Chapitre IV. Tests du chi-deux

Cours de Tests paramétriques

Deuxième Année - IUT STID - Olivier Bouaziz

2018-2019

Introduction

Tests du chi-deux :

Tests paramétriques basés sur une statistique de test suivant approximativement une loi du χ^2 sous l'hypothèse nulle.

Objectifs:

- ► Tests d'indépendance
- ► Tests d'homogénéité

Variables observées

- X : variable aléatoire qualitative ou quantitative discrète à K modalités, notées a₁,..., a_K.
- Y : variable aléatoire qualitative ou quantitative discrète à L modalités, notées b₁,..., b_L.
- ▶ n données : $(x_1, y_1), \dots, (x_n, y_n)$ réalisations de n couples de variables aléatoires $(X_1, Y_n), \dots, (X_n, Y_n)$ indépendantes et de même loi que le couple (X, Y).

Objectif du test

On veut tester l'hypothèse

 $(H_0): X$ et Y sont indépendantes

contre

 $(H_1): X$ et Y ne sont pas indépendantes

Exemple 1

On souhaite savoir si le temps écoulé depuis la vaccination contre une maladie donnée a ou non une influence sur le degré de gravité de la maladie lorsque celle-ci se déclare.

- Gravité de la maladie : légère (L), moyenne (M) ou grave (G).
- Durée écoulée depuis vaccination : moins de 10 ans (A), entre 10 et 25 ans (B), plus de 25 ans (C).
- ▶ 1574 malades.

	Α	В	С	Total
G	1	42	230	273
М	6	114	347	467
L	23	301	510	834
Total	30	457	1087	1574

Exemple 1 (suite)

D'un point de vue descriptif on peut étudier la distribution conditionnelle de la gravité de la maladie conditionnellement à la durée écoulée depuis vaccination :

	Α	В	С
G	0.03	0.09	0.21
М	0.20	0.25	0.32
L	0.77	0.66	0.47

Qu'en pensez-vous?

Justification heuristique du test.

On introduit, pour $1 \le k \le K$ et $1 \le l \le L$, les variables aléatoires :

- ▶ N_{kl} , nombre de couples de variables (X_i, Y_i) , pour $1 \le i \le n$, tels que $X_i = a_k$ ET $Y_i = b_l$.
- ▶ $N_{k\bullet} = \sum_{l=1}^{L} N_{kl}$, nombre de variables X_i , $1 \le i \le n$, qui prennent la valeur a_k .
- ▶ $N_{\bullet l} = \sum_{k=1}^{K} N_{kl}$, nombre de variables Y_i , pour $1 \le i \le n$, qui prennent la valeur b_l .

Etant donnée une réalisation $(x_1, y_1), \ldots, (x_n, y_n)$ de $(X_1, Y_1), \ldots, (X_n, Y_n)$, on note respectivement $n_{kl}, n_{k\bullet}$ et $n_{\bullet l}$ les réalisations correspondantes de $N_{kl}, N_{k\bullet}$ et $N_{\bullet l}$, qui peuvent être représentées dans le **tableau de contingence** ci-dessous.

$X \setminus Y$	b_1		bı		b_L	Total
a ₁	n ₁₁		n_{1I}		n _{1L}	n _{1•}
:	:	÷	÷	÷	:	:
a _k	n_{k1}		n_{kl}		n_{kL}	$n_{k\bullet}$
:	:	÷	:	:	:	:
a _K	n_{K1}		n _{KI}		n _{KL}	n _K •
Total	$n_{\bullet 1}$		n _● /		n _{∙L}	n

On estime alors, pour $1 \le k \le K$ et $1 \le l \le L$,

$$P(X = a_k \text{ et } Y = b_l) \text{ par}$$

$$P(X = a_k) \times P(Y = b_l)$$
 par

Sous (H_0) , pour tous $1 \le k \le K$, $1 \le l \le L$, l'écart entre fréquence observée et fréquence théorique sous (H_0) est censé être proche de 0, ou encore l'écart entre effectif observé et effectif théorique sous (H_0) est censé être proche de 0.

Statistique de test

$$T_n = \sum_{k=1}^K \sum_{l=1}^L \frac{\left(N_{kl} - \frac{N_{k \bullet} N_{\bullet l}}{n}\right)^2}{\frac{N_{k \bullet} N_{\bullet l}}{n}}$$

Proposition 1

Si les conditions suivantes sont satisfaites

- ▶ le nombre d'observations n est « grand »,
- $ightharpoonup n_{k\bullet} n_{\bullet l}/n > 5$ pour tous $k = 1, \ldots, K$ et $l = 1, \ldots, L$ alors sous (H_0) ,

 T_n suit approximativement la loi $\chi^2((K-1)(L-1))$

Zone de rejet au niveau α

$$R_{n,\alpha} = \{ T_n \geq c_{\alpha} \},$$

où c_{α} est le quantile d'ordre $1-\alpha$ d'une loi $\chi^2((K-1)(L-1))$.

Règle de décision :

- ▶ si $t_n \ge c_\alpha$, alors on rejette l'hypothèse d'indépendance entre X et Y.
- ▶ si $t_n < c_\alpha$, alors on ne rejette pas l'hypothèse d'indépendance entre X et Y.

Retour à l'exemple 1

On souhaite savoir si le temps écoulé depuis la vaccination contre une maladie donnée a ou non une influence sur le degré de gravité de la maladie lorsque celle-ci se déclare.

- Gravité de la maladie : légère (L), moyenne (M) ou grave (G).
- Durée écoulée depuis vaccination : moins de 10 ans (A), entre 10 et 25 ans (B), plus de 25 ans (C).
- 1574 malades.

	Α	В	С	Total
G	1	42	230	273
М	6	114	347	467
L	23	301	510	834
Total	30	457	1087	1574

Variables observées

- X : variable aléatoire qualitative ou quantitative discrète à K modalités, notées a₁,..., a_K.
- Comparaison de la distribution de X dans L populations différentes.
- ▶ Pour chaque $1 \le I \le L$, on dispose d'un échantillon de n_I données x_{1I}, \ldots, x_{n_II} réalisations de n_I variables X_{1I}, \ldots, X_{n_II} indépendantes et de même loi que X_I .
- ▶ On suppose que les L échantillons $(X_{11}, \ldots, X_{n_11}), (X_{12}, \ldots, X_{n_22}), \ldots, (X_{1L}, \ldots, X_{n_LL})$ sont indépendants.

Objectif du test

On veut tester l'hypothèse

 (H_0) : Les variables X_1,\ldots,X_L suivent toutes la même loi contre

 (H_1) : Les variables X_1,\ldots,X_L ne suivent pas toutes la même loi

Exemple 2

On a mesuré les groupes sanguins dans 2 populations de 1032 Pygmées et 484 Esquimaux. Au vu de ces résultats, peut-on dire que la distribution des groupes sanguins est la même dans les deux populations?

Groupe sanguin\ Pop.	Pygmées	Esquimaux	
AB	103	7	
В	300	17	
A	313	260	
0	316	200	
Total	1032	484	

Exemple 2 (suite)

D'un point de vue descriptif on peut étudier la distribution conditionnelle du groupe sanguin conditionnellement au type de population (Pygmées ou Esquimaux) :

Groupe sanguin\ Pop.	Pygmées	Esquimaux
AB	0.10	0.01
В	0.29	0.04
A	0.30	0.54
0	0.31	0.41

Qu'en pensez-vous?

Justification heuristique du test.

On introduit, pour $1 \le k \le K$ et $1 \le l \le L$, les variables aléatoires :

- ▶ N_{kl} , nombre de variables parmi $(X_{1l}, X_{2l}, \dots, X_{n_l l})$ qui prennent la valeur a_k .
- ▶ $N_{k \bullet} = \sum_{l=1}^{L} N_{kl}$, nombre de variables X_{il} , $1 \le i \le L$, $1 \le i \le n_l$, qui prennent la valeur a_k .

On note respectivement n_{kl} et $n_{k\bullet}$ des réalisations de N_{kl} et $N_{k\bullet}$ qui peuvent être représentées dans le **tableau de contingence** ci-dessous. On note également $n = n_1 + n_2 \dots + n_L$.

Modalités de $X \setminus$ Population	1		1		L	Total
a_1	n ₁₁		n_{1I}		n _{1L}	n_{1ullet}
:	:	:	÷	÷	÷	:
a_k	n_{k1}		n_{kl}		n_{kL}	$n_{k\bullet}$
:	:	÷	÷	÷	÷	:
a _K	n_{K1}		n _{KI}		n _{KL}	n _K •
Total	n_1		nı		n_L	n

Sous
$$(H_0)$$
, pour $1 \le k \le K$, on peut estimer $P(X = a_k)$ par :

Le test consiste alors à comparer, pour tous $1 \le k \le K$ et $1 \le l \le L$:

▶ l'effectif observé pour la modalité *a_k* dans la *l*^e population :

à

▶ l'effectif théorique sous (H_0) pour la modalité a_k dans la I^e population :

Statistique de test

$$T_n = \sum_{k=1}^K \sum_{l=1}^L \frac{\left(N_{kl} - \frac{N_{k \bullet} n_l}{n}\right)^2}{\frac{N_{k \bullet} n_l}{n}}$$

Proposition 2

Si les conditions suivantes sont satisfaites

- ▶ le nombre d'observations $n = \sum_{l=1}^{L} n_l$ est « grand »,
- ▶ $n_{k \bullet} n_l / n \ge 5$ pour tous k = 1, ..., K et l = 1, ..., L, alors sous (H_0) ,

 T_n suit approximativement la loi $\chi^2((K-1)(L-1))$

Zone de rejet au niveau α

$$R_{n,\alpha}=\{T_n\geq c_\alpha\},\$$

où c_{α} est le quantile d'ordre $1-\alpha$ d'une loi $\chi^2((K-1)(L-1))$.

Règle de décision :

- ▶ si $t_n \ge c_\alpha$, alors on rejette l'hypothèse d'homogénéité des L populations.
- si t_n < c_α, alors on ne rejette pas l'hypothèse d'homogénéité des L populations.

Retour à l'exemple 2

On a mesuré les groupes sanguins dans 2 populations de 1032 Pygmées et 484 Esquimaux. Au vu de ces résultats, peut-on dire que la distribution des groupes sanguins est la même dans les deux populations?

Groupe sanguin\ Pop.	Pygmées	Esquimaux	
AB	103	7	
В	300	17	
A	313	260	
0	316	200	
Total	1032	484	