Một mô hình toán học về lượng thức ăn

SV trình bày: Lê Thị Thu An Đỗ Thị Mai Hoa Tăng Thu Trang Giáo viên hướng dẫn: Nguyễn Trọng Hiếu

Đại học Khoa học tự nhiên, Đại học Quốc gia Hà Nội

5/5/2022

Mục lục

1. Giới thiệu

- 2. Mô hình toán học
- 2.1 Các hàm số trong mô hình
- 2.2 Hệ phương trình

3. Kết quả

4. Thảo luận

1 Giới thiệu

Các yếu tố ảnh hưởng đến lượng thức ăn

GLUCOSE

2 Mô hình toán học

2 Mô hình toán học

2.1 Các hàm số trong mô hình

1. Mức độ thèm ăn

2. Lượng ghrelin trong huyết tương

3. Hoạt động thể chất

E (exercise) nhận giá trị 0/1.

$$E(t) = \begin{cases} 1 \text{ if (t mod 1440)} \in (300, 1260) \\ 0 \end{cases}$$

Tức là hoạt động từ 5h sáng đến 21h tối.

4. Thói quen ăn

4. Thói quen ăn (tiếp)

4. Thói quen ăn (tiếp)

$$H(t) = \mathcal{W}_{\mathit{snack}} + \sum_{i=1}^4 \chi_{[t_{\mathit{meal}_i}^{\mathit{low}}, t_{\mathit{meal}_i}^{\mathit{up}}]} e^{\displaystyle rac{-1}{2} \left(rac{t - t_{\mathit{meal}_i}^{\mu}}{t_{\mathit{meal}_i}^{\sigma}}
ight)^2}$$

٠

5. Nồng độ glucose trong máu

G(t) tính theo đơn vị (mM) tức là $(10^{-3} mol/lit)$

- 6. Lượng thức ăn trong dạ dày S(t) tính theo gam.
- 7. Lượng thức ăn Q(t) được tiêu hóa trong khoảng thời gian $t_{\Delta}=2$ phút.

Các hàm ngẫu nhiên trong mô hình

- 8. $\chi_i(t)$: hàm chỉ thị trạng thái ăn
- 9. u : hàm ngẫu nhiên phân bố đều [0,1].
- 10. $k_{ij}(t)$ Cường độ xác suất chuyển từ trạng thái ăn sang trạng thái "nhịn".
- 11. $k_{ij}(t)$ Cường độ xác suất chuyển từ trạng thái "nhịn" sang trạng thái "ăn".

Các hàm u, k_{ij} , k_{ij} góp phần quyết định cho χ_i

Giải thích mô hình chuỗi Markov

Sơ đồ

mũi tên đỏ : làm tăng mũi tên xanh: làm giảm

2 Mô hình toán học

2.2 Hệ phương trình

Hệ phương trình vi phân

$$\frac{dL}{dt} = k_{LS}^{max} e^{-\lambda_{LS}S} k_{XL} L(t), \ L(0) = L_0
\frac{dG}{dt} = (k_{XG} + k_{XGE}E)G(t) + \frac{k_G + k_{XS}\eta_G\rho_{GS}S(t)}{V_G}, \ G(0) = G_0
\frac{dS}{dt} = k_{XS}S(t) + \chi_i k_S, \ S(0) = S_0$$

chuỗi Markov

3 Kết quả

4 Thảo luận