# Binary Tree

Practicing Pointer & Recursive

#### Overview

- This is a basic for the next data structure, Binary Search and AVL Tree
- Focus on using Node and Pointer
- Focus on using recursive programming
- Some applications using just Binary Tree
- There is no data structure in std that is Binary Tree

Binary Tree & Node





root

- A rooted tree where each node have at most two children
- Tree Node is very similar to a linked list node

```
left data right
10
```

```
class node {
  public:
    ValueT data;
    node *left, *right;
    node():
        data( ValueT() ), left( NULL ), right( NULL ) { }
        node(const ValueT& data, node* left, node* right):
        data ( data ), left( left ), right( right ) { }
};
```

Node with parent link





root

- Sometime, we need a link to parent
- Root is the only node that parent is NULL

```
class node {
  public:
    ValueT data;
    node *left, *right, *parent;
    node():
        data( ValueT() ), left( NULL ), right( NULL ), parent( NULL ) { }
        node(const ValueT& data, node* left, node* right, node* parent):
        data ( data ), left( left ), right( right ), parent( parent ) { }
};
```

## Huffman Coding: Example Application of Tree

- David Huffman proposed this as his term project in Robert Fano's class (co-worker of Claude Shannon) which beats Shannon-Fano encoding
- Encoding = associate meaning to a representation
- ASCII Code
  - Fix length encoding
  - Each char = 8 bits

| 100 0001 | 101 | 65 | 41 | Α |  |
|----------|-----|----|----|---|--|
| 100 0010 | 102 | 66 | 42 | В |  |
| 100 0011 | 103 | 67 | 43 | С |  |
| 100 0100 | 104 | 68 | 44 | D |  |
| 100 0101 | 105 | 69 | 45 | Е |  |
| 100 0110 | 106 | 70 | 46 | F |  |
| 100 0111 | 107 | 71 | 47 | G |  |
| 100 1000 | 110 | 72 | 48 | Н |  |
| 100 1001 | 111 | 73 | 49 | I |  |
| 100 1010 | 112 | 74 | 4A | J |  |
| 100 1011 | 113 | 75 | 4B | К |  |
| 100 1100 | 114 | 76 | 4C | L |  |
| 100 1101 | 115 | 77 | 4D | М |  |

### Variable Length Encoding

Never gonna give you up Never gonna let you down Never gonna run around and desert you

16 different character
Fix-length needs 4 x 86 = 344 bits
Variable Length need 327 bits

| n    | е    | 0    | u    | r    | а    | V    | g    | d    | y    | t    | W    | S    | р    | l    | i    |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 14   | 11   | 9    | 7    | 7    | 6    | 5    | 5    | 5    | 4    | 3    | 2    | 2    | 2    | 2    | 2    |
| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| 11   | 010  | 011  | 0001 | 0011 | 0000 | 1011 | 1010 | 1000 | 0010 | 1001 | 1001 | 0010 | 0010 | 1001 | 0010 |
|      |      |      |      |      |      |      |      |      | 1    | 1    | 01   | 001  | 01   | 00   | 000  |

Encoding "Never"
Fix-length 0000001011000010100
Variable Legnth 1101010110100011

## Problem Statement



- Input: a string
- Output: encoding of each character in the string such that
- huffm ( The total length of encoding the string is minimum also daily
- 2
- The encoding of character is not ambiguous
  - Any character encoding is not a prefix of any other character

### Tree Encoding

- Using a tree to represent encoding
- Each character is represent at leaf nodes
  - Leaf node is a node without children
- Encode by start at the root and walk toward leaf nodes
  - The path gives the encoding
  - Going to left child equal to 0
  - Going to right child equal to 1
- Guarantee to be non-ambiguous



$$a = 010$$

$$b = 011$$

$$c = 1$$



#### Huffman Tree Node

- Instead of data, we have both character and frequency
- Since we have to pick two nodes with minimum freq, we overload operator< to do so and use priority queue

#### Huffman Code: Node

```
class huffman_tree {
  protected:
    class huffman node {
      public:
        char letter;
        int freq;
        huffman node *left, *right;
        huffman_node() : letter('*'),freq(0),left(NULL),right(NULL) {}
        huffman node(char letter,int freq,huffman node *left,huffman node *right) :
          letter(letter), freq(freq), left(left), right(right) {}
        bool is leaf() { return left == NULL && right == NULL; }
    };
    class node comparator {
      public:
        bool operator()(const huffman node *a, const huffman node *b) {
          return a->freq > b->freq;
```

#### Huffman Code: Build Tree

```
class huffman tree {
  protected:
   huffman node *root;
    void build tree(vector<huffman node*> data) {
      priority queue<huffman node*, vector<huffman node*>, node comparator> pq;
      for (auto &x : data) pq.push(x);
      while (pq.size() > 1) {
        huffman_node *right = pq.top(); pq.pop();
        huffman_node *left = pq.top(); pq.pop();
        pq.push(new huffman_node('*',left->freq+right->freq,left,right));
      root = pq.top();
  public:
   huffman tree(string s) {
      map<char,int> count;
      for (auto &c : s)
        count[c]++;
      vector<huffman_node*> nodes;
      for (auto &x : count)
        nodes.push_back(new huffman_node(x.first,x.second,NULL,NULL));
      build tree(nodes);
```

# Recursive Programming

Calling itself

#### Recursive

Terminating condition

- A function that call itself
- Must have some input, usually via function argument
- The function must check a condition for execution
  - Result in either terminating case where the function won't call itself
  - or recursion case where the function will call itself with different parameters

```
calculate sum 0..n
int recur1(int n) {
  if (n <= 0) {
    // terminating case
    return 0;
    else {
    // recursion case
    return recur1(n-1) + n;
               Smaller
              parameter
```

## Why recursion?

- Much simpler code
  - When the task is right
  - Recursion is natural for several mathematical model that is recursi
- Comparing to a normal loop, recursion has the same growth rate but recursion might takes more time because function call is costlier than a loop

### More Example

```
void print_range1(int step,int goal) {
  if (step < goal) {
    std::cout << step << "";
    print_range1(step+1, goal);
  }
}</pre>
```

```
void print_range2(int step,int goal) {
   if (step < goal) {
     print_range2(step+1, goal);
     std::cout << step << "";
   }
}</pre>
```

- Terminating Case do nothing
- Which is the output of print\_range1(0,5) and print\_range2(0,5)

```
0 1 2 3 4 5
```

0 1 2 3 4

```
5 4 3 2 1 0
```

4 3 2 1 0

### Binary Tree Recursive Definition

- A Binary Tree is
  - A tree with no nodes (root is NULL)
  - A tree with a root
    - both children of the root must be a binary tree
    - Each child is call left-subtree and rightsubtree
- Since binary tree can be defined recursively, operation on a binary tree can be naturally written as a recursion





#### Subtree



- For any node
  - its left (right) child and all of the child's descendants is called left-subtree (right-subtree)

### Tree Size by Recursion

- An empty tree has 0 node
- A tree with a root has 1 node (the root)
  - Plus the size of its two subtrees
- Easily written as recursive





## Tree Height

- Height of a tree is the number of link we have to go to reach it deepest children
- Empty tree has height -1
- Height of a tree is 1 + max of height of its children



## Tree Copy

```
class node {
  public:
    int data;
    node *left, *right;
    node() : data(0),left(NULL),right(NULL);
    node(int data, node *left, node *right)
      : data(data),left(left),right(right);
};
node* copy(node *n) {
  if (n == NULL) return NULL;
  node *lc = copy(n->left);
  node *rc = copy(n->right);
  node *result = new node(n->data,lc,rc);
```



#### Walk over a tree

Visiting all nodes (and maybe do something)

```
void preorder(node *n) {
  if (n == NULL) return NULL;
  std::cout << n->data << " ";</pre>
                                     preorder traversal
  preorder(n->left);
  preorder(n->right);
   void inorder(node *n) {
     if (n == NULL) return NULL;
     inorder(n->left);
                                        inorder traversal
     std::cout << n->data << " _";
     inorder(n->right);
       void postorder(node *n) {
         if (n == NULL) return NULL;
         postorder(n->left);
                                            postorder traversal
         postorder(n->right);
         std::cout << n->data << " ";</pre>
```



What is the result of

- preorder(a);
- inorder(a);
- postorder(a);

## Huffman Tree: Encoding

```
class huffman_tree {
  protected:
    class huffman_node { };
    class node_comparator { };
    huffman_node *root;
  public:
    void print(huffman_node *n,string s) {
      if (n->is_leaf()) {
        cout << n->letter << ": " << s << endl;</pre>
      } else {
        print(n->left,s+"0");
        print(n->right,s+"1");
    void print() {
      print(root,"");
};
```

- Recursive printing
- Use s to store path

## Huffman Tree: Encoding

```
class huffman tree {
  protected:
    class huffman_node { };
    class node comparator { };
    huffman node *root;
    void delete_node(huffman_node *n) {
      if (n == NULL) return;
      delete node(n->left);
      delete_node(n->right);
      delete n;
  public:
    ~huffman_tree() {
      delete_node(root);
```

- Recursive delete node
- Use postorder traversal
- Can we use inorder or preorder?

## Binary Search Tree

Binary Tree with value condition

#### Overview

- We add additional value constraint to a Binary Tree
- The constraint make finding data in the tree much faster
  - O(h) where h is the height of the tree
  - The tree is expected to have h be in O( lg n), but this is not always true
  - The next tree (AVL tree) will add more constraint so that we can guarantee that h = O(log n)
- Using the same approach as a binary heap, maintain the constraint during modification

## Binary Search Tree

**X 6** 

4 6

- Structure rule: must be a Binary Tree
- Value rule: for any node x
  - data in left-subtree must be less than the data in x
  - data in right-subtree must be more than the data in x
- Recursive Definition
  - An empty tree is a Binary Search Tree (BST)
  - A node X is a BST when
    - Its subtrees (if any) must be BST and
    - If left-subtree exists, X->data must be more than x->left->data
    - If right-subtree exists, X->data must be less than x->right->data







## Finding Value in BST

 Value rules make finding fast

9 is more than 2. search right-subtree

- To find e Start from root
  - If the current node is not e,
    - search in left-subtree if e is less than the current node
    - search in right-subtree if e is more than the current node
  - Keep going until we find e or reach NULL
- Other operation also depends on find



#### Find Node

Compare(a,b)
Return -1 if a < b
Return 0 if a == b
Return 1 if a > b

node\* find node(const ValueT& k, node\* r, node\* &parent) {

Later, we will need a parent node of the searching value

```
node *ptr = r;
                              while (ptr != NULL) {
class node {
                                int cmp = compare(k, ptr->data);
 friend class map bst;
                                if (cmp == 0) return ptr;
  protected:
                                parent = ptr;
   ValueT data;
                                ptr = cmp < 0 ? ptr->left : ptr->right;
   node *left;
   node *right;
                              return NULL;
   node *parent;
   node():
     data( ValueT() ), left( NULL ), right( NULL ), parent( NULL ) { }
   node(const ValueT& data, node* left, node* right, node* parent) :
     data ( data ), left( left ), right( right ), parent( parent ) { }
};
```

47 Insert 47

- Assumption: Data is BST is unique
- Insert(e) by find e
  - If e is found, don't add any node
  - If e is not in BST, find must reach NULL somewhere, that NULL is where to put e
- Both structure and value constraints are satisfied



#### Erase

• erase(e) first have to find e as well

• If not found, do nothing

• If found at node X, there are 3 cases depends on number of children of e

If has no child, just simply delete X

• If has one child, have parent of X points (using the same link) to the child of X instead

• If has two children, pick either successor or predecessor of e

 Assume we choose successor p (must be in right-subtree), replace X with P and erase(p) from right-subtree



#### Erase node with 2 children

 Replace by successor (or predecessor) preserves value rules

- Successor is the minimum in right subtree
- Predecessor is the maximum in left subtree
- Both exists (because the node has both subtrees)



### Finding Successor and Predecessor

- Successor is the minimum in right-subtree
- If a tree has left-subtree, min is the min of left-subtree
  - If not, min is the root

- Predecessor is the maximum in left-subtree
- If a tree has right-subtree, max is the max of right-subtree
  - If not, max is the root

```
node* find_min_node(node* r) {
   //r must not be NULL
   node *min = r;
   while (min->left != NULL) {
      min = min->left;
   }
   return min;
}
```

```
node* find_max_node(node* r) {
  //r must not be NULL
  node *max = r;
  while (max->right != NULL) {
    max = max->right;
  }
  return max;
}
```

### Finding Successor and Predecessor (recursive)

- Successor is the minimum in right-subtree
- If a tree has left-subtree, min is the min of left-subtree
  - If not, min is the root

```
node* find_min_node(node* r) {
   //r must not be NULL
   if (r->left == NULL) return r;
   return find_min_node(r->left);
}
```

- Predecessor is the maximum in left-subtree
- If a tree has right-subtree, max is the max of right-subtree
  - If not, max is the root

```
node* find_max_node(node* r) {
  //r must not be NULL
  if (r->right == NULL) return r;
  return find_max_node(r->right);
}
```

## **Complexity Analysis**

- Insert, erase depends in find, find\_min (or find max)
- All finds start from root and in the worst case reach the leaf
  - Hence, O(h)
- Height of the tree can be in the range from n to lg n
- For 1,000,000 nodes, its in the range of [20,999999]
  - O(h) is, right now, O(n)
  - Will be fixed by AVL tree





# CP::map\_bst

Using Binary Search Tree to create associated data structure

## Layout

- Need node class
- Also need iterator class
- Template has two types
  - Key Type and Mapped Type
  - ValueType is pair<KeyType,MappedType>
- Also need custom comparator

```
template <typename KeyT,
          typename MappedT,
          typename CompareT = std::less<KeyT> >
class map bst {
 protected:
    typedef std::pair<KeyT,MappedT> ValueT;
    class node {
     friend class map bst;
     protected:
       ValueT data;
       node *left;
       node *right;
       node *parent;
    class tree iterator {
      protected:
       node* ptr;
     public:
             *mRoot;
   node
   CompareT mLess;
    size t mSize;
 public:
    typedef tree iterator iterator;
};
```

### Node Class

- Data stores both the key type and mapped type (as a pair)
- Map finds by key

```
class node {
 friend class map bst;
 protected:
   ValueT data;
   node *left;
   node *right;
   node *parent;
   node():
     data( ValueT() ), left( NULL ), right( NULL ), parent( NULL ) { }
   node(const ValueT& data, node* left, node* right, node* parent) :
     data ( data ), left( left ), right( right ), parent( parent ) { }
```

### Ctors, Dtor

```
map bst(const map bst<KeyT,MappedT,CompareT> & other) :
  mLess(other.mLess) , mSize(other.mSize)
 mRoot = copy(other.mRoot, NULL); }
                                             Recursive Copy
map_bst(const CompareT& c = CompareT() ) :
  mRoot(NULL), mLess(c) , mSize(0)
map bst<KeyT,MappedT,CompareT>& operator=(map bst<KeyT,MappedT,CompareT> other) {
  using std::swap;
  swap(this->mRoot, other.mRoot);
  swap(this->mLess, other.mLess);
  swap(this->mSize, other.mSize);
  return *this;
                       Recursive delete
~map_bst() {
  clear();
```

### **Actual Find**

Find by Key

```
iterator find(const KeyT &key) {
  node *parent;
  node *ptr = find_node(key,mRoot,parent);
  return ptr == NULL ? end() : iterator(ptr);
}
```

```
int compare(const KeyT& k1, const KeyT& k2) {
  if (mLess(k1, k2)) return -1;
  if (mLess(k2, k1)) return +1;
  return 0;
node* find node(const KeyT& k,node* r, node* &parent) {
  node *ptr = r;
  while (ptr != NULL) {
    int cmp = compare(k, ptr->data.first);
    if (cmp == 0) return ptr;
    parent = ptr;
    ptr = cmp < 0 ? ptr->left : ptr->right;
  return NULL;
```

### Insert

 Insert return pair of iterator and insert result

```
node* &child_link(node* parent, const KeyT& k)
{
   if (parent == NULL) return mRoot;
   return mLess(k, parent->data.first) ?
      parent->left : parent->right;
}
```

```
std::pair<iterator,bool> insert(const ValueT& val) {
  node *parent = NULL;
  node *ptr = find_node(val.first,mRoot,parent);
  bool not_found = (ptr==NULL);
  if (not_found) {
    ptr = new node(val,NULL,NULL,parent);
    child_link(parent, val.first) = ptr;
    mSize++;
  }
  return std::make_pair(iterator(ptr), not_found);
}
```

child\_link return a reference (the variable) to the pointer of the appropriate child of the parent with respect to k

```
size t erase(const KeyT &key) {
 if (mRoot == NULL) return 0;
 node *parent = NULL;
 node *ptr = find node(key,mRoot,parent);
 if (ptr == NULL) return 0;
 if (ptr->left != NULL && ptr->right != NULL) {
    //have two children
    node *min = find min node(ptr->right);
   node * &link = child link(min->parent, min->data.first);
   link = (min->left == NULL) ? min->right : min->left;
    if (link != NULL) link->parent = min->parent;
    std::swap(ptr->data.first, min->data.first);
    std::swap(ptr->data.second, min->data.second);
    ptr = min; // we are going to delete this node instead
  } else {
    node * &link = child link(ptr->parent, key);
   link = (ptr->left == NULL) ? ptr->right : ptr->left;
    if (link != NULL) link->parent = ptr->parent;
 delete ptr;
 mSize--:
 return 1;
```

#### Erase

Handle multiple cases

# Operator[]

```
MappedT& operator[](const KeyT& key) {
  node *parent = NULL;
  node *ptr = find_node(key, mRoot, parent);
  if (ptr == NULL) {
    ptr = new node(std::make_pair(key,MappedT()),NULL,NULL,parent);
    child_link(parent, key) = ptr;
    mSize++;
  }
  return ptr->data.second;
}
```

- Find node
- If not exists, create one with default
   MappedTypeReturn MappedType of the node

#### **Iterator**

- Just like linked list, we need a class for iterator
  - Because we need custom operator++, -- (and some more)
- Iterator class just store a pointer to a node

```
class tree_iterator {
   protected:
     node* ptr;

   public:
     tree_iterator() : ptr( NULL ) { }
     tree_iterator(node *a) : ptr(a) { }
     // more functions below
};
```

# Operator++

- 8 is successor of 5
- Find successor of x, easy if x have right-subtree
  - Just find min of right-subtree
- If not, we have to go up (go toward root) until we find one that is more than x
  - This is always the closest ancestor of x that has x in its left-subtree

```
tree iterator& operator++() {
                 10)
                        if (ptr->right == NULL) {
                           node *parent = ptr->parent;
            8
                           while (parent != NULL &&
                                  parent->right == ptr) {
3
                             ptr = parent;
                             parent = ptr->parent;
                           ptr = parent;
                         } else {
                           ptr = ptr->right;
                          while (ptr->left != NULL)
                             ptr = ptr->left;
                        return (*this);
```

# Operator--

13 is predecessor of 15

- Find predecessor of x, easy if x have left-subtree
  - Just find max of left-subtree
- If not, we have to go up (go toward root) until we find one that is less than x
  - This is always the closest
     ancestor of x that has x in its
     right-subtree

```
13)
         50
  30
```

```
tree iterator& operator--() {
 if (ptr->left == NULL) {
    node *parent = ptr->parent;
   while (parent != NULL &&
           parent->left == ptr) {
      ptr = parent;
      parent = ptr->parent;
    ptr = parent;
  } else {
    ptr = ptr->left;
   while (ptr->right != NULL)
      ptr = ptr->right;
 return (*this);
```

### Other Functions

```
tree_iterator operator++(int) {
  tree_iterator tmp(*this);
  operator++();
  return tmp;
tree_iterator operator--(int) {
  tree_iterator tmp(*this);
  operator--();
  return tmp;
ValueT& operator*() { return ptr->data;
ValueT* operator->() { return &(ptr->data); }
        operator==(const tree_iterator& other)
bool
  { return other.ptr == ptr; }
        operator!=(const tree_iterator& other)
bool
  { return other.ptr != ptr; }
```

## Summary

- Binary Search Tree relies on Value Constraint to make find fast
  - Possible to be slow (will be fixed later)
- Erase requires find min, max
- CP::map bst use pair to store KeyT and MappedT
  - Find use Key
- Iterator is just a pointer
  - Have a problem of operator-- at end() (will be fixed later)