Daniel Židek

MODINS OSCILOSKOP

VÝVOJOVÉ POZNÁMKY A TECHNICKÁ DOKUMENTACE

Modul osciloskopu pro modulární instrumentaci

Autor D. ŽIDEK Vedoucí práce Zatím NENÍ

Září 2023

Obsah

Se	eznam obrázků	3
Se	eznam tabulek	4
1	Abstrakt	5
2	Úvod	6
3	Teoretický úvod 3.1 Analogové osciloskopy	7
Se	eznam použité literatury	8
A	hecední seznam zkratek	9

Seznam obrázků

1	Blokový diagram analogového osciloskopu (převzato z [2]).	7
2	Příklad pasivní sondy (převzato z [1])	8

Seznam tabulek

1 Abstrakt

Tato práce se zabývá návrhem a realizací osciloskopu pod otevřenou licencí CERN-OHL-S v2. Výsledkem by měl být osciloskop v Eurocard formátu, s šířkou pásma alespoň 60MHz, 2 kanály a cenou do 12 tisíc CZK. Tato práce dokumentuje proces vývoje, rozhodnutí a další poznámky týkající se ModIns Osciloskopu. Kromě toho zde dokumentuji i proces seznamování se se zpracováním rychlých analogových signálů a práce s FPGA - celý projekt vzniká jako záminka naučit se něco nového. Celý projekt je hostovaný na GitHubu v repozitáři zidekd/OpenOscilloscopeModule.

2 Úvod

Celý projekt začínám pro to, abych si zkusil něco nového. Selhal a zkusil to znovu. Ve výsledku bych rád disponoval šasím podobným PXI od National Instruments a několika moduly pro něj. Jmenovitě je zatím plánovaný osciloskop a laboratorní zdroj. Všechny přístroje budou disponovat univerzálním protokolem pro komunikaci (kód tak bude moct být znovupoužitelný), komunikačními linkami a především obslužným software pro MS Windows (XP a 10), GNU+Linux a MacOS. Řídící jednotka bude moct sloužit také jako server, který by dovoloval obsluhu přístrojů nejen lokálně, přes USB, WiFi či LAN ale i sdílet přístroje reverzním tunelem. Zde bude otázka zabezpečení, nicméně takový software by měl dovolovat přístup více uživatelů s různými oprávněními (číst data z přístrojů, měnit jejich nastavení, ...). To by mohlo být příhodné ve výuce, či na pracovištích s možností vzdálené práce.

Formát Eurocard jsem vybral pro to, protože mi přijde nejvhodnější. Je tedy ještě potřeba domyslet použití konektorů a komunikačních protokolů, ale o tom potom. :) Eurocard standard dovoluje použití modulů, jež jsou ukládány do šasí které lze následně připevnit do 19 palcového racku. Velikost racku jsou obvykle násobky tří, tedy 3U, 6U, atd.

Co se obslužného software týče tak by moduly měly podporovat ovládání skrz Python API, vizuální grafické rozhraní připomínající ovládáním běžných laboratorních přístrojů a také by měly moct být ovládány skrze vizuální editor zlú (podobný Node-RED, LabVIEW...). Ovládání skrze Python API, GUI i Node-based editor bude možné jak lokálně přes USB, WiFi a LAN tak i přes reverzní tunel, kdy potom lze ovládat přístroje i na druhém konci světa. Ačkoliv jde o sdílení "pouze"připojených přístrojů, všechny aplikace schopné s takovým spojením interagovat budou podporovat správu oprávnění a logů. Řídící jednotka bude zaznamenávat všechny akce, dle úrovní, takže v závislosti na nastavení se budou ukládat různě závažné záznamy. Co do správy oprávnění tak k dispozici bude několik úrovní přístupů a ty půjde omezit jak na jednotlivé přístroje, tak na celé sestavy.

3 Teoretický úvod

V následující kapitole rozeberu funkci analogových a digitálních osciloskopů, pokusím se provést rozbor komerčních osciloskopů (alespoň dle reverzních schémat; u otevřených designů je tohle však mnohem jednodušší :D) a také porovnám návrhy jednotlivých bloků, na základě čehož budu stavit vlastní návrh.

3.1 Analogové osciloskopy

Základní princip funkce spočívá ve vychylování elektronového paprsku měřeným signálem a signálem Časové Základny (ČZ).

Obr.: 1: Blokový diagram analogového osciloskopu (převzato z [2])

Na obrázku 1 jako první vidíme blok "probe", tedy osciloskopickou sondu. Ta slouží k samotnému měření. Obvykle říkáme pouze "sonda", z kontextu je totiž jasné, o co jde. Nejčastěji se setkáme s pasivními sondami, (na obr. 2) to jsou sondy ideální na takové běžné měření do 500 MHz a pravděpodobně to jsou i sondy, co přišly s vašim osciloskopem. Dále máme atenuátory, což je část obvodu odpovědná za snížení amplitudy vstupního signálu. Je-li vstupní signál příliš velký, můžeme využít právě atenuátoru pro snížení amplitudy bez změny frekvence, či jiného zásahu do samotného tvaru signálu. Atenuátor se obvykle vyskytuje jen po pár krocích, obvykle 1:4, 1:10 a 1:20. V tomto blokovém schématu je spolu s atenuátorem spojen ještě zesilovač vertikální osy. Ten se zase stará o spojitou regulaci signálu, abychom například využili celou výšku zobrazovadla a to i signálem s nízkou amplitudou. Ze zesilovače signál jde dále do spouštěcího systému

Obr.: 2: Příklad pasivní sondy (převzato z [1])

Seznam použité literatury

- 1. SMIAL. Deutsch: Standard-Tastkopf Für Oszilloskope Mit BNC-Stecker, Masseklemme Und Abgenommener Federklemme. Der Tastkopf Weist Ein Teilerverhältnis von 10:1 Auf Sowie Die Übliche Abgleichmöglichkeit Für Die Kapazität [online]. 2020. [cit. 2023-09-04]. Dostupné z: https://commons.wikimedia.org/wiki/File:0szilloskop_Tastkopf_10x_IMGP3769_smial_wp.jpg.
- 2. How Does an Oscilloscope Work? Saleae Articles [online]. [cit. 2023-09-04]. Dostupné z: https://articles.saleae.com/oscilloscopes/how-does-an-oscilloscope-work.

Abecední seznam zkratek

ČZ Časová Základna. 7