Universität Hannover

Hannover, 12. Januar 2005

Institut für Mathematische Stochastik

Prof. Dr. R. Grübel Dr. C. Franz, M. Kötter, Dr. M. Reich

Probeklausur zur Vorlesung

Elementare Wahrscheinlichkeitstheorie und Statistik A WS 2004/05

Aufgabe 1. Es sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $A, B, C \in \mathcal{A}$.

(a) Es sei P(B) > 0. Man zeige

$$P(A|B) \le \frac{P(A)}{P(A \cup B)}.$$

(b) Es sei A das Ereignis, dass ein bestimmter Fluss verschmutzt ist, B das Ereignis, dass ein Test des Flusswassers eine Verschmutzung entdeckt, und C das Ereignis, dass das Fischen im Fluss erlaubt ist. Es sei

$$P(A) = 0.3,$$
 $P(C|A \cap B) = 0.20,$ $P(C|A^c \cap B) = 0.15,$ $P(B|A) = 0.75,$ $P(C|A \cap B^c) = 0.80,$ $P(C|A^c \cap B^c) = 0.90,$ $P(B|A^c) = 0.20.$

- (i) Bestimmen Sie $P(A \cap B \cap C)$.
- (ii) Bestimmen Sie $P(B^c \cap C)$.
- (iii) Bestimmen Sie die Wahrscheinlichkeit für das Ereignis, dass der Fluss verschmutzt ist, wenn bekannt ist, dass Fischen erlaubt ist und ein Test keine Verschmutzung angezeigt hat.

Lösung.

(a) Die Aussage ist äquivalent zu

$$P(A \cap B) \ P(A \cup B) \le P(A) \ P(B).$$

Es gilt

$$P(A \cap B) \ P(A \cup B) = (P(B) - P(A^{c} \cap B)) (P(A) + P(A^{c} \cap B))$$

$$= P(A)P(B) + P(A^{c} \cap B) (P(B) - P(A) - P(A^{c} \cap B))$$

$$= P(A)P(B) + P(A^{c} \cap B) \underbrace{(P(A \cap B) - P(A))}_{\leq 0}$$

$$< P(A)P(B).$$

- (b) (Bemerkung: Die Wahrscheinlichkeit $P(C|A^c \cap B)$ ist für die Berechnungen nicht erforderlich)
 - (i) Es ist

$$P(A \cap B \cap C) = P(C|A \cap B)P(B|A)P(A) = 0.2 \cdot 0.75 \ 0.3 = 0.045.$$

(ii) Mit

$$P(B^c \cap C) = P(A \cap B^c \cap C) + P(A^c \cap B^c \cap C)$$

= $P(C|A \cap B^c)P(A \cap B^c) + P(C|A^c \cap B^c)P(A^c \cap B^c)$

und

$$P(A \cap B^c) = P(B^c|A)P(A) = (1 - P(B|A))P(A) = (1 - 0.75) \cdot 0.3 = 0.075$$

$$P(A^c \cap B^c) = P(B^c|A^c)P(A^c) = (1 - P(B|A^c))P(A^c) = (1 - 0.20) \cdot 0.7 = 0.56$$
folgt

$$P(B^c \cap C) = 0.80 \cdot 0.075 + 0.90 \cdot 0.56 = 0.564.$$

(iii) Gesucht ist

$$P(A|C \cap B^{c}) = \frac{P(A \cap B^{c} \cap C)}{P(B^{c} \cap C)}$$

$$= \frac{P(C|A \cap B^{c})P(A \cap B^{c})}{P(B^{c} \cap C)}$$

$$= \frac{0.80 \cdot 0.075}{0.564} = 0.106383.$$

Aufgabe 2. Eine Firma beschäftigt 45 Mitarbeiter: In der Frühschicht arbeiten 20 Mitarbeiter, in der Spätschicht arbeiten 15 Mitarbeiter und in der Nachtschicht arbeiten 10 Mitarbeiter. 6 Mitarbeiter werden zufällig aus der Belegschaft ausgewählt und in den Betriebsrat berufen.

- (a) Wie viele mögliche Zusammensetzungen gibt es, wenn alle 6 Betriebsratsmitglieder aus der Frühschicht kommen? Wie viele Zusammensetzungen gibt es, wenn alle 6 aus der Spätschicht kommen?
- (b) Wie groß ist die Wahrscheinlichkeit, dass alle Mitglieder des Betriebsrates aus derselben Schicht stammen?
- (c) Wie groß ist die Wahrscheinlichkeit, dass mindestens zwei Schichten durch Mitarbeiter im Betriebsrat vertreten sind?
- (d) Wie groß ist die Wahrscheinlichkeit, dass mindestens eine Schicht nicht durch Mitarbeiter im Betriebsrat vertreten ist?

Lösung.

- (a) Es gibt $\binom{20}{6}$ bzw. $\binom{15}{6}$ Betriebsratszusammensetzungen, bei denen ausschließlich Mitarbeiter der Früh- bzw. Spätschicht im Betriebsrat sind.
- (b) $\left[\binom{20}{6} + \binom{15}{6} + \binom{10}{6}\right] \binom{45}{6}^{-1} = 0.005399$
- (c) Gegenereignis von Aufgabenteil (b), Ergebnis 1 0.005399 = 0.994601.
- (d) Sei A_i das Ereignis, dass Schicht i nicht im Betriebsrat vertreten ist. Gesucht ist

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$$

$$-P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3)$$

$$= \frac{\binom{25}{6} + \binom{30}{6} + \binom{35}{6} - \binom{10}{6} - \binom{15}{6} - \binom{20}{6} + 0}{\binom{45}{6}}$$

$$= 0.2885258$$

Aufgabe 3. Eine faire Münze wird so oft geworfen, bis sowohl Kopf als auch Zahl beide jeweils mindestens 3 mal erschienen sind. Es sei X die Anzahl der dafür notwendigen Münzwürfe.

- (a) Bestimmen Sie die Wahrscheinlichkeitsmassenfunktion von X.
- (b) Bestimmen Sie den Erwartungswert von X.

Hinweis. Der Erwartungswert einer negativen Binomialverteilung auf $\{r, r+1, \ldots\}$ mit den Parametern r=3 und $p=\frac{1}{2}$ ist r/p=6.

Lösung.

(a) Zerlegung in die Fälle "letzter Wurf war Kopf" und "letzter Wurf war Zahl":

$$P(X = k) = \binom{k-1}{2} \left(\frac{1}{2}\right)^k + \binom{k-1}{2} \left(\frac{1}{2}\right)^k = \binom{k-1}{2} \left(\frac{1}{2}\right)^{k-1}, \qquad k \ge 6.$$

(b) Der Erwartungswert von X ist

$$EX = \sum_{k=6}^{\infty} k \binom{k-1}{2} \left(\frac{1}{2}\right)^{k-1}$$

$$= 2 \left[\sum_{k=3}^{\infty} k \binom{k-1}{2} \left(\frac{1}{2}\right)^{k} \right]$$

$$-3 \binom{3-1}{2} \left(\frac{1}{2}\right)^{3} - 4 \binom{4-1}{2} \left(\frac{1}{2}\right)^{4} - 5 \binom{5-1}{2} \left(\frac{1}{2}\right)^{5} \right]$$

$$= \frac{63}{8}.$$

 $\bf Aufgabe~4.~\rm Es~sei~(X,Y)$ ein absolut stetiger Zufallsvektor mit der Wahrscheinlichkeitsdichte

$$f_{(X,Y)}(x,y) = c \exp(-\lambda(|x|+|y|)), \quad x,y \in \mathbb{R}.$$

- (a) Bestimmen Sie die Konstante c > 0.
- (b) Bestimmen Sie die Randdichten von X und Y.
- (c) Zeigen Sie, dass X und Y unabhängig sind und bestimmen Sie Cov(X,Y) sowie die Wahrscheinlichkeit P(X>Y).

Lösung.

- (a) $c = \frac{\lambda^2}{4}$.
- (b) $f_X(x) = f_Y(x) = \frac{\lambda}{2} \exp(-\lambda |x|), x \in \mathbb{R}.$
- (c) $f_{(X,Y)}(x,y) = f_X(x)f_X(y)$, also unabhängig, daher Cov(X,Y) = 0 und wegen Existenz einer Dichte bzgl. des 2-dim. Lebesgue-Borelschen Maßes, Unabhängigkeit und identischer Verteilung $P(X > Y) = \frac{1}{2}$.