

Pymble Ladies' College

Physics

2001

Trial Examination

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Board-approved calculators may be used
- Write using black or blue pen
- · Draw diagrams using pencil

Section I

Total marks (75)

This section has two parts. Part A and Part B

Part A Multiple choice

Total marks (15)

- Attempt Questions 1-15
- · Allow about 30 minutes for this part

Part B Extended Answers Total marks (60)

- Attempt Questions 16–30
- · Allow about 1 hour and 45 minutes for this part

Section II

Total marks (25)

- · Attempt ONE question Question 31
- · Allow about 45 minutes for this section

Physics

2001 Trial Examination

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question.

Fill in the response space completely. If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word **correct** and drawing an arrow.

Question	A	В	С	D
1	A	В	С	D
2	A	В	С	D
3	A	В	С	D
4	A	В	С	D
5	А	В	С	D
6	A	В	С	D
7	A	В	С	D
8	A	В	С	D
9	A	В	С	D
10	Ą	В	С	D
11	A	В	С	D
12	Α	В	С	Ð
13	Α	В	С	D
14	A	В	C	D
15	A	В	С	D

Section I

Total marks (75)

This section has two parts, Part A and Part B

Part A

Multiple choice

Total marks (15)

• Attempt Questions 1-15

· Allow about 30 minutes for this part

Question 1

Jill has a weight of 550 N on the earth. What is her weight on a planet with half the mass of earth and half the radius of earth?

A 69 N

B 275 N

C 550 N

D 1100 N

Question 2

Which of the following factors does not affect the escape velocity of an object from earth?

A the mass of the object

B the mass of the earth

C the radius of the earth

D the gravitational constant G

Question 3

A satellite in orbit at a distance R from the centre of the earth has a period of 12 hours. What is the period of a satellite orbiting at a distance 3R?

A 4 hours

B 21 hours

C 36 hours

D 62 hours

Question 4

Which of the following is an inertial frame of reference?

A a rocket just after takeoff

B a deep space probe without fuel

C a satellite in geostationary orbit around the earth

D a sub-orbital rocket at the point of maximum height in its trajectory

Ouestion 5

Trainee astronauts could have the experience of 'weightlessness' by flying in a plane that is travelling in vertical, circular path, as shown in the diagram below.

What is the radius R of the vertical circle if the plane is flying at a constant speed of 20 m.s⁻¹ and the astronauts feel 'weightless' at the top of the circle?

A 20 m

B 40 m

C 80 m

D 160 m

Ouestion 6

Who was the scientist who discovered that an electric current could be induced by moving a magnet near a coil of wire?

A Ampere

B Lenz

C Faraday

D Tesla

Question 7

The diagram below shows a current carrying wire in a magnetic field.

×	×	×	×	×
×	×	×	×	_×
×	×	×	×	×
×	×	×	×	×

In which direction will the wire tend to move?

A up

B down

C into the page

D out of the page

Question 8

Two straight current-carrying conductors are placed parallel to each other, 4 cm apart. One has a current of 2 A travelling through it and the other has a current of 5 A travelling through it. Both currents travel in the same direction.

What is the force on 1 m of the 5 A wire due to the 2 A wire?

A 5 x 10⁻⁵ N towards the 2 A wire.

B 5 x 10⁻⁵ N away from the 2 A wire.

C 5×10^{-7} N towards the 2 A wire.

D 5 x 10⁻⁷ N away from the 2 A wire.

Question 9

The square loop shown in the diagram below has sides 50 mm x 50 mm and is supported on a central axle, parallel to the sides AB and CD. It carries a current of 5 A and is in a uniform magnetic field of 2.0×10^{-2} T.

What is the torque experienced by the loop when the plane of the loop is lying parallel to the magnetic field as shown?

A 0 Nm

B 2.5 x 10⁻⁴ Nm

C 5.0 x 10⁻³ Nm

D 2.5 Nm

Question 10

Which of the following methods is used to reduce energy losses in electrical transmission wires?

A using good insulation

B keeping voltage as low as possible

C keeping current as low as possible

D keeping resistance as high as possible

Ouestion 11

What was the equipment below used for?

- A To demonstrate the photoelectric effect
- B Hertz' experiment with electromagnetic waves
- C The first radio
- D To demonstrate thermionic conduction

Question 12

The diagram below shows two charged, parallel plates.

An electron is fired into the space between the two plates in the direction shown. The electron will travel through without being deflected if a magnetic field is also present between the plates. What would the direction of the magnetic field have to be?

- A into the page
- B out of the page
- C towards the positive plate
- D towards the negative plate

Question 13

The resistance (R) of a superconductor is plotted as a function of temperature (T). Which graph would most closely represent the results obtained?

Question 14

Two charged particles, A and B, are fired into a uniform magnetic field as shown below.

The initial velocity of particle A is twice that of particle B.

Particle A has a charge of -0.5Q coulombs.

Particle B has a charge of +Q coulombs.

FA is the force acting on particle A due to the magnetic field.

F_B is the force acting on particle B due to the magnetic field.

Which of the following statements is true?

- A FA is the same size as FB.
- B F_A is twice the size of F_B.
- C F_A is half the size of F_B .
- D F_A is a quarter the size of F_B.

Question 15

The diagram below shows one of the cathode ray tubes that can be used to demonstrate the properties of cathode rays. Which of the following can be deduced from the effect observed from this particular cathode ray tube?

rotating wheel

- A Cathode rays are negatively charged.
- B Cathode rays are fast moving electrons.
- C Cathode rays have energy and momentum.
- D Cathode rays are electromagnetic.

Part B Extended Answers

Total marks (60)

- Attempt Questions 16-30
- · Allow about 1 hour and 45 minutes for this part

Question 16: (3 marks)	Marks
Describe difficulties associated with effective and reliable communications between satellites and earth.	3
Question 17: (4 marks) A rocket is fired from its launch pad with an initial speed of 80 m.s ⁻¹ at an angle of 35° to the horizontal. Calculate:	Marks
(a) its total time of flight.	3
Continued on next page	

(b) its range.	1

***************************************	****
Question 18: (4 marks)	Маг
A rocket is travelling to the star closest to earth, Proxima Centauri, which is a distance 4.3 light years away. The rocket travels at a speed of 0.7c and the time taken to accelerate and decelerate is negligible.	of
a) Calculate the number of years that will pass, as measured by the crew of the rocket, as hey travel to Proxima Centauri.	2

·	

000-00-00-00-00-00-00-00-00-00-00-00-00	
b) Calculate the distance to Proxima Centauri, as measured by the crew, in light years.	2
1410-141-16-16-16-16-16-16-16-16-16-16-16-16-16	

.....

Question 19: (5 marks)	Marks
Describe a first-hand investigation to determine a value for the acceleration due to gravity using pendulum motion. The relevant equation is $g=4\pi^2\ell/T^2$ where g is the acceleration due to gravity ℓ is the length of the pendulum T is the period of oscillation of the pendulum	5

.

Question 20: (4 marks)	Marks
Explain how space probes may use planets to provide a slingshot effect.	4

Question 21: (5 marks)

Marks

The diagram below shows a generator.

(a) l	Explain how the generator works.	4
(b)	Describe how this generator could be transformed into a DC generator.	1

Question 22: (3 marks)

Marks Below is a diagram of a square coil of wire attached to a split-ring commutator and a power source that provided a current of 2 A. The coil had 250 turn and sides of 4 cm x 4 cm.

A student placed some permanent magnets at A and B and the motor started spinning. Attaching a torque meter to the axle, the student was able to determine the torque at various angles θ (theta). The student then plotted a graph of torque (Nm) against cosine θ , as shown below.

Use the graph and the information given to calculate the strength of the magnetic field provided by the magnets. Show all working.	3
Continued on next page	······

······································	
Question 23: (3 marks)	Mark
Explain the advantages of induction motors compared with conventional A.C. motors.	3

Question 24: (4 marks)

Marks

Two magnets are brought near to a spinning aluminium disc, as shown in the diagram below.

(a)	Explain what happens when the magnets are brought near.	2
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	······································	
(b)	Explain how this effect could be reduced.	2

Qu	estion 25: (5 marks)	Marks
	A transformer has 300 turns in the primary coil and 10 turns in the secondary coil. The primary voltage is 240 V AC and the primary current is 2 A.	
a)	Calculate the secondary voltage in the transformer.	1
(b)	Explain why an experimentally observed value might be different to your answer to part (a)?	1
	· · · · · · · · · · · · · · · · · · ·	
(c)	Explain why some electrical appliances in the home that are connected to the mains	3
	domestic power supply use a transformer.	

Question 26: (4 marks)

Outline Thomson's experiment to measure the charge/mass ratio of the electron.							
,,					••••		
***********	,,				.,		**********
	,	******************	.,			*******	

Question 27: (7 marks)

4

a)	Discuss the ability of the wave model of light to explain the photoelectric effect.
.,,,	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
b)	Explain the photoelectric effect using Einstein's model for light.

,,,,,,,,,,,,,	
,,,,,,,,,,,	
,	

Question 28: (3 marks)

With reference to the two types of doped semiconductors, explain what the term doping means.							
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
······································							
(4							
·							
euestion 29: (2 marks)							
Evaluate one current or possible future application of superconductors.	2						
······································							

Question 30: (4 marks)

The diagram below shows a thermionic device called a diode valve.

	(~)	
a)	State what the term "thermionic" means when used for this type of diode.	1
	······································	
b)	Compare and contrast the equivalent semiconductor device to the thermionic	3
	diode.	
•••••		

Section II

Total marks (25)

²³⁵₉₂U 235.043925 u

Allow about 45 minutes for this section.

Answer Question 31 on the writing paper provided.

Extra writing paper is available.

Question 31 - From Quanta to Quarks (25 marks)													
a)	Carbon-13 is one isotope of the element carbon. With reference to Carbon explain the term "isotope".												
b)	 i) By considering the various forces within the nucleus explain why there must be a strong nuclear force. 												
ii) State one property of the strong nuclear force.													
c)	i) Compare and contrast a controlled and uncontrolled nuclear chain reaction												
 ii) Explain how a controlled nuclear chain reaction is maintained in a nuclear reactor. 													
d)	d) Write an equation for the nuclear reaction that occurs when Plutonium-241 undergoes α decay.												
e)	A typical fission reaction is	3											
	$^{1}_{0}n + ^{235}_{92}U \longrightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n$												
	Calculate the amount of energy released in this reaction.												
	Data: ¹ ₀ n 1.008665 u ¹⁴¹ ₅₆ Ba 140.9141 u												

92 Kr

Question 31 continued on next page

91.9250 u

Question 31 continued.

f) The graph below shows the relative number of beta particles emitted by a radioactive source as a function of the beta particle's kinetic energy.

i)Explain the difficulty in understanding this pattern of energy distribution when it was first observed.

1

- ii) Describe how this difficulty was overcome.
- g) An experiment was done in which an aluminium barrier was placed between a radioactive source and a detector. The radioactive source emitted α particles and the number of counts during a 10 second time interval was recorded. The diagram below shows the experimental arrangement. When the radioactive source was removed, the detector registered 4 counts in the 10 second interval.

In the experiment a number of different thicknesses of aluminium were used.

The graph of the experimental results is shown below.

_

PHYSICS DATA SHEET

Penetration of Beta Particles as a Function of Barrier Thickness

Analyse the experimental results.

6

Numerical values of several constants

Charge on the electron, q_e	$-1.602 \times 10^{-19} \text{ C}$
Mass of electron, m_e	$9.109 \times 10^{-31} \text{ kg}$
Mass of neutron, m_n	$1.675 \times 10^{-27} \text{ kg}$
Mass of proton, m _p	$1.673 \times 10^{-27} \text{ kg}$
Speed of sound in air	340 m s ⁻¹
Earth's gravitational acceleration, g	9.8 m s ⁻²
Speed of light (in vacuo), c	$3.00 \times 10^8 \text{ m s}^{-1}$
Magnetic force constant, $\left(k = \frac{\mu_0}{2\pi}\right)$	$2.0 \times 10^{-7} \text{ N A}^{-2}$
Universal gravitational constant, G	$6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Universal gravitational constant, G Mass of Earth	$6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ $6.0 \times 10^{24} \text{ kg}$
·	•
Mass of Earth	$6.0 \times 10^{24} \mathrm{kg}$
Mass of Earth Planck's constant, h	$6.0 \times 10^{24} \text{ kg}$ $6.626 \times 10^{-34} \text{ J s}$
Mass of Earth Planck's constant, h Rydberg's constant, R_H	$6.0 \times 10^{24} \text{ kg}$ $6.626 \times 10^{-34} \text{ J s}$ $1.097 \times 10^7 \text{ m}^{-1}$ $1.661 \times 10^{-27} \text{ kg}$
Mass of Earth Planck's constant, h Rydberg's constant, R_H Atomic mass unit, u	$6.0 \times 10^{24} \text{ kg}$ $6.626 \times 10^{-34} \text{ J s}$ $1.097 \times 10^7 \text{ m}^{-1}$ $1.661 \times 10^{-27} \text{ kg}$ $931.5 \text{ MeV/}c^2$

PHYSICS FORMULAE SHEET

$$c = f\lambda$$

Intensity $\propto \frac{1}{d^2}$

$$F = \frac{Gm_1m_2}{r^2}$$

$$\frac{v_1}{v_2} = \frac{\sin i}{\sin r}$$

$$\frac{r^3}{T^2} = \frac{GM}{4\pi^2}$$

$$E = \frac{F}{q}$$

$$m_1 + m_2 = \frac{4\pi^2 r^3}{GT^2}$$

$$R = \frac{V}{I}$$

$$M = m - 5\log\left(\frac{d}{10}\right)$$

$$P = VI$$

$$\frac{I_A}{I_B} = 100^{(m_B - m_A)/5}$$

$$\nu_{av} = \frac{\Delta r}{\Delta t}$$

$$d = \frac{1}{p}$$

$$a_{av} = \frac{\Delta v}{\Delta t} = \frac{v - u}{t}$$

$$\sum F = ma$$

$$F = BIl\sin\theta$$

$$E_k = \frac{1}{2} m v^2$$

$$\frac{F}{l} = k \frac{I_1 I_2}{d}$$

$$p = mv$$

$$\tau = Fd$$

$$\Delta p = Ft$$

$$\tau = nBIA\cos\theta$$

$$\frac{V_p}{V_s} = \frac{n_p}{n_s}$$

PHYSICS FORMULAE SHEET

$$E_p = \frac{Gm_1m_2}{r}$$

$$F = qvB\sin\theta$$

$$v = u + at$$

$$E = \frac{V}{d}$$

$$E = hf$$

$$v_x^2 = u_x^2$$

$$v_y^2 = u_y^2 + 2a_y \Delta y$$

$$Z = \rho v$$

$$\Delta x = u_x t$$

$$\frac{I_r}{I_0} = \frac{\left[Z_2 - Z_1\right]}{\left[Z_2 + Z_1\right]}$$

$$\Delta y = u_y t + \frac{1}{2} a_y t^2$$

$$\frac{s}{t} = \frac{u + v}{2}$$

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

$$l_{\nu} = l_{o} \sqrt{1 - \frac{v^2}{c^2}}$$

$$\lambda = \frac{h}{mv}$$

$$t_{\nu} = \frac{t_{\rm e}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Amplifier gain =
$$\frac{V_{\text{out}}}{V_{\text{in}}}$$

$$A_0 = \frac{V_o}{V_+ - V_-}$$

		1					PER	IODIC	TABLE	ог тн	E ELE	MENTS						
	H 1.008																	2 He
	l lydrogen								KEY									4.003 Hellum
	3 Li									5 B	6 C	7 N	8	9 F	10 Ne			
	6.941	9.012 Peryllium	•••••										10.81	12.01	14.01	16.00	19.00	20.18
	11	12 Serven viritiges Oxygen Filodonic											Fluorina 17	Neun 18				
	Na 22.99	Mg 24.31											A) 26.98	Si 28.09	р 30.97	\$ 32.07	ČÍ 35,45	Ar
	Sodium 19	Маркенит 20	21	T 22	1 22	24	0.5		1 3-		1	1	Aluminigen	Silicon	Phosphores	.5վՄաr	Chlorine	39.95 Argon
	K	20 Ca	Şc	Z2 Ti	23 V	Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	39.10 Patassium	40.08 Calcium	44.96 Scandium	47.87	50.94 Verazliem	52.00 Chromkum	54.94 Manganese	55.85 lmn	58.93 Cobali	58.69 Nickel	63.55 Cupper	65.39	69.72 Gallian	72.61 Germanium	74.92 Assente	78.96 Scientism	79.90 Stomine	83.80 Krypton
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 [54
	85.47 Rubidlem	87.62 Stromlum	88.91 Yudun	91.22 Zironium	92.91	95.94 Molybdenum	[98.91]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	Xe 131.3
	55	56	57-71	72	73	74	Technetium 75	Rutherium 76	Rhodium 77	Palladium 78	5ilwr 79	Codmium 80	Indium 81	Tin 82	Antimony 83	Tellurium 84	lodina 8,5	Xenon 86
l ua	Cs 132.9	Ba 137.3	Ī	Hf 178.5	Ta 180.9	W 183.8	Re 186.2	Os 190.2	lr 192.2	Pt 195.1	Au 197.0	Hg 200.6	T) 204.4	Pb 207.2	Bi 209.0	Po [210.0]	At	Rni
30 –	Caesium 87	Barkum 88	Lanihanides 89–103	Holminum 104	Tentelum	Tungsten	Rhemum	Osmium	Iridium	Matinam	Gnid	Mercury	Thallium	Lead	Bismoth	Polonium	[210.0] Asterios	[222.0] Radno
	Fr	Ra	89-103	Rf	105 Db	106 Sg	107 Bh	Hs Hs	109 Mt	110 Uun	111 Vou	Uub	113	II4 Uuq	115	II6 Uuh	117	118 Uuo :
- {	(223.0) Francium	[226.0] Redium	Actinides	[261.1] Rotherfordium	[262.1] Dubatum	[263.1] Scaborgium	[264.1] Bokrium	[265.1] Hossiem	[268] Meitnerium	 Vevenilives	Ununenium	 Մոնդենսա		— . Ohusqasylium			, ,	Ununcetion
												<u></u>					· 	
			Lanthanid 57	es 58	59	60	61	62	63	64	65	66	67	r	45			
			La 138.9	Ce 140.1	Pr 140.9	Nd 144.2	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	68 Вт	69 Tm	70 Yb	71 Lu	
			Lonthonoon	Cerium	140.9 Prosendymium	Newdymium	[146.9] Promodilum	150.4 Semerium	152,0 Europlum	157.3 Gadotinium	158.9 Terhiyan	162.5 Dyspredum	164.9 Holmium	167.3 Erblum	168.9 Thelium	173.0 Ytterbium	175.0 Laterium	
,			1-11-14															
				90	91	92	93	94	95	96	97	98	00	100	101	102	102	
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk		Es	Fm	Md	No	L,r	
,			Actinides 89 Ac [227.0]	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np [237.0]	94 Pu [239.1]	95 Am [241.1]	96 Cm [244.1]	97 Bk [249.1]	98 Cf [252.1]	99 Es [252.1]	100 Fm [257.1]	101 Md 1258.11	102 No 1259.11		

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes ²³⁷Np and ⁹⁹Tc.

This sheet should be REMOVED for your convenience.