Problem statement

predicting the house price in USA. To create a model to help him estimate of what the house would sell for.

To display top 10 rows

In [3]: 1 df.head(10)

Out[3]:

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Comments	Shares	Likes	Profile Visits	Follows	Caption	
0	3920	2586	1028	619	56	98	9	5	162	35	2	Here are some of the most important data visua	#finance�#money�#bu
1	5394	2727	1838	1174	78	194	7	14	224	48	10	Here are some of the best data science project	#healthcare�#health�#
2	4021	2085	1188	0	533	41	11	1	131	62	12	Learn how to train a machine learning model an	#data � #datascience
3	4528	2700	621	932	73	172	10	7	213	23	8	Here s how you can write a Python program to d	#python�#pythonprogra
4	2518	1704	255	279	37	96	5	4	123	8	0	Plotting annotations while visualizing your da	#datavisualization�#
5	3884	2046	1214	329	43	74	7	10	144	9	2	Here are some of the most important soft skill	#data � #datascience
6	2621	1543	599	333	25	22	5	1	76	26	0	Learn how to analyze a candlestick chart as a	#stockmarket � #investiı

	Caption	Follows	Profile Visits	Likes	Shares	Comments	Saves	From Other	From Explore	From Hashtags	From Home	Impressions	
#python � #pythonprogra	Here are some of the best books that you can f	6	12	124	9	4	135	60	500	628	2071	3541	7
#dataanalytics�#data	Here are some of the best data analysis projec	4	36	159	8	6	155	49	248	857	2384	3749	8
#python � #pythonprogra	Here are two best ways to count the number of 	6	31	191	3	6	122	46	178	1104	2609	4115	9

Data Cleaning And Pre-Processing

In [4]: 1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 119 entries, 0 to 118
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
"	COTAMIT	Non Nair Counc	Бсурс
0	Impressions	119 non-null	int64
1	From Home	119 non-null	int64
2	From Hashtags	119 non-null	int64
3	From Explore	119 non-null	int64
4	From Other	119 non-null	int64
5	Saves	119 non-null	int64
6	Comments	119 non-null	int64
7	Shares	119 non-null	int64
8	Likes	119 non-null	int64
9	Profile Visits	119 non-null	int64
10	Follows	119 non-null	int64
11	Caption	119 non-null	object
12	Hashtags	119 non-null	object
44	:-+ < 4/44 \	L	

dtypes: int64(11), object(2)

memory usage: 12.2+ KB

```
In [5]:
           1 # Display the statistical summary
           2 df.describe()
Out[5]:
                                                   From
                                                                From
                                                                                                                                    Profi
                                                                       From Other
                                                                                                                          Likes
                  Impressions
                                From Home
                                                                                        Saves Comments
                                                                                                             Shares
                                               Hashtags
                                                              Explore
                                                                                                                                     Visi
                                                                                                          119.000000
          count
                   119.000000
                                 119.000000
                                              119.000000
                                                           119.000000
                                                                       119.000000
                                                                                    119.000000
                                                                                               119.000000
                                                                                                                     119.000000 119.00000
                  5703.991597
                               2475.789916
                                             1887.512605
                                                          1078.100840
                                                                       171.092437
                                                                                    153.310924
                                                                                                 6.663866
                                                                                                                    173.781513
                                                                                                                                  50.62184
                                                                                                            9.361345
           mean
                  4843.780105
                               1489.386348
                                             1884.361443
                                                          2613.026132
                                                                       289.431031
                                                                                    156.317731
                                                                                                 3.544576
                                                                                                           10.089205
                                                                                                                      82.378947
                                                                                                                                  87.08840
            std
                                                                         9.000000
                  1941.000000
                               1133.000000
                                              116.000000
                                                             0.000000
                                                                                    22.000000
                                                                                                 0.000000
                                                                                                            0.000000
                                                                                                                      72.000000
                                                                                                                                  4.00000
            min
            25%
                  3467.000000
                                                                        38.000000
                                                                                    65.000000
                               1945.000000
                                              726.000000
                                                           157.500000
                                                                                                 4.000000
                                                                                                            3.000000 121.500000
                                                                                                                                  15.00000
            50%
                  4289.000000
                               2207.000000
                                             1278.000000
                                                           326.000000
                                                                        74.000000
                                                                                    109.000000
                                                                                                 6.000000
                                                                                                            6.000000
                                                                                                                     151.000000
                                                                                                                                  23.00000
            75%
                  6138.000000
                                                                                                                                 42.00000
                               2602.500000
                                             2363.500000
                                                           689.500000
                                                                       196.000000
                                                                                    169.000000
                                                                                                 8.000000
                                                                                                           13.500000
                                                                                                                     204.000000
                 36919.000000 13473.000000
                                           11817.000000 17414.000000
                                                                      2547.000000
                                                                                  1095.000000
                                                                                                19.000000
                                                                                                           75.000000
                                                                                                                     549.000000 611.00000
In [6]:
             # To display the col headings
              df.columns
Out[6]: Index(['Impressions', 'From Home', 'From Hashtags', 'From Explore',
                  'From Other', 'Saves', 'Comments', 'Shares', 'Likes', 'Profile Visits',
                  'Follows', 'Caption', 'Hashtags'],
                dtvpe='object')
In [7]:
              cols=df.dropna(axis=1)
In [8]:
              cols.columns
Out[8]: Index(['Impressions', 'From Home', 'From Hashtags', 'From Explore',
                  'From Other', 'Saves', 'Comments', 'Shares', 'Likes', 'Profile Visits',
                  'Follows', 'Caption', 'Hashtags'],
                dtvpe='object')
```

EDA and Visualization

```
In [9]: 1 sns.pairplot(cols)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x2009ebeb550>

In [10]: 1 sns.displot(df['Shares'])

Out[10]: <seaborn.axisgrid.FacetGrid at 0x200a3335730>

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a dep recated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='Shares', ylabel='Density'>

Out[12]:

	Saves	Comments	Shares	Likes	Profile Visits	Follows	Caption	Hashtags
0	98	9	5	162	35	2	Here are some of the most important data visua	#finance�#money�#business�#investing�#investme
1	194	7	14	224	48	10	Here are some of the best data science project	#healthcare�#health�#covid�#data�#datascience�
2	41	11	1	131	62	12	Learn how to train a machine learning model an	#data�#datascience�#dataanalysis�#dataanalytic
3	172	10	7	213	23	8	Here�s how you can write a Python program to d	#python�#pythonprogramming�#pythonprojects�#py
4	96	5	4	123	8	0	Plotting annotations while visualizing your da	#datavisualization�#datascience�#data�#dataana
114	573	2	38	373	73	80	Here are some of the best data science certifi	#datascience�#datasciencejobs�#datasciencetrai
115	135	4	1	148	20	18	Clustering is a machine learning technique use	#machinelearning�#machinelearningalgorithms�#d
116	36	0	1	92	34	10	Clustering music genres is a task of grouping	#machinelearning�#machinelearningalgorithms�#d
117	1095	2	75	549	148	214	Here are some of the best data science certifi	#datascience�#datasciencejobs�#datasciencetrai
118	653	5	26	443	611	228	175 Python Projects with Source Code solved an	#python�#pythonprogramming�#pythonprojects�#py

119 rows × 8 columns

```
In [13]:    1 sns.heatmap(df1.corr())
Out[13]:    <AxesSubplot:>
```


To train the model - MODEL BUILD

Going to train linear regression model; We split our data into 2 variables x and y where x is independent var(input) and y is dependent on x(output), we could ignore address col as it is not required for our model

To split the dataset into test data

```
In [15]:
           1 # importing lib for splitting test data
           2 from sklearn.model_selection import train_test_split
In [16]:
           1 x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [17]:
           1 from sklearn.linear_model import LinearRegression
            lr=LinearRegression()
           4 lr.fit(x_train,y_train)
Out[17]: LinearRegression()
In [18]:
           1 print(lr.intercept )
         [0.]
In [19]:
           1 print(lr.score(x_test,y_test))
         1.0
           1 coeff=pd.DataFrame(lr.coef_)
In [20]:
           2 coeff
Out[20]:
                     0
                                1 2
                                               3
```

0 1.186492e-18 -4.188671e-16 1.0 3.347315e-17 -1.199608e-16

```
In [21]:
           1 pred = lr.predict(x_test)
           plt.scatter(y_test,pred)
Out[21]: <matplotlib.collections.PathCollection at 0x200a54ac5b0>
          35
           30
           25
          20
          15
          10
           5
                        10
                              15
                                   20
                                        25
                                              30
                    5
                                                   35
           1 from sklearn.linear_model import Ridge,Lasso
In [22]:
In [23]:
           1 rr=Ridge(alpha=20)
           2 rr.fit(x_train,y_train)
Out[23]: Ridge(alpha=20)
In [24]:
           1 rr.score(x_test,y_test)
Out[24]: 0.9999394477091997
In [25]:
           1 la=Lasso(alpha=20)
           2 la.fit(x_train,y_train)
Out[25]: Lasso(alpha=20)
           1 la.score(x_test,y_test)
In [26]:
Out[26]: 0.6582904888407064
```

ELASTIC NET

```
1 | from sklearn.linear_model import ElasticNet
In [27]:
           2 en=ElasticNet()
           3 en.fit(x_train,y_train)
Out[27]: ElasticNet()
          1 print(en.coef )
In [28]:
         [ 2.47574074e-03  0.00000000e+00  9.57398055e-01  1.64724434e-04
          -3.68094956e-041
          1 print(en.intercept )
In [29]:
         [0.02140869]
In [30]:
           1 prediction=en.predict(x test)
           2 prediction
Out[30]: array([37.85570552, 3.21569465, 3.07526078, 19.27657863,
                                                                    9.82476711,
                 3.96476008, 3.27278448, 3.99158122, 14.60283795, 8.23722705,
                 3.16975947, 26.8754339 , 7.3254062 , 22.27747042,
                                                                    0.10935121,
                 1.09213219, 12.57837833, 9.03055548, 2.11568753,
                                                                    2.311304 ,
                13.59704925, 3.0164361, 10.87114104, 11.01044669,
                                                                    5.88063654,
                16.21799397, 21.9034302, 3.99158122, 13.7463738,
                                                                    6.2431907 ,
                 4.93891646, 3.2556104, 4.10598836, 14.86127429, 1.33004906,
                 3.27278448])
          1 print(en.score(x test,y test))
In [31]:
```

0.999096651508552

EVALUATION METRICS

Root Mean Squared Error: 0.250947012133647