Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию N_06

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 2 / 3 / 1

Выполнила: студентка 102 группы Анисимова Д. В.

Преподаватель: Сенюкова О. В.

Содержание

Постановка задачи	2
$f M$ атематическое обоснование Обоснование выбора $arepsilon_1$ и $arepsilon_2$	3 . 4
Результаты экспериментов	5
Структура программы и спецификация функций	6
Сборка программы (Маке-файл)	9
Отладка программы, тестирование функций	10
Программа на Си и на Ассемблере	11
Анализ допущенных ошибок	12
Список цитируемой литературы	13

Постановка задачи

Требуется с точностью $\varepsilon=0.001$ найти площадь плоской фигуры, ограниченной тремя кривыми:

- $y = 3(\frac{0.5}{x+1} + 1)$
- y = 2.5x 9.5
- y = 5/x, x > 0

Сначала должны быть найдены точки пересечения кривых. Для этого надо реализовать функцию, вычисляющую корень уравнения методом касательных, и аналитически найти интервал, на котором будут найдены корни. Далее нужно реализовать функцию, вычисляющую интеграл методом прямоугольников, и с помощью нее найти искомую площадь. Обе функции должны быть предварительно протестированы.

Математическое обоснование

Сначала найдем первые и вторые производные данных в задании функций.

- $f_1'(x) = -\frac{1.5}{x+1}$
- $f_2'(x) = -2.5$
- $f_3'(x) = -\frac{5}{x^2}$
- $f_1''(x) = \frac{3}{(x+1)^2}$
- $f_2''(x) = 0$
- $f_3''(x) = \frac{10}{x^3}$

Для того, чтобы найти точки пересечения графиков функций $y=f_i(x)$ и $y=f_j(x)$, необходимо рассмотреть функцию $F(x)=f_i(x)-f_j(x)$. Чтобы найти корень уравнения F(x)=0, нужно найти отрезок, на котором первая и вторая производная не меняют знак. Если a и b— концы отрезка, то F(a)*F(b)<0. [2]

- 1. $F_1(x) = f_1(x) f_2(x) = 3(\frac{0.5}{x+1} + 1) 2.5x + 9.5$
 - $F_1'(x) = -2.5 \frac{1.5}{(x+1)^2} < 0, \ \forall x \neq -1$
 - $F_1''(x) = \frac{3}{(x+1)^3}$

Как видно из графика, нужный нам корень уравнения $F_1(x)$ — число положительное, значит, можно считать, что x > 0 и $F_1''(x) > 0$

• С учетом графика выберем интервал для поиска корня: [4; 5, 5]. Проверим, что он подходит:

$$F(4) = 2.875 > 0$$

 $F(5.5) \approx -1.019 < 0$

- 2. $F_2(x) = f_2(x) f_3(x) = 2,5x 9.5 \frac{5}{x}$
 - $F_2'(x) = 2.5 + \frac{5}{x^2} > 0, \ \forall x \neq 0$
 - $F_2''(x) = -\frac{10}{x^3} < 0. \ \forall x \neq 0$
 - С учетом графика выберем интервал для поиска корня: [3.5; 4.7]. Проверим, что он подходит:

$$F(3.5) \approx -2.1786 < 0$$

 $F(4.7) \approx 1.186 > 0$

- 3. $F_3(x) = f_1(x) f_3(x) = 3(\frac{0.5}{x+1} + 1) \frac{5}{x}$
 - $F_3'(x) = -\frac{1.5}{(x+1)^2} + \frac{5}{x^2} = \frac{3.5x^2 + 10x + 5}{(x+1)^2x^2} > 0, \ \forall x > 0$
 - $F_3''(x) = \frac{3}{(x+1)^3} \frac{10}{x^3} < 0, \ \forall x > 0$
 - С учетом графика выберем интервал для поиска корня: [0.5; 2.3]. Проверим, что он подходит:

$$F_3(0.5) = -6 < 0$$

$$F_3(2.3) \approx 1.28$$

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Обоснование выбора ε_1 и ε_2 .

Известна формула погрешности при подсчете площади методом прямоугольников:. Формулу вычисления интеграла методом прямоугольников можно записать в следующем виде: $\frac{b-a}{n}\sum_{k=1}^n f(x_{2k-1}) + R$, $R = \frac{(b-a)^3f''(\xi)}{24n^2} = \varepsilon_2$. [1]. Сначала заметим, что $(b-a)\geqslant 1$. Скажем сразу, что $\varepsilon_1<\varepsilon=0.001$. Тогда с

Сначала заметим, что
$$(b-a)\geqslant 1$$
. Скажем сразу, что $\varepsilon_1<\varepsilon=0.001$. Тогда с учетом погрешности $\frac{f''(\xi)}{24n^2}=\frac{\varepsilon_2}{(b-a)^3}\leqslant \frac{\varepsilon_2}{0.994}\approx 1.006\varepsilon_2$.
$$|\frac{(b-a+2\varepsilon_1)^3f''(\xi)}{24n^2}-\frac{(b-a)^3f''(\xi)}{24n^2}|=|\frac{(b-a)^2\cdot6\varepsilon_1f''(\xi)}{24n^2}+\frac{(b-a)\cdot12\varepsilon_1^2f''(\xi)}{24n^2}+\frac{8\varepsilon_1^3f''(\xi)}{24n^2}\leqslant 4\cdot6\cdot1.006\varepsilon_1\varepsilon_2+2\cdot12\varepsilon_1^2\cdot1.006\varepsilon_2+8\varepsilon_1^3\cdot1.006\varepsilon_2<56.336\varepsilon_1\varepsilon_2$$

$$|\frac{(b-a+2\varepsilon_1)}{n}\sum_{k=1}^n f(x_{2k-1})-\frac{b-a}{n}\sum_{k=1}^n f(x_{2k-1})|=|2\varepsilon_1f(\xi_1)|<9\varepsilon_1$$
 Таким образом, $56.336\varepsilon_1\varepsilon_2+9\varepsilon_1<\varepsilon$. Нетрудно проверить, что $\varepsilon_1=0.00001$ м

$$\left| \frac{(b-a+2\varepsilon_1)}{n} \sum_{k=1}^n f(x_{2k-1}) - \frac{b-a}{n} \sum_{k=1}^n f(x_{2k-1}) \right| = \left| 2\varepsilon_1 f(\xi_1) \right| < 9\varepsilon_1$$

Таким образом, $56.336\varepsilon_1\varepsilon_2 + 9\varepsilon_1 < \varepsilon$. Нетрудно проверить, что $\varepsilon_1 = 0.00001$ и $\varepsilon_2 = 0.00001$ удовлетворяют этому условию.

Результаты экспериментов

Кривые	x	y
1 и 2	5.098387	3.245967
2 и 3	4.268535	1.171338
1 и 3	1.377013	3.631048

Таблица 1: Координаты точек пересечения

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

- 1. Модуль main.c.
 - void help(void)

Ничего не получает на вход, ничего не возващает. Выводит все допустимые ключи командной строки.

• root(double (*f)(double), double (*g)(double), double a, double b, double eps1, double (*df)(double), double (*dg)(double))

```
(*f) — указатель на функцию f (*g) — указатель на функцию g а — левая граница отрезка, на котором функция будет искать корень b — правая граница отрезка, на котором функция будет искать корень eps1 — \varepsilon_1, точность, с которой должно быть получено значение (*df) — указатель на функцию df, т.е. на производную функции f (*dg) — указатель на функцию dg, т.е. на производную функции g Функция возвращает число типа double — корень уравнения f(x)-g(x), найденный методом касательных.
```

- double integral(double (*f)(double), double a, double b, double eps2)
 - (*f) указатель на функцию f
 - а нижний предел интегрирования
 - b верхний предел интегрирования
 - ${
 m eps2}-arepsilon_2$, точность, с которой должно быть получено значение

Функция возвращает число типа double — $\int_a^b f(x)dx$, вычисленное методом прямоугольников.

- 2. Модуль Tests.c
 - void test(int argc, int i, char **argv)

argc — количество аргументов командной строки i — номер, под которым в командной строке шел ключ test" argv — указатель на массив строк в командной строке Функция ничего не возвращает. Либо вызывает тестирующую функцию, либо выводит сообщение.

• void testroot(void)

Ничего не получает на вход, ничего не возвращает. Позволяет тестировать функцию root, находящую корень уравнения методом касательных.

• void testintegral(void)

Ничего не получает на вход, ничего не возвращает. Позволяет тестировать функцию integral, вычисляющую интеграл методом прямоугольников.

```
• int rootit(double (*f)(double), double (*g)(double), double a, double b, double eps1, double (*df)(double), double (*dg)(double)) (*f) — указатель на функцию f (*g) — указатель на функцию g а — левая граница отрезка, на котором функция будет искать корень b — правая граница отрезка, на котором функция будет искать корень eps1 — \varepsilon_1, точность, с которой должно быть получено значение (*df) — указатель на функцию df, т.е. на производную функции f (*dg) — указатель на функцию dg, т.е. на производную функции g Функция возвращает число итераций, потребовавшихся для вычисления корня.
```

3. Модуль functions.asm

- double f1(double); Вычисляет $f_1(x) = 3(\frac{0.5}{x+1} + 1)$
- double f2(double); Вычисляет $f_2(x) = 2.5x - 9.5$
- double f3(double); Вычисляет $f_3(x) = \frac{5}{x}$
- double f4(double); Вычисляет $f_4(x) = 10ln(x)$ (Функция создана для тестирования root и integral)
- double f5(double); Вычисляет $f_5(x) = -x^3$ (Функция создана для тестирования root и integral)
- double f6(double); Вычисляет $f_6 = -\frac{1}{\sqrt{x+8}}$ (Функция создана для тестирования root и integral)
- double df1(double); Вычисляет $f'_1(x)$
- double df2(double); Вычисляет $f_2'(x)$
- double df3(double); Вычисляет $f_3'(x)$
- double df4(double); Вычисляет $f_4'(x)$
- double df5(double); Вычисляет $f_5'(x)$
- double df6(double); Вычисляет $f_6'(x)$

Рис. 3: Схема зависимостей модулей и основных функций

Сборка программы (Маке-файл)

Makefile собирает модули в файл program. Сборка осуществляется по ключу all, а удаление промежуточных файлов — по ключу clean.

```
all: program

program: main.o Tests.o functions.o

gcc -m32 -o program main.o Tests.o functions.o

main.o: main.c

gcc -m32 -std=c99 -c main.c

Tests.o: Tests.c

gcc -m32 -std=c99 -c Tests.c

functions.o: functions.asm

nasm -f elf32 functions.asm

clean:
-rm main.o
-rm Tests.o
-rm functions.o
```

Отладка программы, тестирование функций

Тестирование проводилось при помощи ключей -test root и -test integral. Тестирование функции root производилось на следующих уравнениях:

• $10ln(x) + x^3 = 0$

Выбранный отрезок: [0.5;1.5]

Результат работы программы: 0.924114

• $10ln(x) + \frac{1}{\sqrt{x+8}} = 0$

Выбранный отрезок: [0.5;1.5]

Результат работы программы: 0.967155

 $\bullet \ x^3 - \frac{1}{\sqrt{x+8}} = 0$

Выбранный отрезок: [0.3;1.5]

Результат работы программы: 0.697331

Тестирование функции интеграл производилось на следующий функциях:

• f(x) = 10ln(x)

Пределы интегрирования: [1;2]

Результат работы программы: 3.862967

 $f(x) = -x^3$

Пределы интегрирования: [4;8]

Результат работы программы: -960.000023

 $f(x) = -\frac{1}{\sqrt{x+8}}$

Пределы интегрирования: [-1;0]

Результат работы программы: -0.365369

Проверка того, что функции действительно выдают верный ответ, производилась с помощью сервисов fooplot.com и wolframalpha.com.

Программа на Си и на Ассемблере

Тексты програм находятся в архиве Program.zip, приложенном к отчету.

Анализ допущенных ошибок

Была допущена ошибка: выбраны слишком маленькие ε_1 и ε_2 , в результате чего программа зацикливалась.

Список литературы

- [1] Ильин В. А., Садовничий В. А., Сендов Бл. Х. Математический анализ. Т. 1 Москва: Наука, 1985.
- [2] Трифонов Н.П., Пильщиков В.Н. Задания практикума на ЭВМ (1 курс). Учебное пособие, 2-е исправленное издание. М.: МГУ, 2001.