Oplossing oefeningen Hoofdstuk 4

Oefening 1:

```
{
     int vtal, verm;
     int prod;
     int atlOpt;
     System.out.println("Geef vermenigvuldigtal en vermenigvuldiger: ");
     vtal = sc.nextInt();
     verm = sc.nextInt();
     prod = 0;
     for (atlOpt = 0; atlOpt < verm; atlOpt = atlOpt + 1)
       prod = prod + vtal;
     } // end for
     System.out.println(vtal+" * "+verm+" = "+prod);
}
<u>Uitbreiding oefening 1:</u>
{
     int vtal, verm;
     int prod;
     int atlOpt;
     System.out.println("Geef vermenigvuldigtal en vermenigvuldiger: ");
     vtal = sc.nextInt();
     verm = sc.nextInt();
```

```
prod = 0;
     for (atlOpt = 0; atlOpt < Math.abs(verm); atlOpt = atlOpt + 1)
        prod = prod + vtal;
     } // end for
     if (verm < 0)
     {
        prod = -prod;
     }
     System.out.println(vtal+" * "+verm+" = "+prod);
}
Oefening 2:
{
   Scanner sc = new Scanner(System.in);
   int atlFibon;
   int term1, term2, term3; // 3 opeenvolgende termen in de rij
   int atlTermen;
   System.out.print("Geef het aantal termen in: ");
   atlFibon = sc.nextInt();
   term1 = 0;
   term2 = 1;
   System.out.print(term1 +" ");
   System.out.print(term2 +" ");
   for (atlTermen = 2; atlTermen < atlFibon; atlTermen = atlTermen + 1)
    term3 = term1 + term2;
    System.out.print(term3 +" ");
    term1 = term2;
    term2 = term3;
   } // end for
}
```

Oefening 3:

Ontwikkeling van het algoritme

```
1^{\circ} term = x
                        2° term = -\frac{x^3}{3!} = x.(\frac{-x^2}{2.3}) = (1° term).(\frac{-x^2}{2.3})
                        3° term = \frac{x^5}{51} = (-\frac{x^3}{3!}).(\frac{-x^2}{4.5}) = (2° term). \frac{-x^2}{4.5}
                        4° term = -\frac{x^7}{7!} = (\frac{x^5}{5!}).(\frac{-x^2}{6.7}) = (3° \text{ term}).\frac{-x^2}{6.7}
                        (i+1)^{\circ} term = i^{\circ} term. \frac{-x^2}{2i.(2i+1)}
                                           stel 2i = j dan noemer = j.(j+1)
    double x;
    double sin; // sin(x)
    double term; // laatst berekende term
    double factor; // vast gedeelte -x2
    int dubbelnr; // dubbele van volgnummer van laatst berekende term
    System.out.print("Geef het argument voor sinus: ");
    x = sc.nextDouble();
    term = x;
    dubbelnr = 2;
    sin = x;
    factor = -x * x;
    while (Math.abs(term) >= 1E-5)
     term = (term * factor)/(dubbelnr*(dubbelnr+1));
     sin = sin + term;
     dubbelnr = dubbelnr + 2;
    } // end while
    System.out.println("Sinus waarde van "+x+": "+sin);
}
```

Oefening 4:

Ontwikkeling van het algoritme

```
1° term = 1

2° term = -\frac{x^2}{2!} = 1.(\frac{-x^2}{1.2}) = (1° term). (\frac{-x^2}{1.2})

3° term = \frac{x^4}{4!} = (-\frac{x^2}{2!}).(\frac{-x^2}{3.4}) = (2° term). \frac{-x^2}{3.4}

4° term = -\frac{x^6}{6!} = (\frac{x^4}{4!}).(\frac{-x^2}{5.6}) = (3° term). \frac{-x^2}{5.6}

(i+1)° term = i° term. \frac{x^2}{(2i-1).2i} constante factor
```

```
{
   double x; // argument van de cosinus functie
   double cos; // \cos(x)
   double term; // laatst berekende term
   double factor; // vast gedeelte -x2
   int dubbelnr; // dubbele van volgnummer van laatst berekende term
   System.out.print("Geef het argument voor de cosinus: ");
   x = sc.nextDouble();
   term = 1;
   dubbelnr = 2;
   cos = 1;
   factor = -x * x;
   while (Math.abs(term) >= 1E-5)
    term = (term * factor)/((dubbelnr-1)*dubbelnr);
    cos = cos + term;
    dubbelnr = dubbelnr + 2;
   } // end while
   System.out.println("Cosinus waarde van "+ x +": "+cos);
}
```

Oefening 5:

Ontwikkeling van het algoritme

Vb. Stel ingebracht getal is 18

	getal	rest	oneven	atlaftr	vierkw
gegeven	18				
initialisatie		18	1	0	
stap 1		17	3	1	
stap 2		14	5	2 -	
stap 3		9	7	3	
stap 4		2	9	4	
afsluiting					4

```
{
  int getal;
  int rest;
  System.out.println("Geef een positief geheel getal in: ");
  getal = sc.nextInt();
  rest = getal;
  oneven = 1;
  vierkw = 0;
  while (rest >= oneven)
    rest = rest-oneven;
   oneven = oneven + 2;
    vierkw = vierkw + 1;
  }
  System.out.println("De vierkantswortel van "+getal+" = "+vierkw);
}
```

Oefening 6:

Black box

Inputvariabele VorigeBM

Equivalentieklassen	Verteger	Vertegenwoordigers		
VorigeBM < 0	-1	(1) (ongeldig)		
0 ≤ VorigeBM ≤ 22	0	(2) (geldig)		
	22	(3) (geldig)		
VorigeBM > 22	23	(4) (ongeldig)		

Inputvariabele atlOng

Equivalentieklassen	Vertegenwoordigers	
atlOng < 0	-1	(5) (ongeldig)
atlOng = 0	0	(6) (geldig)
atlOng = 1	1	(7) (geldig)
atlOng > 1	2	(8) (geldig)

Outputvariabele NieuweBM

Equivalentieklassen	Verteger	Vertegenwoordigers		
NieuweBM < 0	-1	(9) (ongeldig,		
	aanpass	en 0)		
0 ≤ NieuweBM ≤ 22	0	(10) (geldig)		
	22	(11) (geldig)		
NieuweBM > 22	23	(12) (ongeldig,		
	aanpass	aanpassen 22)		

Testbatterij

Test	VorigeB	atlOng	Nieuwe	Verantwoording
	М		ВМ	
1	0	1	4	geldige klassen (2), (7)
2	22	0	21	geldige klassen (3), (6)
3	0	2	9	geldige klassen (2), (8)
4	18	1	22	geldige klasse (11)
5	1	0	0	geldige klasse (10)

6	-1			ongeldige klasse (1)
7	23			ongeldige klasse (4)
8		-1		ongeldige klasse (5)
9	0	0	-1 → 0	ongeldige klasse (9): aanpassen nieuwe
				ВМ
10	19	1	23 → 22	ongeldige klasse (12): aanpassen
				Nieuwe BM

Oefening 7:

White box

Input			output		
X	Y	Α	X	Y	Α
10	10	0	9	9	18
10	10	-1	9	9	-1
10	9	0	9	8	0
11	11	0	11	11	22
11	11	-1	11	11	-1
11	10	0	11	10	0

Oefening 8:

- a) onderhoudbaarheid en aanpasbaarheid
- b) doorzichtigheid
- c) onderhoudbaarheid en aanpasbaarheid
- d) betrouwbaarheid
- e) doorzichtigheid
- f) efficiëntie
- g) gebruiksvriendelijkheid
- h) aanpasbaarheid
- i) doorzichtigheid
- h) alles tezamen