Жуковский Павел 3 курс 12 группа

Лабораторная работа №5

Описание задачи

- 1. Построить сетевой график для максимальной (t_{nec}) продолжительности всех его работ, рассчитать наиболее ранние и наиболее поздние сроки наступления событий, найти критический путь, определить полные и независимые резервы времени всех работ и коэффициенты напряженности некритических дуг.
- 2. Для трехпараметрической модели найти ожидаемое время выполнения проекта, определить вероятность выполнения проекта не позднее заданного срока, найти интервал гарантированного (с вероятностью P=0,9973) времени выполнения проекта, оценить максимально возможный срок выполнения проекта с заданной надежностью.

Выполнить те же расчеты для двухпараметрической модели. Сравнить результаты.

3. Считая $t_{\text{пес}}$ продолжительностью работы с минимальной допустимой интенсивностью ($t_{\text{пес}} = t_{\text{max}}$), а $t_{\text{опт}}$ – продолжительностью работы с максимальной возможной интенсивностью ($t_{\text{опт}} = t_{\text{min}}$), найти оптимальный по стоимости вариант выполнения проекта.

Минимизировать стоимость проекта при минимально возможном сроке его исполнения.

Работа	Опирается на работы	$t_{ m nec}$	$t_{ m sep}$	$t_{\text{опт}}$	Стоимость сокращения работы на один день, s_k
b_1	-	9	4	3	3
b_2	_	7	5	4	7
b_3	_	13	6	2	5
b_4	b_1	8	6	3	8
<i>b</i> ₅	b_2	6	5	2	10
b_6	b_2	10	8	3	2
b_7	b_3	9	4	3	6
b_8	b_4, b_5	13	7	5	4
b_9	b_6, b_7	9	6	2	8
b_{10}	$b_4, b_5 b_6, b_7 b_6, b_7, b_8$	11	5	3	3
b_{11}	b_9	9	5	2	5

Директивный (заданный) срок выполнения проекта $T_{\text{дир}} = 25$ дней. Заданная надежность $\gamma = 0.90$.

Стоимость одного дня проекта равна 12 денежным единицам: S = 12.

Решение:

Ladoma	Brawa	Sp(BK)	En(bx)	$Y_h(b_k)$	$Y_{H}(b_{k})$
*6,	9	0	9	0	0
62	4	0	11	4	0
вз	13	0	14	1	0
* by	в	9	17	0	0
85	6	7	117	4	0
ве	10	7	30	13	9
въ	9	13	30	8	7
*bg	13	17	30	0	0
вд	9	22	32	1	-1
*bn	11	30	41	0	0
811	9	31	41	1	D
Mum - e	padenu	: b1, b4	1,68,610		

(0,2,4) (0,2,6) (0,3,6)	ol 117 30	6 13 17	R(b) 4 13	N(b) 0,76470588 0,56667 0,734
(0, 2, 5, 7, 8) (0, 2, 5, 7, 8) (0, 3, 5, 7, 8)	41	35 40	6	0,85365854

(1/2)

The= 24. Kp-e pudonion: 61, 84, 88, 810.

$$G_{kp}^2 = 5,25 \Longrightarrow G_{kp} = 2,29$$

3. C , p ≈ 17, m. l. C вероянностью почти 0,9993 приевт выр-са за 24 ± 2 дрей

$$P(17 \le t_{Kp} \le 31) = 2 P(\frac{7}{2,29}) - 0,9973$$

$$P(t_{NP} \leq 31) = 0.5 + P(\frac{p}{2,29}) = 0.99865$$

C sontuett gouett bepartunoann cpok bup-x ne ppeberlum 31 gens.

$$P(z_{0,9}) = 0,45 \Rightarrow z_{0,9} = 1,65$$

С кареминостью 0,9 завершим в период ст 20 до гв дней.

$$\Phi(z_{0,9}) = 0.4 \Rightarrow z_{0,9} = 1,29$$

C nadjenskownow 0,9 zabepunem ne nozske et gneã

 $t_{kp} = 30$. kp - e padomist: $\theta_1, \theta_4, \theta_6, \theta_{10}$.

$$G^2_{KP} = 5,25 \Rightarrow G_{KP} = 2,29$$

$$P(t_{hp} \leq 25) = 0,5 + P(\frac{25-30}{2,29}) = 0,0146 (manc 211.)$$

3. G Kp 27, m.e. C bep-to nound 0,9943 ppoenin bour se 30 ± 4 grea.

С бальший урией вер-ти среп выполнения не превысия 37 дией.

$$\mathcal{P}(z_{0,9}) = 0,45 \Rightarrow z = 1,65$$

C nagénineanus 0,9 zobepinum & repnog em 26 go 34 greñ.

$$\varphi(z_{0,9}) = 0, 4 \Rightarrow z_{0,9} = 1,29$$

С наденикоапью о, о знавершим не поззае 33 дней.

(3) Tup=41, S(tmax)=41.12=492 gen. eg.

жине оправили на весь прим-ча прив.

Padoma	t max	tmin	SK	Ak-S-SK	t 18	$ZV = \nabla^{K} \cdot f_{C}^{K}$
61	9	3	3	9	1	9 = 9.1
вч	в	3	8	4		_
68	13	5	4	b		_
810	11	3	3	9	_	

txp= 40, S= 483 gen.eg.

Darmeamel coppe nebozmonno.

Min cpock bup-x: 40 great

Sgen = 19 + 21+ 5 + 40+40+14+36+32+56+24+35=371

Cmax unneprubraduero nomen zanoprecime za 14 gnoit Conominanto; 14.12 + 3171 = 539 gln. eg.

