CS698W: Topics in Game Theory and Collective Choice

Midterm – Semester 1, 2017-18. Computer Science and Engineering Indian Institute of Technology Kanpur Solution to selected problem(s)

5. Consider a setting with n agents, where n is odd, and three facilities $\{a, b, c\} =: A$. Assume the locations of the facilities on a real line have a linear order \leq such that a < b < c. Let the preferences P_i of every agent i belong to $\mathcal{P}^{\text{SP}} := \{P : P \text{ is a strict preference and single peaked w.r.t. } \leq\}$. Consider the pairwise majority social welfare function $F^{\text{Maj}} : \mathcal{P}^{\text{SP},n} \mapsto \mathcal{P}^{\text{SP}}$ which, $\forall a, b \in A$, ranks $aF^{\text{Maj}}(P)b$ if

$$|\{i: aP_i^{SP}b\}| > |\{i: bP_i^{SP}a\}|.$$

That is, F^{Maj} reflects the majority ranking between every pair of alternatives.

- (a) Prove that F^{Maj} returns a well-defined ordering, i.e., it is complete and transitive. To show transitivity, one needs to show that there cannot be a case where $\exists P \in \mathcal{P}^{\text{SP},n}$ such that $aF^{\text{Maj}}(P)b$ and $bF^{\text{Maj}}(P)c$ and $cF^{\text{Maj}}(P)a$ pairwise majority leading to a cycle. Such a social welfare function is called *Condorcet consistent*. This also shows that a *Condorcet winner* (an alternative that is undefeated by every other alternative in pairwise majority) exists for single peaked preferences. [*Hint*: consider a proof by contradiction]
- (b) Is F^{Maj} single peaked? Argue why.

Recall: A preference relation P is single peaked w.r.t. an ordering \leq of the alternatives if there exists an alternative x_P such that:

if
$$y < z \leqslant x_p$$
 then zPy if $x_p \leqslant z < y$ then zPy .

10 + 10 points.

A solution:

Part 1: The completeness of F^{Maj} is immediate since there are odd number of agents, for every $P \in \mathcal{P}^{\text{SP},n}$ and every pair $a, b \in A$ either $aF^{\text{Maj}}(P)b$ or $bF^{\text{Maj}}(P)a$ but not both.

We show transitivity as follows. Since the domain of the social choice function consists of preferences that are strict orderings and single peaked w.r.t. \leq , there are fewer possible preferences in the set \mathcal{P}^{SP} given by (we denote \succ to denote a general preference ordering in this domain):

$$a \succ b \succ c$$
 group 1
 $b \succ a \succ c$ group 2
 $b \succ c \succ a$ group 3
 $c \succ b \succ a$ group 4

Suppose for contradiction F^{Maj} is not transitive. Hence at least one of the cases below must hold where F^{Maj} returns a cycle.

Case 1: Suppose $\exists P \in \mathcal{P}^{SP,n}$, s.t. $a F^{Maj}(P) b F^{Maj}(P) c F^{Maj}(P) a$: Call the number of agents in group i in Eq. 1 by n_i , i = 1, 2, 3, 4. Since $c F^{Maj}(P) a$, it must be the case that $n_3 + n_4 \geqslant \frac{n+1}{2}$, and hence $n_1 + n_2 \leqslant \frac{n-1}{2}$. But since $a F^{Maj}(P) b$ as well, it must be the case that $n_1 \geqslant \frac{n+1}{2}$. But this is a contradiction. Hence this case cannot occur.

Case 2: Suppose $\exists P \in \mathcal{P}^{SP,n}$, s.t. $b F^{Maj}(P) a F^{Maj}(P) c F^{Maj}(P) b$: Since $a F^{Maj}(P) c$, it implies $n_3 + n_4 \leqslant \frac{n-1}{2}$. But since $c F^{Maj}(P) b$, $n_4 \geqslant \frac{n+1}{2}$, which is a contradiction.

Case 3: Suppose $\exists P \in \mathcal{P}^{SP,n}$, s.t. $a F^{Maj}(P) c F^{Maj}(P) b F^{Maj}(P)$ a: equivalent to Case 2.

Case 4: Suppose $\exists P \in \mathcal{P}^{SP,n}$, s.t. $b F^{Maj}(P) c F^{Maj}(P) a F^{Maj}(P) b$: equivalent to Case 1.

Case 5: Suppose $\exists P \in \mathcal{P}^{SP,n}$, s.t. $c F^{Maj}(P) \ a F^{Maj}(P) \ b F^{Maj}(P) \ c$: equivalent to Case 1.

Case 6: Suppose $\exists P \in \mathcal{P}^{SP,n}$, s.t. $c F^{Maj}(P) b F^{Maj}(P) a F^{Maj}(P) c$: equivalent to Case 2.

Part 2: Suppose F^{Maj} is not single peaked. We consider the case where $a F^{\text{Maj}}(P) c F^{\text{Maj}}(P) b$ for some P (the other case, $c F^{\text{Maj}}(P) a F^{\text{Maj}}(P) b$ for some P is symmetric).

Since $a F^{\text{Maj}}(P) c$, then at least $\frac{n+1}{2}$ agents place a above c. As the preferences are single peaked with a < b < c, it implies that those $\frac{n+1}{2}$ agents place b above c as well. But that contradicts the fact that $c F^{\text{Maj}}(P) b$. Hence F^{Maj} must be single peaked.