Symmetries in Physics

Marco Biroli

September 4, 2020

Chapter 1

TD1

1.1 Problem 1 Cayley tables

1.1.1

Suppose that an element appears more than once in a given row or column. Then we have that:

$$\exists g, g_i, g_j, g_k \in \mathcal{G}, \quad g = g_i \cdot g_j \land g = g_i \cdot g_k \Rightarrow g_j = g_k$$

Since no two elements in a row can be mapped to the same element of the group then a row is a map $\mathcal{G} \to \mathcal{G}$ which from the point above is injective then since it is an endomorphism it necessarily must be a bijection and hence a permutation of \mathcal{G} . Therefore each element appears once and exactly once.

1.1.2

Refer above.

1.2 Problem 2 The group D_3

1.2.1

The elements of D_3 are e = Id, r = (B, C, A), $r^2 = (C, A, B)$, $s_1 = (A, C, B)$, $s_2 = (B, A, C)$, $s_3 = (C, B, A)$. Then the table is given by:

	e	r	r^2	s_1	$ s_2 $	s_3
\overline{e}	e	r	r^2	s_1	s_2	s_3
\overline{r}	r	r^2	e	s_2	s_3	s_1
r^2	r^2	e	r	s_3	s_1	s_2
s_1	s_1	s_2	s_3	e	r	r^2
s_2	s_3	s_1	s_2	r^2	e	r
s_3	s_2	s_3	s_1	r	e	r^2

1.2.2

The subgroups of D_3 are $\{e, r, r^2\} = \langle r \rangle, \langle s_1 \rangle, \langle s_2 \rangle, \langle s_3 \rangle, \{e\}.$

1.3 Problem 3 Lagrange's theorem.

Let \mathcal{H} be a subgroup of \mathcal{G} . Then notice that \mathcal{G}/\mathcal{H} is the set of the cosets of \mathcal{G} by the congruence modulo \mathcal{H} . However from Exercise 1 and 2 we know that every coset is in bijection with \mathcal{H} . Furthermore since the congruence is an equivalence relation it must be that \mathcal{G} is equal to the reunion of the cosets. Hence we have that:

$$|\mathcal{G}/\mathcal{H}| \cdot |\mathcal{H}| = |\mathcal{G}|$$

The result follows.

CHAPTER 1. TD1

1.4 Problem 4 Modular arithmetics

1.4.1

Notice that for any $k \in \mathbb{Z}$ we have that $k\mathbb{Z}$ is a subgroup of \mathbb{Z} . The quotient groups are $\mathbb{Z}_{k\mathbb{Z}}$ which are the well-known integers modulo k with the addition modulo k.

1.4.2

Let |g| be the smallest integer such that $g^{|g|} = e$. Such an integer must exist so long as the group to which g pertains is finite. Then notice that for any $k \in \mathbb{Z}$ we have that: $g^{|g| \cdot k} = (g^{|g|})^k = e^k = e$. Hence $|g|\mathbb{Z} \subseteq P_g$. Now let $k \in \mathbb{Z}$ such that $g^k = e$. From construction it must be that k > |g| hence by doing the euclidean division we get that : $k = |g| \cdot \ell + r$. Hence: $g^{|g| \cdot \ell + r} = e \Rightarrow e^{\ell} \cdot g^r = e \Rightarrow g^r = e$. However unless r = 0 this is impossible since r < |g| would be a contradiction.

1.4.3

Notice that necessarily $\langle g \rangle$ is a subgroup of cardinality |g| of \mathcal{G} hence from the Lagrange theorem we know that |g| divides $|\mathcal{G}|$.

1.4.4

Let a group \mathcal{G} of order p where p is prime. Then from the previous question we know that all elements of \mathcal{G} must be of order p. However if one element is of order p and \mathcal{G} is of order p it must be that \mathcal{G} is generated by a single element, call it g. Then the obvious homomorphism concludes the proof:

$$h: \mathcal{G} \to \mathbb{Z}/p\mathbb{Z}$$
$$g^k \mapsto k \mod p$$