Electronic Circuits Elektronik Devreler

Dr. Gökhan Bilgin (Gr.1)

gokhanb@ce.yildiz.edu.tr

Dr. Hamza Osman İLHAN (Gr.2)

hoilhan@yildiz.edu.tr

Sensors and actuators

- Introduction
- Describing sensor performance
- Sensors
- Actuators
- Laboratory measuring equipment.

Introduction

- To be useful, systems must interact with their environment. To do this they use sensors and actuators.
- Sensors and actuators are examples of transducers.

A transducer is a device that converts one physical quantity into another.

- examples include:
 - a mercury-in-glass thermometer (converts temperature into displacement of a column of mercury)
 - a microphone (converts sound into an electrical signal).
- We will look at both sensors and actuators in this lecture.

Describing sensor performance

Range

maximum and minimum values that can be measured.

Resolution or discrimination

- smallest discernible change in the measured value.

Error

- difference between the measured and actual values.
 - random errors
 - systematic errors

Accuracy, inaccuracy, uncertainty

accuracy is a measure of the maximum expected error.

Describing sensor performance (contd.)

Precision

a measure of the lack of random errors (scatter)

Error, Accuracy, and Precision

Experimental uncertainty is part of all measurements. **Error** is the difference between the true or best accepted value and the measured value. **Accuracy** is an indication of the range of error in a measurement.

Precision is a measure of repeatability.

Describing sensor performance (contd.)

• Linearity

maximum deviationfrom a 'straight-line'response

Sensitivity

 a measure of the change produced at the output for a given change in the quantity being measured.

Sensors

- Almost any physical property of a material that changes in response to some excitation can be used to produce a sensor.
 - Widely used sensors include those that are:
 - resistive
 - inductive
 - capacitive
 - piezoelectric
 - photoresistive
 - elastic
 - thermal.
 - In this lecture we will look at several examples.

Temperature sensors

Resistive thermometers

- typical devices use platinum wire (such a device is called a platinum resistance thermometers or PRT)
- linear but has poor sensitivity.

Temperature sensors (contd.)

Thermistors

- use materials with a high thermal coefficient of resistance
- sensitive but highly non-linear.

A threaded thermistor

Temperature sensors (contd.)

• pn junctions

- a semiconductor device with the properties of a diode (we will consider semiconductors and diodes later)
- inexpensive, linear and easy to use
- limited temperature range (perhaps
 - -50°C to 150°C) due to nature of semiconductor material.

pn-junction sensor

Light sensors

Photovoltaic

- light falling on a pn-junction can be used to generate electricity from light energy

 (as in a solar cell).
- small devices used as sensors are called photodiodes.
- fast acting, but the voltage produced is *not* linearly related to light intensity.

A typical photodiode

Light sensors (contd.)

Photoconductive

- such devices do not produce electricity, but simply change their resistance.
- photodiodes (as described earlier)
 can be used in this way to produce linear devices.
- phototransistors act like photodiodes but with greater sensitivity.
- light-dependent resistors (LDRs) are slow, but respond like the human eye.

A light-dependent resistor (LDR)

Force sensors

• Strain gauge

- stretching in one direction increases the resistance of the device, while stretching perpendicular to this has little effect
- can be bonded to a surface to measure strain
- used within load cells and pressure sensors.

A strain gauge

Switches

- simplest form of digital displacement sensor
 - many forms: lever or push-rod operated microswitches, float switches, pressure switches, etc.

A float switch

Opto-switches

- consist of a light source and a light sensor within a single unit.
 - 2 common forms are the reflective and slotted types.

A reflective opto-switch

A slotted opto-switch

Absolute position encoders

- A pattern of light and dark strips is printed on to a strip and is detected by a sensor that moves along it.
 - The pattern takes the form of a series of lines as shown below.
 - It is arranged so that the combination is unique at each point.
 - Sensor is an array of photodiodes.

Incremental position encoder

- uses a single line that alternates black/white
 - two slightly offset sensors produce outputs as shown below
 - detects motion in either direction, pulses are counted to determine absolute position (which must be initially reset).

- Other counting techniques
 - several methods use counting to determine position
 - two examples are given below.

Motion sensors

- Motion sensors measure quantities such as velocity and acceleration.
 - Can be obtained by differentiating displacement
 - Differentiation tends to amplify high-frequency noise.
- Alternatively can be measured directly
 - some sensors give velocity directly
 - e.g. measuring *frequency* of pulses in the counting techniques described earlier gives speed rather than position.
 - some sensors give acceleration directly
 - e.g. accelerometers usually measure the force on a mass.

Sound sensors

Microphones

- a number of forms are available
 - e.g. carbon (resistive), capacitive, piezoelectric and moving-coil microphones
 - moving-coil devices use a magnet and a coil attached to a diaphragm.

Sensor interfacing

Resistive devices

- can be very simple
 - e.g. in a potentiometer, with a fixed voltage across the outer terminals, the voltage on the third is directly related to position
 - where the resistance of the device changes with the quantity being measured, this change can be converted into a voltage signal using a potential divider – as shown
 - the output of this arrangement is not linearly related to the change in resistance.

Sensor interfacing (contd.)

Switches

- switch interfacing is also simple
 - can use a single resistor as below to produce a voltage output
 - all mechanical switches suffer from switch bounce.

Sensor interfacing (contd.)

Capacitive and inductive sensors

- Sensors that change their capacitance or inductance in response to external influences normally require the use of alternating current (AC) circuitry.
- Such circuits need not be complicated.
- We will consider AC circuits in later lectures.

Actuators

- In order to be useful an electrical or electronic system must be able to affect its external environment. This is done through the use of one or more actuators.
- As with sensors, actuators are transducers, which convert one physical quantity into another.
- Here we are interested in actuators that take electrical signals from our system and from them vary some external physical quantity.

Heat actuators

- Most heat actuators are simple resistive heaters.
- For applications requiring a few watts ordinary resistors of an appropriate power rating can be used.
- For higher power applications there are a range of heating cables and heating elements available.

Light actuators

- For general illumination it is normal to use conventional incandescent light bulbs or fluorescent lamps.
 - power ratings range from a fraction of a watt to perhaps hundreds of watts
 - easy to use but relatively slow in operation
 - unsuitable for signalling and communication applications.

Light actuators (contd.)

• Light-emitting diodes (LEDs)

- produce light when electricity is passed through them.
- a range of semiconductor materials can be used to produce light of different colours.
- can be used individually
 or in multiple-segment
 devices such as the
 seven-segment display
 shown here.

LED – seven-segment displays

Light actuators (contd.)

Liquid crystal displays

 consist of 2 sheets of polarised glass with a thin layer of oily liquid sandwiched between them.

– an electric field rotates the polarization of the liquid

making it opaque.

 can be formed into multielement displays (such as 7-segment displays).

 can also be formed into a matrix display to display any character or image.

A custom LCD display

Light actuators (contd.)

Fibre-optic communication

- used for long-distance communication
- removes the effects of ambient light
- fibre-optic cables can be made of:
 - optical polymer
 - inexpensive and robust
 - high attenuation, therefore short range (up to about 20 metres)
 - glass
 - much lower attenuation allowing use up to hundreds of kilometres
 - more expensive than polymer fibres
- light source would often be a laser diode.

Force, displacement and motion actuators

Solenoids

- basically a coil and a ferromagnetic 'slug'
- when energised the slug is attracted into the coil
- force is proportional to current
- can produce a force,a displacement ormotion
- can be linear or angular
- often used in an
 ON/OFF mode.

Small linear solenoids

Force, displacement and motion actuators (contd.)

Meters

- moving-iron
 - effectively a rotary solenoid plus spring
 - can measure DC or AC
- moving-coil
 - most common form
 - deflection proportional to average value of current
 - full scale deflection typically 50 μA 1 mA

Moving-coil meters

Force, displacement and motion actuators (contd.)

Motors

- three broad classes
 - AC motors
 - primarily used in high-power applications
 - DC motors
 - used in precision position-control applications
 - Stepper motors
 - a digital actuator used in position control applications.

Stepper motors

Stepper motors

- a central rotor surrounded by a number of coils (or windings)
- opposite pairs of coils are energised in turn
- this 'drags' the rotor round one 'step' at a time
- speed proportional to frequency
- typical motor might require
 48-200 steps per revolution.

Stepper motors (contd.)

Stepper-motor current waveforms

A typical stepper-motor

Sound actuators

Speakers

- usually use a permanent magnet and a movable coil connected to a diaphragm.
- input signals produce current in the coil causing it to move with respect to the magnet.

Ultrasonic transducers

- at high frequencies speakers are often replaced by piezoelectric actuators
- operate over a narrow frequency range.

Actuator interfacing

Resistive devices

- Interfacing involves controlling the power in the device.
- In a resistive actuator, power is related to the voltage.
- For high-power devices the problem is in delivering sufficient power to drive the actuator.
- High-power electronic circuits will be considered later.
- High-power actuators are often controlled in an ON/OFF manner.
- These techniques use electrically operated switches
 - discussed in later lectures.

Actuator interfacing (contd.)

Capacitive and inductive devices

- Many actuators are capacitive or inductive (such as motors and solenoids).
- These create particular problems particularly when using switching techniques.
- We will return to look at these problems when we have considered capacitors and inductors in more detail.

Laboratory measuring instruments

- Often the object of sensing a physical quantity is to measure it.
- Here we will look at three forms of measuring instrument:
 - analogue oscilloscope
 - digital oscilloscope
 - digital multimeter.

Analogue oscilloscope (contd.)

• A typical analogue oscilloscope

Digital oscilloscope (contd.)

• A typical digital oscilloscope

Digital multimeters (contd.)

- Measurement of voltage, current and resistance is achieved using appropriate circuits to produce a voltage proportional to the quantity to be measured.
 - In simple DMMs alternating signals are rectified as in analogue multimeters to give their average value which is multiplied by 1.11 to directly display the r.m.s. value of sine waves.
 - More sophisticated devices use a true r.m.s.
 converter, which accurately produces a voltage proportional to the r.m.s. value of an input waveform.

A typical digital multimeter

Key points

- A wide range of sensors is available.
- Some sensors produce an output voltage related to the measured quantity and therefore supply power.
- Other devices simply change their physical properties.
- Interfacing may be required to produce signals in the correct form.
- Most actuators take power from their inputs in order to deliver power at the output the efficiency is often low.
- We often sense quantities in order to measure them there are a number of standard measuring instruments.