Sprawozdanie Strona 1

Baraniecki Karol	Prowadzący:	Numer ćwiczenia
Byczko Maciej	Dr inż. Dominik Żelazny	laboratoria 18
PT 16:30 TP	Temat ćwiczenia: Analizator parametrów sieci - EMA-90N	Ocena:
Grupa:	Data wykonania:	
D	4 listopada 2021	

1 Zadania do opracowania

1.1 Sieć elektryczna

- napięcie różnica potencjałów elektrycznych między dwoma punktami obwodu elektrycznego lub pola elektrycznego.
- prąd uporządkowany ruch ładunków elektrycznych
- moc czynna część mocy, którą odbiornik pobiera ze źródła i zamienia na pracę lub ciepło.
- moc bierna wielkość opisująca pulsowanie energii elektrycznej między elementami obwodu elektrycznego.
- $\cos(\phi)$ Współczynnik mocy, stosunek mocy czynnej do mocy pozornej, czyli stosunek mocy użytecznej do iloczynu napięcia i prądu.

1.2 Ethernet

- IP (Internet Protocol) protokół komunikacyjny warstwy sieciowej modelu OSI (warstwy internetu w modelu TCP/IP).
- Maska liczba służąca do wyodrębnienia w adresie IP części będącej adresem podsieci i części, która jest adresem hosta w tej podsieci.
- Brama domyślna router, do którego komputery sieci lokalnej mają wysyłać pakiety o ile nie powinny być one kierowane w sieć lokalną lub do innych, znanych im routerów.
- DHCP (Dynamic Host Configuration Protocol) protokół komunikacyjny umożliwiający hostom uzyskanie od serwera danych konfiguracyjnych, np. adresu IP hosta, adresu IP bramy sieciowej, adresu serwera DNS, maski podsieci.

1.3 Protokół modbus TCP/IP

Modbus to popularny protokół komunikacyjny w którym komunikacja między urządzeniami realizowana jest w architekturze master-slave/client-server. Jest to protokół typu otwartego, co oznacza iż wszystkie niezbędne informacje do jego implementacji są ogólnodostępne.

2 Zadania do wykonania

Połączyć urządzenie EMA-90N z komputerem za pomocą komunikacji Ethernet Uruchomić aplikację demonstracyjną i połączyć się z urządzaniem odczytując napięcie i prąd na L1 Napisać aplikację w C, która połączy się z urządzeniem i umożliwi odczytanie napięcia i prądu L1 z użyciem protokołu modbus.