Chapter 1

実数の連続性

ε-δ論法によって微分積分の理論を再定義しても、その議論は実数の連続性に依存している。 この章では、「実数は連続である」、平たく言えば「数直線には穴がない」という表現を観察する。

Contents

1	実数	の連続性	生	1											
	1.1	区間の限界を表す													
		1.1.1	上界と下界	2											
		1.1.2	上限と下限	4											
		1.1.3	上限定理	4											
	1.2	数列の	極限再訪	5											
		1.2.1	アルキメデスの公理	5											
		1.2.2	収束列の有界性	5											
		1.2.3	単調数列	5											
		1.2.4	有界な単調数列の収束性	5											
	1.3	l.3 区間縮小法													
	1.4	収束す	る部分列	7											
		1.4.1	部分列	7											
		1.4.2	収束する数列の部分列の極限	7											

	1.4.3	ボルツァーノ・ワイエルシュトラスの定理	7
1.5	コーシ	一列と実数の完備性	8
	1.5.1	コーシー列	8
	1.5.2	実数の完備性	8
1.6	上限定	[理再訪	9

1.1 区間の限界を表す

区間の最大値や最小値は、その区間の中で最大もしくは最小となる数を指す。

閉区間の場合は、区間の端点が最大値・最小値となるが、開区間では端点を含まないため、「区間の中で」最大(もしくは最小)といえる数は存在しないことになる。

しかし、「最大値(最小値)がない=区間は限りなく続く」というわけではない。 もしそうだとしたら、次の3つの開区間が区別できないことになる。

そこで、最大値・最小値とは別に、区間に限界があることを表す概念を導入する。

1.1.1 上界と下界

区間内の数がとりうる値に「限界が有る」ことを、有界という概念で表す。

上界、上に有界

ある区間に属するどの数も、ある数 M 以下であるとき、この区間は上に有界であるといい、この M を上界という。

下界、下に有界

ある区間に属するどの数も、ある数 N 以上であるとき、この区間は下に有界であるといい、この N を下界という。

有界

ある区間が上にも下にも有界であるとき、この区間は有界であるという。

有	界	区間	引 X	が	有界	早 で	であ	ると	は	•													
								X	が	上に	有	界か	つ-	下に	有	界で	あ	る					
ے ا	とを	いう																					

1.1.2 上限と下限

1.1.3 上限定理

1. 公理 3.1

1.2. 数列の極限再訪 5

- 1.2 数列の極限再訪
- 1.2.1 アルキメデスの公理
- 2. 命題 3.2
- 1.2.2 収束列の有界性
- 3. 定理 2.11
- 1.2.3 単調数列
- 4. 定義 5.1
- 1.2.4 有界な単調数列の収束性
- 5. 定理 5.4

1.3 区間縮小法

6. 定理 5.11

1.4. 収束する部分列 7

- 1.4 収束する部分列
- 1.4.1 部分列
- 7. 定義 6.5
- 1.4.2 収束する数列の部分列の極限
- 8. 定理 6.7
- 1.4.3 ボルツァーノ・ワイエルシュトラスの定理
- 9. 定理 6.8

1.5 コーシー列と実数の完備性

1.5.1 コーシー列

10. 定義 6.9

1.5.2 実数の完備性

11. 定理 6.11

1.6. 上限定理再訪 9

1.6 上限定理再訪

12. 定理 6.12