<u>Dashboard</u> / My courses / <u>Mathematics Dept</u> / <u>Maths-even-sem-20-21</u> / <u>LA-even-sem-20-21</u> / <u>8 March - 14 March</u> / <u>Linear Algebra Test-01 (2020-21)</u>

Started on Friday, 12 March 2021, 8:32:26 AM

State Finished

Completed on Friday, 12 March 2021, 9:20:51 AM

Time taken 48 mins 25 secs

Grade 9.00 out of 20.00 (**45**%)

Ouestion 1

Not answered

Marked out of 2.00

Select the **most** correct answer.

What are the conditions on a, b, c for the system to have a non trivial solution

$$ax + by + cz = 0$$
; $bx + cy + az = 0$; $cx + ay + bz = 0$

Select one or more:

- a + b + c = 0
- a = b = c
- a + b + c = 0 or a = b = c
- \Box a + b + c not equal to 0

The correct answer is: a + b + c = 0 or a = b = c

Question **2**Incorrect

Mark 0.00 out of 2.00

What is the dimension of vector space of 5×5 real matrices with sum of entries of each row is zero?

Answer: A is a singular matrix and exist in 5D:

The correct answer is: 20

Question **3**Incorrect

Mark 0.00 out of 2.00

Drag the correct answer

For what value of k and a, b, c the given system has a unique solution

2x + y = a; x + ky - z = b; y + 2z = c

k not equal to 0 and for any value of a not equal to b and c=1

k not equal to 0 and for all values of a, b, c

k = 0 and for any value of a, b, c

k not equal to 0 and for a = b = c

The correct answer is:

Drag the correct answer

For what value of k and a, b, c the given system has a unique solution

$$2x + y = a$$
; $x + ky - z = b$; $y + 2z = c$

[k not equal to 0 and for all values of a, b, c]

Question 4

Incorrect

Mark 0.00 out of 2.00

Fill in the blanks

The set of vectors $\{(1, 2, 3), (3, 2, 1), (2, 1, 3)\}$ is linearly dependent

dependent

x in the vector space

containing 3 vectors

×

Question 5	
Partially correct	
Mark 1.00 out of 3.00	

Which of the following statements are True and which are False

True	False		
x		Linear combination of three vectors is unique.	×
© X		Two vectors are linearly independent if and only if one is a scalar multiple of the other.	×
x	0	Any non empty set V of vectors can be called a vector space.	×
	> ×	Zero vector is a linear combination of any ten vectors in a vector space.	×
O x		The set of vectors (1,2,3), (1,1,1) and (3,2,1) is linearly independent.	~
	O×	Every vector space is a subspace of itself and every subspace of a vector space is a vector space.	~

Linear combination of three vectors is unique.: False

Two vectors are linearly independent if and only if one is a scalar multiple of the other.: False

Any non empty set V of vectors can be called a vector space.: False

Zero vector is a linear combination of any ten vectors in a vector space.: True

The set of vectors (1,2,3), (1,1,1) and (3,2,1) is linearly independent.: False

Every vector space is a subspace of itself and every subspace of a vector space is a vector space.: True

Question **6**Correct
Mark 2.00 out of 2.00

If
$$M = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
, $M^2 - \lambda M - I_2 = 0$, where I_2 is an 2×2 identity matrix, then the value of λ is Answer:

The correct answer is: 4

/22, 10:45 PM	Linear Algebra Test-U1 (2020-21): Attempt review	
Question 7 Correct		
Mark 1.00 out of 1.00		
True or False	_	
If $m{A}$ is an invertible $m{n} imes m{n}$ matrix then the eq	quation $AX = b$ is consistent for every b in \mathbb{R}^n .	
Select one:		
True ✓		
○ False		
The correct answer is 'True'.		
Question 8		
Correct		
Mark 2.00 out of 2.00		
True or False		
For any two 2×2 matrices A and B, rank(AB)	s)=rank(BA).	
Select one:		
○ True		
False ✔		
⊕ raise ♥		
The correct answer is 'False'.		
Question 9		
Incorrect		
Mark 0.00 out of 1.00		
Select True or False:		
If a subspace of a real vector space contains	s a non-zero vector then it must be an infinite set.	
Select one:		
○ True		
The correct answer is 'True'.		

Question 10 Correct
Mark 1.00 out of 1.00
Determine whether the following statement is True or False.
Set of vectors $\{(-2,1),(4,-2)\}$ forms a basis of \mathbb{R}^2 .
Select one: True
The correct answer is: False
Question 11
Question I I Correct
Mark 1.00 out of 1.00
True or False
Every upper triangular matrix is in a row echelon form!
Select one: O True
© False ❖
○ Fulse ♥
The correct answer is 'False'.
Question 12
Correct Mark 1.00 out of 1.00
Mark 1.00 out of 1.00
w 141/0 ·· · · · · · · · · · · · · · · · · ·
If $ A \neq 0$ then a system $AX = B$ is consistent and has unique solution
inconsistent and has no solution consistent and has trivial solution
The correct answer is:
If $ A \neq 0$ then a system $AX = B$ is [consistent and has unique solution]
■ Linear Algebra - Live and Recorded Lectures using Webex
Jump to
·

Linear algebra(20-21): TEST-2 ►