AN INTRODUCTION TO BROWNIAN MOTION

Soham Pyne

Supervisor-Dr. Dheeraj Kulkarni

TABLE OF CONTENTS

- 1. Introduction
- 2. Probability Basics
- 3. Stochastic Processes
- 4. Brownian Motion
- 5. Conclusion

INTRO

RANDOMNESS-PROBABILITY

WWW.PHDCOMICS.COM

PROBABILITY BASICS

PROBABILITY SPACE

The theory of **Probability** uses the general measure theoritic framework with some modifications, which includes

- A Sample space(Ω) or set of all possible outcome of a Random experiment.
- The event set F: The amount of information available as a result of experiment and the collection of all subsets of possible interest.
- The function $A \mapsto \mathbb{P}(A)$ defined on all elements $A \in \mathcal{F}$
- $\mathbb{P}:\mathcal{F} \to [0,1]$ and $\mathbb{P}(\Omega)=1$

The two properties that makes probability different from general measure theory are Independence and Conditional expectation.

RANDOM VARIABLES

Definition

A Mapping $\mathbb{X}:\Omega\to\mathbb{S}$ between two measurable spaces (Ω,\mathcal{F}) and (\mathbb{S},\mathcal{S}) is said to be measurable and \mathbb{X} is called a \mathbb{S} valued random variable if

$$\mathbb{X}^{-1}(B) := \{\omega : \mathbb{X}(\omega) \in B\} \in \mathcal{F} \quad \forall B \in \mathcal{S}$$

Depending on the nature of S

- For $\mathbb{S} = \mathbb{R}^d$: Random Variable/Vector
- For \mathbb{S} =General metric space eg. $C[0,\infty)$: Random process

LAW OF RANDOM VARIABLE

Definition

The law of a real valued Random Variable \mathbb{X} is the probability measure on $(\mathbb{R}, \mathcal{B})$ such that $\mathcal{P}_{\mathbb{X}}(B) := \mathbb{P}(\{\omega : \mathbb{X}(\omega) \in B\})$ for any Borel set B.

Distribution function

The distribution function of a real valued random variable X is

$$\mathsf{F}_{\mathbb{X}}(\alpha) = \mathbb{P}(\{\omega : \mathbb{X}(\omega) \leq \alpha\}) = \mathcal{P}_{\mathbb{X}}((-\infty, \alpha])$$

And the distribution function uniquely determines the law $\mathcal{P}_{\mathbb{X}}$ of \mathbb{X} . Since the collection $\pi(\mathbb{R}) = \{(-\infty, b] : b \in \mathbb{R}\}$ generates \mathcal{B} .

EXPECTATION

One of the most useful concept in probability is the Mathematical Expectation of a Random variable.

- For simple random variables $\varphi = \sum_{i=1}^{n} c_i \mathbb{I}_{A_i}$ we have $\mathbb{E}[\varphi] = \sum_{i=1}^{n} c_i \mathbb{P}(A_i)$
- For random variables $\mathbb{X} \ge 0$ we have $\mathbb{E}[\mathbb{X}] = \sup\{\mathbb{E}[Y], Y \le \mathbb{X}\}$ where Y is a simple random variable
- · For arbitrary real value random variable we have $\mathbb{E}[\mathbb{X}] = \mathbb{E}[\mathbb{X}_+] \mathbb{E}[\mathbb{X}_-]$

DENSITY

Definition

We say that a random variable $\mathbb{X}(\omega)$ has a probability density function $f_{\mathbb{X}}$ if and only if its distribution function $\mathbb{F}_{\mathbb{X}}$ can be expressed as

$$\mathbb{F}_{\mathbb{X}}(\alpha) = \int_{-\infty}^{\alpha} f_{\mathbb{X}}(x) dx, \qquad \forall \alpha \in \mathbb{R}$$
 (1)

A density function $f_{\mathbb{X}}$ must be integrable, Lebesgue almost everywhere nonnegative function with $\int_{-\infty}^{\infty} f_{\mathbb{X}}(x) dx = 1$

7

INEQUALITIES

	Markov	Chebyshev
$\psi_*(A)\mathbb{P}(\mathbb{X}\in A)\leq \mathbf{E}\psi(X)$	$\psi_*(x) = x_+ A = [a, \infty)$	$\psi(x) = x ^q$
$\psi_*(A) = \inf\{\psi(y) : y \in A\}$	$\mathbb{P}(X \ge a) \le \frac{E[X_+]}{a}$	$\mathbb{P}(Y - EY \ge a) \le \frac{Var(Y)}{a^2}$
Jensen	Cauchy-Schwarz	
$\mathbb{E}[g(\mathbb{X})] \geq g(\mathbb{E}[\mathbb{X}])$	$\mathbb{E} \mathbb{X}\mathbb{Y} \leq \sqrt{\mathbb{E}[\mathbb{X}^2]}\sqrt{\mathbb{E}[\mathbb{Y}^2]}$	

INDEPENDENCE

Definition

A collection of events $\mathcal{A}_{\alpha} \subseteq \mathcal{F}$ with $\alpha \in \mathcal{I}(\text{possibly an infinite index set})$ are \mathbb{P} -mutually independent if for any $L < \infty$ and distinct $\alpha_1, \alpha_2, \ldots, \alpha_l \in \mathcal{I}$

$$\mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_L) = \prod_{k=1}^L \mathbb{P}(A_k) \qquad \forall A_k \in \mathcal{A}_{\alpha_k}$$

The definition of independence in terms of random variables are also equivalent.

CONVERGENCE

The asymptotics of a sequence of random variables is another key aspect of probability theory. We have a sequence $\{X_n\}$ in $(\Omega, \mathcal{F}, \mathbb{P})$

- In Probability: A sequence of random variables converges in probability or $\mathbb{X}_n \stackrel{P}{\to} X$ if $\lim_{n \to \infty} \mathbb{P}(\{\omega : |\mathbb{X}_n(\omega) \mathbb{X}(\omega)| > \epsilon\}) = 0$
- Almost sure: A sequence of random variables converges in almost sure sense or $\mathbb{X}_n \xrightarrow{a.s.} \mathbb{X}$ if $\mathbb{P}(\omega : \lim \mathbb{X}_n(\omega) = \mathbb{X}(\omega)) = 1$
- In Distribution: A sequence of random variables converges in distribution or $\mathbb{X}_n \xrightarrow{\mathcal{D}} \mathbb{X}$ if the corresponding distribution functions Converge.

BOREL-CANTELLI LEMMAS

Lemmas

Let A_n be events on a common probability space.

- If $\sum_{n} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(\limsup A_n) = 0$
- If A_n are independent and $\sum_n \mathbb{P}(A_n) = \infty$, then $\mathbb{P}(\limsup A_n) = 1$

LAW OF LARGE NUMBERS

Let $\mathbb{X}_1,\mathbb{X}_2,\dots$ be sequence of i.i.d random variables with $\mathbb{E}[\mathbb{X}_1]<\infty$

Weak Law

Then $\mathbb{S}_n/n=\frac{\mathbb{X}_1+\ldots+\mathbb{X}_n}{n}$ converges to $\mathbb{E}[\mathbb{X}_1]$ in probability

Strong Law

If $\mathbb{X}_1, \mathbb{X}_2, \ldots$ are pairwise independent then $\mathbb{S}_n/n = \frac{\mathbb{X}_1 + \ldots + \mathbb{X}_n}{n}$ converges almost sure to $\mathbb{E}[\mathbb{X}_1]$

CENTRAL LIMIT THEOREM

Lindeberg's CLT

The distribution of $\mathbb{S}_n = \frac{1}{\sqrt{n\sigma}} (\sum_{k=1}^n \mathbb{X}_k - n\mu)$ approaches the standard normal distribution in the limit $n \to \infty$ where $\{\mathbb{X}_k\}$ are independent and identically distributed with finite variance.

Lyapunov's Theorem

 $\{X_k\}$ are **independent** with finite variance satisfying : There exist q>2

$$\lim_{n\to\infty}\frac{1}{\sqrt{\sigma_n}}\sum_{k=1}^n\mathbb{E}(|\mathbb{X}_k-\mathbb{E}\mathbb{X}_k|^q)=0$$

Then $\frac{1}{\sqrt{\sigma_n}}(\mathbb{S}_n - \mathbb{E}\mathbb{S}_n)$ approaches the standard normal distribution in the limit $n \to \infty$

IMPORTANT THEOREMS

Kolmogorov's three series theorem

Suppose $\{\mathbb{X}_k\}$ are independent random variables. Let c>0 be a constant and $\mathbb{X}_n^c = \mathbb{X}_n \mathbb{I}_{|\mathbb{X}_n| \leq c}$ be the corresponding truncated random variables and consider the three series

$$\sum_{n} \mathbb{P}(|\mathbb{X}_{n}| > c) \qquad \sum_{n} \mathbb{E} \mathbb{X}_{n}^{c} \qquad \sum_{n} Var(\mathbb{X}_{n}^{c})$$

Then,the random series $\sum_n \mathbb{X}_n$ converges almost surely if and only if for some c>0 all three series converge.

STOCHASTIC PROCESSES

BASICS

Stochastic Process

Given $(\Omega, \mathcal{F}, \mathbb{P})$ a stochastic process(S.P) $\{X_t\}_{t\in\mathbb{T}}$ is a collection of random variables indexed by \mathbb{N} or $[0, \infty)$ e.t.c.

Depending on the nature of the indexing set the stochastic processes are classified into

- **Discrete parameter S.P:** Finite/Countable index set. Eg. Markov chain, Martingales, Poisson process, Branching process etc.
- Continuous parameter S.P: Uncountable index set. Eg. Wiener Process, Gaussian process etc.

SAMPLE PATH

Definition

Given a stochastic process $\{X_t : t \in T\}$ where the index set is an interval in \mathbb{R} . The function $t \mapsto X_t(\omega)$ is called the **sample** function/path/realization/trajectory of the S.P. at $\omega \in \Omega$

Finite dimensional distributions:

The finite dimensional distributions of a S.P. with uncountable index set we mean the collection of probability measures $\mu_{t_1,t_2,...,t_n}$ on $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ and distinct $t_k \in \mathbb{T}, \forall k \in \{1,2,\ldots,n\}$ such that

$$\mu_{t_1,t_2,...,t_n}(B) = \mathbb{P}((\mathbb{X}_{t_1},\mathbb{X}_{t_2},...,\mathbb{X}_{t_n}) \in B)$$

For any Borel subset B of $\mathcal{B}(\mathbb{R}^n)$

KOLMOGOROV'S CONSISTENCY CRITERION

Definition

A collection of finite dimensional distributions is consistent if for any $B_k \in \mathcal{B}$, distinct $t_k \in \mathbb{T}$ and finite n,

- $\mu_{t_1,...,t_n}(B_1 \times ... \times B_n) = \mu_{t_{\pi(1)},...,t_{\pi(n)}}(B_{\pi(1)} \times ... \times B_{\pi(n)})$ for any permutation π of $\{1,...,n\}$
- $\mu_{t_1,\ldots,t_n}(B_1\times\ldots\times B_{n-1})=\mu_{t_1,\ldots,t_n}(B_1\times\ldots\times B_{n-1}\times\mathbb{R})$

DESCRIPTION OF SPACE

- $\mathbb{R}^{\mathbb{T}}$: $\{x(t) : \mathbb{T} \mapsto \mathbb{R}\}$ set of all functions
- · A finite dimensional measurable rectangle in $\mathbb{R}^{\mathbb{T}}$ is of the form

$$\{x(.): x(t_i) \in B_i, i \in 1, \ldots, n\}: t_i \in \mathbb{T}$$

• The cylindrical σ -algebra $\mathcal{B}^{\mathbb{T}}$ generated by the collection of all finite dimensional measurable rectangles.

COUNTABLE REPRESENTATION

Definition

A set $A \subseteq \mathbb{R}^{\mathbb{T}}$ has a countable representation if

$$A = \{x(.) \in \mathbb{R}^{\mathbb{T}} : (x(t_1), x(t_n)...) \in D\}$$

Where $D \in \mathcal{B}_c$ which is a product σ -algebra on countable product spaces. and $\mathbb{Q} = \{t_k\} \subseteq \mathbb{T}$. The set \mathbb{Q} is called the countable base of the countable representation (\mathbb{Q}, B) of A

Let
$$\mathcal{F}^{\mathbb{X}} = \sigma(\mathbb{X}_t, t \in \mathbb{T})$$

KOLMOGOROV'S CONSISTENCY THEOREM

Theorem

For any consistent collection of finite dimensional distributions (f.d.d) there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a stochastic process $\omega \mapsto \{\mathbb{X}_t(\omega), t \in \mathbb{T}\}$ on it, whose f.d.d are in agreement with the given collection. Further the restriction of the probability measure \mathbb{P} to the σ -algebra $\mathcal{F}^{\mathbb{X}}$ is uniquely determined by the specified f.d.d.

LAW OR DISTRIBUTION OF A STOCHASTIC PROCESS

Definition:

The Law or distriution of a S.P. is the probability measure $\mathcal{P}_{\mathbb{X}}$ on $\mathcal{B}^{\mathbb{T}}$ such that for all $A \in \mathcal{B}^{\mathbb{T}}$

$$\mathcal{P}_{\mathbb{X}}(A) = \mathbb{P}(\{\omega : \mathbb{X}_{(.)}(\omega) \in A\})$$

...

We have seen that the f.d.d uniquely determine the law of any S.P. and also provide the probability of any event in $\mathcal{F}^{\mathbb{X}}$.

So we want most events of interest about a S.P. must be in th $\mathcal{F}^{\mathbb{X}}$ that is mapped via a sample function to an element of $\mathcal{B}^{\mathbb{T}}$

DEADLOCK

Let $\gamma \in \mathbb{R}$ and $\mathbb{I} = [a, b)$ for some a < b

- $A_{\gamma} = \{x \in \mathbb{R}^{\mathbb{I}} : x(t) \leq \gamma \ \forall t \in \mathbb{I}\}$
- $C(\mathbb{I}) = \{x \in \mathbb{R}^{\mathbb{I}} : t \mapsto x(t) \text{ is continuous on } \mathbb{I}\}$
- All linear functions, all polynomials, all constants, all non decreasing functions, all function of bounded variation, all differentiable functions, all analytic functions are not an element of $\mathcal{B}^{\mathbb{I}}$

- The construction of f.d.d determines the Law or distributions of S.P on $\mathcal{B}^{\mathbb{T}}$ whose preimage is $\mathcal{F}^{\mathbb{X}} = \sigma(\mathbb{X}_t, t \in \mathbb{T})$
- But as mentioned above $\mathcal{F}^{\mathbb{X}}$ is inadequate as far as properties of the sample functions $t \mapsto \mathbb{X}_t(\omega)$ are concerned.

CONTINUOUS AND SEPARABLE MODIFICATIONS

Version

Two S.P. $\{X_t\}$ and $\{Y_t\}$ are called versions of one another if they have same f.d.d.

Modifications

A S.P. $\{X_t\}$ is called a modification of $\{Y_t\}$ if for all $t \in \mathbb{T}$ we have $\mathbb{P}(X_t = Y_t) = 1$

Indistinguishable

Two S.P. are called indistinguishable if $\{\omega: \mathbb{X}_t(\omega) \neq \mathbb{Y}_t(\omega)\}$ for some $t \in \mathbb{T}$ is a \mathbb{P} -null set or $\mathbb{P}(\mathbb{X}_t = \mathbb{Y}_t; \forall t \in \mathbb{T}) = 1$

Example

Consider the probability space([0,1], $\mathcal{B}_{[0,1]}$, \mathbb{P}) an uncountable index set $\mathbb{T}=[0,1]$ and consider

$$\{\mathbb{X}_{t}(\omega) \equiv 0; t, \omega \in [0,1]\} \qquad \qquad \mathbb{Y}_{t} = \begin{cases} 0 & t \neq \omega \\ 1 & t = \omega \end{cases}$$

• \mathbb{Y}_t is a modification of \mathbb{X} since every $t \in \mathbb{T}$ we have

$$\mathbb{P}[\mathbb{X}_t = \mathbb{Y}_t] = \mathbb{P}(\mathbb{T} \neq t) = 1$$

· But on the other hand they are distinguishable

$$\mathbb{P}(\mathbb{X}_t = \mathbb{Y}_t; \forall t \geq 0) = 0$$

KOLMOGOROV CENTSOV CONTINUITY THEOREM

Theorem

Suppose $\{X_t : t \in T\}$ is a S.P. indexed by T which is a compact interval. If there exist positive constants α, β and a finite c such that

$$\mathbb{E}[|\mathbb{X}_t - \mathbb{X}_s|^{\alpha}] \le c \|t - s\|^{1+\beta} \qquad \forall s, t \in \mathbb{T}$$

then there exist a continuous modification to the S.P. $\{\tilde{\mathbb{X}}_t: t\in \mathbb{T}\}$ of \mathbb{X} which is locally Holder continuous with exponent γ for every $\gamma\in(0,\beta/\alpha)$

$$\mathbb{P}\left[\omega: \sup_{0 < t - s < h(\omega); s, t \in \mathbb{T}} \frac{|\tilde{\mathbb{X}}_t(\omega) - \tilde{\mathbb{X}}_s(\omega)|}{|t - s|^{\gamma}} \le \delta\right] = 1$$

Here $h(\omega)$ is an a.s. positive random variable and $\delta > 0$ is an appropriate constant.

BROWNIAN MOTION

Introduction

- · Imagine a spherical particle inside water.
- Particle is small but observable under a microscope which means particle is much larger that the size of water molecules.
- Now the suspended particle gets agitated by the water molecules and hence gets pushed around.
- Each collision affects the particle very slightly but the number of collisions in any time interval is very large.
- Hence the total displacement of the particle in an interval of time is a sum of large number of random and mutually independent small displacements.
- Now let \mathbb{B}_t be the displacement of the x-coordinate of the particle.

BROWNIAN MOTION

Definition

A collection of random variables $\mathbb{B} = (\mathbb{B}_t)_{t \geq 0}$ defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and satisfying the following properties.

- For any $n \ge 1$ and any $0 = t_0 < t_1 < \ldots < t_n$, the random variables $\mathbb{B}_{t_k} \mathbb{B}_{t_{k-1}}$ are independent
- For any s < t the distribution of $\mathbb{B}_t \mathbb{B}_s$ is $\mathcal{N}(0, t s)$
- For $a.e.\omega \in \Omega$, the function $t \mapsto \mathbb{B}_t(\omega)$ is continuous

<u>Le</u>mma

The S.P. \mathbb{W}_t satisfies Kolmogorov Centsov's continuity criterion

•
$$\mathbb{W}_t - \mathbb{W}_s \sim \mathcal{N}(0, t - s)$$
 for all $t > 0, s < t$

•
$$\mathbb{E}((\mathbb{W}_t - \mathbb{W}_s)^2) = t - s$$

·
$$\sqrt{t-s}(\mathbb{W}_1-\mathbb{W}_0)\sim \mathcal{N}(0,t-s)$$

•
$$\mathbb{E}((\mathbb{W}_t - \mathbb{W}_s)^4) = \mathbb{E}(\sqrt{t-s}\mathbb{W}_1)^4 = (t-s)^2\mathbb{E}(\mathbb{W}_1^4) < \infty$$

Which implies the process satisfies the properties of **independent increments** and **stationary increments** and the **Normal distribution** and it admits a continuous modification which is nothing but the **Brownian motion**.

PRELIMINARY

- Existence: There exist a probability space on which we can define a countable family of centered standard normal random variables: $N_i \sim \mathcal{N}(0,1)$ for all $j \in \mathbb{N}$
- If $N \sim \mathcal{N}(0,1)$ then $aN = \mathcal{N}(0,a^2)$ for all constants a.
- If $X \sim \mathcal{N}(0, \sigma_X^2)$ and $Y = \mathcal{N}(0, \sigma_Y^2)$ and are independent then $X + Y \sim \mathcal{N}(0, \sigma_X^2 + \sigma_Y^2)$
- If $N \sim \mathcal{N}(0, \sigma^2)$ and $\tilde{N} \sim \mathcal{N}(0, \sigma^2)$ and are independent then the two random variables $\frac{N+\tilde{N}}{2}$ and $\frac{N-\tilde{N}}{2}$ are independent with common law $\mathcal{N}(0, \sigma^2/2)$

CONSTRUCTION ON DYADIC INTERVALS

The dyadic intervals are defined as follows. For every $n \in \mathbb{N}$ let $\mathcal{I}_n = \{[j/2^n, (j+1)/2^n]\}$ and let $\mathcal{I} = \bigcup_{n \in \mathbb{N}} \mathcal{I}_n$

CONTINUED...

EXTENSION TO $[0, \infty)$

• We define for all $n \in \mathbb{N}$, the function $f_n(t)$ to be the linear interpolation of

$$A(0), A(1 \cdot 2^{-n}), \dots, A(j \cdot 2^{-n}), \dots$$
 (2)

· Define

$$V_k = A(\frac{k+1}{2^n}) - A(\frac{k}{2^n}) \quad \forall k \in \{0, \dots, 2^n - 1\}$$
 (3)

•

$$var(V_k) = \frac{1}{2^n} \tag{4}$$

· We have

$$\mathbb{P}(\max_{k} |V_{k}| \ge \frac{1}{n^{2}}) \le 2^{n} \mathbb{P}(|V_{k}| \ge \frac{1}{n^{2}}) \le 2^{n+1} \exp\left(-\frac{2^{(n-1)}}{n^{4}}\right) \quad (5)$$

· So

$$\sum_{n\geq 1} \mathbb{P}(\max_{k} |V_k| \ge \frac{1}{n^2}) < \infty \tag{6}$$

MODIFICATION TO $[0,\infty)$

CONTINUED...

· By Borel-Cantelli's Lemma we have

$$\mathbb{P}(\limsup_{k} |V_k| \ge \frac{1}{n^2}\}) = 0 \tag{7}$$

- Given $t \in [0,1]$ we consider its dyadic expansion $t = \sum_{j=1}^{\infty} \frac{t_j}{2^j}$ for $t_j \in \{0,1\}$ and let $t(n) = \sum_{j=1}^n \frac{t_j}{2^j}$
- · Then the sequence

$$A(t(n)) = 0 + \sum_{i=1}^{n} [A(t(k) - A(t(k-1))]$$

converges a.s. to some limit since with probability one

$$|A(t(k) - A(t(k-1))| \le \frac{1}{n^2}$$

is cauchy.

CONTINUED

We define the limit to be \mathbb{Z}_t which agrees with A(t) on the dense subset of all dyadic $t \in [0,1]$

If we can prove \mathbb{Z}_t is sample path continuous then all finite dimensional distributions of \mathbb{Z}_t and A(t) will coincide.

- Take any $t,s\in[0,1]$ such that $|t-s|\leq \frac{1}{2^n}$
- If $t(n) = \frac{k}{2^n}$ and $s(n) = \frac{m}{2^n}$ then $|k m| \in \{0, 1\}$
- And we have $|A(t(n)) A(s(n))| \le \frac{1}{n^2}$ for large enough n
- · which shows that

$$\begin{split} |\mathbb{Z}_{t} - \mathbb{Z}_{s}| &\leq |\mathbb{Z}_{t} - A(t(n))| + |A(t(n) - A(s(n))| + |A(s(n)) - \mathbb{Z}_{s}| \\ &\leq \sum_{l > n} \frac{1}{l^{2}} + \frac{1}{n^{2}} + \sum_{l > n} \frac{1}{l^{2}} \leq \frac{c}{n} \end{split}$$

Which proves the continuity of \mathbb{Z}_t . We set $\mathbb{Z}_t = 0$ for a measure zero set. The Process so defined is called the Brownian motion.

CONCLUSION

REFERENCES

- · Lecture notes by Prof Amir Dembo (Stanford university)
- Lecture notes by Prof Dimitry panchenko(University of Toronto)
- Lecture notes by Prof Wendelin Werner(ETH Zurich)
- · Lecture notes by Prof Manjunath Krishnapur (IISC Bangalore)
- · Probability: Theory and examples (Prof Richard Durrett)
- Probability and Measure (Prof. Patrick Billingsley)
- Brownian motion and stochastic calculus(Karatzas and Shreve)
- Countably many Stackexchange discussions
- Wikipedia