Annexes

Annexe A: erratum de l'article "Why psychologists Should by Default Use Welch's t-test Instead of Student's t-test" (Chapitre 2)

Erreurs conceptuelles

Nous spécifions à plusieurs reprises que le test t de Yuen contrôle moins bien le taux d'erreur de type I que le test t de Welch:

- p.14: "Yuen's t-test is not a good unconditional alternative because we observe an unacceptable departure from the nominal alpha risk of 5 percent for several shapes of distributions [...] particularly when we are studying asymmetric distributions of unequal shapes";
- p.15: "As it is explained in the additional file, Yuen's t-test is not a better test than Welch's t-test, since it often suffers high departure from the alpha risk of 5 percent".

Ceci n'est pas exact d'un point de vue purement statistique. A travers le test de Yuen, on ne compare plus les moyennes de chaque groupe, mais les moyennes trimmées (soit les moyennes calculées sur les données après avoir écarté les 20% des scores les plus faibles ainsi que les 20% des scores les plus élevés). Or, à travers nos simulations, les scénarios créés en vue de tester le taux d'erreur de type I (risque alpha) étaient systématiquement des scénarios dans lesquels les moyennes de chaque population étaient identiques. Lorsque la distribution d'une population est parfaitement symétrique, la moyenne et la moyenne trimmée seront identiques. Au contraire, lorsque la distribution d'une population est asymétrique, la moyenne et la moyenne trimmée diffèreront (la moyenne trimmée sera plus proche du mode de la distribution et donc, représentera mieux cette dernière).

Notons malgré tout que d'un point de vue méthodologique, nous avons déjà relevé que la plupart du temps, les chercheurs définissent l'absence de différence entre les moyennes comme hypothèse nulle et nos simulations démontrent que dans ce contexte, le test de Yuen n'est pas approprié. En conclusion, le test de Yuen ne devrait être utilisé que par des chercheurs ayant pleinement conscience du fait que les tests t de Student et de Welch ne reposent pas sur la même hypothèse que le test t de Yuen.

Commentaires divers

- p.9: nous décrivons 3 arguments en défaveur de l'usage du test de Levene. En troisième argument, nous mentionnons le manque de puissance du test de Levenne. Nous ne mentionnons cependant pas le fait qu'utiliser le test t de Student lorsque le test de Levene est non significatif revient à confondre le non rejet de l'hypothèse d'égalité des variances avec l'acceptation de l'hypothèse d'égalité des variances. Au sein du chapitre 5 sur les tests d'équivalence, il est démontré par simulation que même lorsqu'on s'assure d'avoir une puissance suffisante pour détecter une différence attendue, la stratégie qui consiste à interpréter le non rejet de l'hypothèse nulle comme un soutien en faveur de l'hypothèse nulle n'est pas appropriée.
- p.12: nous mentionnons ceci : "When both variances and sample sizes are the same in each independent group, the t-values, degrees of freedom, and the p-values in Student's t-test and Welch's t-test are the same (see Table 1). Avec du recul, cette phrase peut porter à confusion. Par "variances" il faut comprendre "sample* variances" ou "variances estimates". Nous ne sommes donc pas* en train de dire que les deux statistiques, ainsi que les degrés de liberté et p-valeurs qui leur sont associées seront identiques lorsque la condition d'homogénéité des variances sera respectée au niveau de la population, mais bien lorsque les estimations de chaque variance de population seront identiques.

Mise en forme et Notations

Les lettres utilisées pour décrire les statistiques (test-t ou test-F) doivent toujours être inscrites en *italique*. Or, cela a été omis à plusieurs reprises dans l'article. Par exemple, il aurait fallu écrire:

```
- p.9: "... as the Mann-Whitney U-test..." au lieu de "... as the Mann-Whitney U-test...";
- p.9: "F-ratio test" au lieu de "F-ratio test".
```

Certaines notations mathématiques auraient également dû être indiquées en italique. Par exemple, à la p.9, il aurait fallu écrire:

```
- "x_{ij}" au lieu de "\mathbf{x}_{ij}";
- |x_{ij} - \hat{\theta}_j| au lieu de |\mathbf{x}_{ij} - \hat{\theta}_i|.
```

Par ailleurs, il est très important d'être consistant dans le choix des notations mathématiques, afin d'éviter d'embrouiller le lecteur. Or, nous n'avons pas toujours respecté cela. Par exemple, nous avons utilisé plusieurs notations différentes pour décrire l'écart-type et la variance. Par exemple:

- p.9: nous utilisons respectivement SD1 et SD2 pour décrire l'écart-type de chaque groupe;
- p.11 (équation 1): nous utilisons respectivement S_1^2 et S_2^2 pour décrire la variance de chaque groupe; p.12 (équation 4): nous utilisons respectivement s_1^2 et s_2^2 (lettres minuscules) pour décrire la variance de chaque groupe.

C'est d'autant plus problématique qu'il y a parfois même des inconsistances entre les notations utilisées dans les formules et celles utilisées dans les légendes des formules. Par exemple, nous spécifions p.11 que dans l'équation 1, s_1^2 et s_2^2 (lettres minuscules) représentent les estimations de variance de chaque groupe indépendant, alors qu'en réalité, les estimations des variances sont représentées par S_1^2 et S_2^2 (lettres majuscules) dans l'équation 1.

Faute(s) de frappe

• p.13: "see **v Figure** 2a".

Annexe B: erratum de l'article "Taking parametric assumptions very seriously: Arguments for the Use of Welch's F-test instead of the Classical F-test in One-Way ANOVA" (Chapitre 3)

Mise en forme et Notations

Une légende est manquante pour certaines notations mathématiques. Par exemple, en ce qui concerne l'équation (1), bien que n_j , k et s_j^2 aient été correctement définis, les définitions pour $\bar{x_j}$, $\bar{x_n}$ et N ne sont données que plus tard, en référence à d'autres équations. Cela peut rendre la lecture de l'article plus compliquée pour certaines personnes non familières avec ces notations.

Par ailleurs, comme dans l'article précédent sur le test t de Welch, on constate certaines incohérences en termes de notation. Par exemple, si la moyenne de chaque groupe est définie par $\bar{x_j}$ dans l'équation (1), elle est définie par $\bar{X_j}$ dans l'équation (7).

Enfin, dû à un manque de connaissance de Latex lors de mes premières tentatives d'écritures d'articles via Rmarkdown, certaines majuscules sont manquantes dans les références bibliographiques. S'assurer qu'une lettre apparaisse en majuscule, via latex, implique de l'entourer des symboles {}, ce qui n'a pas été fait. Par exemple, dans le titre de l'article de Tiku(1971), il aurait fallu indiquer "Power function of the {F}-test..." Cela ne serait pas arrivé, si j'avais utilisé un outil comme Zotero, afin d'exporter directement un fichier au format Bibtex (puisque via ces outils, ce genre de détail est automatiquement inclu), mais je n'ai découvert cette possibilité que récemment.

Faute(s) de frappe

- p.18: "Although it is important to make sure test that assumptions are met";
- p.19: "... we think that a first realistic first step towards progress would be to get researchers...";
- p.20: "Based on mathematical explanations and Montee Carlo simulations";
- p.21: "With with N = ...";
- p.21: "Where where x_j $\bar{x_j}$ and s_i^2 are respectively the group mean and the group variance...";
- p.22: "... negative pairings (the group with the smallest largest sample size is extracted from the population with the smallest SD);
- p.22: "the type I error rate of all tests";
- p.24: "... which is either more liberal or more conservative, depending on the *SDs* and *SD* sample sizes pairing";

Annexe C: échanges avec Geoff Cumming, en vue d'améliorer l'article non publié "Why Hedges' g_s^* based on the non-pooled standard deviation should be reported with Welch's t-test"

Le 4 juin 2021, suite à la soumission d'un preprint de notre article sur les tailles d'effet, nous avons eu le plaisir de recevoir cet email de la part de Geoff Cumming.

En pièce jointe de cet email, figurait un feedback long et détaillé de notre article que je retranscris ci-dessous. Le texte en bleu qui est inséré dans ce feedback correspond aux réponses que je lui ai fournies:

Why Hedges' g_s^* based on the non-pooled standard deviation should be reported with Welch's t-test

https://psyarxiv.com/tu6mp/

Comments by Geoff Cumming g.cumming@latrobe.edu.au

4 June 2021

Subscript s

I'm wondering why you use subscript s for all eight ES measures. Yes, Cohen's original term for the estimate was d_s , but d became the standard usage. Perhaps you use the subscript s to indicate that the standardiser is an SD estimated from data? By contrast d_{δ} , for example, would indicate that a population value is available to use as standardiser. But in your paper there are no such cases, so you could simplify everything by simply omitting all those subscript s's?

Also, that role for the subscript rules out use of it to distinguish, for example, between d_p for pooled s, and d_C for Control group SD as standardiser. However, I know there are no well-established conventions for such subscripts, and you need to use 'Shieh' as a label for those ES measures, so perhaps using name labels (Cohen's, etc) for all measures—as you do—and dropping all the s subscripts would be simplest.

I used the subscripts to indicate that the ES measure is estimated based on a sample, but I agree that it is maybe not necessary, so I will remove all subscripts and use labels instead.

Typos?

Thanks for pointing all these typos out!

p. 7, l. 139: Hedges' d_s^* should be Cohen's d_s^* ? That's right, it should be Cohen's d^*

p. 8, l. 152: Use σ rather than σ_{pooled} (twice) because here we're assuming homogeneity of variance, with $\sigma = \sigma_1 = \sigma_2$ as the common population SD? (Also Table 1, line 1 of Note.) Ok!

p. 9, l. 3 of footnote: Not 52 but .52? (By my calcs using df = 3, N = 5, and the approximate debiasing formula the value should be .529?) Yes, it's a typo, the right number is .52 instead of 52 (see the R console below).

Cette échange a donné lieu à un blog post disponible à l'adresse suivante: https://thenewstatistics.com/itns/2021/06/17/which-standardised-effect-size-measure-is-best-when-variances-are-unequal/

Marie Delacre <mdelacre1@gmail.com>

your fine preprint

Geoff Cumming <g.cumming@latrobe.edu.au>

4 juin 2021 à 06:29

À : "marie.delacre@ulb.ac.be" <marie.delacre@ulb.ac.be>

Cc: "d.lakens@tue.nl" <d.lakens@tue.nl>, "Calin-Jageman, Robert" <rcalinjageman@dom.edu>

Dear Dr Delacre and colleagues,

I was delighted to see your fine preprint "Why Hedges' g_s^* based on the non-pooled standard deviation should be reported with Welch's t-test". It strikes me as important and compelling, as well, I'm sure, as requiring a vast amount of work.

I plan to blog about it, but first I'd like, if I may, to ask some questions and offer comments, as attached. I'd greatly appreciate any comments you might care to make in reply.

Of course, I'm more than happy to discuss any of these issues--it's all fascinating as well as essential stuff!

With thanks, and best regards,

Geoff

Geoff Cumming, DPhil, Emeritus Professor,

School of Psychology and Public Health, La Trobe University, Melbourne Campus, Victoria, Australia 3086

Email: g.cumming@latrobe.edu.au

Intro textbook: Introduction to The New Statistics: Estimation, Open Science, and Beyond

www.thenewstatistics.com

First book: Understanding The New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis

ww.thenewstatistics.com

Own page: http://www.latrobe.edu.au/she/contact-us/staff/profile?uname=GDCumming

ESCI (Exploratory Software for Confidence Intervals): www.thenewstatistics.com

Introduction to the New Statistics is the first statistics textbook to focus on Open Science and the New Statistics.

Instructors can obtain a free desk copy at https://www.routledge.com/resources/deskcopy.

Order on Amazon

Annexe D: A VOIR SI ERRATUM DU CHP 5?