جبر خطی

دانشكده مهندسي كامپيوتر

حمیدرضا ربیعی، مریم رمضانی پاییز ۱۴۰۳

تمرین تئوری دوم تاریخ انتشار: ۱مهر ۱۴۰۳

دستگاه مختصات، فضای برداری و زیرفضاها

۱. پرسشهای خود درمورد این تمرین را در سامانه کوئرا مطرح کنید.

۲. سیاست ارسال با تاخیر: شما در مجموع در طول نیمسال میتوانید از ۱۶ روز تاخیر استفاده کنید. این مقدار برای تمارین تئوری و عملی به صورت جداگانه حساب می شود. تاخیرها با مقیاس ساعت محاسبه شده و به بالا گرد می شوند.

۳. سیاست مشارکت دانشجویان در حل کردن تمارین: دانشجویان میتوانند در حل تمارین برای رفع ابهام و یا بهدست آوردن ایده ی کلی با یک دیگر مشورت و همفکری کنند. این کار مورد تایید و تشویق تیم ارائه ی درس می باشد؛ چرا که همفکری و کار گروهی می تواند موجب تقویت یادگیری شود. اما به دست آوردن جزئیات راه حل و نگارش پاسخ باید تماما توسط خود دانشجو انجام شود. حتما در انتهای پاسخ های ارسالی خود نام افرادی که با آن ها همفکری کردید را ذکر کنید.

سوالات (۱۰۰ نمره) تاریخ تحویل: ۲۲ مهر ۱۴۰۳

پرسش ۱ (۱۵ نمره) فرض کنید v,w دو عضو از فضای برداری V هستند. نشان دهید $\{v,w\}$ مستقل خطی است اگر و تنها اگر $\{v+w,v-w\}$ مستقل خطر باشد.

پاسخ اگر $\{v,w\}$ مستقل خطی باشد و داشته باشیم:

$$c_1(v+w) + c_1(v-m) = \cdot$$

آنگاه:

$$(c_1 + c_{\mathsf{Y}})v + (c_1 - c_{\mathsf{Y}})w = \bullet$$

از آنجایی که $\{v,w\}$ مستقل خطی است، پس باید ضرایب معادله بالا صفر باشند:

$$c_1 + c_7 = \cdot, c_1 - c_7 = \cdot \Longrightarrow c_1 = c_7 = \cdot$$

و بدین ترتیب استقلال خطی $\{v+w,v-w\}$ نتیجه می شود. حال برای طرف دیگر فرض کنید $\{v+w,v-w\}$ مستقل خطی است و:

$$c_1 v + c_7 w = \cdot (*)$$

و w را می توان به صورت ترکیب خطی v-w و v نوشت:

$$v = \frac{1}{7}(v+w) + \frac{1}{7}(v-w)$$

$$w = \frac{1}{7}(v+w) - \frac{1}{7}(v-w)$$

بنابراین معادله * را می توان به صورت زیر نوشت:

$$\frac{1}{7}c_1((v+w)+(v-w))+\frac{1}{7}c_7((v+w)-(v-w))=\cdot \\ (c_1+c_7)(v+w)+(c_1-c_7)(v-w)=\cdot$$

پون $\{v+w,v-w\}$ مستقل خطی است:

$$c_1 + c_7 = \cdot, c_1 - c_7 = \cdot \Longrightarrow c_1 = c_7 = \cdot$$

در نتیجه استقلال خطی $\{v,w\}$ نیز ثابت می شود.

پرسش ۲ (۱۷ نمره) ماتریس $A_{m \times n}$ را در نظر بگیرید.

$$A = \begin{bmatrix} a_{1,1} & a_{1,7} & \cdots & a_{1,n} \\ a_{7,1} & a_{7,7} & \cdots & a_{7,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,7} & \cdots & a_{m,n} \end{bmatrix}$$

. همچنین داریم: $n \geq m$

$$\forall i \in \{1, \Upsilon, \Upsilon, \dots, m\} : \Upsilon |a_{ii}| > \sum_{j=1}^{m} |a_{ji}|$$

آیا سطرهای A لزوما مستقل خطیاند؟ اگر فکر میکنید پاسخ مثبت است، اثبات کنید و در غیر این صورت، مثال نقض بیاورید.

پاسخ استقلال خطی سطرهای A را اثبات میکنیم.

. کے میں میں میں میں میادل این است که قدرمطلق درایه a_{ii} ، بزرگتر از جمع قدرمطلق سایر مقادیر روی ستون iام است. (کافی است $|a_{ii}|$ را از طرفین حذف کنیم.)

حال ميتوان نوشت:

$$c_1 * (row 1) + c_7 * (row 7) + ... + c_n * (row n) = ...$$

$$c_1(a_{1,1}, a_{1,1}, ..., a_{1,n}) + c_1(a_{1,1}, a_{1,1}, ..., a_{1,n}) + ... + c_m(a_{m,1}, a_{m,1}, ..., a_{m,n}) = (\cdot, \cdot, ..., \cdot)$$

. ($1 \leq j \leq m$) باشد (فرض خلف). فرض می کنیم بزرگترین آنها (از نظر قدرمطلقی) باشد (فرض خلف). فرض می کنیم تعدادی از c_j ها غیرصفر باشند (فرض خلف).

در این صورت با برابر قرار دادن درایه jام طرفین داریم:

$$\sum_{i=1}^{m} c_i a_{i,j} = \cdot \Rightarrow \sum_{\substack{i=1 \\ i \neq j}}^{m} c_i a_{i,j} = -c_j a_{jj}$$

$$\xrightarrow{c_j \neq \cdot}$$

$$\sum_{\substack{i=1\\i\neq j}}^{m} -\frac{c_i a_{i,j}}{c_j} = a_{jj}$$

Taking absolute value of both sides

$$\left|\sum_{\substack{i=1\\i\neq j}}^{m} -\frac{c_i a_{i,j}}{c_j}\right| = |a_{jj}|$$

براساس نامساوی مثلثی داریم:

$$\sum_{\substack{i=1\\i\neq j}}^m |-\frac{c_i a_{i,j}}{c_j}| \ge |\sum_{\substack{i=1\\i\neq j}}^m -\frac{c_i a_{i,j}}{c_j}|$$

براساس **پرسش ۲** داریم

$$\sum_{\substack{i=1\\i\neq j}}^m \left|\frac{c_i}{c_j}\right| |a_{i,j}| \ge |a_{j,j}|$$

پس طبق فرض سوال:

$$\sum_{\substack{i=1\\i\neq j}}^{m} |\frac{c_i}{c_j}| |a_{i,j}| > \sum_{\substack{i=1\\i\neq j}}^{m} |a_{i,j}| \Rightarrow \sum_{\substack{i=1\\i\neq j}}^{m} (|\frac{c_i}{c_j}| - 1) |a_{i,j}| > \bullet$$

ما c_j را بزرگترین مقدار از نظر قدرمطلق بین همه مقادیر c_j در نظر گرفته بودیم. پس حاصل $|\frac{c_i}{c_j}|$ برای هر $i \neq j$ در بازه $[\cdot, 1]$ قرار دارد. پس c_j در نظر قدرمطلق بین همه مقادیر c_j در نظر گرفته بودیم. پس حاصل $|\frac{c_i}{c_j}| - 1$ است. بنابراین $|a_{i,j}| = (|\frac{c_i}{c_j}| - 1)$ نامثبت است و میدانیم جمع چند عبارت نامثبت نمی تواند مثبت شود. به تناقض رسیدیم و درستی حکم اثبات می شود.

پرسش ۳ (۱۶ نمره) برای هر یک از فضاهای برداری زیر، ابتدا پایه ای برای آن بیابید و سپس بعد ان فضا را محاسبه نمایید.

 $p(\mathbf{1}) = p(\mathbf{1}) = \cdots = p(k) = \mathbf{1}$ داریم: $\mathbf{1} = \mathbf{1}$ داریم: $\mathbf{1$

پاسخ

(آ) از آنجایی که p(x) در نقاط ۱ تا k صفر است، می توان نتیجه گرفت که به فرمت زیر می باشد:

$$p(x) = (x - 1)(x - 1) \cdots (x - k)(a + a_1 x + \dots + a_{n-k} x^{n-k})$$

که $a., a_1, \dots a_{n-k}$ در آن ضرایبی ثابت هستند. بنابراین، مجموعه چند جملهای های

basis

dimension^{γ}

$$p_{\Upsilon}(x) = (x - \Upsilon)(x - \Upsilon) \dots (x - k)$$
$$p_{\Upsilon}(x) = (x - \Upsilon)(x - \Upsilon) \dots (x - k)x$$
$$\vdots$$

$$p_{n-k+1}(x) = (x-1)(x-1)\dots(x-k)x^{n-k}$$

تشکیل یک پایه می دهند. بعد این پایه هم n-k+1 می باشد.

(ب) ماتریس های زیر را در نظر بگیرید:

اگر این رویه را برای هر سطر تکرار کنیم (البته به ازای درایه هایی که شماره سطر آنها کمتر مساوی با شماره ستون است) ، مجموعه ای از ماتریس های مستقل ایجاد می شود که کل فضای ماتریس های بالامثلثی را در بر می گیرند. به عبارت دیگر، ماتریس E_{ij} جزو پایه است اگر تنها درایه e_{ij} آن یک باشد و داشته باشیم: $i \leq j$

بنابراین بعد این فضا از رابطه زیر به دست می آید:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{Y}$$

پرسش ۴ (۱۶ نمره) زیرفضای V را در فضای برداری $\mathbb{R}^{\mathfrak{k}}$ درنظر بگیرید که توسط دستگاه زیر ساخته می شود :

$$\begin{cases} x + \mathsf{Y}y + z = \mathsf{\cdot} \\ -x - y + \mathsf{Y}t = \mathsf{\cdot} \end{cases}$$

زیرفضای W نیز با بردارهای زیر ساخته می شود:

$$w_1 = \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{bmatrix}$$
 , $w_{\mathbf{r}} = \begin{bmatrix} \mathbf{r} \\ -\mathbf{r} \\ -\mathbf{r} \end{bmatrix}$

و $\dim(V \cap W)$ را محاسبه کنید.

پاسخ دو برداری که زیرفضای W را پدید می آورند، مستقل خطی هستند، بنابراین T=(W)=0. همچنین داریم: dim(W)=1؛ چراکه می توان x و y را به طور دلخواه انتخاب کرد و z و t نیز به صورت یکتا مشخص می شوند. $w_1 \notin V$ چون به طور مثال $w_2 \notin V$. (مجموعه جواب $w_3 \notin V=1$, $w_4 \notin V=1$ در زیرفضای $w_3 \notin V=1$ وجود ندارد.) درنتیجه dim(V)=1 که یعنی dim(V)=1 که یعنی dim(V)=1 یا یک است یا صفر. $w_3 \notin V=1$ وجود دارد یا خیر: بررسی فضای اشتراک، باید بررسی کنیم که آیا ترکیب خطی از $w_3 \notin V=1$ در فضای $w_3 \notin V=1$

$$a \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{bmatrix} + b \begin{bmatrix} \mathbf{r} \\ -\mathbf{r} \\ -\mathbf{r} \\ \mathbf{r} \end{bmatrix} = \begin{bmatrix} \mathbf{r}a + \mathbf{r}b \\ -\mathbf{r}b \\ a - \mathbf{r}b \\ a \end{bmatrix} \tag{1}$$

اگر این بردار در V باشد، با توجه به تعریف فضای V دستگاه زیر باید جواب داشته باشد:

$$\begin{cases} (\mathbf{Y}a + \mathbf{Y}b) + \mathbf{Y}(-\mathbf{Y}b) + (a - \mathbf{Y}b) = \cdot \\ -(\mathbf{Y}a + \mathbf{Y}b) - (-\mathbf{Y}b) + \mathbf{Y}a = \cdot \end{cases} \implies \begin{cases} \mathbf{Y}a - \mathbf{Y}b = \cdot \\ a - b = \cdot \end{cases}$$

که معادل a=b است. به عبارت دیگر، هر مجموعه برداری به فرم (۱) که در آن a=b عضو $V\cap W$ است. به طور خاص، اگر 1=b به برداری 1=b معادل 1=a=b است. به عبارت دیگر، هر مجموعه برداری به فرم (۱) که در آن 1=a=b معند 1=a=b است. به طور خاص، اگر 1=a=b به برداری مخالف صفر است و به 1=a=b تعلق دارد، پس 1=a=b از طرفی قبلا نتیجه گرفتیم 1=a=b به برداری مخالف صفر است و به 1=a=b تعلق دارد، پس 1=a=b می رسیم که برداری مخالف صفر است و به 1=a=b تعلق دارد، پس 1=a=b می رسیم که برداری مخالف صفر است و به 1=a=b تعلق دارد، پس 1=a=b از منابع نتیجه گرفتیم 1=a=b به برداری مخالف صفر است و به 1=a=b تعلق دارد، پس 1=a=b از منابع تعلق دارد، پ

در نهایت داریم:

$$dim(V+W)=dim(V)+dim(W)-dim(V\cap W)={\bf Y}+{\bf Y}-{\bf Y}={\bf Y}$$

پرسش ۵ (۱۶ نمره) فرض کنید ماتریسهای $A_{m imes n}$ و $B_{m imes k}$ موجود باشند. گزاره زیر را اثبات یا رد کنید:

ماتریسی مانند X وجود دارد به طوری که AX = B، اگر و تنها اگر Rank(A:B) = Rank(A:B) (منظور از A:B ماتریس افزوده AX = B ماتریسی فزوده AX = B ماتریسی افزوده AX = B ماتریس افزود A

ستون iام ماتریسهای B, X, A را به ترتیب با B_i, X_i, A_i نشان می دهیم.

فرض میکنیم Xای موجود باشد به طوری که AX=B . ستون iام B از ضرب A در ستون iام X حاصل می شود. یعنی: $AX_i=B_i$

از طرفی AX_i یک ترکیب خطی از ستونهای A است (با ضرایب موجود در X_i). پس هر ستون ماتریس B یک ترکیب خطی از ستونهای A است. بنابراین اگر ماتریس A بچسبانیم (ماتریس افزوده) و فضای ستونی ماتریس A تفاوتی ندارد. یعنی:

 $Im(A) = Im(A : B) \Rightarrow Dim(Im(A)) = Dim(Im(A : B)) \Rightarrow Rank(A) = Rank(A : B)$

حال فرض می کنیم Rank(A:B)=r در نظر می گیریم. Rank(A:B)=r برای فضای ستونی ماتریس Rank(A:B)=r در نظر می گیریم. اثبات می کنیم هو B_i را می توان به صورت ترکیب خطی ای از $u_1,u_2,...,u_r$ نوشت.

از برهان خلف استفاده میکنیم. فرض میکنیم این طور نباشد. در این صورت $u_1, u_2, ..., u_r, B_i$ مستقل خطی اند. یعنی:

$$c_1u_1 + c_7u_7 + \dots + c_ru_r + \alpha B_i = \cdot \Rightarrow c_1 = c_7 = \dots = c_r = \alpha = \cdot$$

زیرا اگر $lpha \neq \bullet$ میتوان B_i را برحسب $u_1, u_2, ..., u_r$ نوشت که خلاف فرض خلف است. با جایگذاری $lpha \neq \bullet$ در عبارت (پرسش ۵) به معادله $c_1 = c_7 = ... = c_7 = ...$ بنابراین $c_1 = c_7 = ... = c_7 = ...$ بنابراین $u_1, u_2, ..., u_r$ می رسیم. چون $u_1, u_2, ..., u_r$ یک پایه تشکیل می دهند، مستقل خطی هستند و $u_1, u_2, ..., u_r$ بنابراین $u_2, u_3, ..., u_r$ می رسیم. چون $u_3, u_4, ..., u_7$ بنابراین $u_4, u_5, ..., u_7$ در $u_5, u_7, ..., u_7$ بنابراین u_5, u_7, u_7 بنابراین u_5, u_7, u_7 بنابراین u_5, u_7, u_7 بنابراین $u_5,$

حال اگر بردارهای $Rank(A : B) \geq Rank(A) + 1$ که تناقض است. پس ثابت بس ثابت می توان نتیجه گرفت که $u_1, u_7, ..., u_r, B_i$ که تناقض است، پس ثابت می شود که هر B_i را می توان به صورت ترکیب خطی ای از $u_1, u_2, ..., u_r$ نوشت. چون $u_1, u_2, ..., u_r$ یک پایه برای فضای ستونی A است، هر B_i را می توان به صورت ترکیب خطی ای از $A_1, A_2, ..., A_n$ نوشت.

فرض میکنیم
$$\begin{bmatrix} c_{i1} \\ c_{i7} \\ \vdots \\ c_{in} \end{bmatrix}$$
 تعریف میشود، در رابطه $B_i = c_{i1}A_1 + c_{i7}A_7 + ... + c_{in}A_n$ قرض میکنیم $B_i = c_{i1}A_1 + c_{i7}A_7 + ... + c_{in}A_n$ مدق میکند. $AX = B$

augmented matrix[†]