信息论与编码

第四章作业解析

第三次作业情况统计

• 总人数: 111人; 交作业总人数: 77

• 交作业人数: 电子1班: 21人,总人数30人

电子2班: 27人,总人数32人

电子3班: 22人,总人数32人

电子2003级:5人,总人数15人

茅电: 2人, 总人数2人

● A (A和A-): 共计9人

电子1班: 何国军

电子2班: 王乾刚, 李炳兴, 钟如秀

电子3班: 刘杨,江燕刚,陈惠卿,曾元(A+)

茅电: 顾博川

• D: 共计1人

• 未交作业共计34人

1. 有一信源,它有6个可能的输出,其概率分布如下表所示,表中给出了对应的码A、B、C、D、E和F。

消息	$p(a_i)$	A	В	С	D	Е	F
a_1	1/2	000	0	0	0	0	0
a_2	1/4	001	01	10	10	10	100
a_3	1/16	010	011	110	110	1100	101
a_4	1/16	011	0111	1110	1110	1101	110
a_5	1/16	100	01111	11110	1011	1110	110
a_6	1/16	101	011111	111110	1101	1111	011

- (1)、求这些码中哪些是唯一可译码;
- (2)、求哪些是非延长码(即时码);
- (3)、对所有唯一可译码求出其平均码长和编码效率。

解:

唯一可译码是A,B,C,E,非延长码为A,C,E

A 的平均码长: $\bar{n} = \sum_{i=1}^{6} p(s_i) n_i = 3(1/2 + 1/4 + 1/16 + 1/16 + 1/16 + 1/16)$ = 3码符号/信源符号

编码效率: $\eta = \frac{H(s)}{n \log r} = \frac{2}{3} * 100\% = 66.67\%$

B的平均码长:

编码效率 $\eta = \frac{H(s)}{n \log r} = \frac{2}{2.125} * 100 \% = 94.12 \%$

C的平均码长:

$$\eta = \frac{H(s)}{n\log r} = 94.12\%$$

编码效率:

E的平均码长:

$$\overline{n} = \sum_{i=1}^{6} p(s_i) n_i = 1*1/2 + 2*1/4 + 4*1/16 + 4*1/16$$

+4*1/16+4*1/16=2码符号/信源符号

编码效率:
$$\eta = \frac{H(s)}{n \log r} = \frac{2}{2} * 100\% = 100\%$$

- 判唯一可译码的方法:
 - 给定一有限长码元序列,可采用下面方法判断是 否为唯一可译码:
 - 判断是否为非奇异码;
 - 等长的非奇异码一定是唯一可译码;
 - 对于非等长的非奇异码,先剔除不满足Kraft不等式的码;
 - 用定义判断.

---- 2003级 程华

2. 有一个信源 X如下:

$$\begin{bmatrix} X \\ p(x) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ 0.32 & 0.22 & 0.18 & 0.16 & 0.08 & 0.04 \end{bmatrix}$$

- (1)、求信源熵;
- (2)、用Shannon编码法编成二进制变长码,并计算其编码效率:
- (3)、用Fano编码法编成二进制变长码,并计算其编码效率;
- (4)、用Huffman码编码成二进制变长码,并计算其编码效率;
- (5)、用Huffman码编码成三进制变长码,并计算其编码效率;
- (6)、比较三种编码方法的优缺点。

解:

(1)
$$H(X) = \sum_{i=1}^{6} p(x_i) \log \frac{1}{p(x_i)} = 2.3522bit /$$
 (2) $\log_r \frac{1}{p(x_i)} \le n_i < \log_r \frac{1}{p(x_i)} + 1$

(2)
$$\log_r \frac{1}{p(x_i)} \le n_i < \log_r \frac{1}{p(x_i)} + 1$$

由于每个码长肯定是正整数,上式给出了码长选择范围。

符号	$p(x_i)$	累加概	$-\log p(x_i)$	码字	码字
		率		长度	
x_1	0.32	0	1.6439	2	0 0
x_2	0.22	0.32	2.1844	3	0 1 0
x_3	0.18	0.54	2.4739	3	1 0 0
X_4	0.16	0.72	2.6439	3	1 0 1
X_5	0.08	0.88	3.6439	4	1 1 1 0
X_6	0.04	0.96	4.6439	5	1 1 1 1 0

平均码长 $\overline{n} = 2.84$ 码符号/信源符号

编码效率
$$\eta = \frac{H(X)}{\overline{n} \log r} = \frac{2.3522}{2.84 \log 2} \times 100 \% = 82.82 \%$$

FANO编码

符号	P(xi)								码字	码字 长度
X 1	0.32	0.54	0	0					00	2
X 2	0.22			1					01	2
X 3	0.18			0.18	0				10	2
X 4	0.16					0.16	0		110	3
X 5	0.08	0.46	1	0.28	1	0.12	1	0	1110	4
X 6	0.04							1	1111	4

平均码字长度 $\overline{n} = 2.4$ 码符号/信源符号

编码效率
$$\eta = \frac{H(X)}{\overline{n}\log r} = \frac{2.3522}{2.4\log 2} \times 100\% = 98\%$$

二进制Huffman编码

 \mathbf{O}

符号	$p(x_i)$					码字	码字 长度
X 1	0.32	0.3 2	-0.32	0.4 0	0.60	0 0 0	2
X 2	0.22	-0.22	0.28	0.32	0.40^{1}	1 0	2
X 3	0.18	-0.18	0.22	0.28		1 1	2
X 4	0.16	0.16	0.18			0 1 0	3
X 5	0.08	0.1 2 1				0 1 1 0	4
X 6	0.04					0 1 1 1	4

平均码字长度
$$\overline{n} = 2.4$$
 码符号/信源符号
编码效率 $\eta = \frac{H(X)}{\overline{n} \log r} = \frac{2.3522}{2.4 \log 2} \times 100\% = 98\%$

三进制Huffman编码

首先,判断
$$q-(r-1)\alpha=r$$

$$6-(3-1)\times 2=2<3$$
 选择 $m=r-[q-(r-1)\alpha]=3-2=1$ 个虚假符号

符号	$p(x_i)$			码字	码字长度
X 1	0.32	0.32	_0.48	0 1	1
X 2	0.22	0.22	0.32	1 2	1
X 3	0.18	0.18	0.22	2 00	2
X 4	0.16	0.16		01	2
X 5	0.080	0.12 2		020	3
X 6	0.04			021	3
X'	02			022	舍去

平均码字长度 n = 1.58 码符号/信源符号 编码效率 $\eta = \frac{H(X)}{\overline{n} \log r} = \frac{2.3522}{1.58 \log 3} \times 100\% = 93.93\%$

3. 现有一幅已离散量化后的图像,图像的灰度量化分成8级,如下表所示。表中数字为相应像素上的灰度级

1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	3	3	3
3	3	3	3	3	3	3	4	4	4
4	4	4	4	4	4	4	5	5	5
5	5	5	5	6	6	6	6	6	6
7	7	7	7	7	8	8	8	8	8

另有一无噪无损二元信道,单位时间(秒)内传输100个 二元符号。

- (1)、现将图像通过给定的信道传输,不考虑图像的任何统计特性,并采用二元等长码,问需要多长时间才能传送完这幅图像?
- (2)、若考虑图像的统计特性(不考虑图像的像素之间的依赖性),求这幅图像的信源熵*H*(*S*),并对每个灰度级进行Huffman最佳二元编码,问平均每个像素需用多少二元码符号来表示?这时需多少时间才能传送完这幅图像?
- (3)、从理论上简要说明这幅图像还可以压缩,而且平均每个像素所需的二元码符号数可以小于*H(S)*比特。

解:

(1)一幅已离散化后的图象,其灰度划分成8级, 先不考虑图象的任何统计特性,采用二元等长码,因为 q=8,所以要满足

$$2^l \ge q = 8$$

故 l=3 二元码符号 / 灰度级即每个灰度等级需采用三位二元符号来传输。

这一幅图象空间离散化后共有N=100个像素,每个像素的灰度需用三个二元符号来编码,所以这幅图象采用二元等长码后共需300个二元符号来描述。所传输的信道是无噪无损信道,其每秒钟传输100个二元符号。因此,需3秒钟才能传送完这幅图象。

(2)考虑图象的统计特性(不考虑图象的像素之间的依赖性)时,根据此图象进行统计,把像素的灰度值作为信源S,可得

$$\begin{bmatrix} S \\ P(s_i) \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \frac{40}{100} & \frac{17}{100} & \frac{10}{100} & \frac{10}{100} & \frac{7}{100} & \frac{6}{100} & \frac{5}{100} & \frac{5}{100} \end{bmatrix}$$

所以
$$H(S) = -\sum_{i=1}^{8} p(s_i) \log p(s_i) \approx 2.572$$
 比特 / 灰度级

对此灰度进行哈夫曼最佳二元编码:

码 $长 l_i$	码字	灰度 级	概率 $P(s_i)$					
1	1	1	0.40	0.40	0.40	0.40	0.40	0.60_0
3	001	2	0.17	0.17	0.20	0.23 0.20—0	0.37—0/ 0.23—1	`0.40—1
4	0000	3	0.10	0.10	0.13—0	0.17—1		
4	0001	4	0.10	0.10—0 0.10—1	0.10—1			
4	0100	5	0.07 0					
4	0101	6	0.06 1					
4	0110	7	0.050					
4	0111	8	0.05 1					

得

$$\bar{L} = \sum_{i=1}^{8} P(s_i) l_i = 2.63$$
 二元符号 / 灰度级

通过哈夫曼最佳二元编码后,每个像素平均需要用 2.63个二元符号,则此图象平均共需要用263个二元符 号来表示。因此,需2.63秒才能传送完这幅图象。

(3) 在(2) 题中计算时没有考虑图象的像素之间的依赖 关系,但实际此图象的像素之间是有依赖的。例如,若 考虑像素前后之间灰度的依赖关系,就有灰度"1"后 面只可能出现灰度"1"或 "2": 灰度"2"后只可能 出现"2"或"3",等等。这时,此图象灰度值信源 S 可以看成一阶马尔可夫信源。还可以进一步看成为m阶马尔可夫信源。因此,在考虑了这些依赖关系后,像 素的灰度值信源S的实际信息熵 $H_{\infty} < H(S)$ 。根据香农第 一理, 总可以找到一种编码, 使每个灰度级的平均码 长 $L \to H_{\infty}$ (极限熵)。所以,这幅图象还可以进一步压缩, 平均每个像素(灰度)所需要的二元码符号数L < H(S)。