

#DLUPC

Day 4 Lecture 1

Text-to-Speech

Antonio Bonafonte antonio.bonafonte@upc.edu

Associate Professor

[course site]

+ info: https://telecombcn-dl.github.io/2018-dlsl/

Supported by

aws educate

GitHub Education

O Google Cloud Platform

Organized by

Table of contents

- 1. Introduction to Text-to-Speech (TTS)
- 2. Statistical Parametric Speech Synthesis
- 3. Synthesis by Concatenation
- 4. Deep Learning for Speech Generation

Wavenet (2016)

Tacotron (2017)

Char2Wav & SampleRNN (2017)

DeepVoice

Introduction to Text-to-Speech

TTS: Text-to-Speech

tts.say("You have 3 new messages.")

385 0.390 0.395 0.400 0.405 0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470 0.475 0.480 0. 10 0ms

400 ms

 $\approx 2 \text{ seconds}$

Classic TTS diagram

1. Text Processing

- Text normalization
- PoS tagger
- Phonetic Transcription

1.1. Text normalization I

Transform input text into fully expanded words

Case review

Numbers (ordinals, cardinals, dates, times, telephone, IDs, IP, codes, roman numbers, maths, numbers in brands,

Addresses, Abbreviations, Acronyms

Punctuation characters

SMS & internet writtings (typos, smileys, etc.)

1.1. Text normalization II

Some examples on the cover of recent newspaper (14/12/2017):

Kaggle Challenge 2017: Google Text Normalization

1.2. PoS Tagger I

What gets us into trouble is not what we don't know. It's what we know for sure that just ain't so.

Mark Twain

get	us	into	trouble trouble NN	be	not	what	we	do	not	know	

It	's	what	we	know	for	sure	that	just	ai	not	so	
it	be	what	we	know	for	sure	that	just	be	not	SO	
PRP	VBZ	WP	PRP	VBP	IN	JJ	IN	RB	VBP	RB	RB	Fp

From FreeLing

1.3. Phonetic Transcription

Transcribe words into symbolic phonetic representation (IPA, SAM-PA, etc.)

- 1. Look up into phonetic lexicon (CMU, Unisyn, LC-STAR, etc.)
- 2. Letter-to-sound *rules* for unknown words.

 Classification Trees (CART), HMM, Finite-state transducers (FST),

 Pronunciation-by-Analogy (PbA), Neural Networks (NN)

2. Prosody Generation

Prosody:

- Indicate end of sentences and their structure.
- Semantic disambiguate.
- Emphasize words or phrases.
- Express emotion, affect, position with respect to verbal information,

Only some cues are included in the text \rightarrow invent.

- Phrasing (breaks)
- Prominence
- Intonation
- Timing

2.1. Phrasing

Speakers group words while speaking.

Example

In terms of money [B] he was no better off.

John and Sara [B] were running very quickly.

John and Sara were running [B] very quickly.

Basic Features

Punctuation

PoS in window around the word Distance in words/syllables to previous/next punctuation/break

Classification or transcription

word_features \rightarrow (B | \neg B)

HMM or Finite state transducers (FST)

Level Building

Recurrent Neural Networks

2.2. Prominence

Prominence, Emphasis, Accent ...

Some words receive extra strength compared with neighbor.

Parking Lot, City Hall

It was John that pick up your call.

The profit was \$10 M before tax, not after tax

A German teacher vs. a German teacher

Similar features and classification methods than phrasing.

2.3. Intonation

There are different representations of prosody, ranging from Symbolic/Phonologic Representation, E.g.: ToBI. to pure Acoustic Representation, e.g., log F0 contour.

Observed movements

Intonational patterns in prosodic phrases

Declination during prosodic phrases

Characteristic endings (., ?, Wh-questions, continue)

Accents

Intonation Modeling

Features

Punctuation of the prosodic phrase

Duration of phrase (#words, #syl) and sentence

Phrase/Word/Syllable/Phoneme position

PoS, content vs function word

Prominency, lexical stress

Representation

Unit: phrase vs. accent group vs. superpositional vs. syllable vs. phoneme

Symbolic (e.g. ToBI indexes and tones)

Acoustic: parametric log F0 (k values, polynomial coef., etc.)

2.4. Timing

Phonemes (or syllables) duration

Observed movements

Intrinsic phoneme duration

Lengthening in last syllable of prosodic phrase

Lengthening in prominent words and stressed syllable

Reduced in function words

Influence of neighbors phonemes

Modeling of phonemes (or syllable)

Similar features than for intonation

Regression models (CART, Neural Networks, ...)

Duration of pauses is also very important. Features used for break detection are used to estimate pause duration.

3. Waveform Generation

Approaches						
	Articulatory and Physical Models					
80s	Rule based synthesis (e.g. Klatt's formant synth.)					
90s	Synthesis by Concatenation					
1996-	+ corpus based unit selection					
1996-	Statistical/Parametric synthesis (SPSS)					
2010-	Deep Learning					

Statistical Parametric Speech

Synthesis

Statistical Parametric Speech Synthesis (SPSS)

Speech features

In SSPS the signal is represented by parameters

Need to be invertible and with reduced quality loss.

Typically: source/filter model \rightarrow spectral envelope and excitation (F0, etc.)

- Vocoder: LPC Vocoder, MELP, Straight, Vocaine, World
- For each sliding window (shift \approx 5ms) compute:
 - Spectral envelope. Goal: high resolution, stable
 - Pitch, F0
 - Rich Excitation. E.g.: voiced band representations

Linguistic features

Spectral envelope: correlated with phoneme, context phonemes (coarticulation), emphasis, maybe type of word

Duration: correlated with phoneme, sentence length, sentence structure, stress, break position, ...

F0: same as duration

Excitation detail: F0 and phoneme, context, speech rate ...

Example of linguistic information (HTS representation)

- ullet One acoustic model for each phoneme o one label for each phoneme
 - Phoneme context: identity; type: plosive,affricate,...
 - Syllable context
 - Word context
 - Sentence context

Training

The number of contexts (labels) is too big to be train with any speech database

 \rightarrow clustering, typically using decision trees

Parameter generation

$$\mathbf{\hat{X}} = \operatorname*{argmax}_{\mathbf{X}} p(\mathbf{X}|\mathcal{L}) \approx \operatorname*{argmax} \{ p(\mathbf{q}|\mathcal{L}) \cdot p(\mathbf{X}|\mathbf{q},\mathcal{L}) \}$$

To simplify equation, \mathbf{q} and \mathbf{X} are derived in two steps.

$$egin{aligned} \mathbf{\hat{q}} &= \mathop{\mathsf{argmax}}_{\mathbf{q}} p(\mathbf{q}|\mathcal{L}) \ \mathbf{\hat{X}} &\approx \mathop{\mathsf{argmax}}_{\mathbf{X}} p(\mathbf{X}|\mathbf{\hat{q}},\mathcal{L}) \} \end{aligned}$$

First equation: duration prediction (\mathbf{q} is the state sequence)

Second equation: acoustic generation

Duration Model

Model the duration (#frames at the state) using pdf.

$$\mathsf{E.g.} f(d) = \mathcal{N}(d|\mu,\sigma)$$

Training

- After the acoustic models have been estimated, compute how many frames are used at each state
- Learn the mapping function between linguistic features and pdf parameters (e.g., decission tree).

Inference

- Get the pdf parameters given the linguistic features.
- Use z to adjust speaking rate: $d = \mu + z \cdot \sigma$ (z = 0, same speaking rate as training)

Acoustic Generation I

Direct solution \rightarrow unnatural speech.

$$\mathbf{\hat{X}} = \operatorname*{argmax}_{\mathbf{X}} p(\mathbf{X}|\mathbf{\hat{q}},\mathcal{L})\} = (\mu_{q_1},\mu_{q_2},\ldots,\mu_{q_T})$$

No changes between consecutive frames. Unnatural dynamics. E.g.:

$$\mathbf{\hat{X}} = ((\mu_{s_1}, \mu_{s_1}, \mu_{s_1}), (\mu_{s_2}, \mu_{s_2}, \mu_{s_2}, \mu_{s_2}), \dots)$$

Solution: include in the model dynamic features: $\Delta X, \Delta^2 X, \dots$

Acoustic Generation II

1. Dynamic features are related with static features

E.g.
$$\Delta x_t = \frac{1}{2}(x_{t+1} - x_{t-1})$$

$$[\textbf{X}, \Delta \textbf{X}] = \textbf{W} \cdot \textbf{X}$$

2. Model:

$$p(\mathbf{X}, \Delta \mathbf{X} | \mathcal{L}) = p(\mathbf{W} \cdot \mathbf{X} | \mathcal{L})$$

3. Generation:

$$\hat{\mathbf{X}} = \underset{\mathbf{X}}{\operatorname{argmax}} p(\mathbf{W} \cdot \mathbf{X} | \hat{\mathbf{q}}, \mathcal{L})$$

Acoustic Generation III

From HTS.Group 2015

Flexibility

- 1. Statistical Parametric Speech Synthesis is robust with respect to training data (e.g. noise, pronunciation errors).
- 2. Is it possible to use adaptation techniques to create new voices (speakers, styles) adapting the parameters of existing voice.
- 3. It is also possible to interpolate voices.

$$\lambda = 0.25 \cdot \lambda_{\mathsf{neutral}} + 0.75 \cdot \lambda_{\mathsf{happy}}$$

- 4. Averages reduces speech dynamics: some approaches to improve it. Post-filtering, global variance, trajectory models
- 5. Vocoder limits the quality: \rightarrow high quality vocoders as straight, ahocoder, world

See also ...

I recommend the excellent tutorial:

Fundamentals and recent advances in HMM-based speech synthesis (HTS.Group 2015)

It includes audio samples with statics vs dynamics features, style and speaker adaptation, interpolation, global variance, straight vocoder

HTS Slides released by HTS Working Group http://hts.sp.nitech.ac.jp/

Copyright (c) 1999 - 2011 Nagoya Institute of Technology Department of Computer Science

Some rights reserved.

This work is licensed under the Creative Commons Attribution 3.0 license. See http://creativecommons.org/ for details.

Synthesis by Concatenation

Synthesis by Concatenation

Alias Cut & Paste

Development

- 1. Define synthesis units (e.g., phones, diphones))
- 2. Record all possible synthesis units.
- 3. Segment and add to the unit database

Operative

- 1. Get the linguistic and prosodic features of the input text.
- 2. Map phonemes to synthesis units.
- 3. Get the needed units from the database.
- 4. Concatenate and play.

Challenges

Prosody requirements

The synthesis units have to match the prosody requirements: e.g., segmental duration and F0.

Continuity requirements

Concatenation of units should avoid discontinuity in:

- 1. Waveform (zero crossing, interpolation)
- 2. Pitch
- 3. Phase
- 4. Frequency (diphones better than phones)

Approach 1: Signal Processing

Record units in *neutral* phonetic context and prosody.

Apply signal processing methods to modify duration and F0 of speech and to smooth discontinuities.

- LPC: Vocoder using Linear Prediction Coding
- TD-PSOLA: time-domain pitch-synchronous overlap and add
- HSM: Harmonic & stochastic model
- ...

Unfortunately, speech processing introduces distortion. Specially for large changes.

Approach 2: Corpus Based Unit Selection

- 1. Record several instances of each speech synthesis unit.
- 2. Select the best ones.

The recorded units should cover as much as possible different phonetic and prosodic context: sentences, designed corpus.

Larger databases \rightarrow lesser signal processing

Typically: 1h - 15h, professional speaker, recording studio.

Automatic segmentation of synthesis units (HMM + Viterbi)

Selection Criterion I

Define the cost function and select units with smallest cost:

$$\hat{u}_1^N = \underset{u_1^N}{\operatorname{argmin}} \ C(t_1^N, u_1^N)$$

Goal: select the units:

- that match the target prosody
- and have good concatenation between consecutive units.

$$\hat{u}_1^N = \operatorname*{argmin}_{u_1^N} \rho \cdot C^t(t_1^N, u_1^N) + (1-\rho) \cdot C^c(u_1^N)$$

- C^t target cost.
- C^c concatenation cost
 - ρ target/concatenation compromise

Selection Criterion II

Typically, the cost functions are additive:

$$\hat{u}_{1}^{N} = \operatorname*{argmin}_{u_{1}^{N}} \rho \cdot \sum_{n=1}^{N} C^{t}(t_{n}, u_{n}) + (1 - \rho) \cdot \sum_{n=1}^{N-1} C^{c}(u_{n}, u_{n+1})$$

Ct: target cost. Measures match between target and unit.

 C^c : concatenation cost. Measures discontinuity between end of one unit and beginning of next one.

Selection Criterion III

Target and Concatenation cost are composed by several subcosts.

- Each unit is characterized by linguistic context and acoustic features: $\{L, A\} = \{I_1, \dots, I_R, a_1, \dots, a_S\}$
- Each target is characterized by linguistic context and acoustic prediction: $\{L, \bar{A}\} = \{I_1, \dots, I_R, \bar{a}_1, \dots, \bar{a}_S\}$
- For each feature, target/concatenation subcosts are defined.

Search

Viterbi algorithm is applied to find the best units.

Deep Learning for Speech

Generation

Deep Learning for Speech Generation I

DL in statistic parametric Speech Synthesis(Ling et al. 2015)

- Sustitute HMM means by DNN predictions (use same generation algorithm).
- Use RNN to directly generate smooth trajectories
- Interpolation and adaptation methods have been proposed(Pascual de la Puente 2016)

Deep Learning for Speech Generation II

DL in Concatenative / Unit Selection

- Use the trajectories or embedded features in the target cost.
- Use MDN to predict pdf of acoustic features which are then used to asses the units

Apple' Siri: (Capes et al. 2017)

- Predict acoustic feature pdf $(f_{\theta}(y))$ from linguistic features. $(\theta = \phi(L))$
- Use the $\log f_{\theta}(.)$ to asses the units.
- Target cost: phoneme duration, F0 (beg. mid., and end)
- Concatenation cost: ΔMFCC and ΔF0 in unit boundaries

Deep Learning for Speech Generation III

Towards end-to-end speech synthesis

Goal: from characters to samples.

Examples:

- Linguistic processing is being change by character reader (char2wav, tacotron).
- Vocoder waveform generation sustituted by neural vocoder (samplernn, wavenet).
- Some end-to-end system (integrated learning) (deepvoice).

Results are starting to be better than dominant unit concatenation techniques.

Wavenet: A Generative Model for Raw Audio (Oord et al. 2016)

)

From PixelCNN → Wavenet

- Models the generation of waveform sample x_n , based on previous samples.
- Autoregressive & probabilistic model: $p_{\theta}(x_n|x_0, x_1, \dots, x_{n-1})$
- $p_{\theta}(.)$ modeled using causal convolutional networks.
- Discrete values (8 bits, μ -law) \rightarrow classification loss

Wavenet: dilated convolutions I

- Long dependencies need to be captured in speech & audio.
 - 100 ms at 16 kHz \rightarrow 1600 samples
 - Difficult to capture for RNN; computational prohibitive for(conventional) CNN

Wavenet: dilated convolutions II

Dilated Convolution (from Oord et al. 2016)

Wavenet: dilated convolutions III

- Dilated convolutions skip input values.
- Output has the same size than input.
- Stacked dilated convolutions: large receptive field with few layers and filter width.
- Dilation doubled and then repeated (stacked blocks).
 - Block of dilated convolutional networks with exponential dilated factor.
 - Eg: $1, 2, 4, \dots, 512 \rightarrow \text{receptive field } 1024 \text{ samples.}$
 - Four blocks stacked: receptive field 4096 samples.
 - If sampling frequency 16 000 kHz \rightarrow receptive field: 256 ms.

Softmax Distributions

- The authors claim that softmax distributions work better than MDN, even with continuous data.
- Apply μ -law, quantize to 8 bits \rightarrow 256 classes.
- Cross-entropy loss.

$$\mathrm{mu}(x) = \mathrm{sign}(x) \, \frac{|\mathrm{n}(1+\mu|x|)}{|\mathrm{n}(1+\mu)}$$

Architecture: skip connections

Architecture (from Zen 2017)

If I understand correctly ...

- There are 30 dilated convolutions ($\approx 9 \times 4$)
- Residual blocks output 256 feature maps
- Parameterised skip connections → speed up & deeper models

Architecture: gated activation units & residual connections

Residual block (from Zen 2017; Oord et al. 2016)

• Gated activation unit: $z = \tanh(W_{f,k} * \mathbf{x}) \odot \sigma(W_{g,k} * \mathbf{x})$

Conditional Wavenets

- As it is, wavenet can produce speech like signals and invent piano music.
- Can be conditioned with speaker (multispeaker training) and with linguistic features (TTS).

Global conditioning h (e.g.: speaker)

$$z = \tanh(W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{h}) \odot \sigma(W_{g,k} * \mathbf{x} + V_{g,k}^T \mathbf{h})$$

Local conditioning h_t (e.g.: linguistic features)

$$z = \tanh(W_{f,k} * \mathbf{x} + V_{f,k}^T * \mathbf{y}) \odot \sigma(W_{g,k} * \mathbf{x} + V_{g,k}^T * \mathbf{y})$$

y = f(h): learned upsampling.

 $V * \mathbf{y}$: 1 × 1 convolution.

TTS: Results

	Subjective 5-scale MOS in naturalness	
Speech samples	North American English	Mandarin Chinese
LSTM-RNN parametric HMM-driven concatenative WaveNet (L+F)	3.67 ± 0.098 3.86 ± 0.137 4.21 ± 0.081	3.79 ± 0.084 3.47 ± 0.108 4.08 ± 0.085
Natural (8-bit μ -law) Natural (16-bit linear PCM)	$\begin{array}{c} 4.46 \pm 0.067 \\ 4.55 \pm 0.075 \end{array}$	$4.25 \pm 0.082 \\ 4.21 \pm 0.071$

(from Oord et al. 2016)

1ex

Samples:

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Wavenet: application

Wavenet: a very good vocoder

Wavenet learn the a priori distribution of speech, unsupervised. Can be conditioned to be combined with several systems:

- Tacrotron 2 (end-to-end TTS)
- Low rate speech coding
- To teach other network (Wavenet 2)
- Speech enhancement
- etc.

Tacotron: Towards End-to-End Speech Synthesis (Wang et al. 2017)

From PixelCNN → Wavenet

- Synthesizes speech directly from text
 - No linguistic features: the input units are the characters of normalized text.
 - Output is the raw spectrogram (phase is recovered using the Griffin-Lim algorithm).
- Seg2seg with attention.
- Character represented using a elaborated architecture inspired in character-level neural machine translation (Lee, Cho, and Hofmann 2016).

Tacotron Architecture (from Wang et al. 2017)

seq2seq input: character

Tacotron Architecture (from Wang et al. 2017)

seq2seq output: r targets (80-band mel spectrogram)

Tacotron Architecture (from Wang et al. 2017)

Pre-net: Fully connected networks (2)

Tacotron Architecture (from Wang et al. 2017)

CBHG: Basically 1D convolutional network + bidirectional GRU

Tacotron Architecture (from Wang et al. 2017)

Encoder CBHG: Character representation.

Tacotron Architecture (from Wang et al. 2017)

Input to decoder: transformed previous target & context vector

Tacotron Architecture (from Wang et al. 2017)

Postprocessing CBHG: Transform targets in spectrogram.

Context vector c_t

Given K characters, the encoder CBGH produces K vectors, $\mathbf{e_k}$ For each t, the attention RNN predicts the coefficients $\alpha_t(k)$

$$\mathbf{c_t} = \sum_{k=1}^K \alpha_t(k) \cdot \mathbf{e_k}$$

 $(\mathbf{\hat{y}_{t-1}} \text{ and attention memory})
ightarrow lpha_{t}
ightarrow \mathbf{c_{t}}$ $(\mathbf{\hat{y}_{t-1}}, \ \mathbf{c_{t}} \ ext{and decoder memory})
ightarrow \mathbf{y_{t}}(1:r)$

CBHG: Character representation

Caracter embedings (256), Prenet (128)

Convolution 1D: filter of differents widths: 1,2, ..., 16

Max pooling, width=2, stride=1

2 Conv 1D projection layers

4 Highway layers (FC+ ReLU)

Bidirectional GRU (128 units)

CHBG (from Wang et al. 2017)

CBHG post-processing: mel energies \rightarrow spectrogram.

Tacotron Results

System	MOS
Tacotron	3.82
Parametric	3.69
Concatenative	4.09

5-Scale Mean Opinion Score

Samples:

https://google.github.io/tacotron/

SampleRNN & Char2Wav

Char2Way: Reader

Encoder/decoder with attention Encoder: bidirectional RNN Input: chars or phonemes Decoder: RNN with attention

Output: vocoder features

SampleRNN

Neural vocoder

Condition SampleRNN with vocoder features

Hierarchical structure to capture the different scales in audio

Char2Wav (Sotelo et al. 2017)

$$\alpha_i = Attend(s_{i-1}, \alpha_{i-1}, h)$$

$$g_i = \sum_{j=1}^{L} \alpha_{i,j} h_j$$

$$y_i \sim Generate(s_{i-1}, g_i)$$

$$s_i = RNN(s_{i-1}, g_i, y_i)$$

SampleRNN (Mehri et al. 2016)

DeepVoice (2017)

DeepVoice 3

References

References I

References

Capes, Tim et al. (2017). "Siri On-Device Deep Learning-Guided Unit Selection Text-to-Speech System". In: Proc. Interspeech 2017, pp. 4011-4015. DOI: 10.21437/Interspeech.2017-1798. URL: http://dx.doi.org/10.21437/Interspeech.2017-1798.

Lee, Jason, Kyunghyun Cho, and Thomas Hofmann (2016). "Fully Character-Level Neural Machine Translation without Explicit Segmentation". In: CoRR abs/1610.03017. URL: http://arxiv.org/abs/1610.03017.

Ling, Z. H. et al. (2015). "Deep Learning for Acoustic Modeling in Parametric Speech Generation: A systematic review of existing techniques and future trends". In: IEEE Signal Processing Magazine 32.3, pp. 35–52. ISSN: 1053-5888. DOI: 10.1109/MSP.2014.2359987.

Mehri, Soroush et al. (2016). "SampleRNN: An Unconditional End-to-End Neural Audio Generation Model". In: CoRR abs/1612.07837. URL: http://arxiv.org/abs/1612.07837.

Oord, Aaron van den et al. (2016). "Wavenet: A generative model for raw audio". In: arXiv preprint arXiv:1609.03499. URL: https://arxiv.org/abs/1609.03499.

References II

Pascual de la Puente, Santiago (2016). "Deep learning applied to speech synthesis".

MA thesis. Universitat Politècnica de Catalunya. URL: https://github.com/santi-pdp/msc_thesis.

Sotelo, Jose et al. (2017). "Char2Way: End-to-end speech synthesis". In:

Wang, Yuxuan et al. (2017). "Tacotron: Towards End-to-End Speech Synthesis". In: URL: https://arxiv.org/abs/1703.10135.

Zen, Heiga (2017). Generative Model-Based Text-to-Speech Synthesis. Invited talk given at CBMM workshop on speech representation, perception and recognition. URL: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45882.pdf.

References Sec I

Credit to figures

HTS.Group (2015). Fundamentals and recent advances in HMM-based speech synthesis. URL: hts.sp.nitech.ac.jp.