Haoyun Lei

E-mail: <u>haoyunl@andrew.cmu.edu</u>

LinkedIn: linkedin.com/in/haoyunlei/ | Website: www.cs.cmu.edu/~haoyunl/

Phone: +1(412)969-3798

SUMMARY

I design algorithms of optimization to study cancer genetics, inferring phylogeny for tumor evolution from multiple types of genomic data. I also work on interdisciplinary projects of machine learning (ML) and deep learning (DL) on cancer genomics and other datasets. I am looking for a full-time job related to Bioinformatics, Computational Biology, ML, DL and Data Science, etc.

EDUCATION

Carnegie Mellon University (USA)

Aug 2016 - May 2022

(expected)

Ph.D. in Computational Biology (Mentor: Dr. Russell Schwartz)
Computational Biology Department, School of Computer Science

M.Sc in Machine Learning, Machine Learning Department, School of Computer Science

Aug 2020 - Dec 2021

Huazhong University of Science and Technology (China)

Sep 2008 - Jun 2012

B.S. in Biological Science, College of Life Science and Technology

SKILLS

Programming Languages: Python (proficient), R (fluent), MATLAB (fluent), Shell (fluent), Java (familiar)

Technical Skills and Tools: Machine Learning (scikit-learn), Deep Learning (PyTorch, TensorFlow), Bioinformatics

(GATK, SAMtools, bedtools, freebayes, CNVkit, etc.), Data Analysis (Numpy, Scipy, Pandas), Data Visualization (Matplotlib, Seaborn), Combinatorial Optimization (Gurobi, SCIP), Cloud Computing (AWS), Web Development (HTML/CSS/JS)

WORK EXPERIENCE¹

Laboratory Corporation of America Holdings (LabCorp)

May 2020 - Jul 2020

Bioinformatics Summer Intern

Westborough, MA

Converting Free-text Patient Data to ICD Codes using Natural Language Processing (PyTorch, TensorFlow)

- Explored language tools (BioBERT, medaCy) to annotate and chunk the important information in medical text
- Designed a two-step BERT model to predict multiple ICD-10 codes in LabCorp's patient medical text
- Managed to work on a small dataset and reached 84% on multi-label clarification at chapter level

Benchmarking CNV Detection Tools (Python, R, Perl)

- Tested and compared public CNV detection tools for calling CNVs in targeted NGS data with a very small panel
- Explored combinations of parameters of tools to increase true positive detection in CNVkit, DECoN & CoNVaDING
- Recovered CNVs with a weaker signal in a very small panel of targets with over 94% in sensitivity and 90% in specificity

RESEARCH EXPERIENCE

Ph.D. Thesis: Integrating Multiple Data Types to Infer Tumor Evolution (Python, R, MATLAB)

May 2017 - Present

- Created a mixed membership model for the tumor evolution problem using bulk and single-cell sequencing data
- Developed an efficient coordinate descent algorithm to solve the DNA and RNA deconvolution problem in Python
- Designed a Mixed Integer Linear Programming Model with the popular optimization solvers of Gurobi and SCIP
- Designed a comprehensive simulator for multiple types of mutations in DNA-seq data with phylogenetic progress

Function Specific Representational Similarity Inference in the Brain (PyTorch)

Spring 2021

- Designed probabilistic graphical model for brain fMRI data
- Developed neurons-independent and neurons-dependent network to study function-specific representational similarity
- Recovered similar structure in correlated functional areas in the brain

Detection of Cancer Types and Relevant Features using Deep Learning with RNA-seq Data (PyTorch)

Spring 2020

- Designed and fine-tuned 1D CNN, 2D CNN and a hybrid CNN models to detect cancer types
- Designed a Stacked Denoising Autoencoder Classifier to improve the detections (~96% accuracy)
- Applied **embedding** method to find implicit relationships between cancer samples and genes

Footprint Match and Pattern Detection using Machine Learning (scikit-learn)

Spring 2017

- Classified ~10,000 footprint images with Neural Network and SVM using scikit-learn (~95% accuracy)
- Applied the Scale-invariant feature transform (SIFT) algorithm to the match of saved and new images
- Extracted the image patterns with K-Means and Gaussian Mixture Model

Predict Proto Genes using Logistic Regression, Naïve Bayes Classifier and Decision Tree

Spring 2017

Model Gene Regulatory Network by combining Boolean network and Ordinary Differential Equation models Fall 2016

TEACHING EXPERIENCE

Algorithm and Advanced Data Structure

Aug 2019 - Dec 2019

Algorithms: Breadth-first Search, Depth-first Search, Binary Search, Quick Sort, Merge Sort etc.

Data Structure: Linked List, Graph, Tree, Stack, Queue, Heap, ArrayList, Hash Table etc.

Concepts: Recursion, Dynamic Programming, Time and Space Complexity, NP-problem etc.

Laboratory Methods for Computational Biologists

Aug 2018 - Apr 2019

Designed a faster pipeline combining multiple new analysis tools to detect differentially expressed genes in RNA-seq data

PUBLICATIONS & TALKS

Articles

- **Lei, H.**, Guo, A. X., Tao, T., Ding, K., Fu, X., Oesterreich, S., Lee, V. A. and Schwartz, R. (2022) Semi-deconvolution of bulk and single-cell RNA-seq data with application to metastatic progression in breast cancer. (*Submitted to ISMB 2022*)
- Fu, X., Lei, H., Tao, Y., and Schwartz, R. (2022). Reconstructing clonal lineage trees incorporating single nucleotide variants (SNVs), copy number alterations (CNAs), and structural variations (SVs). (Submitted to ISMB 2022)
- **Lei, H.**, Gertz, E. M., Schäffer, A. A., Fu, X., Tao, Y., Heselmeyer-Haddad, K., ..., and Schwartz, R. (2021). Tumor heterogeneity assessed by sequencing and fluorescence in situ hybridization (FISH) data. *Bioinformatics* 37 (24), 4704-4711
- Fu, X., Lei, H., Tao, Y., Heselmeyer-Haddad, K., Li, G., Shi, X., Xu, L., Torres, I., Hou, Y., Wu, K., Dean, M., Ried, T., and Schwartz, R. (2021). Joint clustering of single cell sequencing and fluorescence in situ hybridization data to infer tumor copy number phylogenies.

Journal of Computational Biology 28 (11), 1035-1051

- Tao, Y., **Lei, H.**, Fu, X., Lee, A. V., Ma, J., and Schwartz, R. (2020). Robust and accurate deconvolution of tumor populations uncovers evolutionary mechanisms of breast cancer metastasis. ISMB2020, *Bioinformatics*, *36*, i407-i416,
- Lei, H., Lyu, B., Gertz, E., Schäffer, A. A., Shi, X., Wu, K., Li, G., Xu, L., Hou, Y., Dean, M., and Schwartz, R. (2020). Tumor Copy Number Deconvolution Integrating Bulk and Single-Cell Sequencing Data.

RECOMB 2019, Journal of Computational Biology, 27(4) 565-598.

- Tao, Y., Lei, H., Lee, A. V., Ma, J., and Schwartz, R. (2020). Neural Network Deconvolution Method for Resolving Pathway-Level Progression of Tumor Clonal Expression Programs with Application to Breast Cancer Brain Metastases. *Frontiers in Physiology*, 11, 1055.
- Tao, Y., Lei, H., Lee, A. V., Ma, J., and Schwartz, R. (2019). Phylogenies derived from matched transcriptome reveal the evolution of cell populations and temporal order of perturbed pathways in breast cancer brain metastases. ISMCO 2019 (pp. 3-28). Springer, Cham.

Abstracts & Talks

Lei, H., Gertz, E. M., Schäffer, A. A., Fu, X., Tao, Y., Heselmeyer-Haddad, K., ... and Schwartz, R. (2020, July). Tumor heterogeneity assessed by sequencing and fluorescence in situ hybridization (FISH) data.

Conference on Intelligent System for Molecular Biology (ISMB), virtual

- Fu, X., Lei, H., and Schwartz, R. (2020, July). Joint Clustering of single cell sequencing and fluorescence in situ hybridization data to infer tumor copy number phylogenies. ISMB, virtual.
- Lei, H., Lyu, B., Gertz, E., Schäffer, A. A., Shi, X., Wu, K., Li, G., Xu, L, Hou, Y., Dean, M., and Schwartz, R. (2019,
- May). Tumor Copy Number Deconvolution Integrating Bulk and Single-Cell Sequencing Data. International Conference on Research in Computational Molecular Biology (RECOMB), Washington, DC.
- Lei, H., Lyu, B., Gertz, E. M., Schäffer, A. A., and Schwartz, R. (2018, October). Tumor Copy Number Data Deconvolution Integrating Bulk and Single-cell Sequencing Data. In 2018 IEEE 8th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), Las Vegas, NV.
- Lei, H., Roman, T., Eaton, J., and Schwartz, R. (2018, July). Deconvolution of tumor copy number data using bulk and single-cell sequencing data. ISMB, Chicago, IL.
- Lei, H., Roman, T., Eaton, J., and Schwartz, R. (2018, April). New directions in deconvolving genomics mixtures of copy number variation data. SIAM Conference on Discrete Mathematics, Denver, CO.
- 1. Worked as Research Scholar in University of Michigan, Ann Arbor (Sep 2012 Nov 2015), studied neuroscience in C.elegans