Security in Computing & Information Technology

Lecture 10
Mobile Computing

Lecture Schedule

Foundations

- 1. Introduction
- 2. Vulnerabilities, Threats, Attacks

Basic mechanisms

- 3. Security mechanisms, Elementary cryptography
- 4. Authentication
- Access control

Major computing security areas

- 6. Operating systems
- 7. Databases
- 8. Networks
- 9. Web
- 10. Mobile computing

Applications

11. Privacy

SecComp Lecture 102. Internet banking

Lecture Topics

- Wireless and mobility technology
 - Infrastructure
 - WiFi
 - Bluetooth
 - Smartphones
- Mobile malware

Mobile Computing

Mobile devices

- Portable computing equipment
- Used pervasively
- Have many different forms
 Laptop/notebook/netbook computers,
 smart phones

Mobility infrastructure

- Network access
 - Wireless network

Mobile Computing Devices

- Computing services
 - Service level similar to fixed devices
- Portability constraints
 - Battery operatedLimited power
 - Limited processing capacity, memory
 - User interface issues
 Small screen, unusual keyboard

Mobile Traffic

Operating Systems' Market Share Overall

Operating Systems' Market Share Mobile

Mobile Device Security

- Physical security
 - Easy to steal or lose
 - Easy to temper with, if left unattended
 - Access by unauthorised users
- Software security
 - Computers
 - The same as fixed hosts
 - Additional malware, mostly related to location privacy
 - Phones
 - Smart phones are mostly affected

Mobile Networks and Attacks

Mobility Infrastructure

Wired networks

- "Road warriors"
 - Away from home network
 - Have access to wired networks (e.g. in hotel)
- Security issue: connection to home network goes via public routes

Wireless networks

- Advantages
 - Freedom of user movement
 - No cabling costs
 - Less weight (important e.g. in an aeroplane)

Wired vs Wireless

- Wireless network applications
 - Logically should be no different only the communication medium differs
 - In practice
 - Performance is different (higher error rate, lower speed)
 - Signal interference is common

Wireless Computer Networks Local Area Networks (LANs)

Features

- Covers a limited area
- Fairly high-speed communication
- Access is restricted to local users (employees, students, affiliates etc)

Network access

- Service access point (SAP)
 - Interface between wired and wireless network segments
- Transmission methods
 - Radio waves WiFi (most popular)
 - Hotspot: public SAP
 - Infrared (outdated)
 - Line of sight is needed for good reception
 - Still used where radio interference is an issue

Wireless Computer Networks Metropolitan Area Networks (MANs)

"Mobile broadband"

Features

- Covers larger geographical area (max. 50km)
- Provides medium-speed communication
 - Speed comparable to wired MANs when close to SAP
 - Speed decreases and error rate increases with distance
- Access is available to all valid subscribers

Network access

Several competing technologies

WiFi - with compromises on radial coverage 3G/LTE/4G phone (UMTS) - phone / mobile broadband WiMAX -mobile broadband

Wireless Security

Problems

- No physical protection
 - Physical access is not limited
 No need to plug into a socket

- Transmissions can be overheard by anyone within the range
- Anyone can transmit messages that
 - can be received by all others within the range
 - interfere with other transmissions and prevent correct reception (jamming)
- Security implications

It is easy to

- eavesdrop (Google Street View cars did that)
- inject bogus messages
- replay recorded messages

Wireless LAN (WiFi)

- Hotspots
 - Public access points
 - Can be free or fee-paying
 - Universal technology interoperable devices
- Home networks
 - Wireless routers

Share access to one external Internet connection by several local devices

Wireless devicesComputers, printers, gaming hardware, ...

WiFi Security Issues

Hotspots

- Typically default to open (non-protected) mode
- Channel pollution

WiFi networks too close to each other may interfere with each other's operation

- Home networks
 - Hacking
 - WarXing (war driving, war walking, ...) Searching for WiFi networks without using its services Problems: Ethical and legal questions, privacy concerns
 - Piggybacking

Connecting to a network and using it without explicit authorisation

Easy attack launch by intruders

E.g. DNS (URL to IP address) spoofing

The intruder can reply to a local query faster than the 17 real DNS server

WiFi Security Protocols

- Wired equivalent privacy (WEP)
 - Aim: make a wireless network as secure as a wired network (i.e. not strong security)
 - Services: access control, message confidentiality and integrity
 - Deprecated (has many flaws) Don't use it!
 - Authentication is one way only (mobile device to access point)
 - The same secret key is used for authentication and encryption
 - Device can be impersonated
 - No re-play protection
 - Message integrity check is ineffective
 - **...**
- WiFi protected access (WPA WPA2)
 - Improved data encryption
 - Temporal key integrity protocol (TKIP): default for WPA, supported by WPA2 for backward compatibility
 - AES: default for WPA2
- Improved authentication via the extensible authentication protocol (EAP)

Bluetooth

- Short-range wireless communication
 - Typical distance is 10m (or for extended range 100m)
- Designed to avoid interference with other wireless networks (automatic search for an idle channel)
- Low to medium speed connection
 - Basic: 1 Mbps, recent standards allow up to 24 Mbps
 - Higher speeds consume more power
- Offers basic security only

Bluetooth Networks

- Bluetooth devices can form ad-hoc networks (piconets)
 - Networks that are established dynamically and automatically by mobile devices
 - A master device provides synchronisation for slave devices in the piconet

Bluetooth Security

- Security services
 - Authentication
 - Authorisation
 - Confidentiality (encryption)

Stream cipher with a 128 bit link-key (stored in the device), a 128 bit random number and a value negotiated during authentication

- Security levels
 - Services
 - Authentication and authorisation required
 - Authentication only
 - Open access
 - Devices
 - Trusted
 - Untrusted
- Access modes
 - Non-secure
- SecComp Lecture 10 Service-level enforced security
 - Link-level enforced security

Bluetooth Vulnerabilities

There are many

- Encryption
 - Keys are negotiated and can be short, device keys can be shared, cipher algorithm is weak ...
- Authentication Attempts have no limits, no user authentication, ...
- Threats
 - Bluejacking: sending unsolicited messages
 - Bluesnarfing: unathorized access of information via Bluetooth
 - Bluebugging: attacker takes over the device by exploiting some flaws in firmware of older devices
 - Denial of service
- Fuzzing attacks: sending malformed messages/data to discover device firmware vulnerabilities

Mobile Devices (Smartphones)

- Considerable capabilities of mobile devices
 - Resources: CPU, memory, storage devices (e.g. SD card)
 - Efficient interfaces: GUI, touch screen, QWERTY keyboard
 - Connectivity: local (Bluetooth), wide area (HSDPA)
- Good support
 - Applications (Apple shop, Android market)
 Platform popularity

SecComp Lecture 10

Image source:
http://www.idc.com/prodserv/smar
tphone-os-market-share.jsp

Security Considerations

- Platforms
 - Variety of operating systems
 Android, iOS (iPhone), Symbian, Palm OS, Windows mobile, Blackberry
- Large population of devices
 - Makes them attractive targets for malware
- Attack profile different from computers
 - Less value for using them in botnets
 - More valuable private data
- Vulnerabilities
 - Technical exploits
 - Social aspects (more vulnerable user population)
- Services may be running in the background
 - E.g. the phone may not deactivate WiFi and Bluetooth radios when disconnecting devices or from the network (iOS 11)

Malware Example

Mobile Phone Protection

Platform dependent security measures

- Closed platform (e.g. iPhone)
 - Applications run in a sandbox (cannot access other programs' data)
 - Applications are signed by Apple or by the developer using an Apple certificate
 - Jailbreak: enabling the iPhone to run applications not approved by Apple
 - Large number of new applications
 - Security/protection is switched off
- Antivirus software
 - Major vendors have phone support
 E.g. Kaspersky for Symbian, Windows
- Inherited protection methods

E.g. Android: Linux + Java

Mobile Phones and Malware

- Mobile malware has become a profitable business
- Malware distribution techniques are diversifying
 They spread via
 - Drive-by-downloads
 - Email
 - Bluetooth file transfers
 - Multimedia messages (MMS), ringtones
 - Infected memory cards
 - SMS download links

Malware Evolution

- Trojans subscribe people to unnecessary services
- Fake mobile banks steal money
 - E.g. Trojans overlaying a phishing screen over a legitimate banking application (clickjacking)
- Evolution
 - Criminals release skeleton with simple functions (to mislead security researchers)
 - Malicious functionality is added
 - Massive attack campaign begins

Viruses

- Spreading
 - MMS replication, similar to email
 - Message with social engineering content
 - Trusted source: message comes from known sender
 - Rapid local outbreak, easily noticed (and blocked) by network operators

Worms

Spreading

- Selects the next victim from local address book
- SMS download links spammed with worm installation file (appear to come from trusted source)
- Motivations
 - Vendor error
 - HatiHati: intended anti-theft program, locks the phone if SIM card is changed and sends SMS with info on new SIM card.
 Sent SMS in an infinite loop, due to a bug in the code.
 - Getting people's attention
 - Ikee: jailbroken iPhones with SSH installed and having the default root password are getting infected (limited to Australia)
 - Attack tools
 - Duh: uses the same method as ikee, but malicious. First malware to turn a mobile phone to a zombie (e.g. for DDoS attacks)

SecComp Lecture 10

Trojans

- Most frequent malware
- For profit
 - Active Trojan

Trojan sends SMS to micropayment systems or premium rate numbers

Callback scheme

Phone rings only once. When returning the call, user is connected to a premium rate number. Long messages (with bad call quality) tries to keep the user connected as long as possible.

Spam and Phishing

- Spam via SMS
 E.g. entice to subscribe to expensive SMS services
 Problem: Unwanted advertising uses up limited resources
- Phishing
 Aims to extract private information
 E.g. banking details, via spoofed sites
 Problem: may look more genuine because phone numbers are less public than email addresses

Spytools

- Applications sending out information from the victim's phone
- Used by
 - spouses, private investigators, managers, industrial spies etc.
 - criminals (phone banking)
- Information accessed
 - SIM card information
 - SMS, MMS, email traffic information (called number, time) & content
 - Voice call information and content, including call interception
 & recording
 - Geographical location (GPS)
 - Key logging

Spytool Example: RCSAndroid

- A sophisticated, real-world surveillance and hacking tool that can
 - Capture screenshots
 - Collect passwords for Wi-Fi networks and online accounts (Skype, Facebook, etc)
 - Record using the microphone
 - Collect SMS, MMS, and Gmail messages
 - Record location
 - Capture photos using the front and back cameras
 - Collect contacts and decode messages from IM accounts
 - Capture real-time voice calls in any network or app by hooking into the "mediaserver" system service
- Infection methods
 - Specially crafted SMS and email messages contain URLs to infected sites
- Applications (e.g. BeNews) on the official Google Play Store install the spyware

Mobile Spyware: Detection

Users

- Any extra charges on my bill? (no tools can trick the operator's billing system)
- Has my phone opened unexpected connections?
- When rebooting, are there screens/dialogs that flash and disappear instantaneously?

Experts

- Check network connections
 - TCP/IP traffic monitoring
- Check every process running on the phone
 - Most system-like processes should start from ROM
 - Check where the image was loaded from
- File system analysis
 - Check autostart programs
 - Check all executables
 - Is the device jailbroken?
 - Investigate suspicious files

Mobile Spyware: Defence

- Spyware vendors make efforts to avoid attention of security companies
 - Security companies may not have a full picture of mobile spyware
- Prevention
 - Apply updates (OS, applications), possibly re-install OS periodically
 - Use only signed applications
 - Have a lock code, personalise your phone (to avoid quick swapping), don't leave it out of sight

Defence Tools

- Anti-virus products
- Encrypted communication
 - VoIP (not using the phone connection)
 - Protects the conversation only
 - E.g.
 - Secfone
 - 2048-bit RSA for server authentication
 - 1024-bit RSA for peer authentication
 - 448-bit Blowfish CBC for voice communication and data flow
 - Cryptalk
 - EC Diffie-Hellman for key exchange
 - AES-256 for data exchange
 - RSA 2048 signature

Justin Cleaver

Virtual Private Networks (VPN)

- The number of Android VPN applications significantly increased in the last few years
- Many of them do not provide sufficient security (or security at all)
 - Fail to encrypt
 - Use third party tracking applications
 - Close to 40% contain malware
 - Use traffic interception nodes (including TLS traffic), in-path proxies, or manipulate traffic
 - Source: https://research.csiro.au/ng/wp-content/uploads/sites/106/2016/08/paper-1.pdf

Summary

- Wireless technologies have inherent security issues
- Resource-constrained devices offer less support for security services
- Conventional malware adapted to the new platform