An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★ MUNIRKA ★UTTAM NAGAR ★ DILSHAD GARDEN ★ROHINI ★ BADARPUR BORDER ★JAIPUR ★GURGAON ★NOIDA

SSC Mains Test-21 (SOLUTION)

1. (D) Since, divisor = a

Therefore, quotient = $\frac{a}{4}$

a) $\frac{b}{\frac{a}{2}}$ (a/s

and remainder = $\frac{a}{2}$

$$\therefore b = a \times \frac{a}{4} + \frac{a}{2}$$

$$\Rightarrow b = \frac{a^2 + 2a}{4}$$

$$\Rightarrow \frac{a(a+2)}{b} = 4$$

2. (C) Since, 738A6A is divisible by 11, therefore

Sum of odd places – Sum of even places = either multiple of 11 or 0

(7 + 9 + 6) - (3 + A + A) = either multiples of 11 or 0.

- \Rightarrow 21 2A + 3 = either multiple of 11 or 0
- \Rightarrow 18 2A = 0 (: it cannot be a multiple of 11)

$$\Rightarrow$$
 2A = 18

$$\Rightarrow$$
 A = 9

3. (C) Let the numbers be a and b. Then, ab = 1575

and $\frac{a}{h} = \frac{9}{7}$

$$\Rightarrow$$
 $a = \frac{9b}{7}$

Putting this value of Eq. (i), we get

$$\frac{9b}{7} \times b = 1575$$

$$\Rightarrow \qquad b^2 = 1575 \times \frac{7}{9}$$

 $\Rightarrow b^2 = 175 \times 7$ $= 5^2 \times 7^2$

 \Rightarrow b = 35

$$\therefore \quad a = \frac{9}{7} \times 35$$
$$= 45$$

Thus, sum of the numbers

$$= a + b$$

= 45 + 35
= 80

4. (C) $\frac{(81)^{3.6} \times (9)^{2.7}}{(81)^{4.2} \times 3}$

 $= \frac{(3)^{14.4} \times (3)^{5.4}}{(3)^{16.8} \times (3)^{1}}$ $= (3)^{14.4 + 5.4 - 16.8 - 1}$

$$= (3)^2 = 9$$
5. (D) $\sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}$

Factorize 6 as the multiplication of two consecutive natural numbers. The greater one will be the answer.

As, $6 = 2 \times 3$

Therfore, $\sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}} = 3$

6. (D) Let the two consecutive odd numbers be x and (x + 2).

Then, according to the question,

$$(x)^{2} + (x+2)^{2} = 394$$

$$\Rightarrow x^{2} + x^{2} + 4 + 4x = 394$$

$$\Rightarrow \qquad 2x^2 + 4x = 390$$

$$\Rightarrow x^2 + 2x = 195$$

$$\Rightarrow x(x+2) = 195 = 13 \times 15$$

$$\Rightarrow \qquad x = 13$$

Thus, sum of the numbers

$$= x + (x + 2)$$

= 13 + 15

7. (C) We know that, when $(a-1)^n$ is divided by a, then remainder = $(-1)^n$

Now, 67⁶⁷ + 67

$$= (68 - 1)^{67} + 67$$

: When $(68 - 1)^{67}$ is divided by 68, then remainder = $(-1)^{67}$ = -1

Thus, when $67^{67} + 67$ is divided by 68, then remainder = -1 + 67 = 66

8. (A) Let the work is completed in n days.

Then, $\frac{6}{24} + \frac{n-6}{52} + \frac{n}{64} = 1$

$$\Rightarrow \qquad \frac{n-6}{52} + \frac{n}{64} = 1 - \frac{1}{4}$$

$$\Rightarrow \frac{16(n-6)+13n}{4\times13\times16} = \frac{3}{4}$$

$$\Rightarrow 16n - 96 + 13n = 3 \times 13 \times 16$$

$$\Rightarrow 29n = 624 + 96$$

$$\Rightarrow 29n = 720$$

$$\Rightarrow \qquad \qquad n = \frac{720}{29}$$

= 25 days

entres at:★MUKHERJEE NAGAR ★ MUNIRKA★UTTAM NAGAR★DILSHAD GARDEN ★ROHINI★ BADARPUR BORDER

9. (B)	$\sqrt{\frac{(0.75)^3}{(1-0.75)}} + [0.75 + (0.75)^2 + 1]$
--------	--

$$=\sqrt{\frac{(0.75)^3 + (1 - 0.75)[0.75 + (0.75)^2 + 1]}{0.25}}$$

$$= \sqrt{\frac{(0.75)^3 + [1^3 - (0.75)^3]}{0.25}}$$

$$= \sqrt{\frac{(0.75)^3 + 1 - (0.75)^3}{0.25}}$$

$$=\sqrt{\frac{1}{0.25}}=\sqrt{\frac{100}{25}}=\sqrt{4}=2$$

10. (B)
$$\sqrt{4096} + \sqrt{40.96} + \sqrt{0.004096}$$

$$= 64 + 6.4 + 0.064 = 70.464$$

$$= 3012 \times 3011 - (3011)^2$$

$$= 3011(3012 - 3011)$$

$$= 3011$$

12. (D) (P + Q)'s work =
$$\frac{19}{23}$$
 ... (i)

$$(Q + R)$$
's work = $\frac{8}{23}$... (ii)

$$(P + Q + R)$$
's work= 1 ... (iii)

Subtracting Eq. (i) from Eq. (iii), we get

R's work =
$$1 - \frac{19}{23} = \frac{4}{23}$$

Subtracting Eq. (ii) and from Eq. (iii), we get

P's work =
$$1 - \frac{8}{23} = \frac{15}{23}$$

Now Q's work = 1 - (P + R)'s work

$$= 1 - \left(\frac{4}{23} + \frac{15}{23}\right)$$

$$= 1 - \frac{19}{23} = \frac{4}{23}$$

$$\therefore \text{ Q's share} = \frac{4}{23} \times 5750$$

13. (C) Let
$$CP = \mathbb{Z} x$$
. Then,

$$SP = 70\% \text{ of } x = 0.7x$$

$$\Rightarrow$$
 60% of MP = 0.7 x

$$\Rightarrow$$
 MP = $\frac{0.7x}{60} \times 100 = \frac{7x}{6}$

If article is sold at the marked price, then

$$SP = \frac{7}{6}x$$

.. Required profit per cent

$$=\frac{\frac{7}{6}x-x}{x}\times 100\%$$

$$= \frac{100}{6}\% = 16\frac{2}{3}\%$$

14. (A) A (
$$\uparrow$$
) 3

B (\uparrow) 4

C (\downarrow) 1

-12

$$B(\uparrow) \ 4 \rightarrow 12 - 3$$

$$C (\downarrow) 1 \frac{}{} - \frac{12}{-5}$$

Cistern fill till 5'clock = $4 \times 2 + 3 = 11$

Cistern will empty in = $\frac{11}{5}$ = 2 hr 12 min

15. (D) Required number of days

$$= \sqrt{4 \times 16} = 8 \text{ days}$$

16. (C) Here,
$$M_1 = 250$$
, $D_1 = 20$, $T_1 = 5$
 $M_2 = ?$, $D_2 = 10$, $T_2 = 8$
Using $M_1D_1T_1 = M_2D_2T_2$, we have,
 $250 \times 20 \times 5 = M_2 \times 10 \times 8$

$$M_2 = ?$$
, $D_2 = 10$, $T_2 = 8$

Using
$$M_1D_1T_1 = M_2D_2T_2$$
, we have $250 \times 20 \times 5 = M \times 10 \times 8$

$$M_2 = \frac{250 \times 20 \times 5}{10 \times 8}$$
= 312.5
= 313

17. (A)
$$2m + 5w = \frac{1}{12}$$
 ... (i)

$$5m + 2w = \frac{1}{9}$$
 ... (ii)

Multiplying Eq. (i) by 5 and Eq. (ii) by 2 and then subtracting it from Eq. (i), we get

$$10m + 25w = \frac{5}{12}$$

$$\frac{10m + 4w = \frac{2}{9}}{21w = \frac{5}{12} - \frac{2}{9}}$$

$$=\frac{7}{26}$$

$$\Rightarrow 3w = \frac{1}{36}$$

 \Rightarrow 3 women's 1 day's work = 36

 \Rightarrow 3 women can complete the work in 36 days.

18. (A) Let CP of the article = ₹ 100 Then SP = 125% of 100

An ISO 9001: 2008 Certified Company

entres at: ★MUKHERJEE NAGAR ★ MUNIRKA★UTTAM NAGAR★DILSHAD GARDEN ★ROHINI★ BADARPUR BORDER ★JAIPUR★GURGAON★NOIDA

Also, $\frac{3}{4}$ th of MP = SP

$$\Rightarrow \frac{3}{4} \times MP = 125$$

$$\Rightarrow MP = 125 \times \frac{4}{3} = ₹ \frac{500}{3}$$

 $\therefore \text{ Required ratio} = \frac{500}{3} : 100 = 5 : 3$

19. (A) Let Earnings of A = 2x

and Earnings of B = x

Expenditure of A = 5y

Expenditure of B = 3y

Further, suppose monthly savings of A = 4z

And monthly savings of B = z

Also, total monthly savings of A and B = 5000

$$\Rightarrow 4z + z = 5000$$

$$\Rightarrow$$
 5z = 5000

$$\Rightarrow$$
 $z = 1000$

Now using,

Income - Expenditure = Savings

$$2x - 5y = 4000$$
 ... (i)

$$2x - 5y = 4000$$
 ... (i) and $x - 3y = 1000$... (iii

Multiplying Eq. (ii) by 2,

$$2x - 6y = 2000$$
 ... (iii)

Subracting EQ. (iii) from Eq. (i), we get

$$-5y + 6y = 2000$$

$$\Rightarrow$$
 $y = 2000$

Putting this value of Eq. (ii), we get

$$x = 1000 + 6000$$

= 7000

Thus, monthly salary of B = ₹ 7000

20. (B) Let the greater and smaller be a and b, respectively.

$$\frac{a+b}{a-b} = \frac{5}{1}$$

Applying componendo and dividendo rule, we get

$$\frac{(a+b)+(a-b)}{(a+b)-(a-b)} = \frac{5+1}{5-1}$$

$$\Rightarrow \frac{2a}{2b} = \frac{6}{4}$$

$$\Rightarrow \qquad a:b=3:2$$

21. (B) Required equivalent discount

$$\left(1 - \frac{90}{100} \times \frac{80}{100} \times \frac{50}{100}\right) \times 100 = 64\%$$

22. (D) I. Equivalent discount

$$= \left(10 + 10 - \frac{10 \times 10}{100}\right) \%$$

II. Equivalent discount

$$= \left(12 + 8 - \frac{12 \times 8}{100}\right)\%$$
$$= (20 - 0.96)\%$$

= 19.04% III. Equivalent discount

$$= \left(15 + 5 - \frac{15 \times 5}{100}\right)\%$$

$$= (20 - 0.75)\%$$

$$= 19.25\%$$

IV. Discount = 20%

Selling price will be minimum where discount is maximumie, in IV condition.

23. (D) In the mixture, acid = $80\% = \frac{4}{5}$

water = $20\% = \frac{1}{5}$

Let xth part of the mixture be removed and replaced by water.

Then,
$$\frac{\frac{4}{5} - \frac{4}{5}x}{\frac{1}{5} - \frac{1}{5}x + x} = \frac{4}{3}$$

$$\Rightarrow \frac{4-4x}{1-x+5x} = \frac{4}{3}$$

$$\Rightarrow \frac{4-4x}{1+4x} = \frac{4}{3}$$

$$\Rightarrow 12 - 12x = 4 + 16x$$

$$\Rightarrow 8 = 28x$$

$$\Rightarrow \qquad x = \frac{8}{28} = \frac{2}{7} \text{ th}$$

24. (B) Ratio of reduction is number of employees = 9:8

> Ratio of increment in wages = 14:15 Now, ratio of reduction in the wage bill

$$= 21:20$$

25. (D) Let maximum score of the cricketer = xThen, his minimum score = x - 172

Now, total score in 40 innings

$$= 40 \times 50 = 2000$$

And, total scores in 38 innings

$$= 38 \times 48 = 1824$$

.: Sum of remaining two innings

$$= 2000 - 1824 = 176$$

Therefore, sum of maximum and minimum scores = 176

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★ MUNIRKA★UTTAM NAGAR★DILSHAD GARDEN ★ROHINI★ BADARPUR BORDER ★JAIPUR★GURGAON★NOIDA

 $\Rightarrow x + x - 172 = 176$ $\Rightarrow 2x = 348$

 $\Rightarrow \qquad x = 174$

Thus, highest score of the cricketer is 174.

26. (C) Gold Copper

Alloy A $\frac{7}{9}$ $\frac{2}{9}$

Alloy B $\frac{7}{18}$ $\frac{11}{18}$

Since, alloys A and B are melted in the ratio 1:1 to make the alloy, therefore in the alloy C, the ratio of gold and copper.

 $\left(\frac{7}{9} \times \frac{1}{2} + \frac{7}{18} \times \frac{1}{2}\right) : \left(\frac{2}{9} \times \frac{1}{2} + \frac{11}{18} \times \frac{1}{2}\right)$ $= \left(\frac{7}{9} + \frac{7}{18}\right) : \left(\frac{2}{9} + \frac{11}{18}\right)$ $= \frac{21}{18} : \frac{15}{18} = 21 : 15$ = 7 : 5

27. (C) Acid Water

Bottle I $\frac{2}{7}$ $\frac{5}{7}$

Bottle II $\frac{7}{10}$ $\frac{3}{10}$

Let the required ratio be x : 1. Then, according to the question,

$$\left(\frac{2}{7}x + \frac{7}{10}\right) : \left(\frac{5}{7}x + \frac{3}{10}\right) = 2 : 3$$

$$\frac{\frac{2}{7}x + \frac{7}{10}}{\frac{5}{7}x + \frac{3}{10}} = \frac{2}{3}$$

$$\Rightarrow \frac{6}{7}x + \frac{21}{10} = \frac{10}{7}x + \frac{6}{10}$$

$$\Rightarrow \frac{4}{7}x = \frac{15}{10}$$

$$\Rightarrow x = \frac{15}{10} \times \frac{7}{4} = \frac{21}{8}$$

Hence, required ratio = x : 1 = 21 : 8

28. (A) Let third number = x

Then, second number = 2x

Then, the first number = 4x

Now, average of these three numbers = 154

 $\Rightarrow x + 2x + 4x = 3 \times 154$ $\Rightarrow 7x = 3 \times 154$

 $\Rightarrow \qquad x = 3 \times 22 \\ = 66$

Thus, first number = $4 \times 66 = 264$

29. (D) Then, number of rest = (500 - x)

 $500 \times 5000 = x \times 14000 + (500 - x) \times 4000$

 $\Rightarrow 2500 = 14x + 4(500 - x)$

 $\Rightarrow 2500 = 14x + 2000 - 4x$

 \Rightarrow 500 = 10x

 $\Rightarrow \qquad x = \frac{500}{10} = 50$

Thus, number of officers is 50.

30. (D) Total marks of 40 students.

 $= 40 \times 72 = 2880$

Rectified total marks

= 2880 - 68 - 73 + 64 + 62 + 84 - 2884

= 2884

Thus, rectified average = $\frac{2884}{40}$ = 72.1

31. (B) Let first number = x

Second number = 3x

Third number = $\frac{3}{4}x$

 $\therefore x + 3x + \frac{3}{4}x = 3 \times 114$

 $\Rightarrow \left(4 + \frac{3}{4}\right)x = 342$

 $\Rightarrow \qquad x = 342 \times \frac{4}{19}$ = 72

Thus, largest number = 3x= 3×72

32. (D) Time taken to cover $\frac{1}{5}$ of the distance

 $=\frac{1}{5}\times\frac{1}{8}=\frac{1}{40}$

Time taken to cover $\frac{1}{10}$ of the disteance

 $=\frac{1}{10}\times\frac{1}{25}=\frac{1}{250}$

Time taken to cover rest of the distance

 $=\left\{1-\left(\frac{1}{5}+\frac{1}{10}\right)\right\}\times\frac{1}{20}$

 $= \frac{7}{10} \times \frac{1}{20} = \frac{7}{200}$

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★ MUNIRKA ★UTTAM NAGAR ★ DILSHAD GARDEN ★ROHINI ★ BADARPUR BORDER ★JAIPUR ★GURGAON ★NOIDA

Therefore, total time taken

$$= \frac{1}{40} + \frac{1}{250} + \frac{1}{200}$$
$$= \frac{25 + 4 + 35}{100}$$
$$= \frac{64}{1000}$$

Thus, average speed = $\frac{\text{Total distance covered}}{\text{Total time taken}}$

$$=\frac{1}{\frac{64}{1000}}=\frac{1000}{64}$$

= 15.625 km/h

33. (C) Let x marbles must be added.

Then,
$$\frac{10+x}{40+x} \times 100 = 60$$

$$\Rightarrow \frac{10+x}{40+x} = \frac{3}{5}$$

$$\Rightarrow 50+5x = 120+3x$$

$$\Rightarrow 2x = 70$$

$$\Rightarrow x = 35$$

34. (A) Let the number be x.

Then according to the question, $x \times (25\% \text{ of } x) = x + (200\% \text{ of } x)$

$$\Rightarrow x \times \frac{x}{4} = 3x$$

$$\Rightarrow x^2 = 12x$$

$$\Rightarrow x = 12$$

35. (B) Let the value of the article 3 years ago be *x*.

Then,
$$729 = x \left(1 - \frac{10}{100}\right)^3$$

$$729 = x \left(\frac{9}{10}\right)^3$$

$$729 = x \times \frac{729}{1000}$$

$$x = ₹ 1000$$

36. (B) Required percentage decrease

$$= \frac{50}{100 + 50} \times 100\%$$

$$= \frac{50}{150} \times 100\%$$

$$= 33\frac{1}{3}\%$$

37. (B) Let the required distance be d km.

Then,
$$\frac{d}{3} - \frac{d}{4} = \frac{10}{60}$$

$$\Rightarrow \frac{(4-3)d}{12} = \frac{1}{6}$$

$$\Rightarrow d = 2 \text{ km}$$

38. (A) CP per dozen = $\frac{40 + 30}{2}$ = ₹ 35

SP per dozen = ₹ 45 Profit per dozen = 45 - 35 = ₹ 10 But total profit = ₹ 480 Thus, required number of dozen

$$=\frac{480}{10} = 48$$

39. (D) Let CP of first chair = ₹ x and SP of second chair = ₹ (900 – x)

$$\therefore SP \text{ of first chair} = \frac{4}{5}x$$

SP of second chair = $\frac{5}{4}$ (900 – x)

We know that, SP - CP = Profit

$$\frac{4}{5}x + \frac{5}{4}(900 - x) - 900 = 90$$

$$\Rightarrow \frac{16x + 25(900 - x)}{20} = 990$$

$$\Rightarrow \frac{16x + 22500 - 25x}{20} = 990$$

$$\Rightarrow -9x + 22500 = 19800$$

$$\Rightarrow 9x = 2700$$

$$\Rightarrow x = 300$$

= SP of 20 oranges

 \Rightarrow SP of 80 oranges = CP of 100 oranges Let CP of 1 orange = ₹ 1

∴ CP of 100 oranges = ₹ 100 SP of 80 oranges = ₹ 100

⇒ SP of 1 oranges = ₹
$$\frac{100}{80}$$
 = ₹ $\frac{5}{4}$

Profit percent =
$$\frac{5}{\frac{4}{1}}$$
 - 1 × 100%
= $\frac{1}{4}$ × 100%

$$=\frac{4}{4} \times 100\%$$

 $=25\%$

An ISO 9001: 2008 Certified Company

entres at:★MUKHERJEE NAGAR ★ MUNIRKA★UTTAM NAGAR★DILSHAD GARDEN ★ROHINI★ BADARPUR BORDER ★JAIPUR★GURGAON★NOIDA

41. (C) 60% of CP = 50% of SP

$$\frac{CP}{SP} = \frac{5}{6}$$

Let CP = 5x and SP = 6xThen, there is a profit.

And profit per cent =
$$\frac{6x - 5x}{5x} \times 100\%$$

= 20%

42. (D) CP of two horses

= ₹ 80000

SP of one horse = 115% of 40000 **=** ₹ 46000

Let the second horse was sold at a loss of x%.

Then, SP of second horse

$$= (100 - x)\% \text{ of } 40000$$

$$= 40000 - 400x$$
Total SP = $46000 + 40000 - 400x$

$$= 86000 - 400x$$

Now, using CP - SP = loss, we have

$$80000 - (86000 - 400x) = 3600$$

$$\Rightarrow$$
 $-6000 + 400x = 3600$

$$\Rightarrow$$
 400 x = 9600

$$x = 24$$

Thus, SP of second horse

$$= (100 - 24)\% \text{ of } 40000$$

$$= 76\% \text{ of } 40000 = ₹ 30400$$

43. (D) CP of 1 guava = ₹ $\frac{y}{x}$

SP of 1 guava =
$$\frac{x}{u}$$

 $\therefore x > y$, therefore SP > CP and hence the fruit seller will have a gain.

Gain per cent =
$$\frac{SP - CP}{CP} \times 100$$

$$=\frac{\frac{x}{y} - \frac{y}{x}}{\frac{y}{x}} \times 100\%$$

$$= \frac{x^2 - y^2}{xy} \times \frac{x}{y} \times 100\%$$

$$=\frac{x^2-y^2}{y^2}$$
%

44. (B) According to the question,

$$\frac{x \times a \times m}{100} = \frac{y \times a^2 \times m^2}{100}$$

$$x = y am$$

$$\Rightarrow$$
 $x:y = am:1$

45. (D) Let A took ₹ x from B and ₹ (1200 – x) from C. Then,

$$\frac{x \times 14 \times 1}{100} + \frac{(1200 - x) \times 15 \times 1}{100} = 172$$

$$\Rightarrow 14x + 18000 - 15x = 17200$$

$$\Rightarrow 14x + 18000 - 15x = 17200$$

$$\Rightarrow x = 800$$

46. (B) Given,

$$\frac{(2n-4)}{n} \times 90^{\circ} = \frac{3}{5} \times 2 \times 90^{\circ}$$

$$\Rightarrow \frac{(2n-4)}{n} = \frac{3}{5} \times 2$$

$$\Rightarrow \frac{n-2}{n} = \frac{3}{3}$$

$$5n - 10 = \frac{3}{5}$$

$$\Rightarrow$$
 2n = 10

$$n = 5$$

Thus, the polygon has 5 sides.

47. (C) Side of given square = $\sqrt{200}$ m

$$= 10\sqrt{2} \text{ m}$$

 \therefore Its diagonal = $10\sqrt{2}$ m $\times \sqrt{2}$ = 20 m

which is the side of new square

 \therefore Area of new square = $(20)^2$ = 400 sq m

48. (C) Let radii of cone, cylinder and hemisphere are 2r, 3r and r respectively.

Volume of cone: Volume of cylinder: Volume of hemisphere

=
$$\frac{1}{3} \pi (2r)^2 h$$
: $\pi (3r)^2 h$: $\frac{2}{3} \pi r^3$

$$=\frac{1}{3} \times 4h : 9h : \frac{2}{3}r$$

(for hemisphere r = h)

$$= \frac{4}{3} h : 9h : \frac{2}{3} h$$

49. (A) Let rate of flow of river be u km/h.

Then,
$$\frac{91}{10+u} + \frac{91}{10-u} = 20$$

$$\Rightarrow \frac{10 - u + 10 + u}{100 - u^2} = \frac{20}{91}$$

$$\Rightarrow \frac{20}{100 - u^2} = \frac{20}{91}$$

$$\Rightarrow 100 - u^2 = 91$$

$$u^2 = 9$$

$$u = 3 \text{ km/hr}$$

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★ MUNIRKA ★UTTAM NAGAR ★ DILSHAD GARDEN ★ROHINI ★ BADARPUR BORDER ★JAIPUR ★GURGAON ★NOIDA

50. (B) Let the original speed and time be S and T respectively.

Then,
$$S \times T = \frac{3}{4} S \times \left(T + \frac{20}{60}\right)$$

$$\frac{4}{3}$$
T = $\left(T + \frac{1}{3}\right)$

$$\Rightarrow \frac{4}{3}T - T = \frac{1}{3}$$

$$\Rightarrow \qquad \frac{\mathrm{T}}{3} = \frac{1}{3}$$

 \Rightarrow T = 1 hr = 60 minutes

51. (C) Let speed of boat in still water = u km/h

And speed of stream = v km/hr

Then,
$$\frac{25}{u-v} + \frac{39}{u+v} = 8$$
 ... (i)

and
$$\frac{35}{u-v} + \frac{52}{u+v} = 11$$
 ... (ii)

Multiplying Eq. (i) by 4 and Eq. (ii) by 3 and subtracting Eq. (ii) from Eq. (i), we get

$$\frac{100}{u-v} - \frac{105}{u-v} = 32 - 33$$

$$\Rightarrow \frac{-5}{u-v} = -1$$

$$\Rightarrow \qquad u - v = 5 \qquad \dots \text{ (iii)}$$

Now, from Eq. (i),

$$\Rightarrow \frac{25}{5} + \frac{39}{u+v} = 8$$

$$\Rightarrow \frac{39}{u+v} = 8-5=3$$

$$\Rightarrow u+v = 13 \dots \text{ (iv)}$$

Now, subtracting Eq. (iv) from Eq. (iii), we get (u - v) - (u + v) = 5 - 13

$$\Rightarrow \qquad (u-v) - (u+v) - 3 - 13$$

$$\Rightarrow \qquad -2v = -8$$

$$\Rightarrow \qquad v = 4 \text{ km/h}$$

:. It will become 8 times *i.e.* $(2)^3$ times in $5 \times 3 = 15$ years.

53. (B) Let the share of elder and younger sons be $\forall x \text{ and } \forall (120000 - x) \text{ respectively.}$ Amount got by elder son = Amount got by younger son

$$x + \frac{x \times 3 \times 4}{100}$$

$$= (120000 - x) + \frac{(120000 - x) \times 5 \times 6}{100}$$

$$\Rightarrow x + \frac{x}{5} = (120000 - x) + \frac{(120000 - x) \times 3}{10}$$

$$\Rightarrow \frac{11x}{5} \times 10 = 120000 \times 10 + 360000 - 3x$$

$$\Rightarrow 22x = 1200000 + 360000 - 3x$$

$$\Rightarrow 25x = 1560000$$

Thus, yonger son's share

54. (C)
$$a^2 + b^2 + c^2 = 2(a - b - c) - 3$$

$$\Rightarrow a^2 + b^2 + c^2 - 2a + 2b + 2c + 1 + 1 + 1 = 0$$

$$\Rightarrow (a^2 - 2a + 1) + (b^2 + 2b + 1) + (c^2 + 2c + 1) = 0$$

$$\Rightarrow (a - 1)^2 + (b + 1)^2 + (c + 1)^2 = 0$$

$$\Rightarrow (a-1)^{-} + (b+1)^{-} + (c+1)^{-} -$$

$$\Rightarrow a-1=0 \Rightarrow a=1$$

and
$$b+1=0 \Rightarrow b=-1$$

and
$$c+1=0 \Rightarrow c=-1$$

Thus,
$$a - b + c = 1 + 1 - 1 = 1$$

55. (A)
$$x^2 + 3x + 1 = 0$$

$$\Rightarrow x + 3 + \frac{1}{x} = 0$$
 [Dividing by x]

$$\Rightarrow x + \frac{1}{x} = -3$$

On cubing both sides, we have

$$\left(x + \frac{1}{x}\right)^3 = (-3)^3$$

$$\Rightarrow x^3 + \frac{1}{x^3} + \left(x + \frac{1}{x}\right) = -27$$

$$\Rightarrow x^3 + \frac{1}{x^3} + 3(-3) = -27$$

$$\Rightarrow x^3 + \frac{1}{x^3} = -27 + 9 = -18$$

56. (D)
$$x^{a}.x^{b}.x^{c} = 1$$

 $\Rightarrow x^{a+b+c} = 1$

$$\Rightarrow \chi^{a+b+c} = \chi^0$$

$$\Rightarrow a + b + c = 0$$

$$\therefore a^3 + b^3 + c^3 = 3abc$$

(when a + b + c = 0, then $a^3 + b^3 + c^3 = 3abc$)

57. (C) Volume of pyramid = 1728

$$\frac{1}{3}$$
 × area of base × height = 1728

$$\Rightarrow \frac{1}{3} \times 24 \times 24 \times \text{height} = 1728$$

$$\Rightarrow$$
 height = $\frac{1728 \times 3}{24 \times 24}$ = 9 m

entres at:★MUKHERJEE NAGAR ★ MUNIRKA★UTTAM NAGAR★DILSHAD GARDEN ★ROHINI★ BADARPUR BORDER ★JAIPUR★GURGAON★NOIDA

58. (B) Here, $\triangle AO'B'$ and $\triangle AOB$ are similar. Let OO' = h and OB' = r

$$\therefore \quad \frac{AO}{AO'} \quad = \frac{OB}{A'B}$$

$$\Rightarrow \frac{9}{9-h} = \frac{3}{r}$$

$$\Rightarrow$$
 3r = 9 - h

$$\Rightarrow$$
 h = 9 - 3r

Now, volume of frustum = 44

$$\Rightarrow \quad \frac{1}{3} \pi h(R^2 + r^2 + Rr) = 44$$

$$\Rightarrow \frac{1}{3} \times \frac{22}{7} \times (9 - 3r)(9 + r^2 + 3r) = 44$$

$$\Rightarrow$$
 $(3-r)(9+r^2+3r)=2\times 7$

$$\Rightarrow 3^3 - r^3 = 14$$

$$\Rightarrow$$
 $r^3 = 27 - 14$

$$\Rightarrow$$
 $r^3 = 13$

$$\Rightarrow$$
 $r = \sqrt[3]{13}$ cm

59. (A) Let radii of first and second cylinders be 2r and 3r, respectively and their heights be 5h and 4h respectively.

> Then, ratio of their curved surface area $2\pi (2r) \times 5h : 2\pi (3r) \times 4h$

60. (C) Curved surface area

× Total surface area

$$=\frac{1}{3} \times 462$$

= 154 sq cm

Now, total surface area = 462 sq cm

$$\Rightarrow 2 \pi rh + 2 \pi r^2 = 462$$

$$\Rightarrow 154 + 2\pi r^2 = 462$$

$$\Rightarrow$$
 $2\pi r^2 = 308$

$$\Rightarrow \qquad r^2 = \frac{308 \times 7}{2 \times 22}$$

 $2 \pi rh = 154$ Again,

$$h = \frac{154}{2\pi r}$$

$$= \frac{154 \times 7}{2 \times 22 \times 7}$$

$$=\frac{7}{2}$$
 cm

Thus, volume of cylinder

$$= \pi r^2 h$$

$$= \frac{22}{7} \times 49 \times \frac{7}{2}$$
$$= 11 \times 49$$

61. (D) Curved surface area of cylinder = Curved surface area of cone

$$\Rightarrow \frac{2\pi rh}{2\pi l} = \frac{8}{5}$$

$$\Rightarrow \frac{h}{\sqrt{h^2 + r^2}} = \frac{4}{5}$$

$$\Rightarrow \frac{h^2}{h^2 + r^2} = \frac{16}{25}$$

$$\Rightarrow \frac{h^2 + r^2}{h^2} = \frac{25}{16}$$

$$\Rightarrow 1 + \frac{r^2}{h^2} = \frac{25}{16}$$

$$\Rightarrow \frac{r^2}{h^2} = \frac{9}{16}$$

$$\Rightarrow \frac{r}{h} = \frac{3}{4}$$

$$\Rightarrow r: h = 3:4$$

62. (D)

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★ MUNIRKA★UTTAM NAGAR★DILSHAD GARDEN ★ROHINI★ BADARPUR BORDER ★JAIPUR★GURGAON★NOIDA

Surface area of conical part
= Surface area of hemisphere

$$\pi r \sqrt{h^2 + r^2} = 2 \pi r^2$$

$$\sqrt{h^2 + r^2} = 2r$$

$$\Rightarrow h^2 + r^2 = 4r^2$$

$$\Rightarrow h^2 = 3r^2$$

$$\Rightarrow \frac{r^2}{h^2} = \frac{1}{3}$$

$$\Rightarrow \qquad \frac{r}{h} = \frac{1}{\sqrt{3}}$$

$$r: h = 1: \sqrt{3}$$

63. (D) Volume of prism = Area of base × height

$$108\sqrt{3} = \frac{\sqrt{3}}{4} \times (6)^2 \times \text{Height}$$

$$\Rightarrow \text{Height} = \frac{108 \times 4}{36}$$

64. (B)
$$a + \frac{1}{a} + 2 = 0$$

 $\Rightarrow a^2 + 1 + 2a = 0$
 $\Rightarrow (a + 1)^2 = 0$
 $\Rightarrow a = -1$

$$\therefore \quad \alpha^{37} - \frac{1}{\alpha^{100}} = -1 - \left(\frac{1}{1}\right)$$
$$= -1 - 1 =$$

65. (A) Given lines

$$(k-1)x + y - 2 = 0$$
 ... (i)
and $(2-k)x - 3y + 1 = 0$... (ii)
Since, the lines (i) and (ii) are parallel.

$$\frac{k-1}{2-k} = \frac{1}{-3}$$

$$\Rightarrow 3k-3 = -2+k$$

$$\Rightarrow 2k = 1$$

66. (C)

Let height = h

Then, length of shadow = $\frac{h}{\sqrt{3}}$ In the figure,

$$\Rightarrow \tan \theta = \frac{h}{\frac{h}{\sqrt{3}}}$$

$$\Rightarrow \tan \theta = \sqrt{3}$$

$$\Rightarrow \theta = 60^{\circ}$$

Given lines are x + 2y = 3 ... (i) and 3x - 2y = 1 ... (ii) Put x = 0

Then, from Eq. (i) $y = \frac{3}{2}$

from Eq. (ii)
$$y = -\frac{1}{2}$$

Distance between both the points

$$=\frac{3}{2}-\left(-\frac{1}{2}\right)=\frac{4}{2}=2$$
 units

68. (B)
$$x + \frac{1}{16x} = 1$$

 $4x + \frac{1}{4x} = 4$

Cubing both sides, we get

$$64x^3 + \frac{1}{64x^3} + 3.4x \cdot \frac{1}{4x} \left(4x + \frac{1}{4x} \right) = 64$$

$$\Rightarrow 64x^3 + \frac{1}{64x^3} + 3\left(4x + \frac{1}{4x}\right) = 64$$

$$\Rightarrow 64x^3 + \frac{1}{64x^3} = 64 - 3 \times 4$$

$$\left(\because 4x + \frac{1}{4x} = 4\right)$$

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★ MUNIRKA★UTTAM NAGAR★DILSHAD GARDEN ★ROHINI★ BADARPUR BORDER ★JAIPUR★GURGAON★NOIDA

69. (B) a + b + c = 0 $\Rightarrow a + c = -b$ On squaring both sides, $(a + c)^2 = (-b)^2$ $\Rightarrow a^2 + b^2 + 2ac = b^2$ $\Rightarrow a^2 + c^2 = b^2 - 2ac$ $a^2 + b^2 - 2ac$

Now,
$$\frac{a^{2} + b^{2} - 2ac}{b^{2} - ca}$$

$$= \frac{b^{2} + b^{2} - 2ac}{b^{2} - ac}$$

$$= \frac{2(b^{2} - ac)}{b^{2} - ac} = 2$$

70. (D) Given equations are

$$a^4 + a^2b^2 + b^4 = 8$$
 ... (i)
 $a^2 + ab + b^2 = 4$... (ii)
Squaring Eq. (ii), we get

 $(a^{2} + ab + b^{2})^{2} = (4)^{2}$ $a^{4} + a^{2}b^{2} + b^{4} + 2a^{3}b + 2a^{2}b^{2} + 2ab^{3} = 16$ $\Rightarrow 8 + 2ab(a^{2} + b^{2} + ab) = 16$ [Using eq. (i)]

$$\Rightarrow 2ab(a^2 + b^2 + ab) = 16$$
[Using eq. (ii)]
$$\Rightarrow 2ab \times 4 = 8 \text{ [using Eq. (ii)]}$$

$$\Rightarrow$$
 $ab = 1$

71. (D) We know the formula $a^{3} + b^{3} + c^{3} - 3abc$ $= (a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)$ $= \frac{1}{2}(a+b+c)(2a^{2}+2b^{2}+2c^{2}-2ab-2bc-2ca)$ $= \frac{1}{2}(a+b+c)\{(a-b)^{2}+(b-c)^{2}+(c+a)^{2}\}$

Now,
$$\frac{a^3 + b^3 + c^3 - 3abc}{(a-b)^2 + (b-c)^2 + (c-a)^2}$$

$$= \frac{1}{2} \frac{(a+b+c)\{(a-b)^2 + (b-c)^2 + (c-a)^2\}}{\{(a-b)^2 + (b-c)^2 + (c-a)^2\}}$$

$$= \frac{a+b+c}{2}$$

$$= \frac{25+15-10}{2} = \frac{30}{2} = 15$$

72. (D) In ΔACT,

$$\angle ACB = 180^{\circ} - (\angle CAT + \angle ATC)$$

= $180^{\circ} - (44^{\circ} + 40^{\circ})$
= 96°
 $\angle ACB = 180^{\circ} - \angle ACT$
= $180^{\circ} - 96^{\circ}$

Also, ∠ABC = ∠CAT = 44°

∴ In $\triangle ABC$, ⇒ $\angle BAC = 180^{\circ} - (\angle ABC + \angle ACB)$ = $180^{\circ} - (44^{\circ} + 84^{\circ})$ = $180^{\circ} - 128^{\circ}$ = 52°

In $\triangle OPM$, $OP^2 = PM^2 + OM^2$ = 25 + 144 = 169 $\Rightarrow OP = 13$

∴ Diameter of circle = 2 × OP = 2 × 13 = 26 cm

74. (C) Since, P, S, Q are the mid-points of AB and BC, therefore

$$\frac{AP}{AB} = \frac{PQ}{BC} = \frac{1}{2} \qquad \dots (i)$$

Now, $\frac{PR}{RQ} = \frac{1}{2}$

 $\Rightarrow \frac{2}{RQ} = \frac{1}{2}$ $\Rightarrow RQ = 4$

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★ MUNIRKA★UTTAM NAGAR★DILSHAD GARDEN ★ROHINI★ BADARPUR BORDER ★JAIPUR★GURGAON★NOIDA

 \therefore PQ = 2 + 4 = 6 cm Therefore, from Eq. (i),

$$\frac{6}{BC} = \frac{1}{2}$$

$$BC = 12 \text{ cm}$$

75. (A) Since. 'O' is the circumference of $\triangle ABC$, therefore

In ΔBOC,

$$OB = OC$$

$$\therefore$$
 \angle OCB = \angle OBC = 35°

∴
$$\angle BOC = 180^{\circ} - (\angle OCB + \angle OBC)$$

= $180^{\circ} - 70^{\circ}$

$$\therefore \angle BAC = \frac{1}{2} \angle BOC = \frac{1}{2} \times 100^{\circ} = 55^{\circ}$$

76. (C) In ∆BIC,

$$\Rightarrow \frac{1}{2} (\angle A + \angle C) = 180^{\circ} - 135^{\circ}$$

$$\Rightarrow \frac{1}{2}(\angle B + \angle C) = 45^{\circ}$$

$$\Rightarrow \angle B + \angle C = 90^{\circ}$$

$$\Rightarrow$$
 $\angle A = 90^{\circ}$

ΔABC is a right angled triangle.

77. (C)
$$\sin^2 \alpha + \sin^2 \beta = 2$$

$$\Rightarrow \sin \alpha = \sin \beta = 1 \quad (\because \sin \theta \le 1)$$

$$\Rightarrow \alpha = \beta = 90^{\circ}$$

$$\therefore \cos\left(\frac{\alpha+\beta}{2}\right) = \cos 90^{\circ} = 0$$

78. (D)
$$\cot \frac{\pi}{20} \cot \frac{3\pi}{20} \cot \frac{5\pi}{20} \cot \frac{7\pi}{20} \cot \frac{9\pi}{20}$$

$$= \cot\frac{\pi}{20}\cot\frac{3\pi}{20}\cot\frac{\pi}{4}\cot\left(\frac{\pi}{2} - \frac{3\pi}{20}\right)\cot\left(\frac{\pi}{2} - \frac{\pi}{20}\right)$$

$$= \cot \frac{\pi}{20} \cot \frac{3\pi}{20} \cot \frac{\pi}{4} \tan \frac{3\pi}{20} \tan \frac{\pi}{20} = 1$$

79. (D)
$$\sin \theta + \cos \theta = \frac{17}{13}$$

$$\Rightarrow (\sin\theta + \cos\theta)^2 = \frac{(17)^2}{(13)^2}$$

$$\Rightarrow \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = \frac{289}{169}...(i)$$

$$\Rightarrow 1 + 2\sin\theta\cos\theta = \frac{289}{169}$$

$$\Rightarrow$$
 $2\sin\theta\cos\theta = \frac{289}{169} - 1 = \frac{120}{169}$... (ii)

Again, from Eq. (i),

 $\sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta + 4\sin\theta\cos\theta$

$$=\frac{289}{169}$$

$$\Rightarrow (\sin \theta - \cos \theta)^2 + 4\sin \theta \cos \theta = \frac{289}{169}$$

$$\Rightarrow (\sin\theta - \cos\theta)^2 + 2 \times \frac{120}{169} = \frac{289}{169}$$

[using eq, (ii)]

$$\Rightarrow (\sin \theta - \cos \theta)^2 = \frac{289}{169} - \frac{240}{169} = \frac{49}{169}$$

$$\Rightarrow \sin \theta - \cos \theta = \frac{7}{13}$$

80. (C) $\tan \theta . \tan 2\theta = 1$

$$\Rightarrow \tan \theta \cdot \frac{2 \tan \theta}{1 - \tan^2 \theta} = 1$$

$$\Rightarrow$$
 2tan² = 1 - tan² θ

$$\Rightarrow$$
 3tan² θ = 1

$$\Rightarrow$$
 $\tan \theta = \frac{1}{\sqrt{3}}$

$$\Rightarrow$$
 $\theta = 30^{\circ}$

Now, $\sin^2 2\theta + \tan^2 \theta$ = $(\sin 60^\circ)^2 + (\tan 60^\circ)^2$

$$= \left(\frac{\sqrt{3}}{2}\right)^2 + (\sqrt{3})^2$$

$$=\frac{3}{4}+3$$

$$=\frac{3+12}{4}=\frac{15}{4}=3\frac{3}{4}$$

Ph: 011-27607854. (M) 8860-333-33

An ISO 9001: 2008 Certified Company

MUKHERJEE NAGAR ★ MUNIRKA★UTTAM NAGAR★DILSHAD GARDEN ★ROHINI★ BADARPUR BORDER ★JAIPUR★GURGAON★NOIDA

81. (C) Sales in 2008 = ₹ 5 crore Sales in 2006 = ₹ 6 crore

: Required percentage decrease

$$= \frac{6-5}{6} \times 100\%$$
$$= \frac{100}{6} \% = 16\frac{2}{3} \%$$

82. (B) Sales in 2002 = ₹ 2 crore Sales in 2007 = ₹ 6 crore

 \therefore Required ratio = 2 : 6 = 1 : 3

83. (A) Average sale of company _ Total sales of the company Number of years

$$= \frac{3+4+10+6+6}{5}$$

$$=\frac{29}{5}$$
 = ₹ 5.8 crore

84. (D) Sales in 2005 = ₹ 10 crore Sales in 2004 = ₹ 4 crore : Required percentage income

$$= \frac{10-4}{5} \times 100\%$$

 $=\frac{6}{4} \times 100\% = 150\%$ 85. (B) Total sales of company from 2005 to 2008

= ₹ (10 + 6 + 6 + 5) crore = ₹ 27 crore 86. (C) Range of number of students in activity IV

= 438 - 105 = 333Average of number of students in activity III per college

$$= \frac{65+130+420+75+540+220+153}{7}$$
$$= \frac{1603}{7} = 229$$

 \Rightarrow Required difference = 333 - 229 = 104

87. (D) Number of students in activity II = 100 + 200 + 200 + 100 + 100 + 100 + 100 = 900

> Number of students in activity IV = 317 + 155 + 438 + 105 + 385 + 280 + 120

∴ Required percentage = $\frac{900}{1800}$ × 100%

88. (B) The average number in the student in activities III

$$= \frac{65+130+420+75+540+220+153}{7}$$
$$= \frac{1603}{7} = 229$$

89. (A) Number of student in College D = 100 + 100 + 75 + 105 = 380College G = 200 + 100 + 153 + 120 = 573College F = 300 + 100 + 220 + 280 = 900College A = 200 + 100 + 65 + 317 = 682

Thus, college D has minimum number of students participate in extra-curricular activities.

90. (B) Total number of students in activity II = 100 + 200 + 200 + 100 + 100 + 100 + 100

Total number of students in activity I = 200 + 300 + 500 + 100 + 400 + 300 + 200= 2000

Thus, Required ratio = 900: 2000 9:20

91. (A) Total area under Bajra $18^{\circ} = 300 \text{ acres}$

Total area under Rice and Barely

$$(72^{\circ} + 36^{\circ}) \equiv \frac{300}{18} \times (72 + 36)$$

= $\frac{300}{18} \times 108 = 1800 \text{ acres}$

92. (A) Angle covered by Wheat, Rice and Maize $= 72^{\circ} + 72^{\circ} + 45^{\circ}$ $= 189^{\circ}$

> Which is greater than 180° Hence, area covered by these three crops is more than 50% of the total area.

93. (C) Required ratio

 $= \frac{\text{Land used for Rice}}{\text{Land used for Barely}}$

 $= \frac{\text{Angle covered by Rice}}{\text{Angle covered by Barely}}$

$$=\frac{72^{\circ}}{36^{\circ}}=\frac{2}{1}=2:1$$

94. (B) 10% of the land reserved for Rice $= 10\% \text{ of } 72^{\circ} = 7.2^{\circ}$

> It is distributed to Wheat and Barely in the ratio 2:1. Therefore, angle increased

> corresponding to Wheat = $\frac{2}{3} \times 7.2 = 4.8^{\circ}$

.. Now angle corresponding to Wheat

$$= 72^{\circ} + 4.8^{\circ}$$

= 76.8°

95. (A) Production of Rice = $5 \times \text{production of Jowar}$ Production of Bazra = $2 \times \text{production of Jowar}$ Required ratio

= Production of Rice: Production of Bazra = 5:2

96. (C) Total production of Rice and Wheat in state B = 10 + 2 = 12 lakh tonnes

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★ MUNIRKA ★UTTAM NAGAR ★ DILSHAD GARDEN ★ROHINI ★ BADARPUR BORDER ★JAIPUR ★GURGAON ★NOIDA

in state C = 4 + 4 = 8 lakh tonnes

in state D = 4 + 2 = 6 lakh tonnes

in state E = 2 + 6 = 8 lakh tonnes

- 97. (D) Total production of Rice in all the mentioned states
 - = (8 + 10 + 4 + 4 + 2)
 - = 28 lakh tonnes

Total production of wheat in all the mentioned states

- = (16 + 2 + 4 + 2 + 6) lakh tonnes
- = 30 lakh tonnes
- ∴ Required ratio = 28 : 30
 - = 14:15
- 98. (D) Difference between the production of Rice and Wheat in state A
 - = 8 16 = 8 lakh tonnes
 - in state B = 10 2 = 8 lakh tonnes
 - in state C = 4 4 = 0 lakh tonnes
 - in state D = 4 2 = 2 lakh tonnes
 - in state E = 2 6 = 4 lakh tonnes

Thus, difference is maximum for both the states A and B.

- 99. (B) From the given bar diagram, it is clear that state B is the largest producer of rice
- 100.(B) Average production of Rice
 - = Total production of Rice
 - Number of states
 - $=\frac{28}{5}$ = 5.6 lakh tonnes

An ISO 9001: 2008 Certified Company

SSC Mains Test- 21 (ANSWER KEY)

1.	(D)	21.	(B)	41.	(C)	61. (D)	81.	(C)
2.	(C)	22.	(D)	42.	(D)	62. (D)	82.	(B)
3.	(C)	23.	(D)	43.	(D)	63. (D)	83.	(A)
4.	(C)	24.	(B)	44.	(B)	64. (B)	84.	(D)
5.	(D)	25.	(D)	45.	(D)	65. (A)	85.	(B)
6.	(D)	26.	(C)	46.	(B)	66. (C)	86.	(C)
7.	(C)	27.	(C)	47.	(C)	67. (D)	87.	(D)
8.	(A)	28.	(A)	48.	(C)	68. (B)	88.	(B)
9.	(B)	29.	(D)	49.	(A)	69. (B)	89.	(A)
10.	(B)	30.	(D)	50.	(B)	70. (D)	90.	(B)
11.	(C)	31.	(B)	51.	(C)	71. (D)	91.	(A)
12.	(D)	32.	(D)	52.	(C)	72. (D)	92.	(A)
13.	(C)	33.	(C)	53.	(B)	73. (C)	93.	(C)
14.	(A)	34.	(A)	54.	(C)	74. (C)	94.	(B)
15.	(D)	35.	(B)	55.	(A)	75. (A)	95.	(A)
16.	(C)	36.	(B)	56.	(D)	76. (C)	96.	(C)
17.	(A)	37.	(B)	57.	(C)	77. (C)	97.	(D)
18.	(A)	38.	(A)	58.	(B)	78. (D)	98.	(D)
19.	(A)	39.	(D)	59.	(A)	79. (D)	99.	(B)
20.	(B)	40.	(B)	60.	(C)	80. (C)	100.	
								` '

Note: If your opinion differs regarding any answer please message the mock test no. and question no. to 8860330003