	H5: the formalism of quantum mechanics
postulates	to an ensemble of physical systems one can associate a wave function or state function which contains all information that can be known about the ensemble > this function is complex and may be multipl. by an arbitrary complex number without altering its physical significance
	2: the superposition principle: $\Psi = c_1 \Psi_1 + c_2 \Psi_2$
	3: with every dynamical variable is associated a linear operator
	4: the only result of a precise measurement of the dynamical variable $\mathcal A$ is one of the eigenvalues a_n of the linear operator A associated with $\mathcal A$
	5: if a series of measurements made of the dynamical variable A on an ensemble of systems, described by the wave function Ψ , the expectation value of A is: $\langle A \rangle = \frac{\langle \Psi A \Psi \rangle}{\langle \Psi \Psi \rangle}.$
	6: A wave function representing any dynamical state can be expressed as a linear combination of the eigenfunctions of A > with A is the operator with a dynamical variable
	7: the time evolution of the wave function of a system is determined by the TDSE:
	$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(t)=H\Psi(t)$
	where H is the Hamiltonian, or total energy operator of the system.
	5.1 the state of a system
dynamical state of a quantum sy	In quantum the dynamical state of a system is influenced by measurement > system gets unpredictably altered when measured > according to Heisenberg uncertainty relations ie: sets limit to precision with which complementary dynamical variables can be measured
	Abandon the classical idea that all dynamical variables of a system have well-defined values at all times > quantum predicts the number n of times a particular result will be obtained in N identical, independent, identically prepared physical systems aka ensembles > ie: quantum predicts the probability n/N
postulate 1)	to an ensemble of physical systems one can associate a wave function or state function which contains all information that can be known about the ensemble > this function is complex and may be multipl. by an arbitrary complex number without altering its physical significance
	but: 1: some ensembles cannot be described by a single state function > such ensembles aren't considered here
	2: its common practice to speak of the wave function associated with a system > it's implied this works on an ensemble
general particle system	consider a particle in given potential V(r ,t) > particle is structureless ie: no internal degrees of freedom, such as spin
	this has an associated state function $\Psi(\mathbf{r},t)$ which is square integrable if:
	$I=\int \Psi({\bf r},t) ^2 {\rm d}{\bf r} \text{is finite}$ for c a complex constant, c\$\Psi\$ describes the same particle > choose this constant such that:
	$\int \Psi(\mathbf{r},t) ^2 d\mathbf{r} = 1.$
	with $P(\mathbf{r},t) = \Psi ^2$ the position probability density
postulate 2)	the superposition principle: $\Psi = c_1 \Psi_1 + c_2 \Psi_2$

5.1.1 momentum space functions		
state of ensemble in momentum space	Use the Fourier transform of Ψ to go to mome $>$ if Ψ is normalised, so is Φ :	entum space wave function $\Phi(\mathbf{p},t)$
	$\int \Phi(\mathbf{p},t) ^2 d\mathbf{p} = 1$	
	now $\Pi(\mathbf{p},t) = \Phi ^2$ is the probability density in	momentum space
	> prob. of finding the momentum of a particle	
	now the FT of $\Psi(\mathbf{r_1},,\mathbf{r_N})$ is:	
	$\Phi(\mathbf{p}_1,\ldots,\mathbf{p}_N,t) = (2\pi\hbar)^{-3N/2} \int \exp\left[-\frac{\mathrm{i}}{\hbar}(\mathbf{p}_1,\ldots,\mathbf{p}_N,t)\right] dt$	$[\mathbf{p}_1.\mathbf{r}_1 + \cdots + \mathbf{p}_N.\mathbf{r}_N)]$
5.1.2 Dirac bracket notation	$\times \Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N,t)\mathrm{d}\mathbf{r}_1\ldots$, $\mathrm{d}\mathbf{r}_N$,
Dirac bracket notation	define $\langle \Psi_1 \Psi_2 \rangle \equiv \int \Psi_1^*(\mathbf{r}) \Psi_2(\mathbf{r}) d\mathbf{r}$	
properties of Dirac bracket	$\langle \Psi_1 \Psi_2 \rangle = \langle \Psi_2 \Psi_1 \rangle^*.$	(5.15a)
	Moreover, if c is a complex number and Ψ_3 a third function	tion, we also have
	$\langle \Psi_1 c \Psi_2 \rangle = c \langle \Psi_1 \Psi_2 \rangle,$	(5.15b)
	$\langle c\Psi_1 \Psi_2\rangle = c^*\langle\Psi_1 \Psi_2\rangle,$	(5.15c)
	$\langle \Psi_3 \Psi_1 + \Psi_2 \rangle = \langle \Psi_3 \Psi_1 \rangle + \langle \Psi_3 \Psi_2 \rangle. \label{eq:psi_3}$	(5.15d)
	Two functions Ψ_1 and Ψ_2 are said to be orthogonal if the	eir scalar product vanishes:
	$\langle \Psi_1 \Psi_2 \rangle = 0.$	(5.16)
	Using the Dirac bracket notation, we see that the normalisation condition (5.5) can be written compactly as	
	$\langle \Psi \Psi \rangle = 1.$	(5.17)
	5.2 dynamical variables and operators	
postulate 3)	with every dynamical variable is associated a li	inear operator
associating operators	in configuration space, for a dynamical variable > associate the linear operator A:	$\mathbf{e} A = A(\mathbf{r}_1, \dots, \mathbf{r}_N, \mathbf{p}_1, \dots, \mathbf{p}_N, t)$
	$A(\mathbf{r}_1,\ldots,\mathbf{r}_N,-\mathrm{i}\hbar\nabla_1,\ldots,$	$-\mathrm{i}\hbar\nabla_N,t)$
	on the other hand, in momentum space:	
	$A(\mathrm{i}\hbar oldsymbol{ abla}_{\mathbf{p}_1},\ldots,\mathrm{i}\hbar oldsymbol{ abla}_{\mathbf{p}_N},\mathbf{p}_1,\ldots$	$\ldots, \mathbf{p}_N, t)$
5.2.1 eigenvalues and eigenfunctio	ns	
postulate 4)	the only result of a precise measurement of th	e dynamical variable \mathcal{A} is one of the
posturate 17	eigenvalues a _n of the linear operator A associa	
eigenfunction	ψ_n is an eigenfunction of A with eigenvalue a_n	if:
	$A\psi_n=a_n\psi_n.$	
	> totality of eigenvalues of A = spectrum of A	
5.2.2 Hermitian operators		
Hermitian operator	An operator is Hermitian if:	
	$\langle X (A\Psi)\rangle = \langle (AX) \Psi\rangle$	
	with Ψ and X square integrable functions	
	However in Dirac notation we usually write	

properties of eigenfunctions	for ψ_n an eigenfunction with eigenvalue a_n , it holds:
	$\langle \psi_n A \psi_n \rangle = a_n \langle \psi_n \psi_n \rangle.$
	In addition, since
	$(A\psi_n)^* = a_n^* \psi_n^*$
	we also have
	$\langle (A\psi_n) \psi_n\rangle = a_n^*\langle \psi_n \psi_n\rangle.$
	Now if A is Hermitian, we have $a_n = a_n^*$
	> Hermitian operators always produce <i>real eigenvalues</i>
operators for dynamical system ${\cal A}$	An operator A for $\mathcal A$ must always give real eigenvalues > A must be a Hermitian operator
massurament and probability	
measurement and probability	if the wave function of a system is one of the eigenfunctions ψ_n of A > then a measurement of $\mathcal A$ will certainly produce a result a_n
	if the wave function of a system is not one of the eigenfunctions ψ_n of A
	> the a measurement of \mathcal{A} can produce $a_1, a_2,$
	> we can predict the probability of each an
postulate 5)	if a series of measurements made of the dynamical variable A on an ensemble of systems, described by the wave function Ψ , the expectation value of A is:
	978 TO 9 TO 97 AGEST NO. WORLD ST.
	$\langle A \rangle = rac{\langle \Psi A \Psi angle}{\langle \Psi \Psi angle}.$
	if A is Hermitian, then (A) is real if ψ is normalised to unity, $(\Psi \Psi)=1$, thus
	$\langle A \rangle = \langle \Psi A \Psi \rangle.$
5.2.3 adjoint operator	
adjoint operator of A	the conjugate operator A [†] is defined by:
/ Hermitian conjugate	$\langle X A^{\dagger} \Psi\rangle = \langle (AX) \Psi\rangle$
	$=\langle\Psi A X\rangle^*$
	with X and Ψ square integrable
self-adjoint operator	is an operator A for which $A^{\dagger} = A$
consequence of adjoint operator	If we define a bra $\langle \Phi $ by the relation
	$\langle \Phi = \langle X A^{\dagger} \tag{5.31}$
	where the operator A^{\dagger} acts to the left on the bra $\langle X $, then it follows from (5.30) that the kets $ \Phi\rangle$ and $ X\rangle$ are related by
	$ \Phi\rangle = A X\rangle \tag{5.32}$
properties of adjoint operators	$(cA)^{\dagger} = c^*A^{\dagger}$
	where c is a complex number,
	$(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$
	and $(AB)^{\dagger} = B^{\dagger}A^{\dagger}.$
5.2.4 functions of operators	
	if f(x) can be expanded in a newer series
function of an operator	if $f(z)$ can be expanded in a power series
	$f(z) = \sum_{i=0}^{\infty} c_i z^i$
	the f(A) can be defined as:
	$f(A) = \sum_{i=0}^{\infty} c_i A^i.$
eigenfunctions of f(A)	as a consequence due to the definition we have: $A^i \psi_n = (a_n)^i \psi_n$ and thus
	$f(A)\psi_n = f(a_n)\psi_n$ and thus $f(A)\psi_n = f(a_n)\psi_n.$
	$f(A)\psi_n = f(a_n)\psi_n$.

adjoint of f(A)	The adjoint operator to $f(A)$ can be obtained as follows. Using (5.34)–(5.36) and (5.38), we see that	
	$[f(A)]^{\dagger} = \sum_{i=0}^{\infty} c_i^* (A^i)^{\dagger} = \sum_{i=0}^{\infty} c_i^* (A^{\dagger})^i$	
	$= f^*(A^{\dagger}). \tag{5.40}$	
	In particular, if A is a self-adjoint operator, we have	
	$[f(A)]^{\dagger} = f^*(A).$ (5.41)	
5.2.5 inverse and unitary opera	itors	
inverse of A	The unit operator I is the operator that leaves any function Ψ unchanged	
	$I\Psi = \Psi$.	
	If, given an operator A , there exists another operator B such that	
	BA = AB = I	
	then B is said to be the <i>inverse</i> of A and one writes	
	$B = A^{-1}.$	
unitary linear operator U	A linear operator U is said to be <i>unitary</i> if	
	$U^{-1} = U^{\dagger}$	
	or	
	$UU^{\dagger} = U^{\dagger}U = I.$	
	Such an operator can be expressed in the form	
	$U = e^{iA}$	
	where A is a Hermitian operator. Indeed, using (5.41), we see that	
	$U^{\dagger}=(\mathrm{e}^{\mathrm{i}A})^{\dagger}=\mathrm{e}^{-\mathrm{i}A}$	
5.2.6 projection operators		
idempotent operator	An operator Λ is said to be <i>idempotent</i> if	
	$\Lambda^2 = \Lambda$.	
	If, in addition, Λ is Hermitian, it is called a <i>projection operator</i> .	
projection operator	Any function Ψ can be expressed in terms of two orthogonal functions Φ and X by means of a projection operator. This can be seen as follows. We first write	
	$\Psi = \Phi + X \tag{5.49}$	
	with $\Phi = \Lambda \Psi$ and $X = (I - \Lambda)\Psi$. Now	
	$\langle \Phi X \rangle = \langle \Lambda \Psi (I - \Lambda) \Psi \rangle$	
	$ \langle \Phi \mathbf{X} \rangle = \langle \Lambda \Psi (I - \Lambda) \Psi \rangle $ $ = \langle \Psi \Lambda - \Lambda^2 \Psi \rangle $	
	$=\langle\Psi \Lambda-\Lambda^2 \Psi\rangle$	
	$= \langle \Psi \Lambda - \Lambda^2 \Psi \rangle$ $= 0$ (5.50) where in the second line we have used the fact that Λ is Hermitian and in the third line we have used (5.48). Note that $I - \Lambda$ is also a projection operator, since it is	

	5.3 expansion in eigenfunctions
study of eigenfunctions	For an operator A: $A\psi_n = a_n\psi_n$ > assume A is linear and Hermitian representing a dynamical variable > eigenvalues a_n are real
	>> first look at its properties when ψ_n is square integrable $\langle \psi_n \psi_n \rangle = 1$.
5.3.1 orthogonality	
orthogonality of eigenfunctions	for $\psi_i \psi_j$ two different eigenfunctions with eigenvalues a_i, a_j : $A \psi_i = a_i \psi_i$
	and
	$A\psi_j = a_j \psi_j.$
	Hence
	$(a_i - a_j)\langle \psi_i \psi_j \rangle = \langle a_i \psi_i \psi_j \rangle - \langle \psi_i a_j \psi_j \rangle$
	$= \langle (A\psi_i) \psi_j\rangle - \langle \psi_i (A\psi_j)\rangle$
	thus we have arthogonality between different eigenfunctions. (I/LI/L) = 0
	thus we have orthogonality between different eigenfunctions: $\langle \psi_i \psi_j \rangle = 0, \qquad i \neq j$
5.3.2 degeneracy	
degeneracy of eigenfunctions	An eigenvalue a_n is degenerate if there are multiple linearly independent eigenfunctions belonging to that eigenvalue $>$ let α be the degree of degeneracy of a certain eigenvalue a_n :
	$A\psi_{nr} = a_n\psi_{nr}, \qquad r = 1, 2, \dots, \alpha.$
	via Schmidt orthogonalization: make the eigenfunctions ψ_{nr} mutually orthogonal and normalized to unity
	> since eigenfunctions belonging to different eigenvalues are mutually orthogonal > all eigenfunctions satisfy the orthonormality relations: $\langle \psi_{ir} \psi_{is} \rangle = \delta_{ij} \delta_{rs}$
	its only necessary to distinguish eigenfunctions belonging to a degenerate eigenvalue explicitly
	> for the other eigenfunctions, just write: $\langle \psi_m \psi_n angle = \delta_{mn}$.
postulate 6	A wave function representing any dynamical state can be expressed as a linear combination of the eigenfunctions of A > with A is the operator with a dynamical variable
Now we will study purely discrete e	eigenvalues for which: $\Psi = \sum c_n \psi_n$.
	ed in a complete set of eigenfunctions $\{\psi_n\}$
observables	= Hermitian operator that possesses a complete set of eigenfunctions
finding coefficients c _n	due to orthonormality: $\langle \psi_m \Psi \rangle = \sum_n c_n \langle \psi_m \psi_n \rangle$
	$=\sum_{n}^{\infty}c_{n}\delta_{mn}$
	$= c_m.$
closure relation	for a one-particle system, we have:
	$\Psi(\mathbf{r},t) = \sum_{n} \left[\int \psi_{n}^{*}(\mathbf{r}') \Psi(\mathbf{r}',t) d\mathbf{r}' \right] \psi_{n}(\mathbf{r})$
	$= \int \left[\sum_{n} \psi_{n}^{*}(\mathbf{r}') \psi_{n}(\mathbf{r}) \right] \Psi(\mathbf{r}', t) d\mathbf{r}'$
	and hence $\sum_{n} \psi_{n}^{*}(\mathbf{r}') \psi_{n}(\mathbf{r}) = \delta(\mathbf{r} - \mathbf{r}')$
	>> expresses the completeness of the set of functions $\{\psi_n\}$
	expresses the completeness of the set of functions [ψη]

general closure relation	in multiple dimensions:	
	$\sum_{n} \psi_{n}^{*}(\mathbf{r}_{1}^{\prime}, \ldots, \mathbf{r}_{N}^{\prime}) \psi_{n}(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}) = \delta(\mathbf{r}_{1} - \mathbf{r}_{1}^{\prime}) \ldots$	$\delta(\mathbf{r}_N-\mathbf{r}_N').$
scalar product of wave functions	for one-particle case:	
section product or wave randitions	$\langle X \Psi\rangle = \int X^*(\mathbf{r},t)\Psi(\mathbf{r},t)d\mathbf{r}$	
	,	
	$= \int \mathbf{X}^*(\mathbf{r}, t) \delta(\mathbf{r} - \mathbf{r}') \Psi(\mathbf{r}', t) d\mathbf{r} d\mathbf{r}'$	
	$= \sum_{n} \int X^{*}(\mathbf{r}, t) \psi_{n}(\mathbf{r}) d\mathbf{r} \int \psi_{n}^{*}(\mathbf{r}') \Psi(\mathbf{r}', t) d\mathbf{r}'$	
	$=\sum_n \langle \mathrm{X} \psi_n \rangle \langle \psi_n \Psi \rangle$	
	>> we see that in the Dirac notation the closure relation of	an be written as:
	I = unity operator $\sum_n \psi_n\rangle\langle\psi_n = I$	
5.3.3 probability amplitudes		
expectation value of A	For a wave function Ψ describing a state, normalized to $u > \langle A \rangle$ is then:	nity
	$\langle A \rangle = \langle \Psi A \Psi \rangle$ $= \sum_{n} \sum_{n} e^{n}_{n} \langle a A b \rangle$	
	$=\sum_{m}\sum_{n}c_{m}^{*}c_{n}\langle\psi_{m} A \psi_{n}\rangle$	
	$=\sum_{m}\sum_{n}c_{m}^{*}c_{n}a_{n}\langle\psi_{m} \psi_{n}\rangle$	
	$=\sum_{n} c_{n} ^{2}a_{n}$	
	Since Ψ is normalize to unity, we also have:	
	$\langle \Psi \Psi \rangle = 1 \Longleftrightarrow \sum_{n} c_n ^2 = 1.$	
probability of measurement of a _n	- All possible results of measurement of A are the eigenvalue average value obtained in series of measurements is the	
	> interpret the quantity P_n as the probability that in a given particular value a_n will be obtained:	en measurement the
	$P_n = c_n ^2 = \langle \psi_n \Psi \rangle ^2$	
	>> - $\sum_n c_n ^2 = 1$ expresses the fact that the probability of obtonion - the coefficients $c_n = \langle \psi_n \Psi \rangle$ are the probability amplitudes	
P _n for degenerate eigenvalues	For a a_n that's α times degenerate and $\psi_{nr}(r=1,,\alpha)$ ortho > we have:	gonal eigenfunctions
	$\Psi = \sum_n \sum_{r=1}^{lpha} c_{nr} \psi_{nr}$	(5.69)
	with	
	$c_{nr} = \langle \psi_{nr} \Psi \rangle.$	(5.70)
	A simple reworking of (5.66) then yields $\sum_{n=0}^{\infty} a_n$	
	$\langle A \rangle = \sum_{n} \sum_{r=1}^{\alpha} c_{nr} ^2 a_n$	(5.71)
	so that the probability of obtaining upon measurement of A the deg a_n is	enerate eigenvalue
	$P_n = \sum_{r=1}^{\alpha} c_{nr} ^2 = \sum_{r=1}^{\alpha} \langle \psi_{nr} \Psi \rangle ^2.$	(5.72)
	After a measurement leading to the value a_n , the system is described malised) wave function	bed by the (unnor-
	$\Psi_n = \sum_{r=1}^{\alpha} c_{nr} \psi_{nr}$	(5.73)
	and if the measurement is immediately repeated the value a_n will certainty.	be obtained with

5.3.4 the continuous spectrum		
thus far we assumed the observable > in general they can have a discrete > we need to expand our theory	s only posses a spectrum of discrete eigenvalues and continuous part	
normalizing continuous spectrum	we have seen that the continuous spectrum cannot be normally solution: - enclose the system in a large box > render the system completely discrete > solution independent from size of box, provided in terms of Dirac delta functions	
(A) for continuous spectrum	Consider A with both a discrete and continuous spectrum > discrete eigenvalues a_n with eigenfunctions ψ_n continuous eigenvalues a with eigenfunctions ψ_a $A\psi_n=a_n\psi_n,\qquad A\psi_a=a\psi_a.$	
	- All eigenvalues should be real - discrete eigenvalues are orthonormal > postulate 6: a wave function Ψ is expandable in complete s	et $\{\psi_n,\psi_a\}$
	$\Psi = \sum_n c_n \psi_n + \int c(a) \psi_a \mathrm{d}a$ the integral runs over the whole range of values of a > if Ψ is normalised to unity:	
	$\langle A \rangle = \langle \Psi A \Psi \rangle$ $= \sum_{m} \sum_{n} c_{m}^{*} c_{n} \langle \psi_{m} A \psi_{n} \rangle + \sum_{m} \int da c_{m}^{*} c(a) \langle \psi_{m} A \psi_{n} \rangle$ $+ \sum_{n} \int da' c^{*}(a') c_{n} \langle \psi_{a'} A \psi_{n} \rangle + \int da \int da' c^{*}(a') da' c^{*}(a') da' da' da' da' da' da' da' da' da' da'$	
	$= \sum_{m} \sum_{n} c_{m}^{*} c_{n} a_{n} \langle \psi_{m} \psi_{n} \rangle + \sum_{m} \int da c_{m}^{*} c(a) a \langle \psi_{m} \psi_{a} \rangle$ $+ \sum_{n} \int da' c^{*}(a') c_{n} a_{n} \langle \psi_{a'} \psi_{n} \rangle$	
	$+\int \mathrm{d}a\int \mathrm{d}a'c^*(a')c(a)a\langle\psi_{a'} \psi_a angle$	(\$
	>> we want to maintain the interpretation of c_n and $c(a)$ as $p(a) = \sum c_n ^2 a_n + \int c(a) ^2 a da$.	robability amplitudes:
> closure relation	compare the previous two results and we know $\langle \psi_m \psi_n \rangle = \delta_r$	nn:
	- the continuum eigenfunctions are orthogonal to the discrete $\langle \psi_m \psi_a angle = 0.$	
	- the continuum eigenfunctions satisfy the orthonormalization $\langle \psi_{a'} \psi_a\rangle=\delta(a-a').$	on condition:
	> with these conditions the coefficients are given by: $c_n=\langle \psi_n \Psi\rangle, \qquad c(a)=\langle \psi_a \Psi\rangle.$	
	and thus the closure relation:	
	$\sum_{n} \psi_{n}^{*}(\mathbf{r}') \psi_{n}(\mathbf{r}) + \int \psi_{a}^{*}(\mathbf{r}') \psi_{a}(\mathbf{r}) da = \delta(\mathbf{r})$	$-\mathbf{r}')$
	or thus for N particles $\sum_n \psi_n^*(\mathbf{r}_1',\ldots,\mathbf{r}_N')\psi_n(\mathbf{r}_1,\ldots,\mathbf{r}_N) + \int \psi_a^*(\mathbf{r}_1',\ldots,\mathbf{r}_N')\psi_a(\mathbf{r}_1,$	$\ldots, \mathbf{r}_N)$ d a
	$= \delta(\mathbf{r}_1 - \mathbf{r}'_1) \dots \delta(\mathbf{r}_N - \mathbf{r}'_N).$	(5.81b)

box normalization	let ψ_i be the normalised eigenfunction for eigenvalue a_i > large box: eigenvalues a_i for continuum are densely distributed > i can be treated as continuous variable > set i = i(a) and introduce density of states ρ $\rho(a) = \frac{\mathrm{d}i}{\mathrm{d}a}$ which is equal to the number of discrete states within a unit range of a , $\sum_i c_i \psi_i \to \int c_i \psi_i \mathrm{d}i = \int \rho(a) c_i \psi_i \mathrm{d}a.$ Requiring that $\int \rho(a) c_i \psi_i \mathrm{d}a = \int c(a) \psi_a \mathrm{d}a$	(5.82) we have (5.83)
		(2.04)
	and also (from the closure relation and with $\sum_i \to \int \rho(a) da$) $\int \rho(a) \psi_i^*(\mathbf{r}') \psi_i(\mathbf{r}) da = \int \psi_a^*(\mathbf{r}') \psi_a(\mathbf{r}) da$	(5.85)
	one can make the identifications	(CICC)
	$\psi_a = [\rho(a)]^{1/2} \psi_i$	(5.86a)
	and	
	$c(a) = [\rho(a)]^{1/2}c_i$	(5.86b)
	which allow one to 'translate' formulae written using the 'box norma those written using the delta function 'normalisation'.	lisation' into
5.4 commuting	observables, compatibility and the Heisenberg uncertainty principles	i
commutator [A,B]	define: [A,B] = AB-BA	
commutator of x and p _x	The position and momentum operators satisfy: $[x, p_x] = [y, p_y] =$	$= [z, p_z] = i\hbar$
	For multiple particles (x_1,y_1,z_1) , (x_2,y_2,z_2) , and (p_{1x},p_{1y},p_{1z}) , (p_{2x},p_{2y},z_2)	,,p _{2z}), :
	$[x_i, p_{ix}] = [y_i, p_{iy}] = [z_i, p_{iz}] = i\hbar$ $(i = 1, 2,, N)$).
	>> all other possible combinations commute (ie: [.,.] = 0)	
5.4.1 commuting observables	ture sheem while A and D are consortible	
compatible observables	two observables A and B are compatible > if there exists a complete set of ψ_n such that ψ_n is both an eigenf	unction of A and B
	$A\psi_n = a_n \psi_n, \qquad B\psi_n = b_n \psi_n.$	
	example: Cartesian components of ${\bf x}$ and ${\bf p}$ NOT ${\bf x}$ and ${\bf p}_{\bf x}$	
commutation and compatibility	If A and B are compatible, then	
	$AB\psi_n = a_n b_n \psi_n$ $= b_n a_n \psi_n$ $= BA\psi_n.$	
	thus: $(AB - BA)\Psi = \sum_{n} c_n (AB - BA)\psi_n = 0$	
	thus we find [A,B]=0	
	>> this also works in reverse	
	!! if [A,B]=0 and ψ_n is an eigenfunction of A, this doesn't imply ψ_n is	s an eigenfunc of B!!
commutator algebra	[A, B] = -[B, A] $[A, B + C] = [A, B] + [A, C]$ $[A, BC] = [A, B]C + B[A, C]$ $[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0$	
l .		

5.4.2 Heisenberg uncertainty relation	S
uncertainty ΔA	For an operator A define ΔA as: $\Delta A = [\langle (A - \langle A \rangle)^2 \rangle]^{1/2}$ so that $(\Delta A)^2 = \langle (A - \langle A \rangle)^2 \rangle = \langle A^2 \rangle - \langle A \rangle^2$
general Heisenberg uncertainty	For two variables A and B For $\langle \Psi A \Psi \rangle$ and $\langle \Psi B \Psi \rangle$ the expectation values For uncertainties ΔA and ΔB : $ > \text{it holds:} $ $ \Delta A \Delta B \geqslant \frac{1}{2} \langle [A,B] \rangle . $
> proof	introduce the linear Hermitian operators: $\bar{A} = A - \langle A \rangle, \qquad \bar{B} = B - \langle B \rangle$ note that: $(\Delta A)^2 = \langle \bar{A}^2 \rangle, \qquad (\Delta B)^2 = \langle \bar{B}^2 \rangle$ and: $[\bar{A}, \bar{B}] = [A - \langle A \rangle, B - \langle B \rangle] = [A, B].$ next introduce the linear operator with real constant λ : $C = \bar{A} + i\lambda \bar{B}$ and its adjoint $C^\dagger = \bar{A} - i\lambda \bar{B}$ where the expectation value of CC† is real and nonnegative: $(CC^\dagger) = \langle \Psi CC^\dagger \Psi \rangle = \langle C^\dagger \Psi C^\dagger \Psi \rangle \geqslant 0.$ Now the following expectation value is also real and nonnegative: $((\bar{A} + i\lambda \bar{B})(\bar{A} - i\lambda \bar{B})) = \langle \bar{A}^2 + \lambda^2 \bar{B}^2 - i\lambda [\bar{A}, \bar{B}] \rangle$ and introduce the real and nonnegative function $f(\lambda)$: $f(\lambda) = \langle \bar{A}^2 \rangle + \lambda^2 \langle \bar{B}^2 \rangle - i\lambda \langle [\bar{A}, \bar{B}] \rangle$ $= (\Delta A)^2 + \lambda^2 (\Delta B)^2 - i\lambda \langle [\bar{A}, \bar{B}] \rangle$ > implies that $\langle [A, B] \rangle$ is purely imaginary $f(\lambda)$ has a minimum for
	$\lambda_0 = \frac{\mathrm{i}}{2} \frac{\langle [A,B] \rangle}{(\Delta B)^2}$ for which $\mathrm{f}(\lambda_0)$ is equal to: $f(\lambda_0) = (\Delta A)^2 + \frac{1}{4} \frac{(\langle [A,B] \rangle)^2}{(\Delta B)^2}.$ Since this value is non-negative, we must have $(\Delta A)^2 (\Delta B)^2 \geqslant -\frac{1}{4} (\langle [A,B] \rangle)^2$
Heisenberg for canonical conjugates	For canonical conjugates we have [A,B] = iħ > thus also $\langle [A,B] \rangle = i\hbar$ > thus: $\Delta A \Delta B \geqslant \frac{\hbar}{2}.$
Heisenberg for Δx and Δp	for example: $\Delta x \Delta p_x \geqslant \frac{\hbar}{2}, \qquad \Delta y \Delta p_y \geqslant \frac{\hbar}{2}, \qquad \Delta z \Delta p_z \geqslant \frac{\hbar}{2}$ with $\Delta x = [\langle (x - \langle x \rangle)^2 \rangle]^{1/2}, \qquad \Delta p_x = [\langle (p_x - \langle p_x \rangle)^2 \rangle]^{1/2}$

5.4.3 the minimum uncertainty wave packet	
minimum uncertainty wave packet	$\Delta A \Delta B \geqslant \frac{1}{2} \langle [A, B] \rangle .$
	> there is minimum uncertainty when these two become equal > this is when $\lambda = \lambda_0$ and $C^{\dagger}\Psi = 0$:
	$(\bar{A} - i\lambda_0 \bar{B})\Psi = 0.$
	>> use this to find the wave function Ψ such that $\Delta A \Delta B$ is minimal
example: ΔxΔp _x	$\Delta x \Delta p_x = \frac{\hbar}{2}.\tag{5.120}$
	Writing $\psi(x) \equiv \Psi(x, t = 0)$, and using (5.119) with $\bar{A} = x - \langle x \rangle$, $\bar{B} = p_x - \langle p_x \rangle$ and $\lambda_0 = i\langle [x, p_x] \rangle / [2(\Delta p_x)^2] = -\hbar/[2(\Delta p_x)^2]$, we find that
	$\left(-i\hbar\frac{\mathrm{d}}{\mathrm{d}x} - \langle p_x \rangle\right)\psi(x) = \frac{2\mathrm{i}(\Delta p_x)^2}{\hbar}(x - \langle x \rangle)\psi(x). \tag{5.121}$
	this gives us:
	$\psi(x) = C \exp\left(\frac{\mathrm{i}}{\hbar} \langle p_x \rangle x\right) \exp\left[-\frac{(\Delta p_x)^2 (x - \langle x \rangle)^2}{\hbar^2}\right]$
	with C normalization constant
5.5 m	atrix representation of wave functions and operators
operators as metrices	The action of a linear Hermitian operator A on Ψ creates a new wave function X:
	$X = A\Psi$.
	The wave function X can also be expanded in terms of the basis $\{\psi_n\}$ as
	$X=\sum_m d_m \psi_m$
	where the coefficients of the expansion are given by $d_m = \langle \psi_m \mathbf{X} \rangle$.
	$d_m = \langle \psi_m \mathbf{X} \rangle$
	$=\langle \psi_m A \Psi angle$
	$=\sum_n \langle \psi_m A \psi_n \rangle c_n$
	define $A_{mn} = \langle \psi_m A \psi_n \rangle$ the matrix elements of operator A on basis $\{\psi_n\}$:
	$d_m = \sum A_{mn} c_n.$
	this can be rewritten as a matrix equation: $\mathbf{d} = \mathbf{Ac}$
	thus: $ \begin{pmatrix} d_1 \\ d_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & \dots \\ A_{21} & A_{22} & \dots \\ \vdots & \vdots & \dots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \end{pmatrix} $
(X Ψ) in matrices	Using (5.64) and the fact that $c_n = \langle \psi_n \Psi \rangle$ and $d_n^* = \langle X \psi_n \rangle$, the scalar product $\langle X \Psi \rangle$ can be expressed as
	$\langle \mathbf{X} \Psi \rangle = \sum_{n} d_n^* c_n = \mathbf{d}^{\dagger} \cdot \mathbf{c} $ (5.160)
	where c is a column vector with elements c_n and \mathbf{d}^{\dagger} is a row vector with elements d_n^* . Thus (5.160) can be displayed as
	$\langle \mathbf{X} \Psi \rangle = (d_1^* d_2^* \dots) \begin{pmatrix} c_1 \\ c_2 \\ \vdots \end{pmatrix}. \tag{5.161}$

5.5.1 matrix properties and definition	ns
transpose	$(A^{\mathrm{T}})_{mn} = A_{nm}$
adjoint	$(A^{\dagger})_{mn} = A_{nm}^*.$
Hermitian	$\mathbf{A} = \mathbf{A}^{\dagger}$ thus $\mathbf{A}_{mn} = \mathbf{A^*}_{nm}$
correspondence between operators and metrices	- Hermitian operator represented by Hermitian matrix unitary unitary
	- A+B operator represented by A+B matrix AB AB
basis and diagonality	If the basis $\{\psi_n\}$ of eigenfunctions of A is used > than A will be a diagonal matrix

5.5.2 change of representation and unitary transforms

transformation between matrix
representations

For $\{\psi_n\}$ and $\{\varphi_m\}$ two different orthonormal bases

> each member of $\{\psi_n\}$ can be expanded in the basis $\{\varphi_m\}$ as:

$$\psi_n = \sum_m U_{mn} \phi_m$$

with U_{mn} the scalar product of ϕ_m and ψ_n :

$$U_{mn} = \langle \phi_m | \psi_n \rangle.$$

now the matrix of U_{mn} is a unitary matrix:

$$(UU^{\dagger})_{mn} = \sum_{k} U_{mk} (U^{\dagger})_{kn}$$

$$= \sum_{k} U_{mk} U_{nk}^{*}$$

$$= \sum_{k} \langle \phi_{m} | \psi_{k} \rangle \langle \psi_{k} | \phi_{n} \rangle$$

$$= \langle \phi_{m} | \phi_{n} \rangle = \delta_{mn}$$

For basis $\{\psi_n\}$ we have wavefunction Ψ via coefficients c_n

$$\Psi = \sum_{n} c_n \psi_n = \sum_{m} c'_m \phi_m$$

met

$$c_n = \langle \psi_n | \Psi \rangle, \qquad c'_m = \langle \phi_m | \Psi \rangle.$$

Via the closure relation, we find:

$$c'_{m} = \langle \phi_{m} | \Psi \rangle$$

$$= \sum_{n} \langle \phi_{m} | \psi_{n} \rangle \langle \psi_{n} | \Psi \rangle$$

$$= \sum_{n} U_{mn} c_{n},$$

or thus: c' = Uc

For matrix **A** representing operator A in basis $\{\psi_n\}$

$$A'_{mn} = \langle \phi_m | A | \phi_n \rangle$$

$$= \sum_k \sum_l \langle \phi_m | \psi_k \rangle \langle \psi_k | A | \psi_l \rangle \langle \psi_l | \phi_n \rangle$$

$$= \sum_k \sum_l U_{mk} A_{kl} (U^{\dagger})_{ln}$$

thus: $\mathbf{A}' = \mathbf{U}\mathbf{A}\mathbf{U}^{\dagger}$ and $\mathbf{A} = \mathbf{U}^{\dagger}\mathbf{A}'\mathbf{U}$.

>> for transformations between different matrix representations, the transforming operators are unitary matrices

trace property of unitary matrices	
$=\sum_k\sum_l\sum_m U_{mk}A_{kl}(U^\dagger)_{lm}$ $=\sum_k\sum_l\sum_m [(U^\dagger)_{lm}U_{mk}]A_{kl}$ $=\sum_k\sum_l\sum_m [A_{kl}A_{kl}]$ $=\sum_kA_{kk}=\mathrm{Tr}\mathbf{A}.$ >> trace of Hermitian matrix is equal to the sum of its eigenvalues eigenvalues of \mathbf{A} any Hermitian matrix can be diagonalised by a unitary transformation >> if you want to find the eigenfunction of \mathbf{A} : 1: diagonalise \mathbf{A} via $\mathbf{A}'=\mathbf{U}\mathbf{A}\mathbf{U}^\dagger$ 2: eigenfunctions are on the diagonalise \mathbf{A} via $\mathbf{A}'=\mathbf{U}\mathbf{A}\mathbf{U}^\dagger$	
$=\sum_k\sum_l\sum_m[(U^\dagger)_{lm}U_{mk}]A_{kl}$ $=\sum_k\sum_l\delta_{lk}A_{kl}$ $=\sum_kA_{kk}=\operatorname{Tr}\mathbf{A}.$ >> trace of Hermitian matrix is equal to the sum of its eigenvalues any Hermitian matrix can be diagonalised by a unitary transformation >> if you want to find the eigenfunction of \mathbf{A} : 1: diagonalise \mathbf{A} via $\mathbf{A}'=\mathbf{U}\mathbf{A}\mathbf{U}^\dagger$ 2: eigenfunctions are on the diagonalise \mathbf{A} via $\mathbf{A}'=\mathbf{U}\mathbf{A}\mathbf{U}^\dagger$	
$=\sum_k\sum_l\sum_m[(U^\dagger)_{lm}U_{mk}]A_{kl}$ $=\sum_k\sum_l\delta_{lk}A_{kl}$ $=\sum_kA_{kk}=\operatorname{Tr}\mathbf{A}.$ >> trace of Hermitian matrix is equal to the sum of its eigenvalues any Hermitian matrix can be diagonalised by a unitary transformation >> if you want to find the eigenfunction of \mathbf{A} : 1: diagonalise \mathbf{A} via $\mathbf{A}'=\mathbf{U}\mathbf{A}\mathbf{U}^\dagger$ 2: eigenfunctions are on the diagonalise \mathbf{A} via $\mathbf{A}'=\mathbf{U}\mathbf{A}\mathbf{U}^\dagger$	
$=\sum_k\sum_l\delta_{lk}A_{kl}$ $=\sum_kA_{kk}=\operatorname{Tr}\mathbf{A}.$ >> trace of Hermitian matrix is equal to the sum of its eigenvalues eigenvalues of \mathbf{A} any Hermitian matrix can be diagonalised by a unitary transformation >> if you want to find the eigenfunction of \mathbf{A} : 1: diagonalise \mathbf{A} via $\mathbf{A}'=\mathbf{U}\mathbf{A}\mathbf{U}^\dagger$ 2: eigenfunctions are on the diagonal state vector	
$=\sum_k A_{kk}=\operatorname{Tr}\mathbf{A}.$ >> trace of Hermitian matrix is equal to the sum of its eigenvalues eigenvalues of \mathbf{A} any Hermitian matrix can be diagonalised by a unitary transformation >> if you want to find the eigenfunction of \mathbf{A} : 1: diagonalise \mathbf{A} via $\mathbf{A}'=\mathbf{U}\mathbf{A}\mathbf{U}^\dagger$ 2: eigenfunctions are on the diagonalise \mathbf{A} via $\mathbf{A}'=\mathbf{U}\mathbf{A}\mathbf{U}^\dagger$	
>> trace of Hermitian matrix is equal to the sum of its eigenvalues eigenvalues of A any Hermitian matrix can be diagonalised by a unitary transformation >> if you want to find the eigenfunction of A: 1: diagonalise A via A' = UAU† 2: eigenfunctions are on the diagonalise A via A' = UAU†	
eigenvalues of A any Hermitian matrix can be diagonalised by a unitary transformation >> if you want to find the eigenfunction of A: 1: diagonalise A via A' = UAU† 2: eigenfunctions are on the diagonalise A: 2: eigenfunctions are on the diagonalise A: 3: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4:	
>> if you want to find the eigenfunction of A: 1: diagonalise A via A' = UAU† 2: eigenfunctions are on the diagon 5.5.3 the state vector	
5.5.3 the state vector	
	nal
state vector = Ψ⟩	
1.1	
Dirac quantum representation for each state vector there's an associated conjugate bra $\langle \Psi \rangle \langle \Psi \Psi \rangle$ is a real quantity representing the square of the norm of $ \Psi \rangle$	
5.5.4 the linear harmonic oscillator revisited	
1D linear harmonic oscillator with $\omega = (k/m)^{1/2}$ the Hamiltonian for a 1D oscillator is:	
$H = \frac{p_x^2}{2m} + \frac{1}{2}kx^2 = \frac{p_x^2}{2m} + \frac{1}{2}m\omega^2x^2$	
introduce the operators a ₊₋	
$a_{\pm} = \frac{1}{\sqrt{2}} \left[\left(\frac{m\omega}{\hbar} \right)^{1/2} x \mp i \frac{p_x}{(m\hbar\omega)^{1/2}} \right]$	
since x and p_x are Hermitian, a_+ and a are adjoint: a_+ = a †	
> we can find: $[a_+, a] = 1$ > the Hamiltonian can be rewritten as, with N = a_+a :	
$H = \frac{\hbar\omega}{2}(a_{-}a_{+} + a_{+}a_{-}) = \hbar\omega(a_{-}a_{+} - \frac{1}{2}) = \hbar\omega(a_{+}a_{-} + \frac{1}{2}) = \hbar\omega(N + \frac{1}{2})$	(1)
furthermore $[H,a_{+}]=\pm\hbar\omega a_{+}.$	1
If $ E\rangle$ is an eigenvector of H with eigenvalue E, so that $H E\rangle = E E\rangle$ we have:	
$Ha_{\pm} E\rangle=(a_{+}H\pm\hbar\omega a_{+}) E\rangle$	
$= (E \pm \hbar \omega) a_{\pm} E\rangle.$	
ie: $a_{+} E\rangle$ are eigenvectors of H with eigenvalues E+- $\hbar\omega$	
> a ₊ raises & a ₋ lowers the value of E, thus they are resp. <i>raising</i> and <i>lowering</i> op	erators
now: H only contains squares of p _x and x	
> expectation value of H cannot be negative > eigenvalues of H must be non-negative	
Let E be the smallest eigenvalue $>$ then a. $ E_0>=0$, for otherwise a. $ E_0>$ would be an eigenket with eigenvalue E_0 -ħu	
which cannot be since E_0 is the smallest eigenvalue E_0 -norm.	
> we can find: $\hbar\omega a_+a E_0\rangle=\hbar\omega N E_0\rangle=\big(H-\tfrac{1}{2}\hbar\omega\big) E_0\rangle=0$	
thus $E_0 = \hbar \omega/2$ > we find the other eigenkets by working a_+ on $ E_0\rangle$	
$ E_0\rangle$, $a_+ E_0\rangle$, $a_+^2 E_0\rangle$,,	

1D linear harmonic oscillator for $|E_n\rangle$ now a normalised eigenket with eigenvalue E_n > we have, with C_{n+1} the normalization coefficient:

$$|E_{n+1}\rangle = C_{n+1}a_+|E_n\rangle$$

since $\langle E_{n+1} | E_{n+1} \rangle = 1$ and $a_+ = a_-^{\dagger}$, we find that:

$$|C_{n+1}|^2 \langle E_n | a_- a_+ | E_n \rangle = 1.$$

since a.a₊ = $(H/\hbar\omega)+1/2$ and $H|E_n\rangle=E_n|E_n\rangle$ and $E_n=(n+1/2)\hbar\omega$ and $\langle E_n|E_n\rangle$:

$$C_{n+1} = (n+1)^{-1/2}$$

and thus we find:

$$a_{+}|E_{n}\rangle = (n+1)^{1/2}|E_{n+1}\rangle.$$

or starting from E_0 :

$$|E_n\rangle = (n!)^{-1/2}a_+^n|E_0\rangle$$

We also have $|E_n\rangle = C_n a_+ |E_{n-1}\rangle$ with $C_n = n^{-1/2}$ > operator both sides with a.:

$$a_{-}|E_{n}\rangle = n^{-1/2}a_{-}a_{+}|E_{n-1}\rangle$$

now: $a_-a_+=(H/\hbar\omega)+1/2$ and $H|E_{n-1}\rangle=(n-1/2)\hbar\omega|E_{n-1}\rangle$ $a_-|E_n\rangle=n^{1/2}|E_{n-1}\rangle$

5.5.5 matrix representation in the $\{|E_n\rangle\}$ basis

matrix representation of **H** and **N**

in terms of { $|E_n\rangle$ } with n=0,1,2,... we find H via its eigenvalues E_n = (n+1/2) $\hbar\omega$ > N is just the diagonal matrix with elements n:

$$\mathbf{H} = \hbar\omega \begin{pmatrix} \frac{1}{2} & 0 & 0 & \dots \\ 0 & \frac{3}{2} & 0 & \dots \\ 0 & 0 & \frac{5}{2} \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}, \qquad \mathbf{N} = \begin{pmatrix} 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ 0 & 0 & 2 \\ \vdots & & \vdots & \end{pmatrix}$$

matrix a+ and a-

from the orthogonality of eigenvectors we have:

$$\langle E_k | E_{n+1} \rangle = C_{n+1} \langle E_k | a_+ | E_n \rangle = \delta_{k,n+1}$$

hence, the matrix elements of a_+ in $\{|E_n\rangle\}$:

$$(a_+)_{kn} = (n+1)^{1/2} \delta_{k,n+1}$$

thus $\mathbf{a}_{\scriptscriptstyle{+}}$ is a real matrix whose elements are directly below the main diagonal

from $a_{+}=a_{-}^{\dagger}$ we find:

$$(a_{-})_{kn} = (k+1)^{1/2} \delta_{k+1,n}$$

thus:

$$\mathbf{a}_{+} = \begin{pmatrix} 0 & 0 & 0 & \dots \\ \sqrt{1} & 0 & 0 & \dots \\ 0 & \sqrt{2} & 0 & \dots \\ 0 & 0 & \sqrt{3} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad \mathbf{a}_{-} = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & \dots \\ 0 & 0 & \sqrt{2} & 0 & \dots \\ 0 & 0 & 0 & \sqrt{3} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

transition to position $a_{\pm} = \frac{1}{\sqrt{2}} \left[\frac{m\omega}{h} \right]^{1/2} x \mp \frac{1}{(mh\omega)^{1/2}} \frac{d}{dx} \right]$ or, in terms of the variable $\xi = (m\omega/h)^{1/2}x = \alpha x$ $a_{\pm} = \frac{1}{\sqrt{2}} \left(\xi \mp \frac{d}{d\xi} \right).$ We can rewrite a $ E_0\rangle = 0$ in position representation as: $\left(\xi + \frac{d}{d\xi} \right) \psi_0(\xi) = 0.$ This equation has the solution $\psi_0(\xi) = N_0 e^{-\xi^2/2}$ where N_0 is a constant. Hence $\psi_0(x) = N_0 e^{-\xi^2/2}$ where N_0 is a constant. Hence $\psi_0(x) = N_0 e^{-\xi^2/2}$ If N_0 is chosen to be real and such that $\psi_0(x)$ is normalised to unity, we have $N_0 = \left(\frac{\alpha}{\sqrt{\pi}} \right)^{1/2}.$ all other eigenfunctions can be found using $ E_a\rangle = (n!)^{-1/2} a_a^a E_0\rangle$: $\psi_n(\xi) = \left(n! \right)^{-1/2} \left[\frac{1}{\sqrt{2}} \left(\xi - \frac{d}{d\xi} \right) \right]^n \psi_0(\xi)$ and thus: $\psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi} 2^n n!} \right)^{1/2} e^{-\xi^2/2} H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system is determined by the TDSE: $i\hbar \frac{\partial}{\partial t} \psi(t) = H \psi(t)$ where H is the Hamiltonian, or total energy operator of the system. Obtaining the Hamiltonian v we can find H via substitution rule $v = v \ln(h) \psi_0(t)$ S.7.1 the evolution operator $v = v \ln(h) \psi_0(t)$ TDSE is a first-order diff-eq in time $v = v \ln(h) \psi_0(t) = U(t_0, h) \psi_0(t_0)$ Such that: $v + v = U(t_0) = U(t_0, h) \psi_0(t_0)$	5.5.6 transition form the { E _n ⟩} to the position representation						
or, in terms of the variable $\xi=(m\omega/\hbar)^{1/2}x=\alpha x$ $a_{\pm}=\frac{1}{\sqrt{2}}\left(\xi\mp\frac{d}{d\xi}\right).$ We can rewrite $a_{-} E_{0}\rangle=0$ in position representation as: $\left(\xi+\frac{d}{d\xi}\right)\psi_{0}(\xi)=0.$ This equation has the solution $\psi_{0}(\xi)=N_{0}e^{-\xi^{2}/2}$ where N_{0} is a constant. Hence $\psi_{0}(x)=N_{0}e^{-x^{2}/2}.$ If N_{0} is chosen to be real and such that $\psi_{0}(x)$ is normalised to unity, we have $N_{0}=\left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2}.$ all other eigenfunctions can be found using $ E_{n}\rangle=(n!)^{-1/2}\sigma_{+}^{n} E_{0}\rangle:$ $\psi_{n}(\xi)=(n!)^{-1/2}\left[\frac{1}{\sqrt{2}}\left(\xi-\frac{d}{d\xi}\right)\right]^{n}\psi_{0}(\xi)$ and thus: $\psi_{n}(\xi)=\left(\frac{\alpha}{\sqrt{\pi}2^{n}n!}\right)^{1/2}e^{-\xi^{2}/2}H_{n}(\xi)$ where $H_{n}(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: $i\hbar\frac{\partial}{\partial t}\psi(t)=H\psi(t)$ where H is the Hamiltonian, or total energy operator of the system. obtaining the Hamiltonian we can find H via substitution rule $ > \exp \ln (H_{0}) = \exp 231 $ 5.7.1 the evolution operator TDSE is a first-order diff.eq in time $ > \operatorname{state} \operatorname{vector} \psi(t)$ is defined at all t once its specified for any $t_{0} > \operatorname{introduce} an evolution operator U(t_{0},t)$ such that:	transition to position $since x = x and p_x = -i\hbar d/dx:$						
$a_{\pm} = \frac{1}{\sqrt{2}} \left(\xi \mp \frac{\mathrm{d}}{\mathrm{d}\xi} \right).$ We can rewrite $a_{-}[e_0] = 0$ in position representation as: $\left(\xi + \frac{\mathrm{d}}{\mathrm{d}\xi} \right) \psi_0(\xi) = 0.$ This equation has the solution $\psi_0(\xi) = N_0 e^{-\xi^2/2}$ where N_0 is a constant. Hence $\psi_0(x) = N_0 e^{-\xi^2/2}.$ If N_0 is chosen to be real and such that $\psi_0(x)$ is normalised to unity, we have $N_0 = \left(\frac{\alpha}{\sqrt{\pi}} \right)^{1/2}.$ all other eigenfunctions can be found using $ E_n\rangle = (n!)^{-1/2} a_+^a E_0\rangle$: $\psi_n(\xi) = (n!)^{-1/2} \left[\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi} \right) \right]^n \psi_0(\xi)$ and thus: $\psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi} 2^n n!} \right)^{1/2} e^{-\xi^2/2} H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system between $H_n(\xi)$ is the Hermite polynomial of order $H_n(\xi)$ is the Hamiltonian, or total energy operator of the system. Obtaining the Hamiltonian we can find H via substitution rule > examples: see p231 5.7.1 the evolution operator TDSE is a first-order diff.eq in time > state vector $\Psi(t)$ is defined at all t once its specified for any t_0 > introduce an evolution operator $U(t_0,t)$ such that:		1117 American Company (1998) 10 December 2000 (1998) 1					
We can rewrite a. $ E_0\rangle=0$ in position representation as: $\left(\xi+\frac{\mathrm{d}}{\mathrm{d}\xi}\right)\psi_0(\xi)=0.$ This equation has the solution $\psi_0(\xi)=N_0e^{-\xi^2/2}$ where N_0 is a constant. Hence $\psi_0(x)=N_0e^{-\alpha^2x^2/2}.$ If N_0 is chosen to be real and such that $\psi_0(x)$ is normalised to unity, we have $N_0=\left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2}.$ all other eigenfunctions can be found using $ E_n\rangle=(n!)^{-1/2}a_+^a E_0\rangle:$ $\psi_n(\xi)=(n!)^{-1/2}\left[\frac{1}{\sqrt{2}}\left(\xi-\frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right]^n\psi_0(\xi)$ and thus: $\psi_n(\xi)=\left(\frac{\alpha}{\sqrt{\pi}2^nn!}\right)^{1/2}e^{-\xi^2/2}H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: in $\frac{\partial}{\partial t}\psi(t)=H\psi(t)$ where H is the Hamiltonian, or total energy operator of the system. Obtaining the Hamiltonian we can find H via substitution rule $>$ examples: see p231 5.7.1 the evolution operator TDSE is a first-order diff.eq in time $>$ state vector $\psi(t)$ is defined at all t once its specified for any $t_0>$ introduce an evolution operator $U(t_0,t)$ such that:							
$\left(\xi+\frac{\mathrm{d}}{\mathrm{d}\xi}\right)\psi_0(\xi)=0.$ This equation has the solution $\psi_0(\xi)=N_0e^{-\xi^2/2}$ where N_0 is a constant. Hence $\psi_0(x)=N_0e^{-x^2x^2/2}.$ If N_0 is chosen to be real and such that $\psi_0(x)$ is normalised to unity, we have $N_0=\left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2}.$ all other eigenfunctions can be found using $ E_n\rangle=(n!)^{-1/2}a_+^n E_0\rangle$: $\psi_n(\xi)=(n!)^{-1/2}\left[\frac{1}{\sqrt{2}}\left(\xi-\frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right]^n\psi_0(\xi)$ and thus: $\psi_n(\xi)=\left(\frac{\alpha}{\sqrt{\pi}2^nn!}\right)^{1/2}e^{-\xi^2/2}H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system of the time evolution of the wave function of a system is determined by the TDSE: $i\hbar\frac{\partial}{\partial t}\Psi(t)=H\Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. obtaining the Hamiltonian we can find H via substitution rule $> \exp\ln H$ is the Hamiltonian or total energy operator of the system.		$a_{\pm} = \frac{1}{\sqrt{2}} \left(\xi \mp \frac{\mathrm{d}}{\mathrm{d}\xi} \right).$					
This equation has the solution $\psi_0(\xi) = N_0 e^{-\xi^2/2} \text{ where } N_0 \text{ is a constant. Hence}$ $\psi_0(x) = N_0 e^{-\alpha^2x^2/2}.$ If N_0 is chosen to be real and such that $\psi_0(x)$ is normalised to unity, we have $N_0 = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2}.$ all other eigenfunctions can be found using $ E_n\rangle = (n!)^{-1/2}a_+^n E_0\rangle$: $\psi_n(\xi) = (n!)^{-1/2} \left[\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right]^n \psi_0(\xi)$ and thus: $\psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi}2^n n!}\right)^{1/2} e^{-\xi^2/2} H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system the time evolution of the wave function of a system is determined by the TDSE: $i\hbar \frac{\partial}{\partial t} \Psi(t) = H\Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. obtaining the Hamiltonian we can find H via substitution rule $ = 2\pi n \ln H $ we can find H via substitution rule $ = 2\pi n \ln H $ or total energy operator of the system. TDSE is a first-order diff.eq in time $ = 2\pi n \ln H $ is the state vector $\Psi(t)$ is defined at all t once its specified for any t_0 introduce an evolution operator $\Psi(t_0)$ is defined at all tonce its specified for any t_0 introduce an evolution operator $\Psi(t_0)$ is defined at all tonce its specified for any t_0 introduce an evolution operator $\Psi(t_0)$ is defined at all tonce its specified for any t_0		the state of the s					
$\psi_0(\xi) = N_0 e^{-\xi^2/2} \text{where N_0 is a constant. Hence} \\ \psi_0(x) = N_0 e^{-\alpha^2x^2/2}. \text{If N_0 is chosen to be real and such that $\psi_0(x)$ is normalised to unity, we have} \\ N_0 = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2}. \text{all other eigenfunctions can be found using $ E_n\rangle = (n!)^{-1/2}a_+^n E_0\rangle$: \psi_n(\xi) = (n!)^{-1/2} \left[\frac{1}{\sqrt{2}}\left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right]^n \psi_0(\xi) and thus: \psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi}2^nn!}\right)^{1/2} e^{-\xi^2/2} H_n(\xi) where H_n(\xi) is the Hermite polynomial of order n. 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: i\hbar \frac{\partial}{\partial t} \Psi(t) = H\Psi(t) where H is the Hamiltonian, or total energy operator of the system. Obtaining the Hamiltonian we can find H via substitution rule > \exp(nt) = \frac{1}{2} \exp(nt) where t is a first-order diff.eq in time > \cot(nt) = \frac{1}{2} \exp(nt) = \frac{1}{2} \exp(nt) operator Evolution operator TDSE is a first-order diff.eq in time > \cot(nt) = \frac{1}{2} \exp(nt) in throduce an evolution operator U(t_0, t) such that:$		$\left(\xi + \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\psi_0(\xi) = 0.$					
where N_0 is a constant. Hence $\psi_0(x) = N_0 e^{-a^2x^2/2}.$ If N_0 is chosen to be real and such that $\psi_0(x)$ is normalised to unity, we have $N_0 = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2}.$ all other eigenfunctions can be found using $ E_n\rangle = (n!)^{-1/2}a_+^n E_0\rangle$: $\psi_n(\xi) = (n!)^{-1/2} \left[\frac{1}{\sqrt{2}}\left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right]^n \psi_0(\xi)$ and thus: $\psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi}}2^nn!\right)^{1/2} e^{-\xi^2/2} H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: $i\hbar \frac{\partial}{\partial t} \Psi(t) = H \Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. Obtaining the Hamiltonian we can find H via substitution rule $ > \exp p231 $ 5.7.1 the evolution operator evolution operator TDSE is a first-order diff.eq in time $ > \operatorname{state} \operatorname{vector} \Psi(t) \text{ is defined at all t once its specified for any } t_0 $ $ > \operatorname{introduce an evolution operator} U(t_0,t) \operatorname{such that:} $							
$\psi_0(x) = N_0 e^{-u^2 x^2/2}.$ If N_0 is chosen to be real and such that $\psi_0(x)$ is normalised to unity, we have $N_0 = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2}.$ all other eigenfunctions can be found using $ E_n = (n!)^{-1/2} a_+^n E_0 $: $\psi_n(\xi) = (n!)^{-1/2} \left[\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right]^n \psi_0(\xi)$ and thus: $\psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi}} 2^n n!}\right)^{1/2} e^{-\xi^2/2} H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: $i\hbar \frac{\partial}{\partial t} \Psi(t) = H \Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. obtaining the Hamiltonian we can find H via substitution rule $ = -(n!)^{-1/2} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ where H is the Hamiltonian, or total energy operator of the system. obtaining the Hamiltonian $ = -(n!)^{-1/2} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi_0(\xi) $ $ = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right)^n \psi$		08 - 9/00/10/00/00 - 9990-					
If N_0 is chosen to be real and such that $\psi_0(x)$ is normalised to unity, we have $N_0 = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2}.$ all other eigenfunctions can be found using $ E_n\rangle = \langle n!\rangle^{-1/2}a_+^n E_0\rangle$: $\psi_n(\xi) = (n!)^{-1/2} \left[\frac{1}{\sqrt{2}}\left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right]^n \psi_0(\xi)$ and thus: $\psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi}}2^nn!\right)^{1/2}e^{-\xi^2/2}H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: $i\hbar \frac{\partial}{\partial t} \Psi(t) = H \Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. Obtaining the Hamiltonian we can find H via substitution rule $ > \text{examples: see p231} $ 5.7.1 the evolution operator $ \text{TDSE is a first-order diff.eq in time } > \text{state vector } \Psi(t) \text{ is defined at all t once its specified for any } t_0 > \text{ introduce an evolution operator } U(t_0,t) \text{ such that:} $		564 til					
$N_0 = \left(\frac{\alpha}{\sqrt{\pi}}\right)^{1/2}.$ all other eigenfunctions can be found using $ E_n\rangle = (n!)^{-1/2}a_+^n E_0\rangle$: $\psi_n(\xi) = (n!)^{-1/2} \left[\frac{1}{\sqrt{2}}\left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right]^n \psi_0(\xi)$ and thus: $\psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi}2^n n!}\right)^{1/2} e^{-\xi^2/2} H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: $i\hbar \frac{\partial}{\partial t} \Psi(t) = H \Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. Obtaining the Hamiltonian we can find H via substitution rule $ > \exp p231 $ 5.7.1 the evolution operator evolution operator TDSE is a first-order diff.eq in time $ > \operatorname{state} \operatorname{vector} \Psi(t) \text{ is defined at all t once its specified for any } t_0 $ $ > \operatorname{introduce} \text{ an evolution operator} \text{ U}(t_0,t) \text{ such that:} $							
all other eigenfunctions can be found using $ E_n\rangle = (n!)^{-1/2}a_+^n E_0\rangle$: $\psi_n(\xi) = (n!)^{-1/2} \left[\frac{1}{\sqrt{2}}\left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right)\right]^n \psi_0(\xi)$ and thus: $\psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi}2^n n!}\right)^{1/2} e^{-\xi^2/2} H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: $i\hbar \frac{\partial}{\partial t} \Psi(t) = H\Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. obtaining the Hamiltonian we can find H via substitution rule $ > \text{examples: see p231} $ 5.7.1 the evolution operator $ \text{TDSE is a first-order diff.eq in time } > \text{state vector } \Psi(t) \text{ is defined at all t once its specified for any } t_0 > \text{ introduce an evolution operator } U(t_0, t) \text{ such that:} $		1.0					
$\psi_n(\xi) = (n!)^{-1/2} \bigg[\frac{1}{\sqrt{2}} \bigg(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi} \bigg) \bigg]^n \psi_0(\xi)$ and thus: $\psi_n(\xi) = \bigg(\frac{\alpha}{\sqrt{\pi} 2^n n!} \bigg)^{1/2} e^{-\xi^2/2} H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: $i h \frac{\partial}{\partial t} \Psi(t) = H \Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. obtaining the Hamiltonian we can find H via substitution rule		$N_0 = \left(\frac{\omega}{\sqrt{\pi}}\right)$.					
and thus: $\psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi}2^n n!}\right)^{1/2} e^{-\xi^2/2} H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: $i\hbar \frac{\partial}{\partial t} \Psi(t) = H \Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. obtaining the Hamiltonian we can find H via substitution rule		all other eigenfunctions can be found using $ E_n\rangle=(n!)^{-1/2}a_+^n E_0\rangle$:					
$\psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi}2^n n!}\right)^{1/2} e^{-\xi^2/2} H_n(\xi)$ where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: $i\hbar \frac{\partial}{\partial t} \Psi(t) = H \Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. obtaining the Hamiltonian we can find H via substitution rule > examples: see p231 5.7.1 the evolution operator evolution operator TDSE is a first-order diff.eq in time > state vector $\Psi(t)$ is defined at all t once its specified for any t_0 > introduce an evolution operator $U(t_0,t)$ such that:		$\psi_n(\xi) = (n!)^{-1/2} \left[\frac{1}{\sqrt{2}} \left(\xi - \frac{d}{d\xi} \right) \right]^n \psi_0(\xi)$					
where $H_n(\xi)$ is the Hermite polynomial of order n . 5.7 the Schrödinger equation and the time evolution of a system postulate 7 the time evolution of the wave function of a system is determined by the TDSE: ih $\frac{\partial}{\partial t} \Psi(t) = H \Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. obtaining the Hamiltonian we can find H via substitution rule > examples: see p231 5.7.1 the evolution operator evolution operator TDSE is a first-order diff.eq in time > state vector $\Psi(t)$ is defined at all t once its specified for any t_0 > introduce an evolution operator $U(t_0,t)$ such that:		and thus:					
5.7 the Schrödinger equation and the time evolution of a system the time evolution of the wave function of a system is determined by the TDSE: $i\hbar \frac{\partial}{\partial t} \Psi(t) = H \Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. obtaining the Hamiltonian we can find H via substitution rule > examples: see p231 5.7.1 the evolution operator evolution operator TDSE is a first-order diff.eq in time > state vector $\Psi(t)$ is defined at all t once its specified for any t_0 > introduce an evolution operator $U(t_0,t)$ such that:		$\psi_n(\xi) = \left(\frac{\alpha}{\sqrt{\pi} 2^n n!}\right)^{1/2} e^{-\xi^2/2} H_n(\xi)$					
postulate 7 the time evolution of the wave function of a system is determined by the TDSE: $i\hbar \frac{\partial}{\partial t} \Psi(t) = H \Psi(t)$ where H is the Hamiltonian, or total energy operator of the system.		where $H_n(\xi)$ is the Hermite polynomial of order n .					
$i\hbar \frac{\partial}{\partial t} \Psi(t) = H \Psi(t)$ where H is the Hamiltonian, or total energy operator of the system. $ \text{obtaining the Hamiltonian} $	5.7	the Schrödinger equation and the time evolution of a system					
	postulate 7						
obtaining the Hamiltonian we can find H via substitution rule > examples: see p231 5.7.1 the evolution operator evolution operator TDSE is a first-order diff.eq in time > state vector $\Psi(t)$ is defined at all t once its specified for any t_0 > introduce an evolution operator $U(t_0,t)$ such that:		$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(t)=H\Psi(t)$					
> examples: see p231		where H is the Hamiltonian, or total energy operator of the system.					
evolution operator TDSE is a first-order diff.eq in time $ > \text{state vector } \Psi(t) \text{ is defined at all t once its specified for any } t_0 \\ > \text{introduce an evolution operator } U(t_0,t) \text{ such that:} $	obtaining the Hamiltonian						
> state vector $\Psi(t)$ is defined at all t once its specified for any t_0 > introduce an evolution operator $U(t_0,t)$ such that:	5.7.1 the evolution operator						
	evolution operator	> state vector $\Psi(t)$ is defined at all t once its specified for any t_0					
with							
$U(t_0,t_0)=I.$		$U(t_0, t_0) = I.$					
Applying twice the definition (5.232), we also have							
$U(t, t_0) = U(t, t')U(t', t_0)$							
and		and					
$U^{-1}(t,t_0) = U(t_0,t)$		$U^{-1}(t, t_0) = U(t_0, t)$					
substituting in the TDSE we see U satisfies the equation:		substituting in the TDSE we see U satisfies the equation:					
$\mathrm{i}\hbar\frac{\partial}{\partial t}U(t,t_0)=HU(t,t_0)$		$\mathrm{i}\hbar\frac{\partial}{\partial t}U(t,t_0)=HU(t,t_0)$					
remark that we can rewrite this as:		remark that we can rewrite this as:					
$U(t,t_0) = I - \frac{\mathrm{i}}{\hbar} \int_{t_0}^t HU(t',t_0) \mathrm{d}t'.$		$U(t,t_0) = I - \frac{\mathrm{i}}{\hbar} \int_{t_0}^t HU(t',t_0) \mathrm{d}t'.$					

U(t,t ₀) a unitary operator	conservation of probability requires: $\langle \Psi(t) \Psi(t)\rangle = \langle \Psi(t_0) \Psi(t_0)\rangle.$ however, from $\Psi(t)$ = U $\Psi(t_0)$ we find: $\langle \Psi(t) \Psi(t)\rangle = \langle U(t,t_0)\Psi(t_0) U(t,t_0)\Psi(t_0)\rangle$					
	$= \langle \Psi(t_0) U^\dagger(t,t_0)U(t,t_0) \Psi(t_0)\rangle$ from which: $U^\dagger(t,t_0)U(t,t_0) = I.$ in same fashion we find, starting from $\langle \Psi(t_0) \Psi(t_0)\rangle$: $U(t,t_0)U^\dagger(t,t_0) = I$					
	>> U is a unitary transformation					
infinitesimal unitary transformation	The change in evolution operator induced after a small time δt : $i\hbar[U(t_0+\delta t,t_0)-U(t_0,t_0)]=HU(t_0+\delta t,t_0)\delta t.$ Hence, to first order in δt , and using the initial condition (5.233), we have $U(t_0+\delta t,t_0)=I-\frac{\mathrm{i}}{\hbar}H\delta t.$					
	> H is the generator of an infinitesimal unitary transformation described by the evolution operator $U(t_0+\delta t,t_0)$					
U in time-independent H	consider the case for which H is time-independent > a solution of U is: $U(t,t_0) = \exp\biggl[-\frac{\mathrm{i}}{\hbar}H(t-t_0)\biggr]$ thus a solution of the TDSE for time-ind. H is given by: $\Psi(t) = \exp\biggl[-\frac{\mathrm{i}}{\hbar}H(t-t_0)\biggr]\Psi(t_0).$					
U in time-independent H and V	suppose the potential V is also time-independent: V(r) > we can rewrite the wave function as: $\Psi(\vec{r},t) = \exp\left[-\frac{i}{\hbar}H\left(t-t_0\right)\right]\Psi(\vec{r},t_0)$ $= \int d\vec{r}' \exp\left[-\frac{i}{\hbar}H\left(t-t_0\right)\right]\delta\left(\vec{r}-\vec{r}'\right)\Psi\left(\vec{r}',t_0\right)$ $= \int d\vec{r}'K\left(\vec{r},t;\vec{r}',t_0\right)\Psi\left(\vec{r}',t_0\right) \text{(PROPAGATOR)}$ Now, according to the closure relation satisfied by the energy eigenfunctions, we have $\sum_{E} \psi_{E}^{*}(\mathbf{r}')\psi_{E}(\mathbf{r}) = \delta(\mathbf{r}-\mathbf{r}') \qquad (5.247)$ so that we can recast (5.246) in the form $\Psi(\mathbf{r},t) = \sum_{E} \int \exp\left[-\frac{i}{\hbar}H(t-t_0)\right]\psi_{E}^{*}(\mathbf{r}')\psi_{E}(\mathbf{r})\Psi(\mathbf{r}',t_0)\mathrm{d}\mathbf{r}'. \qquad (5.248)$ Since $H\psi_{E} = E\psi_{E}$, it follows that $\Psi(\mathbf{r},t) = \sum_{E} \left[\int \psi_{E}^{*}(\mathbf{r}')\Psi(\mathbf{r}',t_0)\mathrm{d}\mathbf{r}'\right] \exp[-\mathrm{i}E(t-t_0)/\hbar]\psi_{E}(\mathbf{r}) \qquad (5.249)$ in agreement with the result (3.155) obtained in Chapter 3.					

Г

5.7.2 time variation of expectation	on values
A as a constant of motion	consider an observable A > expectation value $\langle A \rangle$ in state Ψ , normalised to unity is $\langle \Psi A \Psi \rangle$ > rate of change of $\langle A \rangle$ is therefore: $\frac{d}{dt}\langle A \rangle = \frac{d}{dt}\langle \Psi A \Psi \rangle$ $= \left(\frac{\partial \Psi}{\partial t} A \Psi \rangle + \left(\Psi \frac{\partial A}{\partial t} \Psi \rangle + \left(\Psi A \frac{\partial \Psi}{\partial t} \right) \right)$ $= -(i\hbar)^{-1}\langle H\Psi A \Psi \rangle + \left(\Psi \frac{\partial A}{\partial t} \Psi \rangle + (i\hbar)^{-1}\langle \Psi A H \Psi \rangle$ since H is Hermitian, rewrite the fist matrix element on the right as $\langle \Psi HA \Psi \rangle$, so that: $\frac{d}{dt}\langle A \rangle = (i\hbar)^{-1}\langle [A,H] \rangle + \left(\frac{\partial A}{\partial t}\right)$ where $\langle [A,H] \rangle = \langle \Psi [A,H] \Psi \rangle = \langle \Psi A H - HA \Psi \rangle$ and $\left(\frac{\partial A}{\partial t}\right) = \left(\Psi \frac{\partial A}{\partial t} \Psi \rangle.$ if A doesn't depend explicitly on time $(\partial A/\partial t = 0)$, then this reduces to: $\frac{d}{dt}\langle A \rangle = (i\hbar)^{-1}\langle [A,H] \rangle.$ >> does not vary in time > A is constant of motion
5.7.3 time-independent Hamiltor	nian
energy conservation expectation value of A	If H is time-independent, consider the case A=H: $\frac{\mathrm{d}}{\mathrm{d}t}\langle H\rangle = (\mathrm{i}\hbar)^{-1}\langle [H,H]\rangle = 0$ total energy is constant of motion $\text{for } \psi_{E} \text{ an eigenfunction of the time-ind. H with eigenenergy E} > \text{for a stationary state } \Psi_{E} = \psi_{E} \exp(-\mathrm{i}Et/\hbar) \text{ and time-ind. A its clear that:} \\ \langle \Psi_E A \Psi_E \rangle = \langle \Psi_E A \Psi_E \rangle \text{ does not depend on the time.}$
	thus we find: $\langle \psi_E [A,H] \psi_E \rangle = 0.$
5.7.4 virial theorem	
virial theorem	consider a particle with mass m in potential V(r) with above particular case: $H=\frac{{\bf p}^2}{2m}+V({\bf r}).$ choose A = r.p time independent: $\langle \psi_E [{\bf r}.{\bf p},H] \psi_E\rangle=0.$ we can find that:
	$[\mathbf{r.p}, H] = \left[(xp_x + yp_y + zp_z), \frac{1}{2m} (p_x^2 + p_y^2 + p_z^2) + V(x, y, z) \right]$ $= \frac{i\hbar}{m} (p_x^2 + p_y^2 + p_z^2) - i\hbar \left(x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} + z \frac{\partial V}{\partial z} \right)$ $= 2i\hbar T - i\hbar (\mathbf{r.\nabla} V)$ with $T = \mathbf{p}^2 / 2m = -(\hbar^2 / 2m) \nabla^2$ is the kinetic energy operator. >> thus for a stationary state!!: $2 \langle T \rangle = \langle \mathbf{r.\nabla} V \rangle$

5.7.5 the Schrödinger equation for a two-body system

example: interacting masses

Consider two particles with mass m_1 , m_2 interacting via time-indep. potential $V(\mathbf{r_1-r_2})$ > only depends on relative position $\mathbf{r_1-r_2}$

The classical Hamiltonian of the system is given by:

$$H = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + V(\mathbf{r}_1 - \mathbf{r}_2).$$

now make the substitutions p=-iħ∇

> we can than formulate the TDSE in configuration space:

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r}_1,\mathbf{r}_2,t) = \left[-\frac{\hbar^2}{2m_1}\nabla_{\mathbf{r}_1}^2 - \frac{\hbar^2}{2m_2}\nabla_{\mathbf{r}_2}^2 + V(\mathbf{r}_1-\mathbf{r}_2)\right]\Psi(\mathbf{r}_1,\mathbf{r}_2,t).$$

which is a seven-dimensional partial-differential equation

> simplify: introduce r and R which determine the centre of mass CM of the system

$$\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$$

and the vector

$$\mathbf{R} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2}$$

change the variables:

$$-rac{\hbar^2}{2m_1}
abla_{{f r}_1}^2-rac{\hbar^2}{2m_2}
abla_{{f r}_2}^2=-rac{\hbar^2}{2M}
abla_{{f R}}^2-rac{\hbar^2}{2\mu}
abla_{{f r}}^2$$

with M = m_1+m_2 the total mass and μ the reduced mass of the system

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

the TDSE therefore becomes:

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(\mathbf{R},\mathbf{r},t) = \left[-\frac{\hbar^2}{2M}\nabla_{\mathbf{R}}^2 - \frac{\hbar^2}{2\mu}\nabla_{\mathbf{r}}^2 + V(\mathbf{r})\right]\Psi(\mathbf{R},\mathbf{r},t).$$

we can separate this equation

ie: 1: time dependence can be separated like in 3.5

> because the potential V(r) is time-independent

2: spatial part of wave function $\Psi(\mathbf{R}, \mathbf{r}, \mathbf{t})$ separated in product of functions of centre of mass coordinate \mathbf{R} and relative coordinate \mathbf{r}

> TDSE has a solution of the form:

$$\Psi(\mathbf{R}, \mathbf{r}, t) = \Phi(\mathbf{R})\psi(\mathbf{r}) \exp[-\mathrm{i}(E_{CM} + E)t/\hbar]$$

where $\Phi(\mathbf{R})$ and $\psi(\mathbf{r})$ satisfy respectively:

$$-\frac{\hbar^2}{2M}\nabla_{\mathbf{R}}^2\Phi(\mathbf{R}) = E_{\mathrm{CM}}\Phi(\mathbf{R}) \qquad \text{and} \quad \left[-\frac{\hbar^2}{2\mu}\nabla_{\mathbf{r}}^2 + V(\mathbf{r})\right]\psi(\mathbf{r}) = E\psi(\mathbf{r}).$$

the first eq. is a TISE describing the centre of mass as a free particle of mass M the 2nd eq. is a TISE describing the relative motion of the two particles

> is same as the Schrodinger eq. of a particle with mass μ in $V(\mathbf{r})$

total energy of the system $E_{tot} = E_{CM} + E$

>> we have separated the problem into two one-body problems

	5.8 The Schrödinger and Heisenberg pictures	
Schrödinger picture	 Operators A are time-independent wave function Ψ is time-dependent represents time evolution of the system 	
	The wave function Ψ is related to its value at ${\bf t_0}$ by performing unitary transforms $\Psi(t)=U(t,t_0)\Psi(t_0)$ with U(t,t_0) the evolution operator	ormation:
	The time dependence of the expectation value of an operator is given by: $\frac{\mathrm{d}}{\mathrm{d}t}\langle A\rangle=(\mathrm{i}\hbar)^{-1}\langle[A,H]\rangle+\left\langle\frac{\partial A}{\partial t}\right\rangle$	
	>> this is the picture we have used thus far	
Heisenberg picture	- Operators A_{H} are time-dependent - wave function Ψ_{H} is time-independent	
	The Heisenberg wave function is defined by its value at t ₀ : > or thus for unitary operator U(t,t ₀) this is compared to the Schrödinger pic $\Psi_H = U^\dagger(t,t_0)\Psi(t) = U(t_0,t)\Psi(t) = \Psi(t_0)$	ture:
	the corresponding Heisenberg operators are time-dependent > they can be found from the Schrödinger picture via: $A_H(t) = U^\dagger(t,t_0)AU(t,t_0) \\ = U(t_0,t)AU^\dagger(t_0,t)$	
	$=U(t_0,t)AU(t_0,t)$	
> time dependence of A _H	We find via the definition: $\frac{\mathrm{d}}{\mathrm{d}t}A_H(t) = \frac{\partial U}{\partial t}AU^\dagger + U\frac{\partial A}{\partial t}U^\dagger + UA\frac{\partial U^\dagger}{\partial t}.$	(5.281)
	Using (5.236) and the facts that H is Hermitian and U is unitary, we then $\frac{\mathrm{d}}{\mathrm{d}t}A_H(t) = (\mathrm{i}\hbar)^{-1}(-UHAU^\dagger + UAHU^\dagger) + U\frac{\partial A}{\partial t}U^\dagger$	find that
	$= (i\hbar)^{-1} (-UHU^{\dagger}UAU^{\dagger} + UAU^{\dagger}UHU^{\dagger}) + U\frac{\partial A}{\partial t}U^{\dagger}.$	(5.282)
	Defining the Heisenberg operators	
	$H_H = U H U^\dagger$ and	(5.283)
	$\left(\frac{\partial A}{\partial t}\right)_{H} = U \frac{\partial A}{\partial t} U^{\dagger}$	(5.284)
	we obtain $\frac{\mathrm{d}}{\mathrm{d}t}A_H(t) = (\mathrm{i}\hbar)^{-1}[A_H, H_H] + \left(\frac{\partial A}{\partial t}\right)_H$	(5.285)
> Hamiltonian in Schrödinger vs Heisenberg	In the Schrödinger picture, H is time-independent > the evolution operator in that picture is given by:	
	$U(t, t_0) = \exp\left[-\frac{\mathrm{i}}{\hbar}H(t - t_0)\right]$	
	The Heisenberg wave function is then related to the Schrödinger one via:	
	$\Psi_H \equiv \Psi(t_0) = \exp\left[\frac{\mathrm{i}}{\hbar}H(t-t_0)\right]\Psi(t)$	
	thus we find H _H = H	

_	44	the	-1-	•		٠	٠.
ъ.	. 1. 1	tne	cia	SSICE	11	IIM	IT

5.11.1 the Ehrenfest theorem

Eirct	Ehro	nfest	rola	tion
FILST	Fnre	nrest	reia	пon

for a particle of mass m moving in a potential $V(\mathbf{r},t)$:

$$H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}, t)$$

and we know for
$$\langle \mathbf{x} \rangle$$
 that:

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \mathbf{x} \rangle \doteq (\mathrm{i}\hbar)^{-1} \langle [\mathbf{x}, H] \rangle$$

$$= (\mathrm{i}\hbar)^{-1} \left\{ \left[\mathbf{x}, \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}, t) \right] \right\}$$

since x commutes with $V(\mathbf{r},t)$, p_y and p_z , we have:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle x \rangle = \frac{1}{2mi\hbar}\langle [x, p_x^2] \rangle$$

$$= \frac{1}{2mi\hbar}\langle [x, p_x] p_x + p_x [x, p_x] \rangle$$

and $[x,p_x] = i\hbar$, thus:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle x\rangle = \frac{\langle p_x\rangle}{m}$$

so in 3D we have:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\mathbf{r}\rangle = \frac{\langle\mathbf{p}\rangle}{m}$$

The first Ehrenfest relation

Second Ehrenfest relation

we do the same for the momentum p_x:

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle p_x \rangle = (\mathrm{i}\hbar)^{-1} \langle [p_x, H] \rangle$$

$$= (\mathrm{i}\hbar)^{-1} \left\{ \left[p_x, \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}, t) \right] \right\}$$

$$= -\left\{ \frac{\partial V}{\partial x} \right\}$$

where we have used the fact that $[p_x, \mathbf{p}^2] = 0$ together with the equation

$$[p_x, V] = -\mathrm{i}\hbar \frac{\partial V}{\partial x}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\mathbf{p}\rangle = -\langle\nabla V(\mathbf{r},t)\rangle$$

> quantum becomes classical in the

For 1D motion in a potential V(x)

> expand dV/dx = V'(x) about the expectation value $\langle x \rangle$:

$$V'(x) = V'(\langle x \rangle) + (x - \langle x \rangle)V''(\langle x \rangle) + \frac{1}{2}(x - \langle x \rangle)^2 V'''(\langle x \rangle) + \cdots$$

or thus:

$$\langle V'(x)\rangle = V'(\langle x\rangle) + \frac{1}{2}\langle (x-\langle x\rangle)^2\rangle V'''(\langle x\rangle) + \cdots$$

where we've used $\langle x - \langle x \rangle \rangle = 0$

> the quantity -V'($\langle x \rangle$) is the classical force at point $\langle x \rangle$

> thus, if only the first term is retained, we have=

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle p_x\rangle = -V'(\langle x\rangle),$$

>> the expectation values $\langle x \rangle$ and $\langle p_x \rangle$ obey Newton's law