Chap.2: Aller plus loin

NB: Ces exercices sont tirés du programme de Seconde du programme de 2009.

Exercice 1 (*): Déterminer algébriquement un minimum (*)

Soit f la fonction définie par $f(x) = (x - 2)^2 + 5$ 1/ Calculer f(2) puis f(x) - f(2).

- 2/ **Montrer** alors que la fonction *f* admet un minimum sur l'ensemble des nombres.
- (*) : la fonction f admet un **minimum** noté m si pour tout nombre x, on a $f(x) \ge m$.

Exercice 2 (**): exercice de recherche

Exercice 3 (*/**):

Un joueur de pétanque veut envoyer sa boule près du cochonnet qui est à une distance de 6 m. Il lâche la boule à une hauteur de 1,5 m du sol. On suppose que la hauteur (en mètres) de la boule est donnée par : $f(x) = -0.18x^2 + 0.84x + 1.5$ où x appartient à l'intervalle [0; 6].

- **1.** Avec la précision permise par le graphique, indiquer le maximum de f sur l'intervalle [0;6].
- 2. Pour ne pas toucher les branches d'un arbre, la boule ne doit pas dépasser une hauteur de 2,5 mètres. Peut-on penser que la boule va respecter cet objectif?
- **3.** Avec un logiciel de calcul formel, on a factorisé $f(x) f\left(\frac{7}{3}\right)$ et obtenu l'écran ci-dessous :

- a. En déduire la hauteur maximale exacte atteinte par la boule lors du lancer.
- b. Que peut-on penser de la réponse apportée à la question 2?