République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université des Frères Mentouri Constantine 1, Faculté des Sciences de la Technologie, Département d'Electronique

Modélisation et commande des Robots de manipulation

Modélisation géométrique

Master 2 AII
Automatique et Informatique Industrielle

2.1 Introduction

- Le modèle géométrique décrit le mouvement d'un manipulateur sans prendre en considération les vitesses et les couples rassurants ce mouvement.
- Le modèle géométrique directe MGD permet de décrire la position et l'orientation de l'effecteur connaissant les valeurs des variables articulaires (θ_i), « Modèle d'information»
- Le modèle géométrique inverse MGI détermine les valeurs des variable articulaires connaissant la position et l'orientation de l'effecteur. « Modèle de commande »

27/12/2020 21

2.2 Modèle géométrique direct

Soit le robot planaire représenté par la figure ci-contre. Le modèle géométrique doit décrire la position et l'orientation du repère R_2 ,attaché à l'extrémité de l'effecteur, par rapport au repère de référence R_0 attaché à la base du robot,

Position

$$x_2 = l_1 cos\theta_1 + l_2 cos(\theta_1 + \theta_2)$$

$$y_2 = l_1 sin\theta_1 + l_2 sin(\theta_1 + \theta_2)$$

Orientation

$$R_2^0 = \begin{bmatrix} x_2 \cdot x_0 & y_2 \cdot x_0 \\ x_2 \cdot y_0 & y_2 \cdot y_0 \end{bmatrix} = \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix}$$

Remarque: pour un robot à 6DDL le calcul du modèle devient plus complexe, pour cela il est recommandé de travailler avec les transformations homogènes

2.2 Modèle géométrique direct

MGD avec matrices homogènes

$$R_2^0 = R_1^0 . R_2^1$$

$$R_2^0 = \begin{bmatrix} C1 & -S1 & 0 & L_1C1 \\ S1 & C1 & 0 & L_1S1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} C2 & -S2 & 0 & L_2C2 \\ S2 & C2 & 0 & L_2S2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_2^0 = \begin{bmatrix} C1C2 - S1S2 & -C1S2 - S1C2 & 0 & L_1C1 + L_2(C1C2 - S1S2) \\ S1C2 + C1S2 & -S1S2 + C1C2 & 0 & L_1S1 + L_2(S1C2 + C1S2) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

On a:
$$cos(a + b) = cos a \cdot cos b - sin a \cdot sin b$$

$$sin(a + b) = sin a . cos b + cos a . sin b$$

$$R_2^0 = \begin{bmatrix} C12 & S12 & 0 & L_1C1 + L_2C12 \\ S12 & C12 & 0 & L_1S1 + L_2S12 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

Avec

$$C12 = \cos(\theta_1 + \theta_2)$$

 $S12 = \sin(\theta_1 + \theta_2)$

23

2.2 Modèle géométrique direct

Convention de Denavit – Hartenberg (DH)

Selon le formalisme de DH le passage d'un repère à un autre se fait via quatre transformations élémentaires. Cette solution permet d'utiliser, dans les matrices de transformations, seulement quatre paramètres au lieu de six.

$$DH = Rot_{Z,\theta_i} . Trans_{Z,d} . Trans_{X,a_i} . Rot_{X,\alpha_i}$$

 d_i : distance entre O_{i-1} et la projection de O_i sur la l'axe z_{i-1}

 a_i : distance entre O_{i-1} et la projection de O_{i-1} sur le plan OYZ

 θ_i : angle entre x_{i-1} et le plan définie par θ_i et z_{i-1}

 α_i : angle entre z_{i-1} et la projection de z_{i-1} sur le plan normal au plan (z_{i-1}, O_i)

2.2 Modèle géométrique direct

Convention de Denavit – Hartenberg (DH)

Selon le formalisme de DH le passage d'un repère à un autre se fait via quatre transformations élémentaires. Cette solution permet d'utiliser, dans les matrices de transformations, seulement quatre paramètres au lieu de six.

$$DH = Rot_{Z,\theta_i} . Trans_{Z,d_i} . Trans_{X,a_i} . Rot_{X,\alpha_i}$$

$$\mathrm{DH} = \begin{bmatrix} C\theta_i & -S\theta_i & 0 & 0 \\ S\theta_i & C\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & C\alpha_i & -S\alpha_i & 0 \\ 0 & S\alpha_i & C\alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathrm{DH} = \begin{bmatrix} C\theta_i & -S\theta_i C\alpha_i & S\theta_i S\alpha_i & a_i C\theta_i \\ S\theta_i & C\theta_i C\alpha_i & -C\theta_i S\alpha_i & a_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2.2 Modèle géométrique direct

Convention de Denavit – Hartenberg (DH)

Exemple MGD du robot plan

Segment	a_i	α_i	d_i	$ heta_i$
1	l_1	0	0	$ heta_1$
2	l_2	0	0	$ heta_2$

$$\mathrm{DH} = \begin{bmatrix} C\theta_i & -S\theta_i C\alpha_i & S\theta_i S\alpha_i & a_i C\theta_i \\ S\theta_i & C\theta_i C\alpha_i & -C\theta_i S\alpha_i & a_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_1^0 = \begin{bmatrix} C\theta_1 & -S\theta_1 & 0 & l_1C\theta_1 \\ S\theta_1 & C\theta_1 & 0 & l_1S\theta_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_1^2 = \begin{bmatrix} C\theta_2 & -S\theta_2 & 0 & l_2C\theta_2 \\ S\theta_2 & C\theta_2 & 0 & l_2S\theta_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2.2 Modèle géométrique direct

Convention de Denavit – Hartenberg (DH)

Exemple MGD du robot plan

Segment	a_i	α_i	d_i	$ heta_i$
1	l_1	0	0	$ heta_1$
2	l_2	0	0	$ heta_2$

$$R_1^0 = \begin{bmatrix} C\theta_1 & -S\theta_1 & 0 & l_1C\theta_1 \\ S\theta_1 & C\theta_1 & 0 & l_1S\theta_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad R_1^0 = \begin{bmatrix} C\theta_2 & -S\theta_2 & 0 & l_2C\theta_2 \\ S\theta_2 & C\theta_2 & 0 & l_2S\theta_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_1^0 = \begin{bmatrix} C\theta_2 & -S\theta_2 & 0 & l_2C\theta_2 \\ S\theta_2 & C\theta_2 & 0 & l_2S\theta_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_2^0 = R_1^0 \cdot R_2^1 = \begin{bmatrix} C12 & S12 & 0 & L_1C1 + L_2C12 \\ S12 & C12 & 0 & L_1S1 + L_2S12 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2.2 Modèle géométrique direct

Convention de Denavit – Hartenberg (DH)

Placement des repères selon DH

DH1: X_i intersecte Z_{i-1}

DH2: X_i perponduculaire sur Z_{i-1}

- Z_i l'axe de l'articulation (rotoïde ou prismatique): sens positif de l'action
- Le choix du premier repère (repère de référence) est arbitraire: : respecter la méthode de la main droite
- Pour placer le repère R_i il existe 2 cas:
 - a. Z_{i-1} et Z_i sont coplanaires: appartiennent au même plan
 - b. Z_{i-1} et Z_i sont non-coplanaires: n'appartiennent pas au même plan

A, B,C: Coplanaires

A, D: non-coplanaires

2.2 Modèle géométrique direct

Convention de Denavit – Hartenberg (DH)

Placement des repères selon DH

DH1: X_i intersecte Z_{i-1}

DH2: X_i perponduculaire sur Z_{i-1}

Z_{i-1} et Z_i non-coplanaires

Il existe une seule normale qui représente l'axe X_i . Le point d'intersection de cette normale avec Z_i représente l'origine O_i . L'axe Y_i est choisis afin d'avoir un repère droitier

Z_{i-1} et Z_i coplanaires

2.2 Modèle géométrique direct

Convention de Denavit – Hartenberg (DH)

Placement des repères selon DH

DH1: X_i intersecte Z_{i-1}

DH2: X_i perponduculaire sur Z_{i-1}

 Z_{i-1} et Z_i non-coplanaires

 Z_{i-1} et Z_i coplanaires

■ Cas 1: $Z_{i-1} \parallel Z_i$: infinité de normale commune. Le choix de O_i est arbitraire sur Z_i , mais il est recommandé de choisir O_i sur la normale qui passe par O_{i-1} et intersecte Z_i . Cette normale représente l'axe X_i . Ce choix permet d'avoir des matrices de transformation avec moins de paramètres $(d_i = 0)$. Comme $Z_{i-1} \parallel Z_i \Rightarrow \alpha_i = 0$.

2.2 Modèle géométrique direct

Convention de Denavit – Hartenberg (DH)

Placement des repères selon DH

DH1: X_i intersecte Z_{i-1}

DH2: X_i perponduculaire sur Z_{i-1}

 Z_{i-1} et Z_i non-coplanaires

 Z_{i-1} et Z_i coplanaires

• Cas 2: Z_{i-1} intersecte Z_i :

 X_i est la normale du plan $(\mathbf{Z}_{i-1}, \mathbf{Z}_i)$. Le sens de X_i est arbitraire. L'origine O_i est le point d'intersection de \mathbf{Z}_{i-1} avec \mathbf{Z}_i . Dans ce cas $a_i = 0$.

2.2 Modèle géométrique direct

Convention de Denavit – Hartenberg (DH)

Placement des repères selon DH

DH1: X_i intersecte Z_{i-1}

DH2: X_i perponduculaire sur Z_{i-1}

Repère attaché à l'extrémité de l'effecteur:

 O_n : au milieu

 \vec{s} : sliding. Sens d'ouverture et de fermeture de la pince

 \vec{a} : appraoching. Sens de rapprochement à l'objet

 \vec{n} : la normale sur le plan formé par (\vec{s}, \vec{a})

2.2 Modèle géométrique direct

Activité:

Soit le robot cylindrique RPP représenté par la figure cidessous

- Placer les repères dans les différentes articulations selon DH
- 2. Etablir la table de DH
- 3. Donner les différentes matrices de transformation ainsi que la matrice T qui représente l'extrémité de l'effecteur par rapport au repère de référence

27/12/2020

2.2 Modèle géométrique direct

Activité: Solution

Table de DH

Segment	a_i	α_i	d_i	$ heta_i$
1	0	0	L_1	$ heta_1$
2	0	$-\pi/2$	L_2^*	0
3	0	0	L_3^*	0

$$R_1^0 = \begin{bmatrix} C1 & -S1 & 0 & 0 \\ S1 & C1 & 0 & 0 \\ 0 & 0 & 1 & L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad , R_2^1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & L_2^* \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_3^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L_3^* \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2.2 Modèle géométrique direct

Activité: Solution

Table de DH

Segment	a_i	α_i	d_i	$ heta_i$
1	0	0	L_1	$ heta_1$
2	0	$-\pi/2$	L_2^*	0
3	0	0	L_3^*	0

$$T = R_1^0. R_2^1. R_3^2$$

$$T = \begin{bmatrix} C1 & 0 & -S1 & -L_3^* & S1 \\ S1 & 0 & C1 & L_3^* & C1 \\ 0 & -1 & 0 & L_1 + L_2^* \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Vérification: $\theta_1 = 0$, $L_2^* = L_2$, $L_3^* = L_3$

$$P_x = 0$$
, $P_y = L_3$, $P_z = L_1 + L_2$

