Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 2.4.1

по курсу общей физики на тему: «Определение теплоты испарения жидкости»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будет проведено измерение давления насыщенного пара жидкости при разной температуре и вычислено значение теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

2 Теоретические сведения

2.1 Испарение

Испарением называется переход вещества из жидкого в газообразное состояние. Оно происходит на свободной поверхности жидкости. При испарении с поверхности вылетают молекулы, образуя над ней пар. Для выхода из жидкости молекулы должны преодолеть силы молекулярного сцепления.

2.2 Теплота парообразования

При испарении совершается работа против внешнего давления P, поскольку объем жидкости меньше объема пара. Не все молекулы жидкости способны совершить эту работу, а только те из них, которые обладают достаточной кинетической энергией. Поэтому переход части молекул в пар приводит к обеднению жидкости быстрыми молекулами, т. е. к ее охлаждению. Чтобы испарение проходило без изменения температуры, к жидкости нужно подводить тепло. Количество теплоты, необходимое для изотермического испарения одного моля жидкости при внешнем давлении, равном упругости ее насыщенных паров, называется молярной теплотой испарения (парообразования).

2.3 Метод измерения

В настоящей работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона-Клаузиуса.

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}\tag{1}$$

Здесь P — давление насыщенного пара жидкости при температуре T, T — абсолютная температура жидкости и пара, L — теплота испарения жидкости, V_2 — объем пара, V_1 — объем жидкости. Найдя из опыта dP/dT, T, V_2 и V_1 , можно определить L путем расчета.

2.4 Приближения

В таблице 1 приведена температуры, при которой давление насыщенных паров равно атмосферному, величины V_2 и V_1 , входящие в (1), а также константы a и b в уравнении Ван-дер-Ваальса:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT
\tag{2}$$

2 Оборудование

Вещество	$T_{\text{кип}},$ K	$V_1, 10^{-6} \frac{M^3}{MOJIB}$	V_2 , $10^{-3} \frac{\text{M}^3}{\text{моль}}$	$b,$ $10^{-6} \frac{\text{M}^3}{\text{моль}}$	$a, \frac{\Pi a \cdot \mathbf{M}^6}{\text{моль}^2}$	a/V^2 , к Π а
Вода	373	18	31	26	0,4	0,42
CCl_4	350	97	29	126	1,95	2,3
Этиловый эфир	307	104	25	137	1,8	2,9
Этиловый спирт	351	58	29	84	1,2	1,4

Таблица 1. Величины в уравнении Вандер-Ваальса для разных веществ

Из таблицы видно, что V_1 не превосходит 0.5% от V_2 . При нашей точности опытов величиной V_1 в (1) можно пренебречь.

 V_2 обозначим как V. Из таблицы можно видеть, что b одного порядка с V_1 . Пренебрежем величиной b в уравнении Ван-дер-Ваальса. Также пренебрежем членом a/V^2 , так как его значение сильно меньше атмосферного давления. Это вносит ошибку менее 3%. Таким образом, при давлениях ниже атмосферного уравнение Ван-дер-Ваальса для насыщенного пра мало отличается от уравнения Клапейрона. Положим поэтому

$$V = \frac{RT}{P} \tag{3}$$

Подставляя (3) в (1), пренебрегая V_1 и разрешая уравнение относительно L, найдем

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d\ln P}{d(1/T)} \tag{4}$$

3 Оборудование

В работе используются: термостат, герметический сосуд, заполненный исследуемой жидкостью; отсчетный микроскоп

3.1 Экспериментальная установка

Схема установки изображена на рис. 1.

- 1 Резервуар, наполненный водой, который играет роль термостата
- 2 Спираль, нагревающая термостат
- 3 Змеевик, по которому течет водопроводная вода, которая охлаждает воду в термостате
- 4 Трубка, через которую поступает воздух, который перемешивается с водой
- 5 Термометр

Рис. 1. Схема установки для определения теплоты испарения

3 Оборудование

6 – Запаянный прибор с исследуемой жидкостью, погруженный в термостат

На рис. 2. приведена более полная схема установки.

Рис. 2. Схема установки для определения теплоты испарения

Установка включает:

- А Термостат
- В Экспериментальный прибор
 - 12 Емкость, заполненная водой
 - 13 Запаянный прибор с исследуемой жидкостью
 - 14 Исследуемая жидкость
 - 15 Ртутный манометр
- С Отсчетный микроскоп
 - 16 Микроскоп, настраиваемый последовательно на нижний и верхний уровни столбика ртути манометра
 - 17 Шкала, по которой снимаются показания

3.2 Преимущества и недостатки и метода измерения

Описание прибора указывает на существенное преимущество предложенного косвенного метода измерения L перед прямым. При непосредственном измерении теплоты испарения опыты нужно производить при неизменном давлении, и прибор не может быть запаян. При этом невозможно обеспечить такую чистоту и неизменность экспериментальных условий, как при нашей постановке опыта.

Описываемый прибор обладает важным недостатком: термометр определяет температуру термостата, а не исследуемой жидкости (или ее пара). Эти температуры близки друг к другу лишь в том случае, если нагревание происходит достаточно медленно.

4 Результаты измерений и обработка результатов

Нагревание			Охлаждение			
T, K	$p, \Pi a$	$\Delta p, \Pi a$	T, K	$p, \Pi a$	$\Delta p, \Pi a$	
297,92	2958,8	133,37	311,42	4454,9	87,87	
298,77	3038,8	133,38	310,60	4215,0	86,20	
299,82	3252,0	133,39	309,65	4081,7	85,21	
300,93	3452,0	133,40	308,81	3695,2	82,12	
301,93	3611,9	133,41	307,50	3375,3	79,23	
302,95	3838,5	133,43	306,56	3082,1	76,29	
304,01	4118,4	133,45	305,51	2775,6	72,85	
304,97	4318,3	133,47	304,50	2535,7	69,85	
305,95	4544,8	133,49	303,64	2295,7	66,54	
307,05	4891,4	133,52	302,67	2055,8	62,87	
308,91	5331,2	133,56	301,70	1842,6	59,25	
309,98	5651,1	133,59	300,57	1736,0	57,29	
311,05	6117,6	133,64	299,57	1442,8	51,34	
312,05	6384,1	133,67	298,60	1229,5	46,40	
313,05	6757,3	133,72	297,65	1109,6	43,34	

Таблица 2. Зависимость давления p от температуры T при нагревании и охлаждении

Нагревание			Охлаждение			
$1/T, K^{-1}$	$\ln p, \Pi a$	$\Delta \ln p$,	$1/T, K^{-1}$	$\ln p, \Pi a$	$\Delta \ln p$,	
3,36	7,99	0,36	3,21	8,81	0,17	
3,35	8,02	0,35	3,22	8,77	0,17	
3,34	8,09	0,33	3,23	8,75	0,17	
3,32	8,15	0,31	3,24	8,69	0,18	
3,31	8,19	0,30	3,25	8,64	0,19	
3,30	8,25	0,29	3,26	8,58	0,20	
3,29	8,32	0,27	3,27	8,52	0,21	
3,28	8,37	0,26	3,28	8,48	0,22	
3,27	8,42	0,25	3,29	8,42	0,22	
3,26	8,50	0,23	3,30	8,37	0,23	
3,24	8,58	0,21	3,31	8,32	0,24	
3,23	8,64	0,20	3,33	8,29	0,25	
3,21	8,72	0,19	3,34	8,22	0,26	
3,20	8,76	0,18	3,35	8,16	0,27	
3,19	8,82	0,17	3,36	8,13	0,27	

Таблица 3. Зависимость логорифма давления $\ln p$ от величины, обратной к температуре 1/T при нагревании и охлаждении

Снимем Зависимость давления p от температуры T при нагревании и охлаждении. Результаты занесем в Таблицу 2. Перепишем Таблицу 2, переходя к $\ln p$ и 1/T.

По данным таблицы 2 и 3 построим графики зависимости давления от температуры при нагревании и охлаждении.

Рис. 3. Зависимость давления p от температуры T при нагревании и охлаждении

Используя формулу (4) рассчитаем теплоту испарения воды по рис. 4:

$$L_{+}=(43.2\pm0.4){
m K}$$
Дж/моль

$$L_{\text{-}} = (39.2 \pm 0.5) \mathrm{KДж/моль}$$

Рис. 4. Зависимость логорифма давления $\ln p$ от величины, обратной к температуре 1/T при нагревании и охлаждении

5 Обсуждение результатов и выводы

В работе были получены значения для теплоты испарения воды при нагревании и охлаждении:

$$L_+=(43.2\pm0.4){
m K}$$
Дж/моль $L_-=(39.2\pm0.5){
m K}$ Дж/моль $L=(41.2\pm0.6){
m K}$ Дж/моль

Значения удовлетворяют табличным. При этом значения L_+ и L_- будут совпадать при небольшом изменении точек для апроксимации. Это очень хорошо видно из Рис. 4. Что полностью соотносится с теоритическими выводами.