## **Erbium**

From Wikipedia, the free encyclopedia

**Erbium** is a chemical element in the lanthanide series, with symbol **Er** and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements on Earth. As such, it is a rare earth element which is associated with several other rare elements in the mineral gadolinite from Ytterby in Sweden, where yttrium, ytterbium, and terbium were discovered.

Erbium's principal uses involve its pink-colored  $\rm Er^{3+}$  ions, which have optical fluorescent properties particularly useful in certain laser applications. Erbium-doped glasses or crystals can be used as optical amplification media, where  $\rm Er^{3+}$  ions are optically pumped at around 980 or 1480 nm and then radiate light at 1530 nm in stimulated emission. This process results in an unusually mechanically simple laser optical amplifier for signals transmitted by fiber optics. The 1550 nm wavelength is especially important for optical communications because standard single mode optical fibers have minimal loss at this particular wavelength.

In addition to optical fiber amplifier-lasers, a large variety of medical applications (i.e. dermatology, dentistry) rely on the erbium ion's 2940 nm emission (see Er:YAG laser), which is highly absorbed in water in tissues, making its effect very superficial. Such shallow tissue deposition of laser energy is helpful in laser surgery, and for the efficient production of steam which produces enamel ablation by common types of dental laser.

## **Characteristics**

## **Physical properties**

A trivalent element, pure erbium metal is malleable (or easily shaped), soft yet stable in air, and does not oxidize as quickly as some other rare-earth metals. Its salts are rose-colored, and the element has characteristic sharp absorption spectra bands in visible light, ultraviolet, and near infrared. Otherwise it looks

Erbium, 68Er



**General properties** 

| Name, symbol | erbium, Er    |
|--------------|---------------|
| Appearance   | silvery white |

#### Erbium in the periodic table

| Atomic number $(Z)$ 68 |
|------------------------|
|------------------------|

| Group, block | group n/a, f-block |
|--------------|--------------------|
|--------------|--------------------|

#### **Period** period 6

## **Element category** $\Box$ lanthanide

## **Standard atomic** $167.259(3)^{[1]}$ **weight** (±) ( $A_r$ )

# **Electron** [Xe] 4f<sup>12</sup> 6s<sup>2</sup> configuration

| Del 311ell 2, 0, 10, 30, 0, 2 | per shell | 2, 8, | 18, | 30, | 8, | 2 |
|-------------------------------|-----------|-------|-----|-----|----|---|
|-------------------------------|-----------|-------|-----|-----|----|---|

#### **Physical properties**

| Phase | soli |
|-------|------|
|-------|------|

**Melting point** 1802 K (1529 °C, 2784 °F)



Erbium(III)chloride in sunlight, showing some pink fluorescence of Er<sup>+3</sup> from natural ultraviolet.

microscopy.<sup>[4]</sup>

much like the other rare earths. Its sesquioxide is called erbia. Erbium's properties are to a degree dictated by the kind and amount of impurities present. Erbium does not play any known biological role, but is thought to be able to stimulate metabolism.<sup>[2]</sup>

Erbium is ferromagnetic below 19 K, antiferromagnetic between 19 and 80 K and paramagnetic above 80 K.<sup>[3]</sup>

Erbium can form propeller-shaped atomic clusters  $Er_3N$ , where the distance between the erbium atoms is 0.35 nm. Those clusters can be isolated by encapsulating them into fullerene molecules, as confirmed by transmission electron

## **Chemical properties**

Erbium metal tarnishes slowly in air and burns readily to form erbium(III) oxide:

$$4 \text{ Er} + 3 \text{ O}_2 \rightarrow 2 \text{ Er}_2 \text{O}_3$$

Erbium is quite electropositive and reacts slowly with cold water and quite quickly with hot water to form erbium hydroxide:

2 Er (s) + 6 H<sub>2</sub>O (l) 
$$\rightarrow$$
 2 Er(OH)<sub>3</sub> (aq) + 3 H<sub>2</sub> (g)

Erbium metal reacts with all the halogens:

2 Er (s) + 3 
$$F_2$$
 (g)  $\rightarrow$  2 Er $F_3$  (s) [pink]

$$2 \text{ Er (s)} + 3 \text{ Cl}_2 \text{ (g)} \rightarrow 2 \text{ ErCl}_3 \text{ (s) [violet]}$$

$$2 \text{ Er (s)} + 3 \text{ Br}_2 \text{ (g)} \rightarrow 2 \text{ ErBr}_3 \text{ (s) [violet]}$$

2 Er (s) + 3 
$$I_2$$
 (g)  $\rightarrow$  2 Er $I_3$  (s) [violet]

**Boiling point** 3141 K (2868 °C, 5194 °F)

**Density** near r.t. 9.066 g/cm<sup>3</sup>

when liquid, at m.p. 8.86 g/cm<sup>3</sup>

**Heat of fusion** 19.90 kJ/mol

vaporization

Molar heat 28.12 J/(mol·K)

capacity

Heat of

#### **Vapor pressure**

280 kl/mol

| <b>P</b> (Pa) | 1    | 10   | 100    | 1 k    | <b>10</b> k | 100 k  |
|---------------|------|------|--------|--------|-------------|--------|
| at T (K)      | 1504 | 1663 | (1885) | (2163) | (2552)      | (3132) |

#### **Atomic properties**

**Oxidation states 3**, 2, 1 (a basic oxide)

**Electronegativity** Pauling scale: 1.24

Ionization energies 1st: 589.3 kJ/mol

2nd: 1150 kJ/mol 3rd: 2194 kJ/mol

**Atomic radius** empirical: 176 pm

**Covalent radius** 189±6 pm

#### Miscellanea

Crystal structure hexagonal close-packed

(hcp)

**Speed of sound** 2830 m/s (at 20 °C)

thin rod

**Thermal expansion** poly: 12.2  $\mu$ m/(m·K) (r.t.)

**Thermal**  $14.5 \text{ W/(m\cdot K)}$ 

conductivity

**Electrical** poly: 0.860 μΩ·m (r.t.)

resistivity

Magnetic ordering paramagnetic at 300 K

Erbium dissolves readily in dilute sulfuric acid to form solutions containing hydrated Er(III) ions, which exist as rose red  $[Er(OH_2)_9]^{3+}$  hydration complexes:<sup>[5]</sup>

$$2 \text{ Er (s)} + 3 \text{ H}_2 \text{SO}_4 \text{ (aq)} \rightarrow 2 \text{ Er}^{3+} \text{ (aq)} + 3 \text{ SO}_4^{2-} \text{ (aq)} + 3 \text{ H}_2 \text{ (g)}$$

### Isotopes

Naturally occurring erbium is composed of 6 stable isotopes,  $^{162}$ Er,  $^{164}$ Er,  $^{166}$ Er,  $^{167}$ Er,  $^{168}$ Er, and  $^{170}$ Er with  $^{166}$ Er being the most abundant (33.503% natural abundance). 29 radioisotopes have been characterized, with the most stable being  $^{169}$ Er with a half-life of 9.4 d,  $^{172}$ Er with a half-life of 49.3 h,  $^{160}$ Er with a half-life of 28.58 h,  $^{165}$ Er with a half-life of 10.36 h, and  $^{171}$ Er with a half-life of 7.516 h. All of the remaining radioactive isotopes have half-lives that are less than 3.5 h, and the majority of these have half-lives that are less than 4 minutes. This element also has 13 meta states, with the most stable being  $^{167m}$ Er with a half-life of 2.269 s.  $^{161}$ 

The isotopes of erbium range in atomic weight from 142.9663 u (<sup>143</sup>Er) to 176.9541 u (<sup>177</sup>Er). The primary decay mode before the most abundant stable isotope, <sup>166</sup>Er, is electron capture, and the primary mode after is beta decay. The primary decay products before <sup>166</sup>Er are element 67 (holmium) isotopes, and the primary products after are element 69 (thulium) isotopes.<sup>[6]</sup>

### Source

Wikipedia: Erbium (https://en.wikipedia.org/wiki/Erbium)

Young's modulus 69.9 GPa
Shear modulus 28.3 GPa
Bulk modulus 44.4 GPa
Poisson ratio 0.237

Vickers hardness 430-700 MPa
Brinell hardness 600-1070 MPa

**CAS Number** 7440-52-0

**History** 

Naming after Ytterby (Sweden),

where it was mined

**Discovery** Carl Gustaf Mosander

(1842)

#### Most stable isotopes of erbium

| iso               | NA      | half-life                   | DM | <b>DE</b> (MeV) | DP                |  |
|-------------------|---------|-----------------------------|----|-----------------|-------------------|--|
| <sup>160</sup> Er | syn     | 28.58 h                     | ε  | 0.330           | <sup>160</sup> Ho |  |
| <sup>162</sup> Er | 0.139%  | is stable with 94 neutrons  |    |                 |                   |  |
| <sup>164</sup> Er | 1.601%  | is stable with 96 neutrons  |    |                 |                   |  |
| <sup>165</sup> Er | syn     | 10.36 h                     | ε  | 0.376           | <sup>165</sup> Ho |  |
| <sup>166</sup> Er | 33.503% | is stable with 98 neutrons  |    |                 |                   |  |
| <sup>167</sup> Er | 22.869% | is stable with 99 neutrons  |    |                 |                   |  |
| <sup>168</sup> Er | 26.978% | is stable with 100 neutrons |    |                 |                   |  |
| <sup>169</sup> Er | syn     | 9.4 d                       | β- | 0.351           | <sup>169</sup> Tm |  |
| <sup>170</sup> Er | 14.910% | is stable with 102 neutrons |    |                 |                   |  |
| <sup>171</sup> Er | syn     | 7.516 h                     | β- | 1.490           | <sup>171</sup> Tm |  |
| <sup>172</sup> Er | syn     | 49.3 h                      | β- | 0.891           | <sup>172</sup> Tm |  |