# Твердотельный лазер на керамике с волоконно-лазерной накачкой

#### Работу выполнили:

Геликонова В.Г., Платонова М.В., Сарафанов Ф.Г.

#### Научный руководитель:

Антипов О.Л.

Нижний Новгород - 2017

### Цели работы

#### Цели

- 1 Ознакомиться с принципами работы лазера
- 2 Измерить мощность волоконного и твердотельного лазеров
- **3** Поучаствовать в эксперименте по созданию лазера и измерению его параметров

#### Виды переходов электронов между уровнями энергии

#### 1 Спонтанное излучение



#### Виды переходов электронов между уровнями энергии

#### 2 Вынужденное излучение



#### Устройство лазера

**Лазер** [Light Amplification by Stimulated Emition of Radiation ] — устройство, усиливающее свет посредством вынужденного излучения.



Основные составляющие:

- 1 Активная (рабочая) среда
- 2 Система накачки (источник энергии)

Оптический резонатор (простейший случай):

- 3 Непрозрачное зеркало
- 4 Полупрозрачное зеркало

## Виды лазеров

| Вид лазера    | Рабочая среда | Особенности                                                                                                                               |
|---------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| твердотельный | кристалл      | <ul> <li>Высокая удельная мощность</li> <li>Малая расходимость при<br/>большой мощности</li> <li>Высокий кпд (диодная накачка)</li> </ul> |
| волоконный    | волокно       | <ul> <li>Высокая удельная мощность</li> <li>Малая расходимость луча</li> <li>Высокий кпд</li> <li>Компактность и малый вес</li> </ul>     |
| газовый       | газ           | <ul><li>Высокая удельная мощность</li><li>Малая расходимость луча</li><li>Излучение в узком диапазоне частот</li></ul>                    |

#### Накачка

Система накачки – устройство, которое создает инверсию населенности (состояние вещества, при котором на высоких уровнях энергии находится большее количество электронов, чем на низких) Виды накачки:

- 1 оптическая за счет энергии света
- 2 электрическая накачка электрическим током
- 3 химическая с использованием энергии химических реакций

#### Активные среды и энергетические уровни





3-уровневая среда

4-уровневая среда

В лазере сначала происходит спонтанный переход, фотоны от него создают вынужденное излучение других фотонов, когерентных первоначальным, таким образом возникает фотонная лавина, усиливающаяся в резонаторе.

#### Резонатор

Устройство для усиления излучения. В простейшем случае представляет собой два зеркала, установленных друг напротив друга, одно из которых полупрозрачное — через него луч лазера частично выходит из резонатора.



Простейший резонатор

Для увеличения мощности выходного излучения применяют модуляцию добротности – уменьшают пропускную способность непрозрачного зеркала

### Модуляция добротности

**Модуляция добротности** – метод, применяемый для получения импульсного режима работы лазера

Некоторые методы модуляции:

- 1 Вращающееся зеркало
- 2 Ячейки Поккельса (электрооптические затворы)
- 3 Насыщающийся поглотитель
- 4 Акустооптическая модуляция







### Акустооптическая модуляция добротности



Акустооптический модулятор представляет собой участок оптически прозрачной среды, в котором возбуждается бегущая ультразвуковая волна.

Из-за наличия фотоупругого эффекта среду можно рассматривать как фазовую дифракционную решетку, на которой часть светового пучка в лазере дифрагирует и выходит из лазера, ухудшая добротность.

## Схема установки



 $oldsymbol{1}$  — волоконный лазер накачки

**2a, 2b** – зеркала резонатора

3 – активная среда

4а – диэлектрическое зеркало

**4b** – зеркало

**5** – камера

## Волоконный лазер



## Лазер на керамике

## Зависимость излучения лазера на керамике от тока



# Зависимость излучения лазера на керамике от мошности накачки



#### Выводы

- 1 Ознакомились с принципом работы вращателей и изоляторов Фарадея
- 2 Исследовали магнитооптические свойства теллуритных стекол (определили постоянную Верде)
- 3 Оценили длину образца, который можно использовать в качестве магнитооптического материала в изоляторах Фарадея, работающих в ближнем ИК-диапазоне.

# Спасибо за внимание!

Презентация подготовлена в издательской системе LaTeX с использованием пакетов PGF/TikZ и Beamer