Normalidad del Gradiente

Daniela Pinto Veizaga

21 de septiembre de 2019

1 Teorema

Supongamos que la función f es diferenciable en el punto P_0 y que el gradiente ∇f_0 en P_0 es distinto de cero. Entonces, ∇f_0 es ortogonal a la superficie f(x, y, z) = k que pasa por P.

Demostración. Sea C una curva contenida en la superficie de nivel f(x, y, z) = k que pasa por $P_0 = (x_0, y_0, z_0)$ y sea R(t) = [x(t), y(t), z(t)] la función vectorial que describe C cuando f recorre un intervalo I. Demostraremos que el gradiente ∇f_0 es ortogonal al vector tangente $\frac{\partial R}{\partial t}$ en P_0 .

Como C está contenida en la superficie, cualquier punto P(x(t), y(t), z(t)) de la curva, debe satisfacer la ecuación de la superficie f(x(t), y(t), z(t)) = k. Por la regla de la cadena:

$$\tfrac{\partial f(x(t),y(t),z(t))}{\partial t} = \tfrac{\partial f(x(t),y(t),z(t))}{\partial x} \cdot \tfrac{\partial x(t)}{\partial t} + \tfrac{\partial f(x(t),y(t),z(t))}{\partial y} \cdot \tfrac{\partial y(t)}{\partial t} + \tfrac{\partial f(x(t),y(t),z(t))}{\partial z} \cdot \tfrac{\partial z(t)}{\partial t} = 0$$

Supongamos que P_0 corresponde a $t=t_0$. Entonces, la relación nos dice:

$$\left(\frac{\partial f(x_0,y_0,z_0)}{\partial x}, \frac{\partial f(x_0,y_0,z_0)}{\partial y}, \frac{\partial f(x_0,y_0,z_0)}{\partial z} \right) \cdot \left(\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}, \frac{\partial z}{\partial t} \right)_{P_0} = 0$$

Por lo tanto:

$$\nabla f(x_0, y_0, z_0) \cdot \frac{\partial R}{\partial t}_{P0} = 0$$

As, se demostró que el gradiente es ortogonal al vector tangente.

References

[1] El gradiente [http://sistemas.fciencias.unam.mx/erhc/calculo3/gradiente1.pdf].