Álgebra Universal e Categorias

— 2º teste (30 de maio de 2018) — duração: 2 horas _____

1. (a) Seja C a categoria definida pelo diagrama seguinte

Diga, justificando, se é verdadeira a seguinte afirmação: A categoria ${f C}/C$ tem dois objetos iniciais.

Os objetos da categoria \mathbf{C}/C são todos os morfismos com codomínio C. Assim, os objetos de \mathbf{C}/C são $p,\ i,\ j,\ id_C$. Dados $r,\ s$ objetos de \mathbf{C}/C , um morfismo de r em s é um triplo (r,t,s) de \mathbf{C} -morfismos tais que $s \circ^{\mathbf{C}} t = r$. Então:

- $hom(id_C, p) = \emptyset;$
- hom $(i, j) = \emptyset$;
- hom $(j, i) = \emptyset$;
- $hom(p, i) = \{(p, f, i)\};$
- $hom(p, j) = \{(p, f, j)\},\$
- $hom(p, id_C) = \{(p, p, id_C)\};$
- hom $(p, p) = \{(p, id_A, p)\}.$

Logo a categoria C/C tem um único objeto inicial, que é o objeto p.

Assim, a afirmação é falsa.

(b) Seja C a categoria definida na alínea anterior. Dê um exemplo, ou justifique que não existe um exemplo, de uma subcategoria D de C tal que D seja uma subcategoria plena de C, $A, B \in \mathrm{Obj}(\mathbf{D})$ e A e B não sejam isomorfos em D.

Uma categoria $\mathbf{D} = (\mathrm{Obj}(\mathbf{D}), \mathrm{hom}_{\mathbf{D}}, id^{\mathbf{D}}, \circ^{\mathbf{D}})$ diz-se uma subcategoria da categoria $\mathbf{C} = (\mathrm{Obj}(\mathbf{C}), \mathrm{hom}_{\mathbf{C}}, id^{\mathbf{C}}, \circ^{\mathbf{C}})$ se:

- $Obj(\mathbf{D}) \subseteq Obj(\mathbf{C});$
- todo o morfismo de D é um morfismo de C;
- para qualquer $X \in \mathrm{Obj}(\mathbf{D})$, o morfismo $id_X^{\mathbf{D}}$ de \mathbf{D} é o mesmo que o morfismo $id_X^{\mathbf{C}}$ de \mathbf{C} ;
- para quaisquer **D**-morfismos $f:A\to B$ e $g:B\to D$, o morfismo $g\circ^{\mathbf{D}} f$ de **D** é mesmo que o morfismo $g\circ^{\mathbf{C}} f$ de **C**.

Uma subcategoria $\mathbf D$ de $\mathbf C$ diz-se uma subcategoria plena se, para quaisquer $X,Y\in \mathrm{Obj}(\mathbf D)$, $\mathrm{hom}_{\mathbf D}(X,Y)=\mathrm{hom}_{\mathbf C}(X,Y).$

Assim, se ${\bf D}$ é uma subcategoria plena de ${\bf C}$ tal que $A,B\in {\rm Obj}({\bf D})$, segue que f,g,id_A,id_B são morfismos de ${\bf D}$. Então, como $f\circ g=id_B$ e $g\circ f=id_A$, conclui-se que f é um isomorfismo de ${\bf D}$ e, portanto, A e B são isomorfos em ${\bf D}$.

Logo a afirmação é falsa.

(c) Diga, justificando, se é verdadeira a seguinte afirmação: Na categoria Set, todo o morfismo que tem por domínio um objeto terminal é um monomorfismo.

Na categoria **Set**, os objetos terminais são os conjuntos singulares e os monomorfismos são as funções injetivas. Claramente, toda a função que tem por domínio um conjunto singular é uma função injetiva.

Assim, a afirmação é verdadeira.

2. Sejam C uma categoria, A, B, C objetos de C e $f:A\to C$ e $g:B\to C$ monomorfismos de C. Mostre que se $i:A\to B$ e $j:B\to A$ são morfismos de C tais que $f\circ j=g$ e $g\circ i=f$, então i e j são invertíveis e $i^{-1}=j$.

Sejam $f:A\to C$ e $g:B\to C$ monomorfismos de ${\bf C}$ e $i:A\to B$ e $j:B\to A$ morfismos de ${\bf C}$ tais que $f\circ j=g$ e $g\circ i=f$.

Pretende-se mostrar que $i^{-1} = j$, ou seja, que $i \circ j = id_B$ e $j \circ i = id_A$.

Ora, de $f\circ j=g$ e $g\circ i=f$, segue que $(g\circ i)\circ j=g$, pelo que $g\circ (i\circ j)=g\circ id_B$ e, uma vez que g é monomorfismo, tem-se $i\circ j=id_B$.

De forma análoga, prova-se que $j \circ i = id_A$. De facto, de $f \circ j = g$ e $g \circ i = f$ também se tem $f \circ (j \circ i) = f$, donde $f \circ (j \circ i) = f \circ id_A$ e, como f é monomorfismo, vem que $j \circ i = id_A$.

3. Sejam C uma categoria e A, B e C objetos de C tais que, para qualquer objeto X de C, $\hom(B,X) \neq \emptyset$ e $i_A:A \to C$ e $i_B:B \to C$ são morfismos de C. Mostre que se $(C,(i_A,i_B))$ é um coproduto de A e B, então i_A é invertível à esquerda.

Sejam ${\bf C}$ uma categoria e A, B e C objetos de ${\bf C}$ tais que, para qualquer objeto X de ${\bf C}$, $\hom(B,X) \neq \emptyset$ e $i_A:A\to C$ e $i_B:B\to C$ são morfismos de ${\bf C}$.

Admitamos que $(C,(i_A,i_B))$ é um coproduto de A e B. Então, para qualquer objeto X de ${\bf C}$ e para quaisquer ${\bf C}$ -morfismos $f':A\to X$ e $g':B\to X$, existe um, e um só, morfismo $u:C\to X$ tal que $u\circ i_A=f'$ e $u\circ i_B=g'$.

Queremos mostrar que existe $i': C \to A$ tal que $i' \circ i_A = id_A$.

Uma vez que, para todo $X \in \mathrm{Obj}(\mathbf{C})$, $\mathrm{hom}(B,X) \neq \emptyset$ e $A \in \mathrm{Obj}(\mathbf{C})$, existe $g' \in \mathrm{hom}(B,A)$. Como $A \in \mathrm{Obj}(\mathbf{C})$, então, por definição de categoria, $id_A : A \to A$ é um morfismo de \mathbf{C} . Logo, atendendo a que $(C,(i_A,i_B))$ é um coproduto de A e B, existe um, e um só, morfismo $u:C \to A$ tal que o diagrama seguinte comuta

i.e., tal que $u \circ i_A = id_A$ e $u \circ i_B = g'$. Como $u \circ i_A = id_A$, então i_A é invertível à esquerda.

4. Na categoria Set, considere os conjuntos $\{0\}$, \mathbb{N}_0 , \mathbb{Z} e as funções i, f e g definidas por

Mostre que $(\{0\}, i)$ é um igualizador de f e g.

Pretende-se mostrar que $(\{0\}, i)$ é um igualizador de f e g, isto é, que:

- (i) $f \circ i = g \circ i$;
- (ii) para qualquer $K \in \mathrm{Obj}(\mathbf{C})$ e para qualquer \mathbf{C} -morfismo $k: K \to A$ tal que $f \circ k = g \circ k$, existe um, e um só, morfismo $u: K \to \{0\}$ tal que $i \circ u = k$.

(i) A prova desta condição é imediata, pois as funções $f\circ i$ e $g\circ i$ têm o mesmo domínio e codomínio e, para qualquer $x\in A$,

$$(f \circ i)(x) = f(i(x)) = f(0) = 0 = 3 \times 0 = 3 \times i(x) = g(i(x)).$$

(ii) Sejam $K \in \mathrm{Obj}(\mathbf{C})$ e $k: K \to A$ um \mathbf{C} -morfismo tais que $f \circ k = g \circ k$. Então, para qualquer $x \in K$,

$$(f \circ k)(x) = (g \circ k)(x),$$

donde resulta

$$0 = 3k(x)$$

e, portanto, k(x)=0, para todo $x\in K$. Assim, k é a função definida por

$$k: K \rightarrow A$$

 $x \mapsto 0$

Pretende-se mostrar que existe uma, e uma só, função $u:K\to\{0\}$ tal que $i\circ u=k$. Claramente, existe uma única função de K em $\{0\}$ - a função definida por

$$\begin{array}{ccc} k:K & \to & \{0\} \\ x & \mapsto & 0 \end{array}$$

As funções $i \circ u$ e k têm o mesmo domínio e codomínio e, para qualquer $x \in K$, $(i \circ u)(x) = 0 = k(x)$. Logo $i \circ u = k$.

5. Sejam C uma categoria com objeto inicial I e $f_A:I\to A$ e $f_B:I\to B$ morfismos de C. Mostre que se $(C,(i_A,i_B))$ é um coproduto de A e B, então $(C,(i_A:A\to C,i_B:B\to C))$ é uma soma amalgamada de (f_A,f_B) .

Sejam C uma categoria com objeto inicial I e morfismos $f_A:I\to A$ e $f_B:I\to B$.

Admitamos que $(C,(i_A,i_B))$ é um coproduto de A e B. Então,

- (1) $i_A \in \text{hom}(A, C)$ e $i_B \in \text{hom}(B, C)$,
- (2) para qualquer objeto X de ${\bf C}$ e para quaisquer ${\bf C}$ -morfismos $g_A:A\to X$ e $g_B:B\to X$, existe um, e um só, morfismo $u:C\to X$ tal que $u\circ i_A=g_A$ e $u\circ i_B=g_B$.

Pretende-se mostrar que $(C,(i_A,i_B))$ é uma soma amalgamada de (f_A,f_B) , ou seja, que

- (3) $i_A \circ f_A = i_B \circ f_B$;
- (4) para para qualquer objeto K de ${\bf C}$ e para quaisquer ${\bf C}$ -morfismos $h_A:A\to K$ e $h_B:B\to K$ tais que $h_A\circ f_A=h_B\circ f_B$, existe um, e um só, morfismo $v:C\to K$ tal que $v\circ i_A=h_A$ e $v\circ i_B=h_B$.

- (3) Uma vez que $i_A \circ f_A, i_B \circ f_B \in \text{hom}(I,C)$ e |hom(I,C)| = 1, pois I é um objeto inicial, então $i_A \circ f_A = i_B \circ f_B$.
- (4) Sejam $K \in \mathrm{Obj}(\mathbf{C})$ e $h_A: A \to K$ e $h_B: B \to K$ morfismos de \mathbf{C} tais que $h_A \circ f_A = h_B \circ f_B$. Como $h_A \in \mathrm{hom}(A,K)$ e $h_B \in \mathrm{hom}(B,K)$, então, por (2), existe um, e um só, morfismo, $v: C \to K$ tal que $v \circ i_A = h_A$ e $v \circ i_B = h_B$

3

Logo $(C,(i_A:A\to C,i_B:B\to C))$ é uma soma amalgamada de (f_A,f_B) .

6. Seja $F:\mathbf{Set}\to\mathbf{Set}$ o funtor que a cada conjunto A associa o produto cartesiano $A\times A$ e que a cada função $f:A\to B$ associa a função

$$\begin{array}{cccc} F(f): & F(A) & \rightarrow & F(B) \\ & (x,y) & \mapsto & (f(x),f(y)) \end{array}$$

Diga, justificando, se:

(a) O funtor F é fiel.

O funtor F é fiel se, para quaisquer **Set**-morfismos $f, g : A \rightarrow B$,

$$F(f) = F(g) \Rightarrow f = g.$$

Uma vez que, para quaisquer **Set**-morfismos $f,g:A\to B$,

$$\begin{split} F(f) &= F(g) &\Rightarrow \forall x,y \in A, F(f)(x,y) = F(f)(x,y) \\ &\Rightarrow \forall x,y \in A, (f(x),f(y)) = (g(x),g(y)) \\ &\Rightarrow \forall x,y \in A, f(x) = g(x) \text{ e } f(y) = g(y) \\ &\Rightarrow \forall x \in A, f(x) = g(x) \\ &\Rightarrow f = g \quad \text{(as funções f e g têm o mesmo domínio e codomínio),} \end{split}$$

então o funtor F é fiel.

(b) O funtor F preserva e reflete monomorfismos.

Todo o funtor fiel reflete monomorfismos. Uma vez que F é fiel, então F reflete monomorfismos.

Na categoria **Set** os monomofismos são as funções injetivas. Se $f:A\to B$ é um **Set**-monomorfismo, então f é uma função injetiva. Se f é uma função injetiva, então F(f) também é uma função injetiva; de facto, para quaisquer $(x,y),(x',y')\in A\times A$,

$$\begin{split} F(f)(x,y) &= F(f)(x',y') & \Rightarrow & (f(x),f(y)) = (f(x'),f(y')) \\ & \Rightarrow & f(x) = f(x') \text{ e } f(y) = f(y') \\ & \Rightarrow & x = x' \text{ e } y = y' \\ & \Rightarrow & (x,y) = (x',y'). \end{split}$$

Uma vez que F(f) é injetiva, então F(f) é um monomorfismo. Logo o funtor F preserva monomorfismos.