PAC Statistical Model Checking for Markov Decision Processes and Stochastic Games¹

Pranav Ashok, Jan Křetínský, Maximilian Weininger

Technical University of Munich

Highlights of Logic, Automata and Games Warsaw, Poland

September 19, 2019

¹based on paper presented at CAV 2019

Stochastic Game

Reachability

Objective

 \square player: maximize P(F \square)

◯ player: minimize P(F □)

Stochastic Game

Reachability

Objective

☐ player: maximize P(F □)

⊃ player: minimize P(F □)

Stochastic Game

Reachability

Objective

 \square player: maximize P(F \square)

⊃ player: minimize P(F □)

This work: Black-box (limited information setting)

Background

► Seminal paper on Stochastic Games [Condon 90] quadratic programming, strategy iteration, value iteration

Background

- ➤ Seminal paper on Stochastic Games [Condon 90] quadratic programming, strategy iteration, value iteration
- Algos not directly applicable on general SG
- ► First practical algorithm for general SG giving guarantees [Kelmendi et. al. 2018]

Background

- ► Seminal paper on Stochastic Games [Condon 90] quadratic programming, strategy iteration, value iteration
- Algos not directly applicable on general SG
- ► First practical algorithm for general SG giving guarantees [Kelmendi et. al. 2018]
- ► This work: first algorithm for limited information SG

Similar to Kelmendi et. al. 2018

while U - L is large

- 1. Simulate and estimate
- 2. Back-propagate

Similar to Kelmendi et. al. 2018

while U - L is large

- 1. Simulate and estimate
- 2. Back-propagate

The how

Simulation finds important parts of state space

Similar to Kelmendi et. al. 2018

while U - L is large

- 1. Simulate and estimate
- 2. Back-propagate

The how

- Simulation finds important parts of state space
- Simulation computes Hoeffding confidence intervals
 ball around estimate such that real prob. falls in the ball with high confidence

Similar to Kelmendi et. al. 2018

while U - L is large

- 1. Simulate and estimate
- 2. Back-propagate

The how

- Simulation finds important parts of state space
- Simulation computes Hoeffding confidence intervals
 ball around estimate such that real prob. falls in the ball with high confidence
- Information conservatively back-propagated

Similar to Kelmendi et. al. 2018

while U - L is large

- 1. Simulate and estimate
- 2. Back-propagate

The how

- Simulation finds important parts of state space
- Simulation computes Hoeffding confidence intervals
 ball around estimate such that real prob. falls in the ball with high confidence
- Information conservatively back-propagated
- Other tricks to ensure fixpoint convergence

Conclusion

- Algorithm for reachability in limited information MDP/SG result $\in [0.6 \epsilon, 0.6 + \epsilon]$ with prob of going wrong 10^{-8}
- ▶ Implemented and benchmarked in PRISM Model Checker
- First algorithm to do so for SG
- First practical algorithm for MDPs