Welcome to instats

The Session Will Begin Shortly

START

Statistics in R with Tidyverse

Session 10: One- and Two-Sample Hypothesis Tests

Framework for Hypothesis Tests

- Hypothesis testing: make inferences about population based on a sample
- Null hypothesis (H₀): assumed true, no effect or difference
- Alternative hypothesis (H_A): claim against H₀, need evidence to reject H₀

Comparing Hypothesis Tests to Criminal Trials

- Null Hypothesis: Similar to presumption of innocence ("innocent until proven guilty")
- Alternative Hypothesis: Similar to the prosecutor's claim ("guilty")
- Decision:
 - **Reject H₀**: Sufficient evidence to reject innocence (guilty verdict)
- Fail to reject H₀: Not enough evidence to reject innocence (not guilty, but not necessarily innocent)
- Type I Error: Wrongly convicting an innocent person (rejecting H₀ when it is true)
- Type II Error: Letting a guilty person go free (failing to reject H₀ when H_A is true)
- Significance level (α) = "beyond a reasonable doubt"

One-Sample Hypothesis Test

- Example: Test claim about population mean, μ
- Null hypothesis: μ = 3.6 grams (average almond weight)
- Alternative hypothesis: μ < 3.6 grams
- Goal: determine likelihood of observing a sample mean as extreme as observed

Types of Hypothesis Tests

- Two-sided test: evidence against H₀ comes from both directions
 (greater or less)
- One-sided test: evidence against H₀ comes from one direction only
- Examples:
 - left-sided test (H_A : μ < 3.6)
 - right-sided test (H_A : $\mu > 3.6$)
 - two-sided test (H_A : $\mu \neq 3.6$)

Steps in Hypothesis Testing

- 1. Define H₀ and H_A (null and alternative hypotheses)
- 2. Choose significance level α (e.g., 0.05)
- 3. Calculate test statistic (e.g., t statistic for one-sample tests)
- 4. Compare p-value calculated from test statistic to α
- 5. Make decision and interpret results in the context of the problem

Theory-Based Hypothesis Test Example

- Calculate sample mean and standard deviation
- Test statistic formula: $t = \frac{\bar{x} \mu}{s/\sqrt{n}}$
- Calculate *p*-value for significance

Simulation-Based Hypothesis Testing

- Use permutation tests to simulate null hypothesis scenario
- Shuffle data to simulate "no effect" world
- Calculate test statistic for each shuffle to form null distribution

P-Value and Statistical Significance/Discernibility

- *P*-value: probability of observing a test statistic as extreme as the observed one, assuming H₀ is true
- If p-value < α , reject H₀ (evidence against H₀ is strong)
- Example: p-value = 0.03, α = 0.05 \rightarrow reject H₀

Connection Between Hypothesis Testing and Confidence Intervals

- If the null value is outside the confidence interval, reject H₀
- Example: 95% CI does not contain 3.6 \rightarrow reject H₀

Demo & Exercises

Q&A

STOP