Undergraduate Thesis 2021

Campus as 'Canvas': Local Revitalization in general with location-based Augmented Reality and Co-creation

Supervisor Nakajima Tatsuo Area of Study Computer Science

Waseda University
School of Fundamental Science and Engineering
Department of Computer Science

1W17BG08-2 Hu Yong-Hao

submitted on 2022.01.31

Abstract

This is my abstract...

Acknowledgements

This is my acknowledgements...

Contents

0	Not	ations	5										
1	Intr	roduction	7										
	1.1	Motivations	7										
	1.2	Objectives and importance	8										
	1.3	Overview of this paper	9										
2	Backgrounds 10												
	2.1	Pandemic's impact	10										
	2.2	Local Revitalization	10										
	2.3	Location-based Augmented Reality	11										
	2.4	Co-creation	11										
3	Rel	ated Works	12										
	3.1	Location-based AR's effect on a place / how users view the											
		place	12										
	3.2	Location-based AR's effect on users' motivation	13										
	3.3	Co-creation's effect on a place and users' motivation	13										
	3.4	More examples of location-based service with co-creation	14										
	3.5	User-user interaction's effect on users' engagement	14										
4	Met	thodology	15										
	4.1	Proposed model	15										
	4.2	Prototype	15										
5	Exp	periment and Results	17										
	5.1	Questionnaires	17										
	5.2	Experiment	17										
	5.3	Results	17										
		5.3.1 Motivations	17										
		5.3.2 Image of Campus	17										

CONTENTS	2

		5.3.3 User-user Interaction	17
6	Res	ults and Discussion	18
	6.1	Motivations	18
	6.2	Image of Campus	18
	6.3	User-user Interaction	18
7	Cor	nclusion	19
	7.1	Conclusion	19
	7.2	Limitations	19
	7.3	Future Works	19
\mathbf{A}	PPE:	NDIX A	25

List of Figures

4.1	Screenshot of the Grand Finals of the Pokemon Video Game	
	Championships 2019 held in Washinton D.C	16

List of Tables

1	Mathematical notations											6
7.1	Machine specs											24

Notations

Sample notations Table 1 $\,$

	Table 1: Mathematical notations
Symbol	Meaning
α	learning rate
γ	discount factor
S, s	state
A, a	action
R, r	reward
au	a trajectory / an episode
G	return
t	a discrete time step
G_t	return at time step t
T	final time step of an episode
π	policy
$\pi_{ heta}$	parametrized policy with parameter θ
$\pi(s)$	the action distribution given state s under policy π
$\pi(a s)$	probability of action a given state s under policy π
$\mathbb E$	expectation
\mathbb{E}_{π}	expectation under policy π
v(s)	state value of state S
$v_{\pi}(s)$	state value of state S under policy π
q(s, a)	action value of action a on state s
$q_p i(s, a)$	action value of action a on state s under policy π
σ	activation function

Introduction

This study attempts to implement Location-based Augmented Reality and user Co-creation on Local Revitalization for a campus and aims at generalization to other places.

1.1 Motivations

As the pandemic of COVID-19 spreading throughout the world since 2020, people were forced or encouraged to stay home and restricted from accessing public places, including tourist attractions, shops, workplaces, schools, etc. Humans' freedom in physical space is restricted, which accelerate the progress of digitalization. Not only entertainment but more and more economic and even academic activities are moving online. As the pandemic slowing down recently, despite the resumption of some physical activities, there are places or facilities remaining unused or abandoned due to financial problems, amount of users not recovered, digitalization of activities, and so on.

Removing the unused places or facilities is an alternative, but if it is possible to give them new values or change people's image of them, they can play different roles and keep contributing the society or enrich the environment. In fact, the concept 'Regional Revitalization', which referes to the attempts to vitalize rural towns where population is falling, by making use of local speciality combined with new ideas to develop new and unique industries such as tourism, has been applied around Japan recently. Among cases of Regional Revitalization, some of them adopt location-based Augmented Reality to help enrich the space. Location-based Augmented Reality is defined as Augmented Reality that utilize geographical information to display contents corresponding to a physical location. It has already used in

not merely entertainment, where Pokemon GO is a famous example, but also implemented in tourism and education, which implies its versatility and practicability. With the application of location-based Augmented Reality and the reference of Regional Revitalization, transformation of an unused place or facility without physical reconstruction seems to be feasible.

Current Local Revitalization requires considering local unique specialties or features, which takes resources and time to create suitable contents, not to mention public facilities like schools, business buildings, transport hubs which are usually lack of unique specialties or features usable for revitalization, especially for tourism cases, one of the most common applications of local revitalization. Fortunately, these places have one property in common: users. It may be an alternative for these places to invite users back to create contents based on them, complementing the lack of local uniqueness, attracting more users back and realize their revitalization. We suppose that with the help of Augmented Reality, users can enjoy and create contents with less cost. Although encouraging users back to places where they don't go anymore to create contents becomes another problem, we consider user-user interaction a possible solution since there are works showing positive effects of user-user interaction on users engagement.

Finally, the buildings in our campus are mostly white or silver, and students always describe the landscape as a factory; meanwhile students accessing the campus has become much less after the pandemic. These two reasons has become the initial inspiration for us to add more colors on our campus to make it looks more vivid as well as attract more people to come back.

1.2 Objectives and importance

There are several research questions in this study:

We examine whether Location-based Augmented Reality with user co-creation does

- Make a place more attractive
- Change a place's image for users
- Form interaction between users

In this study, firstly we aim at answering the above research questions, and we expect the results are positive. Furthermore, we try to figure out the possibility to revitalize the campus as a response to our initial inspiration, and generalize the concept and experience to not only campus but also other public facilities or places.

As for the importance of this study, firstly we tend to revitalization locations in general, different from current cases of Local Revitalization that are usually applied on rural region and in tourism or education orientation. Also, we let users comprise the contents, instead of considering specific characteristics of each location and customize the contents on the side of service provider. Last but not least, we attempt to prove a possibility, focusing less on improving Location-based Augmented Reality in technology aspects like the accuracy of geographical information or object displayment.

1.3 Overview of this paper

This paper consists of 6 chapters, beginning with this chapter for introduction. Chapter 2 explains background knowledges and concepts behind this study, including pandemic's impact, Local Revitalization, Location-based Augmented Reality and Co-creation. Chapter 3 introduces previous studies related to ours, and compares our work with them to make our work's importance more explicit. Chapter 4 explains the methodology in this study, including a concept model, prototype we built, and details of user experiment. Chapter 5 conducts analysis and discussion on presented results from the user experiment. Chapter 6 draws a conclusion, mentions limitation in this study, and proposes possible future works.

Backgrounds

2.1 Pandemic's impact

Google has been collecting their users' mobility data since the beginning of 2020 [1] [2]. Results indicate that people do access public places, including transit stations, workplaces and parks, less than before pandemic started spreading. The pandemic also accelerate the process of digitalization [3], which also resulted in a decrease of people commute physically. There are also investigations indicating that more than tens of thousands of store closed in Japan during the pandemic. Other investigations show that remote working has becoming a permanent phenomenon around the world [4]. In Japan, government even made a policy to discourage employees to commute physically. The above situations resulted in more unused facilities left on the society. The U.S. government holds about 45,000 underused or underutilized buildings according to an investigation by Harvard Business Review [5].

2.2 Local Revitalization

Local Revitalization is proposed by Japanese government, aiming at combining local unique features or specialties and new ideas or technology, in order to stimulate rural economics to balance the gap between cities and rural areas [6].

Common approaches include improving quality or design of existing local products with new techniques, launching new industries with local features, and broadening promotion on SNS or other media. Of course, a standard does not exist in the field of Local Revitalization, and there are different cases adopting diverse approaches, such as inserting real landscapes or local products into dramas or animations to attract audience, or inviting artists

to create graffiti at shopping streets to get their customers back [7][8][9].

As the development of Augmented Reality, there are also cases implementing Augmented Reality in their revitalization projects, such as placing a virtual castle on a historical ruin [10] and displaying interactive digital contents beside local physical exhibits [11][12].

2.3 Location-based Augmented Reality

Augmented Reality (AR) utilizes camera on smartphone or glasses to capture the landscape of real world, and then displays digital contents on the captured landscape so as to combine digital information with reality. Location-based Augemnted Reality makes use of geographical information such as GPS data or feature points of a landscape, so that displayed contents are located corresponding to a specific location. Pokémon Go is one of the famous cases of Location-based AR, which displays virtual characters 'pokemons' based on geographic coordinates around the world and requires players to move physically to catch them [13]. The game has earned more than 5 billion dollars since its launch 5 years ago [14], indicating the enormous popularity it possesses.

Beside entertainment, Location-based AR is also applied in tourism and education cases, including displaying educational resources on a tablet when getting close to a spot in an archaeological site [15], or asking a user to challenge a quiz on one's smartphone when approaching a historical building [16].

2.4 Co-creation

Co-creation, in business context, is defined as a company involving its customers in the creation of products or services to suit customers' own context [17]. In a general context, it is also defined as any act of creativity that is shared by two or more people [18]. Co-creation can happen not merely between a company and its customers but also in occasions where value creation is conducted by ordinary people together [19].

In our study, we adopt the more general definition, and we also refer to researches about co-creation in business or other context, which will be introduced in the next chapter.

Related Works

3.1 Location-based AR's effect on a place / how users view the place

Hwang et al. developed a location-based AR learning system for supporting local culture courses. For students who used the system in field trips, an enhancement in their local culture identity, identification of the culture in a place where one lives, is observed [16]. Law created a mobile app which features a navigation map and pop-ups of educational resources when a user approaches a site physically, and the study implicates the potential of location-based AR to enhance and disseminate the value of cultural heritage [15]. These studies investigate the influence of Location-based AR on the place or on how people value the place, while they focus more on educational goals, and their systems were developed for specific cases, which requires more knowledge and cost to implement.

Chan et al. attempted to integrate location-based AR and virtual currency to connect travelers and local shops, form a new tourism ecosystem and further build an offline business network [20]. The system Chan et al. developed is less case-specific, but their investigation is only adapted to the field of tourism business.

Therefore, we began to be curious about the influence of Location-based AR on the place or on how people value with a more general and less case-specific investigation.

3.2 Location-based AR's effect on users' motivation

Laato et al. found that a location-based AR game motivates players to go outside even during pandemic [21]. Lee et al. proposed a framework describing reasons of stickness to location-based AR game, and their analysis indicates positive influences by satisfaction and sense of flow [22]. Both of the studies chose Pokemon GO as their target to analyze how Location-based AR affects users' motivation, while Pokemon Go's gaming features are also included in their proposed model. Despite Pokemon GO's leading awareness among all location-based AR games, Lee et al. pointed out that other location-based AR games also deserve investigation [22], and we consider that an examination on not a game but a more general location-based AR service would be more representative.

Lacka's assessment indicates that full-fledged location-based AR games played in tourism destination support users to acquire knowledge about the place, which subsequently enhances users' visit intention [23]. Research conducted by Chan et al. mentioned above also investigated how their AR implementation motivates travelers to engage in more extensive and deeper travel experiences [20]. Lacka focused more on tourism and learning aspects, and Chan et al. also investigated about tourism, which are the most focused fields in researches about AR recently, and we believe that more investigations of motivation from other aspects would help location-based AR be applied in more situations.

3.3 Co-creation's effect on a place and users' motivation

sum of beliefs, ideas and impressions that a person has of a destination [24][25] introduces the co-created destination image (CoDI) approach [26]. builds a model of antecedents of destination image co-creation [27].

co-creation value, social value, usage intensity and brand strength influence customer engagement with brand pages [28]

3.4 More examples of location-based service with co-creation

Cases of co-creation with Augmented Reality implemented also emerged in recent years. Anttoni Lehto et al. presents an adoption of co-creation which allowed students to initially create contents for a location-based AR learning platform [29]. Jorge Bacca et al. proposes a framework to utilize co-creation in designing motivational augmented reality for vocational education and training [30].

3.5 User-user interaction's effect on users' engagement

Methodology

- 4.1 Proposed model
- 4.2 Prototype

Figure 4.1: Screenshot of the Grand Finals of the Pokemon Video Game Championships 2019 held in Washinton D.C.

Experiment and Results

- 5.1 Questionnaires
- 5.2 Experiment
- 5.3 Results
- 5.3.1 Motivations
- 5.3.2 Image of Campus
- 5.3.3 User-user Interaction

Results and Discussion

- 6.1 Motivations
- 6.2 Image of Campus
- 6.3 User-user Interaction

Conclusion

- 7.1 Conclusion
- 7.2 Limitations
- 7.3 Future Works

Bibliography

- [1] Covid-19 community mobility reports. [Online]. Available: https://www.google.com/covid19/mobility/.
- [2] H. Ritchie, E. Mathieu, L. Rodés-Guirao, C. Appel, C. Giattino, E. Ortiz-Ospina, J. Hasell, B. Macdonald, D. Beltekian, M. Roser, and et al., *Covid-19: Google mobility trends*, Mar. 2020. [Online]. Available: https://ourworldindata.org/covid-google-mobility-trends.
- [3] J. Amankwah-Amoah, Z. Khan, G. Wood, and G. Knight, "Covid-19 and digitalization: The great acceleration," *Journal of Business Research*, vol. 136, pp. 602–611, 2021. DOI: 10.1016/j.jbusres.2021. 08.011.
- [4] L. Saad and B. Wigert, Remote work persisting and trending permanent, Nov. 2021. [Online]. Available: https://news.gallup.com/poll/355907/remote-work-persisting-trending-permanent.aspx.
- [5] D. Hounsell, Covid-19 and potential benefits of unused facilities, Jul. 2020. [Online]. Available: https://www.facilitiesnet.com/facilitiesmanagement/tip/COVID-19-and-Potential-Benefits-of-Unused-Facilities--46584.
- [6] O. Sawaji, A. Hendy, H. Chiba, and M. Fujita, "Regional revitalization paves the way for the future of japan," *Highlighting Japan Regional Revitalization*, May 2019. [Online]. Available: https://www.gov-online.go.jp/pdf/hlj/20190501/20190501all.pdf.
- [7] 中野・白鷺の商店街にシャッターアート 落書き一蹴、地域活性化につながる一歩, Jan. 2015. [Online]. Available: https://nakano.keizai.biz/headline/623/.
- [8] **商店街のにぎわい シャッターアートで取り戻す**, Sep. 2021. [Online]. Available: https://sun-tv.co.jp/suntvnews/news/2021/09/16/42865.

BIBLIOGRAPHY 21

[9] Street art murals for urban renewal, Jun. 2019. [Online]. Available: https://urbact.eu/street-art-murals-urban-renewal.

- [10] 井. 道哉 and 長. 可也, "綾瀬市埋蔵文化財の vr,ar コンテンツ化による 地域活性化," **湘南工科大学紀要**, vol. 55, no. 1, pp. 41–47, 2021.
- [11] 北. 幸子, 穂. 温巳, 岩. 優輝, 白. 知香, 中. 卓, 初. 翔一, 森. 卓弥, 山. 綾耶, and 劉. 宇寧, "Ar を利用した地域活性化 -センチメンタル価値再生へむけて-," **成美大学紀要**, vol. 6, no. 1, pp. 43–54, 2016.
- [12] 小. 等, 相. 健郎, 門. 博之, 峰. 大輔, and 金. 明煥, "Ar マーカと行動ログを活用した地域活性化プラットフォームの考察," 情報科学技術フォーラム講演論文集, vol. 10, no. 4, pp. 615–620, 2011.
- [13] 『ポケモン go』公式サイト. [Online]. Available: https://www.pokemongo.jp/.
- [14] C. C. M. I. Strategist, *Pokémon go catches \$5 billion in lifetime revenue in five years*, Jul. 2021. [Online]. Available: https://sensortower.com/blog/pokemon-go-five-billion-revenue.
- [15] E. L.-C. Law, "Augmenting the experience of a museum visit with a geo-located ar app for an associated archaeological site," *Museum Experience Design Springer Series on Cultural Computing*, pp. 205–224, Feb. 2018. DOI: 10.1007/978-3-319-58550-5_10.
- [16] G.-J. Hwang, S.-C. Chang, P.-Y. Chen, and X.-Y. Chen, "Effects of integrating an active learning-promoting mechanism into location-based real-world learning environments on students' learning performances and behaviors," *Educational Technology Research and Development*, vol. 66, no. 2, pp. 451–474, 2017. DOI: 10.1007/s11423-017-9567-5.
- [17] C. Prahalad and V. Ramaswamy, "Co-creation experiences: The next practice in value creation," *Journal of Interactive Marketing*, vol. 18, no. 3, pp. 5–14, 2004, ISSN: 1094-9968. DOI: https://doi.org/10.1002/dir.20015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1094996804701073.
- [18] S. Elizabeth B.-N. and S. Pieter Jan, "Co-creation and the new land-scapes of design," *CoDesign*, vol. 4, no. 1, pp. 5–18, 2008. DOI: 10.1080/15710880701875068. [Online]. Available: https://doi.org/10.1080/15710880701875068.
- [19] D. Lopera-Molano and A. Lopera-Molano, "Designing communities in peace: Participatory action-research approaches embedded in regional education in colombia," *Gateways: International Journal of Community Research and Engagement*, vol. 13, May 2020. DOI: 10.5130/ijcre.v13i1.7167.

BIBLIOGRAPHY 22

[20] Y.-H. Chan, J.-Y. Lin, Y.-H. Wang, I.-Y. Lu, and Y.-H. Hsu, "How augmented reality technology consolidates the smb ecosystem of the tourism industry in taiwan," *Universal Access in Human-Computer Interaction. Designing Novel Interactions Lecture Notes in Computer Science*, pp. 129–143, May 2017. DOI: 10.1007/978-3-319-58703-5_10.

- [21] S. Laato, A. N. Islam, and T. H. Laine, "Did location-based games motivate players to socialize during covid-19?" *Telematics and Informatics*, vol. 54, p. 101 458, 2020. DOI: 10.1016/j.tele.2020.101458.
- [22] C.-H. Lee, H.-S. Chiang, and K.-L. Hsiao, "What drives stickiness in location-based ar games? an examination of flow and satisfaction," *Telematics and Informatics*, vol. 35, no. 7, pp. 1958–1970, 2018. DOI: 10.1016/j.tele.2018.06.008.
- [23] E. Lacka, "Assessing the impact of full-fledged location-based augmented reality games on tourism destination visits," *Current Issues in Tourism*, vol. 23, no. 3, pp. 345–357, Aug. 2018. DOI: 10.1080/13683500.2018.1514370.
- [24] P. Kotler, D. H. Haider, and I. J. Rein, *Marketing places: attracting investment, industry, and tourism to cities, states, and nations.* Free Press, 2008.
- [25] D. Stylidis and B. Cherifi, "Characteristics of destination image: Visitors and non-visitors' images of london," *Tourism Review*, vol. 73, no. 1, pp. 55–67, Feb. 2018. DOI: 10.1108/tr-05-2017-0090.
- [26] Y. Yilmaz, "How does destination image evolve? introducing the cocreation of the destination image approach," *European Journal of Tourism, Hospitality and Recreation*, vol. 11, no. 1, pp. 11–21, Dec. 2021. DOI: 10.2478/ejthr-2021-0002.
- [27] K. Glyptou, "Destination image co-creation in times of sustained crisis," *Revisiting Value Co-creation and Co-destruction in Tourism*, pp. 102–124, Oct. 2021. DOI: 10.4324/9781003245537-7.
- [28] N. J. D. Vries and J. Carlson, "Examining the drivers and brand performance implications of customer engagement with brands in the social media environment," *Journal of Brand Management*, vol. 21, no. 6, pp. 495–515, Jun. 2014. DOI: 10.1057/bm.2014.18.

BIBLIOGRAPHY 23

[29] A. Lehto, R. Lautkankare, N. Brander, C. Ala-Nissilä, J. Saari, and J. Salminen, "Rapid experimentation as a co-creation tool for gamified augmented reality in city spaces—case arriver," *Applied Degree Education and the Future of Work Lecture Notes in Educational Technology*, pp. 257–276, May 2020. DOI: 10.1007/978-981-15-3142-2_20.

[30] J. L. B. Acosta, S. M. B. Navarro, R. F. Gesa, and K. Kinshuk, "Framework for designing motivational augmented reality applications in vocational education and training," *Australasian Journal of Educational Technology*, vol. 35, no. 3, 2019. DOI: 10.14742/ajet.4182.

APPENDIX A - Machine Specs

Table 7.1: Machine specs

Item	Value
CPU	Intel Xeon E5-2690
Memory	188G
OS	$18.04.5~\mathrm{LTS}~\mathrm{(GNU/Linux~4.15.0-121-generic~x86_64)}$

APPENDIX B - Derivation of the simplest form of policy gradient

Derivation of the simplest form of policy gradient is provided below.

$$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi} [R(\tau)]$$

$$= \nabla_{\theta} \int_{\tau} P(\tau | \theta) R(\tau)$$

$$= \int_{\tau} \nabla_{\theta} P(\tau | \theta) R(\tau)$$

$$= \int_{\tau} P(\tau | \theta) \nabla_{\theta} log P(\tau | \theta) R(\tau)$$

$$= \mathbb{E}_{\tau \sim \pi} [\nabla_{\theta} log P(\tau | \theta) R(\tau)]$$

$$= \mathbb{E}_{\tau \sim \pi} [\nabla_{\theta} log \pi_{\theta} (a_{t} | s_{t}) R(\tau)]$$

This is a expectation, which can be estimated with a sample mean. Denote the estimated policy gradient as \hat{g} :

$$\hat{g} = \frac{1}{D} \sum_{\tau \in D} \sum_{t=0}^{T} \nabla_{\theta} log \pi_{\theta}(a_t | s_t) R(\tau)$$