Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>: 3221</u>	К работе допущен
Студент: Фам Данг Чунг Нгиа_	Работа выполнена_
Преподаватель: Коробков М,П	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1

<u>Исследование распределения</u> случайной величины

1. Цель работы,

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени (5c),

2. Задачи, решаемые при выполнении работы,

- Провести многократные измерения определенного интервала времени,
- Построить гистограмму распределения результатов измерения,
- Вычислить среднее значение и дисперсию полученной выборки,
- Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией,

3. Объект исследования,

Распределение случайной величины измерений интервала времени (5 секунд),

4. Метод экспериментального исследования,

Многократное прямое измерение определенного интервала времени и проверка закономерностей распределения значений этой случайной величины.

5. Рабочие формулы и исходные данные,

Опытное значение плотности вероятности: $\frac{\Delta N}{NAt}$, с⁻¹

Выборочное значение среднего, как среднеарифметическое всех результатов измерений:

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$$

Выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}.$$

Значения плотности распределения ρ (t):

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right).$$

Максимальное значение плотности распределения ρ_{max} , соответствующее $t = \langle t \rangle$:

$$\rho_{\rm max} = \frac{1}{\sigma\sqrt{2\pi}}.$$

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

Доверительный интервал для измеряемого в работе промежутка времени: (Доверительная вероятность α = 0,95, $t\alpha$,N = 2,0086)

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

6. Измерительные приборы,

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер часы Casio F- 91W	Цифровой	5 сек,	0,01 c

7. Схема установки,

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*), Таблица 1, Результаты прямых измерений

Nº	t_i , c	$t_i - \langle t angle_N$, c	$(t_i - \langle t \rangle_N)^2$, c^2
1	5,16	-0,07	0,004733
2	5,09	0,00	1,44E-06
3	5,25	-0,16	0,025217
4	5,09	0,00	1,44E-06
5	4,94	0,15	0,022861
6	5,10	-0,01	7,74E-05
7	5,09	0,00	1,44E-06
8	5,06	0,03	0,000973
9	4,91	0,18	0,032833
10	5,06	0,03	0,000973
11	5,06	0,03	0,000973
12	5,06	0,03	0,000973
13	4,93	0,16	0,025985
14	5,10	-0,01	7,74E-05
15	5,22	-0,13	0,016589
16	5,09	0,00	1,44E-06
17	5,06	0,03	0,000973
18	5,19	-0,10	0,009761
19	5,09	0,00	1,44E-06
20	4,93	0,16	0,025985

21	5,19	-0,10	0,009761
22	5,13	-0,04	0,001505
23	5,19	-0,10	0,009761
24	5,13	-0,04	0,001505
25	5,06	0,03	0,000973
26	5,00	0,09	0,008317
27	5,25	-0,16	0,025217
28	4,94	0,15	0,022861
29	5,18	-0,09	0,007885
30	5,00	0,09	0,008317
31	5,19	-0,10	0,009761
32	5,16	-0,07	0,004733
33	5,28	-0,19	0,035645
34	5,21	-0,12	0,014113
35	5,16	-0,07	0,004733
36	5,13	-0,04	0,001505
37	4,94	0,15	0,022861
38	5,12	-0,03	0,000829
39	5,22	-0,13	0,016589
40	5,28	-0,19	0,035645
41	5,06	0,03	0,000973
42	4,88	0,21	0,044605
43	5,00	0,09	0,008317
44	4,93	0,16	0,025985
45	5,13	-0,04	0,001505
46	5,16	-0,07	0,004733
47	5,00	0,09	0,008317
48	5,00	0,09	0,008317
49	5,13	-0,04	0,001505
50	5,03	0,06	0,003745
	$\langle t \rangle N = 5,0912$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0,0000$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2 = 0.519528$

9. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*), •
$$\langle t \rangle N = \frac{1}{N}(t_1 + t_2 \cdots t_{50}) = \frac{1}{50}(5.16 + 5.09 + \cdots + 5.03) = 5.0912 \ c$$

•
$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{49} \cdot 0.519528c^2} = 0.103 \text{ c}$$

•
$$\rho_{\text{max}} = \frac{1}{\sigma_N \sqrt{2\pi}} = \frac{1}{0,103 \text{ c} \cdot \sqrt{2\pi}} = 3,8732 \text{ c}^{-1}$$

•
$$\sigma \langle t \rangle = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2} = \sqrt{\frac{1}{50 \cdot 49} \cdot 0,519528} = 0,0146 c$$

- $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 2,01 \cdot 0,0146 = 0,029346 \text{ c}$
- $t_{min} = 4,88 \ c$, $t_{max} = 5,28 \ c$, $\sqrt{N} \approx 7$ тогда для построения гистограммы возьмем 7 интервалов $\Delta t = 0.06 \, \text{c}$

Таблица 2, Данные для построения гистограммы

Границы интервалов, с	ΔΝ	$\frac{\Delta N}{N\Delta t}$, c ⁻¹	t, c	ρ , c^{-1}	
4,88	8	2.0007	4.01	3,868964	
4,94	0	2,6667	4,91	J,000304	
4,94	8	0.0007	4.07	2 971204	
5,00	0	2,6667	4,97	3,871304	
5,00	13	4,3333	5,03	3,872717	
5,06	13				
5,06	15	5,0000	5,09	3,873200	
5,12	15				
5,12	11	2 6667	5,15	2 972754	
5,18		3,6667	5,15	3,872754	
5,18	8	2,6667	5,21	3,871378	
5,24	0				
5,24	4	1,3333	5,27	2 960075	
5,30	4			3,869075	

Пример расчетов для интервала $\Delta t = 4,94 - 4,88 = 0,06$

$$\frac{\Delta N1}{N\Delta t} = \frac{8}{50 \cdot 0.06} = 2,6667$$

$$t_1 = (4.88 + 4.94)/2 = 4.91 c$$

$$\rho(t_1) = \frac{1}{\sigma(N)\sqrt{2\pi}} \exp\left(-\frac{(t_1-\langle t\rangle)^2}{2\sigma^2(N)}\right) = 3,8732 \exp\left(-\frac{(4,91-5,0912)^2}{2\cdot3,8732^2}\right) = 3,868964c^{-1},$$
 где t_1 = середина интервала Δt_1

Таблица 3- Стандартные доверительные интервалы

	Интервал, с		ΔΝ	ΔN	P
	ОТ	до		\overline{N}	
$\langle t \rangle N \pm \sigma_N$	4,9882	5,1942	35	0,7	0,683
$\langle t \rangle N \pm 2\sigma_N$	4,8852	5,2972	49	0,98	0,954
$\langle t \rangle N \pm 3\sigma_N$	4,7822	5,4002	50	1	0,997

10. Расчет погрешностей измерений (для прямых и косвенных измерений),

$$\Delta_{ut} = 0.005 \text{ c}; \ \overline{\Delta t} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} \approx 2.01 \cdot 0.0146 = 0.029346; \ t_{\alpha,N} \approx 2.01;$$

Абсолютная погрешность с учетом погрешности прибора: $\Delta t = \sqrt{(\overline{\Delta}t)^2 + (\frac{2}{3}\Delta_{ut})^2} \approx 0,030~c$ Относительная погрешность измерения: $\varepsilon_t = \frac{\Delta t}{\bar{t}} \cdot 100\% = 0.58\%$

11. Графики,

12. Окончательные результаты,

- Среднее арифметическое всех результатов измерений $\langle t \rangle N = 5{,}0912$
- Выборочное среднеквадратичное отклонение $\sigma_{\!\scriptscriptstyle N}=0.103{
 m c}$
- Максимальное значение плотности распределения $ho_{\rm max} = 3.8732 {
 m c}^{-1}$
- Среднеквадратичное отклонение среднего значения $\sigma \langle t \rangle = 0.0146 \ c$
- Доверительный интервал

$$\Delta t = 0.029346 \text{ c}$$

 $t = 5,0912 \pm 0.030 c$

13. Выводы и анализ результатов работы,

Было исследовано распределение случайной величины на примере многократных замероввременного отрезка, получена выборка из 50 измерений. Результаты прямых измерений, данныедля построения гистограммы, стандартные доверительные интервалы были занесены всоответствующие таблицы. После заполнения таблиц была построена гистограмма и функцияГаусса.

При сравнении гистограммы с графиком функции Гаусса - распределения случайной величины(при таких же начальных параметрах) - было отмечено сходство поведения построеннойопытным путём функции с теоретико-статистической сущностью. Работа позволила ознакомиться с законом распределения случайной величины и подробно егоизучить.

14. Допо	олнительные задания,
15 Run	олнение дополнительных заданий,
10. 55111	отпонно дополнитольных ваданий,
16. Заме	ечания преподавателя (<i>исправления, вызванные замечаниями преподавателя,</i>
также	помещают в этот пункт),
Примеч	, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,
	2. Необходимые исправления выполняют непосредственно в протоколе-отчете,
	3. При ручном построении графиков рекомендуется использовать
	миллиметровую бумагу,
	4. Приложения 1 и 2 вкладывают в бланк протокола-отчета,