

Corriente

Material de Apoyo para el Curso de Física II (ICF-190)

Corriente y Resistencia

PROBLEMA RESUELTO 1

- a) Una barra con forma de cono truncado cuyo radio varía linealmente desde a hasta b, como se muestra en la figura, tiene una resistividad uniforme que vale ρ . Encuentre la resistencia entre los extremos de la barra.
- b) Si a = b = c, donde c es un cierto valor constante, obtenemos una barra con forma de cilindro. Encuentre la resistencia entre los extremos de la barra en este caso.

Solución

a) El radio de la sección transversal (superficie por donde cruzaría la corriente) tiene un radio que depende de x (recuerde la ecuación de la recta):

$$r(x) = \frac{b-a}{L}x + a. (1)$$

Fig. 1: Cono trunco.

I-2016 Página 1 de ??

Fig. 2: Cilindro.

De acuerdo con la expresión

$$R = \int dR = \int \frac{\rho}{A(x)} dx,$$
 (2)

donde dx se refiere al camino que sigue la corriente y A(x) al área de la sección transversal que cruza la corriente, que en este caso varía con x, es decir

$$A(x) = \pi(r(x))^2 = \pi \left(\frac{b-a}{L}x + a\right)^2,\tag{3}$$

Reemplazando (??) en (??) obtenemos

$$R = \rho \int_{0}^{L} \frac{1}{\pi \left(\frac{b-a}{L}x + a\right)^{2}} dx = -\frac{\rho}{\pi} \frac{1}{\frac{b-a}{L} \left(\frac{b-a}{L}x + a\right)} \Big|_{0}^{L} = \frac{\rho L}{\pi a b}.$$
 (4)

b) Si a = b = c

$$R = \int dR = \int \frac{\rho}{A} dx,\tag{5}$$

en este caso el área de la sección transversal es constante $A = \pi c^2$, por lo tanto

$$R = \int_0^L \frac{\rho}{A} dx = \frac{\rho}{A} \int_0^L dx = \frac{\rho L}{\pi c^2},\tag{6}$$

que es lo mismo que reemplazar a = b = c en el resultado dado por (??).

PROBLEMA SEMI-RESUELTO 1

Un alambre con una sección transversal circular de radio R, cuyo eje coincide con el eje x, lleva una densidad de corriente

$$\vec{J} = \frac{C_1}{r} e^{C_2(r-R)} \,\hat{i} \tag{7}$$

donde C_1 y C_2 son constantes, y r es la distancia desde el centro del alambre.

- a) ¿Cuáles son las unidades de las constantes C_1 y C_2 ?
- b) ¿Cuál es la corriente total que lleva el alambre?

2 I-2016 Página 2 de ??

Fig. 3: Cilindro con radios interno y externo

Solución

a)
$$[C_1] = \frac{A}{m}$$
 , $[C_2] = m^{-1}$

b) La expresión para la intensidad de corriente en este caso es

$$I = \int \vec{J} \cdot d\vec{A} = \int_0^{2\pi} \int_0^R \frac{C_1}{r} e^{C_2(r-R)} r dr d\theta = 2\pi C_1 \int_0^R e^{C_2(r-R)} dr, \tag{8}$$

por lo tanto

$$I = 2\pi C_1 C_2^{-1} (1 - e^{-C_2 R})$$
(9)

PROBLEMA DESAFIO 1.1

Un tubo sólido de largo L cuya resistividad está dada por $\rho(x) = 3x$, tiene un radio interior R_1 y un radio exterior R_2 . Si los extremos del cilindro se conectan a una batería que establece una diferencia de potendial V_0 , con el terminal positivo en x = 0, obtenga una expresión para la intensidad de corriente que atraviesa el cilindro.

PROBLEMA DESAFIO 1.2

Un tubo de cobre tiene un radio interno de 4 cm, un radio externo de 9 cm y una longitud de 15 m. Encuentre la resistencia del tubo entre los extremos opuestos.

I-2016 Página 3 de ??

Circuitos con resistencias

PROBLEMA RESUELTO 2

Determine las siguientes cantidades para cada uno de los dos circuitos mostrados en la Fig.??

Fig. 4: Circuitos de Resistencia en Serie y Paralelo para Problema Resuelto 2

- a) La resistencia equivalente.
- b) La corriente total entregada por la fuente.
- c) La corriente en cada resistencia.
- d) El voltaje a través de cada resistencia.
- e) La potencia disipada en cada resistencia.
- f) La potencia entregada por la fuente.

Solución

Para el circuito en serie

a) Las resistencias en serie se suman directamente

$$R_{eq} = R_1 + R_2 + R_3$$

 $R_{eq} = 20\Omega + 30\Omega + 50\Omega \Rightarrow R_{eq} = 100\Omega$

b) La corriente total se calcula utilizando la Ley de Ohm con el voltaje de la fuente y la resistencia equivalente

$$I_T = \frac{V_T}{R_{eq}}$$

$$I_T = \frac{125V}{100\Omega} \Rightarrow \boxed{I_T = 1.25A}$$

c) La corriente es constante a través de resistencias conectadas en serie

$$I_T = I_1 = I_2 = I_3 = 1.25A$$

I-2016 Página 4 de ??

d) El voltaje en cada resistencia se obtiene a través de la Ley de Ohm

$$V_1 = I_1 R_1$$

 $V_1 = (1.25A)(20\Omega) \Rightarrow V_1 = 25.0V$
 $V_2 = I_2 R_2$
 $V_2 = (1.25A)(30\Omega) \Rightarrow V_2 = 37.5V$
 $V_3 = I_3 R_3$
 $V_3 = (1.25A)(50\Omega) \Rightarrow V_3 = 62.5V$

Estos resultados se pueden verificar pues en un circuito en serie la suma de los voltajes de cada resistencia debe ser igual al voltaje entregado por la fuente.

$$V_T = V_1 + V_2 + V_3$$

$$125V = 25.0V + 37.5V + 62.5V$$

$$125V = 125V$$

e) Para calcular la potencia existen tres ecuaciones

$$P = VI = I^2 R = \frac{V^2}{R}$$

Para obtener la potencia disipada por las resistencias, utilizamos alguna de las expresiones que tenga R, así

$$P_{1} = I_{1}^{2}R_{1}$$

$$P_{1} = (1.25A)^{2}(20\Omega) \Rightarrow P_{1} = 31.250W$$

$$P_{2} = I_{2}^{2}R_{2}$$

$$P_{2} = (1.25A)^{2}(30\Omega) \Rightarrow P_{2} = 31.25046.875W$$

$$P_{3} = I_{3}^{2}R_{3}$$

$$P_{3} = (1.25A)^{2}(50\Omega) \Rightarrow P_{3} = 78.125W$$

f) Para obtener la potencia entregada por la fuente podemos calcularlo utilizando una de las expresiones de potencia con el voltaje de la fuente y la corriente o resistencia total o sumando las potencias disipadas por todas las resistencias.

$$P_T = V_T I_T$$
 $P_T = (125V)(1.25A) \Rightarrow P_T = 156.25W$
 $P_T = P_1 + P_2 + P_3$
 $P_T = 31.250W + 46.875W + 78.125W \Rightarrow P_T = 156.25W$

5 I-2016 Página 5 de ??

Para el circuito en paralelo

a) La resistencia total (o equivalente) se calcula con la suma de los inversos.

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}
\frac{1}{R_T} = \frac{1}{20\Omega} + \frac{1}{100\Omega} + \frac{1}{50\Omega}
\frac{1}{R_T} = \frac{5}{100\Omega} + \frac{1}{100\Omega} + \frac{2}{100\Omega}
\frac{1}{R_T} = \frac{8}{100\Omega}
R_T = \frac{100\Omega}{8} \Rightarrow \boxed{R_T = 12.5\Omega}$$

b) La corriente se determina por el voltaje entregado por la fuente y la resistencia equivalente del circuito.

$$I_T = \frac{V_T}{R_T}$$

$$I_T = \frac{125V}{12.5\Omega} \Rightarrow \boxed{I_T = 10A}$$

Para responder c) primero debemos responder d)

d) En un circuito en paralelo, cada "rama" experimenta el mismo voltaje.

$$V_T = V_1 = V_2 = V_3 = 125V$$

c) La corriente en cada brazo se determina utilizando la Ley de Ohm.

$$I_{1} = \frac{V_{1}}{R_{1}}$$

$$I_{1} = \frac{125V}{20\Omega} \Rightarrow I_{1} = 6.25A$$

$$I_{2} = \frac{V_{2}}{R_{2}}$$

$$I_{2} = \frac{125V}{100\Omega} \Rightarrow I_{2} = 1.25A$$

$$I_{3} = \frac{V_{3}}{R_{3}}$$

$$I_{3} = \frac{125V}{50\Omega} \Rightarrow I_{3} = 2.50A$$

 $\begin{array}{c} \mathbf{6} \\ \mathbf{1}\text{-2016} \end{array}$ Página 6 de ??

Se pueden verificar los cálculos debido a que en un circuito en paralelo la suma de la corriente de los brazos debe ser igual a la corriente total

$$I_T = I_1 + I_2 + I_3$$

 $10A = 6.25A + 1.25A + 2.50A$
 $10A = 10A$

e) La potencia se calcula de la forma usual.

$$P_{1} = I_{1}^{2}R_{1}$$

$$P_{1} = (6.25A)^{2}(20\Omega) \Rightarrow P_{1} = 781.25W$$

$$P_{2} = I_{2}^{2}R_{2}$$

$$P_{2} = (1.25A)^{2}(100\Omega) \Rightarrow P_{2} = 156.25W$$

$$P_{3} = I_{3}^{2}R_{3}$$

$$P_{3} = (2.50A)^{2}(50\Omega) \Rightarrow P_{3} = 312.50W$$

f) Nuevamente, para calcular la potencia entregada por la fuente podemos utilizar directamente una expresión de potencia o sumar la potencia disipada por todas las resistencias.

$$P_T = V_T I_T$$

 $P_T = (125V)(10A) \Rightarrow P_T = 1250W$
 $P_T = P_1 + P_2 + P_3$
 $P_T = 781.25W + 156.25W + 312.50W \Rightarrow P_T = 1250W$

PROBLEMA SEMI-RESUELTO 2

Sea un circuito como el mostrado en la Fig.??, donde $R_1 = R_2 = R_3 = R$, conectado a una fuente de voltaje V_f . Calcule

- a) La resistencia equivalente del circuito.
- b) La corriente equivalente del circuito.
- c) El voltaje y la corriente en cada resistencia.
- d) La potencia consumida en cada resistencia.

7 I-2016 Página 7 de ??

Fig. 5: Circuito de Resistencias para ejercicio semi-resuelto 2.

Fig. 6: Esquema de resolución para Circuito de Resistencias del ejercicio semi-resuelto 2.

Solución

Para resolver, debemos ir agrupando correctamente las resistencias, como muestra la Fig.??.

a)

$$\frac{1}{R_{23}} = \frac{1}{R_2} + \frac{1}{R_3}$$

$$= \frac{1}{R} + \frac{1}{R}$$

$$= \frac{2}{R}$$

$$\Rightarrow R_{23} = \frac{R}{2}$$

$$R_{123} = R_1 + R_{23}$$

= $R + \frac{R}{2} \Rightarrow R_{123} = \frac{3R}{2}$

b)

$$I_{123} = \frac{V_f}{R_1 23}$$

$$= \frac{V_f}{\frac{3R}{2}} \Rightarrow I_{123} = \frac{2V_f}{3R}$$

8 I-2016 Página 8 de ??

c)
$$I_1 = I_{23} = I_{123}$$
 y $V_2 = V_3 = V_{23}$

$$I_1 = I_{23} = I_{123} = \frac{2V}{3R}$$

$$V_{1} = I_{1}R_{1}$$

$$= \frac{2V}{3R}R \Rightarrow V_{1} = \frac{2}{3}V_{f}$$

$$V_{23} = I_{23}R_{23}$$

$$= \frac{2V_{f}}{3R}\frac{R}{2} \Rightarrow V_{23} = \frac{V_{f}}{3} = V_{2} = V_{3}$$

$$I_{2} = \frac{V_{2}}{R_{2}}$$

$$= \frac{\frac{V_{f}}{3}}{R} \Rightarrow I_{2} = \frac{1}{3}\frac{V_{f}}{R}$$

$$I_{3} = \frac{V_{3}}{R_{3}}$$

$$= \frac{\frac{V_{3}}{3}}{R} \Rightarrow I_{2} = \frac{1}{3}\frac{V_{f}}{R}$$

d)

$$P_{1} = I_{1}^{2}R_{1}$$

$$P_{1} = \left(\frac{2V_{f}}{3R}\right)^{2}(R) \Rightarrow P_{1} = \frac{4}{9}\frac{V_{f}^{2}}{R}$$

$$P_{2} = I_{2}^{2}R_{2}$$

$$P_{2} = \left(\frac{V_{f}}{3R}\right)^{2}(R) \Rightarrow P_{2} = \frac{1}{9}\frac{V_{f}^{2}}{R}$$

$$P_{3} = I_{3}^{2}R_{3}$$

$$P_{3} = \left(\frac{V_{f}}{3R}\right)^{2}(R) \Rightarrow P_{3} = \frac{1}{9}\frac{V_{f}^{2}}{R}$$

PROBLEMA DESAFIO 2.1

Dado el circuito de la Fig.??, calcular

Fig. 7: Circuito para el ejercicio desafio 2.1.

- a) El voltaje a través de la resistencia de 40 Ω .
- b) El voltaje a través de la resistencia de 50 Ω .
- c) La corriente a través de la resistencia de 2Ω .
- d) La corriente a través de la resistencia de 7Ω .

PROBLEMA DESAFIO 2.2

Dos resistores conectados en serie tienen una resistencia equivalente de 690Ω . Cuando se conectan en paralelo su resistencia equivalente es igual a 150Ω . Determine la resistencia de cada resistor.

PROBLEMA DESAFIO 2.3

Para el circuito de la Fig.??, los dos medidores son ideales, la batería no tiene resistencia interna apreciable y el amperímetro da una lectura de 1.25 A.

Fig. 8: Circuito para el ejercicio desafio 2.3.

I-2016 Página 10 de ??

- a) Calcule la resistencia equivalente
- b) ¿Cuánto marca el voltímetro?
- c) Calcule el voltaje entregado por la fuente.
- d) Calcule la potencia disipada en cada resistencia.

Bibliografía

[Figueredo and Wolf, 2009] Figueredo, A. J. and Wolf, P. S. A. (2009). Assortative pairing and life history strategy - a cross-cultural study. Human Nature, 20:317–330.

[Giancoli, 2009] iancoli, D. (2009). Física para ciencias e ingeniería con Física moderna, Cuarta edición.

I-2016 Página 11 de ??