## GEOMETRIA EUCLIDIANA

## **DEMOSTRACIONES**

- I. Segmentos y ángulos.
- 1. En la figura 1, se tiene  $\angle CAB \cong \angle CBA$ . Demostrar que  $\angle CAF$  y  $\angle DBH$  son suplementarios.
- 2. En la figura 2,  $\overline{OD}$  y  $\overline{OE}$  son bisectrices de  $\angle AOB$  y  $\angle BOC$  respectivamente, demostrar  $\overline{OD} \perp \overline{OE}$ .
- 3. En la figura 3,  $\overline{AB} \perp \overline{CD}$  y  $\angle BOE \cong \angle DOF$ . Demostrar que  $\overline{OF} \perp \overline{OE}$ .
- 4. Con referencia en la figura 4, se tienen las siguientes hipótesis E, D y F son colineales; A, D y B son colineales, si  $\angle EDA \cong \angle FDC$ . Demuestra que  $\overline{EF}$  es bisectriz del  $\angle BDC$ .
- 5. En la figura 5,  $\overline{MS} \perp \overline{MT}$  y  $\overline{MS}$  es bisectriz del  $\angle AMD$ . Demostrar que  $\angle SMD$  y  $\angle BMT$  son Complementarios.
- 6. En la figura 6,  $\overline{CB} \perp \overline{CD}$ ,  $\angle RBF \cong \angle FCD$  y  $\angle FBC \cong \angle FCB$ . Demostrar que  $\overline{BC} \perp \overline{BR}$ .



- 7. En la figura 6,  $\overline{BR} \perp \overline{BC}$ ,  $\overline{CB} \perp \overline{CD}$  y  $\angle FCB \cong \angle FBC$ . Demostrar que  $\angle RBF \cong \angle DCF$ .
- 8. En la figura 7, se tiene  $\overline{PS} \cong \overline{PR}$  y  $\overline{TS} \cong \overline{QR}$ . Demostrar que  $\overline{PT} \cong \overline{PQ}$ .
- 9. En la figura 8, se tiene las hipótesis  $\overline{AD} \cong \overline{BD}$  y  $\overline{ED} \cong \overline{CD}$ . Demostrar que  $\overline{AE} \cong \overline{BC}$ .



- 10. En la figura 9,  $\overline{AB} \cong \overline{CD}$ , X es un punto medio de  $\overline{AB}$ , Y es un punto medio de  $\overline{CB}$ . Demostrar  $\overline{AX} \cong \overline{CY}$ .
- 11. En la figura 10,  $\overline{ED} \cong \overline{CD}$ ;  $\overline{AE} \cong \overline{ED}$ ;  $\overline{BC} \cong \overline{CD}$ . Demostrar que  $\overline{AE} \cong \overline{BC}$ .
- 12. En la figura 11, se tiene  $\angle AGC \cong \angle CGE$  y  $\angle AGB \cong \angle DGE$ . Demostrar que  $\angle BGC \cong \angle DGC$ .



- 13. En la figura 12,  $\angle FGD \cong \angle FHB$ . Demostrar que  $\angle FGD \cong \angle AHE$ .
- 14. En la figura 12 supóngase qué  $\angle FGD \cong \angle FHB$  y demuestre que  $\angle FGD$  y  $\angle BHE$  son suplementarios.
- 15. En la figura 13 se tienen las siguientes hipótesis  $\overline{AB} \perp \overline{OD}$ ,  $\overline{OE} \perp \overline{OF}$ . Demostrar que  $\angle BOE \cong \angle FOD$ .
- 16. En la figura 14,  $\overrightarrow{AD}$  y  $\overrightarrow{AE}$  son rayos opuestos; los rayos  $\overrightarrow{BA}$  y  $\overrightarrow{BC}$  son opuestos, y además  $\angle EAF$  es suplemento de  $\angle DBC$ . Demostrar que  $\angle DAB \cong \angle DBA$ .



- II. Triángulos.
- 1. En la figura 1, A, C y E son colineales; D, C y B son colineales y F, C y G son colineales. Si  $\overline{AC} \cong \overline{EC}$  y  $\overline{DC} \cong \overline{BC}$ , demostrar que  $\Delta AFC \cong \Delta EGC$ .
- 2. En la figura 2, se tiene  $\overline{AK} \cong \overline{BJ}$ ;  $\overline{AC} \cong \overline{BC}$ . Demostrar que  $\Delta ACJ \cong \Delta BCK$ .
- 3. En la figura 2,  $\angle JAB \cong \angle KBA$ ,  $\overline{AK}$  es bisectriz del  $\angle JAB$  y  $\overline{BJ}$  es bisectriz del  $\angle KBA$ . Demostrar que  $\triangle ABK \cong \triangle BAJ$ .
- 4. En la figura 3,  $\overline{AC}$  es bisectriz del  $\angle PAT$  y  $\overline{AP} \cong \overline{AT}$ , demostrar que  $\overline{BC}$  es bisectriz del  $\angle PBT$ .
- 5. En la figura 4,  $\overline{CD} \cong \overline{CB}$ ,  $\overline{AB} \perp \overline{CE}$  y  $\overline{ED} \perp \overline{AC}$ . Demostrar que  $\triangle ABC \cong \triangle EDC$ .



- 6. En la figura 5,  $\overline{AD} \cong \overline{BE}$ ;  $\overline{CD} \cong \overline{CE}$ . Demostrar que  $\overline{AE} \cong \overline{BD}$ .
- 7. En la figura 6,  $\overline{AC} \cong \overline{BC}$ ;  $\overline{M}$  punto medio de  $\overline{AC}$ ;  $\overline{N}$  es punto medio  $\overline{CB}$  y  $\overline{Q}$  es punto medio de  $\overline{AB}$ . Demostrar que  $\overline{MQ} \cong \overline{NQ}$ .
- 8. En la figura 7, se tiene  $\Delta XYZ$  con  $\overline{KM} \perp \overline{XZ}$ ;  $\overline{JM} \perp \overline{YZ}$ ;  $\overline{KX} \cong \overline{JY}$  y  $\overline{MK} \cong \overline{JM}$ . Demostrar que  $\Delta XYZ$  es isósceles.



- 9. En la figura 8 considérese el  $\triangle AQR$ , con  $\overline{AR} \cong \overline{AQ}$  y  $\overline{RS} \cong \overline{QT}$ . Demostrar que  $\angle AST \cong \angle ATS$ .
- 10. En la figura 9,  $\overrightarrow{CM}$  es bisectriz del  $\angle ACB$  y  $\overrightarrow{CD} \cong \overrightarrow{CE}$ . Demostrar que  $\overrightarrow{AC} \cong \overrightarrow{BC}$ .
- 11. En la figura 10,  $\triangle ABC$  es equilátero y  $\overline{AM} \cong \overline{BN} \cong \overline{CO}$ . Demuestra que el  $\triangle MNO$  es equilátero.
- 12. En la figura 11, con el triángulo  $\triangle ABC$ , se tiene  $\overline{AC} \cong \overline{BC} \cong 2(\overline{AB})$ ,  $\overline{AD}$  es mediana del triángulo  $\triangle ABC$  y  $\overline{BE}$  es bisectriz del  $\angle ABD$ . Demostrar que él  $\triangle ABD$  es isósceles y que  $\overline{BE}$  es altura y mediana del  $\triangle ABD$ .
- 13. En la figura 12,  $\overline{AC} \cong \overline{BC}$  y  $\overline{AD} \cong \overline{BD}$ , demostrar que  $\overline{CD}$  es mediatriz de  $\overline{AB}$ .



- 14. En la figura 13, La recta "l" es mediatriz de  $\overline{AB}$ . Demuestra que P equidista de A y B.
- 15. En la figura 14,  $\overline{CD}$  es mediana del  $\triangle ABC$  y  $\overline{AC} \cong \overline{BC}$ . Demuestre que  $\overline{CD}$  es altura y bisectriz.
- 16. En la figura 15,  $\overline{KP} \cong \overline{MP}$  y  $\overline{KY} \cong \overline{MZ}$ . Demuestre que  $\overline{PX}$  es bisectriz del  $\angle YPZ$ .
- 17. En la figura 15,  $\angle KPX \cong \angle MPX$ ;  $\overline{KP} \cong \overline{MP}$ . Demuestre que  $\overline{YX} \cong \overline{XZ}$ .
- 18. En la figura 16,  $\angle TXZ \cong \angle TYZ$ ;  $\overline{QZ} \cong \overline{UZ}$ ;  $\overline{XZ} \cong \overline{YZ}$ ;  $\overline{RT} \cong \overline{ST}$  y  $\overline{TX} \cong \overline{TY}$ . Demostrar  $\triangle RUX \cong \triangle QSY$ .



- 19. En la figura 17,  $\angle VRT \cong \angle TSV$  y  $\angle TRS \cong \angle VSR$ . Demostrar que  $\overline{RV} \cong \overline{ST}$ .
- 20. En la figura 18, considérese el  $\Delta RTV$ . Si  $\overline{RS} \cong \overline{UV}$ ,  $\overline{ST} \cong \overline{TU}$  y  $\overline{SX} \cong \overline{UX}$ , demostrar que  $\overline{TW} \perp \overline{RV}$
- 21. En el cuadrilátero  $\square$  ABCD de la figura 19, se tiene  $\overline{AB} \cong \overline{DC}$  y  $\overline{AD} \cong \overline{BC}$ . Demostrar que  $\overline{AC}$  y  $\overline{BD}$  se bisecan.
- 22. En la figura 20,  $\overline{QS}$  y  $\overline{RT}$  se bisecan en P. Demostrar que  $\overline{AP} \cong \overline{BP}$ .



- III. Rectas Paralelas.
- 1. En el cuadrilátero  $\square$  *PRST* de la figura 1,  $\overline{RT}$  y  $\overline{PS}$  son diagonales,  $\overline{PQ} \cong \overline{QS}$  y  $\overline{RQ} \cong \overline{QT}$ . Demostrar que  $\overline{PT} \parallel \overline{RS}$  y  $\overline{PR} \parallel \overline{ST}$ .
- 2. En la figura 2, se tiene  $\overline{KL}\cong \overline{LN}$  y  $\overline{LQ}$  es bisectriz del  $\angle MLN$ . Demostrar que  $\overline{LQ}\parallel \overline{KN}$ .
- 3. En la figura 3,  $\triangle PQT$  es isósceles, con  $\overline{PT} \cong \overline{QT}$  y  $\mathcal{U} \parallel \overline{PQ}$ . Demostrar que  $\angle TRS \cong \angle TSR$ .

4. En la figura 4,  $\overline{PQ} \parallel \overline{RS}$ , M es el punto medio de  $\overline{AB}$ . Determina que M es punto medio del  $\overline{CD}$ 



- 5. En la figura 5,  $\overline{AB} \parallel \overline{CD}$  y  $\angle CAD \cong \angle DAB$ . Demostrar que él  $\triangle ACD$  es isósceles.
- 6. En la figura 6,  $\overline{AD}$  es bisectriz del  $\angle CAB$  y  $\overline{AC} \cong \overline{CD}$ . Determinar que  $\overline{CD} \parallel \overline{AB}$ .
- 7. En la figura 7,  $\overline{EF}$  biseca a  $\overline{CD}$  y al  $\overline{AB}$ ;  $\angle A \cong \angle B$  y  $\overline{AD} \cong \overline{BC}$ . Demostrar que  $\overline{CD} \parallel \overline{AB}$ .
- 8. En la figura 8,  $\overline{AD} \parallel \overline{BC}$  y  $\overline{BC} \cong \overline{AD}$ . Demostrar que  $\overline{CD}$  y  $\overline{AB}$  se bisecan en  $\overline{E}$ .



- 9. En la figura 9,  $\overline{AB} \parallel \overline{CD}$ ,  $\overline{AD} \parallel \overline{BC} \vee \angle DAB$  es  $\angle$  recto. Demostrar que  $\overline{AC} \cong \overline{BD}$ .
- 10. En la figura 10,  $\square$  ABCD es un paralelogramo,  $\overline{AC}$  es una diagonal,  $\overline{CF} \cong \overline{AH}$ , E es el punto medio de  $\overline{BC}$  y G es un punto medio de  $\overline{AD}$ . Determinar que  $\overline{EF} \cong \overline{GH}$ .
- 11. En el paralelogramo  $\square$  JKLM, las diagonales se interceptan en Q, Los puntos P, Q y A son colineales. Demostrar que Q es el punto medio de  $\overline{AP}$ . Figura 11.
- 12. En la figura 12, A, B y C son colineales,  $\overline{AP} \cong \overline{AQ}$ ,  $\overline{BP} \cong \overline{BQ}$ ,  $\overline{BX} \cong \overline{BY}$  y  $\overline{CX} \cong \overline{CY}$ . Demostrar que  $\overline{PQ} \parallel \overline{XY}$ .



13. En la figura 13,  $\overline{KM} \cong \overline{HR}$ ,  $\overline{MQ} \cong \overline{HP}$ . Demostrar que  $\overline{KR} \parallel \overline{PQ}$ .

14. En la figura 14,  $\overline{AB} \cong \overline{CD}$ ,  $\overline{FG}$  biseca al  $\angle BFE$  y  $\overline{EG}$  biseca al  $\angle DEF$ . Determina qué  $\overline{EG} \perp \overline{FG}$ 

15. En la figura 15,  $\overline{MX}$  es bisectriz del  $\angle PMN$ ;  $\overline{NX}$  es bisectriz del  $\angle PNM$  y  $\overline{QR} \parallel \overline{MN}$ . Demostrar que  $\Delta MQX$  y  $\Delta NRX$  son triángulos isósceles.

16. En la figura 16, se tiene que el cuadrilátero  $\square$  ABCD, con H como punto medio del  $\overline{AB}$ , G punto medio de  $\overline{CD}$ ,  $\overline{AD} \cong \overline{BC}$  y  $\angle A \cong \angle B$ . Demostrar que  $\overline{GH} \perp \overline{CD}$ ,  $\overline{GH} \perp \overline{AB}$  y  $\overline{AB} \parallel \overline{CD}$ .



17. En la figura 17, en el  $\triangle PQR$ , el  $\angle R$  es un ángulo recto,  $\overline{QT}\cong \overline{QV}$  y  $\overline{PS}\cong \overline{PV}$ . Determina que  $m(\angle X)=45^\circ$ .

18. En la figura 18,  $\square$  AJKM y  $\square$  BJKM son paralelogramos. Demostrar que si  $\overline{JK} \cong \overline{KM}$ , entonces  $\triangle ABC$  es isósceles.



## IV. Semejanza

1. En la figura 1, se tiene que  $\overline{DE \parallel BC}$ . Demostrar que  $\Delta ABC \sim \Delta ADE$ , y con los datos en la figura, obtener el valor de  $_x$ .

2. En la figura 2, considera que  $\overline{PN} \perp \overline{KL}$  y  $\overline{NP} \perp \overline{MN}$ . Demuestra que  $\Delta KLP \sim \Delta MNP$ , y con los datos en la figura determina el valor de  $_x$ .

3. En la figura 3, si  $\overline{GH} \parallel \overline{EF}$ , determina el valor de x.

4. En la figura 4, si  $\overline{AB} \parallel \overline{CE}$ ,  $\overline{AC} \perp \overline{BC}$  y  $\overline{DE} \perp \overline{BC}$ , demostrar que  $(\overline{AB})(\overline{CF}) = (\overline{BC})(\overline{EC})$ .



- 5. En la figura 5, si  $\overline{AD} \perp \overline{CD}$  y  $\overline{AC} \perp \overline{BE}$ , demuestra que  $\triangle ABE \sim \triangle ADC$ , y con los datos en la figura calcula la longitud del  $\overline{DE}$ .
- 6. En la figura 6, se tiene  $m(\overline{BN}) = 3$ ,  $m(\overline{NQ}) = 5$ ,  $m(\overline{BC}) = 7$ ,  $m(\overline{AQ}) = 1$  y  $m(\overline{AC}) = 9$ . Demostrar que  $\triangle CDE \sim \triangle ABC$ .
- 7. En la figura 7, se sabe que  $\Delta KMP \sim \Delta KLR$ . Demostrar que el  $\angle Q \cong \angle MKL$ .
- 8. En la figura 8, D es punto medio del  $\overline{AC}$  y E punto medio de  $\overline{BC}$ . Demostrar que el  $\Delta CDE \sim \Delta ABC$ .



- 9. En la figura 9, si  $\overline{EH} \parallel \overline{DG}$  y  $\overline{DH} \parallel \overline{FG}$ , demostrar que  $\Delta DEH \sim \Delta DFG$  y de acuerdo con los datos, determinar y.
- 10. En la figura 10, se tiene que  $\overline{PQ} \perp \overline{QR}$  y  $\overline{PS} \perp \overline{QS}$ . Demuestra que  $\Delta PQS \sim \Delta QRS$  y calcule el valor de h si  $m(\overline{PS}) = 16$  y  $m(\overline{SR}) = 4$ .
- 11. En la figura 11, D, E y F son puntos medios de  $\overline{AB}$ ,  $\overline{BC}$  y  $\overline{AC}$  respectivamente. Demuestre que  $\triangle ABC \sim \triangle DEF$ .
- 12. En la figura 12, se tiene que  $\overline{DE} \parallel \overline{AB}$ . Determinar el valor de x.



- 13. En la figura 13, usar el teorema del ángulo externo y el teorema sobre las medidas de ángulos en un triángulo para obtener los valores de  $_x$  y y.
- 14. Con los datos indicados en la figura 14, demostrar que  $\overline{AD} \parallel \overline{BC}$ .
- 15. En la figura 15,  $\overline{AD}$ ,  $\overline{GH}$  y  $\overline{BC}$  cada uno perpendicular al  $\overline{AB}$ . Demuestra que  $(\overline{AH})(\overline{CG}) = (\overline{BH})(\overline{AG})$ .
- 16. En la figura 16,  $\overline{BE} \perp \overline{AD}$ ,  $\overline{CD} \perp \overline{AD}$ ,  $\overline{AC} \perp \overline{BC}$  y  $\overline{CF} \perp \overline{BE}$ . Demostrar que  $\Delta BCF \sim \Delta ACD$ .



- 17. En la figura 17,  $\overline{MO} \perp \overline{OQ}$ ,  $m(\overline{MO}) = m(\overline{OP}) = 2$  y  $\overline{MP} \cong \overline{PQ}$ . Determinar  $m(\overline{MQ})$  y  $m(\angle QMO)$ .
- 18. En la figura 18,  $\Delta MNQ$  es equilátero con lados de longitud a. Determina la longitud de la altura  $\overline{NQ}$ .
- 19. En la figura 19,  $\overline{CD}$  es la altura del  $\triangle ABC$ , con los valores indicados de termina h.
- 20. En la figura 20, el  $\triangle ABC$  es equilátero y la altura  $\overline{BD}$  mide 6 unidades. Demuestre que cada lado del triángulo mide  $4\sqrt{3}$ .



- 21. En la figura 21, la altura correspondiente a la hipotenusa del triángulo rectángulo  $\Delta ABC$  divide a la hipotenusa en segmentos cuyas longitudes son 5 y 15. Determínese la longitud de la altura y las longitudes de los catetos del triángulo.
- 22. En la figura 22,  $m(\overline{AB}) = 10$ ,  $m(\overline{BC}) = 17$ ,  $m(\overline{AC}) = 21$ . Determina la altura  $\overline{BD}$ .
- 23. En la figura 23, el  $\angle M$  es ángulo recto. Con los datos de la figura, determina  $m(\overline{MQ})$  y  $m(\overline{PQ})$ .

24. En la figura 24,  $\overline{BD} \perp \overline{AC}$ ,  $\overline{BE} \perp \overline{CE}$  y de acuerdo con los datos  $\overline{AC} = 17$ ,  $\overline{BC} = 26$  y  $\overline{BE} = 10$ . Determina  $\overline{AB}$ .



- 25. Los lados del triángulo rectángulo  $\triangle ABC$  miden  $m(\overline{BC})=3$ ,  $m(\overline{AC})=4$  y  $m(\overline{AB})=5$ . Se escoge un punto D en la hipotenusa de 2 unidades del vértice en el que se intersecan la hipotenusa y el cateto mayor. Encontrar la distancia del punto elegido al vértice del ángulo recto.
- 26. ABCD son los vértices de un rombo, cuyas diagonales miden 30 cm y 40 cm, considerando que las diagonales se bisecan, calcula la longitud de cada lado.

## V. Circunferencia

- 1. En la figura 1,  $\overline{AC}$  es diámetro,  $\overline{AB}$  y  $\overline{BC}$  son cuerdas. Demostrar que  $\overline{AB} \perp \overline{BC}$ .
- 2. En la figura 2, O equidista de las cuerdas  $\overline{AB}$ ,  $\overline{BC}$  y  $\overline{AC}$ . Demostrar que  $\triangle ABC$  es equilátero.
- 3. En la figura 3,  $\overline{AB}$  y  $\overline{CD}$  son tangentes a la circunferencia menor, demostrar que  $\overline{AB} \cong \overline{CD}$ .
- 4. En la figura 4,  $\overline{CE}$  es diámetro,  $\overline{AB} \perp \overline{CE}$  en D;  $\overline{OD} \perp \overline{CD}$  y  $m(\overline{CE}) = 20$ . Determinar  $m(\overline{AB})$  y  $m(\angle AOB)$ .



- 5. En la figura 5,  $\overline{CD}$  es diámetro,  $\overline{CD} \perp \overline{AB}$  en E,  $m(\overline{AB}) = 16$  y  $m(\overline{DE}) = 16$ . Hallar  $m(\overline{CD})$ .
- 6. En la figura 6,  $\ell$  es tangente a la circunferencia en P,  $\overline{AB} \parallel \ell$  y  $\overline{MO} \cong \overline{MP}$ . Si  $m(\overline{AB})$ , determinar la longitud del radio  $\overline{OP}$ .
- 7. En la figura 7,  $\overline{AB}$  y  $\overline{CD}$  son cuerdas. Demostrar que si  $m(\overline{AB}) > m(\overline{CD})$ , entonces  $m(\overline{FO}) > m(\overline{EO})$ .

8. En la figura 8,  $\overline{BP}$  y  $\overline{AP}$  son rectas tangentes a la circunferencia. Determina qué él  $\overline{BP} \cong \overline{AP}$  y que  $m(\angle OPB) = m(\angle OPA)$ .



- 9. Usar las conclusiones del ejercicio 8, para determinar el valor de  $_x$  en el  $\Delta ABC$  circunscrito a la circunferencia. (Ver figura 9).
- 10. En la figura 10, las circunferencias son tangentes exteriores en P,  $\overline{AB}$  es tangente común a las dos circunferencias. Determinar que él  $\overline{O_1O_2} \perp \overline{AB}$ ,  $m(\overline{O_1O_2}) = m(\overline{r_1r_2})$  y que  $\overline{AB}$  biseca a  $\overline{CD}$  y a  $\overline{EF}$ .
- 11. En la figura 11,  $\overline{AB}$  es una cuerda común a las circunferencias. Demuestre que  $\overline{O_1O_2}$  es mediatriz de  $\overline{AB}$ .
- 12. En la figura 12, los lados del triángulo rectángulo  $\triangle ABC$  son tangentes a la circunferencia: Si  $m(\overline{AB}) = 16$ ,  $m(\overline{BC}) = 8$  y  $m(\overline{AC}) = 10$ . Determine el radio de la circunferencia.



13. En la figura 13, se tienen circunferencias tangentes en A, B y C. Si  $m(\overline{OQ}) = 6$ ,  $m(\overline{PQ}) = 5$  y  $m(\overline{OP}) = 7$ , hallar  $m(\overline{AO})$ ,  $m(\overline{BQ})$  y  $m(\overline{CP})$ .



Figura 13