2-3 Compact Sets

2.31 Definition

By an open cover of a set E in a metric space X we mean a collection $\{G_\alpha\}$ of open subsets of x such that $E\subset \cup_\alpha G_\alpha$.

2.32 Definition

A subset K of a metric space X is said to be *compact* if every open cover of K contains a *finite* subcover.

More explicitly,the requirement is that if $\{G_{\alpha}\}$ is an open cover of K,then there are finitely many indices $\alpha_1,\alpha_2,\ldots,\alpha_n$ such that $K\subset G_{\alpha_1}\cup\ldots\cup G_{\alpha_n}$.

2.33 Theorem

Suppose $K \subset Y \subset X$. Then K is compact relative to X if and only if K is compact to Y.

Proof

The "if and only if" condition is equivalent to "sufficient and necessary".

(1)Suppose K is compact relative to X, We have

$$K \subset G_{\alpha_1} \cup G_{\alpha_2} \cup \ldots \cup G_{\alpha_n} \tag{1}$$

Let

$$V_{\alpha} = Y \cup G_{\alpha}$$

Then we have

$$K \subset V_{\alpha_1} \cup V_{\alpha_2} \cup \ldots \cup V_{\alpha_n} \tag{2}$$

Thus we prove that K is compact relative to Y.

(2)Suppose K is compact relative to Y.Similarly Let $\{G_n\}$ be some finite collection of open subsets of X which covers K,and put $V_\alpha = Y \cap G_\alpha$.Then we get (2),which implies (1),and therefore K is compact relative to X.

2.34 Theorem

Compact subsets of metric spaces are closed.

Proof

这一证明表现出了紧性将局部推广至全局的作用。

我们等价于证明,"度量空间的紧子集K之补集 K^c 为开集".

我们考虑紧集合中的任意一点a和其补集的任意一点b.现在为了方便我们不妨固定点b,考虑有限个子覆盖 (subcover){ A_n }及点b的有限个邻域(B_n },使得

$$K \subset \bigcup_{i=1}^{n} A_n$$
$$V = \bigcap_{i=1}^{n} B_n$$

其中,这两个邻域的"中心点"距离记为 $d(a_n,b)$.并令所有对应的领域 A_n 与 B_n 满足半径 $r_n<rac{d(a_n,b)}{2}$.

这样就有 $V\cap K=\varnothing$.(局部不相交推广至全局不相交).因此对于补集中的任意一点b,总能以此法构造领域,使得 $N_r(b)\cap K=\varnothing,N_r(b)\subset K^c$.

因此等价命题得证,原命题得证.

2.35 Theorem

Closed subsets of compact sets are compact.

Proof

Let K be a compact subset of a metric space X and let $F \subseteq K$ be closed(relative to X).

Let $\{G_n\}$ be an open cover of F,then $\{G_\alpha\cap F^c\}$ is an open cover of K.(Since F^c is open)

Corollary

If F is closed and K is compact, then $F \cap K$ is compact.

The intersection of finite compact sets is compact.

2.36 Definition

Let $\{S_n\}$ be a collection of subsets of a metric space X. We say $\{S_n\}$ satisfies **finite intersection condition** if the intersection of every finite subcollection of $\{K_\alpha\}$ is nonempty.

2.37 Theorem

If $\{K_{\alpha}\}$ is a collection of **compact** subsets of a metric space X such that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty,then $\cap K_{\alpha}$ is nonempty.

Proof

The statement is equivalent to "If $\cap K_{\alpha}=\varnothing$,then $\cap_{i=1}^n K_i=\varnothing$ ".

We may fix a member K_1 such that $K_1 \cap (\cap_{i=2}^{\infty} K_i) = \emptyset, K_1 \subset (\cap_{i=2}^{\infty} K_i)^c, K_1 \subset (\cup_{i=2}^{\infty} K_i^c).$

Since K_1 is compact, $K_1 \subset (\cup_{i=2}^n K_i^c)$, $\cap_{i=1}^n K_i = \varnothing$.

Corollary

If $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$.(n=1,2,3,...),then $\bigcap_1^{\infty} K_n$ is not empty.

2.38 Theorem

If E is a infinite subset of a compact set K, then E has a limit point in K.

Proof

The key idea is,let I be the k-cell, $\exists x^* \in I$, s.t. if $y \in K_n$, and $K_{n+1} \subset K_n$, $K_1 \subset I$, then $|y-x^*|$ must be covered by some neighborhood. Namely, $\forall r > 0$, $\exists n \in N, y \in K_n$, s.t. $|y-x^*| < r$. That is to say, there is always some finite subcollection of $\{G_n\}$ capable of covering I_n . Suppose $E' \cap E = \varnothing$. That is to say, $\forall p \in E, \forall \epsilon \in R, N_\epsilon p \setminus \{p\} = \varnothing$. Then there is no finite subcollection of $\{V_q\}$ can cover E. Since $E \subset K$, therefore K is not compact. This contradicts the compactness of K.

我们应当指出,定理2.38可以用于证明闭区间套定理。

更严格的证明如下:

We prove it by contradiction.

Suppose no point of K is a limit point of a compact set K, then for each $q \in K$, $\exists r > 0, s.t. N_r(p) \cap E = \varnothing, \{p\}.i.e.$ each point in K would have a neighborhood $N_r(p)$ containing at most one point of E.

Therefore, E cannot be covered by infinite open sets, and the same is true for K, since $E \subset K$, which contradicts the compactness of K.

2.39 Theorem

If $\{I_n\}$ is a sequence of intervals in R^1 , such that $I_n \supset I_{n+1}$ (n=1,2,3,...), then $\cap_1^{\infty} I_n$ is not empty.

Proof

令 $I_n=[a_n,b_n]$,由于实数集的稠密性,总能找到一个 $\{a_n\}$ 的上确界 α 使得 $\alpha\in I_n,(n=1,2,3,\dots)$.故原命题得证.

It is known that R has the least-upper-bound property, and thus has the greatest-lower-bound property. Let $\{a_n\}$ be set of all the lower bounds of each interval I_n , and $\{b_n\}$ be the set of all the upper bounds of each interval I_n .

It is apparent that:

$$\exists x \in R, s.t. x = sub\{a_n\}. \ orall n \in N^*, a_n < x \le b_1 \le b_2 \le \ldots \le b_n$$

Therefore we find that $\forall n \in N^*, x \in I_n, x \in \cap_1^{\infty} I_n$.

2.40 Theorem

Let k be a positive integer. If $\{I_n\}$ is a sequence of k-cells such that $I_n \supset I_n + 1$ (n=1,2,3,...),then $\bigcap_1^{\infty} I_n$ is not empty.

Proof

我们对k维的每一维空间都作类似2.39定理的操作即可得证。

2.41 Theorem

Every k-cells is compact.

Proof

Let I be a k-cell, consisting of all points $x = (x_1, x_2, \dots x_n)$ such that $a_j < x_j < b_j (1 \le j \le k)$. Put

$$\delta = \sqrt{\sum_1^k (b_j - a_j)^2}$$

Then $|x-y| \leq \delta$, if $x \in I, y \in I$.

To get a contradiction,we suppose that there exists a open cover $\{G_n\}$ of I which contains no finite subcover of I.

Put $c_j=rac{a_j+b_j}{2}.$ The intervals will be separated into 2^k k-cells of Q_i whose union is I.

According the hypothesis, there must be at least one subset cannot be covered by $\{G_n\}$, call it I_1 .

Corollary:

Let $k \in N^*$, If $\{I_n\}$ is a sequence of k-cells such that $I_{n+1} \subset I_n$ (n=1,2,3,...), then $\cap_1^\infty I_n$ is not empty.

Proof:

For each dimension,apply Theorem 2.39.We then obtain $x^*=(x_1^*,x_2^*,\ldots,x_k^*)$. $x^*\in I_n, n=1,2,3...$,which makes the corollary follow.

2.42 Theorem(3 个等价命题)

需要指出的是,该定理中(a)与(b)的等价性被称作Heine-Borel theorem (海涅-博雷尔定理):

If a set E in \mathbb{R}^k has one of the following three properties, then it has the other two:

- (a) E is closed and bounded.
- (b) E is compact.
- (c) Every infinite subset of E has a limit point in E.

Proof:

(a) -> (b):

 $E \subset I$ for some k-cell I.Since a closed subset of a compact set is compact(Theorem 2.35) and each k-cell is compact(Theorem 2.40,E is compact.

(b) -> (c):

If E is a infinite subset of a compact set K, then E has a limit point in K. (Theorem 2.38)

That implies (b) to (c).

Suppose E is not bounded,then some subset of E(call it S) contains points x_n with $|x_n|>n, n\in N^*$.

Thus S clearly has no limit point, contradicting with (c).

Suppose E is not closed,consider a limit point of E but not in E.Let $S=\{x_n|x_n\in E, |x_n-x_0|<\frac{1}{n}\}.$

Thus S is infinite, and S has no limit point but x_0 in \mathbb{R}^k .

Let's prove it:

Fix
$$y\in R^k, y
eq x_0$$
,then $|x_n-y|\ge |x_0-y|+|x_n-x_0|$ $\ge |x_0-y|-rac{1}{n}$ $\ge rac{1}{2}|x_0-y|$

Therefore x_0 is the only limit point of S.

Thus S has no limit point in E, contradicting with (c).

Hence it must be closed if (c) holds.

2.42 Weierstrass Theorem(魏尔斯特拉斯定理)

Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Proof:

Let the set be S. Since it is bounded, there is some k-cell I_k s.t. $S \subset I_k$. I_k is compact, thus S has a limit point in I_k . Namely the theorem holds.