Convert columns to correct formats

```
from google.colab import drive
drive.mount('/content/drive')
```

→ Mounted at /content/drive

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import re
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder
import plotly.express as px
```

!pip install category_encoders

Collecting category_encoders

Downloading category_encoders-2.8.0-py3-none-any.whl.metadata (7.9 kB)

Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.11/d

Requirement already satisfied: pandas>=1.0.5 in /usr/local/lib/python3.11/d

Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.11/di

Requirement already satisfied: scikit-learn>=1.6.0 in /usr/local/lib/python3

Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3

Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/di

Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/di

Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/

Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.11/d

Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/pythonRequirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.11 Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-p

Successfully installed category_encoders-2.8.0

df=pd.read_csv("/content/drive/MyDrive/FE/FE462.csv")

```
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
```

The df.shape attribute in Pandas returns the dimensions of a DataFrame as a tuple (number of rows, number of columns).

df.shape

→ (900000, 102)

df.dtypes

	0
Unnamed: 0	int64
RESEARCH_ID	object
SAMPLE_ID	object
COLLECTYEAR	float64
REGN_DATE	object
GENDER_NAME	object
AGE_YEARS	float64
AGE_DAYS	float64
AGE_MONTHS	float64
CITY_NAME	object
HEIGHT	int64
WEIGHT	float64
ВМІ	float64
'Thyroid Stimulating Hormone (TSH)'	object
'Uric Acid in Serum'	object
'Alanine Aminotransferase (ALT)'	object
'Ferritin In Serum'	object
'Blood Urea Nitrogen (BUN)'	object
'Lymphocytes absolute count'	float64
ID D Co / UDEs!	ahiaat

n. p. 65/ NFF5

	111 21 337 111 13	Object
	'Aspect(Urine Physical Examination)'	object
	'Eosinophils absolute count'	float64
	'Vitamin D (25 OH-Vit D -Total)'	object
	'C-Reactive Protein (CRP) quantitative'	object
	'Transferrin'	object
	'Height.'	float64
	'Red cell count'	object
	'Basophils absolute count'	float64
	'Crystals(Urine Microscopic Examination :)'	object
	'Protein(Urine Physical Examination)'	object
	'Colour(Urine Physical Examination)'	object
	null_columns = df.columns[df.isnull(). null_columns	.all()]
→	Index([''Height', Non-HDL Cholest dtype='0妇iA6tr' Urine Volume (263)'	float64 cerol , float64
df.d	rop(columns=all_null_columns, inplace=	=True)
df.c	olumns = df.columns.str.replace("'", '	"")
	'MCV'	float64
	'Glucose(Urine Physical Examination)'	object
	'Urea in Serum'	object
	'Prostatic Specific Antigen (PSA) Total'	object
	'Testosterone (Total)'	object
	'Alkaline Phosphatase'	object
	'Total Protein in Serum'	object
	'Estimated Glomerular Filtration Rate(eGFR)'	object
	'Anti CCP Abs'	object
	' BUN/Creatinine Ratio'	object
	'Blood pressure'	object

บบๅษผ

df.columns

```
'Ketones' object
Index(['Unnamed: 0', 'RESEARCH_ID', 'SAMPLE_ID', 'COLLECTYEAR',
      'REGN_DATE',
                          'MCHC'
             'GENDER_NAME', 'AGE_YEARS', 'AGE_DAYS', 'AGE_MONTHS', 'CITY_NAME', 'pH(低頭色中hysic細压光河nat配h)", 'ThyflocatG4 Stimulating Hormone (TSH)',
               'Uric Acid in Serum', 'Alanine Aminotransferase (ALT)',
               'FeAmorphous Elements' 'Blood Ureabineptrogen (BUN)',
               'Lymphocytes absolute count', 'R, B, Cs / HPFs',
               'Aspect of the Physical Examination, 'Eosinophils absolute count',
               'Vitamin D (25 0H-Vit D -Total)'

'Epithelial Cells' HPF'

'C-Reactive Protein (CRP) quantitative', 'Transferrin',
         'Casts (Dine Wicroscopic Examination ) s absolute count',
                Crystals(Urine Microscopic Examination :)',
               'Protein Billium Physical Examination ',
               'Colour(Urine Physical Examination)', 'Nitrite', 'LDL Cholesterol',
               'LDL'Cիlերնևeյո Serumour Urine Volտտթաշ(263)', 'Hemoglobin',
               'Total Leucocytic Count', 'Hematocrit', 'MCV',
               'Glucoscholesterdhysical Examina ខ្<sup>1</sup>២ទៅ', 'Urea in Serum',
               'Prostatic Specific Antigen (PSA) Total', 'Testosterone (Total)', 'Alkaline Phosphatase', 'Total Profein in Serum',
               'Estimated Glomerular Filtration Rate(eGFR)', 'Anti CCP Abs', Object
               BUN/Creatinine Ratio', 'Blood pressure', 'Ketones', 'MCHC',
               'pH(Uring Caysing al Examination) object morphous Elements',
               'Blood and Haemoglobin', 'Epithelial Cells / HPF',
          'Ervthfocs/te Sedimentaition Rate(ESPE) kamination: )', 'Bilirubin',
               'Chloride in Serum', 'Cholesterol', 'T. Cholesterol/HDL',
               'Glucoste in Masma (Fasting): / HPF', object throcyte Sedimentation
               'Glucose'Han 1618'sma (Fasting)', Opic 12 %', 'Mean of blood glucose
              'Mean of blood glucose'
'Microalbuminufia (24 h urine)', Bilirubin (Total)',
'Microalbuminufia (24 h urine)'Lead in blood', 'Monocytes absolute count',
'Consistancy', 'Neutrophils absolute count', 'Specific Gravity',
               'W. BubilifubinHProtal) 'Aspartate Aminoetransferase (AST)',
               'Calcium in Serum (Total)', 'Free T4', 'Potassium (K) in Serum',
               'AlbFlowiersciemc@cPattern''Iron (Fe) iobjeSerum', 'CRP H.S',
               'Triglycerides (TG) in Serum', 'Rheumatoid Factor (quantitative)',
               'Plate'Lead in ሁዝዊ ዕሳ' 'Albumin in ሀዎኒክፍ፣(263)', 'MCH', 'RDW',
               'W.B.Cs / HPF', 'Leucocyte esterase', 'Concentration', 'Creatinine of the Serum', 'Sodium for the Serum', 'Bilirubin'
      (Direct), Monocytes absolute count' float64 'Magnesium (Mg) in Serum', 'Titre on Hep2 cells', 'HDL
     Cholesterol', 'Consistancy' object 'Globulin in Serum', 'Cystatin C'],
             d theatrophils absolute count'
                                                       float64
df= df.sort_values(by='RESEARCH_ID')
           'Aspartate Aminotransferase (AST)'
                                                        object
```

obiect

'Calcium in Serum (Total)'

	Unnamed:	RESEARCH_ID	SAMPLE_ID	COLLECTYEAR	REGN_DATE	GENDER_
15940	15940	R015-23-1	21157313R015- 23-1	2015.0	2015-02-08	I
6921	6921	R015-23-10	17154493R015- 23-10	2015.0	2015-01-18	I
23108	23108	R015-23-100	251515977R015- 23-100	2015.0	2015-02-23	FEI
145172	145172	R015-23-100	251549513R015- 23-100	2015.0	2015-12-30	FEI
168477	168477	R015-23-1000	171615838R015- 23-1000	2016.0	2016-03-01	FEI
			,			
		uto ostoroso!	ahiaat			
df.rena	ame(column:	s={'Unnamed:	0': 'ID'})			

df=df.set_index('ID')

'Sodium (Na) in Serum'	object
'Bilirubin (Direct)'	object
'Magnesium (Mg) in Serum'	object
'Titre on Hep2 cells'	object
'HDL Cholesterol'	object
'Globulin in Serum'	float64
'Cystatin C'	object

dtype: object

RESEARCH ID SAMPLE ID COLLECTYEAR REGN DATE GENDER NAME AGE

ID

15940	R015-23-1	21157313R015- 23-1	2015.0	2015-02-08	MALE
6921	R015-23-10	17154493R015- 23-10	2015.0	2015-01-18	MALE
23108	R015-23-100	251515977R015- 23-100	2015.0	2015-02-23	FEMALE
145172	R015-23-100	251549513R015- 23-100	2015.0	2015-12-30	FEMALE
168477	R015-23-1000	171615838R015- 23-1000	2016.0	2016-03-01	FEMALE

This column does not need to be converted to a digital column because it is usually not used in Moodle

df["RESEARCH_ID"].info()

<<class 'pandas.core.series.Series'> Index: 900000 entries, 15940 to 679524

Series name: RESEARCH_ID Non-Null Count Dtype

900000 non-null object dtypes: object(1)

memory usage: 13.7+ MB

df['RESEARCH_ID_int'] = df['RESEARCH_ID'].astype(str).str.replace(r'R|-', '', r
df[['RESEARCH_ID_int']].head(20)

RESEARCH_ID_int

ID

ID	
15940	015231
6921	0152310
23108	01523100
145172	01523100
168477	015231000
801640	0152310000
689903	01523100000
688264	01523100000
687419	01523100000
684844	01523100001
787224	01523100001
689542	01523100002
263272	01523100002
689543	01523100002
711716	01523100003
729838	01523100004
56769	01523100004
86414	01523100005
676308	01523100005
840785	01523100005

#pattern_analysis = df["RESEARCH_ID"].astype(str).apply(lambda x: re.findall(r'

#pattern_analysis

RESEARCH_ID SAMPLE_ID COLLECTYEAR REGN_DATE GENDER_NAME AGE_

ID

15940	R015-23-1	21157313R015- 23-1	2015.0	2015-02-08	MALE
6921	R015-23-10	17154493R015- 23-10	2015.0	2015-01-18	MALE
23108	R015-23-100	251515977R015- 23-100	2015.0	2015-02-23	FEMALE
145172	R015-23-100	251549513R015- 23-100	2015.0	2015-12-30	FEMALE
168477	R015-23-1000	171615838R015- 23-1000	2016.0	2016-03-01	FEMALE

In this step, a column was converted to int while preserving the original column because it contains a pattern that could be important.

df['COLLECTYEAR'].isna().sum()

→ 61962

df['COLLECTYEAR'] = pd.to_datetime(df['COLLECTYEAR'].astype('Int64'), format='%

#df.loc[df['COLLECTYEAR'] == 0, 'COLLECTYEAR'] = df['REGN_DATE'].dt.year

df['COLLECTYEAR'].head()

COLLECTYEAR

ID

15940	2015-01-01
6921	2015-01-01
23108	2015-01-01
145172	2015-01-01
168477	2016-01-01

dtype: datetime64[ns]

df['COLLECTYEAR'].isnull().sum()

→ 61962

df['COLLECTYEAR'].value_counts()

count

COLLECTYEAR

2019-01-01	174895
2018-01-01	173113
2016-01-01	159215
2015-01-01	138885
2017-01-01	127094
2020-01-01	64628
2021-01-01	144
2022-01-01	46
2023-01-01	18

dtype: int64

 $\overline{\Sigma}$

count

COLLECTYEAR

2019	174895
2018	173113
2016	159215
2015	138885
2017	127094
2020	64628
0	61962
2021	144
2022	46
2023	18

dtype: int64

df['REGN_DATE'] = pd.to_datetime(df['REGN_DATE'])

df['REGN_DATE'].head()

 $\overline{\Sigma}$

REGN_DATE

ID

15940	2015-02-08
6921	2015-01-18
23108	2015-02-23
145172	2015-12-30
168477	2016-03-01

dtype: datetime64[ns]

df['REGN_DATE'].value_counts()

count

REGN_DATE

-	
2018-09-29	3263
2018-09-22	3225
2015-01-01	3179
2018-09-20	3042
2019-09-23	2947
2018-09-23	2936
2019-09-28	2813
2019-09-22	2733
2019-09-30	2666
2018-09-24	2647
2018-09-30	2490
2018-09-19	2434
2019-09-21	2368
2018-09-15	2164
2019-09-29	2132
2018-09-18	2058

2018-09-17	1974
2017-09-24	1926
2018-09-27	1851
2019-09-26	1733
2018-09-16	1731
2019-09-14	1698
2015-12-31	1598
2016-12-31	1548
2019-09-19	1499
2017-09-23	1461
2018-09-25	1395
2018-12-31	1310
2018-09-26	1297
2019-02-16	1280
0010 01 00	

```
df['GENDER_BINARY'] = df['GENDER_NAME'].map({'MALE': 1, 'FEMALE': 0})
```

```
df['AGE_YEARS'] = df['AGE_YEARS'].astype('Int64')
```

2019-04-30	1100
2018-04-14	1092
2016-10-29	1084

df['AGE_DAYS'] = df['AGE_DAYS'].fillna(0).astype('Int64')
df[['AGE_DAYS']].head(20)

AGE_DAYS

_		
т	п	•
_	ч	u

ID		
15940	20089	
6921	12785	
23108	15706	
145172	16016	
168477	13515	
801640	10593	
689903	24203	
688264	24204	
687419	24203	
684844	17533	
787224	17685	
689542	21046	
263272	20090	
689543	21047	
711716	29221	
729838	11338	
56769	9861	
86414	13706	
676308	0	
840785	15292	
2019-03-16	926	
2015-09-22	922	
2017-03-11	917	
2016-03-26	916	
2019-09-12	914	

df['AGE_MONTHS'] = df['AGE_MONTHS'].fillna(0).astype('Int64')
df[['AGE_MONTHS']].head(20)

AGE_MONTHS

ID	
15940	670
6921	426
23108	524
145172	534
168477	451
801640	353
689903	807
688264	807
687419	807
684844	584
787224	589
689542	702
263272	670
689543	702
711716	974
729838	378
56769	329
86414	457
676308	0
840785	510
2016-12-03	842

There izohija6zinz&GE_YELARS, AGE_DAYS, AGE_MONTHS

```
df["AGE_YEARS"] = df["AGE_YEARS"].abs()
df["AGE_DAYS"] = df["AGE_DAYS"].abs()
df["AGE_MONTHS"] = df["AGE_MONTHS"].abs()
```

0040 OF 04

```
df.loc[((df["AGE_YEARS"] * 365 - df["AGE_DAYS"]).abs() > 365), "AGE_DAYS"] = d1
df.loc[((df["AGE_YEARS"] * 12 - df["AGE_MONTHS"]).abs() > 12), "AGE_MONTHS"] =
mismatches_after_fix = {
    " AGE_YEARS , AGE_DAYS ": ((df["AGE_YEARS"] * 365 - df["AGE_DAYS"]).abs()
    " AGE_YEARS , AGE_MONTHS: ((df["AGE_YEARS"] * 12 - df["AGE_MONTHS"]).abs()
print(mismatches_after_fix)
      2019-11-09
      Show hidden output
      2015-12-28
                     821
##الفصل الذي تم فيه اخذ التحليل 158 تأثير 16 16 19 عنه الصحه
      2016-06-05
                     814
.ظهرية 3<u>5</u>4,530 <u>مجية (Jedda</u>).
ظهرته واحدة وقط (Abu Dوره) اظهرته واحدة وقط الم
      2015-09-17
                     805
      2019-04-20
                     801
      2015-12-26
                     800
      2019-04-28
                     799
      2019-04-13
                     798
      2017-12-30
                     797
      2017-11-04
                     795
      2019-12-31
                     792
      2017-10-14
                     791
      2020-06-20
                     791
      2018-10-27
                     790
      2020-06-03
                     785
      2015-02-14
                     784
      2019-11-02
                     781
      2019-12-28
                     780
      2019-09-11
                     778
      2016-02-06
                     778
      2018-02-03
                     776
      2018-09-12
                     776
```

```
df['CITY_NAME'] = df['CITY_NAME'].str.strip().str.title()
df['CITY_NAME'] = df['CITY_NAME'].astype('category')
df['CITY_NAME'].head(20)
```

→

CITY_NAME

ID

10	
15940	Hail
6921	Abha
23108	Makkah
145172	Makkah
168477	Abha
801640	Madinah
689903	Jeddah
688264	Jeddah
687419	Jeddah
684844	Riyadh
787224	Riyadh
689542	Tabouk
263272	Tabouk
689543	Tabouk
711716	Makkah
729838	Riyadh
56769	Riyadh
86414	Jeddah
676308	Jeddah
840785	Jeddah

dtype: category

2019-10-26 731

"Western ab Management" "Auditing"

2015-09-05 727 **2020-02-22** 726

invalid_cities = ["Auditing", "Central Lab Management", "Western Lab Management
df['CITY_NAME'] = df['CITY_NAME'].replace(invalid_cities, "Administrative Locat

 $\overline{\Rightarrow}$

2U2U-U0-21 /25
<ipython-input-43-1cbf2f9389e1>:2: FutureWarning: The behavior of Series.re
20f6-10f19/_NAME25] = df['CITY_NAME'].replace(invalid_cities, "Administrative")

20f6-10 119/_N	
2020-06-06	722
2018-10-29	722
2019-09-07	722
2016-03-14	719
2016-03-13	718
2019-02-14	718
2015-12-19	717
2019-11-16	716
2020-06-02	712
2017-12-16	712
2017-02-11	712
2020-06-04	710
2018-06-02	708
2019-03-02	708
2015-05-02	707
2019-03-28	706
2016-07-31	705
2016-03-28	703
2017-05-13	702
2015-04-11	701
2016-03-16	701
2019-04-04	701
2016-11-14	700
2016-12-28	700
2018-05-30	700
2019-08-31	699

```
label_encoder = LabelEncoder()
df['CITY_NAME_ENCODED'] = label_encoder.fit_transform(df['CITY_NAME'])
df[['CITY_NAME', 'CITY_NAME_ENCODED']].head(20)
```

-		_
_	•	_
-	7	$\overline{}$
	•	

CITY_NAME CITY_NAME_ENCODED

ID

10		
15940	Hail	12
6921	Abha	0
23108	Makkah	21
145172	Makkah	21
168477	Abha	0
801640	Madinah	20
689903	Jeddah	14
688264	Jeddah	14
687419	Jeddah	14
684844	Riyadh	25
787224	Riyadh	25
689542	Tabouk	28
263272	Tabouk	28
689543	Tabouk	28
711716	Makkah	21
729838	Riyadh	25
56769	Riyadh	25
86414	Jeddah	14
676308	Jeddah	14
840785	Jeddah	14
2017-04-02	683	

def clean_and_preserve_tsh(value):

if pd.isna(value):
 return np.nan

value_str = str(value).strip()

```
if value_str.startswith("<"):</pre>
            return float(value_str[1:]) - 0.0001
        except ValueError:
            return np.nan
    if value_str.startswith(">"):
        try:
            return float(value_str[1:]) + 0.0001
        except ValueError:
            return np.nan
    cleaned_value = re.sub(r'[\*\(\)]', '', value_str)
    try:
        return float(cleaned_value)
    except ValueError:
        return np.nan
df["Thyroid Stimulating Hormone (TSH)"] = df["Thyroid Stimulating Hormone (TSH)
df["Thyroid Stimulating Hormone (TSH)"].dtype, df["Thyroid Stimulating Hormone
```

```
(3018-03-1-4<sub>0at6</sub>473),
 2019-08-03 11.14
    <del>75</del>-11-28
  2056-09-27
                1.00/4
  168477
               1.62
  2016-04-16
                2.65762
  689903
                 NaN
                 N&W2
  2073-05-16
  689543
  2017-D0-21
                1.6637
  729838
                2.33
  2020-96-11
                1.6866
  86414
                 NaN
  2915-12-27
                 NGAN3
             NaN
roid Stimulating Hormone (TSH), dtype: float64)
  2017-04-01
                  660
  2019-03-09
                  660
```

df["Uric Acid in Serum"] = df["Uric Acid in Serum"].replace(9.999999e+99, np.na
df["Uric Acid in Serum"] = pd.to_numeric(df["Uric Acid in Serum"], errors='coer
df["Uric Acid in Serum"].dtype, df["Uric Acid in Serum"].head(20)

```
(2526-66-67-loat6654),
 25974-01-14 7.2652
 6921
              NaN
 2918-86-30 4.4651
 145172
              3.7
 2858-<del>94</del>-03
              3.4649
              NaN<sup>648</sup>
              NaN<sub>647</sub>
              4.9647
              5.5
 787224
 289542-26
             6.6647
 263272
              NaN
 2929-43 -15
              NaN646
 711716
              5.8
 <del>2</del>9<sub>1</sub>9-93-24
              5.2646
              NaN
 Աթոբ-ըլԱրշic Acaido in Serum, dtype: float64)
 2019-04-02
                  642
 2016-04-11
                  641
 2020-05-31
                  641
 2019-12-07
                  641
 2019-07-27
                  640
 2016-08-28
                  640
 2018-10-18
                  639
 2018-05-05
                  637
 2016-03-24
                  637
 2015-09-14
                  637
 2018-12-24
                  637
 2016-09-26
                  635
 2018-04-21
                  635
 2016-12-05
                  634
```


RESEARCH_ID SAMPLE_ID COLLECTYEAR REGN_DATE GENDER_NAME AGE_

ID

15940	R015-23-1	21157313R015- 23-1	2015	2015-02-08	MALE
6921	R015-23-10	17154493R015- 23-10	2015	2015-01-18	MALE
23108	R015-23-100	251515977R015- 23-100	2015	2015-02-23	FEMALE
145172	R015-23-100	251549513R015- 23-100	2015	2015-12-30	FEMALE
168477	R015-23-1000	171615838R015- 23-1000	2016	2016-03-01	FEMALE

2017-09-16	626
2017-02-18	624
2015-06-13	624
2016-08-21	624
2019-06-29	624
2020-06-15	624
2018-04-02	623
2016-04-04	622
2020-06-09	622
2018-03-28	622
2019-02-07	622
2015-06-16	621
2016-04-26	621
2019-03-11	621
2016-05-14	621
2016 00 22	600

df["Alanine Aminotransferase (ALT)"] = pd.to_numeric(df["Alanine Aminotransferase
df["Alanine Aminotransferase (ALT)"].dtype, df["Alanine Aminotransferase (ALT)"

```
2016-11-12 619 (dtype('float64'),
\rightarrow
      2020-01-04
                       619
                   15.0
      15940
      2925-11-30
                   Na6118
      23108
                   23.0
      2017-04-26
                   24.6017
      287<del>7</del>-12-02
                    Na6416
      684844
                   19.0
      2679-04-03
                   23.6016
      689542
                   13.0
      2018-717-29
                    Na6/16
      689543
                    NaN
                   15.615
      2499-07-29
                    7.6913
      Name: Alanine Aminotransferase (ALT), dtype: float64)
      2016-07-24
                       613
      2017-09-09
                       613
      2019-01-12
                       612
      2020-01-14
                       612
      2016-06-01
                       612
      2016-02-27
                       611
      2016-04-27
                       611
      2018-12-25
                       610
      2019-04-16
                       608
      2017-12-09
                       608
      2020-03-08
                       607
      2018-03-11
                       606
      2019-02-12
                       606
      2016-05-28
                       606
      2017-05-24
                       606
```

df["Ferritin In Serum"] = pd.to_numeric(df["Ferritin In Serum"], errors='coerccoeff of the companies of

→	(2019-03-26 Loa	at6640'5)
	ID 2990-00-10	602AN
	6921 2919 -11-23	NaN Wan

6921 2919-11-23	NaN ƙPaN
145172 2020-05-30	NaN 10.56
2016-08-30 689903	નુકુN 160 . 80
28 89-08 -01	AlgaN
687419	NaN
2019-03 -13	60a N
787224	NaN
<u> </u>	76 <u></u> 071 <u>1</u>
263272 2916-94-06	NaN
	RPAN
711716 2018-05-29	NaN RPan
/70232	McJN

206742-23

840785

2016-01F26rriti600In Serum, dtype: float64)

QPDEQN

NaN

2018-05-16	599
2017-04-08	599
2020-06-23	598
2018-09-01	598
2019-07-06	598
2016-05-16	597
2016-04-10	597
2018-11-10	597
2018-10-14	596
2016-04-21	596
2019-07-13	596
2020-03-01	595
2019-09-08	595
2015-12-24	595
2017-01-28	594

RESEARCH_ID SAMPLE_ID COLLECTYEAR REGN_DATE GENDER_NAME AGE_

ID

15940	R015-23-1	21157313R015- 23-1	2015	2015-02-08	MALE
6921	R015-23-10	17154493R015- 23-10	2015	2015-01-18	MALE
23108	R015-23-100	251515977R015- 23-100	2015	2015-02-23	FEMALE
145172	R015-23-100	251549513R015- 23-100	2015	2015-12-30	FEMALE
168477	R015-23-1000	171615838R015- 23-1000	2016	2016-03-01	FEMALE

201E 0E 22 E07

#df.to_csv('/content/drive/MyDrive/FE/FE462_processed.csv', index=False)

2018-07-02	586
2016-10-20	586
2018-04-04	586
2019-06-22	585
2016-08-03	585
2019-05-28	585
2018-03-22	585
2019-02-13	585
2016-11-07	584
2015-12-12	584
2019-03-12	584
2019-02-05	583
2016-08-14	583

df["Blood Urea Nitrogen (BUN)"] = pd.to_numeric(df["Blood Urea Nitrogen (BUN)"]
df["Blood Urea Nitrogen (BUN)"].dtype, df["Blood Urea Nitrogen (BUN)"].head(20)

```
(3016-12-96 to at 6282),
              Naglan
 168477
              5.0
 2016-03-07
              Na$80
 689903
              NaN
 80-8498
              NaW9
             13.5478
 2016-08-07
             16.578
 729838
              NaN
 2676-98-04
              Nat/18
 86414
              NaN
 B955-02-21
              Na578
 840785 NaN
R016-03B0od UPGa Nitrogen (BUN), dtype: float64)
 2020-01-25
                577
```

df["Blood Urea Nitrogen (BUN)"].info()

2010-11-21	5/3
2016-05-07	573
2017-08-27	572
2016-08-22	571
2020-03-05	571
2015-12-05	571
2016-09-05	571
2019-03-17	570

RESEARCH_ID SAMPLE_ID COLLECTYEAR REGN_DATE GENDER_NAME AGE_

ID

15940	R015-23-1	21157313R015- 23-1	2015	2015-02-08	MALE
6921	R015-23-10	17154493R015- 23-10	2015	2015-01-18	MALE
23108	R015-23-100	251515977R015- 23-100	2015	2015-02-23	FEMALE
145172	R015-23-100	251549513R015- 23-100	2015	2015-12-30	FEMALE
168477	R015-23-1000	171615838R015- 23-1000	2016	2016-03-01	FEMALE

2018-02-27 566

df["R. B. Cs / HPFs"].value_counts()

count

D	D	Cc	/	HDFC

0-1	39
1	23
1 - 3	15
0 - 2	14
1-3	12
0-2	11
1-2	10
3-5	10
2	10
2-4	9
2-3	4

6	 3
0.2	3
5	3
6-8	3
20-25	2
2 - 4	2
4	2
10-12	2
3	2
8-10	2
3 - 5	2
1 - 3	1
4.6	1
15-20	1
16-18	1
10	1
5-8	1
0 - 1	1
6 - 8	1
2 - 4	1
11-13	1
3-4	1
> 100	1
6-7	1
12	1
35.40	1
5-7	1
2 - 4	1
70	1
8	1

```
def process_rbcs_values(value):
    if pd.isna(value) or str(value).strip() == "":
        return np.nan
    value = str(value).strip()
    if ">" in value:
        try:
            return float(re.sub(r'[^\d.]', '', value))
        except ValueError:
            return np.nan
    if "-" in value:
        try:
            parts = [float(x) for x in re.findall(r'\d+\.?\d*', value)]
            return max(parts)
        except ValueError:
            return np.nan
    try:
        return float(value)
    except ValueError:
        return np.nan
df["R. B. Cs / HPFs"] = df["R. B. Cs / HPFs"].apply(process_rbcs_values)
df["R. B. Cs / HPFs"].fillna(0, inplace=True)
    <ipython_input_56-a8ce81b06806>:30: FutureWarning: A value is trying to be
    The benavior with change in pandas 3.0. This inplace method will never work
    2019-04-09 For example, when doing 'df[col].method(value, inplace=True)', try using 'd
     2016-09-03
                   545
     2dfg-1R-03B. Cs544 HPFs"].fillna(0, inplace=True)
     2016-08-15
                   544
     2016-10-18
                   544
     2018-05-14
                   544
     2016-03-10
                   544
     2016-08-25
                   543
     2010-01-10
                 542
```

df["R. B. Cs / HPFs"].value_counts()

count

R.	В.	Cs	/	HPFs
т.	о.	La	,	DEFS

R. B. CS / HPFS	
0.0	899794
1.0	63
2.0	46
3.0	34
5.0	16
4.0	16
8.0	6
6.0	4
0.2	3
10.0	3
12.0	3
7.0	2
25.0	2
4.6	1
20.0	1
18.0	1
13.0	1
35.4	1
100.0	1
70.0	1
1.3	1

dtype: int64

2010-10-00	JJU
2017-03-08	536
2016-05-02	536
2018-12-23	535

df["Aspect(Urine Physical Examination)"].value_counts()

count

Aspect(Urine Physical Examination)

Clear	145
Slightly Turbid	35
clear	17
Turbid	9

dtype: int64

2019-05-01 531

Ordinal Encoding

530

```
encoding_map = {
    'Clear': 0,
    'clear': 0,
    'Slightly Turbid': 1,
    'Turbid': 2
}
```

df["Aspect(Urine Physical Examination)"] = df["Aspect(Urine Physical Examination)"] = df["Aspect(Urine Physical Examination)": "Aspect(Urine Physical Examination)": "Aspect(Urine Physical Examination)": "Aspect(Urine Physical Examination)")

2018-07-14 528

df["Aspect(Urine Physical Examination) Ordinal Encoding"].value_counts()

 \rightarrow

count

Aspect(Urine Physical Examination) Ordinal Encoding

0.0	162
1.0	35
2.0	9

dtype: int64

df[["Eosinophils absolute count"]].value_counts()

count

Eosinophils absolute count

0.150	12
0.160	12
0.200	12
0.130	11
0.110	11
0.180	9
0.060	9
0.120	8
0.220	8
0.100	8
0.190	7
0.300	7
0.090	6
0.140	6
0.050	6
0.270	6
0.250	6
0.210	5
0.080	5
0.070	5
0.170	5
0.030	4
0.240	4
0.320	4
0.260	4
0.230	3
0.520	3
0.370	3
0.390	3
0.360	2

df["Vitamin D (25 OH-Vit D -Total)"].value_counts()

 $\overline{\Sigma}$

count

Vitamin D (25 OH-Vit D -Total)

vicamin b (25 on-vic b -local)	
11.2	2934
10.5	2918
10.6	2908
11.4	2863
11.3	2860
11.7	2848
10.2	2846
11.1	2817
11.6	2793
10.9	2785
12.5	2781
11.9	2774
11.8	2771
12.7	2770
10.4	2764
11.5	2762
12.9	2757
12.6	2747
10.3	2737
12.1	2731
12.2	2730
12.3	2716
10.8	2714
13.2	2700
12.4	2689

10.7	2676
13.1	2655
13.5	2644
13.3	2643
13.8	2631
 40.4	2212

df.dtypes

	0
RESEARCH_ID	object
SAMPLE_ID	object
COLLECTYEAR	int64
REGN_DATE	datetime64[ns]
GENDER_NAME	object
AGE_YEARS	Int64
AGE_DAYS	Int64
AGE_MONTHS	Int64
CITY_NAME	category
HEIGHT	int64
WEIGHT	float64
ВМІ	float64
Thyroid Stimulating Hormone (TSH)	float64
Uric Acid in Serum	float64
Alanine Aminotransferase (ALT)	float64
Ferritin In Serum	float64
Blood Urea Nitrogen (BUN)	float64
Lymphocytes absolute count	float64
R. B. Cs / HPFs	float64
Aspect(Urine Physical Examination) Ordinal Encoding	float64
Eosinophils absolute count	float64
Vitamin D (25 OH-Vit D -Total)	object

C-Reactive Protein (CRP) quantitative	object
Transferrin	object
Red cell count	object
Basophils absolute count	float64
Crystals(Urine Microscopic Examination :)	object
Protein(Urine Physical Examination)	object
Colour(Urine Physical Examination)	object
Nitrite	object
LDL Cholesterol	object

df["Vitamin D (25 OH-Vit D -Total)"].value_counts()

count

Vitamin D (25 OH-Vit D -Total)

11.2	2934
10.5	2918
10.6	2908
11.4	2863
11.3	2860
11.7	2848
10.2	2846
11.1	2817
11.6	2793
10.9	2785
12.5	2781
11.9	2774
11.8	2771
12.7	2770
10.4	2764
11.5	2762
129	2757

12.0	2101
12.6	2747
10.3	2737
12.1	2731
12.2	2730
12.3	2716
10.8	2714
13.2	2700
12.4	2689
10.7	2676
13.1	2655
13.5	2644
13.3	2643
13.8	2631
13.4	2619

This column contains numerical values. When it is converted from object to float, the 12.8 2611 percentage of missing values increases, and this should not happen.

10.1 2605

The solution is to determine the values that be solved by the value of the valu

pattern in them	14.2	2578
	13.7	2575
Extra spaces before	or after numbers. 14.3	2561
Unexpected symbol	s such as (?, #, " %,	>, <, *).

Values written in words (such as "twenty" instead of "20").

Values that contain units of measurement (such as "10 ng/ml" instead of "10").

df["Vitamin D (25 OH-Vit D -Total)"].value_counts()

count

Vitamin D (25 OH-Vit D -Total)

11.2	2934
10.5	2918

10.6	2908
11.4	2863
11.3	2860
11.7	2848
10.2	2846
11.1	2817
11.6	2793
10.9	2785
12.5	2781
11.9	2774
11.8	2771
12.7	2770
10.4	2764
11.5	2762
12.9	2757
12.6	2747
10.3	2737
12.1	2731
12.2	2730
12.3	2716
10.8	2714
13.2	2700
12.4	2689
10.7	2676
13.1	2655
13.5	2644
13.3	2643
13.8	2631
13.4	2619
12.8	2611

non_numeric_chars

df["Vitamin D (25 OH-Vit D -Total)"].unique()

قيم تحتوي على رموز مثل "<4.00", ">4.00", "(3.8)", ">4.00", "(3.8)", ">4.00", "(3.8)", وغيرها. قيم مكررة أو غير مفهومة مثل ">4.00", "21.221.2", "17.217.2", "17.217.2", "21.221.2" مفصولة بمسافات غير ضووه أو تحتوي على رموز إضافية في الإدخال. بعض القيم المشبوهة قد شكه مفصولة بمسافات غير ضووه أو تحتوي على رموز إضافية

15.1	2414
12.0	2406
15.3	2406
15.2	2384
15.8	2363
15.4	2362
15.5	2357
15.6	2356
15.7	2333
10.0	2332
16.4	2308
16.2	2303
15.9	2297
16.6	2291
13.0	2283
46.4	0050

```
column_name = 'Vitamin D (25 OH-Vit D -Total)'
def clean_value(value):
    if pd.isna(value) or value == "":
        return pd.NA
    value = str(value).strip()
    value = value.replace(",", ".")
    if value.startswith("<"):</pre>
        numeric_value = re.sub(r'[^0-9.]', '', value)
        return float(numeric_value.split('.')[0]) - 1 if numeric_value else pd.
    if value.startswith(">"):
        numeric_value = re.sub(r'[^0-9.]', '', value)
        return float(numeric_value.split('.')[0]) - 1 if numeric_value else pd.
    value = re.sub(r'[^0-9.]', '', value)
    value = value.split('.')[0]
    return float(value) if value else pd.NA
df[column_name] = df[column_name].apply(clean_value)
df["Vitamin D (25 OH-Vit D -Total)"].dtypes
                                       2009
                   17.6
→ dtype('0')
                   17.9
                                       1983
df["Vitamin D (25 OH-Vit D -Total)"] = pd.to_numeric(df["Vitamin D (25 OH-Vit [
df["Vitamin D (25 OH-Vit D -Total)"] .info()
<<class 'pandas gore series Series'>
    Index: 900000 entries, 15940 to 679524
    Series name: Vitamin D (25 OH-Vit PopaTotal)
    Non-Null Count
                     Dtype
           -----18.7----
                                       1916
    568468 non-null float64
    dtypes: float6482)
                                       1906
    memory usage: 46.0 MB
                                       1896
                   19.8
df.info()
```

→

•	Index	x: 900000	19.7 core frame DataFra enteries, 15940 to 6				
	# 	Columns	total 100 columns): 19.6	1854			Non-Null Count
	0	RESEARCH_		1846			900000 non-null
	1 2	SAMPLE_ID) - 18. 5	1822			900000 non-null 900000 non-null
	3	REGN_DATE GENDER_NA	20.2	1804			900000 non-null 900000 non-null
	5	AGE_YEARS		1801			838038 non-null
	6 7	AGE_DAYS AGE_MONTH	 \$7.0	1800			900000 non-null 900000 non-null
	8	CITY_NAME HEIGHT	20.3	1794			900000 non-null 900000 non-null
	10	WEIGHT	20.5	1768			900000 non-null
	11 12	BMI Thyroid S	Stimulating Hormone	(TSH) 1758			900000 non-null 544701 non-null
	13 14	Uric Acid	l ²⁰ 16 Serum Aminotransferase (AL				548513 non-null 579129 non-null
	15	Ferritin	In Serum				150771 non-null
	16 17		a 2₁N itrogen (BUN) Ses absolute count	1754			361245 non-null 216 non-null
	18 19	R. B. Cs Aspect(Ur	20H PFs rine Physical Examina	1751 ation)	Ordinal	Encodina	900000 non-null 206 non-null
	20	Eosinophi	29.% absolute count	1740		3	216 non-null
	21 22	C-Reactiv) (25 OH–Vit D –Tota / 2¹ቮ rotein (CRP) qua		ive		568468 non-null 11311 non-null
	23 24	Transferr Red cell	in 18.0 count	1720			1719 non-null 216 non-null
	25 26	Basophils	2 4 5 Urine Microscopic E	1717	tion ()		216 non-null 206 non-null
	27	Protein(l	J ein e Physical Exami	n p/tjig on	1)		206 non-null
	28 29	Colour(Ur Nitrite	rine Physical Examina 21.3	ation) 1704			206 non-null 206 non-null
	30 31	LDL Chole		1701			306442 non-null 243 non-null
	32		Jrine Volume (263) 21.6	1694			7 non-null
	33 34			1681			219 non-null 216 non-null
	35 36	Hematocri MCV	20.5ytic Count				219 non-null 216 non-null
	37	Glucose(l	19.0 Urine Physical Exami		1)		206 non-null
	38 39		Specific Antigen (otal		212283 non-null 119269 non-null
	40 41		'&h⊕ (Total) Phosphatase	1633			123295 non-null 288565 non-null
	42 43	Total Pro	o ₹2 1 in Serum	1631	te(eGFR)		281111 non-null 298895 non-null
	44	AIILI CCP		1630	ice (Coi it)		6173 non-null
	45 46	BUN/Crea Blood pre	atinine Ratio essure	1623			275271 non-null 294405 non-null
			22.3	1606			

```
47
    Ketones
                                                               206 non-null
48
     MCHC
                                                               216 non-null
               22.5
                                    1603
     pH(Urine Physical Examination)
49
                                                               206 non-null
50
     Amorphous 20.0 ements
                                    1602
                                                               206 non-null
     Blood and Haemoglobin
                                                               206 non-null
                                    1601
     Fnithelia 2209-11c / HPF
                                                               206 non-null
               22 6
                                    1522
```

```
column_to_save = df[["C-Reactive Protein (CRP) quantitative"]]
column_to_save.to_csv('column_data.csv', index=False, encoding='utf-8')
```

```
\label{eq:df-protein} $$ df["BDL"] = df["C-Reactive Protein (CRP) quantitative"].apply(lambda x: 1 if is df["C-Reactive Protein (CRP) quantitative"] = df["C-Reactive Protein (CRP) quantitative"] = pd.to_numeric(df["C-Reactive Protein (CRP) quantitative"]) = pd.to_numeric(df["C-R
```

df["C-Reactive Protein (CRP) quantitative"].info()

→	<pre><class 'pandas.c="" 23<="" 900000="" @3="" c-r="" count="" index:="" name:="" non-null="" pre="" series=""></class></pre>	ore series Serie Dries, 15940 to eactive Protein	6719456264	quantitative
	11077 non-null 21		1447	
	dtypes: float64(memory usage: 48	1) : 0 MB	1436	
	24	3	1433	

So that I don't lose the <code>ipformation</code> that it is under the limit, and this is a value that cannot be read to determine it accurately, but I cannot transform the column in this way. I create a column that determines that it is under the limit, and the main column I put in the average value that is under 0.

24.1 1409

24.6 1403

How do you choose ar 4 fernative value? 1354

Use $0.05 \text{ mg/L} \rightarrow (\text{the} \frac{24 \text{ fd}}{1000} \text{ mg/L})$ when no additional data are available.

Use $0.054 \text{ mg/L} \rightarrow \text{(th} 24a9\text{ erage of the actual v3d} 56\text{ es below 0.1 in the sample, which is more accurate).}$

Use 0.1 mg/L \rightarrow (less accurate because it gives 22n upper limit rather than an estimate of the actual value).

25.2 1317

```
df["Transferrin"].isna().sum()
                                           1290
→ 898281
                    23.0
                                          1284
df["Transferrin"] = df["Transferrin"].astype(str)
df["Transferrin"] = df["Transferrin"].str.replace(r"[^\d.]", "", regex=True)
df["Transferrin"] = pd.to_numeric(df["Transferrin"], errors='coerce')
                                           LZDU
df["Transferrin"].isnull().sum()
                     9.9
                                          1250
    898281
                                          1223
df["Transferrin"].info()
    <class 'pandas ¿sore.series. Series' ≥193
     Index: 900000 entries, 15940 to 679524
     Series name: Tr9a6sferrin
                                          1192
     Non-Null Count Dtype
                                           1187
     1719 non-null
                       float64
     dtypes: float64(1)
                                          1173
     memory usage: 46,0 MB
                                           1172
9.4 1167
In this column, the missing values are coded as Absent. I will code them as zero so that they
do not take on more importance when multiplying them by w.
                    25.7
                                          1164
Absent: 899,992 times to a large number of missing values)
Few Calcium Oxalate 26/5tals: 2 times
                                          1159
Uric Acid Crystals: 2 ti264s
                                          1156
                                          1151
Calcium Oxalate Crystals: 1 time
                                          1149
Uric Acid Crystals (+): 46thme
                                          1129
Uric Acid Crystals (some). 1 time
                                          1127
Uric Acid Crystals (few): 1 time
                                          1121
df["Crystals(Urine Microscopic Examination :)"] = df["Crystals(Urine Microscopi
                    27.2
                                           1114
                     8.8
                                          1106
                    26.7
                                          1095
```

```
column_name = "Crystals(Urine Microscopic Examination :)"
df[column_name] = df[column_name].replace({
    'Uric Acid Crystal(few)': 'Uric Acid Crystal - Few',
    'Uric Acid Crystal Some': 'Uric Acid Crystal - Some',
    'Uric Acid Crystal (+)': 'Uric Acid Crystal - (+)',
    'Few Calcium Oxalate Crystal': 'Calcium Oxalate Crystal - Few'
})
print("Unique values after replacement:", df[column_name].unique())
ordered_categories = [
    "Absent",
    "Uric Acid Crystal - Few",
    "Uric Acid Crystal - Some",
    "Uric Acid Crystal - (+)",
    "Uric Acid Crystal", # Added missing category
    "Calcium Oxalate Crystal - Few",
    "Calcium Oxalate Crystal" # Added missing category
]
encoder = OrdinalEncoder(categories=[ordered_categories], dtype=float, handle_u
df["Crystals(Urine Microscopic Examination :)"] = encoder.fit transform(df[[col
→ Unique values after replacement: ['Absent' 'Calcium Oxalate Crystal' 'Uric Acid Crystal' 'Uric Acid Crystal'
      'Calcium Oxalate Crystal - Few' 'Upric Acid Crystal - Few']
                    8.1
df["Crystals(Urine Microscopic Examination :)"] .info()
<<class 'pandas.&6re.series'>953
    Index: 900000 entries, 15940 to 679524
    Series name: Crystals(Urine Microscopic Examination :)
    Non-Null Count<sub>28.6</sub>Dtype
                                         936
    900000 non-nullagfloat64
                                         931
    dtypes: float64(1)
    memory usage: 26.40 MB
                                         931
                   28.8
                                         930
                   29.3
                                         927
                   <4.00
                                         923
                    7.8
                                         921
```

df["Crystals(Urine Microscopic Examination :)"].info()

<class 'pandas.core.series.Series'>
Index: 900000 2914ries, 15940 to 679524

Series name: Crystals(Urine Microscopic Examination :) Non-Null Count Dtype

900000 non-null float64 897 dtypes: float649.2 863 memory usage: 46.0 MB 857 29.5

Protein(Urine Physical Examination) "Aspect(UPTTO Physical Examination)"

29.9 849

Feature	Aspect(Urine Physical Examination)	Protein(Urine Physical Examination)
Column Name	Aspect(Urine Physical Examination)	Protein(Urine Physical Examination)
Description	Describes the physical appearance of urine, which can indicate infections, kidney problems, or other health conditions.	Measures the presence of protein in urine, which is an important marker for kidney function and possible renal diseases.
Possible Values	"Clear", "Slightly Turbid", "Turbid"	"Absent", "Present (+)", "Present (+++)", "Trace"
Most Frequent Value	Clear	Absent
Clinical Significance	Turbidity in urine can indicate the presence of bacteria, white blood cells, or protein, suggesting infections or kidney diseases.	Proteinuria (presence of protein in urine) can indicate kidney dysfunction, diabetes, high blood pressure, or other systemic diseases.
Potential Causes of Abnorr	mal Values Urinary tract infections (UTIs), kidney disease, excessive white blood cells or protein, or dehydration.	Diabetes, hypertension, kidney inflammation (glomerulonephritis), lupus, or chronic kidney disease.
	7.6 816	

Detailed Comparison of Urine Physical Examination Tests

Feature	Aspect (Urine Physical Examination)	Protein (Urine Physical Examination)
Column Name	Aspect(Urine Physical Examination)	Protein(Urine Physical Examination)
Description	Describes the physical appearance of urine, which can indicate infections, kidney problems, or other health conditions.	Measures the presence of protein in urine, an important marker for kidney function and possible renal diseases.
Possible Values	"Clear", "Slightly Turbid", "Turbid"	"Absent", "Present (+)", "Present (++)", "Present (+++)", "Trace"
Most Frequent Value	Clear	Absent
Clinical Significance	Turbidity in urine can indicate the presence of bacteria, white blood cells, or protein, suggesting infections or kidney diseases.	Proteinuria (presence of protein in urine) can indicate kidney dysfunction, diabetes, high blood pressure, or other systemic diseases.
Potential Causes of Abnormal Values	Urinary tract infections (UTIs), kidney disease, excessive white blood cells or protein, or dehydration.	Diabetes, hypertension, kidney inflammation (glomerulonephritis), lupus, or chronic kidney disease.

30.9 724 31.3 723

```
protein_mapping = {
    "Absent": 0,
    "Trace": 0.5,
    "Present (+)": 1,
    "Present (++)": 2,
    "Present (+++)": 3,
    "Present(+)": 1,
    "Present(+)": 2
}

df["Protein(Urine Physical Examination)"] = df["Protein(Urine Physical Examinat
...
```

Absent 0.0
Trace 0.5
Present (+) 1.0
Present (++) 2.0
Present (+++) 3.0

df["Protein(Urine Physical Examination)"].info()

0

dtypes: float64 6(\$) memory usage: 46.0 MB	616
6.9	607
6.7	593
33.7	592
33.5	586
33.9	582
32.0	574
6.6	571
20 B	FER

```
df["Colour(Urine Physical Examination)"].info()
    <class 'pandas 350 re series Series'>5
    Index: 900000 entries, 15940 to 679524
    Series name: Cglour(Urine Physical faxamination)
    Non-Null Count Dtype
                  --34<del>.5</del>--
                                          554
    206 non-null
                      object
                                          551
    dtypes: object 31.
    memory usage: 46.0+ MB
                                          548
df["Colour(Urine Physical Examination)"].unique()
    array([nan, 'Yellow', 'Pale Yellow', 'yellow', 'Amber Yellow',
             'Yellow34h'], dtype=object) 538
                                          535
Double-click (or enter) to edit
                                          531
df["Colour(Urine Physical Examination)"] = df["Colour(Urine Physical Examination")
df["Colour(Urine Physical Examination)"].unique()
    array([nan, 'Y@4.8ow', 'Pale Yellow'5,15'Amber Yellow', 'Yellowish'],
           dtype=object)
                                          512
Start coding or <u>generate</u> with AI.
                    35.2
                                          505
df.shape
→ (900000, 101) 34.6
                                          495
                    2F Ω
                                          4Ω0
colour mapping = {
    "Pale Yellow": 1,
    "Yellow": 2,
    "Yellowish": 3,
    "Amber Yellow": 4
}
df["Colour(Urine Physical Examination)"] = df["Colour(Urine Physical Examination")
df["Colour(Urine Physical Examination)"].unique()
    array([nan, 2<sub>34.0</sub> 1., 4., 3.])
                                          469
                    36.3
                                          461
```

```
df["Colour(Urine Physical Examination)"].info()
<<class 'pandas.core.series.Series'>
     Index: 900000 36.16 ries, 15940 to 6795424
     Series name: Colour(Urine Physical Examination)
     Non-Null Count 37D type
                                           443
                                            441
     206 non-null
                     6.4 loat 64
     dtypes: float64(1)
                                            440
     memory usage: 46.40 MB
                     36.9
                                           427
df['Nitrite'].info()
→ <class 'pandas362re.series.Series'>422
     Index: 900000 entries, 15940 to 679524
     Series name: N3745ite
                                           416
    Non-Null Count Dtype ______38.4
                                            416
    dtypes: object(1)
                                            408
     memory usage: 46 40+ MB
                                            404
df['Nitrite'].unique()
→ array([nan, 'Absent', 'Present (+++)', dtype-oh 36.8t) 398
                                                'pos', 'Present', 'Present (+)'],
           dtype=ob^{3}e^{2}t
                     38.2
                                           395
nitrite_mapping = {
    "Absent": 0,
    "Present (+)": 1,
    "Present": 2,
    "pos": 2,
    "Present (+++)": 3
}
df["Nitrite"] = df["Nitrite"].map(nitrite_mapping)
df["Nitrite"].unique()
→ array([nan, 0., 3., 2., 1.])
                                           372
df['LDL Cholesterol'].unique()
\Rightarrow array([nan, 11\stackrel{377}{1}, '177', '123', 91\stackrel{361}{1}, '173', 114.0, 127.0, '90', 93.0,
             '85', 133.80, 123.0, 180.0, '3600', '144', '131', 88.0, 83.0,
             '153', $\frac{1}{20}3', '109', '122', 3\frac{1}{26}65', '127', 109.0, '117', 81.0,
```

```
'139', '146', '104', '136', '95', 182.0, '63', '111', '116',
 '149',
                                                                                   356
                '114', '198', '72', '203', 99.0, '97', '94', '140', '157', '103', 124.0, 3679', '171', '113', 35185', '156', '130', 102.0, 173.0,
                 '168', '164', '187', 87.0, '134', '125', '98', '101', '110',
'68',
                '154', 137.0, '159', 120.0, 3550', '138', 142.0, 105.0, '126', '180', '87', '142', '78', '160', 118.0, '188', '80', '61', '66', 107.0, 135.0, 150.0, 147.0, 34205', '218', 130.0, '79', 116.0, '204', '119', '121', '83', '81', 76.0, '106', '107', 96.0, 149.0, 95.0, 189.40, 186.0, 94.0, '9347, '124', 110.0, 122.0, 73.0, '222', 72.0, 80.0, 86.0, 153.0, '183', 112.0, 90.0, '252', '89', 131.0, 155.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', '107', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, '106', 96.0, 96.0, '106', 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96.0, 96
                155.0, 38.95', '167', 132.0, 34.737', 64.0, 62.0, '181', '92',
'176',
                 '190', '152', '141', 139.0, 395.0, '86', '172', 84.0, '213',
133.0,
                238.0, '5198', '166', 166.0, 34158', '74', 58.0, '120', 161.0,
129.0,
                                 39.5
161', 71.0, 67.0, 163.0, 54.0, 82.0, '70', '151', '118',
                                  3835', 74.0, 159.0, 97339, '155', '99', '162', '152', 106.0,
                 '189', '163', '226', '169', 20.0, 144.0, '102', '82', '132',
50.0,
                                                                                   338
                                 '191', 179.0, '64', 121.0, 162.0, 168.0, 203.0, '88',
                 '105',
'91',
                                '73', 126.0, 198.0, '211', 101.0, '71', 140.0, 193.0, 39.1
                 134.0,
'148',
                 '179', 136.0, 57.0, 164.0, '77', '51', '147', 181.0, 175.0, 85.0, '193', 115.0, 117.0, '49', '215', 156.0, '84', '108', 63.0,
145.0,
                 '96', '240', '201', '217', 143.0, '67', '41', '174', 128.0,
'112',
                 39.6
191.0, '32', '55', 65.0, 53.0, '178', '230', '208', '175', 165.0,
                47.0, 126.90, 169.0, '170', 13725.0, 79.0, 157.0, 151.0, '35', '76',
                 '40', '62', 89.0, '224', 104.0, '255', '192', '200', '216',
146.0,
                92.0, 138.0, 75.0, '53', '60', '195', 184.0, 170.0, 69.0, 158.0, 219.0, 375', 141.0, 152.0, 59.0, 172.0, '229', 46.0, '56', 171.0,
                148.0, 119.0, 66.0, '223', 48.0, 35.0, 77.0, 49.0, '210', 209.0, 160.0, 194.0, 37.0, '59', '186', '232', 195.0, 167.0, '69', 52.0,
                 '52', '396', 103.0, 41.0, 178<sub>18</sub>0, 239.0, '194', 70.0, 189.0,
108.0,
                177.0, 398.0, '65', 183.0, 188.0, '199', 78.0, 154.0, '196',
213.0,
                206.0, 4097', 192.0, 216.0, 34465.0, 250.0, 68.0, '184', 176.0,
207.0,
                 '47', '29.1, 60.0, 24.0, '57'313'185', 56.0, '39', '267', '48',
51.0,
                                 49.6, 43.0, '54', 61.30<sup>1,1</sup> '50', 229.0, '258', 38.0, '43',
                220.0, '202', 230.0, 190.0, 232.0, '238', 223.0, 187.0, '221', 247.0, '207', 222.0, 201.0, '285', '228', 44.0, '275', 204.0,
'34'.
                                                                                   307
                227.0, 246.0, 208.0, '45', 202.0, '220', '231', 55.0, 233.0,
205.0,
                                                                                   303
```

```
45_0. 244_40. '251'. '301*' 30039_0. 248_0. '219'. '212'. 197_0
```

df["LDL Cholesterol"] = pd.to_numeric(df["LDL Cholesterol"], errors="coerce").1

df["LDL Cholesterol"] = df["LDL Cholesterol"].astype(str).str.replace(r'[^\d]',
 df["LDL Cholesterol"] = df["LDL Cholesterol"].replace('', np.nan)
 df["LDL Cholesterol"].unique()

```
'91', '173', '114',
                       '123'
                '177',
                                                            '127', '90', '93',
                                    '2974',
                                            '131',
                 '180',
                          '100',
                                                       '88',
                                                               '83',
                                              <sup>'</sup>81',
                                                      '139',
                  '122',
                            '165',
                                                                '146',
                          '63',
                                                     '198'
                 '182'
                                                               '72',
136
                                            '149'
                                                      '129',
                                            '124',
                                                               '171',
                                                                        '135'
                         '157',
'97',
                '140',
                                                                '125',
'130',
                                               '87',
                                                       '134',
                   '168',
                            '164',
                                                       '150',
                 '154'
                           '137'
'110'
                                              '120'
                                                                '138'
                           '160',
                                              '188',
                                                       '80',
                                                              '61',
                            '79
         '52.85 '
                   '218',
                                    '288944 '
                                              '119'
                                                       '121'
                                                                '76',
                                                                        '106'
'147'
                                            '112',
                                                     '252',
                                                              '89',
                                                                       '155',
                 '222',
                           '86',
                                  '183',
'186',
                                  ' 1286',
                                                    '176',
                                                             '190',
                          '62'
                                            '92',
                                                                       '141'
                   '64',
                 '238',
                                             '158',
                           1281
                                    '166'
                                                              '58',
                                                       '74',
                                                                       '161',
                                                                                 '185'
                                 '82<sup>283</sup>, '70', '151', '143', '162', '152',
                '163', '54',
                                 , '50', '191'
'49', '215',
                                                              '211',
                 '169',
                          '20'
                                            '191', '179',
                                                                       '193'
                ,
'51', '175',
                                                  108',
                                                            240',
                                                                      '201',
                                                          '230',
                                 '65<sub>280</sub> '53'
                                                 '178',
                                                                   '208',
'41'
                         '55'
                                                     '200',
                                            '192',
170'
                 '40'.
                         '224',
                                                               '216',
                                                     '46', '56',
                                            '229',
                                                                      '223',
                                    '280',
'195'
                          '219',
                                    '232',
                                                              '239',
                                             '52',
                                                     '206',
                   '194',
                                                                        '199',
                                                                                 '196',
                            '37',
'210'
                                            '39'
                                                    '267',
                                                             '214',
                   '207'
                            '29'
                                    '27745'
                 '202',
                          '221',
                                             '285',
                                                       '228',
                                    '247'
                           '231',
                   '45',
                                    12/3/3 1
                                             '251',
                                                      '248',
                                                                '212',
                 '287'
                                           '21', '3',
'278'
                           '26',
                                                        '263'
                                             '271',
'242'
                 '235'
                           '237'
                                                       '290'
                                                                 253'
                  '298'
                            '387'
                                             '254'
                                                       '259'
'236'
                                                                '260'
                           '284'
                                              '13',
                                                     '266',
                                                              '261'
'31',
                 '297',
                                                       '291',
                                               '42',
                  '244',
                                                                '288',
                            '345', 26327'
                            '283'
                                             '273'
                                                      '270'
                                                                '265'
                   '293'
          256
                                      '12'
                                            '16',
                                                    '391',
                                                             '15', '286', '313',
                         '296',
                          '292',
                                             '321',
                                                       '300', '281',
                                    '332'
                                                                          '274',
                                    1216961,
                                            '315',
                                                               '360',
                           '342',
                                                     '295',
'272'
                                            '294', '305'
         08', '323', '494', 344', 254

49223372036854775808'<sup>264</sup>'9', '10', '334', '5', '311', 10

33', '329', '317', '374', '351', '349', '346', '331', '30

4347'. '534', '383', <sup>26</sup>303', '302', '314'], dtype=object)
                '323', '494', '344',
                                                              '299'
                                                                        '484',
                                                      '334', '5', '311 , _
'349', '346', '331', '301',
'337',
         41.9
                                    262
```

262

Double-click (or enter)43.7edit

42.3	261
44.4	261
42.8	259

```
for value in df["LDL Cholesterol"].unique():
    if isinstance(value, (int, np.integer)):
      if value > 999:
        print(value)
    elif isinstance(value, str):
      try:
        num = int(value)
        if num > 999:
          print(num)
      except ValueError:
        pass
    9223372036854742.0
                                        239
                   43.3
                                        237
def first three digits(value):
    if isinstance(value, (int, np.integer)):
        return int(str(value)[:3]) if value > 99 else value
    elif isinstance(value, str):
        try:
            num = int(value)
            return int(str(num)[:3]) if num > 99 else num
        except ValueError:
            return value
    else:
        return value
df["LDL Cholesterol"] = df["LDL Cholesterol"].apply(first_three_digits)
```

25	219
43.9	219
45.4	214
45.7	214
46.5	213
43.5	213
44.5	212
45.6	212
44.7	211
44.9	207
45.1	204
40.0	22.4

```
df["LDL Cholesterol"].unique()
```

```
0, 111, 177, 123, 91, 173, 114, 127, 90, 93, 85, 113, 100, 144, 131, 88, 83, 145, 153, 133, 109, 122, 165, 117,
→ array([ 0, 111, 177, 123,
                                                                            85, 113, 180,
             139, 146<sub>4</sub> 104, 136, 95, 182<sub>199</sub> 63, 116, 149, 198,
                                                                            72, 203,
                    94, 140, 157, 103, 124, 129, 171, 135, 156, 130, 102, 168,
             164, 1845.5 87, 134, 125,
                                            98_{100}101, 110, 68, 154, 137, 159, 120,
                                            78, 160, 118, 188,
             150, 138, 142, 105, 126,
                                                                      80,
                                                                            61,
                                                                                  66, 107,
             147, 2055,3218, 79, 204, 1191,99121, 76, 106,
                                                                      96, 186,
                                                                                  73, 222,
              86, 183, 112, 252, 89, 155, 115, 167, 132,
                                                                      64,
                                                                            62, 181,
                                      84, 2131,97238, 128, 166, 158,
             176, 1965.9141, 172,
                                                                            74,
                                                                                  58, 161,
                          71, 67, 163,
             215, 1086.6240, 201, 217, 208, 47,6170, 35, 40,
                                      40, 224<sup>19</sup>, 255, 192, 200, 216,
                                                                            75.
                                                                                  60, 195,
                                            46<sub>194</sub> 56, 223, 48, 210, 209, 194,
                     6276219, 59, 229,
             184,
                     52, 206, 239, 199, 196, 197, 250, 207, 29,
                     443.0258, 38, 220, 202<sub>1,9</sub>4221, 247, 285, 228,
                                                                            44. 275.
             227, 246, 45, 231, 233, 251, 248, 212, 264, 278,
                                                                            22, 287,
                     247.5 3, 263, 225, 241,93242, 28, 235, 237, 245, 271, 290,
             253, 25, 33, 236, 249, 298, 387, 36, 254, 259, 260, 243,
                                             13<sup>1,9</sup>1266, 261, 370, 276, 257, 234, 244, 11, 309, 269, 256, 293, 283, 12, 273, 7<sup>1,9</sup>0296, 382, 16, 391, 15, 286, 313,
               31, 2626.8297, 284, 268,
                         42, 291, 288,
             345, 327
             270, 265, 1280, 279, 277,
              282, 23, 319, 292, 332, 321, 300, 281, 274, 272, 377, 14, 342, 19, 315, 295, 360, 17, 289, 4, 308, 323, 494, 344, 294, 305,
                                             9<sub>1,89</sub> 10, 334, 5, 311,
             299, 484<sub>8.8</sub>318, 337, 922,
                                                                                   8, 333,
                                                                            18,
             329, 317, 374, 351, 349, 346, 331, 301, 340, 307, 534, 383, 303,
             302, 3144.6
                                               189
```

```
df[""'LDL / HDL'""].unique()
```

```
array([nan, 4.47.12.7, 2. , 2.3, 3.3<sub>1/84</sub>3.2, 3. , 4.2, 2.5, 2.1, 1.7, 4. , 1.8, 2.6, 3.4, 1.6, 2.9, 2.8, 4.3, 1.4, 3.8, 5.1, 3.9, 1.5, 1. , 1.3, 1.4<sub>8.3</sub>3.5, 3.7, 2.2, 3.1<sub>1/84</sub>1.9, 5.8, 5. , 4.7, 3.6, 2.4, 5.2, 0.8, 4.6, 4.5, 4.9, 5.3, 6. , 0.5, 6.5, 6.4, 1.1])

47.8

184
```

df[""'LDL / HDL'""].value_counts()

count

LDL / HDL	
3.0	16
2.7	12
3.3	12
2.0	12
25	10

2.3	9
2.4	9
1.7	8
2.6	8
1.8	8
-	
2.9	8
4.0	8
2.8	8
1.9	7
2.1	7
1.6	6
3.6	6
3.7	6
3.2	5
4.4	5
1.4	5
3.8	5
3.1	5
3.5	5
3.4	4
4.2	4
1.3	4
1.2	4
5.1	4
3.9	3
1.5	3
4.3	3
2.2	3
1.0	3
	J

```
df["24 Hour Urine Volume (263)"].info()
```

<

7 noff-null 'float6 dtypes; float64(1) memory usage: 46.0 MB

df['Hemoglobin'].info()

dtypes: float64(1)
memo**6y4** usage: 46|.0 MB

df.dtypes

0 RESEARCH_ID object SAMPLE ID object **COLLECTYEAR** int64 **REGN DATE** datetime64[ns] object **GENDER_NAME** AGE_YEARS Int64 AGE_DAYS Int64 **AGE MONTHS** Int64 CITY_NAME category **HEIGHT** int64 **WEIGHT** float64 **BMI** float64 **Thyroid Stimulating Hormone (TSH)** float64 **Uric Acid in Serum** float64

Alanine Aminotransferase (ALT)	float64
Ferritin In Serum	float64
Blood Urea Nitrogen (BUN)	float64
Lymphocytes absolute count	float64
R. B. Cs / HPFs	float64
Aspect(Urine Physical Examination) Ordinal Encoding	float64
Eosinophils absolute count	float64
Vitamin D (25 OH-Vit D -Total)	float64
C-Reactive Protein (CRP) quantitative	float64
Transferrin	float64
Red cell count	object
Basophils absolute count	float64
Crystals(Urine Microscopic Examination :)	float64
Protein(Urine Physical Examination)	float64
Colour(Urine Physical Examination)	float64
Nitrite	float64
LDL Cholesterol	int64
IBI /IIBI	

df.info()

 $\overline{\Rightarrow}$

<class 'pandas.core.frame.DataFrame'>
Index: 900000 entries,913940 to 679524 float64 Columns: 101 entries RESEARCH ID to BDL float64 dtypes: Int64(3), category(1), datetime64[ns](1), float64(32), int64(6), ob memory usage: 729 Hematocrit float64 **MCV** float64 **Glucose(Urine Physical Examination)** object **Urea in Serum** object **Prostatic Specific Antigen (PSA) Total** object **Testosterone (Total)** object **Alkaline Phosphatase** object **Total Protein in Serum** object

```
df["Glucose(Urine Physical Examination)"].info()
     <class 'pandas core series Series'>
Index: 900000 entries, 15940 to 679524
                                                                     object
     Series name: Glucose(Urine Physical Examination)
Non-Null Count Dtype
                                                                     object
                                                                     object
                            ⁻Kētones
     206 non-null
                         object
     dtypes: object(1)
                             MCHC
                                                                    float64
     memory usage: 46.0+ MB
                 pH(Urine Physical Examination)
                                                                    float64
df["Glucose(Urine Physical Examination)"].unique()
                    Blood and Haemoglobin 'Present (+++) Absent', 'Present (+++) Present (+)'],
     array([nan,
             dtype=obĖpfthelial Cells / HPF
                                                                     obiect
glucose_mapping = {
    "Absent": 0,
    "Present (+)": 1,
    "Present (++)": 2,
    "Present (+++)": 3
df["Glucose(Urine Physical Examination)"] = df["Glucose(Urine Physical Examinat
df["Glucose(Urine Physical Examination)"].unique()
\rightarrow \overline{\phantom{a}} array([nan, 2., R_{B,Cs} \beta_{HPF} 1.])
                                                                     object
df["Glucose(Urine Physical Examination)"].info()
     <class 'pandas.core.series.Series'>
Index: 900000 entries, 15940 to 679524
                                                                     object
     Series name: Glucose (Urine Physical Examination)
                                                                     object
     Non-Null Count Dtype
                  Microalbuminuria (24 h urine)
                                                                     object
     206 non-null
                         float64
     dtypes: float64(B)lirubin (Total)
                                                                     object
     memory usage: 46.0 MB
                       Florescence Pattern
                                                                     object
                          Lead in blood
                                                                     object
                    Monocytes absolute count
                                                                    float64
                                                                     object
                          Consistancy
                   Neutrophils absolute count
                                                                    float64
                         Specific Gravity
                                                                     object
                          W. B. Cs / HPF
                                                                     object
```

ohiect

df[["Urea in Serum"]].info()

Calcium in Serum (Total)
class 'pandas.core.frame.bataFrame'> object Index: 900000 entries 15940 to 679524 Data columns (total 1 columns): object Column Potassiu MONON New Ser GAN Int Dtype object Urea in Se Album 21 22 Serumn-null object object dtypes: object(1) memory usage: 4**时 90 (Fig.)** in **Serum** object CRP H S

df[["Urea in Serum"]].value_counts()

count

Urea in Serum	
21	12671
19	11938
24	11857
26	10527
17	9535
28	8999
30	7148
22	7084
23	6853
20	6838
15	6759
25	6403
18	6325
16	5811
27	5394
32	5387
29	4379
34	4011
31	3627
40	0010

13	3613
14	2912
36	2845
33	2596
21.0	2289
19.0	2140
24.0	2035
35	1990
26.0	1935
39	1896
17.0	1828
4.4	

```
def clean_and_convert(value):
    if isinstance(value, str):
        # بازالة الرموز غير الرقمية مثل (الله value = re.sub(r"[><*(),]", "", value).strip()

# 4949 .2828 (مثل الفعامل مع القيم المكررة الخاطنة (مثل 2828]:
        if len(value) > 2 and value[:2] == value[2:]:
            value = value[:2] # المحتفاظ بالبجز، الأول فقط try:
            return float(value)
        except ValueError:
            return None

return value

df["Urea in Serum"] = df["Urea in Serum"].apply(clean_and_convert)
df["Urea in Serum"].unique()
```

38	1206
27.0	1077
32.0	1004
43	966
40	877
29.0	870

```
array (1[3.83.
                                          30.
                                                     26.
                                                               24.
                                                                          23.
                               27.
                                                                                    28.
                       7638h,
                                                     39.
                                                                          19.
          25.
                     21.
                               34.
                                          22.
                                                               20.
                                                                                    14.
       31.46.
                     297.19
                               15.
                                          17.
                                                     16.
                                                               18.
                                                                          13.
                                                                                    12.
          54.
                     11.
                               31.
                                          32.
                                                     53.
                                                               43.
                                                                          42.
                                                                                    56.
                     49687
        45<sub>36</sub>.
                               35.
                                         154.
                                                     38.
                                                               40.
                                                                          62.
                                                                                    37.
       14.0
                    52680
                              160.
                                          81.
                                                   167.
                                                              143.
                                                                          89.
                                                                                    70.
          41.
                                                    57.
                               51.
                                         124.
                                                              112.
                                                                           8.
                                                                                    66.
                     97676,
                                         184.
                                                    44.
                                                                9.
                                                                          47.
                                                                                    82.
       34.66.
                              147.
                                                    58.
                                                               55.
                                                                          78.
                                                                                    79.
          61.
                   190.
                               86.
                                          48.
        4294.
                               67.
                                          63.
                                                   100.
                                                               73.
                                                                        102.
                                                                                   105.
                     72671,
          76.
                    187.
                                 7.
                                          95.
                                                   131.
                                                               64.
                                                                          50.
                                                                                    98.
                     83623,
        12040.
                               45.
                                          87.
                                                     90.
                                                              205.
                                                                        126.
                                                                                    99.
                     59.
                               80.
                                          91.
                                                   101.
                                                               74.
                                                                        139.
                                                                                   203.
          65.
                   128558
         930.
                               69.
                                         116.
                                                   182.
                                                               60.
                                                                        103.
                                                                                   194.
        268.
4707.
                                         134.
                                                   109.
                                                              151.
                                                                        145.
                                                                                   140.
                   159
                              161.
                   108<sup>529</sup>
                                 4.55,
                                        220.
                                                   137.
                                                              152.
                                                                        132.
                                                                                   197.
                   224 528
       33.06.
163.
                                          93.
                              133.
                                                   104.
                                                               68.
                                                                          77.
                                                                                      6.
                   180.
                                         243.
                               71.
                                                    88.
                                                              138.
                                                                        135.
                                                                                   115.
                   118<sub>516</sub>,
                              199.
                                         256.8
                                                   250.
                                                              289.
                                                                        211.
                                                                                    84.
       36.66.5
                               96.
                                          92.
         155.
                                                   230.
                                                              122.
                                                                        123.
                                                                                   148.
                   198.
                                                   288.55,
        42449.
                   158470 , 176.
                                         171.
                                                              168.
                                                                        227.
                                                                                   106.
         141.
                   165.
                              210.
                                         202.
                                                   172.
                                                              192.
                                                                        183.
                                                                                   146.
                   235424
        4920.
                              231.
                                        200.
                                                   111.
                                                               85.
                                                                        129.
                                                                                   179.
                   164.
                                                              213.
           7.9
                              142.
                                         125.
                                                   284.
                                                                        272.
                                                                                   255.
       35<sub>1</sub>9<sub>4</sub>.
                   259416
                              127.
                                                                                   157.
                                         181.
                                                   117.
                                                              110.
                                                                        233.
        252.
46
113.
                              170.
                                        319.
                                                                                   196.
                                                   150.
                                                             162.
                                                                        219.
                   245.
                              144.
                                        173.
                                                   169.
                                                              177.
                                                                        237.
                                                                                   186.
       39.63.
                   121365,
                              253.
                                        223.
                                                              248.
                                                   175.
                                                                        178.
                                                                                   119.
                              225.
                                         313.
                                                   136.
                                                                                   221.
         400.
                                                              188.
                                                                        347.
                   214329, 464.
                                        193.
                                                   149.
                                                             195.
                                                                        234.
                                                                                      5.
        5489.
         353.
                   333.
                              287.
                                         174.
                                                   208.
                                                              204.
                                                                        254.
                                                                                   222.
                   257327,
                                                              274.
       12282.
                              166.
                                         185.
                                                   238.
                                                                        258.
                                                                                   293.
                              217.
         266.
                   226.
                                         191.
                                                      4.1
                                                             215.
                                                                        362.
                                                                                   244.
                      2306
       11386.
                              270.
                                                   263.
                                         239.
                                                              265.
                                                                        206.
                                                                                   207.
                   337
         229.
                              256.
                                           1.
                                                   218.
                                                              228.
                                                                        261.
                                                                                   411.
        4867.
                   218 14.
                              308.
                                                   212.
                                                              209.
                                                                        240.24.
                                                                                   338.
                                         288.
        364.3
540.1
                   349,9
                              360.9
                                         372.
                                                   351.
                                                              396.
                                                                        304.
                                                                                   377.
         201.
                   265.36,
                              285.
                                         241.
                                                   281.
                                                              393.4
                                                                        378.
                                                                                   260.
       38.76.
                   271_{258}
                              280.
                                         315.
                                                   294.
                                                              307.
                                                                           6.74,
                                                                                   345.
                   236.
                           , 309.
                                        492.8 ,
                                                   277.
                                                           1)
       37.0
                       255
```

df["Prostatic Specific Antigen (PSA) Total"].info()

df["Prostatic Specific Antigen (PSA) Total"].unique()

⇒ array([33an, '1.243|56 '1.371', ..., '*515.774', '40.065', 3.825], dtype=object)

42.0 148

df["Prostatic Specific Antigen (PSA) Total"].value_counts()

count

Prostatic Specific Antigen (PSA) Total

Prostatic	Specific	Antigen	(PSA)	Total	
	0	.41			294
	0	.43			293
	0	.42			290
	0	.45			282
	0	.53			280
	0	.50			280
	0	.48			279
	0	.36			273
	0	.46			269
	0	.37			268
	0	.54			266
	0	.49			260
	0	.40			260
	0	.57			259
	0	.56			257
	0	.58			255
	0	.52			254
	0	.47			252
	0	.39			251
	0	.44			250
	0	.35			246
	0	.34			246
	0	.59			245

		0.51	244
		0.62	237
		0.55	233
		0.38	232
		0.63	231
		0.60	229
		0.33	224
def	value = re.sub # وتصحيحها if len(value) value = va	e, str): <pre> <pre> <pre></pre></pre></pre>	التحقق من القيم المكررة ا ue[2:]: الاحتفاظ با
	•	Antigen (PSA) Total"] = Antigen (PSA) Total"].u	<pre>df["Prostatic Specific Antigen (nique()</pre>
→	array([nan,	0.70 1.243, 1.371,, 453 0.26	195 3.237, 515.774, 40.065]) 185
df['	'Prostatic Specific	Antigen (PSA) Total"].i	nfo()
→	Series name: Pros	ries, 15940 to 679524 tatic Specific Antigen (F Dtype flone ^{t64})	182 PSAPO Total 180 174 171
		0.78	168

⇒ array([nan, '4.89', 0.85] 3.49', ..., '0.042', '149.09', '12.390'], dtype=object) 0.82 143

df["Testosterone (Total)"].value_counts()

count

Testosterone (Total)

4.42	281
4.37	278
4.22	273
4.23	272
4.31	261
4.48	261
5.02	260
4.28	259
4.34	259
4.02	258
4.52	257
4.77	257
4.17	255
4.01	255
3.77	254
4.32	253

4.26	253
4.53	252
4.36	252
4.25	252
4.56	251
4.83	251
4.62	251
4.27	250
4.49	249
3.97	249
4.45	248
4.11	248
4.43	247
3.95	246
. =-	242

Start coding or generate with AI.

df.shape

→ ▼	(900000,	4.19 101)	244
		3.81	243
		3.93	243
		4.74	243
		4.58	243
		3.79	242
		4.05	242
		4.93	241
		3.94	241
		3.72	239
		4.41	239
		4.91	237
		4.97	237

```
def clean and convert decimal(value):
    if isinstance(value, str):
        زالة الرموز غير الرقمية مثل *, >, <, () مع الاحتفاظ بالمعلومات الأساسية #
        value = re.sub(r"[><*(),]", "", value).strip()</pre>
        التحقق من القيم المكررة الخاطئة مثل "2828" أو "4949" وتصحيحها #
        if len(value) > 2 and value[:2] == value[2:]:
            الاحتفاظ بالجزء الأول فقط # [:2] value = value
        محاولة تحويل القيم إلى عدد عشري مع الحفاظ على الدقة #
        try:
            return float(value)
        except ValueError:
            return np.nan
    return value
df["Testosterone (Total)"] = df["Testosterone (Total)"].apply(clean_and_convert
df["Testosterone (Total)"].unique()
                              32399 , ..., 7.865, 0.042, 19.09 ])
→ array([
              3n736n, 4.89,
              160
                               222
df.shape
    (900000, <u>1</u>013)
                               233
df["Testosterone (Total)"].unique()
                              3.49 , ..., 7.865, 0.042, 19.09 ])
    array([
                     4.89 ,
              3.55
df["Florescence Pattern"].info()
    4.07
<class 'pandas.core.series.Series'>
\rightarrow
    Index: 900000 entries, 15940 to 679524
    Series name: Florescence Pattern
    Non-Null 6026nt
                     Dtype
                              231
                              231
    2337 non-A.86l
                     object
    dtypes: object(1)
                               230
    memory us 302: 46.0+ MB
                               230
              4.38
              3.96
                               230
              3.91
                               230
              4.51
                               229
```

```
df["Florescence Pattern"].unique()
array([nan, 'Speckeled', '-', 'Speckled', 'Homogenous', 'Nuclear dots',
            'N524eolar', 'Fine23peckeled', 'Centromere', 'Speckeled&Nuclear dot pattern', 'Nuclear Membrane', 'Rim',
            'Dense Fine Speckled', '--', 'Fine Speckled', 'Homogenous & Centromere',
            'Nucleolar',
            'Hamagenous & Nuclear', 'Speckled & Few Nuclear dot pattern',
            'PCNA ( Pleomorphic speckled nucleoplasmic pattern )',
            'Speckled & homogenees', 'Speckled & Homogenous', 'Homogenous & Speckled', 'Speckled&Nucleolar pattern',
            'S#667kled& Few Nuc228ar dot pattern'], dtype=object)
corrections = {
    "Speckeled": "Speckled",
    "Spekled": "Speckled",
    "Fine Speckeled": "Fine Speckled",
    "Homogenous & Speckled": "Homogenous & Speckled",
    "Homogenous & Nucleolar": "Homogenous & Nucleolar",
    "Speckled&Nucleolar pattern": "Speckled & Nucleolar",
    "Speckled& Few Nuclear dot pattern": "Speckled & Few Nuclear dot pattern",
}
def clean_florescence(value):
    if pd.isna(value) or value in ['-', '--']:
        neturn np.nan # تعويض القيم غير المفهومة بـ NaN
    تصحيح الإملاء إذا كانت القيمة تحتاج إلى ذلك #
    value = corrections.get(value, value)
    "&" إزالة المسافات الزائدة حول #
    value = " & ".join([x.strip() for x in value.split("&")])
    تحويل الأنماط المركبة إلى قوائم #
    patterns = sorted(value.split(" & "))
    return " & ".join(patterns)
df["Florescence Pattern"] = df["Florescence Pattern"].apply(clean_florescence)
               ა.უი
               3.49
                               223
              4.03
                               223
               5.05
                               223
              4.68
                               223
```

5.38

223

df["Florescence Pattern"].unique()

4.92 222

هناك قيم مفقودة في العمود، مما :(NaN) وجود قيم مفقودة :"Florescence Pattern" حليل القيم الفريدة في عمود 222 يستدعي معالجة البيانات المفقودة، إما بحذفها أو تعويضها بناءً على استراتيجية مناسبة. قيم غير ذات معنى ("-", "-"): وجود رموز غير واضحة مثل '-' و '--' قد يشير إلى بيانات مفقودة مشفرة بشكل غير قياسي. يفضل استبدال هذه القيم به وجود رموز غير واضحة مثل '-' و '--' قد يشير إلى بيانات مفقودة مشفرة بشكل غير قياسي. يفضل استبدال هذه القيم به ("", "-"): 'Nucleolar 'Speckled' 'Rim' 'Homogenous' 'Qentromere' 'Nucleated Membrane' 'PCNA (Pleomorphic speckled nucleoplasmic pattern) الأنماط المركبة: هناك قيم مدمجة تعبر عن أكثر من نمط واحد، مثل 'Speckled&Nuclear dot pattern' 'Spekled & homogenous' 'Speckled") 'Homogenous & Speckled' (عدم تناسق في المسافات) 'Nuclear Membrane & Homogenous' 'Speckled' 'Speckled' (عدم تناسق في المسافات) 'Nuclear Membrane & Homogenous' 'Speckled & Few Nuclear d& Pattern' مقابل 'Speckled' 'Spekled' مقابل 'Homogenous & Speckled' مقابل 'Homogenous & Speckled' مقابل 'Homogenous & Speckled' کودو مسافات زائدة مثل 'Homogenous & Speckled' مقابل 'Homogenous & Speckled' کودو مسافة بعد) 'A 21

df["Florescence Pattern"].info()

5.51 219 class 'pandas.core.series.Series'> Index: 900000 entries, 15940 to 679524 Series name: Florescence Pattern Non-Null 4074nt Dtype 218 1133 non-**5ເ22**ໄ 218 object dtypes: object(1) memory us 396: 46.0+ MB 218 3.73 218 3.53 218 4.61 218 5.09 216 4.88 216 4.82 216

df["Florescence Pattern"].value_counts()

count

Florescence Pattern

Speckled	798
Homogenous	156
Nucleolar	114
Centromere	10
Nuclear Membrane	10
Dense Fine Speckled	9
Nuclear dots	8
Rim	6
Homogenous & Speckled	6
Fine Speckled	5
Nuclear dot pattern & Speckeled	2
Homogenous & Nucleolar	2
Few Nuclear dot pattern & Speckled	2
Centromere & Homogenous	1
Homogenous & Nuclear Membrane	1
PCNA (Pleomorphic speckled nucleoplasmic pattern)	1
Spekled & homogenous	1
Nucleolar & Speckled	1

dtype: int64

3.42	209
3.29	209
5.34	209
4.70	208
5.14	208
3.44	208
4.96	208

```
df["Florescence Pattern"].fillna("Unknown", inplace=True)
encoder = LabelEncoder()
df["Florescence Pattern "] = encoder.fit_transform(df["Florescence Pattern"])
df[["Florescence Pattern"]].head()
```

<ipython-input-136-57d1c23b1e71>:1: FutureWarning: A value is trying to be
The behavior will change in pandas 3.0. This inplace method will never work

For example, when doing 'df[col].method(value, inplace=True)', try using 'd

df["Florescence Pattern"].fillna("Unknown", inplace=True)

Florescence Pattern

ID

15940	Unknown
6921	Unknown
23108	Unknown
145172	Unknown
168477	Unknown

3 32 204

df["Lead in blood"].info()

<<class 'pandas.core.seriegoseries'>
Index: 900000 entries, 15940 to 679524
Series nate Lead in bloceb3
Non-Null Count Dtype
-----3.51-- ---- 202
719 non-null object
dtypes: object(1) 202
memory usage: 46.0+ MB

df["Anti CCP Abs"].info()

df["Anti CCP Abs"].value counts()

count

Anti CCP Abs

Anti CCP Abs	
<0.5	905
< 0.5	673
0.5	510
0.3	450
0.4	393
0.0	368
0.6	337
0.2	326
0.1	248
> 200.0	233
0.7	209
0.8	157
0.9	123
>200.0	102
1.1	80
1.0	74
1.2	70
1.3	48
1.4	39
1	28
1.6	27
1.5	24
1.8	20
1.9	19
1.7	18
2.3	16
2.2	14

2.1	12
2.8	12
2.0	11

df["Anti CCP Abs"].unique()

```
array([nan, '<0.5', '0.2', '0.5', '0.4', '< 0.5', '0.6', '0.3', '0.7', 2.40.0', '1.9', '1.1', '136', '1.0', '0.1', '111.1', '97.6', '0.8',
 3.469.4', '>1200.0', '0.9', '> 200.0', '16.8', '47.8', '49.0', '4.6',
                            4.31.7', '>200.0', '1.3', '1.5', '2.0', '1.2', '9.8', '4.2', '7.0', '70.6', '144.7', '132.5', '87.8', '25.9', '1.4', '82.1', '94.7',
                     <0.5040.5', '1.86', '2.1', '25.8', '5.5', '8.0', '13.0', '4.3',
'100.5', '2.4', '7.4', '6.5', '6.3', '51.6', '13.3', '3.6',
3.9174.3', '1.78', '17.7', '4.5', '< 0.50', '33.6', '2.7', '9.
'38.8', '3.1', '13.2', '16.2', '22.5', '3.5', '136.1', '146.1'</pre>
                                                                        '3.1', '13.2', '16.2', '22.5', '3.5', '136.1', '146.1', '97.0', '64.4', '44.4', '2.3', '3.9', '2.2', '6.4', '1', '10.0', '37.9', '66.5', '11.0', '8.1', '79.1', '51.2', '5.8', '> 1200.0', '77.4', '2.8', '8.8', '2.6', '124.6', '7.8', '8.4', '4.7', '4.4', '67.5', '26.9', '6.1', '5.1', '3.0', '37.8', '3.4', '24.6', '13.9', '177.7', '153.1', '160.2', '160.2', '16.2', '177.7', '153.1', '160.2', '16.2', '177.7', '153.1', '160.2', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7', '177.7',
                            38.8', '3.1',
3.5<sub>15.3'</sub>, '97.70',
                            2.571.2', '7.86', '3.0',
                                     19.6', '109.53', '162.6', '2.5', '170.2', '3.8', '4.0', '8.5', '40.0', '16.5', '37.3', '2', '87.6', '17.6', '5.2', 'Negative
                             3.19.6',
 0.1', 3.0
                                    '3.3', '97.7', '65.9', '4.8', '78.9', '54.3', '8.6', '7.2', '5',
                            2.7181.9', '74.7', '185.9', '94.3', '117.2', '4.1', '101.4',
  0.53
                            7.4<sub>91.5'</sub>, '188.4', '15.0', '93.2', '38.3', '90.8', '7.3', '7.5',
                            4.66.6', '13.4', '4.9', '106.7', '39.7', '134.9', '9.9', '14.5', '192.0', '18.1', '38.9', '9.4', '6', '114.2', '15.2', '54.5', 7.547.4', '68.49', '16.4', '5.4', '81.9', '112.2', '19', '5.3', '41.6', '59.5', '49.6', '72.9', '57.3', '83.7', '33.5', '51.4.66.4', '78.7', '68.6', '150.5', '42.5', '40.4', '73.0', '168.6', '150.5', '40.4', '173.0', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '168.6', '
                                       41.6',
                                                                          '59.5', '49.6', '72.9', '57.3', '83.7', '33.5', '51.4', '78.47', '68.6', '159.5', '42.5', '40.4', '72.0', '168.6',
                           4.166.4', '78.47', '68.6', '159.5', '42.5', '40.4', '72.0', '168.6', '44.7', '29.0', '158.7', '10.9', '48.9', '39.4', '11.1', '167.0', 4.518.6', '48.45', '12.9', '75.1', '118.0', '167.2', '110.5', '3', '20.2', '67.9', '169.9', '39.6', '45.7', '139.0', '80.1', '75.9',
                            5.5119.7', '187.3', '195.0', '6.9', '47.9', '121.7', '123.9',
                            3.7<sub>18.9'</sub>,
                                                                           '20.<sup>3</sup>8',
                                                                                                             '67.1', '167.6', '6.0', '66.8', '40.7', '134.5', '152.6', '189.9', '76.1', '93.1', '9.2', '192.7',
                           5.085.5', '28.5', '152.6', '189.9', '76.1', '93.1', '9.2', '192.7', '10.3', '77.2', '2.9', '186', '15.9', '133.4', '22.6', '199.0', '6.037.4', '*339.6', '118.2', '117.3', '13.6', '11.3', '5.7',
 '101.2'
                         22. 548.4', '30.30', '19.1', '17.2', '13.5', '107.4', '21.4', '11.9', '538.9*', '103.9', '47', '10.6', '32', '23', '0.70', '74.0', 5.3 32.0', '173.2', '143.5', '64.9', '26.7', '85.4', '46.9', '8',
                                                                            188.3', '99.6', '189.4', '164.2', '107.2', '32.5',
  ' 12. 0 '8.6
                                                                         '105,1', '104.0', '49.7', '87.5', '14.1', '50.1', '56.0',
                                        193.1', '12.2', '69.3', '32.7', '117.8', '5.6', '17.9', '187.2',
```

```
5.284.8', '30.38', '6.7', '7.6', '38.6', '173.3', '5.0', '11.4', 3.8', '16.6', '148.0', '74.1', '193.9', '81.8', '51.9', '17.3', 64.5', '125.8', '60.8', '981.9*', '107.8', '141.1', '147.1', 24.6'90.4', '10.31', '136.4', '55.5', '34.5', '55.1', '171.9', '131.3', 5.8149.9', '43, '3.2', '102.8', '> 200.0 > 200.0', '78', '43.7', '35.5', '71.4', '88.2', '140.9', '127.2', '22.2', '68.1', '129.15.1 3 '48.7', '139.9', '50.3', '117.7', '196.0', '14.8', '15.6', '61.4'8.8 3 7.3'15.3', '109.7', '60.4', '167.9', '54.8', '151.4', '46.8', '23.9' 6.3 14.3', '73.32', '21.5', '25.2', '176.3', '158.8', '165.4', '183.78.0 3
```

Start coding or generate with AI.

206

df["Anti CCP Abs"].info()

<class_{9.9}pandas.core_series.Series'>
Index: 900000 entries, 15940 to 679524
Series4.game: Anti GCP Abs
Non-Null Count Dtype
----58.1----- --26173 non-null object
dtype9:53object(1) 2
memory_usage: 46.0+ MB
5

df["Anti CCP Abs"].value_counts()

count

Anti CCP Abs

<0.5	905
< 0.5	673
0.5	510
0.3	450
0.4	393
0.0	368
0.6	337
0.2	326
0.1	248

> 200.0	233
0.7	209
0.8	157
0.9	123
>200.0	102
1.1	80
1.0	74
1.2	70
1.3	48
1.4	39
1	28
1.6	27
1.5	24
1.8	20
1.9	19
1.7	18
2.3	16
2.2	14
2.1	12
2.8	12
2.0	11

df["Anti CCP Abs"].unique()

```
array([nan, '<0.5', '0.2', '0.5', '0.4', '< 0.5', '0.6', '0.3', '0.7', '2.4', 0.0', '1.9', '1.1', '136', '1.0', '0.1', '111.1', '97.6', '0.8', 3.4'69.4', '>1200.0', '0.9', '> 200.0', '16.8', '47.8', '49.0', '4.6', '4.6', '4.6', '1.6', '1.6', '1.5', '2.0', '1.2', '9.8', '4.2', '7.0', '70.6', '144.7', '132.5', '87.8', '25.9', '1.4', '82.1', '94.7', '0.5040.5', '1.86', '2.1', '25.8', '5.5', '8.0', '13.0', '4.3', '100.5', '2.4', '7.4', '6.5', '6.3', '51.6', '13.3', '3.6', '3.9174.3', '1.8', '17.7', '4.5', '< 0.50', '33.6', '2.7', '9.7', '38.8', '3.1', '13.2', '16.2', '22.5', '3.5', '136.1', '146.1', '3.5', '3.5', '97.70', '64.4', '44.4', '2.3', '3.9', '2.2', '6.4', '1', '3.1', '10.0', '37.9', '66.5', '11.0', '8.1', '79.1', '51.2', '3.3', '3.9', '2.2', '6.4', '1', '3.3', '3.9', '2.2', '6.4', '1', '3.3', '3.9', '2.2', '6.4', '1', '3.3', '3.9', '2.2', '6.4', '1', '3.3', '3.9', '2.2', '6.4', '1', '3.3', '3.9', '2.2', '6.4', '1', '3.3', '3.9', '3.9', '3.9', '3.9', '3.2', '3.9', '3.1', '37.9', '66.5', '11.0', '8.1', '79.1', '51.2', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9', '3.9',
```

```
2.571.2', '5.8', '> 1200.0', '77.4', '2.8', '8.8', '2.6', '124.6', 2.571.2', '7.8', '8.4', '4.7', '4.4', '67.5', '26.9', '6.1', '5.1' 3.126.2', '3.9', '37.8', '3.4', '24.6', '13.9', '177.7', '153.1', 19.6', '109.3', '162.6', '2.5', '170.2', '3.8', '4.0', '8.5', 140.0', '16.5', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170.2', '170
                                                                                                                                                                                       '26.9', '6.1', '5.1',
                    3.040.0', '16.5', '37.3', '2', '87.6', '17.6', '5.2', 'Negative
0.1',
                     2.73.3', '97.75', '65.9', '4.8', '78.9', '54.3', '8.6', '7.2', '5',
                          '181.9', '74.7', '185.9', '94.3', '117.2', '4.1', '101.4',
 '0.53'7,.4
                          '91.5', '188.4', '15.0', '93.2', '38.3', '90.8', '7.3', '7.5',
                   4.66.6', '13.4', '4.9', '106.7', '39.7', '134.9', '9.9', '14.5', '192.0', '18.1', '38.9', '9.4', '6', '114.2', '15.2', '54.5', '47.4', '68.9', '16.4', '5.4', '81.9', '112.2', '19', '5.3', '41.6', '78.7', '68.6', '159.5', '42.5', '40.4', '72.0', '168.6', '4.544.7', '29.40', '158.7', '10.9', '48.9', '39.4', '11.1', '167.0', '18.6', '48.5', '12.9', '75.1', '118.0', '167.2', '110.5', '3', '55.20.2', '67.39', '169.9', '39.6', '45.7', '139.0', '80.1', '75.9', '119.7', '187.3', '195.0', '6.9', '47.9', '121.7', '123.9', '3.7
 '24.5'3.7
                    18.9', '20.8', '67.1', '167.6', '6.0', '66.8', '40.7', '134.5', 5.085.5', '28.35', '152.6', '189.9', '76.1', '93.1', '9.2', '192.7', '10.3', '77.2', '2.9', '186', '15.9', '133.4', '22.6', '199.0',
                    6.037.4', '*339.6', '118.2', '117.3', '13.6', '11.3', '5.7',
101.22:5
                    22.5

'48.4', '30.0', '19.1', '17.2', '13.5', '107.4', '21.4', '11.9',

5.3538.9*', '103.9', '47', '10.6', '32', '23', '0.70', '74.0',

'32.0', '173.2', '143.5', '64.9', '26.7', '85.4', '46.9', '8',

8.620.6', '188.3', '99.6', '189.4', '164.2', '107.2', '32.5',
112.01
                    4.823.6', '105.1', '104.0', '49.7', '87.5', '14.1', '50.1', '56.0', '193.1', '12.2', '69.3', '32.7', '117.8', '5.6', '17.9', '187.2',
5.284.8', '30.38', '6.7', '7.6', '38.6', '173.3', '5.0', '11.4', 3.8', '12.8', '12.8', '148.0', '74.1', '193.9', '81.8', '51.9', '17.3', '12.8', '125.8', '60.8', '981.9*', '107.8', '141.1', '147.1', 24.690.4', '10.31', '136.4', '55.5', '34.5', '55.1', '171.9', '131.3',
                    5.8149.9', '4'3, '3.2', '102.8', '> 200.0> 200.0', '78', '43.7',
                          '35.5', '71.4', '88.2', '140.9', '127.2', '22.2', '68.1',
                          '48.7', '139.9', '50.3', '117.7', '196.0', '14.8', '15.6',
 ' 61.4'8.8
                          <u>'</u>124.1', '24.1', '111.8', '24.2', '24.0', '*907.9', '66.6',
                    7.3115.3', '109.7', '60.4', '167.9', '54.8', '151.4', '46.8',
 '23.9'6.3
14.3', '73.2', '21.5', '25.2', '176.3', '158.8', '165.4',
 '183.7<mark>8.0</mark>
```

df["Anti CCP Abs"].unique()

```
array 99n6an, '<0.5',2'0.2', '0.5', '0.4', '< 0.5', '0.6', '0.3', '0.7', 14.50.0', '1.9', '1.1', '136', '1.0', '0.1', '111.1', '97.6', '0.8', 69.4', '>1200.0', '0.9', '> 200.0', '16.8', '47.8', '49.0',
```

```
'4.6'.<sup>9.9</sup>
                4.91.7', '>200.0', '1.3', '1.5', '2.0', '1.2', '9.8', '4.2', '7.0', 70.6', '144.7', '132.5', '87.8', '25.9', '1.4', '82.1', '94.7',
             4.970.6', '144.7', '132.5', '87.8', '25.9', '1.4', '82.1', '94.7', 58.140.5', '1.6', '2.1', '25.8', '5.5', '8.0', '13.0', '4.3', '100.5', '2.4', '7.4', '6.5', '6.3', '51.6', '13.3', '3.6', 0.53174.3', '1.8', '17.7', '4.5', '< 0.50', '33.6', '2.7', '9.7', '38.8', '3.1', '13.2', '16.2', '22.5', '3.5', '136.1', '146.1', 5'15.3', '97.20', '64.4', '44.4', '2.3', '3.9', '2.2', '6.4', '1', '109.4', '10.0', '37.9', '66.5', '11.0', '8.1', '79.1', '51.2', 51.450.2', '5.8', '> 1200.0', '77.4', '2.8', '8.8', '2.6', '124.6', '17.6', '5.2', '3.0', '37.8', '3.4', '24.6', '13.9', '177.7', '153.1', 2'9.6', '109.23', '162.6', '2.5', '170.2', '3.8', '4.0', '8.5', '40.0', '16.5', '37.3', '2', '87.6', '17.6', '5.2', 'Negative
4.0181.9', '742.7', '185.9', '94.3', '117.2', '4.1', '101.4',
'0.53'
                6.891.5', '188.4', '15.0', '93.2', '38.3', '90.8', '7.3', '7.5',
             6.891.5', '1882.4', '15.0', '93.2', '38.3', '90.8', '7.3', '7.5', '6.6', '13.4', '4.9', '106.7', '39.7', '134.9', '9.9', '14.5', 9.6 192.0', '182.1', '38.9', '9.4', '6', '114.2', '15.2', '54.5', '47.4', '68.9', '16.4', '5.4', '81.9', '112.2', '19', '5.3', '153.41.6', '59.5', '49.6', '72.9', '57.3', '83.7', '33.5', '51.4', 62.766.4', '78.7', '68.6', '159.5', '42.5', '40.4', '72.0', '168.6', '44.7', '29.0', '158.7', '10.9', '48.9', '39.4', '11.1', '167.0', 6.18.6', '48.5', '12.9', '75.1', '118.0', '167.2', '110.5', '3', '20.2', '67.9', '169.9', '39.6', '45.7', '139.0', '80.1', '75.9', 7.2119.7', '187.3', '195.0', '6.9', '47.9', '121.7', '123.9',
'24.5'
              20.6<sub>18.9'</sub>, '20.8', '67.1', '167.6', '6.0', '66.8', '40.7', '134.5', '85.5', '28.5', '152.6', '189.9', '76.1', '93.1', '9.2', '192.7', 46.9<sub>10.3'</sub>, '77.2', '2.9', '186', '15.9', '133.4', '22.6', '199.0',
143.57.4', '*339.6', '118.2', '117.3', '13.6', '11.3', '5.7', '101.2',
             173.48.4', '30.0', '19.1', '17.2', '13.5', '107.4', '21.4', '11.9', '538.9*', '103.9', '47', '10.6', '32', '23', '0.70', '74.0', 12.082.0', '173.2', '143.5', '64.9', '26.7', '85.4', '46.9', '8', '20.6', '188.3', '99.6', '189.4', '164.2', '107.2', '32.5',
'12.013.5
              123.6', '105.1', '104.0', '49.7', '87.5', '14.1', '50.1', '56.0', 30.0193.1', '12.2', '69.3', '32.7', '117.8', '5.6', '17.9', '187.2', '84.8', '30.8', '6.7', '7.6', '38.6', '173.3', '5.0', '11.4', 5.73.7', '16.6', '148.0', '74.1', '193.9', '81.8', '51.9', '17.3', 17.964.5', '125.8', '60.8', '981.9*', '107.8', '141.1', '147.1', '90.4', '10.1', '136.4', '55.5', '34.5', '55.1', '171.9',
'131. 787
                     '149.9', '4', '3.2', '102.8', '> 200.0> 200.0', '78', '43.7',
               68.25.5', '71.24', '88.2', '140.9', '127.2', '22.2', '68.1',
'129.1'
               15.948.7', '139.9', '50.3', '117.7', '196.0', '14.8', '15.6',
                2.9<sub>124.1'</sub>, '24.1', '111.8', '24.2', '24.0', '*907.9', '66.6',
               16,615.3', '109.7', '60.4', '167.9', '54.8', '151.4', '46.8'
```

```
'23.9<mark>148.0</mark> 2
'14.3'. '73.2'. '21.5'. '25.2'. '176.3'. '158.8'. '165.4'.
df["Anti CCP Abs"] = df["Anti CCP Abs"].replace("Negative 0.1", "0")
```

 $df["Anti CCP Abs"] = df["Anti CCP Abs"].astype(str).str.replace(r'[^\d]', '', r')$

49.0

df["Anti CCP Abs"] .unique()

6.4	2
109.4	2
7.0	2
4.2	2
9.8	2
79.1	2
25.9	2
64.4	2
50.2	2
15.3	2
13.3	2
16.2	2
13.2	2
145.7	2
124.6	2
4.4	2
8.4	2
25.8	2
4.7	2
7.8	2
68.9	2
71.2	2
4	1
131.3	1

₹

```
array(['', '05', '02', '04', '06', '03', '07', '00', '19', '11', '136',
                                                    '01', <sup>1</sup>'1111', '976', '08', '694', '12000', '09', '2000', '478', '490', '46', '17', '13', '15', '20', '12', '98',
                      168', '478', '490', '46', '17', '13', '15', '20', '12', '98', 55.142', '70', '1706', '1447', '1325', '878', '259', '14', '821', 189.247', '1405', '16', '21', '258', '55', '80', '130', '43', '1005', '24', '74', '65', '63', '516', '133', '36', '1743', '18', '177', 34.545', '050', '336', '27', '97', '388', '31', '132', '162', '225', '1743', '18', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177', '177',
                                                          '1361', '1461', '153', '970', '644', '444', '23', '39'
                                                                                                                                                                                                                                                                                                        '22'
                                                                         11094', '100', '379', '665', '110', '81', '791', '3', '774', '28', '88', '26', '1246', '712', '78', ', '1'675', '269', '61', '51', '262', '30', '378', '39', '1777', '1531', '96', '1093', '1626', '25', '3
                                                           '58', '774', '28', '88',
                     132.547',
                                                       '44', <sup>1</sup>'675',
                                '246', '139',
                     136.48
                                                                              , <sup>1</sup>, 85', '400', '165', '373', '2', '876',
                                                                                                                                                                                                                                                            <sup>'</sup>'176',
                                                                                                                                                                   , '375
'789', '545
'72', '41',
                                               ', '40'
                                 10', '33', '977', '659', '48', '789', '543', '86', '72', '5', '1819', '747', '1859', '943', '1172', '41', '1014', '053', '915' '41884', '150', '932', '383', '908', '73', '75', '66', '134', '49', '1067', '397', '1349', '99', '145', '1920', '181', '389', '94',
                                                                                                                                                                                                                                                                     , '134', '49',
                     147.6', '1142', 1'152', '545', '474', '689', '164', '54', '819', '1122', '53', '416', '595', '496', '729', '573', '837', '335'
                    141'.$14', '604 (
                                                            '664', '787', '686', '1595', '425', '404', '290', '1587', '109', '489', '394', '111',
                                                                                                                                                                                                                      '404<sup>'</sup>, '720<sup>'</sup>,
                                                                                       '1587', '109',
                                                                                                                                                                                                                                                       '1670',
                                                           '129<sup>1</sup>, '751', '1180', '1672', '1105', '3', '202', '679',
, '396', '457', '1390', '801', '759', '1197', '1873', '19
                                                                                           '751', '1180', 1072 , 1005
'457', '1390', '801', '759', '1197', '1873', 195
'1217', '1239', '245', '189', '208', '671', '1676',
                                                             '125,
'396', '45
'1217',
                   981.9<sup>*</sup>9', '479', '121/
                                                                                                                                                                                                                                                              '1873', '1950',
                                                            '668', '407', '1345', '855', '285', '1526', '1899', '761
'92', '1927', '103', '772', '29', '159', '1334', '226',
                     196.0990', '374', '3396', '1182', '1173', '113', '57', '1012', '484',
                                                             '191', '172', '135', '1074', '214', '119', '5389'
'32',1'070', '740', '320', '1732', '1435', '649',
'469', '8', '206', '1883', '996', '1894', '1642',
                                                                                                                                                                                                                                                         '5389', '1039',
                                                           '32',1'070',
                      117.1206',
                                854',
                                                              '120', '236', '1051', '1040', '497', '875', '141', '501'
                                                              1480', '741', '1939', '818', '519', '173', '645', '1258', '9819', '1078', '1411', '1471', '904', '101', '1364', '555',
                     139,9<sub>819</sub>',
                                                                                    ', '1313', '1499', '4', '1028', '20002000', '437'
                      48.7551', '1719'
                    48.751, 1719, 1313, 1499, 4, 1028, 20002000, 437, 355', '714', '882', '1409', '1272', '222', '681', '1291', '487', 129.1399', '503', '1177', '1960', '148', '156', '614', '1241', '241' '1118', '242', '240', '9079', '666', '1153', '1097', '604', '1679 68.548', '1514', '468', '239', '143', '732', '215', '252', '1763',
                                                                                         ', '1837', '1417', '1522', '827', '1251', '228'
'1260', '1864', '9168', '9231', '707', '7930',
                                                         , '1654',
                      22.2/13', '105
                                                           '163', '1260', '1864', '9168', '9231', '07', '538', '71', '1548', '1257', '627', '597', '138', '572', '538', '682', '719', '638', '1716', '937', '1333', '906', '1416', '193', '68', '1572', '1546', '993', '1755', '1469', '1618', '134'2' '1232' '1431', '1643', '155', '20000', '581', '1643', '155', '20000', '581', '1643', '155', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643', '1643'
                         3.2935,
                                  '142', '193'
                      88½692', '790', '1791', '1850 , 50.0 , '458', '5263', '094', '494', '422', '657', '1454', '1852', 2.5 , 74 '41022', '764', '710', '893', '830', '1103', '803', '851', '2545', dtype-object)
                       35.5
                       43.7
```

df.shape

> ∠UU.U> ∠UU.U	ı
(900000, 102) 102.8	1
60.8	1
127.2	1
187.2	1
94.7	1
140.5	1
5.6	1
117.8	1
97.6	1
32.7	1
69.3	1
12.2	1
64.5	1
56.0	1
50.1	1
14.1	1
87.5	1
57.2	1
49.7	1
23.6	1
104.0	1
105.1	1
193.1	1
125.8	1
111.1	1
17.3	1
51.9	1
81.8	1

df["Anti CCP Abs"] = df["Anti CCP Abs"].astype(str).str.lstrip('0')
df["Anti CCP Abs"].unique()

```
'4', '6', '3', '7', '19', '11', '136', '10', '1',
array(['', '5
87.81111'
               , '5',
                          '2'
                                  '8', '694', '12000', '9', '2000', '168', 17', '13', '15', '20', '12', '98', '42', '878', '259', '14', '821', '947', '1405
                        '976<sup>1</sup>'
                                                                                                       '478
        164, 490', 1447',
                      '46', '17',
                                                                                             '42', '70', '706',
                        '1325', '878',
                                                                                  '947', '1405',
        84.821', '258', '55', '80', '130', '43', '1005', '24', '74'
                     '516', '133', '36', '1743', '18', '177', '45', '50', '336', '97', 1'388', '31', '132', '162', '225', '35', '1361', '1461', '970', '644', '444', '23', '39', '22', '64', '1094', '100'
                       '665', '110',
                                                        '791',
                                                                   '512', '502', '58', '774',
                                              '81',
                                            ,
'712'
                                                      '78',
                                                                 ''84',
                             1246',
                                                                            '47', '44', '675',
                     '26', '1240', '712', '70', 04', '47', '139', '1777', '1531' '151', '1262', '30', '378', '34', '246', '139', '1777', '1531' '1093', '1626', '25', '1702', '38', '40', '85', '400', '165'
                       1093, 1020, 1076',
                                                        '33', '977', '659', '48', '789',
                                              '52',
                                                      , '1859', '943', '1172', '41', '1014',
                             , <sub>1</sub>'1819',
                                            '747'
                                              150',
                                                                                 '908',
                                                         '932',
                      '915', '1884',
                                                                    '383',
                                                                                            '73',
                                                                                                      '75', '66',
                                              '397',
                                                         '1349', '99',
                                                                                '145',
                       '49',<sub>1</sub> '1067'
                                                                                            '1920', '181',
                                                        , '545', '474',
                       '94', '1142',
                                                                                             '164', '54',
            '389'
                                                                               '689',
                                              '152',
         7.6819',
                       '11221', '416', '595', '496', '729', '573',
                                                                                              '837', '335'
                                                        '1595', '425', '404', '489', '394', '111',
                                  '787',
                                             '686',
                       '664'
                                                                                               '720'
            '514'
        82.¹1447 ' ,
                       '290'<sup>1</sup>, '1587',
                                               109,
                                                                                             '1670'
            '485',
                                              '1180', '1672', '1105', '202', '801' '759' '1197' '1873'
                        '129'
                                   '751',
                                                                                                  '679',
        30.8<sub>396</sub>',
                       ' 457 ¹<sup>1</sup>.
                                              '801',
                                                                      ,
'1197',
                                                                                    '1873',
                                                                                                  '1950',
                                   '1390',
                                                            '759',
            <u>'</u>479',
                                    '1239', '245', '189', '208', '671',
                       '1217,'
                                                                                                '1676',
                       407 1 '
        93.5
668',
        93.5668', '407', '1345', '855', '285', '1526', '1899', '761', '931
185.92', '1927', '103', '772', '29', '159', '1334', '226', '1990',
                      '3396', '1182', '1173', '113', '57', '1012', '484', '300',
                      '172'l, 152
'320',
                      '172', '135', '1074', Z14, ___
'740', '320', '1732', '1435', '649', '267', '854, '1883', '996', '1894', '1642', '1072', '325', '12, '1040', '497', '875', '141', '501', '560', '1931', '179', '1872', '848', '308', '179', '166', '1480', '741', '1077
                                                                     '119', '5389', '1039'
'649', '267', '854',
                                                                                                '1039',
                      '740',
                                                                                                  '120',
                                                                                               '1931', '122',
                      , '1040 , 457 ,
'327<sup>1</sup>, '1178', '56', '179'
'386' '1733', '114', '37',
                                '1733', '114', '37', '100', 1400', '275', '173', '645', '1258', '608', '9819', '1078', '551', '1719',
                     '386'
                      '519<sup>1</sup>, '173',
                                    '101', '1364', '555', '345',
                                                                                               '1719', '1313',
                         '102<sup>'</sup>8', '20002000', '437', '355', '714', '882', '1409',
             1499'
                                   '681', '1291', '487', '1399', '503', '1177', '1960',
'614', '1241', '241', '1118', '242', '240', '9079',
                       '222<sub>1</sub>', '681', '156', '614',
       526.3*272',
                     '1153', '1097', '604',
                                                           , '1679', '548', '1514', '468', '239'
                                                                                                 '1837',
            '143', '732', '215', '252', '1763', '1588', '1654',
                                                                       '163', '1260', '1864'
'71'. '1548', '1257',
                                    '1251', '228', '713', '163', '1260', '1864', '9168 '7930', '221', '680', '71', '1548', '1257', '627', 572', '538', '935', '682', '719', '638', '1716', '906', '1416', '142', '193', '68', '1572', '1546', '1682', '1732', '1431', '1732', '1431',
                         '827<sup>1</sup>',
                       '707',
            '9231',
                                   '7930',
                       '138'<sup>1</sup>,
                                  '572',
                                    '906'
                       '1333.'
        161, 393 '
                       '1755<sup>1</sup>',
                                    '1469', '1618', '1457', '1342', '1232', '1431',
                         '155', '20000', '581', '692', '790', '1791', '1836', '1932', '1817', '1611', '458', '5263', '494', '422',
                                                                                                    1836',
        181, <del>7</del>643',
                                                '1022', '764', '710', '893', '830',
                         1852
                                     '279',
                                   '2545', '901', '249', '1440'], dtype=object)
                      '851',
        53.8
```

$df["Anti CCP Abs"] = df["Anti CCP Abs"].replace({""": 0, """: 0})$

	•
7.90	1
69.2	1
164.3	1
> 200.00	1
45.8	1
47.8	1
16.8	1
59.7	1
>1200.0	1
69.4	1
13.8	1
24.9	1
90.1	1
254.5*	1
27.9	1
80.3	1
110.3	1
125.7	1
83.0	1
89.3	1
71.0	1
154.8	1
76.4	1
7.1	1
102.2	1
85.1	1
73.2	1
14.3	1

df["Anti CCP Abs"].unique()

```
array(16.8, '5', '2', '4', '6', '3', '7', '19', '11', '136', '10', '1', 151, 111', '976', '8', '694', '12000', '9', '2000', '168', '478',
                                                            151, 4<sup>111</sup>, 9, 46', 17', 13', 15', 20', 12', 198', 42', 70', 706', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 100', 10
                                                                                                                          '1325', '878', '259', '14', '821', '947', '1405'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                '16'
                                                                                                                                                               '55', '80', '130', '43', '1005', '24',
                                                                                                                                                                                                                                                                                                                                                                                                                                 '74',
                                                              167.93', '516',1 '133', '36', '1743', '18', '177', '45', '50', '336' '27', '97', '388', '31', '132', '162', '225', '35', '1361', '146' 60.4153', '970', '644', '444', '23', '39', '22', '64', '1094', '100 '379', '665', '110', '81', '791', '512', '502', '58', '774', '28 70.688', '26', '1246', '712', '78', '84', '47', '44', '675', '269', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '100', '1
                                                             167.93',
                                                               70.6881, 120, 1511,
                                                                                                                   '26', <sup>1</sup>'1246', '712', '78', '84'
'51', '262', '30', '378', '34',
                                                                                                                                                                                                                                                                                                     '84', '47', '44', '675', '269',
'34', '246', '139', '1777', '153
                                                                                                                                                                                                                                                                                                                                                                                                                                 '1777', '1531'
                                                               15.5<sub>96′</sub>,
                                                                                                                    '1093'<sup>1</sup>, '1626', '25', '1702', '38', '40', '85', '400', '165'

'876'<sub>1</sub>, '176', '52', '33', '977', '659', '48', '789', '543',
                                                                                                                       '876'<sub>1</sub>, ...
'1819',
                                                                                                                   '72', '1819', '747', '1859', '943', '1172', '41', '915', '1884', '150', '932', '383', '908', '73',
                                                                                   86',
                                                                                                                                                                                                                                                                                                                                                                                                                  , '41'<mark>, '</mark>1014',
                                                                                                                                                                                                                                                                                                                                                                                                                                                           '75', '66',
                                                            144.53',
                                                                                                                           '49', '1067', '397', '1349', '99', '145', '1920', '181
'94',1 '1142', '152', '545', '474', '689', '164', '54',
                                                                                                                          49',
                                                                                                                                                                                                                                                                                                                                                                                                             '1920', '181',
                                                                                 134',
                                                           *907.389',
                                                                                                                                                                  , '416', '595', '496', '729', '573', '837'
                                                                              '819'
                                                                                                                                                                                                                                                                     '1595',
                                                                                                                                                                                                                                                                                                                      '425',
                                                                                                                         '664'<sup>1</sup>, '787', '686', '1595', '425', '290', '1587', '109', '489', '394', '111', '1672' '1105', '202
                                                                                                                                                                                                                                                                                                                                                                                                                            '720',
                                                                                                                         '290'
                                                                                                                                                                                                                                                                                                                                                                                                                         '1670'
                                                               24.2485',
                                                                                                                           '129<sup>1</sup>, '751', '1180', '1672', '1105', '457', '1390', '801', '759', '1197',
                                                                                                                                                                                                                                                                                                                           , '1105', '202', '679',
                                                           111,890

'479', '121,

'668', '407', '1345

'1927', '103',

'1182'
                                                                                                                                                                                                                                                                                                                                                                                '1873', '1950', '69',
                                                                                                                                                                                                                                                                                                                                                                                                                               '15.
'1676', '05
'51', '931',
                                                                                                                                                                       , '1239', '245', '189', '208', '671', '1676', 
'1345', '855', '285', '1526', '1899', '761',
                                                                                                                                                                        '103', '772', '29', '159', '1334', '226', '1990', '1182', '1173', '113', '57', '1012', '484', '300
                                                            124.374', '3396', '1182', '1173', '113', '57', '1012', '484', '300', '191', '172', '135', '1074', '214', '119', '5389', '1039', '106', 61.482', '740',1 '320', '1732', '1435', '649', '267', '854', '469',
                                                                             '206', '1883', '996', '1894', '1642', '1072', '325', '120', '236', 
•61051', '1040', '497', '875', '141', '501', '560', '1931', '122',
                                                              15.61051', '1040', '497', '875', '141', '501', '560', '1931', '122', '693', '327', '1178', '56', '179', '1872', '848', '308', '67', '109.76', '386', '1733', '114', '37', '166', '1480', '741', '1939', '22.818', '519', '173', '645', '1258', '608', '9819', '1078', '1411', '1471', '904', '101', '1364', '555', '345', '551', '1719', '1313', '793.62499', '1028', '20002000', '437', '355', '714', '882', '1409', '1272', '222', '681', '1291', '487', '1399', '503', '1177', '1960', '70.70', '156', '156', '614', '1241', '241', '1118', '242', '240', '9070', '70.70', '156', '156', '614', '1241', '241', '1118', '242', '240', '9070', '80.70', '156', '156', '614', '1241', '1118', '242', '240', '9070', '180', '156', '156', '614', '1241', '1118', '242', '240', '9070', '1118', '1241', '1118', '1242', '1240', '9070', '1118', '1241', '1118', '1242', '1240', '9070', '1118', '1241', '1118', '1242', '1240', '9070', '1118', '1241', '1118', '1242', '1240', '9070', '1118', '1241', '1118', '1242', '1240', '9070', '1118', '1241', '1118', '1241', '1118', '1242', '1240', '19070', '1118', '1241', '1118', '1242', '1240', '19070', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1241', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '1118', '118', '118', '118', '118', '118', '18
                                                            109.7<sub>6</sub>',
                                                                                                                        ('156', '614', '1241', '241', '1118', '242', '240', '9079',
                                                               70.7148',
                                                                              '666', '1153', '1097',
                                                                                                                                                                                                                               '604', '1679', '548', '1514', '468', '239'
                                                                                                                       '732', '215', '252', '1763', '1588', '1654', '1837', '1417, '827', '1251', '228', '713', '163', '1260', '1864', '9168, '707', '7930', '221', '680', '71', '1548', '1257', '627', '138', '572', '538', '935', '682', '719', '638', '1716', '1333', '906', '1416', '142', '193', '68', '1572', '1546',
                                                                             '1522',
                                                          *916.§<sub>231</sub>,
                                                                                                                   '138'.
                                                                                                                                 1755', '1469', '1618', '1457', '1342', '1232', '1431', '155', '20000', '581', '692', '790', '1791', '1836', '1932', '1817', '1611', '458', '5263', '494', '422', '657' '1852', '279', '1022', '764', '710', '893', '830', '1103', '8515 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12545 12
                                                             126.093',
                                                                                                                            '1755<sub>1</sub>',
                                                                16.35070',
                                                                                 1454', '1852',
                                                          507!%03', '851', '2545', '901', '249', '1440'], dtype=object)
                                                               71.3
```

```
df["Anti CCP Abs"] = df["Anti CCP Abs"].replace("20002000", "200")
df["Anti CCP Abs"] = pd.to_numeric(df["Anti CCP Abs"], errors='coerce').fillna(
          82.7
df["Anti CCP Abs"].info()
    <clast41:7andas.corel.series.Series'>
     Index: 900000 entries, 15940 to 679524
     Seriel 37 Ame: Anti CCP Abs
     Non-Nulla Count
                      Dtype
     90000β<sub>5</sub>β<sub>1</sub>β<sub>1</sub>n-null int64
     dtypes: int64(1)
     memor17613age: 46.0 MB
df["Alkaline Phosphatase"].info()
     <class__'pandas.core_series.Series'>
     Index: 900000 entries, 15940 to 679524
     Series name: Alkaline Phosphatase
     Non-Null Count Dtype
     ----<del>90.8</del>-----
     288565 non-null object
     dtype38.3object(1) 1
     memory usage: 46.0+ MB
df["Alkaline Phosphatase"].value_counts()
\rightarrow
                                                        62
                                                        66
                                                        65
                                                        63
                                                        64
                                                        60
```

61 68 67

 $\overline{\Sigma}$

```
58
                                                                                       69
                                                                                       57
                                                                                       70
                                                                                       71
                                                                                       72
                                                                                       56
                                                                                       73
                                                                                       55
                                                                                       74
                                                                                       75
                                                                                       53
                                                                                       54
                                                                                       76
                                                                                       77
                                                                                       52
                                                                                       51
                                                                                       78
                                                                                       79
                                                                                       80
df["Alkaline Phosphatase"].unique()
                    103 , 144 , 119 , 102 , 34 , 03.0, 107 , 00.0, 34.0, 13 '96', '293', '110', '114', '128', '< 36<mark>82</mark> '216', '108', '169', '171', '31', '35', 55.0, 74.0, '< 33.0', 58.0, '*27', 91.0,
        '156',
                    61.0, '124', '138', '118', '123', 89.0, '192', 79.0, '181',
        '280',
                    '342', 68.0, '130', '163', '258', '131', '175', '120', '127', '134', '162', '140', '249', '116', '17248 53.0, 96.0, '30',
        '149',
                    '150', '< 28', '*23', 64.0, 65.0, 87.0, 846.0, '<28.5', 80.0,
        103.0,
                    '198', '151', '176', '137', 106.0, '230<sup>85</sup>, 60.0, '304', '332', '274', '147', 97.0, 107.0, 9393.0, 85.0<sub>47</sub>75.0, '159', 81.0, 72.0,
```

```
'191', '233', '126', 59.0, '136', '29',867.0, '427', '260', 43.0, 129.0, '270', '185', '206', 50.0, 70.0, '212', 62.0, '278',
'326',
               57.0, '323', '299', '320', '23*', 105.0, 38.0, '152', 67.0, 90.0, '135', '272', '179', '222', '196', '17046 '442', '182', '200',
                '195', '341', '157', '288', '263', '285', '142', '283', '164'
               '238', '146', '275', '329', '413', '377<sup>88</sup>, '507', '426', '354', '297', '464', '428', '448', '305', '322', '418', '313', '409', '349', '451', '553', '500', '343', 92.0, 52.0, '247', '183', '234', '831', '691', '207', '286', '208', '132** '165', '257', 41.0, '203', 93.0, 52.0, '242', '154', '193', '201', '292', '194',
'20',
               '273', '394', '166', '160', '190', '215', '189', '158', '282', '700', 82.0, '375', '187', '374', '174'44'209', 139.0, 99.0,
'186',
               '28', '177', '356', '276', 48.0, '298', 91<28', 47.0, 69.0, 78.0,
               '265', 56.0, 84.0, '291', '< 23', 95.0, '225', '<30', '358',
'188',
               '232', '521', '213', '373', '325', '303' 102.0, 46.0, '240', '461', '316', '312', 49.0, '145', '218', '167', '197', '221', 133.0, 73.0, '< 30', '307', '168', 94.043 30.0, 35.0, 45.0, '239', '155', '236', '26*', '248', '226', '411', '348', '235', '205',
                '460', 76.0, '25', 112.0, '241', 198.0, 94204', 98.0, '340',
'220',
                '229', 120.0, 40.0, 113.0, 37.0, 122.0, 9516.0, '237', '184',
'381',
              '760', '360', '180', '217', 146.0, '219<sup>4</sup>, '231', '211', '228', 217.0, 174.0, '268', '541', '210', '455', 140.0, '390', '264', '27*', '199', 306.0, '266', '22*', '924<sup>9</sup>, '555', '515', '*28', 118.0, 130.0, '267', '317', '300', 123.9, 100.0, 44.0, '369', '540', '245', '< 24.0', '>1000', '975', '997', '24*', 167.0,
'223',
               7070.0, '408', 144.0, 137.0, '*26', '324', '301', '214', 128.0,
               104.0, '454', '444', 108.0, '173', '32898 '470', '*22', '*11',
               '279', '224', '259', '308', '284', '253', '261', '347', '281', '250', '490', '367', '254', '368', '27'99131.0, 101.0, '505', '*24', '21*', 148.0, 111.0, 121.0, 220.0, '296', '441', '269', 36.0, '624', '302', '28*', '450', '26', 40334', 124.0, '319',
               '1,564*', '883', 114.0, 184.0, 126.0, 31.0, '417', 109.0, '338', '23', 158.0, '406', '458', '376', '262', '765', '287', '310', 117.0, '> 1100', '785', '365', '518', '552', '601', '396', '473', '488', '506', 141.0, '333', '474', '430', '311', 132.0, '837', '519', 42.0, 115.0, '29*', '22', 345.0, 10207.0, '362', '327',
'498',
               '290', '255', '295', 145.0, '243', 169.09 '403', 142.0, '361',
                                                                                                         103
```

df.shape

38 (900000, 102)

105

```
df["Alkaline Phosphatase"] = df["Alkaline Phosphatase"].astype(str).str.strip()
df["Alkaline Phosphatase"] = df["Alkaline Phosphatase"].str.replace(r'[^0-9<>.]
def process_threshold(value):
    if isinstance(value, str):
        if re.match(r'<\s*\d+', value):</pre>
            return float(value.replace("<", "").strip()) * 0.9</pre>
        elif re.match(r'>\s*\d+', value):
            return float(value.replace(">", "").strip()) * 1.1
    return value
df["Alkaline Phosphatase"] = df["Alkaline Phosphatase"].apply(process_threshold
df["Alkaline Phosphatase"] = pd.to_numeric(df["Alkaline Phosphatase"], errors='
                                                     114
\rightarrow
     Show hidden output
                                                     116
df["Alkaline Phosphatase"].info()
                                                     114
    <class 'pandas.core.series.Series'>
    Index: 900000 entries, 15940 to 679524
                                                     117
    Series name: Alkaline Phosphatase
                                                     34
    Non-Null Count
                      Dtvpe
                                                     120
    288565 non-null float64
    dtypes: float64(1)
                                                     119
    memory usage: 46.0 MB
                                                     118
df.shape
    (900000, 102)
                                                     33
                                                     122
                                                     124
                                                     123
                                                     32
                                                     126
                                                     125
                                                     127
                                                     129
                                                     128
```

 \rightarrow

Show hidden output

```
df["Total Protein in Serum"].unique()

⇒ array([nan, 7.1, 7.2, 7.0, 6.5, '7.0', 7.3, 6.9, '6.0', '6.7', 7.4, 6.7, 7.6, '8.1', 7.8, '7.6', 7.9, 7.7, '7.2'308.4, '7.4', 7.5, '*14.1' '7.3', '6.6', 6.3, 8.0, '7.5', 6.8, 5.7, 16.4', 8.3, 6.4, 6.6, '6.5', 6.2, 5.9, '7.9', '6.9', 8.5, '7.1731, '7.1', '7', '8.0', 8.6
```

array([nan, 7.1, 7.2, 7.0, 6.5, '7.0', 7.3, 6.9, '6.0', '6.7', 7.4, 6.7, 7.6, '8.1', 7.8, '7.6', 7.9, 7.7, '7.2', 30.8.4, '7.4', 7.5, '*14.1', '7.3', '6.6', 6.3, 8.0, '7.5', 6.8, 5.7, '6.4', 8.3, 6.4, 6.6, '6.5', 6.2, 5.9, '7.9', '6.9', 8.5, '7.131, '7.1', '7', '8.0', 8.6, 6.0, '8.9', 8.1, '7.8', 8.2, '8.2', 8.7, 36', 6.8', '8.5', '6.2', '8.3', 9.1, 6.1, '6.3', '8', 5.8, '8.6', 5.5, '6.1', 4.9, '5.9', '5.7', '6', 9.4, 5.2, '5.6', 8.8, '5.4', 1339.0, 5.6, '8.7', '5.8', 8.9, '8.4', 5.4, 66.5, 4.0, '8.8', 9.2, 9.6, '5.2', '9.2', 5.3, 9.5, 5.0, '9.0', 4.7, '5.1', '7..6', '6, 34*', '5.3', 5.1, '4.4', '9.1', '>10', '4.8', 4.5, '5.0', 4.8, 9.9, '*5.6', 4.3, 4.1, '4.0', '6.96.9', '9.3', 9.3, 4.4, '4.7', '5.5', 1324.6, '4.5', 4.2, 3.8, '10.4*', 9.8, '4.2', '3.4*', '6.66.6', 82.0, 9.7, 74.1, '(10.7)', '9', 3.4, '4.9', '5', '9.5', '9.7', '*11252', 3.3, '9.4', '>9.5', '4.6', '*10.7', 10.3, '3.9', 3.9, 3.7, '*10.9', '*9.6', '*10', '*10.2', '9.9*', '5.9*', '9.9', '8.18.1'37', '4.3', '*10.8', '7.37.3', '-', '7.47.4', '*10.1', '(11.3)', '(10.2)'], dtype=object)

df.s	nape	147
→	(900000, 102)	152
		151
		148
		153
		66.0

74.0

```
df["Total Protein in Serum"] .info()
                                                                      61.0
→ <class 'pandas.core.series.Series'>
      Index: 900000 entries, 15940 to 679524
                                                                       65.0
      Series name: Total Protein in Serum
      Non-Null Count
                              Dtype
                                                                       69.0
      281103 non-null float64
                                                                       155
      dtypes: float64(1)
      memory usage: 46.0 MB
                                                                       159
df["Estimated Glomerular Filtration Rate(eGFR)"].info()
      <class 'pandas.core.series.Series'>
                                                                       161
      Index: 900000 entries, 15940 to 679524
      Series name: Estimated Glomerular Filtration Rate (eGFR)
      Non-Null Count
                              Dtype
                                                                       71.0
      298895 non-null object
      dtypes: object(1)
                                                                       60.0
      memory usage: 46.0+ MB
                                                                       158
df.shape
                                                                       70.0
\rightarrow (900000, 102)
                                                                      58.0
df["Estimated Glomerular Filtration Rate(eGFR)"].unique()
      array([nan, '>60', '>75', '52', '60', '57', '3%', '46', '55', '41', '38',
                '33', '53', '45', '37', '75', '49', '47<sub>6</sub>,
                                                                          <u>'</u>34', '13', '10',
                                                                   1506,0 171, 1231, 1281,
                '42', 20
'43', '15',
                        '26',
                                 '54',
                                         '22',
                                                 '40', '39',
                '42', '26', '54', '22', '40', '39', '50'; '17', '23', '28', '27', '43', '15', '58', '62', '48', '31', '51'; 66', '29', '32', '56', '9', '16', '25', '24', '36', '44', '19', '74', '72', '71', '66', '18', '65', '21', '68', '11', '20', '6', '64'; 64'; 12', '35', '14', '3', '73', '4', '69', '70', '5', '7', '67', '30', '63', '<10', '>90', '>60', '2', '1', '89', '28.5', 5287', '86', '<30', '<20'],
              dtype=object)
                                                                       165
df.shape
                                                                      75.0
     (900000, 102)
                                                                       68.0
                                                                       168
                                                                       77.0
                                                                       78.0
```

```
df["Estimated Glomerular Filtration Rate(eGFR)"] = df["Estimated Glomerular Filt
def convert_egfr(value):
    if isinstance(value, str):
        if re.match(r'>\s*\d+', value):
            return float(value.replace(">", "").strip()) + 5
        elif re.match(r'<\s*\d+', value):
            return float(value.replace("<", "").strip()) - 5</pre>
    return value
df["Estimated Glomerular Filtration Rate(eGFR)"] = df["Estimated Glomerular Filt
df["Estimated Glomerular Filtration Rate(eGFR)"] = pd.to_numeric(df["Estimated G
→
     Show hidden output
                                                   54.0
df.shape
                                                   J I.U
→ (900000, 102)
                                                    167
df["Estimated Glomerular Filtration Rate(eGFR)"] .info()
                                                   82.0
<< < class 'pandas.core.series.Series'>
    Index: 900000 entries, 15940 to 679524
                                                    <28
    Series name: Estimated Glomerular Filtration Rate(eGFR)
    Non-Null Count
                      Dtype
                                                   84.0
    298895 non-null float64
                                                   55.0
    dtypes: float64(1)
                                                    170
    memory usage: 46.0 MB
                                                    171
df["Red cell count"].info()
<<class 'pandas.core.series.Series'>
                                                   81.0
    Index: 900000 entries, 15940 to 679524
    Series name: Red cell count
                                                   79.0
    Non-Null Count Dtype
                                                    181
    216 non-null object
                                                    174
    dtypes: object(1)
    memory usage: 46.0+ MB
                                                    177
#df["Red cell count"].unique()
                                                    IOU
                                                    176
```

```
df.shape
                                                        49.0
→ (900000, 102)
                                                        169
df["Alkaline Phosphatase"].unique()
                       nan, 6.700000e+01, 9.400000e+01, 7.100000e+01,
→ array([
            9.100000e+01, 5.300000e+01, 9.500000e+01, 6.900000e+01,
            1.030000e+02, 9.800000e+01, 1.060000e+626; 0 1.010000e+02,
            1.780000e+02, 1.120000e+02, 8.300000e+01, 8.800000e+01,
            5.400000e+01, 4.400000e+01, 5.200000e+01, 1.210000e+02, 5.000000e+01, 5.800000e+01, 5.700000e+0.1_{28} 6.600000e+01,
            5.500000e+01, 7.400000e+01, 8.600000e+01, 8.100000e+01,
             5.100000e+01, 5.600000e+01, 8.000000e+01, 7.600000e+01,
            4.900000e+01, 9.700000e+01, 7.500000e+01, 8.500000e+01,
            8.900000e+01, 6.500000e+01, 8.700000e+0192 1.290000e+02,
            6.400000e+01, 3.300000e+01, 9.900000e+01, 3.200000e+01,
            3.900000e+01, 7.300000e+01, 6.000000e+0178 1.090000e+02,
            5.900000e+01, 8.400000e+01, 7.700000e+01, 9.000000e+01,
            4.200000e+01, 4.300000e+01, 4.600000e+01, 6.300000e+01,
            4.500000e+01, 1.220000e+02, 8.200000e+01, 1.480000e+02,
            9.200000e+01, 7.900000e+01, 7.800000e+01, 4.700000e+01,
            1.610000e+02, 6.800000e+01, 6.100000e+0\frac{1}{184} 1.110000e+02,
            1.040000e+02, 4.100000e+01, 4.800000e+01, 1.100000e+02,
            7.0000000e+01, 3.6000000e+01, 3.7000000e+01, 6.2000000e+01,
            7.200000e+01, 2.020000e+02, 1.390000e+02, 9.300000e+01,
             1.330000e+02, 3.800000e+01, 1.250000e+0285 1.410000e+02,
             1.130000e+02, 1.000000e+02, 4.000000e+01, 1.150000e+02,
            1.430000e+02, 1.170000e+02, 2.460000e+0\frac{193}{1} 1.050000e+02,
            1.440000e+02, 1.190000e+02, 1.020000e+02, 3.400000e+01, 1.070000e+02, 1.530000e+02, 9.600000e+01, 2.930000e+02,
            1.140000e+02, 1.280000e+02, 3.240000e+0<mark>1</mark>86 2.160000e+02,
            1.080000e+02, 1.690000e+02, 1.710000e+02, 3.100000e+01,
             3.500000e+01, 2.970000e+01, 2.700000e+0<u>1</u>5,0 1.560000e+02,
            1.240000e+02, 1.380000e+02, 1.180000e+02, 1.230000e+02,
            1.920000e+02, 1.810000e+02, 2.800000e+90,0 3.420000e+02,
             1.300000e+02, 1.630000e+02, 2.580000e+02, 1.310000e+02,
            1.750000e+02, 1.200000e+02, 1.270000e+02, 0 1.340000e+02,
             1.620000e+02, 1.400000e+02, 2.490000e+02, 1.160000e+02,
            1.720000e+02, 3.000000e+01, 1.490000e+0.000000, 1.500000e+02, 2.5200000+01, 3.2000000+01, 3.5650000+01, 1.000000+02,
            2.520000e+01, 2.300000e+01, 2.565000e+01
                                                           1.980000e+02,
            1.510000e+02, 1.760000e+02, 1.370000e+02, 2.300000e+02,
            3.040000e+02, 3.320000e+02, 2.740000e+02<sub>3:0</sub>1.470000e+02,
            9.393000e+03, 1.590000e+02, 1.910000e+02, 2.330000e+02,
            1.260000e+02, 1.360000e+02, 2.900000e+044.0 4.270000e+02,
            2.600000e+02, 2.700000e+02, 1.850000e+02, 2.060000e+02,
            2.120000e+02, 2.780000e+02, 3.260000e+0282 3.230000e+02,
            2.990000e+02, 3.200000e+02, 1.520000e+02, 1.350000e+02,
            2.720000e+02, 1.790000e+02, 2.220000e+62;0 1.960000e+02,
            1.700000e+02, 4.420000e+02, 1.820000e+02,
                                                           2.000000e+02,
            1.950000e+02, 3.410000e+02, 1.570000e+0\frac{189}{2} 2.880000e+02,
            2.630000e+02, 2.850000e+02, 1.420000e+02, 2.830000e+02,
```

```
1.640000e+02, 2.380000e+02, 1.460000e+02, 2.750000e+02,
            3.290000e+02, 4.130000e+02, 3.770000e+02, 5.070000e+02,
            4.260000e+02, 3.540000e+02, 2.970000e+02, 4.640000e+02,
            4.280000e+02, 4.480000e+02, 3.050000e+020,5 3.220000e+02,
            4.180000e+02, 3.130000e+02, 4.090000e+02, 3.490000e+02,
            4.510000e+02, 5.530000e+02, 5.000000e+92;03.430000e+02,
            2.470000e+02, 1.830000e+02, 2.340000e+02, 8.310000e+02,
            6.910000e+02, 2.070000e+02, 2.860000e+02, 2.080000e+02,
            1.320000e+02, 1.650000e+02, 2.570000e+02, 2.030000e+02,
            2.420000e+02, 1.540000e+02, 1.930000e+02, 2.010000e+02,
            2.920000e+02, 1.940000e+02, 2.000000e+0<del>1</del>95 2.730000e+02,
            3.940000e+02, 1.660000e+02, 1.600000e+02, 1.900000e+02,
            2.150000e+02, 1.890000e+02, 1.580000e+05.0 2.820000e+02,
df["Alkaline Phosphatase"] = df["Alkaline Phosphatase"].astype(float)
df["Alkaline Phosphatase"].unique()
                     nan, 6.700000e+01, 9.400000e+01, 7.100000e+01,
    array([
            9.100000e+01, 5.300000e+01, 9.500000e+01, 6.900000e+01,
            1.030000e+02, 9.800000e+01, 1.060000e+0\overline{27}, 1.010000e+02,
            1.780000e+02, 1.120000e+02, 8.300000e+04, 8.800000e+01,
            5.400000e+01, 4.400000e+01, 5.200000e+01, 1.210000e+02,
            5.000000e+01, 5.800000e+01, 5.700000e+0201 6.600000e+01,
            5.500000e+01, 7.400000e+01, 8.600000e+01, 8.100000e+01,
            5.100000e+01, 5.600000e+01, 8.000000e+019,0 7.600000e+01,
            4.900000e+01, 9.700000e+01, 7.500000e+01, 8.500000e+01,
            8.900000e+01, 6.500000e+01, 8.700000e+0198 1.290000e+02,
            6.400000e+01, 3.300000e+01, 9.900000e+01, 3.200000e+01, 3.900000e+01, 7.300000e+01, 6.000000e+\frac{225}{1}, 1.090000e+02,
            5.900000e+01, 8.400000e+01, 7.700000e+0_{8:0} 9.000000e+01,
            4.200000e+01, 4.300000e+01, 4.600000e+01, 6.300000e+01,
            4.500000e+01, 1.220000e+02, 8.200000e+01, 1.480000e+02,
            9.200000e+01, 7.900000e+01, 7.800000e+01, 4.700000e+01,
            1.610000e+02, 6.800000e+01, 6.100000e+0203 1.110000e+02,
            1.040000e+02, 4.100000e+01, 4.800000e+01, 1.100000e+02,
            7.000000e+01, 3.600000e+01, 3.700000e+01.06.200000e+01,
            7.200000e+01, 2.020000e+02, 1.390000e+02, 9.300000e+01,
            1.330000e+02, 3.800000e+01, 1.250000e+\theta_{2}^{10}; 1.410000e+02,
            1.130000e+02, 1.000000e+02, 4.000000e+01, 1.150000e+02,
            1.430000e+02, 1.170000e+02, 2.460000e+02, 1.050000e+02,
            1.440000e+02, 1.190000e+02, 1.020000e+0\frac{1}{1}, 3.400000e+01,
            1.070000e+02, 1.530000e+02, 9.600000e+01, 2.930000e+02,
            1.140000e+02, 1.280000e+02, 3.240000e+0410 2.160000e+02,
            1.080000e+02, 1.690000e+02, 1.710000e+02, 3.100000e+01,
            3.500000e+01, 2.970000e+01, 2.700000e+02, 1.560000e+02,
            1.240000e+02, 1.380000e+02, 1.180000e+02, 1.230000e+02,
            1.920000e+02, 1.810000e+02, 2.800000e+\theta2,03.420000e+02,
            1.300000e+02, 1.630000e+02, 2.580000e+02, 1.310000e+02,
            1.750000e+02, 1.200000e+02, 1.270000e+\theta_2^{21}, 1.340000e+02,
            1.620000e+02, 1.400000e+02, 2.490000e+02, 1.160000e+02,
            1.720000e+02, 3.000000e+01, 1.490000e+02, 1.500000e+02,
```

```
2.520000e+01, 2.300000e+01, 2.565000e+01, 2.565000e+01, 2.565000e+01
             1.510000e+02, 1.760000e+02, 1.370000e+02, 2.300000e+02,
             3.040000e+02, 3.320000e+02, 2.740000e+92,0 1.470000e+02,
             9.393000e+03, 1.590000e+02, 1.910000e+02, 2.330000e+02,
             1.260000e+02, 1.360000e+02, 2.900000e+0\frac{208}{1}, 4.270000e+02,
             2.600000e+02, 2.700000e+02, 1.850000e+02, 2.060000e+02, 2.120000e+02, 2.780000e+02, 3.260000e+02, 3.230000e+02,
             2.990000e+02, 3.200000e+02, 1.520000e+02, 1.350000e+02,
             2.720000e+02, 1.790000e+02, 2.220000e+02, 1.960000e+02,
             1.700000e+02, 4.420000e+02, 1.820000e+02_{1.0}2.000000e+02,
             1.950000e+02, 3.410000e+02, 1.570000e+02, 2.880000e+02,
             2.630000e+02, 2.850000e+02, 1.420000e+0232 2.830000e+02,
             1.640000e+02, 2.380000e+02, 1.460000e+02, 2.750000e+02,
             3.290000e+02, 4.130000e+02, 3.770000e+025.05.070000e+02,
             4.260000e+02, 3.540000e+02, 2.970000e+02, 4.640000e+02,
             4.280000e+02, 4.480000e+02, 3.050000e+02; 3.220000e+02,
             4.180000e+02, 3.130000e+02, 4.090000e+02, 3.490000e+02, 4.510000e+02, 5.530000e+02, 5.0000000e+02, 3.430000e+02,
             2.470000e+02, 1.830000e+02, 2.340000e+0<sub>207</sub> 8.310000e+02,
             6.910000e+02, 2.070000e+02, 2.860000e+02, 2.080000e+02,
             1.320000e+02, 1.650000e+02, 2.570000e+0\frac{2}{17} 2.030000e+02,
             2.420000e+02, 1.540000e+02, 1.930000e+02, 2.010000e+02,
             2.920000e+02, 1.940000e+02, 2.000000e+0204 2.730000e+02,
             3.940000e+02, 1.660000e+02, 1.600000e+02, 1.900000e+02,
             2.150000e+02, 1.890000e+02, 1.580000e+027.02.820000e+02,
df["Alkaline Phosphatase"] = df["Alkaline Phosphatase"].apply(lambda x: int(x)
df.shape
                                                         216
     (900000, 102)
                                                         273
df["Alkaline Phosphatase"].unique()
                                                         226
                                                         210
                                                        108.0
                                                         246
                                                         224
                                                         234
                                                         219
                                                         214
                                                         240
                                                         211
```

```
array([nan, 67, 94, 71, 91, 53, 95, 69, 103, 98, 106, 101, 178, 112, 83,
        88, 54, 44, 52, 121, 50, 58, 57, 66, 55, 74, 86, 81, 51, 56, 80,
        76, 49, 97, 75, 85, 89, 65, 87, 129, 64<sub>218</sub>33, 99, 32, 39, 73, 60,
        109, 59, 84, 77, 90, 42, 43, 46, 63, 45, 122, 82, 148, 92, 79, 78,
        47, 161, 68, 61, 111, 104, 41, 48, 110 37%, 36, 37, 62, 72, 202,
        139, 93, 133, 38, 125, 141, 113, 100, 40, 115, 143, 117, 246, 105,
        144, 119, 102, 34, 107, 153, 96, 293, 126*, 128, 32.4, 216, 108,
        169, 171, 31, 35, 29.7, 27, 156, 124, 138, 118, 123, 192, 181, 280,
        342, 130, 163, 258, 131, 175, 120, 127, 391934, 162, 140, 249, 116,
        172, 30, 149, 150, 25.2, 23, 25.6500000000000000, 198, 151, 176,
        137, 230, 304, 332, 274, 147, 9393, 159<sup>222</sup>191, 233, 126, 136, 29,
        427, 260, 270, 185, 206, 212, 278, 326<sub>12</sub>323, 299, 320, 152, 135, 272, 179, 222, 196, 170, 442, 182, 200, 195, 341, 157, 288, 263,
        285, 142, 283, 164, 238, 146, 275, 329<sub>10</sub>463, 377, 507, 426, 354,
        297, 464, 428, 448, 305, 322, 418, 313, 409, 349, 451, 553, 500,
        343, 247, 183, 234, 831, 691, 207, 28610208, 132, 165, 257, 203,
        242, 154, 193, 201, 292, 194, 20, 273, 394, 166, 160, 190, 215,
        189, 158, 282, 700, 375, 187, 374, 174]12.09, 186, 28, 177, 356,
        276, 298, 265, 291, 20.7, 225, 358, 188, 232, 521, 213, 373, 325,
        303, 240, 461, 316, 312, 145, 218, 167, 228, 221, 307, 168, 239,
       267, 317, 300, 369, 540, 245, 21.6, 1100, 975, 997, 24, 223, 7070,
        408, 324, 301, 214, 454, 444, 173, 328,2$\frac{1}{2}70, 11, 279, 224, 259,
        308, 284, 253, 261, 347, 281, 250, 490, 367, 254, 368, 505, 21,
        296, 441, 269, 624, 302, 450, 334, 319,250564, 883, 417, 338, 406,
        458, 376, 262, 765, 287, 310, 1210, 785, 365, 518, 552, 601, 396,
        473, 488, 506, 333, 474, 430, 311, 837,26519, 345, 362, 327, 498,
       290, 255, 295, 243, 403, 361, 874, 1447, 318, 378, 251, 16, 388, 244, 314, 384, 392, 252, 18, 309, 227, 289, 635, 605, 321, 379,
       337, 351, 331, 357, 535, 412, 363, 22.5<sub>739</sub>457, 330, 446, 389, 1359, 463, 6060, 1312, 402, 754, 17, 1197, 393, 973, 387, 315, 401, 609,
        607, 790, 277, 510, 421, 372, 256, 2833<sub>76.0</sub>135, 615, 429, 569, 400,
        434, 844, 355, 466, 359, 761, 679, 597, 9, 14, 385, 443, 581, 1596,
        757, 491, 1268, 432, 364, 764, 476, 77586.0346, 350, 352, 339, 437,
        6868, 382, 829, 534, 7575, 537, 576, 529, 561, 1205, 19, 404, 554,
        271, 756, 423, 479, 994, 344, 386, 666,23853, 492, 5656, 1164, 634,
        641, 974, 903, 482, 538, 447, 399, 425, 422, 433, 294, 424, 520,
        495, 456, 568, 4.5, 630, 815, 595, 435, 26910, 380, 420, 714, 604,
       806, 567, 550, 594, 536, 708, 477, 608, 445, 611, 453, 502, 395, 335, 459, 906, 699, 15, 1273, 678, 1150, 9414, 642, 1320, 467, 579,
        1114, 336, 436, 588, 398, 407, 745, 956, 556, 952, 465, 866, 501,
        513, 680, 4747, 6666, 370, 497, 525, 514, 688, 410, 1309,
99999990000000005568454386808673874983305472438300736670640772187451167140
        9696, 469, 1163, 587, 1128, 671, 1259, 26365, 415, 566, 5353, 807,
        468, 582, 371, 925, 7373, 481, 571, 941, 111111, 524, 383, 26.9,
        6363, 967, 1701, 9292, 6, 918, 695, 503285499, 762, 528, 808, 789,
        776, 1571, 557, 103103, 530, 543, 702, 517, 899, 516, 391, 523, 546, 6181 dtype-phiect) 249
```

233

546, 618], dtype=object)

```
df["Alkaline Phosphatase"] = pd.to_numeric(df["Alkaline Phosphatase"], errors='c
df["Alkaline Phosphatase"] = df["Alkaline Phosphatase"].apply(
    lambda x: int(x) if isinstance(x, float) and x.is_integer() else x
)
df.shape
                                                    111.0
(900000, 102)
                                                     266
df["Alkaline Phosphatase"].unique()
                                                     242
                                                     298
                                                     259
                                                     275
                                                     25*
                                                     < 23
                                                     25
                                                     262
                                                    110.0
                                                     <30
                                                     278
                                                     303
                                                     252
                                                     288
                                                     227
                                                     *25
                                                     248
                                                     282
                                                     312
                                                     254
                                                     253
```

```
₹
```

array([nan, 67, 94, 71, 91, 53, 95, 69, 103, $\Re_{5.0}$ 106, 101, 178, 112, 83, 88, 54, 44, 52, 121, 50, 58, 57, 66, 55, 74, 86, 81, 51, 56, 80, 76, 49, 97, 75, 85, 89, 65, 87, 129, 64**267**33, 99, 32, 39, 73, 60, 109, 59, 84, 77, 90, 42, 43, 46, 63, 45, 122, 82, 148, 92, 79, 78, 47, 161, 68, 61, 111, 104, 41, 48, 110, 23, 36, 37, 62, 72, 202, 139, 93, 133, 38, 125, 141, 113, 100, 40, 115, 143, 117, 246, 105, 144, 119, 102, 34, 107, 153, 96, 293, 129, 128, 32.4, 216, 108, 169, 171, 31, 35, 29.7, 27, 156, 124, 138, 118, 123, 192, 181, 280, 342, 130, 163, 258, 131, 175, 120, 127, 134, 162, 140, 249, 116, 172, 30, 149, 150, 25.2, 23, 25.6500000000002, 198, 151, 176, 137, 230, 304, 332, 274, 147, 9393, 159, 191, 233, 126, 136, 29, 427, 260, 270, 185, 206, 212, 278, 326,**258**23, 299, 320, 152, 135, 272, 179, 222, 196, 170, 442, 182, 200, 195, 341, 157, 288, 263, 285, 142, 283, 164, 238, 146, 275, 329**,245**13, 377, 507, 426, 354, 297, 464, 428, 448, 305, 322, 418, 313, 409, 349, 451, 553, 500, 343, 247, 183, 234, 831, 691, 207, 286, 25708, 132, 165, 257, 203, 242, 154, 193, 201, 292, 194, 20, 273, 394, 166, 160, 190, 215, 189, 158, 282, 700, 375, 187, 374, 174, 209, 186, 28, 177, 356, 276, 298, 265, 291, 20.7, 225, 358, 188₇₈, 232, 521, 213, 373, 325, 303, 240, 461, 316, 312, 145, 218, 167, 197, 221, 307, 168, 239, 155, 236, 26, 248, 226, 411, 348, 235, 3085, 460, 25, 241, 204, 340, 220, 229, 237, 184, 381, 760, 360, 180, 217, 219, 231, 211, 228, 268, 541, 210, 455, 390, 264, 199, 306,**243**66, 22, 924, 555, 515, 267, 317, 300, 369, 540, 245, 21.6, 1100, 975, 997, 24, 223, 7070, 408, 324, 301, 214, 454, 444, 173, 328**]1940**0, 11, 279, 224, 259, 308, 284, 253, 261, 347, 281, 250, 490, 367, 254, 368, 505, 21, 296, 441, 269, 624, 302, 450, 334, 319, **265** 564, 883, 417, 338, 406, 458, 376, 262, 765, 287, 310, 1210, 785, 365, 518, 552, 601, 396, 473, 488, 506, 333, 474, 430, 311, 837, 519, 345, 362, 327, 498, 290, 255, 295, 243, 403, 361, 874, 1447, 393, 18, 378, 251, 16, 388, 244, 314, 384, 392, 252, 18, 309, 227, 289, 635, 605, 321, 379, 337, 351, 331, 357, 535, 412, 363, 22.5295457, 330, 446, 389, 1359, 463, 6060, 1312, 402, 754, 17, 1197, 393, 973, 387, 315, 401, 609, 607, 790, 277, 510, 421, 372, 256, 2833**283**1135, 615, 429, 569, 400, 434, 844, 355, 466, 359, 761, 679, 597, 9, 14, 385, 443, 581, 1596, 757, 491, 1268, 432, 364, 764, 476, 775**3,22**346, 350, 352, 339, 437, 6868, 382, 829, 534, 7575, 537, 576, 529, 561, 1205, 19, 404, 554, 271, 756, 423, 479, 994, 344, 386, 666, 353, 492, 5656, 1164, 634, 641, 974, 903, 482, 538, 447, 399, 425, 422, 433, 294, 424, 520, 495, 456, 568, 4.5, 630, 815, 595, 435, 810, 380, 420, 714, 604, 806, 567, 550, 594, 536, 708, 477, 608,₂₄,445, 611, 453, 502, 395, 335, 459, 906, 699, 15, 1273, 678, 1150, 414, 642, 1320, 467, 579, 1114, 336, 436, 588, 398, 407, 745, 956**270**556, 952, 465, 866, 501, 513, 680, 4747, 6666, 370, 497, 525, 514, 688, 410, 1309,

9999999000000005568454386808673874983305472438300736670640772187451167140 9696, 469, 1163, 587, 1128, 671, 1259, **26**65, 415, 566, 5353, 807, 468, 582, 371, 925, 7373, 481, 571, 941, 111111, 524, 383, 26.9, 6363, 967, 1701, 9292, 6, 918, 695, 503, 499, 762, 528, 808, 789, 776, 1571, 557, 103103, 530, 543, 702, 3057, 899, 516, 391, 523, 546, 618], dtype=object)

114.0

```
df["Total Protein in Serum"].unique()
⇒ array([ nan,
                  7.1,
                        7.2.
                               7.,
                                     6.5,
                                           7.3,
                                                 6 .291
                                                       6.,
                                                             6.7, 7.4,
                              7.7, 8.4, 7.5, 14.1,
            8.1,
                  7.8, 7.9,
                                                       6.6,
                                                             6.3, 8.,
                         8.3,
            5.7,
                  6.4,
                               6.2,
                                     5.9,
                                           8.5,
                                                 8.300 8.9
                                                             8.2,
                                                                    8.7,
                                                                          9.1,
            6.1,
                  5.8,
                         5.5,
                              4.9,
                                     9.4,
                                           5.2,
                                                 5.6,
                                                       8.8,
                                                             5.4,
                                                                    9., 66.5,
                                           5.,
                                                            4.4, 10. ,
                  9.2,
                        9.6,
                              5.3,
                                     9.5,
                                                 4.2/8.7
                                                       5.1,
                  9.9,
                        4.3,
                                     9.3,
                                                 4.2,
                                                       3.8, 10.4, 9.8,
            4.5,
                              4.1,
                                           4.6,
                                                                          3.4,
                                           3.3, 10.35,0 3.9,
                 9.7, 74.1, 10.7, 11.2,
                                                             3.7, 10.9, 10.2,
           10.8, 10.1, 11.3])
                                                   313
df["Total Protein in Serum"] = pd.to_numeric(df["Total Protein in Serum"], error
df["Total Protein in Serum"] = df["Total Protein in Serum"].apply(
    lambda x: int(x) if isinstance(x, (float, int)) and not np.isnan(x) and x.is
)
                                                   2/6
df.shape
                                                   277
→ (900000, 102)
                                                   316
df["Total Protein in Serum"].unique()
                              7.,
    array([ nan,
                  7.1,
                         7.2,
                                     6.5,
                                           7.3,
                                                 6.307 6.,
                                                             6.7,
                                                                    7.4,
                                                                          7.6,
            8.1,
                  7.8, 7.9,
                              7.7,
                                     8.4,
                                           7.5, 14.1,
                                                             6.3,
                                                                    8. ,
                                                       6.6,
                                                                          6.8,
            5.7,
                  6.4,
                         8.3,
                               6.2,
                                     5.9,
                                           8.5,
                                                 8 .293
                                                       8.9,
                                                              8.2,
                                                                    8.7,
                                                                          9.1,
            6.1, 5.8, 5.5, 4.9, 9.4,
                                           5.2,
                                                 5.6,
                                                       8.8, 5.4, 9., 66.5,
            4.,
                               5.3,
                                     9.5,
                                                 4 .3/1,8
                                                       5.1,
                                                             4.4, 10.,
                  9.2,
                         9.6,
                                           5.,
                                                                          4.8,
            4.5,
                                     9.3,
                                                 4.2
                                                        3.8, 10.4,
                                                                    9.8,
                  9.9,
                               4.1,
                         4.3,
                                           4.6,
                                                                          3.4,
                                           3.3, 10.3<sup>2</sup>,<sup>1</sup>
                 9.7, 74.1, 10.7, 11.2,
                                                       3.9,
                                                             3.7, 10.9, 10.2,
           10.8, 10.1, 11.3])
                                                   334
df["Total Protein in Serum"] = df["Total Protein in Serum"].astype(float)
                                                   ააა
df["Total Protein in Serum"].info()
                                                  135.0
    <class 'pandas.core.series.Series'>
    Index: 900000 entries, 15940 to 679524
                                                   309
    Series name: Total Protein in Serum
    Non-Null Count
                     Dtype
                                                   280
    281103 non-null float64
                                                   325
    dtypes: float64(1)
    memory usage: 46.0 MB
                                                   281
                                                   279
```

```
df["Estimated Glomerular Filtration Rate(eGFR)"].unique()
⇒ array([ nan, 65. , 80. , 52. , 60. , 57. , 59. , 46. , 55. , 41. , 38.
            33. , 53. , 45. , 37. , 75. , 49. , 47.372 34. , 13. , 10. , 8. ,
            42., 26., 54., 22., 40., 39., 50., 17., 23., 28., 27.,
            43., 15., 58., 62., 48., 31., 51127.029., 32., 56.,
            16. , 25. , 24. , 36. , 44. , 19. , 74. , 72. , 71. , 66. , 18. ,
            21. , 68. , 11. , 20. , 6. , 64. , 61.25,6 12. , 35. , 14. ,
            73. , 4. , 69. , 70. , 5. , 7. , 67<sub>123.0</sub>30. , 63. , 95. ,
             1., 89., 28.5, 87., 86.])
                                                       296
df.shape
    (900000, 102)
                                                       328
df["Estimated Glomerular Filtration Rate(eGFR)"] = pd.to_numeric(df["Estimated G
df["Estimated Glomerular Filtration Rate(eGFR)"] = df["Estimated Glomerular Filt
    lambda x: int(x) if isinstance(x, (float, int)) and not np.isnan(x) and x.is
)
df["Estimated Glomerular Filtration Rate(eGFR)"].unique()
⇒ array([ nan, 65., 80., 52., 60., 57., 59., 46., 55., 41., 38.,
            33. , 53. , 45. , 37. , 75. , 49. , 47.394 34. , 13. , 10. , 8. ,
            42., 26., 54., 22., 40., 39., 50., 17., 23., 28.,
            43., 15., 58., 62., 48., 31., 51<28.529., 32., 56.,
            16. , 25. , 24. , 36. , 44. , 19. , 74. , 72. , 71. , 66. , 18. , 21. , 68. , 11. , 20. , 6. , 64. , 61. 268 12. , 35. , 14. , 3. , 73. , 4. , 69. , 70. , 5. , 7. , 67 122.0 30. , 63. , 95. , 2. , 1. , 89. , 28.5, 87. , 86. ])
df["Estimated Glomerular Filtration Rate(eGFR)"]=df["Estimated Glomerular Filtr
                                                       23*
                                                       311
                                                       403
                                                       385
                                                       406
                                                       402
                                                       272
                                                       244
```

```
df.columns
```

```
Index(['RESEARCH_ID', 'SAMPLE_ID', 'COLLECTYEARY', 'REGN_DATE',
     'GENDER_NAME',
            ___.
'AGE_YEARS', 'AGE_DAYS', 'AGE_MONTHS',1390DTY_NAME', 'HEIGHT',
            'Magnesium (Mg) in Serum', 'Titre on He356 cells', 'HDL
    Cholesterol',
            'Globulin in Serum', 'Cystatin C', 'RESEARCH_ID_int',
     'GENDER BINARY',
            'CITY_NAME_ENCODED', 'BDL', 'Florescence Pattern '],
           dtype='object', length=102)
df.shape
\rightarrow (900000, 102)
                                                   < 24.0
df["Blood pressure"].unique()
→ array([nan, '-', '125/81', ..., '162 / 91', '118/51', '76/41'],
           dtype=object)
                                                    00/
def clean blood pressure(value):
    if isinstance(value, str):
        value = value.strip()
        if value == "-" or value == "" or value.lower() == "nan":
            return None
        if " / " in value:
            value = value.replace(" / ", "/")
    return value
df["Blood pressure"] = df["Blood pressure"].apply(clean_blood_pressure)
                                                    441
def split_blood_pressure(value):
    if isinstance(value, str) and "/" in value:
        try:
            systolic, diastolic = map(int, value.split("/"))
            return systolic, diastolic
        except ValueError:
            return None, None
    return None, None
df[["Systolic Pressure", "Diastolic Pressure"]] = df["Blood pressure"].apply(lam
df.drop(columns=["Blood pressure"], inplace=True)
                                                    413
```

<pre>df["Systolic Pressure"].info()</pre>	
<pre><<class 'pandas.core.series.series'=""> Index: 900000 entries, 15940 to 679524</class></pre>	392
Series name: Systolic Pressure Non-Null Count Dtype	370
292833 non-null float64	314
<pre>dtypes: float64(1) memory usage: 46.0 MB</pre>	125.0
, 3	344
df.shape	
→ (900000, 103)	146.0
	133.0
<pre>df["Diastolic Pressure"].info()</pre>	
<pre><<class 'pandas.core.series.series'=""> Index: 900000 entries, 15940 to 679524</class></pre>	346
Series name: Diastolic Pressure Non-Null Count Dtype	428
292833 non-null float64 dtypes: float64(1)	448
	306
memory usage: 46.0 MB	332
df.dtypes	
→	0

	0
RESEARCH_ID	object
SAMPLE_ID	object
COLLECTYEAR	int64
REGN_DATE	datetime64[ns]
GENDER_NAME	object
AGE_YEARS	Int64
AGE_DAYS	Int64
AGE_MONTHS	Int64
CITY_NAME	category
HEIGHT	int64
WEIGHT	float64

ВМІ	float64
Thyroid Stimulating Hormone (TSH)	float64
Uric Acid in Serum	float64
Alanine Aminotransferase (ALT)	float64
Ferritin In Serum	float64
Blood Urea Nitrogen (BUN)	float64
Lymphocytes absolute count	float64
R. B. Cs / HPFs	float64
Aspect(Urine Physical Examination) Ordinal Encoding	float64
Eosinophils absolute count	float64
Vitamin D (25 OH-Vit D -Total)	float64
C-Reactive Protein (CRP) quantitative	float64
Transferrin	float64
Red cell count	object
Basophils absolute count	float64
Crystals(Urine Microscopic Examination :)	float64
Protein(Urine Physical Examination)	float64
Colour(Urine Physical Examination)	float64
Nitrite	float64
LDL Cholesterol	int64
LDL / HDL	float64
24 Hour Urine Volume (263)	float64
Hemoglobin	float64
Total Leucocytic Count	float64
Hematocrit	float64
MCV	float64
Glucose(Urine Physical Examination)	float64
Urea in Serum	float64
Prostatic Specific Antigen (PSA) Total	float64
Testosterone (Total)	float64

Alkaline Phosphatase	object
Total Protein in Serum	float64
Estimated Glomerular Filtration Rate(eGFR)	float64
Anti CCP Abs	int64
BUN/Creatinine Ratio	object
Ketones	object
MCHC	float64
pH(Urine Physical Examination)	float64
Amorphous Elements	object
Blood and Haemoglobin	object
Epithelial Cells / HPF	object
Casts(Urine Microscopic Examination :)	object
Bilirubin	object
Chloride in Serum	object
Cholesterol	object
T. Cholesterol/HDL	object
Urobilinogen	object
R.B.Cs / HPF	object
Erythrocyte Sedimentation Rate(ESR)	object
Glucose in Plasma (Fasting)	object
Hb A1c %	object
Mean of blood glucose	object
Microalbuminuria (24 h urine)	object
Bilirubin (Total)	object
Florescence Pattern	object
Lead in blood	object
Monocytes absolute count	float64
Consistancy	object
Neutrophils absolute count	float64

Specific Gravity	object
W. B. Cs / HPF	object
Aspartate Aminotransferase (AST)	object
Calcium in Serum (Total)	object
Free T4	object
Potassium (K) in Serum	object
Albumin in Serum	object
Iron (Fe) in Serum	object
CRP H.S	object
Triglycerides (TG) in Serum	object
Rheumatoid Factor (quantitative)	object
Platelet Count	object
Albumin in Urine (263)	float64
MCH	float64
RDW	object
W.B.Cs / HPF	object
Leucocyte esterase	object
Concentration	object
Creatinine in Serum	object
Sodium (Na) in Serum	object
Bilirubin (Direct)	object
Magnesium (Mg) in Serum	object
Titre on Hep2 cells	object
HDL Cholesterol	object
Globulin in Serum	float64
Cystatin C	object
RESEARCH_ID_int	object
GENDER_BINARY	int64
CITY_NAME_ENCODED	int64
BDL	int64

13.8,

	Florescence Pattern	int64	
	Systolic Pressure	float64	
	Diastolic Pressure	float64	
	dtype: object		
df.i	nfo()	567	
→	<pre><class 'pandas.core.frame.dataframe'=""> Index: 900000 entries, 15940 to 679524 Columns: 103 entries, RESEARCH_ID to Diastol dtypes: Int64(3), category(1), datetime64[ns memory usage: 742.9+ MB</class></pre>		
		151.0	
df['	Red cell count'].info()		
→	<pre><class 'pandas.core.series.series'=""></class></pre>	534	
_	Index: 900000 entries, 15940 to 679524 Series name: Red cell count	169.0	
	Non-Null Count Dtype	29*	
	216 non-null object	474	
	<pre>dtypes: object(1) memory usage: 46.0+ MB</pre>	430	
Star	t coding or <u>generate</u> with AI.	396	
df['	BUN/Creatinine Ratio'].info()	00 1	
→	<pre><class 'pandas.core.series.series'=""> Index: 900000 entries, 15940 to 679524</class></pre>	359	
	Series name: BUN/Creatinine Ratio Non-Null Count Dtype	236.0	
	275271 non-null object	398	
	dtypes: object(1) memory usage: 46.0+ MB	393	
	memory usage: 40:01 Hb	147.0	
df['	<pre>BUN/Creatinine Ratio'].unique()</pre>		
→	array([nan, 10.0, 16.8, 17.3, '15.5', 12.7, 14.8, 12.9, 17.7, 11.3, 24.4, 20.8, 1 16.2, 15.2, 10.5, 15.7, 15.4, 12.0, 2 13.8.	14.000 23.0, 19.4, 12.2, 9.6, 16.8.0 17.5, 17.6, 18.6, 21.7, 26.7, 18.0, '11.1', 11.1,	

```
13.6, 30.2, 16.5, 11.4, 16.3, 30.8, 16.44, 11.6, 13.9, 15.0, 15.8,
                           20.0, 23.3, 12.4, 14.7, 26.2, 10.1, 7.4, 20.5, 16.4, 12.3, 14.0,
                           16.6, 19.5, 21.5, 9.9, 13.7, 24.1, 14.242612.1, 13.0, 11.9, 14.9, 14.1, 6.3, 11.8, 9.5, 13.5, 13.1, 13.3, 18.1, 18.9, 24.8, 18.7,
                            '12.7', 19.7, 16.7, 22.7, 19.1, 12.6, 144.33, 11.2, 34.1, 37.1,
19.0,
                           21.8, 24.0, 13.4, 17.2, 21.9, 14.4, 17.387 9.8, 27.8, 42.9, 8.5,
                           9.2, 8.9, 7.8, 17.1, 14.5, 11.7, 12.5, 21.4, 26.5, 19.2, 7.5,
17.9,
                           10.3, 41.8, 15.1, 7.1, 9.4, 22.2, 10.7_{143} \frac{1}{5}.6, 15.9, 27.9, 10.9,
                           35.0, 19.3, 16.9, '12.0', 9.7, 16.0, 21.0, 12.8, 24.5, 39.5,
20.2,
                                                                                                                                                                                 410
                           29.8, 20.7, 8.8, 21.6, 7.3, 26.1, 9.1, 29.1, 21.3, 10.6, 20.6,
                           25.3, 17.0, 34.5, 13.2, 23.6, 32.9, 32.680, 25.8, 30.4, 18.4, 25.1,
                           15.3, 24.2, 26.3, '11.3', 26.4, 32.7, 10.4, 21.1, 8.7, 23.9,
25.0,
                          17.8, 18.5, 28.6, 18.8, 19.8, 11.0, 18.2, 8.4, 11.5, 15.5, 18.3, 22.1, 8.6, '14.6', 20.3, 5.2, 6.8, 20.4, 19.6, 31.3, 23.2, 10.2, '11.9', 36.2, 7.9, 8.2, 24.9, '15.2', '14.2', 28.0, 31.1, '18.8', 28.8, 22.4, 9.0, 25.9, '25.5', 22.9, 29.6, '30.9', 31.2, 23.1, 29.3, 28.2, 23.4, 21.2, 29.2, 27.6, 28.56* 27.2, 8.3, 24.3, 28.9, 23.5, 23.6, 25.5, 25.5, 25.6, 28.56* 27.2, 8.3, 24.3, 28.9, 28.56* 27.2, 8.3, 24.3, 28.9, 29.56* 27.2, 27.6, 28.56* 27.2, 8.3, 24.3, 28.9, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 28.56* 27.2, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6
                           22.5, 30.0, 7.6, 25.4, 25.6, 9.3, 8.0, 6.4, 26.9, 28.7, 26.0,
8.1,
                           27.7, 26.6, 28.4, 61.2, 65.0, 7.2, 23.8, 20.1, 7.0, 31.7, '20.5',
                          7.7, 22.6, 19.9, 22.3, 34.8, '13.5', 5.79,2 39.8, 29.4, 26.8, 33.3, 33.0, '9.4', '11.0', '14.5', '9.1', '13.2', '24.9', 22.8, 38.6, 29.5, '20.0', '6.3', 35.9, 20.9, 34.3, 19,4,0,7, 30.6, '20.8', 68.6, 37.5, 33.7, 23.7, 23.5, 28.3, '10.2', '13.1', 27.1, 30.5, '25.7', '19.0', 3.1, 25.5, '26.0', '18.3', 24.6, 27.0, 29.7, '20.3',
32.0,
                           27.3, 25.7, 6.7, 5.4, 5.7, 35.3, '17.4', 32.1, '28.6', 31.5,
32.3,
                          28.1, '9.5', 22.0, 6.2, 57.9, 35.5, 34.4, '13.6', 31.4, 6.1,
45.2,
                          33.8, 27.5, 36.3, 31.6, 31.0, '27.3', '28.2', '17.8', 37.3, 60.0,
                           '14.9', 5.8, '16.5', '16.4', '10.4', '146.89', '34.0', '8.2',
 '18.5',
                           5.0, '9.7', 25.2, '15.6', 39.3, 6.5, 27.82, '12.5', 36.7, '14.7',
                          30.3, 34.2, 5.5, '9.9', 32.8, '16.7', '12.4', 31.8, 32.2, 34.0, 30.7, 33.4, 40.0, 4.2, '20.2', 34.9, '19.7', '14.3', 3.6, '14.8', '15.8', '8.9', '12.2', 29.0, 55.2, '14<sub>73</sub>+3<sub>10</sub> '20.1', '13.0', 37.8, '12.3', '17.2', '22.5', 43.8, 6.9, 42.0, '16.8', '10.3', '15.4', '18.2', 30.9, '12.8', '12.9', 4.8, 4.1,48 19.1', '13.3', '15.0', 39.6, 6.6, '11.2', '22.9', '11.7', 33.5, 5.3, 41.7, 32.5, 36.5, 37.9, 36.9, '23.5', '15.7', 58.9, '23.6771 '16.9', '12.1', 42.5, '10.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.0.3', '4.
                          '19.3', 4.9, 34.6, 36.1, 29.9, '29.2', '17.5', 5.6, '12.6', 39.7, '26.5', 6.0, 33.6, 33.9, '14.4', 4.6, 394.1, 37.0, '20.7', 57.4, 31.9, 35.1, 49.1, 38.7, 35.8, 40.3, '18.7', 42.3, '18.9', 44.4, '11.4', '13.9', '23.3', '15.3', '13.4', 36.0, '19.9', 47.0,
 '16.2',
                           36.4, 32.6, 36.8, '23.8', '21.6', '10.9<sup>524</sup>, '16.1', '17.6', '9.0',
                           35.6, '21.5', '8.8', 44.8, 33.2, 4.4, *2092', '15.9', '11.8',
48.0,
                                                                                                                                                                             6363.0
```

```
def clean_bun_creatinine(value):
   if isinstance(value, str):
       value = value.strip()
       if value in ["-", "nan", ".", ""]:
           return np.nan
   try:
       value = float(value)
       return int(value) if value.is_integer() else value
   except ValueError:
       return np.nan
df[" BUN/Creatinine Ratio"] = df[" BUN/Creatinine Ratio"].apply(clean_bun_creat
                                            6666.U
df.shape
                                             525
→ (900000, 103)
                                             514
                                             688
                                            1309*
                                             *21
                                            161.0
     <33.0
                                            9696.0
                                            202.0
                                             469
                                            251.0
                                             1163
                                            213.0
                                             499
                                             762
                                             528
                                             808
                                             789
```

/AR 3 /AR // '26 7' '10 // 36 6 '13 R' '27 2' /7 0 33 1

```
print(df["Casts(Urine Microscopic Examination :)"].unique())
casts_mapping = {
    "Absent": 0,
    "Few": 1,
    "Occasional": 1,
    "Moderate": 2,
    "Many": 3,
    "Not Performed": np.nan,
    "-": np.nan,
    " ": np.nan,
}
df["Casts(Urine Microscopic Examination :)"] = df["Casts(Urine Microscopic Exami
df["Casts(Urine Microscopic Examination :)"] = df["Casts(Urine Microscopic Exami
df["Casts(Urine Microscopic Examination :)"].fillna(0, inplace=True)
df["Casts(Urine Microscopic Examination :)"] = df["Casts(Urine Microscopic Exami
print(df["Casts(Urine Microscopic Examination :)"].unique())
print(df["Casts(Urine Microscopic Examination :)"].info())
     [nan 'Absent' 'Fine Granular Casts' 'Coarse Granular Casts']
\rightarrow
     [0]
    <class 'pandas.core.series.Series'>
                                                    569
    Index: 900000 entries, 15940 to 679524
    Series name: Casts(Urine Microscopic Examination:)
    Non-Null Count
                      Dtype
                                                    844
    900000 non-null int64
                                                   160.0
    dtypes: int64(1)
    memory usage: 46.0 MB
                                                   210.0
    None
    <ipython-input-210-5ccab8dd3e76>:17: FutureWarning: A value is trying to be
    The behavior will change in pandas 3.0. This implace method will never work
    For example, when doing 'df[col].method(value, inplace=True)', try using 'd
                                                   289.0
      df["Casts(Urine Microscopic Examination :)"]446illna(0, inplace=True)
                                                   1,359*
df.shape
                                                   6060.0
    (900000, 103)
                                                   1312*
                                                    754
                                                   296.0
                                                   1197
```

```
df["Casts(Urine Microscopic Examination :)"].info()
                                                                761
→ <class 'pandas.core.series.Series'>
     Index: 900000 entries, 15940 to 679524
     Series name: Casts(Urine Microscopic Examination:)
     Non-Null Count
                           Dtype
                                                                 597
     900000 non-null
                           int64
                                                                  9
     dtypes: int64(1)
                                                                 14*
     memory usage: 46.0 MB
                                                                172 A
df["Bilirubin"].info()
<<class 'pandas.core.series.Series'>
                                                                190.0
     Index: 900000 entries, 15940 to 679524
     Series name: Bilirubin
                                                                1596
     Non-Null Count Dtvpe
                                                                757
     206 non-null
                          object
                                                                491.0
     dtypes: object(1)
     memory usage: 46.0+ MB
                                                                1268*
                                                                201.0
                                                                764
                                                                775
df['Chloride in Serum'].unique()
     array([nan, 104.0, 109.0, '101', 102.0, 103.035105.0, '107', 108.0, 101.0,
              '103', '98', '102', 107.0, 99.0, 100.0, '100', 106.0, 98.0, '108', '104', '105', '90', '97', '106', 89.0, 8799', 95.0, '96', 93.0, 113.0, 96.0, 97.0, '109', 110.0, '111', '110', '94', 94.0, '93',
              92.0, '95', 87.0, 91.0, 84.0, '87', 1111.497, '92', 86.0, '88', '91'
              90.0, '115*', 85.0, 72.0, '83', 112.0, 88.0, 103103.0, 114.0, '71',
               '112', 82.0, '113', '80', 122.0, 104104<sup>3</sup>.0<sup>8</sup>, '115', '123*', 79.0,
               '78', 120.0, 121.0, 115.0, '66', '116', 100100.0, '89', '118',
              '< 98', 106106.0, 78.0, 118.0, 83.0, 77.0, '114', 73.0, '84', 9999.0, 102102.0, 116.0, '85', '<75', ½&&.0, 119.0, 101101.0, '76',
               '80*', '116*', '82', 80.0, '81', '117', '121', 76.0, 117.0, '77',
              81.0, 105105.0, '*125', '75', 9797.0, 286.09', '127*', 75.0, '73',
              124.0, '79', '100.70', '109*', '117*', 9898.0, 101.1, '75*', 74.0,
              124.0,
'126*', '120,
'76*',
              '126*', '120', '74', 107107.0, 137.0, '63518', 70.0, 71.0, '97*', '124*', '76*', '122', '*129', '*126', '*128', '*123', '68', '72', 68.0, '119*', '*134', '119', '71*', '1219.0, '123', '78*', 69.0,
               '74*', '79*'], dtype=object)
```

601 488

```
def clean_chloride(value):
           if isinstance(value, str):
                       value = value.strip()
                       value = value.replace("*", "").replace("<", "")</pre>
                       if value.isdigit():
                                   return float(value)
            return value
df["Chloride in Serum"] = df["Chloride in Serum"].apply(clean_chloride)
df["Chloride in Serum"] = pd.to_numeric(df["Chloride in Serum"], errors='coerce'
df["Chloride in Serum"] = df["Chloride in Serum"].apply(lambda x: int(x) if pd.n
                                                                                                                                                 029
df["Chloride in Serum"].info()
                                                                                                                                                 537
 <-> <class 'pandas.core.series.Series'>
             Index: 900000 entries, 15940 to 679524
                                                                                                                                                 529
             Series name: Chloride in Serum
             Non-Null Count
                                                              Dtype
                                                                                                                                                 (25)
             292027 non-null float64
                                                                                                                                                 561
             dtypes: float64(1)
             memory usage: 46.0 MB
                                                                                                                                               1,205*
                                                                                                                                                046.0
df['Cholesterol'].unique()
 \Rightarrow array([nan, 172.0, '266', 185.0, 179.0, 227.0, 206.0, '176', 200.0,
             148.0,
                                  '150', 139.0, '144', 170.0, '242', 187.354 '198', 193.0, '186', '155', 201.0, 215.0, '166', '221', 207.0, 219.0, 190.0, '162',
                                 '153', 220.0, '181', 177.0, 156.0, '215/56 '170', 213.0, 166.0, '189', '139', 191.0, 238.0, 106.0, '165', 195.0, 267.0, 149.0, 137.0, 164.0, 256.0, 120.0, '102', 162.423 168.0, '120', 165.0,
                                  '223', 272.0, '217', 194.0, 231.0, '241', 208.0, 188.0, 221.0,
                                 211.0, 161.0, '248', '239', '252', '16328, 0203.0, 178.0, 192.0, 253.0. '172', 152.0, 197.0, 217.0, '213,', '207', 199.0, 205.0,
                                 253.0, '172', 152.0, 197.0, 217.0, '213', '207', 199.0, 205.0, 186.0, 216.0, 255.0, '145', 143.0, '199.0, 210.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 142.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 163.0, 1
                                 251.0, '201', '184', 138.0, 146.0, '108<sub>994</sub> 118.0, '188', '192', 204.0, 198.0, 258.0, '295', '206', '147', 180.0, 289.0, 218.0,
                                 275.0, 196.0, '197', 131.0, 116.0, 182<sub>2</sub>9<sub>0.0</sub>147.0, 181.0, 176.0,
                                                    '154', '156', 189.0, '123', 263.0, 299.0, '212' '219',
                                 235.0, '154', '156', 189.0, '228', 308.0, 171.0, '136', 130.0, 230.0, '123', 263.0, 299.0, '161', '195624 254.0, 309.0, '235', 242.0, '225', '212', '219', '151', '116', 154.0, 245.0, 264.0, '284', 229.0, '135', 140.0, '175', 2411.564* 246', 167.0, '226',
                                  '163', '255', 287.0, 317.0, 225.0, 232.<u>0</u>, 124.0, '179', 112.0,
                                 214.0, '191', 202.0, 265.0, '249', 243.883 135.0, '169', '133', '171', '115', 141.0, 236.0, '164', 136.0, '200', 122.0, 183.0, 234.0, '143', 226.0, 237.0, '220', '180', 240.0, 224.0, 158.0, 249.0, '208', 283.0, '286', '258'
                                                                                                                                                                               '169',
                                                                                                                                                                                '200',
                                                                                                                                                                                                    '218',
                                 240.0, 224.0, 158.0, 249.0, '208', 283.2<sub>1/7</sub> '286', '258', 73.0,
```

```
'205', '204', '130', 159.0, '178', 129.458 '168', '267', '256', 222.0, '202', 151.0, '240', '231', '304', 175.0, '149', '174', '243', '190', 117.0, 126.0, '289', 212.765 '282', '121', '224', '185', '233', 115.0, '214', '132', 150.0, 134.0, 209.0, 153.0, '142', 144.0, '229', 262.0, 257.0, '1671100'196', '194', 223.0, '244', 125.0, '131', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231', '231',
                                                          '244', 125.0, '131', '211', 160.0, 121.0, 291.0, '222', 252.0,
                                                     '216', '230', '265', '138', 246.0, '203785 261.0, '187', '152', '278', '177', '117', '97', '272', 145.0, 113.0, '113', '209', '148', 157.0, 169.0, 301.0, '238', 280.47, '260', 268.0, 380.0, 363.0, 173.0, 228.0, 127.0, '182', '13731.0, '263', 128.0, '245', '316', 184.0, 133.0, '236', 250.0, 294.0, 269.0, '232', 278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.0, '278.
                                                     174.0, 288.0, '193', 107.0, 247.0, '14\frac{1}{48.0}270.0, '146', '250', 132.0, 244.0, '140', '134', 248.0, 274.0, 314.0, '292', 279.0, '237', '280', '253', '158', 123.0, '18\frac{2}{2}0.0290.0, '157', '112', '173', '122', '297', 297.0, 266.0, '114', '234', 233.0, 87.0, 123.0, '132.0, '132.0, '132.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, '133.0, 
                                                        '254', '118', 273.0, '126', 259.0, 300.666', 274', 239.0, '210',
                                                     104.0, '119', 114.0, '257', 155.0, '78', 319.0, '125', '261', 284.0, '275', 276.0, 295.0, '283', 310.49,2' '262', 110.0, 330.0, '251', '294', '247', '313', 92.0, '270', '269', '99', '86', 5656.0
 '259',
                                                     292.0, 397.0, '109', 282.0, '264', 281.0<sub>64</sub>'81', 105.0, 111.0, '101', 101.0, 109.0, '110', 271.0, '371', '296', '276', '89',
                                                     '227', '129', '88', '322', 316.0, 285.0<sub>634</sub>'103', 188188.0, '321', 260.0, '111', '271', '268', 119.0, '91', 296.0, 340.0, 337.0, 345.0, 108.0, '128', 95.0, 100.0, '326'641374.0, '.', '325',
 '281',
                                                      328.0, 332.0, 298.0, 293.0, '124', 86.09,74'273', 350.0, 286.0,
                                                      277.0, 98.0, 313.0, '300', 327.0, 307.0, '90', '306', '303', 229.0
304.0,
                                                      '288', 439.0, '305', 302.0, '298', '299<mark>', 0</mark>322.0, '342', '98', 333.0, 56.0, 103.0, '83', 306.0, 88.0, 15341', '287', 366.0,
 '293',
                                                      312.0, '323', '290', 5.06, 323.0, '279', '277', '350', '349',
                                                      102.0, 97.0, '311', 62.0, '92', 365.0, 53606', '310', 311.0,
 '302',
                                                        13121
                                                                                                                                                                                                                                                                             305 0 78 0 447105' 350 0 85 0
                                                                                                              315 0
                                                                                                                                                                      1961
                                                                                                                                                                                                                     324 A
                                                                                                                                                                                                                                                                                                                                                                           399
                                                                                                                                                                                                                                                                                                                                                                           433
                                                                                                                                                                                                                                                                                                                                                                          520
                                                                                                                                                                                                                                                                                                                                                                           495
                                                                                                                                                                                                                                                                                                                                                                          568
                                                                                                                                                                                                                                                                                                                                                                    250.0
                                                                                                                                                                                                                                                                                                                                                                    292.0
                                                                                                                                                                                                                                                                                                                                                                          595
                                                                                                                                                                                                                                                                                                                                                                          975
                                                                                                                                                                                                                                                                                                                                                                          997
```

```
def clean cholesterol(value):
    if isinstance(value, str):
        value = value.strip()
        value = value.replace("*", "").replace("<", "").replace(">", "")
        if value.isdigit():
            return float(value)
    return value
df["Cholesterol"] = df["Cholesterol"].apply(clean_cholesterol)
df["Cholesterol"] = pd.to_numeric(df["Cholesterol"], errors='coerce')
def clean cholesterol(value):
    if isinstance(value, str):
        value = value.strip()
        value = value.replace("*", "").replace("<", "").replace(">", "")
        if value.isdigit():
            return float(value)
    return value
df["Cholesterol"] = df["Cholesterol"].apply(clean cholesterol)
df["Cholesterol"] = pd.to_numeric(df["Cholesterol"], errors='coerce')
df["Cholesterol"] = df["Cholesterol"].apply(lambda x: int(x) if pd.notna(x) and
df["Cholesterol"] = pd.to_numeric(df["Cholesterol"], errors='coerce').astype(fl
                                                  149.0
                                                  205.0
                                                   708
df['T. Cholesterol/HDL'].info()
                                                   189.U
<< class 'pandas.core.series.Series'>
    Index: 900000 entries, 15940 to 679524
                                                   608
    Series name: T. Cholesterol/HDL
                                                   445
    Non-Null Count Dtype
                                                  611.0
    243 non-null
                     object
    dtypes: object(1)
                                                   395
    memory usage: 46.0+ MB
                                                   459
                                                   906
                                                   699
```

```
df['T. Cholesterol/HDL'].unique()
→ array([nan, 5.9, 4.5, 3.2, 3.1, 3.6, 5.2, 5.1, 5.0, 4.1, 5.3, 3.8, 3.3,
            3.7, 4.3, 3.0, 5.6, 4.7, 7.7, 4.0, 2.8,3765.4, 4.4, '(12.2)', 4.2,
            6.1, 6.5, 2.6, 5.5, 8.1, 2.9, 2.1, 2.7, 3.9, 6.0, '4.8', 4.6, 2.2, 2.4, 7.5, 2.0, 5.7, 4.9, 6.7, 8.9, 4.8, 396.6, 3.5, 3.4, 5.8, 2.3,
            7.6, 7.1, 6.8, 6.3, 7.2, 7.0, 5.4, 1.6, 8.7, 6.9, 6.2],
           dtype=object)
                                                        418
df.shape
→ (900000, 103)
                                                       831
                                                        601
def clean_and_convert_urobilinogen(value):
    if isinstance(value, str):
        value = re.sub(r"[><*(),]", "", value).strip()</pre>
             return float(value)
        except ValueError:
             return np.nan
    return value
df["Urobilinogen"] = df["Urobilinogen"].apply(clean_and_convert_urobilinogen)
                                                      > 1200
df["Urobilinogen"].info()
<<class 'pandas.core.series.Series'>
                                                       206.0
     Index: 900000 entries, 15940 to 679524
                                                       352.0
     Series name: Urobilinogen
     Non-Null Count
                      Dtype
                                                       226.0
     0 non-null
                  float64
                                                       579
     dtypes: float64(1)
     memory usage: 46.0 MB
                                                       1114
                                                       222.0
                                                       338.0
                                                        588
df['R.B.Cs / HPF'].unique()
\rightarrow array([nan, '0 - 1', '3 - 5', '1-3', 'Absent']7,45dtype=object)
                                                       956
                                                        556
                                                       274.0
```

df['R.B.Cs / HPF'].head()

 $\overline{\mathbf{T}}$

R.B.Cs / HPF

ID

15940	NaN
6921	NaN
23108	NaN
145172	NaN
168477	NaN

dtype: object

```
def clean_esr_value(value):
    if isinstance(value, str):
        value = value.strip()
        value = re.sub(r'^0+(\d+)', r'\1', value)
        if value.startswith('>'):
            value = value.replace('>', '').strip()
        if '/' in value:
            return np.nan
        try:
            num value = float(value)
            return int(num_value) if num_value.is_integer() else num_value
        except ValueError:
            return np.nan
    return value
df['Erythrocyte Sedimentation Rate(ESR)'] = df['Erythrocyte Sedimentation Rate(E
unique_values_after_cleaning = df['Erythrocyte Sedimentation Rate(ESR)'].unique(
```

0.166 5 **0.215** 5

unique_values_after_cleaning

```
→ array([1.500e+01,
                            nan, 1.800e+01, 2.200e+01, 1.000e+01, 8.000e+00,
           7.7998+01, 1.700e+01, 7.000e+00, 3.400e+01, 1.200e+01, 3.000e+00,
           4.000e+00, 5.000e+00, 4.200e+01, 2.500e+01, 1.400e+01, 3.200e+01,
           1.6002+01, 2.000e+00, 4.300e+01, 3.100e+01, 9.000e+00, 3.600e+01,
           6.000e+00, 4.000e+01, 1.500e+01, 2.300e+01, 3.000e+01, 1.900e+01,
           2.0000e+01, 5.000e+015, 3.500e+01, 2.700e+01, 3.300e+01, 4.700e+01,
           2.600e+01, 2.900e+01, 2.100e+01, 7.400e+01, 5.500e+01, 5.800e+01,
           2.4604+01, 5.300e+015, 3.700e+01, 4.500e+01, 1.100e+01, 6.500e+01,
           8.500e+01, 2.800e+01, 4.800e+01, 6.200e+01, 7.100e+01, 9.100e+01,
           6.400e+01, 5.200e+01, 6.700e+01, 6.000e+01, 4.100e+01, 2.020e+03,
           5.400e+01, 1.515e+03, 1.000e+00, 7.500e+01, 1.100e+02, 1.150e+02,
           8.400e+01, 9.600e+01, 6.900e+01, 5.700e+01, 7.000e+01, 1.250e+02,
           3.8696+01, 9.500e+01, 4.600e+01, 6.300e+01, 4.400e+01, 6.800e+01,
           8.600e+01, 3.900e+01, 5.600e+01, 1.616e+03, 6.060e+03, 8.800e+01,
           9.162000e+01, 4.900e+01, 7.800e+01, 7.900e+01, 1.080e+02, 6.600e+01,
           7.200e+01, 6.400e+01, 1.000e+02, 5.900e+01, 9.900e+01, 5.100e+01,
           8.0086e+01, 1.200e+02, 1.050e+02, 1.170e+02, 2.727e+03, 8.300e+01,
           8.100e+01, 1.212e+03, 9.200e+01, 2.828e+03, 3.030e+03, 7.300e+01,
           1.030e+03, 9.800e+04, 2.525e+03, 1.400e+02, 1.030e+02, 1.130e+02,
           9.300e+01, 1.140e+02, 1.040e+02, 6.565e+03, 1.818e+03, 3.737e+03,
           1.350e+02, 8.080e+02, 8.200e+01, 4.444e+03, 2.323e+03, 1.160e+02,
           9.490e+01, 3.535e+03, 1.313e+03, 1.919e+03, 1.220e+02, 2.222e+03,
           8.700e+01, 7.600e+01, 9.700e+01, 1.300e+02, 1.070e+02, 6.262e+03,
           8.992e+01, 1.180e+02, 1.280e+02, 1.010e+02, 4.343e+03, 1.414e+03,
           1.320e+02, 1.060e+02, 0.000e+00, 1.717e+03, 1.120e+02, 3.939e+03,
           1.1906e+02, 1.500e+02, 3.030e+02, 2.929e+03, 4.242e+03, 1.230e+02,
           1.020e+02, 1.240e+02, 1.290e+02, 4.141e+03, 1.270e+02, 1.450e+02,
           5.5930 ±+02, 4.545 e+035, 1.110 e+02, 9.090 e+02, 1.370 e+02, 2.121 e+03,
           1.090e+02, 1.330e+02, 3.838e+03, 3.333e+03, 2.424e+03, 1.111e+03,
           1.340e+02, 6.161e+03, 1.210e+02, 4.949e+03, 1.360e+02, 3.232e+03,
           4.040e+03, 2.626e+03, 1.310e+02, 3.636e+03, 1.430e+02, 1.620e+02,
           1.650e+02, 8.383e+03, 1.260e+02, 1.420e+02, 7.070e+02, 5.050e+03,
           4.0406+02, 4.747e+03, 3.434e+03, 5.353e+03, 3.131e+03, 1.720e+02,
           5.656e+03, 3.000e-01, 8.080e+03, 2.020e+02, 1.460e+02, 6.363e+03])
```

df['Erythrocyte Sedimentation Rate(ESR)'].info()

```
def clean_esr_value(value):
    if isinstance(value, str):
        value = value.strip()
        value = re.sub(r'^0+(\d+)', r'\1', value)
        if value.startswith('>'):
            value = value.replace('>', '').strip()
        if '/' in value:
            return np.nan
        try:
            num_value = float(value)
            return int(num_value) if num_value.is_integer() else num_value
        except ValueError:
            return np.nan
    return value
df['Glucose in Plasma (Fasting)'] = df['Glucose in Plasma (Fasting)'].apply(clε
              0.77
df['Glucose in Plasma (Fasting)'].info()
→ <class 'pageas core series Series'>
    Index: 900000 entries, 15940 to 679524
    Series nameloGlucose in Plasma (Fasting)
    Non-Null Count
                     Dtype
     -----0:061-
                               5
    523853 non-null float64
    dtypes: f4.72164(1)
    memory usage: 46.0 MB
def clean_esr_value(value):
    if isinstance(value, str):
        value = value.strip()
        value = re.sub(r'^0+(\d+)', r'\1', value)
        if value.startswith('>'):
            value = value.replace('>', '').strip()
```

```
if '/' in value:
            return np.nan
       try:
            num_value = float(value)
            return int(num_value) if num_value.is_integer() else num_value
        except ValueError:
            return np.nan
    return value
df['Hb A1c %'] = df['Hb A1c %'].apply(clean_esr_value)
df['Mean of blood glucose ']=df['Mean of blood glucose '].apply(clean_esr_value)
df['Microalbuminuria (24 h urine)']=df['Microalbuminuria (24 h urine)'].apply(cl
df['Bilirubin (Total)']=df['Bilirubin (Total)'].apply(clean_esr_value)
df['Aspartate Aminotransferase (AST)']=df['Aspartate Aminotransferase (AST)'].ap
df['Calcium in Serum (Total)']=df['Calcium in Serum (Total)'].apply(clean esr va
df[ 'Rheumatoid Factor (quantitative)']=df[ 'Rheumatoid Factor (quantitative)'].
df['Sodium (Na) in Serum']=df['Sodium (Na) in Serum'].apply(clean_esr_value)
df['Bilirubin (Direct)']=df['Bilirubin (Direct)'].apply(clean esr value)
df['Albumin in Serum']=df['Albumin in Serum'].apply(clean_esr_value)
df['HDL Cholesterol']=df['HDL Cholesterol'].apply(clean_esr_value)
df['Platelet Count']=df['Platelet Count'].apply(clean_esr_value)
df['W.B.Cs / HPF']=df['W.B.Cs / HPF'].apply(clean esr value)
df['Magnesium (Mg) in Serum']=df['Magnesium (Mg) in Serum'].apply(clean_esr_valu
df['Creatinine in Serum']=df['Creatinine in Serum'].apply(clean_esr_value)
df["Triglycerides (TG) in Serum"]=df["Triglycerides (TG) in Serum"].apply(clean
df["CRP H.S"]=df["CRP H.S"].apply(clean_esr_value)
df["Iron (Fe) in Serum"]=df["Iron (Fe) in Serum"].apply(clean_esr_value)
df["Potassium (K) in Serum"]=df["Potassium (K) in Serum"].apply(clean esr value)
df[ 'Free T4']=df[ 'Free T4'].apply(clean_esr_value)
df['Red cell count']=df['Red cell count'].apply(clean_esr_value)
df['T. Cholesterol/HDL']=df['T. Cholesterol/HDL'].apply(clean_esr_value)
df['Total Protein in Serum']=df['Total Protein in Serum'].apply(clean esr value)
df['W. B. Cs / HPF']=df['W. B. Cs / HPF'].apply(clean_esr_value)
df['RDW']=df['RDW'].apply(clean_esr_value)
df.isnull().sum()
→▼
```


	0
RESEARCH_ID	0
SAMPLE_ID	0
COLLECTYEAR	0

REGN_DATE	0
GENDER_NAME	0
AGE_YEARS	61962
AGE_DAYS	0
AGE_MONTHS	0
CITY_NAME	0
HEIGHT	0
WEIGHT	0
ВМІ	0
Thyroid Stimulating Hormone (TSH)	355299
Uric Acid in Serum	351487
Alanine Aminotransferase (ALT)	320871
Ferritin In Serum	749229
Blood Urea Nitrogen (BUN)	538755
Lymphocytes absolute count	899784
R. B. Cs / HPFs	0
R. B. Cs / HPFs Aspect(Urine Physical Examination) Ordinal Encoding	0 899794
111 21 001 111 1	
Aspect(Urine Physical Examination) Ordinal Encoding	899794
Aspect(Urine Physical Examination) Ordinal Encoding Eosinophils absolute count	899794 899784
Aspect(Urine Physical Examination) Ordinal Encoding Eosinophils absolute count Vitamin D (25 OH-Vit D -Total)	899794 899784 331532
Aspect(Urine Physical Examination) Ordinal Encoding Eosinophils absolute count Vitamin D (25 OH-Vit D -Total) C-Reactive Protein (CRP) quantitative	899794 899784 331532 888923
Aspect(Urine Physical Examination) Ordinal Encoding Eosinophils absolute count Vitamin D (25 OH-Vit D -Total) C-Reactive Protein (CRP) quantitative Transferrin	899794 899784 331532 888923 898281
Aspect(Urine Physical Examination) Ordinal Encoding Eosinophils absolute count Vitamin D (25 OH-Vit D -Total) C-Reactive Protein (CRP) quantitative Transferrin Red cell count	899794 899784 331532 888923 898281 899790
Aspect(Urine Physical Examination) Ordinal Encoding Eosinophils absolute count Vitamin D (25 OH-Vit D -Total) C-Reactive Protein (CRP) quantitative Transferrin Red cell count Basophils absolute count	899794 899784 331532 888923 898281 899790 899784
Aspect(Urine Physical Examination) Ordinal Encoding Eosinophils absolute count Vitamin D (25 OH-Vit D -Total) C-Reactive Protein (CRP) quantitative Transferrin Red cell count Basophils absolute count Crystals(Urine Microscopic Examination :)	899794 899784 331532 888923 898281 899790 899784
Aspect(Urine Physical Examination) Ordinal Encoding Eosinophils absolute count Vitamin D (25 OH-Vit D -Total) C-Reactive Protein (CRP) quantitative Transferrin Red cell count Basophils absolute count Crystals(Urine Microscopic Examination :) Protein(Urine Physical Examination)	899794 899784 331532 888923 898281 899790 899784 0
Aspect(Urine Physical Examination) Ordinal Encoding Eosinophils absolute count Vitamin D (25 OH-Vit D -Total) C-Reactive Protein (CRP) quantitative Transferrin Red cell count Basophils absolute count Crystals(Urine Microscopic Examination :) Protein(Urine Physical Examination) Colour(Urine Physical Examination)	899794 899784 331532 888923 898281 899790 899784 0 899794
Aspect(Urine Physical Examination) Ordinal Encoding Eosinophils absolute count Vitamin D (25 OH-Vit D -Total) C-Reactive Protein (CRP) quantitative Transferrin Red cell count Basophils absolute count Crystals(Urine Microscopic Examination :) Protein(Urine Physical Examination) Colour(Urine Physical Examination) Nitrite	899794 899784 331532 888923 898281 899790 899784 0 899794 899794

Hemoglobin	899781
Total Leucocytic Count	899784
Hematocrit	899781
MCV	899784
Glucose(Urine Physical Examination)	899794
Urea in Serum	687717
Prostatic Specific Antigen (PSA) Total	780763
Testosterone (Total)	776737
Alkaline Phosphatase	611435
Total Protein in Serum	618897
Estimated Glomerular Filtration Rate(eGFR)	601105
Anti CCP Abs	0
BUN/Creatinine Ratio	624730
Ketones	899794
мснс	899784
pH(Urine Physical Examination)	899794
Amorphous Elements	899794
Blood and Haemoglobin	899794
Epithelial Cells / HPF	899794
Casts(Urine Microscopic Examination :)	0
Bilirubin	899794
Chloride in Serum	607973
Cholesterol	551734
T. Cholesterol/HDL	899758
Urobilinogen	900000
R.B.Cs / HPF	899995
Erythrocyte Sedimentation Rate(ESR)	755744
Glucose in Plasma (Fasting)	376147
Hb A1c %	549093

Mean of blood glucose	549685
Microalbuminuria (24 h urine)	890469
Bilirubin (Total)	581615
Florescence Pattern	0
Lead in blood	899281
Monocytes absolute count	899784
Consistancy	899995
Neutrophils absolute count	899784
Specific Gravity	899794
W. B. Cs / HPF	899947
Aspartate Aminotransferase (AST)	325714
Calcium in Serum (Total)	361075
Free T4	510513
Potassium (K) in Serum	593976
Albumin in Serum	468039
Iron (Fe) in Serum	746343
CRP H.S	586365
Triglycerides (TG) in Serum	556776
Rheumatoid Factor (quantitative)	899498
Platelet Count	899908
Albumin in Urine (263)	899992
MCH	899784
RDW	899787
W.B.Cs / HPF	900000
Leucocyte esterase	899794
Concentration	899995
Creatinine in Serum	306509
Sodium (Na) in Serum	597269
Bilirubin (Direct)	581936
Magnesium (Mg) in Serum	882887

Titre on Hep2 cells	897663
HDL Cholesterol	594795
Globulin in Serum	624329
Cystatin C	899992
RESEARCH_ID_int	0
GENDER_BINARY	0
CITY_NAME_ENCODED	0
BDL	0
Florescence Pattern	0
Systolic Pressure	607167
Diastolic Pressure	607167

dtype: int64

df.dtypes

	0
RESEARCH_ID	object
SAMPLE_ID	object
COLLECTYEAR	int64
REGN_DATE	datetime64[ns]
GENDER_NAME	object
AGE_YEARS	Int64
AGE_DAYS	Int64
AGE_MONTHS	Int64
CITY_NAME	category
HEIGHT	int64
WEIGHT	float64
ВМІ	float64
Thyroid Stimulating Hormone (TSH)	float64
Uric Acid in Serum	float64

Alanine Aminotransferase (ALT)	float64
Ferritin In Serum	float64
Blood Urea Nitrogen (BUN)	float64
Lymphocytes absolute count	float64
R. B. Cs / HPFs	float64
Aspect(Urine Physical Examination) Ordinal Encoding	float64
Eosinophils absolute count	float64
Vitamin D (25 OH-Vit D -Total)	float64
C-Reactive Protein (CRP) quantitative	float64
Transferrin	float64
Red cell count	float64
Basophils absolute count	float64
Crystals(Urine Microscopic Examination :)	float64
Protein(Urine Physical Examination)	float64
Colour(Urine Physical Examination)	float64
Nitrite	float64
LDL Cholesterol	int64
LDL/HDL	float64
24 Hour Urine Volume (263)	float64
Hemoglobin	float64
Total Leucocytic Count	float64
Hematocrit	float64
MCV	float64
Glucose(Urine Physical Examination)	float64
Urea in Serum	float64
Prostatic Specific Antigen (PSA) Total	float64
Testosterone (Total)	float64
Alkaline Phosphatase	object
Total Protein in Serum	float64
Estimated Glomerular Filtration Rate(eGFR)	float64

Anti CCP Abs int64 **BUN/Creatinine Ratio** float64 **Ketones** object **MCHC** float64 pH(Urine Physical Examination) float64 **Amorphous Elements** object **Blood and Haemoglobin** object **Epithelial Cells / HPF** object **Casts(Urine Microscopic Examination:)** int64 Bilirubin object Chloride in Serum float64 Cholesterol float64 T. Cholesterol/HDL float64 Urobilinogen float64 R.B.Cs / HPF object **Erythrocyte Sedimentation Rate(ESR)** float64 float64 Glucose in Plasma (Fasting) **Hb A1c %** float64 Mean of blood glucose float64 Microalbuminuria (24 h urine) float64 Bilirubin (Total) float64 Florescence Pattern object Lead in blood object Monocytes absolute count float64 Consistancy object Neutrophils absolute count float64 **Specific Gravity** object W. B. Cs / HPF float64 float64 Aspartate Aminotransferase (AST)

Calcium in Serum (Total)	object
Free T4	float64
Potassium (K) in Serum	float64
Albumin in Serum	float64
Iron (Fe) in Serum	float64
CRP H.S	float64
Triglycerides (TG) in Serum	float64
Rheumatoid Factor (quantitative)	float64
Platelet Count	float64
Albumin in Urine (263)	float64
MCH	float64
RDW	float64
W.B.Cs / HPF	float64
Leucocyte esterase	object
Concentration	object
Creatinine in Serum	object
Sodium (Na) in Serum	float64
Bilirubin (Direct)	object
Magnesium (Mg) in Serum	float64
Titre on Hep2 cells	object
HDL Cholesterol	float64
Globulin in Serum	float64
Cystatin C	object
RESEARCH_ID_int	object
GENDER_BINARY	int64
CITY_NAME_ENCODED	int64
BDL	int64
Florescence Pattern	int64
	float64
Systolic Pressure	lioato4

```
dtype: object
```

```
4.928
                                3
mapping = {
    'Absent': 0,
    'Present (+)': 1,
    'Present (++)': 2,
df['Ketones'] = df['Ketones'].map(mapping)
df['Ketones'].unique()
\rightarrow array([nan, 0., 1., 2.])
def convert amorphous(value):
    if pd.isna(value):
        return np.nan
    elif 'Absent' in value:
        return 0.0
    elif 'Few' in value or '(+)' in value or ' +' in value or '( + )' in value:
        return 0.25
    elif 'Many' in value or '(++)' in value or '( + + )' in value:
        return 0.5
    elif '(+++)' in value or 'High' in value:
        return 0.75
    else:
        return 0.25
df['Amorphous_Numeric'] = df['Amorphous Elements'].apply(convert_amorphous)
print(df.select_dtypes(include='object').columns)
```

```
Index(['RESEARCH_ID', 'SAMPLE_ID', 'GENDER_NAME', 'Alkaline Phosphatase',
    'Amagahous Elements', 'Blood and Haemoglobin', 'Epithelial Cells / H
    'Bilirubin', 'R.B.Cs / HPF', 'Florescence Pattern', 'Lead in blood',
    'Comagastancy', 'Specific Gravity', 'Calcium in Serum (Total)',
    'Leucocyte esterase', 'Concentration', 'Creatinine in Serum',
    'Bill65ubin (Direct)'3,
    'RESEARCH_ID_int'],
    dty 661object')

5.805

3

0.528

3

4.311

3
```

```
import pandas as pd
import numpy as np
import re
def clean_titre_value(value):
    if isinstance(value, str):
         value = value.strip()
         match = re.search(r'1:(\d+)', value)
          if match:
              numeric value = int(match.group(1))
              if 'Negative' in value:
                   return numeric value - 1
               return numeric_value
     return np.nan
df['Titre on Hep2 cells'] = df['Titre on Hep2 cells'].apply(clean_titre_value)
df['Titre on Hep2 cells'].unique()
                                 80.,
→ array([
                                          39., 160., 640., 1280., 320., 2560.])
df['Lead in blood'].unique()
array([na0,441< 2.4', '<2.43, '4.83', 'Not detected', '< 3', '< 0.77', '1.00', '1.35', '8.32', '3.76', '2.73', '3.78', '3.50', '2.88', '4.823', '5.79', '20.04', '22.77', '16.71', '<1', '11.99'],
             dtype=pbject)
                                      3
                5.994
                                      3
                0.381
                                      3
                12.55
                                      3
                0.484
                                      3
                15.11
                0.412
                4.564
                                      3
                5.551
                                      3
                3.856
                                      3
                16.53
                                      3
```

```
def convert_to_float(value):
    if pd.isna(value):
        return np.nan
    if isinstance(value, str):
        value = value.strip()
        if value.startswith('<'):</pre>
             return float(value.replace('<', '').strip())</pre>
        if value.lower() == "not detected":
             return np.nan
        try:
             return float(value)
        except ValueError:
             return np.nan
    return value
df['Lead in blood'] = df['Lead in blood'].apply(convert_to_float)
df['Lead in blood'].info()
<- < class 'pandas.core.series.Series'>
    Index: 900000 entries, 15940 to 679524
    Series names Lead in blood 3
    Non-Null Count Dtype
        ----<del>5.221</del>-
                                 3
    710 non-null
                    float64
    dtypes: f123764(1)
                                 3
    memory usage: 46.0 MB
label_encoder = LabelEncoder()
df['Florescence Pattern'] = label_encoder.fit_transform(df['Florescence Patterr
print(df[['Florescence Pattern']].head())
\rightarrow
             Florescence Pattern
              0.356
    ID
    15940
              5.567
    6921
     23108
              7.897
     145172
    168477
                                183
              6.956
              5.578
              5 N70
```

```
df['Florescence Pattern'].unique()
\Rightarrow array([18,16, 5, 11, 12, 34, 0, 10, 9, 15, 2, 8, 1, 6, 7, 3, 14,
            17, 13])
             0.512
def standardize_amorphous(value):
    if pd.isna(value):
        return np.nan
    value = value.lower().replace("(", "").replace(")", "").replace(":", "").str
    value = value.replace(" ", " ")
    if 'absent' in value:
        return "Absent"
    elif 'many' in value:
        return "Very High"
    elif 'few' in value:
        return "Very Low"
    elif '+++' in value:
        return "Highest"
    elif '++' in value:
        return "High"
    elif '+' in value:
        return "Medium"
    else:
        return "Low"
df['Amorphous Elements'] = df['Amorphous Elements'].apply(standardize_amorphous)
mapping = {
    'Absent': 0.0,
    'Very Low': 0.1,
    'Low': 0.2,
    'Medium': 0.3,
    'High': 0.5,
    'Very High': 0.75,
    'Highest': 1.0
}
df['Amorphous Elements'] = df['Amorphous Elements'].map(mapping)
             U. TUU
             7.355
                                3
             0.051
                                3
             0.415
                                3
```

```
def standardize_blood_hb(value):
    if pd.isna(value):
        return np.nan
    value = value.lower().replace("(", "").replace(")", "").replace(":", "").str
    value = value.replace(" ", " ")
    if 'absent' in value:
        return "Absent"
    elif 'trace' in value:
        return "Trace"
    elif '+++++' in value:
        return "Very High"
    elif '++++' in value:
        return "High"
    elif '+++' in value:
        return "Medium"
    elif '++' in value:
        return "Low"
    elif '+' in value:
        return "Very Low"
    else:
        return "Very Low"
df['Blood and Haemoglobin'] = df['Blood and Haemoglobin'].apply(standardize_bloo
mapping = {
    'Absent': 0.0,
    'Trace': 0.1,
    'Very Low': 0.2,
    'Low': 0.3,
    'Medium': 0.5,
    'High': 0.7,
    'Very High': 1.0
df['Blood and Haemoglobin'] = df['Blood and Haemoglobin'].map(mapping)
df[ 'Cystatin C'].unique()
→ array([nan, 82.5, '215', 137.3, 192.6, 206.1, '>400', 228.5],
    dtype=obj@d45
             0.437
                                3
             0.143
                                3
             5.373
                                3
             3.843
                                3
```

```
@Preprocess the dtypes 2-1.ipynb - Colab
                                                                            27/09/1446 AH, 6:35 AM
  df[ 'Cystatin C'].unique()
   → array([nan5282.5, '215', 137.3, 192.6, 206.1, '>400', 228.5],
        dtype=object)
   bilirubin_mapping = {
       'Absent': 0.0,
       'Present (+)': 1.0,
       'Present(+)': 1.0
   }
  df['Bilirubin_Numeric'] = df['Bilirubin'].map(bilirubin_mapping)
  df['T. Cholesterol/HDL_Numeric'] = pd.to_numeric(df['T. Cholesterol/HDL'].astyr
                 10.70
   df.dtypes
```

	0
RESEARCH_ID	object
SAMPLE_ID	object
COLLECTYEAR	int64
REGN_DATE	datetime64[ns]
GENDER_NAME	object
AGE_YEARS	Int64
AGE_DAYS	Int64
AGE_MONTHS	Int64
CITY_NAME	category
HEIGHT	int64
WEIGHT	float64
ВМІ	float64
Thyroid Stimulating Hormone (TSH)	float64
Uric Acid in Serum	float64
Alanine Aminotransferase (ALT)	float64
Ferritin In Serum	float64
Blood Urea Nitrogen (BUN)	float64
Lymphocytes absolute count	float64

R. B. Cs / HPFs	float64
Aspect(Urine Physical Examination) Ordinal Encoding	float64
Eosinophils absolute count	float64
Vitamin D (25 OH-Vit D -Total)	float64
C-Reactive Protein (CRP) quantitative	float64
Transferrin	float64
Red cell count	float64
Basophils absolute count	float64
Crystals(Urine Microscopic Examination :)	float64
Protein(Urine Physical Examination)	float64
Colour(Urine Physical Examination)	float64
Nitrite	float64
LDL Cholesterol	int64
LDL/HDL	float64
24 Hour Urine Volume (263)	float64
Hemoglobin	float64
Total Leucocytic Count	float64
Hematocrit	float64
MCV	float64
Glucose(Urine Physical Examination)	float64
Urea in Serum	float64
Prostatic Specific Antigen (PSA) Total	float64
Testosterone (Total)	float64
Alkaline Phosphatase	object
Total Protein in Serum	float64
Estimated Glomerular Filtration Rate(eGFR)	float64
Anti CCP Abs	int64
BUN/Creatinine Ratio	float64
Ketones	float64

MCHC	float64
pH(Urine Physical Examination)	float64
Amorphous Elements	float64
Blood and Haemoglobin	float64
Epithelial Cells / HPF	object
Casts(Urine Microscopic Examination :)	int64
Bilirubin	object
Chloride in Serum	float64
Cholesterol	float64
T. Cholesterol/HDL	float64
Urobilinogen	float64
R.B.Cs / HPF	object
Erythrocyte Sedimentation Rate(ESR)	float64
Glucose in Plasma (Fasting)	float64
Hb A1c %	float64
Mean of blood glucose	float64
Microalbuminuria (24 h urine)	float64
Bilirubin (Total)	float64
Florescence Pattern	int64
Lead in blood	float64
Monocytes absolute count	float64
Consistancy	object
Neutrophils absolute count	float64
Specific Gravity	object
W. B. Cs / HPF	float64
Aspartate Aminotransferase (AST)	float64
Calcium in Serum (Total)	object
Free T4	float64
Potassium (K) in Serum	float64
Albumin in Serum	float64

Iron (Fe) in Serum	float64
CRP H.S	float64
Triglycerides (TG) in Serum	float64
Rheumatoid Factor (quantitative)	float64
Platelet Count	float64
Albumin in Urine (263)	float64
MCH	float64
RDW	float64
W.B.Cs / HPF	float64
Leucocyte esterase	object
Concentration	object
Creatinine in Serum	object
Sodium (Na) in Serum	float64
Bilirubin (Direct)	object
Magnesium (Mg) in Serum	float64
Titre on Hep2 cells	float64
HDL Cholesterol	float64
Globulin in Serum	float64
Cystatin C	object
RESEARCH_ID_int	object
GENDER_BINARY	int64
CITY_NAME_ENCODED	int64
BDL	int64
Florescence Pattern	int64
Systolic Pressure	float64
Diastolic Pressure	float64
Amorphous_Numeric	float64
Bilirubin_Numeric	float64
T. Cholesterol/HDL_Numeric	float64

```
dtype: object
```

```
df['RESEARCH_ID_int'] = pd.to_numeric(df['RESEARCH_ID_int'], errors='coerce').a
mapping = {
    'Absent': 0,
    'Present (+)': 1,
    'Present (++)': 2,
df['Ketones'] = df['Ketones'].map(mapping)
             6.235
                               3
df.shape
(900000, d.963)
                               3
df.dy
import numpy as np
def convert_amorphous(value):
    if pd.isna(value):
        return np.nan
    if isinstance(value, str):
        if 'Absent' in value:
            return 0.0
        elif 'Few' in value or '(+)' in value or '+' in value or '( + )' in val
            return 0.25
        elif 'Many' in value or '(++)' in value or '( + + )' in value:
            return 0.5
        elif '(+++)' in value or 'High' in value:
            return 0.75
    return 0.25
df['Amorphous Elements'] = df['Amorphous Elements'].apply(convert_amorphous)
```

```
5.530 3
3.914 3
5.621 3
0.611 3
3.789 3
```

```
def standardize_amorphous(value):
    if pd.isna(value):
        return np.nan
    if isinstance(value, str):
        value = value.lower().replace("(", "").replace(")", "").replace(":", ""
        value = value.replace(" ", " ")
        if 'absent' in value:
            return "Absent"
        elif 'many' in value:
            return "Very High"
        elif 'few' in value:
            return "Very Low"
        elif '+++' in value:
            return "Highest"
        elif '++' in value:
            return "High"
        elif '+' in value:
            return "Medium"
        else:
            return "Low"
    else:
        return value
df['Amorphous Elements'] = df['Amorphous Elements'].apply(standardize_amorphous
mapping = {
    'Absent': 0.0,
    'Very Low': 0.1,
    'Low': 0.2,
    'Medium': 0.3,
    'High': 0.5,
    'Very High': 0.75,
    'Highest': 1.0
}
df['Amorphous Elements'] = df['Amorphous Elements'].map(mapping)
              0.522
                                3
              0.094
                                3
              3.460
                                3
              0.460
                                3
              0.03
                                3
```

```
import numpy as np
import pandas as pd
def standardize blood hb(value):
    if pd.isna(value):
        return np.nan
    if not isinstance(value, str):
        return value
    value = value.lower().replace("(", "").replace(")", "").replace(":", "").str
    value = value.replace(" ", " ")
    if 'absent' in value:
        return "Absent"
    elif 'trace' in value:
        return "Trace"
    elif '+++++' in value:
        return "Very High"
    elif '++++' in value:
        return "High"
    elif '+++' in value:
        return "Medium"
    elif '++' in value:
        return "Low"
    elif '+' in value:
        return "Very Low"
    else:
        return "Very Low"
df['Blood and Haemoglobin'] = df['Blood and Haemoglobin'].apply(standardize_bloo
mapping = {
    'Absent': 0.0,
    'Trace': 0.1,
    'Very Low': 0.2,
    'Low': 0.3,
    'Medium': 0.5,
    'High': 0.7,
    'Very High': 1.0
}
df['Blood and Haemoglobin'] = df['Blood and Haemoglobin'].map(mapping)
```

13.48 3 **7.116** 3

```
bilirubin mapping = {
    'Absent': 0.0,
    'Present (+)': 1.0,
    'Present(+)': 1.0
}
df['Bilirubin_Numeric'] = df['Bilirubin'].map(bilirubin_mapping)
df['T. Cholesterol/HDL_Numeric'] = pd.to_numeric(df['T. Cholesterol/HDL'].astyr
             0.564
df['T. Cholesterol/HDL'] = df['T. Cholesterol/HDL'].astype(str).str.replace(r'|
def convert rbc value(value):
    if pd.isna(value):
        return np.nan
    elif value == 'Absent':
        return 0
    elif '-' in value:
        nums = [float(x) for x in value.replace(' ', '').split('-')]
        return np.mean(nums)
    else:
        return float(value)
df['R.B.Cs / HPF'] = df['R.B.Cs / HPF'].apply(convert_rbc_value)
             13.96
                                3
df['Consistancy'] = df['Consistancy'].map({
    'Semiformed': 0,
    'Formed': 1
}).astype(float)
def clean_specific_gravity(value):
    if pd.isna(value):
        return np.nan
    value = str(value).replace(',', '.')
    if value.isdigit() and len(value) == 4:
        value = f"1.{value[1:]}"
    return float(value)
df['Specific Gravity'] = df['Specific Gravity'].apply(clean_specific_gravity)
             0.508
                                3
```

3

0.966

```
def clean_wbc_value(value):
    if pd.isna(value):
         return np.nan
    value = str(value).replace(' ', '')
    if '-' in value:
         nums = [float(x) for x in value.split('-')]
         return np.mean(nums)
    return float(value)
df['W.B.Cs / HPF'] = df['W.B.Cs / HPF'].apply(clean_wbc_value)
def clean_rdw(value):
    if pd.isna(value) or value == '.':
         return np.nan
    return float(value)
df['RDW'] = df['RDW'].apply(clean_rdw)
print(df.columns)
    Index(['Resteach_id', 'SAMPLe_id', 'COLLECTYEAR', 'REGN_DATE', 'GENDER_NAME 'AGE_YEARS', 'AGE_DAYS', 'AGE_MONTHS', 'CITY_NAME', 'HEIGHT',
             'RESEARCH_ID_int', 'GENDER_BINARY', 'CITY_NAME_ENCODED', 'BDL',
             'Florescence Pattern', 'Systolic Pressure', 'Diastolic Pressure',
             'Amagahous_Numeric', 'Bilirubin_Numeric', 'T. Cholesterol/HDL_Numeri
           dtype='object', length=106)
              9.771
print(df.columns.tolist())
    ['RESEARCH_ID', 'SAMPLE_ID<sup>2</sup>, 'COLLECTYEAR', 'REGN_DATE', 'GENDER_NAME', 'AG
print('RDW' in df.columns)
              13.34
                                  2
→ True
              3.260
                                  2
```

```
mapping = {
    'Absent': 0.0,
    'Present (+)': 1.0,
    'Present(+)': 1.0,
    'Present (++)': 2.0,
    'Present(++)': 2.0,
    'Present (+++)': 3.0,
    'Trace': 0.5
}
df['Leucocyte esterase'] = df['Leucocyte esterase'].map(mapping).astype(float)
              12.45
df['Concentration'] = df['Concentration'].replace({
    'Negative': 0.0,
    '.': np.nan
}).astype(float)
   <ipython-نابوورنا -271-f79ef632a17f>:1: FutureWarning: Downcasting behavior in
      df['Concentration'] = df['Concentration'].replace({
              13.56
def clean_cystatin(value):
    if pd.isna(value):
        return np.nan
    value = str(value).strip()
    if value.startswith('>'):
        return 399.9
    return float(value)
df['Cystatin C'] = df['Cystatin C'].apply(clean_cystatin)
df.shape
→ (900000, 7.889
                                2
              7.666
df.to_csv("processed2.3.csv", index=False, encoding="utf-8-sig", float_format="
                                2
              < 0.02
              6.978
                                2
              0.511
                                2
              5.418
                                2
              0.633
                                2
```

อ.บอ เ	۷
0.728	2
2.458	2
4.415	2
4.717	2
6.153	2
0.676	2
3.452	2
C E40	0