Résumé

Définition :

Un algorithme ou un traitement est appelé récurrent s'il utilise une structure de traitement répétitive pour produire un résultat qui peut découler d'autres résultats de traitements précédents.

Ordre de récurrence :

Ordre 1:

La détermination du résultat d'un traitement dépendra du résultat d'un traitement précédent.

Exemple:

Soit la suite U définie par :

 $U_0 = 5$

 $U_n = 2 * U_{n-1} + 1.5$ pour tout $n \ge 1$

Le calcul de la valeur d'un terme de la suite U_n dépendra de la valeur du terme précédent U_{n-1} .

Ordre 2:

La détermination du résultat d'un traitement dépendra du résultat des deux traitements précédents.

Exemple:

Soit la suite U définie par :

 $U_0 = 1$

 $U_1 = 3$

 $U_n = 2 * U_{n-1} + 3 * U_{n-2}$ pour tout $n \ge 2$

Le calcul de la valeur d'un terme de la suite U_n dépendra de la valeur des deux termes précédents U_{n-1} et U_{n-2} .

Ordre n:

La détermination du résultat d'un traitement dépendra du résultat de n traitements précédents.

Les algorithmes récurrents

Exemple:

Soit M une matrice de taille n * m entiers et soit SL la somme des sommes S_i avec :

 S_i est la somme des entiers d'une $i^{\grave{e}me}$ ligne de M.

$$SL = S_0 + S_1 + \dots + S_{n-1}$$

$$S_i = M[i, 1] + M[i, 2] + + M[i, m-1]$$

$$S_i = S_i + M[i,j]$$
 avec j allant de 0 à m-1

Le calcul d'une somme S_i , à l'instant j, dépend que du contenu de la case M [i, j].

On dit que le calcul d'une Si est récurent d'ordre 1.

Par contre pour déterminer SL, il faut calculer n S_i , donc le calcul de la somme SL est récurrent **d'ordre n**.