Sprint-wise Retrospective

DDoS Protection System for Cloud using AWS and Machine Learning

Panel No. 06 Supervisor Name Dr. Balaji Srikaanth P, AP/NWC Dr. S. Nagendra Prabhu, AP/CINTEL Batch No. NW000156 Shaurya Singh Srinet – RA2111032010006 Shounak Chandra – RA2111032010026 Charvi Jain – RA2111047010113

Category: Research

	Sprint 1 : Project Initia		
Liked	Learned	Lacked	Longed For
Share aspects of the sprint that you enjoyed or found	Discuss lessons learned, whether they are related to	Identify areas where the team felt a lack of resources,	Discuss any desires or expectations that the team had but
particularly effective.	processes, technical aspects, or teamwork.	support, or information.	were not met during the sprint.
Successfully set up AWS environment with EC2	Learned how to efficiently configure and manage AWS	Lack of sufficient documentation for Auto Scaling	Desired clearer guidelines or best practices for optimal
instances, Auto Scaling, and Load Balancer	services like EC2, Auto Scaling, and Load Balancer for	configuration in complex use cases.	security group configurations to ensure safe, scalable
configurations without major issues.	high availability.		infrastructure.
The seamless SSH connectivity setup allowed for	Gained hands-on experience in managing EC2	Missing comprehensive examples of handling edge cases	Wished for better support tools for troubleshooting
smooth remote management of the EC2 instances.	instances and setting up necessary permissions for SSH	for SSH connectivity issues.	connectivity issues more quickly.
	access.		
The EC2 instances were set up to mirror real-world	Realized the importance of thoroughly testing	Insufficient time was allocated to fully explore and	Longed for more time to experiment with different AWS
deployment environments, providing realistic	connectivity and system access before proceeding to	configure advanced Auto Scaling policies.	configurations and evaluate their impact on performance
configurations.	other configurations.		under varying loads.
The project's infrastructure was provisioned quickly,	Understood the critical role of Load Balancers in	Lacked some advanced knowledge about integrating	Desired quicker feedback on the setup phase to detect
allowing the team to focus on higher-level tasks.	ensuring traffic distribution and high availability	monitoring tools with AWS services during the setup	potential misconfigurations earlier.
	across EC2 instances.	phase.	
The team was able to set up the project's environment	Realized the need for efficient cost management	Faced minor roadblocks due to limited access to additional	Hoped for more resources or faster access to tools needed for
with minimal errors, keeping the sprint on schedule.	strategies to ensure long-term scalability.	AWS resources or credits.	more extensive system testing.

	Sprint 2: Traffic Simulation and Data Collection		
Liked	Learned	Lacked	Longed For
Share aspects of the sprint that you enjoyed or found	Discuss lessons learned, whether they are related to	Identify areas where the team felt a lack of resources,	Discuss any desires or expectations that the team had but
particularly effective.	processes, technical aspects, or teamwork.	support, or information.	were not met during the sprint.
Successfully configured Apache JMeter to simulate	Learned how to simulate various traffic patterns	Lack of more complex traffic patterns or real-time data to	Desired more advanced attack simulation capabilities,
real-world traffic scenarios, including benign and	(normal vs. attack traffic) using JMeter.	simulate attacks more realistically.	especially for evolving DDoS tactics.
DDoS attacks.			
Network traffic data (traffic-data.csv) was successfully	Gained experience in configuring and logging network	Some limitations in JMeter for fine-tuning traffic patterns	Wanted more automated tools to validate and clean the
logged and formatted for later use.	traffic data for anomaly detection purposes.	for specific attack types.	generated traffic data.
The integration of benign and attack traffic scenarios	Learned the importance of balancing real and attack	Lacked predefined templates or resources to simulate a	Hoped for real-time monitoring and automated analysis
was seamless.	traffic to ensure a diverse dataset for model training.	broader range of attack vectors.	during data collection to quickly detect anomalies.
The traffic logs were comprehensive and provided	Realized how critical it is to organize the traffic data	Insufficient time to explore deeper into traffic variation	Desired faster and more efficient ways to generate and
enough data for the next sprint.	clearly and consistently for easier future analysis.	and multi-vector DDoS attacks.	analyze traffic data to meet the project deadlines.
Clear documentation was created for traffic simulation	Understood the importance of thoroughly documenting	Limited access to tools for analyzing large-scale traffic	Wished for more time to fine-tune traffic patterns and better
and data collection processes.	the simulation settings for repeatability.	data efficiently.	dataset validation processes.

	Sprint 3: Anomaly Detection Implementation		
Liked	Learned	Lacked	Longed For
Share aspects of the sprint that you enjoyed or found	Discuss lessons learned, whether they are related to	Identify areas where the team felt a lack of resources,	Discuss any desires or expectations that the team had but
particularly effective.	processes, technical aspects, or teamwork.	support, or information.	were not met during the sprint.
The anomaly detection model using Isolation Forest	Learned how to apply the Isolation Forest algorithm	Lack of more complex anomaly detection algorithms for	Desired access to other advanced anomaly detection
was successfully implemented and produced	for identifying anomalies in network traffic.	further model comparison.	techniques for model diversification.
meaningful results.			
Results were visualized through anomaly plots,	Gained insights into how data visualization can be	Needed more test data with varying attack patterns to	Hoped for a more intuitive interface for visualizing and
confirming the model's accuracy in detecting DDoS	used to evaluate model effectiveness.	validate model robustness.	comparing model performance over time.
traffic.			
Team collaboration on code review and feature	Understood the value of continuous validation to	Lacked extensive documentation on the parameters and	Wished for faster testing feedback on model adjustments to
refinement was effective.	prevent overfitting in machine learning models.	setup for tuning the Isolation Forest model.	refine detection accuracy quicker.
The anomaly detection script was easy to integrate	Learned how to ensure model scalability by integrating	Limited computational resources hindered the speed of	Desired better computational resources to enable faster
with the existing simulation setup.	it seamlessly into a simulated environment.	model testing and validation.	iterations of the model tuning process.
Clear documentation of the anomaly detection setup	Realized the importance of hyperparameter tuning for	Insufficient automated tools to handle model testing and	Longed for more extensive testing scenarios, especially for
helped replicate and extend the approach.	achieving optimal model accuracy.	error detection at scale.	low-intensity DDoS attacks, to gauge the model's sensitivity.

	Sprint 4 : Performanc		
Liked	Learned	Lacked	Longed For
Share aspects of the sprint that you enjoyed or found	Discuss lessons learned, whether they are related to	Identify areas where the team felt a lack of resources,	Discuss any desires or expectations that the team had but
particularly effective.	processes, technical aspects, or teamwork.	support, or information.	were not met during the sprint.
Conducted performance tests using JMeter to evaluate	Gained hands-on experience in stress testing cloud-	Lacked access to real-time traffic during tests to better	Desired real-time performance monitoring and alerting tools
system scalability under different traffic conditions.	based infrastructure and anomaly detection systems.	simulate real-world load and attack conditions.	to track system performance during attacks.
Integrated CloudWatch alarms to monitor system	Learned how to integrate AWS monitoring tools with	Needed more advanced testing cases to evaluate system	Hoped for automated scaling adjustments based on traffic
performance and configured alerts for traffic	the performance testing setup to track system health.	response under complex attack scenarios.	patterns to ensure system resilience under heavy load.
anomalies.			
The integration of monitoring tools provided clear	Understood how dynamic scaling and load balancing	Lack of pre-configured templates for performance testing	Desired more fine-grained traffic alerting and feedback loops
insights into system behavior during attacks.	can help mitigate DDoS attack effects.	made it harder to quickly assess various conditions.	to quickly respond to issues during tests.
The system's response to DDoS attacks was effectively	Learned the importance of continuous monitoring and	Limited resources for simulating larger-scale attacks and	Wished for quicker feedback from the testing phase to address
monitored and analyzed.	analysis during performance testing to ensure system	evaluating system response in real-time.	issues before the next round of simulations.
	reliability.		
The test documentation was well-organized, ensuring	Realized the need for balancing testing and	Insufficient time allocated to testing all potential attack	Longed for more advanced visualization tools to help
smooth setup and configuration for future tests.	optimization to ensure system efficiency during	scenarios, limiting coverage of edge cases.	interpret system performance data and attack mitigation
	attacks.		effectiveness.