MO diagrams for molecules sometimes get complicated.

Ones we will cover: Molecules with delocalized electrons (resonance) using a combination of valence bond theory (hybridization) and MO theory

Example 1: O₃ molecule

Resonance Structures:

More than one possible Lewis structure
Both structures for Ozone are plausible Lewis structures
Only electrons move (movement of lone pairs or multiple bonds)
Atoms **do not** move

For ozone – a mix of valence bond theory and MO theory can help explain (and simplify) the bonding

For all the sigma bonds use valence bond theory and hybridization

- the central oxygen is sp² hybridized (in either structure)
- One sigma bond each with the two terminal oxygen atoms
- Third sp² orbital contains the lone pair of electrons on the central atom

Ozone: delocalized p electrons

Still remaining:

3 of these orbitals are p orbitals (one on each oxygen)

4 electrons delocalized

Ozone MO energy diagram (delocalized π system)

Example 2: Benzene Molecule (C₆H₆)

30 total valence orbitals Each carbon has 4, and each hydrogen has 1

24 orbitals form 12 sigma bonds There are 6 unhybridized p orbitals that form 6 π MOs

Each carbon is sp2 hybridized

Bond angle = 120 Trigonal planar

Benzene : delocalized π electrons (For your interest only – not assessed on exams)

Benzene : delocalized π electrons (For your interest only – not assessed on exams)

Using VBT + MO Theory to explain delocalized systems

(a) 1,3-Butadiene σ-bonded framework

(b) 1,3-Butadiene π bonding

