Responsable : Emeric Bouin

Année universitaire 2020-2021

Date: 30 juin 2022 Durée: 3 heures

EXAMEN D'APPEL

Toutes les réponses doivent être soigneusement justifiées pour être considérées. Il est rappelé que la rédaction comptera de manière importante dans l'évaluation des copies. Le barême est donné à titre indicatif et pourra être modifié. Aucun document n'est autorisé, aucune calculatrice.

Exercice 1. Dire si chacune des assertions suivantes sont vraies ou fausses, en le justifiant.

- 1. Soit $f:[0,+\infty[\to\mathbb{R}]$ une fonction continue telle que $\int_0^{+\infty} f(t) dt$ converge. Alors la limite de f en l'infini est nulle.
- 2. Le terme général d'une série à termes positifs convergente est équivalent à n^{α} pour un certain $\alpha < -1$.
- 3. Si une fonction continue et paire et intégrable sur \mathbb{R}^+ , elle est intégrable sur \mathbb{R} .
- 4. Si une suite de fonctions continues converge vers une fonction continue, alors la convergence est uniforme.
- La limite uniforme d'une suite de fonctions strictement décroissantes est strictement décroissante.
- 6. Soit $\sum a_n z^n$ une série entière de rayon de convergence ∞ . Alors a_n tend vers 0.

Exercice 2. Soit (u_n) une suite positive décroissante.

- 1. Montrer que si $\sum u_n$ converge, $u_n = o\left(\frac{1}{n}\right)$.
- 2. Si $u_n = o\left(\frac{1}{n}\right)$, $\sum u_n$ converge-t-elle?
- 3. Le résultat précédent est-il toujours vrai si u_n n'est plus supposée décroissante?

Exercice 3. Etudier l'absolue convergence, la semi-convergence des séries de terme général

$$u_n = \left(\frac{n}{n+1}\right)^{n^2}, \qquad v_n = \frac{n!}{n^n}.$$

Exercice 4. Donner la nature des intégrales suivantes, en fonction des paramètres α et β ,

$$\int_0^1 \frac{x^3 - x^2 - x + 1}{x^{\alpha} (1 - x^2)^{\beta}} dx, \qquad \int_0^{+\infty} \frac{\sin(\beta \sqrt{x})}{x^{\alpha}} dx.$$

Exercice 5. Donner les solutions développables en série entière de l'équation différentielle

$$x^2f''(x) + 4xf'(x) + (2 - x^2)f(x) = 0,$$

en précisant l'intervalle de résolution.

Exercice 6. On se donne $f:[0,1]\mapsto \mathbb{R}$ une fonction continue telle que

$$\forall k \in \mathbb{N}, \qquad \int_0^1 t^k f(t) \, dt = 0.$$

- 1. Montrer que pour tout $P \in \mathbb{R}[X]$, $\int_0^1 P(t)f(t) dt = 0$.
- 2. Rappeler le théorème d'approximation de Weierstrass.
- 3. Montrer que f est nulle.

Exercice 7. Soit $f:[0,1] \to \mathbb{R}$ une fonction de classe C^1 .

1. Montrer qu'il existe une fonction continue $\varphi:[0,1]\to\mathbb{R}$ telle que

$$f(x) = f(0) + x \varphi(x)$$
 (pour tout $x \in [0, 1]$),

et en déduire quand l'intégrale $\int_0^1 \frac{f(x)}{x} dx$ est convergente, en fonction de f(0).

2. Montrer que, dans tous les cas, quand ϵ tend vers 0, la limite de

$$\int_{\epsilon}^{1} \frac{f(x)}{x} dx + f(0) \ln \epsilon,$$

existe (partie finie de Hadamard de $\int_0^1 f(x)/x dx$).

Exercice 8. Pour tout $n \in \mathbb{N}_*$ on pose $u_n(x) = (-1)^n x^{2n} \ln x$ si $x \neq 0$ et $u_n(0) = 0$.

- 1. Montrer que la série $\sum u_n$ converge uniformément vers une fonction f continue sur [0,1].
- 2. Exprimer $I = \int_0^1 f(x) dx$ comme la somme d'une série numérique.
- 3. (*) Soit ϵ un réel > 0. Combien de termes de cete série faut-il calculer pour obtenir une valeur approchée de I à ϵ près?

FIN DU SUJET