Notes about Differential Geometry

Jon

June 10, 2020

1 What is a manifold?

Definition 1. A topological space X is called **locally Euclidean** if for every point $x \in X$ there exists a neighborhood U of x such that U is homeomorphic to a subset U' of \mathbb{R}^n . We call a pair (U, ϕ) where ϕ is such a homeomorphism a **chart**.

Definition 2. A C^k -atlas on a locally Euclidean space X is a set of charts $\{(U_i, \phi_i)\}$ such that $\bigcup_i U_i = X$ and ϕ_i is a homeomorphism from U_i to an open subset U'_i of \mathbb{R}^n , and with the property that for any i and j $\phi_i \circ \phi_j^{-1}$ is in $C^k(U_i \cap U_j)$.

Definition 3. Two atlases \mathcal{F} and $\}$ are equivalent if $\mathcal{F} \cup \mathcal{G}$ is an atlas.

Proposition 1. Equivalence between atlases is an equivalence relation.

Proof. Reflexivity and Symmetry are obvious. For transitivity, suppose that \mathcal{F} , \mathcal{G} , and \mathcal{H} are atlases such that $\mathcal{F} \cup \mathcal{G}$ and $\mathcal{G} \cup \mathcal{H}$ are also atlases. Suppose that (U, h) and (W, ℓ) are charts in \mathcal{F} and \mathcal{H} , respectively. Then for all points $p \in U \cap W$, there exists an atlast (V_p, k_p) in \mathbb{G} such that $p \in V_p$. Then it follows that

$$(h\circ\ell^{-1})=(h\circ k_p^{-1})\circ(k_p\circ\ell^{-1})$$

is \mathcal{C}^k differentiable in a neighborhood around p for all p in $U \cap W$, as desired.

Definition 4. Suppose that \mathcal{A} is an atlas. Then a differentiable structure generated by \mathcal{A} is the union of all atlases such that their union with \mathcal{A} is an atlas.

Definition 5. A C^k -differentiable manifold is a pair (M, \mathcal{F}) , where M is a Hausdorff second countable locally Euclidean topological space, and \mathcal{F} is a differentiable structure.