CS738: Advanced Compiler Optimizations Interprocedural Data Flow Analysis

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Interprocedural Analysis: WHY? Is a*b available at IN of n_1 ? main p r_1 read a, b r_2 if (a == 0) r_2 if (a == 0)

Challenges

- Infeasible paths
- Recursion
- ► Function pointers and virtual functions
- Dynamic functions (functional programs)

Recursion

How to handle Infinite paths?

Function Variables

- ► Target of a function can not be determined statically
- ► Function Pointers (including virtual functions)

```
double (*fun) (double arg);
...
if (cond)
    fun = sqrt;
else
    fun = fabs;
...
fun(x);
```

- Dynamically created functions (in functional languages)
- ► No static control flow graph!

Two Approaches

- ► Functional approach
 - procedures as structured blocks
 - input-output relation (functions) for each block
 - function used at call site to compute the effect of procedure on program state
- Call-strings approach
 - single flow graph for whole program
 - value of interest tagged with the history of unfinished procedure calls

M. Sharir, and A. Pnueli. **Two Approaches to Inter-Procedural Data-Flow Analysis**. In Jones and Muchnik, editors, Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

Notations and Terminology

Control Flow Graph

One per procedure

main

Control Flow Graph for Procedure p

- ► Single instruction basic blocks
- ► Unique exit block, denoted *e*_p
- ▶ Unique entry block, denoted r_p (root block)
- ► Edge (*m*, *n*) if direct control transfer from (the end of) block *m* to (the start of) block *n*
- ▶ Path: $(n_1, n_2, ..., n_k)$
 - ▶ $(n_i, n_{i+1}) \in \text{Edge set for } 1 \leq i < k$
 - ▶ path_G(m, n): Set of all path in graph G = (N, E) leading from m to n

Assumptions

- ▶ Parameterless procedures, to ignore the problems of
 - aliasing
 - recursion stack for formal parameters
- ▶ No procedure variables (pointers, virtual functions etc.)

Data Flow Framework

- ► (*L*, *F*): data flow framework
- L: a meet-semilattice
 - Largest element Ω
- F: space of propagation functions
 - ► Closed under composition and meet
 - ► Contains $id_L(x) = x$ and $f_{\Omega}(x) = \Omega$
- ▶ $f_{(m,n)} \in F$ represents propagation function for edge (m,n) of control flow graph G = (N, E)
 - ► Change of DF values from the *start* of *m*, through *m*, to the *start* of *n*

Data Flow Equations

$$x_r = BoundaryInfo$$

 $x_n = \bigwedge_{(m,n)\in E} f_{(m,n)}(x_m) \qquad n \in N-r$

► MFP solution, approximation of MOP

$$y_n = \bigwedge \{f_p(BoundaryInfo) : p \in path_G(r, n)\} \quad n \in N$$

Functional Approach to Interprocedural Analysis

Functional Approach

- Procedures treated as structures of blocks
- ➤ Computes relationship between DF value at entry node and related data at *any* internal node of procedure
- At call site, DF value propagated directly using the computed relation

Interprocedural Flow Graph

First Representation:

 $G = \bigcup \{G_p : p \text{ is a procedure in program}\}$

 $G_p = (N_p, E_p, r_p)$

 N_p = set of all basic block of p

 r_p = root block of p

 E_p = set of edges of p

 $= E_p^0 \cup E_p^1$

 $(m, n) \in E_p^0 \Leftrightarrow \text{direct control transfer from } m \text{ to } n$

 $(m, n) \in E_p^1 \Leftrightarrow m \text{ is a call block, and } n \text{ immediately follows } m$

Interprocedural Flow Graph: 1st Representation

Interprocedural Flow Graph

Second representation

$$G^* = (N^*, E^*, r_1)$$
 $r_1 = \text{root block of main}$
 $N^* = \bigcup_{p} N_p$
 $E^* = E^0 \cup E^1$
 $E^0 = \bigcup_{p} E^0_p$
 $(m, n) \in E^1 \Leftrightarrow (m, n) \text{ is either a } \textit{call edge}$
or a \textit{return} edge

Interprocedural Flow Graph

- ► Call edge (*m*, *n*):
 - m is a call block, say calling p
 - n is root block of p
- ightharpoonup Return edge (m, n):
 - ▶ m is an exit block of p
 - n is a block immediately following a call to p
- ▶ Call edge (m, r_p) corresponds to return edge (e_q, n)
 - ightharpoonup if p = q and
 - $(m, n) \in E_s^1$ for some procedure s

Interprocedurally Valid Paths

- ► *G** ignores the special nature of call and return edges
- ightharpoonup Not all paths in G^* are feasible
 - do not represent potentially valid execution paths
- ▶ IVP(r_1 , n): set of all interprocedurally valid paths from r_1 to n
- ▶ Path $q \in \text{path}_{G^*}(r_1, n)$ is in IVP (r_1, n)
 - iff sequence of all E^1 edges in q (denoted q_1) is proper

Proper sequence

- $ightharpoonup q_1$ without any return edge is proper
- let $q_1[i]$ be the first return edge in q_1 . q_1 is proper if
 - ightharpoonup i > 1; and
 - ▶ $q_1[i-1]$ is call edge corresponding to $q_1[i]$; and
 - $ightharpoonup q_1'$ obtained from deleting $q_1[i-1]$ and $q_1[i]$ from q_1 is proper

Interprocedurally Valid Complete Paths

- ▶ $IVP_0(r_p, n)$ for procedure p and node $n \in N_p$
- ▶ set of all interprocedurally valid paths q in G^* from r_p to n s.t.
 - Each call edge has corresponding return edge in q restricted to E¹

Path Decomposition

$$\begin{array}{lcl} q & \in & \mathsf{IVP}(r_{\mathsf{main}}, n) \\ & \Leftrightarrow & \\ q & = & q_1 \parallel (c_1, r_{p_2}) \parallel q_2 \parallel \cdots \parallel (c_{j-1}, r_{p_j}) \parallel q_j \\ & & \mathsf{where for each } i < j, q_i \in \mathsf{IVP}_0(r_{p_i}, c_i) \ \mathsf{and} \ q_j \in \mathsf{IVP}_0(r_{p_j}, n) \end{array}$$