Snapshot of the VERY Basic Algebraic Geometry

Chenyang Zhao

December 25, 2024

Contents

1	Affi	ne Geometry	
	1.1	Definition of Affine Space	
	1.2	Polynomial Rings and Their Role	
	1.3	Affine Varieties	
	1.4	Coordinate Functions and Morphisms	
	1.5	The Zariski Topology	
2	Ideals in Algebraic Geometry		
	2.1	Definition of Ideals	
	2.2	Operations on Ideals	
	2.3	Radical of an Ideal	
	2.4	Hilbert's Nullstellensatz	
	2.5	Coordinate Rings	
3	Projective Geometry		
	3.1	Definition of Projective Space	
	3.2	Homogeneous Coordinates and Polynomials	
	3.3	Projective Varieties	
	3.4	Relationship Between Affine and Projective Geometry	
4	Dimension and Singularities		
	4.1	Dimension of a Variety	
	4.2	Tangent Space	
	4.3	Singular Points	
	4.4	Applications of Singularity Analysis	
5	Bézout's Theorem		
	5.1	Intersection of Projective Curves	
	5.2	Statement of Bézout's Theorem	
	5.3	Examples and Applications	
	5.4	Multiplicity of Intersection Points	
	5.5	Generalizations of Bézout's Theorem	

1 Affine Geometry

1.1 Definition of Affine Space

Definition 1.1 (Affine Space). The n-dimensional affine space over a field k, denoted by \mathbb{A}^n , is the set of all ordered n-tuples of elements from k:

$$\mathbb{A}^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in k \text{ for } i = 1, 2, \dots, n\}.$$

Affine space can be thought of as a "flat" space that generalizes Euclidean space, but without any additional structure such as a metric or designated origin.

Remark 1.1 (Mathematical Meaning of Affine Space). Affine space provides the stage where algebraic geometry takes place. The points in \mathbb{A}^n are the "coordinates," and algebraic objects like varieties are subsets of \mathbb{A}^n defined by polynomial equations.

1.2 Polynomial Rings and Their Role

Definition 1.2 (Polynomial Ring). The polynomial ring in n variables over a field k, denoted $k[x_1, \ldots, x_n]$, consists of all finite sums of monomials of the form:

$$\sum_{i_1,\dots,i_n>0} c_{i_1,\dots,i_n} x_1^{i_1} \cdots x_n^{i_n}, \quad c_{i_1,\dots,i_n} \in k.$$

Remark 1.2 (Role of Polynomial Rings). Polynomial rings are the algebraic counterpart of affine space. They encode the "functions" defined on \mathbb{A}^n . Studying ideals in these rings allows us to describe and analyze geometric objects like curves and surfaces.

Example 1.1 (Example of a Polynomial Ring). In k[x, y], examples of polynomials include $x^2 + y^2$, 3xy + 2y, and 1. This ring allows us to describe geometric objects in \mathbb{A}^2 , such as circles $(x^2 + y^2 = 1)$ or lines (x + y = 0).

1.3 Affine Varieties

Definition 1.3 (Affine Variety). An affine variety $V \subseteq \mathbb{A}^n$ is the set of common zeros of a collection of polynomials $f_1, f_2, \ldots, f_m \in k[x_1, \ldots, x_n]$:

$$V(f_1, \dots, f_m) = \{x \in \mathbb{A}^n \mid f_1(x) = f_2(x) = \dots = f_m(x) = 0\}.$$

Remark 1.3 (Geometric Interpretation). Affine varieties represent solutions to systems of polynomial equations. They generalize familiar geometric objects, such as lines, circles, and parabolas, to higher dimensions and more abstract settings.

Example 1.2 (Circle in \mathbb{A}^2). The unit circle in \mathbb{A}^2 over \mathbb{R} is the variety $V(x^2 + y^2 - 1)$:

$$V(x^2 + y^2 - 1) = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

This provides a concrete example of an affine variety defined by a single polynomial equation.

1.4 Coordinate Functions and Morphisms

Definition 1.4 (Coordinate Functions). For any point $p = (p_1, ..., p_n) \in \mathbb{A}^n$, the coordinate functions $x_1, x_2, ..., x_n$ are projections:

$$x_i(p) = p_i$$
 for $i = 1, ..., n$.

These functions generate the polynomial ring $k[x_1, \ldots, x_n]$.

Remark 1.4 (Why Coordinate Functions?). Coordinate functions allow us to express polynomial equations in terms of the variables x_1, x_2, \ldots, x_n . They form the basis for defining and studying affine varieties.

Definition 1.5 (Morphisms of Affine Varieties). A morphism between affine varieties $V \subseteq \mathbb{A}^m$ and $W \subseteq \mathbb{A}^n$ is a map $\varphi : V \to W$ induced by polynomials $f_1, \ldots, f_n \in k[x_1, \ldots, x_m]$:

$$\varphi(p) = (f_1(p), \dots, f_n(p))$$
 for all $p \in V$.

Example 1.3 (Morphisms Between Varieties). Consider $V = V(x^2 + y^2 - 1) \subset \mathbb{A}^2$ (the unit circle) and $W = \mathbb{A}^1$. The map $\varphi : V \to W$ given by $\varphi(x,y) = x$ projects the circle onto the x-axis.

1.5 The Zariski Topology

Definition 1.6 (Zariski Closed Sets). A subset $Z \subseteq \mathbb{A}^n$ is Zariski closed if there exists an ideal $I \subseteq k[x_1, \ldots, x_n]$ such that:

$$Z = V(I) = \{x \in \mathbb{A}^n \mid f(x) = 0 \text{ for all } f \in I\}.$$

Remark 1.5 (Why the Zariski Topology?). The Zariski topology provides a natural way to study varieties. Its closed sets correspond to algebraic objects (varieties), making it suitable for algebraic geometry.

Example 1.4 (Zariski Closed Set in \mathbb{A}^2). In \mathbb{A}^2 , the variety $V(x^2 + y^2 - 1)$ is a Zariski closed set because it is defined by the polynomial $x^2 + y^2 - 1$.

Definition 1.7 (Zariski Topology). The collection of Zariski closed sets defines a topology on \mathbb{A}^n , called the Zariski topology. Its open sets are the complements of Zariski closed sets.

2 Ideals in Algebraic Geometry

2.1 Definition of Ideals

Definition 2.1 (Ideal). An ideal I in the ring $k[x_1, ..., x_n]$ is a subset such that:

- $0 \in I$,
- If $f, g \in I$, then $f + g \in I$ (closure under addition),
- If $f \in I$ and $h \in k[x_1, ..., x_n]$, then $hf \in I$ (closure under multiplication by ring elements).

Example 2.1 (Examples of Ideals). In k[x,y]:

- $I = \langle x^2 + y^2 1 \rangle$: All multiples of $x^2 + y^2 1$.
- $I = \langle x, y \rangle$: All polynomials divisible by x or y.

2.2 Operations on Ideals

Definition 2.2 (Sum and Product of Ideals). For ideals $I, J \subseteq k[x_1, \ldots, x_n]$:

- The sum $I + J = \{f + g \mid f \in I, g \in J\}.$
- The product $I \cdot J = \{ \sum f_i g_i \mid f_i \in I, g_i \in J \}$.

Example 2.2 (Operations on Ideals). For $I = \langle x \rangle$ and $J = \langle y \rangle$ in k[x, y]:

- $I + J = \langle x, y \rangle$ contains all linear combinations of x and y.
- $I \cdot J = \langle xy \rangle$ contains all multiples of xy.

2.3 Radical of an Ideal

Definition 2.3 (Radical of an Ideal). The radical of an ideal I, denoted \sqrt{I} , is the set of all polynomials $f \in k[x_1, \ldots, x_n]$ such that $f^m \in I$ for some $m \ge 1$:

$$\sqrt{I} = \{ f \in k[x_1, \dots, x_n] \mid f^m \in I \text{ for some } m \ge 1 \}.$$

Example 2.3 (Radical of an Ideal). For $I = \langle x^2 \rangle$ in k[x], the radical $\sqrt{I} = \langle x \rangle$ since any $f \in \sqrt{I}$ satisfies $f^2 \in I$.

2.4 Hilbert's Nullstellensatz

Theorem 2.1 (Hilbert's Nullstellensatz). If k is an algebraically closed field and $I \subseteq k[x_1, \ldots, x_n]$ is an ideal, then the variety V(I) satisfies:

$$I(V(I)) = \sqrt{I}.$$

Example 2.4 (Nullstellensatz in Action). For $I = \langle x^2 + y^2 - 1 \rangle$ in $\mathbb{C}[x, y]$, the variety V(I) is the unit circle in \mathbb{A}^2 . The ideal I(V(I)) is \sqrt{I} , confirming the theorem.

2.5 Coordinate Rings

Definition 2.4 (Coordinate Ring). The coordinate ring of a variety $V \subseteq \mathbb{A}^n$ is the quotient ring:

$$k[V] = k[x_1, \dots, x_n]/I(V),$$

where I(V) is the ideal of all polynomials vanishing on V.

Example 2.5 (Coordinate Ring of a Circle). For $V = V(x^2 + y^2 - 1)$ in \mathbb{A}^2 , the coordinate ring is:

$$k[V] = k[x, y]/\langle x^2 + y^2 - 1 \rangle.$$

3 Projective Geometry

3.1 Definition of Projective Space

Definition 3.1 (Projective Space). The n-dimensional projective space over a field k, denoted by \mathbb{P}^n , is the set of equivalence classes of $\mathbb{A}^{n+1}\setminus\{0\}$ under the equivalence relation:

$$(x_0, x_1, \dots, x_n) \sim (\lambda x_0, \lambda x_1, \dots, \lambda x_n), \quad \lambda \in k^*.$$

Each equivalence class is written as $[x_0 : x_1 : \cdots : x_n]$.

Remark 3.1 (Geometric Interpretation). Projective space can be thought of as the space of lines passing through the origin in \mathbb{A}^{n+1} . It extends affine space by adding points at infinity to handle intersections more systematically.

Example 3.1 (Projective Line). The projective line \mathbb{P}^1 over k is the set of equivalence classes $[x_0 : x_1]$, representing all lines through the origin in $\mathbb{A}^2 \setminus \{0\}$. It includes points like [1:0] and [0:1], as well as affine points [x:1] for $x \in k$.

3.2 Homogeneous Coordinates and Polynomials

Definition 3.2 (Homogeneous Polynomial). A polynomial $f(x_0, ..., x_n)$ is homogeneous of degree d if all terms have the same total degree d:

$$f(x_0, \dots, x_n) = \sum a_{i_0, \dots, i_n} x_0^{i_0} \cdots x_n^{i_n}, \quad \text{with } i_0 + \dots + i_n = d.$$

Remark 3.2 (Why Homogeneous Polynomials?). Homogeneous polynomials define well-behaved varieties in projective space, as they remain invariant under scaling. This ensures that the variety is independent of the choice of representative in the equivalence class.

Example 3.2 (Circle in Projective Space). The circle $x^2 + y^2 - 1 = 0$ in affine space \mathbb{A}^2 can be extended to projective space \mathbb{P}^2 as the homogeneous equation:

$$x^2 + y^2 - z^2 = 0,$$

where z accounts for points at infinity.

3.3 Projective Varieties

Definition 3.3 (Projective Variety). A projective variety $V \subseteq \mathbb{P}^n$ is the set of common zeros of a collection of homogeneous polynomials $f_1, \ldots, f_m \in k[x_0, \ldots, x_n]$:

$$V(f_1, \ldots, f_m) = \{ [x_0 : \cdots : x_n] \in \mathbb{P}^n \mid f_1(x) = \cdots = f_m(x) = 0 \}.$$

Example 3.3 (Conic in \mathbb{P}^2). The variety defined by $x^2 + y^2 - z^2 = 0$ in \mathbb{P}^2 is a conic. In affine coordinates (where $z \neq 0$), this reduces to the circle $x^2 + y^2 = 1$ in \mathbb{A}^2 .

3.4 Relationship Between Affine and Projective Geometry

Remark 3.3 (Affine Charts). Projective space \mathbb{P}^n can be covered by n+1 affine charts, where each chart corresponds to setting one coordinate (e.g., x_i) to 1. These charts provide a bridge between affine and projective geometry.

Example 3.4 (Affine Chart of \mathbb{P}^2). For \mathbb{P}^2 , the affine chart where $z \neq 0$ corresponds to the affine plane \mathbb{A}^2 with coordinates (x/z, y/z).

4 Dimension and Singularities

4.1 Dimension of a Variety

Definition 4.1 (Dimension). The dimension of an affine or projective variety V, denoted $\dim(V)$, is the maximum length of a chain of distinct irreducible subvarieties:

$$V_0 \subseteq V_1 \subseteq \cdots \subseteq V_k \subseteq V$$
,

where each V_i is irreducible. The length of this chain is k.

Remark 4.1 (Geometric Interpretation). Dimension measures the degrees of freedomin a variety. For instance:

- A point has dimension 0.
- A curve has dimension 1.
- A surface has dimension 2.

Example 4.1 (Dimension in \mathbb{A}^n). • The affine space \mathbb{A}^n has dimension n.

- A line in \mathbb{A}^2 , such as V(x-y), has dimension 1.
- A point, such as V(x,y) in \mathbb{A}^2 , has dimension 0.

4.2 Tangent Space

Definition 4.2 (Tangent Space). Let $V \subseteq \mathbb{A}^n$ be an affine variety defined by polynomials $f_1, \ldots, f_m \in k[x_1, \ldots, x_n]$. At a point $P \in V$, the tangent space T_PV is the solution space of the linear system:

$$\sum_{i=1}^{n} \frac{\partial f_j}{\partial x_i}(P) \cdot x_i = 0, \quad \text{for } j = 1, \dots, m.$$

Remark 4.2 (Dimension of the Tangent Space). The dimension of the tangent space at P provides a local approximation to the dimension of V near P. For smooth points, $\dim(T_PV) = \dim(V)$.

Example 4.2 (Tangent Space of a Circle). Consider the circle $V(x^2 + y^2 - 1)$ in \mathbb{A}^2 . At the point P = (1,0), the gradient of $f(x,y) = x^2 + y^2 - 1$ is $\nabla f = (2x,2y)$. The tangent space at P is the line $2x \cdot \delta x + 2y \cdot \delta y = 0$, which simplifies to $\delta y = 0$.

4.3 Singular Points

Definition 4.3 (Singular Point). A point $P \in V$ is a singular point if the rank of the Jacobian matrix of the defining polynomials f_1, \ldots, f_m at P is less than $\dim(V)$. Otherwise, P is a smooth point.

Example 4.3 (Singular Point of a Curve). Consider the curve $V(y^2 - x^3) \subseteq \mathbb{A}^2$. The Jacobian matrix is:

$$\left[-\frac{\partial}{\partial x}(x^3) \quad \frac{\partial}{\partial y}(y^2) \right] = \begin{bmatrix} -3x^2 & 2y \end{bmatrix}.$$

At P = (0,0), the Jacobian matrix is zero, so P is a singular point.

4.4 Applications of Singularity Analysis

Remark 4.3 (Singularities in Geometry). Singularities play a crucial role in algebraic geometry, as they often indicate points of interest or complexity. For example:

- Singular points on a curve may correspond to cusps or intersections.
- In higher dimensions, singularities are essential in the study of moduli spaces and birational geometry.

Example 4.4 (Node and Cusp). • The curve $y^2 - x^2(x+1) = 0$ has a node at (0,0).

• The curve $y^2 - x^3 = 0$ has a cusp at (0,0).

5 Bézout's Theorem

5.1 Intersection of Projective Curves

Definition 5.1 (Intersection of Curves). Let C_1 and C_2 be two projective curves in \mathbb{P}^2 , defined by homogeneous polynomials $f_1(x_0, x_1, x_2)$ and $f_2(x_0, x_1, x_2)$, respectively. Their intersection points are the solutions to:

$$f_1(x_0, x_1, x_2) = 0$$
 and $f_2(x_0, x_1, x_2) = 0$.

5.2 Statement of Bézout's Theorem

Theorem 5.1 (Bézout's Theorem). Let C_1 and C_2 be projective curves in \mathbb{P}^2 defined by homogeneous polynomials of degrees d_1 and d_2 . If C_1 and C_2 intersect transversally, the number of intersection points (counted with multiplicity) is:

$$d_1 \cdot d_2$$
.

5.3 Examples and Applications

Example 5.1 (Line and Conic in \mathbb{P}^2). Consider a line L defined by $x_0 + x_1 = 0$ and a conic C defined by $x_0^2 + x_1^2 - x_2^2 = 0$ in \mathbb{P}^2 . Bézout's theorem predicts:

$$\deg(L) \cdot \deg(C) = 1 \cdot 2 = 2.$$

Indeed, the line intersects the conic at exactly two points in \mathbb{P}^2 .

Example 5.2 (Two Conics in \mathbb{P}^2). Let C_1 and C_2 be two conics defined by $x_0^2 + x_1^2 - x_2^2 = 0$ and $x_0x_1 - x_2^2 = 0$. Bézout's theorem gives:

$$\deg(C_1) \cdot \deg(C_2) = 2 \cdot 2 = 4.$$

The two conics intersect at four points (counted with multiplicity).

5.4 Multiplicity of Intersection Points

Definition 5.2 (Multiplicity of an Intersection). If C_1 and C_2 intersect at a point P in \mathbb{P}^2 , the multiplicity of the intersection at P is determined by the local behavior of the defining equations at P.

Remark 5.1 (Multiplicity and Tangency). If C_1 and C_2 are tangent at P, the multiplicity of the intersection at P is greater than 1.

Example 5.3 (Tangency of a Line and a Conic). Consider the line L defined by $x_0 + x_1 = 0$ and the conic C defined by $(x_0 + x_1)^2 - x_2^2 = 0$. The line is tangent to the conic at [1:-1:0], and the intersection at this point has multiplicity 2.

5.5 Generalizations of Bézout's Theorem

Remark 5.2 (Higher-Dimensional Varieties). Bézout's theorem extends to higher dimensional projective varieties. For example, if V_1 and V_2 are varieties in \mathbb{P}^n with dimensions d_1 and d_2 , their intersection has a degree determined by the product of their degrees, under suitable transversality assumptions.

Example 5.4 (Planes in \mathbb{P}^3). Two planes in \mathbb{P}^3 intersect in a line. Each plane has degree 1, so their intersection has degree $1 \cdot 1 = 1$, corresponding to the line.