SEMINAR 3 Schimbări de baze Subspații vectoriale

Schimbări de baze:

Exemplu. Fie sistemele de vectori:

$$B_1 = {\overline{v_1} = (1, 1, 0), \overline{v_2} = (1, 0, 0), \overline{v_3} = (1, 1, 2)}$$

şi

$$B_2 = {\overline{u_1} = (1, 1, 3), \overline{u_2} = (1, 1, 2), \overline{u_3} = (3, 2, 4)}.$$

- a) Să se arate că B_1 și B_2 sunt baze;
- **b)** Să se determine matricea de trecere de la baza B_1 la baza B_2 , $T_{\overline{B_1B_2}}$;
- c) Să se găsească coordonatele vectorului $\bar{w}=(2,0,-2)$ relativ la bazele $B_1,\,B_2$ și baza canonică $B_c.$

Soluţie.

a)

- 1) Din ce spațiu vectorial fac parte sistemele de vectori B_1 , respectiv B_2 ?
- 2) Care sunt coordonatele vectorilor din B_1 în baza canonică? În cazul nostru (\mathbb{R}^3) ce observație din curs folosim?

3) Scrieți A_{B_1} matricea sistemului de vectori B_1 .

- 4) De ce avem nevoie pentru a aplica Criteriul practic?
- 5) Calculați rangul lui A_{B_1}

- 6) Ce se poate spune despre sistemul de vectori B_1 ? De ce?
- 7) Urmând paşii 2)-6), ce se poate spune despre sistemul de vectori B_2 ?

b)

- 1) Pentru a scrie matricea de trecere cerută (în cazul nostru $T_{\overline{B_1B_2}}$) de unde trebuie să luăm vectorii și în ce bază trebuie sa îi trecem? Cine ne indică aceasta?
- 2) În ce bază scriem inițial vectorii?
- 3) Ce formulă din curs se folosește?
- 4) În ce bază trebuie să trecem vectorii?
- 5) Aplicați formula de schimbare a coordonatelor unui vector din baza canonică într-o altă bază pentru primul vector

$$\bar{u}_1 =^{not} (\alpha_1, \alpha_2, \alpha_3)_{B_1}$$

a) Scrieți și rezolvați sistemul care se obține

- 4
- b) Care este soluția sistemului?
- c) Unde înlocuim această soluție?
- d) Care sunt coordonatele vectorului în noua bază?

$$\bar{u_1} = \left(-\frac{1}{2}, 0, \frac{3}{2}\right)_{B_1}$$

- e) Contează ordinea în care le-am pus?
- 6) Aplicaţi formula de schimbare a coordonatelor unui vector din baza canonică într-o altă bază pentru al doilea vector reluând paşii de la 5)

$$\bar{u}_2 = ^{not} (\beta_1, \beta_2, \beta_3)_{B_1}$$

obţinem

$$\bar{u_2} = (0,0, 1)_{B_1}$$

7) Aplicați formula de schimbare a coordonatelor unui vector din baza canonică într-o altă bază pentru al treilea vector reluând paşii de la 5)

$$\bar{u}_3 =^{not} (\gamma_1, \gamma_2, \gamma_3)_{B_1}$$

.

obţinem

$$\bar{u_3} = (0, 1, 2)_{B_1}$$

- 8) Cum se pun în matricea de trecere coordonatele vectorilor $\bar{u_1}$, $\bar{u_2}$ şi $\bar{u_3}$ scrişi în baza B_1 aflate mai sus? Contează ordinea?
- 9) Scrieți matricea de trecere $T_{\overline{B_1B_2}}$.

c)

- 1) Scrieți vectorul \bar{w} în baza canonică. În cazul nostru ce observație din curs folosim?
- 2) Ce formulă folosim pentru a trece vectorul \bar{w} în baza B_1 ?
- 3) Calculați coordonatele lui \bar{w} în baza B_1 .

.

- 4) Ce formulă folosim pentru a trece vectorul \bar{w} în baza B_2 ?
- 5) Calculați coordonatele lui \bar{w} în baza B_2 .

Exercițiu. Fie sistemele de vectori:

$$B_1 = \{ \overline{p_1} = X + 2, \ \overline{p_2} = 2X + 3, \ \overline{p_3} = X^2 + X + 2 \}$$
şi
$$B_2 = \{ \overline{q_1} = X^2 - X - 1, \ \overline{q_2} = X + 2, \ \overline{q_3} = X + 1 \}.$$

a) Să se arate că B_1 și B_2 sunt baze;

Indicație: Se aplică Criteriul practic.

b) Să se determine matricea de trecere de la baza B_2 la baza B_1 , $T_{\overleftarrow{B_2B_1}}$; **Răspuns.**

$$T_{\overleftarrow{B_2B_1}} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

c) Să se găsească coordonatele vectorului $\bar{p}=2X+4$ relativ la bazele $B_1,$ B_2 și baza canonică.

Răspuns.

$$\bar{p} = (2,0,0)_{B_1} = (0,2,0)_{B_2} = (0,2,4)_{B_c}.$$

d) Temă.

Să se determine matricea de trecere de la baza B_1 la baza B_2 , $T_{\overline{B_1}B_2}$;

Răspuns.

$$T_{\overleftarrow{B_2B_1}} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Subspaţii vectoriale:

Exemplu. Stabiliți dacă sistemul de vectori este subspațiu vectorial, iar în caz afirmativ determinați o bază și dimensiunea sa:

$$S = \left\{ aX^2 + bX + c \in \mathbb{R}_2[X] \mid a - 2b = 0, \ a - b - 3c = 0 \right\}.$$
 (1)

Soluţie.

- 1) Care este baza canonică din spațiul vectorial $\mathbb{R}_2[X]$?
- 2) Cum se scrie vectorul $aX^2 + bX + c$ în baza canonică?
- 3) Ce ecuații trebuie să verifice coordonatele vectorilor din S relativ la baza canonică?
- 4) Sunt ecuații liniare omogene? De ce?
- 5) Este S subspaţiu vectorial? De ce?

Căutăm acum o bază pentru S:

6) Rezolvați sistemul de la 2).

7)	Unde înlocuim soluția obținută?
8)	Cum se poate scrie S ca și acoperire liniară a unei mulțimi U ?
9)	Ce reprezintă sistemul de vectori S pentru spațiul vectorial din care face parte? De ce?
10)	Ce este U pentru S ? De ce?
11)	Cum mai trebuie să fie U ca să fie bază pentru S ?
12)	Cum studiem aceasta?
13)	Este U bază pentru S ? Justificați.
14)	Care este dimensiunea lui S ? De ce?

Exercițiu. Justificați care dintre sistemele de vectori sunt subspații vectoriale. În caz afirmativ determinați-i o bază și dimensiunea:

1.
$$S_1 = \left\{ aX + b \in \mathbb{R}_1[X] \mid a - 2b + b^2 = 0 \right\}$$

2.
$$S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0, 2x - y + 3 = 0\}$$

3.
$$S_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}$$

4.
$$S_4=\left\{\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\in \mathfrak{M}_2(\mathbb{R})\ \middle|\ a-bc+d=0\right\}$$
 Temă.

5.
$$S_5 = \left\{ \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} \in \mathcal{M}_{(3,2)}(\mathbb{R}) \mid a+2f=0, a-3f=0, b+c-2d=0 \right\}$$

Indicație: Se aplică algoritmul de mai sus și se deduce:

- 1. S_1 nu este subspațiu vectorial
- $2. S_2$ nu este subspațiu vectorial
- 3. S_3 este subspațiu vectorial, dim $S_2=2$
- 4. S_4 nu este subspațiu vectorial
- 5. S_5 este subspațiu vectorial, dim $S_5=3$