

Logic "1" is VDD and "logic "0" is GND independent of size of transistors.

There is "no" static power dissipation in the circuit

CMOS Inverter

How should we size to obtain symmetrical VTC?

CMOS Inverter: VTC

Both NMOS and PMOS are in saturation region

CMOS Inverter: VTC

$$I_{\rm DSN} = I_{\rm SDP}$$

$$\frac{\beta_N}{2} (V_{inv} - V_{THN})^2 = \frac{\beta_P}{2} (V_{SGP} + V_{THP})^2$$

$$V_{\mathit{SGP}} = V_{\mathit{DD}} - V_{\mathit{inv}}$$

$$V_{SGP} = V_{DD} - V_{inv}$$

$$\beta_N = W_N / L_N K P_N$$

$$\beta_P = W_p / L_P K P_P$$

$$V_{INV} = \frac{V_{THN} + \frac{1}{\sqrt{\beta_R}} (V_{DD} + V_{THP})}{1 + \frac{1}{\sqrt{\beta_R}}}$$

$$\beta_{R} = \frac{\beta_{N}}{\beta_{P}} = \left(\frac{W_{N}/L_{N}}{W_{P}/L_{P}}\right) \times \left(\frac{KP_{N}}{KP_{P}}\right)$$

CMOS Inverter: VTC

$$V_{INV} = \frac{V_{THN} + \frac{1}{\sqrt{\beta_R}}(V_{DD} + V_{THP})}{1 + \frac{1}{\sqrt{\beta_R}}}$$

$$V_{\mathit{INV}} = 0.5 V_{\mathit{DD}}$$

$$\beta_{R} = \frac{0.5V_{DD} + V_{THP}}{0.5V_{DD} - V_{THN}}$$

$$\Rightarrow \beta_R = 1$$

$$\frac{\overline{W_P/L_P}}{W_N/L_N} = \frac{KP_N}{KP_P}$$
 2.0

$$V_{IL} = 1.48V; v_{ol} = 0V$$

 $V_{IH} = 1.814V; v_{oh} = 3.3V$
 $NM_H = 1.48V; NM_L = 1.48V$

$$\frac{NM_H}{0.5V_{DD}} = 0.9$$

CMOS Inverter: VIH; VIL

At VIL, PMOS in Linear and NMOS in Saturation

CMOS Inverter: VIH; VIL

W_{P}/W_{N}	V _{INV}	V_{IH}	V_{IL}	V _{OH}	V _{OL}
1	1.53	1.67	1.34	3.16	0.177
2	1.65	1.81	1.48	3.14	0.166
3	1.7	1.9	1.575	3.12	0.148

CMOS Inverter: V_{II}

$$\frac{\beta_{N}}{2}(V_{IL} - V_{THN})^{2} = \beta_{P}((V_{DD} - V_{IL} + V_{THP})(V_{DD} - V_{OUT}) - 0.5(V_{DD} - V_{OUT})^{2})$$

Gain of inverter is Unity

CMOS Inverter: V_{II}

$$G = -(g_{MN} + g_{MP}) \times r_{ON} || r_{OP} = -1$$

$$\Rightarrow (g_{MN} + g_{MP}) \times r_{OP} \cong 1$$

$$g_{mn} = \beta_{N} \times (V_{IL} - V_{THN}) \; ; \; g_{mp} = \beta_{P} \times (V_{DD} - V_{OUT})$$

$$r_{op} = \frac{1}{\beta_{P} \times (V_{DD} - V_{IL} + V_{THP} + V_{DD} - V_{OUT})}$$

$$\frac{\beta_{N}}{2}(V_{IL} - V_{THN})^{2} = \beta_{P}((V_{DD} - V_{IL} + V_{THP})(V_{DD} - V_{OUT}) - 0.5(V_{DD} - V_{OUT})^{2})$$

$$V_{IL} \sim V_{inv} - \delta V$$
; $V_{IH} \sim V_{inv} + \delta V$

$$\delta V \sim 0.17V$$

CMOS: Propagation Delay

$$\tau_R$$
 ; τ_F ; τ_{PHL} ; τ_{PLH}

Low to high propagation delay

$$\tau_{phl} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{pd.}}$$

$$\tau_{plh} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{pu}}$$

$$C_T = \left(C_{gdn1} + C_{dbn1} + C_{gdp2} + C_{dbp2}\right) +$$

$$\left(C_{gsn3} + C_{gdn3} + C_{gbn3} + C_{gsp4} + C_{gdp4} + C_{gbp4}\right)$$

$$A_{D1} = 4 \times 1 + 6 \times 6 = 40$$
;
 $P_{D1} = (1+1+6) \times 2 + 6 = 22$

$$A_{D2} = 8 \times 4 + 3 \times 6 = 50;$$

 $P_{D2} = (4 + 1 + 3) \times 2 + 6 = 22$

$$(C_{gsn3} + C_{gdn3} + C_{gbn3} + C_{gsp4} + C_{gdp4} + C_{gbp43})$$

$$\sim 2.0 \text{fF}$$

Delay Analysis:

$$\tau_{phl} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{pd}}$$
 $\tau_{phl} \sim 65 \, ps$

42 + 23

$$\begin{split} I_{DS}(t=0) = & \left(KP_N \times \frac{W_N}{L_N} \right) \times \frac{\left(V_{DD} - V_{THN} \right)^2}{2} \\ I_{DS}(t=\tau_{phl}) = & \left(KP_N \times \frac{W_N}{L_N} \right) \times \left(\left(V_{DD} - V_{THN} \right) \frac{V_{DD}}{2} - \frac{V_{DD}^2}{8} \right) \end{split}$$

Delay Analysis:

$$I_{SDP}(t=0) = \left(KP_P \times \frac{W_P}{L_P}\right) \times \frac{\left(V_{DD} + V_{THP}\right)^2}{2} \sim 0.53 \text{mA}$$

$$I_{DDP}(t=\tau_{plh}) = \left(KP_P \times \frac{W_P}{L_P}\right) \times \left(\left(V_{DD} + V_{THP}\right) \frac{V_{DD}}{2} - \frac{V_{DD}^2}{8}\right) \sim 0.487 \text{mA}$$

$$\tau_{phl} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{pd.}}$$

$$\begin{split} I_{DS}(t=0) = & \left(KP_N \times \frac{W_N}{L_N} \right) \times \frac{\left(V_{DD} - V_{THN}\right)^2}{2} \\ I_{DS}(t=\tau_{phil}) = & \left(KP_N \times \frac{W_N}{L_N} \right) \times \left(\left(V_{DD} - V_{THN}\right) \frac{V_{DD}}{2} - \frac{V_{DD}^2}{8} \right) \end{split}$$

$$\tau_{plh} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{pu}}$$

$$I_{SDP}(t=0) = \left(KP_P \times \frac{W_P}{L_P}\right) \times \frac{\left(V_{DD} + V_{THP}\right)^2}{2}$$

$$I_{SDP}(t=\tau_{plh}) = \left(KP_P \times \frac{W_P}{L_P}\right) \times \left(\left(V_{DD} + V_{THP}\right) \frac{V_{DD}}{2} - \frac{V_{DD}^2}{8}\right)$$

$$\tau_{phl}(ps) \cong 42 + a \times C_L(fF); a = 3.25$$

ps/fF or ns/pF

1X Inverter

 $\tau_{phl}(ps) \cong 42 + a \times C_L(fF); a = 1.625$

$$\tau_{\it phl} \cong 0.5 \times \frac{\tilde{C}_{\it in} V_{\it DD}}{\tilde{I}_{\it pd.}} + 0.5 \times \frac{\tilde{C}_{\it L} V_{\it DD}}{\tilde{I}_{\it pd.}}$$

$$\tau_{phl}(ps) \cong 42 + a \times C_L(fF); a = 3.25$$

0.18µm technology, 1.8V VDD

Cell Description

The INV cell provides the logical inversion of a single input (A). The output (Y) is represented by the logic equation:

$$Y = \overline{A}$$

Functions

Α	Υ
0	1
1	0

Logic Symbol

Cell Size

Drive Strength	Height (µm)	Width (µm)
IN∀XL	5.0	1.3
INVX1	5.0	1.3
INVX2	5.0	2.0
INVX3	5.0	2.6
IN√X4	5.0	2.6
INVX8	5.04	3.96
INVX12	5.04	8.58
INVX16	5.04	11.22
INVX20	5.04	12.54

AC Power

Di		Power (μW/MHz)								
Pin	XL	X1	X2	ХЗ	X4	X8	X12	X16	X20	
Α	0.0087	0.0114	0.0209	0.0315	0.0378	0.0775	0.1665	0.2250	0.2804	

Pin Capacitance

Di-		Capacitance (pF)							
Pin	XL	X1	X2	ХЗ	X4	X8	X12	X16	X20
Α	0.0026	0.0036	0.0070	0.0100	0.0129	0.0267	0.0067	0.0088	0.0109

Delays at 25°C, 1.8V, Typical Process

Description	Intrinsic Delay (ns)								
Description	XL	X1	X2	ХЗ	X4	X8	X12	X16	X20
$A \rightarrow Y \uparrow$	0.023	0.023	0.020	0.022	0.018	0.018	0.122	0.119	0.117
$A \rightarrow Y^{\downarrow}$	0.015	0.014	0.012	0.013	0.011	0.012	0.119	0.113	0.110

Description	K _{load} (ns/pF)								
Description	XL	X1	X2	хз	X4	X8	X12	X16	X20
$A \rightarrow Y \uparrow$	6.229	4.512	2.256	1.507	1.137	0.519	0.346	0.260	0.208
$A \rightarrow Y^{\downarrow}$	3.237	2.401	1.195	0.798	0.598	0.356	0.240	0.180	0.144

Effect of Input Rise/Fall time

$$I_{DSN} - I_{SDP} = -C_T \frac{dV_{OUT}}{dt}$$

- The PMOS does not switch off immediately thereby reducing the discharge current.
- The NMOS does not reach its full current drive capability immediately.
- ⇒ Propagation delay increases!

Effect of Input Rise/Fall time

Empirical Model:

$$\tau_{PHL} = \sqrt{\tau_{PHLO}^2 + (t_R/2)^2}$$

$ au_R$ / $ au_{P\!H\!L}$	$ au_{P\!H\!LO}$ / $ au_{P\!H\!L}$
0.0	1.0
0.5	0.968
1.0	0.866
1.5	0.66

Impact of process variations

$$\tau_{phl} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{pd.}}$$

$$I_{DS}(t=0) = \left(KP_N \times \frac{W_N}{L_N}\right) \times \frac{(V_{DD} - V_{THN})^2}{2}$$

$$\mu_N C'_{ox}$$

Fig. 1: Classification of variations. Global variations include (a) lot-to-lot variation (LTLV), (b) wafer-to-wafer variation (WTWV), and (c) die-to-die variation (DTDV). Local variation means (d) within-die variation (WIDV) [1]

Case	NMOS	PMOS
1	nominal	nominal
2	slow	slow
3	slow	fast
4	fast	slow
5	fast	fast

Delay under variations

- ■Temperatures varying between 0 125°C,
- Supply voltage varying between VDD (± 10%)
- Process variations of 3σ.

Case	NMOS	PMOS
1	nominal	nominal
2	slow	slow
3	slow	fast
4	fast	slow
5	fast	fast

$$KP_N = 100 \pm 20\%$$
; $V_{THN} = 1 \pm 0.1V$
 $KP_P = 50 \pm 20\%$; $V_{THP} = -1 \pm 0.1V$

$$V_{IL} = 1.48V; V_{IH} = 1.814V$$

$$N_{ML} = N_{MH} = 1.48V$$

$$V_{IL} = 1.3V, V_{IH} = 1.63V$$

$$V_{IL} = 1.67V; V_{IH} = 2V$$

$$N'_{ML} = 1.3V; N'_{MH} = 1.3V$$

Delay under variations

- ■Temperatures varying between 0 125°C,
- Supply voltage varying between VDD (± 10%)
- Process variations of 3σ.

Case	NMOS	PMOS
1	nominal	nominal
2	slow	slow
3	slow	fast
4	fast	slow
5	fast	fast

Best and Worst Case Delay values

- ■Temperatures varying between 0 125°C,
- Supply voltage varying between VDD (1 ± 10%)
- Process variations of 3σ.

Delay Calculation

Using the delay data in the datasheets (tintrinsic, Kload, and Cload) and the delay derating factors, the estimated total propagation delay is

$$t_{TPD} = (K_{Process}) \cdot [1 + (K_{Volt} \cdot \Delta Vdd)] \cdot [1 + (K_{Temp} \cdot \Delta T)] \cdot t_{typical}$$

```
typical= tintrinsic + (Kload • Cload)
   where:
                 total propagation delay (ns);
   TPD
                 delay at typical corner—1.8 V, 25 °C, typical process (ns);
   typical
                 delay through the cell when there is no output load (ns);
   tintrinsic
                 load delay multiplier (ns/pF);
  Kload
                 total output load capacitance (pF);
  Cload
  K<sub>Process</sub>
                 process derating factor, where process is slow, typical, or fast;
                 voltage derating factor (/V);
  Kvolt
   \Delta Vdd
                 Vdd —1.8 V:
  K_{Temp}
                 temperature derating factor (/°C);
                 junction temperature — 25°C.
  \Delta T
```

$$\tau_{phl} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{pd.}}$$

$$I_{DS}(t=0) = \left(KP_N \times \frac{W_N}{L_N}\right) \times \frac{(V_{DD} - V_{THN})^2}{2}$$

$$\mu_N C'_{ox}$$

Table 3. Derating Factors

K _{Process} (slow)	1.293
K _{Process} (typical)	1.000 (by definition)
K _{Process} (fast)	0.781
K _{Volt} (1.8V to 1.62V)	-0.731/V
K _{Volt} (1.8V to 1.98V)	-0.511/V

Table 3. Derating Factors

K _{Process} (slow)	1.293
K _{Temp} (25°C to 0°C)	0.00137/°C
K _{Temp} (25°C to125°C)	0.00123/°C

$$\frac{\tau_p(\min)}{\tau_{po}} = 0.78 \times (1 - 0.51 \times 0.18) \times (1 - .00137 \times 25) = 0.68$$

$$\frac{\tau_p(\text{max})}{\tau_{po}} = 1.293 \times (1 + 0.73 \times 0.18) \times (1 + .00123 \times 100) = 1.64$$

Methods for decreasing delay

-Increase the supply voltage

$$\tau_{phl} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{pd.}}$$

Supply Voltage	τ _{PHL} (ps)
3.3	75
3.6	65.5
4.0	54.8
5.0	36.6

$$P_{\text{clynamic}} = C_T \times V_{DD}^2 \times f$$

$$P_{dynamic} = 0.22 \mu W / MHz$$

$$P_{dynamic} = 0.5 \mu W / MHz$$

Size-

$$\tau_{phl}(ps) \cong \tau_{ins} + a \times C_L(fF); a \propto W_N$$

Power Dissipation

$$P_T = P_{static} + P_{dynamic} + P_{SC}$$

Static power Dissipation

- "no" dc path exists between supply and ground under steady state conditions.
 -leakage currents, although 'small' compared to ON state current, can still be significant.
- Not so true for the state-of-the-art scaled technology nodes
- Leakage power is significant in SOTA Tech.
 node

-depends on the threshold voltage and increases exponentially as its value is reduced

Dynamic power Dissipation

$$E_{Supply} = \int V_{DD} I_{Supply} \, dt$$

$$I_{Supply} = I_{SDP}$$

$$\int I_{SDP} dt = C_T V_{DD}$$

$$E_{Supply} = C_T V_{DD}^2$$

Dynamic power Dissipation

$$P_{dynamic} = f \times C_T \times V_{DD}^2 = 0.22 \,\mu W / MHz$$

Short-circuit Power Dissipation

GND

$$P_{SC} \cong \frac{1}{2} I_{Peak} \frac{(\tau_{R} + \tau_{F})}{T} V_{DD}$$

 Therefore, a small rise and fall time is advantageous from both power as well as delay viewpoints

$$I_{peak} = \left(KP_N \times \frac{W_N}{L_N}\right) \times \frac{\left(0.5V_{DD} - V_{THN}\right)^2}{2} = 42.25\,\mu A$$

$$P_{SC} \cong \frac{1}{2}I_{Peak} \frac{(\tau_R + \tau_F)}{2T}V_{DD} = 0.007 \mu W / MHz$$

for $\tau_R = \tau_F = 0.1 \text{ns}$

Power Reduction techniques

Reducing the supply voltage:

(This however, increases the propagation delay. could be countered through reduction in threshold voltage.)

- Reduce the nodal capacitance through layout techniques.
- Reduce the switching activity of nodes

CMOS Inverter: Summary

$$V_{INV} = \frac{V_{THN} + \frac{1}{\sqrt{\beta_R}} (V_{DD} + V_{THP})}{1 + \frac{1}{\sqrt{\beta_R}}}$$

$$V_{inv} = 1.65V; V_{IL} = 1.48V; v_{ol} = 0V$$

 $V_{IH} = 1.814V; v_{oh} = 3.3V$
 $NM_H = 1.48V; NM_L = 1.48V$
 V_{IN}

$$A = 28 \times 40 = 1120\lambda^2$$

$$A_{DN} = 40; P_{DN} = 22$$

 $A_{DP} = 50; P_{DP} = 22$

$$P_{dynamic} = f \times C_T \times V_{DD}^2$$
$$= 0.22 \mu W / MHz$$

VDD

2-input CMOS NAND Gate

- 1. Noise Margins
- 2. Delay
- 3. Power
- 4. Area

Series Connected Transistors

All transistors are 4λ/2λ

Series Connected Transistors

All transistors are 4λ/2λ

2-input CMOS NAND Gate

1X Inverter

Case-1 (A):
$$V_{inv}=1.58V$$
; $V_{IL}=1.4V$; $V_{IH}=1.72V$

Case-2(B):
$$V_{inv} = 1.53V$$
; $V_{IL} = 1.35V$; $V_{IH} = 1.7V$

Case-3 (AB):
$$V_{inv}=1.78V$$
; $V_{IL}=1.67V$; $V_{IH}=1.96V$

Inverter:
$$V_{inv} = 1.65V$$
; $V_{IL} = 1.48V$; $V_{IH} = 1.814V$

AND2 AND3

node1

Mp5

Mn5

ABC+DE

OAI21 (Or-And-Invert)

AO22

Mp2

nodeC

nodeD

node5

A	В	C	A+B.C	A+B	A+C	(A+B).(A+C)
0	0	0	0	0	0	0
0	0	1	0	0	1	0
0	1	0	0	1	0	0
0	1	1	1	1	1	1
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

2:1 MUX

How to design?
$$Y = \overline{(A+B+C) \cdot D}$$

ECE463_DVD

53

How to implement F = ab + bc + ca?

ECE463_DVD 54

Besides the AOI and OAI gates for complemented two-level normal forms, we can design compound gates for multilevel expressions as well. For example, Boolean expression

$$Y = \overline{(A + BC) \cdot D}$$

has a pull-down network consisting of a series composition of D and a parallel composition of A and a series composition of B and C.

ECE463 DVD 55

XOR2

Full Adder

LDHQ

DFPQ