深度学习

构造神经网络解决XOR问题

为什么神经网络首要解决XOR问题?

XOR问题

西瓜好坏与西瓜大小、西瓜颜色深浅的 关系可由四个样本表示如下:

思考:如何使用一条直线区分两种类别?

无法区分

XOR即异或门,也是一个半加器。 在图像上表现出线性不可分。

> Author:WangQi Email:wangqikaixin@gmail.com

神经元如何工作

- 1. 树突存在多个,每个均可以传导电流进入胞体并存储。
- 2. 树突与上一个信号源的连接强弱程度不同,连接强度大则传导的电流大。
- 3. 胞体可以将每个树突传导来的电流存储在一起。
- 4. 每个神经元的胞体可以存储的电流多少不同, 既触发传导下去的阈值不同。
- 5. 胞体传导出的电流强弱不一定与存储的电流相同。
- 6. 轴突传导出去的电流可以被多个树突检测到。

构造一个神经元

我们使用x表示树突接收到的电流,使用w表示树突的电阻,用sigma表示对输入的电流汇总,用f表示对输入电流的转换(或者叫做激活函数),即轴突的输出。

神经元的激活函数

- ・阶梯函数
- ・线性函数
- ・饱和线性函数
- ・对数S形函数
- · 强制非负校正函数

•

优秀的激活函数可以使神经网络更好的工作。设置线性激活函数或者不设置激活函数,会导致输出永远是输入的线性组合。为了能够解决上述提到的XOR问题,则必须选择非线性激活函数。

Sigmoid激活函数

优点:

定义域为R,值域为(0,1)。 可以用来做二分类。 类似于生物神经元。

缺点:

计算量比较大。 求导涉及除法。 会导致梯度消失。

sigmoid神经元可以模拟简单的逻辑回归。

构造神经网络

hidden layer 1 hidden layer 2

图中每一个圆圈代表一个神经元(unit)。多个神经(一竖行)元组成一个层(layer)。层与层的神经元之间全连接。第一层我们称之为输入层,最后一层为输出层,其余为隐藏层。神经网络是一个有向无环图。

Author:WangQi

Email:wangqikaixin@gmail.com

利用ANN构造逻辑运算单元

构造AND逻辑运算单元

$x_1, x_2 \in \{0, 1\}$
$y = x_1 \text{ AND } x_2$

x_1	x_2	$h_{\Theta}(x)$
0	0	
0	1	
1	0	
1	1	

构造逻辑运算单元OR

构造逻辑运算单元NOT

XOR如何构造?

A xor B = (A and (not B)) or ((not A) and B)

参数设置

手动设置参数?

NO!

实际中,我们并不手动设计神经网络的结构和参数。而是使用反向传播算法自动求参数。

小节

- · 神经元的作用就是接收信号,变换信号,传出信号。
- · 人工神经元接收多个输入并汇总,由激活函数处理后输出。
- · 常用激活函数S型函数、双曲正切函数、修正线性单元、 softmax函数。
- · Sigmoid函数的值域决定了其可以做二分类。
- · 神经网络是分层结构的。包括输入层、隐藏层、输出层。隐 藏层可以是多层。
- ·神经网络可以构造出逻辑单元并解决XOR问题。

Python实现神经网络

THANKS