Transistores de Efeito de Campo - FET

Conteúdo

- Estrutura dos JFETs
- Controle do canal (aberto/fechado)
- Análise qualitativa
- Análise quantitativa
- Regiões de operação
- Aplicações
 - Chave série
 - Chave paralela
 - Chopper

Comparação:

TBJ – Amplificador controlado por Corrente

Comparação:

FET- Amplificador controlado por Tensão

FET - Estrutura

FET - Estrutura

FET - Estrutura

FET - Análise - canal N

FET - Canal aberto

FET - Canal fechado

FET - Mecanismo de Controle

FET – Mecanismo de Controle

i - Análise com $V_{GS} = 0 V$ and $V_{DS} > 0 V$

ii - Análise com $V_{GS} < 0 V$ and $V_{DS} > 0 V$

i - Análise com $V_{GS} = 0 V$ and $V_{DS} > 0 V$

ii - Análise com $V_{GS} < 0 V$ and $V_{DS} > 0 V$

FET com $V_{GS} = 0 V$ and $V_{DS} > 0 V$

FET com $V_{GS} = 0 V$ and $V_{DS} > 0 V$

Se V_{DS} continua a aumentar?

 $V_{GS} = 0 V \text{ and } V_{DS} > 0 V$

Potencial reverso na junção PN

 $V_{GS} = 0 V \text{ and } V_{DS} > 0 V$

Pinch-off $(V_{GS} = 0 \text{ V}, V_{DS} = V_P)$

Pinch-off $(V_{GS} = 0 \text{ V}, V_{DS} = V_P)$

Fonte de corrente equivalente $V_{GS} = 0 \text{ V}, V_{DS} > V_{P}$

Fonte de corrente equivalente $V_{GS} = 0 \text{ V}$, $V_{DS} > V_{P}$

 $I_D = I_{DSS} = Cte.$

i - Análise com VGS = 0 V and VDS > 0 V

ii - Análise com $V_{GS} < 0 V$ and $V_{DS} > 0 V$

Aplicando tensão negativa à porta

Aplicando tensão negativa à porta

Aplicando tensão negativa à porta

Relembrando: I_D versus V_{DS} com $V_{GS} = 0$ V

Ex.: FET canal-n com $I_{DSS} = 8$ mA e $V_P = 4$ V

Aplicando tensão $V_{GS} \leq V_P$ à porta

Ex.: FET canal-n com $I_{DSS} = 8$ mA e $V_P = 4$ V

FET canal-p

Ex.: FET canal-p com $I_{DSS} = 6$ mA e $V_P = -6$ V

FET símbolos: canal-n

FET símbolos: canal-p

(1.1) Saturação $V_{GS} = 0$ V, $V_{DD} \ge V_P$, $I_D = I_{DSS}$

(1.1)
$$V_{GS} = 0 \text{ V}, V_{DD} \ge V_P, I_D = I_{DSS}$$

(1.2) Saturação $V_{GS} < 0$, $V_{GS} > V_P$, $V_{DD} \ge |V_P - V_{GS}|$, $I_D < I_{DSS}$

(1.2) Saturação $V_{GS} < 0$, $V_{GS} > V_P$, $V_{DD} \ge |V_P - V_{GS}|$, $I_D < I_{DSS}$

(2) Corte
$$(I_D = 0 \text{ A}) |V_{GS}| \ge |V_P|, V_{GS} < 0$$

(2) Corte $(I_D = 0 \text{ A}) |V_{GS}| \ge |V_P|$

(3) I_D entre 0 e I_{DSS} para $V_{GS} \le$ 0 V, $V_{DS} < |V_{GS} - V_P|$ e $V_{GS} > V_P$.

(3) I_D entre 0 A e I_{DSS} para $V_{GS} \le 0$ V, $V_{DS} < V_P$ e $|V_{GS}| < |V_P|$.

Curva Característica

Curva Característica - Resistência do canal

Região Ôhmica

Curva Característica - Resistência do canal

Aproximação: $\downarrow I_D \text{ (mA)}$ $V_{GS} = 0 \text{ V}$ I_{DSS} $V_{GS} = -1 \text{ V}$

Região Ôhmica

Curva Característica - Curva de Transferência

Curva Característica - Curva de Transferência

Curva de Transferência – I_D x V_{DS}

Equação de Schockley

Região de Saturação

Região de Saturação

Folha de Dados

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Reverse Gate-Source Voltage	V _{GSR}	-25	Vdc
Gate Current	I _G	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	310 2.82	mW/C
Junction Temperature Range	Tj	125	.c
Storage Channel Temperature Range	Tstg	-65 to +150	,C

Refer to 2N4220 for graphs.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit

OFF CHARACTERISTICS

Gate-Source Breakdown Voltage $(I_G = -10 \mu Adc, V_{DS} = 0)$	V _{(BR)GSS}	-25	-	-	Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 100^{\circ}\text{C})$	1 _{GSS}	-	-	-1.0 -200	nAdc
Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc) 2N5457	V _{GS(off)}	-0.5	10-	-6.0	Vdc
Gate Source Voltage $(V_{DS} = 15 \text{ Vdc}, I_D = 100 \ \mu\text{Adc})$ 2N5457	V _{GS}	-	-2.5	-	Vdc

ON CHARACTERISTICS

	Zero-Gate-Voltage Drain Current* (V _{DS} = 15 Vdc, V _{GS} = 0)	2N5457	I _{DSS}	1.0	3.0	5.0	mAde	
--	---	--------	------------------	-----	-----	-----	------	--

SMALL-SIGNAL CHARACTERISTICS

Forward Transfer Admittance Common Source* (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz) 2N5457	lynl	1000	2	5000	μmhos
Output Admittance Common Source* (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	lyod	-	10	50	μmhos
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	Ciss		4.5	7.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{OS} = 0, f = 1.0 MHz)	Crss	2.00	1.5	3.0	pF

*Pulse Test: Pulse Width 5 630 ms; Duty Cycle 5 10%

FET versus TBJ

$$JFET \qquad BJT$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2 \iff I_C = \beta I_B$$

$$I_D = I_S \qquad \Leftrightarrow \qquad I_C \cong I_E$$

$$I_G \cong 0 \text{ A} \qquad \Leftrightarrow \qquad V_{BE} \cong 0.7 \text{ V}$$

1. A corrente de fuga do JFET 2N5951, Segundo sua folha de dados, é 5 pA para uma tensão de 20 V. Qual sua resistência de entrada?

2. A folha de dados do 2N5191 fornece os seguintes valores típicos: $I_{DSS} = 10 \text{ mA}$; $V_{GS \text{ (corte)}} = V_p = -3.5 \text{ V}$. Calcule a corrente de dreno para $V_{GS} = -1 \text{ V}$, -2 V, -3 V e -4 V na região de saturação.

1. A corrente de fuga do JFET 2N5951, Segundo sua folha de dados, é 5 pA para uma tensão de 20 V. Qual sua resistência de entrada?

2. A folha de dados do 2N5191 fornece os seguintes valores típicos: $I_{DSS} = 10 \text{ mA}$; $V_{GS \text{ (corte)}} = V_p = -3.5 \text{ V}$. Calcule a corrente de dreno para $V_{GS} = -1 \text{ V}$, -2 V, -3 V e -4 V na região de saturação.

$$I_D = I_{DSS} \left[1 - \frac{V_{GS}}{V_p} \right]^2$$
 Equação de Schockley

- 2. Using the characteristics of Fig. 5.10, determine I_D for the following levels of V_{GS} (with $V_{DS} > V_P$).
 - (a) $V_{GS} = 0 \text{ V}.$
 - (b) $V_{GS} = -1 \text{ V}.$
 - (c) $V_{GS} = -1.5 \text{ V}.$

- **3.** (a) Determine V_{DS} for $V_{GS} = 0$ V and $I_D = 6$ mA using the characteristics of Fig. 5.10.
 - (b) Using the results of part (a), calculate the resistance of the JFET for the region $I_D = 0$ to 6 mA for $V_{GS} = 0$ V.
 - (c) Determine V_{DS} for $V_{GS} = -1$ V and $I_D = 3$ mA.
 - (d) Using the results of part (c), calculate the resistance of the JFET for the region $I_D = 0$ to 3 mA for $V_{GS} = -1$ V.
 - (e) Determine V_{DS} for $V_{GS} = -2$ V and $I_D = 1.5$ mA.

- 2. Using the characteristics of Fig. 5.10, determine I_D for the following levels of V_{GS} (with $V_{DS} > V_P$).
 - (a) $V_{GS} = 0 \text{ V}.$
 - (b) $V_{GS} = -1 \text{ V}.$
 - (c) $V_{GS} = -1.5 \text{ V}.$

- **3.** (a) Determine V_{DS} for $V_{GS} = 0$ V and $I_D = 6$ mA using the characteristics of Fig. 5.10.
 - (b) Using the results of part (a), calculate the resistance of the JFET for the region $I_D=0$ to 6 mA for $V_{GS}=0$ V.
 - (c) Determine V_{DS} for $V_{GS} = -1$ V and $I_D = 3$ mA.
 - (d) Using the results of part (c), calculate the resistance of the JFET for the region $I_D = 0$ to 3 mA for $V_{GS} = -1$ V.
 - (e) Determine V_{DS} for $V_{GS} = -2 \text{ V}$ and $I_D = 1.5 \text{ mA}$.

Compare os resultados com aqueles obtidos com a

fórmula aproximada:

$$r_d = \frac{r_o}{\left(1 - V_{GS}/V_P\right)^2}$$

JFET - Aplicações

JFET - Resumo

JFET - Aplicações

- Aplicações
 - Chave paralela
 - ■Chave série
 - **■**Chopper
 - Limitador de corrente

Funcionamento como chave:

•
$$V_{GS} = 0V \Rightarrow R_D \sim 0$$

•
$$V_{GS} \le -V_P \Rightarrow R_D \sim \infty$$

1.1 - Chave Paralela

1.1 - Chave Paralela

Circuito equivalente VIN RD VOUT VCONT VC

Exemplo

1) O FET do circuito abaixo possui $r_d = R_{DS(ON)} = 10 \ \Omega$. Supondo que $V_{ent} = 20 \ mV$, qual é o valor de $V_{saída}$ quando $V_{GS} = 0 \ V$? E quando V_{GS} for mais negativo que V_p ?

$$R_D = 2,2 \text{ k}\Omega$$

Vent

Vgs

2N3819

Exemplo

1) O FET do circuito abaixo possui $r_d = R_{DS(ON)} = 10 \ \Omega$. Supondo que $V_{ent} = 20 \ mV$, qual é o valor de $V_{saída}$ quando $V_{GS} = 0 \ V$? E quando V_{GS} for mais negativo que V_p ? (R:0,09 mV e 20 mV)

$$R_D = 2.2 \text{ k}\Omega$$

Chopper

Chopper

Chopper

Chopper entrada senoidal

Amplificador DC

Ex.: Chopper entrada DC com flutuação (ripple)

Obs.: Na prática os MOSFETs e TBJs são utilizados em fontes chaveadas.

1.2 - Chave Série

1.2 - Chave Série - exemplo de aplicação

Multiplexador Analógico (Seletor)

1.2 - Chave Série - exemplo de aplicação

Multiplexador Analógico (Seletor)

2 – Limitador de corrente

Pra valores "baixos" de corrente de carga (I_D), o JFET trabalha na região de baixa resistência.

2 – Limitador de corrente

Se a corrente da carga I_D aumentar (e. g., curto-circuito), o JFET limita seu valor em I_{DSS} .

3 - Amplificador de sinais

Vantagens (comparado ao TBJ):

- Alta R_i
- Baixo ruído

3 - Amplificador de sinais

