

목차

프로젝트 배경

프로젝트 배경

개요

 주제: 중환자의 위험 시점을 탐지하는 AI모델
-개발환경: python

 교육과정에서 배운 통계학적 바탕 위에 머신러닝, 딥러닝 알고리즘을 더해 패턴의 변화를 학습, 적용하여 환자의 위험을 탐지함

- 중환자의 생체 징후 데이터의 미세한 이상 징후를 탐지하여 의료진이 신속히 원인 질환을 교정하는 것이 목적
- 생존율 확보 및 적절한 의료 인력 배치로 인한 의료 서비스의 질 향상 기대

프로젝트 배경

활용하는 데이터

- 환자 데이터 :
 - 성별 / 나이
- Vital Sign:
 - 혈압 수축기 / 체온 / 맥박 / 호흡 / 산소 포화도
- 혈액 데이터 :
 - 백혈구/ 혈소판 / 헤모글로빈 / 크레아티닌 / 포도당 /나트륨
 - 칼륨 / 염소 / 단백질 /알부민/ 빌리루빈 / 칼슘/ 젖산
 - CRP / ALP / AST / ALT/ BUN

프로젝트 팀 구성 및 역할

프로젝트 팀 구성 및 역할

- LGBM, 1D CNN
- 관련 논문 탐색
- 전처리

- DNN
- 파인 튜닝
- 전처리

- LSTM
- 결과 시각화
- PPT제작

일정

	May 4th Week		Jun 3rd Week	Jun 4th Week	July 1st Week	

사전 기획

방향성 설정, 리서치

개발

전처리, 모델 선정

초기 발표회 피드백 반영, 모델 개발

수정/보완

파라미터 조정 , 오류 수정

문제 정의

기존 시스템: Early Warning Score (EWS)

- 환자의 질병 정도를 신속하게 파악하기 위해 여러 Vital Sign 을 기반으로 한 점수 체계
- Low Recall / High False Alarm Rate

※ Recall: 위험한 경우를 위험하다고 판단할 확률 False Alarm Rate: 위험하지 않은 경우를 위험하다고 판단할 확률 (=False Positive Rate)

• 의료진의 업무량 증가

<Modified Early Warning Score (MEWS)>

Score	3	2	1	0	1	2	3
혈압	≤70	71-80	81-100	101-199		≥200	
맥박		<40	40-50	51-100	101-110	111-129	≥130
호흡 속도		≤8		9-14	15-20	21-29	≥30
체온		≤35		35.1-38.4		≥38.5	
AVPU				A	V	Р	U

<Kwon JM, Lee Y, Lee Y, Lee S, Park J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J Am Heart Assoc 2018;7>

문제에 대한 재접근

문제 정의

통계 분석 방법

- 1) 기초 통계량 분석
- 2) 회귀 분석을 통한 다양한 변수들의 영향 정도와 관계 파악
- 3) 유의미한 특성을 추출

목표

- 1) 미래의 위험 탐지
- 2) 가중치를 둔 1,2종 오류
- 3) High Recall / Low False Alarm Rate

데이터 구조

데이터 구조

- Train 셋의 데이터와 Test셋의 데이터는 서로 다른 병원의 환자 데이터
- 한 환자당 데이터가 2~5일 정도로 비교적 짧아 데이터를 일 단위가 아닌 시간 단위로 판단하는 방식이 적합

	Train, A병원	Test, B병원
기간	2017.01~2019.03	2019.01~2019.05
환자수(데이터수)	4816(161710)	2588(103565)
위험군 환자 비율	7.2%	2.4%
측정기간		
2일	3(91)	0(0)
3일	36(1527)	7(341)
4일	306(21266)	54(3653)
5일	4471(138826)	2527(99571)
성비	65.1% : 34.9%	56.7% : 43.3%
나이	65.7± 12.8	67.6±16.0
최소값	2.2	16.2
최대값	102.7	98.7

차트

심정지

심정지

• '<mark>맥박</mark>이 130이상으로 큰폭으로 증가'가 심정지 발생과 밀접한 관계가 있어 보이는 케이스

결측치

- 결측치가 발생하는 이유로 EMR 기록 장치의 문제, 일반 병동에 대한 회 진 방식에 따른 차이가 주 원인
- 체온, 맥박, 호흡의 경우 한 번에 측정하는 경우가 많으며 산소 포화도의 경우 별도 측정 장치로 측정이 이루어지는 경우가 많음

	d	d * X	$\Delta \mathbf{d} * \mathbf{X}$	$\Delta t 1$	∆ t2
의미	더미 변수	d * 측정 값	이전 d * X 값의 차	현재 시각 - 이전 실측 데이터 시각	현재 시각 - 이전 데이터 시각
표현	결측 →0 실측 →1	결측 →0 실측 →X		$t_i - t_{i-n}$	$t_i - t_{i-1}$

• 단순히 결측치를 다른 값으로 대체 하거나 제거하는 방식이 아닌, 더미 변수화를 통해 이를 활용하고자 함

결측치 변환 예시

				X						
20180120	1730	성별	나이	혈압	체온	맥박	호흡	SaO2		
20180120	1745	남	58.9	115	36.7	64	30	#N/A		
20180120	1800	남	58.9	116	36.6	64	20	97		
20180120	1900	남	58.9	#N/A	#N/A	#N/A	#N/A	98		
20180120	2000	남	58.9	#N/A	#N/A	#N/A	#N/A	95		
20180120	2100	남	58.9	#N/A	#N/A	#N/A	#N/A	95		
20180120	2200	남	58.9	#N/A	#N/A	#N/A	#N/A	92		
20180120	2215	남	58.9	122	36.6	62	30	#N/A		
20180120	2230	남	58.9	125	36.7	62	28	#N/A		
20180120	2300	남	58.9	#N/A	#N/A	#N/A	#N/A	97		

←결측치 처리 전

↓결측치 처리 후

			d				d*X Δd*X			Δt1			Δt2									
성별	나이	혈압	체온	맥박	호흡	SaO2	혈압	체온	맥박	호흡	SaO2	혈압	체온	맥박	호흡	SaO2	혈압	체온	맥박	호흡	SaO2	시간
1	58.9	1	1	1 1		1 0	115	36.7	64	30	0	0	0	0	0	0	0	0	0	0	0	0
1	58.9	1		1 1		1 1	116	36.6	64	20	97	1	-0.1	0	-10	0	0.25	0.25	0.25	0.25	0	0.25
1	58.9	0	(0	() 1	0	0	0	0	98	0	0	0	0	1	0	0	0	0	1	1
1	58.9	0	(0	() 1	0	0	0	0	95	0	0	0	0	-3	0	0	0	0	1	1
1	58.9	0	(0	(1	0	0	0	0	95	0	0	0	0	0	0	0	0	0	1	1
1	58.9	0	(0	() 1	0	0	0	0	92	0	0	0	0	-3	0	0	0	0	1	1
1	58.9	1				1 0	122	36.6	62	30	0	6	0	-2	! 10	0	4.25	4.25	4.25	4.25	0	0.25
1	58.9	1	•	1 1	-	1 0	125	36.7	62	28	0	3	0.1	0	-2	0	0.25	0.25	0.25	0.25	0	0.25
1	58.9	0	(0	() 1	0	0	0	0	97	0	0	0	0	5	0	0	0	0	1	0.5

회귀분석

- 새로 생성한 변수들이 어느 정도 유효한 값을 보이고 있음
- 그 예로, 차트의 사례에서와 같이 맥박은 심정지 발생과 유의미한 근 관계를 보임

	coef	std err	t	P> t	[0.025	0.975]
성별	0.0011	0.001	2.174	0.030	0.000	0.002
나이	0.0006	0.001	0.495	0.620	-0.002	0.003
혈압_exist	-0.0057	0.002	-3.057	0.002	-0.009	-0.002
체온_exist	0.0007	0.002	0.409	0.682	-0.003	0.004
맥박_exist	-0.0142	0.003	-4.901	0.000	-0.020	-0.008
호흡_exist	-0.0320	0.003	-10.681	0.000	-0.038	-0.026
SaO2_exist	0.0647	0.004	16.909	0.000	0.057	0.072
혈압	0.0071	0.003	2.798	0.005	0.002	0.012
체온	-0.0012	0.004	-0.292	0.770	-0.010	0.007
맥박	0.0476	0.003	14.133	0.000	0.041	0.054
호흡	0.0860	0.004	20.954	0.000	0.078	0.094
SaO2	-0.0731	0.004	-17.618	0.000	-0.081	-0.065
혈압_change	3.728e-05	0.001	0.032	0.974	-0.002	0.002
체온_change	-0.0039	0.002	-2.176	0.030	-0.007	-0.000
맥박_change	-0.0054	0.002	-2.933	0.003	-0.009	-0.002
호흡_change	0.0069	0.001	5.817	0.000	0.005	0.009
SaO2_change	0.0055	0.002	3.514	0.000	0.002	0.009
TimeDelta_혈압	0.0384	0.010	3.690	0.000	0.018	0.059
TimeDelta_체온	0.0554	0.014	3.922	0.000	0.028	0.083
TimeDelta_맥박	-0.0761	0.025	-3.028	0.002	-0.125	-0.027
TimeDelta_호흡	0.0372	0.023	1.618	0.106	-0.008	0.082
TimeDelta_SaO2	-0.0248	0.002	-14.330	0.000	-0.028	-0.021
TimeDelta	-0.0602	0.004	-14.161	0.000	-0.068	-0.052

과거 몇 개의 데이터로 몇 시간 후의 위험을 예측

• 몇 시간(h) 후를 예측할 지에 대한 Trade off 가 존재

가까운 미래 예측 → 성능 ↑ 실용성↓ 먼 미래 예측 → 실용성↑ 성능 ↓

• 따라서 몇 시간(h) 후의 위험을 예측 할 것인지 목적을 갖고 설정이 필요

• h 시간 후를 예측 하기 위해 이전 m개의 데이터가 필요, 이때의 m 을 파라미터로서 탐색

모델 제안

• 목적에 따른 두 가지 모델을 제안

6시간 후 예측 모델

• <mark>의사들이 평균적</mark>으로 위험상황을 예측 하는 시간이 6시 간 전, 현행과 비교해보기 좋은 기준이라 판단

1시간 후 예측 모델

• 단기간 예측으로 응급의료진의 대기 시간을 줄이는 효과를 보여줄 것으로 예상, 장기, 단기 예측의 차이를 국명하게 보여 줄 수 있는 모델이 될 것이라 판단

- 각각 장기, 단기 예측 효과를 기대해 볼 수 있을 것이라 생각
- 필요한 이전 데이터의 개수는 8개가 최적 파라미터

입력 방식 예시

모델 선정

- CNN
 - 1D convolution을 사용하여 데이터를 시계열로서 받아 들일 수 있게 구상
- LSTM
 - 시계열 데이터를 잘 인식하기에 환자의 지난 8개의 연속된 데이터를 입력하는 데 이상적이라 판단
- DNN
 - 딥러닝 모델 중 기본적인 형태의 모델을 사용하여 비교해보고자 함
- LGBM
 - 딥러닝 기법 외에 머신러닝 기법에서도 모델을 구상하여 성능을 비교해보자 함

경우의 수

6시간 후 예측 모델

<A병원(Validation)>

	0.05	0.10	0.15
LSTM	0.679	0.868	0.925
CNN	0.698	0.792	0.830
LGBM	0.660	0.830	0.887
DNN	0.547	0.698	0.830

<B병원(Test)>

	0.05	0.10	0.15
LSTM	0.740	0.807	0.825
CNN	0.652	0.690	0.749
LGBM	0.646	0.740	0.810
DNN	0.722	0.731	0.731

1시간 후 예측 모델

<A병원(Validation)>

	0.05	0.10	0.15						
LSTM	0.815	0.870	0.889						
CNN	0.815	0.852	0.870						
LGBM	0.815	0.870	0.907						
DNN	0.685	0.796	0.852						

<B병원(Test)>

	0.05	0.10	0.15
LSTM	0.665	0.732	0.779
CNN	0.735	0.763	0.799
LGBM	0.735	0.813	0.855
DNN	0.615	0.659	0.668

6시간 후 예측 모델 Confusion Matrix

• 6시간 후 예측 모델에서 LSTM이 우세

• 2종 오류 감소량 : 1종 오류 증가량

 \bigcirc 23 : 4012 = 1 : 174

② 6 : 4629 ≒ 1 : 771

1시간 후 예측 모델 Confusion Matrix

• 1시간 후 예측 모델에서 LGBM이 우세

• 2종 오류 감소량 : 1종 오류 증가량

1 28 : 4293 = 1 : 153

② 15:4176 ≒ 1:278

기존 시스템과 결과 비교

	LSTM	DEWS	MEWS		LGBM	DEWS	MEWS
Recall				Recall			
FPR = 0.05	0.740	0.493	-	FPR = 0.05	0.735	0.493	-
FPR = 0.10	0.807	0.607	0.373	FPR = 0.10	0.813	0.607	0.373
FPR = 0.15	0.825	0.630	0.493	FPR = 0.15	0.855	0.630	0.493
AUROC	0.912	0.837	0.765	AUROC	0.937	0.837	0.765
AUPRC	0.158	0.239	0.028	AUPRC	0.144	0.239	0.028

<6시간 후 예측 모델>

<1시간 후 예측 모델>

실시간 위험 예측 차트

느낀 점

느낀 점

- 프로젝트 수행상 어려움 극복 사례
 - ✓ 해당 도메인 지식에 대한 이해 부족
 - ✓ 문제에 대한 재접근 및 많은 수의 결측치
- 프로젝트에서 아쉬운 부분
 - ✓ 위험군 환자의 데이터 부족
 - ✓ 측정 주기로 변수를 그룹화 하여 접근
 - √ 설명력

느낀 점

- 프로젝트를 통해 느낀 것
 - ✓ 흔히 접해 볼 수 없는 의료데이터를 다뤄 볼 수 있었던 좋은 기회
 - ✓ 데이터를 단순한 숫자로서 보고 기계적인 처리를 하는 것이 아닌, 데이터에 대한 충분한 이해를 바탕으로 한 통계학적 접근의 필요성 체감

참고 문헌

- An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest Kwon JM, Lee Y, Lee Y, Lee S, Park J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J Am Heart Assoc 2018;7>
- Recurrent Neural Networks for Multivariate Time Series with Missing Values <Che, Z. et al. Recurrent neural networks for multivariate time series with missing values. Rep. 8, 1–12 (2018)>
- Learning representations for the early detection of sepsis with deep neural networks

<Kam, H. J. & Kim, H. Y. Learning representations for the early detection of sepsis with deep neural networks. Computers in biology and medicine 89, 248–255 (2017)>

Train, Test 별 위험군, 비위험군 분포

	Train, A병원				
	위험군	비위험군			
기간	2017.01~2019.02	2017.03~2019.03			
환자수(데이터수)	345(22884)	4471(138826)			
측정기간					
2일	3(91)	-			
3일	36(1527)	-			
4일	306(21266) -				
5일	-	4471(138826)			
성비	62.6% : 37.4%	65.3% : 34.7%			
나이	63.7± 15.9	71.4±10.9			
최소값	2.2	40.8			
최대값	102.7	87.2			

	Test, B병원		
	위험군	비위험군	
기간	2019.03 ~ 2019.05	2019.01~2019.05	
환자수(데이터수)	61(3994)	2527(99571)	
측정기간			
2일	0(0)	-	
3일	7(341)	-	
4일	54(3653)	-	
5일	-	2527(99571)	
성비	50.8% : 49.2%	56.8% : 43.2%	
나이	70.2± 14.9	67.5±16.1	
최소값	23	16.2	
최대값	95	98.7	

데이터 특성

	llOLE
O-7- F	

일련번호

성별

생년월일

나이

사망일자

입원일

입원이후4일

처방일

처방일이전4일

퇴원일

입원일수

원자료번호

측정일

혈압_수축기

혈압_이완기

측정시각

체온

맥박

호흡

Sa02

Event 데이터

일련번호

성별

생년월일

사망일자R

사망일자

나이

진료일자

Event_date

Event_time

Detection_date

Detection_time

혈액 데이터

WBC count

Creatinin

Chloride

CRP AST

platelet

Glucose

ALT

Total protein

Total calcium

Hgb

Sodium

Total bilirubin

Lactate

BUN

Potassium

Albumin

Alkaline phosphatase

혈액 데이터

혈액 데이터	설명	증/감
WBC	백혈구 숫자	감염/감염
Hgb	헤모글로빈	탈수 / 빈혈,출혈
Platelet	혈소판, 지혈 담당	감염 , 빈혈/ 탈수
BUN	질소 화합물의 대사 산물	신장 이상/ 간부전
Creatinine	근육에서의 분해 산물	신장 이상
Sodium(Na)	나트륨	탈수 / 체액 과다
potassium(K)	칼륨	심정지 / 부정맥
Chloride	염소	탈수
Total Protein / albumin	혈청 단백/알부민, 영양 상태	탈수 / 복수
Bilirubin	Hgb 의 대사산물	간부전
AST/ALT	세포 파괴 효소	괴사
CRP	염증 반응물질	감염
ALP	대사물 운송 관여 효소	골질환

Vital Sign 분석

	혈압	체온	맥박	호흡	SaO2
비위험군	115.0±16.7	36.5±0.5	81.0±15.2	19.8±2.1	96.4±2.6
	60~210	35~41.3	30~200	6~40	65~100
위험군	119.5±20.8	36.7±0.6	98.2±20.6	21.9±4.7	95.6±3.8
	60~210	35.7~41	32~183	6~40	65~100
위험군 6시간 전	120.7±22.0	36.7±0.6	104.4±21.6	23.6±5.6	94.8±3.8
	60~205	36~38.9	54~178	9~40	66~100

Vital Sign 분포

<비위험군, 위험군, 위험군 심정지 발생 6시간 전 Vital Sign의 분포>

AI ZEN

혈액 데이터 분포

결측치

	혈압	체온	맥박	호흡	SaO2
위험군	54.7%	52.0%	54.5%	55.5%	23.1%
비위험군	21.1%	17.9%	22.3%	22.8%	53.4%

<변수별 결측치 비율>

	혈압	체온	맥박	호흡	SaO2
위험군	72.3%	70.9%	72.7%	73.1%	45.0%
비위험군	78.2%	77.1%	78.5%	78.6%	86.7%

<1시간 균등화 시 결측치 비율>

6시간 후 예측 모든 모델 Confusion Matrix

1시간 후 예측 모든 모델 Confusion Matrix

