Mikrokontrolery

- zadania do zajęć laboratoryjnych

Lista 1

- 1. Zapis liczb w systemach pozycyjnych o różnych podstawach:
 - a) Proszę zapisać w systemie dwójkowym i szesnastkowym kolejne liczby od 0 do 15_D
 - b) Należy zapisać dwójkowo i szesnastkowo następujące liczby: 16_D, 32_D, 64_D, 128_D, 31_D, 33_D, 63_D, 65_D, 127_D, 147_D, 100_D
 - c) Proszę zapisać dziesiętnie i szesnastkowo liczby: 1001 1011_B, 1101 1110_B, 1010 1100_B, 0111 0101_B, 0011 1101_B, 0100 1001_B, 0110 1000_B
 - d) Proszę zapisać szesnastkowo i dziesiętnie najmniejszą i największą liczbę 8-bitową oraz 16-bitową.
- 2. Proszę napisać i uruchomić w trybie symulacyjnym program wypełniający określonym ciągiem zero-jedynkowym kolejne komórki pamięci danych poczynając od tej o adresie 0x02fe. Proszę opracować kilka wariantów warunku wyjścia z pętli:
 - a) według stanu licznika obiegów pętli, tzn. należy wpisać tę samą liczbę np. do 9 kolejnych komórek;
 - b) według adresu ostatnio zapisanej komórki, tzn. należy wpisywać tę samą liczbę aż do komórki o zadanym adresie, np. 0x0306 (włącznie)
 - c) według wartości ostatnio zapisanej liczby, tzn. należy wpisać np. kolejne liczby nieparzyste poczynając od liczby 0x03, a kończąc na liczbie 0x0d (włącznie).
- 3. W pamięci danych, w komórce o adresie ADR_D znajduje się ciąg ośmiu zer i jedynek. Ciąg ten należy rozpakować tak, aby kolejne jego bity znalazły się na najmłodszej pozycji ośmiu komórek pamięci o kolejnych adresach: ADR_D+1,..., ADR_D+8. Najbardziej znaczący bit rozpakowanego bajtu ma się znaleźć w komórce o adresie ADR_D+1. Pozostałe bity komórek o adresach ADR_D+1,..., ADR_D+8 mają być wyzerowane. Adres ADR_D proszę zdefiniować dowolnie, ale tak, by komórka o tym adresie istniała w naszym procesorze.

b ₇	b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	b_0	ADR_D
0	0	0	0	0	0	0	b ₇	ADR_D +1
0	0	0	0	0	0	0	b ₆	ADR_D +2
								•••
0	0	0	0	0	0	0	b_0	ADR_D +8