Con las matrices escalonadas y las operaciones elementales, no solo s útiles en el cálculo de matrices inversas como veremos a continución.

er aporte que puede hacer es caracterización de las matrices invertibles a través de su rango y de su matriz escalonada reducida.

TEOREMA.

Sea A una matriz cuadrada 🛮 🗸 🖟 🖟 (🖟). Entonces son equivalentes:

- A es invertible
- rg(A) = n

 La matriz escalonada reducida por filas (por columnas) equivalente a A es la matriz identidad

 La matriz escalonada reducida por filas (por columnas) equivalente a A es la matriz identidad

 La matriz escalonada reducida por filas (por columnas) equivalente a A es la matriz identidad

 La matriz escalonada reducida por filas (por columnas) equivalente a A es la matriz identidad

 La matriz escalonada reducida por filas (por columnas) equivalente a A es la matriz identidad

 La matriz escalonada reducida por filas (por columnas) equivalente a A es la matriz identidad

 La matriz escalonada reducida por filas (por columnas) equivalente a A es la matriz identidad

 La matriz escalonada reducida por filas (por columnas) equivalente a A es la matriz identidad

 La matriz escalonada reducida por filas (por columnas) equivalente a A es la matriz identidad

 La matriz escalonada escalo

Teorema de caracterización

Además, la tercera equivalencia aporta un método para calcular la amtriz inversa de una matriz invertible $A \in M$ n (\mathbb{K}) : Este consiste en excribir la matrix identidad $\prod_{k=1}^{n}$ a la derecha de la matrix (escrito de forma abreviada $(A(k_{j}))$) y atravéz de transformaciones elementales por filas (5 opro columnas), calcular la matrix escalonada reducica que será de la forma (k_{j}) La matrix B resultante es precisamente la matrix inversa de A, es decir $A^{-1} = B$.

Ejercicio 29

$$\begin{pmatrix}
1 & 3 & -1 \\
0 & z & 3 \\
-1 & 0 & 2
\end{pmatrix}$$

AA-1 = A-1A = I3 APLICACIONES DE LAS MATRICES

- Álgebra lineal v geometría
- Modelos lineales de ingeniería y economía · Ecuaciones en diferencias
- Ecuaciones en diterencias
 Tratamiento de imágenes y diseño asistido por ordenad
 Matrices booleanas, grafos y relaciones
 Matrices estocásticas y estadísticas.
 Ecuaciones diferenciales y sistemas dinámicos.

OUIZ

- ¿Una matriz de orden 2x3 puede tener inversa?
 No porquo po or una matriz cuadrada.
- No porque no es una matriz cuadrada
- Una matriz diagonal es aquella que
 Tiene todas las entradas nulas excepto las de la diagonal principal

3.El producto de matrices es conmutativo Para algunos casos particulares, entre ellos el de las matrices diagonales.

- 4.Hay en total 3 operaciones elementales de matrices :
- Multiplicar una fila por un número diferente de 0
 Sumar una fila (o un multiplo de una fila) a otra
 Cambiar de lugar dos filas (permutar)
- 5.Una matriz puede estar definida sobre los números naturales
- No porque los numeros naturales no son un cuerpo.