In [50]: import pandas as pd
import numpy as np
import seaborn as sns
cus\_data=pd.read\_csv("D:\\intership\\Ignite Intern\\task2 customer segmentation\
cus\_data

| Out[50]: |     | CustomerID | Genre  | Age | Annual Income (k\$) | Spending Score (1-100) |
|----------|-----|------------|--------|-----|---------------------|------------------------|
|          | 0   | 1          | Male   | 19  | 15                  | 39                     |
|          | 1   | 2          | Male   | 21  | 15                  | 81                     |
|          | 2   | 3          | Female | 20  | 16                  | 6                      |
|          | 3   | 4          | Female | 23  | 16                  | 77                     |
|          | 4   | 5          | Female | 31  | 17                  | 40                     |
|          | ••• |            |        |     |                     |                        |
|          | 195 | 196        | Female | 35  | 120                 | 79                     |
|          | 196 | 197        | Female | 45  | 126                 | 28                     |
|          | 197 | 198        | Male   | 32  | 126                 | 74                     |
|          | 198 | 199        | Male   | 32  | 137                 | 18                     |
|          | 199 | 200        | Male   | 30  | 137                 | 83                     |

200 rows × 5 columns

| <pre>In [51]: cus_data.isna()</pre> |          |                 |  |
|-------------------------------------|----------|-----------------|--|
|                                     | In [51]: | cus data isna() |  |

| Out[51]: |     | CustomerID | Genre | Age   | Annual Income (k\$) | Spending Score (1-100) |
|----------|-----|------------|-------|-------|---------------------|------------------------|
|          | 0   | False      | False | False | False               | False                  |
|          | 1   | False      | False | False | False               | False                  |
|          | 2   | False      | False | False | False               | False                  |
|          | 3   | False      | False | False | False               | False                  |
|          | 4   | False      | False | False | False               | False                  |
|          | ••• |            |       |       |                     |                        |
|          | 195 | False      | False | False | False               | False                  |
|          | 196 | False      | False | False | False               | False                  |
|          | 197 | False      | False | False | False               | False                  |
|          | 198 | False      | False | False | False               | False                  |
|          | 199 | False      | False | False | False               | False                  |

200 rows × 5 columns

```
cus_data.isna().sum()
In [52]:
                                    0
Out[52]: CustomerID
                                    0
          Genre
          Age
                                    0
          Annual Income (k$)
                                    0
          Spending Score (1-100)
                                    0
          dtype: int64
In [53]: cus_data.tail()
Out[53]:
              CustomerID
                           Genre Age Annual Income (k$) Spending Score (1-100)
          195
                      196 Female
                                    35
                                                                             79
                                                      120
          196
                      197 Female
                                    45
                                                      126
                                                                             28
          197
                      198
                                    32
                                                      126
                                                                             74
                            Male
          198
                      199
                            Male
                                    32
                                                      137
                                                                             18
          199
                      200
                                    30
                                                                             83
                            Male
                                                      137
        cus_data.shape
In [54]:
Out[54]: (200, 5)
In [55]: cus_data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 5 columns):
         #
             Column
                                     Non-Null Count
                                                     Dtype
                                     -----
         0
            CustomerID
                                     200 non-null
                                                     int64
         1
             Genre
                                     200 non-null
                                                     object
                                     200 non-null
                                                     int64
         2
             Age
         3
             Annual Income (k$)
                                     200 non-null
                                                     int64
             Spending Score (1-100) 200 non-null
                                                     int64
        dtypes: int64(4), object(1)
        memory usage: 7.9+ KB
In [56]: cus_data.describe()
```

| Out[56]: | CustomerID                                                                         |            | Age             | Annual Income (k\$)                  | Spending Score (1-100) |  |  |
|----------|------------------------------------------------------------------------------------|------------|-----------------|--------------------------------------|------------------------|--|--|
|          | <b>count</b> 200.000000 2                                                          |            | 200.000000      | 200.000000                           | 200.000000             |  |  |
|          | mean                                                                               | 100.500000 | 38.850000       | 60.560000                            | 50.200000              |  |  |
|          | std                                                                                | 57.879185  | 13.969007       | 26.264721                            | 25.823522              |  |  |
|          | min                                                                                | 1.000000   | 18.000000       | 15.000000                            | 1.000000               |  |  |
|          | 25%                                                                                | 50.750000  | 28.750000       | 41.500000                            | 34.750000              |  |  |
|          | 50%                                                                                | 100.500000 | 36.000000       | 61.500000                            | 50.000000              |  |  |
|          | <b>75%</b> 150.250000 49.000                                                       |            | 49.000000       | 78.000000                            | 73.000000              |  |  |
|          | max                                                                                | 200.000000 | 70.000000       | 137.000000                           | 99.000000              |  |  |
|          |                                                                                    |            |                 |                                      |                        |  |  |
| In [57]: | cus_da <sup>-</sup>                                                                | ta.dtypes  |                 |                                      |                        |  |  |
| Out[57]: | CustomerID  Genre  Age  Annual Income (k\$)  Spending Score (1-100)  dtype: object |            | obj<br>ir<br>ir | nt64<br>ject<br>nt64<br>nt64<br>nt64 |                        |  |  |
| In [91]: | x=cus_data.iloc[:,[3,4]].values                                                    |            |                 |                                      |                        |  |  |

```
Out[91]: array([[ 15,
                           39],
                   [ 15,
                           81],
                   16,
                            6],
                   [
                     16,
                           77],
                     17,
                   40],
                     17,
                   [
                           76],
                   18,
                            6],
                   [
                     18,
                           94],
                     19,
                            3],
                   19,
                           72],
                     19,
                   [
                           14],
                     19,
                           99],
                   20,
                   [
                           15],
                   [
                     20,
                           77],
                   [
                     20,
                           13],
                     20,
                   79],
                   [
                     21,
                           35],
                     21,
                   66],
                     23,
                   29],
                   [
                     23,
                           98],
                   24,
                           35],
                   [
                     24,
                           73],
                     25,
                   5],
                     25,
                   73],
                   28,
                           14],
                   [
                     28,
                           82],
                   28,
                           32],
                   [
                     28,
                           61],
                     29,
                   31],
                     29,
                   87],
                   30,
                            4],
                   [
                     30,
                           73],
                   [
                     33,
                            4],
                     33,
                   92],
                     33,
                           14],
                   [
                   33,
                           81],
                   [
                     34,
                           17],
                   [
                     34,
                           73],
                   [
                     37,
                           26],
                     37,
                   75],
                     38,
                   35],
                   [
                     38,
                           92],
                   39,
                           36],
                   [
                     39,
                           61],
                           28],
                   Γ
                     39,
                     39,
                   65],
                   [
                     40,
                           55],
                   [
                     40,
                           47],
                   40,
                           42],
                   [
                     40,
                           42],
                   Γ
                     42,
                           52],
                   42,
                           60],
                   43,
                           54],
                   [
                     43,
                           60],
                     43,
                   [
                           45],
                   43,
                           41],
                   44,
                           50],
                     44,
                           46],
                   46,
                           51],
                   [ 46,
                           46],
```

[ 46, 56], 46, 55], 47, 52], 47, 59], [ 48, 51], 48, 59], 48, 50], 48, 48], 48, 59], 48, 47], 49, 55], 49, 42], 50, 49], 50, 56], 54, 47], [ 54, 54], 54, 53], 54, 48], 54, 52], [ 54, 42], 54, 51], 54, 55], 54, 41], 54, 44], 54, 57], 54, 46], 57, [ 58], [ 57, 55], 58, [ 60], 58, 46], 59, [ 55], 59, 41], 60, 49], [ 60, 40], [ 60, 42], [ 60, 52], 60, 47], [ 60, 50], [ 61, 42], [ 61, 49], 62, 41], [ 62, 48], 62, 59], 62, 55], 62, 56], 62, 42], 63, [ 50], 63, 46], [ 63, 43], 63, 48], [ 63, 52], [ 63, 54], 64, 42], 64, 46], 65, 48], 65, 50], 65, 43], [ 65, 59], 67, 43],

[ 67,

57],

[ 67, 56], 67, 40], 69, [ 58], 69, 91], [ 70, 29], [ 70, 77], 71, 35], 71, 95], 71, 11], [ 71, 75], 71, 9], 71, 75], [ 72, 34], 72, 71], 73, 5], [ 73, 88], [ 73, 7], [ 73, 73], 74, 10], 74, 72], 75, 5], 75, 93], 76, 40], [ 76, 87], 77, [ 12], 77, 97], 77, [ 36], 77, 74], 78, [ 22], 78, 90], [ 78, 17], 78, 88], 78, 20], [ 78, 76], [ 78, 16], 78, [ 89], 78, 1], 78, 78], [ 78, 1], [ 78, 73], 79, 35], 79, 83], 81, 5], 81, 93], 85, 26], [ 85, 75], 86, [ 20], 86, 95], 87, [ 27], 87, 63], 87, [ 13], [ 87, 75], 87, 10], 87, 92], 88, 13], 88, 86], 88, 15], [ 88, 69], 93, 14], 93, 90],

```
[ 97, 32],
[ 97,
      86],
[ 98,
      15],
[ 98,
      88],
[ 99,
      39],
[ 99,
      97],
[101, 24],
[101, 68],
[103, 17],
[103, 85],
[103, 23],
[103, 69],
[113,
       8],
[113, 91],
[120, 16],
[120, 79],
[126, 28],
[126, 74],
[137, 18],
[137, 83]], dtype=int64)
```

```
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', random_state=0)
    kmeans.fit(x)
    wcss.append(kmeans.inertia_)
```

```
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:870: Future
Warning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set
the value of `n_init` explicitly to suppress the warning
 warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserW
arning: KMeans is known to have a memory leak on Windows with MKL, when there are
less chunks than available threads. You can avoid it by setting the environment v
ariable OMP_NUM_THREADS=1.
 warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:870: Future
Warning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set
the value of `n_init` explicitly to suppress the warning
 warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserW
arning: KMeans is known to have a memory leak on Windows with MKL, when there are
less chunks than available threads. You can avoid it by setting the environment v
ariable OMP_NUM_THREADS=1.
  warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:870: Future
Warning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set
the value of `n_init` explicitly to suppress the warning
 warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserW
arning: KMeans is known to have a memory leak on Windows with MKL, when there are
less chunks than available threads. You can avoid it by setting the environment v
ariable OMP_NUM_THREADS=1.
  warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:870: Future
Warning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set
the value of `n_init` explicitly to suppress the warning
 warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserW
arning: KMeans is known to have a memory leak on Windows with MKL, when there are
less chunks than available threads. You can avoid it by setting the environment v
ariable OMP NUM THREADS=1.
  warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:870: Future
Warning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set
the value of `n_init` explicitly to suppress the warning
  warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserW
arning: KMeans is known to have a memory leak on Windows with MKL, when there are
less chunks than available threads. You can avoid it by setting the environment v
ariable OMP_NUM_THREADS=1.
 warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Future
Warning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set
the value of `n_init` explicitly to suppress the warning
 warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserW
arning: KMeans is known to have a memory leak on Windows with MKL, when there are
less chunks than available threads. You can avoid it by setting the environment v
ariable OMP NUM THREADS=1.
  warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:870: Future
Warning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set
the value of `n_init` explicitly to suppress the warning
  warnings.warn(
C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserW
arning: KMeans is known to have a memory leak on Windows with MKL, when there are
```

```
less chunks than available threads. You can avoid it by setting the environment v
        ariable OMP_NUM_THREADS=1.
          warnings.warn(
        C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:870: Future
        Warning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set
        the value of `n_init` explicitly to suppress the warning
          warnings.warn(
        C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserW
        arning: KMeans is known to have a memory leak on Windows with MKL, when there are
        less chunks than available threads. You can avoid it by setting the environment v
        ariable OMP_NUM_THREADS=1.
          warnings.warn(
        C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:870: Future
        Warning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set
        the value of `n_init` explicitly to suppress the warning
          warnings.warn(
        C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserW
        arning: KMeans is known to have a memory leak on Windows with MKL, when there are
        less chunks than available threads. You can avoid it by setting the environment v
        ariable OMP_NUM_THREADS=1.
          warnings.warn(
        C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:870: Future
        Warning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set
        the value of `n_init` explicitly to suppress the warning
          warnings.warn(
        C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserW
        arning: KMeans is known to have a memory leak on Windows with MKL, when there are
        less chunks than available threads. You can avoid it by setting the environment v
        ariable OMP_NUM_THREADS=1.
          warnings.warn(
In [68]:
         kmeans
Out[68]: •
                           KMeans
         KMeans(n_clusters=10, random_state=0)
In [69]:
         WCSS
Out[69]: [269981.28,
           181363.59595959593,
           106348.37306211118,
           73679.78903948836,
           44448.45544793371,
           37265.86520484347,
           30259.65720728547,
           25095.703209997548,
           21830.041978049438,
           20736.679938924124]
In [71]: # Plotting the elbow curve
         plt.plot(range(1, 11), wcss)
         plt.title('Elbow Method')
         plt.xlabel('Number of clusters')
         plt.ylabel('WCSS')
         plt.show()
```

## Elbow Method



```
In [74]: kmodel=KMeans(n_clusters=5,init='k-means++', random_state=0)
   kmodel
```

Out[74]: <a href="mailto:KMeans">KMeans</a>
KMeans(n\_clusters=5, random\_state=0)

In [76]: y\_kmeans=kmodel.fit\_predict(x)
 y\_kmeans

C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\\_kmeans.py:870: Future
Warning: The default value of `n\_init` will change from 10 to 'auto' in 1.4. Set
the value of `n\_init` explicitly to suppress the warning
 warnings.warn(

C:\Users\Admin\anaconda3\Lib\site-packages\sklearn\cluster\\_kmeans.py:1382: UserW arning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment v ariable OMP\_NUM\_THREADS=1.

warnings.warn(

```
In [80]: plt.scatter(x[y_kmeans==0,0],x[y_kmeans==0,1],s=80,c="green",label='cluster 1')
```

Out[80]: <matplotlib.collections.PathCollection at 0x182ef992a10>



In [ ]:
In [83]: plt.scatter(x[y\_kmeans==1, 0], x[y\_kmeans==1, 1], s=100, c='blue', label ='Clust

Out[83]: <matplotlib.collections.PathCollection at 0x182ef8b6390>



In [84]: plt.scatter(x[y\_kmeans==2, 0], x[y\_kmeans==2, 1], s=100, c='green', label ='Clus

Out[84]: <matplotlib.collections.PathCollection at 0x182f0141890>



In [85]: plt.scatter(x[y\_kmeans==3, 0], x[y\_kmeans==3, 1], s=100, c='cyan', label ='Clust

Out[85]: <matplotlib.collections.PathCollection at 0x182efff3590>



In [86]: plt.scatter(x[y\_kmeans==4, 0], x[y\_kmeans==4, 1], s=100, c='magenta', label ='Cl

Out[86]: <matplotlib.collections.PathCollection at 0x182ef7ddfd0>



```
In [89]: #6 Visualising the clusters
plt.scatter(x[y_kmeans==0, 0], x[y_kmeans==0, 1], s=100, c='red', label ='Cluste
plt.scatter(x[y_kmeans==1, 0], x[y_kmeans==1, 1], s=100, c='blue', label ='Clust
plt.scatter(x[y_kmeans==2, 0], x[y_kmeans==2, 1], s=100, c='green', label ='Clust
plt.scatter(x[y_kmeans==3, 0], x[y_kmeans==3, 1], s=100, c='cyan', label ='Clust
plt.scatter(x[y_kmeans==4, 0], x[y_kmeans==4, 1], s=100, c='magenta', label ='Cl
#Plot the centroid. This time we're going to use the cluster centres
#attribute that returns here the coordinates of the centroid.
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300,
plt.title('Clusters of Customers')
plt.xlabel('Annual Income')
plt.ylabel('Spending Score(1-100)')
plt.legend()
plt.show()
```

## Clusters of Customers



In [ ]: