Reducing the effect of nominal background samples on signal sample systematics using an adversarial neural network in the tW dilepton channel

Christian Kirfel

18th of September 2019

Outline

- tW and $t\bar{t}$ separation
- Artificial neural networks and adversarial neural networks as a possible solution
- Introduction to hyperparameters
- Preliminary training results for an adversarial neural network

tW and tt separation

- Problem: Cross-sections of tW about 10 times smaller than $t\bar{t}$
- Interference in NLO order
- ullet Instead of applying cut \longrightarrow Neural networks

Setup of the classifier

Hyper-parameter scan results

- Input: 14 variables motivated by a BDT variable scan.
- ullet Hidden layers: 6 elu layers imes 128 nodes each
- Output layer: 1 sigmoid node
- Optimisation: SGD, learning rate = 0.06, momentum = 0.3, no nesterov, no decay
- Duration: 600 epochs

Simple network results

Separation

ROC curve

Losses

Adversarial Neural Networks

- Neural networks have no info on systematic uncertainties
- Introduction of a second, adversarial network classifying between nominal and systematic
- Combined loss function $\mathcal{L}_{adversarial}\left(\theta_f, \theta_t\right) = \mathcal{L}(\theta_f) \lambda \mathcal{L}(\theta_f, \theta_r)$
- Network 1: signal/background separation
- Network 2: nominal/systematic separation
- Expectation: network 1 succeeds, network 2 fails

Setup of the ANN

ANN

	Discriminator	Adversary
tī	0	1
tW DR	1	1
tW DS	1	0

ANN setup

Discriminator setup

- Input: 14 variables motivated by a BDT variable scan.
- Hidden layers: 6 elu layers \times 128 nodes each
- Output layer: 1 sigmoid node
- Optimisation: SGD, learning rate = 0.01, momentum = 0.3, no nesterov, no decay

Adversary setup

- Input: 14 variables motivated by a BDT variable scan.
- Hidden layers: 6 elu layers \times 128 nodes each
- Output layer: 1 sigmoid node
- Optimisation: SGD, learning rate = 0.01, momentum = 0.3, no nesterov, no decay

ANN results

- The separation is visibly bad.
- The agreement between nominal and systematics has barely improved
- Losses show bad behaviour

Improvement plans

Assumption

Labelling $t\bar{t}$ as a nominal sample results in a strong bias

Possible solution

- Randomly label tt events as either nominal or systematic
- Add additional weighting to the $t\bar{t}$ sample for the adversarial network only
- ullet Exclude the $t\bar{t}$ sample for the adversarial training completely

Applied fixes

Re-labelling

	Discriminator	Adversary
tī	0	1/0 (50 % mix)
tW DR	1	1
tW DS	1	0

Weighting tt for the adversary

- Applying an additional weight to the $\ensuremath{t\bar{t}}$ events for the adversarial training only
- Varied the weights between 0.0 and 1.0

ttbar weights for the adversarial training

Weight = 1

ttbar weights for the adversarial training

Weight = 0

Weight = 1

Conclusions

Improvements and insights

sdfw

Weighting tt for the adversary

- Applying an additional weight to the $t\bar{t}$ events for the adversarial training only
- Varied the weights between 0.0 and 1.0