Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development

John J. Mekalanos, Daryl J. Swartz & Gregory D. N. Pearson

Department of Microbiology and Molecular Genetics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA

Nigel Harford, Francoise Groyne & Michel de Wilde

Department of Molecular Genetics, Smith-Kline-R.I.T., rue de l'Institut, 89, B-1330 Rixensart, Belgium

Nucleotide sequence and deletion analysis have been used to identify the regulatory and coding sequences comprising the cholera toxin operon (ctx). Incorporation of defined in vitro-generated ctx deletion mutations into Vibrio cholerae by in vivo genetic recombination produced strains which have practical value in cholera vaccine development.

MODERN history has recorded seven world pandemics of cholera, a diarrhoeal disease produced by the Gram-negative bacterium Vibrio cholerae¹. Laboratory tests can distinguish two biotypes of V. cholerae, classical and El Tor, the latter being responsible for the most recent cholera pandemic. The diarrhoeal syndrome induced by colonization of the human small bowel by either biotype of V. cholerae is caused by the action of cholera toxin, a heat-labile enterotoxin secreted by the growing vibrios². Diarrhoeal diseases affecting both humans and animals caused by some enterotoxinogenic strains of Escherichia coli are also induced by a heat-labile enterotoxin (LT) which is closely related to cholera toxin in structure and mode of action¹⁻¹.

Cholera toxin is an 84,000-molecular weight (MW) protein composed of one A subunit (27,000 MW) and five B subunits (11,600 MW). The A subunit, although synthesized as a single polypeptide chain, is usually proteolytically nicked to form two disulphide-linked polypeptides, A1 (22,000 MW) and A2 (5,000 MW)^{4,3}. The A1 polypeptide is an enzyme and promotes the activation of adenylate cyclase in target cells by catalysing the ADP-ribosylation of a GTP-binding regulatory component of the cyclase complex. The resulting accumulation of cyclic AMP in the intestinal mucosa leads to the severe fluid loss characteristic of cholera. Each B subunit has a high binding affinity for the toxin's cell surface receptor, ganglioside GM₁ (ref. 7). Neutralizing antibodies raised against the holotoxin react mainly with the B subunits.

Much of the current interest in the genetics of cholera toxin has been promoted by the need to develop a more efficacious vaccine against this enterotoxic disease. Parenterally administered, killed whole-cell and toxoid vaccines have been shown to be largely ineffective in producing long-lasting immunity to cholera, presumably because they lack the ability to induce local immune responses in the intestine^{6,9}. Since the natural disease is capable of inducing prolonged immunity^{9,10}, several investigators have proposed the use of attenuated, nontoxinogenic mutants of V. cholerae as live oral cholera vaccines¹¹⁻¹⁶. While encouraging results in volunteer studies have been obtained with some of these strains, factors such as genetic instability or poor colonizing ability have contraindicated their use in the field¹⁵⁻¹⁷.

The recent relaxation of US governmental guidelines prohibiting the molecular cloning of bacterial toxin genes has permitted the use of a powerful new approach to the analysis of cholera toxin gene structure and vaccine development. These studies have shown that like the elt genes, which encode E. coli LT¹⁸, the genes for the A and B subunits of cholera toxin are arranged in a single transcriptional unit with the A cistron (ctxA) preceding the B cistron (ctxB)¹⁹. V. cholerae strains of the classical biotype contain a nontandem, chromosomal duplication of the ctx operon that is structurally identical in all strains.⁵³ In contrast, about 70% of El Tor strains have only a single copy of

ctx, while the remaining strains have two or more ctx copies present on a tandemly repeated genetic element. This genetic duplication and amplification of the toxin operon may be related to the instability observed in some of the earlier V. cholerae toxin mutants^{13,16}.

In this article, we report the entire nucleotide sequence of one ctx operon together with partial sequences containing the ctx promoter regions of five other cloned ctx copies. Deletion analysis has allowed the identification of toxin transcriptional and translational regulatory sequences. An in vitro-constructed, internal deletion in ctxA was recombined in vivo into both ctxA gene copies of V. cholerae strain Ogawa 395. Since this genetic recombinant still produces the immunogenic B subunit of the toxin, it should have practical value in cholera vaccine development.

Molecular cloning of ctx operon copies

A total of six ctx copies were cloned from four V. cholerae strains. These include both ctx copies from strain 569B, both copies from strain RV79, one of two copies from strain E7946 and the single ctx copy of strain 2125. With the exception of the classical strain 569B, all these strains are EI Tor in biotype. The ctx copies were cloned as various V. cholerae restriction fragments which hybridized with ³²P-labelled elt or ctx probes as described in the legend to Fig. 1.

The restriction sites for several endonucleases were located on these cloned inserts, and the resulting maps were aligned at the conserved XbaI site previously determined to lie early in the A cistron¹⁹, (Fig. 1A). Other conserved restriction sites for Nrul, Pstl. Aval and Bglll were also found preceding cixA on these various inserts (Fig. 1). Additional restriction mapping and hybridization analysis has indicated that the 5 kilobase pairs (kbp) of DNA directly preceding the toxin structural genes is the same for all cloned cix copies thus far examined⁵³. Since the larger chromosomal sequence environment flanking these different cix copies appears to vary as determined by Southern blot hybridization, we have proposed that the conserved DNA immediately upstream of cex is part of a genetic element responsible for toxin operon duplication and transposition events. From a practical point of view, the conserved 5' flanking sequences associated with cix provided part of the necessary homology for efficient in vivo recombination of in vitro constructed deletion mutations into multiple copies of the toxin operon (see

Nucleotide sequence of ctx

The strategy used to determine the complete nucleotide sequence of the single ctx copy of strain 2,125 is shown below the restriction map of the insert cloned on pRIT10824 (Fig. 1B). The 2,020 nucleotides determined are shown in Fig. 2. Comparison of the 2,125 nucleotide sequence with both the clt nucleotide sequence^{20,21} and known amino acid sequences of

Fig. 2 DNA sequence of the V. cholerge toxin

operon from strain 2125. The antisense strand is shown from 5' to 3'. From nucleotide 427 to 1.663, sequence is compared with the published sence of LT genes 20,21; elt nucleotides are shown above the sequence only where they differ from the cts sequence except between nucleotides 810 and 830, where deletion of a T (arrowed) in the els sequence creates a frameshift which is corrected by insertion of a C (arrowed) 16 bp downstream (see test). Analogous events have previously been seen after pseudoreversion of frameshift mutations⁴³ but to our knowledge, this is the first naturally occurring case described. The deduced amino acid sequence of cxxA (nucleotide 516 to 1,289) and cxxB (nucleotide 1,289 to 1,660) is shown and compared with that of LT. Amino acids that differ in LT are shown below the cholera toxin amino acid sequence. In addition, for the mature B subunit sequence, differences from the published amino acid sequence of B subunit purified from strain 569B^{16,37} are shown in brackets. Two of these differences (amino acids 47 and 34) are also found in LT. The cleavage site between the A1 and A2 polypeptides is indicated by an arrow (amino acids 194-195). Note also the overlap of CLIA and CLIB cistrons (nucleotides 1,289-1,292). Sequence exhibiting dyad symmetry and potentially involved in transcription termination is indicated with divergent arrows. Features of the quence immediately upstream of the creed gene are detailed in Fig. 3.

เลาเอรดินาเลยอยเอยเอเรเกรียวอนคนหรืออยเกรอนหรืออยเกรอร์ * 991 MANTES PROBLEM TITTE CONTROL OF THE PROBLEM O . 1700 อวังอาราสตร์เคราะโลยสมานักราสตร์เวลา เลี้ยวสมานักเสมานสมานการและเลียง เลียง เลียง เลียง เลียง เลียง เลียง เลียง 900) เลววอะวิวักลสาวาศกำหลวงกลกล้วลสกลอบกักสาวสกลารร้างสกลรร้างสกสกลร้างกลายสาวสาวสารสารสารที่สายสาวสกรรมราสายสาวสร

ICENCICALISCENCICCICALICANACE INCICITECCAN ICCICICACENCA

sequence (nucleotides 1,277-1,282, Fig. 2) of the ctxA cistron. The first two nucleotides of the cixA translation termination signal TGA are the last two nucleotides of the cixB translation initiation triplet ATG. This particular overlapping arrangement is also found several times in phage λ operons on and may be involved in translational coupling of the ctxA and ctxB genes. However, evidence presented below suggests that this is not the case with the cex operon. Where documented, translational coupling is observed between cistrons whose gene products interact in a one to one stoichiometry³¹, and in contrast, the cholera toxin molecule is composed of one A subunit and five B subunits. Moreover, E. coli produces stoichiometrically 7 times more cholera toxin B subunit than A subunit (data not shown). Fusion of the ctxB gene to various E. coli promoters allows high expression of cixB in the absence of cixA translational initiation signals. These data suggest that translation of ctxB relies primarily on independent initiations promoted by its own ribosome binding site.

Another experiment supports this conclusion. Our DNA sequencing analysis identified two Ndel sites at positions 561 and 1,337 within the cixA and cixB genes, respectively. The positions of these sites relative to the reading frames of ctxA and cixB allowed us to construct a cixA deletion which codes for an in-frame fusion of amino acid 17 of the A subunit signal sequence to amino acid 19 of the B signal and thus maintains the normal processing site of the B signal sequence (residue 21). This genetic fusion makes B subunit expression dependent on the efficiency of the A cistron translation initiation sequences, provided the hybrid signal sequence is processed at normal efficiency. NdeI digestion of plasmid pGP3 followed by ligation produced such a fusion between these two sites and gave plasmid pJM3.1. Plasmid pJM3.1 produced 0.056 µg ml⁻¹ of B subunit in E. coli MS371 while pGP3 produced 0.50 µg ml⁻¹. These data suggest that the cixB ribosome binding site is about ninefold more efficient than the ctxA site.

Toxin promoter regions

We determined approximately 200 base pairs of sequence upstream of the Xbal sites for each of the other five additional cloned copies of the ctxA gene, cloned on plasmids pGP3, pGP4, pGP5, pGP6 and JM17. Comparison of these sequences with the corresponding region of the ctxA gene derived from strain 2,125 indicated a perfect conservation of sequence between these copies from nucleotides 413 to 590 with one notable exception. The sequence TTTTGAT comprising nucleotides 419-425, 426-432 and 433-439 of the 2,125 sequence was found tandemly repeated 3-8 times preceding different cixA gene copies (Fig. 3). Figure 3 shows part of a sequencing gel autoradiograph that spans DNA carrying eight of these tandem repeats in the region adjacent to the ctxA gene of pJM17.

To determine the position of the toxin operon promoter with respect to these repeated sequences, we used nuclease Bal31