Разлагане в ред на Фурие

Във физиката и техниката периодичните процеси играят важна роля. Те се появяват обикновено като механични или електрически трептения, вълнови и въртеливи движиния и др.

За описанието на такъв род явления и процеси се използват периодични функции, като функциите косинус и синус играят основна роля. Представянето на периодични функции посредством редове по синус и косинус е важна математическа задача. Редове от посочения вид се наричат редове на Фурие в чест на известния френски математик.

Под **периодична функция** се разбира функция f(x), удовлетворяваща равенството от вида f(x) = f(x+L) за всяко $x \in R$, където L е положителна константа, наричана **период**. Функциите $\cos(nx)$ и $\sin(nx)$ при $n \in N$ имат период $L = \frac{2\pi}{n}$. Вижда се, че 2π е също техен период.

Функциите $\psi(x)=1$, $\cos(nx)$ и $\sin(nx)$, $n\in N$ образуват тригонометрична система от функции. Всяка периодична функции f(x) с период L>0 може лесно да се трансформира във функция с период 2π . Затова се полага $x=\frac{tL}{2\pi}$, от където се получава $\varphi(t)=f\left(\frac{tL}{2\pi}\right)$. Функцията $\varphi(t)$ има период 2π .

Ще разгледаме т. нар. **ортогонални свойства** на тригонометричните функции. Нека m и n са естествени числа.

Дефиниция. Величините

$$C_{mn} = \int_{-\pi}^{\pi} \cos mx \cos nx dx,$$

$$S_{mn} = \int_{-\pi}^{\pi} \sin mx \sin nx dx,$$

$$T_{mn} = \int_{-\pi}^{\pi} \sin mx \cos nx dx.$$

се наричат интеграли на Фурие.

Тъй като функцията $\sin mx \cos nx$ е нечетна, то за всяка двойка m, n важи $T_{mn}=0$. Функциите $\cos mx \cos nx$ и $\sin mx \sin nx$ са четни и съгласно това важи:

$$C_{mn} = 2 \int_0^{\pi} \cos mx \cos nx dx,$$

$$S_{mn} = 2 \int_0^{\pi} \sin mx \sin nx dx.$$

Да приемем, че функцията f(x) е интегруема в интервала $[-\pi,\pi]$. Числата

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx,$$

$$a_0 = \frac{1}{\pi} \int_{-\lambda}^{\pi} f(x) dx,$$

където $n=1,2,\ldots$, се наричат коефициенти на Фурие за функцията f(x) в интервала f(x) в интервала $[-\pi,\pi]$.

Ако f(x) е нечетна функция, за всяко $n \in N$ важи $a_n = 0$ и

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx,$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = 0.$$

Ако f(x) е **четна** функция, за всяко $n \in N$ важи $b_n = 0$ и

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx,$$

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx.$$

Дефиниция. Функционен ред от вида

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

се нарича тригонометричен ред на Фурие или за краткост ред на Фурие.

Реалните величини $a_0, a_1, \ldots, b_1, b_2, \ldots$ се наричат коефициенти на реда. Ако f(x) е нечетна, тя има развитие в ред по синуси, а ако f(x) е четна, тя има развитие в ред по косинус.

Ще разгледаме реда на Фурие в комплексен запис. Този вид запис при процеси, свързани с трептения, се оказва много полезен и икономичен в техническите приложения на анализа на Фурие. Такъв запис се използва в електротехниката, аеродинамиката и др.

От равенството $e^{\pm i\varphi} = \cos\varphi \pm i\sin\varphi$ се получават зависимостите

$$\cos nx = \frac{e^{inx} + e^{-inx}}{2} \quad , \qquad \sin nx = \frac{e^{inx} - e^{-inx}}{2i}.$$

Така разлагането в ред на Фурие придобива вида:

$$f(x) = \alpha_0 + \sum_{n=1}^{\infty} \alpha_n e^{inx} + \alpha_{-n} e^{-inx},$$

където $\alpha_n \equiv \frac{1}{2}(a_n-ib_n)$ и $a_{-n}\equiv a_n,\, b_{-n}\equiv -b_n,\, b_0\equiv 0$ и $\alpha_{-n}\equiv \frac{1}{2}a_{-n}-ib_{-n},$ където $n=1,2,\ldots$

Забележка. При описание на трептения физици и технически специалисти използват записа

$$f(u) = \sum_{-\infty}^{\infty} \alpha_n e^{in\omega t},$$

където $\omega>0$ е кръговата честота на трептението. Удобството на това представяне се състои във възможността да се използва освновна зависимост $e^{p+q}=e^pe^q$.

Евгения Арнаудова, fn10873@fmi.uni-sofia.bg