

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

Modeling sparse malicious packet drop attacks

Modeling sparse malicious packet drop attacks

- Estimating disturbances of the communication network such as noise, delays, and packet drops formulated as a sparse vector recovery problem
- Sparse e—more zero entries than non-zero entries in the vector e

Definition (Sparse vector recovery problem)

Estimate an unknown vector \boldsymbol{x} in the linear system, $\boldsymbol{A}\boldsymbol{x} + \boldsymbol{e} = \boldsymbol{b}$, where the vector \boldsymbol{b} and the matrix \boldsymbol{A} are known and \boldsymbol{e} models the unknown disturbances

Analysis of $\mathbf{A}\mathbf{x} + \mathbf{e} = \mathbf{b}$

Assumptions:

- \bullet and the full column rank matrix A are known;
- $oldsymbol{0}$ Only a "small" number of entries of $oldsymbol{b}$ corrupted by $oldsymbol{e}$

Justifying the second assumption

Candes and Tao's observation: if the number of nonzero entries of the error vector is "large", then it is in general impossible to reconstruct x from Ax + e = b for a given A and b

E. J. Candes and T. Tao, Decoding by linear programming, IEEE Transactions on Information Theory, Vol. 51, No. 12, pp. 4203–4215, 2005

Reconstructing \boldsymbol{x} from $\boldsymbol{A}\boldsymbol{x}+\boldsymbol{e}=\boldsymbol{b}$ for a given \boldsymbol{A} and \boldsymbol{b}

- Cannot have too many non-zero entries in e to reconstruct x!
- Indeed, let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and suppose m = 2n
- ullet Consider two distinct fixed vectors $oldsymbol{x}$ and $\hat{oldsymbol{x}}$
- Suppose the vector $\mathbf{b} \in \mathbb{R}^m$ is constructed by setting n coefficients of \mathbf{b} equal to those of $\mathbf{A}\mathbf{x}$ and n coefficients of \mathbf{b} equal to those of $\mathbf{A}\hat{\mathbf{x}}$
- Then we have $b = Ax + e = A\hat{x} + \hat{e}$ for some e and \hat{e}
- In sum, the maximum number of nonzero coefficients in e should be smaller than n=m/2 if we are to be able to reconstruct x

Cannot have too many non-zero elements in e to recover x in Ax + e = b

Example

$$m{A} = egin{bmatrix} 1 & 0 \ 1 & 0 \ 0 & 1 \ 0 & 1 \end{bmatrix}, \quad m{x} = egin{bmatrix} 1 \ 1 \end{bmatrix}, \quad \hat{m{x}} = egin{bmatrix} 2 \ 0 \end{bmatrix}, \quad m{b} = egin{bmatrix} 1 \ 1 \ 0 \ 0 \end{bmatrix}$$

Then two coefficients of b equal to those of Ax and two equal to those of $A\hat{x}$.

Example—Contd.

Solving the equations e = b - Ax and $\hat{e} = b - A\hat{x}$, we obtain

$$e = \begin{bmatrix} 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
 and $\hat{e} = \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$.

Note that both \boldsymbol{e} and $\hat{\boldsymbol{e}}$ have m=n/2 nonzero components

- We do not know if e or \hat{e} corrupts the system
- We cannot recover x in Ax + e = b
- We have to have less than m = n/2 nonzero components in e to start talking about recovering x in Ax + e = b

How to recover \boldsymbol{x} from $\boldsymbol{A}\boldsymbol{x} + \boldsymbol{e} = \boldsymbol{b}$?

- Candes and Tao's† idea:
- We can recover \boldsymbol{x} if we have \boldsymbol{e}
- ullet Plan: Reconstruct $oldsymbol{e}$ and then compute $oldsymbol{x}$

[†] E. J. Candes and T. Tao, Decoding by linear programming, IEEE Transactions on Information Theory, Vol. 51, No. 12, pp. 4203–4215, 2005

Reconstructing e from Ax + e = b?

- Find a matrix $F \in \mathbb{R}^{(m-n) \times m}$ such that FA = O
- Premultiply both sides of Ax + e = b by F to obtain, FAx + Fe = Fb
- Let $\boldsymbol{z} = \boldsymbol{F}\boldsymbol{b}$
- Then, since FAx = 0, we obtain

$$Fe = z$$
,

where z is known

ullet Thus the original problem has been reduced to reconstructing the sparse error vector $oldsymbol{e}$ from under-determined system of equations

Finding the sparsest solution to Fe = z

Definition (0-norm of a vector)

The 0-norm of a finite dimensional vector \boldsymbol{x} , denoted $\|\boldsymbol{x}\|_0$, is the number of nonzero entries in \boldsymbol{x}

Definition (Finding the sparsest solution problem)

$$\min \|e\|_0, \quad e \in \mathbb{R}^m$$
 subject to $Fe = z$

Minimizing $\|e\|$ subject to Fe = z

The minimal 1-norm solution is the sparsest

- D. L. Donoho and M. Elad, For most large underdetermined systems of linear equations the minimal l₁-norm solution is also the sparsest solution, SIAM Review, Vol. 56, No. 6, pp. 797–829, 2006
- Therefore, instead of minimizing $\|e\|_0$, we consider an optimization problem where we minimize the 1-norm of a solution subject to the constraint, Fe = z

Finding the minimal 1-norm solution

• Since $\|e\|_1 = \sum_{i=1}^m |e_i|$ is a convex function, we have a convex optimization problem,

$$\min \|e\|_1, e \in \mathbb{R}^m$$

subject to $Fe = z$

- ullet Our objective: Find the unique solution $oldsymbol{e}$ to the above problem
- Once we find \boldsymbol{e} , we can then recover \boldsymbol{x}

Sparse Vectors

Definition (i-sparse vector)

A vector e is i-sparse if it has at most i non-zero components, that is, $||e||_0 \le i$

Example

Let

$$e = \begin{bmatrix} 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
.

Then,
$$\|e\|_0 = 2$$

A Very Important Technical Result

- ullet Consider an under-determined system, ${m F}{m e}={m z},$ where ${m F}$ and ${m z}$ are given
- Let $\Sigma_i = \{e : ||e||_0 \le i\}$ be the set of all *i*-sparse vectors
- ullet Let $\mathcal{N}(oldsymbol{F})$ denote the null space of the matrix $oldsymbol{F}$

Lemma

If $\Sigma_{2i} \cap \mathcal{N}(\mathbf{F}) = \{\mathbf{0}\}$, then any i-sparse solution of the under-determined system $\mathbf{F}\mathbf{e} = \mathbf{z}$ is unique

Proof of Lemma

- By contradiction: $S_1 \implies S_2 \iff \text{NOT}(S_1 \text{ AND NOT } S_2)$
- Suppose $e^{(1)}$ and $e^{(2)}$ are two different *i*-sparse solutions of the under-determined system Fe = z
- Then $F(e^{(1)} e^{(2)}) = 0$ and thus $e^{(1)} e^{(2)} \in \mathcal{N}(F)$
- Since $e^{(1)}$ and $e^{(2)}$ are in Σ_i , we also have $e^{(1)} e^{(2)} \in \Sigma_{2i}$
- Therefore $e^{(1)} e^{(2)} \in \Sigma_{2i} \cap \mathcal{N}(F) = \{0\}$
- It follows that we must have $e^{(1)} = e^{(2)}$, a contradiction, and thus an *i*-sparse solution of the under-determined system Fe = z must be unique

The Spark of a Matrix

Definition

The spark of the matrix F is the smallest number of linearly dependent columns in F, that is,

$$\text{spark}(F) = \min\{\|d\|_0 : Fd = 0, d \neq 0\}$$

The Spark of a Matrix—Example

Example

$$\operatorname{spark} \left[\begin{array}{cccc} 1 & 1 & 3 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 4 & 0 \\ 0 & 1 & 3 & -1 \end{array} \right] = 3$$

Indeed

- No zero column so no set of one columns linearly dependent
- No set of two columns that are linearly dependent
- There is a set of three columns that are linearly dependent; the first, the second, and the fourth columns are linearly dependent

Some Properties of the Spark of a Matrix

Let **A** be an $m \times n$ matrix, where $m \geq n$.

- Then, $\operatorname{spark}(\mathbf{A}) = n + 1 \iff \operatorname{rank}(\mathbf{A}) = n$, that is, the spark of \mathbf{A} equals n + 1 if and only if \mathbf{A} is a full column rank matrix
- $\operatorname{spark}(\mathbf{A}) = 1 \iff \mathbf{A} \text{ has a zero column}$
- If $\operatorname{spark}(\mathbf{A}) \neq n+1$, then

$$\operatorname{spark}(\boldsymbol{A}) \le \operatorname{rank}(\boldsymbol{A}) + 1$$

Restatement of the Very Important Technical Result

Corollary:

spark(\mathbf{F}) > 2*i* is equivalent to $\Sigma_{2i} \cap \mathcal{N}(\mathbf{F}) = \{\mathbf{0}\}$. Therefore, spark(\mathbf{F}) > 2*i* implies that the *i*-sparse solution to $\mathbf{F}\mathbf{e} = \mathbf{z}$ is unique