Fluxonic Cosmology: A Unified Framework for Space-Time, Electromagnetism, and Gravity

Tshuutheni Emvula and Independent Frontier Science Collaboration

February 20, 2025

Abstract

We consolidate Fluxonic Cosmology, addressing electromagnetic completeness, gravitational mediation, and falsifiability. Building on Dewey B. Larsons Reciprocal System Theory, we integrate a vector potential for EM interactions, a derived fluxonic stress-energy tensor for gravity, and an expansion model eliminating dark energy. Simulations validate soliton-driven field interactions, gravitational distortions, and cosmic structure formation, offering a testable alternative to ΛCDM cosmology.

1 Introduction

Fluxonic Cosmology unifies prior research, responding to critiques of theoretical and computational gaps across over 25 iterations. Rooted in Larsons Reciprocal System Theory, where motion is fundamental and space-time are reciprocal, it refines:

- Electromagnetic theory with vector potentials.
- Gravitational effects via a stress-energy tensor.
- Cosmic expansion without dark energy.
- Simulation-validated field interactions and structure formation.

This presents a falsifiable framework challenging traditional cosmology.

2 Mathematical Formulation

2.1 Electromagnetic Model Refinement

The fluxonic electromagnetic model uses a Lagrangian:

$$\mathcal{L}_{\text{fluxon-EM}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} (\partial_{\mu} \phi \partial^{\mu} \phi) - V(\phi) - J^{\mu} A_{\mu}, \tag{1}$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu},\tag{2}$$

$$V(\phi) = \frac{m^2}{2}\phi^2 + \frac{g}{4}\phi^4,\tag{3}$$

yielding:

$$E = -\nabla \phi - \frac{\partial A}{\partial t},\tag{4}$$

$$B = \nabla \times A,\tag{5}$$

$$\frac{\partial E}{\partial t} = \nabla \times B - \frac{J}{\epsilon_0},\tag{6}$$

$$\frac{\partial B}{\partial t} = -\nabla \times E,\tag{7}$$

where:

$$J^{\mu} = q_{\phi}(\phi \partial^{\mu} \phi) - \sigma A^{\mu}, \tag{8}$$

with q_{ϕ} and σ as coupling constants. This resolves scalar-only limits and ensures soliton-EM consistency.

2.2 Gravitational Stress-Energy Tensor

Gravitational effects are modeled by:

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G (T_{\mu\nu}^{\text{fluxon}} + T_{\mu\nu}^{\text{EM}}),$$
 (9)

where:

$$T_{\mu\nu}^{\text{fluxon}} = \rho u_{\mu} u_{\nu} + p(g_{\mu\nu} + u_{\mu} u_{\nu}),$$
 (10)

$$\rho = \frac{1}{2}(\dot{\phi}^2 + (\nabla\phi)^2) + V(\phi), \tag{11}$$

$$p = \frac{1}{2}(\dot{\phi}^2 - (\nabla\phi)^2) - V(\phi), \tag{12}$$

$$u_{\mu} = \frac{\partial_{\mu}\phi}{\sqrt{\partial^{\alpha}\phi\partial_{\alpha}\phi}},\tag{13}$$

$$T_{\mu\nu}^{\rm EM} = F_{\mu\alpha}F_{\nu}{}^{\alpha} - \frac{1}{4}g_{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}.$$
 (14)

This derives ρ and p from ϕ , capturing solitonic gravitational mediation.

2.3 Cosmic Expansion Model

Cosmic expansion is driven by:

$$a(t) = e^{Ht}, \quad H = \sqrt{\frac{8\pi G}{3} \left(\rho_{\text{fluxon}} + \rho_{\text{EM}}\right)},\tag{15}$$

where ρ_{fluxon} and ρ_{EM} stem from $\mathcal{L}_{\text{fluxon-EM}}$, eliminating dark energy needs.

3 Computational Validation

Simulations validate:

- Stable EM filaments mediating E and B-fields (Figure 1).
- Metric distortions in high-density fluxonic regions (Figure 2).
- Filamentary cosmic networks (Figure 3).
- Soliton collision coherence (Figure 4).

4 Experimental Falsifiability

Proposed tests include:

- Superfluid analogs using BECs with fluxonic interactions.
- Gravitational wave attenuation in dense fluxonic fields.
- EM field responses to solitonic interactions.

5 Conclusion and Future Work

This framework unifies:

- A complete EM model with vector potentials.
- A derived gravitational tensor.
- An expansion model sans dark energy.
- Simulation-validated phenomena.

Future work:

- Expand gravitational simulations to larger scales.
- Predict CMB signatures.
- Test experimentally.

Fluxonic Cosmology offers a testable alternative to $\Lambda {\rm CDM}.$