

What are social networks?

James Curley
Associate Professor,
University of Texas at Austin

What are Social Networks?

Network Data: Adjacency Matrix

	A	В	С	D	E	F	G
A	0	1	1	1	1	1	0
В	1	0	0	0	0	0	0
C	1	0	0	0	0	0	0
D	1	0	0	0	0	0	0
E	1	0	0	0	0	1	0
F	1	0	0	0	1	0	1
G	0	0	0	0	0	1	0

Network Data: Edgelist

Α	В
Α	С
Α	D
Α	E
Α	F
E	F
F	G

The igraph R package

Α	В
Α	С
Α	D
Α	Ε
Α	F
Ε	F
F	G

igraph objects

```
V(g)
+ 7/7 vertices, named:
[1] A B C D E F G

E(g)
+ 7/7 edges (vertex names):
[1] A--B A--C A--D A--E A--F E--F

gorder(g)
[1] 7

gsize(g)
[1] 7
```


Let's practice!

Network attributes

James Curley
Associate Professor,
University of Texas at Austin

Vertex Attributes


```
IGRAPH UN-- 7 7 --
+ attr: name (v/c)
+ edges (vertex names):
[1] A--B A--C A--D A--E A--F E--F F--G
```


Edge Attributes

Adding Attribtues I

Vertex Attributes

Edge Attributes

Adding attributes II

vertices.df

name	age
Α	20
В	25
С	21
D	23
E	24
F	23
G	22

edges.df

756	955	9.6	
from	to	frequency	
Α	В	2	
Α	C	1	
Α	D	1	
Α	E	1	
A F		3	
E F		2	
F	G	4	

graph_from_data_frame(d = edges.df, vertices = vertices.df, directed = FALSE)

Subsetting Networks


```
E(g)[[frequency>=3]]
+ 2/7 edges (vertex names):
  tail head tid hid frequency
5  F  A  6  1  3
7  G  F  7  6  4
```

Network Visualization

```
V(g)$color <- ifelse(
        V(g)$age > 22, "red", "white"
        )

plot(g, vertex.label.color = "black")
```


Let's practice!

Network Visualization

James Curley
Associate Professor,
University of Texas at Austin

Styling Vertices and Edges

Choosing the Appropriate Layout

- Minimize edge crossing
- Do not allow vertices to overlap
- Make edge lengths as uniform as possible
- Increase symmetry of the network as much as possible
- Position more influential nodes towards the center

igraph Layouts

plot(g, layout = layout.fruchterman.reingold(g))

Let's practice!