```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
from scipy.stats import ttest_lsamp
from statsmodels.stats.power import tt_ind_solve_power
```

# T test

A t test is inferntial statistics which is used to determine if there is a significant difference betweenthe means of two groups which may be related in certain features

T-test has 2 types: 1) One sampled t test 2) Two sampled t test

t= (sample mean - population mean) / standard error

## In [2]:

```
ages=[10,20,35,50,28,40,55,18,16,55,30,25,43,18,30,28,14,24,16,17,32,35,26,27,65,18,43,23,21,20,19,70]
```

## In [3]:

```
ages_mean=np.mean(ages)
print(ages_mean)
```

30.34375

## In [4]:

```
#Lets take sample
sample_size=10
age_sample=np.random.choice(ages,sample_size)
age_sample
```

# Out[4]:

array([25, 43, 16, 14, 55, 43, 20, 43, 55, 20])

# In [5]:

```
from scipy.stats import ttest_1samp
```

## In [6]:

```
ttest,p_value=ttest_1samp(age_sample,30)
```

# In [7]:

```
print(p_value)
```

0.5197410381677416

## In [8]:

```
if p_value < 0.05:
    print("We are rejecting null hypothesis")
else:
    print("We are accepting null hypothesis")</pre>
```

We are accepting null hypothesis

# In [9]:

df=pd.read\_excel('D:/D Backup/AG/Anita G/Msc I FDS Practicals 2021/result.xlsx')
df

# Out[9]:

|   | Roll No | Name     | Sub1 | Sub2 | Sub3 | Total | Result |
|---|---------|----------|------|------|------|-------|--------|
| 0 | 101     | Akash    | 45   | 45   | 45   | 135   | Р      |
| 1 | 102     | Manoj    | 35   | 45   | 42   | 122   | Р      |
| 2 | 103     | Mrunal   | 29   | 26   | 30   | 85    | Р      |
| 3 | 104     | Saurabh  | 38   | 35   | 29   | 102   | Р      |
| 4 | 105     | Ashish   | 41   | 40   | 34   | 115   | Р      |
| 5 | 106     | Sudhir   | 46   | 62   | 41   | 149   | Р      |
| 6 | 107     | Ria      | 29   | 48   | 27   | 104   | Р      |
| 7 | 108     | Prathana | 43   | 33   | 33   | 109   | Р      |
| 8 | 109     | Mihika   | 37   | 30   | 38   | 105   | Р      |
| 9 | 110     | Shaurya  | 33   | 31   | 41   | 105   | Р      |

# In [10]:

df.describe()

# Out[10]:

|       | Roll No   | Sub1      | Sub2      | Sub3      | Total      |
|-------|-----------|-----------|-----------|-----------|------------|
| count | 10.00000  | 10.000000 | 10.000000 | 10.000000 | 10.000000  |
| mean  | 105.50000 | 37.600000 | 39.500000 | 36.000000 | 113.100000 |
| std   | 3.02765   | 6.168018  | 10.783217 | 6.236096  | 18.241893  |
| min   | 101.00000 | 29.000000 | 26.000000 | 27.000000 | 85.000000  |
| 25%   | 103.25000 | 33.500000 | 31.500000 | 30.750000 | 104.250000 |
| 50%   | 105.50000 | 37.500000 | 37.500000 | 36.000000 | 107.000000 |
| 75%   | 107.75000 | 42.500000 | 45.000000 | 41.000000 | 120.250000 |
| max   | 110.00000 | 46.000000 | 62.000000 | 45.000000 | 149.000000 |

Hypothesis Testing or Significance Testing Hypothesis testing is a set of formal procedures used by statisticians to either accept or reject statistical hypotheses. Statistical hypotheses are of two types:

Null hypothesis, H0 - represents a hypothesis of chance basis.

Alternative hypothesis, Ha - represents a hypothesis of observations which are influenced by some non-random cause.

(1) check if total mean value of marks is not more than 113.

Null Hypothesis will be

Ho : mu <= 113

Alternate Hypothesis will be

Ha : mu > 113

One way hypothesis

```
In [11]:
Ho = "mu <= 113"
# alt hyp
Ha = "mu > 113"
# alpha
al = 0.01
# mu -> mean
mu = 113
# tail type
tt = 1
# data
marks = df['Total'].values
print("Ho:", Ho)
print("Ha:", Ha)
print("al:", al)
print("mu:", mu)
print(marks)
print("")
Ho: mu <= 113
Ha: mu > 113
al: 0.05
mu: 113
[135 122 85 102 115 149 104 109 105 105]
In [12]:
ts, pv = ttest 1samp(marks, mu)
print("t-stat",ts)
print("p-vals",pv)
t2pv = pv
t1pv = pv*2
print("1t pv",t1pv)
print("2t pv",t2pv)
t-stat 0.01733524930528476
p-vals 0.9865473848679749
1t pv 1.9730947697359498
2t pv 0.9865473848679749
In [13]:
if tt == 1:
    if t1pv < al:</pre>
         print("Null Hypothesis: Rejected")
         print("Conclusion:",Ha)
         print("Null Hypothesis: Not Rejected")
         print("Conclusion:",Ho)
else:
    if t2pv < al/2:
         print("Null Hypothesis: Rejected")
         print("Conclusion:",Ha)
    else:
         print("Null Hypothesis: Not Rejected")
         print("Conclusion:",Ho)
Null Hypothesis: Not Rejected
Conclusion: mu <= 113
```

Two way Hypothesis

```
In [14]:
```

```
# null hyp
Ho = "mu = 113"
# alt hyp
Ha = "mu != 113"
# alpha
al = 0.05
# mu - mean
mu = 113
```

```
In [15]:
# tail type
tt = 2
# data
marks = df['Total'].values
# print
print("Ho:", Ho)
print("Ha:", Ha)
print("al:", al)
print("mu:", mu)
print(marks)
print("")
Ho: mu = 113
Ha: mu != 113
al: 0.05
mu: 113
[135 122 85 102 115 149 104 109 105 105]
In [16]:
ts, pv = ttest 1samp(marks, mu)
print("t-stat",ts)
print("p-vals",pv)
t2pv = pv
t1pv = pv*2
print("1t pv",t1pv)
print("2t pv",t2pv)
t-stat 0.01733524930528476
p-vals 0.9865473848679749
1t pv 1.9730947697359498
2t pv 0.9865473848679749
In [17]:
if tt == 1:
    if t1pv < al:</pre>
        print("Null Hypothesis: Rejected")
        print("Conclusion:",Ha)
    else:
        print("Null Hypothesis: Not Rejected")
        print("Conclusion:",Ho)
else:
    if t2pv < al/2:
        print("Null Hypothesis: Rejected")
        print("Conclusion:",Ha)
    else:
        print("Null Hypothesis: Not Rejected")
        print("Conclusion:",Ho)
```

Null Hypothesis: Not Rejected Conclusion: mu = 113

# **AB Testing**

AB testing is essentially an experiment where two or more variants of a page are shown to users at random, and statistical analysis is used to determine which variation performs better for a given conversion goal.

```
In [18]:
```

```
subj1 = np.array([45,36,29,40,46,37,43,39,28,33])
subj2 = np.array([40,20,30,35,29,43,40,39,28,31])
```

# In [19]:

sns.distplot(subj1)

## Out[19]:

<matplotlib.axes. subplots.AxesSubplot at 0x15617b3d0d0>



## In [20]:

sns.distplot(subj2)

# Out[20]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x156193c75e0>



The two hypotheses for this particular two sample t-test are as follows:

H0:  $\mu$ 1 =  $\mu$ 2 (the two population means are equal)

HA:  $\mu 1 \neq \mu 2$  (the two population means are not equal)

# In [21]:

```
t_stat, p_val= stats.ttest_ind(subj1,subj2)
t_stat , p_val
```

## Out[21]:

(1.365908039538178, 0.18879292981719703)

# In [22]:

```
#perform two sample t-test with equal variances
stats.ttest_ind(subj1, subj2, equal_var=True)
```

## Out[22]:

Ttest\_indResult(statistic=1.365908039538178, pvalue=0.18879292981719703)

The t test statistic is 1.3659 and the corresponding two-sided p-value is 0.1887. Because the p-value of our test (0.1887) is greater than alpha = 0.05, we fail to reject the null hypothesis of the test.

We do not have sufficient evidence to say that the mean marks of sub1 and subj2 between the two is different.

# In [ ]: