

AMENDMENTS TO THE CLAIMS

Please amend claims 10-13, and add new claims 14-19, as follows:

Claim 1 (Original) An asymmetric monoanthracene derivative represented by the following Formula (1):

(1)

wherein Ar¹ and Ar² each are independently a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, and m and n each are an integer of 1 to 4, provided that when m and n are 1 and the bonding positions of Ar¹ and Ar² in the benzene rings are symmetric in right and left, Ar¹ is not the same as Ar² and that when m or n is an integer of 2 to 4, m and n are different integers;

R¹ to R⁸ each are independently a hydrogen atom, a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, a substituted or non-substituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or non-substituted alkyl group having 1 to 50 carbon atoms, a substituted or non-substituted cycloalkyl group, a substituted or non-substituted alkoxy group having 1 to 50 carbon atoms, a substituted or non-substituted aralkyl group having 6 to 50 carbon atoms, a substituted or non-substituted aryloxy group having 5

to 50 nuclear atoms, a substituted or non-substituted arylthio group having 5 to 50 nuclear atoms, a substituted or non-substituted alkoxy carbonyl group having 1 to 50 carbon atoms, a substituted or non-substituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group;

R⁹ and R¹⁰ each are independently a hydrogen atom, a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, a substituted or non-substituted alkyl group having 1 to 50 carbon atoms, a substituted or non-substituted cycloalkyl group, a substituted or non-substituted alkoxy group having 1 to 50 carbon atoms, a substituted or non-substituted aralkyl group having 6 to 50 carbon atoms, a substituted or non-substituted aryloxy group having 5 to 50 nuclear atoms, a substituted or non-substituted arylthio group having 5 to 50 nuclear atoms, a substituted or non-substituted alkoxy carbonyl group having 1 to 50 carbon atoms, a substituted or non-substituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group, and any groups are not an alkenyl group.

Claim 2 (Original) An asymmetric monoanthracene derivative represented by the following Formula (2):

(2)

wherein Ar¹ and Ar² each are independently a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, and n is an integer of 1 to 4, provided that when n is 1 and the bonding positions of Ar¹ and Ar² in the benzene ring are symmetric in right and left, Ar¹ is not the same as Ar²;

R¹ to R⁸ each are independently a hydrogen atom, a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, a substituted or non-substituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or non-substituted alkyl group having 1 to 50 carbon atoms, a substituted or non-substituted cycloalkyl group, a substituted or non-substituted alkoxy group having 1 to 50 carbon atoms, a substituted or non-substituted aralkyl group having 6 to 50 carbon atoms, a substituted or non-substituted aryloxy group having 5 to 50 nuclear atoms, a substituted or non-substituted arylthio group having 5 to 50 nuclear atoms, a substituted or non-substituted alkoxycarbonyl group having 1 to 50 carbon atoms, a substituted or non-substituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group;

R⁹ and R¹⁰ each are independently a hydrogen atom, a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, a substituted or non-substituted alkyl group having 1 to 50 carbon atoms, a substituted or non-substituted cycloalkyl group, a substituted or non-substituted alkoxy group having 1 to 50 carbon atoms, a substituted or non-substituted aralkyl group having 6 to 50 carbon atoms, a substituted or non-substituted aryloxy group having 5 to 50 nuclear atoms, a substituted or non-substituted arylthio group having 5 to 50 nuclear atoms, a substituted or non-substituted alkoxycarbonyl group having 1 to 50 carbon atoms, a substituted or non-substituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group, and any groups are not an alkenyl group.

Claim 3 (Original) An asymmetric monoanthracene derivative represented by the following Formula (3):

(3)

wherein Ar¹ and Ar² each are independently a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, and n is an integer of 1 to 4, provided that when n is 1 and the bonding positions of Ar¹ and Ar² in the benzene ring are symmetric in right and left, Ar¹ is not the same as Ar²;

R¹ to R⁸ each are independently a hydrogen atom, a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, a substituted or non-substituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or non-substituted alkyl group having 1 to 50 carbon atoms, a substituted or non-substituted cycloalkyl group, a substituted or non-substituted alkoxy group having 1 to 50 carbon atoms, a substituted or non-substituted aralkyl group having 6 to 50 carbon atoms, a substituted or non-substituted aryloxy group having 5 to 50 nuclear atoms, a substituted or non-substituted arylthio group having 5 to 50 nuclear atoms, a substituted or non-substituted alkoxycarbonyl group having 1 to 50 carbon atoms, a substituted or non-substituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group;

R⁹ and R¹⁰ each are independently a hydrogen atom, a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, a substituted or non-substituted alkyl group having 1 to 50 carbon atoms, a substituted or non-substituted cycloalkyl group, a substituted or non-substituted alkoxy group having 1 to 50 carbon atoms, a substituted or non-substituted aralkyl group having 6 to 50 carbon atoms, a substituted or non-substituted aryloxy group having 5 to 50 nuclear atoms, a substituted or non-substituted arylthio group having 5 to 50 nuclear atoms, a substituted or non-substituted alkoxycarbonyl group having 1 to 50 carbon atoms, a substituted or non-substituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group, and any groups are not an alkenyl group.

Claim 4 (Original) An asymmetric monoanthracene derivative represented by the following Formula (4):

wherein Ar¹ and Ar² each are independently a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, and n is an integer of 1 to 4, provided that when n is 1 and the bonding positions of Ar¹ and Ar² in the benzene ring are symmetric in right and left, Ar¹ is not the same as Ar²;

R¹ to R⁸ each are independently a hydrogen atom, a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, a substituted or non-substituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or non-substituted alkyl group having 1 to 50 carbon atoms, a substituted or non-substituted cycloalkyl group, a substituted or non-substituted alkoxy group having 1 to 50 carbon atoms, a substituted or non-substituted aralkyl group having 6 to 50 carbon atoms, a substituted or non-substituted aryloxy group having 5 to 50 nuclear atoms, a substituted or non-substituted arylthio group having 5 to 50 nuclear atoms, a substituted or non-substituted alkoxycarbonyl group having 1 to 50 carbon atoms, a substituted or non-substituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group;

R⁹ and R¹⁰ each are independently a hydrogen atom, a substituted or non-substituted aromatic hydrocarbon ring group having 6 to 50 nuclear carbon atoms, a substituted or non-substituted alkyl group having 1 to 50 carbon atoms, a substituted or non-substituted cycloalkyl group, a substituted or non-substituted alkoxy group having 1 to 50 carbon atoms, a substituted or non-substituted aralkyl group having 6 to 50 carbon atoms, a substituted or non-substituted aryloxy group having 5 to 50 nuclear atoms, a substituted or non-substituted arylthio group having 5 to 50 nuclear atoms, a substituted or non-substituted alkoxycarbonyl group having 1 to 50 carbon atoms, a substituted or non-substituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group, and any groups are not an alkenyl group.

Claim 5 (Original) The asymmetric monoanthracene derivative as described in claim 1, wherein in Formula (1), Ar¹ and Ar² described above each are independently any of phenyl, 1-naphthyl, 2-naphthyl, 9-phenanthryl, 1-naphthacenyl, 2-naphthacenyl, 9-naphthacenyl, 1-pyrenyl, 2-pyrenyl, 4-pyrenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, o-tolyl, m-tolyl, p-tolyl and p-t-butylphenyl.

Claim 6 (Original) The asymmetric monoanthracene derivative as described in claim 1, wherein in Formula (1), Ar¹ and Ar² described above each are independently any of phenyl, 1-naphthyl, 2-naphthyl and 9-phenanthryl.

Claim 7 (Original) A material for an organic electroluminescent device comprising the asymmetric monoanthracene derivative represented by Formula (1) as described in claim 1.

Claim 8 (Original) The material for an organic electroluminescent device as described in claim 7, wherein the material for an organic electroluminescent device described above is a luminescent material.

Claim 9 (Original) The material for an organic electroluminescent device as described in claim 7, wherein the material for an organic electroluminescent device described above is a host material.

Claim 10 (Currently Amended) An organic electroluminescent device in which an organic thin film layer comprising a single layer or plural layers including a luminescent layer is interposed between a cathode and an anode, wherein at least one of the above organic thin film layers ~~contains~~ comprises the asymmetric monoanthracene derivative represented by Formula (1) as described in claim 1 in the form of a single component or a mixed component.

Claim 11 (Currently Amended) The organic electroluminescent device as described in claim 10, wherein the luminescent layer described above ~~contains~~ comprises the asymmetric monoanthracene derivative represented by Formula (1) as a principal component.

Claim 12 (Currently Amended) The organic electroluminescent device as described in claim 10, wherein the luminescent layer described above further ~~contains~~ comprises an arylamine compound.

Claim 13 (Currently Amended) The organic electroluminescent device as described in claim 10, wherein the luminescent layer described above further ~~contains~~ comprises a styrylamine compound.

Claim 14 (New) The asymmetric monoanthracene derivative represented by Formula (2) as described in claim 2, wherein Ar¹ and Ar² are each independently selected from the group consisting of phenyl, 1-naphthyl, 2-naphthyl, 9-phenanthryl, 1-naphthacenyl, 2-naphthacenyl, 9-naphthacenyl, 1-pyrenyl, 2-pyrenyl, 4-pyrenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, o-tolyl, m-tolyl, p-tolyl and p-t-butylphenyl.

Claim 15 (New) An organic electroluminescent device in which an organic thin film layer comprising a single layer or plural layers including a luminescent layer is interposed between a cathode and an anode, wherein at least one of the above organic thin film layers comprises the asymmetric monoanthracene derivative represented by Formula (2) as described in claim 2 in the form of a single component or a mixed component.

Claim 16 (New) The asymmetric monoanthracene derivative represented by Formula (3) as described in claim 3, wherein Ar¹ and Ar² are each independently selected from the group consisting of phenyl, 1-naphthyl, 2-naphthyl, 9-phenanthryl, 1-naphthacenyl, 2-naphthacenyl, 9-naphthacenyl, 1-pyrenyl, 2-pyrenyl, 4-pyrenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, o-tolyl, m-tolyl, p-tolyl and p-t-butylphenyl.

Claim 17 (New) An organic electroluminescent device in which an organic thin film layer comprising a single layer or plural layers including a luminescent layer is interposed between a cathode and an anode, wherein at least one of the above organic thin film layers comprises the asymmetric monoanthracene derivative represented by Formula (3) as described in claim 3 in the form of a single component or a mixed component.

Claim 18 (New) The asymmetric monoanthracene derivative represented by Formula (4) as described in claim 4, wherein Ar¹ and Ar² are each independently selected from the group consisting of phenyl, 1-naphthyl, 2-naphthyl, 9-phenanthryl, 1-naphthacenyl, 2-naphthacenyl, 9-naphthacenyl, 1-pyrenyl, 2-pyrenyl, 4-pyrenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, o-tolyl, m-tolyl, p-tolyl and p-t-butylphenyl.

Claim 19 (New) An organic electroluminescent device in which an organic thin film layer comprising a single layer or plural layers including a luminescent layer is interposed between a cathode and an anode, wherein at least one of the above organic thin film layers comprises the asymmetric monoanthracene derivative represented by Formula (4) as described in claim 4 in the form of a single component or a mixed component.