Sumário

1	Con	juntos e Funções	11
	1.1	Definição clássica de função	11
	1.2	Conjuntos	14
	1.3	Cartesiano	14
	1.4	Relação	16
	1.5	Função	18
	1.6	Operação	22
	1.7	Indução Matemática	22
	1.8	Somatória	23
	1.9	Números Reais	25
	1.10	Números Complexos	26
2	Mat	rizes	28
	2.1	Matrizes	28
	2.2	Operações com Matrizes	30
	2.3	Matrizes Invertíveis	46
	2.4	Aplicações	51
3	Sist	emas Lineares	53
	3.1	Sistemas Lineares	53
	3.2	Sistemas Equivalentes	59
	3.3	Sistemas algébricos	67
	3.4	Determinação da Inversa	68
	3.5	Sistemas de Cramer	71
	3.6	Matrizes Elementares	72
	3.7	Aplicações	75

4	Esp	paços Vetoriais	85
	4.1	Espaços Vetoriais	85
	4.2	Propriedades	90
	4.3	Subespaços Vetoriais	95
	4.4	Soma de Subespaços	101
	4.5	Combinação Linear	103
	4.6	Espaços Finitamente Gerados	104
	4.7	Aplicações	106
5	Bas	se e Dimensão	107
	5.1	Dependência Linear	107
	5.2	Base de Subespaço	128
	5.3	Dimensão da soma de dois subespaços	129
	5.4	Coordenadas	129
	5.5	Mudança de Base	131
6	Tra	nsformação Linear	141
	6.1	Transformação Linear	141
	6.2	Núcleo e Imagem	146
7	Ma	triz de uma Transformação Linear	150
	7.1	Operações com Transformações Lineares	150
	7.2	Matriz de uma Transformação Linear	162
	7.3	Matriz de uma Transformação Composta	165
	7.4	Espaço Dual	167
8	Esp	oaço com Produto Interno	168
	8.1	Produto Interno	168
	8.2	Norma e Distância	170
	8.3	Processo de Gram-Schmidt	177
9	Det	serminantes	183
	9.1	Permutações	183
	9.2	Determinantes	186
	9.3	Cofatores	200
	9.4	Adjunta e Inversa	206
	9.5	Regra de Cramer	210

SUMÁRIO		3
---------	--	---

10	Diag	gonalização de Operadores Lineares	215
	10.1	Matrizes Semelhantes	215
	10.2	Autovalores e Autovetores	216
		10.2.1 Operadores sem autovetores	219
	10.3	Diagonalização de Operadores	221
		10.3.1 Operadores com autovetores mas sem base for-	
		mada por autovetores	223
		10.3.2 Operadores com base formada por autovetores .	223
	10.4	Operadores Auto-Adjuntos	228
11	Álge	ebra Linear Avançada	235

SUM'ARIO 4

Professor: Antônio Carlos Telau e-mail: antonio.telau@ufvjm.edu.br

celular: (33) 9-9999-4445 site: www.telau.com.br

Notas de Aula: www.telau.com.br/ufvjm/CTT112/NA.pdf

Livro texto: Álgebra Linear e Aplicações.

Autores: Carlos A. Callioli, Hygino H. Domingues e Roberto C. F.

Costa.

Edição: 6ª Edição reformulada.

	${\bf Cronograma~do~semestre~2019/01}$					
N	Data	Páginas				
1	18/03/2019	Início do Semestre letivo 2019/01				
2						
3	3					
4						
5						
6						
7	23/07/2019	Término do Semestre letivo $2019/01$				
8	26/07 a 01/08	Exame Final				
9	31/07 a 16/08	Período para retificação de notas referentes à 2019/01				

Moniorias / Tutoria Período: $18/03/2019$ a $23/07/2019$							
Salas			02	03/229	02/02		
Horário	D	S	Т	Q	Q	S	S
07:00 - 08:00				Máyra			
08:00 - 09:00				Máyra			
09:00 - 10:00				Máyra			
10:00 - 11:00					Gilson		
11:00 - 12:00					Gilson		
12:00 - 13:00							
13:00 - 14:00							
14:00 - 15:00			Gilson				
15:00 - 16:00			Gilson	Telau	Máyra		
16:00 - 17:00			Gilson		Máyra		
17:00 - 18:00			Gilson		Máyra		
18:00 - 19:00							
19:00 - 20:00							

Forma de Avaliação

MF=N1+N2+N3+N4+N5, onde N1 é a nota do Exercício, N2 é a nota da P1, N3 é a nota da P2, N4 é a nota do Trabalho e N5 é a nota da P3.

$$\left\{ \begin{array}{ll} MF \geq 60 \ \Rightarrow \ \operatorname{Aprovado} \\ 40 \leq MF < 60 \ \Rightarrow \ \operatorname{Exame\ Final} \\ MF < 40 \ \Rightarrow \ \operatorname{Reprovado} \end{array} \right.$$

$$RF=\frac{MF+PF}{2},$$
onde PF é a nota do Exame Final.

$$\left\{ \begin{array}{ll} RF & \geq & 60 \ \Rightarrow \ {\rm Aprovado} \\ RF & < & 60 \ \Rightarrow \ {\rm Reprovado} \end{array} \right.$$

CTT112-A e B						
Prova	Conteúdo	Valor	Data			
Е	Escalonamento	5	23/04/2019			
P1	Capítulos 2, 3 e 4	30	30/04/2019			
P2	Capítulos 5, 6 e 7	30	04/06/2019			
T	Aplicação	5	28/06/2019			
Р3	Capítulos 8, 9 e 10	30	16/07/2019			
PF	Capítulos 2, 3, 4, 5, 6, 7, 8, 9 e 10	100	26/07/2019			
	MF = E + P1 + P2 + T + P3	$3 \le 100$				

CTT112-C						
Prova	Conteúdo	Valor	Data			
Е	Escalonamento	5	16/04/2019			
P1	Capítulos 2, 3 e 4	30	23/04/2019			
P2	Capítulos 5, 6 e 7	30	28/05/2019			
Т	Aplicação	5	18/06/2019			
P3	Capítulos 8, 9 e 10	30	08/07/2019			
PF	Capítulos 2, 3, 4, 5, 6, 7, 8 , 9 e 10	100	26/07/2019			
	MF = E + P1 + P2 + T + P3	$3 \le 100$				

	Cronograma da Primeira Prova.						
N	Data	Páginas	Quantidade				
1	22/04/2019	01-13	13				
2	26/04/2019	14-26	13				
3	29/04/2019	27-39	13				
4	02/05/2019	40-52	13				
5	05/05/2019	53-65	13				
6	09/05/2019	66-78	13				
7	12/05/2019	79-91	13				
8	16/05/2019	92-98	7				
9	23/05/2019	Exercício					
10	26/05/2019	Revisão					
11	30/05/2019	Avaliação					

	Cronograma	da Segund	a Prova.
N	Data	Páginas	Quantidade
1	03/05/2019	99-106	8
2	07/05/2019	107-114	8
3	10/05/2019	115-122	8
4	14/05/2019	123-130	8
5	17/05/2019	131-138	8
6	21/05/2019	139-146	8
7	24/05/2019	147-154	8
8	28/05/2019	155-160	6
9	31/05/2019	Revisão	
10	04/06/2019	Avaliação	

	Cronograma da Terceira Prova.						
N	Data	Páginas	Quantidade				
1	07/06/2019	161-170	9				
2	11/06/2019	171-179	9				
3	14/06/2019	180-188	9				
4	18/06/2019	189-197	9				
5	25/06/2019	198-206	9				
6	28/06/2019	Trabalho	9				
7	02/07/2019	207-215	9				
8	05/07/2019	216-224	9				
9	09/07/2019	225-227	3				
10	12/07/2018	Revisão	-				
11	16/07/2018	Avaliação	-				

	P1	P2	P3	Reserva F	inal
	19 22 26 29 2 5 9 12 16 23 26 3	30 3 7 10 14 17 21 24 28 31 4	7 11 14 18 25 28 2 5 9 12 16	19 23 26 27 28	29 30 31 1
CTT112A	3 3 3 3 4 4 4 4 4 4 4	4 5 5 5 5 5 5 5 6	6 6 6 6 6 6 7 7 7 7 7	7 7	
	0 3 2 3 2 3 2 3 2 3	2 3 2 3 2 3 2 3 2 3 2	3 2 3 2 2 3 2 3 2 3 2	3 2	
	0 3 5 8 10 13 15 18 20 22 25 2	27 3 5 8 10 13 15 18 20 23 25	3 5 8 10 12 15 17 20 22 25 27	3 5	
	0 3 5 8 10 13 15 18 20 22 25 2	27 30 32 35 37 40 42 45 47 50 52	55 57 60 62 64 67 69 72 74 77 79	82 84	
	P1	P2	P3	Reserva Fi	inal
	19 22 26 29 2 5 9 12 16 23 26 3	30 3 7 10 14 17 21 24 28 31 4	7 11 14 18 25 28 2 5 9 12 16	19 23 26 27 28	29 30 31 1
CTT112B	3 3 3 3 4 4 4 4 4 4 4	4 5 5 5 5 5 5 5 6	6 6 6 6 6 6 7 7 7 7 7	7 7	
	0 2 3 2 3 2 3 2 3 3 2	3 2 3 2 3 2 3 2 3 2 3	2 3 2 3 3 2 3 2 3 2 3	2 3	
	0 2 5 7 10 12 15 17 20 23 25 1	28 2 5 7 10 12 15 17 20 22 <mark>25</mark>	2 5 7 10 13 15 18 20 23 25 28	2 5	
	0 2 5 7 10 12 15 17 20 23 25 2	28 30 33 35 38 40 43 45 48 50 53	55 58 60 63 66 68 71 73 76 78 81	83 86	
	P1	P2	P3	Reserva	Final
		23 29 30 6 7 13 14 20 21 27 28	3 4 10 11 17 18 24 25 1 2 8		26 27 28 29 30 31
СТТ112С	3 3 3 3 4 4 4 4 4 4 4	4 4 4 5 5 5 5 5 5 5 5 5	6 6 6 6 6 6 6 6 7 7 7	7 7 7 7 7	7 7 7 7 7 7
	2 0 2 3 2 3 2 3 2 3 2	3 2 3 2 3 2 3 2 3 2 3	2 3 2 3 2 3 2 3 2 3 2 3 2	3 2 3 2 3	111111
	2 2 4 7 9 12 14 17 19 22 24 2	27 2 5 7 10 12 15 17 20 22 25	2 5 7 10 12 15 17 20 22 25 27	3 5 8 10 13	
		27 29 32 34 37 39 42 44 47 49 52	54 57 59 62 64 67 69 72 74 77 79	82 84 87 89 92	

Introdução

Este material está em fase de desenvolvimento e tem como objetivos finais os seguintes pontos:

Todas as demonstrações

Conter todas as demonstrações (que foram) trabalhadas de forma minuciosa para serem facilmente compreendidas até mesmo por alunos iniciantes na matemática.

Uso de cores e gráficos

Destaca-se com cores pontos de suma importância na compreensão dos texto.

Autocontido

Este material é autocontido no sentido que não há a necessidade de se buscar constantemente complementação em outros livros didáticos.

Conteúdos de auto nível da álgebra linear

Transcrever conteúdos de auto nível da álgebra linear em linguagem simplificada com exemplos perfeitamente acessíveis.

Aplicações

Algumas aplicações são expostas de forma bem simples, explícita e de fácil compreensão.

Capítulo 1

Conjuntos e Funções

1.1 Definição clássica de função

Uma função é uma terna de um domínio(A), um contra-domínio(B) e uma regra que associa da cada elemento do domínio um, e somente um, elemento do contra-domínio.

Exemplo 1.1.1. O seguinte diagrama não é de uma função pois $2 \in A$ não está associado a nenhum elemento de B.

Exemplo 1.1.2. O seguinte diagrama não é de uma função pois $3 \in A$ está associado a mais do que um elemento de B.

Exemplo 1.1.3. O seguinte diagrama é de uma função, pois satisfaz as condições da definição. Não contraria a definição $d \in B$ não está associado a nenhum elemento de A. Também não contraria a definição $c \in B$ está associado a mais do que um elementos de A.

Notação

A notação usual para função é a seguinte:

$$\begin{array}{cccc} f & : & A & \longrightarrow & B \\ & x & \longmapsto & f(x) \end{array}$$

Onde f é o nome da função, A é domínio, B é o conta-domínio, x é o argumento (ou variável muda) e f(x) a expressão da função em termos

do argumento x.

Exemplo 1.1.4. Seja

$$D(f) = \mathbb{R}$$

$$CD(f) = \mathbb{R}$$

$$Im(f) = [0, \infty) = \mathbb{R}_+$$

Exemplo 1.1.5. Para calcular o valor que se paga ao abastecer em um posto de gasolina utiliza-se a seguinte função.

Seja

$$\begin{array}{cccc} v & : & \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+ \\ & x & \longmapsto & px \end{array}$$

onde p é o preço por litro da gasolina e x é a quantidade abastecida em litros.

Exemplo 1.1.6. Para calcular o valor que se paga a um taxi em função da quilometragem percorrida utiliza-se a seguinte função.

Seja

$$v : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$$
$$x \longmapsto ax + b$$

onde a é o preço por quilômetro rodado e x é a quantidade de quilômetros rodados.

Agora damos início a uma sequência de definições com o objetivo de redefinir função e por meio dessa definir operação.

1.2 Conjuntos

Na matemática costuma-se definir um conjunto como uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos que compõem o conjunto A, dizemos que x pertence a A e indicamos com $x \in A$. A relação entre dois conjunto é a relação de estar contido: quando todos os objetos de um conjunto A também compõem o conjunto B, dizemos que A etá contido em B e indicamos com $A \subset B$.

1.3 Cartesiano

Dados dois conjuntos $A \in B$ definimos $A \times B$ como o conjunto de todos os pares ordenados (x, y) em que $x \in A$ e $y \in B$.

$$A \times B = \{(x, y); x \in A, y \in B\}$$

$$\tag{1.1}$$

Exemplo 1.3.1. Sejam os conjuntos $A = \{r, t\}$ e $B = \{3, 7, 9\}$. Então

$$A \times B = \{(r,3), (r,7), (r,9), (t,3), (t,7), (t,9)\}$$
(1.2)

Exemplo 1.3.2. Um dos exemplos mais difundido de cartesiano é o plano cartesiano. Sejam os conjuntos $A = \mathbb{R}$ e $B = \mathbb{R}$. Então

$$A \times B = \mathbb{R} \times \mathbb{R} = \{(x, y); x, y \in \mathbb{R}\} = \mathbb{R}^2 = \text{Plano Cartesiano.}$$
 (1.3)

1.4 Relação

Uma relação R entre A e B é qualquer subconjunto do cartesiano $R \subset A \times B$.

Exemplo 1.4.1. Sejam os conjuntos $A = \{-1,0,2\}$ e $B = \{-1,0,1\}$. Então o conjunto $R = \{(x,y); x \in A, y \in B - \{0\}\} \subset A \times B$, logo é uma relação entre A e B.

$$R = \{(-1, -1), (-1, 1), (0, -1), (0, 1), (2, -1), (2, 1)\}$$
(1.4)

Exemplo 1.4.2. A relação de pertinência é uma relação no sentido definido acima. Sejam os conjuntos $A = \{0, 1, 2\}$ e $B = \{\{2, 3, 4\}, \{-1, 0, 3\}, \{2, 4, 6\}\}$. Então o conjunto $R = \{(x, y); x \in A, y \in B\} \subset A \times B$, logo é uma relação entre A e B.

$$R = \{(0, \{-1, 0, 3\}), (2, \{2, 3, 4\}), (2, \{2, 4, 6\})\}$$
(1.5)

Exemplo 1.4.3. A relação de estar contido entre dois conjuntos é uma relação no sentido definido acima. Sejam os conjuntos $A = \{\{0,3\}, \{4\}, \{4,6\}\}\}$ e $B = \{\{2,3,4\}, \{-1,0,3\}, \{2,4,6\}\}\}$. Então o conjunto $R = \{(x,y); x \in A, y \in B\} \subset A \times B$, logo é uma relação entre A e B.

$$R = \{(\{0,3\}, \{-1,0,3\}), (\{4\}, \{2,3,4\}), (\{4\}, \{2,4,6\}), (\{4,6\}, \{2,4,6\})\}$$

$$(1.6)$$

Exemplo 1.4.4. (Ainda em Cosntrução) A relação de estar contido entre dois conjuntos é uma relação no sentido definido acima. Sejam os conjuntos $A = \{\{0,3\}, \{4\}, \{4,6\}\}\}$ e $B = \{\{2,3,4\}, \{-1,0,3\},$

 $\{2,4,6\}\}$. Então o conjunto $R=\{(x,y); x\in A, y\in B\}\subset A\times B$, logo é uma relação entre A e B.

$$R = \{(\{0,3\}, \{-1,0,3\}), (\{4\}, \{2,3,4\}), (\{4\}, \{2,4,6\}), (\{4,6\}, \{2,4,6\})\}$$

$$(1.7)$$

1.5 Função

Uma função F com domínio A e contra-domínio B é uma relação entre A e B que satisfaz as propriedades:

- i) $\forall x \in A \text{ existe } y \in B \text{ tal que } (x, y) \in F$;
- ii) Se $(x,y),(x,z)\in F$ então y=z.

$$F : A \longrightarrow B$$
$$x \longmapsto F(x)$$

Domínio

Se a função F é uma relação entre A e B então seu domínio é A.

Contra-Domínio

Se a função F é uma relação entre A e B então seu contra-domínio é B.

Imagem

O conjunto Imagem da função F é o conjunto de todos os elementos do contra-domínio que estão relacionados a algum elemento do domínio.

Exemplo 1.5.1. Sejam $A = \{-1, 0, 1\}, B = \{-1, 0, 1\} \in F(x) = x^2.$

$$D(F) = \{-1, 0, 1\} = A$$

$$CD(F) = \{-1, 0, 1\} = B$$

$$Im(F) = \{0, 1\}$$

Imagem de um Subconjunto

Se W é um subconjunto do domínio A da função F então F(W) é o subconjunto do contra-domínio de F constituído por todos os elementos que estão relacionados a algum elemento do domínio de F.

Exemplo 1.5.2. Seja $F(x) = \left[\frac{x+2}{2}\right]$.

$$W = \{2, 3, 4, 5, 6\}$$

$$Im(W) = F(W) = \{2, 3, 4\}$$

Exemplo 1.5.3. Seja F(x) = |x - 4| + 2.

$$W = \{2, 3, 4, 5, 6\}$$

$$Im(W) = F(W) = \{2, 3, 4\}$$

Função Injetiva

$$iii)$$
 Se $(x,z),(y,z)\in F$ então $x=y.$

Função Sobrejetiva

$$iv) \ \forall y \in B \text{ existe } x \in A \text{ tal que } (x,y) \in F;$$

Função Bijetiva

Uma função bijetora é uma função que simultaneamente injetiva e sobrejetiva. Ou seja, é uma relação que satisfaz i), ii), iii) e iv).

1.6 Operação

Uma operação binária em um conjunto E é uma função

$$\circ : E \times E \longrightarrow E$$

$$(x,y) \longmapsto \circ (x,y) = x \circ y$$

Vamos pensar um pouco no domínio e contra-domínio da função det.

$$\det : M_n(\mathbb{R}) \longrightarrow \mathbb{R}$$
$$A \longmapsto \det(A)$$

1.7 Indução Matemática

A Indução Matemática é uma forma de demonstrar que uma proposição que depende de uma variável natural n é verdadeira para todo $n \in \mathbb{N}$.

Teorema 1.1. Seja X um conjunto tal que:

- $i) \ 1 \in X ;$
- $ii) \ n \in X \Rightarrow (n+1) \in X.$

Então $X = \mathbb{N}$.

Demonstração. Suponhamos que $X \neq \mathbb{N}$. Seja n_0 o menor elemento de $\mathbb{N} - X \neq \emptyset$. Pela primeira hipótese i) temos que $n_0 \neq 1$ então $n_0 - 1 \in \mathbb{N} - X$. Logo $n_0 \in X$, absurdo. Portanto $X = \mathbb{N}$.

Vamos provar por indução que

$$P(n): \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 (1.8)

De fato P(1) é verdadeira pois $\sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2}$. Suponhamos agora P(n) verdadeira e provemos que P(n+1) é verdadeira.

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \implies \left(\sum_{k=1}^{n} k\right) + (n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$\Rightarrow \sum_{k=1}^{n+1} k = \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$

$$\Rightarrow \sum_{k=1}^{n+1} k = \frac{(n+2)(n+1)}{2}$$

$$\Rightarrow \sum_{k=1}^{n+1} k = \frac{(n+1)((n+1)+1)}{2}$$

$$\Rightarrow P(n+1)$$

1.8 Somatória

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + 4 + \dots + n = \frac{n(n+1)}{2}$$
 (1.9)

$$\sum_{k=1}^{5} k = 1 + 2 + 3 + 4 + 5 = 15 = \frac{5(5+1)}{2}$$
 (1.10)

$$\sum_{k=1}^{n} k^2 = 1 + 4 + 9 + 16 + \dots + n^2 = \frac{n(2n+1)(n+1)}{6}$$
 (1.11)

$$\sum_{k=1}^{5} k^2 = 1 + 4 + 9 + 16 + 25 = 45 = \frac{5(2 \cdot 5 + 1)(5 + 1)}{6}$$
 (1.12)

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = \beta \tag{1.13}$$

$$\sum_{k=1}^{n} \alpha_i b_i = \beta \tag{1.14}$$

Outro exemplo em que o uso do somatório faz-se necessário é a soma S dos elementos de uma matriz.

Seja $A \in M_{m \times n}(\mathbb{R})$. Então a soma S dos seus elementos pode ser calculada de duas formas especiais.

$$\begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & 0 \\ 3 & 1 & 5 \end{bmatrix} \xrightarrow{} 5$$

$$\xrightarrow{} 3$$

$$\xrightarrow{} 9$$

$$\downarrow \downarrow \downarrow \downarrow \qquad \downarrow$$

$$6 & 5 & 6 \qquad \rightarrow \qquad 17$$

$$S = (\alpha_{11} + \dots + \alpha_{1n}) + (\alpha_{21} + \dots + \alpha_{2n}) + \dots + (\alpha_{m1} + \dots + \alpha_{mn})$$

$$= \sum_{j=1}^{n} \alpha_{1j} + \sum_{j=1}^{n} \alpha_{2j} + \dots + \sum_{j=1}^{n} \alpha_{mj}$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{ij}$$

Ou

$$S = (\alpha_{11} + \dots + \alpha_{m1}) + (\alpha_{12} + \dots + \alpha_{m2}) + \dots + (\alpha_{1n} + \dots + \alpha_{mn})$$

$$= \sum_{i=1}^{m} \alpha_{i1} + \sum_{i=1}^{m} \alpha_{i2} + \dots + \sum_{i=1}^{m} \alpha_{in}$$

$$= \sum_{i=1}^{n} \sum_{i=1}^{m} \alpha_{ij}$$

Portanto daí concluímos que

$$S = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} \alpha_{ij}$$

1.9 Números Reais

Propriedades dos números reais(\mathbb{R}).

Dados os números reais a, b e c, as seguintes propriedades operatórias são válidas:

1 – Associatividade:

$$a + (b+c) = (a+b) + c$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

2 – Comutatividade:

$$a + b = b + a$$

$$a \cdot b = b \cdot a$$

3 – Existência de elemento neutro único para a soma e para a multiplicação:

$$a + 0 = a$$

$$a \cdot 1 = a$$

4 – Existência de elemento inverso único para a soma e para a multiplicação:

$$a + (-a) = 0$$

$$a \cdot a^{-1} = 1$$
 se $a \neq 0$.

5 – Distributividade:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

Exemplo 1.9.1. A operação definida por $a \cdot b := (a+1)b$ não satisfaz ab = ba.

1.10 Números Complexos

Chama-se conjunto dos números complexos o conjunto \mathbb{C} de todos os pares ordenados de números reais para os quais valem as seguintes definições:

$$(a,b) = (c,d) \Leftrightarrow a = c \in b = d$$

$$(a,b) + (c,d) = (a+c,b+d)$$

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc)$$

Assim
$$z \in \mathbb{C} \Rightarrow z = (a, b) \text{ com } a, b \in \mathbb{R}$$
.

Propriedades dos números complexos(\mathbb{C}):

1 – Associatividade:

$$(a,b) + [(c,d) + (e,f)] = [(a,b) + (c,d)] + (e,f)$$

$$(a,b) \cdot [(c,d) \cdot (e,f)] = [(a,b) \cdot (c,d)] \cdot (e,f)$$

2 – Comutatividade:

$$(a,b) + (c,d) = (c,d) + (a,b)$$

$$(a,b) \cdot (c,d) = (c,d) \cdot (a,b)$$

3 – Existência de elemento neutro único para a soma e para a multiplicação:

$$(a,b) + (0,0) = (a,b)$$

$$(a,b) \cdot (1,0) = (a,b)$$

4 – Existência de elemento inverso único para a soma e para a multiplicação:

$$(a,b) + (-a,-b) = (0,0)$$

Se $(a,b) \neq (0,0)$ então

$$\begin{array}{rcl} (a,b)\cdot (\frac{a}{a^2+b^2},-\frac{b}{a^2+b^2}) & = & (a\frac{a}{a^2+b^2}-b(-\frac{b}{a^2+b^2}),a(-\frac{b}{a^2+b^2})+b\frac{a}{a^2+b^2}) \\ & = & (1,0) \end{array}.$$

5 – Distributividade:

$$(a,b) \cdot [(c,d) + (e,f)] = (a,b) \cdot (c,d) + (a,b) \cdot (e,f)$$

6 - Quadrado Negativo:

$$i^2 = (0,1)^2 = (0,1) \cdot (0,1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1,0) = -1$$

Ou seja, a equação $x^2 + 1 = 0$ tem solução em \mathbb{C} . De forma geral o Teorema fundamental da Álgebra diz que todo polinômio de grau n com coeficientes reais tem suas n raízes com suas multiplicidades em \mathbb{C} . Ou seja, o corpo dos complexos é o fecho algébrico de \mathbb{R} .

Obs.: Quando dizemos que a equação $x^2+1=0$ tem solução em $\mathbb C$ estamos nos referindo a um elemento que quando multiplicado por si mesmo e somado com o elemento neutro da multiplicação resulta no elemento neutro da soma.

Exemplo 1.10.1. A operação definida por $(a,b) \cdot (c,d) := (ac,bc)$ admite mais do que um elemento neutro.

Capítulo 2

Matrizes

2.1 Matrizes

Definição 2.1.1. Sejam $m \ge 1$ e $n \ge 1$ dois números inteiros. Uma matriz $m \times n$ é uma tabela de números que se indica do seguinte modo.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 (2.1)

Outra forma mais abreviada de denotar uma matriz genérica A é escrever $A = ([A]_{ij})_{m \times n}$ ou $A = (a_{ij})_{m \times n}$ ou ainda $A = (a_{ij})$ quando no contexto estiver subentendido a dimensão.

Cada número que compõe a matriz A chama-se termo de A. O termo geral de A é a_{ij} ou $[A]_{ij}$. O primeiro índice i indica a linha e o segundo índice j indica a coluna. Denotaremos por $M_{m\times n}(\mathbb{R})$ o conjunto das matrizes reais $m\times n$. Se m=n usa-se $M_n(\mathbb{R})$.

Veremos agora um exemplo matriz com dimensão 3×2 com entradas reais, destacaremos seus elementos usando as notações estabelecidas até esse momento.

Exemplo 2.1.1. Se
$$A = \begin{bmatrix} 1 & 0 \\ 2 & -3 \\ -1 & 4 \end{bmatrix}$$
 então A é uma matriz real 3×2 .
Logo $A \in M_{3\times 2}(\mathbb{R})$. Além disso $[A]_{11} = 1$, $[A]_{12} = 0$, $[A]_{21} = 2$, $[A]_{22} = -3$, $[A]_{31} = -1$, e $[A]_{32} = 4$.

Linhas e Colunas

Usaremos um índice sobrescrito com parênteses para denotar as linhas de uma matriz, reservando a notação de índice sobrescrito simples para a potências que será definida nas próximas sessões. E para as colunas usaremos um índice subscrito com parênteses.

Assim temos que dada a matriz A genérica(2.1) suas linhas são denotadas por

$$A^{(1)} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix},$$

$$A^{(2)} = \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix},$$

$$\vdots$$

$$A^{(m)} = \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

E suas colunas são denotadas por

$$A_{(1)} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, A_{(2)} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \cdots, A_{(n)} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Exemplo 2.1.2. Seja
$$A=\left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 6 & -5 \end{array}\right]$$
 uma matriz 2×3 . Então

$$A^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, A^{(2)} = \begin{bmatrix} 0 & 6 & -5 \end{bmatrix}$$
 são as linhas da matriz A .

$$A_{(1)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, A_{(2)} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}, A_{(3)} = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$$
 são as linhas da matriz A .

Igualdade de Matrizes

A igualdade de objetos matemáticos tem como regra geral que dois objetos são igual quando todos os seus atributos coincidem. No caso de matrizes esses atributos são sua dimensão e suas entradas ou elementos.

Sejam $A, B \in M_{m \times n}(\mathbb{R})$, dizemos que A = B se, e somente se,

$$[A]_{ij} = [B]_{ij}, \ \forall (i,j) \in \{1, \cdots, m\} \times \{1, \cdots, n\}.$$

Note que ao considerarmos que $A, B \in M_{m \times n}(\mathbb{R})$ estamos afirmando que as dimensões de A e de B são iguais.

Exemplo 2.1.3. Calcule os valores das variáveis na equação matricial.

$$\begin{bmatrix} x^2 + 2 & x + y \\ \sqrt{y + z} & y + 5 \end{bmatrix} = \begin{bmatrix} 3x & 1 \\ 2 & 4 \end{bmatrix} \Leftrightarrow \begin{cases} x^2 + 2 &= 3x \\ x + y &= 1 \\ \sqrt{y + z} &= 2 \\ y + 5 &= 4 \end{cases} \Leftrightarrow \begin{cases} x &= 2 \\ y &= -1 \\ z &= 5 \end{cases}$$

Exemplo 2.1.4. Sejam A e B matrizes dadas pelas expressões $[A]_{ij}=i^2$ e $[B]_{ij}=3i-2$ respectivamente. Determine se A=B em cada caso.

- a) $A, B \in M_{2 \times 2}(\mathbb{R});$
- b) $A, B \in M_{3\times 3}(\mathbb{R})$.

2.2 Operações com Matrizes

O conjunto das matrizes admite uma operação de adição com as quatro propriedades básicas da adição de números reais que são comutatividade, associatividade, existência do elemento neutro e existência do

simétrico ou inverso aditivo. Admite também uma operação de multiplicação por escalar com propriedades similares à propriedade de multiplicação de números reais, a saber, associatividade, distributividade e existência do elemento neutro. Além dessas duas operações também é possível construir uma operação de produto entre duas matrizes que preserva parte das propriedades do produto entre dois números reais. Estas semelhanças e diferenças serão explicitadas nesse capítulo.

Adição

Iniciaremos com um exemplo do cálculo da soma de matrizes.

Exemplo 2.2.1. Sejam
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
 e $B = \begin{bmatrix} 0 & 1 & -2 \\ 2 & 4 & 7 \end{bmatrix}$.

$$A \oplus B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \oplus \begin{bmatrix} 0 & 1 & -2 \\ 2 & 4 & 7 \end{bmatrix} = \begin{bmatrix} 1+0 & 2+1 & 1+(-2) \\ 0+2 & 1+4 & 2+7 \end{bmatrix} \Rightarrow$$

$$A \oplus B = \left[\begin{array}{ccc} 1 & 3 & -1 \\ 2 & 5 & 9 \end{array} \right]$$

$$B \oplus A = \begin{bmatrix} 0 & 1 & -2 \\ 2 & 4 & 7 \end{bmatrix} \oplus \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0+1 & 1+2 & (-2)+1 \\ 2+0 & 4+1 & 7+2 \end{bmatrix} \Rightarrow$$

$$A \oplus B = \left[\begin{array}{ccc} 1 & 3 & -1 \\ 2 & 5 & 9 \end{array} \right]$$

Observe que, definida dessa forma, a soma de matrizes é comutativa, ou seja, a soma satisfaz $A \oplus B = B \oplus A$.

Definimos a operação de soma de matrizes e utilizamos um símbolo especial \oplus para representar a soma de matrizes em oposição à soma de números reais representada pelo símbolo +. Definimos formalmente a

soma de matrizes por:

$$\bigoplus : M_{m \times n}(\mathbb{R}) \times M_{m \times n}(\mathbb{R}) \longrightarrow M_{m \times n}(\mathbb{R})$$

$$(A, B) \longmapsto A \oplus B$$

dada por $[A \oplus B]_{ij} := [A]_{ij} + [B]_{ij}$

Exemplo 2.2.2. Por exemplo se $A \in M_{2\times 2}(\mathbb{R})$ temos.

$$A \oplus B = \begin{bmatrix} [A \oplus B]_{11} & [A \oplus B]_{12} \\ [A \oplus B]_{21} & [A \oplus B]_{22} \end{bmatrix} = \begin{bmatrix} [A]_{11} + [B]_{11} & [A]_{12} + [B]_{12} \\ [A]_{21} + [B]_{21} & [A]_{22} + [B]_{22} \end{bmatrix}$$

Teorema 2.1. Para a operação de adição de matrizes valem as seguinte propriedades:

$$A_1$$
) $A \oplus B = B \oplus A$, $\forall A, B \in M_{m \times n}(\mathbb{R})$ (Comutatividade);

$$A_2$$
) $A \oplus (B \oplus C) = (A \oplus B) \oplus C$, $\forall A, B, C \in M_{m \times n}(\mathbb{R})$ (Associatividade);

 A_3) $\exists 0 \in M_{m \times n}(\mathbb{R})$ tal que $A \oplus 0 = A$, $\forall A \in M_{m \times n}(\mathbb{R})$ (Existência do elemento neutro);

 A_4) $\forall A \in M_{m \times n}(\mathbb{R}), \ \exists (-A) \in M_{m \times n}(\mathbb{R}) / A \oplus (-A) = 0$ (Existência do inverso aditivo).

Demonstração.

$$A_1$$

$$\begin{split} [A \oplus B]_{ij} &= [A]_{ij} + [B]_{ij} \\ &= [B]_{ij} + [A]_{ij} \\ &= [B \oplus A]_{ij} \Rightarrow \end{split}$$

$$[A { \ominus\hspace{-.8em} \mid\hspace{-.8em} B}]_{ij} = [B { \ominus\hspace{-.8em} \mid\hspace{-.8em} A}]_{ij} \Rightarrow A { \ominus\hspace{-.8em} \mid\hspace{-.8em} B} = B { \ominus\hspace{-.8em} \mid\hspace{-.8em} A}$$

 A_2

$$\begin{split} [A \oplus (B \oplus C)]_{ij} &= [A]_{ij} + [(B \oplus C)]_{ij} \\ &= [A]_{ij} + ([B]_{ij} + [C]_{ij}) \\ &= ([A]_{ij} + [B]_{ij}) + [C]_{ij} \\ &= [(A \oplus B)]_{ij} + [C]_{ij} \\ &= [(A \oplus B) \oplus C]_{ij} \Rightarrow \\ [A \oplus (B \oplus C)]_{ij} &= [(A \oplus B) \oplus C]_{ij} \Rightarrow A \oplus (B \oplus C) = (A \oplus B) \oplus C \\ A_3) \end{split}$$

Seja $O \in M_{m \times n}(\mathbb{R})$ dada por $[O]_{ij} = 0$, $\forall (i,j) \in \{1, \dots, m\} \times \{1, \dots, n\}$. Assim definida a matriz 0 é o elemento neutro da adição de matrizes.

 A_4

Dada a matriz $A \in M_{m \times n}(\mathbb{R})$ considere $(-A) \in M_{m \times n}(\mathbb{R})$ dada por $[-A]_{ij} = -[A]_{ij}$, $\forall (i,j) \in \{1,\cdots,m\} \times \{1,\cdots,n\}$. Assim definida a matriz (-A) é o inverso aditivo da matriz A.

Exemplo 2.2.3. Sejam $A = \begin{bmatrix} 1 & 3 \\ -2 & -1 \end{bmatrix}$, $B = \begin{bmatrix} -2 & 8 \\ 5 & -4 \end{bmatrix}$ e $C = \begin{bmatrix} 9 & -2 \\ 5 & 6 \end{bmatrix}$ matrizes 2×2 . Note que a soma de matrizes é associativa.

$$A \oplus (B \oplus C) = \begin{bmatrix} 1 & 3 \\ -2 & -1 \end{bmatrix} \oplus \left(\begin{bmatrix} -2 & 8 \\ 5 & -4 \end{bmatrix} \oplus \begin{bmatrix} 9 & -2 \\ 5 & 6 \end{bmatrix} \right)$$
$$= \begin{bmatrix} 1 & 3 \\ -2 & -1 \end{bmatrix} \oplus \begin{bmatrix} 7 & 6 \\ 10 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 9 \\ 8 & 1 \end{bmatrix}$$

$$(A \oplus B) \oplus C = \left(\begin{bmatrix} 1 & 3 \\ -2 & -1 \end{bmatrix} \oplus \begin{bmatrix} -2 & 8 \\ 5 & -4 \end{bmatrix} \right) \oplus \begin{bmatrix} 9 & -2 \\ 5 & 6 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 11 \\ 3 & -5 \end{bmatrix} \oplus \begin{bmatrix} 9 & -2 \\ 5 & 6 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 9 \\ 8 & 1 \end{bmatrix}$$

Exemplo 2.2.4. Sejam $A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ e $0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ duas matrizes 2×3 . Então 0 é um elemento neutro da adição de matrizes com essa dimensão.

$$A \oplus 0 = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} a+0 & b+0 & c+0 \\ d+0 & e+0 & f+0 \end{bmatrix}$$
$$= \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = A$$

Exemplo 2.2.5. Seja
$$A = \begin{bmatrix} 1 & a & -2 \\ -2 & -\sqrt{2} & 0 \end{bmatrix}$$
. Então $(-A) = \begin{bmatrix} -1 & -a & 2 \\ -2 & \sqrt{2} & 0 \end{bmatrix}$.

$$A \oplus (-A) = \begin{bmatrix} 1 & a & -2 \\ -2 & -\sqrt{2} & 0 \end{bmatrix} \oplus \begin{bmatrix} -1 & -a & 2 \\ -2 & \sqrt{2} & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 + (-1) & a + (-a) & -2 + 2 \\ -2 + 2 & -\sqrt{2} + \sqrt{2} & 0 + 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Note que $A \oplus (-A)$ resultou no elemento neutro da operação de adição de matrizes com essa dimensão.

Exemplo 2.2.6. Nesse texto é dada uma atenção especial ao domínio e contra-domínio das operações. Esse exemplo de operação deixa claro que não é um fato geral o contra-domínio coincidir com o conjunto onde se tomam os elementos a serem operados, como ocorre na definição usual de adição de matrizes.

$$\bigoplus : M_2(\mathbb{R}) \times M_2(\mathbb{R}) \longrightarrow M_3(\mathbb{R})$$

$$(A, B) \longmapsto A \oplus B$$

Dada por

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} + b_{11} & b_{12} \\ 0 & b_{12} & b_{22} \end{bmatrix}$$

Exemplo 2.2.7. Se definirmos a operação de soma de matrizes da seguinte forma $[A + B]_{ij} = [A]_{ij} + [B]_{ij} + 1$, prove que valem A_1), A_2), determine o elemento neutro dessa operação de matrizes 2×3 e o inverso aditivo para uma matriz genérica com dimensão 2×3 .

$$\overline{0} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Exemplo 2.2.8. Se definirmos a operação de soma de matrizes da seguinte forma $[A + B]_{ij} = [A]_{ij} + [B]_{ij} + (i-j)$, prove que valem A_1), A_2), determine o elemento neutro dessa operação de matrizes 4×4 e o inverso aditivo para uma matriz genérica com dimensão 4×4 .

$$\overline{0} = (0 - (i - j))_{4 \times 4} = (j - i)_{4 \times 4} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ -1 & 0 & 1 & 2 \\ -2 & -1 & 0 & 1 \\ -3 & -2 & -1 & 0 \end{bmatrix}$$

Exemplo 2.2.9. Se definirmos a operação de soma de matrizes da seguinte forma $[A+B]_{ij}=(-1)\cdot [A]_{ij}\cdot [B]_{ij}$, prove que valem $A_1),A_2)$, determine o elemento neutro dessa operação de matrizes 3×3 e o inverso aditivo para uma matriz genérica com dimensão 3×3 .

Se por exemplo

$$A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 5 & -6 \\ 7 & -8 & 9 \end{bmatrix}$$

então

$$A + \overline{0} = \left[\begin{array}{cccc} (-1) \cdot 1 \cdot (-1) & (-1) \cdot (-2) \cdot (-1) & (-1) \cdot 3 \cdot (-1) \\ (-1) \cdot (-4) \cdot (-1) & (-1) \cdot 5 \cdot (-1) & (-1) \cdot (-6) \cdot (-1) \\ (-1) \cdot 7 \cdot (-1) & (-1) \cdot (-8) \cdot (-1) & (-1) \cdot 9 \cdot (-1) \end{array} \right] \Rightarrow$$

$$A + \overline{0} = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 5 & -6 \\ 7 & -8 & 9 \end{bmatrix} \Rightarrow$$

$$A + \overline{0} = A$$

Exemplo 2.2.10. Se definirmos a operação de soma de matrizes da seguinte forma $[A+B]_{ij} = [A]_{ij} + [B]_{ji}$, qual é o inverso aditivo(à direita) de uma matriz $A \in M_{3\times 3}(\mathbb{R})$?

$$(-A) = \begin{bmatrix} -[A]_{11} & -[A]_{21} & -[A]_{31} \\ -[A]_{12} & -[A]_{22} & -[A]_{32} \\ -[A]_{13} & -[A]_{23} & -[A]_{33} \end{bmatrix}$$

Exemplo 2.2.11. Se definirmos a operação de soma de matrizes da seguinte forma $[A + B]_{ij} = 2 [A]_{ij} + [B]_{ij}$, qual é o inverso aditivo(à direita) de uma matriz A qualquer 3×3 ?

Produto por escalar

Assim como na adição iniciaremos com um exemplo do cálculo do produto de um número real por uma matriz.

Exemplo 2.2.12. Sejam $A=\begin{bmatrix} -1&3&-4\\7&-5&3 \end{bmatrix}$ uma matriz e $\lambda=-2$ um número real. Então

$$\alpha \odot A = (-2) \odot A = \begin{bmatrix} (-2) \cdot (-1) & (-2) \cdot 3 & (-2) \cdot (-4) \\ (-2) \cdot 7 & (-2) \cdot (-5) & (-2) \cdot 3 \end{bmatrix} \Rightarrow$$

$$\alpha \odot A = \left[\begin{array}{rrr} 2 & -6 & 8 \\ -14 & 10 & -6 \end{array} \right]$$

Definimos a operação de produto por escalar e utilizamos um símbolo especial ⊙ para representar o produto de um número real por uma

matrizes em oposição ao símbolo · usado para representar o produto de números reais. Definimos formalmente o produto de um número real(escalar) por uma matrizes por:

$$\bigcirc : \mathbb{R} \times M_{m \times n}(\mathbb{R}) \longrightarrow M_{m \times n}(\mathbb{R})$$

$$(\lambda, A) \longmapsto \lambda \odot A$$

$$dada por [\lambda \odot A]_{ij} = \lambda \cdot [A]_{ij}$$

Teorema 2.2. Para a operação de produto por escalar valem as seguinte propriedades:

$$M_1$$
) $(\alpha \cdot \beta) \odot A = \alpha \odot (\beta \odot A), \forall \alpha, \beta \in \mathbb{R}, \forall A \in M_{m \times n}(\mathbb{R})$ (Associatividade);

 M_2) $(\alpha+\beta)\odot A = (\alpha\odot A)\oplus (\beta\odot A)$, $\forall \alpha,\beta\in\mathbb{R}$, $\forall A\in M_{m\times n}(\mathbb{R})$ (Distributiva do produto por escalar em reação à adição de números reais);

 M_3) $\alpha \odot (A \oplus B) = (\alpha \odot A) \oplus (\alpha \odot B)$, $\forall \alpha \in \mathbb{R}, \forall A, B \in M_{m \times n}(\mathbb{R})$ (Distributiva do produto por escalar em reação à adição de matrizes);

 M_4) $1 \odot A = A$, $\forall A \in M_{m \times n}(\mathbb{R})$ (Existência do elemento neutro do produto por escalar).

Demonstração.

$$M_1$$
)

$$\begin{aligned} [(\alpha \cdot \beta) \odot A]_{ij} &= (\alpha \cdot \beta) \odot [A]_{ij} \\ &= \alpha \cdot (\beta \odot [A]_{ij}) \\ &= \alpha \cdot [\beta \odot A]_{ij} \\ &= [\alpha \odot (\beta \odot A)]_{ij} \Rightarrow \end{aligned}$$

$$[(\alpha \cdot \beta) \odot A]_{ij} = [\alpha \odot (\beta \odot A)]_{ij} \Rightarrow$$

$$(\alpha \cdot \beta) \odot A = \alpha \odot (\beta \odot A)$$

 M_2

$$[(\alpha + \beta) \odot A]_{ij} = (\alpha + \beta) \cdot [A]_{ij}$$

$$= \alpha \cdot [A]_{ij} + \beta \cdot [A]_{ij}$$

$$= [\alpha \odot A]_{ij} + [\beta \odot A]_{ij}$$

$$= [(\alpha \odot A) \oplus (\beta \odot A)]_{ij} \Rightarrow$$

$$[(\alpha + \beta) \odot A]_{ij} = [(\alpha \odot A) \oplus (\beta \odot A)]_{ij} \Rightarrow$$

$$[(\alpha + \beta) \odot A = (\alpha \odot A) \oplus (\beta \odot A)$$

$$M_3)$$

$$[\alpha \odot (A \oplus B)]_{ij} = \alpha \cdot [A \oplus B]_{ij}$$

$$= \alpha \cdot ([A]_{ij} + [B]_{ij})$$

$$= \alpha \cdot [A]_{ij} + \alpha \cdot [B]_{ij}$$

$$= [\alpha \odot A]_{ij} + [\alpha \odot B]_{ij}$$

$$= [(\alpha \odot A) \oplus (\alpha \odot B)]_{ij} \Rightarrow$$

$$[\alpha \odot (A \oplus B)]_{ij} = [(\alpha \odot A) \oplus (\alpha \odot B)]_{ij} \Rightarrow$$

$$\alpha \odot (A \oplus B) = (\alpha \odot A) \oplus (\alpha \odot B)$$

$$M_4)$$

$$[1 \odot A]_{ij} = 1 \cdot [A]_{ij}$$

$$= [A]_{ij} \Rightarrow$$

$$[1 \odot A]_{ij} = [A]_{ij} \Rightarrow$$

Nesse momento em que concluímos que $1 \odot A = A$ somos compelidos a justificar tal questionamento. Nesse sentido observamos que a definição de matriz consiste em uma generalização do número. De fato o número x se confunde com a matriz [x]. Assim uma propriedade que vale para número é que o número 1 é o elemento neutro da multiplicação e gostaríamos que isso continuasse sendo verdade para o produto por es-

calar. O próximo exemplo foi elaborado justamente com o objetivo de explicitar o fato de que essa propriedade não é completamente natural e que depende da forma com que o produto foi definido.

Exemplo 2.2.13. Encontre o elemento neutro se definirmos o produto por escalar dado pela regra $[\lambda \overline{\odot} A]_{ij} := 2 \cdot \lambda \cdot [A]_{ij}$.

Exemplo 2.2.14. Se definirmos o produto por escalar dado pela seguinte regra $[\lambda \odot A]_{ij} := 2 \cdot \lambda \cdot [A]_{ij} + 1$ existe um elemento neutro?

$$\lambda x + 1 = x \Rightarrow \lambda = 2 \text{ e } x = -1$$

$$\lambda = 2 e A = \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

No entanto, isso só funciona para uma matriz e deveria ser verdade para toda matriz A.

Exemplo 2.2.15. Nesse texto é dada uma atenção especial ao domínio e contra-domínio das operações. Esse exemplo de operação deixa claro que não é um fato geral o contra-domínio coincidir com o conjunto onde se tomam os elementos a serem multiplicados por escalares, como ocorre na definição usual de produto por escalar.

$$\bigcirc : \mathbb{R} \times M_2(\mathbb{R}) \longrightarrow M_3(\mathbb{R})$$

$$(\lambda, A) \longmapsto \lambda \odot A$$

Dada por

$$\lambda \odot \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] = \left[\begin{array}{ccc} \lambda a_{11} & \lambda a_{12} & 1 \\ \lambda a_{21} & \lambda a_{22} & \lambda \end{array} \right]$$

Multiplicação de Matrizes

Assim como fizemos na adição e no produto por escalar iniciaremos com um exemplo do cálculo do produto entre duas matrizes.

Exemplo 2.2.16. Sejam
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$
 e $B = \begin{bmatrix} 3 & 4 & 5 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

$$A \cdot B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 & 4 & 5 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \Rightarrow$$

$$A \cdot B = \begin{bmatrix} 2 \cdot 3 + 1 \cdot 0 + 0 \cdot 1 & 2 \cdot 4 + 1 \cdot 0 + 0 \cdot 0 & 2 \cdot 5 + 1 \cdot 0 + 0 \cdot 1 \\ 0 \cdot 3 + 1 \cdot 0 + 2 \cdot 1 & 0 \cdot 4 + 1 \cdot 0 + 2 \cdot 0 & 0 \cdot 5 + 1 \cdot 0 + 2 \cdot 1 \end{bmatrix} \Rightarrow$$

$$A \cdot B = \left[\begin{array}{ccc} 6 & 8 & 10 \\ 2 & 0 & 2 \end{array} \right]$$

Definimos a operação de produto entre as matrizes A e B utilizamos a notação $A \cdot B$ ou simplesmente a justaposição AB. Definimos formalmente o produto entre duas matrizes por:

Consideremos a matriz $A \in M_{m \times p}(\mathbb{R})$ e a matriz $B \in M_{p \times n}(\mathbb{R})$. O produto $C = A \cdot B$ é dado por

$$A \cdot B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{m1} & \cdots & b_{mj} & \cdots & b_{mn} \end{bmatrix}$$

$$c_{ij} = A^{(i)} \cdot B_{(j)}$$
 ou

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj}$$
 (2.3)

$$c_{ij} = \sum_{k=1}^{p} a_{ik} \mathbf{b}_{kj} \tag{2.4}$$

$$[AB]_{ij} = \sum_{k=1}^{p} [A]_{ik} [B]_{kj}$$
(2.5)

$$[AB]_{ij} = A^{(i)} \cdot \underline{B}_{(j)} \tag{2.6}$$

Exemplo 2.2.17. Dadas duas matrizes quaisquer A e B, nem sempre conseguimos multiplicar A por B ou B por A e quando conseguimos multiplicar nem sempre obtemos AB = BA.

- a) Se $A=\begin{bmatrix}1&2&3\\1&2&3\end{bmatrix}$ e $B=\begin{bmatrix}1&2&3&4\\1&2&3&4\end{bmatrix}$ então não é possível multiplicar AB nem BA.
- b) Se $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ então é possível multiplicar $A \cdot B$ mas não é possível multiplicar $B \cdot A$.

c) Se
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{bmatrix}$ então $A \cdot B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 14 & 14 \\ 14 & 14 \end{bmatrix}$ e $A \cdot B = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 4 & 8 & 12 \\ 6 & 12 & 18 \end{bmatrix}$

Ou seja, as matrizes $A \cdot B$ e $B \cdot A$ podem ser calculadas mas tem dimensões diferentes.

d) Se
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$ então $AB \neq BA$.
$$\begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 0 & 6 \end{bmatrix} \neq \begin{bmatrix} 6 & 0 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$$

Ou seja, as matrizes $A \cdot B$ e $B \cdot A$ podem ser calculadas, tem as mesmas dimensões mas ainda assim são diferentes.

e) Se
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 8 \\ 6 & 2 \end{bmatrix}$ então $AB = BA$.
$$\begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 4 & 8 \\ 6 & 2 \end{bmatrix} = \begin{bmatrix} 32 & 24 \\ 18 & 26 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 6 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix}$$

Ou seja, as matrizes $A \cdot B$ e $B \cdot A$ podem ser calculadas, tem as mesmas dimensões e além disso são iguais.

Exemplo 2.2.18. Nem todas as operações são associativas como a adição e multiplicação de números reais. Dois exemplo simples são as operações de subtração e divisão de números reais. Por exemplo:

a)
$$8 - (5 - 3) \neq (8 - 5) - 3$$

b)
$$8 \div (4 \div 2) \neq (8 \div 4) \div 2$$

Os dois teoremas seguintes são propriedades do produto de matrizes análogas às propriedades que valem para números reais[1].

Teorema 2.3. Se $A \in M_{m \times p}(\mathbb{R})$, $B \in M_{p \times q}(\mathbb{R})$ e $C \in M_{q \times n}(\mathbb{R})$ então A(BC) = (AB)C.

Demonstração. Inicialmente analisamos se cada uma das expressões $A \cdot (B \cdot C)$ e $(A \cdot B) \cdot C$ existem e se além disso suas dimensões são iguais.

$$(m \times p) \cdot [(p \times q) \cdot (q \times n)] = [(m \times p) \cdot (p \times q)] \cdot (q \times n)$$
$$(m \times p) \cdot (p \times n) = (m \times q) \cdot (q \times n)$$
$$(m \times n) = (m \times n)$$

Vamos demonstrar que o termo geral de $A \cdot (B \cdot C)$ é igual ao termo geral de $(A \cdot B) \cdot C$.

$$[A \cdot (B \cdot C)]_{ij} = \sum_{k=1}^{p} \left([A]_{ik} \cdot [B \cdot C]_{kj} \right)$$

$$= \sum_{k=1}^{p} \left([A]_{ik} \cdot \sum_{r=1}^{q} \left([B]_{kr} \cdot [C]_{rj} \right) \right)$$

$$= \sum_{k=1}^{p} \left(\sum_{r=1}^{q} \left([A]_{ik} \cdot [B]_{kr} \cdot [C]_{rj} \right) \right)$$

$$= \sum_{r=1}^{q} \left(\sum_{k=1}^{p} \left([A]_{ik} \cdot [B]_{kr} \cdot [C]_{rj} \right) \right)$$

$$= \sum_{r=1}^{q} \left(\left(\sum_{k=1}^{p} \left([A]_{ik} \cdot [B]_{kr} \right) \cdot [C]_{rj} \right) \right)$$

$$= \sum_{r=1}^{q} \left([A \cdot B]_{ir} \cdot [C]_{rj} \right)$$

$$= [(A \cdot B) \cdot C]_{ij}$$

Portanto como o elemento que está na linha i e coluna j da matriz A(BC) e da matriz (AB)C são iguais, então A(BC) = (AB)C.

Teorema 2.4. Se $A \in M_{m \times p}(\mathbb{R})$, $B, C \in M_{p \times n}(\mathbb{R})$ então A(B+C) = AB + AC. Analogamente se $A, B \in M_{m \times p}(\mathbb{R})$, $C \in M_{p \times n}(\mathbb{R})$ então (A+B)C = AC + BC.

Demonstração. Inicialmente analisamos se cada uma das expressões (A+B)C e AC+BC existem e se além disso suas dimensões são iguais.

$$(m \times p) \cdot [(p \times n) + (p \times n)] = (m \times p) \cdot (p \times n) + (m \times p) \cdot (p \times n)$$
$$(m \times p) \cdot (p \times n) = (m \times n) + (m \times n)$$
$$(m \times n) = (m \times n)$$

Vamos demonstrar que o termo geral de $A \cdot (B+C)$ é igual ao termo geral de $A \cdot B + A \cdot C$.

$$[A \cdot (B+C)]_{ij} = \sum_{k=1}^{p} \left([A]_{ik} \cdot [B+C]_{kj} \right)$$

$$= \sum_{k=1}^{p} \left([A]_{ik} \cdot \left([B]_{kj} + [C]_{kj} \right) \right)$$

$$= \sum_{k=1}^{p} \left([A]_{ik} \cdot [B]_{kj} + [A]_{ik} \cdot [C]_{kj} \right)$$

$$= \sum_{k=1}^{p} \left([A]_{ik} \cdot [B]_{kj} \right) + \sum_{k=1}^{p} \left([A]_{ik} \cdot [C]_{kj} \right)$$

$$= [A \cdot B]_{ij} + [A \cdot C]_{ij}$$

$$= [A \cdot B + A \cdot C]_{ij}$$

Portanto como o elemento que está na linha i e coluna j da matriz A(B+C) e da matriz AB+AC são iguais, então A(B+C)=AB+AC.

A demonstração da igualdade (A+B)C = AC + BC é análoga. \blacksquare

Exemplo 2.2.19. Dadas as matrizes $A \in M_{m \times p}(\mathbb{R})$ e $B \in M_{p \times n}(\mathbb{R})$ observe que:

- a) a linha do produto AB é o produto da linha de A pela a matriz B, ou seja, $(A\cdot B)^{(i)}=A^{(i)}\cdot B$
- b) a coluna do produto AB é o produto de A pela coluna da matriz B, ou seja, $(A \cdot B)_{(j)} = A \cdot B_{(j)}$

$$[A \cdot B]_{ij} = A^{(i)} \cdot B_{(j)} \tag{2.7}$$

Exemplo 2.2.20. Observe que o produto de matrizes triangulares superiores é uma matriz triangular superior.

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} 4 & 3 & 2 & 1 \\ 0 & 4 & 3 & 2 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} ? & ? & ? & ? & ? \\ 0 & ? & ? & ? & ? \\ 0 & 0 & ? & ? & ? \\ 0 & 0 & 0 & ? & ? \end{bmatrix}$$

Demonstração.

Suponhamos $A \in B$ triangulares superiores.

$$i > j \Rightarrow$$

$$[AB]_{ij} = \sum_{\substack{k=1\\i-1}}^{p} [A]_{ik} [B]_{kj}$$

$$= \sum_{\substack{k=1\\i-1}}^{p} [A]_{ik} [B]_{kj} + \sum_{\substack{k=i\\k=i}}^{p} [A]_{ik} [B]_{kj}$$

$$= \sum_{\substack{k=1\\k=1}}^{p} 0 \cdot [B]_{kj} + \sum_{\substack{k=i\\k=i}}^{p} [A]_{ik} \cdot 0$$

$$= 0 + 0 = 0$$

2.3 Matrizes Invertíveis

Definição 2.3.1. (Elemento neutro da multiplicação) Seja $I_n \in M_n(\mathbb{R})$ tal que

$$[I_n]_{ij} = \begin{cases} 0, & \text{se } i \neq j \\ 1, & \text{se } i = j \end{cases}$$

ou seja,

$$I_n = \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right]$$

Essa matriz satisfaz $I_n \cdot A = A \cdot I_n \ \forall A \in M_n(\mathbb{R})$ e recebe o nome de matriz identidade de ordem n.

Definição 2.3.2. Uma matriz A de ordem n diz-se invertível se, e somente se, existe uma matriz B, também de ordem n, de modo que:

$$A \cdot B = B \cdot A = I_n$$

Teorema 2.5. Seja $A \in M_n(\mathbb{R})$ uma matriz invertível. Então sua inversa é única.

Demonstração. Suponha que B e C sejam inversas de A. Então valem, em particular, $BA = I_n$ e $AC = I_n$. Assim temos

$$B = B \cdot I_n = B \cdot (A \cdot C) = (B \cdot A) \cdot C = I_n \cdot C = C. \tag{2.8}$$

O que o Teorma acima afirmra é que caso a inversa da matriz A exista, é única e chama-se a inversa de A. Portanto indicamos a única inversa de A por A^{-1} .

Exemplo 2.3.1. A matriz $A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$ é invertível e sua inversa é $B = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{5} \end{bmatrix}$.

Exemplo 2.3.2. Se $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ e $ad - bc \neq 0$ então $\frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ é uma inversa de A.

Exemplo 2.3.3. A matriz $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ é invertível e sua inversa é $B = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$.

Exemplo 2.3.4. Se alguma linha de A é nula, digamos a i-ésima linha de A, $A^{(i)} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$ então A não é invertível. De fato se fosse invertível existiria B tal que $AB = I_n$, por outro lado $(AB)^{(i)} = A^{(i)}B = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix} \neq B = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix} \neq (I_n)^{(i)}$.

Exemplo 2.3.5. Se A e B são matrizes de ordem n, ambas invertíveis, então AB também é invertível e $(AB)^{-1} = B^{-1} \cdot A^{-1}$.

Vamos demonstrar que $(AB) \cdot [B^{-1} \cdot A^{-1}] = I_n$. A igualdade $[B^{-1} \cdot A^{-1}] \cdot (AB) = I_n$ se demonstra de forma análoga.

De fato

$$(AB) \cdot \begin{bmatrix} B^{-1} \cdot A^{-1} \end{bmatrix} = \begin{bmatrix} (AB) \cdot B^{-1} \end{bmatrix} \cdot A^{-1}$$
$$= \begin{bmatrix} A \cdot (B \cdot B^{-1}) \end{bmatrix} \cdot A^{-1}$$
$$= \begin{bmatrix} A \cdot I_n \end{bmatrix} \cdot A^{-1}$$
$$= A \cdot A^{-1}$$
$$= I_n \Rightarrow$$

$$(AB) \cdot [B^{-1} \cdot A^{-1}] = I_n \Rightarrow (AB)^{-1} = B^{-1} \cdot A^{-1}$$

Portanto
$$(AB)^{-1} = B^{-1} \cdot A^{-1}$$
.

Por exemplo, seja A é a seguinte matriz 3×3 com uma linha de zeros

$$A = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 4 & 5 & 6 \end{array} \right]$$

Se supormos que A é invertível então existe B tal que $AB = I_3$.

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 4 & 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

O que é uma contradição, ou seja, não existe uma matriz B tal que $AB = I_3$. Portanto A não é invertível.

Exemplo 2.3.6. Se A e B são matrizes de ordem n, e $AB = I_n$, então $BA = I_n$.

Lema 2.3.9. Suponha que $A \in M_n(\mathbb{F})$ seja equivalente a uma matriz essencialmente reduzida R. Então:

- (a) Ou R possui linha nula ou R é diagonal.
- (b) Se R não possui linha nula e seus pivôs não são divisores próprios de 0, então cada sistema linear tendo A como matriz principal possui no máximo uma solução.

Demonstração. Observe que se alguma linha de R possuir pivô fora da diagonal principal, então os pivôs de todas as linhas subsequentes estarão à direita da diagonal principal. Mas não existe posição à

direita da diagonal principal na última linha de R já que é uma matriz quadrada! Neste caso, a última linha de R deve ser nula.

Para mostrar (b), observe que o sistema linear homogêneo associado a A é equivalente a $r_{i,i}x_i = b_i$ para algum $b_i \in \mathbb{F}$ e $r_{i,i}$ sendo pivô da linha i de R. Como $r_{i,i}$ não é divisor próprio de zero, segue que cada uma dessas equações tem solução se, e somente se, $r_{i,i}$ dividir b_i para todo $i = 1, \dots, n$.

Proposição 2.3.10. Suponha que \mathbb{F} seja um corpo e que $A \in M_n(\mathbb{F})$. As seguintes afirmações são equivalentes.

- (i) A é invertível.
- (ii) Existe $B \in M_n(\mathbb{F})$ satisfazendo $BA = I_n$.
- (iii) A é equivalente a I_n .

Demonstração. A implicação (i) \Rightarrow (ii) é imediata da definição de matriz invertível. Suponha então que (ii) seja válida. Segue que o sistema linear homogêneo associado a A (ver exercício [2.2.1]) só possui a solução trivial. De fato, se AX = 0, então $X = I_nX = BAX = 0$. Seja R a forma escalonada reduzida de A. Pela parte (a) do lema anterior, ou $R = I_n$, ou R possui linha nula. Mas R possuir linha nula implica na existência de variável livre e, portanto, haveriam mais soluções do sistema linear homogêneo associado a A. Logo, devemos ter $R = I_n$. Finalmente, suponha que (iii) seja válida. Assim, existem matrizes E_1, \ldots, E_k que representam operações elementares de escalonamento satisfazendo $E_1E_2\cdots E_kA = I_n$. Como cada E_j é invertível dado que \mathbb{F} é corpo, segue que

$$A = E_k^{-1} \cdots E_2^{-1} E_1^{-1}$$
.

Assim, A é um produto de matrizes invertíveis e, portanto, é invertível (ver exercício 2.1.4).

Observação 2.3.11. Observe que a implicação (ii) \Rightarrow (iii) é válida também supondo-se apenas \mathbb{F} é domínio de integridade. Segue do argumento de (iii) \Rightarrow (i) que o processo de escalonamento pode ser usado para calcular a inversa de A (quando existir). De fato, se A não for equivalente a I_n , então A não é invertível (por que?). Já se A for equivalente a I_n , então

$$A^{-1} = E_1 E_2 \cdots E_k$$

com E_j , $j=1,\ldots,n$, como na demonstração (ver exercício 2.1.4). Assim, a inversa de A é a matriz que se obtém aplicando-se a I_n os mesmos passos de escalonamento que aplicamos a A até encontrar sua forma escalonada reduzida.

Exemplo 2.3.7. Se A e B são matrizes de ordem n, e A não é invertível, então AB também não é invertível.

Exemplo 2.3.8. Se A é uma matriz de ordem n invertível, então A^{-1} também é invertível e $(A^{-1})^{-1} = A$.

A inversa de
$$A \in A^{-1} \Rightarrow \begin{cases} A^{-1} \cdot A = I_n \\ A \cdot A^{-1} = I_n \end{cases} \Rightarrow$$
 a inversa de $A^{-1} \in A$.

Portanto
$$(A^{-1})^{-1} = A$$
.

Exemplo 2.3.9. Prove que a transposta do produto de duas matrizes é o produto das transpostas na ordem trocada, ou seja, $(A \cdot B)^T = B^T \cdot A^T$.

Demonstração.

Vamos demonstrar que o termo geral de $(AB)^T$ é igual ao termo geral de B^TA^T .

$$[(AB)^T]_{ij} = [AB]_{ji}$$

$$= [A]^{(j)}[B]_{(i)}$$

$$= [A^T]_{(j)}[B^T]^{(i)}$$

$$= [B^T]^{(i)}[A^T]_{(j)}$$

$$= [B^TA^T]_{ij}$$

Portanto como o elemento que está na linha i e coluna j da matriz $(AB)^T$ e da matriz B^TA^T são iguais, então $(AB)^T=B^TA^T$.

Exemplo 2.3.10. Prove que a inversa da transposta é a transposta da inversa, ou seja, $(A^T)^{-1} = (A^{-1})^T$.

Demonstração.

$$\begin{cases} (A^T) \cdot (A^{-1})^T &= (A \cdot A^{-1})^T = (I)^T = I \\ (A^{-1})^T \cdot (A^T) &= (A^{-1} \cdot A)^T = (I)^T = I. \end{cases} \Rightarrow (A^T)^{-1} = (A^{-1})^T$$

Exemplo 2.3.11. Resumo de algumas propriedades que valem para o produto de números reais mas falham para o produto de matrizes:

1)
$$A \cdot B = B \cdot A$$
;

2)
$$A \neq 0, B \neq 0 \Rightarrow A \cdot B \neq 0$$
;

3)
$$M_n(\mathbb{R})^* = M_n(\mathbb{R}) - \{0\}.$$

1)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix} \Rightarrow AB \neq BA$;

2)
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \Rightarrow AB = 0$;

2)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \Rightarrow AB = 0$;

3)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \Rightarrow AX \neq I, \ \forall X \in M_2(\mathbb{R})$$

De fato

$$AX = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Leftrightarrow \begin{cases} x + 2z & = 1 \\ y + 2w & = 0 \\ 3x + 6z & = 0 \\ 3y + 6w & = 1 \end{cases}$$

2.4 Aplicações

Em computação o produto de matrizes tem a grande vantagem de poder ser executado em paralelo portanto sempre que possível devemos converter um processo em série para a multiplicação de matrizes. Um bom exemplo disso é a replicação de um vetor nas colunas (ou linhas) de uma matriz como no exemplo seguinte.

Exemplo 2.4.1. Sejam
$$A = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$. Calcule o

produto de A por B.

$$A \cdot B = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \Rightarrow A \cdot B = \begin{bmatrix} a & a & a & a \\ b & b & b & b \\ c & c & c & c \end{bmatrix}$$

Capítulo 3

Sistemas Lineares

3.1 Sistemas Lineares

Definição 3.1.1. Dados os números $\alpha_1, \alpha_2, \cdots, \alpha_n, \beta \ (n \geq 1)$, à equação

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = \beta \tag{3.1}$$

onde os x_i são variáveis em \mathbb{R} , damos o nome de equação linear sobre \mathbb{R} nas incógnitas x_1, x_2, \cdots, x_n .

A equação (3.1) pode ser escrita em termos de somatória

$$\sum_{i=1}^{n} \alpha_i x_i = \beta \tag{3.2}$$

Uma solução dessa equação é uma sequência de n números reais, indicados por (b_1, b_2, \dots, b_n) , tais que

$$\alpha_1 b_1 + \alpha_2 b_2 + \dots + \alpha_n b_n = \beta. \tag{3.3}$$

Exemplo 3.1.1. Vejamos alguns exemplos.

- I) São exemplos de equações lineares.
- a) 3x + 5y + 2z = 1;
- b) $5x_1 + 3x_2 + 2x_3 = 9$;

- c) ax + by + cz = d, onde $a, b, c \in \mathbb{R}$;
- II) São exemplos de equações não lineares.
- a) $ax^2 + bx + c = 0$;
- b) $sen^{2}(x) + cos^{2}(x) = 1;$
- c) $x \cdot y = 1$.

Exemplo 3.1.2. Dada a equação $2x_1 - x_2 + x_3 = 1$, a terna ordenada (1,3,2) é uma solução dessa equação pois $2 \cdot 1 - 3 + 2 = 1$ é verdadeira.

Solução:

Isolando uma das variáveis e atribuindo qualquer valor às demais obtém-se uma solução.

$$x_1 = \frac{1 + x_2 - x_3}{3}$$
 $x_2 = 2x_1 + x_3 - 1$ $x_3 = 1 - 2x_1 + x_2$

Portanto temos que

$$\left(\frac{1+x_2-x_3}{3},x_2,x_3\right), (x_1,2x_1+x_3-1,x_3), (x_1,x_2,1-2x_1+x_2)$$

são soluções da equação $2x_1 - x_2 + x_3 = 1$.

Definição 3.1.2. Um sistema com m equações lineares e n incógnitas $(m, n \ge 1)$ é um conjunto de m equações lineares consideradas simultaneamente, cada uma delas com n incógnitas. Um sistema linear se apresenta do seguinte modo:

$$S: \begin{cases} \alpha_{11}x_1 + \alpha_{12}x_2 + \cdots + \alpha_{1n}x_n = \beta_1 \\ \alpha_{21}x_1 + \alpha_{22}x_2 + \cdots + \alpha_{2n}x_n = \beta_2 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{m1}x_1 + \alpha_{m2}x_2 + \cdots + \alpha_{mn}x_n = \beta_m \end{cases}$$
(3.4)

Uma solução do sistema (3.4) é uma solução de todas as equações, ou seja, uma solução do sistema (3.4) é uma n-upla (b_1, b_2, \dots, b_n) de

números reais que é solução de cada uma das equações do sistema, ou seja, uma n-upla (b_1, b_2, \dots, b_n) de números reais tais que

$$\begin{cases}
\alpha_{11}b_{1} + \alpha_{12}b_{2} + \cdots + \alpha_{1n}b_{n} = \beta_{1} \\
\alpha_{21}b_{1} + \alpha_{22}b_{2} + \cdots + \alpha_{2n}b_{n} = \beta_{2} \\
\vdots & \vdots & \vdots \\
\alpha_{m1}b_{1} + \alpha_{m2}b_{2} + \cdots + \alpha_{mn}b_{n} = \beta_{m}
\end{cases} (3.5)$$

Exemplo 3.1.3. Dado o sistema
$$S: \left\{ \begin{array}{llll} 2x & - & y & + & z & = & 1 \\ x & + & 2y & & = & 6 \end{array} \right.$$

A terna de números (2,2,-1) é uma solução de S. Essa solução não é única. Por exemplo as ternas $(\frac{8}{5},\frac{11}{5},0)$, (4,1,-6) também são soluções de S.

Definição 3.1.3. Quanto ao número de soluções, um sistema linear é classificado da seguinte forma. Primeiro distinguimos um sistema com solução de uma sistema sem solução.

{ Nenhuma Solução — Impossível Pelo menos uma Solução — Possível

Segundo classificamos os sistemas com solução em Determinado e Indeterminado.

Uma única Solução − Determinado
 Mais do que uma solução − Indeterminado

E por fim agrupamos essas informações da seguinte forma.

Nenhuma Solução - Impossível
 Uma única Solução - Possível e Determinado
 Mais do que uma solução - Possível e Indeterminado.

Obs.: Um sistema com mais do que uma solução tem infinitas soluções. Ou seja, não existe um sistema com por exemplo apenas 2 soluções. Em geral, não existe um sistema linear cujo número de soluções seja finito e maior do que 1.

Exemplo 3.1.4. Classifique cada um dos sistemas quanto ao número de soluções.

Exemplo 3.1.5.
$$S: \left\{ \begin{array}{llll} 2x & - & y & + & z & = & 1 \\ x & + & 2y & & = & 6 \end{array} \right.$$

Solução:

$$x = 6 - 2y \Rightarrow$$

$$2(6 - 2y) - y + z = 1 \Rightarrow 12 - 4y - y + z = 1 \Rightarrow 5y = 11 + z \Rightarrow$$

$$y = \frac{11 + z}{5}$$

$$x = 6 - 2\left(\frac{11 + z}{5}\right) \Rightarrow x = 6 - \frac{22 + 2z}{5} \Rightarrow x = \frac{30 - 22 - 2z}{5} \Rightarrow$$

$$x = \frac{8 - 2z}{5}$$

Portanto toda terna de números do tipo $\left(\frac{8-2z}{5}, \frac{11+z}{5}, z\right)$ é uma solução do sistema dado.

Definição 3.1.4. Se $\beta_1 = \beta_2 = \cdots = \beta_m = 0$ o sistema é dito homogêneo.

$$H: \begin{cases} \alpha_{11}x_1 + \alpha_{12}x_2 + \cdots + \alpha_{1n}x_n = 0\\ \alpha_{21}x_1 + \alpha_{22}x_2 + \cdots + \alpha_{2n}x_n = 0\\ \vdots & \vdots & \vdots & \vdots\\ \alpha_{m1}x_1 + \alpha_{m2}x_2 + \cdots + \alpha_{mn}x_n = 0 \end{cases}$$

Todo sistema homogêneo admite pelo menos a solução $(b_1, b_2, \dots, b_m) = (0, 0, \dots, 0)$. Essa solução é chamada de solução trivial. Portanto todo sistema homogêneo é possível.

Exemplo 3.1.6. Seguem-se dois exemplos de sistemas homogêneos, o primeiro é determinado e o segundo indeterminado.

a)
$$\begin{cases} x + y = 0 \\ x + 2y = 0 \end{cases}$$

b)
$$\begin{cases} x + 2y = 0 \\ 3x + 6y = 0 \end{cases}$$

Exemplo 3.1.7. Qualquer sistema do tipo

$$S: \begin{cases} \alpha_{11}x_1 + \alpha_{12}x_2 + \cdots + \alpha_{1n}x_n &= \beta_1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \cdots + 0 \cdot x_n &= \beta_i & (\beta_i \neq 0) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{m1}x_1 + \alpha_{m2}x_2 + \cdots + \alpha_{mn}x_n &= \beta_m \end{cases}$$

é necessariamente impossível, pois a i-ésima equação não tem solução, visto que, dado (b_1, b_2, \dots, b_m) temos $(0 \cdot b_1 + 0 \cdot b_2 + \dots + 0 \cdot b_m = 0)$ e $\beta_i \neq 0$.

Exemplo 3.1.8. Um sistema do tipo

$$S: \begin{cases} x_1 & = \beta_1 \\ x_2 & = \beta_2 \\ & \ddots & \\ & x_n = \beta_n \end{cases}$$

é possível e determinado e $(\beta_1, \beta_2, \dots, \beta_n)$ é a única solução.

3.2 Sistemas Equivalentes

Descrevemos a seguir três formas de modificar um sistema linear preservando o conjunto solução. O objetivo é transformar o sistema até obter um sistema(com a mesma solução) cuja solução esteja explícita.

(I) Permutar duas equações de um sistema não afeta seu conjunto solução. Ou seja, se o sistema R é obtido a partir de S permutando duas equações então R e S tem o mesmo conjunto solução.

$$S: \begin{cases} \alpha_{11}x_{1} + \cdots + \alpha_{1n}x_{n} &= \beta_{1} \\ \vdots \\ \alpha_{i1}x_{1} + \cdots + \alpha_{in}x_{n} &= \beta_{i} \\ \vdots \\ \alpha_{j1}x_{1} + \cdots + \alpha_{jn}x_{n} &= \beta_{j} \\ \vdots \\ \alpha_{m1}x_{1} + \cdots + \alpha_{mn}x_{n} &= \beta_{m} \end{cases}$$

$$R: \begin{cases} \alpha_{11}x_{1} + \cdots + \alpha_{1n}x_{n} &= \beta_{1} \\ \vdots \\ \alpha_{j1}x_{1} + \cdots + \alpha_{jn}x_{n} &= \beta_{j} \\ \vdots \\ \alpha_{i1}x_{1} + \cdots + \alpha_{in}x_{n} &= \beta_{i} \\ \vdots \\ \alpha_{m1}x_{1} + \cdots + \alpha_{mn}x_{n} &= \beta_{m} \end{cases}$$

(II) Multiplicar uma equações de S por um número real $\lambda \neq 0$ também não afeta o conjunto solução do sistema.

$$S: \begin{cases} \alpha_{11}x_{1} + \cdots + \alpha_{1n}x_{n} &= \beta_{1} \\ \vdots & \vdots \\ \alpha_{i1}x_{1} + \cdots + \alpha_{in}x_{n} &= \beta_{i} \\ \vdots & \vdots \\ \alpha_{m1}x_{1} + \cdots + \alpha_{mn}x_{n} &= \beta_{m} \end{cases}$$

$$R: \begin{cases} \alpha_{11}x_{1} + \cdots + \alpha_{1n}x_{n} &= \beta_{1} \\ \vdots & \vdots \\ \lambda\alpha_{i1}x_{1} + \cdots + \lambda\alpha_{in}x_{n} &= \lambda\beta_{i} \\ \vdots & \vdots \\ \alpha_{m1}x_{1} + \cdots + \alpha_{mn}x_{n} &= \beta_{m} \end{cases}$$

(III) Somar a uma das equações do sistema uma outra equação multiplicada por um número real. Essa modificação embora mais elabora também preserva o conjunto solução do sistema.

$$S: \begin{cases} \alpha_{11}x_1 + \cdots + \alpha_{1n}x_n &= \beta_1 \\ \vdots \\ \alpha_{i1}x_1 + \cdots + \alpha_{in}x_n &= \beta_i \\ \vdots \\ \alpha_{j1}x_1 + \cdots + \alpha_{jn}x_n &= \beta_j \\ \vdots \\ \alpha_{m1}x_1 + \cdots + \alpha_{mn}x_n &= \beta_m \end{cases}$$

$$R: \begin{cases} \alpha_{11}x_1 + \cdots + \alpha_{mn}x_n &= \beta_1 \\ \vdots \\ \alpha_{i1}x_1 + \cdots + \alpha_{in}x_n &= \beta_i \\ \vdots \\ (\alpha_{j1} + \lambda \alpha_{i1})x_1 + \cdots + (\alpha_{jn} + \lambda \alpha_{in})x_n &= \beta_j + \lambda \beta_i \\ \vdots \\ \alpha_{m1}x_1 + \cdots + \alpha_{mn}x_n &= \beta_m \end{cases}$$

Definição 3.2.1. Dado um sistema linear S qualquer uma das modificações (I), (II), (III) recebe o nome de Operação Elementar sobre linhas. Se um Sistema linear R foi obtido de S por meio de um número finito de operações elementares dizemos que R está relacionado com S. E escrevemos $R \sim S$ para representar essa relação.

É fácil verificar que a relação \sim satisfaz as seguintes propriedades:

- a) $S \sim S$ (Reflexiva);
- b) $R \sim S \Rightarrow S \sim R$ (Simetria);
- c) $R \sim S$, $T \sim R \Rightarrow T \sim S$ (Transitiva).

Uma relação que satisfaça as propriedades a), b) e c) é chamada de relação de equivalência[3], [2].

Definição 3.2.2. Se um sistema R for obtido de S por meio de um número finito de operações elementares dizemos que R é equivalente a S.

Definição 3.2.3. Dados um sistema

$$S: \begin{cases} \alpha_{11}x_1 + \alpha_{12}x_2 + \cdots + \alpha_{1n}x_n = \beta_1 \\ \alpha_{21}x_1 + \alpha_{22}x_2 + \cdots + \alpha_{2n}x_n = \beta_2 \\ \vdots \\ \alpha_{m1}x_1 + \alpha_{m2}x_2 + \cdots + \alpha_{mn}x_n = \beta_m \end{cases}$$

a matriz

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} & \beta_1 \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} & \beta_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} & \beta_m \end{bmatrix}$$

é chamada de matriz aumentada do sistema S.

Ao manipular as equações de um sistema as variáveis permanecem intactas, assim podemos suprimi-las nesse processo e trabalhar apenas com os coeficientes. Esse processo recebe o nome de escalonamento.

Exemplo 3.2.1. Vejamos agora um exemplo de escalonamento de um sistemas com três equações e três incógnitas.

$$\begin{cases} x_1 + x_2 - x_3 = -3 \\ -2x_1 - x_2 + 3x_3 = 8 \\ 3x_1 - 2x_2 - 7x_3 = -16 \end{cases} \longleftrightarrow$$

$$\begin{bmatrix} 1 & 1 & -1 & -3 \\ -2 & -1 & 3 & 8 \\ 3 & -2 & -7 & -16 \end{bmatrix} \xrightarrow{L_2 + 2L_1} \begin{bmatrix} 1 & 1 & -1 & -3 \\ 0 & 1 & 1 & 2 \\ L_3 + (-3)L_1 \end{bmatrix} \xrightarrow{L_3 + 5L_2}$$

$$\begin{bmatrix} 1 & 1 & -1 & -3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{L_1 + L_3} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{L_1 + (-1)L_2}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix} \longleftrightarrow \begin{cases} x_1 & = 1 \\ x_2 & = -1 \\ x_3 & = 3 \end{cases}$$

A única solução do sistema equivalente é $(x_1, x_2, x_3) = (1, -1, 3)$. Portanto a solução do sistema original também é única e é $(x_1, x_2, x_3) = (1, -1, 3)$. Escrevemos essa solução no formato vetorial como segue:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$

Exemplo 3.2.2. Mostre que o seguinte sistema é equivalente a um sistema impossível.

$$\begin{cases} x - y + z = 1 \\ 2x - y + z = 4 \\ x - 2y + 2z = 0 \end{cases}$$

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & -1 & 1 & 4 \\ 1 & -2 & 2 & 0 \end{bmatrix} \xrightarrow{L_2 + (-2)L_1} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & -1 & 1 & -1 \end{bmatrix} \xrightarrow{L_3 + L_2}$$

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \longleftrightarrow \begin{cases} x - y + z = 1 \\ y - z = 2 \\ 0 \cdot x + 0 \cdot y + 0 \cdot z = 1 \end{cases}$$

A equação $0 \cdot x + 0 \cdot y + 0 \cdot z = 1$ não tem solução. Portanto o sistema equivalente ao sistema original é impossível, logo o sistema original é impossível, ou seja, o conjunto solução é vazio.

Exemplo 3.2.3. Vejamos agora um exemplo de escalonamento de um sistemas 4×4 .

$$\begin{cases} x_1 + 3x_2 + 4x_3 + 2x_4 = 8 \\ 3x_1 + 10x_2 + 14x_3 + 5x_4 = 24 \\ -5x_1 - 11x_2 - 11x_3 - 17x_4 = -48 \\ 4x_1 + 9x_2 + 10x_3 + 12x_4 = 36 \end{cases} \longleftrightarrow$$

$$\begin{bmatrix} 1 & 3 & 4 & 2 & 8 \\ 3 & 10 & 14 & 5 & 24 \\ -5 & -11 & -11 & -17 & -48 \\ 4 & 9 & 10 & 12 & 36 \end{bmatrix} \xrightarrow{L_2 + (-3)L_1} L_3 + 5L_1 L_4 + (-4)L_1$$

$$\begin{bmatrix} 1 & 3 & 4 & 2 & 8 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 4 & 9 & -7 & -8 \\ 0 & -3 & -6 & 4 & 4 \end{bmatrix} \xrightarrow{L_3 + (-4)L_2} L_4 + 3L_2$$

$$\begin{bmatrix} 1 & 3 & 4 & 2 & 8 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 1 & -3 & -8 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix} \xrightarrow{L_1 + (-2)L_4} \begin{bmatrix} 1 & 3 & 4 & 0 & 0 \\ 0 & 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix} \xrightarrow{L_1 + (-4)L_3} \xrightarrow{L_2 + (-2)L_3}$$

$$\begin{bmatrix} 1 & 3 & 0 & 0 & -16 \\ 0 & 1 & 0 & 0 & -4 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix} \xrightarrow{L_1 + (-3)L_2} \begin{bmatrix} 1 & 0 & 0 & 0 & -4 \\ 0 & 1 & 0 & 0 & -4 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix} \longleftrightarrow$$

$$\begin{cases} x_1 & = -4 \\ x_2 & = -4 \\ x_3 & = 4 \end{cases} \longleftrightarrow \begin{cases} x_1 = -4 \\ x_2 = -4 \\ x_3 = 4 \end{cases} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \\ 4 \\ 4 \end{bmatrix}$$

Exemplo 3.2.4. Resolva o sistema.

$$\begin{cases} x - 2y - z = 1 \\ 2x + y - 3z = 0 \longleftrightarrow \\ x - 7y = 3 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & -1 & 1 \\ 2 & 1 & -3 & 0 \\ 1 & -7 & 0 & 3 \end{bmatrix} \xrightarrow{L_2 + (-2)L_1} \begin{bmatrix} 1 & -2 & -1 & 1 \\ 0 & 5 & -1 & -2 \\ 0 & -5 & 1 & 2 \end{bmatrix} \xrightarrow{L_3 + L_2}$$

$$\begin{bmatrix} 1 & -2 & -1 & 1 \\ 0 & 5 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{L_2/5} \begin{bmatrix} 1 & -2 & -1 & 1 \\ 0 & 1 & -\frac{1}{5} & -\frac{2}{5} \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{L_1 + 2L_2}$$

$$\begin{bmatrix} 1 & 0 & -\frac{7}{5} & \frac{1}{5} \\ 0 & 1 & -\frac{1}{5} & -\frac{2}{5} \\ 0 & 0 & 0 & 0 \end{bmatrix} \longleftrightarrow \begin{cases} x & -\frac{7}{5}z = \frac{1}{5} \\ y - \frac{1}{5}z = -\frac{2}{5} \end{cases} \longleftrightarrow \begin{cases} x = \frac{1}{5} + \frac{7}{5}z \\ y = -\frac{2}{5} + \frac{1}{5}z \end{cases}$$

Portanto $(\frac{1}{5} + \frac{7}{5}z, -\frac{2}{5} + \frac{1}{5}z, z)$ é uma solução de $S \ \forall z \in \mathbb{R}$.

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{1}{5} + \frac{7}{5}z \\ -\frac{2}{5} + \frac{1}{5}z \\ z \end{bmatrix} = \begin{bmatrix} \frac{1}{5} \\ -\frac{2}{5} \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{7}{5}z \\ \frac{1}{5}z \\ z \end{bmatrix} = \begin{bmatrix} \frac{1}{5} \\ -\frac{2}{5} \\ 0 \end{bmatrix} + z \begin{bmatrix} \frac{7}{5} \\ \frac{1}{5} \\ 1 \end{bmatrix}$$

Exemplo 3.2.5. Vejamos agora um exemplo de escalonamento de um sistemas com três equações e cinco incógnitas (mais equações do que incógnitas).

$$\begin{cases} x_1 - x_2 + x_3 - 7x_4 & = 1 \\ 2x_1 - 2x_2 + 3x_3 - 19x_4 - x_5 & = 1 \\ 3x_1 - 3x_2 + 2x_3 - 16x_4 + x_5 & = 4 \end{cases}$$

$$\begin{bmatrix} 1 & -1 & 1 & -7 & 0 & 1 \\ 2 & -2 & 3 & -19 & -1 & 1 \\ 3 & -3 & 2 & -16 & 1 & 4 \end{bmatrix} \xrightarrow{L_2 + (-2)L_1} \begin{bmatrix} 1 & -1 & 1 & -7 & 0 & 1 \\ 0 & 0 & 1 & -5 & -1 & -1 \\ 0 & 0 & -1 & 5 & 1 & 1 \end{bmatrix} \xrightarrow{L_3 + L_2}$$

$$\begin{bmatrix} 1 & -1 & 1 & -7 & 0 & 1 \\ 0 & 0 & 1 & -5 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{L_1 + (-1)L_2} \begin{bmatrix} 1 & -1 & 0 & -2 & 1 & 2 \\ 0 & 0 & 1 & -5 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \longleftrightarrow$$

$$\begin{cases} 1 \cdot x_1 + (-1) \cdot x_2 + 0 \cdot x_3 + (-2) \cdot x_4 + 1 \cdot x_5 = 2 \\ 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + (-5) \cdot x_4 + (-1) \cdot x_5 = -1 \end{cases}$$

$$\longleftrightarrow \left\{ \begin{array}{rclcr} x_1 & = & 2 & + & 1 \cdot x_2 & + & 2 \cdot x_4 & + & (-1) \cdot x_5 \\ x_3 & = & -1 & + & 0 \cdot x_2 & + & 5 \cdot x_4 & + & 1 \cdot x_5 \end{array} \right.$$

$$\begin{cases} x_2 = x_2 \\ x_4 = x_4 \\ x_5 = x_5 \end{cases}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ 0 \\ 5 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Exemplo 3.2.6. Verifique que o seguinte sistema é possível e determinado e encontre a sua única solução.

$$\begin{cases} x - y + z = 1 \\ 2x + y + 2z = 0 \longleftrightarrow \\ 3x - y + z = 1 \end{cases}$$

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & 1 & 2 & 0 \\ 3 & -1 & 1 & 1 \end{bmatrix} \xrightarrow{L_2 + (-2)L_1} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 3 & 0 & -2 \\ 0 & 2 & -2 & -2 \end{bmatrix} \xrightarrow{L_2 \leftrightarrow L_3}$$

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 2 & -2 & -2 \\ 0 & 3 & 0 & -2 \end{bmatrix} \xrightarrow{L_2/2} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 3 & 0 & -2 \end{bmatrix} \xrightarrow{L_3 + (-3)L_2}$$

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 3 & 1 \end{bmatrix} \xrightarrow{L_3/3} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & \frac{1}{3} \end{bmatrix} \xrightarrow{L_1 + (-1)L_3} \xrightarrow{L_2 + L_3}$$

$$\begin{bmatrix} 1 & -1 & 0 & \frac{2}{3} \\ 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 1 & \frac{1}{3} \end{bmatrix} \xrightarrow{L_1 + L_2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 1 & \frac{1}{3} \end{bmatrix} \xrightarrow{L_1 + (-1)L_3} \xrightarrow{L_2 + L_3}$$

$$\longleftrightarrow \begin{cases} x & = 0 \\ y & = -\frac{2}{3} \\ z & = \frac{1}{3} \end{cases}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$$

3.3 Sistemas algébricos

Exemplo 3.3.1. Discutir o seguinte sistema linear:

$$\begin{cases} x - ay - z = 1 \\ x - 3y - az = 1 \\ ax - 9y - az = 1 \end{cases}$$

Solução:

$$\begin{bmatrix} 1 & -a & -1 & 1 \\ 1 & -3 & -a & 1 \\ a & -9 & -a & 1 \end{bmatrix} \xrightarrow{L_2 + (-1)L_1} L_3 + (-a)L_1$$

$$\begin{bmatrix} 1 & -a & -1 & 1 \\ 0 & a-3 & 1-a & 0 \\ 0 & a^2-9 & 0 & 1-a \end{bmatrix} \xrightarrow{L_3 + (-(a+3))L_1}$$

$$\begin{bmatrix} 1 & -a & -1 & 1 \\ 0 & a-3 & 1-a & 0 \\ 0 & 0 & a^2+2a-3 & 1-a \end{bmatrix}$$

$$a^2 + 2a - 3 = 0 \Rightarrow a' = 1$$
 $a'' = -3$

Primeiro caso: a = 1

$$\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
0 & -2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

Segundo caso: a = -3

$$\begin{bmatrix}
1 & 3 & -1 & 1 \\
0 & -6 & 4 & 0 \\
0 & 0 & 0 & 4
\end{bmatrix}$$

Terceiro caso: a = 3

$$\left[\begin{array}{cccc}
1 & -3 & -1 & 1 \\
0 & 0 & -2 & 0 \\
0 & 0 & 12 & -2
\end{array}\right]$$

Quarto caso: $a \in \mathbb{R} - \{-3, 1, 3\}$

$$\begin{bmatrix} 1 & -a & -1 & 1 \\ 0 & 1 & \frac{1-a}{a-3} & 0 \\ 0 & 0 & 1 & \frac{-1}{a+3} \end{bmatrix}$$

Exemplo 3.3.2. Seja $A = \begin{bmatrix} 2 & x^2 \\ 2x - 1 & 0 \end{bmatrix}$. Resolva a equação $A^T = A$.

3.4 Determinação da Inversa

Um processo prático para determinação da inversa de uma matriz será apresentado nesse exemplo e demonstrado adiante no Teorema (3.3).

Exemplo 3.4.1. Verifique se a matriz $A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 4 & 5 \\ 3 & 10 & 10 \end{bmatrix}$ é invertível e determine A^{-1} , caso esta matriz exista.

$$\begin{bmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 1 & 4 & 5 & 0 & 1 & 0 \\ 3 & 10 & 10 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_2 + (-1)L_1} \begin{bmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & -1 & 1 & 0 \\ 0 & 1 & 4 & -3 & 0 & 1 \end{bmatrix} \xrightarrow{L_3 + (-1)L_2}$$

$$\begin{bmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & -1 & 1 & 0 \\ 0 & 0 & 1 & -2 & -1 & 1 \end{bmatrix} \xrightarrow{L_1 + (-1)L_3} \begin{bmatrix} 1 & 3 & 0 & 5 & 2 & -2 \\ 0 & 1 & 0 & 5 & 4 & -3 \\ 0 & 0 & 1 & -2 & -1 & 1 \end{bmatrix} \xrightarrow{L_1 + (-3)L_2} \xrightarrow{\longrightarrow}$$

$$\left[\begin{array}{ccc|ccc|c}
1 & 0 & 0 & -10 & -10 & 7 \\
0 & 1 & 0 & 5 & 4 & -3 \\
0 & 0 & 1 & -2 & -1 & 1
\end{array}\right]$$

Logo a matriz A é invertível e

$$A^{-1} = \begin{bmatrix} -10 & -10 & 7 \\ 5 & 4 & -3 \\ -2 & -1 & 1 \end{bmatrix}$$

Para termos certeza de que as contas estão corretas devemos verificar se de fato $A^{-1} \cdot A = I$.

$$A^{-1} \cdot A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 4 & 5 \\ 3 & 10 & 10 \end{bmatrix} \cdot \begin{bmatrix} -10 & -10 & 7 \\ 5 & 4 & -3 \\ -2 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Exemplo 3.4.2. Verifique se a matriz $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$ é invertível e determine A^{-1} , caso esta matriz exista.

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_3 + (-1)L_1} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{L_3 + L_2}$$

$$\begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 3 & | & -1 & 1 & 1 \end{bmatrix} \xrightarrow{L_3/3} \begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \xrightarrow{L_2 + (-1)L_3}$$

$$\begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & | & -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \xrightarrow{L_1 + (-1)L_2} \begin{bmatrix} 1 & 0 & 0 & | & \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 1 & 0 & | & \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & | & -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Logo a matriz A é invertível e

$$A^{-1} = \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \Rightarrow A^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$

Para termos certeza de que as contas estão corretas devemos verificar se de fato $A^{-1} \cdot A = I$.

$$A^{-1} \cdot A = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Exemplo 3.4.3. Vejamos o mesmo problema com $A = \begin{bmatrix} 1 & 2 & 6 \\ 0 & 1 & 5 \\ 2 & 3 & 7 \end{bmatrix}$.

$$\begin{bmatrix} 1 & 2 & 6 & 1 & 0 & 0 \\ 0 & 1 & 5 & 0 & 1 & 0 \\ 2 & 3 & 7 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_3 + (-2)L_1}$$

$$\begin{bmatrix} 1 & 2 & 6 & 1 & 0 & 0 \\ 0 & 1 & 5 & 0 & 1 & 0 \\ 0 & -1 & -5 & -2 & 0 & 1 \end{bmatrix} \xrightarrow{L_3 + L_2}$$

$$\left[\begin{array}{ccc|c}
1 & 2 & 6 & 1 & 0 & 0 \\
0 & 1 & 5 & 0 & 1 & 0 \\
0 & 0 & 0 & -2 & 1 & 1
\end{array}\right]$$

Logo a matriz A não é invertível.

3.5 Sistemas de Cramer

Seja

$$S: \begin{cases} \alpha_{11}x_1 + \alpha_{12}x_2 + \cdots + \alpha_{1n}x_n = \beta_1 \\ \alpha_{21}x_1 + \alpha_{22}x_2 + \cdots + \alpha_{2n}x_n = \beta_2 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{m1}x_1 + \alpha_{m2}x_2 + \cdots + \alpha_{mn}x_n = \beta_m \end{cases}$$
(3.6)

um sistema de m equações com n incógnitas $(m, n \geq 1)$ sobre \mathbb{R} . Se tomarmos

$$A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} e b = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{bmatrix},$$

então S poderá ser escrito na forma matricial

$$AX = b$$

onde A recebe o nome de matriz dos coeficientes dos sistema (3.6).

Definição 3.5.1. Um sistema de Cramer é um sistema linear $n \times n$ cuja matriz dos coeficientes é invertível.

Neste ambiente em que $A \in M_n(\mathbb{R})^*$ procedendo com as seguintes manipulações algébricas, cujas validades já foram demonstradas temos.

$$AX = b \Leftrightarrow A^{-1}(AX) = A^{-1}b \Leftrightarrow (A^{-1}A)X = A^{-1}b \Leftrightarrow I_nX = A^{-1}b \Leftrightarrow X = A^{-1}b$$

Portanto todo sistema de Cramer é possível e determinado.

Exemplo 3.5.1. A matriz dos coeficiente do sistema

$$\begin{cases} x + y & = 1 \\ y + z & = 1 & \text{\'e } A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \text{ que \'e invertível e}$$

$$A^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$
Além disso $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ e $b = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

Portanto

$$X = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

3.6 Matrizes Elementares

Definição 3.6.1. Uma matriz elementar de ordem n é uma matriz E obtida de I_n por meio de uma **única** operação elementar.

Exemplo 3.6.1.
$$E_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

Teorema 3.1. Sejam E uma matriz elementar de ordem n. Se aplicarmos, em uma matriz A, (também de ordem n) a mesma operação elementar que transforma I_n em E obtemos a matriz EA.

Especialmente nesse Teorema não faremos demonstração, em vez disso, daremos um exemplo desse comportamento das matrizes elementares.

Exemplo 3.6.2. Sejam

$$A = \left[\begin{array}{rrr} 1 & 2 & 4 \\ 5 & 1 & 3 \\ 2 & 1 & 8 \end{array} \right]$$

$$E_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} e E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Aplicando a operação que transformou I_n em E_1 obtemos:

$$\begin{bmatrix} 1 & 2 & 4 \\ 5 & 1 & 3 \\ 2 & 1 & 8 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_3} \begin{bmatrix} 2 & 1 & 8 \\ 5 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$

Multiplicando E_1 por A obtemos:

$$E_1 \cdot A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 4 \\ 5 & 1 & 3 \\ 2 & 1 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 8 \\ 5 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$

Aplicando a operação que transformou I_n em E_2 obtemos:

$$\begin{bmatrix} 1 & 2 & 4 \\ 5 & 1 & 3 \\ 2 & 1 & 8 \end{bmatrix} \xrightarrow{L_2 = 2L_2} \begin{bmatrix} 1 & 2 & 4 \\ 10 & 2 & 6 \\ 2 & 1 & 8 \end{bmatrix}$$

Multiplicando E_2 por A obtemos:

$$E_2 \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 4 \\ 5 & 1 & 3 \\ 2 & 1 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 \\ 10 & 2 & 6 \\ 2 & 1 & 8 \end{bmatrix}$$

Aplicando a operação que transformou I_n em E_3 obtemos:

$$\begin{bmatrix} 1 & 2 & 4 \\ 5 & 1 & 3 \\ 2 & 1 & 8 \end{bmatrix} \xrightarrow{L_2 + 3L_1} \begin{bmatrix} 1 & 2 & 4 \\ 8 & 7 & 15 \\ 2 & 1 & 8 \end{bmatrix}$$

Multiplicando E_3 por A obtemos:

$$E_3 \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 4 \\ 5 & 1 & 3 \\ 2 & 1 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 \\ 8 & 7 & 15 \\ 2 & 1 & 8 \end{bmatrix}$$

Teorema 3.2. Toda matriz elementar E de ordem n é invertível.

Teorema 3.3. Uma matriz A de ordem n é invertível se, e somente se, $I_n \sim A$. Neste caso, a mesma sucessão de operações que transforma A em I_n , transforma I_n em A^{-1} .

Demonstração.

$$E_t \cdot E_{t-1} \cdots E_2 \cdot E_1 \cdot A = I_n \implies A^{-1} = E_t \cdot E_{t-1} \cdots E_2 \cdot E_1$$

$$\Rightarrow A^{-1} = E_t \cdot E_{t-1} \cdots E_2 \cdot E_1 \cdot I_n$$

3.7 Aplicações

Interpolação Polinomial

A interpolação polinomial é a substituição de uma função por um polinômio que coincida em um conjunto finito de pontos. Caso o fenômeno possa ser representado por um polinômio então o resultado será uma solução exata como é o caso dos seguintes exemplos.

Exemplo 3.7.1. Suponha que $f(x) = ax^3 + bx^2 + cx + d$. Determine seus coeficientes a, b, c e d resolvendo o seguinte sistema:

$$\begin{cases} f(-1) &= -2 \\ f(0) &= 2 \\ f(1) &= 2 \\ f(2) &= 4 \end{cases}$$

Exemplo 3.7.2. Suponha que $f(n) = \sum_{k=1}^{n} k$ possa ser expressa por uma função polinomial de grau três, ou seja, $f(n) = an^2 + bn + c$. Determine seus coeficientes a, b e c resolvendo o seguinte sistema:

$$\begin{cases} f(0) = 0 \\ f(1) = 1 \\ f(2) = 3 \end{cases}$$

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 2 \end{bmatrix}$$

Resolvendo o sistema acima obtemos

$$\left[\begin{array}{c} a \\ b \\ c \end{array}\right] = \left[\begin{array}{c} \frac{1}{2} \\ -\frac{1}{2} \\ 0 \end{array}\right]$$

Ou seja, $f(n) = \frac{1}{2}n^2 - \frac{1}{2}n + 0 = \frac{n(n-1)}{2}$. Desse fato concluímos que caso a função f possa ser expressa como polinômio de grau 2 então é dada por

$$\sum_{k=1}^{n} k = \frac{n(n-1)}{2} \tag{3.7}$$

Exemplo 3.7.3. Suponha que $f(n) = \sum_{k=1}^{n} k^2$ possa ser expressa por uma função polinomial de grau três, ou seja, $f(n) = an^3 + bn^2 + cn + d$. Determine seus coeficientes a, b, c e d resolvendo o seguinte sistema:

$$\begin{cases} f(0) &= 0 \\ f(1) &= 1 \\ f(2) &= 5 \\ f(3) &= 14 \end{cases}$$

Resolvendo o sistema acima obtemos

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{6} \\ 0 \end{bmatrix}$$

Ou seja, $f(n)=\frac{1}{3}n^3+\frac{1}{2}n^2+\frac{1}{6}n+0=\frac{n(2n+1)(n+1)}{6}$. Desse fato concluímos que caso a função f possa ser expressa como polinômio de grau 3 então é dada por

$$\sum_{k=1}^{n} k^2 = \frac{n(2n+1)(n+1)}{6} \tag{3.8}$$

Exemplo 3.7.4. Suponha que $f(n) = \sum_{k=1}^{n} k^3$ possa ser expressa por uma

função polinomial de grau três, ou seja, $f(n) = an^4 + bn^3 + cn^2 + dn + e$. Determine seus coeficientes a, b, c, d e e resolvendo o seguinte sistema:

$$\begin{cases} f(0) &= 0 \\ f(1) &= 1 \\ f(2) &= 9 \\ f(3) &= 36 \\ f(4) &= 100 \end{cases}$$

Resolvendo o sistema acima obtemos

$$\begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{2} \\ \frac{1}{4} \\ 0 \\ 0 \end{bmatrix}$$

Ou seja, $f(n) = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2 + 0n + 0 = \frac{n^2(n^2+2n+1)}{4} = \frac{n^2(n+1)^2}{4}$. Desse fato concluímos que caso a função f possa ser expressa como polinômio de grau 4 então é dada por

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4} \tag{3.9}$$

Parametrização Planar

A parmetrização planar consiste em determinar as posições de pontos satisfazendo um sistema linear por meio de um conecção entre tais pontos.

Exemplo 3.7.5. Dados os pontos D = (17, 6), E = (16, 10), F = (2, 11) e G = (3, 1) resolva o seguinte sistema vetorial para calcular as coordenadas de $A = (x_1, y_1), B = (x_2, y_2)$ e $C = (x_3, y_3)$.

$$\begin{cases} 4A &= B+C+D+E \\ 4B &= A+C+E+F \\ 5C &= A+B+D+F+G \end{cases}$$

$$A = (13, 8), B = (10, 9) e C = (9, 7)$$

Exemplo 3.7.6. Dados os pontos D = (16, 5), E = (15, 9), F = (1, 10) e G = (2, 0) resolva o seguinte sistema vetorial para calcular as coordenadas de $A = (x_1, y_1), B = (x_2, y_2)$ e $C = (x_3, y_3)$.

$$\begin{cases} 4A &= B+C+D+E \\ 4B &= A+C+E+F \\ 5C &= A+B+D+F+G \end{cases}$$

$$A = (12,7), B = (9,8) e C = (8,6)$$

Exemplo 3.7.7. Dados os pontos D = (15, 5), E = (14, 9), F = (0, 10) e G = (1, 0) resolva o seguinte sistema vetorial para calcular as coordenadas de $A = (x_1, y_1), B = (x_2, y_2)$ e $C = (x_3, y_3)$.

$$\begin{cases}
4A &= B + C + D + E \\
4B &= A + C + E + F \\
5C &= A + B + D + F + G
\end{cases}$$

$$A = (11,7), B = (8,8) e C = (7,6)$$

Exemplo 3.7.8. Dados os pontos D = (15, 5), E = (14, 9), F = (0, 10) e G = (1, 0) resolva o seguinte sistema vetorial para calcular as coordenadas de $A = (x_1, y_1), B = (x_2, y_2)$ e $C = (x_3, y_3)$.

$$\begin{cases}
4A &= B + C + D + E \\
4B &= A + C + E + F \\
5C &= A + B + D + F + G
\end{cases}$$

$$A = (11,7), B = (8,8) e C = (7,6)$$

Exemplo 3.7.9. Dados os pontos D = (15, 5), E = (14, 9), F = (0, 10) e G = (1, 0) resolva o seguinte sistema vetorial para calcular as coordenadas de $A = (x_1, y_1), B = (x_2, y_2)$ e $C = (x_3, y_3)$.

$$\begin{cases}
4A &= B + C + D + E \\
4B &= A + C + E + F \\
5C &= A + B + D + F + G
\end{cases}$$

$$A = (11,7), B = (8,8) e C = (7,6)$$

Exemplo 3.7.10. Dados os pontos D = (15, 4), E = (14, 7), F = (0, 9) e G = (1, 4) resolva o seguinte sistema vetorial para calcular as coordenadas de $A = (x_1, y_1), B = (x_2, y_2)$ e $C = (x_3, y_3)$.

$$\begin{cases}
4A &= B + C + D + E \\
4B &= A + C + E + F \\
5C &= A + B + D + F + G
\end{cases}$$

$$A = (11, 6), B = (8, 7) e C = (7, 6)$$

Esse problema pode ser generalizado de modo que a solução é obtida por meio de resolução de um sistema linear [6]. Segue o esquema generalizado aplicado a parametrização de superfícies triangulares.

Click aqui para ver mais detalhes dessa generalização

 $http://www.tellau.com.br/mestrado/dissertacao_telau.pdf.$

Veja também um vídeo da resolução de um sistema por meio de método iterativo clicando aqui (Relaxamento Planar)

Um problema análogo porém no espaço tridimensional também requer a solução de um sistema mas não um sistema linear. Porém sua resolução é feita iterativamente e em cada iteração um sistema linear é resolvido. Veja vídeo de processo clicando aqui (Método de Newton e Instabilidade).

(Método de Newton e Estabilidade mas não convergente)

Capítulo 4

Espaços Vetoriais

4.1 Espaços Vetoriais

Nesse capítulo vamos formalizar um pouco mais a linguagem matemática de estruturas como o conjunto de matrizes para que não se tenha dupla ou múltiplas interpretações de uma mesma afirmação. Para entender melhor esse fato clique aqui(Romanos) para assistir esse vídeo.

Definição 4.1.1. Dizemos que um conjunto $E \neq \emptyset$ é um espaço vetorial sobre \mathbb{R} quando for possível definir duas operações satisfazendo uma lista de 8 propriedades que descreveremos a seguir.

I - Adição

$$\bigoplus : E \times E \longrightarrow E$$
$$(u,v) \longmapsto u \oplus v$$

tal que

- A_1) $u \oplus v = v \oplus u$, $\forall u, v \in E(Comutatividade)$;
- A_2) $u \oplus (v \oplus w) = (u \oplus v) \oplus w$, $\forall u, v, w \in E(Associatividade)$;
- A_3) $\exists 0 \in E$ tal que $u \oplus 0 = u$, $\forall u \in E$ (Existência do elemento neutro da soma);
- A_4) Dada a matriz $u \in E$, $\exists (-u) \in E$ tal que $u \oplus (-u) = 0$ (Existência do inverso aditivo).

II - Produto por Escalar

$$\bigcirc: \quad \mathbb{R} \times E \quad \longrightarrow \quad E$$

$$(\lambda, v) \quad \longmapsto \quad \lambda \odot v$$

tal que

$$M_1$$
) $(\alpha \cdot \beta) \odot u = \alpha \odot (\beta \odot u), \forall \alpha, \beta \in \mathbb{R}, \forall u \in E(Associatividade);$

 M_2) $(\alpha + \beta) \odot u = \alpha \odot u \oplus \beta \odot u$, $\forall \alpha, \beta \in \mathbb{R}$, $\forall u \in E(\text{Distributiva do produto por escalar em relação à soma de números reias);$

 M_3) $\alpha(u \oplus v) = \alpha \odot u \oplus \alpha \odot v$, $\forall \alpha \in \mathbb{R}$, $\forall u, v \in E$ (Distributiva do produto por escalar em relação à soma de vetores);

$$M_4$$
) $1 \odot u = u$, $\forall u \in E(Elemento neutro)$.

Exemplo 4.1.1. O conjunto \mathbb{R} com as operações de adição e multiplicação é um espaço vetorial sobre \mathbb{R} .

Exemplo 4.1.2. O conjunto \mathbb{C} com as operações de soma e produto de números reais por complexos é um espaço vetorial(Neste caso, em \mathbb{C} está definido um produto de complexo por complexo que torna \mathbb{C} um corpo algebricamente fechado).

Exemplo 4.1.3. O conjunto dos vetores da geometria (definidos por meio de segmentos orientados) é um espaço vetorial.

Exemplo 4.1.4. O conjunto $M_{m\times n}(\mathbb{R})$ das matrizes $m\times n$ com as operações de adição e produto por escalar definidas no anterior é um espaço vetorial sobre \mathbb{R} .

Exemplo 4.1.5. Seja $\mathbb{R}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R}\}$ com as operações

$$+ : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n \cdot : \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

$$(u, v) \longmapsto u + v \qquad (\lambda, u) \longmapsto \lambda \cdot u$$

Dados
$$\begin{cases} u = (x_1, \dots, x_n) \\ v = (y_1, \dots, y_n) & \text{definimos a soma e o produto por es-} \\ \lambda \in \mathbb{R} \end{cases}$$

calar da seguinte for:

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) := (x_1 + y_1, \dots, x_n + y_n)$$
e
$$\lambda \cdot (x_1, \dots, x_n) := (\lambda \cdot x_1, \dots, \lambda \cdot x_n)$$

 $(\mathbb{R}^n, +, \cdot)$ é um espaço vetorial sobre \mathbb{R} .

Exemplo 4.1.6. $(\mathbb{C}^n, +, \cdot)$ é um espaço vetorial sobre \mathbb{R} .

Exemplo 4.1.7. Seja P_n o conjunto de todos os polinômios de grau $\leq n$, ou seja, $P_n(\mathbb{R}) = \{(a_0 + a_1x + \cdots + a_nx^n) \mid a_0, \cdots, a_n \in \mathbb{R}\}$ com as operações

$$+ : P_n(\mathbb{R}) \times P_n(\mathbb{R}) \longrightarrow P_n(\mathbb{R}) \cdot : \mathbb{R} \times P_n(\mathbb{R}) \longrightarrow P_n(\mathbb{R})$$

$$(f,g) \longmapsto f+g \qquad (\lambda,f) \longmapsto \lambda \cdot f$$

$$+ : P_{n}(\mathbb{R}) \times P_{n}(\mathbb{R}) \longrightarrow P_{n}(\mathbb{R}) \cdot : \mathbb{R} \times P_{n}(\mathbb{R}) \longrightarrow P_{n}(\mathbb{R})$$

$$(f,g) \longmapsto f+g \qquad (\lambda,f) \longmapsto \lambda \cdot f$$

$$\int f(x) = a_{0} + a_{1}x + \dots + a_{n}x^{n}$$

$$g(x) = b_{0} + b_{1}x + \dots + b_{n}x^{n} \quad \text{definimos a soma e o pro-}$$

$$\lambda \in \mathbb{R}$$

duto por escalar da seguinte forma:

$$(a_0 + \dots + a_n x^n) + (b_0 + \dots + b_n x^n) := (a_0 + b_0) + \dots + (a_n + b_n) x^n$$
e

$$\lambda \cdot (a_0 + \dots + a_n x^n) := \lambda \cdot a_0 + \dots + \lambda \cdot a_n x^n$$

Prove que $(P_n(\mathbb{R}), +, \cdot)$ é um espaço vetorial sobre \mathbb{R} .

Exemplo 4.1.8. O espaço $P_n(\mathbb{C})$ é um espaço vetorial sobre \mathbb{C} .

Exemplo 4.1.9. O conjunto $F(\mathbb{R})$ das funções $f:\mathbb{R} \longrightarrow \mathbb{R}$ é um espaço vetorial sobre \mathbb{R} .

Exemplo 4.1.10. $E = \{u \in \mathbb{R} \mid u > 0\}$ com as operações $u \oplus v := u \cdot v$ e $\lambda \odot u := u^{\lambda}$ é um espaço vetorial sobre \mathbb{R} .

Exemplo 4.1.11. Seja E o conjunto dos pares ordenados de números reais. Determine quais são as condições sobre a, b, c e d para que seja comutativa a operação de adição definida por

$$(x_1, y_1) \oplus (x_2, y_2) := (ax_1 + bx_2, cy_1 + dy_2).$$

Demonstração.

$$u \oplus v = (x_1, y_1) \oplus (x_2, y_2) = (ax_1 + bx_2, cy_1 + dy_2)$$

$$v \oplus u = (x_1, y_1) \oplus (x_2, y_2) = (ax_2 + bx_1, cy_2 + dy_1)$$

Portanto para que \oplus seja comutativa é necessário que

$$\begin{cases} ax_1 + bx_2 = ax_2 + bx_1, \forall x_1, x_2 \in \mathbb{R} \\ cy_1 + dy_2 = cy_2 + dy_1, \forall y_1, y_2 \in \mathbb{R} \end{cases}$$

Assim podemos inferir que valem as igualdades para quaisquer valores que atribuirmos a $x_1, x_2, y_1, y_2 \in \mathbb{R}$

$$\begin{cases} x_1 = 1, & x_2 = 0 \Rightarrow a = b \\ y_1 = 1, & y_2 = 0 \Rightarrow c = d \end{cases}$$

Portanto as condições são :

$$\begin{cases} a = b \\ c = d \end{cases}$$

Exemplo 4.1.12. Seja E o conjunto dos pares ordenados de números reais. Determine quais são as condições sobre a e b para que seja associativa a operação de adição definida por

$$(x_1, y_1) \oplus (x_2, y_2) := (ax_1 + bx_2, 0).$$

Demonstração.

$$u \oplus [v \oplus w] = (x_1, y_1) \oplus [(x_2, y_2) \oplus (x_3, y_3)]$$

$$= (x_1, y_1) \oplus (ax_2 + bx_3, 0)$$

$$= (ax_1 + b(ax_2 + bx_3), 0)$$

$$= (ax_1 + abx_2 + b^2x_3, 0)$$

$$[u \oplus v] \oplus w = [(x_1, y_1) \oplus (x_2, y_2)] \oplus (x_3, y_3)$$

$$= (ax_1 + bx_2, 0) \oplus (x_3, y_3)$$

$$= (a(ax_1 + bx_2) + bx_3, 0)$$

$$= (a^2x_1 + abx_2 + bx_3, 0)$$

Portanto para que

seja associativa é necessário que

$$ax_1 + abx_2 + b^2x_3 = a^2x_1 + abx_2 + bx_3, \forall x_1, x_2, x_3 \in \mathbb{R}$$

$$\updownarrow$$

$$ax_1 + b^2x_3 = a^2x_1 + bx_3, \forall x_1, x_3 \in \mathbb{R}$$

Assim podemos inferir que valem as igualdades para quaisquer valores que atribuirmos a $x_1, x_3 \in \mathbb{R}$

$$\begin{cases} x_1 = 1, \ x_3 = 0 \Rightarrow a = a^2 \\ x_1 = 0, \ x_3 = 1 \Rightarrow b^2 = b \end{cases}$$

Portanto as condições são:

$$\begin{cases}
(a,b) &= (0,0) \\
(a,b) &= (1,0) \\
(a,b) &= (0,1) \\
(a,b) &= (1,1)
\end{cases}$$

Exemplo 4.1.13. Seja E o conjunto dos pares ordenados de números reais. Determine quais são as condições sobre a, b, c e d para que seja comutativa a operação de adição definida por

a)
$$(x_1, y_1) \oplus (x_2, y_2) := (ax_1^2 + bx_1x_2 + cx_2^2, 0);$$

b)
$$(x_1, y_1) \oplus (x_2, y_2) := (ax_1x_1 + bx_1x_2 + cx_1y_1 + dx_1y_2, 0).$$

Exemplo 4.1.14. Seja E o conjunto dos pares ordenados de números reais. Determine quais são as condições sobre a para que seja associativa a operação de produto por escalar definida por

$$\lambda \odot (x, y) = (a \cdot \lambda \cdot x, \lambda \cdot y).$$

Demonstração.

$$(\alpha \cdot \beta) \odot u = (\alpha \cdot \beta) \odot (x, y) = (a \cdot (\alpha \cdot \beta) \cdot x, (\alpha \cdot \beta) \cdot y)$$

$$\alpha(\beta \odot u) = \alpha \cdot (\beta \odot (x, y))$$

$$= \alpha \odot (a \cdot \beta \cdot x, \beta \cdot y)$$

$$= (a \cdot \alpha \cdot (a \cdot \beta \cdot x), \alpha \cdot \beta \cdot y)$$

$$= (a^2 \cdot (\alpha \cdot \beta) \cdot x, (\alpha \cdot \beta) \cdot y)$$

Portanto para que seja associativa é necessário que

$$a \cdot (\alpha \cdot \beta) \cdot x = a^2 \cdot (\alpha \cdot \beta) \cdot x$$

Assim podemos inferir que vale a igualdade para quaisquer valores que atribuirmos a α, β e x.

Portanto a única condição é:

$$a^2 = a \Rightarrow a^2 - a = 0 \Rightarrow a(a - 1) = 0 \Rightarrow$$

 $a = 0$ ou $a = 1$.

4.2 Propriedades

Seja um espaço vetorial E sobre $\mathbb R$. Então valem as seguintes propriedades:

 P_1 . Sejam E um espaço vetorial e $u, v, w \in E$. Utilizando apenas as 8 propriedades de Espaço vetorial prove que vale a lei do cancelamento,

ou seja, se u + v = u + w então v = w (Explicite cada propriedade utilizada).

Demonstração.

$$u + v = u + w \Rightarrow$$

$$(-u) + [u + v] = (-u) + [u + w] \Rightarrow$$

$$[(-u) + u] + v = [(-u) + u] + w \Rightarrow$$

$$0 + v = 0 + w \Rightarrow$$

$$v = w$$

Exemplo 4.2.1. Observe que se definirmos a operação de adição entre pares de números dada por (x,y) + (a,b) = (x+a,y+a) então para os pares u = (5,6), v(1,3) e w = (1,4) temos que u+v = (5,6)+(1,3) = (6,7) = (5,6)+(1,4) = u+w e mesmo assim $v \neq w$. Ou seja, a lei do cancelamento não vale para toda operação.

Note que durante a demonstração usamos a recíproca da afirmação que queremos provar, ou seja, $v=w\Rightarrow u+v=u+w$. Se estamos questionando a implicação então porque podemos usar a recíproca? Isso pode ser usado pois a operação é uma função e uma função não pode ter duas imagens para um mesmo elemento do domínio assim $v=w\Rightarrow (u,v)=(u,w)$ pela definição de igualdade de vetores e pela unicidade da imagem pela função + temos u+v=+(u,v)=+(u,w)=u+w.

P₂. Para todo
$$\alpha \in \mathbb{R}$$
, $\alpha \cdot 0 = 0$
Demonstração. $\alpha \cdot 0 = \alpha \cdot (0+0) = \alpha \cdot 0 + \alpha \cdot 0 \Rightarrow$
 $\alpha \cdot 0 + \alpha \cdot 0 = \alpha \cdot 0 \Rightarrow \alpha \cdot 0 + \alpha \cdot 0 = 0 + \alpha \cdot 0 \Rightarrow$
 $[\alpha \cdot 0 + \alpha \cdot 0] + (-(\alpha \cdot 0)) = [0 + \alpha \cdot 0] + (-(\alpha \cdot 0)) \Rightarrow$
 $\alpha \cdot 0 + [\alpha \cdot 0 + (-(\alpha \cdot 0))] = 0 + [\alpha \cdot 0 + (-(\alpha \cdot 0))] \Rightarrow$
 $\alpha \cdot 0 + 0 = 0 + 0 \Rightarrow$
 $\alpha \cdot 0 = 0$

 P_3 . Para todo $u \in E$, $0 \cdot u = 0$.

Demonstração.

$$\begin{aligned} 0 \cdot u &= (0+0) \cdot u = 0 \cdot u + 0 \cdot u \Rightarrow \\ 0 \cdot u &= 0 \cdot u + 0 \cdot u \Rightarrow \\ 0 \cdot u + 0 &= 0 \cdot u + 0 \cdot u \Rightarrow \\ (-(0 \cdot u)) + [0 \cdot u + 0] &= (-(0 \cdot u)) + [0 \cdot u + 0 \cdot u] \Rightarrow \\ [(-(0 \cdot u)) + 0 \cdot u] + 0 &= [(-(0 \cdot u)) + 0 \cdot u] + 0 \cdot u \Rightarrow \\ 0 + 0 &= 0 + 0 \cdot u \Rightarrow \\ 0 &= 0 \cdot u \Rightarrow \\ 0 \cdot u &= 0 \end{aligned}$$

P₄. Uma igualdade $\alpha \cdot u = 0$, com $\alpha \in \mathbb{R}$ e $u \in E$ só é possível se $\alpha = 0$ ou u = 0.

Demonstração. Suponha $\alpha \neq 0$. Daí existe o número real α^{-1} . Multiplicando então ambos os lados da equação $\alpha \cdot u = 0$ por α^{-1} teremos $\alpha^{-1} \cdot (\alpha \cdot u) = \alpha^{-1} \cdot 0 \Rightarrow (\alpha^{-1} \cdot \alpha) \cdot u = 0 \Rightarrow 1 \cdot u = 0 \Rightarrow u = 0$

P₅. Para todo $\alpha \in \mathbb{R}$ e todo $u \in E$, $(-\alpha) \cdot u = -(\alpha u)$. **Demonstração**.

$$\alpha u + (-\alpha) \cdot u = [\alpha + (-\alpha)] \cdot u = 0 \cdot u = 0 \Rightarrow \alpha u + (-\alpha) \cdot u = 0$$

Assim temos:

$$\begin{cases} \alpha u + (-\alpha) \cdot u = 0 \\ \alpha u + (-(\alpha \cdot u)) = 0 \end{cases} \Rightarrow \alpha u + (-\alpha) \cdot u = \alpha u + (-(\alpha \cdot u)) \Rightarrow$$
$$(-(\alpha u)) + [\alpha u + (-\alpha) \cdot u] = (-(\alpha u)) + [\alpha u + (-(\alpha \cdot u))] \Rightarrow$$
$$[(-(\alpha u)) + \alpha u] + (-\alpha) \cdot u = [(-(\alpha u)) + \alpha u] + (-(\alpha \cdot u)) \Rightarrow$$

$$0 + (-\alpha) \cdot u = 0 + (-(\alpha \cdot u)) \Rightarrow$$
$$(-\alpha) \cdot u = -(\alpha \cdot u)$$

Em particular se $\alpha = 1$ temos $(-1) \cdot u = -(1 \cdot u)$ donde $(-1) \cdot u = -u$. Ou seja, o inverso aditivo de u é igual a $(-1) \cdot u$ assim como ocorria com números reais.

P₆. Para todo $\alpha \in \mathbb{R}$ e todo $u \in E$, $\alpha(-u) = -(\alpha u)$ **Demonstração.**

$$\alpha u + \alpha \cdot (-u) = \alpha \cdot [u + (-u)] = \alpha \cdot 0 = 0 \Rightarrow \alpha u + \alpha \cdot (-u) = 0$$

Assim temos:

$$\begin{cases} \alpha u + \alpha \cdot (-u) &= 0 \\ \alpha u + (-(\alpha \cdot u)) &= 0 \end{cases} \Rightarrow \alpha u + \alpha \cdot (-u) = \alpha u + (-(\alpha \cdot u)) \Rightarrow$$

$$(-(\alpha u)) + [\alpha u + \alpha \cdot (-u)] = (-(\alpha u)) + [\alpha u + (-(\alpha \cdot u))] \Rightarrow$$

$$[(-(\alpha u)) + \alpha u] + \alpha \cdot (-u) = [(-(\alpha u)) + \alpha u] + (-(\alpha \cdot u)) \Rightarrow$$

$$0 + \alpha \cdot (-u) = 0 + (-(\alpha \cdot u)) \Rightarrow$$

$$\alpha \cdot (-u) = -(\alpha \cdot u)$$

Definição 4.2.1. Dados dois vetores u, v do espaço E, define-se a diferença entre u e v como segue:

$$u - v := u + (-v) \tag{4.1}$$

P₇. Para todo $\alpha, \beta \in \mathbb{R}$ e $u \in E$, $(\alpha - \beta) \cdot u = \alpha \cdot u - \beta \cdot u$. **Demonstração.**

$$(\alpha - \beta) \cdot u = (\alpha + (-\beta)) \cdot u$$

$$= \alpha \cdot u + (-\beta) \cdot u$$

$$= \alpha \cdot u + (-(\beta \cdot u))$$

$$= \alpha \cdot u - (\beta \cdot u)$$

$$= \alpha \cdot u - \beta \cdot u$$

P₈. Para todo $\alpha \in \mathbb{R}$ e todo $u, v \in E$, $\alpha \cdot (u - v) = \alpha \cdot u - \alpha \cdot v$. **Demonstração.**

$$\alpha \cdot (u - v) = \alpha \cdot (u + (-v))$$

$$= \alpha \cdot u + \alpha \cdot (-v)$$

$$= \alpha \cdot u + (-(\alpha \cdot v))$$

$$= \alpha \cdot u - (\alpha \cdot v)$$

$$= \alpha \cdot u - \alpha \cdot v$$

P9. Dados os números $\alpha_1, \alpha_2, \cdots, \alpha_n, \beta \in \mathbb{R}$ e $u_1, \cdots, u_n \in E$, então:

$$\beta\left(\sum_{j=1}^{n} \alpha_j u_j\right) = \sum_{j=1}^{n} (\beta \alpha_j) u_j \tag{4.2}$$

Demonstração. Faremos a demonstração por indução. Seja a proposição P(n) definida como

$$P(n): \beta\left(\sum_{j=1}^{n} \alpha_j u_j\right) = \sum_{j=1}^{n} (\beta \alpha_j) u_j$$

Assim temos que

$$P(1): \beta\left(\sum_{j=1}^{1} \alpha_{j} u_{j}\right) = \sum_{j=1}^{1} (\beta \alpha_{j}) u_{j} \Leftrightarrow \beta(\alpha_{1} u_{1}) = (\beta \alpha_{1}) u_{1} \text{ (por } M_{1})$$

Desenvolvendo P(n+1) temos:

$$\beta \left(\sum_{j=1}^{n+1} \alpha_j u_j \right) = \sum_{j=1}^{n+1} (\beta \alpha_j) u_j \Leftrightarrow$$

$$\beta \left(\left(\sum_{j=1}^{n} \alpha_j u_j \right) + \alpha_{n+1} u_{n+1} \right) = \sum_{j=1}^{n} (\beta \alpha_j) u_j + (\beta \alpha_{n+1}) u_{n+1}$$

$$\beta \left(\sum_{j=1}^{n} \alpha_j u_j \right) + \beta \left(\alpha_{n+1} u_{n+1} \right) = \sum_{j=1}^{n} (\beta \alpha_j) u_j + \beta \left(\alpha_{n+1} u_{n+1} \right)$$

4.3 Subespaços Vetoriais

Definição 4.3.1. Seja E um espaço vetorial sobre \mathbb{R} . Um subespaço vetorial de E é um subconjunto $F \subset E$, tal que:

- $i) \quad 0 \in F;$
- ii) $u, v \in F \Rightarrow u + v \in F;$
- $iii) \ \alpha \in \mathbb{R}, u \in F \Rightarrow \alpha u \in F.$

Usaremos a seguinte notação $F \leq E$ para indicar que F é subespaço vetorial de E.

Exemplo 4.3.1. O círculo $F = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \le 1\}$ não é um subespaço vetorial de \mathbb{R}^2 .

i)
$$(0,0) \in F$$
, pois $0^2 + 0^2 = 0 \le 1$;

ii)
$$u = (1,0) \in F$$
, $v = (0,1) \in F \Rightarrow u + v = (1,1) \notin F$ pois $1^2 + 1^2 = 2 > 1$;

iii)
$$u = (\frac{1}{3}, \frac{1}{3}) \in F \Rightarrow 3u = (1, 1) \notin F$$
 pois $1^2 + 1^2 = 2 > 1$;

Exemplo 4.3.2. O primeiro quandrante $F = \{(x, y) \in \mathbb{R}^2; x, y \geq 0\}$ não é um subespaço vetorial de \mathbb{R}^2 .

i)
$$(0,0) \in F$$
, pois $x = 0 \ge 0$, $y = 0 \ge 0$;

$$ii) \ u = (x_1^+, y_1^+) \in F, \ v = (x_2^+, y_2^+) \in F \Rightarrow u + v = (x_1^+ + x_2^+, y_1^+ + y_2^+) \in F \text{ pois } x_1^+ + x_2^+ \ge 0, \ y_1^+ + y_2^+ \ge 0;$$

$$iii) \ u = (1,1) \in F \Rightarrow (-1)u = (-1,-1) \not\in F \text{ pois } -1 < 0;$$

Exemplo 4.3.3. A união do primeiro e terceiro quandrantes $F = \{(x,y) \in \mathbb{R}^2; x \cdot y \geq 0\}$ não é um subespaço vetorial de \mathbb{R}^2 .

i)
$$(0,0) \in F$$
, pois $0 \cdot 0 = 0 \ge 0$;

ii)
$$u = (2,1) \in F$$
, $v = (-1,-2) \in F \Rightarrow u + v = (1,-1) \notin F$ pois $1 \cdot (-1) < 0$;

$$iii)$$
 $u = (x, y) \in F \Rightarrow \lambda u = (\lambda x, \lambda y) \in F$ pois $\lambda x \cdot \lambda y \ge 0$;

Teorema 4.1. Se $F \subset E$ é um subespaço vetorial de E, então F é um espaço vetorial sobre $\mathbb{R}(\text{Exercício})$.

Exemplo 4.3.4. Para todo espaço vetorial E é imediato que $F = \{0\}$ e F = E são subespaços de E. Esses subespaços são chamados subespaços triviais.

Exemplo 4.3.5. $F = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0\}$ é um subespaço de \mathbb{R}^3 (Exercício).

Exemplo 4.3.6. $F = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 2\}$ não é um subespaço de \mathbb{R}^3 (Exercício).

Exemplo 4.3.7. $F = \{(x, y, z) \in \mathbb{R}^3 / ax + by + cz = 0\}$ é um subespaço de \mathbb{R}^3 (Exercício).

Exemplo 4.3.8. A interseção de dois subespaços do mesmo espaço vetorial E é também um subespaço vetorial de E.(Exercício) $(F, G \le E) \Rightarrow F \cap G \le E$)

Exemplo 4.3.9. $P_s(\mathbb{R})$ é um subespaço de $P_n(\mathbb{R})$ desde que $0 \le s \le n$.(Exercício)

Exemplo 4.3.10. Uma matriz $M \in M_n(\mathbb{R})$ é dita simétrica quando vale $[M]_{ij} = [M]_{ji}$. O conjunto $S_n(\mathbb{R}) \subset M_n(\mathbb{R})$ das matrizes simétricas é um subespaços vetoriais de $M_n(\mathbb{R})$.

Demonstração.

i)
$$[0]_{ii} = 0 = [0]_{ij} \ \forall i, j \in \{1, \dots, n\} \Rightarrow 0 \in S_n(\mathbb{R});$$

$$ii) \ A, B \in S_n(\mathbb{R}) \Rightarrow [A]_{ji} = [A]_{ij} e [B]_{ji} = [B]_{ij} \forall i, j \in \{1, \dots, n\} \Rightarrow [A+B]_{ji} = [A]_{ji} + [B]_{ji} = [A]_{ij} + [B]_{ij} = [A+B]_{ij} \ \forall i, j \in \{1, \dots, n\} \Rightarrow A+B \in S_n(\mathbb{R});$$

$$iii)$$
 $A \in S_n(\mathbb{R}), \ \alpha \in \mathbb{R} \Rightarrow [\alpha \cdot A]_{ji} = \alpha \cdot [A]_{ji} = \alpha \cdot [A]_{ij} = [\alpha \cdot A]_{ij} \ \forall i, j \in \{1, \dots, n\} \Rightarrow \alpha \cdot A \in S_n(\mathbb{R}).$

Exemplo 4.3.11. Uma matriz $M \in M_n(\mathbb{R})$ é dita anti-simétrica quando vale $[M]_{ij} = -[M]_{ji}$. O conjunto $A_n(\mathbb{R}) \subset M_n(\mathbb{R})$ das matrizes anti-simétricas é um subespaços vetoriais de $M_n(\mathbb{R})$.

Demonstração.

i)
$$[0]_{ji} = 0 = -0 = -[0]_{ij} \ \forall i, j \in \{1, \dots, n\} \Rightarrow 0 \in A_n(\mathbb{R});$$

$$ii) \ A, B \in A_n(\mathbb{R}) \Rightarrow$$
 $[A]_{ji} = -[A]_{ij} \in [B]_{ji} = -[B]_{ij} \ \forall i, j \in \{1, \dots, n\} \Rightarrow$
 $[A+B]_{ji} = [A]_{ji} + [B]_{ji} = (-[A]_{ij}) + (-[B]_{ij}) = -([A]_{ij}) + [B]_{ij}) =$
 $-[A+B]_{ij} \ \forall i, j \in \{1, \dots, n\} \Rightarrow A+B \in A_n(\mathbb{R});$

$$iii) \ A \in A_n(\mathbb{R}), \ \alpha \in \mathbb{R} \Rightarrow$$

$$[\alpha \cdot A]_{ji} = \alpha \cdot [A]_{ji} = \alpha \cdot (-[A]_{ij}) = -[\alpha \cdot A]_{ij} \ \forall i, j \in \{1, \cdots, n\} \Rightarrow \alpha \cdot A \in A_n(\mathbb{R}). \quad \blacksquare$$

Exemplo 4.3.12. Se E é um espaço vetorial e $u \in E$, o conjunto dos vetores da forma λu com $\lambda \in \mathbb{R}$, é um subespaço de E. Ou seja, dado $u \in E$ a reta passando polo elemento nulo e por u, denotada por $r_u = \{\lambda u; \ \lambda \in \mathbb{R}\}$ é um subespaço vetorial de E.

Demonstração.

$$i) \ 0 = 0 \cdot u \in F \Rightarrow 0 \in F;$$

$$ii)$$
 $v, w \in F \Rightarrow v = \lambda_1 \cdot u, w = \lambda_2 \cdot u \Rightarrow v + w = \lambda_1 \cdot u + \lambda_2 \cdot u = (\lambda_1 + \lambda_2) \cdot u \in F;$

$$iii) \ v \in F, \alpha \in \mathbb{R} \Rightarrow \alpha \cdot v = \alpha \cdot (\lambda \cdot u) = (\alpha \cdot \lambda) \cdot u \in F. \quad \blacksquare$$

Exemplo 4.3.13. O conjunto das matrizes triangulares superiores de dimensão n definido por $T_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}); [A]_{ij} = 0 \ \forall i > j\}$ é um subespaço vetorial de $M_n(\mathbb{R})$.

Exemplo 4.3.14. Seja um sistema linear homogênio sobre \mathbb{R} :

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 \\
 \vdots & \vdots & \vdots & \vdots & 0 \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0
\end{cases} (4.3)$$

Prove que o conjunto solução do sistema acima é um sub-espaço vetorial de \mathbb{R}^n .

Demonstração. $E = \mathbb{R}^n$, $F = \{(x_1, \dots, x_n) \in \mathbb{R}^n / (x_1, \dots, x_n) \in \mathbb{R}^n / (x_1, \dots, x_n) \in \mathbb{R}^n \}$ solução do sistema (4.3) $\Rightarrow F \subset E$ é um subespaço vetorial.

- $i) (0,0,\cdots,0) \in F;$
- $(x_1, \dots, x_n), (y_1, \dots, y_n) \in F \Rightarrow (x_1, \dots, x_n) + (y_1, \dots, y_n) \in F;$
- $iii) \ \lambda \in \mathbb{R}, (x_1, \cdots, x_n) \in F \Rightarrow \lambda(x_1, \cdots, x_n) \in F;$

Exemplo 4.3.15. O conjunto $G \subset F(\mathbb{R})$ das funções $g : \mathbb{R} \longrightarrow \mathbb{R}$ tais que g(0) = 0 é um subespaço vetorial de $F(\mathbb{R})$.

Demonstração.

$$i) \ \overline{0}(0) = 0 \Rightarrow \overline{0} \in F(\mathbb{R})$$

ii)
$$f, g \in F(\mathbb{R}) \Rightarrow f(0) = g(0) = 0 \Rightarrow (f+g)(0) = f(0) + g(0) = 0 + 0 = 0 \Rightarrow f+g \in F(\mathbb{R})$$

$$iii)$$
 $\lambda \in \mathbb{R}, f \in F(\mathbb{R}) \Rightarrow f(0) = 0 \Rightarrow (\lambda f)(0) = \lambda f(0) = \lambda 0 \Rightarrow \lambda f \in F(\mathbb{R})$

Exemplo 4.3.16. Mostre que

- a) Dados v_0 uma solução de AX = B e v uma solução de AX = 0 então $w = v_0 + v$ é solução de AX = B;
- b) Dados v_0, w soluções de AX = B então $v = w v_0$ é solução de AX = 0.

Solução:

a) De fato $Aw = A(v + v_0) = Av + Av_0 = B + 0 = B$. Logo $v + v_0$ é uma solução de AX = B.

b) De fato
$$Av = A(w - v_0) = Aw - A_0 = B - B = 0$$
.

4.4 Soma de Subespaços

Definição 4.4.1. Sejam $F,G \leq E$ subespaços vetoriais de E. Indicamos por

$$F + G = \{u + v/u \in F \in v \in G\} .$$

Teorema 4.2. Sejam E é um espaço vetorial e $F,G\subset E$ subespaços vetoriais de E. Então F+G também é um sub-espaço vetorial de E. **Demonstração.**

i)
$$0 = 0 + 0 \in F + G$$
, pois $0 \in F, G$;

$$ii) \ w, t \in F + G \Rightarrow w + t = (u_1 + v_1) + (u_2 + v_2) = (u_1 + u_2) + (v_1 + v_2) \in F + G;$$

$$iii)\ w \in F + G, \lambda \in \mathbb{R} \Rightarrow \lambda \cdot w = \lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v \in F + G;$$

Definição 4.4.2. Sejam $F, G \subset E$ subespaços vetoriais de um espaço vetorial E tais que $F \cap G = \{0\}$. Neste caso diz-se que F + G é a soma direta dos subespaços F e G e indicamos por $F \oplus G$.

Teorema 4.3. Sejam $F,G\subset E$ subespaços vetoriais de um espaço vetorial E. Então $E=F\oplus G$ se, e somente se, cada vetor $u\in E$ admite uma única decomposição u=v+w, com $v\in F$ e $w\in G$.

Demonstração. Se $E = F \oplus G$ então $u \in E \Rightarrow u = v + w$, $v \in F$ e $w \in G$. Suponha que u = v' + w', com $v \in F$ e $w \in G$. $\Rightarrow v + w = v' + w' \Rightarrow v - v' = w - w' \in F \cap G = \{0\} \Rightarrow v = v'$ e w = w'. Portanto a escrita é única.

Supondo agora que cada vetor de $u \in E$ tem uma única escrita u = v + w, com $v \in F$ e $w \in G$ então E = F + G. Se $u \in F \cap G$ então u = u + 0 = 0 + u logo u = 0. Portanto $F \cap G = \{0\}$ e consequentemente $E = F \oplus G$.

Exemplo 4.4.1. O espaço \mathbb{R}^3 é a soma direta dos subespaços:

$$F = \{(x, 0, 0) \in \mathbb{R}^3 / x \in \mathbb{R}\}\$$

$$G = \{(0, y, z) \in \mathbb{R}^3 / y, z \in \mathbb{R}\}$$

É imediato que $F \cap G = \{(0,0,0)\}$

Para todo $\{(x, y, z) \in \mathbb{R}^3 \text{ temos } \{(x, y, z) = (x, 0, 0) + (0, y, z) \in F + G \}$

Logo $\mathbb{R}^3 = F \oplus G$.

Exemplo 4.4.2. O espaço \mathbb{R}^3 é claramente a soma direta dos subespaços:

$$F = \{(x, y, x + y) \in \mathbb{R}^3 / x, y \in \mathbb{R}\}\$$

$$G = \{(z, z, z) \in \mathbb{R}^3 / y, z \in \mathbb{R}\}$$

Também vale $F \cap G = \{(0,0,0)\}$

Para todo $\{(a, b, c) \in \mathbb{R}^3 \text{ temos } \{(a, b, c) = (x, y, x + y) + (z, z, z) \in F + G \text{ basta tomar } x = c - b, y = c - a \in z = a + b - c.$

Logo $\mathbb{R}^3 = F \oplus G$.

4.5 Combinação Linear

Definição 4.5.1. Seja E um espaço vetorial sobre \mathbb{R} e $S \subset E$ um subconjunto não vazio de E. Indiquemos por

$$[S] = \{ \alpha_1 u_1 + \dots + \alpha_n u_n / u_1, \dots, u_n \in E \in \alpha_1, \dots, \alpha_n \in \mathbb{R} \} \quad (4.4)$$

Teorema 4.4. [S] é um subespaço vetorial de E.

O subespaço [S] que acabamos de construir recebo o nome de espaço gerado por S. Cada elemento de [S] é uma combinação linear de S. Dizse também que S geram [S], ou então que S é um sistema de geradores de [S].

Teorema 4.5. Decorre da definição que:

- a) $S \subset [S]$;
- b) $S_1 \subset S_2 \subset E \Rightarrow [S_1] \subset [S_2];$
- c) [S] = [[S]];
- d) Se $S_1 \subset E$ e $S_2 \subset E$, então $[S_1 \cup S_2] = [S_1] + [S_2]$

Demonstração. a) $v \in S \Rightarrow v = 1 \cdot v \in [S]$.

b)
$$v \in [S_1] \Rightarrow v = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n, v_1, \dots, v_n \in S_1 \subset S_2 \Rightarrow \dots$$

 $v = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n, v_1, \dots, v_n \in S_2 \Rightarrow \dots$
 $v \in [S_2]$

c) Pela parte a) temos que $[S] \subset [[S]]$. Suponhamos agora $v \in [[S]]$. Assim temos

$$v = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n, v_1, \dots, v_n \in [S] \Rightarrow$$
.

$$v = \sum_{i=1}^{p} \alpha_i \sum_{j=1}^{p} \beta_{ij} w_{ij}, \ w_{ij} \in S.$$

$$v = \sum_{i=1}^{p} \sum_{j=1}^{p} \alpha_i \beta_{ij} w_{ij}, \ w_{ij} \in S.$$

$$v = \sum_{k=1}^{p} \lambda_k u_k, \ u_k \in S.$$

$$v \in [S]$$
.

$$d) v \in [S_1 \cup S_2] \Rightarrow$$

$$v = \sum_{i=1}^k \gamma_i v_i, \ v_i \in S_1 \cup S_2.$$

$$v = \sum_{i=1}^{m} \alpha_i u_i + \sum_{j=1}^{n} \alpha_j w_j, \ u_i \in S_1, \ w_j S_2.$$

$$v \in [S_1] + [S_2].$$

Exemplo 4.5.1. Se $E = \mathbb{R}^3$, u = (1, 0, 0), v = (1, 1, 0) o que é $[\{u, v\}]$? Demonstração.

$$\begin{aligned} [\{u,v\}] &= & \{\alpha u + \beta v / \alpha, \beta \in \mathbb{R}\} \\ &= & \{(\alpha + \beta, \beta, 0) / \alpha, \beta \in \mathbb{R}\} \\ &= & \{(x,y,0) / x, y \in \mathbb{R}\} \end{aligned}$$

uma vez que o sistema

$$\begin{cases} \alpha + \beta = x \\ \beta = y \end{cases}$$
 é possível e determinado.

4.6 Espaços Finitamente Gerados

Definição 4.6.1. Dizemos que E é um espaço finitamente gerado quando E = [S] onde S é um conjunto finito de vetores de E.

Exemplo 4.6.1. Seja $S = \{(1,0,0), (0,1,0), (0,0,1)\}$. Verifique que $\mathbb{R}^3 = [S]$.

 $\forall (a, b, c) \in \mathbb{R}^3$ vale a igualdade

$$(a, b, c) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

$$\left[\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c
\end{array}\right]$$

$$\left[\begin{array}{c} x \\ y \\ z \end{array}\right] = \left[\begin{array}{c} a \\ b \\ c \end{array}\right]$$

$$\mathbb{R}^3 = [S].$$

Exemplo 4.6.2. Seja $S = \{(1, 1, 1), (1, 2, 3), (1, 3, 6)\}$. Verifique que $\mathbb{R}^3 = [S]$.

 $\forall (a, b, c) \in \mathbb{R}^3$ a equação a seguir tem solução

$$(a, b, c) = x(1, 1, 1) + y(1, 2, 3) + z(1, 3, 6) \Rightarrow$$

$$\left[\begin{array}{cccc}
1 & 1 & 1 & a \\
1 & 2 & 3 & b \\
1 & 3 & 6 & c
\end{array}\right]$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3a - 3b + c \\ 5b - 3a - 2c \\ a - 2b + c \end{bmatrix}$$

Portanto $\mathbb{R}^3 = [S]$.

Definição 4.6.2. Dizemos que um espaço vetorial E é finitamente gerado se existe $S \subset E$, finito, tal que E = [S].

Exemplo 4.6.3. Cada um dos seguintes espaços vetoriais é finitamente gerado:

1)
$$E = \mathbb{R}^3$$
;

```
2) E = \{0\};
3) E = M_2(\mathbb{R});
4) E = \mathbb{R}^n;
5) E = M_{m \times n}(\mathbb{R});
```

6) $E = P_n(\mathbb{R})$. **Exemplo 4.6.4.** $\mathbb{R}^{\infty} = \{(x_1, \dots, x_n, \dots); x_i \in \mathbb{R} \ \forall i = 1, 2, \dots, n \dots\}$ não é um espaço finitamente gerado.

4.7 Aplicações

Uma aplicação de base de um espaço vetorial é a conversão de imagens no formato .bmp para o formato .jpg. Esta conversão consiste em (uma versão discreta) escrever as matrizes rgb do mapa de bits como uma combinação linear de matrizes de uma base especial das matrizes.

Capítulo 5

Base e Dimensão

5.1 Dependência Linear

Definição 5.1.1. Uma combinação linear dos vetores u_1, u_2, \dots, u_n é uma expressão da forma $\alpha_1 \cdot u_1 + \alpha_2 \cdot u_2 + \dots + \alpha_n \cdot u_n$.

Exemplo 5.1.1. Um exemplo de combinação linear dos vetores (5, -2, 0, -1), (0, -1, 3, 5) e (-2, 0, 0, 1) é

$$v = 2 \cdot (5, -2, 0, -1) + (-1) \cdot (0, -1, 3, 5) + 3 \cdot (-2, 0, 0, 1)$$

= $(10, -4, 0, -2) + (0, 1, -3, -5) + (-6, 0, 0, 3)$
= $(4, -3, -3, -4)$ (5.1)

Portanto v=(4,-3,-3,-4) é uma combinação linear dos vetores $(5,-2,0,-1),\,(0,-1,3,5)$ e (-2,0,0,1).

Definição 5.1.2. Uma combinação linear nula dos vetores u_1, u_2, \dots, u_n é qualquer combinação linear $\alpha_1 \cdot u_1 + \alpha_2 \cdot u_2 + \dots + \alpha_n \cdot u_n$ tal que $\alpha_1 \cdot u_1 + \alpha_2 \cdot u_2 + \dots + \alpha_n \cdot u_n = 0$.

Exemplo 5.1.2. Um exemplo de combinação linear nula dos vetores (5,-2,0), (0,-1,3), (-2,0,0) e (4,-3,-3) é

$$2(5,-2,0) + (-1)(0,-1,3) + 3(-2,0,0) + (-1)(4,-3,-3)$$

Exemplo 5.1.3. Sejam os vetores u = (1,3) e v = (2,6). Observe que é possível obter uma combinação nula dos vetores u e v com coeficientes não todos nulos e esse fato é consequência dos vetores serem múltiplos.

Observe que $0 \cdot (1,3) + 0 \cdot (2,6) = (0,0) + (0,0) = (0,0) = 0$. No entanto existem outras combinações lineares nulas dos vetores u e v como por exemplo $2 \cdot (1,3) + (-1) \cdot (2,6) = (2,6) + (-2,-6) = (2+(-2),6+(-6)) = (0,0)$. De modo geral podemos resolver a seguinte equação.

$$x \cdot (1,3) + y \cdot (2,6) = 0 \Leftrightarrow$$

$$(x,3x) + (2y,6y) = 0 \Leftrightarrow$$

$$(x+2y,3x+6y) = (0,0) \Leftrightarrow$$

$$\begin{cases} x + 2y = 0 \\ 3x + 6y = 0 \end{cases} \leftrightarrow \begin{bmatrix} 1 & 2 & 0 \\ 3 & 6 & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2y \\ y \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = y \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Portanto existem infinitas combinações lineares nulas dos vetores u e v.

Exemplo 5.1.4. Sejam os vetores u = (2,1) e v = (1,3). Note que não é possível obter uma combinação nula dos vetores u e v com coeficientes não nulos.

Portanto a única combinações linear nula dos vetores u e v é a combinação onde os coeficientes são zero, ou seja, $0 \cdot u + 0 \cdot v = 0$.

Fazer um exemplo com 3 vetores

Exemplo 5.1.5. Sejam os vetores u=(2,1) e v=(1,3). Note que não é possível obter uma combinação nula dos vetores u e v com coeficientes não nulos.

$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & -5 & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Portanto a única combinações linear nula dos vetores u e v é a combinação onde os coeficientes são zero, ou seja, $0 \cdot u + 0 \cdot v = 0$.

Definição 5.1.3. A combinação linear nula trivial dos vetores u_1, u_2, \dots, u_n é

$$0 \cdot u_1 + 0 \cdot u_2 + \cdots + 0 \cdot u_n = 0$$

Definição 5.1.4. Seja E um espaço vetorial. Diz-se que um conjunto $X \subset E$ é linearmente independente (abreviadamente L.I.) quando nenhum vetor $v \in X$ é combinação linear dos demais vetores de X. E $X = \{v\}$ é L.I. se $v \neq 0$. Diz-se que um conjunto X é linearmente dependente (L.D.) quando não é linearmente independente.

Obs.: Um conjunto L.I. X não tem o elemento nulo pois $0 = 0 \cdot v_1 + 0 \cdot v_2 + \cdots + 0 \cdot v_n$ seria uma combinação linear dos outros vetores de X.

Teorema 5.1. Sejam E um espaço vetorial e $X \subset E$ um subconjunto não vazio. Então as afirmações seguintes são equivalentes:

- $i) X \in L.I.;$
- ii) A única combinação linear nula de vetores de X é a trivial.

Demonstração. Suponhamos que X seja L.I. e que $\alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \cdots + \alpha_n \cdot v_n = 0$ seja uma combinação linear nula não trivial, ou seja, algum $\alpha_i \neq 0$. Então temos

$$\alpha_1 \cdot u_1 + \dots + \alpha_{(i-1)} \cdot u_{(i-1)} + \alpha_i \cdot u_i + \alpha_{(i+1)} \cdot u_{(i+1)} + \dots + \alpha_k \cdot u_k = 0 \Rightarrow$$

$$\alpha_{i} \cdot u_{i} = (-\alpha_{1})u_{1} + \dots + (-\alpha_{(i-1)})u_{(i-1)} + (-\alpha_{(i+1)})u_{(i+1)} + \dots + (-\alpha_{k})u_{k} \Rightarrow$$

$$\mathbf{u_i} = \left(\frac{-\alpha_1}{\alpha_i}\right) u_1 + \dots + \left(\frac{-\alpha_{i-1}}{\alpha_i}\right) u_{(i-1)} + \left(\frac{-\alpha_{i+1}}{\alpha_i}\right) u_{(i+1)} + \dots + \left(\frac{-\alpha_k}{\alpha_i}\right) u_k \Rightarrow$$

 v_i é uma combinação linear de outros vetores de X, ou seja, absurdo, pois X é L.I., logo não existe uma combinação linear nula não trivial de vetores de X.

Reciprocamente suponhamos que a única combinação linear nula dos vetores de X seja a trivial e que X não seja L.I., logo

$$v_n = \alpha_1 \cdot v_1 + \dots + \alpha_{n-1} \cdot v_{n-1}$$

$$\alpha_1 \cdot v_1 + \dots + \alpha_{n-1} \cdot v_{n-1} + (-1) \cdot v_n = 0$$

que é uma combinação linear nula de vetores em X, na qual pelo menos um coeficiente não é zero, ou seja, uma combinação linear nula não trivial, absurdo, portanto a suposição de que X não é L.I. é falsa.

Corolário 5.1. Sejam vetores v_1, \dots, v_n Linearmente Independentes. Se $v = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n = \beta_1 \cdot v_1 + \dots + \beta_n \cdot v_n$ então $\alpha_1 = \beta_1, \dots, \alpha_n = \beta_n$.

Demonstração.

$$\alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n = \beta_1 \cdot v_1 + \dots + \beta_n \cdot v_n \Rightarrow$$

$$(\alpha_1 - \beta_1) \cdot v_1 + \dots + (\alpha_n - \beta_n) \cdot v_n = 0 \Rightarrow$$

$$(\alpha_1 - \beta_1) = \dots = (\alpha_n - \beta_n) = 0 \Rightarrow$$

 $\alpha_1 = \beta_1, \cdots, \alpha_n = \beta_n$

Exemplo 5.1.6. Seja $B = \{(1,0), (0,1), (1,1)\}$. Assim temos que B não é uma base pois não é L.I. Dessa forma a escrita de um vetor em relação a B não é única. Por exemplo,

$$(14, 12) = 5 \cdot (1, 0) + 3 \cdot (0, 1) + 9 \cdot (1, 1)$$

$$(14, 12) = 6 \cdot (1, 0) + 4 \cdot (0, 1) + 8 \cdot (1, 1)$$

Exemplo 5.1.7. Seja $X = \{(1,3), (2,6)\}$. Vimos no Exemplo 5.1.3 que X é linearmente dependente pois existe uma combinação linear nula não trivial de seus elementos. Por esse motivo seus vetores não satisfazem

as condições do Corolário 5.1 e portanto não temos a garantia de que cada combinação linear seja única como ilustram os seguintes exemplos:

a)
$$3(1,3) + 2(2,6) = 5(1,3) + 1(2,6);$$
 b)
$$x(1,3) + y(2,6) = (x+2)(1,3) + (y-1)(2,6).$$

Exemplo 5.1.8. De forma mais geral se $X = \{u, v, w\}$ não é Linearmente independente então algum dos vetores de X é combinação linear dos demais, digamos, v = au + bw. Essa condição é suficiente para que possamos encontrar mais do que uma forma de escrever uma combinação dada.

$$t = xu + yv + zw = xu + [(y-1)+1]v + zw$$

$$= xu + [(y-1)\cdot v + 1\cdot v] + zw$$

$$= xu + (y-1)v + v + zw$$

$$= xu + (y-1)v + (au + bw) + zw$$

$$= (xu + au) + (y-1)v + (zw + bw)$$

$$= (x + a)u + (y-1)v + (z + b)w$$

Exemplo 5.1.9. Por outro lado $X = \{(2,1), (1,3)\}$ é Linearmente Independente e portanto cada combinação linear de seus vetores é única. Por exemplo v = 5(2,1) + 1(1,3) = (10,5) + (1,3) = (11,8) só pode ser escrita com coeficientes 5 e 1. Para verificar isso basta resolver a equação abaixo e concluir que x = 5 e y = 1.

$$x(2,1) + y(1,3) = (11,8)$$

Exemplo 5.1.10. Os vetores canônicos $e_1, e_2, \dots, e_n \in \mathbb{R}^n$ são L.I.

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1) \in \mathbb{R}^n.$$

Demonstração. $\alpha_1 \cdot e_1 + \alpha_2 \cdot e_2 + \cdots + \alpha_n \cdot e_n = 0 \Rightarrow$

$$\alpha_1 \cdot (1, 0, \dots, 0) + \alpha_2 \cdot (0, 1, \dots, 0) + \dots + \alpha_n \cdot (0, 0, \dots, 1) = 0 \Rightarrow$$

$$(\alpha_1, 0, \dots, 0) + (0, \alpha_2, \dots, 0) + \dots + (0, 0, \dots, \alpha_n) = 0 \Rightarrow$$

$$(\alpha_1, \alpha_2, \dots, \alpha_n) = 0 \Rightarrow$$

$$\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

Exemplo 5.1.11. Os vetores $u = (1, 2, 3), v = (4, 5, 6), w = (7, 8, 9) \in \mathbb{R}^3$ são L.D. pois 2v - u = 2(4, 5, 6) - (1, 2, 3) = (8, 10, 12) - (1, 2, 3) = (7, 8, 9) = w. Verifique que a equação xu + yv + zw = 0 admite solução não trivial.

Exemplo 5.1.12. Os vetores $u = (1, 1, -1), v = (1, -1, 1), w = (-1, 1, 1) \in \mathbb{R}^3$ são Linearmente Independente. Verifique essa afirmação mostrando que a equação xu + yv + zw = 0 não admite solução além da trivial.

Teorema 5.2. Sejam v_1, v_2, \dots, v_n vetores não-nulos do espaço vetorial E. Se nenhum deles é combinação linear dos anteriores então o conjunto $X = \{v_1, v_2, \dots, v_n\}$ é L.I..

Demonstração. Suponhamos que X seja L.D., logo existe uma combinação linear nula não trivial dos vetores de X. Ou seja, $\alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \cdots + \alpha_n \cdot v_n = 0$ com algum $\alpha_i \neq 0$. Suponha r o maior índice não nulo.

$$\alpha_1 \cdot v_1 + \dots + \alpha_{r-1} \cdot v_{r-1} + \alpha_r \cdot v_r = 0 \Rightarrow$$

$$\alpha_r \cdot v_r = -\alpha_1 \cdot v_1 - \dots - \alpha_{r-1} \cdot v_{r-1} \Rightarrow$$

$$v_r = -\frac{\alpha_1}{\alpha_r} \cdot v_1 - \dots - \frac{\alpha_{r-1}}{\alpha_r} \cdot v_r \Rightarrow$$

$$v_r = \left(-\frac{\alpha_1}{\alpha_r}\right) \cdot v_1 + \dots + \left(-\frac{\alpha_{r-1}}{\alpha_r}\right) \cdot v_{r-1}$$

 v_r é uma combinação linear dos anteriores, absurdo, logo X é L.I.

Exemplo 5.1.13. Quando os vetores v_1, \dots, v_n são L.D., isto não significa que qualquer um deles é combinação linear dos demais. Por exemplo se u = (1, 2), v = (3, 4), w = (4, 8) então $\{u, v, w\}$ é um conjunto L.D. pois $w = 4 \cdot u + 0 \cdot v$. Porém v não é combinação linear de u e w.

$$4 \cdot u + 0 \cdot v = 4(1,2) + 0(3,4) = (4,8) + (0.0) = (4,8) = w$$

$$(3,4) = a \cdot u + b \cdot v$$

$$= a(1,2) + b(4,8)$$

$$= (a,2a) + (4b,8b)$$

$$= (a + 2b, 4a + 8b) \Rightarrow$$

$$(3,4) = (a + 2b, 4a + 8b) \Leftrightarrow \begin{cases} a + 2b = 3 \\ 4a + 8b = 4 \end{cases} \Leftrightarrow$$

$$\begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -8 \end{bmatrix}$$

Portanto não tem solução.

Exemplo 5.1.14. Para $i \in \{1, 2, 3, 4\}$ sejam $f_i : \mathbb{N} \longrightarrow \mathbb{N}$ funções de uma variável inteira com imagem inteiras dadas por

$$\begin{cases} f_1(m) &= \left[\frac{m}{2}\right] \\ f_2(m) &= \left[\frac{m+1}{2}\right] \end{cases}$$

$$f_3(m) &= \left[\frac{m+2}{2}\right]$$

$$f_4(m) &= \left[\frac{m+3}{2}\right]$$

Onde $\left[\frac{m}{n}\right]$ é a parte inteira da divisão de m por n.

Verifique se $X = \{f_1, f_2, f_3, f_4\}$ é linearmente independente ou se é linearmente dependente.

Solução:

$$a \cdot \left\lceil \frac{m}{2} \right\rceil + b \cdot \left\lceil \frac{m+1}{2} \right\rceil + c \cdot \left\lceil \frac{m+2}{2} \right\rceil + d \cdot \left\lceil \frac{m+3}{2} \right\rceil = 0$$

$$\begin{cases} m = 1 \implies a \cdot \left[\frac{1}{2}\right] + b \cdot \left[\frac{1+1}{2}\right] + c \cdot \left[\frac{1+2}{2}\right] + d \cdot \left[\frac{1+3}{2}\right] = 0 \\ m = 2 \implies a \cdot \left[\frac{2}{2}\right] + b \cdot \left[\frac{2+1}{2}\right] + c \cdot \left[\frac{2+2}{2}\right] + d \cdot \left[\frac{2+3}{2}\right] = 0 \\ m = 3 \implies a \cdot \left[\frac{3}{2}\right] + b \cdot \left[\frac{3+1}{2}\right] + c \cdot \left[\frac{3+2}{2}\right] + d \cdot \left[\frac{3+3}{2}\right] = 0 \\ m = 4 \implies a \cdot \left[\frac{4}{2}\right] + b \cdot \left[\frac{4+1}{2}\right] + c \cdot \left[\frac{4+2}{2}\right] + d \cdot \left[\frac{4+3}{2}\right] = 0 \end{cases}$$

$$\begin{cases} m = 1 \implies a \cdot \left[\frac{1}{2}\right] + b \cdot \left[\frac{2}{2}\right] + c \cdot \left[\frac{3}{2}\right] + d \cdot \left[\frac{4}{2}\right] = 0 \\ m = 2 \implies a \cdot \left[\frac{2}{2}\right] + b \cdot \left[\frac{3}{2}\right] + c \cdot \left[\frac{4}{2}\right] + d \cdot \left[\frac{5}{2}\right] = 0 \\ m = 3 \implies a \cdot \left[\frac{3}{2}\right] + b \cdot \left[\frac{4}{2}\right] + c \cdot \left[\frac{5}{2}\right] + d \cdot \left[\frac{6}{2}\right] = 0 \\ m = 4 \implies a \cdot \left[\frac{4}{2}\right] + b \cdot \left[\frac{5}{2}\right] + c \cdot \left[\frac{6}{2}\right] + d \cdot \left[\frac{7}{2}\right] = 0 \end{cases}$$

$$\begin{cases} a \cdot 0 + b \cdot 1 + c \cdot 1 + d \cdot 2 = 0 \\ a \cdot 1 + b \cdot 1 + c \cdot 2 + d \cdot 2 = 0 \\ a \cdot 1 + b \cdot 2 + c \cdot 2 + d \cdot 3 = 0 \\ a \cdot 2 + b \cdot 2 + c \cdot 3 + d \cdot 3 = 0 \end{cases}$$

$$\begin{cases} b + c + 2d = 0 \\ a + b + 2c + 2d = 0 \\ a + 2b + 2c + 3d = 0 \\ 2a + 2b + 3c + 3d = 0 \end{cases}$$

$$\begin{bmatrix}
0 & 1 & 1 & 2 & 0 \\
1 & 1 & 2 & 2 & 0 \\
1 & 2 & 2 & 3 & 0 \\
2 & 2 & 3 & 3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 1 & 2 \\
1 & 1 & 2 & 2 \\
1 & 2 & 2 & 3 \\
2 & 2 & 3 & 3
\end{bmatrix}
\xrightarrow{L_1 \leftrightarrow L_2}
\begin{bmatrix}
1 & 1 & 2 & 2 \\
1 & 2 & 2 & 3 \\
2 & 2 & 3 & 3
\end{bmatrix}
\xrightarrow{L_3 + (-1)L_2}
\begin{bmatrix}
1 & 1 & 2 & 2 \\
0 & 1 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & -1 & -1
\end{bmatrix}
\xrightarrow{L_3 + (-1)L_2}
\begin{bmatrix}
1 & 1 & 2 & 2 \\
0 & 1 & 1 & 2 \\
0 & 0 & -1 & -1
\end{bmatrix}
\xrightarrow{L_3 + (-1)L_2}
\begin{bmatrix}
1 & 1 & 2 & 2 \\
0 & 1 & 1 & 2 \\
0 & 0 & -1 & -1
\end{bmatrix}
\xrightarrow{L_3 + (-1)L_2}
\begin{bmatrix}
1 & 1 & 2 & 2 \\
0 & 1 & 1 & 2 \\
0 & 0 & -1 & -1
\end{bmatrix}
\xrightarrow{L_3 + (-1)L_2}
\begin{bmatrix}
1 & 1 & 2 & 2 \\
0 & 1 & 1 & 2 \\
0 & 0 & -1 & -1
\end{bmatrix}
\xrightarrow{L_3 + (-1)L_2}
\xrightarrow{L_3 + (-1)L_3}
\xrightarrow{L_3$$

Portanto X é linearmente dependente.

Exemplo 5.1.15. Para $i \in \{1, 2, 3, 4\}$ sejam $f_i : \mathbb{N}^2 \longrightarrow \mathbb{N}$ funções de duas variáveis inteiras com imagem inteiras dadas por

$$\begin{cases}
f_1(m,n) = m \\
f_2(m,n) = n \\
f_3(m,n) = min\{m,n\} \\
f_4(m,n) = max\{m,n\}
\end{cases}$$

Prove que $X = \{f_1, f_2, f_3, f_4\}$ é linearmente dependente.

Solução:

$$m+n-\min\{m,n\}-\max\{m,n\}=0$$

De fato,

$$am + bn + cmin\{m,n\} + dmax\{m,m\}$$

$$(m_{1}m) = (1,1) \Rightarrow 0$$

$$a + b + c + d = 0$$

$$(m_{1}n) = (1,2) \Rightarrow 0$$

$$a + 2b + c + 2d = 0$$

$$(m_{1}n) = (2,1) \Rightarrow 0$$

$$2a + b + c + 2d = 0$$

$$\begin{cases} a + b + c + d = 0 \\ a + 2b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + 4 & 4 & 4 \\ 2a + b + c + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow \begin{cases} a + b + 2d = 0 \end{cases} \Rightarrow$$

$$m+n-min\{m,n\}-max\{m,n\}=0$$

We false se $m>n$ temos

 $m+n-m-m=0$

se $m< n$ temos

 $m+n-m-m$
 $cong m=n$ temos

 $cong m+n-m-m=0$
 $cong m+n-m-m=0$

Exemplo 5.1.16. Para $i \in \{1, 2, 3, 4\}$ sejam $f_i : \mathbb{N}^2 \longrightarrow \mathbb{N}$ funções de duas variáveis inteiras com imagem inteiras dadas por

$$\begin{cases} f_1(m,n) &= m \\ f_2(m,n) &= n \\ f_3(m,n) &= div\{m,n\}, \text{parte inteira da divisão de m por n} \\ f_4(m,n) &= mod\{m,n\}, \text{resto da divisão de m por n} \end{cases}$$

Prove que $X=\{g_1,g_2,g_3\}$ é linearmente dependente onde $g_1=f_1,g_2=f_2\cdot f_3$ e $g_3=f_4.$

Solução:

$$m - n \cdot div(m, n) - \mod(m, n) = 0$$

Exemplo 5.1.17. Para $i \in \{1, 2, 3, 4\}$ sejam $f_i : \mathbb{N}^2 \longrightarrow \mathbb{N}$ funções de duas variáveis inteiras com imagem inteiras dadas por

$$\begin{cases} f_1(m,n) &= \left[\frac{m}{n}\right] \\ f_2(m,n) &= \left[\frac{m+1}{n}\right] \end{cases}$$

$$f_3(m,n) &= \left[\frac{m+2}{n}\right]$$

$$f_4(m,n) &= \left[\frac{m+3}{n}\right]$$

Onde $\left[\frac{m}{n}\right]$ é a parte inteira da divisão de m por n.

Verifique se $X = \{f_1, f_2, f_3, f_4\}$ é linearmente independente ou se é linearmente dependente.

Solução:

$$a \cdot \left[\frac{m}{n} \right] + b \cdot \left[\frac{m+1}{n} \right] + c \cdot \left[\frac{m+2}{n} \right] + d \cdot \left[\frac{m+3}{n} \right] = 0$$

Atribuindo valores a $m \in n$ temos:

Attributindo variotes a
$$m$$
 e n terrios.
$$\begin{cases}
(m,n) = (1,1) \implies a \cdot \left[\frac{1}{1}\right] + b \cdot \left[\frac{1+1}{1}\right] + c \cdot \left[\frac{1+2}{1}\right] + d \cdot \left[\frac{1+3}{1}\right] = 0 \\
(m,n) = (1,2) \implies a \cdot \left[\frac{1}{2}\right] + b \cdot \left[\frac{1+1}{2}\right] + c \cdot \left[\frac{1+2}{2}\right] + d \cdot \left[\frac{1+3}{2}\right] = 0 \\
(m,n) = (1,3) \implies a \cdot \left[\frac{1}{3}\right] + b \cdot \left[\frac{1+1}{3}\right] + c \cdot \left[\frac{1+2}{3}\right] + d \cdot \left[\frac{1+3}{3}\right] = 0 \\
(m,n) = (1,4) \implies a \cdot \left[\frac{1}{4}\right] + b \cdot \left[\frac{1+1}{4}\right] + c \cdot \left[\frac{1+2}{4}\right] + d \cdot \left[\frac{1+3}{4}\right] = 0 \\
(m,n) = (1,1) \implies a \cdot \left[\frac{1}{1}\right] + b \cdot \left[\frac{2}{1}\right] + c \cdot \left[\frac{3}{1}\right] + d \cdot \left[\frac{4}{1}\right] = 0 \\
(m,n) = (1,2) \implies a \cdot \left[\frac{1}{2}\right] + b \cdot \left[\frac{2}{2}\right] + c \cdot \left[\frac{3}{2}\right] + d \cdot \left[\frac{4}{2}\right] = 0 \\
(m,n) = (1,3) \implies a \cdot \left[\frac{1}{3}\right] + b \cdot \left[\frac{2}{3}\right] + c \cdot \left[\frac{3}{3}\right] + d \cdot \left[\frac{4}{3}\right] = 0 \\
(m,n) = (1,4) \implies a \cdot \left[\frac{1}{4}\right] + b \cdot \left[\frac{2}{4}\right] + c \cdot \left[\frac{3}{4}\right] + d \cdot \left[\frac{4}{4}\right] = 0
\end{cases}$$

$$\begin{cases} a \cdot 1 + b \cdot 2 + c \cdot 3 + d \cdot 4 = 0 \\ a \cdot 0 + b \cdot 1 + c \cdot 1 + d \cdot 2 = 0 \\ a \cdot 0 + b \cdot 0 + c \cdot 1 + d \cdot 1 = 0 \\ a \cdot 0 + b \cdot 0 + c \cdot 0 + d \cdot 1 = 0 \end{cases}$$

$$\begin{cases} a + 2b + 3c + 4d = 0 \\ b + c + 2d = 0 \\ c + d = 0 \\ d = 0 \end{cases}$$

Cuja matriz aumentada é

Escalonando essa matriz obtemos:

$$\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]$$

Logo a única solução é:

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Portanto $X = \{f_1, f_2, f_3, f_4\}$ é linearmente independente.

Exemplo 5.1.18. Para $i \in \{1, 2, 3, 4\}$ sejam $f_i : \mathbb{N}^2 \longrightarrow \mathbb{N}$ funções de duas variáveis inteiras com imagem inteiras dadas por

$$\begin{cases} f_1(m,n) &= \left[\frac{m}{n}\right] \\ f_2(m,n) &= \left[\frac{m+1}{n}\right] \\ f_3(m,n) &= \left[\frac{m}{n+1}\right] \end{cases}$$

Onde $\left[\frac{m}{n}\right]$ é a parte inteira da divisão de m por n.

Verifique se $X = \{f_1, f_2, f_3\}$ é linearmente independente ou se é linearmente dependente.

Solução:

$$a \cdot \left[\frac{m}{n}\right] + b \cdot \left[\frac{m+1}{n}\right] + c \cdot \left[\frac{m}{n+1}\right] = 0$$

Atribuindo valores a m e n temos:

$$\begin{cases} (m,n) = (1,1) & \Rightarrow \ a \cdot \left[\frac{1}{1}\right] + b \cdot \left[\frac{1+1}{1}\right] + c \cdot \left[\frac{1}{1+1}\right] = 0 \\ (m,n) = (1,2) & \Rightarrow \ a \cdot \left[\frac{1}{2}\right] + b \cdot \left[\frac{1+1}{2}\right] + c \cdot \left[\frac{1}{2+1}\right] = 0 \\ (m,n) = (2,1) & \Rightarrow \ a \cdot \left[\frac{2}{1}\right] + b \cdot \left[\frac{2+1}{1}\right] + c \cdot \left[\frac{2}{1+1}\right] = 0 \end{cases} \\ \begin{cases} (m,n) = (1,1) & \Rightarrow \ a \cdot \left[\frac{1}{1}\right] + b \cdot \left[\frac{2}{1}\right] + c \cdot \left[\frac{1}{2}\right] = 0 \\ (m,n) = (1,2) & \Rightarrow \ a \cdot \left[\frac{1}{2}\right] + b \cdot \left[\frac{2}{2}\right] + c \cdot \left[\frac{1}{3}\right] = 0 \\ (m,n) = (2,1) & \Rightarrow \ a \cdot \left[\frac{2}{1}\right] + b \cdot \left[\frac{3}{1}\right] + c \cdot \left[\frac{2}{2}\right] = 0 \end{cases} \\ \begin{cases} a \cdot 1 + b \cdot 2 + c \cdot 0 = 0 \\ a \cdot 0 + b \cdot 1 + c \cdot 0 = 0 \\ a \cdot 0 + b \cdot 0 + c \cdot 1 = 0 \\ a \cdot 2 + b \cdot 3 + c \cdot 1 = 0 \end{cases} \\ \begin{cases} a + 2b = 0 \\ b = 0 \\ 2a + 3b + c = 0 \end{cases} \end{cases}$$

Cuja matriz aumentada é

$$\left\{
\begin{array}{ccccccc}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 3 & 1 & 0
\end{array}
\right.$$

Escalonando essa matriz obtemos:

$$\left\{
\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}
\right.$$

Portanto a única solução é:

$$\left[\begin{array}{c} a \\ b \\ c \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]$$

Portanto $X = \{f_1, f_2, f_3\}$ é linearmente independente.

Exemplo 5.1.19. A matriz F é definida como $[F]_{ij} = f(i,j)$. Em cada uma das letras resolva um sistema para verificar se a função f pode ser escrita como combinação das funções dadas no domínio dado:

a)
$$X = \{f_1\}$$
 onde f_1 é dada por $f_1(m, n) = 1$

$$D = \{(2,1), (2,2), (2,3), (2,4), (2,5)\}.$$

b) $X = \{f_1, f_2, f_3\}$ onde essas funções são dadas por

$$\begin{cases} f_1(m,n) &= 1 \\ f_2(m,n) &= n \left[\frac{m}{n} \right] \\ f_3(m,n) &= \left[\frac{m+1}{n} \right] \end{cases}$$

$$f(m,n) = af_1(m,n) + bf_2(m,n) + cf_3(m,n) = a.1 + b.n \left[\frac{m}{n} \right] + c. \left[\frac{m+1}{n} \right]$$

$$f(m,n) = a.1 + b.n \left[\frac{m}{n} \right] + c. \left[\frac{m+1}{n} \right]$$

$$D = \{(2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4)\}.$$

$$c) X = \{f_1\} \text{ onde } f_1 \text{ \'e dada por}$$

$$\begin{cases} f_1(m,n) &= \left\lfloor \frac{m}{n} \right\rfloor \\ f_2(m,n) &= \left\lfloor \frac{m+1}{n} \right\rfloor \\ f_3(m,n) &= mn \end{cases}$$

$$D = \{(2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)\}$$

Definição 5.1.5. Uma base de um espaço vetorial E é um subconjunto $B \subset E$ linearmente independente que gera E.

Isto significa que todo vetor $v \in E$ se exprime de modo único como combinação linear $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$ de elementos da base B.

Exemplo 5.1.20. Os vetores canônicos

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1) \in \mathbb{R}^n$$

constituem uma base de \mathbb{R}^n , chamada base canônica. Os polinômios

 $1, x, x^2, \dots, x^n$ formam uma base para o espaço vetorial P_n dos polinômios de grau $\leq n$.

Lema 5.1. Todo sistema linear homogêneo cujo número de incógnitas é maior do que o número de equações admite uma solução não trivial.

A demonstração desse Lema é feita por indução matemática e a variável de indução é a quantidade m de linhas do sistema.

Exemplo 5.1.21. Sejam E um espaço vetorial e $B = \{u_1, u_2, u_3\}$ um conjunto de geradores de E. Prove que $C = \{v_1, v_2, v_3, v_4\} \subset E$ é linearmente dependentes.

Resolução:

De fato se $B = \{u_1, u_2, u_3\}$ gera E então podemos escrever os vetores de C como combinação linear dos vetores de B como abaixo.

$$\begin{cases} v_1 = \alpha_{11}u_1 + \alpha_{21}u_2 + \alpha_{31}u_3 \\ v_2 = \alpha_{12}u_1 + \alpha_{22}u_2 + \alpha_{32}u_3 \\ v_3 = \alpha_{13}u_1 + \alpha_{23}u_2 + \alpha_{33}u_3 \\ v_4 = \alpha_{14}u_1 + \alpha_{24}u_2 + \alpha_{34}u_3 \end{cases}$$

Dizer que $C = \{v_1, v_2, v_3, v_4\}$ é L.D. equivale a dizer que existe uma combinação linear nula não trivial dos vetores de C.

Ou seja, $x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 = 0$ admite solução não trivial.

Assim

$$x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 = 0 \Rightarrow$$

$$x_1(\alpha_{11}u_1 + \alpha_{21}u_2 + \alpha_{31}u_3) + x_2(\alpha_{12}u_1 + \alpha_{22}u_2 + \alpha_{32}u_3) + x_3(\alpha_{13}u_1 + \alpha_{23}u_2 + \alpha_{33}u_3) + x_4(\alpha_{14}u_1 + \alpha_{24}u_2 + \alpha_{34}u_3) = 0 \Rightarrow$$

$$(x_1\alpha_{11}u_1 + x_1\alpha_{21}u_2 + x_1\alpha_{31}u_3) + (x_2\alpha_{12}u_1 + x_2\alpha_{22}u_2 + x_2\alpha_{32}u_3) + (x_3\alpha_{13}u_1 + x_3\alpha_{23}u_2 + x_3\alpha_{33}u_3) + (x_4\alpha_{14}u_1 + x_4\alpha_{24}u_2 + x_4\alpha_{34}u_3) = 0 \Rightarrow$$

$$(x_1\alpha_{11}u_1 + x_2\alpha_{12}u_1 + x_3\alpha_{13}u_1 + x_4\alpha_{14}u_1) + (x_1\alpha_{21}u_2 + x_2\alpha_{22}u_2 + x_3\alpha_{23}u_2 + x_4\alpha_{24}u_2) + (x_1\alpha_{31}u_3 + x_2\alpha_{32}u_3 + x_3\alpha_{33}u_3 + x_4\alpha_{34}u_3) = 0 \Rightarrow$$

$$(x_1\alpha_{11} + x_2\alpha_{12} + x_3\alpha_{13} + x_4\alpha_{14})u_1 + (x_1\alpha_{21} + x_2\alpha_{22} + x_3\alpha_{23} + x_4\alpha_{24})u_2 + (x_1\alpha_{31} + x_2\alpha_{32} + x_3\alpha_{33} + x_4\alpha_{34})u_3 = 0$$

Claramente a equação acima é válida se cada um dos coeficientes é nulo. Assim procuramos por uma solução tal que

$$\begin{cases} x_1\alpha_{11} + x_2\alpha_{12} + x_3\alpha_{13} + x_4\alpha_{14} &= 0\\ x_1\alpha_{21} + x_2\alpha_{22} + x_3\alpha_{23} + x_4\alpha_{24} &= 0\\ x_1\alpha_{31} + x_2\alpha_{32} + x_3\alpha_{33} + x_4\alpha_{34} &= 0 \end{cases}$$

Como o sistema acima tem m=3 equações e n=4 incógnitas, pelo Lema 5.1 admite solução não trivial. Portanto C é Linearmente Dependente.

Teorema 5.3. Se os vetores v_1, \dots, v_m geram o espaço E então qualquer conjunto com mais de m vetores em E é L.D..

Demonstração. Dados os vetores

$$w_1, \cdots, w_n$$

em E, com n > m, para cada $j = 1, \dots, n$ temos

 $w_j = \alpha_{1j}v_1 + \cdots + \alpha_{mj}v_m$ pois os vetores v_1, \dots, v_m geram E. Para mostrar que os vetores w_j são L.D., devemos achar coeficientes x_1, \dots, x_n , não todos iguais a zero, tais que $x_1w_1 + \cdots + x_nw_n = 0$. Substituindo os w_j por suas expressões em termos dos v_i , esta igualdade significa

$$x_1\left(\sum_{i=1}^m \alpha_{i1}v_i\right) + x_2\left(\sum_{i=1}^m \alpha_{i2}v_i\right) + \dots + x_n\left(\sum_{i=1}^m \alpha_{in}v_i\right) = 0 \Rightarrow (5.2)$$

$$\left(\sum_{j=1}^{n} x_j \alpha_{1j}\right) v_1 + \left(\sum_{j=1}^{n} x_j \alpha_{2j}\right) v_2 + \dots + \left(\sum_{j=1}^{n} x_j \alpha_{mj}\right) v_m = 0 \quad (5.3)$$

Certamente esta última condição será satisfeita desde que todos os somatórios dentro dos parâmetros sejam nulos, ou seja, que (x_1, x_2, \dots, x_n) seja uma solução não trivial do sistema homogêneo

$$\begin{cases} \alpha_{11}x_1 + \alpha_{12}x_2 + \cdots + \alpha_{1n}x_n = 0\\ \alpha_{21}x_1 + \alpha_{22}x_2 + \cdots + \alpha_{2n}x_n = 0\\ \vdots & \vdots & \vdots & \vdots\\ \alpha_{m1}x_1 + \alpha_{m2}x_2 + \cdots + \alpha_{mn}x_n = 0 \end{cases}$$

Uma tal solução existe pelo Lema (5.1), pois n > m. Logo w_1, \dots, w_n são L.D. e o teorema está demonstrado.

Corolário 5.2. Se o espaço vetorial E admite uma base $B = \{u_1, \dots, u_n\}$ com n elementos, qualquer outra base de E possui também n elementos.

Demonstração. Seja $B' = \{v_1, \dots, v_m\}$ outra base de E. Como B' gera E e B é L.I., temos que $n \leq m$. Como B gera E e B' é L.I., temos que $m \leq n$. Logo m = n.

Definição 5.1.6. Diz-se que o espaço vetorial E tem dimensão finita quando admite uma base $B = \{v_1, \dots, v_n\}$ com um número finito n de elementos. Este número chama-se a dimensão do espaço vetorial E. Ou seja, $n = \dim E$. Por extensão, diz-se que o espaço vetorial $E = \{0\}$ tem dimensão zero.

Corolário 5.3. Se a dimensão de E é n, um conjunto com n vetores gera E se, e somente se, é L.I..

Teorema 5.4. Seja E um espaço vetorial de dimensão finita n. Então:

i) Todo conjunto X de geradores de $\mathcal E$ contém uma base.

- ii) Todo conjunto L.I. $\{v_1, \dots, v_m\} \subset E$ está contido numa base.
- iii) Todo subespaço vetorial $F \subset E$ tem dimensão finita, a qual é menor ou igual a n.
- iv) Se a dimensão do subespaço vetorial $F \subset E$ é igual a n, então F = E.

5.2 Base de Subespaço.

Observações:

As operações elementares aplicadas nas linhas de uma matriz não afeta o espaço gerado pelos vetores linha dessa mesma matriz.

i)
$$\forall i, j = 1, \dots, r$$

 $[u_1, \dots, u_i, \dots, u_j, \dots, u_r] = [u_1, \dots, u_j, \dots, u_i, \dots, u_r]$

$$(ii) \ \forall i, j = 1, \dots, r \in \alpha \in \mathbb{R}^*$$

 $[u_1, \dots, u_i, \dots, u_r] = [u_1, \dots, \alpha u_i, \dots, u_r]$

iii)
$$\forall i, j = 1, \dots, r \in \alpha \in \mathbb{R}$$

 $[u_1, \dots, u_i, \dots, u_j, \dots, u_r] = [u_1, \dots, u_i + \alpha u_j, \dots, u_j, \dots, u_r]$

Exemplo 5.2.1. Seja F = [(2, 1, 1, 0), (1, 0, 1, 2), (0, -1, 1, 4)].

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 0 & 1 & 2 \\ 0 & -1 & 1 & 4 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_2} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 2 & 1 & 1 & 0 \\ 0 & -1 & 1 & 4 \end{bmatrix} \xrightarrow{L_2 + (-2)L_1}$$

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & -4 \\ 0 & -1 & 1 & 4 \end{bmatrix} \xrightarrow{L_3 + L_2} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$F = [(2, 1, 1, 0), (1, 0, 1, 2), (0, -1, 1, 4)] = [(1, 0, 1, 2), (0, 1, -1, -4)].$$

5.3 Dimensão da soma de dois subespaços

Teorema 5.5. Seja E um espaço vetorial sobre \mathbb{R} de dimensão finita. Se F e G são subespaços de E, então:

$$\dim(F \cap G) + \dim(F + G) = \dim F + \dim G \tag{5.4}$$

ou

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G) \tag{5.5}$$

5.4 Coordenadas

Definição 5.4.1. Os escalares $\alpha_1, \dots, \alpha_n$ que figuram na equação $v = \alpha_1 v_1 + \dots + \alpha_n v_n$, são chamados coordenadas do vetor v em relação à base ordenada $B = \{v_1, \dots, v_n\}$.

$$v = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}_B = (\alpha_1, \alpha_2, \cdots, \alpha_n)_B = (\alpha_1, \alpha_2, \cdots, \alpha_n) = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$
(5.6)

Exemplo 5.4.1. Ache as coordenadas de $f(t) = 2 + 4t + t^2$ em relação à base ordenada $B = \{1, 1 + t, 1 + t^2\}$.

$$2 + 4t + t^2 = \alpha_1 \cdot 1 + \alpha_2 \cdot (1+t) + \alpha_3 \cdot (1+t^2) = (\alpha_1 + \alpha_2 + \alpha_3) \cdot 1 + \alpha_2 \cdot t + \alpha_3 \cdot t^2$$

$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = 2 \\ \alpha_2 = 4 \\ \alpha_3 = 1 \end{cases}$$

$$f(t) = \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}_B = \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$$

Exemplo 5.4.2. Determine as coordenadas de (1,0,0) em relação à seguinte base

$$B = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}.$$

$$(1,0,0) = x(1,1,1) + y(-1,1,0) + z(1,0,-1) \Rightarrow$$

$$\begin{cases} x - y + z = 1 \\ x + y & = 0 \\ x & -z = 0 \end{cases} \Leftrightarrow \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\left[\begin{array}{cccc}
1 & -1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0
\end{array}\right]$$

$$\left[\begin{array}{ccccc}
1 & -1 & 1 & 1 \\
0 & 2 & -1 & -1 \\
0 & 1 & -2 & -1
\end{array}\right]$$

$$\begin{bmatrix}
1 & -1 & 1 & 1 \\
0 & 1 & -2 & -1 \\
0 & 2 & -1 & -1
\end{bmatrix}$$

$$\left[\begin{array}{ccccc}
1 & -1 & 1 & 1 \\
0 & 1 & -2 & -1 \\
0 & 0 & 3 & 1
\end{array}\right]$$

$$\left[\begin{array}{cccc}
1 & -1 & 1 & 1 \\
0 & 1 & -2 & -1 \\
0 & 0 & 1 & \frac{1}{3}
\end{array}\right]$$

$$\begin{bmatrix} 1 & -1 & 0 & \frac{2}{3} \\ 0 & 1 & 0 & -\frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & \frac{2}{3} \\ 0 & 1 & 0 & -\frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & \frac{1}{3} \\
0 & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 1 & \frac{1}{3}
\end{bmatrix}$$

$$(1,0,0) = \frac{1}{3}(1,1,1) + (-\frac{1}{3})(-1,1,0) + \frac{1}{3}(1,0,-1)$$

5.5 Mudança de Base

Definição 5.5.1. Seja E um espaço vetorial de dimensão n e considere as bases $B = \{u_1, \dots, u_n\}$ e $C = \{v_1, \dots, v_n\}$ de E. A matriz de mudança da base B para a base C é definida pelos coeficientes do seguinte sistema:

$$\begin{cases} v_1 = \alpha_{11}u_1 + \alpha_{21}u_2 + \cdots + \alpha_{n1}u_n \\ v_2 = \alpha_{12}u_1 + \alpha_{22}u_2 + \cdots + \alpha_{n2}u_n \\ \vdots \\ v_n = \alpha_{1n}u_1 + \alpha_{2n}u_2 + \cdots + \alpha_{nn}u_n \end{cases}$$

ou

$$v_j = \sum_{i=1}^n \alpha_{ij} u_i, (j = 1, 2, \dots, n)$$
 (5.7)

Ou seja, a matriz de mudança da base B para a base C é a matriz quadrada de ordem n dada pelos coeficientes da equação (5.7).

$$P = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} \end{bmatrix}$$
 (5.8)

Seja \overline{B} a matriz dada por $\overline{B}_{(i)} = u_i \in \overline{C}$ a matriz dada por $\overline{C}_{(j)} = v_j$.

Segue da equação (5.7) que $v_j = \overline{B}P_{(j)}$.

Assim temos que

$$\overline{B}P = \left[\overline{B}P_{(1)}\cdots\overline{B}P_{(n)}\right] = \left[v_1\cdots v_n\right] = \left[\overline{C}_{(1)}\cdots\overline{C}_{(n)}\right] = \overline{C}$$

Portanto as bases e a matriz de passagem se relacionam pela seguinte equação matricial: $\overline{B}P = \overline{C}$.

Para resolver esse sistema quando a incógnita é a matriz P basta seguir o seguinte esquema.

$$[\overline{B} \mid \overline{C}] \rightarrow [I \mid P]$$

Equivalentemente

$$\overline{B}P = \overline{C} \Leftrightarrow (\overline{B}P)^T = \overline{C}^T \Leftrightarrow P^T \overline{B}^T = \overline{C}^T$$

E portanto para resolver esse sistema seguimos o seguinte esquema.

$$\left[P^T \mid \overline{C}^T\right] \to \left[I \mid \overline{B}^T\right]$$

Exemplo 5.5.1. Determine a matriz de mudança da base $B = \{(1, 2, 1), (3, 7, 4), (3, 7, 5)\}$ do \mathbb{R}^3 para a base $C = \{(1, 1, 1), (-1, 0, -2), (1, 2, 1)\}$ desse mesmo espaço.

Solução:

$$\begin{cases}
(1,1,1) &= \alpha_{11}(1,2,1) + \alpha_{21}(3,7,4) + \alpha_{31}(3,7,5) \\
(-1,0,-2) &= \alpha_{12}(1,2,1) + \alpha_{22}(3,7,4) + \alpha_{32}(3,7,5) \\
(1,2,1) &= \alpha_{13}(1,2,1) + \alpha_{23}(3,7,4) + \alpha_{33}(3,7,5)
\end{cases}$$

$$\begin{bmatrix} 1 & 3 & 3 & 1 \\ 2 & 7 & 7 & 1 \\ 1 & 4 & 5 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 3 & 3 & -1 \\ 2 & 7 & 7 & 0 \\ 1 & 4 & 5 & -2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 3 & 3 & 1 \\ 2 & 7 & 7 & 2 \\ 1 & 4 & 5 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 3 & 1 & -1 & 1 \\ 2 & 7 & 7 & 1 & 0 & 2 \\ 1 & 4 & 5 & 1 & -2 & 1 \end{bmatrix} \xrightarrow{L_2 + (-2)L_1} L_3 + (-1)L_1$$

$$\begin{bmatrix} 1 & 3 & 3 & 1 & -1 & 1 \\ 0 & 1 & 1 & -1 & 2 & 0 \\ 0 & 1 & 2 & 0 & -1 & 0 \end{bmatrix} \xrightarrow{L_3 + (-1)L_2}$$

$$\begin{bmatrix} 1 & 3 & 3 & 1 & -1 & 1 \\ 0 & 1 & 1 & -1 & 2 & 0 \\ 0 & 0 & 1 & 1 & -3 & 0 \end{bmatrix} \xrightarrow{L_1 + (-3)L_3} \xrightarrow{L_2 + (-1)L_3}$$

$$\begin{bmatrix} 1 & 3 & 0 & -2 & 8 & 1 \\ 0 & 1 & 0 & -2 & 5 & 0 \\ 0 & 0 & 1 & 1 & -3 & 0 \end{bmatrix} \xrightarrow{L_1 + (-3)L_2}$$

$$\left[\begin{array}{ccccccc}
1 & 0 & 0 & 4 & -7 & 1 \\
0 & 1 & 0 & -2 & 5 & 0 \\
0 & 0 & 1 & 1 & -3 & 0
\end{array}\right]$$

$$P = \left[\begin{array}{rrr} 4 & -7 & 1 \\ -2 & 5 & 0 \\ 1 & -3 & 0 \end{array} \right]$$

Exemplo 5.5.2. Por exemplo determine a base B sabendo que a matriz de passagem da base B para a base C é

$$P = \left[\begin{array}{rrr} 4 & -7 & 1 \\ -2 & 5 & 0 \\ 1 & -3 & 0 \end{array} \right]$$

e $C = \{(1, 1, 1), (-1, 0, -2), (1, 2, 1)\}$ desse mesmo espaço.

Solução:

$$\begin{cases}
(1,1,1) = 4 \cdot u_1 + (-7) \cdot u_2 + 1 \cdot u_3 \\
(-1,0,-2) = (-2) \cdot u_1 + 5 \cdot u_2 + 0 \cdot u_3 \\
(1,2,1) = 1 \cdot u_1 + (-3) \cdot u_2 + 0 \cdot u_3
\end{cases}$$

$$\begin{bmatrix} 4 & -2 & 1 & 1 & 1 & 1 \\ -7 & 5 & -3 & -1 & 0 & -2 \\ 1 & 0 & 0 & 1 & 2 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 3 & 7 & 4 \\ 0 & 0 & 1 & 3 & 7 & 5 \end{bmatrix}$$

Donde obtemos a base B a partir das linhas da matriz \overline{B}^T .

$$B = \{(1, 2, 1), (3, 7, 4), (3, 7, 5)\}$$

Exemplo 5.5.3. Qual a matriz de mudança da base $B = \{1, 1 + t\}$ para a base $C = \{1, t\}$ no espaço $P_1(\mathbb{R})$?

$$\begin{cases} 1 &= \alpha_{11} \cdot 1 + \alpha_{21} \cdot (1+t) \\ t &= \alpha_{12} \cdot 1 + \alpha_{22} \cdot (1+t) \end{cases} \Rightarrow$$

$$\begin{cases} 1 \cdot 1 + 0 \cdot t &= (\alpha_{11} + \alpha_{21}) \cdot 1 + \alpha_{21} \cdot t \\ 0 \cdot 1 + 1 \cdot t &= (\alpha_{12} + \alpha_{22}) \cdot 1 + \alpha_{22} \cdot t \end{cases} \Rightarrow$$

$$\begin{cases} \alpha_{11} + \alpha_{21} = 1 \\ \alpha_{21} = 0 \end{cases} \Rightarrow \begin{cases} \alpha_{11} = 1 \\ \alpha_{21} = 0 \end{cases}$$

$$\begin{cases} \alpha_{12} + \alpha_{22} = 0 \\ \alpha_{22} = 1 \end{cases} \Rightarrow \begin{cases} \alpha_{12} = -1 \\ \alpha_{22} = 1 \end{cases}$$

$$P = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
 é a matriz procurada.

Teorema 5.6. Sejam E um espaço vetorial, $P = (\alpha_{ij})$ a matriz de passagem da base $B = \{u_1, \dots, u_n\}$ para a base $C = \{v_1, \dots, v_n\}$ de E e $Q = (\beta_{ij})$ a matriz de passagem da base $C = \{v_1, \dots, v_n\}$ para a base $D = \{w_1, \dots, w_n\}$. Então a matriz de passagem da base B para a base D é a matriz produto PQ.

Demonstração. Pela definição de matriz de passagem temos

$$v_j = \sum_{i=1}^n \alpha_{ij} u_i$$
 e $w_k = \sum_{i=1}^n \beta_{jk} v_j$

Logo
$$w_k = \sum_{j=1}^n \beta_{jk} v_j$$

$$= \sum_{j=1}^n \beta_{jk} \left(\sum_{i=1}^n \alpha_{ij} u_i \right)$$

$$= \sum_{j=1}^n \sum_{i=1}^n (\alpha_{ij} \beta_{jk} u_i)$$

$$= \sum_{i=1}^n \sum_{j=1}^n (\alpha_{ij} \beta_{jk} u_i)$$

$$= \sum_{i=1}^n \left(\sum_{j=1}^n \alpha_{ij} \beta_{jk} \right) u_i$$

$$= \sum_{i=1}^n [PQ]_{ik} u_i$$

Portanto a matriz de passagem da base B para a base D é a matriz produto PQ.

Corolário 5.4. Toda matriz de passagem é uma matriz invertível.

Demonstração.

De fato, se considerarmos a matriz de passagem P da base B para a base C e a matriz de passagem Q da base C para a base B temos que a matriz de passagem da base B para a base B é por um lado a identidade e por outro o produto de P por Q.

$$P \cdot Q = I$$

Portanto P é invertível.

_

Teorema 5.7. Se a matriz das coordenadas de $u \in V$ em relação à base

$$B \notin X_B = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}_B$$
 e a matriz de mudança da base $B = \{u_1, \cdots, u_n\}$

para a base $C = \{v_1, \dots, v_n\}$ é $P = (\alpha_{ij})$, então a matriz das coordenadas de u em relação à base C é $X_C = P^{-1}X_B$.

Demonstração. Seja $X_C=\left[\begin{array}{c}y_1\\ \vdots\\ y_n\end{array}\right]_C$ a matriz das coordenadas de u em relação à base C. Temos então

$$u = \sum_{i=1}^{n} x_i u_i = \sum_{j=1}^{n} y_j v_j.$$

Como cada
$$v_j = \sum_{i=1}^n \alpha_{ij} u_i \ (\forall j=1,2,\cdots,n)$$
, então

$$u = \sum_{i=1}^{n} x_i u_i = \sum_{j=1}^{n} y_j v_j = \sum_{j=1}^{n} y_j \left(\sum_{i=1}^{n} \alpha_{ij} u_i \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \alpha_{ij} y_j \right) u_i \Rightarrow$$

$$x_i = \left(\sum_{j=1}^n \alpha_{ij} y_j\right) \Rightarrow$$

$$\begin{cases} \alpha_{11}y_1 + \alpha_{12}y_2 + \cdots + \alpha_{1n}y_n = x_1 \\ \alpha_{21}y_1 + \alpha_{22}y_2 + \cdots + \alpha_{2n}y_n = x_2 \\ \vdots \\ \alpha_{n1}y_1 + \alpha_{n2}y_2 + \cdots + \alpha_{nn}y_n = x_n \end{cases} \Leftrightarrow$$

$$X_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} \end{bmatrix} \cdot \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = X_{C} \Leftrightarrow$$

$$X_B = P \cdot X_C \Leftrightarrow X_C = P^{-1} \cdot X_B$$

Exemplo 5.5.4. Sejam E um espaço vetorial e u, v e w vetores linearmente independentes em E. Os vetores a = u - v + w, b = u + w e c = u + v + 2w são linearmente independentes?

Resolução:

Dizer que $C = \{a, b, c\}$ é L.I. equivale a dizer que a única combinação linear nula dos vetores de C é a trivial.

Ou seja,
$$xa + yb + zc = 0$$
 implica $x = y = z = 0$

Assim

$$xa + yb + zc = 0 \Rightarrow$$

$$x(u - v + w) + y(u + w) + z(u + v + 2w) = 0 \Rightarrow$$

$$(x + y + z)u + (x + z)v + (x + y + 2z)w = 0 \Rightarrow$$

$$\begin{cases} x + y + z = 0 \\ x + z = 0 \\ x + y + 2z = 0 \end{cases}$$

Como a única solução desse sistema é x=y=z=0 então C é L.I..

Exemplo 5.5.5. Sejam E um espaço vetorial e $B = \{u_1, u_2, u_3\}$ um conjunto Linearmente Independentes em E. Prove que $C = \{v_1, v_2, v_3\} \subset E$ é Linearmente Dependentes onde

$$\begin{cases} v_1 = 1 \cdot u_1 + 3 \cdot u_2 + 2 \cdot u_3 \\ v_2 = 1 \cdot u_1 + 4 \cdot u_2 + 4 \cdot u_3 \\ v_3 = 3 \cdot u_1 + 10 \cdot u_2 + 8 \cdot u_3 \end{cases}$$

Resolução:

Dizer que $C = \{v_1, v_2, v_3\}$ é L.D. equivale a dizer que existe uma combinação linear nula não trivial dos vetores de C.

Ou seja, $x_1v_1 + x_2v_2 + x_3v_3 = 0$ admite solução não trivial.

Assim

$$x_1v_1 + x_2v_2 + x_3v_3 = 0 \Rightarrow$$

$$x_1(1 \cdot u_1 + 3 \cdot u_2 + 2 \cdot u_3) + x_2(1 \cdot u_1 + 4 \cdot u_2 + 4 \cdot u_3) + x_3(3 \cdot u_1 + 10 \cdot u_2 + 8 \cdot u_3) = 0 \Rightarrow$$

$$(x_1u_1 + 3x_1u_2 + 2x_1u_3) + (x_2u_1 + 4x_2u_2 + 4x_2u_3) + (3x_3u_1 + 10x_3u_2 + 8x_3u_3) = 0 \Rightarrow$$

$$(x_1u_1 + x_2u_1 + 3x_3u_1) + (3x_1u_2 + 4x_2u_2 + 10x_3u_2) + (2x_1u_3 + 4x_2u_3 + 8x_3u_3) = 0 \Rightarrow$$

$$(x_1 + x_2 + 3x_3)u_1 + (3x_1 + 4x_2 + 10x_3)u_2 + (2x_1 + 4x_2 + 8x_3)u_3 = 0 \Rightarrow$$

Como os vetores u_1, u_2 e u_3 são L.I. então a única solução da equação acima é a trivial, logo

$$\begin{cases} x_1 + x_2 + 3x_3 = 0 \\ 3x_1 + 4x_2 + 10x_3 = 0 \\ 2x_1 + 4x_2 + 8x_3 = 0 \end{cases}$$

Resolvendo o sistema acima concluímos que ele admite solução não

trivial. Portanto $C = \{v_1, v_2, v_3\}$ é Linearmente Dependente.

Exemplo 5.5.6. Sejam E um espaço vetorial e $B = \{u_1, u_2, u_3\}$ um conjunto Linearmente Independentes em E. Prove que $C = \{v_1, v_2, v_3\} \subset E$ é Linearmente Independentes onde

$$\begin{cases} v_1 = 1 \cdot u_1 + 3 \cdot u_2 + 2 \cdot u_3 \\ v_2 = 1 \cdot u_1 + 4 \cdot u_2 + 4 \cdot u_3 \\ v_3 = 1 \cdot u_1 + 4 \cdot u_2 + 5 \cdot u_3 \end{cases}$$

Resolução:

Dizer que $C = \{v_1, v_2, v_3\}$ é L.I. equivale a dizer que a única combinação linear nula dos vetores de C é a trivial.

Ou seja, $x_1v_1 + x_2v_2 + x_3v_3 = 0$ não admite solução não trivial.

Assim

$$x_1v_1 + x_2v_2 + x_3v_3 = 0 \Rightarrow$$

$$x_1(1 \cdot u_1 + 3 \cdot u_2 + 2 \cdot u_3) + x_2(1 \cdot u_1 + 4 \cdot u_2 + 4 \cdot u_3) + x_3(1 \cdot u_1 + 4 \cdot u_2 + 5 \cdot u_3) = 0 \Rightarrow$$

$$(x_1u_1 + 3x_1u_2 + 2x_1u_3) + (x_2u_1 + 4x_2u_2 + 4x_2u_3) + (x_3u_1 + 4x_3u_2 + 5x_3u_3) = 0 \Rightarrow$$

$$(x_1u_1 + x_2u_1 + x_3u_1) + (3x_1u_2 + 4x_2u_2 + 4x_3u_2) + (2x_1u_3 + 4x_2u_3 + 5x_3u_3) = 0 \Rightarrow$$

$$(x_1 + x_2 + x_3)u_1 + (3x_1 + 4x_2 + 4x_3)u_2 + (2x_1 + 4x_2 + 5x_3)u_3 = 0 \Rightarrow$$

Como os vetores u_1, u_2 e u_3 são L.I. então a única solução da equação acima é a trivial, logo

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ 3x_1 + 4x_2 + 4x_3 = 0 \\ 2x_1 + 4x_2 + 5x_3 = 0 \end{cases}$$

Resolvendo o sistema acima temos $x_1 = x_2 = x_3 = 0$. Portanto $C = \{v_1, v_2, v_3\}$ é Linearmente Independente.

Turma A

Teorema 5.8. Seja E um espaço vetorial sobre \mathbb{R} . Se $B = \{u_1, \dots, u_n\}$ é uma base de E e $P = (\alpha_{ij})$ é uma matriz invertível, então os n vetores $v_j = \sum_{i=1}^n \alpha_{ij} u_i \ (j = 1, 2, \dots, n)$ formam uma base de E, ou seja, $C = \{v_1, \dots, v_n\}$ é uma base de E.

Demonstração.

$$\sum_{j=1}^{n} x_j v_j = 0 \Rightarrow \sum_{j=1}^{n} x_j \left(\sum_{i=1}^{n} \alpha_{ij} u_i \right) = 0 \Rightarrow \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \alpha_{ij} x_j \right) u_i = 0 \Rightarrow$$

$$\sum_{i=1}^{n} \alpha_{ij} x_j = 0 \ (\forall i = 1, 2, \cdots, n) \Rightarrow$$

$$\begin{cases} \alpha_{11}x_1 + \alpha_{12}x_2 + \cdots + \alpha_{1n}x_n = 0 \\ \alpha_{21}x_1 + \alpha_{22}x_2 + \cdots + \alpha_{2n}x_n = 0 \\ \vdots \\ \alpha_{n1}x_1 + \alpha_{n2}x_2 + \cdots + \alpha_{nn}x_n = 0 \end{cases} \Leftrightarrow$$

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow$$

 $x_1=x_2=\cdots=x_n=0\Rightarrow C=\{v_1,\cdots,v_n\}$ é L.I., portanto $C=\{v_1,\cdots,v_n\}$ também é uma base de E.

Capítulo 6

Transformação Linear

6.1 Transformação Linear

Definição 6.1.1. Sejam E e F espaços vetoriais sobre \mathbb{R} . Uma aplicação $T: E \longrightarrow F$ é chamada transformação linear de E em F, quando

$$i) T(u+v) = T(u) + T(v), \forall u, v \in E;$$

$$ii) \ T(\lambda u) = \lambda T(u), \forall u \in E, \forall \lambda \in \mathbb{R}.$$

No caso em que E=F, uma transformação linear $T:E\longrightarrow F$ é chamada também de operador linear em E.

Exemplo 6.1.1. Verifique que a função $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ dada por T(x,y) = (x+y, x-y, 2x+y) é uma transformação linear.

Demonstração.

$$T(u+v) = T((x,y) + (z,w))$$

$$= T(x+z,y+w)$$

$$= ((x+z) + (y+w), (x+z) - (y+w), 2(x+z) + (y+w))$$

$$= ((x+y) + (z+w), (x-y) + (z-w), (2x+y) + (2z+w))$$

$$= (x+y, x-y, 2x+y) + (z+w, z-w, 2z+w)$$

$$= T(x,y) + T(z,w)$$

$$= T(u) + T(v)$$

$$T(\lambda \cdot u) = T(\lambda \cdot (x, y))$$

$$= T(\lambda \cdot x, \lambda \cdot y)$$

$$= (\lambda \cdot x + \lambda \cdot y, \lambda \cdot x - \lambda \cdot y, 2(\lambda \cdot x) + \lambda \cdot y)$$

$$= (\lambda \cdot (x + y), \lambda \cdot (x - y), \lambda \cdot (2x + y))$$

$$= \lambda \cdot (x + y, x - y, 2x + y)$$

$$= \lambda \cdot T(x, y)$$

$$= \lambda \cdot T(u)$$

Portanto T é uma transformação linear. \blacksquare

Exemplo 6.1.2. Prove que as funções $f : \mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x) = x^2$, $g : \mathbb{R}_+ \longrightarrow \mathbb{R}$ dada por $g(x) = \sqrt{x}$ e $h : \mathbb{R} \longrightarrow \mathbb{R}$ dada por h(x) = 3x+1 **não** são transformações lineares.

Exemplo 6.1.3. Seja $0: E \longrightarrow F$ dada por $u \longmapsto 0$. Verifique que 0 é uma transformação linear.

$$\begin{cases} 0(u+v) = 0 = 0 + 0 = 0(u) + 0(v) \\ 0(\lambda \cdot u) = 0 = \lambda \cdot 0 = \lambda \cdot 0(u) \end{cases}$$

Exemplo 6.1.4. Seja $I: E \longrightarrow E$ dada por $u \mapsto u$. Verifique que I é uma transformação linear.

$$\left\{ \begin{array}{lll} I(u+v) & = & u+v & = & I(u)+I(v) \\ I(\lambda \cdot u) & = & \lambda \cdot u & = & \lambda \cdot I(u) \end{array} \right.$$

Exemplo 6.1.5. Verifique que a função $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ dada por T(x,y,z)=(y,2x-z) é uma transformação linear.

Demonstração.

$$T(u+v) = T((x_1, y_1, z_1) + (x_2, y_2, z_2))$$

$$= T(x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

$$= (y_1 + y_2, 2(x_1 + x_2) - (z_1 + z_2))$$

$$= (y_1 + y_2, 2x_1 + 2x_2 - z_1 - z_2)$$

$$= (y_1, 2x_1 - z_1) + (y_2, 2x_2 - z_2)$$

$$= T(x_1, y_1, z_1) + T(x_2, y_2, z_2)$$

$$= T(u) + T(v)$$

$$T(\lambda \cdot u) = T(\lambda \cdot (x_1, y_1, z_1))$$

$$= T(\lambda \cdot x_1, \lambda \cdot y_1, \lambda \cdot z_1)$$

$$= (\lambda \cdot y_1, 2(\lambda \cdot x_1) - (\lambda \cdot z_1))$$

$$= \lambda \cdot (y_1, 2x_1 - z_1)$$

$$= \lambda \cdot T(x_1, y_1, z_1)$$

$$= \lambda \cdot T(u)$$

Portanto F é uma transformação linear. \blacksquare

Exemplo 6.1.6. Verifique que a função $T: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ dada por $T(x_1, x_2, \dots, x_m) = (a_{11}x_1 + \dots + a_{1n}x_n, \dots, a_{m1}x_1 + \dots + a_{mn}x_n)$ ou o que é o mesmo dada por:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}\right) = \begin{bmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ a_{21}x_1 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{bmatrix}$$

é uma transformação linear.

Demonstração. Basta observar que T é dada por

$$T\left(\left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_m \end{array}\right]\right) = \left[\begin{array}{c} a_{11}x_1 + \dots + a_{1n}x_n \\ a_{21}x_1 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{array}\right] \Rightarrow$$

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}\right) = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & & & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = A \cdot X$$

Portanto como o produto de matrizes é distributivo e "associativo" em relação à multiplicação por escalar valem: T(X+Y)=A(X+Y)=AX+AY=F(X)+T(Y) e $T(\lambda X)=A(\lambda X)=\lambda(AX)$. Logo F é uma transformação linear.

Exemplo 6.1.7. Verifique que a função $D: P_n(\mathbb{R}) \longrightarrow P_n(\mathbb{R})$ definida por D(f(t)) = f'(t) para todo polinômio f(t) de $P_n(\mathbb{R})(f'(t))$ indica a derivada de f(t)) é uma transformação linear.

Sejam E e F espaços vetoriais sobre \mathbb{R} e consideremos uma transformação linear $T:E\longrightarrow F$. Valem as seguintes propriedades para T:

$$P_1...T(0) = 0;$$

Demonstração.

$$F(0) + 0 = T(0) = T(0 + 0) = T(0) + T(0) \Rightarrow 0 = T(0) \Rightarrow T(0) = 0$$

$$\mathbf{P_2}$$
. $T(-u) = -T(u) \ \forall u \in U$;

Demonstração.

$$T(u) + (-T(u)) = 0 = T(0) = T(u + (-u)) = T(u) + T(-u).$$

Logo $T(u) + (-T(u)) = T(u) + T(-u) \Rightarrow$

$$-T(u) = T(-u) \Rightarrow T(-u) = -T(u)$$

$$\mathbf{P_3}$$
. $T(u-v) = T(u) - T(v) \ \forall u, v \in E$;

Demonstração.

$$T(u-v) = T(u+(-v)) = T(u) + T(-v) = T(u) + (-T(v)) = T(u) - T(v) \quad \blacksquare$$

 $\mathbf{P_4}$. Se G é um subespaço de E, então a imagem de G por T é um subespaço vetorial de F.

Demonstração. Lembremos que $T(G) = \{T(u)/u \in G\}$ é a imagem direta de G por T.

- i) Como $\overline{0} \in G$ e $T(\overline{0}) = \overline{\overline{0}}$, então $\overline{\overline{0}} \in T(G)$;
- $ii) \ u,v \in T(G) \Rightarrow u = T(x), v = T(y), x,y \in G \Rightarrow u + v = T(x) + T(y) = T(x+y) \in T(G) \text{ pois, } x+y \in G, \ \forall x,y \in G;$
- $iii) \ \lambda \in \mathbb{R}, u \in T(G) \Rightarrow u = T(x), x \in G \Rightarrow \lambda u = \lambda T(x) = T(\lambda x) \in T(G) \text{ pois, } \lambda x \in G, \ \forall \lambda \in \mathbb{R}, \ \forall x \in G.$

 $\mathbf{P_5}$. Sendo $T: E \longrightarrow F$ linear então

$$T\left(\sum_{i=1}^{n} a_i u_i\right) = \sum_{i=1}^{n} a_i T(u_i)$$

$$(6.1)$$

Demonstração. Se n = 1 temos

$$T\left(\sum_{i=1}^{n} a_i u_i\right) = T\left(\sum_{i=1}^{1} a_i u_i\right)$$

$$= T\left(a_1 u_1\right)$$

$$= a_1 F\left(u_1\right)$$

$$= \sum_{i=1}^{1} a_i T(u_i)$$

$$= \sum_{i=1}^{n} a_i T(u_i)$$

Suponhamos agora a afirmação verdadeira par um n qualquer e provemos para n+1.

$$T\left(\sum_{i=1}^{n+1} a_{i}u_{i}\right) = T\left(\sum_{i=1}^{n} a_{i}u_{i} + a_{n+1}u_{n+1}\right)$$

$$= T\left(\sum_{i=1}^{n} a_{i}u_{i}\right) + T\left(a_{n+1}u_{n+1}\right)$$

$$= \sum_{i=1}^{n} a_{i}T(u_{i}) + a_{n+1}T\left(u_{n+1}\right)$$

$$= \sum_{i=1}^{n+1} a_{i}T(u_{i})$$

6.2 Núcleo e Imagem

Definição 6.2.1. Sejam E e F espaços vetoriais sobre \mathbb{R} e $T:E\longrightarrow F$ uma transformação linear.

i) Indica-se por N(T) e denomina-se núcleo de T o seguinte subconjunto de E:

$$N(T) = \{ u \in E / T(u) = 0 \}$$
 (6.2)

ii) Indica-se por Im(T) e denomina-se imagem de T o seguinte sub-conjunto de E:

$$Im(T) = \{ T(u) \in F; \ u \in E \}$$
 (6.3)

Exemplo 6.2.1. Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ dada por T(x, y, z) = (x - y, y - z). Então N(T) é a solução do seguinte sistema

$$T(x, y, z) = 0 \Rightarrow$$

$$\begin{cases} x - y & = 0 \\ y - z & = 0 \end{cases} \Rightarrow \begin{cases} x = y \\ y = z \end{cases} \Rightarrow x = y = z \Rightarrow$$

$$N(T) = \{(t, t, t); t \in \mathbb{R}\} = [(1, 1, 1)] \subset \mathbb{R}^3$$

Teorema 6.1. Seja $T: E \longrightarrow F$ uma transformação linear. Então:

- 1) N(T) é um sub-espaço vetorial de E;
- 2) T é injetiva se, e somente se, $N(T) = \{0\}$.
- 3) Im(T) é um sub-espaço vetorial de F;

Demonstração.

1)

$$i) \ T(\overline{0}) = \overline{\overline{0}} \Rightarrow \overline{0} \in N(T);$$

 $ii) \ x,y \in N(T) \Rightarrow T(x+y) = T(x) + T(y) = 0 + 0 = 0 \Rightarrow x+y \in N(T);$

$$iii) \ \lambda \in \mathbb{R}, x \in N(T) \Rightarrow T(\lambda x) = \lambda T(x) = \lambda \cdot 0 = 0 \Rightarrow \lambda x \in N(T).$$

2)

Se T é injetiva então $T(v) = 0 = T(0) \Rightarrow v = 0 \Rightarrow N(T) = \{0\}.$

Se
$$N(T) = \{0\}$$
 então $T(u) = T(v) \Rightarrow T(u) - T(v) = 0 \Rightarrow T(u - v) = 0 \Rightarrow u - v \in N(T) \Rightarrow u - v = 0 \Rightarrow u = v$. Portanto T é injetiva.

3)

$$i) \ \overline{\overline{0}} = T(\overline{0}) \in Im(T);$$

$$ii) \ u, v \in Im(T) \Rightarrow \exists x, y \in E \ / \ u = T(x), v = T(y) \Rightarrow u + v = T(x) + T(y) = T(x + y) \in Im(T), \text{ pois } x + y \in E;$$

iii)
$$\lambda \in \mathbb{R}, u \in Im(T) \Rightarrow \lambda \in \mathbb{R}, \exists x \in E \mid u = T(x) \Rightarrow \lambda u = \lambda T(x) = T(\lambda x) \in Im(T), \text{ pois } \lambda x \in E.$$

Teorema 6.2. (Teorema do Núcleo e da Imagem). Sejam E e F espaços vetoriais de dimensão finita e $A: E \longrightarrow F$ uma transformação linear. Então vale a seguinte igualdade.

$$\dim E = \dim N(A) + \dim Im(A) \tag{6.4}$$

Demonstração. Sejam $C = \{v_1, \dots, v_q\}$ uma base de N(A) e $D = \{Au_1, \dots, Au_p\}$ uma base de Im(A). Então $B = \{u_1, \dots, u_p, v_1, \dots, v_q\}$ é uma base de E. Vamos demonstra que E é L.I. e que gera E.

Para demonstrar que B é L.I. basta mostrar que a única combinação linear nula de seus vetores é a trivial. suponhamos que

$$\alpha_1 u_1 + \dots + \alpha_n u_n + \beta_1 v_1 + \dots + \beta_n v_n = 0 \tag{6.5}$$

Aplicando A em ambos os lados da equação (6.5) obetemos

$$A(\alpha_1 u_1 + \dots + \alpha_p u_p + \beta_1 v_1 + \dots + \beta_q v_q) = A(0) \Rightarrow$$

$$\alpha_1 A(u_1) + \dots + \alpha_p A(u_p) + \beta_1 A(v_1) + \dots + \beta_q A(v_q) = A(0) \Rightarrow$$

$$\alpha_1 A(u_1) + \dots + \alpha_p A(u_p) = 0 \Rightarrow$$

 $\alpha_1 = \cdots = \alpha_p = 0$ pois, D é uma base e portanto seus vetores são L.I. e consequentemente a única combinação linear de seus vetores é a trivial.

Substituindo esses valores na equação (6.5) obtemos

$$\beta_1 v_1 + \dots + \beta_q v_q = 0 \Rightarrow$$

 $\beta_1 = \dots = \beta_q = 0 \Rightarrow \alpha_1 = \dots = \alpha_p = \beta_1 = \dots = \beta_q = 0$

Portanto B é L.I., pois uma combinação linear de seus vetores é inevitavelmente a trivial.

Agora vamos demonstrar que dado um vetor qualquer $w \in E$ podemos escreve-lo como combinação linear dos elementos de B.

$$w \in E \Rightarrow A(w) \in Im(A) \Rightarrow A(w) = \alpha_1 A(u_1) + \dots + \alpha_p A(u_p) \Rightarrow$$

$$A(w) = A(\alpha_1 u_1 + \dots + \alpha_p u_p) \Rightarrow$$

$$A(w) - A(\alpha_1 u_1 + \dots + \alpha_p u_p) = 0 \Rightarrow$$

$$A(w - (\alpha_1 u_1 + \dots + \alpha_p u_p)) = 0 \Rightarrow$$

$$w - (\alpha_1 u_1 + \dots + \alpha_p u_p) \in N(A) \Rightarrow$$

$$w - (\alpha_1 u_1 + \dots + \alpha_p u_p) = \beta_1 v_1 + \dots + \beta_q v_q \Rightarrow$$

$$w = \alpha_1 u_1 + \dots + \alpha_p u_p + \beta_1 v_1 + \dots + \beta_q v_q \Rightarrow$$
Portanto $B \text{ gera } E.$

Portanto B é uma base de E pois B é L.I. e gera E.

Corolário 6.1. Sejam E e F espaços vetoriais sobre \mathbb{R} com a mesma dimensão finita n e suponhamos $T:E\longrightarrow F$ uma transformação linear. Então são equivalentes as seguintes afirmações:

- $i) N(T) = \{0\};$
- ii) T é injetiva ;
- iii) T é sobrejetiva ;
- iv) T é bijetiva ;
- v) T transforma uma base de E em uma base de F(isto é, se B é uma base de E, então T(B) é uma base de T(E).

Capítulo 7

Matriz de uma Transformação Linear

7.1 Operações com Transformações Lineares

Definição 7.1.1. Sejam E e F espaços vetoriais sobre \mathbb{R} . Indiquemos por L(E, F) o conjunto de todas as transformações lineares de E em F.

Se F = E, o conjunto dos operadores de E será donotado por L(E).

Sejam $R, S \in L(E, F)$ transformações lineares de E em F. Se definirmos $T: E \longrightarrow F$ dada por T(u) = R(u) + S(u) então T é também uma transformação linear. De fato T(u+v) = R(u+v) + S(u+v) = [R(u) + R(v)] + [S(u) + S(v)] = [R(u) + S(u)] + [R(v) + S(v)] = T(u) + T(v) e $T(\lambda u) = R(\lambda u) + S(\lambda u) = \lambda R(u) + \lambda S(u) = \lambda [R(u) + S(u)] = \lambda T(u)$. Definimos a seguir a soma de transformações lineares.

Portanto $T = R + S \in L(E, F)$ e assim está bem definida a adição.

Definição 7.1.2. Dados $S, T \in L(E, F)$, definimos a soma S + T de S com T da seguinte forma:

$$S + T : E \longrightarrow F$$
 dada por $(S + T)(u) = S(u) + T(u) \ \forall u \in E$.

- $\mathbf{A_1}$) S + T = T + S, $\forall S, T \in L(E, F)$ (Comutatividade);
- $\mathbf{A_2}) \ (R+S)+T=R+(S+T), \ \forall R,S,T\in L(E,F)$ (Associatividade);
- **A₃**) T + 0 = T, $\forall T \in L(E, F)$, onde 0(u) = 0, $\forall u \in E$ (Existência do elemento neutro da adição);
- $\mathbf{A_4}$) $\forall T \in L(E,F) \ \exists (-T)/\ T + (-T) = 0$, onde (-T)(u) = -T(u), $\forall u \in E$ (Existência do inverso aditivo).

Sejam $S \in L(E, F)$ transformação linear de E em F. Se definirmos $T: E \longrightarrow F$ dada por $T(u) = \lambda S(u)$ então T é também uma transformação linear. De fato $T(u+v) = \lambda S(u+v) = \lambda[S(u)+S(v)] = \lambda S(u) + \lambda S(v) = T(u) + T(v)$ e $T(\alpha u) = \lambda S(\alpha u) = \lambda(\alpha S(u)) = (\lambda \alpha)S(u) = (\alpha \lambda)S(u) = \alpha(\lambda S(u)) = \alpha(T(u))$. Definimos a seguir o produto de transformações lineares por escalar.

Portanto λT assim definida é uma transformação linear.

Definição 7.1.3. Dados $T \in L(E, F)$ e $\lambda \in \mathbb{R}$, definimos o produto λT de λ com T da seguinte forma:

$$\lambda T: E \longrightarrow F$$
 dada por $(\lambda T)(u) = \lambda T(u), \ \forall u \in E$.

$$\mathbf{M_1}$$
) $(\alpha \cdot \beta) \cdot T = \alpha \cdot (\beta \cdot T), \ \forall \alpha, \beta \in \mathbb{R}$ (Associatividade);

 $\mathbf{M_2}$) $(\alpha + \beta) \cdot T = \alpha \cdot T + \beta \cdot T$, $\forall T \in L(E, F), \forall \alpha, \beta \in \mathbb{R}$ (Distributividade da multiplicação em relação à soma de números reais);

 $\mathbf{M_3}$) $\alpha \cdot (R+S) = \alpha \cdot R + \alpha \cdot S$, $\forall R, S \in L(E, F)$, $\forall \alpha \in \mathbb{R}$ (Distributividade da multiplicação em relação à soma de transformações);

$$[\alpha(R+S)](u) = \alpha(R+S)(u) = \alpha[R(u)+S(u)] = \alpha R(u) + \alpha S(u) = (\alpha R)(u) + (\alpha S)(u) = [\alpha R + \alpha S](u)$$

 $\mathbf{M_4}$) $1 \cdot T = T$, $\forall T \in L(E, F)$ (Existência do elemento neutro da multiplicação).

Essas operações fazem de L(E, F) um espaço vetorial, ou seja, $(L(E, F), +, \cdot)$ é um espaço vetorial real.

Definição 7.1.4. Sejam E, F e G espaços vetoriais sobre \mathbb{R} . Se T: $E \longrightarrow F$ e $S: F \longrightarrow G$ são transformações lineares, denota-se por $S \circ T$ a aplicação composta de T e S definida por:

$$S \circ T : E \longrightarrow G \in (S \circ T)(u) = S(T(u)), \ \forall u \in E.$$

a)

$$(S \circ T)(u+v) = S(T(u+v)) = S(T(u)+T(v)) = S(T(u))+S(T(v)) = (S \circ T)(u) + (S \circ T)(v) \ \forall u,v \in E;$$

b)

$$(S \circ T)(\lambda u) = S(T(\lambda u)) = S(\lambda T(u)) = \lambda S(T(u)) = \lambda (S \circ T)(u) \ \forall \lambda \in \mathbb{R} \ \forall u \in E$$
;

Portanto $(S \circ T) \in L(E, G)$ é uma transformação linear.

Propriedades:

$$\mathbf{C_1}$$
) $(R \circ S) \circ T = R \circ (S \circ T), \ \forall R, S, T \in L(E)$ (Associatividade);

$$C_2$$
) $I \circ T = T \circ I = T$, $\forall T \in L(E)$ (Elemento neutro da composição);

 C_3) $R \circ (S + T) = R \circ S + R \circ T$, $\forall R, S, T \in L(E)$ (Distributividade da composição em relação à soma de transformações lineares);

Exemplo 7.1.1. Assim como o produto de matrizes a composição de transformações não é comutativa, ou seja, não vale $S \circ T = T \circ S$ em geral. Por exemplo, dados $S : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ e $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dadas por

$$S(x,y) = (x+y,0)$$
 e $T(x,y) = (x,2y)$, então
$$(S \circ T)(x,y) = S(T(x,y)) = S(x+y,0) = (x+y,0)$$
 e
$$(T \circ S)(x,y) = T(S(x,y)) = T(x,2y) = (x+2y,0)$$
 Logo $S \circ T \neq T \circ S$.

Definição 7.1.5. Seja T um operador linear em E. Definimos a potência de T por indução da seguinte forma:

$$T^0 = I$$

$$T^{n+1} = T^n \circ T.$$

Ou seja,

$$\begin{array}{rcl} T^0 & = & I \\ T^1 & = & T^0 \circ T = I \circ T = T \\ T^2 & = & T^1 \circ T = T \circ T \\ T^3 & = & T^2 \circ T = T \circ T \circ T \\ T^4 & = & T^3 \circ T = T \circ T \circ T \circ T \\ & \vdots \\ T^{n+1} & = & T^n \circ T = (T \circ T \circ \cdots \circ T) \circ T \end{array}$$

Operadores Nilpotentes.

$$T^n=0,\ T\neq 0$$

Exemplo 7.1.2. $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por T(x, y, z) = (0, x, y) é nilpotente pois $T^3(x, y, z) = T(T(T(x, y, z))) = T(T(0, x, y)) = T(0, 0, x) = (0, 0, 0) = 0 \Rightarrow T^3 = 0.$

Exemplo 7.1.3. $D: P_n(\mathbb{R}) \longrightarrow P_n(\mathbb{R})$ dada por D(f(t)) = f'(t) é nilpotente.

Operadores Idepotentes ou Projeções

$$P^2 = P, \ P \neq 0 \ e \ P \neq I$$

Exemplo 7.1.4. $P: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por $P(x,y) = (\frac{x+y}{2}, \frac{x+y}{2})$ é a projeção ortogonal sobre a reta y = x e satisfaz $P^2 = P$.

Exemplo 7.1.5. $P: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por $P(x,y,z) = \frac{1}{3}(2x-y+z,-x+2y+z,x+y+2z)$ é a projeção sobre o plano x+y-z=0 e satisfaz $P^2=P$.

Exemplo 7.1.6. Seja $P: \mathbb{R}^2 \to \mathbb{R}^2$ a projeção ortogonal do ponto (x, y) sobre a reta y = mx.

- a) Determine uma expressão para P(x,y) = (a, ma) encontrando a em função de x, y e m. [Dica: utilize o Teorema de Pitágoras no triângulo retângulo de vértices (0,0),(x,y),(a,ma)];
 - b) Depois mostre que P é uma transformação linear.

Solução:

$$x^{2} + y^{2} = a^{2} + (ma)^{2} + (x - a)^{2} + (y - ma)^{2}$$

$$x^{2} + y^{2} = a^{2} + m^{2}a^{2} + x^{2} - 2ax + a^{2} + y^{2} - 2may + m^{2}a^{2}$$

$$0 = a^{2} + m^{2}a^{2} - 2ax + a^{2} - 2may + m^{2}a^{2}$$

$$0 = 2a^{2} + 2m^{2}a^{2} - 2ax - 2may$$

$$0 = a^{2} + m^{2}a^{2} - ax - may$$

$$0 = a + m^{2}a - x - my$$

$$x + my = a + m^{2}a$$

$$a + m^{2}a = x + my$$

$$a=\frac{x+my}{1+m^2}$$

$$P(x,y)=\left(\frac{x+my}{1+m^2},\frac{mx+m^2y}{1+m^2}\right)$$
 b)

$$u = (x, y)$$
 $v = (z, w)$

 $a(1+m^2) = x + my$

$$P(u+v) = P((x,y) + (z,w))$$

$$= P(x+z,y+w)$$

$$= \left(\frac{(x+z) + m(y+w)}{1+m^2}, \frac{m(x+z) + m^2(y+w)}{1+m^2}\right)$$

$$= \left(\frac{(x+my) + (z+mw)}{1+m^2}, \frac{(mx+m^2y) + (mz+m^2w)}{1+m^2}\right)$$

$$= \left(\frac{(x+my)}{1+m^2} + \frac{(z+mw)}{1+m^2}, \frac{(mx+m^2y)}{1+m^2} + \frac{(mz+m^2w)}{1+m^2}\right)$$

$$= \left(\frac{x+my}{1+m^2}, \frac{mx+m^2y}{1+m^2}\right) + \left(\frac{z+mw}{1+m^2}, \frac{mz+m^2w}{1+m^2}\right)$$

$$= P(x,y) + P(z,w)$$

$$= P(x,y) + P(z,w)$$

$$= P(x,y) + P(x)$$

$$P(\lambda u) = P(\lambda(x,y))$$

$$= P(\lambda(x,y))$$

$$= \left(\frac{(\lambda x) + m(\lambda y)}{1+m^2}, \frac{m(\lambda x) + m^2(\lambda y)}{1+m^2}\right)$$

$$= \left(\frac{\lambda(x+my)}{1+m^2}, \frac{\lambda(mx+m^2y)}{1+m^2}\right)$$

$$= \lambda P(x,y)$$

$$= \lambda P(u)$$

Exemplo 7.1.7. Sejam $a, b \in \mathbb{R}$ com $a \neq b$ e $P : \mathbb{R}^2 \to \mathbb{R}^2$ a projeção do ponto (x, y) sobre o vetor u = (1, a) (ou seja, sobre a reta y = ax) paralela ao vetor v = (1, b). Determine uma expressão para a projeção P(x, y).

Solução:

$$(x,y) = \alpha u + \beta v$$

$$(x,y) = \alpha(1,a) + \beta(1,b)$$

$$\left\{ \begin{array}{cccc} \alpha & + & \beta & = & x \\ \alpha \cdot a & + & \beta \cdot b & = & y \end{array} \right.$$

$$\left[\begin{array}{ccc} 1 & 1 & x \\ a & b & y \end{array}\right]$$

$$\left[\begin{array}{ccc} 1 & 1 & x \\ 0 & b-a & y-ax \end{array}\right]$$

$$\left[\begin{array}{ccc} 1 & 1 & x \\ 0 & 1 & \frac{y-ax}{b-a} \end{array}\right]$$

$$\begin{bmatrix} 1 & 0 & \frac{bx - y}{b - a} \\ 0 & 1 & \frac{y - ax}{b - a} \end{bmatrix}$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \frac{y - bx}{a - b} \\ -\frac{y - ax}{a - b} \end{bmatrix}$$

$$\alpha = \frac{y - bx}{a - b} \Rightarrow P(x, y) = \left(\frac{y - bx}{a - b}, \frac{a(y - bx)}{a - b}\right)$$

Exemplo 7.1.8. Sejam $u_1 = (1,3,1), u_2 = (3,10,6), u_3 = (1,5,8) \in \mathbb{R}^3$ e $P: \mathbb{R}^3 \to \mathbb{R}^3$ a projeção do ponto (x,y,z) sobre subespaço $F = [u_1, u_2]$ paralela ao subespaço $G = [u_3]$. Determine uma expressão para a projeção $P_F(x,y,z)$.

Solução:

$$(x, y, z) = \alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3$$

$$(x, y, z) = \alpha_1 (1, 3, 1) + \alpha_2 (3, 10, 6) + \alpha_3 (1, 5, 8)$$

$$(x, y, z) = (\alpha_1, 3\alpha_1, \alpha_1) + (3\alpha_2, 10\alpha_2, 6\alpha_2) + (\alpha_3, 5\alpha_3, 8\alpha_3)$$

$$(x, y, z) = (\alpha_1 + 3\alpha_2 + \alpha_3, 3\alpha_1 + 10\alpha_2 + 5\alpha_3, \alpha_1 + 6\alpha_2 + 8\alpha_3)$$

$$\begin{cases} \alpha_1 + 3\alpha_2 + \alpha_3 = x \\ 3\alpha_1 + 10\alpha_2 + 5\alpha_3 = y \\ \alpha_1 + 6\alpha_2 + 8\alpha_3 = z \end{cases}$$

$$\left[
\begin{array}{cccc}
1 & 3 & 1 & x \\
3 & 10 & 5 & y \\
1 & 6 & 8 & z
\end{array}
\right]$$

Escalonando essa matriz obtemos a seguinte matriz

$$\begin{bmatrix} 1 & 0 & 0 & 50x - 18y + 5z \\ 0 & 1 & 0 & 7y - 19x - 2z \\ 0 & 0 & 1 & 8x - 3y + z \end{bmatrix}$$

Portanto a solução do sistema é dada por

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 50x - 18y + 5z \\ 7y - 19x - 2z \\ 8x - 3y + z \end{bmatrix}$$

Assim podemos escrever a projeção da seguinte forma.

$$P_F(x, y, z) = \alpha_1 u_1 + \alpha_2 u_2 = (50x - 18y + 5z)(1, 3, 1) + (7y - 19x - 2z)(3, 10, 6) \Rightarrow$$

$$P_F(x, y, z) = (50x - 18y + 5z)(1, 3, 1) + (7y - 19x - 2z)(3, 10, 6) \Rightarrow$$

$$P_F(x, y, z) = (50x - 18y + 5z, 150x - 54y + 15z, 50x - 18y + 5z) + (21y - 57x - 6z, 70y - 190x - 20z, 42y - 114x - 12z) \Rightarrow$$

Depois de manipular as expressões obtemos uma fórmula para a projeção sobre F paralela a G.

$$P_F(x, y, z) = (-7x + 3y - z, -40x + 16y - 5z, -64x + 24y - 7z)$$

Exemplo 7.1.9. Sejam $u_1 = (1, 2, 1), u_2 = (2, 5, 5), u_3 = (1, 3, 5) \in \mathbb{R}^3$ e $P : \mathbb{R}^3 \to \mathbb{R}^3$ a projeção do ponto (x, y, z) sobre subespaço $F = [u_1, u_2]$ paralela ao subespaço $G = [u_3]$. Determine uma expressão para a projeção $P_F(x, y, z)$.

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 10x - 5y + z \\ 4y - 7x - z \\ 5x - 3y + z \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 & x \\ 2 & 5 & 3 & 4 & L_3 + (-2) L_1 \\ 1 & 5 & 5 & 3 & L_2 + (-1) L_1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 & x \\ 0 & 1 & 1 & -2x + 4 \\ 0 & 3 & 4 & -x & +3 \end{bmatrix} L_3 + (-3) L_2 \begin{bmatrix} 1 & 2 & 1 & x \\ 0 & 1 & 1 & -2x + 4 \\ 0 & 0 & 1 & 5x - 3y + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + y + 3 & -2x + 3 \end{bmatrix} = \begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + 3y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + 3y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + 3y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + 3y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + 3y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + 3y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + 3y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + 3y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + 3y + 3 & -2x + 3 \end{bmatrix}$$

$$\begin{bmatrix} (-3)(-2x + y) + (-x + 3) = 6x - 3y - x + 3 \\ -2x + 3y + 3 & -2x + 3 \end{bmatrix}$$

Exemplo 7.1.10. Sejam $u_1 = (1, 1, 1), u_2 = (0, 1, 0), u_3 = (0, 1, 1) \in \mathbb{R}^3$ e $P : \mathbb{R}^3 \to \mathbb{R}^3$ a projeção do ponto (x, y, z) sobre subespaço $F = [u_1, u_2]$ paralela ao subespaço $G = [u_3]$. Determine uma expressão para a projeção $P_F(x, y, z)$.

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} x \\ y - z \\ z - x \end{bmatrix}$$

Teorema 7.1. Seja $P: E \longrightarrow E$ um operador linear. Então são equivalentes as seguintes propriedades:

- i) $P^2 = P$;
- $ii) E = N(P) \oplus Im(P).$

Involuções ou Simetrias.

$$S^2 = I, S \neq \pm I$$

Exemplo 7.1.11. $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por S(x,y) = (y,x) é a reflexão em relação à reta y = x e satisfaz $S^2 = I$.

Exemplo 7.1.12. $S: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por $S(x,y,z) = \frac{1}{3}(x-2y+2z,-2x+y+2z,2x+2y+z)$ é a reflexão em relação ao plano x+y-z=0 e satisfaz $S^2=I$.

7.2 Matriz de uma Transformação Linear

Definição 7.2.1. Sejam E e F espaços vetoriais sobre \mathbb{R} de dimensão finita, $T: E \longrightarrow F$ uma transformação linear. Fixadas bases $B = \{u_1, \dots, u_n\}$ e $C = \{v_1, \dots, v_m\}$ de E e F respectivamente, existe uma única matriz $P = (\alpha_{ij})_{m \times n}$ tal que

$$T(u_j) = \sum_{i=1}^{m} \alpha_{ij} v_i \ (j = 1, 2, \dots, n)$$
 (7.1)

A matriz $m \times n$ que se obtém das condições anteriores é chamada matriz da transformação linear T em relação às bases B e C e denotasse por:

$$[T]_{B,C} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1m} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2m} \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{bmatrix}$$
(7.2)

Exemplo 7.2.1. Qual a matriz de $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ dada por T(x, y, z) = (x + y, y + z) em relação a esse par de bases

$$B = \{(1,0,0), (0,1,0), (0,0,1)\} \text{ e } C = \{(1,0), (1,1)\}$$

$$\begin{cases} T(1,0,0) = (1+0,0+0) = (1,0) = 1 \cdot (1,0) + 0 \cdot (1,1) \\ T(0,1,0) = (0+1,1+0) = (1,1) = 0 \cdot (1,0) + 1 \cdot (1,1) \\ T(0,0,1) = (0+0,0+1) = (0,1) = (-1) \cdot (1,0) + 1 \cdot (1,1) \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Logo

$$[T]_{B,C} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \tag{7.4}$$

Exemplo 7.2.2. Qual é a matriz da transformação linear $F: \mathbb{R}^2 \to \mathbb{R}^3$ dada por F(x,y) = (x+2y,2x-y,3y-x) em relação ao seguinte par de bases:

$$B = \{(1,0),(0,1)\} \in C = \{(1,3,3),(0,1,1),(2,0,1)\}$$

Solução:

$$\begin{cases}
F(1,0) = (1,2,-1) = a_{11} \cdot (1,3,3) + a_{21} \cdot (0,1,1) + a_{31} \cdot (2,0,1) \\
F(0,1) = (2,-1,3) = a_{12} \cdot (1,3,3) + a_{22} \cdot (0,1,1) + a_{32} \cdot (2,0,1)
\end{cases}$$

$$\begin{bmatrix}
1 & 0 & 2 & 1 & 2 \\
3 & 1 & 0 & 2 & -1 \\
3 & 1 & 1 & -1 & 3
\end{bmatrix}$$

Gaussian elimination:
$$\begin{bmatrix} 1 & 0 & 2 & 1 & 2 \\ 0 & 1 & -6 & -1 & -7 \\ 0 & 0 & 1 & -3 & 4 \end{bmatrix},$$
 row echelon form:
$$\begin{bmatrix} 1 & 0 & 0 & 7 & -6 \\ 0 & 1 & 0 & -19 & 17 \\ 0 & 0 & 1 & -3 & 4 \end{bmatrix}$$

$$[F]_{B,C} = \begin{bmatrix} 7 & -6 \\ -19 & 17 \\ -3 & 4 \end{bmatrix}$$

Exemplo 7.2.3. Qual é a matriz da transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por T(x,y) = (2x+y,x+2y,x+y) em relação ao seguinte par de bases:

$$B = \{(1,0), (0,1)\} \in C = \{(1,-1,0), (0,1,-1), (1,-2,2)\}$$

Solução:

$$\begin{cases} T(1,0) = (2 \cdot 1 + 0, 1 + 2 \cdot 0, 1 + 0) = (2,1,1) \\ T(0,1) = (2 \cdot 0 + 1, 0 + 2 \cdot 1, 0 + 1) = (1,2,1) \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 1 & 2 & 1 \\ -1 & 1 & -2 & 1 & 2 \\ 0 & -1 & 2 & 1 & 1 \end{bmatrix} \xrightarrow{L_2 + L_1}$$

$$\begin{bmatrix} 1 & 0 & 1 & 2 & 1 \\ 0 & 1 & -1 & 3 & 3 \\ 0 & -1 & 2 & 1 & 1 \end{bmatrix} \xrightarrow{L_3 + L_2}$$

$$\begin{bmatrix} 1 & 0 & 1 & 2 & 1 \\ 0 & 1 & -1 & 3 & 3 \\ 0 & 0 & 1 & 4 & 4 \end{bmatrix} \xrightarrow{L_1 + (-1) \cdot L_3} \xrightarrow{L_2 + L_3}$$

$$\left[\begin{array}{cccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\left[\begin{array}{cccc}
-2 & -3 \\
7 & 7 \\
4 & 4
\end{array}\right]$$

$$[T]_{B,C} = \begin{bmatrix} -2 & -3 \\ 7 & 7 \\ 4 & 4 \end{bmatrix}$$

Exemplo 7.2.4. Seja E um espaço vetorial sobre \mathbb{R} e seja I o operador idêntico de E. Dadas as bases B e C de E, o que é $[I]_{B,C}$?

 $[I]_{B,C}$ é a matriz de mudança da base C para a base B.

$$\begin{cases}
I(u_1) = u_1 = \alpha_{11}v_1 + \alpha_{21}v_2 + \cdots + \alpha_{n1}v_n \\
I(u_2) = u_2 = \alpha_{12}v_1 + \alpha_{22}v_2 + \cdots + \alpha_{n2}v_n \\
\vdots \\
I(u_n) = u_n = \alpha_{1n}v_1 + \alpha_{2n}v_2 + \cdots + \alpha_{nn}v_n
\end{cases} (7.5)$$

Teorema 7.2. Sejam E e F espaços vetoriais de dimensão n e m. Então, fixadas bases $B = \{u_1, \dots, u_n\}$ e $C = \{v_1, \dots, v_m\}$ de E e F, a aplicação $T \longrightarrow [T]_{B,C}$ que a cada $T \in L(E,F)$ associa a matriz de T em relação às bases B e C é bijetiva(e linear), ou seja, um isomorfismo.

7.3 Matriz de uma Transformação Composta

A matriz da composição de duas transformações lineares é o produto das matrizes dessas transformações.

Teorema 7.3. Sejam $E, F \in G$ espaços vetoriais sobre \mathbb{R} com bases $B = \{u_1, \dots, u_n\}, C = \{v_1, \dots, v_m\} \in D = \{w_1, \dots, w_p\}$ respectivamente. Supondo $T \in L(E, F) \in S \in L(F, G)$, então

$$[S \circ T]_{BD} = [S]_{CD} \cdot [T]_{BC} \tag{7.6}$$

Demonstração.

$$T(u_i) = \sum_{j=1}^{m} \alpha_{ji} v_j$$
$$S(v_j) = \sum_{k=1}^{p} \beta_{kj} w_k$$
$$(S \circ T)(u_i) = \sum_{k=1}^{p} \gamma_{ki} w_k$$

Portanto temos

$$(S \circ T)(u_i) = S(T(u_i))$$

$$= S\left(\sum_{j=1}^n \alpha_{ji}v_j\right)$$

$$= \sum_{j=1}^n S(\alpha_{ji}v_j)$$

$$= \sum_{j=1}^n \alpha_{ji}S(v_j)$$

$$= \sum_{j=1}^n \alpha_{ji}\sum_{k=1}^p \beta_{kj}w_k$$

$$= \sum_{j=1}^n \sum_{k=1}^p \alpha_{ji}\beta_{kj}w_k$$

$$= \sum_{k=1}^p \sum_{j=1}^n \alpha_{ji}\beta_{kj}w_k$$

$$= \sum_{k=1}^p \left(\sum_{j=1}^n \beta_{kj}\alpha_{ji}\right)w_k$$

$$= \sum_{k=1}^p [[T]_{C,D} \cdot [S]_{B,C}]_{ki}w_k$$

Portanto $[S \circ T]_{B,D} = [T]_{C,D} \cdot [S]_{B,C}$

Teorema 7.4. Sejam E um espaço vetorial de dimensão n sobre \mathbb{R} , $B = \{u_1, \dots, u_n\}$ e $C = \{v_1, \dots, v_n\}$ bases de E e M a matriz de mudança da base B para a base C e $T \in L(E)$, então

$$[T]_C = M^{-1} \cdot [T]_B \cdot M$$
 (7.7)

7.4 Espaço Dual

Sejam E um espaço vetorial sobre \mathbb{R} . O espaço vetorial $L(E,\mathbb{R})$ das transformações lineares de E em \mathbb{R} é chamado de espaço dual de E e denotamos por E^* .

Exemplo 7.4.1. Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}$ dada por T(x, y, z) = 2x + 3y - 5z. Assim $T \in (\mathbb{R}^3)^*$.

Exemplo 7.4.2. Seja $T: \mathbb{R}^n \longrightarrow \mathbb{R}$ dada por $T(x_1, \dots, x_n) = \alpha_1 x_1 + \dots + \alpha_n x_n$. Assim $T \in (\mathbb{R}^n)^*$.

Capítulo 8

Espaço com Produto Interno

8.1 Produto Interno

Definição 8.1.1. (conceito 1)Seja E um espaço vetorial de dimensão finita sobre \mathbb{R} Entende-se por produto interno sobre E uma aplicação que transforma cada par ordenado $(u, v) \in E \times E$ em um número real $\langle u, v \rangle$ obedecendo às seguintes propriedades:

$$i) \langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle, \ \forall u, v, w \in E;$$

$$(ii) \langle \alpha u, v \rangle = \alpha \langle u, v \rangle, \ \forall u, v \in E \ e \ \forall \alpha \in \mathbb{R};$$

$$iii) \langle u, v \rangle = \langle v, u \rangle, \ \forall u, v \in E;$$

$$iv) \langle u, u \rangle > 0, \ \forall u \in E - \{0\} \ e \langle 0, 0 \rangle = 0.$$

De forma equivalente

$$iv) \langle u, u \rangle \ge 0 \ \forall u \in E, \ \langle u, u \rangle = 0 \Leftrightarrow u = 0.$$

Definição 8.1.2. Um espaço vetorial com produto interno ou espaço euclidiano é um espaço vetorial sobre \mathbb{R} munido de produto interno.

Exemplo 8.1.1. Produto interno usual do \mathbb{R}^n . Se $u=(x_1,\cdots,x_n)$ e $v=(y_1,\cdots,y_n)$ são vetores genéricos de \mathbb{R}^n , então:

$$\langle u, v \rangle = x_1 y_1 + \dots + x_n y_n \tag{8.1}$$

é um produto interno no \mathbb{R}^n .

Demonstração. Para provar que a operação definida acima é um produto interno temos que provar que essa operação satisfaz as três propriedades de produto interno. Apenas a primeira propriedade será demonstrada e as demais serão deixadas como exercício.

i) Sejam $u=(x_1,\cdots,x_n), v=(y_1,\cdots,y_n)$ e $w=(z_1,\cdots,z_n)$. Assim temos

$$\langle u + v, w \rangle = \langle (x_1, \dots, x_n) + (y_1, \dots, y_n), (z_1, \dots, z_n) \rangle$$

$$= \langle (x_1 + y_1, \dots, x_n + y_n), (z_1, \dots, z_n) \rangle$$

$$= (x_1 + y_1)z_1 + \dots + (x_n + y_n)z_n$$

$$= x_1z_1 + y_1z_1 + \dots + x_nz_n + y_nz_n$$

$$= (x_1z_1 + \dots + x_nz_n) + (y_1z_1 + \dots + y_nz_n)$$

$$= \langle (x_1, \dots, x_n), (z_1, \dots, z_n) \rangle + \langle (y_1, \dots, y_n), (z_1, \dots, z_n) \rangle$$

$$= \langle u, w \rangle + \langle v, w \rangle$$

Exemplo 8.1.2. É um produto interno sobre o espaço $P_n(\mathbb{R})$ a aplicação

$$\langle f(t), g(t) \rangle = \int_0^1 f(t)g(t)dt, \qquad (8.2)$$

onde f(t) e g(t) são polinômios quaisquer em $P_n(\mathbb{R})$.

Propriedades

Em um espaço vetorial com produto interno valem as seguintes propriedades:

$$\mathbf{P_1}$$
. $\langle u, 0 \rangle = \langle 0, u \rangle = 0, \ \forall u \in E$;

$$\mathbf{P_2}$$
. $\langle u, \alpha v \rangle = \alpha \langle u, v \rangle$, $\forall u, v \in E \ e \ \forall \alpha \in \mathbb{R}$;

P₃.
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle, \ \forall u, v, w \in E;$$

$$\mathbf{P_4.} \left\langle \sum_{i=1}^{m} \alpha_i u_i, v \right\rangle = \sum_{i=1}^{m} \alpha_i \left\langle u_i, v \right\rangle, \ \forall u_i, v \in E;$$

$$\mathbf{P_5}. \left\langle u, \sum_{j=1}^n \beta_j v_j \right\rangle = \sum_{j=1}^n \beta_j \left\langle u, v_j \right\rangle, \ \forall u, v_j \in E;$$

$$\mathbf{P_6.} \left\langle \sum_{i=1}^{m} \alpha_i u_i, \sum_{j=1}^{n} \beta_j v_j \right\rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j \left\langle u_i, v_j \right\rangle, \ \forall u_i, v_j \in E;$$

8.2 Norma e Distância

No plano o comprimento de um vetor u = (x, y) é a distância do ponto (x, y) à origem e pode ser calculada com o Teorema de Pitágoras já demonstrado para o plano.

Assim temos $||u||^2 = x^2 + y^2 \Rightarrow ||u|| = \sqrt{x^2 + y^2} = \sqrt{\langle (x, y), (x, y) \rangle} = \sqrt{\langle u, u \rangle}$ daí a inspiração para a seguinte definição.

Definição 8.2.1. (conceito 3) Seja E um espaço com produto interno. Dado um vetor $u \in E$ indica-se por ||u|| e chama-se a norma de u o número real positivo dado por

$$\parallel u \parallel = \sqrt{\langle u, u \rangle}$$

Exemplo 8.2.1. Se em \mathbb{R}^n considerarmos o produto interno usual, dado $u = (x_1, \dots, x_n)$ nesse espaço, temos:

$$\parallel u \parallel = \sqrt{x_1^2 + \dots + x_n^2}$$

Teorema 8.1. Em todo espaço euclidiano E, temos:

- a) $\|\lambda u\| = |\lambda| \|u\|, \ \forall \lambda \in \mathbb{R} \ e \ \forall u \in E;$
- b) $||u|| \ge 0$, $\forall u \in V \in ||u|| = 0 \Leftrightarrow u = 0$.

Demonstração.

a)
$$\| \lambda u \| = \sqrt{\lambda \alpha u, \lambda u}$$

 $= \sqrt{\lambda \lambda \langle u, u \rangle}$
 $= \sqrt{\lambda^2 \langle u, u \rangle}$
 $= |\lambda| \sqrt{\langle u, u \rangle}$
 $= |\lambda| \| u \|$

b) Segue da definição que $||u|| \ge 0$. Por outro lado $||u|| = 0 \Leftrightarrow \sqrt{\langle u, u \rangle} = 0 \Leftrightarrow \langle u, u \rangle = 0 \Leftrightarrow u = 0$. A norma herda essa propriedade do produto interno.

Dois vetores no plano são ortogonais se, e somente se o produto interno é zero.

Se os vetores u e v são ortogonais então vale o Teorema de Pitágoras no triângulo da figura acima daí temos:

$$\begin{array}{cccc}
 & u \perp v \\
 & \updownarrow \\
 & \downarrow \\
 & (x^2 + y^2) + (a^2 + b^2) & = & (x - a)^2 + (y - b)^2 \\
 & \updownarrow \\
 & (x^2 + y^2) + (a^2 + b^2) & = & x^2 - 2ax + a^2 + y^2 - 2by + b^2 \\
 & \updownarrow \\
 & 0 & = & -2ax - 2by \\
 & \updownarrow \\
 & 2ax + 2by & = & 0 \\
 & \updownarrow \\
 & ax + by & = & 0 \\
 & \updownarrow \\
 & \langle (a, b), (x, y) \rangle & = & 0 \\
 & \updownarrow \\
 & \langle (a, b), (x, y) \rangle & = & 0 \\
 & \updownarrow \\
 & \langle (a, b), (x, y) \rangle & = & 0
\end{array}$$

Portanto concluímos no plano que $u \perp v \Leftrightarrow \langle u, v \rangle = 0$. Esse resultado nos motiva a definir a ortogonalidade entre vetores em qualquer espaço vetorial da seguinte forma.

Definição 8.2.2. (conceito 4)Seja E um espaço vetorial com produto interno. Dizermos que dois vetores $u, v \in E$ são ortogonais (ou perpen-

diculares) quando $\langle u, v \rangle = 0$. Escreve-se $u \perp v$. Em particular 0 é perpendicular a qualquer vetor de E.

Definição 8.2.3. (conceito 5)Seja E um espaço vetorial euclidiano. Um conjunto $X \subset E$ diz-se ortogonal quando dados vetores distintos $u, v \in X$, então $\langle u, v \rangle = 0$.

Definição 8.2.4. (conceito 6)Se além disso ||u||=1, $\forall u \in X$ então X é dito um conjunto ortonormal(A condição ||u||=1 equivale a $\langle u, u \rangle = 1$).

Uma base ortonormal de E é uma base $B = \{u_1, \dots, u_n\}$ tal que

$$\langle u_i, u_j \rangle = \delta_{ij} = \begin{cases} 1, & se \ i = j \\ 0, & se \ i \neq j \end{cases}$$

Teorema 8.2. Num espaço vetorial E euclidiano, todo conjunto ortogonal X de vetores não-nulos é L.I..

Demonstração.

Sejam $v_1, \dots, v_n \in X$. Temos $\langle v_i, v_j \rangle = 0$ se $i \neq j$. Se $\alpha_1 v_1 + \dots + \alpha_n v_n = 0$ então para cada $i = 1, \dots, n$, tomamos o produto interno por v_i em ambos os lados da igualdade o que resulta em

$$\alpha_1 \langle v_1, v_i \rangle + \dots + \alpha_n \langle v_n, v_i \rangle = 0 \implies \alpha_i \langle v_i, v_i \rangle = 0$$

 $\Rightarrow \alpha_i \cdot 1 = 0 \Rightarrow \alpha_i = 0$

Como i é arbitrário concluímos que $\alpha_1 = \cdots = \alpha_n = 0$. Portanto X é L.I..

Teorema 8.3. (Teorema de Pitágoras) Sejam $u, v \in E$ tais que $u \perp v$. Então vale

$$||u+v||^2 = ||u||^2 + ||v||^2$$

Demonstração.

Definição 8.2.5. Seja E um espaço vetorial euclidiano e $u \in E - \{0\}$. Dado um vetor $v \in E$ a projeção de v sobre o eixo que contém u é denotada por $Pr_u(v)$ e definida como o vetor que satisfaz as seguintes condições.

$$\begin{cases} Pr_u(v) = \alpha u \\ u \perp v - Pr_u(v) \end{cases}$$

Ou seja, a projeção é uma função

$$\begin{array}{cccc} Pr_u & : & E & \longrightarrow & E \\ & v & \longmapsto & Pr_u(v) \end{array}$$

$$\begin{cases} v = \alpha u + w \\ w \perp u \end{cases}$$
$$\begin{cases} w = v - \alpha u \\ \langle w, u \rangle = 0 \end{cases}$$

Substituindo a primeira equação na segunda temos:

$$\begin{aligned} \langle v - \alpha u, u \rangle &= 0 &\Rightarrow \langle v, u \rangle - \langle \alpha u, u \rangle = 0 \\ &\Rightarrow \langle v, u \rangle - \alpha \langle u, u \rangle = 0 \\ &\Rightarrow \langle v, u \rangle = \alpha \langle u, u \rangle \\ &\Rightarrow \alpha \langle u, u \rangle = \langle v, u \rangle \\ &\Rightarrow \alpha = \frac{\langle v, u \rangle}{\langle u, u \rangle} \end{aligned}$$

$$Pr_u(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$$

Teorema 8.4. (Desigualdade de Schwarz) Dados $u, v \in E$ vale a seguinte desigualdade

$$\langle u, v \rangle \le |\langle u, v \rangle| \le ||u|| \cdot ||v||$$

Demonstração.

Teorema 8.5. (Desigualdade triangular) Dados $u, v \in E$ vale a seguinte desigualdade

$$\parallel u + v \parallel \leq \parallel u \parallel + \parallel v \parallel$$

Demonstração.

 $\langle v, u \rangle^2 \le \parallel u \parallel^2 \parallel v \parallel^2$

Dados os vetores $u, v \in E$ valem:

Portanto tirando a raiz quadrada de ambos os lados temos

$$||u+v|| \le ||u|| + ||v||$$

8.3 Processo de Gram-Schmidt

Teorema 8.6. Sejam $\{v_1, \dots, v_k\}$ uma base para um subespaço W de \mathbb{R}^n e sejam $\{u_1, \dots, u_k\}$ definidos por

$$\begin{cases} u_1 &= v_1 \\ u_2 &= v_2 - \frac{\langle u_1, v_2 \rangle}{\langle u_1, u_1 \rangle} u_1 \\ u_3 &= v_3 - \frac{\langle u_1, v_3 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle u_2, v_3 \rangle}{\langle u_2, u_2 \rangle} u_2 \\ &\vdots \\ u_k &= v_k - \frac{\langle u_1, v_k \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle u_2, v_k \rangle}{\langle u_2, u_2 \rangle} u_2 - \dots - \frac{\langle u_{(k-1)}, v_k \rangle}{\langle u_{(k-1)}, u_{(k-1)} \rangle} u_{(k-1)} \end{cases}$$

Então $[u_1, \dots, u_i]$ é uma base ortogonal de $[v_1, \dots, v_i]$ para todo $i = 1, \dots, k$.

Demonstração. Em cada etapa estamos subtraindo as componentes em relação aos vetores anteriores o que faz com que resulte em um vetor ortogonal ao anterior, ainda nesse sentido cada parcela removida é ortogonal às parcelas anteriores o que não afeta o resultando obtido anteriormente. ■

Se u é ortogonal a v, então λu é ortogonal a v. Assim durante o processo de Gram-Schmidt vamos multiplicar os vetores por números adequados para evitar as frações. De fato se $\langle u,v\rangle=0$ então $\langle \lambda u,v\rangle=\lambda\cdot\langle u,v\rangle=\lambda\cdot 0=0$

Exemplo 8.3.1. Aplique processo de Gram-Schmidt para construir uma base ortonormal para o sub espaço $w = [v_1, v_2, v_3]$ de \mathbb{R}^4 , onde

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \end{bmatrix}$$

Resolução:

$$u_1 = v_1 \Rightarrow u_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

$$u_{2} = v_{2} - \frac{\langle u_{1}, v_{2} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} \Rightarrow u_{2} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix} - \frac{\langle (1, -1, -1, 1), (2, 1, 0, 1) \rangle}{\langle (1, -1, -1, 1), (1, -1, -1, 1) \rangle} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \Rightarrow$$

$$u_{2} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix} - \frac{2}{4} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \Rightarrow u_{2} = \begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \Rightarrow u_{2} = \begin{bmatrix} 3 \\ 3 \\ 1 \\ 1 \end{bmatrix}$$

$$u_3 = v_3 - \frac{\langle u_1, v_3 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle u_2, v_3 \rangle}{\langle u_2, u_2 \rangle} u_2 \Rightarrow$$

$$u_{3} = \begin{bmatrix} 2\\2\\1\\2 \end{bmatrix} - \frac{\langle (1,-1,-1,1),(2,2,1,2)\rangle}{\langle (1,-1,-1,1),(1,-1,-1,1)\rangle} \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} - \frac{\langle (3,3,1,1),(2,2,1,2)\rangle}{\langle (3,3,1,1),(3,3,1,1)\rangle} \begin{bmatrix} 3\\3\\1\\1 \end{bmatrix} \Rightarrow$$

$$u_{3} = \begin{bmatrix} 2\\2\\1\\2 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} - \frac{15}{20} \begin{bmatrix} 3\\3\\1\\1 \end{bmatrix} \Rightarrow u_{3} = \begin{bmatrix} -\frac{1}{2}\\0\\\frac{1}{2}\\1 \end{bmatrix} \Rightarrow u_{3} = \begin{bmatrix} 1\\0\\-1\\-2 \end{bmatrix}$$

$$\{u_1, u_2, u_3\} = \left\{ \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 3\\3\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\-2 \end{bmatrix} \right\} \text{ \'e uma base ortogonal de } W.$$

Basta normalizar para obter uma base ortonormal. Assim temos

$$||u_1|| = ||(1, -1, -1, 1)|| = \sqrt{1 + 1 + 1 + 1} = \sqrt{4} = 2.$$

 $||u_2|| = ||(3, 3, 1, 1)|| = \sqrt{9 + 9 + 1 + 1} = \sqrt{20}.$
 $||u_3|| = ||(1, 0, -1, -2)|| = \sqrt{1 + 0 + 1 + 4} = \sqrt{6}.$

$$\{u_1, u_2, u_3\} = \left\{ \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{3}{\sqrt{20}} \\ \frac{3}{\sqrt{20}} \\ \frac{1}{\sqrt{20}} \\ \frac{1}{\sqrt{20}} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{6}} \\ 0 \\ -\frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \end{bmatrix} \right\}$$

Exemplo 8.3.2. Aplique o processo de Gram-Schmidt à base

$$B = \{(1, -1, 1, -1), (-2, 3, -2, 2), (3, -3, 4, 4)\}$$

de $W \subset \mathbb{R}^4$, considerando o produto interno usual nesse espaço para obter uma base ortogonal C de W.

Solução:

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \qquad v_2 = \begin{bmatrix} -2 \\ 3 \\ -2 \\ 2 \end{bmatrix} \qquad v_3 = \begin{bmatrix} 3 \\ -3 \\ 4 \\ 4 \end{bmatrix}$$

$$u_1 = \left[\begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \end{array} \right]$$

$$u_{2} = \begin{bmatrix} -2\\3\\-2\\2 \end{bmatrix} - \frac{\langle (-2,3,-2,2),(1,-1,1,-1)\rangle}{\langle (1,-1,1,-1),(1,-1,1,-1)\rangle} \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix} \Rightarrow$$

$$u_{2} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} - \frac{(-9)}{4} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \Rightarrow \qquad u_{2} = \begin{bmatrix} 1 \\ 3 \\ 1 \\ -1 \end{bmatrix}$$

$$u_{3} = \begin{bmatrix} 3 \\ -3 \\ 4 \\ 4 \end{bmatrix} - \frac{\langle (3, -3, 4, 4), (1, -1, 1, -1) \rangle}{\langle (1, -1, 1, -1), (1, -1, 1, -1) \rangle} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} - \frac{\langle (3, -3, 4, 4), (-2, 3, -2, 2) \rangle}{\langle (-2, 3, -2, 2), (-2, 3, -2, 2) \rangle} \begin{bmatrix} -2 \\ 3 \\ -2 \\ 2 \end{bmatrix} \Rightarrow$$

$$u_{3} = \begin{bmatrix} -2\\3\\-2\\2 \end{bmatrix} - \frac{6}{4} \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix} - \frac{(-15)}{12} \begin{bmatrix} -2\\3\\-2\\2 \end{bmatrix} \Rightarrow \qquad u_{3} = \begin{bmatrix} 2\\0\\3\\5 \end{bmatrix}$$

$$u_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \qquad u_2 = \begin{bmatrix} 1 \\ 3 \\ 1 \\ -1 \end{bmatrix} \qquad u_3 = \begin{bmatrix} 2 \\ 0 \\ 3 \\ 5 \end{bmatrix}$$

Teorema 8.7. Seja E um espaço vetorial euclidiano, F um subconjunto de E definamos

$$F^{\perp} = \{ v \in F; \ \langle u, v \rangle = 0, \forall u \in F \}$$

Então F^{\perp} é um subespaço vetorial de E.

Demonstração.

i)
$$\langle 0, u \rangle = 0, \forall u \in F \Rightarrow 0 \in F^{\perp}$$

ii)
$$v, w \in F^{\perp} \implies \langle v, u \rangle = 0, \langle w, u \rangle = 0, \ \forall u \in F$$

$$\Rightarrow \langle v + w, u \rangle = \langle v, u \rangle + \langle w, u \rangle = 0 + 0 = 0, \ \forall u \in F$$

$$\Rightarrow v + w \in F^{\perp}$$

iii)
$$\lambda \in \mathbb{R}, v \in F^{\perp} \implies \lambda \in \mathbb{R}, \langle v, u \rangle = 0, \ \forall u \in F$$

$$\Rightarrow \langle \lambda \cdot v, u \rangle = \lambda \cdot \langle v, u \rangle = \lambda \cdot 0 = 0, \ \forall u \in F$$

$$\Rightarrow \lambda \cdot v \in F^{\perp}$$

Definição 8.3.1. O subespaço F^{\perp} é chamado complemento ortogonal de F.

Teorema 8.8. Seja E um espaço vetorial euclidiano, F um subsepaço de E. Então $E = F \oplus F^{\perp}$, ou seja, $E = F + F^{\perp}$ e $F \cap F^{\perp} = \{0\}$.

Demonstração.

A prova se divide em duas partes:

$$\text{(I) } E = F + F^{\perp}$$

е

$$(\mathrm{II})\ F \cap F^{\perp} = \{0\}$$

Vamos demonstrar(por enquanto) apensas a segunda parte:

$$\left\{ \begin{array}{ll} v \; \in \; F \\ v \; \in \; F^{\perp} \end{array} \right. \Rightarrow$$

$$\left\{ \begin{array}{ll} v \in F \\ \langle v, u \rangle = 0 & \forall u \in F \end{array} \right. \Rightarrow$$

$$\langle v, v \rangle = 0 \Rightarrow v = 0$$

Portanto $F \cap F^{\perp} = \{0\}$

Capítulo 9

Determinantes

9.1 Permutações

Seja $n \geq 1$ um número natural. Consideremos o conjunto $N_n = \{1, \dots, n\}$.

Definição 9.1.1. Uma permutação do conjunto N_n é uma função bijetiva $\sigma: \{1, 2, \cdots, n\} \longrightarrow \{1, 2, \cdots, n\}$.

Se σ e φ são permutações de N_n , então $\sigma \circ \varphi : N_n \longrightarrow N_n$ é obviamente uma permutação. Além disso σ^{-1} é uma permutação também.

Notação abreviada

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Exemplo 9.1.1. Se n=2, existem 2=2! permutações do conjunto $N_2=\{1,2\}$ que são:

$$Id = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \qquad e \qquad \sigma = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

Exemplo 9.1.2. Se n=3, existem 6=3! permutações do conjunto $N_3=\{1,2,3\}$ que são:

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right),$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \\ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Exemplo 9.1.3. Se n = 4, existem 12 = 4! permutações do conjunto $N_4 = \{1, 2, 3, 4\}$. Escreva-as cada uma dessas permutações.

Definição 9.1.2. Consideremos uma permutação

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

de N_n . Seja r o número de pares ordenados (i, j) com $1 \le i < j \le n$ tais que $\sigma(i) > \sigma(j)$. Ou seja,

$$r = \#\{(i, j) / 1 \le i < j \le n \in \sigma(i) > \sigma(j)\}$$

Chama-se sinal da permutação σ o número inteiro representado por $sgn(\sigma)$, dado por

$$sgn(\sigma) = (-1)^r = \begin{cases} 1, & \text{se r \'e par} \\ -1, & \text{se r \'e \'impar} \end{cases}$$

Exemplo 9.1.4. Seja
$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \Rightarrow \sigma(1) = 3, \, \sigma(2) = 1, \, \sigma(3) = 2$$

Os pares (i,j) tais que $1 \leq i < j \leq 3$ são: (1,2),(1,3),(2,3)

Já os pares tais que $\sigma(i) > \sigma(j)$ são: (1,2), (1,3)

Logo
$$r = 2 e sgn(\sigma) = (-1)^2 = 1.$$

Exemplo 9.1.5. Seja
$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \Rightarrow \sigma(1) = 1, \, \sigma(2) = 3, \, \sigma(3) = 2$$

Os pares (i, j) tais que $1 \le i < j \le 3$ são: (1, 2), (1, 3), (2, 3)

O único par tal que $\sigma(i) > \sigma(j)$ é : (2,3)

Logo r = 1 e $sgn(\sigma) = (-1)^1 = -1$.

Exemplo 9.1.6. Seja
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} \Rightarrow$$

$$\sigma(1) = 3$$
, $\sigma(2) = 1$, $\sigma(3) = 2$, $\sigma(4) = 5$, $\sigma(5) = 4$

Os pares (i, j) tais que $1 \le i < j \le 5$ são:

$$(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)$$

Já os pares tais que $\sigma(i) > \sigma(j)$ são: (1,2), (1,3), (4,5)

Logo
$$r = 3$$
 e $sgn(\sigma) = (-1)^3 = -1$.

Definição 9.1.3. Uma permutação σ é par se $sgn(\sigma) = 1$ e σ é impar se $sgn(\sigma) = -1$.

Definição 9.1.4. Dados i,j tais que $1 \le i < j \le 5$, a transposição (i,j) é a permutação dada por $\sigma(i)=j,\ \sigma(j)=i$ e $\sigma(k)=k, \forall k \in \{1,\cdots,n\}-\{i,j\}$

Exemplo 9.1.7. São exemplos de transposições as seguintes permutações

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} (i = 1 e j = 2)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} (i = 2 e j = 3)$$

$$\left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 6 & 4 & 5 & 3 \end{array}\right) (i = 3 e j = 6)$$

Teorema 9.1. Seja σ uma permutação do conjunto N_n . Então valem os seguintes resultados:

i) σ pode fatorar-se na forma

$$\sigma = \tau_1 \circ \cdots \circ \tau_s$$

onde τ_i são transposições.

ii) Se $\sigma = \tau_1 \circ \cdots \circ \tau_s = \tau_1' \circ \cdots \circ \tau_t'$ são duas decomposições de σ então s e t são ambos pares ou ambos ímpares. Além disso $sgn(\sigma) = (-1)^s = (-1)^t$.

Decorre desse Teorema que $sgn(\sigma \circ \varphi) = sgn(\sigma) \cdot sgn(\varphi)$.

9.2 Determinantes

Definição 9.2.1. Seja $A \in M_n(\mathbb{R})$ uma matriz $n \times n$. Definimos o determinante da matriz A da seguinte forma:

$$\det(A) = \sum_{\sigma} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

Exemplo 9.2.1. Seja $A = (a_{11})$, então $det(A) = a_{11}$.

Exemplo 9.2.2. Seja
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R})$$

$$Id = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \Rightarrow sgn(Id) = 1$$

$$\sigma = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \Rightarrow sgn(\sigma) = -1$$

Logo
$$\det(A) = sgn(Id) \cdot a_{1Id(1)} \cdot a_{2Id(2)} + sgn(\sigma) \cdot a_{1\sigma(1)} \cdot a_{2\sigma(2)} \Rightarrow$$

$$\det(A) = 1 \cdot a_{11} \cdot a_{22} + (-1) \cdot a_{12} \cdot a_{21} \Rightarrow$$
$$\det(A) = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Exemplo 9.2.3. Seja
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \in M_3(\mathbb{R})$$

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} (+1) \qquad \sigma_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} (-1)$$

$$\sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} (+1) \qquad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} (-1)$$

$$\sigma_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} (+1) \qquad \sigma_6 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} (-1)$$

Assim temos:

$$sgn(\sigma_1) = (+1)$$
 $sgn(\sigma_4) = (-1)$
 $sgn(\sigma_2) = (+1)$ $sgn(\sigma_5) = (-1)$
 $sgn(\sigma_3) = (+1)$ $sgn(\sigma_6) = (-1)$ (9.1)

Portanto o determinante de A é dado por

$$\det(A) = + sgn(\sigma_1) \cdot a_{1\sigma_1(1)} a_{2\sigma_1(2)} a_{3\sigma_1(3)}$$

$$+ sgn(\sigma_2) \cdot a_{1\sigma_2(1)} a_{2\sigma_2(2)} a_{3\sigma_2(3)}$$

$$+ sgn(\sigma_3) \cdot a_{1\sigma_3(1)} a_{2\sigma_3(2)} a_{3\sigma_3(3)}$$

$$+ sgn(\sigma_4) \cdot a_{1\sigma_4(1)} a_{2\sigma_4(2)} a_{3\sigma_4(3)}$$

$$+ sgn(\sigma_5) \cdot a_{1\sigma_5(1)} a_{2\sigma_5(2)} a_{3\sigma_5(3)}$$

$$+ sgn(\sigma_6) \cdot a_{1\sigma_6(1)} a_{2\sigma_6(2)} a_{3\sigma_6(3)}$$

Substituindo os sinais e as imagens das permutações temos:

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} -a_{11}a_{23}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33}$$

Propriedades

Seja $A \in M_n(\mathbb{R})$ uma matriz de ordem n. A j-ésima linha da matriz $A \notin A^{(j)}$. Usaremos a seguinte notação.

$$A = \begin{bmatrix} A^{(1)} \\ A^{(2)} \\ \vdots \\ A^{(n)} \end{bmatrix} \Rightarrow \det(A) = \det\left(\begin{bmatrix} A^1 \\ A^2 \\ \vdots \\ A^n \end{bmatrix}\right) = \det\left(A^1, A^2, \cdots, A^n\right)$$

Teorema 9.2. Seja $A = (a_{ij})$ uma matriz de ordem n. Então valem as seguintes propriedades.

1. Se
$$A^{(i)} = 0$$
, então det $\begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} \end{pmatrix} = 0$;

$$2. \det \left(\begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} + B^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} \right) = \det \left(\begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} \right) + \det \left(\begin{bmatrix} A^{(1)} \\ \vdots \\ B^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} \right);$$

3.
$$\det \left(\begin{bmatrix} A^{(1)} \\ \vdots \\ \lambda A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} \right) = \lambda \det \left(\begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} \right);$$

4.
$$\det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ \lambda A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} = 0;$$

5.
$$\det \begin{pmatrix} \begin{vmatrix} A^{(1)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{vmatrix} = -\det \begin{pmatrix} \begin{vmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{vmatrix}$$
;

6.
$$\det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} + \lambda A^{(j)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} = \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix}$$
;

7.
$$\det\left(A^{T}\right) = \det\left(A\right);$$

8.
$$det(A \cdot B) = det(A) \cdot det(B)$$
;

9.
$$\det(A^{-1}) = \frac{1}{\det(A)}$$
.

Demonstração.

1. Se
$$A^{(i)} = 0$$
, então det $\begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} = 0$;

Na expressão $\det(A) = \sum_{\sigma} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot \ldots \cdot a_{i\sigma(i)} \cdot \ldots \cdot a_{n\sigma(n)}$ do determinante cada parcela contém um elemento de cada linha da matriz A. Assim todas as parcelas são nulas pois a matriz tem uma linha nula. Portanto $\det(A) = 0$

2.
$$\det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} + B^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} = \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} + \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ B^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} \end{pmatrix}.$$

$$\det(A) = \sum_{\sigma} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot \ldots \cdot [a_{i\sigma(i)} + b_{i\sigma(i)}] \cdot \ldots \cdot a_{n\sigma(n)}$$

$$= \sum_{\sigma} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot \ldots \cdot a_{i\sigma(i)} \cdot \ldots \cdot a_{n\sigma(n)}$$

$$+ \sum_{\sigma} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot \ldots \cdot b_{i\sigma(i)} \cdot \ldots \cdot a_{n\sigma(n)}$$

3.
$$\det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ \lambda A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} \end{pmatrix} = \lambda \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} \end{pmatrix}$$

$$\det(A) = \sum_{\sigma} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot \dots \cdot [\lambda a_{i\sigma(i)}] \cdot \dots \cdot a_{n\sigma(n)}$$

$$= \lambda \sum_{\sigma} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot \dots \cdot a_{i\sigma(i)} \cdot \dots \cdot a_{n\sigma(n)}$$

$$= \lambda \det(A)$$

4.
$$\det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ \lambda A^{(i)} \\ \vdots \\ A^{(n)} \end{pmatrix} = 0$$

Primeiro observamos que pelo item 3 temos

$$\det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ \lambda A^{(i)} \\ \vdots \\ A^{(n)} \end{pmatrix} = \lambda \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix}$$

Assim basta provar que

$$\det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} = 0$$

Para cada permutação $\sigma^<$ tal que $\sigma^<(i)<\sigma^<(j)$ defina a permutação $\sigma^>=\sigma^<\circ(ij)$, ou seja,

$$\begin{cases} \sigma^{>}(i) &= \sigma^{<}(j) \\ \sigma^{>}(j) &= \sigma^{<}(i) \\ \sigma^{>}(k) &= \sigma^{<}(k) \ \forall k \neq i, j \end{cases}$$

$$\det(A) = \det\begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(i)} \end{bmatrix}$$

$$= \sum_{\sigma^{<}} sgn(\sigma^{<}) \cdot a_{1\sigma^{<}(1)} \cdot \dots \cdot a_{i\sigma^{<}(i)} \cdot \dots \cdot a_{j\sigma^{<}(j)} \cdot \dots \cdot a_{n\sigma^{<}(n)}$$

$$+ \sum_{\sigma^{>}} sgn(\sigma^{>}) \cdot a_{1\sigma^{>}(1)} \cdot \dots \cdot a_{i\sigma^{>}(i)} \cdot \dots \cdot a_{j\sigma^{>}(j)} \cdot \dots \cdot a_{n\sigma^{>}(n)}$$

$$= \sum_{\sigma^{<}} sgn(\sigma^{<}) \cdot a_{1\sigma^{<}(1)} \cdot \dots \cdot a_{i\sigma^{<}(i)} \cdot \dots \cdot a_{j\sigma^{<}(j)} \cdot \dots \cdot a_{n\sigma^{<}(n)}$$

$$+ \sum_{\sigma^{<}} (-sgn(\sigma^{<})) \cdot a_{1\sigma^{<}(1)} \cdot \dots \cdot a_{i\sigma^{<}(j)} \cdot \dots \cdot a_{j\sigma^{<}(j)} \cdot \dots \cdot a_{n\sigma^{<}(n)}$$

$$= \sum_{\sigma^{<}} sgn(\sigma^{<}) \cdot a_{1\sigma^{<}(1)} \cdot \dots \cdot a_{j\sigma^{<}(j)} \cdot \dots \cdot a_{j\sigma^{<}(j)} \cdot \dots \cdot a_{n\sigma^{<}(n)}$$

$$= \sum_{\sigma^{<}} sgn(\sigma^{<}) \cdot a_{1\sigma^{<}(1)} \cdot \dots \cdot a_{i\sigma^{<}(j)} \cdot \dots \cdot a_{j\sigma^{<}(j)} \cdot \dots \cdot a_{n\sigma^{<}(n)}$$

$$= \sum_{\sigma^{<}} sgn(\sigma^{<}) \cdot a_{1\sigma^{<}(1)} \cdot \dots \cdot a_{i\sigma^{<}(j)} \cdot \dots \cdot a_{j\sigma^{<}(j)} \cdot \dots \cdot a_{n\sigma^{<}(n)}$$

$$- \sum_{\sigma^{<}} sgn(\sigma^{<}) \cdot a_{1\sigma^{<}(1)} \cdot \dots \cdot a_{i\sigma^{<}(j)} \cdot \dots \cdot a_{j\sigma^{<}(j)} \cdot \dots \cdot a_{n\sigma^{<}(n)}$$

$$- \sum_{\sigma^{<}} sgn(\sigma^{<}) \cdot a_{1\sigma^{<}(1)} \cdot \dots \cdot a_{i\sigma^{<}(j)} \cdot \dots \cdot a_{j\sigma^{<}(j)} \cdot \dots \cdot a_{n\sigma^{<}(n)}$$

5.
$$\det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} = -\det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix}$$
;

= 0

$$0 = \det \begin{pmatrix} \begin{bmatrix} A^{(1)} & \vdots & \\ A^{(i)} + A^{(j)} & \vdots & \\ A^{(i)} + A^{(i)} & \vdots & \\ A^{(n)} & \vdots & \\ A^{(n)} & \end{bmatrix} \end{pmatrix}$$

$$= \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(i)} + A^{(i)} \end{bmatrix} + \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(i)} + A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} \end{pmatrix}$$

$$= \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} + \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} + \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} + \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} \end{pmatrix} + \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} \end{pmatrix}$$

$$= \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} + \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} \Rightarrow$$

$$\det \begin{pmatrix} \begin{vmatrix} A^{(1)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{pmatrix} + \det \begin{pmatrix} \begin{vmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{pmatrix} = 0 \Rightarrow$$

$$\det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(n)} \end{bmatrix} \end{pmatrix} = -\det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} \end{pmatrix}$$

6.
$$\det \begin{pmatrix} A^{(1)} \\ \vdots \\ A^{(i)} + \lambda A^{(j)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{pmatrix} = \det \begin{pmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{pmatrix};$$

$$\det \left(\begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} + \lambda A^{(j)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} \right) = \det \left(\begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} \right) + \det \left(\begin{bmatrix} A^{(1)} \\ \vdots \\ \lambda A^{(j)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} \right)$$

$$= \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} + \lambda \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} \end{pmatrix}$$

$$= \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} + \lambda \cdot 0 = \det \begin{pmatrix} \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(i)} \\ \vdots \\ A^{(j)} \\ \vdots \\ A^{(n)} \end{bmatrix} \end{pmatrix}$$

7.
$$\det(A^T) = \det(A)$$
.

$$\det (A^T) = \det (B)$$

$$= \sum_{\sigma} sgn(\sigma) \cdot b_{1\sigma(1)} \cdot \dots \cdot b_{i\sigma(i)} \cdot \dots \cdot b_{n\sigma(n)}$$

$$= \sum_{\sigma} sgn(\sigma) \cdot a_{\sigma(1)1} \cdot \dots \cdot a_{\sigma(i)i} \cdot \dots \cdot a_{\sigma(n)n}$$

$$= \sum_{\sigma^{-1}} sgn(\sigma^{-1}) \cdot a_{1\sigma^{-1}(1)} \cdot \dots \cdot a_{i\sigma^{-1}(i)} \cdot \dots \cdot a_{n\sigma^{-1}(n)}$$

$$= \det (A)$$

A penúltima igualdade depende dos seguintes fatos:

i) toda permutação é sobrejetora;

$$ii) \ sgn(\sigma^{-1}) = sgn(\sigma);$$

$$ii) S_n = \{\sigma^{-1}; \sigma \in S_n\}.$$

8.
$$det(A \cdot B) = det(A) \cdot det(B);$$

A demonstração dessa propriedade se apoia no fato mais simples de que tal propriedade vale quando A é uma matriz elementar, ou seja, $\det(E \cdot B) = \det(E) \cdot \det(B)$.

De fato, se A não é invertível então AB também não é invertível e daí det(A) = 0 e det(AB) = 0, logo vale a igualdade.

Caso A seja invertível então pode ser escrita como $A = E_k \cdot \ldots \cdot E_1$ e daí sai que

$$\det(AB) = \det(E_k \cdot \ldots \cdot E_1B) = \det(E_k) \cdot \ldots \cdot \det(E_1) \det(B) = \det(E_k \cdot \ldots \cdot E_1) \det(B) = \det(A) \cdot \det(B)$$

9.
$$\det(A^{-1}) = \frac{1}{\det(A)}$$
.

$$1 = \det(I) = \det(A^{-1}A) = \det(A^{-1}) \det(A) \Rightarrow$$
$$\det(A^{-1}) \det(A) = 1 \Rightarrow$$
$$\det(A) = \frac{1}{\det(A)}$$

Devido à propriedade 7 de determinantes todo resultado sobre linhas também vale para colunas.

Exemplo 9.2.4.

$$\det \left(\begin{bmatrix} x+1 & y-1 & z-3 \\ 1 & 0 & 2 \\ 2 & 2 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} x & y & z \\ 1 & 0 & 2 \\ 2 & 2 & 1 \end{bmatrix} \right) + \det \left(\begin{bmatrix} 1 & -1 & -3 \\ 1 & 0 & 2 \\ 2 & 2 & 1 \end{bmatrix} \right)$$

Exemplo 9.2.5.

$$\det\left(\begin{bmatrix} 3\lambda & 2\lambda & \lambda \\ 1 & 3 & 2 \\ 4 & -1 & 1 \end{bmatrix}\right) = \lambda \det\left(\begin{bmatrix} 3 & 2 & 1 \\ 1 & 3 & 2 \\ 4 & -1 & 1 \end{bmatrix}\right)$$

Exemplo 9.2.6.

$$A = \left[\begin{array}{cc} x + 2y & 1 + t \\ x + 3y & 2 - t \end{array} \right] \Rightarrow$$

$$\det(A) = \det\left(\begin{bmatrix} x + 2y & 1+t \\ x + 3y & 2-t \end{bmatrix}\right)$$

$$= \det\left(\begin{bmatrix} x & 1 \\ x + 3y & 2-t \end{bmatrix}\right) + \det\left(\begin{bmatrix} 2y & t \\ x + 3y & 2-t \end{bmatrix}\right)$$

$$= \det\left(\begin{bmatrix} x & 1 \\ x & 2 \end{bmatrix}\right) + \det\left(\begin{bmatrix} x & 1 \\ 3y & -t \end{bmatrix}\right)$$

$$+ \det\left(\begin{bmatrix} 2y & t \\ x & 2 \end{bmatrix}\right) + \det\left(\begin{bmatrix} 2y & t \\ 3y & -t \end{bmatrix}\right)$$

$$= (2x - x) + (-xt - 3y) + (4y - xt) + (-2yt - 3yt)$$

$$= x - xt - 3y + 4y - xt - 2yt - 3yt$$

$$= x - 2xt + y - 5yt$$

Por outro lado

$$\det(A) = \det\left(\begin{bmatrix} x + 2y & 1 + t \\ x + 3y & 2 - t \end{bmatrix}\right)$$

$$= (x + 2y)(2 - t) - (x + 3y)(1 + t)$$

$$= 2x - xt + 4y - 2yt - x - xt - 3y - 3yt$$

$$= x - 2xt + y - 5yt$$

Exemplo 9.2.7. Calcule o determinante da matriz A utilizando as propriedades do determinante onde

$$A = \begin{bmatrix} 1 & 2 & -2 & 3 \\ -2 & -7 & 10 & 6 \\ -1 & -4 & 4 & 9 \\ 3 & 7 & -7 & 5 \end{bmatrix}$$

Solução:

$$\det(A) = \det\left(\begin{bmatrix} 1 & 2 & -2 & 3 \\ -2 & -7 & 10 & 6 \\ -1 & -4 & 4 & 9 \\ 3 & 7 & -7 & 5 \end{bmatrix}\right)$$

$$= \det\left(\begin{bmatrix} 1 & 2 & -2 & 3 \\ 0 & -3 & 6 & 12 \\ 0 & -2 & 2 & 12 \\ 0 & 1 & -1 & -4 \end{bmatrix}\right)$$

$$= (-3) \cdot \det\left(\begin{bmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & -2 & -4 \\ 0 & -2 & 2 & 12 \\ 0 & 1 & -1 & -4 \end{bmatrix}\right)$$

$$= (-3) \cdot \det\left(\begin{bmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & -2 & 4 \\ 0 & 0 & 1 & 0 \end{bmatrix}\right)$$

$$= (-3) \cdot (-2) \cdot \det \begin{pmatrix} \begin{bmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \end{pmatrix}$$

$$= (-3) \cdot (-2) \cdot \det \begin{pmatrix} \begin{bmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 2 \end{bmatrix} \end{pmatrix}$$

$$= (-3) \cdot (-2) \cdot 2 \cdot \det \begin{pmatrix} \begin{bmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{pmatrix}$$

$$= (-3) \cdot (-2) \cdot 2 \cdot \det \begin{pmatrix} \begin{bmatrix} 1 & 2 & -2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{pmatrix}$$

$$= (-3) \cdot (-2) \cdot 2 \cdot \det \begin{pmatrix} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{pmatrix}$$

$$= (-3) \cdot (-2) \cdot 2 \cdot \det \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \end{pmatrix} = (-3) \cdot (-2) \cdot 2 \cdot 1 = 12$$

9.3 Cofatores

$$\sigma \in S_i \Leftrightarrow \sigma(i) = j$$

$$\det(A) = \sum_{\sigma} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot \dots \cdot a_{i\sigma(i)} \cdot \dots \cdot a_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_1} sgn(\sigma) \cdot a_{1j} \cdot a_{2\sigma(2)} \cdot \dots \cdot a_{i\sigma(i)} \cdot \dots \cdot a_{n\sigma(n)}$$

$$+ \sum_{\sigma \in S_2} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot a_{2j} \cdot \dots \cdot a_{i\sigma(i)} \cdot \dots \cdot a_{n\sigma(n)}$$

$$\dots$$

$$+ \sum_{\sigma \in S_n} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \dots \cdot a_{i\sigma(i)} \cdot \dots \cdot a_{nj}$$

$$= a_{1j} \cdot \sum_{\sigma \in S_1} sgn(\sigma) \cdot a_{2\sigma(2)} \cdot \dots \cdot a_{i\sigma(i)} \cdot \dots \cdot a_{n\sigma(n)}$$

$$+ a_{2j} \cdot \sum_{\sigma \in S_2} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot a_{3\sigma(3)} \cdot \dots \cdot a_{i\sigma(i)} \cdot \dots \cdot a_{n\sigma(n)}$$

$$\dots$$

$$+ a_{nj} \cdot \sum_{\sigma \in S} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \dots \cdot a_{i\sigma(i)} \cdot \dots \cdot a_{n-1\sigma(n-1)}$$

Definição 9.3.1. A matriz A_{ij} obtida de A pela remoção da linha i e da coluna j é chamado (i, j)-menor complementar de A,

$$c_{ij} = (-1)^{i+j} \det (A_{ij})$$
 é o (i, j) -cofator de A.

Com essa notação podemos escrever o $\det(A)$ como

Teorema 9.3. det
$$(A) = \sum_{i=1}^{n} a_{ij}c_{ij}$$
 ou det $(A) = \sum_{j=1}^{n} a_{ij}c_{ij}$

Exemplo 9.3.1. Seja $A \in M_3(\mathbb{R})$ genérica.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$A_{21} = \begin{bmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{bmatrix} \Rightarrow c_{21} = (-1)^{2+1} \det (A_{21})$$

$$A_{22} = \begin{bmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{bmatrix} \Rightarrow c_{22} = (-1)^{2+2} \det (A_{22})$$

$$A_{23} = \begin{bmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{bmatrix} \Rightarrow c_{23} = (-1)^{2+3} \det (A_{23})$$

$$\det (A) = -a_{21} \det (A_{21}) + a_{22} \det (A_{22}) - a_{23} \det (A_{23})$$

$$\det (A) = -a_{21} (a_{12}a_{33} - a_{32}a_{13}) + a_{22} (a_{11}a_{33} - a_{13}a_{31}) - a_{23} (a_{11}a_{32} - a_{12}a_{31})$$

Exemplo 9.3.2. Calcule o determinante da matriz A utilizando expansão em cofatores onde

$$A = \begin{bmatrix} 1 & 2 & 2 & -2 \\ 2 & 1 & -5 & 2 \\ -3 & -5 & -5 & 6 \\ 3 & 6 & 2 & -5 \end{bmatrix}$$

Solução:

Vamos expandir o determinante em cofatores pela linha 2.

$$A = \begin{bmatrix} 1 & 2 & 2 & -2 \\ 2 & 1 & -5 & 2 \\ -3 & -5 & -5 & 6 \\ 3 & 6 & 2 & -5 \end{bmatrix}$$

$$A_{21} = \begin{bmatrix} 2 & 2 & -2 \\ -5 & -5 & 6 \\ 6 & 2 & -5 \end{bmatrix} \Rightarrow$$

$$\det(A_{21}) = 8 \Rightarrow c_{21} = (-1)^{2+1} \cdot 8 \Rightarrow c_{21} = -8$$

$$A_{22} = \begin{bmatrix} 1 & 2 & -2 \\ -3 & -5 & 6 \\ 3 & 2 & -5 \end{bmatrix} \Rightarrow$$

$$\det(A_{22}) = 1 \Rightarrow c_{22} = (-1)^{2+2} \cdot 1 \Rightarrow c_{22} = 1$$

$$A_{23} = \begin{bmatrix} 1 & 2 & -2 \\ -3 & -5 & 6 \\ 3 & 6 & -5 \end{bmatrix} \Rightarrow$$

$$\det(A_{23}) = 1 \Rightarrow c_{23} = (-1)^{2+3} \cdot 1 \Rightarrow c_{23} = -1$$

$$A_{24} = \begin{bmatrix} 1 & 2 & 2 \\ -3 & -5 & -5 \\ 3 & 6 & 2 \end{bmatrix} \Rightarrow$$

$$\det (A_{24}) = -4 \Rightarrow c_{24} = (-1)^{2+4} \cdot -4 \Rightarrow c_{24} = -4$$

$$\det(A) = 2 \cdot (-8) + 1 \cdot 1 + (-5) \cdot (-1) + 2 \cdot (-4) \Rightarrow \det(A) = -18$$

Exemplo 9.3.3. Calcule o determinante da matriz A utilizando expansão em cofatores onde

$$A = \begin{bmatrix} 1 & -2 & -1 & 3 \\ 2 & -3 & -2 & 7 \\ -2 & 5 & 3 & -7 \\ 1 & -4 & 1 & -6 \end{bmatrix}$$

Solução:

Vamos expandir o determinante em cofatores pela linha 2.

$$A = \begin{bmatrix} 1 & -2 & -1 & 3 \\ 2 & -3 & -2 & 7 \\ -2 & 5 & 3 & -7 \\ 1 & -4 & 1 & -6 \end{bmatrix}$$

$$A_{21} = \begin{bmatrix} -2 & -1 & 3 \\ 5 & 3 & -7 \\ -4 & 1 & -6 \end{bmatrix} \Rightarrow \det(A_{21}) = 15 \Rightarrow c_{21} = (-1)^{2+1} \cdot 15 \Rightarrow c_{21} = -15$$

$$A_{22} = \begin{bmatrix} 1 & -1 & 3 \\ -2 & 3 & -7 \\ 1 & 1 & -6 \end{bmatrix} \Rightarrow \det(A_{22}) = -7 \Rightarrow c_{22} = (-1)^{2+2} \cdot (-7) \Rightarrow c_{22} = -7$$

$$A_{23} = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 5 & -7 \\ 1 & -4 & -6 \end{bmatrix} \Rightarrow \det(A_{23}) = -11 \Rightarrow c_{23} = (-1)^{2+3} \cdot (-11) \Rightarrow c_{23} = 11$$

$$A_{24} = \begin{bmatrix} 1 & -2 & -1 \\ -2 & 5 & 3 \\ 1 & -4 & 1 \end{bmatrix} \Rightarrow \det(A_{24}) = 4 \Rightarrow c_{24} = (-1)^{2+4} \cdot 4 \Rightarrow c_{24} = 4$$

$$\det(A) = 2 \cdot (-15) + (-3) \cdot (-7) + (-2) \cdot 11 + 7 \cdot 4 \quad \Rightarrow \quad \det(A) = -3$$

Exemplo 9.3.4. Calcule o determinante da matriz A utilizando escalonamento(propriedades) associado à expansão em co-fatores onde

$$A = \begin{bmatrix} 1 & -2 & -1 & 3 \\ 2 & -3 & -2 & 7 \\ -2 & 5 & 3 & -7 \\ 1 & -4 & 1 & -6 \end{bmatrix}$$

Exemplo 9.3.5. Calcule o determinante da matriz A utilizando expansão em cofatores onde

$$A = \begin{bmatrix} 1 & -1 & -3 \\ -1 & 3 & 5 \\ -1 & -3 & 1 \end{bmatrix}$$

Solução:

$$A = \begin{bmatrix} 1 & -1 & -3 \\ -1 & 3 & 5 \\ -1 & -3 & 1 \end{bmatrix}$$

$$A_{21} = \begin{bmatrix} -1 & -3 \\ -3 & 1 \end{bmatrix} \Rightarrow \det(A_{21}) = 0 \Rightarrow c_{21} = (-1)^{2+1} \cdot (-10) \Rightarrow c_{21} = 10$$

$$A_{22} = \begin{bmatrix} 1 & -3 \\ -1 & 1 \end{bmatrix} \Rightarrow \det(A_{22}) = 0 \Rightarrow c_{22} = (-1)^{2+2} \cdot (-2) \Rightarrow c_{22} = -2$$

$$A_{23} = \begin{bmatrix} 1 & -1 \\ -1 & -3 \end{bmatrix} \Rightarrow \det(A_{23}) = 0 \Rightarrow c_{23} = (-1)^{2+3} \cdot (-4) \Rightarrow c_{23} = 4$$

$$\det(A) = (-1) \cdot 10 + 3 \cdot (-2) + 5 \cdot 4$$

$$\det\left(A\right) = 4$$

$$25/07/2018-B$$

9.4 Adjunta e Inversa

Definição 9.4.1. Dada a matriz $A \in M_n(\mathbb{R})$ definimos sua adjunta da seguinte forma:

$$Adj(A) = \begin{bmatrix} c_{11} & c_{21} & \cdots & c_{n1} \\ c_{12} & c_{22} & \cdots & c_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & \cdots & c_{nn} \end{bmatrix}$$

Teorema 9.4. Se $det(A) \neq 0$ então $A^{-1} = \frac{1}{det(A)} Adj(A)$.

Demonstração.

$$\frac{Adj(A)}{\det(A)} \cdot A = \frac{1}{\det(A)} \begin{bmatrix} c_{11} & c_{21} & \cdots & c_{n1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1i} & c_{2i} & \cdots & c_{ni} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & \cdots & c_{nn} \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \cdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{bmatrix}$$

$$= \frac{1}{\det(A)} \left(\sum_{l=1}^{n} c_{ki} a_{kj} \right)$$

Se
$$i = j$$
 temos $\sum_{k=1}^{n} a_{kj} c_{kj}$ é a expansão de $\det(A)$ na coluna j

Se $i \neq j$ temos

$$\sum_{k=1}^{n} a_{ki} c_{kj} = \sum_{k=1}^{n} a_{ki} (-1)^{k+j} \det A_{kj}$$

$$= \sum_{k=1}^{n} b_{kj} (-1)^{k+j} \det B_{kj}$$

$$= \det(B)$$

$$= 0$$

Onde

$$B = \begin{bmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2i} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \cdots & \vdots & \cdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Portanto

$$\frac{1}{\det(A)}Adj(A) \cdot A = I$$

Exemplo 9.4.1. Calcule a inversa da matriz A utilizando a fórmula

$$A^{-1} = \frac{1}{\det(A)} \cdot Adj(A)$$
 onde $A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 1 \\ 4 & -6 & 5 \end{bmatrix}$

Solução:

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 1 \\ 4 & -6 & 5 \end{bmatrix}$$

$$A_{11} = \begin{bmatrix} -4 & 1 \\ -6 & 5 \end{bmatrix} \Rightarrow \det(A_{11}) = -14 \Rightarrow c_{11} = (-1)^{1+1} \cdot (-14) \Rightarrow c_{11} = -14$$

$$A_{12} = \begin{bmatrix} 3 & 1 \\ 4 & 5 \end{bmatrix} \Rightarrow \det(A_{12}) = 11 \Rightarrow c_{12} = (-1)^{1+2} \cdot 11 \Rightarrow c_{12} = -11$$

$$A_{13} = \begin{bmatrix} 3 & -4 \\ 4 & -6 \end{bmatrix} \Rightarrow \det(A_{13}) = -2 \Rightarrow c_{13} = (-1)^{1+3} \cdot (-2) \Rightarrow c_{13} = -2$$

$$A_{21} = \begin{bmatrix} -2 & 1 \\ -6 & 5 \end{bmatrix} \Rightarrow \det(A_{21}) = -4 \Rightarrow c_{21} = (-1)^{2+1} \cdot (-4) \Rightarrow c_{21} = 4$$

$$A_{22} = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix} \Rightarrow \det(A_{22}) = 1 \Rightarrow c_{22} = (-1)^{2+2} \cdot 1 \Rightarrow c_{22} = 1$$

$$A_{23} = \begin{bmatrix} 1 & -2 \\ 4 & -6 \end{bmatrix} \Rightarrow \det(A_{23}) = 2 \Rightarrow c_{23} = (-1)^{2+3} \cdot 2 \Rightarrow c_{23} = -2$$

$$A_{31} = \begin{bmatrix} -2 & 1 \\ -4 & 1 \end{bmatrix} \Rightarrow \det(A_{31}) = 2 \Rightarrow c_{31} = (-1)^{3+1} \cdot 2 \Rightarrow c_{31} = 2$$

$$A_{32} = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix} \Rightarrow \det(A_{32}) = -2 \Rightarrow c_{32} = (-1)^{3+2} \cdot (-2) \Rightarrow c_{32} = 2$$

$$A_{33} = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix} \Rightarrow \det(A_{33}) = 2 \Rightarrow c_{33} = (-1)^{3+3} \cdot 2 \Rightarrow c_{33} = 2$$

$$Adj(A) = \begin{bmatrix} -14 & 4 & 2 \\ -11 & 1 & 2 \\ -2 & -2 & 2 \end{bmatrix}$$

$$A^{-1} = \frac{1}{6} \cdot \begin{bmatrix} -14 & 4 & 2 \\ -11 & 1 & 2 \\ -2 & -2 & 2 \end{bmatrix}$$

Exemplo 9.4.2. Calcule a inversa da matriz A utilizando a fórmula

$$A^{-1} = \frac{1}{\det(A)} \cdot Adj(A)$$
 onde $A = \begin{bmatrix} 1 & -4 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 1 \end{bmatrix}$

Solução:

$$A = \begin{bmatrix} 1 & -4 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$

$$A_{11} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \Rightarrow \det(A_{11}) = 3 \Rightarrow c_{11} = (-1)^{1+1} \cdot 3 \Rightarrow c_{11} = 3$$

$$A_{12} = \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix} \Rightarrow \det(A_{12}) = -2 \Rightarrow c_{12} = (-1)^{1+2} \cdot (-2) \Rightarrow c_{12} = 2$$

$$A_{13} = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix} \Rightarrow \det(A_{13}) = 1 \Rightarrow c_{13} = (-1)^{1+3} \cdot 1 \Rightarrow c_{13} = 1$$

$$A_{21} = \begin{bmatrix} -4 & -1 \\ 1 & 1 \end{bmatrix} \Rightarrow \det(A_{21}) = -3 \Rightarrow c_{21} = (-1)^{2+1} \cdot (-3) \Rightarrow c_{21} = 3$$

$$A_{22} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \Rightarrow \det(A_{22}) = 0 \Rightarrow c_{22} = (-1)^{2+2} \cdot 0 \Rightarrow c_{22} = 0$$

$$A_{23} = \begin{bmatrix} 1 & -4 \\ -1 & 1 \end{bmatrix} \Rightarrow \det(A_{23}) = -3 \Rightarrow c_{23} = (-1)^{2+3} \cdot (-3) \Rightarrow c_{23} = 3$$

$$A_{31} = \begin{bmatrix} -4 & -1 \\ 2 & -1 \end{bmatrix} \Rightarrow \det(A_{31}) = 6 \Rightarrow c_{31} = (-1)^{3+1} \cdot 6 \Rightarrow c_{31} = 6$$

$$A_{32} = \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} \Rightarrow \det(A_{32}) = -2 \Rightarrow c_{32} = (-1)^{3+2} \cdot (-2) \Rightarrow c_{32} = 2$$

$$A_{33} = \begin{bmatrix} 1 & -4 \\ -1 & 2 \end{bmatrix} \Rightarrow \det(A_{33}) = -2 \Rightarrow c_{33} = (-1)^{3+3} \cdot (-2) \Rightarrow c_{33} = -2$$

$$Adj(A) = \begin{bmatrix} 3 & 3 & 6 \\ 2 & 0 & 2 \\ 1 & 3 & -2 \end{bmatrix}$$

$$A^{-1} = \frac{1}{(-6)} \cdot \begin{bmatrix} 3 & 3 & 6 \\ 2 & 0 & 2 \\ 1 & 3 & -2 \end{bmatrix}$$

9.5 Regra de Cramer

Consideremos o seguinte sistema de Cramer

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots & + \ddots + \vdots = \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases}$$

Sejam
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$
 a matriz dos coeficientes,

$$B = \begin{bmatrix} b_1 \\ b_1 \\ \vdots \\ b_n \end{bmatrix}$$
 a matriz dos termos independentes e

$$A_i = \begin{bmatrix} a_{11} & \cdots & b_1 & \cdots & a_{1n} \\ a_{21} & \cdots & b_2 & \cdots & a_{2n} \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ a_{n1} & \cdots & b_n & \cdots & a_{nn} \end{bmatrix} \text{ a matriz obtida substituindo se a}$$

coluna i da matriz A pela matriz dos termos independentes.

Teorema 9.5. Se um sistema é de Cramer então é possível e determinado e

$$x_i = \frac{\det(A_i)}{\det(A)}$$

Demonstração. Observemos inicialmente que expandindo $\det(A_i)$ em relação à coluna i temos $\det(A_i) = b_1c_{i1} + b_2c_{i2} + \cdots + b_nc_{in}$.

Assim temos:

$$AX = B \Leftrightarrow X = A^{-1} \cdot B \Rightarrow X = \frac{1}{\det(A)} Adj(A) \cdot B \Rightarrow$$

$$\begin{bmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} c_{11} & c_{21} & \cdots & c_{n1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1i} & c_{2i} & \cdots & c_{ni} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & \cdots & c_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} c_{11}b_1 + c_{21}b_2 + \dots + c_{n1}b_n \\ \vdots \\ c_{1i}b_1 + c_{2i}b_2 + \dots + c_{ni}b_n \\ \vdots \\ c_{1n}b_1 + c_{2n}b_2 + \dots + c_{nn}b_n \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} \det(A_1) \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} \det(A_1) \\ \vdots \\ \det(A_i) \\ \vdots \\ \det(A_n) \end{bmatrix} \Rightarrow$$

$$x_i = \frac{\det(A_i)}{\det(A)}$$

Exemplo 9.5.1. Resolva o seguinte sistema pela Regra de Cramer

$$\begin{cases} 3x + y + z = 8 \\ x + y + 2z = 9 \\ 2x + y + 2z = 10 \end{cases}$$

Resolução:

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix}, b = \begin{bmatrix} 8 \\ 9 \\ 10 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 8 & 1 & 1 \\ 9 & 1 & 2 \\ 10 & 1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 3 & 8 & 1 \\ 1 & 9 & 2 \\ 2 & 10 & 2 \end{bmatrix}, A_3 = \begin{bmatrix} 3 & 1 & 8 \\ 1 & 1 & 9 \\ 2 & 1 & 10 \end{bmatrix}$$

Assim temos:

$$\det(A) = 1, \det(A_1) = 1, \det(A_2) = 2, \det(A_3) = 3$$
 donde temos

$$x = \frac{\det(A_1)}{\det(A)} = \frac{1}{1} = 1$$

$$y = \frac{\det(A_2)}{\det(A)} = \frac{2}{1} = 2$$

$$z = \frac{\det(A_3)}{\det(A)} = \frac{3}{1} = 3$$

Ou seja,

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Verifique como exercício que a solução do sistema é de fato a que obtivemos com a regra de Cramer.

Exemplo 9.5.2. Resolva o seguinte sistema pela Regra de Cramer

$$\begin{cases} x_1 - 2x_2 - 5x_3 = -5 \\ x_1 + x_2 - 2x_3 = 4 \\ x_1 - x_2 - x_3 = -2 \end{cases}$$

Solução:

$$A = \begin{bmatrix} 1 & -2 & -5 \\ 1 & 1 & -2 \\ 1 & -1 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} -5 \\ 4 \\ -2 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} -5 & -2 & -5 \\ 4 & 1 & -2 \\ -2 & -1 & -1 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} 1 & -5 & -5 \\ 1 & 4 & -2 \\ 1 & -2 & -1 \end{bmatrix} \qquad A_{3} = \begin{bmatrix} 1 & -2 & -5 \\ 1 & 1 & 4 \\ 1 & -1 & -2 \end{bmatrix}$$

$$x_1 = \frac{\det(A_1)}{\det(A)} \Rightarrow x_1 = \frac{9}{9} \Rightarrow x_1 = 1$$

$$x_2 = \frac{\det(A_2)}{\det(A)} \Rightarrow x_2 = \frac{27}{9} \Rightarrow x_2 = 3$$

$$x_3 = \frac{\det(A_3)}{\det(A)} \Rightarrow x_3 = \frac{0}{9} \Rightarrow x_3 = 0$$

Ou seja,

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$

Teorema 9.6. Seja A uma matriz de ordem $n \times n$ e 0 uma matriz coluna $n \times 1$. Então o sistema homogêneo AX = 0 admite solução não trivial se, e somente se, $\det(A) = 0$.

Demonstração.

O sistema homogêneo AX = 0 admite solução não trivial se, e somente se, a matriz A é equivalente a uma matriz com uma linha de zeros. E a matriz A é equivalente a uma matriz com uma linha de zeros se, e somente se, $\det(A) = 0$.

Em outras palavras o sistema homogêneo AX=0 admite solução não trivial se, e somente se, durante o escalonamento ocorre uma linha de zeros e daí alguma das variáveis é livre e portanto há soluções não triviais. Da mesma forma ao calcular o determinante por meio de escalonamento se ocorrer uma linha de zeros então o determinante é zero, e caso contrário, é não nulo dada a natureza das alterações no determinante pelas operações elementares sobre linhas.

Capítulo 10

Diagonalização de Operadores Lineares

10.1 Matrizes Semelhantes

Definição 10.1.1. (conceito 7) Dadas as matrizes $P \in Q$, ambas quadradas e de ordem n, dizemos que P é semelhante a Q se, e somente se, existe uma matriz invertível M, tal que

$$P = M^{-1} \cdot Q \cdot M \tag{10.1}$$

Obs.: Devido ao Teorema (7.4) duas matrizes do mesmo operador em bases diferentes são semelhantes.

Definição 10.1.2. (conceito 8) Uma matriz quadrada A diz-se diagonalizável se for semelhante a uma matriz diagonal D, ou seja, existe uma matriz invetível M e uma matriz diagonal D tais que $M^{-1} \cdot A \cdot M = D$.

Exemplo 10.1.1. As matrizes $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ e $D = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix}$ são semelhantes.

De fato se
$$M=\left[\begin{array}{cc}2&1\\3&-1\end{array}\right]$$
 e $M^{-1}=\frac{1}{5}\left[\begin{array}{cc}1&1\\3&-2\end{array}\right]$ então

$$M^{-1} \cdot A \cdot M = \frac{1}{5} \begin{bmatrix} 1 & 1 \\ 3 & -2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} 1 & 1 \\ 3 & -2 \end{bmatrix} \cdot \begin{bmatrix} 8 & -1 \\ 12 & 1 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} 20 & 0 \\ 0 & -5 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix} = D$$

10.2 Autovalores e Autovetores

Definição 10.2.1. (conceito 9) Seja E um espaço vetorial (sobre \mathbb{R}) e $T: E \to E$ um operador linear. Um vetor $u \in E, u \neq 0$, é um autovetor de T se existe $\lambda \in \mathbb{R}$ tal que $T(u) = \lambda u$. Nesse caso λ é um autovalor de T associado ao autovetor u.

Exemplo 10.2.1. Calcule os Autovalores e Autovetores da transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por

$$T(x,y) = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + 2y \\ 3y \end{bmatrix}$$

$$T(x,y) = \lambda(x,y) \Leftrightarrow (x+2y,3y) = \lambda(x,y) \Leftrightarrow$$

$$\begin{cases} x + 2y = \lambda x \\ 3y = \lambda y \end{cases} \Leftrightarrow$$

$$\begin{cases} x - \lambda x + 2y = 0 \\ 3y - \lambda y = 0 \end{cases} \Leftrightarrow$$

$$\begin{cases} (1-\lambda)x + 2y = 0 \\ (3-\lambda)y = 0 \end{cases} \Leftrightarrow$$

$$\begin{bmatrix} (1-\lambda) & 2\\ 0 & (3-\lambda) \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$
 (10.2)

Se $1 - \lambda \neq 0$ e $3 - \lambda \neq 0$ então x = y = 0. Para que o sistema homogênio (10.2) tenha solução não trivial é necessário que $3 - \lambda = 0$ ou $1 - \lambda = 0$, o que implica que $\lambda = 3$ ou $\lambda = 1$.

Se $\lambda = 1$ temos

$$T(x,y) = (x,y) \Rightarrow (x+2y,3y) = (x,y) \Rightarrow y = 0 \ x \in \mathbb{R} \Rightarrow$$

$$u = (x,0)$$

ou

Se $\lambda = 3$ temos

$$T(x,y) = 3(x,y) \Rightarrow (x+2y,3y) = (3x,3y) \Rightarrow x = y \ y \in \mathbb{R} \Rightarrow$$

$$v = (y,y)$$

Das considerações feitas nesse exemplo concluímos que u é autovetor de $T \Leftrightarrow T(u) = \lambda u$ para algum $\lambda \in \mathbb{R} \Leftrightarrow T(u) - \lambda u = 0 \Leftrightarrow (T - \lambda I)(u) = 0 \Leftrightarrow u \in N(T - \lambda I) - \{0\}$

Definição 10.2.2. (conceito 10) Para todo autovalor λ do operador $T: E \to E, E_{\lambda} = \{u \in E; T(u) = \lambda u\}$ chama-se auto-subespaço correspondente ao autovalor λ .

Teorema 10.1. Seja E um espaço vetorial e $T: E \to E$ uma transformação linear. Para cada $\lambda \in \mathbb{R}$ o seguinte subconjunto de E é um subespaço vetorial de E.

$$E_{\lambda} = N(T - \lambda I) \tag{10.3}$$

Definição 10.2.3. (conceito 11) Dada uma matriz $T \in M_n(\mathbb{R})$ o seguinte polinômio, chama-se o polinômio característico de T:

$$P_T(\lambda) = \det(T - \lambda I) \tag{10.4}$$

Teorema 10.2. Seja $T:E\longrightarrow E$ um operador linear. Então os autovalores de T são as raízes do polinômio característico de T.

Demonstração. λ é autovalor do operador T se existe $u \neq 0$ no domínio E tal que $T(u) = \lambda u$, o que equivale a existe $u \in E - \{0\}$ tal que $(T - \lambda I)(u) = 0$ ou ainda, $(T - \lambda I)(u) = 0$ admite solução não trivial. Pelo teorema 9.6 isso equivale a $\det(T - \lambda I) = 0$, ou seja, λ é raíz do polinômio característico de T.

Teorema 10.3. Matrizes semelhantes tem o mesmo polinômio característico[5]. Demonstração.

$$B = M^{-1}AM \Rightarrow$$

$$P_B(\lambda) = \det(B - \lambda I_n)$$

$$= \det(M^{-1}AM - \lambda I_n)$$

$$= \det(M^{-1}AM - M^{-1}(\lambda I_n)M)$$

$$= \det(M^{-1}(A - \lambda I_n)M)$$

$$= \det(M^{-1})\det(A - \lambda I_n)\det(M)$$

$$= \det(M)^{-1}\det(A - \lambda I_n)\det(M)$$

$$= \det(A - \lambda I_n)$$

$$= P_A(\lambda)$$

Exemplo 10.2.2. Determine o polinômio característico, os autovalores e os autovetores associados.

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow P(\lambda) = \det(A - \lambda I) = \det\left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right) \Rightarrow$$

$$P(\lambda) = det \left(\begin{bmatrix} -\lambda & 1 \\ 1 & -\lambda \end{bmatrix} \right) = \lambda^2 - 1 \Rightarrow P(\lambda) = \lambda^2 - 1$$

$$P(\lambda) = 0 \Rightarrow \lambda^2 - 1 = 0 \Rightarrow \lambda^2 = 1 \Rightarrow \lambda = \pm 1.$$

Para $\lambda = 1$ temos:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1 \cdot \begin{bmatrix} x \\ y \end{bmatrix} \Leftrightarrow (y, x) = (x, y) \Rightarrow x = y \Rightarrow (x, x) \in E_1 = \{(x, x); x \in \mathbb{R}\} = \{x(1, 1); x \in \mathbb{R}\} = [(1, 1)].$$

De fato
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} x \\ x \end{bmatrix} = 1 \cdot \begin{bmatrix} x \\ x \end{bmatrix}$$

Para $\lambda = -1$ temos:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = (-1) \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow (y, x) = -(x, y) \Rightarrow y = -x \Rightarrow$$

$$(x, -x) \in E_{(-1)} = \{(x, -x); x \in \mathbb{R}\} = \{x(1, -1); x \in \mathbb{R}\} = [(1, -1)].$$
De fato
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ -x \end{bmatrix} = \begin{bmatrix} -x \\ x \end{bmatrix} = (-1) \begin{bmatrix} x \\ -x \end{bmatrix}$$

10.2.1 Operadores sem autovetores

Exemplo 10.2.3. Determine o polinômio característico, e observe que para esse operador não há autovalores reais.

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \Rightarrow P(\lambda) = det \left(\begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} \right) = \lambda^2 + 1 \Rightarrow$$
$$P(\lambda) = \lambda^2 + 1 = 0 \Rightarrow \lambda^2 = -1 \Rightarrow \lambda = \pm \sqrt{-1} \Rightarrow \lambda = \pm i \in \mathbb{C}.$$

Exemplo 10.2.4. Determine o polinômio característico, os autovalores e os autovetores associados.

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$P(\lambda) = \det \left(\begin{bmatrix} \cos \theta - \lambda & \sin \theta \\ -\sin \theta & \cos \theta - \lambda \end{bmatrix} \right) \Rightarrow$$

$$P(\lambda) = (\cos \theta - \lambda)^2 + \sin^2 \theta \Rightarrow$$

$$P(\lambda) = \cos^2 \theta - 2\lambda \cos^2 \theta + \lambda^2 + \sin^2 \theta \Rightarrow$$

$$P(\lambda) = \lambda^2 - 2\cos^2\theta\lambda + 1 = 0 \Rightarrow$$

$$\Delta = 4\cos^2\theta - 4\cdot 1\cdot 1 = 4(\cos^2\theta - 1) \ge 0 \Rightarrow \cos^2\theta - 1 \ge 0 \Rightarrow \cos^2\theta \ge 1 \Rightarrow \cos^2\theta = 1 \Rightarrow \cos\theta = 1 \text{ ou } \cos\theta = -1$$

$$\cos \theta = 1 \Leftrightarrow \theta = 0 \Rightarrow$$

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \cdot \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} x \\ y \end{array}\right] = 1 \cdot \left[\begin{array}{c} x \\ y \end{array}\right]$$

$$\cos \theta = -1 \Leftrightarrow \theta = 180^{\circ} \Rightarrow$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ -y \end{bmatrix} = (-1) \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

Exemplo 10.2.5. Determine o polinômio característico, os autovalores e os autovetores associados.

$$A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow$$

$$P(\lambda) = \det \left(\begin{bmatrix} \cos \theta - \lambda & \sin \theta & 0 \\ -\sin \theta & \cos \theta - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{bmatrix} \right) \Rightarrow$$

$$P(\lambda) = (1 - \lambda)(\cos \theta - \lambda)^2 + (1 - \lambda)\sin^2 \theta \Rightarrow$$

$$P(\lambda) = (1 - \lambda)[(\cos \theta - \lambda)^2 + \sin^2 \theta] \Rightarrow$$

$$P(\lambda) = 0 \Rightarrow (1 - \lambda)[(\cos \theta - \lambda)^2 + \sin^2 \theta] = 0 \Rightarrow$$

$$(1 - \lambda) = 0$$
 ou $(\cos \theta - \lambda)^2 + \sin^2 \theta = 0 \Rightarrow$

$$\lambda = 1 \text{ ou } \cos^2 \theta - 2\lambda \cos^2 \theta + \lambda^2 + \sin^2 \theta = 0 \Rightarrow$$

$$\lambda = 1$$
 ou $\lambda^2 - 2\cos^2\theta\lambda + 1 = 0 \Rightarrow$

$$\Delta = 4\cos^2\theta - 4\cdot 1\cdot 1 = 4(\cos^2\theta - 1) \le 0$$
, pois $\cos^2\theta \le 1 (\Leftrightarrow \cos^2\theta - 1 \le 0)$

$$\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ z \end{bmatrix} = 1 \cdot \begin{bmatrix} 0 \\ 0 \\ z \end{bmatrix}$$

$$\cos \theta = 1 \Leftrightarrow \theta = 0 \Rightarrow$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 1 \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\cos \theta = -1 \Leftrightarrow \theta = 180^{\circ} \Rightarrow$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = \begin{bmatrix} -x \\ -y \\ 0 \end{bmatrix} = (-1) \cdot \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

10.3 Diagonalização de Operadores

Exemplo 10.3.1. Encontre uma base ortonormal de \mathbb{R}^2 formada por autovetores do operador cuja matriz na base canônica é $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Conforme Exemplo (10.2.2)
$$E_1 = [(1,1)] e E_{(-1)} = [(1,-1)].$$

$$\dim E_1 = \dim E_{(-1)} = 1 \in \mathbb{R}^2 = E_1 \oplus E_{(-1)}$$

 $B = \{(1,1), (1,-1)\} \subset \mathbb{R}^2$ é uma base ortogonal de \mathbb{R}^2 formada por autovetores do operador.

Neste caso construimos as matrizes

$$M = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \Rightarrow M^{-1} = M^T = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} e D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
satisfazendo $D = M^T A M$. Ou seja,

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Para obtermos uma base ortonormal dividimos cada vetor por sua norma. Assim

 $C = \left\{ (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}), (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}) \right\} \subset \mathbb{R}^2$ é uma base ortonormal de \mathbb{R}^2 formada por autovetores do operador.

Neste caso construímos as matrizes M com as colunas sendo os vetores de B. O fato de B ser uma base implica que M assim construída é invertível. D diagonal com autovalores na diagonal.

$$M = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} \Rightarrow M^{-1} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} e D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

satisfazendo D = MAM. Ou seja,

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$$

10.3.1 Operadores com autovetores mas sem base formada por autovetores

Exemplo 10.3.2. Verifique se existe uma base de \mathbb{R}^2 formada por autovetores do operador T cuja matriz na base canônica é $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$?

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow P(\lambda) = \det \left(\begin{bmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{bmatrix} \right) \Rightarrow P(\lambda) = (1 - \lambda)^2 = 0 \Rightarrow (1 - \lambda) = 0 \Rightarrow \lambda = 1$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow u = (x,0) \Rightarrow E_1 = \{(x,0); x \in \mathbb{R}\} = [(1,0)] \Rightarrow \dim E_1 = 1$$

Impossível encontrar uma base de \mathbb{R}^2 formada por autovetores do operador T, pois, seu único autovalor é $\lambda=1$ e o auto espaço correspondente tem dimensão 1.

10.3.2 Operadores com base formada por autovetores

Definição 10.3.1. (conceito 12) Um operador $T: E \to E$ é dito diagonalizável se existe uma base B de E na qual a matriz do operador T seja diagonal, ou seja, existe uma matriz invertível M e uma matriz diagonal D tais que $D = M^{-1}AM$, onde A é a matriz do operador T na base canônica.

Teorema 10.4. Um operador $T: E \to E$ é diagonalizável se e somente se existe uma base de E formada por autovetores de T.

Explicar o que é esse assunto abaixo

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

$$P(\lambda) = \det \left(\begin{bmatrix} \lambda_1 - \lambda & 0 & \cdots & 0 \\ 0 & \lambda_2 - \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n - \lambda \end{bmatrix} \right)$$

$$P(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda) = 0 \Rightarrow$$

 $\lambda = \lambda_1, \lambda = \lambda_2, \cdots, \lambda = \lambda_n$ são os autovalores.

Exemplo 10.3.3. Seja $A = 3I_2 \in M_2(\mathbb{R})$. Cacule seu polinômio característico, seus autovalores e seus autovetores.

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \Rightarrow$$

$$P(\lambda) = \det \left(\begin{bmatrix} 3 - \lambda & 0 \\ 0 & 3 - \lambda \end{bmatrix} \right) \Rightarrow P(\lambda) = (3 - \lambda)^2 = 0 \Rightarrow (3 - \lambda) =$$

$$0 \Rightarrow \lambda = 3$$

$$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 3 \cdot \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow u = (x, y) \Rightarrow \dim E_3 = 2$$

Teorema 10.5. Seja E um espaço vetorial de dimensão finita. Um operador linear $T \in L(E)$ é diagonalizável se, e somente se,

1) o polinômio característico tem todas as raízes em \mathbb{R} ;

2)
$$P(\lambda) = (\lambda_1 - \lambda)^{n_1} (\lambda_2 - \lambda)^{n_2} \cdots (\lambda_r - \lambda)^{n_r}$$
 satisfaz
$$n_1 = \dim E_{\lambda_1}, \cdots, n_r = \dim E_{\lambda_r}$$

Ou seja as multiplicidades algébricas e geométricas são iguais.

Operadores com base não ortonormal formada por autovetores

Exemplo 10.3.4. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador dado por T(x,y) = (4x + 4y, x + 4y). Sua matriz em relação à base canônica é

$$A = \begin{bmatrix} 4 & 4 \\ 1 & 4 \end{bmatrix} \Rightarrow P(\lambda) = \det \left(\begin{bmatrix} 4 - \lambda & 4 \\ 1 & 4 - \lambda \end{bmatrix} \right)$$

$$\Rightarrow P(\lambda) = (4 - \lambda)^2 - 4 = \lambda^2 - 8\lambda + 12 = 0 \Rightarrow \lambda = 2 \text{ ou } \lambda = 6.$$

$$\Rightarrow P(\lambda) = (\lambda - 2)(\lambda - 6).$$

Para $\lambda = 2$ temos:

$$\begin{bmatrix} 4 & 4 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2 \cdot \begin{bmatrix} x \\ y \end{bmatrix} \begin{cases} 4x + 4y = 2x \\ x + 4y = 2y \end{cases} \Rightarrow$$

$$\begin{cases} 2x + 4y = 0 \\ x + 2y = 0 \end{cases} \Rightarrow u = (2, -1) \in E_2 = [(2, -1)]$$

Para $\lambda = 6$ temos:

$$\begin{bmatrix} 4 & 4 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 6 \cdot \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{cases} 4x + 4y = 6x \\ x + 4y = 6y \end{cases} \Rightarrow$$

$$\begin{cases} -2x + 4y = 0 \\ x - 2y = 0 \end{cases} \Rightarrow v = (2,1) \in E_6 = [(2,1)]$$

$$\begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 4 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$$

$$\langle (2,-1), (2,1) \rangle = 4 - 1 = 3 \neq 0$$

Portanto $B = \{(2, -1), (2, 1)\}$ é uma base de \mathbb{R}^2 mas não é ortogonal.

Exemplo 10.3.5. Seja A a matriz de um operador T na base canônica. Determine uma base de \mathbb{R}^3 na qual a matriz do operador T seja diagonal onde

$$A = \left[\begin{array}{rrr} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{array} \right]$$

$$P_A(\lambda) = \det \left(\begin{bmatrix} 0 - \lambda & 7 & -6 \\ -1 & 4 - \lambda & 0 \\ 0 & 2 & -2 - \lambda \end{bmatrix} \right) = (\lambda - 1)(\lambda + 1)(\lambda - 2)$$

$$P_A(\lambda) = (\lambda - 1)(\lambda + 1)(\lambda - 2) = (\lambda - 1)(\lambda - (-1))(\lambda - 2) = 0 \Rightarrow$$

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Para $\lambda = 1$ temos:

$$\begin{bmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow \begin{cases} 7y - 6z = x \\ x + 4y = y \Rightarrow 2y - 2z = z \end{cases}$$

$$E_1 = [(9, 3, 2)].$$

Para $\lambda = -1$ temos:

$$\begin{bmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = - \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow \begin{cases} 7y - 6z = -x \\ x + 4y = -y \\ 2y - 2z = -z \end{cases}$$

$$E_{(-1)} = [(5, 1, 2)].$$

Para $\lambda = 2$ temos:

$$\begin{bmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = - \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow \begin{cases} 7y - 6z = 2x \\ x + 4y = 2y \Rightarrow 2y - 2z = 2z \end{cases}$$

$$E_2 = [(4, 2, 1)].$$

$$u = \begin{bmatrix} 9 \\ 3 \\ 2 \end{bmatrix}, v = \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}, w = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}, M = \begin{bmatrix} 9 & 5 & 4 \\ 3 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

$$D = M^{-1}AM$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 9 & 5 & 4 \\ 3 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{bmatrix} \begin{bmatrix} 9 & 5 & 4 \\ 3 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

Portanto $B = \{(9,3,2), (5,1,2), (4,2,1)\}$ é uma base de \mathbb{R}^3 na qual a matriz do operador é D.

10.4 Operadores Auto-Adjuntos

Definição 10.4.1. (conceito 13)Seja E um espaço vetorial euclidiano. Um operador $T \in L(E)$ se diz auto-adjunto se

$$\langle T(u), v \rangle = \langle u, T(v) \rangle \ \forall u, v \in E.$$

Teorema 10.6. Seja E um espaço vetorial euclidiano de dimensão finita. Um operador $T \in L(E)$ é auto-adjunto se, e somente se, a matriz de A em relação a uma base ortonormal de E é simétrica.

Demonstração.

Seja $B = \{g_1, \dots, g_n\}$ uma base ortonormal de E. Por hipótese

$$\langle T(g_i), g_i \rangle = \langle g_i, T(g_i) \rangle, \ \forall i, j = 1, \cdots, n$$

Sabemos que se a matriz de T em relação à base B é $[T]_B = (a_{ij})$, então

$$T(g_i) = \sum_{k=1}^{n} a_{ki} g_k$$
 e $T(g_j) = \sum_{t=1}^{n} a_{tj} g_t$

e daí
$$\langle T(g_i), g_j \rangle = \langle g_i, T(g_j) \rangle \Leftrightarrow \left\langle \sum_{k=1}^n a_{ki} g_k, g_j \right\rangle = \left\langle g_i, \sum_{t=1}^n a_{tj} g_t \right\rangle$$

donde
$$\sum_{k=1}^{n} a_{ki} \langle g_k, g_j \rangle = \sum_{t=1}^{n} a_{tj} \langle g_i, g_t \rangle \Leftrightarrow a_{ji} = a_{ij} \Leftrightarrow T$$
 é simétrica

Definição 10.4.2. (conceito 14) Uma matriz M é dita ortogonal se satisfaz $M^{-1} = M^T$, ou seja, $M^T \cdot M = I_n$.

Definição 10.4.3. (conceito 15) Um operador $T: E \to E$ é dito ortogonalmente diagonalizável se existe uma base ortonormal B de E na qual a matriz do operador T seja diagonal, ou seja, existe uma matriz ortogonal M e uma matriz diagonal D tais que $D = M^T A M$, onde A é a matriz do operador T na base canônica.

Operadores com base ortonormal formada por autovetores

Teorema 10.7. (**Teorema Espectral**) Um operador linear T de um espaço euclidiano E, de dimensão finita $n \geq 1$, é auto-adjunto se, e somente se, existe uma base ortonormal de E formada por autovetores de T [4].

Exemplo 10.4.1. Encontre uma base ortonormal de \mathbb{R}^3 formado por autovetores de T.

$$T = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \Rightarrow P(\lambda) = \begin{vmatrix} 1 - \lambda & -2 & 0 \\ -2 & 1 - \lambda & 0 \\ 0 & 0 & -1 - \lambda \end{vmatrix} \Rightarrow$$

$$P(\lambda) = (1 - \lambda)^{2}(-1 - \lambda) - (-2)(-2)(-1 - \lambda)$$

$$= -(1 - \lambda)^{2}(1 + \lambda) + 4(1 + \lambda)$$

$$= -(1 - 2\lambda + \lambda^{2})(1 + \lambda) + 4 + 4\lambda$$

$$= -1 + 2\lambda - \lambda^{2} - \lambda + 2\lambda^{2} - \lambda^{3} + 4 + 4\lambda \Rightarrow$$

$$= -\lambda^{3} + \lambda^{2} + 5\lambda + 3$$

$$= -(\lambda - 3)(\lambda + 1)^{2}$$

$$\lambda = 3$$
 ou $\lambda = -1$

 $B^{\perp} = \{(1, -1, 0), (0, 0, 1), (1, 1, 0)\} \subset \mathbb{R}^3$ base de autovetores orto-

gonais (não ortonormais).

 $B^{\parallel \perp \parallel} = \left\{ (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0), (0, 0, 1), (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0) \right\}$ base ortonormal de autovetores do operador cuja matriz na base canônica é A.

$$M = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Exemplo 10.4.2. Seja $T \in L(\mathbb{R}^3)$ o operador cuja matriz na base canônica é

$$\begin{bmatrix}
 3 & -1 & 1 \\
 -1 & 3 & 1 \\
 1 & 1 & 3
 \end{bmatrix}$$

- a) Determine o polinômio característico de T;
- b) Encontre os autovalores de T;
- c) Determine seus auto-subespaços;
- d) Determine uma base ortonormal B do \mathbb{R}^3 de autovetores de T.

Solução:

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix} \Rightarrow A - \lambda I = \begin{bmatrix} 3 - \lambda & -1 & 1 \\ -1 & 3 - \lambda & 1 \\ 1 & 1 & 3 - \lambda \end{bmatrix}$$

$$P(\lambda) = +(3-\lambda)^3 + (-1) + (-1) - (3-\lambda) - (3-\lambda) - (3-\lambda)$$

$$P(\lambda) = (3 - \lambda)(3 - \lambda)^2 - 2 - 9 + 3\lambda$$

$$P(\lambda) = (3 - \lambda)(9 - 6\lambda + \lambda^2) - 11 + 3\lambda$$

$$P(\lambda) = 27 - 18\lambda + 3\lambda^2 - 9\lambda + 6\lambda^2 - \lambda^3 - 11 + 3\lambda$$

$$P(\lambda) = -\lambda^3 + 9\lambda^2 - 24\lambda + 16$$

$$P(\lambda) = \lambda^3 - 9\lambda^2 + 24\lambda - 16 = (\lambda - 1)(\lambda^2 - 8\lambda + 16) = (\lambda - 1)(\lambda - 4)(\lambda - 4) = (\lambda - 4)^2(\lambda - 1)$$

$$\begin{bmatrix} -1 & -1 & 1 & 0 \\ -1 & -1 & 1 & 0 \\ 1 & 1 & -1 & 0 \end{bmatrix} \xrightarrow{L_1/(-1)} \xrightarrow{}$$

$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ -1 & -1 & 1 & 0 \\ 1 & 1 & -1 & 0 \end{bmatrix} \xrightarrow{L_2 + L_1} L_3 + (-1)L_1$$

$$\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$E_4 = [(-1, 1, 0), (1, 0, 1)]$$

Aplicando o processo de Gram-Schmidt temos:

$$u_1 = \left[\begin{array}{c} -1\\1\\0 \end{array} \right]$$

$$u_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{\langle (1,0,1)(-1,1,0) \rangle}{\langle (-1,1,0)(-1,1,0) \rangle} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1\\0\\1 \end{bmatrix} - \frac{(-1)}{2} \begin{bmatrix} -1\\1\\0 \end{bmatrix} = \frac{1}{2} \left(\begin{bmatrix} 2\\0\\2 \end{bmatrix} - \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix} 1\\1\\2 \end{bmatrix} \Rightarrow$$

$$u_2 = \left[\begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right]$$

$$E_4 = [(-1, 1, 0), (1, 1, 2)]$$

$$\begin{bmatrix} 2 & -1 & 1 & 0 \\ -1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 0 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_2} \xrightarrow{}$$

$$\begin{bmatrix} -1 & 2 & 1 & 0 \\ 2 & -1 & 1 & 0 \\ 1 & 1 & 2 & 0 \end{bmatrix} \xrightarrow{L_1/(-1)}$$

$$\begin{bmatrix} 1 & -2 & -1 & 0 \\ 2 & -1 & 1 & 0 \\ 1 & 1 & 2 & 0 \end{bmatrix} \xrightarrow{L_2 + (-2)L_1} L_3 + (-1)L_1$$

$$\begin{bmatrix} 1 & -2 & -1 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 3 & 3 & 0 \end{bmatrix} \xrightarrow{L_2/3} \longrightarrow$$

$$\begin{bmatrix} 1 & -2 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 3 & 3 & 0 \end{bmatrix} \xrightarrow{L_3 + (-3)L_2}$$

$$\begin{bmatrix} 1 & -2 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{L_1 + 2L_2}$$

$$\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + z \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

$$E_1 = [(-1, -1, 1)]$$

$$B^\perp = \{(-1,1,0), (1,1,2), (-1,-1,1)\}$$

$$B^N = \left\{ \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right), \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \right\}$$

$$M = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

$$D = \left[\begin{array}{rrr} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Tais matrizes satisfazem $M^T \cdot M = I_3$ e $D = M^T \cdot A \cdot M$.

Capítulo 11

Álgebra Linear Avançada

Referências Bibliográficas

- [1] Higino Hugueros Domingues, CA Calioli, and RCF Costa. Álgebra linear e aplicações. Atual, 1982.
- [2] Jamil Ferreira. *A construção dos números*. Sociedade Brasileira de Matematica, 2011.
- [3] Adilson Gonçalves. *Introdução à Álgebra, 5a. edição*. IMPA, Rio de Janeiro, 2015.
- [4] Elon Lages Lima. Algebra Linear, 2a. edição. IMPA, Rio de Janeiro, 1996.
- [5] D. Poole. Linear Algebra: A Modern Introduction. Available Titles CengageNOW Series. Thomson Brooks/Cole, 2005.
- [6] Antônio Carlos Telau. Parametrizações de superfícies triangulares. Universidade Federal do Espírito Santo, 2012.