Lycée Buffon
 DS 2

 MPSI
 Année 2020-2021

Devoir du 10/10/2020

Exercice 1 : Pour tout complexe z distinct de 2i, on pose $f(z) = \frac{z^2}{z - 2i}$

- 1. Déterminer les racines carrées complexes de 8-6i.
- 2. En déduire l'ensemble des d'antécédents de 1 + i par f.
- 3. Soit $z_0 \in \mathbb{C}$. Discuter suivant les valeurs de z_0 le nombre d'antécédents de z_0 par f.

Exercice 2 : Soit $f: \mathbb{C} \to \mathbb{C}, z \mapsto z^2 + z + 1$.

- 1. Déterminer $f(\mathbb{C})$, $f(\mathbb{C}^*)$, $f(\mathbb{R})$.
- 2. Déterminer $f^{-1}(\mathbb{C}), f^{-1}(\mathbb{C}^*), f^{-1}(\mathbb{R}).$

Exercice 3: Soit $f: \mathbb{N} \to \mathbb{N}$ une application.

- 1. On suppose que f est injective et que $\forall n \in \mathbb{N}, f(n) \leq n$. Montrer que $f = \mathrm{Id}_{\mathbb{N}}$.
- 2. On suppose que f est surjective et que $\forall n \in \mathbb{N}, f(n) \geqslant n$. Montrer que $f = \mathrm{Id}_{\mathbb{N}}$.
- 3. On suppose que $\forall n \in \mathbb{N}, f(n) + (f \circ f)(n) = 2n$. Prouver que f est injective puis que $f = \mathrm{Id}_{\mathbb{N}}$.

Exercice 4: Une fonction $f: \mathbb{C} \to \mathbb{C}$ est dite involutive si $f \circ f = \mathrm{Id}_{\mathbb{C}}$.

- 1. Pour tout $(a,b) \in \mathbb{R}^2$, on note $f_{a,b} : \mathbb{C} \to \mathbb{C}, z \mapsto az + b\bar{z}$.
 - (a) Déterminer les couples $(a,b) \in \mathbb{R}^2$ tels que $\forall z \in \mathbb{C}, f_{a,b}(z) = 0$.
 - (b) Déterminer les couples $(a,b) \in \mathbb{R}^2$ tels que $\forall z \in \mathbb{C}, f_{a,b}(z) = z$.
 - (c) Déterminer les couples $(a,b) \in \mathbb{R}^2$ tels que $f_{a,b}$ soit involutive.
- 2. On considère dans cette partie, la fonction $g: \mathbb{C} \to \mathbb{C}, \ z \mapsto e^{i\frac{\pi}{4}}\bar{z}$.

Dans le plan usuel (O, \vec{i}, \vec{j}) , on considère un point M quelconque.

On note z son affixe et l'on considère le point M' d'affixe z' = g(z).

On note Δ l'ensemble des points M du plan tels que M'=M.

- (a) La fonction g est-elle involutive?
- (b) Prouver que Δ est une droite dont on donnera l'équation et un vecteur directeur que l'on notera \vec{w} .

- (c) Démontrer que, pour tout point M, le vecteur $\overrightarrow{MM'}$ est orthogonal à \overrightarrow{w} .
- (d) Soit I le milieu du segment [MM']. Prouver que $I \in \Delta$.
- (e) Par quelle transformation géométrique simple, le point M' se déduit-il du point M?

Exercice 5

- 1. Prouver que : $\forall n \in \mathbb{N}^*, \ \forall (z_1, \dots, z_n) \in \mathbb{C}^n, \ \left| \sum_{k=1}^n z_k \right| \leqslant \sum_{k=1}^n |z_k|.$
- 2. Soit $n \in \mathbb{N}^*$ et $(z_1, \dots, z_n) \in \mathbb{C}^n$. Prouver que

$$\left(\exists u \in \mathbb{C}, \ \exists (\lambda_1, \cdots, \lambda_n) \in (\mathbb{R}^+)^n, \ \forall k \in [1, n], \ z_k = \lambda_k u\right) \Longleftrightarrow \left(\left|\sum_{k=1}^n z_k\right| = \sum_{k=1}^n |z_k|\right).$$

3. Soient $n \in \mathbb{N}$. On se place dans un repère orthonormé direct et on considère des points M_1, \ldots, M_n d'affixes respectives z_1, \ldots, z_n non nulles.

Pour tout $k \in [1, n]$, on note $a_k = \frac{z_k}{|z_k|}$ et on suppose que $\sum_{k=1}^n a_k = 0$.

- (a) Donner, en le justifiant rapidement, pour $n \in \mathbb{N}, n \ge 2$ quelconque, un exemple de n nombres complexes z_1, \ldots, z_n vérifiant $\sum_{k=1}^n a_k = 0$.
- (b) Soit z un complexe. On pose $\varphi(z) = \sum_{k=1}^{n} \overline{a_k}(z z_k)$

Prouver que $\varphi(z) = -\sum_{k=1}^{n} |z_k|$ puis que $|\varphi(z)| = -\varphi(z)$.

- (c) Prouver que $\forall z \in \mathbb{C}, \ \sum_{k=1}^{n} |z_k| \leqslant \sum_{k=1}^{n} |z z_k|.$
- (d) Déterminer l'ensemble des points M du plan tels que : $\sum_{k=1}^n MM_k = \sum_{k=1}^n OM_k$