Principles of Abstract Interpretation MIT press

Ch. 14, Safety and Liveness Trace Properties

Patrick Cousot

pcousot.github.io

PrAbsInt@gmail.com github.com/PrAbsInt/

These slides are available at http://github.com/PrAbsInt/slides/slides/slides-14--safety-liveness-PrAbsInt.pdf

Chapter 14

Ch. **14**, Safety and Liveness Trace Properties

A reminder on trace semantics properties

Trace semantics properties

We have defined the (prefix or maximal) trace semantics as

$$\mathbf{S} \in \mathbb{T}^+ \to \mathbb{T}^{+\infty}$$

since for a given prelude $\pi_0 \in \mathbb{T}^+$, our language has only one continuation $\pi = \mathcal{S}(\pi_0)$

• For a non-deterministic language, we would have

$$\mathcal{S} \in \mathbb{T}^+ \to \wp(\mathbb{T}^{+\infty})$$

• Up to an isomorphism, this is

$$\mathcal{S} \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$$

where \mathcal{S} is understood as $\{\langle \pi_0, \pi \rangle \in \mathbb{T}^+ \times \mathbb{T}^{+\infty} \mid \pi \in S(\pi_0)\} \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$

- Semantics properties belong to $\wp(\wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}))$
- Their abstractions by the join abstraction α^{T} in Section **8.6** are trace properties in $\wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$

Intuition for safety

- Safety properties S of programs are trace properties so $S \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$
- The characteristics of a safety property S is that "any program execution $\langle \pi_0, \pi \rangle \in \mathcal{S}^{+\infty}[\![P]\!]$ (where $\pi_0 \in \mathbb{T}^+$ and $\pi \in \mathbb{T}^{+\infty}$) that violates S has a finite prefix $\langle \pi_0, \pi' \rangle$ that violates S"
- runtime checkable, "Nothing bad can happen"

en.wikipedia.org/wiki/Safety_property

Prefix closure

Define the *prefix closure* $\alpha_{pref}(\Pi)$ of a set of executions (that is of trace properties $\Pi \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$) as taking all (finite and infinite) prefixes of traces in Π .

$$\pi \leq \pi' \quad \triangleq \quad \exists \pi'' \in \mathbb{T}^{*\infty} . \ \pi \uparrow \pi'' = \pi' \qquad \text{prefix ordering}$$

$$\pi \lessdot \pi' \quad \triangleq \quad \pi \leq \pi' \land \pi \neq \pi' \qquad \text{strict prefix ordering}$$

$$\langle \pi_0, \ \pi \rangle \leq \langle \pi'_0, \ \pi' \rangle \quad \triangleq \quad \pi_0 = \pi'_0 \land \pi \leq \pi' \qquad \text{extension to executions}$$

$$\begin{array}{ccc} \alpha_{\mathsf{pref}} & \in & \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \mapsto \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) & \mathsf{prefix \ closure} \\ \alpha_{\mathsf{pref}}(\Pi) & \triangleq & \{\langle \pi_0, \ \pi \rangle \in \mathbb{T}^+ \times \mathbb{T}^{+\infty} \mid \exists \pi' \in \mathbb{T}^{+\infty} \ . \ \langle \pi_0, \ \pi' \rangle \in \Pi \ . \ \pi \leq \pi' \} \end{array} \tag{14.4}$$

Prefix closure

Define the *prefix closure* $\alpha_{pref}(\Pi)$ of a set of executions (that is of trace properties $\Pi \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$) as taking all (finite and infinite) prefixes of traces in Π .

$$\pi \leq \pi' \quad \triangleq \quad \exists \pi'' \in \mathbb{T}^{*\infty} . \ \pi \uparrow \pi'' = \pi' \qquad \text{prefix ordering}$$

$$\pi \lessdot \pi' \quad \triangleq \quad \pi \leq \pi' \land \pi \neq \pi' \qquad \text{strict prefix ordering}$$

$$\langle \pi_0, \ \pi \rangle \leq \langle \pi'_0, \ \pi' \rangle \quad \triangleq \quad \pi_0 = \pi'_0 \land \pi \leq \pi' \qquad \text{extension to executions}$$

$$\begin{array}{ccc} \alpha_{\mathsf{pref}} & \in & \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \mapsto \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) & \mathsf{prefix} \; \mathsf{closure} \\ \alpha_{\mathsf{pref}}(\Pi) & \triangleq & \{\langle \pi_0, \; \pi \rangle \in \mathbb{T}^+ \times \mathbb{T}^{+\infty} \mid \exists \pi' \in \mathbb{T}^{+\infty} \; . \; \langle \pi_0, \; \pi' \rangle \in \Pi \; . \; \pi \leq \pi' \} \end{array} \tag{14.4}$$

Theorem α_{pref} is a topological closure on $\wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$.

Limit closure

Define the *limit closure* $\alpha_{limit}(\Pi)$ of a set of traces (that is on trace properties Π) as taking all infinite traces which prefixes are in Π .

```
\begin{array}{lcl} \alpha_{limit} & \in & \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \mapsto \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \\ \alpha_{limit}(\Pi) & \triangleq & \Pi \cup \{\langle \pi_0, \, \pi \rangle \in \mathbb{T}^+ \times \mathbb{T}^\infty \mid \forall \pi' \lessdot \pi \; . \; \langle \pi_0, \, \pi' \rangle \in \Pi \} \end{array}
```

limit closure

Limit closure

Define the *limit closure* $\alpha_{limit}(\Pi)$ of a set of traces (that is on trace properties Π) as taking all infinite traces which prefixes are in Π .

$$\begin{array}{lcl} \alpha_{\mathsf{limit}} & \in & \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \mapsto \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) & \mathsf{limit closure} \\ \alpha_{\mathsf{limit}}(\Pi) & \triangleq & \Pi \cup \{\langle \pi_0, \ \pi \rangle \in \mathbb{T}^+ \times \mathbb{T}^\infty \mid \forall \pi' \lessdot \pi \ . \ \langle \pi_0, \ \pi' \rangle \in \Pi \} \end{array}$$

Theorem α_{limit} is a topological closure on $\wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$.

Safety closure

Define the safety closure α_{safety} on sets of traces (that is on trace properties $\Pi \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$) such that $\alpha_{\text{safety}}(\Pi)$ is the set of limits of prefixes of Π .

$$\alpha_{\text{safety}} \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \mapsto \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$$

$$\alpha_{\text{safety}} \triangleq \alpha_{\text{limit}} \circ \alpha_{\text{pref}}$$
(14.8)

Safety closure

Define the safety closure α_{safety} on sets of traces (that is on trace properties $\Pi \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$) such that $\alpha_{\text{safety}}(\Pi)$ is the set of limits of prefixes of Π .

$$\alpha_{\text{safety}} \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \mapsto \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$$

$$\alpha_{\text{safety}} \triangleq \alpha_{\text{limit}} \circ \alpha_{\text{pref}}$$
(14.8)

Theorem 14.10 α_{safety} is a topological closure on $\wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$.

Proof Composition of topological closures.

Safety properties

Definition 14.11 The *safety properties* are the trace properties $P \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$ such that $\alpha_{\text{safety}}(P) = P$.

Safety properties

Definition 14.11 The *safety properties* are the trace properties $P \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$ such that $\alpha_{\mathsf{safety}}(P) = P$.

Theorem The safety properties are the closed sets of the topology defined by α_{safety} on $\mathbb{T}^+ \times \mathbb{T}^{+\infty}$.

Safety properties

Definition 14.11 The *safety properties* are the trace properties $P \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$ such that $\alpha_{\mathsf{safety}}(P) = P$.

Theorem The safety properties are the closed sets of the topology defined by α_{safety} on $\mathbb{T}^+ \times \mathbb{T}^{+\infty}$.

Theorem 14.15 The poset $\langle \alpha_{\text{safety}}(\wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})), \subseteq \rangle$ (*i.e.* the post-image of $\wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$ by α_{safety}) of safety properties is a complete lattice.

Runtime checks of safety violation

Theorem 14.20 If
$$\alpha_{\mathsf{safety}}(\Pi) = \Pi$$
 then $\forall \langle \pi_0, \pi \rangle \notin \Pi$. $\exists \pi' \in \mathbb{T}^+$. $\langle \pi_0, \pi' \rangle \leq \langle \pi_0, \pi \rangle \wedge \langle \pi_0, \pi' \rangle \notin \Pi$

This explains the common explanation of safety as "nothing bad can happen".

Runtime checks of safety violation

Theorem 14.20 If $\alpha_{\text{safety}}(\Pi) = \Pi$ then $\forall \langle \pi_0, \pi \rangle \notin \Pi$. $\exists \pi' \in \mathbb{T}^+$. $\langle \pi_0, \pi' \rangle \leq \langle \pi_0, \pi \rangle \wedge \langle \pi_0, \pi' \rangle \notin \Pi$

Proof — If $\pi \in \mathbb{T}^+$ then choosing $\pi' = \pi$, we have $\langle \pi_0, \pi' \rangle \leq \langle \pi_0, \pi \rangle$ by reflexivity of \leq and $\langle \pi_0, \pi' \rangle \notin \Pi$ by hypothesis.

- Otherwise, $\pi \in \mathbb{T}^{\infty}$. For all $\langle \pi_0, \pi' \rangle \lessdot \langle \pi_0, \pi \rangle$, $\pi' \in \mathbb{T}^+$ and $\langle \pi_0, \pi' \rangle \in \Pi$ by prefix closure.
- Therefore $\langle \pi_0, \pi \rangle \in \{\langle \pi_0, \pi \rangle \in \mathbb{T}^+ \times \mathbb{T}^\infty \mid \forall \langle \pi_0, \pi' \rangle \lessdot \langle \pi_0, \pi \rangle : \langle \pi_0, \pi' \rangle \in \Pi\} \subseteq \alpha_{\mathsf{limit}}(\Pi) = \alpha_{\mathsf{limit}}(\alpha_{\mathsf{safety}}(\Pi)) = \alpha_{\mathsf{limit}}(\alpha_{\mathsf{limit}} \circ \alpha_{\mathsf{pref}}(\Pi)) = \alpha_{\mathsf{limit}} \circ \alpha_{\mathsf{pref}}(\Pi) = \alpha_{\mathsf{safety}}(\Pi) = \Pi$ since α_{limit} is idempotent.
- We proved $\forall \pi_0 \in \mathbb{T}^+, \pi \in \mathbb{T}^{\infty}$. $((\forall \pi' \in \mathbb{T}^{+\infty} . \langle \pi_0, \pi' \rangle \leq \langle \pi_0, \pi \rangle) \Rightarrow (\langle \pi_0, \pi' \rangle \in \Pi))$ implies $\langle \pi_0, \pi \rangle \in \Pi$ and so by contraposition, $\langle \pi_0, \pi \rangle \notin \Pi$ implies $\exists \pi' \in \mathbb{T}^{+\infty}$. $(\langle \pi_0, \pi' \rangle \leq \langle \pi_0, \pi \rangle) \land (\langle \pi_0, \pi' \rangle \notin \Pi)$.

Liveness properties

Definition 14.26 The *liveness properties* are the dense sets of the topology defined by α_{safety}

(hence, by Lemma 13.11, such that live(P) = P where $live(P) \triangleq \neg \alpha_{safety}(P) \cup P$.

live is extensive and idempotent but not increasing to that live(P) need not be the least liveness property implied by P

en.wikipedia.org/wiki/Liveness

Liveness properties

By 14.26, the *liveness properties* are characterized by live(P) = P where $live(P) \triangleq \neg \alpha_{safety}(P) \cup P$.

Theorem 14.27 $P \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$ is a liveness property if and only if $\neg P \subseteq \alpha_{\text{safety}}(P)$.

Proof

$$\begin{split} &\operatorname{live}(P) = P \\ \Leftrightarrow & \neg \alpha_{\operatorname{safety}}(P) \cup P = P \\ \Leftrightarrow & \neg (\neg \alpha_{\operatorname{safety}}(P) \cup P) = \neg P \\ \Leftrightarrow & \alpha_{\operatorname{safety}}(P) \cap \neg P = \neg P \\ \Leftrightarrow & \neg P \subseteq \alpha_{\operatorname{safety}}(P) \end{split} \qquad \begin{array}{c} \operatorname{(Definition 14.26 \ of \ live}(P)) \\ \operatorname{(def. complement } \neg) \\ \operatorname{(De Morgan \ laws)} \\ \operatorname{(def. glb)} \quad \Box \\ \end{split}$$

Impossible runtime checks of liveness violation

Theorem 14.29 For all $P \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$, we have live(P) = P if and only if $\forall \pi_0 \in \mathbb{T}^+$. $\forall \pi \in \mathbb{T}^{+\infty}$. $\exists \pi' \in \mathbb{T}^{+\infty}$. $\langle \pi_0, \pi \uparrow \pi' \rangle \in P$.

Liveness properties cannot be checked at runtime (since if the property is not satisfied after a finite time, there is always the possibility that it will be satisfied later).

Proof of Theorem 14.29

P is a dense set of the topology defined by $lpha_{
m safety}$

$$\Leftrightarrow \ \, \forall \langle \pi_0, \ \pi \rangle \in \mathbb{T}^+ \times \mathbb{T}^+ \ . \ \langle \pi_0, \ \pi \rangle \in \{ \langle \pi'_0, \ \pi \rangle \in \mathbb{T}^+ \times \mathbb{T}^{+\infty} \ | \ \exists \pi' \in \mathbb{T}^{+\infty} \ . \ \langle \pi'_0, \ \pi \circ \pi' \rangle \in P \} \qquad \text{(def. α_{pref})}$$

$$\Leftrightarrow \ \forall \pi_0.\pi \in \mathbb{T}^+ \ . \ \exists \pi' \in \mathbb{T}^{+\infty} \ . \ \langle \pi_0, \ \pi \circ \pi' \rangle \in P$$

Safety/liveness decomposition of trace properties

Finally, any trace property is the intersection of a safety (closed) and liveness (dense) property.

```
Theorem ([Alpern and Schneider, 1985, Th. 1]) \forall P \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}). P = \alpha_{\mathsf{safety}}(P) \cap \mathsf{live}(P).
```

Proof By Lemma 13.12.

$$\begin{array}{cccc} \alpha_{\rm guarantee} & \in & \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \mapsto \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) & \text{guarantee closure} \\ \alpha_{\rm guarantee}(X) & \triangleq & (\mathbb{T}^+ \times \mathbb{T}^*) \circledcirc X & \text{where} \\ & Y \circledcirc X & \triangleq & \{\langle \pi_0, \ \pi \curvearrowright \pi' \rangle \mid \langle \pi_0, \ \pi \rangle \in Y \land \langle \pi_0 \curvearrowright \pi, \ \pi' \rangle \in X\} & \text{concatenation} \end{array}$$


```
\begin{array}{cccc} \alpha_{\rm guarantee} & \in & \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \mapsto \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) & \text{guarantee closure} \\ \alpha_{\rm guarantee}(X) & \triangleq & (\mathbb{T}^+ \times \mathbb{T}^*) \circledcirc X & \text{where} \\ & & & & & & & & & & & & & \\ Y \circledcirc X & \triangleq & & & & & & & & & & & & \\ \end{array}
```

Definition 14.34 (guarantee) The *guarantee properties* are the trace properties $P \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$ such that $\alpha_{\text{guarantee}}(P) = P$.

$$\begin{array}{cccc} \alpha_{\rm guarantee} & \in & \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \mapsto \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) & \text{guarantee closure} \\ \alpha_{\rm guarantee}(X) & \triangleq & (\mathbb{T}^+ \times \mathbb{T}^*) \circledcirc X & \text{where} \\ & & & & & & & & & & & & \\ Y \circledcirc X & \triangleq & & & & & & & & & & & \\ \end{array}$$

Definition 14.34 (guarantee) The *guarantee properties* are the trace properties $P \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$ such that $\alpha_{\text{guarantee}}(P) = P$.

$$\begin{array}{cccc} \alpha_{\rm guarantee} & \in & \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \mapsto \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) & \text{guarantee closure} \\ \alpha_{\rm guarantee}(X) & \triangleq & (\mathbb{T}^+ \times \mathbb{T}^*) \circledcirc X & \text{where} \\ & & & & & & & & & & & & & \\ Y \circledcirc X & \triangleq & & & & & & & & & & & & \\ \end{array}$$

Definition 14.34 (guarantee) The *guarantee properties* are the trace properties $P \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$ such that $\alpha_{\text{guarantee}}(P) = P$.

This is the intuition that "something good must happen".

Example Termination is a guarantee property since

$$\alpha_{\text{guarantee}}(\mathbb{T}^+\times\mathbb{T}^+)=((\mathbb{T}^+\times\mathbb{T}^*)\circledcirc(\mathbb{T}^+\times\mathbb{T}^+))=\mathbb{T}^+\times\mathbb{T}^+.$$

Guarantee is liveness but liveness is not guarantee

Theorem ¹**14.36** Any guarantee property is a liveness property.

Theorem 14.38 The poset $\langle \alpha_{\text{guarantee}}(\wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})), \subseteq \rangle$ of guarantee properties is a complete lattice $\langle \alpha_{\text{guarantee}}(\wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})), \subseteq, \varnothing, \mathbb{T}^{+\infty}, \cup, \cap \rangle$.

Not all liveness properties are a guarantee that "something good must happen"!

Example Consider a program P on the web with guarantee property $G \triangleq$ "questions are always answered in finite time".

The availability property that "an attacker cannot delay a response for ever" is a liveness property but not a guarantee property (it is necessary for P to guarantee G).

¹proofs in the book

Take out

- Safety and guarantee are (upper closure/Galois connection-based) abstractions of trace properties
- Liveness is not
- Any trace property is the intersection of a safety and a liveness trace property
- This book is mainly concerned with safety properties

Bibliography I

Alpern, Bowen and Fred B. Schneider (1985). "Defining Liveness". *Inf. Process. Lett.* 21.4, pp. 181–185.

Home work

The End, Thank you