

Time Series

Author: Wenxiao Yang

Institute: Haas School of Business, University of California Berkeley

Date: 2024

Contents

Chapte	er 1 Uni	ivariate Stationary Time Series Analysis	1	
1.1	Goals	and Challenge		
1.2	Stochastic Processes		1	
	1.2.1	Strictly Stationary	1	
	1.2.2	Covariance Stationary	2	
	1.2.3	Autocovariance and Autocorrelation Functions	2	
1.3	Moving-Average Process		3	
	1.3.1	Moving-Average Process	3	
	1.3.2	Conditions for Infinite Moving-Average Process	4	
	1.3.3	Remarks about $MA(\infty)$ models	6	
1.4	Autoregressive Model			
	1.4.1	Autoregressive Model as a Special Case of $MA(\infty)$	6	
	1.4.2	Alternative Representation of AR Model	7	
	1.4.3	AR(1)	7	
	1.4.4	$AR(p)\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	8	
1.5	More	More On $MA(q)$		
	1.5.1	Lag Operator Notation and Invertible $MA(q)$	10	
	1.5.2	$MA(q)$ is the only covariance stationary process with $\gamma(j)=0, \forall j>q$	11	
	1.5.3	Deterministic covariance stationary process	11	
1.6	Spectral Representation		11	
	1.6.1	$ACF \Leftrightarrow Even \ and \ PSD \ \dots $	12	
Chapte	er 2 Est	imation and Inference	15	
2.1	OLS E	Estimation in $AR(1)$ Model	15	
2.2	Properties of OLS Estimators (in time series)		16	
	2.2.1	OLS Review	16	
	2.2.2	OLS for $MA(\infty)$: $\bar{Y} = \frac{1}{T} \sum_{t=1}^{T} Y_t \dots \dots$	18	

Chapter 1 Univariate Stationary Time Series Analysis

1.1 Goals and Challenge

Data in time series is denoted by

$$\{\underbrace{y_t}_{n\times 1}: 1 \le t \le T\}$$

Assumption Each y_t is the realization of some random vector Y_t .

The **objective** is to provide data-based answers to questions about the distribution of $\{Y_t : 1 \le t \le T\}$.

The **challenge** we face is $Y_1, Y_2, ..., Y_T$ are not necessarily independent. Time series analysis gives the models and methods that can accommodate dependence.

1.2 Stochastic Processes

Some terminologies we need to know:

Definition 1.1 (Stochastic Process)

A **stochastic process** is a collection $\{Y_t : t \in \mathcal{T}\}$ of random variables/vectors (defined on the same probability space).

- 1. $\{Y_t : t \in \mathcal{T}\}$ is discrete time process if $\mathcal{T} = \{1, ..., T\}$ or $\mathcal{T} = \mathbb{N} = \{1, 2, ...\}$ or $\mathcal{T} = \mathbb{Z} = \{..., -1, 0, 1, ...\}$.
- 2. $\{Y_t : t \in \mathcal{T}\}$ is **continuous time process** if $\mathcal{T} = [0, 1]$ or $\mathcal{T} = \mathbb{R}_+$ or $\mathcal{T} = \mathbb{R}$.

Observed data Y_t is a realization of a discrete time process with $\mathcal{T} = \{1, ..., T\}$.

1.2.1 Strictly Stationary

Definition 1.2 (Strictly Stationary (Discrete and Scalar Process))

A scalar^{*a*} process $\{Y_t : t \in \mathbb{Z}\}$ is **strictly stationary** *if and only if*

$$(Y_t,...,Y_{t+k})\underbrace{\sim}_{\text{``is distributed as''}} (Y_0,...,Y_k) \,,\; \forall t \in \mathbb{Z}, k \geq 0$$

^ai.e., Y_t is 1×1

Note

1. If $Y_t \sim i.i.d.$, then $\{Y_t : t \in \mathbb{Z}\}$ is strictly stationary.

2. If $\{Y_t : t \in \mathbb{Z}\}$ is strictly stationary, then Y_t are identically distributed (i.e., "marginal stationary").

Example 1.1 Strictly Stationary and Dependent

A constant process that ... = $Y_{-1} = Y_0 = Y_1 = ...$ is strictly stationary.

All these above hold for strictly stationary vector process.

Lemma 1.1 (Property of Strictly Stationary)

If $\{Y_t: t \in \mathbb{Z}\}$ is strictly stationary with $\mathbb{E}[Y_t^2] < \infty$ ($\forall t$), then

1. Same Expectation:

$$\mathbb{E}[Y_t] = \mu, \ \forall t \ (\text{for some constant } \mu) \tag{*}$$

2. Covariance only depends on time length:

$$Cov(Y_t, Y_{t-j}) = \gamma(j), \ \forall t, j \ (for some function \ \gamma(\cdot))$$
 (**)

Note $\gamma(0) = \text{Var}(Y_t), \forall t$.

1.2.2 Covariance Stationary

A subset of strictly stationary processes that has second moment (i.e., $\mathbb{E}[Y_t^2] < \infty$) can be defined as **covariance** stationary.

Definition 1.3 (Covariance Stationary)

A process $\{Y_t : t \in \mathbb{Z}\}$ is **covariance stationary** *iff* $\mathbb{E}[Y_t^2] < \infty$ ($\forall t$) and it satisfies (*) and (**).

Note Not every strictly stationary process is covariance stationary. (e.g., if it does not have second moment).

1.2.3 Autocovariance and Autocorrelation Functions

Definition 1.4 (Autocovariance and Autocorrelation Functions)

 $\gamma(\cdot)$ in (**) is called **autocovariance function** of $\{Y_t : t \in \mathbb{Z}\}$.

The autocorrelation function is $\rho(j) = \operatorname{Corr}(Y_t, Y_{t-j}) = \frac{\operatorname{Cov}(Y_t, Y_{t-j})}{\sqrt{\operatorname{Var}(Y_t)\operatorname{Var}(Y_{t-j})}} = \frac{\gamma(j)}{\gamma(0)}$.

Lemma 1.2 (ACF Property)

The autocovariance function satisfies the following properties:

- 1. $\gamma(\cdot)$ is **even** i.e., $\gamma(j) = \gamma(-j)$.
- 2. $\gamma(\cdot)$ is **positive semi-definite** (psd) i.e., for any $n \in \mathbb{N}$ and any $a_1, ..., a_n$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \gamma(i-j) = \operatorname{Var}(\sum_{i=1}^{n} a_i Y_i) \ge 0$$

1.3 Moving-Average Process

Definition 1.5 (White Noise)

A process $\{\epsilon_t : t \in \mathbb{Z}\}$ is a **white noise** process iff it is covariance stationary with $\mathbb{E}[\epsilon_t] = 0$ and

$$Cov(\epsilon_t, \epsilon_{t-j}) = \begin{cases} \sigma^2, & \text{if } j = 0\\ 0, & \text{otherwise} \end{cases}$$

We use notation $\epsilon_t \sim WN(0, \sigma^2)$.

Note

- 1. If $\epsilon_t \sim \text{i.i.d.}(0, \sigma^2)$, then $\{\epsilon_t : t \in \mathbb{Z}\}$ is white noise, i.e., $\epsilon_t \sim \text{WN}(0, \sigma^2)$.
- 2. Gauss-Markov theorem assumes WN errors.
- 3. WN terms are used as "building blocks": often a variable can be generated as

$$Y_t = h(\epsilon_t, \epsilon_{t-1}, ...)$$
 for some function $h(\cdot)$ and some $\epsilon_t \sim WN(0, \sigma^2)$.

1.3.1 Moving-Average Process

Definition 1.6 (MA(1))

First-order moving average process: $Y_t \sim MA(1)$ iff

$$Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

where $\epsilon_t \sim WN(0, \sigma^2)$.

Claim 1.1 (ACF of MA(1))

 $\{Y_t\}$ is covariance stationary: $\mathbb{E}[Y_t] = \mu$ and its autocovariance function is

$$\gamma(j) := \operatorname{Cov}(Y_t, Y_{t-j}) = \begin{cases} (1 + \theta^2)\sigma^2, & j = 0\\ \theta\sigma^2, & j = 1\\ 0, & j \ge 2 \end{cases}$$

Definition 1.7 (MA(p))

 $Y_t \sim \mathsf{MA}(q)$ (for some $q \in \mathbb{N}$) iff

$$Y_t = \mu + \epsilon_t + \sum_{i=1}^q \theta_i \epsilon_{t-i}$$

where $\epsilon_t \sim WN(0, \sigma^2)$.

Claim 1.2 (ACF of MA(p))

 $\{Y_t\}$ is covariance stationary: $\mathbb{E}[Y_t] = \mu$ and its autocovariance function is

$$\gamma(j) := \operatorname{Cov}(Y_t, Y_{t-j}) = \begin{cases} \left(\sum_{i=0}^{q-j} \theta_i \theta_{i+j}\right) \sigma^2, & j \leq q \\ 0, & j \geq q+1 \end{cases}$$

where $\theta_0 = 1$.

Definition 1.8 (Infinite Moving-Average Process)

 $Y_t \sim \mathrm{MA}(\infty)$ iff

$$Y_t = \mu + \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}$$

where $\epsilon_t \sim \text{WN}(0, \sigma^2)$ and $\sum_{i=0}^{\infty} \psi_i^2 < \infty$

1.3.2 Conditions for Infinite Moving-Average Process

Note Conjecture:

- 1. $\{Y_t\}$ is covariance stationary;
- 2. $\mathbb{E}[Y_t] = \mu$ and
- 3. its autocovariance function is

$$\gamma(j) := \operatorname{Cov}(Y_t, Y_{t-j}) = (\sum_{i=0}^{\infty} \psi_i \psi_{i+j}) \sigma^2, \forall j \ge 0.$$

The necessary condition to make these conjectures correct is

$$\mathbb{E}[Y_t^2] = (\mathbb{E}[Y_t])^2 + \Gamma(0)$$

$$= \mu^2 + (\sum_{i=0}^{\infty} \psi_i^2)\sigma^2 < \infty$$

$$\Leftrightarrow \sum_{i=0}^{\infty} \psi_i^2 < \infty$$

Claim 1.3

With the `right' definition of `` $\sum_{i=0}^{\infty}$ ", the conjecture is correct.

Remark

- 1. If $X_0, X_1, ...$ are i.i.d. with $X_0 = 0$, then $\sum_{i=0}^{\infty} X_i$ denote $\lim_{n \to \infty} \sum_{i=0}^{n} X_i$ (assuming the limit exists).
- 2. \exists various models of stochastic convergence.
- 3. There: convergence in mean square.

Definition 1.9 (Stochastic Convergence in Mean Square)

If $X_0, X_1, ...$ are random (with $\mathbb{E}[X_i^2] < \infty, \forall i$), then $\sum_{i=0}^{\infty} X_i$ denotes any S such that $\lim_{n\to\infty} \mathbb{E}[(S-\sum_{i=0}^n X_i)^2] = 0$.

Lemma 1.3

The properties of the S are

- 1. S is ``essentially unique."
- 2. $\mathbb{E}[S] = \sum_{i=0}^{\infty} \mathbb{E}[X_i] = \lim_{n \to \infty} \sum_{i=0}^{n} \mathbb{E}[X_i]$
- 3. $\operatorname{Var}[S] = \dots = \lim_{n \to \infty} \operatorname{Var}[\sum_{i=0}^{n} X_i]$
- 4. (Higher order moments of S are similar) \cdots

Theorem 1.1 (Cauchy Criterion)

 $\sum_{i=0}^{\infty} X_i$ exists iff

$$\lim_{n \to \infty} \sup_{m > n} \mathbb{E}[(S_m - S_n)^2] = 0,$$

where $S_n = \sum_{i=0}^n X_i$.

In the $MA(\infty)$ context: The condition that can make

$$\lim_{n \to \infty} \sup_{m > n} \mathbb{E}[(Y_{t,m} - Y_{t,n})^2] = 0$$

where $Y_{t,n} = \mu + \sum_{i=0}^{n} \psi_i \epsilon_{t-i}$.

This condition is given as: If m > n,

$$Y_{t,m} - Y_{t,n} = \sum_{i=n+1}^{m} \psi_i \epsilon_{t-i}$$

$$\Rightarrow \mathbb{E}[(Y_{t,m} - Y_{t,n})^2] = \mathbb{E}\left[\left(\sum_{i=n+1}^{m} \psi_i \epsilon_{t-i}\right)^2\right] = \left(\sum_{i=n+1}^{m} \psi_i^2\right) \sigma^2$$

$$\Rightarrow \sup_{m>n} \mathbb{E}[(Y_{t,m} - Y_{t,n})^2] = \left(\sum_{i=n+1}^{\infty} \psi_i^2\right) \sigma^2$$

$$\Rightarrow \lim_{n\to\infty} \sup_{m>n} \mathbb{E}[(Y_{t,m} - Y_{t,n})^2] = \left(\lim_{n\to\infty} \sum_{i=n+1}^{\infty} \psi_i^2\right) \sigma^2$$

Thus,

$$\lim_{n \to \infty} \sup_{m > n} \mathbb{E}[(Y_{t,m} - Y_{t,n})^2] = 0 \text{ iff } \lim_{n \to \infty} \sum_{i=n+1}^{\infty} \psi_i^2 = 0$$

$$\text{iff } \sum_{i=n}^{\infty} \psi_i^2 < \infty$$

1.3.3 Remarks about $MA(\infty)$ models

- 1. $MA(\infty)$ models are useful in theoretical work.
- 2. The $MA(\infty)$ class is "large": Wold decomposition (theorem).
- 3. Parametric $MA(\infty)$ models are useful in inference.

1.4 Autoregressive Model

1.4.1 Autoregressive Model as a Special Case of $MA(\infty)$

Autoregressive model is an example of well-defined $MA(\infty)$ model.

Example 1.2 (Autoregressive model)

Suppose

$$Y_t = \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}, \ \forall t$$

where

$$\circ \ \epsilon_t \sim WN(0, \sigma^2);$$

$$\circ \ \psi_i = \phi^i \ (\forall i \ge 0) \ \text{for some} \ |\phi| < 1.$$

Checking the condition: $\lim_{n \to \infty} \sum_{i=0}^{n} \psi_i^2 = \lim_{n \to \infty} \sum_{i=0}^{n} \phi^{2i} = \lim_{n \to \infty} \frac{1 - \phi^{2(n+1)}}{1 - \phi^2} = \frac{1}{1 - \phi^2} < \infty$.

Lemma 1.4 (Property of ACF of Autoregressive Model)

For $j \ge 0$, the autocovariance function is

$$\gamma(j) = \phi^j \gamma(0)$$

Note

1.
$$\gamma(j) \neq 0, \forall j \text{ if } \phi \neq 0.$$

2. $\gamma(j) \propto \phi^j$ decays exponentially.

Proof 1.1

$$\gamma(j) := \mathrm{Cov}(Y_t, Y_{t-j}) = (\textstyle\sum_{i=0}^\infty \psi_i \psi_{i+j}) \sigma^2 = \phi^j (\textstyle\sum_{i=0}^\infty \phi^{2i}) \sigma^2 = \phi^j \frac{\sigma^2}{1-\phi^2} = \phi^j \gamma(0)$$

1.4.2 Alternative Representation of AR Model

Definition 1.10 (Alternative Representation of AR)

Alternatively, the AR model can be represented as

$$Y_t = \phi Y_{t-1} + \epsilon_t, \ \forall t$$

Proof 1.2

$$Y_t = \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i} = \epsilon_t + \sum_{i=1}^{\infty} \psi_i \epsilon_{t-i} = \epsilon_t + \sum_{i=0}^{\infty} \psi_{i+1} \epsilon_{t-i-1} = \epsilon_t + \phi \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i-1} = \epsilon_t + \phi Y_{t-1}$$

The natural estimator of ϕ (OLS) is

$$\hat{\phi} = \frac{\sum_{t=2}^{T} Y_{t-1} Y_t}{\sum_{t=2}^{T} Y_{t-1}^2}$$

Definition 1.11 (Model for Finite AR)

$$Y_t = \phi Y_{t-1} + \epsilon_t, \ 2 \le t \le T$$

where

$$\circ \ \epsilon_t \sim WN(0, \sigma^2)$$

$$|\phi| < 1$$

$$\circ Y_1 = \sum_{i=0}^{\infty} \phi^i \epsilon_{1-i}$$

More generally, consider an AR with a drift,

$$Y_t = c + \phi Y_{t-1} + \epsilon_t, \ \forall t$$

where $c = \mu(1 - \phi)$.

1.4.3 AR(1)

Definition 1.12 (AR(1)**)**

 $\{Y_t: 1 \le t \le T\}$ is an **autoregreessive process** of order 1, $Y_t \sim AR(1)$, if

$$Y_t = c + \phi Y_{t-1} + \epsilon_t, \ 2 \le t \le T$$

where $\epsilon_t \sim WN(0, \sigma^2)$.

Note $|\phi| < 1$ is not assumed (yet) and $Y_1 = \mu + \sum_{i=0}^{\infty} \phi^i \epsilon_{1-i}$ is not assumed.

We call the AR(1) model is **stable** iff $|\phi| < 1$.

 $\circ \ \ \text{If} \ |\phi|<1 \ \text{and} \ Y_1=\mu+\textstyle\sum_{i=0}^{\infty}\phi^i\epsilon_{1-i},$

$$Y_t = \mu + \sum_{i=0}^{\infty} \phi^i \epsilon_{t-i},$$

where $\mu = \frac{c}{1-\phi}$.

 \circ OLS "works" when $|\phi| < 1$.

• The AR(1) model admits and $MA(\infty)$ solution

$$Y_t = \mu + \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}, \quad \sum_{i=0}^{\infty} \psi_i^2 < \infty$$

 $\underline{\text{iff}} |\phi| < 1.$

• The AR(1) model admits a covariance stationary solution iff $|\phi| \neq 1$.

Note Consider the case that $\phi > 1$, the intuition is

$$Y_t = \phi Y_{t-1} + \epsilon_t \Leftrightarrow Y_{t-1} = \phi^{-1}(Y_t - \epsilon_t)$$

1.4.4 AR(p)

Definition 1.13 (AR(p))

 $\{Y_t: t \in \mathbb{N}\}$ is a p^{th} -order autoregressive process, $Y_t \sim AR(p)$, iff

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \epsilon_t, \ t \ge p+1$$

where $\epsilon_t \sim WN(0, \sigma^2)$.

In vector notation, we can write

$$Y_t = \beta' X_t + \epsilon_t, \ t \ge p + 1$$

where $\beta = (c, \phi_1, \phi_2, \cdots, \phi_p)'$ and $X_t = (1, Y_{t-1}, Y_{t-2}, \cdots, Y_{t-p})'$.

Claim 1.4

OLS "works" when the AR(p) model is <u>stable</u>. Then the *OLS estimator* is given by

$$\hat{\beta} = (\sum_{t=p+1}^{T} X_t' X_t)^{-1} (\sum_{t=p+1}^{T} X_t' Y_t)$$

Lag Operator Notation There is an alternative way to write the AR(p) model.

Definition 1.14 (Lag Operator)

The **lag operator** (*L*) operates on an element of a time series to produce the previous element.

That is, For a time series $\{X_t\}$,

$$LX_t = X_{t-1}$$

:

$$L^k X_t = X_{t-k}, \ \forall t \in \mathbb{Z}$$

Then, in this notation, the AR(p) model can be written as

$$\phi(L)Y_t = c + q_t, \ t \ge p + 1$$

where $\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p$.

Definition 1.15 (Stability of AR(p)**)**

The AR(p) model is **stable** if

$$\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p = 0 \Rightarrow |z| > 1$$

(All solutions are greater than 1).

• The AR(p) model admits an $MA(\infty)$ solution

$$Y_t = \mu + \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}, \quad \sum_{i=0}^{\infty} \psi_i^2 < \infty$$

iff it is *stable*. The $MA(\infty)$ solution has

$$\mu = \frac{c}{1 - \phi_1 - \dots - \phi_n} = \frac{c}{\phi(1)}$$

and (computable) ψ_i 's satisfy

$$|\psi_i| \leq M\lambda^i, \ \forall i,$$

where $M < \infty$ and $|\lambda| < 1$.

1.5 More On MA(q)

1.5.1 Lag Operator Notation and Invertible MA(q)

MA(q) model in lag operator notation :

$$Y_t = \mu + \underbrace{\epsilon_t + \sum_{i=1}^q \theta_i \epsilon_{t-i}}_{:=\theta(L)\epsilon_t}$$

$$=\mu+\theta(L)\epsilon_t,$$

where $\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q$.

Definition 1.16 (Invertibility of MA(q)**)**

The MA(q) model is **invertible** if

$$\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \dots + \theta_q z^q = 0 \Rightarrow |z| > 1$$

(All solutions are greater than 1).

Note If the MA(q) model is invertible, then

$$\epsilon_t = \Pi(L)(Y_t - \mu),$$

where $\Pi(L) = \sum_{i=0}^{\infty} \pi_i L^i$ with $\sum_{i=0}^{\infty} |\pi_i| < \infty$.

Technicalities

- \circ If

$$|\pi_i| \le M\lambda^i, \ \forall i \ (\text{some} \ M < \infty \ \text{and} \ |\lambda| < 1),$$
 (*)

then

$$\sum_{i=0}^{\infty} i^r |\pi_i|^s < \infty, \ \forall r \ge 0, s > 0$$

- Invertibility \Rightarrow (*).
- If $X_0, X_1, ...$ are random variables with $\sup_i \mathbb{E} X_i^2 < \infty$, then $\sum_{i=0}^{\infty} \pi_i X_i$ exists (as a limit in mean squared) if $\sum_{i=0}^{\infty} |\pi_i| < \infty$.

1.5.2 MA(q) is the only covariance stationary process with $\gamma(j)=0, \forall j>q$

Proposition 1.1 ($MA(q) \Leftrightarrow$ **covariance stationary and** $\gamma(j) = 0, \forall j > q$ **)**

If $\{Y_t\}$ is covariance stationary, then $\gamma(j) = 0, \forall j > q \text{ iff } Y_t \sim MA(q).$

Question: Is there a " $q = \infty$ " analog?

Example 1.3

Suppose $Y_t = Z \sim \mathcal{N}(0, 1), \forall t$. Then, $Cov(Y_t, Y_{t-1}) = 1, \forall j$.

- 1. Y_t is covariance stationary.
- 2. It is not a $MA(\infty)$.
- 3. Y_t can be predicted without error using $\{Y_s : s \le t 1\}$.
- 4. Y_t is "deterministic".

1.5.3 Deterministic covariance stationary process

Definition 1.17 (Deterministic)

A mean zero covariance stationary process $\{v_t\}$ is **deterministic** iff $\exists p$ and $\{\phi_i : 1 \leq i \leq p\}$ such that

$$\mathbb{E}[(v_t - \phi v_{t-1} - \dots - \phi_p v_{t-p})^2] \le \epsilon^2, \ \forall t$$

Claim 1.5

If v_t is deterministic, then v_t is not a $MA(\infty)$.

1.6 Spectral Representation

Definition 1.18 (Wold Decomposition)

If $\{Y_t\}$ is a mean zero covariance stationary process, then

$$Y_t = \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i} + v_t, \forall t,$$

where

- 1. $\epsilon_t \sim WN(0, \sigma^2)$
- 2. $\psi_0 = 1$ and $\sum_{i=0}^{\infty} \psi_i^2 < \infty$
- 3. $\mathbb{E}[\epsilon_t v_s] = 0, \forall t, s$
- 4. $\{v_t\}$ is deterministic

Question: When is a function $\gamma(\cdot)$ the autocovariance function (ACF) of a covariance stationary process? Recall that, if $\gamma(\cdot)$ is an ACF, it is given by

$$\gamma(j) = \mathbb{E}[(Y_t - \mu)(Y_{t-j} - \mu)]$$

and satisfies the following properties by Lemma 1.2.

- 1. Even: $\gamma(j) = \gamma(-j), \forall j \in \mathbb{N}$.
- 2. Positive semi-definite (PSD) i.e., for any $n \in \mathbb{N}$ and any $a_1, ..., a_n$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \gamma(i-j) = \operatorname{Var}(\sum_{i=1}^{n} a_i Y_i) \ge 0$$

1.6.1 ACF ⇔ Even and PSD

Proposition 1.2 (ACF ⇔ Even and PSD)

A function $\gamma(\cdot)$ is an ACF iff it is even and positive semi-definite.

Theorem 1.2 (Herglotz's Theorem)

A function $\gamma: \mathbb{Z} \to \mathbb{R}$ is *even* and *positive semi-definite* iff

$$\gamma(j) = \int_{-\pi}^{\pi} \exp(ij\lambda) \, dF(\lambda)$$

for some $F:[-\pi,\pi]\to\mathbb{R}_+$ that is bounded, non-decreasing, and right-continuous (and has $F(-\pi)=0$).

Remark

- 1. $F(\cdot)$ is called the spectral distribution function (of $\gamma(\cdot)$).
- 2. If $\exists f : [-\pi, \pi] \to \mathbb{R}$ such that

$$F(\lambda) = \int_{-\pi}^{\lambda} f(r)dr, \forall \lambda \in [-\pi, \pi],$$

then $f(\cdot)$ is called a spectral density function (of $\gamma(\cdot)$) and

$$\gamma(j) = \int_{-\pi}^{\pi} \exp(ij\lambda) f(\lambda) d\lambda = \int_{-\pi}^{\pi} \cos(j\lambda) f(\lambda) d\lambda$$

Symmetry Suppose $\gamma(j) = \int_{-\pi}^{\pi} \exp(ij\lambda) dF(\lambda), j \in \mathbb{Z}$, where

$$\begin{split} \int_{-\pi}^{\pi} \exp\left(ij\lambda\right) dF(\lambda) &= \int_{-\pi}^{\pi} \left(\cos(j\lambda) + i\sin(j\lambda)\right) dF(\lambda) \\ &= \int_{-\pi}^{\pi} \cos(j\lambda) dF(\lambda) + i \int_{-\pi}^{\pi} \sin(j\lambda) dF(\lambda) \end{split}$$

Given $\gamma(j) \in \mathbb{R}, \forall j$, we must have $\int_{-\pi}^{\pi} \sin(j\lambda) dF(\lambda) = 0$. Therefore,

$$\gamma(j) = \int_{-\pi}^{\pi} \cos(j\lambda) dF(\lambda),$$

which is even by the property of $\cos(\cdot)$.

Then, $\frac{F(\cdot)}{F(\pi)}$ is the CDF of a symmetric distribution on $[-\pi, \pi]$.

Example 1.4

Suppose $\epsilon_t \sim WN(0, \sigma^2)$. Then,

$$\gamma(j) = \begin{cases} 1, & \text{if } j = 0 \\ 0, & \text{otherwise} \end{cases}$$
$$= \int_{-\pi}^{\pi} \cos(j\lambda) f(\lambda) d\lambda$$
$$\Rightarrow f(\lambda) = \frac{1}{2\pi}$$

Example 1.5

Suppose $Y_t = Z \sim \mathcal{N}(0, 1)$ for all t. Then,

$$\gamma(j) = 1$$

$$= \int_{-\pi}^{\pi} \cos(j\lambda) dF(\lambda)$$

$$\Rightarrow F(\lambda) = \begin{cases} 1, & \lambda \ge 0 \\ 0, & \lambda < 0 \end{cases}$$

Question: When does an ACF $\gamma(\cdot)$ admits a spectral density function?

Partial Answer: An even function $\gamma: \mathbb{Z} \to \mathbb{R}$ with " $\sum_{j=-\infty}^{\infty} |\gamma(j)| < \infty$ " is psd iff

$$f(\lambda) = \frac{1}{2\pi} \sum_{j=-\infty}^{\infty} \cos(j\lambda) \, \gamma(j) \ge 0, \ \forall \lambda \in [-\pi, \pi], \tag{1.1}$$

in which case $f(\cdot)$ is a spectral density function of $\gamma(\cdot)$.

Remark A covariance stationary process with an ACF $\gamma(\cdot)$ has **short memory** if " $\sum_{j=-\infty}^{\infty} |\gamma(j)| < \infty$ ".

Proposition 1.3 (Implication of Short Memory)

Given the covariance stationary process has **short memory** $(\sum_{j=-\infty}^{\infty} |\gamma(j)| < \infty)$, we have

- 1. $f(\cdot)$ exists (given as (1.1)) and is bounded.
- 2. $\gamma(0) = \int_{-\pi}^{\pi} f(\lambda) d\lambda$.
- 3. $f(0) = \frac{1}{2\pi} \sum_{j=-\infty}^{\infty} \gamma(j)$.

 $MA(\infty)$ Case: Suppose

$$Y_t = \mu + \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}, \ \forall t,$$

where

$$\epsilon_t \sim \text{WN}(0, \sigma^2)$$

$$\cdot \sum_{i=0}^{\infty} |\psi_i| < \infty$$

Then,

- $\circ \ \gamma(\cdot)$ has short memory
- $\circ \ \gamma(\cdot)$ has spectral density function given by

$$f(\lambda) = \frac{1}{2\pi} \sum_{j=-\infty}^{\infty} \cos(j\lambda) \gamma(j)$$
$$= \frac{\sigma^2}{2\pi} |\psi(e^{i\lambda})|^2$$

where
$$\gamma(j) = (\sum_{i=0}^{\infty} \psi_i \psi_{i+j}) \sigma^2$$
 and $\psi(z) = \sum_{i=0}^{\infty} \psi_i z^i$.

$$\circ f(0) = \frac{\sigma^2}{2\pi} \psi(1)^2$$

Chapter 2 Estimation and Inference

2.1 OLS Estimation in AR(1) **Model**

Suppose

$$Y_t = \phi Y_{t-1} + \epsilon_t, \ \forall t \ge 2.$$

where $\epsilon_t \sim WN(0, \sigma^2)$.

The **OLS Estimator of** ϕ is

$$\hat{\phi}_{OLS} = \frac{\sum_{t=2}^{T} Y_{t-1} Y_t}{\sum_{t=2}^{T} Y_{t-1}^2}$$

Claim 2.1 (OLS Estimator is MLE)

If $\epsilon_t \sim \text{i.i.d.} \mathcal{N}(0, \sigma^2)$ and if $(\epsilon_2, \epsilon_3, ...) \perp Y_1$, then $\hat{\phi}_{OLS}$ is the (conditional) MLE of ϕ .

The (conditional) MLE of (ϕ, σ^2) is

$$(\hat{\phi}_{ML}, \hat{\sigma}_{ML}^2) = \underset{(\phi, \sigma^2)}{\operatorname{argmax}} f_{2:T} \left(Y_2, ... Y_T \mid Y_1; \phi, \sigma^2 \right),$$

where $f_{2:T}(\cdot \mid Y_1; \phi, \sigma^2)$ is the (conditional) pdf of $(Y_2, ..., Y_T)$ given Y_1 .

Definition 2.1 (Prediction-error Decomposition)

The objective function (conditional likelihood function) can be written as

$$f_{2:T}(Y_2,...,Y_T \mid Y_1; \phi, \sigma^2) = \prod_{t=2}^{T} f_t(Y_t \mid Y_1,...,Y_{t-1}; \phi, \sigma^2),$$

where $f_t(Y_t \mid Y_1, ..., Y_{t-1}; \phi, \sigma^2)$ is the conditional pdf of Y_t given $Y_1, ..., Y_{t-1}$.

By the definition that $Y_t = \phi Y_{t-1} + \epsilon_t, \ \forall t \geq 2 \ \text{and} \ \epsilon_t \mid Y_1, ..., Y_{t-1} \sim \mathcal{N}(0, \sigma^2),$ we have

$$Y_{t} \mid Y_{1}, ..., Y_{t-1} \sim \mathcal{N}(\phi Y_{t-1}, \sigma^{2})$$

$$\Rightarrow f_{t} \left(Y_{t} \mid Y_{1}, ..., Y_{t-1}; \phi, \sigma^{2} \right) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}} \left(Y_{t} - \phi Y_{t-1} \right)^{2} \right)$$

$$\Rightarrow f_{2:T} \left(Y_{2}, ..., Y_{T} \mid Y_{1}; \phi, \sigma^{2} \right) = \left(2\pi\sigma^{2} \right)^{-\frac{T-1}{2}} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{t=2}^{T} \left(Y_{t} - \phi Y_{t-1} \right)^{2} \right)$$

Therefore,

$$\hat{\phi}_{ML} = \underset{\phi}{\operatorname{argmin}} f_{2:T} \left(Y_2, ..., Y_T \mid Y_1; \phi, \sigma^2 \right) = \frac{\sum_{t=2}^T Y_{t-1} Y_t}{\sum_{t=2}^T Y_{t-1}^2} = \hat{\phi}_{OLS}$$

$$\hat{\sigma}_{ML}^2 = \underset{\sigma^2}{\operatorname{argmin}} f_{2:T} \left(Y_2, ..., Y_T \mid Y_1; \phi, \sigma^2 \right) = \frac{1}{T-1} \sum_{t=2}^T (Y_t - \hat{\phi}_{ML} Y_{t-1})^2$$

2.2 Properties of OLS Estimators (in time series)

2.2.1 OLS Review

The OLS model can be written as

$$y_i = \beta' x_i + \epsilon_i, \ i = 1, ..., n$$

Iff $\sum_{i=1}^{n} x_i x_i'$ is positive definite $(\sum_{i=1}^{n} x_i x_i' \succ 0)$, the OLS estimator (of β) is given by

$$\hat{\beta}_{OLS} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} (y_i - \beta' x_i)^2 \right\}$$

$$= \left(\sum_{i=1}^{n} x_i x_i' \right)^{-1} \left(\sum_{i=1}^{n} x_i y_i \right) = \beta + \left(\sum_{i=1}^{n} x_i x_i' \right)^{-1} \left(\sum_{i=1}^{n} x_i \epsilon_i \right)$$

Lemma 2.1 (Unbiasedness)

Suppose that

- (i). $\Pr[\sum_{i=1}^{n} x_i x_i' \succ 0] = 1 \text{ and } \mathbb{E}[\hat{\beta}_{OLS}] \text{ exists.}$
- (ii). Strict exogeneity: $\mathbb{E}[\epsilon_i \mid x_1,...,x_n] = 0, \forall i.$

Then, $\mathbb{E}[\hat{\beta}_{OLS}] = \beta$.

Remark

- 1. If $(x_i, \epsilon_i) \sim i.i.d.$, then the "strictly exogeneity" holds iff $\mathbb{E}[\epsilon_i \mid x_i] = 0$.
- 2. The first assumption (i.e., $\Pr[\sum_{i=1}^n x_i x_i' \succ 0] = 1$ and $\mathbb{E}[\hat{\beta}_{OLS}]$ exists) is necessary and cannot be reduced in i.i.d. case, we need additional assumptions.

Lemma 2.2 (Consistency)

Suppose that

- (i). $\frac{1}{n} \sum_{i=1}^{n} x_i x_i' \xrightarrow{P} Q$ for some $Q \succ 0$.
- (ii). $\frac{1}{n} \sum_{i=1}^{n} x_i \epsilon_i \xrightarrow{P} 0$.

Then, $\hat{\beta}_{OLS} \stackrel{P}{\longrightarrow} \beta$.

Proof 2.1

With probability approaching one (as $n \to \infty$),

$$\hat{\beta} = \beta + \left(\underbrace{\sum_{i=1}^{n} x_i x_i'}_{P \to Q}\right)^{-1} \underbrace{\left(\sum_{i=1}^{n} x_i \epsilon_i\right)}_{P \to 0} \xrightarrow{P} \beta + Q^{-1} \cdot 0 = \beta$$

by the continuity theorem (for $\stackrel{P}{\longrightarrow}$).

Remark If
$$\begin{bmatrix} x_i \\ \epsilon_i \end{bmatrix} \sim i.i.d. \begin{pmatrix} \begin{bmatrix} \mu_x \\ 0 \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & 0 \\ 0 & \sigma^2 \end{bmatrix} \end{pmatrix}$$
, then
$$\frac{1}{n} \sum_{i=1}^n x_i x_i' \overset{P}{\longrightarrow} \mu_x \mu_x' + \Sigma_{xx} = \mathbb{E}[x_i x_i']$$

$$\frac{1}{n} \sum_{i=1}^n x_i \epsilon_i \overset{P}{\longrightarrow} 0 = \mathbb{E}[x_i \epsilon_i]$$

by LLN.

Lemma 2.3 (Asymptotic Normality)

Suppose that

(i).
$$\frac{1}{n} \sum_{i=1}^{n} x_i x_i' \xrightarrow{P} Q$$
 for some $Q \succ 0$.

(ii).
$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i \epsilon_i \xrightarrow{d} \mathcal{N}(0, V)$$
 for some $V \succ 0$.

Then,
$$\sqrt{n}\left(\hat{\beta}_{OLS} - \beta\right) \stackrel{d}{\longrightarrow} N\left(0, \Omega\right)$$
, where $\Omega := Q^{-1}VQ^{-1}$

Proof 2.2

With probability approaching one (as $n \to \infty$),

$$\sqrt{n}(\hat{\beta} - \beta) = \left(\sum_{i=1}^{n} x_i x_i'\right)^{-1} \left(\underbrace{\sqrt{n}\left(\hat{\beta}_{OLS} - \beta\right)}_{\stackrel{d}{\longrightarrow} \mathcal{N}(0,V)}\right) \stackrel{d}{\longrightarrow} Q^{-1} \mathcal{N}(0,V) = \mathcal{N}(0,Q^{-1}VQ^{-1})$$

by the continuous mapping theorem (CMT).

Remark If
$$\begin{bmatrix} x_i \\ x_i \epsilon_i \end{bmatrix} \sim i.i.d.$$
 $\begin{pmatrix} \begin{bmatrix} \mu_x \\ 0 \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & C' \\ C & V \end{bmatrix} \end{pmatrix}$, then
$$\frac{1}{n} \sum_{i=1}^n x_i x_i' \overset{P}{\longrightarrow} \mu_x \mu_x' + \Sigma_{xx} = \mathbb{E}[x_i x_i']$$

$$\frac{1}{n} \sum_{i=1}^n x_i \epsilon_i \overset{P}{\longrightarrow} 0 = \mathbb{E}[x_i \epsilon_i]$$

by LLN. Moreover,

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i \epsilon_i \xrightarrow{d} \mathcal{N}(0, V)$$

by CLT.

Proposition 2.1 (Variance Estimation)

(i).
$$\hat{Q} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i' \stackrel{P}{\longrightarrow} Q \succ 0.$$

(ii). $\hat{V} \stackrel{P}{\longrightarrow} V.$

(ii).
$$\hat{V} \stackrel{P}{\longrightarrow} V$$

Then, $\hat{\Omega} := \hat{Q}^{-1}\hat{V}\hat{Q}^{-1} \xrightarrow{P} Q^{-1}VQ^{-1} := \Omega$ (by the continuity theorem for \xrightarrow{P}).

Remark To achieve these properties we need, except for $\begin{vmatrix} x_i \\ x_i \epsilon_i \end{vmatrix} \sim i.i.d. \begin{pmatrix} \begin{vmatrix} \mu_x \\ 0 \end{vmatrix}, \begin{vmatrix} \Sigma_{xx} & C' \\ C & V \end{vmatrix}$, we need more conditions:

1. If also $\mathbb{E}[(x_i'x_i)^r] < \infty$ for some r > 1, then

$$\hat{V} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i' \hat{\epsilon}_i^2 \xrightarrow{P} \mathbb{E}[x_i x_i' \hat{\epsilon}_i^2] = V$$
, where $\hat{\epsilon}_i = y_i - \hat{\beta}'_{OLS} x_i$

2. If also $\mathbb{E}[\epsilon_i^2 \mid x_i] = \sigma^2$ (aka "homoskedasticity"), then

$$V = \mathbb{E}[x_i x_i' \hat{\epsilon}_i^2] = \dots \underbrace{=}_{LIE} \sigma^2 \mathbb{E}[x_i x_i'] = \sigma^2 Q$$

and

$$\hat{V} = \hat{\sigma}^2 \hat{Q}$$
, where $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(y_i - \hat{\beta}'_{OLS} x_i \right)^2$

2.2.2 OLS for $MA(\infty)$: $\bar{Y} = \frac{1}{T} \sum_{t=1}^{T} Y_t$

Consider the $MA(\infty)$ model:

$$Y_t = \mu + \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}, \ t \ge 1$$

where

1.
$$\epsilon_t \sim i.i.d.(0, \sigma^2)$$
,

2.
$$\sum_{i=0}^{\infty} i |\psi_i| < \infty.$$

Consider the estimator (for μ):

$$\bar{Y} = \frac{1}{T} \sum_{t=1}^{T} Y_t$$

1.
$$\bar{Y} = \operatorname{argmin}_m \sum_{t=1}^{T} (Y_t - m)^2$$

2.
$$\epsilon_t \sim i.i.d.(0, \sigma^2) \Rightarrow \epsilon_t \sim WN(0, \sigma^2)$$
 (i.e., a stronger assumption than white noise).

3.
$$\sum_{i=0}^{\infty} i |\psi_i| < \infty \Rightarrow \sum_{i=0}^{\infty} |\psi_i| < \infty \Rightarrow \sum_{i=0}^{\infty} \psi_i^2 < \infty$$
 (also a stronger assumption)

The properties of \bar{Y} can be checked in the following:

1. Unbiasedness: Recall that $\mathbb{E}(Y_t) = \mu, \forall t \text{ because } \epsilon_t \sim \text{WN}(0, \sigma^2) \text{ and } \sum_{i=0}^{\infty} \psi_i^2 < \infty.$ Then,

$$\mathbb{E}[\bar{Y}] = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} Y_i\right] = \mu$$

2. **Consistency**: $\bar{Y} \xrightarrow{P} \mu$ can be proven by $P(|\bar{Y} - \mu| > \eta) \xrightarrow{T \to \infty} 0$ for all $\eta > 0$. This can be given by Chebyshev's inequality: $P(|\bar{Y} - \mu| > \eta) \le \frac{\text{Var}(\bar{Y})}{\eta^2}$ for all $\eta > 0$.

Claim 2.2

 $\operatorname{Var}(\bar{Y}) \leq \frac{1}{T} \sum_{j=-\infty}^{\infty} |\gamma(j)|$, where $\gamma(j) := \operatorname{Cov}(Y_t, Y_{t-j})$ is the autocovariance function.

Recall that if $\epsilon_t \sim \text{WN}(0, \sigma^2)$ and if $\sum_{i=0}^{\infty} |\psi_i| < \infty$, then $\sum_{i=0}^{\infty} |\gamma(i)| < \infty$ (aka "short memory"). Therefore, we have $\bar{Y} \stackrel{P}{\longrightarrow} \mu$.

3.