SSCE 1793 DIFFERENTIAL EQUATIONS

TUTORIAL 4

Determine whether the given function is periodic. If it is periodic, give it's period. 1.

a.
$$f(x) = \sin 5x$$
.

b.
$$f(x) = x^2$$
.

c.
$$f(x) = \cos 2\pi x$$
.

d.
$$f(x) = e^x$$
.

e.
$$f(x) = \cosh x$$
.

f.
$$f(x) = x + \cos x$$
.

g.
$$f(x) = 1 + \sin x$$

h.
$$f(x) = \tan 2x$$
.

2. Determine whether the given function is even, odd or neither.

a.
$$f(x) = x^3$$
.

b.
$$f(x) = |x|$$
.

c.
$$f(x) = x^2 - 2x$$
.

d.
$$f(x) = x + |x|$$
.

e.
$$f(x) = x \sin n\pi x$$
.

$$f. \quad f(x) = \sin 2x \cos 3x.$$

g.
$$f(x) = e^{-x} \cos 3x$$

h.
$$f(x) = \sqrt{x^3 + x}$$
.

3. Evaluate the following integral using the properties of odd and even functions.

a.
$$\int_{-1}^{1} \sin m\pi x \cos m\pi x \, dx$$
. **b.** $\int_{-\pi}^{\pi} x^2 \cos x \, dx$.

$$\mathbf{b.} \quad \int_{-\pi}^{\pi} x^2 \cos x \, dx$$

$$\mathbf{c.} \quad \int_{-\pi}^{\pi} x \sin x \, dx$$

d.
$$\int_{-1}^{1} x^4 dx$$

c.
$$\int_{-\pi}^{\pi} x \sin x \, dx.$$
d.
$$\int_{-1}^{1} x^4 \, dx.$$
e.
$$\int_{-\pi}^{\pi} x \cos 2x \, dx.$$
f.
$$\int_{-\pi}^{\pi} x^6 \sin 6x \, dx.$$

f.
$$\int_{-\pi}^{\pi} x^6 \sin 6x \, dx$$
.

g.
$$\int_{-1}^{1} (x^3 \cos 3\pi x + \sin \pi x) dx$$

4. For each of the given function

- i. Sketch the graph of y = f(x).
- ii. Determine if the function is even, odd or neither.
- iii. Then, find the Fourier series of f(x).

a.
$$f(x) = \begin{cases} 2, & -\pi < x < 0 \\ -2, & 0 < x < \pi \end{cases}$$
; $f(x) = f(x + 2\pi)$.

b.
$$f(x) = \begin{cases} -x, & -\pi < x < 0 \\ x, & \pi < x < 2\pi \end{cases}$$
; $f(x) = f(x + 2\pi)$.

c.
$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ \frac{x}{4}, & 0 < x < \pi \end{cases}$$
; $f(x) = f(x + 2\pi)$.

d.
$$f(x) = x^2$$
, $-1 < x < 1$; $f(x) = f(x+2)$.

5. For each of the given function

- i. Determine the odd 2π periodic extension f_o and compute the Fourier sine series.
- ii. Determine the even 2π periodic extension f_e and compute the Fourier cosine series.
- iii. Determine the π periodic extension.

a.
$$f(x) = x^2$$
, $0 < x < \pi$ **b.** $f(x) = \pi - x$, $0 < x < \pi$

b
$$f(r) = \pi - r$$
 $0 < r < \tau$

$$f(x) = 1$$
 $0 < x < \pi$

c.
$$f(x) = 1$$
, $0 < x < \pi$ **d.** $f(x) = \sin x$, $0 < x < \pi$

- For each of the given function, find the Fourier cosine and the Fourier sine series respectively.

 - **a.** f(x) = 1 x, 0 < x < 1 **b.** $f(x) = x x^2$, 0 < x < 1
 - **c.** $f(x) = e^x$, 0 < x < 1
- Show that the function $f(x) = x^2$ has the Fourier series, on $-\pi < x < \pi$,

$$f(x) \approx \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx.$$

Then by choosing an appropriate value of x, show that

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$$
.

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

8. Find the Fourier coefficient b_n in the Fourier sine series expansion of

$$f(x) = x + \frac{\pi}{4}, \quad 0 < x < \pi$$

 $f(x) = f(x + 2\pi).$

9. Show that the Fourier series of

$$f(x) = \begin{cases} 0, & -2 < x < 0 \\ 2, & 0 < x < 2 \end{cases}$$

$$f(x) = f(x+4).$$

is given by
$$1 + \sum_{n=1}^{\infty} \frac{1}{(2n-1)} \sin \left[\frac{(2n-1)\pi x}{2} \right]$$
.

Then, show that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$.

- 10. Given $f(x) = -x^2$, $-\pi < x < \pi$; $f(x) = f(x + \pi)$.
 - (a) Sketch the graph of f(x) such that $-3\pi < x < 3\pi$.
 - (b) Determine if f(x) is even, odd or neither.
 - (c) Show that

$$\int_0^{\pi} x^2 \cos nx \, dx = \frac{2\pi(-1)^n}{n^2}, \ n = 1, 2, 3, \dots$$

Then, compute the Fourier series of f(x).

- 11. Given f(x) = |x|, -1 < x < 1f(x) = f(x+2).
 - (a) Draw the graph of f(x) such that -3 < x < 3.
 - (b) Determine if f(x) is even, odd or neither.
 - (c) Compute the Fourier series of f(x).
 - (d) Use the Fourier series obtained in (c) to approximate the value of π .
- 12. Given f(x) = x, $0 \le x \le \pi$.
 - (a) Determine the even 2π periodic extension of f(x) and draw the graph of the function obtained for $-3\pi \le x \le 3\pi$.
 - (b) Find the Fourier cosine series of f(x) which is defined in (a).

(c) By considering the convergence of the Fourier series in (b) at x=0 and $x=\pi$, derive two series and its corresponding sum.

SOLUTIONS TO TUTORIAL 4

1. a. periodic, $T = 2\pi$.

b. non periodic.

c. periodic, $T = 2\pi$.

 \mathbf{d} . non periodic.

e. non periodic.

f. non periodic.

g. periodic, $T=2\pi$.

2. a. odd.

h. periodic, $T = 2\pi$.

c. neither.

b. even. \mathbf{d} . neither.

e. even.

 \mathbf{f} . odd.

g. neither.

h. neither.

3. a. 0.

b. 0.

c. 2π .

d. $\frac{2}{5}$ **f.** 0.

e. 0.

g. 0.

h. 0.

4. a. (i)

(ii)
$$f(x)$$
 odd function.

(iii)
$$f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \left[\frac{(-1)^n - 1}{n} \right] \sin nx.$$

b. (i)

(ii) f(x) even function.

(iii)
$$f(x) = \frac{\pi}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \left[\frac{(-1)^n - 1}{n^2} \right] \cos nx.$$

c. (i)

(ii)
$$f(x)$$
 neither even nor odd.

(iii)
$$f(x) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx$$
.

d. (i)

(ii)
$$f(x)$$
 even function

(ii)
$$f(x)$$
 even function. (iii) $f(x) = \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin n\pi x$.

5.

b.(i)
$$2\sum_{n=1}^{\infty} \frac{\sin nx}{n}$$
; (ii) $\frac{\pi}{2} + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}$

c.(i)
$$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)}$$

c.(i)
$$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)}$$
.
d.(ii) $\frac{2}{\pi} + \frac{4}{\pi} \left[\frac{2}{3} \cos 2x + \frac{4}{15} \cos 4x + \frac{6}{35} \cos 6x + \cdots \right]$.

6.

a.
$$1 + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2n-1)\pi x}{(2n-1)^2}; \quad \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin n\pi x}{n}.$$

8.
$$b_n = \frac{1 - 5(-1)^n}{2n}$$

10. (a)

(b)
$$f(x)$$
 even function.
(c) $f(x) = -\frac{1}{3}\pi^2 + 2\pi \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos nx$.

11. (a)

(b)
$$f(x)$$
 even function.
(c) $f(x) = -\frac{1}{3}\pi^2 + 2\pi \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos nx$.

(d)
$$\pi^2 = 8 \left[1 + \frac{1}{9} + \frac{1}{25} + \cdots \right].$$

12. (a)

(b)
$$f(x) = \frac{1}{2} + \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n^2} \cos n\pi x.$$

(c)
$$0 = \frac{1}{2} - \frac{4}{\pi^2} \left[1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \cdots \right].$$

 $1 = \frac{1}{2} + \frac{4}{\pi^2} \left[1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + \cdots \right].$