Relatório do EP de MAC0209

Antonio Fernando Silva e Cruz Filho Cássio Azevedo Cancio Eduardo Mendes Lopes Guilherme Mota Pereira Larissa Vitoria Medeiros Silva Luiz Gabriel Lima Arrais

July 4, 2022

Abstract

Esse exercício-programa foi feito para a matéria de Modelagem e Simulação. O trabalho foi dividido em duas partes: na primeira, o objetivo era utilizar uma plataforma de coleta de imagens de ruas e rodovias, Kartaview, para fazer a análise de diferentes métodos de medição de distância e compará-los. Na segunda parte, foi necessário fazer a modelagem de diferentes movimentos. O grupo escolheu analisar o Bloco na Rampa e o Movimento Circular.

Contents

1	Cro	nograma
	1.1	Gantt Chart
2	Kar	rtaview
	2.1	Introdução
	2.2	Objetivos
	2.3	Dados e métodos
	2.4	Resultados experimentais
		2.4.1 Brasil
		2.4.2 Exterior
	2.5	Discussão
3	Mo	delos de movimentos diversos (máximo de 4 páginas)
	3.1	Introdução
	3.2	Objetivos
	3.3	Dados e métodos
		3.3.1 Bloco na rampa
		3.3.2 Movimento circular
	3.4	Resultados experimentais
		3.4.1 Bloco na rampa
		3.4.2 Movimento circular
	3.5	Discussão
	3.3	3.5.1 Bloco na rampa
		3.5.2 Movimento circular
		210111101110 011011112 1 1 1 1 1 1 1 1 1
4	\mathbf{Apl}	icação (máximo de 4 páginas)
	4.1	Introdução
	4.2	Objetivos
	4.3	Dados e métodos
	4.4	Resultados experimentais
	4.5	Discussão

1 Cronograma

1.1 Gantt Chart

2 Kartaview

2.1 Introdução

Primeiramente, foi necessário escolher duas rodovias, uma no Brasil e outra no exterior, para que os métodos desenvolvidos pudessem ser testados. Basicamente, o Kartaview disponibiliza fotos retiradas por um celular em algum trajeto percorrido por um usuário da plataforma de carro. O grupo decidiu utilizar, para o trecho nacional, um pedaço da rodovia SP-248 próximo à cidade do Guarujá, em São Paulo, já o trecho no exterior, foi a rodovia M6 no Reino Unido, próximo à vila de Old Hutton em South Lakeland.

Figure 1: Figuras dos trechos escolhidos para a análise.

2.2 Objetivos

O objetivo era utilizar os dados extraídos do Kartaview para medir as distâncias percorridas pelo carro e a velocidade desse percurso. As distâncias deveriam ser calculadas por meio de 3 métodos de medição: fórmula de Haversine, projeção das coordenadas esféricas no plano e a trigonometria esférica. Depois de conseguir esses resultados, eles deveriam ser comparados com o resultado real, que poderia ser obtido por meio de sites, como o Google Maps ou com a análise de pontos fiduciais presentes nas imagens do percurso.

2.3 Dados e métodos

Foram utilizados os dados da API do Kartaview. O grupo decidiu produzir métodos em código que fossem capazes de acessar a API da plataforma e requisitar os dados diretamente, sem a necessidade de, por exemplo, extrair os dados manualmente com o Postman.

Os dados são recebidos como um JSON, depois são filtrados para conter apenas as informações necessárias para os experimentos. As informações utilizadas são: latitude e longitude (para que seja possível calcular as distâncias), o index da foto (para saber a ordem), a url da foto (para poder baixá-la) e a data e horário (para saber a diferença de tempo entre as imagens).

Além disso, o programa possui uma função que baixa da internet todas as imagens de um dado trajeto para que seja possível fazer a análise dos pontos fiduciais. No caso do trecho brasileiro, são 443 fotos amostradas e, no trecho Inglês, são 118 amostras.

Para a parte de análise, as distâncias foram calculadas por meio dos 3 métodos e foram plotadas em um gráfico junto com a "distância real" fornecida pelo sistema do Google Maps de medição e a variação dos pontos fiduciais.

2.4 Resultados experimentais

2.4.1 Brasil

Primeiramente, a distância calculada pelo Google Maps para o trajeto foi 7,5km e, analisando os pontos fiduciais, a distância encontrada foi 7,8km. As imagens a seguir mostram as placas da rodovia registradas nas fotos.

Figure 2: Imagem das placas do percurso no Brasil.

Depois da coleta dos pontos fiduciais e da distância medida pelo Maps, o programa de medição de distância foi rodado para que os 3 diferentes metros estimassem a distância. O primeiro teste media a distância total percorrida, gerando um gráfico de tempo por distância.

A princípio, foi percebido um comportamento estranho no gráfico. Por volta do primeiro minuto de trajeto, a distância estabilizou e só voltou a crescer por volta de um minuto e meio depois. Esse fato gerou desconfiança sobre o funcionamento do código, no entanto, ao analisar os dados, é possível ver que de fato essa pausa existiu no trajeto, no entanto, em vez do Kartaview tirar diversas fotos com o carro parado, ele percebeu esse não deslocamento e retirou as fotos paradas do registro. Assim, no momento da pausa, duas fotos consecutivas tiveram uma diferença de quase um minuto e meio, como pode ser visto a seguir no gráfico:

Figure 3: Gráfico da distância pelo tempo.

Outra coisa interessante, visível na segunda imagem, é que os métodos de Haversine e Trigonometria Esférica ficaram muito próximos, mesmo no final do trajeto, a diferença foi menor que 1 metro. No final das contas, o que divergiu mais foi o método de planificação da esfera. Os resultados dos trechos foram:

Método	Valor calculado (em metros)
Coordenadas no plano	8309.73
Haversine	7771.52
Maps	7500.00
Pontos fiduciais	7800.00
Trigonometria esférica	7771.5

Como requisitado, o programa mede, entre cada par de pontos, a distância percorrida, o tempo, a velocidade etc, no entanto, colocar esses dados no relatório não seria tão ilustrativo. Por isso, o foco será no percurso completo. A distância já foi mostrada no gráfico anterior, a velocidade está no gráfico a seguir e o tempo do percurso foi de 8 minutos e 48 segundos, dos quais 1 minuto e 28 segundos o carro ficou parado.

Figure 4: Gráfico da velocidade pelo tempo no percurso.

2.4.2 Exterior

No trecho do exterior, a distância calculada pelo Google Maps foi 2,6 milhas, ou seja 4,18km, e, analisando os pontos fiduciais, a distância encontrada foi 4,2km. As imagens a seguir mostram as placas da rodovia registradas nas fotos.

Figure 5: Imagem das placas do percurso na Inglaterra.

A tabela a seguir compila os resultados obtidos pelos diferentes métodos de medição:

Método	Valor calculado (em metros)
Coordenadas no plano	5029.66
Haversine	4243.45
Maps	4180
Pontos fiduciais	4200
Trigonometria esférica	4243.45

Como requisitado, o programa mede, entre cada par de pontos, a distância percorrida, o tempo, a velocidade etc, no entanto, colocar esses dados no relatório não seria tão ilustrativo. Por isso, o foco será no percurso completo. O gráfico da distância e da velocidade estão no gráfico a seguir e o tempo do percurso foi de 2 minutos e 10 segundos.

Figure 6: Gráfico da distância pelo tempo no percurso.

Figure 7: Gráfico da velocidade pelo tempo no percurso.

2.5 Discussão

Os testes foram interessantes, pois foi possível ver quais métodos são mais precisos do que outros. Experimentar no Brasil e no exterior permite a reflexão e comparação dos métodos. Tanto no caso braisleiro, quanto no inglês, é visível que o pior método é o das coordenadas no plano, já que ele simplifica muito o cálculo da distância, tratando a superfície terrestre como algo 2D.

No caso dos outros dois métodos, que de fato consideram o formato geoide da Terra, os resultados foram igualmente excelentes. Os resultados calculados pelos métodos foram quase iguais aos vistos nos pontos fiduciais e no Google Maps. Nesse sentido, fica claro que usar um dos dois métodos (Haversine e Trigonometria Esférica) produzirá resultados melhores, provavelmente em todos os casos, já que o Brasil e o Reino Unido estão em latitudes e longitudes muito diferentes, mas os resultados foram muito precisos nos dois casos.

Quanto ao gráfico da velocidade, é possível ver que o caso inglês produziu um gráfico muito mais estável. Isso ocorreu, pois no caso braisleiro, as fotos foram tiradas em períodos muito curtos, de modo que ao analisar os dados, aparecem fotos nas quais a data e o horário, incluindo os segundos, são exatamente iguais. Dessa forma, qualquer pequena variação ou erro de medição de latitude e longitude, vai gerar linhas muito íngrimes de variação, pois o tempo é muito curto para o erro ser amortizado pelo tempo, como ocorreu no caso inglês.

3 Modelos de movimentos diversos (máximo de 4 páginas)

3.1 Introdução

Inicialmente, foi necessário que o grupo escolhesse dois movimentos para modelá-los. Para este trabalho, os movimentos escolhidos foram o bloco de aço na rampa de madeira e o movimento circular. O programa deveria ter como entrada as condições iniciais do experimento, como a massa dos objetos envolvidos, a inclinação da rampa na qual o bloco iria deslizar etc. A partir dessas informações, o programa deveria simular o deslocamento do objeto seguindo as fórmulas de física vistas em aula.

Esse tipo de experimento é importante, pois é utilizado em diversas áreas da computação, como jogos, simuladores e programas educacionais. Por fim, os resultados do simulador foram comparados com os resultados dos experimentos feitos fisicamente por alunos do Instituto de Física da USP.

3.2 Objetivos

O objetivo era extrair os dados experimentais disponíveis no site do IFUSP, organizá-los, em seguida, escrever dois simuladores para os movimentos circular e bloco na rampa, executá-los com as mesmas condições descritas nos experimentos do IFUSP e comparar os resultados simulados com os resultados experimentais. É desejável que no final, os resultados simulados estejam próximos aos experimentados.

3.3 Dados e métodos

Os dados foram extraídos do site http://www.fep.if.usp.br/~fisfoto/translacao/atrito/index. php do Instituto de Física. Foi necessário extrair os dados de pelo menos 5 experimentos diferentes de cada tipo. Esses dados foram organizados em tabelas e as condições iniciais foram utilizados para simular o movimento pelo programa.

3.3.1 Bloco na rampa

Os dados extraídos são dos experimentos 1, 2, 4, 7 e 11 e estão tabelados a seguir:

Figure 8: Dados do bloco na rampa.

O programa recebe a aceleração gravitacional, massa do bloco, coeficientes estático e cinético, velocidade e aceleração inicial do bloco, o ângulo da rampa, posição inicial, tempo inicial e final do experimento e o dt. Esses dados estão todos disponíveis na internet ou por meio do experimento, portanto, não foi difícil encontrá-los. Os coeficientes de atrito vieram do segundo documento disponível no site.

3.3.2 Movimento circular

Os dados extraídos são dos experimentos 2, 3, 5, 7 e 11 e estão tabelados a seguir: Explique os dados usados e os métodos desenvolvidos.

		Detalhes:						Experim	anta 2					Experime	anto 2		
Crown	medidos pela bu		trán) de bele une	on elle e		; ~	ti *	teta e(t i *	w e(t i) *	v e(t i) ~	a e(t i) *		ti 🔻	teta e(t i	w e(t i) *	v e(t i) ~	a e(t i) *
Glaus		calculada foi		mema		0	0.0021	-2,0		2.531	44,170	0	0.0042	1,5	17,104	2,480	42,420
	Tempo (t)	Calculada ioi		seg (s)		1	0,0021	23.0		2,531	44,170	1	0.0292	26.0	17,104	2,460	44,170
	Ângulo (teta)			graus (°)		2	0,0271	48.0		2,531	40,707	2	0.0232	51.0	15,010	2,551	32,668
Unidades de	Velocidade Âng	ulas (ui)		graus (*) rad/s		3	0,0321	72.0		2,425	28,268	2	0.0792	72.5	14,312	2,176	29,700
medida	Velocidade Esc			m/s		3	0,1021	92.0		1,873	24,187	4	0,0792	93.0	13,963	2,075	28,268
	Aceleração Cen			m/s^2			0,1021	110.5	11.868	1,721	20,424	-	0.1292	113.0	10,472	1,518	15,901
	Mceleração ceri	ilipeta (a)		11/5-2		6	0,1271	127.5	,	1,721	15,901	6	0,1542	128.0	10,472	1,518	15,901
						7	0,1321	142.5	9,425	1,310	12,880	7	0,1342	143.0	10,472	1,468	14,859
						8	0,2021	156.0	9,774	1,307	13,852	,	0.2042	157,5	9.425	1,460	12,880
						9	0,2021	170.0	9.076	1,316	11.943	9	0,2042	171.0	9,425	1,367	12,880
						10	0,2271	183.0	2,121.2	1,518	15.901	10	0,2292	184.5	9,425	1,367	12,880
						11	0,2521	198.0	10,472	1,510	14,859	11	0,2542	198.0	10.472	1,507	15,901
						12	0,3021	212,5		1,400	19,240	12	0,2792	213.0	11,868	1,721	20,424
						13	0,3021	212,5	13,265	1,923	25.512	13	0,3042	230.0	13.963	2.025	28,268
						13		248.0	13,265	2,126		13	0,3292	250.0	13,963	2,025	
						15	0,3521	248,0	15,359	2,126	31,166 34,205	15	0,3542	250,0	16,057	2,025	28,268 37,385
						16		269,0		2,227	34,205	16	0,3792	270,0	23.038	3,341	
						17	0,4021	314.0	16,057	2,328	37,385	17	0,4042	326.0	9,774	1,417	76,961 13.852
						18		314,0	16,057	2,328	37,385	18	0,4292	340.0	9,114	1,417	13,852
						18	0,4521	331,0		-		18	0,4542	340,0		-	
Experimento 5																	
								Experim						Experime			
i	ti *	teta_e(t_i ~	w_e(t_i) *	v_e(t_i) ×	a_e(t_i) ~	i v	t_i *	teta_e(t_i *	w_e(t_i) *	v_e(t_i) ×	a_e(t_i) ~	į v	tj ×	teta_e(t_i *	w_e(t_i) *	v_e(t_i) *	a_e(t_i) ×
i v	0,0083	teta_e(t_i * 6,0	w_e(t_i) * 17,453	2,531	44,170	i *	0,0125	teta_e(t_i * 10,0	w_e(t_i) ~ 17,802	2,581	45,954	i •	0,0208	teta_e(t_i * 18,0	w_e(t_i) * 17,802	2,581	45,954
1	0,0083 0,0333	teta_e(t_i ~ 6,0 31,0	w_e(t_i) * 17,453 16,755	2,531 2,429	44,170 40,707	0	0,0125 0,0375	teta_e(t_i * 10,0 35,5	w_e(t_i) * 17,802 16,057	2,581 2,328	45,954 37,385	0	0,0208 0,0458	teta_e(t_i ▼ 18,0 43,5	w_e(t_i) * 17,802 15,359	2,581 2,227	45,954 34,205
1 2	0,0083 0,0333 0,0583	teta_e(t_i = 6,0 31,0 55,0	w_e(t_i) * 17,453 16,755 15,359	2,531 2,429 2,227	44,170 40,707 34,205	0 1 2	0,0125 0,0375 0,0625	teta_e(t_i v 10,0 35,5 58,5	w_e(t_i) * 17,802 16,057 15,359	2,581 2,328 2,227	45,954 37,385 34,205	0 1 2	0,0208 0,0458 0,0708	18,0 43,5 65,5	w_e(t_i) * 17,802 15,359 14,661	2,581 2,227 2,126	45,954 34,205 31,166
1	0,0083 0,0333 0,0583 0,0833	teta_e(t_i v 6,0 31,0 55,0 77,0	w_e(t_i) * 17,453 16,755 15,359 13,963	2,531 2,429 2,227 2,025	44,170 40,707 34,205 28,268	0	0,0125 0,0375 0,0625 0,0875	teta_e(t_i v 10,0 35,5 58,5 80,5	w_e(t_i) * 17,802 16,057 15,359 13,614	2,581 2,328 2,227 1,974	45,954 37,385 34,205 26,873	0	0,0208 0,0458 0,0708 0,0958	teta_e(t_i * 18,0 43,5 65,5 86,5	w_e(t_i) * 17,802 15,359 14,661 14,312	2,581 2,227 2,126 2,075	45,954 34,205 31,166 29,700
3	0,0083 0,0333 0,0583 0,0833 0,1083	teta_e(t_i 6,0 31,0 55,0 77,0 97,0	w_e(t_i) * 17,453 16,755 15,359 13,963 12,566	2,531 2,429 2,227 2,025 1,822	44,170 40,707 34,205 28,268 22,897	0 1 2 3 4	0,0125 0,0375 0,0625 0,0875 0,1125	teta_e(t_i ▼ 10,0 35,5 58,5 80,5 100,0	w_e(t_i) ** 17,802 16,057 15,359 13,614 12,566	2,581 2,328 2,227 1,974 1,822	45,954 37,385 34,205 26,873 22,897	0 1 2	0,0208 0,0458 0,0708 0,0958 0,1208	teta_e(t_i	w_e(t_i) * 17,802 15,359 14,661 14,312 12,915	2,581 2,227 2,126 2,075 1,873	45,954 34,205 31,166 29,700 24,187
3 3 4 5	0,0083 0,0333 0,0583 0,0833 0,1083 0,1333	teta_e(t_i	w_e(t_i) * 17,453 16,755 15,359 13,963 12,566 11,170	2,531 2,429 2,227 2,025 1,822 1,620	44,170 40,707 34,205 28,268 22,897 18,092	0 1 2	0,0125 0,0375 0,0625 0,0875 0,1125 0,1375	teta_e(t_i v 10,0 35,5 58,5 80,5 100,0 118,0	w_e(t_i) * 17,802 16,057 15,359 13,614 12,566 10,821	2,581 2,328 2,227 1,974 1,822 1,569	45,954 37,385 34,205 26,873 22,897 16,979	0 1 2	0,0208 0,0458 0,0708 0,0958 0,1208 0,1458	teta_e(t_i) ▼ 18,0 43,5 65,5 86,5 107,0 125,5	w_e(t_i) * 17,802 15,359 14,661 14,312 12,915 9,425	2,581 2,227 2,126 2,075 1,873 1,367	45,954 34,205 31,166 29,700 24,187 12,880
1 2 3 4 5	0,0083 0,0333 0,0583 0,0833 0,1083 0,1333 0,1583	teta_e(t_i	w_e(t_i) * 17,453 16,755 15,359 13,963 12,566 11,170 10,472	2,531 2,429 2,227 2,025 1,822 1,620 1,518	44,170 40,707 34,205 28,268 22,897 18,092 15,901	0 1 2 3 4	0,0125 0,0375 0,0625 0,0875 0,1125 0,1375 0,1625	teta_e(t_i v 10.0 35.5 58.5 80.5 100.0 118.0	w_e(t_i) * 17,802 16,057 15,359 13,614 12,566 10,821 10,123	2,581 2,328 2,227 1,974 1,822 1,569 1,468	45,954 37,385 34,205 26,873 22,897 16,979 14,859	0 1 2	0,0208 0,0458 0,0708 0,0958 0,1208 0,1458 0,1708	teta_e(t_i] * 18,0 43,5 65,5 86,5 107,0 125,5 139,0	w_e(t_i) */ 17,802 15,359 14,661 14,312 12,915 9,425 9,774	2,581 2,227 2,126 2,075 1,873 1,367 1,417	45,954 34,205 31,166 29,700 24,187 12,880 13,852
0 1 2 3 4 5 6	0,0083 0,0333 0,0563 0,0833 0,1083 0,1333 0,1583 0,1833	teta_e(t_i v 6,0 31,0 55,0 77,0 97,0 115,0 131,0 146,0	w_e(t_i) * 17,453 16,755 15,359 13,963 12,566 11,170 10,472 9,774	2,531 2,429 2,227 2,025 1,822 1,620 1,518 1,417	44,170 40,707 34,205 28,268 22,897 18,092 15,901 13,852	0 1 2 3 4 5 6	0,0125 0,0375 0,0625 0,0875 0,1125 0,1375 0,1625 0,1875	teta_e(t_i v 10.0 35.5 58.5 80.5 100.0 118.0 133.5 148.0	w_e(t_i) * 17.802 16.057 15.359 13.614 12.566 10.821 10.123 9.774	2,581 2,328 2,227 1,974 1,822 1,569 1,468 1,417	45,954 37,385 34,205 26,873 22,897 16,979 14,859 13,852	0 1 2	0,0208 0,0458 0,0708 0,0958 0,1208 0,1458 0,1708 0,1958	teta_e(t_i] * 18,0 43,5 65,5 86,5 107,0 125,5 139,0 153,0	w_e(t_i) */ 17,802 15,359 14,661 14,312 12,915 9,425 9,774 9,774	2,581 2,227 2,126 2,075 1,873 1,367 1,417 1,417	45,954 34,205 31,166 29,700 24,187 12,880 13,852 13,852
0 1 2 3 4 4 5 6	0,0083 0,0333 0,0563 0,0833 0,1083 0,1333 0,1583 0,1833 0,2083	teta e(t i v 6.0 31.0 55.0 77.0 97.0 115.0 131.0 146.0 160.0	w_e(t_i) ~ 17,453 16,755 15,359 13,963 12,566 11,170 10,472 9,774 9,076	2,531 2,429 2,227 2,025 1,822 1,620 1,518 1,417	44,170 40,707 34,205 28,268 22,897 18,092 15,901 13,852 11,943	0 1 2 3 4 5 6 7	0,0125 0,0375 0,0625 0,0875 0,1125 0,1375 0,1625 0,1875 0,2125	teta_e(t_i) v 10.0 35.5 58.5 80.5 100.0 118.0 133.5 148.0 162.0	w_e(t_i) * 17,802 16,057 15,359 13,614 12,566 10,821 10,123 9,774 9,425	2,581 2,328 2,227 1,974 1,822 1,569 1,468 1,417	45,954 37,385 34,205 26,873 22,897 16,979 14,859 13,852 12,880	0 1 2 3 4 5 6 7	0,0208 0,0458 0,0708 0,0958 0,1208 0,1458 0,1708 0,1958 0,2208	teta_e(t_i] ~ 18,0 43,5 65,5 86,5 107,0 125,5 139,0 153,0 167,0	w_e(t_i) * 17.802 15.359 14.661 14.312 12.915 9.425 9.774 9.774 9.076	2,581 2,227 2,126 2,075 1,873 1,367 1,417 1,417 1,316	45,954 34,205 31,166 29,700 24,187 12,880 13,852 13,852 11,943
1 2 3 4 5 6 7 7	0,0083 0,0333 0,0583 0,0833 0,1083 0,1333 0,1583 0,1833 0,2083 0,2333	teta e(t i) v 6.0 31.0 55.0 77.0 97.0 115.0 131.0 146.0 160.0 173.0	w_e(t_i) * 17,453 16,755 15,359 13,963 12,566 11,170 10,472 9,774 9,076 10,123	2,531 2,429 2,227 2,025 1,822 1,620 1,518 1,417 1,316	44,170 40,707 34,205 28,268 22,897 18,092 15,901 13,852 11,943 14,859	0 1 2 3 4 5 6 7 8	0,0125 0,0375 0,0625 0,0875 0,1125 0,1375 0,1625 0,1875 0,2125 0,2375	teta_e(t i v 10,0 35,5 58,5 80,5 100,0 118,0 133,5 148,0 162,0 175,5	w e(t i) * 17,802 16,057 15,359 13,614 12,566 10,821 10,123 9,774 9,425 9,425	2,581 2,328 2,227 1,974 1,822 1,569 1,468 1,417 1,367	45,954 37,385 34,205 26,873 22,897 16,979 14,859 13,852 12,880 12,880	0 1 2 3 4 5 6 7 8	0,0208 0,0458 0,0708 0,0958 0,1208 0,1458 0,1708 0,1958 0,2208	teta e(t i v 18,0 43,5 66,5 86,5 107,0 125,5 139,0 167,0 180,0 180,0	w e(t i) v 17,802 15,359 14,661 14,312 12,915 9,425 9,774 9,774 9,076	2,581 2,227 2,126 2,075 1,873 1,367 1,417 1,417 1,316	45,954 34,205 31,166 29,700 24,187 12,880 13,852 13,852 11,943 13,852
1 2 3 4 5 6 7 7 8 8 9	0,0083 0,0333 0,0583 0,0833 0,1083 0,1333 0,1583 0,1833 0,2083 0,2333 0,2583	teta e(t i) = 6.0 31.0 55.0 77.0 97.0 115.0 131.0 146.0 160.0 173.0 187.5	w_e(t_i) v 17,453 16,755 15,359 13,963 12,566 11,170 10,472 9,774 9,076 10,123 9,425	2,531 2,429 2,227 2,025 1,622 1,518 1,417 1,316 1,468 1,367	44,170 40,707 34,205 28,268 22,897 18,092 15,901 13,852 11,943 14,859 12,880	0 1 2 3 4 4 5 6 7 8 9	0,0125 0,0375 0,0625 0,0875 0,1125 0,1375 0,1625 0,1875 0,2125 0,2375	teta e(t i) v 10.0 35,5 58,5 80,5 100,0 118,0 133,5 148,0 162,0 175,5 189,0	w e(t i) * 17,802 16,057 15,359 13,614 12,566 10,821 10,123 9,774 9,425 10,472	2,581 2,328 2,227 1,974 1,822 1,569 1,468 1,417 1,367 1,367	45,954 37,385 34,205 26,873 22,897 16,979 14,859 13,852 12,880 12,880 15,901	0 1 2 3 4 5 6 7 8 9	0,0208 0,0458 0,0708 0,0958 0,1208 0,1458 0,1708 0,1958 0,2208 0,2458 0,2708	teta_e(t_i v 18,0 43,5 65,5 86,5 107,0 125,5 139,0 153,0 167,0 180,0 194,0	w_e(t_i) * 17,802 15,359 14,661 14,312 12,915 9,425 9,774 9,076 9,774 10,472	2,581 2,227 2,126 2,075 1,873 1,367 1,417 1,417 1,316 1,417 1,518	45,954 34,205 31,166 29,700 24,187 12,880 13,852 11,943 13,852 11,943 13,852 15,901
1 2 3 4 4 5 6 7 7 8 8 9	0,0083 0,0333 0,0833 0,0833 0,1083 0,1333 0,1583 0,1833 0,2083 0,2083 0,2333 0,2683	teta e(t i v 6.0 31.0 55.0 77.0 97.0 115.0 131.0 146.0 173.0 187.5 201.0	w_e(t_i) * 17,453 16,755 15,359 13,963 12,566 11,170 10,472 9,774 9,076 10,123 9,425 11,170	2,531 2,429 2,227 2,025 1,622 1,518 1,417 1,316 1,468 1,367	44,170 40,707 34,205 28,268 22,897 18,092 15,901 13,852 11,943 14,859 12,880 18,092	0 1 1 2 3 4 5 6 7 8 9 10	0,0125 0,0375 0,0625 0,0875 0,1125 0,1375 0,1625 0,1875 0,2125 0,2375 0,2625 0,2875	teta e[t i] v 10.0 35,5 58,5 80,5 100,0 118,0 133,5 148,0 162,0 175,5 189,0 204,0	w_e(t_i) * 17,802 16,057 15,359 13,614 12,566 10,821 10,123 9,774 9,425 10,472 11,170	2,581 2,328 2,227 1,974 1,822 1,569 1,468 1,417 1,367 1,518 1,620	45,954 37,385 34,205 26,873 22,897 16,979 14,859 13,852 12,880 15,901 18,092	0 1 2 3 4 5 6 7 8 9 10	0,0208 0,0458 0,0708 0,0958 0,1208 0,1458 0,1708 0,1958 0,2208 0,2458 0,2708 0,2958	teta_e(t_i ** 18.0 43.5 66.5 86.5 107.0 125.5 139.0 167.0 180.0 194.0 209.0	w_e(t_i) ** 17,802 15,359 14,661 14,312 12,915 9,426 9,774 9,774 9,076 9,774 10,472 11,170	2,581 2,227 2,126 2,075 1,873 1,367 1,417 1,417 1,316 1,417 1,518	45,954 34,205 31,166 29,700 24,187 12,880 13,852 11,943 13,852 15,901 18,092
2 3 4 4 5 6 7 7 8 8 9	0,0083 0,0333 0,0833 0,0833 0,1083 0,1333 0,1583 0,2833 0,2333 0,2583 0,2833 0,2833	teta_e(t_i] = 6.0 31.0 55.0 77.0 97.0 115.0 131.0 146.0 160.0 173.0 187.5 201.0 217.0	w_e(t_i) ~ 17.453 16.755 15.359 13.963 12.566 11.170 10.472 9.774 9.076 10.123 9.425 11.170 11.868	2,531 2,429 2,227 2,025 1,822 1,620 1,518 1,417 1,316 1,468 1,367 1,620 1,721	44,170 40,707 34,205 28,268 22,897 18,092 15,901 13,862 11,943 14,859 12,880 18,092 20,424	0 1 1 2 3 4 5 6 6 7 8 8 9 10 11 11	0,0125 0,0375 0,0625 0,0875 0,1125 0,1375 0,1625 0,1875 0,2125 0,2375 0,2625 0,2875	teta e(t i v 10.0 10.0 35.5 58.5 80.5 100.0 118.0 133.5 148.0 162.0 175.5 189.0 204.0 220.0	w_e(t_i) = 17.802 16.057 15.369 13.614 12.566 10.821 10.123 9.774 9.425 9.425 10.472 11.170	2,581 2,328 2,227 1,974 1,822 1,569 1,468 1,417 1,367 1,518 1,620 1,721	45,954 37,385 34,205 26,873 22,897 16,979 14,859 13,852 12,880 12,880 15,901 18,092 20,424	0 1 2 3 4 5 6 7 8 9 10 11 11	0,0208 0,0458 0,0708 0,0958 0,1208 0,1458 0,1708 0,2208 0,2458 0,2708 0,2708	teta_e(t_i ** 18.0 43.5 65.5 86.5 107.0 125.5 139.0 167.0 180.0 194.0 209.0 225.0	w_e(t_i) ~ 17.802 15.359 14.661 14.312 12.915 9.425 9.774 9.774 9.774 10.472 11,170 13,265	2,581 2,227 2,126 2,075 1,873 1,367 1,417 1,417 1,316 1,417 1,518 1,620 1,923	45,954 31,166 29,700 24,187 12,880 13,852 11,943 13,852 15,901 18,092 25,512
6 6 6 8 8 9 10 10 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	0,0083 0,0333 0,0683 0,1083 0,1083 0,1333 0,1883 0,2833 0,2833 0,2833 0,2833 0,3083 0,3083 0,3083	teta_e(t_i) = 6.0 31.0 55.0 77.0 97.0 115.0 131.0 146.0 160.0 173.0 217.0 234.0	w e(t i) ~ 17,453 16,755 15,359 13,963 12,566 11,170 10,472 9,774 9,076 10,123 9,425 11,170 11,868 13,265	2,531 2,429 2,227 2,025 1,822 1,620 1,518 1,417 1,316 1,468 1,367 1,620 1,721	44,170 40,707 34,205 28,268 22,897 18,092 15,901 13,852 11,943 14,859 12,880 20,424 25,512	0 1 2 3 4 5 6 6 7 8 8 9 10 11 11 12 12	0.0125 0.0375 0.0625 0.0875 0.1125 0.1375 0.1625 0.2125 0.2375 0.2625 0.2875 0.3125	teta e(t i v 10.0 35.5 58.5 80.5 100.0 118.0 133.5 148.0 152.0 1775.5 189.0 204.0 220.0 227.0	w_e(t_i) */ 17,802 16,057 15,359 13,614 12,566 10,821 10,123 9,774 9,425 10,472 11,170 11,868 13,265	2,581 2,328 2,227 1,974 1,822 1,569 1,468 1,417 1,367 1,367 1,518 1,620 1,721	45,954 37,385 34,205 26,873 22,897 16,979 14,859 12,880 12,880 15,901 18,092 20,424 25,512	0 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13	0,0208 0,0458 0,0708 0,0958 0,1208 0,1458 0,1708 0,208 0,2458 0,2708 0,2958 0,3208	teta_e(t_i ~ 18.0 43.5 66.5 86.5 107.0 125.5 139.0 167.0 180.0 194.0 209.0 225.0 244.0	w_e(t_i) ~ 17.802 15.359 14.661 14.312 12.915 9.425 9.774 9.076 9.774 10.472 11.170 13.265 13.963	2,581 2,227 2,126 2,075 1,673 1,367 1,417 1,417 1,316 1,417 1,518 1,620 1,923 2,025	45,954 34,205 31,166 29,700 24,187 12,880 13,852 11,943 13,852 15,901 18,092 25,512 28,268
2 3 4 4 6 6 7 7 8 9 10 11 11 12 13	0,0083 0,0333 0,0583 0,1083 0,1083 0,1383 0,1583 0,1833 0,2833 0,2833 0,2833 0,2833 0,3083 0,3083 0,3333 0,3683	teta e(t i v 6.0 31.0 55.0 77.0 97.0 115.0 146.0 160.0 173.0 221.0 224.0 253.0 253.0	w e(t i) ~ 17.453 16.755 16.359 13.963 12.566 11.170 10.472 9.774 9.076 10.123 9.425 11.170 11.868 13.265 14.661	2,531 2,429 2,227 2,025 1,620 1,518 1,417 1,316 1,468 1,367 1,620 1,721 1,923 2,126	44,170 40,707 34,205 28,268 22,897 18,092 15,901 13,852 11,943 14,859 12,880 18,092 20,424 25,512 31,166	0 1 2 3 4 4 5 6 6 7 7 8 8 9 9 10 11 12 12 13	0.0125 0.0375 0.0625 0.0875 0.1125 0.1375 0.1625 0.2125 0.2375 0.2625 0.2875 0.3125 0.3325 0.3325	teta e(t v 10.0 35.5 58.5 80.5 100.0 118.0 133.5 148.0 152.0 175.5 189.0 204.0 227.0 227.0 2256.0 2256.0 2256.0	w e(t.i) ** 17.802 16.057 15.359 13.614 12.566 10.821 10.123 9.774 9.425 9.425 10.472 11.170 11.868 13.265 15.359	2,581 2,328 2,227 1,974 1,822 1,569 1,468 1,417 1,367 1,518 1,620 1,721 1,923 2,227	45,954 37,385 34,205 26,873 22,897 16,979 14,859 13,852 12,880 12,880 15,901 18,092 20,424 25,512 34,205	0 1 2 3 4 4 5 6 7 8 9 10 11 12 13	0,0208 0,0458 0,0708 0,0958 0,1208 0,1458 0,1708 0,208 0,2458 0,2708 0,2958 0,3208 0,3458 0,3708	teta_e(t_i ~ 18.0 18.0 43.5 66.5 86.5 107.0 125.5 139.0 167.0 180.0 194.0 209.0 225.0 244.0	w_e(t_i) ~ 17,802 15,359 14,661 14,312 12,915 9,425 9,774 9,774 9,076 9,774 10,472 11,170 13,265 13,963 14,661	2,581 2,227 2,126 2,075 1,873 1,367 1,417 1,417 1,316 1,417 1,518 1,620 1,923 2,025 2,126	45,954 34,205 31,166 29,700 24,187 12,880 13,852 11,943 13,852 15,901 18,092 25,512 28,268 31,166
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 10 11 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	0,0083 0,0333 0,0583 0,1083 0,1083 0,1333 0,1583 0,2083 0,2383 0,2383 0,2583 0,2833 0,2833 0,2833 0,3383 0,3383 0,3383 0,3383	teta e(t.i) = 6.0 31.0 55.0 77.0 97.0 115.0 131.0 146.0 173.0 187.5 201.0 217.0 234.0 253.0 274.0	w e(t j) ~ 17,453 16,755 15,359 13,963 12,566 11,170 10,472 9,774 9,076 10,123 9,425 11,170 11,868 13,265 14,661 15,359	2,531 2,429 2,227 2,025 1,620 1,518 1,417 1,316 1,468 1,367 1,620 1,721 1,923 2,126 2,227	44.170 40,707 34.205 28.268 22.897 18.092 15.901 13.852 11.943 14.859 12.880 18.092 20.424 25.512 31.166	0 1 2 3 3 4 4 6 6 7 7 8 9 10 11 12 13 13 14	0,0125 0,0375 0,0625 0,0875 0,1125 0,1375 0,1625 0,1875 0,2125 0,2375 0,2625 0,2875 0,3126 0,3126 0,33625 0,3875	teta e(t i v 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10	w e(t i) " 17.802 16.057 15.359 13.614 12.566 10.821 10.123 9.774 9.425 9.425 10.472 11.170 11.868 13.265 15.359 15.359	2,581 2,328 2,227 1,974 1,822 1,569 1,468 1,417 1,367 1,518 1,620 1,721 1,923 2,227 2,227	45,954 37,385 34,205 26,873 22,897 16,979 14,859 13,852 12,880 12,880 15,901 18,092 20,424 25,512 34,205 34,205	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0,0208 0,0458 0,0708 0,0708 0,1208 0,1458 0,1708 0,1958 0,2458 0,2708 0,2958 0,3208 0,3208 0,3708 0,3708	teta_e(t_i' = 18.0 18.0 43.5 65.5 86.5 107.0 125.5 139.0 153.0 167.0 180.0 194.0 209.0 225.0 244.0 284.0 285.0	w_e(t_j) v 17,802 15,559 14,661 14,312 12,915 9,774 9,774 9,076 9,774 10,472 11,170 13,265 13,963 14,661 16,057	2,581 2,227 2,126 2,075 1,873 1,367 1,417 1,417 1,316 1,417 1,518 1,620 1,923 2,025 2,126 2,328	45,954 34,205 31,166 29,700 24,187 12,880 13,852 11,943 13,852 15,901 18,092 25,512 28,268 31,166 37,385
2 2 3 4 4 5 6 6 7 7 7 8 8 9 10 11 12 13 14 15 16 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	0,0083 0,0333 0,0833 0,1083 0,1083 0,1833 0,1893 0,2083 0,2083 0,2393 0,2683 0,2393 0,3833 0,3833 0,3833 0,3833	teta e[t i] ~ 6.0 5.0 5.0 77.0 97.0 115.0 146.0 173.0 187.5 201.0 221.0 224.0 226.0 229.0 229.0 229.0	w e(t i) * 17,453 16,755 15,359 13,963 12,566 11,170 10,472 9,774 9,076 10,123 9,425 11,170 11,868 13,265 14,661 15,359 16,755	2,531 2,429 2,227 1,620 1,518 1,417 1,316 1,468 1,367 1,620 1,721 1,923 2,126 2,227 2,2429	44,170 40,707 34,205 20,268 22,897 18,092 15,901 13,852 11,943 14,859 12,880 18,092 20,424 25,512 31,166 40,707	0 1 2 3 4 4 5 6 6 7 7 8 9 10 11 12 13 14 15 15 16	0,0125 0,0376 0,0625 0,0876 0,1126 0,1376 0,1625 0,1876 0,2126 0,2376 0,2625 0,2876 0,3125 0,3376 0,3625 0,3876 0,4125	teta e(t i v 10,0 35,5 58,5 80,5 100,0 118,0 133,6 148,0 162,0 220,0 227,0 225,0 300,0 300,0 300,0	w e(t i) * (17,802 17,802 17,802 17,802 15,359 13,614 12,566 10,821 10,123 9,774 9,425 10,472 11,170 11,188 11,888 13,265 15,359 15,359 16,755	2,581 2,328 2,227 1,974 1,822 1,569 1,468 1,417 1,367 1,518 1,620 1,721 1,923 2,227 2,227 2,429	45,954 37,385 34,205 26,873 22,897 16,979 14,859 13,852 12,880 12,880 15,901 18,092 20,424 25,512 34,205	0 1 2 3 3 4 5 6 6 7 8 9 10 0 11 12 13 14 15	0,0208 0,0458 0,0708 0,1208 0,1208 0,1458 0,1708 0,1958 0,2208 0,2458 0,2708 0,2958 0,3208 0,3458 0,3708 0,3958 0,3958	teta_e(t_i * 18.0 43.5 65.5 86.5 107.0 125.5 139.0 167.0 180.0 194.0 209.0 225.0 244.0 264.0 285.0 308.0	we(t)) v 17,802 17,802 14,661 14,312 12,915 9,774 9,774 9,774 9,076 10,472 11,170 13,265 13,963 14,661 16,057 17,104	2,581 2,227 2,126 2,075 1,873 1,367 1,417 1,417 1,316 1,620 1,923 2,025 2,126 2,328 2,480	45,954 34,205 31,166 29,700 24,187 12,880 13,852 11,943 13,852 15,901 18,092 25,512 28,268 31,166
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 10 11 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	0,0083 0,0333 0,0833 0,1083 0,1083 0,1833 0,1893 0,2083 0,2083 0,2393 0,2683 0,2393 0,3833 0,3833 0,3833 0,3833	teta e(t.i) = 6.0 31.0 55.0 77.0 97.0 115.0 131.0 146.0 173.0 187.5 201.0 217.0 234.0 253.0 274.0	w e(t i) * 17,453 16,755 15,359 13,963 12,566 11,170 10,472 9,774 9,076 10,123 9,425 11,170 11,868 13,265 14,661 15,359 16,755	2,531 2,429 2,227 2,025 1,620 1,518 1,417 1,316 1,468 1,367 1,620 1,721 1,923 2,126 2,227	44.170 40,707 34.205 28.268 22.897 18.092 15.901 13.852 11.943 14.859 12.880 18.092 20.424 25.512 31.166	0 1 2 3 3 4 4 6 6 7 7 8 9 10 11 12 13 13 14	0,0125 0,0375 0,0625 0,0875 0,1125 0,1375 0,1625 0,1875 0,2125 0,2375 0,2625 0,2875 0,3126 0,3126 0,33625 0,3875	teta e(t i v 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10	w e(t i) " 17.802 16.057 15.359 13.614 12.566 10.821 10.123 9.774 9.425 9.425 10.472 11.170 11.868 13.265 15.359 15.359	2,581 2,328 2,227 1,974 1,822 1,569 1,468 1,417 1,367 1,518 1,620 1,721 1,923 2,227 2,227	45,954 37,385 34,205 26,873 22,897 16,979 14,859 13,852 12,880 12,880 15,901 18,092 20,424 25,512 34,205 34,205	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0,0208 0,0458 0,0708 0,0708 0,1208 0,1458 0,1708 0,1958 0,2458 0,2708 0,2958 0,3208 0,3208 0,3708 0,3708	teta_e(t_i' = 18.0 18.0 43.5 65.5 86.5 107.0 125.5 139.0 153.0 167.0 180.0 194.0 209.0 225.0 244.0 284.0 285.0	w_e(t_j) v 17,802 15,559 14,661 14,312 12,915 9,774 9,774 9,076 9,774 10,472 11,170 13,265 13,963 14,661 16,057	2,581 2,227 2,126 2,075 1,873 1,367 1,417 1,417 1,316 1,417 1,518 1,620 1,923 2,025 2,126 2,328	45,954 34,205 31,166 29,700 24,187 12,880 13,852 11,943 13,852 15,901 18,092 25,512 28,268 31,166 37,385

Figure 9: Dados do movimento circular.

3.4 Resultados experimentais

3.4.1 Bloco na rampa

Figure 10: Comparação entre a simulação e os dados experimentais.

3.4.2 Movimento circular

Figure 11: Comparação entre a simulação e os dados experimentais.

3.5 Discussão

3.5.1 Bloco na rampa

3.5.2 Movimento circular

No no

4 Aplicação (máximo de 4 páginas)

4.1 Introdução

Apresente uma introdução ao trabalho desenvolvido, fornecendo o contexto e a motivação.

4.2 Objetivos

Apresente o objetivo dessa parte do trabalho. Seja objetivo e claro.

4.3 Dados e métodos

Explique os dados usados e os métodos desenvolvidos.

4.4 Resultados experimentais

Apresente os resultados obtidos, Explore tabelas e gráficos ilustrativos.

4.5 Discussão

Interprete os resultados e apresente uma visão crítica.