测度论导论 §1.2 习题

丁 珍 AND 程预敏

1. Solution of Ex 1.2.11

(i) (Upward monotone convergence) Let $E_1 \subset E_2 \subset \cdots \subset \mathbb{R}^n$ be a countable non-decreasing sequence of Lebesgue measurable sets. Show shta $m(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \to \infty} m(E_n)$. (*Hint:* Express $\bigcup_{n=1}^{\infty} E_n$ as the countable union of the lacunae $E_n \setminus \bigcup_{n'=1}^{n-1} E_{n'}$.)

证明. 记
$$E = \bigcup_{n=1}^{\infty} E_n$$
。对于任意 $k \geq 2$,令

$$G_1 = E_1, \quad G_2 = E_2 - E_1, \cdots, G_k = E_k - E_{k-1}.$$

根据 Lemma 1.2.13,对于任意 $k \geq 1$, G_k 是两两不交的可测集,且

$$E_n = \bigcup_{k=1}^n G_k, \quad E = \bigcup_{k=1}^\infty G_k.$$

因此

$$m(\bigcup_{n=1}^{\infty} E_n) = m(E) = \sum_{k=1}^{\infty} m(G_k) = \lim_{N \to \infty} \sum_{k=1}^{N} m(G_k) = \lim_{N \to \infty} m\left(\bigcup_{k=1}^{N} G_k\right) = \lim_{N \to \infty} m(E_N).$$

(ii) (Downward monotone convergence) Let $\mathbb{R}^d \supset E_1 \supset E_2 \supset \ldots$ be a countable non-increasing sequence of Lebesgue measurable sets. If at least one of the $m(E_n)$ is finite, show that $m(\bigcap_{n=1}^{\infty} E_n) = \lim_{n\to\infty} m(E_n)$.

证明. 记
$$E = \bigcap_{n=1}^{\infty} E_n$$
。不失一般性,我们假设 $m(E_1) < \infty$ 。令

$$G_1 = E_1 - E_2$$
, $G_2 = E_2 - E_3$, \cdots , $G_k = E_k - E_{k+1}$.

根据 Lemma 1.2.13, 对于任意 $k \geq 1$, G_k 是两两不交的可测集, 且

$$E_1 = E \cup \bigcup_{k=1}^{\infty} G_k$$

是一个可测集的不交并。由此, 我们有

$$m(E_1) = m(E) + \sum_{k=1}^{\infty} m(G_k) = m(E) + \lim_{N \to \infty} \sum_{k=1}^{N} m(G_k)$$
$$= m(E) + \lim_{N \to \infty} \sum_{k=1}^{N} (m(E_k) - m(E_{k+1}))$$
$$= m(E) + m(E_1) - \lim_{N \to \infty} m(E_{N+1}).$$

由于 $m(E_1)<\infty$, 且对于任意 k>1, 有 $E_k\subset E_1, m(E_k)<\infty$ 。综上,我们有

$$m(E) = m(\bigcap_{n=1}^{\infty} E_n) = \lim_{N \to \infty} m(E_{N+1}) = \lim_{N \to \infty} m(E_N).$$

(iii) Give a counterexample to show that in the hypothesis that at least one of the $m(E_n)$ is finite in the downward monotone convergence theorem cannot be dropped.

证明. 令 $E_n=(n,\infty)\subset\mathbb{R}$ 。对于任意 $k\geq 1$,我们有 $m(E_K)=\infty$ 。同时,令 $E=\bigcap_{n=1}^\infty E_n$, $\forall x\in\mathbb{R}$,存在 $N\in\mathbb{N}$,使得

$$x < N, \quad x \notin E_N.$$

故
$$E = \emptyset, m(E) = 0$$
。综上 $m(E) = m(\bigcap_{n=1}^{\infty} E_n) \neq \lim_{n \to \infty} m(E_n)$ 。

2. Solution of Ex 1.2.12

Show that any map $E \to m(E)$ from Lebesgue measurable sets to elements of $[0, +\infty]$ that obeys the above empty set and countable additivity axioms will also obey the monotinicity and countable subadditivity axioms from Exercise 1.2.3, when restricted to Lebesgue measurable sets of course.

证明. (i) 单调性。令 E,G 是两个 Lebesgue 可测集,且 $G \subset E \subset \mathbb{R}^d$ 。设 f 是从 Lebesgue 可测集 到 \mathbb{R}^+ 的满足空集和可数可加性公理的映射。不妨设 $f(G) < \infty$ 。根据可数可加性和空集公理,我们有

$$f(E) = f(G) + f(E \backslash G).$$

由于 $E \setminus G$ 是 Lebesgue 可测集,则 $f(E \setminus G) \ge 0$ 。于是,我们有 $f(E) \ge f(G)$ 。若 $f(G) = \infty$,显然有 $f(E) = \infty \ge f(G)$ 。

(ii) 可数次可加性。令 $E_1, E_2, \dots \subset \mathbb{R}^d$ 是一个可数的 Lebesgue 可测集序列,且对于任意 $n \in \mathbb{N}^+$ 有 $f(E_n) < \infty$ 。同时记 $\bigcup_{n=1}^{\infty} E_n = E$ 。此外,令 Lebesgue 可测集序列 $\{G_k\}$ 由下定义:

$$G_1 = E_1, \quad G_k = E_k \setminus \bigcup_{n'=1}^{k-1} E_{n'}: \quad \forall k \ge 2.$$

显然, $\{G_k\}$ 是可数的不交的 Lebesgue 可测集序列,且对于任意 $N \in \mathbb{N}^+$,有 $\bigcup_{k=1}^N E_k = \bigcup_{k=1}^N G_k$ 。由 f 的可数可加性,我们有

$$f(E) = f(\bigcup_{k=1}^{\infty} E_k) = f(\bigcup_{k=1}^{\infty} G_k) = \lim_{N \to \infty} \sum_{k=1}^{N} f(G_k).$$

另一方面,对于任意 $N \in \mathbb{N}^+$,有 $G_k \subset E_k$,根据 f 的单调性,我们有

$$f(E_k) \ge f(G_k) : \forall k \in \mathbb{N}^+.$$

综上, 我们有

$$f(E) = f(\bigcup_{k=1}^{\infty} E_k) = \lim_{N \to \infty} \sum_{k=1}^{N} f(G_k) \le \lim_{N \to \infty} \sum_{k=1}^{N} f(E_k).$$

若 $\exists n_0 \in \mathbb{N}^+$ 使得 $f(E_{n_0}) = \infty$, 显然有 $f(E) \leq \sum_{k=1}^{\infty} f(E_k)$ 成立。

3. Solution of Ex 1.2.22

Let $d, d' \geq 1$ be natural numbers. (i) If $E \subset \mathbb{R}^d$ and $F \subset \mathbb{R}^{d'}$, show that

$$(m^{d+d'})^*(E \times F) < (m^d)^*(E) \times (m^{d'})^*(F), \tag{3.1}$$

where $(m^d)^*$ denotes d-dimensional Lebesgue outer measure, etc.

证明. (1) 若 E, F 中有一集合外测度为 ∞ 且另一集合外测度不为零,则上式显然成立。

(2) 故我们首先考虑 E, F 的 Lebesgue 外测度均有限的情况。令 O_E, O_F 是两个开集,且对于任意 $\epsilon > 0$ 满足如下条件

$$O_E \supset E$$
, $(m^d)(O_E) = (m^d)^*(O_E) \le (m^d)^*(E) + \epsilon$;
 $O_F \supset F$, $(m^{d'})(O_F) = (m^{d'})^*(O_F) \le (m^{d'})^*(F) + \epsilon$.

根据 Lemma 1.2.11, 开集 O_E, O_F 可以表示为几乎不交的闭的 cubes 的可数并

$$O_E = \bigcup_{i=1}^{\infty} B_i, \quad O_F = \bigcup_{j=1}^{\infty} B'_j,$$

其中 B_i 是 \mathbb{R}^d 中的闭 cube, B_j' 是 $\mathbb{R}^{d'}$ 中的闭 cube。任给 $x \in E \times F \subset \mathbb{R}^{d+d'}$, $x \in O_E \times O_F$ 。则 $E \times F$ 是开集 $O_E \times O_F$ 的子集,故

$$(m^{d+d'})^*(E \times F) \le (m^{d+d'})^*(O_E \times O_F) = (m^{d+d'})^*(\bigcup_{i,j=1}^{\infty} B_i \times B'_j).$$

由于 B_i, B_i' 都是几乎不交的闭的 cube, 则

$$(m^{d+d'})^* (\bigcup_{i,j=1}^{\infty} B_i \times B_j') = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (m^d)^* (B_i) \cdot (m^{d'})^* (B_j') = (m^d)^* (O_E) \cdot (m^{d'})^* (O_F)$$

$$\leq (m^d)^* (E) \times (m^{d'})^* (F) + \epsilon \cdot ((m^d)^* (E) + (m^{d'})(F)) + \epsilon^2.$$

由 ϵ 的任意性, 我们有 (3.1) 成立。

(3) 若 E, F 中有一集合外测度为 ∞ 且另一集合外测度为零,不妨设 $(m^d)^*(E) = \infty$ 且 $(m^{d'})^*(F) = (m^{d'})(F) = 0$,这时,记 $\{K_n\}$ 为如下序列

$$K_n = F \cap B_n(O), \quad \forall n \in \mathbb{N}^+,$$

其中 $B_n(O)$ 是以原点为中心, 半径为 n 的开球。这时, 我们有

$$F = \bigcup_{n=1}^{\infty} K_n, \quad K_n \subset K_{n+1}, \quad \forall n \ge 1.$$

令 O_E ⊃ E 是一个开集,则

$$(m^{d+d'})^*(E \times F) \le (m^{d+d'})(O_E \times F)$$

$$= (m^d)^*(O_E) \cdot (m^{d'})^*(F)$$

$$= (m^d)^*(O_E) \cdot \lim_{n \to \infty} (m^{d'})^*(K_n)$$

$$= (m^d)^*(O_E) \cdot 0 = 0.$$
(3.2)

- (ii) Let $E \subset \mathbb{R}^d$, $F \subset \mathbb{R}^{d'}$ be Lebesgue measurable sets. Show that $E \times F \subset \mathbb{R}^{d+d'}$ is Lebesgue measurable, with $m^{d+d'}(E \times F) = m^d(E) \cdot m^{d'}(F)$. (Note that we allow E or F to have infinite measure, and so one may have to divide into cases or take advantage of the monotone convergence theorem for Lebesgue measure, Exercise 1.2.11.)
- **证明.** (1) 我们从一个有限测度的特殊情况开始。假设 E,F 是两个可测集,且 $m(E),m(F)<\infty$ 。对于任意 $\epsilon>0$,根据上一小题的结论,存在开集 O_E,O_F 使得

$$O_E \supset E$$
, $(m^d)(O_E) \le (m^d)(E) + \epsilon$;
 $O_F \supset F$, $(m^{d'})(O_F) \le (m^{d'})(F) + \epsilon$.

另一方面,存在紧集 K_E, K_F 使得

$$K_E \subset E, \quad (m^d)(K_E) \ge (m^d)(E) - \epsilon;$$

 $K_F \subset F, \quad (m^{d'})(K_F) \ge (m^{d'})(F) - \epsilon.$

显然,我们有 $(K_E \times K_F) \subset (E \times F) \subset (O_E \times O_F)$,且 $K_E \times K_F$ 是 $\mathbb{R}^{d+d'}$ 中的紧集,故它可测,同时

$$(m^{d+d'})(K_E \times K_F) \ge (m^d)(E) \times (m^{d'})(F) - \epsilon \cdot ((m^d)(E) + (m^{d'})(F)) + \epsilon^2.$$

另一方面, $(O_E \times O_F) \setminus (E \times F) \subset (O_E \times O_F) \setminus (K_E \times K_F)$,且

$$(m^{d+d'})^* ((O_E \times O_F) \setminus (E \times F)) \le (m^{d+d'}) ((O_E \times O_F) \setminus (K_E \times K_F))$$

$$= (m^{d+d'}) (O_E \times O_F) - (m^{d+d'}) (K_E \times K_F)$$

$$\le 2\epsilon \cdot ((m^d)(E) + (m^{d'})(F)).$$

由 ϵ 的任意性, 我们可知 $E \times F$ 是 $\mathbb{R}^{d+d'}$ 中的可测集, 且

$$(m^{d+d'})(E \times F) = (m^d)(E) \times (m^{d'})(F).$$

(2) 由 (3.2) 可知, 若 E, F 中有一集合测度为 ∞ 且另一集合测度为零,则

$$(m^{d+d'})(E \times F) = (m^{d+d'})^*(E \times F) = (m^d)(E) \times (m^{d'})(F) = 0.$$

(3) 若 E,F 中有一集合测度为 ∞ 且另一集合测度不为零,不妨设 $(m^d)^*(E)=\infty$ 且 $(m^{d'})(F)\neq 0$,这时令序列 $\{S_n\}$ 如下定义:

$$S_n = E \cap B_n(O), \quad n = 1, 2, \cdots$$

这时,我们有 $S_n \subset S_{n+1}, \forall n \geq 1$,且 $E = \bigcup_{n=1}^{\infty} S_n$ 。同时,令 $K_F \subset F$ 是一紧集,且 $(m^{d'})(K_F) > 0$ 。这时,我们有

$$(m^{d+d'})(E \times K_F) = \lim_{n \to \infty} (m^{d+d'})(S_n \times K_F) = \lim_{n \to \infty} (m^d)(S_n) \times (m^{d'})(K_F) = \infty.$$

由单调性,我们可以得到

$$(m^{d+d'})(E \times F) = (m^d)(E) \times (m^{d'})(F) = \infty.$$

4. Solution of Ex 1.2.23

(Uniqueness of Lebesgue measure). Show that Lebesgue measure $E \to m(E)$ is the only map from Lebesgue measurable sets to $[0, +\infty]$ that obeys the following axioms:

- (i) (Empty set) $m(\emptyset) = 0$.
- (ii) (Countable additivity) If $E_1, E_2, \dots \subset \mathbb{R}^d$ is a countable sequence of disjoint Lebesgue measurable sets, then $m(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} m(E_n)$.
 - (iii) (Translation invariance) If E is Lebesgue measurable and $x \in \mathbb{R}^d$, then m(E+x) = m(E).
 - (iv) (Normalisation) $m([0,1]^d) = 1$.

证明. 设 $f: E \to f(E)$ 是一个从 Lebesgue 可测集到 $[0, +\infty]$ 的映射,且满足上面的测度公理。由 Exercise 1.2.8 可知,基本集是 Lebesgue 可测集,且对于任意基本集 $E, m(E) = m^{(J)}(E)$ 。另一方面,由 Exercise 1.1.3 可知,基本集上满足非负性、有限可加性和平移不变性的测度具有唯一性,且在相差一个常数系数的情况下等价。因此,我们考虑将 f 限制在基本集上。 $f([0,1]^d) = 1$,且 f 满足上面的三条性质,故 f 在基本集上与 Lebesgue 测度 m 等价。

设 E 是一个开集,则 $E=\bigcup_{i=1}^{\infty}Q_i$,其中 Q_i 是 d 维几乎不交的闭 cube。由于 Q_i 是几乎不交的闭 cube,则 Q_i 是基本集,且

$$f(Q_i) = m(Q_i), \quad f(E) = \sum_{i=1}^{\infty} f(Q_i) = \sum_{i=1}^{\infty} m(Q_i) = m(E).$$

故 f 和 m 在开集上等价。

设 E 是一个 Lebesgue 可测集,由 Lebesgue 外测度的定义,我们有

$$m(E) = m^*(E) = \inf_{E \subset U, \ U \text{ open}} m(U) = m(\bigcap_{E \subset U, \ U \text{ open}} U).$$

记 $S = \bigcap_{\{E \subset U, \ U \ \text{open}\}} U$, 显然, 我们有 $S \supset E$ 是一个开集, 故

$$f(E) \le f(S) = m(S) = m(E).$$
 (4.1)

设 E 是任意可测集。对于任意 $\epsilon>0$,存在一个开集 $U\supset E$,且 $m(U\backslash E)\leq\epsilon$ 。

$$f(E) = f(U) - f(U \setminus E) = m(U) - f(U \setminus E) \ge m(U) - m(U \setminus E) = m(E). \tag{4.2}$$

结合 (4.1) 和 (4.2),我们可知,f 和勒贝格测度 m 在可测集上等价。