Cache-oblivious algoritmy a ich vizualizácia

Ladislav Pápay

Vedúci: Mgr. Jakub Kováč, PhD.

16.04.2014

Ciele práce

- Vysvetlenie pamäťového modelu
- Prehľad cache-oblivious algoritmov a DŠ
- Vizualizácia vybraných DŠ

External-memory model

- Cache celkovej veľkosti M
- ► Obsahuje $N = \frac{M}{B}$ blokov veľkosti B
- Disk (neobmedzenej) veľkosti
- Počíta sa počet prenesených blokov (operácie v cache sú zadarmo)

External-memory model

- Známe tiež ako cache-aware (kontrast voči cache-oblivious)
- ► Poznáme B a M, každá operácia čítania/zápisu na disk je explicitne vykonaná algoritmom
- Ak je cache plná musí vybrať, ktorý blok zahodí

Problémy

- Treba explicitne čítať a zapisovať bloky, riešiť asociatívnosť cache
- ▶ Čo ak sa zmenia parametre B alebo M?
- Čo v prípade viac úrovní? Treba pre každú susediacu dvojicu poznať B, M a spravovať bloky.

Úroveň	Veľkosť	Odozva
L1	pprox 128 KiB	4clk $pprox$ 1ns (pri 3.5GHz)
L2	pprox 1MiB	10-12clk $pprox$ 3ns (pri 3.5GHz)
L3	≈ 8MiB	$20\text{-}50\text{clk} \approx 10\text{ns} \text{ (pri } 3.5\text{GHz)}$
RAM	≈ 4GiB	pprox 100ns
HDD	pprox 1 TiB	pprox 0.1-10ms

- Cache-oblivious model

Cache-oblivious model

- Rovnaká architektúra, presun blokov prebieha automaticky
 - ► Predpokladá optimálne nahrádzanie blokov (offline), ale FIFO/LRU je len konštantne horšie
- Chceme (asymptoticky) rovnaký počet presunov ako optimálny cache-aware algoritmus, ale bez znalosti parametrov B a M

Statický strom

- Binárny vyhľadávací strom
- V pamäti uložený podľa van Emde Boas usporiadania
 - Rozdelíme uprostred na horný podstrom a \sqrt{N} spodných podstromov veľkosti \sqrt{N}
 - ► Tie rekurzívne rozdelíme a uložíme do súvislého bloku pamäte

Analýza

- Vyhľadávanie ako v klasickom BST (cache-ignorant prístup)
 - ightharpoonup Pozrime sa na takú úroveň delenia, že sú podstromy $\leq B$ a teda zmestia sa do najviac dvoch blokov
 - ► Tieto podstromy majú výšku $< \lg B$ ale $\ge \frac{1}{2} \lg B$
 - ▶ Vyhladávanie prejde cestu od koreňa do listu dĺžky lg N
 - Prejdeme najviac cez lg N / ½ lg B podstromov a na každý treba najviac 2 pamäťové presuny
- ▶ Spolu teda $\mathcal{O}(\log_B N)$ čo je spodná hranica pre external-memory model

Ordered file

☐ Ordered file

- Problém: udržiavať usporiadanú postupnosť prvkov, možnosť vkladať/odstraňovať, ako pole veľkosti $\mathcal{O}(N) \Rightarrow$ medzery O(1), vieme rýchlo prechádzať
- Riešenie: rozdelíme súvislé pole na imaginárne bloky veľkosti
 O(log N) a vyrobíme nad nimi imaginárny úplný binárny strom
- Hustota vrcholu bude počet plných kapacita, udržiavame podla istých hraníc aby nebolo príliš plné (nie je kam vložiť) ani príliš prázdne (pomalé prechádzanie)
- Vloženie prvku: Upravíme blok a postupujeme hore v strome, kým nenájdeme vrchol, ktorý má hustotu v medziach a rovnomerne prerozdelíme prvky v príslušných blokoch
- Zmazanie prvku podobne
- Každá operácia upraví súvislý interval veľkosti O(lg² N) (amortizovane, dá sa aj worst-case)

Algoritmy a dátové štruktúry

└─ Ordered file

Dynamický strom

- Skombinujeme predošlé dve štruktúry a dostaneme dynamický vyhľadávací strom
- Máme OF v ktorom sú kľúče a medzery, použijeme ako listy pre BST uložený v vEB layoute
- Vo vnútorných uzloch ukladáme maximum z podstromov

binary tree in vEB layout

ordered file structure

- ▶ Vyhľadávanie: rovnako ako v statickom $\mathcal{O}(\log_B N)$
- Vkladanie
 - Nájdeme nasledujúci kľúč v OF, vložíme nový za neho
 - Musíme upraviť strom pre zmenený interval veľkosti $\mathcal{O}(\lg^2 N)$
 - Prechod cez zasiahnuté vnútorné uzly vyžaduje $\mathcal{O}(\frac{\lg^2 N}{B})$ pamäťových operácií
- ▶ Vkladanie a odstraňovanie spolu potrebuje $\mathcal{O}(\log_B N + \frac{\lg^2 N}{B})$
- lacktriangle Dá sa zredukovať na $\mathcal{O}(\log_B N)$ ak ukladáme $\mathcal{O}(\log N)$ bloky

Vizualizácie