Лабораторная работа №4

Классификация или регрессия: Анализ набора данных

В качестве набора данных будем использовать датасет "HR Dataset". В датасете содержится информация о сотрудниках компании.

Ссылка на датасет: https://www.kaggle.com/datasets/imtiajemon/hr-dataset/data
Датасет содержит следующие поля.

- 1. Employee_ID уникальный идентификатор сотрудника
- 2. Name имя сотрудника
- 3. Gender пол сотрудника
- 4. **Department** отдел, в котором работает сотрудник
- 5. EducationField область образования
- 6. MaritalStatus семейное положение
- 7. JobRole должность
- 8. JobLevel уровень должности
- 9. **Age** возраст
- 10. MonthlyIncome месячный доход
- 11. NumCompaniesWorked количество компаний, в которых работал сотрудник
- 12. TotalWorkingYears общий стаж работы
- 13. TrainingTimesLastYear количество тренингов за последний год
- 14. YearsAtCompany стаж работы в компании
- 15. YearsInCurrentRole стаж в текущей должности
- 16. YearsSinceLastPromotion лет с последнего повышения
- 17. YearsWithCurrManager лет с текущим менеджером
- 18. **Attrition -** увольнение (целевая переменная)

1. Загрузка и предварительный анализ данных

```
# Импорт необходимых библиотек
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder,
PolynomialFeatures
from sklearn.impute import SimpleImputer
```

```
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.svm import SVR, SVC
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier,
plot_tree
from sklearn.metrics import (mean_squared_error, r2_score,
                             accuracy_score, confusion_matrix,
                             classification_report, roc_auc_score)
from sklearn.pipeline import make_pipeline
from sklearn.compose import ColumnTransformer
# Загрузка данных
hr_data = pd.read_csv("HR_Data.csv")
# Просмотр первых строк датасета
hr_data.head()
# Основная информация о данных
hr_data.info()
# Статистическое описание числовых признаков
hr_data.describe(include='all')
```

<cla< th=""><th>ss 'pandas.core.frame.Dat</th><th>aFrame'></th><th></th></cla<>	ss 'pandas.core.frame.Dat	aFrame'>	
Rang	eIndex: 1473 entries, 0 t	o 1472	
Data	columns (total 24 column	s):	
#	Column	Non-Null Count	Dtype
0	EmpID	1473 non-null	object
1	Age	1473 non-null	int64
2	AgeGroup	1473 non-null	object
3	Attrition	1473 non-null	object
4	BusinessTravel	1473 non-null	object
5	Department	1473 non-null	object
6	DistanceFromHome	1473 non-null	int64
7	EducationField	1473 non-null	object
8	EnvironmentSatisfaction	1473 non-null	object
9	Gender	1473 non-null	object
10	JobLevel	1473 non-null	int64
11	JobRole	1473 non-null	object
12	JobSatisfaction	1473 non-null	object
13	MaritalStatus	1473 non-null	object
14	MonthlyIncome	1473 non-null	int64
15	Over18	1473 non-null	object
16	OverTime	1473 non-null	object
17	PercentSalaryHike	1473 non-null	int64

```
18 PerformanceRating
                              1473 non-null
                                              object
19 TotalWorkingYears
                              1473 non-null
                                              int64
20 YearsAtCompany
                              1473 non-null
                                              int64
21 YearsInCurrentRole
                              1473 non-null
                                              int64
22 YearsSinceLastPromotion 1473 non-null
                                              int64
23 YearsWithCurrManager
                              1473 non-null
                                              float64
dtypes: float64(1), int64(9), object(14)
memory usage: 276.3+ KB
```

	EmpID	Age	AgeGroup	Attrition	BusinessTravel	Department
count	1473	1473.000000	1473	1473	1473	1473
unique	1470	NaN	5	2	3	3
top	RM1465	NaN	26-35	No	Travel_Rarely	Research & Development
freq	2	NaN	607	1236	1045	963
mean	NaN	36.917176	NaN	NaN	NaN	NaN
std	NaN	9.130690	NaN	NaN	NaN	NaN
min	NaN	18.000000	NaN	NaN	NaN	NaN
25%	NaN	30.000000	NaN	NaN	NaN	NaN
50%	NaN	36.000000	NaN	NaN	NaN	NaN
75%	NaN	43.000000	NaN	NaN	NaN	NaN
max	NaN	60.000000	NaN	NaN	NaN	NaN

11 rows × 24 columns

2. Предобработка данных

2.1. Обработка пропущенных значений

```
# Анализ пропущенных значений print("Пропущенные значения до обработки:") print(hr_data.isnull().sum())

# Заполнение пропусков (если есть)

# Например, для числовых признаков медианой, для категориальных — модой numeric_cols = hr_data.select_dtypes(include=['int64', 'float64']).columns categorical_cols = hr_data.select_dtypes(include=['object']).columns

for col in numeric_cols:
    if hr_data[col].isnull().sum() > 0:
        hr_data[col] = hr_data[col].fillna(hr_data[col].median())

for col in categorical_cols:
```

```
if hr_data[col].isnull().sum() > 0:
    hr_data[col] = hr_data[col].fillna(hr_data[col].mode()[0])

# Проверка, что пропусков больше нет
print("\nПропущенные значения после обработки:")
print(hr_data.isnull().sum().sum()) # Должно быть 0
```

```
Пропущенные значения до обработки:
EmpID
Age
                            0
AgeGroup
                            0
Attrition
                            0
BusinessTravel
                            0
Department
                            0
DistanceFromHome
EducationField
                            0
EnvironmentSatisfaction
Gender
                            0
JobLevel
                            0
JobRole
JobSatisfaction
                            0
MaritalStatus
                            0
MonthlyIncome
                            0
Over18
                            0
OverTime
PercentSalaryHike
                            0
PerformanceRating
TotalWorkingYears
                            0
YearsAtCompany
                            0
YearsInCurrentRole
YearsSinceLastPromotion
                            0
YearsWithCurrManager
dtype: int64
Пропущенные значения после обработки:
0
```

2.2. Кодирование категориальных признаков и выбор признаков

```
# Удалим ненужные столбцы (если есть)
hr_data = hr_data.drop(['EmpID', 'Over18'], axis=1) # ID и константные
признаки
# Выберем признаки для модели
```

```
target = 'Attrition'
features = [col for col in hr_data.columns if col != target]

X = hr_data[features]
y = hr_data[target]

# Разделим признаки на числовые и категориальные
numeric_features = X.select_dtypes(include=['int64', 'float64']).columns
categorical_features = X.select_dtypes(include=['object']).columns

# Создаем преобразователь колонок
preprocessor = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), numeric_features),
        ('cat', OneHotEncoder(), categorical_features)
])

# Применяем преобразования
X_processed = preprocessor.fit_transform(X)
```

3. Разделение данных на обучающую и тестовую выборки

```
X_train, X_test, y_train, y_test = train_test_split(
    X_processed, y, test_size=0.2, random_state=42, stratify=y)

print(f"Train size: {X_train.shape[0]}")

print(f"Test size: {X_test.shape[0]}")
```

```
Train size: 1178
Test size: 295
```

4. Обучение моделей

4.1 Логистическая регрессия (для классификации)

```
logreg = LogisticRegression(max_iter=1000)
logreg.fit(X_train, y_train)

# Предсказания
y_pred_logreg = logreg.predict(X_test)
y_prob_logreg = logreg.predict_proba(X_test)[:, 1]

# Оценка качества
print("Logistic Regression:")
print(f"Accuracy: {accuracy_score(y_test, y_pred_logreg):.4f}")
print(f"AUC-ROC: {roc_auc_score(y_test, y_prob_logreg):.4f}")
```

```
print("\nClassification Report:")
print(classification_report(y_test, y_pred_logreg))
```

```
Logistic Regression:
Accuracy: 0.8915
AUC-ROC: 0.8584
Classification Report:
              precision
                          recall f1-score
                                               support
          No
                   0.91
                             0.97
                                        0.94
                                                   248
         Yes
                   0.76
                             0.47
                                        0.58
                                                    47
                                        0.89
                                                   295
    accuracy
                                        0.76
  macro avg
                   0.83
                             0.72
                                                   295
weighted avg
                   0.88
                             0.89
                                        0.88
                                                   295
```

4.2 Метод опорных векторов (SVM)

```
svm = SVC(probability=True, random_state=42)
svm.fit(X_train, y_train)

# Предсказания
y_pred_svm = svm.predict(X_test)
y_prob_svm = svm.predict_proba(X_test)[:, 1]

# Оценка качества
print("SVM:")
print(f"Accuracy: {accuracy_score(y_test, y_pred_svm):.4f}")
print(f"AUC-ROC: {roc_auc_score(y_test, y_prob_svm):.4f}")
print("\nClassification Report:")
print(classification_report(y_test, y_pred_svm))
```

SVM:

Accuracy: 0.8847 AUC-ROC: 0.8489

Classification Report:

	precision	recall	f1-score	support
No	0.88	0.99	0.94	248
Yes	0.88	0.32	0.47	47

accuracy			0.88	295
macro avg	0.88	0.66	0.70	295
weighted avg	0.88	0.88	0.86	295

4.3 Дерево решений

```
tree = DecisionTreeClassifier(max_depth=3, random_state=42)
tree.fit(X_train, y_train)

# Предсказания
y_pred_tree = tree.predict(X_test)
y_prob_tree = tree.predict_proba(X_test)[:, 1]

# Оценка качества
print("Decision Tree:")
print(f"Accuracy: {accuracy_score(y_test, y_pred_tree):.4f}")
print(f"AUC-ROC: {roc_auc_score(y_test, y_prob_tree):.4f}")
print("\nClassification Report:")
print(classification_report(y_test, y_pred_tree))
```

```
Decision Tree:
Accuracy: 0.8576
AUC-ROC: 0.7279
Classification Report:
              precision
                           recall f1-score
                                                support
          No
                   0.86
                              0.99
                                         0.92
                                                    248
         Yes
                   0.73
                              0.17
                                         0.28
                                                     47
                                         0.86
    accuracy
                                                    295
   macro avg
                   0.79
                              0.58
                                         0.60
                                                    295
weighted avg
                   0.84
                              0.86
                                         0.82
                                                    295
```

5. Сравнение моделей

```
comparison = pd.DataFrame({'Model': models, 'Accuracy': accuracy, 'AUC-ROC':
   auc})
comparison.sort_values(by='Accuracy', ascending=False)
```

	Model	Accuracy	AUC-ROC
0	Logistic Regression	0.891525	0.858442
1	SVM	0.884746	0.848919
2	Decision Tree	0.857627	0.727908

6. Анализ важности признаков в дереве решений

```
# Получаем имена признаков после OneHot кодирования
feature_names = (preprocessor.named_transformers_['cat']
.get_feature_names_out(input_features=categorical_features))
feature_names = np.concatenate([
   numeric_features, # числовые признаки
   feature_names
])
# Важность признаков
importances = tree.feature_importances_
indices = np.argsort(importances)[::-1]
# График важности признаков
plt.figure(figsize=(12, 8))
plt.title("Feature Importance in Decision Tree")
plt.bar(range(X_train.shape[1]), importances[indices], align="center")
plt.xticks(range(X_train.shape[1]), feature_names[indices], rotation=90)
plt.xlim([-1, X_train.shape[1]])
plt.tight_layout()
plt.show()
```


7. Визуализация дерева решений

8. Вывод правил дерева решений в текстовом виде

```
from sklearn.tree import export_text

tree_rules = export_text(tree, feature_names=list(feature_names))
print(tree_rules)
```

```
|--- OverTime_No <= 0.50
  |--- MonthlyIncome <= -0.58
   | |--- Age <= -0.70
      | |--- class: Yes
   | |--- Age > -0.70
   |--- MonthlyIncome > −0.58
   | |--- JobRole_Sales Executive <= 0.50
     | |--- class: No
      |--- JobRole_Sales Executive > 0.50
       | |--- class: No
|--- OverTime_No > 0.50
   |--- TotalWorkingYears <= -1.13
   | |--- BusinessTravel_Travel_Frequently <= 0.50
       | |--- class: No
       |--- BusinessTravel_Travel_Frequently > 0.50
       | |--- class: Yes
  |--- TotalWorkingYears > -1.13
   | |--- YearsAtCompany <= 4.00
      | |--- class: No
   | |--- YearsAtCompany > 4.00
       | |--- class: No
```