# PSO: Optimización por enjambre de partículas

### Introducción

Inspirado en la naturaleza, el comportamiento social y los movimientos dinámicos con comunicaciones de insectos, aves y peces.





#### Introducción

► En 1986, Craig Reynolds describió este proceso en 3 comportamientos simples:







#### <u>Separación</u>

Cada agente se trata de mover lejos de sus vecinos si está muy cerca

#### **Alineación**

Cada agente se dirige hacia la dirección promedio de sus vecinos

#### Cohesión

Cada agente trata de ir hacia la posición promedio de sus vecinos

## PSO: Origen

- Kennedy y Eberhart (1995) incluyeron un granero en una simulación simplificada tipo Reynolds tal que:
- Cada agente era atraído hacia la localización del granero.
- Cada agente recordaba su posición más cercana al granero.
- Cada agente compartía información con sus vecinos (originalmente con todos los agentes) sobre su localización más cercana al granero.

#### Introducción

- Aplicación a la optimización: optimización del enjambre de partículas.
- Propuesto por James Kennedy y Russell Eberhart (1995).
- Combina experiencias personales con experiencias sociales.



- Utiliza una serie de agentes (partículas) que constituyen un enjambre que se mueve en el espacio de soluciones buscando la mejor solución.
- Cada partícula en el espacio de búsqueda ajusta su "vuelo" de acuerdo con su propia experiencia, y a la experiencia de otras partículas.
- Los cambios en la posición de una partícula son influenciados por la experiencia o conocimiento de sus vecinos (algoritmo cooperativo simbiótico).
- Proceso de búsqueda donde las partículas regresan estocásticamente a las regiones exitosas previas del espacio de búsqueda.
- Comportamiento colectivo: "Simulación del éxito de los individuos vecinos y del éxito propio".

- Cada partícula ajusta dinámicamente su velocidad de desplazamiento correspondiente a las experiencias de vuelo de sí misma y de sus colegas.
- Cada partícula modifica su posición de acuerdo con:
  - Su posición actual
  - Su velocidad actual
  - La distancia entre su posición actual y la mejor conocida
  - La distancia entre su posición actual y la mejor conocida



- Variables del algoritmo
  - Población de agentes
  - pi: posición del agente *i* en el espacio de soluciones
  - f: función objetivo
  - v<sub>i</sub>: Velocidad del i del agente
  - ▶ V (*i*): vecindad del agente *i* (fijo)
- ► El concepto de vecindario en PSO no es el mismo que el utilizado en otras búsquedas metaheurísticas. En este caso se refiere a las partículas que pueden comunicarse entre si.
- Dos vecindarios comunes son gbest y lbest.

# PSO: gbest vs lbest

- En ambos enfoques la actualización del componente social de la velocidad conduce a movimientos hacia la mejor partícula global (vecindades traslapadas en lbest PSO)
- **b** gbest PSO es un caso especial de lbest PSO si  $n\mathcal{M}i=ns$
- Su convergencia difiere en dos aspectos:
  - gbest PSO converge más rápido por la fuerte interconectividad entre partículas pero con menor diversidad que lbest PSO.
  - ▶ Debido a su gran diversidad, lbest PSO es menos susceptible a estancarse en un mínimo local. En general (dependiendo del problema), la topología empleada por lbest PSO tiene mejor desempeño

# PSO: Pseudocódigo

```
[x^*] = PSO()
P = Inicializa_Poblacion();
For i=1 to it_max //Número de generaciones
   For each partícula p en P do
     f.o. = f(p);
     If fp es mejor que f(pBest)
         pBest = p;
         fp = f(pBest);
     end if
   end for
   gBest = best p in P;
   For each partícula p en P do
      v = v + c1*rand*(pBest - p) + c2*rand*(gBest - p);
       p = p + v;
   end for
end for
```

```
Regla de actualización de partículas
```

$$p = p + v$$

con

$$v = v + c1 * rnd(0,1) * (pBest - p) + c2 * rand * (gBest - p)$$

#### Dónde

p: posición de la partícula

v: velocidad de la partícula

c1: peso de la información local

c2: peso de la información global

pBest: mejor posición de la partícula

gBest: mejor posición del enjambre

- Número de partículas generalmente entre 10 y 50
- ► C1 es la importancia del mejor valor personal
- C2 es la importancia del mejor valor del vecindario
- Usualmente C1 + C2 = 4 (valor elegido empíricamente)
- Si la velocidad es demasiado baja → algoritmo demasiado lento
- Si la velocidad es demasiado alta → algoritmo demasiado inestable

#### Velocidad de la partícula:

$$\mathbf{v}_{i}^{t+1} = \underbrace{\mathbf{v}_{i}^{t}}_{i} + \underbrace{\mathbf{c}_{1}\mathbf{U}_{1}^{t}(\mathbf{p}\mathbf{b}_{i}^{t} - \mathbf{p}_{i}^{t})}_{\text{Influencia personal}} + \underbrace{\mathbf{c}_{2}\mathbf{U}_{2}^{t}(\mathbf{g}\mathbf{b}^{t} - \mathbf{p}_{i}^{t})}_{\text{Influencia social}}$$



- Hace que la partícula se mueva en la misma dirección y con la misma velocidad
- Mejora al individuo.
  - Hace que la partícula regrese a una posición anterior, mejor que la actual
- Conservador
- Hace que la partícula siga la dirección de los mejores vecinos

# PSO: Diversificación e intensificación

$$\mathbf{v}_{i}^{t+1} = \mathbf{v}_{i}^{t} + \mathbf{c}_{1}\mathbf{U}_{1}^{t}(\mathbf{p}\mathbf{b}_{i}^{t} - \mathbf{p}_{i}^{t}) + \mathbf{c}_{2}\mathbf{U}_{2}^{t}(\mathbf{g}\mathbf{b}^{t} - \mathbf{p}_{i}^{t})$$
Diversificación Intensificación

#### PSO: Inicialización

- El primer paso de PSO es inicializar el enjambre y los parámetros de control.
- Las posiciones de las partículas son inicializadas uniformemente sobre el espacio de búsqueda (la eficiencia de PSO depende de qué tan bien distribuidas se encuentren las partículas).
- Para inicializar la posición de partícula

$$p_{j,i} = p_{j,min} + rand_{i,j}[0, 1] \cdot (p_{j,max} - p_{j,min})$$

#### PSO: Inicialización

- Las velocidades se pueden inicializar en cero.
- La posición inicial es la mejor personal.
- Se busca la mejor posición para definir la mejor global.

















- Ventajas
  - Implementación simple
  - Fácil de implementar en paralelo para procesamiento concurrente
  - Muy pocos parámetros de algoritmo
  - Algoritmo de búsqueda global muy eficiente.
- Desventajas
  - Tendencia a una convergencia rápida y prematura
  - Convergencia lenta en la etapa de búsqueda fina (capacidad de búsqueda local débil)

- Muchas variantes:
  - 2-D Otsu PSO
  - Active Target PSO
  - Adaptive PSO
  - Adaptive Mutation PSO
  - Adaptive PSO Guided by Acceleration Information
  - Attractive Repulsive Particle Swarm Optimization
  - Binary PSO
  - Cooperative Multiple PSO
  - Dynamic and Adjustable PSO
  - Extended Particle Swarms
  - ...