Ex. No.: 1 Date: 25,7,2019

Verification of KIRCHHOFF'S LAWS

(Mesh and Wodal Analysis)

Aim: To verify the Kirchoff's subrent lair and voltage law for the given network by theoritically and experimentally.

Apparatus/Tool required:

Sl. No.	Components Name	Range	Quantity
1	Resister	330Ω , 270Ω , 390Ω , 220Ω , 180Ω	Each 1 No.
2	Ammeter	0-50mA (DC)	1 No.
3	Voltmeter	0-30V (DC)	1 No.
4	RPS	0-32 V (DC)	1 No.
5	Connecting Wires	-	Few
6	Bread Board	-	1 No.

Circuit Diagram:

Theory:

Kirchhoff's Current Law (KCL): The algebric sum of the current at any function is zero.

ZI = 0

Kirchhoff's Voltage Law (KVL): The algebric tunn of the voltage will be zero at any cloud loop.

Zv = 0

Mannul

Practical Circuit and output:

Mesh Analysis:

$$-270L_2 - 180(L_2 - L_3) - 220(R_2 - L_1) = 0$$

$$-340 f_{3} - 10 - 180(f_{3} - f_{2}) = 0$$

KNT Boof 1

SSOX 23.06×10-3 - 220 ×3.12×10-3=12

(2) 290 D I Fy \$1800 1220A T 104 At woode 1 I, = 12 + 14 - (1) $A_1 = \frac{12-v_1}{330}$, $A_2 = \frac{v_1-v_2}{240}$, $A_4 = \frac{v_1-v_2}{210}$ $\frac{12-V_1}{330} = \frac{V_1-V_2}{270} + \frac{V_1}{220}$ $\frac{12}{230} - \frac{V_1}{330} - \frac{V_1}{270} + \frac{V_2}{270} - \frac{V_1}{270} = 0$ $5) \frac{12}{230} - V_1 \left(\frac{1}{230} + \frac{1}{240} + \frac{1}{220} \right) + \frac{V_2}{240} = 0$ => [-0.01127V, +0.0037N2=-0.0364] - W At node 2 ' $I_3 + I_2 = I_5$ - win $I_3 = 10 - V_2$, $I_2 = \frac{V_1 - V_2}{270}$, $I_5 = \frac{V_2 - 0}{180}$ $\frac{2}{390} + \frac{\sqrt{1-\sqrt{2}}}{270} = \frac{\sqrt{2}}{180}$ $\frac{10}{390} - \frac{N_2}{390} + \frac{N_1}{270} - \frac{N_2}{270} = \frac{N_2}{180} = \frac{10}{180}$ 33

$$T_{1} = \frac{12-4.4}{330} = \frac{23.03mA}{330}$$

$$T_{2} = \frac{10-12}{270} = \frac{10-3.6}{270} = \frac{10-10mA}{270}$$

$$T_{3} = \frac{10-12}{270} = \frac{10-3.6}{270} = \frac{10.41mA}{210}$$

$$T_{4} = \frac{4.4}{220} = 20mA$$

$$T_{8} = \frac{3.6}{100} = 20mA$$

Procedure:	
Result: The verification of	KCL and KVL has been verified for network by theoritically and tally and the following results as ited; Practical output
Mesh Analysis: the given	network by thronitically and
Manual Calculations Labert	tally and the following risults as
Paration	way,
Parameters T	morsitical value (m A) Exp. Natural (m A)
22	3.12
\mathfrak{I}_3	-16.56 -16
Node Voltage Analysis:	18.36
Manual Calculations	Practical output
Parametres	Thursi'ti'est Valle (v) Cong Mil (v)
V,	K.4/ 4.3
v	3.6/2 2.5
12	
Inference:	
Reg. No: 19BCE2074 Na	me: KULVIK SINGH Date: 15:07.19
5. 110: 1715CE2074 Na	me: Koraik sindal pair. Ezinail)
To the text of the Bully for the second state of the text.	34