Existence of Solutions to Non-Compact Dynamic Optimization Problems

February 19, 2015

Objective

Present and prove theorem on existence of solutions to a **reduced form** dynamic optimisation problem when feasibility correspondences have **non-compact** image sets and pay-offs are **bounded below**

 Main application and motivation: optimal policies in incomplete market models with heterogeneity

Semicontinuity

Definition. A function $f: X \to \mathbb{R} \cup \{-\infty, +\infty\}$ is sequentially **upper semi-continuous** if the upper contour sets

$$UC_f(\epsilon)$$
: $= \{x \in X \mid f(x) \ge \epsilon\}$

are sequentially closed for all $\epsilon \in \mathbb{R}$.

Sup-Compactness

Let *D* be a subset of $\mathbb{R} \cup \{-\infty, +\infty\}$

Definition. A function $f: X \to D$ is **sup-compact** if the sets $UC_f(\epsilon)$ are sequentially compact for all $\epsilon \in \mathbb{R}$

If X is not compact and D is bounded below, then f cannot be sup-compact

Definition. A function $f: X \to D$ is **mildly sup-compact** if the sets $UC_f(\epsilon)$ are sequentially compact for all $\epsilon > \inf f$

$$y = e^x$$
Mildly Sup-Compact

Sup-Compact

Correspondences

Let (X, τ) and (Y, τ') be topological spaces. A correspondence from a space X to Y is a set valued function denoted by $\Gamma: X \twoheadrightarrow Y$.

The image of a subset A of X under the correspondence Γ will be the set

$$\Gamma(A)$$
: = $\{y \in Y | y \in \Gamma(x) \text{ for some } x \in A\}$

A correspondence will be called **compact valued** if $\Gamma(x)$ is compact for $x \in X$.

Correspondences

The correspondence Γ is **upper hemi-continuous** if for every x and neighbourhood U of $\Gamma(x)$, there is a neighbourhood V of x such that $z \in V$ implies $\Gamma(z) \subset U$

Upper hemicontinuous correspondences need not be compact valued or have closed graph. Closed graph correspondences also need not be upper hemi-continuous (see Aliprantis and Border (2006), ch. 17). However,

Lemma. If $\Gamma: X \to Y$ is upper hemicontinuous and compact valued, then for $C \subset X$ such that C is compact, $\Gamma(C)$ is compact.

See Lemma 17.8 by Aliprantis and Border (2006)) for a proof

Problem Statement

A non-stationary reduced form economy is a 5-tuple

$$\mathscr{E}: = ((\mathbb{X}, \tau), (\mathbb{S}_t)_{t=0}^{\infty}, (\Gamma_t)_{t=0}^{\infty}, (\rho_t)_{t=0}^{\infty}, \beta)$$
 (1)

consisting of:

- lacksquare A topological space (\mathbb{X}, au)
- lacksquare A collection of state-spaces $(\mathbb{S}_t)_{t=0}^\infty$, with $\mathbb{S}_t\subset\mathbb{X}$ for each t
- A collection of non-empty feasibility correspondences $(\Gamma_t)_{t=0}^{\infty}$, with $\Gamma_t \colon \mathbb{S}_t \twoheadrightarrow \mathbb{S}_{t+1}$ for each t
- A collection of per-period pay-offs $(
 ho_t)_{t=0}^\infty$, with $ho_t\colon\operatorname{Gr}\Gamma_t o\mathbb{R}_+$ and inf $ho_t=0$ for each t
- A discount factor $\beta \in (0,1)$.

Problem Statement

Define the correspondence of **feasible sequences** $\mathcal{G}_t^T : \mathbb{S}_t \twoheadrightarrow \prod_{i=t}^T \mathbb{S}_i$ starting at time t and ending at time T as follows:

$$\mathcal{G}_{t}^{T}(x) := \left\{ (x_{i})_{i=t}^{T} \mid x_{i+1} \in \Gamma_{i}(x_{i}), x_{t} = x \right\}, \qquad x \in \mathbb{S}_{t}$$
 (2)

Let \mathcal{G} denote \mathcal{G}_0^{∞} and let \mathcal{G}^T denote \mathcal{G}_0^T .

Problem Statement

Define the **value function** \tilde{V} : $\mathbb{S}_0 \to \mathbb{R} \cup \{-\infty, +\infty\}$ as follows:

$$\tilde{V}(x) := \sup_{(x_t)_{t=0}^{\infty} \in \mathcal{G}(x)} \sum_{t=0}^{\infty} \beta^t \rho_t(x_t, x_{t+1})$$
 (3)

Application

Aiyagari-Huggett optimal policy (roughly)

- lacktriangle let $(\Omega,\mathscr{F},(\mathscr{F}_t)_{t=0}^\infty,\mathbb{P})$ be a filtered probability space
- $ightharpoonup \mathbb{X} = \mathit{L}^{2}(\Omega,\mathbb{P})$ with the weak topology
- the state-spaces \mathbb{S}_t are spaces of \mathscr{F}_t measurable random variables (history dependence)
- the correspondences Γ_t do not have compact image sets because of Inada conditions
- feasible sequences $(x_t)_{t=0}^{\infty}$ map histories of shocks to assets
- the pay-off ρ_t integrates pay-offs across all agents given prices that depend on x_t

Assumptions

Fix $x \in \mathbb{S}_0$. Let $\phi_t : \mathcal{G}^{t+1}(x) \to \mathbb{R}_+$ denote $(x_i)_{i=0}^{t+1} \mapsto \rho_t(x_t, x_{t+1})$ for each t

The upper contour sets $UC_{\phi_t}(\epsilon)$ of ϕ_t are defined by

$$UC_{\phi_t}(\epsilon) = \{(x_i)_{i=0}^{t+1} \in \mathcal{G}^{t+1}(x) \mid \rho_t(x_t, x_{t+1}) \ge \epsilon\}$$

Assumptions

Standard requirement is for Γ_t to be upper hemicontinuous and compact valued and for \mathbb{S}_t to be a metric space (see by Acemoglu (2009), Assumption 6.2, Kamihigashi (2017), section 6 or Stokey and Lucas (1989), Assumption 4.3, for assumptions used by the standard theory).

Main assumption below relaxes this requirement.

Assumption.3.1 For each $x \in \mathbb{S}_0$ and $t \in \mathbb{N}$, the function $\phi_t \colon \mathcal{G}^{t+1}(x) \to \mathbb{R}_+$ is mildly sup-compact in the product topology (of τ topology in \mathbb{X})

Assumptions

The next assumption is the standard growth condition (see discussion on Corollary 6.1 by Kamihigashi (2017)).

Assumption.3.2 For each $x \in \mathbb{S}_0$, there exists a sequence of non-negative real numbers $(m_t)_{t=0}^{\infty}$ such that any $(x_t)_{t=0}^{\infty} \in \mathcal{G}(x)$ satisfies

$$\rho_t(x_t, x_{t+1}) \le m_t, \qquad \forall t \in \mathbb{N}$$
 (4)

and

$$\sum_{t=0}^{\infty} \beta^t m_t < \infty \tag{5}$$

Assumption.3.3 The functions $(\rho_t)_{t=0}^{\infty}$ are sequentially upper semicontinuous for all $t \in \mathbb{N}$.

Main Theorem

Theorem. 3.1 If $\mathscr E$ satisfies assumptions 3.1 - 3.3, then for every $x \in S_0$, there will exist $(x_t)_{t=0}^\infty$ satisfying $(x_t)_{t=0}^\infty \in \mathcal G(x)$ such that

$$\tilde{V}(x) = \sum_{t=0}^{\infty} \beta^{t} \rho_{t} (x_{t}, x_{t+1}) < \infty$$

Proof Premlinaries

Let (\mathbb{X}, τ) is a topological vector space

Unless otherwise stated, convergence for sequences in $\mathbb X$ will be with respect to the τ topology and convergence for sequences in countable Cartesian products of $\mathbb X$ will be in the product topology of the τ topology on $\mathbb X$.

We will use \mathbf{x} to refer to elements of $\mathbb{X}^{\mathbb{N}}$. We can then use $(\mathbf{x}^n)_{n=0}^{\infty}$ to denote a sequence $\{\mathbf{x}^0,\ldots,\mathbf{x}^n,\ldots\}$, where $(\mathbf{x}^n)_{n=0}^{\infty}\in(\mathbb{X}^{\mathbb{N}})^{\mathbb{N}}$.

Let
$$U(\mathbf{x})$$
: $=\sum_{t=0}^{\infty} \rho_t(x_t, x_{t+1})$.

Product Topology

Remark. A.1 Let $X = \prod_{i \in F} X_i$ denote a Cartesian product of topological spaces. Let $\pi_i \colon X \to X_i$ denote the projection map defined as $\pi_i(x) = x_i$ for each $i \in F$.

Recall each projection map will be a continuous function on X when X has the product topology (see section 2.14 by Aliprantis and Border (2006))

Also recall (section 1.8 by Tao (2013)) the image of a (sequentially) compact set under a continuous function is (sequentially) compact.

If a set C with $C \subset X$ is (sequentially) compact in the product topology, then $\pi_i(C)$ will be (sequentially) compact.

Lemma A.1

Lemma. A.1 Let Assumption 3.2 hold and let x satisfy $x \in \mathbb{S}_0$. If $(\mathbf{x}^n)_{n=0}^{\infty}$ is a sequence with $\mathbf{x}^n \in \mathcal{G}(x)$ for each n and $U(\mathbf{x}^n) \to B$ for B > 0, then there exists a sub-sequence $(\mathbf{x}^{n_k})_{k=0}^{\infty}$ such that for all $t \in \mathbb{N}$

$$\lim_{k\to\infty} \rho_t(x_t^{n_k}, x_{t+1}^{n_k}) \to c_t$$

where $c_t \in \mathbb{R}_+$ for each t and $c_t > 0$ for at-least one t.

Proof of Lemma A.1

Proof.By Assumption 3.2, for each t and n,

$$m_t \ge \rho_t(x_t^n, x_{t+1}^n) \ge 0 \tag{6}$$

Accordingly, for each n, $(\rho_t(x_t^n, x_{t+1}^n))_{t=0}^{\infty}$ will belong to the set $\prod_{t=0}^{\infty} [0, m_t]$, which by Tychonoff's Theorem (see Proposition 1.8.12 by Tao (2010)) will be compact in the product topology.

There then exists a sub-sequence of $(\mathbf{x}^n)_{n=0}^{\infty}$, $(\mathbf{x}^{n_k})_{k=0}^{\infty}$, such that $(\rho(\mathbf{x}_t^{n_k}, \mathbf{x}_{t+1}^{n_k}))_{k=0}^{\infty}$ converges for each t.

Proof of Lemma A.1

Let c_t : $=\lim_{k\to\infty} \rho(x_t^{n_k},x_{t+1}^{n_k})$ and note

$$B = \lim_{k \to \infty} \sum_{t=0}^{\infty} \beta^{t} \rho_{t} \left(x_{t}^{n_{k}}, x_{t+1}^{n_{k}} \right)$$

$$= \sum_{t=0}^{\infty} \lim_{k \to \infty} \beta^{t} \rho_{t} \left(x_{t}^{n_{k}}, x_{t+1}^{n_{k}} \right) = \sum_{t=0}^{\infty} \beta^{t} c_{t} \quad (7)$$

Since (6) holds, and $\sum_{t=0}^{\infty} \beta^t m_t < \infty$ by Assumption 3.2, we can pass limits through in the second equality using dominated convergence theorem (see Corollary 7.3.15 by Stachurski (2009))

If B is strictly positive, the above means there is at least one $c_t > 0$.

Lemma A.2

Lemma. A.2

Let x satisfy $x \in \mathbb{S}_0$. If $(\mathbf{x}^n)_{n=0}^{\infty}$ is a sequence with $\mathbf{x}^n \in \mathcal{G}(x)$ for each n and for some t

$$\rho_t(\mathbf{x}_t^n, \mathbf{x}_{t+1}^n) \to c_t$$

with $c_t > 0$, then there exists $\epsilon > 0$ and $N \in \mathbb{N}$ such that for all n > N, $(x_i^n)_{i=0}^{t+1} \in UC_{\phi_t}(\epsilon)$.

Proof. There exists ι such that ϵ : $= c_t - \iota$ is strictly positive

For N large enough and any n > N, $\rho_t(x_t^n, x_{t+1}^n) \in [\epsilon, c_t + \iota]$, implying $\rho_t(x_t^n, x_{t+1}^n) \geq \epsilon$ and $(x_i^n)_{i=0}^{t+1} \in UC_{\phi_t}(\epsilon)$.

Lemma A.3

Lemma. A.3

Let assumptions 3.1- 3.3 hold and let x satisfy $x \in \mathbb{S}_0$. If $(\mathbf{x}^n)_{n=0}^{\infty}$ is a sequence such that $\mathbf{x}^n \in \mathcal{G}(x)$ for each $n \in \mathbb{N}$ and $U(\mathbf{x}^n) \to B$ where B > 0, then:

- 1. $(\mathbf{x}^n)_{n=0}^{\infty}$ has a convergent sub-sequence with a limit $\mathbf{x} \in \mathcal{G}(x)$, and
- 2. $B \leq U(\mathbf{x}) < \infty$.

Growth. Princeton University Press, Princeton, New Jersey.
Aliprantis, C. D. and Border, K. C. (2006). Infinite Dimensional Analysis: A Hitchhiker's Guide. Springer-Verlag, Berlin.
Kamihigashi, T. (2017). A Generalisation of Fatou's Lemma for

Acemoglu, D. (2009). Introduction to Modern Economic

- Extended Real-Valued Functions on sigma-Finite Measure spaces: with an Application to Infinite-Horizon Optimization in Discrete Time. *Journal of Inequalities and Applications*, 2017(1):24.
- Stachurski, J. (2009). *Economic Dynamics: Theory and Computation*. MIT Press Books, Cambridge, MA.
 Stokey, N. and Lucas, R. (1989). *Recursive Methods in*
- Economic Dynamics. Harvard University Press, Cambridge, MA.
- Tao, T. (2010). *Epsilon of Room, One: Volume 117 of Graduate Studies in Mathematics*. American Mathematical Soc.
- Tao, T. (2013). *Compactness and contradiction*. Americal Mathematical Society.