos 15 resíduos encontrados estavam na lista;
- Definição dos 10 resíduos relevantes para o experimento:

 ILE_15
 SER_19
 ILE_94
 GLY_95
 PHE_148

 TYR_157
 MET_160
 ILE_193
 THR_195
 MET_198

Construção do Modelo

Modelo criado no Microsoft Analysis Services:

Construção do Modelo

Métricas 'FEBMedio' e 'RMSDMedio' criadas no cubo:

Processo de Carga

Processo de Carga

- Consolidação das informações para composição das dimensões;
- Identificação de FEB positivas:
 - Estes valores foram descartados (colocando o valor O para estes casos)
- Script para popular dimensão 'Tempo';
- Script para carga de dados:
 - Gera os comandos SQL para inserção no banco de dados baseado nos resultados do processo de transformação.
- Tempo de execução do processo de carga para o cenário descrito foi de ~15 minutos em um Intel Core i5 (2.5GHz).
- Os processos de transformação e carga podem ter o tempo de execução otimizados através da implementação de paralelismo (multi-thread) nas rotinas.

Processo de Carga

- Exemplo de entradas e saídas dos scripts de carga:
- Execução script para popular dimensão 'Tempo':

```
Isungtee http://www.aact.com/PUKKT02/SI/Ascript/cabeta and action and state $ ./criaDadosDIMTempo.py 10 INSERT INTO DIM_Tempo VALUES (1), (2), (3), (4), (5), (6), (7), (8), (9), (10);
```

Execução do script para popular o restante dos dados:

```
MANDER AND DIMERS IN DIMERS IN DIMERS IN STREET IN DIMERS IN DIMER
```

Processo ETL completo

Processo ETL completo

- Fluxo de execução dos scripts desenvolvidos:
- Rotinas escritas em Python e funcionam com entrada de parâmetros.
 - \$./calculaDistancia.py residuos.txt ligantes.txt Docking_ETH_TCL.csv > resultado.csv
- Parâmetros de entrada e saída são arquivos TXT, CSV ou SQL.

Demonstração

Exemplo do cálculo das métricas 'FEBMedio' e 'RMSDMedio' por experimento:

	LERMEGIO.	Id FEBMedio	Id	Descricao	Data Hora
622 5	-9,4622	1 -9,4622	1	2 Experimento de docagem para InhA com 3100 conformacoes com ligante Etionamida	2009-10-12
473 6	-0,5473	2 -0,5473	2	2 Experimento de docagem para InhA com 3100 conformacoes com ligante Triclosan	2009-10-12
	-0,5	2 -0,5	2	2 Experimento de docagem para InhA com 3100 conformacoes com ligante Triclosan	2009-10-12

Associar um grupo para cada conformação:

Identificar o comportamento das conformações baseado nas métricas de FEB e RMSD:

	Α	В	С	D	
1	Grupo ▼	Conformações	FEBMedio	RMSDMedio	
2	⊕0	582	-5,3108	5,0949	
3	±1	948	-4,7957	6,0078	
4	±2	1602	-5,3095	6,1983	
5	⊕3	1014	-5,0178	5,9891	
6	⊕4	1044	-4,7345	6,2437	
7	⊕ 5	1010	-4,8076	6,0770	
8	Total Geral	6200	-5,0048	6,0192	

Identificar conformações/grupos que possuem o maior número de contatos com os ligantes:

		5		5	_	_		
4	А	В	С	D	E	F	G	Н
1	Grupos ▼	Numero Contatos R1	Numero Contatos R2	Numero Contatos R3	Numero Contatos R4	Numero Contatos R5	Numero Contatos R6	Numero Contatos R7
2	⊕0	1147	737	2043	643	967	858	412
3	⊞ ETH	1083	694	314	499	959	283	167
4	⊕ TCL	64	43	1729	144	8	575	245
5	±1	673	547	2266	390	996	69	669
6	⊞ETH	673	547	561	192	983	29	515
7	⊞TCL	0	0	1705	198	13	40	154
8	±2	1077	1101	4267	421	2169	147	1154
9	⊞ ETH	1022	1101	840	301	2160	118	1042
10	⊕TCL	55	0	3427	120	9	29	112
11	⊞3	981	1029	3218	659	1074	393	761
12	⊕ ETH	926	1029	430	535	1063	287	631
13	⊕TCL	55	0	2788	124	11	106	130
14	±4	228	248	2628	446	1233	108	854
15	⊕ ETH	228	248	829	252	1227	50	681
16	⊕TCL	0	0	1799	194	6	58	173
17	±5	714	760	2169	338	1230	181	711
18	⊕ ETH	714	760	573	262	1219	147	668
19	⊞TCL	0	0	1596	76	11	34	43
20	Total Geral	4820	4422	16591	2897	7669	1756	4561

Com base no item 3, identificar quais são os resíduos mais

importantes:

4		Α		В
1	Gru	pos	₩.	
2	⊕0			
3		Numero Contatos R1		1147
4		Numero Contatos R2		737
5		Numero Contatos R3		2043
6		Numero Contatos R4		643
7		Numero Contatos R5		967
8		Numero Contatos R6		858
9		Numero Contatos R7		412
10		Numero Contatos R8		78
11		Numero Contatos R9		284
12		Numero Contatos R10		232
13	⊕1			
14		Numero Contatos R1		673
15		Numero Contatos R2		547
16		Numero Contatos R3		2266
17		Numero Contatos R4		390
18		Numero Contatos R5		996
19		Numero Contatos R6		69
20		Numero Contatos R7		669
21		Numero Contatos R8		846
22		Numero Contatos R9		721
23		Numero Contatos R10		6
24	⊕2			
25		Numero Contatos R1		1077

Com base no item 3, identificar quais grupos possuem melhores valores de FEB e RMSD:

	А		В	С
1	Rótulos de Linha	Ŧ	FEBMedio	RMSDMedio
2	□ 0		-5,3108	5,0949
3	■ k_means_NADH	0	-5,3108	5,0949
4	□1		-4,7957	6,0078
5	■ k_means_NADH	1	-4,7957	6,0078
6	□2		-5,3095	6,1983
7	■ k_means_NADH	2	-5,3095	6,1983
8	∃3		-5,0178	5,9891
9	■ k_means_NADH	3	-5,0178	5,9891
10	-4		-4,7345	6,2437
11	■ k_means_NADH	4	-4,7345	6,2437
12	■5		-4,8076	6,0770
13	■ k_means_NADH	5	-4,8076	6,0770
14	Total Geral		-5,0048	6,0192
12 13	□5 ⋅⋅ k_means_NADH		- 4,8076 -4,8076	6,077 6,077

Conclusões

- Modelo apresentou eficácia na análise dos dados:
 - Explorar dimensões
 - Facilidade na análise
 - Resolução das questões de negócio
- Não foi possível explorar todas as possibilidades de análise devido a baixa quantidade de dados de docagem.
- Uso em longo prazo pode mostrar a real diferença que esta abordagem pode trazer para o processo de análise da docagem.
 - Identificar padrões de comportamento
 - Comparar histórico de experimentos
- Flexibilidade para outros cenários:
 - Permite a inclusão de novas dinâmicas moleculares;
 - Inclusão de diferentes experimentos;
 - Pode ser adaptado para experimentos de docagem.

Dúvidas?

Referências

- 1. Kimball, R.; Ross, M. "The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling". Wiley, 2013.
- Machado, K. S. "Um workflow científico para a modelagem do processo de desenvolvimento de fármacos assistido por computador utilizando receptor flexível", 2007.
- 3. Machado, K. S. "Seleção eficiente de conformações de receptor flexível em simulações de docagem molecular", 2011.
- 4. Turban, E.; Potter, R. "Administração de tecnologia da informação: teoria e prática". Elsevier, 2005.

Obrigado!