Pravdepodobnostné metódy - Domáca úloha #3 - Minimálny rez

Peter Csiba, csiba4@uniba.sk04-04-2014

Zadanie

Uvažujme nasledujúci algoritmus pre hľadanie minimálneho rezu: Náhodne ováhujeme hrany a spočítame minimálnu kostru T. Následne odstránime najťažšiu hranu v kostre - tým sa T rozpadne na dva stromy - T_1 a T_2 . Dokážte, že s pravdepodobnosťou $\Omega(1/n^2)$ budú množiny vrcholov T_1 a T_2 zodpovedať množinám vrcholov minimálneho rezu. (To znamená, ak postup zopakujeme $O(n^2logn)$ -krát, s vysokou pravdepodobnosťou nájdeme minimálny rez.) [3b]

Riešenie. Na druhej strane.

Zdroje.

- http://en.wikipedia.org/wiki/Kruskal's_algorithm
- https://docs.google.com/file/d/OBzME2WFG2071R3JSQjhIb1JtVnM/edit

Riešenie

Uvažujme Kruskalov algoritmus na hľadanie minimálnej kostry:

```
A = emptyset
2
    foreach
              v in G.V:
3
      MAKE-SET(v)
4
              (u, v) ordered by weight(u, v), increasing:
    foreach
5
           FIND-SET(u) neq FIND-SET(v):
6
         A = A \text{ union } \{(u, v)\}
7
         UNION(u, v)
   return
```

Naše riešenie bude postupovať podľa algoritmu Karger-a a Stein-a odprednášaného na prednáške:

- 1. kým G má viac ako dva vrcholy:
 - (a) vyber náhodnú hranu $e \in_R E(G)$;
 - (b) kontrahuj $G \Leftarrow G/e$;
 - (c) algoritmus dá na výstupe rez C práve vtedy, keď neskontrahujeme žiadnu hranu z E(C,V/C);
- 2. nech C^* je minimálny rez s hodnotou c^* ; žiadny vrchol nemá stupeň nižší ako c^* ; hrán je aspoň $nc^*/2$.
- 3. v *i*-tej iterácií máme $n_i = n i + 1$ vrcholov; ak sme zatiaľ neskontrahovali žiadnu hranu z C^* tak minimálny rez je stále C^* a počet hrán je aspoň $nc^*/2$.
- 4. Pr[v i-tom kroku skontrahujeme hranu z $C^* \mid \text{prvých } i-1$ krokov sme žiadnu hranu z C^* neskontrahovali $|\leq 2/n_i$.
- 5. $Pr[\text{neskontrahujeme žiadnu hranu z } C^*] = Pr[\text{ výstup algoritmu je } C^*] \ge \prod_{i=1}^{n-2} (1 2/n_i) = 1/\binom{n}{2}$. Takže ľubovoľný konkrétny minimálny rez C^* dostaneme na výstupe s pravdepodobnosťou $\Omega(1/n^2)$.

Ak teraz spojíme myšlienky Kruskalovho algoritmu na minimálnu kostru a pravdepodobnostného algoritmu Karger-a a Stein-a na hľadanie minimálnej kostry tak de facto máme riešenie našej domácej úlohy.

Vidno to z dvoch krokov:

- Kruskal(7)=UNION(u, v) je vlastne kontrakcia (1b), lebo komponenty=SETy prislúchajúce u, v sa spoja a všetky ďalšie uvažované hrany sa vynechajú.
- Kruskal(4)=vyber najlacnejšiu hranu mimo kontrahovaných komponentov je (1a)=vyber náhodnú hranu