First-Order Algorithms for Online Optimization and Learning

CS245: Online Optimization and Learning

Xin Liu SIST, ShanghaiTech University

Review of Convex Optimization: Norm

Definition 1 (ℓ_p Norm)

$$\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}, \forall p \ge 1 \text{ and } \|x\|_\infty = \max_{i=1,\dots,n} |x_i|.$$

Norm equivalence:

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2 \le n||x||_{\infty}.$$

Triangle inequality:

$$||x + y|| \le ||x||_2 + ||y||_2.$$

Cauchy-Schwarz inequality:

$$|\langle x,y\rangle| \leq ||x||_2 ||y||_2.$$

Review of Convex Optimization: Convex Set

Definition 2 (Convex Set)

A set K is convex if $\forall x, y \in K$, all the points on the line segment are also in K, that is

$$\alpha x + (1 - \alpha)y \in \mathcal{K}, \ \alpha \in [0, 1].$$

(non)-convex sets.

Probability simplex: $\sum_{i=1}^{n} p_i = 1, p_i \ge 0, \forall i \in [n].$

Ellipse set: $||x||_A = \sqrt{x^T A x} \le 1, A \succeq 0.$

Review of Convex Optimization: Preserving convexity

Operations that preserve convexity:

Nonnegative weighted sums:

$$g(x) = w_1 f_1(x) + w_2 f_2(x)$$
, if $w_1, w_2 \ge 0$.

• Composition with an affine mapping:

$$g(x) = f(Ax + b).$$

Pointwise maximum:

$$g(x) = \max\{f_1(x), f_2(x)\}.$$

Conjugate of a function:

$$g(y) = \sup \langle y, x \rangle - f(x).$$

Review of Convex Optimization: Convex Function

Definition 3 (Convex Function)

A function $f: \mathcal{K} \to \mathbb{R}$ is convex if for any $\alpha \in [0,1]$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

It is strictly convex if "<" holds in the inequality above.

Definition 4 (First-order condition)

If f is differentiable, that is, its gradient $\nabla f(x)$ exits $\forall x \in \mathcal{K}$, then f is convex iff

$$f(y) \ge f(x) + \langle y - x, \nabla f(x) \rangle, \forall x, y \in \mathcal{K}.$$

Definition 5 (Second-order condition)

If f is twice-differentiable, then f is convex iff

$$\nabla^2 f(x) \succeq 0, \forall x \in \mathcal{K}.$$

Review of Convex Optimization: Strongly Convex Function

Definition 6 (Strongly Convex Function)

A function $f: \mathcal{K} \to \mathbb{R}$ is α -strongly convex if

$$f(y) \ge f(x) + \langle y - x, \nabla f(x) \rangle + \frac{\alpha}{2} ||y - x||^2, \ \forall x, y \in \mathcal{K}.$$

A function f is α -strongly convex iff $f(x) - \frac{\alpha}{2} ||x||^2$ is convex. A large value of α implies a large gradient.

Strongly convex function: larger α implies large gradient.

Review of Convex Optimization: Smoothness Function

Definition 7 (Lipschitz Function)

A function $f: \mathcal{K} \to \mathbb{R}$ is Lipschitz continuous with Lipschitz constant G if

$$|f(y)-f(x)| \leq G||y-x||, \ \forall x,y \in \mathcal{K}.$$

Definition 8 (Smooth Function)

A function $f: \mathcal{K} \to \mathbb{R}$ is β -smoothness if

$$f(y) \le f(x) + \langle y - x, \nabla f(x) \rangle + \frac{\beta}{2} ||y - x||^2, \ \forall x, y \in \mathcal{K}.$$

A function f is β -smoothness is equivalent to say

$$|\nabla f(y) - \nabla f(y)| \le \beta ||y - x||.$$

Review of Convex Optimization: Conditional Number

Definition 9 (Conditional number of f)

A function $f: \mathcal{K} \to \mathbb{R}$ is α -strongly convex and β -smoothness. If it is twice-differentiable, its Hessian is

$$\alpha I \leq \nabla^2 f(x) \leq \beta I$$
.

We say it is γ -well-conditioned with

$$\gamma = \frac{\alpha}{\beta} \le 1.$$

A large γ means the function f is "better"-conditioned.

- Every "direction" is good to decrease the function (e.g., $f(x) = x^2$).
- Gradient descent algorithms will achieve a faster rate.

Review of Convex Optimization: Optimality Condition

Definition 10 (First-order Optimality of Convex function)

Given a convex and differentiable function $f: \mathcal{K} \to \mathbb{R}$, a point $x^* \in \mathcal{K}$ is optimal iff

$$\langle y - x^*, \nabla f(x^*) \rangle \ge 0, \forall y \in \mathcal{K}.$$

Any feasible direction $y - x^*$ from x^* increases the function value as follows

$$f(y) \ge f(x^*) + \langle y - x^*, \nabla f(x^*) \rangle, \ \forall y \in \mathcal{K}.$$

For a convex function, local optimal \Longrightarrow global optimal.

Let $\mathcal{K} = \mathbb{R}^n$ and the optimality condition simply reduces to

$$\nabla f(x^*) = 0.$$

Convergence Rate of Gradient Descent

	general	α -strongly	β -smooth	γ -well
		convex		conditioned
Gradient descent	$\frac{1}{\sqrt{T}}$	$\frac{1}{\alpha T}$	$\frac{\beta}{T}$	$e^{-\gamma T}$

Convergence rate of gradient descent.

An alternative measure is the iterative complexity to achieve ϵ -optimal, i.e.,

$$f(x_T) - \min_{x} f(x) \le \epsilon, \forall \epsilon > 0.$$

Gradient Descent Algorithm

Gradient Descent [Cauchy 1847]

Initialization: $x_1 \in \mathcal{K}$ and step sizes $\{\eta_t\}$.

For $t = 1, \dots, T$:

- Gradient descent: $y_{t+1} = x_t \eta_t \nabla f(x_t)$.
- Projection: $x_{t+1} = \prod_{\mathcal{K}} (y_{t+1})$.

Intuition of GD:

$$\begin{aligned} x_{t+1} &= \underset{x \in \mathcal{K}}{\text{arg min}} \ f(x_t) + \langle x - x_t, \nabla f(x_k) \rangle + \frac{1}{2\eta_t} \|x - x_t\|^2 \\ &= \underset{x \in \mathcal{K}}{\text{arg min}} \ \langle x - x_t, \nabla f(x_t) \rangle + \frac{1}{2\eta_t} \|x - x_t\|^2 \end{aligned}$$

GD is minimizing a quadratic approximation of f function at the point x_t .

Gradient Descent Algorithm

Gradient Descent

Initialization: $x_1 \in \mathcal{K}$ and step sizes $\{\eta_t\}$.

For $t = 1, \dots, T$:

- Gradient descent: $y_{t+1} = x_t \eta_t \nabla f(x_t)$.
- Projection: $x_{t+1} = \prod_{\mathcal{K}} (y_{t+1})$.

Learning rate is important (GD for $f(x) = 5x_1^2 + 0.5x_2^2$):

large η_t

small η_t

good η_t

Theorem 11 (Unconstrained case $\mathcal{K} = \mathbb{R}^d$)

Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is a γ -well conditioned function with the minimizer x^* . Let $\eta = 1/\beta$. GD algorithm converges as

$$f(x_t) - f(x^*) \le (f(x_1) - f(x^*)) e^{-\gamma t}$$
.

GD achieves the linear convergence:

Theorem 11 (Unconstrained case $\mathcal{K} = \mathbb{R}^d$)

Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is a γ -well conditioned function with the minimizer x^* . Let $\eta = 1/\beta$. GD algorithm converges as

$$f(x_t) - f(x^*) \le (f(x_1) - f(x^*)) e^{-\gamma t}$$
.

GD achieves the linear convergence:

• Learning rate is related to the "smoothness" (a smooth function can always be decreasing given a sufficient small step-size).

Theorem 11 (Unconstrained case $\mathcal{K} = \mathbb{R}^d$)

Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is a γ -well conditioned function with the minimizer x^* . Let $\eta = 1/\beta$. GD algorithm converges as

$$f(x_t) - f(x^*) \le (f(x_1) - f(x^*)) e^{-\gamma t}$$
.

GD achieves the linear convergence:

- Learning rate is related to the "smoothness" (a smooth function can always be decreasing given a sufficient small step-size).
- Iteration complexity is exponentially small $\log(1/\epsilon)!$

Theorem 11 (Unconstrained case $\mathcal{K} = \mathbb{R}^d$)

Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is a γ -well conditioned function with the minimizer x^* . Let $\eta = 1/\beta$. GD algorithm converges as

$$f(x_t) - f(x^*) \le (f(x_1) - f(x^*)) e^{-\gamma t}$$
.

GD achieves the linear convergence:

- Learning rate is related to the "smoothness" (a smooth function can always be decreasing given a sufficient small step-size).
- ullet Iteration complexity is exponentially small $\log(1/\epsilon)!$
- GD is dimensional-free!

A "potential/Lyapunov drift" style of analysis: define

$$\phi_t = f(x_t) - f(x^*),$$

$$\chi_{t+1} = \chi_t - \int_t \nabla f(\chi_t) dt$$

$$\phi_{t+1} - \phi_t.$$

and study the drfit

$$f(y) \ge f(x) + (y-x, \neg f(x)) + \frac{\partial}{2} ||y-x||^{2}$$

$$\ge \min_{Z} f(x) + (2-x, \neg f(x)) + \frac{\partial}{2} ||x-z||^{2}$$

$$\ge f(x) - \frac{1}{2a} ||\nabla f(x)||^{2}$$

Recall
$$\phi_{+} = f(x_{+}) - f(x_{+})$$
, Let $x = x_{+}$ and $y = x_{+}$,

we have $\| \Rightarrow f(x_{+}) \|^{2} \ge 2\alpha (f(x_{+}) - f(x_{+}))$

$$= 2d \phi_{+}$$

GD for β -smoothness functions - a reduction method

Gradient Descent for β **-smoothness function**

Initialization: $x_1 \in \mathcal{K}$, $\{\eta_t\}$ and $\tilde{f}(x) = f(x) + \delta ||x||^2$. For $t = 1, \dots, T$:

• Gradient descent: $x_{t+1} = x_t - \eta_t \nabla \tilde{f}(x_t)$.

Theorem 12

Assume $||x - y|| \le D, \forall x, y \in \mathcal{K}$. Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is a smooth convex function. Let $\eta_t = \frac{1}{\beta}$ and $\delta = \frac{\beta \log t}{R^2 t}$. GD algorithm converges as

$$f(x_{t+1}) - f(x^*) = O\left(\frac{\beta \log t}{t}\right).$$

GD for β -smoothness functions – proof

$$\widehat{f}(x_{th}) - \widehat{f}(x^*) = O(e^{-\gamma t})$$

$$= O(e^{-\frac{S}{B}t})$$

$$\Rightarrow$$
 +(X++1)+ \leq $\|X_{t+1}\|^2 - \int (X^*) - \leq \|X^*\| = D(e^{-\frac{2}{p}t})$

$$\Rightarrow$$
 + (x+n) - f(x*) = 0(e^{-\frac{8}{B}t}) + D(S)

choose a good "s" and proof is completed.

GD for α -strongly convex functions - a reduction method

Gradient Descent for α -strongly convex functions

Initialization: x_1 , $\{\eta_t\}$, and $\tilde{f}(x) = \mathbb{E}_{v \in \mathsf{Unif Ball}}[f(x + \delta \mathbf{v})]$. For $t = 1, \dots, T$:

• Gradient descent: $x_{t+1} = x_t - \eta_t \nabla \tilde{f}(x_t)$.

Theorem 13

Assume $||x - y|| \le D, \forall x, y \in \mathcal{K}$. Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is α strongly convex function. Let $\delta = O(\frac{\log t}{t})$. GD algorithm converges as

$$f(x_{t+1}) - f(x^*) = O\left(\frac{\log t}{\alpha t}\right).$$

GD for general convex functions

Gradient Descent Algorithm

Initialization: $x_1 \in \mathcal{K}$. Choose step sizes $\{\eta_t\}$ satisfying $\sum_{t=1}^{\infty} \eta_t^2 < \infty$ and $\sum_{t=1}^{\infty} \eta_t = \infty$. For $t = 1, \dots, T$:

• Gradient descent: $y_{t+1} = \prod_{\mathcal{K}} (x_t - \eta_t \nabla f(x_t))$.

Diminishing step sizes (square summable but not summable): the step sizes go to zero, but not too fast.

Theorem 14

Assume $||x - y|| \le D, \forall x, y \in \mathcal{K}$ and $||\nabla f(x)|| \le G, \forall x \in \mathcal{K}$. Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is a convex function with the minimizer x^* . GD algorithm converges as

$$\min_{t \in [T]} f(x_t) - f(x^*) \leq \frac{D^2 + G^2 \sum_{t=1}^T \eta_t^2}{2 \sum_{t=1}^T \eta_t}.$$

GD for general convex functions – proof

A "potential/Lyapunov drift" style of analysis: define

$$\phi_t = \|x_t - x^*\|^2,$$

and study the drift

$$\phi_{t+1} - \phi_t$$
.

$$\langle x_{t} - x^{*}, \neg f(x_{t}) \rangle = \frac{p_{t} - p_{t+1}}{|\gamma_{t}|} + |\gamma_{t}| |\nabla f(x_{t})||^{2}$$
 $\leq f(x_{t}) - f(x_{t})$

Finish the proof by yourself.

Learning as Optimization – Linear Regression

Consider linear regression (LR) for "regression" (e.g., Shanghai Putong house price prediction).

Given historical/batch data $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots (\mathbf{x}_N, y_N)\}$, we do LR

$$\min_{\mathbf{w}} \ \frac{1}{2} \|\mathbf{X}^T \mathbf{w} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Gradient Descent for LR

Initialization: $w_1 \in \mathcal{K}$ and step sizes $\{\eta_t\}$.

For $t = 1, \dots, T$:

- Compute gradient: $\nabla f(w_t) = XX^Tw_t Xy + \lambda w_t$
- Update: $\mathbf{w}_{t+1} = \mathbf{w}_t \eta_t \nabla f(\mathbf{w}_t)$.

Output w_T .

Learning as Optimization – Supported Vector Machine

Consider Supported Vector Machine (SVM) for "classification" (e.g., spam email detection).

Given historical/batch data $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots (\mathbf{x}_N, y_N)\}$, we need to minimize the # of mistakes

$$\min_{\mathbf{w}} \sum_{n=1}^{N} \mathbb{I}(sign(\langle \mathbf{w}, \mathbf{x}_n \rangle) \neq y_n).$$

We need to do a bit relaxation:

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$
s.t. $y_n \cdot \langle \mathbf{w}, \mathbf{x}_n \rangle \ge 1, \forall n \in [N].$

Learning as Optimization – Supported Vector Machine

We need to do a bit relaxation:

$$\min_{\mathbf{w}} ||w||^2$$
s.t. $y_n \cdot \langle \mathbf{w}, \mathbf{x}_n \rangle \ge 1, \forall n \in [N].$

We want an unconstrained problem:

$$\min_{\mathbf{w}} \frac{\lambda}{N} \sum_{n=1}^{N} \max(0, 1 - y_n \cdot \langle \mathbf{w}, \mathbf{x}_n \rangle) + \frac{1}{2} \|\mathbf{w}\|^2$$

SubGradient Descent for SVM

Initialization: $w_1 \in \mathcal{K}$ and step sizes $\eta_t = O(1/t)$.

For $t = 1, \dots, T$:

- Compute gradient: $\nabla f(w_t) = -\frac{\lambda}{N} \sum_{n=1}^{N} y_n \cdot \mathbf{x}_n + \mathbf{w}_t$ if $y_n \cdot \langle \mathbf{x}_n, \mathbf{w} \rangle < 1$; otherwise $\nabla f(w_t) = w_t$.
- Update: $w_{t+1} = w_t \eta_t \nabla f(w_t)$.

Output w_T or a weighted version of $\{w_t\}$.

From offline to online convex optimization:

- In offline convex optimization, $f(\cdot)$ is known in advance and fixed all the time!
- In online convex optimization, $f_t(\cdot)$ is revealed after our action x_t . $\{f_t\}$ could be arbitrary, for example, it could be fixed, i.i.d., or even adversarial!

From offline to online convex optimization:

- In offline convex optimization, $f(\cdot)$ is known in advance and fixed all the time!
- In online convex optimization, $f_t(\cdot)$ is revealed after our action x_t . $\{f_t\}$ could be arbitrary, for example, it could be fixed, i.i.d., or even adversarial!

From the convergence rate to regret:

From offline to online convex optimization:

- In offline convex optimization, $f(\cdot)$ is known in advance and fixed all the time!
- In online convex optimization, $f_t(\cdot)$ is revealed after our action x_t . $\{f_t\}$ could be arbitrary, for example, it could be fixed, i.i.d., or even adversarial!

From the convergence rate to regret:

• For a general function $f(\cdot)$ in offline convex optimization, GD achieves $f(x_T) - f(x^*) = O(1/\sqrt{T})$.

From offline to online convex optimization:

- In offline convex optimization, $f(\cdot)$ is known in advance and fixed all the time!
- In online convex optimization, $f_t(\cdot)$ is revealed after our action x_t . $\{f_t\}$ could be arbitrary, for example, it could be fixed, i.i.d., or even adversarial!

From the convergence rate to regret:

- For a general function $f(\cdot)$ in offline convex optimization, GD achieves $f(x_T) f(x^*) = O(1/\sqrt{T})$.
- For a sequence of general function $\{f_t\}$ in online convex optimization, online GD achieves

$$\sum_{t=1}^{T} f_t(x_t) - f_t(x^*) = O(\sqrt{T}) ?$$

Online Convex Optimization: Online Gradient Descent

Online Gradient Descent (OGD)

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta_t\}$.

For $t = 1, \dots, T$:

- **Learner:** Submit x_t .
- **Environment:** Observe the convex loss $f_t(\cdot)$.
- Update: $x_{t+1} = \prod_{\mathcal{K}} (x_t \eta_t \nabla f_t(x_t))$.

The intuition of OGD is to approximate/predict $f_{t+1}(x)$ with $\hat{f}_{t+1}(x)$ as following:

$$\hat{f}_{t+1}(x) = f_t(x_t) + \langle x - x_t, \nabla f_t(x_t) \rangle + \frac{1}{2\eta_t} ||x - x_t||^2.$$

Online Gradient Descent

The regret of OGD is:

$$Regret(T) = \sum_{t=1}^{T} f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x).$$

Theorem 15

Assume $||x - y|| \le D, \forall x, y \in \mathcal{K}$ and $||\nabla f_t(x)|| \le G, \forall x \in \mathcal{K}$ for any t. Let $\eta_t = \frac{D}{G\sqrt{t}}$. OGD algorithm achieves

$$Regret(T) \leq \frac{3}{2}GD\sqrt{T}.$$

OGD achieves $O(\sqrt{T})$ regret:

Online Gradient Descent

The regret of OGD is:

$$Regret(T) = \sum_{t=1}^{T} f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x).$$

Theorem 15

Assume $||x - y|| \le D, \forall x, y \in \mathcal{K}$ and $||\nabla f_t(x)|| \le G, \forall x \in \mathcal{K}$ for any t. Let $\eta_t = \frac{D}{G\sqrt{t}}$. OGD algorithm achieves

$$Regret(T) \leq \frac{3}{2}GD\sqrt{T}.$$

OGD achieves $O(\sqrt{T})$ regret:

 Learning rate is time-varying and independent with time horizon T (note learning rate is extremely important).

Online Gradient Descent

The regret of OGD is:

$$Regret(T) = \sum_{t=1}^{T} f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x).$$

Theorem 15

Assume $||x - y|| \le D, \forall x, y \in \mathcal{K}$ and $||\nabla f_t(x)|| \le G, \forall x \in \mathcal{K}$ for any t. Let $\eta_t = \frac{D}{G\sqrt{t}}$. OGD algorithm achieves

$$Regret(T) \leq \frac{3}{2}GD\sqrt{T}.$$

OGD achieves $O(\sqrt{T})$ regret:

- Learning rate is time-varying and independent with time horizon T (note learning rate is extremely important).
- GD is dimensional-free but it is related to D and G.

Online Gradient Descent – Proof

Similar with the gradient descent for general convex functions, we use a "potential/Lyapunov drift" style of analysis: define

$$\phi_t = \|x_t - x^*\|^2,$$

and study the drift

$$\phi_{t+1} - \phi_t$$
.

$$\Rightarrow f_{t}(x_{t}) - f_{t}(x^{*}) \leq \frac{\phi_{t} - \phi_{tel}}{|\gamma|} + |\gamma| ||\gamma|f_{t}|x_{t}||^{2}$$

$$\Rightarrow R(\tau) \leq \frac{\phi_{o}}{|\gamma|} + |\gamma| \frac{\tau}{21} ||\nabla f_{t}(x_{t})||^{2}$$

Along with the "style" of this course, we justify if $O(DG\sqrt{T})$ achieved by online gradient descent can be improvable?

- Theorem 15 does not assume any good properties on the loss functions $\{f_t\}$.
- Scaling with D and G is quite standard. How about \sqrt{T} ?

Along with the "style" of this course, we justify if $O(DG\sqrt{T})$ achieved by online gradient descent can be improvable?

- Theorem 15 does not assume any good properties on the loss functions $\{f_t\}$.
- Scaling with D and G is quite standard. How about \sqrt{T} ?

We need to investigate what is the lower bound for a general online convex optimization problem:

- Given an OCO problem \mathcal{P} , any online algorithms will incur at least $\Omega(\sqrt{T})$ regret?
- We design OCO problems instead of algorithms.

Along with the "style" of this course, we justify if $O(DG\sqrt{T})$ achieved by online gradient descent can be improvable?

- Theorem 15 does not assume any good properties on the loss functions $\{f_t\}$.
- Scaling with D and G is quite standard. How about \sqrt{T} ?

We need to investigate what is the lower bound for a general online convex optimization problem:

- Given an OCO problem \mathcal{P} , any online algorithms will incur at least $\Omega(\sqrt{T})$ regret?
- We design OCO problems instead of algorithms.

OCO problems \Longrightarrow The best algorithms \Longrightarrow Min upper bounds. Online algorithms \Longrightarrow The hardest OCO problems \Longrightarrow Max lower bounds.

Design an OCO problem \mathcal{P} means to design an sequence of $\{f_t\}$ s.t.

$$\max_{\{f_t\}} \mathsf{Regret}(T)$$

is maximized for any online algorithms. It seems very challenging, right?

Design an OCO problem \mathcal{P} means to design an sequence of $\{f_t\}$ s.t.

$$\max_{\{f_t\}} \mathsf{Regret}(T)$$

is maximized for any online algorithms. It seems very challenging, right?

Let's consider a related easy problem where $\{f_t\}$ is i.i.d., we have

$$\max_{\{f_t\}} \operatorname{Regret}(T) \geq \underset{\{f_t\}}{\mathbb{E}} [\operatorname{Regret}(T)].$$

Design an OCO problem P means to design an sequence of $\{f_t\}$ s.t.

$$\max_{\{f_t\}} \mathsf{Regret}(T)$$

is maximized for any online algorithms. It seems very challenging, right?

Let's consider a related easy problem where $\{f_t\}$ is i.i.d., we have

$$\max_{\{f_t\}} \operatorname{Regret}(T) \geq \mathop{\mathbb{E}}_{\{f_t\}} [\operatorname{Regret}(T)].$$

Construct the lower bound by the probabilistic method:

$$\mathbb{E}_{\{f_t\}}[\mathsf{Regret}(T)] = \mathbb{E}_{\{f_t\}}\left[\sum_{t=1}^T f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^T f_t(x)\right].$$

Theorem 16

There exists an sequence of $\{f_t\}$ such that for any online algorithms it incurs at least $\Omega(\sqrt{T})$ regret.

We consider an i.i.d. sequence of linear functions $\{f_t\}$

$$f_t(x) = \langle v_t, x \rangle, \quad ||x||_1 = 1,$$

where each element in v_t is Rademacher random variable, and we study (Assume v_t and v_t and v_t are scalar)

$$\mathbb{E}_{\{f_t\}}[\mathsf{Regret}(T)] = \mathbb{E}_{\{f_t\}}\left[\sum_{t=1}^T f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^T f_t(x)\right]$$
$$= \mathbb{E}_{\{v_t\}}\left[\sum_{t=1}^T \langle v_t, x_t \rangle - \min_{x \in \mathcal{K}} \sum_{t=1}^T \langle v_t, x \rangle\right]$$

$$= 0 - E \left[\min \sum_{t=1}^{T} v_t \cdot X \right]$$

$$= E \left[\left[\sum_{t=1}^{T} v_t \right] \right]$$
By Khintchine inequality, the proof is completel,

From online to offline convex optimization:

- In online convex optimization, choose x_t given the history until t.
- In offline convex optimization, choose x_t given f.

From online to offline convex optimization:

- In online convex optimization, choose x_t given the history until t.
- In offline convex optimization, choose x_t given f.

From regret to the convergence rate:

Online GD achieves

$$\sum_{t=1}^{T} f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x) = O(\sqrt{T})$$

with an sequence of $\{x_t\}$.

From online to offline convex optimization:

- In online convex optimization, choose x_t given the history until t.
- In offline convex optimization, choose x_t given f.

From regret to the convergence rate:

Online GD achieves

$$\sum_{t=1}^{T} f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x) = O(\sqrt{T})$$

with an sequence of $\{x_t\}$.

• Can we use $\{x_t\}$ to produce an action \bar{x}_T such that

$$f(\bar{x}_T) - f(x^*) = O(1/\sqrt{T}).$$

Online Gradient Descent for a known function g

Initialization: x_1 and $\{\eta_t\}$.

For $t = 1, \dots, T$:

- **Learner:** Submit x_t .
- **Environment:** Observe the convex loss $f_t(x_t) = g(x_t)$.
- Update: $x_{t+1} = x_t \eta_t \nabla f_t(x_t)$.

Output: $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$

Theorem 17

Given an sequence of $\{x_t\}$ returned by online gradient descent and x^* is the optimal solution to g, we have

$$g(\bar{x}_T) - g(x^*) = O(1/\sqrt{T}).$$

From Online to Stochastic Convex Optimization

Online Gradient Descent for an estimated function g

Initialization: x_1 and $\{\eta_t\}$.

For $t = 1, \dots, T$:

- **Learner:** Submit x_t .
- **Environment:** Observe the estimated $\tilde{\nabla}g(x_t)$ and the "virtual" loss $f_t(x) = \langle \tilde{\nabla}g(x_t), x \rangle$.
- Update: $x_{t+1} = x_t \eta_t \nabla f_t(x_t)$.

Output: $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$

Theorem 18

Given an sequence of $\{x_t\}$ returned by online gradient descent and x^* is the optimal solution to g, we have

$$\mathbb{E}[g(\bar{x}_T)] - g(x^*) = O(1/\sqrt{T}).$$

From Online to Stochastic Convex Optimization – Proof

$$E[g(\bar{x}_{T}) - g(x^{k})] \leq \frac{1}{T} E[\bar{x}_{T}^{T}(g(x_{T}) - g(x^{k}))] \quad (Jesson's inequality)$$

$$\leq \frac{1}{T} E[\bar{x}_{T}^{T}(x_{T} - x^{k}, \nabla g(x_{T}))] \quad (g \text{ is convex})$$

$$= \frac{1}{T} E[\bar{x}_{T}^{T}(x_{T} - x^{k}, \nabla g(x_{T}))] \quad (unbiased grad)$$

$$= O(\sqrt{T} T) \quad (Regree & OCO)$$

Learning as Stochastic Optimization – Linear Regression

Consider linear regression (LR) for "regression" (e.g., Shanghai Putong house price prediction).

Given historical/batch data $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots (\mathbf{x}_N, y_N)\}$, we do LR

$$\min_{\mathbf{w}} \ \frac{1}{2} \|\mathbf{X}^T \mathbf{w} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Stochastic Gradient Descent for LR

Initialization: w_1 and step sizes $\{\eta_t\}$.

For $t = 1, \dots, T$:

- Random pick an sample: (x_i, y_i)
- Compute gradient: $\tilde{\nabla} f_t(w_t) = \mathbf{x}_i \mathbf{x}_i^T \mathbf{w}_t \mathbf{x}_i \mathbf{y}_i + \lambda \mathbf{w}_t$
- Update: $\mathbf{w}_{t+1} = \mathbf{w}_t \eta_t \tilde{\nabla} f_t(\mathbf{w}_t)$.

Output $\bar{w}_T = \frac{1}{T} \sum_{t=1}^T w_t$.

The regret of OGD is Regret(T) = $O(\sqrt{T})$, not improvable given the lower bound of $\Omega(\sqrt{T})$. In fact, we can achieve a smaller regret for strongly convex functions.

Theorem 19

Assume $||x - y|| \le D$, $\forall x, y \in \mathcal{K}$ and α -strongly convex functions $\{f_t\}$ with $||\nabla f_t(x)|| \le G$, $\forall x \in \mathcal{K}$ for any t. Let $\eta_t = \frac{1}{\alpha t}$. OGD algorithm achieves

$$Regret(T) \leq \frac{G^2}{2\alpha}(1 + \log(T)).$$

OGD achieves $O(\log T)$ regret:

• Learning rate is time-varying and becomes O(1/t) instead of $O(1/\sqrt{t})$.

We use a "potential/Lyapunov drift" style of analysis: define

$$\phi_t = \|x_t - x^*\|^2,$$

and study the drift

$$\phi_{t+1} - \phi_t = ||x_{t+1} - x^*||^2 - ||x_t - x^*||^2$$

$$= ||x_t - \eta_t \nabla f_t(x_t) - x^*||^2 - ||x_t - x^*||^2$$

$$= 2\eta_t \langle x^* - x_t, \nabla f_t(x_t) \rangle + \eta_t^2 ||\nabla f_t(x_t)||^2$$

which implies

$$\langle x_t - x^*, \nabla f_t(x_t) \rangle \leq \frac{1}{2\eta_t} (\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2) + \frac{\eta_t}{2} \|\nabla f_t(x_t)\|^2$$

If f_t is a α -strongly convex function, we have

$$|f_t(x_t) - f_t(x^*) + \frac{\alpha}{2} ||x_t - x^*||^2 \le \langle x_t - x^*, \nabla f_t(x_t) \rangle.$$

Telescope sum from $t = 1, 2, \dots, T$, we have

$$\operatorname{Regret}(T) + \sum_{t=1}^{T} \frac{\alpha}{2} \|x_t - x^*\|^2$$

$$\leq \sum_{t=1}^{T} \frac{1}{2\eta_t} \left(\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2 \right) + \sum_{t=1}^{T} \frac{\eta_t}{2} \|\nabla f_t(x_t)\|^2,$$

which implies

$$2\mathsf{Regret}(T) \leq \sum_{t=1}^{T} \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}} - \alpha \right) \|x_t - x^*\|^2 + \sum_{t=1}^{T} \eta_t \|\nabla f_t(x_t)\|^2.$$

Let $\eta_t = \frac{1}{\alpha t}$. Finally, we have

$$\operatorname{Regret}(T) \leq \sum_{t=1}^{T} \frac{\|\nabla f_t(x_t)\|^2}{2\alpha t} \leq \frac{G^2}{2\alpha} (1 + \log(T)). \quad \Box$$

Online GD with carefully choosing learning rates $\{\eta_t\}$ achieves the regret:

- $O(\sqrt{T})$ if $\{f_t\}$ is convex.
- $O(\log T)$ if $\{f_t\}$ is α -strongly convex.

Let $\eta_t = \frac{1}{\alpha t}$. Finally, we have

$$\operatorname{Regret}(T) \leq \sum_{t=1}^{T} \frac{\|\nabla f_t(x_t)\|^2}{2\alpha t} \leq \frac{G^2}{2\alpha} (1 + \log(T)). \quad \Box$$

Online GD with carefully choosing learning rates $\{\eta_t\}$ achieves the regret:

- $O(\sqrt{T})$ if $\{f_t\}$ is convex.
- $O(\log T)$ if $\{f_t\}$ is α -strongly convex.

How about some of functions in $\{f_t\}$ are convex and others are α -strongly convex?

• Can we achieve somethings between $O(\log T)$ and $O(\sqrt{T})$?

Adaptive Online GD for Partial Strongly Convex $\{f_t\}$

Initialization: x_1 .

For
$$t = 1, \dots, T$$
:

- **Learner:** Submit x_t .
- **Environment:** Observe $f_t(x)$ with α_t -strongly convexity.
- Update: $\eta_t = ???$, $x_{t+1} = x_t \eta_t \nabla f_t(x_t)$.

Adaptive Online GD for Partial Strongly Convex $\{f_t\}$

Initialization: x_1 .

For
$$t = 1, \dots, T$$
:

- **Learner:** Submit x_t .
- **Environment:** Observe $f_t(x)$ with α_t -strongly convexity.
- Update: $\eta_t = 1/\sum_{s=1}^t \alpha_s$, $x_{t+1} = x_t \eta_t \nabla f_t(x_t)$.

Adaptive Online GD for Partial Strongly Convex $\{f_t\}$

Initialization: x_1 .

For $t = 1, \dots, T$:

- **Learner:** Submit x_t .
- **Environment:** Observe $f_t(x)$ with α_t -strongly convexity.
- Update: $\eta_t = 1/\sum_{s=1}^t \alpha_s$, $x_{t+1} = x_t \eta_t \nabla f_t(x_t)$.

Theorem 20

Assume $||x - y|| \le D, \forall x, y \in \mathcal{K}$ and convex functions $\{f_t\}$ with $||\nabla f_t(x)|| \le G_t, \forall x \in \mathcal{K}$ for any t. OGD algorithm above achieves

$$Regret(T) \leq \sum_{t=1}^{T} \frac{G_t^2}{2\sum_{s=1}^{t} \alpha_s}.$$

Is it a good adaptive bound?

Regret
$$(T) \leq \sum_{t=1}^{T} \frac{G_t^2}{2\sum_{s=1}^{t} \alpha_s}$$
.

Discussion:

Is it a good adaptive bound?

Regret
$$(T) \leq \sum_{t=1}^{T} \frac{G_t^2}{2\sum_{s=1}^{t} \alpha_s}$$
.

Discussion:

• $O(\log T)$ if $\{f_t\}$ are α -strongly convex.

Is it a good adaptive bound?

Regret
$$(T) \leq \sum_{t=1}^{T} \frac{G_t^2}{2\sum_{s=1}^{t} \alpha_s}$$
.

Discussion:

- $O(\log T)$ if $\{f_t\}$ are α -strongly convex.
- How about the first half of $\{f_t\}$ are strongly convex and the second half of $\{f_t\}$ are only convex?

Is it a good adaptive bound?

Regret
$$(T) \leq \sum_{t=1}^{T} \frac{G_t^2}{2\sum_{s=1}^{t} \alpha_s}$$
.

Discussion:

- $O(\log T)$ if $\{f_t\}$ are α -strongly convex.
- How about the first half of $\{f_t\}$ are strongly convex and the second half of $\{f_t\}$ are only convex?
- How about the first half of $\{f_t\}$ are only convex and the second half of $\{f_t\}$ are strongly convex?

Add regularizars to make it strongly-convex!!!

$$\tilde{f}_t(x) = f_t(x) + \frac{\lambda_t}{2} ||x||^2.$$

Add regularizars to make it strongly-convex!!!

$$\tilde{f}_t(x) = f_t(x) + \frac{\lambda_t}{2} ||x||^2.$$

From Theorem 20, now we have the regret for $\{\tilde{f}_t\}$ functions

$$\widetilde{\mathsf{Regret}}(T) \leq \sum_{t=1}^{T} \frac{G_t^2}{2\sum_{s=1}^{t} (\lambda_s + \alpha_s)},$$

Add regularizars to make it strongly-convex!!!

$$\tilde{f}_t(x) = f_t(x) + \frac{\lambda_t}{2} ||x||^2.$$

From Theorem 20, now we have the regret for $\{\tilde{f}_t\}$ functions

$$\widetilde{\mathsf{Regret}}(T) \leq \sum_{t=1}^{T} \frac{G_t^2}{2\sum_{s=1}^{t} (\lambda_s + \alpha_s)},$$

which implies (assuming D=1)

$$2\operatorname{Regret}(T) \leq \sum_{t=1}^{T} \lambda_t + \sum_{t=1}^{T} \frac{G_t^2}{\sum_{s=1}^{t} (\lambda_s + \alpha_s)}.$$

Let's look at

$$H_T(\lambda_1, \cdots, \lambda_T) := \sum_{t=1}^T \lambda_t + \sum_{t=1}^T \frac{G_t^2}{\sum_{s=1}^t (\lambda_s + \alpha_s)}.$$

Let's look at

$$H_T(\lambda_1, \cdots, \lambda_T) := \sum_{t=1}^T \lambda_t + \sum_{t=1}^T \frac{G_t^2}{\sum_{s=1}^t (\lambda_s + \alpha_s)}.$$

A surprising result from [Bartlett, Hazan, and Rakhlin] 1 is if

$$\lambda_t = G_t^2 / \sum_{s=1}^t (\lambda_s + \alpha_s),$$

then

$$H_T(\lambda_1, \cdots, \lambda_T) \leq 2 \min_{\lambda_i \geq 0} H_T(\lambda_1, \cdots, \lambda_T).$$

¹Peter L. Bartlett, Elad Hazan, and Alexander Rakhlin. Adaptive online gradient descent. In Neural Information Processing Systems (NIPS), 2007.

We enventully have

$$\operatorname{Regret}(T) \leq \min_{\lambda_i \geq 0} H_T(\lambda_1, \dots, \lambda_T)$$

$$\leq \min_{\lambda_i \geq 0} \left[\sum_{t=1}^T \lambda_t + \sum_{t=1}^T \frac{G_t^2}{\sum_{s=1}^t (\lambda_s + \alpha_s)} \right]$$

Discussion:

We enventully have

$$\operatorname{Regret}(T) \leq \min_{\lambda_i \geq 0} H_T(\lambda_1, \dots, \lambda_T)$$

$$\leq \min_{\lambda_i \geq 0} \left[\sum_{t=1}^T \lambda_t + \sum_{t=1}^T \frac{G_t^2}{\sum_{s=1}^t (\lambda_s + \alpha_s)} \right]$$

Discussion:

• $O(\sqrt{T})$ is achieved with $\lambda_1 = \sqrt{T}$ and $\lambda_t = 0, \forall t \geq 2$.

We enventully have

$$\operatorname{Regret}(T) \leq \min_{\lambda_i \geq 0} H_T(\lambda_1, \dots, \lambda_T)$$

$$\leq \min_{\lambda_i \geq 0} \left[\sum_{t=1}^T \lambda_t + \sum_{t=1}^T \frac{G_t^2}{\sum_{s=1}^t (\lambda_s + \alpha_s)} \right]$$

Discussion:

- $O(\sqrt{T})$ is achieved with $\lambda_1 = \sqrt{T}$ and $\lambda_t = 0, \forall t \geq 2$.
- $O(\log T)$ is achieved with $\lambda_t = 0$ if $\alpha_t > 0, \forall t \geq 1$.

Recall in general convex functions, we have online gradient descent with the learning rate such that

$$2 \text{Regret}(T) \leq \sum_{t=1}^{T} \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}} \right) \|x_t - x^*\|^2 + \sum_{t=1}^{T} \eta_t \|\nabla f_t(x_t)\|^2$$
$$\leq \frac{1}{\eta_T} + \sum_{t=1}^{T} \eta_t \|\nabla f_t(x_t)\|^2$$

Assuming a fixed learning rate $\eta_t = \eta, \forall t$, we minimize the upper bound by setting

$$\eta = \frac{1}{\sqrt{\sum_{t=1}^{T} \|\nabla f_t(x_t)\|^2}}.$$

The regret becomes "adaptive" to gradients of functions:

$$2\operatorname{Regret}(T) \leq 2\sqrt{\sum_{t=1}^{T} \|\nabla f_t(x_t)\|^2}$$

However, the learning rate η requires all the future gradients. Can we try the learning rate without any future information?

The regret becomes "adaptive" to gradients of functions:

$$2\operatorname{Regret}(T) \leq 2\sqrt{\sum_{t=1}^{T} \|\nabla f_t(x_t)\|^2}$$

However, the learning rate η requires all the future gradients. Can we try the learning rate without any future information?

$$\eta_t = \frac{1}{\sqrt{\sum_{s=1}^t \|\nabla f_s(x_s)\|^2}}$$
?

The regret becomes "adaptive" to gradients of functions:

$$2\operatorname{Regret}(T) \leq 2\sqrt{\sum_{t=1}^{T} \|\nabla f_t(x_t)\|^2}$$

However, the learning rate η requires all the future gradients. Can we try the learning rate without any future information?

$$\eta_t = \frac{1}{\sqrt{\sum_{s=1}^t \|\nabla f_s(x_s)\|^2}}$$
?

Now the regret becomes

$$2\text{Regret}(T) \leq \frac{1}{\eta_T} + \sum_{t=1}^{T} \frac{\|\nabla f_t(x_t)\|^2}{\sqrt{\sum_{s=1}^{t} \|\nabla f_s(x_s)\|^2}}.$$

The need to verify
$$\frac{At - At-1}{\sqrt{At}} \le 2(\sqrt{At} - \sqrt{At+1})$$

A bit surprising result (verify it by yourself):

$$\sum_{t=1}^{T} \frac{\|\nabla f_t(x_t)\|^2}{\sqrt{\sum_{s=1}^{t} \|\nabla f_s(x_s)\|^2}} \leq 2\sqrt{\sum_{t=1}^{T} \|\nabla f_t(x_t)\|^2}.$$

Finally, we achieve an adaptive regret without any future information:

$$\operatorname{Regret}(T) \leq \frac{3}{2} \sqrt{\sum_{t=1}^{T} \|\nabla f_t(x_t)\|^2}.$$

A bit surprising result (verify it by yourself):

$$\sum_{t=1}^{T} \frac{\|\nabla f_t(x_t)\|^2}{\sqrt{\sum_{s=1}^{t} \|\nabla f_s(x_s)\|^2}} \leq 2\sqrt{\sum_{t=1}^{T} \|\nabla f_t(x_t)\|^2}.$$

Finally, we achieve an adaptive regret without any future information:

Regret
$$(T) \leq \frac{3}{2} \sqrt{\sum_{t=1}^{T} \|\nabla f_t(x_t)\|^2}$$
.

Hey, where is "smoothness" in online convex optimization?

Recall a function is β -smoothness if for any $x, y \in \mathcal{K}$

$$f(y) - f(x) \le \langle y - x, \nabla f(x) \rangle + \frac{\beta}{2} ||y - x||^2,$$

which implies

$$\|\nabla f(x)\|^2 \leq 2\beta \left(f(x) - \min_{y \in \mathcal{K}} f(y)\right).$$

Assume functions $\{f_t\}$ are β -smoothness and non-negative, the regret again becomes "adaptive" to values of functions:

$$\operatorname{Regret}(T) \leq \frac{3}{2} \sqrt{2\beta \sum_{t=1}^{T} \left(f_t(x_t) - \min_{y \in \mathcal{K}} f_t(y) \right)} \leq \frac{3}{2} \sqrt{2\beta \sum_{t=1}^{T} f_t(x_t)}.$$

We have an interesting "self-bounds":

$$\sum_{t=1}^{T} f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x) \leq \frac{3}{2} \sqrt{2\beta \sum_{t=1}^{T} f_t(x_t)}.$$

It can read as

$$L_T - L^* \leq \sqrt{c \times L_T},$$

which implies (if $L_T, L^* \geq 0$)

$$L_T - L^* \le c + 2\sqrt{c \times L^*}$$
.

We have

$$\sum_{t=1}^{T} f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x) \leq \frac{9\beta}{2} + \sqrt{18\beta \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x)}.$$

Adaptive Online Gradient Descent: AdaGrad

The regret is decomposed to be

$$\sum_{t=1}^{T} f_t(x_t) - \sum_{t=1}^{T} f_t(x) \le \sum_{t=1}^{T} \langle x_t - x, \nabla f_t(x_t) \rangle$$

$$= \sum_{i=1}^{d} \sum_{t=1}^{T} \langle x_{t,i} - x_i, \nabla f_{t,i}(x_t) \rangle$$

$$= \sum_{i=1}^{d} \operatorname{Regret}_i(T)$$

Recall $\eta_t = 1/\sqrt{\sum_{s=1}^t \|\nabla f_s(x_s)\|^2}$, can we use the adaptive gradient for each coordinate?

$$\eta_{t,i} = \frac{1}{\sqrt{\sum_{s=1}^{t} \|\nabla f_{s,i}(x_s)\|^2}}.$$

Adaptive Online Gradient Descent: AdaGrad

AdaGrad for Hyperrectangles

Initialization: each coordinate is in [0,1] and x_1 .

For
$$t = 1, \dots, T$$
:

- **Learner:** Submit x_t .
- **Environment:** Observe the loss $f_t(x)$.
- Update for each coordinate:

$$\eta_{t,i} = \frac{1}{\sqrt{\sum_{s=1}^{t} \|\nabla f_{s,i}(x_s)\|^2}}, \ x_{t+1,i} = x_{t,i} - \eta_{t,i} \nabla f_{t,i}(x_t).$$

AdaGrad² has key ingredients:

- A coordinate-wise learning process.
- The adaptive learning rates of $\{\eta_{t,i}\}$.

²J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. In COLT, 2010.

Adaptive Online Gradient Descent: AdaGrad

By using the gradient of η_t , the previous regret

$$\operatorname{Regret}(T) \leq \frac{3}{2} \sqrt{d \sum_{t=1}^{T} \|\nabla f_t(x_t)\|^2}.$$

By using the gradient of $\eta_{t,i}$ for each coordinate, we have

Regret
$$(T) \le \frac{3}{2} \sum_{i=1}^{d} \sqrt{\sum_{t=1}^{T} \|\nabla f_{t,i}(x_t)\|^2}.$$

which one is better?

From AdaGrad to Adam

Adam for Stochastic Optimization

Initialization: γ_0 and γ_1 the discounted factors for the moment and learning rates; ϵ is the small constant.

For
$$t = 1, \dots, T$$
:

Compute:

$$m_t = \gamma_0 m_{t-1} + (1 - \gamma_0) \nabla f_t(x_t)$$

 $g_{t,i} = \gamma_1 g_{t-1,i} + (1 - \gamma_1) (\nabla f_{t,i}(x_t))^2$

- Bias-correcting: $\hat{m}_t = m_t/(1-(\gamma_0)^t), \ \hat{g}_{t,i} = g_{t,i}/(1-(\gamma_1)^t).$
- Update for each coordinate:

$$\eta_{t,i} = \frac{1}{\sqrt{\hat{g}_{t,i}} + \epsilon}, \ x_{t+1,i} = x_{t,i} - \eta_{t,i} \hat{m}_{t,i}.$$

Adam is AdaGrad with "moment"!

