Probability 3

王胤雅

25114020018

yinyawang25@m.fudan.edu.cn

2025年10月22日

ВОВЕМ I 分布函数是否是不降的? 举出反例或者给出证明。

 \mathbb{R}^{O} BEM II 证明若 $F(x) = \mathbb{P}(\xi < x)$ 是连续的,则 $\eta = F(\xi)$ 具有 (0,1) 上的均匀分布。

聚°BEM III 设 ξ_n $n \in \mathbb{N}_+$ 为 i.i.d. 随机变量,分布为 μ 。给定 $A \in \mathcal{B}$, $\mu(A) > 0$,定义 $\tau = \inf\{k : \xi_k \in A\}$ 。证明 ξ_τ 的分布为 $\frac{\mu(\cdot \cap A)}{\mu(A)}$ 。 聚°BEM IV 若 $\mathcal{C}_1, \cdot, \mathcal{C}_n$ 为独立的 π 系,那么 $\sigma(\mathcal{C}_1), \cdots, \sigma(\mathcal{C}_n)$ 独立。 \mathbb{R} °BEM V

- 1. 设 $\{A_n\}_{n\geq 1}$ 为独立事件序列,令 $\mathcal{J} = \bigcap_{n=1}^{\infty} \sigma\{A_n, A_{n+1}, \cdots\}$. 证明 $\forall A \in \mathcal{J}$,有 $\mathbb{P}(A) = 0$ 或 1.
- 2. 设 $\{\xi_n\}_{n\geq 1}$ 为独立随机变量,令 $\mathcal{J}=\bigcap_{n=1}^\infty\sigma\{\xi_n,\xi_{n+1},\cdots\}$ 。证明 $\forall A\in\mathcal{J}$,有 $\mathbb{P}(A)=0$ 或 1.