Lycée Buffon
 TD 13

 MPSI
 Année 2020-2021

Limites, équivalents et suites

Exercice 1: Soit $f: \mathbb{R} \to \mathbb{R}$ T-périodique.

- 1. Montrer que si f admet une limite finie en $+\infty$, alors elle est constante.
- 2. Montrer que f ne peut pas tendre vers $\pm \infty$ en $\pm \infty$.
- 3. Que dire si f est monotone sur \mathbb{R} ?

Exercice 2: Soit $f:[0,1] \to [0,1], \ x \mapsto \begin{cases} x & \text{si } x \in \mathbb{Q} \\ 1-x & \text{sinon} \end{cases}$ En quels points la fonction f admet-elle une limite?

Exercice 3 : Déterminer l'ensemble de définition, un équivalent et la limite en zéro des fonctions suivantes :

1. $\frac{\cos x - 1}{\sqrt{\tan x}}$ 2. $\ln(1 + e^x)$ 3. $\frac{1 - \sin\left(\frac{\pi(1+x)}{2}\right)}{x - \sqrt{x^2 + 2x}}$ 4. $\frac{\tan^2 x}{1 + \frac{1}{x^2}}$

- $5. \quad \frac{\sqrt[3]{x^3 x}}{\sqrt{x^2 + x}}$
- 6. $\sqrt{\frac{1}{x} + \sqrt{\frac{1}{x} + \sqrt{\frac{1}{x}}}} \sqrt{\frac{1}{x}}$
- 7. $\sqrt[3]{\frac{1}{x^3} + \frac{1}{x} + 1} \sqrt{1 + \frac{1}{x^2}}$

Exercice 4 : Déterminer la limite en 1/2 de $(2x^2 - 3x + 1)\tan(\pi x)$.

Exercice 5:

Déterminer la limite éventuelle en 1 de

1.
$$\frac{1 + \cos(\pi x)}{(x - 1)\tan(2\pi x)}$$
. 2. $\frac{\sin(\pi x)}{\sqrt{x^2 + x} - \sqrt{3x - 1}}$

Exercice 6: On considère la suite u définie par $u_0 \in \mathbb{R}^{+*}$ et $\forall n \in \mathbb{N}, \ u_{n+1} = u_n + u_n^3$.

- 1. Montrer que la suite u est positive et croissante.
- 2. En déduire la limite de u.
- 3. Soit $v = \left(\frac{\ln u_n}{3^n}\right)_{n \in \mathbb{N}}$
 - (a) Montrer que pour tout entier n, on a $v_{n+1} v_n = \frac{1}{3^{n+1}} \ln \left(1 + \frac{1}{u_n^2} \right)$. En déduire la monotonie de la suite v.
 - (b) Prouver que pour tout couple d'entiers (n, k),

$$v_{n+k+1} - v_{n+k} \le \frac{1}{3^{n+k+1}} \ln \left(1 + \frac{1}{u_n^2} \right)$$

puis que pour tout couple d'entiers (n, p), $v_{n+p+1} - v_n \le \frac{1}{2 \times 3^n} \ln \left(1 + \frac{1}{u_n^2} \right)$

- (c) En déduire que la suite v converge. On notera ℓ sa limite.
- 4. Prouver que pour tout entier n, $\frac{e^{\ell 3^n}}{\sqrt{1+\frac{1}{u_n^2}}} \le u_n \le e^{\ell 3^n}$.
- 5. En déduire un équivalent de u_n .