WORLD INTELLECTUAL PROPERTY ORGANIZATION international Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: G06F 3/06, 13/00, H02M 11/00

(11) International Publication Number:

WO 97/01137

(43) International Publication Date:

9 January 1997 (09.01.97)

(21) International Application Number:

PCT/US96/10592

A1

(22) International Filing Date:

19 June 1996 (19.06.96)

(81) Designated States: AU, BR, CA, JP, KR, MX, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

60/000,442 08/538,365 20 June 1995 (20.06.95) 3 October 1995 (03.10.95)

US US

Published

With international search report.

(71) Applicant: SOLAR COMMUNICATIONS, INC. [US/US]; 1120 Frontenac Road, Naperville, IL 60503 (US).

(72) Inventors: HUDETZ, Frank, C.; 2241 Edgebrooke Drive, Lisle, IL 60532 (US). HUDETZ, Peter, R.; 24905 Pine Cone Lane, Plainfield, IL 60544 (US).

(74) Agent: HANLON, William, M., Jr.; Young and Basile, P.C., Suite 624, 3001 West Big Beaver, Troy, MI 48084 (US).

(54) Title: SYSTEM FOR USING ARTICLE OF COMMERCE TO ACCESS REMOTE COMPUTER

(57) Abstract

A system and method for using identification codes found on ordinary articles of commerce (48) to access remote computers (24, 26) on a network (20). In accordance with one embodiment of the invention, a computer is provided having a data base (60) that relates uniform product code numbers (UPC) to Internet network addresses. To access an Internet resource relating to a particular product, a user enters the product's UPC symbol manually, by swiping a bar code reader over the UPC symbol (46), or via other suitable input means. The database (60) retrieves the URL corresponding to the UPC code. This location information is then used to access the desired resource.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Amorria	GB	Unked Kingdom	мw	Malawi
AT	Amtria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
88	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	RU	Hungary	NO	Norway
37	Burkina Paso	IR	Ireland	NZ	New Zealand
BG	Belgeria	IT	haly	PL	Poland
Ŋ	Beala	JP	Japan	PT	Portugal
BR	Brasil	KE	Kenya	RO	Romania
BY	Belanus	KG	Kyrgystan	RU	Rossiss Pederation
CA	Cenada	102	Democratic People's Republic	50	Sadan
Œ	Central African Republic		of Kores	SE	Sweden
CG	Congo	ICR	Republic of Kores	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	52	Slovenia
ā	Côte d'Ivoire	ш	Liechtengtein	SK	Slovakia
CM	Cameroon	LE	Sri Lanka	524	Scaegal
OX	China	LR	Liberia	82	SwarDand
C3	Czechoslovakie	LT	Lithumia	170	Ched
ã	Czach Republic	W	Lexenbourg	10	Tago
DE	Germany	LV	Latvia	TJ	Talkina
DE	Dessark	MC	Monaco	π	Trinidad and Tobago
B	Emosis	MD	Republic of Moldova	UA	Utraine
=	Spain	MG	Madagascar	UG	Uganda
7	Finland	ML	Mail	US	United States of America
72	Praces	MIN	Mongolin	UZ	Uzbekistan
ĠĂ.	Cabon	MOR	Morritoria	VN	Vist Nam

15

20

25

30

35

SYSTEM FOR USING ARTICLE OF COMMERCE TO ACCESS REMOTE COMPLETED IN

Field of the Invention

This invention relates to computer communications generally, and more specifically to techniques for giving users convenient access to information located on computer networks such as the Internet.

Background of the Invention

A computer network is a set of computers (or "hosts") which are able to communicate electronically. In logical terms, the network can be viewed as a set or nodes or "sites", with each computer on the network be more for one or more nodes. Generally speaking, each host is assigned a numeric address, which the network uses to route information to that particular host. To facilitate human use of networks, addresses are often given alphanumeric codes (or "mnemonics"), which are easier for people to remember. For example, the numer address 200.98.322.56 may be assigned the mnemonic "sample.com."

network is the Internet. The Internet is a massive worldwide collection of computer resources, connected together in network fashion by a series of communication protocols known as TCP/IP. Many sites on the Internetian be accessed in accordance with popular standard protocols or formats such as Gopher and Hypertext Transport Protocol ("HTTP"). These sites act as remotes revers, providing information to users' computers (or "clients") in accordance with a particular format or protocol. The client system (often an individual's

WO 97/01137 PCT/US96/10592

5

10

15

20

25

30

35

2

personal computer) must have the necessary software to handle the server's particular protocol.

For example, sites set up in accordance with HTTP are nicked-named "Web sites". If a user wants to access Web sites, she must have a computer connected to the Internet and equipped with software for communicating in accordance with the HTTP protocol. Such software is often called a "browser," because it allows users to browse (or, in the parlance of the enthusiasts, "surf") from Web site to Web site, much the way one might browse through a library. This process is facilitated by the fact that most Web sites have hypertext links to other Web sites, which the user can activate by clicking a mouse on a highlighted portion of the screen.

Typical browser software also maintains a list of sites the user has visited, which the user can recall using commands such as "back" and "forward." These commands, coupled with the hypertext links between Web sites, give users the sensation of "navigating" through a seemingly infinite realm of information, which is popularly referred to as "cyberspace" or the "World Wide Web."

Users can also specify a Web site by manually typing in the site's location as a Uniform Resource Locator ("URL"). The URL specifies the precise location of a particular resource, and has three fields:

http://bongo.cc.utexas.edu/~neural/cwsapps.html.

For example, the command "Go <URL>" would cause browser software to request the information residing at the site specified by the URL. This is called "pointing" the browser to the desired Web site. The Web server at

10

15

20

25

30

35

the designated URL processes the browser's request by transferring a copy of the file specified by the URL to the user's local host computer. The transferred file includes embedded commands in the hypertext markup language ("HTML"), which cause the client's browser software to display and handle the transferred file in a desired manner.

cyberspace is not limited to the World Wide Web or the Internet. Massive amounts of information are also available on networks maintained by on-line service providers under the service marks CompuServe, Prodigy and America Online, for example. Users typically access these on-line services via telephone modem connection. To the end user, these networks appear to be a series of sites or locations or "rooms" offering various types of information. 'The addresses for these locations are assigned by the on-line service providers. Navigation among these locations is handled by proprietary client software, which runs on the user's personal computer.

Many users learn of resources on the Internet or a proprietary on-line service through magazine articles and advertisements. These articles and advertisements include the necessary URL or other network address to access the desired site. Many publications compile lists of sites they deem particularly worthwhile. When a user sees a listing for a site which looks interesting, he can manually enter the published URL or other mnemonic address into his browser or other software, and access the site.

We realized that published computer addresses - whether URLs or otherwise -- were difficult for people
to use because they have to be tediously entered into
their computers. A good example of an address which may
be difficult to enter is the University of Texas address
cited above. The problem is particularly acute for
persons with a visual or physical disability.

10

15

20

25

30

35

Another problem using the Internet, we realized, is that many users have trouble even finding URLs or other network addresses for desired sites such as Web pages. Accordingly, Web site sponsors publish their Web site URLs in print advertising and on packaging. The difficulty with this approach however is that the URLs are still long, and cumbersome to remember and enter into a computer.

We have proposed to resolve these problems by allowing people to access published locations without having to manually enter the published address. accordance with one embodiment of the invention, the mnemonic address or verbal description of a network location is published along with the location's numeric address in bar code format. The user's computer is equipped with a bar code reader and browser software. The bar code reader is suitably interfaced to the computer's browser software to allow bar code input to be accepted as address information. When the user sees an interesting published address, he scans the associated bar code using the bar code reader, thereby loading the desired numeric address into the browser. The browser then accesses the Web or other site corresponding to that numeric address.

We are finding several problems with this and other approaches that have been tried. First, some URLs and other network addresses contain upwards of 20-30 characters, and therefore require very long bar code symbols, which can clutter advertising and packages, and may not be practical from either an esthetic or technical perspective. Second, placing URLs on printed material (whether or not in bar code format) requires manufacturers to redesign products, packaging and/or advertisements, and many manufacturers may be reluctant to do this. Third, pervious proposal, if the network address is changed, the package needs to be redesigned,

10

15

20

25

30

35

and packages already in the marketplace will have incorrect address information.

Summary of the Invention

The present invention offers a better way for consumers and others to access resources on remote computers, particularly Web sites. In accordance with one aspect of the invention, the dissemination and entry of network addresses is accomplished by means of existing identification standards (e.g., bar codes) found on ordinary products like soup or soda, in conjunction with a centralized database of network locations.

One embodiment of the invention is a system in which a bar code or other indicia is associated with a product or other article of commerce. The indicia encodes (in human and/or machine readable form) a UPC or other identification number, which is associated with the article in accordance with an extrinsic standard. A computer database is provided that relates standard UPC codes to Internet URLs or other network addresses. To access a network resource relating to a particular product, the user swipes a bar code reader across the product's UPC symbol. The database then retrieves the URL corresponding to the UPC product data. This location information is then used to access the desired resource on the network.

In accordance with another aspect of the invention, network addresses are directly encoded into bar code format. In this manner, the necessity of manually entering the address is eliminated. Users can more quickly review published lists of Web Sites or other locations. The bar coded address can also be printed on removable stickers or detachable cards, allowing users to readily clip the stickers or cards for future reference.

In accordance with yet another aspect of the invention, navigational commands (in addition to addresses) can be published together in both human-readable and bar code formats. These commands include

10

15

20

common commands, such as "back" and "forward" as well as more specialized command sequences, such as the commands necessary to access particular services, files, and documents on the Internet or the proprietary on-line services. Rather than manually enter these commands, the user selects a desired command by scanning its associated bar code. The output of the bar code reader is accepted by the browser software as the selected command.

The invention offers a number of important advantages. First, because product identification information is already widely disseminated using standardized and pre-assigned codes, the invention eliminates the need for separately disseminating domain names or other network location data. Further, the invention can be implemented without requiring manufactures to redesign packaging or other articles, or to develop special bar code indicia. This overcomes a Catch-22 often facing new technologies: manufacturers will not participate until there is widespread consumer interest; consumers are not interested until there is widespread manufacturer participation. With the invention, mass participation by manufacturers in the technology is automatic.

Second, the invention allows practical use of 25 bar codes and other machine readable media for entry of network location data. As we realized, encoding URL data in bar code format is not practical because the resulting bar codes are too long. By using existing UPC product codes in combination with the database of network 30 locations, users have the benefit of bar code or comparable technology for entering network location data. Thus, the necessity of manually entering the address is eliminated. Users can access a desired site by simply using a bar code reader. The UPC can also be printed on 35 removable stickers or detachable cards, allowing users to readily clip the stickers and cards for future reference. This is particularly useful when the user reads about the

10

15

35

location at a time when he does not have access to a computer.

Third, the invention overcomes the problems encountered when network addresses are changed. Network addresses can change as companies reorganize their online marketing strategies. Also, Internet addresses are assigned by an independent third party -- InterNic -- which may in some cases have the authority to unilaterally change a company's address. Finally, unforeseen trademark conflicts (involving for example Internet domain names) may require adoption of new addresses. With the invention, a new addresses be updated. Products, packaging, advertisements and the like bearing the standard identification codes need not be redesigned. Brief Description of the Drawings

FIG. 1 is a block diagram of a computerized system for interfacing with a computer network in accordance with the invention;

20 FIG. 2 is a perspective view of the local host computer shown in FIG. 1;

FIG. 3 is an enlarged view of the article of commerce shown in FIG. 1, illustrating in detail the UPC symbol thereupon;

25 FIG. 4 is a tabular view of the database shown in FIG. 1;

FIG. 5 is a flow chart illustrating the operation of the system of FIG. 1 in accordance with the invention;

of the client system of FIG. 1 displaying information in accordance with the invention;

FIG. 7 is a perspective view of articles of commerce which can be used in accordance with the invention to access remote computers;

15 ·

20

25

30

35

FIG. 8 is a block diagram of a computerized apparatus for interfacing with a computer network in accordance with a second embodiment of the invention;

FIG. 9 is an idealized perspective diagram of the document of FIG. 8 having a network address in both bar code and human readable formats; and

FIG. 10 is a flow chart illustrating the operation of the apparatus of FIG. 8 in accordance with the invention.

10 Detailed Description of the Preferred Embodiment

1. Overview

application of the invention, namely the use of an ordinary article of commerce to access sites on the Internet's World Wide Web. As explained below, this embodiment of the invention allows a person who desires Internet resources concerning a particular product to access those resources using the product's UPC symbol. The data encoded on the UPC symbol can be entered manually or (for greater convenience) using a bar code reader.

Referring to FIG. 1, the Internet 20, illustrated here in generalized format, includes a service provider 22 and two remote nodes 24 and 26. In this case, service provider 22 is a local Internet access provider. Service provider could also be an online service provider, such as America OnLine®, Compuserve®, Microsoft® Network and Prodigy®. In such cases, local host 28 need not be on Internet 20 -- that is, need not have a network address.

An end-user (not shown) accesses Internet 20 using local host 28, which in this case is an IBM compatible personal computer including a CPU 30, a random access memory 32 and an address/data bus 34 by operatively connecting CPU 30 and memory 32. Unless otherwise specified, the term "memory" herein includes

15

35

any storage device, including RAM, ROM, tape or disk drives (or collections or networks of tapes or disk drives), and any other device for storing information. A modem 36 and I/O port 38 are attached to bus 34 by a suitable interfaces 40 and 42, respectively. An input device 44 is connected to bus 34 via I/O port 38. Input device 44 is a commercially available wand-style bar code reader reads a Uniform Product Code ("UPC") bar code symbol 46 affixed to an article of commerce 48. Alternatively, input device 44 could be a card reader,

Alternatively, input device 44 could be a card reader, optical character or voice recognition system, touch screen, scanner, pen, keyboard or other known input device.

Local host computer 28 need not be a personal computer, and could for example be a mainframe or minicomputer having a terminal by which the user could enter and receive data. In that arrangement, input device 44 would be attached to the terminal.

Modem 36 is adopted for electronic communication via a suitable telephone link 50 with 20 service provider 22. Computer 28 functions as an Internet host because it is connected to service provider 22 using Point to Point Protocol ("PPP") via telephone link 50. Other telecommunications channels may be used, such as ISDN or a connection which incorporates a third 25 party intermediary network such as TymNet **. Alternatively, local host 28 could be connected directly to Internet 20, as is likely to be the case where local host 28 is a larger computer, such as mainframe. 30 offers a perspective view of local host 28 and article of commerce 48 and also illustrates a CRT monitor 52 and keyboard 54 suitably coupled to bus 34.

In this illustration, local host 28 is used to access Internet resources (or "Web sites") on remote nodes 24 and 26, which are available using the HTTP protocol. HTTP uses a client-server architecture, with remote nodes 24 and 26 acting as servers, and local host

10

15

20

25

30

35

28 acting as a client. Local host is equipped with Netscape Navigator brand Web browser software which enables it to function as an HTTP client.

Remote notes 24 and 26 have pre-assigned network locations (or "domain names"), and desired resources (such as a particular Web site) are located in specific directories and files (or "paths") resident on a remote nodes 26 and 28. The precise locations of those resources are specified using URL, which, as explained above, includes three fields: <resource type> <domain name> <path>. To access resources of a particular remote node 24 or 26, local host 28 requests those resources from Internet 20 using the appropriate URL. Thus, the URL functions as a more precise kind of network address than a domain name.

The URL required is often supplied by the user. Users learn about the existence of a desired resource (and its corresponding ULR) through a variety of means, including publication in a printed advertisement. In current practice, the URL acquired from a printed source must be entered using a keyboard. As explained above, this can be tedious. Moreover, in many cases, users may have trouble finding references to desired Web pages.

2. Article of Commerce

In accordance with the invention, access to desired resources on remote nodes 24 and 26 is achieved using an article of commerce 48. The term "article of commerce" includes tangible things that are sold or moved through commerce, such as consumer products, packaging, and printed media including books, newspapers, magazines, stickers, fliers, cards, tags and labels. Article 48 bears a standard UPC bar code symbol or indicia 46. Symbol 46 is shown in greater detail in FIG. 3, and may be affixed to article 48 in any suitable manner, including printing directly on the article or its packaging, or applied to labels or tags attached or

10

.15

20

25

30

35

otherwise affixed to the article. In accordance with UPC standards, symbol 46 encodes a ten-digit number (the "product identification number"). As shown in FIG. 3, the product identification number encoded in UPC symbol 46 consists of two five-digit fields, A and B. Field A is a unique, pre-assigned number signifying a particular manufacturer. Field B is a number identifying one of the manufacturer's products. In the United States, UPC product identification numbers are assigned by the Uniform Code Council, Inc.

UPC symbol 46 provides a machine-readable number that uniquely identifies a particular product and its manufacturer. This is useful at the retail point-ofsale, where purchase of a particular item is recorded by scanning the item's bar code symbol.

There are numerous other formats and systems for assigning product identification numbers to articles of commerce. For example, the International Article Numbering Association ("EAN") assigns its own number to products outside of the U.S. and Canada, and uses a different symbology than used with the UPC. Product identification codes for books are provided by the International Standard Book Numbering System ("ISBN") and are encoded using a symbology specified by that organization. Likewise, magazines and serial publications are assigned product identification codes by the International Standard Serial Numbering System ("ISSN").

These numbering systems share at least three characteristics. First, for purposes of this invention, the identification numbers may be assigned in accordance with an "extrinsic" standard. By extrinsic, it is meant that the assignment of numbers is made a by group or association for the purpose of identifying articles of commerce. It is likely that new types of identification numbers will arise in the future, as will new organizations for assigning and administering those

numbers, and the present invention contemplates use of both existing and future extrinsic identification numbers and formats.

Second, the identification numbers may have recognized significance as numbers identifying articles of commerce. The level of recognition may be among the general public, or a defined subset, such as a particular industry or occupation.

Third, the identification numbers may be encoded in a standard, machine readable format -- namely, bar codes. Other machine readable formats may also be used for this purpose, including magnetic stripes or optical character recognition ("OCR"), and the present invention could be practiced with product identification numbers encoded in those formats as well.

3. URL/UPC Database

5

10

15

20

25

30

35

In accordance with the invention, service provider 22 includes a relational database 60, which is shown in more detail in FIG. 4. Database 60 includes records 62-68, which are accessible using a suitable database management system software. Each record 62-68 of database 60 contains four fields 70-76. Fields 70 and 72 contain a UPC product identification number. as explained below. Field 74 holds a URL suitable for locating a resource on the Internet. Depending on the application, other network addresses -- either numeric or mnemonic, physical or virtual -- may be used. Field 76 holds a narrative description of the resource addressed in field 74. This particular arrangement of fields is but one illustration of how the invention may be practiced. For example, additional fields could be provided, or the UPC product identification number could be held in a single field.

Each record 62-68 of database 60 associates a UPC product identification number (contained in fields 70 and 72) with a particular Internet URL and narrative

description (contained in fields 74 and 76, respectively). The association is based on selected criteria. In this case, the criteria is the existence of a Web resource sponsored by the manufacturer of the product identified by the UPC number in fields 70 and 72. (If no such resource exists, then the particular product identifier can be omitted from database 60). Other criteria can be used. For example, the association could be based on the existence of a Web site simply referring to or relating to the product.

As stated, fields 70 and 72 contain a UPC product identification number. Field 70 contains the first five digits of the product identification number (field A of FIG. 3). As explained above, these digits uniquely identify the product's manufacturer. Field 72 contains the second five digits of the product identification number (field B of FIG. 3). These digits identify the manufacturer's particular product. In some cases, a manufacturer may have many products and only one Web site or other Internet resource. In that case, field 72 may be left blank, as shown in cell 78 of record 68. When field 72 is left blank, database 60 associates the Web resource indicated in field 74 with any product identification number whose first five digits match the manufacturer number specified in field 70.

Database 60 itself is accessible via service provider 22, which is equipped with Web server software such as provided by Netscape Communications, Inc. The server software provides access to an HTML document (the "Query Page") resident on service provider 22 at a predetermined URL. The Query Page, when displayed on CRT 52 by local host 28 using a forms-capable browser allows the user to enter a query in the form of a UPC product identification number. Alternatively, database 60 could be resident on local host 28 or another remote computer 24 or 26. The Web server at service provider 22 may have a predetermined URL location. Browser software resident

10

15

20

25

30

35

in local host computer 28 may be configured to automatically request that predetermined URL location when the browser software is initially loaded.

Database 60 may be incorporated with a database or search engine of Web sites or other Internet resources (such as the Yahoo or Lycos databases). In that case, the Query Page may give the user the option of entering a UPC number or an alternative search term, such as a portion of the URL or the topic to which the desired resource pertains.

Also, database 60 may be divided into one or more tables, which may be distributed over more than one computer. For example, a first table may contain records associating UPC numbers with names of products or manufacturers. A second table associates products and/or manufacturer names with Internet addresses. Thus, the process of using the UPC number to locate a network address may involve one or more steps. For example, database 60 might determine the name of a product corresponding to a UPC number using a first table, and then determine network addresses corresponding to that product name using a second table. Even though multiple steps are involved, the UPC number is still "associated" in computer memory with the network address for purposes of the invention.

4. Operation of the Invention

Suppose a user is interested in Internet resources concerning a particular type of product. In accordance with the invention, the user can access those resources by taking an ordinary specimen of the product - a can of soup for example -- and entering all or part of the product's UPC product identification number 46. Database 60 uses the entered product identification number to look-up the associated URL, which is returned to the user in the form of a HTML document.

10

15

20

25

30

35

This operation is illustrated in FIG. 5. At a block 80, the user loads his browser software onto local host computer 28. The browser software is programmed to automatically load the "Query Page" which provides access to database 60. The user in this case is a human, but alternatively a program (or "process") running on local host 28 could be the "user" in the sense that it is the process which is requesting information from the Internet and supplying the UPC number.

At a block 82, the Query Page is transmitted to local host computer 28 in the form of an HTML document. Browser software resident on local host 28 displays the Ouery Page on CRT screen 52. At block 84, the user (or process) enters the first five or all ten digits of the UPC product identification number encoded by symbol 46. Because the UPC product identification number is printed in both machine- and human-readable format (See FIG. 3), this may be done by manual entry using keyboard, voice recognition system or other input device. More preferably, however, entry is accomplished by scanning UPC symbol 46 affixed to article 48. Input device 44 reads UPC symbol 46, and generates an ASCII character string which is read by CPU 30 via I/O port 38. If the UPC number is scanned, then all 10 digits will generally be entered. The UPC product identification number is transmitted to the Web server resident on local service provider 22, which at a block 86 looks up the entered UPC number in database 60.

At block 88, database 60 retrieves all records 62-68 having UPC fields 70 and 72 that match the product identification number entered by the user. The records are conveyed to the user in the form of an HTML document.

The criteria at block 88 for whether UPC fields 70 and 72 "match" the product identification number may be based on a "query by example" approach. For example, suppose at block 84 the user only enters the manufacturer portion (e.g. "31251") of a product identification

10

15

20

25

30

35

number. It is assumed in this case that the user is interested in any record 62-68 having a field 70 that matches the entered manufacturer portion. (Recall that the database 60 stores the UPC number in two fields -- field 70 for the first five digits (corresponding to manufacturer) and field 72 for the second five digits (corresponding to manufacturer's product)). Thus, at block 88, records 61, 64 and 65 are returned to the user, because field 70 in each of those records contains "31251."

If the user entered all ten digits of a UPC product identification number (e.g., "31251-00302"), then only records whose fields 70 and 72 matched "31251" and "00302," respectively, would be retrieved. (In this case, that would be record 64). If all ten UPC digits are entered, and no exact match is found, database 60 may be programmed to retrieve records (if any) where at least the manufacturer portion (that is, first five digits) matches field 70.

At block 90, browser software on local host computer 28 displays records retrieved at block 88 on CRT 52. The records are returned in an HTML document, which is displayed by the browser in a screen format 94, as illustrated in FIG. 6. In this example, records 62, 64 and 66 have been retrieved. Screen format 94 displays data from each record in a separate rows 96, 98 and 100, respectively. If no matching records are found at block 88, a message such as "no records found" may be returned instead.

Text from description field 76 of each of records 62, 64 and 66 is displayed as hypertext links 102, 104 and 106, respectively. Link 102 is associated with the URL of record 62, link 104 with the URL of record 64, and link 106 with the URL of record 66. When the user selects one of links 102-106 (by mouse click or otherwise), the browser software loads the URL associated

10

15

20

25

30

35

with the selected link to access the resource at the location specified by that URL.

5. Alternative Embodiments

The foregoing embodiment is just one example of the present invention. Many alternatives are possible.

Other Networks and Protocols. While the present invention is illustrated with respect to a system for accessing the Internet's World Wide Web, it could be practiced using other Internet protocols (such as Gopher) or other types of wide area networks and systems, including those offered by "on-line service" providers such as America OnLine® of Fairfax, Virginia or CompuServe® of Columbus, Ohio or the Microsoft® Network of Redmond, Washington.

In those cases, database 60 could be resident on the on-line service provider's computer. The network address information contained in database 60 could be either Internet URLs, or locations within the on-line service provider's environment. In this case, the protocol used to communicate between local host 28 and service provider 22 need not be HTTP or other Internet protocol. However, service provider 22 can provide a gateway to Internet 20, and access to a desired network location on the Internet can be made using a URL retrieved from database 60.

Controlled Access. Database 60 need not be publicly accessible. Access to database 60 can be limited either by placing database 60 on a proprietary network, or, if placed on an open network, using a password or digital signature system to permit access only to authorized persons. Also, records 62-68 may be selectively accessible. For example, each record can contain an additional field indicating whether the URL contained in field 74 points to network location containing material inappropriate for children. In that case, database 60 can be programmed to return URL at

10

15

20

25

30

35

block 88 only if the user has supplied a proper password.

Automatic Jumping to Desired Location. In the disclosed embodiment, the URL associated with a selected UPC product identification code is returned to the end user in an HTML document at block 88 of FIG. 5. The user can then hypertext link to the site corresponding to the URL. Alternatively, instead of displaying query results at step 90 (of FIG. 5), browser software in local host can automatically load the retrieved URL and point the user to the site corresponding to that URL. An additional field in database 60 can provide a code indicating whether this feature should be enabled or disabled for a particular URL.

Identification Numbers and Symbologies. The invention can be practiced using standard identification numbers and symbologies other than UPC numbers and formats. For example, EAN, ISBN and ISSN numbers and formats discussed above could be used.

Articles of Commerce. As shown in FIG. 7, product identification numbers -- whether bar coded or otherwise -- may be placed all types of items, such as a consumer product 102, newspaper 104 or book 106, as well as coupons, fliers, cards and advertisements (not illustrated). For example, by placing a product's UPC code on an advertisement for the product, the advertiser could, in accordance with the invention, facilitate access to Internet resources concerning the product.

Machine Reading Technology. In lieu of a bar coding, the invention could be practiced with product identification information that is encoded using other technologies. For example, product identification information could be encoded on a magnetic strip affixed to a product, card or other article. In place of wand, local host computer could use a magnetic card reader. Alternatively, the number could simply be printed in human-readable format, and an optional optical character recognition system could be used to facilitate entry.

30

35

Direct Coding of Address. In place of a standard UPC symbol, bar code technology could be used to encode the actual mnemonic or numeric (IP) network address in machine-readable format. While this arrangement does not achieve all the advantages of the invention, it allows the user to easily enter desired address information using a bar-code reader instead of manually typing the address.

The direct coding of network addresses in shown in the embodiment illustrated in FIGS. 8-10. Referring 10 to FIG. 8, a block diagram of the computerized apparatus 210 for interfacing with a computer network in accordance with the invention is illustrated. Apparatus 210 includes a computer 212 which may be an IBM compatible personal computer. Attached to computer 212 by a 15 suitable input/output interface 214 is a modem 216. Also attached to computer 212 via an input/output interface 218 is a bar code reader 220. Bar code reader 220 is designed to read conventional bar codes. Bar code technology is described generally in U.S. Pat. No. 20 5,115,326 issued May 19, 1992 and entitled "Method of Encoding an E-Mail Address in a Fax Message and Routing the Fax Message to a Destination and Network", and U.S. No. 5,420,943 issued May 30, 1995 and entitled "Universal Computer Input Device," the disclosures of which are both 25 hereby incorporated by reference.

Modem 216 is adopted for electronic communication via a suitable telephone link 222 with a service provider 224. Service provider 224 may be an Internet service provider or a proprietary on-line service such as Prodigy or America On-Line. Service provider 224 in turn is electronically connected by a suitable communication link 226 to a remote server 228. For purposes of illustration, we assume that remote server's 228 numeric network address is 25700-00220, and that the assigned address mnemonic is http://sample@www.com.

10

15

20

25

30

35

Computer 212 is equipped with communication software for establishing and maintaining a communication link with service provider 224 via modem 216 and telephone link 222. Computer 212 is also equipped with software (see FIGS. 8 and 10) such as Netscape Navigator brand Web browser software (version 1.0) which enables it to request and receive information from remote server 228 via service provider 224. To operate software 230, a user (not shown) enters an alphanumeric address such as sample@www.com. Browser software 230 sends service provider 224 a request for the information contained at address corresponding to the mnemonic sample@www.com. As explained above, that mnemonic address belongs to remote server 228.

Using the address sample@www.com, service provider 224 routes the request to remote server 228 via communication link 226. Remote server 228 responds by sending the desired information via communication link 226 to service provider 224, which relays the information to computer 212 via modem 216 and telephone link 222. Once the information is received by computer 212, browser software 230 displays the information in a useful format for the user.

In accordance with the invention, a document 232 is provided as shown in Fig. 9. Document 232 may be magazine article, advertising or other printed matter. As shown in FIG. 9, Document 236 contains human readable information 234 about resources available at a location on a network such as the Internet, including resources provided by remote server 228. In this example, human readable information 234 includes remote server's 228 mnemonic address -- http://sample@www.com. A bar code indicia 236 is placed near human readable information 234. Bar code 236 contains remote server's 228 numerical address (25700-00220) in machine readable form.

Alternatively, bar code 236 could contain a machine readable version of the mnemonic address. Under

10

15

20

25

30

35

that arrangement, the bar coded digits would correspond to alphanumeric symbols of the mnemonic address. For example, the bar coded number "97" could correspond to the character "a". In that case, however, bar code 236 may have to be exceptionally long.

or she scans bar code 236 using bar code reader 220. Bar code reader 220 generates a signal on input/output interface 218 corresponding to the numeric address encoded by bar code 236 (which for purposes of illustration we assume to be 25700-00220, as shown in FIG. 9). Browser software 230 on computer 212 reads the numeric address via input/output interface 218, and forwards it to service provider 224, along with a request for information contained at the location corresponding to that address. Service provider 224 determines that the numeric address is that of remote server 228, and routes to the request for information to remote server 228.

Referring to FIG. 10, the operation of browser software 230 is shown in more detail. In an initial step 238, browser software attempts to read input from bar code reader 220. At a decision block 240, browser software 230 determines whether reader 220 has input. If no input is available, control returns to block 238, where browser software 230 again attempts to read bar code reader 220. If input is available at decision block 240, then control moves to a block 242 where browser software 230 transmits the input read at block 238 to service provider 224. There are other ways to handle input from bar code reader 220, and more sophisticated techniques may be used in actual commercial embodiments of the invention.

Service provider 224 interprets the input as a numeric network address. In this case, we have assumed that the address is that of remote server 228. Service provider 224 forwards a request for data to remote server

10

15

20

25

30

35

228. At a block 244, the requested data contained on remote server 228 is received by browser software 230 via service provider 224. Once received, the data is available for whatever use required by the user. Control then returns to block 238 where the foregoing process is repeated indefinitely.

In effect, the necessity of manually typing in the mnemonic address sample@www.com is eliminated. Instead, the numeric address is obtained from the bar code indicia 236 by use of bar code reader 220. explained above, bar code 236 could contain the mnemonic as well as numeric address. Browser software 230 could be programmed to accept either format (mnemonic or numeric) as input from bar code reader 220, with the default expectation being that the bar coded data is a numeric address unless the user otherwise specifies. Alternatively, the first coded number of bar code 236 could indicate whether the information that follows represents a numeric or mnemonic address. If bar code 236 can contain either mnemonic or numeric addresses, then browser software 230 should include a flag or other indication alerting service provider 224 as to the format of the transmitted data.

The foregoing embodiments are just two examples of the present invention. Many alternatives are possible. For example, in lieu of a bar code scanning device, a card reader could be employed. The card reader would read a magnetic stripe affixed to a card or other printed matter. The card would contain human-readable information about a network resource, and the magnetic strip would contain the resource's numeric or mnemonic address in machine-readable format. Alternatively, a RF data collection scanner or CCD scanning system could be used. Bar code symbol 46, 236 could also be associated with specific commands such as "forward", or "back," or command sequences used to access information.

database.

We claim:

1	 A system for using an article of commerce
2	to access a remote computer, comprising:
3	(a) a machine-readable indicia associated with
4	the article of commerce, said indicia encoding at least
5	one of a plurality of identification numbers, said
6	encoded identification number corresponding to the
7	article in accordance with an extrinsic standard;
8	(b) input means for generating a query signal
9	corresponding to said encoded identification number;
10	(c) a database containing a plurality of
11	network addresses and said plurality of identification
12	numbers, each of said identification numbers being
13	associated with at least one of said plurality of network
14	addresses; said database being responsive to said query
15	signal for providing one of said network addresses which
16	is associated with said encoded identification number;
17	(d) a local host adapted for network
18	communication; and
19	(e) a first network containing a plurality of
20	nodes, each having an assigned network address; said
21	network being operatively coupled to said database for
22	allowing communication between said local host and that
23	one of said nodes whose assigned network address
24	corresponds to the network address provided by said

- 2. The system of claim 1 where said machinereadable indicia is a bar code, and wherein said input means includes a bar code reader.
- 3. The system of claim 2 where said
 identification number is at least a portion of a Uniform
 Product Code.
- 1 4. The system of claim 1 wherein said indicia 2 is both machine- and human-readable, and wherein said 3 input means includes a keyboard for manually entering 4 said identification number.
- 5. The system of claim 1 wherein said local
 host is a single-user computer.
- 6. The system of claim 1 wherein said local host is a multi-user computer with a plurality of user terminals.
- 7. The system of claim 1 wherein said local host computer is a node on said network having a network address.
- 8. The system of claim 1 further comprising a second network, wherein said local host computer is connected to said second network, said second network including a service provider computer that is a node on said first network.
- 9. The system of claim 8 wherein said database is resident on said second network.
- 1 10. The system of claim 1 wherein said 2 database is resident on said local host.

1	11. The system of claim 1 wherein said			
2	database is resident on one of said nodes that is remote			
3	from said local host.			
1	12. An apparatus for using an article of			
2	commerce to generate the network address of a computer o			
3	a network, comprising:			
4	(a) reader means for generating an output			
5	signal corresponding to an article identification number			
6	which is used to identify the article of commerce in			
7	accordance with a standard;			
8	(b) a database having a plurality of			
9	identification numbers including said article			
10	identification number, and a plurality of network			
11	addresses, and associating each of said identification			
12	numbers with at least one of said network addresses; and			
13	(c) control means responsive to said output			
14	signal and operatively coupled to said database for			
15	retrieving from said database at least one of those of			
16	said network addresses which correspond to said article			
17	identification number.			
1	13. The apparatus of claim 12 wherein said			
2	identification numbers are Uniform Product Codes.			
1	14. The apparatus of claim 12 wherein said			
2	network addresses are Uniform Resource Locators.			
1	15. The apparatus of claim 12 further			
2	comprising a local host and a remote host, each adapted			
3	for network communication, wherein said reader means is			
4	resident on said local host, and said database is			
5	resident on said remote host.			

16. A database comprising:

first computer memory containing a plurality of

- identification numbers borne by articles of commerce,
 said identification numbers used to identify articles of
 commerce;
 second computer memory containing a plurality
 of network addresses corresponding to remote information
 resources relating to articles of commerce, said
 resources being accessible via a network; and
 means for associating each of said plurality of
- resources being accessible via a network; and
 means for associating each of said plurality of
 identification numbers in said first memory with at least
 one of said network addresses in said second memory.
 - 17. The database of claim 16 wherein said
 2 database is a relational database, and said first memory
 3 is a first field within said relational database, and
 4 second memory is a second field in said relational
 5 database.
 - 1 18. The database of claim 16 wherein said 2 first and second memories are random access memory.
 - 1 19. The database of claim 16 wherein said 2 first and second memories are secondary storage.
 - 1 20. The database of claim 16 wherein said 2 identification numbers are Uniform Product Codes.
 - 1 21. The database of claim 16 wherein said 2 network addresses are Uniform Resource Locators.
 - 22. A method for generating the address of a node on a network, comprising the steps of:
 - (a) associating in computer memory at least a portion of an identification number with the node's network address; said identification number having recognized significance as a number identifying an article of commerce;

	27			
8	(b) providing an article of commerce bearing ar			
9	indicia on which said identification number is encoded;			
10	(c) reading at least a portion of said			
11	identification number from said indicia; and			
12	(d) retrieving from said computer memory the			
13	network address associated therein with said product			
14	identification number.			
1	23. The method according to claim 22 wherein			
2	said identification number is a Uniform Product Code.			
1	24. The method according to claim 22 where			
2	said network address is a Uniform Resource Locator.			
1	25. The method according to claim 22 wherein			
2	said indicia is encoded in machine-readable format.			
	and the second of the claim 22 whom			

- 1 26. The method according to claim 22 where
- 2 said indicia is encoded in human-readable format.
- 1 27. The method according to claim 22 wherein
- 2 said step of reading is performed using a bar code
- 3 reader.
- 1 28. The method according to claim 22 wherein 2 said step of reading is performed by a human reading said 3 indicia and entering said identification number using a 4 keyboard.
- 29. The method according to claim 22 wherein said computer memory includes a database having one or more tables containing said identification number and said network address.
- 30. The method according to claim 29 wherein
 said tables are distributed over a plurality of
 computers.

97/01137 PCT/US96/10592

28

1	31. The method according to claim 29 whereis				
2	said tables are resident on a single computer.				
1	32. A method for disseminating network				
2	addresses using articles of commerce, comprising the				
3	steps of:				
4	(a) generating a number corresponding to a				
5	network address;				
6	(b) encoding the addresses on a machine				
7	readable indicia; and				
8	(c) placing said indicia on the exterior				
_	and an article of compared				

FIG·8

FIG-10