Espacios contraíbles

Rafael Villarroel

 $2021\hbox{-}02\hbox{-}11\ 15\hbox{:}00\ \hbox{-}0500$

- Sea X un espacio topológico. Decimos que X es contraíble si es homotópico al espacio de un punto.
- Un espacio convexo es contraíble. [Un espacio X ⊆ ℝⁿ es convexo si para todos x₁, x₂ ∈ X y t ∈ [0, 1] se tiene que (1 − t)x₁ + tx₂ ∈ X. Sea x₀ ∈ X. Definamos D: X × I → X como D(x, t) = (1 − t)x + tx₀. Entonces D es un retracto fuerte por deformación de X en {x₀}.]

Lema Sea X un espacio topológico contraíble. Entonces cualquier

función continua f: $S^n \to X$ se puede extender a una función $F \colon B^{n+1} \to X$.

Teorema. Sea X un espacio topológico. Sea $\mathcal{C}=\{U_{\alpha}\}_{\alpha\in I}$ una cubierta finita. Supongamos que toda intersección no vacía

 $U_{\alpha_1} \cap U_{\alpha_2} \cdot \cdot \cdot \cap U_{\alpha_k} \neq \emptyset$ de elementos de la cubierta es contraíble, entonces $X \simeq \mathcal{N}(\mathcal{C})$.

Corolario. Sea $S \subseteq \mathbb{R}^n$, sea $\epsilon > 0$. Si $\mathcal{C} = \{B_{\frac{\epsilon}{2}}(x) \mid x \in S\}$, entonces el complejo de Cech $\mathcal{N}_{\epsilon}(S) \simeq \bigcup_{x \in S} B_{\frac{\epsilon}{2}}(x)$. [pues \mathcal{C} es una cubierta de $\bigcup_{x \in S} B_{\frac{\epsilon}{2}}(x)$ y toda intersección de una cantidad finita de bolas no vacía es un conjunto convexo, por lo tanto, contraíble].

Rafael Villarroel Espacios contraíbles 2021-02-11 15:00 -0500