<u>Titre</u>: Liens entre caractères irréductibles et sous-groupes normaux. Table de \mathfrak{S}_4 et applications

Recasages: 101,103,104,105,107

Thème : Représentations des groupes.

Références : Pour les sous-groupes distingués : Peyré - Algèbre discrète de la transformée de

Fourier.

<u>Théorème</u> 1. Soient G un groupe fini, χ_1, \dots, χ_r ses caractères linéaires complexes irréductibles. Les sous-groupes distingués de G sont exactement les sous-groupes de la forme

$$\bigcap_{i \in I} \operatorname{Ker} \, \chi_i$$

Où I est une partie de [1, r], et

$$Ker \chi_i = \{ g \in G \mid \chi_i(g) = \chi_i(1) \}$$

On admet le lemme suivant :

<u>Lemme</u> 2. Soit $\rho: G \to Gl(V)$ une représentation de G, et χ son caractère associé. On a Ker $\rho = \text{Ker } \chi$.

Démonstration. Soit $g \in G$, on pose n = |G|, on a $\rho(g)^n = Id$. Donc $\rho(g)$ est annulé par le polynôme $X^n - 1$, scindé à racines simples sur \mathbb{C} , donc $\rho(g)$ est diagonalisable, sa trace est une somme de racines de $X^n - 1$, donc de racines n-èmes de l'unité.

L'inégalité triangulaire, ainsi que le cas d'égalité donne alors $|\chi(g)| \leq \chi(1)$, avec égalité si et seulement si l'unique valeur propre de $\rho(g)$ est 1, comme $\rho(g)$ est diagonalisable, on a alors $\rho(g) = Id$, d'où le résulat.

Les intersections de noyaux de caractères sont donc bien des sous-groupes distingués. Réciproquement, soit $N \triangleleft G$ un sous-groupe distingué de G. On peut étudier la représentation régulière de G/N, son noyau est trivial (elle est fidèle). On en induit une représentation (ρ, V) de G (par la projection $G \rightarrow G/N$), dont le noyau est N.

On décompose (ρ, V) en une somme directe de représentations irréductibles $:V = \bigoplus_{i=1}^r a_i V_i$, où (ρ_i, V_i) est une représentation de G de caractère χ_i , et a_i est le nombre de fois où la représentation (ρ_i, V_i) apparait dans V. Le noyau de (ρ, V) est l'intersection des Ker χ_i tels que a_i est non nul (en effet, $\rho(g)$ agit trivialement sur V si et seulement si il agit trivialement sur chacun des sous-espaces V_i). On a donc le résultat en posant $I = \{i \in [1, r] \mid a_i \neq 0\}$.

Appliquons ceci au cas de \mathfrak{S}_4 , dont nous devons trouver la table de caractères : les classes de conjugaisons de \mathfrak{S}_4 sont données par la décomposition en produit de cycles à supports disjoints, et sont donc en bijection avec l'ensemble des partitions de 4. Rappelons que le nombre de k-cycles dans \mathfrak{S}_n est $\binom{n}{k}(k-1)!$. D'où les classes de conjugaisons :

- Partition (1,1,1,1) : la classe triviale représentée par Id.
- Partition (2,1,1) : Classe des transpositions, de cardinal 6, représentée par (1 2).
- Partition (2,2): Classe des doubles transpositions, de cardinal 3, représentée par $(1\ 2)(3\ 4)$.
- Partition (3,1) : Classe des 3-cycles, de cardinal 8, représentée par $(1\ 2\ 3)$.
- Partition (4) : Classe des 4-cycles, de cardinal 6, représentée par (1 2 3 4).

On connaît déjà deux représentations irréductibles de \mathfrak{S}_4 : la triviale 1, et la signature ε . Nous savons ensuite que \mathfrak{S}_4 agit sur les grandes diagonales d'un cube régulier de \mathbb{R}^3 par isométries directes $(S_4 \simeq \text{Isom}^+(Cube))$, ceci donne une représentation de degré 3 de \mathfrak{S}_4 , où

- (1 2) est rotation d'angle π (retournement du plan contenant les diagonales 3 et 4), de trace -1.
- (1 2)(3 4) est aussi une rotation d'angle π (carré de celle donnant un 4-cycle) de trace -1.
- (1 2 3) est une rotation d'angle $2\pi/3$ (ayant pour axe la 4-ème diagonale), de trace $2\cos(2\pi/3) + 1 = 0$.
- (1 2 3 4) est une rotation d'angle $\pi/2$ (ayant pour axe une droite passant par les centres de deux faces opposées), de trace 1.

La représentation ρ obtenue est bien irréductible : son carré scalaire est donné par

$$\frac{1}{24} \left(3^2 * 1 + (-1)^2 * 6 + (-1)^2 * 3 + 1^2 * 6 \right) = 1$$

Nous pouvons aussi considérer le caractère produit $\varepsilon \chi_{\rho}$ (associé au produit tensoriel des $\mathbb{C}\mathfrak{S}_4$ -modules concernés, attention aux questions là-dessus si on en parle). Nous avons donc la table suivante :

\mathfrak{S}_4	Id	$(1\ 2)$	$(1\ 2)(3\ 4)$	$(1\ 2\ 3)$	$(1\ 2\ 3\ 4)$
1	1	1	1	1	1
ε	1	-1	1	1	-1
$\chi_{ ho}$	3	1	-1	0	-1
$\varepsilon\chi_{ ho}$	3	-1	-1	0	1
?					

La somme des carrés des degrés des caractères irréductibles devant être égale ici à 24, le dernier caractère irréductible χ doit être de degré 2. Comme χ est l'unique caractère irréductible de degré 2, on doit avoir $\varepsilon \chi = \chi$, donc $\chi((1\ 2)) = \chi((1\ 2\ 3\ 4)) = 0$. Par la seconde relation d'orthogonalité des caractères, on doit enfin avoir

$$1+1-3-3+2\chi((1\ 2)(3\ 4))=0$$
 et $1+1+2\chi((1\ 2\ 3))=0$

d'où la table de caractère de \mathfrak{S}_4 :

\mathfrak{S}_4	Id	$ (1\ 2) $	$(1\ 2)(3\ 4)$	$(1\ 2\ 3)$	$(1\ 2\ 3\ 4)$
1	1	1	1	1	1
ε	1	-1	1	1	-1
χ_{V_0}	3	1	-1	0	-1
$\varepsilon\chi_{V_0}$	3	-1	-1	0	1
χ	2	0	2	-1	0

Par notre thèorème du début, les sous-groupes distingués de \mathfrak{S}_4 sont donc :

- Ker $\varepsilon = \mathfrak{A}_4$
- Ker $\chi = \{Id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$, isomorphe au groupe de Klein.