Data Structures and Algorithms

COSC 336 Assignment 4 - solutions

Exercise 1. For each of the following functions, give a $\Theta(t(n))$ estimation with the simplest possible t(n) (for example $3n^2 + 5n \log n = \Theta(n^2)$).

1.
$$13n^2 - 2n + 56$$

Solution: Polynomial of degree 2, so it $\Theta(n^2)$.

2. $2.5 \log n + 2$

Solution: After dropping the constants, we get $\Theta(\log n)$.

3. $n(12 + \log n)$

Solution: $\Theta(n \log n)$.

4. $1+2+3+\ldots+2n$

Solution: The sum is an arithmetic series. We apply the formula and we get $2n(2n+1)/2 = \Theta(n^2)$.

5. $1+2+3+\ldots+n^2$

Solution: The same as above, we get that the sum is $n^2(n^2+1)/2 = \Theta(n^4)$.

6. $\log(n^3) + 10$

Solution: This is $\Theta(\log n)$, because $\log(n^3) = 3\log n$.

7. $\log(n^3) + n \log n$

Solution: This is $\Theta(n \log n)$, because $\log(n^3) = 3 \log n$ and by the Max Rule, we can drop it.

8. $n \log(n^3) + n \log n$

Solution: This is $\Theta(n \log n)$, because $\log(n^3) = 3 \log n$ and therefore the two terms in the sum are $\Theta()$ of each other.

9. $2^{2\log n} + 5n + 1$

Solution: This is $\Theta(n^2)$ because $2^{2 \log n} = 2^{\log(n^2)} = n^2$.

Exercise 2.

1. Evaluate the following postfix arithmetic expression: 10 3 4 - 5 * /

Solution: In infix notation, the expression is 10/((3-4)*5), which is equal to -2. We can also use the algorithm using a stack that evaluates an expression in postfix notation.

2. Convert the following infix arithmetic expression to postfix notation: (((2+3)*5)-15)

```
Solution: 2\ 3 + 5 * 15 -
```

Exercise 3.

Consider the following algorithms A and B for the problem of computing $2^n \pmod{317}$ (This is the modular exponentiation problem that we have discussed in class. Algorithm A is the one that we have seen in class, and algorithm B is a variant of it.

```
Algorithm A.
```

1. Write the recurrence for the runtime $T_A(n)$ of algorithm A, and solve the recurrence to find a $\Theta(\cdot)$ estimation of $T_A(n)$.

Solution: $T_A(n) = T_A(n/2) + c$ (where c is some constant). Using the Master Theorem, we solve the recurrence and obtain $T_A(n) = \Theta(\log n)$. Note: it is the same recurrence as the one for Binary Search.

2. Write the recurrence for the runtime $T_B(n)$ of algorithm B, and solve the recurrence to find a $\Theta(\cdot)$ estimation of $T_B(n)$.

Solution: The algorithm B is calling itself recursively two times. So the recurrence is $T_B(n) = 2T_B(n/2) + c$. We can use the Master Theorem: we compare $n^{\log_2 2}$ vs. c, the Winner is $n^{\log_2 2} = n$, the ratio Winner/Loser is a polynomial in n, and therefore $T_B(n) = \Theta(n)$

3. Which algorithm is faster? (Note: There is a huge difference between T_A and $T_B(n)$.)

```
Solution: Obviously, A is much faster (because \log n = o(n)).
```

Exercise 4. Give a $\Theta(\cdot)$ evaluation for the runtime of the following code:

```
i= 1; x=0;
while(i <= n) {
    j=1;
    while (j <= i) { x=x+1; j= 2*j; }
    i= 2*i;
}</pre>
```

Hint: You can assume that n is a power two. Then i from the outer loop takes successivley the values: $1, 2, 2^2, 2^3, ..., 2^{\log n}$.

Solution: We assume $n=2^k$, so $k=\log n$. The inner loop has runtime $\Theta(\log i)$. Moving to the outer loop, we see that i takes in order the values: $1,2,2^2,2^3,\ldots,2^k$. So the total runtime is $\log 1 + \log 2 + \log 2^2 + \log 2^3 + \ldots \log 2^k = 1 + 2 + 3 + \ldots + k = k(k+1)/2 = \Theta(k^2) = \Theta(\log^2 n)$.