LOG8470 Méthodes formelles en fiabilité et sécurité

Préliminaires mathématiques

John Mullins

Dép. de génie informatique et de génie logiciel École Polytechnique de Montréal

John.Mullins@polymtl.ca

2018 - 2019

Contenu

Théorie des ensembles de base

- Principe d'induction
- 3 Langages et automates

Contenu

1 Théorie des ensembles de base

- Principe d'induction
- 3 Langages et automates

Propositions et prédicats

- Une proposition est un énoncé qui possède une valeur de vérité.
- Un prédicats est un énoncé qui contient des variables
- Un prédicat devient une proposition lorsque les variables sont affectées.
- P(x), P(x,y), $P(x_1,x_2,\cdots x_n)$ dénotent des prédicats à 1, 2, n variables

Example

- $P(x) \equiv x \leq 3$
- $P(x, y) \equiv (x \le 3) \land (y \le 7)$
- $P(x) \equiv \exists y, x = y^2$

Les ensembles

Ensemble

Un ensemble est une collection d'objets appelés éléments.

- On note $a \in X$ l'appartenance d'un élément a à l'ensemble X.
- Définition en extension ou par énumération : $X = \{a, b, c\}$
- Définition en *compréhension* : $X = \{x : P(x)\}$: l'ensemble X est formé des éléments x pour lesquels le prédicat P(x) est vrai.
- X est un sous-ensemble de Y ($X \subseteq Y$) ssi

$$x \in X \rightarrow x \in Y$$

• X = Y ssi $X \subset Y \land Y \subset X$

Les principaux constructeurs

[Ensemble des parties] Si X est un ensemble alors l'ensemble des sous-ensembles de X

$$\mathcal{P}(X) = \{ Y : Y \subseteq X \}$$

[Ensemble indexé] Si I est un ensemble et si à tout $i \in I$ est associé un unique élément x_i (qui peut être lui-même un ensemble) alors l'ensemble

$$\{x_i:i\in I\}$$

[Union] Si X et Y sont des ensembles alors

$$X \cup Y = \{a : a \in X \text{ ou } a \in Y\}$$

Les principaux constructeurs (suite)

[Union unaire] Si X est un ensemble d'ensembles alors

$$\bigcup X = \{a : \mathsf{II} \; \mathsf{existe} \; x \in X \; \mathsf{tel} \; \mathsf{que} \; a \in X\}$$

est un ensemble. Si X est indexé par I, on notera $\bigcup X$ par $\bigcup_{i \in I} x_i$.

[Intersection] Si X et Y sont des ensembles alors

$$X \cap Y = \{a : a \in X \text{ et } a \in Y\}$$

 \odot [Intersection unaire] Si X est un ensemble d'ensembles alors

$$\bigcap X = \{a : \text{Pour tout } x \in X, \, a \in x\}$$

est un ensemble. Si X est indexé par I, on notera $\bigcap X$ par $\bigcap_{i \in I} x_i$.

[Produit] Si X et Y sont des ensembles alors

$$X \times Y = \{(a,b) : a \in X \text{ et } b \in Y\}$$

est un ensemble. (a, b) est appelé paire ordonnée.

[Différence] Si X et Y sont des ensembles alors

Relations et fonctions

Relation binaire R

$$R \subseteq X \times Y$$

Une fonction partielle de X dans Y

relation $f \subseteq X \times Y$ telle que pour tout $x \in X$ et $y, y' \in Y$, si $(x, y) \in f$ et $(x, y') \in f$ alors y = y'.

Une fonction (totale) f de X dans Y (notée $f: X \rightarrow Y$)

si pour tout $x \in X$, il existe $y \in Y$ tel que $(x, y) \in f$. On écrira $x \mapsto y$, y = f(x) ou y = fx.

Composition de $R \subseteq X \times Y$ et $S \subseteq Y \times Z$

$$S \circ R = \{(x, z) \in X \times Z : \text{Il existe } y \in Y \text{ tel que } (x, y) \in R \text{ et } (y, z) \in S\}$$

Les relations d'équivalence

Relation d'équivalence $R \subseteq X \times X$

- [réflexive] xRx, pour tout $x \in X$
- [symétrique] Si xRy alors yRx, pour tout $x, y \in X$
- [transitive] Si xRy et yRz alors xRz, pour tout $x, y, z \in X$.
- classe d'équivalencede x relativement à R :

$$[x]_R = \{ y \in X : yRx \}$$

R induit sur X une partition

- Une partition d'un ensemble X est une famille $\{X_i\}$ de sous-ensembles de X disjoints entre eux qui recouvrent X.
- quotient de X par R :

$$X/R = \{[x]_R : x \in X\}$$

Contenu

Théorie des ensembles de base

- Principe d'induction
- 3 Langages et automates

Définitions inductives

Moyen élégant très utile en informatique

- Elle permet de construire effectivement des ensembles infinis d'objets
- Elle permet une technique de preuve, plus élégante que l'induction sur les entiers, pour prouver des propriétés requises à ces objets.
- Elle est utilisée pour définir les expressions arithmétiques, les expressions régulières, les piles, les files, les arbres, les programmes syntaxiquement valides, ... etc.

Definition

La définition inductive d'une partie X d'un ensemble consiste

- en la donnée explicite de certains éléments de X (bases)
- en la donnée d'une méthode de construction de nouveaux éléments de X à partir d'éléments déjà construits (étapes inductives)

Définitions inductives

Example (Arbres *k*-aires)

Base Un graphe formé d'un sommet (racine), est un arbre.

Induction Si T_1, T_2, \dots, T_k sont des arbres alors le graphe formé :

- d'un nouveau sommet N,
- \bigcirc de copies de T_1, T_2, \ldots, T_k ,
- ode nouveaux arcs du sommet N à chacune des racines des arbres T_1, T_2, \ldots, T_k

est un arbre.

Example (Expressions arithmétiques)

Base: Un nombre ou une variable est une EA.

Induction : Si E et F sont des EA alors E + F, E * F et (E) sont des

EΑ

Définitions inductives

Definition

La définition inductive d'une partie X d'un ensemble U consiste

- en un sous-ensemble B de U (bases)
- en un ensemble K de fonctions partielles $f: U^{ar(f)} \to U$ où ar(f) est l'arité de f (son nombre d'arguments) (étapes inductives)

X est alors est défini comme le plus petit ensemble vérifiant :

- (B) $B \subset X$
 - (I) $\forall f \in K, \forall x_1, \dots x_{ar(f)} \in X, f(x_1, \dots, x_{ar(f)}) \in X$

Principe de preuve par induction

Théorème

Soit X un ensemble défini intuitivement par (B, K). Pour montrer

$$\forall x \in X, P(X)$$

où P est une propriété, il suffit de montrer :

Base pour tout $b \in B$, on a P(b)

Pas pour tout $f \in K$, pour tout $x_1, \dots x_{ar(f)} \in U$, si $P(x_1), \dots P(x_{ar(f)})$ sont vraies, alors $P(f(x_1, \dots, x_{ar(f)}))$ est vraie

Principe de preuve par induction

Example (Tout arbre a exactement un sommet de plus que d'arcs)

Soit T un arbre à n sommets et e arcs et $P(T) \equiv n = e + 1$ Base : Si T est formé d'un seul sommet alors n = 1 et e = 0. Pas d'induction : Soit T formé de la racine N et des sous-arbres T_1, T_2, \ldots, T_k . Supposons $P(T_i)$ pour chacun des sous-arbres T_i (pour 1 < i < k) i.e. si T_i a n_i sommets et e_i arcs alors $n_i = e_i + 1$. On a :

$$n = n_1 + n_2 + \dots + n_k + 1$$

$$= (e_1 + 1) + (e_2 + 1) + \dots + (e_k + 1) + 1$$

$$= e_1 + e_2 + \dots + e_k + k + 1$$

$$= e + 1$$

Principe de preuve par induction

Example (Toute EA est bien parenthésée)

Soit $P(G) \equiv G$ est bien parenthèse

Base : Si G est une base, elle n'a pas de parenthèse

Induction: If y a 3 constructeurs:

- **1** G = E + F.
- **2** G = E * F.
- G = (E).

On suppose (hypothèse d'induction) que P(E) et P(F) sont satisfaites. Alors pour chacun des trois constructeurs de G:

- \bullet Si G = E + F alors G est bien parenthésée
- ② Si G = E * F alors G est bien parenthésée
- **③** Si G = (E) alors G est bien parenthésée

Contenu

Théorie des ensembles de base

- Principe d'induction
- 3 Langages et automates

Definition (Alphabet)

Un alphabet est un ensemble noté Σ dont les éléments sont appelés *lettres* ou *symboles*.

Definition (Mot)

Un mot sur Σ est une suite (ou chaîne) finie de lettres de Σ .

- Le mot vide est noté ε.
- La longueur d'un mot u est notée |u|. ϵ est le mot de longueur nulle.
- L'ensemble des mots finis sur Σ est noté Σ^* .

Definition (Concaténation de mots)

 Σ^* est muni d'une opération binaire, la *concaténation*. La concaténation du mot u avec le mot v et dénotée $u \cdot v$ ou simplement uv en omettant le \cdot , est le mot obtenu en ajoutant v à la suite de u. Cette opération est :

- associative et
- possède le mot vide comme élément neutre.

Definition (Langage)

Une partie de Σ^* est appelée *langage* sur Σ .

Definition (Constructeurs de langages)

• La concaténation : $L \cdot L' = \{u \cdot u' : u \in L \land u' \in L'\}$

Remarque

- $L \cdot \emptyset = \emptyset \cdot L = \emptyset$
- $L \cdot \Sigma^* \neq \Sigma^* \neq \Sigma^* \cdot L$
- Si $\epsilon \in L$ alors $L \cdot \Sigma^* = \Sigma^* \cdot L = \Sigma^*$
- $L \cdot \{\epsilon\} = \{\epsilon\} \cdot L = L$
- La fermeture de Kleene : $L^* = \bigcup_{n \in \mathbb{N}} L^n$ où

$$L^{n} = \{ u_{1} u_{2} \dots u_{n} : u_{1}, u_{2}, \dots u_{n} \in L \}$$

Example

Soit les langages $L_1 = \{bb\}$ et $L_2 = \{\epsilon, bb, bbbb\}$. Les langages L_1^* et L_2^* sont formés, tous les deux, de tous les mots sur l'alphabet $\{b\}$ qui contiennent un nombre pairs de b.

Example

Le langage $L_1 = \{a, b\}^* \{bb\} \{a, b\}^*$ est formé de tous les mots sur l'alphabet $\{a, b\}$ qui contiennent le facteur bb.

Example

Le langage $\{aa, ab, ba, bb\}^*$ est formé de tous les mots sur l'alphabet $\{a, b\}$ de longueur paire : $\{a, b\}^* \setminus \{aa, ab, ba, bb\}^*$ est formé de tous les mots sur l'alphabet $\{a, b\}$ de longueur impaire. De façon alternative : $\{a, b\}\{aa, ab, ba, bb\}^*$

Definition (Expressions régulières)

- ϵ , \emptyset et a (pour tout $a \in \Sigma$) sont des ER
- Si u, v sont des ER alors $u \cdot v, u + v$ et u^* sont des ER

Definition (Sémantique des expressions régulières)

La sémantique des expressions régulières est donnée par l'application $L:ER \to \mathcal{P}(\Sigma^*)$ définie par

- $L(\epsilon) = \{\epsilon\}$ et $L(\emptyset) = \emptyset$
- Pour tout $a \in \Sigma$, $L(a) = \{a\}$
- Si u, v sont des ER alors $L(u \cdot v) = L(u) \cdot L(v)$, $L(u+v) = L(u) \cup L(v)$ et $L(u^*) = L(u)^*$

Definition (Langages réguliers)

L est régulier ssi il existe une ER u telle que L(u) = L

Definition (Automates à états finis déterministe)

Un automate à états finis déterministe (AFD) est un quintuplet $(S, \Sigma, \delta, s_0, F)$ où

- S est un ensemble fini d'états
- Σ, un alphabet
- $\delta: S \times \Sigma \to S$ est appelée fonction de transition .
- s₀, un état initial
- Un ensemble F d'états finaux ou acceptants avec $F \subseteq S$

Definition (Exécution d'un AFD)

On étend δ à une fonction $\Delta: \mathcal{S} \times \Sigma^* \to \mathcal{S}$:

- $\Delta(q, \epsilon) = q$

Soit un mot $w = x_0 x_1 \dots x_n$. La suite $s_0 q_1 \dots q_{n+1}$ telle que

$$q_{i+1} = \Delta(s_0, x_0 x_1 \dots x_i)$$
, pour tout $0 \le i \le n$

est appelé exécution de w.

Example (Exécution de 110101 d'un AFD qui reconnait $\Sigma^*01\Sigma^*$)

Definition (Langage reconnu par un AFD)

Le langage L(A) défini par :

$$L(\mathcal{A}) = \{ w \in \Sigma^* : \Delta(s_0, w) \in F \}$$

est appelé le langage reconnu par A.

Example (AFD qui reconnait $\Sigma^*01\Sigma^*$)

Definition (Automates à états finis non-déterministe)

Un automate à états finis non-déterministe (AFN) est un quintuplet $(S, \Sigma, \delta, s_0, F)$ où

- S est un ensemble fini d'états
- Σ, un alphabet
- $\delta: S \times \Sigma \to \mathcal{P}(S)$ est appelée fonction de transition.
- s₀, un état initial
- Un ensemble F d'états finaux ou acceptants avec $F \subseteq S$

Definition (Exécution d'un AFN)

On étend δ à une fonction $\Delta: S \times \Sigma^* \to \mathcal{P}(S)$:

- Soit w = xa où $x \in \Sigma^*$ et $a \in \Sigma$ alors

$$\Delta(q, w) = \{r_1, r_2, \ldots, r_m\}$$

où
$$\Delta(q,x) = \{p_1, p_2, \dots, p_k\}$$
 et $\bigcup_{i=1}^k \delta(p_i, a) = \{r_1, r_2, \dots, r_m\}$.

Soit un mot $w = x_0 x_1 \dots x_n$. Une suite $s_0 q_1 \dots q_{n+1}$ telle que

$$q_{i+1} \in \Delta(s_0, x_0 x_1 ... x_i)$$
, pour tout $0 \le i \le n$

est appelé exécution de w.

Example (Exécution de 110101 d'un AFN qui reconnait $\Sigma^*01\Sigma^*$)

Definition (Langage reconnu par un AFN)

Le langage L(A) défini par :

$$L(A) = \{ w \in \Sigma^* : \Delta(s_0, w) \cap F \neq \emptyset \}$$

est appelé le langage reconnu par A.

Example (AFN qui reconnait $\Sigma^*01\Sigma^*$)

Theorem (Kleene)

Un langage est reconnaissable par un AFD si et seulement s'il est régulier.

Déterminisation (Rabin-Scott, 1959)

Élimination des ϵ -transitions

Problèmes de décisions

D'autres propriétés de fermeture

- Intersection
- Complémentation

Problème du vide

Étant donné un automate fini A on on peut décider si $L(A) = \emptyset$

Problème d'inclusion

Étant donné des automate fini \mathcal{A} et \mathcal{B} on on peut décider si $L(\mathcal{A}) \subseteq L(\mathcal{B})$

