

oracle/R 프로그래밍

R로 데이터를 원하는 모양으로 변형하기 ① (기본 함수)

#moon 2014.11.28 12:54

함수	의미						
aggregate()	다양한 함수를 사용하여 계산 결과를 출력						
apply()							
cor()	상관함수						
cumsum()	설정된 지점까지의 누적합						
cumprom()	설정된 지점까지의 누적곱						
diff()	차이나는 부분을 찾아냄						
length()	요소갯수를 구해서 출력함						
max()	최대값 출력						
min()	최소값 출력						
mean()	평균값 출력						
median()	가운데값 출력						
order()	각 요소의 원래 위치						
prod()	누적곱을 출력						
range()	범위값 출력						
rank()	각 요소의 순위를 출력						
rev()	요소의 역순을 출력						
sd()	표준편차 출력						
sort()	정렬결과 출력						
sum()	총 합계 출력						
summary()	요약 통계량 출력						
sweep()							
tapply()	벡터에서 주어진 함수연산 수행						
var()	분산값 출력						


```
접기
```

```
> vec1 <- c(1,2,3,4,5)
> vec2 <- c('a','b','c','d','e')
> max(vec1)
[1] 5
> max(vec2)
[1] "e"
> min(vec1)
[1]1
> min(vec2)
[1] "a"
> mean(vec1)
[1]3
> mean(vec2)
[1] NA
경고메시지:
In mean.default(vec2):
 인자가 수치형 또는 논리형이 아니므로 NA를 반환합니다
> # 표준편차
> sd(vec1)
[1] 1.581139
> # 합계
> sum(vec1)
[1] 15
> # 분산
> var(vec1)
[1] 2.5
```

2. aggregate 함수 - Dataframe 대상

접기

- 분석할 데이터 형태가 데이터 프레임 형태일 경우 사용하는 함수
- 문법: aggreate(계산될컬럼~기준될컬럼, 데이터, 함수)
- 기준될 컬럼이 여러개일 경우에는 + 사용 ex) aggregate(Sales~Fruit+Year,Fruits,max)

CATEGORY

> install.packages("googleVis")

Installing package into 'C:/Users/stu/Documents/R/win-library/3.1' (as 'lib' is unspecified)

also installing the dependency 'RJSONIO'

URL 'http://cran.nexr.com/bin/windows/contrib/3.1/RJSONIO_1.3-0.zip'을 시도합니다

Content type 'application/zip' length 1236066 bytes (1.2 Mb)

URL을 열었습니다

downloaded 1.2 Mb

URL 'http://cran.nexr.com/bin/windows/contrib/3.1/googleVis_0.5.6.zip'을 시도합니다

Content type 'application/zip' length 966585 bytes (943 Kb)

URL을 열었습니다

downloaded 943 Kb

패키지 'RJSONIO'를 성공적으로 압축해제하였고 MD5 sums 이 확인되었습니다 패키지 'googleVis'를 성공적으로 압축해제하였고 MD5 sums 이 확인되었습니다

다운로드된 바이너리 패키지들은 다음의 위치에 있습니다

C:\Users\stu\AppData\Local\Temp\RtmpIBlJIY\downloaded_packages

>

> library(googleVis)

Welcome to googleVis version 0.5.6

Please read the Google API Terms of Use before you start using the package: https://developers.google.com/terms/

Note, the plot method of googleVis will by default use the standard browser to display its output.

See the googleVis package vignettes for more details, or visit http://github.com/mages/googleVis.

To suppress this message use:

suppressPackageStartupMessages(library(googleVis))

> Fruits

Fruit Year Location Sales Expenses Profit Date

1 Apples 2008 West 98 78 20 2008-12-31


```
5 Bananas 2008 East 85
                          76 9 2008-12-31
6 Oranges 2009 East 93
                          80 13 2009-12-31
7 Bananas 2009 East 94
                          78 16 2009-12-31
8 Oranges 2010 East 98
                          91 7 2010-12-31
9 Bananas 2010 East 81
                          71 10 2010-12-31
> # 년도별로 salse된 양을 sum하기
> aggregate(Sales~year,Fruits,sum)
다음에 오류가 있습니다eval(expr, envir, enclos): 객체 'year'를 찾을 수 없습니다
> aggregate(Sales~Year,Fruits,sum)
Year Sales
1 2008 279
2 2009 298
3 2010 268
> # Fruit별로 Sales된 수량을 sum하기
> aggregate(Sales~Fruit,Fruits,sum)
 Fruit Sales
1 Apples 298
2 Bananas 260
3 Oranges 287
># 과일별로 가장 많이 Sales된 수량 조회
> aggregate(Sales~Fruit,Fruits,max)
 Fruit Sales
1 Apples 111
2 Bananas 94
3 Oranges 98
> # 과일별, 년도별 최대 판매량
> aggregate(Sales~Fruit+Year,Fruits,max)
 Fruit Year Sales
1 Apples 2008 98
2 Bananas 2008 85
3 Oranges 2008 96
4 Apples 2009 111
5 Bananas 2009 94
6 Oranges 2009 93
```

7 Apples 2010 89

3. apply 함수로 분석하기 - Matrix 대상

- R에서 아주 많이 사용되는 함수이며 여러가지 변형도 많음
- 문법: apply(대상,행/열,적용함수)
- 행/열 -> 1이면 행, 2이면 열기준으로 적용
- 행렬(Matrix)일 경우에 유용하게 사용됨 -> 행이나 열을 대상으로 작업하기때문에

접기

```
> mat1 <- matrix(c(1,2,3,4,5,6), nrow=2, byrow=T)
```

> mat1

[,1][,2][,3]

[1,] 1 2 3

[2,] 4 5 6

>

- ># 각행의 합계구하기
- > apply(mat1,1,sum)

[1] 6 15

>

- > # 각열의 합계 구가힉
- > apply(mat1,2,sum)

[1] 5 7 9

>

> # 2열과 3열의 최대값 구하기

> apply(mat1[,c(2,3)],2,max)

[1] 5 6

접기

4. lapply / sapply 함수

- apply함수의 변형

- 문법 : lapply/sapply(대상, 적용함수)

접기

- ># list형의 데이터에 적용한 예
- > list1 <- list(Fruits\$Sales)
- > list1

[[1]]

[1] 98 111 89 96 85 93 94 98 81

> list2 <- list(Fruits\$Profit)


```
> lapply(c(list1,list2),max)
```

[[1]]

[1] 111

[[2]]

[1] 32

> sapply(c(list1,list2),max)

[1] 111 32

># dataframe에 적용한 예

> Fruits

```
Fruit Year Location Sales Expenses Profit
                                            Date
   1 Apples 2008 West 98
                             78 20 2008-12-31
   2 Apples 2009 West 111
                             79 32 2009-12-31
   3 Apples 2010 West 89
                             76 13 2010-12-31
   4 Oranges 2008 East 96
                             81 15 2008-12-31
   5 Bananas 2008 East 85
                             76 9 2008-12-31
   6 Oranges 2009 East 93
                             80 13 2009-12-31
   7 Bananas 2009 East 94
                             78 16 2009-12-31
   8 Oranges 2010 East 98
                             91 7 2010-12-31
   9 Bananas 2010 East 81
                             71 10 2010-12-31
   > lapply(Fruits[,c(4,5)],max)
   $Sales
   [1] 111
   $Expenses
   [1] 91
   > sapply(Fruits[,c(4,5)],max)
    Sales Expenses
           91
     111
접기
```

5. tapply / mapply 함수

tapply()

- 그룹별 처리를 위한 apply함수
- 문법 : tapply(출력값, 기준컬럼, 적용함수)

mapply()

- 데이터프레임이 아닌 벡터나 리스트 형태의 데이터를 마치 데이터 프레임처럼 연산을 해주는 함수
- 문법: mapply(함수, 벡터1, 벡터2, 벡터3 ...)

접기


```
2 Apples 2009 West 111
                        79 32 2009-12-31
3 Apples 2010 West 89
                         76 13 2010-12-31
                         81 15 2008-12-31
4 Oranges 2008 East 96
5 Bananas 2008 East 85
                          76
                             9 2008-12-31
6 Oranges 2009 East 93
                         80 13 2009-12-31
7 Bananas 2009 East 94
                          78 16 2009-12-31
8 Oranges 2010 East 98
                         91 7 2010-12-31
9 Bananas 2010 East 81
                         71 10 2010-12-31
> tapply(Sales,Fruit,sum)
다음에 오류가 있습니다tapply(Sales, Fruit, sum) : 객체 'Fruit'를 찾을 수 없습니다
> # attach(데이터): 컬럼명을 변수명처럼 처리
> attach(Fruits)
> tapply(Sales,Fruit,sum)
Apples Bananas Oranges
 298 260 287
> # mapply 함수사용하기, 벡터형태의 데이터 생성
> vec1 <- c(1,2,3,4,5)
> vec2 <- c(10,20,30,40,50)
> vec3 <- c(100,200,300,400,500)
> mapply(sum,vec1,vec2,vec3)
[1] 111 222 333 444 555
```

접기

6. sweep 함수 - 한꺼번에 차이 구하기

- 벡터, 매트릭스, 배열, 데이터프레임으로 구성된 여러 데이터들에 동일한 기준을 적용시켜 차이나는 부분을 한꺼번에 보여주는 함수

접기

```
> mat1
[,1][,2][,3]
[1,] 1 2 3
[2,] 4 5 6
>
> a <- c(1,1,1)
```

> sweep(mat1,2,a)

접기

7. length 함수 - 요소의 개수나 줄수 파악하기

- 요소의 개수나 줄수 파악하는 함수

접기

> a <- c(1,2,3,4,5)

> length(a)

[1]5

>

> # 데이터프레임의 경우는 라벨수를 출력

> Fruits

Fruit Year Location Sales Expenses Profit Date

1 Apples 2008 West 98 78 20 2008-12-31

2 Apples 2009 West 111 79 32 2009-12-31 3 Apples 2010 West 89 76 13 2010-12-31

3 Apples 2010 West 89 76 13 2010-12-31 4 Oranges 2008 East 96 81 15 2008-12-31

5 Bananas 2008 East 85 76 9 2008-12-31

6 Oranges 2009 East 93 80 13 2009-12-31

7 Bananas 2009 East 94 78 16 2009-12-31

8 Oranges 2010 East 98 91 7 2010-12-31

9 Bananas 2010 East 81 71 10 2010-12-31

> length(Fruits)

[1] 7

접기

1

구독하기

'oracle > R 프로그래밍' 카테고리의 다른 글

R로 데이터를 원하는 모양으로 변형하기 ③ (사용... (0)

R로 데이터를 원하는 모양으로 변형하기 ① (기본... (0)

R 기초 문법 ② (벡터, 행렬, list, 데이터 프레임) (0)

R로 데이터를 원하는 모양으로 변형하기 ② (숫자... (0)

R에서 데이터 불러오기/저장하기 (0)

R 기초 문법 ① (R특징, 데이터형, 변수) (1)

공지사항	최근에 올라온 글			최근에 달린 댓글						Total		
	000	o o o Redis Sentinel MIME-Type List			포맷	어떻기	게하조	Ξ?		128,898		
	Redis Sentinel				결합인	민덱스	관련	해 오	••	Today	0	
	MIME-Type List				보 잘 5	보고 [납니다			Yesterday	68	
	git command	좋은 글 잘 보고 갑니다 ^^ 감										
링크	TAG		« 2019/05 »				05	>>>		글 보관함		
조대협의 블로그			일	월	화	수 1	목	금	토	2016/03 (1)		
MySQL DBA를 위한			5	6	7	8	2 9	3 10	4 11	2016/02 (1)		
케바지의 나는 네셔.			12	13	14	15	16	17	18			

::개발자가 사는 세상:: 오라클 스터디 일상다반사 오라클 취업반 올해 3기 '진지'드세용 에너쓰오라클 유유a

2015/12 (1) 19 20 21 22 23 24 25 27 28 29 30 31 2015/11 (1)

Blog is powered by Tistory / Designed by Tistory