EEE-6512: Image Processing and Computer Vision

August 23, 2018
Lecture #1 Course Overview
Damon L. Woodard, Ph.D.
Dept. of Electrical and Computer
Engineering
dwoodard@ece.ufl.edu

Course Information

- EEE-6512 Image Processing/Computer Vision
- Instructor: Damon Woodard (dwoodard@ece.ufl.edu)
- Office: 226E Materials Engineering Bldg. (MAE)
- Lectures: Tues. (1:55 PM 2:45 PM), Thurs. (1:55 PM 3:50 PM) 201 New Engineering Building (NEB)
- Office Hours: Tues. (8:00 AM 10:00 AM), Thurs. (8:00 AM 9:00 AM), or by appointment.
- Course Materials in CANVAS
 - http://lss.at.ufl.edu

Teaching Assistant

Ronald Wilson

Email Address: <u>ronaldwilson@ufl.edu</u>

Office Hours: TBA

Prior Research (Subset)

Keystroke Dynamics

Periocular Biometrics Tightly Coupled Face + Iris Biometrics

Current Research Projects

Mobile Device Based Biometrics

Stylometry/Author Obfuscation

Machine Learning for Cybersecurity Applications

Course Goal / Objective

Goal:

To understand how to efficiently represent, process, and analyze image signals.

Objective:

To provide students with the scientific foundations needed to implement and apply techniques used to address image processing and analysis related problems.

Course Overview

Prerequisites:

- EEE-5502 Foundations of Signal Processing
- Undergraduate-level probability and statistics course
- Undergraduate-level linear algebra course
- Programming experience required, preferable experience using the MATLAB programming environment
- Textbook: Digital Image Processing, Fourth Edition by Rafael C. Gonzales and Richard E. Woods
- Recommended: Computer Vision: Algorithms and Applications, 2011 Edition, Richard Szeliski

Course Overview (cont.)

Evaluation of Grades

Item	Grade Percentage
Homework Sets (6)	50%
Exams (3)	50%

Percent	Grade	Grade Points
94 – 100	А	4.00
90 – 93	Α-	3.67
88 – 89	B+	3.33
82 – 87	В	3.00
80 – 81	B-	2.67
78 – 79	C+	2.33
72 – 77	С	2.00
70 – 71	C-	1.67
62 – 69	D	1.00
0 – 61	Е	0.00

What is this course all about?

Image Processing:

The processing of images using mathematical operations by using any form of signal processing for which the input is an image, a series of images or a video, such as a photograph or video frame; the output of image processing may be either an image or a set of characteristics or parameters related to the image. (Gonzales & Woods)

Computer Vision:

is an interdisciplinary field that deals with how computers can be made for gaining high-level understanding from digital images or videos. From the perspective of engineering, it seeks to automate tasks that the human visual system can do.

Tentative Course Schedule

Course Schedule

- Week 1: Course Overview, Introduction
- Week 2: Fundamentals of Imaging / Homework #1 Due
- Week 3: Image Transformations and Spatial Filtering Pt. 1
- Week 4: Spatial Filtering Pt. 2 /Homework #2 Due
- Week 5: Frequency Domain Filtering Pt. 1/ Exam #1
- Week 6: Frequency Domain Processing Pt. 2 / Homework #3 Due
- Week 7: Color Image Processing
- Week 8: Morphological Image Processing / Homework # 4 Due
- Week 9: Image Segmentation Pt. 1
- Week 10: Image Segmentation Pt. 2/ Exam #2
- Week 11: Feature Extraction Pt. 1 / Homework #5 Due
- Week 12: Feature Extraction Pt. 2
- Week 13: Model Fitting Pt. 1/ Homework #6 Due
- Week 14: Model Fitting Pt. 2
- Week 15: Classification Pt. 1 /Exam #3
- Week 16: Classification Pt. 2

Course Policies

- Grading concerns should be raised within one week after grades have been returned for a course item.
- Final grades will be based solely on the student's performance on the course items
- Questions on the material should be posted as discussions on CANVAS and not sent as email messages.

Tips for Success

- Read the Text (Preferably before lectures)
- Ask questions during class
- Use other sources
- Start homework assignments early

Applications which use Image Processing / Computer Vision

The thin yellow line

Video-based Tracking of a Baseball Pitch

from http://www-static.cc.gatech.edu/classes/AY2007/cs4495_fall/html/materials.html

Processed Video

from http://www-static.cc.gatech.edu/classes/AY2007/cs4495_fall/html/materials.html

Result of baseball extraction

Freethrow shooting

Automotive applications

Special Effects in The Matrix

- Bullet Time special-effect in The Matrix is an example of the application of SFM ideas.
- Linear array of cameras replaces moving camera.
- Green screen makes segmentation easy.

Unstructured Road Following

from http://www-static.cc.gatech.edu/classes/AY2007/cs4495_fall/html/materials.html

Rescuing drowning victims

Supervision

workstation

A swimmer in difficulty

Poseidon warns the lifeguards as soon as it detects a possible drowning

Central

Tracking Articulated Shapes

Tracking Multiple Humans

Tracking Ants

Face Detection

Structure from Motion

Generalization of stereo framework:

- Unconstrained motion of single uncalibrated camera
- Feature tracking across motion sequence.
- Good recent results, but solutions are somewhat brittle.

Structure from motion results

Input frames (3 of 5)

Texture-mapped model

Shaded model

(Images courtesy of Luc Van Gool)

Clothing

Scan a person, custom-fit clothing

Forensics

Crime scene recording and analysis

Industrial inspection

- Verify specifications
- Compare measured model with CAD

Computer games

http://www.cs.unc.edu/Research/vision/comp256/

Up Next: Chapter #1 Introduction

Questions?