Esame di Ricerca Operativa del 06/02/17

	(C	Cognome)				(No	me)			(Num	ero d Matric	ola)
Esercizio	1. Con	npletare la	a seguente tabe	lla con	sideran	ndo il p	roblem	a di p	rogran	nmazione line	eare:	
					$\begin{array}{c} \max & x_1 - \\ -x_1 - \\ x_1 + \\ 3 x_1 - \\ -x_1 - \\ 2 x \\ x_1 - \end{array}$	$7 x_{1} - x_{2} \le 1$ $-x_{2} \le 1$ $-x_{2} \le 2 x_{2} \le -x_{2} \le 1$ $+x_{2} \le 1$ $x_{1} - x_{2} \le 1$ $2 x_{2} \le 1$	$ \begin{array}{r} 6 \ x_2 \\ 2 \\ 6 \\ -5 \\ 20 \\ -7 \\ \leq 4 \\ 24 \end{array} $					
	Base	Soluzion	ne di base							Ammissibile	Degenere	
										(si/no)	(si/no)	
-	$\{1, 2\}$	x =										
	$\{1, 3\}$	y =										
Esercizio	2. Effe	ttuare du	e iterazioni dell	'algori	tmo de	l simpl	esso pr	rimale	per il	problema del	l'esercizio 1.	
		Base	x			\overline{y}		Iı	ndice	Ra	pporti	Indice
								us	scente			entrant
1° iterazio	one	$\{2,6\}$										
2° iterazio	one											
			A B	vo di d	Mar *	imanal Mer *		Ven *		n lavoro (set		ogetto in
		h max l	C avoro (giorn.)	* 6	* 5	*	7	* 5		6		
variabili d modello:	ecisiona	ali:										
				CO	MAND	DI DI M	[ΔTΙ A	R				
C=					WIAINL	<u>11 171 18</u>	iai la	LD				
A=							b=					
Aeg=							hea	=				

ub=

1b=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,5)$				
(3,5) $(4,6)$ $(6,7)$	(2,3)	x =		
(1,2) (2,5) (3,7)				
(4,3) (5,7) (6,7)	(1,4)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (2,5) (3,5) (3,7) (4,6)	
Archi di U	(5,7)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 6 x_1 + 12 x_2 \\ 11 x_1 + 6 x_2 \le 63 \\ 7 x_1 + 17 x_2 \le 48 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	15	26	66	47
2		99	58	58
3			12	9
4				15

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

5-albero:	$v_I(I)$	P) =

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo:			$v_S(P) =$

c) Applicare il metodo del Branch and Bound, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{23} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_1^2 + x_2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 4 \le 0, -x_1^2 - x_2^2 + 1 \le 0}.$$

Soluzioni del sister	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(\frac{\sqrt{15}}{2},\ -\frac{1}{2}\right)$							
$\left(-\frac{\sqrt{15}}{2},\ -\frac{1}{2}\right)$							
(0, -2)							
$\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$							
$\left(-\frac{\sqrt{3}}{2},\ -\frac{1}{2}\right)$							
(0, -1)							
(0, 1)							
(0, 2)							

Esercizio 10. Si consideri il seguente problema:

problema:
$$\begin{cases} \min \ -4 \ x_1 \ x_2 - 4 \ x_2^2 + 7 \ x_1 + 4 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-2,5), (1,3), (-5,4) e (3,-4). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(\frac{1}{4}, \frac{4}{4}\right)$						
(3, 3)						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max \ 7 \ x_1 - 6 \ x_2 \\ x_1 - x_2 \le 12 \\ -x_1 - x_2 \le 6 \\ x_1 + 2 \ x_2 \le -5 \\ 3 \ x_1 - x_2 \le 20 \\ -x_1 + x_2 \le -7 \\ -2 \ x_1 - x_2 \le 4 \\ x_1 - 2 \ x_2 \le 24 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (3, -9)	SI	NO
{1, 3}	$y = \left(\frac{20}{3}, 0, \frac{1}{3}, 0, 0, 0, 0\right)$	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{2, 6}	(2, -8)	(0, 19, 0, 0, 0, -13, 0)	6	$1, \frac{3}{2}, 2$	1
2° iterazione	{1, 2}	(3, -9)	$\left(\frac{13}{2}, -\frac{1}{2}, 0, 0, 0, 0, 0\right)$	2	$\frac{20}{3}$, 2	4

Esercizio 3.

Variabili decisionali:

Indichiamo con i = 1, 2, 3 i progetti X, Y e Z rispettivamente e con j = 1, 2, 3, 4, 5, i giorni della settimana dal lunedi al venerdi.

Sia
$$C = \{(1,1), (1,3), (1,4), (2,2), (2,4), (2,5), (3,1), (3,2), (3,3), (3,5)\}.$$

 $x_{ij} = \text{ore dedicate al progetto } i \text{ nel giorno } j, (i,j) \in C;$

Modello:

$$\begin{cases} \max \sum_{(i,j) \in C} x_{ij} \\ x_{11} + x_{13} + x_{14} \ge 4 \\ x_{22} + x_{24} + x_{25} \ge 5 \\ x_{31} + x_{32} + x_{33} + x_{35} \ge 6 \\ x_{11} + x_{31} \le 6 \\ x_{22} + x_{32} \le 5 \\ x_{13} + x_{33} \le 4 \\ x_{14} + x_{24} \le 7 \\ x_{25} + x_{35} \le 5 \\ x_{ij} \ge 0, \ (i,j) \in C \end{cases}$$

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,5)$				
(3,5) $(4,6)$ $(6,7)$	(2,3)	x = (0, -8, 15, 5, 0, 3, 0, 0, 13, 0, 10)	NO	SI
(1,2) (2,5) (3,7)				
(4,3) (5,7) (6,7)	(1,4)	$\pi = (0, 10, 23, 17, 19, 18, 28)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) $(1,4)$ $(2,5)$ $(3,5)$ $(3,7)$ $(4,6)$	(1,3) (1,4) (2,5) (3,5) (3,7) (4,6)
Archi di U	(5,7)	(5,7)
x	(2, 0, 5, 0, 7, 2, 4, 0, 3, 6, 0)	(0, 2, 5, 0, 5, 4, 4, 0, 3, 6, 0)
π	(0, 10, 13, 8, 19, 17, 18)	(0, 7, 10, 8, 16, 17, 15)
Arco entrante	(1,3)	(5,7)
ϑ^+,ϑ^-	2 , 2	2, 4
Arco uscente	(1,2)	(3,7)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		4		6		6 2	2	ę	}	7	7	E	j
nodo 2	15	1	15	1	15	1	15	1	15	1	15	1	15	1
nodo 3	16	1	15	4	15	4	15	4	15	4	15	4	15	4
nodo 4	6	1	6	1	6	1	6	1	6	1	6	1	6	1
nodo 5	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	34	2	29	3	29	3	29	3
nodo 6	$+\infty$	-1	14	4	14	4	14	4	14	4	14	4	14	4
nodo 7	$+\infty$	-1	$+\infty$	-1	26	6	26	6	24	3	24	3	24	3
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 3	, 6	2, 3	, 7	3, 5	5, 7	5,	7	Ę	5	()

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	6	(0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0)	6
1 - 2 - 5 - 7	6	(6, 6, 0, 0, 6, 0, 6, 0, 0, 6, 0)	12
1 - 4 - 6 - 7	10	(6, 6, 10, 0, 6, 0, 6, 0, 10, 6, 10)	22

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 6 \ x_1 + 12 \ x_2 \\ 11 \ x_1 + 6 \ x_2 \le 63 \\ 7 \ x_1 + 17 \ x_2 \le 48 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{27}{5}, \frac{3}{5}\right)$$
 $v_S(P) = 39$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(5,0)$$
 $v_I(P) = 30$

c) Calcolare un taglio di Gomory.

$$\begin{vmatrix} r = 1 \\ r = 2 \end{vmatrix}$$

$$8x_1 + 17x_2 \le 53$$

$$11x_1 + 7x_2 \le 63$$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	15	26	66	47
2		99	58	58
3			12	9
4				15

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

5-albero: $(1,2)(1,3)(3,4)(3,5)(4,5)$	$v_I(P) = 77$
---------------------------------------	---------------

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo:
$$1 - 2 - 4 - 3 - 5$$
 $v_S(P) = 141$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{23} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_1^2 + x_2$ sull'insieme

$$\{x \in \mathbb{R}^2: x_1^2 + x_2^2 - 4 \le 0, -x_1^2 - x_2^2 + 1 \le 0\}.$$

Soluzioni del sister	Mass	imo	Mini	mo	Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(\frac{\sqrt{15}}{2}, -\frac{1}{2}\right)$	(1,0)		NO	NO	SI	SI	NO
$\left(-\frac{\sqrt{15}}{2},\ -\frac{1}{2}\right)$	(1,0)		NO	NO	SI	SI	NO
(0, -2)	$\left(\frac{1}{4},0\right)$		NO	NO	NO	S	NO
$\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$	(0,-1)		NO	NO	NO	NO	SI
$\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$	(0,-1)		NO	NO	NO	NO	SI
(0, -1)	$\left(0,-\frac{1}{2}\right)$		NO	SI	NO	NO	NO
(0, 1)	$\left(0,\frac{1}{2}\right)$		NO	NO	NO	NO	SI
(0, 2)	$\left(-\frac{1}{4},0\right)$		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -4 \ x_1 \ x_2 - 4 \ x_2^2 + 7 \ x_1 + 4 \ x_2 \\ x \in P \end{cases}$$

 $\mathrm{dove}\,P\,\,\mathrm{\grave{e}}\,\,\mathrm{il}\,\,\mathrm{poliedro}\,\,\mathrm{di}\,\,\mathrm{vertici}\,\,(-2,5)\,\,,\,(1,3)\,\,,\,(-5,4)\,\,\mathrm{e}\,\,(3,-4).\,\,\mathrm{Fare}\,\,\mathrm{una}\,\,\mathrm{iterazione}\,\,\mathrm{del}\,\,\mathrm{metodo}\,\,\mathrm{del}\,\,\mathrm{gradiente}\,\,\mathrm{proiettato}.$

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(\frac{1}{3}, -\frac{4}{3}\right)$	(-1, -1)	$\begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$	$\left(\frac{1}{2}, -\frac{1}{2}\right)$	$\frac{16}{3}$	$\frac{16}{3}$	(3, -4)