Lecture 11a

of
EEE201

CMOS Digital Integrated Circuits

Department of Electrical & Electronic Engineering Xi'an Jiaotong-Liverpool University (XJTLU)

Monday, 18th November 2024

□ CMOS Logic Inverter VTC

- ➤ VTC static case
- ➤ MOSFET terminal voltages related to V_{in} & V_{out}
- > I-V curves with same coordinates
- intersection points of V_{in} & V_{out}

Voltage Transfer Characteristics

(static characteristics of CMOS inverter)

- □ The voltage transfer characteristics (VTC) of the logic inverter (and in general other logic gates such as NAND and NOR) *relate* the <u>output voltage</u> to the <u>input voltage</u>.
 - ➤ Note that the VTC refer to the *static* case of relationship between the output voltage and the input voltage. It does not take into account of transient behaviour.
 - ➤ The logic inverter's VTC are also called **DC transfer** characteristics or simply static characteristics.

(definitions of quantities)

- □ To obtain the CMOS inverter VTC, we need to find how the output voltage V_{out} varies as a function of the input voltage V_{in} (from 0 V to V_{DD}).
 - ightharpoonup When V_{in} varies (from 0 V to V_{DD}), the nMOSFET and pMOSFET of the CMOS logic inverter will go through different operation modes.
 - \succ The operation modes of the two MOSFETs depend on the their terminal voltages (mainly $V_{GS} \& V_{DS}$).
 - > We need to relate the MOSFETs' terminal voltages to V_{in} and V_{out} .
 - > two sets of MOSFET voltages: V_{GSn} , V_{DSn} , V_{Tn} & V_{GSp} , V_{DSp} , V_{Tp}

(relate MOSFETs' terminal voltages to V_{in} & V_{out})

□ Since there is no need to consider the charging and discharging in the <u>static</u> case, the drain current flowing out of the pMOSFET must flow into the drain of the nMOSFET $\Rightarrow |I_{DSp}| = |I_{DSn}|$ in the CMOS logic inverter.

$$\begin{split} I_{Dp} &= -I_{Dn} \\ V_{GSn} &= V_{IN} \\ V_{GSp} &= V_{IN} - V_{DD} \\ V_{DSn} &= V_{OUT} \\ V_{DSp} &= V_{OUT} - V_{DD} \end{split}$$

(relate nMOSFET terminal voltages to V_{in} & V_{out})

It is straightforward to relate the nMOSFET's terminal

(I-V curves of pMOSFET in the original form)

□ To relate the pMOSFET's terminal voltages to $V_{in} \& V_{out}$, it needs transformation of the curves. $V_{DSp}(V) \Rightarrow V_{out} = ?(V)$

$$V_{Tp0}$$
 = -0.4 V & V_{DD} = 2.5 V as an example

 $V_{DD} = V_{OUT}$ $V_{in} = V_{DD} + V_{GSp}$ = 1.5 - 0 V

Xi'an Jiaotong-Liverpool University 西交利物浦大學

(relate pMOSFET terminal voltages to $V_{in} \& V_{out}$)

☐ Transforming the *p*MOSFET's *I-V* curves in terms of V_{in} &

 $V_{Tp0} = -0.4 \text{ V & } V_{DD} = 2.5 \text{ V as an example}$

(I-V curves with the same coordinates)

When the I-V curves of both the nMOSFET and pMOSFET have the same coordinates (i.e. in terms of the same V_{in} & V_{out} and I_{Dn}), it is now ready for finding out the CMOS inverter's VTC using the graphical approach:

(intersection points of the *I-V* curves)

- As V_{in} increases from 0 V to V_{DD} = 2.5 V, there are intersection points of the *I-V* curves (nMOS & pMOS).
 - > The intersection points correspond also to V_{out} , decreasing from $V_{DD} = 2.5 \text{ V}$ to 0 V.

EEE201 CMOS Digital Integrated Circuits

Semester 1, 2024/2025 by **S.Lam@XJTLU**

9/ L11a

(V_{in} & V_{out} from the intersection points)

□ The corresponding intersection points of the *I-V* curves of both the nMOSFET and pMOSFET are data points the CMOS

 V_{out}

2.5

inverter's VTC:

(dynamic current during switching)

 $lue{}$ Note that there is current flow directly from V_{DD} to ground in the transition region of the CMOS inverter's VTC.

- ➤ In the steady state, there is almost zero power consumption in the CMOS inverter (and generally other logic gates).
- ➤ However, in the <u>dynamic</u> situation (i.e. when the input changes from logic "0" to "1" or vice versa, there is current consumption.

