Lecture 06 - Image Descriptors

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br

Topics

- Discussion of Lecture #05
 - Feature Vector
 - Horizontal and Vertical Projections
- Image Descriptors
- Practice

Computer Vision & Pattern Recognition Pipeline

PATTERN RECOGNITION SYSTEM

Remembering....

- A feature descriptor translates high-dimensional data to a feature space
- A feature vector represents the input data produced by the feature descriptor
- Later, a machine learning model will learn the representations

- Gradient Based
 - Projections

Convolutional (Filters)

- Gradient Based
 - Projections

Convolutional (Filters)

- Gradient Based
 - Projections

Convolutional (Filters)

Histogram Projection

Sobel Filter

Computer Vision - Prof. André Hochuli

Lecture 06

Sobel Filter

-1	0	+1	+1	+2	+1
-2	0	+2	0	0	0
-1	0	+1	-1	-2	-1
Gx			Gy		

Laplace

$$\left[egin{matrix} 0 & 1 & 0 \ 1 & -4 & 1 \ 0 & 1 & 0 \ \end{bmatrix}
ight.$$

- Canny
 - Gaussian Gradient Based Filter (John F. Canny)

Orginal Image Canny Sobel Laplacian

Let's Code

• <u>LINK</u>