Epreuve écrite

Examen de fin d'études secondaires 2002 Nom et prénom du candidat B, C Section: Chimie Branche: QC = question de cours ; QT = question de transfert ; AN = application numérique I. Hydratation d'un alcène 12 points 1) Etudier la réaction de l'eau acidulée sur le propène a) Ecrire l'équation globale. QC1 b) Etudier le mécanisme réactionnel. QC4 2) Un alcène linéaire présentant deux isomères de configuration A et A' conduit, par hydratation, à un seul alcool B (mais présentant aussi deux isomères de configuration). La molécule B renferme 21,6% (en masse) d'oxygène. Déterminer la formule brute de B. AN₂ b) Quelle est la formule brute de l'alcène de départ? Ecrire les formules développées et les noms de A et A'. QT2 Préciser le type d'isomérie de B, donner la représentation spatiale des deux isomères et c) appliquer la nomenclature CIP. QT3 П. Estérification 8 points On désire obtenir de l'éthanoate de 3-méthylbutyle, composé à odeur caractéristique de banane à partir d'un acide carboxylique et d'un alcool. Donner les noms de l'acide et de l'alcool. Ecrire l'équation de la réaction en utilisant les 1) formules semi-développées. 2) On chauffe à reflux un mélange de 0,276 mol d'alcool avec 0,525 mol d'acide en présence d'acide sulfurique concentré. Calculer la composition du mélange à l'équilibre, si la constante d'équilibre vaut 4. a) AN₃ Quel est le rendement de la réaction ? b) AN1 Au moment où on arrête le chauffage on parvient à extraire 0,191 mol d'ester du mélange réactionnel. Avait-on atteint l'équilibre avant de procéder à l'extraction ? Justifier.

Epreuve écrite

Examen	le fin d'études secondaires 2002 Nom et prénom du candidat
Section:	B, C
Branche:	Chimie
III.	Composés oxygénés 16 point
	To point
1)	Les molécules d'éthanol et de phénol possèdent toutes les deux un groupement hydroxyle, mais les deux composés se distinguent par leurs propriétés acido-basiques.
а	de pH
- b	Etudier la réaction de l'éthanol avec le sodium. Quel caractère de l'éthanol a-t-on mis en
c	evidence par cette réaction ?
	correspondants.
d e	Comparer la basicité de l'ion éthanolate avec celle de l'ion phénolate.
	Q1:
2)	Dresser le système rédox pour la réaction de l'éthanal avec la liqueur de Fehling. QC3
-3)	Un composé organique aliphatique à chaîne saturée A a la formule brute C ₄ H ₈ O.
a) b)	A donne un précipité jaune avec la DNPH. Quel renseignement en déduit-on?
U,	déduit-on?
c)	L'oxydation de A par une solution acidulée de dichromate de potassium donne un produit B à chaîne ramifiée.
	Déduire de ces faits la formule développée et le nom de A. QT1
IV.	Composés azotés 13 points
1)	Faire une étude expérimentale comparée de la dissociation ionique de solutions 1M de méthylamine, d'ammoniaque et d'hydroxyde de sodium. Conclure.
2)	
2)	Une solution aqueuse de triméthylamine de concentration 6 · 10 ⁻³ mol·L ⁻¹ a un pH égal à 10,8.
a) b)	AN)
0)	AN2
3)	Calculer la concentration molaire d'une solution de chlorure d'ammonium dont le pH vaut
	5,60. AN2

Epreuve écrite

Examen de fin d'études secondaires 2002	Nom et prénom du candidat
Section:	
Branche:	

V. Dosage d'un acide organique

11 points

On dose 20 cm 3 d'une solution aqueuse d'un monoacide organique noté AH par une solution d'hydroxyde de sodium de concentration $c_B=0,1\,$ mol·L $^{-1}$. Un pH-mètre permet de suivre l'évolution du pH du mélange au cours du dosage.

- La courbe pH = f(V_B) (V_B = volume de la solution de base ajoutée) présente deux points remarquables :
 - le point M tel que $V_M = 12,2 \text{ ml}$; $pH_M = 3,75$
 - le point d'équivalence P.E tel que $V_{P.E} = 24,4 \text{ ml}$; $pH_{P.E} = 8,42$
 - a) Déterminer la concentration molaire de l'acide.
 b) A l'aide des données précédentes donner la valeur du pV. de l'acide des

AN1

- A l'aide des données précédentes donner la valeur du pK_a de l'acide dosé. Justifier la réponse.
- c) Identifier l'acide dosé dans le tableau suivant.

QT2 AN1

Acide	CHCl ₂ COOH	CH ₂ ClCOOH	НСООН	C ₂ H ₅ COOH
	-	1.38 . 10-3	1.78 . 10-4	1.35 10-5

Parmi les indicateurs colorés suivants, déterminer celui qui convient pour ce dosage.
 Justifier la réponse.

QT1

Indicateur	Zone de virage	
rouge de méthyle	4,2-6,2	
bleu de bromothymol	6,0-7,6	
phénolphtaléine	8,0-10,0	

- 3)
- Calculer le volume de NaOH qu'il faut ajouter à la solution de AH précédente pour avoir un pH de 4.
- b) Calculer le pH de la solution après addition de 28 ml de NaOH.

AN3

13.06.02	1
Covergé	1
(a) (voir manuel p. 43	Q C 1 Q C 4
2) a) CM Henta OH = 0 16 = 216 => M=4	AN2
$= D C_{4} H_{10} D$ $b) C_{4} H_{8} C_{43} C_{43} H$ $c = c$ $H H C_{43} H$ $(Z) - but - z - iu (E) - but - z - iu$	QT 2
c) isomères optiques (1'nantionières) C2H5 C2H5 CH3 OH OH CH3 OH CH3 S-butou-2-al R-butou-2-al	Q т 3
	(12)
II (1) CHz-C, OH HO-CHz-CHz-CH-CHz acide i'Heavoi'que 3-mi'Hrylbutoue-1-ol	QT3
$CH_{3} = \frac{1}{2} 1$	
(2) a) $K = \frac{x \cdot x}{(0,276-x)(0,525-x)} <=> \frac{x^2}{(0,276-x)(0,525-x)} = 4$	
$=0 \times = 0.231$	
Malwel = 0,276 - 0,231 = 0,045 mil	AN3
Macide = 0,525 - 0,231 = 0,294 west	
Mester = Meour = 0,231 mol b) rendement: $\frac{0,231}{0,276} = 0,837 => 83,7\%$	ANI
c) l'équilibre n'est pous atteint, car	QT1
Quantité < quantité < quantité de l'élèment le l'alors	

-2-	L
III (1 a) p.52	QC1
b) p. 52	QC4
c) $C_6H_5OH + H_2O \rightleftharpoons C_6H_5O^- + H_3O^+$ $A_1 B_2 B_1 A_2$	QT1
d) CH3 CH20 = base forte C6 H50 = base faible	Q TA
1) plievel = donneur de doublet => effet M+	
deunité électronique 1 sur 0 folorisation de la l'aison 0-H + => acidité 1 clo-H 10-H 10-H 10-H	QТ3
(2) p. 65	Q c 3
(3) a) = proupement carbonyle	QT1
b) => forction aldely de	QTA
c) acide ramifie' => aldihyde ramifie' 2-me'Hylpopanal CH3-CH-C=0 CH3	QTA
	(16)
少 0 个 81	QC7
(2) four une loase forte pOH = - log Cobase a) (=> pOH = - log 6. 10 ⁻³ <=> pOH = 2,22 pH = 14 - 2,22 = 11,78 or 10,8 < 11,78 (dissocia from partielle) TOH-J < CO	AN 2
b) pka = 9,87 (=> pkb = 4,13 => Kb = 7,41.10-5	AN2
$\alpha = \sqrt{\frac{K_b}{c_0}} = \sqrt{\frac{7.41.10^{-5}}{6.10^{-3}}} = 2 \approx 0.11$	
5,0	

```
NHyCe - NHytarg + Clarg
acide M (pt. de vue pH)
                   faible
    pka = 9,20 =0 ka = 6,31.10-10
    PH = 5,60 = D [H30+] = 2,57.10-6 mol. 1-1
                                                           AND
    x2 + Wax - Ka co = 0 Quec x = CH30+J
(2,57.10-6)2+6,31.10-10.2,51.10-6-6,31.10-10c0=0
      (=> co = 0,01 mol. 1
(1) a) co AH = 0,1.24.4.10-3 <=> Co= 0,122 med. 1-1
                                                           (13)
   b) pH=pko+log MOAH or au PE MA-= MAH
(12, 2 WL NOOH)
                                                          QT2
     = V pH= pKa + log 1

=> pH= pKa = 3,75
    c) Ka = 10-3,75 (=> Ka = 1,78-10-4 = D HCOOH
                                                         ANI
Dephérolphaleine, can sa roue de vironge comprend le pH on P.F.
                                                          QT1
(3) a) mélange hompon avec pH=pKa + log MHCOOT
    MOH COOH = 0,122.20.10-3 = 2,44.10-3 med
     Soit x le n'h de mal Na 04 ajoule'
      => M HCOO = X N MHCOOK = 2,44.10-3-X
                                                          AN3
     4 = 3,75 + log 2,44,10-3-x
    L=7 \log \frac{x}{2,44\cdot 10^{3}-x} = 0,25 = 7 \frac{x}{2,44\cdot 10^{-3}-x} = 1,78
      L=7 x = 1,78 (2,44.10-3-x) (=7 x = 1,56.10-3
    M = C \cdot V = V = \frac{1,56 \cdot 10^{-3}}{10^{-4}} = 15,6 \cdot 10^{-3} \ell
b) trus de Nor OH ( négliger la base faitste)

M Na OH ainesté : 10. 1. 20 15-3
   M Naon ajanti: 0, 1.28.10-3 = 2.8.10-3 med
   M Nack en en (28-2,44) . 10-3 = 0,36.10-3 wed AN3
    V total = (20 + 28). 10-3 = 48.10-3/
     CNOWN = 0,36.10-3 <=> CONAOH = 7,5.10-3 mol. 11
FOH = -log 7,5.10-3 (=> POH = 2,42
                            => PH = 11,88
```