

## What Can PAN AIR Do?

- Surface flow properties
- 3D surface pressure forces and moments
- Configuration forces and moments
- Sectional pressure forces and moments along userspecified plane
- Flow-field properties on and off surface
- Streamlines in the flow field

## What PAN AIR Cannot Do?

- Predict flow dominated by viscous effects
- Predict flow dominated by transonic effects
- Predict flow with different total pressures:
- Configuration inside a jet plume with supersonic flow
- Configuration inside a propeller slipstream swirl
- Determine wake shapes



### Where To Find PAN AIR?

Public Domain Aeronautical Software

http://www.pdas.com/panair.html

PAN AIR Documentation

https://docs.google.com/file/d/0B2UKsBO-ZMVgS1k5VElNamx1cUk/edit

PAN AIR Executable

http://www.pdas.com/packages/panairexec.zip

PAN AIR Source Code

http://www.pdas.com/packages/panair.zip

## **General Comments**

- All input numbers must be decimals
- PAN AIR will misinterpret input numbers without decimal points
- Number may be input as X. or .X as necessary
- The maximum number of digits after decimal point is 4 (example XX.XXX)
- Input segments are 10 spaces long
- Multiple commands for the same input block may be inputted in a single line:

12345678901234567890123456789012345678901234567890

- Column 71 onwards is usually reserved for string type inputs
- Use of a text editor (example Matlab Editor) that shows text column makes editing of input files easier

# General Comments (contd.)

- First Character of the Line:
- '\$' Marks the beginning of a data block
- '\*' Marks the beginning of a data sub-block
- '=' Used for defining symbols above a line of input
- '!' Creates a comment line
- PAN AIR has no units
- User is responsible for ensuring inputs are in consistent units
- Similar to ANSYS APDL
- Empty line(s) will generate error when input file is read
- Create comment lines with '!' if white space is desired
- PAN AIR input file is **NOT** case sensitive

# General Comments (Contd.)

- Data blocks may be placed in any order except start, end and sub-blocks
- These blocks are defined later in the presentation
- Comments in data block titles:

\$POINTS - DEFINES THE WINGTIP PANELS

- Only the first word of the data block is processed
- Rest of the line may be used for commenting the purpose of the block

## First And Last Data Block

• PAN AIR Input Begins with:

```
$TITLE
<COMMENT LINE #1>
...
<COMMENT LINE #n>
```

- Title block begins a new PAN AIR input
- Lines following the \$TITLE are comments used to clearly identify the input file or configuration details. These lines are reproduced in output files.
- Note that no special character precedes the comments
- PAN AIR Ends With:

\$END

## **Process Control**

- PAN AIR has archaic features:
- Software allows for processing the input file for errors, solution, or restarting solution
- Modern desktop typically takes 15 to 30 seconds to run; making restart solution feature obsolete

#### \$SOLUTION

Solves the boundary-value problem and computes flow properties

**\$DATACHECK** 

=NDTCHK

1.

- Complete data check and provides detailed examination of input data
- For other options for NDTCHK, see manual

# Symmetry

- Symmetry functions are powerful tools
- Reduces workload of defining panel (Very Important!)
- Symmetry can be defined only along primary axis planes (i.e. on global axis planes)
- PAN AIR Axis system
- X axis: Through the configuration
- Y axis: Out of right wing
- Z axis: Up

\$SYMMETRY - XZ PLANE OF SYMMETRY

=MISYMM MJSYMM

1. 0.

- MISYMM is symmetry about XZ-plane
- MJSYMM is symmetry about YZ-plane
- 0. No symmetry, 1. Symmetry, and -1. Anti-symmetry



PLANE OF SYMMETRY



TWO PLANES OF SYMMETRY

## Flow Conditions

- Mach Number
- Determines the compressibility effects on the flow
- Note that PAN AIR can solve supersonic flow, however, not transonic flow
- 0<Mach No.<0.99 and 1.01<Mach No.<4.0
- Flow Mach number cannot be altered during a solution run



\$MACH NUMBER

=AMACH

0.1

!AMACH - MACH NUMBER (DEFAULT VALUE 0

# Flow Conditions (Contd.)

- Flow Cases
- A maximum of 4 solution cases may be run at once

```
$CASES - NO. OF SOLUTIONS
```

=NACASE

4.

- ! NACASE NUMBER OF CASES
- Angles of Attack

=ALPC

0.

!ALPC - DIRECTION OF COMPRESSIBILITY EFFECTS

=ALPHA(1) ALPHA(2) ALPHA(3) ALPHA(4)

-6. -5. -4. -3.

 Similarly beta for corresponding angles of attack may be defined (see manual for additional details)



12

## Reference Quantities

 Reference quantities include non-dimensionalization quantities and moment reference locations

```
$REFERENCE DATA FOR 3-D CONFIGURATION FORCES AND MOMENTS
=xref
           yref
                     zref
0.5208
           0.
=sref
          bref
                     cref
                               dref
0.5000
       1.0000
                     0.5000
                               1.0000
!XREF - X COMPONENT OF MOMENT REFERENCE LOCATION
!YREF - Y COMPONENT OF MOMENT REFERENCE LOCATION
!ZREF - Z COMPONENT OF MOMENT REFERENCE LOCATION
!SREF - FULL AIRPLANE REFERENCE AREA (EVEN WITH SYMMETRY INPUT)
!BREF - REFERENCE LENGTH OF MX (SPAN)
!CREF - REFERENCE LENGTH OF MY (CHORD)
!DREF - REFERENCE LENGTH OF MZ (SPAN)
```

## Output or Print Options

Text files are the only form of output from PAN AIR

```
$PRINT - OPTIONS
=ISINGS
          TGEOMP
                    ISINGP
                              ICONTP
                                        IBCONP
          0.
=IEDGEP IPRAIC
                    NEXDGN
                              IOUTPR IFMCPR
0.
          0.
                                        -1.
!IFMCPR - FORCE AND MOMENT SUMMERY OUTPUTS
!IFMCPR = -1 : OMITS OUTPUT
          0 : FORCE & MOMENTS FOR PER COLUMN & ACCUMULATION
          1 : FORCE & MOMENTS FOR PER NETWORK & ACCUMULATION
!TFMCPR =
```

- IFMCPR provides force and moment data
- Other commands are rarely used
- See manual for details on other commands

## Panel Networks

- Panels are defined by specifying network of points in a right-hand sense
- Right-Hand Network: As shown in figure, column direction crossed with row direction (marked with arrow) should point outside the model. Use right hand for cross product.
- PAN AIR requires separated row inputs. Note that column 2 data point begins in a new line.
- Each network requires boundary condition definition with variable 'KT'. Commonly used boundary conditions are:
- KT = 1: Represents Solid Surfaces wings, body etc.
- KT = 5: Represents Separated Flow bases for wings nacelles etc.

For more details, see manual.



#### COMPUTER INPUT FOR NETWORK FROM:

| nm nn                   | netname |
|-------------------------|---------|
| x11 y11 z11 x12 y12 z12 | ı       |
| x13 y13 z13             |         |
| x21 y21 z21 x22 y22 z22 |         |
| x23 y23 z23             | -       |
| x31 y31 z31             |         |

## Panel Networks (Contd.)

```
$POINTS
=KN
1.
!NUMBER OF NETWORK INPUT FOR THIS GROUP
=KT
1.
!KT - PARAMETER DEFINING BOUNDARY CONDITIONS *IMPORTANT*
=NM
          MM
                                                                     NETNAME
47.
                                                                      WING
          3.
!NM - NUMBER OF POINTS IN A NETWORK COLUMN (ROWS)
!MM - NUMBER OF POINT COLUMN IN A NETWORK
!NETNAME - NETWORK NAME; PLACED IN COLUMN 71-80
                             X(*,*)
                                                  Z(*,*)
=X(1,1) Y(1,1) Z(1,1)
                                        Y(*,*)
0.0000 0.0000
                  -0.0000
                            0.0208
                                       0.0271
                                                -0.0099
0.0417 0.0384 -0.0140
                            0.0625
                                       0.0470
                                                -0.0171
```

Rajmohan Waghela A502 PAN AIR Code 16

## Panel Networks (Contd.)

```
0.8708
          0.1063
                   -0.0126
                              0.9208
                                        0.1045
                                                 -0.0174
0.9708
          0.1015
                   -0.0258
                              1.0208
                                        0.0979
                                                 -0.0356
1.0417
         0.0940
                   -0.0342
0.0000
         0.0000
                  0.0000
                              0.0208
                                        0.0289
                                                  0.0000
                    0.0000
0.0417
          0.0408
                              0.0625
                                        0.0500
                                                  0.0000
```

- Continue defining points until all rows are completed
- \$POINTS can be used repeatedly until all networks are defined
- Note the above space for a missing point only occurs when there are odd number of rows in a network

# Panel Networks (Contd.)



## Wake Definition

- PAN AIR cannot calculate wake shape, however, PAN AIR can solve the boundary value problem without any wakes defined
- PAN AIR does not have wake relaxation/roll-up features
- PAN AIR has two methods of specifying wakes:
- 1. Inbuilt block: \$TRAILING is used when wake surface is in contact with only the trailing edge (in the aerodynamic sense) of the surface that produced the wake
- 2. Define a network as for body surfaces with wake boundary condition
- In most cases, a flat wake is sufficient for aerodynamic analysis
- Wake may be terminated at a convenient location behind the configuration for Trefftz plane analysis



# Wake Definition (Contd.)

- Wake Definition with \$TRAILING
- The boundary condition parameter for wake, KT, is 18

```
$TRAILING
=KN
1.
!NUMBER OF NETWORK INPUT FOR THIS GROUP
=KT
18.
!KT - PARAMETER DEFINING BOUNDARY CONDITIONS *IMPORTANT*
           INSD
                                TWAKE
                                                                         NETNAME
=INAT
                     XWAKE
                     1.25
FW
                                                                         FWWAKE
!INAT - USER-ASSIGNED NETWORK NAME FOR WAKE ATTACHMENT
!INSD - EDGE NUMBER OF NETWORK INAT TO WHICH SIDE OF WAKE IS ATTACHED
!XWAKE - X COORDINATE FOR DOWNSTREAM EDGE OF THE WAKE
!TWAKE = 0 : WAKE PARALLEL TO REFERENCE X AXIS
!TWAKE = 1 : WAKE PARALLEL TO DIRECTION OF COMPRESSIBILITY
```

 Remember this function can be used when the only one edge of the wake is in contact with another body i.e. for horizontal and vertical stabilizers or winglets



# Wake Definition (Contd.)



**BODY UPPER** 

 Wake can only connect with a network (wake or body) edge and not a column/row line

## Abutment of Panel Networks

- Abutment is necessary to maintain continuity of doublet strength across network edges
- User is responsible for reviewing and accepting the abutments formed by PAN AIR
- \$EAT or liberalized abutment connects the networks within a specified tolerance.
   This capability cannot be turned off by the user
- \$PEA or partial or full edge abutment can be used for input geometry mismatched points along abutting network edges. Requires user to identify network edges and points to be abutted.
- \$ABU or forced full-doublet network edge abutment can be used to match finer network edge points to coarser network edge points





## Abutment of Panel Networks (Contd.)

- Panel network edge numbers and points
- Panel edge numbers are defined as shown in figure
- Panel edge point number can reverse order as shown in the two figures
- Make a rough drawing to keep track of points and edge numbers





# Liberalized Edge Abutment

Input not required but may be included as:

\$EAT

| =EPSGEO | IGEOIN | IGEOUT | NWXREF | TRIINT | IABSUM |
|---------|--------|--------|--------|--------|--------|
|         | 0.     | 0.     | 0.     | 0.     | 0.     |

Rajmohan Waghela A502 PAN AIR Code 25

# Partial Or Full Edge Abutment

Used for important abutments such as wing-body etc.

```
$PEA - PARTIAL OR FULL EDGE ABUTMENTS
=NFPA
           IOPFOR
                     IPEAPT
1.
           0 -
!NFPA - NUMBER OF PARTIAL/FORCED NETWORK EDGE ABUTMENTS
!IOPFOR - FORMS ABUTMENT EDGE FROM STRAIGHT LINES
!IOPFOR = 0 OR BLANK : FIRST SPECIFIED NETWORK EDGE EQUIVALENT POINTS (PREFERRED)
!IOPFOR = 1.0 : AVERAGE LOCATION OF EQUIVALENT POINTS
!IPEAPT - CONTROLS FORCED PARTIAL NETWORK EDGE PRINTOUT
!IOPFOR = 0 OR BLANK : ABUTMENT MATCHING EDGE POINT NUMBERS AND DISTANCE MOVED BY EACH POINT
!IPEAPT = 1.0 : ABOVE+PLUS ORIGINAL COORDINATE POINTS
!IPEAPT = -1.0 : NO PARTIAL NETWORK EDGE PRINTOUT
```

## Partial Or Full Edge Abutment (Contd.)

```
=NNE
           PEATOL
2.
           0.0001
!NNE - NUMBER OF NETWORK EDGES SPECIFIED IN CURRENT ABUTMENT
!PEATOL - TOLERANCE (DISTANCE) USED TO ESTABLISH EQUIVALENT POINTS
=NN
           ΕN
                     EPINIT
                               EPLAST
FW
                  11.
                               21.
UP
                     33.
                               23.
!NN - USER ASSIGNED NETWORK NAME FROM NETWORK INPUTS OR NUMBER
!EN - EDGE NUMBER *IMPORTANT - CHECK CONVENTION*
!EPINIT - FIRST NETWORK EDGE-POINT NUMBER IN ABUTMENT; FIRST AND LAST # INTERCHANGEABLE
!EPLAST - LAST NETWORK EDGE-POINT NUMBER IN ABUTMENT
```

### How to run PAN AIR?

- Download executable
- Save input in the same folder as the executable
- Double-click the executable file
- Type in the name of the input file with extension
- Press enter

## If Errors Persist...

- Ensure spacing of input parameters is correct
- Compare inputs with sample input files that come with the executable
- Check if network points are not too close to each other
- Check abutment edge and point numbers
- Compare your .out file to the one in user manual – line for line
- Ensure Jupiter is not in retrograde and offer sacrifices to the Gods of PAN AIR





No! The Pilot didn't forget to turn off the chem-trails

Rajmohan Waghela A502 PAN AIR Code 30