

Úvod do jaderné a reaktorové fyziky

Filip Fejt KJR FJFI ČVUT v Praze

Atom a atomové jádro

Vazbová energie

- Hmotnost jádra se nerovná součtu hmotnosti neutronů a protonů, které jádro obsahuje
- hmotnostní úbytek $\Delta m = Zm_P + Nm_N mA$, činí řádově % hmotnosti jádra
- hmotnostní úbytek úměrný vazbové energii $W = \Delta mc^2$

Jednotky používané v jaderné fyzice

- Atomová hmotnostní jednotka (u) = 1/12 hmotnosti atomu uhlíku C-12
 - o přibližně rovna hmotnosti nukleonu: 1 u = 1.66054 × 10^{-27} kg.
- Elektron volt (eV) = energie získaná jednotkovým nosičem náboje při průchodu potenciálovým rozdílem 1 volt
 - \circ 1 eV = 1,60218 × 10–19 J.
- 1 u ~ 931.49 MeV (dle Einsteinova principu ekvivalence)

Síly uplatňující se ve vazbě atomového jádra

- Elektrická (Coulombovská)
- Silná (jaderná).
 - přitažlivá síla mezi nukleony libovolného typu
 - velmi silná, s krátkým dosahem
- Přeněji popisuje "standardní model"
 - o interakce mezi kvarky

Kapkový model jádra

Principy uvolňování jaderné energie

- Zvyšování W/A uvolnění nadbytečné energie
- Fúze slučování lehkých jader (A => B)
- štěpení těžká jádra (A' => B')

Základní rozdíly mezi štěpením a fúzí

Štěpení

- štěpení možné tepelnými neutrony s velmi malou energií
- při štěpení vznikají další neutrony – možnost řetězové reakce (i při malých výkonech)

Fúze

- Vyšší uvolněná energie/nukleon na 1 reakci
- Nutno překonat coulombovské odpuzování
- potřebné T > 10⁶ °C
- tokamaky, laserová fúze

Radioaktivita a typy radioaktivity

Tin

the neutron side of

nuclei with excess

- oblast A velmi těžká jádra
- oblast B jádra s přebytkem neutronů
- oblast C jádra s přebytkem protonů

Typy radioaktivity

- Region **A** rozpad α
- Region **B** rozpad β -

$${}_{7}^{A}X \Rightarrow {}_{7-2}^{A-4}Y + {}_{2}^{4}He$$

 ${}_{0}^{1}\mathbf{n} \Rightarrow {}_{1}^{1}\mathbf{p} + {}_{-1}^{0}\mathbf{e} + {}_{0}^{0}\bar{\mathbf{v}},$

$${}_{Z}^{A}\mathbf{X} \Rightarrow {}_{Z+1}^{A}\mathbf{Y} + {}_{-1}^{0}\mathbf{e} + {}_{0}^{0}\bar{\mathbf{v}}$$

- Region C
 - o rozpad β+

$${}^{1}_{1}\mathbf{p} \Rightarrow {}^{1}_{0}\mathbf{n} + {}^{0}_{1}\bar{\mathbf{e}} + {}^{0}_{0}\mathbf{v}$$

$${}_{1}^{1}\mathbf{p} \Rightarrow {}_{0}^{1}\mathbf{n} + {}_{0}^{0}\bar{\mathbf{e}} + {}_{0}^{0}\mathbf{v} \qquad {}_{Z}^{A}\mathbf{X} \Rightarrow {}_{Z-1}^{A}\mathbf{Y} + {}_{0}^{0}\bar{\mathbf{e}} + {}_{0}^{0}\mathbf{v}$$

elektronový záchyt (EC) (+ x-rays)

$${}_{1}^{1}\mathbf{p} + {}_{-1}^{0}\mathbf{e} \Rightarrow {}_{0}^{1}\mathbf{n} + {}_{0}^{0}\mathbf{v}$$

$${}_{1}^{1}\mathbf{p} + {}_{-1}^{0}\mathbf{e} \Rightarrow {}_{0}^{1}\mathbf{n} + {}_{0}^{0}\mathbf{v}$$
 ${}_{Z}^{A}\mathbf{X} + {}_{-1}^{0}\mathbf{e} \Rightarrow {}_{Z-1}^{A}\mathbf{Y} + {}_{0}^{0}\mathbf{v}$

- Excitovaná jádra
 - o emise γ záření

Radioaktivní rozpad

Zákon RA rozpadu:

$$dN = -N(t)\lambda dt$$

$$N(t) = N(0)e^{-\lambda t}$$

$$T = \ln(2)/\lambda = 0.693/\lambda$$

• Aktivita: $A = \lambda N [Bq]$

Rozpadové řady

$$X \Rightarrow Y \Rightarrow Z \Rightarrow \dots$$

$$\frac{dX}{dt} = -\lambda_X X,$$

$$\frac{dY}{dt} = +\lambda_X X - \lambda_Y Y,$$

$$\frac{dZ}{dt} = +\lambda_Y Y - \lambda_Z Z$$

- Uranová (²³⁸U),
- Neptuniová (²³⁷Np),
- Thoriová(²³²Th),
- Aktiniová (²³⁵U)

Neutronová fyzika pro jaderné reaktory

Jaderné reakce

- reakce:
 - spontánní (radioaktivita)
 - o indukované ($\mathbf{a} + \mathbf{A} \Rightarrow \mathbf{B} + \mathbf{b}$), nebo $\mathbf{A}(\mathbf{a}, \mathbf{b})\mathbf{B}$ Př: 4He + 9Be \Rightarrow 12C + 1n ; α (9Be, 12C)n
- zákony zachování počet nukleonů, el. náboj, energie, hybnost, spin
- pravděpodobnost interakce dána účinným průřezem
 - o řádově 10^{-28} m² = 1 barn
- mikroskopický účinný průřez σ [m²]
- makroskopický účinný průřez Σ [m⁻¹]
- $\Sigma = N\sigma$

Target

Typy neutronových interakcí

- Většina reakcí probíhá přes složené jádro
- Rozptyl
- Absorpce
 - Štěpení
 - Záchyt
- celkový účinný průřez: σ_t = σ_s + σ_a
- absorpční účinný průřez: $\sigma_a = \sigma_f + \sigma_c$

Souhrn neutronových reakcí

Interakce bez složeného jádra			
Potenciálový rozptyl (pružný)	n + A => n + A	vždy možné	
Interakce jdoucí přes složené jádro			
Pružný rozptyl	n + A => n + A	vždy možné	
Nepružný rozptyl	n + A => n + A* A* => A + γ	Práh: první en. hladina A	
Reakce (n,2n)	n + A => n + n + (A-1)	Práh: separační energie neutronu	
Radiační záchyt	$n + A => \gamma + (A + 1)$	vždy možné	
Reakce (neutron, nabitá částice)	n + A => p + B $n + A => \alpha + C$	obvykle pahové, někdy bezprahové	
Štěpení	n + A => FP1 + FP2 + neutrony (průměrně 2 – 3)	těžká jádra; bez prahu pro jádra s lichým N prahové pro jádra se sudým N	

Tvar účinného průřezu

- závislý na terčovém jádře, energii neutronu, typu interakce
 - o roztylový: σ ~ barny, přibližně konstantní
 - absorpční : σ výrazně vyšší, silně závislé na terčovém jádře
- nízké energie závislost 1/v
- eV keV rezonanční oblast
- oblast vysokých energií

Energetické hladiny jádra

Příklady účinných průřezů

Kvantitativní srovnání úč. průřezů

Absorpční účinné průřezy vybraných izotopů (v barnech pro neutrony s 2200m/s)

Účinné průřezy vybraných izotopů (v barnech pro neutrony s 2200m/s)

Jádro/prvek	Účinný průřez
H (přír. zast.)	0,332
Deuterium	0,000506
B-10	3 840
Xe-135	2 650 000
Sm-149	40 500
Gd (přír. zast.)	48 600
Zr (přír. zast.)	0,184

Jádro/prvek	Účinný průřez
U-235: štěpení	582,6
U-235: absorpce	98,9
U-238: absorpce	2,719
Pu-239: štěpení	747,3
Pu-239: absorpce	270,4

Štěpení těžkých jader

štěpná a štěpitelná jádra

URANIUM 235 URANIUM 238 Energy Binding energy (6.5 MeV) Deformation Deformation

Izotop	U-235	U-238
Vazbová energie	6,5	4,8
Kritická energie pro štěpení (potenciálová bariéra)	6,1	6,6
Rozdíl enegie	+0,4	-1,8

Produkty štěpení

$$^{235}U + n = ^{95}X + ^{139}Y + 2 n$$

- neutrony
- štěpné produkty

Energie neutronů ze štěpení

Rozdělení štěpných produktů

Energie ze štěpení

Energie ze štěpení	Energie (MeV)
Štěpné produkty	166,2
Okanžité γ	8
Neutrony	4,8
β záření	7
Antineutrina (z β rozpadu)	9,6
Zpožděné γ (z β rozpadu)	7,2
Celkem	202,8

Energie získatelná ze štěpení	Energie (MeV)
Uvolněná energie	202,8
Antineutrina	- 9,6
Záchytové γ	+ 8,4
Celkem	201,7

Vývin tepla v jaderném reaktoru

- v palivu $P = E_f \Sigma_f < \Phi > V \ (> 95\%)$
- konstrukční materiály (γ ohřev)
- moderátor (zpomalování neutronů)
- 1 štěpení ≈ 200 MeV ≈ 30 pJ
- 1kg U-235 ≈ 2,56 x 10^{24} atomů
- rozštěpením 1 kg U-235 ≈ 1000 MWd
- spotřeba JE o výkonu 1000 MWe
 - o ≈ 3 kg U-235/den
 - $\circ \approx 1 \text{ t U-235/rok}$

Bilance neutronů: vzorec čtyř součinitelů

- koeficient násobení
 - $\circ k = N_i / N_{i-1}$
- $k_{\infty} = \varepsilon p f \eta$
- $k_{ef} = \varepsilon p f \eta L_f L_t$
- k_{ef} = 1 kritický reaktor
- $k_{ef} > 1$ nadkritický reaktor
- k_{ef} < 1 podkritický reaktor

Podmínky pro štěpnou řetězovou reakci

- kritické množství (resp. zásoba reaktivity)
 - o vztah materiálového a geometrického složení
- k udržení štěpné řetězové reakce je potřeba, aby právě jeden neutron vznikající ze štěpení způsobil další štěpení, a ostatní neutrony byly pohlceny neštěpně

Harry K. Daghlian, Louis Slotin & Demon core

Veličiny popisující chování neutronů v jaderném raktoru

- Koeficient násobení k_{ef}
- Reaktivita $\rho = \frac{k_{ef}-1}{k_{ef}}$ (%, pcm, \$, β_{ef})
- Hustota neutronů n (n/cm³)
- Hustota toku neutronů $\Phi = nv (n/cm^2)$
- Proud neutronů J (n/cm²)
- Reakční rychlost $R_r = \Sigma_r \Phi$ (např. počet štěpení/s)

Transportní (Boltzmanova) rovnice

- Přesný popis transportu neutronů
- 7 proměnných (\mathbf{p} , \mathbf{E} , $\mathbf{\Omega}$, \mathbf{t})
- transport, interakce, zdroje

$$\frac{1}{v(E)} \frac{\partial \varphi(\mathbf{r}, E, \hat{\mathbf{\Omega}}, t)}{\partial t} + \hat{\mathbf{\Omega}} \cdot \nabla \varphi(\mathbf{r}, E, \hat{\mathbf{\Omega}}, t) + \Sigma_t(\mathbf{r}, E, t) \varphi(\mathbf{r}, E, \hat{\mathbf{\Omega}}, t) = \int_{A\pi} d\Omega' \int_0^{\infty} dE' \, \Sigma_s(\mathbf{r}, E' \to E, \hat{\mathbf{\Omega}}' \to \hat{\mathbf{\Omega}}, t) \varphi(\mathbf{r}, E', \hat{\mathbf{\Omega}}', t) + s(\mathbf{r}, E, \hat{\mathbf{\Omega}}, t)$$

Difúzní rovnice

- Zjednodušený popis rozložení neutronů
 - pohyb neutronů proti směru gradientu
- bilance úniku, absorpce a zdrojů neutronů
- $D\Delta \Phi \Sigma_a \Phi + S = dN/vdt$

- Aproximace:
 - o jednogrupová
 - všechny neutrony vznikají a zanikají při stejné energii
 - o dvougrupová
 - rozdělení na tepelné a rychlé neutrony
 - o více-grupová

Vliv regulačních tyčí a reflektoru na rozložení hustoty toku neutronů v AZ

Regulační tyče

Reflektor

Zpomalování neutronů

- NEUTRON

 TARGET
 NUCLEUS

 TARGET
 NUCLEUS
- pružný rozptyl na moderátoru
- maximální relativní ztráta energie při jedné srážce: $\frac{4A}{(A+1)^2}$
- Letargie u = ln Eref/E
- Průměrná logaritmická ztráta energie ξ (= $< ln(E_1/E_2) >)$
- **Z**pomalovací schopnost $\xi \Sigma_s$
- **Koeficient zpomalení** $\xi \Sigma_s / \Sigma_a$

Zpomalování neutronů

 Porovnání moderačních vlastností vybraných izotopů/ materiálů

Nuklid	A	ξ	n	Σ_s	Σ_a
Н	1	1	15	20,4	0,333
D	2	0,725	20	3,4	0,00051
С	12	0,158	92	4,74	0,00337
U	236	0,0084	1717		

Materiál	$\xi \Sigma_s$	$\xi \Sigma_s / \Sigma_a$
Voda	135	71
Těžká voda	17,6	5670
Grafit	6	192

Rezonanční absorpce a Dopplerův efekt

- S rostoucí teplotou
 - zachovává se plocha pod křivkou
 - roste resonanční absorpce
 - záporná zpětná vazba na U-238

Optimální moderace a vodouranový poměr

závislost na změně teploty (var)

vs. přídavek bóru

Vyhořívání paliva v jaderném reaktoru

- štěpné produkty
- transurany
- aktivační produkty

Složení vyhořelého paliva

Střednědobá kinetika

 vliv Xe (iodová jáma, xenonová otrava, xenonové oscilace)

samariová otrava

Xe-135: 2.5E6 barn

Sm-149: 4.1E4 barn

Vyhořívání

- Jednotky vyhoření:
 - vyhoření MWd/kg (GWd/t)
 - zlomek vyhoření (počet štěpení k počátečnímu počtu těžkých jader)
 - 1% zlomku vyhoření ~ 10
 000 MWd/t.

- štěpné, množivé nuklidy
- vyhořívající absorbátory

Vývoj izotopů U a Pu v průběhu vyhořívání

Tvorba transuranů při vyhořívání

Štěpné produkty

- "zastruskování" reaktoru
- vliv na středně a dlouhodobou kinetiku

- významné štěpné produky Xe-135, Sm-149,...
- pseudostrusky
 - o grupování do skupin u málo významných štěpných produktů (z hlediska vlivu na reaktivitu)

Vyhořelé jaderné palivo – krátkodobé hledisko

Zbytkový vývin tepla po odstavení reaktoru

Vyhořelé jaderné palivo – dlouhodobé hledisko

FINAL WASTE RADIOTOXICITY

U ore GLASSES FPSONLY 1000 TIME after unloading/processing (years)

Dlouhodobá radiotoxicita vyhořelého paliva

Děkuji za pozornost

Zdroje neutronů

- Spontánní štěpení (Cf-252)
- Indukované reakce α,n zdroje (AmBe); γ,n zdroje (Sn-124)
- Fúzní reakce (D+T=> α + n)
- Spalační reakce
- Štepná reakce

