Relations and Functions

Cartesian Products of Sets

The Cartesian product between two sets A and B is denoted by $A \times B$ is the set of all ordered pairs of elements from A and B

ie; $A \times B = \{(a,b) : a \in A, b \in B\}$ **Example:** consider the two sets $A = \{a_1, a_2\}$ and $B = \{b_1, b_2, b_3, b_4\}$ $A \times B = \{(a_1, b_1), (a_1, b_2), (a_1, b_3), (a_1, b_4), (a_2, b_1), (a_2, b_2), (a_2, b_3), (a_2, b_4)\}.$

Properties:

- 1. Two ordered pairs are equal, if and only if the corresponding first elements are equal and the second elements are also equal.
- 2. In general $A \times B \neq B \times A$, but if $A = B, A \times B = B \times A$.
- 3. $n(A \times B) = n(A) \times n(B)$
- 4. $n(A \times B) = n(B \times A)$
- 5. If A and B are non-empty sets and either A or B is an infinite set, then so is $A \times B$. $A \times A \times A = (a,b,c): a,b,c \in A$. Here (a, b, c) is called an ordered triplet.

Relations

A relation R from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$.

Example:Let $P = \{a, b, c\}$ and $Q = \{Ali, Bhanu, Binoy, Chandra, Divya\}$. Then

 $R = \{(a, Ali), (b, Bhanu), (b, Binoy), (c, Chandra)\}$ is a relation between sets P and Q

A visual representation of this relation R (called an arrow diagram) is shown in figure

- The second element in the ordered pair is called the **image** of the first element
- The set of all first elements of the ordered pairs in a relation R from a set A to a set B is called the **domain** of the relation R.
- The set of all second elements in a relation R from a set A to a set B is called the **range** of the relation R. The whole set B is called the **codomain** of the relation R. Note that range ⊂ codomain.

The number of relation that can be written from A
to B if n(A) = p, n(B) = q is 2^{pq}.

A relation may be represented algebraically either by the **Roster method** or by the **Set-builder method**.An **arrow diagram** is a visual representation of a relation.

Functions

A relation f from A to B (f : $A \rightarrow B$) is said to be a function if every element of set A has one and only one image in set B.

If f is a function from A to B and $(a,b) \in f$, then f(a) = b, where b is called the **image** of a under f and a is called the **preimage** of b under b under f.

• A function which has either R or one of its subsets as its range is called a **real valued function**. Further, if its domain is also either R or a subset of R, it is called a real function.

Some functions and their graphs

Identity function

A function $f: R \to R$ defined by f(x) = x. Here the domain and range of f are R. The graph is a straight line passing through the origin which makes 45 degrees with the positive direction of the x-axis.

Constant function

A function $f: R \to R$ defined by f(x) = c, where c is a constant. Here domain of f is R and its range is

{c}. The graph is a straight line parallel to the x-axis.

Polynomial Function

A function f : R \to R defined by $f(x) = a_0 + a_1 x + \ldots + a_n x$, where n is a no-negative integer and $a_0, a_1, \ldots, a_n \in R$

Rational functions

A function $f:R\to R$ defined by $f(x)=\frac{p(x)}{q(x)}$, where p(x),q(x) are functions of x defined in a domain, where $q(x)\neq 0$

Modulus function

A function $f: R \rightarrow R$ defined by f(x) = |x|

Signum function

A function f: $R \to R$ defined by

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x > 0 \end{cases}$$

The domain of the signum function is R and the range is the set $\{-1,\,0,\,1\}$

$$f(x) = \frac{|x|}{x}, x'$$
 0 and 0 for $x = 0$

Greatest integer function

f: $R \to R$ defined by

$$f(x) = \begin{cases} \dots \\ 1 & \text{if } 1 \le x < 2 \\ 0 & \text{if } 1 \le x < 1 \\ -1 & \text{if } -1 \le x < 0 \\ \dots \end{cases}$$

Algebra of real functions

- 1. Addition of two real functions:Let $f: X \to R$ and $g: X \to R$ be any two real functions, where $X \subset R$. Then, we define $(f+g): X \to R$ by (f+g)(x) = f(x) + g(x) for all $x \in X$
- 2. Substraction of two real functions:Let $f: X \to R$ and $g: X \to R$ be any two real functions, where $X \subset R$. Then, we define $(f-g): X \to R$ by (f-g)(x) = f(x) g(x) for all $x \in X$
- 3. Multiplication by a scalar:Let $f: X \to R$ be a real-valued function and k be a scalar. Then, the product $kf: X \to R$ by (kf)(x) = kf(x) for all $x \in X$
- 4. Multiplication of two real functions:Let $f: X \to R$ and $g: X \to R$ be any two real functions, where $X \subset R$. Then, we define $fg: X \to R$ by $fg(x) = f(x) \times g(x)$ for all $x \in X$
- 5. Quotient of two real functions: Let f and g be two real functions defined from $X \rightarrow R$, where $X \subset R$. The quotient of f by g denoted by $\frac{f}{g}$ is a function defined by

$$(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$$
 Provided $g(x) \neq 0$ for $x \in X$