Paper Review

Prophet Attention: Predicting Attention with Future Attention

Liu et al., NeurIPS, 2020

Myeongsup Kim

Integrated M.S./Ph.D. Student
Data Science & Business Analytics Lab.
School of Industrial Management Engineering
Korea University

Myeongsup_kim@korea.ac.kr

- Image Captioning
- Deviated Focus

-Image Captioning

<COCO 2015 Image Captioning Task>

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

-Image Captioning

<Text Generation>

-Image Captioning

<Text Generation>

Introduction -Image Captioning <Attention> class **Weighted Sum Softmax LSTM LSTM LSTM LSTM LSTM LSTM** deep learning like advanced class

-Image Captioning

< Visual Text Generation >

-Image Captioning

<Visual Encoder>

-Deviated Focus

-Deviated Focus

-Deviated Focus

-Deviated Focus

-Deviated Focus

-Deviated Focus

-Deviated Focus

<Deviated Focus>

-Deviated Focus

<Deviated Focus>

<Grounding>

-Deviated Focus

<Deviated Focus>

<Generation>

Prophet Attention: Predicting Attention

Liu et al., NeurIPS, 2020

with Future Attention

- Attention-Enhanced Encoder-Decoder Framework
- Visual Encoder
- Attention-Enhanced Caption Decoder

-Attention-Enhanced Encoder-Decoder Framework

<Attention-Enhanced Encoder-Decoder Framework>

-Visual Encoder

<Visual Encoder>

$$V = \{v_1, v_2, \cdots, v_N\} \in \mathbb{R}^{d \times N}$$
$$\bar{v} = \frac{1}{k} \sum_{i=1}^k v_i$$

-Visual Encoder

<Visual Encoder>

$$\mathbf{V} = \{\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_N}\} \in \mathbb{R}^{d \times N}$$

$$\mathbf{v} = \frac{1}{k} \sum_{i=1}^{k} v_i$$

-Attention-Enhanced Caption Decoder

<Attention-Enhanced Caption Decoder>

 $\alpha_t = f_{Att}(h_t, V) = \operatorname{softmax}(w_\alpha \tanh(W_h h_t \oplus W_V V))$

 \bigoplus : *Matrix-Vector Addition*

 W_h : Hidden State, W_V : Visual Feature, w_{α} : Attention

Visual Feature Vectors

-Attention-Enhanced Caption Decoder

<Attention-Enhanced Caption Decoder>

 $\alpha_t = f_{Att}(h_t, V) = \operatorname{softmax}(w_{\alpha} \tanh(W_h h_t \oplus W_V V))$

 \bigoplus : *Matrix-Vector Addition*

 W_h : Hidden State, W_V : Visual Feature, w_α : Attention

-Attention-Enhanced Caption Decoder

$$c_t = V\alpha_t^T$$

$$y_t \sim p_t = softmax \left(W_p[h_t; c_t] + b_p\right)$$

$$W_p, b_p : Prediction$$

-Attention-Enhanced Caption Decoder

-Attention-Enhanced Caption Decoder

$$\mathcal{L}_{CE}(\theta) = -\sum_{t=1}^{T} \log(p_{\theta}(y_{t}^{*} \mid y_{1:t-1}^{*}))$$

-Attention-Enhanced Caption Decoder

$$\mathcal{L}_{CE}(\boldsymbol{\theta}) = -\sum_{t=1}^{T} \log(\boldsymbol{p}_{\boldsymbol{\theta}}(\boldsymbol{y}_{t}^{*} | \boldsymbol{y}_{1:t-1}^{*}))$$

-Attention-Enhanced Encoder-Decoder Framework

<Attention-Enhanced Encoder-Decoder Framework>

$$V = \{v_1, v_2, \cdots, v_N\} \in \mathbb{R}^{d \times N}$$

$$\bar{v} = \frac{1}{k} \sum_{i=1}^{k} v_i$$

$$h_t = \text{LSTM}(h_{t-1}, [W_e \ y_{t-1}; \ \bar{v}])$$

$$\alpha_t = f_{Att}(h_t, V) = \text{softmax} \ (w_\alpha \ \text{tanh}(W_h h_t \ \oplus \ W_V V))$$

$$c_t = V \alpha_t^T$$

$$y_t \sim p_t = softmax \ (W_p[h_t; c_t] \ + b_p)$$

$$\mathcal{L}_{CE}(\theta) = -\sum_{t=1}^{T} \log(p_\theta(\ y_t^* \ |\ y_{1:t-1}^*))$$

Model

- Prophet Attention
- Constant Prophet Attention
- Dynamic Prophet Attention

-Attention-Enhanced Encoder-Decoder Framework

<Attention-Enhanced Encoder-Decoder Framework>

-Attention-Enhanced Encoder-Decoder Framework

<Attention-Enhanced Encoder-Decoder Framework>

-Attention-Enhanced Encoder-Decoder Framework

< Attention-Enhanced Encoder-Decoder Framework >

- Prophet Attention

<Overall Architecture>

- Prophet Attention

<Prophet Attention>

$$\hat{a}_t = f_{Prophet}(h'_{i:j}, V) = \frac{1}{j-i+1} \sum_{k=i}^{j} f_{Att}(h'_k, V), where j \ge t$$

<Visual Attention>

- Prophet Attention

<Prophet Attention>

$$\hat{a}_t = f_{Prophet}(N_i, V) = \frac{1}{j-i+1} \sum_{k=i}^{j} f_{Att}(N_k, V)$$
, where $j \ge t$

<Visual Attention>

- Prophet Attention

<Prophet Attention>

$$\hat{\boldsymbol{a}}_{t} = f_{Prophet}(\boldsymbol{h}_{t,j}', \boldsymbol{V}) = \frac{1}{j-i+1} \sum_{k=i}^{J} \boldsymbol{f}_{Att}(\boldsymbol{h}_{k}', \boldsymbol{V}), where j \ge t$$

<Visual Attention>

- Prophet Attention

<Prophet Attention>

<Visual Attention>

- Prophet Attention

<Prophet Attention>

$$\mathcal{L}_{Att}(\theta) = \sum_{t=1}^{T} \|\boldsymbol{\alpha_t} - \hat{\boldsymbol{\alpha}_t}\|_1$$

<Visual Attention>

- Prophet Attention

<Prophet Attention>

$$\mathcal{L}_{Att}(\boldsymbol{\theta}) = \sum_{t=1}^{T} \|\boldsymbol{\alpha_t} - \widehat{\boldsymbol{\alpha}_t}\|_1$$

<Visual Attention>

- Prophet Attention

<Prophet Attention>

- Prophet Attention

<Prophet Attention>

$$\hat{\boldsymbol{c}} = V \hat{\boldsymbol{\alpha}_t^T}, \qquad y_t \sim p_t = \operatorname{softmax}(\boldsymbol{W_p}[\boldsymbol{h_t}; \hat{\boldsymbol{c}_t}] + \boldsymbol{b_p}), \qquad \hat{\mathcal{L}}_{CE}(\boldsymbol{\theta}) = -\sum_{t=1}^{T} \log(\boldsymbol{p_\theta}(y_t^* \mid y_{1:t-1}^*))$$

< Visual Attention >

- Prophet Attention

<Prophet Attention>

$$\mathcal{L}_{Full}(\theta) = \mathcal{L}_{CE}(\theta) + \hat{\mathcal{L}}_{CE}(\theta) + \lambda \mathcal{L}_{Att}(\theta)$$

<Visual Attention>

- Prophet Attention

<Prophet Attention>

$$\mathcal{L}_{Full}(\theta) = \mathcal{L}_{CE}(\theta) + \hat{\mathcal{L}}_{CE}(\theta) + \lambda \mathcal{L}_{Att}(\theta)$$

<Visual Attention>

- Constant Prophet Attention

<Constant Prophet Attention>

$$\hat{a}_t = f_{Prophet}(h'_{i:j}, V) = f_{Att}(h'_t, V), where i = j = t$$

- Constant Prophet Attention

<Constant Prophet Attention>

$$\hat{a}_t = f_{Prophet}(h'_{i:j}, V) = f_{Att}(h'_t, V), where i = j = t$$

<Visual Attention>

- Dynamic Prophet Attention

<Dynamic Prophet Attention>

$$\hat{a}_{t} = f_{Prophet}(h'_{i:j}, V) = \begin{cases} \frac{1}{n-m} \sum_{k=m}^{n} f_{Att}(h'_{k}, V), & \text{if } y_{t} \in NP: y_{m:n} \\ MASK, & \text{if } y_{t} \in NV: \{y_{NV}\} \\ f_{Att}(h'_{t}, V), & \text{otherwise} \end{cases}$$

 $NP: Noun\ Phrase, \qquad NV: Non-Visual$

<Visual Attention>

- Results

- Results

<Result>

Methods	Flickr30k Entities						Madhada	MSCOCO				
	F1 _{all}	F1 _{loc}	B-4	M	С	S	Methods	B-4	M	R-L	С	S
NBT [33] Up-Down [2] GVD [59] Cyclical [35] [‡]	- 4.53 3.88 4.98	13.0 11.7 13.53	27.1 27.3 26.9 27.4	21.7 21.7 22.1 22.3	57.5 56.6 60.1 61.4	15.6 16.0 16.1 16.6	Up-Down [2] ORT [17] AoANet [20] X-Trans. [38] [‡]	36.3 38.6 38.9 39.7	27.7 28.7 29.2 29.5	56.9 58.4 58.8 59.1	120.1 128.3 129.8 132.8	21.4 22.6 22.4 23.4
Up-Down* w/ DPA	4.19 5.45 [†]	12.1 15.3 [†]	26.4 27.2 [†]	21.5 22.3 [†]	57.0 60.8 [†]	15.6 16.3 [†]	Up-Down* w/ DPA	36.7 38.6 [†]	27.9 29.1 [†]	57.1 58.3 [†]	123.5 129.0 [†]	21.3 22.2 [†]
GVD* w/ DPA	3.97 4.79 [†]	11.8 15.5 [†]	26.6 27.6 [†]	22.1 22.6 [†]	59.9 62.7 [†]	16.3 16.7 [†]	AoANet* w/ DPA	38.8 40.5 [†]	29.0 29.6 [†]	58.7 59.2 [†]	129.6 133.4 [†]	22.6 23.3 [†]

<Performance of Offline Evaluation on the Flickr30k Entities and the MSCOCO Image Captioning Datasets>

- Results

<MSCOCO Benchmark>

Mada da	BLEU-1		BLEU-2		BLEU-3		BLEU-4		METEOR		ROUGE-L		CIDEr	
Methods	c5	c40	c5	c40	c5	c40								
Up-Down [2]	80.2	95.2	64.1	88.8	49.1	79.4	36.9	68.5	27.6	36.7	57.1	72.4	117.9	120.5
GLIED [28]	80.1	94.6	64.7	88.9	50.2	80.4	38.5	70.3	28.6	37.9	58.3	73.8	123.3	125.6
SGAE [54]	81.0	95.3	65.6	89.5	50.7	80.4	38.5	69.7	28.2	37.2	58.6	73.6	123.8	126.5
GCN-LSTM [55]	-	-	65.5	89.3	50.8	80.3	38.7	69.7	28.5	37.6	58.5	73.4	125.3	126.5
AoANet [20]	81.0	95.0	65.8	89.6	51.4	81.3	39.4	71.2	29.1	38.5	58.9	74.5	126.9	129.6
\mathcal{M}^2 Trans. [10] [‡]	81.6	96.0	66.4	90.8	51.8	82.7	39.7	72.8	29.4	39.0	59.2	74.8	129.3	132.1
X-Trans. [38] [‡]	81.9	95.7	66.9	90.5	52.4	82.5	40.3	72.4	29.6	39.2	59.5	75.0	131.1	133.5
Ours	81.8	96.3	66.5	91.2	51.9	83.2	39.8	73.3	29.6	39.3	59.4	75.1	130.4	133.7

< Highest Ranking Published Image Captioning Results on the Online MSCOCO Test Server>

- Results

<Grounding Performance>

Datasets	vs. Models	Baseline wins (%)	Tie (%)	w/ DPA wins (%)
Flickr30k Entities	Up-Down	19.6	46.8	33.6
	GVD	23.6	44.4	32.0
MSCOCO	Up-Down	22.0	40.4	37.6
	AoANet	26.4	38.8	34.8

<Grounding Performance of Human Evaluation>

- Results

<Grounding Performance>

Categories	"w/ CPA" wins (%)	Tie (%)	"w/ DPA" wins (%)
Object	25.8	44.6	29.6
Relationship	25.0	46.6	28.4
Attribute	21.2	43.0	35.8

Baseline: a boy standing in front of a suitcase.

Baseline:

a plate on

a table.

w/ CPA: a *smiling* boy is pu*lling* a pink backpack.

w/ DPA: a smiling boy in a red coat is standing in a living room.

Reference: a pretty woman in a white bikini holding a surfboard over her head.

Ours: a man walking on the beach with a white surfboard.

w/ CPA: a pizza on white plate with a fork sitting on a

w/ DPA: a pizza on white plate with toppings and a fork on a table.

Reference: a number of street signs on a pole.

Ours: a stop sign and a group of street signs sitting on a tree.

< Results of Human Evaluation on the MSCOCO Dataset in terms of Object>

- Results

<Application in Other Tasks>

Mathada	Parap	hrase	Video Captioning			
Methods	BLEU	METEOR	CIDEr			
Baseline w/ DPA		23.5 26.8 (+3.3)	48.9 52.2 (+3.3)			

<Results of Paraphrase and Video Captioning Task>

Conclusion

Conclusion

<Conclusion>

- Proposed Prophet Attention to enable attention models to correctly ground words that are to be generated to proper image regions.
- Evaluated Prophet Attention for image captioning on the Flickr30k Entities and the MSCOCO datasets and Achieved the 1st place on the leaderboard.
- Attempted to adapt Prophet Attention to other language generation task and obtained positive experimental results on paraphrase generation and video captioning tasks.

Any Questions?

Thank You