

Exercise 2A

$$\frac{7}{10} = \frac{7 \times 6}{10 \times 6} = \frac{42}{60}$$

$$\frac{11}{15} = \frac{11 \times 4}{15 \times 4} = \frac{44}{60}$$

$$\frac{17}{20} = \frac{17 \times 3}{20 \times 3} = \frac{51}{60}$$

Clearly,
$$\frac{42}{60} < \frac{44}{60} < \frac{48}{60} < \frac{51}{60}$$

Hence,
$$\frac{7}{10} < \frac{11}{15} < \frac{4}{5} < \frac{17}{20}$$

: The given fractions in ascending order are $\frac{7}{2}$. $\frac{11}{2}$. $\frac{4}{2}$ and $\frac{17}{2}$

Solution 03

Answer:

We have the following:

(i) The given fractions are $\frac{3}{4}$, $\frac{7}{8}$, $\frac{7}{12}$ and $\frac{17}{24}$.

LCM of 4,8,12 and 24 = 24

Now, let us change each of the given fractions into an equivalent fraction with 24 as its denominator. $\frac{3}{4} = \frac{3\times 6}{4\times 6} = \frac{18}{24}$

$$\frac{7}{8} = \frac{7 \times 3}{8 \times 3} = \frac{21}{24}$$

$$\frac{7}{12} = \frac{7 \times 2}{12 \times 2} = \frac{14}{24}$$

$$\frac{17}{24} = \frac{17 \times 1}{24 \times 1} = \frac{17}{24}$$

Clearly, $\frac{21}{24} > \frac{18}{24} > \frac{17}{24} > \frac{14}{24}$

Hence,
$$\frac{7}{8} > \frac{3}{4} > \frac{17}{24} > \frac{7}{12}$$

- \therefore The given fractions in descending order are $\frac{7}{8}\,,\,\,\frac{3}{4}\,,\,\,\frac{17}{24}\,$ and $\,\,\frac{7}{12}\,.$
- (ii) The given fractions are $\frac{2}{3}$, $\frac{3}{5}$, $\frac{7}{10}$ and $\frac{8}{15}$.

Now, let us change each of the given fractions into an equivalent fraction with 30 as its denominator.

******* END *******