

Stationary Equilibrium

Mini-Course: Heterogenous Agent Macro

Jeppe Druedahl 2025

Previously:

- 1. Single agent problem
- 2. No interactions (only passive distribution)

- Previously:
 - 1. Single agent problem
 - 2. No interactions (only passive distribution)
- Now: Interaction through Walrassian markets

- Previously:
 - 1. Single agent problem
 - 2. No interactions (only passive distribution)
- Now: Interaction through Walrassian markets
- Model: Heterogeneous Agent Neo-Classical (HANC) model

- Previously:
 - 1. Single agent problem
 - 2. No interactions (only passive distribution)
- Now: Interaction through Walrassian markets
- Model: Heterogeneous Agent Neo-Classical (HANC) model
- Equilibrium-concept: Stationary equilibrium
 - 1. What determines income and wealth inequality?
 - 2. What determines the real interest rate?

- Previously:
 - 1. Single agent problem
 - 2. No interactions (only passive distribution)
- Now: Interaction through Walrassian markets
- Model: Heterogeneous Agent Neo-Classical (HANC) model
- Equilibrium-concept: Stationary equilibrium
 - 1. What determines income and wealth inequality?
 - 2. What determines the real interest rate?
- Code: Based on the GEModelTools package
 - 1. Is in active development
 - 2. You can help to improve interface, find bugs and suggest features

Documentation: See GEModelToolsNotebooks

Original package: SSJ + courses (more complicated back-end)

- Previously:
 - 1. Single agent problem
 - 2. No interactions (only passive distribution)
- Now: Interaction through Walrassian markets
- Model: Heterogeneous Agent Neo-Classical (HANC) model
- Equilibrium-concept: Stationary equilibrium
 - 1. What determines income and wealth inequality?
 - 2. What determines the real interest rate?
- Code: Based on the GEModelTools package
 - 1. Is in active development
 - 2. You can help to improve interface, find bugs and suggest features

Documentation: See GEModelToolsNotebooks

Original package: SSJ + courses (more complicated back-end)

• Literature: Aiyagari (1994)

Plan

- 1. Introduction
- 2. Ramsey-recap
- 3. HANC
- 4. Stationary Equilibrium
- 5. Code
- 6. Calibration
- 7. HANC-Gov
- 8. Summary

Ramsey-recap

Ramsey: Firms

- **Production function:** $Y_t = F(\Gamma_t, K_{t-1}, L_t)$ [note timing of capital] where Γ_t is technology
- Profits: $\Pi_t = Y_t w_t L_t r_t^K K_{t-1}$
- Profit maximization: $\max_{K_{t-1}, L_t} \Pi_t$
 - 1. Rental rate: $\frac{\partial \Pi_t}{\partial K_{t-1}} = 0 \Leftrightarrow r_t^K = F_K(\Gamma_t, K_{t-1}, L_t)$
 - 2. Real wage: $\frac{\partial \Pi_t}{\partial L_t} = 0 \Leftrightarrow w_t = F_L(\Gamma_t, K_{t-1}, L_t)$

Zero profits: $\Pi_t = 0 \Rightarrow$

 $Y_t = w_t L_t + r_t^K K_{t-1}$ [functional income distribution]

Ramsey: Zero-profit mutual fund

- Owns all capital
- Capital depreciate with rate $\delta \in (0,1)$,

$$K_t = (1 - \delta)K_{t-1} + I_t$$

• **Deposits** (from households), A_{t-1} : The rate of return is

$$r_t = r_t^K - \delta$$

Balance sheet:

$$A_{t-1} = K_{t-1}$$

Ramsey: Households

Utility maximization:

$$v_0(A_{-1}^{hh}) = \max_{\{C_t^{hh}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(C_t^{hh})$$
s.t.
$$A_t^{hh} = (1+r_t)A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh}$$

Exogenous labor supply: $L_t^{hh} = 1$

• Euler-equation (implied by Lagrangian):

$$u'(C_t^{hh}) = \beta(1 + r_{t+1})u'(C_{t+1}^{hh})$$

• Capital market: $K_t = A_t = A_t^{hh}$

- Capital market: $K_t = A_t = A_t^{hh}$
- Labor market: $L_t = L_t^{hh} = 1$

- Capital market: $K_t = A_t = A_t^{hh}$
- Labor market: $L_t = L_t^{hh} = 1$
- Goods market: $Y_t = C_t^{hh} + I_t$

- Capital market: $K_t = A_t = A_t^{hh}$
- Labor market: $L_t = L_t^{hh} = 1$
- Goods market: $Y_t = C_t^{hh} + I_t$
- Walras: Capital and labor market clears ⇒ goods market clears

$$C_t^{hh} + I_t = \left[(1 + r_t) A_{t-1}^{hh} + w_t L_t^{hh} - A_t^{hh} \right] + (K_t - (1 - \delta) K_{t-1})$$

$$= \left[(1 + r_t) K_{t-1} + w_t L_t - K_t \right] + (K_t - (1 - \delta) K_{t-1})$$

$$= r_t^K K_{t-1} + w_t L_t$$

$$= Y_t$$

Ramsey: Summary

Simplified form:

$$u'(C_t^{hh}) = \beta(1 + F_K(\Gamma_t, K_t, 1) - \delta)u'(C_{t+1}^{hh})$$

$$K_t = (1 - \delta)K_{t-1} + F(\Gamma_t, K_{t-1}, 1) - C_t^{hh}$$

Ramsey: Summary

Simplified form:

$$u'(C_t^{hh}) = \beta(1 + F_K(\Gamma_t, K_t, 1) - \delta)u'(C_{t+1}^{hh})$$

$$K_t = (1 - \delta)K_{t-1} + F(\Gamma_t, K_{t-1}, 1) - C_t^{hh}$$

Extended form:

$$r_{t}^{K} = F_{K}(\Gamma_{t}, K_{t-1}, L_{t})$$

$$w_{t} = F_{L}(\Gamma_{t}, K_{t-1}, L_{t})$$

$$r_{t} = r_{t}^{K} - \delta$$

$$A_{t} = K_{t}$$

$$A_{t}^{hh} = (1 + r_{t})A_{t-1}^{hh} + w_{t}L_{t}^{hh} - C_{t}^{hh}$$

$$u'(C_{t}^{hh}) = \beta(1 + r_{t+1})u'(C_{t+1}^{hh})$$

$$A_{t} = A_{t}^{hh}$$

$$L_{t} = L_{t}^{hh}$$

Ramsey: As an equation system

$$\begin{bmatrix} r_t^K - F_K(\Gamma_t, K_{t-1}, L_t) \\ w_t - F_L(\Gamma_t, K_{t-1}, L_t) \\ r_t - (r_t^K - \delta) \\ A_t - K_t \\ A_t^{hh} - ((1 + r_t)A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh}) \\ u'(C_t^{hh}) - \beta(1 + r_{t+1})u'(C_{t+1}^{hh}) \\ A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0, 1, \dots\}, \text{ given } K_{-1} \end{bmatrix} = \mathbf{0}$$

Note I: There is *perfect foresight*.

Note II: This is the so-called *sequence-space* formulation.

Ramsey: Steady state

Euler-equation can be solved for K_{ss}:

$$u'(\mathcal{C}_{ss}) = \beta(1 + F_{\mathcal{K}}(\Gamma_{ss}, \mathcal{K}_{ss}, 1) - \delta)u'(\mathcal{C}_{ss}) \Leftrightarrow$$
 $F_{\mathcal{K}}(\mathcal{K}_{ss}, 1) = \frac{1}{\beta} - 1 + \delta$

• Accumulation equation then implies C_{ss} :

$$\begin{aligned} & \mathcal{K}_{ss} = (1 - \delta)\mathcal{K}_{ss} + F(\Gamma_{ss}, \mathcal{K}_{ss}, 1) - \mathcal{C}_{ss} \Leftrightarrow \\ & \mathcal{C}_{ss} = (1 - \delta)\mathcal{K}_{ss} + F(\Gamma_{ss}, \mathcal{K}_{ss}, 1) - \mathcal{K}_{ss} \end{aligned}$$

HANC

- Firms: Rent capital from mutual fund and hire labor from the households, produce with given technology, and sell output goods
- 2. **Zero-profit mutual funds:** Own capital and rent it to firms, take deposits and pay return to household
- Households: Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 4. Markets: Perfect competition in labor, goods and capital markets

- 1. **Firms:** Rent capital from mutual fund and hire labor from the households, produce with given technology, and sell output goods
- 2. **Zero-profit mutual funds:** Own capital and rent it to firms, take deposits and pay return to household
- Households: Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 4. Markets: Perfect competition in labor, goods and capital markets
- Add-on to Ramsey-Cass-Koopman: Heterogeneous households

- 1. **Firms:** Rent capital from mutual fund and hire labor from the households, produce with given technology, and sell output goods
- 2. **Zero-profit mutual funds:** Own capital and rent it to firms, take deposits and pay return to household
- Households: Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 4. Markets: Perfect competition in labor, goods and capital markets
- Add-on to Ramsey-Cass-Koopman: Heterogeneous households
- Other names:

- 1. **Firms:** Rent capital from mutual fund and hire labor from the households, produce with given technology, and sell output goods
- 2. **Zero-profit mutual funds:** Own capital and rent it to firms, take deposits and pay return to household
- Households: Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 4. Markets: Perfect competition in labor, goods and capital markets
- Add-on to Ramsey-Cass-Koopman: Heterogeneous households
- Other names:
 - 1. The Aiyagari-model

- 1. **Firms:** Rent capital from mutual fund and hire labor from the households, produce with given technology, and sell output goods
- 2. **Zero-profit mutual funds:** Own capital and rent it to firms, take deposits and pay return to household
- Households: Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 4. Markets: Perfect competition in labor, goods and capital markets
- Add-on to Ramsey-Cass-Koopman: Heterogeneous households
- Other names:
 - 1. The Aiyagari-model
 - $2. \ \ The \ Aiyagari-Bewley-Hugget-Imrohoroglu-model$

Model blocks:

- 1. **Firms:** Rent capital from mutual fund and hire labor from the households, produce with given technology, and sell output goods
- 2. **Zero-profit mutual funds:** Own capital and rent it to firms, take deposits and pay return to household
- Households: Face idiosyncratic productivity shocks, supplies labor exogenously and makes consumption-saving decisions
- 4. Markets: Perfect competition in labor, goods and capital markets
- Add-on to Ramsey-Cass-Koopman: Heterogeneous households

Other names:

- 1. The Aiyagari-model
- 2. The Aiyagari-Bewley-Hugget-Imrohoroglu-model
- 3. The Standard Incomplete Markets (SIM) model

$$\begin{aligned} v_0(\beta_i, \phi_i, z_{it}, a_{it-1}) &= \max_{\{c_{it}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_i^t u(c_{it}) \\ &\text{s.t.} \\ \ell_{it} &= \phi_i z_{it} \\ a_{it} &= (1 + r_t) a_{it-1} + w_t \ell_{it} - c_{it} + \Pi_t \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] &= 1 \\ a_{it} &\geq 0 \end{aligned}$$

Utility maximization for household i:

$$\begin{aligned} v_0(\beta_i, \phi_i, z_{it}, a_{it-1}) &= \max_{\{c_{it}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_i^t u(c_{it}) \\ \text{s.t.} \\ \ell_{it} &= \phi_i z_{it} \\ a_{it} &= (1 + r_t) a_{it-1} + w_t \ell_{it} - c_{it} + \Pi_t \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] &= 1 \\ a_{it} &\geq 0 \end{aligned}$$

Where are there heterogeneity?

$$\begin{aligned} v_0(\beta_i, \phi_i, z_{it}, a_{it-1}) &= \max_{\{c_{it}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_i^t u(c_{it}) \\ \text{s.t.} \\ \ell_{it} &= \phi_i z_{it} \\ a_{it} &= (1 + r_t) a_{it-1} + w_t \ell_{it} - c_{it} + \Pi_t \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] &= 1 \\ a_{it} &\geq 0 \end{aligned}$$

- Where are there heterogeneity?
 - 1. Ex ante due to different preferences, β_i

$$\begin{aligned} v_0(\beta_i, \phi_i, z_{it}, a_{it-1}) &= \max_{\{c_{it}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_i^t u(c_{it}) \\ \text{s.t.} \\ \ell_{it} &= \phi_i z_{it} \\ a_{it} &= (1 + r_t) a_{it-1} + w_t \ell_{it} - c_{it} + \Pi_t \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] &= 1 \\ a_{it} &\geq 0 \end{aligned}$$

- Where are there heterogeneity?
 - 1. Ex ante due to different preferences, β_i
 - 2. Ex ante due to different abilities, ϕ_i

$$\begin{aligned} v_0(\beta_i, \phi_i, z_{it}, a_{it-1}) &= \max_{\{c_{it}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_i^t u(c_{it}) \\ \text{s.t.} \\ \ell_{it} &= \phi_i z_{it} \\ a_{it} &= (1 + r_t) a_{it-1} + w_t \ell_{it} - c_{it} + \Pi_t \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] &= 1 \\ a_{it} &\geq 0 \end{aligned}$$

- Where are there heterogeneity?
 - 1. Ex ante due to different preferences, β_i
 - 2. Ex ante due to different abilities, ϕ_i
 - 3. Ex post due to stochastic productivity, z_{it}

$$\begin{aligned} v_0(\beta_i, \phi_i, z_{it}, a_{it-1}) &= \max_{\{c_{it}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_i^t u(c_{it}) \\ \text{s.t.} \\ \ell_{it} &= \phi_i z_{it} \\ a_{it} &= (1 + r_t) a_{it-1} + w_t \ell_{it} - c_{it} + \Pi_t \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] &= 1 \\ a_{it} &\geq 0 \end{aligned}$$

- Where are there heterogeneity?
 - 1. Ex ante due to different preferences, β_i
 - 2. Ex ante due to different abilities, ϕ_i
 - 3. Ex post due to stochastic productivity, z_{it}
- Incomplete markets due to borrowing constraint (fancy words: partial self-insurrance, lack of Arrow-Debreu securities)

Recursive formulation

Value function (at decision)

$$\begin{aligned} v_t(\beta_i, \phi_i, z_{it}, a_{it-1}) &= \max_{c_t} u(c_t) + \beta \underline{v}_{t+1}(\beta_i, \phi_i, z_{it}, a_{it}) \\ \text{s.t.} \\ \ell_{it} &= \phi_i z_{it} \\ a_{it} &= (1 + r_t) a_{it-1} + w_t \ell_{it} - c_{it} + \Pi_t \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1} \\ a_{it} &\geq 0 \end{aligned}$$

Beginning-of-period value function (before shock realization):

$$\underline{v}_{t}(\beta_{i},\phi_{i},z_{it-1},a_{it-1}) = \mathbb{E}\left[v_{t}(\beta_{i},\phi_{i},z_{it},a_{it-1}) \mid \beta_{i},\phi_{i},z_{it-1},a_{it-1}\right]$$

Recursive formulation

Value function (at decision)

$$\begin{aligned} v_t(\beta_i, \phi_i, z_{it}, a_{it-1}) &= \max_{c_t} u(c_t) + \beta \underline{v}_{t+1}(\beta_i, \phi_i, z_{it}, a_{it}) \\ \text{s.t.} \\ \ell_{it} &= \phi_i z_{it} \\ a_{it} &= (1 + r_t) a_{it-1} + w_t \ell_{it} - c_{it} + \Pi_t \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1} \\ a_{it} &\geq 0 \end{aligned}$$

Beginning-of-period value function (before shock realization):

$$\underline{v}_t(\beta_i, \phi_i, z_{it-1}, a_{it-1}) = \mathbb{E}\left[v_t(\beta_i, \phi_i, z_{it}, a_{it-1}) \mid \beta_i, \phi_i, z_{it-1}, a_{it-1}\right]$$

Envelop-condition:

$$\underline{v}_{a,t}(\beta_i,\phi_i,z_{it-1},a_{it-1}) \equiv \frac{\partial \underline{v}_t}{\partial a_{it-1}} = \mathbb{E}\left[(1+r_t)u'(c_{it}) \,|\, \beta_i,\phi_i,z_{it-1},a_{it-1} \right]$$

Euler-equation

Proof: Using *variation argument* (see previous lecture) **Euler-equation:**

$$\begin{aligned} c_{it}^{-\sigma} &= \beta_i \underline{v}_{a,t+1}(\beta_i, \phi_i, z_{it}, a_{it}) \\ &= \beta_i \mathbb{E}_t \left[v_{a,t+1}(\beta_i, \phi_i, z_{it+1}, a_{it}) \right] \\ &= \beta_i (1 + r_{t+1}) \mathbb{E}_t \left[u'(c_{it+1}) \right] \\ &= \beta_i (1 + r_{t+1}) q(z_{it}, a_{it}) \end{aligned}$$

where q is the post-decision marginal value of cash

Policy functions: Aggregate prices are hidden as inputs, i.e.

$$x_{t}^{*}(\beta_{i},\phi_{i},z_{it},a_{it-1}) = x^{*}(\beta_{i},\phi_{i},z_{it},a_{it-1},\{r_{\tau},w_{\tau},\Pi_{\tau}\}_{\tau \geq t}) \text{ for } x \in \{a,\ell,c\}$$

Policy functions: Aggregate prices are hidden as inputs, i.e.

$$x_{t}^{*}(\beta_{i},\phi_{i},z_{it},a_{it-1}) = x^{*}(\beta_{i},\phi_{i},z_{it},a_{it-1},\{r_{\tau},w_{\tau},\Pi_{\tau}\}_{\tau \geq t}) \text{ for } x \in \{a,\ell,c\}$$

Distributions (vector of probabilities):

Policy functions: Aggregate prices are hidden as inputs, i.e.

$$x_{t}^{*}(\beta_{i},\phi_{i},z_{it},a_{it-1}) = x^{*}(\beta_{i},\phi_{i},z_{it},a_{it-1},\{r_{\tau},w_{\tau},\Pi_{\tau}\}_{\tau \geq t}) \text{ for } x \in \{a,\ell,c\}$$

- Distributions (vector of probabilities):
 - 1. Beginning-of-period: $\underline{\mathbf{D}}_t$ over β_i , ϕ_i , z_{it-1} and a_{it-1}

• Policy functions: Aggregate prices are hidden as inputs, i.e.

$$x_t^*(\beta_i, \phi_i, z_{it}, a_{it-1}) = x^*(\beta_i, \phi_i, z_{it}, a_{it-1}, \{r_\tau, w_\tau, \Pi_\tau\}_{\tau > t}) \text{ for } x \in \{a, \ell, c\}$$

- Distributions (vector of probabilities):
 - 1. Beginning-of-period: \mathbf{D}_t over β_i , ϕ_i , z_{it-1} and a_{it-1}
 - 2. Productivity transition: $\mathbf{D}_t = \Pi_z' \underline{\mathbf{D}}_t$ over β_i , ϕ_i , z_{it} and a_{it-1}

Policy functions: Aggregate prices are hidden as inputs, i.e.

$$x_t^*(\beta_i, \phi_i, z_{it}, a_{it-1}) = x^*(\beta_i, \phi_i, z_{it}, a_{it-1}, \{r_\tau, w_\tau, \Pi_\tau\}_{\tau > t}) \text{ for } x \in \{a, \ell, c\}$$

- **Distributions** (vector of probabilities):
 - 1. Beginning-of-period: $\underline{\mathbf{D}}_t$ over β_i , ϕ_i , z_{it-1} and a_{it-1}
 - 2. Productivity transition: $\mathbf{D}_t = \Pi_z' \underline{\mathbf{D}}_t$ over β_i , ϕ_i , z_{it} and a_{it-1}
 - 3. Savings transition: $\underline{\boldsymbol{D}}_{t+1} = \Lambda_t' \boldsymbol{D}_t$ where again

$$\Lambda_t = \Lambda\left(\left\{r_\tau, w_\tau, \Pi_\tau\right\}_{\tau \geq t}\right)$$

Interpretation: »The aggregate policy function«

Policy functions: Aggregate prices are hidden as inputs, i.e.

$$x_{t}^{*}(\beta_{i},\phi_{i},z_{it},a_{it-1}) = x^{*}(\beta_{i},\phi_{i},z_{it},a_{it-1},\{r_{\tau},w_{\tau},\Pi_{\tau}\}_{\tau \geq t}) \text{ for } x \in \{a,\ell,c\}$$

- **Distributions** (vector of probabilities):
 - 1. Beginning-of-period: $\underline{\mathbf{D}}_t$ over β_i , ϕ_i , z_{it-1} and a_{it-1}
 - 2. Productivity transition: $\mathbf{D}_t = \Pi_z' \underline{\mathbf{D}}_t$ over β_i , ϕ_i , z_{it} and a_{it-1}
 - 3. Savings transition: $\underline{\boldsymbol{D}}_{t+1} = \Lambda_t' \boldsymbol{D}_t$ where again

$$\Lambda_t = \Lambda\left(\left\{r_\tau, w_\tau, \Pi_\tau\right\}_{\tau \geq t}\right)$$

Interpretation: »The aggregate policy function«

Aggregate consumption and savings:

$$X_t^{hh} = \int x_t^*(\beta_i, \phi_i, z_{it}, a_{it-1}) d\boldsymbol{D}_t = X^{hh} \left(\{r_\tau, w_\tau, \Pi_\tau\}_{\tau=0}^t, \underline{\boldsymbol{D}}_0 \right) \text{ for } x \in \{a, \ell, c\}$$

Equation system

$$\begin{bmatrix} r_t^K - F_K(\Gamma_t, K_{t-1}, L_t) \\ w_t - F_L(\Gamma_t, K_{t-1}, L_t) \\ r_t - (r_t^K - \delta) \\ A_t - K_t \\ \boldsymbol{D}_t - \Pi_z' \underline{\boldsymbol{D}}_t \\ \underline{\boldsymbol{D}}_{t+1} - \Lambda_t' \boldsymbol{D}_t \\ A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0, 1, \dots\}, \text{ given } \underline{\boldsymbol{D}}_0 \end{bmatrix} = \boldsymbol{0}$$

where $K_{-1}=\int a_{it-1}d\underline{m{D}}_0$

- 1. Perfect forsight wrt. aggregate variables
- 2. **Stationary equilibrium:** Time-constant solution.
- Transition path: Time-varying solution due to e.g. initial conditions or temporary deviations of exogenous variables.

Solution method

- Must be solved numerically:
- Household problem: $u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma}$
 - 1. Discretize and evaluate with interpolation
 - 2. Make recursion until convergence
- Transition path:
 - 1. Find the stationary equilibrium
 - 2. Find Jacobian around stationary equilibrium (later)
 - 3. Solve using quasi-Newton solver (later)

Solution of household problem

- **Solve:** Separately for each β_i , ϕ_i and z_{it}
 - 1. Find solution from FOC for each \tilde{a}_{it} in exogenous grid

$$\tilde{c}_{it}^{-\sigma} = \beta_i \underline{v}_{a,t+1}(\beta_i, \phi_i, z_{it}, \tilde{a}_{it}) \Leftrightarrow \tilde{c}_{it} = (\beta_i \underline{v}_{a,t+1}(\beta_i, \phi_i, z_{it}, \tilde{a}_{it}))^{-\frac{1}{\sigma}}$$

- 2. Calculate endogenous grid $\tilde{m}_{it} = \tilde{a}_{it} + \tilde{c}_{it}$
- 3. Interpolate at $m_{it} = (1 + r_t)a_{it-1} + w_t\phi_i z_{it} + \Pi_t$ to get optimal a_{it}
- 4. Enforce constraint by $a_{it} = \max\{a_{it}, 0\}$
- 5. Consumption is $c_{it} = m_{it} a_{it}$

Expecation:

$$\underline{v}_{a,t}(\beta_i,\phi_i,z_{it-1},a_{it-1}) = \sum_{i_z=0}^{\#_z-1} \pi_{i_z,i_z}(1+r_t)c_{it}^{-\rho}$$

Market clearing

- Capital market: $K_t = A_t = \int a_t^*(\beta_i, \phi_i, z_{it}, a_{it-1}) d\mathbf{D}_t$
- Labor market: $L_t = \int \ell_t^*(\beta_i, \phi_i, z_{it}, a_{it-1}) d\mathbf{D}_t = \int \phi_i z_{it} d\mathbf{D}_t = 1$
- Goods market: $Y_t = C_t^{hh} + I_t$
- Walras: Capital and labor market clears ⇒ goods market clears

$$C_t^{hh} + I_t = \int c_{it}^* d\mathbf{D}_t + [K_t - (1 - \delta)K_{t-1}]$$

$$= \int [(1 + r_t)a_{it-1} + w_t\phi_i z_{it} - a_{it}] d\mathbf{D}_t$$

$$= [(1 + r_t)K_{t-1} + w_t L_t - K_t] + [K_t - (1 - \delta)K_{t-1}]$$

$$= r_t^K K_{t-1} + w_t L_t$$

$$= Y_t$$

■ Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_t(z^{i_z}, a^{i_{a-}}) = \sum_{i_z = 0}^{\#_z - 1} \pi_{i_z, i_z} \underline{D}_t(z^{i_z}, a^{i_{a-}})$$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv \textit{histogram}$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_t(z^{i_z}, a^{i_{s-}}) = \sum_{i_z = 0}^{\#_z - 1} \pi_{i_z -, i_z} \underline{D}_t(z^{i_z -}, a^{i_{s-}})$$

2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv \textit{histogram}$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_{t}(z^{i_{z}}, a^{i_{s-}}) = \sum_{i_{z-}=0}^{\#_{z}-1} \pi_{i_{z-}, i_{z}} \underline{D}_{t}(z^{i_{z-}}, a^{i_{s-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_t(z^{i_z}, a^{i_{s-}}) = \sum_{i_z = 0}^{\#_z - 1} \pi_{i_z -, i_z} \underline{D}_t(z^{i_z -}, a^{i_{s-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv$ largest $i_a \in \{0,1,\ldots,\#_a-2\}$ such that $a^{i_a} \leq a_t^*(z^{i_z},a^{i_{a-}})$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_{t}(z^{i_{z}}, a^{i_{a-}}) = \sum_{i_{z-}=0}^{\pi_{z}-1} \pi_{i_{z-}, i_{z}} \underline{D}_{t}(z^{i_{z-}}, a^{i_{a-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do

3.1 Find
$$\iota \equiv \text{largest } i_a \in \{0,1,\ldots,\#_a-2\}$$
 such that $a^{i_a} \leq a_t^*(z^{i_z},a^{i_{a-}})$

3.2 Calculate
$$\omega = \frac{a^{\iota+1} - a^*(z^{i_Z}, a^{i_{B^-}})}{a^{\iota+1} - a^{\iota}} \in [0, 1]$$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_{t}(z^{i_{z}}, a^{i_{s-}}) = \sum_{i_{z-}=0}^{\#_{z}-1} \pi_{i_{z-}, i_{z}} \underline{D}_{t}(z^{i_{z-}}, a^{i_{s-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv \text{largest } i_a \in \{0,1,\ldots,\#_a-2\}$ such that $a^{i_a} \leq a_t^*(z^{i_z},a^{i_{a-}})$
 - 3.2 Calculate $\omega = \frac{a^{\iota+1} a^*(z^{i_Z}, a^{i_{B^-}})}{a^{\iota+1} a^{\iota}} \in [0, 1]$
 - 3.3 Increment $\underline{D}_{t+1}(z^{i_z},a^{\iota})$ with $\omega D_t(z^{i_z},a^{i_{a-}})$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_{t}(z^{i_{z}}, a^{i_{s-}}) = \sum_{i_{z-}=0}^{\#_{z}-1} \pi_{i_{z-}, i_{z}} \underline{D}_{t}(z^{i_{z-}}, a^{i_{s-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv \text{largest } i_a \in \{0,1,\ldots,\#_a-2\}$ such that $a^{i_a} \leq a_t^*(z^{i_z},a^{i_{a-}})$
 - 3.2 Calculate $\omega = \frac{a^{\iota+1} a^*(z^{i_Z}, a^{i_{B^-}})}{a^{\iota+1} a^{\iota}} \in [0, 1]$
 - 3.3 Increment $\underline{\boldsymbol{D}}_{t+1}(z^{i_z}, a^{\iota})$ with $\omega \boldsymbol{D}_t(z^{i_z}, a^{i_{a-1}})$
 - 3.4 Increment $\underline{m{D}}_{t+1}(z^{i_z},a^{\iota+1})$ with $(1-\omega)m{D}_t(z^{i_z},a^{i_{a-}})$

Implementation

- Toy example: simple_histogram_simulation.xlsx
 - Grids: $\mathcal{G}_z = \{\underline{z}, \overline{z}\}$ and $\mathcal{G}_a = \{0, 1\}$
 - Transition matrix: $\pi_{0,0} = \pi_{1,1} = 0.5$
 - Policy function:
 - Low income: $a^*(\underline{z},0) = a^*(\underline{z},1) = 0$
 - High income: Let $a^*(\overline{z},0)=0.5$ and $a^*(\overline{z},1)=1$
 - Initial distribution: $\underline{\mathbf{\mathcal{D}}}_0(z_{it}, a_{it-1}) = \begin{cases} 1 & \text{if } z_{it} = \underline{z} \text{ and } a_{it} = 0 \\ 0 & \text{else} \end{cases}$
 - Task: Calculate by hand the transitions to

$$\boldsymbol{D}_0, \ \underline{\boldsymbol{D}}_1, \ \boldsymbol{D}_1, \ldots$$

Implementation

- Toy example: simple_histogram_simulation.xlsx
 - Grids: $\mathcal{G}_z = \{\underline{z}, \overline{z}\}$ and $\mathcal{G}_a = \{0, 1\}$
 - Transition matrix: $\pi_{0,0} = \pi_{1,1} = 0.5$
 - Policy function:
 - Low income: $a^*(\underline{z}, 0) = a^*(\underline{z}, 1) = 0$
 - High income: Let $a^*(\overline{z},0)=0.5$ and $a^*(\overline{z},1)=1$
 - Initial distribution: $\underline{\mathbf{D}}_0(z_{it}, a_{it-1}) = \begin{cases} 1 & \text{if } z_{it} = \underline{z} \text{ and } a_{it} = 0 \\ 0 & \text{else} \end{cases}$
 - Task: Calculate by hand the transitions to

$$\mathbf{D}_0,\, \underline{\mathbf{D}}_1,\, \mathbf{D}_1,\dots$$

- Comparison with Monte Carlo: See ConSavModel/
 - 1. Pro: Computationally efficient and no randomness
 - 2. Con: Introduces a non-continuous distribution

Side-note: Matrix formulation

The histogram method can be written in matrix form:

$$oldsymbol{D}_t = \Pi_z' \underline{oldsymbol{D}}_t \ \underline{oldsymbol{D}}_{t+1} = \Lambda_t' oldsymbol{D}_t$$

where

 $\underline{\textbf{\textit{D}}}_{t}$ is vector of length $\#_{z} \times \#_{a}$

 D_t is vector of length $\#_z \times \#_a$

 Π_z' is derived from the π_{i_z,i_z} 's

 Λ'_t is derived from the ι 's and ω 's

- Further details: Young (2010), Tan (2020),
 Ocampo and Robinson (2022)
- Notebook: ConSavModel/Extra. The matrix formulation.ipynb

Stationary Equilibrium

Stationary equilibrium - equation system

The **stationary equilibrium** satisfies

$$\begin{bmatrix} r_{ss}^{K} - F_{K}(\Gamma_{ss}, K_{ss}, L_{ss}) \\ w_{ss} - F_{L}(\Gamma_{ss}, K_{ss}, L_{ss}) \\ r_{ss} - (r_{ss}^{K} - \delta) \\ A_{ss} - K_{ss} \\ \mathbf{D}_{ss} - \Pi_{z}^{\prime} \mathbf{\underline{D}}_{ss} \\ \mathbf{\underline{D}}_{ss} - \Lambda_{ss}^{\prime} \mathbf{D}_{ss} \\ A_{ss} - A_{ss}^{hh} \\ L_{ss} - L_{ss}^{hh} \end{bmatrix} = \mathbf{0}$$

Note I: Households still move around »inside« the distribution due to idiosyncratic shocks

Note II: Steady state for aggregates (quantities and prices) and the distribution as such

Stationary equilibrium - more verbal definition

For a given Γ_{ss}

- 1. Quantities K_{ss} and L_{ss} ,
- 2. prices r_{ss} and w_{ss} (always $\Pi_{ss} = 0$),
- 3. the distribution \boldsymbol{D}_{ss} over β_i , ϕ_i , z_{it} and a_{it-1}
- 4. and the policy functions a_{ss}^* , ℓ_{ss}^* and c_{ss}^*

are such that

- 1. Household maximize expected utility (policy functions)
- 2. Firms maximize profits (prices)
- 3. D_{ss} is the invariant distribution implied by the household problem
- 4. Mutual fund balance sheet is satisfied
- 5. The capital market clears
- 6. The labor market clears
- 7. The goods market clears

Direct implementation

Technology: $F(K, L) = \Gamma K^{\alpha} L^{1-\alpha}$

Root-finding problem in K_{ss} with the objective function:

- 1. Set $L_{ss} = 1$ (and $\Pi_{ss} = 0$)
- 2. Calculate $r_{ss} = \alpha \Gamma_{ss} (K_{ss})^{\alpha-1} \delta$ and $w_{ss} = (1 \alpha) \Gamma_{ss} (K_{ss})^{\alpha}$
- 3. Solve infinite horizon household problem backwards, i.e. find a_{ss}^*
- 4. Simulate households forwards until convergence, i.e. find $oldsymbol{D}_{ss}$
- 5. Return $K_{ss} \boldsymbol{a}_{ss}^{*\prime} \boldsymbol{D}_{ss}$

Direct implementation (alternative)

Technology: $F(K, L) = \Gamma K^{\alpha} L^{1-\alpha}$

Root-finding problem in r_{ss} with the objective function:

- 1. Set $L_{ss}=1$ (and $\Pi_{ss}=0$)
- 2. Calculate $K_{ss} = \left(\frac{r_{ss} + \delta}{\alpha \Gamma_{ss}}\right)^{\frac{1}{\alpha 1}}$ and $w_{ss} = (1 \alpha)\Gamma_{ss}(K_{ss})^{\alpha}$
- 3. Solve infinite horizon household problem backwards, i.e. find a_{ss}^*
- 4. Simulate households forwards until convergence, i.e. find $oldsymbol{D}_{ss}$
- 5. Return $K_{ss} \boldsymbol{a}_{ss}^{*\prime} \boldsymbol{D}_{ss}$

Indirect implementation

Technology: $F(K, L) = \Gamma K^{\alpha} L^{1-\alpha}$

Consider Γ_{ss} and δ as »free« parameters:

- 1. Choose r_{ss} and w_{ss}
- 2. Solve infinite horizon household problem backwards, i.e. find $a_{\rm ss}^*$
- 3. Simulate households forwards until convergence, i.e. find \boldsymbol{D}_{ss}
- 4. Set $K_{ss} = \boldsymbol{a}_{ss}^{*\prime} \boldsymbol{D}_{ss}$
- 5. Set $L_{ss}=1$ (and $\Pi_{ss}=0$)
- 6. Set $\Gamma_{ss} = \frac{w_{ss}}{(1-\alpha)(K_{ss})^{\alpha}}$
- 7. Set $r_{ss}^K = \alpha \Gamma_{ss}(K_{ss})^{\alpha-1}$
- 8. Set $\delta = r_{ss}^k r_{ss}$

Code

Calibration

- Preferences: $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$
 - 1. Discount factors: $\beta \in \{0.965, 0.975, 0.985\}$ in equal pop. shares
 - 2. Abilities: $\phi = 1$
 - 3. Relative risk aversion: $\sigma = 2$

Income:

- 1. AR(1): $\rho_z = 0.95$
- 2. Std.: $\sigma_{\psi}=0.30\sqrt{(1ho_{z}^{2})}$
- Technology: $F(K, L) = \Gamma K^{\alpha} L^{1-\alpha}$
 - 1. Capital share: $\alpha = 0.36$
 - 2. TFP: $\Gamma_{ss} = 1.082$
 - 3. Depreciation: $\delta = 0.193$

Steady state:

- 1. Prices: $r_{ss} = 0.01$ and $w_{ss} = 1$
- 2. Quantities: $K_{ss}/Y_{ss} = 1.776$

Code

- Notebook: HANC/HANC.ipynb in github.com/NumEconCopenhagen/GEModelToolsNotebooks
- Used packages:
 - 1. EconModel: github.com/NumEconCopenhagen/EconModel
 - 2. ConSav: github.com/NumEconCopenhagen/ConsumptionSaving
 - 3. GEModelTools: github.com/NumEconCopenhagen/GEModelTools

Consumption function

• Euler-equation still necessary for $a_{it} > 0$:

$$c_{it}^{-\sigma} = \beta_i (1 + r_{t+1}) \mathbb{E}_t \left[c_{it+1}^{-\sigma} \right]$$

- Precautionary saving:
 - 1. Low consumption for low cash-on-hand \rightarrow buffer-stock target
 - 2. Steep slope for low cash-on-hand \rightarrow high MPC

Low vs. high β_i

Distribution, D_t

- Productivity: Marginal distribution over only z_{it}
- **Savings:** Marginal distribution over a_{it} cond. on β_i

Drivers of wealth inequality:

- 1. Stochastic income
- 2. Heterogeneous patience → savings behavior

Steady state interest rate

Representative agent / complete markets:

Derived from aggregate Euler-equation

$$C_t^{-\sigma} = \beta (1 + r_{t+1}) C_{t+1}^{-\sigma} \Rightarrow C_{ss}^{-\sigma} = \beta (1 + r_{ss}) C_{ss}^{-\sigma} \Leftrightarrow \beta = \frac{1}{1 + r_{ss}}$$

Steady state interest rate

Representative agent / complete markets:

Derived from aggregate Euler-equation

$$C_t^{-\sigma} = \beta(1 + r_{t+1})C_{t+1}^{-\sigma} \Rightarrow C_{ss}^{-\sigma} = \beta(1 + r_{ss})C_{ss}^{-\sigma} \Leftrightarrow \beta = \frac{1}{1 + r_{ss}}$$

- Heterogeneous agents: No such equation exists
 - 1. Euler-equation replaced by asset market clearing condition
 - 2. Idiosyncratic income risk affects the steady state interest rate

σ_{ψ}	PE $(r_{ss} = 1\%)$, A^{hh}	GE, r _{ss}	GE, A ^{hh}
0.09	2.78	1.00%	2.78
0.14	7.39	0.12%	2.97
0.19	13.68	-1.11%	3.30

Partial Equilibrium: Same interest rate.

General Equilibrium: Capital+labor market clearing.

Wealth inequality

- Paper: Hubmer et. al. (2021)
- Drivers:
 - 1. Heterogeneous ability?
 - 2. Heterogeneous patience?
 - 3. Income risk?
 - 4. Heterogeneous returns? (incl. entrepreneurship)
- **Notebook:** $\phi_i \in \{0.5, 1, 1.5\}$ with equal shares
- Central observation: Wealth inequality > income inequality

Calibration

How to choose parameters?

 External calibration: Set subset of parameters to the standard values in the literature or directly from data estimates (e.g. income process)

How to choose parameters?

- External calibration: Set subset of parameters to the standard values in the literature or directly from data estimates (e.g. income process)
- Internal calibration: Set remaining parameters so the model fit a number of chosen macro-level and/or micro-level targets based on empirical estimates
 - 1. Informal: Roughly match targets by hand
 - 2. Formal:
 - 2a. Solve root-finding problem
 - 2b. Minimize a squared loss function
 - 3. **Estimation:** Formal with squared loss function + standard errors

How to choose parameters?

- External calibration: Set subset of parameters to the standard values in the literature or directly from data estimates (e.g. income process)
- Internal calibration: Set remaining parameters so the model fit a number of chosen macro-level and/or micro-level targets based on empirical estimates
 - 1. Informal: Roughly match targets by hand
 - 2. Formal:
 - 2a. Solve root-finding problem
 - 2b. Minimize a squared loss function
 - 3. **Estimation:** Formal with squared loss function + standard errors
- **Complication:** We must always solve for the steady state for each guess of the parameters to be calibrated

HANC-Gov

Endowment model with government

- No production. No physical savings instrument
- Households: Get stochastic endowment z_{it} of consumption good
- Government:
 - 1. Choose government spending
 - 2. Collect taxes, τ_t , proportional to endowment
 - 3. Bonds: Pays 1 consumption good next period. Price is $p_t^B < 1$

$$p_t^B B_t = B_{t-1} + G_t - \int \tau_t z_{it} d\mathbf{D}_t$$
$$\tau_t = \tau_{ss} + \eta_t + \varphi \left(B_{t-1} - B_{ss} \right)$$

where η_t is a tax-shifter

Market clearing:

$$egin{aligned} B_t &= A_t^{hh} \ C_t^{hh} + G_t &= \int z_{it} dm{D}_t = 1 \end{aligned}$$

Households

Households:

$$\begin{split} v_t(z_{it}, a_{it-1}) &= \max_{c_{it}} \frac{c_{it}^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_t \left[v_{it+1}(z_{it+1}, a_{it}) \right] \\ \text{s.t. } p_t^B a_{it} + c_{it} &= a_{it-1} + (1-\tau_t) z_{it} \geq 0 \\ &\log z_{it+1} = \rho_z \log z_{it} + \psi_{it+1} \ , \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \mathbb{E}[z_{it}] = 1 \end{split}$$

Euler-equation:

$$c_{it}^{-\sigma} = \beta \frac{\underline{v}_{a,t+1}(z_{it}, a_{it})}{p_t^B}$$

Envelope condition:

$$\underline{v}_{a,t}(z_{it-1},a_{it-1})=c_{it}^{-\sigma}$$

Questions

- 1. Define the stationary equilibrium
- 2. Solve and simulate the household problem with $p_{ss}^B = 0.975$ and $\tau_{ss} = 0.12$.
- 3. Find the stationary equilibrium with $G_{ss} = 0.10$ and $\tau_{ss} = 0.12$.
- 4. What happens for $\tau_{ss} \in (0.11, 0.15)$?
- 5. When is average household utility maximized?

Summary

Summary and what's next

This lecture:

- 1. The concept of a stationary equilibrium
- 2. Introduction to the GEModelTools package
- Next: Transitional dynamics
- You should:
 - 1. Study the code
 - Read documentation for GEModelTools (except on linearized solution and simulation)
 - 3. Glance at Auclert et. al. (2021)