

	Die Sonne		
Aufgabennummer: A_062			
Technologieeinsatz:	möglich 🗆	erforderlich ⊠	
Die Sonne ist das Zentrum unseres Sonnensystems.			

- a) Das Volumen der Sonne wird mit $V = 1,41 \cdot 10^{18} \text{ km}^3$ und ihre mittlere Dichte mit $\rho = 1,41 \text{ g/cm}^3$ angegeben.
 - Berechnen Sie die Masse m der Sonne in kg, wenn der Zusammenhang zwischen dem Volumen, der Dichte und der Masse gegeben ist durch $\rho = \frac{m}{V}$.
- b) Unter der Sonnenhöhe *h* versteht man den Winkel, den die einfallenden Sonnenstrahlen mit einer horizontalen Ebene bilden.
 - Erstellen Sie eine Formel, mit deren Hilfe die Schattenlänge s eines Stabes der Länge I bei einer Sonnenhöhe h bestimmt werden kann.

$$m - M = 5 \cdot \log_{10} r - 5$$

- m ... scheinbare Helligkeit in Magnituden (mag)
 - Sie gibt an, wie hell ein Stern von der Erde aus erscheint.
- M ... absolute Helligkeit in Magnituden (mag)Sie gibt die tatsächliche Helligkeit eines Sterns an.
- r ... Entfernung eines Sterns von der Erde in Parsec (pc) 1 pc = $30,856 \cdot 10^{12}$ km
- Berechnen Sie die Entfernung Sonne Erde in km, wenn die Sonne eine scheinbare Helligkeit M = -26,73 mag und eine absolute Helligkeit M = +4,84 mag besitzt.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Die Sonne 2

Möglicher Lösungsweg

a)
$$\rho = \frac{m}{V}$$

 $V \cdot \rho = m$

Umrechnen der Einheiten:

$$V = 1,41 \cdot 10^{18} \text{ km}^3 = 1,41 \cdot 10^{27} \text{ m}^3 = 1,41 \cdot 10^{33} \text{ cm}^3$$
 $\rho = 1,41 \text{ g/cm}^3$

Einsetzen in die Formel:

$$m = 1,41 \cdot 10^{33} \cdot 1,41 = 1,9881 \cdot 10^{33} \text{ g} = 1,9881 \cdot 10^{30} \text{ kg}$$

Die Sonnenmasse beträgt 1,9881 · 10^{30} kg.

Die Lösung ist auch mittels Technologieeinsatz möglich.

b)
$$\tan h = \frac{l}{s}$$

 $s = \frac{l}{\tan h}$

c)
$$m - M = 5 \cdot \log_{10} r - 5$$

 $m - M + 5 = 5 \cdot \log_{10} r$
 $10^{\left(\frac{m - M + 5}{5}\right)} = r$
 $10^{\left(\frac{-26,73 - 4,84 + 5}{5}\right)} = r$

$$r = 4,852885002 \cdot 10^{-6} \, \text{pc} = 1,49 \cdot 10^8 \, \text{km}$$

Die Entfernung Erde – Sonne beträgt 1,49 · 108 km.

Die Berechnung ist mittels Technologieeinsatz ebenfalls möglich.

Die Sonne 3

Klassifikation			
⊠ Teil A	□ Teil B		
Wesentlicher Bereich der Inhaltsdimension:			
a) 1 Zahlen undb) 2 Algebra undc) 2 Algebra und	l Geometrie		
Nebeninhaltsdimension:			
 a) 2 Algebra und Geometrie b) — c) 1 Zahlen und Maße 			
Wesentlicher Bereich der Handlungsdimension:			
a) B Operieren und Technologieeinsatzb) A Modellieren und Transferierenc) B Operieren und Technologieeinsatz			
Nebenhandlungsdimension:			
a) — b) — c) —			
Schwierigkeitsgra	ad:	Punkteanzahl:	
a) leichtb) leichtc) mittel		a) 2b) 1c) 2	
Thema: Astronomie			
Quellen: —			