1.º Semestre 2019/2020 Duração: 60 minutos

3 fevereiro 2020

NOME		NÚMERO	
------	--	--------	--

1. (2+1 valores) A figura seguinte representa o diagrama de blocos básico do PEPE-8, processador de 8 bits, bem como as memórias a que está ligado.

a) Na tabela seguinte estão referidos os sinais que a Unidade de Controlo gera para controlar a Unidade de Dados do PEPE-8. Preencha esta tabela, especificando para cada sinal qual a sua utilidade genérica e a indicação concreta no caso de o PEPE-8 estar a executar a instrução AND [6EH], que em notação RTL quer dizer A ← A ^ M[6EH].

Sinal	Objetivo do sinal	Indicação concreta nesta instrução (ou indicação de que não interessa)
Constante	Indica um valor de dados ou um endereço	Endereço: 6EH
WR	Se estiver ativo, escreve na memória	Inativo
SEL_B	Seleciona a entrada do multiplexer B	Entrada da direita
SEL_A	Seleciona a entrada do multiplexer A	Entrada da esquerda
ESCR_A	Se estiver ativo, o registo A memoriza	Ativo
SEL_ALU	Seleciona uma operação da ALU	Operação: AND

b) Quantos bytes, no máximo, é que o PEPE-8 suporta na memória de dados?

256 bytes

2. (2+2+1+2+2 valores) Considere o seguinte programa do PEPE-16.

MOV R1, -2379 MOV R2, 0D7EH

ROR R2, 3; rotate right (rotação à direita)

ADD R1, R2

a) Indique o valor de R1 (em hexadecimal com 16 bits, usando a notação de complemento para 2) após a execução da primeira instrução.

F 6 **B** 5 H

b) Indique os valores (em binário com 16 bits, usando a notação de complemento para 2) com que R1 e R2 são inicializados, bem como os valores finais destes registos, após a execução das quatro instruções.

1	1	1	1	0	1	1	0	1	0	1	1	0	1	0	1	R1 (após os MOVs)
0	0	0	0	1	1	0	1	0	1	1	1	1	1	1	0	R2 (após os MOVs)
1	1	0	0	0	0	0	1	1	0	1	0	1	1	1	1	R2 final
1	0	1	1	1	0	0	0	0	1	1	0	0	1	0	0	R1 final

c) Neste exemplo, o resultado final deu ou não origem a excesso (overflow)? Justifique.

Não, não deu excesso, pois os valores a somar eram ambos negativos e o resultado continua a ser negativo.

d) Obtenha o <u>simétrico</u> da constante da segunda instrução, em decimal e em hexadecimal com 32 bits, em notação de complemento para 2.

-3454 simétrico, em decimal

FFFF F282 H simétrico, em hexadecimal 32 bits

e) Indique os valores numéricos (em decimal) mínimo e máximo que é possível representar com 15 bits, em notação de complemento para 2.

Mínimo: - 16384 Máximo: + 16383

3. (1 + 3 + 4 valores) Considere o seguinte programa em linguagem assembly do PEPE-16.

Endereços	_				
	PLACE	2000H			SP ← SP-2
	AA	EQU	9BH	CALL Etiqueta	M[SP]←PC
	BB	EQU	56EH	Î	PC ← Etiqueta
	CC	EQU	0B3ADH	RET	PC ← M[SP]
2000H	pilha:	TABLE	100H		SP ← SP+2
2200H	fim_pilha:				
2200H	X:	WORD	CC		
	PLACE	0H			
0000Н		MOV	SP, fim_pilha		
0002H		MOV	R0, AA		
0004H		MOV	R1, BB		
0006Н		MOV	R2, X		
0008H		MOV	R1, [R2]		
000AH		CALL	Z		
000CH	fim:	JMP	fim		
000EH	Z:	PUSH	R0		
0010H		PUSH	R1		
0012H		MOV	R0, CC		
0014H		MOV	R1, 5		
0016H		CALL	Y		
0018H		MOV	[R2], R0		
001AH		POP	R1		
001CH		POP	R0		
001EH		RET	-		
	; rotina Y: d		t) R0 à esquerda de	N bits	
			ero de bits a desloc		
0020H		PUSH	R1		
0022H	ciclo:	SHL		; deslocamento à esqu	erda
0024H		SUB	R1, 1		
0026Н		JNZ	ciclo		
0028H		POP	R1		
002AH		RET			

- a) Preencha os <u>endereços que faltam</u> (lado esquerdo, preencha apenas as linhas em que tal faça sentido). Considera-se que cada MOV com uma constante <u>ocupa apenas uma palavra</u>.
- b) Preencha as <u>instruções que faltam</u> (ou partes delas), tendo em atenção os comentários e funcionamento do programa. <u>Use apenas as linhas que necessitar</u>.
- c) Acabe de preencher a tabela da página seguinte com informação sobre os <u>acessos à memória</u> feitos pelo programa, de leitura (L) ou escrita (E). <u>Use apenas as linhas que necessitar</u>.

Endereço em que está a instrução que faz o acesso	Endereço acedido	L ou E	Valor lido ou escrito
0008H	2200H	L	B3ADH
000AH	21FEH	E	000CH
000EH	21FCH	E	009BH
0010Н	21FAH	E	B3ADH
0016Н	21F8H	E	0018H
0020Н	21F6Н	E	5
0028Н	21F6H	L	5
002AH	21F8H	L	0018H
0018H	2200H	E	75A0H
001AH	21FAH	L	B3ADH
001CH	21FCH	L	009BH
001EH	21FEH	L	000CH