Geometry Formulas Cheatsheet

Based on provided sources

June 13, 2025

Contents

1	Vectors 3					
	1.1	Basic Properties and Operations				
	1.2	Linear Dependence and Independence				
	1.3	Scalar Product				
	1.4	Vector Product (Cross Product)				
	1.5	Mixed Product (Scalar Triple Product)				
	1.6	Point Combinations				
2	Lines in the Plane					
	2.1	Equations of a Line				
	2.2	Distances and Angles				
3	Planes in Space 4					
	3.1	Equations of a Plane				
	3.2	Distances and Angles				
	3.3	Lines in Space				
4	Conics (Canonical Forms) 5					
	4.1	Ellipse				
	4.2	Hyperbola				
	4.3	Parabola				
5	Quadrics (Canonical Forms) 6					
	5.1	Ellipsoid				
	5.2	Second-Degree Cone				
	5.3	One-Sheeted Hyperboloid				
	5.4	Two-Sheeted Hyperboloid				
	5.5	Elliptic Paraboloid				
	5.6	Hyperbolic Paraboloid				
	5.7	Cylinders				
6						
	6.1	Cylindrical Surfaces				
	6.2	Conical Surfaces				
	6.3	Conoidal Surfaces				
	6.4	Surfaces of Revolution				
7		ves in Space (Differential Geometry)				
	7.1	Representations of Curves				
	7.2	Tangent and Normal Plane				
	7.3	Osculating Plane				
	7.4	Frenet Frame and Formulas				

8	Surfaces (Differential Geometry)			
	8.1	Representations and Basic Concepts	9	
		Fundamental Forms and Curvatures		
	8.3	Geodesics	1(
	8.4	Special Classes of Surfaces	1	

1 Vectors

1.1 Basic Properties and Operations

- Vector Segment Sum: $\vec{AB} + \vec{BC} = \vec{AC}$ [?, 1.4.2]p. 90]
- Projection of Sum of Vectors: $\operatorname{pr}_{\vec{u}}(\mathbf{a} + \mathbf{b}) = \operatorname{pr}_{\vec{u}}\mathbf{a} + \operatorname{pr}_{\vec{u}}\mathbf{b}$ [?, 1.4.3]p. 94]
- Projection of Scalar Product: $pr_{\vec{u}}(\lambda \mathbf{a}) = \lambda pr_{\vec{u}} \mathbf{a}$ [?, 1.4.4]p. 96]
- Projection of Linear Combination: $\operatorname{pr}_{\vec{u}}(\sum_{i=1}^k \lambda_i \mathbf{a}_i) = \sum_{i=1}^k \lambda_i \operatorname{pr}_{\vec{u}} \mathbf{a}_i$ [itemize

1.2 Linear Dependence and Independence

- Linear Independence Condition: Vectors $\mathbf{a}_1, \dots, \mathbf{a}_k$ are linearly independent if $\sum_{i=1}^k \lambda_i \mathbf{a}_i = \mathbf{0}$ implies $\lambda_1 = \dots = \lambda_k = 0$ [?, p. 97]
- Vector as Linear Combination (Plane): Given non-collinear vectors $\mathbf{e}_1, \mathbf{e}_2$ in a plane, any vector \mathbf{a} in the plane can be uniquely decomposed as $\mathbf{a} = x\mathbf{e}_1 + y\mathbf{e}_2$ [?, 1.5.4]p. 99].
- Vector as Linear Combination (Space): Given linearly independent vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ in space, any vector \mathbf{a} in space can be uniquely decomposed as $\mathbf{a} = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$ [?, 1.5.10]p. 100].
- Coordinates of a Vector defined by two points: If $A(x_1, y_1)$ and $B(x_2, y_2)$ are two points, then $\vec{AB} = (x_2 x_1, y_2 y_1)$ [?, p. 110]
- Collinearity of two vectors: Vectors $\mathbf{a}(x_1, y_1)$ and $\mathbf{b}(x_2, y_2)$ are collinear iff $x_2 = \lambda x_1, y_2 = \lambda y_1$ for some $\lambda \in \mathbb{R}$ (or $x_2/x_1 = y_2/y_1$ if denominators are non-zero) [?, 1.7.3]p. 111].

1.3 Scalar Product

- **Definition**: $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$ where θ is the angle between \mathbf{a} and \mathbf{b} [?, 1.11.1]p. 128].
- In Components (Orthonormal Basis): $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$ [?, 1.11.12]p. 129].
- Magnitude of a Vector: $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$ [?, 1.11.13]p. 129].
- Distance Between Two Points: $d(M, M') = \sqrt{(x'-x)^2 + (y'-y)^2 + (z'-z)^2}$ [?, p. 129]
- Cosine of Angle Between Vectors: $\cos \theta = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}}$ [?, p. 130]
- Generalized Pythagorean Theorem: For a triangle with sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and angle A opposite to $\mathbf{a}, |\mathbf{a}|^2 = |\mathbf{b}|^2 + |\mathbf{c}|^2 2|\mathbf{b}||\mathbf{c}|\cos A$ [?, p. 131]

1.4 Vector Product (Cross Product)

- Magnitude (Area of Parallelogram): $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$ (Area of parallelogram formed by \mathbf{a} and \mathbf{b}) [?, p. 135] Area of triangle is half of this.
- In Components (Orthonormal Basis): $\mathbf{a} \times \mathbf{b} = (a_2b_3 a_3b_2)\mathbf{i} + (a_3b_1 a_1b_3)\mathbf{j} + (a_1b_2 a_2b_1)\mathbf{k}$ [?, 1.12.8]p. 138].
- **Determinant Form**: $\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ [?, 1.12.9]p. 138].
- Double Vector Product (Lagrange's Identity): $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$ [?, 1.12.13]p. 140].
- Sine Rule for Triangles: $\frac{|\mathbf{a}|}{\sin A} = \frac{|\mathbf{b}|}{\sin B} = \frac{|\mathbf{c}|}{\sin C}$ [?, 1.12.15]p. 141].
- Jacobi Identity: $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} + (\mathbf{b} \times \mathbf{c}) \times \mathbf{a} + (\mathbf{c} \times \mathbf{a}) \times \mathbf{b} = \mathbf{0}$ [?, 1.12.18]p. 143].

3

1.5 Mixed Product (Scalar Triple Product)

- **Definition**: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ [?, 1.13.1]p. 144].
- Geometric Interpretation: Volume of parallelepiped formed by a, b, c (signed) [?, p. 144]
- Volume of Tetrahedron: $Vol_{OABC} = \pm \frac{1}{6}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ [?, 1.13.2]p. 146].
- Coplanarity Condition: Three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are coplanar iff $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = 0$ [?, 1.13.2]p. 147].
- In Components (Orthonormal Basis): $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ [?, 1.13.7]p. 149].

1.6 Point Combinations

- Sum of Point and Vector: $Q = P + \mathbf{v}$ means $\overrightarrow{PQ} = \mathbf{v}$ [?, 1.5.17]p. 103].
- Point P for sum of OA vectors: If $\sum_{i=1}^{n} \alpha_i = 1$, then $\vec{OP} = \sum_{i=1}^{n} \alpha_i \vec{OA}_i$ is independent of origin O [?, p. 104]

2 Lines in the Plane

2.1 Equations of a Line

- General Equation: Ax + By + C = 0 [?, 2.2.1]p. 161].
- Slope-Intercept Form: y = kx + b [?, 2.2.2]p. 161].
- Intercept Form: $\frac{x}{a} + \frac{y}{b} 1 = 0$ [?, p. 162]
- Line Through Two Points $M_0(x_0, y_0), M_1(x_1, y_1): \frac{x-x_0}{x_1-x_0} = \frac{y-y_0}{y_1-y_0}$ [?, 2.3.5]p. 163].
- Bundle of Lines (Pencil of Lines): $\alpha(A_1x + B_1y + C_1) + \beta(A_2x + B_2y + C_2) = 0$ (for lines through intersection of L_1, L_2) [?, 2.5.3]p. 165].

2.2 Distances and Angles

- Distance from a Point $M_0(x_0, y_0)$ to a Line Ax + By + C = 0: $d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$ [?, 2.6.6]p. 170].
- Distance Between Two Parallel Lines (Normal Form $x \cos \alpha + y \sin \alpha p = 0$): $d = |p_1 p_2|$ (same side of origin) or $d = p_1 + p_2$ (origin between lines) [?, 2.7.7, 2.7.8]p. 171].
- Angle Between Two Lines (General Forms): $\cos \theta = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}$ [?, 2.8.3]p. 172].
- **Perpendicular Lines Condition**: $A_1A_2 + B_1B_2 = 0$ [?, 2.8.4]p. 172].
- Bisectors of Angles Between Two Lines: $\frac{a_1x+b_1y+c_1}{\sqrt{a_1^2+b_1^2}} = \pm \frac{a_2x+b_2y+c_2}{\sqrt{a_2^2+b_2^2}}$ [?, 2.9.5]p. 174].

3 Planes in Space

3.1 Equations of a Plane

- General Equation: Ax + By + Cz + D = 0 [?, p. 180]
- Plane Through Origin: Ax + By + Cz = 0 [?, p. 180]
- Planes Parallel to Coordinate Axes:
 - * Parallel to Oz: Ax + By + D = 0
 - * Parallel to Oy: Ax + Cz + D = 0
 - * Parallel to Ox: By + Cz + D = 0 [litemize
 - * Vector Equation (Mixed Product Form): $(\mathbf{r} \mathbf{r}_0, \mathbf{v}, \mathbf{w}) = 0$ (plane through \mathbf{r}_0 parallel to \mathbf{v}, \mathbf{w}) [?, 3.1.7]p. 181].

- $* \ \textbf{Plane Through Three Points} \ M_1(x_1,y_1,z_1), M_2(x_2,y_2,z_2), M_3(x_3,y_3,z_3) : \begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix}$ 0 [?, 3.1.10]p. 182].
- * Plane Equation by Intercepts: $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} 1 = 0$ [?, p. 183]
- * Hesse Normal Form (Normal Form): $x\cos\alpha + y\cos\beta + z\cos\gamma p = 0$ [?, 3.1.14]p.
- * Normalizing Factor λ : $\lambda = \pm \frac{1}{\sqrt{A^2 + B^2 + C^2}}$ (sign opposite to D if $D \neq 0$) [?, 3.1.15]p.
- * Plane Bundle (Pencil of Planes): $\alpha(A_1x+B_1y+C_1z+D_1)+\beta(A_2x+B_2y+C_2z+D_2)=$ 0 (for planes through intersection line of P_1, P_2) [?, 3.3.8]p. 195].
- * Pencil of Planes (through a point $S(x_0, y_0, z_0)$): $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$ [?, 3.3.9]p. 196].

3.2 Distances and Angles

- * Coplanarity Condition for Four Points M_1, M_2, M_3, M_4 : $\begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix} = 0 \ \cite{A}.$ 3.1.12[p. 183].
- * Distance from a Point $M_0(x_0, y_0, z_0)$ to a Plane Ax + By + Cz + D = 0: d = $\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}}$ [?, 3.1.19]p. 187].
- * Angle Between Two Planes: $\cos \theta = \pm \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$ [?, 3.1.22]p. 188]. * Perpendicular Planes Condition: $A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$ [?, 3.1.23]p. 189].
- * Parallel Planes Condition: $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$ [?, 3.1.24]p. 189].

Lines in Space 3.3

- * Vector Equation: $\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{a}$ [?, 3.2.1]p. 189].

- * Parametric Equations: $x = x_0 + lt, y = y_0 + mt, z = z_0 + nt$ [?, 3.2.2]p. 190]. * Canonical Equations: $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ [?, 3.2.4]p. 190]. * Line as Intersection of Two Planes: $\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$ [?, p. 191] * Angle Between Line and Plane: $\sin \phi = \frac{|Al + Bm + Cn|}{\sqrt{A^2 + B^2 + C^2}\sqrt{l^2 + m^2 + n^2}}$ [?, p. 204]
- * Angle Between Line and Plane: $\sin \phi = \frac{1}{\sqrt{A}}$

Conics (Canonical Forms)

Ellipse 4.1

- * **Definition**: Sum of distances from any point M to two foci F_1, F_2 is constant 2a, i.e., $F_1M + F_2M = 2a$. Distance between foci is 2c, with c < a [?, 4.1]p. 211].
- * Foci Coordinates: $F_1(-c,0), F_2(c,0)$ [?, p. 211]
- * Distances to Foci: $F_1M = \sqrt{(x+c)^2 + y^2}$, $F_2M = \sqrt{(x-c)^2 + y^2}$ [?, 4.1.1]p. 212]. * Canonical Equation: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $b^2 = a^2 c^2$ [?, 4.1.6]p. 213].
- * Focal Rays (in terms of eccentricity e = c/a): $r_1 = a + ex$, $r_2 = a ex$ [?, p. 216]
- * Tangent Equation at $M_0(x_0, y_0)$ (Duplication Method): $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$ [?, 4.1.14]p. 218].

Hyperbola 4.2

* **Definition**: Absolute value of difference of distances from any point M to two foci F_1, F_2 is constant 2a, i.e., $|F_1M - F_2M| = 2a$. Distance between foci is 2c, with 0 < a < c [?, 4.2]p. 219].

- * Foci Coordinates: $F_1(-c,0), F_2(c,0)$ [?, p. 220]
- * Canonical Equation: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, where $b^2 = c^2 a^2$ [?, 4.2.6]p. 222]. * Focal Rays (in terms of eccentricity e = c/a): For $x \ge a$: $F_1M = ex + a$, $F_2M = ex + a$ ex - a. For $x \le -a$: $F_1M = -ex - a$, $F_2M = -ex + a$ [?, 4.2.9, 4.2.10]p. 222].

Parabola 4.3

- * **Definition**: Locus of points equidistant from a fixed line (directrix Δ) and a fixed point (focus F) [?, 4.3]p. 225].
- * Focus and Directrix Coordinates: Focus F(p/2,0), Directrix x=-p/2 [?, p. 225]
- * Canonical Equation: $y^2 = 2px$ [?, 4.3.3]p. 226].
- * Tangent Equation at $M_0(x_0, y_0)$ (Duplication Method): $yy_0 = p(x + x_0)$ [?, p. 229]

Quadrics (Canonical Forms) 5

5.1Ellipsoid

- * Equation: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ [?, 5.2.2]p. 232]. * Tangent Plane at $M_0(x_0, y_0, z_0)$: $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1$ [?, 5.2.7]p. 244].

Second-Degree Cone 5.2

- * Equation: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 0$ [?, p. 245] * Tangent Plane at $M_0(x_0, y_0, z_0)$: $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} \frac{zz_0}{c^2} = 0$ [?, 5.3.3]p. 248].

One-Sheeted Hyperboloid

- * Equation: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$ [?, 5.4.1]p. 250].
- * Straight-Line Generators (First Family λ -generators): $\begin{cases} \lambda(\frac{x}{a} + \frac{z}{c}) = \mu(1 + \frac{y}{b}) \\ \mu(\frac{x}{a} \frac{z}{c}) = \lambda(1 \frac{y}{b}) \end{cases}$ [?, 5.4.4]p. 256]. (Simplified forms with one parameter are also given in the source).
- * Straight-Line Generators (Second Family η -generators): $\begin{cases} \alpha(\frac{x}{a} + \frac{z}{c}) = \beta(1 \frac{y}{b}) \\ \beta(\frac{x}{a} \frac{z}{c}) = \alpha(1 + \frac{y}{c}) \end{cases}$ [?, 5.4.7]p. 258].

Two-Sheeted Hyperboloid

- * Equation: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = -1$ [?, 5.5.1]p. 262]. * Tangent Plane at $M_0(x_0, y_0, z_0)$: $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} \frac{zz_0}{c^2} = -1$ [?, p. 266]

5.5 Elliptic Paraboloid

- * Equation: $\frac{x^2}{p} + \frac{y^2}{q} = 2z$ [?, 5.6.1]p. 267]. * Tangent Plane at $M_0(x_0, y_0, z_0)$: $\frac{xx_0}{p} + \frac{yy_0}{q} = z + z_0$ [?, 5.6.5]p. 269].

Hyperbolic Paraboloid

- * Equation: $\frac{x^2}{p} \frac{y^2}{q} = 2z$ [?, 5.7.1]p. 270].
- * Rectilinear Generators (First Family): $\begin{cases} \lambda(\frac{x}{\sqrt{p}} \frac{y}{\sqrt{q}}) = 2\mu z \\ \mu(\frac{x}{\sqrt{p}} + \frac{y}{\sqrt{q}}) = \lambda \end{cases}$ [?, 5.7.3]p. 274]. * Rectilinear Generators (Second Family): $\begin{cases} \lambda(\frac{x}{\sqrt{p}} \frac{y}{\sqrt{q}}) = \lambda \\ \mu(\frac{x}{\sqrt{p}} \frac{y}{\sqrt{q}}) = 2\lambda z \end{cases}$ [?, 5.7.4]p. 274]. * Tangent Plane at $M_0(x_0, y_0, z_0)$: $\frac{xx_0}{p} \frac{yy_0}{q} = z + z_0$ [?, 5.7.5]p. 275].

5.7Cylinders

- * Elliptic Cylinder: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ [?, 5.8.1]p. 275]. * Tangent Plane to Elliptic Cylinder at $M_0(x_0, y_0, z_0)$: $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$ [?, 5.8.5]p. 281].
- * Hyperbolic Cylinder: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ [?, 5.9.1]p. 281]. * Tangent Plane to Hyperbolic Cylinder at $M_0(x_0, y_0, z_0)$: $\frac{xx_0}{a^2} \frac{yy_0}{b^2} = 1$ [?, 5.9.4]p.
- * Parabolic Cylinder: $y^2 = 2px$ [?, 5.10.1]p. 285].
- * Tangent Plane to Parabolic Cylinder at $M_0(x_0, y_0, z_0)$: $yy_0 = p(x+x_0)$ [?, 5.10.6]p.

Generated Surfaces

6.1 Cylindrical Surfaces

* Generator Equations: For directrix line (P1=0, P2=0), generators are $\begin{cases} P_1(x,y,z) = \lambda \\ P_2(x,y,z) = \mu \end{cases}$ [?, 6.1.1]p. 298].

Conical Surfaces

* Generator Equations: For vertex at intersection of P1=0, P2=0, P3=0, generators are $\begin{cases} P_1 = \lambda P_3 \\ P_2 = \mu P_3 \end{cases}$ [?, 6.2.2]p. 307].

Conoidal Surfaces 6.3

* Generator Equations: For directrix line (P1=0, P2=0) and director plane P=0, generators are $\begin{cases} P_1 = \lambda P_2 \\ P = \mu \end{cases}$ [?, 6.3.3]p. 313].

Surfaces of Revolution

- * Generating Circle Equations: For rotation axis D and curve C, the generating circle is $\begin{cases} (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = \lambda^2 \\ lx + my + nz = \mu \end{cases}$ [?, 6.4.3]p. 319].
- * Equation of Surface of Revolution (General Form): $F\left(\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2},lx+my^2\right)$ 0 [?, 6.4.7]p. 321].

Curves in Space (Differential Geometry)

Representations of Curves

7

* Parametric Representation of Plane Curve: $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ [?, 7.4.1]p. 333].

* Explicit Representation of Space Curve: $\begin{cases} y = f(x) \\ z = g(x) \end{cases}$ (global parametrization x = f(t)) [2, 7.4.0]p. 325] t, y = f(t), z = q(t) [?, 7.4.9]p. 335].

7.2 Tangent and Normal Plane

- * Vectorial Equation of Tangent Line: $\mathbf{R}(\theta) = \mathbf{r}(t_0) + \theta \mathbf{r}'(t_0)$ [?, 7.5.1]p. 337].
- * Parametric Equations of Tangent Line (Space Curve): $\begin{cases} X(\theta) = x(t_0) + \theta x'(t_0) \\ Y(\theta) = y(t_0) + \theta y'(t_0) \\ Z(\theta) = z(t_0) + \theta z'(t_0) \end{cases}$ [?, 7.5.6]p. 340].
- * Parametric Equations of Tangent Line (Plane Curve): $\begin{cases} X(\theta) = x(t_0) + \theta x'(t_0) \\ Y(\theta) = y(t_0) + \theta y'(t_0) \end{cases}$ [?, 7.5.7]p. 340].
- * Vectorial Equation of Normal Plane: $(\mathbf{R} \mathbf{r}(t_0)) \cdot \mathbf{r}'(t_0) = 0$ [?, 7.5.4]p. 340].
- * Equation of Normal Plane (Space Curve expanded): (X x)x' + (Y y)y' + (Z z)z' = 0 [?, 7.5.9]p. 341].
- * Equation of Normal Line (Plane Curve expanded): (X x)x' + (Y y)y' = 0 [?, 7.5.10]p. 341].
- * Tangent Line (Explicit Space Curve y = f(x), z = g(x)): $\frac{X-x}{1} = \frac{Y-f(x)}{f'(x)} = \frac{Z-g(x)}{g'(x)}$ [?, 7.5.11]p. 342].
- * Normal Plane (Explicit Space Curve y = f(x), z = g(x)): (X-x)+(Y-f(x))f'(x)+(Z-g(x))g'(x) = 0 [?, 7.5.12]p. 342].
- * Tangent Line (Explicit Plane Curve y = f(x)): Y f(x) = f'(x)(X x) [?, 7.5.14]p. 342].
- * Normal Line (Explicit Plane Curve y = f(x)): $Y f(x) = -\frac{1}{f'(x)}(X x)$ [?, 7.5.16]p. 343].
- * Derivatives for Implicit Curve (F(x,y,z) = 0, G(x,y,z) = 0): $f' = \frac{D(F,G)/D(z,x)}{D(F,G)/D(y,z)}$: $g' = \frac{D(F,G)/D(x,y)}{D(F,G)/D(y,z)}$ [?, 7.5.19]p. 344].
- * Tangent Line (Implicit Space Curve F = 0, G = 0): $\frac{X x_0}{D(F,G)/D(y,z)} = \frac{Y y_0}{D(F,G)/D(z,x)} = \frac{Z z_0}{D(F,G)/D(x,y)}$ [?, 7.5.21]p. 345].

7.3 Osculating Plane

- * Equation: $(\mathbf{R} \mathbf{r}(t_0), \mathbf{r}'(t_0), \mathbf{r}''(t_0)) = 0$ [?, 7.6.1]p. 346].
- * **Determinant Form**: $\begin{vmatrix} X x_0 & Y y_0 & Z z_0 \\ x'_0 & y'_0 & z'_0 \\ x''_0 & y''_0 & z''_0 \end{vmatrix} = 0 \ [\textbf{?}, \, 7.6.2] \text{p. } 346].$

7.4 Frenet Frame and Formulas

- * Frenet Frame Versors (for natural parameter s): $\vec{\tau}(s) = \mathbf{r}'(s) \ \vec{\nu}(s) = \frac{\mathbf{r}''(s)}{|\mathbf{r}''(s)|} \ \vec{\beta}(s) = \vec{\tau}(s) \times \vec{\nu}(s)$ [?, 7.8.2]p. 348].
- * Frenet Frame Versors (for general parameter t): $\vec{\tau}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \vec{\beta}(t) = \frac{\mathbf{r}'(t) \times \mathbf{r}''(t)}{|\mathbf{r}'(t) \times \mathbf{r}''(t)|} \vec{\beta}(t) = \vec{\beta}(t) \times \vec{\tau}(t)$ [?, 7.8.3, 7.8.4]p. 349].
- * Frenet Formulas (for natural parameter s): $\vec{\tau}'(s) = k(s)\vec{\nu}(s)$ $\vec{\nu}'(s) = -k(s)\vec{\tau}(s) + \chi(s)\vec{\beta}(s)$ $\vec{\beta}'(s) = -\chi(s)\vec{\nu}(s)$ [?, 7.10.3]p. 352]. (Note: χ is torsion, k is curvature).
- * Curvature (k): $k = \frac{|\mathbf{r}' \times \mathbf{r}''|}{|\mathbf{r}'|^3}$ [?, p. 354]
- * Torsion (χ): $\chi = \frac{(\mathbf{r'}, \mathbf{r''}, \mathbf{r'''})}{|\mathbf{r'} \times \mathbf{r''}|^2}$ [?, 7.10.5]p. 354].
- * Circle Condition: If torsion $\chi = 0$ and curvature $k = k_0$ (constant strictly positive), curve support lies on a circle of radius $1/k_0$ [?, p. 355-356]
- * Curve on Sphere Condition: If naturally parameterized curve $\mathbf{r}(s)$ has support on sphere of radius a centered at origin, then $k \ge 1/a$ [?, p. 356]
- * General Helix Condition (Lancret's Theorem): A space curve with curvature k > 0 is a general helix iff $\chi/k = \text{const}$ [?, p. 357]

- * Bertrand Curve Relation: For Bertrand mates \mathbf{r} and \mathbf{r}^* , $\mathbf{r}^*(s) = \mathbf{r}(s) + a(s)\vec{\nu}(s)$ [?, 7.10.7]p. 359].
- * Involute of a Curve (Parameterized): $\vec{\gamma}(t) = \mathbf{r}(t) + (c s(t)) \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$, where s(t) is arc length [?, p. 370]
- * Logarithmic Spiral (Polar Equation): $r = C \cdot e^{\theta}$ [?, 9.2.3]p. 377].
- * Catenary (Natural Equation): $R = a + s^2/a$ [?, 9.2.8]p. 379].
- * Tractrix (Natural Equation): $R^2 + a^2 = a^2 e^{-2s/a}$ [?, 9.2.12]p. 380].

8 Surfaces (Differential Geometry)

8.1 Representations and Basic Concepts

- * Parametrized Surface Regularity Condition: $\mathbf{r}'_u \times \mathbf{r}'_v \neq \mathbf{0}$ [?, 1]p. 32].
- * Parametric Equations of Surface: $\begin{cases} x = x(u,v) \\ y = y(u,v) \\ z = z(u,v) \end{cases}$ [?, p. 341]
- * Tangent Vector to a Curve on Surface: $\vec{\rho}'(t_0) = u'(t_0)\mathbf{r}'_u(u_0, v_0) + v'(t_0)\mathbf{r}'_v(u_0, v_0)$ [?, p. 391]
- * Tangent Plane to Implicit Surface F(x, y, z) = 0: $(X x_0)F'_x + (Y y_0)F'_y + (Z z_0)F'_z = 0$ [?, p. 394] (Normal vector is grad F).
- * Normal to Implicit Surface F(x,y,z)=0: $\frac{X-x_0}{F_x'}=\frac{Y-y_0}{F_y'}=\frac{Z-z_0}{F_z'}$ [?, p. 394]
- * Normal to Sphere S_R^2 : Tangent space $T_a S_R^2$ is orthogonal to radius vector **a** [?, p. 394] $\operatorname{grad} F = 2\{x, y, z\} = 2\mathbf{a}$.
- * Parametrization Compatible with Orientation: $\mathbf{n}(\mathbf{a}) = \frac{\mathbf{r}'_u \times \mathbf{r}'_v}{|\mathbf{r}'_u \times \mathbf{r}'_v|}$ [?, p. 395]

8.2 Fundamental Forms and Curvatures

- * First Fundamental Form ϕ_1 : $\phi_1(\mathbf{p}, \mathbf{q}) = \mathbf{p} \cdot \mathbf{q}$ [?, 10.10.1]p. 406].
- * Coefficients of First Fundamental Form: $E(u,v) = \mathbf{r}'_u \cdot \mathbf{r}'_u \ F(u,v) = \mathbf{r}'_u \cdot \mathbf{r}'_v \ G(u,v) = \mathbf{r}'_v \cdot \mathbf{r}'_v \ [?, p. 407]$
- * Matrix of First Fundamental Form: $G = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$ [?, p. 407]
- * Length of Curve Segment on Surface: $L = \int_{t_1}^{t_2} \sqrt{E(t)u'^2 + 2F(t)u'v' + G(t)v'^2} dt$ [?, p. 410]
- * Cosine of Angle Between Curves on Surface: $\cos \theta = \frac{Eu'_1u'_2 + F(u'_1v'_2 + u'_2v'_1) + Gv'_1v'_2}{\sqrt{Eu''_1^2 + 2Fu'_1v'_1 + Gv''_1^2}\sqrt{Eu''_2^2 + 2Fu'_2v'_2 + Gv''_2^2}}$ [?, p. 412]
- * Area of Parametrized Surface: $A = \iint_D \sqrt{EG F^2} du dv = \iint_D |\mathbf{r}'_u \times \mathbf{r}'_v| du dv$ [?, 10.10.2]p. 413, 415].
- * Shape Operator (Weingarten Map) A: $A(\mathbf{h}) = -d\mathbf{n}(\mathbf{h})$ (differential of spherical map) [?, 10.9]p. 403].
- * Matrix of Shape Operator (Natural Basis): $A = G^{-1}H = \frac{1}{EG-F^2}\begin{pmatrix} G & -F \\ -F & E \end{pmatrix}\begin{pmatrix} L & M \\ M & N \end{pmatrix}$ [?, 10.11.3, 10.11.4]p. 416].
- * Second Fundamental Form ϕ_2 : $\phi_2(\xi, \eta) = -\phi_1(A(\xi), \eta)$ [?, 10.12.1]p. 418].
- * Coefficients of Second Fundamental Form: $D = \mathbf{n} \cdot \mathbf{r}''_{u^2}$ $D' = \mathbf{n} \cdot \mathbf{r}''_{uv}$ $D'' = \mathbf{n} \cdot \mathbf{r}''_{v^2}$ [?, 10.12.2]p. 420]. (Sometimes denoted L, M, N or e, f, g).
- * Normal Curvature k_n : $k_n = \frac{\phi_2(\mathbf{p}, \mathbf{p})}{\phi_1(\mathbf{p}, \mathbf{p})}$ [?, p. 422]
- * Euler's Formula for Normal Curvature: $k_n(\mathbf{e}) = k_1 \cos^2 \theta + k_2 \sin^2 \theta$, where k_1, k_2 are principal curvatures and θ is angle with principal direction \mathbf{e}_1 [?, 10.16.1]p. 426].
- * Total (Gaussian) Curvature K_t and Mean Curvature K_m : $K_t = k_1 k_2 = \det A$ $K_m = \frac{1}{2}(k_1 + k_2) = -\frac{1}{2}\text{Tr}A$ [?, 10.16.2, 10.16.3]p. 427, 428].

- * Principal Curvatures from K_t, K_m : $k_1 = K_m + \sqrt{K_m^2 K_t}$ $k_2 = K_m \sqrt{K_m^2 K_t}$ [?, 10.16.4, 10.16.5]p. 431, 432].
- * Classification of Points:
 - · Elliptic: $K_t > 0$
 - · Parabolic: $K_t = 0$
 - · Hyperbolic: $K_t < 0$ [?, p. 432]
- * Gauss's Theorema Egregium: $K_t = \frac{DD'' (D')^2}{EG F^2}$ [?, 10.18.1]p. 454]. (States that K_t depends only on E, F, G and their derivatives).
- * Weingarten's Formulae: Express derivatives of normal vector $\mathbf{n}'_u, \mathbf{n}'_v$ in terms of $\mathbf{r}'_u, \mathbf{r}'_v$ and fundamental form coefficients [?, 10.17.11]p. 436].
- Gauss's and Codazzi-Mainardi's Equations: Compatibility conditions for first and second fundamental forms [?, 10.17.14, 10.17.15]p. 438, 439].

8.3 Geodesics

- * Geodesic Curvature k_g : $k_g = k \sin \theta$, where θ is angle between osculating plane and normal to surface [?, p. 461]
- Geodesic Curvature (in terms of fundamental forms): Given a local parameterization $u = u(t), v = v(t), k_g = \frac{1}{\sqrt{EG - F^2}} \left[\dot{u}(\ddot{v}E + \dot{u}\dot{v}F - \dot{v}^2G_u - \dot{u}^2E_v) - \dot{v}(\ddot{u}G + \dot{u}\dot{v}F - \dot{u}^2E_v - \dot{v}^2F_u) \right]$ (simplified form 10.19.10) [?, 10.19.9, 10.19.10]p. 466].
- * Differential Equations of Geodesics: $\begin{cases} u'' + u'^2\Gamma_{11}^1 + 2u'v'\Gamma_{12}^1 + v'^2\Gamma_{22}^1 = 0 \\ v'' + u'^2\Gamma_{11}^2 + 2u'v'\Gamma_{12}^2 + v'^2\Gamma_{22}^2 = 0 \end{cases} \quad \mbox{\cite{bigs:eq:constraints}} \quad \mbox{\cite{bigs:eq:constraints}}} \quad \mbox{\cite{bigs:eq:constraints}} \quad \mbox{\cite{bigs:eq:constraints}} \quad \mbox{\cite{bigs:eq:constraints}} \quad \mbox{\cite{bigs:eq:constraints}} \quad \mbox{\cite{bigs:eq:constraints}}} \quad \mbox{\cite{big$
- * Geodesics of the Sphere: Arcs of great circles [?, p. 470]
- * Liouville Surfaces Metric: $ds^2 = (U(u) + V(v))(du^2 + dv^2)$ [?, 10.19.13]p. 473]. * Geodesic Equation for Liouville Surfaces: $\frac{du}{\sqrt{U(u)-a}} = \pm \frac{dv}{\sqrt{V(v)+a}} + b$ (integrable form) [?, 10.19.17]p. 475].

Special Classes of Surfaces 8.4

- * Ruled Surface Parametrization: $\mathbf{r}(u, v) = \vec{\gamma}(u) + v\mathbf{b}(u)$ [?, 11.1.1]p. 479].
- * First Fundamental Form for Ruled Surface: $E = |\vec{\gamma}' + v\mathbf{b}'|^2$, $F = (\vec{\gamma}' + v\mathbf{b}') \cdot \mathbf{b}$, $G = |\mathbf{b}|^2 = 1$ [?, 11.1.3]p. 480].
- * Total Curvature of Ruled Surface: $K_t = -\frac{(\vec{\gamma}', \mathbf{b}, \mathbf{b}')^2}{|\vec{\gamma}' + \mathbf{v}\mathbf{b}'|^2 |\mathbf{b}|^2}$ [?, 11.1.7]p. 483].
- * Envelope of Family of Surfaces $F(x, y, z, \lambda) = 0$: Add condition $F'_{\lambda}(x, y, z, \lambda) = 0$ [?, 11.1.12 p. 484].
- * Developable Surface Condition (Ruled Surface): $(\vec{\gamma}', \mathbf{b}, \mathbf{b}') = 0$ [?, 11.1.14]p. 485].
- * Developable Ruled Surfaces are Cylindrical, Conical, or Tangent Developables [?, p. 493]
- $* \ \, \textbf{Envelope of Normal Planes (Space Curve)} : \ \, \begin{cases} (\mathbf{R} \mathbf{r}(s)) \cdot \vec{\tau}(s) = 0 \\ (\mathbf{R} \mathbf{r}(s)) \cdot \vec{\nu}(s) = 1/k(s) \\ (\mathbf{R} \mathbf{r}(s)) \cdot \vec{\beta}(s) = \frac{k'(s)}{k^2 \ell \sin \sqrt{\epsilon} s} \end{cases}$ 11.1.29 - 11.1.32]p. 494-495].
- * Envelope of Rectifying Planes (Space Curve): $\begin{cases} (\mathbf{R} \mathbf{r}(s)) \cdot \vec{\nu}(s) = 0 \\ (\mathbf{R} \mathbf{r}(s)) \cdot (\chi(s)\vec{\beta}(s) k(s)\vec{\tau}(s)) = 0 \end{cases}$ [?, 11.1.36, 11.1.37]p. 496].
- * Minimal Surface Condition (for isothermic parametrization $E = G = \lambda^2, F = 0$): D + D'' = 0 [?, p. 501]
- * Catalan's Theorem: The only ruled minimal surface (not a plane) is the right helicoid [?, p. 509]

* Pseudosphere Parametric Equations: $\begin{cases} x = a \sin u \cos v \\ y = a \sin u \sin v \\ z = a \left(-\ln \tan \frac{u}{2} + \cos u \right) \end{cases}$ [?, 11.3.1]p.