

National University

Of Computer & Emerging Sciences Chiniot-Faisalabad Campus

CS6029 – Data Mining / CS5041 – Advanced Data Warehousing and Data Mining (FALL 2022)

Dr. Rabia Maqsood

Assignment 2

<u>Topics Covered:</u> Classification algorithms: Decision tree, Rule-based classifiers, k-Nearest Neighbor, Model evaluation

Individual Assignment

Submission Deadline: Thursday, November 10, 2022 (in the last lecture)

Only hand-written solutions will be accepted.

Problem #1: Consider the data given below in a table with *Salary* as target variable. Since we have worked on classification methods, we need to first change the numeric target variable to categorical. Let's discretize the *Salary* variable as follows:

• Level1: Less than \$35,000

Level2: \$35,000 to less than \$45,000
Level3: \$45,000 to less than \$55,000

• Level4: above \$55,000

Occupation	Gender	Age	Salary
Service	Female	45	\$48,000
	Male	25	\$25,000
	Male	33	\$35,000
Management	Male	25	\$45,000
	Female	35	\$65,000
	Male	26	\$45,000
	Female	45	\$70,000
Sales	Female	40	\$50,000
	Male	30	\$40,000
Staff	Female	50	\$40,000
	Male	25	\$25,000

National University

Of Computer & Emerging Sciences Chiniot-Faisalabad Campus

- a. Construct the CART decision tree to classify *Salary* based on the other variables. Use Gini Index for splitting and perform binary attribute splits.
- b. Construct the C4.5 decision tree to classify *Salary* based on the other variables. Use Gain Ratio for splitting and perform binary attribute splits.
- c. Compare the two decision trees and discuss the benefits and drawbacks of each.
- d. Generate the full set of decision rules for both decision trees.
- e. Compare the two sets of decision rules and discuss the benefits and drawbacks of each.

Problem # 2: Consider a binary classification problem with the following set of attributes and attribute values:

- Air Conditioner = {Working, Broken}
- Engine = {Good, Bad}
- Mileage = {High, Medium, Low}
- Rust = $\{Yes, No\}$

Suppose a rule-based classifier produces the following rule set:

```
\begin{array}{c} \text{Mileage} = \text{High} \longrightarrow \text{Value} = \text{Low} \\ \text{Mileage} = \text{Low} \longrightarrow \text{Value} = \text{High} \\ \text{Air Conditioner} = \text{Working, Engine} = \text{Good} \longrightarrow \text{Value} = \text{High} \\ \text{Air Conditioner} = \text{Working, Engine} = \text{Bad} \longrightarrow \text{Value} = \text{Low} \\ \text{Air Conditioner} = \text{Broken} \longrightarrow \text{Value} = \text{Low} \end{array}
```

- a. Are the rules mutually exclusive?
- b. Is the rule set exhaustive?
- c. Is ordering needed for this set of rules?
- d. Do you need a default class for the rule set?

Problem # 3: Consider a training set that contains 150 positive examples and 320 negative examples. For each of the following candidate rules,

- R1: A \rightarrow + (covers 12 positive and 4 negative examples)
- R2: B \rightarrow + (covers 45 positive and 15 negative examples)
- R3: C \longrightarrow + (covers 115 positive and 100 negative examples)

Determine which is the best and worst candidate rule according to:

- a. Rule accuracy
- b. FOIL's information gain

Problem # 4: Consider the one-dimensional data set given below.

	x	0.5	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0	9.5
Γ	у	_	_	+	+	+	_	_	+	_	_

National University

Of Computer & Emerging Sciences Chiniot-Faisalabad Campus

Classify the two data points $x_1 = 4.0$ and $x_2 = 7.5$ as + or - according to its 1-, 3-, 5-, and 9-nearest neighbors using: (a) unweighted majority vote, (b) distance-weighted majority vote.

Problem # 5: Consider the following diagram which shows coverage of three rules: R1, R2 and R3.

Determine which is the best and worst rule according to:

- a) The rule accuracy after R1 has been discovered, where none of the examples covered by R1 are discarded).
- b) The rule accuracy after R1 has been discovered, where only the positive examples covered by R1 are discarded).
- c) The rule accuracy after R1 has been discovered, where both positive and negative examples covered by R1 are discarded.

Problem # 6: Consider the following data points with (x, y) dimensions, and construct the KD-Tree. Use the median value as splitting point and alternate dimensions at each point. Construct two different trees where one follows the order of x-y dimensions for splitting and the other follows y-x dimensions.

$$A = (65, 50), B = (60, 70), C = (70, 60), D = (75, 25), E = (50, 90), F = (90, 65), G = (10, 30), H = (80, 85), I = (95, 75)$$

Finally, show how the new point Z = (55, 60) can be classified using both trees? Did you find any difference in the performance of both trees? State your conclusions precisely (5-6 lines at maximum).