Cours de MOMI Licence I Math-Info

CHAPITRE VIII: POLYNÔMES

Dans tout ce chapitre \mathbb{K} désigne \mathbb{C} , \mathbb{R} ou \mathbb{Q} .

1 - L'anneau des polynômes

<u>Définition.</u> Un polynôme à coefficients dans \mathbb{K} est une suite d'éléments de \mathbb{K} nulle à partir d'un certain rang.

On munit l'ensemble des polyômes de trois opérations:

L'addition:

$$(a_0, a_1, a_2, \ldots) + (b_0, b_1, b_2, \ldots) \stackrel{\mathsf{def.}}{=} (a_0 + b_0, a_1 + b_1, a_2 + b_2, \ldots)$$

• Le produit:

$$(a_0, a_1, a_2, \ldots) x(b_0, b_1, b_2, \ldots) \stackrel{\text{déf.}}{=} (c_0, c_1, c_2, \ldots),$$

où pour tout $n \in \mathbb{N}$, on a $c_n = \sum_{k=0}^n a_k b_{n-k}$.

• Le produit par un scalaire: Pour tout $\lambda \in \mathbb{K}$:

$$\lambda x(a_0, a_1, a_2, \ldots) \stackrel{\text{déf.}}{=} (\lambda a_0, \lambda a_1, \lambda a_2, \ldots).$$

On vérifie facilement que ces trois opérations donnent bien des polynômes (c'est-à-dire, des suites s'annulant à partir d'un certain rang) et vérifient les propriétés suivantes quelque soit les polynômes P,Q et R:

$$\bullet P+(0,0,0,\cdots)=P,\ P+Q=Q+P,\ P+(Q+R)=(P+Q)+R,$$

•
$$(a_0, a_1, a_2, \cdots) + (-a_0, -a_1, -a_2, \cdots) = (0, 0, 0, \cdots)$$

•
$$Px(1,0,0,\cdots) = P$$
, $PxQ = QxP$, $Px(QxR) = (PxQ)xR$,

•
$$Px(Q+R) = PxQ + PxR$$
.

Avec toutes ces propriétés vérifiées, on dit alors que l'ensemble des polynômes à coefficients dans $\mathbb K$ est un anneau commutatif.

2 - Représentation usuelle des polynômes

(1) Le polynôme $(a_0,0,0,\cdots)$ s'identifie au scalaire a_0 , on le note tout simplement a_0 . Donc, on voit \mathbb{K} comme une partie de l'ensemble des polynômes à coefficients dans \mathbb{K} . Ainsi, les opérations qu'on vient de définir sur les polynômes étendent celles de \mathbb{K} .

(2) Le polynôme $(0,1,0,0,\cdots)$ se note \mathbf{X} , et on l'appelle l'indéterminée \mathbf{X} . Ce polynôme est crucial pour travailler sur les polynômes. En effet, avec l'opération de multiplication des polynômes, on vérifie:

$$(0,1,0,\cdots)^2=(0,0,1,0,\cdots),\ (0,1,0\cdots)^3=(0,0,0,1,\cdots),\ \text{etc}$$

On note:

- $-(0,0,1,0\cdots)$ par X^2 ,
- $-(0,0,0,1,0\cdots)$ par X^3 ,
- etc

Maintenant, on a pour tout polynôme

Notations. (1) On note le polynôme $(a_0, a_1, \dots, a_d, 0 \dots)$ par $a_0 + a_1 X + a_2 X^2 + \dots + a_d X^d$.

(2) L'ensemble des polynômes à coefficients dans \mathbb{K} se note $\mathbb{K}[X]$.

3 - Degré d'un polynôme

Définitions. (1) Soit $P = a_0 + a_1X + \cdots + a_dX^d$ un polynôme non nul tel que a_d soit le dernier terme non nul de la suite $(a_0, a_1, \cdots, a_d, 0, 0, \cdots)$. L'entier d s'appelle le degré de P et se note deg P.

Le degré du polynôme nul (c-à-d la suite $(0,0,0,\cdots)$) est $-\infty$. Avec la convention que $-\infty+d=-\infty$ et $-\infty< d$ pour tout $d\in\mathbb{N}$.

- (2) On appelle polynôme constant tout polynôme de degré 0 (autrement dit, un polynôme de la forme a_0 pour $a_0 \in \mathbb{K}$).
- (3) Un monôme est un polynôme de la forme $a_d X^d$.

<u>Définitions.</u> (1) Soit $P = a_0 + a_1X + \cdots + a_dX^d$ un polynôme non nul de degré d.

- (1) Les éléments a_0, a_1, \cdots, a_d de \mathbb{K} s'appellent les coefficients de P.
- (2) Le coefficient a_0 (resp. a_d) s'appelle le coefficient constant de P (resp. le coefficient dominant de P).
- (3) On dit que le polynôme P est unitaire si $a_d = 1$.

La proposition suivante donne les degrés de la somme et du produit de deux polynômes:

Proposition. Soient $P, Q \in \mathbb{K}[X]$ deux polynômes. On a

$$\deg(P+Q) \leq \operatorname{Max}\{\deg P, \deg Q\}$$
 et $\deg(P \times Q) = \deg P + \deg Q$.

Si de plus, $\deg P \neq \deg Q$, alors $\deg(P+Q) = \operatorname{Max}\{\deg P, \deg Q\}$.

Preuve. Posons $P = a_0 + a_1 X + \cdots + a_m X^m$ et $Q = b_0 + b_1 X + \cdots + b_n X^n$ (avec $m = \deg P$ et $n = \deg Q$). Sans perdre de généralités, on peut supposer $m \le n$. Alors, la somme s'écrit:

$$P + Q = (a_0 + b_0) + (a_1 + b_1)X + \dots + (a_m + b_m)X^m + b_{m+1}X^{m+1} + \dots + b_nX^n.$$

On voit bien que $\deg(P+Q) \le n = \max\{m, n\}$, et $\deg(P+Q) = n$ si $m \ne n$. On a aussi:

$$PxQ = (\text{monômes de degré} < m + n) + a_m b_n X^{m+n}.$$

Ainsi, deg(PxQ) = m + n puisque $a_m b_n \neq 0$.

Remarque. Lorsque $\deg P = \deg Q$, on peut avoir $\overline{\deg(P+Q)} < \operatorname{Max}\{P,Q\}$. Par exemple, pour $P=1+2X-3X^2$ et $Q=2+X+3X^2$, on a bien P+Q=3+3X qui est de degré $1<2=\operatorname{Max}\{2,2\}$.

<u>Définition.</u> Soit $P \in \mathbb{K}[X]$ un polynôme non nul de coefficient dominant $a \in \mathbb{K}$. Le normalisé de P est le polynôme $a^{-1}P$. C'est un polynôme unitaire!

Exemple. Le normalisé du polynôme $P = 2 - X + 2X^3 + 4X^5$ est le polynôme $\frac{1}{2} - \frac{1}{4}X + \frac{1}{2}X^3 + X^5$.

Exemple. Soient $P = -1 + X + 2X^2$ et $Q = 3X - X^2 + X^3$.On a:

$$P + Q = -1 + 4X + X^2 + X^3.$$

$$P \times Q = -3X + 4X^2 + 4X^3 - X^4 + 2X^5.$$

Définition. Un polynôme $P \in \mathbb{K}[X]$ est dit inversible s'il existe un polynôme $Q \in \mathbb{K}[X]$ tel que PxQ = 1.

<u>Proposition.</u> Les seuls polynômes inversibles de $\mathbb{K}[X]$ sont les polynômes constants non nuls, c.-à-d., les éléments de \mathbb{K} non nuls.

Preuve. Soit $P \in \mathbb{K}[X]$ un polynôme inversible. Alors, il existe $Q \in \mathbb{K}[X]$ tel que PxQ=1. Il est clair que P et Q ne sont pas nuls. En prenant le degré, on obtient $\deg(PxQ)=\deg P+\deg Q=\deg 1=0$. Comme $\deg P$ et $\deg Q$ sont des entiers naturels, alors $\deg P=\deg Q=0$. Par conséquent, P est un polynôme constant non nul.

<u>Notation.</u> On note $\mathbb{K}[X]^*$ l'ensemble des polynômes non nuls.

4 - Arithmétique des polynômes

Dans ce paragraphe, on va établir l'analogue de plusieurs résultats vus dans le chapitre "Arithmétique dans \mathbb{Z} ".

<u>Définition.</u> Soit $A, B \in \mathbb{K}[X]$ deux polynômes avec $A \neq 0$. On dit que A divise B s'il existe un polynôme $C \in \mathbb{K}[X]$ tel que: B = AxC.

<u>Notation.</u> Lorsque A divise B, on écrit $A \mid B$. Dans le cas contraire, on écrit $A \nmid B$

Langage. Lorsque A divise B, on dit aussi que B est un multiple de A; ou A est un diviseur de B; ou B est divisible par A.

Remarque. La divisibilité dépend de l'ensemble considéré. Par exemple, 2 ne divise pas 3 en tant qu'éléments de \mathbb{Z} , par contre 2 divise 3 en tant que polynômes de $\mathbb{R}[X]$ car $3=2\times\frac{3}{2}$ et $\frac{3}{2}\in\mathbb{R}[X]$. On donne un résultat liant le degré à la divisibilité:

Proposition. On a les affirmations suivantes:

- (1) Soient $A, B \in \mathbb{K}[X]^*$. Si A divise B, alors $\deg A \leq \deg B$.
- (2) Soient $A, B \in \mathbb{K}[X]$ avec $A \neq 0$. Si A divise B et deg $B < \deg A$, alors B = 0.

Preuve. À faire en exercice.

Corollaire. Soit $A, B \in \mathbb{K}[X]$ deux polynômes tels que $A \mid B$ et $B \mid A$. Alors, il existe $\lambda \in \mathbb{K}$ tel que $B = \lambda A$. Si de plus, A et B sont unitaires, alors A = B.

Preuve. On peut supposer que A et B sont non nuls. Puisque A divise B, il existe $C \in \mathbb{K}[X]$ tel que $B = A \times C$. En particulier, deg $A \le \deg B = \deg A + \deg C$. De même, deg $B \le \deg A$ car B divise A. Ainsi, deg $B = \deg A$ et deg C = 0, ce qui signifie que C est un polynôme constant. Donc, $C = \lambda \in \mathbb{K}$.

Si de plus A et B sont unitaires, alors en comparant les coefficients dominants dans l'égalité $B=\lambda A$, on déduit que $\lambda=1$, c-à-d, A=B.

Proposition (Division Euclidienne polynomiale)

Soit $A, B \in \mathbb{K}[X]$ deux polynômes avec $A \neq 0$. Alors, il existe deux polynômes uniques Q et R tels que:

$$\begin{cases} B = AxQ + R \\ \deg R < \deg A. \end{cases}$$

Preuve. Posons $A=a_0+a_1X+\cdots+a_mX^m$ et $B=b_0+b_1X+\cdots+b_nX^n$. Tout d'abord prenons le cas B=0. On a alors B=Ax0+B. Comme deg $B=-\infty<$ deg A car A n'est pas nul, on prend Q=0 et R=B.

Pour la suite, on suppose $B \neq 0$. On procède par récurrence sur deg B (second principe).

- Initialisation: Supposons deg B = 0, c-à-d, $B = b_0 \in \mathbb{K} \setminus \{0\}$.
- Si deg $A \ge 1$, alors on écrit $B = A \times 0 + b_0$. On a bien deg $b_0 = 0 < \deg A$ et donc on prend Q = 0 et $R = b_0$.
- Si deg A=0, alors $A=a_0\in\mathbb{K}\setminus\{0\}$. On a alors $B=Ax\frac{b_0}{a_0}+0$.
- On prend $Q = \frac{b_0}{a_0}$ et R = 0 car deg $0 = -\infty < \deg A = 0$.
- **Hérédité:** On suppose que pour tout polynôme C de degré < n, il existe Q, R deux polynômes tels que C = AxQ + R avec deg $R < \deg A$.

Montrons le résultat pour B qui est de degré n. Si deg A > n, alors on prend B = Ax0 + B. On prend Q = 0 et R = B car deg $B = n < \deg A$. Supposons deg $A \le n$.

On introduit le polynôme

$$C = B - \frac{b_n}{a_m} X^{n-m} A.$$

On remarque que deg $C < \deg B$. Par hypothèse de récurrence, il existe Q et R deux polynômes tels que: C = AxQ + R et deg $R < \deg A$. Ainsi, on obtient

$$B = \left(Q + \frac{b_n}{a_m} X^{n-m}\right) \times A + R.$$

Unicité de Q **et** R: Supposons qu'il existe Q' et R' tels que B = AxQ + R = AxQ' + R' avec $\deg R < \deg A$ et $\deg R' < \deg A$. Alors, on obtient $A \times (Q - Q') = R' - R$ et donc A divise R' - R. Or $\deg(R' - R) \leq \max\{\deg R, \deg R'\} < \deg A$. Par la proposition précédente, on déduit que R' - R = 0 et donc Q - Q' = 0.

Définition. Avec les mêmes notations que dans la proposition précédente (division Euclidienne polynomiale), on dit que:

- B est le dividende de la division Euclidienne de B par A.
- A est le diviseur de la division Euclidienne de B par A.
- Q est le quotient de la division Euclidienne de B par A.
- R est le reste de la division Euclidienne de B par A.

Exemple. Effectuer la division Euclidienne de $\overline{B = X^4 - 2X^2 + X - 1}$ par $A = X^2 - X + 1$.

$$\begin{array}{c|cccc} X^2 & -X & +1 \\ \hline X^2 & +X & -2 \\ \end{array}$$

Ainsi, le quotient est $X^2 + X - 2$ et le reste est -2X + 1.

La division Euclidienne est reliée à la notion de divisibilité:

<u>Lemme.</u> Soient $A, B \in \mathbb{K}[X]$ deux polynômes avec $A \neq 0$. Alors, A divise B équivaut à dire que le reste de la division Euclidienne de B par A est nul.

<u>Preuve.</u> Par la division Euclidienne de B par A, il existe $Q, R \in \mathbb{K}[X]$ tels que: B = AxQ + R et deg $R < \deg A$.

- Supposons A divise B. Alors, il existe $C \in \mathbb{K}[X]$ tel que B = AxC. Ainsi, Ax(C Q) = R, ce qui signifie que A divise R. Comme deg $R < \deg A$, on déduit que R = 0.
- Réciproquement, supposons R=0. Alors, B=AxQ, ce qui signifie que A divise B.

<u>Définition.</u> Soient $A, B \in \mathbb{K}[X]$. On dit qu'un polynôme <u>unitaire</u> D est le plus grand diviseur commun à A et B s'il vérifie les deux conditions:

- D | A et D | B.
- Si $C \in \mathbb{K}[X]$ tel que $C \mid A$ et $C \mid B$, alors $C \mid D$.

<u>Notation.</u> Le polynôme D de la définition précédente se note $\operatorname{pgcd}(A, B)$.

Remarque. Comme pour les entiers, pgcd(0,0) n'existe pas; et lorsque A est non nul, le pgcd(A,0) est égal au normalisé de A.

On montre que le polynôme D de la définition précédente est unique. Reste à montrer son existence. C'est l'objet de la proposition suivante:

Proposition. Soient $A, B \in \mathbb{K}[X]^*$. Alors:

- (1) Le $\operatorname{pgcd}(A, B)$ existe.
- (2) If existe $U, V \in \mathbb{K}[X]$ tels que: $\operatorname{pgcd}(A, B) = AU + BV$.

<u>Preuve.</u> L'idée de la preuve est la même que celle utilisée dans le cas des entiers. On considère l'ensemble

 $M = \{AP + BQ \mid P, Q \in \mathbb{K}[X]\}$. Cet ensemble est stable par l'addition et la multiplication par des polynômes. De plus M n'est pas réduit au polynôme nul (car $A = Ax1 + Bx0 \in M$). Soit D un polynôme de M non nul de degré minimal (ce polynôme existe par le lemme du plus petit élément). Quitte à normaliser D, on peut supposer que D est unitaire.

Affirmation. $D = \operatorname{pgcd}(A, B)$ et il existe $U, V \in \mathbb{K}[X]$ tels que D = AU + BV.

En effet, l'existence de $U, V \in \mathbb{K}[X]$ tels que D = AU + BV se déduit du fait que $D \in M$. Reste à montrer que D vérifie les conditions du pgcd.

- Si C ∈ $\mathbb{K}[X]$ divise A et B, alors C divise AU + BV = D.
- Montrons que D divise A. Par la division Euclidienne de A par D, il existe $Q, R \in \mathbb{K}[X]$ tels que: A = DxQ + R et deg $R < \deg D$.

Puisque $A, D \in M$, alors $A - DxQ = R \in M$. Puisque $\deg R < \deg Q$, on a nécessairement R = 0 car sinon D ne serait pas de degré minimal parmi les éléments non nuls de M. De la même façon, on montre que D divise B.

<u>Définition.</u> Deux polynômes $A, B \in \mathbb{K}[X]$ sont dits premiers entre eux si $\operatorname{pgcd}(A, B) = 1$.

De la proposition précédente, on déduit les corollaires suivants:

Corollaire (Bézout). Soient $A, B \in \mathbb{K}[X]$. On a $\operatorname{pgcd}(A, B) = 1$ si et seulement si il existe $U, V \in \mathbb{K}[X]$ tels que AU + BV = 1.

Corollaire (Gauss). Soient $A, B, C \in \mathbb{K}[X]$. Si $A \mid B \times C$ et $\operatorname{pgcd}(A, B) = 1$, alors $A \mid C$.

6 - Calcul du PGCD

On donne un lemme:

<u>Lemme.</u> Soient $A, B \in \mathbb{K}[X]$ deux polynômes non nuls. On a:

- Si A divise B, alors pgcd(A, B) est le normalisé de A.
- Si $B = A \times Q + R$ pour certains $Q, R \in \mathbb{K}[X]$, alors $\operatorname{pgcd}(A, B) = \operatorname{pgcd}(A, R)$.

(Q et R ne sont pas nécessairement le quotient et le reste de la division Euclidienne de B par A.)

Preuve. On reprend les mêmes arguments que dans le cas des entiers relatifs.

Conclusion. On calcule le pgcd de deux poylnômes $A, B \in \mathbb{K}[X]$ non nuls en appliquant le lemme précédent. Explicitement, supposons que deg $A \leq \deg B$. Si A divise B, alors $\operatorname{pgcd}(A,B)$ est le normalisé de A. Sinon, on effectue les divisions Euclidienne successives (en commençant par celle de B par A) jusqu'à avoir un reste nul. Le $\operatorname{pgcd}(A,B)$ est alors le normalisé du dernier reste non nul.

6 - Racines de polynômes

$\mathbf{6.1}$ - Fonction polynomiale

<u>Définition.</u> À tout polynôme $P = a_0 + a_1X + \cdots + a_mX^m$, on associe la fonction $P : \mathbb{K} \longrightarrow \mathbb{K}$ $X \mapsto a_0 + a_1X + \cdots + a_mX^m$ qu'on appelle la fonction polynomiale associée au polynôme P.

Très important. Il ne faut pas confondre un polynôme et sa fonction polynomiale. Il y a des situations (hors du cas $\mathbb{K}=\mathbb{C}$, \mathbb{R} ou \mathbb{Q}) où la fonction polynomiale est nulle alors que le polynôme n'est pas nul!

Remarque. Si $P, Q \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$, alors on a:

$$\widetilde{P+Q} = \widetilde{P} + \widetilde{Q},$$
$$\widetilde{\lambda P} = \lambda \widetilde{P},$$
$$\widetilde{PxQ} = \widetilde{P}x\widetilde{Q}.$$

<u>Notation.</u> Pour tout $x_0 \in \mathbb{K}$, l'image de x_0 par \widetilde{P} , c-à-d, $\widetilde{P}(x_0)$ s'appelle la valeur P en x_0 . On la note tout simplement $P(x_0)$.

<u>Définition.</u> Un scalaire $r \in \mathbb{K}$ est dit une racine d'un polynôme $P \in \mathbb{K}[X]$ si P(r) = 0.

Le résultat suivant donne une interprétation de l'évaluation d'un polynôme en un scalaire:

Proposition. Soient $P \in \mathbb{K}[X]$ et $r \in \mathbb{K}$. Alors, P(r) est le reste de la division Euclidienne de P par X - r.

<u>Preuve.</u> Par la division Euclidienne de P par X-r, il existe $Q,R\in\mathbb{K}[X]$ tels que: P=(X-r)Q+R et deg $R<\deg(X-r)=1$. Donc, deg R=0 ou $-\infty$. Cela veut dire que R est une constante. En prenant la fonction polynomiale, on a:

$$\widetilde{P} = (x - r)\widetilde{Q} + R.$$

En évaluant en r, on déduit que P(r) = R.

Corollaire. Soient $P \in \mathbb{K}[X]$ et $r \in \mathbb{K}$. Alors, r est une racine de P si et seulement si X - r divise P.

Preuve. On sait que P(r) est le reste de la division Euclidienne de P par X - r. Ainsi, P(r) = 0 (c'est-à-dire, r est une racine de P) si et seulement si X - r divise P.

Remarques. (1) Soient $r_1, r_2 \in \mathbb{K}$ distincts. Alors, les polynômes $X - r_1$ et $X - r_2$ sont premiers entre eux (on vérifie facilement que leur pgcd est le polynôme constant 1).

(2) Si R_1 et R_2 sont des polynômes premiers entre eux divisant un polynôme P, alors $R_1 \times R_2$ divise P (on utilise le théorème de Gauss).

<u>Corollaire.</u> Soient $P \in \mathbb{K}[X]$ et $r_1, \dots, r_n \in \mathbb{K}$ des scalaires deux à deux distincts. Si r_1, \dots, r_n sont des racines de P, alors le polynôme $(X - r_1) \times \dots \times (X - r_n)$ divise P.

Preuve. Puisque r_1, \dots, r_n sont des racines de P, alors les polynômes $X - r_1, \dots, X - r_n$ divisent P (Corollaire précédent). Par la remarque précédente, $(X - r_1) \times \dots \times (X - r_n)$ divise P.

<u>Corollaire.</u> Soit $P \in \mathbb{K}[X]$ de degré n. Si P admet un nombre de racines $\geq n+1$, alors P est le polynôme nul.

Preuve. Soit $P \in \mathbb{K}[X]$ un polynôme de degré n, et r_1, \dots, r_d des racines de P deux à deux distinctes avec $d \geq n+1$. Par le corollaire précédent, le polynôme $(X-r_1) \times \dots \times (X-r_d)$ divise P. Comme $(X-r_1) \times \dots \times (X-r_d)$ est de degré $d \geq n+1 > \deg P$, on déduit que P=0.

Corollaire. Le polynôme nul est le seul polynôme qui admet une infinité de racines.

7 - Polynôme dérivé - Formule de Taylor

<u>Définition.</u> Soit $P = a_0 + a_1X + \cdots + a_dX^d \in \mathbb{K}[X]$ un polynôme de degré d. Le polynôme dérivé de P, noté P' ou $P^{(1)}$, est le polynôme donné par:

$$a_1 + 2a_2X + \cdots + (d-1)a_{d-1}X^{d-2} + da_dX^{d-1}$$
.

Par itération, on définit le polynôme $P^{(n)} = (P^{(n-1)})'$ pour tout entier $n \ge 1$, avec la convention $P^{(0)} = P$.

Notons que deg $P' = \deg P - 1$ lorsque deg $P \ge 1$.

Remarques. (1) Pour un polynôme $P \in \mathbb{K}[X]$, la fonction polynomiale associée au polynôme dérivé P' n'est autre que la dérivée de la fonction polynomiale associée à P.

(2) La dérivée polynomiale vérifie les propriétés habituelles de la dérivée:

$$(P+Q)'=P'+Q', \quad (\lambda P)'=\lambda P', \quad (P\times Q)'=P'\times Q+P\times Q'$$

pour tous polynômes $P, Q \in \mathbb{K}[X]$ et tout $\lambda \in \mathbb{K}$.

(3) Un polynôme a pour dérivée nulle si et seulement si il est constant.

On donne la formule de Taylor pour les polynômes:

<u>Théorème.</u>(Formule de Taylor) Soient $P \in \mathbb{K}[X]$ un polynôme de degré d et $x_0 \in \mathbb{K}$. Alors, on a:

$$P(X) = P(x_0) + P'(x_0)(X - x_0) + \frac{P^{(2)}(x_0)}{2!}(X - x_0)^2 + \cdots + \frac{P^{(d)}(x_0)}{d!}(X - x_0)^d.$$

Donc, P est déterminé par son évaluation en x_0 et ses (d+1) premières dérivées.

Preuve. Posons $P = c_0 + c_1 X + c_2 X^2 + \cdots + c_d X^d$. On procède par récurrence sur le degré d de P (premier principe).

- Initialisation: Supposons d=0. Alors, $P(X)=c_0$ est un polynôme constant. Dans ce cas, la formule de Taylor revient à montrer $P(X)=P(x_0)$, ce qui est vrai.
- **Hérédité:** Supposons que la formule soit vraie pour les polynômes de degré d-1 et montrons la pour les polynômes de degré d. On applique l'hypothèse de récurrence au polynôme dérivé P' de P, on obtient.

$$c_1 + 2c_2X + \dots + (d-1)c_{d-1}X^{d-2} + dc_dX^{d-1} = P'(x_0) + (P')'(x_0)(X - x_0) + \dots + \frac{(P')^{(d-1)}(x_0)}{(d-1)!}(X - x_0)^{d-1}$$
$$= P'(x_0) + P^{(2)}(x_0)(X - x_0) + \dots + \frac{P^{(d)}(x_0)}{(d-1)!}(X - x_0)^{d-1}$$

Ce qu'on écrit aussi:

$$P'(X) \quad = \ \left(P'(x_0)(X-x_0) + \frac{P^{(2)}(x_0)}{2!}(X-x_0)^2 + \dots + \frac{P^{(d)}(x_0)}{d!}(X-x_0)^d\right)'.$$

Ainsi, $P(X) = \alpha + P'(x_0)(X - x_0) + \frac{P^{(2)}(x_0)}{2!}(X - x_0)^2 + \dots + \frac{P^{(d)}(x_0)}{d!}(X - x_0)^d$, où α est une constante à déterminer. En évaluant en x_0 , on déduit que $\alpha = P(x_0)$.

<u>Définition.</u> Un scalaire $r \in \mathbb{K}$ est dit une racine (ou un zéro) de multiplicité e d'un polynôme $P \in \mathbb{K}[X]$ si $(X - r)^e$ divise P et $(X - r)^{e+1}$ ne divise pas P.

<u>Langage.</u> Une racine de multiplicité 1, 2 et 3 est respectivement dite une racine simple, double et triple. Une racine de multiplicité ≥ 2 est dite une racine multiple.

On obtient la caractérisation suivante de la multiplicité des racines:

Proposition. Soit $P \in \mathbb{K}[X]$. Un scalaire $r \in \mathbb{K}$ est une racine de P de multiplicité $e \ge 1$ si et seulement si r est racine de P, P', $P^{(2)}, \dots, P^{(e-1)}$, et r n'est pas une racine de $P^{(e)}$ Autrement dit: $P(r) = P'(r) = \dots = P^{(e-1)}(r) = 0$ et $P^{(e)}(r) \ne 0$.

Preuve. On utilise la formule de Taylor (à faire en exercice).

8 - Décomposition en irréductibles dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$

<u>Définition.</u> Un polynôme $P \in \mathbb{K}[X]$ est dit irréductible s'il est de degré ≥ 1 et ses seuls diviseurs sont:

- les polynômes constants.
- les polynômes de la forme λP pour $\lambda \in \mathbb{K}$.

Remarques. (1) Un polynôme $P \in \mathbb{K}[X]$ de degré ≥ 1 n'est pas irréductible s'il existe $Q \in \mathbb{K}[X]$ tel que: Q divise P et $1 \leq \deg Q < \deg P$.

- (2) Tout polynôme de $\mathbb{K}[X]$ de degré 1 est irréductible.
- (3) La notion d'irréductibilité d'un polynôme dépend si on est sur \mathbb{Q} , \mathbb{R} ou \mathbb{C} (donner un exemple d'un polynôme irréductible dans $\mathbb{R}[X]$ qui ne l'est pas dans $\mathbb{C}[X]$).

8.1 - Décomposition en irréductibles dans $\mathbb{C}[X]$

On admet le théorème suivant dû à d'Alembert:

<u>Théorème.</u> Tout polynôme de $\mathbb{C}[X]$ non constant admet au moins une racine dans \mathbb{C} .

Corollaire. Les polynômes de $\mathbb{C}[X]$ irréductibles sont les polynômes de degré 1, c'est-à-dire, ceux de la forme aX + b avec $a, b \in \mathbb{C}$ et $a \neq 0$.

Preuve. On sait que les polynômes de degré 1 sont irréductibles. Soit $P \in \mathbb{C}[X]$ irréductible. Supposons que deg P > 1. Par le théorème de d'Alembert, il existe $r \in \mathbb{C}$ racine de P. Ainsi, X - r divise P. Comme $1 \le \deg(X - r) < \deg P$, alors P n'est pas irréductible, une contradiction.

<u>Corollaire.</u> Tout polynôme $P \in \mathbb{C}[X]$ non constant se décompose en produit d'irréductibles comme suit:

$$P(X) = c(X - r_1)^{e_1} \times \cdots \times (X - r_n)^{e_n},$$

où $c \in \mathbb{C}$ est le coefficient dominant de P, et r_1, \dots, r_n sont les racines de P de multiplicité respective e_1, \dots, e_n . Cette décomposition est unique à une permutation des facteurs irréductibles près.

Preuve. Soit $P \in \mathbb{C}[X]$ non constant. On procède par récurrence sur deg P (premier principe). Si deg P=1, alors P=aX+b avec $a,b\in\mathbb{C}$ et $a\neq 0$. On a $P=a(X+\frac{b}{a})$ et on prend $r_1=-\frac{b}{a}$, $e_1=1$ et c=a. Supposons que le corollaire soit vrai pour tout polynôme de degré deg P-1. D'après le théorème de d'Alembert, il existe $r_1\in\mathbb{C}$ une racine de P. Alors, $X-r_1$ divise P. Par conséquent, il existe $Q\in\mathbb{C}[X]$ tel que $P=(X-r_1)Q$. Puisque deg $Q=\deg P-1$, on applique l'hypoyhèse de récurrence à Q pour conclure.

8.2 - Décomposition en irréductibles dans $\mathbb{R}[X]$

Contrairement au cas de $\mathbb{C}[X]$, il y a plus d'irréductibles dans $\mathbb{R}[X]$:

Proposition. Les polynômes irréductibles de $\mathbb{R}[X]$ sont les suivants:

- Les polynômes de degré 1: aX + b avec $a, b \in \mathbb{R}$ et $a \neq 0$.
- Les polynômes de la forme $aX^2 + bX + c$ avec $a, b, c \in \mathbb{R}$, $a \neq 0$ et $b^2 4ac < 0$. Autrement dit, les polynômes de degré 2 sans racine réelle.

Preuve. On sait que tout polynôme de degré 1 est irréductible. Soit un polynôme $aX^2+bX+c\in\mathbb{R}[X]$ avec $a\neq 0$ et $b^2-4ac<0$. Supposons que ce polynôme ne soit pas irréductible dans $\mathbb{R}[X]$, alors il est divisible par un polynôme $Q\in\mathbb{R}[X]$ vérifiant $1\leq \deg Q<\deg(aX^2+bX+c)=2$. Ainsi, $\deg Q=1$. En écrivant Q=uX+v, on voit bien que Q admet $\frac{-v}{u}$ pour racine, en particulier l'équation $ax^2+bx+c=0$ admet $\frac{-v}{u}$ pour solution et donc $b^2-4ac\geq 0$, ce qui n'est pas possible.

Plus généralement, soit $P \in \mathbb{R}[X]$ irréductible de degré ≥ 2 . Donc, P n'admet pas de racine réelle. Par le théorème de d'Alembert, il existe $z \in \mathbb{C}[X]$ une racine de P. Comme $\overline{P(z)} = P(\overline{z}) = 0$ (car P est à coefficients réels), alors \overline{z} est une racine de P. Puisque $z \neq \overline{z}$, les polynômes X - z et $X - \overline{z}$ sont premiers entre eux en tant que polynômes de $\mathbb{C}[X]$. Puisque ces deux polynômes divisent P, alors $(X - z)(X - \overline{z})$ divise P. Soit $Q \in \mathbb{C}[X]$ tel que

$$P = (X - z)(X - \overline{z})Q.$$

Or $(X - z)(X - \overline{z}) = X^2 - 2\text{Re}(z)X + |z|^2 \in \mathbb{R}[X]$ implique que $Q \in \mathbb{R}[X]$.

Puisque P est irréductible, on a alors deg Q=0, c'est -à-dire, $Q\in\mathbb{R}$. De plus, le fait que z,\overline{z} ne sont pas réels, on a $(2\mathrm{Re}(z))^2-4|z|^2<0$.

Théorème. Soit $P \in \mathbb{R}[X]$ un polynôme non constant. Alors, P admet une décomposition en irréductibles comme suit:

$$P = c(X - r_1)^{e_1} \times \cdots \times (X - r_n)^{e_n} \times (X^2 + a_{n+1}X + b_{n+1})^{e_{n+1}} \times \cdots \times (X^2 + a_{n+m}X + b_{n+m})^{e_{n+m}},$$

telle que

- c est le coefficient dominant de P.
- les r_i sont les racines de P de multiplicité $e_i \ge 1$ pour tout $1 \le i \le n$.
- les polynômes $X^2 + a_{n+j}X + b_{n+j}$ sont sans racines réelles, c'est-à-dire, $a_{n+j}^2 4b_{n+j} < 0$ pour tout $1 \le j \le m$.

De plus, cette décomposition est unique à une permutation près des facteurs.

9 - Factorisation du polynôme $X^n - z$

Soit $z\in\mathbb{C}$ un nombre complexe. On sait par le théorème de d'Alembert que le polynôme $P=X^n-z$ s'écrit comme produit de polynômes unitaires de degré 1. Factoriser ce polynôme revient à trouver les solutions de l'équation $X^n=z$. Lorsque z=0, l'unique solution de cette équation est 0. On suppose donc $z\neq 0$ et on prend son écriture exponentielle: $z=|z|e^{i\theta}$, où $\theta=\arg(z)$. On a:

Proposition. L'équation $X^n = z$ admet n solutions distinctes r_1, \dots, r_n données par:

$$r_k = \sqrt[n]{|z|}e^{i(\frac{\theta}{n} + \frac{2k\pi}{n})}$$
 pour $k = 0, 1, \dots, n-1$.

Ainsi, le polynôme $X^n - z$ se factorise dans $\mathbb{C}[X]$ comme suit:

$$X^n - z = (X - r_1) \times \cdots \times (X - r_n).$$

Preuve. Soit $r \in \mathbb{C}$ une solution de l'équation $X^n = z$. Soit $\rho = |r|$ et $\varphi = \arg(r)$. Alors, $r = \rho e^{i\varphi}$. Puisque $r^n = z$, on obtient par la formule de Moivre $\rho^n e^{in\varphi} = |z|e^{i\theta}$.

Par conséquent, on déduit $\rho^n=|z|$ et $n\varphi=\theta+2k\pi$ pour un certain $k\in\mathbb{Z}$. Ce qui implique:

$$\begin{cases} \rho = \sqrt[n]{|z|} \\ \varphi = \frac{\theta}{n} + \frac{2k\pi}{n}. \end{cases}$$

Comme l'argument est pris à un multiple de 2π près, on peut supposer $0 \le k \le n-1$.

Exemples. (1) Les solutions de l'équation $X^n = 1$ s'appellent les racines *n*-ième de l'unité. On les exprime sous la forme (en prenant $z = 1 = e^{i0}$):

$$r_k = e^{i\frac{2k\pi}{n}}$$
 pour $k = 0, 1, \dots, n-1$.

Pour n = 3, les racines troisièmes de l'unité sont:

- $r_0 = 1$.
- $r_1 = e^{\frac{2i\pi}{3}}$.
- $r_2 = e^{\frac{4i\pi}{3}}$.

Ainsi, $X^3 - 1$ se factorise en irréductibles comme suit:

- Dans $\mathbb{C}[X]$: $X^3 1 = (X 1)(X e^{\frac{2i\pi}{3}})(X e^{\frac{4i\pi}{3}})$.
- Dans $\mathbb{R}[X]$: Comme $r_2 = \overline{r_1}$, on obtient $(X r_1)(X r_2) = X^2 2\text{Re}(r_1) + r_1 \times r_2 = X^2 + X + 1$. Donc, $X^3 1 = (X 1)(X^2 + X + 1)$.
- (2) Les racines carrées de 2i sont les solutions de l'équation: $X^2=2i$. En posant $2i=2e^{\frac{i\pi}{2}}$, on déduit les deux racines carrées données par la formule de la proposition précédente:
 - $r_0 = \sqrt{2}e^{\frac{i\pi}{4}} = 1 + i$.
 - $r_1 = \sqrt{2}e^{\frac{5i\pi}{4}} = -1 i$.

10 - Les fonctions symétriques élémentaires

Le but de ce paragraphe est de donner le lien entre les racines et les coefficients d'un polynôme. Pour cela, on introduit la définition:

<u>Définition.</u> Soient $r_1, \dots, r_d \in \mathbb{K}$. On définit les d fonctions symétriques élémentaires associées à ces scalaires par:

$$\sigma_{1}(r_{1}, \dots, r_{d}) = \sum_{1 \leq i \leq d} r_{i} = r_{1} + \dots + r_{d}.$$

$$\sigma_{2}(r_{1}, \dots, r_{d}) = \sum_{1 \leq i < j \leq d} r_{i}r_{j}.$$

$$\vdots$$

$$\sigma_{k}(r_{1}, \dots, r_{d}) = \sum_{1 \leq i_{1} < \dots < i_{k} \leq d} r_{i_{1}} \dots r_{i_{k}}.$$

$$\vdots$$

$$\sigma_{d}(r_{1}, \dots, r_{d}) = \prod_{i=1}^{d} r_{i} = r_{1}r_{2} \dots r_{d}.$$

Remarque. Ces expressions ne changent pas si on change l'ordre des scalaires r_1, \dots, r_d . Ceci justifie le terme "symétrique".

Par exemple pour d=2, posons $s=\sigma_1(r_1,r_2)=r_1+r_2$ et $p=\sigma_2(r_1,r_2)=r_1r_2$. Alors, on obtient que r_1 et r_2 sont les racines du polynôme $P:=X^2-sX+p$. Par conséquent, les coefficients s et p du polynôme P sont donnés en fonction de ses racines.

Plus généralement, on a le résultat suivant:

Proposition. Soient $r_1, \dots, r_d \in \mathbb{K}$. Les coefficients du polynôme

$$(X - r_1) \cdots (X - r_d) = X^d + c_{d-1}X^{d-1} + \cdots + c_0$$

sont donnés en fonction des fonctions symétriques élémentaires associées aux scalaires r_1, \dots, r_d comme suit:

$$\forall 1 \leq k \leq d, \quad c_{d-k} = (-1)^k \sigma_k(r_1, \cdots, r_d).$$

Proposition. (Formule du binôme de Newton) Soient $a, b \in \mathbb{C}$ et $n \in \mathbb{N}$. Alors, on a

$$(a+b)^n = \sum_{p=0}^n C_n^p a^p . b^{n-p}.$$

Preuve. On procède par récurrence sur *n*.

Pour $n \in \mathbb{N}$, soit P(n) la propriété:

$$\forall a,b \in \mathbb{C} \quad (a+b)^n = \sum_{p=0}^n C_n^p a^p.b^{n-p}.$$

Soient $a, b \in \mathbb{C}$.

- (Initialisation) $(a+b)^0 = 1$ et $\sum_{p=0}^0 C_0^p a^p . b^{0-p} = C_0^0 a^0 . b^0 = 1$. Donc, P(0) est vraie.
- (Hérédité) Soit $n \in \mathbb{N}$ tel que P(n) soit vraie. Montrons que P(n+1) est vraie.

$$(a+b)^{n+1} = (a+b)(a+b)^{n}$$

$$= (a+b)\left(\sum_{p=0}^{n} C_{n}^{p} a^{p} . b^{n-p}\right) \quad (\text{car } P(n) \text{ vraie})$$

$$= \left(\sum_{p=0}^{n} C_{n}^{p} a^{p+1} . b^{n-p}\right) + \left(\sum_{p=0}^{n} C_{n}^{p} a^{p} . b^{n+1-p}\right)$$

$$= \left(\sum_{q=1}^{n+1} C_{n}^{q-1} a^{q} . b^{n+1-q}\right) + \left(\sum_{q=0}^{n} C_{n}^{q} a^{q} . b^{n+1-q}\right)$$

$$= \left(\sum_{q=1}^{n} (C_{n}^{q-1} + C_{n}^{q}) a^{q} . b^{n+1-q}\right) + C_{n}^{n} a^{n+1} b^{0} + C_{n}^{0} a^{0} b^{n+1}$$

$$= \left(\sum_{q=1}^{n} C_{n+1}^{q} a^{q} . b^{n+1-q}\right) + C_{n+1}^{n+1} a^{n+1} b^{0} + C_{n+1}^{0} a^{0} b^{n+1}$$

$$= \sum_{q=1}^{n+1} C_{n+1}^{q} a^{q} b^{n+1-q}.$$

Ainsi, P(n+1) est vraie.

Conclusion: Par le premier principe de récurrence P(n) est vraie pour tout $n \in \mathbb{N}$, c'est-à-dire, on a:

$$\forall a,b \in \mathbb{C}, \ \forall n \in \mathbb{N} \quad (a+b)^n = \sum_{p=0}^n C_n^p a^p.b^{n-p}.$$

Triangle de Pascal.

On utilise le triangle de Pascal pour calculer les coefficients binomiaux C_n^p pour $p \le n$.

Dans le triangle (voir ci-dessous), le coefficient C_n^p est placé à la ligne n et la colonne p.

On calcule ces coefficients en se basant sur la formule $C_n^p = C_{n-1}^p + C_{n-1}^{p-1}$ pour tout $1 \le p \le n-1$.

Cette formule s'interprète dans le triangle comme suit: Le coefficient C_n^p de la ligne n et la colonne p s'obtient en ajoutant le coefficient C_{n-1}^{p-1} de la ligne n-1 et la colonne p-1 au coefficient C_{n-1}^p de la ligne n-1 et la colonne p.