Question 1

a) H_0 : The exponential model fits the data

 H_a : The exponential model does not fit the data

b)

Class	< 3	3-6	6-9	9-12	12 - 15	>15	\sum
O_i	56	24	12	6	1	1	100
p_{i}	0.577	0.244	0.103	0.044	0.018	0.014	
$100 \times p_i = e_i$	57.7	24.4	10.3	4.4	1.8	1.4	100

c) We need to combine the last three columns so that all expected frequencies are bigger than 5.

Class	< 3	3-6	6-9	>9	\sum
o_i	56	24	12	8	100
e_i	57.7	24.4	10.3	7.6	100
$\frac{(o_i - e_i)^2}{e_i}$	0.050	0.007	0.281	0.021	0.359

d) There are 4 frequencies in the above table and we estimated λ to calculate the exponential probabilities $\Rightarrow \nu = n_f - 1 - k = 4 - 1 - 1 = 2$.

Thus, for the 5% level the critical value is $\chi^2_{\nu,\alpha} = \chi^2_{2,\,0.05} = 5.991$.

e) Since the test statistic $\chi^2 = \sum \frac{(o_i - e_i)^2}{e_i} = 0.359$ is below the critical value, we accept the null hypothesis.

Conclusion: the exponential model fits this data.

Question 2

a)

 H_0 : The examiner and grade awarded are independent

 H_a : The examiner and grade awarded are dependent

Observed	Examiner 1	Examiner 2	Examiner 3	Σ
Grade A	9	6	10	25
Grade B	11	20	26	57
Grade C	25	19	74	118
Σ	45	45	110	200

We need to calculate the expected frequencies using the formula: $e_{ij} = \frac{r_i \times c_j}{\text{total}}$.

For example, $\frac{25(45)}{200} = 5.625$ corresponds to row one, column one.

Question 2 Continued

a) The expected frequencies are:

Observed	Examiner 1	Examiner 2	Examiner 3	Σ
Grade A	$\frac{25(45)}{200} = 5.625$	$\frac{25(45)}{200} = 5.625$	$\frac{25(110)}{200} = 13.75$	25
Grade B	$\frac{57(45)}{200} = 12.825$	$\frac{57(45)}{200} = 12.825$	$\frac{57(110)}{200} = 31.35$	57
Grade C	$\frac{118(45)}{200} = 26.550$	$\frac{118(45)}{200} = 26.550$	$\frac{118(110)}{200} = 64.90$	118
Σ	45	45	110	200

To calculate the test statistic we need the following:

$\frac{(o_i - e_i)^2}{e_i}$	Examiner 1	Examiner 2	Examiner 3
Grade A	2.02	0.02	1.02
Grade B	0.26	4.01	0.91
Grade C	0.09	2.15	1.28

$$\Rightarrow \chi^2 = \sum \frac{(o_i - e_i)^2}{e_i} = 11.77.$$

Note that
$$\nu = (n_r - 1) \times (n_c - 1) = (3 - 1)(3 - 1) = (2)(2) = 4$$
 and $\alpha = 0.05 \Rightarrow \chi^2_{4,0.05} = 9.488$.

The test statistic $\chi^2=11.77$ lies above the critical value $\chi^2_{4,0.05}=9.488$ and, hence, we reject the hypothesis that there is no relationship between the two variables.

Conclusion: The grade awarded depends on the specific examiner.

b) The raw difference scores are:

$o_i - e_i$	Examiner 1	Examiner 2	Examiner 3
Grade A	3.38	0.38	-3.75
Grade B	-1.83	7.17	-5.35
Grade C	-1.55	-7.55	9.10

The main points are:

- Examiner 1 gives more As than expected but less Bs and Cs.
- Examiner 2 gives more Bs than expected but less Cs.
- Examiner 3 gives less As and Bs but more Cs.

It is better if Examiner 1 or 2 mark the exam.