Titre : Quaternions et $SO_3(\mathbb{R})$

Recasages: 150,160,161,191

Thème : Algèbre linéaire, théorie des groupes, Méthodes hilbertiennes.

Références : Perrin - Cours d'algèbre (p.164)

On note $H = \{a + ib + jc + kd \mid a, b, c, d \in \mathbb{R}\}$ l'algèbre des quaternions sur \mathbb{R} . On identifie H avec \mathbb{R}^4 , munie de la topologie euclidienne (la norme sur H, notée N est le carré de la norme $\|.\|_2$ sur \mathbb{R}^4).

<u>Théorème</u> 1. En notant G le sous-groupe de H^* formé des quaternions de norme 1, l'action de H^* sur H par conjugaison induit une suite exacte courte

$$1 \to \{\pm 1\} \to G \to SO_3(\mathbb{R}) \to 1$$

Considérons l'action de H^* sur H par conjugaison, pour $q \in H^*$, elle est donnée par

$$S_q: x \mapsto qxq^{-1}$$

On remarque que pour $q = \lambda q'$, avec $\lambda \in \mathbb{R}^*$, on a

$$S_q(x) = qxq^{-1} = (\lambda q')x(\lambda q')^{-1} = \lambda q'xq'^{-1}\lambda^{-1} = q'xq'^{-1} = S_{q'}(x)$$

Car $\mathbb{R} = Z(H)$, on peut donc se restreindre à considérer l'action de G sur H, avec $S_q = qxq^{-1} = qx\overline{q}$ pour $q \in G$. Comme la multiplication et la conjugaison dans H sont des applications \mathbb{R} -linéaires, l'action de G sur $H \simeq \mathbb{R}^4$ donne un morphisme de groupes $S: G \to Gl_4(\mathbb{R})$.

De plus, pour $q \in G$, S_q est une isométrie de H, en effet, pour $x \in H$, on a

$$N(S_q(x)) = N(qx\overline{q}) = N(q)N(x)N(\overline{q}) = N(x)$$

Donc S est en fait à valeurs dans $O_4(\mathbb{R})$.

Notant P le sous-espace de $H \simeq \mathbb{R}^4$ formé des quaternions purs, on remarque que P est l'orthogonal de \mathbb{R} dans H, or pour $q \in G$, on a $S_q(x) = x$ pour $x \in \mathbb{R} = Z(H)$, donc \mathbb{R} est stable par S_q , et il en va alors de même de $P: S_{q|P} =: s_q$ s'identifie alors à une isométrie de \mathbb{R}^3 , d'où un morphisme de groupes $s: G \to O_3(\mathbb{R})$ (autrement dit, G agit par isométrie sur P).

Le noyau de s est $\{\pm 1\}$, en effet $q \in \operatorname{Ker} s$ si et seulement si q commute à tous les éléments de P, ceci est équivalent à dire que $q \in \mathbb{Z}(H)$ (en effet, q commute toujours avec les éléments de R = Z(H), il suffit donc que q commute avec P pour avoir $q \in Z(H)$), donc $\operatorname{Ker} s = G \cap P = \{\pm 1\}$.

Montrons que $\operatorname{Im} s \subset SO_3(\mathbb{R})$: Les coefficients de la matrice s_q dans la base (i,j,k) de P sont des polynômes homogènes de degré 2 en les coordonnées de q, donc s est une application continue, de même que det : $O_3(\mathbb{R}) \to \{\pm 1\}$. Comme $G \simeq \mathfrak{S}^3$ est connexe, l'application det $\circ s$ est constante, égale à 1 car $\det(s_1) = 1$, donc s est à valeur dans $SO_3(\mathbb{R})$.

Montrons que $SO_3(\mathbb{R}) \subset \operatorname{Im} s$: Soit $p \in P \cap G$, on a $s_p(p) = pp\overline{p} = p$, donc s_p fixe p, c'est une rotation d'axe $\operatorname{Vect}(p)$. Ensuite, $p \in P \Rightarrow \overline{p} = -p$, et donc $(s_p)^2 = s_{p^2} = s_{-1} = I_3$, donc s_p est une involution : c'est un renversement d'axe $\operatorname{Vect}(p)$. Ceci étant vérifié pour tout $p \in G \cap P \simeq \mathfrak{S}^2 \subset \mathbb{R}^3$, tous les renversements de $SO_3(\mathbb{R})$ sont atteints, ceux-ci engendrant $SO_3(\mathbb{R})$, on a le résultat voulu.

Par le premier théorème d'isomorphisme (appliqué à s), on a bien la suite exacte courte attendue.

Corollaire 2. On a un isomorphisme $SU_2(\mathbb{C})/\{\pm I_2\} \simeq SO_3(\mathbb{R})$.

 $D\acute{e}monstration$. Considérons $\mathbb C$ comme un sous-corps de H, une base de H comme $\mathbb C$ -espace vectoriel est donnée par (1,j). Un quaternion q=a+ib+jc+kd est vu comme a+ib+j(x-ik). On considère l'action de G sur H par multiplication à gauche :

$$q.x =: T_q(x) = qx$$

On obtient ainsi un morphisme de groupes $G \to Gl_2(\mathbb{C})$, en fait à valeurs dans $U_2(\mathbb{C})$ comme q est supposé de norme 1. Si $q = \lambda + j\mu \in H$, on a

$$T_q = \begin{pmatrix} \lambda & -\overline{\mu} \\ \mu & \overline{\lambda} \end{pmatrix} \in U_2(\mathbb{C})$$

mais on a $1 = N(q) = |\lambda|^2 + |\mu|^2 = \det(T_q)$ et $T_q \in SU_2(\mathbb{C})$. Le morphisme de cette action est clairement injectif et surjectif, d'où un isomorphisme $G \simeq SU_2(\mathbb{C})$ et le résultat. \square