Soluciones del seminario 2 - Grafos

Ejercicio2

- Aplicar **Dijkstra** considerando el Nodo C como nodo origen
- Representar todos los pasos y estado de los vectores D y P

Situación inicial

	Α	В	С	D	Ε	F	G	Н
D	5	8	8	8	8	8	5	∞
Р	((

Iteración1

Seleccionar nodo de mínimo coste de {A, B, D, E, F, G, H} → A

$$S = \{C, A\}$$
 Pivote = A
Candidatos = $\{B, D, E, F, G, H\}$

D(C, A) + Peso(A, B) < D(C, B)	\rightarrow	5 + ∞ < ∞	\rightarrow	NO (No mejora)
D(C, A) + Peso(A, D) < D(C, D)	\rightarrow	5 + 4 < ∞	\rightarrow	SI (Cambia)
D(C, A) + Peso(A, E) < D(C, E)	\rightarrow	5 + ∞ < ∞	\rightarrow	NO (No mejora)
D(C, A) + Peso(A, F) < D(C, F)	\rightarrow	5 + ∞ < ∞	\rightarrow	NO (No mejora)
D(C, A) + Peso(A, G) < D(C, G)	\rightarrow	5 + ∞ < 5	\rightarrow	NO (No mejora)
D(C, A) + Peso(A, H) < D(C, H)	\rightarrow	5 + ∞ < ∞	\rightarrow	NO (No mejora)

	Α	В	С	D	Ε	F	G	Н
D	5	8	8	9	8	8	5	∞
Р	С			Α			С	

Iteración2

Seleccionar nodo de mínimo coste de {B, D, E, F, G, H} → G

$$S = \{C, A, G\}$$
 Pivote = G
Candidatos = $\{B, D, E, F, H\}$

Iteración3

Seleccionar nodo de mínimo coste de $\{B, D, E, F, H\} \rightarrow D$

$$D(C, D) + Peso(D, B) < D(C, B)$$
 \rightarrow $9 + \infty < \infty$ \rightarrow NO (No mejora)
 $D(C, D) + Peso(D, E) < D(C, E)$ \rightarrow $9 + \infty < \infty$ \rightarrow NO (No mejora)
 $D(C, D) + Peso(D, F) < D(C, F)$ \rightarrow $9 + \infty < 14$ \rightarrow NO (No mejora)
 $D(C, D) + Peso(D, H) < D(C, H)$ \rightarrow $9 + \infty < \infty$ \rightarrow NO (No mejora)

Iteración4

Seleccionar nodo de mínimo coste de {B, E, F, H} → F

$$D(C, F) + Peso(F, B) < D(C, B)$$
 \rightarrow $14 + 7 < \infty$ \rightarrow SI (Cambia)
 $D(C, F) + Peso(F, E) < D(C, E)$ \rightarrow $14 + \infty < \infty$ \rightarrow NO (No mejora)
 $D(C, F) + Peso(F, H) < D(C, H)$ \rightarrow $14 + 7 < \infty$ \rightarrow SI (Cambia)

Iteración5

Seleccionar nodo de mínimo coste de {B, E, H} → B

$$D(C, B) + Peso(B, E) < D(C, E)$$
 \rightarrow $21 + \infty < \infty$ \rightarrow NO (No mejora) $D(C, B) + Peso(B, H) < D(C, H)$ \rightarrow $21 + \infty < 21$ \rightarrow NO (No mejora)

Iteración6

Seleccionar nodo de mínimo coste de {E, H} → H

$$S = \{C, A, G, D, F, B, H\}$$
 Pivote = H
Candidatos = $\{E\}$

 $D(C, H) + Peso(H, E) < D(C, E) \rightarrow 21 + \infty < \infty \rightarrow NO (No mejora)$

Iteración7

Seleccionar nodo de mínimo coste de $\{E\} \rightarrow E$

$$S = \{C, A, G, D, F, B, H, E\}$$
 Pivote = E
Candidatos = $\{\}$

Terminó y obtengo los vectores D y P

		В						
D	5	21	8	9	8	14	5	21
Р	С	F		Α		G	C	F

Caminos:

 $A \rightarrow C$

$$B \rightarrow F \rightarrow G \rightarrow C$$

С

 $D \rightarrow A \rightarrow C$

E → NO hay camino

 $F \rightarrow G \rightarrow C$

 $G \rightarrow C$

 $H \rightarrow F \rightarrow G \rightarrow C$

Ejercicio3

- Aplicar **Dijkstra** considerando el <u>Nodo B</u> como nodo origen
- Representar todos los pasos y estado de los vectores D y P
- Indicar el coste para ir del <u>Nodo B</u> al <u>Nodo E</u> así como los nodos que conforman el camino

Situación inicial

	Α	В	С	D	Ε	F	G	Н
D	9	8	3	8	8	9	8	8
Р	В		В			В		

Iteración1

Seleccionar nodo de mínimo coste de {A, C, D, E, F, G, H} → C

$$S = \{B, C\}$$
 Pivote = C
Candidatos = $\{A, D, E, F, G, H\}$

$$D(B, C) + Peso(C, A) < D(B, A) \rightarrow 3 + \infty < 9 \rightarrow NO (No mejora)$$

 $D(B, C) + Peso(C, D) < D(B, D) \rightarrow 3 + \infty < \infty \rightarrow NO (No mejora)$

$$D(B, C) + Peso(C, E) < D(B, E)$$
 \rightarrow $3 + \infty < \infty$ \rightarrow NO (No mejora)

Iteración2

Seleccionar nodo de mínimo coste de {A, D, E, F, G, H} → G

 $S = \{B, C, G\}$ Pivote = G Candidatos = $\{A, D, E, F, H\}$

	Α	В	С	D	Ε	F	G	Н
D	9	8	3	8	10	9	6	14
Р	В		В		G	В	C	G

Iteración3

Seleccionar nodo de mínimo coste de $\{A, D, E, F, H\} \rightarrow A$

S = {B, C, G, A} Pivote = A Candidatos = {D, E, F, H}

Iteración4

Seleccionar nodo de mínimo coste de {D, E, F, H} → F

$$D(B, F) + Peso(F, D) < D(B, D)$$
 \rightarrow $9 + \infty < \infty$ \rightarrow NO (No mejora)
 $D(B, F) + Peso(F, E) < D(B, E)$ \rightarrow $9 + \infty < 10$ \rightarrow NO (No mejora)
 $D(B, F) + Peso(F, H) < D(B, H)$ \rightarrow $9 + \infty < 14$ \rightarrow NO (No mejora)

Iteración5

Seleccionar nodo de mínimo coste de {D, E, H} → E

$$D(B, E) + Peso(E, D) < D(B, D)$$
 \rightarrow $10 + \infty < \infty$ \rightarrow NO (No mejora) $D(B, E) + Peso(E, H) < D(B, H)$ \rightarrow $10 + 9 < 14$ \rightarrow NO (No mejora)

Iteración6

Seleccionar nodo de mínimo coste de {D, H} → H

$$S = \{B, C, G, A, F, E, H\}$$
 Pivote = H
Candidatos = $\{D\}$

$$D(B, H) + Peso(H, D) < D(H, D) \rightarrow 14 + \infty < \infty \rightarrow NO (No mejora)$$

Iteración7

Seleccionar nodo de mínimo coste de $\{D\} \rightarrow D$

$$S = \{B, C, G, A, F, E, H, D\}$$
 Pivote = D
Candidatos = $\{\}$

Terminó y obtengo los vectores D y P

	Α	В	С	D	Ε	F	G	Н
D	9	8	3	8	10	9	6	14
Р	В		В		G	В	С	G

El coste de para ir del nodo B al nodo E es de 10

El camino a recorrer es B (3) C (3) G (4) E

Ejercicio2

- Obtener el recorrido en profundidad desde el <u>Nodo A</u> mostrando todos los pasos intermedios
- Obtener el recorrido en profundidad desde el <u>Nodo E</u> mostrando todos los pasos intermedios

Nodo A

Recorrdido	Candidatos
{A}	{B, E, H, O}
{A, B}	{E, H, O}
{A, B, E}	{H, O}
{A, B, E, H}	{L, O}
{A, B, E, H, L }	{I, M, O}
{A, B, E, H, L, I}	{M, O}
{A, B, E, H, L, I, M}	{O}
{A, B, E, H, L, I, M, O}	{}

Nodo E

Recorrdido	Candidatos
{E}	{A, B}
{E, A}	{B, H, O}
{E, A, B}	{H, O}
{E, A, B, H}	{L, O}
{E, A, B, H, L}	{I, M, O}
{E, A, B, H, L, I}	{M, O}
{E, A, B, H, L, I, M}	{O}
{E, A, B, H, L, I, M, O}	{}