Precision Time Synchronization in Data Centers

Research Scientist, Meta Ahmad Byagowi **Why** to have precision time synchronization in Data Centers?

How to have precision time synchronization in Data Centers?

Background

- Speed of light and speed of electricity are finite!
 - Speed of Light is slower in fiber (2.14 x 10^8m/s) than in vacuum (2.99 x 10^8m/s)
 - Latency in data transfer over the network
- Hyperscale cloud services serve people across the globe
 - Geographical distribution of customers
 - Necessity of distribution due to safety, robustness and regulations
- The demand for hardware resources is always increasing
 - Increase in users, data and multi dimensional contents
 - Interactivity with the data like multi-user and VR
 - Big data and Al

Solution to Address the Hyperscale Demand

- Horizontal Scaling
 - Expansion of resources

- Geographical expansion
 - Reduction of latency

Challenges with Expansion

- Distributed Systems
 - Consistency vs Availability
 - Propagation of Information
 - Need for Redundancy
- Distribution of Clock
 - A common reference between all machines
 - Latency vs Clock Skewness

Categories of use cases

Use cases of Precision Time Sync in Distributed Systems:

- Synchronization (Phase)
 - Active (1)
 - Running Events at specific time
 - Sync or desync
 - Reactive (2)
 - Measure latency, time or intervals
- Syntonization (Frequency)
 - Active (3)
 - Calibrate speed and align runtime to reduce tail latency
 - Reactive (4)
 - Measure heterogeneity or provide binning

	Phase	Frequency
Active	1	2
Reactive	3	4

Associate Events Between Multiple Machines

Precision Requirement

- CPU level
- OS (Kernel) level
- Distributed System level

Precision Requirement at CPU level

- Nyquist sampling theorem
 - Sampling interval required to avoid aliasing
 - Sampling frequency should be at least twice the highest frequency contained in the signal
- Frequency in event occurrence
 - Instruction Latency
 - Instruction Throughput

```
// mov = 1 CPU cycle
// xchg = 3 CPU cycles
// rdtsc = 1 CPU cycle
```

Precision Requirement at OS level

dmesg

```
{38}[Hardware Error]: event severity: corrected
              {38}[Hardware Error]: Error 0, type: corrected
              {38}[Hardware Error]:
                                      section_type: PCIe error
              {38}[Hardware Error]:
                                      port type: 4, root port
                                      version: 3.0
              {38}[Hardware Error]:
             {38}[Hardware Error]:
                                      command: 0x0547, status: 0x0010
              {38}[Hardware Error]:
                                      device_id: 0000:b7:01.0
              {38}[Hardware Error]:
                                      slot: 255
[52603.373648] {38}[Hardware Error]:
                                      secondary bus: 0xb8
             {38}[Hardware Error]:
                                      vendor id: 0x8086, device id: 0x352a
[52603.373648]
[52603.373649] {38}[Hardware Error]:
                                      class code: 060400
                                      bridge: secondary status: 0x0000, control: 0x0013
[52603.373649] {38}[Hardware Error]:
```

System Logging is based on clock_boottime (clock_minotone_RAW) with a quanta on 1us Events occur faster than the quanta of 1us (aliasing)

Challenges and the Precision Requirement

Vernier acuity

Compounding of Events

$$1^n = 1$$

Precision Requirement for Distributed Systems

What comes out of Precision Time Sync?

Machine X and Y are any two machines across the globe or inside a local network

Pseudo Entanglement: Probabilistic Entanglement of two Registers (Machine Y and Y) within the Windows of Uncertainty

Window of Uncertainty: An ongoing estimation of a time interval that UTC (or TAI) sits inside it (with a given probability)

Tangle

Functions

- Identify concurrent event in another machine[s]
- Find the timestamp of an event in another machine[s]
- Chronologically Rank a given event across machines
- Measure the one-way-latency between machines
- Identify concurrent events with one-way-latency consideration
- Trace chronological order for sequence of events
- Benchmark machines by precise runtime measurement
- Directly utilize RDTSC for maximum precision in event timestamping

Runtime Difference in a Pipeline

Runtime Difference in a Pipeline

Align and Calibrate Machines in a Pipeline

Precision Time Sync Across Different Domains

Time Precision and Applications

Open Time Server

How to sync a Datacenter?

Time Card

- Concept (2020)
- First Prototype (2021)
- Industry Adoption (2022)

Time Card Family

Latest Time Card

Simplified Objectives for P3335

Produce a guide to improve interoperability, compatibility and comparability between Time Cards manufactured by different vendors.

- Set a structure to define various sub systems
- Set some sub standards for plug-in modules (like GNSS and OSC)
- Define interfaces (hardware: memory addresses, drivers ...)
- Suggest testing methods and comparable benchmark metrics
- Provide blueprints to assist further development of Time Cards
- Do all this work in a structure that maximizes people's engagement

Proposed Approach

- We already have something that works (various Time Cards)
- Turn the Time Card to a general case
- Study the general case
- Dissect the work in subgroups (Diverge)
- Work in parallel
- Bring things together (Converge)
- Combing through the work (coherence)

Goal: Embrace Diversity, Ensure Interoperability

Current Time Card

Dual GNSS PCIe card with a MAC

Time Card Concept

All possible pathways

Focus Areas

Thank you

Find out more on:

www.ocptap.com www.timecard.ch www.timingcard.com www.opentimeserver.com