

Movement Segmentation

Using Machine Learning

Python & R pipeline

Omer Zlotnick, Spiegel lab

Movement segmentation

How far do animals move?

Where do animals spend their time?

Is there variance in movement between individuals?

How do animals move in each state?

Where do animals prefer to perform each behavior?

Does the same state look different between individuals?

How to segment?

The problem of quantity

Previous studies

Maximum likelihood

$$Y = \exp(\beta_1 \cdot x_1 + \beta_2 \cdot x_2 + ... + \beta_n \cdot x_n)$$

Supervised machine learning

Lower resolution

Our study

- High resolution data
- Very large amounts of data
- Unsupervised machine learning

Objectives

Segmentation of trajectories

Creating artificial trajectories*

^{*} More work should be done

Pipeline

Directory structure

movement_segmentation

existing_functions

inputs

my_codes

plots

outputs

Previously developed functions for working with ATLAS

Input file for the data extraction

All codes written for this project

All plots produced in the pipeline

All output files produced in the pipeline

Pipeline

Filtering locations

Angles calculation

Features calculation

K-means clustering

Intuition – Extracting locations

Code - Extracting locations

File name: 1 data_extraction.R

Needed input: movement_segmentation/inputs/TAG_dates.csv

Input format:

Tag ID	Date capture	Start hour	status_date
207	02/07/2020	23:59:59	01/11/2020

Date and hour from which locations are extracted

The last day for locations extraction

Notes:

- All tags requested should be with the same fix rate
- User must be connected to the university network
- The output csv file for each tag

Pipeline

Extracting locations

Filtering locations

Angles calculation

Features calculation

Groups assignment

K-means clustering

Intuition – Filtering locations

Code - Filtering locations

File name: 2 data_filtration.R

<u>Input from:</u> movement_segmentation/outputs/1 locations_data/

2 filters are used:

- atl_unifiedFilter (its attributes should be changed according to the species)
- Eitam's confidence filter

Notes:

 Other filtering methods can be used, as long as their output are in the format that appears below

TAG	X	Y	LON	LAT	dateTime	date	distance	dT	spd
442	239943.6	718322.3	35.42265	32.55901	25/05/2021 11:15	25/05/2021	3.182874	4	0.795718

Pipeline

Extracting locations

Filtering locations

Angles calculation

Features calculation

Groups assignment

K-means clustering

Code – python pipeline

File name: 3 main.py

Uses 8 functions*:

- calculate_angles
- calculate_features
- calculate_kmeans
- groups_to_locations

- smooth
- transitions
- get_examples
- distributions

Notes:

- Each function will be described separately
- Switch to comment functions you don't want to run

^{*} The functions can be found at movement_segmentation/my_codes/omer_functions/__init__.py

Pipeline

Extracting locations

Filtering locations

Angles calculation

Features calculation

Groups assignment

K-means clustering

Intuition – Angles calculation

Intuition – Angles calculation

Intuition – Angles calculation

Turning angle = $40^{\circ} - 120^{\circ} = -80^{\circ} = 280^{\circ}$

All angles between 0 and 360!

Code - Angles calculation

File name: 3 main.py

<u>Function name:</u> calculate_angles

<u>Input:</u> movement_segmentation/outputs/2 filtered_data/

Output: movement_segmentation/outputs/3 data_with_angles/

Parameters:

input_path string path to directory with input files (separated to tags)

output_path string path to directory for output files

Pipeline

Features calculation

Smoothing Groups K-means clustering

Intuition - Features calculation

# of series	Feature 1	Feature 2	Feature 3	Feature 4	Feature 5

Intuition – Features calculation

Intuition – Features calculation

Series 1

Optional features:

- > total distance
- mean speed
- > standard deviation of speeds
- mean turning angle
- standard deviation of turning angles
- > net displacement
- > max displacement
- absolute max displacement
- tortuosity

Intuition - Features calculation

net displacement

Distance between first and last point

max displacement

Distance between first point and its furthest point

absolute max displacement

Distance between the two furthest points

$$Tortuosity = \frac{total\ distance}{net\ displacement}$$

Code - Features calculation

File name: 3 main.py

<u>Function name:</u> calculate_features

<u>Input:</u> movement_segmentation/outputs/3 data_with_angles/

Output: movement_segmentation/outputs/4 features/

Parameters:

sep_files

input_path string path to directory with input files (separated to tags)

output_path string path to directory for output file

tw
 int
 time window, number of locations in each series

normalized boolian does the user want the features to be normalized?

features_list list of strings which features should be calculated? Full list in comment

boolian export each tag to a separate file (in addition to the united)

Pipeline

Extracting locations

Filtering locations

Angles calculation

Features calculation

Groups assignment

K-means clustering

Intuition – K-means clustering

Intuition – K-means clustering

Code – K-means clustering

File name: 3 main.py

<u>Function name:</u> calculate_kmeans

<u>Input:</u> movement_segmentation/outputs/4 features/

Output: movement_segmentation/outputs/5 kmeans/

Parameters:

k_range

input_path string path to directory with input file

output_path
 string
 path to directory for output file

tw int time window, number of locations in each series

normalized boolian does the user want the features to be normalized?

list of ints how many groups the user want to cluster to? (one or more)

Code – K-means clustering

File name: 3 main.py

<u>Function name:</u> calculate_kmeans

<u>Input:</u> movement_segmentation/outputs/4 features/

Output: movement_segmentation/outputs/5 kmeans/

Parameters:

•	rel_features_list	list of strings	which features should be considered?
---	-------------------	-----------------	--------------------------------------

filt_lim
 float
 series with one or more features larger or smaller than

 $\pm sd \cdot filt_{lim}$ will be omitted

sep_files boolian export each tag to a separate file (in addition to the united)

plot boolian create PCA plot of the clustering

Pipeline

If not, calculate weights for each series

If not, calculate weights for each series

Series with low mean time (high fix rate) are preferred

Series in which the current point is closer to the middle are preferred

$$weight = \left(\frac{1}{mean_time}\right)^{time_weight} \cdot \left(\frac{1}{distance\ from\ middle}\right)^{dist_weight}$$

# of series	group	Mean time	Distance from the middle
1	0	8	3
2	0	16	2
3	1	8	1
4	2	8	2
5	1	24	3

$$weight = \left(\frac{1}{8}\right)^{1} \cdot \left(\frac{1}{3}\right)^{1} = 0.042$$

$$weight = \left(\frac{1}{16}\right)^{1} \cdot \left(\frac{1}{2}\right)^{1} = 0.031$$

$$weight = \left(\frac{1}{8}\right)^{1} \cdot \left(\frac{1}{1}\right)^{1} = 0.125$$

$$weight = \left(\frac{1}{8}\right)^{1} \cdot \left(\frac{1}{2}\right)^{1} = 0.062$$

$$weight = \left(\frac{1}{24}\right)^{1} \cdot \left(\frac{1}{3}\right)^{1} = 0.014$$

group	weight	
0	0.042 + 0.031 = 0.073	
1	0.125 + 0.014 = 0.139	
2	0.062	

Code – Groups assignment

File name: 3 main.py

<u>Function name:</u> groups_to_locations

<u>Input:</u> movement_segmentation/outputs/5 kmeans/

Output: movement_segmentation/outputs/6 groups_to_locations/

Parameters:

k_range

•	input_path	string	path to directory with input file
			, , , , , , , , , , , , , , , , , , ,

locations_path string path to directory with the filtered locations (with angles)

output_path string path to directory for output file

tw int time window, number of locations in each series

list of ints which clustering the user want to use? (one or more)

Code – Groups assignment

File name: 3 main.py

<u>Function name:</u> groups_to_locations

<u>Input:</u> movement_segmentation/outputs/5 kmeans/

Output: movement_segmentation/outputs/6 groups_to_locations/

Parameters:

dist_weight
 float
 how much weight the user want to give to the distance from

the middle? (as explained in the intuition part)

time_weight float how much weight the user want to give to the mean time (dT)

of the series? (as explained in the intuition part)

sep_files boolian export each tag to a separate file (in addition to the united)

Pipeline

Features calculation

Smoothing Groups K-means clustering

Intuition – Smoothing

max window = 2

Code – Smoothing

File name: 3 main.py

Function name: smooth

<u>Input:</u> movement_segmentation/outputs/ 6 groups_to_locations/

Output: movement_segmentation/outputs/7 smoothed_groups/

Parameters:

•	input_path	string	path to directory with input file
---	------------	--------	-----------------------------------

- output_path
 string
 path to directory for output file
- tw int time window, number of locations in each series
- k_range list of ints which clustering the user want to use? (one or more)
- max_window int gaps equal or shorter than this value will be smoothed
- sep_files boolian export each tag to a separate file (in addition to the united)

Examples

Extra codes – analysis and plots

Exploring groups by features

Exploring groups by attributes

ploting

4 analysis.R

5 ploting.R

Code - Features statistics

correlations

histograms

Code – Features statistics

File name: 4 analysis.R

<u>Function name:</u> features_statistics

<u>Input:</u> movement_segmentation/outputs/4 features/

Output: movement_segmentation/plots/features_statistics/

Parameters:

tw int time window, number of locations in each series

Code – Exploring groups by features

boxplots

histograms

Code – Exploring groups by features

File name: 4 analysis.R

<u>Function name:</u> exploring_groups_by_features

<u>Input:</u> movement_segmentation/outputs/5 kmeans/

Output: movement_segmentation/plots/exploring_groups_by_features/

Parameters:

tw int time window, number of locations in each series

ks list of ints which clustering the user want to analyze? (one or more)

Code - Exploring groups by attributes

boxplots

histograms

Code – Exploring groups by attributes

File name: 4 analysis.R

<u>Function name:</u> exploring_groups_by_attributes

<u>Input:</u> movement_segmentation/outputs/7 smoothed_groups/

Output: movement_segmentation/plots/exploring_groups_by_attributes/

Parameters:

• tw int time window, number of locations in each series

ks list of ints which clustering the user want to analyze? (one or more)

Code – ploting

Code – ploting

File name: 5 ploting.R

<u>Input:</u> any file from movement_segmentation/outputs/9 examples/

Output: interactive map with the segmentation

Variables:

k

• tw int time window, number of locations in each series

int which clustering the user want to analyze?

to_plot string which file the user want to plot?

Objectives

Segmentation of trajectories

Creating artificial trajectories*

^{*} More work should be done

Intuition – multi-state random walk

Probabilities for first step

<u>state</u>	0	1	2
probability			

For each state, distributions of:

Step lengths

Turning angles

Transition matrix

To state...

	0	1	2
0			
1			
2			

Intuition – multi-state random walk

Examples

k = 2

k = 3

k = 4

Code – creating artificial trajectories

File name: 6 main_rw.py

<u>Using the function:</u> multistate_random_walk

<u>Input:</u> movement_segmentation/outputs/8 transitions/

movement_segmentation/outputs/10 distributions/

Output: movement_segmentation/plots/11 artificial_trajectories/

Variables:

tw int the results of which time window to use?

(choose the one you did the all the analysis for)

• K_range list of ints the results of which clustering (k) to use? (one or more)

num_of_trajectories int number of artificial trajectories to create for each clustering (for each k)

number_of_steps int number of steps per trajectory

Code – ploting artificial trajectories

File name: 7 plot_artificial_trajectories.R

<u>Input:</u> movement_segmentation/outputs/11 artificial_trajectories/

movement_segmentation/outputs/1 locations_data/

Output: movement_segmentation/plots/artificial_trajectories/

Variables:

tw int which time window the trajectories were based on?

ks vector of ints which clustering the trajectories were based on? (one or more)

number_of_traj int how many trajectories were created for each clustering (k)?

computer?

computer

computer

Future directions...?

- Exploring seasonality, personality etc.
 based on the segmentation
- Validating the artificial trajectories:
 - Against other models
 - Against real trajectories
- Improving the random-walk model

For any help contact me!

omerzlotnick@gmail.com