GAI_Project4 Generative Models for Visual Signals

系級:資訊 114 學號:E34106010 姓名:黃偉峰

Github link: https://github.com/ukp66482/GAI_Project4

1. Theoretical Justification

此次作業我挑選了 Example1 中提到的 Accerating DDPM with DIP-based initial Priors 來實作,透過 DIP,並且以 DDPM-only 以及 DDPM with DIP 來作比較。

結合這兩種方法, DDPM with DIP-Based Initial Prior 的原理如下:

DIP 訓練:

首先訓練 DIP 模型,使其能夠重建目標圖像的高級特徵。 DIP 模型在短時間內訓練,以捕捉圖像的主要結構和模式,而不過度擬合噪聲。

DDPM 初始化:

使用訓練好的 DIP 模型生成的初始圖像作為 DDPM 的起點,而不是隨機噪聲。這樣 DDPM 模型可以從一個已經包含圖像高級結構的初始圖像開始訓練。

Advantages:

- 加速訓練收斂過程:由於 DIP 提供的初始圖像已經包含了目標圖像的高級結構, DDPM 模型不需要從完全隨機的噪聲開始學習。因此, DDPM 模型可以更快地收斂,減少所需的訓練時間。
- 更好的初始點: DIP 生成的初始圖像為 DDPM 模型提供了一個更好的起點,使得生成的樣本質量在早期階段就能達到較高水平。
- 減少模糊: DIP 模型在初始階段捕捉到的高級結構有助於減少 DDPM 生成 圖像中的模糊部分,提高圖像的清晰度和細節。
- 更穩定的訓練:從一個有意義的初始圖像開始訓練可以減少訓練過程中的不 穩定性,使 DDPM 模型的訓練更加平穩和可靠

Potential limitation:

- 複雜度增加:將兩種方法結合將會增加模型的複雜性,需要更多的計算資源。
- 生成速度:將兩種方法結合可以提高生成圖片品質但在某些情況下,生成速度可能仍然是一個瓶頸。特別是對於實時應用,生成速度仍需優化。

在某些任務中,單獨使用一種方法可能已經很好,結合的方法優勢可能並不明顯, 甚至可能帶來額外的計算負擔。

2. Experimental Verification

Loss

上圖為訓練過程中 Loss 隨著 Epoch 改變的摺線圖,可以看到在初始的 loss 在 DDPM with DIP 的部分初始就較快且訓練過程中也較 DDPM_only 的部分較穩定,DDPM with DIP 的 Loss 程度也都低於 DDPM_only。

Image Quality DDPM-only:

	Image	PSNR	SSIM	MSE	Mae	Delta E	
:	:	:	:		: -	:	
0	1	35.7304	0.983977	0.000267279	0.0131437	3.70649	
1	2	28.778	0.984231	0.00132495	0.0336992	4.38799	
2	3	27.667	0.972272	0.0017112	0.0349826	4.54233	
3	4	26.7933	0.879174	0.00209252	0.0363661	7.82913	
4	5	27.748	0.970887	0.00167956	0.0339818	5.1482	
Average PSNR: 29.3433							
Average SSIM: 0.9581							
Average MSE: 0.0014							
Average MAE: 0.0304							
Average Delta E: 5.1228							

DDPM with DIP:

	Image	PSNR	SSIM	MSE	MAE	Delta E
:	: -	: -	: -	:	: -	:
0	1	30.7499	0.970973	0.000841421	0.0228	4.00871
1	2	30.9817	0.984668	0.000797682	0.023292	3.22095
2	3	31.5878	0.984511	0.000693773	0.0214486	2.58559
3	4	26.6016	0.917525	0.00218698	0.0416067	5.17127
4	5	26.8675	0.979828	0.00205708	0.0358885	4.15306
Average PSNR: 29.3577						
Average SSIM: 0.9675						
Average MSE: 0.0013						
Average MAE: 0.0290						
Average Delta E: 3.8279						

上面兩張圖中也可以看到我們抽取 5 張圖片,DDPM with DIP 相較 DDPM_only 在各項指標上有較好的水準。

3. Ablation Studies and Analysis

減少 DIP conv 通道數(64->16):

Conv channel 64:

	Image	PSNR	SSIM	MSE	MAE	Delta E	
:	: -	: -	: -	:	: -	:	
0	1	30.7499	0.970973	0.000841421	0.0228	4.00871	
1	2	30.9817	0.984668	0.000797682	0.023292	3.22095	
2	3	31.5878	0.984511	0.000693773	0.0214486	2.58559	
3	4	26.6016	0.917525	0.00218698	0.0416067	5.17127	
4	5 :	26.8675	0.979828	0.00205708	0.0358885	4.15306	
Average PSNR: 29.3577							
Average SSIM: 0.9675							
Average MSE: 0.0013							
Average MAE: 0.0290							
Average Delta E: 3.8279							

Conv channel 16:

	Image	PSNR	SSIM	MSE	MAE	Delta E	
:	: -	:	: -	:	: -	:	
0	1	23.3959	0.801714	0.00457521	0.0530708	12.1531	
1	2	21.5194	0.866331	0.00704784	0.0709071	11.799	
2	3	19.6634	0.794672	0.010806	0.0851904	10.6776	
3	4	14.7761	0.470916	0.0332962	0.157478	24.4508	
4	5	25.2126	0.881641	0.00301118	0.0430393	9.17196	
Average PSNR: 20.9135							
Average SSIM: 0.7631							
Average MSE: 0.0117							
Average MAE: 0.0819							
Average Delta E: 13.6505							
		,		·	·	,	

從實驗結果可以看出,減少 conv 通道數可以降低模型的計算覆雜度和訓練時間,但這會導致圖片品質的下降。通道數為 64 的模型在所有指標上均優於通道數為 16 的模型,具體表現為更高的 PSNR 和 SSIM,更低的 MSE、MAE 和 Delta E。因此,在實際應用中,需要在計算資源和生成影像品質之間找到平衡點,根據具體需求選擇合適的通道數。