Notes on Feng & Palomar TSP'15 and ICASSP'16: Risk-parity Portfolio Optimization

Zé Vinícius

August 28, 2018

Notation

Vectors are represented by bold, small-case letters, e.g., \boldsymbol{x} . All vectors are column vectors. Given a vector \boldsymbol{x} , both $(\boldsymbol{x})_i$ and x_i represent the *i*-th component of \boldsymbol{x} .

1 Background

Risky parity is a portfolio design technique which aims to promote diversification of risk contributions amongst assets. This approach often leads to a dense portfolio, *i.e.*, a portifolio which has contributions from all its assets. However, investing in all assets is impractical because of, *e.g.*, high transaction costs. The problem of jointly designing a sparse risk-parity portfolio is precisely the subject of study of Feng & Palomar.

Consider a collection of n assets with random returns $\mathbf{r} \in \mathbb{R}^n$ such that $\mathbb{E}[\mathbf{r}] \triangleq \boldsymbol{\mu}$ and $\mathbb{E}\left[(\mathbf{r} - \boldsymbol{\mu})(\mathbf{r} - \boldsymbol{\mu})^T\right]$ are its mean vector and its (positive definite) covariance matrix. Also, let $\mathbf{w} \in \mathbb{R}^n$ denote the normalized portfolio (e.g. $\mathbf{w}^T \mathbf{1} = 1$), which represents the distribution of capital budget allocated over the assets.

Then, for every normalized portfolio \boldsymbol{w} , define the portfolio volatility as $\sigma(\boldsymbol{w}) \triangleq \sqrt{\boldsymbol{w}^T \boldsymbol{\Sigma} \boldsymbol{w}}$. Intuitively, the portfolio volativity is a measure of the risk contributions, i.e., the loss contributions from each asset. Besides, the proper definition of a measure of risk contribution is a paramount step before actually advancing on the study of risk parity portfolio.

Note that the portfolio volatility is a positively homogenous function, which implies that it can be expressed as

$$\sigma(\mathbf{w}) = \sum_{i=1}^{n} w_i \frac{\partial \sigma(\mathbf{w})}{\partial w_i},\tag{1}$$

in fact, the RHS of (1) is

$$\sum_{i=1}^{n} w_i \frac{\partial \sigma(\boldsymbol{w})}{\partial w_i} = \sum_{i=1}^{n} w_i \frac{(\boldsymbol{\Sigma} \boldsymbol{w})_i}{\sqrt{\boldsymbol{w}^T \boldsymbol{\Sigma} \boldsymbol{w}}}.$$
 (2)

From (2), $w_i \frac{\partial \sigma(\boldsymbol{w})}{\partial w_i}$ can be thought as the risk contribution of the *i*-th asset. Additionally, the risk contributions of every asset in a risk-parity portofolio are the same, therefore

$$w_i \frac{(\mathbf{\Sigma} \mathbf{w})_i}{\sqrt{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}}} = w_j \frac{(\mathbf{\Sigma} \mathbf{w})_j}{\sqrt{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}}} \ \forall i, j.$$
 (3)

2 Sparse risk-parity portfolio design: problem formulae

The problem of designing risk-parity portfolios with asset selection, as formulated by Feng & Palomar, is given as

minimize
$$F(\boldsymbol{w}) + \lambda_1 ||\boldsymbol{w}||_0 + \lambda_2 R(\boldsymbol{w}, \theta)$$

subject to $\boldsymbol{w}^T \mathbf{1} = 1, \boldsymbol{w} \in \mathcal{W},$ (4)

where

- $F(\boldsymbol{w}) \triangleq \boldsymbol{w}^T(-\nu\boldsymbol{\mu} + \Sigma\boldsymbol{w})$
- $R(\boldsymbol{w}, \theta) \triangleq \sum_{i=1}^{n} (g_i(\boldsymbol{w}) \theta)^2 \mathbb{I}_{\{w_i \neq 0\}}$
- $g_i(\boldsymbol{w}) \triangleq w_i (\boldsymbol{\Sigma} \boldsymbol{w})_i$

2.1 θ - update

For fixed w, say w^k , the objective function reduces to

minimize
$$\sum_{i=1}^{n} \left[\left(g_i(\boldsymbol{w}^k) - \theta \right) \rho_p^{\epsilon} \left(w_i^k \right) \right]^2$$
, (5)

which is the classical univariate weighted least squares problem whose solution is given as

$$\hat{\theta} = \sum_{i=1}^{n} x_i^k g_i \left(\boldsymbol{w}^k \right), \tag{6}$$

where
$$x_i^k = \frac{\left(\rho_p^{\epsilon}\left(w_i^k\right)\right)^2}{\sum_{i=1}^n \left(\rho_p^{\epsilon}\left(w_i^k\right)\right)^2}.$$

2.2 w - update

For a fixed θ :

$$\begin{array}{ll} \underset{\boldsymbol{w}}{\text{minimize}} & F(\boldsymbol{w}) + \lambda_1 || D_o^k \boldsymbol{w} ||_o^o + \lambda_2 P(\boldsymbol{w}, \boldsymbol{\theta}^k) + \tau || \boldsymbol{w} - \boldsymbol{w}^k ||_2^2 \\ \text{subject to} & \boldsymbol{w}^T \mathbf{1} = 1, \boldsymbol{w} \in \mathcal{W}, \end{array}$$

where

$$P(\boldsymbol{w}, \theta) \triangleq \sum_{i=1}^{n} \left\{ \tilde{g}_i(\boldsymbol{w}^k, \theta) + (\nabla \tilde{g}_i(\boldsymbol{w}^k, \theta))^T (\boldsymbol{w} - \boldsymbol{w}^k) \right\}^2$$
(8)

- $\tilde{g}_i(\boldsymbol{w}^k, \theta) \triangleq (g_i(\boldsymbol{w}^k) \theta)\rho_p^{\epsilon}(w_i^k)$
- $\nabla_{\boldsymbol{w}} \tilde{g}_i(\boldsymbol{w}^k, \theta) = \rho_p^{\epsilon}(w_i^k) \cdot \nabla_{\boldsymbol{w}} g_i(\boldsymbol{w}^k) + \left[(g_i(\boldsymbol{w}^k) \theta) \cdot \nabla_{\boldsymbol{w}} \rho_p^{\epsilon}(w_i^k) \right] \cdot \boldsymbol{e}_i$