

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 13

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

lei.zhang@univie.ac.at

STAN DEBUGGING

cognitive model
statistics
computing

Make it Reproducible

- Scripts are good documentations!
- Save your seed (not cross platform*)

Make it Readable

- Choose a consistent style
- Give meaningful variable names

Start with Simulated Data

Design Top-Down, Code Bottom-Up

Write Comments

Code never lies!

The Editor of your Choice


```
data {
  int<lower=0> w;
  int<lower=0> N;
  int<lower=0> N;
}

parameters {
  real<lower=0,upper=1> p;
}

model {
  p ~ uniform(0,1);
  w ~ binomial(N, p);
}

  data {
  int<lower=0> w;
  int<lower=0> N;
}

parameters {
  real<lower=0,upper=1> p;
}

model {
  p ~ uniform(0,1);
  w ~ binomial(N, p);
}
```

```
data {
   int<lower=0> w;
   int<lower=0> N;
}

parameters {
   real<lower=0,upper=1> p;
}

model {
   p ~ uniform(0,1);
   w ~ binomial(N, p);
}
```

```
data {
  int<lower=0> w;
  int<lower=0> N;
}

parameters {
  real<lower=0,upper=1> p;
}

model {
  p ~ uniform(0,1);
  w ~ binomial(N, p);
}
```

^{*} Click on each logo to visit their homepage.

^{**} Comparison

cognitive model

statistics

computing

Common Error / Warning Types

ERRORS

WARNINGS

forget ";" mis-indexing: mismatch or constant support mismatch improper constrain improper dimension declaration vectorizing when not supported wrong data type wrong distribution names forget priors miss spelling

forget last blank line use earlier version of Stan numerical problems divergent transitions hit max treedepth BFMI too low improper prior

Debugging in Stan

- always use a *.stan file
- use lookup()
- start with simulated data
- be careful with copy/paste
- run 1 chain, 1 sample
- debugging by printing

```
for (s in 1:1) {
 vector[2] v;
  real pe;
  v <- initV;
  for (t in 1:nTrials) {
    choice[s,t] ~ categorical_logit( tau[s] * v );
    print("s = ", s, ", t = ", t, ", \vee = ", \vee);
    pe <- reward[s,t] - v[choice[s,t]];</pre>
    v[choice[s,t]] <- v[choice[s,t]] + lr[s] * pe;</pre>
```

cognitive model statistics

```
Debugging Stan in RStudio
```

```
rstan::rstudio_stanc("_scripts/binomial_globe_model.stan")
```


Example: Memory Retention

cognitive model

statistics

	Time Interval								
Subject	1	2	4	7	12	21	35	59	99
1	18	18	16	13	9	6	4	4	4
2	17	13	9	6	4	4	4	4	4
3	14	10	6	4	4	4	4	4	4

Simple Exponential Decay Model

cognitive model

statistics

Exercise XIV

statistics

```
.../09.debugging/_scripts/exp_decay_main.R
```

TASK: Debugging the Memory retention model

```
> dataList
$`k`
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 18 18 16 13 9 6 4 4 4
[2,] 17 13 9 6 4 4 4 4 4
[3,] 14 10 6 4 4 4 4 4 4

$nItem
[1] 18

$intervals
[1] 1 2 4 7 12 21 35 59 99

$ns
[1] 3

$nt
[1] 9
```

```
>= 9 errors!
```

Viel Spaß!

cognitive model

statistics

computing

```
Satisfied with the results?
```

Warning messages: 1: There were 3998 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup 2: Examine the pairs() plot to diagnose sampling problems

Why Stan Fails?

computing

```
for (s in 1:ns) {
    for (t in 1:nt) {
        theta[s,t] = fmin(1.0, exp(-alpha[s] * intervals[t]) + beta[s]);
        k[s,t] ~ binomial(nItem, theta[s,t]);
    }
}
```

Non-differentiable link (likelihood) functions are bad news, particularly in Stan, which relies on derivatives.

What to look for?

cognitive model

statistics

```
> source('stan_utility.R')
> check_all_diagnostics(fit)
[1] "n_eff / iter looks reasonable for all parameters"
[1] "Rhat looks reasonable for all parameters"
[1] "0 of 4000 iterations ended with a divergence (0%)"
[1] "0 of 4000 iterations saturated the maximum tree depth of 10 (0%)"
[1] "E-BFMI indicated no pathological behavior"
```


INTRODUCTION TO MODEL-BASED FMRI

cognitive model

statistics

computing

Model-based Analysis

Perform Model-based fMRI

statistics

action selection

cognitive model

statistics

)ummary

Measure data on experimental task Clean up Inspect data for no-compliant behavior model-free analysis **Posterior** of the data **Predictive** Characteristic Check signature of data simulate data define a cognitive model fit simulated data simulate data Parameter Recovery (based on optimal **Model Recovery** parameters) M1 **Model fitting** M2 Fit model to data **Model selection** obtain optimal parameters M3

cognitive model
statistics
computing

Adapted from Jan Gläscher's workshop

Summary of Topics

Summary of Examples/Exercises

FOLDER	TASK	MODEL		
01.R_basics	NA	NA		
02.binomial_globe	Globe toss	Binomial Model		
03.bernoulli_coin	Coin flip	Bernoulli Model		
04.regression_height		Linear regression model		
05.regression_height_poly	Observed weight and height			
06.reinforcement_learning	2	Simple reinforcement learning (RL) model		
07.optm_rl	2-armed bandit task			
08.compare_models	Probabilistic reversal learning task	Simple and fictitious RL models		
09.debugging	Memory Retention	Exponential decay model		
10.model_based	2-armed bandit task	Simple RL model		
I I .delay_discounting	Delay discounting task	Hyperbolic and exponential discounting model		

After the Workshop, you...

- ...are able to implement your own model
- ...feel comfortable with reading mathematical equations
- ...consider the implementation of the "computational modeling" section
- ...gain insightful understanding of Bayesian stats and modeling
- ...take it as a good start and work on it later

Remember: practice makes perfect!

JORGE CHAM © 2016

DOING RESEARCH:

WRITING ABOUT RESEARCH:

WWW.PHDCOMICS.COM

^{*} BEST CASE SCENARIO

Write Your Own Tutorial Paper!

RESEARCH

Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package

Woo-Young Ahn¹, Nathaniel Haines¹, and Lei Zhang²

¹Department of Psychology, The Ohio State University, Columbus, OH
²Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Keywords: Reinforcement learning; Decision-making, Hierarchical Bayesian modeling, Model-based fMRI

RESEARCH

Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package

Woo-Young Ahn¹, Nathaniel Haines¹, and Lei Zhang²

¹Department of Psychology, The Ohio State University, Columbus, OH

²Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Keywords: Reinforcement learning; Decision-making, Hierarchical Bayesian modeling, Model-based fMRI

Task (alphabetical order)	Model name	hBayesDM function	References (see below for full citations)
Balloon Analogue Risk Task	4 parameter model	bart_4par	Wallsten et al. (2005)
Choice reaction time Task	Drift diffusion model Linear Ballistic Accumulator model	choiceRT_ddm choiceRT_lba	Ratcliff (1978) S. Brown & Heathcote (2008 Annis et al. (2017)
Choice under Risk and Ambiguity (CRA) Task	Linear model Exponential model	cra_linear cra_exp	Levy et al. (2009)
Delay Discounting Task	Constant-Sensitivity (CS) model Exponential model Hyperbolic model	dd_cs dd_exp dd_hyp	Ebert & Prelec (2007) Samuelson (1937) Mazur (1987)
lowa Gambling Task (IGT)	Prospect Valence Learning-DecayRI Prospect Valence Learning-Delta Value-Plus-Perseverance (VPP) Outcome-Represent. Learning (ORL)	igt_pvl_decay igt_pvl_delta igt_vpp igt_orl	Ahn et al. (2011; 2014) Ahn et al. (2008) Worthy et al. (2013) Haines et al. (in press)
Orthogonalized Go/Nogo Task	RW+noise RW+noise+go bias RW+noise+go bias+Pav. bias M5 (see Table 1 of the reference)	gng_m1 gng_m2 gng_m3 gng_m4	Guitart-Masip et al. (2012) Guitart-Masip et al. (2012) Guitart-Masip et al. (2012) Cavanagh et al. (2013)
Peer influence task	Other-conferred utility (OCU)	peer_ocu	Chung et al. (2015)
Probabilistic Reversal Learning (PRL) Task	Experience-Weighted Attraction Fictitious update Reward-Punishment (RewPun.) Fictitious + RewPun. Fictitious + RewPun. w/o alpha Fictitious w/o alpha	prl_ewa prl_fictitious prl_rp prl_fictitious_rp prl_fictitious_rp_woa prl_fictitious_woa	Ouden et al. (2013) Gläscher et al. (2009) Ouden et al. (2013)
Probabilistic Selection Task	Q-learning with two learning rates	pst_gainloss_Q	M. J. Frank et al. (2007)
Risk-Aversion Task	Prospect Theory (PT) PT without loss aversion (LA) PT without risk aversion (RA)	ra_prospect ra_noLA ra_noRA	Sokol-Hessner et al. (2009) Tom et al. (2007)
Risky Decision Task	Happiness model	rdt_happiness	Rutledge et al. (2014)
Two-Armed Bandit (Experience-based) Task	Rescorla-Wagner (delta) model	bandit2arm_delta	Erev et al. (2010) Hertwig et al. (2004)
Two Step (TS) Task	7 parameter model 6 parameter model 4 parameter model	ts_7par ts_6par ts_4par	Daw et al. (2011) Wunderlich et al. (2012)
Four-Armed Bandit (Experience-based) Task	Fictive upd.+rew/pun sens. Fictive upd.+rew/pun sens.+lapse	bandit4arm_4par bandit4arm_lapse	Seymour et al. (2012) Seymour et al. (2012)
Ultimatum Game	Ideal Bayesian observer model Rescorla-Wagner (delta) model	ug_bayes ug_delta	Xiang et al. (2013) Gu et al. (2015)
Wisconsin Card Sorting Task	Sequential learning model	wcs_sql	A. J. Bishara et al. (2010)

Using reinforcement learning models in social neuroscience: frameworks, pitfalls, and suggestions of best practices

AUTHORS

Lei Zhang, Lukas Lengersdorff, Nace Mikus, Jan Gläscher, Claus Lamm

AUTHOR ASSERTIONS

Conflict of Interest: No ▼ Public Data: Available ▼

Code and data for:

Zhang^, Lengersdorff^, Mikus, Gläscher, & Lamm (2020). Frameworks, pitfalls, and suggestions of using reinforcement learning models in social neuroscience. (*Equal contributions) Social cognitive and affective neuroscience DOI: 10.1093/scan/nsaa089.

This repository contains:

Workshops / Summer schools

- JAGS and WinBUGS Workshop @ Amsterdam, NL (annual)
- Model-based Neuroscience Summer School @ Amsterdam, NL (annual)
- <u>European Summer School on Computational and Mathematical</u>
 <u>Modeling of Cognition</u> @ multiple EU sites (biannual)
- Computational Psychiatry Course @ Zürich, CH (annual)
- London Computational Psychiatry Course @ London, UK (annual?)
- Methods in Neuroscience at Dartmouth Computational Summer School
 Dartmouth, US (annual)
- Brains, Minds & Machines Summer Course @ MIT, US (annual)
- Kavli Summer Institute in Cognitive Neuroscience @UCSB, US (annual)

References

- Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package. Computational Psychiatry, 1, 24–57.
- Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... & Riddell, A. (2017). Stan: A probabilistic programming language. *Journal of statistical software, 76(1).*
- Cohen, J. D., Daw, N., Engelhardt, B., Hasson, U., Li, K., Niv, Y., ... & Willke, T. L. (2017). Computational approaches to fMRI analysis. Nature Neuroscience, 20(3), 304.
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). New York, NY: CRC Press.
- Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.
- Gläscher, J., Hampton, A. N., & O'Doherty, J. P. (2009). Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making. Cerebral Cortex, 19(2), 483-495.
- Gläscher, J. & O'Doherty, J. P. (2010). Model-based approaches to neuroimaging: combining reinforcement learning theory with fMRI data. Wiley Interdisciplinary Reviews: Cognitive Science, 1(4), 501-510.
- Hampton, A. N., Adolphs, R., Tyszka, J. M., & O'Doherty, J. P. (2007). Contributions of the amygdala to reward expectancy and choice signals in human prefrontal cortex. Neuron, 55(4), 545-555.
- Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press.
- Lee, M. D., & Wagenmakers, E. J. (2014). Bayesian cognitive modeling: A practical course. Cambridge university press.
- Lewandowsky, S., & Farrell, S. (2010). Computational modeling in cognition: Principles and practice. Sage Publications.
- McElreath, R. (2018). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. CRC Press.
- O'Doherty, J. P., Hampton, A., & Kim, H. (2007). Model-based fMRI and its application to reward learning and decision making. Annals of the New York Academy of Sciences, 1104(1), 35-53.
- Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. Classical conditioning II: Current research and theory, 2, 64-99.
- Sutton, R. S., Barto, A. G., & Bach, F. (1998). Reinforcement learning: An introduction. MIT press.
- Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413-1432.

30

Acknowledgement

Antonius Wiehler (MMB, Paris)
Jan Gläscher (UKE, Hamburg)
Woo Young Ahn (SNU, Seoul)
Nate Haines (OSU, OH)

AN JEST 101

Happy Computing!