Linear Regression

Maximum Likelihood Estimation

- Given data(x) predict value (t)predict for new data -> model predictive distribution of p(t/x) so every distribution has a predictive distribution and we choose the appropriate distribution for the pbm.
- Since both weights and i/p are linear there are limitations.
 So extend by linear combinations of fixed nonlinear functions of i/p y(x,w) = w0+summation of w(j)Phi(x)
 Phi(x) is basis fn w0 is a bias parameter

Generalization of linear regression- replace each input with a function of that input.

- feature extraction- features are expressed in terms of basis functions Phi(x)
- (ex: robot body arms egs body head > basis functions / features)
- polynomial fns are global to remove this limitation in modeling use
- spline fns different polynomial for each region of i/p space
- gaussian, sigmoid, space and
- fourier, sinusoidal fnc specific frequency and infinite space
- wavelets localized in both space and frequency

- likelihood fn- p(a/b)= p(b/a)p(a) / p(b)
- p(b/a) = likelihood function
- max likelihood fn = 'a' is set to value that maximizes p(b/a)

- Relation between Least Squares of Error and Maximum Likelihood:
- T=y(x,w)+Epsilon (Epsilon is gaussian random variable with precision β .
- $p(t|x,w,\beta)=N(t|y(x,w),\beta-1)=V(\beta/2\pi)\exp(-\beta/2(t-y *square of(x,w))$

- Use N independent identically distributed observations x1,...xn with corresponding target functions t1...tn
- Jt conditional probability of t/X is
- $p(t|X,w,\beta)=\prod N(ti|w\phi(xi),inv(\beta))$ <- Likelihood Function
- $\log p(t \mid w, \beta) = (N/2) \log \beta (N/2) \log 2\pi \beta Ed(w)$
- Ed(w) is the sum of squares error function
- Ed(w)=(½) \sum square of(ti-w φ (xi)) =(½)square of||t- Φ w||
- φ(xi) is Design Matrix (N x M matrix)

- Maximizing log likelihood (= minimizing the sum-of-squares error function) w.r.t. W
- -> maximum likelihood estimate of parameters w.

Maximum likelihood estimation ->over-fitting if complex models (e.g. polynomial regression models of high order) are fit to datasets of limited size.

Prevent over-fitting - add a regularization term to error function. -> by a Bayesian approach (or a Gaussian approach)

- Sum of squares error function is -
- Ed(w) = $\frac{1}{2}$ Summ (square of $\{tn wT\phi(xn)\}$)

 Maximizing likelihood fn under Gaussian noise distribution for a linear model is equivalent to minimizing sum of squares error fn. given Ed(w)

- Gradient of log likelihood fn
- $\nabla \ln p(t|w, \beta) = Summation(tn wT\phi(xn)\phi(xn)T)$.
- Set gradient to zero
- 0 = Summation $(tn\phi(xn)T wT(Summation(\phi(xn)\phi(xn)T))$
- Solve for W
- Wml=inv(ΦΤΦ) ΦΤτ <-- Normal equation for least squares pbm (Wml is Weight for Maximum Likelihood)
- Φ is design matrix
- Φ† ≡inv(ΦΤΦ) ΦΤ <-- Moore Penrose pseudo inverse of matrix Φ

• Bias compensates for difference between averages of target values and weighted sum of averages of basis function values

- Sequential Learning (Online Learning)
- Model updates after each data I/p
- Use Stochastic gradient descent
- $w(\tau+1) = w(\tau) \eta \nabla E n$
- For sum of squares error fn:
- $w(\tau+1) = w(\tau) + \eta(\tau w(\tau)T\phi n)\phi n$
- Above is Least Means Square (LMS) algorithm

Regularization

- Error function : $Ed(w) + \lambda Ew(w)$ (Ed data dependent error)
- Ew is regularization term and λ control impact of this term
- Simple form of regularization sum of squares of weight vector terms
 = Ew(w) =½*transpose(w)*w
- Add E(w) =½ Summation square of{tn wTφ(Xn)} to get
- ½ Summation square of $\{tn wT\phi(xn)\}2 + \lambda/2 * transpose(w)*w$
- Above is the Weight decay / Parameter shrinkage

Regularization -2

- More generalized regularizer:
- }½*Summation square of {tn wTφ(xn)} + λ/2 *Summation|Wj| power of q
- If q=1 the function is called Lasso > regularly used in Deep Learning
- In Lasso when λ is large enough, some of the coefficients of Wj become Zero > Sparse model -> Basis fn plays no role
- => Avoid overfitting with correct value for regularization
- Generalized to multiple outputs and solution decouples between different target variables
- Generalize to general Gaussian noise distributions

Bias Variance Decomposition

- Pbms of overfitting and limiting number of basis functions
- Need to determine correct value for λ (regularization coefficient)
- 1. Bias Variance trade off
- 2. Handle overfitting by Bayesian approach (avoid maximum likelihood)

Assuming enough data sets, obtain different prediction fn for each data set. Take average of these functions (squared loss)

Expected squared loss -> E[L] =Integral(square of{y(x) - h(x)} p(x) dx + Integral (square of {h(x) - t}p(x, t) dx dt.

Term 2 represents Noise

Bias Variance decomposition -2

- (Bayesian perspective: posterior distribution over w)
- Average of squared loss over ensemble of data sets ,
- ED $\{y(x;D) h(x)\}2 = \{ED[y(x;D)] h(x)\}2 + ED\{y(x;D) ED[y(x;D)]\}2$
- Square(Bias) Variance
- Expected squared difference between y and regression fn h = squared Bias
 (Error of the average prediction over all data sets + Variance (sol. varies
 around average -> sensitivity of y to choice of data)
- Small values of λ -> model become finely tuned to noise on each individual data set -> large variance and low bias
- Large value of λ -> weight parameters to zero -> low variance and large bias.

- Very flexible models <-> low Bias High Variance
- Relatively rigid models <-> High Bias Low Variance
- Need a balance

- Sol: weighted averaging of multiple solutions
- Used in Bayesian approach (Posterior distribution)
- Note: small values of λ -> model is finely tuned to noise on each individual data set -> to large variance
- While large value of λ -> weight parameters to zero -> large bias.

- Bias variance decomposition uses average over large data sets which are not available
- Bayesian Linear Regression:
- Avoid overfitting & determine model complexity
- Model complexity (# of Basis functions) ∞ size of data set
- Parameter distribution:
- Predictive distribution:
- Equivalent Kernel:

Parameter distribution:

- Prior probability distribution over model parameters 'w'
- (noise precision parameter is considered as a constant)
- P(t/w) is the exponential of a quadratic function of 'w'
- Conjugate prior of likelihood function (posterior and prior in same distribution) -> Gaussian distribution ->
- Normal distribution of (w/m0, S0) m0 mean, S0 covariance
- Calculate posterior distribution ∞ (likelihood fn *prior)
- Evaluate this by completing square in exponential and find normalization co-efficient (using standard result for normalized Gaussian)

- $P(w/t) = Normalized fn(w/m_n, S_n)$
- Where $M_n = S_n(S_0^{-1}m_0 + \beta(Phi)^Tt$
- $S_n^{-1} = S_0^{-1} + \beta (Phi)^T Phi$
- Max posterior Weight vector = w_{map}=m_N
- Infinitely broad prior then mean of posterior distribution = w_{ml}
- If N=0 then posterior = prior
- If data points arrive sequentially then posterior = prior for subsequent data points

Consider Zero Mean Isotropic Gaussian with a single precision parameter =>

 α

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|0, \alpha^{-1}\mathbf{I})$$

Corresponding posterior distribution is $p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$ where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$

$$\mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$$

Gaussian => mode =mean => Maximum Posterior weight vector $\mathbf{w}_{\mathrm{MAP}} = \mathbf{m}_N$

Log of posterior distribution = Sum of log likelihood and log of prior

$$\ln p(\mathbf{w}|\mathbf{t}) = -\frac{\beta}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n)\}^2 - \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + \text{const.}$$

Maximization of posterior distribution wrt w <=>

Linear Models for Regression

$$p(\mathbf{w}|\alpha) = \left[\frac{q}{2} \left(\frac{\alpha}{2}\right)^{1/q} \frac{1}{\Gamma(1/q)}\right]^M \exp\left(-\frac{\alpha}{2} \sum_{j=1}^M |w_j|^q\right)$$

Predictive Distribution

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta)p(\mathbf{w}|\mathbf{t}, \alpha, \beta) d\mathbf{w}$$

$$p(t|\mathbf{x}, \mathbf{t}, \alpha, \beta) = \mathcal{N}(t|\mathbf{m}_N^{\mathrm{T}} \phi(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

where the variance $\sigma_N^2(\mathbf{x})$ of the predictive distribution is given by

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \phi(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \phi(\mathbf{x}).$$

Illustration: Bayesian Linear regression

- Input variable X and target T . Linear model-> $y(x, w) = w_0 + w_1 x$.
- Only 2 adaptive parameters =>
- Generate synthetic data using $f(x,a) = a_0 + a_1x$
- Values $-> a_0=-0.3$ $a_1=0.5$ by choosing x_n values from Uniform distribution U(x|-1,1), evaluate $f(x_n,a)$ Add Gaussian Noise with Std. deviation of 0.2 to get t_n
- Objective: Recover values of a₀ and a₁ and study effect of size of data set
- Set Noise β = 25 and α to 2.0

- Likelihood Prior/ Posterior Data Space
- 1st row initial Prior distribution (6 samples)
- 2nd row single data point rt column data. Lt column plot of p(t|x,w)
- Sequential nature of Bayesian learning Current posterior distribution becomes prior when new data is added

Predictive Distribution

• This is the real interest - predict t for new values of x

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta)p(\mathbf{w}|\mathbf{t}, \alpha, \beta) d\mathbf{w}$$

- Conditional distribution of t & posterior weight distribution
- 2 Gaussian distributions => Predictive distribution is

$$p(t|\mathbf{x}, \mathbf{t}, \alpha, \beta) = \mathcal{N}(t|\mathbf{m}_N^{\mathrm{T}}\phi(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

Variance of predictive distribution is

•
$$1/\beta^{\sigma_N^2}(\mathbf{x}) = \frac{1}{\beta} + \phi(\mathbf{x})^T \mathbf{S}_N \phi(\mathbf{x})$$
. / in Parameter 'w'

- With more sample data posterior distribution gets narrower => Variance becomes lesser. Uncertainty in 'w' become zero and only Noise results in a Variance
- Pbm: Areas away from basis function centers also only noise as the predicted variance value
- Sol: Adopt a Gaussian approach instead of Regression (pl refer book)

Equivalent Kernel

Kernel methods use

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$

$$\mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$$

• => Predictive mean: $y(\mathbf{x}, \mathbf{w}) = \sum_{j=1}^{M-1} w_j \phi_j$

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{m} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})$$

becomes:

$$y(\mathbf{x}, \mathbf{m}_N) = \mathbf{m}_N^{\mathrm{T}} \phi(\mathbf{x}) = \beta \phi(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} = \sum_{n=1}^N \beta \phi(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \phi(\mathbf{x}_n) t_n$$

 Predictive distribution at point x is a linear combination of target variables

$$y(\mathbf{x}, \mathbf{m}_N) = \sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) t_n$$

$$k(\mathbf{x}, \mathbf{x}') = \beta \phi(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \phi(\mathbf{x}')$$

- Is called "smoother matrix" or "equivalent kernel"
- Linear Smoothers: Linear combinations of training sets

- Visualization of equivalent kernel for Gaussian Basis functions:
- K(x,x') plotted as a function of x for three values => localized around x
- => Mean of predictive distribution function -> gives more weight to data points close to 'x'

Similar inference from covariance between y(x) and y(x')

$$cov[y(\mathbf{x}), y(\mathbf{x}')] = cov[\phi(\mathbf{x})^{\mathrm{T}}\mathbf{w}, \mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}')]$$
$$= \phi(\mathbf{x})^{\mathrm{T}}\mathbf{S}_{N}\phi(\mathbf{x}') = \beta^{-1}k(\mathbf{x}, \mathbf{x}')$$

- Predictive means for nearby points is highly correlated
- -----
- Instead of using a set of basis functions, we can define a Localized Kernel and use this to make predictions <= Gaussian Process
- Effective kernel defines the weights and these weights sum to 'One'

$$\sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) = 1$$

- The summation is = predictive means for target data where $t_n=1$
- Requirement :
- Basis functions are linearly independent,
- More data points than basis functions
- One Basis point is constant (Bias)
- Then => fit training data exactly
- Also $k(\mathbf{x}, \mathbf{x}') = \beta \phi(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \phi(\mathbf{x}')$
- ullet Equivalent to inner product w.r.t vector $\psi(\mathbf{x})$ of non linear fn

$$k(\mathbf{x}, \mathbf{z}) = \psi(\mathbf{x})^{\mathrm{T}} \psi(\mathbf{z})$$

• Where

$$\psi(\mathbf{x}) = \beta^{1/2} \mathbf{S}_N^{1/2} \phi(\mathbf{x})$$