PROGRAMA GENERAL PARA ALCANZAR COMPETENCIAS EN "DISEÑO DE SISTEMAS CON PROCESADORES"

COMPETENCIA 1:	Representar cualquier dato numérico y alfabético mediante una codificación binaria.	CAPÍTULO 1. CODIFICACIÓN DE BAJO NIVEL 1.1. Sistemas de Numeración 1.2. Representación de Números en un Sistema Digital 1.3. Formatos Estándar IEEE-754 de Punto Flotante 1.4. Codificación Binaria 1.5. Secuencias de Conteo
COMPETENCIA 2:	Hacer ingeniería inversa a un código máquina para entender su código fuente con propósitos académicos, considerando sus implicaciones éticas.	CAPÍTULO 2. PROGRAMACIÓN EN BAJO NIVEL 2.1. Herramientas de Desarrollo en C 2.2. Control de Flujo en Bajo Nivel 2.3. Casos Especiales de Control de Flujo 2.4. Operaciones de la ALU: Expresiones en C 2.5. Tipos de Datos en Memoria: Declaraciones en C 2.6. Llamado con Retorno y Contexto en Pila: Funciones en C
COMPETENCIAS 3:	Analizar y diseñar un sistema de computador embebido.	CAPÍTULO 3. METODOLOGÍAS DE DISEÑO 3.1. Ingeniería de Software y de Hardware 3.2. Elaboración y Lectura de Diagramas 3.3. Sistemas de Computador Embebido 3.4. Configuración de Periféricos 3.5. Protocolos de Comunicación
COMPETENCIAS 4:	Diseñar, adaptar e implementar en software cualquier algoritmo mediante una "Finite State Machine".	CAPÍTULO 4. MÁQUINAS DE ESTADOS FINITOS 4.1. Diagramas de Estado 4.2. Tipos de Máquinas de Estados Finitos 4.3. Implementación de Máquinas de Estados Finitos 4.4. Máquinas de Estados Finitos Concurrentes
COMPETENCIA 5:	Justificar la elección de una arquitectura de software embebido, acorde a los requerimientos del diseño.	CAPÍTULO 5. INTRODUCCIÓN A RTOS 5.1. Interrupciones Hardware 5.2. Arquitecturas de Software 5.3. Servicios de una Arquitectura RTOS 5.4. Otros Servicios del Sistema Operativo 5.5. Uso de un Diseño Básico con RTOS

MATERIAL BIBLIOGRÁFICO DE APOYO EN CADA SECCIÓN DE "DISEÑO DE SISTEMAS CON PROCESADORES"

CAPÍTULO 1. CODIFICACIÓN DE BAJO NIVEL	MATERIAL BIBLIOGRÁFICO DE APOYO EN CADA SECCIÓN
1.1. Sistemas de Numeración	Section 1.1: Number System [Giraldo, 2023].
1.1.1. Historia de los sistemas de numeración	
1.1.2. Sistema numérico posicional	
1.1.3. Conversión entre bases numéricas	
1.2. Representación de Números en un Sistema Digital	Section 1.1: Number System [Giraldo, 2023].
1.2.1. Precisión y rango dinámico	Section 1.4: Number Systems [Harris & Harris, 2013], pp. 9-18
1.2.2. Representación de números negativos	
1.2.3. Representación en punto fijo y punto flotante	
1.2.4. Representación logarítmica	
1.2.5. Aritmética binaria	
1.3. Formatos Estándar IEEE-754 de Punto Flotante	Section 1.2: Real Number Representation [Giraldo, 2023].
1.3.1. Justificación, tipos de formatos y actualizaciones	Section 5.3.2: Floating-Point Number Systems [Harris & Harris, 2013], pp. 256-259
1.3.2. Codificación de los formatos	Document : IEEE Standard for Floating-Point Arithmetic, 1985.
1.3.3. Valores y operaciones especiales	Document : IEEE Standard for Radix-Independent Floating-Point Arithmetic , 1987.
1.3.4. Operaciones aritméticas	Document : IEEE Standard for Floating-Point Arithmetic (Revision), 2008.
	Document : IEEE Standard for Floating-Point Arithmetic (Revision of IEEE 2008), 2019.
1.4. Codificación Binaria	Section 1.3: Binary Codes [Giraldo, 2023].
1.4.1. Justificación y usos	
1.4.2. Códigos ponderados, no-ponderados, auto-	
complementados	
1.4.3. Códigos alfanuméricos	
1.4.4. Códigos detectores y correctores de error	
1.5. Secuencias de Conteo	Section 1.4: Counting [Giraldo, 2023].
1.5.1. Secuenciadores hardware	
1.5.2. Contadores binario y Gray	
1.5.3. Contadores de anillo y Johnson	
1.5.4. Contadores pseudo-aleatorios	

CAPÍTULO 2. PROGRAMACIÓN EN BAJO NIVEL	MATERIAL BIBLIOGRÁFICO DE APOYO EN CADA SECCIÓN
2.1. Herramientas de Desarrollo en C	Section 6.6.2: Translating and Starting a Program [Harris & Harris, 2013], pp. 337-341
2.1.1. Sistema operativo por consola	Section 2.2.13: The pre-processor [Harder et al., 2014], pp. 43-45
2.1.2. El pre-procesador de C	Chapter 9: Embedded Software Development Tools [Simon, 1999], pp. 261-281
2.1.3. Etapas de compilación en C	Chapter 10: Debugging Techniques [Simon, 1999], pp. 283-328
2.1.4. Herramientas software	Chapter 5: C Debugging Techniques [Anderson & Anderson, 1988], pp. 262-362
2.1.5. Herramientas hardware	
2.2. Control de Flujo en Bajo Nivel	Se seguirá material desarrollado por el Ing. Juan-Carlos Giraldo
2.2.1. Diagramas de flujo	Chapter 1: C Refresher [Anderson & Anderson, 1988], pp. 1-46
2.2.2. Instrucciones, condiciones y secuencias	
2.2.3. Bloque de instrucciones (delimitadores "{" y "}")	
2.2.4. Secuencias lineales (separador ";")	
2.2.5. Secuencias de selección ("if-else", "if")	
2.2.6. Secuencias de repetición ("for", "while", "do-while")	
2.3. Casos Especiales de Control de Flujo	Se seguirá material desarrollado por el Ing. Juan-Carlos Giraldo
2.3.1. Árboles de decisión	Chapter 1: C Refresher [Anderson & Anderson, 1988], pp. 1-46
2.3.2. Selección con "switch-case"	Chapter 4: Static memory allocation [Harder et al., 2014], pp. 97-104
2.3.3. Optimización de bucle	Section 2.1.1: Programming paradigms [Harder et al., 2014], pp. 14-15
2.3.4. Saltos locales ("goto-label", "break", "continue", "return")	Section 2.2.11: Switch statements versus functions pointers [Harder et al., 2014], pp. 42
2.3.5. Saltos no-locales (setjmp.h)	Section 4.3: Set jump and long jump [Harder et al., 2014], pp. 102-103
2.3.6. Resumen: "Secuencias en Lenguajes de Ensamble"	
2.4. Operaciones de la ALU: Expresiones en C	Se seguirá material desarrollado por el Ing. Juan-Carlos Giraldo
2.4.1. Operandos y operadores	Chapter 1: C Refresher [Anderson & Anderson, 1988], pp. 1-46
2.4.2. Precedencia	
2.4.3. Asociación	
2.4.4. Evaluación	
2.4.5. Promoción	
2.4.6. Puntos de secuencia garantizada	

2.5. Tipos de Datos en Memoria: <i>Declaraciones en C</i>	Chapter 3: An Array of Choices [Anderson & Anderson, 1988], pp. 112-208
2.5.1. Atributos de tipos de datos	Chapter 4: A Closer look at C [Anderson & Anderson, 1988], pp. 217-230
2.5.2. Tipos escalares, agregados y derivados	Section 2.2.10 : Bit-fields in C99 [Harder et al., 2014], pp. 41
2.5.3. Apuntadores	
2.5.4. Estructuras	
2.5.5. Arreglos	
2.5.6. Declaraciones complejas	
2.6. Llamado con Retorno y Contexto en Pila: Funciones en C	Chapter 2: The Run Time Environment [Anderson & Anderson, 1988], pp. 47-111
2.6.1. Parámetros y argumentos	Chapter 4: Static memory allocation [Harder et al., 2014], pp. 97-101
2.6.2. Paso de parámetros por valor y por referencia	
2.6.3. Tipos de almacenamiento ("auto", "static", "register",	
"extern")	
2.6.4. Retorno de valores de la función	
2.6.5. Uso del "stack" y el "stack frame"	

CAPÍTULO 3. METODOLOGÍAS DE DISEÑO	MATERIAL BIBLIOGRÁFICO DE APOYO EN CADA SECCIÓN
3.1. Ingeniería de Software y de Hardware	Chapter 1 : Software engineering in the UNIX/C environment [Frakes et al., 1991], pp. 1-9
3.1.1. Métricas de complejidad del software	Chapter 2: Real-time, embedded and operating-system programming languages [Harder
3.1.2. Fases de diseño de sistemas	et al., 2014], pp. 13-72
3.1.3. Diseño "top-down", "bottom-up" y diseño en "V"	Section 2.3: Software engineering and development [Harder et al., 2014], pp. 43-45
3.1.4. Desarrollo iterativo e incremental	
3.1.5. Metodologías "Waterfall" y "Agile"	
3.2. Elaboración y Lectura de Diagramas	Se seguirá material desarrollado por el Ing. Juan-Carlos Giraldo
3.2.1. Diagramas de bloques	Chapter 2: Hardware Fundamentals for the Software Engineer [Simon, 1999], pp. 13-44
3.2.2. Diagramas de tiempo	Chapter 3: Computer organizations [Harder et al., 2014], pp. 73-96
3.2.3. Diagramas esquemáticos	Chapter 4: Architecture [Harris & Harris, 2013], pp. 295-370
3.2.4. Caso de estudio: "La Arquitectura de un Computador"	Section 6.8: Real-World Perspective: x86 Architecture [Harris & Harris, 2013], pp. 347-
3.2.5. Aplicación: "Uso de Manuales de Especificaciones"	356
3.3. Sistemas de Computador Embebido	Chapter 1: A First Look at Embedded Systems [Simon, 1999], pp. 1-11
3.3.1. Definición y usos	Chapter 3: Advanced Hardware Fundamentals [Simon, 1999], pp. 45-79
3.3.2. Atributos de calidad	Chapter 1: Introduction to real-time systems [Harder et al., 2014], pp. 1-12
3.3.3. Microprocesadores y buses	Section 1.1: What is a real-time system? [Harder et al., 2014], pp. 1-3
3.3.4. Metodología de diseño en capas	Section 8.6: Embedded I/O Systems [Harris & Harris, 2013], pp. 508-557
3.3.5. Casos de estudio: "Análisis de Sistemas Embebidos"	
3.4. Configuración de Periféricos	Section 8.6: Embedded I/O Systems [Harris & Harris, 2013], pp. 508-557
3.4.1. Puertos paralelos	Section 8.6.4: Timers [Harris & Harris, 2013], pp. 527-529
3.4.2. Temporizadores	Section 6.6.6 : Analog I/O [Harder et al., 2014], pp. 531-536
3.4.3. Generadores "Pulse-Width Modulation" (PWM)	Section 6.6.6: Analog I/O - Pulse-Width Modulation [Harder et al., 2014], pp. 536-537
3.4.4. Conversores "Analog-to-Digital" (ADC)	Section 6.6.7: Other Microcontroller Peripherals [Harder et al., 2014], pp. 537-558
3.4.5. Puertos seriales	Datasheets
3.5. Protocolos de Comunicación	Section 8.6.3: Serial I/O [Harris & Harris, 2013], pp. 515-527
3.5.1. Comunicaciones "on-board"	Datasheets
3.5.2. Comunicaciones entre dispositivos	
3.5.3. Comunicaciones inalámbricas	

CAPÍTULO 4. MÁQUINAS DE ESTADOS FINITOS	MATERIAL BIBLIOGRÁFICO DE APOYO EN CADA SECCIÓN
4.1. Diagramas de Estado	Se seguirá material desarrollado por el Ing. Juan-Carlos Giraldo
4.1.1. Teoría de grafos	
4.1.2. Representación matricial de grafos	
4.1.3. Aplicaciones y usos de grafos	
4.1.4. Diagramas de estado como grafos	
4.1.5. Diagramas de estado bien estructurados	
4.2. Tipos de Máquinas de Estados Finitos	Se seguirá material desarrollado por el Ing. Juan-Carlos Giraldo
4.2.1. Definiciones formales	
4.2.2. Taxonomía de autómatas según existencia de E/S	
4.2.3. Taxonomía de máquinas traductoras	
4.2.4. Taxonomía de máquinas según memoria	
4.2.5. Taxonomía de máquinas según naturaleza determinística	
4.3. Implementación de Máquinas de Estados Finitos	Se seguirá material desarrollado por el Ing. Juan-Carlos Giraldo
4.3.1. Implementaciones software vs. hardware	
4.3.2. Implementación con "switch-case"	
4.3.3. Implementación con "goto-label"	
4.3.4. Implementación con declaraciones complejas	
4.4. Máquinas de Estados Finitos Concurrentes	Se seguirá material desarrollado por el Ing. Juan-Carlos Giraldo
4.4.1. Preservación del contexto en tareas	
4.4.2. Contexto privado con tipo de almacenamiento "static"	
4.4.3. Contexto en estructuras externas pasadas por referencia	

CAPÍTULO 5. INTRODUCCIÓN A RTOS	MATERIAL BIBLIOGRÁFICO DE APOYO EN CADA SECCIÓN
5.1. Interrupciones Hardware	Chapter 4 : Interrupts [Simon, 1999], pp. 81-112
5.1.1. Conceptos básicos sobre interrupciones	Chapter 8: Hardware interrupts [Harder et al., 2014], pp. 235-249
5.1.2. Problemas de datos compartidos	Section 8.6.4: Timers [Harris & Harris, 2013], pp. 527-529
5.1.3. Latencia de interrupción	
5.2. Arquitecturas de Software	Chapter 5: Survey of Software Architectures [Simon, 1999], pp. 115-134
5.2.1. "Round-robin"	Section 6.6.5: Interrupts [Harder et al., 2014], pp. 529-531
5.2.2. "Round-robin" con interrupciones	
5.2.3. "Function-Queue-Scheduling"	
5.2.4. Sistema Operativo en Tiempo-Real (<i>RTOS</i>)	
5.3. Servicios de una Arquitectura RTOS	Chapter 6: Introduction to Real-Time Operating Systems [Simon, 1999], pp. 137-169
5.3.1. Tareas y estados de las tareas	
5.3.2. Tareas y datos	
5.3.3. Semáforos y datos compartidos	
5.4. Otros Servicios del Sistema Operativo	Chapter 7: More Operating System Services [Simon, 1999], pp. 173-207
5.4.1. "Message-Queues", "Mailboxes" y "Pipes"	
5.4.2. Temporización de funciones	
5.4.3. Eventos	
5.4.4. Manejo de memoria	
5.4.5. Rutinas de interrupción en un RTOS	
5.5. Uso de un Diseño Básico con RTOS	Chapter 8: Basic Design Using a Real-Time Operating System [Simon, 1999], pp. 215-260
5.5.1. Encapsulamiento de semáforos y colas	Chapter 9: Synchronization [Harder et al., 2014], pp. 251-318
5.5.2. Consideraciones de planeación para tiempo real duro	
5.5.3. Ahorro de espacio de memoria	
5.5.4. Ahorro de consumo de potencia	

Referencias:

[Anderson & Anderson, 1988]	Paul L. Anderson & Gail C. Anderson, "Advanced C Tips and Techniques", Hayden Books, 1988.
[Frakes et al., 1991]	William B. Frakes, Christopher J. Fox, Brian A. Nejmeh, "Software engineering in the UNIX/C environment", Published by Prentice Hall, Inc., 1991.
[Giraldo, 2023]	Juan-Carlos Giraldo, "Low Level Programming in C", Pontificia Universidad Javeriana, 2023.
[Harder et al., 2014]	Douglas Wilhem Harder, Jeff Zarnett, Vajih Montaghami, Allyson Giannikouris, "A practical introduction to real-time systems for undergraduate engineering", University of Waterloo, 2014.
[Harris & Harris, 2013]	David Money Harris & Sarah L. Harris, "Digital Design and Computer Architecture", Elsevier, 2013.
[IEEE Std 754-1985]	IEEE Computer Society, "IEEE Standard for Floating-Point Arithmetic", 1985.
[IEEE Std 854-1987]	IEEE Computer Society, "IEEE Standard for Radix-Independent Floating-Point Arithmetic", 1987.
[IEEE Std 754-2008]	IEEE Computer Society, "IEEE Standard for Floating-Point Arithmetic (Revision)", 2008.
[IEEE Std 754-2019]	IEEE Computer Society, "IEEE Standard for Floating-Point Arithmetic (Revision of IEEE 754-2008)", 2019.
[ISO/IEC 9899]	ISO (International Organization for Standardization) and IEC (the International Electrotechnical Commission), " <i>The C Language Standard</i> ", 2005. http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf

[Microchip, 2007] Microchip Technology Incorporated, "Introduction to Embedded Programming Using C", 2007.

[Simon, 1999] David E. Simon, "An Embedded Software Primer", by Pearson Education, Inc., 1999.