Calculus I, Chapter 2 Problems

Limits

Q1. Consider the given graph of the function f(x). Are the following statements true or false?

- (a) $\lim_{x\to 0} f(x)$ exists,
- (b) $\lim_{x\to 0} f(x) = 0$, (c) $\lim_{x\to 0} f(x) = 1$

- (d) $\lim_{x\to 1} f(x) = 1$, (-1,1).
- (e) $\lim_{x\to 1} f(x) = 0$, (f) $\lim_{x\to a} f(x)$ exists $\forall a \in$

Solution.

- (a) true,
- (b) true, (c) false,
- (d) false,
- (e) false,
- (f) true.
- Q2. Consider the given graph of the function f(x). Are the following statements true or false?

- (a) $\lim_{x\to 2} f(x)$ does not exist, (b) $\lim_{x\to 2} f(x) = 1$, (c) $\lim_{x\to 1} f(x)$ does not exist,
- (d) $\lim_{x\to a} f(x)$ exists $\forall a \in (-1,1)$ (e) $\lim_{x\to a} f(x)$ exists $\forall a \in (1,3)$.

Solution.

(b) true, (c) true, (d) true, (e) true. (a) false,

Q3. If $f(x) > 0 \ \forall \ x \neq a$ and $\lim_{x \to a} f(x) = L$, can we conclude that L > 0? Justify your answer.

Solution.

No. An example is provided by $f(x)=x^2$ with a=0 so that L=0 which is not positive.

Q4. Justify whether the following statement is true or false.

If $\lim_{x\to a} f(x)$ exists then so does $\lim_{x\to a} \sqrt{f(x)}$.

Solution. False. An example is provided by f(x) = -1, with a = 0. Here $\lim_{x\to 0} f(x)$ exists (and is equal to -1) but $\sqrt{f(x)}$ is not a real function.

Q5. Calculate the following limits

(a) $\lim_{x\to 0} (2-x)$, (b) $\lim_{x\to -1} \frac{3x^2}{2x-1}$, (c) $\lim_{x\to \pi/2} x \sin x$, (d) $\lim_{x\to \pi} \frac{\cos x}{1-x}$.

Solution. (a) 2, (b) -1, (c) $\pi/2$, (d) $\frac{1}{\pi-1}$.

Q6. Calculate the following limits

(a) $\lim_{x\to 1} \frac{x^4-1}{x^3-1}$, (b) $\lim_{x\to 2} \frac{x^3-8}{x^4-16}$, (c) $\lim_{x\to 1} \frac{x-1}{\sqrt{x+3}-2}$, (d) $\lim_{x\to 4} \frac{4x-x^2}{2-\sqrt{x}}$

Solution.

(a) $\lim_{x \to 1} \frac{x^4 - 1}{x^3 - 1} = \lim_{x \to 1} \frac{(x^2 + 1)(x + 1)(x - 1)}{(x - 1)(x^2 + x + 1)} = \lim_{x \to 1} \frac{(x^2 + 1)(x + 1)}{x^2 + x + 1} = 4/3.$ (b) $\lim_{x \to 2} \frac{x^3 - 8}{x^4 - 16} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{(x + 2)(x - 2)(x^2 + 4)} = \lim_{x \to 2} \frac{x^2 + 2x + 4}{(x + 2)(x^2 + 4)} = 3/8.$

(c) $\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2} = \lim_{x \to 1} \frac{(x-1)(\sqrt{x+3}+2)}{(\sqrt{x+3}-2)(\sqrt{x+3}+2)} = \lim_{x \to 1} \frac{(x-1)(\sqrt{x+3}+2)}{x+3-4} = 4.$

(d) $\lim_{x\to 4} \frac{4x-x^2}{2-\sqrt{x}} = \lim_{x\to 4} \frac{x(4-x)(2+\sqrt{x})}{(2-\sqrt{x})(2+\sqrt{x})} = \lim_{x\to 4} (x(2+\sqrt{x})) = 16.$

Q7. Calculate the limit as $x \to 0$ of the following

(a) $\frac{1-\cos x}{x^2}$, (b) $\frac{x^2}{1-\cos 2x}$, (c) $\frac{x^2}{1-\cos 4x}$.

Solution.

(a) $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \lim_{x\to 0} \frac{(1-\cos x)(1+\cos x)}{x^2(1+\cos x)} = \lim_{x\to 0} \left\{ \left(\frac{\sin x}{x}\right)^2 \frac{1}{1+\cos x} \right\} = 1/2.$

(b) $\lim_{x\to 0} \frac{x^2}{1-\cos 2x} = \lim_{x\to 0} \frac{x^2(1+\cos 2x)}{(1-\cos 2x)(1+\cos 2x)} = \lim_{x\to 0} \frac{(2x)^2(1+\cos 2x)}{4\sin^2 2x} = 1/2.$ (c) $\lim_{x\to 0} \frac{x^2}{1-\cos 4x} = \lim_{x\to 0} \frac{x^2(1+\cos 4x)}{(1-\cos 4x)(1+\cos 4x)} = \lim_{x\to 0} \frac{(4x)^2(1+\cos 4x)}{16\sin^2 4x} = 1/8.$

Q8. Does $\lim_{x\to 0} \frac{\sin(x+|x|)}{x}$ exist?

If the limit exists then find it.

Solution. For x > 0, $\frac{\sin(x+|x|)}{x} = \frac{\sin 2x}{x}$. Hence $\lim_{x \to 0^+} \frac{\sin(x+|x|)}{x} = \lim_{x \to 0^+} \frac{\sin 2x}{x} = \lim_{x \to 0^+} \frac{2\sin 2x}{2x} = \lim_{x \to 0^+} \frac{\sin(x+|x|)}{x} = 0$.

The left-sided and right-sided limits exist but are not equal, hence the limit does not exist.

Q9. In each case either evaluate the limit or state that no limit exists

(a)
$$\lim_{x \to 3} \frac{x^2 + x + 12}{x - 3}$$
, (b) $\lim_{x \to 3} \frac{x^2 + x - 12}{x - 3}$, (c) $\lim_{x \to 3} \frac{(x^2 + x - 12)^2}{x - 3}$, (d) $\lim_{x \to 3} \frac{(x^2 + x - 12)^2}{(x - 3)^2}$,

(e)
$$\lim_{h\to 0} \frac{1-1/h^2}{1+1/h^2}$$
, (f) $\lim_{h\to 0} \frac{1+1/h}{1+1/h^2}$.

Solution.

(a) no limit exists,

(b)
$$\lim_{x\to 3} \frac{x^2+x-12}{x-3} = \lim_{x\to 3} \frac{(x+4)(x-3)}{x-3} = 7$$
.

(c)
$$\lim_{x\to 3} \frac{(x^2+x-12)^2}{x-3} = \lim_{x\to 3} \frac{(x+4)^2(x-3)^2}{x-3} = \lim_{x\to 3} (x+4)^2(x-3) = 0.$$

(d)
$$\frac{(x^2+x-12)}{(x-3)^2} = \frac{(x+4)(x-3)}{(x-3)^2} = \frac{x+4}{x-3}$$
 hence no limit exists.

(e)
$$\lim_{h\to 0} \frac{1-1/h^2}{1+1/h^2} = \lim_{h\to 0} \frac{h^2-1}{h^2+1} = -1$$
.

(f)
$$\lim_{h\to 0} \frac{1+1/h}{1+1/h^2} = \lim_{h\to 0} \frac{h^2+h}{h^2+1} = 0.$$

Q10. Calculate the limit as $x \to \infty$ of the following

(a)
$$\frac{6x+7}{1-2x}$$
, (b) $\frac{x^2}{x^2+\sin^2 x}$.

Solution.

(a)
$$\lim_{x\to\infty} \frac{6x+7}{1-2x} = \lim_{x\to\infty} \frac{6+\frac{7}{x}}{\frac{1}{x}-2} = -3.$$

(b) First note that
$$0 \le \frac{\sin^2 x}{x^2} \le \frac{1}{x^2}$$
.

As $\lim_{x\to\infty}\frac{1}{x^2}=0$ then by the pinching theorem $\lim_{x\to\infty}\frac{\sin^2x}{x^2}=0$.

Thus
$$\lim_{x \to \infty} \frac{x^2}{x^2 + \sin^2 x} = \lim_{x \to \infty} \frac{1}{1 + \frac{\sin^2 x}{x^2}} = 1$$
.

Q11. Calculate the following limits

(a)
$$\lim_{x\to\infty} \frac{\cos(1/x)}{1+(1/x)}$$
, (b) $\lim_{x\to\infty} \left(\frac{1}{x}\right)^{1/x}$,

(c)
$$\lim_{x\to\infty} (3+\frac{2}{x})\cos(1/x)$$
, (d) $\lim_{x\to\infty} \{(\frac{3}{x^2}-\cos(1/x))(1+\sin(1/x))\}$.

Solution.

Set u = 1/x in each case

(a)
$$\lim_{x\to\infty} \frac{\cos(1/x)}{1+(1/x)} = \lim_{u\to 0^+} \frac{\cos u}{1+u} = 1$$
.

(b)
$$\lim_{x\to\infty} \left(\frac{1}{x}\right)^{1/x} = \lim_{u\to 0^+} u^u = \lim_{u\to 0^+} \exp(\log u^u) = \lim_{u\to 0^+} \exp(u\log u) = e^0 = 1.$$

(c)
$$\lim_{x\to\infty} (3+\frac{2}{x})\cos(1/x) = \lim_{u\to 0^+} (3+2u)\cos u = 3.$$

(d)
$$\lim_{x\to\infty} (\frac{3}{x^2} - \cos(1/x))(1 + \sin(1/x)) = \lim_{u\to 0^+} (3u^2 - \cos u)(1 + \sin u) = -1.$$

Q12. For each of the following statements, either give a proof that it is true or a counter example to show that it is false:

(a) If
$$g(x) > 0 \ \forall \ x > 0$$
 and $\lim_{x \to \infty} (f(x) - g(x)) = 0$ then $\lim_{x \to \infty} (f(x)/g(x)) = 1$.

(b) If
$$g(x) > 0 \ \forall \ x > 0$$
 and $\lim_{x \to \infty} (f(x)/g(x)) = 1$ then $\lim_{x \to \infty} (f(x) - g(x)) = 0$.

Solution.

- (a) False. A counter example is provided by f(x) = 1/x and g(x) = 2/x.
- (b) False. A counter example is provided by f(x) = x and g(x) = x + 1.

Q13. In each case either evaluate the limit or state that no limit exists

(a)
$$\lim_{u\to -5} \frac{u^2}{5-u}$$
, (b) $\lim_{y\to 0} (2y-8)^{1/3}$, (c) $\lim_{x\to 0} \frac{(x-2)(1-\cos 3x)}{2x}$, (d) $\lim_{t\to 5} \frac{t-5}{t^2-25}$,

(e)
$$\lim_{x\to -2} \frac{x+2}{\sqrt{x^2+5}-3}$$
, (f) $\lim_{x\to \infty} \frac{-3x^4+x^2+1}{-5x^4-1}$, (g) $\lim_{t\to 0} \frac{5t^3+8t^2}{3t^2-16t^4}$, (h) $\lim_{x\to 3} \frac{\tan(2(x-3))}{x-3}$,

(i)
$$\lim_{x\to -3} \frac{x+3}{x^2+4x+3}$$
, (j) $\lim_{x\to 2} \frac{\sqrt{x^2+12}-4}{x-2}$, (k) $\lim_{t\to 1} \frac{t^2+t-2}{t^2-1}$, (l) $\lim_{t\to -\infty} \frac{t^3+1}{t^2+1}$.

Solution.

(a)
$$5/2$$
, (b) -2 , (c) 0 , (d) $1/10$, (e) $-3/2$, (f) $3/5$, (g) $8/3$, (h) 2 ,

(i)
$$-1/2$$
, (j) $1/2$, (k) $3/2$, (l) no limit exists.