http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node64.html

Moment of Inertia Tensor

Consider a rigid body rotating with fixed angular velocity ω about an axis which passes through the origin--see Figure 28. Let \mathbf{r}_i be the position vector of the ith mass element, whose mass is \mathfrak{m}_i . We expect this position vector to precess about the axis of rotation (which is parallel to ω) with angular velocity ω . It, therefore, follows from Equation (A.1309) that

$$\frac{d\mathbf{r_i}}{dt} = \mathbf{w} \times \mathbf{r_i}. \tag{457}$$

Thus, the above equation specifies the velocity, $\mathbf{v_i} = d\mathbf{r_i}/dt$, of each mass element as the body rotates with fixed angular velocity ω about an axis passing through the origin.

The total angular momentum of the body (about the origin) is written

$$\mathbf{L} = \sum_{i=1,N} m_i \mathbf{r}_i \times \frac{d\mathbf{r}_i}{dt} = \sum_{i=1,N} m_i \mathbf{r}_i \times (\boldsymbol{\omega} \times \mathbf{r}_i) = \sum_{i=1,N} m_i \left[\mathbf{r}_i^2 \boldsymbol{\omega} - (\mathbf{r}_i \cdot \boldsymbol{\omega}) \mathbf{r}_i \right], \tag{458}$$

where use has been made of Equation (457), and some standard vector identities (see Section A.10). The above formula can be written as a matrix equation of the form

$$\begin{pmatrix} L_{x} \\ L_{y} \\ L_{z} \end{pmatrix} = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix} \begin{pmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{pmatrix}, \qquad \qquad L = I\omega.$$
(45)

$$I_{xx} = \sum_{i=1,N} (y_i^2 + z_i^2) m_i = \int (y^2 + z^2) dm, \tag{460}$$

$$I_{yy} = \sum_{i=1,N} (x_i^2 + z_i^2) m_i = \int (x^2 + z^2) dm, \tag{461}$$

$$I_{zz} = \sum_{i=1,N} (x_i^2 + y_i^2) m_i = \int (x^2 + y^2) dm, \tag{462}$$

$$I_{xy} = I_{yx} = -\sum_{i=1,N} x_i y_i m_i = -\int x y dm,$$
 (463)

$$I_{yz} = I_{zy} = -\sum_{i=1,N} y_i z_i m_i = -\int y z dm,$$
 (464)

$$I_{xz} = I_{zx} = -\sum_{i=1,N} x_i z_i m_i = -\int x z dm.$$
 (465)

Here, I_{xx} is called the moment of inertia about the x-axis, I_{yy} the moment of inertia about the y-axis, I_{xy} the xy product of inertia, I_{yz}

moment of inertia tensor can be written as either a sum over separate mass elements, or as an integral over infinitesimal mass elements. In the

the YZ product of inertia, etc. The matrix of the I_{ij} values is known as the moment of inertia tensor. Note that each component of the

integrals, $dm = \rho dV$, where ρ is the mass density, and dV a volume element. Equation (459) can be written more succinctly as

$$\mathbf{L} = \mathbf{\tilde{I}} \, \mathbf{w}.$$

The distance r of a particle at \mathbf{x} from the axis of rotation passing through the origin in the $\hat{\mathbf{n}}$ direction is $|\mathbf{x} - (\mathbf{x} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}|$, where $\hat{\mathbf{n}}$ is unit

 $I=mr^2=m(\mathbf{x}-(\mathbf{x}\cdot\hat{\mathbf{n}})\hat{\mathbf{n}})^2=m(\mathbf{x}^2-2\mathbf{x}(\mathbf{x}\cdot\hat{\mathbf{n}})\hat{\mathbf{n}}+(\mathbf{x}\cdot\hat{\mathbf{n}})^2\hat{\mathbf{n}}^2)=m(\mathbf{x}^2-(\mathbf{x}\cdot\hat{\mathbf{n}})^2)$.

Rewrite the equation using matrix transpose:

 $I = m(\mathbf{x}^T \mathbf{x} - \hat{\mathbf{n}}^T \mathbf{x} \mathbf{x}^T \hat{\mathbf{n}}) = m \cdot \hat{\mathbf{n}}^T (\mathbf{x}^T \mathbf{x} \cdot \mathbf{E}_3 - \mathbf{x} \mathbf{x}^T) \hat{\mathbf{n}}$

where \mathbf{E}_3 is the 3 × 3 identity matrix. This leads to a tensor formula for the moment of inertia

For multiple particles, we need only recall that the moment of inertia is additive in order to see that this formula is correct.

Example: The Inertia Tensor for a Cube https://hepweb.ucsd.edu/ph110b/110b_notes/node26.html

We wish to compute the inertia tensor for a uniform density cube of mass M and side s . The density is simply $ho=rac{M}{s^3}$.

$$I_{11} = \frac{M}{s^{3}} \int_{-\frac{s}{2} - \frac{s}{2} - \frac{s}{2}}^{\frac{s}{2}} \int_{-\frac{s}{2}}^{\frac{s}{2}} (r^{2} - x^{2}) dx dy dz$$

$$I_{11} = \frac{M}{s^{3}} \int_{-\frac{s}{2} - \frac{s}{2}}^{\frac{s}{2} - \frac{s}{2}} (y^{2} + z^{2}) dy dz \int_{-\frac{s}{2}}^{\frac{s}{2}} dx$$

$$I_{11} = \frac{M}{s^{2}} \int_{-\frac{s}{2} - \frac{s}{2}}^{\frac{s}{2} - \frac{s}{2}} (y^{2} + z^{2}) dy dz$$

$$I_{11} = \frac{M}{s^{2}} \int_{-\frac{s}{2} - \frac{s}{2}}^{\frac{s}{2} - \frac{s}{2}} (y^{2} + z^{2}) dy dz$$

$$I_{11} = \frac{M}{s^{2}} \int_{-\frac{s}{2} - \frac{s}{2}}^{\frac{s}{2} - \frac{s}{2}} (y^{2} + z^{2}) dy dz$$

$$I_{12} = \frac{M}{s^{2}} \int_{-\frac{s}{2} - \frac{s}{2}}^{\frac{s}{2} - \frac{s}{2}} (y^{2} + z^{2}) dy dz$$

$$I_{11} = \frac{M}{3s} ([y^3]_{-\frac{s}{2}}^{\frac{s}{2}} + [z^3]_{-\frac{s}{2}}^{\frac{s}{2}})$$

$$I_{11} = \frac{M}{3s} \frac{s^3}{2} = \frac{Ms^2}{6}$$

$$I_{12} = \frac{M}{s^3} \int_{-\frac{s}{2}}^{\frac{s}{2}} \int_{-\frac{s}{2}}^{\frac{s}{2}} \int_{-\frac{s}{2}}^{\frac{s}{2}} (-xy) dx dy dz = 0$$

$$\mathbb{I} = M \frac{s^2}{6} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Moments of inertia [edit]

Following are scalar moments of inertia. In general, the moment of inertia is a tensor, see below.

Point mass <i>M</i> at a distance <i>r</i> from the axis of rotation. A point mass does not have a moment of inertia around its own axis, but using the parallel axis theorem a moment of inertia around a distant axis of rotation is achieved.		$I=Mr^2$
Solid cuboid of height h , width w , and depth d , and mass m . For a similarly oriented cube with sides of length s , $I_{\rm CM}=\frac{1}{6}ms^2$		$egin{aligned} I_h &= rac{1}{12} m \left(w^2 + d^2 ight) \ &I_w &= rac{1}{12} m \left(d^2 + h^2 ight) \ &I_d &= rac{1}{12} m \left(w^2 + h^2 ight) \end{aligned}$
Solid cuboid of height D , width W , and length L , and mass m , rotating about the longest diagonal. For a cube with sides s , $I = \frac{1}{6} m s^2.$	I. W. D.	$I = rac{1}{6} m \left(rac{W^2 D^2 + D^2 L^2 + W^2 L^2}{W^2 + D^2 + L^2} ight)$
Hollow sphere of radius r and mass m . A hollow sphere can be taken to be made up of two stacks of infinitesimally thin, circular hoops, where the radius differs from 0 to r (or a single stack, where the radius differs from $-r$ to r).	z y	$I=rac{2}{3}mr^2$ [1]
Solid sphere (ball) of radius r and mass m . A sphere can be taken to be made up of two stacks of infinitesimally thin, solid discs, where the radius differs from 0 to r (or a single stack, where the radius differs from $-r$ to r).	x y	$I=rac{2}{5}mr^2$ [1]

 $m(x^2-2x(x\cdot\hat{n})\hat{n}+(x\cdot\hat{n})^2\hat{n}^2)$

 $(\hat{n})^2 = n \cdot n = |n| = 1$ $(x \cdot \hat{n})$ is scalar, so $2x(x\cdot\hat{n})\hat{n}=2(x\cdot\hat{n})^2$

 $m(x^2-2(x\cdot\hat{n})^2+(x\cdot\hat{n})^2)$

 $m(x^2-(x\cdot\hat{n})^2)$

 $a \cdot b = a^{T} b$, dot product of two column vectors

 $x^2 = x \cdot x = x^T x$ $(x \cdot \hat{n})^2 = (x^T \hat{n})^2 = (x^T \hat{n}) \cdot (x^T \hat{n}) = (x^T \hat{n})^T (x^T \hat{n}) = \hat{n}^T x x^T \hat{n}$

 $m(x^Tx-\hat{n}^Txx^T\hat{n})$

$$x^{T}x = \hat{n}^{T}(x^{T}x \cdot E_{3})\hat{n}$$

$$1 = n \cdot n = \hat{n}^{T}E_{3}\hat{n}$$

$$n = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad \hat{n}^{T}E_{3} = (a,b,c) \begin{bmatrix} 100 \\ 010 \\ 001 \end{bmatrix} = [abc]$$

$$\hat{n}^{T}E_{3}\hat{n} = [abc] \begin{bmatrix} a \\ b \\ c \end{bmatrix} = n \cdot n = 1$$

$$m \cdot \hat{n}^{T}(x^{T}x \cdot E_{3} - xx^{T})\hat{n}$$
(3)

$$x^{T} x \cdot E_{3} = \begin{bmatrix} x^{2} + y^{2} + z^{2} & 0 & 0 \\ 0 & x^{2} + y^{2} + z^{2} & 0 \\ 0 & 0 & x^{2} + y^{2} + z^{2} \end{bmatrix}$$

$$xx^{T} = \begin{bmatrix} x^{2} & xy & xz \\ yx & y^{2} & yz \\ zx & zy & z^{2} \end{bmatrix}$$

Inertia Tensor in Unity

float theta = Mathf.PI; //Vector3 w = Vector3.down * theta / Time.fixedDeltaTime; Vector3 w = Vector3.down * theta * magnitude; Quaternion q = transform.rotation * _rb.inertiaTensorRotation; Vector3 torque = q * Vector3.Scale(_rb.inertiaTensor, (Quaternion.Inverse(q) * w)); _rb.*AddTorque*(torque); _timer = 5.0f;