

EE669: VLSI Technology

# Chemical Vapor Deposition and Atomic Layer Deposition

Anil Kottantharayil
Department of EE, IIT Bombay

1





2



4



## CVD epitaxy of Si

The surface should be very clean, no contaminants
 SiO₂ on silicon surface should be removed in-situ prior to epitaxial growth

$$SiO_2 + 2H_2 => Si + 2H_2O$$
 (> 900C)

- It is important to give sufficient time for the deposited atoms to migrate on the surface and occupy lattice sites
- Growth rate and surface diffusivity are important parameters that need to be balanced: both increase with temperature
- Additional knob for reducing growth rate and possibly increasing surface diffusivity is to add H<sub>2</sub> to SiH<sub>4</sub> based epitaxy in VLSI integration

2024 Monsoon

EE669: Thin Film Deposition: Anil Kottantharayil

5



# Si/SiGe selective epitaxy (2)

- Examples:
  - · Elevated source/drain in thin film SOI technology
  - · Embedded SiGe source/drain in pMOS for strain enhancement



A. M. Waite et al., ESSDERC 2003 SOI-MOSFET



K. Mistry et al., IEDM 2007

2024 Monsooi

EE669: Thin Film Deposition: Anil Kottantharayil



## Si/SiGe selective epitaxy

- Selective epitaxy is required in certain applications where the exposed wafer surface has oxide (field oxide) or nitride (spacer) at many locations and Si in other locations
- · Si or SiGe should grow epitaxially on top of crystalline Si
- · No Si or SiGe should grow on top of the oxide or nitride



6



# Si/SiGe selective epitaxy (3)

- · Si or SiGe would grow epitaxially on Si.
- Polycrystalline Si or SiGe would grow on the oxide and nitride
   contains crystalline grains and the grain boundaries contain
   plenty of defects
- Introduce a chemical etchant to the reaction which would etch Si or SiGe (as required)
- Polycrystalline material may be etched faster than the crystalline material due to the presence of defects

 A sufficient process window in terms of pressure, gas flows and temperature may be found for selective epitaxial growth

2024 Monsoo

EE669: Thin Film Deposition: Anil Kottantharayil



9





# Plasma Enhanced CVD (2)

- Species in excited state in a plasma can react at much lower temperature than ground state molecules
  - ➤ Lower temperature of deposition. E.g.: PECVD Si<sub>3</sub>N<sub>4</sub> can be deposited at a substrate temperature of even 30C, whereas thermal CVD requires ~ 750C (see lecture 19 slides)
  - > Hence compatible with metal layers used for interconnects
- lons in the plasma may be used for sputtering, leading to a combination of deposition and physical etch
  - Used for gap filling applications like shallow trench isolation and pre-metal dielectric gap fills
  - Etching can be used for cleaning the wafer before deposition and for chamber cleaning between depositions
- · Variety of species not available in a thermal reactor may be present
  - Larger variety of reaction pathways
  - E.g.  $Si_3N_4$  can be deposited by reacting  $SiH_4$  and  $N_2$  in PECVD. Thermal CVD nitride requires  $NH_3$ .

2024 Monsoor

EE669: Thin Film Deposition: Anil Kottantharayil

10



11



13



# **PECVD Applications**

- · Low temperature of deposition
  - Si<sub>3</sub>N<sub>4</sub>, a-Si films deposited by PECVD may contain more hydrogen than LPCVD films
    - > Passivation layers in crystalline Si solar cells
    - Stress control => mobility enhancement in CMOS FETs
  - Low thermal budget => preferred thin film deposition scheme for backend of line (after making silicide contacts) VLSI processing
- Possibility to combine reactive ion etching and deposition
  - > Isolation layers in VLSI technology => Gap fill

2024 Monsoor

EE669: Thin Film Deposition: Anil Kottantharayil 14

14



15



## References

#### CVD:

- Hugh O. Pierson, Handbook of chemical vapor deposition (CVD) : principles, technology and applications, Noyes Pub., 1992.
- · Langmuir,"The vapor pressure of metallic Tungsten", Physical Review, November 1913.
- S. Sivaram, "Chemical Vapor Deposition: thermal and plasma deposition of electronic materials", Van Nostrand Reinhold, 1995.
- Ohshita et al., Thin Solid Films, 1 March 2002, pp. 215.
- · Sears and Salinger, "Thermodynamics, Kinetic Theory and Statistical Thermodynamics", Third Ed. Narosa Pub. House, :
- http://encyclopedia.airliquide.com
- · J. D. Plummer, M. D. Deal, and P. B. Griffin, "Silicon VLSI technology: fundamentals, practice and modeling", Prentice-Hall, 2000.

2024 Monsoon

EE669: Thin Film Deposition: Anil Kottantharayil



## References

#### CVD:

- · D. G. Coronell and K. F. Jensen, J. Computer-Aided Materials Design, 1993, pp. 3-26.
- Hitchman and Jensen (ed.), "Chemical Vapor Deposition Principles and Applications", Academic Press, 1993.
- Koenig and Maissel, IBM J. R & D, 1970.
- Angus Rockett, "Material Science of Semiconductors", Springer Verlag, 2008

#### ALD:

- Collection of Ph. D. thesis on ALD available at http://www.cambridgenanotech.com/klc/theses.php
- Jill Becker, Ph. D. thesis, MIT, 2002.
- · R. L. Puurunen, Journal of Applied Physics 2005.
- R. L. Puurunen, Journal of Applied Physics 2004.
- · R. L. Puurunen, Ph. D. thesis, University of Helsinki, available at http://lib.tkk.fi/Diss/2002/isbn9512261421/isbn9512261421.pdf

2024 Monsoon

18

EE669: Thin Film Deposition: Anil Kottantharayil 18