Array of folded patches

Wireless Electromagnetic Technologies - University of Rome Tor Vergata

Professor: Marrocco Gaetano, Students: Blasi Luca, Mastrofini Alessandro, Mucenica Stefan Leonard

Tchebyshev array factor design

The design parameters for the array are:

Parameter	Value
# elements	2N + 1 = 5
Mean lobe/side lobe ratio	$R = 120 \cong 41.58 dB$
Frequency	f = 2.1 GHz

It's been specifically required to find the optimal inter-element spacing so that the minimum of the beamwidth will be reached:

$$d_{opt} \rightsquigarrow \min\{BW_{fn}\}$$

$$d_{opt} = \lambda \left[1 - \frac{\arccos\left(\frac{1}{\gamma}\right)}{\pi} \right] \tag{1}$$

$$\gamma = \cosh\left[\frac{1}{2N}\ln\left(R + \sqrt{R^2 - 1}\right)\right]$$

where $\lambda=\frac{c}{f}$ is the frequency in the free-space . In this case, $d_{opt}\in\left(\frac{\lambda}{2}\,,\,\lambda\right]$, which means that The coefficients a and b related to the Tchebyshev polynomial approximation for the array will be chosen by following the $d_{opt}\in\left(\frac{\lambda}{2}\,,\,\lambda\right]$ condition:

$$T_2[x = a + b\cos u] = C_0 + 2C_1\cos u + C_2\cos 2u = (2a^2 + b^2 - 1) + 4ab\cos u + b^2\cos 2u$$
 (2)

Once the amplitude current feed coefficients are computed $(C_n, n = \overline{0,2})$, the tapering efficiency can be calculated:

$$\eta_T = \frac{1}{2N+1} \frac{||C_0 + 2C_1 + 2_2||^2}{C_0^2 + 2C_1^2 + 2C_2^2}$$
 (3)

Let's consider two cases of uniform spacing array and:

The comparison will show how

$$BW_{fn}^{[UA]} < BW_{fn}^{[NUA]}$$

$$BW_{fn}^{[NUA]} = 2\frac{180}{\pi} \left[\frac{\pi}{2} - \arccos\left(\frac{\cos\left(\frac{\cos\left(\frac{\pi}{2N} - a\right)}{b}\right)}{k_0 d}\right) \right]$$
 (5)

$$BW_{fn}^{[UA]} = \frac{2\lambda}{N d} \frac{180}{\pi}$$

Parameter	Value
Feed coefficients $[A]$	$C_0 C_1 = C_{-1} C_2 = C_{-2}$ 41.2 29.8 9.6
Normalized feed coefficients to $C_{ m max}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tapering efficiency	$\eta_T = 79\%$
Beamwidth	Tchebyshev Uniform 50.6° 34.8°

Now, discussing the results is mandatory:

Max/min feed ratio Even if this is the design of a Non-Uniform Amplitude Array, the less the ratio $r_{\text{max/min}} = \frac{C_{\text{max}}}{C_{\text{min}}}$ is, the more efficient distribution of current is reached. In this particular design:

$$r_{\text{max/min}} \cong 4.39 \tag{6}$$

meaning that if a damage of the element with the $C_{\rm max}$ level of feed occurs, most part of the efficiency will be lost. In any case, the tapering efficiency shows how it will not be possible to take advantage of $21\,\%$ of the array in an ideal situation, remembering that this design model can be discerned by the real circumstance in terms of the Tchebyshev error [Balanis].

Figure 1: Array factor polar (left) and rectangular (right) diagrams

Rectangular folded patch design

Mesh density refinement

A FR4 substrate thickness of $h_{sub}=0.8\,mm$ has been selected so it could be considered as a thin one:

$$\lambda_{sub} = 0.0652 \, m \quad \Rightarrow \quad \frac{h_{sub}}{\lambda_{sub}} \cong \frac{1}{81}$$

In case of thin substrates $(h/\lambda \le 1/50)$, the Antenna Toolbox suggests to mesh the antenna using dielectric in auto mode. The other two available substrate thicknesses $(1.0\,\text{mm})$ and $1.6\,\text{mm}$ have not been adopted because the Antenna Toolbox reference doesn't give any information about accuracy of the results in case of $h_{sub} \in \left(\frac{\lambda}{50}, \frac{\lambda}{10}\right)$.

Figure 2: Minimum of the reflection coefficient $\Gamma[dB]$ in the frequency range $2.0 \div 2.2\,GHz$ depending on the varying mesh density level

Figure 3: Gain pattern (left), gain pattern with vertical polarization (center) and with the horizontal one (right)

Patch parameters

$$L + W - w_{SC} = \frac{\lambda}{4} + h_{sub}$$

$$W = \frac{\lambda_0}{2} \sqrt{\frac{2}{\varepsilon_r + 1}}$$
(7)

$$BW_E = 2 \arccos \sqrt{\frac{7.03 \lambda_0^2}{4 (3 L_e^2 + h^2) \pi^2}}$$

$$BW_H = 2 \arccos \sqrt{\frac{1}{2 + k_0 W}}$$
(8)

$$\ell_{feed} = \frac{L}{\pi} \arccos \sqrt{\frac{R_{in}}{R_r}} \tag{9}$$

Overall array performance evaluation

Figure 4: Reflection coefficient (left) and impedances (right) plots depending on $f \in 2.0 \div 2.1 \, GHz$