回帰分析I

4. 記述統計 Stataの使い方イントロ

この人労組に入ったけど 次の年に抜けてる、、、

ソース: Cameron and Trivedi (2010) Microeconometrics Using Stata, Stata Press.

- 前回、こんな感じでまずデータを味わうことをお勧めしました。
- しかし一つ一つ味わっていくのは大変です、とくにデータが大きいと。
- なので、データの特徴・傾向をつかむことが必要となります。

2

記述統計

- そのため、分析の第一歩として、記述統計を計算します。
- これ は、<u>標本平均、標本分散、最小値、最大値</u>などで、データの示す特徴・傾向を知るためのものです。
 - ▶ 「データの特徴・傾向はあまり知らない、でも回帰分析はした」という人よく います。
 - » が、適切なモデリングのためには、データの特徴・傾向をよく知ることが必要 になります。
 - ▶ 実証分析すればするほど記述統計の大切さに気が付いてきます。
- 以下では、Stataの使い方を学びながら、記述統計について見ていきま しょう。

Stata はじめの一歩

- 教科書(松浦寿幸著「Stataによるデータ分析入門」東京図書)の第一章の 内容です。
- データは通常EXCEL形式かカンマ区切り形式 (CSV形式という) のいずれ かで保存されていることが多いです。
- ここではCSVデータ(1994年と2004年の神奈川県藤沢市の家賃データ) rent-shonandai.csv

をStataに読み込んでみましょう。

- その前に、rent-shonandai.csvをよく見ましょう。

 - 一行目は変数名です。8変数あります。N=70です。ブランク (数字が入っていないセル) があります = 欠損値です (データが無い)。
- ・ 読み込ませ方は少なくとも2種類ありますが、ここではメニュー・ウインド ウを使う方法を紹介します。
 - ▶ もう一つの方法、insheetコマンドを使う方法、については教科書を参照してください。

データ(csvファイル)の読み込ませ方

- File → Import → ASCIIdata created by a spreadsheet
- ・ ASCIIdata data filename で Browse ... をクリック
- ファイル名(N) の右側にあるRaw Files (*, raw) をComma Separated Values (*, csv) に変更
- データが置いてあるフォルダーに移動して、そのファイルをダブルクリック。
- ・ 最後にDelimiter で Comma-delimited data を選択
- OK
- 以上です。

ここで変数の定義を与えておきます。
 rent: 賃貸料(単位: 万円)
 service: 管理費(単位: 万円)
 age: 整年数(単位: 年)
 floor: 占有面積(単位: m²)
 bus: 最希り駅(湘南台) までのパス所要時間(単位: 分)
 waki: 提步分数(分)
 auto. Jock: オートロックの有無
 year: 調査年
 ここでは、このデータセットを使った分析の目的を、「家賃はどのような要因によって決定されるのか?」とにでもしておきましょう。
 その中でも、特に、専有面積に興味があるとします。
 ごれはこの演奏/ートの中だけのことです。
 「家賃はも有面積の関係」が研究のトビックだとしたら、あまり面白くないトビックと含えます。
 家賃は「賃貸料+管理費」と定義することにします。
 従って、この分析における従属変数は「賃貸料+管理費」です。

読み込んだデータの確認

- データをStataに読み込ませたら、まず最初にやることは、読み込んだデータの確認です。
 - ▶ これ、本当に大切です。

確認の仕方ですが、、、

というのは、CSVファイルやEXCELファイルの方に何らかの問題があって、Stataがこちらの意図しない形でデータを読み込むことがあるからです。

クリック

- > 例えば、こちらは数字のつもりなのに、Stataはテキストとして認識したり、、、
- ▶ 最後の行が読み込まれていなかったり、、、
- それに気づかず分析して、見当違いの結果を得ることも。
- Data Editor (Browse)
 この画面ではデータの加工はできない

13

- CSVファイルと同じか確認しましょう。少なくとも最初の数行、最後の数行が同じかどうかは要確認。
- auto_lock 変数は赤字で表示されています。これは文字情報(ここではYESとNO)から構成される変数であるとStataが認識していることを示します。
- もともと数値が入っていないところ(欠損値)は、"."(ピリオド)になります。

14

宿題:

- 教科書(松浦寿幸著「Stataによるデータ分析入門」東京図書)の第一章を 読む。
- とりあえず一通りやってみる。
- listコマンド (30ページ) を使ってみる。

「変数の置き換え」と「新しい変数の作成」

- これから、教科書(松浦寿幸著「Stataによるデータ分析入門」東京図書)の第二章の内容を扱います。
- 分析に際して、変数を置き換えたい、また既存の変数から新しい変数を作りたいことが頻繁にあります。
- まず「既存の変数から新しい変数を作りたい」ときによく使われる コマンドは generate です(省略してgenだけでもOKです)。
- 例えば、ここでは、floor (占有面積) の自然対数を新しい変数として作りたいとします。
- Commandウィンドウに以下のように書いてリターンして下さい。

gen Ifloor = In(flootr)

16

- 最初のgenはコマンドです。「以下のように新しい変数を作ってください」 とStataにお願いします。
- 次のIfloorは新しく作りたい変数の名前(こちらが名付けます)で、それは (=) floor変数を対数変換したもの(In(floor))にして下さいと、お願いを 具体化しています。

17

- 新しい変数ができました。
- Data Editor (Browse)を使って確認してみましょう。
- 同じ要領で、今度はfloor変数を二乗したものを作ってみましょう。新しい変数の名 前はfloorsqにしましょう。
- gen floorsq = floor^2 (gen floorsq = floor*floor でも同じものが作れます)。
- Data Editor (Browse)を使って確認しましよう。

18

- 今度は複数の既存の変数から新しい変数を作ってみましょう。
- 「占有面積当たりの賃料」を新しい変数として作ってみましょう。
- 新しい変数の名前は、rentperfloor とでもしましょうか。
- gen rentperfloor = rent/floor で作れます。
- こんな感じで新しい変数を作ることができます。
- + (足す)、- (引く)、*(かける)、/(割る)、^2 (二乗)、ln(*)(自然対数)など使えます(他にもあります)。

replaceコマンド

- replaceコマンドも非常によく使われます。
- replaceコマンドは既存の変数を加工するコマンドです。
- 具体例を見ていきましょう。
- 入居者が負担する金額は、賃料 (rent) と管理費 (service) の合計です。
- この二つを合計したもの(ここでは便宜上、「家賃」と呼ぶことにします)に興味があるとします。
- 先ほどの要領でgenerateコマンドを使って、新しい変数(例えば、 rent_service)を作ってもいいです。
- ・ gen rent_service = rent + service ですね。

20

replaceコマンド

- ここでは、rentをrentとserviceを足したものに置き換えたいとします。
- その時は、

replace rent = rent + service

とCommandウィンドウに書いてリターンすればいいです。

- Data Editor (Browse)を使って確認してみましょう。
- 新しく変数は増えていませんね。
- ただし現在のrent変数は、以前のrent変数とは別物です。
- 現在のrent変数は、以前のrent変数とservice変数を足したものに置き換えられています。
 - ➤ CSVファイルを見て確認しましょう。

21

replaceコマンド

- もう一回replaceコマンドを使ってみます。
- いまデータ上では、バスを利用しない物件ではbusが欠損値(".")になっています。
- この欠損値をゼロに置き換えたいとします。
- これは

replace bus = 0 if bus == .

でできます。パス変数をゼロにしてください(replace bus = 0)、ただしbus 変数が欠損値の時だけです(if bus == .)

とStataにお願いしていることになります。

22

if

- 先ほど、if~によって条件をつけました。
- 多くのコマンドは if~ と一緒に使えます。
- 「~の条件の時にだけ(コマンド)する」とStataに頼むことができます。

・ if 以下は、 AとBが同じ == : if A == B AがBより大きい> : if A > B AがB以上 >= : if A >= B AがB以下 < : if A <= B AがB以下 < : if A <= B

などがよく使われます。

複数の条件を組み合わせることもできます。&が「かつ」、|が「または」です。

gen、replace、ifの応用例(出現頻度:高)

- gen、replace、ifを使って新しい変数を作ることが良くあります。
- ここではcategoryという新しい変数を作りたい、その変数はrentが6 万円以下なら1、6万より高いが9万円以下なら2、9万より高いなら 3をとるもの、としましょう。
- いくつか作り方はありますが、一つの作り方は以下のものです。
- ・ まず、gen category = .
- これでcategoryという変数ができました。値はすべて. (欠損値)です。
- 次に . (欠損値) をreplaceコマンドとifを使って置き換えていきます。

24

- replace category = 1 if rent <= 6
- これは「rent変数が6万以下なら、category変数を1にしてください。」とお願いしています。
- ・ 次に、replace category = 2 if rent > 6 & rent <= 9
- これは「rent変数が6万より高くかつ9万以下なら、category変数を2にしてください。」とお願いしています。
- ・ 最後に、replace category = 3 if rent > 9
- これで完了です。
- Data Editor (Browse)を使って確認しましょう。
- より複雑な例(といっても少しだけですが)が教科書の40~41ページにあります。必ず見ておいてください。

25

SUMMARIZE

- ・ 次に記述統計量の計算の仕方を紹介します。
- summarizeコマンドを使います。
- 画面の下の方にあるCommand ウィンドウにsum (summarizeと書いてもOK) と書いてリターンします。

variable	Obs	Mean	Std. Dev.	Min	Max
rent service age floor bus	70 70 70 70 70	8.716429 .26 7.705988 47.53186 6.142857	2.601055 .2500145 8.264705 18.85208 5.866351	4.7 0 0 14.49 0	18 .9 50 86 15
walk auto_lock year lfloor floorsq	70 0 70 70 70	4.514286 2001.571 3.769744 2609.601	3.984546 2.517023 .4530517 1838.783	1 1999 2.673459 209.9601	2004 4.454347 7396
rentperfloor category	70 70	.1936297 2.271429	.0536246 .611992	.1245283	.32

- Obsは観測値数。
- auto_lockはテキストデータとして認識しているので、観測値数がゼロになっている。
- ・ この変数を数値データに変換する方法は、教科書の39ページ参照。
- Meanは標本平均、Std.Dev.は標本標準偏差、Minは最小値、Maxは最大値。

27

標本平均

- rent (家賃プラス管理費) の標本平均は8.72万円。
- 計算方法?
- ここでは一般化してN人からなる横断面データを想定。
- ある変数Xについて考える。
- ・ $\mathsf{ID}=1$ の人の変数Xの値を X_1 、 $\mathsf{ID}=2$ の人の変数Xの値を X_2 、、、、 $\mathsf{ID}=N$ の人の変数Xの値を X_N と表しましょう。
- データは手短に書けば、 X_i (i=1,2,...,N)です。
- ・ 変数 Xの標本平均は、一般的には \bar{X} (エックス・バーと読むこともあります)と表記し、

標本平均

$$\bar{X} = \frac{1}{N}(X_1 + \dots + X_N) = \frac{1}{N} \sum_{i=1}^{N} X_i$$

・ 標本平均はその変数の位置の尺度で、代表的・典型的な値を測るものです。

1 4.7 2 6.2 3 5.6 4 5.7 6 6.2 8 6.4 8 6.4 10 6.2 10 7.2 10 7.

• 今の例では、下まで足していって70で割ったもの。

29

標本分散

・ 標本分散 (s_X^2) は次の式で定義されます。

$$s_X^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

- ・ 標本分散は<u>散らばりの尺度</u>の一つで、 X_i (i = 1,2, ..., N) がどれだけバラついているかを測るものです。
- ・ まずそれぞれのXから標本平均 \bar{X} が引かれる。
 - ▶ (標本) 平均からどのくらいずれているか
- そしてそれぞれを二乗。

問:二乗しないでそのま ま足すとどうなる?

- ン 二乗するのは正のズレも負のズレも等しく正の値で評価するため。
- 二乗したものはズレのある種の測度。
- ・ そしてそのズレの測度の"平均"を計算。

注:NではなくN-1で割っている のにはちょっとした理由あり。 今は気にしないこと。

30

標本標準偏差

variable	Obs	Mean	Std. Dev.	Min	Max
rent service age floor bus	70 70 70 70 70	8.716429 .26 7.705988 47.53186 6.142857	2.601055 .2500145 8.264705 18.85208 5.866351	4.7 0 0 14.49 0	18 .9 50 86 15
walk auto_lock year lfloor floorsq	70 0 70 70 70	4.514286 2001.571 3.769744 2609.601	3.984546 2.517023 .4530517 1838.783	1 1999 2.673459 209.9601	2004 4.454347 7396
rentperfloor category	70 70	.1936297 2.271429	.0536246 .611992	.1245283	.32

- レントの標本標準偏差は2.6万円。
- 標本標準偏差も散らばりの尺度。
- 一般的に、標本標準偏差は標本分散の正の平方根、すなわち $\sqrt{s_X^2}$

標本標準偏差

- 分散に平方根を取る理由は?
- 標本分散は計算の際に二乗を伴うために、その単位が変数単位の二 乗になってしまう。
- ・ 例えば、Xが「万円」単位で測られているとすると s_X^2 の単位は「万円 2 」に。
- 標準偏差は平方根を取っているから、もとの測定単位と同じになる。

32

最小值、最大值

- 最小値、最大値の求め方については特に説明することなし。
- 最小値、最大値の値を知ること、それ自体も大切なことだが、他に それらの値を知りたい理由があります。
- それはデータの誤入力の可能性を知れること。
- 月の家賃データで、最小値が20円だとしたら、それはかなり変。
- また最大値が3500万円だとしたら、それも変(場所は藤沢)。
- そういう場合は誤入力の可能性を疑うこと。
 - ▶ 調べてみる必要あり。
 - ▶ 場合によっては、分析から落とすことも。

33

____ ヒストグラム

- hist rent でrentのヒストグラムが書けます。
- この縦軸は割合です(頻度にすることもできます)。

- 回帰分析をする前に、特に従属変数のヒストグラムを見ることは重要。
 - ⇒ データの散らばり具合を視覚的に把握する。
 - データの中心がどれぐらいの位置にあるか視覚的に把握する。
 - 異常値(外れ値)の存在を視覚的に確認する。

- ついでに、rentの記述統計も年ごとに出してみましょう。
- ここではおさらいの意味も込めてifを使って見ましょう。

sum rent, if year == 1999 sum rent, if year == 2004

- ▶ ちなみにsumの後に変数を指定すると、Stataはその変数だけの記述統計を与えます。
- 特に指定しないと(先ほどは指定しませんでした)、データセットのすべての変数の記述統計が計算されます。

	sum rent if	year == 1999				
	Variable	Obs	Mean	Std. Dev.	Min	Max
-	rent	34	7.727941	1.878636	4.7	12.5
	sum rent if	year == 2004				
	Variable	Obs	Mean	Std. Dev.	Min	Max
-	rent	36	9.65	2.857346	5.6	18

この記述統計から何が言えますか?

37

二変数の関係: 散布図

- 回帰分析をする前には、各変数の平均、分散、最大値、最小値など をまず見てみること。
- では、その次は?
- 視覚的に変数間の関係性を把握することが大切。
- そのためには散布図を書く。
- 変数のコンビネーションすべてについて散布図を書く必要は無いです (もちろん書いても構いませんが)。
- 従属変数と重要な(分析において特に興味の対象である)説明変数 の散布図を書けば十分です。

38

二変数の関係:散布図

- それでは書いてみましょう。
- 特に興味がある説明変数は占有面積だとしました。
- なので、家賃と占有面積の散布図を書いてみましょう。
- · twoway (scatter rent floor)

で書けます。

- 予想通りですかね。
- ただし、個人的には、これが少しだけ気になりますね

39

- 二変数ともに連続変数なので、それぞれを対数にした場合の散布図も書いてみましょう。
- gen lrent = ln(rent)
- floor変数の方は、すでに対数作ってありますね。
- · twoway (scatter Irent Ifloor)

• 3つの観測値の「外れ値」感、対数を取った場合には少し弱まりますね。

標本共分散

- 変数間の統計的な関係を数値的に表す指標の一つは標本共分散。
- ・ 二つの変数を X_i と Y_i と置けば、標本共分散 (s_{XY}) は以下のように定義され

$$s_{XY} = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

- 何を測っている?
- 変数のペア (X_i,Y_i) を考えよう。
- それぞれからそれぞれの標本平均を引いたものが、

$$(X_i - \bar{X})(Y_i - \bar{Y})$$

 $s_{XY} > 0$ ならXとYは**正に相関(右上がりの関係)**しているという。

 $s_{XY} < 0$ ならXとYは**負に相関(右下がりの関係)**しているという。

- ・ 注意: S_{XY} は変数XとYの測定単位に依存する。従って、理論上の上限、下限は不明。
- そのため、共分散から相関の正負は分かっても、相関の強弱は分からない。

45

標本相関係数

- 標本共分散は測定単位に依存するため、相関の大小については言うことができない。
- ・ 相関の大小について言うことを可能にする指標は、**標本相関係数** $(r_{\chi\gamma})$ 。

$$r_{XY} = rac{s_{XY}}{s_X s_Y} = rac{X と Y の 共分散}{X の標準偏差 $\times Y$ の標準偏差$$

・ この指標は上限・下限あり: $-1 \le r_{XY} \le 1$

-1に近いほど強い負の相関、1に近いほど強い正の相関

46

標本相関係数

- $r_{XY}=-1$ なら、負の傾きの直線の上に、 (X_i,Y_i) i=1,...,Nが<u>すべ</u>てのっている、ということ。
- $r_{XY}=1$ なら、正の傾きの直線の上に、 (X_i,Y_i) i=1,...,Nが<u>すべて</u>のっている、ということ。

注意:2変数の間に「相関が無い」からといって、その2変数が関係していないというわけではない。例えば、

この輪の上に等間隔に (X_i, Y_i) が並んでいたら、標本相関係数はゼロ。でも二つは強く関係してると思います(なぜ?)。

47

標本相関係数

- 分析の際、散布図を見た後は、標本相関係数を見ておく。
- Stataで標本相関係数を計算してみましょう。
- · corr rent floor

- 家賃と床面積の間には結構強い正の相関あり。
- ・ corrの後に2変数以上書くこともできる。
- · corr rent floor age

rent floor age 「相関行列」と呼びます floor 0.8454 1.0000 age -0.3451 -0.0476 1.0000

- 家賃と床面積の間には強い正の相関有り(0.85)。
- 家賃と築年数の間には負の相関有り(-0.35)。
- 築年数と床面積の間には相関は無いかあっても弱い負の相関(-0.05)
- 回帰分析の前に、従属変数と説明変数の相関を見て、ざっくり関係を知っておくことは大事。
- また説明変数間の相関もチェックしたい強い理由あり。
 - ▶ 重回帰分析の講義の時に、その理由について説明します。

49

宿題

• 教科書第2章の2.1-2.5を一通り読んでやってみること。

注:将来自分でStataを使って実証分析をするなら、

2.6「Do-fileによる作業のプログラム化」2.7「log ファイルによる作業結果の保存」

の仕方を知っておくことは大切です。ただし本講義の試験的には全く 関係ありません。