- - reflexive: $\forall x \in S : x \sqsubseteq x$.
 - anti-symmetric: $\forall x, y \in S$: $x \sqsubseteq y \land y \sqsubseteq x \Longrightarrow x = y$.
 - transitive: $\forall x, y, z \in S$: $x \sqsubseteq y \land y \sqsubseteq z \Longrightarrow x \sqsubseteq z$.

- A partially-ordered set (or poset) is a set S paired with a binary relation \sqsubseteq that is
 - reflexive: $\forall x \in S : x \sqsubseteq x$.
 - anti-symmetric: $\forall x, y \in S : x \sqsubseteq y \land y \sqsubseteq x \Longrightarrow x = y$.
 - transitive: $\forall x, y, z \in S : x \sqsubseteq y \land y \sqsubseteq z \Longrightarrow x \sqsubseteq z$.
- Example: the set of integers ordered by ≤.
 - Poset generalizes this notion.

- A partially-ordered set (or poset) is a set S paired with a binary relation \sqsubseteq that is
 - reflexive: $\forall x \in S : x \sqsubseteq x$.
 - anti-symmetric: $\forall x, y \in S : x \sqsubseteq y \land y \sqsubseteq x \Longrightarrow x = y$.
 - transitive: $\forall x, y, z \in S : x \sqsubseteq y \land y \sqsubseteq z \Longrightarrow x \sqsubseteq z$.
- Example: the set of integers ordered by \leq .
 - Poset generalizes this notion.
- Graphical representation of poset.
 - Nodes are elements of S. The relation \sqsubseteq is shown by directed edges (i.e., $(x, y) \in E \equiv x \sqsubseteq y$).
 - We omit self-loops and transitive arrows to simplify the picture.

- A partially-ordered set (or poset) is a set S paired with a binary relation \sqsubseteq that is
 - reflexive: $\forall x \in S : x \sqsubseteq x$.
 - anti-symmetric: $\forall x, y \in S : x \sqsubseteq y \land y \sqsubseteq x \Longrightarrow x = y$.
 - transitive: $\forall x, y, z \in S$: $x \sqsubseteq y \land y \sqsubseteq z \Longrightarrow x \sqsubseteq z$.
- Example: the set of integers ordered by ≤.
 - Poset generalizes this notion.
- Graphical representation of poset.
 - Nodes are elements of S. The relation \sqsubseteq is shown by directed edges (i.e., $(x, y) \in E \equiv x \sqsubseteq y$).
 - We omit self-loops and transitive arrows to simplify the picture.
- Not a poset:
 - $S = \{a, b\}, \{a \sqsubseteq a, b \sqsubseteq b, a \sqsubseteq b, b \sqsubseteq a\}.$

Another Example of A Poset

• The powerset of any set ordered by set containment is a poset.

Another Example of A Poset

- The powerset of any set ordered by set containment is a poset.
- In this example
 - The poset elements are \emptyset , $\{a\}$, $\{a,b\}$, $\{a,b,c\}$, etc.
 - $x \sqsubseteq y \equiv x \subseteq y$.

- A domain is a poset in which
 - the set *S* is finite; and
 - there is an element of S (denoted \bot) that is "below" all elements in the poset (i.e., $\forall x \in S: \bot \sqsubseteq x$).

- A domain is a poset in which
 - the set *S* is finite; and
 - there is an element of S (denoted \bot) that is "below" all elements in the poset (i.e., $\forall x \in S: \bot \sqsubseteq x$).
- Examples
 - The set of prime numbers ordered by natural ordering is a poset but is not a domain, because the set is not finite.

- A domain is a poset in which
 - the set *S* is finite; and
 - there is an element of S (denoted \bot) that is "below" all elements in the poset (i.e., $\forall x \in S: \bot \sqsubseteq x$).
- Examples
 - The set of prime numbers ordered by natural ordering is a poset but is not a domain, because the set is not finite.
 - The powerset of $\{a, b, c\}$ ordered by set containment is a poset and a domain (with $\bot = \emptyset$).

- A domain is a poset in which
 - the set S is finite; and
 - there is an element of S (denoted \bot) that is "below" all elements in the poset (i.e., $\forall x \in S: \bot \sqsubseteq x$).
- Examples
 - The set of prime numbers ordered by natural ordering is a poset but is not a domain, because the set is not finite.
 - The powerset of $\{a, b, c\}$ ordered by set containment is a poset and a domain (with $\bot = \emptyset$).
 - The factors of 12 ordered by natural ordering on integers is a poset and a domain (with $\perp = 1$).

- A domain is a poset in which
 - the set S is finite; and
 - there is an element of S (denoted \bot) that is "below" all elements in the poset (i.e., $\forall x \in S: \bot \sqsubseteq x$).
- Examples
 - The set of prime numbers ordered by natural ordering is a poset but is not a domain, because the set is not finite.
 - The powerset of $\{a, b, c\}$ ordered by set containment is a poset and a domain (with $\bot = \emptyset$).
 - The factors of 12 ordered by natural ordering on integers is a poset and a domain (with $\bot = 1$).
- We will write $D = (S, \sqsubseteq)$.

• If $D = (S, \sqsubseteq)$ is a domain, let $f: S \to S$ be a function that maps each element of S to some element of S itself.

- If $D = (S, \sqsubseteq)$ is a domain, let $f: S \to S$ be a function that maps each element of S to some element of S itself.
- For D = powerset of $\{a, b, c\}$ ordered by set containment:
 - $f_1(x) = x \cup \{a\}.$
 - So, $f_1(\emptyset) = \{a\}, f_2(b) = \{a, b\}, \text{ etc.}$
 - $f_2(x) = x \setminus \{a\}.$
 - $f_3(x) = \{a\} \setminus x$.

- If $D = (S, \sqsubseteq)$ is a domain, let $f: S \to S$ be a function that maps each element of S to some element of S itself.
- For D = powerset of $\{a, b, c\}$ ordered by set containment:
 - $f_1(x) = x \cup \{a\}.$
 - So, $f_1(\emptyset) = \{a\}, f_2(b) = \{a, b\}, \text{ etc.}$
 - $f_2(x) = x \setminus \{a\}.$
 - $f_3(x) = \{a\} \setminus x$.
- Such a function f is said to be:
 - monotonic if $\forall x, y \in S : x \sqsubseteq y \to f(x) \sqsubseteq f(y)$.
 - extensive if $\forall x \in S : x \sqsubseteq f(x)$.

- If $D = (S, \sqsubseteq)$ is a domain, let $f: S \to S$ be a function that maps each element of S to some element of S itself.
- For D = powerset of $\{a, b, c\}$ ordered by set containment:
 - $f_1(x) = x \cup \{a\}.$
 - So, $f_1(\emptyset) = \{a\}, f_2(b) = \{a, b\}, \text{ etc.}$
 - $f_2(x) = x \setminus \{a\}.$
 - $f_3(x) = \{a\} \setminus x$.
- Such a function *f* is said to be:
 - monotonic if $\forall x, y \in S : x \sqsubseteq y \to f(x) \sqsubseteq f(y)$.
 - extensive if $\forall x \in S : x \sqsubseteq f(x)$.
- Examples
 - Function f_1 is extensive and monotonic.
 - Function f_2 is not extensive but monotonic.
 - Function f_3 is neither extensive nor monotonic.

