ZAMA

Recent advances in homomorphic compilation

Pascal Paillier, Zama

FHE.org conference 2023

What is homomorphic compilation?

Developer not crypto-savvy, just wants good results

homomorphic app

The (poor) reality

developer = cryptographer who tries to do best

homomorphic app

What is blocking this transition?

homomorphic app

GPU

FPGA

ASIC

The inner ingredients of hom. compilers

Converts input code into an FHE circuit

Optimizes that circuit (topology + params)

Generates an executable for a target architecture

The inner ingredients of hom. compilers

Converts input code into an FHE circuit

2 Optimizes that circuit (topology + params)

Generates an executable for a target architecture

What we are building at Zama

Bootstrapping

Bootstrapping

Programmable Bootstrapping (PBS)

Homomorphic Inference: Leveled HE

Homomorphic Inference: Fully HE

Homomorphic Inference: The "Zama way"

A new computational paradigm

Kolmogorov Superposition
Theorem (KST)

$$f(x_1, x_2, ..., x_n) = \sum_{i=1}^{2n+1} g_i \left(\sum_{j=1}^n f_{ij}(x_j) \right)$$
univariate

A new computational paradigm

Kolmogorov Superposition
Theorem (KST)

 $f(x_1, x_2, ..., x_n) = \sum_{i=1}^{2n+1} g_i \left(\sum_{j=1}^n f_{ij}(x_j) \right)$ univariate

Ridge decomposition or approximation

$$f(x_1, ..., x_n) \approx \sum_{i=1}^r g_i \left(\sum_{j=1}^n a_{ij} \cdot x_j \right)$$
univariate $a_{ij} \in \mathbb{Z}$

A new computational paradigm

circuit of univariate functions

= graph mixing univariate functions and linear combinations

The Concrete Compiler

(and a glance at the whole Concrete stack)

Exact vs. approximate computing with TFHE

	plaintexts	continuous torus encoding	discretized torus encoding	noisy discretized torus	encrypted domain
exact paradigm	$m \in \mathbb{Z}_p$ • p odd • p even	$\mu \in \mathbb{R}/\mathbb{Z}$ $\mu = \frac{m}{p} \mod 1$	$\mu \in \mathbb{Z}_{2^{32}}$ $\mu = \left\lceil \frac{2^{32}}{p} \right\rceil \mod 2^{32}$	$\mu + \varepsilon \in \mathbb{Z}_{2^{32}}$	$LWE_{sk}\left(\mu+\varepsilon\right)$
approximate paradigm	$x \in [x^-, x^+] \subset \mathbb{R}$ $pdf(x) \approx \mathcal{N}(x, \sigma_x)$ $Pr[x \notin [x^-, x^+]] = 0$		$\mu \in \mathbb{Z}_{2^{32}}$ $\mu = \left[\frac{x - x^{-}}{x^{+} - x^{-}} \cdot 2^{32}\right] \mod 2^{32}$	$pdf\left(\frac{\varepsilon}{2^{32}}\right) \approx \mathcal{N}(0,\sigma)$	$\in \mathbb{Z}_{2^{32}}^{n+1}$

Modular TFHE circuits

complex parametrization

Multi-modular TFHE circuits

exact paradigm

Circuits typically switch back and forth between several moduli p_1, \ldots, p_k

 $m \in \mathbb{Z}_p$

automated generation of optimal parameters from circuit topology

Plaintext DAG

plaintext DAG (MLIR)

Plaintext DAG

+ TFHE.rs

(for handmade circuits)

Concrete Compiler

Check it out!

Clone from https://github.com/zama-ai and get support on https://discord.fhe.org/ (#concrete channel)