ECE 411 - MP4 Final Presentation

Team: LMP<u>Lakshya, Mridul, Peter</u>

Feature Overview

- 5-stage Pipelined CPU with Hazard Detection and Forwarding
- Parameterized <u>Local Branch Prediction Table</u> and <u>Branch Target Buffer</u>
- <u>2-stage Pipelined</u> & <u>Parameterized</u> Split Cache up to 64 Sets and 4 Ways
- RISC-V M-Extension with Wallace Tree Multiplier and Non-Storing Divider
- <u>L2 Cache</u> System (Not included in the Competition)
- <u>Global Branch History Register</u> (Not included in Competition)

Feature #1: Parameterized Local Branch Prediction Table and Branch Target Buffer

- Single-cycle
 - Tried to use BRAM but this affected functionality due to 2-cycle latency
- Parametrized for Number of Sets
 - o Tested for 128-512 sets
- Added: Checking for BR/Jumps
- Hashed using lower order bits of PC
 - Tried using other bits
 - o 7-bit Global History Register
 - Goal: increased contextual information for BR/Jump
 - Too much 'randomness' in indexing

Feature #1 Results

Metric	Basic Prediction		Checking Instruction Opcode		
	comp1.s	comp3.s	comp1.s	comp3.s	
Clock Cycles	55,885	72,665	49,537	68,835	
BR Accuracy	84.0 %	56.6 %	89.3 %	67.5 %	
J Accuracy	99.9 %	~100.0 %	99.9 %	~100.0 %	
Total Accuracy	87.8 %	75.1 %	91.9 %	81.8 %	

About 4.65% and 8.95% improvement respectively

Feature #2: <u>2-stage Pipelined</u> & <u>Parameterized</u> Split Cache up to 64 Sets and 4 Ways

Pipelining

- Modified the state machine to be able to receive new memory requests while responding to the previous requests
- Stores previous request's address and data into registers
- No need to stall for consecutive hits
- Parameterized Cache
 - Parameterized the number of index bits, cacheline size, and number of ways
 - Used the Pseudo LRU design from lecture
 - Tested with up to 64 sets and 4 ways
- BRAM
 - Used BRAM for reduced power and resource utilization

Feature #2 Results

Metric	8 Sets, 2 Ways		16 Sets, 4 Ways		32 Sets, 4 Ways				
	comp1.s	comp2_i.s	comp3.s	comp1.s	comp2_i.s	comp3.s	comp1.s	comp2_i.s	comp3.s
Clock Cycles	50,377	385,383	341,533	50,057	237,319	72,665	50,057	119,570	72,665
I-Cache Hit Rates	99.9 %	91.0%	82.8%	99.9%	95.6%	99.9%	99.9%	99.9%	99.9%
D-Cache Hit Rates	99.7 %	98.9%	89.6%	99.7 %	99.8%	95.2%	99.7%	99.5%	95.2%

Up to 79% improvement in execution time

Feature #3: RISC-V <u>M-Extension</u> with Wallace Tree Multiplier and Non-Storing Divider

- Wallace Tree Multiplier
 - Implemented a 2-cycle 32 bit unsigned Wallace
 Tree Multiplier
 - Used 2-cycle because the delay is too long for single-cycle

- Non-Storing Divider
 - Implemented an 8-cycle unsigned Non-Storing Divider
 - The division originally takes 32 cycles, but we fit in 4 division cycles within 1 clock cycle

Divider Logic

Feature #3 Results

Metrics	comp2_i.s	comp2_m.s
Clock Cycles	119,570	25,924
Execution Time	1,195,755 ns	259,295 ns
# of Instructions	116,080	11,082
Cycles per Instruction	1.03	2.34

About 78% improvement in execution time

Overall Performance

- 32 sets, 4-way I- and D-cache
- BPT and BTB 128 sets with opcode checking in Fetch stage
- M-Extension

	comp1.s	comp2_m.s	comp3.s		
FMax (MHz)	91.11				
Scaled Time (ns)	543,766	287,098	755,576		
Power (mW)	607.17	608.16	641.41*		
Score	9.7625E-11	1.4391E-11	2.7668E-10		
Geometric Mean	7.2981E-11				

Utilization:

Logic - 20,366 (56%) Registers - 8181 (23%) Total Pins - 165 (57%) M9K Blocks - 68 (21%)

*This is an upper estimate from Quartus since the VCD file could not be generated due to space limitations.

Challenges & Optimizations

- Challenges Faced
 - Multiplier causing too much delay
 - Larger BTB led too high resource utilization
 - Weren't able to pipeline BTB to be able to use BRAM
 - BTB was cause for high power and resource utilization
- Tricks to improve performance
 - Removing Priority Encoding (If-Else constructs)
 - Quartus based optimizations
 - Fitter effort \rightarrow set for Performance
 - Register Retiming
 - Physical Synthesis

Future Developments

- More sophisticated Branch Prediction
 - Default taken predictions for BR/JAL
 - Tournament Predictor with global history
 - Associative BPT and BTB
 - Remove some aliasing
- 8-Way associative cache
 - \circ 2 \rightarrow 4 way gave a large improvement