

10/088384

SEQUENCE LISTING

<110> Novartis AG
Novartis Research Foundation

<120> Transcriptionally Silenced Plant Genes

<130> S-31147A

<140>
<141>

<150> GB 9921964.4

<151> 1999-09-16

<160> 26

<170> PatentIn Ver. 2.1

<210> 1
<211> 2512
<212> DNA
<213> Arabidopsis thaliana

<400> 1
tcggcgttcc agcttcgcac actctctcac cgtctctcggt ttcactcgac cacttcacac 60
ttcgccctaa catcttcgccc ggagtttctc gccattgtcc gtgcttccgt catctccgtt 120
caactcgacca ccggaccggc ttcaccatct ctcaactatac caccatcac tcgacctcgc 180
cattcactgc gcctccattc gtctctttac togactgctc ctcaaaccgc caccgtcttc 240
tctaaattcg ccgtttactc gaccacactg ttacgtctct cattcgtgtt cagtcgaccg 300
ctatacccgaa agccacaata tcactctact cgaccgttcc actcgatcgc gtacttgact 360
ggtttagtgt gtgtgtttat ttgaactaac atattgatat ttggtttga ttacattct 420
ttttcaggga atcaaatatga gcaactacag tggcgaaatcc tccatggatg cggattacaa 480
cgtcgatgaa gctgaatctt ggtcaactag accagagaga gagcaacagg cttatgagag 540
cttcagagcc gagacccaac gctcagtagc tcgacgcaat gaaaggagag ctgagattgc 600
tagaggaaaag agagcgatga ccagcagata tgagtgtatc gacgaagata ttgacgtcga 660
gtatgagcct gagtcatggc acagagaaaac aaaactgttg aacaaggctg atgaagttac 720
agtggaaagag tacatcagac ttttcgagct gaacgacttc tggggagcga ggtacccctg 780
ttatgagact ctagcccagc ttaggctact ggaggacgta cagcacttat tcgagaagtg 840
ccatcttgag acgctgatgt cttaccgtt cgtcgcttac aagaaggaaa caatagagtt 900
tctctccact ctgcaagtgg agttgtatca gggacttact gcagatgaac tggagagtga 960
agggttggga ttcttgactt tttcagttaa cgagcagcgt taccagctat ctatcaagag 1020
cttggaaagga ttatgggtt ttcccagtgg aaaggaaact aaacccaagt togaaaaggga 1080
agagttgaag gatttgggt taaccattgg gaacgatttg ggcgtcaact ctgcaaggtc 1140
taagagcaac cagattcgaa gccctgtat ccgtactat cagcgtctcg tagcgaatgt 1200
tctgtacccc agggaaatcta caggcaccgt gtctaacaca gacatggaga tgattgattc 1260
tgcactcaag ggtattctcc ggagaacaaa gggaaagaag gtcctaaagg ggcacattaa 1320
tgatacacca ccggcatgc ttctgttgc ccataatgtgt ggatacagga agtgggcgca 1380
caccaacggg aggaagaagg tgcgaggagc ctttgggtg ggtggcgttg tgacaccgat 1440
tctgattgca tgggtgtac ctctcacgtc tccagggtt gatccgagga tgatggattt 1500
agatcacttgcgtcgttgc agtttctggta gtacgacatg gttggcgatt tctatcgcta 1560
caaattcgag cactccctgaa cccgaacagc caacatggta ctccctgca tcgaggccac 1620
aaccatactt taggggtgaga acattgactt cagacctgctc cgtgattacc tctactttga 1680
gagcactcca cogactgatg acaatgtccc tacgacggaa gctacagagg atgatttgc 1740
tgagacggat gaggataggg aggaggagta tgatacgac atgtatcatt tcagtgagca 1800
cgtacccca ggcgaggaga gcaagagctt gagtgaagct cacagaaaaca acagtaagtt 1860

<210> 2
<211> 1997
<212> DNA
<213> Arab

<400>	2					
ccgggcagggt	caacaggcctt	atgagagactt	tagagcttag	accacaacgct	cagtagctcg	60
acgcaatcaa	aggagagctg	agattgctag	aggaaaagaga	gcaatgacca	gcagatata	120
gttgcgtcac	gaagatattt	acgtcgagta	tgaacctgaa	tcatggcaca	gagaaaacgaa	180
gctgttgaaac	aagcccgatg	aagttagact	agaggagtac	atcagacttt	tcgagctgaa	240
cgacttctag	ggaacgaggt	accctgtta	tgagacttta	gcccagctgg	ggctactgga	300
ggacgtacat	cacttattcg	agaagtgcctt	tctggagacg	ctgatgtctt	accctgtacgt	360
cgcttacaag	aaggaaaacaa	tagagttct	ctccactctg	caagtgggaga	tgtatcaggg	420
acttactgca	gatggagctgg	agagtgaagg	gttggggttc	ttgacttttt	cagttaacga	480
gcagcgttac	cagctatcta	tcaagagctt	ggaaggattt	tttgggtttc	caagtgggaaa	540
gggaactaaa	cccaagttcg	agagggaaaga	gttggaaagat	tttgtgttaa	ccattggaa	600
cgatttggca	ctcaactctg	caaggtctaa	gagcaaccag	attcgaaagcc	ctgtgatccg	660
ctactatccag	cgctcagtag	cgaatgttct	gtaccccagg	aatctacag	gcatcgtgtc	720
taacacagac	atggagatga	ttgatgttgc	actcaagggc	attctccgga	gaacaaaaggg	780
gaagaaggc	ctaaaggcg	accttaatga	tacaccaccc	tttatgtttc	ttttgatcca	840
ccctgtgttga	tacaggaagt	gggcgcacac	caacgagaag	aagaaggc	gaggagccct	900
tttgttaggt	ggcggttgtga	caccgattct	gattgcattgt	gtgttacctc	tcacgtctcc	960
agggttttagt	ccgaggatga	tggatttaga	tcacttgcgt	cgttgtgagt	ttctagagta	1020
cgacatgtt	ggcgatttct	atcgctacaa	attcgagcac	tccctgaccc	gaacagccaa	1080
cattttgttt	ccctgcacatcg	aggccacaac	cataacttcag	ggtgagaaca	ttgactttcag	1140
acctgcgcgt	gattacctct	actttgagag	cgctccaccc	actgtatgaca	atgtccctac	1200
gacggaaagt	acagaggatg	atattgctga	gacggatgag	gatagggagg	aggagtatga	1260
tacgagcatg	tatcatttca	gtgagcacgt	acctccagcg	cgggagagca	agagctttag	1320
tgaagctcac	agaaaacaaca	gtaaaggcata	gagggtgtc	aagaaaacaag	ataggctact	1380
tatcaagtgc	ttcaaaagcca	tcacgtttct	gacggacaag	ataagctgt	tctcttctac	1440
cacagctatt	ccgcaggggag	agcatcctca	ggacatgcct	tcaaggagat	atgacgcgcc	1500
agcgccaagt	catcacaggc	ctgagccaa	tcaccacagg	cctgagccct	gtgaccgagt	1560
agtccccacca	gtccctgcaa	ggcatttcattc	attcgagcc	cgggagctcg	ggagaaaagaa	1620
gaaggctgca	ctcgctcggt	ctggcagcag	gagtacacga	tttctacagt	cccgtagctt	1680
acgcgacccgt	ggtgctggcc	gcagcagaag	aagagaggc	gagttatcattc	agagcggtgc	1740
tggccgcac	gaaggagcag	aggtcgagta	ccccacgggg	aagctgagac	acaacaggg	1800
gattcttcga	tggcctggga	gcaatcacat	gcagctattt	acgaccaact	cgctccctc	1860
ttccactgtag	gtatgcacct	cactccacca	tttgcataata	ccatctcttg	tttttatttt	1920
gtttttgtga	tgtttttgt	cctgagttact	ctcttccaaa	tttggtcaca	cagttggactg	1980
tgtgattaa	gtttgggg					1997

<210> 3

<211> 1682

<212> DNA

<213> Arabidopsis thaliana

<400> 3

cttatattat gggttggat gtgtttaag aaaaggggaa attcattgtt gataaggaaa 60
ggaaagaat tctagggaa gtaagctaa gaagtttagaa aaaatctagt aaagggtttg 120
ggaatgttaa agaaaaagaat gaggttcttg ttagctaaag aataagggtt aaaagcctt 180
gtttttaaag attaaaaaaaaa aaacaggaac cttagttgtt aaagaaatcc aaaccgccta 240
gatgtatcaa gagcgttgag aaagcttc ctagagttaa gagaaaaagaa aagaatgata 300
tgaaaaagag ttgaaagat tcatgagtgc aaagggtaga gttaaagttg gacaggagtt 360
gttttacca ttagaacttc attgttatac tctgggtaga tggatctta tctctgtatg 420
cataatttg gacttacctt tagcattcta ctaaagctca atcattctt agggatcccc 480
tgtaacttaa gcctattcta taagggacca tctttgtctt ttgacccctca ccttggccga 540
atgagttcat tgatgatgca ttgcttgatt cgccgttccag aactaatgaa tgtaaagg 600
atggtagat ttgaaagcat gtgttagtgc agtataagag acggattgtat tgaaaacaag 660
gcatggctaa cggtttttag tagaattcaa tcatacgca tcttagaact accaacttgg 720
acattgatt tatttgcctt atcatatgct ttgggttta gtcggccct tcactcctct 780
ccttcaacta tgtcttcttta ttgcttgag gcaagcaaa gactaagttt gaggagttg 840
atatgtctat aatttgcattt tttcagtgt ccattcatca tcggttttag tccagttcg 900
tatcattcat cactgtttta tatcattctt catcattctt gcatactttt catgattagg 960
ataactttgc atacatattt catttcttgat ttgtttttagt gtgatttggat gctgtttgca 1020
agcaaattgg aagaaatgag ccagaaccag aagacatact cgacccttag gtcgagtgac 1080
tttggggcca ttcttcccac atactcgcc cccaggtcga gtgactttgg agccattctt 1140
cccatccact cgaccaccgg gtcgagtaac cttagctcag gccactcgat gacactactc 1200
gacccctagg cgagtatcac ttgcacac cacctgacaa cactcgacca atcactctac 1260
caagttactc gacccctgg tcgagttatca tcactcacca ccatcagcat cactcgaccg 1320
gacactcgat cactgtttca cagtctactc aatatcccgac tcaaccagac aagctgagca 1380
caaggaagag aagaggagaa gacaaagtgc ttgaaagcgg cctggacctc catcgatca 1440
cgaagcccat ctggcccat tatctctta tggcccgagc gattaggtta ttggcccgtc 1500
tactatcatt ttatttcgtt ttgtataaat agatgtcttta gggttttgtc ctgagacatc 1560
tagtcgacat tgagtttttt ttgcttcagt ttattttctt gttctactct gctgcgccgc 1620
tttgcttctt gcaacctgta attcgagatt ttccaagttt attcagattt cgcattttagt 1680
tt 1682

<210> 4

<211> 1652

<212> DNA

<213> Arabidopsis thaliana

<400> 4

cttatatcat gggttggat cagttaaaa aaaaaaaagg gtgaattcat tggtgataag 60
gaaaggggaaa gaattctagg ggaagtaagc taaagaagtt agaaaaaaaaaa aatcttagta 120
aaggtttgg gaatgttaaa gaaaagaatg agttcttgc tagctaaaga agaagggtt 180
aaagcctttt gttttaaaga ttaaaaacag gaaccttagt tgtaaaggaa atccaaatac 240
gctagatgtt tcagagttt gagaaggctt ctccttagt taagagaaaa gaaaagaatg 300
atataaaaa gagtttggaaa gattcatgag tcaaagggtt agagttatgtt tttgtattt 360
ggactggagt tggattacc attagagctt cattgttata ctatggtagt atgggatttt 420
atctctgtat gcataacttg ggacttacct ttagcattct actaaagctc aatcattctt 480
gagagatccc ctgttactta accttattct gtaaggggacc atctttgtctt ctgcacccctc 540
accttagcca aatgagttca ttgatgatgc attgtttgtat tcacgttcca gaactaatga 600
atgttaaagg gattggtaga ttgaaagca tgtaggttc gagtataaga gacggattga 660
ttgataacaa ggcattggctt acgttttgcgat gtaaaattca atcatatcgc atcttagaac 720
taccaacttgc gacattgatt ttatggctc tcatcagatgc ttgggttctg agtccccacc 780
ttcaaacctc tccttcaact atgtcttctt atttgcttga gggcaagcaa agactaagtt 840

<210> 5
<211> 903
<212> DNA
<213> *Arabidopsis thaliana*

<400> 5
tactctcttc caaatttggt cacacagtgg actgtgtgat ttaagttgg gggaggggctc 60
aggaaagtgtg tgttgcattg tataatcttg agtttgcatt catctaaggc atagaaaaaac 120
caaaaaaaaaatt gaaaaattcc agaaaatgtat ttccacaaaaaa tagagtgttc atgttagttgc 180
attgcattta ggatcgagtt tagagtgttt cgtttaggat tgttgcataat gcatagggga 240
taataaatgag atagccttgt aagcattttg gttcaccaga taagtcagt gccctcggtt 300
ttagttgttt gatgcgttgt cattgaaatt gaagtaagaa ctgcacgatg cctagattgc 360
tctactcgac cacactgtta ggatctgata tcattcccta tcaatttgaa cttgaatctg 420
atttagaatt atcatgttctt ggcatcgaat ttgaactcat ggatacccta aaatacttgg 480
attttcttac tcattttAAC cactcttgtt gatccaagta gctgactctc cttatttagag 540
cagttAACCC atacccAAAC ctgaactttc tttcaagccc tatatcactt gtgagtggtt 600
gtgagggtctt atttcgattt agcttggtag aaagtgttag gttcgtaacg acagagatag 660
tgtctcatgt agttctagtt tgccgttcttc agactggata ggacttaggtg ggcgcttata 720
tcatgggttg ggatgtgttt aaaagaaaaag agggaatcta ttgttgatga ggaaagggaa 780
agaattccag gggaaagtaag ctaaagaagt tagaaaaaaaaa atcttagtaaa ggttttggga 840
atgttaaaga aaagaatgag gttcttgtt gctaaagaag aagggttaaa agcctttgggt 900
ttt 903

<210> 6
<211> 614
<212> DNA
<213> *Arabidopsis thaliana*

```
<400> 6
gagggcaagg aaagactaag tttgggggag ttgataagtgttgtttgc atgttttag 60
catccatttgc tcatcacttt agcatcatat catcaacttttataaccatt tcacatcatt 120
tgtcatcaacttgcatgtttt aggatagttt tgcatgcattgcatttttgcgttgcattt 180
cagggtgattt ggagctgttg acgagctatc tggaagaagc agacactgtc atgacaaacc 240
actcgaccacca gaggtcgagt aggagcttca agatctcaag agactactcg acaaccagg 300
cgagtagagc acatcaccac ttcacccatc cactcgaccac gtagtgcgatc tgccatcatc 360
tccatcacca gacggtaact cgatcacttc actcgacccctt gaggtcgagt gtcttcacct 420
ccatcatcag acaaccactc gaccccttca ctccacccatgggtcgagttatccatctt 480
accactcgac tgcataactcg atgacaagct tcaagccctt cttattccg cactcaacca 540
gacactcgag cacaaggaaag aaaagaagac tccagctatt cactcgagct ctcactcgac 600
```

cacgtgggtc gagt

614

<210> 7

<211> 1956

<212> DNA

<213> Arabidopsis thaliana

<400> 7

ttttggttca ccggattaac tcagtgcctc cggtgctagt tgggtgttc gtagtgaatg 60
 aatttggaaag aaaactgaac catgcctaga ttgcctact cgaccacact gtcatgatct 120
 gataccattc cctatcaatt tgaacctgaa ttgtatctt aattatcatg tctgcatcaa 180
 atttgaactc atggataccc taaaatactt ggattttctt attcattttg attcaactttg 240
 ttaatccaag tagctgactc tccttattag agcagttAAC ccgaacccaa acctagactt 300
 ttttcaagc ctatatac tcgtgagggt ttgtgaggTC ttattccgt tcaagttgg 360
 agaaagtgtt aggttcgtaa cgacagagat agtgnctcat gtatTTCTAG ttgcatttt 420
 ttggactaga taggactggg tgggcgtta tacttttagt tgggatgngt taaaagaaaa 480
 aaaaaagggg ttgattcatt gatgagaaaa ggtaaaagac tctaggtgaa gtaagataaa 540
 gaagcagaaaa aggtcttagt aaggtttgg gatttgtaaa aaaaagaaaa agttcttg 600
 agctattgaa gatggggaaa agccctcggt ttaaaatgt taaaacacagg aaccttagtt 660
 gttaaagaaaa tccaaatccg ctatgttat caaatgttgc agaaagctt tcctagagtt 720
 aagagaaaaag aaaagaatga tttagaaaaag ggcttaaagg attcatgaat gcaaaggta 780
 gaggttaagtt ctatatactgg gattggagat gggattacca tttagacttc atctgatata 840
 ctcttaggtat atggatctt atctctgcat gcatatTTG ggacttaccc tttagcattt 900
 actaaagctt aatcattttt tgagagatcc cctgttactg aagccttattc tggtaagggac 960
 catcttgc tcttgacctt ttaccttagc caaatgagtt cattgtatgt gcattgctt 1020
 attcacgttc cagaactaat gaatgttaaa ggattggta gatttgaaaa catgtgtagg 1080
 tcgagcatat gagtggatt gattgtatgt aaggcatggc taaaatTTT cagtagaaatt 1140
 cgatcatatc gcagcttgc actatcaact tgacatttg tttcattttg tttatctagt 1200
 gctttggctc tgagtccccg atttcaaac tcacctctag ctgttctta attgtttgt 1260
 tgagggcaag caaaagactaa gtttggggga gttgataagt gtgtatTTT catgtttga 1320
 gcatccattt gtcatcaatt tagcaccata tcatactat tttataccat ttctcatcat 1380
 ttgtcatcac tttgcatgtt taggatagtt ttgcattgtc gtggcatatt tgggtttgtt 1440
 tcaagtgtt cggagctgtt gaagaactaa ttgaaagaag cggacctgtat catgccaaac 1500
 cactcgaccc caggtcgagt agacgcttca cgacactcaac acaccactcg accacctgg 1560
 cgagtgttagg acttcaccac ttccatcat cactcgaccc cctggccgag taccacacga 1620
 gagtcactcg atcacttcac tcgaccccca ggtcgagtgt ctccacctcc accacactgac 1680
 catcactcgat tcacacgact ctacctggaa gtgcgatgtc accatccaca ccaactcgact 1740
 acataacttga tgtcgagctt cagagtcttcc tccattccgc actcaaccag acactcgagc 1800
 acaagaaaaaa aaagaagatt ctatgttac actcgaccc tcactcgacc acctgggtcg 1860
 agtacagttc ttaatccgtc tcaatactgc gtgcTTTGA gtattagggt ttccgaatat 1920
 tttgctata agtagcacgt actttacatt ttgcag 1956

<210> 8

<211> 2105

<212> DNA

<213> Arabidopsis thaliana

<400> 8

ttagcattt ggttcaactg ataaaactcag tggccctcggtt gtttagttgtc tgatgcatac 60
 tcaatggaaat tgaagtaaaa ctgcaccatg cctagattgc tctactcgac cacactgtta 120
 ggtatgtata ccattcccta tcaatttgaa ctgtatctg atttagaatt atcatgttt 180
 gccatcgaaat ttgaactcat ggatacccta aaataacttgg attttcttac tcattttaa 240
 cactcttgc tttcaacttgc gttgacttc ctatttagag cagttAAC gaatccaaac 300
 ctaatcttc ttgcgacccc tatatcaattt gtgagttttt atttcaattt 360

agcttggtag aaagtgttag gttcgtaacg acagagatag tgtctcatgt agttctagtt 420
 cgcgttttt ggactggata ggacttagtg ggcgcattata tcattgggtt ggatcagtt 480
 aaaaaaaaaa aagggtgaat tcattgttga taaggaaagg gaaagaattc tagggaaagt 540
 aagctaaaga agttagaaaa aaaaaaatct agtaaagggt ttggaaatgt taaagaaaaag 600
 aatgaggttc ttgttagcta aagaagaagg gttaaaagcc tttgtttta aagattaaaa 660
 acaggaacct tagttgttaa agaaatccaa atacgctaga tgtatcagag tggttagaaaa 720
 gcttcctcta gagtttaagag aaaagaaaag aatgatatga aaaagagttt gaaagattca 780
 ttagtgtcaaa gggtagagtt aagttcttgc attgggactg gagttggat taccattaga 840
 gcttcattgt tatactatgg gtagatgggat ttttatctct gtatgcataa cttgggactt 900
 accttttagca ttctactaaa gctcaatcat tcttgagaga tccccgtta ctaaggccta 960
 ttctgttaagg gaccatctt gtctcttgc ttcaccttag ccaaattgat tcattgtatga 1020
 tgcattgttt gattcacgtt ccagaactaa tgaatgttaa agggattggt agatttggaa 1080
 gcatgtgttag gtcgagtata agagacggat tgattgataa caaggcatgg ctaacgtttt 1140
 cgagtaaaat tcaatcatat cgcatcttag aactaccaac ttggacattt attttattt 1200
 ctctatcaga tgctttgggtt ctgagttcccc accttcaaaac ctctccttca actatgtctt 1260
 ctatttgct tgagggcaag caaagactaa gtttgggggat gttgatatgt ctataattt 1320
 catgtttca gtgtccattt atcatcgat ttgatccagt ttctgtatcat tcattactgt 1380
 ttatcatat ttctcatcat ttgcatac ttgcatac taggatagct ttgtatacat 1440
 attgcatttc tgagttgttt ttaggtgatt tggagctgtt tgccgacaaa ttggaaagaaa 1500
 cgagccagaa caagaagcca tactcgaccc cctggtcgag tgactttgga gccattcttc 1560
 ccatctactc gaccgggggg tcgagtaacc ttagctcagg ccactcgatg acgccactcg 1620
 tccccctgg tcgagtatca ctgcggcaca ccacctgacc acactcgccc gttcactcta 1680
 ccacgttact cgacccctg gtcgagttatc atcactcacc accaacacca tcactcgacc 1740
 gggcactcga tcacatcttc atagtctact caaatccgca ctcaaccaga caagctgagc 1800
 acaaggaaga gaagaggaga agacaaagtg ttggaaagcg gcctggaccc ccatcgatc 1860
 acgaagaagc ccatctcgcc ccattatcat tctatggggcc gggcgatttag gttattggcc 1920
 cgtctactat cattttatctt cgttatgtat aaatagatgt cttagggttc tgcgttaccagg 1980
 catctagtcg acattgagtt ttttgcattc agttttatctt tctgtttct ctgctgcgcc 2040
 gctttgttt ctgcaacctg taattcgaga ttttccaag ttattcagat tccgcattt 2100
 atttc 2105

<210> 9

<211> 4860

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Virtual TSI

<400> 9

tcggcgttcc agcttcgcat actctctcac cgtctctcgat ttcaactcgac cacttcacac 60
 ttccgcctcaa catttcgcc ggagtttctc gccattgtcc gtgctccgtt catctccgtt 120
 cactcgacca ccggaccggc ttcaaccatct ctcaactatc caccattcac tcgacccgtc 180
 cattcactgc gcctccatttgc ttctctttac tcgactgctc ctcaaaaccgc caccgtcttc 240
 tctaaattcg ccgttactc gaccacactg ttacgtctctt cattcgttgc cagtcgaccc 300
 ctataccga acccacaata tcactctact cgaccgtttc actcgatcgc gtacttgact 360
 gttttagtgtt gtgtgtttat ttgaactaac atattgatat ttgggtttga gttacattct 420
 ttttcaggaa atcaatatga gcaactacag tggcaatcc tccatggatg cggattacaa 480
 cgtcgatgaa gctgaatctt ggtcaacttag accagagaga gagcaacagg cttatgagag 540
 cttcagagcc gagacccaaac gctcagtagc tcgacgcata gaaaggagag ctgagattgc 600
 tagagggaaag agagcgatga ccagcagata tgagttgatc gagaaagata ttgacgtcga 660
 gtatgagctt ggtcatggc acagagaaac aaaactgtt aacaagcctg atgaagttac 720
 agtggaaagag tacatcagac ttttcgagct gaacgacttc tggggagcga ggtacccctg 780
 ttatgagact ctggccacgc ttaggctact ggaggacgta cagcacttat tcgagaagtg 840
 ccatcttgatg acgctgatgt cttaccgtt cgtcgcttac aagaaggaaa caatagagtt 900

tctctccact ctgcaagtgg agttgtatca gggacttact gcagatgaac tggagagtga 960
 agggttggga ttcttgactt ttccaggtaa cgagcagcgt taccagctat ctatcaagag 1020
 cttggaagga ttatgggtt ttcccagtgg aaagggaaact aaacccaagt tcgaaaggga 1080
 agagttgaag gattgtggt taaccattgg gaacgatttgcgctcaact ctgcaaggc 1140
 taagagcaac cagattcgaa gccctgttat ccgctactat cagcgctcag tagcgaatgt 1200
 tctgtacccc agggaaatcta caggcaccgt gtctaacaca gacatggaga tgattgattc 1260
 tgcactcaag ggtattctcc ggagaacaaa gggagaagaag gtcctaaagg gcgaccttaa 1320
 tgatacacca cccgtcatgc ttctgttgc tatatgtgt ggatacagga agtggcgca 1380
 caccaacggg aggaagaagg tgcgaggagc ccttgggtt ggtggcggtt tgacaccgt 1440
 tctgattgca tgggtgtac ctctcacgtc tccagggtt gatccgagga tgatggattt 1500
 agatcacttgcgtcgtt agtttctgga gtacgacatg gttggcgatt tctatcgcta 1560
 caaattcgag cactccctga cccgaacagc caacatggc tttccctgca tcgaggccac 1620
 aaccatactt tagggtgaga acattgactt cagacctgcg cgtgattacc tctactttga 1680
 gggacttca cccgactgtt acaatgtccc tacgacggaa gctacagagg atgatttgc 1740
 tgagacggat gaggataggg aggaggagta tgatacggc atgtatcatt tcagttagca 1800
 cgtaccccca ggcgaggaga gcaagagctt gagtgaagct cacagaaaca acagtaagtt 1860
 gcagagggtt tcaagaaaac aagataggattt atttatcaag tgcttcaagg ccatcacgtt 1920
 tctaaccggac aagataagtt gcttcttcc taccacagctt attccgcagg gagagcgtcc 1980
 tcaggacatg cttcgaaga gatatgacgc gccaggggca agtcatcaca ggcttgagcc 2040
 aagtccaccac aggccctgagc ctatgttgcg agtagtacca ccagtccctg caaggcattc 2100
 atcattcgag cctcgggagc tcgggagaaa gaagaaggct gcactcgcta ggtctggcag 2160
 caggagttaga cgacttctcc agtcccgtag ctacgcgc cgcggcgtt gcccgcagc 2220
 aagaagagag gtcgagtatc atcagagcgg tgctggccgc ggcgaaggag cagaggtcga 2280
 gtaccccccag ggggaagctg agacacaaca gggagattct tcgatggcct gggagcaatc 2340
 acaggcagct attgacgacc aactccgctc cttcttccac tgaggatgtc acctcactcc 2400
 accattgtaa tataccatct tttttttt tttttttt tttttttt tttttttt tttttttt 2460
 gtactctt ccaaattttgg tcaacacagt gactgtgtga tttttttt ggggagggct 2520
 caggaagtgt gtgttgcatt gtataatctt gagtttgcatt tcatctaagg catagaaaaa 2580
 caaaaaaaaat taaaaatc cagaaaatga tttcacaaaa atagatgtt catgtatgg 2640
 cattgcattt aggtatcgagt ttagatgtt tggatgtt tttttttt tttttttt tttttttt 2700
 ataataatga gatagcctt gatagcctt gtttccatc gtttccatc tttttttt tttttttt 2760
 gttttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 2820
 ctctactcga ccacactgtt aggtatcgat tttttttt tttttttt tttttttt tttttttt 2880
 gattttagaat tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 2940
 gatttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 3000
 gcagtttaacc cataccaaa cctgaacttt cttcaagcc ctatatact tttttttt tttttttt 3060
 tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 3120
 gtgtctcattt tagttcttagt ttgttctt cagactggat aggacttagt gggcgctt 3180
 atcatgggtt gggatgtgtt taaaagaaaa gggatgtt attgttgcattt tttttttt tttttttt 3240
 aagaatttcca ggggaagttaa gctaaagaag tttttttt tttttttt tttttttt tttttttt 3300
 aatgtttaaaag aaaagaatga gtttcttgcattt tttttttt tttttttt tttttttt tttttttt 3360
 tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 3420
 tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 3480
 aaaaagagtt tggatgttattt tttttttt tttttttt tttttttt tttttttt tttttttt 3540
 tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 3600
 taatgggat tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 3660
 ttacttaagc tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 3720
 gagtttccatc tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 3780
 tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 3840
 atggcttaacg tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 3900
 attgatgtt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 3960
 ttcaactatg tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 4020
 atgtctataa tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 4080
 tcattcatca tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 4140
 aactttgcat acatatttgc tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt 4200
 caaattggaa gaaatgagcc agaaccagaa gacatactcg accccttagt cgagtgactt 4260

tggggccatt cttccccatc actcgcccc caggtcgagt gactttggag ccattcttcc 4320
catccactcg accacccgggt cgagtaacct tagctcaggc cactcgatga cactactcga 4380
ccccaggtcg agtatcaactt cgcccacacca cctgacaaca ctcgaccaat cactctacca 4440
agttactcga ccccctggtc gagtatcatc actcaccacc atcagcatca ctcgaccgga 4500
cactcgatca cgtcttcaca gtctactcaa atccgcagtc aaccagacaa gctgagcaca 4560
aggaagagaa gaggagaaga caaatgtctt ggaagcggcc tggaccccca tcggatcacg 4620
aagcccatct cggccatta tctctctatg ggccgagcga ttaggttatt ggcccgctta 4680
ctatcatttt atttcgtttt gtataaataag atgtcttagg gttttgtcct gagacatcta 4740
gtcgacattt agttttttt gtttcagttt tatttttgtt tctactctgc tgccgcgtt 4800
ttgcttcgc aacctgtaat tcgagatttt tccaagttat tcagattccg catttgattt 4860

<210> 10

<211> 648

<212> PRT

<213> Arabidopsis thaliana

<400> 10

Met	Ser	Asn	Tyr	Ser	Gly	Glu	Ser	Ser	Met	Asp	Ala	Asp	Tyr	Asn	Val
1									10					15	

Asp	Glu	Ala	Glu	Ser	Trp	Ser	Thr	Arg	Pro	Glu	Arg	Glu	Gln	Gln	Ala
													30		

Tyr	Glu	Ser	Phe	Arg	Ala	Glu	Thr	Gln	Arg	Ser	Val	Ala	Arg	Arg	Asn
													45		

Glu	Arg	Arg	Ala	Glu	Ile	Ala	Arg	Gly	Lys	Arg	Ala	Met	Thr	Ser	Arg
												50		60	

Tyr	Glu	Leu	Ile	Asp	Glu	Asp	Ile	Asp	Val	Glu	Tyr	Glu	Pro	Glu	Ser
													65	80	

Trp	His	Arg	Glu	Thr	Lys	Leu	Leu	Asn	Lys	Pro	Asp	Glu	Val	Thr	Val
													85	95	

Glu	Glu	Tyr	Ile	Arg	Leu	Phe	Glu	Leu	Asn	Asp	Phe	Trp	Gly	Ala	Arg
												100		110	

Tyr	Pro	Cys	Tyr	Glu	Thr	Leu	Ala	Gln	Leu	Arg	Leu	Leu	Glu	Asp	Val
													115	125	

Gln	His	Leu	Phe	Glu	Lys	Cys	His	Leu	Glu	Thr	Leu	Met	Ser	Tyr	Pro
												130		140	

Tyr	Val	Ala	Tyr	Lys	Lys	Glu	Thr	Ile	Glu	Phe	Leu	Ser	Thr	Leu	Gln
													145	160	

Val	Glu	Leu	Tyr	Gln	Gly	Leu	Thr	Ala	Asp	Glu	Leu	Glu	Ser	Glu	Gly
												165		175	

Leu	Gly	Phe	Leu	Thr	Phe	Ser	Val	Asn	Glu	Gln	Arg	Tyr	Gln	Leu	Ser
												180		190	

Ile	Lys	Ser	Leu	Glu	Gly	Leu	Phe	Gly	Phe	Pro	Ser	Gly	Lys	Gly	Thr
												195		205	

<210> 13
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 13
cgccccaccta gtccttatcca gtctgaag

28

<210> 14
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 14
cgcataaaac aactaacaac gagggcac

28

<210> 15
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 15
cgataacatc gaccgtattt ctcgcc

26

<210> 16
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 16
aacttagctcc catccgtctt cgacatcc

28

<210> 17
<211> 24
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 17

tgcacatcacac cggattggat tgac

24

<210> 18

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 18

tgtcccccgt aaccatagca atgagacc

28

<210> 19

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 19

caaacagaca gagtgtggcc caccacc

27

<210> 20

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 20

caaacagaca gagtgtggcc caccacc

27

<210> 21

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:

<210> 26
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide sequence

<400> 26
atgatgatcc taagtctacc cttttgcac

29

<210> 27
<211> 3122
<212> DNA
<213> Arabidopsis thaliana

<400> 27

ttcatatatc cgaccttcc ttctcattct tgcatccaaa agacacaaca agccgccatc 60
gtttccctc acaactctca ctgcaccacc gcccgtctc tcacttactc ggcttcatcg 120
ctctcatcgc catctctcaa catactcgac ctgcgatata cactcgagct cggcgcttct 180
caccgcctct ccacgtcac cgccgtctcc ctctctccaa gggaaacaact cgagctctcc 240
atttcaactca ctgcacctct accaccaagc cggttccacc acttcttagct cttAACACT 300
cgaccaccc t caccatcaac caatcaaatac gtttctctt ccattaaagc ttgacatact 360
cgaccgcgtga acacttatca cttcaagct cctcatctt tcatacggtt ccacaccgct 420
gctctcatcc cccacgaaag cttgtcatca cctctcaact atcaccagtt cactcgattc 480
agcaacccaaa ctgcacctcg tctctttgc cactcatagt cactcgatct ctccctacca 540
tcttcatcat ctcccttaact cgaccacccgt gcgtctcgct ccaccattgc cattttaaag 600
ctcaactcgat tgtcaaagag aagaagagtg aagctcaacc accgccactc gaccgcgtt 660
ccctctacac attcaacact cgaccacggc gctaccatct ccacacccgc tcttggtcac 720
catacaactcg accaacaact ctcaaagtaa aaaaaaaaaaag aaaaaaaaaaag tcaaaaccga 780
cagtttcaact caaccggttt actcgaccgg tacgctgggt tagattgtgt tttgggttt 840
gctattacta acatattaac gtttatctt gagtttgc tttttttagg tttcatcatg 900
agtaactaca gtggaaaatc ctctatggac cctgattata atgtggatga agtaagtcc 960
tggtccacta gaccggagtg agagcaacat gtttacgaga gctataggga tgaatttcaa 1020
cgctctgcag ctgcacgtaa tcaaagaaga gctgaaaatcg cttagagaaa gaggcgatg 1080
tcgagtagat atgagctgat tgatgaggat atcaaaaactg agttagagcc agagtcatgg 1140
cgcaaggaga cgaagctact gaacaaatcc gacgagggtt cagtgaggga gtatatcaga 1200
ttctttgaga tgaatgactt ctggggaaacg aggtatccct gatatgagac tttagcccg 1260
ttggggttac tggaggacgt gcagcatctg ttcgagaagt gtcatctgat aaggaggaga 1320
caatcgagtt tctttccaca ctgcaagttt aaatgtatga gggactcaca gacttgagc 1380
tggataccat ggggttaggc ttcttgacgt tcttagtgg tgaacagcgg taccagattt 1440
agatcaagaa attggaagaa ctgtttgggtt tccctagtgg aaaggaaacc aaccccgagg 1500
ttgacagggaa agagcttaag gatttgtggg ctactattgg gaacaatcta ccgctaaact 1560
cgacgcggtc caagagcaac caaatccgga gtcctgttat tcgctacttt cagcgctcg 1620
ttgccaatgt ttttactcc agggagtcta caggcaccgt gtctaaacaca gacatgaaga 1680
tgatagattc agcgcttata gggattctcc gccttacaaa agggaaagaaat gtccctgagag 1740
gagatcttaa cgactcacca ccagtaatgc ctctgttgat ccatctgtgt gggtagatga 1800
agtgggcgtc gacaaaacggc aagaagaagg taagaggagc actatgcgtg ggtggcggtt 1860
tgacgccaat tctgaaagtt tggaggatcc cgctcaagga agtagggta gcaccgagaa 1920
tgatggactt ggatcacttg cggcgatgtg agttctctga gtttgcacatg gttggcgact 1980
ttcacccgcta caggttcgag cattcatcga tttagaatcgc caacattttt tttccctgca 2040
tttacgctac taggattctc gaggcgagga acattgactt caagcctgcg cttgaagatc 2100

Oligonucleotide sequence

<400> 21
tgcaaaccca caggaccaag tctaccc

27

<210> 22
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 22
acagatgggt atagcgtgag cggtgtggc

27

<210> 23
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide sequence

<400> 23
tcaacctttt gccccaaacaa ccactc

26

<210> 24
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide sequence

<400> 24
tctccatcca cgctttcctg aatgtcc

27

<210> 25
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide sequence

<400> 25
ggagaaggaa gctaaaaatc atattgtgg

29

tttatttcga gggcagtccg ccaactgagg agattagtca caccgaagga gctacaatag 2160
aagatgtga tgagacatat gatatacatg aggccggagtt tgacacgcg atgtatcatt 2220
tcagttagca tatacctcca gcgaggaaaa gcaagagttt gagcgaagct cacaggaaca 2280
acagcaagct gcagaagtgg tgcaagaaac aggataagtt actcgccaag tgcctcaggg 2340
ctatcaagtt tctgaaggac aagatcagct gctcctttc cactacaact attccgcaat 2400
gacagctccc tcaggacatg cttcgagga gatatgacgc gcccgagcct agagagcaga 2460
agattctgca tgtccctgcg aggcatccat cattcgagcc tcgtaatct aggaagaata 2520
ggagaacgac actcaactcga tctagcagca ggagcagacg acttctgcag tctcgttagtt 2580
tacgcgaccg cggtgctggc cgcaatagaa gaagagaggt cgagtatcct cagagcggtg 2640
ctggccgcca cagagctgat gagatcgagt acccacatgc tggagctgat acgaaacatg 2700
gcggttcgtc tatggcttgg gagcaatcac aggccat tgactaccaa ctgcgttcat 2760
tattcactg aggttaagcgc ctcacttcac cattatatta tatcatctt tttgatattgt 2820
tctttatttt gttcagtga ttggatttgt cctgagttact ctttccaag ttatttcaca 2880
cagtggactg tttgatattaa gtttggggga gggctcagga agtatgttgc attgtatata 2940
tttttaagtc tgcatttcatt taaggcatag aaaaacccaa aaaaattaa aaatttcaga 3000
aaatgattc aaaaaaaaaaag agtgttcatg tagttgcatt acatttagga tcaagtctag 3060
agtgtttcat ttaggatttgt tgcatatgca taggggataa tgatgagata gccttgtaag 3120
ca
3122

ET 3a 548479US

10/088384

JC10 RecurPn 15 MAR 2002

31147
SEQUENCE LISTING

<110> Syngenta Participations AG

<120> Transcriptionally Silenced Plant Genes

<130> S-31147A

<140>

<141>

<150> GB 9921964.4

<151> 1999-09-16

<160> 26

<170> PatentIn ver. 2.1

<210> 1

<211> 2512

<212> DNA

<213> Arabidopsis thaliana

<400> 1

tcggcgttcc	agcttcgcat	actcttcac	cgtctctcg	ttcactcgac	cacttcacac	60
ttcgcccaa	catttcgcc	ggagtttctc	gccattgtcc	gtgcttcgt	catctccgtt	120
cactcgacca	ccggaccgc	ttcacatct	ctcaactatac	caccattcac	tcgacccgc	180
cattca	tcgttac	gtctcttac	tcgactgctc	ctaaaccgc	caccgtcttc	240
tctaattcg	cggttactc	gaccacactg	ttacgtctt	cattcggtta	cagtcgaccg	300
ctataccga	agccacaata	tcactctact	cgaccgtt	actcgatcgc	gtacttgact	360
ggtttagtgt	gtgtgttat	ttgaactaac	atattgata	ttgggttta	gttacattct	420
ttttcaggga	atcaatatga	gcaactacag	tggcgaatcc	tccatggatg	cggattacaa	480
cgtcgatgaa	gctgaatctt	ggtcaactag	accagagaga	gagaacacgg	cttatgagag	540
cttcagagcc	gagaccacac	gctcgttgc	tcgacgca	gaaaggagag	ctgagattgc	600
tagaggaaag	agagcgatga	ccagcagata	tgagttgatc	gacgaagata	ttgacgtcga	660
gtatgagcct	gagtcatg	acagaaaac	aaaactgtt	aacaacgtt	atgaagttac	720
agtggaaag	gatcatcag	ttttcgag	tttgcgtt	tggggagcga	gttacccctg	780
ttatgagact	ctagcccc	tttagtact	ggaggacgt	cagcattt	tcgagaagtg	840
ccatcttgc	acgctgatgt	tttacccgt	cgatgttac	aagaaggaaa	aatagagtt	900
tctcttccact	ctgcaagtt	agttgtatc	ggggacttac	gcagatgaac	tggagagtga	960
agggttggga	ttcttgactt	tttcgttta	cgagcagct	taccagctat	ctatcaagag	1020
cttggaaagg	ttattttgtt	ttcccagtgg	aaagggaact	aaacccaagt	tcgaaaggaa	1080
agagtgaag	gatttgtgtt	taaccattgg	gaacgatttg	gcgcgtcaact	ctgcaagg	1140
taagagcaac	cagattcgaa	gccctgtat	ccgtactat	cagcgtcag	tagcgaatgt	1200
tctgtacccc	agggaatcta	caggcaccgt	gtctaa	gacatggaga	tgattgattc	1260
tgcactcaag	ggtattctcc	ggagaacaaa	gggaaagaag	gtcctaaagg	gcgacctaa	1320
tgatacacc	ccggcgtatc	ttctgtt	ccatgtgt	ggatacagga	agtggcgca	1380
caccaacggg	aggaagaagg	tgcgaggagc	ccttgtgt	gggtggcgtt	tgacaccgat	1440
tctgtattgc	tgtgggttac	ctctcacgt	tccagggtt	gatccgagga	tgatggattt	1500
agatcactt	cgtcgttgt	agtttcttga	gtacgacat	gttggcatt	tctatcgct	1560
caaattcgag	cactccctga	cccgaaacagc	caacat	ttccctgca	tcgaggccac	1620
aaccataact	taggtgtaga	acattgtact	cagacctgc	cgtgattacc	tctacttga	1680
gagcactcca	ccgactgt	acaatgtcc	tacgacggaa	gctacagagg	atgatttgc	1740
tgagacggat	gaggatagg	aggaggat	tgatacgac	atgtatcatt	tcagtggcga	1800
cgtaccttca	gcccggggaa	gcaagagctt	gagtggat	cacagaaaca	acagtaagtt	1860
gcagagggtgg	tgcaagaac	aaatgtt	acttatcaag	tgcttcaagg	ccatcacgtt	1920
tctaaccggac	aagataagg	gttcttctt	taccacagct	attccgcagg	gagagcgtcc	1980
tcaggat	ccttcgaaga	gatatgacgc	gccaggccca	agtcatcaca	ggcctgagcc	2040
aagtacc	aggcctg	ctatgttac	ccagtcctgt	caaggcattc	caaggcattc	2100
atcattcgag	cctcggggagc	tcggggaaa	gaagaaggct	gcactcgct	ggctggcag	2160
caggat	cgacttctcc	agtccgt	ttacgcac	cgcgggtct	gccgcagcag	2220
aagaagagag	gtcgagtatc	atcagagcgg	tgctggccgc	ggcgaaggag	cagaggtcga	2280

31147

gtaccccccag	gggaaagctg	agacacaaca	gggagattct	tcgatggcct	gggagcaatc	2340
acaggcgact	attgacgacc	aactccgctc	cttcttccac	tgaggatatgc	acctcactcc	2400
accattgtaa	tataccatct	cttgttttt	attttgtttt	tgtgtatgtgt	tttgtccctga	2460
gtactctctt	ccaaatttgg	tcacacagtg	gactgtgtga	tttaagtttg	gg	2512

<210> 2
<211> 1997
<212> DNA
<213> *Arabidopsis thaliana*

<210> 3
<211> 1682
<212> DNA
<213> *Arabidopsis thaliana*

```

<400> 3
cttataattat gggttgggat gtgtttaaag aaaaggggga attcattgtt gataagggaaa 60
gggaaagaat tctaggggaa gtaagctaaa gaagtttagaa aaaatctagt aaagggttttg 120
ggaatgttaa agaaaaagaat gaggttcttg ttagctaaag aataagggtt aaaagccttt 180
ggttttaaag attaaaaaaaaaa aaacagggaaac cttagttgtt aaagaaaatcc aaaccgccta 240
gatgtatcaa gagcgttgag aaagcttctc cttaggtttaa gagaaaaagaa aagaatgata 300
tggaaaaagag ttgtaaaagat tcatgagtgc aaagggtttaga gttaagttgg gacaggagtt 360
ggttttacca tttagaacttc attgttatac tctgggtttaga tggttatcta tctctgtatg 420
cataatttgg gacttacctt tagcattcta ctaaagctca atcattcttg agggatcccc 480
tqttacttaa qccttattcta taaqqqacca tctttgtctc ttqaccttca ccttqgcccqa 540

```

500	505	510
Glu Arg Pro Gln Asp Met Pro Ser Lys Arg Tyr Asp Ala Pro Gly Pro		
515	520	525
Ser His His Arg Pro Glu Pro Ser His His Arg Pro Glu Pro Ser Asp		
530	535	540
Arg Val Val Pro Pro Val Pro Ala Arg His Ser Ser Phe Glu Pro Arg		
545	550	555
Glu Leu Gly Arg Lys Lys Ala Ala Leu Ala Arg Ser Gly Ser Arg		
565	570	575
Ser Arg Arg Leu Leu Gln Ser Arg Ser Leu Arg Asp Arg Gly Ala Gly		
580	585	590
Arg Ser Arg Arg Arg Glu Val Glu Tyr His Gln Ser Gly Ala Gly Arg		
595	600	605
Gly Glu Gly Ala Glu Val Glu Tyr Pro Gln Gly Glu Ala Glu Thr Gln		
610	615	620
Gln Gly Asp Ser Ser Met Ala Trp Glu Gln Ser Gln Ala Ala Ile Asp		
625	630	635
Asp Gln Leu Arg Ser Phe Phe His		
645		

<210> 11
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 11
tggttcacca gataagctca gtgccctc

28

<210> 12
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 12
cttcagactg gataggacta ggtggcg

28

Lys Pro Lys Phe Glu Arg Glu Glu Leu Lys Asp Leu Trp Leu Thr Ile
 210 215 220
 Gly Asn Asp Leu Ala Leu Asn Ser Ala Arg Ser Lys Ser Asn Gln Ile
 225 230 235 240
 Arg Ser Pro Val Ile Arg Tyr Tyr Gln Arg Ser Val Ala Asn Val Leu
 245 250 255
 Tyr Pro Arg Glu Ser Thr Gly Thr Val Ser Asn Thr Asp Met Glu Met
 260 265 270
 Ile Asp Ser Ala Leu Lys Gly Ile Leu Arg Arg Thr Lys Gly Lys Lys
 275 280 285
 Val Leu Lys Gly Asp Leu Asn Asp Thr Pro Pro Val Met Leu Leu Leu
 290 295 300
 Ile His Met Cys Gly Tyr Arg Lys Trp Ala His Thr Asn Gly Arg Lys
 305 310 315 320
 Lys Val Arg Gly Ala Leu Cys Val Gly Val Val Thr Pro Ile Leu
 325 330 335
 Ile Ala Cys Gly Val Pro Leu Thr Ser Pro Gly Phe Asp Pro Arg Met
 340 345 350
 Met Asp Leu Asp His Leu Arg Arg Cys Glu Phe Leu Glu Tyr Asp Met
 355 360 365
 Val Gly Asp Phe Tyr Arg Tyr Lys Phe Glu His Ser Leu Thr Arg Thr
 370 375 380
 Ala Asn Ile Leu Leu Pro Cys Ile Glu Ala Thr Thr Ile Leu Xaa Gly
 385 390 395 400
 Glu Asn Ile Asp Phe Arg Pro Ala Arg Asp Tyr Leu Tyr Phe Glu Ser
 405 410 415
 Thr Pro Pro Thr Asp Asp Asn Val Pro Thr Thr Glu Ala Thr Glu Asp
 420 425 430
 Asp Phe Ala Glu Thr Asp Glu Asp Arg Glu Glu Glu Tyr Asp Thr Ser
 435 440 445
 Met Tyr His Phe Ser Glu His Val Pro Pro Ala Gln Glu Ser Lys Ser
 450 455 460
 Leu Ser Glu Ala His Arg Asn Asn Ser Lys Leu Gln Arg Trp Cys Lys
 465 470 475 480
 Lys Gln Asp Arg Leu Leu Ile Lys Cys Phe Lys Ala Ile Thr Phe Leu
 485 490 495
 Thr Asp Lys Ile Ser Cys Phe Ser Ser Thr Thr Ala Ile Pro Gln Gly

31147

atgagttcat	tgtatgtatgc	ttgcttgatt	cgcgttccag	aactaatgaa	tgttaaagggg	600
attggtagat	ttgaaagcat	gtgtaggctcg	agtataagag	acggattgtat	tgaaaacaag	660
gcatggctaa	cgttttgag	tagaattcaa	tcatatcgca	tcttagaact	accaacttgg	720
acattgattt	tatttgcct	atcatatgct	ttggtttga	gtccccgcct	tcactcctct	780
ccttcaacta	tgtcttctta	tttgcttgag	ggcaagcaaa	gactaagttt	gagggagttg	840
atatgtctat	aatttgcgt	ttttcatgtt	ccattcatca	tcgttttgag	tccagtttcg	900
tatcatttcat	cactgttta	tatcatttct	catcatttctt	gcataacttgc	catgatttagg	960
ataactttgc	atacatattg	catttctgag	ttgttttca	gtgatttgg	gtgttttgc	1020
agcaaattgg	aagaatgag	ccagaaccag	aagacatact	cgacccttag	gtcgagtgac	1080
tttggggcca	ttcttcccac	atactcgcc	cccaggtcga	gtgactttgg	agccattctt	1140
cccatccact	cgaccacgg	gtcgagtaac	cttagctca	gccactcgat	gacactact	1200
gaccggcagg	cgagtatcac	ttcggccacac	caactgacaa	cactcgacca	atactctac	1260
caagtttact	gacccttgg	tcgagtatca	tcaactccacca	ccatcagcat	cactcgacccg	1320
gacactcgat	cacgtcttca	cagtctactc	aaatccgcag	tcaaccagac	aagctgagca	1380
caaggaagag	aaggaggagaa	gacaaagtgc	tttggaaagcg	cctggacctc	catcgatca	1440
cgaagcccat	ctcgcccat	tatctctcta	tggggccgagc	gattaggtta	ttggcccgtc	1500
tactatcatt	ttatttcggt	ttgtataaaat	agatgtctta	gggttttgc	ctgagacatc	1560
tagtcgacat	tgagttttt	ttgcttcagt	tttattttct	gttctactct	gctgcgcgc	1620
ttttgcttct	gcaacctgt	attcgagatt	tttccaagtt	attcagattc	cgcatttgc	1680
tt						1682

<210> 4

<211> 1652

<212> DNA

<213> *Arabidopsis thaliana*

<400> 4

tttatatcat	gggtttggat	cagtttaaaa	aaaaaaaaagg	gtgaattcat	tgttgataag	60
gaaaggggaaa	gaattctagg	ggaagtaagc	taaagaagt	aaaaaaaaaa	aatcttagta	120
aaggtttgg	gaatgttaaa	gaaaagaatg	agttcttgc	tagctaaaga	agaagggtt	180
aaagccccc	gtttaaaga	ttaaaaacag	gaaccttagt	tgttaaagaa	atccaaatac	240
gctagatgt	tcagagtgtt	gagaaagctt	ctcctagat	taagagaaaa	gaaaagaatg	300
atatgaaaaa	gagtttggaa	gattcatgag	tccaaaggggt	agagtttaagt	tcttgtattt	360
ggactggagt	tgggattacc	attagagctt	cattgttata	ctatgggtag	atgggatttt	420
atctctgtat	gcataacttg	ggacttacct	ttagcattct	actaaagctc	aatcattctt	480
gagagatccc	ctgttactta	agcctattct	gtttaggggac	atctttgtct	cttgacccct	540
accttagcca	aatgagttca	ttgatgatgc	attgtttgtat	tcacgttcca	gaactaatga	600
atgttaaagg	gattggtaga	tttgaagca	tgtgttaggtc	gagtataaga	gacggattga	660
ttgataacaa	ggcatggcta	acgttttcg	gtttttttttca	atcatatcgc	atcttagaa	720
taccaacttg	gacattgatt	ttatggctc	tatcagatgc	tttgggttctg	agtccccacc	780
ttcaaacctc	tccttcaact	atgtcttctt	atttgcatttgc	gggcaagcaa	agactaagg	840
tgggggagtt	gatatgtcta	taatttgcatt	gttttcagtg	tccatttcattc	atcggttttga	900
gtccagttt	gtatcattca	tcactgtttt	atatcatttc	tcatcattct	tgcataacttt	960
gcatgattag	gatagcttttgc	tatacatatt	gttatttctga	gttgttttta	ggtgttgg	1020
agctgtttgc	gagcaaatttgc	gaagaaacga	gccaggacaa	gaagccatac	tcgaccaccct	1080
ggtcgagtga	cttggagcc	attcttccca	tctactcgac	ccgggggtcg	agtaacctca	1140
gctcaggcca	ctcgatgacg	ccactcgcc	ccccctggcg	atattactt	cgcccacacca	1200
cctgaccaca	ctcgcccggtt	cactctacca	cgttactcgaa	ccccctggtc	gagttatcatc	1260
actcaccacc	aacaccatca	ctcgaccggg	cactcgatca	catcttcata	gtctactcaa	1320
atccgcactc	aaccagacaa	gctgagcaca	aggaagagaa	gaggagaaga	caaagtgttt	1380
ggaagcggcc	tggacctcca	tcggatcag	aaaagggccca	tctcggccca	ttatcattt	1440
atggggccgg	cgatttaggtt	attggcccg	ctactatcat	tttatttgcgt	tatgtataaa	1500
tagatgtctt	agggttctgt	accaggacat	ctagtcgaca	ttgagttttt	ttgcttcagt	1560
tttattttct	gttttctctg	ctgcggcgct	tttgggttctg	caacctgtaa	ttcgagattt	1620
ttccaagttt	ctcagattcc	gcatttgatt	tc			1652

<210> 5

<211> 903

<212> DNA

<213> *Arabidopsis thaliana*

31147

<400> 5

tactctttc	caaatttgg	cacacagtgg	actgtgtat	ttaagttgg	gggagggctc	60
aggaagtgt	tgttgcat	tataatctt	agttgcatt	catctaaggc	atagaaaaac	120
caaaaaatt	aaaaaaattcc	agaaaatgat	ttcacaaaaa	tagagtgtt	atgttagttc	180
attgcattt	gatcgagg	tagagtgtt	cgtttaggat	tgttcata	gcatagggga	240
taataatgag	atagcctt	aagcattt	gttcaccaga	taagctcagt	gccctcggt	300
ttagttgtt	gtgcgtt	cattgaaatt	gaagtaagaa	ctgcacgat	cctagattgc	360
tctactcgac	cacactgtt	ggatctgata	tcattccct	tcaatttga	cttgaatctg	420
atttagaatt	atcatgtct	ggcatcgaat	ttgaactcat	ggataccct	aaatacttg	480
attttcttac	tcattttac	cacttgc	gatccaagta	gctgactctc	cttatttagag	540
cagttaaccc	atacccaaac	ctgaactt	tttcaaggcc	tatatactt	gtgagtgtt	600
gtgagggtctt	atttcgatt	agcttggtag	aaagtgttag	gttcgtaacg	acagagatag	660
tgtctcatgt	agttcttagt	tgcgttctt	agactggata	ggacttaggt	ggcgcttata	720
tcatgggtt	ggatgtgtt	aaaagaaaag	agggaaatct	ttgttgcata	ggaaagggaa	780
agaattccag	ggaaagtaag	ctaaagaagt	tagaaaaaaa	atctagtaaa	gtttttggg	840
atgttaaaga	aaagaatgag	gttcttgc	gctaaagaag	aagggttaaa	agccttttgt	900
ttt						903

<210> 6

<211> 614

<212> DNA

<213> Arabidopsis thaliana

<400> 6

gagggcaagc	aaagactaag	tttgggggag	ttgataagt	tgtatTTG	atgtttttag	60
catccattt	tcatcactt	agcatcat	catca	ttataccatt	tcacatcatt	120
tgtcatcact	ttgcatgtt	aggatgtt	tgcatgc	ttgcatat	gcgttgatt	180
cagggtattt	ggagctgtt	acgagctatc	tggaaagaa	agacctgatc	atgacaacc	240
actcgacc	gagggtcgagt	aggagcttca	agatctcaag	agactactcg	acaaccagg	300
cgagtagagc	acatcaccac	ttcacctc	cactcgac	cgaggtcgag	tgccatcatc	360
tccatcacca	gacggtaact	cgatcactt	actcgac	gaggtcgagt	gtcttcac	420
ccatcatcag	acaaccactc	gacccctca	ctccac	aggtcgagta	tctccatctt	480
accactcgac	tgcataactcg	atgacaagct	tcagagc	cttaattccg	cactcaacca	540
gacactcgag	cacaagggaa	aaaagaagac	tccagctatt	cactcgagct	ctcactcgac	600
cacgtgggtc	gagt					614

<210> 7

<211> 1956

<212> DNA

<213> Arabidopsis thaliana

<400> 7

ttttgggtca	ccggattaa	tcagtgc	cgttgc	tgtgtgttgc	gtagtgaat	60
aatttggaa	aaaactgaa	catgcct	ttgctact	cgaccacact	gtcatgatct	120
gataccattc	cctatcaatt	tgaacctgaa	tttgatctt	aattatcatg	tctgcataa	180
atttgaactc	atggataccc	taaaatactt	ggatTTTCTT	attcattt	atcactctt	240
ttaatccaag	tagctgactc	tccttattag	agcagttaa	ccgaaacccaa	acctagactt	300
tttttcaagc	cttatatcac	tcgtgagggt	tttgaggtc	ttattccgat	tcagcttgg	360
agaaagtgtt	agggtcgtaa	cgacagagat	agtgnctcat	gtagttctag	ttcgcat	420
ttggactaga	taggactgg	tgggcgtt	tacttttagt	tggatgngt	ttaaaagaaa	480
aaaaaaagggg	ttgattcatt	gatgagaaaa	ggtaaaagac	tctaggtgaa	gtaagataaa	540
gaagcagaaa	aggcttagt	aaggTTTGG	gattgtaaa	aaaaagaaag	agttcttgg	600
agctattgaa	gatggggcaa	agccctcggt	ttttaaatgt	aaaaacagg	aaccttagt	660
gttaaagaaa	tccaaatcc	ctagatgtat	caaagtgg	agaaagctt	tccttagagt	720
aagagaaaa	aaaagaatg	ttagaaaaag	ggcttaaagg	attcatgaat	gcaaagggt	780
gaggttaagt	cttatactgg	gattggagat	gggattacca	ttagagctt	atctgatata	840
ctcttaggt	atgggatctt	atctctgc	gcatagttt	ggacttac	ttagcattct	900
actaaagctt	aatcatttt	tgagagatcc	cctgttact	aagcctattc	tgtaaaggac	960
catcttgc	tcttgac	ttaccttgc	caaagtgg	catgtat	gcattgc	1020
attcacgtt	cagaacta	gaatgtt	gggattggta	gattgtaaa	catgtgtagg	1080
tcgagcatat	gagtcggatt	gattgatagt	aaggcatgc	taaagtttt	cagtagaatt	1140

31147

```

cgatcatatc gcagcttaga actatacaact tggacattga tttcatttgg tttatctagt 1200
gctttggctc tgagtccccg atttcaaacc tcacctctag cttgttctta attgtttgtc 1260
tgaggggcaag caaagactaa gtttggggga gtgtataagt gtgtattttgc catgttttga 1320
gcatccattt gtcataactt tagcaccata tcataactat ttatataccat ttctcatcat 1380
ttgtcatcac tttgcatgtt taggatagtt ttgcattgtat gtggcatatt tttgttgtt 1440
tcaagtgtttt cgagactgtt gaagaactaa ttgaaagaag cggacctgtat catgccaac 1500
caactcgacctt caggtcgagt agacgcttca cgacctcaac acaccactcg accacctgtt 1560
cgagtgtagg acttcaccac ttacccat cactcgaccc cttggccgag taccacacg 1620
gagtcaactcg atcaacttca tcgaccccca ggtcgagtgt ctccacccccc accacctgac 1680
catcaactcgat tcacacgact ctacccggaa gtcgagtttcc accatccca ccactcgact 1740
acataacttga tgcgagtttcc cagagtcttc tccattccgc actcaaccag acactcgagc 1800
acaaggaaaa aaagaagatt ctatcttac actcgaccc tcactcgacc acctgggtcg 1860
agtacagttc ttaatccgtc tcaataactgc gtcgttttga gtattagggt ttccggatat 1920
ttttgtata agtagcacgt actttacatt ttccgag 1956

```

<210> 8
<211> 2105
<212> DNA
<213> Arab-

<400> 8

ttagcatttt	ggttcactag	ataaaactcg	tgcctcggtt	gttagttgtc	tgatgcatac	60
tcaatgaat	tgaagtaaaa	ctgcaccatg	cctagattgc	tctactcgac	cacactgtta	120
ggatctgata	ccattcccta	tcaatttgaa	cttgaatctg	atttagaatt	atcatgtctt	180
gccatcgaa	ttgaactcat	ggatacccta	aaataacttgg	attttcttac	tcattttaaac	240
cactcttgtt	aatccaagta	gctgactctc	cttatttagag	cagttAACCC	gaatccaaac	300
ctaatttttc	tttcgagccc	tatatactt	gtgagtggtt	gtgagggtctt	atttcaattt	360
agcttggtag	aaagtgttag	gttcgtaaacg	acagagatag	tgtctcatgt	agttctagt	420
cgcgtttttt	ggactggata	ggacttaggt	ggcgcttata	tcatgggtt	ggatcagttt	480
aaaaaaaaaaa	aagggtgaat	tcattgttga	taaggaaagg	gaaagaattt	tagggaaagt	540
aagctaaaga	agttaaaaaa	aaaaaaatct	agtaaaagggt	tttggaaatgt	taaagaaaaaag	600
aatgagggttc	ttgttagcta	aagaagaagg	gttAAAAGCC	ttttgtttta	aagattaaaa	660
acaggaacct	tagttgttaa	agaaatccaa	atacgtaga	tgtatcagag	tgttggaaaa	720
gcttcctcta	gagttaaagag	aaaagaaaag	aatgatatga	aaaagagttt	gaaagattca	780
tgagtgcaaa	gggttaggtt	aagttcttgt	atttggactg	gagttggat	taccattaga	840
gcttcattgt	tatactatgg	gtagatggta	ttttatctct	gtatgcataa	cttgggactt	900
accttttagca	ttctactaaa	gctcaatcat	tcttggagaga	tccccgttta	cttaagccta	960
ttctgttaagg	gaccatctt	gtctcttgcc	ttcaccttag	ccaaatgagt	tcattgtatga	1020
tgcattgttt	gattcacgtt	ccagaactaa	tgaatgtttaa	agggatttgg	agatttgaaa	1080
gcatgtgtag	gtcgagtata	agagacggat	tgattgataaa	caaggcatgg	ctaacgtttt	1140
cgagtaaaat	tcaatcatat	cgcatcttag	aactaccaac	ttggacattt	attttatttt	1200
ctctatcaga	tgcTTTGGTT	ctgagttcccc	accttcaaacc	ctctccttca	actatgtctt	1260
cttatttgct	tgagggcaag	caaagactaa	ttttgggggaa	gttgatatgt	ctataatttt	1320
catgttttca	gtgtccattt	atcatcgttt	tgagtccagt	ttcgttatcat	tcatcactgt	1380
tttataatcat	ttctcatcat	tcttgatatac	tttgcatgtat	taggtatgt	ttgtatatacat	1440
attgcatttc	tgagttgttt	tttaggttatt	tgaggtgttt	tgcgagcaaa	ttgaaagaaaa	1500
cgagccagaa	caagaagcca	tactcgaccc	cttgggtcgag	tgactttgg	gcccattttc	1560
ccatctactc	gaccgggggg	tcgagtaacc	tcaagtcagg	ccactcgatg	acggcactcg	1620
tcccccttgg	tcgagttatca	cttcggccaca	ccacctgacc	acactcgccc	gttcaactcta	1680
ccacgtttt	cgccccctgt	gtcgagttatc	atcaactacc	accaacacca	tcactcgacc	1740
gggcactcga	tcacatcttc	atagtctact	caaattccgca	ctcaaccaga	caagctgagc	1800
acaaggaaaga	gaagaggaga	agacaaatgt	tttggaaagcg	gcctggacct	ccatcggttc	1860
acgaagaagc	ccatctcgcc	ccattatcat	tctatgggccc	gggcgatttag	gttatttggcc	1920
cgtctactat	cattttatTTT	cgttatgtat	aaatagatgt	ttttagggttc	tgttaccagga	1980
catctagtgc	acattgagtt	tttttgcattt	agttttatTTT	tctgttttct	ctgctgcgcc	2040
gctttgtttt	ctgcaacctg	taattcgaga	tttttccaag	ttatttcagat	tccgcatttt	2100
atttc						2105

<210> 9
<211> 4860
<212> DNA

31147

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Virtual TSI

<400> 9

tcgcgttcc	agcttcgcat	actctctcac	cgtctctcg	ttcactcgac	cacttcacac	60
tgcctcaa	catttcgcc	ggagtttctc	gccattgtcc	gtgcttccgt	catctccgtt	120
cactcgacca	ccggaccggc	ttcaccatct	ctcaactatc	caccattcac	tcgacctcgc	180
cattca	ctgc	gcctccattc	gtctcttac	tcgactgc	ctcaaacgc	240
tctaaattcg	cggttactc	gaccacactg	ttacgtct	cattcg	caggacccg	300
ctataccga	agccacaata	tcactctact	cgaccgtt	actcgatcgc	gtacttgact	360
gttttagtgt	gtgtgtttat	ttgaactaac	atattgat	ttgggtt	tttacattct	420
ttttcaggga	atcaatatga	gcaactacag	tg	tccatggat	cggttacaa	480
cgtcgatgaa	gctgaatctt	ggtcaactag	accagagaga	gagaacagg	tttatgagag	540
tttcagagcc	gagaccacac	gctcagt	tcgacg	gaaaggagag	ctgagatgc	600
tagaggaaag	agagcgatg	ccagcagata	tgatgt	gacaaagata	ttgacgtcga	660
gtatgagcct	gagtcatgc	acagagaaac	aaaactgtt	aacaac	atgaagtta	720
agtggaaagag	tacatcagac	ttttcgag	gaacgactt	tgggag	gttacccctg	780
ttatgagact	ctagcccac	tttagtact	ggaggacgt	cagcatt	tcgagaagtg	840
ccatctttag	acgctgatgt	cttacccgt	cgtcg	aagaaggaaa	caatagagtt	900
tctcttca	ctgcaagttt	agttgtatc	ggggactt	gcagat	tggagagtga	960
agggttggga	ttcttgactt	tttcagtt	cgagcag	taccagct	ctatcaagag	1020
cttggaaagga	ttat	ttcccagt	aaaggaa	aaaccca	tcgaaaggga	1080
agagtgaag	gatttgtgt	taaccatt	gaacgattt	g	ctgcaaggtc	1140
taagagcaac	cagattcga	gcccgt	ccgctactat	cagcgtc	tagcgaatgt	1200
tctgtacccc	agggatcta	caggaccgt	gtctaa	gacatgg	tgattgattc	1260
tgcactcaag	ggtattctcc	ggagaacaaa	ggggaa	gtcctaa	g	1320
tgatacacca	ccggc	ttctgtt	ccat	ggatacagga	agtggcgc	1380
caccaacggg	aggaagaagg	tgcgagg	cc	gttgcgtt	tgacaccgat	1440
tctgtatt	tggtgttac	ctctcac	tccagg	gatccg	tgatggattt	1500
agatcactt	cgtcgtt	agtttctt	gtacgac	gttggc	tctatcgct	1560
caaattcgag	cactccctga	cccgaac	caacat	cttcc	tcgaggccac	1620
aaccatactt	taggtgtaga	acattgactt	cagac	ctgt	tctacttga	1680
gagcactcca	ccgactgt	acaatgt	tacgac	g	atgatttgc	1740
tgagacggat	gaggatagg	aggaggat	tgatc	atgtatc	tcagt	1800
cgtac	ccgc	gcaagac	gt	gat	acagtaagtt	1860
gcagagg	tgcaagaaac	aagataggtt	actt	tca	ccatcacgtt	1920
tctaaccggac	agataa	gcttctt	tacca	act	gagacgtcc	1980
tcaggacat	c	gat	cc	at	ggcctgagcc	2040
aagt	cc	ct	cc	cc	caaggcattc	2100
atcattcgag	c	tc	gg	cc	gttctggcag	2160
caggat	ca	gt	cc	gt	gccgcagcag	2220
aagaagagag	gtc	g	cc	cc	cagagg	2280
gtac	cc	at	cc	cc	gggagcaatc	2340
acagg	cc	at	cc	cc	ac	2400
accattgtaa	tata	ttt	ttt	ttt	ttt	2460
gtactctt	ccaaat	ttt	ttt	ttt	ttt	2520
caggaagt	gtgtt	gtat	ttt	ttt	ttt	2580
ccaaaaaaat	tggaaat	ttt	ttt	ttt	ttt	2640
cattgcattt	aggatcg	ttt	ttt	ttt	ttt	2700
ataataatga	gat	ttt	ttt	ttt	ttt	2760
gttagt	ttt	ttt	ttt	ttt	ttt	2820
ctctactcg	ccac	ttt	ttt	ttt	ttt	2880
gat	ttt	ttt	ttt	ttt	ttt	2940
gat	ttt	ttt	ttt	ttt	ttt	3000
gcagtt	ttt	ttt	ttt	ttt	ttt	3060
tgtgagg	ttt	ttt	ttt	ttt	ttt	3120
gtgtct	ttt	ttt	ttt	ttt	ttt	3180
atcatgg	gggatgt	taaa	gggg	ttt	ttt	3240
aagaattcc	gggaa	gctaa	ttt	ttt	ttt	3300
aatgtt	aaa	aaa	ttt	ttt	ttt	3360
ttttaa	aaa	aaa	ttt	ttt	ttt	3420

31147

tgtatcaaga gcgttgagaa agcttccct agagttaaa gaaaagaaaa gaatgatatg 3480
 aaaaagagtt taaaagattc atgagtcaa agggtagagt taaggggga caggagttgg 3540
 tttaccatt agaacttcat tggttatactc tgggttagatg ggatcttac tctgtatgca 3600
 taatttggga cttacctta gcattctact aaagctaat cattttgag ggatccccctg 3660
 ttacttaagc ctattctata agggaccatc tttgtctttt gacccacc ttggccgaat 3720
 gagtttcattt atgatgcatt gcttgattcg cgttccagaa ctaatgaatg ttaaaggggat 3780
 tggtagattt gaaagcatgt gtaggtcgag tataagagac ggattgattt aaaacaaggc 3840
 atggctaacg tttttagtta gaattcaatc atatcgatc tttagaactac caacttggac 3900
 attgattttt tttgctctat catatgtttt gtttttagt cccgccttc actcctctcc 3960
 ttcaactatg tcttcttatt tgcttgaggg caagcaaaa ctaagttga gggagtttat 4020
 atgtctataa tttgcatgtt ttcagtgtcc attcatcatc gtttttagt cagtttcgta 4080
 tcattcatca ctgtttata tcatttctca tcatttgc atactttgca tgatttaggt 4140
 aactttgcat acatattgca tttcttagt gtttttagt gatttggagc tgtttgcag 4200
 caaatggaa gaaatgagcc agaaccagaa gacatactcg accccttagt cgagtgactt 4260
 tggggccatt cttcccacat actcggcccc caggtcgagt gactttggag ccattctcc 4320
 catccactcg accaccgggt cgagtaacct tagctcgagc cactcgatga cactactcg 4380
 ccccaggctcg agtatactctt cgccacacca cctgacaaca ctcgaccaat cactctacca 4440
 agttactcgatcc cccctggtc ggttactatc actaccaccatc atcagcatca ctcgaccgga 4500
 cactcgatca cgtcttcaca gtctactcaa atccgcagtc aaccagacaa gctgagcaca 4560
 aggaagagaa gaggagaaga caaagtctt ggaagcggcc tggacctcca tcggatcag 4620
 aagcccatctt cggcccatatc tctctctatg ggccgagcga tttagttttagt ggcccgctt 4680
 ctatcattttt atttcgtttt gtataaatag atgtcttagg gttttgcctt gagacatcta 4740
 gtcgacattt agttttttt gcttcagttt tattttctgt tctactctgc tgcgccgctt 4800
 ttgctctgc aacctgtatc tcgagatttt tccaagttat tcagattccg catttgcattt 4860

<210> 10

<211> 648

<212> PRT

<213> Arabidopsis thaliana

<400> 10

Met	Ser	Asn	Tyr	Ser	Gly	Glu	Ser	Ser	Met	Asp	Ala	Asp	Tyr	Asn	Val
1				5					10				15		

Asp	Glu	Ala	Glu	Ser	Trp	Ser	Thr	Arg	Pro	Glu	Arg	Glu	Gln	Gln	Ala
				20			25					30			

Tyr	Glu	Ser	Phe	Arg	Ala	Glu	Thr	Gln	Arg	Ser	Val	Ala	Arg	Arg	Asn
				35			40				45				

Glu	Arg	Arg	Ala	Glu	Ile	Ala	Arg	Gly	Lys	Arg	Ala	Met	Thr	Ser	Arg
			50			55				60					

Tyr	Glu	Leu	Ile	Asp	Glu	Asp	Ile	Asp	Val	Glu	Tyr	Glu	Pro	Glu	Ser
			65				70		75			80			

Trp	His	Arg	Glu	Thr	Lys	Leu	Leu	Asn	Lys	Pro	Asp	Glu	Val	Thr	Val
			85				90					95			

Glu	Glu	Tyr	Ile	Arg	Leu	Phe	Glu	Leu	Asn	Asp	Phe	Trp	Gly	Ala	Arg
			100				105					110			

Tyr	Pro	Cys	Tyr	Glu	Thr	Leu	Ala	Gln	Leu	Arg	Leu	Glu	Asp	Val
			115			120				125				

Gln	His	Leu	Phe	Glu	Lys	Cys	His	Leu	Glu	Thr	Leu	Met	Ser	Tyr	Pro
			130			135				140					

Tyr	Val	Ala	Tyr	Lys	Lys	Glu	Thr	Ile	Glu	Phe	Leu	Ser	Thr	Leu	Gln
			145			150			155			160			

Val	Glu	Leu	Tyr	Gln	Gly	Leu	Thr	Ala	Asp	Glu	Leu	Glu	Ser	Glu	Gly

165	31147	175													
Leu	Gly	Phe	Leu	Thr	Phe	Ser	Val	Asn	Glu	Gln	Arg	Tyr	Gln	Leu	Ser
180							185						190		
Ile	Lys	Ser	Leu	Glu	Gly	Leu	Phe	Gly	Phe	Pro	Ser	Gly	Lys	Gly	Thr
195							200					205			
Lys	Pro	Lys	Phe	Glu	Arg	Glu	Glu	Leu	Lys	Asp	Leu	Trp	Leu	Thr	Ile
210						215					220				
Gly	Asn	Asp	Leu	Ala	Leu	Asn	Ser	Ala	Arg	Ser	Lys	Ser	Asn	Gln	Ile
225					230				235				240		
Arg	Ser	Pro	Val	Ile	Arg	Tyr	Tyr	Gln	Arg	Ser	Val	Ala	Asn	Val	Leu
245						250					255				
Tyr	Pro	Arg	Glu	Ser	Thr	Gly	Thr	Val	Ser	Asn	Thr	Asp	Met	Glu	Met
260						265					270				
Ile	Asp	Ser	Ala	Leu	Lys	Gly	Ile	Leu	Arg	Arg	Thr	Lys	Gly	Lys	Lys
275					280						285				
Val	Leu	Lys	Gly	Asp	Leu	Asn	Asp	Thr	Pro	Pro	Val	Met	Leu	Leu	Leu
290					295						300				
Ile	His	Met	Cys	Gly	Tyr	Arg	Lys	Trp	Ala	His	Thr	Asn	Gly	Arg	Lys
305					310					315			320		
Lys	Val	Arg	Gly	Ala	Leu	Cys	Val	Gly	Gly	Val	Val	Thr	Pro	Ile	Leu
					325				330			335			
Ile	Ala	Cys	Gly	Val	Pro	Leu	Thr	Ser	Pro	Gly	Phe	Asp	Pro	Arg	Met
					340			345				350			
Met	Asp	Leu	Asp	His	Leu	Arg	Arg	Cys	Glu	Phe	Leu	Glu	Tyr	Asp	Met
						355		360			365				
Val	Gly	Asp	Phe	Tyr	Arg	Tyr	Lys	Phe	Glu	His	Ser	Leu	Thr	Arg	Thr
						370		375			380				
Ala	Asn	Ile	Leu	Leu	Pro	Cys	Ile	Glu	Ala	Thr	Thr	Ile	Leu	Xaa	Gly
						385		390			395			400	
Glu	Asn	Ile	Asp	Phe	Arg	Pro	Ala	Arg	Asp	Tyr	Leu	Tyr	Phe	Glu	Ser
						405			410			415			
Thr	Pro	Pro	Thr	Asp	Asp	Asn	Val	Pro	Thr	Thr	Glu	Ala	Thr	Glu	Asp
							420		425			430			
Asp	Phe	Ala	Glu	Thr	Asp	Glu	Asp	Arg	Glu	Glu	Glu	Tyr	Asp	Thr	Ser
							435		440			445			
Met	Tyr	His	Phe	Ser	Glu	His	Val	Pro	Pro	Ala	Gln	Glu	Ser	Lys	Ser
							450		455			460			
Leu	Ser	Glu	Ala	His	Arg	Asn	Asn	Ser	Lys	Leu	Gln	Arg	Trp	Cys	Lys
							465		470			475			480
Lys	Gln	Asp	Arg	Leu	Leu	Ile	Lys	Cys	Phe	Lys	Ala	Ile	Thr	Phe	Leu
							485			490			495		
Thr	Asp	Lys	Ile	Ser	Cys	Phe	Ser	Ser	Thr	Thr	Ala	Ile	Pro	Gln	Gly

31147

500	505	510
Glu Arg Pro Gln Asp Met Pro Ser Lys Arg Tyr Asp Ala Pro Gly Pro		
515	520	525
Ser His His Arg Pro Glu Pro Ser His His Arg Pro Glu Pro Ser Asp		
530	535	540
Arg Val Val Pro Pro Val Pro Ala Arg His Ser Ser Phe Glu Pro Arg		
545	550	555
Glu Leu Gly Arg Lys Lys Ala Ala Leu Ala Arg Ser Gly Ser Arg		
565	570	575
Ser Arg Arg Leu Leu Gln Ser Arg Ser Leu Arg Asp Arg Gly Ala Gly		
580	585	590
Arg Ser Arg Arg Arg Glu Val Glu Tyr His Gln Ser Gly Ala Gly Arg		
595	600	605
Gly Glu Gly Ala Glu Val Glu Tyr Pro Gln Gly Glu Ala Glu Thr Gln		
610	615	620
Gln Gly Asp Ser Ser Met Ala Trp Glu Gln Ser Gln Ala Ala Ile Asp		
625	630	635
Asp Gln Leu Arg Ser Phe Phe His		
	645	

<210> 11
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 11
tggttcacca gataagctca gtgccttc 28

<210> 12
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 12
cttcagactg gataggacta ggtggcg 28

<210> 13
<211> 28
<212> DNA
<213> Artificial Sequence

<220>

31147

<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 13
cgccccaccta gtccttatcca gtctgaag

28

<210> 14
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 14
cgccatcaaac aactaacaac gagggcac

28

<210> 15
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 15
cgataaacatc gaccgtattg ctcgcc

26

<210> 16
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 16
aactagctcc catccgtctt cgacatcc

28

<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 17
tgcatcacac cggattggat tgac

24

<210> 18
<211> 28
<212> DNA
<213> Artificial Sequence

31147

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 18
tgttcccctg aaccatagca atgagacc 28

<210> 19
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 19
caaacagaca gagtgtggcc caccacc 27

<210> 20
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 20
caaacagaca gagtgtggcc caccacc 27

<210> 21
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 21
tgcaaacctt caggaccaag tctaccc 27

<210> 22
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide sequence

<400> 22
acagatggtg atagcgtgag cggtggc 27

<210> 23
<211> 26

31147

<212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 oligonucleotide sequence

<400> 23
 tcaacccttt gccccaaacaa ccactc

26

<210> 24
 <211> 27
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 oligonucleotide sequence

<400> 24
 tctccatcca cgcttcctg aatgtcc

27

<210> 25
 <211> 29
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 oligonucleotide sequence

<400> 25
 ggagaaggaa gctgaaaatc atattgtgg

29

<210> 26
 <211> 29
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:
 oligonucleotide sequence

<400> 26
 atgatgatcc taagtctacc ctttgcac

29

<210> 27
 <211> 3122
 <212> DNA
 <213> Arabidopsis thaliana

<400> 27
 ttcatatatatt cgacctcttc ttctcattct tgcatccaaa agacacaaca agccgccatc 60
 gctttccctc acaactctca ctcgaccacc gcccgccttc tcacttactc ggcttcatcg 120
 ctctcatcgc catctctcaa catactcgac ctcgcgatat cactcgagct cgccgcttct 180
 caccgcctct ccatcgtaac cgcctgctcc ctctctccaa ggaaacaact cgagctctcc 240
 atttcactca ctcgacctct accaccaagc cggcttcacc acttcttagct cttAACCT 300
 cgaccacctt caccatcaac caatcaaatac gtttctcct ccattaaagc ttgacatact 360
 cgaccgcgtga acacttatca cttcaagct cttcatctc tcattgttc caacaccgct 420

31147

gctctcatcc cccacgaaag cttgtcatca cctctcactc atcaccagtt cactcgattc 480
 agcaaccaa ctcgacctcg tctcttgc cactcatgt cactcgatct ctccctcacca 540
 tcttcatcat ctcccctaact cgaccaccgt gcgtctcgct ccaccattgc catttaaaag 600
 ctcactcgat tgtcaaagag aagaagagtg aagctcaacc accggcaactc gaccgcgtt 660
 ccctctacac attcaacact cgaccacgggt gtttacatcc ccacacccgc tcttgttac 720
 catacaactcg accaacaact ctcaaagtaa aaaaaaaaaaag aaaaaaaaaaag tcaaaaccga 780
 cagtttcaact caaccgggtt actcgaccgg tacgctgggt tagattgtgt ttttggttt 840
 gcttattacta acatattaaac gtttatctt gatgttcgtc tggttttagg tttcatcatg 900
 agtaactaca gtggaaaatc ctctatggac cctgattata atgtggatga agctaagtcc 960
 tggtccacta gaccggagtg agagcaacat gtttacgaga gctataggga tgaatttga 1020
 cgctctgcag ctcgacgtaa tcaaagaaga gctgaaaatcg ctagaggaaa gagggcgtat 1080
 tcgagtagat atgagctgtat tgatgaggat atcaaactcg agtatgagcc agagtcatgg 1140
 cgcaaggaga cgaagctact gaacaaatcc gacgagggtt cagtggagga gtatatcaga 1200
 ttcttgaga tgaatgactt ctggggaaacg aggtatccct gatatgagac tttagccag 1260
 ttggggttac tggaggacgt gcagcatctg ttcgagaagt gtcatctgtat aaggaggaga 1320
 caatcgagtt tctttccaca ctgcaagtgg aaatgtatga gggactcaca gactttgagc 1380
 tggataccat ggggttaggc ttcttgacgt tcttagtggta tgaacagcgg taccagattt 1440
 agatcaagaa attggaagaa ctgtttgggt tcccttagtgg aaagggaaacc aaccccaaggt 1500
 ttgacaggga agagcttaag gatttgggg ctactattgg gaacaatcta ccgctaaact 1560
 cgacgcggtc caagagcaac caaatccggta gtcctgtgt tcgctacttt cagcgcctcg 1620
 ttgccaatgt ttttactcc agggagtctt caggcacccgt gtctaacaca gacatgaaga 1680
 tgatagattc agcgccttata gggatttcgc gccttacaaa aggaaagaat gtccctgagag 1740
 gagatcttaa cgactcacca ccagtaatgc ctctgttgat ccatctgtgt gggtacatga 1800
 agtgggcgct gacaaacggc aagaagagg taagaggagc actatgcgtg ggtggcgtt 1860
 tgacgccaat tctgaaagtt tggagttt cgctcaagga agtagggta gcaccgagaa 1920
 tgatggactt ggatcaacttgc cgccgatgtg agttctctgtat gtttgacatgt gttggcgtact 1980
 ttcaccgcta cagggtcgag cattcatcgat ttagaatcgc caacattctt ttcccctgca 2040
 tttacgctac taggatttctc gagggcagga acattgactt caagcctcg cttgaagatc 2100
 tttatttcga gggcagtccg ccaactgagg agattagtcg caccgaagga gctacaatag 2160
 aagatgtga tgagacatata gatatacgatg aggccggatgt tgacacgagc atgtatcatt 2220
 tcagtgagca tatacctca gcgagggaaaa gcaagagttt gagcgaagct cacaggaaca 2280
 acagcaagct gcagaagtgg tgcaagaaac aggataagtt actcgccaag tgcctcagg 2340
 ctatcaagtt tctgaaggac aagatcagct gctccttc cactacaact atccgcata 2400
 gacagctccc tcaggacatg cttcgagga gatatgacgc gcccgagcc agagagcaga 2460
 agattctgca tggccctcg aggcatcat cattcgagcc tcgtgaatctt aggaagaata 2520
 ggagaacgac actcaactcgat tctagcagca ggagcagacg acttctgcag ttcgttagtt 2580
 tacgcgaccg cggtgctggc cgcaatagaa gaagagagggt cgatgtatcc cagagcgtt 2640
 ctggccgcca cagagctgtat gagatcgagt acccacatgc tggagctgtat acggaacatg 2700
 gcggttcgtc tatggcttgg gagcaatcac aggccggatcatg tgactaccaa cttcgatcat 2760
 tattcgactg aggtaaagcgc ctcaacttcac cattatatta tattatctct tttgtattgt 2820
 tctttatattt gtttcgtatc ttggattttgt cctgagttact ctcttcaag tttattcaca 2880
 cagtttgcgtg tttgtatataa gtttgggggaa gggctcggat agtatgttgc attgtatata 2940
 ttttttaagtc tgcattcatc taaggcatag aaaaacccaaa aaaaattaa aaatttcaga 3000
 aaatgatttc aaaaaaaaaaag agtggatcatg tagttgcatt acattnagga tcaagtctag 3060
 agtggatcat ttaggattgt tgcattatgc tagggatata tgatgagata gccttgtaag 3120
 ca