

KARATINA UNIVERSITY

UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

THIRD YEAR SECOND SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF:

BACHELOR OF SCIENCE WITH EDUCATION AND BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MAT 311

COURSE TITLE: REAL ANALYSIS II

DATE: 16th July, 2024 TIME: 12.00PM - 2.00PM

Instructions: See Inside

Answer question **ONE** in section A and any other **TWO** questions from section B.

SECTION A

Answer all questions from this section

QUESTION ONE (30 marks)

a. Prove that $\lim_{x\to 2} (2x + 3) = 7$.

[3 marks]

b. Give the formal definition of limit of a function.

[3 marks]

- c. Show that if f and g are functions of bounded variation on I = [a, b], then f + g is a function of bounded variation on I and $V(f + g, I) \leq V(f) + V(g)$. [5 marks]
- d. Verify Clairaut's Theorem for the following function.

[4 marks]

$$f(x,y) = x^3 y^2 - \frac{4y^6}{x^3}$$

e. State the Mean Value Theorem.

[3 marks]

- f. Determine all the number(s) c which satisfy the conclusion of Rolle's Theorem for $f(x) = x^2 2x 8$ on [-1, 3] [3 marks].
- g. Given f(x) = 2x + 1 on I = [0, 1] and $P = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$ determine U(f, P) and L(f, P). [5 marks]
- h. If Q is a refinement of P, show that

[4 marks]

$$L(f,P) \leq L(f,Q) \leq U(f,Q) \leq U(f,P).$$

MAT 311 Page 2 of 4

SECTION B

Answer any TWO questions from this section

QUESTION TWO (20 marks)

- a. Given that $h(x,y) = (2x^2y + 1)^3$, determine $h_x(x,y)$. [4 marks]
- b. Determine all the numbers c which satisfy the conclusions of the Mean Value Theorem for the function $f(x) = x^3 + 2x^2 x$ on the interval [-1, 2]. [4 marks]
- c. Prove that if f is a monotone function, then f is Riemann integrable. [4 marks]
- d. Evaluate the point-wise limit of the functions $f_n(x) = \frac{n^2 x}{1 + n^2 x}$ for each $n \in \mathbb{N}$ and $\forall x \in \mathbb{R}$.
- e. Consider the functional sequence $\left(x + \frac{1}{n}\right)_{n \in \mathbb{N}}$ defined on \mathbb{R} . Write the first five terms of the sequence. [5 marks]

QUESTION THREE (20 marks)

- a. Given that $f(x,y) = x^2 + y^2$. Compute the partial derivative $\frac{\partial f}{\partial x}$ using the definition of derivatives. [3 marks]
- b. If $f(x) = \cos x$ is a bounded function on $[0, \frac{\pi}{2}]$ and $\alpha(x) = \frac{1}{2}x^2$ a monotonically increasing function on $[0, \frac{\pi}{2}]$. Find $\int_0^{\frac{\pi}{2}} f(x) d\alpha(x)$. [4 marks]
- c. Let $f(x) = x^2$ and $\alpha(x) = \frac{1}{3}x^3$. Let $P = \{0, 1, 2, 3, 4, 5\}$ of I = [0, 5]. Find $U(P, f, \alpha)$ and $L(P, f, \alpha)$. Hence obtain $\int_0^5 f \, d\alpha$. [7 marks]
- d. Define uniform convergence of a sequence of functions. [2 marks]
- e. Prove that if f is continuous on [a, b], then f is Riemann integrable. [4 marks]

MAT 311 Page 3 of 4

QUESTION FOUR (20 marks)

a. State the weierstrass M-Test criterion.

[2 marks]

b. Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{x^2 \cos x - y^2 \cos y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Show that $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ does not exist.

[4 marks]

- c. Determine the Taylor series for the function $f(x) = \ln(1+x)$ at x = 0. [4 marks]
- d. Given that $g(x, y, z) = \frac{xy}{z^2}$, compute the partial derivatives.
 - i) $g_y(x, y, z)$. [1 mark]
 - ii) $g_{yx}(x, y, z)$. [2 mark]
- e. State and proof the Cauchy Criterion for Uniform Convergence. [7 marks]

QUESTION FIVE (20 marks)

- a. Show that $f(x) = 4x^5 + x^3 + 7x 2$ has exactly one real root between 0 and 1. [3 marks]
- b. Define the following terms in reference to function of several variables.
 - i) Open set. [1 mark]
 - ii) Domain. [1 mark]
- c. Let f(x,y) and g(x,y) be defined in a domain D, and suppose that

$$\lim_{\substack{x \to x_0 \ y \to y_0}} f(x, y) = u$$
 and $\lim_{\substack{x \to x_0 \ y \to y_0}} g(x, y) = v$. Show that

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} [f(x, y) + g(x, y)] = u + v.$$
 [4 marks]

- d. Test for Maxima and minima in the function $z = x^3 3xy^2$. [7 marks]
- e. Prove that a monotone function on an interval I = [a, b] is of bounded variation on I and V(f) = |f(b) f(a)|. [4 marks]

MAT 311 Page 4 of 4