This is a Continuation-in-Part of 09/112,743 filed 07/10/98

UTILISING EXPOSURE INFORMATION FOR IMAGE PROCESSING IN A DIGITAL IMAGE CAMERA.

Field of the Invention

The present invention relates to an image processing method and apparatus and, in particular, discloses a process for Utilising Exposure Information in a Digital Image Camera.

The present invention further relates to the field of digital image processing and in particular, the field of processing of images taken via a digital camera.

Background of the Invention

Recently, digital cameras have become increasingly popular. These cameras normally operate by means of imaging a desired image utilising a charge coupled device (CCD) array and storing the imaged scene on an electronic storage medium for later down loading onto a computer system for subsequent manipulation and printing out. Normally, when utilising a computer system to print out an image, sophisticated software may available to manipulate the image in accordance with requirements.

Unfortunately such systems require significant post processing of a captured image and normally present the image in an orientation to which is was taken, relying on the post processing process to perform any necessary or required modifications of the captured image. Further, much of the environmental information available when the picture was taken is lost.

Summary of the Invention

It is an object of the present invention to provide for the utilisation of exposure information in an image specific manner.

In accordance with a first aspect of the invention there is provided a method of processing a sensed image taken with a digital camera, including an auto exposure setting means, said method comprising the step of utilising the auto exposure setting from said auto exposure setting means to process said

sensed image to add exposure specific graphics to said image.

The utilising step can comprise utilising the auto exposure setting to determine an advantageous re-mapping of colours within the image so as to produce an amended image having colours within an image transformed to account of the auto exposure setting. The processing can comprise re-mapping image colours so they appear deeper and richer when the exposure setting indicates low light conditions and re-mapping image colours to be brighter and more saturated when the auto exposure setting indicates bright light conditions.

Brief Description of Drawings

Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings which:

Fig. 1 illustrates the method of operation of the preferred embodiment;

Fig. 2 illustrates a form of print roll ready for purchase by a consumer;

Fig. 3 illustrates a perspective view, partly in section, of an alternative form of a print roll;

Fig. 4 is a left side exploded perspective view of the print roll of Fig. 3; and, $\frac{1}{2}$

Fig. 5 is a right side exploded perspective view of a single print roll.

Description of Preferred and Other Embodiments

The preferred embodiment is preferable implemented through suitable programming of a hand held camera device such in described the concurrently filed application entitled "A Digital Image Printing Camera with Image Processing Capability" filed concurrently herewith by the applicant the content of which is hereby specifically incorporated by cross reference and the details of which, and other related applications are set out in the tables below.

The aforementioned patent specification discloses a camera system, hereinafter known as an "Artcam" type camera, wherein sensed images can be directly printed out by an Artcam portable camera unit. Further, the aforementioned specification BAL78US.

discloses and methods means for performing various manipulations on images captured by the camera sensing device leading to the production of various effects in any output The manipulations are disclosed to be highly flexible in nature and can be implemented through the insertion into the Artcam of cards having encoded thereon various instructions for the manipulation of images, the cards hereinafter being known Artcards. The Artcam further has significant processing power by an Artcam Central Processor unit (ACP) which is interconnected to a memory device for the storage of important data and images.

In the preferred embodiment, the Artcam has an auto exposure sensor for determining the light level associated with the captured image. This auto exposure sensor is utilised to process the image in accordance with the set light value so as to enhance portions of the image.

Preferably, the area image sensor includes a means for determining the light conditions when capturing an image. The area image sensor adjusts the dynamic range of values captured by the CCD in accordance with the detected level sensor. The captured image is transferred to the Artcam central processor and stored in the memory store. Intensity information, as determined by the area image sensor, is also forwarded top the ACP. This information is utilised by the Artcam central processor to manipulate the stored image to enhance certain effects.

Turning now to Fig. 1, the auto exposure setting information 1 is utilised in conjunction with the stored image 2 to process the image by utilising the ACP. The processed image is returned to the memory store for later printing out 4 on the output printer.

A number of processing steps can be undertaken in accordance with the determined light conditions. Where the auto exposure setting 1 indicates that the image was taken in a low light condition, the image pixel colours are selectively re-mapped so as to make the image colours stronger, deeper and richer.

Where the auto exposure information indicates that highlight conditions were present when the image was taken, the image colours can be processed to make them brighter and more The re-colouring of the image can be undertaken by conversion of the image to a hue-saturation-value (HSV) format alteration of pixel values in accordance requirements. The pixel values can then be output converted to the required output colour format of printing.

Of course, many different re-colouring techniques may be utilised. Preferably, the techniques are clearly illustrated the pre-requisite Artcard inserted into the Alternatively, the image processing algorithms can be automatically applied and hard-wired into the for camera utilization in certain conditions.

Alternatively, the Artcard inserted could have a number of manipulations applied to the image which are specific to the auto-exposure setting. For example, clip arts containing candles etc could be inserted in a dark image and large suns inserted in bright images.

Referring now to Figures 2 to 5, the Artcam prints the images onto media stored in a replaceable print roll 5. In some preferred embodiments, the operation of the camera device is such that when a series of images is printed on a first surface of the print roll, the corresponding backing surface has a ready made postcard which can be immediately dispatched at the nearest post office box within the jurisdiction. In this way, personalized postcards can be created.

It would be evident that when utilising the postcard system as illustrated Fig. 2 only predetermined image sizes are possible as the synchronization between the backing postcard portion and the front image must be maintained. This can be achieved by utilising the memory portions of the authentication chip stored within the print roll 5 to store details of the length of each postcard backing format sheet. This can be achieved by either having each postcard the same size or by storing each size within the print rolls on-board print chip memory.

In an alternative embodiment, there is provided a modified form of print roll which can be constructed mostly from injection moulded plastic pieces suitably snapped fitted together. The modified form of print roll has a high ink storage capacity in addition to a somewhat simplified construction. The print media onto which the image is to be printed is wrapped around a plastic sleeve former for simplified construction. The ink media reservoir has a series of air vents which are constructed so as to

minimise the opportunities for the ink flow out of the air vents. Further, a rubber seal is provided for the ink outlet holes with the rubber seal being pierced on insertion of the print roll into a camera system. Further, the print roll includes a print media ejection slot and the ejection slot includes a surrounding moulded surface which provides and assists in the accurate positioning of the print media ejection slot relative to the printhead within the printing or camera system.

Turning to Fig. 3 there is illustrated a single point roll unit 5 in an assembled form with a partial cutaway showing internal portions of the print roll. Fig. 4 and Fig. 5 illustrate left and right side exploded perspective views respectively. The print roll 5 is constructed around the internal core portion 6 which contains an internal ink supply. Outside of the core portion 6 is provided a former 7 around which is wrapped a paper or film supply 8. Around the paper supply it is constructed two cover pieces 9, 10 which snap together around the print roll so as to form a covering unit as illustrated in Fig. 3. The bottom cover piece 10 includes a slot 11 through which the output of the print media 12 for interconnection with the camera system.

Two pinch rollers 13, 14 are provided to pinch the paper against a drive pinch roller 15 so they together provide for a decurling of the paper around the roller 15. The decurling acts to negate the strong curl that may be imparted to the paper from being stored in the form of print roll for an extended period of time. The rollers 13, 14 are provided to form a snap fit with end portions of the cover base portion 10 and the roller 15 which includes a cogged end 16 for driving, snap fits into the upper cover piece 9 so as to pinch the paper 12 firmly between.

The cover pieces 9, 10 includes an end protuberance or lip 17. The end lip 17 is provided for accurately alignment of the exit hole of the paper with a corresponding printing heat platen structure within the camera system. In this way, accurate alignment or positioning of the exiting paper relative to an adjacent printhead is provided for full guidance of the paper to the printhead.

It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiment without departing from the spirit or scope of the invention as broadly described. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive.

The present invention is best utilized in the Artcam device, the details of which are set out in the following paragraphs.

Ink Jet Technologies

The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.

The most significant problem with thermal inkjet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal inkjet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.

The most significant problem with piezoelectric inkjet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewide print heads with 19,200 nozzles.

Ideally, the inkjet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new inkjet technologies have been created. The target features include:

low power (less than 10 Watts)
high resolution capability (1,600 dpi or more)
photographic quality output
low manufacturing cost
small size (pagewidth times minimum cross section)
high speed (< 2 seconds per page).</pre>

All of these features can be met or exceeded by the inkjet systems described below with differing levels of difficulty. 45 different inkjet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table below.

The inkjet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems

For ease of manufacture using standard process equipment, the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the print head is 100 mm long, with a width which depends upon the inkjet type. The smallest print head designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm. The print heads each contain 19,200 nozzles plus data and control circuitry.

Ink is supplied to the back of the print head by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head is connected to the camera circuitry by tape automated bonding.

Cross-Referenced Applications

The following table is a guide to cross-referenced patent applications filed concurrently herewith and discussed hereinafter with the reference being utilized in subsequent tables when referring to a particular case:

Docket No.	Reference	Title
IJ01US	IJ01	Radiant Plunger Ink Jet Printer
IJ02US	IJ02	Electrostatic Ink Jet Printer
IJ03US	IJ03	Planar Thermoelastic Bend Actuator Ink Jet
IJ04US	IJ04	Stacked Electrostatic Ink Jet Printer
IJ05US	IJ05	Reverse Spring Lever Ink Jet Printer
IJ06US	IJ06	Paddle Type Ink Jet Printer
IJ07US	IJ07	Permanent Magnet Electromagnetic Ink Jet Printer
IJ08US	I108	Planar Swing Grill Electromagnetic Ink Jet Printer

JUOOUS JUO Pump Action Refill Ink Jet Printer JI10US JI10 Pulsed Magnetic Field Ink Jet Printer JI1US JI11 Two Plate Reverse Firing Electromagnetic Ink Jet Printer JI13US JI13 Gear Driven Shutter Ink Jet Printer JI14US JI14 Tapered Magnetic Pole Electromagnetic Ink Jet Printer JI16US JI15 Linear Spring Electromagnetic Ink Jet Printer JI16US JI16 Lorenz Diaphragm Electromagnetic Ink Jet Printer JI17US JI17 PTFE Surface Shooting Shuttered Oscillating Pressure Ink Jet Printer JI18US JJ18 Buckle Grip Oscillating Pressure Ink Jet Printer JJ20US JJ20 Curling Calyx Thermoelastic Ink Jet Printer JJ20US JJ20 Curling Calyx Thermoelastic Ink Jet Printer JJ23US JJ23 Direct Firing Thermal Bend Actuator Ink Jet Printer JJ23US JJ23 Direct Firing Thermal Bend Actuator Vented Ink Jet Printer JJ25US JJ25 Magnetostrictive Ink Jet Printer JJ27US JJ25 Magnetostrictive Ink Jet Printer JJ27US JJ27 Buckle Plate Ink Jet Printer <tr< th=""><th></th><th></th><th></th></tr<>			
U11US U11	IJ09US	IJ09	Pump Action Refill Ink Jet Printer
IJ12US IJ12	IJ10US	IJ10	Pulsed Magnetic Field Ink Jet Printer
III III	IJ11US	IJ11	Two Plate Reverse Firing Electromagnetic Ink Jet Printer
U14US U14	IJ12US	IJ12	Linear Stepper Actuator Ink Jet Printer
U15US U15	IJ13US	IJ13	Gear Driven Shutter Ink Jet Printer
IJ15US IJ16	IJ14US	IJ14	Tapered Magnetic Pole Electromagnetic Ink Jet Printer
IJ16US IJ16	IJ15US	IJ15	
IJ17US IJ18	IJ16US	IJ16	
Printer Buckle Grip Oscillating Pressure Ink Jet Printer IJ19US IJ19 Shutter Based Ink Jet Printer IJ20US IJ20 Curling Calyx Thermoelastic Ink Jet Printer IJ20US IJ21 Thermal Actuated Ink Jet Printer IJ22US IJ22 Iris Motion Ink Jet Printer IJ23US IJ23 Direct Firing Thermal Bend Actuator Ink Jet Printer IJ24US IJ24 Conductive PTFE Ben Activator Vented Ink Jet Printer IJ25US IJ25 Magnetostrictive Ink Jet Printer IJ26US IJ26 Shape Memory Alloy Ink Jet Printer IJ27US IJ27 Buckle Plate Ink Jet Printer IJ28US IJ28 Thermal Elastic Rotary Impeller Ink Jet Printer IJ29US IJ29 Thermoelastic Bend Actuator Ink Jet Printer IJ30US IJ30 Thermoelastic Bend Actuator Using PTFE and Corrugated Copper Ink Jet Printer IJ31US IJ31 Bend Actuator Direct Ink Supply Ink Jet Printer IJ33US IJ33 Thermally actuated slotted chamber wall ink Jet Printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ37US IJ37 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ37US IJ38 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ39US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer IJ44US IJ44 IJ44US IJ44 IJ44US IJ4	IJ17US	IJ17	1 - · · · · · · · · · · · · · · · · · ·
IJ19US IJ19 Shutter Based Ink Jet Printer IJ20US IJ20 Curling Calyx Thermoelastic Ink Jet Printer IJ21US IJ21 Thermal Actuated Ink Jet Printer IJ22US IJ22 Iris Motion Ink Jet Printer IJ23US IJ23 Direct Firing Thermal Bend Actuator Ink Jet Printer IJ24US IJ24 Conductive PTFE Ben Activator Vented Ink Jet Printer IJ25US IJ25 Magnetostrictive Ink Jet Printer IJ25US IJ26 Shape Memory Alloy Ink Jet Printer IJ27US IJ27 Buckle Plate Ink Jet Printer IJ28US IJ28 Thermal Elastic Rotary Impeller Ink Jet Printer IJ29US IJ29 Thermoelastic Bend Actuator Ink Jet Printer IJ30US IJ30 Thermoelastic Bend Actuator Using PTFE and Corrugated Copper Ink Jet Printer IJ31US IJ31 Bend Actuator Direct Ink Supply Ink Jet Printer IJ33US IJ32 A High Young's Modulus Thermoelastic Ink Jet Printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer IJ37US IJ35 Trough Container Ink Jet Printer IJ38US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ38US IJ38 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ38US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer			
IJ20US IJ20 Curling Calyx Thermoelastic Ink Jet Printer IJ21US IJ21 Thermal Actuated Ink Jet Printer IJ22US IJ22 Iris Motion Ink Jet Printer IJ23US IJ23 Direct Firing Thermal Bend Actuator Ink Jet Printer IJ24US IJ24 Conductive PTFE Ben Activator Vented Ink Jet Printer IJ25US IJ25 Magnetostrictive Ink Jet Printer IJ26US IJ26 Shape Memory Alloy Ink Jet Printer IJ27US IJ27 Buckle Plate Ink Jet Printer IJ28US IJ28 Thermal Elastic Rotary Impeller Ink Jet Printer IJ29US IJ29 Thermoelastic Bend Actuator Ink Jet Printer IJ30US IJ30 Thermoelastic Bend Actuator Using PTFE and Corrugated Copper Ink Jet Printer IJ31US IJ31 Bend Actuator Direct Ink Supply Ink Jet Printer IJ32US IJ32 A High Young's Modulus Thermoelastic Ink Jet Printer IJ33US IJ33 Thermally actuated slotted chamber wall ink jet printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer <td>IJ18US</td> <td>IJ18</td> <td>Buckle Grip Oscillating Pressure Ink Jet Printer</td>	IJ18US	IJ18	Buckle Grip Oscillating Pressure Ink Jet Printer
IJ21US IJ21	IJ19US	IJ19	Shutter Based Ink Jet Printer
IJ22US IJ23	IJ20US	IJ20	Curling Calyx Thermoelastic Ink Jet Printer
IJ23US IJ23 Direct Firing Thermal Bend Actuator Ink Jet Printer IJ24US IJ24 Conductive PTFE Ben Activator Vented Ink Jet Printer IJ25US IJ25 Magnetostrictive Ink Jet Printer IJ26US IJ26 Shape Memory Alloy Ink Jet Printer IJ26US IJ27 Buckle Plate Ink Jet Printer IJ27US IJ27 Buckle Plate Ink Jet Printer IJ28US IJ28 Thermal Elastic Rotary Impeller Ink Jet Printer IJ29US IJ29 Thermoelastic Bend Actuator Ink Jet Printer IJ30US IJ30 Thermoelastic Bend Actuator Using PTFE and Corrugated Copper Ink Jet Printer IJ31US IJ31 Bend Actuator Direct Ink Supply Ink Jet Printer IJ32US IJ32 A High Young's Modulus Thermoelastic Ink Jet Printer IJ33US IJ33 Thermally actuated slotted chamber wall ink jet printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer IJ36US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ37US IJ37 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ38US IJ38 Dual Nozzle Single Horizontal Actuator Ink Jet IJ39US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 IJ44 Surface bend actuator vented ink supply ink jet printer IJ44US IJ44 IJ44 Surface bend actuator vented ink supply ink jet printer IJ44US IJ44 IJ44 Surface bend actuator vented ink supply ink jet printer IJ44US IJ44 IJ44 IJ44 IJ44 IJ44 IJ44US IJ44 IJ44 IJ44US IJ44US IJ44 IJ44US IJ44US IJ44US IJ44US IJ44US IJ44US IJ44US IJ44US IJ44US	IJ21US	IJ21	Thermal Actuated Ink Jet Printer
IJ24US IJ24 Conductive PTFE Ben Activator Vented Ink Jet Printer IJ25US IJ25 Magnetostrictive Ink Jet Printer IJ26US IJ26 Shape Memory Alloy Ink Jet Printer IJ27US IJ27 Buckle Plate Ink Jet Printer IJ28US IJ28 Thermal Elastic Rotary Impeller Ink Jet Printer IJ29US IJ29 Thermoelastic Bend Actuator Ink Jet Printer IJ30US IJ30 Thermoelastic Bend Actuator Using PTFE and Corrugated Copper Ink Jet Printer IJ31US IJ31 Bend Actuator Direct Ink Supply Ink Jet Printer IJ32US IJ32 A High Young's Modulus Thermoelastic Ink Jet Printer IJ33US IJ33 Thermally actuated slotted chamber wall ink jet printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer IJ37US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ38US IJ38 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ39US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer	IJ22US	IJ22	Iris Motion Ink Jet Printer
IJ25US IJ26	IJ23US	IJ23	Direct Firing Thermal Bend Actuator Ink Jet Printer
IJ26US IJ26 Shape Memory Alloy Ink Jet Printer IJ27US IJ27 Buckle Plate Ink Jet Printer IJ28US IJ28 Thermal Elastic Rotary Impeller Ink Jet Printer IJ29US IJ29 Thermoelastic Bend Actuator Ink Jet Printer IJ30US IJ30 Thermoelastic Bend Actuator Using PTFE and Corrugated Copper Ink Jet Printer IJ31US IJ31 Bend Actuator Direct Ink Supply Ink Jet Printer IJ32US IJ32 A High Young's Modulus Thermoelastic Ink Jet Printer IJ33US IJ33 Thermally actuated slotted chamber wall ink jet printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer IJ36US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ37US IJ37 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ38US IJ38 Dual Nozzle Single Horizontal Actuator Ink Jet IJ39US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ43US IJ43 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer	IJ24US	IJ24	Conductive PTFE Ben Activator Vented Ink Jet Printer
IJ27US IJ27 Buckle Plate Ink Jet Printer IJ28US IJ28 Thermal Elastic Rotary Impeller Ink Jet Printer IJ29US IJ29 Thermoelastic Bend Actuator Ink Jet Printer IJ30US IJ30 Thermoelastic Bend Actuator Using PTFE and Corrugated Copper Ink Jet Printer IJ31US IJ31 Bend Actuator Direct Ink Supply Ink Jet Printer IJ32US IJ32 A High Young's Modulus Thermoelastic Ink Jet Printer IJ34US IJ33 Thermally actuated slotted chamber wall ink jet printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer IJ36US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ37US IJ37 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ38US IJ38 Dual Nozzle Single Horizontal Actuator Ink Jet IJ39US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer	IJ25US	IJ25	Magnetostrictive Ink Jet Printer
IJ27US IJ28	IJ26US	IJ26	Shape Memory Alloy Ink Jet Printer
IJ29US IJ29 Thermoelastic Bend Actuator Ink Jet Printer IJ30US IJ30 Thermoelastic Bend Actuator Using PTFE and Corrugated Copper Ink Jet Printer IJ31US IJ31 Bend Actuator Direct Ink Supply Ink Jet Printer IJ32US IJ32 A High Young's Modulus Thermoelastic Ink Jet Printer IJ33US IJ33 Thermally actuated slotted chamber wall ink jet printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer IJ36US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ37US IJ37 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ38US IJ38 Dual Nozzle Single Horizontal Actuator Ink Jet IJ39US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer	IJ27US	IJ27	
IJ30US IJ30 Thermoelastic Bend Actuator Using PTFE and Corrugated Copper Ink Jet Printer	IJ28US	IJ28	Thermal Elastic Rotary Impeller Ink Jet Printer
Ink Jet Printer IJ31US IJ31 Bend Actuator Direct Ink Supply Ink Jet Printer IJ32US IJ32 A High Young's Modulus Thermoelastic Ink Jet Printer IJ33US IJ33 Thermally actuated slotted chamber wall ink jet printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer IJ36US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ37US IJ37 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ38US IJ38 Dual Nozzle Single Horizontal Actuator Ink Jet IJ39US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ43US IJ43 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer	IJ29US	IJ29	Thermoelastic Bend Actuator Ink Jet Printer
Ink Jet Printer IJ31US IJ31 Bend Actuator Direct Ink Supply Ink Jet Printer IJ32US IJ32 A High Young's Modulus Thermoelastic Ink Jet Printer IJ33US IJ33 Thermally actuated slotted chamber wall ink jet printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer IJ36US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ37US IJ37 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ38US IJ38 Dual Nozzle Single Horizontal Actuator Ink Jet IJ39US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ43US IJ43 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer	IJ30US	IJ30	Thermoelastic Bend Actuator Using PTFE and Corrugated Copper
IJ32US IJ33 Thermally actuated slotted chamber wall ink jet printer IJ33US IJ33 Thermally actuated slotted chamber wall ink jet printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer IJ36US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ37US IJ37 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ38US IJ38 Dual Nozzle Single Horizontal Actuator Ink Jet IJ39US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ43US IJ43 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer			
IJ33US IJ33 Thermally actuated slotted chamber wall ink jet printer IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer IJ36US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ37US IJ37 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ38US IJ38 Dual Nozzle Single Horizontal Actuator Ink Jet IJ39US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ43US IJ43 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer	IJ31US	IJ31	Bend Actuator Direct Ink Supply Ink Jet Printer
IJ34US IJ34 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US IJ35 Trough Container Ink Jet Printer IJ36US IJ36 Dual Chamber Single Vertical Actuator Ink Jet IJ37US IJ37 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ38US IJ38 Dual Nozzle Single Horizontal Actuator Ink Jet IJ39US IJ39 A single bend actuator cupped paddle ink jet printing device IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ43US IJ43 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer	IJ32US	IJ32	A High Young's Modulus Thermoelastic Ink Jet Printer
LJ35US LJ35 Trough Container Ink Jet Printer LJ36US LJ36 Dual Chamber Single Vertical Actuator Ink Jet LJ37US LJ37 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet LJ38US LJ38 Dual Nozzle Single Horizontal Actuator Ink Jet LJ39US LJ39 A single bend actuator cupped paddle ink jet printing device LJ40US LJ40 A thermally actuated ink jet printer having a series of thermal actuator units LJ41US LJ41 A thermally actuated ink jet printer including a tapered heater element LJ42US LJ42 Radial Back-Curling Thermoelastic Ink Jet LJ43US LJ43 Inverted Radial Back-Curling Thermoelastic Ink Jet LJ44US LJ44 Surface bend actuator vented ink supply ink jet printer	IJ33US	IJ33	Thermally actuated slotted chamber wall ink jet printer
IJ35USIJ35Trough Container Ink Jet PrinterIJ36USIJ36Dual Chamber Single Vertical Actuator Ink JetIJ37USIJ37Dual Nozzle Single Horizontal Fulcrum Actuator Ink JetIJ38USIJ38Dual Nozzle Single Horizontal Actuator Ink JetIJ39USIJ39A single bend actuator cupped paddle ink jet printing deviceIJ40USIJ40A thermally actuated ink jet printer having a series of thermal actuator unitsIJ41USIJ41A thermally actuated ink jet printer including a tapered heater elementIJ42USIJ42Radial Back-Curling Thermoelastic Ink JetIJ43USIJ43Inverted Radial Back-Curling Thermoelastic Ink JetIJ44USIJ44Surface bend actuator vented ink supply ink jet printer	IJ34US	IJ34	Ink Jet Printer having a thermal actuator comprising an external
IJ36USIJ36Dual Chamber Single Vertical Actuator Ink JetIJ37USIJ37Dual Nozzle Single Horizontal Fulcrum Actuator Ink JetIJ38USIJ38Dual Nozzle Single Horizontal Actuator Ink JetIJ39USIJ39A single bend actuator cupped paddle ink jet printing deviceIJ40USIJ40A thermally actuated ink jet printer having a series of thermal actuator unitsIJ41USIJ41A thermally actuated ink jet printer including a tapered heater elementIJ42USIJ42Radial Back-Curling Thermoelastic Ink JetIJ43USIJ43Inverted Radial Back-Curling Thermoelastic Ink JetIJ44USIJ44Surface bend actuator vented ink supply ink jet printer			coiled spring
IJ37USIJ37Dual Nozzle Single Horizontal Fulcrum Actuator Ink JetIJ38USIJ38Dual Nozzle Single Horizontal Actuator Ink JetIJ39USIJ39A single bend actuator cupped paddle ink jet printing deviceIJ40USIJ40A thermally actuated ink jet printer having a series of thermal actuator unitsIJ41USIJ41A thermally actuated ink jet printer including a tapered heater elementIJ42USIJ42Radial Back-Curling Thermoelastic Ink JetIJ43USIJ43Inverted Radial Back-Curling Thermoelastic Ink JetIJ44USIJ44Surface bend actuator vented ink supply ink jet printer	IJ35US		Trough Container Ink Jet Printer
IJ38USIJ38Dual Nozzle Single Horizontal Actuator Ink JetIJ39USIJ39A single bend actuator cupped paddle ink jet printing deviceIJ40USIJ40A thermally actuated ink jet printer having a series of thermal actuator unitsIJ41USIJ41A thermally actuated ink jet printer including a tapered heater elementIJ42USIJ42Radial Back-Curling Thermoelastic Ink JetIJ43USIJ43Inverted Radial Back-Curling Thermoelastic Ink JetIJ44USIJ44Surface bend actuator vented ink supply ink jet printer			*************************************
IJ39USIJ39A single bend actuator cupped paddle ink jet printing deviceIJ40USIJ40A thermally actuated ink jet printer having a series of thermal actuator unitsIJ41USIJ41A thermally actuated ink jet printer including a tapered heater elementIJ42USIJ42Radial Back-Curling Thermoelastic Ink JetIJ43USIJ43Inverted Radial Back-Curling Thermoelastic Ink JetIJ44USIJ44Surface bend actuator vented ink supply ink jet printer		IJ37	Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet
IJ40US IJ40 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ43US IJ43 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer		IJ38	Dual Nozzle Single Horizontal Actuator Ink Jet
IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ43US IJ43 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer			
IJ41US IJ41 A thermally actuated ink jet printer including a tapered heater element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ43US IJ43 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer	IJ40US	IJ40	1
element IJ42US IJ42 Radial Back-Curling Thermoelastic Ink Jet IJ43US IJ43 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer			
IJ42USIJ42Radial Back-Curling Thermoelastic Ink JetIJ43USIJ43Inverted Radial Back-Curling Thermoelastic Ink JetIJ44USIJ44Surface bend actuator vented ink supply ink jet printer	IJ41US	IJ41	
IJ43USIJ43Inverted Radial Back-Curling Thermoelastic Ink JetIJ44USIJ44Surface bend actuator vented ink supply ink jet printer			
IJ44US IJ44 Surface bend actuator vented ink supply ink jet printer		 	
			
IJ45US IJ45 Coil Acutuated Magnetic Plate Ink Jet Printer			
	IJ45US	IJ45	Coil Acutuated Magnetic Plate Ink Jet Printer

Tables of Drop-on-Demand Inkjets

Eleven important characteristics of the fundamental operation of individual inkjet nozzles have been identified. These characteristics are largely orthogonal, and so can be BAL78US

elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.

The following tables form the axes of an eleven dimensional table of inkjet types.

Actuator mechanism (18 types)

Basic operation mode (7 types)

Auxiliary mechanism (8 types)

Actuator amplification or modification method (17 types)

Actuator motion (19 types)

Nozzle refill method (4 types)

Method of restricting back-flow through inlet (10 types)

Nozzle clearing method (9 types)

Nozzle plate construction (9 types)

Drop ejection direction (5 types)

Ink type (7 types)

The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of inkjet nozzle. While not all of the possible combinations result in a viable inkjet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain inkjet types have been investigated in detail. These are designated IJ01 to IJ45 above.

Other inkjet configurations can readily be derived from these 45 examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into inkjet print heads with characteristics superior to any currently available inkjet technology.

Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a printer may be listed more than once in a table, where it shares characteristics with more than one entry.

Suitable applications include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.

The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.

ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)

Actuator Mechanism	Description	Advantages	Disadvantages	Examples
Thermal bubble	An electrothermal heater heats the ink to above boiling point, transferring significant heat to the aqueous ink. A bubble nucleates and quickly forms, expelling the ink. The efficiency of the process is low, with typically less than 0.05% of the electrical energy being transformed into kinetic energy of the drop.	 Large force generated Simple construction No moving parts Fast operation Small chip area required for actuator 	 High power Ink carrier limited to water Low efficiency High temperatures required High mechanical stress Unusual materials required Large drive transistors Cavitation causes actuator failure Kogation reduces bubble formation Large print heads are difficult to fabricate 	 Canon Bubblejet 1979 Endo et al GB patent 2,007,162 Xerox heater-in-pit 1990 Hawkins et al USP 4,899,181 Hewlett-Packard TIJ 1982 Vaught et al USP 4,490,728
Piezoelectric	A piezoelectric crystal such as lead lanthanum zirconate (PZT) is electrically activated, and either expands, shears, or bends to apply pressure to the ink, ejecting drops.	 Low power consumption Many ink types can be used Fast operation High efficiency 	 Very large area required for actuator Difficult to integrate with electronics High voltage drive transistors required Full pagewidth print heads impractical due to actuator size Requires electrical poling in high field strengths during manufacture 	 Kyser et al USP 3,946,398 Zoltan USP 3,683,212 1973 Stemme USP 3,747,120 Epson Stylus Tektronix 104

Electro- strictive	An electric field is used to activate electrostriction in relaxor materials such as lead lanthanum zirconate titanate (PLZT) or lead magnesium niobate (PMN).	 ◆ Low power consumption ◆ Many ink types can be used ◆ Low thermal expansion ◆ Electric field strength required (approx. 3.5 V/µm) can be generated without difficulty ◆ Does not require electrical poling 	 Low maximum strain (approx. 0.01%) Large area required for actuator due to low strain Response speed is marginal (~ 10 μs) High voltage drive transistors required Full pagewidth print heads impractical due to actuator size 	 Seiko Epson, Usui et all JP 253401/96 U04
Ferroelectric	An electric field is used to induce a phase transition between the antiferroelectric (AFE) and ferroelectric (FE) phase. Perovskite materials such as tin modified lead lanthanum zirconate titanate (PLZSnT) exhibit large strains of up to 1% associated with the AFE to FE phase transition.	 Low power consumption Many ink types can be used Fast operation (< 1 µs) Relatively high longitudinal strain High efficiency Electric field strength of around 3 V/µm can be readily provided 	 Difficult to integrate with electronics Unusual materials such as PLZSnT are required Actuators require a large area 	◆ IJ04
Electrostatic	Conductive plates are separated by a compressible or fluid dielectric (usually air). Upon application of a voltage, the plates attract each other and displace ink, causing drop ejection. The conductive plates may be in a comb or honeycomb structure, or stacked to increase the surface area and therefore the force.	 Low power consumption Many ink types can be used Fast operation 	 Difficult to operate electrostatic devices in an aqueous environment The electrostatic actuator will normally need to be separated from the ink Very large area required to achieve high forces High voltage drive transistors may be required Full pagewidth print heads are not competitive due to actuator size 	• IJ02, IJ04

Electrostatic	A strong electric field is applied to	◆ Low current consumption	◆ High voltage required	♦ 1989 Saito et al, USP
pull on ink	the ink, whereupon electrostatic	◆ Low temperature	◆ May be damaged by sparks due to air	4,799,068
	attraction accelerates the ink towards	,	breakdown	◆ 1989 Miura et al,
	the print medium.		◆ Required field strength increases as the	USP 4,810,954
			drop size decreases	♦ Tone-jet
			 ◆ High voltage drive transistors required 	
			 ◆ Electrostatic field attracts dust 	
Permanent	An electromagnet directly attracts a	◆ Low power consumption	 ◆ Complex fabrication 	◆ IJ07, IJ10
magnet	permanent magnet, displacing ink	 ◆ Many ink types can be used 	• Permanent magnetic material such as	
electro-	and causing drop ejection. Kare earth magnets with a field strength around	◆ Fast operation	Neodymium Iron Boron (NdFeB)	
	1 Tesla can be used. Examples are:	 ◆ High efficiency 	required. ◆ High local currents required	
	Samarium Cobalt (SaCo) and	• Easy extension from single	A Conner metalization should be used for	
	magnetic materials in the neodymium	nozzies to pagewittin print heads	long electromigration lifetime and low	
	iron boron family (NdFeB,		resistivity	
	INCLUYEDIND, INCLUYED, EIC)		 ◆ Pigmented inks are usually infeasible 	
			 ◆ Operating temperature limited to the 	
			Curie temperature (around 540 K)	
Soft magnetic	A solenoid induced a magnetic field	 Low power consumption 	◆ Complex fabrication	◆ IJ01, IJ05, IJ08, IJ10
core electro-	in a soft magnetic core or yoke	 ◆ Many ink types can be used 	 Materials not usually present in a 	◆ U12, U14, U15, U17
magnetic	fabricated from a ferrous material	◆ Fast operation	CMOS fab such as NiFe, CoNiFe, or	
	such as electroplated iron alloys such	 ◆ High efficiency 	CoFe are required	
	as Conife[1], Cofe, or Nife alloys.	◆ Easy extension from single	 High local currents required 	
	1 ypically, the soft magnetic material is in two narts which are normally	nozzles to pagewidth print	• Copper metalization should be used for	
	held apart by a spring. When the	heads	long electromigration lifetime and low resistivity	
	solenoid is actuated, the two parts		◆ Electroplating is required	
	attract, displacing the ink.		◆ High saturation flux density is required	
			(2.0-2.1 T is achievable with CoNiFe	
			([1])	

Magnetic	The Lorenz force acting on a current	◆ Low power consumption	◆ Force acts as a twisting motion	♦ IJ06, IJ11, IJ13, IJ16
Lorenz force	carrying wire in a magnetic field is utilized.	Many ink types can be usedFast operation	 Typically, only a quarter of the solenoid length provides force in a 	
	This allows the magnetic field to be supplied externally to the print head,	 High efficiency Fasy extension from single 	useful direction ◆ High local currents required	
	for example with rare earth permanent magnets.	nozzles to pagewidth print heads	 Copper metalization should be used for long electromigration lifetime and low 	
	Only the current carrying wire need be fabricated on the print-head, simplifying materials requirements.		resistivity • Pigmented inks are usually infeasible	
Magneto-	The actuator uses the giant	♦ Many ink types can be used	♦ Force acts as a twisting motion	♦ Fischenbeck, USP
	such as Terfenol-D (an alloy of	 rast operation Easy extension from single 	 Unusual materials such as 1 ertenol-D are required 	4,032,929 • IJ25
	terbium, dysprosium and iron develoned at the Naval Ordnance	nozzles to pagewidth print	♦ High local currents required	
	Laboratory, hence Ter-Fe-NOL). For best efficiency the actuator should	High force is available	Copper metalization should be used for long electromigration lifetime and low	
	be pre-stressed to approx. 8 MPa.		resistivity Pre-stressing may be required	
Surface	Ink under positive pressure is held in	 ◆ Low power consumption 	◆ Requires supplementary force to effect	◆ Silverbrook, EP 0771
tension	a nozzle by surface tension. The	◆ Simple construction	drop separation	658 A2 and related
reduction	surface tension of the ink is reduced below the bubble threshold, causing	◆ No unusual materials	• Requires special ink surfactants	patent applications
	the ink to egress from the nozzle.	+ High efficiency	Speed may be innited by surfactant properties	,
		◆ Easy extension from single		
		nozzles to pagewidth print		
		licaus		

Viscosity	The ink viscosity is locally reduced to select which drops are to be ejected. A viscosity reduction can be achieved electrothermally with most inks, but special inks can be engineered for a 100:1 viscosity reduction.	 Simple construction No unusual materials required in fabrication Easy extension from single nozzles to pagewidth print heads 	 Requires supplementary force to effect drop separation Requires special ink viscosity properties High speed is difficult to achieve Requires oscillating ink pressure A high temperature difference (typically 80 degrees) is required 	• Silverbrook, EP 0771 658 A2 and related patent applications
Acoustic	An acoustic wave is generated and focussed upon the drop ejection region.	 Can operate without a nozzle plate 	 Complex drive circuitry Complex fabrication Low efficiency Poor control of drop position Poor control of drop volume 	 1993 Hadimioglu et al, EUP 550,192 1993 Elrod et al, EUP 572,220
Thermoelastic	An actuator which relies upon differential thermal expansion upon Joule heating is used.	 Low power consumption Many ink types can be used Simple planar fabrication Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print heads 	 Efficient aqueous operation requires a thermal insulator on the hot side Corrosion prevention can be difficult Pigmented inks may be infeasible, as pigment particles may jam the bend actuator 	• 1103, 1109, 1117, 1118 • 1119, 1120, 1121, 1122 • 1123, 1124, 1127, 1128 • 1129, 1130, 1131, 1132 • 1133, 1134, 1135, 1136 • 1137, 1138, 1139, 1140 • 1141

High CTE thermoelastic actuator	A material with a very high coefficient of thermal expansion (CTE) such as polytetrafluoroethylene (PTFE) is used. As high CTE materials are usually non-conductive, a heater fabricated from a conductive material is incorporated. A 50 µm long PTFE bend actuator with polysilicon heater and 15 mW power input can provide 180 µN force and 10 µm deflection. Actuator motions include: 1) Bend 2) Push 3) Buckle 4) Rotate	 High force can be generated PTFE is a candidate for low dielectric constant insulation in ULSI Very low power consumption Many ink types can be used Simple planar fabrication Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print 	 Requires special material (e.g. PTFE) Requires a PTFE deposition process, which is not yet standard in ULSI fabs PTFE deposition cannot be followed with high temperature (above 350 °C) processing Pigmented inks may be infeasible, as pigment particles may jam the bend actuator 	• 1109, 1117, 1118, 1120 • 1121, 1122, 1123, 1124 • 1127, 1128, 1129, 1130 • 1131, 1142, 1143, 1144
Conductive polymer thermoelastic actuator	A polymer with a high coefficient of thermal expansion (such as PTFE) is doped with conducting substances to increase its conductivity to about 3 orders of magnitude below that of copper. The conducting polymer expands when resistively heated. Examples of conducting dopants include: 1) Carbon nanotubes 2) Metal fibers 3) Conductive polymers such as doped polythiophene 4) Carbon granules	 High force can be generated Very low power consumption Many ink types can be used Simple planar fabrication Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print heads 	 Requires special materials development (High CTE conductive polymer) Requires a PTFE deposition process, which is not yet standard in ULSI fabs PTFE deposition cannot be followed with high temperature (above 350 °C) processing Evaporation and CVD deposition techniques cannot be used Pigmented inks may be infeasible, as pigment particles may jam the bend actuator 	♦ IJ24

Shape memory	Shape memory A shape memory alloy such as TiNi	◆ High force is available	◆ Fatigue limits maximum number of	◆ IJ26
alloy	(also known as Nitinol - Nickel	(stresses of hundreds of	cycles	
	Titanium alloy developed at the	MPa)	◆ Low strain (1%) is required to extend	
	Naval Ordnance Laboratory) is	◆ Large strain is available	fatigue resistance	
	thermally switched between its weak	(more than 3%)	 Cycle rate limited by heat removal 	
	martensitic state and its high	 High corrosion resistance 	 ◆ Requires unusual materials (TiNi) 	
	stiffness austenic state. I he shape of	 Simple construction 	◆ The latent heat of transformation must	
	deformed relative to the auctonia	 Easy extension from single 	be provided	
	shane. The shane change causes	nozzles to pagewidth print	 ◆ High current operation 	
	ejection of a dron	heads	 Requires pre-stressing to distort the 	
	dom to monote	◆ Low voltage operation	martensitic state	
Linear	Linear magnetic actuators include	 ◆ Linear Magnetic actuators 	◆ Requires unusual semiconductor	♦ IJ12
Magnetic	the Linear Induction Actuator (LIA),	can be constructed with	materials such as soft magnetic alloys	
Actuator	Linear Permanent Magnet	high thrust, long travel, and	(e.g. CoNiFe [1])	
	Synchronous Actuator (LPMSA),	high efficiency using planar	◆ Some varieties also require permanent	
	Linear Reluctance Synchronous	semiconductor fabrication	magnetic materials such as	
	Actuator (LRSA), Linear Switched	techniques	Neodymium iron boron (NdFeB)	
-	Reluctance Actuator (LSRA), and	 ◆ Long actuator travel is 	◆ Requires complex multi-phase drive	
	the Linear Stepper Actuator (LSA).	available	circuitry	
		 Medium force is available 	♦ High current operation	
		 ◆ Low voltage operation 		

BASIC OPERATION MODE

Operational mode	Description	Advantages	Disadvantages	Examples
Actuator directly pushes ink	This is the simplest mode of operation: the actuator directly supplies sufficient kinetic energy to expel the drop. The drop must have a sufficient velocity to overcome the surface tension.	 Simple operation No external fields required Satellite drops can be avoided if drop velocity is less than 4 m/s Can be efficient, depending upon the actuator used 	 Drop repetition rate is usually limited to less than 10 KHz. However, this is not fundamental to the method, but is related to the refill method normally used All of the drop kinetic energy must be provided by the actuator Satellite drops usually form if drop velocity is greater than 4.5 m/s 	 Thermal inkjet Piezoelectric inkjet U01, IJ02, IJ03, IJ04 U05, IJ06, IJ07, IJ09 U11, IJ12, IJ14, IJ16 U20, IJ22, IJ23, IJ24 U25, IJ26, IJ27, IJ28 U29, IJ30, IJ31, IJ32 U33, IJ34, IJ35, IJ36 U37, IJ38, IJ39, IJ40 U41, IJ42, IJ43, IJ44
Proximity	The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by contact with the print medium or a transfer roller.	 Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the nozzle 	 Requires close proximity between the print head and the print media or transfer roller May require two print heads printing alternate rows of the image Monolithic color print heads are difficult 	• Silverbrook, EP 0771 658 A2 and related patent applications
Electrostatic pull on ink	The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by a strong electric field.	 Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the nozzle 	 Requires very high electrostatic field Electrostatic field for small nozzle sizes is above air breakdown Electrostatic field may attract dust 	 Silverbrook, EP 0771 658 A2 and related patent applications Tone-Jet

Magnetic pull	The drops to be printed are selected	◆ Very simple print head	◆ Requires magnetic ink	♦ Silverbrook. EP 0771
on ink	by some manner (e.g. thermally	fabrication can be used	◆ Ink colors other than black are difficult	658 A2 and related
	induced surface tension reduction of	 ◆ The drop selection means 	 ◆ Requires very high magnetic fields 	patent applications
	pressurized ink). Selected drops are	does not need to provide the		
	separated from the ink in the nozzle	energy required to separate		
	by a strong magnetic field acting on	the drop from the nozzle		
	the magnetic ink.			
Shutter	The actuator moves a shutter to block	High speed (>50 KHz)	 Moving parts are required 	◆ IJ13, IJ17, IJ21
	ink flow to the nozzle. The ink	operation can be achieved	◆ Requires ink pressure modulator	
	pressure is pulsed at a multiple of the	due to reduced refill time	◆ Friction and wear must be considered	
	drop ejection frequency.	 Drop timing can be very 	◆ Stiction is possible	
		accurate	•	
		 The actuator energy can be 	•	
		very low		
Shuttered grill	The actuator moves a shutter to block	 Actuators with small travel 	 ◆ Moving parts are required 	♦ IJ08, IJ15, IJ18, IJ19
_	ink flow through a grill to the nozzle.	can be used	 ◆ Requires ink pressure modulator 	
	The shutter movement need only be	 Actuators with small force 	◆ Friction and wear must be considered	
	equal to the width of the grill holes.	can be used	◆ Stiction is possible	
		High speed (>50 KHz)		
		operation can be achieved		
Pulsed	A pulsed magnetic field attracts an	◆ Extremely low energy	• Requires an external pulsed magnetic	♦ IJ10
magnetic pull	ink pusner at the grop ejection	operation is possible	IIGIO	
on ink pusher	frequency. An actuator controls a	 ♦ No heat dissipation 	◆ Requires special materials for both the	
	catch, which prevents the ink pusher	problems	actuator and the ink pusher	
	from moving when a drop is not to		◆ Complex construction	•
	be ejected.		•	

AUXILIARY MECHANISM (APPLIED TO ALL NOZZLES)

Auxiliary	Description	Advantages	Disadvantages	Examples
Mechanism				
None	The actuator directly fires the ink drop, and there is no external field or other mechanism required.	 Simplicity of construction Simplicity of operation Small physical size 	 Drop ejection energy must be supplied by individual nozzle actuator 	 Most inkjets, including piezoelectric and
				thermal bubble. • IJ01-IJ07, IJ09, IJ11 • IJ12, IJ14, IJ20, IJ22 • IJ23-IJ45
Oscillating ink pressure	The ink pressure oscillates, providing much of the drop ejection energy.	 Oscillating ink pressure can provide a refill pulse, 	 Requires external ink pressure oscillator 	• Silverbrook, EP 0771 658 A2 and related
including	The actuator selects which drops are to be fired by selectively blocking or	allowing higher operating speed	 Ink pressure phase and amplitude must be carefully controlled 	patent applications • IJ08, IJ13, IJ15, IJ17
stimulation)	enabling nozzles. The ink pressure oscillation may be achieved by	 The actuators may operate with much lower energy 	 Acoustic reflections in the ink chamber must be designed for 	 U18, U19, U21
	vibrating the print head, or preferably by an actuator in the ink supply.	 Acoustic lenses can be used to focus the sound on the nozzles 		
Media	The print head is placed in close	◆ Low power	Precision assembly required Daner fibers may conse problems	◆ Silverbrook, EP 0771 658 A2 and related
	Selected drops protrude from the print head further than unselected	Inga accuracySimple print head construction	 Tapel most may cause problems Cannot print on rough substrates 	patent applications
	The drop soaks into the medium fast enough to cause drop separation.			

	Drops are printed to a transfer roller	 ◆ High accuracy 	◆ Bulky	◆ Silverbrook, EP 0771
	instead of straight to the print	 ◆ Wide range of print 	◆ Expensive	658 A2 and related
	medium. A transfer roller can also be	substrates can be used	◆ Complex construction	patent applications
	used for proximity drop separation.	 ◆ Ink can be dried on the 	•	 Tektronix hot melt
		transfer roller		piezoelectric inkjet
				Any of the IJ series
Electrostatic	An electric field is used to accelerate	◆ Low power	◆ Field strength required for separation	◆ Silverbrook, EP 0771
	selected drops towards the print	 Simple print head 	of small drops is near or above air	658 A2 and related
	medium.	construction	breakdown	patent applications
				◆ Tone-Jet
Direct	A magnetic field is used to accelerate	◆ Low power	 Requires magnetic ink 	◆ Silverbrook, EP 0771
magnetic field	selected drops of magnetic ink	 ♦ Simple print head 	 ◆ Requires strong magnetic field 	658 A2 and related
	towards the print medium.	construction		patent applications
Cross	The print head is placed in a constant	◆ Does not require magnetic	◆ Requires external magnet	◆ IJ06, IJ16
magnetic field	magnetic field. The Lorenz force in a	materials to be integrated in	 Current densities may be high, 	
	current carrying wire is used to move	the print head	resulting in electromigration problems	
	the actuator.	manufacturing process	,	
Pulsed	A pulsed magnetic field is used to	 ◆ Very low power operation 	◆ Complex print head construction	◆ IJ10
magnetic field	cyclically attract a paddle, which	is possible	 Magnetic materials required in print 	
	pushes on the ink. A small actuator	 Small print head size 	head	
	moves a catch, which selectively			
	prevents the paddle from moving.			

ACTUATOR AMPLIFICATION OR MODIFICATION METHOD

Actuator amplification	Description	Advantages	Disadvantages	Examples
None	No actuator mechanical amplification is used. The actuator directly drives the drop ejection process.	 ◆ Operational simplicity 	 Many actuator mechanisms have insufficient travel, or insufficient force, to efficiently drive the drop ejection process 	 Thermal Bubble Inkjet 101, 1102, 1106, 1107 1116, 1125, 1126
Differential expansion bend actuator	An actuator material expands more on one side than on the other. The expansion may be thermal, piezoelectric, magnetostrictive, or other mechanism.	 Provides greater travel in a reduced print head area The bend actuator converts a high force low travel actuator mechanism to high travel, lower force mechanism. 	 High stresses are involved Care must be taken that the materials do not delaminate Residual bend resulting from high temperature or high stress during formation 	 Piezoelectric I03, I109, I117-IJ24 I127, I129-IJ39, IJ42, IJ43, IJ44
Transient bend actuator	A trilayer bend actuator where the two outside layers are identical. This cancels bend due to ambient temperature and residual stress. The actuator only responds to transient heating of one side or the other.	 Very good temperature stability High speed, as a new drop can be fired before heat dissipates Cancels residual stress of formation 	 High stresses are involved Care must be taken that the materials do not delaminate 	• IJ40, IJ41
Actuator stack	A series of thin actuators are stacked. This can be appropriate where actuators require high electric field strength, such as electrostatic and piezoelectric actuators.	 Increased travel Reduced drive voltage 	 Increased fabrication complexity Increased possibility of short circuits due to pinholes 	 Some piezoelectric ink jets U04
Multiple actuators	Multiple smaller actuators are used simultaneously to move the ink. Each actuator need provide only a portion of the force required.	 Increases the force available from an actuator Multiple actuators can be positioned to control ink flow accurately 	 Actuator forces may not add linearly, reducing efficiency 	• 1J12, 1J13, 1J18, 1J20 • 1J22, 1J28, 1J42, 1J43

Linear Spring	A linear spring is used to transform a motion with small travel and high force into a longer travel, lower force motion.	 Matches low travel actuator with higher travel requirements Non-contact method of motion transformation 	• Requires print head area for the spring	+ IJ15
Reverse spring	The actuator loads a spring. When the actuator is turned off, the spring releases. This can reverse the force/distance curve of the actuator to make it compatible with the force/time requirements of the drop ejection.	• Better coupling to the ink	 Fabrication complexity High stress in the spring 	◆ IJ05, IJ11
Coiled actuator	A bend actuator is coiled to provide greater travel in a reduced chip area.	 Increases travel Reduces chip area Planar implementations are relatively easy to fabricate. 	 Generally restricted to planar implementations due to extreme fabrication difficulty in other orientations. 	 U17, U21, U34, U35
Flexure bend actuator	A bend actuator has a small region near the fixture point, which flexes much more readily than the remainder of the actuator. The actuator flexing is effectively converted from an even coiling to an angular bend, resulting in greater travel of the actuator tip.	• Simple means of increasing travel of a bend actuator	 Care must be taken not to exceed the elastic limit in the flexure area Stress distribution is very uneven Difficult to accurately model with finite element analysis 	 U10, U19, U33
Gears	Gears can be used to increase travel at the expense of duration. Circular gears, rack and pinion, ratchets, and other gearing methods can be used.	 Low force, low travel actuators can be used Can be fabricated using standard surface MEMS processes 	 Moving parts are required Several actuator cycles are required More complex drive electronics Complex construction Friction, friction, and wear are possible 	♦ IJ13

Catch	The actuator controls a small catch. The catch either enables or disables	 Very low actuator energy Very small actuator size 	 Complex construction Requires external force 	◆ IJ10
	movement of an ink pusher that is controlled in a bulk manner.		 Unsuitable for pigmented inks 	
Buckle plate	A buckle plate can be used to change a slow actuator into a fast motion. It	 Very fast movement achievable 	 Must stay within elastic limits of the materials for long device life 	◆ S. Hirata et al, "An Ink-jet Head",
	can also convert a high force, low travel actuator into a high travel,		High stresses involvedGenerally high power requirement	Proc. IEEE MEMS, Feb. 1996, pp 418-
				◆ IJ18, IJ27
Tapered magnetic pole	A tapered magnetic pole can increase travel at the expense of force.	◆ Linearizes the magnetic force/distance curve	◆ Complex construction	◆ IJ14
Lever	A lever and fulcrum is used to transform a motion with small travel	 Matches low travel actuator with higher travel 	 ◆ High stress around the fulcrum 	+ IJ32, IJ36, IJ37
	and high force into a motion with	requirements		
	longer travel and lower force. The	◆ Fulcrum area has no linear		
	travel.	movement, and can be used for a fluid seal		
Rotary	The actuator is connected to a rotary	 ◆ High mechanical advantage 	◆ Complex construction	◆ IJ28
impeller	impeller. A small angular deflection of the actuator results in a rotation of	• The ratio of force to travel	 ◆ Unsuitable for pigmented inks 	
	the impeller vanes, which push the	matched to the nozzle		
	ink against stationary vanes and out of the nozzle.	requirements by varying the number of impeller vanes		
Acoustic lens	A refractive or diffractive (e.g. zone	♦ No moving parts	◆ Large area required	♦ 1993 Hadimioglu et
,	plate) acoustic lens is used to		 ♦ Only relevant for acoustic ink jets 	al, EUP 550,192
	concentrate sound waves.			• 1993 Elrod et al, EUP 572,220
Sharp conductive	A sharp point is used to concentrate an electrostatic field.	Simple construction	 ◆ Difficult to fabricate using standard VLSI processes for a surface ejecting ink-iet 	• Tone-jet
			◆ Only relevant for electrostatic ink jets	

ACTUATOR MOTION

Actuator motion	Description	Advantages	Disadvantages	Examples
Volume expansion	The volume of the actuator changes, pushing the ink in all directions.	• Simple construction in the case of thermal ink jet	 High energy is typically required to achieve volume expansion. This leads to thermal stress, cavitation, and kogation in thermal ink jet implementations 	 Hewlett-Packard Thermal Inkjet Canon Bubblejet
Linear, normal to chip surface	The actuator moves in a direction normal to the print head surface. The nozzle is typically in the line of movement.	 Efficient coupling to ink drops ejected normal to the surface 	 High fabrication complexity may be required to achieve perpendicular motion 	◆ IJ01, IJ02, IJ04, IJ07 ◆ IJ11, IJ14
Linear, parallel to chip surface	The actuator moves parallel to the print head surface. Drop ejection may still be normal to the surface.	 ◆ Suitable for planar fabrication 	Fabrication complexityFrictionStiction	♦ 1J12, 1J13, 1J15, 1J33, ♦ 1J34, 1J35, 1J36
Membrane push	An actuator with a high force but small area is used to push a stiff membrane that is in contact with the ink.	 The effective area of the actuator becomes the membrane area 	 Fabrication complexity Actuator size Difficulty of integration in a VLSI process 	• 1982 Howkins USP 4,459,601
Rotary	The actuator causes the rotation of some element, such a grill or impeller	 Rotary levers may be used to increase travel Small chip area requirements 	Device complexityMay have friction at a pivot point	 1105, 1108, 1113, 1128
Bend	The actuator bends when energized. This may be due to differential thermal expansion, piezoelectric expansion, magnetostriction, or other form of relative dimensional change.	 A very small change in dimensions can be converted to a large motion. 	• Requires the actuator to be made from at least two distinct layers, or to have a thermal difference across the actuator	 1970 Kyser et al USP 3,946,398 1973 Stemme USP 3,747,120 1003, 1109, 1110, 1119 1123, 1124, 1125, 1129 1130, 1131, 1133, 1134 1135

there are opposite forces applied to opposite sides of the paddle, e.g. Lorenz force. Lorenz force. Lorenz force. The actuator bends in one direction when one element is energized, and bends the other way when another element is energized, and shear motion in the actuator asservoir, forcing ink from a constricted nozzle. A coiled actuator bows (or buckles) in the actuator bows (or buckles) in the actuator bows (or buckles) in the actuator pows (or buckles) in the actuator public actuator as a planar middle when energized. The actuator bows (or buckles) in the free fitting as macroscopic structures The actuator bows (or buckles) in the free fitting as macroscopic structures The actuator bows (or buckles) in the free fitting as macroscopic structures fitting the shutter. One for middle when energized. Two actuators ontrol a shutter. One for the actuator pulls the shutter, and the force fitting as planar for travel for more signification for the actuator pulls the shutter, and the force fitting as macroscopic structures for middle when energized. * Mechanically rigid from a cutuator pulls the shutter, and the force for middle when energized. * Mechanically rigid for free free for fitting for for force for fitting for fitting for force for force for force for force for force for force for for force force for force for force for force for force force for force for force for force force for force force for force force for force f	Swivel	The actuator swivels around a central	◆ Allows operation where the	◆ Inefficient coupling to the ink motion	90H •
Can be used with shape straightens when energized. Can be used with shape memory alloys where the austenic phase is planar. Can be used with shape memory alloys where the austenic phase is planar. Can be used with shape memory alloys where the austenic phase is planar. Can be used to power two nozzles. Can be used to power two nozzles. Can be used to power two nozzles. Can increase the effective shear motion in the actuator material. Can increase the effective shear motion in the actuator material. Can increase the effective single nozzles from glass constricted nozzle. Can increase the effective single nozzles from glass constricted nozzle. Can increase the speed of middle when energized. Can increase the speed of travel of the actuator bows (or buckles) in the middle when energized. Can increase the speed of travel of the actuator pulls the shutter. One Can increase the speed of travel of the actuator pulls the shutter, one of the actuator pulls the shutter and the order the actuator pulls the shutter and the order the actuator pulls the shutter and the actuator pulls the actuator pulls the actuat		pivot. This motion is suitable where there are opposite forces applied to	net linear force on the paddle is zero		
tradition reservoir, forcing ink from a constricted nozzle. The actuator bows (or but the actuator bows (or but the actuator bows (or but the actuator bows) in the actuator bows (or but the actuator bows) in the actuator bows (or but the actuator bows) in the actuator bows (or buckles) in the actuator bows (or		opposite sides of the paddle, e.g.	◆ Small chip area		
straightens when energized. bend the actuator bends in one direction when one element is energized, and bends the other way when another element is energized. The actuator bends in one direction when one element is energized, and bends the other way when another element is energized. Energizing the actuator causes a shear motion in the actuator material. The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. A coiled actuator uncoils or coils into a constricted nozzle. A coiled actuator bows (or buckles) in the actuator bows (or buckles) in the actuator pulls the shutter. One a structure is pinned at actuator pulls the shutter, and the both ends, so has a high out-order arrespond to the condition of the condition of the condition of the actuator pulls the shutter, and the both ends, so has a high out-order arrespond to the condition of the condition of the actuator pulls the shutter, and the both ends, so has a high out-order arrespond to the condition of condition of the condition of the condition of the condition of condition of the condition of the condition of the condition of c		LOIEIIZ IOICE.	requirements		
straightens when energized. bend The actuator bends in one direction when one element is energized, and bends the other way when another element is energized. The actuator bends in one direction when one element is energized. Bends the other way when another element is energized. Bends the other way when another temperature temperature Energizing the actuator causes a shear motion in the actuator material. The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. A coiled actuator uncoils or coils structures A coiled actuator uncoils or coils structures The actuator bows (or buckles) in the didle when energized. The actuator pulls the shutter. One a structure is pinned at actuator pulls the shutter, and the both ends, so has a high out-order arrests.	Straighten	The actuator is normally bent, and	 Can be used with shape 	 Requires careful balance of stresses to 	◆ IJ26, IJ32
austenic phase is planar The actuator bends in one direction when one element is energized, and bends the other way when another element is energized. Energizing the actuator causes a shear motion in the actuator material. The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. A coiled actuator uncoils or coils more tightly. The motion of the free The actuator bows (or buckles) in the middle when energized. Pull Two actuators control a shutter. One austenic phase is planar temperature Can increase the effective travel travel A coiled actuator uncoils or coils middle when energized. A coiled actuator bows (or buckles) in the fravel middle when energized. The actuator pulls the shutter, and the of the actuators control a shutter. One both ends, so has a high out-order middle travel The actuator pulls the shutter, and the of the actuator pulls the shutter, and the of-plane rividity		straightens when energized.	memory alloys where the	ensure that the quiescent bend is	
when one element is energized, and bends the other way when another element is energized, and bends the other way when another element is energized. • Not sensitive to ambient temperature Energizing the actuator causes a shear motion in the actuator material. The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. A coiled actuator uncoils or coils more tightly. The motion of the free structures The actuator bows (or buckles) in the middle when energized. Pull Two actuators control a shutter. One when rividity of the actuator pulls the shutter, and the coffence of the actuator pulls the shutter, and the coffence of th			austenic phase is planar	accurate	
when one element is energized, and bends the other way when another element is energized. • Reduced chip size. • Not sensitive to ambient temperature Energizing the actuator causes a shear motion in the actuator material. Energizing the actuator actuator material. The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. A coiled actuator uncoils or coils more tightly. The motion of the free end of the actuator bows (or buckles) in the middle when energized. The actuator bows (or buckles) in the middle when energized. The actuator pulls the shutter, and the actuator pulls the shutter, and the orthar marshes it control a shutter. One both ends, so has a high out-parently are actuator pulls the shutter, and the orthar middle when an actuator pulls the shutter, and the orthar middle when energized. • Reduced chip size. • Not sensitive to ambient temperature actuator of poince actuator ambient is energized. • Reduced chip size. • Not sensitive to ambient temperature actuator of poince actuator of poince actuator pulls the shutter. One of transmission of the actuator pulls the shutter, and the of the actuator pulls the shutter, and the of the actuator pulls the shutter. One of the actuator pulls the shutter, and the of the actuator pulls the shutter. One of the actuator pulls the shutter.	Double bend	The actuator bends in one direction	◆ One actuator can be used to	 Difficult to make the drops ejected by 	♦ 1J36, IJ37, IJ38
bends the other way when another element is energized. element is energized. e Not sensitive to ambient temperature benegizing the actuator causes a shear motion in the actuator material. The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. A coiled actuator uncoils or coils more tightly. The motion of the free end of the actuator bows (or buckles) in the middle when energized. The actuators control a shutter. One both ends, so has a high out-other miches it of the properties in the both ends, so has a high out-other miches it of the properties. Pull Reduced chip size. Not sensitive to ambient temperature Paraberature of piezoelectric actuators is printed at travel Can increase the effective actuator general travel Can increase the effective actuator of piezoelectric actuators is printed at travel Can increase the effective actuator generator of the free single nozzles from glass tubing as macroscopic structures Constricted nozzle. Can increase the effective actuator generator of the free single nozzles from glass tubing as macroscopic structures Constricted nozzle. Can increase the effective actuator between a planar travel Can increase the speed of travel.		when one element is energized, and	power two nozzles.	both bend directions identical.	
element is energized. Energizing the actuator causes a shear motion in the actuator material. The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. Incoll A coiled actuator uncoils or coils more tightly. The motion of the free end of the actuator bows (or buckles) in the middle when energized. The actuator pulls the shutter, one actuator pulls the shutter, and the off-nane rigidity. House energized. Wood sensitive to ambient temperature Can increase the effective travel area required, therefore low cost travel travel travel travel the shutter, and the off-nane rigidity of the rigidit		bends the other way when another	 Reduced chip size. 	 A small efficiency loss compared to 	
Energizing the actuator causes a shear motion in the actuator material. The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. A coiled actuator uncoils or coils more tightly. The motion of the free end of the actuator bows (or buckles) in the middle when energized. The actuators control a shutter. One worther mushes it actuator pulls the shutter, and the of-nlame rigidity. The actuator pulls the shutter, and the of-nlame rigidity is the shutter.		element is energized.	 ♦ Not sensitive to ambient 	equivalent single bend actuators.	
Energizing the actuator causes a shear motion in the actuator material. Interest motion in the actuator material. The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. Incoli A coiled actuator uncoils or coils more tightly. The motion of the free end of the actuator bows (or buckles) in the middle when energized. Two actuators control a shutter. One to the actuator pulls the shutter, and the actuator pulls the shutter, and the other purshes it of the actuator pulls the shutter, and the of the actuator pulls the shutter.			temperature		
shear motion in the actuator material. It avel of piezoelectric actuators The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. I actuators Relatively easy to fabricate single nozzles from glass tubing as macroscopic structures A coiled actuator uncoils or coils more tightly. The motion of the free end of the actuator ejects the ink. The actuator bows (or buckles) in the middle when energized. I herefore low cost travel Two actuators control a shutter. One wither middle when the shutter, and the of-nlane rigidity of the motion of the contage of the actuator pulls the shutter, and the of-nlane rigidity	Shear	Energizing the actuator causes a	 ◆ Can increase the effective 	◆ Not readily applicable to other actuator	 ◆ 1985 Fishbeck USP
triction The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle. / uncoil A coiled actuator uncoils or coils more tightly. The motion of the free and of the actuator bows (or buckles) in the middle when energized. The actuators control a shutter. One wother mushes it actuator pulls the shutter, and the other mushes it actuator in the motion of the motion of the free constructions are required. **Relatively easy to fabricate as a planar structures **Can increase the speed of travel travel travel travel travel the middle when energized. **Mechanically rigid to the motion of the shutter, and the both ends, so has a high out-other mushes it the shutter and the other middle when the other w		shear motion in the actuator material.	travel of piezoelectric	mechanisms	4,584,590
triction reservoir, forcing ink from a single nozzles from glass constricted nozzle. uncol			actuators		
triction reservoir, forcing ink from a single nozzles from glass constricted nozzle. uncoll	Radial	The actuator squeezes an ink	 Relatively easy to fabricate 	 ◆ High force required 	 ◆ 1970 Zoltan USP
 / uncoil / uncoil A coiled actuator uncoils or coils more tightly. The motion of the free end of the actuator ejects the ink. The actuator bows (or buckles) in the middle when energized. → Mechanically rigid → The structure is pinned at actuator pulls the shutter. One both ends, so has a high outother mishes it 	constriction	reservoir, forcing ink from a	single nozzles from glass	◆ Inefficient	3,683,212
 / uncoil A coiled actuator uncoils or coils Easy to fabricate as a planar more tightly. The motion of the free end of the actuator ejects the ink. The actuator bows (or buckles) in the middle when energized. Pull Two actuators control a shutter. One actuator pulls the shutter, and the other mishes it 		constricted nozzle.	tubing as macroscopic	 Difficult to integrate with VLSI 	
 / uncoil A coiled actuator uncoils or coils Easy to fabricate as a planar wore tightly. The motion of the free end of the actuator ejects the ink. Small area required, therefore low cost The actuator bows (or buckles) in the middle when energized. Can increase the speed of travel Mechanically rigid Two actuators control a shutter. One actuator pulls the shutter, and the both ends, so has a high outofher mishes it 			structures	processes	
end of the actuator ejects the ink. The actuator bows (or buckles) in the middle when energized. Two actuators control a shutter. One actuator pulls the shutter, and the other mishes it of the middle when energized.	Coil / uncoil	A coiled actuator uncoils or coils	 ◆ Easy to fabricate as a planar 	 ◆ Difficult to fabricate for non-planar 	 ◆ IJ17, IJ21, IJ34, IJ35
end of the actuator ejects the ink. The actuator bows (or buckles) in the middle when energized. The actuator bows (or buckles) in the travel Two actuators control a shutter. One actuator pulls the shutter, and the both ends, so has a high out-of-her mishes it of-plane rigidity		more tightly. The motion of the free	VLSI process	devices	
The actuator bows (or buckles) in the middle when energized. • Can increase the speed of travel • Mechanically rigid • The structure is pinned at actuator pulls the shutter, and the both ends, so has a high out-other mishes it		end of the actuator ejects the ink.	 ♦ Small area required, 	 Poor out-of-plane stiffness 	
The actuator bows (or buckles) in the middle when energized. → Can increase the speed of travel ← Travel → Mechanically rigid → The structure is pinned at actuator pulls the shutter, and the both ends, so has a high out-of-her mishes it of-nlane rigidity		The second secon	therefore low cost		
middle when energized.	Bow	The actuator bows (or buckles) in the	 ◆ Can increase the speed of 	 ◆ Maximum travel is constrained 	♦ IJ16, IJ18, IJ27
Two actuators control a shutter. One actuator pulls the shutter, and the both ends, so has a high out- of-ber mishes it		middle when energized.	travel	 ◆ High force required 	
Two actuators control a shutter. One actuator pulls the shutter, and the both ends, so has a high outofter pushes it			 Mechanically rigid 		
both ends, so has a high out-	Push-Pull	Two actuators control a shutter. One	 ◆ The structure is pinned at 	 ♦ Not readily suitable for inkjets which 	♦ IJ18
		actuator pulls the shutter, and the	both ends, so has a high out-	directly push the ink	
		other pushes it.	or-plane rigidity		

Curl inwards	A set of actuators curl inwards to reduce the volume of ink that they enclose.	 Good fluid flow to the region behind the actuator increases efficiency 	♦ Design complexity	1J20, IJ42
Curl outwards	A set of actuators curl outwards, pressurizing ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber.	• Relatively simple construction	 Relatively large chip area 	■ 1J43
Iris	Multiple vanes enclose a volume of ink. These simultaneously rotate, reducing the volume between the vanes.	High efficiencySmall chip area	 High fabrication complexity Not suitable for pigmented inks 	◆ IJ22
Acoustic vibration	The actuator vibrates at a high frequency.	◆ The actuator can be physically distant from the ink	 Large area required for efficient operation at useful frequencies Acoustic coupling and crosstalk Complex drive circuitry Poor control of drop volume and position 	 1993 Hadimioglu et al, EUP 550,192 1993 Elrod et al, EUP 572,220
None	In various ink jet designs the actuator does not move.	♦ No moving parts	 Various other tradeoffs are required to eliminate moving parts 	 Silverbrook, EP 0771 658 A2 and related patent applications Tone-jet

Nozzle Refill Method

Nozzle refill method	Description	Advantages	Disadvantages	Examples
Surface tension	After the actuator is energized, it typically returns rapidly to its normal position. This rapid return sucks in air through the nozzle opening. The ink surface tension at the nozzle then exerts a small force restoring the meniscus to a minimum area.	 Fabrication simplicity Operational simplicity 	 Low speed Surface tension force relatively small compared to actuator force Long refill time usually dominates the total repetition rate 	 Thermal inkjet Piezoelectric inkjet 1J01-IJ07, IJ10-IJ14 IJ16, IJ20, IJ22-IJ45
Shuttered oscillating ink pressure	Ink to the nozzle chamber is provided at a pressure that oscillates at twice the drop ejection frequency. When a drop is to be ejected, the shutter is opened for 3 half cycles: drop ejection, actuator return, and refill.	 High speed Low actuator energy, as the actuator need only open or close the shutter, instead of ejecting the ink drop 	 Requires common ink pressure oscillator May not be suitable for pigmented inks 	• 1008, 1013, 1015, 1017 • 1018, 1019, 1021
Refill actuator	After the main actuator has ejected a drop a second (refill) actuator is energized. The refill actuator pushes ink into the nozzle chamber. The refill actuator returns slowly, to prevent its return from emptying the chamber again.	 High speed, as the nozzle is actively refilled 	◆ Requires two independent actuators per nozzle	◆ IJ09
Positive ink pressure	The ink is held a slight positive pressure. After the ink drop is ejected, the nozzle chamber fills quickly as surface tension and ink pressure both operate to refill the nozzle.	 High refill rate, therefore a high drop repetition rate is possible 	 Surface spill must be prevented Highly hydrophobic print head surfaces are required 	 Silverbrook, EP 0771 658 A2 and related patent applications Alternative for: 1101-1107, 1110-1114 1116, 1120, 1122-1145

METHOD OF RESTRICTING BACK-FLOW THROUGH INLET

Inlet back-flow restriction method	Description	Advantages	Disadvantages	Examples
Long inlet channel	The ink inlet channel to the nozzle chamber is made long and relatively narrow, relying on viscous drag to reduce inlet back-flow.	Design simplicityOperational simplicityReduces crosstalk	 Restricts refill rate May result in a relatively large chip area Only partially effective 	Thermal inkjetPiezoelectric inkjetIJ42, IJ43
Positive ink pressure	The ink is under a positive pressure, so that in the quiescent state some of the ink drop already protrudes from the nozzle. This reduces the pressure in the nozzle chamber which is required to eject a certain volume of ink. The reduction in chamber pressure results in a reduction in ink pushed out through the inlet.	 Drop selection and separation forces can be reduced Fast refill time 	• Requires a method (such as a nozzle rim or effective hydrophobizing, or both) to prevent flooding of the ejection surface of the print head.	 Silverbrook, EP 0771 658 A2 and related patent applications Possible operation of the following: 101-1107, 1109-1112 1114, 1116, 1120, 1122, 1123-1134, 1136-1141 1144
Baffle	One or more baffles are placed in the inlet ink flow. When the actuator is energized, the rapid ink movement creates eddies which restrict the flow through the inlet. The slower refill process is unrestricted, and does not result in eddies.	 The refill rate is not as restricted as the long inlet method. Reduces crosstalk 	 Design complexity May increase fabrication complexity (e.g. Tektronix hot melt Piezoelectric print heads). 	 HP Thermal Ink Jet Tektronix piezoelectric ink jet
Flexible flap restricts inlet	In this method recently disclosed by Canon, the expanding actuator (bubble) pushes on a flexible flap that restricts the inlet.	 Significantly reduces backflow for edge-shooter thermal ink jet devices 	 Not applicable to most inkjet configurations Increased fabrication complexity Inelastic deformation of polymer flap results in creep over extended use 	◆ Canon

Inlet filter	A filter is located between the ink inlet and the nozzle chamber. The filter has a multitude of small holes or slots, restricting ink flow. The filter also removes particles which may block the nozzle.	 Additional advantage of ink filtration Ink filter may be fabricated with no additional process steps 	 Restricts refill rate May result in complex construction 	♦ 1004, 1312, 1324, 1327 ♦ 1329, 1330
Small inlet compared to nozzle	The ink inlet channel to the nozzle chamber has a substantially smaller cross section than that of the nozzle, resulting in easier ink egress out of the nozzle than out of the inlet.	♦ Design simplicity	 Restricts refill rate May result in a relatively large chip area Only partially effective 	• IJ02, IJ37, IJ44
Inlet shutter	A secondary actuator controls the position of a shutter, closing off the ink inlet when the main actuator is energized.	 Increases speed of the inkjet print head operation 	 Requires separate refill actuator and drive circuit 	◆ IJ09
The inlet is located behind the ink-pushing surface	The method avoids the problem of inlet back-flow by arranging the inkpushing surface of the actuator between the inlet and the nozzle.	• Back-flow problem is eliminated	• Requires careful design to minimize the negative pressure behind the paddle	 • 1101, 1103, 1105, 1106 • 1107, 1110, 1111, 1114 • 1116, 1122, 1123, 1125 • 1128, 1131, 1132, 1133 • 1134, 1135, 1136, 1139 • 1140, 1141
Part of the actuator moves to shut off the inlet	The actuator and a wall of the ink chamber are arranged so that the motion of the actuator closes off the inlet.	 Significant reductions in back-flow can be achieved Compact designs possible 	Small increase in fabrication complexity	 IJ07, IJ20, IJ26, IJ38
Nozzle actuator does not result in ink back-flow	In some configurations of ink jet, there is no expansion or movement of an actuator which may cause ink back-flow through the inlet.	 ◆ Ink back-flow problem is eliminated 	• None related to ink back-flow on actuation	 Silverbrook, EP 0771 658 A2 and related patent applications Valve-jet Tone-jet U08, IJ13, IJ15, IJ17 IJ18, IJ19, IJ21

Nozzle Clearing Method

Nozzle Clearing method	Description	Advantages	Disadvantages	Examples
Normal nozzle firing	All of the nozzles are fired periodically, before the ink has a chance to dry. When not in use the nozzles are sealed (capped) against air. The nozzle firing is usually performed during a special clearing cycle, after first moving the print head to a cleaning station.	• No added complexity on the print head	• May not be sufficient to displace dried ink	 Most ink jet systems 101-107, 109-1112 114, 1116, 1120, 1122 1123-1134, 1136-1145
Extra power to ink heater	In systems which heat the ink, but do not boil it under normal situations, nozzle clearing can be achieved by over-powering the heater and boiling ink at the nozzle.	 Can be highly effective if the heater is adjacent to the nozzle 	 Requires higher drive voltage for clearing May require larger drive transistors 	• Silverbrook, EP 0771 658 A2 and related patent applications
Rapid succession of actuator pulses	The actuator is fired in rapid succession. In some configurations, this may cause heat build-up at the nozzle which boils the ink, clearing the nozzle. In other situations, it may cause sufficient vibrations to dislodge clogged nozzles.	 Does not require extra drive circuits on the print head Can be readily controlled and initiated by digital logic 	 Effectiveness depends substantially upon the configuration of the inkjet nozzle 	• May be used with: • IJ01-IJ07, IJ09- IJ11 • IJ14, IJ16, IJ20, IJ22 • IJ23-IJ25, IJ27-IJ34 • IJ36-IJ45
Extra power to ink pushing actuator	Where an actuator is not normally driven to the limit of its motion, nozzle clearing may be assisted by providing an enhanced drive signal to the actuator.	 A simple solution where applicable 	◆ Not suitable where there is a hard limit to actuator movement	 May be used with: 103, 109, 116, 1120 123, 1124, 1125, 1127 1129, 1130, 1131, 1132 1139, 1140, 1141, 1142 1143, 1144, 1145

Acoustic	An ultrasonic wave is applied to the ink chamber. This wave is of an appropriate amplitude and frequency to cause sufficient force at the nozzle to clear blockages. This is easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity.	 A high nozzle clearing capability can be achieved May be implemented at very low cost in systems which already include acoustic actuators 	 High implementation cost if system does not already include an acoustic actuator 	♦ 1108, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Nozzle clearing plate	A microfabricated plate is pushed against the nozzles. The plate has a post for every nozzle. The array of posts	 Can clear severely clogged nozzles 	 Accurate mechanical alignment is required Moving parts are required There is risk of damage to the nozzles Accurate fabrication is required 	• Silverbrook, EP 0771 658 A2 and related patent applications
Ink pressure pulse	The pressure of the ink is temporarily increased so that ink streams from all of the nozzles. This may be used in conjunction with actuator energizing.	 May be effective where other methods cannot be used 	 Requires pressure pump or other pressure actuator Expensive Wasteful of ink 	 May be used with all IJ series ink jets
Print head wiper	A flexible 'blade' is wiped across the print head surface. The blade is usually fabricated from a flexible polymer, e.g. rubber or synthetic elastomer.	 Effective for planar print head surfaces Low cost 	 Difficult to use if print head surface is non-planar or very fragile Requires mechanical parts Blade can wear out in high volume print systems 	 Many ink jet systems
Separate ink boiling heater	A separate heater is provided at the nozzle although the normal drop eection mechanism does not require it. The heaters do not require individual drive circuits, as many nozzles can be cleared simultaneously, and no imaging is required.	 Can be effective where other nozzle clearing methods cannot be used Can be implemented at no additional cost in some inkjet configurations 	 ◆ Fabrication complexity 	 Can be used with many IJ series ink jets

NOZZLE PLATE CONSTRUCTION

Nozzle plate construction	Description	Advantages	Disadvantages	Examples
Electroformed nickel	A nozzle plate is separately fabricated from electroformed nickel, and bonded to the print head chip.	 Fabrication simplicity 	 High temperatures and pressures are required to bond nozzle plate Minimum thickness constraints Differential thermal expansion 	 Hewlett Packard Thermal Inkjet
Laser ablated or drilled polymer	Individual nozzle holes are ablated by an intense UV laser in a nozzle plate, which is typically a polymer such as polyimide or polysulphone	 No masks required Can be quite fast Some control over nozzle profile is possible Equipment required is relatively low cost 	 Each hole must be individually formed Special equipment required Slow where there are many thousands of nozzles per print head May produce thin burrs at exit holes 	 Canon Bubblejet 1988 Sercel et al., SPIE, Vol. 998 Excimer Beam Applications, pp. 76-83 1993 Watanabe et al., USP 5,208,604
Silicon micro- machined	A separate nozzle plate is micromachined from single crystal silicon, and bonded to the print head wafer.	 High accuracy is attainable 	 Two part construction High cost Requires precision alignment Nozzles may be clogged by adhesive 	◆ K. Bean, IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, 1978, pp 1185-1195 ◆ Xerox 1990 Hawkins et al., USP 4,899,181
Glass capillaries	Fine glass capillaries are drawn from glass tubing. This method has been used for making individual nozzles, but is difficult to use for bulk manufacturing of print heads with thousands of nozzles.	 No expensive equipment required Simple to make single nozzles 	 Very small nozzle sizes are difficult to form Not suited for mass production 	• 1970 Zoltan USP 3,683,212

Monolithic,	The nozzle plate is deposited as a	 ◆ High accuracy (<1 µm) 	◆ Requires sacrificial layer under the	◆ Silverbrook, EP 0771
surface micro-	layer using standard VLSI deposition	◆ Monolithic	nozzle plate to form the nozzle	658 A2 and related
machined	techniques. Nozzles are etched in the	◆ Low cost	chamber	patent applications
using VLSI	nozzle plate using VLSI lithography	◆ Existing processes can be	 Surface may be fragile to the touch 	◆ IJ01, IJ02, IJ04, IJ11
lithographic	and etching.	nsed		◆ IJ12, IJ17, IJ18, IJ20
processes				◆ 1J22, 1J24, 1J27, 1J28
-				◆ IJ29, IJ30, IJ31, IJ32
				◆ IJ33, IJ34, IJ36, IJ37
				◆ IJ38, IJ39, IJ40, IJ41
				◆ IJ42, IJ43, IJ44
Monolithic,	The nozzle plate is a buried etch stop	 ◆ High accuracy (<1 μm) 	 Requires long etch times 	◆ IJ03, IJ05, IJ06, IJ07
etched	in the wafer. Nozzle chambers are	◆ Monolithic	 Requires a support wafer 	◆ IJ08, IJ09, IJ10, IJ13
through	etched in the front of the wafer, and	◆ Low cost		◆ IJ14, IJ15, IJ16, IJ19
substrate	the wafer is thinned from the back	 ♦ No differential expansion 		◆ IJ21, IJ23, IJ25, IJ26
	stue, 100zales are then etched in the etch stop layer.			
No nozzle	Various methods have been tried to	 ♦ No nozzles to become 	◆ Difficult to control drop position	◆ Ricoh 1995 Sekiya et
plate	eliminate the nozzles entirely, to	clogged	accurately	al USP 5,412,413
	prevent nozzle clogging. These		 Crosstalk problems 	♦ 1993 Hadimioglu et
	include thermal bubble mechanisms			al EUP 550,192
·	and acoustic lens mechanisms			◆ 1993 Elrod et al EUP 572,220
Trough	Each drop ejector has a trough	 ◆ Reduced manufacturing 	◆ Drop firing direction is sensitive to	◆ IJ35
	through which a paddle moves.	complexity	wicking.	
	There is no nozzle plate.	♦ Monolithic		
Nozzle slit	The elimination of nozzle holes and	 ♦ No nozzles to become 	 Difficult to control drop position 	◆ 1989 Saito et al USP
instead of	replacement by a slit encompassing	clogged	accurately	4,799,068
individual	many actuator positions reduces		Crosstalk problems	
nozzles	nozzle clogging, but increases crosstalk due to ink surface waves			

DROP EJECTION DIRECTION

Ejection direction	Description	Advantages	Disadvantages	Examples
Edge ('edge shooter')	Ink flow is along the surface of the chip, and ink drops are ejected from the chip edge.	 Simple construction No silicon etching required Good heat sinking via substrate Mechanically strong Ease of chip handing 	 Nozzles limited to edge High resolution is difficult Fast color printing requires one print head per color 	 Canon Bubblejet 1979 Endo et al GB patent 2,007,162 Xerox heater-in-pit 1990 Hawkins et al USP 4,899,181 Tone-jet
Surface ('roof shooter')	Ink flow is along the surface of the chip, and ink drops are ejected from the chip surface, normal to the plane of the chip.	 No bulk silicon etching required Silicon can make an effective heat sink Mechanical strength 	 Maximum ink flow is severely restricted 	 Hewlett-Packard TIJ 1982 Vaught et al USP 4,490,728 1J02, IJ11, IJ12, IJ20 IJ22
Through chip, forward ('up shooter')	Ink flow is through the chip, and ink drops are ejected from the front surface of the chip.	 High ink flow Suitable for pagewidth print High nozzle packing density therefore low manufacturing cost 	 ◆ Requires bulk silicon etching 	 Silverbrook, EP 0771 658 A2 and related patent applications IJ04, IJ17, IJ18, IJ24 IJ27-IJ45
Through chip, reverse ('down shooter')	Ink flow is through the chip, and ink drops are ejected from the rear surface of the chip.	 High ink flow Suitable for pagewidth print High nozzle packing density therefore low manufacturing cost 	 Requires wafer thinning Requires special handling during manufacture 	 1101, 1103, 1105, 1106 1107, 1108, 1109, 1110 1113, 1114, 1115, 1116 1119, 1121, 1123, 1125 1126
Through actuator	Ink flow is through the actuator, which is not fabricated as part of the same substrate as the drive transistors.	 Suitable for piezoelectric print heads 	 Pagewidth print heads require several thousand connections to drive circuits Cannot be manufactured in standard CMOS fabs Complex assembly required 	 Epson Stylus Tektronix hot melt piezoelectric ink jets

INK TYPE

Ink type	Description	Advantages	Disadvantages	Examples
Aqueous, dye	Water based ink which typically contains: water, dye, surfactant, humectant, and biocide. Modern ink dyes have high waterfastness, light fastness	Environmentally friendly No odor	 Slow drying Corrosive Bleeds on paper May strikethrough Cockles paper 	 Most existing inkjets All IJ series ink jets Silverbrook, EP 0771 658 A2 and related patent applications
Aqueous, pigment	Water based ink which typically contains: water, pigment, surfactant, humectant, and biocide. Pigments have an advantage in reduced bleed, wicking and strikethrough.	 Environmentally friendly No odor Reduced bleed Reduced wicking Reduced strikethrough 	 Slow drying Corrosive Pigment may clog nozzles Pigment may clog actuator mechanisms Cockles paper 	 102, 1104, 1121, 1126 1127, 1130 Silverbrook, EP 0771 658 A2 and related patent applications Piezoelectric ink-jets Thermal ink jets (with significant restrictions)
Methyl Ethyl Ketone (MEK)	MEK is a highly volatile solvent used for industrial printing on difficult surfaces such as aluminum cans.	Very fast dryingPrints on various substrates such as metals and plastics	◆ Odorous◆ Flammable	 All IJ series ink jets
Alcohol (ethanol, 2- butanol, and others)	Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer photographic printing.	 Fast drying Operates at sub-freezing temperatures Reduced paper cockle Low cost 	Slight odorFlammable	 All IJ series ink jets

Phase change (hot melt)	The ink is solid at room temperature, and is melted in the print head before jetting. Hot melt inks are usually wax based, with a melting point around 80 °C. After jetting the ink freezes almost instantly upon contacting the print medium or a transfer roller.	 No drying time- ink instantly freezes on the print medium Almost any print medium can be used No paper cockle occurs No wicking occurs No bleed occurs 	 High viscosity Printed ink typically has a 'waxy' feel Printed pages may 'block' Ink temperature may be above the curie point of permanent magnets Ink heaters consume power Long warm-up time 	 Tektronix hot melt piezoelectric ink jets 1989 Nowak USP 4,820,346 All IJ series ink jets
		 ♦ No strikethrough occurs 		
iio	Oil based inks are extensively used in offset printing. They have advantages in improved characteristics on paper (especially	 High solubility medium for some dyes Does not cockle paper Does not wick through 	 High viscosity: this is a significant limitation for use in inkjets, which usually require a low viscosity. Some short chain and multi-branched oils 	 ◆ All IJ series ink jets
	no wicking or cockle). Oil soluble dies and pigments are required.	paper	have a sufficiently low viscosity. Slow drying	
Microemulsion	A microemulsion is a stable, self forming emulsion of oil, water, and surfactant. The characteristic drop	Stops ink bleedHigh dye solubilityWater, oil, and amphiphilic	 Viscosity higher than water Cost is slightly higher than water based ink 	 ◆ All IJ series ink jets
	size is less than 100 nm, and is determined by the preferred curvature of the surfactant.	soluble dies can be used • Can stabilize pigment suspensions	 High surfactant concentration required (around 5%) 	

Ink Jet Printing

5

10

A large number of new forms of ink jet printers have been developed to facilitate alternative ink jet technologies for the image processing and data distribution system. Various combinations of ink jet devices can be included in printer devices incorporated as part of the present invention. Australian Provisional Patent Applications relating to these ink jets which are specifically incorporated by cross reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PO8066	15-Jul-97	Image Creation Method and Apparatus (IJ01)	6,227,652 (July 10, 1998)
PO8072	15-Jul-97	Image Creation Method and Apparatus (IJ02)	6,213,588 (July 10, 1998)
PO8040	15-Jul-97	Image Creation Method and Apparatus (IJ03)	6,213,589 (July 10, 1998)
PO8071	15-Jul-97	Image Creation Method and Apparatus (IJ04)	6,231,163 (July 10, 1998)
PO8047	15-Jul-97	Image Creation Method and Apparatus (IJ05)	6,247,795 (July 10, 1998)
PO8035	15-Jul-97	Image Creation Method and Apparatus (IJ06)	6,394,581 (July 10, 1998)
PO8044	15-Jul-97	Image Creation Method and Apparatus (IJ07)	6,244,691 (July 10, 1998)
PO8063	15-Jul-97	Image Creation Method and Apparatus (IJ08)	6,257,704 (July 10, 1998)
PO8057	15-Jul-97	Image Creation Method and Apparatus (IJ09)	6,416,168 (July 10, 1998)
PO8056	15-Jul-97	Image Creation Method and Apparatus (IJ10)	6,220,694 (July 10, 1998)
PO8069	15-Jul-97	Image Creation Method and Apparatus (IJ11)	6,257,705 (July 10, 1998)
PO8049	15-Jul-97	Image Creation Method and Apparatus (IJ12)	6,247,794 (July 10, 1998)

15-Jul-97	Image Creation Method and Apparatus (IJ13)	6,234,610 (July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,247,793
15_Iu1_07		(July 10, 1998) 6,264,306
15-341-57	, -	(July 10, 1998)
15-Jul-97		6,241,342
	(IJ16)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,247,792
	(U17)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,264,307
	(IJ18)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,254,220
	(IJ19)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,234,611
	(IJ20)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,302,528
	(IJ21)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,283,582
	(IJ22)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,239,821
	(IJ23)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus (IJ24)	6,338,547 (July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,247,796
	(IJ25)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	09/113,122
	(IJ26)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,390,603
	(IJ27)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,362,843
	(IJ28)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,293,653
	(IJ29)	(July 10, 1998)
15-Jul-97	Image Creation Method and Apparatus	6,312,107
	(IJ30)	(July 10, 1998)
23-Sep-97	Image Creation Method and Apparatus	6,227,653
	(U31)	(July 10, 1998)
23-Sep-97	Image Creation Method and Apparatus	6,234,609
	(IJ32)	(July 10, 1998)
	15-Jul-97 23-Sep-97	Internation

PP0891	12-Dec-97	Image Creation Method and Apparatus	6,188,415
		(IJ34)	(July 10, 1998)
PP0890	12-Dec-97	Image Creation Method and Apparatus	6,227,654
_		(IJ35)	(July 10, 1998)
PP0873	12-Dec-97	Image Creation Method and Apparatus	6,209,989
		(IJ36)	(July 10, 1998)
PP0993	12-Dec-97	Image Creation Method and Apparatus	6,247,791
		(IJ37)	(July 10, 1998)
PP0890	12-Dec-97	Image Creation Method and Apparatus	6,336,710
		(IJ38)	(July 10, 1998)
PP1398	19-Jan-98	An Image Creation Method and Apparatus	6,217,153
	(IJ39)	(July 10, 1998)	
PP2592 25-Mar-98	An Image Creation Method and Apparatus	6,416,167	
		(U40)	(July 10, 1998)
PP2593	25-Mar-98	Image Creation Method and Apparatus	6,243,113
		(IJ41)	(July 10, 1998)
PP3991	9-Jun-98	Image Creation Method and Apparatus	6,283,581
		(IJ42)	(July 10, 1998)
PP3987	9-Jun-98	Image Creation Method and Apparatus	6,247,790
		(IJ43)	(July 10, 1998)
PP3985	9-Jun-98	Image Creation Method and Apparatus	6,260,953
		(IJ44)	(July 10, 1998)
PP3983	9-Jun-98	Image Creation Method and Apparatus	6,267,469
		(IJ45)	(July 10, 1998)

Ink Jet Manufacturing

5

10

Further, the present application may utilize advanced semiconductor fabrication techniques in the construction of large arrays of ink jet printers. Suitable manufacturing techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PO7935 15-Jul-97	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM01)	6,224,780
			(July 10, 1998)
PO7936	15-Jul-97	1	6,235,212
		Apparatus (IJM02)	(July 10, 1998)
PO7937	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM03)	6,280,643

ART10US

			(July 10, 1998)
PO8061	15-Jul-97	A Method of Manufacture of an Image Creation	6,284,147
		Apparatus (IJM04)	(July 10, 1998)
PO8054			6,214,244
		Apparatus (IJM05)	(July 10, 1998)
PO8065	15-Jul-97	A Method of Manufacture of an Image Creation	6,071,750
		Apparatus (IJM06)	(July 10, 1998)
PO8055	15-Jul-97	A Method of Manufacture of an Image Creation	6,267,905
		Apparatus (IJM07)	(July 10, 1998)
PO8053	15-Jul-97	A Method of Manufacture of an Image Creation	6,251,298
	<u> </u>	Apparatus (IJM08)	(July 10, 1998)
PO8078	15-Jul-97	A Method of Manufacture of an Image Creation	6,258,285
		Apparatus (IJM09)	(July 10, 1998)
PO7933	15-Jul-97	A Method of Manufacture of an Image Creation	i
DO7050	15 T-1 07	Apparatus (IJM10)	(July 10, 1998)
PO7950	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM11)	1 * '
PO7949	15-Jul-97	A Method of Manufacture of an Image Creation	(July 10, 1998)
101949	13-Jul-97	Apparatus (IJM12)	(July 10, 1998)
DO0060	157105		
PO8060	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM13)	09/113,124
PO8059	15-Jul-97		(July 10, 1998)
FO8039	13-Jul-9/	A Method of Manufacture of an Image Creation Apparatus (IJM14)	6,231,773
PO8073	15-Jul-97	A Method of Manufacture of an Image Creation	(July 10, 1998) 6,190,931
	10001	Apparatus (IJM15)	(July 10, 1998)
PO8076	15-Jul-97	A Method of Manufacture of an Image Creation	6,248,249
		Apparatus (IJM16)	(July 10, 1998)
PO8075	15-Jul-97	A Method of Manufacture of an Image Creation	6,290,862
		Apparatus (IJM17)	(July 10, 1998)
PO8079	15-Jul-97	A Method of Manufacture of an Image Creation	6,241,906
		Apparatus (IJM18)	(July 10, 1998)
PO8050	15-Jul-97	A Method of Manufacture of an Image Creation	09/113,116
		Apparatus (IJM19)	(July 10, 1998)
PO8052	15-Jul-97	A Method of Manufacture of an Image Creation	6,241,905
		Apparatus (IJM20)	(July 10, 1998)
PO7948	15-Jul-97	A Method of Manufacture of an Image Creation	6,451,216
		Apparatus (IJM21)	(July 10, 1998)
PO7951	15-Jul-97	A Method of Manufacture of an Image Creation	6,231,772
		Apparatus (IJM22)	(July 10, 1998)
PO8074	15-Jul-97	A Method of Manufacture of an Image Creation	6,274,056
D0 = 0 ::		Apparatus (IJM23)	(July 10, 1998)
PO7941	15-Jul-97	A Method of Manufacture of an Image Creation	6,290,861

		Apparatus (IJM24)	(July 10, 1998)
	 		<u> </u>
PO8077	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM25)	6,248,248 (July 10, 1998)
PO8058	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM26)	6,306,671 (July 10, 1998)
PO8051	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM27)	6,331,258 (July 10, 1998)
PO8045	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM28)	(July 10, 1998)
PO7952	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM29)	6,294,101 (July 10, 1998)
PO8046	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM30)	6,416,679 (July 10, 1998)
PO8503	11-Aug-97	A Method of Manufacture of an Image Creation Apparatus (IJM30a)	6,264,849 (July 10, 1998)
PO9390	23-Sep-97	A Method of Manufacture of an Image Creation Apparatus (IJM31)	6,254,793 (July 10, 1998)
PO9392	23-Sep-97	Apparatus (IJM32)	6,235,211 (July 10, 1998)
PP0889	12-Dec-97	A Method of Manufacture of an Image Creation Apparatus (IJM35)	6,235,211 (July 10, 1998)
PP0887	12-Dec-97	Apparatus (IJM36)	6,264,850 (July 10, 1998)
PP0882	12-Dec-97	A Method of Manufacture of an Image Creation Apparatus (IJM37)	6,258,284 (July 10, 1998)
PP0874	12-Dec-97	A Method of Manufacture of an Image Creation Apparatus (IJM38)	6,258,284 (July 10, 1998)
PP1396	19-Jan-98	A Method of Manufacture of an Image Creation Apparatus (IJM39)	6,228,668 (July 10, 1998)
PP2591	25-Mar-98	A Method of Manufacture of an Image Creation Apparatus (IJM41)	6,180,427 (July 10, 1998)
PP3989	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM40)	6,171,875 (July 10, 1998)
PP3990	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM42)	6,267,904 (July 10, 1998)
PP3986	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM43)	6,245,247 (July 10, 1998)
PP3984	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM44)	6,245,247 (July 10, 1998)
PP3982	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM45)	6,231,148 (July 10, 1998)

Fluid Supply

5

10

15

Further, the present application may utilize an ink delivery system to the ink jet head. Delivery systems relating to the supply of ink to a series of ink jet nozzles are described in the following Australian provisional patent specifications, the disclosure of which are hereby incorporated by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PO8003	15-Jul-97	Supply Method and Apparatus (F1)	6,350,023 (July 10, 1998)
PO8005	15-Jul-97	Supply Method and Apparatus (F2)	6,318,849 (July 10, 1998)
PO9404	23-Sep-97	A Device and Method (F3)	09/113,101 (July 10, 1998)

MEMS Technology

Further, the present application may utilize advanced semiconductor microelectromechanical techniques in the construction of large arrays of ink jet printers. Suitable microelectromechanical techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PO7943	15-Jul-97	A device (MEMS01)	
PO8006	15-Jul-97	A device (MEMS02)	6,087,638 (July 10, 1998)
PO8007	15-Jul-97	A device (MEMS03)	09/113,093 (July 10, 1998)
PO8008	15-Jul-97	A device (MEMS04)	6,340,222 (July 10, 1998)
PO8010	15-Jul-97	A device (MEMS05)	6,041,600 (July 10, 1998)
PO8011	15-Jul-97	A device (MEMS06)	6,299,300 (July 10, 1998)
PO7947	15-Jul-97	A device (MEMS07)	6,067,797 (July 10, 1998)
PO7945	15-Jul-97	A device (MEMS08)	09/113,081 (July 10, 1998)

ART10US

PO7944	15-Jul-97	A device (MEMS09)	6,286,935
			(July 10, 1998)
PO7946	15-Jul-97	A device (MEMS10)	6,044,646
			(July 10, 1998)
PO9393	23-Sep-97	A Device and Method (MEMS11) 09/113,065
			(July 10, 1998)
PP0875	12-Dec-97	A Device (MEMS12)	09/113,078
			(July 10, 1998)
PP0894	12-Dec-97	A Device and Method (MEMS13	09/113,075
			(July 10, 1998)

IR Technologies

5

Further, the present application may include the utilization of a disposable camera system such as those described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PP0895	12-Dec-97	An Image Creation Method and	6,231,148
		Apparatus (IR01)	(July 10, 1998)
PP0870	12-Dec-97	A Device and Method (IR02)	09/113,106
			(July 10, 1998)
PP0869	12-Dec-97	A Device and Method (IR04)	6,293,658
			(July 10, 1998)
PP0887	12-Dec-97	1 -	09/113,104
		(IR05)	(July 10, 1998)
PP0885	12-Dec-97	An Image Production System (IR06)	6,238,033
DD0004	12-Dec-97	Turner Constitution 1 A	(July 10, 1998) 6,312,070
PP0884	12-Dec-97	Image Creation Method and Apparatus (IR10)	(July 10, 1998)
PP0886	12-Dec-97	Image Creation Method and Apparatus	6,238,111
		(IR12)	(July 10, 1998)
PP0871	12-Dec-97	A Device and Method (IR13)	09/113,086
PP0876	12-Dec-97	An Income Described Mode 1 and	(July 10, 1998)
FF0870	12-Dec-97	An Image Processing Method and Apparatus (IR14)	09/113,094 (July 10, 1998)
PP0877	12-Dec-97	A Device and Method (IR16)	6,378,970
		(200)	(July 10, 1998)
PP0878	12-Dec-97	A Device and Method (IR17)	6,196,739
·			(July 10, 1998)
PP0879	12-Dec-97	A Device and Method (IR18)	09/112,774
PP0883	12-Dec-97	A Device and Method (IR19)	(July 10, 1998) 6,270,182
	12-1500-57	A Device and Method (11(19),	(July 10, 1998)
PP0880	12-Dec-97	A Device and Method (IR20)	6,152,619
			(July 10, 1998)
PP0881	12-Dec-97	A Device and Method (IR21)	09/113,092
	<u> </u>		(July 10, 1998)

DotCard Technologies

5

10

Further, the present application may include the utilization of a data distribution system such as that described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PP2370	16-Mar-98	Data Processing Method and Apparatus (Dot01)	09/112,781 (July 10, 1998)
PP2371	16-Mar-98	Data Processing Method and Apparatus (Dot02)	09/113,052 (July 10, 1998)

Artcam Technologies

Further, the present application may include the utilization of camera and data processing techniques such as an Artcam type device as described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PO7991	15-Jul-97	Image Processing Method and Apparatus (ART01)	09/113,060
			(July 10, 1998)
PO7988	15-Jul-97	Image Processing Method and Apparatus (ART02)	6,476,863
			(July 10, 1998)
PO7993	1,5-Jul-97	Image Processing Method and Apparatus (ART03)	09/113,073
			(July 10, 1998)
PO9395	23-Sep-97	Data Processing Method and Apparatus (ART04)	6,322,181
			(July 10, 1998)
PO8017	15-Jul-97	Image Processing Method and Apparatus (ART06)	09/112,747
			(July 10, 1998)
PO8014	15-Jul-97	Media Device (ART07)	6,227,648
			(July 10, 1998)
PO8025	15-Jul-97	Image Processing Method and Apparatus (ART08)	09/112,750
			(July 10, 1998)
PO8032	15-Jul-97	Image Processing Method and Apparatus (ART09)	09/112,746
			(July 10, 1998)
PO7999	15-Jul-97	Image Processing Method and Apparatus (ART10)	09/112,743
			(July 10, 1998)

PO7998	15-Jul-97	Image Processing Method and Apparatus (ART11)	09/112,742 (July 10, 1998)
PO8031	15-Jul-97	Image Processing Method and Apparatus	09/112,741
	13-341-97	(ART12)	(July 10, 1998)
PO8030	15-Jul-97	Media Device (ART13)	6,196,541
	13-341-97	Wedia Device (ART13)	(July 10, 1998)
PO7997	15-Jul-97	Media Device (ART15)	6,195,150
10/99/	13-341-97	Wedia Device (ART13)	
	 		(July 10, 1998)
PO7979	15-Jul-97	Media Device (ART16)	6,362,868
			(July 10, 1998)
PO8015	15-Jul-97	Media Device (ART17)	09/112,738
			(July 10, 1998)
PO7978	15-Jul-97	Media Device (ART18)	09/113,067
			(July 10, 1998)
PO7982	15-Jul-97	Data Processing Method and Apparatus	6,431,669
		(ART19)	(July 10, 1998)
PO7989	15-Jul-97	Data Processing Method and Apparatus	6,362,869
2 7 7 0 7	15-341-57	(ART20)	(July 10, 1998)
PO8019	15-Jul-97	Media Processing Method and Apparatus	6,472,052
		(ART21)	(July 10, 1998)
PO7980	15-Jul-97	Image Processing Method and Apparatus	6,356,715
		(ART22)	(July 10, 1998)
PO8018	15-Jul-97	Image Processing Method and Apparatus	09/112,777
		(ART24)	(July 10, 1998)
PO7938	15-Jul-97	Image Processing Method and Apparatus (ART25)	09/113,224
- 0 / 5 0			(July 10, 1998)
PO8016	15-Jul-97	Image Processing Method and Apparatus (ART26)	6,366,693
			(July 10, 1998)
PO8024	15-Jul-97	Image Processing Method and Apparatus	6,329,990
·		(ART27)	(July 10, 1998)
PO7940	15-Jul-97	Data Processing Method and Apparatus	09/113,072
		(ART28)	(July 10, 1998)
PO7939	15-Jul-97	Data Processing Method and Apparatus (ART29)	09/112,785
			(July 10, 1998)
PO8501	11-Aug-97	Image Processing Method and Apparatus	6,137,500
		(ART30)	(July 10, 1998)
PO8500	11-Aug-97	Image Processing Method and Apparatus (ART31)	09/112,796
			(July 10, 1998)
PO7987	15-Jul-97	Data Processing Method and Apparatus	09/113,071
		(ART32)	(July 10, 1998)
PO8022	15-Jul-97	Image Processing Method and Apparatus	6,398,328

		(ART33)	(July 10, 1998)
PO8497	11-Aug-97	Image Processing Method and Apparatus (ART34)	09/113,090 (July 10, 1998)
PO8020	15-Jul-97	Data Processing Method and Apparatus (ART38)	6,431,704 (July 10, 1998)
PO8023	15-Jul-97	Data Processing Method and Apparatus (ART39)	09/113,222 (July 10, 1998)
PO8504	11-Aug-97	Image Processing Method and Apparatus (ART42)	09/112,786 (July 10, 1998)
PO8000	15-Jul-97	Data Processing Method and Apparatus (ART43)	6,415,054 (July 10, 1998)
PO7977	15-Jul-97	Data Processing Method and Apparatus (ART44)	09/112,782 (July 10, 1998)
PO7934	15-Jul-97	Data Processing Method and Apparatus (ART45)	09/113,056 (July 10, 1998)
PO7990	15-Jul-97	Data Processing Method and Apparatus (ART46)	09/113,059 (July 10, 1998)
PO8499	11-Aug-97	Image Processing Method and Apparatus (ART47)	6,486,886 (July 10, 1998)
PO8502	11-Aug-97	Image Processing Method and Apparatus (ART48)	6,381,361 (July 10, 1998)
PO7981	15-Jul-97	Data Processing Method and Apparatus (ART50)	6,317,192 (July 10, 1998)
PO7986	15-Jul-97	Data Processing Method and Apparatus (ART51)	09/113,057 (July 10, 1998)
PO7983	15-Jul-97	Data Processing Method and Apparatus (ART52)	09/113,054 (July 10, 1998)
PO8026	15-Jul-97	Image Processing Method and Apparatus (ART53)	09/112,752 (July 10, 1998)
PO8027	15-Jul-97	Image Processing Method and Apparatus (ART54)	09/112,759 (July 10, 1998)
PO8028	15-Jul-97	Image Processing Method and Apparatus (ART56)	09/112,757 (July 10, 1998)
PO9394	23-Sep-97	Image Processing Method and Apparatus (ART57)	6,357,135 (July 10, 1998)
PO9396	23-Sep-97	Data Processing Method and Apparatus (ART58)	09/113,107 (July 10, 1998)
PO9397	23-Sep-97	Data Processing Method and Apparatus (ART59)	6,271,931 (July 10, 1998)
PO9398	23-Sep-97	Data Processing Method and Apparatus (ART60)	6,353,772 (July 10, 1998)

PO9399	23-Sep-97	Data Processing Method and Apparatus (ART61)	6,106,147 (July 10, 1998)
PO9400	23-Sep-97	Data Processing Method and Apparatus (ART62)	09/112,790 (July 10, 1998)
PO9401	23-Sep-97	Data Processing Method and Apparatus (ART63)	6,304,291 (July 10, 1998)
PO9402	23-Sep-97	Data Processing Method and Apparatus (ART64)	09/112,788 (July 10, 1998)
PO9403	23-Sep-97	Data Processing Method and Apparatus (ART65)	6,305,770 (July 10, 1998)
PO9405	23-Sep-97	Data Processing Method and Apparatus (ART66)	6,289,262 (July 10, 1998)
PP0959	16-Dec-97	A Data Processing Method and Apparatus (ART68)	6,315,200 (July 10, 1998)
PP1397	19-Jan-98	A Media Device (ART69)	6,217,165 (July 10, 1998)