Beispiel: Ein NEA mit 4 Zuständen

Formal hat der zugehörige mit der sogenannten

Potenzmengenkonstruktion

konstruierte DEA $2^4 = 16$ Zustände. Allerdings sieht man leicht, dass z_0 in jeder *erreichbaren* Menge von Zuständen enthalten ist. Also erhalten wir einen DEA mit acht Zuständen, der die gleiche Sprache akzeptiert.

Der konstruierte DEA

Startzustand des Potenzmengen-Automaten ist $\{z_0\}$.

$$\delta'(\{z_0\}, a) = \{z_0, z_1\}$$
 $\delta'(\{z_0, z_1\}, a) = \{z_0, z_1\}$
 $\delta'(\{z_0\}, b) = \{z_0\}$ $\delta'(\{z_0, z_1\}, b) = \{z_0, z_2\}$
 $\delta'(\{z_0\}, c) = \{z_0\}$ $\delta'(\{z_0, z_1\}, c) = \{z_0\}$
 $\delta'(\{z_0, z_2\}, a) = \{z_0, z_1\}$ $\delta'(\{z_0, z_3\}, a) = \{z_0, z_1\}$
 $\delta'(\{z_0, z_2\}, b) = \{z_0\}$ $\delta'(\{z_0, z_3\}, b) = \{z_0\}$
 $\delta'(\{z_0, z_2\}, c) = \{z_0, z_3\}$ $\delta'(\{z_0, z_3\}, c) = \{z_0\}$

Wir erhalten also sogar einen DEA mit nur 4 (!) Zuständen. Einziger Endzustand ist $\{z_0, z_3\}$.

Machen Sie sich ein Bild von diesem deterministischen Automaten!

Blow-Up bei der Potenzmengenkonstruktion

Kann es sein, dass es immer gelingt, wie im vorangegangenen Beispiel zu einem gegebenen NEA einen DEA mit gleicher – oder wenigstens annähernd gleicher – Zustandszahl zu finden, der die selbe Sprache erkennt?

Die Antwort ist NEIN.

Es existieren NEA mit der Eigenschaft, dass jeder *äquivalente* DEA exponentiell viele Zustände (in *n*, der Zustandszahl des NEA) haben muss.

Man spricht dann von exponentiellem Blow-Up.

Wir wollen nun einen solchen Fall untersuchen.

Eine Sprache mit exponentiellem Blow-Up

Wir betrachten für jedes k die Sprache

$$L_k = \{ xay \mid x, y \in \{a, b\}^* \land |y| = k - 1 \}$$

Das heißt: L_k enthält alle Wörter über dem Alphabet $\{a, b\}$, deren k-ter Buchstabe von hinten ein a ist.

Ein NEA für diese Sprache kommt mit k + 1 Zuständen aus. (Bitte prüfen!)

Wir behaupten:

Jeder DEA M mit $T(M) = L_k$ hat mindestens 2^k Zustände.

Zum Beweis

Es sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DEA für L_k . Wir betrachten die Wörter der Länge k über dem Alphabet $\{a, b\}$. Das sind genau 2^k viele. Nun behaupten wir, dass niemals für zwei dieser Wörter w und w' in M die Gleichheit $\hat{\delta}(z_0, w) = \hat{\delta}(z_0, w')$ gilt.

Sei nämlich $w = xay_1$ und $w' = xby_2$ (oder umgekehrt), und sei $\hat{\delta}(z_0, w) = \hat{\delta}(z_0, w')$.

(Da wir $w \neq w'$ voraussetzen, müssen solche x, y_1, y_2 existieren.)

Es folgt:

$$\hat{\delta}(z_0, wx) = \hat{\delta}(\hat{\delta}(z_0, w), x) = \hat{\delta}(\hat{\delta}(z_0, w'), x) = \hat{\delta}(z_0, w'x)$$

Die Gleichheit $\hat{\delta}(z_0, wx) = \hat{\delta}(z_0, w'x)$ ist aber nicht möglich, da $wx \in L_k$ und $w'x \notin L_k$ gilt.

Also hat M mindestens 2^k verschiedene Zustände.

Typ-3 kann durch NEA erkannt werden

Wir schließen nun den Kreis zwischen Typ-3, DEA und NEA, indem wir zeigen, dass jede Typ-3 Sprache durch einen NEA beschrieben werden kann.

Satz: Sei G eine Typ-3 Grammatik.

Dann gibt es einen NEA M mit

$$T(M) = L(G)$$

Die Grundidee für den Beweis ist einfach: Betrachte in einer Satzform immer die (am Ende stehende) Variable als *Zustand* des NEA. Also muss für eine Regel $(A, \sigma B) \in P$ immer B in $\delta(A, \sigma)$ liegen. Bei $(A, \sigma) \in P$ muss $\delta(A, \sigma)$ einen Endzustand enthalten.