Proyecto 2: El Problema de la Mochila

Emily Sanchez Viviana Vargas

Curso: Investigación de Operaciones II Semestre 2025

September 18, 2025

1 Problema de la Mochila (Knapsack Problem)

El problema de la mochila es un clasico de la optimizacion combinatoria. Se dispone de una mochila con una capacidad maxima W y un conjunto de n objetos. Cada objeto i tiene un peso w_i y un valor v_i . El objetivo es seleccionar los objetos de manera que:

- \bullet La suma total de los pesos no exceda la capacidad W.
- Se maximice el valor total de los objetos elegidos.

1.1 Variantes principales

0/1 Knapsack Cada objeto puede elegirse una sola vez o no elegirse: decision binaria.

Bounded Knapsack Cada objeto puede seleccionarse un numero limitado de veces.

Unbounded Knapsack Se permite una cantidad ilimitada de cada objeto.

1.2 Solucion

0/1 Knapsack Se resuelve comunmente con programacion dinamica. Sea dp[i][w] el valor maximo al considerar los primeros i objetos y capacidad w.

$$dp[i][w] = \begin{cases} dp[i-1][w] & \text{si } w_i > w, \\ \max(dp[i-1][w], v_i + dp[i-1][w - w_i]) & \text{si } w_i \le w. \end{cases}$$

Bounded Knapsack Similar al 0/1 perpuede tener uno o más cantidades por objeto. Es limitado, por lo que no puede ser infinito.

$$dp[i][w] = \max_{0 \le k \le c_i, \ k \ w_i \le w} (dp[i-1][w-kw_i] + kv_i).$$

Unbounded Knapsack Similar al bounded pero permitiendo repeticiones sin limite de cantidades (infinito).

$$dp[w] = \max(dp[w], v_i + dp[w - w_i]).$$

Tipo de problema: Bounded Knapsack

Capacidad máxima: 13 Número de objetos: 5

Datos del Problema

ſ	Objeto	Costo	Valor	Cantidad
Ī	A	10.00	20.00	1
	В	3.00	12.00	3
ĺ	\mathbf{C}	5.00	10.00	1
İ	D	5.00	6.00	4
İ	\mathbf{E}	9.00	11.00	1

Tabla de Programación Dinámica Detallada

Capacidad	A	В	С	D	E
0	0	0	0	0	0
1					
2					
3		12(1)	12	12	12
4		12(1)	12	12	12
5	0	12(1)	12	12	12
6		24(2)	24	24	24
7		24(2)	24	24	24
8	0	24(2)	24	24	24
9		36(3)	36	36	36
10	20(1)	36(3)	36	36	36
11	20(1)	36(3)	36	36	36
12	20(1)	36(3)	36	36	36
13	20(1)	36(3)	36	36	36

Solución Óptima

Valor máximo obtenido: 36 Objetos seleccionados: B:3 Capacidad utilizada: 9