

BERT Model and Convolutional Neural Networks for Relation Extraction

Fatima Habib 09/09/21 Supervisors

Loria Team ORPAILLEUR

Prof. Yannick Toussaint

PhD. Student Laura Zanella

Relation Extraction

Embeddings

- Free-context embeddings .
 - The representations of words are independent in the sense that they do not contain any context content.
 - One-hot vector and term frequency-inverse document frequency (TF-IDF).
- Context aware embeddings:
 - Allows similar and related words to have similar representations.

Neural Networks: Fully Connected Neural

Network

- Architecture.
- 2. Activation functions.
- 3. Cost function: it is a non-negative function measuring the accuracy of the outcomes of the neural network.
- 4. Learning algorithm (optimization algorithm): minimize the cost function.

The training aims to learn the **weights** that reduce the **cost function**.

Convolutional Neural Networks (CNNs)

Translation invariant

BERT Model - 1

- BERT model elements Devlin et al[2018]:
 - Embedding layer: the input sentence is converted it is numerical representation.
 - Transformer encoder: a layer improving the representation of each word by including more context.
 - Fully connected classification layer trained on two strategies:
 - Masked language model (MLM).
 - Next sentence prediction (NSP).

Remark: the main strategy used in other methods is the next word prediction contrary to BERT that uses the above strategies.

BERT Model - 2: Transformer Encoder

- Transformer encoder vaswani et al[2017] is a stack of encoders trained to obtain a more context aware representation of the word.
- The encoder is composed of two layers:
 - Attention layer: is used to learn more contextualized representation of each word.
 - A fully connected layer.
- The output of the transformer layer is the language model of the sentence.

BERT Model - 3: Attention Mechanism

- Each word is associated with Q, K, and V vectors.
- The score vector (s) of each word is obtained.
- We transform s into weight vector ω to avoid numerical instability issues (softmax).
- We multiply the weight vector of each word with the old value vectors to obtain the new value vectors.
- We finally add the updated value vectors together to obtain the new representation of each word.

Experiments

We mainly used two neural network architectures:

1. CNNs based architectures with BioWordVec as an embedding layer.

• BioWordVec is a pre-trained embeddings for biomedical words.

2. SciBERT based architectures.

• SciBERT: is a variation of BERT trained on scientific texts (82% from biomedical field).

BioCreative IIV

• We participate in the Track - 1 Text mining drug and chemical-protein interactions¹.

- We use the **DrugProt** corpus a manually annotated corpus with:
 - All chemical and gene mentions.
 - All binary relationships between them.

• The goal is to predict one of 13 relations (chemical interactions) between the annotated entities in a sentence.

DrugProt

• It is built using PubMed¹ abstracts:

	Training	Development	Testing
Documents	3500	750	10750
Annotated entities (CHEMICAL and GENES)	89529	18858	310805
Annotated Relations	17288	3765	To be predicted

^{1.} Comprises more than 32 million citations for biomedical literature from MEDLINE, life science journals, and online books https://pubmed.ncbi.nlm.nih.gov/.

Relations Types Distribution

Relations	Total	Training	Testing
ACTIVATOR	1423	1149(8.15%)	274
AGONIST	658	524(3.72%)	134
AGONIST-ACTIVATOR	29	26(0.19%)	3
AGONIST-INHIBITOR	13	12(0.08%)	1
ANTAGONIST	970	767(5.44%)	203
DIRECT-REGULATOR	2240	1785(12.67%)	455
INDIRECT-DOWNREGULATOR	1328	1073(7.61%)	255
INDIRECT-UPREGULATOR	1376	1078(7.65%)	298
INHIBITOR	5377	4307(30.57%)	1070
PART-OF	882	729(5.17%)	153
PRODUCT-OF	916	735(5.23%)	181
SUBSTRATE	2002	1591(11.29%)	411
SUBSTRATE_PRODUCT-OF	24	14(0.099%)	10
no_relation	44932	300(2.129%)	300

CNN Based Architecture

Embedding layer

Embedding Layer

Positional Embedding:

- The positional vector d_n of entity e_n has a size equals to the number of the tokens in the sequence.
- The component of d_n at entity position is considered to be the origin.
- Each other component of d_n represents the distance of the corresponding token from the entity.

Sentence Padding (SP):

- Each sentence is represented by m*n matrix (m is the number of words in the sentence while n is the size of the word embedding).
- As m changes from sentence to another, SP includes unifying m for all sentences in the corpus.

	d_1	d_2
Ornithine	-17	-3
decarboxylase	-16	-2
(-15	-1
e_2 : odc	-14	0
)	-13	1
catalyses	-12	2
the	-11	3
first	-10	4
step	-9	$\bar{5}$
in	-8	6
the	-7	7
synthesis	-6	8
of	-5	9
the	-4	10
polyamines	$-\overline{3}$	11
putrescine	-2	12
,	-1	13
e_1 : spermidine	()	14
and	Ĭ	15
spermine	$\overline{2}$	16
	3	17

CNN Based Model Experiments

Sentence padding	Accuracy	Precision	Recall	F1 sco re
High number	66.765 %	0.699 %	0.664	0.6
High number	66.969 %	0.678 %	0.5960	0.6 11
Constant number	66.061 %	0.678 %	0.650	0.6 44
Constant number	67.666 %	0.710 %	0.630	0.6 49

CNN Based Model Experiments

SciBERT Based Model Architecture

SciBERT Based Model Experiments

Position embedding	Entity embedding	Accuracy	Precision	Recall	F1 score
-	-	70 %	0.63	0.63	0.60
+	-	76 %	0.66	0.59	0.61
+	+	77 %	0.60	0.57	0.59

SciBERT Based Model Experiments

Conclusions

• The positional embeddings play a key role in enhancing the performance of both models (CNN and SciBERT based models).

 SciBERT based models outperform CNNs based models due to the rich contextualized representations given by BERT.

• Unbalanced data influence the results in way that it slow down the performance.

Future Work

• Apply oversampling techniques like the random oversampling and use external resources like datasets that contains same relations.

• Use different architectures: LSTM.

• Use additional features as inputs: the shortest dependency path between the entities.

Thank you