НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

Кафедра кібернетики хіміко-технологічних процесів

ПРОГНОЗИРОВАНИЕ ЭКОЛОГИЧЕСКИХ РИСКОВ С ИСПОЛЬЗОВАНИЕМ АНАЛИЗА ИЕРАРХИЙ И ТЕОРИИ

НЕЧЕТКИХ МНОЖЕСТВ

Безносик Ю.А., Бугаева Л.Н., Статюха Г.А.

Таблиця 1 - Лінгвістична класифікація степеня та значимості ризику та відповідні їм трикутні нечіткі числа (TFN)

Рівень ранжирування (<i>l</i>)	Якісне позначення для степеня ризику (r)	Якісне позначення для значимості ризику (<i>r</i>)	Трикутні нечіткі числа (TFN)		
1	Абсолютно низький	Абсолютно незначимий	(0.0, 0.0, 0.1)		
2	Критично низький	Критично незначимий	(0.0, 0.1, 0.2)		
3	Дуже низький	Дуже незначимий	(0.1, 0.2, 0.3)		
4	Низький	Незначимий	(0.2, 0.3, 0.4)		
5	Нижче нормального	Нижче нормального	(0.3, 0.4, 0.5)		
6	Нормальний	Нормальний	(0.4, 0.5, 0.6)		
7	Вище нормального	Вище нормального	(0.5, 0.6, 0.7)		
8	Високий	Значимий	(0.6, 0.7, 0.8)		
9	Дуже високий	Дуже значимий	(0.7, 0.8, 0.9)		
10	Критично високий	Критично значимий	(0.8, 0.9, 1.0)		
11	Абсолютно високий	Абсолютно значимий	(0.9, 1.0, 1.0)		

Функції приналежності 11 трикутних нечітких чисел:

$$\mu_{N1}(x) = \begin{cases}
1-10x, & 0 \le x \le 0.1, \\
0, & 0.1 \le x \le 1,
\end{cases}$$

$$\mu_{N1}(x) = \begin{cases}
0, & 0 \le x < \frac{l-2}{10}, \\
10x - (l-2), \frac{l-2}{10} \le x < \frac{l-1}{10}, \\
l-10x, & \frac{l-1}{10} \le x \le \frac{l}{10}, \\
0, & \frac{l}{10} \le x \le 1,
\end{cases}$$

$$l = (2,3,...,10)$$

$$\mu_{11}(x) = \begin{cases}
0, & 0 \le x \le 0.9, \\
10x - 9, & 0.9 \le x \le 1,
\end{cases}$$
(1)

Ризик = степінь ризику
$$(r)$$
 × значимість ризику (i) (2)

$$g(r,i) = \frac{\int_a^b x \,\mu_{Nr \otimes Ni}(x) dx}{\int_a^b \mu_{Nr \otimes Ni}(x) dx} \tag{3}$$

Рис.2 - Контури ризику, що представляють оцінку екологічного ризику g(t,i) для кожного елемента ризику (вісь абсцисс – степінь ризику, вісь ординат – значимість ризику)

Рис.3 - Поверхня ризику, що відповідає контурам рис.2

Другий рівень

Таблиця 2 - Триступінчаста структурна модель для екологічного ризику

елементів

 X_1

 X_2

Перший рівень

 X_{11}

 X_{12}

 X_{21}

 X_{22}

елементів

Елемент

 X_{111}

 X_{112}

 X_{113}

 X_{121}

 X_{122}

 X_{123}

 X_{124}

 X_{211}

 X_{212}

 X_{213}

 X_{221}

 X_{222}

 X_{223}

ризику

W3(k)

W3(1)

W3(2)

W2(k,j)

W2(1,1)

W2(1,2)

W2(2,1)

W2(2,2)

W1(k,j,i)

W1(1,1,1)

W1(1,1,2)

*W*1(1,1,3)

W1(1,2,1)

W1(1,2,2)

W1(1,2,3)

W1(1,2,4)

 $\overline{W1(2,1,1)}$

W1(2,1,2)

 $\overline{W1(2,1,3)}$

W1(2,2,1)

W1(2,2,2)

W1(2,2,3)

i

 i_{111}

 i_{112}

 i_{113}

 i_{121}

 i_{122}

 i_{123}

 i_{124}

 i_{211}

i₂₁₂

 i_{213}

 i_{221}

 i_{222}

 i_{223}

r

 r_{111}

 r_{112}

 r_{113}

 r_{121}

 r_{122}

 r_{123}

 r_{124}

 r_{211}

 r_{212}

 r_{213}

 r_{221}

 r_{222}

 r_{223}

g(r,i)

 $g(r_{111},i_{111})$

 $g(r_{112},i_{112})$

 $g(r_{113},i_{113})$

 $g(r_{121},i_{121})$

 $g(r_{122},i_{122})$

 $g(r_{123},i_{123})$

 $g(r_{124},i_{124})$

 $g(r_{211},i_{211})$

 $g(r_{212}, i_{212})$

 $g(r_{213}, i_{213})$

 $g(r_{221},i_{221})$

 $g(r_{222},i_{222})$

 $g(r_{223},i_{223})$

Матриця парних порівнянь в методі аналізу ієрархії (АНР):

$${\bf A}=(a_{mn})$$
 (4) де ${\bf A}$ - зворотньо-симетрична матриця.

Таблиця 3 - Порівняння впливу елементів ризику X_1 та \mathbf{X}_2 на ризик X

X	X_1	X_2
X_1	1	0.5
X_2	2	1

Таблиця 3а - Порівняння впливу елементів ризику X_{11} та X_{12} на ризик X_{1}

X_1	X_{11}	X_{12}
X_{11}	1	1.5
X_{12}	1/1.5	1

Таблиця 36 - Порівняння впливу елементів ризику X_{11} та X_{12} на ризик X_2

X_2	X_{21}	X_{22}
X_{21}	1	1.5
X_{22}	1/1.5	1

Таблиця 3в - Порівняння впливу елементів ризику X_{111} , X_{112} та X_{113} на ризик X_{11}

X_{11}	X_{111}	X_{112}	X_{113}
X_{111}	1	1.5	5.0
X_{112}	1/1.5	1	3.33
X_{113}	1/5.0	1/3.33	1

$AW = \lambda_{\max}(W)$ де λ_{\max} - найбільше або головне власне значення $A,\ W$ – вектор ваг, $(\omega_1,\omega_2,...,\omega_n)$ Таблиця 4- Ваги, отримані методом аналізу ієрархій (АНР)

(5)

W2(k,j)

W2(1,1)

W2(1,2)

W2(2,1)

W2(2,2)

W3(k)

W3(1)

W3(2)

W1(k,j,i)

W1(1,1,1)

W1(1,1,2)

W1(1,1,3)

W1(1,2,1)

W1(1,2,2)

W1(1,2,3)

W1(1,2,4)

W1(2,1,1)

W1(2,1,2)

W1(2,1,3)

W1(2,2,1)

W1(2,2,2)

W1(2,2,3)

Значення

0.3333

0.6000

0.5357

0.3572

0.1071

0.4000

0.4546

0.3031

0.1514

0.0909

0.6667

0.6000

0.5526

0.0791

0.3683

0.4000

0.2225

0.4411

0.3364

Рівняння для отримання вектору ваг:

Визначення

Екологічний ризик

Важкі метали

Інші викиди

Еко-токсикологічний ризик

SO₂, SO₃, аерозолі H₂SO₄

Еко-матеріальный ризик

Подавлення росту та загибель рослинності

Загромадження територій твердим огарком

Токсикологічний вплив на людину

Випари сірчистого ангідриду

Канцерогенний вплив часточок

Нормальний режим експлуатації

Пов'язані з безпекою людського здоров'я

Частки, що визивають респіраторні захворювання

Попадання токсичних речовин в організм через харчові продукти

Руйнування конструкцій та підвищення корозійного зносу металів

Забруднення водоймищ

Людський ризик

Аварійні викиди

Рис.4 - Методологія оцінки складного екологічного ризику

Оцінки ризику є лінгвістичними змінними L1, L2, L3, L4, L5, L6, і L7, які були визначені як "критично низький", "дуже низький", "низький", "нормальний", "високий", "дуже високий" і "критично високий", відповідно. Ці лінгвістичні змінні були потім визначені TFN з наступними функціями приналежності:

$$L_{1} = (0,0,1/6) \qquad \mu_{L1}(x) = \begin{cases} 1 - 6x, & 0 \le x < \frac{1}{6}, \\ 0, & 0.1 \le x \le 1, \end{cases}$$

$$L_{n} = ((n-2)/6, (n-1)/6, n/6) \qquad \mu_{Ln}(x) = \begin{cases} 0, & 0 \le x < \frac{n-2}{6}, \\ 6x - (n-2), & \frac{n-2}{6} \le x < \frac{n-1}{6}, \\ n - 6x, & \frac{n-1}{6} \le x \le \frac{n}{6}, \\ 0, & \frac{n}{6} \le x \le 1. \end{cases}$$

$$(n = 2,3,4,5,6)$$

$$L_{7} = (5/6,1,1) \qquad \mu_{N7}(x) = \begin{cases} 0, & 0 \le x \le \frac{5}{6} \\ 6x - 5, & \frac{5}{6} \le x \le 1. \end{cases}$$

$$(6)$$

Рис.5 - Функції приналежності множини оцінок ризику навколишнього середовища

Центри мас (центроїди) вищезгаданих семи якісних шкал в висхідному порядку

$$L_{G}(1) = 0.056, L_{G}(2) - 0.167, L_{G}(3) = 0.333, L_{G}(4) = 0.500, L_{G}(5) = 0.667,$$

 $L_G(6) = 0.834$, и $L_G(7) = 0.944$, відповідно.

Матриця нечіткої оцінки $F(X_{II})$ для елемента X_{II} :

$$F(X_{11}) = \begin{vmatrix} L(r_{111}, i_{111}, 1)L(r_{111}, i_{111}, 2) \dots L(r_{111}, i_{111}, 7) & X_{111} \\ L(r_{112}, i_{112}, 1)L(r_{112}, i_{112}, 2) \dots L(r_{112}, i_{112}, 7) & X_{112} \\ L(r_{113}, i_{113}, 1)L(r_{113}, i_{113}, 2) \dots L(r_{113}, i_{113}, 7) & X_{113} \end{vmatrix}$$
(7)

де $X_{111},\,X_{112}$ та X_{113} - елементи ризику що включаються. Величина кожного ризи $\Re (\mathbf{y}^*_{kji},i_{kji})$

була оцінена з рис.2, і потім використовувалася в (6) для оцінkи r_{kji},i_{kji},n

(де n=1,2.,7). Аналогічно отримують матриці нечіткої оцінки $F(X_{12}), F(X_{21})$ і $F(X_{22})$ для відповідних елементів X_{12}, X_{2l} і X_{22}

Оцінка складного екологічного ризику першої стадії для елемента X_{11} :

$$[S(1,1,1,),...,S(1,1,7)]_{1\times 7} = [W1(1,1,1),W1(1,1,2),w1(1,1,3)]_{1\times 3} \times F(X_{11})_{3\times 7}$$
(8)

де
$$S(1,1,n) = \sum_{i=1}^{3} W1(1,1,i) \times L(r_{11i},i_{11i},n), \quad n=1,2,...,7.$$
 (9)

Sl(1,1) = [S(1,1,1), S(1,1,2),...,S(1,1,7)] - вектор складного екологічного ризику першої стадії для елемента XII. Аналогічно Sl(1,2), S1(2,1), i S1(2,2) - вектори складного екологічного ризику першої стадії для елементів першого рівня, XI2, X2I і X22, відповідно. Оцінка на другій стадії (для XI) виконується в такий спосіб:

$$[S(1,1), S(1,2),..., S(1,7)]_{1\times 7} = [W2(1,1), W2(1,2)]_{1\times 2} \otimes \begin{bmatrix} S1(1,1) \\ S1(1,2) \end{bmatrix}_{2\times 7}$$
(10)

$$S2(1) = [S(1,1), S(1,2),..., S(1,7)]$$
 ma

$$S2(1,n) = \sum_{j=1}^{2} W2(1,j) \times S2(1,j,n)$$
 для $n = 1,2,...,7$. (11)

Подібно для X_2 :

$$[S(2,1), S(2,2), ..., S(2,7)]_{1\times 7} = [W2(2,1), W2(2,2)]_{1\times 2} \otimes \begin{bmatrix} S1(2,1) \\ S1(2,2) \end{bmatrix}_{2\times 7}$$
 (12)

де

$$S2(2) = [S(2,1), S(2,2),..., S(2,7)]$$
 та $S2(2,n) = \sum_{j=1}^{2} W2(2,j) \times S2(2,j,n)$ для $n = 1,2,...,7$.

Оцінка на третій стадії для Х наступна:

$$[S(1), S(2), ..., S(7)]_{1\times 7} = [W3(1), W3(2)]_{1\times 2} \otimes \begin{bmatrix} S2(1) \\ S2(2) \end{bmatrix}_{2\times 7}$$
(14)

де
$$S3(n) = [S(1), S(2), ..., S(7)]$$

Оцінка кінцевого складного екологічного ризику (X) може бути дефазифікована методом центроїди в такий спосіб:

кінцевий складений ризик =
$$R = \sum_{n=1}^{7} L_G(n) \times S3(n)$$
 (15)

Таблиця 5 - Експертні дані для факторів ризику

Елемент ризику	r	i	g(r,i)
X_{111}	7	8	0.4250
X_{112}	6	7	0.3050
X_{113}	3	4	0.0650
X_{121}	4	5	0.1250
X_{122}	3	4	0.0650
X_{123}	3	2	0.0250
X_{124}	2	7	0.0650
X_{211}	4	7	0.1850
X_{212}	2	4	0.0350
X_{213}	6	6	0.2550
X_{221}	3	5	0.0850
	4	6	0.1550
X_{222} X_{223}	4	5	0.1250

Елемент ризику	Елементи	g(r,i)	W1()	$\mathbf{L_1}$	$\mathbf{L_2}$	L_3	${ m L_4}$	L_5	$\mathbf{L_6}$	\mathbf{L}_7
\mathbf{X}_{111}	F (X ₁₁₁)	0.4250	0.5357	0	0	0.4500	0.5500	0	0	0
\mathbf{X}_{112}	F (X ₁₁₂)	0.3050	0.3572	0	0.1700	0.8300	0	0	0	0
X_{113}	F (X ₁₁₃)	0.0650	0.1071	0.6100	0.3900	0	0	0	0	0
\mathbf{X}_{121}	F (X ₁₂₁)	0.1250	0.4546	0.2500	0.7500	0	0	0	0	0
\mathbf{X}_{122}	F(X ₁₂₂)	0.0650	0.3031	0.6100	0.3900	0	0	0	0	0
\mathbf{X}_{123}	F (X ₁₂₃)	0.0250	0.1514	0.8500	0.1500	0	0	0	0	0
\mathbf{X}_{124}	F(X ₁₂₄)	0.0650	0.0909	0.6100	0.3900	0	0	0	0	0
\mathbf{X}_{211}	F(X ₂₁₁)	0.1850	0.5526	0	0.8900	0.1100	0	0	0	0
\mathbf{X}_{212}	F(X ₂₁₂)	0.0350	0.0791	0.7900	0.2100	0	0	0	0	0
\mathbf{X}_{213}	F(X ₂₁₃)	0.2550	0.3683	0	0.4700	0.5300	0	0	0	0
\mathbf{X}_{221}	F(X ₂₂₁)	0.0850	0.2225	0.4900	0.5100	0	0	0	0	0
\mathbf{X}_{222}	F(X ₂₂₂)	0.1550	0.4411	0.0700	0.9300	0	0	0	0	0
\mathbf{X}_{223}	F(X ₂₂₃)	0.1250	0.3364	0.2500	0.7500	0	0	0	0	0
Рівень I	Елементи		W2()	S1(k,j,1)	S1(k,j,2)	S1(k,j,3)	S1(k,j,4)	S1(k,j,5)	S1(k,j,6)	S1(k,j,7)
X_{11}	S1(1,1,n)		0.600	0.0653	0.1025	0.5375	0.2946	0.0000	0.0000	0.0000
X_{12}	S1(1,2,n)		0.400	0.4827	0.5173	0.0000	0.0000	0.0000	0.0000	0.0000
X ₂₁	S1(2,1,n)		0.600	0.0625	0.6815	0.2560	0.0000	0.0000	0.0000	0.0000
X_{22}	S1(2,2,n)		0.400	0.2240	0.7760	0.0000	0.0000	0.0000	0.0000	0.0000
Рівень II	Елементи		W3()	S2(k,1)	S2(k,2)	S2(k,3)	S2(k,4)	S2(k,5)	S2(k,6)	S2(k,7)
\mathbf{X}_{1}	S2(1,n)		0.333	0.2323	0.2684	0.3225	0.1768	0.0000	0.0000	0.0000
\mathbf{X}_2	S2(2,n)		0.667	0.1271	0.7193	0.1536	0.0000	0.0000	0.0000	0.0000
Складений ризик	Елементи			S3(1)	S3(2)	S3(3)	S3(4)	S3(5)	S3(6)	S3(7)
X	S3(n)			0.1621	0.5690	0.2099	0.0589	0	0	0
центроїди	$L_{G}(n)$			0.0552	0.1667	0.3333	0.5000	0.6667	0.8333	0.9448
Ризик	R	0.2032	0.2032 Таблиця 6. Одержання оцінки складеного екологічного ризику							