

Основы искусственного интеллекта

<u>Лекция</u>

Обучение с учителем: Логистическая регрессия

к.ф.-м.н., доцент кафедры ИСиЦТ Корнаева Е.П.

Постановка задачи классификации

Имеются к классов, условно обозначенных y=0, y=1,... y=k-1 и объекты, обладающие m признаками X_i . Для n объектов известно к каким классам они относятся (размеченная выборка). Требуется на основании обучающей выборки отнести новые объекты с X_i признаками к конкретному классу.

Пример двухклассовой бинарной классификации

X	Υ
x ₁	1
X ₂	0
	•••
X _{n-1}	1
X _n	1

 $X \in R, Y \in \{0; 1\}$

Постановка задачи классической регрессии

Логистическая регрессия - <u>статистическая</u> модель, используемая для прогнозирования вероятности возникновения некоторого события путём его сравнения с <u>логистической кривой</u> [wikipedia.org]

 $Y \in \{0; 1\}, X \in R$ $Y \in \{0; 1\}, X \in R$ h(z) $h_{\theta}(z) = \frac{1}{1 + e^{-z(x)}}$ $z(x) = \theta_0 + \theta_1 x$ 0 x X $Y \in \{0; 1\}, X \in R$ h(z) 0,5

Постановка задачи классической регрессии

Данные выборки представлены множеством пар: $\{(X_i, y_i)\}, i = \overline{1, n}, Y = \{0, 1\}$

Аппроксимация вероятности Р принадлежности к классу "1" как функцию признаков Х

Y ∈ {0; 1}, X ∈ R $h(z) \uparrow$ $h_{\theta}(z) = \frac{1}{1 + e^{-z(x)}}$ $z(x) = \theta_0 + \theta_1 x$

 $h(z) = P(y = 1) \in [0; 1]$ — вероятность принадлежности к классу «1»:

- если $h_{\theta}(z)$ ≥0.5, то объект принадлежит классу y=1;
- если $h_{\theta}(z) < 0.5$, то объект принадлежит классу y=0.

$$h_{\theta}(z) = 0.5$$
: $z(x) = 0$

ИЛИ

- если $z(x) \ge 0$, то объект принадлежит классу y=1;
- если z(x)<0, то объект принадлежит классу y=0.

$$X_{\Gamma p}$$

$$z(x) = 0$$
: $\theta_0 + \theta_1 x_{rp} = 0 = x_{rp} = -\frac{\theta_0}{\theta_1}$

Постановка задачи классической регрессии

Данные выборки представлены множеством пар: $\{(X_i, y_i)\}, i = \overline{1, n}, Y = \{0, 1\}$

<u>Пример</u> Двумерный случай: $X = [[X_1, X_2]]$

$$z(X) = 0,$$

$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0 \Rightarrow x_2(x_1) = -\frac{\theta_0}{\theta_2} - \frac{\theta_1}{\theta_2} x_1$$

Логистическая регрессия. Определение параметров модели

$$h_{ heta}(x) = rac{1}{1 + \exp(-z(x))}$$
, $oldsymbol{\Theta} = \llbracket \Theta_i
rbracket$ - параметры модели

Задача безусловной оптимизации функции ошибки:

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2 \to \min$$

$$J(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \ln(h_{\theta}(x_{ij})) + (1 - y_i)(\ln(1 - h_{\theta}(x_{ij})))) \to \min$$

Логистическая регрессия. Определение параметров модели

Y — случ. величина: y_i ∈ {0; 1}

В n независимых испытаниях, в которых событие y_i =1 может появиться либо нет. Вероятность p наступления события постоянна.

$$\sup(y_i == 1) = n_1 \\ p_i$$
 - вероятность события $y_i = 1$
$$q_i = 1 - p_i$$
 - вероятность события $y_i = 0$

$$P(y_i) = p_i^{y_i} (1-p_i)^{1-y_i} = egin{bmatrix} p_i \text{ , если } y_i = 1 \ 1-p_i \text{ , если } y_i = 0 \end{bmatrix}$$

Логистическая регрессия. Определение параметров модели

Y — случ. величина:
$$y_i$$
 ∈ {0; 1}

В n независимых испытаниях, в которых событие y_i =1 может появиться либо нет.

Вероятность р наступления события постоянна.

$$\sup(y_i = 1) = n_1 \\ p_i = h(\theta, y_i) \text{- вероятность события } y_i = 1 \\ q_i = 1 - p_i \text{ - вероятность события } y_i = 0$$

Функция максимального правдоподобия:

$$L(\boldsymbol{\theta}, \boldsymbol{Y}) = \prod_{i=1}^{n} P_i = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i} = \prod_{i=1}^{n} h_i^{y_i} (1 - h_i)^{1 - y_i} \underset{\theta}{\to} max$$

Функция ошибки:

$$J(\theta) = -\ln(L(\boldsymbol{\theta}, \boldsymbol{Y})) \underset{\theta}{\rightarrow} min$$

$$J(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \ln(h_i) + (1 - y_i)(\ln(1 - h_i)) \to \min$$

Логистическая регрессия. Определение параметров модели

Функция ошибки:

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \ln(h_{\theta}(x)) + (1 - y_i)(\ln(1 - h_{\theta}(x))) \to \min$$

$$h_{\theta}(x) = \frac{1}{1 + \exp(-z(x))}$$
 - логистическая функция (сигмоида)

Примечание: в качестве $h_{\theta}(x)$ могут быть другие функции из семейства сигмоидных

Логистическая регрессия. Определение параметров модели на примере сигмоиды

І. Линейная граница между классами

Пример Линейная граница для 2-d случая

$$z(\mathbf{X}) = \theta_0 + \theta_1 \mathbf{X}_1 + \theta_2 \mathbf{X}_2$$

Общий случай Линейная граница для многомерного случая:

$$z(X) = \theta_0 + \theta_1 X_1 + \ldots + \theta_m X_m = \theta_i X_i^*,$$

где
$$X = [X_i]$$
 - факторное пространство; $X_0 = [[1...1]]^T$.

Логистическая регрессия:

$$h_{\theta}(\mathbf{X}) = \frac{1}{1 + \exp(-\theta_i \mathbf{X}_i)}.$$

^{*}Используется правило Эйнштейна

Логистическая регрессия. Определение параметров модели на примере сигмоиды

І. Линейная граница между классами

Решается задача минимизации функции ошибки:

$$J(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \ln(h_{\theta}(x_{ij})) + (1 - y_i)(\ln(1 - h_{\theta}(x_{ij}))) \underset{\theta}{\to} min$$

$$h_{\theta}(\mathbf{X}) = \frac{1}{1 + \exp(-z(\mathbf{X}))}, \quad z(\mathbf{X}) = \sum_{i=0}^{m} \theta_i X_i$$

Необходимое условие экстремума:

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta_j} = \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}(x_{ij}) - y_i \right) x_{ij} = 0, \qquad j = \overline{0, m}$$

Логистическая регрессия. Определение параметров модели на примере сигмоиды

І. Линейная граница между классами

Матричная форма записи:

	X ₀	X ₁		X _m	Υ
1	1	X ₁₁		X _{1m}	y_1
2	1	X ₂₁		X _{2m}	y ₂
•••			•••		
n	1	X _{n1}		X _{nm}	y _n

В покомпонентном виде:

$$\mathbf{z}_i = \sum_{j=0}^m \theta_j x_{ij}$$
 , $i=1..n$

$$h_{\theta_i} = \frac{1}{1 + \exp(-z_i)},$$

$$J(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \ln(h_{\theta}(x_{ij})) + (1 - y_i)(\ln(1 - h_{\theta}(x_{ij}))))$$

В матричном виде:

$$Z = X\Theta$$
,

$$H = sigm(Z)$$
[hx1]

$$X_{[n\times(m+1)],}$$
 $Y_{[n\times1],}$ $\boldsymbol{\theta}_{[m+1,1],}$

$$J(\boldsymbol{\theta}) = -\frac{1}{n} (\boldsymbol{Y}^T \ln \boldsymbol{H} + (\boldsymbol{I} - \boldsymbol{Y})^T \ln (\boldsymbol{I} - \boldsymbol{H})) \underset{\boldsymbol{\theta}}{\rightarrow} min$$

$$Z_{[n\times 1]} = Z(X), \quad H_{[n\times 1]} = sigm(Z)$$

где
$$I = (1)_{[n \times 1]}$$

Логистическая регрессия. Определение параметров модели на примере сигмоиды

І. Линейная граница между классами

Матричная форма записи:

	X ₀	X ₁		X _m	Y
1	1	x ₁₁		x _{1m}	y_1
2	1	X ₂₁		x _{2m}	y ₂
			• • •		
n	1	x_{n1}		X _{nm}	y _n
			•	J	

X

$$X_{[n\times(m+1)]}, Y_{[n\times1]}, \boldsymbol{\theta}_{[m+1,1]},$$

$$Z_{[n\times 1]} = Z(X), \quad H_{[n\times 1]} = sigm(Z)$$

Аналитическое решение:

$$Z=X\boldsymbol{\Theta}$$
,

$$J = -\frac{1}{n} (\mathbf{Y}^T \ln \mathbf{H} + (\mathbf{I} - \mathbf{Y})^T \ln (\mathbf{I} - \mathbf{H})) \underset{\boldsymbol{\theta}}{\rightarrow} min$$

для относительно небольшого кол-ва признаков и объема выборки можно использовать аналитическое решение:

$$\boldsymbol{\Theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Логистическая регрессия. Определение параметров модели на примере сигмоиды

І. Линейная граница между классами. Численное решение методом градиентного спуска

Gradient descent intuition

Компоненты градиента:

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{n} \sum_{i=1}^n (h_{\theta}(x_{ij}) - y_i) x_{ij} \qquad \nabla J = \frac{1}{n} X^T (H - Y),$$

Расчет коэффициентов на каждом шаге l+1:

$$\theta_j^{l+1} = \theta_j^l - \alpha \frac{\partial J}{\partial \theta_j}|_l \qquad \qquad \boldsymbol{\theta}^{l+1} = \boldsymbol{\theta}^l - \alpha \nabla \boldsymbol{J}|$$

 ${\bf \Theta}^0 = (\theta_i^0) \, -$ начальное значение коэффициентов;

 $\nabla \boldsymbol{J}|_{l} = \left(\frac{\partial J}{\partial \theta_{j}}\right)|_{l}$ — компоненты градиента рассчитываются на каждом шаге l+1;

 α — шаг градиентного спуска (скорость обучения).

Логистическая регрессия. Определение параметров модели на примере сигмоиды

І. Линейная граница между классами. Численное решение методом градиентного спуска

Компоненты градиента:

$$\nabla J = \frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}(x_{ij}) - y_i \right) x_{ij} \qquad \nabla J = \frac{1}{n} X^T (H - Y),$$

Расчет коэффициентов на каждом шаге l:

$$\theta_j^{l+1} = \theta_j^l - \lambda \frac{\partial J}{\partial \theta_j}|_l$$

$$\boldsymbol{\theta}^{l+1} = \boldsymbol{\theta}^l - \alpha \nabla \boldsymbol{J}|_l$$

Расчет функции ошибки на каждом шаге позволяет оценить процесс сходимости решения:

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \left(y_i \ln(h_{\theta}(x_{ij})) + (1 - y_i) (\ln(1 - h_{\theta}(x_{ij})) \right) \qquad J = -\frac{1}{n} (\mathbf{Y}^T \ln \mathbf{H} + (\mathbf{I} - \mathbf{Y})^T \ln(\mathbf{I} - \mathbf{H}))$$

Логистическая регрессия. Определение параметров модели на примере сигмоиды

II. Нелинейная граница между классами. Линеаризация

z(X) – полином степени d.

Пример для случая d=2, m=2.

$$z(\mathbf{X}) = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_3 X_1 X_2 + \theta_4 X_1^2 + \theta_5 X_2^2$$

Z	(X) =	$= \theta_0 +$	$\theta_1 X_1$	$+ \theta_2$	$X_2 + \theta$	$O_3X_1X_2$	$_2+\theta_4$	$X_1^2 +$	$\theta_5 X_2^2$ пусть $X_3 = X_1 X_2$, $X_4 = (X_1)^2$, $X_5 = (X_2)^2$
		X ₀	X ₁	X ₂	X ₃	X ₄	X ₅	Υ	$z(X) = \sum_{i=0}^{k} \theta_i X_i = X\boldsymbol{\theta},$
	1	1	X ₁₁	X ₁₂	X ₁₁ X ₁₂	$(x_{11})^2$	$(x_{12})^2$	y ₁	i=0
	2	1	X ₂₁	X22	X ₂₁ X ₂₂	$(x_{21})^2$	$(x_{22})^2$	y 2	$\boldsymbol{\theta} = (\theta_i)_{k \times 1}$
									$J = -\frac{1}{n} (\mathbf{Y}^T \ln \mathbf{H} + (\mathbf{I} - \mathbf{Y})^T \ln (\mathbf{I}$
	n	1	X _{n1}	X _{n2}	$X_{n1}X_{n2}$	$(x_{21})^2$	$(x_{22})^2$	y _n	

пусть
$$X_3 = X_1 X_2$$
, $X_4 = (X_1)^2$, $X_5 = (X_2)^2$

$$z(X) = \sum_{i=0}^{\kappa} \theta_i X_i = X \theta_i$$

$$\boldsymbol{\theta} = (\theta_i)_{k \times 1}$$

$$J = -\frac{1}{n} (\mathbf{Y}^T \ln \mathbf{H} + (\mathbf{I} - \mathbf{Y})^T \ln (\mathbf{I} - \mathbf{H})) \to min$$

Логистическая регрессия. Определение параметров модели на примере сигмоиды

II. Нелинейная граница между классами. Регуляризация

Логистическая регрессия. Определение параметров модели на примере сигмоиды

II. Нелинейная граница между классами. Регуляризация

Функция ошибки:

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \left(y_i \ln(h_{\theta}(x_{ij})) + (1 - y_i) (\ln(1 - h_{\theta}(x_{ij}))) + \frac{\lambda}{2n} \sum_{j=1}^{k} \theta_j^2 \to \min \right)$$

Компоненты градиента функции ошибки:

$$\frac{\partial J(\theta)}{\partial \theta_0} = \frac{1}{n} \sum_{i=1}^n (h_{\theta}(x_{i0}) - y_i) x_{i0}$$

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{n} \sum_{i=1}^n (h_{\theta}(x_{ij}) - y_i) x_{ij} + \frac{\lambda}{n} \theta_j, j = \overline{1, k}$$

$$\nabla J_0 = \nabla J_0 - \frac{\lambda}{n} \theta_0$$

$$\nabla \boldsymbol{J} = \frac{1}{n} \boldsymbol{X}^T (\boldsymbol{h} - \boldsymbol{Y}) + \frac{\lambda}{n} \boldsymbol{\theta}$$

$$\nabla J_0 = \nabla J_0 - \frac{\lambda}{n} \theta_0$$

Логистическая регрессия. Определение параметров модели на примере сигмоиды

II. Регуляризация. Подбор гиперпараметров модели

- Модель: $h_{\theta}(x) = \frac{1}{1 + \exp(-z(x))}$, где z(x) полином степени d.

- Модель:
$$h_{\theta}(x) \equiv \frac{1}{1 + \exp(-z(x))}$$
, где $z(x)$ – полином степени d. - Функция ошибки:
$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \left(y_i \ln(h_{\theta}(x_{ij})) + (1 - y_i) (\ln(1 - h_{\theta}(x_{ij}))) + \frac{\lambda}{2n} \sum_{j=1}^{k} \theta_j^2 \to \min$$

На этапе валидации происходит выбор гиперпараметров, в данном случае (d, λ) :

- для каждого набора (d_i, λ_i) определяются параметры модели $\boldsymbol{\theta} = [\![\boldsymbol{\theta}_k]\!]$ (по обучающей выборке);
- для каждой модели рассчитывается ошибки $J_{tr}\,$ и $J_v\,$ (по обучающей и проверочной выборке):

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \ln(h_{\theta}(x_{ij})) + (1 - y_i)(\ln(1 - h_{\theta}(x_{ij})));$$

по значениям I_{tr} и I_{v} выбирается (d_{i}, λ_{i}) .

Логистическая регрессия. Определение параметров модели на примере сигмоиды

III. Регуляризация. Подбор гиперпараметров модели

$$\mathrm{d} \ll d^*$$
 - недообучение (high bias)

$$d \gg d^*$$
 - переобучение (high variance)

$$\lambda \ll \lambda^*$$
 — переобучение (high variance)

$$\lambda \gg \lambda^* -$$
 недообучение (high bias)

Логистическая регрессия. Определение параметров модели на примере сигмоиды

III. Регуляризация. Подбор гиперпараметров модели

$$h_{\theta}(x) = \frac{1}{1 + \exp(-z(x))}$$
, где $z(x)$ – полином степени d.

- Выборка делится на три части: для обучения, валидации и тестирования;
- По обучающей выборке параметры модели $\boldsymbol{\theta} = (\theta_i)_{k \times 1}$ определяются для каждой комбинации (d_i, λ_j) ;
- Выбираются оптимальные гиперпараметры (d^*, λ^*) , например сравниваются ошибки J_{tr} , J_v (рассчитанные по обучающей и проверочной выборке) для каждой комбинации (d_i, λ_i)
- Рассчитывается точность модели (см. далее) на тестовой выборке.

Многоклассовая классификация на примере метода «один против всех» (one-vs-all)

<u>Метод «Один против всех»</u> Пример для трех классов.

$$X \in R, Y \in \{1, 2, 3\}$$

X_1	X_2	Υ
X ₁₁	X ₁₂	1
X ₂₁	X ₂₂	3
X _{n-1,1}	X _{n-}	1
X _{n,1}	X _{n,2}	2

I шаг «1 класс против всех»

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \left(\widetilde{y}_i \ln(h_{\theta}(x_{ij})) + (1 - \widetilde{y}_i) (\ln(1 - h_{\theta}(x_{ij}))) + \frac{\lambda}{2n} \sum_{j=1}^{k} \theta_j^2 \rightarrow \min \right)$$

$$\theta_{[3 \times k]}^1, h_{\theta}^1(X)$$

Многоклассовая классификация на примере метода «один против всех» (one-vs-all)

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} (\widetilde{y}_{i} \ln(h_{\theta}(x_{ij})) + (1 - \widetilde{y}_{i})(\ln(1 - h_{\theta}(x_{ij}))) + \frac{\lambda}{2n} \sum_{j=1}^{k} \theta_{j}^{2} \rightarrow \min$$

$$\theta_{[3 \times k]}^{2}, h_{\theta}^{2}(X)$$

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} (\widetilde{y}_{i} \ln(h_{\theta}(x_{ij})) + (1 - \widetilde{y}_{i})(\ln(1 - h_{\theta}(x_{ij}))) + \frac{\lambda}{2n} \sum_{j=1}^{k} \theta_{j}^{2} \rightarrow \min$$

$$\theta_{[3 \times k]}^{2}, h_{\theta}^{2}(X)$$

3 шаг «3 класс против всех»

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \left(\widetilde{y}_i \ln(h_{\theta}(x_{ij})) + (1 - \widetilde{y}_i) (\ln(1 - h_{\theta}(x_{ij})) \right) + \frac{\lambda}{2n} \sum_{j=1}^{k} \theta_j^2 \to m$$

$$\theta_{[3 \times k]}^3, h_{\theta}^3(X)$$

Многоклассовая классификация на примере метода «один против всех» (one-vs-all)

$$X \in R, Y \in \{1, 2, 3\}$$

Х	Υ
X ₁	1
X ₂	3
	•••
X _{n-1}	1
X _n	2

Определение класса для объекта с максимальным значением $h^q(X)$:

$$h_{\theta}^{q}(x) = \frac{1}{1 + \exp(-\sum_{i=0}^{m} \theta_{i}^{q} x_{i})}$$

	1 класс	2 класс	3 класс	
X	h¹(X)	h ² (X)	h ³ (X)	
X ₁			<	$ \max_{q} (h_{\theta}^{q}(x_1)) $
x ₂				1
X _{n-1}				•••
X _n		<		$\max(h_{\theta}^{q}(x_n))$
x ₂		←		•••