高中數學公式總整理

YOU, SHENG-YU

September 25, 2025

Contents

數與	! 式	4
1.1	實數	4
1.2	絶對值	5
1.3	指數律	5
1.4	科學記號與常用對數	5
直線	學與圓	6
2.1		6
2.2	直線的平移	7
2.3	直線的平行與垂直	7
2.4	man at a transfer to the same Autority to	7
2.5	······································	8
_	<u> </u>	8
2.7	直線與圓的關係	8
多項	江函數	8
3.1	• • • • • •	8
3.2		9
3.3	廣域特徵 v.s. 局部特徵	9
數列	與級數 1	0
4.1	等差	0
4.2		10
	the state of the s	10
4.4		11
	1.1 1.2 1.3 1.4 直 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.1 3.2 3.3 4.1 4.2 4.3	1.1 實數 1.2 絕對值 1.3 指數律 1.4 科學記號與常用對數 直線與圓 2.1 直線方程式 2.2 直線的平移 2.3 直線的平行與垂直 2.4 點與直線距離公式 2.5 圓方程式 2.6 點與圓的關係 2.7 直線與圓的關係 多項式函數 3.1 多項式函數定理 3.2 三次函數 3.3 廣域特徵 v.s. 局部特徵 數列與級數 4.1 等差 4.2 等比 4.3 遞迴關係式 1

5	5.1 計數原理	11 12 13 13
6	5.1 古典機率(高一)	13 13 14 14
7	7.1 集中趨勢量	15 15 15 16
8	3.1 鋭角三角比	1 7 17 17 18
	0.1 弧度量	18 18 19 19 19
11	10.2 換底公式	20 20 20
	11.1 加減法與係數積(坐標形式) 11.2 平行 v.s. 垂直 11.3 線性組合 11.4 内積 11.5 正射影 11.6 直線的夾角	20 20 21 21 21

	11.8	二階行列語	式 .																		22
	11.9	克拉瑪公式	式 .																		23
12	空間	向量																			23
	12.1	投影點 v.s	3. 對	稱黑	沾																23
		兩點距離																			
	12.4	加減法與何	系數	漬(:	坐	嫖	形	左	(,												24
		平行 v.s.																			
		重心坐標																			
																					24
	12.8	三階行列	式 &	體	槓	公	江	ı		•	•								•		25
13		中的平面與		-																	26
		平面方程																			
		兩平面夾力																			26
		點與平面																			26
	13.4	直線方程	式 .		•					•				•							27
14	矩陣																				27
		加減法與位	系數	膏.																	
		矩陣乘法																			
		反方陣.																			28
		轉移矩陣																			28
	14.5	線性變換																			29
15	數B	加强區																			30
	15.1	地球坐標	系統																		30
	15.2	黄金比例																			30
16	附錄																				31
${f A}$	面積	公式																			31
	A.1	海龍公式																			31
	A.2	三角比.																			31
	A.3	向量																			31
	A.4																				31
	A.5	外接圓&阝	的切圓	▋.																	32
	A 6	其他																			32

1 數與式

1.1 實數

• 循環小數化有理數

$$0.\overline{ab} = \frac{ab}{99}$$

$$0.a\overline{bc} = \frac{abc-a}{990}$$

$$a.\overline{bcd} = \frac{abcd-ab}{990}$$

[口訣]

分母:有幾個循環節就寫幾個9,沒有循環節則補0 分子:全部扣掉沒有循環節的部分

• 二次乘法公式

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a+b)(a-b) = a^{2} - b^{2}$$

$$(a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ac$$

• 三次乘法公式

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
$$(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

• 雙重根號的化簡

$$\sqrt{(a+b) + 2\sqrt{ab}} = \sqrt{a} + \sqrt{b}$$
$$\sqrt{(a+b) - 2\sqrt{ab}} = \sqrt{a} - \sqrt{b}$$

[口訣]

小根號前先找2,前面相加後面相乘

算幾不等式若a、b為非零實數,則

$$\frac{a+b}{2} \ge \sqrt{ab}$$

等號成立時,可得a = b

1.2 絶對值

• (内)分點公式

設數線上相異兩點 $A(a) \cdot B(b)$,若P(x)為 \overline{AB} 上的分點,且 $\overline{AP} : \overline{BP} = m : n$,則

$$P = \frac{na + mb}{m + n}$$

• (外)分點公式[補充]

設數線上相異兩點A(a)、B(b),若P(x)為 \overline{AB} 外的分點,且 \overline{AP} : $\overline{BP}=m:n$,則

(1) $m \ge n$

$$P = \frac{(-n)a + mb}{m + (-n)}$$

(2) $m \leq n$

$$P = \frac{na + (-m)b}{(-m) + n}$$

1.3 指數律

設 $a \cdot b$ 為正實數,且 $r \cdot s$ 是任意實數,則

- $a^r a^s = a^{r+s}$
- $\bullet \ \frac{a^r}{a^s} = a^{r-s}$
- $(a^r)^s = a^{rs}$
- $a^r b^r = (ab)^r$

1.4 科學記號與常用對數

科學記號設a為正實數,則a可表示為

$$a = b \times 10^n$$

其中1 < b < 10、n為整數

• 常用對數

任意正數a都可化成10的次方的形式,而這個次方的值以符號 $\log a$ 表示,即

$$a = 10^{\log a}$$

其中log a稱為a的常用對數

[註]:特殊對數值

 $\log 2 = 0.3010 \cdot \log 3 = 0.4771 \cdot \log 7 = 0.8451$

2 直線與圓

2.1 直線方程式

• 點斜式

設通過點 $A(x_0, y_0)$ 且斜率為m的直線方程式為

$$y - y_0 = m(x - x_0)$$

• 斜截式

設斜率為m且y截距為b的直線方程式為

$$y = mx + b$$

• 截距式

設x截距為 $a \cdot y$ 截距為 $b(a \neq 0 \cdot b \neq 0)$ 的直線方程式為

$$\frac{x}{a} + \frac{y}{b} = 1$$

• 一般式

$$ax + by + c = 0$$

[註]:一般式斜率 $m = -\frac{a}{b}$

2.2 直線的平移

設 $h \cdot k$ 為正數,直線L: ax + by + c = 0,則

● 將L向右平移h單位後,所得直線為

$$a(x-h) + by + c = 0$$

• 將L向左平移h單位後,所得直線為

$$a(x+h) + by + c = 0$$

將L向上平移k單位後,所得直線為

$$ax + b(y - k) + c = 0$$

將L向下平移k單位後,所得直線為

$$ax + b(y+k) + c = 0$$

[口訣]:平移啥就減啥

2.3 直線的平行與垂直

設兩相異直線 $L_1 \setminus L_2$ 的斜率分別為 $m_1 \setminus m_2$,則

- 若 $L_1//L_2$,則 $m_1=m_2$
- 若 $L_1 \perp L_2$,則 $m_1 m_2 = -1$

2.4 點與直線距離公式

• 中點坐標 若 $P(x_1,y_1)$ 、 $Q(x_2,y_2)$ 為坐標平面上相異的兩點,則 \overline{PQ} 中點坐標為

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

$$d(P, L) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

• 兩平行直線的距離 設兩平行直線 $L_1: ax + by + c_1 = 0 \cdot L_2: ax + by + c_2 = 0$,則

$$d(L_1, L_2) = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$$

2.5 圓方程式

• 標準式 以O(h,k)為圓心、r為半徑的圓方程式為

$$(x-h)^2 + (y-k)^2 = r^2$$

• 一般式

$$x^2 + y^2 + dx + ey + f = 0$$

[註]:圓心
$$(-\frac{d}{2}, -\frac{e}{2})$$
、半徑 $\sqrt{(\frac{d}{2})^2 + (\frac{e}{2})^2 - f}$

2.6 點與圓的關係

給一個以O為圓心、r為半徑的圓和一點P,若

- d(O, P) > r,則P在圓外
- d(O, P) = r,則P在圓上
- d(O, P) < r,則P在圓內

2.7 直線與圓的關係

設一以 $O(x_0, y_0)$ 為圓心、r為半徑的圓和一直線L: ax + by + c = 0,若

- d(O, L) > r,則圓與直線相離
- d(O, L) = r,則圓與直線相切
- d(O, L) < r,則圓與直線相割

3 多項式函數

3.1 多項式函數定理

• 除法原理

設多項式f(x)除以另一多項式g(x)得商式Q(x)且餘式為r(x),則

$$f(x) = q(x)Q(x) + r(x)$$

- 餘式定理 設多項式f(x)除以另一多項式ax b,則餘式為 $f(\frac{b}{a})$

3.2 三次函數

• 標準式 若V(h,k)為三次函數f(x)的對稱中心,則

$$f(x) = a(x - h)^3 + p(x - h) + k$$

• 一般式

$$y = ax^3 + bx^2 + cx + d$$

其對稱中心為 $V(-\frac{b}{3a}, f(-\frac{b}{3a}))$

3.3 廣域特徵 v.s. 局部特徵

• 廣域特徵

若三次函數 $f(x) = ax^3 + bx^2 + cx + d$, 則廣域特徵為最高次項

$$f(x) = a^3$$

• 局部特徴

若三次函數f(x)在 $x = \alpha$ 可表示成

$$f(x) = a(x - \alpha)^3 + b(x - \alpha)^2 + c(x - \alpha) + d$$

則f(x)在 $x = \alpha$ 的局部特徵為

$$g(x) = c(x - \alpha) + d$$

4 數列與級數

4.1 等差

• 等差數列

$$a_n = a_1 + (n-1)d$$

• 等差級數

$$S_n = \frac{n(a_1 + a_n)}{2} = \frac{n[2a_1 + (n-1)d]}{2}$$

● 等差中項 若a、b、c三數成等差,則

$$b = \frac{a+c}{2}$$

4.2 等比

• 等比數列

$$a_n = a_1 r^{n-1}$$

• 等比級數

$$S_n = \frac{a_1(1-r^n)}{1-r} = \frac{a_1(r^n-1)}{r-1}$$

● 等比中項若a、b、c三數成等比,則

$$b^2 = ac$$

4.3 遞迴關係式

● 等差型

$$\begin{cases} a_1 = a \\ a_n = a_{n-1} + d \ (n \ge 2) \end{cases}$$

• 等比型

$$\begin{cases} a_1 = a \\ a_n = ra_{n-1} \ (n \ge 2) \end{cases}$$

4.4 常用級數和公式

•
$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

•
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

5 排列與組合

5.1 計數原理

• 加法原理

完成某件事有 $A \cdot Bm\underline{方案}$,其中A方案有m種方法、B方案有n種方法,則完成該件事共有m+n種方法

• 乘法原理

完成某件事有 $A \cdot B$ 兩<u>步驟</u>,其中A步驟有m種方法、B步驟有n種方法,則完成該件事共有 $m \times n$ 種方法

- 取捨原理
 - (1) 兩事件

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

(2) 三事件

$$n(A \cup B \cup C) = n(A) + n(B) + n(C)$$
$$-n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$$

5.2 排列

• 全取排列

若n個人全部排成一列,則方法數為

$$n! = 1 \times 2 \times ... \times n$$

• 部分排列

若n個人中取k個人出來排成一列,則方法數為

$$P_k^n = \frac{n!}{(n-k)!}$$

• 相同物排列

若有m種物品,第一種有 n_1 個相同物、第二種有 n_2 個相同物、...、第m種有 n_m 個相同物,共有n個物品,則排列一列的方法數為

$$\frac{n!}{n_1! \times n_2! \times ... \times n_m!}$$

• 重複排列

從n種不同物品(每種至少有k個)中選出k個物品出來排成一列,期方法數為

5.3 組合

• 一般組合

若n個人中取k個人出來,則方法數為

$$C_k^n = \frac{P_k^n}{k!} = \frac{n!}{k!(n-k)!}$$

• 餘組合

$$C_k^n = C_{n-k}^n$$

• 巴斯卡原理

$$C_{k-1}^{n-1} + C_k^{n-1} = C_k^n$$

5.4 二項式定理

• 二項式定理

$$(x+y)^n = C_0^n x^n + C_1^n x^{n-1} y^1 + \ldots + C_r^n x^{n-r} y^r + \ldots + C_{n-1}^n x^1 y^{n-1} + C_n^n y^n$$

• 組合級數

設
$$f(x) = (1+x)^n = C_0^n + C_1^n x^1 + \dots + C_{n-1}^n x^{n-1} + C_n^n x^n$$
,則

$$(1)\ C_0^n + C_1^n + \ldots + C_{n-1}^n + C_n^n = f(1) = 2^n$$

(2)
$$C_0^n - C_1^n + \dots - C_{n-1}^n + C_n^n = f(-1) = 0$$

(3)
$$C_0^n + C_2^n + \dots = \frac{f(1)+f(-1)}{2} = 2^{n-1}$$

(4)
$$C_1^n + C_3^n + \dots = \frac{f(1) - f(-1)}{2} = 2^{n-1}$$

6 古典機率

6.1 古典機率(高一)

• 古典機率的定義

當S中每個樣本點出現的機會均等時,定義事件A發生的機率P(A)為

$$P(A) = \frac{n(A)}{n(S)}$$

• 機率的性質

設S為一試驗的樣本空間, $A \times B$ 為兩事件且A'為A的補集,則

- $(1) \ 0 \le P(A) \le 1$
- (2) $P(\phi) = 0$; P(S) = 1
- (2) $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- (3) P(A') = 1 P(A)

6.2 數學期望值(高一)

若一試驗有n種可能的結果,各種結果所對應的數值分別為 $x_1 \cdot x_2 \cdot ... \cdot x_n$,期發生的機率分別為 $P_1 \cdot P_2 \cdot ... \cdot P_n$,則數學期望值(期望值)為

$$E = x_1 P_1 + x_2 P_2 + \dots + x_n P_n$$

6.3 條件機率(高二)

設A、B為樣本空間中兩事件,且P(A) > 0,在「已知A事件發生的情況下,求B事件發生的機率」稱為條件機率,公式如下

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

6.4 獨立事件 v.s. 互斥事件

● 獨立事件 若A、B兩事件為獨立事件,則

$$P(A \cap B) = P(A)P(B)$$

• 互斥事件 若A、B兩事件為互斥事件,則

$$P(A \cap B) = 0 \cdot P(A \cup B) = P(A) + P(B)$$

7 數據分析

7.1 集中趨勢量

• 平均數

設n個數據 $x_1 imes x_2 imes \dots imes x_n$,且所對應的權重分別為 $w_1 imes w_2 imes \dots imes w_n$,則

(1) 算術平均數

$$\mu = \frac{x_1 + x_2 + \dots + x_n}{n}$$

(2) 加權平均數

$$W = \frac{x_1 w_1 + x_2 w_2 + \dots + x_n w_n}{w_1 + w_2 + \dots + w_n}$$

(3) 幾何平均數

$$G = \sqrt[n]{x_1 x_2 \dots x_n}$$

• 中位數

將 $x_1 imes x_2 imes ... imes x_n$ 此n個數據由小到大排列,若

- (1) n為奇數,則中位數為 $x_{\frac{n+1}{2}}$
- (2) n為偶數,則中位數為 $\frac{x_{\frac{n}{2}}+x_{\frac{n}{2}+1}}{2}$

7.2 離散趨勢量

• 標準差

設n個數據 $x_1 imes x_2 imes ... imes x_n o$ 其算術平均數為 μ ,則

(1) 標準差

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \mu^2}$$

(2) 變異數

$$Var(X) = \sigma^2$$

7.3 相關係數

• 相關係數

設兩變量 $x \cdot y$ 的n筆數據為 $(x_1, y_1) \cdot (x_2, y_2) \cdot ... \cdot (x_n, y_n)$,且 $x \cdot y$ 的平均數分別為 $\mu_x \cdot \mu_y$,標準差分別為 $\sigma_x \cdot \sigma_y$,則 $x \cdot y$ 的相關係數為

$$r = \frac{(x_1 - \mu_x)(y_1 - \mu_y) + \dots + (x_n - \mu_x)(y_n - \mu_y)}{n\sigma_x\sigma_y} = \frac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}$$

其中

$$S_{xy} = (x_1 - \mu_x)(y_1 - \mu_y) + \dots + (x_n - \mu_x)(y_n - \mu_y)$$
$$S_{xy} = (x_1 - \mu_x)^2 + \dots + (x_n - \mu_x)^2$$
$$S_{xy} = (y_1 - \mu_y)^2 + \dots + (y_n - \mu_y)^2$$

• 迴歸直線

設兩變量 $x \cdot y$ 的n筆數據為 $(x_1, y_1) \cdot (x_2, y_2) \cdot ... \cdot (x_n, y_n)$,其相關係數為r,則y對x的迴歸直線方程式為

$$y - \mu_y = r \frac{\sigma_y}{\sigma_x} (x - \mu_x)$$

或

$$y - \mu_y = \frac{S_{xy}}{S_{xx}}(x - \mu_x)$$

8 三角比

8.1 鋭角三角比

• 正弦

$$\sin \angle A = \frac{a}{c}$$

• 餘弦

$$\cos \angle A = \frac{b}{c}$$

• 正切

$$\tan \angle A = \frac{a}{b}$$

8.2 三角比的基本關係式

• 商數關係

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

• 平方關係

$$\sin^2\theta + \cos^2\theta = 1$$

• 餘角關係

$$\sin(90^{\circ} - \theta) = \cos\theta$$
; $\cos(90^{\circ} - \theta) = \sin\theta$

8.3 正弦定理 v.s. 餘弦定理

設 $-\triangle ABC$,其 $\angle A$ 、 $\angle B$ 、 $\angle C$ 的對邊長分別為a、b、c

• 正弦定理

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

其中, R為△ABC的外接圓半徑

• 餘弦定理

$$c^2 = a^2 + b^2 - 2ab\cos C$$
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

8.4 極坐標 v.s. 直角坐標

• 極坐標轉直角坐標

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

• 直角坐標轉極坐標

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \tan \theta = \frac{y}{x} \end{cases}$$

9 三角函數

9.1 弧度量

- 度度量與弧度量(弳)的換算
 - (1) 度度量轉弧度量

$$1^{\circ} = \frac{\pi}{180}$$

(2) 弧度量轉度度量

$$1$$
 短 $= \left(\frac{180}{\pi}\right)^{\circ} \approx 57.3^{\circ}$

• 扇形弧長與面積 若扇形的半徑為r,圓心角為 θ ,弧長s與面積A為

$$s = r\theta \cdot A = \frac{1}{2}r^2\theta$$

9.2 和差角公式(數A)

正弦

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$

餘弦

$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

• 正切

$$\tan\left(\alpha \pm \beta\right) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$$

9.3 二倍角與三倍角公式(數A)

• 二倍角

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$$

$$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$$

• 三倍角

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$
$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

9.4 半角公式(數A)

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$$
$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

9.5 正餘弦疊合(數A)

$$a\sin\theta + b\cos\theta = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \sin\theta + \frac{b}{\sqrt{a^2 + b^2}} \cos\theta \right)$$
$$= \sqrt{a^2 + b^2} (\cos\phi\sin\theta + \sin\phi\cos\theta)$$
$$= \sqrt{a^2 + b^2} \sin(\theta + \phi)$$

其中

$$\sin \phi = \frac{b}{\sqrt{a^2 + b^2}} \cdot \cos \phi = \frac{a}{\sqrt{a^2 + b^2}}$$

10 指數與對數函數

10.1 對數律

若 $a \cdot b$ 皆大於0且不等於 $1 \cdot c \cdot r \cdot s$ 皆大於 $0 : p \cdot q$ 為實數,則

- $\log_a rs = \log_a r + \log_a s$
- $\log_a \frac{r}{s} = \log_a r \log_a s$
- $\log_{a^q} r^p = \frac{p}{q} \log_a r$
- $\log_a r = \frac{1}{\log_r a}$
- $\log_a b \times \log_b c = \log_a c$

10.2 換底公式

 $若a \cdot b \cdot c$ 為正數,且 $a \neq 1 \cdot c \neq 1$

$$\log_a b = \frac{\log_c b}{\log_c a}$$

11 平面向量

11.1 加減法與係數積(坐標形式)

設向量 \vec{a} = (a_1, a_2) 、向量 \vec{b} = (b_1, b_2) 、r為實數,則

• 加減法

$$\vec{a} \pm \vec{b} = (a_1 \pm b_1, a_2 \pm b_2)$$

• 係數積

$$r\vec{a}=(ra_1,ra_2)$$

11.2 平行 v.s. 垂直

平面上任意兩向量 \vec{a} = (a_1, a_2) 、 \vec{b} = (b_1, b_2) ,若

• 平行

$$\vec{a}//\vec{b} \Longleftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2}$$

垂直

$$\vec{a} \perp \vec{b} \Longleftrightarrow a_1 b_1 + a_2 b_2 = 0$$

11.3 線性組合

• 分點公式

在 $\triangle ABC$ 中,P為 \overline{BC} 上一點,且 \overline{BP} : $\overline{CP}=m:n$,則

$$\overrightarrow{AP} = \frac{n}{m+n}\overrightarrow{AB} + \frac{m}{m+n}\overrightarrow{AC}$$

• 三點共線

若 $A \cdot P \cdot B$ 相異三點共線,O為任意點,且

$$\overrightarrow{OP} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB}$$

則

$$\alpha + \beta = 1$$

11.4 内積

設坐標平面上兩相異向量 $\overrightarrow{a}=(a_1,a_2)$ 、 $\overrightarrow{b}=(b_1,b_2)$,其夾角為 θ ,則

• 向量形式

$$\overrightarrow{a} \cdot \overrightarrow{b} = |a||b|\cos\theta$$

• 純量形式

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 b_1 + a_2 b_2$$

11.5 正射影

設坐標平面上兩相異向量 \overrightarrow{a} 、 \overrightarrow{b} ,則 \overrightarrow{a} 在 \overrightarrow{b} 上的正射影 \overrightarrow{a} 為

$$\overrightarrow{u} = (\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2}) \overrightarrow{b}$$

而正射影長| 7 | 為

$$|\overrightarrow{u}| = \frac{|\overrightarrow{a} \cdot \overrightarrow{b}|}{|\overrightarrow{b}|}$$

11.6 直線的夾角

設平面上相異兩直線 $L_1: a_1x + b_1y + c_1 = 0 \cdot L_2: a_2x + b_2y + c_2 = 0$,且 $\overrightarrow{n}_1 = (a_1, b_1) \cdot \overrightarrow{n}_2 = (a_2, b_2)$ 分別為兩直線的法向量,若兩直線夾角為 θ ,則

$$\cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1||\vec{n}_2|}$$

11.7 柯西不等式 & 三角不等式

• 柯西不等式 設平面上兩任意向量 $\overrightarrow{a} = (a_1, a_2) \cdot \overrightarrow{b} = (b_1, b_2)$

(1) 向量形式

$$|\overrightarrow{a}||\overrightarrow{b}| \ge |\overrightarrow{a} \cdot \overrightarrow{b}|$$

等號成立於 $\overrightarrow{a}//\overrightarrow{b}$ 或 \overrightarrow{a} 、 \overrightarrow{b} 其中一個為 $\overrightarrow{0}$

(2) 實數形式

$$(a_1^2 + a_2^2)(b_1^2 + b_2^2) \ge (a_1b_1 + a_2b_2)^2$$

等號成立於

$$\frac{a_1}{b_1} = \frac{a_2}{b_2}$$

• 三角不等式 設平面上兩任意向量 \overrightarrow{a} 、 \overrightarrow{b}

$$|\overrightarrow{a}| + |\overrightarrow{b}| \ge |\overrightarrow{a} + \overrightarrow{b}|$$

等號成立於 \overrightarrow{a} 、 \overrightarrow{b} 同向或 \overrightarrow{a} 、 \overrightarrow{b} 其中一個為 $\overrightarrow{0}$

11.8 二階行列式

任意四數 $a \cdot b \cdot c \cdot d$,其行列式為

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

11.9 克拉瑪公式

給定二元一次方程組

$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$$
設 $\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \cdot \Delta_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} \cdot \Delta_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$,則
$$x = \frac{\Delta_x}{\Delta} \cdot y = \frac{\Delta_y}{\Delta}$$

12 空間向量

12.1 投影點 v.s. 對稱點

設P(a,b,c)為空間坐標中一點,則P對軸與平面的投影點&對稱點如下:

• 投影點

坐標軸	x軸	y軸	z軸				
	(a,0,0)	(0,b,0)	(0,0,c)				
坐標平面	xy平面	yz平面	xz平面				
	(a,b,0)	(0,b,c)	(a,0,c)				

• 對稱點

坐標軸	x軸	y軸	z軸
	(-a,b,c)	(a,-b,c)	(a,b,-c)
坐標平面	xy平面	yz平面	xz平面
	(a,b,-c)	(-a,b,c)	(a,-b,c)

12.2 中點坐標

設 $P_1(a_1,b_1,c_1)$ 、 $P_2(a_2,b_2,c_2)$ 為空間中相異兩點,則其中點為

$$M(\frac{a_1+a_2}{2}, \frac{b_1+b_2}{2}, \frac{c_1+c_2}{2})$$

12.3 兩點距離公式

設 $P_1(a_1,b_1,c_1)$ 、 $P_2(a_2,b_2,c_2)$ 為空間中任意兩點,則

$$\overline{P_1P_2} = \sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2 + (c_1 - c_2)^2}$$

12.4 加減法與係數積(坐標形式)

平面上任意兩向量 \vec{a} = $(a_1, a_2, a_3) \cdot \vec{b}$ = $(b_1, b_2, b_3) \cdot r$ 為實數,則

• 加減法

$$\vec{a} \pm \vec{b} = (a_1 \pm b_1, a_2 \pm b_2, a_3 \pm b_3)$$

• 係數積

$$r\vec{a}=(ra_1, ra_2, ra_3)$$

12.5 平行 v.s. 垂直

平面上任意兩向量 \vec{a} = (a_1, a_2, a_3) 、 \vec{b} = (b_1, b_2, b_3) ,若

平行

$$\vec{a}//\vec{b} \Longleftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$$

垂直

$$\vec{a} \perp \vec{b} \Longleftrightarrow a_1 b_1 + a_2 b_2 + a_3 b_3 = 0$$

12.6 重心坐標公式

設 $\triangle ABC$ 三頂點 $A(a_1,a_2,a_3)$ 、 $B(b_1,b_2,b_3)$ 、 $C(c_1,c_2,c_3)$,若G為此三角形重心,則

$$G(\frac{a_1+b_1+c_1}{3}, \frac{a_2+b_2+c_2}{3}, \frac{a_3+b_3+c_3}{3})$$

12.7 外積

設 $\overrightarrow{d} = (a_1, a_2, a_3)$ 、 $\overrightarrow{b} = (b_1, b_2, b_3)$ 為空間中兩不平行非零向量,則

$$\overrightarrow{a} \times \overrightarrow{b} = \left(\left| \begin{array}{cc} a_2 & a_3 \\ b_2 & b_3 \end{array} \right|, \left| \begin{array}{cc} a_1 & a_3 \\ b_1 & b_3 \end{array} \right|, \left| \begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| \right)$$

12.8 三階行列式 & 體積公式

• 一般公式

任意九數 $a_1 \cdot b_1 \cdot c_1$; $a_2 \cdot b_2 \cdot c_2$; $a_3 \cdot b_3 \cdot c_3$, 則三階行列式為

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1 - a_2 b_1 c_3 - a_1 b_3 c_2$$

• 降階法

設針對第一列進行降階,則

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

降階法係數正負原則:

• 平行六面體體積公式

設 $\overrightarrow{a}=(a_1,a_2,a_3)$ 、 $\overrightarrow{b}=(b_1,b_2,b_3)$ 、 $\overrightarrow{c}=(c_1,c_2,c_3)$ 為空間中不共平面的三個非零向量,則 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 所展開的平行六面體體積為

$$V = |\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})| = | \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} |$$

13 空間中的平面與直線

13.1 平面方程式

• 點法式

設 $P(x_0, y_0, z_0)$ 在平面E上,且其法向量 $\overrightarrow{n} = (a, b, c)$,則

$$E: a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

• 一般式

$$E: ax + by + cz + d = 0$$

• 截距式

設平面E分別與 $x \cdot y \cdot z$ 軸交於 $A(a,0,0) \cdot B(0,b,0) \cdot C(0,0,c)$,則

$$E: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

13.2 兩平面夾角

設 $E_1: a_1x + b_1y + c_1z + d_1 = 0 \cdot E_2: a_2x + b_2y + c_2z + d_2 = 0$ 為不平行且相 異平面,且 $\overrightarrow{n}_1 = (a_1, b_1, c_1) \cdot \overrightarrow{n}_2 = (a_2, b_2, c_2)$ 分別為兩平面的法向量,若 兩平面夾角為 θ ,則

$$\cos\theta = \frac{\overrightarrow{n}_1 \cdot \overrightarrow{n}_2}{|\overrightarrow{n}_1||\overrightarrow{n}_2|}$$

• 兩平面垂直

$$E_1 \perp E_2 \Longleftrightarrow \overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0$$

13.3 點與平面距離公式

• 點到平面的距離

設點 $P(x_0, y_0, z_0)$ 、平面E: ax + by + cz + d = 0,則

$$d(P, E) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2} + c^2}$$

• 兩平行平面的距離

設兩平行平面 $E_1: ax + by + cz + d_1 = 0$ 、 $E_2: ax + by + cz + d_2 = 0$,則

$$d(E_1, E_2) = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$$

13.4 直線方程式

• 參數式

設直線L通過點 $A(x_0, y_0, z_0)$ 且方向向量 $\overrightarrow{v} = (a, b, c)$,則

$$L: \left\{ \begin{array}{l} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{array} \right.$$
,其中 t 為實數

• 比例式

設直線L通過點 $A(x_0, y_0, z_0)$ 且方向向量 $\overrightarrow{v} = (a, b, c)$,其中 $abc \neq 0$,則

$$L: \frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

14 矩陣

14.1 加減法與係數積

設 $A = [a_{ij}]_{m \times n} \cdot B = [b_{ij}]_{m \times n}$ 為同階矩陣、r為實數,則

• 加減法

$$A \pm B = [a_{ij} \pm b_{ij}]_{m \times n}$$

• 係數積

$$rA = [ra_{ij}]_{m \times n}$$

14.2 矩陣乘法

若 $A = [a_{ij}]_{m \times n}$ 、 $B = [b_{ij}]_{n \times p}$,則

$$AB = C = [c_{ij}]_{n \times p}$$

且

$$c_{ij} = (a_{i1}b_{1j}) + (a_{i2}b_{2j}) + \dots + (a_{in}b_{nj})$$

14.3 反方陣

• 定義

給定一個方陣A,若存在一個方陣B,使得

$$AB = BA = I_n$$

則A、B互為彼此的反方陣,記作

$$B = A^{-1} \cdot A = B^{-1}$$

• 公式

設
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,且其行列式值 $det(A) \neq 0$,則

$$A^{-1} = \frac{1}{\det(A)} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

14.4 轉移矩陣

滿足以下兩個條件的矩陣稱為轉移矩陣:

- (1) 矩陣中每一個元素皆大於0
- (2) 每一行的和皆為1

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

14.5 線性變換

• 伸縮矩陣 將點沿x軸方向伸縮h倍、y軸方向伸縮k倍,則伸縮矩陣為

$$T = \left[\begin{array}{cc} h & 0 \\ 0 & k \end{array} \right]$$

旋轉矩陣以原點O為中心,逆時針旋轉θ角的旋轉矩陣為

$$A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

鏡射矩陣
 由過原點且斜角為θ的鏡射軸L的鏡射矩陣為

$$M_{\theta} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$$

推移矩陣 設一常數k,則沿水平方向與沿鉛直方向的推移矩陣為
(1)沿水平方向推移y坐標的k倍

$$P_x = \left[\begin{array}{cc} 1 & k \\ 0 & 1 \end{array} \right]$$

(2) 沿鉛直方向推移x坐標的k倍

$$P_y = \left[\begin{array}{cc} 1 & 0 \\ k & 1 \end{array} \right]$$

15 數B加强區

15.1 地球坐標系統

設A點在半徑為R的球面上,其經度為 θ 、緯度為 ϕ ,則

$$A: \left\{ \begin{array}{l} x = R\cos\theta\cos\phi \\ y = R\sin\theta\cos\phi \\ z = R\sin\phi \end{array} \right.$$

15.2 黄金比例

設線段 \overline{AB} 被P點分割成兩段,其中 $\overline{AP} > \overline{BP}$,若

$$\frac{\overline{PA}}{\overline{PB}} = \frac{\overline{AB}}{\overline{PA}}$$

則P稱為 \overline{AB} 的黃金分割點,此時的比例稱為黃金比例

$$\overline{PA} = \frac{1+\sqrt{5}}{2} \approx 1.618$$

16 附錄

A 面積公式

A.1 海龍公式

設 $a \cdot b \cdot c$ 為 $\triangle ABC$ 的三邊長,則

$$\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$$

其中

$$s = \frac{a+b+c}{2}$$

A.2 三角比

設一 $\triangle ABC$,其 $\angle A$ 、 $\angle B$ 、 $\angle C$ 的對邊長分別為a、b、c,則 $\triangle ABC = \frac{1}{2}bc\sin\angle A = \frac{1}{2}ac\sin\angle B = \frac{1}{2}ab\sin\angle C$

A.3 向量

設平面上兩相異向量 \overrightarrow{a} 、 \overrightarrow{b} ,則

• 三角形面積

$$\frac{1}{2}\sqrt{|\overrightarrow{a}|^2|\overrightarrow{b}|^2-(\overrightarrow{a}\cdot\overrightarrow{b})^2}$$

• 平行四邊形面積

$$\sqrt{|\overrightarrow{a}|^2|\overrightarrow{b}|^2-(\overrightarrow{a}\cdot\overrightarrow{b})^2}$$

A.4 行列式

設平面上兩相異向量 $\overrightarrow{a} = (a_1, a_2)$ 、 $\overrightarrow{b} = (b_1, b_2)$,則

• 三角形面積

$$\frac{1}{2}|a_1b_2 - a_2b_1| = \frac{1}{2}| \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} |$$

• 平行四邊形面積

$$|a_1b_2 - a_2b_1| = |\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}|$$

A.5 外接圓&内切圓

設 $a \cdot b \cdot c$ 為 $\triangle ABC$ 的三邊長,且 $R \cdot r$ 分別為外接圓與內切圓半徑,s為半周長,則

• 三角形面積(外接圓半徑)

$$\triangle ABC = \frac{abc}{4R}$$

• 三角形面積(内切圓半徑)

$$\triangle ABC = rs$$

A.6 其他

• 測量員公式(多邊形亦適用) 設n邊形頂點分別為 $(x_1, y_1) \cdot (x_2, y_2) \cdot (x_3, y_3) \cdot ... \cdot (x_n, y_n)$,則

$$Area = \frac{1}{2} \begin{vmatrix} x_1 & x_2 & x_3 & \dots & x_n \\ y_1 & y_2 & y_3 & \dots & y_n \end{vmatrix} \begin{vmatrix} x_1 & x_2 & x_3 & \dots & x_n \\ y_1 & y_2 & y_3 & \dots & y_n \end{vmatrix} \begin{vmatrix} x_1 & x_2 & x_3 & \dots & x_n \\ y_1 & y_2 & y_3 & \dots & y_n \end{vmatrix}$$

$$\triangle ABC = \frac{4}{3}\sqrt{s(s-a)(s-b)(s-c)}$$

• 垂線 $設 \triangle ABC$ 的三高分別為 $h_a \cdot h_b \cdot h_c$,則

$$\triangle ABC = \frac{1}{\sqrt{(\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c})(\frac{1}{h_a} + \frac{1}{h_b} - \frac{1}{h_c})(\frac{1}{h_b} + \frac{1}{h_c} - \frac{1}{h_a})(\frac{1}{h_a} + \frac{1}{h_c} - \frac{1}{h_b})}}$$