

Operating Systems

Introduction to Operating Systems

Pietro Laface
Dipartimento di Automatica e Informatica
Politecnico di Torino

Operating Systems (01JEZBV)

Pietro Laface Tel. 011 564 7004 Pietro.Laface@polito.it

Information, programs, tutorials, previous exam texts, labs assignments and solutions, can be found at the address:

http://areeweb.polito.it/didattica/operating-systems/OS/index.html

Easier googling for "Operating Systems Laface"

Slides will be available on the official site of the course

Organization

- > Schedule
 - Lesson/Practice: 2 blocks of 1.5 hours
 - Laboratory: 1 block of 1.5 hours
- There is no formal distinction between teaching and practice hours
 - Theory is introduced, and examples and exercises can be illustrated in the same block
- Laboratory
 - Practice with Linux operating system
 - Application of the theoretical aspects on Linux
 - Script programming (bash and awk)

Topics

- > Introduction to Operating Systems
- > Processes (concept, control, signals, IPC, etc.)
- > Thread (concept, pthread library, etc.)
- > Synchronization (s/w, h/w, semaphores, etc.)
- Deadlock
- Linux environment
 - Commands and system administration
 - Shell (UNIX/Linux command interpreter)
 - Scripting languages (bash and awk)

Topics

- Preparing for Google Technical Internship Interviews
 - ...
 - Operating systems
 - You should understand processes, threads, concurrency issues, locks, mutexes, semaphores, monitors and how they all work. Understand deadlock, livelock and how to avoid them. Know what resources a process needs and a thread needs. Understand how context switching works, how it's initiated by the operating system and underlying hardware. Know a little about scheduling. The world is rapidly moving towards multi-core, so know the fundamentals of "modern" concurrency constructs

Textbooks

Operating System Concepts, Ninth Edition
 A. Silberschatz, P. Baer, and G. Gagne
 John Wiley & Sons, Inc.
 ISBN 978-1-118-06333-0

Other useful books

- W. R. Stevens: "Advanced programming in the UNIX Environment", Addison-Wesley Publishing Company
- D. Bovet and M. Cesati: "Understanding the LINUX Kernel- III Edition ", O'REILLY

Exam rules

- ➤ There are no intermediate tests, exemption, or alternative projects
- The access to the examinations rules are defined and described in the "Manifesto degli Studi" of the current academic year on any subsequent amendments thereof
- > It is essential to book to be admitted at an exam

Examination

- ➤ Written test lasting 100 minutes
- > There is no oral, or possibility of oral
- During the test is permitted
 - The use of **3 sheets** ("approved forms") provided by the teacher (commands, bash, awk) in original (not handwritten)
 - No other material is allowed (no notes, no textbooks, no computers, no cell phones, etc.).
- > The test includes 6 questions
 - 3/4 questions/theoretical exercises
 - 2/3 questions/exercises on Linux (commands / scripts)
- > You can withdraw during the test

Evaluation of the examination

- > Each exercise has a weight equal to 6 points
 - $6x6 = 36 \dots$
- Both the theory and the Linux parts have a minimum threshold
 - The threshold is about 50% of the cumulated points for each part
 - The exam is passed if **both** the theory and the Linux parts are nor below the threshold
- ➤ The final score is the sum of the points obtained in each question/exercise

Laboratory

- ➤ It is compulsory to deliver a report of the work done every week in the laboratory.
- ➤ The deadline for the delivery of the reports is two weeks from the assignment.
- if the laboratory reports are missing, incomplete, or not given in time you cannot be admitted to the exam.
- ➤ The reports are part of the exam, but do not contribute to increase the score obtained during the examination
- On the contrary, your score can be reduced if your reports demonstrate that the laboratory assignments have not been properly done

Example of theory question

Show the process generation tree and the output lines produced by the execution of this program:

```
#include ...
int main (){
  int i, j=-1;
  for (i=0;i<3;i++){
    printf ("i=%d\n", i);
    if (!fork()){
      for (j=2;j>0;j--){
        fork();
        execlp ("echo", "i", "j", (char *) 0);
      }
    }
}
```

Example of practice question

➤ Implement a bash script that takes two arguments, n and f. The script has to append in file f the content of the first n regular files in the user home directory tree. The script will also append at the end of the content of each file, its basename. The script must produce a warning message on the console if it finds less than n files.