

Algoritmos de aproximación: Presentación

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Motivación

Muchos problemas de uso práctico

Se han demostrado como NP-Completos

Sin embargo, su importancia es elevada

Y no pueden dejarse de lado

Motivación (cont.)

Si la instancia del problema es pequeña

Se puede resolver óptimamente aun siendo no polinomiales

Si la instancia cumple con ciertas características

Se puede encontrar un algoritmo polinómico (ej 2-SAT)

Sino

Tratar de encontrar una solución aproximada al óptimo en tiempo polinomial

Relación de aproximación $\rho(n)$

Sea

Un problema de optimización P (de maximización o minimización)

Un algoritmo A que resuelve P de forma aproximada

Diremos

Que A tiene una <u>relación de aproximación p(n)</u>

Si para cualquier I instancia de tamaño n

La solución producida por C=A(I)

Esta dentro de un factor $\rho(n)$

de la solución óptima C*

$$max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \leq \rho(n)$$

Relación de aproximación $\rho(n)$

Llamaremos al algoritmo A

Un ρ(n)-algoritmo de aproximación

La aproximación es siempre peor o igual al optimo

 $\rho(n) \ge 1$

Aunque (ojo!) algunos autores definen

ρ(n) ≤ 1 para problemas de maximización

ρ(n) ≥ 1 para problemas de minimización

Esquema de aproximación

Existen algoritmos de aproximación

Que permiten en su ejecución adicionar un parámetro adicional

Su valor

permitirá mejorar la relación de aproximación

A costo de

aumentar el tiempo de ejecución del mismo

Esquema de aproximación (cont.)

Sea

Un problema de optimización P

Un algoritmo A que resuelve P de forma aproximada

Un parámetro ε>0 fijo

Diremos

Que A tiene un <u>esquema de aproximación (1+ε)</u>

Si para cualquier I instancia de tamaño n

La solución producida por C=A(I)

Esta dentro de un factor (1+ε) del optimo

Esquema de aproximación polinomial en tiempo

Un esquema de aproximación

Es polinomial en tiempo

Si

Para cualquier ε>0 fijo

Se ejecuta

En tiempo polinomial en función a n

 $O(n^{2/\epsilon}) \leftarrow$ cuanto mas pequeño ϵ , mas costosa la ejecución

Esquema de aproximación totalmente polinomial en tiempo

Un esquema de aproximación

Es totalmente polinomial en tiempo

Si

Para cualquier ε>0 fijo

Se ejecuta

En tiempo polinomial en función a n y de 1/ε

Ejemplo

 $O((1/\epsilon)^2 n^3)$

Construcción de algoritmos de aproximación

Existen diversas técnicas

para construir algoritmos de aproximación

Entre ellos

Uso de algoritmos greedy

Pricing method (primal-dual technique)

Programación lineal y redondeo

Programación dinámica y redondeada de la instancia

Desafíos

Para cada

Algoritmo de aproximación presentado

Deberemos probar

su relación o esquema de aproximación

Su complejidad temporal en función de los parámetros

... sin conocer realmente cual es su optimo!

(lo haremos con paciencia y detalle)

Imposibilidad de aproximación

Existen ciertos problemas

Que dada su naturaleza

No permiten

Generar algoritmos aproximados

Un ejemplo

Problema del viajante general (sin desigualdad triangular, ni simetría)

Solo existe un algoritmo de aproximación si P=NP!

Presentación realizada en Julio de 2020

Balanceo de Carga

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema del balanceo de carga

Tenemos:

- Un Set de m maquinas M₁, M₂, M_m
- Un Set de n tareas
- Cada tarea j requiere T_i de tiempo de procesamiento.

Objetivo: Asignar las tareas a las maquinas de tal forma que la carga quede balanceada

(el tiempo asignado a cada maquina sea lo más parejo posible)

Cómo medir el balanceo?

Si llamamos A(i) al conjunto de tareas asignadas a la maquina i Podemos calcular la carga de la maquina i como:

$$T_{i} = \sum_{j \in A(i)} t_{j}$$

Podemos medir el balanceo por diferentes indicadores.

Usaremos:

Makespan: max (Ti) para todas las maquinas

Asignación de trabajos

El método para seleccionar la asignación y la naturaleza de los trabajos determinará la programación final de las tareas

Es un problema NP-HARD

Un primer método greedy

Para cada tarea i, asignarla a la maquina j con menor carga en el momento.

```
Comenzar sin trabajos asignados  \label{eq:definir} \begin{split} \text{Definir } T_i &= 0 \text{ y A(i)} = \emptyset \text{ para todos las maquinas } M_i \\ \text{Desde } j &= 1 \text{ a n} \\ \text{Sea } M_i \text{ la maquina con menor } T_k \text{ (k=1 a m)} \\ \text{Asignar Tarea } j \text{ a maquina } M_i \\ \text{Establecer A(i)} &\leftarrow \text{A(i)} \cup \{j\} \\ \text{Establecer } T_i \leftarrow T_i + t_j \end{split}
```


Análisis del algoritmo

Para determinar cuanto se aleja la solución obtenida de la optima (T*), debemos compararlas.

Pero ... no tenemos la solución optima

Sin embargo, podemos acotarla:

$$T^* \geqslant \frac{1}{m} \sum_{j} t_j$$

$$T^* \geqslant max_j t_j$$

El optimo es mayor o igual al tiempo promedio total

El optimo es mayor o igual al tiempo del trabajo mas largo

Análisis del algoritmo (cont.)

A.1 El algoritmo asigna los trabajos a las máquinas con un makespan T ≤ 2T*.

El ultimo trabajo es asignado a máquina M_i con mínima carga

Antes de la asignación tendrá T_i – t_i de carga.

Sabemos que:
$$\sum_{k} T_{k} \ge m (T_{i} - t_{j})$$

La carga en todas las maquinas

$$(T_i - t_j) \le \frac{1}{m} \sum_k T_k \le T^*$$

$$t_j \le T^*$$

$$T_i = (T_i - t_j) + t_j$$

$$T_i \leq 2T^*$$

Acotamos:

$$T^* \geqslant \frac{1}{m} \sum_{j} t_{j}$$

$$T^* \geqslant \max_{i} t_{i}$$

Podemos mejorar nuestro algoritmo?

Cuando ocurre el peor caso?

El algoritmo intenta mantener siempre el mayor balance posible.

Si la ultima tarea coincide con aquella de longitud mas grande quedará peor

balanceado

Ej: Las j-1 tareas de t_x=a y t_i>>a

Algoritmo de aproximación mejorado

Procesar primero las tareas mas extensas

Ordenar las tareas.

Análisis del algoritmo mejorado

Si hay m o menos tareas

La solución es optima.

(A.2) Si hay más de m tareas, entonces T^{*} ≥ 2t_{m+1}

Tomemos las primeros m+1 tareas ordenadas por tiempo descendiente.

Hay m máquinas, por lo tanto solo 1 recibe 2 tareas

En el peor de los casos las primeras m+1 tareas tienen la misma duración.

Por lo tanto en el makespan el menos 2t_{m+1}

Análisis del algoritmo mejorado (cont.)

(A.3) El algoritmo asigna los trabajos a las máquinas con un makespan T ≤ 3/2T*.

Sea la maquina M_i que tiene al menos 2 trabajos.

Sea T_i el ultimo trabajo asignado a M_i (j ≥ m +1)

$$t_j \le t_{m+1} \le \frac{1}{2} T^*$$
 (Utilizando A.2)

$$T_i - t_j \le T^*$$

Por lo tanto: $T_i \le 3/2 T^*$

Presentación realizada en Julio de 2020

Selección de centros

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

El problema de la selección de centros

Función distancia

Función numérica

que mide el cuan cerca se encuentra un punto x de otro punto y

Debe satisfacer:

- dist(x,x) = 0
- dist(x,y) = dist(y,x)

(simetría)

• $dist(x,y) + dist(y,z) \ge dist(x,z)$ (designaldad triangular)

Ejemplo: Distancia euclidiana

"Centralidad"

Sea C el set de centros.

Cada sitio "s" tiene una distancia a cada centro c de C.

Asignaremos a "s" a la órbita del centro c mas cercano.

 $dist(s, C) = min_{c \in C} dist(s, c).$

Definimos a r como el radio de cobertura.

Distancia máxima entre cada sitio y el centro al que órbita

r(C) = radio de cobertura

Intentaremos seleccionar el set C de k centros

para minimizar el radio de cobertura

Tratando de construir un buen algoritmo

Supongamos que

conocemos que existe un set C* de k centros con radio de cobertura r(C*)≤r

Cada sitio s debe tener un centro c* en C* que lo cubra

Podemos construir

un set de k centros con radio de cobertura de como mucho 2r

Seleccionamos un sitio s'

El sitio s' se encuentra a distancia máxima r de su centro c*

Definimos s' como centro con cobertura 2r

El nuevo centro s' contendrá a todos los sitios del centro c*

Algoritmo propuesto

Análisis del algoritmo

Si el algoritmo retorna un set de k centros

$$r(c) \le 2r$$

Si selecciona más de k centros

r(C*)>r contradiciendo la afirmación

¿Qué valor tendrá r en nuestro algoritmo?

Podemos realizar un algoritmo iterativo probando diferentes valores de r

Iniciamos con un r = distancia máxima entre 2 sitios / 2

Ejecutamos el algoritmo y comprobamos si existe resultado

Si existe puedo probar con un r más chico

Si no existe puedo probar con un r más grande

Puedo iterar modificando los radios (similar a búsqueda binaria) y aproximar al resultado tanto como considere oportuno.

El resultado será lo centros aproximados

Un algoritmo greedy sin presuponer el radio

Queremos resolver el problema

sin necesidad de suponer un radio de cobertura en la solución optima

Implica un cambio pequeño en el algoritmo anterior

Seleccionamos siempre como próximo centro al punto disponible más lejano a los centros existentes

Si existe un centro a más de 2r de distancia de aquellos,

entonces el punto mas lejano debe formar parte de él

Algoritmo propuesto

```
Asumimos k \le |S| (sino defimos C = S)
Seleccionar cualquier sitio s y convertirlo en un centro C = \{s\}
Mientras |C| < k
Seleccionar sitio s \in S que maximice la distancia dist(s, C)
C = C \cup \{s\}
Returnar C como los sitios seleccionados
```


Análisis del algoritmo

Si

C* es un set de centros optimos

C es el set que encuentra el algoritmo

Entonces

 $r(C) \leq 2r(C^*)$

Por contradiccion

asumiremos $r(C^*) < \frac{1}{2} r(C)$

Por cada sitio c perteneciente a C, consideremos un circulo de radio ½ r(C) a su alrededor

Llamaremos ci a uno de ellos

Hay exactamente un único c* dentro del circulo

Llamaremos ci* al que se encuentra dentro del circulo de ci

Consideremos cualquier sitio s y su centro mas cercano de la solución óptima C*

 $dist(s,C) \le dist(s,ci) \le dist(s,ci^*) + dist(ci^*,ci) \le 2r(C^*)$ $\le r(C^*) \text{ por que } ci^* \text{ es su centro mas cercano}$

Conclusión

La solución presentada

Es un algoritmo de tipo greedy

Corresponde a una 2-aproximación

Del problema de selección de centros

Se ejecuta en tiempo polinomial

Presentación realizada en Julio de 2020

Set cover

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema de set cover

Sea

Set X de n elementos

Una lista $F=\{S_1,...,S_m\}$ de subsets de X

Un set cover

es un un subconjunto de F cuya unión es X

Objetivo

Encontrar el set cover S con menor cantidad de subsets

Tratando de construir un buen algoritmo

Construiremos un algoritmo greedy

Iremos seleccionando un subset de F paso a paso para el cover set

Intentaremos

Cubrir la mayor cantidad de elementos aun no seleccionados

Algoritmo propuesto

```
\label{eq:resolvent} \begin{array}{l} R = X \ y \ S = \emptyset \ (sin sets seleccionados) \\ \text{Mientras } R \neq \emptyset \\ \text{Seleccionar set } S_i \ con \ mayor \ S_i \ \cap R \\ \text{Agregar set Si a S} \\ \text{Quitar elementos de } S_i \ de \ R \\ \text{Retornar S} \end{array}
```


Ejemplo

Ejemplo (cont.)

Análisis del algoritmo

El tiempo de ejecución del algoritmos

Esta acotado por la cantidad de subsets y elementos

Y se puede implementar en tiempo polinomial

¿Qué tan diferente es el costo óptimo del Generado en el caso general?

Análisis del algoritmo

Asignamos un costo de 1

A cada set seleccionado por el algoritmo

Distribuimos el costo

Entre los elementos cubiertos por primera vez

Utilizaremos este costo para derivar las relación

Entre el tamaño del resultado optimo C* y el tamaño del resultado retornado por el algoritmo greedy C

Llamemos

Si al i-esimo set seleccionado por el algoritmo greedy

C_x el costo asignado al elemento x,

Sabemos que

A cada elemento x se le asigna el costo solo 1 vez

Si x es cubierto por por Si

$$c_x = \frac{1}{|S_i - (S_1 \cup S_2 \cup ... \cup S_{i-1})|}$$

Podemos ver que

$$|C| = \sum_{x \in X} c_x$$

Ademas, cada elemento x

se encuentra en al menos un set del resultado optimo. entonces

$$\sum_{s \in C^*} \sum_{x \in S} c_x \ge \sum_{x \in X} c_x$$

En definitiva

$$|C| \leq \sum_{s \in C^*} \sum_{x \in S} c_x$$

Sea S cualquier set de F

Llamamos
$$u_i = |S - (S_1 \cup S_2 \cup ... \cup S_i)|$$

a la cantidad de elementos aun no cubiertos luego del paso i en S

Con

 $U_o = |S|$

Sea k el menor indice

Donde $u_k = 0 \leftarrow no$ quedan elementos sin cubrir en S

Y donde $u_{k-1} > 0 \leftarrow$ aun quedaban elementos sin cubrir en S – $(S_1 \cup S_2 \cup ... \cup S_{k-1})$

Se puede ver que

 $U_{i-1} \ge U_i$

u_{i-1} – u_i es la cantidad de elementos que se cubren por Si

Por lo que podemos expresar

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \frac{1}{|S_i - (S_1 \cup S_2 \cup ... \cup S_{i-1})|}$$

Observar que

$$|S_i - (S_1 \cup S_2 \cup ... \cup S_{i-1})| \ge |S - (S_1 \cup S_2 \cup ... \cup S_{i-1})| = u_{i-1}$$

Por lo tanto

$$\sum_{x \in S} c_x \le \sum_{i=1}^k (u_{i-1} - u_i) \frac{1}{u_{i-1}}$$

Que podemos reescribir como

$$\sum_{i=1}^{k} (u_{i-1} - u_i) \frac{1}{u_{i-1}} = \sum_{i=1}^{k} \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{u_{i-1}}$$

Por la elección greedy, sino en ese paso debería seleccionar a S en vez de Si

Entonces
$$\int_{i=1}^{j \le u_{i-1}} \int_{j=u_i+1}^{j \le u_{i-1}} \frac{1}{u_{i-1}} \le \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{j} = \sum_{i=1}^k \left(\sum_{j=1}^{u_{i-1}} \frac{1}{j} - \sum_{j=1}^{u_i} \frac{1}{j} \right)$$
 Se cancelan las
$$\sum_{i=1}^k \left(\sum_{j=1}^{u_{i-1}} \frac{1}{j} - \sum_{j=1}^{u_i} \frac{1}{j} \right) = \sum_{i=1}^k \left(H(u_{i-1}) - H(u_i) \right) = H(u_0) - H(u_{u_k}) = H(u_0) - H(0) = H(u_0)$$

Por lo tanto

$$\sum_{x \in S} c_x \leq H(u_0) = H(|S|)$$

Como

$$|C| \le \sum_{s \in C^*} \sum_{x \in S} c_x$$
 y $\sum_{x \in s} c_x \le H(|S|)$

Entonces

$$|C| \leq \sum_{S \in C^*} H(|S|) \leq |C^*| H(\max\{|S|: S \in F\})$$

Podemos expresar | S

Por la cantidad n de elementos del set original por lo tanto (como mucho un set tiene los n elementos del conjunto)

$$|C| \leq |C^*| * \log(n)$$

Función armónica

Dada la funcion armónica

Vemos que la misma puede ser acotada por 2 funciones logarítmicas

Conclusión

Podemos expresar |S|

Por la cantidad n de elementos del set original por lo tanto $|C| \le |C^*| * \log(n)$

Por todo lo anterior

Nuestro algoritmo es un (1+logn)-algoritmo de aproximación

Presentación realizada en Julio de 2020

Vertex cover

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema Vertex cover

Sea

Grafo G=(V,E)

Cada vértice i tiene un peso w_i ≥ 0

Queremos

encontrar el Set S ⊆V donde cada arista E del grafo pertenezca a algún vértice de S.

Minimizando el costo de los vértices seleccionados.

Costo pagado

Existen

Diferentes subset S de V que conforman un vertex cover

Llamaremos

w(S) como el costo del vertex cover formado por S ⊆V

La solución optima S*

Es aquella para la que w(S*)≤w(S) para todo S

Ejemplo

Sea el siguiente gráfo

Las siguientes son coberturas de vértices

Pricing method (A.K.A "primal-dual method")

Basados en una perspectiva económica

Podemos pensar cada peso de los vértices como un "costo"

A cada vértice se le debe pagar por pertenecer a la solución

Cada eje es un "agente" dispuesto a pagar algo al vértice que lo cubre.

Diremos que un vértices esta pagado

si la suma de lo pagado por sus ejes es igual al costo del vértice.

Diremos que un precio a pagar P_e por el vértice e=(i,j) es "justo"

si P_e mas la suma de los otros pagos de los ejes incidentes a i no superan w_i (idem para j)

Algoritmo propuesto

```
Definir pe = 0 para todo e ∈ E

Mientras exista un eje e=(i,j) tal que i o j no este "pagado"
    Seleccionar el eje e
    Incrementar pe sin violar la integridad
Sea S el set de todos los nodos pagados
Retornar S
```


Ejemplo

Inicialmente: p(e)=0 para todo e ∈E Nodos pagados: ∅

Nodos pagados: b,a

Nodos pagados: b

Selecciono Eje e=(a,d)

Puedo pagar hasta 1 min(1,4)

Finalizacion: No quedan ejes sin cubrir

Vertex cover: a,b,d

W(s): 10

d

Análisis del algoritmo

Para

cualquier vertex cover S*,

cualquier precio justo Pe, tenemos que

Podemos calcular

$$w(S) = \sum_{i \in S} w_i$$

Por definición de integridad

tenemos que para todos los nodos i $\in S^*$ $\sum_{e=(i,j)} p_e \leq w_i$

(!)El algoritmo – dependiendo la manera de elegir, puede construir cualquier vertex cover del Grafo (!)

Sumando las desigualdades:

$$\sum_{i \in S^*} \sum_{e=(i,j)} p_e \leq \sum_{i \in S^*} w_i = w(S^*).$$

Por otro lado sabemos que

$$\sum_{e \in E} p_e \le \sum_{i \in S^*} \sum_{e = (i,j)} p_e.$$

0 b 3 0 c 5 (2) 2 S*: b,a,d w(S*)=10 pagado=6

Finalmente combinamos y obtenemos:

$$\sum_{e \in E} p_e \le w(S^*),$$

La suma de lo pagado por los ejes es menor a igual al costo de la cobertura de vértices

Sea S el set retornado por el algoritmo

Todos los nodos en S están "pagados"

por lo que para todo i en S:
$$\sum_{e=(i,j)} p_e = w_i$$

Podemos por lo tanto expresar el costo de S

como
$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e$$
.

S: b,a,d w(S)=10 2*sum(Pe)=12

Un eje e=(i,j) puede sumar peso a dos vértices (aun sin estar en S)

por lo que:
$$w(S) = \sum_{i \in S} \sum_{e=(i,j)} p_e \le 2 \sum_{e \in E} p_e$$
,

El costo de la cobertura esta acotado por 2 veces la suma de los precios pagados

Por funcionamiento del algoritmo

El set S obtenido es un vertex cover (sino no termina el "mientras").

Por los definiciones que probamos anteriormente:

$$\sum_{e \in E} p_e \le w(S^*),$$

$$w(S) = \sum_{e \in E} \sum_{e \in E} p_e \le 2w(S^*).$$

El costo del set S retornado por el algoritmo es como mucho el doble de algún vertex cover posible.

El algoritmo es un 2-algoritmo de aproximación

Presentación realizada en Julio de 2020

Knaspsack Problem aproximado

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema de la mochila

Sea

Conjunto de n items $X = \{x_1, ..., x_n\}$

Cada item x_i contiene un valor v_i y un peso w_i

Mochila de tamaño W

Deseamos

Encontrar un subset $S \subseteq X$

tal que

la suma de los pesos de los elementos en S no supere W

Y la suma del valor de los elementos en S sea el máximo

Soluciones

Mediante programación dinámica

Hemos logrado un algoritmo pseudopolinomial O(nW)

Se ha demostrado

Que corresponde a un problema NP-Completo

Por lo que (A menos que P=NP)

No podemos encontrar un algoritmo de resolución totalmente polinomial

Si W y N es muy grande

El problema se torna intractable

Una solución aproximada...

Propondremos

Un algoritmo de aproximación

De tipo

Esquema de aproximación en tiempo polinómico

Utilizaremos un parámetro

ε que nos permitirá determinar la precisión deseada

Se ejecutara

En tiempo polinómico

Como parte de su ejecución

Utilizará programación dinámica

Una solución parametrizada y acotable

La solución de aproximación

Nos retornará un subconjunto de elementos S

Que no supere

Entre ellos el peso W

Con un valor total V

Que es igual o menor al valor máximo óptimo

Fijaremos el parámetro ε

para acotar la diferencia máxima entre el valor encontrado y el óptimo

Programación dinámica (recargada)

Necesitamos que el algoritmo

De programación dinámica utilice para hallar el optimo el Valor (y no el peso)

De esa forma podremos ajustar el parámetro V

Según nuestra conveniencia para aproximar el resultado

El algoritmo dividirá el problema

En subproblemas que se superponen para memorizar y evitar repetir cálculo

Subproblemas

Llamaremos

OPT(i,V)

Al subproblema de determinar

El menor peso que se puede obtener con los primeros i items cuyo valor iguale o supere el valor de al menos V en la mochila

Se calculará el subproblema para

$$V=0,...,V_{max}$$

Con
$$V_{max} = \sum_{j=1}^{n} v_j$$
 Valor equivalente a incluir todos los elementos en la mochila

Casos base

Para obtener un valor v=0

No hace falta poner ningún elemento

$$OPT(i,v)=0$$
, $v\leq 0$

Si tengo cero elementos

No puedo lograr ningún valor

(excepto si el valor es 0: Corresponde al caso anterior)

Para expresar la imposibilidad utilizaremos el ∞

(o un peso mayor la suma de los pesos de todos los elementos)

$$OPT(v,i) = \infty$$
 , $v>0$ $i=0$

Solapamiento de subproblemas

En un subproblema genérico OPT(i,v)

Pueden ocurrir 2 casos

Que el i-esimo problema no se encuentre en la solución

En ese caso buscamos el menor peso en lograr el valor v con los i-1 elementos anteriores → OPT(i-1,v)

Que el i-esimo problema se encuentre en la solución

En ese caso sumamos a la mochila W_i de pesos y el menor peso para valor $v-v_i$ con los i-1 elementos \rightarrow OPT $(i-,v-v_i)$

Como se desea minimizar el peso de la mochila

el optimo contendrá el menor de los 2 casos

Recurrencia

Podemos expresar la relación de recurrencia como

Una vez que

tengo resueltos todos los subproblemas

El valor que maximiza el problema sera

El mayor u con u=0,..., v_{max} que cumpla que OPT(n,u) ≤ W

Pseudocódigo

Complejidad

Temporal: O(nV_{max})

Espacial: O(nV_{max})

Para recobrar los elementos seleccionados

Debo almacenar para cada caso si se selecciono o no que el elemento esté en el optimo

Iterar desde el optimo para atrás reconstruyendo

```
Desde i=0 a n
    OPT[i][0] = 0
Desde v=1 a Vmax
    OPT[0][v] = +\infty
Desde i=1 a n // elementos
    Desde v=1 a Vmax // valores
         enOptimo = w[i] + OPT[i-1, v-v[i]]
         noEnOptimo = OPT[i-1,v]
         si enOptimo < noEnOptimo
              OPT[l][p] = enOptimo
         sino
              OPT[l][p] = noEnOptimo
Desde v=Vmax a 0
    si OPT[n,v]<=W
         retornar OPT[n,v]
```


Acotando de forma mas conveniente

Si llamamos

 $v^* = max\{V_i\} con 0 < i \le n$

Podemos acotar

$$V_{max} = \sum_{j=1}^{n} v_j \leq nv^*$$

Por lo tanto

La complejidad de la programación dinámica sera O(n²v*)

(esta forma de expresarlo será ventajosa más adelante)

Lo que tenemos hasta ahora...

La solución es pseudo polinomial

Parámetro de redondeo

Utilizaremos

El parámetro b de redondeo

Para cada item i

Calcularemos $\underline{v}_i = [v_i / b]^* b$

Todos los valores de items resultantes

Son múltiplos de b \rightarrow $v_i \leq \underline{v}_i \leq v_i + b$

Ejemplo:

b=20	X ₁	X ₂	X ₃
V _i	126	37	413
<u>V</u> i	140	40	420
\overline{v}_{i}	7	2	21

Podemos resolver mediante programación dinámica utilizando

$$\overline{v}_i = [v_i / b]$$

← nos asegura que sean valores enteros

No quedará v* mas pequeño

Resolución del parámetro

Resolveremos el problema

Utilizando los nuevos valores vi

El resultado obtenido

tiene el mismo set de elementos óptimos que utilizando vi (mismo peso y un difieren en un factor de b)

Obtenemos los elementos de la solución aproximada

Su valor real será menor o igual al obtenido

Elección del parámetro b

Utilizaremos

ε para generar el parámetro b,

Con $0 < \varepsilon \le 1$

Y por comodidad ε-1 un número entero

Un valor conveniente de b

$$b = \varepsilon v^* / 2n$$

(esta elección nos servirá para las próximas demostraciones)

Pseudocodigo

Obtener vmax Definir b = $\varepsilon \text{ vmax} / 2n$ Para cada elemento i Calcular vi con b Resolver con programación dinámica con valores vi Retornar el set de elementos encontrados

Complejidad temporal global

La programación dinámica se ejecuta en O(n2v*)

Con $v^* = max\{V_i\} con 0 \le i \le n$

Si el item j es el de máximo valor

Entonces $v^* = \overline{v_j} = [v_j / b]$

Siendo que $b = \epsilon v^* / 2n$

Entonces $v^* = 2n\varepsilon^{-1}$

Todo el proceso

será O(n³e-1)

Para un valor fijo de ε ε l algoritmo se ejecuta en tiempo polinomial (!)

Margen de la aproximación

Llamaremos

S* cualquier una solución que satisface $\sum_{i \in S^*} w_i \leq W$

El algoritmo aproximado encuentra la solución optima S

Para los valores \underline{v}_i aproximados (fueron redondeados para arriba)

Si este fuese el máximo valor posible

$$OPT(S) = \sum_{i \in S} \underline{v_i} \ge \sum_{i \in S^*} \underline{v_i}$$

Se puede ver que

$$\sum_{i \in S^*} v_i \le \sum_{i \in S^*} \underline{v_i} \le \sum_{i \in S} \underline{v_i} \le \sum_{i \in S} b + v_i \le nb + \sum_{i \in S} v_i$$

Por redondeo

Por ser optima por $v_i \le \underline{v}_i \le v_i + b$ la aproximación

Si Todos los elementos están en la solución

$$\sum_{i \in S^*} v_i \le nb + \sum_{i \in S} v_i$$

(!) La solución encontrada es como mucho nb menor al máximo valor posible

Expresando en función de ε

Como b = ε v* / 2n

$$nb + \sum_{i \in S} v_i = \frac{\varepsilon}{2} v * + \sum_{i \in S} v_i$$

Entonces

$$\sum_{i \in S^*} v_i \leq \frac{\varepsilon}{2} v^* + \sum_{i \in S} v_i$$

Como cualquier item entra en la mochila

Una posible solución $S^* = \{x_i\}$ con $v_i = v^*$

$$v^* \le \frac{\mathcal{E}}{2} v^* + \sum_{i \in S} v_i \le \frac{v^*}{2} + \sum_{i \in S} v_i \longrightarrow \frac{v^*}{2} \le \sum_{i \in S} v_i \longrightarrow v^* \le 2 \sum_{i \in S} v_i$$

Unificando

$$\sum_{i \in S^*} v_i \leq \frac{\varepsilon}{2} v^* + \sum_{i \in S} v_i \leq \frac{\varepsilon}{2} \left(2 \sum_{i \in S} v_i \right) + \sum_{i \in S} v_i \qquad \sum_{i \in S^*} v_i \leq \left(1 + \varepsilon \right) \sum_{i \in S} v_i$$

Conclusión

Si

S es la solución encontrara por el algoritmo de aproximación

S* es cualquier otra solución factible

Entonces

$$\sum_{i \in S^*} v_i \leq (1 + \varepsilon) \sum_{i \in S} v_i$$

Por lo tanto,

Para cualquier ε >0, la solución aproximada encuentra una solución factible cuyo valor esta dentro de un factor (1+ ε) de la solución óptima

Y lo realiza en tiempo polinomial O(n³ε-1)

Presentación realizada en Julio de 2020

Problema del viajante de comercio aproximado

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema del viajante de comercio (TSP)

Sea

Un conjunto de n ciudades "C"

Un conjunto de rutas con costo de tránsito

Existe una ruta que une cada par de ciudades

El costo de cada ruta puede ser simétrico o asimétrico (diferente valor ida y vuelta)

Queremos

Obtener el circuito de menor costo

que inicia y finalice en una ciudad inicial

y pase por el resto de las ciudades 1 y solo 1 vez

Soluciones

Por fuerza bruta

Se resuelve en O(n!)

Mediante programación dinámica

Hemos logrado un algoritmo exponencial O(n²2ⁿ)

Se ha demostrado

Que corresponde a un problema NP-Completo

Por lo que (A menos que P=NP)

No podemos encontrar un algoritmo de resolución totalmente polinomial

Podremos aproximarlo de alguna manera?

Simplificaremos nuestro problema para lograrlo

Problema "simplificado" del viajante de comercio

Sea

Un conjunto de n ciudades "C"

Un conjunto de rutas con costo <u>no negativo</u> de tránsito

Existe una ruta que une cada par de ciudades

El costo de cada ruta es simétrico <u>y cumple con la desigualdad triangular</u>

Queremos

Obtener el circuito de menor costo

que inicia y finalice en una ciudad inicial

y pase por el resto de las ciudades 1 y solo 1 vez

Desigualdad triangular

Viajar de la ciudad A a la ciudad B

Nomenclatura

Podemos

Representar el problemas mediante un Grafo G=(V,E) con V: conjunto de ciudades y E: conjunto de rutas

Cada ruta e ∈ E, une dos ciudades u,v ∈ V tendrá un asociado el costo c(u,v)≥0

La solución

Estará computa por una secuencia de ciudades (c₁,c₂,...c_n,c₁)

Constará de un subset A ∈ E de rutas a utilizar

El costo total incurrido será

$$c(A) = \sum_{(u,v)\in A} c(u,v)$$

Iniciando con un árbol recubridor

Seleccionamos un vértice r ∈ V

Calculamos T el árbol recubridor mínimo de G usando r como raíz

Llamamos c(T) a la sumatoria de los ejes del arbol T

Full Walk

Podemos construir W el full walk de T

Iniciando en la raiz y recorriendo todo el árbol hasta volver al inicio

Con este recorrido visitamos todas las ciudades al menos una vez

(pero solo tendría que ser una vez)

Llamamos c(W) al costo de este recorrido

$$c(w)=2c(T)$$

W: a,d,b,d,c,d,a,e,a

$$c(W) = 2 C_{ad} + 2 C_{db} + 2 C_{cd} + ...$$

Aplicando desigualdad triangular

Debemos asegurarnos que todas las ciudades (excepto la inicial)

Solo sean visitadas 1 vez

Conceptualmente

Implica no volver para atrás a una ciudad visitada e ir a la siguiente sin visitar.

Lo podemos hacer gradualmente ciudad por ciudad

La desigualdad triangular nos asegura que el costo final obtenido sera menor o igual al de c(W)

Circtuito hamiltoneano resultante

Al finalizar nos quedara un circuito hamiltoneano H

De menor costo al fullwalk y que cumple con los requerimientos del problema del viajante

No es necesario construir el full walk

Pero el concepto del full walk es útil a la hora de la demostración de aproximación

Podemos utilizar sobre el arbol T

Depth first search enumerando los nodos mediante preorden y obtenemos H

$$c(W) = 2 c(T) \ge c(H)$$

$$16 = 2*8 \ge 14$$

Aproximación del viajante

El circuito del viajante aproximado

Corresponde al ciclo hamiltonano H encontrado

¿Qué tan buena aproximación es?

Podría pasar que la solución encontrada sea la optima

Pero de no serlo, hay alguna desviación máxima que nos asegura el algoritmo?

Análisis de la solución

Sea

H* el circuito optimo para el grafo G

T el árbol recubridor mínimo del grafo G

Eliminando solo un eje de H*

Obtenemos un árbol (que podría ser T)

Por lo tanto

El costo H* es mayor o igual al de T

$$C(T) \leq C(H^*)$$

Análisis de la solución (cont.)

Como

El costo del full walk W es el doble del costo del árbol T

Y

El costo del ciclo hamiltoneano es menor al costo del fullWalk

(por desigualdad triangular)

Podemos concluir que

El algoritmo presentado es un 2-algoritmo de aproximación

$$C(T) \le C(H^*)$$

 $C(W)=2C(T)$
 $C(H)\le C(W)$

$$C(H) \leq 2C(H^*)$$

En el ejemplo

$$C(H) \leq 2C(H^*)$$

Complejidad Temporal

El algoritmo se puede dividir en las siguientes partes:

Cálculo del árbol recubridor mínimo de G

Recorrido de T mediante DFS para generar lista H (utilizando preorden)

Ambos algoritmos se pueden ejecutar en tiempo polinomial

Árbol recubridor usando Kruskal → O(E log V)

DFS en un árbol \rightarrow O(V)

Por lo que nuestro algoritmo se ejecuta en tiempo polinomial

Presentación realizada en Enero de 2021

Max 3-SAT

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Enunciado

Dado

Un conjunto de n variables $\{x_1, x_2, ... x_n\}$

Un conjunto de k clausulas $C=(x_i \lor x_j \lor x_k)$ conjugadas

Con

Cada clausula tiene 3 variables distintas y sin contener la misma variable y su negada

Queremos saber

La cantidad máximas de cláusulas que se pueden satisfacer

Planteo

Es una variante de 3-SAT: MAX-3SAT

Intentamos maximizar y no determinar si se puede satisfacer toda la expresión

Se ha demostrado

Que corresponde a un problema NP-HARD

Propondremos

Utilizar un algoritmo de aproximación randomizado

Propuesta

Nuestro algoritmo

Es muy simple!

Para cada variable x_i

Determinaremos su valor 0 o 1 en forma aleatoria e independiente

La probabilidad de que una variable x_i esté "activada"

$$Pr(X_i=1) = \frac{1}{2}$$

Número de esperado de clausulas satisfechas

Sea

Z la variable aleatoria igual al número de clausulas satisfechas

Z_i la variable aleatoria con valor 0 o 1 de acuerdo a si la clausula i esta satisfecha

Entonces

$$Z = Z_1 + Z_2 + \ldots + Z_k$$

Queremos

Determinar el numero de clausulas satisfechas esperados E[Z]

Nro de esperado de clausulas satisfechas (cont.)

Como

$$E[Z] = E[Z_1 + Z_2 + ... + Z_k] = E[Z_1] + E[Z_2] + ... + E[Z_k]$$

Con

$$E[Z_i] = Pr[C_i=1]$$

Como las variables son independientes

$$Pr[C_i=1] = 1 - Pr[C_i=0] = 1 - \frac{1}{2}3 = \frac{7}{8}$$

Entonces

$$E[Z] = k^* \frac{7}{8}$$

Esperamos que una asignación aleatoria satisfaga a un % de las clausulas

Nro de esperado de clausulas satisfechas (cont.)

Como

No se pueden satisfacer mas de k clausulas

Y

Esperamos satisfacer % de ellas

Entonces

El numero de <u>esperado</u> de clausulas satisfechas mediante una asignación aleatoria esta dentro de un factor de aproximación de ½ del optimo

Una afirmación fuerte

Para

cualquier expresión de 3SAT

Donde

Cada clausula tiene 3 variables distintas y sin contener la misma variable y su negada

Existe

Una asignación de verdad que satisface al menos % de las clausulas

Esperando una buena asignación

Este método

No garantiza % de clausulas satisfechas!

(podría ser menos, podría ser más)

Solo

Indica que es probable y esperable

¿Como puedo garantizar este resultado

En tiempo polinómico?

Repetición del problema

Podemos

Repetir la asignación de variables aleatorias

Hasta

Conseguir el piso de 1/8 k clausulas satisfechas

Pero...

No sabemos cual sera el número esperado de repeticiones

Una demostración previa...

Si

Repetimos la ejecución de pruebas independientes de un experimento

Cada una de ellas

Con probabilidad p>0

Entonces

El numero de pruebas esperado antes del primer éxito es 1/p

Demostración

Sea

Variable v tal que Pr(v=exito)=p y Pr(v=fallo)=1-p

X la repetición de v un numero de veces hasta el éxito

Entonces

La probabilidad de lograr el éxito en j iteraciones

$$Pr[X=j] = (1-p)^{j-1}p$$

$$E[X] = \sum_{j=0}^{\infty} j * Pr[X = j] = \sum_{j=0}^{\infty} j (1-p)^{j-1} * p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^{j} = \frac{p}{1-p} * \frac{1-p}{p^{2}}$$

$$E[X] = \frac{1}{p}$$

Determinación de cantidad de repeticiones

Si logramos demostrar

Que la probabilidad de asignación de 1/8 k de las clausulas es al menos p

Entonces

La cantidad de pruebas a realizar esperadas será 1/p

Que valor tomará p?

Queremos mostrar que es inversamente polinomial en función de n y k

 $\rightarrow 1/f(n,k)$

Determinación de cantidad de repeticiones (cont.)

Llamaremos

P_j a la probabilidad que una asignación aleatoria satisfaga exactamente j clausulas (con j=0,1,...,k)

Queremos saber

$$p = \sum_{j \ge 7k/8} Pr[P_j]$$

Sabemos que el valor esperado de clausulas satisfechas

$$E[P] = \sum_{j=0}^{k} j * Pr[P_j] = \frac{7}{8}k$$
 Lo calculamos antes!

$$\sum_{j < 7k/8} j * Pr[P_j] + \sum_{j \ge 7k/8} j * Pr[P_j] = \frac{7}{8}k$$

Determinación de cantidad de repeticiones (cont.)

Llamaremos k'

Al mayor de los números enteros estrictamente menor a 78k

Entonces

$$\frac{7}{8}k = \sum_{j < 7k/8} j * Pr[P_j] + \sum_{j \ge 7k/8} j * Pr[P_j] \le \sum_{j < 7k/8} k ' * Pr[P_j] + \sum_{j \ge 7k/8} k * Pr[P_j]$$

$$\le k ' * \sum_{j < 7k/8} Pr[P_j] + k * \sum_{j \ge 7k/8} Pr[P_j] = k ' * (1-p) + k * p \le k ' + k * p$$
1-p

$$\frac{7}{8}k \leq k' + k * p$$

Determinación de cantidad de repeticiones (cont.)

Continuando

$$\frac{7}{8}k \le k' + kp \qquad kp \ge \frac{7}{8}k - k'$$

Por como elegimos k'

$$\frac{7}{8}k - k' \ge \frac{1}{8}$$

Entonces

$$p \ge \frac{\frac{7}{8}k - k'}{k} \ge \frac{1}{8k}$$

Conclusión

Como

la probabilidad de asignación de 1/8 k de las clausulas es al menos p=1/8 k

Entonces (dada la propiedad antes vista)

El numero de pruebas esperado antes del primer éxito es 8k

De esta forma conformando

Un %-algoritmo de aproximación randomizado

Presentación realizada en Enero de 2021