Week3

本章介绍了 Bert 之前比较经典的几个模型:R-net、FusionNet 和 QANet。同时介绍了两个前导内容 Multi-Hop 机制和 Pointer network。本笔记聚焦在 R-net 模型。

R-net 模型在注意力计算中加入门控机制。整体框架图如下:

整体流程分为编码层、两个交互层以及最后输出层:

1. 编码层(Question & Passage Matching)

word 级别,通过 glove 模型作为嵌入层输出。Char (字符) 级别通过 RNN 编码,把其最后位置的结果向量,作为 Char (字符) 向量输出。拼接 word 级别向量和 char 级别向量,然后和上一个状态的 u_{t-1} 作为双向 RNN (用的是双向 GRU) 的输入,生成 ut。此过程分别用于生成 passage 和 question 的 u_t 。

$$u_t^Q = \text{BiRNN}_Q(u_{t-1}^Q, [e_t^Q, c_t^Q])$$

 $u_t^P = \text{BiRNN}_P(u_{t-1}^P, [e_t^P, c_t^P])$

2. 交互层(Question-Passage Matching)

此过程先是把 question 结果融入到 passage 中,采用 attention 的方式融入。同时采用门控机制,控制 u^{l} 和 c_{t} 的重要性。具体流程如下:

- a. 通过把 ut 、vt-1 和 ug 做类似相似度计算输出,得到 t 时刻 question 的第 j 个 u 向量对应的 passage 的 Sg 向量;
- b. 对 S_j^t 做 softmax 处理,得到 quesiton 中第 j 个 \mathfrak{u}^0 对应 passage 的概率,重 复这个过程,最终得到 t 时刻输入的 question 的 \mathfrak{u}^0 所有向量对应 passage 的概率;

- c. 和 t 时刻输入的 question 的 \mathfrak{u}^0 向量做加权和处理,最终得到 t 时刻,question 对 passage 的注意力得分 \mathfrak{c}_t 。
- d. 把 t 时刻的 u^P 和 c_t 放入 sigmoid 函数中,得到门控概率,进而再得到通过门 控概率的 u^P 和 c_t 的拼接向量。此门控机制能控制 u^P 和 c_t 的重要性;
- e. 把 d 步得到的拼接向量和 v_{t-1} 放入 RNN(LSTM)中,输出 v_t^P ; 最终得到 Question 和 Passage 匹配向量 v_t^P 。整个过程公式见下图。

$$v_t^P = \text{RNN}(v_{t-1}^P, c_t)$$

$$s_j^t = \mathbf{v}^{\text{T}} \text{tanh}(W_u^Q u_j^Q + W_u^P u_t^P + W_v^P v_{t-1}^P)$$

$$a_i^t = \exp(s_i^t) / \Sigma_{j=1}^m \exp(s_j^t)$$

$$c_t = \Sigma_{i=1}^m a_i^t u_i^Q$$

Match-LSTM
$$v_t^P = \text{RNN}(v_{t-1}^P, [u_t^P, c_t])$$
 替换
$$g_t = \text{sigmoid}(W_g[u_t^P, c_t])$$

$$[u_t^P, c_t]^* = g_t \odot [u_t^P, c_t]$$

3. 交互层(Passage Self-Matching)

在上一个交互层,所有 question 的内容已经融入到 passage 中了,在这个交互层,passage 做自我匹配,来得到 passage 中自己的重要性部分。具体流程如下:

- a. 对不同位置的 v^{l} 做类似相似度计算,得到 t 时刻,passage 中第 j 个 v^{l} 向量 对应的 v_{t} 的 S_{t}^{-1} 向量;
- b. 对 S_j^t 做 softmax 处理,得到 passage 中第 $j \uparrow v^p$ 向量对应 v_t 的概率,重复 这个过程,最终得到 t 时刻输入的 passage 的 v^p 所有向量对应 v_t 的概率;
- c. 和 t 时刻所有输入的 passage 的 v^P 向量做加权和处理,最终得到 t 时刻, passage 对 v_t 的注意力得分 c_t ;
- d. 把 v_t^P 和 c_t 做拼接后的向量,和 h_{t-1}^P 一起输入到双向 RNN 中,得到结果 h_t^P ; 最终得到 Passage 的自我匹配向量 h_t^P 。整个过程公式见下图。

$$h_t^P = \text{BiRNN}(h_{t-1}^P, [v_t^P, c_t])$$

$$s_j^t = \mathbf{v}^{\mathrm{T}} \tanh(W_v^P v_j^P + W_v^{\tilde{P}} v_t^P)$$
$$a_i^t = \exp(s_i^t) / \sum_{j=1}^n \exp(s_j^t)$$
$$c_t = \sum_{i=1}^n a_i^t v_i^P$$

4. 输出层

此层级融入 question, 再用上一层级得到的 h_t^P做注意力交互, 最终获得开始和结束位置的最大概率。具体过程如下:

- a. 把编码层得到的 u^{ϱ} 向量和一个参数向量 V_r^{ϱ} 做类似相似度计算,得到 t 时刻 question 的第 j 个 u^{ϱ} 向量对应 V_r^{ϱ} 的 s_j 向量,进而和之前的 attention 计算 类似,最终得到 question 每个位置的注意力得分 r^{ϱ} ;
- b. 对 h^P 做自我相似度的计算,得到 t 时刻第 j 个 h^P 对应的 h_{t-1}^a 的相似向量 s_j , 再对 s_j 做 softmax 处理,得到 t 时刻 s_j 的概率 a_i^t ,重复此过程,进而得到 t 时刻所有 h^P 对 h_{t-1}^a 的概率 a_i^t ,选择概率最大的位置 p^t 作为 t 时刻的输出;
- c. 在这里需注意的是,b 过程只计算两个时刻,即 t=1 和 2,表示开始位置和结束位置。在 t=1 时, h_{t-1} 为 h_0 等于 a 步骤 r^0 ,带入 b 步骤中,得到 p^1 。同时,用 b 步骤中得到的所有 h^1 对 h_0 的概率 a_i ,和 t=1 时刻所有的 h^1 做加权和,得到 t=1 时刻, h_0 对 h^1 注意力得分 c_1 ,再把 h_0 和 c_1 输入到 RNN 中,得到 h_1 ,进而重复之前 b 的计算,得到 t=2 时刻的 p^2 ;

此过程得到了p¹和p²两个位置。整个过程公式见下图。

$$s_j^t = \mathbf{v}^{\mathsf{T}} \mathrm{tanh}(W_h^P h_j^P + W_h^a h_{t-1}^a)$$
$$a_i^t = \exp(s_i^t) / \Sigma_{j=1}^n \exp(s_j^t)$$
$$p^t = \operatorname{argmax}(a_1^t, \dots, a_n^t)$$

$$c_t = \sum_{i=1}^n a_i^t h_i^P$$
$$h_t^a = \text{RNN}(h_{t-1}^a, c_t)$$

$$s_j = \mathbf{v}^{\mathrm{T}} \tanh(W_u^Q u_j^Q + W_\mathbf{v}^Q V_r^Q)$$

$$a_i = \exp(s_i) / \Sigma_{j=1}^m \exp(s_j)$$

$$r^Q = \Sigma_{i=1}^m a_i u_i^Q$$

以上为 R-net 模型的全过程。最效果来看,此模型结果优于 BiDAF。