МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КАФЕДРА «ИНФОРМАТИКА»

ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ

Методические указания для выполнения лабораторной работы по курсу «Методы вычислений» для студентов специальности 010101(010100)

Кафедра: «Информатика»

Дисциплина: «Методы вычислений» (специальность: 010101(010100))

Составили:

старший преподаватель М.Б. Бекишева ассистент Л.Г. Катюхина

Утверждены на заседании кафедры «12» ноября 2009 г. Рекомендованы методическим советом Курганского государственного университета «23» ноября 2009 г.

ТЕМА: ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ

Постановка задачи интерполирования

Пусть функция y = f(x) задана таблицей:

$$y_0 = f(x_0), y_1 = f(x_1), ..., y_n = f(x_n).$$

Задача интерполирования ставится обычно в следующей форме: найти многочлен $P(x)=P_n(x)$ степени не выше n, значения которого в точках x_i ($i=0,1,2,\ldots,n$) совпадают со значениями данной функции, т.е. $P(x_i)=y_i$.

Геометрически это означает, что нужно найти алгебраическую кривую вида $y=a_0\,x^n+a_1\,x^{n-1}+a_n$, проходящую через заданную систему точек $M_i(x_i,\,y_i)$ ($i=0,\,1,\,2,\,\ldots,\,n$) (рис. 1).

Рис. 1. Геометрическая интерпретация интерполирования

В такой постановке задача интерполирования называется *параболической*.

Многочлен P(x) называется интерполяционным многочленом. Точки x_i (i=0,...,n) называются узлами интерполяции.

Доказано, что в указанной постановке задача интерполирования всегда имеет единственное решение. Интерполяционные формулы обычно используются при нахождении неизвестных значений f(x) для промежуточных значений аргумента. При этом различают интерполирование в узком смысле, когда x находится между x_0 и x_n , и экстранолирование, когда x находится вне отрезка $[x_0, x_n]$.

При оценке погрешности результатов должны учитываться как погрешность метода интерполяции (остаточный член), так и погрешности округления при вычислениях.

Лабораторная работа №1

Интерполяционная формула Лагранжа. Схема Эйткена

Краткие теоретические сведения

Интерполяционная формула Лагранжа

Пусть x_i (i=0,1,...,n) — произвольные узлы, а $y_i=f(x_i)$ — значения функции f(x). Многочленом степени n, принимающим в точках x_i значения y_i является интерполяционный многочлен π агранжа

$$L_n(x) = \sum_{i=0}^{n} y_i \frac{(x - x_0)(x - x_1) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0)(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$
(1.1)

Остаточный член равен

$$R_{n}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_{0})(x-x_{1})\cdots(x-x_{n}), \qquad (1.2)$$

где ξ есть некоторая точка наименьшего промежутка, содержащего все узлы x_i (i=0,1,...,n) и точку x.

Выражения

$$L_{i}^{(n)}(x) = \frac{(x-x_{0})(x-x_{1})\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_{n})}{(x_{i}-x_{0})(x_{i}-x_{1})\cdots(x_{i}-x_{i-1})(x_{i}-x_{i+1})\cdots(x_{i}-x_{n})}$$
(1.3)

называются коэффициентами Лагранжа.

Для вычисления $L_i^{(n)}(x)$ удобно применить следующее расположение разностей, подчеркнув разности, расположенные на главной диагонали:

$$\begin{cases}
\underline{x-x_0} & x_0-x_1 & x_0-x_2 & \cdots & x_0-x_n \\
x_1-x_0 & \underline{x-x_1} & x_1-x_2 & \cdots & x_1-x_n \\
x_2-x_0 & x_2-x_1 & \underline{x-x_2} & \cdots & x_2-x_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_n-x_0 & x_n-x_1 & x_n-x_2 & \cdots & \underline{x-x_n}
\end{cases} (1.4)$$

Обозначим произведение элементов i-й строки через D_i , про-изведение элементов главной диагонали через $\Pi_{n+1}(x)$, т. е.

$$\Pi_{n+1}(x) = = (x - x_0) (x-x_1)...(x - x_n).$$
 Тогда

$$L_{i}^{(n)}(x) = \frac{\Pi_{n+1}(x)}{D_{i}} \qquad (i=0,1,\dots,n)$$
(1.5)

Подставляя (1.5) в (1.1), получим:

$$L_n(x) = \Pi_{n+1}(x) \cdot \sum_{i=0}^n \frac{y_i}{D_i}$$
 (1.6)

В Excel удобно пользоваться этой формулой, добавив в (1.4) столбцы для

$$x_{i}$$
 , y_{i} , D_{i} , $\frac{y_{i}}{D_{i}}$ (x_{i} , y_{i} , в начале таблицы, D_{i} , $\frac{y_{i}}{D_{i}}$ - в конце).

Иногда бывает полезным для упрощения вычислений использовать инвариантность коэффициентов Лагранжа относительно линейной подстановки:

если
$$x=a\;t+b,\quad x_{\;i}=a\;t_{i}\;+b\;(j=0,\;1,...,\;n)$$
, то
$$L_{\;i}^{\;(n)}(x)=L_{\;i}^{\;(n)}(t) \tag{1.7}$$

В случае равноотстоящих узлов имеются таблицы для лагранжевых коэффициентов и процесс вычисления значительно облегчается.

Интерполяционная схема Эйткена

Если требуется найти не многочлен $L_n(x)$, а лишь его значения при конкретных значениях X, причем заранее трудно оценить степень интерполяционного многочлена, требуемого для достижения заданной точности (например, при интерполировании таблиц), то прибегают к использованию схемы Эйткена, по которой интерполяционные многочлены все более высокой степени строятся последовательно, что позволяет контролировать точность в процессе вычислений.

Согласно этой схеме последовательно вычисляются значения многочленов:

$$L_{(i,i+1)}(x) = \frac{1}{(x_{i+1} - x_i)} \begin{vmatrix} y_i & x_i - x \\ y_{i+1} & x_{i+1} - x \end{vmatrix},$$
 (1.8)

$$L_{(i,i+1,i+2)}(x) = \frac{1}{(x_{i+2} - x_i)} \begin{vmatrix} L_{(i,i+1)}(x) & x_i - x \\ L_{(i+1,i+2)}(x) & x_{i+2} - x \end{vmatrix},$$
(1.9)

$$L_{(i,i+1,i+2,i+3)}(x) = \frac{1}{(x_{i+3} - x_i)} \begin{vmatrix} L_{(i,i+1,i+2)}(x) & x_i - x \\ L_{(i+1,i+2,i+3)}(x) & x_{i+3} - x \end{vmatrix} u \, m. \partial.$$
 (1.10)

 $L_{(i,i+1,i+2,...n)}(x)$ - интерполяционный многочлен с узлами интерполяции $x_i, x_{i+1}, x_{i+2},..., x_n$.

Интерполяционный многочлен n-o \ddot{u} степени, принимающий в точках значения y_i (i=0,1,2,...,n), запишется следующим образом:

$$L_{(0,1,\cdots,n)}(x) = \frac{1}{(x_n - x_0)} \begin{vmatrix} L_{(0,1,\cdots,(n-1))}(x) & x_i - x \\ L_{(1,2,\cdots,n)}(x) & x_n - x \end{vmatrix}$$
(1.11)

Вычисления по схеме Эйткена удобно расположить в таблице.

i	Χi	y i	x _i - x	L _{i - 1, i}	L _{i-2,i-1,i}	L _{i-3,i-2,i-1,i}	
0	X ₀	y 0	x ₀ - x				
1	X 1	y 1	x ₁ - x	$L_{01}(x)$			
2	X 2	У 2	x 2 - x	L ₁₂ (x)	L ₀₁₂ (x)		
3	X 3	у 3	X 3 - X	L ₂₃ (x)	L ₁₂₃ (x)	L ₀₁₂₃ (x)	
4	X 4	У 4	X 4 - X	L ₃₄ (x)	L ₂₃₄ (x)	L ₁₂₃₄ (x)	
				•••	• • •		

Вычисления по схеме Эйткена можно закончить тогда, когда последовательные значения $L_{01...n}(x)$ и $L_{01...n,(n+1)}(x)$ не совпадут в пределах заданной точности.

Схему Эйткена удобно использовать для интерполяции таблично заданной функции, перенумеровав узлы интерполяции в порядке возрастания.

Основные вопросы теории

- 1. Постановка задачи интерполирования. Как связана степень интерполяционного многочлена с количеством узлов интерполяции?
- 2. Интерполяционный многочлен Лагранжа (вывод формулы). Различные формы записи многочлена Лагранжа.
 - 3. Схема вычисления Лагранжевых коэффициентов.
 - 4. Оценка погрешности интерполирования (погрешности метода). Дополнительный член формулы Лагранжа. С какой точностью можно вычислить по формуле Лагранжа *ln 100,3* по известным значениям *ln100, ln 101, ln 103*?

- 5. Схема Эйткена.
- 6. Обратное интерполирование.

Задания для лабораторной работы № 1

Задание 1.

Пусть известные значения некоторой функции f образуют таблицу

x	X_0	X ₁	X ₂
y = f(x)	y ₀	y 1	y ₂

По заданной таблице найти интерполяционный многочлен Лагранжа, построить его график и отметить на нем точки M_i (x, y), i = 0, 1, 2.

	ı		ı	(,),	I	
Вариант	X ₀	X ₁	X ₂	Y_0	y ₁	y ₂
1	-1	2	3	3	2	-1
2	2	-2	0	3	5	3
3	1	3	-1	2	8	4
4	-1	2	1	5	2	1
5	-1	-2	3	1	0	-3
6	2	-2	0	1	0	-3
7	1	3	-1	3	9	5
8	-1	2	1	2	-1	-2
9	-1	2	1	3	0	-1
10	-1	2	1	3	0	-1
11	-1	0	3	-3	5	2
12	2	-1	0	7	1	5
13	0	3	2	1	10	3
14	-4	-2	0	2	8	5
15	-2	-1	2	-4	0	0
16	2	-1	0	5	-1	3
17	-2	-1	2	-3	1	1
18	2	3	1	1	6	0
19	0	1	2	1	-2	1
20	-2	-1	2	-2	2	2
21	2	3	1	-2	7	1
22	2	3	5	4	7	1
23	0	3	2	4	-7	1
24	-3	-1	2	7	-1	4
25	1	2	4	-3	-7	2
26	-3	-2	2	6	-1	4

Замечание: Решение задания 1 (получение многочлена Лагранжа и построение графика) в Mathcad рассмотрено дальше (см. стр. 11).

Задание 2.

Вычислить значение заданной функции для значения аргумента X, используя:

- 1) интерполяционный многочлен Лагранжа (решение в Mathcad pacсмотрено на стр. 13):
 - 2) схему Эйткена.

В задачах все заданные значения аргументов будем считать точными числами, значения функций - приближенными, содержащими лишь верные цифры.

Замечание. Номер таблицы и при каких значениях Х вычислить многочлен Лагранжа согласовать с преподавателем.

Таблица 1.1

Х	1,00	1,08	1,13	1,20	1,27	1,31	1,38
у	1,17529	1,30254	1,38631	1,50946	1,21730	1,22361	1,23470

Значения Х:

- a) 1,0134; б) 1,139; в) 1,143; г) 1,151; д) 1,175; e) 1,0138; ж) 1,145; з) 1,166; и) 1,315; к) 1,185;

- л) 1,0139;

- м) 1,142; н) 1,176; п) 1,174; р) 1,125.

Таблица 1.2

Х	0,43	0,48	0,55	0,62	0,70	0,75	0,82	0,89
у	1,6360	1,7323	1,8769	2,0335	2,2285	2,3597	2,5566	2,7699

Значения Х:

- a) 0,70200;

- д) 0,70237;
- 6) 0,70600; в) 0,71345; г) 0,71900; е) 0,70764; ж) 0,71562; з) 0,72218.

Таблица 1.3

Xi	1,03	1,08	1,16	1,23	1,26	1,33	1,39
y _i	2,80107	2,94468	3,18993	3,42123	3,52542	3,78104	4,01485

Значения Х:

a) 1,20400;

б) 1.20911;

в) 1,22609;

г) 1,27444;

д) 1,20678;

e) 1,21555;

ж) 1,23709;

3) 1,27700;

и) 1,22374;

к) 1,25235;

л) 1,26000;

м) 1,26861.

Таблица 1.4

Xi	0,35	0,41	0,47	0,51	0,56	0,64
y _i	2,73951	2,30080	1,96864	1,78776	1,59502	1,34310

Значения Х:

a) 0,54030;

6) 0,54073;

в) 0,54090;

г) 0,54147;

д) 0,54039;

e) 0,54060;

ж) 0,54096;

3) 0,54120.

Таблица 1.5

Xi	0,41	0,46	0,52	0,60	0,65	0,72
y _i	2,57418	2,32513	2,09336	1,86203	1,74926	1,62098

Значения Х:

a) 0,61610;

6) 0,61654;

в) 0,61703;

г) 0,61809;

д) 0,61682;

e) 0,61750;

ж) 0,61890;

3) 0,61921.

Таблица 1.6

Xi	0,68	0,73	0,8	0,88	0,93	0,99
y i	0,80866	0,89492	1,02964	1,20966	1,34087	1,52368

Значения Х:

- a) 0,89600;
- б) 0,89670;
- в) 0,89703;
- г) 0,89831;

- д) 0,89622;
- e) 0,89724;
- ж) 0,89907;
- 3) 0,89920.

Таблица 1.7

Xi	1,50	1,54	1,56	1,60	1,63	1,70
y i	3,873	3,924	3,950	4,000	4,037	4,123

Значения Х:

- a) 1,52;
- 6) 1,55; в) 1,57; г) 1,61; д) 1,67;

- e) 1,53;
- ж) 1,58; з) 1,59; и) 1,62; k) 1,69.

Таблица 1.8

Xi	2,0	2,3	2,5	3,0	3,5	3,8	4,0
y i	5,848	6,127	6,300	6,694	7,047	7,243	7,368

Значения Х:

- a) 2,22;
- 6) 2,41; в) 2,78; г) 3,34; д) 3,75; е) 3,88;

- ж) 2,23;
- з) 2,43; и) 2,79; к) 3,42; л) 3,76; м) 3,98.

Таблица 1.9

Х	0,62	0,67	0,74	0,80	0,87	0,96
У	0,53794	0,51171	0,47711	0,44932	0,41895	0,38289

Значения Х:

- a) 0,801000;
- 6) 0,806695;
- в) 0,812456; г) 0,818560;

- д) 0,823440;
- e) 0,825561;
- ж) 0,845700; з) 0,848864;

- и) 0,850425;
- к) 0,860989;
- л) 0,864742; м) 0,864000.

Таблица 1.10

Х	0,40	0,44	0,51	0,56	0,62	0,67
у	0,379949	0,413644	0,469945	0,507977	0,551128	0,584980

Значения Х

a) 0,605200; б) 0,605898; в) 0,606220; г) 0,607400;

д) 0,605328;

е) 0,606601; ж) 0,606834; з) 0,607753.

Таблица 1.11

Х	0,05	0,10	0,17	0,25	0,30	0,36
у	0,050042	0,100335	0,171657	0,255342	0,309336	0,376403

Значения Х

a) 0,207800;

б) 0,208063; в) 0,208320 г) 0,209157;

д) 0,207700;

е) 0,208068; ж) 0,208813

3) 0,209100.

Таблица 1.12

Х	0,11	0,15	0,21	0,29	0,35	0,40
у	9,05421	6,61659	4,69170	3,35106	2,73951	2,36522

Значения Х

a) 0,31400; б) 0,31452; в) 0,31520; г) 0,31570; д) 0,31413; е) 0,31476; ж) 0,31533; з) 0,31583.

Таблица 1.13

Х	0,025	1,327	2,834	3,576	4,396
у	-3,298	0,386	2,935	4,129	1,637

Значения Х

a) 0,31400; б) 0,31452; в) 0,31520; г) 0,31570;

д) 0,31413; e) 0,31476;

ж) 0,31533; з) 0,31583.

Выполнение заданий в Mathcad.

Выполнение первого задания в Mathcad.

Задание 1. По заданной таблице найти интерполяционный многочлен Лагранжа, построить его график и отметить на нем точки $M_{i}(x_{i},y_{i}), i = 0, 1, 2.$

Решение.

Создаем два вектора с координатами точек:

$$\mathbf{x} := \begin{pmatrix} -3 \\ -2 \\ 2 \end{pmatrix} \qquad \mathbf{y} := \begin{pmatrix} 8 \\ 1 \\ 5 \end{pmatrix}$$

Указываем количество узлов

$$kol uzl := 3$$
 $i := 0.. kol uzl - 1$

Записываем по формуле интерполяционный многочлен Лагранжа L(x)

$$L(X) := y_0 \cdot \frac{\left(X - x_1\right) \cdot \left(X - x_2\right)}{\left(x_0 - x_1\right) \cdot \left(x_0 - x_2\right)} + y_1 \cdot \frac{\left(X - x_0\right) \cdot \left(X - x_2\right)}{\left(x_1 - x_0\right) \cdot \left(x_1 - x_2\right)} + y_2 \cdot \frac{\left(X - x_0\right) \cdot \left(X - x_1\right)}{\left(x_2 - x_0\right) \cdot \left(x_2 - x_1\right)}$$

Используем символьные операции в Mathcad (→, simplify)

$$L(X) \to \frac{8}{5} \cdot (X-2) \cdot (X+2) - \frac{1}{4} \cdot (X+3) \cdot (X-2) + \frac{1}{4} \cdot (X+3) \cdot (X+2)$$

$$L(X)$$
 simplify $\rightarrow \frac{8}{5} \cdot X^2 - \frac{17}{5} + X$

$$L(X) := \frac{8}{5} \cdot X^2 - \frac{17}{5} + X$$

Строим график L(X) и график из точек $M_i(x_i,y_i)$, i=0, 1, 2 в одной системе координат

 X, x_i

Выполнение второго задания в Mathcad.

Задание 2

Значения некоторой функции y = f(x) образуют таблицу.

Вычислить значение заданной функции для указанных значений аргумента Х, используя интерполяционный многочлен Лагранжа.

Решение

Рассмотрим два способа решения в MathCad.

1-й способ

$$n := length(x) - 1 \qquad \qquad n = 4$$

$$n_uzl := n \qquad \quad i := 0 \,.. \,\, n_uzl \qquad \quad j := 0 \,.. \,\, n_uzl$$

$$x^{T} = (1 \ 2 \ 5 \ 7 \ 10)$$
 $y^{T} = (1 \ 4 \ 25 \ 39 \ 65)$

$$\text{L1}(X) \coloneqq \sum_i y_i \cdot \prod_j \text{if} \left(i = j \, , 1 \, , \frac{X - x_j}{x_i - x_j} \right) \qquad \text{\^{l}\'{a}\`{u}\`{a}\"{y} \^{o}\^{i}\~{o}\`{i}\'{e}\`{a} \`{e}\'{i}\~{o}\~{a}\~{o}\~{i}\~{e}\~{y}\~{o}\`{e}\`{e}}$$

Вычислим значение функции L1(X) при нескольких значениях X L1(1.25) = 1.3517 L1(1.45) = 1.8432L1(1.15) = 1.1742

2-й способ - используем программирование в Mathcad

Создадим два вектора x и y, используя данные таблицы интерполируемой функции для последующей интерполяции:

$$x := \begin{pmatrix} 1 \\ 2 \\ 5 \\ 7 \\ 10 \end{pmatrix}$$
 $y := \begin{pmatrix} 1 \\ 4 \\ 25 \\ 39 \\ 65 \end{pmatrix}$ $n := length(x) - 1$ $n = 4$

Создаем функцию L2(x), используя элементы программирования

Роздаем функцию
$$L2(x)$$
, используя элементы прог $L2(X) := \begin{vmatrix} s \leftarrow 0 \\ \text{for } i \in 0 ... n \end{vmatrix}$ $\begin{vmatrix} PR \leftarrow 1 \\ \text{for } j \in 0 ... n \end{vmatrix}$ $\begin{vmatrix} PR \leftarrow PR \cdot \frac{X - x_j}{x_i - x_j} \\ \text{if } i \neq j \end{vmatrix}$ return s

Вычислим значение функции L2(X) при нескольких значениях X

$$L2(1.139) = 1.158$$
 $L2(5.243) = 26.796$ $L2(8.151) = 47.032$

Видим, что значения функций L1(X) и L2(X) совпали при указанных значениях Х с вычисленными значениями 1-м способом.

Лабораторная работа №2

Интерполирование для равноотстоящих узлов. Первая и вторая интерполяционные формулы Ньютона

Узлы интерполяции называются равноотстоящими, если

$$x_{i+1} - x_i = \Delta x_i = h = const$$
 (i = 0, 1, ..., n - 1).

Конечными разностями функции y = f(x) называются разности вида:

$$\Delta y_i = x_{i+1} - x_i$$
 — конечные разности первого порядка,

$$\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i$$
 — конечные разности второго порядка,

 $\Delta^{k} y_{i} = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_{i}$ — конечные разности k-го порядка.

Ниже дается горизонтальная таблица конечных разностей при n=5(см. стр.15).

1. Первая интерполяционная формула Ньютона имеет вид:

$$y(x) = P_n(x) =$$

$$= y_0 + q \Delta y_0 + \frac{q(q-1)}{2!} \Delta^2 y_0 + \dots + \frac{q(q-1)\cdots(q-n+1)}{n!} \Delta^n y_o, (2.1)$$

$$_{\Gamma \text{Де}} q = \frac{x - x_0}{h}.$$

В формуле используется верхняя горизонтальная строка таблицы разностей. Ниже в таблице элементы этой строки подчеркнуты.

I	Xi	y i	$\Delta \mathbf{y}$	Δ 2y	Δ 3 y	Δ 4y
0	X ₀	<u>y o</u>	<u>Δy 0</u>	<u>∆ ²y ₀</u>	Δ ³ y ₀	<u>Δ 4y ο</u>
1	X ₁	y 1	Δ y ₁	Δ 2 y $_1$	Δ 3 y $_1$	Δ 4 y $_1$
2	X 2	y ₂	Δ y ₂	Δ 2 y $_2$	Δ 3 y $_2$	
3	X 3	y 3	Δ y $_3$	Δ 2 y $_3$		
4	X ₄	у ₄	Δ y ₄			
5	X 5	y 5				

Для вычислений формулу удобно применять в виде:

$$y(x) = P_n (x_0 + qh) =$$

$$= y_0 + q(\Delta y_0 + \frac{(q-1)}{2}(\Delta^2 y_0 + \frac{q-2}{3}(\Delta^3 y_0 + \frac{q-3}{4}(\Delta^4 y_0 + \cdots) \cdots))_{(2.2)}$$

(это формула Горнера).

Остаточный член $R_n(x)$ формулы (2.1) имеет вид:

$$R_{n}(x) = h^{n+1} \frac{q(q-1)\cdots(q-n)}{(n+1)!} f^{(n+1)}(\xi),$$
 (2.3)

где ξ — некоторая внутренняя точка наименьшего промежутка, содержащего все узлы x_i ($i=0,1,\ldots,n$) и точку x.

При наличии дополнительного узла x_{n+1} на практике пользуются более, удобной приближенной формулой:

$$R_{n}(x) \approx \frac{\Delta^{n+1} y_{o}}{(n+1)!} q(q-1) \cdots (q-n).$$
 (2.4)

Последняя формула полезна, например, в случае эмпирически заданных функций.

Число n желательно выбирать так, чтобы разности $\Delta^n y_i$ были npak- muчески nocmoянными.

Формула (2.1) используется для интерполирования и экстраполирования в точках x, близких к началу таблицы x_0 .

При n=1 и n=2 из формулы (2.1) получаем частные случаи:

- 1) линейная интерполяция $-y(x) = y_0 + q \Delta y_0$;
- 2) квадратичная интерполяция —

$$y(x)=y_0+q\Delta y_0+\frac{q(q-1)}{2!}\Delta^2 y_0$$
.

2. Вторая интерполяционная формула Ньютона имеет вид:

$$y(x) = P_n(x) =$$

$$= y_{n} + q \Delta y_{n-1} + \frac{q(q+1)}{2!} \Delta^{2} y_{n-2} + \dots + \frac{q(q+1)\cdots(q+n-1)}{n!} \Delta^{n} y_{o}, (2.5)$$

$$\text{где} \quad q = \frac{x - x_{n}}{h}.$$

В формуле используется нижняя наклонная строка таблицы разностей. В таблице ниже элементы этой строки подчеркнуты.

Остаточный член $R_n(x)$ формулы (2.5) имеет вид:

$$R_{n}(x) = h^{n+1} \frac{q(q+1)\cdots(q+n)}{(n+1)!} f^{(n+1)}(\xi),$$
 (2.6)

где ξ — внутренняя точка наименьшего промежутка, содержащего все узлы x_i ($i=0,\ 1,\ldots,\ n$) и точку x.

Формула (2.6) используется для интерполирования и экстраполирования в точках \boldsymbol{x} , близких к концу таблицы, т.е. к \boldsymbol{x}_n .

В формуле используется нижняя наклонная строка таблицы разностей. Ниже в таблице элементы этой строки подчеркнуты.

i	Xi	y i	$\Delta \mathbf{y}$	∆ ²y	Δ 3 y	Δ 4y
0	X 0	y 0	Δ y $_{0}$	Δ 2 y $_0$	Δ 3 y $_0$	Δ 4 y $_0$
1	X ₁	y 1	Δ y ₁	Δ 2 y $_1$	Δ 3 y $_1$	<u>Δ ⁴y 1</u>
2	X 2	y ₂	Δy ₂	Δ 2 y $_2$	<u>∆³y₂</u>	
3	X 3	y ₃	Δ y ₃	<u>∆ ²y ₃</u>		
4	X 4	У 4	<u>∆y 4</u>			
5	X 5	<u>y 5</u>				

Основные вопросы теории

- 1. Конечные разности (определение, свойства).
- 2. Связь между производными функции и конечными разностями.
- 3. Как строятся интерполяционные многочлены Ньютона? Первая и вторая интерполяционные формулы Ньютона.
- 4. Формулы оценки погрешностей интерполирования по формулам Ньютона.

5. Экстраполирование функций.

Задание к лабораторной работе № 2

- 1. Составьте таблицу конечных разностей. Запишите первый и второй интерполяционные многочлены Ньютона такого порядка, который допускается таблицей.
- 2. Найдите интерполированием значения функции при заданных значениях аргумента X.
- 3. При помощи конечных разностей оцените погрешности полученных значений.

Для вычисления формулы Ньютона удобно представлять по схеме Горнера (для 1-го интерполяционного многочлена Ньютона формула схемы Горнера на стр.15).

Замечание. Решение задания в Mathcad рассмотрено дальше (стр. 22).

Варианты заданий индивидуальных заданий

Таблица 2.1

Χ	1,415	1,42	1,425	1,43	1,435	1,44	1,445	1,45	1,455	1,46	1,465
у	0,888551	0,889599	0,890637	0,891667	0,892687	0,893698	0,894700	0,895693	0,896677	0,897653	0,898619

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

- а) 1,41610 и 1,46250; б) 1,41790 и 1,46260; в) 1,41070 и 1,46270;
- г) 1,41659 и 1,46280; д) 1,41923 и 1,46280; с) 1,41854 и 1,46334;
- ж) 1,42351 и 1,46250; з) 1,42500 и 1,46401; и) 1,42153 и 1,46446;
- к) 1,41728 и 1,46307; л) 1,42601 и 1,46480.

Таблица 2.2

Х	0,101	0,106	0,111	0,116	0,121	0,126	0,131	0,136	0,141	0,146
у	1,26183	1,27644	1,29122	1,30617	1,3213	1,3366	1,35207	1,36773	1,38357	1,39959

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

- а) 0,10200 и 0,14351; б) 0,10350 и 0,14373; в) 0,10300 и 0,14622;
- г) 0,10260 и 0,14452; д) 0,10237 и 0,14507; е) 0,10345 и 0,14631;
- ж) 0,10839 и 0,14851; з) 0,10299 и 0,14861; и) 0,10700 и 0,14645;

к) 0,10844 и 0,14973;

л) 0,10736 и 0,15000.

Таблица 2.3

х	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	09'0	0,65	0,70	0,75
у	0,86071	0,81873	0,77880	0,74082	0,70469	0,67032	0,63763	0,60653	0,57695	0,54881	0,52205	0,49659	0,47237

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

а) 0,151000 и 0,749000;

6) 0,150911 и 0,747561; в) 0,150800 и 0,745550;

г) 0,151100 и 0,741110;

д) 0,152250 и 0,737590; е) 0,152500 и 0,715520;

ж) 0,154000 и 0,733330;

з) 0,153250 и 0,727520; и) 0,153500 и 0,729990.

Таблица 2.4

х	0,180	0,185	0,190	0,195	0,200	0,205	0,210	0,215	0,220	0,225	0,230	0,235
у	5,61543	5,46693	5,32634	5,19304	5,06649	4,94619	4,83170	4,72261	4,61855	4,51919	4,42422	4,33337

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

а) 0,18090 и 0,22750;

б) 0,18250 и 0,22816;

в) 0,18170 и 0,22793;

г) 0,18197 и 0,22851;

д) 0,18236 и 0,22901;

е) 0,18159 и 0,22950;

ж) 0,18229 и 0,23257;

з) 0,18523 и 0,23351;

и) 0,18672 и 0,23351;

к) 0,18734 и 0,23333;

л) 0,18270 и 0,23450.

Таблица 2.5

Х	3,50	3,55	3,60	3,65	3,70	3,75	3,80	3,85	3,90	3,95	4,00	4,05	4,10	4,15	4,20
у	33,115	34,813	36,598	38,475	40,447	42,521	44,701	46,993	49,402	51,935	54,598	57,398	60,34	63,434	66,686

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

а) 3,5011 и 4,1990;

6) 5,5010 и 4,1975;

в) 3,5018 и 4,19;

- г) 3,5145 и 4,1898;
- д) 3,5229 и 4,1888;
- с) 3,5219 и 4,1844;

- ж) 3,5196 и 4,1811;
- з) 3,5056 и 4,1777;
- и) 3,5186 и 4,1755;

к) 3,5220 и 4,1760.

Таблица 2.6

Х	0,115	0,120	0,125	0,130	0,135	0,140	0,145	0,150	0,155	0,160	0,165	0,170	0,175	0,180
у	8,65729	8,29329	7,95829	7,64893	7,36235	7,09613	6,84815	6,61659	6,39986	6,19658	6,00551	5,82558	5,65583	5,49543

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

- а) 0,11560 и 0,17250;
- б) 0,11695 и 0,17296;
- в) 0,11685 и 0,17359;

- г) 0,11600 и 0,17403;
- д) 0,12000 и 0,17498;
- е) 0,11733 и 0,17450;

- ж) 0,12170 и 0,17258; з) 0,12199 и 0,17436;
- и) 0,12245 и 0,17348;

- к) 0,11559 и 0,17752;
- л) 0,11750 и 0,17490.

Таблица 2.7

х	3,200	3,201	3,202	3,203	3,204	3,205	3,206	3,207	3,208	3,209	3,210	3,211	3,212	3,213
у	24,533	24,557	24,582	24,606	24,631	24,656	24,680	24,703	24,730	24,754	24,779	24,804	24,854	24,829

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

- а) 3,2006 и 3,2122;
- б) 3,2016 и 3,2125;
- в) 3,14107 и 3,2132

- г) 3,2005 и 3,2124;
- д) 3,2013 и 3,2126;
- с) 3,14185 и 3,2131

- ж) 3,2004 и 3,2121;
- з) 3,2015 и 3,2127;
- и) 3,14215 и 3,2133

- к) 3,2012 и 3,2125;
- л) 3,2017 и 3,2128.

Таблица 2.8

х	1,480	1,481	1,482	1,483	1,484	1,485	1,486	1,487	1,488	1,489	1,490	1,491	1,492	1,493
у	0,99588	0,99597	90966'0	0,99615	0,99624	0,99632	0,99641	0,99649	0,99657	99966'0	0,99674	0,99682	06966'0	86966'0

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

а) 1,4806 и 1,4905;

б) 1,4812 и 1,4926;

в) 1,4821 и 1,4917;

г) 1,4804 и 1,4907;

д) 1,4813 и 1,4925;

с) 1,4822 и 1,4918;

ж) 1,4805 и 1,4909; з) 1,4816 и 1,4924;

и) 1,4834 и 1,4916;

к) 1,4807 и 1,4906;

л) 1,4814 и 1,4923.

Таблица 2.9

х	1,520	1,521	1,522	1,523	1,524	1,525	1,526	1,527	1,528	1,529	1,530	1,531	1,532	1,533
у	19,67	20,065	20,477	20,906	21,354	21,82`1	22,308	22,818	23,352	23,911	24,498	25,115	25,763	26,445

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

а) 1,5202 и 1,5312; б) 1,5213 и 1,5324;

в) 1,5223 и 1,5335;

г) 1,5205 и 1,5313;

д) 1,5216 и 1,5324;

с) 1,5224 и 1,5332;

ж) 1,5203 и 1,5314; з) 1,5215 и 1,5324;

и) 1,5226 и 1,5331;

к) 1,5204 и 1,5317;

л) 1,5217 и 1,5326.

Таблица 2.10

х	0,01	90'0	0,11	0,16	0,21	0,26	0,31	98'0	0,41	0,46	0,51	95'0
У	0,991824	0,951935	0,913650	0,876905	0,841638	0,807789	0,775301	0,744120	0,714193	0,685470	0,657902	0,631442

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

- а) 0,0145 и 0,5122; б) 0,0623 и 0,4654; в) 0,114 и 0,5621;
- г) 0,0154 и 0,5132; д) 0,0635 и 0,4627; с) 0,112 и 0,5613;
- ж) 0,0123 и 0,5123; з) 0,0642 и 0,4631; и) 0,115 и 0,5634;
- к) 0,0162 и 0,5121; л) 0,0614 и 0,4643.

Таблица 2.11

х	0,15	0,16	0,17	0,18	0,19	0,20	0,21	0,22	0,23	0,24	0,25	0,26
у	4,4817	4,9530	5,4739	6,0496	6,6859	7,3891	8,1662	9,0250	9,9742	11,0232	12,1825	13,4637

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

- а) 0,1503 и 0,25226; б) 0,1604 и 0,2425; в) 0,1482 и 0,2621;
- г) 0,1504 и 0,25132; д) 0,1603 и 0,2426; с) 0,1473 и 0,2613;
- ж) 0,1507 и 0,25143; з) 0,1605 и 0,2427; и) 0,1468 и 0,2634;
- к) 0,1508 и 0,25152; л) 0,1602 и 0,2423.

Таблица 2.12

х	0,45	0,46	0,47	0,48	0,49	0,50	0,51	0,52	0,53	0,54	0,55	0,56
у	20,1946	19,6133	18,9425	18,1746	17,3010	16,3123	15,1984	13,9484	12,5508	10,9937	9,2647	7,3510

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

- а) 1,4526 и 1,5539; б) 1,4612 и 1,5486; в) 1,4482 и 1,5623;
- г) 1,4534 и 1,5547; д) 1,4635 и 1,5492; с) 1,4463 и 1,5618;
- ж) 1,4545 и 1,5592; 3) 1,4616 и 1,5464; и) 1,4474 и 1,5646;
- к) 1,4557 и 1,5584; л) 1,4624 и 1,5453.

Таблица 2.13

Х	1,335	1,340	1,345	1,350	1,355	1,360	1,365	1,370
у	4,16206	4,25562	4,35325	4,45522	4,56184	4,67344	4,79038	4,91306

Вычислить F(x) для следующих значений аргумента X по первой и второй интерполяционной формуле Ньютона:

а) 1,33523 и 1,36547; б) 1,34126 и 1,36126; в) 1,34582 и 1,37121;

г) 1,33532 и 1,36572; д) 1,34163 и 1,36026; с) 1,34524 и 1,37034;

ж) 1,33552 и 1,36538; з) 1,34148 и 1,36126; и) 1,34512 и 1,37118; к) 1,33546 и 1,36584; л) 1,34146 и 1,36126.

Интерполяционные формулы Ньютона в Mathcad

Дана таблица значений функции в точках (x_i, y_i)

Χ	0,150	0,155	0,160	0,165	0,170	0,175	0,180
у	6,61659	6,39986	6,19658	6,00551	5,82558	5,65583	5,49543

С помощью интерполяционных формул Ньютона найти значения функции при x1 = 0.153 и при x2 = 0.173, определить погрешность интерполирования в окрестностях этих точек.

Решение

Значения функции $y(x_i)$ из данной таблицы записываем в виде вектора:

y :=
$$\begin{pmatrix} 6.61659 \\ 6.39986 \\ 6.19658 \\ 6.00551 \\ 5.82558 \\ 5.65583 \\ 5.49543 \end{pmatrix}$$

Определяем количество узлов интерполяции (отнимаем единицу, т.к. нумерация начинается с нуля):

$$k \text{ uzl} := \text{length}(y) - 1$$
 $k \text{ uzl} = 6$

Т.к. значения x в таблице равноотстоящие, то вектор x получим так:

$$i := 0.. k_uzl$$
 $x_0 := 0.150$ $h := 0.005$ $x_{i+1} := x_i + h$ $x^T = (0.15 \ 0.155 \ 0.16 \ 0.165 \ 0.17 \ 0.175 \ 0.18 \ 0.185)$

Создадим матрицу M. В нулевой столбец матрицы M запишем элементы вектора \boldsymbol{x} (нумерация строк и столбцов начинается с нуля), в первый столбец матрицы M запишем элементы вектора \boldsymbol{v} :

$$M_{i,\,0} := x_0 + i \cdot h \qquad M^{\left<1\right>} := y$$

Для расчета конечных разностей определим функцию q(b) , в матрицу b поместим конечные разности:

$$\begin{array}{c|c} q(b) := & for \ n \in 1 .. \ k_uzl \\ & for \ k \in 0 .. \ k_uzl - n \\ & b_{k,n+1} \leftarrow b_{k+1,n} - b_{k,n} \\ & b \end{array}$$

Непосредственный расчет конечных разностей получим в матрице M := q(M)

$$\mathsf{M} = \begin{pmatrix} 0.15 & 6.61659 & -0.21673 & 0.01345 & -0.00124 & 0.00017 & -0.00006 & 0.00008 \\ 0.155 & 6.39986 & -0.20328 & 0.01221 & -0.00107 & 0.00011 & 0.00002 & 0 \\ 0.16 & 6.19658 & -0.19107 & 0.01114 & -0.00096 & 0.00013 & 0 & 0 \\ 0.165 & 6.00551 & -0.17993 & 0.01018 & -0.00083 & 0 & 0 & 0 \\ 0.17 & 5.82558 & -0.16975 & 0.00935 & 0 & 0 & 0 & 0 \\ 0.175 & 5.65583 & -0.1604 & 0 & 0 & 0 & 0 & 0 \\ 0.18 & 5.49543 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

По таблице определим степень многочлена интерполяции.

Видим, что конечные разности 3 -го порядка практически постоянны, поэтому составим интерполяционные многочлены Ньютона 3-го порядка:

$$n := 3$$
 $k := 0$ $x0 := M_{k,0}$ $x0 = 0.15$

1 - я интерполяционная формула Ньютона:

$$F1(x) := M_{k,1} + \sum_{i=1}^{n} \left[\prod_{j=0}^{i-1} \left(\frac{x - x0}{h} - j \right) \right] \cdot \frac{M_{k,i+1}}{i!}$$

Формула остаточного члена для 1 - ой формулы Ньютона:

$$R1(x) := \left[\prod_{j=0}^{n} \left(\frac{x-x0}{h} - j \right) \right] \cdot \frac{M_{k,n+2}}{(n+1)!}$$

$$x1 := 0.153$$
 $F1(x1) = 6.48487$ $R1(x1) = -0.000006$

Построим график F1(x) и график из точек (x_i , y_i).

2 - я интерполяционная формула Ньютона:

$$k := k_uzl$$
 $xn := M_{k,0}$ $n := 3$ $xn = 0.18$

$$F2(x) := M_{k,1} + \sum_{i=1}^n \left[\prod_{j=0}^{i-1} \left(\frac{x-xn}{h} + j \right) \right] \cdot \frac{M_{k-i,i+1}}{i!}$$

Формула остаточного члена для 2 - ой формулы Ньютона:

$$R2(x) := \left\lceil \prod_{i=0}^{n} \left(\frac{x-xn}{h} + j \right) \right\rceil \cdot \frac{M_{k-(n+1),n+2}}{(n+1)!}$$

Вычислим значение функции F2(x) и остаточный член R2(x) при значении x2=0,173

$$x2 := 0.173$$

$$F2(x2) = 5.72256$$

$$R2(x2) = 0.000003$$

Построим график F2(x) и график из точек (x_i , y_i).

Выполним в MathCad, используя стандартные функции:

$$S := cspline \left(M^{\langle 0 \rangle}, M^{\langle 1 \rangle}\right)$$

$$F(x) := interp(S, M^{\langle 0 \rangle}, M^{\langle 1 \rangle}, x)$$

Вычислим значение функции F(x) при значении x=0,153 и x=0,173:

$$F(0.153) = 6.48487$$
 $F(0.173) = 5.7225632$

Видим, что значения функции F(0.153) и F(0.173) совпадают с теми, которые получены при вычислении F1(0.153) и F2(0.173).

Построим график F(x) и график из точек (x_i, y_i) , (значения x_i, y_i находятся в нулевом и первом столбцах матрицы M).

Список литературы

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. Т.1. М.: Наука, 1987.
- 2. Березин И.С., Жидков Н.П. Методы вычислений. Т.1. М.: Наука, 1966.
- 3. Гутер Р.С., Овчинский Б.В. Элементы численного анализа и математической обработки результатов опыта. М.: Наука, 1970.
- 4. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Наука, 2007.
- 5. Копченова Н.В., Марон И.А. Вычислительная математика в примерах и задачах. М.: Наука, 1972.
- 6. Черкасова М.П. Сборник задач по численным методам. Минск: Высшая школа, 1967.
- 7. Мудров А. Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП «РАСКО», 1992.
- 8. Самоучитель Mathcad 12/ Дмитрий Кирьянов. СПб.: БХВ-Петербург, 2004.
- 9. Лапчик М.П., Рагулина М.И., Хеннер Е.К. Численные методы. M.: ACADEMA, 2004.
- 10. Вержбицкий В.М. Численные методы (математический анализ и обыкновенные дифференциальные уравнения). М.: Высшая школа, 2001.

СОДЕРЖАНИЕ

1.	Интерполирование функций	3
2.	Постановка задачи интерполирования	3
3.	Лабораторная работа №1	4
	3.1. Интерполяционная формула Лагранжа. Схема Эйткена	4
	3.1.1. Краткие теоретические сведения	4
	3.1.1.1. Интерполяционная формула Лагранжа	4
	3.1.1.2. Интерполяционная схема Эйткена	5
	3.1.2. Основные вопросы теории	6
	3.1.3. Задания для лабораторной работы № 1	7
	3.1.3.1. Задание 1	7
	3.1.3.2. Варианты задания 1	7
	3.1.3.3. Задание 2	8
	3.1.4. Выполнение заданий в Mathcad	11
4.	Лабораторная работа №2	14
	4.1. Интерполирование для равноотстоящих узлов. Первая и вторая	интер-
	поляционные формулы Ньютона	14
	4.1.1. Первая интерполяционная формула Ньютона	14
	4.1.2. Вторая интерполяционная формула Ньютона	16
	4.1.3. Основные вопросы теории	16
	4.1.4. Задание для лабораторной работы № 2	17
	4.1.5. Интерполяционные формулы Ньютона в Mathcad	22
	4.1.6. Выполнение в MathCad, используя стандартные	
	функции	25
5.	Список литературы	26

Бекишева Марина Борисовна

Катюхина Людмила Георгиевна

Интерполирование функций

Методические указания к выполнению лабораторной работы для студентов специальности 010101(010100)

Редактор Н.М. Устюгова

Подписано к печати Формат 60*84 1/16 Бумага тип. № 1 Печать трафаретная Усл. печ. л.1,75 Уч. — изд. л. 1,75 Заказ Тираж 100 Цена свободная

.....

Редакционно-издательский центр КГУ.

640669, г. Курган, ул. Гоголя, 25.

Курганский государственный университет.