LITERATURE SURVEY

PROBLEM STATEMENT: Airline Data Analytics for Aviation Industry DOMAIN: Data Analytics TEAM ID: PNT2022PMID37057 BY: M.Sushanth Varma -212619104009 A.Micheal Clement 212619104010 J.M.Yashwanthan 212619104020 K.Jai Ganesh 212619104005

S.N O	TITLE	AUTHOR	ABSTRACT
1.	Applications of Big Data in Airline Industry (Publication: JAAUTH, Vol. 21 No 4, pp.73-108, 2021)	Dou Lee Nikolopoulos and Petropoulos Izzo Larsen Sternberg	With the advent of big data era, modern aviation industry can find solutions for their major challenges of safety and performance improvement because big data can provide multidimensional, adequate, and real-time information and improve the predictive and preventive capabilities of aviation flight risks. Big data will effectively improve the technical performance and operating conditions of aircraft, avoid various adverse external environmental conditions, and reduce manual errors, to enhance aviation safety. By adopting big data technology, fuel consumption, crew deployment, and flight operations could be optimized; maintenance could anticipate when parts need replacing; air congestion could be reduced; flight routes could be altered well in advance of takeoff to avoid storms and passengers could be kept informed about schedules from the minute they leave their home for the airport. The airline industry makes use of primary data sets that come from many different parameters such as flight tracking data, airport operations data, weather conditions, airline information, market information, passenger information, aircraft data and air safety reports.
2.	A Machine Learning Approach to Predict Aircraft Landing Times using Mediated Predictions from Existing Systems (Publications: AIAA	Daniel Wesely Andrew Churchill John Slough William J Coupe	Developed a novel approach for predicting the landing time of airborne flights in realtime operations. The first step predicts a landing time by using mediation rules to select from among physics-based predictions (relying on the expected flight trajectory) already available in real time in the Federal

Aviation Administration System Wide

Information Management system data feeds. The second step uses a machine learning model built upon the mediated predictions. The model is trained to predict the error in the mediated prediction, using features describing the current state of an airborne flight. These features are calculated in real time from a relatively small number of data

AVIATION

2024, 2021)

FORUM,

			elements that are readily available for airborne flights. Initial results based on five months of data at six large airports demonstrate that incorporating a machine learning model on top of the mediated physics-based prediction can lead to substantial additional improvements in prediction quality.
3.	Predictive analytics with aviation Big Data (Publicatins: Intergrated Communicatins, Navigation and Surveillance Conference, 2013)	Samet Ayhan Johnathan Pesce Paul H Comitz Gary Gerberick	In this paper, we describe a novel analytics system that enables query processing and predictive analytics over streams of big aviation data. As part of an Internal Research and Development project, Boeing Research and Technology (BR&T) Advanced Air Traffic Management (AATM) built a system that makes predictions based upon descriptive patterns of massive aviation data. Boeing AATM has been receiving live Aircraft Situation Display to Industry (ASDI) data and archiving it for over two years. At the present time, there is not an easy mechanism to perform analytics on the data. The incoming ASDI data is large, compressed, and requires correlation with other flight data before it can be analyzed. The service exposes this data once it has been uncompressed, correlated, and stored in a data warehouse for further analysis using a variety of descriptive, predictive, and possibly prescriptive analytics tools. The service is being built partially in response to requests from Boeing Commercial Aviation (BCA) for analysis of capacity and flow in the US National Airspace System (NAS). The service utilizes a custom tool developed by Embry Riddle Aeronautical University (ERAU) that correlates the raw ASDI feed, IBM Warehouse with DB2 for data management, WebSphere Message Broker for real-time message brokering, SPSS Modeler for statistical analysis, and Cognos BI for frontend business intelligence (BI) visualization tools. This paper describes a scalable service architecture, implementation and value it adds to the aviation domain

4.	Prediction of runway	Yuan Wang	Accurate prediction of real-time airport
4.	configurations and	Yu Zhang	capacity, a.k.a. airport acceptance rates
	_	Tu Zilalig	1
	airport acceptance rates		(AARs), is key to enabling efficient air traffic
	for multi-airport system		flow management. AARs are dependent on
	using gridded weather		selected runway configurations and both are
	forecast		affected by weather conditions. Although
	(Publication:		there have been studies tackling on the
	Transportation Research		prediction of AARs or runway configurations
	Part C-Emerging		or both, the prediction accuracy is relatively
	Technologies 125,		low and only single airport is considered. This
	103049, 2021)		study presents a data-driven deep-learning
	, ,		framework for predicting both runway
			configurations and AARs to support efficient
			air traffic management for complex multi-
			airport systems. The two major contributions
			from this work are 1) the proposed model
			· · · ·
			uses assembled gridded weather forecast for
			the terminal airspace instead of an isolated
			station-based terminal weather forecast, and
			2) the model captures the operational
			interdependency aspects inherent in the
			parameter learning process so that proposed
			modeling framework can predict both
			runway configuration and AARs
			simultaneously with higher accuracy. The
			proposed method is demonstrated with a
			numerical experiment taking three major
			airports in New York Metroplex as the case
			study. The prediction accuracy of the
			proposed method is compared with methods
			in current literature and the analysis results
			show that the proposed method outperforms
			all existing methods.
5.	Data Science And	Sai-Ho-Chung	The researcher in this article cited that, Due
	Analytics In	Hoi-Lam-ma	to the rapid development
	Aviation(2020)		of advanced technologies nowadays, a
			massive amount of real time
			data regarding flight information, flight
			performance, airport
			conditions, air traffic conditions, weather,
			ticket prices, passengers
			comments, crew comments, etc., are all
			available from a diverse set of
			, , , , ,
			monitoring systems, operational
1			systems of airlines and airports, and social
			media platforms.
			Development of data analytics in aviation and
1			related applications is

			also growing rapidly. This paper concisely examines data science and analytics in aviation studies in several critical areas, namely big data analysis, air transport network management, forecasting, and machine learning. The papers featured in this special issue are also introduced and reviewed, and future directions for data science and analytics in aviation are discussed.
6.	Topologic Data Analysis For Aviation Applications(2018)	Max Z. Li Megan S. Ryerson and Hamsa Balakrishnan	Aviation data sets are increasingly high-dimensional and sparse. Consequently, the underlying features and interactions are not easily uncovered by traditional data analysis methods. Recent advancements in applied mathematics introduce topological methods, offering a new approach to obtain these features. This paper applies the fundamental notions underlying topological data analysis and persistent homology (TDA/PH) to aviation data analytics. We review past aviation research that leverage topological methods, and present a new computational case study exploring the topology of airport surface connectivity. In each case, we connect abstract topological features with real-world processes in aviation, and highlight potential operational and managerial insights.

7	Aiulina De i	Vastuui F	Decembers in this putter street that a 1.1
7.	Airline Route	Kasturi E	Researchers in this article cited that ,applying
	Profitability Analysis And	Prasanna Devi Sb	vital decisions for new
	Optimization Using Big	Vinu Kiran Sb	airline routes and aircraft utilization are
	Data Analytics On	Manivannan Sc	important factors for airline
	Aviation Data Sets Under		decision making.For data driven analysis key
	Heuristic		points such as airliners
	Techniques(2016)		route distance, availability on
			seats/freight/mails and fuel are
			considered. The airline route profitability
			optimization model is proposed based on
			performing Bigdata analytics over large scale
			aviation data under multiple heuristic
			methods, based on which
			practical problems are analysed. Analysis
			should be done based on
			key criteria, identified by operational needs
			and load revenues from
			operational systems e.g. passenger, cargo,
			freights, airport, country,
			aircraft, seat class etc. The result shows that
			the analysis is simple and
			convenient with concrete decision.
8.	Analysis Of Flight Data	Lishaui Li	The researcher in this article cited that,the
0.	Using Clustering	Santanu Das	airline industry is moving
	Techniques For	Santana Das	toward proactive risk management, which
	Detecting Abnormal		aims to identify and
	Operations(2015)		mitigate risks before accidents occur.
	Operations(2013)		However, existing methods for
			such efforts are limited. They rely on
			predefined criteria to identify
			risks, leaving emergent issues undetected.
			This paper presents a new
			method, cluster-based anomaly detection to
			detect abnormal flights,
			which can support domain experts in
			detecting anomalies and
			associated risks from routine airline
			operations. The new method,
			enabled by data from the flight data
			recorder, applies clustering
			techniques to detect abnormal flights of
			unique data patterns.
			Compared with existing methods, the new
			method no longer requires
			predefined criteria or domain knowledge.
			Tests were conducted using
			two sets of operational data consisting of 365
			B777 flights and 25,519
	1	1	A220 filely The marketing of charten
			A320 flights. The performance of cluster-

	Associate Outline Of Air	Domina	Dumika	Do	detect abnormal flights was compared with those of multiple kernel anomaly detection, which is another datadriven anomaly detection algorithm in recent years, as well as with exceedance detection, which is the current method employed by the airline industry. Results showed that both cluster-based anomaly detection to detect abnormal flights and multiple kernel anomaly detection were able to identify operationally significant anomalies, surpassing the capability of exceedance detection. Cluster-based anomaly detection to detect abnormal flights performed better with continuous parameters, whereas multiple kernel anomaly detection was more sensitive toward discrete parameters.
9.	Assessing Quality Of Air Transport Service: A Comparative Analysis Of Two Evaluation Models(2021)	Denise Medeiros	Dumiko	De	The researcher in this article cited that, this paper aims to analyze the opinion of tourists about airlines' service in a developing country. For this, the study proposes to make a comparative analysis of two evaluation models (SERVQUAL and SERVPERF) to investigate the factors that influence the formation of perceived quality in airline services, using statistical techniques such as Cluster Analysis and Structural Equation Modeling. Although the results were not the same, the result of both analyzes indicated two common dimensions (tangibles and empathy) that influence the customer's perception of the airline service quality. The main conclusion of this study is that the two analyzes are convergent for the study sample. The SERVQUAL and cluster analysis allow airline managers to identify and prioritize gaps in service delivery according to criticality, aiming at the allocation of efficient resources by the airline. The SERVPERF and SEM provide statistical evidence of the impact of different

			dimensions of service quality on customer satisfaction, highlighting the direct relationship between satisfaction and dimensions. Considering how customers evaluate the service provided by airlines, particularly regarding the service they receive from airport employees, this study has relevance for decisions taken by airline managers to develop quality services, and provide guidelines for improvements in airline services.
10.	Data Analytics for Air Travel Data(2021)	Haiman Tian Yudong Tao	The researcher in this article cited that,From the start, the airline industry has remarkably connected countries all over the world through rapid long-distance transportation, helping people overcome geographic barriers. Consequently, this has ushered in substantial economic growth, both nationally and internationally. The airline industry produces vast amounts of data, capturing a diverse set of information about their operations, including data related to passengers, freight, flights, and much more. Analyzing air travel data can advance the understanding of airline market dynamics, allowing companies to provide customized, efficient, and safe transportation services. Due to big data challenges in such a complex environment, the benefits of drawing insights from the air travel data in the airline industry have not yet been fully explored. They introduce existing data sources commonly used in the papers surveyed and summarize their availability. Finally, we discuss several potential research directions to better harness airline data in the future. They anticipate this study to be used as a comprehensive reference for both members

	of the airline industry and academic scholars with an interest in airline research.
	research.