Covid-19 has caused devistating problems with the country's economy. You have been assigned to forecast the unemployment rate for next month (June 2020). Using a Recurrent Neural Network forecast one month into the future of what the Unemployment Rate will be for next month.

Make sure to back test your model against one or two previous months

```
In [1]:
        import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
```

import Data

- · Data was collected from the Federal Reserve Economic Data Website
- https://fred.stlouisfed.org/series/UNRATE (https://fred.stlouisfed.org/series/UNRATE)
- Data begins Jan 1948 through march 2020

```
data = pd.read csv("resources/unemployment rate.csv", parse dates = True
In [2]:
           index_col="DATE")
         data.plot(figsize = (16,6))
In [3]:
         plt.ylabel("Unemployment Rate");
                                                                                     — UNRATE
           10
                                  1969
                                             1979
                                                        1989
                                                                   1999
                                                                             2009
                                                                                        2019
```

Data Sample

- We wil take 5 years of data to test
- · This will be 60 months in total
- This will give us enough data to test out model on

```
In [4]: sample_size = 60
In [5]:
        sample_index = len(data) - sample_size
In [6]: sample_index
Out[6]: 807
In [7]: len(data)
Out[7]: 867
```

Train Test Split

```
In [8]: train = data.iloc[:sample_index]
 In [9]: | test = data.iloc[sample_index:]
In [10]: train.shape
Out[10]: (807, 1)
In [11]:
         test.shape
Out[11]: (60, 1)
```

Scaling the data

· This will allow our model to consider the outliers and the behavior of the data better

```
In [12]:
         from sklearn.preprocessing import MinMaxScaler
In [13]: | scalar = MinMaxScaler()
In [14]:
         train_scaled = scalar.fit_transform(train)
In [15]:
         test_scaled = scalar.transform(train)
```

Time Series Generator

- · We will create the generator to train our model
- length will be 3 months- Our model will train to attampt to predict 3 months of Unemployment Rates

```
In [113]: | length = 2
In [114]: from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
In [115]: gen = TimeseriesGenerator(train scaled, train scaled, length=length, batch
           size=1)
```

Early Stopping

- THis will allow our model to train and stop when beginning to overtrain
- Also will allow us to set our epoch at a high value to train longer if possible

```
In [116]: from tensorflow.keras.callbacks import EarlyStopping
In [117]: stop = EarlyStopping(monitor="val_loss", mode = "min", patience=20)
```

Validation Generator

Allows them model to compare the training data to. We will use our testing set

```
In [118]:
         val_gen = TimeseriesGenerator(test_scaled,test_scaled, length=length, ba
          tch_size=1)
```

Creating Model

We will use a LSTM model to prevent gradient decay of our network

```
from tensorflow.keras.models import Sequential
In [119]:
          from tensorflow.keras.layers import LSTM, Dense
In [120]: n features = 1
In [121]: model = Sequential()
          model.add(LSTM(units = 250, activation = "relu", input_shape = (length,n
          features)))
          model.add(Dense(units = 1))
          model.compile(optimizer = "adam", loss = "mse")
```

Fitting Model

We will add all of our created parameters to to boost efficiency in training

In [122]: model.fit_generator(generator=gen, validation_data=val_gen, epochs=40, c allbacks=[stop])

```
Epoch 1/40
- val loss: 0.0012
Epoch 2/40
- val_loss: 0.0011
Epoch 3/40
- val loss: 0.0010
Epoch 4/40
- val loss: 0.0015
Epoch 5/40
- val loss: 0.0011
Epoch 6/40
- val_loss: 9.0027e-04
Epoch 7/40
- val_loss: 9.9298e-04
Epoch 8/40
- val_loss: 7.7924e-04
Epoch 9/40
- val loss: 8.1457e-04
Epoch 10/40
- val loss: 7.3941e-04
Epoch 11/40
e-04 - val loss: 6.9342e-04
Epoch 12/40
805/805 [============== ] - 21s 26ms/step - loss: 0.0010
- val_loss: 8.6859e-04
Epoch 13/40
e-04 - val loss: 9.6106e-04
Epoch 14/40
e-04 - val loss: 7.3521e-04
Epoch 15/40
e-04 - val loss: 7.9432e-04
Epoch 16/40
805/805 [=============== ] - 21s 26ms/step - loss: 8.8170
e-04 - val_loss: 6.6762e-04
Epoch 17/40
e-04 - val_loss: 6.9428e-04
Epoch 18/40
e-04 - val loss: 7.2798e-04
Epoch 19/40
e-04 - val loss: 8.3959e-04
```

```
Epoch 20/40
e-04 - val loss: 6.2917e-04
Epoch 21/40
e-04 - val loss: 6.5456e-04
Epoch 22/40
e-04 - val_loss: 8.5316e-04
Epoch 23/40
e-04 - val_loss: 8.0352e-04
Epoch 24/40
805/805 [============== ] - 21s 26ms/step - loss: 8.1381
e-04 - val loss: 7.0247e-04
Epoch 25/40
e-04 - val loss: 6.3282e-04
Epoch 26/40
e-04 - val loss: 6.7598e-04
Epoch 27/40
e-04 - val_loss: 0.0019
Epoch 28/40
805/805 [============= ] - 21s 26ms/step - loss: 8.1814
e-04 - val loss: 9.9667e-04
Epoch 29/40
e-04 - val loss: 6.5742e-04
Epoch 30/40
e-04 - val loss: 6.4425e-04
Epoch 31/40
e-04 - val_loss: 0.0014
Epoch 32/40
e-04 - val loss: 0.0010
Epoch 33/40
e-04 - val loss: 8.1593e-04
Epoch 34/40
e-04 - val loss: 9.1759e-04
Epoch 35/40
805/805 [============== ] - 21s 26ms/step - loss: 8.1643
e-04 - val loss: 6.8340e-04
Epoch 36/40
e-04 - val_loss: 6.7990e-04
Epoch 37/40
805/805 [============== ] - 21s 26ms/step - loss: 7.6006
e-04 - val loss: 0.0010
Epoch 38/40
e-04 - val loss: 0.0012
```

```
Epoch 39/40
     e-04 - val_loss: 9.2922e-04
     Epoch 40/40
     e-04 - val_loss: 6.6779e-04
Out[122]: <tensorflow.python.keras.callbacks.History at 0x7f287e0c5d50>
```

Model Performance

- Lets take a look at how our model did training
- appears that our model trained very well and did not overtrain at the end
- · We will test the the model by making soe predicitons

```
pd.DataFrame(model.history.history).plot(figsize = (16,6))
In [123]:
Out[123]: <matplotlib.axes._subplots.AxesSubplot at 0x7f28803700d0>
            0.010
                                                                                          val loss
            0.008
            0.006
            0.004
            0.002
```

Predicitons

- We will test our model on predicting the test data before forecasting
- This will give us a better understanding of the model accuracy

```
In [124]:
          test_predictions = []
          batch = train_scaled[-length:]
          current_batch = batch.reshape((1,length,n_features))
          for x in range(len(test)):
              current_predictions = model.predict(current_batch)[0]
              test predictions.append(current predictions)
              current batch = np.append(current batch[:,1:,:], [[current predictio
          ns]], axis = 1)
```

inverse predicitons

our model was trained on scaled data so we must inverse that process to get the true values

```
true_predicitons = scalar.inverse_transform(test_predictions)
In [125]:
```

Matching True and Test

```
In [126]:
         test["predictions"] = true_predicitons
          /home/ubuntu/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.p
          y:1: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row_indexer,col_indexer] = value instead
          See the caveats in the documentation: https://pandas.pydata.org/pandas-
          docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
            """Entry point for launching an IPython kernel.
```

Plotting Test and Predictions

- Using the LSTM model the predicitons are mostly accurate for the first value forward. We will consider this for our forecast and take a close look at the first month forward.
- model prediciton on 2015 was 5.28 and the true value was 5.4. This was pretty close in prediction
- · We will run our forecast below

```
In [127]:
           test.head()
```

Out[127]:

DATE		
2015-04-01	5.4	5.435588
2015-05-01	5.6	5.487394
2015-06-01	5.3	5.540391
2015-07-01	5.2	5.592756
2015-08-01	5.1	5.644289

UNRATE predictions

```
In [128]: test.plot(figsize = (16,6))
```

Out[128]: <matplotlib.axes._subplots.AxesSubplot at 0x7f287b1a6890>

Forecasting with model

Our forecast will be to predict the next month of May 2020

```
In [129]:
          forecast = []
          periods = length
          first_batch = train_scaled[-length:]
          c batch = first_batch.reshape((1,length,n_features))
          for x in range(periods):
              pre = model.predict(c_batch)[0]
              forecast.append(pre)
              c_batch = np.append(c_batch[:,1:,:], [[pre]], axis=1)
```

Inverse Forecast

```
true forecast = scalar.inverse transform(forecast)
In [131]: true_forecast
Out[131]: array([[5.43558815],
                 [5.48739359]])
```

Time Series creation for forecast

- must begin at the end of the data at month's start
- last day in data shown below

Model Predicts the unemployment rate for 4/2020 will be 5.28

· we will plot this on a graph below

DATE

Saving Model

```
In [151]: | model.save("unemployment_Model.h5")
```

Back testing the model

- We will take the data up to year end 2018 and forecast for jan 1 2019
- · THis will allow us to see how our model performed

```
In [ ]:
In [139]: new data = data.loc["1948-01-01": "2018-12-1"]
In [140]:
         new_scalar = MinMaxScaler()
In [141]:
         new_data_scaled = new_scalar.fit_transform(new_data)
```

Forecast and back testing

```
In [142]: | forecast = []
          period = length
          b = new_data_scaled[-length:]
          curr batch = b.reshape((1,length,n_features))
          for x in range(period):
              predd = model.predict(curr_batch)[0]
               forecast.append(predd)
               curr batch = np.append(curr batch[:,1:,:], [[predd]], axis=1)
          t_forecast = new_scalar.inverse_transform(forecast)
In [143]:
In [144]:
          t forecast
Out[144]: array([[3.98228661],
                  [4.04095157]]
In [145]: new_data.tail()[-1:]
Out[145]:
                    UNRATE
               DATE
           2018-12-01
                        3.9
          t index = pd.date range(start="2019-1-1", periods=period, freq='MS')
In [146]:
```

```
t_index
In [147]:
Out[147]: DatetimeIndex(['2019-01-01', '2019-02-01'], dtype='datetime64[ns]', fre
          q = 'MS')
          fotecast_Df =pd.DataFrame(t_forecast,index=t_index, columns=["forecast"
  In [ ]:
```

Model Predicts 3.98

- True value was 4.0
- Model is very Accurate in predictions of unemployment rate

```
In [149]:
           fotecast_Df
Out[149]:
                      forecast
                     3.982287
            2019-01-01
            2019-02-01 4.040952
In [150]:
           data.loc["2019-1-1"]
Out[150]: UNRATE
           Name: 2019-01-01 00:00:00, dtype: float64
  In [ ]:
  In [ ]:
```