Universidade Estadual de Santa Cruz

Professor: Marcos Ferreira e-mail: mferreira.math@yahoo.com.br

Licenciatura em Matemática: Análise I

23/05/12

Breve resumo de Topologia da Reta

Caros alunos, este texto não tem nenhuma pretenção de originalidade. Este é um resumo que elaborei baseado no capítulo *Topologia da Reta* do livro "Curso de Análise vol. 1" do Elon Lima.

0.0.1 Conjuntos Abertos

Dado um conjunto $X \subset \mathbb{R}$, um ponto $x \in X$ diz-se **ponto interior** de X se existe um intervalo aberto (a, b) tal que $x \in (a, b) \subset X$. Equivalentemente, $x \in X$ é ponto interior de X se existe $\varepsilon > 0$ tal que $(x - \varepsilon, x + \varepsilon) \subset X$. Em palavras, isto significa que todos os pontos suficientemente próximos de x ainda pertencem ao conjunto X.

Denotamos por int(X) o conjunto formado por todos os pontos interiores do conjunto X. Evidentemente $int(X) \subset X$.

Exemplo 0.1. Se X é um conjunto finito, então int $(X) = \emptyset$. De um modo geral, os subconjuntos discretos de \mathbb{R} tem interior vazio, por exemplo int $(\mathbb{N}) = \operatorname{int}(\mathbb{Z}) = \emptyset$. Por outro lado, se int $(X) \neq \emptyset$, então X é não enumerável.

Devido a densidade dos racionais e irracionais em \mathbb{R} , tem-se $int(\mathbb{Q}) = int(\mathbb{R} \setminus \mathbb{Q}) = \emptyset$.

Exemplo 0.2. Se X=(a,b), $Y=(-\infty,b)$ e $Z=(a,\infty)$, então int(X)=X, int(Y)=Y e int(Z)=Z. Por outro lado, se X=[c,d], $Y=[-\infty,d]$ e $Z=[c,\infty]$, então int(X)=(c,d), $int(Y)=(-\infty,d)$ e $int(Z)=(c,\infty)$.

O exemplo anterior torna-se aceitável, sem a necessidade de uma demonstração, após a seguinte definição:

Definição 0.1. Um subconjunto $A \subset \mathbb{R}$ é chamado de **conjunto aberto** se todos os seus pontos são interiores, isto é, se int (A) = A.

Exemplo 0.3. Os conjuntos \varnothing e \mathbb{R} são abertos. Todo intervalo aberto da reta é um conjunto aberto. Por outro lado, \mathbb{N} , \mathbb{Z} , \mathbb{Q} , seus subconjuntos, e os conjuntos finitos da reta não são conjuntos abertos.

Teorema 0.1. A união arbitrária de conjuntos abertos é ainda um conjunto aberto. Por outro lado, apenas a interseção finita de conjuntos abertos é um conjunto aberto.

Um contra exemplo, clássico, que ilustra o fato da interseção infinita de conjuntos abertos não ser um conjunto aberto é o seguinte: considere, para cada $n \in \mathbb{N}$, os conjuntos abertos $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$. Tem-se portanto $\bigcap_{n=1}^{\infty} A_n = \{0\}$, que não é aberto.

0.0.2 Conjuntos Fechados

Dizemos que $a \in \mathbb{R}$ é um **ponto aderente** ao conjunto $X \subset \mathbb{R}$ quando a é limite de alguma sequência de pontos de X.

Observe que na definição anterior não é exigido que um ponto adente a um conjunto pertença a este. Por exemplo, sendo $X=(0,\infty)$ temos que 0 é um ponto aderente a X, visto que a sequência $x_n=\frac{1}{n}, \forall n\in\mathbb{N}$, está em X e $\lim \frac{1}{n}=0$. Porém $0\not\in X$. Por outro lado, é claro que se $x\in X$, então x é um ponto aderente a X.

Teorema 0.2. Um ponto $a \in \mathbb{R}$ é aderente a um conjunto $X \subset R$ se, e só se, para todo $\varepsilon > 0$ tem-se $X \cap (a - \varepsilon, a + \varepsilon) \neq \emptyset$.

Em palavras, dizer que a é aderente a X significa dizer que qualquer intervalo aberto centrado em a, contém ao menos um ponto de X.

Chamamos de **fecho** do conjunto X, e escrevemos \overline{X} , ao conjunto formado por todos os pontos aderentes a X. Evidentemente, $X \subset \overline{X}$.

Um conjunto $X \subset \mathbb{R}$ é dito **conjunto fechado** se ele é igual ao seu fecho, isto é se $X = \overline{X}$.

Exemplo 0.4. Se
$$X=(a,b)$$
, $Y=(a,b]$ e $Z=[a,b)$, então $\overline{X}=\overline{Y}=\overline{Z}=[a,b]$.

Exemplo 0.5. Os conjuntos [a,b], $(-\infty,b]$ e $[a,\infty)$ são conjuntos fechados. Por outro lado, os racionais e os irracionais não são fechados, visto que $\overline{\mathbb{Q}} = \overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}$.

Observe que existem conjuntos que são abertos e fechados ao mesmo tempo. Por outro lado, existem conjuntos que nem são abertos nem fechados. Exemplifique essas situações.

Teorema 0.3. Um conjunto $F \subset \mathbb{R}$ é fechado se, e só se, seu complementar $\mathbb{R} \setminus F$ é aberto.

Em consequência do teorema anterior, temos o seguinte corolário:

Corolário 0.1. A interseção arbitrária de conjuntos fechados é ainda um conjunto fechado. Por outro lado, apenas a união finita de conjuntos fechados é fechado.

Compare o corolário anterior com o Teorema 0.1.

Exemplo 0.6. Todo conjunto finito é um conjunto fechado. \emptyset , \mathbb{N} , \mathbb{Z} e \mathbb{R} também são conjuntos fechados.

0.0.3 Pontos de Acumulação

Seja $X \subset \mathbb{R}$. Um número $a \in \mathbb{R}$ é dito **ponto de acumulação** de X se, dado qualquer $\varepsilon > 0$, tem-se

$$X \setminus \{a\} \cap (a - \varepsilon, a + \varepsilon) \neq \emptyset.$$

O conjunto dos pontos de acumulação de X é denotado por X' e é chamado o **derivado** de X. Compare a definição de ponto aderente com a de ponto de acumulação de um conjunto. Qual a diferença?

Teorema 0.4. Dados $X \subset \mathbb{R}$ e $a \in \mathbb{R}$, as seguintes afirmações são equivalentes:

- $(i) a \in X'$.
- (ii) $a = \lim x_n$, onde (x_n) é uma sequência de elementos de X, dois a dois distintos.
- (iii) todo intervalo aberto contendo a possui uma infinidade de elementos de X.

Corolário 0.2. Se $X' \neq \emptyset$, então X é infinito.

Exemplo 0.7. Se $X = \{1, 1/2, 1/3, ..., 1/n, ...\}$, então $X' = \{0\}$.

Exemplo 0.8.
$$(a,b)' = (a,b]' = [a,b]' = [a,b]; \mathbb{Q}' = (\mathbb{R} \setminus \mathbb{Q})' = \mathbb{R}' = \mathbb{R}; \mathbb{N}' = \mathbb{Z}' = \emptyset.$$

Um ponto $a \in X$ que não é um ponto de acumulação de X é chamado **ponto isolado** de X. Pelo exemplo anterior, concluímos que todos os pontos de \mathbb{N} são isolados. O mesmo acontece em \mathbb{Z} .

0.0.4 Conjuntos Compactos

O conceito geral de conjuntos compactos necessita das definições de cobertura e subcobertura de conjuntos. Por simplicidade, nos restringiremos ao seguinte conceito equivalente:

Definição 0.2. Um subconjunto $K \subset \mathbb{R}$ é compacto se ele é fechado e limitado.

Os intervalos da reta do tipo [a, b] são conjuntos compactos.

Teorema 0.5. Um subconjunto $K \subset \mathbb{R}$ é compacto se, e só se, toda sequência de pontos de K possui uma subsequência convergente, com limite em K.