Dr. N.S.A.M. P.U. COLLEGE, NITTE I PUC CET TEST – 4 (MATHEMATICS)

TOPIC: - PERMUTATIONS AND COMBINATIONS

1. 7	Гһе	re are	5 doors t	o a lectu	ire hall. The numb	ber of			
ways that a student can enter the hall and leave it									
by a different door is									
((A)	20	(B) 16	(C) 19	(D)	21		
2. The number of possible outcomes when a									
(coin is tossed 6 times is								
((A)	36	((B) 64	(C) 12	(D)	32		
3. I	ln a	n exar	nination	there ar	e three multiple				
0	cho	ice que	estions an	d each	question has 4 cho	ices.			
ľ	Nur	nber o	f ways in	which a	student can fail t	o get all	answer o	correct i	S
((A)	11	(B) 12	(C) 27	(D)	63		
4. 7	Гhе	numb	er of way	s in wh	ich 5 boys and 5 g	irls can			
be arranged in a row so that no two girls and									
1	no two boys are together is								
((A)	$2(5!)^2$		B) $(5!)^2$	(C) 5! 6!	(D)	10!		
5. The number of ways in which 10 books can be									
arranged in a row such that two specified books are side by side is									
((A)	10!	((B) 9!	(C) 9! 2!	(D)	$\frac{9!}{2!}$		

- 6. The number of permutations that can be made out of the letters of the word "ENTRANCE" so that the two 'N' s are always together is
 - (A) $\frac{7!}{(2!)^2}$
- (B) 7!
- (C) $\frac{7!}{2!}$
- **(D)** $\frac{7!}{(2!)^3}$
- Ten different letters of alphabet are given.

Words with five letters are formed from these given letters.

The number of words which have at least one letter repeated is

- (A) 69760
- (B) 30240
- (C) 99748
- (D) 99784
- 8. The number of ways in which 5 boys and 5 girls are arranged so that a girl should sit in between two boys around a table is
 - (A) 5! 5!
- (B) 5! 4!
- (C) 9!
- (D) 10!
- 9. The no. of ways such that 8 beads of different colour be strung in a neckless is
 - (A) 2520
- (B) 2880
- (C) 4320
- (D) 5040
- 10. There are 15 points in a plane, no three of which are in a straight line, except 6, all of which are in a straight line. The number of straight lines which can be drawn by joining them is
 - (A) 15C2 6
- **(B)** $^{15}C_2 {}^6C_2$ **(C)** $^{15}C_2 {}^6C_2 1$ **(D)** $^{15}C_2 {}^6C_3 + 1$

How many straight lines can be drawn by joining 10 points on a circle?

(A) ${}^{55}C_8 \times {}^5C_2$ (B) ${}^8C_3 \times {}^5C_3$

(C) 344 (D) 45

12. If $^{n-1}P_3$: $^{n+1}P_3 = 5$: 12 then n =

(A) 6

(B) 7

(C) 8

(D) 9

13. If
$$n_{P_r} = 30240$$
 and $n_{C_r} = 252$ then the ordered pair $(n, r) =$

(A) (12, 6)

(B) (10, 5)

(C) (9, 4)

(D) (16, 7)

From 15 players the number of ways of selecting 6 so as to exclude a particular player is

 $(A)^{14}C_5$

(B) ${}^{15}C_6$

 $(C)^{15}C_5$

(D) $^{14}C_6$

The number of triangles formed by joining all the vertices is a decagon is

(A) 100

(B) 110

(C) 120

(D) 130

The number of permutations that can be formed with the letters of the word "TRIANGLE" is

(B)
$$\frac{8!}{2!}$$

(C)
$$\frac{8!}{3!}$$

(D)
$$\frac{8!}{(2!)^2}$$

17. If
$${}^{15}C_{3r} = {}^{15}C_{r+3}$$
, then $r =$

a)
$$\frac{3}{2}$$
 b) $\frac{1}{3}$

b)
$$\frac{1}{3}$$

How many committees of 5 members can be formed from 6 gentlemen and 4 ladies?

- a) 120
- b) 252
- c) $^{10}P_5$ d) $^{10}C_5$.

How many even numbers can be formed by using all the digits 2, 3, 4, 5, 6?

- a) 72
- b) 120 c) 24
- d) 48

There are three copies each of four different books. 20. In how many ways they can be

arranged in a shelf?

a)
$$\frac{12!}{6^4}$$

b)
$$\frac{12!}{3! \times 4}$$

c)
$$\frac{12!}{4!}$$

b)
$$\frac{12!}{3!\times 4!}$$
 c) $\frac{12!}{4!}$ d) $\frac{12!}{3!}$.