Plan

- Review of Last lecture
- Section 13. Homomorphisms (completed)
- Section 14. Factor Groups

Yongchang Zhu Short title 2 / 20

Review of Last lecture

Theorem

(Theorem 13.15) Let $\phi: G \to G'$ be a group homomorphism, and let $H = Ker(\phi)$. Let $b \in G'$.

$$\phi^{-1}(b) = \{ a \in G \, | \, \phi(a) = b \}$$

has two cases for $\phi^{-1}(b)$.

Case 1. $\phi^{-1}(b) = \emptyset$.

Case 2. $\phi^{-1}(b)$ is NOT empty, for any $a \in \phi^{-1}(b)$, then

$$\phi^{-1}(b) = aH$$

Yongchang Zhu Short title 3/20

Example. Let $\phi: \mathbb{R}^* \to \mathbb{R}^*$ be the homomorphism given by

$$\phi(x) = |x|,$$

Then

$$Ker(\phi) = \{x \in \mathbb{R}^* \mid \phi(x) = 1\} = \{1, -1\}$$

If b < 0, then $\phi^{-1}(b) = \emptyset$.

If b > 0,

$$\phi^{-1}(b) = \{x \in \mathbb{R}^* \mid \phi(x) = b\} = \{x \in \mathbb{R}^* \mid |x| = b\} = \{b, -b\} = b \, \textit{Ker}(\phi)$$

Yongchang Zhu Short title 4/20

Corollary 13.18. A group homomorphism $\phi: G \to G'$ is a one-to-one map if and only if $Ker(\phi) = \{e\}$.

Definition 13.19. A subgroup H of a group G is called a **normal subgroup** if for all $g \in G$, gH = Hg.

Lemma. A subgroup H of G is normal iff for every $g \in G$, $h \in H$, $ghg^{-1} \in H$,

Corollary 13.20. If $\phi: G \to G'$ is a homomorphism of groups, then $Ker(\phi)$ is a normal subgroup of G.

Yongchang Zhu Short title 6/20

Section 13. Homomorphisms (continued)

A map $\phi: G \to G'$ from group G to group G' is called an **isomorphism** (of groups) if ϕ is a homomorphism and is one-to-one and onto.

Two groups G and G' are called to be **isomorphic** if there exists an isomorphism $\phi: G \to G'$.

Yongchang Zhu Short title 7 / 2

Example. The groups $(\mathbb{R}_{>0},\cdot)$ and $(\mathbb{R},+)$ are isomorphic. Because

$$\phi: \mathbb{R}_{>0} \to \mathbb{R}, \quad \phi(a) = \log a$$

is an isomorphism.

Yongchang Zhu Short title 8/20

Example. The groups \mathbb{Z} and $H = \{2^n \mid n \in \mathbb{Z}\}$ are isomorphic. Note that the first group is additive, the second group is multiplicative.

$$\phi: \mathbb{Z} \to H, \quad \phi(n) = 2^n$$

is an isomorphism.

Yongchang Zhu Short title 9 / 20

Every two infinite cyclic groups are isomorphic.

The groups \mathbb{Z}_n and U_n are isomorphic.

Recall $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$, the binary operation is the addition modulo n,

$$U_n = \{ a \in \mathbb{C}^* \mid a^n = 1 \} = \{ 1, \alpha, \alpha^2, \dots, \alpha^{n-1} \}$$

where $\alpha = e^{\frac{2\pi i}{n}}$.

The map $\phi: \mathbb{Z}_n \to U_n$ given by

$$\phi(\mathbf{k}) = \alpha^{\mathbf{k}}$$

is an isomorphism.

Yongchang Zhu Short title 11/20

Any two cyclic groups of equal order are isomorphic.

Every group of prime order p is isomorphic to \mathbb{Z}_p .

A group of order 4 is either isomorphic to \mathbb{Z}_4 or isomorphic to $\mathbb{Z}_2\times\mathbb{Z}_2.$

But \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ are NOT isomorphic.

Yongchang Zhu Short title 13/20

Section 14. Factor Groups.

Theorem

(**Theorem 14.4** + **Corollary 14.5**) Let G be a group, H be a normal subgroup of G, G/H be the set of all left cosets of H, then (1) the binary operation on G/H given by

$$(aH)(bH) = (ab)H$$

is well-defined.

(2). G/H is a group under the above binary operation.

Yongchang Zhu Short title 14/20

The symbol G/H denotes the set of all left cosets of H, (since H is normal, G/H is also the set of all right cosets of H, this fact will not be used in our discussion).

Elements in G/H are left cosets, aH, bH. However the ways to represent a left coset in the form aH is not unique, that is, it may happens that $a_1 \neq a_2$ but $a_1H = a_2H$.

Example. $G = \mathbb{Z}$, $H = 10\mathbb{Z}$, cosets $12 + 10\mathbb{Z}$ and $2 + 10\mathbb{Z}$ are equal.

Yongchang Zhu Short title 15/20

(1) in the above theorem means that if $a_1H=a_2H$ and $b_1H=b_2H$, then $(a_1b_1)H=(a_2b_2)H$.

Yongchang Zhu Short title 16 / 20

The group G/H in the Theorem 14.4 is called the **factor group** (or **quotient group**) of G by H.

Example. $G = \mathbb{Z}$, $H = 3\mathbb{Z}$,

$$\mathbb{Z}/3\mathbb{Z} = \{0 + \mathbb{Z}, 1 + \mathbb{Z}, 2 + \mathbb{Z}\}\$$

The factor group of \mathbb{Z} by $3\mathbb{Z}$ is just \mathbb{Z}_3 .

More generally, the factor group of \mathbb{Z} by $n\mathbb{Z}$ is just \mathbb{Z}_n .

Yongchang Zhu Short title 18/20

For $n \ge 2$, the factor group of S_n by A_n has only two elements

$$S_n/A_n = \{A_n, (12)A_n\}$$

The binary operation is given by

$$A_n \cdot A_n = A_n$$

 $A_n \cdot (12)A_n = (12)A_n$
 $(12)A_n \cdot A_n = (12)A_n$
 $(12)A_n \cdot (12)A_n = A_n$

Yongchang Zhu Short title 19 / 20

The end