Problem Set 3

UCLA - Econ 102 - Fall 2018

François Geerolf

1 Two-period Intertemporal Optimization

Consider the model of lecture 3 again. Instead of logarithmic preferences, assume that preferences are given by:

$$u(c) = \frac{c^{1-\sigma} - 1}{1 - \sigma},$$

- 1. Under what condition on σ is this an increasing and concave utility function?
- 2. Show using 4 different ways that:

$$\frac{\beta u'(c_1)}{u'(c_0)} = \frac{1}{1+R}$$

- 3. Using the equation in question 1, what is the ratio c_1/c_0 ?
- 4. Replace in the intertemporal budget constraint to find an implicit equation for c_1 . Do the same for c_0 .
- 5. Assume that $\sigma = 1/2$, and $f_0 = 0$, $y_0 = \$90000$, $y_1 = 0$, $\beta = 1$. What are c_0 and c_1 if R = 1%? What about if R = 2%? How much does c_0 change then? How much in percentage terms?
- 6. Same questions if $\sigma = 1$.
- 7. Same questions if $\sigma = 2$.
- 8. Compare the changes in c_0 following an increase in the real interest rates in questions 5, 6, 7. Comment.

2 Another Overlapping Generations model

Consider the model of lecture 4 again, with one small twist: agents care only about old age consumption. In other words, their utility functions are given by:

$$U = u(c_{t+1}^o).$$

Our goal is to derive the law of motion for the capital stock K_t , that is, a function relating K_{t+1} to K_t and the parameters of the model.

- 1. Why can the utility function be left unspecified for computing the level of saving?
- 2. Derive the law of motion for capital.
- 3. What is the corresponding value of the saving rate in the Solow model?
- 4. Provide a condition on α such that the capital stock is below the Golden Rule level.
- 5. Is that condition likely to be satisfied?