PROBLEM 1.44

KNOWN: Radial distribution of heat dissipation in a cylindrical container of radioactive wastes. Surface convection conditions.

FIND: Total energy generation rate and surface temperature.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible temperature drop across thin container wall.

ANALYSIS: The rate of energy generation is

$$\begin{split} \dot{E}_{g} &= \int \dot{q} dV = \dot{q}_{O} \int_{0}^{r_{O}} \left[1 - (r/r_{O})^{2} \right] 2\pi r L dr \\ \dot{E}_{g} &= 2\pi L \dot{q}_{O} \left(r_{O}^{2} / 2 - r_{O}^{2} / 4 \right) \end{split}$$

or per unit length,

$$\dot{E}_{g}' = \frac{\pi \dot{q}_{o} r_{o}^{2}}{2}.$$

Performing an energy balance for a control surface about the container yields, at an instant,

$$\dot{E}'_g - \dot{E}'_{out} = 0$$

and substituting for the convection heat rate per unit length,

$$\frac{\pi \dot{q}_{O} r_{O}^{2}}{2} = h(2\pi r_{O})(T_{S} - T_{\infty})$$

$$T_{S} = T_{\infty} + \frac{\dot{q}_{O} r_{O}}{4h}.$$

COMMENTS: The temperature within the radioactive wastes increases with decreasing r from T_s at r_0 to a maximum value at the centerline.