CODE

Table 22.6.5.2—v_c for two-way members without shear reinforcement

v_c		
Least of (a), (b), and (c):	$0.33\lambda_s\lambda\sqrt{f_c'}$	(a)
	$\left(0.17 + \frac{0.33}{\beta}\right) \lambda_s \lambda \sqrt{f_c'}$	(b)
	$\left(0.17 + \frac{0.083\alpha_s d}{b_o}\right) \lambda_s \lambda \sqrt{f_c'}$	(c)

Notes:

- (i) λ_s is the size effect factor given in 22.5.5.1.3.
- (ii) β is the ratio of long to short sides of the column, concentrated load, or reaction area.
- (iii) α_s is given in 22.6.5.3.

COMMENTARY

slabs subjected to bending in two directions is limited to $0.33\lambda_s\sqrt{f_c'}$. However, tests (Joint ACI-ASCE Committee 426 1974) have indicated that the value of $0.33\lambda_s\sqrt{f_c'}$ is unconservative when the ratio β of the lengths of the long and short sides of a rectangular column or loaded area is larger than 2.0. In such cases, the actual shear stress on the critical section at punching shear failure varies from a maximum of approximately $0.33\lambda_s\sqrt{f_c'}$ around the corners of the column or loaded area, down to $0.17\lambda_s\sqrt{f_c'}$ or less along the long sides between the two end sections. Other tests (Vanderbilt 1972) indicate that ν_c decreases as the ratio b_o/d increases. Expressions (b) and (c) in Table 22.6.5.2 were developed to account for these two effects.

For shapes other than rectangular, β is taken to be the ratio of the longest overall dimension of the effective loaded area to the largest overall perpendicular dimension of the effective loaded area, as illustrated for an L-shaped reaction area in Fig. R22.6.5.2. The effective loaded area is that area totally enclosing the actual loaded area, for which the perimeter is a minimum.

Fig. R22.6.5.2—Value of β *for a nonrectangular loaded area.*

R22.6.5.3 The terms "interior columns," "edge columns," and "corner columns" in this provision refer to critical sections with a continuous slab on four, three, and two sides, respectively.

R22.6.5.4 For prestressed two-way members, modified forms of expressions (b) and (c) in Table 22.6.5.2 are specified. Research (ACI 423.3R) indicates that the shear strength of two-way prestressed slabs around interior columns is

22.6.5.3 The value of α_s is 40 for interior columns, 30 for edge columns, and 20 for corner columns.

22.6.5.4 For prestressed, two-way members, it shall be permitted to calculate v_c using 22.6.5.5, provided that (a) through (c) are satisfied:

