画像処理工学

2値画像に対する処理

• ラベリング

- 2値画像上に点在している図形成分(連結成分)の それぞれに名前をつける処理
- 図形成分の区別をしておけば、図形成分の個数や それぞれの特徴(面積など)を計算できる

		Α								В	В		
Α	Α	Α	Α				В	В	В	В	В	В	
Α	Α	Α			В	В	В	В		В	В	В	
	Α			В	В					В	В		
			В	В			O	С		В	В		
		В	В			C	O			В	В		
	В	В							В	В			D
В	В	В	В	В	В	В	В	В	В			D	D
	В	В		В	В	В					D	D	D
											D	D	

- ラベリングのアルゴリズムの例
 - 8連結で考え、2回の走査を行う
 - 左上の画素から走査しながら、1の画素を見つける
 - その画素 ƒ [i][j] に隣接する画素のうち ƒ [i-1][j-1], ƒ [i-1][j], ƒ [i-1][j+1], ƒ [i][j-1] の値とラベルを調べる

f [i-1][j-1]	f [i-1][j]	f [i-1][j+1]
f[i][j-1]	f [i][j]	

- ラベリングのアルゴリズムの例(続き)
 - 4つの画素すべてがOのとき, f[i][j]に新しいラベルをつけて, 次の画素を走査する

- ラベリングのアルゴリズムの例(続き)
 - 4つの画素のうち, 値がOのもの以外に1種類のラベルがついている場合は, f[i][j]に同じラベルをつけて, 次の画素を走査する

値がOでなく、ラベル2がついている

- ラベリングのアルゴリズムの例(続き)
 - 4つの画素のうち, 値がOのもの以外に2種類以上のラベルがついている場合は, その中で最も小さいラベル番号をf[i][j]につけるとともに, それらが同じ連結成分であることを記憶しておき, 次の画素を

値がOでなく、ラベル2と3がついている

ラベル	連結 関係
2	2
3	2
テーブノ	、 レに記憶

- ラベリングのアルゴリズムの例(続き)
 - 最後まで走査が終わったら、左上から2回目の走査を行い、ひとつの連結成分に対して同じラベルがつくように、ラベルをつけなおす

ラベル 2 につけなおす

	ラベル	連結 関係	
	2	2	
	3	2	
ラベノ	ーブル レ 3 は 〕連結原	ラベル	レ2と

- 膨張
 - 図形を外側に1画素分広げる処理
 - 拡張, 伝播とも呼ばれる
- 収縮
 - 図形を1画素分細くする処理
 - 侵食とも呼ばれる
 - 2値画像において、ノイズを除去する目的などに用いられる
 - ―処理を何回行うかで結果が変わってくる (埋めてはいけない孔を埋めてしまうことがある)

● 膨張処理

ある画素とその8近傍(または4近傍)のいずれかに 少なくともひとつの図形画素(1)がある場合、 出力画素を1とする

• 収縮処理

ある画素とその8近傍(または4近傍)のいずれかに 少なくともひとつの背景画素(O)がある場合. 出力画素をOとする

- 膨張処理と収縮処理の組み合わせ
 - -膨張→収縮処理
 - 連結成分の小さな孔や幅の狭いくぼみの部分(亀裂や 分裂など)を埋める効果をもつ
 - 収縮→膨張処理
 - 2値画像の小成分や幅の狭い部分(ひげなどのノイズ) を取り除く効果をもつ

(a) 膨張と収縮の組み合わせ処理の例

図形の細線化

• 細線化

- 与えられた図形の線幅を細めて、幅1(画素)の中心 線を抽出する
- 縮退とは違い原図形の連結性が保持されている
- 細線化の方法
 - 図形画像の境界点の中から、消去可能であり、かつ線の端点でない画素を消去する
 - 消去可能→消去しても連結関係が変化しない

- 境界(輪郭線)追跡
 - 広がりのある塊状図形の境界画素を抽出する
 - 図形の形状を解析するのに利用
 - 単に境界画素の集合を抽出するだけでなく、順序 付けられた画素の系列として抽出することができる

	Α	Α	Α	Α	Α	Α	Α	
	Α						Α	
	Α			В			Α	
Α			В		В		A	
Α		В			В		Α	
A			В	В			A	
Α						Α		
Α	Α	Α	Α	Α	Α	Α		

8連結で考えた場合の 境界追跡結果

- 境界追跡のアルゴリズム(8連結)の例
 - 左上の画素から走査し、左側にOの画素が隣接する 1の画素を見つけ、それを最初の境界画素とする
 - すでに境界画素として認識されていたものであれば 無視する

- 境界追跡のアルゴリズム(8連結)の例(続き)
 - 最初の境界画素を中心とする8近傍を, 反時計回り に調べ, 1の画素をみつける
 - その画素を次の境界画素とする(下図の例では⑥の 画素)

- 境界追跡のアルゴリズム(8連結)の例(続き)
 - 次の境界画素を見つけるときには、前の境界画素の (反時計回りに)隣りの画素から探索すればよい

- 境界追跡のアルゴリズム(8連結)の例(続き)
 - 次の境界画素が、最初に認識された境界画素と一致 したときには追跡処理をやめて、次の走査を行う
 - 走査を行う上で、すでに境界画素とされているものは 無視していく

- 境界追跡のアルゴリズム(8連結)の例(続き)
 - 外側の境界は、図形に対して反時計回りに追跡される
 - 孔の部分の境界は、図形に対して時計回りに追跡 される

孔の部分の境界(B)は 時計回りに追跡される

- 直線の検出
 - ノイズや対象物の重なりなどの影響で散在した点 (画素)から、本来抽出したい直線を導き出す

(a) 線の候補となる画素

- ハフ(Hough)変換を用いた直線の検出
 - ある1点 (x_1, y_1) が与えられたとき、これを通る直線は、傾き a と切片 b のパラメータを用いて

- 原点から直線に下ろした 垂線の長さρと, 垂線が x 軸となす角度θのパラメータ を用いると, 直線式は

$$\rho = x\cos\theta + y\sin\theta$$

とも表すことができる

(b) 点(x1, y1)を通る直線

- ハフ(Hough)変換を用いた直線の検出
 - 点 (x_1, y_1) を通るすべての直線をパラメータ (θ, ρ) で表したとき、 θ の変化に対する ρ の変化をグラフ化すると下図のようになる

- ハフ(Hough)変換を用いた直線の検出
 - 与えられたすべての点についても、同様に曲線を 求めると、下図のようになる

(a) 線の候補となる画素

(d) 直線の候補の決定

- ハフ(Hough)変換を用いた直線の検出
 - 曲線が最も多く交わる点 $(θ_1, ρ_1)$ を見つければ1 本の直線を検出することができる

(d) 直線の候補の決定

(a) 線の候補となる画素

- ハフ変換の利点
 - 同時に複数の直線を検出することができる
 - ノイズを含む2値画像からも直線を検出できる
- ハフ変換の欠点
 - 計算時間がかかる
 - 短い線分を多数含む図形には不向き