Energy consumption for Travel Optimisation

Aman Sharma, Darren Mo, Vishva Gajaraj

Problem Statement

What are we trying to optimize?

 The pathfinding algorithm for electric vehicle (EV) travel, incorporating energy consumption statistics, congestion fees, and real-time traffic data.

Applications

- In contrast to conventional navigation software, we want to offer accurate insights on energy-efficient travel while accounting for urban constraints.
- Calculate concrete figures to represent energy consumption over routes.

Success Metrics & Limitations

How we gauge success:

- Comparison to baseline models
- Accuracy of energy-efficient routing
- Performance vs. Google Maps & proprietary software

Key limitations:

- Real-time data access issues
- Computational efficiency challenges
- Trade-off between speed & energy efficiency
- Problem breadth

Data Requirements & Challenges

Key Data Sources

- IEEE dataset
- Traffic Congestion Dataset
- EV consumption dataset

Graph Representation

- Data Source: OpenStreetMap (via OSMnx package)
 - Nodes = Intersections ; Edges = Roads ; Features : Congestion, energy consumption, speed limits

Challenges

- Resolving very large datasets into small workable instances.
- Dataset Synchronization between different cities.

Datasets

Vehicle Energy Dataset

- Coordinates
- Fuel Consumption
- Speed

OSmnx

- Road Network

Datasets

Traffic Congestion US

- Coordinates
- Timestamp
- Speed

Challenges

- Independent datasets were not aligned for measuring coordinates.
 - Solution: We latch eVED datapoints to nearest intersection in osmnx
- Data is exclusively related through coordinates which can't directly be used for energy calculations
 - Solution: We use Haversine conversion to map to 2d distances
- Critical metrics not readily available
 - Solution: Query Google Maps API for information such as elevation
- Optimality of A* is challenged by dropping the Euclidean distance heuristic
 - Solution: ??

Technical Approach:

- We used graph based deep learning with probabilistic decision making to find a an optimal route from a source to destination for EVs considering factors such as energy consumption and traffic congestion
- Pass nodes through a NN which then outputs the following predictions for each node: energy_score, congestion_score
- Calculated a combined score using these predictions with weights for each node, convert this final score for each node into a probability (higher score = higher probability), and probabilistically sample a subset of nodes select the best route from this subset

Algorithm choices:

- Baseline: Dijkstra's Algorithm
- Enhancements: A*, ML-based models, Loss Optimisation from basic

consumption formulation

Deep Learning: Graph Neural Networks (GNNs) via PyTorch

Mathematical Formulation

- We define the output as an edge weight to be used for A*
 - Assuming α , β , and γ are weights reflecting the relative importance of energy consumption, fees, and travel time.

$$c(e) = \alpha E_e + \beta C_e + \gamma T_e$$

- The overall goal is to find the path P from a start node sss to a destination t that minimizes the total cost:

$$\min_{P \in \mathcal{P}(s,t)} \sum_{e \in P} c(e) = \min_{P \in \mathcal{P}(s,t)} \sum_{e \in P} \left(lpha \, E_e + eta \, C_e + \gamma \, T_e
ight)$$

Pathfinding Progress

- Use an A* base algorithm to be able to provide a heuristic direction bias.
- Use a basic deterministic energy-based cost function that aggregates energy estimates from the dataset
 - derived from factors such as speed limits, road gradients, and elevation.
- Moving to potentially generating a path using a Neural Network/Bert transformer model

Progress

Base Djikstras

A* with cost function

Progress

What's done so far:

- Pathfinding with A* and Djikstras
- Dataset fine-tuning
- Improved Heuristic calculation through GNN
- Basic energy modeling
- GNN with embeddings and multiple features

Preliminary results:

- Correct path calculation in small NYC road sections
- A* with simple heuristics also delivers viable results
- GNN Structure developed

Graph Neural Network Feature Engineering

- Node Features
 - Intersection Degree
 - PageRank Score (importance of an intersection within the graph)
 - Elevation
- Edge Features
 - Road length
 - Speed limit
 - Congestion level

Performance Metrics & Findings

Key performance indicators:

- Execution time efficiency
- Accuracy of EV energy estimation
- Portability to regular fuel usage estimations

Limitations observed:

- Lack of real-time updates
- Need for improved energy consumption modeling
- No available data to incorporate differences between various EV models

Next Steps & Improvements

Short-term goals:

- Extending NN input set to include incoming edge data.
- Incorporate real-time congestion data
- Transform problem into Graph Neural Network

Long-term goals:

- Implement machine learning-based dynamic routing
- Scale model for larger road networks

Areas to explore

- Machine Learning & RL: Adaptive route prediction
- **Urban Constraints:** Road closures, pedestrian zones
- Optimized Algorithms: Localizing existing pathfinding methods
- Alternative Data: Satellite imagery for traffic prediction