Chapter 4: Quadratic Equations – Easy Notes

1. What is a Quadratic Equation?

A quadratic equation is an equation of the form:

$$a \cdot x^2 + b \cdot x + c = 0$$

Where:

- x is the variable,
- a, b, and c are real numbers,
- $a \neq 0$ (a should not be zero).

Examples:

- $2x^2 + 3x + 1 = 0 \rightarrow Quadratic$
- $x^2 25 = 0 \rightarrow Quadratic$
- $x^3 + x = 0 \rightarrow Not quadratic (degree 3)$

2. How Quadratic Equations Arise in Real Life

Quadratic equations appear in many real-life situations, like:

- Area of rectangles/squares
- Age problems
- Motion (speed, time, distance)
- Cost and revenue in business

Example:

A hall has an area of 300 m². Length = 2x + 1, Breadth = x

Area = Length × Breadth

So: $(2x + 1) \times x = 300$

 \Rightarrow 2x² + x - 300 = 0 \Rightarrow This is a quadratic equation.

3. How to Identify a Quadratic Equation

A quadratic equation must be able to be written in this form:

$$a \cdot x^2 + b \cdot x + c = 0$$

Sometimes, you must **simplify** first.

Example:

$$(x-2)^2+1=2x-3$$

→ Expand both sides:

$$x^2 - 4x + 5 = 2x - 3$$

 \Rightarrow x² - 6x + 8 = 0 \checkmark This is a quadratic equation.

4. Methods to Solve Quadratic Equations

A. Factorisation Method (Split the middle term)

Steps:

- 1. Multiply a × c
- 2. Find two numbers that multiply to a·c and add to b
- 3. Break the middle term
- 4. Factorise and solve

Example: Solve $2x^2 - 5x + 3 = 0$

Step 1: $2 \times 3 = 6$, and -2 + (-3) = -5

Step 2: Break the middle term:

 $2x^2 - 2x - 3x + 3 = 0$

Step 3: Take common:

2x(x-1) - 3(x-1) = 0

Step 4: (2x - 3)(x - 1) = 0

Solutions: x = 3/2 or x = 1

B. Quadratic Formula

Use this when factorisation is hard.

Formula:

$$x = [-b \pm \sqrt{(b^2 - 4ac)}] / (2a)$$

This works for all quadratic equations.

5. Discriminant and Nature of Roots

The **discriminant** is:

$$D = b^2 - 4ac$$

It tells us how many and what kind of solutions the quadratic equation has.

Value of D	Nature of Roots
D > 0	Two distinct real roots
D = 0	Two equal real roots
D < 0	No real roots (imaginary)

6. Solving Word Problems with Quadratics

Situation Type	Let x be
Age problems	Present age
Area problems	Length or breadth
Consecutive numbers	x and x + 1
Speed problems	Speed or time

Tip: Translate words into equations, simplify, and solve using any method.

7. Frequently Asked Exam Questions

Type of Question	Based On Section
Form an equation from a story	Real-life situations
Solve by factorisation	Section 4.3
Solve by formula	Section 4.4
Find nature of roots using discriminant	Section 4.4
Word problems (age, speed, geometry, etc.)	Exercises and examples

Summary for Quick Revision

- Standard Form: $a \cdot x^2 + b \cdot x + c = 0$
- Roots using formula: $x = [-b \pm \sqrt{(b^2 4ac)}] / (2a)$
- Discriminant (D): b² 4ac
- Nature of Roots:
 - o D > 0 → 2 real & distinct roots
 - $D = 0 \rightarrow 2$ equal real roots
 - \circ D < 0 → No real roots

- Factorisation Method: Use when splitting the middle term is easy
- Word Problems: Translate into equations and solve