# ESC201: Lecture 13



### Dr. Imon Mondal

ASSISTANT PROFESSOR, ELECTRICAL ENGINEERING, IIT KANPUR

2024-25 SEM-I | ESC201 INTRODUCTION TO ELECTRONICS



Sum of Products (SOP) form

Here we are telling when

y will be false

Instead of writing expressions as sum of terms that make y equal to 1, we can also write expressions using terms that make y equal to 0



 $y = \overline{x_1} + \overline{x_2}$ 

Dr. Imon Mondal

Recall

 $\overline{x_1} + \overline{x_2} = \overline{x_1 \cdot x_2}$ 

Sum of Products (SOP) form

## Digital Design



### Modular Approach



There are certain sub-systems or blocks that are used quite often such as:

- 1. Adder/Subtractors, Multipliers
- 2. Decoders, Encoders
- 3. Multiplexers, Demultiplexers
- 4. Comparators
- 5. Parity Generators

## Binary Addition



#### Addition





Truth Table

$$S = \overline{a.b} + a.\overline{b}; C = a.b$$

How to get this expression?

How to get this gate implementation?



## How to get an expression from truth table?



y = 1 when  $x_1$  is 0 and  $x_2$  is 1

Boolean expression

$$y = \overline{x_1} \cdot x_2$$

(NOT  $x_1$ ) AND  $x_2$ 

### How to get an expression from truth table?



|   |                       |       | I                |                     |
|---|-----------------------|-------|------------------|---------------------|
| _ | <b>X</b> <sub>1</sub> | $X_2$ | У                | v-v $v$             |
|   | 0                     | 0     | 0<br>0<br>1<br>0 | $y = x_1 \cdot x_2$ |
|   | 0                     | 1     | 0 /              |                     |
|   | 1                     | 0     | 1                |                     |
|   | 1                     | 1     | 0                |                     |

$$y = y_1 y_2 x_1 \cdot x_2 + x_1 \cdot x_2$$

(NOT  $x_1$ ) AND (NOT  $x_2$ ) OR  $x_1$  AND  $x_2$ 



Sum of Products (SOP) form

Here we are telling when

y will be false

Instead of writing expressions as sum of terms that make y equal to 1, we can also write expressions using terms that make y equal to 0



 $y = \overline{x_1} + \overline{x_2}$ 

Dr. Imon Mondal

Recall

 $\overline{x_1} + \overline{x_2} = \overline{x_1 \cdot x_2}$ 

Sum of Products (SOP) form

Product of Sum (POS) form

## Digital Design



## Calculation using Digital System

- Binary signals represent logic states
  - can implement any logic
  - logic consists of AND, OR & NOT condition
  - Boolean Algebra
- Binary signals can represent any numbers
  - We can do all arithmetic over it
  - Enables any calculations
  - Addition, Subtraction, Multiplication, Division, etc.
- Computers can do calculations
  - evaluate logic states and make decision over that

How to do such calculations?

## Modular Approach



There are certain sub-systems or blocks that are used quite often such as:

- 1. Adder/Subtractors, Multipliers
- 2. Decoders, Encoders
- 3. Multiplexers, Demultiplexers
- 4. Comparators
- 5. Parity Generators

## Binary Addition



#### 1 bit Addition: Half Adder





Truth Table

$$S = \bar{a}.b + a.\bar{b}; C = a.b$$

**Boolean Expression** 



Gate level

implementation

## Why a Modular Approach?

 Let us make a 2 bit adder circuit which can add two 2-bit numbers

$$\begin{array}{cccc} & x_1 & x_0 \\ + & y_1 & y_0 \\ z_2 & z_1 & z_0 \end{array}$$

- There are 4 inputs and 3 outputs
- Let us write down all possible combinations!
  - $2^4 = 16$  rows in the truth table
- ➤ Write down Boolean expressions and design implementation?
- What about 3 bits?
- ☐ Let us take the modular approach

#### Adder: First bit







#### Truth Table

$$S = \bar{a}.b + a.\bar{b}; C = a.b$$



Implementation

#### Adder: Second bit







But there can be carry from previous bits.

$$\begin{array}{cccc} & x_1 & 1 \\ + & y_1 & 1 \\ z_2 & z_1 & 0 \end{array}$$

## Single Bit Full Adder



$$S = \overline{x.y.z} + \overline{x.y.z} + \overline{x.y.z} + x.y.z$$

$$C = x.y + x.z + y.z$$



| a | b | С | S | CY |
|---|---|---|---|----|
| 0 | 0 | 0 | 0 | 0  |
| 0 | 0 | 1 | 1 | 0  |
| 0 | 1 | 0 | 1 | 0  |
| 0 | 1 | 1 | 0 | 1  |
| 1 | 0 | 0 | 1 | 0  |
| 1 | 0 | 1 | 0 | 1  |
| 1 | 1 | 0 | 0 | 1  |
| 1 | 1 | 1 | 1 | 1  |
|   |   |   |   |    |

#### Adder: Half Adder vs Full adder









$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.b.c_{in};$$

$$C_{out} = \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.b.\overline{c_{in}} + a.b.\overline{c_{in}} + a.b.c_{in}$$

## Full Adder Circuit using Half Adders

$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.b.c_{in}$$

$$S = C_{in} \oplus (a \oplus b)$$

$$C_{out} = \overline{a.b.C_{in}} + a.\overline{b.C_{in}} + a.b.\overline{C_{in}} + a.b.\overline{C_{in}} + a.b.C_{in}$$

$$C_{out} = C_{in}(a.\bar{b} + \bar{a}.b) + a.b = C_{in}.(a \oplus b) + a.b$$



#### Multi-bit Adder



$$\begin{array}{c|ccc} & x_1 & x_0 \\ + & y_1 & y_0 \\ z_2 & z_1 & z_0 \end{array}$$

#### Multi-bit Adder

- How to add two 4-bit numbers?
- Truth table would have 28=256 entries

 Instead, use already designed logic circuits as subsystems

> 1101 + 1110 11011



### Addition/Subtraction Computation



2's complement is 0011 = 3

2's complement is 0111 = 7

#### Overflow

Take care to detect overflow when adding

After discarding the final carry 0, 2's complement of 10010 is  $01110 = (14)_{10}$  We get a wrong answer!

- Sum of positive numbers = negative
- Sum of negative numbers = positive

overflow

#### 4-bit Adder



| $A_3A_2A_1A_0$ | $B_3B_2B_1B_0$ | $S_3S_2S_1S_0$ | C <sub>out</sub> |
|----------------|----------------|----------------|------------------|
| 0000           | 0000           | 0000           | 0                |
| 0000           | 0001           | 0001           | 0                |
| 0001           | 0000           | 0001           | 0                |
|                | i              |                |                  |
|                |                |                |                  |
| ÷              | i I            |                | :                |





Dr. Imon Mondal

#### 4-bit Subtractor

A - B = A + 2's complement of B

A - B = A + 1's complement of B + 1





### 4-bit Adder and Subtractor



$$B_0 \oplus 0 = B_0.\overline{0} + \overline{B_0}.0 = B_0$$
$$B_0 \oplus 1 = B_0.\overline{1} + \overline{B_0}.1 = \overline{B_0}$$

$$B_0 \oplus 1 = B_0.\overline{1} + \overline{B_0}.1 = \overline{B_0}$$

$$M = 0$$
 for Adder

## Multiplexers (MUX)



| S | У              | is a shortcut to say |
|---|----------------|----------------------|
| 0 | I <sub>0</sub> | _                    |
| 1 |                |                      |

$$y = \bar{S} I_0 + S I_1$$



0

$$y = \bar{S}I_{0}\bar{I}_{1} + \bar{S}I_{0}I_{1} + S\bar{I}_{0}I_{1} + SI_{0}I_{1}$$

$$= \bar{S}I_{0}(\bar{I}_{1} + I_{1}) + SI_{1}(\bar{I}_{0} + I_{0})$$

$$= \bar{S}I_{0} + SI_{1}$$

- The shortcut version of truth table is more useful
- => Minimization is more natural

## Bigger Multiplexers



$$y = \overline{S_1} \ \overline{S_0} I_0 + \overline{S_1} S_0 I_1 + S_1 \overline{S_0} I_2 + S_1 S_0 I_3$$



## Bigger MUX from Smaller MUX



## Bigger MUX from Smaller MUX with Enable



A 2 variable function can be implemented with a 4:1 mux with 2 select lines: **one-to-one correspondence** 



Can we do better?

38

A 2 variable function can be implemented with a 2:1 mux with 1 select line



|                                     | У | $X_2$  | _X <sub>1</sub> |
|-------------------------------------|---|--------|-----------------|
| -                                   | 0 | 0      | 0               |
| $y = x_2$ when $x_1 = 0$            | 1 | 0<br>1 | 0               |
| _<br>                               | 1 | 0<br>1 | 1               |
| $y = \overline{x_2}$ when $x_1 = 1$ | 0 | 1      | 1               |

A 3 variable function can be implemented with a 4:1 mux with 2 select lines



A 3 variable function can be implemented with a 4:1 mux with 2 select lines: **not an unique implementation** 



# Mux Applications

#### Resource Sharing



| S <sub>1</sub> | $S_0$ | <i>y</i> = |
|----------------|-------|------------|
| 0              | 0     | a+c        |
| 0              | 1     | a+d        |
| 1              | 0     | b+c        |
| 1              | 1     | b+d        |

#### Decoders

- Decodes an encoded information
  - maps a smaller number of inputs to a larger set of outputs



| В | Α | Y <sub>0</sub> | Y <sub>1</sub> | Y <sub>2</sub> | Y <sub>3</sub> 0 0 0 1 |
|---|---|----------------|----------------|----------------|------------------------|
| 0 | 0 | 1              | 0              | 0              | 0                      |
| 0 | 1 | 0              | 1              | 0              | 0                      |
| 1 | 0 | 0              | 0              | 1              | 0                      |
| 1 | 1 | 0              | 0              | 0              | 1                      |
|   |   |                |                |                |                        |

| $Y_0 = \overline{B}.\overline{A};$ |  |
|------------------------------------|--|
| $Y_1 = \overline{B}. A;$           |  |
| $Y_2 = B.\overline{A};$            |  |
| $Y_3 = B. A$                       |  |

### Decoders with 'Enable' input



| E | В | Α | $Y_0$ | Y <sub>1</sub>   | $Y_2$ | Y <sub>3</sub> |
|---|---|---|-------|------------------|-------|----------------|
| 0 | X | X | 0     | 0<br>0<br>1<br>0 | 0     | 0              |
| 1 | 0 | 0 | 1     | 0                | 0     | 0              |
| 1 | 0 | 1 | 0     | 1                | 0     | 0              |
| 1 | 1 | 0 | 0     | 0                | 1     | 0              |
| 1 | 1 | 1 | 0     | 0                | 0     | 1              |

$$Y_0 = E.\overline{B}.\overline{A}; Y_1 = E.\overline{B}.A; Y_2 = E.B.\overline{A}; Y_3 = E.B.A$$



# Decoders in Vending Machine



Dr. Imon Mondal ESC201, 2024-25 Sem-I

45

### Term Generator for SOP Expression of a Function



Dr. Imon Mondal

# Implementation of a Function using Decoders

- Decoder allows a quick implementation
- No minimization, but lots of gates...



# Bigger Decoders

• 3 by 8 decoder using a 2 by 4 decoder





# De-Multiplexer





| S <sub>1</sub> | S <sub>0</sub> | Y <sub>0</sub> | <b>y</b> <sub>1</sub> | <b>y</b> <sub>2</sub> | <b>У</b> 3 |
|----------------|----------------|----------------|-----------------------|-----------------------|------------|
| 0              | 0              | D              | 0                     | 0                     | 0          |
| 0              | 1              | 0              | D                     | 0                     | 0          |
| 1              | 0              | 0              | 0                     | D                     | 0          |
| 1              | 1              | 0              | 0                     | 0                     | D          |

#### De-Mux vs Decoder





Only difference is in name and application





ESC201, 2024-25 Sem-I