CS – 204: Assignment 1

14.02.2021

- 1. L^* ab aa baa ab aa aa baa aa baa aa baa aa
 - L^4 aa aa baa aa baa aa baa aa baa
- 2. Given,

$$\Sigma = \{a, b\}$$

$$L = \{aa, bb\}$$

So,

$$\overline{L} = \Sigma^* - L = \{a, b\}^* - \{aa, bb\}$$

- 3. Note: Regex is Regular Expression
 - a) Regex b*ab* $P:S \rightarrow bS \mid Sb \mid a$ $G=(\{S\},\{a,b\},S,P)$
 - b) Regex b * ab * a * b* $P: S \to aS \mid bS \mid Sb \mid a$ $G = (\{S\}, \{a, b\}, S, P)$
 - c) Regex b*ab*ab*ab*P: $S \to aS_1 \mid bS \mid \lambda$ $S_1 \to aS_2 \mid bS_1 \mid \lambda$ $S_2 \to aS_3 \mid bS_2 \mid \lambda$ $S_3 \to bS_3 \mid \lambda$

$$G = (\{S, S_1, S_2, S_3\}, \{a, b, \lambda\}, S, P)$$

d) Regex - b*ab*ab*ab*a*b*P:

$$S \to aS_1 \mid bS$$

 $S_1 \to aS_2 \mid bS_1$
 $S_2 \to aS_3 \mid bS_2$
 $S_3 \to aS_3 \mid bS_3 \mid \lambda$
 $G = (\{S, S_1, S_2, S_3\}, \{a, b, \lambda\}, S, P)$

- 4. a) Regex (ab) * b $P: S \to aSb \mid Sb \mid b$ $G = (\{S\}, \{a, b\}, S, P)$
 - b) Regex a * (bb)* $P: S \rightarrow aSbb \mid \lambda$ $G = (\{S\}, \{a, b\}, S, P)$
 - c) Regex (aaa)(ab) * b $P: S \rightarrow aSb \mid aa$ $G = (\{S\}, \{a, b\}, S, P)$
 - d) Regex (aaa)(ab)* $P: S \rightarrow aSb \mid aaa$ $G = (\{S\}, \{a, b\}, S, P)$
 - e) Regex (ab) * ba * (bb) *P: $S \to S_1 S_2 B$ $S_1 \to aS_1 b \mid S_1 b \mid b$ $S_2 \to aS_2 bb \mid \lambda$ $G = (\{S, S_1, S_2\}, \{a, b, \lambda\}, S, P)$
 - f) Regex (ab) * b + a * (bb) *It can be observed that $L_1 \cup L_2 = L_1 \cup \{\lambda\}$. $P: S \to aSb \mid Sb \mid b \mid \lambda$ $G = (\{S\}, \{a, b, \lambda\}, S, P)$
 - g) Regex (ab) * b(ab) * b(ab) * b P: $S \rightarrow SSS$ $S \rightarrow aSb \mid Sb \mid b$ $G = (\{S\}, \{a, b\}, S, P)$

h) Regex -
$$((ab)*b)*$$

 $P:$
 $S \to AB$
 $A \to aAb \mid Ab \mid b$
 $B \to AB \mid \lambda$
 $G = (\{S, A, B\}, \{a, b, \lambda\}, S, P)$

5. We will prove that the 2 grammars, G_1 and G_2 are not equivalent by providing a counterexample.

Deriving from the G_1 ,

$$S \Rightarrow aSb \Rightarrow aSSb \Rightarrow aaSb \Rightarrow aaab$$

Similarly, for G_2

$$S \Rightarrow aSb \Rightarrow aab$$

 $\Rightarrow aaSbb \Rightarrow aaabb$

Thus, $aaab \in G_1$ but $aaab \notin G_2$. As a result, they are not equivalent.

Figure 1: All strings with exactly one a

6. a)

Figure 2: All strings with at least one a

b)

c)

d)

e)

Figure 3: All strings with no more than 3 a's

Figure 4: All strings with at least one a and exactly two b's

Figure 5: All strings with exactly two a's and more than two b's

- 7. a)
 - b)
 - c)

Figure 6: All strings where every 00 is followed by 1

Figure 7: All strings containing 00 but not 000

Figure 8: All strings where leftmost symbol differs from rightmost

d)

e)

f)

g)

 $\textbf{Figure 9:} \ \textit{All strings where every substring of 4 symbols has at most 2 0's}$

Figure 10: All strings of length 5 or more where 4th symbol from the right is different from leftmost

Figure 11: All strings where leftmost two and rightmost two symbols are identical

Figure 12: All strings where leftmost 3 symbols are identical, but different from rightmost symbol