```
In [1]: import os
        import numpy as no
         import pandas as pd
         import matplotlib.pyplot as plt
        import seaborn as sms
         import scipy
         from sklearn.metrics import silhouette_samples, silhouette_score
         from scipy.cluster.hierarchy import dendrogram, linkage
         from sklearn.cluster import KMeans
         sns.set()
         Meatplotlib inline
        import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         sns.set()
         from sklearn.cluster import KMeans
         from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler, MaxAbsScaler, OneHotEncoder, OrdinalEncoder, Polynx
         from sklearn.feature_extraction.text import CountVectorizer
         from sklearn.cluster import KMeans
         from sklearn.decomposition import PCA
         import matplotlib.animation as animation
         import matplotlib.pyplot as plt
         from mpl_toolkits.mplot3d import Axes3D
         import seaborn as sns
         import plotly.express as px
         import warnings
         warnings.filterwarnings("ignore")
         from sklearn.cluster import AgglomerativeClustering
         from scipy.cluster.hierarchy import dendrogram, linkage
        from sklearn.metrics.pairwise import cosine_similarity
         import missingno as msno
        from sklearn.metrics import silhouette_score
        from sklearn.metrics import pairwise_distances
         from sklearn.metrics import davies_bouldin_score
        from sklearn.metrics import calinski harabasz score
 In [2]: df = pd.read_csv('https://raw.githubusercontent.com/dentawina/Dataset/main/cellphone_price.csv')
          df.head()
 Out[2]:
             battery_power blue clock_speed dual_sim fc four_g int_memory m_dep mobile_wt n_cores pc px_height px_width ram sc_h sc_w talk_time
           4
                     1021
                                      0.5
                                                4
                                                  ō
                                                                    53
                                                                           0.7
                                                                                    136
                                                                                             3
                                                                                                        905
                                                                                                                1988 2631
           2
                     563
                                      0.5
                                                1 2
                                                                    41
                                                                          0.9
                                                                                    145
                                                                                             5
                                                                                                        1263
                                                                                                                1716 2603
           3
                     615
                                      2.5
                                                0
                                                  0
                                                                    10
                                                                          0.8
                                                                                    131
                                                                                             6
                                                                                                9
                                                                                                        12:16
                                                                                                                1786 2769
                                                                                                                                           11
           4
                     1821
                                      1.2
                                                0 13
                                                                    44
                                                                                    141
                                                                                             2 14
                                                                                                                1212 1411
                                                                                                                                           15
                                                          1
                                                                          0.6
                                                                                                        1208
                                                                                                                             å
          4 |
 In [3]: df.shape
```

Dataset Cellphone ini memiliki 3000 Baris dan 20 Kolom

In [4]:	df.describe()
---------	---------------

Out[3]: (3000, 20)

Out[4]:		battery_power	blue	clock_speed	dual_sim	fo	four_g	int_memory	m_dep	m-obile_wt	n_cores	ро
	count	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000
	mean	1241.849000	0.502000	1.528467	0.512000	4.404000	0.510000	32.581667	0.507000	140.003000	4.456333	9.962333
	std	437.063804	0.500079	0.820358	0.499939	4.383742	0.499983	18.152810	0.285969	35.213809	2.289361	6.073923
	min	500.000000	0.000000	0.500000	0.000000	0.000000	0.000000	2.000000	0.100000	80.000000	1.000000	0.000000
	25%	863.750000	0.000000	0.700000	0.000000	1.000000	0.000000	16.000000	0.200000	109.000000	2.000000	5.000000
	50%	1232.000000	1.000000	1.500000	1.000000	3.000000	1.000000	33.000000	0.500000	140.000000	4.000000	10.000000

```
In [12]: plt.figure(figsize=(10,6))
    df1['fc'].hist(alpha=0.5,color='blue',label='front camera')
    df1['pc'].hist(alpha=0.5,color='red',label='Primary camera')
    plt.legend()
    plt.xlabel('MegaPixels')
```

Out[12]: Text(0.5, 0, 'MegaPixels')


```
In [16]: from sklearn import preprocessing
           rs - Robusticaler(
           x_scaled = pd.DataFrame(rs.fit_transform(df), columns = rs.feature_names_in_)
          X_scaled
Out[16]:
                 battery_power blue clock_speed dual_sim
                                                                  fo four_g int_memory
                                                                                           m_dep mobile_wt n_cores pc px_height px_width
                                          0.4375
                                                                        -1.0
                                                                                                    0.798885
                                                                                                                 -0.50 -0.8 -0.830851 -0.839792 0.218734 -0.4285
              0
                      -0.516385
                                -1.0
                                                      -1.0 -0.333333
                                                                                -0.81250 0.168687
                                 0.0
                                                       0.0 -0.500000
                                                                                                   -0.085574
               1
                      -0.279378
                                          -0.0250
                                                                         0.0
                                                                                 0.62500
                                                                                         0.333333
                                                                                                                 -0.25 -0.4
                                                                                                                            0.520809
                                                                                                                                      0.902289
                                                                                                                                                0.200999 0.71424
              2
                      -0.885799
                                0.0
                                          -0.6250
                                                       0.0 -0.166667
                                                                         0.0
                                                                                                    0.081967
                                                                                                                            1.067583
                                                                                                                                      0.608583
                                                                                                                                                0.245884 -0.1428
                                                                                 0.25000 0.666667
                                                                                                                 0.25 -0.4
               3
                      -0.818948
                                           0.8250
                                                       -1.0 -0.500000
                                                                                 0.71875
                                                                                          0.500000
                                                                                                    -0.147541
                                                                                                                 0.50 -0.1
                                                                                                                            0.995800
                                                                                                                                      0.899810
                                                                                                                                                0.335493 0.57143
                                                       -1.0 1.000007
              4
                      0.779874 0.0
                                          -0.1875
                                                                         0.0
                                                                                 0.34375 0.100007
                                                                                                    0.016393
                                                                                                                 -0.50 0.4
                                                                                                                            0.983582 -0.046814 -0.397571 -0.57143
                                                                                                    0.491803
            2995
                      0.619682 0.0
                                          0.2500
                                                       -1.0 -0.500000
                                                                         0.0
                                                                                 0.88825 0.0000000
                                                                                                                 0.75 0.7 0.122184 -0.435631 -0.014305 0.2857
            2996
                      -0.824892 ·1.0
                                           0.1875
                                                       0.0 -0.500000
                                                                        -1.0
                                                                                -0.62500
                                                                                         0.666667
                                                                                                    0.754098
                                                                                                                 0.00 -0.8
                                                                                                                            0.898053
                                                                                                                                      0.499350 -0.115789 -0.57143
            2997
                      -0.062231 -1.0
                                          -0.0625
                                                      -1.0 -0.333333
                                                                         0.0
                                                                                -0.78125 0.000000
                                                                                                  -0.983@07
                                                                                                                 -0.75 0.2 -0.132875 -0.550065 -0.499055 -1.0000F
                      0.398544 0.0
                                                       0.0 -0.500000
                                                                                 0.53125 -0.168687
                                                                                                    0.508197
                                                                                                                 -0.50 0.2 -0.803380 -0.540982 0.195142 0.4285
            2998
                                          -0.61250
                                                                        -1.0
                      0.050314 0.0
                                          -0.61250
                                                       ·1.0 0.100007
                                                                         0.0
                                                                                 0.06250 -0.666667
                                                                                                    0.0000000
                                                                                                                 0.50 0.9 -0.163421 -0.832250 0.367341 -0.4285
            2999
           3000 raws × 20 collumns
```

```
PCA
Im [17]: from sklearn.decomposition import PCA
             pcs = PCA()
             pca.fit(x_scaled)
             pca.explained_variance_ratio_
Out[17]: array([0.11934082, 0.09644618, 0.08784264, 0.05601789, 0.05511328,
                      0.05438372, 0.05337881, 0.05169493, 0.04972215, 0.04698247, 0.0428622, 0.0409082, 0.0397311, 0.03810098, 0.03786052, 0.03527368, 0.02946613, 0.02779307, 0.02385453, 0.01404408])
Im [18]: plt.figure(figsize=(12, 8))
            plt.plot(range(1, 21), pca.explained_variance_ratio_.cumsum(), marker='o', linestyle='--')
plt.xlabel("Number of Components")
             plt.ylabel("Cumulative Explained Variance")
Out[18]: Text(0, 0.5, 'Cumulative Explained Variance')
                 10
                 0.5
              Cumulative Explained Variance
                 0.4
                 0.2
```

17.5

Elbow Method


```
In [30]: def highlight_max_min(s):

is_max = s == s.max()
is_min = s == s.min()
return ['background-color: red' if v else 'background-color: lightgreen' if is_min[i] else '' for i,v in enumerate(is_max)]

& Colculate the mean value for each feature within each cluster
profil = df.groupby('cluster').mean().round(2).T

& Highlight the maximum and minimum values in each column
profil_styled = profil.style.apply(highlight_max_min, axis=1)

& Display the styled DataFrame
profil_styled
```

cluster	0	1	2	3
battery_power	1259.740000	1267.070000	1244.260000	1194,640000
blue	0.490000	0.490000	0.520000	0.510000
clock_speed	1,530000	1,570000	1.560000	1.440000
dual_alm	0.520000	0.520000	0.520000	0.500000
fc.	2.680000	10.540000	2.250000	2.470000
four_g	0.500000	0.500000	0.520000	0.530000
int_memory	32.450000	31.580000	52 650000	34.460000
m_dep	0.520000	0.510000	0.510000	0.490000
mobile_wt	138.980000	141,540000	140.910000	138.1900000
n_cores	4.310000	4,580000	4.490000	4.430000
pc	8.180000	16.350000	7.780000	7.850000
px_height	1220.880000	574.470000	413.360000	437,520000
px_width	1673.080000	1202.170000	1088.540000	1090.250000
ram	2134.170000	2145.730000	2073.220000	2180.520000
ec_h	12.600000	12.180000	9.110000	15.920000
ec_w	5.710000	5.120000	2.750000	9.830000
falk_time	11.140000	10.880000	11.020000	11,110000
three_g	0.750000	0.750000	0.780000	0.760000
touch_screen	0.500000	0,500000	0.510000	0.500000
with	0.530000	0.490000	0.480000	0.540000

Out[30]:

Hieritical

```
plt.figure(figsize=(10, 8))
sns.scatterplot(
    x=1,
    y=2,
    data=df_hc,
    hue='hc PCA',
    palette=['y','n','c','g']
)

plt.title('Hierarchical Clustering', fontsize=16)
plt.xlabel('Component 1', fontsize=12)
plt.ylabel('Component 2', fontsize=12)
plt.xticks(fontsize=12)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)

# Menampilkan Legenda
plt.legend(fontsize=12)
plt.show()
```



```
comparison_table = create_comparison_table(df, kmeans_pca, model)
print(comparison_table)
```

	Metric	K-Means Clustering	Hierarchical Clustering
0	Silhouette Score	0.025262	0.002105
1	Calinski-Harabasz Index	99.327709	62.666941
2	Davies-Bouldin Index	13.527218	18.277674

