

Satellite Navigation and Coordination with Limited Information Sharing

Sydney Dolan Siddharth Nayak Hamsa Balakrishnan Massachusetts Institute of Technology

Overview

- We consider the problem of proximity operation satellite navigation, where satellites exist in an uncertain local environment observations are limited to the local neighborhood of each agent.
- We show that (1) through transfer learning, training can be accelerated and in fact out-perform models trained solely on the satellite environment, and (2) in testing, it scales well to environments with arbitrary numbers of agents and obstacles.

Background and Motivation

- There are more objects in orbit than ever before, motivating the need for autonomous collision avoidance mechanisms.
- Transfer learning has achieved extensive success by leveraging prior knowledge of past learned policies of relevant tasks.
- We consider two different environments, whose scale differs vastly (m/s vs km/s) but whose numerical values are quite similar

Ground Environment Space Environment

$$\ddot{x} = -\frac{\gamma}{m}\dot{x} + \frac{f_x}{m}$$

$$\ddot{x} = 3\omega_n^2 x + 2\omega_n \dot{y}$$

$$\ddot{y} = -\frac{\gamma}{m}\dot{y} + \frac{f_y}{m}$$

$$\ddot{y} = -2\omega_n \dot{x}$$

Special Case: Goal Sharing Scenarios

InforMARL Model Architecture

- **Environment**: The agents are depicted by green circles, the goals by red rectangles, and the unknown obstacles by gray circles. $x_{agg}^{(i)}$ represents the aggregated information from the neighborhood, which is the output of a GNN. A graph is created by connecting entities within the sensing-radius of the agents. The inter-agent edges are bidirectional, while the edges between agents and non-agent entities are unidirectional.
- 2. Information Aggregation: Each agent's observation is concatenated with $x_{\text{agg}}^{(i)}$.
- 3. Graph Information Aggregation: The $x_{
 m agg}^{(i)}$ from all the agents is averaged to get $X_{
 m agg}$.
- 4. Actor-Critic: The concatenated vector $[o^{(i)}, x_{\text{agg}}^{(i)}]$ is fed into the actor network to get the action, and X_{agg} is fed into the critic network to get the state-action values.

Results

Key Takeaway: Transfer learning from the ground environment to the space environment accelerates training and improves performance

Figure 2: Percentage improvement achieved through goal-sharing for (1) the success rates, S (in blue; left-axis), and (2) the fraction of episode (or time) taken on average by agents to reach their goal, T (in red; right-axis). Moving averages over 0.2 km increases in $\rho_{\rm max}$ are shown.

Test		m=3	m=5	m=10
n=3	Reward/m	61.57	60.21	57.78
	T	0.44	0.44	0.43
	(# col)/m	0.36	0.77	1.41
	S%	98	94	96
n=5	Reward/m	60.52	60.52	57.07
	T	0.44	0.44	0.44
	(# col)/m	0.78	1.28	1.41
	<i>S</i> %	98	98	91

Table 1: Performance metrics obtained by training InforMARL on a space environment with n satellites and testing it on one with m satellites: (a) Total reward obtained in an episode per agent, Reward/m. (b) Fraction of episode taken on average by agents to reach their goal, T (lower is better). (c) Average number of collisions per agent in an episode, #col/m (lower is better). (d) Success rate, S%: percentage of episodes in which all agents are able to get to their goals (higher is better)

Discussion and Future Work

Figure 2 demonstrates the performance improvement (relative to the performance without goal sharing) that is achieved through goal sharing, as the maximum goal reset distance increases. Positive values in Figure 2 indicate that the success rates *increase* with goal-sharing and the times taken by agents to reach their goals *decrease*, illustrating the benefits of goal-sharing for all values of $\rho_{\rm max}$.

Future work will include:

- Developing a more realistic space traffic simulation environment
- Accounting for communication delays and losses
- Adding mechanisms to provide safety guarantees