C. Phone Numbers

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

And where the are the phone numbers?

You are given a string s consisting of lowercase English letters and an integer k. Find the lexicographically smallest string t of length k, such that its set of letters is a subset of the set of letters of s and s is lexicographically smaller than t.

It's guaranteed that the answer exists.

Note that the set of letters is a set, not a multiset. For example, the set of letters of abadaba is $\{a, b, d\}$.

String p is lexicographically smaller than string q, if p is a prefix of q, is not equal to q or there exists i, such that $p_i < q_i$ and for all j < i it is satisfied that $p_j = q_j$. For example, abc is lexicographically smaller than abcd, abd is lexicographically smaller than ab and a **is not** lexicographically smaller than a.

Input

The first line of input contains two space separated integers n and k ($1 \le n, k \le 100\ 000$) — the length of s and the required length of t.

The second line of input contains the string s consisting of n lowercase English letters.

Output

Output the string *t* conforming to the requirements above.

It's guaranteed that the answer exists.

Examples

input		
3 3 abc		
output		
aca		

input		
3 2 abc		
output		
ac		

3 3 ayy
output
yaa

input

2 3 ba

output

baa

Note

In the first example the list of strings t of length 3, such that the set of letters of t is a subset of letters of s is as follows: aaa, aab, aac, aba, abb, abc, aca, acb, Among them, those are lexicographically greater than abc: aca, acb, Out of those the lexicographically smallest is aca.