ACT-11302 Cálculo Actuarial III

ITAM

Lista de Ejercicios (Parte 2)

Prof.: Juan Carlos Martínez-Ovando

23 de febrero de 2016

- 1. Emplea el método de momentos para derivar la distribución de la mezcla de una distribució $Po(N|\lambda)$ con λ parámetro latente con distribución $Ga(\lambda|a,b)$. Identifica qué resultado se obtendría de reemplazar la distribución gamma por la gaussiana inversa.
- Demuestra que las distribuciones Poisson, binomial y binomial negativa, forman parte de la Familia Exponencial Aditiva de distribuciones.
- 3. Demuestra que la distribución límite del máximo n variables aleatorias i.i.d., $X_n^* = \max\{X_1, \dots, X_n\}$, cuando $n \to \infty$, es una distribución degenerada.
- 4. Suponga que X_1, \ldots, X_n son variables aleatorias i.i.d. con distribución Pareto, dada por

$$F_X(x) = 1 - (1 + x/\theta)^{-\alpha} \mathbb{I}_{[0,\infty)}(x),$$

con $\alpha, \theta > 0$. Considerando las constantes de normalización, $b_n = \theta(n^{1/\alpha} - 1)$ y $a_n = \frac{\theta n^{1/\alpha}}{\alpha}$, deriva la distribución asintótica no degenerada de $X_n^* = \max\{X_1, \dots, X_n\}$, cuando $n \to \infty$.

- 5. Deriva el análogo del Teorema de Fisher-Tippet que consiste en reemplazar el supuesto i.i.d. por el de intercambiabilidad en X_1, \dots, X_n .
- 6. Sean $N_1, ..., N_m$ variables aleatorias con distribución dada por una mezcla Poisson-P, donde $N_1 | \lambda \sim \text{Po}(N_i | \lambda)$ y $\lambda \sim P(\lambda)$. Muestre que $M = N_1 + \cdot + N_m$ tiene una distribución Poisson mezclada, y exhiba la función generadora de probabilidades de la distribución mezcla que le corresponde.
- 7. Considere *X*, severidad individual, que sigue una distribución lognormal con función de supervivencia dada por

$$S_X(x) \approx \left(\frac{\sigma}{\log x - \mu}\right) \exp\left\{-1/2\left(\frac{\log x - \mu}{\sigma}\right)^2\right\},$$

cuando $x \to \infty$. Deriva la aproximación del TVaR $_q(S)$ para la suma de N variables X_1, \ldots, X_n i.i.d. lognormales.