Decrease & Conquer

Variable Size Decrease

The size-reduction pattern varies from one iteration of algorithm to another.

Example: Euclid's algorithm for computing the gcd(m, n)

 $gcd(m, n) = gcd(n, m \mod n)$

Selection Problem

The selection problem: Find the kth smallest element in the list of n numbers. This number is called kth order statistic.

- k = 1: find the smallest element
- k = n: find the **largest element**
- $k = \lfloor n/2 \rfloor$: find the **median**

Example: Given 4, 1, 10, 9, 7, 12, 8, 2, 15. **Median?**

Selection Problem

- We can find the kth smallest element in a list by sorting the list first, and then selecting the kth element.
- The time of such an algorithm is determined by the efficiency of the sorting algorithm used.
- For instance, mergesort: O(n log n)

• We can take advantage of the idea of partitioning a given list around some value p.

Partitioning

Partitioning a list around some value p (pivot) is a rearrangement of the list's elements so that

- the left part contains all the elements $\leq p$
- followed by the pivot p itself
- the right part contains all elements $\geq p$.

$$\leq p$$
 $p \leq$

A subarray A[l..r] $(0 \le l < r \le n)$ is composed of three contiguous segments followed pivot p:

- a segment with elements smaller than p
- a segment with elements greater than or equal to p
- a segment with elements yet to be compared to p

l m i i

$$p ?$$

- 1. Start with i = l + 1, scan the subarray A[l..r] left to right.
- 2. On each iteration, compare first element A[i] in the third segment with the pivot p.
- 3. If $A[i] \ge p$, increment i to expand the second segment, shrinking the third segment.
- 4. If A[i] < p, the first segment needs to be expanded: increment m, the index of the last element of the first segment, and swap A[i] and A[m], then increment i to point the first element in the third segment.

5. After no unprocessed element remain, swap A[m] with the pivot p to finish the partitioning.

5. After no unprocessed element remain, **swap** A[m] with the pivot p to finish the partitioning.


```
Algorithm LomutoPartition(A|l..r|)
   // Input: A subarray A[l..r] of A[0..n]
   //Output: Partition of A[l..r] and new position of p
   p \leftarrow A[l]; m \leftarrow l
   for i \leftarrow l + 1 to r do
      if A[i] < p
          m \leftarrow m + 1; swap(A[m], A[i])
   swap(A[l], A[m])
   return m
```

 \mathbf{l}

- 1. If m = k 1, the pivot p is the kth smallest element
- 2. If m > k 1, kth smallest element can be found in the left part
- 3. If m < k 1, kth smallest element can be found as the (k m)th smallest element in the right part

```
Algorithm Quickselect(A[l., r], k)
  // Input: A subarray A[l..r] of A[0..n]
  //Output: The value of kth smallest element in A[l..r]
  m \leftarrow LomutoPartition(A[l..r])
  if m = k - 1 return A[m]
  else if m > k - 1
     Quickselect(A[l.. m - 1], k)
  else Quickselect(A[m + 1..r], k - 1 - m)
```

l,m	i							r
0	1	2	3	4	5	6	7	8
4	1	10	8	7	12	9	2	15

l	m,i							r
0	1	2	3	4	5	6	7	8
4	1	10	8	7	12	9	2	15

1	m	i						r
0	1	2	3	4	5	6	7	8
4	1	10	8	7	12	9	2	15

	m							I .
		2						
4	1	10	8	7	12	9	2	15

1	m		i					r
0	1	2	3	4	5	6	7	8
4	1	10	8	7	12	9	2	15

_	1	m 		1					r
			2						
	4	1	10	8	7	12	9	2	15

l 	m			i 				r
0	1	2	3	4	5	6	7	8
4	1	10	8	7	12	9	2	15

4	1	10	8	7	12	9	2	15
0	1	2	3	4	5	6	7	8
l	m			i				r

1	m				i			r
0	1	2	3	4	5	6	7	8
4	1	10	8	7	12	9	2	15

<u> </u>	m				i			r
0	1	2	3	4	5	6	7	8
4	1	10	8	7	12	9	2	15

		2	_					
4	1	10	8	7	12	9	2	15

		2	_		_		_	_
4	1	10	8	7	12	9	2	15

l	m						i	r
0	1	2	3	4	5	6	7	8
4	1	10	8	7	12	9	2	15

1		m					i	r
0	1	2	3	4	5	6	7	8
4	1	10	8	7	12	9	2	15

	l		m					i	r
•	0	1	2	3	4	5	6	7	8
	4	1	2	8	7	12	9	10	15

1		m						i, r
0	1	2	3	4	5	6	7	8
4	1	2	8	7	12	9	10	15

1		m						i, r
0	1	2	3	4	5	6	7	8
4	1	2	8	7	12	9	10	15

l		m						i, r
0	1	2	3	4	5	6	7	8
2	1	4	8	7	12	9	10	15

1		m						r
	1							
2	1	4	8	7	12	9	10	15

$$2 < 5 - 1 = 4$$

			l, m	i				r
0	1	2	3	4	5	6	7	8
2	1	4	8	7	12	9	10	15

			l	m, i				r
0	1	2	3	4	5	6	7	8
2	1	4	8	7	12	9	10	15

Example: 4, 1, 10, 8, 7, 12, 9, 2, 15, k = 5

 l
 m
 i
 r

 0
 1
 2
 3
 4
 5
 6
 7
 8

 2
 1
 4
 8
 7
 12
 9
 10
 15

			1	m	i			r
0	1	2	3	4	5	6	7	8
2	1	4	8	7	12	9	10	15

			1	m		i		r
0	1	2	3	4	5	6	7	8
2	1	4	8	7	12	9	10	15

			1	m		i		r
0	1	2	3	4	5	6	7	8
2	1	4	8	7	12	9	10	15

			1	m			i	r
0	1	2	3	4	5	6	7	8
2	1	4	8	7	12	9	10	15

			1	m			i	r
0	1	2	3	4	5	6	7	8
2	1	4	8	7	12	9	10	15

			1	m				i, r
0	1	2	3	4	5	6	7	8
2	1	4	8	7	12	9	10	15

			1	m				i, r
0	1	2	3	4	5	6	7	8
2	1	4	8	7	12	9	10	15

			1	m				i, r
0	1	2	3	4	5	6	7	8
2	1	4	7	8	12	9	10	15

$$4 = 5 - 1$$

Example: 4, 1, 10, 8, 7, 12, 9, 2, 15, k = 5

0 1 2 3 4 5 6 7 8

m

The efficiency of Quickselect:

 best case: partitioning an n-element array always requires n — 1 comparison

$$C_b(n) = n - 1 \in \Theta(n)$$

• worst case: one part always empty and the other part contains n-1 elements, which can happen on each of the n-1 iterations; if k=n:

$$C_w(n) = (n-1) + (n-2) + \dots + 1 = \frac{n(n-1)}{2} \in \Theta(n^2)$$

Exercise

Apply quickselect to find the median of the list of numbers:

9, 12, 5, 17, 20, 30, 8