Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы вычислительной техники

К ЗАЩИТЕ ДОПУСТИТЬ
_____И. В. Лукьянова

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему

ПРОЕКТИРОВАНИЕ И ЛОГИЧЕСКИЙ СИНТЕЗ СУММАТОРА-УМНОЖИТЕЛЯ ДВОИЧНО-ЧЕТВЕРИЧНЫХ ЧИСЕЛ

БГУИР КР 1-40 02 01 409 ПЗ

Студент А. А. Кашевский

Руководитель И. В. Лукьянова

Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы вычислительной техники

УΊ	BEPA	КДАЮ
Зан	ведую	щий кафедрой ЭВМ
		Б. В. Никульшин
‹ ‹	>>	2021 г.

ЗАДАНИЕ

по курсовой работе студента Кашевского Арсения Анатольевича

- **1** Тема работы: "Проектирование и логический синтез сумматора-умножителя двоично-четверичных чисел"
- 2 Срок сдачи студентом законченной работы: 1 июня 2021 г.
- 3 Исходные данные к работе:
 - **3.1** исходные сомножители: MH = 73,48; MT = 49,13.
 - **3.2** алгоритм умножения: В.
- **3.3** метод умножения: умножение закодированного двоичночетверичного множимого на два разряда двоичного множителя одновременно в дополнительном коде.
- **3.4** коды четверичных цифр множимого для перехода к двоичночетверичной системе кодирования; $0_4 00$, $1_4 11$, $2_4 01$, $3_4 10$.
- **3.5** тип синтезируемого умножителя: структурные схемы приведены для умножителя 1-ого типа (ОЧУ, ОЧС, аккумулятор).
- **3.6** логический базис для реализации ОЧС: И, НЕ; метод минимизации алгоритм Рота.
- **3.7** логический базис для реализации ОЧУ: ИЛИ-НЕ; метод минимизации карты Карно-Вейча.

- **4** Содержание пояснительной записки (перечень подлежащих разработке вопросов):
 - Введение. 1. Разработка алгоритма умножения. 2. Разработка структурной схемы сумматора-умножителя. 3. Разработка функциональных схем основных узлов сумматора-умножителя. 4. Синтез комбинационных схем устройств на основе мультиплексоров. 5. Оценка результатов разработки. Заключение. Список литературы.
- 5 Перечень графического материала:
 - **5.1** Сумматор-умножитель первого типа. Схема электрическая структурная.
 - **5.2** Одноразрядный четвертичный сумматор. Схема электрическая функциональная.
 - **5.3**Одноразрядный четверичный умножитель. Схема электрическая функциональная.
 - **5.4** Одноразрядный четвертичных сумматор. Реализация на мультиплексорах. Схема электрическая функциональная.
 - **5.5** Преобразователь множителя. Схема электрическая функциональная. КАЛЕНДАРНЫЙ ПЛАН

Наименование этапов курсовой работы	Объём этапа, %	Срок выполнения этапа	Примечания
Разработка алгоритма	10	22.02-13.03	
умножения			
Разработка структурной	10	14.03-27.03	С выполнением
схемы сумматора-умножителя			чертежа
Разработка функциональных	50	28.03-08.05	С выполнением
схем основных узлов			чертежей
сумматора-умножителя			
Синтез комбинационных схем	10	09.05-22.05	С выполнением
устройств на основе			чертежа
мультиплексоров			
Завершение оформления	20	23.05-05.06	
пояснительной записки			

Дата выдачи задания: 11 февраля 2021 г.	
Руководитель	И.В. Лукьянова
ВАДАНИЕ ПРИНЯЛ К ИСПОЛНЕНИЮ	

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1 РАЗРАБОТКА АЛГОРИТМА УМНОЖЕНИЯ	6
2 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРА-УМНОЖИТ	ЕЛЯ
	8
3 РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ УЗЛОВ	
СУММАТОРА-УМНОЖИТЕЛЯ	11
3.1 Логический синтез одноразрядного четверичного умножителя	11
3.2 Логический синтез одноразрядного четверичного сумматора	15
4 СИНТЕЗ СХЕМЫ ОЧС НА ОСНОВЕ МУЛЬТИПЛЕКСОРОВ	26
5 ЛОГИЧЕСКИЙ СИНТЕЗ ПРЕОБРАЗОВАТЕЛЯ МНОЖИТЕЛЯ (ПМ)	28
6 ОЦЕНКА РЕЗУЛЬТАТОВ РАЗРАБОТКИ ВРЕМЕННЫЕ ЗАТРАТЫ Н	[A
УМНОЖЕНИЕ	29
ЗАКЛЮЧЕНИЕ	30
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	31
ПРИЛОЖЕНИЕ А	32
ПРИЛОЖЕНИЕ Б	33
ПРИЛОЖЕНИЕ В	34
ПРИЛОЖЕНИЕ Г	35
ПРИЛОЖЕНИЕ Д	36
ПРИЛОЖЕНИЕ Е	37

ВВЕДЕНИЕ

Курсовое проектирование является обязательным элементом подготовки специалиста с высшим образованием и является одной из форм текущей аттестации студента по учебной дисциплине.

Целью данной курсовой работы является проектирование двоичночетверичного сумматора-умножителя (СУ). Сумматор является одним из центральных узлов арифметико-логического устройства (АЛУ) вычислительной машины, поэтому глубокое понимание принципов его работы критически важно для современного инженера. Для того чтобы устройство, необходимо спроектировать данное пройти несколько последовательных этапов разработки:

- разработать алгоритм умножения и оценить погрешности вычислений;
- разработать структурную схему сумматора-умножителя первого типа;
- разработать функциональные схемы основных узлов сумматораумножителя в заданных логических базисах;
- разработать схему одноразрядного четвертичного сумматора на основе мультиплексора;
 - разработать преобразователь множителя;
 - рассчитать время умножения;
 - оформить документацию о проделанной работе.

В ходе выполнения курсовой работы автором были пройдены все эти этапы. В настоящей пояснительной записке изложено краткое описание процесса проектирования и приведена разработанная автором графическая документация по структурной схеме и функциональным схемам основных её узлов.

1 РАЗРАБОТКА АЛГОРИТМА УМНОЖЕНИЯ

Множимое

73 <u> 4</u>	0.48	$M_{H_4} = 1021,132$
<u>4</u> 18 <u>4</u>	4	в соответствии с заданной
33 <u>16</u> <u>4</u> <u>4</u>	1,92	кодировкой множимого
<u>32</u> 2 0 1	4	$M_{H_{2/4}} = 11000111,111001$
1	3,68	
	4	
	2,72	

Множитель

Запишем сомножители в форме с плавающей запятой в прямом коде:

 $M_{\rm H}=0,\!110001111111001$ $P_{\rm MH}=0,\!1100+10_{10}$ закодировано по заданию $M_{\rm T}=0,\!110001001000$ $P_{\rm MT}=0,\!0011+03_{10}$ закодировано традиционно

Умножение двух чисел с плавающей запятой на два разряда множителя одновременно в прямых кодах. Это сводится к сложению порядков, формированию знака произведения, преобразованию разрядов множителя согласно алгоритму, и перемножению мантисс сомножителей.

Порядок произведения будет равен:

$$P_{MH} = 0.1100 + 10_4$$

 $P_{MT} = \underline{0.0011} + \underline{03_4}$
 $P_{MH:MT} = 0.1110 + 13_4$

Результат закодирован в соответствии с заданием на кодировку множимого.

Знак произведения определяется суммой по модулю "два" знаков сомножителей:

зн М
н
$$\bigoplus$$
зн М
т = 0 \bigoplus 0 = 0

Для умножения мантисс необходимо предварительно преобразовать множитель. При умножении чисел в дополнительных кодах диада $11(3_4)$ заменяется на триаду $1\overline{01}$, а диада $10(2_4)$ заменяется на триаду $1\overline{10}$

Преобразованный множитель имеет вид: $M T^{\Pi}_{4} = 1\overline{1}01, 1\overline{2}0$. Перемножение мантисс по алгоритму "В" приведено в таблице 1.1.

Таблица 1.1 - Перемножение мантисс

Че	тверична	я с/с		Двоично-четве	Комментарии	
0.	000000	000000	0.	010101010101	010101010101	$\sum_0 {}^{\mathbf{q}} \cdot 2^2$
<u>0.</u>	000001	<u>021132</u>	<u>0.</u>	<u>010101010101</u>	<u>111100111010</u>	$\Pi_1^{\mathrm{q}} = [\mathrm{MH}]$
0.	000000	102113	0.	010101010101	111100111010	$\sum_{1}^{1} {}^{4} \cdot 2^{2}$ $\Pi_{2}{}^{4} = [-M_{H}]$
0.	000000	313012	0.	010101010111	110011101001	$\sum_1 {}^{\mathbf{q}} \cdot 2^2$
<u>3.</u>	<u>333333</u>	<u>231220</u>	<u>1.</u>	<u>1111111111111</u>	<u>010110010010</u>	$\Pi_2^{\mathrm{q}} = [-M_{\mathrm{H}}]$
0.	000002	321232	0.	000100100001	111000101110	$\frac{\sum_{2}^{\mathbf{q}}}{\sum_{2}^{\mathbf{q}} \cdot 2^{2}}$
0.	000003	130122	0.	010001001000	100010111001	$\sum_{2} {}^{\mathbf{q}} \cdot 2^{2}$
<u>0.</u>	000000	<u>000000</u>	<u>1.</u>	00000000000000000	000000000000000000000000000000000000000	$\Pi_3^{\mathrm{q}} = [\mathrm{MH}]$
0.	000003	130122	0.	010101011010	101001111110	$\sum_{3}^{4} \frac{1}{2^{2}}$
0.	000031	301220	0.	010101101010	100111111001	$\sum_3 {}^{\mathbf{q}} \cdot 2^2$
<u>0.</u>	<u>000001</u>	<u>021132</u>	<u>0.</u>	<u>010101010101</u>	<u>010101010101</u>	$\Pi_4^{\mathrm{q}} = 0$
0.	000032	323012	0.	010101101010	100111111001	∑4 ^ч
0.	000323	230120	0.	010110101010	0111111100101	$\sum_{4}^{4} \frac{1}{4}$
<u>0.</u>	000000	<u>102113</u>	<u>0.</u>	<u>010101010101</u>	<u>111100111010</u>	$\Pi_5^{\mathrm{q}} = [\mathrm{MH}]$
0.	000330	311312	0.	010110101011	011100001010	∑5 ^ч
0.	003303	113120	0.	011010101101	110000101001	\sum_{5}^{4} \sum_{7}
<u>3.</u>	333333	<u>123101</u>	<u>0.</u>	<u>010101010100</u>	<u>111011110001</u>	$\Pi_6^{\overline{\mathbf{q}}} = [-\mathbf{M}_{\mathbf{H}}]$
0.	003301	010130	0.	011010101110	110100001101	∑6 ^ч
0.	033010	101300	0.	101010111011	010000110101	\sum_{6}^{4} \sum_{6} 2^{2}
0.	330101	013000	1.	111111111110	010001011101	
						II/ —[IVIH]
0.	330101	013000	0.	1010101111000	011100111101	$\sum_{7}^{\mathbf{q}} = \mathbf{M}_{\mathbf{H}} \cdot \mathbf{M}_{\mathbf{T}}$

После окончания умножения необходимо оценить погрешность вычислений. Для этого полученное произведение (Мн·Мт₄ = 0,330101013, $P_{\text{Mh·Mt}} = 6$) приводится к нулевому порядку, а затем переводится в десятичную систему счисления:

$$M_{H} \cdot M_{T_4} = 330101.013$$
 $P_{M_{H} \cdot M_T} = 0;$ $M_{H} \cdot M_{T_{10}} = 3857.109375$

Результат прямого перемножения операндов дает следующее значение:

 $M_{H_{10}} \cdot M_{T_{10}} = 73,48 \cdot 49.13 = 3609.152.$

Абсолютная погрешность:

 $\Delta = 3857.109375 - 3609.152375 = 247.957031.$

Относительная погрешность:

$$\delta = \frac{\Delta}{\text{MH} \cdot \text{MT}} = \frac{247,957031}{3609,152375} = 0,0687023 \quad (\delta = 6,87023\%)$$

Эта погрешность получена за счет приближенного перевода из десятичной системы счисления в четверичную обоих сомножителей, а также за счет округления полученного результата произведения.

2 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРА-УМНОЖИТЕЛЯ

Структурная схема сумматора-умножителя первого типа для алгоритма умножения «В» представлена на схеме ГУИР 400201.409 Э1.

Структурная схема сумматора-умножителя первого типа строится на базе заданных узлов ОЧУ, ОЧС, формирователя дополнительного кода, преобразователя множителя и аккумулятора. Управление режимами работы схемы осуществляется внешним сигналом *mul/sum*, который определяет вид текущей арифметической операции (умножение или суммирование).

Когда устройство работает как сумматор (на входе mul/sum - «1»), оба слагаемых последовательно (за два такта) заносятся в регистр множимого, а на управляющий вход формирователя дополнительного кода (ФДК) F_2 поступает «1».

На выходах ФДК формируется дополнительный код одного из слагаемых с учётом знака. Это слагаемое может быть записано в регистр результата, при этом управляющие сигналы, поступающие на входы h всех ОЧУ, дают возможность переписать на выходы ОЧУ разряды слагаемого без изменений (рисунок 2.1).

Рисунок 2.1 – Режимы работы ОЧУ

Если на вход h поступает «0», то ОЧУ перемножает разряды Мн и Мт. Одноразрядный четверичный сумматор предназначен для сложения двух двоично-четверичных цифр, подаваемых на его входы (рисунок 2.2).

Рисунок 2.2 – Одноразрядный четверичный сумматор

В ОЧС первое слагаемое складывается с нулём, т.к. на старших выходах ОЧУ будут формироваться только коды нуля. Затем первое слагаемое попадает в регистр-аккумулятор, который изначально обнулён.

На втором такте второе слагаемое из регистра множимого через цепочку ОЧУ и ОЧС попадает в аккумулятор, где складывает с первым слагаемым. Таким образом, аккумулятор (накапливающий сумматор) складывает операнды и хранит результат.

Когда устройство работает как умножитель (на входе Mul/sum - «0»), множимое и множитель помещаются в соответствующие регистры, а на управляющий вход Φ ДК F_2 поступает «0».

В регистре множителя в конце каждого такта умножения содержимое сдвигается на два двоичных разряда и в последнем такте умножения регистр обнуляется.

Триада множителя поступает на входы преобразователя множителя.

В регистре множителя после каждого такта умножения содержимое сдвигается на два двоичных разряда и в конце умножения регистр обнуляется.

Выход 1 ПМ переходит в единичное состояние, если текущая диада содержит отрицание ($\overline{01}$ или $\overline{10}$). В этом случае инициализируется управляющий вход F_1 формирователя дополнительного кода и на выходах ФДК формируется дополнительный код множимого с обратным знаком (умножение на «– 1»).

Принцип работы ФДК, в зависимости от управляющих сигналов, приведён в таблице 2.1.

Таблица 2.1 – Режимы работы формирователя дополнительного кода

Сигналы на	входах ФДК	Deputy for he between \$\text{\Pi} \text{\pi}
F_{I}	F_2	Результат на выходах ФДК
0	0	Дополнительный код множимого

Продолжение таблицы 2.1

0	1	Дополнительный код слагаемого
1	0	Меняется знак Мн
1	1	Меняется знак слагаемого

На выходах 2 и 3 ПМ формируются диады преобразованного множителя, которые поступают на входы ОЧУ вместе с диадами множимого.

ОЧУ предназначен лишь для умножения двух четверичных цифр. Если в процессе умножения возникает перенос в следующий разряд, необходимо предусмотреть возможность его прибавления.

ОЧС предназначен для суммирования результата умножения текущей диады Мн·Мт с переносом из предыдущей диады. Следовательно, чтобы полностью сформировать частичное произведение четверичных сомножителей, необходима комбинация цепочек ОЧУ и ОЧС.

Частичные суммы формируются в аккумуляторе. На первом этапе он обнулён и первая частичная сумма получается за счёт сложения первого частичного произведения (сформированного на выходах ОЧС) и нулевой частичной суммы (хранящейся в аккумуляторе).

В аккумуляторе происходит сложение i-й частичной суммы с (i+1)-м частичным произведением, результат сложения сохраняется. Содержимое аккумулятора сдвигается на один четверичный разряд влево в конце каждого такта умножения по алгоритму «В».

На четырёх выходах ОЧУ формируется результат умножения диад Мн·Мт. Максимальной цифрой в диаде преобразованного множителя является двойка, поэтому в старшем разряде произведения максимальной цифрой может оказаться только «1»:

Это означает, что на младшие входы ОЧС никогда не поступят диады цифр, соответствующие кодам «2» и «3», следовательно, в таблице истинности работы ОЧС будут содержаться 16 безразличных входных наборов.

Количество тактов умножения определяется разрядностью Мт.

З РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ УЗЛОВ СУММАТОРА-УМНОЖИТЕЛЯ

3.1 Логический синтез одноразрядного четверичного умножителя

Одноразрядный четверичный умножитель — это комбинационное устройство, имеющее 5 двоичных входов (2 разряда из регистра Мн, 2 разряда из регистра Мт и управляющий вход h) и 4 двоичных выхода. Принцип работы ОЧУ представлен с помощью таблицы истинности (таблица 3.1).

Разряды множителя закодированы: 0 - 00; 1 - 01; 2 - 10; 3 - 11.

Разряды множимого закодированы: 0 - 01; 1 - 00; 2 - 10; 3 - 11.

Управляющий вход h определяет тип операции:

- «0» умножение закодированных цифр, поступивших на информационные входы;
- «1» вывод на выходы без изменения значения разрядов, поступивших из регистра множимого.

В таблице 3.1 выделено восемь безразличных наборов, т.к. на входы ОЧУ из разрядов множителя не может поступить код «11».

Таблица 3.1 – Таблица истинности ОЧУ

Мн		Мт		Упр.		Старшие разряды		дшие ояды	Пример операции в четверичной с/с
x_1	<i>X</i> ₂	<i>y</i> ₁	<i>y</i> ₂	h	P_{I}	P_2	Рз	P ₄	в иствери тиби с/с
1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0*0=00
0	0	0	0	1	0	0	0	0	Выход – код «00»
0	0	0	1	0	0	0	0	0	0*1=00
0	0	0	1	1	0	0	0	0	Выход – код «00»
0	0	1	0	0	0	0	0	0	0*2=00
0	0	1	0	1	0	0	0	0	Выход – код «00»
0	0	1	1	0	X	X	X	X	0*3=00
0	0	1	1	1	X	X	X	X	Выход – код «03»
0	1	0	0	0	0	0	0	0	2*0=00
0	1	0	0	1	0	0	0	1	Выход – код «02»
0	1	0	1	0	0	0	0	1	2*1=02
0	1	0	1	1	0	0	0	1	Выход – код «02»
0	1	1	0	0	1	1	0	0	2*2=10
0	1	1	0	1	0	0	0	1	Выход – код «02»
0	1	1	1	0	X	X	X	X	2*3=12
0	1	1	1	1	X	X	X	X	Выход – код «02»
1	0	0	0	0	0	0	0	0	3*0=00

Продолжение таблицы 3.1

1	2	3	4	5	6	7	8	9	10
1	0	0	0	1	0	0	1	0	Выход – код «03»
1	0	0	1	0	0	0	1	0	3*1=03
1	0	0	1	1	0	0	1	0	Выход – код «03»
1	0	1	0	0	1	1	0	1	3*2=12
1	0	1	0	1	0	0	1	0	Выход – код «03»
1	0	1	1	0	X	X	X	X	3*3=21
1	0	1	1	1	X	X	X	X	Выход – код «03»
1	1	0	0	0	0	0	0	0	1*0=00
1	1	0	0	1	0	0	1	1	Выход – код «01»
1	1	0	1	0	0	0	1	1	1*1=01
1	1	0	1	1	0	0	1	1	Выход – код «01»
1	1	1	0	0	0	0	0	1	1*2=02
1	1	1	0	1	0	0	1	1	Выход – код «01»
1	1	1	1	0	X	X	X	X	1*3=03
1	1	1	1	1	X	X	X	X	Выход – код «01»

Минимизацию функций проведём с помощью карт Карно. Для функции P_1 заполненная карта приведена на рисунке 3.1.1. В рисунках 3.1.1 — 3.1.3 символом «х» отмечены наборы, на которых функция может принимать произвольное значение (безразличные наборы).

* 1.1.2 * 1.1.									
4743	000	001	011	010	110	111	101	100	-
00	0	0	0	0	x	х	0	0	
01	0	0	0	0	x	x	0	1	
11	0	0	0	0	x	х	0	0	
10	0	0	0	0	х	x	0	1	

Рисунок 3.1.1 — Минимизация функции P_I при помощи карты Карно

Следовательно:

$$P_1 = \bar{x}_1 x_2 y_1 h + x_1 \bar{x}_2 y_1 h$$

Запишем результат минимизации в логическом базисе ИЛИ-НЕ:

$$P_1 = \overline{x_1 + \bar{x}_2 + \bar{y}_1 + \bar{h}} + \overline{x}_1 + x_2 + \overline{y}_1 + \overline{h}$$

Функция P_2 идентична P_1

Для функции P_3 заполненная карта приведена на рисунке 3.1.2.

4742	² 000	001	011	010	110	111	101	100
00	0	0	0	0	x	x	0	0
01	0	0	- 0	0			0	0
01	0	U		0 1	Х			0
11	0	1	1		х	х	1	0
10	0	1	1	1	Х	x	<u> </u>	0

Рисунок 3.1.2 — Минимизация функции P_3 при помощи карт Карно Следовательно:

$$P_3 = x_1 h + x_1 y_2$$

Запишем результат минимизации в логическом базисе ИЛИ-НЕ:

$$P_3 = \overline{\bar{x}_1 + \bar{h}} + \overline{\bar{x}_1 + \bar{y}_2}$$

Для функции P_4 заполненная карта приведена на рисунке 3.1.3.

Рисунок 3.1.3 - Минимизация функции P_4 при помощи карт Карно

ナルシャンシャンシャンシャンシャンシャンシャンシャンシャンシャンシャンシャンシャンシ	<i>A</i>							
t7+	000	001	011	010	110	111	101	100
\$	0	0					0	
00			0	0	x	х		0
01	0	1	1	1	х	х	1	0
			1					
11	0	1	1	1	Х	(x	1)	1
10	0	0	0	0	х	х	0	1

Следовательно:

$$P_4 = x_2 h + x_2 y_2 + x_1 y_1 \overline{y_2} \overline{h}$$

Запишем результат минимизации в логическом базисе ИЛИ-НЕ:

$$P_4 = \overline{\overline{x}_2 + \overline{h}} + \overline{\overline{x}_2 + \overline{y}_2} + \overline{\overline{x}_1 + \overline{y}_1} + y_2 + h$$

Эффективность минимизаций можно оценить отношением числа входов схем, реализующих переключательную функцию до и после минимизации:

$$K_{P_1} = \frac{8}{5} = 1.8.$$

$$K_{P_3} = \frac{10.5 + 10 + 5}{18} = 3,61.$$

$$K_{P_4} = \frac{14.5 + 14 + 5}{23} = 3,87.$$

3.2 Логический синтез одноразрядного четверичного сумматора

Одноразрядный четверичный сумматор — это комбинационное устройство, имеющее 5 двоичных входов (2 разряда одного слагаемого, 2 разряда второго слагаемого и вход переноса) и 3 двоичных выхода.

Принцип работы ОЧС представлен с помощью таблицы истинности (таблица 3.2). Разряды обоих слагаемых закодированы: 0-01; 1-00; 2-10; 3-11. В таблице 3.2 выделено 16 безразличных наборов, т.к. со старших выходов ОЧУ не могут прийти коды «2» и «3».

Таблица 3.2 – Таблица истинности ОЧС

					п		C	Пример
$ a_1 $	a_2	b_1	b_2	p	П	S_{I}	S_2	операции в
			4	_		_	0	четверичной с/с
1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0+0+0=00
0	0	0	0	1	0	1	1	0+0+1=01
0	0	0	1	0	X	X	X	0+2+0=02
0	0	0	1	1	X	X	X	0+2+1=03
0	0	1	0	0	X	X	X	0+3+0=03
0	0	1	0	1	X	X	X	0+3+1=10
0	0	1	1	0	0	1	1	0+1+0=10
0	0	1	1	1	0	0	1	0+1+1=02
0	1	0	0	0	0	0	1	2+0+0=02
0	1	0	0	1	0	1	0	2+0+1=03
0	1	0	1	0	X	X	X	2+2+0=10
0	1	0	1	1	X	X	X	2+2+1=11
0	1	1	0	0	X	X	X	2+3+0=11
0	1	1	0	1	X	X	X	2+3+1=12
0	1	1	1	0	0	1	0	2+1+0=03
0	1	1	1	1	1	0	0	2+1+1=10
1	0	0	0	0	0	1	0	3+0+0=03
1	0	0	0	1	1	0	0	3+0+1=10
1	0	0	1	0	X	X	X	3+2+0=11
1	0	0	1	1	X	X	X	3+2+1=12
1	0	1	0	0	X	X	X	3+3+0=12
1	0	1	0	1	X	X	X	3+3+1=13
1	0	1	1	0	1	0	0	3+1+0=10
1	0	1	1	1	1	1	1	3+1+1=11
1	1	0	0	0	0	1	1	1+0+0=01
1	1	0	0	1	0	0	1	1+0+1=02
1	1	0	1	0	X	X	X	1+2+0=03
1	1	0	1	1	X	X	X	1+2+1=10
1	1	1	0	0	X	X	X	1+3+0=10
1	1	1	0	1	X	X	X	1+3+1=11
1	1	1	1	0	0	0	1	1+1+0=02
1	1	1	1	1	0	1	0	1+1+1=03

Минимизацию функций Π и S_1 проведём с помощью карт Вейча. Минимизацию функции S_2 проведем с помощью алгоритма Рота. Для функции

 Π заполненная карта приведена на рисунке 3.2.1. В рисунках 3.2.1 и 3.2.2 символом «х» отмечены наборы, на которых функция может принимать произвольное значение (безразличные наборы).

			a ₂	b_1			b_1	a	! ₂		
	a_1	0	0	X	X	0	0	X	X		
		0	0	x	X	0	1	X	X	b_2	
1		0	0	X	X	0	0	Х	X		
		0	1	X	X	1	1	X	X		1
				р	•					•	

Рисунок 3.2.1 – Минимизация функции Π при помощи карты Вейча

Следовательно:

$$\Pi = a_1 \bar{a}_2 b_1 b_2 + \bar{a}_1 b_1 \bar{b}_2 + \bar{a}_1 \bar{b}_2 \bar{p}$$

Запишем результат минимизации в логическом базисе И, НЕ:

$$\Pi = \overline{\overline{a_1}\overline{a}_2b_1b_2}\,\overline{\overline{a}_1b_1\overline{b}_2}\,\overline{\overline{a}_1\overline{b}_2\overline{p}}$$

Mинимизация функции S_1

Для функции S_1 заполненная карта приведена на рисунке 3.2.2.

			a ₂	b_1			b_1	a			
	a_1	0	1	X	X	1	0	X	X		
		0	1	х	Х	1	0	X	X	b_2	
1		1	0	X	X	0	1	Х	X		
		1	0	X	X	0	1	X	X	ı	
			1)		\			1		

Рисунок 3.2.2 — Минимизация функции Π при помощи карты Вейча

Следовательно:

$$S_1 = \bar{a}_1 \bar{b}_1 p + a_1 b_1 p + a_1 \bar{a}_2 \bar{b}_1 + \bar{a}_1 b_1 \bar{p}$$

Запишем результат минимизации в логическом базисе И, НЕ:

$$S_1 = \overline{\overline{a_1}\overline{b_1}p} \, \overline{a_1b_1p} \, \overline{a_1}\overline{a_2}\overline{b_1} \, \overline{\overline{a_1}b_1}\overline{p}$$

Минимизация функции S₂ с помощью алгоритма Рота:

Определим множество единичных кубов

$$L = \begin{cases} 00001, 00110, 00111, 01000, \\ 10111, 11000, 11001, 11110 \end{cases}$$

$$N = \begin{cases} 00010,00011,00100,00101\\ 01010,01011,01100,01101\\ 10010,10011,10100,10101\\ 11010,11011,11100,11101 \end{cases}$$

Минимизацию безразличных кубов проведём с помощью карты Карно. Для безразличных кубов заполненная карта приведена на рисунке 3.2.3, где символом «х» отмечены наборы, на которых функция не определена.

619								
Q 30	000	001	011	010	110	111	101	100
8,163p			X	X			X	x
01			X	X			X	X
11			х	X			X	X
10			x	x			Х	х

Рисунок 3.2.3 — Минимизация безразличных кубов с помощью карты Карно

Множество безразличных наборов после минимизации:

$$N = \{xx01x, xx10x\}.$$

Сформируем множество $C_0 = L \cup N$:

$$C_0 = \begin{cases} 00001, 00110, 00111, 01000, \\ 10111, 11000, 11001, 111110, \\ xx01x, xx10x \end{cases}.$$

Первым этапом алгоритма Рота является нахождение множества простых импликант.

Для реализации этого этапа воспользуемся операцией умножения (*) над множествами C_0 , C_I и т. д., пока в результате операции будут образовываться новые кубы большей размерности.

Первый шаг умножения (C_0*C_0) приведён в таблице 3.3

Таблица 3.3 – Г	Тоиск простых импликант	$(C_0 * C_0)$
-----------------	-------------------------	---------------

_						(00 00				
C_0*C_0	00001	00110	00111	01000	10111	11000	11001	11110	xx01x	xx10x
00001	ı									
00110	00yyy	-								
00111	00yy1	0011y	-							
01000	0y00y	0yyy0	Оуууу	-						
10111	y0yy1	y011y	y0111	ууууу	ı					
11000	yy00y	уууу0	ууууу	y1000	1уууу	-				
11001	yy001	ууууу	yyyy1	y100y	1yyy1	1100y	-			
11110	ууууу	yy110	yy11y	y1yy0	1y11y	11yy0	11yyy	-		
xx01x	000y1	00y10	00y11	010y0	10y11	110y0	110y1	11y10	-	
xx10x	00y01	001y0	001y1	01y00	101y1	11y00	11y01	111y0	ххуух	-

В результате этой операции образуется множество кубов:

$$A_{1} = \begin{cases} 000x1,00x01,0011x,00x10\\ 001x0,x0111,00x11,001x1\\ x1000,010x0,01x00,10x11\\ 101x1,1100x,110x0,11x00\\ 110x1,11x01,11x10,111x0 \end{cases}$$

Множество Z_0 кубов, не участвовавших в образовании новых кубов, пустое.

Также формируется множество $B_1 = C_0 - Z_0$.

Для следующего шага получения множества Z формируется множество $C_1 = A_1 \cup B_1$.

$$C_1 = \begin{cases} 000x1,00x01,0011x,00x10\\ 001x0,x0111,00x11,001x1\\ x1000,010x0,01x00,10x11\\ 101x1,1100x,110x0,11x00\\ 110x1,11x01,11x10,111x0\\ xx01x,xx10x \end{cases}.$$

В таблице 3.4 приведён следующий шаг поиска простых импликант с помощью операции $C_I * C_I$.

В результате этой операции образуется множество кубов:

$$A_2 = \begin{cases} 00x0x, x0x00, \\ 00xx1, 0xx01, \\ x0x11, 10xx0, \\ 10x1x, 1xx10 \end{cases}.$$

Таблица 3.4 – Поиск простых импликант (C_1*C_1)

Таб																				
C1*	000	00x	001	00x	001	x01	00x	001	x10	010	01x	10x	101	110	110	11x	110	11x	11x	111
C1	x 1	01	1x	10	x0	11	11	x1	00	x0	00	11	x 1	0x	x0	00	x1	01	10	x0
000																				
x 1	-																			
00x	000																			
01	01	-																		
001	00y	001																		
1x	11	v1	-																	
	000		001																	
10		уу																		
	00y																			
	xy				-															
	00y				001															
	11					-														
	000																			
	11						-													
	00y						001													
x1		01						-												
	0y0							0												
00	Oyu	Oyu	luyy Lu∩	uyu M	οyy	хуу	уу	0yy 0y	-											
									010											
x0	0y0	luyu Luyu	10 10	10	vO	0yy	1y	Uyy	00	-										
	0y0									010					-					
00							уу				-									
	y00																			
10X	11	yux	111	137	137	111	1 1 1	11	130	137	yyx	-								
												101								
x1	y0y												-							
	yy0	0	11	O	A y	1	11	A1	110	10	0y	1	1							
0x		990 01								910 00	910 00	yl	01	-						
\vdash							y1							110						
110 x0	yyu xy			10			уу0 1у			у10 х0	910 00	1y0 1y		110 00	-					
	Ļ	Ļ				-	_	_							110					
11x 00	ууо Оу				00		уух		00		91X 00			110 00	110 00	-				
\vdash	<u> </u>						уу	_		_		уу 1О	Ť			110				
110 x1	yyu x1	990 01	ууу 11				уу0 11	yyy x1		y10 xy	910 0y	1yu 11	x1	110 01	xy	0y	-			
										_	_				_	_	110			
11x 01	01								0y		yıx 0y		1y1 01	01	0y	0y	01	-		
			y1		<u> </u>	y1	y1					y1			بنا	بئا	$oldsymbol{oldsymbol{}}$	1 1	$\vdash \vdash \vdash$	
11x 10	yy0																		-	
	1y	••					1y			10	y0	1y	1y	y0	10	y0	1y	уу 1.1.1	111	
111 x0			10						11y 00		911 00	1yi 1y	1y1	11y 00	11y x0	00		0y	111	-
	xy	<u> </u>					1y	ху 00					xy				بئے	ب		1 1
xx0	11				00y 10			11				100	10y 11						110	
1x		y1	1x				11		_	10	y0			yx	10	y0	-	y1	10	10
xx1													101							111
0x	01	01	уx	y0	00	y1	y1	01	00	00	00	y1	01	0x	00	00	01	01	y0	00

Множество Z_{l} кубов, не участвовавших в образовании новых кубов, пустое.

Также формируется множество $B_2 = C_1 - Z_1$.

Для следующего шага получения множества Z формируется множество $C_2 = A_2 \cup B_2$.

$$C_2 = \begin{cases} 00xx1, 00x1x, 001xx, x0x11 \\ x01x1, x10x0, x1x00, 110xx \\ 11x0x, 11xx0, xx01x, xx10x \end{cases}.$$

В таблице 3.5 приведён следующий шаг поиска простых импликант – операция C_2*C_2 .

Таблица 3.5 – Поиск простых импликант C_2*C_2

C_2*C_2	00xx1	00x1x	001xx	x0x11	x01x1	x10x0	x1x00	110xx	11x0x	11xx0
00xx1	-									
00x1x	00x11	-								
001xx	001x1	0011x	-							
x0x11	00x11	00x11	00111	ı						
x01x1	001x1	00111	001x1	x0111	-					
x10x0	0y0xy	0y010	0yyx 0	xy01y	хууху	-				
x1x00	0yx0y	0yxy 0	0y100	хухуу	xy10y	x1000	-			
	• •	•					11000			
11x0x	yyx01	yyxyx	yy10x	1yxy1	1y101	11000	11x00	1100x	-	
11xx0	yyxxy	yyx10	yy1x0	1yx1y	1y1xy	110x0	11x00	110x0	11x00	-
									_	11010
xx10x	00101	001yx	0010x	x01y1	x0101	x1y00	x1100	11y0x	1110x	11100

Новых кубов (третьей размерности) не образовалось.

Получено множество
$$Z_2 = \begin{cases} 00xx1, 00x1x, 001xx, x0x11 \\ x01x1, x10x0, x1x00, 110xx \\ 11x0x, 11xx0, xx01x, xx10x \end{cases}$$

Поскольку $|C_3| \le 1$, поиск простых импликант заканчивается. Множество простых импликант:

$$Z = Z_0 \cup Z_1 \cup Z_2 = \begin{cases} 00xx1, 00x1x, 001xx, x0x11 \\ x01x1, x10x0, x1x00, 110xx \\ 11x0x, 11xx0, xx01x, xx10x \end{cases}.$$

Следующий этап — поиск L-экстремалей на множестве простых импликант (таблица 3.6). Для этого используется операция # (решётчатое вычитание).

Таблица 3.6 - Поиск L-экстремалей

					емале							
z#(Z-z)	00xx1	00x1x	001xx	x0x11	x01x1	x10x0	x1x00	110xx	11x0x	11xx0	xx01x	xx10x
00xx1	-	00x10	001x0	10x11	101x1	x10x0	x1x00	110xx	11x0x	11xx0	xx010	x110x xx100
00x1x	00x01	-	00100	10x11	101x1	x10x0	x1x00	110xx	11x0x	11xx0	1x01x x101x 1x010 x1010	lx 1 1 ()x
001xx	00001	00010	-	10x11	101x1	x10x0	x1x00	110xx	11x0x		1x01x	1x10x x110x 1x100
x0x11	00001	00010	00100	ı	10101	x10x0	x1x00	110xx	11x0x	11xx0	1 v 0 1 0	X I I UX 1 x 1 0 0
x01x1	00001	00010	00100	10011	1	x10x0	x1x00	110xx	11x0x	11xx0	1101x 1x010 x101x 1x010 x1010	1x100 x110x 1x100
x10x0	00001	00010	00100	10011	10101	-	x1100	110x1	1110x 11x01	111x0	11011 10010 x1011 10010	1 v 100
x1x00	00001	00010	00100	10011	10101	x1010	1	110x1	11101 11x01	11110	11011 10010 x1011 10010	10100 x1101
110xx	00001	00010	00100	10011	10101	01010	x1100	-	11101 11101	11110	10010 01011 10010	11101 10100 x1101 10100
11x0x	00001	00010	00100	10011	10101	01010	01100	11011	-	11110	01011	10100 01101 10100
11xx0	00001	00010	00100	10011	10101	01010	01100	11011	11101 11101	-	10010 01011 10010	
xx01x	00001	Ø	00100	Ø	10101	Ø	01100	Ø	11101 11101	11110	-	10100 01101 10100
xx10x	00001	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	11110	10010 01011 10010	-

В таблице 3.6 из каждой простой импликанты поочерёдно вычитаются все остальные простые импликанты Z#(Z-z).

Получили кубы, "подозрительные" на L-экстремальность. Проверяем в таблице 3.7.

T (2	$\overline{}$	П				T		
таолина	.j.	. / -	— I I1	оове	пка	на і	/ ЭКСТ	ремальнос	тЪ
1 000011111400	٠.	•			PILL	1100 1		PULLEDITO	

z#(Z-z) n L	00001	00110	00111	01000	10111	11000	11001	11110
00001	00001	00yyy Ø	00yy1 Ø	0y00y Ø	y0yy1 Ø	yy00y Ø	yy001 Ø	ууууу Ø
11110	ууууу Ø	yy110 Ø	yy11y Ø	y1yy0 Ø	1y11y Ø	11yy0 Ø	11yyy Ø	11110
10010	y00yy	y0y10	y0y1y	yy0y0	10y1y	1y0y0	1y0yy	1yy10
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
01011	0y0y1	0yy1y	0yy11	010yy	yyy11	y10yy	y10y1	ylyly
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
10010	y00yy	y0y10	y0y1y	yy0y0	10y1y	1y0y0	1y0yy	1yy10
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
10100	y0y0y	y01y0	y01yy	yyy00	101yy	1yy00	1yy0y	1y1y0
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
01101	0yy01	0y1yy	0y1y1	01y0y	yy1y1	y1y0y	y1y01	yl1yy
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
10100	y0y0y	y01y0	y01yy	yyy00	101yy	1yy00	1yy0y	1y1y0
	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

По результатам таблицы 3.7, L-экстремалями стали кубы Е. Эти кубы обязательно должны войти в минимальное покрытие.

$$E = \{00xx1, 11xx0\}.$$

Далее необходимо проанализировать, какие из исходных единичных кубов не покрыты найденной L-экстремалью. Анализ осуществляется с помощью таблицы 3.8.

Таблица 3.8 – Поиск непокрытых наборов

L#E	00001	00110	00111	01000	10111	11000	11001	11110
00xx1	Ø	00110	Ø	01000	10111	11000	11001	11110
11xx0	Ø	00110	Ø	01000	10111	Ø	11001	Ø

Из таблицы 3.8 видно, что L-экстремалями не покрыты четыре единичных куба (00110, 01000, 10111, 11001). Чтобы покрыть их, воспользуемся множеством простых импликант, не являющихся L-экстремалями. (Таблица 3.9)

Таблица 3.9 – Покрытие оставшихся кубов

$\check{Z}\cap L$	00110	01000	10111	11001
00x1x	00110	Ø	Ø	Ø
001xx	00110	Ø	Ø	Ø
x0x11	Ø	Ø	10111	Ø
x01x1	Ø	Ø	10111	Ø
x10x0	Ø	01000	Ø	Ø
x1x00	Ø	01000	Ø	Ø
110xx	Ø	Ø	Ø	11001
11x0x	Ø	Ø	Ø	11001
xx01x	Ø	Ø	Ø	Ø
xx10x	Ø	Ø	Ø	Ø

Из таблицы 3.9 видно, что кубы x01x1,00x1x,110xx,x1x00 максимально пересекаются с кубами из множества L^{\parallel} и, следовательно, их покрывают (реализуют).

Эти четыре куба добавляются в минимальное покрытие.

$$S_2 = \bar{a}_2 b_1 p + \bar{a}_1 \bar{a}_2 b_2 + a_1 a_2 \bar{p} + a_1 a_2 \bar{b}_1 + a_2 \bar{b}_2 \bar{p} + \bar{a}_1 \bar{a}_2 p$$

Запишем результат минимизации в логическом базисе И-НЕ:

$$S_2 = \overline{\overline{a_2}b_1p} \, \overline{\overline{a_1}\overline{a_2}b_2} \, \overline{a_1a_2\overline{p}} \, \overline{a_1a_2\overline{b_1}} \, \overline{a_2\overline{b_2}\overline{p}} \, \overline{\overline{a_1}\overline{a_2}p}$$

Эффективность минимизаций можно оценить отношением числа входов схем, реализующих переключательную функцию до и после минимизации:

$$K_{\Pi} = \frac{4*5+4+4}{13} = 2,15.$$

$$K_{S_1} = \frac{8.5 + 8 + 5}{20} = 2,65.$$

$$K_{S_2} = \frac{8.5 + 8 + 5}{19} = 2,79.$$

4 СИНТЕЗ СХЕМЫ ОЧС НА ОСНОВЕ МУЛЬТИПЛЕКСОРОВ

Мультиплексор — это логическая схема, имеющая n информационных входов, m управляющих входов и один выход. При этом должно выполняться условие $n=2^m$.

Принцип работы мультиплексора состоит в следующем:

На выход мультиплексора может быть пропущен без изменений любой (один) логический сигнал, поступающий на один из информационных входов. Порядковый номер информационного входа, значение которого в данный момент должно быть передано на выход, определяется двоичным кодом, поданным на управляющие входы.

Функции ОЧС зависят от пяти переменных. Удобно взять мультиплексор с тремя управляющими входами, это позволит упростить одну нашу большую функцию от пяти аргументов до восьми функций от одной переменной. Функциональная схема ОЧС на базе мультиплексоров приведена на чертеже ГУИР.400201.425 Э2.3

Таблица 4.1 – таблица истинности ОЧС на базе мультиплексора

a_1	a_2	b ₂	b_1	p	П		S_I		S_2	
1	2	4	3	5	6		7		8	
0	0	0	0	0	0		0		0	
0	0	0	0	1	0	h	1		1	22
0	0	0	1	0	X	b_1	X	p	X	p
0	0	0	1	1	X		X		X	
0	0	1	1	0	0		1		1	
0	0	1	1	1	0	b_1	0	$ar{p}$	1	$\overline{b_1}$
0	0	1	0	0	X	D_1	X		X	ν_1
0	0	1	0	1	X		X		X	
0	1	0	0	0	0		0		1	
0	1	0	0	1	0	p	1	p	0	$ar{p}$
0	1	0	1	0	X	P	X		X	P
0	1	0	1	1	X		X		X	
0	1	1	1	0	0		1		0	
0	1	1	1	1	1	p	0	$ar{p}$	0	b_1
0	1	1	0	0	X	P	X	P	X	
0	1	1	0	1	X		X		X	
1	0	0	0	0	0		1		0	
1	0	0	0	1	1	p	0	$ar{p}$	0	b_1
1	0	0	1	0	X	P	X	P	X	~1
1	0	0	1	1	X		X		X	
1	0	1	1	0	1	_	0		0	
1	0	1	1	1	1	$\overline{b_1}$	1	p	1	p
1	0	1	0	0	X		X		X	

Продолжение таблицы 4.1

							1			<u>r</u>
	X		X		X	1	0	1	0	1
	1		1		0	0	0	0	1	1
<u></u>	1	2-	0	h	0	1	0	0	1	1
ν_1	X	$ar{p}$	X	b_1	X	0	1	0	1	1
	X		X		X	1	1	0	1	1
	1		0		0	0	1	1	1	1
$ar{p}$	0	22	1	h	0	1	1	1	1	1
	X	p	X	b_1	X	0	0	1	1	1
1	X		X		X	1	0	1	1	1

5 ЛОГИЧЕСКИЙ СИНТЕЗ ПРЕОБРАЗОВАТЕЛЯ МНОЖИТЕЛЯ (ПМ)

Преобразователь множителя (ПМ) служит для исключения из множителя диад 11 и 10, заменяя их на триады $1\overline{01}$ и $1\overline{10}$, соответственно.

Функциональная схема ПМ приведена на чертеже ГУИР.400201.409 Э2.4

Таблица 5.1 Таблица истинности ПМ.

Входная диада		Младший бит	Знак	Выходная диада		
Qn	Q _{n-1}	Q _{n-2}	P	S_1	S_2	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	1	0	0	0	1	
0	1	1	0	1	0	
1	0	0	1	1	0	
1	0	1	1	0	1	
1	1	0	1	0	1	
1	1	1	1	0	0	

Проведём минимизацию Р при помощи карты Карно:

Рисунок $5.\overline{1}$ — Минимизация функции P при помощи карты Карно

$$P = Q_n$$

Видно, что S_1 не минимизируется, поэтому $S_1 = \overline{Q_n} Q_{n-l} Q_{n-2} + Q_n \overline{Q_{n-l}} \overline{Q_{n-l}} \overline{Q_{n-l}}$ Проведём минимизацию S_2 при помощи карты Карно:

$Q_{n-1}Q_{n-2}$								
Qn	00	01	11	10				
0		1		1				
1		1		1				

Рисунок 5.2 — Минимизация функции S_2 при помощи карты Карно

$$S_2 = \overline{Q_{n-1}}Q_{n-2} \cdot Q_{n-1}\overline{Q_{n-2}} = Q_{n-1} \oplus Q_{n-2}$$

6 ОЦЕНКА РЕЗУЛЬТАТОВ РАЗРАБОТКИ ВРЕМЕННЫЕ ЗАТРАТЫ НА УМНОЖЕНИЕ

Процесс умножения можно разбить на несколько этапов:

- преобразование разряда множителя;
- формирование дополнительного кода множимого в ФДК, если это необходимо;
- умножение дополнительного кода множимого в ОЧУ;
- добавление полученного произведения в аккумулятор посредством OЧС;
- сдвиг в аккумуляторе и регистре множителя.

Процессы умножения в ОЧУ происходят параллельно. Все ОЧУ отрабатывают одновременно. После этого результат передаётся в блок ОЧС для обработки. В этот момент начинает работу первый ОЧС. После того, как отработает первый ОЧС, он может незамедлительно передать значение переноса во второй ОЧС, который сможет приступить к сложению. Таким образом, все ОЧС отработают последовательно. Формула для расчёта временных затрат на умножение имеет следующий вид:

$$T_{ ext{ymh}} = n \cdot (T_{ ext{cдвига}} + T_{ ext{ПМ}} + T_{ ext{ФДК}} + T_{ ext{OЧУ}} + (m+1) \cdot T_{ ext{OЧC}}),$$
 где

n – количество разрядов множителя;

т – количество разрядов множимого;

 $T_{\text{сдвига}}$ — время сдвига частичной суммы;

 $T_{\rm OUV}$ — время умножения на ОЧУ;

 $T_{
m O U C}$ — время формирования единицы переноса в ОЧС;

 $T_{\text{ПМ}}$ — время преобразования множителя;

 $T_{\Phi \rm ДK}$ — время формирования дополнительного кода множимого.

Подсчитать конкретное время выполнения умножения можно зная характеристики основных узлов конкретного сумматора-умножителя.

ЗАКЛЮЧЕНИЕ

В процессе выполнения курсовой работы были выполнены первоначально заданные цели, а именно разработана структурная схема сумматора-умножителя первого типа и функциональные схемы основных узлов данного устройства. Для уменьшения стоимости логических схем, переключательные функции были минимизированы различными способами. Такой подход позволил выявить достоинства и недостатки этих алгоритмов.

В качестве главного достоинства минимизации картами Карно-Вейча можно выделить простоту и минимальные затраты времени. Однако применение данного способа для функций многих переменных будет затруднительно. Для минимизации функций многих переменных удобно использовать алгоритм Рота, который полностью формализует алгоритмы минимизации и делает минимизацию доступной для выполнения компьютерной программой. В то же время, минимизация алгоритмом Рота вручную может быть очень времязатратной, если функция принимает большое количество единичных и безразличных наборов.

Функциональные схемы были построены в различных логических базисах. Это позволило закрепить теоретические знания основных законов булевой алгебры, например, правило де Моргана. Также можно отметить, что необходимо сократить количество уровней в логической схеме для уменьшения времени работы данного устройства.

Реализация переключательных функций на основе мультиплексоров позволила облегчить процесс минимизации этих функций и упростить функциональную схему одноразрядного четверичного сумматора.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Луцик Ю.А., Лукьянова И.В. Учебное пособие по курсу "Арифметические и логические основы вычислительной техники". Минск: БГУИР, $2014 \, \Gamma$. $178 \, C$.
- [2] Луцик Ю.А., Лукьянова И.В. Методические указания к курсовому проекту по курсу "Арифметические и логические основы вычислительной техники". Мн.: БГУИР, 2004 г.
- [3] Искра, Н. А. Арифметические и логические основы вычислительной техники: пособие / Н. А. Искра, И. В. Лукьянова, Ю. А. Луцик. Минск: БГУИР, 2016. 75 с.
- [4] Лысиков Б.Г. Арифметические и логические основы цифровых автоматов. Мн.: Вышейшая школа, 1980.

приложение а

(обязательное)

Сумматор-умножитель первого типа. Схема электрическая структурная

приложение Б

(обязательное)

Одноразрядный четверичный сумматор. Схема электрическая функциональная

приложение в

(обязательное)

Одноразрядный четверичный умножитель. Схема электрическая функциональная

приложение г

(обязательное)

Одноразрядный четверичный сумматор. Реализация на мультиплексорах. Схема электрическая функциональная

приложение д

(обязательное)

Преобразователь множителя. Схема электрическая функциональная

приложение е

(обязательное)

Ведомость документов