

What is stereo vision?

 $Actions \ Requiring \ Stereo \ Vision$

Throwing, catching or hitting a ball
 Driving and parking a car
 Planning and building a three-dimensional object
 Threading a needle and sewing

 Reaching out to shake someone's hand

Pouring into a container Stepping off a curb or step

Figure 7.2 (a) One image from a stereo pair of Emanuele Trucco's face, (b) 3-D rendering of stereo reconstruction. Courtesy of the Turing Institute, Glasgow (UK).

(a)

- ▶ The perspective transform relates a 3D world point to its corresponding image point, via the camera parameters
- ▶ The inverse perspective transform will relate an image point to the world point
- It does not have a unique solution

Stereo

Perspective Transform

Inverse Perspective Transform

What if we have two cameras

Stereo

- ▶ Basic Principle is **triangulation**
- 3D coordinates are computed from intersection of two rays
- Requires
 - ► Camera Calibration [Why?]
 - ▶ Point Correspondence [Why?]

- ▶ Point Correspondence:
- Given a point in left image, find the corresponding point in the right image

p'?

Solving for Depth Using Stereo

- Requires solving two problems
 - ▶ The Correspondence Problem
 - Which parts of the left and the right images are projections of the same scene element
 - ▶ The Reconstruction Problem
 - ▶ Given a number of corresponding parts of the left and the right image, and possibly camera calibration information, what can we say about the 3D location and structure of the observed objects?

Correspondence Problem

▶ Simple Approach

- ▶ Find Corners in both images
- ▶ Evaluate some similarity measure between each pair of corners to find corresponding pairs

Stereo – Epipolar Constraint

- We do not have to search for the corresponding point all over in the image
- ▶ The **Epipolar Constraint** states that the corresponding point must lie on the **epipolar line**

Epipolar Constraint

Epipolar Plane

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

The Epipolar plane is found by the fitting a plane to points O, O' and p. The intersection of the image plane and the epipolar plane gives the epipolar line

Shape from Stereo: Simple Formulation

Pinhole Camera Model

$$x = -f \frac{X}{Z}$$

Basic Stereo Derivations

Derive expression for Z as a function of x_1 , x_2 , f and B

Basic Stereo Derivations

Basic Stereo Derivations

Define the disparity: $d = x_1 - x_2$

$$Z = \frac{fB}{d}$$

Conclusion: Distance is inversely proportional to

disparity

Basic Idea of Stereo Algorithms

- Align epipolar lines along scan-lines
- For every feature point, search along corresponding scanline for similar image content

Stereo Results

Scene

Ground truth

Window-based matching (best window size)

Ground truth

Ground truth

State of the art method
Boykov et al., <u>Fast Approximate Energy Minimization via Graph Cuts,</u>
International Conference on Computer Vision, September 1999.