Испит по Дискретна математика 1, 13.06.2014

I група

	Име и п	резиме_						Бр. Инд	цекс		_
Професор кај кој го слуша предметот											_
6		ме за ра минути	бота:								
	1	2	3	4	5	6	7	8	9	10	Вкупно

Задача 1. (8) Без користење таблица да се испита дали исказната формула

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 е тавтологија.

Нека претпоставиме дека формулата не е тавтологија.

$$\tau(((p\rightarrow q)\ \Lambda\ (q\rightarrow r))\rightarrow (p\rightarrow r))=\bot$$

1.
$$\tau((p \rightarrow q) \land (q \rightarrow r)) = \top$$

2.
$$\tau(p \rightarrow r) = \bot \Rightarrow \tau(p) = \top \ \mathsf{u} \ \tau(r) = \bot$$

0д1

1.1
$$\tau$$
(p → q) = \top и ⇒ бидејќи τ (p) = \top , τ (q) = \top

1.2 т(q
$$ightarrow$$
 r) = op ако замениме т(op op op) = op #

Од докажаното следува дека формулата е тавтологија.

Задача 2.(12) Следните реченици да се запишат како искази, а потоа да се најде нивна негација и истата да се прочита:

- а) (4) Кога грее сонце и немам обврски за факултет, сум расположена.
- р: Грее сонце
- q: Имам обврски за факултет
- r: Расположена сум

$$(p \land \neg q) \rightarrow r$$

Негација:

$$\neg((p \land \neg q) \rightarrow r) \equiv \neg(\neg(p \land \neg q) \lor r) \equiv (p \land \neg q) \land \neg r$$

Негирана реченица: Грее сонце и немам обврски за факултет и сум нерасположена.

б) (8) Постојат две различни книги кои имаат исти автори - професори на ФИНКИ.

Доменот е множеството книги.

P(x, y): x и y имаат исти автори - професори на ФИНКИ.

$$(\exists x)(\exists y) (x\neq y \land P(x, y))$$

Негација:
$$\neg((\exists x)(\exists y)(x\neq y \land P(x,y))) \equiv (\forall x)(\forall y) \neg(x\neq y \land P(x,y))$$

$$\equiv (\forall x)(\forall y) (\neg(x \neq y) \lor \neg P(x, y))$$

$$\equiv (\forall x)(\forall y) (x = y \lor \neg P(x, y))$$

$$\equiv (\forall x)(\forall y) (x \neq y \to \neg P(x, y))$$

Секои две различни книги немаат исти автори - професори на ФИНКИ. (т.е. Нема две различни книги кои имаат исти автори - професори на ФИНКИ.)

Задача 3. (12) Бојан и Илинка се договараат за предлози за задачите на испитот по Дискретна математика со лесна, средна и тешка тежина. Ако некој од нив предложува задача, тогаш ќе даде некоја тешка задача ако и само ако не даде задача со средна тежина. Илинка сака да предложи задача само ако таа биде тешка. Ако Бојан не предложува задача, не предложува ни Илинка. Ако предложуваат и Бојан и Илинка, тогаш ќе предложат задача заедно. Ако Бојан и Илинка предложат задача заедно, тогаш едниот предложува тешка задача ако и само ако другиот предложи задача со средна тежина. Илинка предложила задача за испитот. Дали може да се заклучи дека Бојан предложил тешка задача?

P(x): x предложува задача

Q(x): x дава тешка задача

R(x): x дава задача со средна тежина

S(x, y): x и y предложуваат задача заедно

- 1. $(\forall x)(P(x) \rightarrow (Q(x) \leftrightarrow \neg R(x)))$ претпоставка
- 2. $P(Илинка) \rightarrow Q(Илинка) претпоставка$
- 3. $\neg P(Бојан) \rightarrow \neg P(Илинка) претпоставка$
- 4. $P(Бојан) \land P(Илинка) \rightarrow S(Бојан, Илинка) претпоставка$
- 5. $(\forall x) (\forall y) (S(x, y) \rightarrow (R(x) \leftrightarrow R(y)))$ претпоставка
- 6. P(Илинка) претпоставка
- 7. *Q*(Илинка) од 2 и 6
- 8. *P*(Бојан) од 3 и 6
- 9. Р(Бојан)∧ Р(Илинка) од 6 и 8
- 10. S(Бојан, Илинка) од 4 и 9
- 11. $S(Бојан, Илинка) \rightarrow (R(Бојан) \leftrightarrow R(Илинка)) од 5 за х=Бојан, у=Илинка$
- 12. R (Бојан) $\leftrightarrow R$ (Илинка) од 10 и 11
- 13. $P(Илинка) \rightarrow (Q(Илинка) \leftrightarrow \neg R(Илинка)) од 1 за Илинка$
- 14. Q(Илинка) ↔ $\neg R$ (Илинка) од 13 и 6
- 15. $\neg R$ (Илинка) од 14 и 7.
- 16. $\neg R$ (Бојан) $\leftrightarrow \neg R$ (Илинка) од 12
- 17. ¬R(Бојан) од 15 и 16
- 18. P(Бојан)→ (Q(Бојан)↔ ¬<math>R(Бојан)) − од 1 за Бојан
- 19. $Q(Бојан) \leftrightarrow \neg R(Бојан) од 18 и 8$
- 20. Q(Бојан) од 19 и 17

Q(Бојан): Бојан дава тешка задача.

Задача 4.(6)Да се одреди вистинитоста на следните тврдења:

- а) Ако 1+1=2, тогаш 2+2=4. ----Да----
- б) 1+1=3 ако и само ако 2+2=5. ----Да-----
- в) 1+1=2 или 2+2=5. ---Да-----

Задача 5.(10) Покажи дали важи $\overline{\overline{A} \cup (B \cup C)} \subseteq A \oplus B \oplus C$.

$$\overline{\overline{A} \cup (B \cup C)} = A \cap \overline{(B \cup C)} = A \cap \overline{B} \cap \overline{C}$$

 $A \oplus B \oplus C = (A \cap \bar{B} \cap \bar{C}) \cup (\bar{A} \cap B \cap \bar{C}) \cup (\bar{A} \cap \bar{B} \cap C) \cup (A \cap B \cap C)$

 $A \cap \bar{B} \cap \bar{C} \subseteq (A \cap \bar{B} \cap \bar{C}) \cup (\bar{A} \cap B \cap \bar{C}) \cup (\bar{A} \cap \bar{B} \cap C) \cup (\bar{A} \cap B \cap C)$

 $A \cap \overline{B} \cap \overline{C} \subseteq A \oplus B \oplus C$

Задача 6. (10)Нека A={1, 2, 3, 4, 5, 6}, B={a, b, c} и C={x, y, z}, и нека се дадени пресликувања f: A \rightarrow B иg: C \rightarrow B определени со $f:\begin{pmatrix}1&2&3&4&5&6\\a&a&b&b&c\end{pmatrix}$ и $g:\begin{pmatrix}x&y&z\\b&c&a\end{pmatrix}$. Да се определи h(x) ако h =g $^{-1}$ ° fи h $^{-1}$ (D) ако D \subseteq C и D = {y, z}.

д е биекција, па постои инверзно пресликување

$$a^{-1}: B \to C$$

$$g^{-1}$$
: $\begin{pmatrix} a & b & c \\ z & x & y \end{pmatrix}$

Кодоменот на f е еднаков со доменот на g^{-1} па можно е преслукување h

$$h: A \rightarrow C$$

$$h: \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ z & z & x & x & y \end{pmatrix}$$

$$h^{-1}(D)=\{1, 2, 6\}$$

Задача 7. (10)Пресметај

 $101_2^{7D7_{16}} (mod\ 3032_8)$

 $101_{2} = 5$ $7D7_{16} = 2007$ $3032_{8} = 1562$ $5^{1} \equiv 5 (mod \ 1562)$ $5^{2} \equiv 25 (mod \ 1562)$ $5^{3} \equiv 125 (mod \ 1562)$ $5^{2} * 5^{3} \equiv 3125 (mod \ 1562)$ $5^{5} \equiv 1 (mod \ 1562)$ $5^{5^{401}} \equiv 1^{401} (mod \ 1562)$ $5^{2005} * 5^{2} \equiv 1 * 25 (mod \ 1562)$

 $5^{2007} \equiv 25 \pmod{1562}$

Задача 8. (10) Да се докаже дека за секој природен број n≥1, бројот $6^{2n} + 3^{n+2} + 3^n$ е делив со 11.

Решение:

Задачата се докажува со математичка индукција.

- 1. За n=1 имаме $6^2 + 3^{1+2} + 3^1 = 36 + 27 + 3 = 66$. Бидејќи 11|66 тврдењето важи за n=1.
- 2. Претпоставуваме дека тврдењето важи за n=k, т.е дека е точно $11|6^{2k}+3^{k+2}+3^k$.
- 3. Докажуваме дека тврдењето е точно за n=k+1, т.е дека важи $11|6^{2(k+1)}+3^{(k+1)+2}+3^{(k+1)}$ Доказ:

$$6^{2(k+1)} + 3^{(k+1)+2} + 3^{(k+1)} = 6^{2k+2} + 3^{k+3} + 3^{k+1} = 6^{2k} * 6^2 + 3^{k+2} * 3^1 + 3^k * 3^1 = 36 * 6^{2k} + 3 * 3^{k+2} + 3 * 3^k = 36 * 6^{2k} + (36 - 33) * 3^{k+2} + (36 - 33) * 3^k = 36(6^{2k} + 3^{k+2} + 3^k) - 33(3^{k+2} + 3^k)$$

Од чекор 2 (претпоставката) имаме дека $11|6^{2k}+3^{k+2}+3^k$. Од друга страна важи дека $11|33\big(3^{k+2}+3^k\big)$ од каде следува дека изразот $36\big(6^{2k}+3^{k+2}+3^k\big)-33\big(3^{k+2}+3^k\big)$ е делив со 11. Со тоа докажавме дека важи $11|6^{2(k+1)}+3^{(k+1)+2}+3^{(k+1)}$.

Со ова доказот е завршен и даденото твдење е точно.

Задача 9. (12) Дадено е подредувањето ({2,	4, 6, 9, 12, 18, 27,	36, 48, 60, 72},).	Да се најдат:
а) (2) минималните елементи			

а) (2) минималните елементи
Минимални елементи се: 2, 9
б) (2) максималните елементи
Максимални елементи се: 27, 48, 60, 72
в) (2) најголемиот елемент
Нема најголем елемент.
г) (2) најмалиот елемент
Нема најмал елемент.
д) (2) sup{2, 9}
sup{2, 9}=18
ŕ)(2) inf{2, 9}
inf{2, 9} нема

Задача 10. (10) Нека α е релација на Z дефинирана со x α $y \leftrightarrow x$ mod 3 = y mod 3. Да се определи фактор множеството на Z при релацијата α .

 $Z/\alpha = \{\{...-6, -3, 0, 3, 6,...\}, \{...-5, -2, 1, 4, 7, ...\}, \{-4, -1, 2, 5, 8, ...\}\}$ $Z/\alpha = \{\{x \mid x=3*k, k\in Z\}, \{x \mid x=3*k+1, k\in Z\}, \{x \mid x=3*k+2, k\in Z\}\}$ --- Оваа страна е за вежбање и тоа што ќе биде напишано тука нема да се прегледува ---

Име и презиме	Бр. Индекс
Професор кај кој го слуша предметот	

Испит по Дискретна математика 1, 13.06.2014 II група

c	Ξ	3	٦
V		d	d
j	r	١	Ĺ

Време за работа:

150 минути

1	2	3	4	5	6	7	8	9	10	Вкупно

Задача 1. (8) Без користење таблица да се испита дали исказната формула

$$(((lq \land (p \rightarrow q)) \rightarrow lp) \lor r) \longleftrightarrow (T \lor r)$$
 е тавтологија.

Нека претпоставиме дека формулата не е тавтологија.

$$\tau((((\exists q \land (p \rightarrow q)) \rightarrow \exists p) \lor r) \longleftrightarrow (T \lor r)) = \bot$$

$$\tau(T V r) = T$$

$$\tau(((\exists q \land (p \rightarrow q)) \rightarrow \exists p) \lor r) = \bot$$

$$\tau(r) = \bot u$$

$$\tau((\exists q \land (p \rightarrow q)) \rightarrow \exists p) = \bot$$

1.
$$\tau(\lg \Lambda (p \rightarrow q)) = T$$

2.
$$\tau(1p) = \bot \Rightarrow \tau(p) = \top$$

0∂ 1

1.1
$$\tau(\exists q) = \top \Rightarrow \tau(q) = \bot u$$

1.2
$$\tau(p \rightarrow q)$$
 = \top ако замениме $\tau(T \rightarrow \bot)$ = \bot #

Од докажаното следува дека формулата е тавтологија.

Задача 2. (12) Следните реченици да се запишат како искази, а потоа да се најде нивна негација и истата да се прочита:

а) (4) Кога врне и имам обврски за факултет, сум нерасположена.

р: Врне

q: Имам обврски за факултет

r: Расположена сум

$$(p \land q) \rightarrow \neg r$$

Негација:

$$\neg ((p \land q) \rightarrow \neg r) \equiv \neg (\neg (p \land q) \lor \neg r) \equiv (p \land q) \land r$$

Негирана реченица: Врне и имам обврски за факултет и сум расположена.

б) (8) Постојат две различни компјутерски конфигурации кои имаат исти перформанси.

Доменот е множеството компјутерски конфигурации.

P(x, y): x и y имаат исти перформанси.

$$(\exists x)(\exists y) (x\neq y \land P(x, y))$$

Негација:
$$\neg((\exists x)(\exists y) (x \neq y \land P(x, y))) \equiv (\forall x)(\forall y) \neg(x \neq y \land P(x, y))$$

$$\equiv (\forall x)(\forall y) (\neg(x \neq y) \lor \neg P(x, y))$$

$$\equiv (\forall x)(\forall y) (x = y \lor \neg P(x, y))$$

$$\equiv (\forall x)(\forall y) (x \neq y \to \neg P(x, y))$$

Секои две различни компјутерски конфигурации немаат перформанси. (т.е. Нема две различни компјутерски конфигурации кои имаат исти перформанси.)

Задача 3. (12)Бојан и Илинка се договараат за предлози за задачите на испитот по Дискретна математика со лесна, средна и најтешка тежина. Ако некој од нив предложува задача, тогаш ќе даде некоја лесна задача ако и само ако не даде задача со средна тежина. Илинка сака да предложи задача само ако таа биде лесна. Ако Бојан не предложува задача, не предложува ни Илинка. Ако предложуваат и Бојан и Илинка, тогаш ќе предложат задача заедно. Ако Бојан и Илинка предложат задача заедно, тогаш едниот предложува лесна задача ако и само ако другиот предложи задача со средна тежина. Илинка предложила задача за испитот. Дали може да се заклучи дека Бојан предложил лесна задача?

P(x): x предложува задача

Q(x): x дава лесна задача

R(x): x дава задача со средна тежина

S(x, y): x и y предложуваат задача заедно

- 1. $(\forall x)(P(x) \rightarrow (Q(x) \leftrightarrow \neg R(x)))$ претпоставка
- 2. $P(Илинка) \rightarrow Q(Илинка)$ претпоставка
- 3. $\neg P(Бојан) \rightarrow \neg P(Илинка) претпоставка$
- 4. $P(Бојан) \land P(Илинка) \rightarrow S(Бојан, Илинка) претпоставка$
- 5. $(\forall x) (\forall y) (S(x, y) \rightarrow (R(x) \leftrightarrow R(y)))$ претпоставка
- 6. P(Илинка) претпоставка
- 7. Q(Илинка) од 2 и 6
- 8. *P*(Бојан) од 3 и 6
- 9. Р(Бојан)∧ Р(Илинка) од 6 и 8
- 10. S(Бојан, Илинка) од 4 и 9
- 11. $S(Бојан, Илинка) \rightarrow (R(Бојан) \leftrightarrow R(Илинка)) од 5 за х=Бојан, у=Илинка$
- 12. R (Бојан) $\leftrightarrow R$ (Илинка) од 10 и 11
- 13. $P(Илинка) \rightarrow (Q(Илинка) \leftrightarrow \neg R(Илинка)) од 1 за Илинка$
- 14. Q(Илинка) ↔ $\neg R$ (Илинка) од 13 и 6
- 15. $\neg R$ (Илинка) од 14 и 7.
- 16. $\neg R$ (Бојан) $\leftrightarrow \neg R$ (Илинка) од 12
- 17. ¬R(Бојан) од 15 и 16
- 18. P(Бојан)→ (Q(Бојан)↔ ¬<math>R(Бојан)) − од 1 за Бојан
- 19. $Q(Бојан) \leftrightarrow \neg R(Бојан) од 18 и 8$
- 20. Q(Бојан) од 19 и 17

Q(Бојан): Бојан дава лесна задача.

Задача 4.(6)Да се одреди вистинитоста на следните тврдења:

- а) Ако 2+2=4, тогаш 1+1=2. ----Да-----
- б) 2+2=3 ако и само ако 1+1=5. -----Да----
- в) 1+1=2 и 2+2=5. ----He-----

Задача 5.(10) Покажи дали важи $\overline{\overline{B} \cup (A \cup C)} \subseteq A \oplus B \oplus C$.

$$\overline{B} \cup (A \cup C) = B \cap \overline{(A \cup C)} = B \cap \overline{A} \cap \overline{C}$$

 $A \oplus B \oplus C = (A \cap \bar{B} \cap \bar{C}) \cup (\bar{A} \cap B \cap \bar{C}) \cup (\bar{A} \cap \bar{B} \cap C) \cup (A \cap B \cap C)$

 $B \cap \bar{A} \cap \bar{C} \subseteq (A \cap \bar{B} \cap \bar{C}) \cup (\bar{A} \cap B \cap \bar{C}) \cup (\bar{A} \cap \bar{B} \cap C) \cup (A \cap B \cap C)$

 $B \cap \bar{A} \cap \bar{C} \subseteq A \oplus B \oplus C$

Задача 6.(10) Нека A={a, b, c, d, e, i}, B={1, 2, 3, 4, 5, 6} и C={x, y, z}, и нека се дадени пресликувања f: В \rightarrow A и g: B \rightarrow C определени со $f:\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ b & a & e & i & c & d \end{pmatrix}$ и $g:\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ y & z & x & y & x & x \end{pmatrix}$. Да се определи h(x)ако h = g °f 1 и h 1 (D) ако D \subseteq C и D = {x, y}.

f е биекција, па постои инверзно пресликување

$$f^{-1}: A \rightarrow B$$

$$f^{-1}$$
: $\binom{a b c d e i}{2 1 5 6 3 4}$

Кодоменот на f^1 е еднаков со доменот на g па можно е преслукување h

$$h: A \rightarrow C$$

$$h: \binom{a\ b\ c\ d\ e\ i}{z\ y\ x\ x\ y}$$

 $h^{-1}(D)=\{b, c, d, e, i\}$

Задача 7.(10) Пресметај

 $110_2{}^{3722_8} (mod\ 613_{16})$

 $110_{2} = 6$ $3722_{8} = 2002$ $613_{16} = 1555$ $6^{1} \equiv 6 (mod \ 1555)$ $6^{2} \equiv 36 (mod \ 1555)$ $6^{3} \equiv 216 (mod \ 1555)$ $6^{2} * 6^{3} \equiv 7776 (mod \ 1555)$ $6^{5} \equiv 1 (mod \ 1555)$ $6^{5}^{400} \equiv 1^{400} (mod \ 1555)$ $6^{2000} * 6^{2} \equiv 1 * 36 (mod \ 1555)$ $6^{2002} \equiv 36 (mod \ 1555)$

(*reshenie vo mathematica*) 2^110 8^3722 16^613 Mod[6^2002,1555]

Задача 8. (10) Да се докаже дека за секој природен број $n \ge 1$, бројот $5^{n+3} + 11^{3n+1}$ е делив со 17.

Решение:

Задачата се докажува со математичка индукција.

- 1. За n=1 имаме $5^{1+3}+11^{3+1}=5^4+11^4=625+14641=15266=17*898$. Бидејќи 17|15266 тврдењето важи за n=1.
- 2. Претпоставуваме дека тврдењето важи за n=k, т.е дека е точно $17|5^{k+3}+11^{3k+1}$.
- 3. Докажуваме дека тврдењето е точно за n=k+1, т.е дека важи $17|5^{(k+1)+3}+11^{3(k+1)+1}$ Локаз:

$$5^{(k+1)+3}+11^{3(k+1)+1}=5^{k+4}+11^{3k+4}=5^{k+3}*5^1+11^{3k+1}*11^3=5*5^{k+3}+1331*11^{3k+1}=5*5^{k+3}+(1326+5)*11^{3k+1}=5\left(5^{k+3}+11^{3k+1}\right)+1326*11^{3k+1}$$
 Од чекор 2 (претпоставката) имаме дека $17|5^{k+3}+11^{3k+1}$. Од друга страна важи дека $17|1326*11^{3k+1}$ од каде следува дека изразот $5\left(5^{k+3}+11^{3k+1}\right)+1326*11^{3k+1}$ е делив со 17. Со тоа докажавме дека важи $17|5^{(k+1)+3}+11^{3(k+1)+1}$.

Со ова доказот е завршен и даденото твдење е точно.

Задача 9. (12)Дадено е подредувањето({3, 5, 9, 15, 24, 45, 48, 60, 63, 72},). Да се нај,	дат:
а) (2) минималните елементи	

а) (2) минималните елементи
Минимални елементи се: 3, 5
б) (2) максималните елементи
Максимални елементи се: 45, 48, 60, 63, 72
a) (2) waita a a waran a a a waran a
в) (2) најголемиот елемент
Нема најголем елемент.
г) (2) најмалиот елемент
Нема најмал елемент.
д) (2) sup{3, 9}
sup{3, 9}=9
σαρ _[σ, σ _] -σ
f) (2) inf{3, 9}
inf{3, 9}=3

Задача 10.(10) Нека α е релација на Z дефинирана со x α $y \longleftrightarrow x \mod 4 = y \mod 4$. Да се определи фактор множеството на Z при релацијата α .

 $Z/\alpha = \{\{...-8, -4, 0, 4, 8,...\}, \{...-7, -3, 1, 5, 9, ...\}, \{-6, -2, 2, 6, 10, ...\}, \{-5, -1, 3, 7, 11, ...\}\}$ $Z/\alpha = \{\{x \mid x=4*k, k \in Z\}, \{x \mid x=4*k+1, k \in Z\}, \{x \mid x=4*k+2, k \in Z\}, \{x \mid x=4*k+3, k \in Z\}\}$ --- Оваа страна е за вежбање и тоа што ќе биде напишано тука нема да се прегледува ---

Име и презиме	Бр. Индекс
-	
Професор кај кој го слуша предметот	

Испит по Дискретна математика 1, 13.06.2014 III група

	-
V-	-0
- 70	•
- 31	w.
/	ъ.

Време за работа:

150 минути

1	2	3	4	5	6	7	8	9	10	Вкупно

Задача 1. (8) Без користење таблица да се испита дали исказната формула

 $((b\rightarrow c) \land (c\rightarrow a)) \rightarrow (b\rightarrow a)$ е тавтологија.

Нека претпоставиме дека формулата не е тавтологија.

$$\tau(((b \rightarrow c) \land (c \rightarrow a)) \rightarrow (b \rightarrow a)) = \bot$$

1.
$$\tau((b \rightarrow c) \land (c \rightarrow a)) = T$$

2.
$$\tau(b \rightarrow a) = \bot \Rightarrow \tau(b) = \top u \tau(a) = \bot$$

0∂ 1

1.1
$$\tau(b \to c)$$
 = $\top u \Rightarrow$ бидејќи $\tau(b)$ = \top (од 2) тогаш $\tau(c)$ = \top

1.2
$$\tau$$
($c \rightarrow a$) = T ако замениме τ ($T \rightarrow \bot$) = \bot #

Од докажаното следува дека формулата е тавтологија.

Задача 2. (12)Следните реченици да се запишат како искази, а потоа да се најде нивна негација и истата да се прочита:

а) (4) Кога грее сонце и сум распо.	ложена, сакам да одам на прошетн	кa.
-------------------------------------	----------------------------------	-----

р: Грее сонце

q: Расположена сум

r: Сакам да одам на прошетка

$$(p \land q) \rightarrow r$$

Негација:

$$\neg ((p \land q) \rightarrow r) \equiv \neg (\neg (p \land q) \lor r) \equiv (p \land q) \land \neg r$$

Негирана реченица: Грее сонце и сум расположена, и не сакам да одам на прошетка.

б) (8) Не постојат две различни книги кои имаат исти автори - професори на ФИНКИ.

Доменот е множеството книги.

P(x, y): x и y имаат исти автори - професори на ФИНКИ.

$$\neg((\exists x)(\exists y)(x\neq y \land P(x,y)))$$

Негација: $\neg(\neg((\exists x)(\exists y)(x\neq y \land P(x,y)))) \equiv (\exists x)(\exists y)(x\neq y \land P(x,y))$

Постојат две различни книги кои имаат исти автори - професори на ФИНКИ.

Задача 3.(12)Бојан и Илинка се договараат за предлози за задачите на испитот по Дискретна математика со лесна, средна и тешка тежина. Ако некој од нив предложува задача, тогаш ќе даде некоја задача со средна тежина ако и само ако не даде лесна задача. Илинка сака да предложи задача само ако таа биде со средна тежина. Ако Бојан не предложува задача, не предложува ни Илинка. Ако предложуваат и Бојан и Илинка, тогаш ќе предложат задача заедно. Ако Бојан и Илинка предложат задача заедно, тогаш едниот предложува задача со средна тежина ако и само ако другиот предложи лесна задача. Илинка предложила задача за испитот. Дали може да се заклучи дека Бојан предложил задача со средна тежина?

P(x): x предложува задача

Q(x): x дава задача со средна тежина

R(x): x дава лесна задача

S(x, y): x и y предложуваат задача заедно

- 1. $(\forall x)(P(x) \rightarrow (Q(x) \leftrightarrow \neg R(x)))$ претпоставка
- 2. $P(Илинка) \rightarrow Q(Илинка)$ претпоставка
- 3. $\neg P(Бојан) \rightarrow \neg P(Илинка) претпоставка$
- 4. P(Бојан)∧ P(Илинка) → S(Бојан, Илинка) претпоставка
- 5. $(\forall x) (\forall y) (S(x, y) \rightarrow (R(x) \leftrightarrow R(y)))$ претпоставка
- 6. P(Илинка) претпоставка
- 7. *Q*(Илинка) од 2 и 6
- 8. *P*(Бојан) од 3 и 6
- 9. Р(Бојан)∧ Р(Илинка) од 6 и 8
- 10. S(Бојан, Илинка) од 4 и 9
- 11. $S(Бојан, Илинка) \rightarrow (R(Бојан) \leftrightarrow R(Илинка)) од 5 за х=Бојан, у=Илинка$
- 12. R (Бојан) $\leftrightarrow R$ (Илинка) од 10 и 11
- 13. $P(Илинка) \rightarrow (Q(Илинка) \leftrightarrow \neg R(Илинка)) од 1 за Илинка$
- 14. Q(Илинка) ↔ $\neg R$ (Илинка) од 13 и 6
- 15. $\neg R$ (Илинка) од 14 и 7.
- 16. $\neg R$ (Бојан) $\leftrightarrow \neg R$ (Илинка) од 12
- 17. ¬R(Бојан) од 15 и 16
- 18. $P(Бојан) \rightarrow (Q(Бојан) \leftrightarrow \neg R(Бојан)) од 1 за Бојан$
- 19. $Q(Бојан) \leftrightarrow \neg R(Бојан) од 18 и 8$
- 20. Q(Бојан) од 19 и 17

Q(Бојан): Бојан дава задача со средна тежина.

Задача 4.(6) Да се одреди вистинитоста на следните тврдења:

- а) 1+1=2 или 2+2=3. ----Да------
- б) Ако 1+1=2, тогаш 2+2=4. ----Да-----
- в) 1+1=5 ако и само ако 2+2=3. ----Да------

Задача 5.(10) Покажи дали важи $\overline{\overline{\text{C}} \cup (A \cup B)} \subseteq A \oplus B \oplus C.$

$$\overline{C \cup (A \cup B)} = C \cap \overline{(A \cup B)} = C \cap \overline{A} \cap \overline{B}$$

 $A \oplus B \oplus C = (A \cap \bar{B} \cap \bar{C}) \cup (\bar{A} \cap B \cap \bar{C}) \cup (\bar{A} \cap \bar{B} \cap C) \cup (A \cap B \cap C)$

 $\mathcal{C} \cap \bar{A} \cap \bar{B} \subseteq (A \cap \bar{B} \cap \bar{C}) \cup (\bar{A} \cap B \cap \bar{C}) \cup (\bar{A} \cap \bar{B} \cap C) \cup (A \cap B \cap C)$

 $C \cap \overline{A} \cap \overline{B} \subseteq A \oplus B \oplus C$

Задача 6.(10) Нека A={a, b, c, d, e, i}, B={x, y, z} и C={1, 2, 3}, и нека се дадени пресликувања f: A \rightarrow B и g: C \rightarrow B определени со f : $\begin{pmatrix} a & b & c & d & e & i \\ x & x & y & y & z \end{pmatrix}$ и g : $\begin{pmatrix} 1 & 2 & 3 \\ y & z & x \end{pmatrix}$. Да се определи h(x) ако h =g $^{-1}$ ° f и h $^{-1}$ (D) ако D \subseteq C и D = {2, 3}.

д е биекција, па постои инверзно пресликување

$$g^{-1}: B \to C$$

$$g^{-1}$$
: $\begin{pmatrix} x & y & z \\ 3 & 1 & 2 \end{pmatrix}$

Кодоменот на f е еднаков со доменот на g^{-1} па можно е преслукување h

$$h: A \rightarrow C$$

$$h: \begin{pmatrix} a & b & c & d & e & i \\ 3 & 3 & 1 & 1 & 1 & 2 \end{pmatrix}$$

 $h^{-1}(D)=\{a, b, i\}$

Задача 7.(10) Пресметај

 $11_4 = 5$

 $11_4^{3727_8} (mod\ 61A_{16})$

 $3727_8 = 2007$ $61A_{16} = 1562$ $5^1 \equiv 5 \pmod{1562}$ $5^2 \equiv 25 \pmod{1562}$ $5^3 \equiv 125 \pmod{1562}$ $5^2 * 5^3 \equiv 3125 \pmod{1562}$ $5^5 \equiv 1 \pmod{1562}$ $5^{5^{401}} \equiv 1^{401} \pmod{1562}$ $5^{2005} * 5^2 \equiv 1 * 25 \pmod{1562}$ $5^{2007} \equiv 25 \pmod{1562}$

(*reshenie vo mathematica*) 4^^11 8^^3727 16^^61a Mod[5^2007,1562]

Задача 8. (10) Да се докаже дека за секој природен број $n \ge 1$, бројот $7 * 5^{2n} + 12 * 6^n$ е делив со 19.

Решение:

Задачата се докажува со математичка индукција.

- 1. За n=1 имаме $7*5^2+12*6^1=7*25+12*6=175+72=247=19*13$. Бидејќи 19|247 тврдењето важи за n=1.
- 2. Претпоставуваме дека тврдењето важи за n=k, т.е дека е точно $19|7*5^{2k}+12*6^k$.
- 3. Докажуваме дека тврдењето е точно за n=k+1, т.е дека важи $19|7*5^{2(k+1)}+12*6^{k+1}$ Доказ:

$$7*5^{2(k+1)}+12*6^{k+1}=7*5^{2k+2}+12*6^{k+1}=7*5^{2k}*5^2+12*6^k*6^1=25*7*5^{2k}+6*12*6^k=(19+6)*7*5^{2k}+6*12*6^k=6(7*5^{2k}+12*6^k)+19*7*5^{2k}$$
 Од чекор 2 (претпоставката) имаме дека $19|7*5^{2k}+12*6^k$. Од друга страна важи дека $19|19*7*5^{2k}+12*6^k$ од каде следува дека изразот $6(7*5^{2k}+12*6^k)+19*7*5^{2k}$ е делив со 19. Со тоа докажавме дека важи $19|7*5^{2(k+1)}+12*6^{k+1}$

Со ова доказот е завршен и даденото твдење е точно.

Задача 9. (12) Дадено е подредувањето ({2, 4, 5, 9, 18, 20, 27, 36, 48, 60, 72}, |). Да сенајдат: а) (2) минималните елементи

a, (=,
Минимални елементи се: 2, 5, 9
б) (2) максималните елементи
Максимални елеенти се: 27, 48, 60, 72
в) (2) најголемиот елемент
Нема најголем елемент.
г) (2) најмалиот елемент
Нема најмал елемент.
д) (2) sup{5, 9}
sup{5, 9} нема
ŕ) (2) inf{5, 9}
inf{5, 9} нема

Задача 10.(10) Нека α е релација на Z дефинирана со x α $y \leftrightarrow x \mod 5 = y \mod 5$. Да се определи фактор множеството на Z при релацијата α .

 $Z/\alpha = \{\{...-10, -5, 0, 5, 10,...\}, \{...-9, -4, 1, 6, 11, ...\}, \{-8, -3, 2, 7, 12, ...\}, \{-7, -2, 3, 8, 13, ...\}, \{-6, -1, 4, 9, 14, ...\}\}$ $Z/\alpha = \{\{x \mid x=5*k, k\in Z\}, \{x \mid x=5*k+1, k\in Z\}, \{x \mid x=5*k+2, k\in Z\}, \{x \mid x=5*k+3, k\in Z\}, \{x \mid x=5*k+4, k\in Z\}\}$

--- Оваа страна е за вежбање и тоа што ќе биде напишано тука нема да се прегледува ---

Име и презиме	Бр. Индекс
Професор кај кој го слуша предметот	

Испит по Дискретна математика 1, 13.06.2014 IV група

60	⊃
10	1
/	\sim

Време за работа:

150 минути

1	2	3	4	5	6	7	8	9	10	Вкупно

Задача 1. (8) Без користење таблица да се испита дали исказната формула

(((1c
$$\Lambda$$
 (b \rightarrow c)) \rightarrow 1b) V a) \leftrightarrow (T V a) е тавтологија.

Нека претпоставиме дека формулата не е тавтологија.

$$\tau((((1c \land (b \rightarrow c)) \rightarrow 1b) \lor a) \longleftrightarrow (T \lor a)) = \bot$$

$$\tau(T V a) = T$$

$$\tau(((\exists c \land (b \rightarrow c)) \rightarrow \exists b) \lor a) = \bot$$

$$\tau(a) = \bot u$$

$$\tau((\exists c \land (b \rightarrow c)) \rightarrow \exists b) = \bot$$

1.
$$\tau(\exists c \land (b \rightarrow c)) = T$$

2.
$$\tau(\exists b) = \bot \Rightarrow \tau(b) = \top$$

0∂ 1

1.1
$$\tau(\exists c) = \top \Rightarrow \tau(c) = \bot u$$

1.2
$$\tau(b \rightarrow c)$$
 = \top ако замениме $\tau(T \rightarrow \bot)$ = \bot #

Од докажаното следува дека формулата е тавтологија.

Задача 2. (12)Следните реченици да се запишат како искази, а потоа да се најде нивна негација и истата да се прочита:

a) (4)	Кога	врне	и сум	нерасг	толожен,	не ми	ce	учи.
--------	------	------	-------	--------	----------	-------	----	------

р: Врне

q: Расположен сум

r: Ми се учи

$$(p \land \neg q) \rightarrow \neg r$$

Негација:

$$\neg ((p \land \neg q) \rightarrow \neg r) \equiv \neg (\neg (p \land \neg q) \lor \neg r) \equiv (p \land \neg q) \land r$$

Негирана реченица: Врне и сум расположен, и ми се учи.

б) (8) Не постојат две исти компјутерски конфигурации кои имаат исти перформанси.

Доменот е множеството компјутерски конфигурации.

P(x, y): x и y имаат исти перформанси.

$$\neg((\exists x)(\exists y) (x=y \land P(x, y)))$$

Негација:
$$\neg(\neg((\exists x)(\exists y) (x=y \land P(x,y)))) \equiv (\exists x)(\exists y) (x=y \land P(x,y))$$

Постојат две исти компјутерски конфигурации кои имаат исти перформанси.

Задача 3. (12)Бојан и Илинка се договараат за предлози за задачите на испитот по Дискретна математика со лесна, средна и тешка тежина. Ако некој од нив предложува задача, тогаш ќе даде некоја тешка задача ако и само ако не даде задача со средна тежина. Бојан сака да предложи задача само ако таа биде тешка. Ако Илинка не предложува задача, не предложува ни Бојан. Ако предложуваат и Бојан и Илинка, тогаш ќе предложат задача заедно. Ако Бојан и Илинка предложат задача заедно, тогаш едниот предложува тешка задача ако и само ако другиот предложи задача со средна тежина. Бојан предложил задача за испитот. Дали може да се заклучи дека Илинка предложила тешка задача?

P(x): x предложува задача

Q(x): x дава тешка задача

R(x): x дава задача со средна тежина

S(x, y): x и y предложуваат задача заедно

- 1. $(\forall x)(P(x) \rightarrow (Q(x) \leftrightarrow \neg R(x)))$ претпоставка
- 2. $P(Бојан) \rightarrow Q(Бојан) претпоставка$
- 3. ¬P(Илинка)→ ¬P(Бојан) − претпоставка
- 4. P(Илинка)∧ P(Бојан) → S(Илинка, Бојан) претпоставка
- 5. $(\forall x) (\forall y) (S(x, y) \rightarrow (R(x) \leftrightarrow R(y)))$ претпоставка
- 6. P(Бојан) претпоставка
- 7. Q(Боjан) од 2 и 6
- 8. *P*(Илинка) од 3 и 6
- 9. Р(Бојан)∧ Р(Илинка) од 6 и 8
- 10. S(Илинка, Бојан) од 4 и 9
- 11. $S(Илинка, Бојан) \rightarrow (R(Илинка) \leftrightarrow R(Бојан)) од 5 за х=Илинка, у=Бојан$
- 12. R (Илинка) ↔ R(Бојан) од 10 и 11
- 13. $P(Бојан) \rightarrow (Q(Бојан) \leftrightarrow \neg R(Бојан)) од 1 за Бојан$
- 14. Q(Бојан) \leftrightarrow ¬<math>R(Бојан) од 13 и 6
- 15. ¬*R*(Бојан) − од 14 и 7.
- 16. $\neg R$ (Илинка) $\leftrightarrow \neg R$ (Бојан) од 12
- 17. ¬R(Илинка) од 15 и 16
- 18. P(Илинка) → (Q(Илинка) ← $\neg R(Илинка)$) од 1 за Илинка
- 19. Q(Илинка) → $\neg R$ (Илинка) од 18 и 8
- 20. Q(Илинка) од 19 и 17

Q(Бојан): Илинка дава тешка задача.

Задача 4.(6) Да се одреди вистинитоста на следните тврдења:

- а) Ако 1+1=2, тогаш 2+2=4. -----Да-----
- б) 2+2=2 или 3+3=3. -----Не-----
- в) 1+1=10 ако и само ако 2+2=20. ----Да-----

Задача 5.(10) Покажи дали важи $\overline{\overline{A} \cup (\overline{B} \cup \overline{C})} \subseteq A \oplus B \oplus C$.

$$\overline{\overline{A} \cup (\overline{B} \cup \overline{C})} = \overline{A} \cap \overline{(\overline{B} \cup \overline{C})} = A \cap B \cap C$$

 $A \oplus B \oplus C = (A \cap \bar{B} \cap \bar{C}) \cup (\bar{A} \cap B \cap \bar{C}) \cup (\bar{A} \cap \bar{B} \cap C) \cup (A \cap B \cap C)$

 $A \cap B \cap C \subseteq (A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap B \cap \overline{C}) \cup (\overline{A} \cap \overline{B} \cap C) \cup (A \cap B \cap C)$ $A \cap B \cap C \subseteq A \oplus B \oplus C$

Задача 6.(10) Нека A={1, 2, 3, 4, 5, 6}, B={a, b, c, d, e, i} и C={I, m, n}, и нека се дадени пресликувања f: B \rightarrow A и g: B \rightarrow C определени со f : $\begin{pmatrix} a & b & c & d & e & i \\ 2 & 1 & 5 & 6 & 3 & 4 \end{pmatrix}$ и g : $\begin{pmatrix} a & b & c & d & e & i \\ m & n & l & l & m \end{pmatrix}$. Да се определи h(x) ако h(x) =g ° f¹(x) и h¹(D) ако D \subseteq C и D = {I, m}.

f е биекција, па постои инверзно пресликување

$$f^{-1}: A \rightarrow B$$

$$f^{-1}$$
: $\binom{1\ 2\ 3\ 4\ 5\ 6}{b\ a\ e\ i\ c\ d}$

Кодоменот на f^1 е еднаков со доменот на g па можно е преслукување h

$$h: A \rightarrow C$$

$$h: \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ n & m & l & m & l & l \end{pmatrix}$$

 $h^{-1}(D)=\{2, 3, 4, 5, 6\}$

Задача 7.(10) Пресметај

 $12_4^{7D2_{16}} (mod\ 3023_8)$

 $12_4 = 6$ $7D2_{16} = 2002$ $3023_8 = 1555$ $6^1 \equiv 6 \pmod{1555}$ $6^2 \equiv 36 \pmod{1555}$ $6^3 \equiv 216 \pmod{1555}$ $6^2 * 6^3 \equiv 7776 \pmod{1555}$ $6^5 \equiv 1 \pmod{1555}$ $6^5 \equiv 1 \pmod{1555}$ $6^{2000} * 6^2 \equiv 1 * 36 \pmod{1555}$ $6^{2000} \equiv 36 \pmod{1555}$

(*reshenie vo mathematica*) 4^^12 16^^7D2 8^^3023 Mod[6^2002,1555]

Задача 8. (10) Да се докаже дека за секој природен број n≥1, бројот $4^n + 15n - 1$ е делив со 9.

Решение:

Задачата се докажува со математичка индукција.

- 1. За n=1 имаме $4^1 + 15 * 1 1 = 4 + 15 1 = 18$. Бидејќи $9 \mid 18$ тврдењето важи за n=1.
- 2. Претпоставуваме дека тврдењето важи за n=k, т.е дека е точно $9|4^k+15k-1$.
- 3. Докажуваме дека тврдењето е точно за n=k+1, т.е дека важи $9|4^{k+1}+15(k+1)-1$ Доказ:

$$4^{k+1} + 15(k+1) - 1 = 4^k * 4^1 + 15k + 15 - 1 = 4 * 4^k + 15k + 14 = 4(4^k + 15k - 1) + (-45k + 18)$$

Од чекор 2 (претпоставката) имаме дека $9|4^k+15*k-1$. Од друга страна важи дека 9|(-45k+18) од каде следува дека изразот $4(4^k+15k-1)+(-45k+18)$ е делив со 9. Со тоа докажавме дека важи $9|4^{k+1}+15(k+1)-1$.

Со ова доказот е завршен и даденото твдење е точно.

Задача 9. (12) Дадено е подредувањето ({	3, 4, 6, 9, 12	2, 18, 27, 36, 48, 6	0, 72},). Да се најдат:
а) (2) минималните елементи			

а) (2) минималните елементи
Минимални елементи се: 3, 4
б) (2) максималните елементи
Максимални елементи се: 27, 48, 60, 72
With Community Co. 27, 40, 00, 72
в) (2) најголемиот елемент
Нема најголем елемент.
г) (2) најмалиот елемент
Нема најмал елемент.
д) (2) sup{3, 4}
д) (2) sup(3, 4)
sup{3, 4}=12
() (0) : ((0, 4)
ŕ) (2) inf{3, 4}
inf{3, 4} нема

Задача 10.(10) Нека α е релација на Z дефинирана со x α $y \leftrightarrow x \mod 6 = y \mod 6$. Да се определи фактор множеството на Z при релацијата α .

 $Z/\alpha = \{\{...-12, -6, 0, 6, 12,...\}, \{...-11, -5, 1, 7, 13, ...\}, \{-10, -4, 2, 8, 14, ...\}, \{-9, -3, 3, 9, 15, ...\}, \{-8, -2, 4, 10, 16, ...\}, \{-7, -1, 5, 11, 17, ...\}\}$ $Z/\alpha = \{\{x \mid x=6*k, k\in Z\}, \{x \mid x=6*k+1, k\in Z\}, \{x \mid x=6*k+2, k\in Z\}, \{x \mid x=6*k+3, k\in Z\}, \{x \mid x=6*k+4, k\in Z\}, \{x \mid x=6*k+5, k\in Z\}\}$ --- Оваа страна е за вежбање и тоа што ќе биде напишано тука нема да се прегледува ---

