Contents

Acknowledgments			vii
No	otatio	n	ix
1	Intro 1.1 1.2	Oduction Who Should Read This Book?	1 8 11
Ι	Appl	ied Math and Machine Learning Basics	26
2	Lines 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	Scalars, Vectors, Matrices and Tensors Multiplying Matrices and Vectors Identity and Inverse Matrices Linear Dependence, Span and Rank Norms Special Kinds of Matrices and Vectors Eigendecomposition Singular Value Decomposition The Moore-Penrose Pseudoinverse The Trace Operator Determinant Example: Principal Components Analysis	28 30 32 33 35 36 37 40 41 42 43 43
3	Prob 3.1 3.2 3.3 3.4 3.5	Probability and Information Theory Why Probability?	48 48 51 51 53 53
	5.5		9

	3.6	The Chain Rule of Conditional Probabilities	. 54	
	3.7	Independence and Conditional Independence		
	3.8	Expectation, Variance and Covariance		
	3.9	Information Theory		
	3.10	Common Probability Distributions		
	3.11	Useful Properties of Common Functions		
	3.12	Bayes' Rule		
	3.13	Technical Details of Continuous Variables		
	3.14	Structured Probabilistic Models		
	3.15	Example: Naive Bayes		
4	Nun	nerical Computation	77	
	4.1	Overflow and Underflow	. 77	
	4.2	Poor Conditioning		
	4.3	Gradient-Based Optimization		
	4.4	Constrained Optimization		
	4.5	Example: Linear Least Squares		
5	Machine Learning Basics 92			
	5.1	Learning Algorithms	. 92	
	5.2	Example: Linear Regression	. 100	
	5.3	Generalization, Capacity, Overfitting and Underfitting		
	5.4	Hyperparameters and Validation Sets	. 113	
	5.5	Estimators, Bias and Variance	. 115	
	5.6	Maximum Likelihood Estimation	. 123	
	5.7	Bayesian Statistics	. 126	
	5.8	Supervised Learning Algorithms	. 133	
	5.9	Unsupervised Learning Algorithms	. 138	
	5.10	Weakly Supervised Learning	. 141	
	5.11	Building a Machine Learning Algorithm	. 142	
	5.12	The Curse of Dimensionality and Statistical Limitations of Local		
		Generalization	. 143	
	3.5			
II	Mo	dern Practical Deep Networks	155	
6		Iforward Deep Networks	157	
	6.1	Vanilla MLPs		
	6.2	Estimating Conditional Statistics		
	6.3	Parametrizing a Learned Predictor		
	6.4	Flow Graphs and Back-Propagation	. 174	

	6.5	Universal Approximation Properties and Depth	. 188
	6.6	Feature / Representation Learning	
	6.7	Piecewise Linear Hidden Units	. 192
	6.8	Historical Notes	. 194
7	Regu	ularization of Deep or Distributed Models	196
	7.1	Regularization from a Bayesian Perspective	. 198
	7.2	Classical Regularization: Parameter Norm Penalty	
	7.3	Classical Regularization as Constrained Optimization	. 207
	7.4	Regularization and Under-Constrained Problems	. 208
	7.5	Dataset Augmentation	. 210
	7.6	Classical Regularization as Noise Robustness	. 211
	7.7	Early Stopping as a Form of Regularization	. 217
	7.8	Parameter Tying and Parameter Sharing	. 223
	7.9	Sparse Representations	. 224
	7.10	Bagging and Other Ensemble Methods	. 226
	7.11	Dropout	. 227
	7.12	Multi-Task Learning	. 232
	7.13	Adversarial Training	. 234
8	Optimization for Training Deep Models 23		
	8.1	Optimization for Model Training	. 236
	8.2	Challenges in Optimization	. 241
	8.3	Optimization Algorithms I: Basic Algorithms	
	8.4	Optimization Algorithms II: Adaptive Learning Rates	. 256
	8.5	Optimization Algorithms III: Approximate Second-Order Method	ds261
	8.6	Optimization Algorithms IV: Natural Gradient Methods	. 262
	8.7	Optimization Strategies and Meta-Algorithms	. 262
	8.8	Hints, Global Optimization and Curriculum Learning	. 270
9	Con	volutional Networks	27 4
	9.1	The Convolution Operation	. 275
	9.2	Motivation	. 278
	9.3	Pooling	
	9.4	Convolution and Pooling as an Infinitely Strong Prior	
	9.5	Variants of the Basic Convolution Function	
	9.6	Structured Outputs	
	9.7	Convolutional Modules	
	9.8	Data Types	
	9.9	Efficient Convolution Algorithms	
	9.10	Random or Unsupervised Features	

	9.11	The Neuroscientific Basis for Convolutional Networks	299
	9.12	Convolutional Networks and the History of Deep Learning 3	805
10	Sean	ence Modeling: Recurrent and Recursive Nets 3	08
_0	10.1	Unfolding Flow Graphs and Sharing Parameters	
	10.2	Recurrent Neural Networks	
	10.3	Bidirectional RNNs	
	10.4	Encoder-Decoder Sequence-to-Sequence Architectures	
	10.5	Deep Recurrent Networks	
	10.6	Recursive Neural Networks	
	10.7	Auto-Regressive Networks	
	10.8	Facing the Challenge of Long-Term Dependencies	34
	10.9	Handling Temporal Dependencies with n-grams, HMMs, CRFs	
		and Other Graphical Models	847
	10.10	Combining Neural Networks and Search	858
11	Pract	tical methodology 3	64
	11.1	Basic Machine Learning Methodology	864
	11.2	Selecting Hyperparameters	
	11.3	Debugging Strategies	
12	Applications 376		
	12.1	Large Scale Deep Learning	376
	12.2	Computer Vision	
	12.3	Speech Recognition	
	12.4	Natural Language Processing and Neural Language Models 3	
	12.5	Structured Outputs	
	12.6	Other Applications	
III	Dee	ep Learning Research 4	10
13	Struc	ctured Probabilistic Models for Deep Learning 4	12
	13.1	The Challenge of Unstructured Modeling	13
	13.2	Using Graphs to Describe Model Structure	17
	13.3	Advantages of Structured Modeling	131
	13.4	Learning About Dependencies	
	13.5	Inference and Approximate Inference Over Latent Variables 4	
	13.6	The Deep Learning Approach to Structured Probabilistic Models 4	135
14	Mont	te Carlo Methods 4	40
	14.1	Markov Chain Monte Carlo Methods	40

	14.2	The Difficulty of Mixing Between Well-Separated Modes 442
15	Linea	ar Factor Models and Auto-Encoders 444
	15.1	Regularized Auto-Encoders
	15.2	Denoising Auto-encoders
	15.3	Representational Power, Layer Size and Depth 450
	15.4	Reconstruction Distribution
	15.5	Linear Factor Models
	15.6	Probabilistic PCA and Factor Analysis
	15.7	Reconstruction Error as Log-Likelihood
	15.8	Sparse Representations
	15.9	Denoising Auto-Encoders
	15.10	Contractive Auto-Encoders
16	Repr	resentation Learning 471
	16.1	Greedy Layerwise Unsupervised Pre-Training 472
	16.2	Transfer Learning and Domain Adaptation 479
	16.3	Semi-Supervised Learning
	16.4	Semi-Supervised Learning and Disentangling Underlying Causal
		Factors
	16.5	Assumption of Underlying Factors and Distributed Representation 489
	16.6	Exponential Gain in Representational Efficiency from Distributed
		Representations
	16.7	Exponential Gain in Representational Efficiency from Depth 495
	16.8	Priors Regarding The Underlying Factors
17	The	Manifold Perspective on Representation Learning 501
	17.1	Manifold Interpretation of PCA and Linear Auto-Encoders 509
	17.2	Manifold Interpretation of Sparse Coding
	17.3	The Entropy Bias from Maximum Likelihood 512
	17.4	Manifold Learning via Regularized Auto-Encoders 513
	17.5	Tangent Distance, Tangent-Prop, and Manifold Tangent Classifier 514
18	Conf	Fronting the Partition Function 518
	18.1	The Log-Likelihood Gradient of Energy-Based Models 519
	18.2	Stochastic Maximum Likelihood and Contrastive Divergence 521
	18.3	Pseudolikelihood
	18.4	Score Matching and Ratio Matching
	18.5	Denoising Score Matching
	18.6	Noise-Contrastive Estimation
	18.7	Estimating the Partition Function

19	Appr	roximate inference	542
	19.1	Inference as Optimization	544
	19.2	Expectation Maximization	545
	19.3	MAP Inference: Sparse Coding as a Probabilistic Model	546
	19.4	Variational Inference and Learning	547
	19.5	Stochastic Inference	551
	19.6	Learned Approximate Inference	551
20	Deep	Generative Models	553
	20.1	Boltzmann Machines	553
	20.2	Restricted Boltzmann Machines	556
	20.3	Training Restricted Boltzmann Machines	559
	20.4	Deep Belief Networks	563
	20.5	Deep Boltzmann Machines	566
	20.6	Boltzmann Machines for Real-Valued Data	577
	20.7	Convolutional Boltzmann Machines	580
	20.8	Other Boltzmann Machines	581
	20.9	Directed Generative Nets	581
	20.10	A Generative View of Autoencoders	583
	20.11	Generative Stochastic Networks	589
	20.12	Methodological Notes	591
Bil	oliogra	aphy	595
Inc	Index 6		