Grafos

Ricardo Dutra da Silva

Universidade Tecnológica Federal do Paraná

Busca em Grafos

Entrada

Um grafo G = (V, E) e um vértice de início $s \in V$.

Saída

Explorar $v \in V$ se e somente existe um caminho $s \rightsquigarrow v$.

O objetivo é encontrar todos o vértices que possuem um caminho a partir de um vértice de início.

Para eficiência não queremos visitar/explorar um mesmo vértice mais de uma vez.

Corte

Definição

Uma aresta (u, v) de um corte C é uma aresta em que $u \in C$ e $v \in V \setminus C$.


```
Algoritmo: Busca(G = (V, E), s)
```

```
para v ∈ V faça
v.visitado ← falso
s.visitado ← verdadeiro
/* Escolhe aresta (u,v) ∈ E com u visitado e v não visitado.
Retorna se achou ou não.

*/
existe_aresta ← EscolheAresta(u,v)
enquanto existe_aresta faça
v.visitado ← verdadeiro
existe_aresta ← EscolheAresta(u,v)
```

Algoritmo: RTRANSPOSTA(X, n)

Entrada: Matriz X de dimensão $n \times n$

Saída: Matriz transposta $Y = X^T$

- 1 se n=1 então
- 2 retorna $Y[1,1] \leftarrow X[1,1]$
- 3 Particiona X em quatro submatrizes X_{11} , X_{12} , X_{21} e X_{22} , todas de tamanho $(n/2) \times (n/2)$
- 4 $Y_{11} \leftarrow \mathsf{RTRANSPOSTA}(X_{11}, n/2)$
- 5 $Y_{21} \leftarrow \mathsf{RTRANSPOSTA}(X_{12}, n/2)$
- 6 $Y_{12} \leftarrow \mathsf{RTRANSPOSTA}(X_{21}, n/2)$
- 7 $Y_{22} \leftarrow \mathsf{RTRANSPOSTA}(X_{22}, n/2)$
- 8 Concatena as submatrizes Y_{11} , Y_{12} , Y_{21} e Y_{22} em uma matriz Y de tamanho $n \times n$
- 9 retorna Y

Demonstração.

Vamos supor inicialmente $v \in V$ visitado e mostrar que existe $s \rightsquigarrow v$ e mostrar por indução que isso é verdade para todo o algoritmo.

Consideraremos que no algoritmo todo vértice visitado pertence a um conjunto C e todo vértice não visitado está no conjunto $V \setminus C$. Temos portanto um corte no grafo.

Base.

Usamos o fato de que o primeiro vértice em C é s e trivialmente existe $s \rightsquigarrow s$.

Demonstração.

Passo Indutivo.

Pela hipótese indutiva temos que, em uma interação qualquer do algoritmo, todo $u \in C$ exite $s \rightsquigarrow u$.

Agora, para uma interação específica, o algoritmo escolhe uma aresta $(u, v) \in E$ com $u \in C$ e $v \in V \setminus C$. Como existe $s \leadsto u$, então a inclusão da aresta (u, v) em $s \leadsto u$ forma um caminho $s \leadsto v$. Logo, v visitado e existe $s \leadsto v$.

Demonstração.

Vamos supor agora que existe $s \rightsquigarrow v$ e que como consequência v foi visitado.

Por contradição, vamos supor que existe $s \rightsquigarrow v$ mas v não foi visitado ao final do algoritmo. Então podemos considerar um caminho como o abaixo.

Demonstração.

A única maneira de v não ter sido visitado é se existe uma aresta (u, w) em que u foi visitado mas w não foi visitado pelo algoritmo. Possivelmente u = s e w = v.

No entanto, o laço do algoritmo não terminaria se existisse tal aresta, contradizendo nossa suposição inicial. Portanto, v foi visitado.

A análise de tempo deste algoritmo depende do algoritmo para escolha de aresta.

Vamos ver duas opções de escolher arestas que levam a algoritmos eficientes para a busca em grafos: busca em largura e busca em profundidade.