## **ASSOCIATION RULE MINING**

## Association Rule

## What is Market Basket Analysis?

- Finding some useful information in 'market basket'
- What kinds of information?
  - Who customers are
  - Which products tend to be purchased together
  - Why some products tend to be purchased together
- □ Association rule: Information like "If item A then item B"  $(A \Rightarrow B)$



Collecting transactions & finding useful information

#### **Point of Sale Transactions**

Transaction and item

| Datetime         | Customer | ltems                           |
|------------------|----------|---------------------------------|
| 2015-07-15 14:03 | 1        | orange juice, banana            |
| 2015-07-15 16:20 | 2        | orange juice, milk              |
| 2015-07-16 10:14 | 3        | detergent, banana, orange juice |
| 2015-07-25 19:34 | 2        | milk, bread, soda               |
| 2015-07-29 09:41 | 4        | detergent, window cleaner       |
| 2015-08-01 20:55 | 1        | bread, milk                     |

- Find pair of items that is more likely to be purchased together based on transactions
  - Banana and orange juice are more likely to be purchased together
  - Milk and bread are more likely to be purchased together

#### **Association Rules**

- Association rules obtained from transactions are like
   "If item A, then item B"
  - Rules are defined from co-occurrence of items in the same market basket
- Three types of rules
  - Useful: contains high quality, actionable information
    - On Thursday, customer who purchase diapers are likely to purchase beer
  - Trivial: already known by anyone familiar with the business
    - Customers purchasing paint buy pain brushes
  - Inexplicable: new but no explanation about customer behavior
    - When a new hardware store opens, one of the most commonly sold items is toilet rings

#### **General Process for Finding Rules**



## Rule: If 'condition', then 'result'

- Support
  - How many transactions that contain 'condition(X)' and 'result(Y)' simultaneously

- Confidence
  - How many transactions that contain 'condition(X)' and 'result(Y)' among transactions including 'condition'

$$Conf(X \Rightarrow Y) = P(Y|X) = \frac{Supp(X \cup Y)}{Supp(X)}$$

$$= \frac{\# \ of \ transactions \ that \ include \ both \ condition \ and \ result}{\# \ of \ transactions \ that \ include \ condition}$$

#### Total transactions



- Low support
  - This rule rarely happens → not interesting
- High support, but low confidence
  - Both 'condition' and 'result' are quite often observed, but comparing with the number of transactions that include condition are much more
  - The reason that support of the rule is high may be that the number of transactions that include condition is high
- High support and high confidence
  - This rule is significant rule
  - However, high support and high confidence do not guarantee usefulness of the rule

#### **Example: Association Rule**

Example rules from given transactions

| TID | Items                |
|-----|----------------------|
| 1   | bread, milk, butter  |
| 2   | bread, butter        |
| 3   | bread, juice, butter |
| 4   | bread, beer          |
| 5   | beer, juice          |

If bread, then butter (bread ⇒ butter)

$$support = \frac{3}{5}, confidence = \frac{3}{4}$$

■ If beer, then bread (beer ⇒ bread)

$$support = \frac{1}{5}, confidence = \frac{1}{2}$$

- Lift or improvement
  - How much better a rule is at predicting the result than just guessing the result at random

$$\begin{split} & \operatorname{lift}(X \Longrightarrow Y) = \frac{P(Y|X)}{P(Y)} = \frac{\operatorname{Supp}(X \cup Y)}{\operatorname{Supp}(X) \times \operatorname{Supp}(Y)} \\ & = \frac{(\# \ of \ transactions \ that \ include \ both \ condition \ and \ result) \times (\# \ of \ transactions)}{(\# \ of \ transactions \ that \ include \ condition)(\# \ of \ transactions \ that \ include \ result)} \end{split}$$

| Improvement | Interpretation 🚜          | Example              |
|-------------|---------------------------|----------------------|
| 1           | Two items are independent | pepper and cookies   |
| >1          | Complementary 💖           | Bread and butter     |
| <1          | Substitutional TIM        | Butter and margarine |

→ In this case, If A, then NOT B is better than If A, then B

#### Conviction

 Conviction measures the implication strength of the rule from statistical independence

$$conv(X \Longrightarrow Y) = \frac{1 - supp(Y)}{1 - conf(X \Longrightarrow Y)} = \frac{P(X) \times P(\sim Y)}{P(X \cup \sim Y)}$$

- $\blacksquare$   $P(\sim Y)$  is the probability that Y does not appear in a transaction
- $lue{\Box}$  Conviction compares the probability that X appears without Y if they were dependent with the actual frequency of the appearance of X without Y
- Unlike confidence, conviction factors in both P(X) and P(Y) and always has a value 1 when the relevant items are completely unrelated.
- In contrast to lift, conviction is directed measure because it also uses the information of the absence of the consequent

## Question

- Calculate performance measures of the rule
  - Rule1:  $a \Rightarrow b$
  - Rule2:  $e \Rightarrow f$
  - Rele3: b and  $c \Rightarrow g$

- 1) Calculate support of above three rules
- 2) Calculate confidence of above three rules == {
- 3) Calculate lift of above three rules



4) Calculate conviction of above three rules



| TID | Items         |
|-----|---------------|
| 1   | b, c, g       |
| 2   | a, b, d, e, f |
| 3   | a, b, c, g    |
| 4   | b, c, e, f    |
| 5   | b, c, e, f, g |

## **Pros and Cons of Market Basket Analysis**

#### **Pros**

- Produces understandable and clear results (association rules)
- Handle transactions themselves
- Computational method is simple to implement and understand

#### Cons

- Require much more computation resource as the problem size grows
- Sometimes require to utilize the taxonomy for mining better rules and reducing complexity
- Discount rare items

association vules nymote objects an

## Apriori Algorithm

#### **Practical Issues on Market Basket Analysis**

- Exponential growth on distinct combinations as the number of items increases
  - If 100 items are sold in the store, the number of combinations with 3 items

$$C(100,3) = \frac{100!}{3!97!} = \frac{100 \times 99 \times 98}{3 \times 2} = 161,700$$

- Methods to solve rapid growth on problem size
  - Use the taxonomy: generalize items that can meet criterion
    - Vanilla ice cream ∈ Ice cream ∈ Frozen food ∈ Food
    - When there are too many items to handle, use higher level of category instead to reduce combinations
  - Use pruning: throw out item or combination of items that do not meet criterion
    - Minimum support pruning is the most common method

## **Apriori Algorithm**

- Apriori is the algorithm to mine rules from transactions
  - Key idea is that any subsets of a frequent item set are also frequent item sets

 $\{1,2,3\}$  is frequent item set  $\Rightarrow \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}$  are frequent item set

Phase

• Find all frequent item sets having specified minimum support  $s_{min}$ 

Phase 2

- Consider a subset A of a frequent item set L
  - For a specified confidence  $c_{min}$  if  $support(L)/support(A) \ge c_{min}$ , then generate a rule  $R: A \Rightarrow (L A)$

## **Apriori Algorithm - Phase 1**

• [initial step] Specify the minimum support  $s_{min}$  and set k=1

•  $C_1 = \{\{i_1\}, \{i_2\}, \dots, \{i_n\}\}\$   $L_1 = \{c \in C_1 | support(c) \ge s_{min}\}\$ 

- Set k=k and Generate new candidate item sets  $C_k$  from  $L_{k-1}$ 
  - Generate item sets  $C_k$  by joining like  $C = L_{k-1} \times L_{k-1}$
  - Delete all item sets whose any subsets are not in  $L_{k-1}$  from  $\mathcal{C}_k$

• Generate  $L_k$  such that  $L_k = \{c \in C_k | support(c) \ge s_{min}\}$ 

• Repeat step 2 and 3 until  $C_k = \phi$ 

## **Apriori Algorithm - Phase 1**

Key idea of phase 1 null В D Α AB AC BC CD ADBD ABC ABD ACD BCD **ABCD** 

## **Example: Apriori Algorithm - Phase 1**

- $\Box$  Generate  $C_k$  and  $L_k$ 
  - Set  $s_{min}$ =0.4

$$C_1 = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}\}\}$$

$$L_1 = \{\{a\}, \{b\}, \{c\}, \{e\}, \{f\}, \{g\}\}\}$$

Remove infrequent item sets

Generate item sets by joining

$$C_2 = \{\{a,b\}, \{a,c\}, \{a,e\}, \{a,f\}, \{a,g\}, \{b,c\}, \{b,e\}, \{b,f\}, \{b,g\}, \{c,e\}, \{c,f\}, \{c,g\}, \{e,f\}, \{e,g\}, \{f,g\}\}\}$$

$$L_2 = \{\{a,b\}, \{b,c\}, \{b,e\}, \{b,f\}, \{b,g\}, \{c,e\}, \{c,f\}, \{c,g\}, \{e,f\}\}\}$$

$$C_3 = \{\{b,c,e\},\{b,c,f\},\{b,c,g\},\{b,e,f\},\{c,e,f\}\}\}$$

$$L_3 = \{\{b, c, e\}, \{b, c, f\}, \{b, c, g\}, \{b, e, f\}, \{c, e, f\}\}\}$$

 $\{a,b,c\}$  is removed from  $C_3$  because  $\{a,c\}$  does not belong to  $L_2$ 

$$C_4 = \{\{b, c, e, f\}\}$$

$$L_4 = \{\{b, c, e, f\}\}$$

## Question

- $\Box$  Generate  $C_k$  and  $L_k$ 
  - Set  $s_{min}$ =0.4

| TID | ltems                |
|-----|----------------------|
| 1   | bread, milk, butter  |
| 2   | bread, butter        |
| 3   | bread, juice, butter |
| 4   | bread, beer          |
| 5   | beer, juice          |

- 1) Generate  $C_1$  and  $L_1$   $C_1 = F \neq bread 9 \neq braile 9 \neq brail$
- 2) Generate  $C_2$  and  $L_2$

Go PShart buttery & break satisfy bead bear place fourtees soor &

## **Example: Apriori Algorithm - Phase 2**

- Rule generation
  - Candidate frequent item set  $L = \{b, c, g\}$
  - Rules having 1 item in result

$$R_1: \{b, c\} \Longrightarrow \{g\}$$
  
 $R_2: \{b, g\} \Longrightarrow \{c\}$   
 $R_3: \{c, g\} \Longrightarrow \{b\}$ 

| TID | Items         |  |  |
|-----|---------------|--|--|
| 1   | b, c, g       |  |  |
| 2   | a, b, d, e, f |  |  |
| 3   | a, b, c, g    |  |  |
| 4   | b, c, e, f    |  |  |
| 5   | b, c, e, f, g |  |  |

| Rule                                    | Support( $\{b, c, g\}$ ) | Support(condition) | Confidence   |
|-----------------------------------------|--------------------------|--------------------|--------------|
| $R_1:\{b,c\}\Longrightarrow\{g\}$       | 0.6                      | 0.8                | 0.6/0.8=0.75 |
| $R_2: \{b, g\} \Longrightarrow \{c\}$   | 0.6                      | 0.6                | 0.6/0.6=1    |
| $R_3$ : $\{c,g\} \Longrightarrow \{b\}$ | 0.6                      | 0.6                | 0.6/0.6=1    |

#### **How to Efficiently Generate Rules**

- Confidence is not anti-monotonic
  - $lue{}$  confidence(ABC  $\Longrightarrow$  D) can be larger or smaller than confidence(AB  $\Longrightarrow$  D)
- However, confidence of rules generated from the same item set is anti-monotonic with respect to the number of items in result
  - All conditions should be subsets of the largest condition

 $confidence(ABC \Rightarrow D) \geq confidence(AB \Rightarrow CD) \geq confidence(A \Rightarrow BCD)$ 



If the rule  $ABC \Rightarrow D$  has lower confidence than certain value

Then,  $BC \Rightarrow AD$ ,  $AC \Rightarrow BD$ ,  $BD \Rightarrow CD$ ,  $C \Rightarrow ABD$ ,  $B \Rightarrow ACD$ ,  $A \Rightarrow BCD$  have lower confidence than certain value

#### Set Up $s_{min}$

- If  $s_{min}$  is too high, we can miss item sets containing interesting rare items (e.g., expensive products)
- $\square$  If  $s_{min}$  is too low, the number of frequent item sets increases and computational cost becomes expensive



Always, it is really hard to set "appropriate" parameter

It is not effective to use a single  $s_{min}$ 

- Why Frequent Pattern Growth (FP-Growth) ?
  - The Apriori algorithm is widely used for association rule mining, but it has significant drawbacks
    - It generates a large number of candidate itemsets, leading to high computational costs
    - It requires multiple scans of the database, which can be slow for large datasets
- FP-Growth solves these problems by
  - Using a tree-based data structure (FP-tree) to store frequent items compactly
  - Avoiding candidate generation, reducing computational complexity

- The FP-Growth algorithm consists of two main steps
  - 1. Building the FP-Tree
  - 2. Mining frequent patterns from the FP-Tree

- Step 1: Building the FP-Tree
  - 1. Scan the dataset once to find the frequency of all individual items
  - 2. Filter out infrequent items based on a minimum support threshold
  - 3. Sort the frequent items in descending order of support (ties are resolved arbitrarily)
  - 4 Construct the FP-tree
    - The root is a null node
    - For each transaction
      - Follow the path in the tree corresponding to its frequent items
      - If a node already exists for an item, increment its count
      - Otherwise, create a new node

 Step 1-1: Scan the dataset once to find the frequency of all individual items

| TID | ltems                  |
|-----|------------------------|
| 1   | f, a, c, d, g, i, m, p |
| 2   | a, b, c, f, l, m, o    |
| 3   | b, f, h, j, o          |
| 4   | b, c, k, s, p          |
| 5   | a, f, c, e, l, p, m, n |



| ltem | Frequency | ltem | Frequency |
|------|-----------|------|-----------|
| а    | 3         | j    | 1         |
| b    | 3         | k    | 1         |
| С    | 4         |      | 2         |
| d    | 1         | m    | 3         |
| е    | 1         | n    | 1         |
| f    | 4         | 0    | 2         |
| g    | 1         | р    | 3         |
| h    | 1         | S    | 1         |
| i    | 1         |      |           |

 Step 1-2: Filter out infrequent items based on a minimum support threshold

■ Let 
$$s_{min} = 3$$

| ltem | Frequency | ltem | Frequency |
|------|-----------|------|-----------|
| а    | 3         | j    | 1         |
| b    | 3         | k    | 1         |
| С    | 4         |      | 2         |
| d    | 1         | m    | 3         |
| е    | 1         | n    | 1         |
| f    | 4         | 0    | 2         |
| g    | 1         | р    | 3         |
| h    | 1         | S    | 1         |
| i    | 1         |      |           |



| ltem | Frequency |
|------|-----------|
| а    | 3         |
| b    | 3         |
| С    | 4         |
| f    | 4         |
| m    | 3         |
| р    | 3         |

Step 1-3: Sort the frequent items in descending order of support

| Item | Frequency |
|------|-----------|
| а    | 3         |
| b    | 3         |
| С    | 4         |
| f    | 4         |
| m    | 3         |
| р    | 3         |



| ltem | Frequency |  |
|------|-----------|--|
| f    | 4         |  |
| С    | 4         |  |
| a    | 3         |  |
| b    | 3         |  |
| m    | 3         |  |
| р    | 3         |  |

| TID | ltems                  |  |
|-----|------------------------|--|
| 1   | f, a, c, d, g, i, m, p |  |
| 2   | a, b, c, f, l, m, o    |  |
| 3   | b, f, h, j, o          |  |
| 4   | b, c, k, s, p          |  |
| 5   | a, f, c, e, l, p, m, n |  |



| TID | Items         |  |
|-----|---------------|--|
| 1   | f, c, a, m, p |  |
| 2   | f, c, a, b, m |  |
| 3   | f, b          |  |
| 4   | c, b, p       |  |
| 5   | f, c, a, m, p |  |

- Step 1-4: Construct the FP-tree
  - Reading TID1= {f, c, a, m, p}



- Step 1-4: Construct the FP-tree
  - Reading TID2= {f, c, a, b, m}



- Step 1-4: Construct the FP-tree
  - Reading TID3= {f, b}



- Step 1-4: Construct the FP-tree
  - Reading TID4= {c, b, p}



- Step 1-4: Construct the FP-tree
  - Reading TID5= {f, c, a, m, p}



- Step 2: Recursive Pattern Growth
  - 1. For each frequent item, compute conditional pattern bases
  - 2. Fore each frequent item, construct a conditional FP-tree
  - 3. Recursively mine the conditional FP-tree to find frequent patterns

Step 2-1: For each frequent item, compute conditional pattern bases



| Item | Conditional pattern base          |
|------|-----------------------------------|
| f    | {}                                |
| С    | {{f:3}}                           |
| а    | {{f, c : 3}}                      |
| b    | {{f, c, a : 1}, {f : 1}, {c : 1}} |
| m    | {{f, c, a : 2}, {f, c, a, b : 1}} |
| р    | {{f, c, a, m : 2}, {c, b : 1}}    |

Step 2-2: For each frequent item, construct a conditional FP-tree

| Item | Conditional pattern base                    | Conditional FP-tree |
|------|---------------------------------------------|---------------------|
| f    | {}                                          | {}                  |
| С    | {{f:3}}                                     | {f:3}               |
| а    | {{f, c : 3}}                                | {f, c:3}            |
| b    | $\{\{f, c, a : 1\}, \{f : 1\}, \{c : 1\}\}$ | {}                  |
| m    | {{f, c, a : 2}, {f, c, a, b : 1}}           | {f, c, a:3}         |
| р    | {{f, c, a, m : 2}, {c, b : 1}}              | {c:3}               |

 Step 2-3: Recursively mine the conditional FP-tree to find frequent patterns

| Item | Conditional pattern base          | Conditional FP-tree | Frequent patterns                                     |
|------|-----------------------------------|---------------------|-------------------------------------------------------|
| f    | {}                                | {}                  | {}                                                    |
| С    | {{f:3}}                           | {f:3}               | { <f,c:3>}</f,c:3>                                    |
| а    | {{f, c : 3}}                      | {f, c:3}            | { <f, 3="" :="" a="">, <c, 3="" :="" a="">,</c,></f,> |
| b    | {{f, c, a : 1}, {f : 1}, {c : 1}} | {}                  | {}                                                    |
| m    | {{f, c, a : 2}, {f, c, a, b : 1}} | {f, c, a:3}         | { <f, 3="" :="" m="">, <c, 3="" :="" m="">,</c,></f,> |
| р    | {{f, c, a, m : 2}, {c, b : 1}}    | {c:3}               | { <c,p:3>}</c,p:3>                                    |

# Applications

#### **Applications of Association Rules**

- Another example of association rule mining
  - Ex.) Mushroom data
    - Classify edibility based on the descriptions of mushroom
    - https://archive.ics.uci.edu/ml/datasets/mushroom



By applying association rule mining, it can be possible to characterize poisoned mushrooms and edible mushrooms

#### **Applications of Association Rules**

- Mushroom dataset
  - Attribute Information: (classes: edible=e, poisonous=p)
  - cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s
  - cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s
  - cap-color: brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u, red=e, white=w, yellow=y
  - 4) bruises?: bruises=t, no=f
  - odor: almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, pungent=p, spicy=s
  - 6) gill-attachment: attached=a, descending=d, free=f, notched=n
  - gill-spacing: close=c,crowded=w,distant=d
  - 8) gill-size: broad=b,narrow=n
  - gill-color: black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, orange=o, pink=p, purple=u, red=e, white=w,yellow=y
  - 10) stalk-shape: enlarging=e,tapering=t
  - stalk-root: bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, missing=?

#### **Applications of Association Rules**

- Mushroom dataset
  - Attribute Information: (classes: edible=e, poisonous=p)
  - 12) stalk-surface-above-ring: fibrous=f, scaly=y, silky=k, smooth=s
  - 13) stalk-surface-below-ring: fibrous=f, scaly=y, silky=k, smooth=s
  - stalk-color-above-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y
  - stalk-color-below-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y
  - 16) veil-type: partial=p, universal=u
  - 17) veil-color: brown=n, orange=o, white=w, yellow=y
  - 18) ring-number: none=n, one=o, two=t
  - ring-type: cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p, sheathing=s, zone=z
  - spore-print-color: black=k, brown=n, buff=b, chocolate=h, green=r, orange=o, purple=u, white=w, yellow=y
  - 21) population: abundant=a, clustered=c, numerous=n, scattered=s, several=v, solitary=y
  - habitat: grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, woods=d