due-01-22

William Stein

1/13/2014

Contents

1	Hor	Homework 1 Due Jan 22, 2014		
	1.1	Instru	ctions	
	1.2	Proble	ems	
		1.2.1	Problem 1: a gcd by hand	
		1.2.2	Problem 2: a conjecture about primes	
		1.2.3	Problem 3: prove something about gcds	
		1.2.4	Problem 4: prove something about squares	
		1.2.5	Problem 5: compute the first few digits of a huge Mersenne prime	
		1.2.6	Problem 6: extended Euclidean algorithm	
		1.2.7	Problem 7: your project	

1 Homework 1 Due Jan 22, 2014

1.1 Instructions

- Put your solutions in the empty space below the problem.
- Create a new cell by clicking on the horizontal cell dividers.
- If you put
 - If you then press shift-enter youll see the rendered math.
 - If you double click on the output then you can edit the input again.
 - This uses Markdown format, which you can learn about here: http://daringfireball.net/projects/markdown/
- Put this worksheet in a folder called homework in your project.
- For this first assignment, when youre done, open the worksheet, and copy/paste the URL into an email to wstein@gmail.com with the subject math 480: homework 01-22. (Later Ill automate this.)

1.2 Problems

1.2.1 Problem 1: a gcd by hand

Compute the greatest common divisor gcd(455,1235) by hand.

1.2.2 Problem 2: a conjecture about primes

Let $\pi(x)$ be the number of primes $\leq x$ and let $\psi(x)$ be the number of primes of the form 4k-1 that are $\leq x$.

- 1. Make a conjectural guess based on data about $\lim_{x\to\infty} \psi(x)/\pi(x)$. State your guess precisely and give evidence.
- 2. Search around in books or the internet for theorems, and use any of them to either prove or disprove your guess.

1.2.3 Problem 3: prove something about gcds.

Let a, b, c, n be integers. Prove that

- 1. if $a \mid n$ and $b \mid n$ with gcd(a, b) = 1, then $ab \mid n$.
- 2. if $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

1.2.4 Problem 4: prove something about squares

Prove that if a positive integer n is a perfect square, then n cannot be written in the form 4k + 3 for k an integer.

(Hint: Compute the remainder upon division by 4 of each of $(4m)^2$, $(4m+1)^2$, $(4m+2)^2$, and $(4m+3)^2$.)

1.2.5 Problem 5: compute the first few digits of a huge Mersenne prime

How can you efficiently compute the first few digits of $p = 2^{57885161} - 1$ efficiently (i.e., in less than a second)? (HINT: do not use modular arithmetic.)

1.2.6 Problem 6: extended Euclidean algorithm

- Find integers x and y such that 2014x + 480y = 2.
- Are there integers x and y such that 2014x + 480y = 3?

1.2.7 Problem 7: your project

List three ideas for topics that you could do a project about. Look for inspiration in the following sources:

- $\bullet\,$ the course textbook, and other number theory books
- past projects http://wstein.org/courses/
- $\bullet\,$ search for number theory topics online
- any past experience you have in number theory.

Try to find topics that you are personally very curious about.