

Gemeinsame Abituraufgabenpools der Länder

Pool für das Jahr 2021

Aufgaben für das Fach Mathematik

Kurzbeschreibung

Anforderungsniveau	Prüfungsteil	Sachgebiet ¹	digitales Hilfsmittel
erhöht	В	Analysis	CAS

1 Aufgabe

 $\textbf{1} \ \ \text{Gegeben sind die in IR definierten Funktionen} \ \ f_a: x \mapsto -\frac{a}{250} \, x^4 + \frac{1}{25} \, x^3 \ \ \text{mit} \ \ a \in \text{IR}^+ \\ \text{sowie} \ \ g_a: x \mapsto f_a\left(x\right) - \frac{3}{5} \, x \, . \ \text{Die Abbildung 1 zeigt den Graphen von} \ \ g_1 \, .$

Abb. 1

- a Berechnen Sie für den Graphen von f₁ die Koordinaten der Schnittpunkte mit den Koordinatenachsen sowie die Koordinaten des Extrempunkts. Zeichnen Sie den Graphen von f₁ in die Abbildung 1 ein.
- **b** Geben Sie an, für welche Werte von x der Graph von f₁ oberhalb des Graphen von g₁ verläuft und für welche unterhalb. Begründen Sie Ihre Angabe.

3

6

BE

¹ verwendete Abkürzungen: AG/LA - Analytische Geometrie/Lineare Algebra, AG/LA (A1) - Analytische Geometrie/Lineare Algebra (Alternative A1), AG/LA (A2) - Analytische Geometrie/Lineare Algebra (Alternative A2)

5

3

6

4

2

6

- c Für jeden Wert von a gilt:
 - I Die Funktionsterme von f_a und g_a unterscheiden sich nur um den Summanden $-\frac{3}{5}x$.
 - II Der Graph von f_a hat genau zwei Wendepunkte, deren x-Koordinaten 0 und $\frac{5}{a}$ sind.

Geben Sie an, was sich aus I und II hinsichtlich der Anzahl und der Lage der Wendepunkte des Graphen von g_a im Vergleich zu den Wendepunkten des Graphen von f_a folgern lässt. Begründen Sie Ihre Angabe ausgehend von I und II.

Die Tangente t_f an den Graphen von f_a im Punkt $\left(\frac{5}{a}\,|\,f_a\left(\frac{5}{a}\right)\right)$ hat die Steigung $\frac{1}{a^2}$, die Tangente t_g an den Graphen von g_a im Punkt $\left(\frac{5}{a}\,|\,g_a\left(\frac{5}{a}\right)\right)$ die Steigung $\frac{5-3a^2}{5a^2}$. Der Schnittpunkt dieser beiden Tangenten wird mit S bezeichnet.

- d Weisen Sie nach, dass S für jeden Wert von a auf der y-Achse liegt.
- **e** Die Gerade mit der Gleichung $x = \frac{5}{a}$ schneidet t_f im Punkt F und t_g im Punkt G. Untersuchen Sie, für welche Werte von $a \in IR^+$ das Dreieck SGF rechtwinklig ist.
- **2** Die Abbildung 2 zeigt schematisch die Profillinie des Längsschnitts einer Skipiste in einer Skihalle. Die Piste ist in Querrichtung nicht geneigt und durchgehend 30 m breit.

Die Profillinie wird für $0 \le x \le 41,5\,$ modellhaft durch den Graphen der in IR definierten Funktion $p: x \mapsto -0,000004x^4+0,015x^2-0,1x+0,1875\,$ dargestellt. Im verwendeten Koordinatensystem beschreibt die x-Achse die Horizontale; eine Längeneinheit im Koordinatensystem entspricht 10 m in der Realität.

a Berechnen Sie die Größe des größten Neigungswinkels der Piste gegenüber der Horizontalen.

Über der Piste verläuft in deren Längsrichtung ein Seil. Die beiden Enden des Seils werden im Modell durch A(5|2,31) und B(37|10,68) dargestellt; der Verlauf des Seils kann mithilfe einer in IR definierten Funktion $h: x \mapsto b \cdot c^x$ mit $b, c \in IR^+$ beschrieben werden.

b Bestimmen Sie die Werte von b und c.

(zur Kontrolle: $b \approx 1,818$, $c \approx 1,049$)

c Untersuchen Sie, in welchen Bereichen der vertikale Abstand des Seils zur Piste mindestens 3 m beträgt. Ermitteln Sie die Höhendifferenz, um die die beiden Enden des Seils gemeinsam mindestens angehoben werden müssten, damit das Seil an jeder Stelle von der Piste einen vertikalen Abstand von mindestens 3 m hat.

d Die Abbildung 3 zeigt grau markiert die Schneeauflage im unteren Bereich der Piste; dazu wurde die Abbildung 2 in Richtung der y-Achse stärker vergrößert als in Richtung der x-Achse. Der Untergrund, auf dem der Schnee aufgebracht ist, wird für $0 \le x \le 5$ durch die x-Achse dargestellt. Für den übrigen Teil der Piste soll davon ausgegangen werden, dass die in vertikaler Richtung gemessene Schneehöhe 60 cm beträgt.

Bestimmen Sie das Volumen der Schneeauflage der gesamten Piste.

40

5

2 Erwartungshorizont

Der Erwartungshorizont stellt für jede Teilaufgabe eine mögliche Lösung dar. Nicht dargestellte korrekte Lösungen sind als gleichwertig zu akzeptieren.

c Der Graph von g_a hat die gleiche Anzahl von Wendepunkten wie der Graph von f_a . Die x-Koordinaten der Wendepunkte des Graphen von g_a stimmen mit denen der Wendepunkte des Graphen von f_a überein; nur für x = 0 gilt dies auch für die y-Koordinate.

Begründung: Wegen I gilt $f_a''(x) = g_a''(x)$. Mit II ergibt sich: Der Graph von g_a hat ebenfalls genau zwei Wendepunkte, deren x-Koordinaten 0 und $\frac{5}{a}$ sind; wegen $-\frac{3}{5}x = 0 \Leftrightarrow x = 0$ haben f_a und g_a nur für x = 0 den gleichen Funktionswert.

5

		$t_f \ \ \text{wird durch die Gleichung} \ \ y = \frac{1}{a^2} x - \frac{5}{2a^3} \ \ \text{beschrieben}, \ \ t_g \ \ \text{durch die Gleichung}$ $y = \frac{5-3a^2}{5a^2} x - \frac{5}{2a^3} . \ \ \text{Damit schneiden beide Tangenten die y-Achse im Punkt}$ $\left(0 -\frac{5}{2a^3} \right).$	3
	е	Für die Steigung von t_f gilt $\frac{1}{a^2} > 0$ für alle $a \in IR^+$, d. h. im Eckpunkt F kann kein rechter Winkel auftreten. Wegen $-\frac{3a^2-5}{5a^2} \cdot \frac{1}{a^2} \neq -1$ für alle $a \in IR^+$ gilt dies auch für den Eckpunkt S. Im Eckpunkt G liegt für $a \in IR^+$ genau dann ein rechter Winkel vor, wenn $-\frac{3a^2-5}{5a^2} = 0 \Leftrightarrow a = \frac{1}{3}\sqrt{15}$.	6
2	а	Der Abbildung 2 ist zu entnehmen, dass der Punkt der Profillinie, in dem deren Steigung am größten ist, zwischen den beiden Endpunkten liegt. Für $0 < x < 41,5$ gilt $p''(x) = 0 \Leftrightarrow x = 25$. $tan \phi = p'(25)$ liefert $\phi \approx 22^\circ$.	4
	b	$b\cdot c^5=2,31$ und $b\cdot c^{37}=10,68$ liefern $b\approx 1,818$ und $c\approx 1,049$.	2
	С	Der vertikale Abstand des Seils zur Piste kann für jeden Punkt der Profillinie mithilfe der Funktion d mit $d(x) = h(x) - p(x)$ angegeben werden.	6
		Für $5 \le x \le 37$ liefert $d(x) \ge 0,3$ für die gesuchten Bereiche im Modell $5 \le x \le x_1$ mit $x_1 \approx 27,3$ sowie $x_2 \le x \le 37$ mit $x_2 \approx 32,6$.	
		Für $x_1 < x < x_2$ gilt $d'(x) = 0 \Leftrightarrow x = x_3$ mit $0, 3 - d(x_3) \approx 0, 11$. Die Enden des Seils müssten also um etwa 1,1 m angehoben werden.	
	d	$\left(\int_{0}^{5} p(x) dx + \int_{5}^{41.5} (p(x) - (p(x) - 0.06)) dx\right) \cdot 10 \cdot 10 \cdot 30 = 7500$	5
		Das Volumen der Schneeauflage beträgt 7500 m ³ .	
			40

3 Standardbezug

Teilauf- gabe	BE
1 a	6
b	3
С	5
d	3
е	6
2 a	4
b	2
С	6
d	5

allg	allgemeine mathematische Kompetenzen				
K1	K2	K3	K4	K5	K6
I			I	I	
П			I		
II			I		Ш
I	П			Ш	
III	III			Ш	Ш
		- 1	I	Ш	I
				I	
II	П	III		II	II
	II	II	I	Ш	

Anforderungsbereich			
-	Ш	Ш	
X			
	Х		
	Х		
	Х		
		Х	
	Х		
Х			
		Х	
	Х		

4 Bewertungshinweise

Die Bewertung der erbrachten Prüfungsleistungen hat sich für jede Teilaufgabe nach der am rechten Rand der Aufgabenstellung angegebenen Anzahl maximal erreichbarer Bewertungseinheiten (BE) zu richten.

Für die Bewertung der Gesamtleistung eines Prüflings ist ein Bewertungsraster² vorgesehen, das angibt, wie die in den Prüfungsteilen A und B insgesamt erreichten Bewertungseinheiten in Notenpunkte umgesetzt werden.

² Das Bewertungsraster ist Teil des Dokuments "Beschreibung der Struktur", das auf den Internetseiten des IQB zum Download bereitsteht.