

- **☐** Why Diode voltage oscillates when turned off?
 - → Oscillation between the leakage inductance and diode output capacitance
 - → Need to be damped with additional resonant network

- (1) Measure the original resonance period (Tr) of the diode voltage waveforms.
- (2) Find a capacitor value that doubles the resonance period when connected in parallel with the diode.

→ Tr=46ns

→ With 680pF capacitor, the resonance period is approximately doubled (46ns → 96ns)

(3) Calculate the snubber resistor with the following equation.

$$R_{sn} = \frac{3T_r}{2\pi C_{sn}} = \frac{3 \cdot 46ns}{2\pi \cdot 0.68nF} = 32\Omega \quad \text{(Use 30 ohms resistor)}$$

Experimental results (Csn=2.2nF, Rsn=56kΩ, fs=66kHz)

VDC=140V, VRO=65V, Vsn=122V, Ipk=1.1A, Llk=3uH

$$\frac{{V_{sn}}^2}{R_{sn}} = \frac{122^2}{56k} = 0.266W$$

$$\frac{1}{2} L_{lk} I_{pk}^2 f_s \frac{V_{sn}}{V_s - V_{po}} = \frac{1}{2} (3u) \times 1.1^2 \times 66k \times \frac{122}{122 - 65} = 0.256W$$

VDC=140V, VRO=65V, Vsn=143V, Ipk=1.41A, Llk=3uH

$$\frac{{V_{sn}}^2}{{R_{sn}}} = \frac{{122}^2}{{56k}} = 0.266W$$

$$\frac{{V_{sn}}^2}{{R_{sn}}} = \frac{{143}^2}{{56k}} = 0.365W$$

$$\frac{1}{2} L_{lk} I_{pk}^2 f_s \frac{{V_{sn}}}{{V_{sn}} - {V_{RO}}} = \frac{1}{2} (3u) \times 1.1^2 \times 66k \times \frac{122}{122 - 65} = 0.256W$$

$$\frac{1}{2} L_{lk} I_{pk}^2 f_s \frac{{V_{sn}}}{{V_{sn}} - {V_{RO}}} = \frac{1}{2} (3u) \times 1.41^2 \times 66k \times \frac{143}{143 - 65} = 0.360W$$

- □ Design Procedure
 - ✓ Measure the leakage inductance : measure the primary side inductance with all other windings shorted
 - LCR meter is not always correct (Normally 50% error) especially the leakage inductance is small
 - ✓ Determine the snubber capacitor voltage (V_{sn}) considering voltage margin of BVdss
 - ✓ Calculate the snubber resistor using

$$R_{sn} = \frac{2V_{sn}(V_{sn} - V_{RO})}{L_{lk} f_{s} I_{pk}^{2}}$$

- ✓ Determine the snubber capacitor considering the snubber capacitor voltage ripple (1~10nF)
- ✓ If the measured drain voltage is different from the designed value, leakage inductance should be calibrated using

$$L_{lk} = \frac{2V_{sn}(V_{sn} - V_{RO})}{R_{sn}f_{s}I_{pk}^{2}}$$

- □ Design Example (V_{RO} =65V, V_{in} =265 V_{ac} (V_{DC} =370V), I_{pk} =1.5A)
 - ✓ Measure the leakage inductance with LCR meter: 5uH @ 70kHz
 - ✓ Determine the snubber capacitor voltage considering voltage margin of BVdss : V_{sn}=182V (V_{sn}+V_{DC}=182+370=552V :85% of 650V)
 - ✓ Calculate the snubber resistor

$$R_{sn} = \frac{2V_{sn}(V_{sn} - V_{RO})}{L_{lk} f_s I_{pk}^{2}} = \frac{2 \times 182 \times (182 - 65)}{5u \times 66k \times 1.5^{2}} = 57k\Omega$$

- ✓ Determine the snubber capacitor considering the snubber capacitor voltage ripple : C_{sn}=2.2nF
- ✓ Measured the peak drain voltage : 520V (V_{sn}=146V)

$$R_{sn}$$
=56k Ω , C_{sn} =2.2nF
 V_{sn} =520-370=150V

V_{sn} is different from the designed value

✓ Recalculate the leakage inductance with measured V_{sn}

$$L_{lk} = \frac{2V_{sn}(V_{sn} - V_{RO})}{R_{sn}f_sI_{pk}^2} = \frac{2\times150\times(150 - 65)}{56k\times66k\times1.5^2} = 3uH$$

✓ Recalculate snubber resistor

$$R_{sn} = \frac{2V_{sn}(V_{sn} - V_{RO})}{L_{lk} f_s I_{pk}^{2}} = \frac{2 \times 182 \times (182 - 65)}{3u \times 66k \times 1.5^{2}} = 95k\Omega$$

$$R_{sn}$$
=96k Ω , C_{sn} =2.2nF
 V_{sn} =543-370=173V

✓ The drain voltage is lower than the designed value by 9V due to the stray resistance (Measured:543V, Designed:552)