The Goldman bracket characterizes homeomorphisms between non-compact surfaces

Geometry in Groups, 2024 ICTS, Bengaluru

Sumanta Das

Indian Institute of Science Bangalore

Joint with Siddhartha Gadgil & Ajay Nair

July 29, 2024

Topological Rigidity

 \leadsto Is every homotopy equivalence between n-manifolds homotopic to a homeomorphism?

- True for closed surfaces.
- False for compact surfaces with boundary or non-compact surfaces.
- False for dimensions three and above.

Characterization of homeomorphisms between non-compact surfaces

Theorem [Das-Gadgil-Nair] Let $f: \Sigma' \to \Sigma$ be a homotopy equivalence between two non-compact oriented surfaces without boundary, where $\Sigma \neq \mathbb{R}^2, \mathbb{S}^1 \times \mathbb{R}$. Then,

- *f* is homotopic to a homeomorphism if and only if *f* preserves the geometric intersection number.
- *f* is homotopic to an *orientation-preserving* homeomorphism if and only if *f* preserves the Goldman bracket.

The Goldman Lie algebra

Let S be an oriented surface. The Goldman bracket $[\cdot,\cdot]\colon\mathbb{Z}\left[\mathbb{S}^1,\mathrm{S}\right]\times\mathbb{Z}\left[\mathbb{S}^1,\mathrm{S}\right]\to\mathbb{Z}\left[\mathbb{S}^1,\mathrm{S}\right]$ of $x,y\in\left[\mathbb{S}^1,\mathrm{S}\right]$ is defined as follows:

Pick $\varphi \in x$ and $\psi \in y$ such that φ and ψ intersect transversally at double points. Then

$$[x,y] \coloneqq \sum_{p \in \varphi \cap \psi} \varepsilon_p \cdot [\varphi *_p \psi],$$

where $[\varphi *_p \psi]$ is the free homotopy class of the based loop product, and $\varepsilon_p \in \{\pm 1\}$.

ullet If [x,y]=0 and x has a *simple representative*, then x and y have disjoint representatives.

W. M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Inventiones Mathematicae (1986).

Strong topological rigidity and an idea of the proof

Proof. To prove the "If" directions, homotope f to a proper map and then apply the following theorem.

Theorem [Das] Let $f: \Sigma' \to \Sigma$ be a homotopy equivalence between two orientable non-compact surfaces without boundary, where $\Sigma \neq \mathbb{R}^2, \mathbb{S}^1 \times \mathbb{R}$. If f is a *proper map*, then f is properly homotopic to a homeomorphism.

Sumanta Das. *Strong Topological Rigidity of Non-Compact Orientable Surfaces*. Algebraic & Geometric Topology (to appear).

Characterization of the image of the Dehn-Nielsen-Baer map

Corollary If $\Sigma \neq \mathbb{R}^2, \mathbb{S}^1 \times \mathbb{R}$ is an oriented surface without boundary, *possibly of infinite type*, then each element of the image of

- $MCG^{\pm}(\Sigma) \to Out(\pi_1(\Sigma))$ is induced by a self-homotopy equivalence of Σ that preserves the geometric intersection number.
- $MCG^+(\Sigma) \to Out(\pi_1(\Sigma))$ is induced by a self-homotopy equivalence of Σ that preserves the Goldman bracket.

Thank You