IOWA STATE UNIVERSITY

Aer E 322: Aerospace Structures Laboratory

Week 7&8 Lecture:

Composite Laminate: Theory and Design

Last update: February 26, 2023

Introduction

- Ancient use of "straw and mud" for house building is probably one of earliest form of composite materials
- Early aircraft structure, consisting of fabric wing skin, wood frame and metal engine,
 was a mixture of composite components
- Modern aircrafts are constructed with a variety of composite materials at increasingly high percentage

Source:http://www.flickr.com/photos/32442418@ N02/4199954078/

Introduction (cont'd)

Composite material or composite "is formed by combing two or more different materials, each with its own characteristics, to create a new material/structure whose properties are superior to those of the original components in specific applications"

Matrices, e.g. resins is the "mud" Reinforcements, e.g. fibers, is the "straw"

Common composites for modern aircraft structures include

- Reinforced plastics such as fiber-reinforced polymer
- Metal composites with e.g. stitches
- Ceramic composites using composite ceramic and metal matrices

Introduction (cont'd)

- Two most popular fiber-reinforced polymers are carbon fiber reinforced plastic or CFRP and glass fiber-reinforced plastic or GFRP
- A special class is sandwich-structured composite by attaching two thin but stiff skins to a lightweight but thick core such as the so—called honeycombs
- Spray-on foam insulation had been used in space shuttle fleets
- Recent advances include smart composites which uses shape memory resin and microscopic nanocomposites

In this course, we will concentrate on fiber-reinforced composite

Composite Laminate Structure

Micromechanics:

which fiber & matrix? what layup? what mixtures?

A single **ply** contains fibers oriented unidirectional or bidirectional (e.g. a woven fabric). Unidirectional ply is often referred as **lamina**

Laminate theory:

how many plies? which plies? what thicknesses?

A stack of laminas (plies) oriented in multi-directions makes up the **laminate**

Laminate Notation and Code

4-ply laminate oriented in 0°, 90°, 90°, 0° sequences can be expressed in several forms:

$$0/90/90/0 = [0,90,90,0] = [0,90]_s$$

where subscript 's' denotes symmetry

As seen on the right, symmetric laminates have plies of identical orientation at same thickness above and below mid-plane

The short-hand form is convenient for repeated pattern:

$$[0,(45,-45)_2]_s=0/45/-45/45/-45/-45/45/-45/0$$

Properties of Lamina: Linear Elastic Solid

Each lamina is a linear elastic solid of a certain type:

Material type	Descriptions of property	Number of independent constants
Isotropic	properties are the same in all directions	2
Anisotropic	properties are <i>different</i> in all directions	21
Orthotropic	three orthogonal planes of symmetry	9
Transversely isotropic	two of three symmetry planes are same	5 -> 4

fiber-reinforced composite

Classical Laminate Theory: Extension from Classical Plate/Beam Theories

- Laminate plate can be treated by extending the classical Kirchhoff-Love plate theory, which in turn is extended from the classical Euler-Bernoulli beam theory
- Kirchhoff assumptions state that, before and after deformation:
 - (1) vertical straight lines on the plate remain straight,
 - (2) normal to the mid-plane of the plate remain normal, and
 - (3) plate thickness remains unchanged

Classical Laminate Theory: Extension from Classical Plate Theory (cont'd)

From the geometry and the Kirchhoff assumptions, we have

$$u(x,y) = u_0(x,y) - z \frac{\partial w_0}{\partial x}$$
$$v(x,y) = v_0(x,y) - z \frac{\partial w_0}{\partial y}$$

$$v(x,y) = v_0(x,y) - z \frac{\partial w_0}{\partial y}$$

$$w(x,y) = w_0(x,y)$$

 u_0, v_0, w_0 : displacements at mid-plane

Classical Laminate Theory: Basic Assumptions

- Laminate is thin and wide (length, width >> thickness)
- Perfect in-plane bonding (no slip) between laminas
- Linear strain distribution in the thickness Z direction
- All laminas are linearly elastic (transversely isotropic) and macroscopically homogeneous
- Plane stress/strain transverse normal and shear strains are negligible

Classical Laminate Theory: Coordinates and Load Orientation

 $N_{x'}$ N_{v} : resultant normal forces

 N_{yx} , N_{xy} : resultant shear forces

 $M_{vx'}$ M_{xv} : resultant bending moments

(All per unit length)

Classical Laminate Theory: Coordinates and Load Orientation (cont'd)

local lamina axes (1,2)

The following pages are to determine the stress-strain in each lamina in the local (1,2) coord. (at different orientation) and find their contributions in the global (x.y) coord.

global laminate axes (x,y)

Classical Laminate Theory: Stress and Strain Relationship

Stresses and strains for the transversely isotropic lamina in the local lamina axes (1,2) can be related by

$$\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} 1/E_1 & -\nu_{21}/E_2 & 0 \\ -\nu_{12}/E_1 & 1/E_2 & 0 \\ 0 & 0 & 1/G_{12} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix}$$

In vector form: $\mathbf{\varepsilon} = \mathbf{C}\boldsymbol{\sigma}$ or $\boldsymbol{\sigma} = \mathbf{S}\boldsymbol{\varepsilon}$ where \mathbf{C} is called compliance matrix and $\mathbf{S} = \mathbf{C}^{-1}$ is the stiffness matrix.

The four independent material constants are longitudinal modulus E_1 , transverse modulus E_2 , principal Poisson's ratio v_{12} (or v_{21}) and shear modulus G_{12} . v_{12} and v_{21} are related by $v_{12}/E_1 = v_{21}/E_2$

Classical Laminate Theory: Rule of Mixtures

Total force in composite is the sum of fiber and matrix components:

$$\sigma_c A_c = \sigma_f A_f + \sigma_m A_m \qquad \qquad \text{(A: cross sectional area; V: volume fraction;} \\ \sigma_c = \sigma_f \frac{A_f}{A_c} + \sigma_m \frac{A_m}{A_c} = \sigma_f V_f + \sigma_m V_m \qquad \text{subscripts: c=composite, f=fibers, m=matrix)}$$

Relating stress to strain leads to

$$\varepsilon_c E_c = \varepsilon_f E_f V_f + \varepsilon_m E_m V_m$$

Pages 14-15 determine the four elastic constants used in page 13

Assuming a perfect bonding between fibers and matrix, so all strains in composite are equal:

$$\varepsilon_c = \varepsilon_f = \varepsilon_m$$

$$E_L = E_c = E_f V_f + E_m V_m$$
 Longitudinal modulus

Classical Laminate Theory: Rule of Mixtures (cont'd)

Transverse modulus

$$\frac{1}{E_T} = \frac{V_f}{E_f} + \frac{V_m}{E_m}$$

Inplane Poisson's ratio

$$v_c = v_f V_f + v_m V_m$$

Inplane shear modulus

$$\frac{1}{G_c} = \frac{V_f}{G_f} + \frac{V_m}{G_m}$$

Classical Laminate Theory: Coordinate Transformation

Transformation between (1,2)- local lamina axes and (x,y)-global laminate axes is given by

$$\sigma_{1} = \sigma_{x} \cos^{2} \theta + \sigma_{y} \sin^{2} \theta + 2\tau_{xy} \sin \theta \cos \theta$$

$$\sigma_{2} = \sigma_{x} \sin^{2} \theta + \sigma_{y} \cos^{2} \theta - 2\tau_{xy} \sin \theta \cos \theta$$

$$\tau_{12} = -\sigma_{x} \sin \theta \cos \theta + \sigma_{y} \sin \theta \cos \theta + \tau_{xy} (\cos^{2} \theta - \sin^{2} \theta)$$

"project" the stress-strain in local (1,2) coord. in the global (x.y) coord. by coord. rotation

In matrix form with $c=\cos\theta$ and $s=\sin\theta$:

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} c^2 & s^2 & 2sc \\ s^2 & c^2 & -2sc \\ -sc & sc & c^2 - s^2 \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix}$$

$$2$$

In vector form:

$$\sigma'=A\sigma$$

Classical Laminate Theory: Coordinate Transformation (cont'd)

Similarly,
$$\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \frac{1}{2} \gamma_{12} \end{bmatrix} = A \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \frac{1}{2} \gamma_{xy} \end{bmatrix}$$

By using the Reuter's matrix
$$\mathbf{R} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 we can rewrite

Make use of R to get rid of $\frac{1}{2}$ factor in γ

$$\varepsilon' = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_{12} \end{bmatrix} = RAR^{-1} \begin{bmatrix} \varepsilon_{\chi} \\ \varepsilon_{y} \\ \gamma_{\chi y} \end{bmatrix} \text{ or } \varepsilon' = RAR^{-1} \varepsilon$$

Inversely
$$\varepsilon = RA^{-1}R^{-1}\varepsilon'$$

Classical Laminate Theory: Coordinate Transformation (cont'd)

Using stress-strain relationship, we can write

$$\begin{bmatrix} \boldsymbol{\varepsilon}_{x} \\ \boldsymbol{\varepsilon}_{y} \\ \boldsymbol{\gamma}_{xy} \end{bmatrix} = \mathbf{R} \mathbf{A}^{-1} \mathbf{R}^{-1} \begin{bmatrix} \boldsymbol{\varepsilon}_{1} \\ \boldsymbol{\varepsilon}_{2} \\ \boldsymbol{\gamma}_{12} \end{bmatrix} = \mathbf{R} \mathbf{A}^{-1} \mathbf{R}^{-1} \mathbf{C} \begin{bmatrix} \boldsymbol{\sigma}_{1} \\ \boldsymbol{\sigma}_{2} \\ \boldsymbol{\tau}_{12} \end{bmatrix} = \mathbf{R} \mathbf{A}^{-1} \mathbf{R}^{-1} \mathbf{C} \mathbf{A} \begin{bmatrix} \boldsymbol{\sigma}_{x} \\ \boldsymbol{\sigma}_{y} \\ \boldsymbol{\tau}_{xy} \end{bmatrix}$$

Defining $\overline{\mathbf{C}} = \mathbf{R}\mathbf{A}^{-1}\mathbf{R}^{-1}\mathbf{C}\mathbf{A}$ and $\overline{\mathbf{S}} = \overline{\mathbf{C}}^{-1}$ as the transformed compliance and stiffness matrices respectively, we have

$$\sigma = \overline{S}\epsilon$$

Both σ and ε are now related to the global (x,y) coordinates!

Classical Laminate Theory: Laminate Strains

Recall beam theory for combined loading of normal force and bending moment

Strain due to normal force
$$\varepsilon_x = \frac{N}{AE}$$

Strain due to bending moment $\varepsilon_x = \frac{\sigma_x}{E} = \frac{Mz}{EI}$
 $\varepsilon_x = \frac{1}{AE}N + \frac{z}{EI}M$ eq. (a) referred on page 24

Similar to classical plate theory (pages 8&9), we also assume displacements (u, v) in (x,y) directions are functions of depth Z but not displacement w in z direction:

$$u(x,y) = u_0(x,y) - z \frac{\partial w_0}{\partial x}$$
 $v(x,y) = v_0(x,y) - z \frac{\partial w_0}{\partial y}$ v_0, w_0 : displacements at mid-plane x=y=0

Classical Laminate Theory: Laminate Strains (cont'd)

In terms of linear elasticity (see also Appendix), it can be shown that

basic definition from page 41

$$\begin{bmatrix} \boldsymbol{\varepsilon}_{x} \\ \boldsymbol{\varepsilon}_{y} \\ \boldsymbol{\gamma}_{xy} \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial u_0}{\partial x} - z \frac{\partial^2 w_0}{\partial x^2} \\ \frac{\partial v_0}{\partial y} - z \frac{\partial^2 w_0}{\partial y^2} \\ \frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} - 2z \frac{\partial^2 w_0}{\partial x \partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial u_0}{\partial x} \\ \frac{\partial v_0}{\partial y} \\ \frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} \end{bmatrix} + z \begin{bmatrix} \frac{\partial^2 w_0}{\partial x^2} \\ \frac{\partial^2 w_0}{\partial y^2} \\ 2\frac{\partial^2 w_0}{\partial x \partial y} \end{bmatrix} \leftarrow K_{xy}$$
plug in same relationships from page 19

In vector form $\mathbf{\varepsilon} \approx \mathbf{\varepsilon}^0 + z\mathbf{K}$

where ε^0 is midplane strain and κ is curvature; the third component (from the top) κ_{xy} is called **twisting curvature**

Classical Laminate Theory: Laminate Stresses and Strains

Combing the results from previous slides, we obtain a general transformation for the <u>i-th</u> <u>lamina from local lamina axes to the global laminate axes</u>:

$$\sigma = \overline{S}\varepsilon$$
, $\varepsilon = \varepsilon^0 + z\kappa$ $\sigma_i = \overline{S}_i\varepsilon = \overline{S}_i\varepsilon^0 + z\overline{S}_i\kappa$ eq. (a) referred on page 22

To account for the individual contribution from each of the laminas to the total laminate, we first calculate the net contribution of a lamina by integrating over the thickness of that lamina and then sum up the contributions from all laminas.

For normal force per unit length, N, this is done via

$$N = \sum_{i=1}^{K} \int_{z_i}^{z_{i+1}} \sigma_i dz$$
 eq. (b) referred on page 22

where σ_i is the stress in i-th lamina and z_i and z_{i+1} are measured from laminate midplane to top and bottom of the i-th lamina, respectively. Note that Z axis measures positive from midplane downward

Laminate layout

Classical Laminate Theory: Laminate Stresses and Strains (cont'd)

Separating the mid-plane and curvature components in the stress gives

Plug Eq. (a) into Eq. (b) (shown on page 21)

$$N = \sum_{i=1}^K \left(\int_{z_i}^{z_{i+1}} \overline{\mathbf{S}}_i \mathbf{\varepsilon}^0 dz + \int_{z_i}^{z_{i+1}} \overline{\mathbf{S}}_i \mathbf{K} z dz \right) = \sum_{i=1}^K \left(\overline{\mathbf{S}}_i \mathbf{\varepsilon}^0 \int_{z_i}^{z_{i+1}} dz + \overline{\mathbf{S}}_i \mathbf{K} \int_{z_i}^{z_{i+1}} z dz \right)$$

Defining
$$\mathbf{A} = \sum_{i=1}^{K} \overline{\mathbf{S}}_{i} \left(z_{i+1} - z_{i} \right)$$
 and $\mathbf{B} = \frac{1}{2} \sum_{i=1}^{K} \overline{\mathbf{S}}_{i} \left(z_{i+1}^{2} - z_{i}^{2} \right)$ as the "extensional stiffness

matrix" and "coupling stiffness matrix" respectively, we have

$$N = \mathbf{A} \mathbf{\varepsilon}^0 + \mathbf{B} \mathbf{K}$$
 — Eq. (c) referred on page 23

$$M = \mathsf{B} oldsymbol{arepsilon}^0 + \mathsf{D} oldsymbol{\kappa}$$

Similarly, we can derive $M={f B}{m \epsilon}^0+{f D}{m K}$ if define the "bending stiffness matrix"

$$\mathbf{D} = \frac{1}{3} \sum_{i=1}^{K} \overline{\mathbf{S}}_{i} \left(z_{i+1}^{3} - z_{i}^{3} \right)$$

Classical Laminate Theory: Laminate Stresses and Strains (cont'd)

Finally we arrive at a single matrix equation which relates the external forces and moments to the internal laminate stresses and strains (also the laminate structures and properties):

The **A-B-B-D** matrix is known as the **laminate stiffness matrix** and its inverse is **laminate compliance matrix**.

For symmetric laminates (see page 6), **B**=0 and there is no extension-bending coupling This can be shown by using the definition of B on page 22 in the layout on page 21

Classical Laminate Theory: Laminate Stresses and Strains (cont'd)

The **A-B-B-D** matrix can be inverted for given *N* and *M*

$$\begin{bmatrix} N \\ M \end{bmatrix} = \begin{bmatrix} A & B \\ B & D \end{bmatrix} \begin{bmatrix} \varepsilon^0 \\ \kappa \end{bmatrix} \longrightarrow \begin{bmatrix} \varepsilon^0 \\ \kappa \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} N \\ M \end{bmatrix}$$
similar to eq. (a) on page 19

where

$$\mathbf{a} = \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}(\mathbf{D}^*)^{-1}\mathbf{B}\,\mathbf{A}^{-1}$$
 $\mathbf{c} = \mathbf{B}^T$ $\mathbf{b} = -\mathbf{A}^{-1}\mathbf{B}(\mathbf{D}^*)^{-1}$ $\mathbf{d} = (\mathbf{D}^*)^{-1}$ $\mathbf{D}^* = \mathbf{D} - \mathbf{B}\,\mathbf{A}^{-1}\,\mathbf{B}$

For symmetric laminates (B=0), $\mathbf{a}=\mathbf{A}^{-1}$ and $\mathbf{b}=\mathbf{c}=0$ and $\mathbf{d}=\mathbf{D}^{-1}$

Lab 6 – Laminate Layup Design

In our supplemental class web site (https://thermal.cnde.iastate.edu/aere322/), an online laminate "calculator" is available, which implemented the classical laminate theories described above.

In lab 6, you will use this laminate calculator to design the ply pattern (layup) of an 8-ply symmetric laminate strip such that the end of strip reaches maximum twisting curvature, i.e. twist angle (recall page 20) when subjected to a bending load.

Lab 6 - Laminate Layup Design (cont'd)

Design via online "calculator"

Lab 6 - Laminate Layup Design (cont'd)

show in at least 5 design cycles how to reach your best twist angle at the end of the laminate strip. Included in each cycle:

- (1) the design layup you choose,
- (2) the reasoning that leads to your choice, and
- (3) the value of twisting curvature obtained from the calculator

Main References

- 1. D. Roylance, "Laminated Composite Plates", http://ocw.mit.edu/courses/materials-science-and-engineering/3-11-mechanics-of-materials-fall-1999/modules/laminates.pdf
- P. K. Mallick, Fiber-Reinforced Composites, CRC Press, 2007. Available online through ISU library: http://www.crcnetbase.com/isbn/9781420005981
- 3. P. Joyce, http://www.usna.edu/Users/mecheng/pjoyce/composites/Composites_Short_Course.htm

Appendix

Basic Linear Elasticity

Math Precursor: Taylor's Series Expansion

For a multi-variable function f = f(x, y, z, ...), its Taylor's series expansion for change in single variable is

$$f(x+dx,y,z,...) = f(x,y,z,...) + \frac{1}{1!} \frac{\partial f}{\partial x} dx + \frac{1}{2!} \frac{\partial^2 f}{\partial x^2} dx^2 + \cdots$$

The higher order terms can be neglected for infinitesimal change, such that

$$f(x + dx, y, z,...) \approx f(x, y, z,...) + \frac{\partial f}{\partial x} dx$$

So for $\sigma_x = \sigma_x(x, y, z)$, we have $\sigma_x(x + dx, y, z) \approx \sigma_x(x, y, z) + \frac{\partial \sigma_x}{\partial x} dx$

This expression applies to σ_{v} , σ_{z} , τ_{xv} , τ_{xz} and τ_{vz} as well.

Infinitesimal Change of state of stresses

Equations of Equilibrium

 $\Sigma F_x = 0$ with the stresses on the opposite side unchanged,

$$-\sigma_{\chi}dydz + \left[\sigma_{\chi} + \frac{\partial \sigma_{\chi}}{\partial x}dx\right]dydz$$

$$-\tau_{yx}dxdz + \left[\tau_{yx} + \frac{\partial \tau_{yx}}{\partial y}dy\right]dxdz$$

$$-\tau_{zx}dxdy + \left[\tau_{zx} + \frac{\partial \tau_{zx}}{\partial z}dz\right]dxdy$$

+Xdxdydz=0

which simplifies to

Likewise

$$\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + X = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + Y = 0$$

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_{z}}{\partial z} + Z = 0$$

(X, Y, Z: body force per unit volume)

Equations of Equilibrium on Boundary

$$\Sigma F_{x} = 0$$
:

$$\bar{X}dA = \sigma_{x}dA_{x} + \tau_{yx}dA_{y} + \tau_{zx}dA_{z} - \frac{1}{3}\bar{X}dzdA_{z}$$

Divided through by *dA* and note that the area ratio equals to the corresponding direction cosine:

$$\bar{X} = \sigma_{x}\cos(n, x) + \tau_{yx}\cos(n, y) + \tau_{zx}\cos(n, z)$$

$$\overline{Y} = \tau_{yx} \cos(n, x) + \sigma_y \cos(n, y) + \tau_{zy} \cos(n, z)$$

$$\bar{Z} = \tau_{xz}\cos(n, x) + \tau_{zy}\cos(n, y) + \sigma_z\cos(n, z)$$

These are also known as Cauchy equations

 \bar{X} , \bar{Y} , \bar{Z} : surface forces per unit area

Plane Stress

When would this condition happen?

General state of stress

9 Stress Components

Plane stress

3 Stress Components

- At a free surface, if Zdirection is perpendicular to the material's local surface
- Through the wall thickness of a "thin" walled pressure vessel
- In a bar or tube under torsion, if 1-direction is the radial direction
- In a bar with an axial load
- In a beam, except in cross section transition zones

Plane Stress (cont'd)

Shown in standardized Simple 2D plane, instead of full 3D cube

The state of plane stress at a point is uniquely represented by three components, σ_x , σ_y , τ_{xy} and acting on an element with a specific orientation

Equations of equilibrium reduce to

$$\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + X = 0; \quad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + Y = 0$$

$$\bar{X} = \sigma_{x} \cos(n, x) + \tau_{yx} \cos(n, y)$$

$$\overline{Y} = \tau_{yx} \cos(n, x) + \sigma_y \cos(n, y)$$

Pure Shear

Plane stress can be further reduced to a "pure shear" state in which only the τ_{xy} component is left

Strain by Elasticity

Normal strain $\varepsilon = \lim_{L \to 0} \frac{\Delta L}{L}$ by definition, so

$$\varepsilon_{x} = \lim_{OA \to 0} \frac{O'A' - OA}{OA}$$

$$(O'A')^{2} = (dx + u + \frac{\partial u}{\partial x} dx - u)^{2}$$

$$+ (v + \frac{\partial v}{\partial x} dx - v)^{2}$$

$$+ (w + \frac{\partial w}{\partial x} dx - w)^{2}$$

$$= dx \sqrt{\left(1 + \frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial v}{\partial x}\right)^{2} + \left(\frac{\partial w}{\partial x}\right)^{2}}$$

u, v, w: displacement

$$(O'A')^{2} = dx \sqrt{\left(1 + \frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial v}{\partial x}\right)^{2} + \left(\frac{\partial w}{\partial x}\right)^{2}}$$

By dropping high order terms and using binomial theorem,

$$(O'A')^2 \approx dx \left(1 + 2\frac{\partial u}{\partial x}\right)^{\frac{1}{2}} \approx dx \left(1 + \frac{\partial u}{\partial x}\right)$$

$$\varepsilon_{x} = \lim_{OA \to 0} \frac{O'A' - OA}{OA} = \frac{O'A' - dx}{dx} = \frac{\partial u}{\partial x}$$

Likewise,
$$\varepsilon_y=rac{\partial v}{\partial v}$$
 and $\varepsilon_Z=rac{\partial w}{\partial z}$

u, v, w: displacement

For small γ_{xz} , $\cos(A'O'C') = \gamma_{xz}$

From trigonometry,

$$\cos(A'O'C') = \frac{(O'A')^2 + (O'C')^2 - (A'C')^2}{2(O'A')(O'C')}$$

$$(O'A') = dx \left(1 + \frac{\partial u}{\partial x}\right) \approx dx,$$

$$(O'C') = dz \left(1 + \frac{\partial w}{\partial z}\right) \approx dz,$$

$$(A'C')^{2} = \left(dz - \frac{\partial w}{\partial z}dx\right)^{2} + \left(dx - \frac{\partial u}{\partial z}dz\right)^{2}$$

u, v, w: displacement

Again by neglecting high order terms,

$$\cos(A'O'C') = \frac{2\frac{\partial w}{\partial x}dxdz + 2\frac{\partial u}{\partial z}dxdz}{2dxdz}$$

Finally
$$\gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}$$

Likewise
$$\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

$$\gamma_{yz} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}$$

u, v, w: displacement

In summary, for small deformation, linear elasticity has the following forms of strain:

Normal strain

$$\varepsilon_{x} = \frac{\partial u}{\partial x}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y}$$

$$\varepsilon_{z} = \frac{\partial w}{\partial z}$$

Shear strain

$$\gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}$$

$$\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

$$\gamma_{yz} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}$$

Plane strain: only ε_{χ} , ε_{γ} and $\gamma_{\chi\gamma}$ left