VOLUME B

ELEMENT LIBRARY

Contents

•	Contents	1
•	Introduction	3
•	Element Classifications	4
•	Element 0 - Two-node Truss Element	6
•	Element 1 - Three-node Truss Element	9
•	Element 2 - Four-node Truss Element	12
•	Element 3 - Four-node Plane Stress Element	15
•	Element 4 - Eight-node Plane Stress Element	19
•	Element 5 - Three-node Plane Stress Element	23
•	Element 6 - Six-node Plane Stress Element	27
•	Element 7 - Twelve-node Plane Stress Element	31
•	Element 8 - Four-node Plane Strain Element	35
•	Element 9 - Eight-node Plane Strain Element	39
•	Element 10 - Twelve-node Plane Strain Element	43
•	Element 11 - Three-node Plane Strain Element	47
•	Element 12 - Six-node Plane Strain Element.	51
•	Element 13 - Two-node Thick Beam Element	55
•	Element 14 - Three-node Thick Beam Element	60
•	Element 15 - Four-node Thick Beam Element	65
•	Element 16 - Four-node Thick Shell Element	70
•	Element 17 - Eight-node Thick Shell Element	75
•	Element 18 - Six-node Thick Shell Element	80
•	Flement 19 - Four-node Doubly Curved Thick Shell Flement	85

•	Element 20 - Eight-node Doubly Curved Thick Shell Element	90
•	Element 21 - Six-node Doubly Curved Thick Shell Element	95
•	Element 22 - Eight-node Solid Element	100
•	Element 23 - Twenty-node Solid Element	104
•	Element 24 - Four-node Thick Plate Element	108
•	Element 25 - Eight-node Thick Plate Element	113
•	Element 26 - Six-node Thick Plate Element	118
•	Element 27 - Two-node Curved Thick Beam Element	123
•	Element 28 - Three-node Curved Thick Beam Element	128
•	Element 29 - Four-node Curved Thick Beam Element	133
•	Element 30 - Four-node Solid Element	138
•	Element 31 - Ten-node Solid Element	142

Introduction

SolidMAT contains an extensive element library. These elements provide coverage of truss, plane stress and plane strain structures, plate, beam and arbitrary shell structures, and full three-dimensional solid structures. A short description of each element and a summary of the data necessary for the use of elements are included in this section. The general outline of element descriptions is as follows,

- Element Characteristics
- Element Assignments
- Element Output

Note that many elements serve the same purpose. You should be aware that though the accuracy of the solution increases with the interpolation degree of elements, the bandwidth of the resulting system stiffness matrix also increases. The optimization of demanded accuracy level, element mesh characteristics and interpolation degrees, and storage-solution time requirements requires you to exercise your analytical skills and judgement. In return, you are rewarded, for instance, by a more accurate stress and displacement picture.

In general, the lower order quadrilateral elements give significantly better results than triangular elements in two dimensions, and similar conclusion applies in three dimensions for hexahedral and tetrahedral elements. For a number of elements in SolidMAT, a selective integration scheme is used to determine the stiffness matrix of the element. This is especially realized for elements using shear-deformable theories, in order to overcome a possible shear locking effect in which case the element stiffness matrix becomes stiff. In such a scheme, the integration of related terms (i.e. transverse shear and/or membrane-bending coupling) is not exact; the contribution of the highest order terms in the deformation field is neglected. Selective integration elements have specific advantages and disadvantages. The most obvious advantage is the reduced cost for element assembly, and as mentioned, more realistic element behavior when the element is very thin. But the same feature also forms the disadvantage of the element. Each of the selective integration elements has some specific higher-order deformation mode(s) which do not give any contribution to the strain energy in the element. So, these elements must be used cautiously.

■ Element Classifications

General Classification				
Туре	Geometry	Mechanics	Interpolation	
<u>0</u>	Line	Truss	Linear	
<u>1</u>	Line	Truss	Quadratic	
<u>2</u>	Line	Truss	Cubic	
<u>3</u>	Quadrilateral	Plane Stress	Linear	
<u>4</u>	Quadrilateral	Plane Stress	Quadratic	
<u>5</u>	Triangular	Plane Stress	Linear	
<u>6</u>	Triangular	Plane Stress	Quadratic	
<u>7</u>	Quadrilateral	Plane Stress	Cubic	
<u>8</u>	Quadrilateral	Plane Strain	Linear	
9	Quadrilateral	Plane Strain	Quadratic	
<u>10</u>	Quadrilateral	Plane Strain	Cubic	
<u>11</u>	Triangular	Plane Strain	Linear	
<u>12</u>	Triangular	Plane Strain	Quadratic	
<u>13</u>	Line	Beam	Linear	
<u>14</u>	Line	Beam	Quadratic	
<u>15</u>	Line	Beam	Cubic	
<u>16</u>	Quadrilateral	Shell	Linear	
<u>17</u>	Quadrilateral	Shell	Quadratic	
<u>18</u>	Triangular	Shell	Quadratic	
<u>19</u>	Quadrilateral	Doubly Curved Shell	Linear	
<u>20</u>	Quadrilateral	Doubly Curved Shell	Quadratic	
<u>21</u>	Triangular	Doubly Curved Shell	Quadratic	
<u>22</u>	Hexahedral	Solid	Linear	
<u>23</u>	Hexahedral	Solid	Quadratic	
<u>24</u>	Quadrilateral	Plate	Linear	
<u>25</u>	Quadrilateral	Plate	Quadratic	
<u>26</u>	Triangular	Plate	Quadratic	
<u>27</u>	Line	Curved Beam	Linear	
<u>28</u>	Line	Curved Beam	Quadratic	
<u>29</u>	Line	Curved Beam	Cubic	
<u>30</u>	Tetrahedral	Solid	Linear	
<u>31</u>	Tetrahedral	Solid	Quadratic	

Mechanical Classification		
Mechanics	Туре	
Truss	<u>0</u> , <u>1</u> , <u>2</u>	
Beam	<u>13, 14, 15</u>	
Curved Beam	<u>27, 28, 29</u>	
Plane Stress	<u>3</u> , <u>4</u> , <u>5</u> , <u>6</u> , <u>7</u>	
Plane Strain	<u>8, 9, 10, 11, 12</u>	
Plate	<u>24, 25, 26</u>	
Shell	<u>16, 17, 18</u>	
Doubly Curved Shell	<u>19, 20, 21</u>	
Solid	<u>22, 23, 30, 31</u>	

Geometrical Classification			
Geometry	Туре		
Line	0, 1, 2, 13, 14, 15, 27, 28, 29		
Quadrilateral	3, 4, 7, 8, 9, 10, 16, 17, 19, 20, 24, 25		
Triangular	<u>5, 6, 11, 12, 18, 21, 26</u>		
Hexahedral	<u>22, 23</u>		
Tetrahedral	<u>30, 31</u>		

Interpolation Classification		
Interpolation	Туре	
Linear	0, 3, 5, 8, 11, 13, 16, 19, 22, 24, 27, 30	
Quadratic	1, 4, 6, 9, 12, 14, 17, 18, 20, 21, 23, 25, 26, 28, 31	
Cubic	<u>2, 7, 10, 15, 29</u>	

Element 0 - Two-node Truss Element

Element Characteristics

Mechanics

This is a three dimensional, constant cross section, straight truss element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated analytically.

Geometry and Nodes

Element has two nodes. Three coordinates per node in global x, y and z direction, and a constant cross section are given as input. Axial rotation can be assigned as user-defined local axes.

Figure – Element 0

Interpolation

Element has linear-Lagrange interpolation functions.

Degrees of Freedom

- u_x displacement
- u_v displacement
- u_z displacement

Local dofs (per node) are:

• u₁ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit length (uniform or linear)
- f_v force per unit length (uniform or linear)
- f_z force per unit length (uniform or linear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit length (uniform or linear)
- Gravity loading in local 1 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit length
- mu_v translational mass per unit length
- mu_z translational mass per unit length

Local additional element masses can be applied as follows:

• mu₁ translational mass per unit length

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit length
- su_v translational stiffness per unit length

• suz translational stiffness per unit length

Local additional element stiffness can be applied as follows:

• su₁ translational stiffness per unit length

Element Output

Displacements

Element output displacements are:

• u₁ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{22} normal strain
- ϵ_{33} normal strain

Stresses

Element output stresses are:

• σ_{11} normal stress

Forces

Element output internal forces are:

• N₁ normal force

Element 1 - Three-node Truss Element

Element Characteristics

Mechanics

This is a three dimensional, constant cross section, straight truss element. Isotropic or Orthotropic linear material models can be used with this element. By default, element internal nodes have same local axes with element local axes. Element stiffness, mass and stability matrices are evaluated analytically.

Geometry and Nodes

Element has three nodes with the order starting from end nodes. Three coordinates for end nodes in global x, y and z direction, and a constant cross section are given as input. Axial rotation can be assigned as user-defined local axes.

Figure – Element 1

Interpolation

Element has quadratic-Lagrange interpolation functions.

Degrees of Freedom

- u_x displacement
- u_v displacement

• u_z displacement

Local dofs (per node) are:

• u₁ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit length (uniform or linear)
- f_v force per unit length (uniform or linear)
- f_z force per unit length (uniform or linear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit length (uniform or linear)
- Gravity loading in local 1 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit length
- mu_y translational mass per unit length
- mu_z translational mass per unit length

Local additional element masses can be applied as follows:

• mu₁ translational mass per unit length

Additional Stiffness

Global additional element stiffness can be applied as follows:

• su_x translational stiffness per unit length

- su_y translational stiffness per unit length
- suz translational stiffness per unit length

Local additional element stiffness can be applied as follows:

• su₁ translational stiffness per unit length

Element Output

Displacements

Element output displacements are:

• u₁ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{22} normal strain
- ϵ_{33} normal strain

Stresses

Element output stresses are:

• σ_{11} normal stress

Forces

Element output internal forces are:

• N₁ normal force

■ Element 2 - Four-node Truss Element

Element Characteristics

Mechanics

This is a three dimensional, constant cross section, straight truss element. Isotropic or Orthotropic linear material models can be used with this element. By default, element internal nodes have same local axes with element local axes. Element stiffness, mass and stability matrices are evaluated analytically.

Geometry and Nodes

Element has four nodes with the order starting from end nodes. Three coordinates for end nodes in global x, y and z direction, and a constant cross section are given as input. Axial rotation can be assigned as user-defined local axes.

Figure – Element 2

Interpolation

Element has quadratic-Lagrange interpolation functions.

Degrees of Freedom

- u_x displacement
- u_v displacement

• u_z displacement

Local dofs (per node) are:

• u₁ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit length (uniform or linear)
- f_v force per unit length (uniform or linear)
- f_z force per unit length (uniform or linear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit length (uniform or linear)
- Gravity loading in local 1 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit length
- mu_y translational mass per unit length
- mu_z translational mass per unit length

Local additional element masses can be applied as follows:

• mu₁ translational mass per unit length

Additional Stiffness

Global additional element stiffness can be applied as follows:

• su_x translational stiffness per unit length

- su_y translational stiffness per unit length
- suz translational stiffness per unit length

Local additional element stiffness can be applied as follows:

• su₁ translational stiffness per unit length

Element Output

Displacements

Element output displacements are:

• u₁ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{22} normal strain
- ϵ_{33} normal strain

Stresses

Element output stresses are:

• σ_{11} normal stress

Forces

Element output internal forces are:

• N₁ normal force

■ Element 3 - Four-node Plane Stress Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral plane stress element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by two-point Gaussian integration in each local direction.

Geometry and Nodes

Element has quadrilateral geometry and four nodes with counterclockwise order. Three coordinates per node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 3

Interpolation

Element has bilinear-Lagrange interpolation functions.

Degrees of Freedom

- u_x displacement
- u_v displacement

• u_z displacement

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)
- Gravity loading in local 1 or 2 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_y translational stiffness per unit area
- su_z translational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement

Strains

Element output strains are:

- ε_{11} normal strain
- ϵ_{22} normal strain
- ε_{33} normal strain
- ε_{12} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{22} normal stress
- σ_{12} shear stress

Forces

Element output internal forces are:

- P₁₁ membrane force
- N₂₂ membrane force
- ullet Q₁₂ membrane shearing force

Element 4 - Eight-node Plane Stress Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral plane stress element. Isotropic or Orthotropic linear material models can be used with this element. By default, element internal nodes have same local axes with element local axes. Element stiffness, mass and stability matrices are evaluated by four-point Gaussian integration in each local direction.

Geometry and Nodes

Element has quadrilateral geometry and eight nodes with counterclockwise order starting from corner nodes. Three coordinates for each corner node in global x, y and z direction, and a constant thickness are given as input.

Figure - Element 4

Interpolation

Element has biquadratic-Serendipity interpolation functions.

Degrees of Freedom

- u_x displacement
- u_v displacement
- u_z displacement

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)
- Gravity loading in local 1 or 2 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- suz translational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ε_{22} normal strain
- ε_{33} normal strain
- ϵ_{12} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{22} normal stress

• σ_{12} shear stress

Forces

Element output internal forces are:

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force

■ Element 5 - Three-node Plane Stress Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, triangular plane stress element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness matrix is evaluated by one-point, element mass and stability matrices are evaluated by three-point Gaussian integration in each local direction, respectively.

Geometry and Nodes

Element has triangular geometry and three nodes with counterclockwise order. Three coordinates per node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 5

Interpolation

Element has linear-Lagrange interpolation functions.

Degrees of Freedom

- u_x displacement
- u_v displacement
- u_z displacement

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)
- Gravity loading in local 1 or 2 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- suz translational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ε_{22} normal strain
- ε_{33} normal strain
- ϵ_{12} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{22} normal stress

• σ_{12} shear stress

Forces

Element output internal forces are:

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force

Element 6 - Six-node Plane Stress Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, triangular plane stress element. Isotropic or Orthotropic linear material models can be used with this element. By default, element internal nodes have same local axes with element local axes. Element stiffness, mass and stability matrices are evaluated by three-point Gaussian integration in each local direction.

Geometry and Nodes

Element has triangular geometry and six nodes with counterclockwise order starting from corner nodes. Three coordinates for each corner node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 6

Interpolation

Element has quadratic-Lagrange interpolation functions.

Degrees of Freedom

- u_x displacement
- u_v displacement
- u_z displacement

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)
- Gravity loading in local 1 or 2 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- suz translational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ε_{22} normal strain
- ε_{33} normal strain
- ϵ_{12} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{22} normal stress

• σ_{12} shear stress

Forces

Element output internal forces are:

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force

Element 7 - Twelve-node Plane Stress Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral plane stress element. Isotropic or Orthotropic linear material models can be used with this element. By default, element internal nodes have same local axes with element local axes. Element stiffness and stability matrices are evaluated by eight-point and element mass matrix is evaluated by six-point Gaussian integration in each local direction, respectively.

Geometry and Nodes

Element has quadrilateral geometry and twelve nodes with counterclockwise order starting from corner nodes. Three coordinates for each corner node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 7

Interpolation

Element has bicubic-Serendipity interpolation functions.

Degrees of Freedom

- u_x displacement
- u_v displacement
- u_z displacement

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)
- Gravity loading in local 1 or 2 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- suz translational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ε_{22} normal strain
- ε_{33} normal strain
- ϵ_{12} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{22} normal stress

• σ_{12} shear stress

Forces

Element output internal forces are:

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force

■ Element 8 - Four-node Plane Strain Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral plane strain element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by two-point Gaussian integration in each local direction.

Geometry and Nodes

Element has quadrilateral geometry and four nodes with counterclockwise order. Three coordinates per node in global x, y and z direction, and a constant thickness are given as input.

Figure - Element 8

Interpolation

Element has bilinear-Lagrange interpolation functions.

Degrees of Freedom

- u_x displacement
- u_y displacement

• u_z displacement

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)
- Gravity loading in local 1 or 2 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_y translational stiffness per unit area
- su_z translational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement

Strains

Element output strains are:

- ε_{11} normal strain
- ϵ_{22} normal strain
- ε_{33} normal strain
- ε_{12} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{22} normal stress
- σ_{12} shear stress

Forces

- P₁₁ membrane force
- N₂₂ membrane force
- ullet Q₁₂ membrane shearing force

Element 9 - Eight-node Plane Strain Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral plane strain element. Isotropic or Orthotropic linear material models can be used with this element. By default, element internal nodes have same local axes with element local axes. Element stiffness, mass and stability matrices are evaluated by four-point Gaussian integration in each local direction.

Geometry and Nodes

Element has quadrilateral geometry and eight nodes with counterclockwise order starting from corner nodes. Three coordinates for each corner node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 9

Interpolation

Element has biquadratic-Serendipity interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement

- u₁ displacement
- u₂ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)
- Gravity loading in local 1 or 2 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- suz translational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ε_{22} normal strain
- ε_{33} normal strain
- ϵ_{12} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{22} normal stress

• σ_{12} shear stress

Forces

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force

■ Element 10 - Twelve-node Plane Strain Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral plane strain element. Isotropic or Orthotropic linear material models can be used with this element. By default, element internal nodes have same local axes with element local axes. Element stiffness and stability matrices are evaluated by eight-point and element mass matrix is evaluated by six-point Gaussian integration in each local direction, respectively.

Geometry and Nodes

Element has quadrilateral geometry and twelve nodes with counterclockwise order starting from corner nodes. Three coordinates for each corner node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 10

Interpolation

Element has bicubic-Serendipity interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement

- u₁ displacement
- u₂ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_y force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)
- Gravity loading in local 1 or 2 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- suz translational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ε_{22} normal strain
- ε_{33} normal strain
- ϵ_{12} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ₂₂ normal stress

• σ_{12} shear stress

Forces

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force

Element 11 - Three-node Plane Strain Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, triangular plane strain element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness matrix is evaluated by one-point, element mass and stability matrices are evaluated by three-point Gaussian integration in each local direction, respectively.

Geometry and Nodes

Element has triangular geometry and three nodes with counterclockwise order. Three coordinates per node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 11

Interpolation

Element has linear-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement

- u₁ displacement
- u₂ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)
- Gravity loading in local 1 or 2 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- suz translational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ε_{22} normal strain
- ε_{33} normal strain
- ϵ_{12} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ₂₂ normal stress

• σ_{12} shear stress

Forces

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force

Element 12 - Six-node Plane Strain Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, triangular plane strain element. Isotropic or Orthotropic linear material models can be used with this element. By default, element internal nodes have same local axes with element local axes. Element stiffness, mass and stability matrices are evaluated by three-point Gaussian integration in each local direction.

Geometry and Nodes

Element has triangular geometry and six nodes with counterclockwise order starting from corner nodes. Three coordinates for each corner node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 12

Interpolation

Element has quadratic-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement

- u₁ displacement
- u₂ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)
- Gravity loading in local 1 or 2 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- suz translational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ε_{22} normal strain
- ε_{33} normal strain
- ϵ_{12} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{22} normal stress

• σ_{12} shear stress

Forces

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force

Element 13 - Two-node Thick Beam Element

Element Characteristics

Mechanics

This is a three dimensional, constant cross section, straight, shear deformable (Timoshenko) beam element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass matrices are evaluated analytically except for the transverse shear terms which are under-integrated against shear locking. Element stability matrix is evaluated by one-point Gaussian integration.

Geometry and Nodes

Element has two nodes. Three coordinates per node in global x, y and z direction, and a constant cross section are given as input. Axial rotation can be assigned as user-defined local axes.

Figure – Element 13

Interpolation

Element has linear-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

u_x displacement

- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit length (uniform or linear)
- f_v force per unit length (uniform or linear)
- f_z force per unit length (uniform or linear)
- m_x moment per unit length (uniform or linear)
- m_v moment per unit length (uniform or linear)
- m_z moment per unit length (uniform or linear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit length (uniform or linear)
- f₂ force per unit length (uniform or linear)

- f₃ force per unit length (uniform or linear)
- m₁ moment per unit length (uniform or linear)
- m₂ moment per unit length (uniform or linear)
- m₃ moment per unit length (uniform or linear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area
- mr₃ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

• su_x translational stiffness per unit area

- su_v translational stiffness per unit area
- su_z translational stiffness per unit area
- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area
- sr₃ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{12} shear strain

• ϵ_{13} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{12} shear stress
- σ_{13} shear stress

Forces

- N₁ normal force
- V₂ shear force
- V₃ shear force
- T₁ twisting moment
- M₂ bending moment
- M₃ bending moment

Element 14 - Three-node Thick Beam Element

Element Characteristics

Mechanics

This is a three dimensional, constant cross section, straight, shear deformable (Timoshenko) beam element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness and mass matrices are evaluated analytically except for the transverse shear terms which are under-integrated against shear locking. Element stability matrix is evaluated by two-point Gaussian integration.

Geometry and Nodes

Element has three nodes with the order starting from end nodes. Three coordinates for each end node in global x, y and z direction, and a constant cross section are given as input. Axial rotation can be assigned as user-defined local axes.

Figure - Element 14

Interpolation

Element has quadratic-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

• u_x displacement

- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit length (uniform or linear)
- f_v force per unit length (uniform or linear)
- f_z force per unit length (uniform or linear)
- m_x moment per unit length (uniform or linear)
- m_v moment per unit length (uniform or linear)
- m_z moment per unit length (uniform or linear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit length (uniform or linear)
- f₂ force per unit length (uniform or linear)

- f₃ force per unit length (uniform or linear)
- m₁ moment per unit length (uniform or linear)
- m₂ moment per unit length (uniform or linear)
- m₃ moment per unit length (uniform or linear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area
- mr₃ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

• su_x translational stiffness per unit area

- su_v translational stiffness per unit area
- suz translational stiffness per unit area
- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area
- sr₃ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{12} shear strain

• ϵ_{13} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{12} shear stress
- σ_{13} shear stress

Forces

- N₁ normal force
- V₂ shear force
- V₃ shear force
- T₁ twisting moment
- M₂ bending moment
- M₃ bending moment

Element 15 - Four-node Thick Beam Element

Element Characteristics

Mechanics

This is a three dimensional, constant cross section, straight, shear deformable (Timoshenko) beam element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness and mass matrices are evaluated analytically. Element stability matrix is evaluated by three-point Gaussian integration.

Geometry and Nodes

Element has four nodes with the order starting from end nodes. Three coordinates for each end node in global x, y and z direction, and a constant cross section are given as input. Axial rotation can be assigned as user-defined local axes.

Figure – Element 15

Interpolation

Element has cubic-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement

- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit length (uniform or linear)
- f_v force per unit length (uniform or linear)
- f_z force per unit length (uniform or linear)
- m_x moment per unit length (uniform or linear)
- m_v moment per unit length (uniform or linear)
- m_z moment per unit length (uniform or linear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit length (uniform or linear)
- f₂ force per unit length (uniform or linear)
- f₃ force per unit length (uniform or linear)

- m₁ moment per unit length (uniform or linear)
- m₂ moment per unit length (uniform or linear)
- m₃ moment per unit length (uniform or linear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area
- mr₃ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area

- suz translational stiffness per unit area
- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- \bullet su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area
- sr₃ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{12} shear strain
- ε_{13} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{12} shear stress
- σ_{13} shear stress

Forces

- N₁ normal force
- V₂ shear force
- V₃ shear force
- T₁ twisting moment
- M₂ bending moment
- M₃ bending moment

■ Element 16 - Four-node Thick Shell Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral, flat, shear deformable (Mindlin-Reissner) shell element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by two-point Gaussian integration in each local direction while the transverse shear terms are under-integrated against shear locking.

Geometry and Nodes

Element has quadrilateral geometry and four nodes with counterclockwise order. Three coordinates per node in global x, y and z direction, and a constant thickness are given as input.

Figure - Element 16

Interpolation

Element has bilinear-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- m_x moment per unit area (uniform or bilinear)
- m_v moment per unit area (uniform or bilinear)
- m_z moment per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)

- f₃ force per unit area (uniform or bilinear)
- m₁ moment per unit area (uniform or bilinear)
- m₂ moment per unit area (uniform or bilinear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- su_z translational stiffness per unit area

- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Strains

- ε_{11} normal strain
- ε_{22} normal strain
- ϵ_{12} shear strain
- ε_{13} shear strain
- ε_{23} shear strain

Element output stresses are:

- σ_{11} normal stress
- σ₂₂ normal stress
- σ_{33} normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

Element output internal forces are:

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force
- F₁₃ shear force
- H₂₃ shear force
- K₂₂ bending moment
- M₁₁ bending moment
- T₁₂ twisting moment

■ Element 17 - Eight-node Thick Shell Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral, flat, shear deformable (Mindlin-Reissner) shell element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by three-point Gaussian integration in each local direction while the transverse shear terms are under-integrated against shear locking.

Geometry and Nodes

Element has quadrilateral geometry and eight nodes with counterclockwise order starting from the corner nodes. Three coordinates for each corner node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 17

Interpolation

Element has biquadratic-Serendipity interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- m_x moment per unit area (uniform or bilinear)
- m_v moment per unit area (uniform or bilinear)
- m_z moment per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)

- f₃ force per unit area (uniform or bilinear)
- m₁ moment per unit area (uniform or bilinear)
- m₂ moment per unit area (uniform or bilinear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- su_z translational stiffness per unit area

- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Strains

- ε_{11} normal strain
- ε_{22} normal strain
- ϵ_{12} shear strain
- ε_{13} shear strain
- ε_{23} shear strain

Element output stresses are:

- σ₁₁ normal stress
- σ₂₂ normal stress
- σ₃₃ normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

Element output internal forces are:

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force
- F₁₃ shear force
- H₂₃ shear force
- K₂₂ bending moment
- M₁₁ bending moment
- T₁₂ twisting moment

■ Element 18 - Six-node Thick Shell Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, triangular, flat, shear deformable (Mindlin-Reissner) shell element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by seven-point Gaussian integration while the transverse shear terms are under-integrated against shear locking.

Geometry and Nodes

Element has triangular geometry and six nodes with counterclockwise order starting from the corner nodes. Three coordinates for each corner node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 18

Interpolation

Element has linear-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- m_x moment per unit area (uniform or bilinear)
- m_v moment per unit area (uniform or bilinear)
- m_z moment per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)

- f₃ force per unit area (uniform or bilinear)
- m₁ moment per unit area (uniform or bilinear)
- m₂ moment per unit area (uniform or bilinear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- su_z translational stiffness per unit area

- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Strains

- ε_{11} normal strain
- ε_{22} normal strain
- ϵ_{12} shear strain
- ε_{13} shear strain
- ε_{23} shear strain

Element output stresses are:

- σ₁₁ normal stress
- σ₂₂ normal stress
- σ_{33} normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

Element output internal forces are:

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force
- F₁₃ shear force
- H₂₃ shear force
- K₂₂ bending moment
- M₁₁ bending moment
- T₁₂ twisting moment

■ Element 19 - Four-node Doubly Curved Thick Shell Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral, doubly curved, shear deformable (Sander) shell element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by two-point Gaussian integration in each local direction while the transverse shear and membrane-bending coupling terms are under-integrated against shear and membrane locking.

Geometry and Nodes

Element has quadrilateral geometry and four nodes with counterclockwise order. Three coordinates per node in global x, y and z direction, radii of curvatures in each local direction and a constant thickness are given as input.

Figure – Element 19

Interpolation

Element has bilinear-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- m_x moment per unit area (uniform or bilinear)
- m_v moment per unit area (uniform or bilinear)
- m_z moment per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)

- f₃ force per unit area (uniform or bilinear)
- m₁ moment per unit area (uniform or bilinear)
- m₂ moment per unit area (uniform or bilinear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- su_z translational stiffness per unit area

- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Strains

- ϵ_{11} normal strain
- ϵ_{22} normal strain
- ϵ_{12} shear strain
- ε_{13} shear strain
- ε_{23} shear strain

Element output stresses are:

- σ₁₁ normal stress
- σ₂₂ normal stress
- σ₃₃ normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

Element output internal forces are:

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force
- F₁₃ shear force
- H₂₃ shear force
- K₂₂ bending moment
- M₁₁ bending moment
- T₁₂ twisting moment

■ Element 20 - Eight-node Doubly Curved Thick Shell Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral, doubly curved, shear deformable (Sander) shell element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by three-point Gaussian integration in each local direction while the transverse shear and membrane-bending coupling terms are under-integrated against shear and membrane locking.

Geometry and Nodes

Element has quadrilateral geometry and eight nodes with counterclockwise order starting from the corner nodes. Three coordinates for each corner node in global x, y and z direction, radii of curvatures in each local direction and a constant thickness are given as input.

Figure – Element 20

Interpolation

Element has biquadratic-Serendipity interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- m_x moment per unit area (uniform or bilinear)
- m_v moment per unit area (uniform or bilinear)
- m_z moment per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)

- f₃ force per unit area (uniform or bilinear)
- m₁ moment per unit area (uniform or bilinear)
- m₂ moment per unit area (uniform or bilinear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- su_z translational stiffness per unit area

- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Strains

- ε_{11} normal strain
- ϵ_{22} normal strain
- ϵ_{12} shear strain
- ε_{13} shear strain
- ε_{23} shear strain

Element output stresses are:

- σ₁₁ normal stress
- σ₂₂ normal stress
- σ₃₃ normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

Element output internal forces are:

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force
- F₁₃ shear force
- H₂₃ shear force
- K₂₂ bending moment
- M₁₁ bending moment
- T₁₂ twisting moment

Element 21 - Six-node Doubly Curved Thick Shell Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, triangular, doubly curved, shear deformable (Sander) shell element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by seven-point Gaussian integration while the transverse shear and membrane-bending coupling terms are underintegrated against shear and membrane locking.

Geometry and Nodes

Element has triangular geometry and six nodes with counterclockwise order starting from the corner nodes. Three coordinates for each corner node in global x, y and z direction, radii of curvatures in each local direction and a constant thickness are given as input.

Figure – Element 21

Interpolation

Element has linear-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- m_x moment per unit area (uniform or bilinear)
- m_v moment per unit area (uniform or bilinear)
- m_z moment per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit area (uniform or bilinear)
- f₂ force per unit area (uniform or bilinear)

- f₃ force per unit area (uniform or bilinear)
- m₁ moment per unit area (uniform or bilinear)
- m₂ moment per unit area (uniform or bilinear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- su_z translational stiffness per unit area

- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation

Strains

- ϵ_{11} normal strain
- ε_{22} normal strain
- ϵ_{12} shear strain
- ε_{13} shear strain
- ε_{23} shear strain

Element output stresses are:

- σ₁₁ normal stress
- σ_{22} normal stress
- σ₃₃ normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

Element output internal forces are:

- P₁₁ membrane force
- N₂₂ membrane force
- Q₁₂ membrane shearing force
- F₁₃ shear force
- H₂₃ shear force
- K₂₂ bending moment
- M₁₁ bending moment
- T₁₂ twisting moment

■ Element 22 - Eight-node Solid Element

Element Characteristics

Mechanics

This is a three dimensional, hexahedral, solid element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by two-point Gaussian integration in each local direction.

Geometry and Nodes

Element has hexahedral geometry and eight nodes with counterclockwise order starting from the top side. Three coordinates per node in global x, y and z direction are given as input.

Figure – Element 22

Interpolation

Element has trilinear-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement
- u₃ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit volume (uniform)
- f_v force per unit volume (uniform)
- f_z force per unit volume (uniform)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit volume (uniform)
- f₂ force per unit volume (uniform)
- f₃ force per unit volume (uniform)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit volume
- mu_v translational mass per unit volume
- mu_z translational mass per unit volume

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit volume
- mu₂ translational mass per unit volume

• mu₃ translational mass per unit volume

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit volume
- su_v translational stiffness per unit volume
- su_z translational stiffness per unit volume

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit volume
- su₂ translational stiffness per unit volume
- su₃ translational stiffness per unit volume

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement

Strains

- ϵ_{11} normal strain
- ε_{22} normal strain
- ϵ_{33} normal strain
- ϵ_{12} shear strain
- ε_{13} shear strain
- ε_{23} shear strain

Element output stresses are:

- σ_{11} normal stress
- $\bullet \quad \sigma_{22} \ normal \ stress$
- σ₃₃ normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

No internal element forces are available for this element.

■ Element 23 - Twenty-node Solid Element

Element Characteristics

Mechanics

This is a three dimensional, hexahedral, solid element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by three-point Gaussian integration in each local direction.

Geometry and Nodes

Element has hexahedral geometry and twenty nodes with counterclockwise order starting from the top side and vertex nodes. Three coordinates for each vertex node in global x, y and z direction are given as input.

Figure – Element 23

Interpolation

Element has triquadratic-Serendipity interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement
- u₃ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit volume (uniform)
- f_v force per unit volume (uniform)
- f_z force per unit volume (uniform)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit volume (uniform)
- f₂ force per unit volume (uniform)
- f₃ force per unit volume (uniform)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit volume
- mu_v translational mass per unit volume
- mu_z translational mass per unit volume

Local additional element masses can be applied as follows:

• mu₁ translational mass per unit volume

- mu₂ translational mass per unit volume
- mu₃ translational mass per unit volume

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit volume
- su_v translational stiffness per unit volume
- suz translational stiffness per unit volume

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit volume
- su₂ translational stiffness per unit volume
- su₃ translational stiffness per unit volume

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement

Strains

- ε_{11} normal strain
- ε_{22} normal strain
- ε_{33} normal strain
- ε_{12} shear strain
- ε_{13} shear strain
- ε_{23} shear strain

Element output stresses are:

- σ_{11} normal stress
- $\bullet \quad \sigma_{22} \ normal \ stress$
- σ₃₃ normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

No internal element forces are available for this element.

■ Element 24 - Four-node Thick Plate Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral, shear deformable (Mindlin-Reissner) plate element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by two-point Gaussian integration in each local direction while the transverse shear terms are under-integrated against shear locking.

Geometry and Nodes

Element has quadrilateral geometry and four nodes with counterclockwise order. Three coordinates per node in global x, y and z direction, and a constant thickness are given as input.

Figure - Element 24

Interpolation

Element has bilinear-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

- u₃ displacement
- r₁ rotation
- r₂ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- m_x moment per unit area (uniform or bilinear)
- m_v moment per unit area (uniform or bilinear)
- m_z moment per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₃ force per unit area (uniform or bilinear)
- m₁ moment per unit area (uniform or bilinear)
- m₂ moment per unit area (uniform or bilinear)
- Gravity loading in local 3 direction

Temperature Loading

No temperature loading is available for this element.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_y rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_y translational stiffness per unit area
- su_z translational stiffness per unit area
- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area

• sr₂ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₃ displacement
- r₁ rotation
- r₂ rotation

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{22} normal strain
- ϵ_{12} shear strain
- ϵ_{13} shear strain
- ε_{23} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{22} normal stress
- σ_{33} normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

Element output internal forces are:

• F₁₃ shear force

- H₂₃ shear force
- K₂₂ bending moment
- M₁₁ bending moment
- T₁₂ twisting moment

Element 25 - Eight-node Thick Plate Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, quadrilateral, shear deformable (Mindlin-Reissner) plate element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by three-point Gaussian integration in each local direction while the transverse shear terms are under-integrated against shear locking.

Geometry and Nodes

Element has quadrilateral geometry and eight nodes with counterclockwise order starting from the corner nodes. Three coordinates for each corner node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 25

Interpolation

Element has biquadratic-Serendipity interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

- u₃ displacement
- r₁ rotation
- r₂ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- m_x moment per unit area (uniform or bilinear)
- m_v moment per unit area (uniform or bilinear)
- m_z moment per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₃ force per unit area (uniform or bilinear)
- m₁ moment per unit area (uniform or bilinear)
- m₂ moment per unit area (uniform or bilinear)
- Gravity loading in local 3 direction

Temperature Loading

No temperature loading is available for this element.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- su_z translational stiffness per unit area
- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area

• sr₂ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₃ displacement
- r₁ rotation
- r₂ rotation

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{22} normal strain
- ϵ_{12} shear strain
- ϵ_{13} shear strain
- ε_{23} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ₂₂ normal stress
- σ_{33} normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

Element output internal forces are:

• F₁₃ shear force

- H₂₃ shear force
- K₂₂ bending moment
- M₁₁ bending moment
- T₁₂ twisting moment

■ Element 26 - Six-node Thick Plate Element

Element Characteristics

Mechanics

This is a three dimensional, constant thickness, triangular, shear deformable (Mindlin-Reissner) plate element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by seven-point Gaussian integration while the transverse shear terms are under-integrated against shear locking.

Geometry and Nodes

Element has triangular geometry and six nodes with counterclockwise order starting from the corner nodes. Three coordinates for each corner node in global x, y and z direction, and a constant thickness are given as input.

Figure – Element 26

Interpolation

Element has quadratic-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

- u₃ displacement
- r₁ rotation
- r₂ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit area (uniform or bilinear)
- f_v force per unit area (uniform or bilinear)
- f_z force per unit area (uniform or bilinear)
- m_x moment per unit area (uniform or bilinear)
- m_v moment per unit area (uniform or bilinear)
- m_z moment per unit area (uniform or bilinear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₃ force per unit area (uniform or bilinear)
- m₁ moment per unit area (uniform or bilinear)
- m₂ moment per unit area (uniform or bilinear)
- Gravity loading in local 3 direction

Temperature Loading

No temperature loading is available for this element.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_y rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area
- su_z translational stiffness per unit area
- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area

• sr₂ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₃ displacement
- r₁ rotation
- r₂ rotation

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{22} normal strain
- ϵ_{12} shear strain
- ϵ_{13} shear strain
- ε_{23} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ₂₂ normal stress
- σ_{33} normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

Element output internal forces are:

• F₁₃ shear force

- H₂₃ shear force
- K₂₂ bending moment
- M₁₁ bending moment
- T₁₂ twisting moment

■ Element 27 - Two-node Curved Thick Beam Element

Element Characteristics

Mechanics

This is a three dimensional, constant cross section, curved, shear deformable (Timoshenko) beam element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness and mass matrices are evaluated analytically except for the transverse shear terms which are under-integrated against shear locking. Element stability matrix is evaluated by one-point Gaussian integration.

Geometry and Nodes

Element has two nodes. Three coordinates per node in global x, y and z direction, radius of curvature and a constant cross section are given as input. Axial rotation can be assigned as user-defined local axes.

Figure – Element 27

Interpolation

Element has linear-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

• u_x displacement

- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit length (uniform or linear)
- f_v force per unit length (uniform or linear)
- f_z force per unit length (uniform or linear)
- m_x moment per unit length (uniform or linear)
- m_v moment per unit length (uniform or linear)
- m_z moment per unit length (uniform or linear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit length (uniform or linear)
- f₂ force per unit length (uniform or linear)

- f₃ force per unit length (uniform or linear)
- m₁ moment per unit length (uniform or linear)
- m₂ moment per unit length (uniform or linear)
- m₃ moment per unit length (uniform or linear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area
- mr₃ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

• su_x translational stiffness per unit area

- su_v translational stiffness per unit area
- suz translational stiffness per unit area
- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area
- sr₃ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{12} shear strain

• ε_{13} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{12} shear stress
- σ_{13} shear stress

Forces

Element output internal forces are:

- N₁ normal force
- V₂ shear force
- V₃ shear force
- T₁ twisting moment
- M₂ bending moment
- M₃ bending moment

Element 28 - Three-node Curved Thick Beam Element

Element Characteristics

Mechanics

This is a three dimensional, constant cross section, curved, shear deformable (Timoshenko) beam element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness and mass matrices are evaluated analytically except for the transverse shear terms which are under-integrated against shear locking. Element stability matrix is evaluated by two-point Gaussian integration.

Geometry and Nodes

Element has three nodes with the order starting from end nodes. Three coordinates for each end node in global x, y and z direction, radius of curvature and a constant cross section are given as input. Axial rotation can be assigned as user-defined local axes.

Figure - Element 28

Interpolation

Element has quadratic-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

• u_x displacement

- u_v displacement
- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit length (uniform or linear)
- f_v force per unit length (uniform or linear)
- f_z force per unit length (uniform or linear)
- m_x moment per unit length (uniform or linear)
- m_v moment per unit length (uniform or linear)
- m_z moment per unit length (uniform or linear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit length (uniform or linear)
- f₂ force per unit length (uniform or linear)

- f₃ force per unit length (uniform or linear)
- m₁ moment per unit length (uniform or linear)
- m₂ moment per unit length (uniform or linear)
- m₃ moment per unit length (uniform or linear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area
- mr₃ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

• su_x translational stiffness per unit area

- su_v translational stiffness per unit area
- suz translational stiffness per unit area
- sr_x rotational stiffness per unit area
- sr_v rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area
- sr₃ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{12} shear strain

• ϵ_{13} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{12} shear stress
- σ_{13} shear stress

Forces

Element output internal forces are:

- N₁ normal force
- V₂ shear force
- V₃ shear force
- T₁ twisting moment
- M₂ bending moment
- M₃ bending moment

Element 29 - Four-node Curved Thick Beam Element

Element Characteristics

Mechanics

This is a three dimensional, constant cross section, curved, shear deformable (Timoshenko) beam element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness and mass matrices are evaluated analytically. Element stability matrix is evaluated by three-point Gaussian integration.

Geometry and Nodes

Element has four nodes with the order starting from end nodes. Three coordinates for each end node in global x, y and z direction, radius of curvature and a constant cross section are given as input. Axial rotation can be assigned as user-defined local axes.

Figure – Element 29

Interpolation

Element has cubic-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement

- u_z displacement
- r_x rotation
- r_v rotation
- r_z rotation

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit length (uniform or linear)
- f_v force per unit length (uniform or linear)
- f_z force per unit length (uniform or linear)
- m_x moment per unit length (uniform or linear)
- m_v moment per unit length (uniform or linear)
- m_z moment per unit length (uniform or linear)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit length (uniform or linear)
- f₂ force per unit length (uniform or linear)
- f₃ force per unit length (uniform or linear)

- m₁ moment per unit length (uniform or linear)
- m₂ moment per unit length (uniform or linear)
- m₃ moment per unit length (uniform or linear)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit area
- mu_v translational mass per unit area
- mu_z translational mass per unit area
- mr_x rotational mass per unit area
- mr_v rotational mass per unit area
- mr_z rotational mass per unit area

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit area
- mu₂ translational mass per unit area
- mu₃ translational mass per unit area
- mr₁ rotational mass per unit area
- mr₂ rotational mass per unit area
- mr₃ rotational mass per unit area

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit area
- su_v translational stiffness per unit area

- suz translational stiffness per unit area
- sr_x rotational stiffness per unit area
- sr_y rotational stiffness per unit area
- sr_z rotational stiffness per unit area

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit area
- su₂ translational stiffness per unit area
- su₃ translational stiffness per unit area
- sr₁ rotational stiffness per unit area
- sr₂ rotational stiffness per unit area
- sr₃ rotational stiffness per unit area

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement
- r₁ rotation
- r₂ rotation
- r₃ rotation

Strains

Element output strains are:

- ϵ_{11} normal strain
- ϵ_{12} shear strain
- ε_{13} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{12} shear stress
- σ_{13} shear stress

Forces

Element output internal forces are:

- N₁ normal force
- V₂ shear force
- V₃ shear force
- T₁ twisting moment
- M₂ bending moment
- M₃ bending moment

Element 30 - Four-node Solid Element

Element Characteristics

Mechanics

This is a three dimensional, tetrahedral, solid element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by two-point Gaussian integration in each local direction.

Geometry and Nodes

Element has tetrahedral geometry and four nodes with counterclockwise order. Three coordinates per node in global x, y and z direction are given as input.

Figure – Element 30

Interpolation

Element has trilinear-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement

Local dofs (per node) are:

- u₁ displacement
- u₂ displacement
- u₃ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit volume (uniform)
- f_v force per unit volume (uniform)
- f_z force per unit volume (uniform)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit volume (uniform)
- f₂ force per unit volume (uniform)
- f₃ force per unit volume (uniform)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit volume
- mu_v translational mass per unit volume
- mu_z translational mass per unit volume

Local additional element masses can be applied as follows:

- mu₁ translational mass per unit volume
- mu₂ translational mass per unit volume

• mu₃ translational mass per unit volume

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit volume
- su_v translational stiffness per unit volume
- su_z translational stiffness per unit volume

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit volume
- su₂ translational stiffness per unit volume
- su₃ translational stiffness per unit volume

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement

Strains

Element output strains are:

- ϵ_{11} normal strain
- ε_{22} normal strain
- ϵ_{33} normal strain
- ε_{12} shear strain
- ε_{13} shear strain
- ε_{23} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{22} normal stress
- σ₃₃ normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

No internal element forces are available for this element.

Element 31 - Ten-node Solid Element

Element Characteristics

Mechanics

This is a three dimensional, tetrahedral, solid element. Isotropic or Orthotropic linear material models can be used with this element. Element stiffness, mass and stability matrices are evaluated by four-point Gaussian integration in each local direction.

Geometry and Nodes

Element has tetrahedral geometry and ten nodes with counterclockwise order starting from the vertex nodes. Three coordinates for each vertex node in global x, y and z direction are given as input.

Ž

Figure – Element 31

Interpolation

Element has triquadratic-Lagrange interpolation functions.

Degrees of Freedom

Global dofs (per node) are:

- u_x displacement
- u_v displacement
- u_z displacement

- u₁ displacement
- u₂ displacement
- u₃ displacement

Element Assignments

Mechanical Loading

Distributed global loads can be applied as follows:

- f_x force per unit volume (uniform)
- f_v force per unit volume (uniform)
- f_z force per unit volume (uniform)
- Gravity loading in global x, y or z direction

Distributed local loads can be applied as follows:

- f₁ force per unit volume (uniform)
- f₂ force per unit volume (uniform)
- f₃ force per unit volume (uniform)
- Gravity loading in local 1, 2 or 3 direction

Temperature Loading

Element can be loaded with constant temperature.

Additional Mass

Global additional element masses can be applied as follows:

- mu_x translational mass per unit volume
- mu_y translational mass per unit volume
- mu_z translational mass per unit volume

Local additional element masses can be applied as follows:

• mu₁ translational mass per unit volume

- mu₂ translational mass per unit volume
- mu₃ translational mass per unit volume

Additional Stiffness

Global additional element stiffness can be applied as follows:

- su_x translational stiffness per unit volume
- su_v translational stiffness per unit volume
- suz translational stiffness per unit volume

Local additional element stiffness can be applied as follows:

- su₁ translational stiffness per unit volume
- su₂ translational stiffness per unit volume
- su₃ translational stiffness per unit volume

Element Output

Displacements

Element output displacements are:

- u₁ displacement
- u₂ displacement
- u₃ displacement

Strains

Element output strains are:

- ε_{11} normal strain
- ϵ_{22} normal strain
- ε_{33} normal strain
- ε_{12} shear strain
- ε_{13} shear strain
- ε_{23} shear strain

Stresses

Element output stresses are:

- σ_{11} normal stress
- σ_{22} normal stress
- σ₃₃ normal stress
- σ_{12} shear stress
- σ_{13} shear stress
- σ_{23} shear stress

Forces

No internal element forces are available for this element.