INNLEVERING DIGITALTEKNIKK, OHMS LOV OG ARDUINO

Dataelelektronikk: Innleveringsfrist:

Stian Åsvestad Larsen

22.02.2019

Hva mener vi med logiske tilstander?

Vi mener at det er bits (eller av eller på) funksjoner som blir enten 0 eller 1.

- 4-inngangers AND-funksjon.
- a) Tegn symbolet.

b) Skriv det boolske uttrykket.

$$Q = A \cdot B \cdot C \cdot D$$

Hvordan leser vi

a) F=A·B

Vi leser F = SANT OG SANT slik at strømmen går når begge er på.

b) F=A+B

Vi leser F = SANT ELLER SANT slik at strømmen går igjennom når enten A eller B får et 1-tall.

Forenkle disse funksjonene:

a)(B+C´)·C´·B´

Forenklet: B * C (NAND utrykk)

b) CA + A + AC + AD + D

Forenklet: A+D (ELLER)

Tegn skjema for disse uttrykkene

a)
$$F=AB'+C'+AD$$

Se også Proteus fil:

proteus5

b) F=DE'C+AB+C

Se også Proteus fil:

Regn ut verdien på en motstand som kobles i serie med en lysdiode.

Lysdioden skal styres fra en l en utgang på en Arduino. Lysdioden har følgende data: Spenning ved drift 2.4V og da går det 17mA igjennom lysdioden.

Regn

Regn ut: Strømmene I, I2 og I3, Spenningen UR4 og UR5, Effekten som omsettes i R4, Effekt over R4

$$U=R*I$$

$$R_4=I=\frac{U}{R}=\frac{12V}{2700\Omega}=4,44mA$$

$$R_{tot} = \frac{R_5 * R_6}{R_5 + R_6} = \frac{1500\Omega * 1900\Omega}{3400\Omega} \approx 838, 23\Omega$$

$$R_4 + R_{tot} = 2700\Omega + 838, 24\Omega = 3538, 24\Omega$$

$$\frac{12V}{3538, 24\Omega} \approx 3,39 \text{ mA}$$

$$U_{rp} = I * R_{l}$$

$$U = 3,39 \text{ mA} * 838,23\Omega = 2,84V$$

$$I = \frac{U}{R_{tot}} = \frac{12V}{3538,24\Omega} \approx 3,39 \text{ mA}$$

$$I_{2} = \frac{U_{rp}}{R_{5}} = \frac{2,84V}{1500\Omega} = 1,8933 \text{ mA}$$

$$I_{3} = \frac{U_{rp}}{R_{6}} = \frac{2,84V}{1900\Omega} \approx 1,49 \text{ mA}$$

$$P_{R4} = 9,16V * 3,39 mA \approx 31,05 mW$$

Felles for besvarelsen av oppgavene 8 og 9

Bruk funksjonen millis(), dvs dere skal IKKE bruke funksjonen delay()! KLASSEN i fellesskap blir enige om hvilke pinner som brukes til hva i koden så det blir likt på i alle innleveringene. Dokumentere koden med kommentarer, evt spill inn en video der du forklarer koden muntlig.

Koden skal både limes inn i Word-dokumentet og leveres separat. Din egen test av løsningen skal filmes og legges ut på din personlige OneDrive som du har i skoleportalen, delingslinken til filmen i skal limes i Word-dokumentet så jeg kan se på testen. OBS! Legg en liten lapp med navn og klasse ved siden av Arduino'n og pass på at den blir med i filmen. Pass på å få teste dette så dere vet andre kan få åpnet fila som linken peker på, f.eks en i klassen, venn, en i familien osv.

Oppgave 8:

```
/** Stian Åsvestad Larsen
  * Oppgave 8 Lyskryss uten fortauoverganger.
  * Tid:
  * Rød = 5sek
  * RødGul = 2sek
  * Grønn = 10sek
  * Gul = 2 sek
  * Klasse: 18IT-D
  */
  // Definerer hvilke "pins" som skal brukes
  const int crossRed = 6;
  const int crossGreen = 7;
  const int LEDred = 8;
  const int LEDyel = 9;
  const int LEDyel = 9;
  const int LEDgre = 10;
```

```
// Millis for å lagre siste sekvens.
unsigned long LastMillis;
// Definerer LEDstate i starten så den starter på 10W.
int LEDstate = LOW;
// Intervaller på LEDs. I Oppgava er disse satt til 5 sek rød,
// 2 sek rødgul, 10sek grønn og 2 sek gul før sekvensen repeteres.
const long RedInt = 5000;
const long RedYelInt = 2000;
const long YelInt = 2000;
const long GreInt = 10000;
// Setup for sekvensen.
void setup()
// Definerer pins som OUTPUT
  pinMode(crossRed, OUTPUT);
  pinMode(crossGreen, OUTPUT);
  pinMode(LEDred,OUTPUT);
 pinMode(LEDyel, OUTPUT);
  pinMode(LEDgre, OUTPUT);
  // Hvis det er behov for feilsøking
 Serial.begin(9600);
}
// Setter lightState til 0. Dette er fordi sekvensen begynner på 0.
int lightState = 0;
// loop
void loop() {
  unsigned long currentMillis = millis();
// Denne IF-setningen eller sekvensen sjekker om lightState er 0 og oppdaterer den
til 1. Den sjekker også om sekvensen har en intervall.
  if ((currentMillis - LastMillis >= YelInt) && (lightState == 0))
      Serial.println("Rødt lys");
      lightState = 1;
      digitalWrite(LEDred, HIGH);
      digitalWrite(LEDyel, LOW);
    // Oppdaterer forrige millis med denne slik at denne blir den nye "millis".
LastMillis vil da være 1 etter denne sekvensen.
```

```
LastMillis = currentMillis;
  }
 if ((currentMillis - LastMillis >= RedInt) && (lightState == 1))
      Serial.println("Rødt og gult lys");
      lightState = 2;
      digitalWrite(LEDred, HIGH);
      digitalWrite(LEDyel, HIGH);
   // Oppdaterer forrige millis med denne slik at denne blir den nye "millis".
LastMillis vil da være 2 etter denne sekvensen.
      LastMillis = currentMillis;
 if ((currentMillis - LastMillis >= RedYelInt) && (lightState == 2))
   Serial.println("Grønt lys");
   lightState = 3;
    digitalWrite(LEDred, LOW);
    digitalWrite(LEDyel, LOW);
    digitalWrite(LEDgre, HIGH);
    // Oppdaterer forrige millis med denne slik at denne blir den nye "millis".
LastMillis vil da være 3 etter denne sekvensen.
   LastMillis = currentMillis;
 }
 if ((currentMillis - LastMillis >= GreInt) && (lightState == 3))
   Serial.println("Gult lys, restarter sekvens");
   lightState = 0;
    digitalWrite(LEDgre, LOW);
    digitalWrite(LEDyel, HIGH);
    // Oppdaterer forrige millis med denne slik at denne blir den nye "millis".
LastMillis vil da være 0 etter denne sekvensen.
    LastMillis = currentMillis;
 }
}
```

Lage trafikklys ved hjelp av lysdioder.

Sekvensen skal repeteres i det uendelige.

Trinn:	Tid(sek):
1	5
2	2
3	10
4	2

Oppgave 9.

Trafikklyset for bilen skal virke som i oppgave 8 helt til det trykkes på bryteren.

Når fotgjengeren har trykket på bryteren skjer følgende sekvens

5 sek etter bryteren er trykket skal biltrafikken stanses etter standard sekvensen i oppgave 8.	
Etter at bilene er stanset får fotgjengerne konstant grønt lys.	Dere bestemmer tiden fotgjengerne skal kunne bruke.
Når tiden for grønt lys er utløpt skal den grønne lysdioden blinke 10 ganger for å varsel fotgjengerne at tiden er ute.	250 ms blinke/pause er ok.
Fotgjengerne får rødt lys	

Vent 500 ms så kan trafikklyset begynne å slippe fram bilene etter standard sekvens fra oppgave 8.

FILM:

https://opplandvgs-my.sharepoint.com/ /g/personal/stla0904_fs-innlandet_no/Ef_cJTVJIRtHjAp-FbVOmqEBOGwWXZkKtyj-Mgtu-da5bQ?e=w00NgU

Kode:

```
* Oppgave 9, Trafikklys med fotgjengerfelt.
 * Stian Åsvestad larsen
 * 18IT-D
 */
// Definerer hvilke "pins" som skal brukes
   int crossRed = 6;
   int crossGreen = 7;
   int LEDred = 8;
   int LEDyel = 9;
    int LEDgre = 10;
// Definerer bryteren som skal brukes.
    const int pedBtn = 11;
// Millis for å lagre siste sekvens.
    unsigned long LastMillis;
// Intervaller på LEDs. I Oppgava er disse satt til 5 sek rød,
// 2 sek rødgul, 10sek grønn og 3 sek gul før sekvensen repeteres.
    const long RedInt = 5000;
   const long RedYelInt = 2000;
    const long YelInt = 3000;
    const long GreInt = 10000;
```

```
// Setup for sekvensen.
void setup()
// Definerer pins som OUTPUT.
{
    pinMode(crossRed, OUTPUT);
    pinMode(crossGreen, OUTPUT);
    pinMode(LEDred,OUTPUT);
    pinMode(LEDyel, OUTPUT);
    pinMode(LEDgre, OUTPUT);
  // Setter pinmode til ,bryter.
    pinMode(pedBtn, INPUT);
  // Hvis det er behov for feilsøking
    Serial.begin(9600);
    // Setter default rødt lys på trafikk og rødt lys på fotgjengerovergang.
    digitalWrite(LEDred, HIGH);
    digitalWrite (crossRed, HIGH);
}
// Setter lightState til 0. Dette er fordi sekvensen begynner på 0.
    int lightState = 0;
// Lagring av når sist knappen ble trykket.
    unsigned long BtnPress;
// Hvor lenge lyset til fotgjengere skal lyse
    const long pedInt = 7500;
// Diverse variabler som brukes. Holder styr på "FOR" loop blinking.
    int count = 0;
// Trafikken går når denne variableen står til 0.
    int trafficState = 0;
// Delay på rødt lys når sekvensen restarter.
    int delayRed = 500;
// Setter trafikkstart slik at sekvensen til trafikklys starter.
    int trafficStart = 0;
// Variabel for å dobbeltsjekke om knappen trykkes.
    unsigned long debounceDelay = 100;
// Variabel for å sjekke om lyset er rødt.
    int pedStateRed = ∅;
void trafficStatusStop()
    trafficStart = 1;
```

```
void pedestratianGo()
{
    pedStateRed = 1; //Fotgjengere kan gå
void pedestratianStop()
    pedStateRed = 0;
}
// Oppdaterer millis.
void updateMillis()
    LastMillis = millis();
// Rødt lys.
void redState()
{
    Serial.println("Rødt Lys");
    digitalWrite(LEDred, HIGH);
    digitalWrite(LEDyel, LOW);
}
// Rød og Gult lys.
void redYelState()
{
    Serial.println("Rødt og Gult lys");
    digitalWrite(LEDred, HIGH);
    digitalWrite(LEDyel, HIGH);
}
// Grønt lys.
void greState()
    Serial.println("Grønt lys.");
    digitalWrite(LEDred, LOW);
    digitalWrite(LEDyel, LOW);
    digitalWrite(LEDgre, HIGH);
}
// Gult lys.
void YelState()
{
    Serial.println("Gult lys.");
    digitalWrite(LEDgre, LOW);
    digitalWrite(LEDyel, HIGH);
}
// Status om knapp har blitt trykket.
bool pedestrianShouldStart = false;
// Status om fotgjengerlys har startet.
bool pedestrianStartNow = false;
    // loop
```

```
void loop()
    // Trafikklys
{
    bool isButtonPressed = digitalRead(pedBtn) == HIGH;
    // For a lagre millis
    unsigned long currentMillis = millis();
    // Denne IF-setningen eller sekvensen sjekker om lightState er 5 og oppdaterer
den til 1. Den sjekker også om sekvensen har en intervall.
    if ((lightState == 5) && (currentMillis - LastMillis >= delayRed))
        lightState = 0;
        // Oppdaterer forrige millis med denne slik at denne blir den nye
"millis".
        updateMillis(); // LastMillis = currentMillis;
    }
    /** Sjekker om "lightState" er 0, og TrafficStart er 0.
     * Hvis den er det setter den lightState til 1, mens den skriver ut "rødt lys"
samtidig som den bytter til rødt lys igjen.
     * Den oppdaterer også millis til "currentMillis" og pedStateRed til 1.
    if (!pedestrianStartNow && (currentMillis - LastMillis >= YelInt) &&
(lightState == 0) || trafficStart == 0)
        redState(); // Rødt trafikklys.
        // Oppdaterer forrige millis med denne slik at denne blir den nye
"millis".
        updateMillis(); // LastMillis = currentMillis;
        trafficStatusStop(); // trafficStart = 1;
        // Sjekker om knapp blir trykket og fortsetter trafikklys. Oppdaterer
millis.
        if (pedestrianShouldStart) {
            pedestrianShouldStart = false;
            pedestrianStartNow = true;
            BtnPress = currentMillis;
        else {
            lightState = 1;
        }
    }
    /** Sjekker om lightState er 1.
     * Hvis den er 1, settes den til 2. Den skriver ut "Rødt og Gult lys" samtidig
som den setter rødt og gult lys til HIGH.
     * Tilslutt setter den forrige millis til nåværende millis og oppdaterer
pedStateRed til 0 igjen.
     */
    if ((currentMillis - LastMillis >= RedInt) && (lightState == 1)) {
```

```
lightState = 2;
        redYelState(); // Rødt og Gult Trafikklys.
        // Oppdaterer forrige millis med denne slik at denne blir den nye
"millis".
        updateMillis(); // LastMillis = currentMillis;
   }
   /** Sjekker om lightState er 2.
    * Hvis den er 2, oppdaterer den verdien til 3, mens den skfiter til grønt
lys og skriver ut "Grønt lys."
    * Tilslutt setter den forrige millis til nåværende millis.
    */
   if ((currentMillis - LastMillis >= RedYelInt) && (lightState == 2)) {
        lightState = 3;
        greState(); // Grønt Trafikklys.
        // Oppdaterer forrige millis med denne slik at denne blir den nye
"millis".
        updateMillis(); // LastMillis = currentMillis;
   }
   /** Sjekker om lightstate er 3 og setter lightState tilbake til 0 så den
repeterer sekvensen.
    * Den setter lyset til gult og skriver ut "Gult lys" før den oppdaterer
forrige millis til nåværende millis.
   if ((currentMillis - LastMillis >= GreInt) && (lightState == 3)) {
        lightState = ∅;
       YelState(); // Gult Trafikklys.
        // Oppdaterer forrige millis med denne slik at denne blir den nye
"millis".
        updateMillis(); // LastMillis = currentMillis;
   }
   // Sjekker om knapp er trykket.
   if (isButtonPressed == true && (currentMillis - LastMillis >= debounceDelay))
{
        Serial.println("Knapp er trykket."); // Skriver ut "Knapp er trykket"
        pedestrianShouldStart = true; // Setter knapp til true slik at
fotgjengersekvens aktiveres.
   }
   // Sjekker om fotgjengerlys skal starte.
   if (pedestrianStartNow) {
       digitalWrite(crossRed, LOW);
        digitalWrite(crossGreen, HIGH);
   }
   // Blinking
```

```
if (trafficStart == 1 && pedestrianStartNow) {
        if (currentMillis - BtnPress >= pedInt)
        {
            digitalWrite(LEDgre, LOW);
            digitalWrite(LEDred, HIGH);
            digitalWrite(LEDyel, LOW);
            digitalWrite(crossRed, LOW);
            digitalWrite(crossGreen, HIGH);
            updateMillis(); // LastMillis = currentMillis;
            // Sekvensen som gjør at lyset blinker.
            for(int count = 1; count < 15; count++)</pre>
                Serial.println("Blink");
                digitalWrite(crossGreen, LOW);
                delay(250);
                digitalWrite(crossGreen, HIGH);
                delay(250);
            }
            // Setter fotgjengerlys til rødt.
            digitalWrite(crossGreen, LOW);
            digitalWrite(crossRed, HIGH);
            // Oppdaterer lightstate til 5 for å resette sekvensen og trafficStart
til 0. Dette er fordi den skal treffe sekvensen øverst.
            Serial.println("Fotgjengerlys tilbake til standard");
            lightState = 5;
            trafficStart = 0;
            // Setter knappeverdi tilbake til "standard" og oppdaterer millis.
            pedestrianStartNow = false;
            Serial.println("Restart trafikk");
            delay(500);
            updateMillis();
        }
    }
}
```