R401: Statistical and Mathematical Foundations

Unconstrained Optimization. Static Optimization with Equality Constraints.

Lagrange Multipliers

Andrey Vassilev

General Principles and Caveats for the Optimization Module

- Emphasis on practicality over rigour
- Consequently, algorithmic approach and "recipes" rather than proofs
- Also, existence and relevant properties of various objects are often implicitly assumed
- Pathologies and mathematical peculiarities discussed only in special cases

Lecture Contents

- $oxed{1}$ Warm-up: Basic Unconstrained Optimization in \mathbb{R}^1
- 2 Unconstrained Optimization in \mathbb{R}^n

3 Static Optimization with Equality Constraints. Lagrange Multipliers

Fact 1

For a function $f: \mathbb{R} \to \mathbb{R}$ differentiable at a point x, a necessary condition for a local extreme point (i.e. a maximum or a minimum) at x is

$$f'(x) = 0.$$

Example 1

If $f(x)=ax^2+bx+c$, then f'(x)=2ax+b and the condition f'(x)=0 yields the familiar $x=-\frac{b}{2a}$ (recall your high-school days). Depending on the sign of a, this is a maximum or a minimum (What is the relationship?).

Example 2

If $f(x) = x^3$, then $f'(x) = 3x^2$ and $f'(x) = 0 \Rightarrow x = 0$. Does the function attain a maximum or a minimum at x = 0?

Example 2 (cont.)

The answer is "neither"! The point x=0 is not a local extreme point of $f(x)=x^3$.

This illustrates the pitfalls of using necessary conditions – they supply only candidates that need to be checked further.

The above examples generalize in the following manner:

Fact 2

Let a function f be n times differentiable at a point x and

$$f'(x) = f''(x) = \dots = f^{(n-1)}(x) = 0, f^{(n)} \neq 0.$$

- ① If n is odd, the point x is not an extreme point of f(x).
- ② If *n* is even and $f^{(n)}(x) > 0$, the point *x* is a minimum.
- If *n* is even and $f^{(n)}(x) < 0$, the point *x* is a maximum.

Necessary conditions

Fact 3

For a function $f: \mathbb{R}^n \to \mathbb{R}$, differentiable at a point x, a necessary condition for x to be a local extreme point is

$$f'(\mathbf{x}) = \mathbf{0},$$

where

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \ \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{ and } f'(\mathbf{x}) = \begin{pmatrix} \frac{\partial f(x_1, \dots, x_n)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x_1, \dots, x_n)}{\partial x_n} \end{pmatrix} (= \nabla f(\mathbf{x}))$$

Note: A point where the gradient of a function f vanishes is called a *critical point* or a *stationary point*. This also applies to functions on \mathbb{R}^1 .

Example 3

$$f(x,y) = x^2 + 2y^2 - 3x + xy$$

$$\frac{\partial f}{\partial x} = 2x - 3 + y = 0 \quad \Rightarrow \quad x = \frac{3 - y}{2}$$

$$\frac{\partial f}{\partial y} = 4y + x = 0 \quad \Rightarrow \quad y = -\frac{x}{4}$$

$$x = \frac{12}{7}, \ y = -\frac{3}{7}$$

The necessity of the condition $f'(\mathbf{x}) = \mathbf{0}$ has implications that are similar to the univariate case:

Example 4

Consider the function $f(x,y)=x^2-y^2$. The NCs yield the following candidate:

$$\frac{\partial f}{\partial x} = 2x = 0 \quad \Rightarrow \quad x = 0,$$

$$\frac{\partial f}{\partial y} = -2y = 0 \quad \Rightarrow \quad y = 0.$$

Let's look at the graph of the function in a neighbourhood of the point (0,0)'.

Example 4 (cont.)

The critical point $\mathbf{x} = (0,0)'$ is an example of a *saddle point*. The function f (obviously) does not attain an extremum at \mathbf{x} .

Example 4 illustrates the need to refine the approach for checking candidate points in the n-dimensional case. To this end, we have to review several concepts.

A symmetric square matrix A is called *positive semidefinite* if, for any vector \mathbf{x} , we have

$$\mathbf{x}'A\mathbf{x} \geq 0.$$

If the inequality is strict for any non-zero vector \mathbf{x} , the matrix is called *positive definite*.

Similarly, a symmetric square matrix A is called *negative semidefinite* if, for any vector \mathbf{x} , we have $\mathbf{x}'A\mathbf{x} \leq 0$, and *negative definite* in case of strict inequality for $\mathbf{x} \neq \mathbf{0}$.

Incidentally, for a given square symmetric matrix A, the function $Q(\mathbf{x}) = \mathbf{x}'A\mathbf{x}$ is called a *quadratic form*. Quadratic forms are also referred to as "positive/negative (semi)definite", depending on the properties of the respective matrix.

Recall that, for an $n \times n$ matrix A, a principal minor of order k ($1 \le k \le n$), denoted by Δ_k , is the determinant of the submatrix obtained by deleting n-k rows of the matrix and the correspondingly numbered columns, e.g.

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} & \cdots & a_{n,n} \end{pmatrix}$$

Note: The notation Δ_k does not identify a unique principal minor of order k.

Incidentally, for a given square symmetric matrix A, the function $Q(\mathbf{x}) = \mathbf{x}'A\mathbf{x}$ is called a *quadratic form*. Quadratic forms are also referred to as "positive/negative (semi)definite", depending on the properties of the respective matrix.

Recall that, for an $n \times n$ matrix A, a principal minor of order k ($1 \le k \le n$), denoted by Δ_k , is the determinant of the submatrix obtained by deleting n-k rows of the matrix and the correspondingly numbered columns, e.g.

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} & \cdots & a_{n,n} \end{pmatrix}$$

Note: The notation Δ_k does not identify a unique principal minor of order k.

The k-th leading principal minor of a matrix A ($1 \le k \le n$), denoted by D_k , is the determinant of the submatrix

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,k} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k,1} & a_{k,2} & \cdots & a_{k,k} \end{pmatrix}'$$

i.e. the principal minor obtained by deleting the last n-k rows and columns and, respectively, keeping the first k.

Fact 4 (Sylvester's criterion)

Let *A* be a symmetric matrix. Then:

- ① A is positive definite if and only if $D_k > 0$, k = 1, ..., n.
- ② A is positive semidefinite if and only if $\Delta_k \geq 0$ for all principal minors of order $k = 1, \ldots, n$.
- ③ A is negative definite if and only if $(-1)^k D_k > 0$, k = 1, ..., n.
- ④ A is negative semidefinite if and only if $(-1)^k \Delta_k \geq 0$ for all principal minors of order $k = 1, \ldots, n$.

Note that the necessary and sufficient conditions for "semidefiniteness" involve all principal minors (and hence are cumbersome to check), not just the leading principal minors.

Let a function $f(\mathbf{x}) = f(x_1, \dots, x_n)$ be twice differentiable. The matrix of second partial derivatives, evaluated at a point \mathbf{x} , i.e.

$$\begin{pmatrix}
\frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_n} \\
\cdots & \cdots & \ddots & \cdots \\
\frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n^2}
\end{pmatrix}$$

is called the *Hessian (matrix)* of f at x.

- The Hessian is denoted f''(x).
- The Hessian is symmetric.
- Sometimes the partial derivative $\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}$ is written as $f_{ij}''(\mathbf{x})$.
- A leading principal minor of order k of the Hessian is denoted $D_k(\mathbf{x})$.
- An arbitrary principal minor of order k of the Hessian is denoted $\Delta_k(\mathbf{x})$.

Fact 5

Let a (twice) differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ have a critical point at \mathbf{x}^* .

- ① If the Hessian $\mathbf{f}''(\mathbf{x}^*)$ is positive definite or, equivalently, $D_k(\mathbf{x}^*) > 0$, k = 1, ..., n, then \mathbf{x}^* is a *local minimum point*.
- If the Hessian $\mathbf{f}''(\mathbf{x}^*)$ is negative definite or, equivalently, $(-1)^k D_k(\mathbf{x}^*) > 0, \ k = 1, \dots, n$, then \mathbf{x}^* is a *local maximum point*.
- 3 If $D_n(\mathbf{x}^*) \neq 0$ and neither 1) nor 2) is satisfied, then \mathbf{x}^* is a saddle point.

Fact 6

Let a (twice) differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ have an extreme point at \mathbf{x}^* .

- ① If \mathbf{x}^* is a local minimum point, then the Hessian $\mathbf{f}''(\mathbf{x}^*)$ is positive semidefinite or, equivalently, $\Delta_k(\mathbf{x}^*) \geq 0$ for all principal minors of order $k = 1, \ldots, n$.
- ② If \mathbf{x}^* is a local maximum point, then the Hessian $\mathbf{f}''(\mathbf{x}^*)$ is negative semidefinite or, equivalently, $(-1)^k \Delta_k(\mathbf{x}^*) \geq 0$ for all principal minors of order $k = 1, \ldots, n$.

Example 5 (Verification of Example 3)

Recall that:

$$f(x,y) = x^2 + 2y^2 - 3x + xy$$
$$\frac{\partial f}{\partial x} = 2x - 3 + y, \quad \frac{\partial f}{\partial y} = 4y + x.$$

We now have:

$$\frac{\partial^2 f}{\partial x^2} = 2$$
, $\frac{\partial^2 f}{\partial y^2} = 4$, $\frac{\partial^2 f}{\partial x \partial y} = 1$, $\frac{\partial^2 f}{\partial y \partial x} = 1$.

$$D_1 = \det(2) = 2 > 0$$
, $D_2 = \det\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} = 2 \cdot 4 - 1 \cdot 1 = 7 > 0$.

Since $D_1 > 0$, $D_2 > 0$, the critical point $x = \frac{12}{7}$, $y = -\frac{3}{7}$ is a minimum.

Static Optimization with Equality Constraints. Lagrange Multipliers

Formulation

Now we look at problems of the form

$$f(x_1, \dots, x_n) \to \min(\max)$$
 (1)

s.t.

$$g_1(x_1, \dots, x_n) = b_1$$

$$g_2(x_1, \dots, x_n) = b_2$$

$$\dots$$

$$g_m(x_1, \dots, x_n) = b_m$$
(2)

where m < n. (Can you explain the last requirement?)

Note: In what follows, all required properties of the objects in (1) and (2) like differentiability are implicitly assumed.

Formulation

Using vector notation for compactness, the objective function is:

$$f(\mathbf{x}) \to \min(\max)$$

We introduce

$$\mathbf{g}(\mathbf{x}) := (g_1(\mathbf{x}), \dots, g_m(\mathbf{x}))', \quad \mathbf{b} = (b_1, \dots, b_m)'$$

and the constraints are written as

$$\mathbf{g}(\mathbf{x}) = \mathbf{b}.$$

The Lagrangian

The standard approach to solving (1)-(2) starts by defining a *Lagrangian*:

$$\mathcal{L}(\mathbf{x}) = f(\mathbf{x}) - \lambda_1(g_1(\mathbf{x}) - b_1) - \cdots - \lambda_m(g_m(\mathbf{x}) - b_m).$$

The numbers $\lambda_1, \ldots, \lambda_m$ are called *Lagrange multipliers*.

This can also be written in vector notation:

$$\mathcal{L}(\mathbf{x}) = f(\mathbf{x}) - \lambda'(\mathbf{g}(\mathbf{x}) - \mathbf{b}),$$

where $\lambda = (\lambda_1, \dots, \lambda_m)'$ is the vector of Lagrange multipliers.

We can use the Lagrangian to produce necessary conditions for optimality in the following manner:

Algorithm

- Form the Lagrangian as above
- ② Differentiate it w.r.t. the variables we are optimizing over, i.e.

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{\partial f(\mathbf{x})}{\partial x_i} - \sum_{j=1}^m \lambda_j \frac{\partial g_j(\mathbf{x})}{\partial x_i}, \ i = 1, \dots, n$$

Set the resulting derivatives equal to zero, i.e.

$$\frac{\partial \mathcal{L}}{\partial x_i} = 0, \ i = 1, \dots, n$$

4 The equations in the preceding step, together with the constraints (2), form a system of n+m equations which is solved for the unknowns x_i and λ_j

Remarks

Sometimes the Lagrangian is equivalently formulated as

$$\mathcal{L}(\mathbf{x}) = f(\mathbf{x}) - \lambda_1 g_1(\mathbf{x}) - \cdots - \lambda_m g_m(\mathbf{x}).$$

It obviously makes no difference as to the result of the differentiation step.

- One modification of the algorithm requires to also differentiate the Lagrangian w.r.t. λ_j and set the resulting derivatives equal to zero. This simply reproduces the constraints (2) and is covered by the last step of our algorithm.
- Let the algorithm yield a candidate x^* . Roughly, if the Lagrangian is convex in x, then the candidate x^* is a minimum. If the Lagrangian is concave in x, then the candidate x^* is a maximum. (See SHSS, p. 117, for the precise formulation.)
- A Lagrange multiplier is interpreted as a *shadow price*, i.e. the gain (or loss) arising from relaxing the associated constraint.

Example 6 (Basic intertemporal optimization)

- An economic agent lives for two periods and supplies a fixed amount of labour in the first period of his life in exchange for monetary payment y.
- In period 1 the agent consumes c_1 units of a good out of his income and saves the remaining $y-c_1$. (For convenience we assume there is no inflation and the price of the good is normalized to one.)
- ullet Savings are remunerated at an interest rate r. Thus, in the second period the agent has at his disposal

$$(y-c_1)(1+r)$$

to finance consumption, denoted c_2 .

The agent obtains utility from consumption according to the utility function

$$u(c_1, c_2) = \ln c_1 + \beta \ln c_2, \ \beta \in (0, 1).$$

• The agent seeks to maximize utility w.r.t. c_1, c_2 .

Example 6 (cont.)

The above problem can be formalized as

$$\max_{c_1,c_2}u(c_1,c_2)$$

s.t.

$$c_2 = (y - c_1)(1 + r).$$

Notice that the constraint can be written equivalently as

$$c_1 + \frac{c_2}{1+r} = y$$

to conform to the ${\bf g}({\bf x})={\bf b}$ convention. (Can you interpret the last equation in terms of discounting to period 1 quantities?)

The Lagrangian for this problem is

$$\mathcal{L} = \ln c_1 + \beta \ln c_2 - \lambda \left(c_1 + \frac{c_2}{1+r} - y \right).$$

Example 6 (cont.)

The solution algorithm yields

$$\frac{\partial \mathcal{L}}{\partial c_1} = \frac{1}{c_1} - \lambda = 0 \quad \Rightarrow \quad c_1 = \frac{1}{\lambda}$$

$$\frac{\partial \mathcal{L}}{\partial c_2} = \beta \frac{1}{c_2} - \frac{\lambda}{1+r} = 0 \quad \Rightarrow \quad c_2 = \frac{\beta(1+r)}{\lambda}$$

Combining the above equations to eliminate λ , we obtain

$$c_2 = \beta(1+r)c_1.$$

Substitute the last expression in the budget constraint:

$$c_1 + \frac{\beta(1+r)c_1}{1+r} = y \quad \Rightarrow \quad c_1^* = \frac{y}{1+\beta}.$$

Example 6 (cont.)

We then have

$$c_2^* = \beta(1+r)c_1 = (1+r)\frac{\beta}{1+\beta}y.$$

Let us check how the optimal value of the utility function $u^* = u(c_1^*, c_2^*)$ changes with income:

$$\frac{\partial u^*}{\partial y} = \frac{\partial}{\partial y} \left(\ln \frac{y}{1+\beta} + \beta \ln \frac{(1+r)\beta y}{1+\beta} \right)$$
$$= \frac{1+\beta}{y} \frac{1}{1+\beta} + \beta \frac{1+\beta}{(1+r)\beta y} \frac{(1+r)\beta}{1+\beta}$$
$$= \frac{1}{y} + \frac{\beta}{y} = \frac{1+\beta}{y}$$

Example 6 (cont.)

We then have

$$c_2^* = \beta(1+r)c_1 = (1+r)\frac{\beta}{1+\beta}y.$$

Let us check how the optimal value of the utility function $u^* = u(c_1^*, c_2^*)$ changes with income:

$$\frac{\partial u^*}{\partial y} = \frac{\partial}{\partial y} \left(\ln \frac{y}{1+\beta} + \beta \ln \frac{(1+r)\beta y}{1+\beta} \right)$$

$$= \frac{1+\beta}{y} \frac{1}{1+\beta} + \beta \frac{1+\beta}{(1+r)\beta y} \frac{(1+r)\beta}{1+\beta}$$

$$= \frac{1}{y} + \frac{\beta}{y} = \frac{1+\beta}{y} = \frac{1}{c_*^*} = \lambda. \quad \text{Interpretation?}$$

Readings

Main references:

Sydsæter et al. [SHSS] Further mathematics for economic analysis. Chapter 3.

Additional readings:

Simon and Blume. Mathematics for economists. Chapters 17 and 18.