به نام بگانه معبود بخشنده مهربان

یادگیری ماشین

Machine Learning

گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه اصفهان

ترم دوم سال تحصیلی ۹۱ - ۹۲

ارائه دهنده : پیمان ادیبی

ماشین های بردار پشتیبان Support Vector Machines

دسته بندي مجموعه هاي جدايي پذير خطي

اگر مجموعه نمونههای دو دسته جدایی پذیر خطی باشند، میتوان ابرصفحه ای برای جداسازی آنها بدست آورد. با یافتن وزنها بنحویکه:

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 0$$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le 0$$

For all i, such that $y_i = +1$ $\longrightarrow y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 0$ For all i, such that $y_i = -1$

■ سئوال: معمولاً ابرصفحههای متعددی برای این کار میتوان یافت. کدام یک را انتخاب کنیم؟

یعنی بیشترین فاصله $d_+ + d_-$ را داشته باشد، که d_+ کوتاهترین فاصله یک نمونه مثبت از ابرصفحه بوده و d_- کوتاهترین فاصله یک نمونه منفی از آن میباشد.

یافتن ابرصفحه با بیشترین حاشیه

- برای ابرصفحه با بیشترین حاشیه،
 تنها نمونه های روی حاشیه مهم
 هستند (بر فواصل تأثیر میگذارند).
- به این نمونه ها بردارهای پشتیبان (support vectors) گفته میشود.
 - زوج نمونه های آموزشی: (\mathbf{x}_i, y_i) $y_i \in \{+1,-1\}$
- فرض میکنیم تمام نمونهها شرایط زیر را برآورده میکنند:

$$\mathbf{w}^{T}\mathbf{x}_{i} + w_{0} \ge 1 \quad \text{for} \quad y_{i} = +1$$

$$\mathbf{w}^{T}\mathbf{x}_{i} + w_{0} \le -1 \quad \text{for} \quad y_{i} = -1$$

$$\text{combined as: } y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + w_{0}) - 1 \ge 0$$

$$\text{for all } i$$

نامساویها معرف دو ابرصفحه زیر هستند:

$$\mathbf{w}^T \mathbf{x}_i + w_0 = 1 \qquad \mathbf{w}^T \mathbf{x}_i + w_0 = -1$$

یافتن ابرصفحه با بیشترین حاشیه

حاشیه هندسی: فاصله یک نقطه x
 از ابرصفحه:

$$\rho_{\mathbf{w},w_0}(\mathbf{x},y) = y(\mathbf{w}^T\mathbf{x} + w_0) / \|\mathbf{w}\|_{L^2}$$

که \mathbf{w} بردار عمود بر ابرصفحه و $\| \cdot \|_{L^2}$ نرم اقلیدسی است.

- برای نقاطی که شرط

 $\frac{1}{\|\mathbf{w}\|_{L^2}}$:عشود: $y_i(\mathbf{w}^T\mathbf{x}_i + w_0) - 1 = 0$

$$\| \mathbf{v} \|_{L2}$$
 بنابراین پهنای حاشیه $\| \mathbf{w} \|_{L2} = \frac{2}{\| \mathbf{w} \|_{L2}}$ میشود، که میخواهیم آنرا بیشینه کنیم.

این کار با کمینه کردن $\|\mathbf{w}\|_{L^2}^2 / 2 = \mathbf{w}^T \mathbf{w} / 2$ همراه با حفظ محدودیتهای $\mathbf{v}_i[\mathbf{y}_i(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) - 1] \geq 0$ ایجام میگیرد.

يافتن ابرصفحه با بيشترين حاشيه

راه حل: وارد کردن محدودیتها در معیار بهینه سازی (روش لاگرانژ):

$$J(\mathbf{w}, w_0, \alpha) = \|\mathbf{w}\|^2 / 2 - \sum_{i=1}^n \alpha_i \left[y_i(\mathbf{w}^T \mathbf{x} + w_0) - 1 \right]$$

 $\alpha_i \geq 0 \Longrightarrow$ Lagrange multipliers

- ا کمینه سازی بر حسب \mathbf{w}, \mathbf{w}_0 (متغیرهای اصلی) \square
- ا بیشینه سازی بر حسب α ها (متغیرهای دوگان) ضرایب لاگرانژ ارضاء محدودیتها را ایجاب میکند:

If
$$[y_i(\mathbf{w}^T\mathbf{x} + w_0) - 1] > 0 \implies \alpha_i \to 0$$

Else $\implies \alpha_i > 0$ Active constraint
عدار دادن مشتقها برابر با صفر:

$$\nabla_{\mathbf{w}} J(\mathbf{w}, w_0, \alpha) = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \overline{0}$$
$$\frac{\partial J(\mathbf{w}, w_0, \alpha)}{\partial w_0} = -\sum_{i=1}^{n} \alpha_i y_i = 0$$

یافتن ابر صفحه با بیشترین حاشیه

حال باید ضرایب لاگرانژ را از بیشینه سازی عبارت زیر بدست آوریم:

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j) \iff \mathbf{maximize}$$

$$lpha_i \geq 0$$
 for all i , and $\sum_{i=1}^n lpha_i y_i = 0$:البته با محدودیتهای

🗖 یک مسأله بهینه سازی درجه دو (Quadratic Programming) پاسخهای را میدهد (برای تمام \hat{lpha}_i

ها \hat{lpha}_i ها میتواند بصورت $\hat{\mathbf{w}} = \sum_i \hat{lpha}_i y_i \mathbf{x}_i$ بنابراین برِدار پارامتر میتواند بصورت و بنابراین برِدار پارامتر یاسخ مسأله دوگان هستند.

یارامتر w_0 نیز از شرایط KKT) Karush-Kuhn-Tucker پارامتر w_0 نیز از شرایط

$$\hat{\alpha}_i \big[y_i (\hat{\mathbf{w}} \mathbf{x}_i + w_0) - 1 \big] = 0$$

خواص یاسخها:

 $\hat{lpha}_i = 0$ برای تمام نقاطی که روی مرزهای حاشیه نیستند داریم: تنها ترکیبی خطی از بردارهای پشتیبان میشود. $\hat{\mathbf{w}}$ تنها

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i=SU} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0 = 0$$
 مرز تصمیم گیری: \square

ماشین بردار پشتیبان

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0$$
 عرز تصمیم گیری:

$$\hat{y} = \operatorname{sign}\left[\sum_{i \in SV} \hat{\alpha}_i y_i (\underline{\mathbf{x}_i}^T \underline{\mathbf{x}}) + w_0\right]$$

- تصمیم گیری درباره یک \mathbf{x} جدید نیاز به محاسبه ضرب داخلی آن با نمونه ها دارد $(\mathbf{x}_i^T\mathbf{x})$.
 - بطور مشابه، بهینه سازی نیز وابسته به محاسبه $(\mathbf{x}_i^T \mathbf{x}_j)$ ها است:

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

توسعه براي حالت جدايي ناپذير خطي

آزاد سازی نسبی محدودیت ها با متغیرهای $0 \le j_i \ge 0$ با متغیرهای

$$\mathbf{w}^{T}\mathbf{x}_{i} + w_{0} \ge 1 - \xi_{i} \quad \text{for} \quad y_{i} = +1$$

$$\mathbf{w}^{T}\mathbf{x}_{i} + w_{0} \le -1 + \xi_{i} \quad \text{for} \quad y_{i} = -1$$

- حطا بازاء $1 \le \xi_i \ge 1$ میدهد.
- $\sum_{i} \xi_{i}$ یک حد بالا برای تعداد خطا: =
 - یک جمله جریمه برای تعداد خطا در نظر میگیریم:

minimize $\|\mathbf{w}\|^2 / 2 + C \sum_{i=1}^n \xi_i$

Subject to constraints

که مقدار C توسط کاربر تعیین میشود. بزرگ بودن آن به معنای لحاظ نمودن جریمه بیشتر برای خطاست.

توسعه براي حالت جدايي ناپذير خطي

تابع لاگرانژین برای فرم اصلی مسأله:

$$J(\mathbf{w}, w_0, \alpha) = \|\mathbf{w}\|^2 / 2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \left[y_i(\mathbf{w}^T \mathbf{x} + w_0) - 1 + \xi_i \right] - \sum_{i=1}^n \mu_i \xi_i$$

 $0 \le \alpha_i \le C$ با گرفتن \mathbf{w}, w_0 فرم دوگان مسأله، پس از جایگذاری \mathbf{w}, w_0 (با گرفتن $\frac{n}{2}$ ها حذف

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

Subject to: $0 \le \alpha_i \le C$ for all i, and $\sum_{i=1}^n \alpha_i y_i = 0$

(
$$0 \le \alpha_i \le C$$
 : پاسخ: $\hat{\mathbf{w}} = \sum_{i=1}^n \hat{\alpha}_i y_i \mathbf{x}_i$ پاسخ: $\hat{\mathbf{w}} = \sum_{i=1}^n \hat{\alpha}_i y_i \mathbf{x}_i$

- پارامتر w_0 نیز از شرایط KKT بدست می آید.
 - تصمیم گیری مشابه قبل:

$$\hat{y} = \operatorname{sign}\left[\sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0\right]$$

ایجاد مرز غیرخطی

- در حالت خطی نیاز به محاسبه ضربهای داخلی $(\mathbf{x}_i^T \mathbf{x})$ داشتیم.
- برای تعمیم به حالت غیرخطی، ورودیها را به بردارهای ویژگی (معمولاً با $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$ ابعاد بیشتر) نگاشت میکنیم: $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$
 - حال روش SVM را بر روی بردارهای ویژگی انجام میدهیم. لذا ضربهای داخلی بردارهای ویژگی نمونه ها را انجام میدهیم:

$$\varphi(\mathbf{x})^T \varphi(\mathbf{x}')$$

■ تابع هسته (Kernel function): تعریف میکنیم:

$$K(\mathbf{x}, \mathbf{x}') = \boldsymbol{\varphi}(\mathbf{x})^T \boldsymbol{\varphi}(\mathbf{x}')$$

نکته کلیدی: با انتخاب مناسب تابع هسته میتوان جدایی پذیری خطی
 را در فضای ویژگیها داشت، ولو آنکه جدایی پذیری خطی در فضای
 اصلی برقرار نباشد.

مثالی از تابع هسته

ورض کنید $\mathbf{x} = [x_1, x_2]^T$ ، و نگاشت به یک مجموعه ویژگی درجه دو $\mathbf{x} \to \mathbf{\phi}(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T$ انجام میدهیم:

تابع هسته متناظر با این فضای ویژگی:

$$K(\mathbf{x'}, \mathbf{x}) = \mathbf{\phi}(\mathbf{x'})^T \mathbf{\phi}(\mathbf{x})$$

$$= x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_2 x_1' x_2' + 2x_1 x_1' + 2x_2 x_2' + 1$$

$$= (x_1 x_1' + x_2 x_2' + 1)^2$$

$$= (1 + (\mathbf{x}^T \mathbf{x}'))^2$$
ضمنی، جداسازی غیرخطی در فضای اصلی $= (1 + (\mathbf{x}^T \mathbf{x}'))^2$

 $\sqrt{524}$

را موجب میشود:

توابع هسته

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

■ هسته خطی (Linear):

$$K(\mathbf{x}, \mathbf{x}') = \left[1 + \mathbf{x}^T \mathbf{x}'\right]^k$$

■ هسته چندجمله ای (Polynomial):

$$K(\mathbf{x}, \mathbf{x}') = \exp\left[-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right]$$
:(Radial basis) هسته پایه شعاعی

- مقدار تابع هسته منعکس کننده نوعی شباهت (similarity) بین ورودیهای آن است.
- هسته ها میتوانند برای اشیاء پیچیده تر هم تعریف شوند. مثل رشته ها، گراف ها، تصویر ها، لذا از ${\sf SVM}$ میتوان برای دسته بندی در حوزهای مختلف استفاده نمود.
 - معیارهای انتخاب هسته:

□ معتبر بودن (valid)

(good) خوب بودن □

مناسب بودن (appropriate) کار آمد بودن (efficient)