Calculs à la main

III. Racine carrée

a) Rappels

Multiplication	Division
• Pour tous nombres réels positifs a et	• Pour tous nombres réels positifs a et
b,	$b, (b \neq 0),$
$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$	
	$\sqrt{\frac{a}{a}} = \frac{\sqrt{a}}{\sqrt{a}}$
	$\bigvee b \sqrt{b}$
	• Pour tous nombres réels positifs a et

Exemple

1.
$$\sqrt{4} \times \sqrt{9} = \sqrt{4 \times 9} = \sqrt{36} = 6$$

2.
$$\sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \times \sqrt{2} = 4 \times \sqrt{2} = 4\sqrt{2}$$

$$3. \ \sqrt{\frac{36}{25}} = \frac{\sqrt{36}}{\sqrt{25}} = \frac{6}{5}$$

Point Méthode (Comment simplifier une racine carrée)

Quand j'écris $\sqrt{72}$ sur ma calculatrice, elle me répond $6\sqrt{2}$. Comment fait-elle?

Il faut d'abord décomposer le nombre 72 en faisant apparaître un carré parfait le plus grand possible :

- $72 = 3 \times 24$ ne convient pas car ni 3, ni 24 ne sont des carrés parfaits;
- $72 = 9 \times 8$ semble convenir car 9 est bien un carré parfait, mais dans 8 il existe encore un carré parfait caché car $8 = 4 \times 2$;
- $72 = 36 \times 2$ convient tout à fait car 36 est un carré parfait et il n'y aucun carré parfait caché dans 2.

On peut alors effectuer la simplification :

$$\sqrt{72} = \sqrt{36 \times 2} = \sqrt{36} \times \sqrt{2} = 6 \times \sqrt{2} = 6\sqrt{2}$$

Remarque

Si nous n'avions pas remarqué la décomposition 36×2 , on aurait pu partir de 9×8 tout en décomposant ensuite le nombre 8.

$$\sqrt{72} = \sqrt{9 \times 8} = \sqrt{9 \times 4 \times 2} = \sqrt{9} \times \sqrt{4} \times \sqrt{2} = \frac{3}{3} \times 2 \times \sqrt{2} = 6\sqrt{2}$$

b) Exercices sur les racines carrées

Niveau 1: Calculer mentalement

$\sqrt{4}$	$\sqrt{100}$	$\sqrt{900}$	$\sqrt{0,01}$	$\sqrt{(3,14)^2}$
$\sqrt{\left(\frac{2}{5}\right)^2}$	$\sqrt{rac{9}{25}}$	$\sqrt{\frac{49}{36}}$	$\sqrt{\frac{1}{81}}$	$\sqrt{\frac{121}{100}}$
$\sqrt{3~600}$	$\sqrt{0,04}$	$\sqrt{10^6}$	$\sqrt{4 \times 10^8}$	$\sqrt{(-1)^2}$

Niveau 2 : Réduire les expressions

$$A = 2\sqrt{2} - 5\sqrt{2} + 4\sqrt{2} \qquad B = -\sqrt{5} + 2\sqrt{5} + 4\sqrt{5} \qquad C = 3\sqrt{2} + 5\sqrt{2} - 10\sqrt{2} + 2\sqrt{2}$$

$$D = 5\sqrt{5} - 6\sqrt{3} - 8\sqrt{3} + \sqrt{5} \qquad E = -4\sqrt{11} + 11\sqrt{13} + 13\sqrt{11} \qquad F = 3\sqrt{7} - 3\sqrt{5} - 5\sqrt{7} + 7\sqrt{5}$$

$$G = -8\sqrt{2} - 2\sqrt{11} + 3\sqrt{11} - 7\sqrt{2} \qquad H = -4\sqrt{2} + 3\sqrt{3} + 8\sqrt{5}$$

Niveau 3 : Calculer les produits

$$A = \sqrt{2} \times 3\sqrt{2} \qquad B = 2\sqrt{7} \times \sqrt{7} \qquad C = 3\sqrt{5} \times 4\sqrt{5} \qquad D = -\sqrt{2} \times \sqrt{2}$$

$$E = -3\sqrt{2} \times \left(-5\sqrt{2}\right) \qquad F = 7\sqrt{3} \times \left(-2\sqrt{3}\right) \qquad G = 5\sqrt{5} \times \left(-2\sqrt{5}\right) \qquad H = \sqrt{2} \times \sqrt{2} \times \sqrt{2}$$

Niveau 4 : Écrire sous la forme $a + b\sqrt{c}$ où a, b et c sont des entiers

$$A = 2(2 + \sqrt{5}) B = 3(6 - \sqrt{2}) C = 5(3\sqrt{2} + 4) D = -3(5\sqrt{3} - 7)$$

$$E = \sqrt{3}(4 + \sqrt{3}) F = -2\sqrt{5}(3\sqrt{5} + 2) G = 5\sqrt{7}(-4 + 3\sqrt{7}) H = -9\sqrt{11}(-2\sqrt{11} - 6)$$

Niveau 5 : Simplifier les racines carrées

$\sqrt{18}$	$\sqrt{12}$	$\sqrt{20}$	$\sqrt{96}$	$\sqrt{50}$
$\sqrt{27}$	$\sqrt{45}$	$\sqrt{15}$	$\sqrt{98}$	$\sqrt{300}$
$\sqrt{40}$	$\sqrt{99}$	$\sqrt{54}$	$\sqrt{32}$	$\sqrt{75}$
$\sqrt{72}$	$\sqrt{63}$	$\sqrt{288}$	$\sqrt{150}$	$\sqrt{28}$

Niveau 6 : Écrire sans radical au dénominateur (si besoin simplifier la racine carrée)

$$A = \frac{1}{\sqrt{2}}$$
 $B = \frac{2}{\sqrt{3}}$ $C = \frac{\sqrt{5}}{\sqrt{2}}$ $D = \frac{\sqrt{3}}{3\sqrt{6}}$ $E = \frac{-3\sqrt{5}}{5\sqrt{3}}$ $F = \frac{4\sqrt{7}}{3\sqrt{21}}$

AIDE: Vous devez multiplier la fraction au numérateur et au dénominateur par le radical dont vous voulez vous débarrasser, ainsi pour A vous multiplierez par $\sqrt{2}$, pour E par $\sqrt{3}$...

Niveau 7 : Écrire sans radical au dénominateur (si besoin simplifier la racine carrée)

$$A = \frac{1 - \sqrt{2}}{\sqrt{2}} \qquad B = \frac{2 + 5\sqrt{3}}{\sqrt{3}} \qquad C = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{2}} \qquad D = \frac{\sqrt{3} - 1}{3\sqrt{6}} \qquad E = \frac{2 - 3\sqrt{5}}{5\sqrt{3}} \qquad F = \frac{2 + 4\sqrt{7}}{3\sqrt{21}}$$

AIDE: Vous devez multiplier la fraction au numérateur et au dénominateur par le radical dont vous voulez vous débarrasser, ainsi pour A vous multiplierez par $\sqrt{2}$, pour E par $\sqrt{3}$...

Niveau 8 : Écrire sans radical au dénominateur (si besoin simplifier la racine carrée)

$$A = \frac{1}{\sqrt{2} - \sqrt{3}} \qquad B = \frac{2}{\sqrt{2} + \sqrt{3}} \qquad C = \frac{\sqrt{5}}{\sqrt{2} - \sqrt{5}} \qquad D = \frac{\sqrt{3}}{\sqrt{3} + \sqrt{6}} \qquad E = \frac{\sqrt{5}}{\sqrt{3} + \sqrt{5}} \qquad F = \frac{\sqrt{7}}{\sqrt{3} - \sqrt{7}}$$

AIDE: Vous devez multiplier la fraction au numérateur et au dénominateur par ce qu'on appelle l'expression conjuguée du dénominateur. L'expression conjuguée est le facteur manquant dans l'identité remarquable $(a - b)(a + b) = a^2 - b^2$.

EXEMPLE:

$$A = \frac{1}{\sqrt{2} - \sqrt{3}} = \frac{1}{\sqrt{2} - \sqrt{3}} \times \frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} + \sqrt{3}}$$

$$= \frac{1 \times (\sqrt{2} + \sqrt{3})}{(\sqrt{2} - \sqrt{3}) \times (\sqrt{2} + \sqrt{3})}$$

$$= \frac{\sqrt{2} + \sqrt{3}}{\sqrt{2}^2 - \sqrt{3}^2} \text{ car on a reconnu l'identit\'e remarquable au dénominateur}$$

$$= \frac{\sqrt{2} + \sqrt{3}}{2 - 3}$$

$$= \frac{\sqrt{2} + \sqrt{3}}{-1}$$

$$= -\sqrt{2} - \sqrt{3}$$

c) Correction des exercices

Niveau 1 : Calculer mentalement

2 10 30 0, 13, 14 2 3 11 $\overline{5}$ $\overline{5}$ $\overline{6}$ $\overline{9}$ 10 0, 2 10^{3} 2×10^4 60 1

Niveau 2 : Réduire les expressions

 $A = \sqrt{2} \qquad B = 5\sqrt{5} \qquad C = 0\sqrt{2} = 0$ $D = -14\sqrt{3} + 6\sqrt{5} \qquad E = 9\sqrt{11} + 11\sqrt{13} \qquad F = 4\sqrt{5} - 2\sqrt{7}$ $G = -15\sqrt{2} + \sqrt{11} \qquad H = -4\sqrt{2} + 3\sqrt{3} + 8\sqrt{5}$

Niveau 3: Calculer les produits

A = 6 B = 14 C = 60 D = -2 E = 30 F = -42 G = -50 $H = 2\sqrt{2}$

Niveau 4 : Écrire sous la forme $a + b\sqrt{c}$ où a, b et c sont des entiers

 $A = 4 + 2\sqrt{5}$ $B = 18 - 3\sqrt{2}$ $C = 20 + 15\sqrt{2}$ $D = 21 - 15\sqrt{3}$ $E = 3 + 4\sqrt{3}$ $F = -30 - 4\sqrt{5}$ $G = 105 - 20\sqrt{7}$ $H = 198 + 54\sqrt{11}$

Niveau 5 : Simplifier les racines carrées

 $2\sqrt{5}$ $4\sqrt{6}$ $3\sqrt{2}$ $2\sqrt{3}$ $5\sqrt{2}$ $\sqrt{15}$ $7\sqrt{2}$ $3\sqrt{3}$ $3\sqrt{5}$ $10\sqrt{3}$ $2\sqrt{10}$ $3\sqrt{11}$ $3\sqrt{6}$ $4\sqrt{2}$ $5\sqrt{3}$ $2\sqrt{7}$ $6\sqrt{2}$ $3\sqrt{7}$ $12\sqrt{2}$ $5\sqrt{6}$

Niveau 6 : Écrire sans radical au dénominateur (si besoin simplifier la racine carrée)

$$A = \frac{\sqrt{2}}{2}$$

$$B = \frac{2\sqrt{3}}{3}$$

$$C = \frac{\sqrt{10}}{2}$$

$$D = \frac{\sqrt{2}}{6}$$

$$A = \frac{\sqrt{2}}{2}$$
 $B = \frac{2\sqrt{3}}{3}$ $C = \frac{\sqrt{10}}{2}$ $D = \frac{\sqrt{2}}{6}$ $E = \frac{-3\sqrt{15}}{15}$ $F = \frac{4\sqrt{3}}{9}$

$$F = \frac{4\sqrt{3}}{9}$$

Niveau 7 : Écrire sans radical au dénominateur (si besoin simplifier la racine carrée)

$$A = \frac{\sqrt{2} - 2}{2}$$

$$B = \frac{2\sqrt{3} + 15}{3}$$

$$C = \frac{\sqrt{10} - 2}{2}$$

$$D = \frac{3\sqrt{2} - \sqrt{6}}{18}$$

$$E = \frac{2\sqrt{3} - 3\sqrt{15}}{15}$$

$$A = \frac{\sqrt{2} - 2}{2} \qquad B = \frac{2\sqrt{3} + 15}{3} \qquad C = \frac{\sqrt{10} - 2}{2} \qquad D = \frac{3\sqrt{2} - \sqrt{6}}{18} \qquad E = \frac{2\sqrt{3} - 3\sqrt{15}}{15} \qquad F = \frac{2\sqrt{21} + 28\sqrt{3}}{63}$$

Niveau 8 : Écrire sans radical au dénominateur (si besoin simplifier la racine carrée)

$$A = -\sqrt{2} - \sqrt{3}$$

$$B = -2\sqrt{2} + 2\sqrt{3}$$

$$A = -\sqrt{2} - \sqrt{3} \qquad B = -2\sqrt{2} + 2\sqrt{3} \qquad C = -\frac{5 + \sqrt{10}}{3} \qquad D = -1 + \sqrt{2} \qquad E = \frac{5 - \sqrt{15}}{2} \qquad F = -\frac{7 + \sqrt{21}}{4}$$

$$D = -1 + \sqrt{2}$$

$$E = \frac{5 - \sqrt{15}}{2}$$

$$F = -\frac{7 + \sqrt{21}}{4}$$