

Trabajo Práctico Anual "Sistema de Gestión Energética"

Grupo: 1 **Integrantes**:

- Jonathan Strelczuk 116.565-3
- Mauricio Rocha 158.090-5
- Guido Dicomo 121.305-2
- Flavia De Rosa 158.739-0

Fecha de entrega: 22/05/2018

Profesor: Martin Aguero

Ayudante a cargo: Martin Aguero

Repositorio: https://github.com/jstrelczuk/dds-tp-2018-grupo-01.git

Branch: Master

Commit ID: 8fe6819

Diseño de Sistemas - SGE - Grupo 1 - Entrega 1

Sumario

DISEÑO DE SISTEMAS	0
Registro de cambios	2
Tabla de decisión grupal, sobre el diseño	3
REQUERIMIENTOS / OBJETIVOS A CUMPLIR	5
DIAGRAMA DE CLASES	6
DIAGRAMA DE SECUENCIA	7
Comunicación entre sistema y dispositivos	8

Registro de cambios

Fecha	Modificaciones	
16/05/2018	Se incorpora el patrón de Diseño Estructural Decorator , para	
	modelar los dispositivos de tipo Estándar / Inteligentes	
20/05/2018	Se modifica el patrón de diseño Decorator por Adapter, por	
	considerarlo mejor para el requerimiento.	
12/06/2018	Se suprime el Patrón Adapter, del modelado de la conversión del	
	DEstandar a Destandar-Inteligente	
20/06/2018	Se agrega el patrón Observer para el modelado de las reglas y el	
	Singleton, para la creación de un Manager de Reglas y un	
	Manager de Dispositivos	
21/06/2018	Se implementa el patrón Proxy , para especificar, de qué manera el	
	Sensor accede a los métodos de cada DI, que necesite.	

Tabla de decisión grupal, sobre el diseño

FECHA	DECISIÓN	VENTAJA	DESVENTAJA	ALTERNATIVA
16/05/2018	Utilizamos Decorator	Permite agregar	No cumple con el	Se cambia por el patron
	para modelar los	funcionalidad extra a los	requerimiento. Agrega	Adapter.
	dispositivos Estandar	dispositivos estándar, por	funcionalidad, pero la	
	/ Inteligentes	medio de un adaptador, y	idea es crear una	
		de esta manera adquirir las	interfaz compatible a	
		funcionalidades de un	través de un adaptador	
		dispositivo Inteligente.		
17/05/2018	Utilizamos Command	Permite controlar		
	para la incorporación	eficientemente magnitudes		
	de Actuadores y	medidas, donde a través de		
	Sensores.	una serie de reglas		
		preestablecidas,		
		determinarán las acciones		
		asociadas a cumplirse por el		
		Actuador con los		
		dispositivos.		
20/05/2018	Cambiamos al patrón	Permite que dos interfaces		
	Adapter, por	sean compatibles a través		
	considerar que aplica	de un adaptador. Para el		
	mejor al	requerimiento, el dispositivo		
	requerimiento.	Estándar + Adaptador,		
		funcionará como un DI.		
21/05/2018	Se agrega un enum	Permite cambiar a los		
	EstadoDispositivo.	distintos modos de		
		funcionamiento, que tiene el		
		dispositivo. (Encendido,		
		Apagado y AhorroEnergia).		
12/06/2018	Se suprime patron		Resulta obsoleto para	Se implementa el
	Adapter		la implementación.	metodo
			(Cuando se	AgregarAdaptador(), en
			implementó en el	la clase Estandar, que
			Dispositivo Adapter,	se encarga de realizar
			siempre se usaban los	la conversión del
			métodos de la Clase	requerimiento, que
			Adaptee).	retornando una
				instancia de
				Dinteligente.
12/06/2018	Se suprime patrón		Añade complejidad al	Se crea una nueva
	Command		modelo.	entidad Driver, que
				contendrá la lista de
				actuadores, y la lista de
				sensores,

Diseño de Sistemas - SGE - Grupo 1 - Entrega 1

			correspondientes.
			Además de la
			implementación de los
			métodos que
			corresponden a cada
			tipo de DI.
20/06/2018	Se Agrega patrón	Tomando la idea propuesta	
	Observer	por el ayudante de la	
		<u>materia</u> : Evita el	
		acoplamiento. Notifica y	
		actualiza a todos los	
		dispositivos dependientes	
20/06/2018	Se agrega Patrón	Tomando la idea propuesta	
	Singleton	por el ayudante de la	
		materia: Se crea un	
		Manager de Reglas y un	
		Manager de Dispositivos, lo	
		cual permite tener un acceso	
		global a dispositivos y a	
		reglas.	
21/06/2018	Se agrega patrón	Permite controlar cómo	
	Proxy	accede un sensor, al método	
		del DI correspondiente.	
23/06/2018	Se agrega una	Permite registrar el momento	
	Entidad Activación	donde el dispositivo es	
		apagado, guardando	
		intervalos de tiempo y la	
		fecha.	

REQUERIMIENTOS / OBJETIVOS A CUMPLIR

- 1. Modelar la conversión DEstandar -> Destandar-Inteligente
- 2. Calcular el puntaje total de los clientes por cada dispositivo registrado y por cada DEstandar convertido.
- 3. Modelar Actuadores: los que son los encargados de enviar diferentes acciones a cada DI las cuales varían de acuerdo al DI.
- 4. Modelar Sensores: miden magnitudes proporcionadas por los DI.
- 5. Reglas: las cuales contienen un conjunto de condiciones y estarán asociadas al tipo de DI.

SOLUCIÓN PLANTEADA

- 1. Se plantea el método AgregarAdaptador, en la clase Estandar que retorna una nueva instancia del DI.
- 2. Se plantea el método registrarDispositivo() y convertirADI(), los cuales suman 15 y 10 puntos respectivamente.
- 3. Se plantea la aparición del Driver, el cual a partir de una interfaz, contendrá la lista de las Interfaces de cada DI. Modelamos la acción que se aplica a cada DI, la cual, está asociada a reglas, sujetas a un conjunto de condiciones que contienen operadores de comparación.

4. El Sensor se modela, dado que es el que toma la magnitud del DI, y es específico a cada DI.

Diseño de Sistemas - SGE - Grupo 1 - Entrega 1

5. Las Reglas se modelaron, teniendo en cuenta la idea propuesta por el ayudante de la materia. Comenzando por un caso de Regla Base, y yendo al modelado que se necesitaba para nuestro sistema, donde el tipo de sensor, obtiene un valor de magnitud específico de un DI, y en consecuencia, aplica un conjunto de condiciones asociadas a reglas más específicas, y termina en la acción a llevar a cabo, según el DI, . Usando 2 patrones de diseño (Observer y Singleton), Modelando el manager de Reglas y el Manager de Dispositivos.

DIAGRAMA DE CLASES

DIAGRAMA DE SECUENCIA

Comunicación entre sistema y dispositivos

Pensamos en la tecnología que ofrece IoT (Internet de las cosas), con la finalidad de conectar el maximo de nuestros dispositivos entre ellos y con nosotros (clientes, administradores del sistema).

El objetivo final, sera que el entorno del usuario este conectado de manera transparente, y así, aprovechar al máximo, los recursos de los dispositivos y sus utilidades.

En sus hogares, con todos sus dispositivos conectados a internet a través de SGE, pudiendo medir ciertos parámetros como luz, humedad, temperatura, errores ocurridos, tiempo en horas de consumo, cantidad de dispositivos encendidos y/o apagados, entre otros, de forma automática y sin la intervención del usuario (en el caso de los DI). Esto permitirá, generar la información del consumo energético de cada cliente por hogar, para que nuestro SGE, pueda tomar decisiones en tiempo real y de esta manera optimizar el uso de la energía.

Herramientas necesarias:

Procesadores y plataformas, se encargan de gestionar la información.

- ARM Cortex M
- Arduino Risc de Atmel
- Intel Quark
- MediaTek
- Samsung o Qualcomm

Sensores: es el hardware que va a interactuar entre nuestra tecnología y el entorno, capturando los datos que nosotros deseemos.

 Arduino: sensores táctiles, acelerómetros, de inclinación, potenciómetros, de humedad y temperatura, altitud, presión...casi cualquier cosa que imaginemos se puede medir con estos sensores.

Protocolos de comunicación: muchos de los que conocemos, se encuentran vigentes para IoT. Como por ejemplo:

 Conexiones de red local vía Ethernet o de transmisión inalámbrica a través de conectividad móvil.

Vodafone e IBM : donde las velocidades de conexión permitirán alcanzar a los próximos protocolos de comunicación, como el 5GB.

También hay nuevos protocolos que han sido ideados pensando en IoT y la comunicación de objetos entre ellos y a corta distancia. Por ejemplo:

 NFC o también Bluetooth 4.0, LE 'Low Energy'. Está pensado para ser implementado en sistemas con baterías reducidas (pulseras cuantificadoras).