Sorting בין -

משפט: כל אלגוריתם מיון מבוסס השוואות הממיין n מפתחות כלשהם מבצע לכל הפחות משפט:

. פעולות השוואה במקרה הגרוע ובמקרה הממוצע $\Omega(n\log n)$

לפעמים, אם ידוע מידע נוסף על הקלט, ניתן למיין בסיבוכיות זמן טובה יותר.

Counting Sort

O(n+k) אם n המספרים לקוחים מהטווח [1,k], ניתן למיין אותם בזמן עבור k=O(n) נקבל מיון בזמן לינארי.

הגדרה: אלגוריתם מיון הוא יציב אם הוא שומר על הסדר היחסי בין איברים בעלי ערכים זהים. בינו אלגוריתם מיון יציב: Counting Sort

$$3 \ 1 \ 3 \ 0 \ 5 \ 3 \rightarrow 0 \ 1 \ 3 \ 3 \ 3 \ 5$$

מבני נתונים 1 - טכניון ©

Counting Sort

: [1,k] בהינתן מערך A בגודל n שאיבריו לקוחים מהטווח

lack $\lceil 1, k
ceil$ נקצה מערך C בגודל k שיספור כמה פעמים מופיע כל איבר c .1

(int (int

 $\dot{1}=1$; $\dot{1}=1$;

μ. ⊢-

Â $\stackrel{\wedge}{\parallel}$

∀ n;

1++) <u>i++</u>)

C[±] ↑

C[A[i]]++;

את האינדקס האחרון בסדרה הממויינת שבו מופיע $i \in [1,k]$ נמצא לכל איבר.

 \bigwedge

չ,

<u>i++</u>)

+ C[i];

Counting Sort

Counting Sort

for

(int

i=n;

İ

٠.

<u>____</u>)

מבני נתונים 1 - טכניון ©

מיון ב-(<u>n)?</u>

.[1,k] מיון Counting Sort לוקח O(n+k) זמן, כאשר המספרים לקוחים מהטווח

- .k- נעבור על המערך בזמן O(n) ונמצא את האיבר המקסימלי בו. נסמן איבר זה ב-נסתכל על האלגוריתם הבא:
- נשתמש ב-Counting Sort על מנת למיין את המערך.
- .O(n) היות ו-k הוא קבוע, נקבל מיון בזמן

?איפה הטעות

. וח
ו $O(n+2^n)=O(2^n)$ ייקח במצב מצב סunting Sort 2^n האיבר המקסימלי במערך יכול להיות

מבני נתונים 1 - טכניון © 5