Nan	ne :							
Roll	<i>No.</i> :							
Invi	gilato	r's Sig	gnature :					
		(CS/B. Te	ch (AUE)OL	D/S	EM-4/AUE-401/2012		
EN	IGIN	EER	ING ANA	2012 Lysis & N	IUMI	ERICAL METHODS		
Time Allotted : 3 Hours					Full Marks : 70			
		The	e figures in	the margin i	ndica	te full marks.		
Ca	indide	ates a	re required	l to give their as far as pro		vers in their own words ble.		
				GROUP -	A			
			(Multiple	Choice Typ	e Qu	estions)		
1.	1. Choose the correct alternatives for the following : $10 \times 1 = 1$							
	i)	(Δ –	$\nabla) x^2$ is equ	ıal to				
		a)	h^2		b)	$-2h^2$		
		c)	$2h^2$		d)	none of these.		
	ii)	The	error in	composite	Sim	pon's $\frac{1}{3}$ rd rule is of		
		•••••	orde	r.				
		a)	h^3		b)	h^4		
		c)	h^5		d)	none of these.		

4016 (O)

[Turn over

CS/B. Tech (AUE)OLD/SEM-4/AUE-401/2012

- iii) Newton's interpolation formula can be used only for equal intervals.
 - a) True
 - b) False.
- iv) Lagrange's interpolation formula can be used only for equal intervals.
 - a) True
 - b) False.
- v) The partial differential equation $u_{xx} + u_{yy} = f\left(x,y\right)$ is called
 - a) Heat equation
 - b) Wave equation
 - c) Laplace equation
 - d) Poisson's equation.
- vi) The shift operator E is equal to
 - a) $1 + \Delta$

b) $(1+\Delta)^{-1}$

c) $1-\Delta$

d) $1-\Delta^2$.

- vii) Which of the following is not true (the notation have their usual meaning)?
 - a) $\Delta = E 1$
- b) $\Delta \cdot \nabla = \Delta \nabla$
- c) $\frac{\Delta}{\nabla} = \Delta + \nabla$
- d) $\Delta = 1 E^{-1}.$
- viii) The error in 4th order Runge-Kutta method is of order
 - a) h^3

b) h^4

c) h^5

- d) none of these.
- ix) For the differential equation $\frac{dy}{dx} = 1 y$, y(0) = 0 the value of y(0.2) = 0
 - a) 0·1

b) 0.2

c) 0.01

- d) none of these.
- x) The error in the trapezoidal rule for $\int_{10}^{20} f(x) dx$ (where the number of sub-interval is 10) is
 - a) $-\frac{h^3}{12}f''(\xi)$
 - b) $-\frac{h^3}{12}f'(\xi)$
 - c) $-\frac{h}{12}f''(\xi)$
 - d) $-\frac{h^2}{12}f''(\xi)$

where h is the length of each sub-intervals and $a < \xi < b$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

2. Use Stirling's formula to find f (35) from the following table :

<i>x</i> :	20	30	40	50	
f(x):	512	439	346	243	

3. Compute $f'(1\cdot 2)$ and $f''(1\cdot 2)$ from the following table :

<i>x</i> :	1	2	3	4	5
f(x):	0	1	5	6	8

4. Compute the values of the unknown in the system of equations by Matrix-Inversion method :

$$x_1 + 3x_2 + 2x_3 = 17$$

$$x_1 + 2x_2 + 3x_3 = 16$$

$$2x_1 - x_2 + 4x_3 = 13.$$

- 5. Evaluate $\int_{0}^{5} \frac{dx}{3+x^2}$, by trapezoidal rule, taking h = 1.
- 6. Find the root of the equation $3x \cos x 1 = 0$, by the iteration method, correct to four significant figures.

4016 (O)

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- $3 \times 15 = 45$
- 7. a) Evaluate the integral $I = \int_0^1 \frac{dx}{1+x}$ using Gaussian two and three point integration rule. Compare with the exact solution.
 - b) Evaluate the following integral $I = \int_{y=1}^{2} \int_{x=1}^{3} (x^2 + y^2) dx dy$, using Simpson's $\frac{1}{3}$ rd rule with the length of subinterval h = 0.5 (along x-axis) and K = 0.5 (along y-axis).
- 8. a) Establish Newton's interpolation formula using forward differences when the functional values of y = f(x) are known at (n + 1) equispaced points.
 - b) Compute f(0.5) and f(2.8) from the following table :

x: 0 1 2 3 f(x): 1 2 11 34

7 + 8

CS/B. Tech (AUE)OLD/SEM-4/AUE-401/2012

equation
$$\frac{dy}{dx} = x^2 - y, y(0) = 1$$
 for $x = 0.3$ taking $h = 0.05$

and compare with its exact solution.

- b) Compute y (0.1), y (0.2), y (0.3) from the following differential equation : $\frac{\mathrm{d}y}{\mathrm{d}x} = x + y, y$ (0) = 1 taking h = 0.1.
- 10. a) Explain Gauss elimination process for solving a system of three linear equations with three unknowns.
 - b) What do you mean by a system $n \times n$ strictly diagonally dominant equations?
 - c) Solve, by Gauss-Seidel iteration method, the system,

$$3x_1 + 9x_2 - 2x_3 = 11$$

$$4x_1 + 2x_2 + 13x_3 = 24$$

$$4x_1 - 2x_2 + x_3 = -8.$$

4016 (O)

6 + 2 + 7

- 11. a) Solve the equation y'' = x + y with boundary conditions y (0) = y(1) = 0.
 - b) Use Newton-Raphson method to solve the system of equations $x^2 + y^2 + xy = 7$ and $x^3 + y^3 = 9$.

Take the initial approximation as $x_0 = 1.5$ and $y_0 = 0.5$. 6 + 9