## Distributed Information Systems: Spring Semester 2016 Ouiz 2: Overview on Distributed Information Systems

| -                                                                                                                                                                                                                                                                                                            | 2: Overview on Distributed Inion                                                                                                                                           | •                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                            | Date: 17 Mar 2016<br>Time: 11:15AM to 11:30AM                          |
| Total number of questions: 8  Each question has a single answer!                                                                                                                                                                                                                                             |                                                                                                                                                                            |                                                                        |
| 1. Which of the following s                                                                                                                                                                                                                                                                                  | tatements about commonalities of XM                                                                                                                                        | L and RDF is <b>not</b> correct?                                       |
| $\Box$ b) Both XML and RD $\Box$ c) Both XML and RD                                                                                                                                                                                                                                                          | F documents can be interpreted as graff have a schema language. F are suitable to encode relational dat F support classification and subclass r                            | a.                                                                     |
| 2. For which purpose is reit                                                                                                                                                                                                                                                                                 | fication helpful?                                                                                                                                                          |                                                                        |
| $\Box$ b) It makes it possible $\Box$ c) It makes it possible                                                                                                                                                                                                                                                | to assign a type to a statement.  to assign a type to the subject of a st to represent complex data types.  to make statements about anonymous                             |                                                                        |
| 3. Which is the correct exp                                                                                                                                                                                                                                                                                  | anded form of the following RDF state                                                                                                                                      | ement:                                                                 |
| <maritalstatus rdf<="" td=""><th>:ID="Married"/&gt;</th><td></td></maritalstatus>                                                                                                                                                                                                                            | :ID="Married"/>                                                                                                                                                            |                                                                        |
| $\boxtimes b$ ) <rdf:statement <math="" i="">\square c) <rdf:statement i<="" td=""><th>rdf:MaritalStatus&gt;Marriedd="Married"&gt;<rdf:type>MaritalSta<br/>d="Married"&gt;<rdfs:class>MaritalS<br/>rdf:subject&gt;Married<td>tus</td></rdfs:class></rdf:type></th></rdf:statement><br/>tatus</rdf:statement> | rdf:MaritalStatus>Marriedd="Married"> <rdf:type>MaritalSta<br/>d="Married"&gt;<rdfs:class>MaritalS<br/>rdf:subject&gt;Married<td>tus</td></rdfs:class></rdf:type>          | tus                                                                    |
| $\boxtimes a) \ \forall x \ (\text{herbivore} \ (x) = \Box b) \ <\text{owl:Class rdf:I}$                                                                                                                                                                                                                     | $\Rightarrow$ animal $(x)$ ) D="herbivore"> <rdfs:subclassof <math="" response="">\forall y \; (\text{eats}(x,y) \; \Longrightarrow \; \text{animal}(y))</rdfs:subclassof> | nship expressed in first order logic langua<br>df:resource="#animal"/> |
| 5. Which of the following is                                                                                                                                                                                                                                                                                 | s <b>not</b> true about a Data Graph?                                                                                                                                      |                                                                        |
| $\boxtimes b$ ) The maximal numb                                                                                                                                                                                                                                                                             | er of edges is larger than $ V  - 1$ where per of possible edges is $( V ^2 -  V )/2$ vereachable from at least one root.                                                  |                                                                        |

 $\square$  a) The same data node can belong to multiple classes in the schema graph.

6. What is the cause that the classification of nodes in a data graph can be ambiguous?

- $\boxtimes b$ ) There exist several different simulation relationships that can result in different classifications of nodes.
- $\Box$  c) It is not clear which graph is the data and the schema graph when the graphs are simulation equivalent.
- $\square$  d) There exist cases in which there is no uniquely defined maximal simulation.

7. Given the data graph and the schema graph shown below. Which of the following is true:



- $\boxtimes a$ ) S simulates D. **But** D doesn't simulate S.
- $\square$  b) D doesn't simulate S. **And** S doesn't simulate D.
- $\square$  c) D simulates S. **But** S doesn't simulate D.
- $\square$  d) S and D simulate each other.
- 8. Consider the new data graph and schema graph below. You know that S simulates D (i.e. D<S). To which class(es) would node d1 belong in the maximal simulation relationship.



- $\square a$ ) Class S1 only
- $\Box$  b) Class S2 only
- $\square$  c) Classes S1 and S3
- $\boxtimes d$ ) Classes S1 and S2