How does it work?

```
library(tidyverse)
## -- Attaching packages -----
## v ggplot2 3.2.1
                    v purrr
                                0.3.3
## v tibble 2.1.3 v dplyr 0.8.3
## v tidyr 1.0.0 v stringr 1.4.0
## v readr
           1.3.1
                     v forcats 0.4.0
## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library(clusterlab)
normalize <- function(x)\{((x-min(x))/(max(x)-min(x)))\}
We are goint yo use the following dataset:
## ***clusterlab***
## mode: circle
## simulating clusters...
## finished.
```


##		[,1]	[,2]	[,3]	[,4]	[,5]
##	V1	"0.1895123"	"0.9084296"	"1.0000000"	"0.4820551"	"0.9670973"
##	V2	"0.02686126"	"0.79848540"	"1.0000000"	"0.46780742"	"0.84717833"
##	cluster	"1"	"1"	"1"	"1"	"1"
##		[,6]	[,7]	[,8]	[,9]	[,10]
##	V1	"0.0955437"	"0.6778422"	"0.000000"	"0.3996768"	"0.2922267"
##	V2	"0.38667930"	"0.46953135"	"0.0000000"	"0.69853537"	"0.37953080"
##	cluster	"2"	"2"	"2"	"2"	"2"
##		[,11]	[,12]	[,13]	[,14]	[,15]
##	V1	"0.6875977"	"0.6833037"	"0.6380608"	"0.6360855"	"0.6127692"
##	V2	"0.30746601"	"0.35589478"	"0.23335390"	"0.16782195"	"0.36987061"
##	cluster	"3"	"3"	"3"	"3"	"3"

Assignation

Update

After the assignation step a dataset with all the data + an additional column cluster containing the cluster to which the object has been assigned is available.

Now it is time to update the cluster.

- 1. For each distance function d_{ℓ} , a matrix $M_{d_{\ell}}$ containing the distance between each pair of objects o_i and o_i $d_{\ell}(o_i, o_j)$ is stored
- 2. For each cluster j, the matrices M are filtered to keep only the points that belong to the cluster j
- 3. For each point, the distance to all other points is added, obtaining a single number for each pair of object and distance function
- 4. The vector containing all the points of the dataset and their respective pair values are ranked from closest to fruthest
- 5. Borda account is applied to all the rankings obtained
- 6. The borda winner is the one chosen as centroid