4/14/2019 Calc Team

question 4 views

Daily Challenge 1.6

(Due: Sunday 4/29 at 12:00 noon Eastern.)

Review

Let's take stock of what we've learned about proofs so far.

A proof of a statement like "p implies q" is a series of logical deductions which begins by assuming that p is true and ends by showing that q must be true. For instance,

Theorem. If a is an even integer, then a+1 is an odd integer.

Proof. We begin by assuming that a is an even integer. By the definition of even, it follows that a=2k for some integer k. Then the number a+1 can be written as 2k+1, where again k is an integer. But the definition of "odd" says that a number m is odd if m=2n+1 for some integer n, so the preceding sentence shows that a+1 satisfies this definition. Therefore, we have found that a+1 is odd. \square .

This proof is really a series of separate "moves":

- 1. First assume a is even.
- 2. Use the definition of "even" to conclude something about a: it is twice an integer.
- 3. Apply (2) to find that a+1 is twice an integer plus one.
- 4. Use the definition of "odd" to show that a+1 is odd.

I find it very helpful to think of a proof the way one thinks of a chess game: there is some big-picture *strategy* which you move toward by using specific *tactics* like the moves above (I learned this way of thinking about proofs from Paul Zeitz's book).

Let's see another example. First, some definitions: we say that a divides b, and write $a \mid b$, if $\frac{b}{a}$ is an integer. For instance, 2 divides 10 because $\frac{10}{2}$ is 5 (we also say that 2 is a divisor of 10).

If a does not divide b, we write $a \nmid b$. For example, $3 \nmid 10$.

Theorem. Let a, b, c be integers. If a divides b and b divides c, then a divides c.

Proof. We have two assumptions: a divides b and b divides c. Our goal is to show that, whenever these assumptions are true, it must also be true that a divides c.

Our first move is to replace statements with their definitions, using named variables. If a divides b, then $\frac{b}{a}$ is an integer. Let's name this integer n, so that $\frac{b}{a} = n$.

We do the same thing for the second assumption. If b divides c, then $\frac{c}{b}$ is an integer. Call that integer m, so that $\frac{c}{b} = m$.

The thing we want to show is that a divides c. So we need to prove that $\frac{c}{a}$ is an integer. To show this, we can re-write $\frac{c}{a}$ as

$$\frac{c}{a} = \frac{c}{b} \times \frac{b}{a} = m \times n.$$

We know that m and n are integers, so their product $m \times n$ is also an integer. Therefore, we have shown that $\frac{c}{a}$ is an integer, so $c \mid a$. This is what we wanted to show. \square

Problem

Read the divisibility proof above carefully and make sure you understand it. Then try to prove the following.

Theorem. Suppose a, b, c are integers. If a divides b and a divides c, then a divides (b-c).

daily_challenge

Updated 11 months ago by Christian Ferko

the students' answer, where students collectively construct a single answer

Proof (Corbin) -

We must prove the statement that "a,b,c are integers. If a divides b and a divides c, then a divides (b-c)." First I would like to expand this out so the statement becomes $\frac{b-c}{a} = \frac{b}{a} - \frac{c}{a}$. From here I will assign $\frac{b}{a} = x$ and $\frac{c}{a} = y$. This means that $\frac{b}{a} - \frac{c}{a} = x - y$ And since both x and y are in $\mathbb Z$ this means that x - z is also in $\mathbb Z$. \square

Proof (Logan) - I must prove that: "a,b,c are integers. If a divides b and a divides c, then a divides (b-c)." First, I can assign each of these statements a variable. a divides b can be written as $\frac{b}{a} = g$, and similarly a divides c can be written as $\frac{c}{a} = h$. I must prove that $\frac{(b-c)}{a} \in \mathbb{Z}$. Unfortunately I do not know where to to progress beyond this point, and a reasonable amount of time has been spent staring and making no logical progress.

Updated 10 months ago by Corbin and 3 others

the instructors' answer, where instructors collectively construct a single answer

4/14/2019 Calc Team

Proof (Christian). If a divides b, then $\frac{b}{a}=m$ for some integer m. Likewise, if a divides c, then $\frac{c}{a}=n$ for some integer n.

Now we wish to show that a divides (b-c), which means that we must prove that $\frac{b-c}{a}$ is an integer. But we can express $\frac{b-c}{a}$ as

$$\frac{b-c}{a} = \underbrace{\frac{b}{a}}_{=m} - \underbrace{\frac{c}{a}}_{=n} = m-n,$$

where we have used the variables m and n defined above.

Since m and n are integers, the difference m-n is also an integer. Therefore we have shown that $\frac{b-c}{a}$ is an integer, which means that a divides (b-c). \square

Updated 11 months ago by Christian Ferko

followup discussions for lingering questions and comments