ESERCIZIO 3

Si risolva la sezione **sottile aperta** a T riportata in figura, assumendo costante lo spessore δ pari a 2 mm, mentre la dimensione a vale 25 mm. Sulla sezione é applicata, come riportato, una forza di taglio T_y pari a 500 N. I calcoli si svolgano sui fogli protocollo forniti, giustificando i passaggi e le assunzioni. Si svolgano i seguenti punti:

- si identifichino le tensioni che nascono a seguito dei carichi applicati, motivando le formule adottate;
- si calcolino e si rappresentino gli andamenti, i valori massimi e i versi delle tensioni;
- nota una σ_{amm} pari a 150 MPa, valutare se i punti maggiormente sollecitati, verificando la sezione con il metodo di Tresca.

Sezione sottile aperta Spessore costante δ $\delta = 2 \text{ mm}$ a = 25 mm

Rappresentare andamenti, versi e valori sulla sezione di seguito:

Università degli Studi di Padova Dipartimento di Ingegneria dell'Informazione

Corso di BIOMECCANICA (INP7078879) Facsimile prova scritta del 19.01.2023, A.A. 2022-2023

Nota: le reazioni vincolari ed i diagrammi delle azioni interne vanno riportati negli appositi spazi presenti nel testo (si rammenta che il momento va disegnato dalla parte delle fibre che tende); lo sviluppo di tutti i calcoli (in forma ordinata) deve essere allegato al compito utilizzando i soli fogli a quadretti forniti. NON UTILIZZARE MATITA E PENNA ROSSA sui fogli da consegnare.

TESTO 1

Cognome:	Nome:	Matricola:
----------	-------	------------

Esercizio 1

Si risolva la struttura riportata in figura. I calcoli si svolgano sui fogli protocollo forniti con il testo. Si indichino di seguito:

- le reazioni vincolari, completando la tabella sottostante (positive se concordi al verso riportato);
- le azioni interne, tracciando i corrispondenti andamenti quotati negli schemi di pagina 2.

$H_{ m A}(o)$:	$V_{ m A}(\uparrow)$:	$M_{ m A}(\circlearrowleft)$:
$H_{\mathrm{C}}(\to)$:	$V_{\mathrm{C}}(\uparrow)$:	$M_{\mathbf{C}}(\circlearrowleft)$:

Esercizio 1: Diagrammi delle azioni interne.

Esercizio 2

Per la struttura riportata in figura, si calcolino con il **metodo della linea elastica** la rotazione in C ϕ_C e lo spostamento verticale in B η_B , assumendo costanti i valori di modulo elastico e momento d'inerzia EI. Si indichino i valori richiesti completando la tabella (i valori sono da considerarsi positivi se concordi al verso riportato in tabella). Si riportino tutti i passaggi nello spazio libero o sui fogli protocollo forniti, giustificando i passaggi.

ϕ_{C} (\circlearrowleft):	$\eta_{ m B}$ (\downarrow):
---	---------------------------------