INTRODUCTION TO LIE ALGEBRAS - EXERCISES

- 14. Let \mathfrak{g} be any Lie algebra over the field \mathbb{C} . Show that the following are equivalent:
 - (i) the Lie algebra g is solvable;
 - (ii) there exist ideals $\mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \ldots \supset \mathfrak{g}_n$ of \mathfrak{g} such that $\mathfrak{g}_0 = \mathfrak{g}$, $\mathfrak{g}_n = \{0\}$, and for every index $i = 0, \ldots, n-1$ the factor Lie algebra $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ is Abelian.
- **15.** Let \mathfrak{g} be any Lie algebra over a field \mathbb{F} . Consider the image ad \mathfrak{g} of the homomorphism $\mathrm{ad}:\mathfrak{g}\to\mathrm{Der}(\mathfrak{g})$. This image is a Lie subalgebra in $\mathrm{Der}(\mathfrak{g})$, the Lie algebra of all derivations of \mathfrak{g} . Prove that the Lie algebra \mathfrak{g} is solvable or nilpotent if and only if this holds for the Lie algebra $\mathrm{ad}\,\mathfrak{g}$.