Algoritmi e Strutture di Dati

Ricorsione e complessità

m.patrignani

070-ricorsione-e-complessita-05

copyright ©2018 maurizio.patrignani@uniroma3.it

Nota di copyright

- queste slides sono protette dalle leggi sul copyright
- il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini, foto, animazioni, video, audio, musica e testo) sono di proprietà degli autori indicati sulla prima pagina
- le slides possono essere riprodotte ed utilizzate liberamente, non a fini di lucro, da università e scuole pubbliche e da istituti pubblici di ricerca
- ogni altro uso o riproduzione è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori
- gli autori non si assumono nessuna responsabilità per il contenuto delle slides, che sono comunque soggette a cambiamento
- questa nota di copyright non deve essere mai rimossa e deve essere riportata anche in casi di uso parziale

070-ricorsione-e-complessita-05

Sommario

- funzioni e record di attivazione
- ricorsione e record di attivazione
- formule di ricorrenza
 - teorema dell'esperto
- strategie algoritmiche
 - algoritmi divide et impera e merge sort

070-ricorsione-e-complessita-05

copyright ©2018 maurizio.patrignani@uniroma3.it

Effetti di una chiamata a funzione

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT (n)
5. f = 1
6. for i = 2 to n
7. f = f * i
8. return f
```

- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM_OF_FACT(3)

istruzione	3
variabile sum	0
variabile i	0

SUM_OF_FACT(n) 1. sum = 0 2. for i = 0 to n 3. sum = sum + FACT(i) 4. return sum

- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT (n)
5. f = 1
6. for i = 2 to n
7. f = f * i
8. return f

FACT(0)	
istruzione	5
variabile f	1
variabile i	

SUM_OF_FACT(3)	
istruzione	3
variabile sum	0
variabile i	0

Effetti di una chiamata a funzione

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM_OF_FACT(3)	
istruzione	3
variabile sum	0
variabile i	0

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT(n)
5. f = 1
6. for i = 2 to n
7.     f = f * i
8. return f
```

- supponiamo di eseguire SUM OF FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM_OF_FACT(3)

istruzione	3
variabile sum	1
variabile i	0

Effetti di una chiamata a funzione

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT(n)

5. f = 1

6. for i = 2 to n

7. f = f * i

8. return f
```

- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM OF FACT (3)

istruzione	2
variabile sum	1
variabile i	1

SUM_OF_FACT(n) 1. sum = 0 2. for i = 0 to n 3. sum = sum + FACT(i) 4. return sum

- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT (n)
5. f = 1
6. for i = 2 to n
7. f = f * i
8. return f

FACT (1)	
istruzione	8
variabile f	1
variabile i	2

istruzione 3 variabile sum 1 variabile i 1

Effetti di una chiamata a funzione

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT(n)
5. f = 1
6. for i = 2 to n
7.     f = f * i
8. return f
```

- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM_OF_FACT(3)	
istruzione	3
variabile sum	2
variabile i	1

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT (n)

5. f = 1

6. for i = 2 to n

7. f = f * i

8. return f
```

- supponiamo di eseguire SUM OF FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM	OF	FACT(3)	

<u>`</u>	
istruzione	2
variabile sum	2
variabile i	2

Effetti di una chiamata a funzione

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

- FACT(n)
 5. f = 1
 6. for i = 2 to n
 7. f = f * i
 8. return f
- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM OF FACT (3)

istruzione	3
variabile sum	2
variabile i	2

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT(n)
5. f = 1
6. for i = 2 to n
7.     f = f * i
8. return f
```

- supponiamo di eseguire SUM OF FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM_OF_FACT(3)

istruzione	3
variabile sum	4
variabile i	2

Effetti di una chiamata a funzione

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT (n)
5. f = 1
6. for i = 2 to n
7.     f = f * i
8. return f
```

- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM OF FACT (3)

istruzione	2
variabile sum	4
variabile i	3

SUM_OF_FACT(n) 1. sum = 0 2. for i = 0 to n 3. sum = sum + FACT(i) 4. return sum

- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT (n)
5. f = 1
6. for i = 2 to n
7. f = f * i
8. return f

FACT(3)	
istruzione	8
variabile f	6
variabile i	4

istruzione 3 variabile sum 4 variabile i 3

Effetti di una chiamata a funzione

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM_OF_FACT(3)	
istruzione	3
variabile sum	10
variabile i	3

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT(n)
5. f = 1
6. for i = 2 to n
7.  f = f * i
8. return f
```

- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM OF FACT (3)

istruzione	2
variabile sum	10
variabile i	4

Effetti di una chiamata a funzione

```
SUM_OF_FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT (n)
5. f = 1
6. for i = 2 to n
7.  f = f * i
8. return f
```

- supponiamo di eseguire SUM_OF_FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM_OF_FACT(3)	
istruzione	4
variabile sum	10
variabile i	4

Funzioni ricorsive

```
FACT (n)

5. f = 1

6. for i = 2 to n

7. f = f * i

8. return f
```

```
FACT_RIC(n)
1. if n == 0
2.    f = 1
3. else
4.    f = n * FACT_RIC(n-1)
5. return f
```

- abbiamo già visto che l'algoritmo iterativo FACT per il calcolo del fattoriale ha complessità $\Theta(n)$
- il calcolo del fattoriale può essere facilmente realizzato anche tramite un algoritmo ricorsivo

070-ricorsione-e-complessita-05

copyright ©2018 maurizio.patrignani@uniroma3.it

Esecuzione di funzioni ricorsive

```
FACT_RIC(n)
1. if n == 0
2.    f = 1
3. else
4.    f = n * FACT_RIC(n-1)
5. return f
```

- supponiamo di eseguire FACT RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

istruzione 4
variabile f 0

070-ricorsione-e-complessita-05

Esecuzione di funzioni ricorsive

```
FACT_RIC(n)
1. if n == 0
2.  f = 1
3. else
4.  f = n * FACT-RIC(n-1)
5. return f
```

- supponiamo di eseguire FACT_RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT_RIC(2)

istruzione	4
variabile f	0

FACT RIC(3)

istruzione	4
variabile f	0

070-ricorsione-e-complessita-05

copyright ©2018 maurizio.patrignani@uniroma3.it

Esecuzione di funzioni ricorsive

FACT_RIC(n) 1. if n == 0 2. f = 1 3. else 4. f = n * FACT-RIC(n-1) 5. return f

- supponiamo di eseguire FACT RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT_RIC(1)

istruzione	4
variabile f	0

FACT_RIC(2)

istruzione	4
variabile f	0

FACT RIC(3)

istruzione	4
variabile f	0

070-ricorsione-e-complessita-05

Esecuzione di funzioni ricorsive

- supponiamo di eseguire FACT RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT_RIC(0)			
istruzione			
variabile f	1		
FACT_RIC(1)			
istruzione	4		

variabile f

FACT_RIC(2)			
4			
0			

istruzione 4
variabile f 0

070-ricorsione-e-complessita-05

copyright ©2018 maurizio.patrignani@uniroma3.it

Esecuzione di funzioni ricorsive

- supponiamo di eseguire FACT RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

ract_ric(1)

istruzione 4

variabile f

istruzione 4
variabile f 0

FACT RIC(2)

istruzione 4
variabile f 0

070-ricorsione-e-complessita-05

Esecuzione di funzioni ricorsive

- supponiamo di eseguire FACT_RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT_RIC(2)				
istruzione	4			
variabile f	2			
FACT_RIC(3)				
istruzione	4			

variabile f

070-ricorsione-e-complessita-05

copyright ©2018 maurizio.patrignani@uniroma3.it

Esecuzione di funzioni ricorsive

```
FACT_RIC(n)
1. if n == 0
2.    f = 1
3. else
4.    f = n * FACT-RIC(n-1)
5. return f
```

- supponiamo di eseguire FACT_RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT_RIC(3)

istruzione 4

variabile f 6

070-ricorsione-e-complessita-05

Costo di FACT RIC

```
FACT RIC(n)
1. if n == 0
       f = 1
   else
      f = n * FACT-RIC(n-1)
5. return f
```

$$T(0) = \Theta(1)$$

$$T(n) = T(n-1) + \Theta(1)$$

- il costo di FACT RIC(n) è
 - $-\Theta(1)$ quando n è zero
 - pari al costo di FACT RIC(n-1) + $\Theta(1)$ negli altri casi

copyright ©2018 maurizio.patrignani@uniroma3.it

Formule di ricorrenza

- equazioni o disequazioni che descrivono una funzione in termini del suo valore su input più piccoli
 - prevedono sempre dei casi base e dei casi induttivi
- esempi

$$T(n) = \begin{cases} a & \text{per } n = 0 \\ T(n-1) + g(n) & \text{per } n > 0 \end{cases}$$

$$T(n) = \begin{cases} a & \text{per } n = 0 \text{ o } n = 1 \\ 2T(n/2) + f(n) & \text{per } n > 1 \end{cases}$$

Formule di ricorrenza

- le soluzioni delle formule di ricorrenza non sempre sono facili da trovare
- quando esprimono delle complessità asintotiche talvolta i casi base vengono omessi
 - se T(n) esprime il tempo di esecuzione di un algoritmo, T(n) è sempre $\Theta(1)$ per n piccolo
- esempio

$$T(n) = 2T(n/2) + \Theta(n)$$

• è sottointeso che $T(n) = \Theta(1)$ per n = 0 e n = 1

070-ricorsione-e-complessita-09

copyright ©2018 maurizio.patrignani@uniroma3.it

Soluzione di una equazione di ricorrenza

• dimostriamo che l'equazione di ricorrenza

$$T(n) = \begin{cases} a & \text{per } n = 0 \\ T(n-1) + g(n) & \text{per } n > 0 \end{cases}$$

• ammette come soluzione

$$T(n) = a + \sum_{k=1}^{n} g(k)$$

 per dimostrarlo sostituiamo la soluzione proposta a destra e sinistra dell'equazione di ricorrenza

070-ricorsione-e-complessita-05

Verifica della correttezza della soluzione

• caso base per n=0

$$T(n=0) = a + \sum_{k=1}^{0} g(k) = a + 0 = a$$
 (verificato)

caso induttivo

so che
$$T(n-1) = a + \sum_{k=1}^{n-1} g(k)$$
 (ipotesi induttiva)

$$T(n) = T(n-1) + g(n)$$
 (dalla definizione)

$$T(n) = a + \sum_{k=1}^{n-1} g(k) + g(n)$$

$$T(n) = a + \sum_{k=1}^{n} g(k)$$
 (verificato)

070-ricorsione-e-complessita-05 cop

Complessità di FACT RIC

sappiamo che FACT_RIC ha complessità

$$T(n) = \begin{cases} \Theta(1) & \text{per } n = 0 \\ T(n-1) + \Theta(1) & \text{per } n > 0 \end{cases}$$

sappiamo che l'equazione di ricorrenza

$$T(n) = \begin{cases} a & \text{per } n = 0 \\ T(n-1) + g(n) & \text{per } n > 0 \end{cases}$$

- ammette come soluzione $T(n) = a + \sum_{k=1}^{n} g(k)$
- la complessità di FACT RIC è dunque

$$T(n) = \Theta(1) + \sum_{k=1}^{n} \Theta(1) = \Theta(n)$$

070-ricorsione-e-complessita-05 copyright ©2018 maurizio.patrignani@uniroma

Versione ricorsiva del selection sort

Complessità di SELECTION RIC

 possiamo scrivere la seguente equazione di ricorrenza, in cui n è il numero degli elementi di A ancora da ordinare

$$T(n) = \begin{cases} \Theta(1) & \text{per } n = 1 \\ T(n-1) + \Theta(n) & \text{per } n > 1 \end{cases}$$

• la complessità di SELECTION_RIC è dunque

$$T(n) = \Theta(1) + \sum_{k=1}^{n} \Theta(k) = \Theta(n^{2})$$

La tecnica divide et impera

- detta anche "divide and conquer"
- consiste nel suddividere il problema in diversi sottoproblemi
 - i sottoproblemi sono dello stesso tipo del problema originale
 - ma di dimensioni più piccole
 - i sottoproblemi possono essere risolti in maniera ricorsiva
 - · suddividendoli a loro volta
 - caso base
 - quando i sottoproblemi sono di dimensioni ridottissime la loro soluzione è banale

070-ricorsione-e-complessita-05

copyright ©2018 maurizio.patrignani@uniroma3.it

Ricorsione del divide et impera

- a ciascun passo della ricorsione
 - divide
 - l'istanza corrente viene divisa in due o più istanze più piccole
 - impera
 - l'algoritmo viene lanciato sulle istanze più piccole
 - combina
 - le soluzioni delle istanze più piccole vengono utilizzate per produrre una soluzione dell'istanza corrente

070-ricorsione-e-complessita-05

Merge sort

- osservazione elementare
 - due sequenze ordinate possono essere fuse in un'unica sequenza ordinata molto facilmente
- un possibile algoritmo
 - dividere la sequenza di input in due sottosequenze
 - ordinare le due sottosequenze
 - · tramite lo stesso merge sort
 - fondere le due sottosequenze ordinate
- caso base
 - un array di un solo elemento è ordinato per definizione


```
Fusione: l'algoritmo MERGE
MERGE (A,p,q,r)
1. n_1 = q - p + 1
                            \triangleright lunghezza della prima sequenza
2. n_2 = r - q
                            D lunghezza della seconda sequenza
3. \triangleright creo array L[0...n<sub>1</sub>] e R[0...n<sub>2</sub>] (con una casella in +)
4. for i = 0 to n_1-1
5. L[i] = A[p+i]
                            D copio la 1ª sequenza
6. for j = 0 to n_2 - 1
      R[j] = A[q+j+1] \triangleright copio la 2<sup>a</sup> sequenza
8. L[n_1] = \infty \triangleright chiudo con "infinito"
9. R[n_2] = \infty \triangleright chiudo con "infinito"
             ...(continua nella prossima slide)...
                          <<
                                          <<
                                                  r
           L[]
                      <<
                                                   <<
                                        R[]
                                 copyright ©2018 maurizio.patrignani@uniroma3.it
```

Fusione (continua) ... (dalla slide precedente) ... **10.** i = 0 D iteratore per array L 12. for k = p to rif $L[i] \leq R[j]$ then 13. A[k] = L[i] > pesco da L i = i + 115. 16. else 17. A[k] = R[j] > pesco da R 18. j = j + 1• il confronto con "\(\leq \)" sulla riga 13 garantisce la stabilità dell'algoritmo se L[i]=R[j] allora L[i] ha la precedenza 070-ricorsione-e-complessita-05 copyright ©2018 maurizio.patrignani@uniroma3.it

L'algoritmo MERGE SORT

• l'algoritmo MERGE_SORT esegue la parte "divide", risolve i sottoproblemi ed esegue la parte "combine"

all'inizio della computazione lanciamo

Tempo di esecuzione di merge sort

- calcoliamo il costo T(n) di esecuzione del merge sort su un'istanza con n elementi
- caso base
 - $-\cos \Theta(1)$
- divide
 - calcolo di n/2: costo $D(n) = \Theta(1)$
- impera
 - ogni sottoproblema ha dimensione n/2
 - i sottoproblemi sono 2
 - costo: $2 \cdot T(n/2)$
- combina
 - l'algoritmo MERGE ha costo lineare: $C(n) = \Theta(n)$

Tempo di esecuzione di merge sort

complessivamente

$$T(n) = \begin{cases} \Theta(1) & \text{per } n = 0 \text{ o } n = 1\\ 2 \cdot T(n/2) + D(n) + C(n) & \text{per } n > 1 \end{cases}$$

• poiché $D(n) + C(n) = \Theta(1) + \Theta(n) = \Theta(n)$ si ha

$$T(n) = \begin{cases} \Theta(1) & \text{per } n = 0 \text{ o } n = 1 \\ 2 \cdot T(n/2) + \Theta(n) & \text{per } n > 1 \end{cases}$$

• dimostreremo che questa particolare equazione di ricorrenza ammette come soluzione

$$T(n) = \Theta(n \log n)$$

070-ricorsione-e-complessita-05 copyright ©2018 maurizio.patrignani@uniroma3.it

Master theorem (teorema dell'esperto)

- siano $a, b \ge 1$
- il master theorem considera l'equazione di ricorrenza seguente

$$T(n) = \begin{cases} \Theta(1) & \text{per } n = 0 \\ a \cdot T(n/b) + O(n^k) & \text{per } n > 0 \end{cases}$$

- il master theorem afferma che tale equazione di ricorrenza ammette le soluzioni seguenti
 - 1. se $a < b^k$ allora $T(n) = \Theta(n^k)$
 - 2. se $a = b^k$ allora $T(n) = \Theta(n^k \log n)$
 - 3. se $a > b^k$ allora $T(n) = \Theta(n^{\log_b a})$

Dimostriamo che $x^{\log y} = y^{\log x}$

· Partiamo da

$$x^{\log y} = y^{\log x}$$

• Facciamo il logaritmo da entrambe le parti

$$\log(x^{\log y}) = \log(y^{\log x})$$

Ricordando che

$$\log a^b = b \log a$$

Otteniamo

$$(\log y)(\log x) = (\log x)(\log y)$$

• Che è vera per la proprietà commutativa del prodotto

Dimostrazione del primo caso ($a < b^k$)

• La somma del costo di tutti i livelli è

$$T(n) = \sum_{i=0}^{h} a^{i} \left(\frac{n}{b^{i}}\right)^{k} = \sum_{i=0}^{h} a^{i} \frac{n^{k}}{b^{ik}} = n^{k} \sum_{i=0}^{h} \left(\frac{a}{b^{k}}\right)^{i}$$

- $\sum_{i=0}^{h} \left(\frac{a}{b^k}\right)^i$ è una serie geometrica con ragione $r = \frac{a}{b^k}$
- Se r < 1, cioè se $a < b^k$, la sommatoria, anche se avesse infiniti termini, sarebbe comunque una costante 1/(1-r)
- Dunque $T(n) = O(n^k)$

070-ricorsione-e-complessita-05 copyright ©2018 maurizio.patrignani@uniroma3.it

Dimostrazione del terzo caso ($a > b^k$)

- Torniamo alla serie geometrica con $r = \frac{a}{b^k}$ $T(n) = n^k \sum_{i=0}^h \left(\frac{a}{b^k}\right)^i$
- Se $a > b^k$, cioè se r > 1, la sommatoria vale

$$\frac{1-r^h}{1-r} = \frac{r^h - 1}{r - 1} \in O(r^h)$$

$$r^{h} = \left(\frac{a}{b^{k}}\right)^{\log_{b} n} = \frac{a^{\log_{b} n}}{b^{k \log_{b} n}} = \frac{a^{\log_{b} n}}{(b^{\log_{b} n})^{k}} = \frac{a^{\log_{b} n}}{n^{k}}$$

Dimostrazione del terzo caso $(a > b^k)$

Dunque

$$T(n) = O(n^k) \cdot O(r^h) = O(n^k) \cdot O\left(\frac{a^{\log_b n}}{n^k}\right)$$

Da cui

$$T(n) = O\left(a^{\log_b n}\right) = O\left(n^{\log_b a}\right)$$

070-ricorsione-e-complessita-05

copyright ©2018 maurizio.patrignani@uniroma3.it

Esempi di applicazione del master theorem

- T(n) = 9T(n/3) + n
 - abbiamo: a = 9; b = 3; $p(n^k) = n$; k = 1
 - quindi $a > b^k$
 - si ha $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_3 9}) = \Theta(n^2)$
- T(n) = T(2n/3) + 1
 - abbiamo: a = 1; b = 3/2; $p(n^k) = 1$; k = 0
 - quindi $a = b^k$
 - $\sin \operatorname{T}(n) = \Theta(n^k \log n) = \Theta(n^0 \log n) = \Theta(\log n)$

070-ricorsione-e-complessita-05

Complessità del merge sort

• la complessità del merge sort è data dalla formula di ricorrenza

$$T(n) = 2 \cdot T(n/2) + \Theta(n)$$

- applichiamo il teorema dell'esperto
 - abbiamo: a = 2; b = 2; $p(n^k) = n$; k = 1
 - quindi $a = b^k$
 - $\operatorname{si} \operatorname{ha} T(n) = \Theta(n^k \log n) = \Theta(n \log n)$

070-ricorsione-e-complessita-05

Algoritmi di ordinamento visti finora

	caso migliore	caso medio	caso peggiore	in loco	stabile
SELECTION-SORT	$\Theta(n^2)$			si	si
INSERTION-SORT	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n^2)$	si	si
MERGE-SORT	$\Theta(n \log n)$		no	si	