

CECS 303: Networks and Network Security

Penetration Testing (cont'd)

Chris Samayoa

Week 8 – 2nd Lecture 3/10/2022

Course Information

- CECS 303
- Networks and Network Security 3.0 units
- Class meeting schedule
- TuTH 5:00PM to 7:15PM
- Lecture Room: VEC 402
- Lab Room: ECS 413
- Class communication
- chris.samayoa@csulb.edu
- Cell: 562-706-2196
- Office hours
- Thursdays 4pm-5pm (VEC-404)
- Other times by appointment only

Objectives

- Types of penetration tests
- Intro to Penetration Testing
 - Stages
- Rules of Engagement
- Reconnaissance techniques

Why Pen Test?

- Compliance
 - Some industries have specific frameworks that they must adhere to legally
 - Payment card industry (PCI DSS)
 - North American utility companies (NERC CIP)
 - Medical Industry (HIPAA)
 - Department of Defense (CMMS [Cybersecurity Maturity Model Certification])
 - Other organizations may have a self imposed compliance requirement
 - Good publicity
 - > ISO 27001
 - NIST-CSF
- Risk Management
 - Cybersecurity insurance will often require penetration testing
 - Acceptable risks can be calculated if needed
- Baselines
 - Regular penetration tests can serve as baselines for needed remediations
 - Set future architecture roadmaps
- Stay informed!

Penetration Testing Types

- White Box
 - Internal structure of network environment is known
 - Tester can view source code and have access to applications and systems
 - Test from developer's / administrators point of view
- Black Box
 - Internal structure is unknown for network environment
 - Little to no information provided to testers
 - Can most closely resemble external actors
 - Time restraints are different
- Grey Box
 - Combination of white box and black box
 - Tester can partially "see" inner working of a network environment
 - Allows for more of the network to be tested within a given time frame
 - Tester granted some permissions or internal access on the network
 - Typically where most penetration tests land

Penetration Testing Stages

- Planning (scoping)
- Reconnaissance
- Gaining Access (exploitation) Lateral Movement
- Maintaining Access / Escalation
- Analysis / Reporting
- Remediation

Planning

- Identify what threats cause the most concern
 - Insider threats
 - External threats
 - Unknown
- What devices?
 - Cloud vs on-premises
 - What about cloud service policies?
 - IP address ranges / domain names
 - Servers / workstations / network devices
- Length of engagement
 - Cost vs scope
 - Can help determine what type of testing would be best
- Rules of Engagement document solidifies the scope

Rules of Engagement

- Rules of Engagement (ROE)
 - Written document that specifies the scope and allowable actions during a penetration test
 - Specifies level of communication during engagement
- Type and scope of engagement
 - White box / black box / grey box
 - What attack surfaces can be tested
 - What methods are allowed?
 - Intrusive vs. non-intrusive
 - Physical vs remote engagements
- Client contact details
 - Who knows about the testing?
 - Who should be contacted and in what order?
 - Preferred methods of communication

Rules of Engagement

- IT Team Notifications
 - When should the IT team be engaged?
 - Establish levels of criticality
- Sensitive data
 - Special provisions for regulated data (e.g. HIPAA)
- Meetings and report
 - Pre-determined meeting dates and frequency
 - What types of reports are needed (e.g. technical, executive, sanitized)

Rules of Engagement

- Hours of engagement
 - **24/7**
 - After-hours only
 - Who needs to know these?
- Handling of a sensitive / critical vulnerability
- Essential to legally protect penetration testers

Reconnaissance

- Goals
 - Discover attack surfaces (physical and network)
 - Discover overall cybersecurity environment
 - Gain information to assist with vulnerability exploitation
- Publicly available information
 - Company employee directories
 - Whois information
 - DNS information
 - ARIN
- Physical visits
 - What can be learned about the facilities?
 - Lobby officers?
 - Server room locations?
 - Access control?

Reconnaissance (cont'd)

- Social engineering
 - Tailgating
 - Phishing
 - Discover overall cybersecurity environment
 - Gain information to assist with vulnerability exploitation
- Social media or other employee profiles
 - Potential usernames
 - Potential passwords
 - Vacations
 - Insider information
 - Many of this information can help to impersonate individuals

Reconnaissance (cont'd)

- Plant devices
 - Raspberry Pis
 - Keyloggers
- Passive data collection
 - Monitor online traffic
 - Monitor internal network traffic
 - Learn employee schedules
- Active data collection
 - ICMP (ping) sweeps
 - Service identification
 - Vulnerability scans
 - RFID cloning

Tools Overview

- Network Scanners
 - Nmap
 - Masscan
- Vulnerability Scanners
 - Nessus
 - OpenVAS
 - Tripewire IP360
 - Retina

NMAP

- GUI Available
 - Zenmap
- Options
 - Port Scanning
 - > Default: Scans the most common 1,000 ports for each protocol
 - > Fast flag: Scan the 100 most common
 - Ping Scanning
 - > IP address ranges
 - Subnet masks
 - Single IPs
 - Host Scans
 - Sends ARP requests (MAC address collection)
 - DNS queries
 - Latency information
 - Output to files

NMAP (cont'd)

- Port scans
 - TCP SYN: TCP handshake is not completed (avoids suspicion)
 - TCP connect: TCP handshake is completed (more reliable)
 - UDP: Identify DNS, SNMP, and DHCP ports
 - Frequently targeted by hackers
- OS Scans
 - Uses TCP and UDP Ports
 - Compares responses to database of over 2500 operating systems
 - > Can return information about OS and version for each host

NMAP vs Zenmap


```
coder@codex:~$ sudo nmap -sS 192.168.213.129
[sudo] password for coder:
Starting Nmap 7.01 ( https://nmap.org ) at 2017-10-05 21:48 IST
Nmap scan report for 192.168.213.129
Host is up (0.00066s latency).
Not shown: 977 closed ports
        STATE SERVICE
PORT
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp
       open smtp
53/tcp
        open domain
80/tcp open http
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
512/tcp open exec
513/tcp open login
514/tcp open shell
1099/tcp open rmiregistry
1524/tcp open ingreslock
2049/tcp open nfs
2121/tcp open ccproxy-ftp
3306/tcp open mysql
5432/tcp open postgresql
5900/tcp open vnc
6000/tcp open X11
6667/tcp open irc
8009/tcp open ajp13
8180/tcp open unknown
MAC Address: 00:0C:29:88:51:18 (VMware)
Nmap done: 1 IP address (1 host up) scanned in 1.62 seconds
```


Masscan

- Two types of port scanners
 - Synchronous (connection-oriented)
 - Send request to target port and waits for response or time-out
 - > Slower
 - More accurate
 - Asynchronous (connectionless
 - > Does not wait for response prior to sending out next port probe
 - Less accurate can't detect dropped packets
- Masscan is incredibly fast (asynchronous scanner)
 - Can facilitate DoS attacks
 - Said to be able to scan the entire internet in 6 minutes
 - 10 million packets per second

Masscan Examples


```
× - □ alok@ubuntu: ~/pentest/masscan/bin
[alok@ubuntu]: bin(master() » sudo ./masscan -p80,8000-8100 192.168.100.1/8 --rate=100000000
Starting masscan 1.0.3 (http://bit.ly/14GZzcT) at 2015-12-31 12:00:19 GMT
 -- forced options: -sS -Pn -n --randomize-hosts -v --send-eth
Initiating SYN Stealth Scan
Scanning 16777216 hosts [102 ports/host]
Discovered open port 8012/tcp on 192.91.149.228
Discovered open port 80/tcp on 192.239.65.204
Discovered open port 80/tcp on 192.151.133.255
Discovered open port 80/tcp on 192.123.30.187
Discovered open port 80/tcp on 192.164.199.134
Discovered open port 80/tcp on 192.114.233.242
Discovered open port 80/tcp on 192.167.77.242
Discovered open port 80/tcp on 192.166.10.178
Discovered open port 80/tcp on 192.55.150.12
Discovered open port 80/tcp on 192.181.210.49
Discovered open port 80/tcp on 192.102.236.46
Discovered open port 80/tcp on 192.60.1.58
Discovered open port 80/tcp on 192.101.169.158
Discovered open port 80/tcp on 192.104.209.92
Discovered open port 80/tcp on 192.137.163.62
Discovered open port 80/tcp on 192.190.6.160
Discovered open port 80/tcp on 192.91.144.1
```

```
# masscan 0.0.0.0/0 -p0-65535
```

Vulnerability Scanners

- More focused search
 - Use information from other reconnaissance to specify targets
 - Identify known vulnerabilities on hosts and network devices
- OpenVAS options
 - Full Scan
 - Web Server Scan
 - WordPress Scan
 - Joomla Scan

Nessus Example

OpenVAS Example

Filter: sort-reverse=severity result_hosts_only=1 min_cvss	_bas	e= min_qo 👩 🥫	1 4		*	v S E
Vulnerability ←		Severity 👩	QoD	Host	Location	Actions
X Server	_	10.0 (High)	80%	192.168.56.101	6000/tcp	
PostgreSQL weak password		9.0 (High)	99%	192.168.56.101	5432/tcp	*
PostgreSQL Multiple Security Vulnerabilities		8.5 (High)	80%	192.168.56.101	5432/tcp	X
TikiWiki Versions Prior to 4.2 Multiple Unspecified Vulnerabilities		7.5 (High)	80%	192.168.56.101	80/tcp	*
phpinfo() output accessible	0	7.5 (High)	80%	192.168.56.101	80/tcp	X
ProFTPD Long Command Handling Security Vulnerability		6.8 (Medium)	80%	192.168.56.101	2121/tcp	3
PostgreSQL Multiple Security Vulnerabilities		6.8 (Medium)	80%	192.168.56.101	5432/tcp	R
phpMyAdmin Bookmark Security Bypass Vulnerability		6.5 (Medium)	80%	192.168.56.101	80/tcp	🔣 🗯
PostgreSQL 'bitsubstr' Buffer Overflow Vulnerability		6.5 (Medium)	80%	192.168.56.101	5432/tcp	R
PostgreSQL 'intarray' Module 'gettoken()' Buffer Overflow Vulnerability		6.5 (Medium)	80%	192.168.56.101	5432/tcp	🔣 👈
PostgreSQL PL/Perl and PL/Tcl Local Privilege Escalation Vulnerability		6.0 (Medium)	80%	192.168.56.101	5432/tcp	3
http TRACE XSS attack		5.8 (Medium)	99%	192.168.56.101	80/tcp	R
PostgreSQL 'RESET ALL' Unauthorized Access Vulnerability		5.5 (Medium)	80%	192.168.56.101	5432/tcp	R
Check if Mailserver answer to VRFY and EXPN requests		5.0 (Medium)	99%	192.168.56.101	25/tcp	R
/doc directory browsable ?		5.0 (Medium)	80%	192.168.56.101	80/tcp	R
TikiWiki CMS/Groupware Input Sanitation Weakness Vulnerability		5.0 (Medium)	80%	192.168.56.101	80/tcp	R
SSH Weak Encryption Algorithms Supported		4.3 (Medium)	95%	192.168.56.101	22/tcp	R

Exploitation

- Can begin while reconnaissance is still ongoing
 - More reconnaissance is needed after successful exploitation
 - Time constraints are always of concern
- Opportunistic approach
 - Chase whatever leads become available
 - Prioritize based on sensitivity and criticality
- Human-hacking
 - Use information gained from reconnaissance to guess passwords or used exposed ones
 - Use known personal information to fool an employee or one of their relations
- Find lateral avenues to continue testing

Escalation

- Privilege escalation
 - e.g. Dirty Pipe
 - Allows for additional lateral or local movement
- Continually search for new opportunities
 - Access to new devices or credentials offer potential pathways
 - Different VLANs, IP addresses, or devices have access to different network resources
- Establish persistent access
 - Reverse shells
 - VNC servers
 - Firewall rule changes
 - "Malicious" software

Summary

- Stages of a penetration test
 - You must protect yourself and your organization by properly scoping and agreeing to terms with your customer
 - There are many different reconnaissance techniques that can be used by a penetration tester depending on the established RoE
- Creativity is key
- There are open source versions of most penetration testing tools