

Marco Listanti

Esercizi 3 Architettura a strati

Esercizio 1 (1)

- Si considerino i primi tre strati protocollari di un sistema di telecomunicazioni: strato di rete, strato di collegamento e strato fisico
- Lo strato di rete genera N-PDU di dimensione fissa, costituite da una intestazione di lunghezza h=52 bit e da un campo informativo di lunghezza m=300 bit.
- A livello di strato di collegamento la DL-PDU è costituita da tre campi:
 - 1) un'intestazione della DL-PDU di lunghezza k=20 bit;
 - 2) un campo per il trasferimento dell'informazione di utente costituito da n=11 byte
 - 3) un campo di correzione d'errore di lunghezza e=4 byte.
- A livello di strato fisico si utilizza uno schema di multiplazione TDM. La trama ha durata T_f =10 ms e contiene N=13 slot. Gli slot hanno dimensione tale da contenere interamente una DL-PDU; uno degli N slot è dedicato al trasferimento della segnalazione e non può essere utilizzato per la trasmissione delle PDU
- Si chiede di calcolare:
 - 1. la capacità complessiva ($C_{\rm F}$) di trasferimento di livello fisico
 - 2. la capacità di trasferimento (C_s) necessaria per trasmettere una N-PDU che si presenta a cadenza di trama
 - \blacksquare 3. l'efficienza di utilizzazione (ρ) relativa al trasferimento dei bit informativi della N-PDU di cui in 2

Esercizio 1 (2)

- Capacità di trasferimento nello strato fisico
 - Un singolo slot di strato fisico è in grado di contenere per intero una DL-PDU, di conseguenza la sua lunghezza L_{slot} è data da

La capacità complessiva di strato fisico C_F è data dal rapporto tra la lunghezza L_F di una trama e la sua durata temporale T_F, quindi

$$C_F = \frac{L_f}{T_f} = \frac{N \cdot L_{slot}}{T_f} = \frac{13 \cdot 140}{10} \frac{bit}{ms} = 182 \text{ kbit / s}$$

Esercizio 1 (3)

Capacità di trasferimento per una N-PDU a cadenza di trama

- La capacità di trasferimento richiesta è data dal numero di slot per trama richiesti per il trasferimento della N-PDU
- Il numero di DL-PDU richiesto per il trasferimento di una N-PDU

$$N_{DL-PDU} = \left\lceil \frac{L_{N-PDU}}{n} \right\rceil = \left\lceil \frac{h+m}{n} \right\rceil = \left\lceil \frac{52+300}{88} \right\rceil = 4 DL - PDU$$

Poiché uno slot può trasportare un'intera DL-PDU, il numero di slot per trama N_{slot} necessari per trasportare una N-PDU al numero di DL-PDU (N_{DL-PDU}) in cui deve essere segmentata una N-PDU, quindi

$$N_{slot} = N_{DL-PDU} = 4$$

La capacità di un singolo slot è data da

$$C_S = \frac{L_{slot}}{T_f} = \frac{140}{10} = 14 \text{ kbit / s}$$

La capacità C richiesta per trasferire una N-PDU emessa a cadenza di trama sarà quindi

$$C = N \cdot C_S = 4 \cdot 14 = 56 \text{ kbit / s}$$

Esercizio 1 (4)

Efficienza di utilizzazione statica

L'efficienza di utilizzazione statica (ρ) è data dal rapporto tra il numero di bit utili in una N-PDU e il numero complessivo di bit necessari per il suo trasferimento, quindi

$$\rho = \frac{m}{N_{slot} \cdot L_{slot}} = \frac{300}{4 \cdot 140} = 0.535$$

Esercizio 2 (1)

- In uno schema di multiplazione statistica si utilizzano Protocol Data Unit (PDU) di lunghezza costante costituite da H=5 byte di intestazione e L=50 byte di payload
- Si assuma che le Service Data Unit (SDU) che debbono essere trasferite abbiano lunghezza variabile X caratterizzata dalla distribuzione di probabilità riportata nella sequente tabella

Lunghezza di X		Probabilità	
X1	10 byte	P _{X1}	0.2
X2	40 byte	P_{X2}	0.1
X3	150 byte	P_{X3}	0.3
X4	340 byte	P_{X4}	0.4

DIET Dept

Networking Group

- Si chiede di calcolare:
 - L'efficienza media (ρ_1) di trasferimento della SDU
 - L'efficienza (ρ_2) nel caso in cui il campo utile delle PDU possa assumersi di lunghezza variabile con dimensione massima L_{max} =L=50 byte

Esercizio 2 (2)

- Calcolo efficienza media (ρ_1) di trasferimento della SDU (payload di lunghezza costante)
 - Per ogni possibile dimensione di SDU, occorre calcolare il numero di PDU necessarie al suo trasferimento

$$N_{iPDU} = \left\lceil \frac{Xi}{L} \right\rceil \qquad i = 1, 2, 3, 4$$

Dato che L=50 byte, si ha

$$X_1$$
=10 byte $\rightarrow N_{1PDU}$ = 1

$$X_2$$
=40 byte $\rightarrow N_{2PDU}$ = 1

$$X_3$$
=150 byte $\rightarrow N_{3PDU}$ = 3

$$X_4$$
=340 byte $\rightarrow N_{4PDU}$ = 7

Esercizio 2 (3)

 Poiché il payload ha dimensione fissa, per il calcolo dell'efficienza occorre tener conto dei bit di riempimento L_{istuf}, da inserire nell'ultima PDU in cui è frammentata la SDU, si ha

$$L_{istuf} = L - [X_i - (N_{iPDU} - 1)L]$$
 $i = 1,2,3,4$

da cui

$$L_{1stuf} = 40 \ byte;$$
 $L_{2stuf} = 10 \ byte;$ $L_{3stuf} = 0 \ byte;$ $L_{4stuf} = 10 \ byte$

L'efficienza (ρ_1) è data dal rapporto tra il numero medio di bit utili da trasferire (X_{av}) e il numero medio di bit totali utilizzati ($L_{av,tot}$)

$$\rho_{1} = \frac{X_{av}}{L_{av,tot}} = \frac{\sum_{i=1}^{4} X_{i} \cdot P_{Xi}}{\sum_{i=1}^{4} (H + L) \cdot N_{iPDU} \cdot P_{Xi}}$$

da cui

$$\rho_1 = \frac{187}{220} = 0.85$$

Esercizio 2 (4)

- Calcolo efficienza media (ρ_2) di trasferimento della SDU (payload di lunghezza variabile)
 - In questo caso la lughezza del payload va interpretata come lunghezza massima, quindi L_{max} =50 byte
 - Il numero di PDU necessarie per il trasferimento delle SDU è lo stesso rispetto al caso precedente, ovvero
 - X_1 =10 byte $\rightarrow N_{1PDU}$ = 1
 - X_2 =40 byte $\rightarrow N_{2PDU}$ = 1
 - X_3 =150 byte $\rightarrow N_{3PDU}$ = 3
 - X_4 =340 byte $\rightarrow N_{4PDIJ}$ = 7
 - La dimensione del payload delle PDU $L_{i,PDU}$ è uguale a L_{max} per le prime $(N_{iPDU}-1)$ PDU, mentre le ultime PDU avranno dimensione

$$L_{ilast} = X_i - (N_{iPDU} - 1)L$$
 $i = 1,2,3,4$

Ovviamente non saranno presenti i bit di riempimento nelle ultime PDU

Esercizio 2 (5)

da cui

$$L_{1last} = 10 \ byte; \quad L_{2last} = 40 \ byte; \quad L_{3last} = 50 \ byte; \quad L_{4last} = 40 \ byte$$

Analogamente al caso precedente. l'efficienza (ρ_2) è data dal rapporto tra il numero medio di bit utili da trasferire (X_{av}) e il numero medio di bit totali utilizzati ($L_{2av,tot}$)

$$\rho_{2} = \frac{X_{av}}{L_{2av,tot}} = \frac{\sum_{i=1}^{4} X_{i} \cdot P_{Xi}}{\sum_{i=1}^{4} (H + L) \cdot (N_{iPDU} - 1) \cdot P_{Xi} + \sum_{i=1}^{4} (H + L_{ilast}) \cdot P_{Xi}}$$

da cui

$$\rho_2 = \frac{187}{207} = 0.903$$

Esercizio 3 (1)

Si considerino l'architettura protocollare mostrata in figura

Siano:

- L_{UDPmax} = 400 bit la dimensione massima del campo informativo dei segmenti UDP e H_{UDP} =20 bit la dimensione dell'header
- L_{TPmax} = 420 bit la dimensione massima del campo informativo dei pacchetti IP e H_{TP} =40 bit la dimensione dell'header
- L_2 = 250 bit la dimensione costante del campo informativo delle PDU di strato 2 e H_2 =10 bit la dimensione dell'header
- \blacksquare A livello 1 è usato una multiplazione TDM con N_f =5 slot organizzati in trame di durata T_f =10 ms
 - Uno slot è in grado di trasferire per intero una PDU di strato 2
 - Uno degli slot della trama è dedicato al trasferimento delle informazioni di segnalazione
- Supponendo di voler trasferire un file applicativo di dimensione M=3800 bit si chiede di
 - Rappresentare la struttura delle PDU necessarie per il trasferimento del file nei quattro strati protocollari
 - Calcolare l'overhead complessivo (compreso quello di strato fisico) necessario per il trasferimento di tale file
 - Calcolare il minimo tempo necessario a trasferire il file assumendo trascurabile il ritardo introdotto dalla rete a circuito
 - Calcolare il bit rate di linea nello strato fisico

Esercizio 3 (2)

 Struttura generale delle PDU nel caso di rapporto uno a uno tra PDU dello strato superiore e quello dello strato inferiore (assenza di frammentazione)

Esercizio 3 (3)

Per il trasferimento del file applicativo servono un numero totale di UDP-PDU (N_{UDP-PDU}) uguale a

$$N_{UDP-PDU} = \left\lceil \frac{M}{L_{UDP \text{ max}}} \right\rceil = \left\lceil \frac{3800}{400} \right\rceil = 10 \ UDP - PDU$$

Poiché le UDP-PDU possono essere di lunghezza variabile, $N_{UDP-PDU}-1$ avranno il campo informativo di lunghezza massima L_{UDP} , mentre l'ultima avrà il campo informativo di lunghezza $L_{UDPlast}$ dato da

 $L_{UDPlast} = M - \left(\left| \frac{M}{L_{UDPmax}} \right| - 1 \right) \cdot L_{UDPmax} = 200bit$

- Il trasferimento del file M avverrà quindi utilizzando
 - 9 UDP-PDU di lunghezza massima

$$L_{UDPtot} = H_{UDP} + L_{UDPmax} = 20 + 400 = 420 \ bit$$

 $H_{UDP} + L_{UDPlast} = 20 + 200 = 220 \ bit$

Esercizio 3 (4)

- Le UDP-PDU costituiscono l'informazione utile da trasferire a livello IP, andranno quindi inserite nel campo informativo delle IP-PDU (pacchetti)
- Si noti che la lunghezza massima del campo informativo delle IP-PDU (L_{IPmax}) è uguale alla lunghezza totale massima delle UDP-PDU (L_{UDPtot}), ovvero

$$L_{IPmax} = L_{UDPtot}$$

- In questo caso ad una UDP-PDU corrisponde una singola IP-PDU e non è necessaria la segmentazione
- Si avranno quindi
 - 9 IP-PDU di lunghezza massima
 - 1 IP-PDU di lunghezza

$$L_{IPtot} = H_{IP} + L_{UDPtot} = 40 + 420 = 460 \ bit$$

$$H_{IP} + L_{UDPlast} = 40 + 220 = 260 \ bit$$

Esercizio 3 (5)

- Nel passaggio dallo strato IP allo strato 2 è invece richiesta la frammentazione dei pacchetti IP
 - Il campo informativo delle 2-PDU è di lunghezza costante L_2 =250 bit, inferiore alla dimensione delle IP-PDU ($L_{\rm IPtot}$ =460 bit, o 260 nel caso dell'ultima IP-PDU)
- Il processo di frammentazione di un pacchetto IP deve garantire che ogni frammento che si viene a formare sia un pacchetto autonomo ed indipendente
- Ogni frammento dovrà quindi trasportare al suo interno: a) l'intera header IP e b) 210 bit del pacchetto IP originario, quindi:
 - Un singolo pacchetto IP sarà frammentato in due 2-PDU; ognuna di queste sarà costituita dalla propria intestazione di dimensione H₂=10 bit e da un campo informativo di lunghezza L₂=250 bit
 - Il campo informativo di una 2-PDU sarà riempito con H_{IP} =40 bit di header di un pacchetto IP e L_{seg} =210 bit informativi del pacchetto IP originario
- Di conseguenza due 2-PDU possono trasportare tutti i 420 bit utili di un pacchetto IP originario
- Saranno necessarie quindi 20 2-PDU per trasferire i 10 pacchetti IP
 - Le prime 19 2-PDU trasporteranno ciascuna 210 bit informativi
 - La ventesima 2-PDU avrà un campo informativo di lunghezza utile uguale a 50 bit accompagnato da 200 bit di riempimento (stuffing)

Esercizio 3 (6)

Lo schema formazione delle PDU è il seguente

DIET Dept

Esercizio 3 (7)

- Ogni slot della trama TDM è in grado di contenere per intero una 2-PDU
- Per il trasferimento del file, saranno quindi necessari 20 slot
- Poiché in ogni trama sono disponibili 4 slot utili (uno degli slot è riservato alla segnalazione), per il trasferimento dell'intero file sono complessivamente necessarie 5 trame

Esercizio 3 (8)

Calcolo dell'overhead di trasferimento del file

- L'ovehead è definito come la percentuale di bit di controllo da aggiungere ai dati applicativi per la formazione delle PDU di tutti gli strati
- Dalla figura precedente si ricava che i bit di overhead introdotti da ogni strato fino allo strato 2 è dato da:
 - Bit di overhead di strato UDP (X_{UDP}):

$$X_{UDP} = 10 \cdot H_{UDP} = 200 \ bit$$

Bit di overhead di strato IP (X_{IP}) (compresi i bit di header aggiunti per la segmentazione):

$$X_{IP} = 20 \cdot H_{IP} = 800$$
 bit

Bit di overhead di strato 2 (X₂):

$$X_2 = 20 \cdot H_2 + X_{stuf} = 200 + 200 = 400$$
 bit

Bit di overhead di strato fisico (X_F) :

$$X_F = 5 \cdot X_{sig} = 5 \cdot 260 = 1300 \ bit$$

Esercizio 3 (9)

■ I bit totali di overhead (X_{tot}) sono quindi

$$X_{tot} = X_{UDP} + X_{IP} + X_2 + X_F = 200 + 800 + 400 + 1300 = 2700$$
 bit

Il numero di bit totali trasferiti (B_{tot}) sono invece

$$B_{tot} = X_{tot} + M = 2700 + 3800 = 6500 \ bit$$

L'overhead percentuale (OH) è quindi è quindi

$$OH = \frac{X_{tot}}{B_{tot}} = \frac{2700}{6500} = 0.415$$

L'efficienza (ρ) di conseguenza è

$$\rho = 1 - OH = 1 - 0.415 = 0.585$$

Esercizio 3 (10)

Ritardo di trasferimento

- Il tempo di trasferimento del file (T_{trasm}) è dato dal tempo necessario ad emettere cinque trame consecutive
- Poiché una trama ha durata T_f=10 ms e il numero di frame necessario al trasferimento del file è uguale a

$$T_{trasm} = 5 \cdot T_f = 50 \ ms$$

Bit rate di trasferimento

■ Il bit rate R dello strato fisico è dato da

$$R = \frac{L_f}{T_f} = \frac{260 \cdot 5 \cdot 8}{10} = 1.04 \ Mbit / s$$

Esercizio 4 (homework)

Ripetere l'esercizio precedente (esercizio 3) in cui però la lunghezza massima del campo informativo dei pacchetti IP sia $L_{\rm IPmax}$ =400 bit mantenendo la dimensione dell'header $H_{\rm IP}$ =40 bit

