<u>Centro Paula Souza</u>

FATE-SCS CÁLCULO DIFERENCIAL E INTEGRAL PROF. EDISON/PROF. RICARDO

LIMITES FUNDAMENTAIS

$$I) \lim_{x\to\infty}\frac{1}{x}=0$$

II)
$$\lim_{x\to 0} \frac{1}{x} = \infty$$

III)
$$\lim_{x\to 0} \cos x = 1$$

I)
$$\lim_{x\to\infty} \frac{1}{x} = 0$$
 II) $\lim_{x\to 0} \frac{1}{x} = \infty$ III) $\lim_{x\to 0} \cos x = 1$ IV) $\lim_{x\to 0} \sin x = 0$

V)
$$\lim_{x\to 0^+} \cot gx = \infty$$

VI)
$$\lim_{x\to 0^-} \cot gx = -\infty$$

V)
$$\lim_{x\to 0^+} \cot gx = \infty$$
 VI) $\lim_{x\to 0^-} \cot gx = -\infty$ VII) $\lim_{x\to 0} \frac{\sin x}{x} = 1$

VIII)
$$\lim_{x\to 0} x \cdot \operatorname{sen} \frac{1}{x} = 0$$
 IX) $\lim_{x\to 0} \frac{tgx}{x} = 1$ X) $\lim_{x\to \frac{\pi^{-}}{2}} tgx = +\infty$

IX)
$$\lim_{x\to 0} \frac{tgx}{x} = 1$$

X)
$$\lim_{x \to \frac{\pi^{-}}{2}} tgx = +\infty$$

XI)
$$\lim_{x \to \frac{\pi^+}{2}} tgx = -\infty$$

XI)
$$\lim_{x \to \frac{\pi^+}{2}} tgx = -\infty$$
 XII) $\lim_{x \to +\infty} (1 + \frac{1}{x})^x = e$ XIII) $\lim_{x \to -\infty} (1 + \frac{1}{x})^x = e$

XIII)
$$\lim_{x\to -\infty} (1+\frac{1}{x})^x = \epsilon$$

XV)
$$\lim_{x\to\pm\infty}\frac{1}{x}=0$$

XVI)
$$\lim_{x\to 0^+} \frac{1}{x} = +\infty$$

XV)
$$\lim_{x\to\pm\infty} \frac{1}{x} = 0$$
 XVI) $\lim_{x\to 0^+} \frac{1}{x} = +\infty$ XVII) $\lim_{x\to 0^-} \frac{1}{x} = -\infty$

XVIII)
$$\lim_{h\to 0} \frac{a^h - 1}{h} = \ln a$$
, $a > 0$ XIX) $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$

XIX)
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

NOTAÇÕES DAS DERIVADAS:

Considerando a função y = f(x);

LAGRANGE: y' = f'(x)

LEIBNITZ:
$$\frac{dy}{dx} = \frac{df(x)}{dx}$$
 ou $(\frac{dy}{dx})_{x_0} = \frac{df(x_0)}{dx}$

ou
$$\left(\frac{dy}{dx}\right)_{x_0} = \frac{dy}{dx}$$

CAUCHY: Dy = Df(x) ou D f (x_0)

DERIVADA 2^a (NOTAÇÃO): y'' = f''(x); $y'' = D^2 f(x)$; $y'' = \frac{d^2 f}{dx^2}$