Generación de Terrenos con Redes Neuronales Multicapa

Sistemas de Inteligencia Artificial - Instituto Tecnológico de Buenos Aires

Grupo 8

Garrigó, Mariano 54393

Raies, Tomás 56099 Saqués, Alejo 56047

Terreno

Entrenamiento

Pre-procesamiento de datos:

Feature Scaling para estandarizar las muestras

$$x_i' = \frac{x_i - \min(X)}{\max(X) - \min(X)}(b - a) + a$$

X: Conjunto de muestras

Entrenamiento

Muestras de entrenamiento tomadas del terreno:

Seleccionadas bajo el siguiente criterio de manera no determinística

- 90% para entrenamiento.
- 10% para testeo.

Implementación: Back-propagation

Algoritmos utilizados:

- 1. Incremental con adaptive eta y momentum
- 2. Batch con momentum
- 3. Batch parametrizable

Parámetros de entrenamiento

```
\circ f: Funcion de activacion
```

H: Capas ocultas (array)

 \circ η : Learning rate

o momentum: Factor del momentum

 \circ α : Constante de crecimiento del eta adaptativo

 \circ β : Factor de decrecimiento del eta adaptativo

• k: Constante de decrecimiento consistente

 \circ ε : Cota inferior para (condición de corte)

 \circ ε_{ρ} : Condición de corte del error cuadrático medio

max_{iters}: Número máximo de epochs.

Análisis de resultados

- \circ Condición de corte (ε_e , epochs)
- Tasas de éxito Épsilon (ϵ) : $[S_i \epsilon, S_i + \epsilon]$
- Diferencia entre valor esperado y emitido $D_i = abs(S_{c_i} E_i)$
- Error cuadrático medio

Resultados

1. Alg. Incremental con eta adaptativo

```
\circ f = tanh
```

$$\circ$$
 $H = [10,10]$

$$\circ$$
 $\eta = 0,1$

$$\circ$$
 momentum = 0

$$\alpha = 0.05$$

$$\circ$$
 β = 0,1

$$\circ$$
 $k = 5$

$$\circ$$
 $\varepsilon = 0.00001$

$$\circ$$
 $\varepsilon_e = 0,0001$

$$\circ \quad max_{iters} = 10000$$

Condición de corte:

Se alcanzó el máximo de iteraciones

 $ECM = 6.5 \times 10^{-4}$

Tasas de éxito:

Épsilon	Éxito (%)
.05	75.6
.06	80
.07	84.5
.08	91.2
.09	91.2
.1	97.8
.11	100

Diferencia entre valor esperado y emitido:

$$- max(D) = 0.10006$$

$$min(D) = 1,7035 * 10^{-4}$$

$$-mean(D) = 0.030684$$

Comportamiento - Picos de error

Muestra	X	Y
44	-0.14806	0.31066
3	-1	-0.93007
23	1	-0.11425
4	0.061232	-0.240449

Mapa de Altura

- \circ f = tanh
- \circ H = [10,10]
- \circ $\eta = 0.001$
- \circ momentum = 0,9
- \circ ε_e = 0,0001
- $\circ \quad max_{iters} = 100000$

Condición de corte:

Se alcanzó el máximo de iteraciones

 $ECM = 3,26 \times 10^{-4}$

Tasas de éxito:

Épsilon	Éxito (%)
.05	88.9
.06	93.4
.07	95.6
.08	97.8
.09	100
.1	100

Diferencia entre valor esperado y emitido:

$$-max(D) = 0.085488$$

$$min(D) = 9.3254 * 10^{-4}$$

$$-mean(D) = 0.021261$$

Comportamiento - Picos de error

Muestra	X	Y
7	1	0.58233
16	1	0.82133
14	-0.14806	-0.35267
41	0.94275	-0.24045

- \circ f = tanh
- \circ H = [10,10]
- \circ $\eta = 0.001$
- \circ momentum = 0,9
- \circ $\varepsilon_e = 0,0001$
- \circ $max_{iters} = 15000$

Condición de corte:

Se alcanzó el máximo de iteraciones

 $ECM = 4,22 \times 10^{-4}$

Tasas de éxito:

Épsilon	Éxito (%)
.05	77.8
.06	88.9
.07	95.6
.08	97.8
.09	100
.1	100

Diferencia entre valor esperado y emitido:

$$- max(D) = 0.084863$$

$$-min(D) = 0.0011897$$

$$-mean(D) = 0.028660$$

Función logística

Otras Arquitecturas: Mínimos Locales

Otras Arquitecturas: Incremento del

Conclusiones

- Las tres redes neuronales propuestas logran resolver el problema.
- En el peor de los casos, se generalizó en torno al 75% de los casos de prueba.
- El algoritmo que ofreció mayor precisión a menor costo computacional fue Batches Parametrizable

Conclusiones

- Adaptive eta fue performante, pero depende mucho de la buena elección de sus parámetros de crecimiento y decrecimiento.
- Notamos que utilizar momentum sin adaptive eta ofrecen un entrenamiento más estable.

Comparación con otros Algoritmos

- La generación de terrenos procedural es de suma importancia en varias áreas.
- Se utiliza para el desarrollo de videojuegos, permitiendo generar mapas aleatorios bajo ciertos parámetros predefinidos.
- Algunos algoritmos:
 - Diamond Square Algorithm (DSA)
 - Perlin Noise

Ejemplo DSA

Generación de terreno aleatorio

Analizamos el potencial de las redes neuronales multicapa para obtener similares resultados.

- Tomamos la altura de diversas ciudades del mundo.
- Utilizamos el algoritmo Batch con momentum.
- Entrenamos con el 90% de las muestras tomadas.
- Representamos la generalización lograda.

Punta del Este

San Petersburgo

Dover

Resultados y conclusiones

- Los órdenes de magnitud de los errores cuadráticos medios son superiores que los obtenidos utilizando el terreno provisto por la cátedra.
- La generalización del terreno real es aceptable, sin embargo DSA tiene mayor capacidad para generar terrenos aleatorios.