Sim2Real

A practitioner's guide to build your first deformable object simulator

Bin Wang AICFVE, BFA

Tiantian Liu MSRA

Forward and Inverse Physically-based
Simulation of Deformable Objects

Real2sim

An inverse simulation recipe to model your deformable objects

Sim2Real

A practitioner's guide to build your first deformable object simulator

Tiantian Liu Microsoft Research Asia 2020.05.14 Xi'an

Computer graphics is a lot of fun

2017

Our real lives are surrounded by deformable objects...

... so be our virtual lives

A practitioner's guide to build your first deformable object simulator

From laws of physics to executables

- Equations of motion
- Integration in time
- Describing deformation
 - A simple (but useful) model: mass-spring system
 - Constitutive models
- Spatial discretization
 - Finite element method
 - Material point method

Course Notes and Sample Code

https://github.com/ltt1598/GAMES_Xi-an_forward_physics

Things not covered in this course...

- Derivations in continuum mechanics / geometric integrators
- Strong form v.s. weak form & basis functions
- Detailed algorithms in nonlinear optimization and linear solvers
- Damping / Collisions / Contact

Equations of motion

• Define
$$\frac{d}{dt}q \coloneqq \dot{q}$$

- We have:
 - $\dot{x} = v$
 - $\dot{v} = a$

- Or simply:
 - $\ddot{x} = a$

Equations of motion

$$f = Ma$$

Equations of motion (linear ODE)

- $\bullet \ M\ddot{x} = f(x)$
- For linear materials, we have f(x) = -K(x X)
 - We, therefore, yield a linear differential equation:
 - $\bullet \ \ M\ddot{x} + K(x X) = 0$
 - Or sometimes: $M\ddot{u} + Ku = 0$ (define displacement $u \coloneqq x X$)

Note: linear materials are widely used for small deformations, such as in physically based **sound simulation** (for rigid bodies) and **topology optimization**

Equations of motion (general cases)

•
$$M\ddot{x} = f(x)$$

•
$$\dot{x} = v$$

$$\bullet \ \dot{v} = a = M^{-1}f$$

•
$$x(t_n + h) = x(t_n) + \int_0^h v(t_n + t) dt$$

•
$$x(t_n + h) = x(t_n) + \int_0^h v(t_n + t)dt$$

• $v(t_n + h) = v(t_n) + \int_0^h M^{-1} f(t_n + t)dt$

Time integration

•
$$x(t_n + h) = x(t_n) + \int_0^h v(t_n + t)dt$$

• $v(t_n + h) = v(t_n) + \int_0^h M^{-1} f(t_n + t)dt$

- Explicit(forward) Euler integration
 - $\bullet \ x_{n+1} = x_n + hv_n$
 - $\bullet \ v_{n+1} = v_n + hM^{-1}f(x_n)$

Note: Forward Euler is **extremely fast**, but it will also **increase the system energy** gradually. It is **seldom used** for the existence of symplectic Euler integration.

Symplectic Euler integration

•
$$v_{n+1} = v_n + hM^{-1}f(x_n)$$

$$\bullet \ x_{n+1} = x_n + hv_{n+1}$$

Note: Symplectic Euler is as **fast** as forward Euler, it is **momentum preserving**, it has an **oscillating system Hamiltonian**. It is often THE explicit integration method to use. It has been widely used in **accuracy-centric applications** (astronomy simulation / molecular dynamics etc).

• Implicit (backward) Euler integration

•
$$v_{n+1} = v_n + hM^{-1}f(x_{n+1})$$

$$\bullet x_{n+1} = x_n + hv_{n+1}$$

Or simply a nonlinear root-finding problem:

•
$$x_{n+1} = x_n + hv_n + h^2 M^{-1} f(x_{n+1})$$

Solving for implicit Euler

•
$$x_{n+1} = x_n + hv_n + h^2 M^{-1} f(x_{n+1})$$

- Baraff-Witkin style / semi-implicit Euler / one step of Newton
 - $x_{n+1} = x_n + \delta x$, $f(x_{n+1}) \approx f(x_n) + \nabla_x f(x_n) \delta x$
 - Boils down to one linear solve:
 - $(M h^2 \nabla_x f(x_n)) \delta x = h M v_n + h^2 f(x_n)$
 - $v_{n+1} = \frac{\delta x}{h}$, $x_{n+1} = x_n + \delta x$

- Solving for implicit Euler
 - $x_{n+1} = x_n + hv_n + h^2 M^{-1} f(x_{n+1})$
- Full Newton solve:
 - assume conservative force $f(x) = -\nabla_x E(x)$
 - define $g(x) = \frac{1}{2} ||x (x_n + hv_n)||_M^2 + h^2 E(x)$
 - $x_{n+1} = argmin_x g(x)$
 - Why? $\nabla_x g(x_{n+1}) = x_{n+1} (x_n + hv_n) h^2 M^{-1} f(x_{n+1})$

- Implicit Euler integration
 - $v_{n+1} = v_n + hM^{-1}f(x_{n+1})$
 - $\bullet \ x_{n+1} = x_n + hv_{n+1}$

Note: Implicit Euler is often **expensive** due to the nonlinear optimization, it **damps the Hamiltonian** from the oscillating components, it is often **stable for large time-steps** and is widely used in performance-centric applications. (game / MR / design / animation)

Time integration (wrap-up)

- As long as we know the conservative energy function E(x):
 - We can compute $f = -\nabla_x E$, to integrate explicit schemes
 - We can use $\nabla_x E$ and $\nabla_x^2 E$, to minimize $\frac{1}{2} ||x (x_n + hv_n)||_M^2 + h^2 E(x)$, in order to integrate implicit schemes

Time integration (example)

Gravitational energy:

•
$$E = -\frac{GMm}{r}$$

Compute gradient (gravitational force)

$$\bullet \frac{\partial E}{\partial x_1} = \frac{\partial E}{\partial r} * \frac{\partial r}{\partial x_1} = \frac{GMm}{r^2} * \frac{x_1 - x_2}{r}$$

$$f(x_1) = -\frac{\partial E}{\partial x_1}$$

$$\bullet f(x_2) = -f(x_1)$$

The N-body problem

```
66
         # compute gravitational force
67
         for i in range(N):
             p = pos[i]
68
69
             for j in range(N):
                  if i > j: # bad memory footprint and load balance
70
                      diff = p-pos[j]
71
                      r = diff.norm(1e-5)
72
73
                     # gravitational force -(GMm / r^2) * (diff/r) for i
74
75
                     f = -G * m * m * (1.0/r)**3 * diff
76
                     # assign to each particle
77
                      force[i] += f
78
                      force[j] += -f
79
         for i in range(N):
93 🗸
            #symplectic euler
94
            vel[i] += dt*force[i]/m
95
96
            pos[i] += dt*vel[i]
```

How about deformable objects?

• How to describe deformation?

Elastic energy (force)?

-- A simple yet useful discrete deformation model

- How to define the deformation?
 - Spring current length: $l = ||x_1 x_2||$
 - Spring rest-length: l_0
 - "Deformation": $l l_0$

- How to define the deformation?
 - Spring current length: $l = ||x_1 x_2||$
 - Spring rest-length: l_0
 - "Deformation": $l l_0$
- How to define the deformation energy?
 - Hooke's Law: $E(x_1, x_2) = \frac{1}{2}k(l l_0)^2$

 \boldsymbol{x}_1

• Elastic energy:

•
$$E = \frac{1}{2}k(l - l_0)^2$$

• Gradient:

•
$$\frac{\partial E}{\partial x_1} = \frac{\partial E}{\partial l} * \frac{\partial l}{\partial x_1} = k(l - l_0) * \frac{x_1 - x_2}{l_0}$$

•
$$f(x_1) = -\frac{\partial E}{\partial x_1}$$

$$\bullet \ f(x_2) = -f(x_1)$$

Mass-spring system (example)

```
123
          # gradient of elastic potential
124
          for i in range(N_edges):
125
              a, b = edges[i][0], edges[i][1]
126
              r = x[a]-x[b]
              1 = r.norm()
127
128
              10 = spring length[i]
              k = YoungsModulus[None]*10 # stiffness in Hooke's law
129
130
              gradient = k*(1-10)*r/1
131
              grad[a] += gradient
132
              grad[b] += -gradient
145
              for i in range(N):
                  # symplectic integration
146
147
                  # elastic force + gravitation force, divding mass to get the acceleration
148
                  acc = -grad[i]/m - [0.0, g]
                  v[i] += dh*acc
149
                  x[i] += dh*v[i]
150
```

A continuous model to describe deformation

Deformation map

$$\phi(X) = X + t$$

Deformation map

$$\phi(X) = RX$$

Deformation map

$$\phi(X) = SX$$

Deformation gradient

Energy density

- Define: $\Psi(x) = \Psi(\phi(X))$ is an energy density function at $x = \phi(X)$
 - Recall that $\phi(X) \approx FX + t$, we have $\Psi(x) \approx \Psi(FX + t)$
 - Since the energy density function should be translational invariant
 - i.e. $\Psi(x) = \Psi(x + t)$
 - ...and X is the state-independent rest-pose (for elastic materials)
 - We have $\Psi = \Psi(F)$ being a function of the **local deformation gradient** alone.

What should Ψ Look like?

We want a descriptor to describe deformation

- Strain $\epsilon(F)$
 - Descriptor of severity of deformation
 - $\epsilon(I) = 0$
 - $\epsilon(F) = \epsilon(RF)$ for $\forall R \in SO(dim)$
- Sample strain tensors in different constitutive models:
 - St. Venant-Kirchhoff model: $\epsilon(F) = \frac{1}{2} (F^T F I)$
 - Co-rotated linear model: $\epsilon(F) = S I$, where F = RS

What should Ψ Look like?

One more thing about $\Psi(\epsilon(F(x)))$

 \bullet Eventually we will need the gradient of Ψ to run simulations...

• Chain rule:
$$\frac{\partial \Psi}{\partial x} = \frac{\partial \Psi}{\partial F} : \frac{\partial F}{\partial x}$$

• For hyperelastic materials, the 1st Piola-Kirchhoff stress tensor:

•
$$P = \frac{\partial \Psi}{\partial F}$$

The 1st Piola-Kirchhoff stress tensor

• St. Venant-Kirchhoff model:

- Strain: $\epsilon_{stvk}(F) = \frac{1}{2} (F^T F I)$
- Energy density: $\Psi(F) = \mu \left\| \frac{1}{2} \left(F^T F I \right) \right\|_F^2 + \frac{\lambda}{2} tr \left(\frac{1}{2} \left(F^T F I \right) \right)^2$
- $P = \frac{\partial \Psi}{\partial F} = F \left[2\mu \epsilon_{stvk} + \lambda tr(\epsilon_{stvk})I \right]$

Co-rotated linear model:

- Strain: $\epsilon_c(F) = S I$, where F = RS
- Energy density: $\Psi(F) = \mu \|R^T F I\|_F^2 + \frac{\lambda}{2} tr (R^T F I)^2$
- $P = \frac{\partial \Psi}{\partial F} = R[2\mu\epsilon_c + \lambda tr(\epsilon_c)I] = 2\mu(F R) + \lambda tr(R^T F I)R$

From energy density to energy

•
$$E(x) = \int_{\Omega} \Psi(F(x)) dX$$

Spatial Discretization is needed!

Linear Finite Element Method (FEM)

$$Linear\ Element$$
$$\phi(X) = FX + t$$

Linear FEM energy

- Continuous Space:
 - $E(x) = \int_{\Omega} \Psi(F(x)) dX$

- Discretized Space:
 - $E(x) = \sum_{e_i} \int_{\Omega_{e_i}} \Psi(F_i(x)) dX = \sum_{e_i} w_i \Psi(F_i(x))$
 - $w_i = \int_{\Omega_{e_i}} dX$: size (area/volume) of the i-th element

Linear element assumption: $\phi(X) = FX + t$

Linear FEM

- Elastic energy:
 - $E(x) = w_i \Psi(F_i(x))$
- Gradient:

•
$$\frac{\partial E}{\partial x} = w_i P : \frac{\partial F}{\partial x}$$

- How to assemble your gradient?
 - Check FEMDEFO.org, Part I, Chapter 4
 - Or using auto-diff

Linear FEM (example)

```
# gradient of elastic potential
136
137
          for i in range(N triangles):
138
              Ds = compute D(i)
              F = Ds@elements Dm inv[i]
139
              # co-rotated linear elasticity
140
141
              R = compute R 2D(F)
              Eye = ti.Matrix.cols([[1.0, 0.0], [0.0, 1.0]])
142
              # first Piola-Kirchhoff tensor
143
144
              P = 2*LameMu[None]*(F-R) + LameLa[None]*((R.transpose())@F-Eye).trace()*R
145
              #assemble to gradient
              H = elements V0[i] * P @ (elements Dm inv[i].transpose())
146
147
              a,b,c = triangles[i][0],triangles[i][1],triangles[i][2]
              gb = ti.Vector([H[0,0], H[1, 0]])
148
149
              gc = ti.Vector([H[0,1], H[1, 1]])
150
              ga = -gb-gc
              grad[a] += ga
151
152
              grad[b] += gb
              grad[c] += gc
153
```

Recap: mass-spring

$$F = D_S D_m^{-1} = \frac{x_1 - x_2}{X_1 - X_2} = \frac{x_1 - x_2}{l_0}$$

$$\epsilon = ||F|| - 1$$

$$\Psi = \mu \epsilon^2$$

$$E = l_0 \Psi = \frac{1}{2} k(||x_1 - x_2|| - l_0)^2$$

FEM: Lagrangian View

Eulerian View

Lagrangian v.s. Eulerian View (in fluid sim)

SPH [Ihmen et al. 2014]

Stable Fluids [Stam 1999]

Lagrangian v.s. Eulerian View

Conformal Discretization
Adaptive Resolution
Volume/Mass Preservation

Collision Free Regular Data Structure Bounded Distortion

Hybrid Discretization Methods (MPM)

Conformal Discretization
Adaptive Resolution
Volume/Mass Preservation

Collision Free
Regular Data Structure
Bounded Distortion

MPM pipeline (classic)

Image courtesy of [Stomakhin et al. 2013]

MPM pipeline (MLS-MPM)

MPM pipeline (particle ops)

Compute force (Langrangian view)

MPM pipeline (P2G)

MPM pipeline (grid ops)

Update velocity using momentum, impulse (force) and mass

Update velocity according to boundary conditions

MPM pipeline (G2P)

MPM pipeline (advect)

Update particle position using velocity

MPM pipeline (MLS-MPM)

MPM transfer P2G

Scatter information from particle to grid

Interpolation weight is determined by a spline function (which can be linear/quadratic/cubic)

MPM transfer G2P

Gather information from grid to particle

Interpolation weight is determined by a spline function (which can be linear/quadratic/cubic)

Problem of a naïve transfer (PIC)

-- Numerical damping due to loss of info.

DoF on grid: 18

DoF on particle: 2

Image courtesy of [Fu et al. 2017]

Affine-PIC (or APIC)

MPM (example, p2g)

```
158
      @ti.kernel
159
      def p2g():
160
          for p in x:
161
              base = ti.cast(x[p] * inv_dx - 0.5, ti.i32) # floor
162
              fx = x[p] * inv dx - ti.cast(base, float)
              W = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2] # quadratic interpolation function
163
              affine = m * C[p]
164
              # 3x3 grid around that particle p
165
              for i in ti.static(range(3)):
166
167
                  for j in ti.static(range(3)):
                      I = ti.Vector([i, j])
168
                      dpos = (float(I) - fx) * dx
169
                      weight = w[i].x * w[j].y
170
                      grid_v[base + I] += weight * (m * v[p] - grad[p]*dh + affine @ dpos) #APIC
171
172
                      grid m[base + I] += weight * m
```

MPM (example, g2p)

```
@ti.kernel
174
      def g2p():
175
176
          for p in x:
              base = ti.cast(x[p] * inv dx - 0.5, ti.i32)
177
              fx = x[p] * inv_dx - float(base)
178
              W = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1.0)**2, 0.5 * (fx - 0.5)**2]
179
              new v = ti.Vector([0.0, 0.0])
180
              new C = ti.Matrix([[0.0, 0.0], [0.0, 0.0]])
181
182
              # gather information back from 3x3 grid around
183
184
              for i in ti.static(range(3)):
                  for j in ti.static(range(3)):
185
186
                      I = ti.Vector([i, j])
                      dpos = float(I) - fx
187
                      g_v = grid_v[base + I]
188
                      weight = w[i].x * w[j].y
189
190
                      new_v += weight * g_v
                      new C += 4 * weight * g v.outer product(dpos) * inv dx #APIC
191
192
              C[p] = new C # affine transformation matrix for particle p
193
194
195
              # symplectic integration for particles
196
              v[p] = \text{new } v
              x[p] += dh * v[p]
197
```

MPM (example, full integration)

```
grid_m.fill(0)

grid_v.fill(0)

compute_gradient()

p2g()

grid_op()

grid_op()

g298
```


- Equations of motion
- Integration in time
- Describing deformation
 - A simple (but useful) model: mass-spring system
 - Constitutive models
- Spatial discretization
 - Finite element method
 - Material point method

- Equations of motion
- Integration in time
- Describing deformation
 - A simple (but useful) model: mass-spring system
 - Constitutive models
- Spatial discretization
 - Finite element method
 - Material point method

- Equations of motion
- Integration in time
- Describing deformation
 - A simple (but useful) model: mass-spring system
 - Constitutive models
- Spatial discretization
 - Finite element method
 - Material point method

- Equations of motion
- Integration in time
- Describing deformation
 - A simple (but useful) model: mass-spring system

 \boldsymbol{x}_1

- Constitutive models
- Spatial discretization
 - Finite element method
 - Material point method

- Equations of motion
- Integration in time
- Describing deformation
 - A simple (but useful) model: mass-spring system
 - Constitutive models
- Spatial discretization
 - Finite element method
 - Material point method

 ϕ

 \boldsymbol{F}

 ϵ

 $\Psi(\epsilon(F))$

P

- Equations of motion
- Integration in time
- Describing deformation
 - A simple (but useful) model: mass-spring system
 - Constitutive models
- Spatial discretization
 - Finite element method
 - Material point method

- Equations of motion
- Integration in time
- Describing deformation
 - A simple (but useful) model: mass-spring system
 - Constitutive models
- Spatial discretization
 - Finite element method
 - Material point method

Magic links

Courses

- Real Time Physics [SIGGRAPH 2008 Course] <u>link</u>
- Finite Element Method [SIGGRAPH 2012 Course] <u>link</u>
- Material Point Method [SIGGRAPH 2016 Course] <u>link</u>
- 高级物理引擎实战指南2020 [GAMES 201] link

