Examen FINAL de Física 25 de juny de 2018

Model A

Qüestions: 40% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** En el circuit de la figura les tres resistències són iguals, essent $R_1 = R_2 = R_3 = 4 \Omega$, i cadascuna d'elles pot dissipar una potència màxima $P_{\text{max}}=9$ W. Quant val la fem $\mathcal E$ màxima que pot aplicar-se al circuit?
 - a) 18 V.
 - b) 4.5 V.
 - c) 9 V.
 - d) 12 V.

- **T2**) En un circuit RC, el condensador es troba inicialment descarregat. Si τ és la constant de temps del circuit, el temps que triga el condensador en carregar-se fins a la quarta part de la càrrega final és:
 - a) $\tau \ln 0.75$.
- b) $\tau \ln 0.25$.
- c) $-\tau \ln 0.25$. d) $-\tau \ln 0.75$.
- T3) Sabent que en el circuit de la figura la tensió i la intensitat totals estan en fase i que $R = 5\Omega$ i $X_L = 10\Omega$, quant val X_C ?
 - a) 5 Ω .
 - b) 15 Ω .
 - c) 10Ω .
 - d) 2Ω .

- **T4)** La funció de transferència del circuit de la figura és:

 - a) $F(\omega) = \frac{LC}{|LC \omega^2|}.$ b) $F(\omega) = \frac{1}{|\omega^2 1/LC|}.$ c) $F(\omega) = \frac{1/LC}{|1/LC \omega^2|}.$ d) $F(\omega) = \frac{1}{|LC\omega^2 1|}.$

- **T5)** Els paràmetres dels dos díodes de la figura són: $V_{\gamma} = 0.7 \text{ V}$ per D_1 , i $V_{\gamma} = 0.9 \text{ V}$ i $V_Z = 10 \text{ V}$ per D_2 . La potència dissipada per la resistència de 14 Ω és:
 - a) 0.058 W.
 - b) 40 W.
 - c) 7.143 W.
 - d) 0.035 W.

- T6) La figura representa un transistor CMOS. Indiqueu quina de les següents respostes és FALSA:
 - a) Quan la tensió a l'entrada és $V_{\rm in} = 0$ V el transistor PMOS està en tall.
 - b) Quan la tensió a l'entrada és $V_{\rm in} = V_{DD}$ la tensió a la sortida és $V_{\rm out} = 0$ V.
 - c) Quan la tensió a l'entrada és $V_{\rm in} = V_{DD}$ el transistor PMOS està en tall.
 - d) Quan la tensió a l'entrada és $V_{\rm in}=0$ V la tensió a la sortida és $V_{\rm out}=V_{DD}$.

- T7) Enviem un feix de llum no polaritzada de intensitat $I_0 = 8 \times 10^{-3} \text{ W/m}^2$ cap a un conjunt format per tres làmines polaritzadores paral·leles. Si l'eix de polarització de cadascuna de les làmines forma el mateix angle θ respecte de l'eix de la làmina anterior, quant ha de valer θ per que la intensitat de la llum en sortir del conjunt de polaritzadors sigui $I = 2.25 \times 10^{-3} \text{ W/m}^2$?
 - a) $\theta = 15^{\circ}$.

- b) $\theta = 45^{\circ}$. c) $\theta = 60^{\circ}$. d) $\theta = 30^{\circ}$.
- **T8)** Considereu dos focus F_1 i F_2 d'ones electromagnètiques linealment polaritzades, que emeten en fase i amb la mateixa freqüència f. Sigui λ la longitud d'ona d'aquestes ones. Si d_1 i d_2 són les distàncies dels focus a un punt P, quina de les següents afirmacions és CERTA?
 - a) Si $d_2 d_1 = \lambda/4$, les ones en el punt P estan desfasades $\pi/4$.
 - b) Si $d_2 d_1 = 3\lambda/2$, en el punt P es produeix una interferència constructiva.
 - c) Si $d_2 d_1 = \lambda$, en el punt P es produeix una interferència destructiva.
 - d) Si $d_2 d_1 = 3\lambda$, les ones en el punt P estan en fase.

Examen FINAL de Física 25 de juny de 2018

Model B

Qüestions: 40% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) La funció de transferència del circuit de la figura és:

a)
$$F(\omega) = \frac{1}{|LC\omega^2 - 1|}$$
.

b)
$$F(\omega) = \frac{1}{|LC\omega^2 - 1|}$$

b)
$$F(\omega) = \frac{1}{|\omega^2 - 1/LC|}$$
.
c) $F(\omega) = \frac{1/LC}{|1/LC - \omega^2|}$.
d) $F(\omega) = \frac{LC}{|LC - \omega^2|}$.

d)
$$F(\omega) = \frac{LC}{|LC - \omega^2|}$$

T2) La figura representa un transistor CMOS. Indiqueu quina de les següents respostes és FALSA:

- a) Quan la tensió a l'entrada és $V_{\rm in} = V_{DD}$ la tensió a la sortida és $V_{\rm out} = 0$ V.
- b) Quan la tensió a l'entrada és $V_{\rm in} = 0$ V la tensió a la sortida és $V_{\rm out} = V_{DD}$.
- c) Quan la tensió a l'entrada és $V_{\rm in}=0$ V el transistor PMOS està en tall.
- d) Quan la tensió a l'entrada és $V_{\rm in}=V_{DD}$ el transistor PMOS està en tall.

T3) En un circuit RC, el condensador es troba inicialment descarregat. Si τ és la constant de temps del circuit, el temps que triga el condensador en carregar-se fins a la quarta part de la càrrega final és:

- a) $\tau \ln 0.25$.
- b) $-\tau \ln 0.25$. c) $\tau \ln 0.75$. d) $-\tau \ln 0.75$.

T4) Els paràmetres dels dos díodes de la figura són: $V_{\gamma}=0.7~{\rm V}$ per D_1 , i $V_{\gamma}=0.9~{\rm V}$ i $V_Z = 10 \text{ V}$ per D_2 . La potència dissipada per la resistència de 14 Ω és:

- a) 0.035 W.
- b) 0.058 W.
- c) 7.143 W.
- d) 40 W.

- **T5)** Considereu dos focus F_1 i F_2 d'ones electromagnètiques linealment polaritzades, que emeten en fase i amb la mateixa freqüència f. Sigui λ la longitud d'ona d'aquestes ones. Si d_1 i d_2 són les distàncies dels focus a un punt P, quina de les següents afirmacions és CERTA?
 - a) Si $d_2 d_1 = \lambda/4$, les ones en el punt P estan desfasades $\pi/4$.
 - b) Si $d_2 d_1 = 3\lambda$, les ones en el punt P estan en fase.
 - c) Si $d_2 d_1 = \lambda$, en el punt P es produeix una interferència destructiva.
 - d) Si $d_2 d_1 = 3\lambda/2$, en el punt P es produeix una interferència constructiva.
- **T6)** En el circuit de la figura les tres resistències són iguals, essent $R_1 = R_2 = R_3 = 4 \Omega$, i cadascuna d'elles pot dissipar una potència màxima $P_{\text{max}} = 9$ W. Quant val la fem \mathcal{E} màxima que pot aplicar-se al circuit?

c) 18 V.

d) 4.5 V.

T7) Enviem un feix de llum no polaritzada de intensitat $I_0 = 8 \times 10^{-3} \text{ W/m}^2$ cap a un conjunt format per tres làmines polaritzadores paral·leles. Si l'eix de polarització de cadascuna de les làmines forma el mateix angle θ respecte de l'eix de la làmina anterior, quant ha de valer θ per que la intensitat de la llum en sortir del conjunt de polaritzadors sigui $I = 2.25 \times 10^{-3} \,\mathrm{W/m^2}$?

a)
$$\theta = 30^{\circ}$$
.

b)
$$\theta = 15^{\circ}$$
. c) $\theta = 45^{\circ}$. d) $\theta = 60^{\circ}$.

c)
$$\theta = 45^{\circ}$$
.

d)
$$\theta = 60^{\circ}$$

- T8) Sabent que en el circuit de la figura la tensió i la intensitat totals estan en fase i que $R = 5\Omega$ i $X_L = 10\Omega$, quant val X_C ?
 - a) 15 Ω .
 - b) 2Ω .
 - c) 10Ω .
 - d) 5Ω .

Cognoms i Nom:

Codi:

Examen FINAL de Física 25 de juny de 2018

Problema 1 (20% de l'examen)

En el circuit de la figura totes les fonts de tensió són reversibles i la seva resistència interna és negligible. Si l'interruptor S està obert, determineu:

- a) La potència subministrada o absorbida per cadascuna de les tres fonts de tensió.
- b) La diferència de potencial entre els extrems de l'interruptor S.
- c) El circuit equivalent Thévenin entre A i B.
- d) La intensitat que circularà per l'interruptor S quan el tanquem.

Problema 2 (20% de l'examen)

En el circuit de la figura, la tensió d'entrada en funció del temps és $V(t) = (50 \text{ V}) \cos(100\pi t + \pi/4)$, i la intensitat $I(t) = (2.5 \text{ A}) \cos(100\pi t - \pi/12)$. Calculeu:

- a) La impedància complexa \bar{Z} i la impedància complexa total
 $\bar{Z}_{\rm tot}$ del circuit.
- b) La tensió (en funció del temps) a X_L i a R, $V_L(t)$ i $V_R(t)$, respectivament.
- c) El factor de potència del circuit, i la potència mitjana consumida.

Problema 3 (20% de l'examen)

Els dos transistors nMOS d'enriquiment del circuit de la figura tenen una tensió llindar $V_T = 1$ V i un paràmetre característic $\beta = 0.5$ mA/V². La tensió a la porta (gate) del de l'esquerra (A) és $V_A = 0$, i al de la dreta (B) és $V_B = 5$ V.

- a) Si tanquem l'interruptor S_A (amb S_B obert), quina intensitat I_A circularà pel transistor de l'esquerra (A) i quina serà la seva tensió drenador-font V_{DSA} ?
- b) Si, amb l'interruptor S_A obert, tanquem S_B , quina intensitat I_B circularà pel transistor de la dreta (B) i quina serà la seva tensió drenador-font V_{DSB} ?
- c) Si tanquem els dos interruptors, quines intensitats I_A i I_B circularan per cadascun dels transistors i quines seran la seves tensions drenador-font V_{DSA} i V_{DSB} ?
- d) A quina porta lògica correspon el circuit de la figura quan estan tancats els dos interruptors? Raoneu la resposta

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	c	a
T2)	d	c
T3)	d	d
T4)	d	a
T5)	d	b
T6)	a	a
T7)	d	a
T8)	d	b

Resolució del Model A

T1) Cada resistència pot conduir una intensitat màxima $I_{\text{max}} = \sqrt{P_{\text{max}}/R} = 1.5 \text{ A.}$ Per altra banda, si diem I_1 a la intensitat que circula per R_1 , I_2 a la que circula per R_2 , i I_3 a la que circula per R_3 , ha de ser $I_2 = I_3 = I_1/2$. Per tant, la fem \mathcal{E} màxima que pot aplicar-se al circuit serà

$$\mathcal{E}_{\text{max}} = R_1 I_{\text{max}} + R_2 I_{\text{max}} / 2 = 9 \text{ V}$$

T2) La càrrega del condensador en funció del temps és $Q(t) = Q(1 - \exp(-t/\tau))$, essent $\tau = RC$ la constant de temps i $Q = \mathcal{E}C$ la càrrega final. Imposem

$$Q(1 - \exp{-t/\tau}) = 0.25Q \Rightarrow \exp{-t/\tau} = 1 - 0.25 = 0.75 \Rightarrow t = -\tau \ln 0.75$$

- T3) La impedància de la resistència és $\bar{Z}=5\Omega$ i la de la bobina $\bar{Z}_L=10j\Omega$. Com que estan connectades en paral·lel, el seu equivalent és $1/\bar{Z}_{\parallel}=1/5+1/10j$, d'on s'obté $\bar{Z}_{\parallel}=4+2j\Omega$. Aquesta impedància està en sèrie amb el condensador, per tant la impedància equivalent del circuit és $\bar{Z}_{\rm equi}=4+2j-jX_C\Omega$. Com que el circuit està en ressonància, la seva part imaginària ha de ser zero, per tant és $X_C=2\Omega$.
- T4) La funció de transferència és la relació entre el mòdul de la tensió de sortida i el mòdul de la tensió d'entrada, per tant és:

$$F(\omega) = \frac{V_{\text{out}}(\omega)}{V_{\text{in}}(\omega)} = \frac{X_C I}{|Z|I} = \frac{1/C\omega}{|L\omega - 1/C\omega|} = \frac{1}{|LC\omega^2 - 1|}$$

.

- T5) Si assumim que cap dels dos díodes condueix, només hi ha un únic corrent que passa per les dues resistències, i que val I=20/(01+14)=0.8333 A, i per tant la tensió als extrems tant de D_1 com de D_2 és $\Delta V=14I=11.667$ V. Amb aquest valor tots dos díodes podrien conduir, però al conduir D_1 , la tensió als seus extrems passa a ser $\Delta V=V_{\gamma}=0.7$ V $< V_Z$, per tant D_2 no condueix. La potència dissipada a la resistència de 14 Ω és $P=\Delta V^2/R=0.7^2/14=0.035$ W.
- **T6)** El CMOS funciona com a inversor. La diferència de potencial porta-font al PMOS és $V_{GS}^P = V_{in} V_{DD}$. La condició de tall $V_{GS}^P > V_T^P$, tenint en compte que la tensió llindar és $V_T^P < 0$, es dóna per $V_{in} = V_{DD}$.

- T7) La llum incident és no polaritzada, per tant al passar pel primer polaritzador es redueix la seva intensitat en un factor dos. La llum emergent està polaritzada i segons la llei de Malus, al passar pel segon polaritzador redueix la seva intensitat en un factor $\cos^2 \theta$. Finalment el feix passa pel tercer polaritzador, que forma el mateix angle θ respecte al segon polaritzador. Per tant, la intensitat de la llum que surt del conjunt dels tres polaritzadors és $I = (I_0/2)\cos^2\theta\cos^2\theta$, d'on resulta $\cos^4\theta = 2I/I_0 \Rightarrow \theta = 30^\circ$.
- **T8)** La diferència de fase en el punt P és $\Delta \phi = \frac{2\pi}{\lambda}(d_1 d_2) = \frac{2\pi}{\lambda}3\lambda = 6\pi$. Com que és un múltiple parell de 2π , les dues ones estan en fase.

Resolució dels Problemes

Problema 1

a) Amb l'interruptor obert només circula corrent per la malla exterior i, com que $\epsilon_1 > \epsilon_3$, ho fa en sentit antihorari amb una intensitat $I = (\epsilon_1 - \epsilon_3)/(R_1 + R_3) = 0.5$ A.

La font de tensió 1 subministra una potència $P_1 = \epsilon_1 I = 10 \text{ W}$ La 3 absorbeix $P_3 = \epsilon_3 I = 5 \text{ W}$, mentre que la segona ni subministra ni absorbeix.

- b) Si anem de B a A per la branca inferior, i tenim en compte que per R_2 i ϵ_2 no circula intensitat, $V_A V_B = R_3 I + \epsilon_3 \epsilon_2 = 100 \times 0.5 + 10 13 = 2 \text{ V}$
- c) El circuit equivalent Thévenin entre A i B és una fem $\epsilon_{Th} = V_A V_B = 2$ V, amb el pol positiu connectat a A, en sèrie amb la resistència equivalent R_{Th} entre els punts A i B quan totes les fem estan curtcircuitades, és a dir, la de la combinació següent

on R_1 i R_3 estan en paral·lel i, com que tenen el mateix valor de 10 Ω , són equivalents a $R_{13}=5$ Ω en sèrie amb R_2 . Per tant $R_{Th}=R_{13}+R_2=8$ Ω

d) Tancar l'interruptor S és equivalent a curtcircuitar els punts A i B del circuit Thévenin, d'on és immediat veure que circularà un corrent de A a B igual a $I_{cc} = \epsilon_{Th}/R_{Th} = 2/8 = 0.25 \text{ A}$

Problema 2

a) A partir de les expressions de V(t) i I(t) obtenim els fasors de la tensió i de la intensitat:

$$\bar{V} = 50|45^{\circ} \text{ V}, \ \bar{I} = 2.5|-15^{\circ} \text{ A}$$

per tant la impedància complexa total del circuit és

$$\bar{Z}_{tot} = \frac{\bar{V}}{\bar{I}} = 20|\underline{60^{\circ}} \ \Omega = 10 + j17.32 \ \Omega$$

Donat que tots els elements estan en sèrie, ha de ser

$$\bar{Z}_{tot} = \bar{Z} + j8 + 5$$

d'on s'obté

$$\bar{Z} = \bar{Z}_{tot} - j8 - 5 = 10 + j17.32 - j8 - 5 = 5 + j9.32 = 10.58 | \underline{61.79}^{\circ} \Omega$$

b) En el cas de la resistència, és

$$\bar{Z}_R = 5|\underline{0^{\circ}} \Omega \Rightarrow \bar{V}_R = \bar{Z}_R \bar{I} = 12.5|\underline{-15^{\circ}} \text{ V} \Rightarrow V_R(t) = (12.5 \text{ V})\cos(100\pi t - \pi/12)$$

Mentre que per la reactància inductiva,

$$\bar{Z}_L = 8|\underline{90^{\circ}} \ \Omega \Rightarrow \bar{V}_L = \bar{Z}_L \bar{I} = 20|\underline{75^{\circ}} \ \mathrm{V} \Rightarrow V_L(t) = (20 \ \mathrm{V}) \cos(100\pi t + 5\pi/12)$$

c) Si escrivim la impedància complexa total com $\bar{Z}_{tot} = Z_{tot} | \underline{\varphi}$, el factor de potència del circuit és

$$\cos\varphi = \cos 60^{\circ} = 0.5$$

La potència mitjana P consumida valdrà

$$P = V_{ef}I_{ef}\cos\varphi = (50/\sqrt{2})(2.5/\sqrt{2})0.5 = 31.25 \text{ W}$$

Problema 3

En el circuit de la figura, les fonts dels dos transistors està connectades a terra $(V_S = 0)$. La tensió porta-font a cadascun és $V_{GS} = V_G - V_S = V_G$, que en el transistor A correspon a $V_A = 0$ i en B és $V_B = 5$ V.

A més, com que
$$V_{DS} = V_D - V_S = V_D$$
,

$$V_{DS} = V_{DD} - R_D I_D = 5 - 200 I_D \rightarrow I_D = V_{DD}/R_D - (1/R_D)V_{DS} = 0.025 - 0.005 V_{DS}$$

a) Si S_A està tancat i S_B obert, pel transistor B no pot passar corrent i $I_A = I_D$. La tensió porta-font al transistor A és $V_{GS} = V_A = 0 < V_T = 1$ V. Per tant, està en tall, $I_A = I_D = 0$ i $V_{DSA} = 5 - 200I_D = 5$ V

b) Si S_A està obert i S_B tancat, pel transistor A no pot passar corrent i $I_B = I_D$. La tensió porta-font al transistor B és $V_{GS} = V_B = 5$ V > $V_T = 1$ V. Per tant, està en saturació o òhmica amb $V_{GT} = V_{GS} - V_T = 4$ V.

Si suposem que està en saturació $(V_{DS} > V_{GT})$

 $I_D = \beta (V_{GT})^2/2 = 0.5 \times 4^2/2 = 4 \text{ mA} \rightarrow V_{DS} = 5 - 200 \times 4 < 0$, la qual cosa no te sentit.

Per tant, està en òhmica $(V_{DS} < V_{GT})$ i s'ha de satisfer simultàniament

$$I_D = \beta [V_{GT}V_{DS} - (V_{DS})^2/2] = 2V_{DS} - 0.25(V_{DS})^2$$
 i $I_D = 0.025 - 0.005V_{DS}$ Igualant els dos termes

$$0.025 - 0.005 V_{DS} = 2 V_{DS} - 0.25 (V_D S)^2 \rightarrow 0.25 (V_{DS})^2 - 2.005 V_{DS} + 0.025 = 0$$
 que té per solució 8 V i 0.0125 V. La correcte és $V_{DSB} = V_{DS} = 0.125 V < V_{GT} = 4$ V

que comporta $I_B=I_D=0.025-0.005V_{DS}=0.025~\mathrm{mA}$ Així doncs, $I_B=0.025~\mathrm{mA}$ i $V_{DSB}=0.125~\mathrm{V}$

- c) Amb S_A i S_B tancats, els drenadors estan al mateix potencial $V_{out} = V_{DSA} = V_{DSB}$. El transistor A continuarà en tall amb $I_A = 0$, mentre que B es comportarà com a l'apartat anterior amb $I_B = 0.025$ mA i $V_{DSB} = 0.125$ V. Així doncs, $I_A = 0$, $I_B = 0.025$ mA i $V_{out} = V_{DSA} = V_{DSB} = 0.125$ V.
- d) Com hem vist a l'apartat anterior, quan $V_A=0$ i $V_B=5$ V, $V_{out}=0.125$ V ≈ 0 . I per simetria, quan $V_A=5$ V i $V_B=0$, també tenim $V_{out}=0.125$ V ≈ 0 . Si $V_A=V_B=0$, els dos transistors estaran en tall, $I_D=0$, i $V_{out}=V_{DD}-R_DI_D=5$ V. I quan $V_A=V_B=5$ V, els dos transistors estaran en òhmica i $V_{out}\approx 0$ Així doncs, identificant l'1 lògic amb 5 V, la taula lògica és la següent, que correspon a una NOR.

V_A	V_B	Vout
0	0	1
0	1	0
1	0	0
1	1	0