Equilíbrio Iônico

É um caso de equilíbrio que envolve íons.

$$HCN + H_2O \subseteq H_3O^+ + CN^-$$

1. CONSTANTE DE IONIZAÇÃO (K,)

$$\begin{split} K &= \frac{[H_3O^+] \cdot [CN^-]}{[HCN] \cdot [H_2O]} \Rightarrow \\ \underbrace{K \cdot [H_2O]}_{K_i} &= \frac{[H_3O^+] \cdot [CN^-]}{[HCN]} \Rightarrow \\ K_i &= \frac{[H_3O^+] \cdot [CN^-]}{[HCN]} \end{split}$$

Generalizando, para eletrólitos fracos e em solução diluída, temos:

$$K_i = \frac{[produtos]}{[reagentes]}$$
, menos $[H_2O] = constante$

K; pode ser chamado de:

K_a – constante de ionização do ácido ou

K_b – constante de dissociação da base

2. GRAU DE IONIZAÇÃO (lpha)

$$\alpha = \frac{n^{\varrho} \text{ de mols ionizados ou dissociados}}{n^{\varrho} \text{ total de mols dissolvidos}}$$

Observações

I. α e K_i aumentam com a temperatura.

II. Quanto maior o K_i, mais forte será o ácido ou a base.

III. Para um poliácido, a ionização é gradativa.

1)
$$H_2S \stackrel{\leftarrow}{\to} H^+ + HS^- K_1 = 1,0 \cdot 10^{-7}$$

2) HS⁻
$$\rightleftharpoons$$
 H⁺ + S²⁻ $K_2 = 1.3 \cdot 10^{-13}$

3. LEI DA DILUIÇÃO DE OSTWALD

É uma lei que relaciona o grau de ionização com a concentração molar da solução.

Supondo \mathbf{n} mols do eletrólito HA, dissolvidos em V litros de solução e, apresentando o grau de ionização α , teremos:

	HA ← → H ⁺ + A ⁻				
nº inicial de mols	n	zero	zero		
nº de mols ionizados	nα	nα	nα		
nº de mols no equilíbrio	n – nα	nα	nα		
concentrações molares no equilíbrio	$\frac{n(1-\alpha)}{V}$	$\frac{n\alpha}{V}$	$\frac{n\alpha}{V}$		

$$K_i = \frac{\left[H^+\right] \cdot \left[A^-\right]}{\left[HA\right]} \rightarrow K_i = \frac{\frac{n \alpha}{V} \cdot \frac{n \alpha}{V}}{\frac{n \cdot (1 - \alpha)}{V}}$$

$$K_i = \frac{n \alpha^2}{V(1 - \alpha)}$$
 ou $K_i = \frac{m \alpha^2}{1 - \alpha}$

(Lei da Diluição de Ostwald)

Observação – Quanto mais diluída for a solução, maior será o grau de ionização.

4. EFEITO DO ÍON COMUM

É a aplicação do princípio de Le Chatelier para equilíbrios iônicos.

EXERCÍCIOS DE APLICAÇÃO

01 (UFPE-PE) Quando somos picados por uma formiga, ela libera ácido metanóico (fórmico), HCOOH.

Supondo que a dor que sentimos seja causada pelo aumento da acidez e, que ao picar, a formiga libera um micromol de ácido metanóico num volume de um microlitro, qual deve ser a concentração de H⁺(aq) na região da picada? Admita que a solução tem comportamento ideal e que a auto ionização da água é desprezível.

Dados: Ka » 10⁻⁴ (constante de dissociação do ácido metanóico).

- a) 1 M
- b) 10⁻¹ M
- c) 10⁻² M
- d) 10⁻³ M
- e) 10⁻⁴ M

02 (FATEC-SP) Considere volumes iguais de soluções 0,1 mol.L⁻¹ dos ácidos listados a seguir, designados por I, II, III e IV e seus respectivos Ka.

	Ácido	Fórmula	K _a
I.	Ácido etanóico	CH ₃ COOH	1,7 · 10 ⁻⁵
II.	Ácido monocloro- acético	CH ₂ CICOOH	1,3 · 10 ⁻³
III.	Ácido dicloroacético	CHCl ₂ COOH	5,0 · 10 ⁻²
IV.	Ácido tricoroacético	CCI3COOH	2,3 · 10 ⁻¹

A concentração de H⁺ será

- a) maior na solução do ácido IV.
- b) maior na solução do ácido I.
- c) a mesma nas soluções dos ácidos II e III.
- d) a mesma nas soluções dos ácidos I, II, III e IV.
- e) menor na solução do ácido IV.
- 03 (UFRGS-RS) Em uma solução aquosa de ácido acético se estabelece o seguinte equilíbrio:

$$CH_3COOH \rightleftharpoons H^+ + CH_3COO^-$$

A adição de uma pequena quantidade de acetato de sódio (CH₃COONa) a esta solução

- a) diminui o seu Ka.
- b) aumenta a concentração dos íons H⁺.
- c) diminui o grau de ionização do ácido.
- d) mantém inalterada a concentração de H⁺.
- e) reduz a zero o grau de ionização do ácido acético.

04 (ITA-SP) Numa solução aquosa 0,100 mol/L de um ácido monocarboxílico, a 25 °C, o ácido está 3,7% ionizado após o equilíbrio ter sido atingido. Assinale a opção que contém o valor correto da constante de ionização desse ácido nessa temperatura.

a) 1,4

b) $1.4 \cdot 10^{-3}$

c) 1,4 · 10⁻⁴

d) $3.7 \cdot 10^{-2}$

e) 3,7 · 10⁻⁴

05 (UFES-ES) Uma solução é preparada introduzindo-se 14,1 g de ácido nitroso em um balão volumétrico de 1 000 cm³ e completando-se com água destilada. Sabendo-se que 4,1% do ácido se ionizou, determine os valores das concentrações dos produtos no equilíbrio e o valor do Ka para o ácido nitroso.

Dados: Massas atômicas H = 1 u, N = 14 u, O = 16 u

(FMTM-MG) Os fertilizantes nitrogenados contêm sais na forma de nitratos, sais de amônio e outros compostos. As plantas conseguem absorver nitrogênio diretamente de nitratos presentes no solo. Já no caso da amônia e de sais de amônia, a absorção desse elemento só é possível graças à ação de bactérias existentes no solo. No quadro abaixo, estão relacionadas algumas substâncias nitrogenadas usadas como fertilizantes, em que o percentual em massa (teor) de nitrogênio é variável

Composto	Fórmula Química
Amônia	NH ₃
Nitrato de Amônio	NH ₄ NO ₃
Sulfato de Amônio	$(NH_4)_2SO_4$

a) Considere o fertilizante sulfato de amônio: qual o teor de nitrogênio presente nesse composto? Dado: Massa molar (g \cdot mol⁻¹) H = 1; N = 14; O = 16; S = 32

b) A 25 °C, o gás amônia, NH₃, produz solução aquosa básica, de acordo com a equação:

$$NH_3(g) + H_2O(\ell) \rightleftharpoons NH_4^+(aq) + OH^-(aq) Kb = 1.8 \cdot 10^{-5}$$

Nessa mesma temperatura, qual o valor da [OH-] em uma solução 0,1 mol/L de amônia?

07 (UFRGS-RS) Na tabela abaixo, são apresentados os pontos de fusão, os ponto de ebulição e as constantes de ionização de alguns ácidos carboxílicos.

Ácido	PF(°C)	PE(°C)	K _a (25 °C)
НСООН	8,4	100,6	$1,77 \cdot 10^{-4}$
CH ₃ COOH	16,7	118,2	$1,75 \cdot 10^{-5}$
CH ₃ CH ₂ COOH	20,8	141,8	1,34 · 10 ⁻⁵

A respeito dessa tabela, são feitas as seguintes afirmações:

I. o ácido propanóico é um sólido à temperatura ambiente.

II. o ácido acético é mais forte que o ácido fórmico.

III. o ácido metanóico apresenta menor ponto de ebulição devido a sua menor massa molecular.

Quais estão corretas?

- a) Apenas I.
- b) Apenas II.
- c) Apenas III.
- d) Apenas I e III.
- e) Apenas II e III.

08 (UFSM-RS) Considere a tabela e o quadro esquemático:

Solução	Composto	Concentração	Acidez (K _a)	
Α	Ácido acético	3mol/L	1,7.10 ⁻⁵	
В	Ácido tricloroacético	0,01mol/L	2.10 ⁻¹	

Os frascos que melhor representam as soluções A e B são, respectivamente:

- a) 1 e 2
- b) 1 e 3
- c) 2 e 4
- d) 3 e 2
- e) 4 e 1

09 (UFSM-RS) Um indicador ácido-base apresenta, em solução aquosa, o equilíbrio:

$$\underbrace{\mathsf{HIn}}_{\mathsf{Cor}\;\mathsf{A}} + \mathsf{H}_2\mathsf{O} \rightleftarrows \mathsf{H}_3\mathsf{O}^+ + \underbrace{\mathsf{In}}_{\mathsf{Cor}\;\mathsf{B}}^-$$

Com relação ao comportamento do indicador frente à substância 1, pode-se afirmar que sua coloração será 2, porque o equilíbrio desloca-se no sentido da espécie 3. Com base nessa afirmação, escolha a alternativa que apresenta, corretamente, a substituição de 1, 2 e 3.

- a) 1 vinagre; 2 cor A; 3 ionizada.
- b) 1 amoníaco; 2 cor B; 3 ionizada.
- c) 1 acetato de sódio; 2 cor A; 3 ionizada.
- d) 1 soda; 2 cor B; 3 não-ionizada.
- e) 1 suco de limão; 2 cor B; 3 não-ionizada.

10 (ITA-SP) Em relação aos equilíbrios:

$$H_2X_{(aq)} \rightleftharpoons H_{(aq)}^+ + HX_{(aq)}^-; K_1$$

$$HX_{(aq)}^{-} \Longleftrightarrow H_{(aq)}^{+} + X_{(aq)}^{2-}; \hspace{0.2cm} K_{2}$$

podemos dizer, em geral, que:

- a) $K_1 > K_2$
- b) $K_1 > 0$ e $K_2 < 0$
- c) $K_1 < K_2$
- d) $K_1 < 0 e K_2 > 0$
- e) $K_1 \cong K_2$
- 11 (FEI-SP) Uma solução 0,01 mol/L de um monoácido está 4,0% ionizada. A constante de ionização desse ácido é:
- a) $6,66 \cdot 10^{-3}$
- b) 1,60 · 10⁻⁵
- c) $3,32 \cdot 10^{-5}$
- d) $4,00 \cdot 10^{-5}$
- e) 3,00 · 10⁻⁶
- 12 (UEL-PR) A constante de ionização dos ácidos em água (Ka) indica a força relativa dos ácidos.

Ácidos	К _а (а 25 °С)
H ₂ S	1,0 · 10 ⁻⁷
HNO ₂	6,0 · 10 ⁻⁶
H ₂ CO ₃	4,4 · 10 ⁻⁷
CH ₃ COOH	1,8 · 10 ^{−5}
C ₆ H ₅ COOH	6,6 · 10 ⁻⁵

Na comparação entre as forças de ácidos, é correto afirmar que o ácido mais forte tem maior:

- a) massa molecular.
- b) densidade.
- c) temperatura de ebulição.
- d) temperatura de fusão.
- e) constante de ionização.
- 13 (MACKENZIE-SP) Sejam os equilíbrios aquosos e suas constantes de ionização a 25°C:

$$HF \rightleftharpoons H^+ + F^- K_1 = 10^{-4}$$

 $HA \rightleftharpoons H^+ + A^- K_2 = 10^{-5}$

O valor da constante de equilíbrio da reação abaixo é:

$$HF + A^{-} \rightleftharpoons HA + F^{-}$$

- a) 10⁻⁹
- b) 10⁻⁵
- c) 10
- d) 10⁻¹
- e) 10⁻²⁰

14 (UCDB-MS) Considere soluções aquosas de mesma concentração molar dos ácidos relacionados na tabela.

Ácido	K _a (25 °C)
Ácido nitroso (HNO ₂)	5,0 · 10 ⁻⁴
Ácido acético (H ₃ C — COOH)	1,8 · 10 ⁻⁵
Ácido hipocloroso (HCIO)	3,2 · 10 ⁻⁸
Ácido cianídrico (HCN)	2,3 · 10 ⁻¹⁰

Podemos concluir que:

- a) o ácido que apresenta maior acidez é o ácido cianídrico.
- b) o ácido que apresenta menor acidez é o ácido acético.
- c) o ácido que apresenta menor acidez é o ácido hipocloroso.
- d) o ácido que apresenta maior acidez é o ácido nitroso.
- e) todos os ácidos apresentam a mesma acidez.
- 15 (UFSM-RS) Considere as constantes de ionização dos ácidos I, II e III: $K_1 = 7.0 \cdot 10^{-5}$; $K_{II} = 1.0 \cdot 10^{-7}$; $K_{III} = 2.0 \cdot 10^{-9}$ Colocando-os em ordem crescente de acidez, têm-se:
- a) I, II e III.
- b) I, III e II.
- c) II, III e I.
- d) III, I e II.
- e) III, II e I.
- 16 (UFMG-MG) Um monoácido fraco tem constante de ionização igual a 10⁻⁸, em temperatura ambiente. Este ácido, numa solução molar, terá grau de ionização, aproximadamente, igual a:
- a) 10%
- b) 1%
- c) 0,1%
- d) 0,01%
- e) 0,001%
- 17 (UFMT-MT) Uma solução 0,2 molar de hidróxido de amônio apresenta grau de ionização igual a 0,015. A constante de ionização desse soluto é igual a:
- a) $3.4 \cdot 10^{-4}$
- b) 2,4 · 10⁻¹¹
- c) $1.8 \cdot 10^{-7}$
- d) 1.8 · 10⁻⁵
- e) 4,5 · 10⁻⁵
- 18 (UFES-ES) Considere as ionizações:

$$H_2CO_3 \rightleftharpoons H^+ + HCO_3^- \quad \alpha_1, K_1$$

 $HCO_3^- \rightleftharpoons H^+ + CO_3^- \quad \alpha_2, K_2$

$$HCO_3^- \rightleftharpoons H^+ + CO_3^- \qquad \alpha_2, K_2$$

Podemos afirmar que:

- a) $\alpha_1 = \alpha_2 e K_1 = K_2$
- b) $\alpha_1 > \alpha_2 e K_1 < K_2$
- c) $\alpha_1 < \alpha_2 e K_1 < K_2$
- d) $\alpha_1 > \alpha_2 e K_1 > K_2$
- e) $\alpha_1 < \alpha_2 e K_1 > K_2$

19 (PUC-MG) A seguir, estão tabeladas as constantes de ionização (Ka) em solução aquosa a 25°C.

Ácido	K _a (25 °C)
HBrO	2,0 · 10 ⁻⁹
HCN	4,8 · 10 ⁻¹⁰
НСООН	1,8 · 10 ⁻⁴
HCIO	3,5 · 10 ⁻⁸
HCIO ₂	4,9 · 10 ^{−3}

A ordem decrescente de acidez está corretamente representada em:

- a) $HC\ell O_2 > HCOOH > HC\ell O > HBrO > HCN$.
- b) HCN > HBrO > HC ℓ O > HCOOH > HC ℓ O₂.
- c) $HC\ell O_2 > HC\ell O > HCOOH > HCN > HBrO$.
- d) HCOOH > HC ℓ O > HC ℓ O₂ > HBrO > HCN.
- e) $HC\ell O_2 > HBrO > HC\ell O > HCOOH > HCN$.
- **20 (FEI-SP)** A constante de equilíbrio Ka dos ácidos HA, HB e HC, a 25°C, é, respectivamente, $1.8 \cdot 10^{-5}$, $5.7 \cdot 10^{-8}$ e $1.8 \cdot 10^{-4}$. A ordem crescente de força desses ácidos é:
- a) HB; HA; HC
- b) HC; HA; HB
- c) HB; HC; HA
- d) HC; HB; HA
- e) HA; HB; HC
- 21 (E. E. Mauá-SP) Ao ser dissolvido 0,1 mol de ácido acético em água suficiente para um litro, constata-se que 0,06 g do ácido acético se ioniza. Qual o grau de ionização do ácido acético nessa solução?

 Dado: H = 1 u; C = 12 u; O = 16 u.
- 22 (UEMA-MA) Considere o equilíbrio químico:

$$H_3C$$
 — $COOH \stackrel{K_a}{\rightleftharpoons} H^+ + H_3C$ — COO^- a 25 °C

e assinale o que for correto.

- (01) A adição de etanoato de sódio (acetato de sódio) aumentará a quantidade de íon H⁺.
- (02) A adição de etanoato de sódio aumentará o grau de ionização do ácido etanóico.
- (04) A adição de $HC\ell$ provocará um deslocamento do equilíbrio para a esquerda.
- (08) A adição de hidróxido de sódio não influenciará no equilíbrio.
- (16) Ka é a constante de ionização do ácido etanóico e não varia com a temperatura.
- (32) O ácido etanóico (ácido acético) é um ácido forte.
- 23 (FAAP-SP) Calcule a constante do ácido nitroso (HNO₂) a uma temperatura de 25 °C, sabendo que, numa solução aquosa de concentração 0,02 mol/L, a essa temperatura, ele apresenta um grau de ionização igual a 15%.

- 24 (UEL-PR) Pela adição de um ácido fortíssimo e concentrado em água, ou pelo aumento da temperatura da solução, o grau de ionização desse ácido será, respectivamente:
- a) aumentado, aumentado.
- b) diminuído, aumentado.
- c) aumentado, diminuído.
- d) não será alterado, aumentado.
- e) diminuído, não será alterado.
- 25 (CESGRANRIO-RJ) Considere a tabela de valores de Ka das substâncias abaixo.

Substância	Ka
CH ₃ — COOH	1,8 · 10 ⁻⁵
О — он	1,3 · 10 ⁻¹⁰
H ₂ O	1,0 · 10 ⁻¹⁴
$\mathrm{CH_3}$ — $\mathrm{CH_2OH}$	1,0 · 10 ⁻¹⁶

Com base nesses valores, a ordem correta de acidez é:

- a) água < álcool < fenol < ácido carboxílico.
- b) álcool < ácido carboxílico < água < fenol.
- c) álcool < água < fenol < ácido carboxílico.
- d) fenol > ácido carboxílico > água > álcool.
- e) fenol > álcool > água > ácido carboxílico.
- 26 (FCC-SP) A ionização do ácido ortoarsênico, em solução aquosa diluída, processa-se conforme as equações:

$$H_3AsO_4 + H_2O \rightleftharpoons H_3O^+ + H_2AsO_4^- K_1$$

 $H_2AsO_4^- + H_2O \rightleftharpoons H_3O^+ + HAsO_4^- K_2$
 $HAsO_4^- + H_2O \rightleftharpoons H_3O^+ + AsO_4^- K_3$

A ordem de grandeza das respectivas constantes de ionização é:

- a) $K_1 = K_2 = K_3$
- b) $K_1 > K_2 > K_3$
- c) $K_1 < K_2 < K_3$
- d) $K_1 < K_2 > K_3$
- e) $K_1 > K_2 = K_3$

27 (UFF-RJ) Na bancada de um laboratório, um frasco exibe o seguinte rótulo:

Isto significa que, para o reagente em questão, cujo Ka é 1,75 \cdot 10⁻⁵, no equilíbrio, existem no frasco, aproximadamente:

- a) x² mol·L⁻¹ de CH₃COOH.
- b) $(0.5 x) \text{ mol} \cdot L^{-1} \text{ de CH}_3\text{COOH}.$
- c) (x 0,5) mol · L^{-1} de CH_3COO^- .
- d) (0,5 x) mol · L^{-1} de H_3O^+ .
- e) x mol· L⁻¹ de CH₃COOH.

28 (UFPA-PA) O grau de ionização do hidróxido de amônio em solução 2 molar é 0,283% a 20°C. A constante de ionização da base, nesta temperatura, é igual a:

- a) $1,6 \cdot 10^{-5}$
- b) 1,0 · 10⁻³
- c) 4,0 · 10⁻³
- d) $4.0 \cdot 10^{-2}$
- e) 1,6 · 10⁻¹

29 (FUVEST-SP) Valor numérico da constante de ionização do ácido acético = $1.8 \cdot 10^{-5}$.

Dada amostra de vinagre foi diluída com água até se obter uma solução com $[H^+] = 10^{-3}$ mol/L. Nessa solução, as concentrações em mol/L, de CH_3COO^- e de CH_3COO^+ e de CH_3COO^- e

- a) $3 \cdot 10^{-1} e 5 \cdot 10^{-10}$
- b) $3 \cdot 10^{-1} \,\mathrm{e} \, 5 \cdot 10^{-2}$
- c) $1 \cdot 10^{-3}$ e $2 \cdot 10^{-5}$
- d) $1 \cdot 10^{-3} \text{ e } 5 \cdot 10^{-12}$
- e) $1 \cdot 10^{-3}$ e $5 \cdot 10^{-2}$

A constante de dissociação dos ácidos em água (Ka) indica a força relativa dos ácidos. De acordo com a tabela abaixo, responda às questões **30** e **31**:

Ácidos	Ka (a 25°C)
H ₂ S	1.0×10^{-7}
HNO ₂	6.0×10^{-6}
H ₂ CO ₃	4.4×10^{-7}
CH ₃ COOH	1,8 x 10 ⁻⁵
C ₆ H ₅ COOH	6,6 x 10 ⁻⁵

- 30 (UFAL-AL) Qual o ácido mais forte?
- a) H₂S
- b) HNO₂
- c) H₂CO₃
- d) CH₃COOH
- e) C₆H₅COOH
- 31 (UFAL-AL) Qual o ácido mais fraco?
- a) H₂S
- b) HNO₂
- c) H₂CO₃
- d) CH₃COOH
- e) C₆H₅COOH
- 32 (FCC) A constante para as 3 fases de dissociação (Kn) do ácido ortoarsênico vale:
- a) $K_n = K_1 + K_2 + K_3$
- b) $K_n = K_1 . K_2 . K_3$
- c) $K_n = K_1$
- d) $K_{\rm n} = \frac{K_{\rm l}}{K_{\rm 2}}.\frac{K_{\rm l}}{K_{\rm 3}}$
- e) $K_n = \frac{K_1}{K_2} + K_3$
- 33 Seja o equilíbrio: H_3C -COOH $\rightleftharpoons H^+ + H_3C$ -COO $^-$. Adicionando-se água:
- a) "Para que lado" se desloca o equilíbrio?
- b) O que acontece com a concentração de H₃C-COOH?
- c) O que acontece com o grau de ionização do ácido acético?
- d) O que acontece com a constante de ionização do ácido acético?
- 34 Uma solução 0,05mol/L de ácido fraco HX é 1% ionizado. Qual o valor do Ki, aproximadamente?
- 35 Um monoácido fraco tem constante de ionização igual a 10⁻⁹ em temperatura ambiente. Esse ácido numa solução 0,1 mol/L terá que grau de ionização?
- 36 (UFU-MG) A constante de equilíbrio Ka para a reação: $HCN(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + CN^-(aq) é 7,2 x 10^{-10}$, a 25°C. Calcular a concentração em mol/L de H_3O^+ em uma solução de HCN 1,0 mol/L a 25°C.
- a) 7.2×10^{-10}
- b) $\sqrt{7.2}$ x 10^{-5}
- c) 7.2×10^{-9}
- d) 3.6×10^{-10}
- e) 6.0×10^{-5}

37 (PUC-SP) Considere o equilíbrio representado por:

$$\begin{array}{c} O \\ O \\ Acido \\ benzóico \end{array} \begin{array}{c} O \\ AH > 0 \end{array}$$

Qual dos procedimentos abaixo deslocará o equilíbrio no sentido 1?

- a) Evaporação da água a uma temperatura fixa.
- b) Aumento de pressão.
- c) Adição de benzoato de potássio sólido.
- d) Adição de ácido sulfúrico.
- e) Aumento da temperatura da solução.
- 38 (PUCCAMP-SP) Para aumentar efetivamente a concentração de íons carbonato no equilíbrio:

$$HCO_3^- + OH^- \rightleftharpoons H_2O + CO_3^=$$

dever-se-ia adicionar:

- a) HCℓ
- b) H₂SO₄
- c) NaOH
- d) H₂O
- e) CH₃COOH

39 Temos o equilíbrio: HF + $H_2O \rightleftharpoons H_3O^+ + F^-$

A adição de fluoreto de sódio provocará todas as alterações abaixo, exceto:

- a) A diminuição da concentração de H₃O⁺.
- b) O aumento da concentração de íons fluoreto.
- c) A diminuição da concentração de HF (não-dissociado).
- d) A diminuição do grau de ionização.
- e) A inalteração da constante de ionização.
- 40 (UNICAMP-SP) A reação de íons de ferro (III) com íons tiocianato pode ser representada pela equação:

$$Fe^{3+}(aq) + SCN^{-}(aq) = FeSCN^{2+}(aq)$$

Nesta reação a concentração dos íons varia segundo o gráfico a seguir, sendo a curva I correspondente ao íon Fe³⁺(aq).

- a) A partir de que instante podemos afirmar que o sistema entrou em equilíbrio? Explique.
- b) Calcule a constante de equilíbrio para a reação de formação do FeSCN²⁺(aq).

41 (UNICAMP-SP) O alumínio é um dos metais que reagem facilmente com íons H⁺, em solução aquosa, liberando o gás hidrogênio. Soluções em separado, dos três ácidos abaixo, de concentração 0,1 mol L⁻¹, foram colocadas para reagir com amostras de alumínio, de mesma massa e formato, conforme o esquema:

Ácidos:

Ácido acético, Ka = 2 x 10⁻⁵ Ácido clorídrico, Ka = muito grande Ácido monocloroacético, Ka = 1,4 x 10⁻³

- a) Em qual das soluções a reação é mais rápida? Justifique.
- b) Segundo o esquema, como se pode perceber que uma reação é mais rápida do que outra?
- 42 (UFRGS-RS) O HF, em solução aquosa, comporta-se como um ácido segundo a equação abaixo.

$$HF + H2O \rightleftharpoons F^- + H3O^+$$

O ácido fluorídrico foi tratado, separadamente, com as soluções abaixo.

- I. HCℓ
- II. NaOH
- III. NH₃
- IV. KF

Quais das soluções provocam a diminuição do grau de ionização do ácido fluorídrico?

- a) Apenas I.
- b) Apenas IV.
- c) Apenas I e IV.
- d) Apenas II e III.
- e) I, II, III e IV.

43 (UNB-DF) Cerca de 90% do ácido nítrico, principal matéria-prima dos adubos à base de nitratos, é obtido pela reação de oxidação da amônia pelo O₂, em presença de catalisador – platina com 5% a 10% de paládio ou de ródio (ou de ambos) – a uma temperatura de 950°C. A reação é representada pela equação:

$$6 \text{ NH}_3(g) + 9 \text{ O}_2(g) \rightleftharpoons 2 \text{ HNO}_3(g) + 4 \text{ NO}(g) + 8 \text{ H}_2\text{O}(g)$$

Essa reação ocorre nas seguintes etapas:

I. 6 NH₃(g) + 15/2 O₂(g)
$$\rightleftharpoons$$
 6 NO(g) + 9 H₂O(g) Δ H = -1359 kJ
II. 3 NO(g) + 3/2 O₂(g) \rightleftharpoons 3 NO₂(g) Δ H = -170 kJ
III. 3 NO₂(g) + H₂O(g) \rightleftharpoons 2 HNO₃(g) + NO(g) Δ H = -135 kJ

Considerando que as reações das etapas de obtenção do ácido nítrico, totalmente ionizável em água, estão em equilíbrio, julgue os itens a seguir.

- (1) Um aumento de pressão no sistema reacional eleva a produção de ácido nítrico.
- (2) Pela equação global, verifica-se que a adição de água ao sistema diminui o rendimento da reação.
- (3) Sabendo-se que a constante de ionização do ácido acético é igual a 1,8 x 10^{-5} mol/L, é correto concluir que este é mais forte que o ácido nítrico.
- (4) A expressão para a constante de equilíbrio da reação global é $K_C = \frac{[HNO_3].[NO].[H_2O]}{[NH_3].[O_2]}$
- 44 (UNICAMP-SP) O gás carbônico, CO₂, é pouco solúvel em água. Esse processo de dissolução pode ser representado pela equação:

$$CO_2(g) + H_2O(I) = HCO_3^-(aq) + H^+(aq)$$

Essa dissolução é muito aumentada quando se adiciona NaOH na água. Para se determinar a quantidade de CO₂ em uma mistura desse gás com o gás nobre neônio, foi realizado um experimento.

O esquema abaixo mostra o experimento e o resultado observado. A proveta está graduada em mililitros (mL).

Sabendo que não houve variação de temperatura durante o experimento e considerando desprezíveis a solubilidade do gás neônio em água e a pressão de vapor da água nessas condições:

- a) Como a presença de NaOH aumenta a dissolução do gás carbônico na água?
- b) Calcule a pressão parcial do CO2 na mistura inicial, sabendo que a pressão ambiente é de 90kPa (quilopascal)

45 (FUVEST-SP) Em uma solução obtida pela dissolução de cloreto de cobalto (II) em ácido clorídrico tem-se:

$$[Co(H_2O)_6]^{2+}(aq) + 4 Cl^-(aq) \rightleftharpoons [CoCl_4]^{2-}(aq) + 6 H_2O(l)$$

rosado azul

Essa solução foi dividida em três partes, cada uma colocada em um tubo de ensaio. Cada tubo de ensaio foi submetido a uma temperatura diferente, sob pressão ambiente, como ilustrado abaixo.

- a) Em que sentido a reação representada acima absorve calor? Justifique.
- b) Em qual desses três experimentos a constante do equilíbrio apresentado tem o menor valor? Explique.

GABARITO

01- Alternativa C

$$\begin{split} \mathcal{M} &= \frac{n}{V} = \frac{1 \cdot 10^{-6}}{1 \cdot 10^{-6}} = 1 \, \text{mol/L} \\ K_{\text{a}} &= \mathcal{M} \cdot \alpha^2 \Rightarrow 10^{-4} = 1 \cdot \alpha^2 \\ \alpha &= 10^{-2} \\ [\text{H}^+] &= \mathcal{M} \cdot \alpha \Rightarrow [\text{H}^+] = 1 \cdot 10^{-2} \\ [\text{H}^+] &= 10^{-2} \, \text{mol/L} \end{split}$$

02- Alternativa A

Quanto maior for o valor de Ka, mais ionizado o ácido, maior [H⁺].

03- Alternativa C

Desloca o equilíbrio para a esquerda, diminuindo o valor de α .

04- Alternativa C

$$K_i = M \cdot \alpha^2 \rightarrow K_i = 0.1 \cdot (3.7 \cdot 10^{\text{--}2})^2 \rightarrow K_i = 1.4 \cdot 10^{\text{--}4}$$

$$\begin{split} [H^+] &= 1,23 \cdot 10^{-2} \text{ mol/L} \\ [NO_2^-] &= 1,23 \cdot 10^{-2} \text{ mol/L} \\ K_a &= 5,0 \cdot 10^{-4} \text{ mol/L} \\ HNO_2 \\ \mathcal{M} &= \frac{14,1}{47 \cdot 1} = 0,3 \text{ mol/L} \\ K_a &= \mathcal{M} \cdot \alpha^2 \Rightarrow K_a = 0,3 \cdot (4,1 \cdot 10^{-2})^2 \Rightarrow K_a = 5 \cdot 10^{-4} \\ [H^+] &= [NO_2^-] = \mathcal{M} \cdot \alpha = 0,3 \cdot 4,1 \cdot 10^{-2} = 1,23 \cdot 10^{-2} \text{ mol/L} \end{split}$$

06-

a)
$$(NH_4)_2SO_4$$
 $M = 132$ g/mol 132 g $- 100\%$ 28 g $- x$ $x = 21, 21\%$ b) $K_b = \mathcal{M} \cdot \alpha^2$ $1,8 \cdot 10^{-5} = 0,1 \cdot \alpha^2$ $\alpha = 1,34 \cdot 10^{-2}$ $[OH^-] = \mathcal{M} \cdot \alpha$ $[OH^-] = 0,1 \cdot 1,34 \cdot 10^{-2}$ $[OH^-] = 1,34 \cdot 10^{-3}$ mol/L

07- Alternativa C

- I. (F) o ácido propanóico é líquido à temperatura ambiente.
- II. (F) o ácido acético é mais fraco que o ácido fórmico.
- III. (V) o ácido metanóico apresenta menor ponto de ebulição devido a sua menor massa molecular.

08- Alternativa B

Solução A: maior concentração (↑nº partículas), ácido mais fraco (menos ionizado) → esquema 1 Solução B: menor concentração (↓nº partículas), ácido mais fraco (mais ionizado) → esquema 3

09- Alternativa B

A adição de um ácido aumenta a concentração de íons H₃O⁺ do equilíbrio, deslocando-o para a esquerda predominando a cor A, prevalecendo a forma não ionizada do indicador.

A adição de uma base, os íons OH^- da base consumem os íons H_3O^+ do equilíbrio, deslocando-o para a direita predominando a cor B, prevalecendo a forma ionizada do indicador.

10- Alternativa A

Na ionização de poliácidos, a ionização do primeiro hidrogênio, faz com que o segundo hidrogênio que restou fique mais fortemente atraído pelo ânion que se formou, dificultando a sua ionização enfraquecendo o ácido e com isso temos: K₁ > K₂.

11- Alternativa B

$$Ka = [] \cdot \alpha^2 = 10^{-2} \cdot (4.10^{-2})^2 = 16.10^{-6} = 1,6.10^{-5}$$

12- Alternativa E

O ácido mais forte está mais ionizado, logo a concentração do ácido ionizado aumenta e como a concentração e a constante de ionização são grandezas diretamente proporcionais, com isso temos, ácido mais forte possui maior constante de ionização.

13- Alternativa C

HF + A⁻
$$\rightleftharpoons$$
 HA + F⁻ K = $\frac{[HA] \cdot [F^{-}]}{[HF] \cdot [A^{-}]}$

$$\mathsf{K} = \mathsf{K}_1 \cdot \frac{1}{\mathsf{K}_2} = \frac{[\mathsf{H}^+] \cdot [\mathsf{F}^-]}{[\mathsf{H}\mathsf{F}]} \cdot \frac{[\mathsf{H}\mathsf{A}]}{[\mathsf{H}^+] \cdot [\mathsf{A}^-]}$$

$$K = \frac{10^{-4}}{10^{-5}} = 10$$

14- Alternativa D

O ácido mais forte está mais ionizado, logo a concentração do ácido ionizado aumenta e como a concentração e a constante de ionização são grandezas diretamente proporcionais, com isso temos, ácido mais forte possui maior constante de ionização.

15- Alternativa E

O ácido mais forte possui maior constante de ionização sendo assim a ordem crescente de acidez é: III < II < I

16- Alternativa D

$$K_a$$
 = [] . $\alpha^2 \rightarrow 10^{\text{-8}}$ = 1 . $\alpha^2 \rightarrow \alpha$ = $10^{\text{-4}}$. $100\% \rightarrow \alpha$ = 0,01%

17- Alternativa E

$$Ka = [] \cdot \alpha^2 = (0,2) \cdot (0,015)^2 = (2.10^{-1}) \cdot (15.10^{-3})^2 = (2.10^{-1}) \cdot (2,25.10^{-4}) = 4,5.10^{-5}$$

18- Alternativa D

Na ionização de poliácidos, a ionização do primeiro hidrogênio, faz com que o segundo hidrogênio que restou fique mais fortemente atraído pelo ânion que se formou, dificultando a sua ionização enfraquecendo o ácido e com isso temos: $K_1 > K_2$ e $\alpha_1 > \alpha_2$.

19- Alternativa A

O ácido mais forte possui maior constante de ionização sendo assim a ordem decrescente de acidez é: $HC\ell O_2 > HCOOH > HC\ell O > HBrO > HCN$

20- Alternativa A

O ácido mais forte possui maior constante de ionização sendo assim a ordem crescente de acidez é: HB < HA < HC

21-

Cálculo do número de mols de ácido acético que ionizou: $n = \frac{m}{M} = \frac{0.06}{60} = 1.10^{-3} \, mol$

Cálculo da constante de ionização do ácido acético:

	CH₃COOH	11	CH ₃ COO ⁻	+	H⁺
Início	0,1M		0		0
Reage/Forma	1.10 ⁻³ M		1.10 ⁻³ M		1.10 ⁻³ M
Equilíbrio	0,1-1.10 ⁻³		1.10 ⁻³ M		1.10 ⁻³ M

$$K_a = \frac{[CH_3COO^-].[H^+]}{[CH_3COOH]} = \frac{(10^{-3}).(10^{-3})}{(10^{-1})} = 1.10^{-5}$$

Cálculo do grau de ionização do ácido acético: $K_a = []$. $\alpha^2 \rightarrow 10^{-5} = 0,1$. $\alpha^2 \rightarrow \alpha = 10^{-2}$. $100\% \rightarrow \alpha = 1\%$

22-

- (01) (F) A adição de etanoato de sódio (acetato de sódio) consumirá os íons H⁺, diminuindo a quantidade de íon H⁺.
- (02) (F) A adição de etanoato de sódio diminuirá o grau de ionização do ácido etanóico, pois o equilíbrio será deslocado para a esquerda.
- (04) (V) A adição de $HC\ell$ provocará um deslocamento do equilíbrio para a esquerda.
- (08) (F) A adição de hidróxido de sódio consumirá os íons H⁺ do equilíbrio, deslocando-o para a direita.
- (16) (F) Ka é a constante de ionização do ácido etanóico e varia com a temperatura.
- (32) (F) O ácido etanóico (ácido acético) é um ácido fraco.

23-

$$K_a = \frac{[].\alpha^2}{1-\alpha^2} = \frac{(0,02).(0,15)^2}{(1-0,15)} = 5,3.10^{-4}$$

24- Alternativa A

Na adição do ácido em água (diluição) como $K_a = [] \cdot \alpha^2$, para o valor de K_a permaneça inalterado, ocorre $\downarrow []$ logo $\uparrow \alpha$. A adição do ácido em água é um processo exotérmico, ou seja, favorecido pelo aumento da temperatura, sendo assim favorecerá a reação direta, aumentando o grau de ionização do ácido.

25- Alternativa C

O ácido mais forte possui maior constante de ionização sendo assim a ordem crescente de acidez é: álcool < água < fenol < ácido carboxílico

26- Alternativa B

Na ionização de poliácidos, a ionização do primeiro hidrogênio, faz com que o segundo hidrogênio que restou fique mais fortemente atraído pelo ânion que se formou, dificultando a sua ionização enfraquecendo o ácido e com isso temos: $K_1 > K_2 > K_3$

27- Alternativa B

	CH₃COOH	1	CH ₃ COO⁻	+	H⁺
Início	0,5M		0		0
Reage/Forma	Χ		Χ		Χ
Equilíbrio	0,5-X		Х		Х

28- Alternativa A

$$K_a = [] \cdot \alpha^2 = 2 \cdot (0,.283.10^{-2})^2 = 1,6.10^{-5}$$

29- Alternativa E

	CH₃COOH	1	CH ₃ COO⁻	+	H⁺
Início	Х		0		0
Reage/Forma	10 ⁻³ M		10 ⁻³ M		10 ⁻³ M
Equilíbrio	X-10 ⁻³ M		10 ⁻³ M		10 ⁻³ M

$$K_{a} = \frac{[CH_{3}COO^{-}].[H^{+}]}{[CH_{3}COOH]} \rightarrow 1,8.10^{-5} = \frac{(10^{-3}).(10^{-3})}{X} \rightarrow X = 5,5.10^{-2}M$$

30- Alternativa E

O ácido mais forte possui maior constante de ionização.

31- Alternativa A

O ácido mais fraco possui menor constante de ionização.

32- Alternativa B

Em geral, quando se adicionam duas ou mais equações para conseguir uma equação resultante, a constante de equilíbrio desta equação é igual ao produto das constantes de equilíbrio das equações que se somam.

33-

a.
$$H_3CCOOH$$
 $\stackrel{V_1}{\rightleftharpoons}$ H^+ + H_3CCOO^- adição de $H_2O: v_1 > v_2:$ desloca para a direita diminui

b. Diminui
$$[H_3COOH] = \frac{n \text{ aumenta}}{V_{\text{aumenta mais}}}$$

c. Aumenta, maior quantidade de íons

$$\alpha = \frac{\text{quantidade em mols que ioniza}}{\text{quantidade em mols dissolvida}}$$

d. Permanece constante (K_c só varia com a temperatura).

$$K_a = [] \cdot \alpha^2 = (10^{-2})^2 \cdot 5.10^{-2} = 10^{-4} \cdot 5.10^{-2} = 5 \cdot 10^{-6}$$

35-

Temos que:
$$K_i = \alpha^2 \cdot M$$

$$\alpha^2 = \frac{K_i}{M} \Rightarrow \alpha = \sqrt{\frac{K_i}{M}}$$

$$\alpha = \sqrt{\frac{10^{-9}}{10^{-1}}}$$

$$\alpha = \sqrt{10^{-8}} : \alpha = 10^{-4}$$

$$\alpha = 0.0001$$
 ou $\alpha = 0.01\%$

36- Alternativa B

equilíbrio 1 mol/L
$$\times$$
 mol/L \times mol/L \times mol/L \times despreza 1 – \times \times 1 \times 6 muito pequeno
$$K_a = \frac{[H_3O^+][CN^-]}{[HCN]}$$
 7,2 . $10^{-10} = [H_3O^+]^2$ \therefore $[H_3O^+] = \sqrt{7,2} \cdot 10^{-5}$ mol/L.

37- Alternativa E

A reação direta (reação 1) é endotérmica ($\Delta H > 0$) favorecida por um aumento de temperatura.

38- Alternativa C

A adição de NaOH aumenta a concentração dos íons OH⁻ do equilíbrio pelo efeito do íon comum, deslocando o equilíbrio para a direita, aumentando a concentração dos íons carbonato.

39- Alternativa C

A adição de fluoreto de sódio aumentará a concentração de íons fluoreto do equilíbrio pelo efeito do íon comum, deslocando o equilíbrio para a esquerda, aumentando a concentração de HF não ionizado.

40-

a. O equilíbrio será atingido quando as concentrações de cada espécie no sistema permanecerem constantes. Infelizmente, não podemos dizer com exatidão o valor da abscissa devido à má-construção do gráfico. O valor aproximado do tempo seria de 400 milissegundos.

b. Kc =
$$\frac{[\text{FeSCN}^{+2}]}{[\text{Fe}^{+3}] \cdot [\text{SCN}^{-}]}$$

A partir do gráfico, lemos os valores:

[Fe⁺³] = 8 x 10⁻³ mol/L, [SCN⁻] = 2 x 10⁻³ mol/L e
[FeSCN⁺²] = 5 x 10⁻³ mol/L

$$K_c = \frac{5 \times 10^{-3}}{8 \times 10^{-3} \cdot 2 \times 10^{-3}} = 312,5$$

41-

- a) Solução de ácido clorídrico, pois a concentração de H⁺ é maior.
- b) Basta medir o tempo que demora para recolher certo volume de hidrogênio.

42- Alternativa C

Para diminuir o grau de ionização do ácido, ou seja, deslocar o equilíbrio para a esquerda, deveremos adicionar: HCℓ ou KF.

43-

- (1) (V) Um aumento de pressão no sistema reacional, desloca e equilíbrio no sentido onde há uma diminuição do volume (menor número de mols), ou seja, para a direita elevando a produção de ácido nítrico.
- (2) (V) Pela equação global, verifica-se que a adição de água ao sistema diminui o rendimento da reação, pois o equilíbrio será deslocado para a esquerda.
- (3) (F) Sabendo-se que a constante de ionização do ácido acético é igual a 1,8 x 10^{-5} mol/L, é correto concluir que este é mais fraco que o ácido nítrico.

(4) (F) A expressão para a constante de equilíbrio da reação global é
$$K_C = \frac{[HNO_3]^2.[NO]^4.[H_2O]^8}{[NH_3]^6.[O_2]^9}$$

a. Os íons OH⁻ da solução de NaOH reagem com os íons H⁺ da solução de CO₂, deslocando o equilíbrio da dissolução do gás carbônico "para a direita". Desta maneira aumenta a dissolução do gás carbônico na água.

$$OH^{-}(aq) + H^{+}(aq) \rightarrow H_{2}O(I)$$

$$CO_{2}(g) + H_{2}O(I) \xrightarrow{} HCO_{3}^{-}(aq) + H^{+}(aq)$$

b. Admitindo a total dissolução do gás carbônico no final da experiência, teríamos:

InícioTérmino CO_2 + Neônio (Proveta)Neônio (Proveta)V = 90 mLV = 50 mL

Devido a dissolução do CO₂ no NaOH, a proveta fica menos densa.

Podemos determinar os volumes iniciais de cada gás na mistura:

$$V_{Neônio} = 50 \text{ mL}$$
 $V_{CO_2} = 90 \text{ mL} - 50 \text{ mL} = 40 \text{ mL}$
Portanto,
 $90 \text{ mL} - 90 \text{ kPa}$
 $40 \text{ mL} - x$
 $x = 40 \text{ kPa}$

45-

- a. Sentido de formação dos produtos. Aumentando a temperatura, o equilíbrio é deslocado no sentido da reação endotérmica (B).
- b. No experimento C.

$$K_c = \frac{[CoCl_4^{2-}]}{[Co(H_2O)_6^{2+}] \cdot [Cl^-]^4}$$

Diminuindo a temperatura, o equilíbrio é deslocado "para a esquerda", aumentando as concentrações dos reagentes (denominador da expressão do K_c).