EEEN 474 Wireless Communication

Spring 2020

Mobile Radio Propagation:

Small-Scale Fading and Multipath

(Based on multipath time delay spread)

Flat Fading

- 1. BW of signal < BW of channel
- 2. Delay spread < Symbol period

Frequency Selective Fading

- 1. BW of signal > BW of channel
- 2. Delay spread > Symbol period

- 1. High Doppler spread
- 2. Coherence time < Symbol period
- 3. Channel variations faster than baseband signal variations

- 1. Low Doppler spread
- 2. Coherence time > Symbol period
- 3. Channel variations slower than baseband signal variations

Figure 4.11 Types of small-scale fading.

(1) Fading Effects due to Multipath Time Delay Spread

Flat Fading

Frequency Selective Fading

$$B_S \ll B_C$$

$$T_S \gg \sigma_{\tau}$$

$$T_S \geq 10\sigma_{ au}$$
 rule of thumb

 $B_S > B_C$

$$T_S < \sigma_{\tau}$$

 T_S : symbol period

 B_S : bandwidth of the transmitted modulation ($B_S = 1/T_S$)

 σ_{τ} : rms delay spread B_C : coherence bandwidth $(B_C \propto 1/\sigma_{\tau})$

RMS Delay Spread (σ_{τ})

 A power delay profile shows relative received power as a function of excess delay with respect to a fixed time delay reference

• Then:

$$\sigma_{\tau} = \sqrt{\overline{\tau^2} - (\overline{\tau})^2}$$

where

$$\overline{\tau^2} = \frac{\sum_k P(\tau_k) \tau_k^2}{\sum_k P(\tau_k)}$$

and

$$\overline{\tau} = \frac{\sum_{k} P(\tau_k) \tau_k}{\sum_{k} P(\tau_k)}$$

mean excess delay

Microseconds for outdoor radio channels
Nanoseconds for indoor radio channels

Table 4.1 Typical Measured Values of RMS Delay Spread

Environment	Frequency (MHz)	RMS Delay Spread (σ _τ)	Notes	Reference
Urban	910	1300 ns avg. 600 ns st. dev. 3500 ns max.	New York City	[Cox75]
Urban	892	10-25 μs	Worst case San Francisco	[Rap90]
Suburban	910	200-310 ns	Averaged typical case	[Cox72]
Suburban	910	1960-2110 ns	Averaged extreme case	[Cox72]
Indoor	1500	10-50 ns 25 ns median	Office building	[Sal87]
Indoor	850	270 ns max.	Office building	[Dev90a]
Indoor	1900	70-94 ns avg. 1470 ns max.	Three San Francisco buildings	[Sei92a]

Coherence Bandwidth (B_c)

Frequency bandwidth over which the correlation function of two samples of channel response taken at the **same time** but at **different frequencies** falls below a certain threshold

$$B_C = \frac{1}{50\sigma_\tau}$$

(Threshold is 0.9 correlation)

$$B_C = \frac{1}{5\sigma_\tau}$$

(Threshold is 0.5 correlation)

Example 5.4

Compute the RMS delay spread for the following power delay profile:

(b) If BPSK modulation is used, what is the maximum bit rate that can be sent through the channel without needing an equalizer?

Note: In BPSK, you send one bit per symbol

Solution

(a)
$$\bar{\tau} = \frac{(1)(0) + (1)(1)}{1+1} = \frac{1}{2} = 0.5 \mu s$$

$$\bar{\tau}^2 = \frac{(1)(0)^2 + (1)(1)^2}{1+1} = \frac{1}{2} = 0.5 \mu s^2$$

$$\sigma_{\tau} = \sqrt{\bar{\tau}^2 - (\bar{\tau})^2} = \sqrt{0.5 - (0.5)^2} = \sqrt{0.25} = 0.5 \mu s$$

(b)
$$\frac{\sigma_{\tau}}{T_s} \le 0.1$$

$$T_s \ge \frac{\sigma_{\tau}}{0.1}$$

$$T_s \ge \frac{0.5 \mu s}{0.1}$$

$$T_s \ge 5\mu s$$

$$R_s = \frac{1}{T_c} = 0.2 \times 10^6 \text{sps} = 200 \text{ksps}$$

$$R_b = 200 \text{kbps}$$

Example 4.4

Calculate the mean excess delay, rms delay spread, and the maximum excess delay (10 dB) for the multipath profile given in the figure below. Estimate the 50% coherence bandwidth of the channel. Would this channel be suitable for AMPS or GSM service without the use of an equalizer?

Figure E4.4

Notes:

In AMPS, B_s =30kHz In GSM, B_s =200kHz

Solution to Example 4.4

The rms delay spread for the given multipath profile can be obtained using equations (4.35) - (4.37). The delays of each profile are measured relative to the first detectable signal. The mean excess delay for the given profile

$$\bar{\tau} = \frac{(1)(5) + (0.1)(1) + (0.1)(2) + (0.01)(0)}{[0.01 + 0.1 + 0.1 + 1]} = 4.38 \mu s$$

The second moment for the given power delay profile can be calculated as

$$\overline{\tau^2} = \frac{(1)(5)^2 + (0.1)(1)^2 + (0.1)(2)^2 + (0.01)(0)}{1.21} = 21.07 \mu s^2$$

Therefore the rms delay spread, $\sigma_{\tau} = \sqrt{21.07 - (4.38)^2} = 1.37 \mu s$

The coherence bandwidth is found from equation (4.39) to be

$$B_c \approx \frac{1}{5\sigma_{\tau}} = \frac{1}{5(1.37\mu s)} = 146 \text{ kHz}$$

Since B_c is greater than 30 kHz, AMPS will work without an equalizer. However, GSM requires 200 kHz bandwidth which exceeds B_c , thus an equalizer would be needed for this channel.

(2) Fading Effects due to Doppler Spread

Slow Fading

$$T_S \ll T_C$$

$$B_S \gg B_D$$

Fast Fading

$$T_S>T_C$$

$$B_S < B_D$$

Then signal envelope follows:

- Rayleigh distribution
- Ricean distribution
- Nakagami-*m* distribution

 T_S : symbol period

 B_S : bandwidth of the transmitted modulation ($B_S = 1/T_S$)

 T_C : coherence time $(T_C \propto 1/f_m \text{ where } f_m \text{ is the maximum Doppler shift, } f_m = v/\lambda)$ frequency B_D : Doppler spread $(B_D = f_d, \text{ where } f_d \text{ is the Doppler shift})$

parameters

Doppler Effect

Figure 4.1 Illustration of Doppler effect.

Phase change in the received signal due to the difference in path lengths:

$$\Delta \phi = \frac{2\pi \Delta l}{\lambda} = \frac{2\pi v \Delta t}{\lambda} cos\theta$$

Hence, the apparent change in frequency (Doppler shift):

$$f_d = \frac{1}{2\pi} \cdot \frac{\Delta\phi}{\Delta t} = \frac{v}{\lambda} \cdot \cos\theta$$

Example 4.1

Consider a transmitter which radiates a sinusoidal carrier frequency of 1850 MHz. For a vehicle moving 60 mph, compute the received carrier frequency if the mobile is moving (a) directly towards the transmitter, (b) directly away from the transmitter, (c) in a direction which is perpendicular to the direction of arrival of the transmitted signal.

Solution to Example 4.1

Given:

Carrier frequency $f_c = 1850 \,\mathrm{MHz}$

Therefore, wavelength
$$\lambda = c/f_c = \frac{3 \times 10^8}{1850 \times 10^6} = 0.162 \text{ m}$$

Vehicle speed v = 60 mph = 26.82 m/s

(a) The vehicle is moving directly towards the transmitter.

The Doppler shift in this case is positive and the received frequency is given by equation (4.2)

$$f = f_c + f_d = 1850 \times 10^6 + \frac{26.82}{0.162} = 1850.00016 \text{ MHz}$$

(b) The vehicle is moving directly away from the transmitter.

The Doppler shift in this case is negative and hence the received frequency is given by

$$f = f_c - f_d = 1850 \times 10^6 - \frac{26.82}{0.162} = 1849.999834 \text{ MHz}$$

(c) The vehicle is moving perpendicular to the angle of arrival of the transmitted signal.

In this case, $\theta = 90^{\circ}$, $\cos \theta = 0$, and there is no Doppler shift.

The received signal frequency is the same as the transmitted frequency of 1850 MHz.

Coherence Time (T_c)

Time duration after which the correlation function of two samples of channel response taken at the same frequency but at different time instances falls below a certain threshold

$$T_C \approx \frac{1}{f_m}$$

$$T_C \approx \frac{9}{16\pi f_m}$$

$$T_C = \sqrt{rac{9}{16\pi f_m^2}}$$
 rule of thumb

Doppler Spread (B_D)

$$B_D = f_d$$

Example

If a baseband binary message with a bit rate R_b =100 kbps is modulated by an RF carrier using BPSK

- a) Find the range of values required for the rms delay spread of the channel such that the received signal is a flat fading signal
- b) If the modulation carrier frequency is 900 MHz, what is the coherence time of the channel assuming a vehicle speed of 100 km/hour?
- c) For your answer in (b), is the channel fast or slow fading?

Solution

- a) $R_s = R_b$ in BPSK. $T_s = 1/R_s = 1/(10^5) = 10^{-5}$ s = 10 μ s For flat fading we should have $T_s > 10\sigma_{\tau}$, therefore, $\sigma_{\tau} < 1$ μ s
- b) λ =0.33 m for 900 MHz. Maximum Doppler frequency: $f_m = \frac{v}{\lambda} = \frac{10^5 \text{ m}}{3600 \text{ s}} \cdot \frac{1}{0.33 \text{ m}} = 84.17 \text{Hz}$

Coherence time:
$$T_C = \sqrt{\frac{9}{16\pi f_m^2}} = 5 \text{ms}$$

c) $T_C = 5 \text{ ms}, T_S = 10 \mu s => T_C >> T_S => Slow fading$

Figure 4.14

Matrix illustrating type of fading experienced by a signal as a function of
(a) symbol period

(b) baseband signal bandwidth.