results-figures

November 9, 2015

1 Produce the figures for the numerical results

This IPython notebook produces the error x distance-size ratio figures for the section "Evaluation of the accuracy" of the article.

The data was calculated by the tesseroid_vs_spherical_shell.ipynb notebook and saved to CSV files in the data directory of the main repository.

1.1 Load the required libraries and set the plot defaults

We'll use the pandas library to load and manipulate the data. Plots will be made with matplotlib.

```
In [1]: %matplotlib inline
        from __future__ import division
        from IPython.display import set_matplotlib_formats
        set_matplotlib_formats('svg')
        import pandas as pd
        import numpy as np
        from matplotlib import pyplot as plt
In [2]: plt.rcParams['axes.labelsize'] = 9.0 # fontsize of the x any y labels
       plt.rcParams['xtick.labelsize'] = 9.0 # fontsize of the tick labels
       plt.rcParams['ytick.labelsize'] = 9.0 # fontsize of the tick labels
       plt.rcParams['legend.fontsize'] = 9.0
       plt.rcParams['font.family'] = 'serif'
       plt.rcParams['font.serif'] = 'Computer Modern Roman'
       plt.rcParams['text.usetex'] = True # use latex for all text handling
       plt.rcParams['text.color'] = '3a3a3a'
       plt.rcParams['figure.facecolor'] = 'white'
       plt.rcParams['axes.linewidth'] = 1
       plt.rcParams['axes.edgecolor'] = '3a3a3a'
       plt.rcParams['axes.facecolor'] = 'white'
       plt.rcParams['lines.linewidth'] = 1
       plt.rcParams['lines.markersize'] = 4
       plt.rcParams['xtick.major.size'] = 2
       plt.rcParams['ytick.major.size'] = 2
```

1.2 Load the spherical shell data

And load the computed shell effect per height so that we can calculate the relative difference.

```
In [3]: shell = pd.read_csv('../data/shell-per-height.csv', index_col=0)
In [4]: shell
```

```
Out [4]:
                               gxz
                                                   gyz
                                                                           gzz
           gx
                     gxx
                          gxy
                                    gу
                                                                 gz
                                              дуу
            0 -0.350758
                                     0 -0.350758
                                                        223.788630
                                                                     0.701517
        0
                            0
                                 0
                                                     0
        1
            0 - 0.349442
                                 0
                                     0 -0.349442
                                                        223.228471
                                                                     0.698884
        2
            0 -0.342959
                                 0
                                     0 -0.342959
                                                        220.458972
                                                                     0.685919
                            0
                                                      0
            0 -0.327439
                            0
                                 0
                                     0 -0.327439
                                                     0
                                                         213.756587
                                                                     0.654878
            0 -0.311429
                                 0
                                      0 -0.311429
                                                        206.730999 0.622858
                            0
                     pot height
        0
           14278.021191
                            2000
        1
           14260.140521
                           10000
        2
           14171.404761
                           50000
           13954.322847
        3
                          150000
           13723.086957
                          260000
```

1.3 Plot the error vs distance-size ratio for the 4 experiments

Load the computed differences between the shell and tesseroid effects for each experiment. We'll use the groupby method of the *pandas* DataFrame to compute the maximum absolute difference per distance-size ratio and keep that.

This is what the data looks like after taking the maximum difference per ratio.

```
In [7]: pole.head()
```

Out[7]:	size	ratio	point		gx		gxx		gxy		gxz	gy	\
	1	0.0	99	769.	086112	854	.704698	26.	822236	5372	.013197	0.876313	
		0.5	199	11.215857		85	.182630	330 21.765414		45	. 271905	1.271564	
		1.0	299	0.463330		19	.514930	2.203664		13	.430373	0.236333	
		1.5	399	0.070450		1	.144707	0.209287		0	.557937	0.031353	
		2.0	499	0.022737		0	0.149761 0		024231 0		.120548	0.005499	
	ai ao	ratio	дуу		gyz			gz		gzz p		ot	
	size	0.0	311.835644 64.388814 12.838965		27.800405 13.539341 8.384167		686.281514 99.543785		782.758707 128.777627		33.5330	10	
	1	0.5									6.6330		
		1.0					1.027		32.012723		0.0330		
		1.5	1.392990		0.662468		0.203132		2.289414		0.0233	23	
		2.0	0.20	3828	0.123	601	0.020	666	0.28	3195	0.0070	42	

Make a plot of the maximum relative difference as a function of the distance-size ratio used in the computations.

```
fig, subplots = plt.subplots(3, 1, figsize=(3.33, 5), sharex='col')
axes = subplots.ravel()
fields = ['pot', 'gz', 'gzz']
titles = [r'V', r'gz', r'gzz']
subfigure = ['(a)', '(b)', '(c)']
for ax, f, title, sub in zip(axes, fields, titles, subfigure):
    ax.text(-0.21, 0.9, sub, fontsize=12, fontdict={'weight': 'bold'},
            transform=ax.transAxes)
    ax.text(0.5, 0.9, title, fontsize=11,
            horizontalalignment='center', verticalalignment='center',
            bbox={'facecolor': 'w',
                  'edgecolor': '#9b9b9b',
                  'linewidth': 0.5, 'pad': 8},
            transform=ax.transAxes)
    shell_low = np.abs(shell[shell.height == 2000][f].values)
    shell_high = np.abs(shell[shell.height == 260000][f].values)
    ax.plot(ratio, 100*pole[f]/shell_low, styles[0], label='pole',
            **plotargs)
    ax.plot(ratio, 100*equator[f]/shell_low, styles[1], label='equator',
            **plotargs)
    ax.plot(ratio, 100*goce[f]/shell_high, styles[2], label='260 km',
            **plotargs)
    ax.plot(ratio, 100*big[f]/shell_low, styles[3], label=r'$30^\circ$ size',
            **plotargs)
    ax.hlines(0.1, ratio.min(), ratio.max(), colors=['#3a3a3a'], linewidth=1.5)
    ax.set_xlim(ratio.min(), ratio.max())
    ax.set_yscale('log')
    ax.set_xticks(range(11))
    ax.set_yticks(ax.get_yticks()[2:-2])
    ax.set_ylabel('Difference (\\%)')
    ax.grid(True, linewidth=0.5, color='#aeaeae')
    ax.set_axisbelow(True)
    ax.minorticks_off()
ax = axes[-1]
ax.set_xlabel('Distance-size ratio')
ax.legend(borderpad=0.5, numpoints=1, bbox_to_anchor=(1, 1),
          fancybox=True, shadow=False, fontsize=9, )
plt.tight_layout(pad=0.3, h_pad=0, w_pad=0)
plt.subplots_adjust(hspace=0, wspace=0)
plt.savefig('../figs/distance-size-curves.eps') # Save the figure to an EPS
```


1.4 Plot the error curves for gzz for various heights

Load the data for the gzz difference per height. I'll use the pre-loaded spherical shell data to calculate the relative difference.

This is what the first few lines of the data look like.

In [12]: heights = gzz.index.levels[0].values # Get the unique values of the computation height

```
In [13]: heights
Out[13]: array([
                   2000.,
                            10000.,
                                       50000., 150000.,
  Now we'll make the difference x ratio plot with a curve for each height.
In [14]: color = '#3a3a3a'
         styles = "-s - -v - o -*".split()
         fig = plt.figure(figsize=(3.33, 3))
         ax = plt.subplot(111)
         for h, sty in zip(heights, styles):
             shell_value = np.abs(shell[shell.height == h]['gzz'].values)
             diff = 100*gzz.loc[int(h)]/shell_value
             markersize = 4
             if sty[-1] == '*':
                 markersize = 7
             ax.plot(ratio, diff, sty, label='\{:.0f\} km'.format(h/1000), color=color,
                     markeredgewidth=0.5, markeredgecolor=color, markersize=markersize)
         ax.hlines(0.1, ratio.min(), ratio.max(), colors=['#3a3a3a'], linewidth=1.5)
         ax.set_xlim(ratio.min(), ratio.max())
         ax.set_yscale('log')
         ax.set_xticks(range(11))
         ax.set_yticks(ax.get_yticks())
         ax.minorticks_off()
         ax.grid(True, linewidth=0.5, color='#aeaeae')
         ax.set_axisbelow(True)
         ax.set_ylabel('Difference (\\%)')
         ax.set_xlabel('Distance-size ratio')
         ax.legend(borderpad=0.5, numpoints=1, bbox_to_anchor=(1, 1),
                   fancybox=True, shadow=False, fontsize=9, )
         plt.tight_layout(pad=0.25, h_pad=0, w_pad=0)
         plt.subplots_adjust(hspace=0, wspace=0)
         plt.savefig('../figs/gzz-with-height.eps') # Save the figure to an EPS
                           10^{7}
```

