Welcome Tutorial :-) Tutorial 6

GAO Ming

SE & DaSE @ ECNU

Foundations of Data Science, 2016

Tutorial 6

- Let $I(\theta)$ be log-likelihood. When there is not closed-form for equation $\nabla I(\theta) = 0$, i.e., $\frac{dI(\theta)}{d\theta} = 0$, please write down your pseudocode to find the MLE via employing batch gradient ascent procedures.
- ② Given a set of n points (\mathbf{x}_i, y_i) , where $\mathbf{x}_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$, linear regression is to find $\beta_i, i = 0, 1, \cdots, p$, s.t., $\min_{\beta} J = \frac{1}{2} \sum_{i=1}^n \|y_i \mathbf{X}_i^T \boldsymbol{\beta}\|^2$, where $\mathbf{X}_i^T = (1 \ x_{i1} \ \cdots \ x_{ip})$. To avoid overfitting, please estimation $\boldsymbol{\beta}$ via minimizing the penalized residual sum of squares (adding a term of regularization) $\min_{\beta} \widehat{J} = \sum_{i=1}^n \|y_i \mathbf{X}_i^T \boldsymbol{\beta}\|^2 + \frac{1}{2} \|\boldsymbol{\beta}\|^2$.
- **3** Given an undirected graph G of n vertices associated with adjacency matrix A, please prove the following conclusions:
 - # triangles = $\frac{1}{6}$ Trace(A³).
 - # triangles = $\frac{1}{6}\sum_{i=1}^{n}\lambda_{i}^{3}$, where λ_{i} is the eigenvalue of A.

4 D > 4 D > 4 E > 4 E > E 99 P