Vecteurs et équations de droites - Fiche d'exercices 4

Exercice 1

On considère le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$ orthogonal :

et les points A et B de coordonnées : $A{\left(-3\,;-\frac{1}{2}\right)}$; $B\left(1\,;1\right)$

- 1. Tracer la droite (AB) dans le repère ci-dessus.
- 2. Donner quatre vecteurs directeurs de la droite (AB) dont un, au moins, a des coordonnées entières.

Exercice 2

On considère les fonctions affines f et g définie par la relation :

 $f(x) = \frac{3}{2}x + 2$; g(x) = -2x + 1

Dans le plan muni d'un repère, on note (d) et (d') les droites représentatives respectives des fonctions f et g.

- 1. Donner trois vecteurs directeurs de la droite (d).
- 2. Donner trois vecteurs directeurs de la droite (d').

Exercice 3

Dans le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$, on considère la droite (d) admettant pour équation :

$$2x - y + 5 = 0$$

1. Parmi les points ci-dessous, lesquels appartiennent à la droite (d):

$$A(1;7)$$
 ; $B(-\frac{3}{2};2)$; $C(-4;-4)$

- 2. Déterminer les coordonnées du point *D* appartenant à la droite (*d*) ayant pour abscisse 2.
- 3. Déterminer les coordonnées du point E appartenant à la droite (d) ayant pour ordonnée $-\frac{1}{2}$.

Exercice 4

Dans le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$, on donne la représentation des quatres droites (d_1) , (d_2) , (d_3) et (d_4) cidessous :

Associer à chacune des droites ci-dessous une des équations cartésiennes présentées ci-dessous :

$$(E_1): 3 \cdot x + 4 \cdot y + 4 = 0 \quad ; \quad (E_2): -x + 2 \cdot y - 3 = 0$$

$$(E_3): \frac{1}{2} \cdot x - y - 1 = 0$$
 ; $(E_4): \frac{3}{4} \cdot x + y - \frac{3}{2} = 0$

Exercice 5

Dans le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$, on considère les quatres droites ci-dessous définies par leur équation cartésienne :

$$(d_1): 2x - 3y + 3 = 0$$
 ; $(d_2): -2x - y + 1 = 0$

$$(d_3): 4x + 8y - 10 = 0 : (d_4): -3x + y + 4 = 0$$

- 1. Pour chacune des droites, donner un point et un vecteur directeur de cette droite.
- 2. Tracer chacune de ces droites dans le repère ci-dessous :

Exercice 6

Dans le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$, on considère les droites ci-dessous :

$$(d_1): \sqrt{3} \cdot x - \sqrt{12} \cdot y + \sqrt{10} = 0$$

$$(d_2)$$
: $(1+\sqrt{2})\cdot x + \sqrt{3}\cdot y - 1 = 0$

$$(d_3)$$
: $-\sqrt{3}\cdot x - (-1 + \sqrt{2})\cdot y + 2 = 0$

$$(d_4)$$
: $(1+\sqrt{2})\cdot x + (1-\sqrt{2})\cdot y - 1 = 0$

- 1. Donner les coordonnées d'un vecteur directeur de la droite (d_1) ayant ses coordonnées entières.
- 2. Donner les coordonnées d'un vecteur directeur des droites (d_2) , (d_3) , (d_4) ayant pour abscisse une valeur

entière.

Exercice 7

Dans le plan muni d'un repère (O; I; J), on considère les quatre droites suivantes :

$$(d_1): 3 \cdot x - 2 \cdot y - 2 = 0 ; (d_2): -x + 3 \cdot y + 1 = 0$$

$$(d_3): 2 \cdot x + y = 0$$
 ; $(d_4): -2 \cdot x - 2 \cdot y + 1 = 0$

- 1. Donner un vecteur directeur de chacune de ces droites.
- 2. Donner le coefficient directeur de chacune de ces droites.

Exercice 8

On considère le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$ et les trois droites (d_1) , (d_2) et (d_3) d'équations cartésiennes :

$$(d_1)$$
: $4x - 6y + 2 = 0$; (d_2) : $x + 2y - 3 = 0$

$$(d_3)$$
: $x - \frac{3}{2} \cdot y + 2 = 0$

- 1. Les droites (d_1) et (d_2) sont-elles parallèles entre elles? Si non, déterminer le point d'intersection de ces deux droites.
- 2. Les droites (d_1) et (d_3) sont-elles parallèles entre elles? Si non, déterminer le point d'intersection de ces deux droites.

Exercice 9

On considère le plan muni d'un repère (O; I; J) et les deux droites (d_1) et (d_2) admettant pour équations cartésiennes :

$$(d_1): x-2y+3=0 ; (d_2): 3x+4y-13=0$$

- 1. Donner les coordonnées d'un vecteur directeur et d'un point de chaque droite.
- 2. Représenter dans le graphique ci-dessous les deux droites (d_1) et (d_2) .

3. Déterminer les coordonnées du point d'intersection des deux droites (d_1) et (d_2) .

Exercice 10

Dans le plan muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$, on considère les trois points suivants :

$$A(-3;-2)$$
 ; $B(1;1)$; $C(-2;2)$

- 1. Déterminer une équation cartésienne de la droite (AB).
- 2. Déterminer une équation cartésienne de la droite (d) passant par le point C et parallèle à la droite (AB).

- 3. a. Déterminer les coordonnées du point M milieu du segment [AC].
 - b. Déterminer une équation cartésienne de la droite (BM)
 - c. Déterminer les coordonnées du point D intersection des droites (BM) et (d).
 - d. Quelle est la nature du quadrilatère ABCD? Justifier votre réponse.

Exercice 11

On munit le plan d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$ que lconque représenté ci-dessous :

- 1. a. Dans le repère ci-dessous, placer les deux points : A(-1;2) ; B(4;1)
 - b. Justifier graphiquement que le vecteur \overrightarrow{AB} a pour coordonnées (5;-1).
- 2. On considère les deux vecteurs suivants : $\overrightarrow{u}(3;2)$; $\overrightarrow{v}(-2;-2)$

Donner un représentant de votre choix de chacun de ces deux vecteurs dans le repère ci-dessus.

Exercice 12

Dans le plan, on considère les deux vecteurs \overrightarrow{i} et \overrightarrow{j} non-colinéaire représentés ci-dessous :

La représentation des vecteurs \overrightarrow{u} et \overrightarrow{v} sont également représentés ci-dessus.

- 1. Dans la base vectorielle de $(\overrightarrow{i}; \overrightarrow{j})$, donner les coordonnées des vecteurs \overrightarrow{u} et \overrightarrow{v} .
- 2. Par la méthode de votre choix, déterminer les coordonnées du vecteur somme : $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$.
- 3. Par la méthode de votre choix, déterminer les coordonnées du vecteur \overrightarrow{t} réalisant l'égalité suivante : $\overrightarrow{v} = \overrightarrow{u} + \overrightarrow{t}$

Exercice 13

Dans le plan, on considère le triangle quelconque ABC. On note respectivement I et J les symétriques respectifs de B et

de C par rapport à A:

Exprimer en fonctions des vecteurs \overrightarrow{AB} et \overrightarrow{AC} les vecteurs suivants :

- a. \overrightarrow{IA}
- b. \overline{A}
- c. \overrightarrow{BC}

- d. \overrightarrow{CB}
- e. \overrightarrow{IJ}
- f. \overline{IC}

Exercice 14

Considérons un triangle ABC et M un point appartenant au côté [AB] vérifiant la relation :

$$AM = \frac{2}{3} \cdot AB$$

P est le point d'intersection de la droite (BC) et de la parallèle à (AC) passant par le point $M.\ N$ est le point d'intersection des droites (AC) et de la parallèle à (AB) passant par le point P

- 1. Réaliser une représentation de cette configuration.
- 2. Montrer que : $AN = \frac{1}{3} \cdot AC$; $CP = \frac{2}{3} \cdot CB$.
- 3. Décomposer les vecteurs ci-dessous en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} :
 - a. \overrightarrow{AP}
- b. \overrightarrow{MC}
- 4. Décomposer les vecteurs ci-dessous en fonction des vecteurs \overrightarrow{CA} et \overrightarrow{CB} :
 - a. \overrightarrow{AP}
- b. \overrightarrow{NM}

Exercice 15

On considère le triangle cicontre où I et G sont les milieux respectifs des segments [AB] et [CI], le point J est définie par la relation :

$$\overrightarrow{CJ} = \frac{1}{3} \cdot \overrightarrow{CA}$$

On munit le plan du repère $(A; \overrightarrow{AB}; \overrightarrow{AC})$.

- 1. Donner les coordonnées des points I et J.
- 2. Etablir que le point G a pour coordonnées $\left(\frac{1}{4}; \frac{1}{2}\right)$. Justifier votre réponse.
- 3. En déduire l'alignement des points B, G, J.