========> NMODPROC.01E ==========>

****** Genral procedures and utilities to be run before any other PROC file

*

PROC GMRTSTART

* PROC GMRTSTART define variables used in GMRT procs

SCALAR TSV,USV,VSV,WSV,XSV,YSV,ZSV,IPA,JPA,KPA

FINI

PROC SLEEP(IPA)

* PROC SLEEP(IPA) sleep for IPA sec

XSV=COMM

COMM=IPA

T4VERB

COMM=XSV

FINI

PROC SVDC

* PROC SVDC save DEST and COMM in XSV&YSV

XSV=DEST;YSV=COMM

FINI

PROC RSTDC

* PROC RSTDC restore DEST & COMM from XSV & YSV

DEST=XSV;COMM=YSV

FINI

PROC SVCDC

* PROC SVCDC SVDC+ZSV=CPA(1)

SVDC; ZSV=CPA(1)

FINI

PROC RSTCDC

* PROC RSTCDC RSTDC + CPA(1)=ZSV

RSTDC;CPA(1)=ZSV

FINI

PROC SVCDCS

*PROC SVCDCS

SVCDC;TSV=SUBAR

FINI

PROC RSTCDCS

*PROC RSTCDCS

RSTCDC;SUBAR=TSV

FINI

PROC SVDCA

* PROC SVDCA SVDC+USV=AXIS

SVDC;TSV=AXIS

FINI

PROC RSTDCA

* PROC RSTDCA RSTDC + AXIS=USV

RSTDC;AXIS=TSV

FINI

PROC SVCDCA

* PROC SVCDCA SVCDC+USV=AXIS

SVCDC;TSV=AXIS

FINI

PROC RSTCDCA

* PROC RSTCDCA RSTCDC + AXIS=USV

RSTCDC;AXIS=TSV

FINI

PROC SVDCS

* PROC SVDCS SVDC + USV=SUBARRAY

SVDC;TSV=SUBA

FINI

PROC RSTDCS

* PROC RSTDCS RSTDC + SUBARR=USV

RSTDC;SUBA=TSV

FINI

PROC SVDCAT

* PROC SVDCAT SVDCA + TARGET in UVWSV

SVDCA; USV=TARGET(1); VSV=TARGET(2); WSV=TARGET(3)

FINI

PROC RSTDCAT

* PROC RSTDCAT RSTDCA + TARGET FROM UVWSV

RSTDCA;TARGET(1)=USV;TARGET(2)=VSV;TARGET(3)=WSV

FINI

PROC SVDCATD

* PROC SVDCATD SVDCAT + SRVCRD in TSV

SVDCAT;TSV=SRVCRD

FINI

PROC RSTDCATD

* PROC RSTDCATD RSTDCAT +SRVCRD in TSV

RSTDCAT;SRVCRD=TSV

FINI

*

*

PROC DEFSUB(IPA)

* PROC DEFSUB(IPA) define antennas associated with subarray IPA

SVCDCS DEST=50 COMM=20 SUBA=IPA

T3V

RSTCDCS

FINI

PROC SHSUB(IPA)

* PROC SHSUB(IPA) show antennas associated with subarray IPA

SVCDCS

DEST=50; COMM=21 SUBA=IPA;CPA(1)=0

T3V

RSTCDCS

FINI

PROC STRTPROC(STRA3)

* PROC STRTPROC starts specified process

SVDC

COMM=30;DEST=50;OUTFIL=STRA3

T3V RSTDC FINI

PROC ABRTPROC(STRA3)

* PROC ABRTPROC aborts starting of specified process

SVDC

COMM=31;DEST=50;OUTFIL=STRA3

T3V RSTDC FINI

PROC HLTPROC(STRA3)

* PROC HLTPROC stops specified process

SVDC

COMM=32;DEST=50;OUTFIL=STRA3

T3V RSTDC FINI

PROC USERCONN

* PROC USERCONN Connect User to COMMHAND

SVDC

COMM=36;DEST=50;T3V **RSTDC FINI** PROC ONDBGUNIC * PROC ONDBGUNIC set debug on in unixcomh **SVDC** COMM 40;DEST=50;T3V **RSTDC FINI** PROC OFFDBGUNI * PROC OFFDBGUNI turn off debug in unixcomh SVDC COMM=42;DEST=50;T3V **RSTDC** FINI PROC LOGPKT(STRA3) * PROC LOGPKT(STRA3) start pkts logging in file STRA3 **SVDC** COMM 50;DEST 50;OUTFIL=STRA3; T3V;RSTDC **FINI** PROC HLTPKTLOG(IPA) * PROC HLTPKTLOG(IPA) stop logging packets for file no IPA SVCDC; COMM=52;CP(1)=IPA DEST=50;T3V;RSTCDC FINI PROC SHLOGLIST * PROC SHLOGLIST list opened log files for packet log SVCDC; COMM=54; DEST=50;T3V;RSTCDC FINI ****** PROCEDURES FOR HANDLING THE SERVO =****** ****** Operational Command Procedures ******* PROC COLDSTART * PROC COLDSTART Cold start of antenna **SVDC** DEST=16;COMM=40X;T3V **RSTDC FINI**

PROC MV(IPA,JPA)

* PROC MV(IPA,JPA)

Move antenna to az=xsv,el=ysv (astr)

SVDCAT

TARG(2)=IPA;TARG(3)=JPA

DEST=16;COMM=42X;AXIS=0;T3V

RSTDCAT

FINI

PROC MVAZIM(IPA)

* PROC MVAZIM(IPA)

Move antenna to az=wsv (astr)

SVDCAT

TARG(2)=IPA

DEST=16;COMM=42X;AXIS=1;T3V

RSTDCAT

FINI

PROC MVELEV(IPA)

* PROC MVELEV(IPA)

Move antenna to el=wsv (astr)

SVDCAT

TARG(3)=IPA

DEST=16;COMM=42X;AXIS=2;T3V

RSTDCAT

FINI

PROC AMV(IPA,JPA)

* PROC AMV(IPA,JPA)

move antenna to az=xsv,el=ysv (antenna)

SVDCATD

TARG(2)=IPA;TARG(3)=JPA

DEST=16;COMM=42X;AXIS=0;SRVCRD=10;T3V

RSTDCATD

FINI

PROC AMVAZIM(IPA)

* PROC AMVAZIM(IPA)

move antenna to az=xsv (antenna)

SVDCATD

TARG(2)=IPA

DEST=16;COMM=42X;AXIS=1;SRVCRD=10;T3V

RSTDCATD

FINI

PROC GOINNER

* PROC GOINNER

request antenna to move on inner track

SRVCRD=0

FINI

PROC GOOUTER

* PROC GOOUTER

request antenna to move on outer track

SRVCRD=1

PROC TRACK(JPA,KPA,IPA)

* PROC TRACK(IPA,JPA,KPA)

servo track, parms=2 angles & time

SVDCAT

TARG(1)=IPA;TARG(2)=JPA;TARG(3)=KPA

DEST=16;COMM=44x;AXIS=0;T3V

RSTDCAT

FINI

PROC TRKAZIM(JPA,IPA)

* PROC TRKAZIM(IPA,JPA) servo track, parms=azim and time

SVDCAT

TARG(1)=IPA;TARG(2)=JPA

DEST=16;COMM=44x;AXIS=1;T3V

RSTDCAT

FINI

PROC TRKELEV(JPA,IPA)

* PROC TRKELEV(IPA,JPA)

servo track, parms=elev and time

SVDCAT

TARG(1)=IPA;TARG(3)=JPA

DEST=16;COMM=44x;AXIS=2;T3V

RSTDCAT

FINI

PROC ATRACK(JPA,KPA,IPA)

* PROC ATRACK(IPA,JPA,KPA)

servo track in ant cord, parms=azim elev& time

SVDCAT

TARG(1)=IPA;TARG(2)=JPA;TARG(3)=KPA

DEST=16;COMM=44x;AXIS=0;SRVCRD=10;T3V

RSTDCAT

FINI

PROC ATRKAZIM(JPA,IPA)

* PROC ATRKAZIM(IPA,JPA) servo track in ant cord, parms=azim and time

SVDCAT

TARG(1)=IPA;TARG(2)=JPA

DEST=16;COMM=44x;AXIS=1;SRVCRD=10;T3V

RSTDCAT

FINI

PROC HOLD

* PROC HOLD

request servo to release brakes and hold

SVDCA

DEST=16;COMM=46X;AXIS=0;T3V

RSTDCA

FINI

PROC HLDAZIM

* PROC HLDAZIM

release azim brakes and hold

SVDCA

DEST=16;COMM=46X;AXIS=1;T3V

RSTDCA FINI

PROC HLDELEV

* PROC HLDELEV

SVDCA

DEST=16;COMM=46X;AXIS=2;T3V

RSTDCA FINI

PROC BRAKES

* PROC BRAKES

SVDCA

DEST=16;COMM=48x;AXIS=0;T3V

RSTDCA

FINI

PROC BRKAZIM

* PROC BRKAZIM

SVDCA

DEST=16;COMM=48x;AXIS=1;T3V

RSTDCA FINI

PROC BRKELEV

* PROC BRKELEV

SVDCA

DEST=16;COMM=48x;AXIS=2;T3V

RSTDCA FINI

PROC CLOSE

* PROC CLOSE

SVCDC

DEST=16;COMM=4ax;T3V

RSTCDC

FINI

PROC STOW

* PROC STOW

SVDCA

DEST=16;COMM=4cx;AXIS=0;T3V

RSTDCA

FINI

release elev brakes and hold

apply brakes on both axis

apply brakes on azim axis

apply brakes on elev axis

close down observations

stow the antenna

PROC SWELEV

* PROC SWELEV

stow antenna in elev

SVDCA

DEST=16;COMM=4cx;AXIS=2;T3V

RSTDCA FINI

PROC SWRELE

* PROC SWRELE release antenna from stowed pos

SVDCA

DEST=16;COMM=4ex;AXIS=0;T3V

RSTDCA FINI

PROC SWRELEL

* PROC SWRELEL release antenna elevation stow

SVDCA

DEST=16;COMM=4ex;AXIS=2;T3V

RSTDCA FINI

PROC STOP

* PROC STOP abort servo's previous command(to stop in moving both

axes) SVDC

DEST=16;COMM=50x;T3V

RSTDC FINI

PROC ABRTSRVCMD

* PROC ABRTSRVCMD abort servo's previous command

SVDC

DEST=16;COMM=50x;T3V

RSTDC FINI

PROC RDSRVSPC

* PROC RDSRVSPC read servo set param (in srvs, servo sp. window)

SVDC

DEST=16;COMM=3ax;t3v

COMM=36x;t3v

RSTDC FINI

PROC RSTSERVO

* PROC RSTSERVO reset servo computer

SVDC

COMM=6cx;DEST=16;T3V

```
RSTDC
FINI
* Procedure to check STP flag appearance & dis-appearance
* PROC STPCHK(KPA)
PROC STPCHK(KPA)
SVDC
SRVCRD=1
MVEL(88d)
type hms(KPA)
for i=1 to 3
KPA=KPA+20m
SRVCRD=2
TRKELEV(92d,KPA)
sleep(600)
sleep(600)
KPA=KPA+20m
SRVCRD=1
TRKELEV(88d,KPA)
sleep(600)
sleep(600)
END
RSTDC
FINI
****** Procedures for Set Mode Commands *******
PROC STSRVTIM
                   set servo time IPA sec ahead
* PROC STSRVTIM
SVDC
DEST=16;COMM=52x;T3V
RSTDC
FINI
*** Other servo set parameter procedures are in STSERVPAR.001
************ Procedures for ABC **********
PROC STMCM
* PROC STMCM
                            set MCM for ABC using mpa(I)
SVDC; COMM=0;DEST=17;T3V;RSTDC
FINI
PROC STABCTIM
* PROC STABCTIM
                            set ABC and Servo time, and set LST on ABC
```

SVDC; COMM=1;DEST=17 T3V RSTDC;

PROC DISMCMQ

PROC STABCDLY * PROC STABCDLY set ABC delays to values set in TPARM(1-18) SVDC: COMM=2;DEST=17; T3V:RSTDC FINI PROC STABCCYC * PROC STABCDLY set ABC default delays and cycle values SVDC; COMM=2;DEST=17; TPA 1,4,4,4,10,2,10,5,2,0,1,1,5,10,30,14,15,3 T3V;RSTDC FINI **PROC STABC3CYC set ABC delays and 3 sec cycle time * PROC STABC3CYC *SVDC: *COMM=2;DEST=17; *TPA 3,4,4,4,10,2,10,5,2,0,1,1,8,10,30,14,15,3 *T3V;RSTDC *FINI **PROC STABC4CYC * PROC STABC4CYC set ABC delays and 4 sec cycle time *SVDC; *COMM=2;DEST=17; *TPA 4,4,4,10,2,10,5,2,0,1,1,8,10,30,14,15,3 *T3V;RSTDC *FINI PROC ENABCQ(IPA) * PROC ENABCQ(IPA) start queuing ABC commands for dest=IPA SVCDC;COMM=3;DEST=17; TPARM(1)=IPA;T3V;RSTCDC **FINI** PROC ENAMCMQ * PROC ENAMCMQ Enable mcm qued cmds **SVCDC** COMMAND=3;DEST=17 TPARM(1)=0;T3V**RSTCDC**

* PROC DISMCMQ Disable mcm cmd quing

SVCDC

COMMA=3;DEST=17

ABCQDES=17;T3V; RSTCDC

FINI

PROC STABCDBG(IPA)

* PROC STABCDBG(IPA) set ABC in Debug mode IPA

SVCDC;COMM=4;TPARM(1)=IPA;

DEST=17;T3V;RSTCDC

FINI

PROC ABRTABCQ(IPA,JPA)

* PROC ABRTABCQ(IPA,JPA) abort JPA cmds fro IPA in ABC Q

SVCDC;COMM=5;TPA(1)=IPA;

TPA(2)=JPA;DEST=17;T3V;RSTCDC

FINI

PROC TALK(IPA,OUTFIL)

* PROC TALK(IPA,OUTFIL) send talk message to ABC

SVCDC:

COMM=7;DEST=17;TPA(1)=IPA;T3V;

RSTCDC;

FINI

PROC RDABCVER

* PROC RDABCVER read ABC program version

SVDC;COMM=10;DEST=17;T3V;RSTDC

FINI

PROC RDABCDBG

* PROC RDABCDBG read ABC error statistics

SVDC;COMM=11;DEST=17;T3V;RSTDC

FINI

PROC RDABCDLY

* PROC RDABCDLY read the values of ABC delay

SVDC;COMM=12;DEST=17;T3V;RSTDC

FINI

PROC DISSRVLNK

* PROC DISSRVLNK Disable servo commuication for antenna

SVCDC

TPA(1)=0;COMM=14

DEST=17;T3VERB

RSTCDC

FINI

PROC ENASRVLNK

* PROC ENASRVLNK

SVCDC

TPA(1)=1;COMM=14

DEST=17;T3VERB

RSTCDC

FINI

PROC ABRTPRKANT

* PROC ABRTPRKANT

SVDC

COMM=15;DEST=17;T3V

RSTDC FINI

PROC MCHABCCTR

* PROC MCHABCCTR

SVDC

COMM=16;DEST=17;T3V

RSTDC FINI

PROC GOABCAPPL

* PROC GOABCAPPL

SVCDC

TPA(1)=4;COMM=17 DEST=17;T3VERB

RSTCDC

FINI

PROC GOPROMAPPL

* PROC GOPROMAPPL

SVCDC

TPA(1)=5;COMM=17

DEST=17;T3VERB

RSTCDC

FINI

PROC STRTABCDNL

* PROC STRTABCDNL Start ABC code down loading(obj.dat in current area)

SVCDC

TPA(1)=255;TPA(2)=300;

COMM=17

DEST=17;T3VERB

RSTCDC

FINI

PROC RDQTIME

* PROC RDQTIME Read abc q timing info

Abort ante parking sequence

match cmd -resp counters for abc

Enable servo communication for antenna

Ask abc kernel to goto appln and execute

Ask kernel to transfer from PROM and execute

SVDC

COMM=19;DEST=17;T3V

RSTDC FINI

PROC ENALO1MON

* PROC ENALO1MON

Enable lo 1 monitor for antenna: MCM 2

SVCDC

TPA(1)=1;TPA(2)=2; TPA(3)=0;COMM=20 DEST=17;T3VERB

RSTCDC FINI

PROC ENALO2MON

* PROC ENALO2MON Enable lo 2 monitor for antenna MCM 3

SVCDC

TPA(1)=1;TPA(2)=3; TPA(3)=0;COMM=20 DEST=17;T3VERB

RSTCDC FINI

PROC DISLO1MON

* PROC DISLO1MON Disable lo 1 monitor for antenna

SVCDC

TPA(1)=0;TPA(2)=2;COMM=20

DEST=17;T3VERB

RSTCDC

FINI

PROC DISLO2MON

* PROC DISLO2MON Disable lo 2 monitor for antenna

SVCDC

TPA(1)=0;TPA(2)=3;COMM=20

DEST=17;T3VERB

RSTCDC

FINI

PROC ENAIFMON

* PROC ENAIFMON Enable if monitor for antenna

SVCDC

TPA(1)=1;TPA(2)=10; TPA(3)=1;COMM=20 DEST=17;T3VERB

RSTCDC FINI

PROC DISIFMON

* PROC DISIFMON Disable if monitor for antenna **SVCDC** TPA(1)=0;TPA(2)=9;COMM=20DEST=17;T3VERB **RSTCDC FINI** PROC LDANTPARAM * PROC LDANTPARAM load ant specific param for local track(current hardcoded in proc in TPA array) **SVCDC** *COMM=25;DEST=17; COMM=44;DEST=17; TPA(1)=19.1d;TPA(2)=-74.1d;TPA(3)=0d;TPA(4)=0d;TPA(5)=260d;TPA(6)=-260d;TPA(7)=105d;TPA(8)=17d;TPA(9)=90d;TPA(10)=0d;T3VERB**RSTCDC** FINI PROC LDANTOFFS(IPA,JPA) * PROC LDANTOFFS load ant offsets param for local track(current hardcoded in proc in TPA array) **SVCDC** *COMM=25;DEST=17; COMM=44;DEST=17; TPA(1)=19.1d;TPA(2)=-74.1d;TPA(3)=IPA;TPA(4)=JPA;TPA(5)=260d;TPA(6)=-260d;TPA(7)=105d;TPA(8)=17d;TPA(9)=90d;TPA(10)=0d;T3VERB**RSTCDC FINI** PROC LDSRCPARAM(IPA,JPA) * PROC LDSRCPARAM load src specific params for local track:IPA=1=OUT,JPA=trckg time **SVCDC** *COMM=26;DEST=17 COMM=45;DEST=17 TPA(1)=19.1d;TPA(2)=IPATPA(3)=0;TPA(4)=JPA;TPA(5)=0;T3VERB**RSTCDC FINI** PROC LDTIMTRK load time params for local track * PROC LDTIMTRK

SVDC

RSTDC

COMM=27;DEST=17;T3VE

PROC STIFABC(IPA)

* PROC STIFABC(IPA) Set IF attn loaded in ABC for IPA freq.

SVDC

TYPE '#Set IF attn loaded in ABC for IPA freq band'

TYPE '#IPA=0=>50,1=>150,2=>235,3=>325,4=>610,5=>Lband'

COMM=40;DEST=17; TPA(1)=IPA;T3VE

RSTDC FINI

PROC STRTLOCTRK

* PROC STRTLOCTRK START local track mode for ant or ants in sac

SVCDC

TPA(1)=1;COMM=28 DEST=17;T3VERB

RSTCDC FINI

PROC STPLOCTRK

* PROC STPLOCTRK STOP local track mode for ant or ants in sac

SVCDC

TPA(1)=0;COMM=28 DEST=17;T3VERB

RSTCDC FINI

PROC ADDMCMS

* PROC ADDMCMS additionally configure MCMs defined in MPA array

SVDC

COMM=29;DEST=17;T3VE

RSTDC FINI

PROC DELMCMS

* PROC DELMCMS for abc deselect only those MCMs defined in MPA array

SVDC

COMM=30;DEST=17;T3VE

RSTDC FINI

PROC GOABCKER

* PROC GOABCKER ask abc to go to kernal mode

SVDC;COMM=31;DEST=17;T3V;RSTDC

FINI

PROC RSTABERR

* PROC RSTABERR reset error counters of abc

SVDC;COMM=32;DEST=17;T3V;RSTDC

FINI

PROC RDANTPARA

* PROC RDANTPARA Read ant params for local track

SVDC

COMM=33;DEST=17;T3VE

RSTDC FINI

PROC RDSRCPARA

* PROC RDSRCPARA Read src params for local track

SVDC

COMM=34;DEST=17;T3VE

RSTDC FINI

PROC RDTIMTRK

* PROC RDTIMTRK Read time params for local track

SVDC

COMM=35;DEST=17;T3VE

RSTDC FINI

PROC STRTLOCTRK

* PROC STRTLOCTRK START local track mode for ant or ants in sac

SVCDC

TPA(1)=1;COMM=28 DEST=17;T3VERB

RSTCDC FINI

PROC INITABCMD

* PROC INITABCMD Init abc cmd: tally cmd-resp counters, reset flag reset, stoptalk, rdabcv, stabct

SVCDC

COMM=23;DEST=17;T3V

STABCDBG(11)

COMM=10;T3V

COMM=27;DEST=17;T3VE

COMM=1; T3V;

mpa 5 0 2 3 10 14;stmcm

COMMAND=290;DEST=21;T3V;

ana 0 0 0 03ffx

COMM 101;DEST 0;T3V

COMM 110;T3V;

stabcdbg(1);

ldantpara

TPA 1,4,4,4,10,2,10,5,2,0,1,1,5,10,30,14,15,3

```
RSTCDC
FINI
PROC ENAABCCMD
* PROC ENAANCCMD
                       Start accepting abc cmds for abcs (init abc after abc reset)
SVDC
COMM 23;DEST=17;T3V
*TPARM 1 4 4 4 1 2 10 5 2 1 10 1 20 10 30 14 15 3
TPA 1,4,4,4,10,2,10,5,2,0,1,1,5,10,30,14,15,3
STABCDLY
RSTDC
FINI
****** These are procedures related to the control of the MCMs ******
PROC NULLCMD(IPA)
* PROC NULLCMD(IPA)
                                   issue null command
SVDC
COMM=0;DEST=IPA;T3V;
RSTDC
FINI
PROC STIDLTIM(IPA)
* PROC STIDLTIM(IPA)
                                   set idle time for MCM IPA
SVDC
COMM=100;DEST=IPA;T3V;
RSTDC
FINI
PROC STSCAN(IPA)
* PROC STSCAN(IPA)
                                   set scan mode for MCM IPA
SVDC
COMM=101;DEST=IPA;T3V;
RSTDC
FINI
PROC STMEAN(IPA)
* PROC STMEAN(IPA)
                                   set mean mode for MCM IPA
SVDC
COMM=102;DEST=IPA;T3V;
RSTDC
FINI
PROC STTHRMD(IPA)
* PROC STTHRMD(IPA)
                                   set threshold mode for MCM IPA
```

STABCDLY

SVDC

COMM=103;DEST=IPA;T3V; **RSTDC FINI** PROC STANA(IPA) * PROC STANA(IPA) set analog mask for MCM IPA **SVDC** COMM=110;DEST=IPA;T3V; **RSTDC** FINI PROC ST16DIG(IPA) * PROC ST16DIG(IPA) set 16 bit digital mask **SVDC** COMM=120;DEST=IPA;T3V; **RSTDC** FINI PROC ST32DIG(IPA) * PROC ST32DIG(IPA) set 32 bit digital mask **SVDC** COMM=130;DEST=IPA;T3V; **RSTDC FINI** PROC ST64DIG(IPA) * PROC ST64DIG(IPA) set 64 bit digital mask **SVDC** COMM=140;DEST=IPA;T3V; **RSTDC FINI** *PROC STMCMTHT ?????? *SVDC *COMM=150;DEST=?;T3V *RSTDC *FINI PROC RDANA(IPA) * PROC RDANA(IPA) read analog values **SVDC** COMM=200;DEST=IPA;T3V; **RSTDC** FINI PROC RD16DIG(IPA) * PROC RD16DIG(IPA) read 16 bit digital mask **SVDC**

COMM=210;DEST=IPA;T3V;

RSTDC FINI

PROC RD32DIG(IPA)

* PROC RD32DIG(IPA)

SVDC

COMM=220;DEST=IPA;T3V;

RSTDC FINI

PROC RDMCMVER(IPA)

* PROC RDMCMVER(IPA)

SVDC

COMM=230;DEST=IPA;T3V;

RSTDC FINI

PROC RD64DIG(IPA)

* PROC RD64DIG(IPA)

SVDC

COMM=240;DEST=IPA;T3V;

RSTDC FINI

PROC RDMODE(IPA)

* PROC RDMODE(IPA)

SVDC

COMM=250;DEST=IPA;T3V;

RSTDC FINI

PROC RDTHRVAL(IPA)

* PROC RDTHRVAL(IPA)

SVDC

COMM=260;DEST=IPA;T3V;

RSTDC FINI

PROC FEEDSEL(IPA)

* PROC FEEDSEL(IPA)

SVDC

COMM=300;DEST=IPA;T3V;

RSTDC FINI

PROC RBMCM(IPA)

* PROC RBMCM(IPA)

SVDC

COMM=500;DEST=IPA;T3V;

read 32 bit digital mask

read MCM program version

read 64 bit digital mask

read current mode

read threshold vals

feed select old

reboot MCM

```
RSTDC
FINI
PROC FEEDSELM(IPA)
* PROC FEEDSELM(IPA)
                                   feed select modified
SVDC
COMM=600;DEST=IPA;T3V;
RSTDC
FINI
******** Procedures for astronomical functions ******
PROC GTSRC(STRA3)
* PROC GTSRC
                             get source ra, dec & precess
SVDC
SOURCE=STRA3
COMM=30; T5V
COMM=10; T5V
COMM=1; T5V
OUTFIL="
COMM=26;DEST=91;T3v
RSTDC
FINI
PROC POSN
* PROC POSN
                             move antenna to current position of source
SVDCA
COMM=20;T5V
DEST=16;AXIS=0;COMM 42x;T3V
RSTDCA
FINI
PROC ADDLIST(OUTFIL)
* PROC ADDLIST(OUTFIL) add source list in 'outfil' to default list
COMM=50; T5V
FINI
PROC SHLIST
* PROC SHLIST
                      show the path of source lists available
COMM=58; T5V
FINI
PROC DELLIST(IPA)
* PROC DELLIST(IPA)
                         del source list by num IPA given by shlist
SVCDC
COMMA=52
```

CP(1)=IPA; T5V

RSTCDC FINI

****** PROCEDURES FOR COMMAND MONITOR ***

PROC STCMOFF(IPA)

* PROC STCMOFF(IPA)

Set IPS sec as cmd mon offset

SVCDC

CPA(1)=IPA;COMM=0

DEST=33;T3V

RSTCDC

FINI

PROC ENACMDMON

* PROC ENACMDMON Enable Command Monitor

SVCDC

CPA(1)=1;COMM=1

DEST=33;T3V

RSTCDC

FINI

PROC DISCMDMON

* PROC DISCMDMON Disable Command Monitor

SVCDC

TYPE '#!!!WARNING!!! NOWONWARDS CMD EXECUTION STATUS WILL BE

****UNKNOWN****!!!'

CPA(1)=0;COMM=1

DEST=33;T3V

RSTCDC

FINI

PROC ENACMINFO

* PROC ENACMINFO Enable Command Monitor Info Log

SVCDC

TYPE '# CMD EXECUTION STATUS WILL BE REPORTED . NORMAL MODE.'

CPA(1)=1;COMM=2

DEST=33;T3V

RSTCDC

FINI

PROC DISCMINFO

* PROC DISCMINFO Disable Command Monitor Info Log

SVCDC

CPA(1)=0;COMM=2

DEST=33;T3V

RSTCDC

FINI

PROC ABRTDNLD

```
SVDC
COMM=3;DEST=33;T3V
RSTDC
FINI
PROC STDNLDPKT(IPA)
* PROC STDNLDPKT(IPA) aet abc program down load pkt size=IPA bytes
SVCDC
COMM=4;CPA(1)=IPA;
DEST=33;T3V; RSTCDC
FINI
****** The procedures related to display of logged data from ***
****** file for serialdebug program are in SERDBGPRO.001 ******
****** PROCEDURES FOR Sub Array Controller (SAC) *******
PROC SNDSACSRC(IPA,JPA)
* PROC SNDSACSRC
                             send source coords to subarray controller modified to send
trk/posn,TMAX
SVDC; COMM=10;DEST=70;
CPARM(1)=IPA;CPARM(2)=JPA;
T3V:RSTDC
FINI
PROC STSACTOLR
* PROC STSACTOLR
                             set tolerance for subarray controller using cpa
SVDC; COMM=54;DEST=70;T3V;RSTDC
FINI
PROC SNDSACANT
* PROC SNDSACANT
                             send antenna mask to subarray contrommer
SVDC;CP(1)=0;COMM=12;DEST=70;
T3V:RSTCDC
FINI
PROC ADDSACANT
* PROC SNDSACANT
                         send antenna mask to subarray contrommer
SVCDC;CPA(1)=1;COMM=12;DEST=70;T3V;RSTCDC
FINI
PROC DELSACANT
```

remove antenna mask to subarray contrommer

abort abc program down load

* PROC ABRTDNLD

* PROC SNDSACANT

SVCDC;CPA(1)=-1;COMM=12;DEST=70;T3V;RSTCDC

PROC TRKSACSRC(IPA,JPA)

* PROC TRKSACSRC request subarray controller to track source SVCDC;COMM=20;DEST=70;CPARM(1)=IPA;

CPARM(2)=JPA;T3V;RSTCDC

FINI

PROC STPSACTRK

* PROC STPSACTRK request SAC to stop tracking source SVDC;COMM=30;DEST=70;T3V;RSTDC

FINI

PROC GOSACOUT

* PROC GOSACOUT request SAC to track on outer track

SVDC;COMM=6;DEST=70;T3V;RSTDC

FINI

PROC GOSACINN

* PROC GOSACINN request SAC to track on inner track

SVDC;COMM=8;DEST=70;T3V;RSTDC

FINI

PROC ONSACDBG

* PROC ONSACDBG request SAC to turn on debug mode

SVDC;COMM=16;DEST=70;T3V;RSTDC

FINI

PROC OFFSACDBG

* PROC OFFSACDBG request SAC to turn off debug mode

SVDC;COMM=18;DEST=70;T3V;RSTDC

FINI

PROC TRKELOFF(IPA)

* PROC TRKELOFF(IPA) track elevation offset by IPA

CPA(1)=-1;

SCO(17)=IPA;COMM=10;DEST=70;T3V

FINI

PROC TRKAZOFF(IPA)

* PROC TRKAZOFF(IPA) track azimuth offset by IPA

CPA(1) = -1

SCO(15)=IPA;COMM=10;DEST=70;T3V

FINI

PROC TRKANTOFF(JPA,IPA)

* PROC TRKANTOFF(IPA,JPA) track azimuth, elevation offset by JPA,IPA

CPA(1)=-1;

SCO(15)=JPA;

SCO(17)=IPA;

COMM=10;DEST=70;T3V

FINI

PROC TRKRAOFF(IPA)

* PROC TRKRAOFF(IPA) track right ascension offset by IPA

CPA(1) = -1

SCO(10)=IPA;COMM=10;DEST=70;T3V

FINI

PROC TRKDECOFF(IPA)

* PROC TRKDEOFF(IPA) track declination offset by IPA

CPA(1)=-1

SCO(12)=IPA;COMM=10;DEST=70;T3V

FINI

PROC SCANELSRC(IPA,JPA)

* PROC SCANELSRC(IPA,JPA) scan src in el with derv=ipa,ptime=jpa

SCO(18)=IPA;SCO(19)=JPA

SVDC;CP(1)=1;CP(2)=1h;CP(3)=0

COMM=10;DEST=70;T3V;RSTDC

FINI

PROC SCANAZSRC(IPA,JPA)

* PROC SCANAZSRC(IPA,JPA) scan src in az with derv=ipa,ptime=jpa

SCO(16)=IPA;SCO(19)=JPA

SVDC;CP(1)=1;CP(2)=1h;CP(3)=0

COMM=10;DEST=70;T3V;RSTDC

FINI

PROC SCANRASRC(IPA,JPA)

* PROC SCANRASRC(IPA,JPA) scan src in ra with derv=ipa,ptime=jpa

SCO(11)=IPA;SCO(14)=JPA

SVDC;CP(1)=1;CP(2)=1h;CP(3)=0

COMM=10;DEST=70;T3V;RSTDC

FINI

PROC SCANDEC(IPA,JPA)

* PROC SCANDEC(IPA,JPA) scan src in dec with derv=ipa,ptime=jpa

SCO(13)=IPA;SCO(14)=JPA

SVDC;CP(1)=1;CP(2)=1h;CP(3)=0

COMM=10;DEST=70;T3V;RSTDC

FINI

PROC SNDSACCMD(OUTFIL)

* PROC SNDSACCMD(OUTFIL) send local pops cmd to sac from outfil

SVCDC

COMMAND=2;DEST=70

T3VERB;RSTDC

PROC STRTSACFIL

* PROC STRTSACFIL start remote control for sac from opened file

SVCDC

COMMAND=64;DEST=70

T3VERB;RSTDC

FINI

PROC STPSACFIL

* PROC STPSACFIL stop remote control for sac from opened file

SVCDC

COMMAND=66;DEST=70

T3VERB;RSTDC

FINI

PROC OPSACFILE(OUTFIL)

* PROC OPSACFILE(OUTFIL) open a sac control file from OUTFIL

SVCDC

COMMAND=60;DEST=70

T3VERB;RSTDC

FINI

PROC CLSACFILE(OUTFIL)

* PROC OPSACFILE(OUTFIL) close a sac control file

SVCDC

COMMAND=62;DEST=70

T3VERB;RSTDC

FINI

PROC SHSACFILE

* PROC SHSACFILE show a sac control file which is open

SVCDC

COMMAND=70;DEST=70

T3VERB;RSTDC

FINI

PROC SHSACLINE

* PROC SHSACLINE show current line of sac control file

SVCDC

COMMAND=71;DEST=70

T3VERB;RSTDC

FINI

PROC REWSACFILE

* PROC REWSACFILE rewind the sac control file

SVCDC

COMMAND=72;DEST=70

T3VERB;RSTDC

CP(1)=IPA;T3V;

RSTCDC

PROC MVSACCON(IPA) * PROC MVSACCON(IPA) move control to point(ipa) in sac file SVCDC;CPA(1)=IPA COMMAND=73;DEST=70 T3VERB;RSTDC **FINI** PROC SKPSACLINE(IPA) * PROC SKPSACLINE(IPA) skip n=ipa lines frmo sac coontrol file SVCDC;CPA(1)=IPA COMMAND=74;DEST=70 T3VERB;RSTDC **FINI** PROC STPSACLINE(IPA) * PROC STPSACLINE(IPA) step by one line frmo sac coontrol file SVCDC;CPA(1)=IPA COMMAND=74;DEST=70 T3VERB;RSTDC FINI PROC SUBHNDLE * PROC SUBHNDLE subarray handle to catter tracking generic cmd SVCDC: COMMAND=55;DEST=70 T3VERB;RSTDC FINI **** These are procedures related to the control of the FEED rotation ** PROC NULLFPS * PROC NULLFPS issue null cmd **SVCDC** COMMAND=0;DEST=21;T3V; **RSTCDC FINI** PROC STTNGPNT(IPA) ** PROC STTNGPT(IPA) issue set turning point cp(1): turning pt angle/pulse SVCDC;FPSMODE=0 COMMAND=100;DEST=21;

PROC STRMPDCNT

** PROC STRMPDCNT

issue set ramp down count

SVCDC;FPSMODE=0

COMMAND=110;DEST=21;T3V;

RSTCDC

FINI

PROC STLRPMLMT

** PROC STLRPMLMT

issue set lower rpm limit

issue set stop time count

SVCDC;FPSMODE=0

COMMAND=120;DEST=21;T3V;

RSTCDC

FINI

PROC STBCTDIF(IPA)

* PROC STBRCNTDIFF(IPA)

issue set brake count difference count cp(1): pusles

SVCDC;FPSMODE=0

COMMAND=130;DEST=21;

CP(1)=IPA;T3V;

RSTCDC

FINI

PROC STRUPCNT

** PROC RMPUPTMCNT issue set ramp up time count

SVCDC;FPSMODE=0

COMMAND=140;DEST=21;T3V;

RSTCDC

FINI

PROC STSTPTCT

** PROC STPTMCNT

SVCDC;FPSMODE=0

COMMAND=150;DEST=21;T3V;

RSTCDC

FINI

PROC STMAXPWM

** PROC STMAXPWM issue set Max pwm cnt

SVCDC;FPSMODE=0

COMMAND=160;DEST=21;T3V;

RSTCDC

FINI

PROC STMAXANG(IPA)

* PROC STMAXANGLE(IPA) issue set Max angle cp(1)=max ang

SVCDC;FPSMODE=0

COMMAND=170;DEST=21;

CP(1)=IPA;CP(2)=270;T3V;

RSTCDC

FINI

PROC STMINANG(IPA)

* PROC STMINANGLE(IPA)

issue set Min angle cp(1)=min ang

SVCDC;FPSMODE=0

COMMAND=180;DEST=21;

CP(1)=IPA;CP(2)=270;T3V;

RSTCDC

FINI

PROC RDTNGPNT

** PROC RDSTTNGPT issue read turning point

SVCDC

COMMAND=200;DEST=21;T3V;

RSTCDC

FINI

PROC RDRMPDCT

** PROC RDRMPDCT issue read ramp down count

SVCDC

COMMAND=210;DEST=21;T3V;

RSTCDC

FINI

PROC RDLRPMLMT

** PROC RDLRPMLMT issue read lower rpm limit

SVCDC

COMMAND=220;DEST=21;T3V;

RSTCDC

FINI

PROC RDBRCTDIF

* PROC RDBRCNTDIFF issue read brake count difference count

SVCDC

COMMAND=230;DEST=21;T3V;

RSTCDC

FINI

PROC RDRMPUPCT

* PROC RDRMPUPTMCNT issue read ramp up time count

SVCDC

COMMAND=240;DEST=21;T3V;

RSTCDC

FINI

PROC RDSTPTMCT

** PROC RDSTPTMCNT issue read stop time count

SVCDC

COMMAND=250;DEST=21;T3V;

RSTCDC FINI

PROC RDMAXPWM

** PROC RDMAXPWM issue read Max pwm cnt

SVCDC

COMMAND=260;DEST=21;T3V;

RSTCDC

FINI

PROC RDMAXANG

* PROC RDMAXANGLE issue read Max angle

SVCDC

COMMAND=270;DEST=21;T3V;

RSTCDC FINI

PROC RDMINANG

* PROC RDMINANGLE issue read Min angle

SVCDC

COMMAND=280;DEST=21;T3V;

RSTCDC FINI

PROC RDVERSION

* PROC RDVERSION issue read version

SVCDC

COMMAND=290;DEST=21;T3V;

RSTCDC FINI

PROC RDUA0ANG

* PROC RDUA0ANG issue read UA0 angle

SVCDC

COMMAND=700;DEST=21;T3V;

RSTCDC FINI

PROC GETUA0ANG

* PROC RDUA0ANG get the first set UA0 angle

SVCDC

COMMAND=700;DEST=21;T3V;

RSTCDC

FINI

```
PROC UA0CLBRT(IPA)
* PROC RDUA0ANG
                             calibrate to UA0 angle CP=1=>Clkwise i.e. -10d
side,0=>anticlkwise
SVCDC
COMMAND=360;DEST=21;
CPA(1)=IPA;T3V;
RSTCDC
FINI
PROC RUNCLBRT
* PROC RUNCLBRT
                                   issue run to calibrate
SVCDC
COMMAND=300;DEST=21;T3V;
RSTCDC
FINI
PROC FREER10
                             issue free run towards -10deg lim s/w
* PROC FREERUN10
SVCDC
COMMAND=310;DEST=21;CPA(1)=1;T3V;
RSTCDC
FINI
PROC FREER280
* PROC FREERUN280
                             issue free run towards 280 deg lim s/w
SVCDC
COMMAND=310;DEST=21;
CPA(1)=0;T3V;
RSTCDC
FINI
PROC RUNDPREST(IPA)
* PROC RUNDPREST(IPA) issue run to preset, IPA target ang
SVCDC;FPSMODE=0
COMMAND=320;DEST=21;
CP(1)=IPA;CP(2)=270;T3V;
RSTCDC
FINI
PROC RUNCPREST(IPA)
* PROC RUNCPREST(IPA) issue run to preset, IPA target counts
SVCDC;FPSMODE=1
COMMAND=320;DEST=21;
CP(1)=IPA;CP(2)=17000;T3V;
RSTCDC
FINI
PROC FINECTUNE(IPA,JPA)
* PROC FINECTUNE(IPA,JPA)
                             issue run to preset, IPA is target counts, JPA is PWM counts
```

SVCDC;FPSMODE=1 COMMAND=330;DEST=21; CP(1)=IPA;CP(2)=17000; CPA(3)=JPA;T3V; RSTCDC

PROC FINEDTUNE(IPA,JPA)

* PROC FINEDTUNE(IPA,JPA) issue run to preset,IPA is target ang,JPA is PWM counts

SVCDC;FPSMODE=0

COMMAND=330;DEST=21;

CP(1)=IPA;CP(2)=270;

CPA(3)=JPA;T3V;

RSTCDC

FINI

FINI

PROC RUNPASSWD

* PROC RUNPASSWD issue run passworded

SVCDC

COMMAND=340;DEST=21;T3V;

RSTCDC FINI

PROC FPSBOOT

* PROC FPSBOOT issue reboot fps

SVCDC

COMMAND=500;DEST=21;T3V;

RSTCDC FINI

PROC FPSSTOP

* PROC FPSSTOP issue stop fps

SVCDC

COMMAND=600;DEST=21;T3V;

RSTCDC

FINI

PROC PRSTCFPS(IPA)

* PROC PRSTCFPS(IPA) preset known position of feed in counts

SVCDC

COMMAND=800;DEST=21 FPSMODE=1;TPARM(1)=IPA

T3V;RSTCDC

FINI

PROC PRSTAFPS(IPA)

* PROC PRSTAFPS(IPA) preset known position of feed in angle

SVCDC

COMMAND=800;DEST=21

```
FPSMODE=0;TPARM(1)=IPA
T3V;RSTCDC
FINI
*
*** These are procedures related to the NEW DAS Control **
PROC LNKNDASO
* PROC LNKNDASQ
                    init das cntrl for subarray IPA
SVCDC
COMMA=10;DEST=91;
T3V:
RSTCDC
FINI
PROC STRTNDASC
* PROC STRTDASCAN
                         start das scan for subarray
SVCDC
COMMA=11;DEST=91;T3V;
RSTCDC
FINI
PROC STPNDASC
* PROC STPDASCAN
                       start das scan for subarray
SVCDC
COMMA=12;DEST=91;T3V;
RSTCDC
FINI
PROC SNDNDASSTR(OUTFIL)
* PROC SNDASSTR(OUTFIL) send command thro string for das
SVCDC
COMMA=13;DEST=91;T3V;
RSTCDC
FINI
PROC PRJFREQ
* PROC PRJTITLE set das frequencies (in tPARM) with Code in OUTFIL
SVCDC
TYPE '#TPARM SHOULD HAVE RF(2) IF(2) BB(2) REST FR(2) LSR(2)(MHZ) Bandmask'
COMMA=24;DEST=91;T3V;
RSTCDC
FINI
PROC LDSRCCODE(OUTFIL)
* PROC LDSRCCODE(OUTFIL) set in outfil the source code
SVDC
COMMA=26; DEST=91; T3V;
RSTDC
```

```
FINI
**** These are procedures related to the FPS commands **
PROC LDFPSPOS
* PROC LDFPSPOS(IPA)
                       Loads the fps counts in TPA
* TPARM should have the 4 FPS encoder positions
SVCDC
FPSMODE=1
* FPSMODE=IPA
COMMAND=37;DEST=17;T3V;
RSTCDC
FINI
PROC MVFPS610
* PROC MVFPS610
                      Mv FPS to 610 to counts loaded by above command
SVCDC
TPA=0
COMMA=38;DEST=17;T3V;
RSTCDC
FINI
PROC MVFPS150
* PROC MVFPS150
                      Mv FPS to 150 to counts loaded by above command
SVCDC
TPA=1
COMMA=38;DEST=17;T3V;
RSTCDC
FINI
PROC MVFPS1420
* PROC MVFPS1420
                       Mv FPS to 1420 to counts loaded by above command
SVCDC
TPA=2
COMMA=38;DEST=17;T3V;
RSTCDC
FINI
PROC MVFPS325
* PROC MVFPS325
                  Mv FPS to 325 to counts loaded by above command
SVCDC
TPA=3
COMMA=38;DEST=17;T3V;
RSTCDC
FINI
```

PROC INITFPS

* PROC INITFPS Does add MCM 14,rdv, set min angle to -10d, stlrpm. respectively

```
SVCDC
COMMAND=290;DEST=21;T3V;
FPSMODE=0;COMMAND=180;DEST=21;
CP(1)=-18;CP(2)=270;T3V;
COMMAND=280;DEST=21;T3V;
CP(1)=550;
COMMAND=120;DEST=21;T3V;
RSTCDC
FINI
PROC ALLANT
*PROC ALLANT
                 Defines all ante except abc0 in antenna array
FOR I=2 to 31; ANTE(I)=I-1; end
ANTE(1)=30
RSTDC
FINI
PROC YANT
```

*PROC YANT Defines all Y antenna array SVDC ANTE 16 26 27 28 29 30 17 18 21 22 23 8 13 14 15 16 25

RSTDC

FINI

PROC CANT *PROC CANT Defines all CSQ antenna array **SVDC**

ANTE 14 7 6 5 1 3 19 20 24 4 12 9 2 11 10

RSTDC FINI

PROC INITNFPS *PROC INITNFPS new init fps **SVDC RDVER** CPA(1)=700;STLRPM STMINA(-18) **RSTDC** FINI

* Read current time PROC GETTIME SVDC COMMAND=-1;T4V type scalr1 type hms(scalr1) **RSTDC**

FINI

```
** PULSAR DAS PROCEDURES, dated: 17mar2005.
```

* initialise pulsar (to be run in USER0)

PROC INITPSR

SVCDC

COMMAND=1;DEST=92;T3V;

RSTCDC

FINI

* link to pulsar das

PROC LNKPSRQ

SVCDC

COMMAND=10;DEST=92;T3V;

RSTCDC

FINI

* ia das init

PROC IAINIT

SVCDC

OUTFIL 'DASIA INIT IA INIT.HDR'

COMMAND=11;DEST=92;T3V;

RSTCDC

FINI

* ia das start

PROC IASTRT

SVCDC

OUTFIL 'DASIA START IA_SCAN.HDR'

COMMAND=11;DEST=92;T3V;

RSTCDC

FINI

* ia das start

PROC IASTRT1(STRA2)

SVCDC

OUTFIL 'DASIA START IA_SCAN.HDR'

OUTFIL=OUTFIL!! STRA2

COMMAND=11;DEST=92;T3V;

RSTCDC

FINI

* ia das stop

PROC IASTP

SVCDC

OUTFIL 'DASIA STOP'

COMMAND=11;DEST=92;T3V;

RSTCDC

FINI

* ia das finish PROC IAFIN SVCDC OUTFIL 'DASIA FINISH' COMMAND=11;DEST=92;T3V; RSTCDC FINI

* pa das init PROC PAINIT SVCDC OUTFIL 'DASPA INIT PA_INIT.HDR' COMMAND=11;DEST=92;T3V; RSTCDC FINI

* pa das start PROC PASTRT SVCDC OUTFIL 'DASPA START PA_SCAN.HDR' COMMAND=11;DEST=92;T3V; RSTCDC FINI

* pa das start PROC PASTRT1(STRA2) SVCDC OUTFIL 'DASPA START PA_SCAN.HDR' OUTFIL=OUTFIL!! STRA2 COMMAND=11;DEST=92;T3V; RSTCDC FINI

* pa das stop PROC PASTP SVCDC OUTFIL 'DASPA STOP' COMMAND=11;DEST=92;T3V; RSTCDC FINI

* pa das finish PROC PAFIN SVCDC OUTFIL 'DASPA FINISH' COMMAND=11;DEST=92;T3V; RSTCDC

FINI

* polmtr das init PROC PMTINIT SVCDC OUTFIL 'DASPMT INIT PMT_INIT.HDR' COMMAND=11;DEST=92;T3V; RSTCDC FINI

* polmtr das start PROC PMTSTRT SVCDC OUTFIL 'DASPMT START PMT_SCAN.HDR' COMMAND=11;DEST=92;T3V; RSTCDC FINI

* polmtr das start
PROC PMTSTRT1(STRA2)
SVCDC
OUTFIL 'DASPMT START PMT_SCAN.HDR'
OUTFIL=OUTFIL!! STRA2
COMMAND=11;DEST=92;T3V;
RSTCDC
FINI

* polmtr das stop PROC PMTSTP SVCDC OUTFIL 'DASPMT STOP' COMMAND=11;DEST=92;T3V; RSTCDC FINI

* polmtr das finish PROC PMTFIN SVCDC OUTFIL 'DASPMT FINISH' COMMAND=11;DEST=92;T3V; RSTCDC FINI

* polmtr both sidebands das init PROC PMBINIT SVCDC OUTFIL 'DASPMB INIT PMT_INIT.HDR' COMMAND=11;DEST=92;T3V; RSTCDC

FINI

```
* polmtr both sidebands das start
PROC PMBSTRT
SVCDC
OUTFIL 'DASPMB START PMT_SCAN.HDR'
COMMAND=11;DEST=92;T3V;
RSTCDC
FINI
* polmtr both sidebands das start
PROC PMBSTRT1(STRA2)
SVCDC
OUTFIL 'DASPMB START PMT_SCAN.HDR'
OUTFIL=OUTFIL!! STRA2
COMMAND=11;DEST=92;T3V;
RSTCDC
FINI
* polmtr both sidebands das stop
PROC PMBSTP
SVCDC
OUTFIL 'DASPMB STOP'
COMMAND=11;DEST=92;T3V;
RSTCDC
FINI
* polmtr both sidebands das finish
PROC PMBFIN
SVCDC
OUTFIL 'DASPMB FINISH'
COMMAND=11;DEST=92;T3V;
RSTCDC
FINI
PROC INITBBSRV
* PROC INITBBSRV
                         Init BB serv
SVDC
TYPE '# bbserv must be running'
COMM=1;DEST=22; T3V
RSTDC
FINI
```

^{*} OLD BASEBAND PROC COMMENTED 01 MAY 2013 - JPK

^{* *} PROC STBBWGNALL(IPA,JPA) Set for both Pol and Sidebands:IPA BW and JPA Gain

```
* PROC STBBWGNALL(IPA,JPA)
* SVDC
* cp(9)=9;stra2=(CHAR)IPA;
* STRA3=(CHAR)JPA;
* outfil 'set,bwgn,both,both,'
* outfil=outfil!!stra2!!','!!stra3!!';'
* comm 10;dest 22;t3v
* RSTDC
* FINI
* PROC STBBANDALL(IPA)
* *PROC STBBANDALL(IPA)
                                  Set for both Pol and Sidebands: IPA Bandwidth MHz
* SVDC
* cp(9)=9;stra2=(CHAR)IPA;
* outfil 'set,band,both,both,'
* outfil=outfil!!stra2!!';'
* comm 10;dest 22;t3v
* RSTDC
* FINI
* PROC STBGAINALL(IPA)
* *PROC STBGAINALL(IPA)
                                  Set for both Pol and Sidebands: IPA Gain.
* SVDC
* cp(9)=9;stra1=(CHAR)IPA;
* outfil 'set,gain,both,both,'
* outfil=outfil!!stra1!!';'
* comm 10;dest 22;t3v
* RSTDC
* FINI
* PROC STBBNDGAIN(STRA2,STRA3,IPA,JPA)
* * USAGE: STBBNDGAIN('CHANNEL','SIDEBAND','BW','GAIN')
* *PROC STBNDGAIN(STRA2,STRA3,IPA,JPA)
                                                     Set for STRA2 Pol and STRA3
sideband:IPA BW and JPA Gain: stra2=130,175,both; stra3=usb,lsb,both
* SVDC
* cp(9)=9;
* outfil 'set,bwgn,'
* outfil=outfil!!stra2!!','!!stra3
* stra2=(CHAR)IPA;
* outfil=outfil!!','!!STRA2
* STRA1=(CHAR)JPA;
* outfil=outfil!!','!!STRA1!!';'
* comm 10;dest 22;t3v
* RSTDC
* FINI
PROC STBBLO(STRA2,STRA3)
*PROC STBBLO(STRA2,STRA3)
                                  Set baseband lo:STRA2=LO1,STRA3=LO2
SVDC
```

```
cp(9)=9
outfil 'set,bblo,'
outfil=outfil!!stra2!!','!!stra3!!','!!'1,1'!!';'
comm 10;dest 22;t3v
RSTDC
FINI
PROC STGSBLO(STRA2,STRA3)
*PROC STGSBLO(STRA2,STRA3)
                                     Set baseband lo:STRA2=LO1,STRA3=LO2
SVDC
cp(9)=9
outfil 'set,gsblo,'
outfil=outfil!!stra2!!','!!stra3!!','!!'1,1'!!';'
comm 12;dest 22;t3v
RSTDC
FINI
PROC INITGABSRV
* PROC INITGABSRV
                            Init GSB serv
SVDC
TYPE '# gab must be running'
COMM=11;DEST=23; T3V
RSTDC
FINI
PROC STGABLO(STRA2,STRA3)
*PROC STGABLO(STRA2,STRA3)
                                     Set GAB lo:STRA2=LO1,STRA3=LO2
SVDC
cp(9)=9
outfil 'set,gablo,'
outfil=outfil!!stra2!!','!!stra3!!','!!'1,1'!!';'
comm 12;dest 23;t3v
RSTDC
FINI
PROC STGABCONF(STRA2)
*PROC STGABLO(STRA2)
                                set GAB 32bit Configuration word
SVDC
cp(9)=9
outfil 'set,gabconf,'
outfil=outfil!!stra2!!';'
comm 12;dest 23;t3v
RSTDC
FINI
PROC STGABATTN(STRA2,STRA3)
*PROC STGABLO(STRA2,STRA3)
                                     Set GAB
ATTN:STRA2=CH1_ATTN,STRA3=CH1_ATTN
SVDC
```

```
cp(9)=9
outfil 'set,gabattn,'
outfil=outfil!!stra2!!','!!stra3!!','!!'1,1'!!';'
comm 12;dest 23;t3v
RSTDC
FINI
* ALL BB PROC SAVED IN <THIS FILE> working 19dec2012
* Procedure written to automate grid pointing on different source
* required for finding a pointing model. Please note that
* TPARM(1)=11; TPARM(2)=2 and TPARM(3)=1/2 has been enabled
* by Pramesh only for subarray 5/user5 -NGK 7Feb2006
* Modified further on 8Feb2006
* For testing use e.g. gopntg(-80,20,9,'3C48') - for 325 MHz.
* For testing use e.g. gopntg(-40,10,9,'3C48') - for 610 MHz.
* For testing use e.g. gopntg(-20,5,9,'3C48') - for 1280 MHz.
* change source name depending on availability of source
**SCRATCH DEFVAR
** DOFFA, DOFFE, DANG Diagonal SLEW OFFSETS IN AZ EL, ANGLE
**SCRATCH GOPNTG
PROC DEFVAR
 scalar gridmin, gridsp, ngrid, offset, eleva
scalar doffa, doffe, dang
 string*20 src
FINI
* Temporary Procedures to check gopntg proc 2008 Jan 30th.
* IPA= (1:OUT, 0:IN), JPA = TRACKING HOUR
PROC TLOCTRK(IPA,JPA)
SVCDC
TPA 0;TARGET 0
COMM=45;DEST=17
TPA(1)=19.1d;TPA(2)=IPA
TPA(3)=0;TPA(4)=JPA
TPA(5)=0;T3VERB
SLEEP 4
TPA 0;TARGET 0
COMM 22;T5V
TPA(4)=TARGET(1)
TPA(5)=TARGET(2)
TPA(1)=1
TPA(2)=JPA
COMM=28;DEST=17;
T3VERB
RSTDC
FINI
```

```
PROC ELGOPNTG(GRIDMIN,GRIDSP,NGRID,SRC,IPA)
SVCDC
TPA 0:SCO 0
FOR J=0 TO NGRID-1
TPARM(1)=11; TPARM(2)=2; TPARM(3)=J
GTS SRC
OFFSET=(GRIDMIN+(J*GRIDSP))/60 *(3.14159/180)
CPA(1)=-1
SCO(17)=OFFSET
KPA=IPA
TLOCTRK(IPA,1h)
IPA=KPA
TLOCTRK(IPA,1h)
SLEEP 5
STRTNDAS
SLEEP 85
STPNDASC
IPA=KPA
TPA 0;SCO 0
END
RSTCDC
FINISH
** PROC TRFIAZ(GRIDMIN,GRIDSP,NGRID,SRC,IPA)
*SVCDC
*TPA 0;SCO 0
*FOR J=0 TO NGRID-1
*TPARM(1)=11; TPARM(2)=1; TPARM(3)=J
*GTS SRC
** Procedure to get the Target Elevation
*COMM=20;SCOORD(9)=0;T5V
*ELEVA=TARGET(3)
*OFFSET=(GRIDMIN+(J*GRIDSP))/60 * (3.14159/180)
*CPA(1)=-1; CPA(5)=2
*SCO(15)=OFFSET/COS(ELEVA)
*KPA=IPA
*TLOCTRK(IPA,1h)
*IPA=KPA
*TLOCTRK(IPA,1h)
*SLEEP 5
*STRTNDAS
*SLEEP 10
*STPNDASC
*IPA=KPA
*END
*RSTCDC
*FINISH
```

PROC AZGOPNTG(GRIDMIN,GRIDSP,NGRID,SRC,IPA)

SVCDC

TPA 0;SCO 0

FOR J=0 TO NGRID-1

TPARM(1)=11; TPARM(2)=1; TPARM(3)=J

GTS SRC

* Procedure to get the Target Elevation

COMM=20;SCOORD(9)=0;T5V

ELEVA=TARGET(3)

OFFSET=(GRIDMIN+(J*GRIDSP))/60 * (3.14159/180)

CPA(1)=-1; CPA(5)=2

SCO(15)=OFFSET/COS(ELEVA)

KPA=IPA

TLOCTRK(IPA,1h)

IPA=KPA

TLOCTRK(IPA,1h)

SLEEP 5

STRTNDAS

SLEEP 85

STPNDASC

IPA=KPA

END

RSTCDC

FINISH

PROC GOPNTG(GRIDMIN, GRIDSP, NGRID, SRC, IPA)

SVCDC

ELGOPNTG(GRIDMIN,GRIDSP,NGRID,SRC,IPA)

TIME 1S

AZGOPNTG(GRIDMIN,GRIDSP,NGRID,SRC,IPA)

RSTCDC

FINISH

- * NEW LDANTOFF
- * load ant specific offset for local track for all antennas one by one
- *TPA(1)=Antenna Latitude, TPA(2)=Antenna Longitude
- * TPA(3)=Azimuth Offset, TPA(4)=Elevation Offset

PROC LDTPANT

TPA 0; TPA(5) = 260d; TPA(6) = -260d;

TPA(7)=105d;TPA(8)=17d;TPA(9)=90d;

FINISH

PROC C00OFF(JPA,KPA)

SVCDC

ANTE 17; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT;

TPA(1)=19.0929d;TPA(2)=-74.0570d;

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00700d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE RSTCDC FINISH

*ANT=C01

PROC C01OFF(JPA,KPA)

SVCDC

ANTE 1 6; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT;

TPA(1)=19.0927d;TPA(2)=-74.0536d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00357d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=C02

PROC C02OFF(JPA,KPA)

SVCDC

ANTE 15; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT;

TPA(1)=19.0931d;TPA(2)=-74.0505d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00047d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=C03

PROC C03OFF(JPA,KPA)

SVCDC

ANTE 1 1; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0944d;TPA(2)=-74.0469d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.00307d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=C04

PROC C04OFF(JPA,KPA)

SVCDC

ANTE 1 3; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0931d;TPA(2)=-74.0505d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00047d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE RSTCDC FINISH

*ANT=C05

PROC C05OFF(JPA,KPA)

SVCDC

ANTE 1 19; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0908d;TPA(2)=-74.0511d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00111d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=C06

PROC C06OFF(JPA,KPA)

SVCDC

ANTE 1 20; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0910d;TPA(2)=-74.0502d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00017d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=C08

PROC C08OFF(JPA,KPA)

SVCDC

ANTE 1 24; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0893d;TPA(2)=-74.0531d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00314d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=C09

PROC C09OFF(JPA,KPA)

SVCDC

ANTE 1 4; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0917d;TPA(2)=-74.0509d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00087d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE RSTCDC FINISH

*ANT=C10

PROC C10OFF(JPA,KPA)

SVCDC

ANTE 1 12; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0875d;TPA(2)=-74.0489d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.00110d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=C11

PROC C11OFF(JPA,KPA)

SVCDC

ANTE 19; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0901d;TPA(2)=-74.0447d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.00527d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=C12

PROC C12OFF(JPA,KPA)

SVCDC

ANTE 1 2; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0871d;TPA(2)=-74.0521d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00213d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=C13

PROC C13OFF(JPA,KPA)

SVCDC

ANTE 1 11; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0825d;TPA(2)=-74.0444d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.00561d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC FINISH

*ANT=C14

PROC C14OFF(JPA,KPA)

SVCDC

ANTE 1 10; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0871d;TPA(2)=-74.0460d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.00404d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=E02

PROC E02OFF(JPA,KPA)

SVCDC

ANTE 1 17; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.1023d;TPA(2)=-74.0772d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.02721d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=E03

PROC E03OFF(JPA,KPA)

SVCDC

ANTE 1 18; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.1117d;TPA(2)=-74.0940d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.04395d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=E04

PROC E04OFF(JPA,KPA)

SVCDC

ANTE 1 21; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.1209d;TPA(2)=-74.1244d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.07441d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=E05

PROC E05OFF(JPA,KPA)

SVCDC

ANTE 1 22; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.1251d;TPA(2)=-74.1474d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.09740d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=E06

PROC E06OFF(JPA,KPA)

SVCDC

ANTE 1 23; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.1365d;TPA(2)=-74.1652d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.11522d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=S01

PROC S01OFF(JPA,KPA)

SVCDC

ANTE 1 26; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0664d;TPA(2)=-74.0565d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00649d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=S02

PROC S02OFF(JPA,KPA)

SVCDC

ANTE 1 27; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0523d;TPA(2)=-74.0470d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.00302d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

*ANT=S03

PROC S03OFF(JPA,KPA)

SVCDC

ANTE 1 28; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0320d;TPA(2)=-74.0536d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00363d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=S04

PROC S04OFF(JPA,KPA)

SVCDC

ANTE 1 29; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0074d;TPA(2)=-74.0595d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=+0.00947d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=S06

PROC S06OFF(JPA,KPA)

SVCDC

ANTE 1 30; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=18.9653d;TPA(2)=-74.0470d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.00304d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=W01

PROC W01OFF(JPA,KPA)

SVCDC

ANTE 18; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.0988d;TPA(2)=-74.0353d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.01466d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

*ANT=W02

PROC W02OFF(JPA,KPA)

SVCDC

ANTE 1 13; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.1066d;TPA(2)=-74.0210d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.02898d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=W03

PROC W03OFF(JPA,KPA)

SVCDC

ANTE 1 14; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.1208d;TPA(2)=-74.0011d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.04895d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=W04

PROC W04OFF(JPA,KPA)

SVCDC

ANTE 1 15; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.1415d;TPA(2)=-73.9836d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.06643d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

*ANT=W05

PROC W05OFF(JPA,KPA)

SVCDC

ANTE 1 16; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.1678d;TPA(2)=-73.9734d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.07656d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

*ANT=W06

PROC W06OFF(JPA,KPA)

SVCDC

ANTE 1 25; CP 0; DEFS 0; SUBAR 0

COMM=44;DEST=17;LDTPANT

TPA(1)=19.1784d;TPA(2)=-73.9436d

TPA(3)=JPA;TPA(4)=KPA

TPA(10)=-0.10644d;TPA(10)=TPA(10)*1000.0/15.0

TPARM(12)=1;T3VE

RSTCDC

FINISH

PROC DGOPNTG(GRIDMIN,GRIDSP,NGRID,DANG,SRC,IPA)

SVCDC

FOR J=0 TO NGRID-1

TPA 0:SCO 0

TPARM(1)=11; TPARM(2)=2; TPARM(3)=J

GTS SRC

* Procedure to get the Target Elevation

COMM=20;SCOORD(9)=0;T5V

ELEVA=TARGET(3)

OFFSET=((GRIDMIN+(J*GRIDSP))/60)*cos(DANG)*(3.14159/180)

CPA(1)=-1; CPA(5)=2

SCO(15)=OFFSET/COS(ELEVA)

SCO(17)=((GRIDMIN+(J*GRIDSP))/60)*sin(DANG)*(3.14159/180)

KPA=IPA; TLOCTRK(IPA,1h)

IPA=KPA; TLOCTRK(IPA,1h)

SLEEP 5

STRTNDAS

SLEEP 85

STPNDASC

IPA=KPA

END

RSTCDC