Probability and Statistics

Giuliano Casale

Department of Computing, Imperial College London

List of Probability Formulas

Key formulas: Events and Probability

- Outcomes, sample space, events
- \bullet σ -algebra and axioms of probability

Axiom 1. $\forall E \in \mathcal{F}, \ 0 \leq P(E) \leq 1$;

Axiom 2. P(S) = 1;

Axiom 3. For mutually exclusive events $E_1, E_2, \ldots \in \mathcal{F}$

$$P\left(\bigcup_{i} E_{i}\right) = \sum_{i} P(E_{i}).$$

Independent events

$$P(E \cap F) = P(E)P(F)$$

Key formulas: Events and Probability

• Conditional probability (for $P(F) \neq 0$)

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

Conditional independence

$$P(E_1 \cap E_2|F) = P(E_1|F)P(E_2|F)$$

Bayes theorem

$$P(E|F) = \frac{P(F|E)P(E)}{P(F)}$$

Law of total probability

$$P(E) = \sum_{i} P(E|F_i)P(F_i)$$

Key formulas: Random Variables

- Probability space, Random variables (rv.s)
- Induced probabilities

$$P_X(X \leq x) \equiv P(S_x)$$

with
$$S_x = \{s \in S | X(s) \leq x\}$$
.

Support of a random variable

$$supp(X) \equiv \{x \in \mathbb{R} \mid \exists s \in S \text{ s.t. } X(s) = x\}$$

Cumulative distribution function

$$F_X(x) = P_X(X \le x)$$

Interval probabilities

$$P_X(a < X \le b) = F_X(b) - F_X(a).$$

Key formulas: Discrete rv.s

Discrete rv.s:

X is discrete \iff supp(X) is countable.

Probability mass function (pmf)

$$p(x_i) = P_X(X = x_i) = F_X(x_i) - F_X(x_{i-1}),$$

- pmf properties:
 - $0 \le p(x) \le 1, \forall x \in \mathbb{R};$
 - $\sum_{x} p(x) = 1.$

Key formulas: Expectation

Expectation of rv X

$$\mathsf{E}(X) = \sum_{x} x \, p(x)$$

Expectation of a function of a rv

$$\mathsf{E}(g(X)) = \sum_{x} g(x) \, p(x)$$

Expectation of a linear transformation

$$\mathsf{E}(\mathsf{a}\mathsf{X}+\mathsf{b})=\mathsf{a}\mathsf{E}(\mathsf{X})+\mathsf{b}, \qquad \forall \mathsf{a},\mathsf{b}\in\mathbb{R}$$

Expectation of a sum of rv.s

$$\mathsf{E}(g(X)+h(X))=\mathsf{E}(g(X))+\mathsf{E}(h(X))$$

Key formulas: Moments

- Raw moments: $E[X^n]$
- Mean: $\mu = E[X]$
- Variance: $\sigma^2 = Var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$
- Standard deviation: $\sigma = \operatorname{sd}(X) = \sqrt{\operatorname{Var}_X(X)}$
- Coefficient of Variation: $c = \sigma/\mu$
- Skewness

$$\gamma_1 = \frac{\mathsf{E}[(X - \mu)^3]}{\sigma^3} = \frac{\mathsf{E}[(X - \mathsf{E}(X))^3]}{\mathsf{sd}(X)^3}.$$

Variance of a linear transformation:

$$Var(aX + b) = a^2 Var(X)$$

Key formulas: Sums of random variables

- Sum of *n* random variables: $S_n = X_1 + \ldots + X_n$
- Moments of a sum of i.i.d. rv.s¹

$$\mathsf{E}[S_n] = n\mu, \qquad \mathsf{Var}(S_n) = n\sigma^2$$

 Moments of a sum of independent, but not identically distributed, rv.s

$$\mathsf{E}[S_n] = \sum_{i=1}^n E[X_i], \qquad \mathsf{Var}(S_n) = \sum_{i=1}^n \mathit{Var}(X_i)$$

$$\lim_{n\to\infty} E[S_n/n] = \mu$$

a celebrated result called the (Weak) Law or the Large Numbers (ELN).

¹The formula for $\mathsf{E}[S_n]$ still holds when $n \to \infty$ as

Key formulas: Notable discrete distributions

Distribution	rv	pmf	μ	σ^2
Bernoulli(p)	$X \in \{0,1\}$	$p^{\times}(1-p)^{1- imes}$	р	p(1 - p)
Binomial (n, p)	$X \in \{0,\ldots,n\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
Geometric(p)	$X \in \{1, 2, \ldots\}$	$p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$
$Poisson(\lambda)$	$X \in \{0,1,\ldots\}$	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ
Uniform $(1, n)$	$X \in \{1,\ldots,n\}$	$\frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$

Key formulas: Continuous Random Variables

Probability density function (pdf):

$$F_X(x) = \int_{u=-\infty}^x f_X(u) du,$$

where $f_X(u) \ge 0$. Unlike pmfs, pdf values are not probabilities.

The fundamental theorem of calculus implies

$$f_X(x) = \frac{d}{dx}F_X(x) = F'_X(x).$$

Interval probability:

$$P_X(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx.$$

For countable sets:

$$P_X(X \in \{x_1, x_2, \ldots\}) = 0$$

Key formulas: Moments of continuous rv.s

Similarly defined as for discrete rv.s, but based on densities:

•
$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

•
$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

•
$$Var(X) = \int_{-\infty}^{\infty} x^2 f_X(x) dx - \mu_X^2 = E(X^2) - (E(X))^2$$
.

Linearity of expectation still applies:

- E(aX + b) = aE(X) + b,
- E(g(X) + h(X)) = E(g(X)) + E(h(X))
- $Var(aX + b) = a^2 Var(X), \quad \forall a, b \in \mathbb{R}$

Key formulas: Quantiles and percentiles

- Lower quartile = 1st quartile = 25th percentile = 0.25-quantile.
- Median = 2nd quartile = 50th percentile = 0.50-quantile.
- Upper quartile = 3rd quartile = 75th percentile = 0.75-quantile.

(CDF inversion is also important to generate random samples.)

Key formulas: Notable continuous distributions

Distribution	rv	pdf	μ	σ^2
$Exp(\lambda)$	X	$\lambda e^{-\lambda x}$,	λ^{-1}	λ^{-2}
		x > 0		
$N(\mu, \sigma^2)$	X	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}},$ $-\infty \le x \le +\infty$	μ	σ^2
		$-\infty \le x \le +\infty$		
Lognormal (μ, σ^2)	$Y = e^{X}$ $X \sim N(\mu, \sigma^{2})$	$\frac{1}{\sigma y \sqrt{2\pi}} e^{-\frac{(\log(y)-\mu)^2}{2\sigma^2}},$	$e^{\mu+\sigma^2/2}$	$e^{\sigma^2}-1$
	$X \sim N(\mu, \sigma^2)$	y > 0		
U(a,b)	X	$\frac{1}{b-a}$,	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
		$ \frac{\overline{b-a}}{a \le x \le b}, $	_	_

Key formulas: Central limit theorem

- Moment generating function (mgf): $M_X(t) = E[e^{tX}]$.
- Characteristic function: $\phi_X(t) = M_X(it) = E[e^{itX}].$
- Mgf of a sum of independent random variables $S_n = \sum_{i=1}^n X_i$:

$$M_{S_n}(t) = \prod_{i=1}^n M_{X_i}(t)$$

Central limit theorem

$$\lim_{n\to\infty}\frac{S_n-n\mu}{\sqrt{n}\sigma}\sim \mathsf{N}(0,1).$$

Key formulas: Joint Random Variables

- Sample space S shared by two or more rv.s, e.g. $S = S_1 \times S_2$.
- ullet The induced probability $\mathrm{P}_Z(\cdot)$ specified from semi-open box

$$S_{xy} = \{s \in S | X(s) \le x \text{ and } Y(s) \le y\}$$

The idea generalizes to more than two rv.s.

Joint CDF

$$F(x,y) = P_Z((-\infty,x],(-\infty,y]) = P(S_{xy})$$

Interval probabilities:

$$P_Z(x_1 < X \le x_2, y_1 < Y \le y_2) = F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1).$$

This also gives $P_Z(X = x_2, Y = y_2)$ for discrete joint rv.s.

Key formulas: Joint pmf, pdfs, and marginals

• Discrete case: the joint pmf is

$$p(x,y) = P_Z(X = x, Y = y),$$
 $x, y \in \mathbb{R}.$

Marginals:

$$p_X(x) = \sum_y p(x,y), \qquad p_Y(y) = \sum_x p(x,y).$$

• Continuous case: joint pdf is a non-negative function f(x, y)

$$F(x,y) = \int_{t=-\infty}^{y} \int_{s=-\infty}^{x} f(s,t) ds dt, \qquad x,y \in \mathbb{R}$$

Marginals:

$$f_X(x) = \int_{y=-\infty}^{\infty} f(x,y)dy, \quad f_Y(y) = \int_{x=-\infty}^{\infty} f(x,y)dx.$$

Key formulas: Notable Joint Distributions

 Multinomial distribution with n i.i.d. trials, r possible outcomes, each with probability q_i. Let X_i be the number of experiments that yield outcome i, then:

$$P(X_1 = n_1, \dots, X_r = n_r) = \frac{n!}{n_1! n_2! \cdots n_r!} q_1^{n_1} q_2^{n_2} \cdots q_r^{n_r}$$

• Multivariate normal distribution with mean $\mu = (\mu_1, \dots, \mu_n)$ and covariance matrix $\Sigma = [Cov(X_i, X_j)]$. The joint density is:

$$f_X(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Key formulas: Independence and Conditioning

• Independence conditions

$$F(x,y) = F_X(x)F_Y(y),$$

or equivalenty, if and only if pmf or pdf factorize.

Conditional probability

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}, \qquad x,y \in \mathbb{R},$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}, \qquad x,y \in \mathbb{R}.$$

where for continuous rv.s we use the density in place of probability since P(X = x) = 0 always.

 Bayes theorem and partition rule extend to joint rv.s using conditional probabilities.

Key formulas: Expectation of joint rv.s

• If X and Y are discrete, we define $\mathsf{E}\big(g(X,Y)\big)$ by

$$\mathsf{E}\big(g(X,Y)\big) = \sum_{y} \sum_{x} g(x,y) p(x,y).$$

ullet If X and Y are jointly continuous, we define $\mathsf{E} ig(g(X,Y) ig)$ by

$$\mathsf{E}\big(g(X,Y)\big) = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} g(x,y) f(x,y) dx dy.$$

- If $g(X, Y) = g_1(X) + g_2(Y)$, $E(g_1(X) + g_2(Y)) = E_X(g_1(X)) + E_Y(g_2(Y))$.
- If $g(X, Y) = g_1(X)g_2(Y)$ and X and Y are independent, $\mathsf{E}(g_1(X)g_2(Y)) = \mathsf{E}_X(g_1(X))\mathsf{E}_Y(g_2(Y)).$

Key formulas: Expectation of joint rv.s

Covariance:

$$\sigma_{XY} = \mathsf{Cov}(X, Y) = \mathsf{E}[(X - \mu_X)(Y - \mu_Y)]$$
$$= \mathsf{E}[XY] - \mu_X \mu_Y$$

Correlation:

$$\rho_{XY} = \operatorname{Cor}(X, Y) = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}.$$

Conditional expectation:

$$\mathsf{E}_{Y|X}(Y|x) = \sum_{y} y \; p_{Y|X}(y|x).$$
$$\mathsf{E}_{Y|X}(Y|x) = \int_{y=-\infty}^{\infty} y \; f_{Y|X}(y|x) dy.$$

• Conditional expectation as a rv:

$$\mathsf{E}_Y(Y) = \mathsf{E}_X(\mathsf{E}_{Y|X}(Y|X))$$

Key formulas: Discrete-Time Markov chains

- State space S
- Initial probability vector π_0
- Memoryless property

$$P(X_{n+1} = j_{n+1}|X_n = j_n, \dots, X_1 = j_1, X_0 = j_0) = P(X_{n+1} = j_{n+1}|X_n = j_n)$$

ullet Homogeneous DTMCs: transition probability matrix $R=[r_{ij}]$

$$r_{ij} = P(X_{n+1} = j | X_n = i)$$

State probability at time n

$$P(X_n = j) = (\pi_0 R^n)_j$$

ullet Steady-state probability vector $(n o \infty)$

$$\pi_{\infty}R = \pi_{\infty}$$

subject to $\pi_{\infty} \geq 0$ and $\sum_{i \in S} \pi_{\infty,i} = 1$.

