Hierarchical Dynamical Spatio-Temporal Models: Statistics for Spatio-Temporal Data, Ch. 7

John Paige

Statistics Department University of Washington

January 29, 2018

Hierarchical Dynamical Spatio-Temporal Models (DSTMs): Data Model (Sec. 7.1)

$$\left[\left\{Z(\mathbf{x};r):\mathbf{x}\in D_{s},r\in D_{t}\right\}|\left\{Y(\mathbf{s};t):\mathbf{s}\in\mathcal{N}_{x},t\in\mathcal{N}_{r}\right\},\boldsymbol{\theta}_{D}\right]$$

- $ightharpoonup Z(\mathbf{x}, r)$: observations at location \mathbf{x} , time r
- $ightharpoonup Y(\mathbf{s};t)$: latent process at location \mathbf{s} , time t
- $ightharpoonup heta_D$: data model parameters, possibly varying in space/time
- \triangleright \mathcal{N}_{x} , \mathcal{N}_{r} : neighborhoods of **x** and r in space and time
- ▶ D: Data model

Process Model

$$\left[\left.Y(\mathbf{s};t)\right|\left\{Y(\mathbf{w};t-\tau_1):\mathbf{w}\in\mathcal{N}_s^{(1)}\right\},...,\left\{Y(\mathbf{w};t-\tau_p):\mathbf{w}\in\mathcal{N}_s^{(p)}\right\},\boldsymbol{\theta}_P\right]$$

- $\mathcal{N}_s^{(1)},...,\mathcal{N}_s^{(p)}$: neighborhoods of location **s** at time lags $0,\tau_1,...,\tau_p$
- $ightharpoonup heta_P$: process model parameters, possibly varying in space/time
- ▶ P: process model

Parameter Model

$$[\boldsymbol{\theta}_D, \boldsymbol{\theta}_P | \boldsymbol{\theta}_h]$$

 $m \theta_D,\ m heta_P,\ m heta_h$: data, process, and hyperparameters

Linear Mappings with Equal Dimensions

$$\mathbf{Z}_{t} = \mathbf{Y}_{t} + \boldsymbol{\epsilon}_{t}, \qquad \boldsymbol{\epsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{\epsilon}^{2}\mathbf{I}\right) \qquad (7.8)$$

$$Z(\mathbf{s}; t) = a + hY(\mathbf{s}; t) + \boldsymbol{\epsilon}(\mathbf{s}; t) \qquad E[\boldsymbol{\epsilon}(\mathbf{s}; t)] = 0 \qquad (7.9)$$

$$\mathbf{Z}_{t} = \mathbf{a}_{t} + \operatorname{diag}(\mathbf{h}_{t})\mathbf{Y}_{t} + \boldsymbol{\epsilon}_{t} \qquad \boldsymbol{\epsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{\epsilon}^{2}\mathbf{I}\right) \qquad (7.10)$$

$$\mathbf{Z}_{t} = \mathbf{a}_{t} + \mathbf{H}_{t}\mathbf{Y}_{t} + \boldsymbol{\epsilon}_{t} \qquad \boldsymbol{\epsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{\epsilon}^{2}\mathbf{I}\right) \qquad (7.11)$$

$$\mathbf{Z}_{t} = \mathbf{a}_{t} + \mathbf{H}_{t}\mathbf{Y}_{t} + \boldsymbol{\epsilon}_{t} \qquad \boldsymbol{\epsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{t}\right)$$

- ▶ (7.9): a, h are additive and multiplicative bias terms
- (7.10), (7.11): since a_t, h_t, H_t vary in space and time, requires simplifying assumptions about the latent process and data models
- ▶ (7.11): R_t can be modeled using a standard spatial covariance model

Linear Mappings with Unequal Dimensions: Intro

$$\mathbf{Z}_t = \mathbf{H}_t \mathbf{Y}_t + \epsilon_t \qquad \quad \epsilon_t \sim (\mathbf{0}, \mathbf{R}_t)$$
 (7.12)

- $ightharpoonup \mathbf{H}_t: m_t \times n$
- ightharpoonup ϵ_t are independent

What form can \mathbf{H}_t take?

Linear Mappings with Unequal Dimensions: Incidence Matrices

Say we have 3 observation locations $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ and two process locations, $\{\mathbf{s}_1, \mathbf{s}_2\}$, with $\mathbf{x}_1 = \mathbf{x}_2 = \mathbf{s}_1$ and $\mathbf{x}_3 = \mathbf{s}_2$. We could then write \mathbf{H}_t as:

$$\mathbf{H}_t = egin{pmatrix} 1 & 0 \ 1 & 0 \ 0 & 1 \end{pmatrix}.$$

This is an incidence matrix.

Linear Mappings with Unequal Dimensions: Change of Support

Say we have 3 observation (areal) locations $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ and two process (areal) locations, $\{\mathbf{s}_1, \mathbf{s}_2\}$. We could then write \mathbf{H}_t as:

$$\mathbf{H}_{t} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \\ h_{31} & h_{32} \end{pmatrix}$$

$$h_{ij} = \frac{|\mathbf{x}_{i} \cap \mathbf{s}_{j}|}{|\mathbf{x}_{i}|}$$
(7.15)

where $|\mathbf{x}_i|$ represents the area of region \mathbf{x}_i .

 Wikle and Berliner (2005) show this is optimal under 'minor' assumptions

Linear Mappings with Unequal Dimensions: Earthquakes

For an earthquake at time \mathbf{t} , we might want to model how the ground sinks (subsidence), \mathbf{Z}_t , for an earthquake \mathbf{Y}_t :

$$\mathbf{Z}_t = \mathbf{G}_t \mathbf{Y}_t + \boldsymbol{\epsilon}_t$$

where ${f G}$ is a matrix determining subsidence resulting from an

earthquake

Linear Mappings with Unequal Dimensions: Dimension Reduction

$$\mathbf{Y}_{t} = \mathbf{\Phi}\alpha_{t} + \nu_{t}$$
 (7.24)
$$\mathbf{Z}_{t} = \mathbf{H}_{t}\mathbf{\Phi}\alpha_{t} + \underbrace{\mathbf{H}_{t}\nu_{t} + \epsilon_{t}}_{\gamma_{t}}$$
 (7.25)

- ▶ Replacing with γ_t leads to replacing process \mathbf{Y}_t with reduced dimension process α_t .
- Examples choices of basis matrix Φ:
 - Spectral representation
 - Empirical Orthogonal Functions (EOFs)
 - Dynamical system dependent approaches
 - Smoothing kernels
- Without assumed structure for Φ, model identifiability difficult

Dimension Reduction (kinda): Spectral Representation

$$\mathbf{Z}_{t} = \mathbf{H}_{t} \mathbf{\Phi} \alpha_{t} + \underbrace{\mathbf{H}_{t} \nu_{t} + \epsilon_{t}}_{\gamma_{t}}$$
 (7.25)

- Assume $\mathbf{Y}_{t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}\right)$
- ▶ Take $\mathbf{\Phi}$ $n \times n$ so that $\alpha_t \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{\alpha}\right)$
- ▶ If Φ is orthogonal, often the case that Φ has decorrelating effect:

$$\mathbf{R}_{\alpha} = \mathbf{\Phi}' \mathbf{R} \mathbf{\Phi} \approx \mathsf{diag}(\mathbf{d})$$

► Can use multiresolution wavelet basis functions if data is on a lattice (possibly using **H**_t incidence matrix for missing data)

Dimension Reduction: EOFs

$$\mathbf{Y}_t = \mathbf{\Phi} \alpha_t + \boldsymbol{\nu}_t \tag{7.24}$$

$$\mathbf{Z}_{t} = \mathbf{H}_{t} \mathbf{\Phi} \alpha_{t} + \underbrace{\mathbf{H}_{t} \nu_{t} + \epsilon_{t}}_{\gamma_{t}}$$
 (7.25)

- ▶ Take eigendecomposition of Φ , use the first p_{α} eigenvectors
- ▶ Then covariance in ν_t could be characterized using next p_{ν} eigenvectors:

$$\mathbf{\Sigma}_{
u} = c\mathbf{I} + \sum_{k=p_{lpha}+1}^{p_{lpha}+p_{
u}} \lambda_k \mathbf{\Phi}_k \mathbf{\Phi}_k'$$

► Problems: missing data, low number of temporal replicates, sensitivity to geometry of spatial domain, basis might poorly represent the dynamics

Process Models for the DSTM: Linear Models (Sec. 7.2)

We will consider vector autoregressive processes (VARs) of order one:

$$\mathbf{Y}_t = \mathbf{M}\mathbf{Y}_{t-1} + \boldsymbol{\eta}_t; \ t = 1, \ 2, \dots \quad E[\boldsymbol{\eta}_t] = \mathbf{0} \quad \mathsf{Var}(\boldsymbol{\eta}_t) = \mathbf{\Sigma}_{\nu}$$

where η_t independent of \mathbf{Y}_{t-1} , $E[\mathbf{Y}_t] = \mathbf{0}$, and $Var(\mathbf{Y}_t) = \mathbf{\Sigma}_Y$.

Process Models for the DSTM: Lagged Nearest-Neighbor Model

We will consider vector autoregressive processes (VARs) of order one:

$$Y_t(s_i) = \sum_{j \in \mathcal{N}_i} m_{ij} Y_{t-1}(s_j) + \eta_t(s_i)$$

- $\triangleright \mathcal{N}_i$: neighborhood of s_i
- ▶ Dynamics could determine m_{ij} , \mathcal{N}_{ij} . Larger lags could be considered

Process Models for the DSTM:

PDE-Based Parameterizations

One-dimensional diffusion equation:

$$\begin{split} \frac{\partial Y}{\partial t} &= \frac{\partial}{\partial x} \left(b(x) \frac{\partial Y}{\partial x} \right) \\ \frac{\partial Y}{\partial x} &\approx \frac{Y(x + \Delta_x; t) - Y(x - \Delta_x; t)}{2\Delta_x} \\ \frac{\partial^2 Y}{\partial x^2} &\approx \frac{Y(x + \Delta_x; t) - 2Y(x; t) + Y(x - \Delta_x; t)}{\Delta_x^2} \\ \frac{\partial Y}{\partial t} &\approx \frac{Y(x; t + \Delta_t) - Y(x; t)}{\Delta_t} \end{split}$$

- $x \in [0, L]$: location
- \blacktriangleright b(x): diffusion coefficients
- ▶ Boundary conditions: $Y(0; t) = Y_0$, $Y(L; t) = Y_L$, $\{Y(x; 0) : 0 \le x \le L\}$ (known or have prior distribution)

Process Models for the DSTM: PDE-Based Parameterizations

For three locations, x_1, x_2, x_3 , this yields:

$$Y(x; t + \Delta_t) \approx \theta_1(x)Y(x; t) + \theta_2(x)Y(x + \Delta_x; t) + \theta_3(x)Y(x - \Delta_x; t),$$

$$\Rightarrow \begin{pmatrix} Y(x_1; t + \Delta_t) \\ Y(x_2; t + \Delta_t) \\ Y(x_3; t + \Delta_t) \end{pmatrix} \approx \begin{pmatrix} \theta_1(x_1) & \theta_2(x_2) & 0 \\ \theta_3(x_2) & \theta_1(x_2) & \theta_2(x_2) \\ 0 & \theta_3(x_3) & \theta_1(x_3) \end{pmatrix} \begin{pmatrix} Y(x_1; t) \\ Y(x_2; t) \\ Y(x_3; t) \end{pmatrix}$$

$$+ \begin{pmatrix} \theta_3(x_1) & 0 \\ 0 & 0 \\ 0 & \theta_2(x_3) \end{pmatrix} \begin{pmatrix} Y_0 \\ Y_L \end{pmatrix}$$

 $\theta_i(x)$ are known functions of $\Delta_x, \Delta_t, b(x), b(x - \Delta_x)$, and $b(x + \Delta_x)$

Process Models for the DSTM: PDE-Based Parameterizations

Add a stochastic term:

$$\mathbf{Y}_{t+\Delta_t} = \mathbf{M}(heta)\mathbf{Y}_t + \mathbf{M}^{(b)}(heta)\mathbf{Y}_t^{(b)} + oldsymbol{\eta}_{t+\Delta_t}, \quad oldsymbol{\eta}_t \stackrel{ ext{iid}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{Q}_{\eta})$$

- $\theta_i(x)$ are known functions of $\Delta_x, \Delta_t, b(x), b(x \Delta_x)$, and $b(x + \Delta_x)$
- ► This is a lagged nearest-neighbor model!
- ▶ Estimation of b(x) and \mathbf{Q}_{η} is nontrivial, may require simplifying assumptions

Process Models for the DSTM: Nonlinear Models (Sec. 7.3)

Nonlinear autoregressive model:

$$\mathbf{Y}_t = \mathcal{M}(\mathbf{Y}_{t-1}, \boldsymbol{\eta}_t; \boldsymbol{\theta}_t), \tag{7.62}$$

lacktriangleright \mathcal{M} : nonlinear Markovian function control process evolution

Nonlinear Models: Local Linear Approximations

Take a Taylor expansion (delta method) of $\mathcal{M}(\cdot)$ in (7.62):

$$\mathbf{Y}_t = \mathcal{M}(\mathbf{Y}_{t-1}) + \boldsymbol{\eta}_t \tag{7.63}$$

$$\mathcal{M}(\mathbf{Y}_t) \approx \mathcal{M}(\widehat{\mathbf{Y}}_{t-1}) + \mathbf{M}_t(\mathbf{Y}_{t-1} - \widehat{\mathbf{Y}}_{t-1})), \quad E[\mathbf{Y}_t] = \widehat{\mathbf{Y}}_t \quad (7.64)$$

$$(\mathbf{M}_t)_{ij} = \frac{\partial \mathcal{M}_i(\mathbf{Y})}{\partial \mathbf{Y}_t(s_j)} \bigg|_{\mathbf{Y}_t = \widehat{\mathbf{Y}}_{t-1}}$$
(7.65)

We can therefore write \mathbf{Y}_t using the form:

$$\mathbf{Y}_t = \mathbf{c}_t + \mathbf{M}_t \mathbf{Y}_{t-1} + \boldsymbol{\eta}_t \tag{7.66}$$

lacktriangle Often times must determine ${\cal M}$ by estimating ${m heta}_t$

Nonlinear Models: General Quadratic Nonlinearity

Take a second-order Taylor expansion of $\mathcal{M}(\cdot)$ in (7.62):

$$\mathbf{Y}_{t} = \mathcal{M}(\mathbf{Y}_{t-1}) + \eta_{t}$$

$$\mathcal{M}(\mathbf{Y}_{t}) \approx \mathcal{M}(\widehat{\mathbf{Y}}_{t-1}) + \mathbf{M}_{t}(\mathbf{Y}_{t-1} - \widehat{\mathbf{Y}}_{t-1}))$$

$$+ \frac{1}{2} (\mathbf{I} \otimes (\mathbf{Y}_{t} - \widehat{\mathbf{Y}}_{t})') \mathbf{H}_{t}(\mathbf{Y}_{t} - \widehat{\mathbf{Y}}_{t})$$

$$\mathbf{H}_{t} \equiv \mathbf{H}_{t}(\widehat{\mathbf{Y}}_{t}) = \begin{pmatrix} \mathbf{H}_{1t}(\mathbf{Y}_{t}) \\ \vdots \\ \mathbf{H}_{nt}(\mathbf{Y}_{t}) \end{pmatrix} \Big|_{\mathbf{Y}_{t} = \widehat{\mathbf{Y}}_{t}}$$

$$(7.81)$$

$$(\mathbf{H}_{it}(\widehat{\mathbf{Y}}_t))_{kl} = \frac{\partial^2 \mathcal{M}_i(\mathbf{Y}_t)}{\partial Y(s_k)\partial Y_t(s_l)} \bigg|_{\mathbf{Y}_t = \widehat{\mathbf{Y}}_t}$$
(7.82)

Multivariate DSTMs (Sec. 7.4)

What if we want to model multiple spatio-temporal processes that are co-dependent (e.g. temperature, salinity, current speed in the ocean)?

$$\mathbf{Y}_{t} = \mathbf{M}\mathbf{Y}_{t-1} + \boldsymbol{\eta}_{t}, \qquad \boldsymbol{\eta}_{t} \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{Q}_{\eta})$$

$$\mathbf{Y}_{t} = (\mathbf{Y}_{t}^{(1)'} \dots \mathbf{Y}_{t}^{(K)'})'$$
(7.98)

▶ The key is in reducing the dimensionality of this problem

Multivariate DSTMs: Reduced Rank Approach

$$\mathbf{Y}_{t} = \mathbf{M}\mathbf{Y}_{t-1} + \boldsymbol{\eta}_{t}, \qquad \boldsymbol{\eta}_{t} \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{Q}_{\eta})$$

$$\mathbf{Y}_{t} = (\mathbf{Y}_{t}^{(1)'} \dots \mathbf{Y}_{t}^{(K)'})'$$

$$\mathbf{Y}_{t}^{(k)} = \mathbf{\Phi}^{(k)} \boldsymbol{\alpha}_{t}^{(k)} + \boldsymbol{\nu}_{t}^{(k)}$$

$$(7.98)$$

- Use reduced rank representation of $\Phi^{(k)}$
- lacktriangle Can choose covariance structure of $oldsymbol{
 u}_t^{(k)}$ depending on approximation of $oldsymbol{\Phi}^{(k)}$

Multivariate DSTMs: Modeling Via Common Processes

Now assume:

$$\mathbf{Y}_{t} = \int_{D_{s}} \mathbf{H}(s, x; \boldsymbol{\theta}) \alpha_{t}(x) \, dx + \gamma_{t}(s)$$

$$\mathbf{Y}_{t} \equiv (\mathbf{Y}_{t}^{(1)} \dots \mathbf{Y}_{t}^{(K)})'$$

$$\alpha_{t}(s) \equiv (\alpha^{(1)}(s), \dots, \alpha^{(J)}(s))'$$

$$\gamma_{t}(s) \equiv (\gamma_{t}^{(1)}(s), \dots, \gamma_{t}^{(K)}(s))'$$
(7.103)

for kernel matrix $\mathbf{H}(\cdot,\cdot;\cdot)$

- ▶ Hence, we represent the K processes in terms of J processes with J < K</p>
- ▶ If the $\alpha_t^{(i)}(\cdot)$ have simple structure (e.g. independent AR(1) processes with unit variances), and if **H** has assumed simple structure, this can be helpful

Multivariate DSTMs: Modeling Via Common Processes

Approximate the integral with sums:

$$\mathbf{Y}_{t} = \int_{D_{s}} \mathbf{H}(s, x; \boldsymbol{\theta}) \alpha_{t}(x) \, dx + \gamma_{t}(s) \qquad (7.103)$$

$$\Rightarrow Y_t^{(k)}(s) \approx \sum_{i=1}^{p_{\alpha}} \sum_{j=1}^{J} h^{(kj}(s, x_i; \boldsymbol{\theta}) \alpha_t^{(j)}(x_i)$$
 (7.104)

$$\Rightarrow \mathbf{Y}_t(s) \approx \mathbf{H}(s)\alpha_t + \gamma_t(s) \tag{7.105}$$

for $s, x_1, x_2, ..., x_{p_{\alpha}} \in D_s$.

Questions?