1) a)
$$V_{Th} = I_C \left[R + \frac{1}{dwc} \right]$$
 $Z = R - \frac{1}{wC}$
 $|Z| = \sqrt{R^2 + \frac{1}{cw^2}}$
 $|Z| = \sqrt{(3.9 \text{ K})^2 + (\frac{1}{200077 \text{ N} 10^{-6}})^2}$
 $|Z| = 16.39 \text{ M.}$
 $\theta = \arctan\left(\frac{1}{200077 \text{ N} 10^{-6}}\right) = 78.63$
 $I_C = \frac{A}{Z} = \frac{5}{16.4} = 0.304 \ \text{C} 78.63^\circ$
 $V_{Th} = I_C \left[\frac{A}{V} + \frac{1}{w^2} \right]^2$
 $V_{Th} = I_C \left[\frac{A}{V} + \frac{A}{V} + \frac{A}{V} \right]^2$
 $V_{Th} = I_C \left[\frac{A}{V} + \frac{A}{V} + \frac{A}{V} \right]^2$
 $V_{Th} = I_C \left[\frac{A}{V} + \frac{A}{V} + \frac{A}{V} \right]^2$
 $V_{Th} = I_C \left[\frac{A}{V} + \frac{A}{V} + \frac{A}{V} \right]^2$
 $V_{Th} = I_C \left[\frac{A}{V} + \frac{A}{V} + \frac{A}{V} \right]^2$
 $V_{Th} = I_C \left[\frac{A}{V} + \frac{A}{V} + \frac{A}{V} \right]^2$
 $V_{Th} = I_C \left[\frac{A}{V} + \frac{A}{V} + \frac{A}{V} \right]^2$
 $V_{Th} = I_C \left[\frac{A}{V} + \frac{A}{V} + \frac{A}{V} \right]^2$
 $V_{Th} = I_C \left[\frac{A}{V} + \frac{A}{V} + \frac{A}{V} \right]^2$
 $V_{Th} = I_C \left[\frac{A}{V} + \frac{A}{V} + \frac{A}{V} \right]^2$
 $V_{Th} = I_C \left[\frac{A}$

Frequency (kHz)	$ \mathbf{Z} $ (k Ω)	θ°z	$ I_C $ (mA)
0.5	32.655	83	0.155
1	16.4	78	0.3
2	8,86	63.75	0.59
5	5.632	39,5	0.95
10	4.21	22-	1,186
20	3,98	11,5	1,25
50	2,92	4.66	1,277

- 2- Suppose that the capacitor in Fig (6.1) is replaced with a "practical" inductor whose equivalent circuit consists of a series combination of an inductive element of 0.5H and a resistive element of 700 Ω .
- a) Find the SSS expression for the inductor current $i_L(t)$.
- b) Suppose that the frequency of $v_{TH}(t)$ is varied as listed in table (6.2), find the magnitude and phase angle of the impedance Z, where $Z = |Z| \angle \theta^{\circ}_{Z}$, and the peak value of the inductor current $|I_L|$, for each frequency setting.

Table (6.2)

Frequency (kHz)	$ Z $ (k Ω)	$\theta^{\circ}_{\mathbf{Z}}$	I _L (mA)
0.1	4.012	4.48	1,23
0.2	4.05	8.92	1.25
0.5	4.297	21.4	1,16
1	5.085	38.13	0.93
2	7.45	57.5	0.67
5	16.20	75.7	0.308
10	31.65	62.7	0.159

6.4 Procedure:

Part I: The Sinusoidal-Steady-State Behaviour of An RC Circuit

1- Connect channel "1" of the oscilloscope across the output terminals of the function generator. Set the controls of the function generator to provide an "open-circuit" sinusoidal voltage of 5V (peak) @ a frequency (f) of 500Hz.

Connect the circuit shown in Fig (6.1). Set the oscilloscope for ac-coupling, Y-Positions @ screen centre, Trigger Source @ Channel 1, and Trigger Slope @ Rising. Connect channel "1" of the oscilloscope to display the voltage waveform @ node (A), and channel "2" to display the voltage waveform @ node (B). [The "2" display now represents the (scaled-up) current waveform (3300) $i_C(t)$.]

2- Measure the peak-value of $v_A(t)$ and $v_B(t)$, and record in table (6.3) under $|V_A| \& |V_B|$, respectively. Evaluate the peak value of the current $|I_C|$.

Phase-Angle Measurement

To measure the phase angle θ° [which is defined here as the phase angle of $v_B(t)$ relative to $v_A(t)$] as accurately as possible, proceed by setting the oscilloscope controls as follows:

First: Set Horizontal Sensitivity to display about one period of the "1" display. Adjust Trigger Level to trigger the "1" display @ the positive-going zero crossing instant, and move this point (with "X-Position" adjustment) to the left end of the screen.