CS3102 Theory of Computation

$$|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$$

Show:
$$|\mathbb{N}| = |\mathbb{Q}|$$

Countability

- As set is countable if:
 - It is finite
 - It has a bijection with the natural numbers
 - (countably infinite)
- Notation
 - $|\mathbb{N}| = \aleph_0$
 - Aleph-naught
- Is the set of all strings over alphabet $\{a,b\}$ countable?
 - What about other alphabets?

The set of all strings is countable

```
1 string
Length 0
Length 1
                                             4 strings
Length 2
                                                                 8 strings
         aaa^7 aab^8 aba^9 abb^{10} baa^{11} bab^{12} bba^{13} bbb
Length 3
         aaaa aaab aaba aabb abaa abab abba abbb ...
Length 4
                                                                32 strings
         aaaaa aaaab aaaba aaabb ...
Length 5
```

Important: A countable union of countable sets is countable

Some more countable things

- Any language ever!
- Number of possible Java Programs
- The empty set
- The number of words in the English language
- Number of possible 410-page novels

All Languages are Countable

The set of all possible Java programs is countable

The Empty set is Countable

Proof:

The set of all English words is Countable

The number of possible 410-page novels is countable

Is $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ countable?

N×N -- Dovetailing

 $f: \mathbb{N} \leftrightarrow \mathbb{N}$

Take-away Ideas

- All finite sets are countable
- Anything with a bijection to the naturals is countable
- A subset of a countable set is countable
- A union of countably many sets is countable
 - Formal proof of this is homework
- To be computable by Java, the set of possibilities must be countable!

Are the Real Numbers Countable?

- Things that don't work:
 - List out every real number that starts with 1, then2, then 3, ...
 - List out every real number that has one number after the decimal, then 2, then 3, ...
- How would we prove it wasn't?

Diagonalization

- Used to prove that a set is not countable
 - Shows that there cannot be a bijection with the Natural Numbers
- 1. Assume toward a contradiction there is a bijection with the natural numbers
- 2. Treat this arbitrary bijection as an ordered list containing all items (item 0 is the thing which maps to 0, etc.)
- 3. Show that this list must always be missing something

Diagonalization

Assume toward a contradiction that $f: \mathbb{N} \leftrightarrow \mathbb{R}$, show that f cannot be onto (something from \mathbb{R} is not mapped to)

N	\mathbb{R}											
f(1) =	3	. (1	4	1	5	9	2	6	5	3	• • •
f(2) =	1	•	0	0	0	0	0	0	0	0	0	
f(3) =	2	•	7		8	2	8	1	8	2	8	
f(4) =	1	• '	4	1	4	2	1	3	5	6	2	• • •
<i>f</i> (5) =	0	•	3	3	3	3	3	3	3	3	3	• • •
	• • •	•										
$X = 0.21934\ldots \in \mathbb{R}$												

This number X cannot appear anywhere in the list. It's different from each f(i) at digit i

Is the set of all Languages Countable?

1/3	ع	и	D	uu	ub	Du	טט	иии	•••			
f(1) =	1) 1	1	1	1	1	1	1	1	1	1	• • •
f(2) =												
f(3) =	0	1(0	1	0	1	0	1	0	1	0	• • •
f(4) =	1	1	0	(1)	1	0	1	1	0	1	1	• • •
f(5) =	0	0	0	1	(0)	0	1	1	1	0	1	• • •
• • •	• • •	•										
L=	0	1	1	0	1	• • •						

a h aa ah ha hh aaa

Each row represents a language which includes string *i* provided column *i* has a 1

This Language L cannot appear anywhere in the list. It's different from each f(i) because its containment of string i is opposite

Correlary

Some languages cannot be decided by Java

Another Correlary

Some languages have no finite description!

Yet Another Correlary

- Some languages (problems) cannot be described!
- Can any of these be decided by Java?

Cantor's Theorem

- For any set S, $|2^S| < S$
 - Holds when S is finite (homework)
 - What about when S is infinite?
 - If S is countably infinite: diagonalization
- Assume toward contradiction we have $f: S \leftrightarrow 2^S$
 - $\operatorname{Let} T = \{ x \in S | x \in f(x) \}$
 - Note that $T \subseteq S$, so there must be some x_t s.t. $f(x_t) = T$
 - $\operatorname{Is} x_t \in T$?

Continuum Hypothesis

- We know that $|\mathbb{N}| < |\mathbb{R}|$
- Is there a set S s.t. $|\mathbb{N}| < |S| < |\mathbb{R}|$?
- Answer:
 - Unanswerable

Godel's Incompleteness Theorem

- Says any axiomatic system is at least one of:
 - 1. Inconsistent: There are false things that you can prove
 - 2. Incomplete: There are true things that you cannot prove
 - 3. Weak: You can't talk about prime numbers
- Proof idea: Show that any system can construct the paradox "This statement cannot be proven"

Incompleteness in CS*

- Expectation Maximization Problem
 - You want to put ads on your website
 - You don't know yet who will visit your website
 - Select ads to maximize the maximum number of potential customers
- Answering this problem requires "tools" not yet addressed by set theory!