

第七章 时序逻辑电路的分析和设计 第八章 常用时序逻辑电路芯片

- 时序逻辑电路认识(7.1)
- 时序逻辑电路的一般分析方法(7.2)
- 时序逻辑电路的一般设计方法(7.3)
- 计数器 (8.1)
- 寄存器 (8.2)

§7.2 时序逻辑电路分析

给定的电路,通过分析获得电路的状态转换规律

时序逻辑电路框图

分析的关键在于从当前状态(初态)出发确定电路的下一状态(次态)

思考: 触发器的状态转换由谁决定的? 输入——驱动方程!

分析举例1

同步时序逻辑电路

1) 写出驱动方程

$$J_0 = K_0 = 1$$
 $J_1 = K_1 = Q_0 \overline{Q}_3$
 $J_2 = K_2 = Q_0 Q_1$
 $J_3 = K_3 = Q_0 Q_3 + Q_0 Q_1 Q_2$

2) 推导次态方程

触发器的特性方程 $Q^{n+1} = J\overline{Q} + \overline{K}Q$

将驱动方程分别代入各触发器的特性方程

驱动方程

$$J_0 = K_0 = 1$$
 $J_1 = K_1 = Q_0 \overline{Q}_3$
 $J_2 = K_2 = Q_0 Q_1$

次态方程——注意下标

$$Q_0^{n+1} = \overline{Q}_0$$

$$Q_1^{n+1} = Q_0 \overline{Q}_1 \overline{Q}_3 + \overline{Q}_0 Q_1 + Q_3 Q_1$$

$$Q_2^{n+1} = Q_0 Q_1 \overline{Q}_2 + \overline{Q}_0 Q_2 + \overline{Q}_1 Q_2$$

$$Q_3^{n+1} = Q_0 Q_1 Q_2 \overline{Q}_3 + \overline{Q}_0 Q_3$$

推导次态方程举例

FF₀:
$$Q_0^{n+1} = J_0 \overline{Q}_0 + \overline{K_0} Q_0$$

$$\mathbf{Q}_0^{n+1} = 1\overline{\mathbf{Q}}_0 + \overline{1}\mathbf{Q}_0$$

$$Q_0^{n+1} = \overline{Q}_0$$

$$Q_1^{n+1} = Q_0 \overline{Q}_1 \overline{Q}_3 + \overline{Q}_0 Q_1 + Q_3 Q_1$$

$$Q_2^{n+1} = Q_0 Q_1 \overline{Q}_2 + \overline{Q}_0 Q_2 + \overline{Q}_1$$

$$Q_3^{n+1} = Q_0 Q_1 Q_2 \overline{Q}_3 + \overline{Q}_0 Q_3$$
次态方程

推导次态方程举例

$$\mathbf{FF_1:} \quad Q_1^{n+1} = J_1 \overline{Q}_1 + \overline{K_1} Q_1$$

$$\mathbf{Q}_{1}^{n+1} = (\mathbf{Q}_{0}\overline{\mathbf{Q}}_{3})\overline{\mathbf{Q}}_{1} + (\overline{\mathbf{Q}_{0}}\overline{\mathbf{Q}}_{3})\mathbf{Q}_{1}$$

3) 依次分析得次态表

$$Q_0^{n+1} = \overline{Q}_0$$

$$Q_1^{n+1} = Q_0 \overline{Q}_1 \overline{Q}_3 + \overline{Q}_0 Q_1 + Q_3 Q_1$$

$$Q_2^{n+1} = Q_0 Q_1 \overline{Q}_2 + \overline{Q}_0 Q_2 + \overline{Q}_1 Q_2$$

$$Q_3^{n+1} = Q_0 Q_1 Q_2 \overline{Q}_3 + \overline{Q}_0 Q_3$$

其它没有分析的状态?

1010, 1011, 1100, 1101, 1110, 1111

假定初始状态为没有分析过的状态之一,推导下一状态,直到所有状态都分析过为止

循环

次态表

ランロン					
CP	Q_3	Q_2	Q_1	Q_0	
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	0	0	0	0	

4) 自启动检验

假定初始状态为没有分析过的状态之一,推导下一状态,直到所有状态都分析过为止

$$Q_0^{n+1} = \overline{Q}_0$$

$$Q_1^{n+1} = Q_0 \overline{Q}_1 \overline{Q}_3 + \overline{Q}_0 Q_1 + Q_3 Q_1$$

$$Q_2^{n+1} = Q_0 Q_1 \overline{Q}_2 + \overline{Q}_0 Q_2 + \overline{Q}_1 Q_2$$

$$Q_3^{n+1} = Q_0 Q_1 Q_2 \overline{Q}_3 + \overline{Q}_0 Q_3$$

CP	Q_3	Q_2	Q_1	Q_0	
0	1	0	1	0	
1	1	0	1	1	
2	0	1	1	0	循环
0	1	1	0	0	
1	1	1	0	1	
2	0	1	0	0	循环
0	1	1	1	0	
1	1	1	1	1	
2	0	0	1	0	循环

可以自启动!

9

5) 状态转换图

结论:可自启动的同步10进制计数电路

同步时序逻辑分析小结

- 写驱动方程
- 推导次态方程
- 【● 依次由当前状态推导下一状态表,直到下一状态已分析过为止
- 自启动校验
- 判断计数器的进制

分析举例2

异步时序逻辑电路

1) 时钟脉冲方程

$$\mathbf{CP_0} = \mathbf{CP} \downarrow$$
 $\mathbf{CP_1} = \mathbf{Q_0} \downarrow$
 $\mathbf{CP_2} = \mathbf{CP} \downarrow$

2) 驱动方程

$$egin{aligned} m{J}_0 &= \overline{m{Q}_2} & m{K}_0 &= 1 \ m{J}_1 &= m{K}_1 &= 1 \ m{J}_2 &= m{Q}_1 m{Q}_0 & m{K}_2 &= 1 \end{aligned}$$

$$J_0 = \overline{Q_2}, K_0 = 1$$
 $J_1 = 1, K_1 = 1$
 $J_2 = Q_1Q_0, K_2 = 1$

	原	状态	<u> </u>		控	朱	ij	端		下状态	<u>\$</u>
<u>CP</u>	\mathbf{Q}_2	\mathbf{Q}_1	\mathbf{Q}_0	$J_2 =$	$\mathbf{K}_2 =$	$J_1 =$	$\mathbf{K}_1 =$	$J_0 \equiv$	$K_0 \equiv$	$\mathbf{Q}_2^2 \mathbf{Q}_1^2$	Q_0^2
		_	_	$\underline{Q_1}Q_0$	<u> </u>	<u>_1</u>	1	\mathbf{Q}_{2}	<u></u>		_
1	0	0	0	0	1	1	1	1	1		
2	0	0	1	0	1	1	1	1	1		
3	0	1	0	0	1	1	1	1	1		
4	0	1	1	1	1	1	1	1	1		
5	1	0	0	0	1	1	1	0	1		

所以该计数器为五进制计数器

状态转换图

结论:

5进制异步计数器,可自启动

时序逻辑电路分析小结

- 写出时钟脉冲方程(异步), 驱动方程和输出方程
- 获得状态转换表

从预先定义的初始状态开始, 依次推当前状态的下一状态,直到获得完整的状态转换表。

• 给出结论 (进制,自启动)

★ 各触发器状态只有在时钟信号的有效沿才会发生变化.

分析异步时序逻辑电路时一定要注意每个触发器的时钟脉冲

分析举例3

$$D_1 = \overline{Q}_1$$

$$\boldsymbol{D}_2 = \boldsymbol{A} \oplus \boldsymbol{Q}_1 \oplus \boldsymbol{Q}_2$$

2) 输出方程
$$Y = \overline{\overline{AQ_1Q_2}} \cdot \overline{A\overline{Q_1}\overline{Q_2}} = \overline{AQ_1Q_2} + A\overline{Q_1}\overline{Q_2}$$

D 触发器特性方程
$$Q^{n+1} = D$$

$$Q_1^{n+1} = \overline{Q_1}$$

$$Q_2^{n+1} = A \oplus Q_1 \oplus Q_2$$

4) 次态表和输出

次态方程

$$Q_1^{n+1} = \overline{Q_1}$$

$$Q_2^{n+1} = A \oplus Q_1 \oplus Q_2$$

次态表

	当前状态	下一	-状态
CP		A=0	A=1
	$Q_2 Q_1$	$Q_2 Q_1$	$Q_2 Q_1$
0	0 0	0 1	1 1
1	0 1	1 0	0 0
2	1 0	1 1	0 1
3	1 1	0 0	1 0

输出方程

$$Y = \overline{A} Q_1 Q_2 + A \overline{Q}_1 \overline{Q}_2$$

状态	输出Y			
$Q_2 Q_1$	A=0	A=1		
0 0	0	1		
0 1	0	0		
1 0	0	0		
11	1	0		

5) 状态转换图

	当前状态	下一	-状态
CP	3月11人心	A=0	A=1
	$Q_2 Q_1$	$Q_2 Q_1$	$Q_2 Q_1$
0	0 0	0 1	1 1
1	0 1	1 0	0 0
2	1 0	1 1	0 1
3	1 1	0 0	1 0

状态	输出Y		
状态 Q ₂ Q ₁	A=0	A=1	
0 0	0	1	
0 1	0	0	
1 0	0	0	
11	1	0	

两位二进制可逆计数器

A是上/下行控制端,计数到序列的最后一个状态时输出Y为高电平A=0上行计数, A=1下行计数上行时计数到11时Y=1下行时计数到00时Y=1

第7章 时序逻辑分析和设计

P154:

- 7.1 时序逻辑电路分析
- 7.2 时序逻辑电路分析