Asmt 3: Distances and LSH

Turn in through Canvas by 2:45pm, then come to class:
Wednesday, February 24th
100 points

Student VID: -----

Overview

In this assignment you will explore LSH and Euclidean distances. You will use a data set for this assignment:

As usual, it is recommended that you use LaTeX for this assignment. If you do not, you may lose points if your assignment is difficult to read or hard to follow. Find a sample form in: Canvas -> Files -> Assignments -> Assignment_Latex_Template.zip.

1 Choosing r, b (35 points)

Consider computing an LSH using t=160 hash functions. We want to find all object pairs which have Jaccard similarity above $\tau=0.65$.

A: (15 points) Use the trick mentioned in class and the notes to estimate the best values of hash functions b within each of r bands to provide the S-curve

$$f(s) = 1 - (1 - s^b)^r$$

with good separation at τ . Report these values b, r.

B: (20 points) Consider the 4 objects A, B, C, D, E, with the following pair-wise similarities:

	A	В	C	D	E
A	1	0.72	0.35	0.15	0.55
В	0.72	1	0.42	0.85	0.44
C	0.35	0.42	1	0.25	0.50
D	0.15	0.85	0.25	1	0.66
Е	1 0.72 0.35 0.15 0.55	0.44	0.50	0.66	1

Use your choice of r and b and $f(\cdot)$ designed to find pairs of objects with similarity greater than τ : what is the probability, for each pair of the four objects, of being estimated as similar (i.e., similarity greater than $\tau = 0.65$)? Report 10 numbers. (Show your work.)

2 Generating Random Directions (30 points)

A: (10 points) Describe how to generate a single random unit vector (chosen uniformly over from the space of all unit vectors \mathbb{S}^{d-1}) in d=12 dimensions. To generate randomness, use only the operation $u \leftarrow \mathsf{unif}(0,1)$, which generates a uniform random variable between 0 and 1 (then other linear algebraic and trigonometric, etc operations are allowed). (*This random uniform value can be called multiple times.*)

CS 6140/CS 5140 Data Mining; Spring 2021 Instructor: Qingyao Ai, U. of Utah

B: (20 points) Generate t = 200 unit vectors in \mathbb{R}^d for d = 120. Plot cdf of their pairwise dot products (yes, you need to calculate $\binom{t}{2}$ dot products).

3 Angular Hashed Approximation (35 points)

Consider the n=450 data points in \mathbb{R}^d for d=100 in data set R, given at the top. We will use the angular similarity, between two vectors $a, b \in \mathbb{R}^d$:

$$\mathbf{s}_{\mathrm{ang}}(a,b) = 1 - \frac{1}{\pi}\arccos(\langle \bar{a}, \bar{b} \rangle)$$

If a,b are not unit vectors (e.g., in \mathbb{S}^{d-1}), then we convert them to $\bar{a}=a/\|a\|_2$ and $\bar{b}=b/\|b\|_2$. The definition of $\mathbf{S}_{\rm ang}(a,b)$ assumes that the input are unit vectors, and it reports a value between 0 and 1, with as usual 1 meaning most similar.

A: (15 points) Compute all pairs of dot products (Yes, compute $\binom{n}{2}$ values), and plot a cdf of their angular similarities. Report the number with angular similarity more than $\tau = 0.8$.

B: (20 points) Now compute the angular similarities among $\binom{t}{2}$ pairs of the t random unit vectors from Q2.B. Again plot the cdf, and report the number with angular similarity above $\tau = 0.75$.

4 Bonus (3 points)

Implement the banding scheme with your choice of r, b, using your t = 160 random vectors, to estimate the pairs with similarity above $\tau = 0.75$ in the data set R. Report the fraction found above $\tau = 0.75$.

CS 6140/CS 5140 Data Mining; Spring 2021