

FP-01: FP Problem

Goal: To see that computation on a computer can be inaccurate, even if the math is correct.

Things don't always add up!

https://cs370forensic.blogspot.ca/

Floating-Point Blues

Suppose we need to compute the integral

$$I_n = \int_0^1 \frac{x^n}{x + \alpha} dx$$

For a given real number $approx and integer <math>
approx
approx n_{
approx n_{$

$$I_n = \int_0^1 \frac{x^n}{x + a} dx$$

=

Thus,
$$I_n = \frac{1}{n} - \alpha I_{n-1}$$
 (recurrence relation)
Notice that I_n is easy

Thus, In = - & In-1 (recurrence) Notice that \mathbf{L} is easy

$$T_o = \int_0^1 \frac{1}{x+d} dx =$$

Cool! Let's try it out.

Create a Matlab script (text file with extension .m).

% Try alpha values of 0.5 and 2. alpha = 0.5;N = 100;

I = log((1+alpha) / alpha);

for n = 1:NI = 1/n - alpha * I;end

disp(['Answer: ' num2str(I)]);

For d= 0.5 =D answer =

For d= 2 = p answer =

Hmmm... seems strange.

Observation: If $0 \le x \le 1$ and x > 1, then $\frac{x^n}{x + a} \le x^n$ $I_n = \int_{x+a}^{x} dx \le \int_{x}^{x} x^n dx = \int_{x+1}^{x}$ Hence,

So, for $\alpha=2$, we should get $I_{100} \leq \frac{1}{101}$

Note: Aritmetic on a computer uses truncated numbers.

Thus, we can have a small error in every number.

Using our recurrence relation,

In -

(mathematical)

(computational)

Then,
$$e_n = I_n^{(comp)} - I_n^{(exact)}$$

If
$$|\alpha| < 1 \Rightarrow 0$$
 as $n \Rightarrow \infty$ (Good)
If $|\alpha| > 1 \Rightarrow 0$ as $n \Rightarrow \infty$ (Bad)

So there seems to be a build-up of round-off errors, but only when \| \| \| \| \| \| \| \|

Another example:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

Suppose we use only 5 digits of accuracy.

$$e^{-5.5} = 1 - 5.5 + 15.125 - 27.729 + ... (25 terms)$$

= 0.00 26363

Mathematically, it's equivalent to

$$\frac{1}{62.2} = \frac{1}{1 + 2.2 + 12.152 + 5.2.254 \cdots}$$

It's not just what you compute, but how you compute it.

Take-Home Message

We follow some basic rules when doing arithemetic and mathematics. For example:

$$1) (a+b)+c = a+(b+c)$$

2)
$$a+e=a \Rightarrow e=0$$

3)
$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

4) Correct mathematical algorithms produce correct answers.

Once you do arithmetic using floating-point numbers, none of the above are true.

FP-02: Floating-Point Numbers

Goal: To learn how computers represent real numbers.

Patriot Missile Disaster

https://www.ima.umn.edu/~arnold/disasters/patriot.html

Computer Arithmetic

A computer has two basic strategies for representing numbers:

- 1) Fixed-point (for integers)
- 2) Floating-point (for real numbers)

Normal Form of Number

eg,

Any number can be represented by a (possibly infinite) expansion base β in the normalized form

Examples:

1)
$$\beta = 10 \quad x = \pi$$

2)
$$\beta = 2 \quad x = 9 + \frac{1}{3}$$

How do we represent $\frac{1}{3}$ in binary?

A floating-point number system has to limit:

- 1) Density: it keeps only a finite number of digits (₹) in the mantissa.
- 2) Range: finite number of integers for the exponent (ہ) i. ہ۔ L ≤ p ≤ U

Thus, a floating-point number system (FPNS) can be characterized by four values, (も, ゅ, し, い), so that any non-zero values have the form,

FP-03: Finite Set of Floating-Point Numbers

Goal: To learn how we represent an uncountably infinite set of numbers in a finite-state machine.

Two Limitations of Floating-Point Representation

Effect of Finite Precision (mantissa)

We're forced to round off.

We represent the approximated value for \propto as μ (\sim).

The difference is called the "round-off error".

$$|\pi - \mathcal{U}(\pi)| = 0.00159265...$$

In general, for FPNS $(+, \beta, L, U)$,

.

•

.

Effect of Limited Exponent

The range of floating-point numbers is large, but still finite.

For example, the largest value in the number system

$$(\beta=10, t=8, L=-35, U=35)$$
 is

Anything larger cannot be represented, and causes an

Anything too small is called rounded to zero.

and gets

- >> realmin
- >> realmin/2
- >> realmin/2^52
- >> realmin/2^53

Exception Handling

What do these return?

FP-04: Error of Floating-Point Representation

Goal: To see a useful way to track the round-off error through a computation.

Error of Floating-Point Representation

Let \widehat{x} be an approximation to x i.e. $\widehat{x} = \mu(x)$

Absolute Error

Relative Error

The relative error of $\mathcal{L}(x)$ for x is bounded for all x in the exponent range.

The maximum relative error is called

r.e.
$$f(x)-x = 8$$
 where $|8| \le E$

Definition of Machine Epsilon

 ε is defined to be the smallest number such that $\mathcal{U}(1+\varepsilon)>1$.

Example: IEEE double precision

$$\beta = 2 + 52$$

$$E = \frac{1}{2} \times 2^{1-52} = 2^{-52} \approx 10^{-16}$$

Distribution of Floating-Point Numbers

Since relative error is bounded,

Thus, numbers of magnitude are spaced approx. apart.

>> floatgui

Floating-Point Arithmetic

The result of an arithmetic operation may need to be rounded to represent it as a floating-point number.

Let

Assume
$$x, y \in \mathcal{F}$$

$$\mathcal{H}(x+y) = (x+y)(1+\delta) = x \oplus y$$

Error Analysis of (abb) bc

=

=

=

_

FP-05: Round-Off Error 2

Goal: See some examples of round-off error yielding poor results.

Using the FPNS $(+, \beta, L, u) = (3, 10, -20, 20)$

Evaluate the true relative error, and the upper bound for each set of numbers {a,b,c}.

Example 1

True value = 13683

Approx. value

(rounding)

Adual Rel Err =

Upper Bound

Rel Err &

Example 2

Example 3

$$a = 5670$$
 $b = 7890$ $c = -13500$

Approx value =

Cancellation Error

What we are observing is called cancellation error. It results from round-off error when you are subtracting two large values that have almost the same magnitude.

Patriot Missile (revisitted)

Time was computed by the number of 0.1-second clock ticks.

Abs-Err =

In this FPNS
$$(+=20, \beta=2)$$
 $\Rightarrow E=$

After 100 hours, k = 10 x 60 x 60 x 100 = 0.36 x 107

Abs Err S