

Minimization of a Functional on the Space of BV Functions and Nonconforming Discretization of the Problem

I. Theoretical Basics and Characterization of Minimizers

Enrico Bergmann Humboldt-Universität zu Berlin January 6, 2021

Table of Contents

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem
 Equivalent Saddle Point Problem
 Characterization of Minimizers

Table of Contents

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem
 Equivalent Saddle Point Problem
 Characterization of Minimizers

Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47. Springer Series in Computational Mathematics. Springer International Publishing, 2015. ISBN: 978-3-319-13796-4. DOI: 10.1007/978-3-319-13797-1, Chapter 10, p. 297-319

Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47. Springer Series in Computational Mathematics. Springer International Publishing, 2015. ISBN: 978-3-319-13796-4. DOI: 10.1007/978-3-319-13797-1, Chapter 10, p. 297-319

Let $\Omega \subset \mathbb{R}^n$ be a bounded polyhedral Lipschitz domain.

For given $g \in L^2(\Omega)$ and $\alpha > 0$ minimize the functional

$$I(v) = |v|_{BV(\Omega)} + \frac{\alpha}{2} ||v - g||^2$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Functions of Bounded Variation

A function $v \in L^1(\Omega)$ with distributional derivative $Dv: C_C^\infty(\Omega; \mathbb{R}^n) \to \mathbb{R}$ is said to be of bounded variation if there exists c>0 such that

$$\langle Dv, \phi \rangle := -\int_{\Omega} v \operatorname{div}(\phi) dx \leqslant c \|\phi\|_{L^{\infty}(\Omega)}$$

for all $\phi \in C^1_C(\Omega; \mathbb{R}^n)$.

Functions of Bounded Variation

A function $v \in L^1(\Omega)$ with distributional derivative $Dv: C_C^\infty(\Omega;\mathbb{R}^n) \to \mathbb{R}$ is said to be of bounded variation if there exists c>0 such that

$$\langle Dv, \phi \rangle := -\int_{\Omega} v \operatorname{div}(\phi) dx \leqslant c \|\phi\|_{L^{\infty}(\Omega)}$$

for all $\phi \in C_C^1(\Omega; \mathbb{R}^n)$.

The minimal constant $c \ge 0$ satisfying this property is called total variation of Dv and is given by

$$|v|_{\mathsf{BV}(\Omega)} = \sup_{\substack{\phi \in C_C^1(\Omega; \mathbb{R}^n) \\ \|\phi\|_{L^{\infty}(\Omega)} \leqslant 1}} - \int_{\Omega} v \, \mathsf{div}(\phi) \, \mathrm{d}x.$$

Functions of Bounded Variation

A function $v \in L^1(\Omega)$ with distributional derivative $Dv: C_C^\infty(\Omega; \mathbb{R}^n) \to \mathbb{R}$ is said to be of bounded variation if there exists c>0 such that

$$\langle Dv, \phi \rangle := -\int_{\Omega} v \operatorname{div}(\phi) dx \leqslant c \|\phi\|_{L^{\infty}(\Omega)}$$

for all $\phi \in C_C^1(\Omega; \mathbb{R}^n)$.

The minimal constant $c \ge 0$ satisfying this property is called total variation of Dv and is given by

$$|v|_{\mathsf{BV}(\Omega)} = \sup_{\substack{\phi \in C_C^1(\Omega; \mathbb{R}^n) \\ \|\phi\|_{L^{\infty}(\Omega)} \leq 1}} - \int_{\Omega} v \, \mathsf{div}(\phi) \, \mathrm{d}x.$$

The space of all such functions is denoted by $BV(\Omega)$.

Properties of $BV(\Omega)$

 $\mathsf{BV}(\Omega)$ is a Banach space equipped with the norm

$$\|v\|_{\mathsf{BV}(\Omega)} := \|v\|_{L^1(\Omega)} + |v|_{\mathsf{BV}(\Omega)} \quad \text{for all } v \in \mathsf{BV}(\Omega).$$

Properties of $BV(\Omega)$

 $\mathsf{BV}(\Omega)$ is a Banach space equipped with the norm

$$\|v\|_{\mathsf{BV}(\Omega)} := \|v\|_{L^1(\Omega)} + |v|_{\mathsf{BV}(\Omega)} \quad \text{for all } v \in \mathsf{BV}(\Omega).$$

$$W^{1,1}(\Omega) \subset \mathsf{BV}(\Omega)$$
 with $\|v\|_{\mathsf{BV}(\Omega)} = \|v\|_{W^{1,1}(\Omega)}$ for all $v \in W^{1,1}(\Omega)$.

Notions of convergence on $\mathsf{BV}(\Omega)$

Let $(v_n)_{n\in\mathbb{N}}\subset\mathsf{BV}(\Omega)$ and $v\in\mathsf{BV}(\Omega)$ such that $v_n\to v$ in $L^1(\Omega)$ as $n\to\infty$.

Notions of convergence on $\mathsf{BV}(\Omega)$

Let $(v_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(\Omega)$ and $v\in \mathsf{BV}(\Omega)$ such that $v_n\to v$ in $L^1(\Omega)$ as $n\to\infty$.

(i) $(v_n)_{n\in\mathbb{N}}$ converges intermediately or strictly to v if $|v_n|_{\mathsf{BV}(\Omega)} \to |v|_{\mathsf{BV}(\Omega)}$ as $n \to \infty$.

Notions of convergence on $\mathsf{BV}(\Omega)$

Let $(v_n)_{n\in\mathbb{N}}\subset\mathsf{BV}(\Omega)$ and $v\in\mathsf{BV}(\Omega)$ such that $v_n\to v$ in $L^1(\Omega)$ as $n\to\infty$.

- (i) $(v_n)_{n\in\mathbb{N}}$ converges intermediately or strictly to v if $|v_n|_{\mathsf{BV}(\Omega)} \to |v|_{\mathsf{BV}(\Omega)}$ as $n \to \infty$.
- (ii) $(v_n)_{n\in\mathbb{N}}$ converges weakly to v if $\langle Dv_n, \phi \rangle \to \langle Dv, \phi \rangle$ for all $\phi \in C_0(\Omega; \mathbb{R}^n)$ as $n \to \infty$.

Further Properties of $BV(\Omega)$

 $C^{\infty}(\overline{\Omega})$ and $C^{\infty}(\Omega) \cap \mathsf{BV}(\Omega)$ are dense in $\mathsf{BV}(\Omega)$ with respect to intermediate convergence.

Further Properties of $BV(\Omega)$

 $C^\infty(\overline{\Omega})$ and $C^\infty(\Omega)\cap\mathsf{BV}(\Omega)$ are dense in $\mathsf{BV}(\Omega)$ with respect to intermediate convergence.

The embedding $\mathsf{BV}(\Omega) \to L^p(\Omega)$ is continuous for $1 \leqslant p \leqslant n/(n-1)$ and compact for $1 \leqslant p < n/(n-1)$.

Further Properties of $BV(\Omega)$

 $C^{\infty}(\overline{\Omega})$ and $C^{\infty}(\Omega) \cap \mathsf{BV}(\Omega)$ are dense in $\mathsf{BV}(\Omega)$ with respect to intermediate convergence.

The embedding $\mathsf{BV}(\Omega) \to L^p(\Omega)$ is continuous for $1 \leqslant p \leqslant n/(n-1)$ and compact for $1 \leqslant p < n/(n-1)$.

There exists a linear operator $T: \mathsf{BV}(\Omega) \to L^1(\partial\Omega)$ such that $T(v) = v|_{\partial\Omega}$ for all $v \in \mathsf{BV}(\Omega) \cap C(\overline{\Omega})$.

T is continuous with respect to intermediate convergence in $\mathsf{BV}(\Omega)$ but not with respect to weak convergence in $\mathsf{BV}(\Omega)$.

Table of Contents

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem
 Equivalent Saddle Point Problem
 Characterization of Minimizers

For given $f \in L^2(\Omega)$ and $\alpha > 0$ minimize the functional

$$E(v) := \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f \, v \, \mathrm{d}x$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

For given $f \in L^2(\Omega)$ and $\alpha > 0$ minimize the functional

$$E(v) := \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f \, v \, \mathrm{d}x$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

For $f = \alpha g$ we have

$$I(v) = |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||v - g||^2 = E(v) - ||v||_{L^1(\partial\Omega)} + \frac{\alpha}{2} ||g||_{L^2(\Omega)}^2$$

for all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

For given $f \in L^2(\Omega)$ and $\alpha > 0$ minimize the functional

$$E(v) := \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f \, v \, \mathrm{d}x$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

For $f = \alpha g$ we have

$$I(v) = |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||v - g||^2 = E(v) - ||v||_{L^1(\partial\Omega)} + \frac{\alpha}{2} ||g||_{L^2(\Omega)}^2$$

for all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

I and E have the same minimizers in $\{v \in \mathsf{BV}(\Omega) \cap L^2(\Omega) \mid \|v\|_{L^1(\partial\Omega)} = 0\}.$

Table of Contents

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem Equivalent Saddle Point Problem Characterization of Minimizers

$$E(v) = \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} fv \, dx$$

$$E(v) = \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} fv \, dx$$

$$\geq \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)}$$

$$E(v) = \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} fv \, dx$$

$$\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)}$$

$$\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} - \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2}$$

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} fv \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)} \\ &\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} - \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \end{split}$$

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} fv \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)} \\ &\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} - \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4 |\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \end{split}$$

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} \mathsf{f} v \, \mathrm{d} x \\ &\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)} \\ &\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} - \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4 |\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant -\frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \end{split}$$

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^2(\Omega)}^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} f v \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^2(\Omega)}^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^2(\Omega)}^2 \\ &\geqslant \frac{\alpha}{4 |\Omega|} \|v\|_{L^1(\Omega)}^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^2(\Omega)}^2 \\ &\geqslant -\frac{1}{\alpha} \|f\|_{L^2(\Omega)}^2 \end{split}$$

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f v \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4|\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant -\frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \end{split}$$

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^2(\Omega)}^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} f v \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^2(\Omega)}^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^2(\Omega)}^2 \\ &\geqslant \frac{\alpha}{4|\Omega|} \|v\|_{L^1(\Omega)}^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^2(\Omega)}^2 \\ &\geqslant -\frac{1}{\alpha} \|f\|_{L^2(\Omega)}^2 \end{split}$$

• E bounded from below

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f v \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4 |\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant -\frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \end{split}$$

- E bounded from below
- $\exists (u_n)_{n \in \mathbb{N}} \subset \mathsf{BV}(\Omega) \cap L^2(\Omega)$ infimizing sequence of E

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f v \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4 |\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant -\frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \end{split}$$

- E bounded from below
- $\exists (u_n)_{n\in\mathbb{N}} \subset \mathsf{BV}(\Omega) \cap L^2(\Omega)$ infimizing sequence of E

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f v \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4 |\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant -\frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \end{split}$$

- E bounded from below
- $\exists (u_n)_{n\in\mathbb{N}} \subset \mathsf{BV}(\Omega) \cap L^2(\Omega)$ infimizing sequence of E
- $\|u_n\|_{\mathsf{BV}(\Omega)} \to \infty$ as $n \to \infty \Rightarrow E(u_n) \to \infty$ as $n \to \infty$

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f v \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4 |\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant -\frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \end{split}$$

- E bounded from below
- $\exists (u_n)_{n\in\mathbb{N}} \subset \mathsf{BV}(\Omega) \cap L^2(\Omega)$ infimizing sequence of E
- $\|u_n\|_{\mathsf{BV}(\Omega)} \to \infty$ as $n \to \infty \Rightarrow E(u_n) \to \infty$ as $n \to \infty$
- $(u_n)_{n\in\mathbb{N}}$ bounded in $BV(\Omega)$

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f v \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4 |\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant -\frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \end{split}$$

- E bounded from below
- $\exists (u_n)_{n\in\mathbb{N}} \subset \mathsf{BV}(\Omega) \cap L^2(\Omega)$ infimizing sequence of E
- $\|u_n\|_{\mathsf{BV}(\Omega)} \to \infty$ as $n \to \infty \Rightarrow E(u_n) \to \infty$ as $n \to \infty$
- $(u_n)_{n\in\mathbb{N}}$ bounded in $BV(\Omega)$

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f v \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4 |\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant -\frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \end{split}$$

- E bounded from below
- $\exists (u_n)_{n\in\mathbb{N}} \subset \mathsf{BV}(\Omega) \cap L^2(\Omega)$ infimizing sequence of E
- $\|u_n\|_{\mathsf{BV}(\Omega)} \to \infty$ as $n \to \infty \Rightarrow E(u_n) \to \infty$ as $n \to \infty$
- $(u_n)_{n\in\mathbb{N}}$ bounded in $BV(\Omega)$
- $(u_n)_{n\in\mathbb{N}}$ bounded in $L^2(\Omega)$

Let $(u_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(\Omega)$ be bounded. Then there exists a subsequence $(u_{n_k})_{k\in\mathbb{N}}$ of $(u_n)_{n\in\mathbb{N}}$ and $u\in \mathsf{BV}(\Omega)$ such that u_{n_k} converges weakly to u in $\mathsf{BV}(\Omega)$ as $k\to\infty$.

Let $(u_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(\Omega)$ be bounded. Then there exists a subsequence $(u_{n_k})_{k\in\mathbb{N}}$ of $(u_n)_{n\in\mathbb{N}}$ and $u\in \mathsf{BV}(\Omega)$ such that u_{n_k} converges weakly to u in $\mathsf{BV}(\Omega)$ as $k\to\infty$.

• $(u_n)_{n\in\mathbb{N}}$ (w.l.o.g.) converges weakly to $u\in\mathsf{BV}(\Omega)$

Let $(u_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(\Omega)$ be bounded. Then there exists a subsequence $(u_{n_k})_{k\in\mathbb{N}}$ of $(u_n)_{n\in\mathbb{N}}$ and $u\in \mathsf{BV}(\Omega)$ such that u_{n_k} converges weakly to u in $\mathsf{BV}(\Omega)$ as $k\to\infty$.

• $(u_n)_{n\in\mathbb{N}}$ (w.l.o.g.) converges weakly to $u\in\mathsf{BV}(\Omega)$ in $L^1(\Omega)$.

Let $(u_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(\Omega)$ be bounded. Then there exists a subsequence $(u_{n_k})_{k\in\mathbb{N}}$ of $(u_n)_{n\in\mathbb{N}}$ and $u\in \mathsf{BV}(\Omega)$ such that u_{n_k} converges weakly to u in $\mathsf{BV}(\Omega)$ as $k\to\infty$.

- $(u_n)_{n\in\mathbb{N}}$ (w.l.o.g.) converges weakly to $u\in\mathsf{BV}(\Omega)$ in $L^1(\Omega)$.
- $(u_n)_{n\in\mathbb{N}}$ (w.l.o.g.) converges weakly to $\bar{u}\in L^2(\Omega)$ in $L^2(\Omega)$.

Let $(u_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(\Omega)$ be bounded. Then there exists a subsequence $(u_{n_k})_{k\in\mathbb{N}}$ of $(u_n)_{n\in\mathbb{N}}$ and $u\in \mathsf{BV}(\Omega)$ such that u_{n_k} converges weakly to u in $\mathsf{BV}(\Omega)$ as $k\to\infty$.

- $(u_n)_{n\in\mathbb{N}}$ (w.l.o.g.) converges weakly to $u\in\mathsf{BV}(\Omega)$ in $L^1(\Omega)$.
- $(u_n)_{n\in\mathbb{N}}$ (w.l.o.g.) converges weakly to $\bar{u}\in L^2(\Omega)$ in $L^2(\Omega)$.

$$\forall w \in (L^2(\Omega))^* \cong L^2(\Omega) \supset L^{\infty}(\Omega) \cong (L^1(\Omega))^* :$$
$$\int_{\Omega} u_n w \, \mathrm{d}x \to \int_{\Omega} \bar{u} w \, \mathrm{d}x \text{ as } n \to \infty$$

Let $(u_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(\Omega)$ be bounded. Then there exists a subsequence $(u_{n_k})_{k\in\mathbb{N}}$ of $(u_n)_{n\in\mathbb{N}}$ and $u\in \mathsf{BV}(\Omega)$ such that u_{n_k} converges weakly to u in $\mathsf{BV}(\Omega)$ as $k\to\infty$.

- $(u_n)_{n\in\mathbb{N}}$ (w.l.o.g.) converges weakly to $u\in\mathsf{BV}(\Omega)$ in $L^1(\Omega)$.
- $(u_n)_{n\in\mathbb{N}}$ (w.l.o.g.) converges weakly to $\bar{u}\in L^2(\Omega)$ in $L^2(\Omega)$.

$$\forall w \in (L^2(\Omega))^* \cong L^2(\Omega) \supset L^{\infty}(\Omega) \cong (L^1(\Omega))^* :$$
$$\int_{\Omega} u_n w \, \mathrm{d}x \to \int_{\Omega} \overline{u} w \, \mathrm{d}x \text{ as } n \to \infty$$

• $(u_n)_{n\in\mathbb{N}}$ converges weakly to \bar{u} in $L^1(\Omega)$.

Let $(u_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(\Omega)$ be bounded. Then there exists a subsequence $(u_{n_k})_{k\in\mathbb{N}}$ of $(u_n)_{n\in\mathbb{N}}$ and $u\in \mathsf{BV}(\Omega)$ such that u_{n_k} converges weakly to u in $\mathsf{BV}(\Omega)$ as $k\to\infty$.

- $(u_n)_{n\in\mathbb{N}}$ (w.l.o.g.) converges weakly to $u\in\mathsf{BV}(\Omega)$ in $L^1(\Omega)$.
- $(u_n)_{n\in\mathbb{N}}$ (w.l.o.g.) converges weakly to $\bar{u}\in L^2(\Omega)$ in $L^2(\Omega)$.

$$\forall w \in (L^2(\Omega))^* \cong L^2(\Omega) \supset L^{\infty}(\Omega) \cong (L^1(\Omega))^* :$$
$$\int_{\Omega} u_n w \, \mathrm{d}x \to \int_{\Omega} \bar{u} w \, \mathrm{d}x \text{ as } n \to \infty$$

- $(u_n)_{n\in\mathbb{N}}$ converges weakly to \bar{u} in $L^1(\Omega)$.
- $u = \bar{u} \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Lawrence C. Evans and Ronald F. Gariepy. **Measure Theory and Fine Properties of Functions**. CRC Press, 1992. ISBN: 0-8493-7157-0, p. 183, Theorem 1

Let $v \in \mathsf{BV}(\Omega)$. For all $x \in \mathbb{R}^n$ define

$$\tilde{v}(x) := \begin{cases} v(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \in \mathbb{R}^n \setminus \Omega. \end{cases}$$

Then $\tilde{v} \in \mathsf{BV}(\mathbb{R}^n)$ and $|\tilde{v}|_{\mathsf{BV}(\mathbb{R}^n)} = |v|_{\mathsf{BV}(\Omega)} + ||v||_{L^1(\partial\Omega)}$.

Lawrence C. Evans and Ronald F. Gariepy. **Measure Theory and Fine Properties of Functions**. CRC Press, 1992. ISBN: 0-8493-7157-0, p. 183, Theorem 1

Let $v \in \mathsf{BV}(\Omega)$. For all $x \in \mathbb{R}^n$ define

$$\tilde{v}(x) := \begin{cases} v(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \in \mathbb{R}^n \setminus \Omega. \end{cases}$$

Then $\tilde{v} \in \mathsf{BV}(\mathbb{R}^n)$ and $|\tilde{v}|_{\mathsf{BV}(\mathbb{R}^n)} = |v|_{\mathsf{BV}(\Omega)} + ||v||_{L^1(\partial\Omega)}$.

• $(|\tilde{u}_n|_{\mathsf{BV}(\mathbb{R}^n)})_{n\in\mathbb{N}} = (|u_n|_{\mathsf{BV}(\Omega)} + \|u_n\|_{L^1(\partial\Omega)})_{n\in\mathbb{N}}$ is bounded since $(u_n)_{n\in\mathbb{N}}$ is infimizing sequence of E and $E(v) \geqslant \frac{\alpha}{4}\|v\|_{L^2(\Omega)}^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \frac{1}{\alpha}\|f\|_{L^2(\Omega)}^2.$

Lawrence C. Evans and Ronald F. Gariepy. **Measure Theory and Fine Properties of Functions**. CRC Press, 1992. ISBN: 0-8493-7157-0, p. 183, Theorem 1

Let $v \in \mathsf{BV}(\Omega)$. For all $x \in \mathbb{R}^n$ define

$$\tilde{v}(x) := \begin{cases} v(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \in \mathbb{R}^n \setminus \Omega. \end{cases}$$

Then $\tilde{v} \in \mathsf{BV}(\mathbb{R}^n)$ and $|\tilde{v}|_{\mathsf{BV}(\mathbb{R}^n)} = |v|_{\mathsf{BV}(\Omega)} + ||v||_{L^1(\partial\Omega)}$.

- $(|\tilde{u}_n|_{\mathrm{BV}(\mathbb{R}^n)})_{n\in\mathbb{N}} = (|u_n|_{\mathrm{BV}(\Omega)} + \|u_n\|_{L^1(\partial\Omega)})_{n\in\mathbb{N}}$ is bounded since $(u_n)_{n\in\mathbb{N}}$ is infimizing sequence of E and $E(v) \geqslant \frac{\alpha}{4}\|v\|_{L^2(\Omega)}^2 + |v|_{\mathrm{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} \frac{1}{\alpha}\|f\|_{L^2(\Omega)}^2.$
- $\tilde{u}_n \to \tilde{u}$ in $L^1(\mathbb{R}^n)$ as $n \to \infty$ since $u_n \to u$ in $L^1(\Omega)$.

• $(|\tilde{u}_n|_{\mathsf{BV}(\mathbb{R}^n)})_{n\in\mathbb{N}} = (|u_n|_{\mathsf{BV}(\Omega)} + \|u_n\|_{L^1(\partial\Omega)})_{n\in\mathbb{N}}$ is bounded.

- $(|\tilde{u}_n|_{\mathsf{BV}(\mathbb{R}^n)})_{n\in\mathbb{N}} = (|u_n|_{\mathsf{BV}(\Omega)} + ||u_n||_{L^1(\partial\Omega)})_{n\in\mathbb{N}}$ is bounded.
- $\tilde{u_n} \to \tilde{u}$ in $L^1(\mathbb{R}^n)$ as $n \to \infty$.

- $(|\tilde{u}_n|_{\mathsf{BV}(\mathbb{R}^n)})_{n\in\mathbb{N}} = (|u_n|_{\mathsf{BV}(\Omega)} + ||u_n||_{L^1(\partial\Omega)})_{n\in\mathbb{N}}$ is bounded.
- $\tilde{u_n} \to \tilde{u}$ in $L^1(\mathbb{R}^n)$ as $n \to \infty$.

Let $(v_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(\Omega)$ and $v\in L^1(\Omega)$ such that $|v_n|_{\mathsf{BV}(\Omega)}\leqslant c$ for some c>0 and all $n\in\mathbb{N}$ and $v_n\to v$ in $L^1(\Omega)$ as $n\to\infty$. Then $v\in \mathsf{BV}(\Omega)$ and $|v|_{\mathsf{BV}(\Omega)}\leqslant \liminf_{n\to\infty}|v_n|_{\mathsf{BV}(\Omega)}$. Furthermore v_n converges weakly to v in $\mathsf{BV}(\Omega)$.

- $(|\tilde{u}_n|_{\mathsf{BV}(\mathbb{R}^n)})_{n\in\mathbb{N}} = (|u_n|_{\mathsf{BV}(\Omega)} + ||u_n||_{L^1(\partial\Omega)})_{n\in\mathbb{N}}$ is bounded.
- $\tilde{u_n} \to \tilde{u}$ in $L^1(\mathbb{R}^n)$ as $n \to \infty$.

Let $(v_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(\Omega)$ and $v\in L^1(\Omega)$ such that $|v_n|_{\mathsf{BV}(\Omega)}\leqslant c$ for some c>0 and all $n\in\mathbb{N}$ and $v_n\to v$ in $L^1(\Omega)$ as $n\to\infty$. Then $v\in \mathsf{BV}(\Omega)$ and $|v|_{\mathsf{BV}(\Omega)}\leqslant \liminf_{n\to\infty}|v_n|_{\mathsf{BV}(\Omega)}$. Furthermore v_n converges weakly to v in $\mathsf{BV}(\Omega)$.

$$\begin{aligned} |u|_{\mathsf{BV}(\Omega)} + \|u\|_{L^1(\partial\Omega)} &= |\tilde{u}|_{\mathsf{BV}(\mathbb{R}^n)} \leqslant \liminf_{n \to \infty} |\tilde{u}_n|_{\mathsf{BV}(\mathbb{R}^n)} \\ &= \liminf_{n \to \infty} (|u_n|_{\mathsf{BV}(\Omega)} + \|u_n\|_{L^1(\partial\Omega)}). \end{aligned}$$

• $|u|_{\mathsf{BV}(\Omega)} + ||u||_{L^1(\partial\Omega)} \le \liminf_{n\to\infty} (|u_n|_{\mathsf{BV}(\Omega)} + ||u_n||_{L^1(\partial\Omega)}).$

- $|u|_{\mathsf{BV}(\Omega)} + ||u||_{L^1(\partial\Omega)} \le \liminf_{n\to\infty} (|u_n|_{\mathsf{BV}(\Omega)} + ||u_n||_{L^1(\partial\Omega)}).$
- $\frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2 \int_{\Omega} fu \, \mathrm{d}x \leq \liminf_{n \to \infty} \left(\frac{\alpha}{2} \|u_n\|_{L^2(\Omega)}^2 \int_{\Omega} fu_n \, \mathrm{d}x\right)$ since $\|\bullet\|_{L^2(\Omega)}^2$ and $-\int_{\Omega} f \bullet \, \mathrm{d}x$ are continuous and convex (and hence w.l.s.c.) on $L^2(\Omega)$ and $u_n \to u$ in $L^2(\Omega)$ as $n \to \infty$.

- $|u|_{\mathsf{BV}(\Omega)} + ||u||_{L^1(\partial\Omega)} \leqslant \liminf_{n \to \infty} (|u_n|_{\mathsf{BV}(\Omega)} + ||u_n||_{L^1(\partial\Omega)}).$
- $\frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2 \int_{\Omega} fu \, \mathrm{d}x \leq \liminf_{n \to \infty} \left(\frac{\alpha}{2} \|u_n\|_{L^2(\Omega)}^2 \int_{\Omega} fu_n \, \mathrm{d}x\right)$ since $\|\bullet\|_{L^2(\Omega)}^2$ and $-\int_{\Omega} f \bullet \, \mathrm{d}x$ are continuous and convex (and hence w.l.s.c.) on $L^2(\Omega)$ and $u_n \to u$ in $L^2(\Omega)$ as $n \to \infty$.

$$\inf_{v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)} E(v) \leqslant E(u)$$

$$\leqslant \liminf_{n \to \infty} E(u_n)$$

$$= \lim_{n \to \infty} E(u_n)$$

$$= \inf_{v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)} E(v),$$

i.e. $\min_{v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)} E(v) = E(u)$.

Table of Contents

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem
 Equivalent Saddle Point Problem
 Characterization of Minimizers

Let $u_1, u_2 \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ be minimizers of E with $f_1, f_2 \in L^2(\Omega)$ instead of f.

Then

$$||u_1-u_2||_{L^2(\Omega)} \leqslant \frac{1}{\alpha} ||f_1-f_2||_{L^2(\Omega)}.$$

Let $u_1, u_2 \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ be minimizers of E with $f_1, f_2 \in L^2(\Omega)$ instead of f.

Then

$$||u_1-u_2||_{L^2(\Omega)} \leqslant \frac{1}{\alpha} ||f_1-f_2||_{L^2(\Omega)}.$$

Define convex functionals $F : \mathsf{BV}(\Omega) \cap L^2(\Omega) \to \mathbb{R}$ and $G_\ell : \mathsf{BV}(\Omega) \cap L^2(\Omega) \to \mathbb{R}$, $\ell = 1, 2$, via

$$F(u) := |u|_{\mathsf{BV}(\Omega)} + ||u||_{L^1(\partial\Omega)}, \quad G_{\ell}(u) := \frac{\alpha}{2} ||u||_{L^2(\Omega)}^2 - \int_{\Omega} f_{\ell} u \, \mathrm{d}x.$$

Let
$$E_{\ell} := F + G_{\ell}$$
.

$$E_{\ell} := F + G_{\ell}$$
.

$$F(u) := |u|_{\mathsf{BV}(\Omega)} + ||u||_{L^1(\partial\Omega)}.$$

$$G_\ell(u) := \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2 - \int_{\Omega} f_\ell u \, \mathrm{d}x.$$

$$E_{\ell} := F + G_{\ell}$$
.

$$F(u) := |u|_{\mathsf{BV}(\Omega)} + ||u||_{L^1(\partial\Omega)}.$$

$$G_{\ell}(u) := \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2 - \int_{\Omega} f_{\ell} u \, \mathrm{d}x.$$

The Fréchet derivative $G'_{\ell}(u): L^2(\Omega) \to \mathbb{R}$ of G_{ℓ} at $u \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ is

$$G'_{\ell}(u) = \alpha(u, \bullet)_{L^{2}(\Omega)} - \int_{\Omega} f_{\ell} \bullet dx = (\alpha u - f_{\ell}, \bullet)_{L^{2}(\Omega)}.$$

New York: Springer Science+Business Media, LLC, 1985. ISBN: 978-1-4612-9529-7

New York: Springer Science+Business Media, LLC, 1985. ISBN: 978-1-4612-9529-7

Let $(X, \| \bullet \|_X)$ be a real Banach space and $H: X \to [-\infty, \infty]$.

New York: Springer Science+Business Media, LLC, 1985. ISBN: 978-1-4612-9529-7

Let $(X, \| \bullet \|_X)$ be a real Banach space and $H: X \to [-\infty, \infty]$.

The subdifferential of H at some $u \in X$ with $H(u) \neq \pm \infty$ is

$$\partial H(u) := \{ u^* \in X^* \mid \forall v \in X \quad H(v) \geqslant H(u) + \langle u^*, v - u \rangle \}$$

Define $\partial H(u) := \emptyset$ if $H(u) = \pm \infty$.

New York: Springer Science+Business Media, LLC, 1985. ISBN: 978-1-4612-9529-7

Let $(X, \| \bullet \|_X)$ be a real Banach space and $H: X \to [-\infty, \infty]$.

The subdifferential of H at some $u \in X$ with $H(u) \neq \pm \infty$ is

$$\partial H(u) \coloneqq \{u^* \in X^* \mid \forall v \in X \quad H(v) \geqslant H(u) + \langle u^*, v - u \rangle \}$$

Define $\partial H(u) := \emptyset$ if $H(u) = \pm \infty$.

 $u^* \in \partial H(u)$ is called subgradient of H at u.

New York: Springer Science+Business Media, LLC, 1985. ISBN: 978-1-4612-9529-7

Let $(X, \| \bullet \|_X)$ be a real Banach space and $H: X \to [-\infty, \infty]$.

The subdifferential of H at some $u \in X$ with $H(u) \neq \pm \infty$ is

$$\partial H(u) \coloneqq \{u^* \in X^* \mid \forall v \in X \quad H(v) \geqslant H(u) + \langle u^*, v - u \rangle \}$$

Define $\partial H(u) := \emptyset$ if $H(u) = \pm \infty$.

 $u^* \in \partial H(u)$ is called subgradient of H at u.

If $H: X \to (-\infty, \infty]$ such that $H \not\equiv \infty$, then $H(u) = \inf_{v \in X} H(v)$ if and only if $0 \in \partial H(u)$.

If H convex and Gâteaux differentiable at $u \in X$ with Gâteaux derivative H'(u), then $\partial H(u) = \{H'(u)\}$.

If H convex and Gâteaux differentiable at $u \in X$ with Gâteaux derivative H'(u), then $\partial H(u) = \{H'(u)\}$.

 $H_1, H_2, \ldots, H_n: X \to (-\infty, \infty]$ and the summation of sets in X^* commute, [Zei85, S. 389, Theorem 47.B] implies the following statement.

If the functionals $H_1, H_2, \ldots, H_n : X \to (-\infty, \infty]$, $n \geqslant 2$, are convex and there exists $u_0 \in X$ and $j \in \{1, 2, \ldots, n\}$ such that $H_k(u_0) < \infty$ for all $k \in \{1, 2, \ldots, n\} \setminus \{j\}$, then

$$\partial (H_1 + H_2 + \ldots + H_n)(u) = \partial H_1(u) + \partial H_2(u) + \ldots + \partial H_n(u)$$

for all $u \in X$.

If H convex and Gâteaux differentiable at $u \in X$ with Gâteaux derivative H'(u), then $\partial H(u) = \{H'(u)\}$.

 $H_1, H_2, \ldots, H_n : X \to (-\infty, \infty]$ and the summation of sets in X^* commute, [Zei85, S. 389, Theorem 47.B] implies the following statement.

If the functionals $H_1, H_2, \ldots, H_n : X \to (-\infty, \infty]$, $n \ge 2$, are convex and there exists $u_0 \in X$ and $j \in \{1, 2, \ldots, n\}$ such that $H_k(u_0) < \infty$ for all $k \in \{1, 2, \ldots, n\} \setminus \{j\}$, then

$$\partial (H_1 + H_2 + \ldots + H_n)(u) = \partial H_1(u) + \partial H_2(u) + \ldots + \partial H_n(u)$$

for all $u \in X$.

$$0 \in \partial E_{\ell}(u_{\ell}) = \partial F(u_{\ell}) + \partial G_{\ell}(u_{\ell}) = \partial F(u_{\ell}) + \{G'_{\ell}(u_{\ell})\} \text{ for } \ell = 1, 2.$$

$$-G'_{\ell}(u_{\ell}) = -(\alpha u - f_{\ell}, \bullet)_{L^{2}(\Omega)} \in \partial F(u_{\ell}).$$

$$-G'_{\ell}(u_{\ell}) = -(\alpha u - f_{\ell}, \bullet)_{L^{2}(\Omega)} \in \partial F(u_{\ell}).$$

Let $H: X \to (-\infty, \infty]$ convex and lower semi-continuous with $H \not\equiv \infty$.

Then $\partial H(\bullet)$ is monoton, i.e.

$$\langle u^* - v^*, u - v \rangle \geqslant 0$$
 for all $u, v \in X, u^* \in \partial H(u), v^* \in \partial H(v)$.

$$-G'_{\ell}(u_{\ell}) = -(\alpha u - f_{\ell}, \bullet)_{L^{2}(\Omega)} \in \partial F(u_{\ell}).$$

Let $H: X \to (-\infty, \infty]$ convex and lower semi-continuous with $H \not\equiv \infty$.

Then $\partial H(\bullet)$ is monoton, i.e.

$$\left\langle u^*-v^*,u-v\right\rangle\geqslant 0\quad\text{for all }u,v\in X,u^*\in\partial H(u),v^*\in\partial H(v).$$

Hence
$$(-(\alpha u_1 - f_1) + (\alpha u_2 - f_2), u_1 - u_2)_{L^2(\Omega)} \ge 0.$$

$$-G'_{\ell}(u_{\ell}) = -(\alpha u - f_{\ell}, \bullet)_{L^{2}(\Omega)} \in \partial F(u_{\ell}).$$

Let $H: X \to (-\infty, \infty]$ convex and lower semi-continuous with $H \not\equiv \infty$.

Then $\partial H(\bullet)$ is monoton, i.e.

$$\langle u^*-v^*,u-v\rangle\geqslant 0\quad\text{for all }u,v\in X,u^*\in\partial H(u),v^*\in\partial H(v).$$

Hence
$$(-(\alpha u_1 - f_1) + (\alpha u_2 - f_2), u_1 - u_2)_{L^2(\Omega)} \ge 0.$$

With the Cauchy-Schwarz inequality this implies

$$\|\alpha\|u_1 - u_2\|_{L^2(\Omega)}^2 \le (f_1 - f_2, u_1 - u_2)_{L^2(\Omega)}$$

 $\|f_1 - f_2\|_{L^2(\Omega)} \|u_1 - u_2\|_{L^2(\Omega)}.$

Table of Contents

- Introduction
- Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem

 Equivalent Saddle Point Problem

 Characterization of Minimizers

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\Omega)$. It holds

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + ||v_{\mathsf{CR}}||_{L^1(\partial\Omega)} = ||\nabla_{\mathsf{NC}}v_{\mathsf{CR}}||_{L^1(\Omega)} + \sum_{F \in \mathcal{F}} \int_F |[v_{\mathsf{CR}}]_F| \, \mathrm{d}s$$

for all $v_{CR} \in CR(\mathcal{T})$.

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\Omega)$. It holds

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + ||v_{\mathsf{CR}}||_{L^{1}(\partial\Omega)} = ||\nabla_{\mathsf{NC}}v_{\mathsf{CR}}||_{L^{1}(\Omega)} + \sum_{F \in \mathcal{F}} \int_{F} |[v_{\mathsf{CR}}]_{F}| \, \mathrm{d}s$$

for all $v_{CR} \in CR(\mathcal{T})$.

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) \coloneqq \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\Omega)$. It holds

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + ||v_{\mathsf{CR}}||_{L^1(\partial\Omega)} = ||\nabla_{\mathsf{NC}}v_{\mathsf{CR}}||_{L^1(\Omega)} + \sum_{F \in \mathcal{F}} \int_F |[v_{\mathsf{CR}}]_F| \, \mathrm{d}s$$

for all $v_{CR} \in CR(\mathcal{T})$.

Refinement indicator, for some $0 < \beta \leqslant 1$, $\eta \coloneqq \sum_{T \in \mathcal{T}} \eta(T)$ with

$$\eta(T) \coloneqq |T|^{2/n} \|f - \alpha u_{\mathsf{CR}}\|_{L^2(T)}^2 + |T|^{\beta/n} \sum_{F \in \mathcal{F}(T)} \|[u_{\mathsf{CR}}]_F\|_{L^1(F)}.$$

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\Omega)$. It holds

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + ||v_{\mathsf{CR}}||_{L^1(\partial\Omega)} = ||\nabla_{\mathsf{NC}}v_{\mathsf{CR}}||_{L^1(\Omega)} + \sum_{F \in \mathcal{F}} \int_F |[v_{\mathsf{CR}}]_F| \, \mathrm{d}s$$

for all $v_{CR} \in CR(\mathcal{T})$.

Refinement indicator, for some $0 < \beta \leqslant 1$, $\eta := \sum_{T \in \mathcal{T}} \eta(T)$ with

$$\eta(T) \coloneqq |T|^{2/n} \|f - \alpha u_{\mathsf{CR}}\|_{L^2(T)}^2 + |T|^{\beta/n} \sum_{F \in \mathcal{F}(T)} \|[u_{\mathsf{CR}}]_F\|_{L^1(F)}.$$

Let \mathcal{T} be a regular triangulation of Ω .

For given $f \in L^2(\Omega)$ and $\alpha > 0$ minimize the functional

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) \coloneqq \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\Omega)$. It holds

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + \|v_{\mathsf{CR}}\|_{L^1(\partial\Omega)} = \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} + \sum_{F \in \mathcal{F}} \int_F |[v_{\mathsf{CR}}]_F| \,\mathrm{d}s$$

for all $v_{CR} \in CR(\mathcal{T})$.

Refinement indicator, for some $0 < \beta \leq 1$, $\eta := \sum_{T \in \mathcal{T}} \eta(T)$ with

$$\eta(T) \coloneqq |T|^{2/n} \|f - \alpha u_{\mathsf{CR}}\|_{L^2(T)}^2 + |T|^{\beta/n} \sum_{F \in \mathcal{F}(T)} \|[u_{\mathsf{CR}}]_F\|_{L^1(F)}.$$

If $u \in L^1(\Omega)$, $\Omega_1 \cap \Omega_2 = \emptyset$, $\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2$, $\partial \Omega_1 \cap \partial \Omega_2 = \Sigma$, and $u|_{\Omega_j} \in W^{1,1}(\Omega_j)$, then $u \in \mathsf{BV}(\Omega)$ and $Du = \nabla_{\mathsf{NC}} u \otimes \mathrm{d} x - [un] \otimes \mathrm{d} s|_{\Sigma}$.

Table of Contents

- 1 Introduction
- Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem
 Equivalent Saddle Point Problem
 Characterization of Minimizers

For $v_{CR} \in CR_0^1(\mathcal{T})$ and $\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \subset L^{\infty}(\Omega; \mathbb{R}^n)$ define

$$\begin{split} \mathcal{K}_1(0) &:= \{ \Lambda \in L^\infty(\Omega;\mathbb{R}^n) \mid |\Lambda(\bullet)| \leqslant 1 \text{ a.e. in } \Omega \}, \\ I_{\mathcal{K}_1(0)}(\Lambda) &:= \begin{cases} \infty & \text{if } \Lambda \notin \mathcal{K}_1(0), \\ 0 & \text{if } \Lambda \in \mathcal{K}_1(0), \end{cases} \end{split}$$

For $v_{CR} \in CR_0^1(\mathcal{T})$ and $\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \subset L^{\infty}(\Omega; \mathbb{R}^n)$ define

$$\begin{split} & \mathcal{K}_1(0) := \{ \Lambda \in L^\infty(\Omega; \mathbb{R}^n) \mid |\Lambda(\bullet)| \leqslant 1 \text{ a.e. in } \Omega \}, \\ & \mathit{I}_{\mathcal{K}_1(0)}(\Lambda) := \begin{cases} \infty & \text{if } \Lambda \notin \mathcal{K}_1(0), \\ 0 & \text{if } \Lambda \in \mathcal{K}_1(0), \end{cases} \end{split}$$

and
$$\mathcal{L}_h: \mathsf{CR}^1_0(\mathcal{T}) \times \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \to [-\infty, \infty)$$
 by

$$\mathcal{L}_{h}(v_{\mathsf{CR}}, \Lambda)$$

$$:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^{2}(\Omega)}^{2} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}_{1}(0)}(\Lambda).$$

For $v_{CR} \in CR_0^1(\mathcal{T})$ and $\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \subset L^{\infty}(\Omega; \mathbb{R}^n)$ define

$$\begin{split} & \mathcal{K}_1(0) := \{ \Lambda \in L^\infty(\Omega; \mathbb{R}^n) \mid |\Lambda(\bullet)| \leqslant 1 \text{ a.e. in } \Omega \}, \\ & I_{\mathcal{K}_1(0)}(\Lambda) := \begin{cases} \infty & \text{if } \Lambda \notin \mathcal{K}_1(0), \\ 0 & \text{if } \Lambda \in \mathcal{K}_1(0), \end{cases} \end{split}$$

and $\mathcal{L}_h: \mathsf{CR}^1_0(\mathcal{T}) \times \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \to [-\infty, \infty)$ by

$$\begin{split} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \\ &:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} \mathit{f} v_{\mathsf{CR}} \, \mathrm{d}x - \mathit{I}_{\mathcal{K}_1(0)}(\Lambda). \end{split}$$

$$\mathcal{L}_h(v_{CR}, \Lambda) > -\infty \Leftrightarrow \Lambda \in \mathcal{K}_1(0)$$

$$\begin{split} E_{\mathsf{NC}}(v_{\mathsf{CR}}) &:= \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x \\ \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) &:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}_1(0)}(\Lambda) \end{split}$$

$$E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|_{L^{2}(\Omega)}^{2} + \|\nabla_{NC}v_{CR}\|_{L^{1}(\Omega)} - \int_{\Omega} fv_{CR} dx$$

$$\mathcal{L}_{h}(v_{CR}, \Lambda)$$

$$:= \int_{\Omega} \Lambda \cdot \nabla_{NC}v_{CR} dx + \frac{\alpha}{2} \|v_{CR}\|_{L^{2}(\Omega)}^{2} - \int_{\Omega} fv_{CR} dx - I_{K_{1}(0)}(\Lambda)$$

$$\begin{split} E_{\text{NC}}(v_{\text{CR}}) &:= \frac{\alpha}{2} \|v_{\text{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\text{NC}}v_{\text{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x \\ \mathcal{L}_h(v_{\text{CR}}, \Lambda) &:= \int_{\Omega} \Lambda \cdot \nabla_{\text{NC}} v_{\text{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\text{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x - I_{K_1(0)}(\Lambda) \end{split}$$

For any $\Lambda \in \mathbb{P}_0(\mathcal{T};\mathbb{R}^n) \cap K_1(0)$ the Cauchy-Schwarz inequality implies

$$\int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x \leqslant \int_{\Omega} |\Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}}| \, \mathrm{d}x \leqslant \int_{\Omega} |\Lambda| |\nabla_{\mathsf{NC}} v_{\mathsf{CR}}| \, \mathrm{d}x$$
$$\leqslant \int_{\Omega} 1 |\nabla_{\mathsf{NC}} v_{\mathsf{CR}}| \, \mathrm{d}x = \|\nabla_{\mathsf{NC}} v_{\mathsf{CR}}\|_{L^{1}(\Omega)}.$$

$$\begin{split} E_{\text{NC}}(v_{\text{CR}}) &:= \frac{\alpha}{2} \|v_{\text{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\text{NC}}v_{\text{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x \\ \mathcal{L}_h(v_{\text{CR}}, \Lambda) &:= \int_{\Omega} \Lambda \cdot \nabla_{\text{NC}} v_{\text{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\text{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x - I_{K_1(0)}(\Lambda) \end{split}$$

For any $\Lambda \in \mathbb{P}_0(\mathcal{T};\mathbb{R}^n) \cap K_1(0)$ the Cauchy-Schwarz inequality implies

$$\begin{split} \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x & \leq \int_{\Omega} |\Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}}| \, \mathrm{d}x \leq \int_{\Omega} |\Lambda| |\nabla_{\mathsf{NC}} v_{\mathsf{CR}}| \, \mathrm{d}x \\ & \leq \int_{\Omega} 1 |\nabla_{\mathsf{NC}} v_{\mathsf{CR}}| \, \mathrm{d}x \ = \|\nabla_{\mathsf{NC}} v_{\mathsf{CR}}\|_{L^{1}(\Omega)}. \end{split}$$

Hence

$$\sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}: \mathbb{R}^n)} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) = \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}: \mathbb{R}^n) \cap K_1(0)} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \leqslant E_{\mathsf{NC}}(v_{\mathsf{CR}}).$$

$$\begin{split} \sup_{\Lambda \in \mathbb{P}_{0}(\mathcal{T}; \mathbb{R}^{n})} \mathcal{L}_{h}(v_{\mathsf{CR}}, \Lambda) &\leq E_{\mathsf{NC}}(v_{\mathsf{CR}}) \\ E_{\mathsf{NC}}(v_{\mathsf{CR}}) &\coloneqq \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^{2}(\Omega)}^{2} + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^{1}(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x \\ \mathcal{L}_{h}(v_{\mathsf{CR}}, \Lambda) \\ &\coloneqq \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^{2}(\Omega)}^{2} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{K_{1}(0)}(\Lambda) \end{split}$$

$$\begin{split} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T};\mathbb{R}^n)} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) & \leqslant E_{\mathsf{NC}}(v_{\mathsf{CR}}) \\ E_{\mathsf{NC}}(v_{\mathsf{CR}}) & \coloneqq \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x \\ \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \\ & \coloneqq \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{K_1(0)}(\Lambda) \\ \mathsf{Let} \\ & \mathsf{sign}(x) = \begin{cases} \frac{\{x/|x|\}}{B(0;1)} & \text{if } x \in \mathbb{R}^n \backslash \{0\}, \\ \frac{B(0;1)}{B(0;1)} & \text{else.} \end{cases} \end{split}$$

$$\begin{split} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) &\leqslant E_{\mathsf{NC}}(v_{\mathsf{CR}}) \\ E_{\mathsf{NC}}(v_{\mathsf{CR}}) &:= \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}} v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x \\ \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \\ &:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}_1(0)}(\Lambda) \end{split}$$

Let

$$\operatorname{sign}(x) = \begin{cases} \frac{\{x/|x|\}}{B(0;1)} & \text{if } x \in \mathbb{R}^n \setminus \{0\}, \\ & \text{else.} \end{cases}$$

Let
$$\Lambda \in \text{sign}(\nabla_{NC} v_{CR}) \subset \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap \mathcal{K}_1(0)$$
, then $\mathcal{L}_h(v_{CR}, \Lambda) = \mathcal{E}_{NC}(v_{CR})$.

$$\begin{split} \sup_{\boldsymbol{\Lambda} \in \mathbb{P}_{0}(\mathcal{T}; \mathbb{R}^{n})} \mathcal{L}_{h}(v_{\mathsf{CR}}, \boldsymbol{\Lambda}) & \leq E_{\mathsf{NC}}(v_{\mathsf{CR}}) \\ E_{\mathsf{NC}}(v_{\mathsf{CR}}) &:= \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^{2}(\Omega)}^{2} + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^{1}(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x \\ \mathcal{L}_{h}(v_{\mathsf{CR}}, \boldsymbol{\Lambda}) \\ &:= \int_{\Omega} \boldsymbol{\Lambda} \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^{2}(\Omega)}^{2} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}_{1}(0)}(\boldsymbol{\Lambda}) \end{split}$$

Let

$$\operatorname{sign}(x) = \begin{cases} \frac{\{x/|x|\}}{B(0;1)} & \text{if } x \in \mathbb{R}^n \setminus \{0\}, \\ & \text{else.} \end{cases}$$

Let $\Lambda \in \text{sign}(\nabla_{NC} v_{CR}) \subset \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap \mathcal{K}_1(0)$, then $\mathcal{L}_h(v_{CR}, \Lambda) = \mathcal{E}_{NC}(v_{CR})$. Hence

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) = \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda).$$

$$\begin{split} E_{\text{NC}}(v_{\text{CR}}) &:= \frac{\alpha}{2} \|v_{\text{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\text{NC}}v_{\text{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x \\ \mathcal{L}_h(v_{\text{CR}}, \Lambda) &:= \int_{\Omega} \Lambda \cdot \nabla_{\text{NC}}v_{\text{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\text{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x - I_{K_1(0)}(\Lambda) \end{split}$$

Altogether we obtain

$$\inf_{v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T})} E_{\mathsf{NC}}(v_{\mathsf{CR}}) = \inf_{v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T};\mathbb{R}^n)} \mathcal{L}_h(v_{\mathsf{CR}},\Lambda).$$

Table of Contents

- Introduction
- Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem
 Equivalent Saddle Point Problem
 Characterization of Minimizers

$$E_{\text{NC}}(v_{\text{CR}}) := \frac{\alpha}{2} \|v_{\text{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\text{NC}}v_{\text{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x$$

$$E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|_{L^2(\Omega)}^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\Omega)$.

The following three statements are equivalent for $u_{CR} \in CR_0^1(\mathcal{T})$.

$$E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|_{L^2(\Omega)}^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\Omega)$.

The following three statements are equivalent for $u_{CR} \in CR_0^1(\mathcal{T})$.

(i) u_{CR} minimizes $E_{NC}(v_{CR})$ amongst all $v_{CR} \in CR_0^1(\Omega)$.

$$E_{\text{NC}}(v_{\text{CR}}) := \frac{\alpha}{2} \|v_{\text{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\text{NC}}v_{\text{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\Omega)$.

The following three statements are equivalent for $u_{CR} \in CR_0^1(\mathcal{T})$.

- (i) u_{CR} minimizes $E_{NC}(v_{CR})$ amongst all $v_{CR} \in CR_0^1(\Omega)$.
- (ii) There exists $\bar{\Lambda}\in\mathbb{P}_0(\mathcal{T};\mathbb{R}^n)$ with $|\bar{\Lambda}(\bullet)|\leqslant 1$ almost everywhere in Ω such that

$$\begin{split} \bar{\Lambda}(\bullet) \cdot \nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet) &= |\nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet)| \quad \mathsf{almost \ everywhere \ in \ } \Omega, \\ \left(\bar{\Lambda}, \nabla_{\mathsf{NC}} v_{\mathsf{CR}}\right)_{L^2(\Omega)} &= (f - \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}})_{L^2(\Omega)} \quad \mathsf{for \ all \ } v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T}). \end{split}$$

$$E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|_{L^2(\Omega)}^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\Omega)$.

The following three statements are equivalent for $u_{CR} \in CR_0^1(\mathcal{T})$.

- (i) u_{CR} minimizes $E_{NC}(v_{CR})$ amongst all $v_{CR} \in CR_0^1(\Omega)$.
- (ii) There exists $\bar{\Lambda}\in\mathbb{P}_0(\mathcal{T};\mathbb{R}^n)$ with $|\bar{\Lambda}(ullet)|\leqslant 1$ almost everywhere in Ω such that

$$\begin{split} \bar{\Lambda}(\bullet) \cdot \nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet) &= |\nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet)| \quad \mathsf{almost \ everywhere \ in} \ \Omega, \\ \left(\bar{\Lambda}, \nabla_{\mathsf{NC}} v_{\mathsf{CR}}\right)_{L^2(\Omega)} &= (f - \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}})_{L^2(\Omega)} \quad \mathsf{for \ all} \ v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T}). \end{split}$$

(iii) u_{CR} satisfies

$$(f - \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}} - u_{\mathsf{CR}})_{L^2(\Omega)} \leqslant \|\nabla_{\mathsf{NC}} v_{\mathsf{CR}}\|_{L^1(\Omega)} - \|\nabla_{\mathsf{NC}} u_{\mathsf{CR}}\|_{L^1(\Omega)}$$

for all $v_{CR} \in CR_0^1(\mathcal{T})$.

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

•
$$E_{NC}(v_{CR}) \geqslant -\frac{1}{\alpha} ||f||_{L^{2}(\Omega)}^{2}$$

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

- $E_{NC}(v_{CR}) \ge -\frac{1}{\alpha} ||f||_{L^{2}(\Omega)}^{2}$
- E_{NC} bounded from below

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

- $E_{NC}(v_{CR}) \ge -\frac{1}{\alpha} ||f||_{L^{2}(\Omega)}^{2}$
- E_{NC} bounded from below
- $\exists (v_k)_{k \in \mathbb{N}} \subset \mathsf{CR}^1_0(\mathcal{T})$ infimizing sequence of E_{NC}

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x$$

- $E_{NC}(v_{CR}) \ge -\frac{1}{\alpha} ||f||_{L^{2}(\Omega)}^{2}$
- E_{NC} bounded from below
- $\exists (v_k)_{k \in \mathbb{N}} \subset \mathsf{CR}^1_0(\mathcal{T})$ infimizing sequence of E_{NC}
- $(v_k)_{k\in\mathbb{N}}$ bounded from below w.r.t. $\| \bullet \|_{L^2(\Omega)}$

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x$$

- $E_{NC}(v_{CR}) \ge -\frac{1}{\alpha} ||f||_{L^{2}(\Omega)}^{2}$
- E_{NC} bounded from below
- $\exists (v_k)_{k \in \mathbb{N}} \subset \mathsf{CR}^1_0(\mathcal{T})$ infimizing sequence of E_{NC}
- $(v_k)_{k\in\mathbb{N}}$ bounded from below w.r.t. $\| \bullet \|_{L^2(\Omega)}$
- \exists subsequence of $(v_k)_{k \in \mathbb{N}}$ weakly convergent w.r.t. $\| \bullet \|_{L^2(\Omega)}$ to some $u_{CR} \in CR_0^1(\mathcal{T})$ since $CR_0^1(\mathcal{T})$ reflexive

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x$$

- $E_{NC}(v_{CR}) \ge -\frac{1}{\alpha} ||f||_{L^{2}(\Omega)}^{2}$
- E_{NC} bounded from below
- $\exists (v_k)_{k \in \mathbb{N}} \subset \mathsf{CR}^1_0(\mathcal{T})$ infimizing sequence of E_{NC}
- $(v_k)_{k\in\mathbb{N}}$ bounded from below w.r.t. $\| \bullet \|_{L^2(\Omega)}$
- \exists subsequence of $(v_k)_{k\in\mathbb{N}}$ weakly convergent w.r.t. $\| \bullet \|_{L^2(\Omega)}$ to some $u_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T})$ since $\mathsf{CR}^1_0(\mathcal{T})$ reflexive
- u_{CR} minimizes E_{NC} since E_{NC} is convex and continuous w.r.t. convergence in $L^2(\Omega)$ (which implies w.l.s.c.)

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 + \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x$$

- $E_{NC}(v_{CR}) \ge -\frac{1}{\alpha} ||f||_{L^{2}(\Omega)}^{2}$
- E_{NC} bounded from below
- $\exists (v_k)_{k \in \mathbb{N}} \subset \mathsf{CR}^1_0(\mathcal{T})$ infimizing sequence of E_{NC}
- $(v_k)_{k\in\mathbb{N}}$ bounded from below w.r.t. $\| \bullet \|_{L^2(\Omega)}$
- \exists subsequence of $(v_k)_{k \in \mathbb{N}}$ weakly convergent w.r.t. $\| \bullet \|_{L^2(\Omega)}$ to some $u_{CR} \in CR_0^1(\mathcal{T})$ since $CR_0^1(\mathcal{T})$ reflexive
- u_{CR} minimizes E_{NC} since E_{NC} is convex and continuous w.r.t. convergence in $L^2(\Omega)$ (which implies w.l.s.c.)
- strict convexity of E_{NC} implies uniqueness

Since

$$\begin{split} \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} E_{\mathsf{NC}}(v_{\mathsf{CR}}) &= E_{\mathsf{NC}}(u_{\mathsf{CR}}) = \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}_h(u_{\mathsf{CR}}, \Lambda) \\ &= \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda). \end{split}$$

there exists $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap \mathcal{K}_1(0)$ such that

$$E_{\mathsf{NC}}(\mathit{u}_{\mathsf{CR}}) = \mathcal{L}_{\mathit{h}}\left(\mathit{u}_{\mathsf{CR}},\bar{\Lambda}\right) = \inf_{\mathsf{v}_{\mathsf{CR}} \in \mathsf{CR}_{0}^{1}(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_{0}(\mathcal{T};\mathbb{R}^{n})} \mathcal{L}_{\mathit{h}}(\mathit{v}_{\mathsf{CR}},\Lambda).$$

Since

$$\begin{split} \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} E_{\mathsf{NC}}(v_{\mathsf{CR}}) &= E_{\mathsf{NC}}(u_{\mathsf{CR}}) = \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T};\mathbb{R}^n)} \mathcal{L}_h(u_{\mathsf{CR}}, \Lambda) \\ &= \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T};\mathbb{R}^n)} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda). \end{split}$$

there exists $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap \mathcal{K}_1(0)$ such that

$$E_{\mathsf{NC}}(\mathit{u}_{\mathsf{CR}}) = \mathcal{L}_{\mathit{h}}\left(\mathit{u}_{\mathsf{CR}},\bar{\Lambda}\right) = \inf_{\mathsf{v}_{\mathsf{CR}} \in \mathsf{CR}_{0}^{1}(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_{0}(\mathcal{T};\mathbb{R}^{n})} \mathcal{L}_{\mathit{h}}(\mathit{v}_{\mathsf{CR}},\Lambda).$$

$$\mathcal{L}_{h}\left(\textit{u}_{\text{CR}},\bar{\Lambda}\right) = \inf_{\textit{v}_{\text{CR}} \in \text{CR}_{0}^{1}(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_{0}(\mathcal{T};\mathbb{R}^{n})} \mathcal{L}_{h}(\textit{v}_{\text{CR}},\Lambda).$$

$$\mathcal{L}_{h}\left(\textit{u}_{\text{CR}},\bar{\Lambda}\right) = \inf_{\textit{v}_{\text{CR}} \in \text{CR}_{0}^{1}(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_{0}(\mathcal{T};\mathbb{R}^{n})} \mathcal{L}_{h}(\textit{v}_{\text{CR}},\Lambda).$$

R. Tyrrell Rockafellar. Convex Analysis. New Jersey: Princeton University Press, 1970. ISBN: 0-691-08069-0

$$\mathcal{L}_{\textit{h}}\left(\textit{u}_{\text{CR}},\bar{\Lambda}\right) = \inf_{\textit{v}_{\text{CR}} \in \text{CR}_{0}^{1}(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_{0}(\mathcal{T};\mathbb{R}^{\textit{n}})} \mathcal{L}_{\textit{h}}(\textit{v}_{\text{CR}},\Lambda).$$

R. Tyrrell Rockafellar. Convex Analysis. New Jersey: Princeton University Press, 1970. ISBN: 0-691-08069-0
It holds

$$\inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \geqslant \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda)$$

and hence

$$\begin{split} \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) &= \mathcal{L}_h\left(u_{\mathsf{CR}}, \bar{\Lambda}\right) \\ &= \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda). \end{split}$$

$$\begin{split} \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}_h\big(v_{\mathsf{CR}}, \Lambda\big) &= \mathcal{L}_h\left(u_{\mathsf{CR}}, \bar{\Lambda}\right) \\ &= \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \end{split}$$

$$\mathcal{L}_{h}(v_{\mathsf{CR}}, \Lambda)$$

$$:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^{2}(\Omega)}^{2} - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}_{1}(0)}(\Lambda)$$

 $\left(u_{\mathsf{CR}}, \bar{\Lambda}\right) \in \mathsf{CR}^1_0(\mathcal{T}) \times \left(\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap \mathcal{K}_1(0)\right)$ is saddle-point of \mathcal{L}_h w.r.t. maximizing over $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$ and minimizing over $\mathsf{CR}^1_0(\mathcal{T})$.

$$\begin{split} \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}_h\big(v_{\mathsf{CR}}, \Lambda\big) &= \mathcal{L}_h\left(u_{\mathsf{CR}}, \bar{\Lambda}\right) \\ &= \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \end{split}$$

$$\mathcal{L}_{h}(v_{\mathsf{CR}}, \Lambda)$$

$$:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^{2}(\Omega)}^{2} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}_{1}(0)}(\Lambda)$$

 $\left(u_{\mathsf{CR}}, \bar{\Lambda}\right) \in \mathsf{CR}^1_0(\mathcal{T}) \times \left(\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap \mathcal{K}_1(0)\right)$ is saddle-point of \mathcal{L}_h w.r.t. maximizing over $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$ and minimizing over $\mathsf{CR}^1_0(\mathcal{T})$.

In particular, u_{CR} minimizes $\mathcal{L}_h(\bullet, \bar{\Lambda})$ in $CR_0^1(\mathcal{T})$ and $\bar{\Lambda}$ maximizes $\mathcal{L}_h(u_{CR}, \bullet)$ in $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$.

$$\begin{split} \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) &= \mathcal{L}_h\left(u_{\mathsf{CR}}, \bar{\Lambda}\right) \\ &= \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \inf_{v_{\mathsf{CR}} \in \mathsf{CR}_0^1(\mathcal{T})} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \end{split}$$

$$\mathcal{L}_{h}(v_{\mathsf{CR}}, \Lambda)$$

$$:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^{2}(\Omega)}^{2} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}_{1}(0)}(\Lambda)$$

 $(u_{CR}, \bar{\Lambda}) \in CR_0^1(\mathcal{T}) \times (\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap K_1(0))$ is saddle-point of \mathcal{L}_h w.r.t. maximizing over $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$ and minimizing over $CR_0^1(\mathcal{T})$.

In particular, u_{CR} minimizes $\mathcal{L}_h(\bullet, \bar{\Lambda})$ in $CR_0^1(\mathcal{T})$ and $\bar{\Lambda}$ maximizes $\mathcal{L}_h(u_{CR}, \bullet)$ in $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$.

 $-\bar{\Lambda}$ minimizes the convex functional $-\mathcal{L}_h(u_{\mathsf{CR}}, \bullet)$ in $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$.

$$\mathcal{L}_{h}(v_{\mathsf{CR}}, \Lambda)$$

$$:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^{2}(\Omega)}^{2} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}_{1}(0)}(\Lambda)$$

 u_{CR} minimizes $\mathcal{L}_h(\bullet, \bar{\Lambda})$ in $CR_0^1(\mathcal{T})$. $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap \mathcal{K}_1(0)$.

 $-\bar{\Lambda}$ minimizes the convex functional $-\mathcal{L}_h(u_{CR}, \bullet)$ in $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$.

$$\begin{split} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \\ &:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} \mathit{f} v_{\mathsf{CR}} \, \mathrm{d}x - \mathit{I}_{\mathcal{K}_1(0)}(\Lambda) \end{split}$$

 $\textit{u}_{\text{CR}} \text{ minimizes } \mathcal{L}_\textit{h}(\bullet,\bar{\Lambda}) \text{ in } \text{CR}^1_0(\mathcal{T}). \ \bar{\Lambda} \in \mathbb{P}_0(\mathcal{T};\mathbb{R}^\textit{n}) \cap \textit{K}_1(0).$

- $-\bar{\Lambda}$ minimizes the convex functional $-\mathcal{L}_h(u_{CR}, \bullet)$ in $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$.
 - (i) u_{CR} minimizes $E_{NC}(v_{CR})$ amongst all $v_{CR} \in CR_0^1(\Omega)$.
- (ii) There exists $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$ with $|\bar{\Lambda}(\bullet)| \leq 1$ almost everywhere in Ω such that $\bar{\Lambda}(\bullet) \cdot \nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet) = |\nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet)|$ almost everywhere in Ω and $(\bar{\Lambda}, \nabla_{\mathsf{NC}} v_{\mathsf{CR}})_{L^2(\Omega)} = (f \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}})_{L^2(\Omega)}$ for all $v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T})$.

$$\begin{split} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \\ &:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} \mathit{f} v_{\mathsf{CR}} \, \mathrm{d}x - \mathit{I}_{\mathcal{K}_1(0)}(\Lambda) \end{split}$$

 u_{CR} minimizes $\mathcal{L}_h(\bullet, \bar{\Lambda})$ in $CR_0^1(\mathcal{T})$. $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap K_1(0)$.

- $-\bar{\Lambda}$ minimizes the convex functional $-\mathcal{L}_h(u_{CR}, \bullet)$ in $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$.
 - (i) u_{CR} minimizes $E_{NC}(v_{CR})$ amongst all $v_{CR} \in CR_0^1(\Omega)$.
- (ii) There exists $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$ with $|\bar{\Lambda}(\bullet)| \leq 1$ almost everywhere in Ω such that $\bar{\Lambda}(\bullet) \cdot \nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet) = |\nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet)|$ almost everywhere in Ω and $(\bar{\Lambda}, \nabla_{\mathsf{NC}} v_{\mathsf{CR}})_{L^2(\Omega)} = (f \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}})_{L^2(\Omega)}$ for all $v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T})$.

$$\begin{split} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \\ &:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} \mathit{f} v_{\mathsf{CR}} \, \mathrm{d}x - \mathit{I}_{\mathcal{K}_1(0)}(\Lambda) \end{split}$$

 u_{CR} minimizes $\mathcal{L}_h(\bullet, \bar{\Lambda})$ in $CR_0^1(\mathcal{T})$. $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap K_1(0)$.

- $-\bar{\Lambda}$ minimizes the convex functional $-\mathcal{L}_h(u_{CR}, \bullet)$ in $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$.
 - (i) u_{CR} minimizes $E_{NC}(v_{CR})$ amongst all $v_{CR} \in CR_0^1(\Omega)$.
- (ii) There exists $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$ with $|\bar{\Lambda}(\bullet)| \leq 1$ almost everywhere in Ω such that $\bar{\Lambda}(\bullet) \cdot \nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet) = |\nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet)|$ almost everywhere in Ω and $(\bar{\Lambda}, \nabla_{\mathsf{NC}} v_{\mathsf{CR}})_{L^2(\Omega)} = (f \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}})_{L^2(\Omega)}$ for all $v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T})$.

$$\begin{split} \mathcal{L}_h(v_{\mathsf{CR}}, \Lambda) \\ &:= \int_{\Omega} \Lambda \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} \mathit{fv}_{\mathsf{CR}} \, \mathrm{d}x - \mathit{I}_{\mathcal{K}_1(0)}(\Lambda) \end{split}$$

 u_{CR} minimizes $\mathcal{L}_h(ullet, \bar{\Lambda})$ in $CR_0^1(\mathcal{T})$. $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap K_1(0)$.

- $-\bar{\Lambda}$ minimizes the convex functional $-\mathcal{L}_h(u_{CR}, \bullet)$ in $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$.
 - (i) u_{CR} minimizes $E_{NC}(v_{CR})$ amongst all $v_{CR} \in CR_0^1(\Omega)$.
- (ii) There exists $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$ with $|\bar{\Lambda}(\bullet)| \leq 1$ almost everywhere in Ω such that $\bar{\Lambda}(\bullet) \cdot \nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet) = |\nabla_{\mathsf{NC}} u_{\mathsf{CR}}(\bullet)|$ almost everywhere in Ω and $(\bar{\Lambda}, \nabla_{\mathsf{NC}} v_{\mathsf{CR}})_{L^2(\Omega)} = (f \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}})_{L^2(\Omega)}$ for all $v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T})$.
- (iii) u_{CR} satisfies $(f \alpha u_{\text{CR}}, v_{\text{CR}} u_{\text{CR}})_{L^2(\Omega)} \leq \|\nabla_{\text{NC}} v_{\text{CR}}\|_{L^1(\Omega)} \|\nabla_{\text{NC}} u_{\text{CR}}\|_{L^1(\Omega)}$ for all $v_{\text{CR}} \in \text{CR}_0^1(\mathcal{T})$.