Le PageRank

BOES Rémi 2020-2021

Introduction

Introduction:

- → Apparition du World Wide Web en 1989-1990
- → Expansion du web avec l'arrivée de Google en 1995 et explosion à partir des années 2000

Plan:

- 1. Définition du PageRank
- 2. Méthodes de calcul du PageRank
- 3. Résultats et comparaisons
- 4. Annexes

Définition du PageRank

Réécriture matricielle

$$H = \begin{pmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{pmatrix}$$

Modèle du surfer aléatoire

Modèle matricielle

Marche aléatoire matricielle :

vecteur inital :
$$\mu_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

1 pas matriciel :
$$\mu_1 = G * \mu_0$$

2 pas matriciel :
$$\mu_2 = G*\mu_1 = G^2*\mu_0$$

:

n pas matriciel :
$$\mu_n = G * \mu_{n-1} = G^n * \mu_0$$

Application numérique :

Pour n=
$$10^7$$
: $\mu_n = \begin{pmatrix} 0.22222222\\ 0.33333333\\ 0.33333333\\ 0.11111111 \end{pmatrix}$

Ajustement du modèle

Le modèle de Google

$$H = \begin{pmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{pmatrix}$$

Le modèle de Google

La matrice de transition de Google :
$$G = C * (H + \frac{1}{n} * S) + \frac{1-c}{n} * A$$

Introduction d'une probabilité c de suivre le modèle

Vocabulaire:

Matrice positive (strictement):

Une matrice $A = (a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$ est dite positive et on écrit $A \ge 0$ (respectivement strictement positive et on écrit A > 0) si :

 $\forall (i,j) \in [1;n]^2 \text{ on a } a_{ij} \ge 0 \text{ (respectivement } a_{ij} > 0)$

Matrice primitive:

Soit $A \in \mathcal{M}_n(\mathbb{R})$, $A \ge 0$

A est dite primitive s'il existe $k \in \mathbb{N}$ tel que $A^k > 0$

Théorème de Perron-Frobenius :

Théorème de Perron-Frobenius :

Si A est une matrice primitive alors elle admet une valeur propre réelle strictement positive r>0 telle que :

- Pour toute autre valeur propre s de A, on a |s|<r;
- L'espace propre associé à r est de dimension 1;
- Si s et S sont respectivement le minimum et le maximum des sommes des éléments de chaque ligne de A, on a $s \le r \le S$
- Il existe un unique vecteur x^+ de norme 1 à coordonnées strictement positives tel que $Ax^+ = rx^+$

La valeur propre r s'appelle la valeur propre de Perron de A et x^+ est le vecteur propre de Perron associé.

Lien avec le PageRank :

Notons que
$$\forall j$$
 on a : $\sum_{j=0}^{n} g_{i,j} = 1$
 \Rightarrow la transposée de G a 1 pour valeur propre
 \Rightarrow 1 est valeur propre de G

Donc vu que G est primitive : $r \le 1$ et r est la plus grande valeur propre \Rightarrow r=1

En notant
$$\mu$$
 la limite de la suite $(\mu_n)_{n\in\mathbb{N}}$ et en passant à la limite dans la récurrence $\mu_n=G*\mu_{n-1}$ on obtient :
$$\mu=G*\mu \text{ donc }\mu=r$$

Méthodes de calcul du PageRank

Méthode de la puissance

Principe : calculer les éléments de la suite $(\mu_n)_{n\in\mathbb{N}^*}$ telle que :

$$\boxed{\mu_0 = \begin{pmatrix} \frac{1}{N} \\ \vdots \\ \frac{1}{N} \end{pmatrix} \text{ et } \forall n \in \mathbb{N}^* \; \mu_n = \mathsf{G} * \mu_{n-1}}$$

On effectue les itérations successives de la suite jusqu'à que l'écart entre 2 termes consécutifs soit suffisament faible pour qu'on puisse considérer que la suite a convergé.

Réecriture du système

Réécriture du problème sous la forme Ax=b : On note μ la valeur de convergence de la suite $(\mu_n)_{n\in\mathbb{N}^*}$

$$\mu = H * \mu$$

$$\Leftrightarrow \mu = (cS + \frac{1 - c}{n} ee^{T})\mu$$

$$\Leftrightarrow \mu = cS\mu + \frac{1 - c}{n} ee^{T}\mu$$

$$\Leftrightarrow (l_n - cS)\mu = \frac{1 - c}{n}e$$

$$\Leftrightarrow A\mu = b$$

Le calcul de μ revient à résoudre l'équation

$$Ax = b$$

telle que A = $(I_n - cS)$ et $b = \frac{1-c}{n}e$

Vocabulaire:

Matrice de preconditionnement :

Soit $A \in \mathcal{M}_n(\mathbb{R})$, $P \in \mathcal{GL}_n(\mathbb{R})$

P est un preconditionneur de la matrice A, si il permet de diminuer le nombre d'itérations dans la méthode de résolution (itérative) du système Ax = b remplacé par $P^{-1}Ax = P^{-1}b$

Matrice de Préconditionnement

Supposons que A = M - N où M est inversible Le système Ax=b peut se réécrire :

$$Ax = b$$

$$Mx = Nx + b$$

$$x = M^{-1}Nx + M^{-1}b$$

$$(I_n - M^{-1}N)x = M^{-1}b$$

$$M^{-1}Ax = M^{-1}b$$

La matrice M est une matrice de préconditionnement du système linéaire Ax = b

On introduit la suite $(x_k)_{k\in\mathbb{N}}$ telle que $\forall k\in\mathbb{N}$:

$$X_{k+1} = M^{-1} N X_k + M^{-1} b$$

Décomposition A = D + U + L

On décompose
$$A = \begin{pmatrix} a_{0,0} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix}$$
 telle que :

$$A = \underbrace{\begin{pmatrix} a_{0,0} & 0 \\ & \ddots & \\ 0 & a_{n,n} \end{pmatrix}}_{D} + \underbrace{\begin{pmatrix} 0 & a_{0,1} & \dots & a_{0,n} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & a_{n-1,n} \\ 0 & \dots & \dots & 0 \end{pmatrix}}_{U} + \underbrace{\begin{pmatrix} 0 & \dots & \dots & 0 \\ a_{1,0} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{n,0} & \dots & a_{n,n-1} & 0 \end{pmatrix}}_{L}$$

Matrice de Préconditionnement

Méthode	Matrice de préconditionnement
Jacobi	M = D
Gauss-Seidel (1)	M = D + L
Gauss-Seidel (2)	M = D + U
SOR (1)	$M = D + \omega L$
SOR (2)	$M = D + \omega U$
SSOR	$M = (D + \omega L)D^{-1}(D + \omega U)$

Tableau regroupant les matrices de préconditionnement selon la méthode de résolution employée

Introduction d'un facteur de relaxation ω permettant d'influer sur la convergence

Méthode d'extrapolation d'Aitken

Principe : On approxime périodiquement dans la méthode de la puissance x_n comme combinaison linéaire des <u>deux</u> premiers vecteurs propres de G :

$$x_n = u_1 + \alpha_2 u_2$$

$$x_{n+1} = u_1 + \alpha_2 \lambda_2 u_2$$

$$x_{n+2} = u_1 + \alpha_2 \lambda_2^2 u_2$$

Dans ce cas on montre que
$$u_1 = x_n - \frac{(x_{n+1} - x_n)^2}{x_n - 2x_{n+1} + x_{n+2}}$$

On remplace la valeur de x_n par celle de u_1 ainsi obtenue

Méthode d'extrapolation quadratique

Principe : On approxime périodiquement dans la méthode de la puissance x_n comme combinaison linéaire des <u>trois</u> premiers vecteurs propres de G :

$$x_n = u_1 + \alpha_2 u_2 + \alpha_3 u_3$$

$$x_{n+1} = u_1 + \alpha_2 \lambda_2 u_2 + \alpha_3 \lambda_3 u_3$$

$$x_{n+2} = u_1 + \alpha_2 \lambda_2^2 u_2 + \alpha_3 \lambda_3^2 u_3$$

Dans ce cas on montre que $u_1 = \beta_0 x_n + \beta_1 x_{n+1} + \beta_2 x_{n+2}$ Avec β_0 , β_1 et β_2 déterminés à l'aide des 3 équations

On remplace la valeur de x_n par celle de u_1 ainsi obtenue

Résultats et comparaisons

Variation selon c

Graphique de l'erreur en fonction du nombre d'itérations selon c (puissance)

Comparaison taille graphe (itérations)

Graphique de l'erreur en fonction du nombre d'itérations selon la taille du graphe (puissance)

Comparaison taille graphe (temporelle)

Graphique de l'erreur en fonction du temps selon la taille du graphe (puissance)

Comparaison selon w (SOR)

Graphique de l'erreur en fonction du nombre d'itérations selon w (SOR)

Comparaison selon w (SSOR)

Graphique de l'erreur en fonction du nombre d'itérations selon w (SSOR)

Comparaison des méthodes (itératifs)

Graphique de l'erreur en fonction du nombre d'itérations

Comparaison des méthodes (itératifs et temporelle)

Graphique du nombre d'itérations et du temps de convergence

Annexes

Algorithme comparaison c

```
import numpy as np
    import mathlotlib.nymlot as mlt
    n=3031 #taille du araphe
    ext = np.loadtxt('graphtrue.txt')
    h=np.zeros((n,n))
    for i in range(n):
        ligne=ext[i]
        h[int(ligne[0])][int(ligne[1])]=1
    #Methode de La puissance
    s=np.empty((n,n))
    g=np.empty((n,n))
13 for i in range(n):
        somme=np.sum(h[i])
        if somme==0:
            s[i]=[1/n]*n
        olco.
            s[i]=np.copv(h[i]/somme)
    #h matrice avec coeff=1/li si i pointe vers j
    #s=h ou on rajoute 1/li à tous les coeffs d'une ligne nulle
    def f(x):
        return np.dot(x,g)
    x = np.ones(n)/n
    def puissance(f,x,result):
        i=0
        residu=10
        while residu>1e-7:
            va-v
            x=f(x)+((1-alpha)/n)
```

```
residu=np.linalg.norm(x-x0,1)
             result.append(residu)
             i += 1
         return x
     resultat=[]
     for i in np.arange(0.05.1.0.05):
         alpha=i
         g=alpha*s
         resultat.append([])
         puissance(f.x.resultat[-1])
     #affichage
     for i in range(len(resultat)):
         l=len(resultat[i])
         x=[resultat[i][j] for j in range(1)]
         v=[j \text{ for } j \text{ in } range(1,l+1)]
         plt.plot(v,x,label=int((i*0.05+0.05)*(10**2))/(10**2))
    plt.legend()
    plt.yscale('log')
    plt.grid()
55 plt.show()
```

Algorithme convergence iterations - taille du graphe

```
h[int(ligne[0])][int(ligne[1])]=1
import numpy as np
import matplotlib.pyplot as plt
                                                                  s=np.emptv((n,n))
                                                                  g=np.emptv((n,n))
                                                                  alpha=0.85
def puissance(g,x0,result):
                                                                  for i in range(n):
    x=x0
                                                                      somme=nn.sum(h[i])
    i - 0
    residu=10
                                                                      if somme == 0:
                                                                          s[i]=[1/n]*n
    while residuale-7:
                                                                      else:
        ×0=×
                                                                           s[i]=np.copy(h[i]/somme)
        x=np.dot(g,x)
        residu=np.linalg.norm(x-x0.1)
                                                                  g=np.transpose(alpha*s+((1-alpha)/n))
        result.append(residu)
                                                                  x=np.ones(n)*1/n
                                                                  resultat.append([1)
        i + = 1
                                                                  print(puissance(g.x.resultat[-1]))
    return x
                                                              #affichage
                                                              for i in range(len(resultat)):
resultat=[]
for i in range(4):
                                                                  l=len(resultat[i])
                                                                  x=[resultat[i][i] for i in range(1)]
    if i -- 0:
        n=643 #taille du graphe
                                                                  v=[i for i in range(1,1+1)]
                                                                  if i -- 0.
        ext = np.loadtxt('graphtrue3.txt')
                                                                      plt.plot(y,x,label="643")
    if i == 1:
                                                                  if i==1:
        n=3031 #taille du araphe
        ext = np.loadtxt('graphtrue.txt')
                                                                      plt.plot(v.x.label="3031")
    if i == 2 :
                                                                  if i -- 2.
        n=11358 #taille du graphe
                                                                      plt.plot(v.x.label="11358")
                                                                  if i==3:
        ext = np.loadtxt('graphtrue4.txt')
                                                                      plt.plot(v.x.label="16062")
    if i==3:
        n=16062 #taille du graphe
        ext = np.loadtxt('graphtrue2.txt')
                                                              plt.yscale('log')
                                                              plt.legend()
    h=np.zeros((n,n))
                                                              plt.grid()
    for i in range(n):
        ligne=ext[i]
                                                              plt.show()
```

29/41

Algorithme convergence temps - taille du graphe

```
import numpy as np
                                                                     ext = np.loadtxt('graphtrue2.txt')
import matplotlib.pvplot as plt
                                                                 h=np.zeros((n,n))
from time import time
                                                                 for i in range(n):
                                                                     ligne=ext[i]
def puissance(g.x0.result):
                                                                     h[int(ligne[0])][int(ligne[1])]=1
    x=x0
                                                                 s=np.emptv((n,n))
    i = 0
                                                                 g=np.emptv((n,n))
    residu=10
                                                                 alpha=0.85
    t=time()
                                                                 for i in range(n):
    result.append(0)
                                                                     somme=np.sum(h[i])
    while residu>1e-7:
                                                                     if somme == 0:
        ×0=×
                                                                         s[i]=[1/n]*n
        x=np.dot(g.x)
                                                                     else:
        residu=np.linalg.norm(x-x0.1)
                                                                         s[i]=np.copy(h[i]/somme)
        t1=time()
                                                                 g=np.transpose(alpha*s+((1-alpha)/n))
        result.append(t1-t)
                                                                 x=np.ones(n)*1/n
        i += 1
                                                                 resultat.append([1)
                                                                 print(puissance(g,x,resultat[-1]))
    return x
resultat=[]
                                                             #affichage
for i in range(4):
                                                             for i in range(len(resultat)):
    if i == 0:
        n=643 #taille du araphe
                                                                 l=len(resultat[i])
        ext = np.loadtxt('graphtrue3.txt')
                                                                 v=[resultat[i][i] for i in range(1)]
    if i == 1:
                                                                 x=[i for i in range(1)]
                                                                 if i==0:
        n=3031 #taille du araphe
        ext = np.loadtxt('graphtrue.txt')
                                                                     plt.plot(v.x.label="643")
    if i == 2 .
                                                                 if i==1:
        n=11358 #taille du graphe
                                                                     plt.plot(y,x,label="3031")
        ext = np.loadtxt('graphtrue4.txt')
                                                                 if i==2:
    if i==3:
                                                                     plt.plot(v.x.label="11358")
                                                                                                         30/41
        n=16062 #taille du araphe
                                                                 if i -- 3 .
```

Algorithme convergence temps - taille du graphe

Algorithme comparaison w (SOR et SSOR)

```
import numpy as np
    import matplotlib.pvplot as plt
    n=3031 #taille du araphe
    ext = np.loadtxt('graphtrue.txt')
    h=np.zeros((n.n))
    for i in range(n):
        ligne=ext[i]
        h[int(ligne[0])][int(ligne[1])]=1
    #Methode de la puissance
    s=np.emptv((n.n))
    g=np.emptv((n,n))
    alpha=0.85
    for i in range(n):
        somme=np.sum(h[i])
        if sommo == 0.
            s[i]=[1/n]*n
        else:
            s[i]=np.copy(h[i]/somme)
    #h matrice avec coeff=1/li si i pointe vers i
    #s=h ou on rajoute 1/Li à tous les coeffs d'une liane nulle
    g=np.transpose(alpha*s+((1-alpha)/n))
    #on creer a=alpha*s +((1-alpha)/n))*E
    #x=np.ones(n)*1/n #vecteur inital pagerank
    x=np.ones(n)*1/n
    A = (np.eye(n)-alpha*np.transpose(s))
    b = (((1-alpha)/n))*np.ones(n)
    D = np.diag(np.diag(A))
32 L=np.tril(A)-D
```

```
U=A-L-D
loop=80
def precond(M,N,b,x0,loop,result):
     invM=np.linalg.inv(M)
     K1=np, dot(invM,N)
     K2=np.dot(invM.b)
     x=x0
     residu=10
     while residu>1e-7:
         x0=x
         x=np.dot(K1,x)+K2
         residu=np.linalg.norm(x-x0.1)
         result.append(residu)
     return x
 #SSOR
resultat=[]
for i in np.arange(1.0,1.35,0.05):
     w-i
     M=np.dot(np.dot(D+w*L.np.linalg.piny(D)),D+w*U)
     A-M=M
     resultat.append([])
     print(precond(M.N.b.x.loop.resultat[-1]))
 #SOR
 M=D/W+I
 #affichage
for i in range(len(resultat)):
l=len(resultat[i])
```

Algorithme comparaison w (SOR et SSOR)

```
import numby as no
   import mathlotlib.pvplot as plt
   n=3031 #taille du araphe
   ext = np.loadtxt('graphtrue.txt')
   http://networkrepository.com/web.php
8
   n=643 #taille du graphe
   ext = np.loadtxt('graphtrue3.txt')
   n=3031 #taille du graphe
   ext = np.loadtxt('graphtrue.txt')
   n=11358 #taille du graphe
   ext = np.loadtxt('graphtrue4.txt')
   n=16062 #taille du graphe
   ext = np.loadtxt('graphtrue2.txt')
   h=np.zeros((n.n))
   for i in range(n):
       ligne=ext[i]
       h[int(ligne[0])][int(ligne[1])]=1
   #Methode de La nuissance
   s=np.emptv((n.n))
   g=np.emptv((n,n))
   alpha=0.85
   for i in range(n):
       somme=np.sum(h[i])
       if somme==0:
           s[i]=[1/n]*n
       0750.
           s[i]=np.copy(h[i]/somme)
```

```
33 #h matrice avec coeff=1/li si i nointe vers i
    #s=h ou on rajoute 1/Li à tous les coeffs d'une liane nulle
    g=np.transpose(alpha*s+((1-alpha)/n))
    #on creer a=alpha*s +((1-alpha)/n))*E
    #x=np.ones(n)*1/n #vecteur inital pagerank
    x=np.ones(n)*1/n
    A = (np.eye(n)-alpha*np.transpose(s))
    b = (((1-alpha)/n))*np.ones(n)
   D = np.diag(np.diag(A))
    L=np.tril(A)-D
    U=A-L-D
    ensilon=1e-7
    def puissance(g.x0.result):
        x=x0
        i - a
        residu=10
        while residu>epsilon:
             x0=x
            x=np.dot(g.x)
            residu=np.linalg.norm(x-x0.1)
            result.append(residu)
        return x
    def precond(M.b.x0.result):
        invM=np.linalg.inv(M)
        K1=np.dot(invM,N)
        K2=np.dot(invM.b)
        x=x0
```

```
result.append(residu)
    i -0
    residu=10
                                                                        i + = 1
    while residu>epsilon:
                                                                    return x1
        XO=X
                                                                def Ouadruple Extrapolation(x0, x1, x2, x3):
        x=np.dot(K1.x)+K2
                                                                    v1 = x1 - x0:
        residu=np.linalg.norm(x-x0.1)
        result.append(residu)
                                                                    v2 = x2-x0:
        i += 1
                                                                    v3 = x3 - x0:
                                                                    Y = np.transpose(np.array([v1, v2]));
    return x
                                                                    z = -np.dot(np.linalg.pinv(Y),y3)
def f(x):
                                                                    z1=z[0]; z2=z[1]; z3=1;
    return np.dot(g,x)
                                                                    z0 = -(z1+z2+z3):
                                                                    BØ = z1+z2+z3:
                                                                    B1 = z2+z3:
def Aitken(x0,x1,x2):
    g = (x1-x0)**2;
                                                                    B2 = z3:
                                                                    x = B0*x1 + B1*x2 + B2*x3;
    h = x2-2*x1+x0;
                                                                    return x
    return x2-np.divide(g, h)
def Steffensen(f.x.result):
                                                                def quadratique(f.x0.result):
                                                                    x1 = f(x0)
    x0=np.dot(g.x)
                                                                    result.append(np.linalg.norm(x1-x0,1))
    result.append(np.linalg.norm(x-x0,1))
                                                                    x2 = f(x1)
    x1=np.dot(g.x0)
                                                                    result.append(np.linalg.norm(x2-x1,1))
    result.append(np.linalg.norm(x1-x0,1))
    1-2
                                                                    x3 = f(x2)
                                                                    result.append(np.linalg.norm(x3-x2,1))
    residu=10
                                                                    i = 3
    while residu>epsilon:
                                                                    residu=10
        Y = Y0
                                                                    while residu>epsilon:
        x0 = x1
                                                                        x0 = x1:
        x1 = np.dot(g,x1)
                                                                        x1 = x2:
        if i -- 2 .
                                                                        x2 = x3:
            x1 = Aitken(x.x0.x1)
                                                                                                               35/41
        residu=np.linalg.norm(x1-x0.1)
                                                                        x3 = f(x2);
```

```
result aitken=[]
       if i == 4:
                                                                       print(Steffensen(f,x,result aitken))
           x3 = Quadruple Extrapolation(x0,x1,x2,x3);
       x3=x3/nn.linalg.norm(x3.1)
                                                                       #Ouadratique
       residu=np.linalg.norm(x3-x2.1)
                                                                       result quadratique=[]
       result.append(residu)
                                                                       print(quadratique(f.x.result quadratique))
       i+=1
   return(x3)
                                                                       #affichage
                                                                       1=len(result puissance)
#Puissance
                                                                       x=[result puissance[i] for i in range(1)]
result_puissance=[]
                                                                       v=[i \text{ for } i \text{ in range}(1,l+1)]
print(puissance(g.x.result puissance))
                                                                       plt.plot(v,x,label="Puissance")
#7acohi
                                                                       1=len(result jacobi)
result jacobi=[]
                                                                       x=[result jacobi[i] for i in range(1)]
M=D
                                                                       v=[i for i in range(1,l+1)]
N = -1 - 11
                                                                       plt.plot(v.x.label="Jacobi")
print(precond(M,b,x,result jacobi))
                                                                       1=len(result gauss)
#Gauss-Seidel
                                                                       x=[result gauss[i] for i in range(1)]
result gauss=[]
                                                                       y=[i \text{ for } i \text{ in } range(1,l+1)]
M=D+I
                                                                       plt.plot(v,x,label="Gauss-Seidel")
\Lambda - M - \Lambda
print(precond(M.b.x.result gauss))
                                                                       l=len(result ssor)
                                                                       x=[result_ssor[i] for i in range(1)]
#SSOR
                                                                       v=[i for i in range(1,1+1)]
result ssor=[]
                                                                       plt.plot(v.x.label="SSOR")
W=1
M=np.dot(np.dot(D+w*L.np.linalg.piny(D)).D+w*U)
                                                                       l=len(result aitken)
N=M-A
                                                                       x=[result aitken[i] for i in range(1)]
print(precond(M,b,x,result ssor))
                                                                       v=[i for i in range(1,1+1)]
                                                                                                                         36/41
                                                                       plt.plot(y,x,label="Aitken")
#Aitken
```

```
193
194 l=len(result_quadratique)
195 x=[result_quadratique[i] for i in range(1)]
196 y=[i for i in range(1,l+1)]
197 plt.plot(y,x,label="Quadratique")
198
199 plt.yscale('log')
200 plt.legend()
201 plt.grid()
202 plt.show()
```

```
1 import numpy as np
                                                                                  b = (((1-alpha)/n))*np.ones(n)
 2 import matplotlib.pvplot as plt
                                                                                  D = np.diag(np.diag(A))
   from time import time
                                                                                  L=np.tril(A)-D
   import pandas as pd
                                                                                  U=A-L-D
   from pandas import plotting
                                                                                  def puissance(g.x0.result):
   n=3031 #taille du graphe
                                                                                        x=x0
   ext = np.loadtxt('/Users/Beaudinard/Documents/mp/tipe/graphtrue.txt')
                                                                                        i - 0
   h=np.zeros((n,n))
                                                                                        t=time()
                                                                                        residu=10
   for i in range(n):
                                                                                       while residuale-7:
      ligne=ext[i]
                                                                                             ×0=×
       h[int(ligne[0])][int(ligne[1])]=1
                                                                                             x=np.dot(g.x)
   #Methode de La puissance
                                                                                             residu=np.linalg.norm(x-x0,1)
15 s=np.empty((n,n))
                                                                                             result.append(time()-t)
   g=np.emptv((n,n))
                                                                                             i + -1
17 alpha=0.85
                                                                                        return x
   for i in range(n):
      somme=np.sum(h[i])
      if somme==0:
                                                                                  def precond(M.N.b.x0.result):
          s[i]=[1/n]*n
                                                                                        invM=np.linalg.inv(M)
      else:
                                                                                        K1=np.dot(invM.N)
          s[i]=np.copv(h[i]/somme)
                                                                                        K2=np.dot(invM.b)
   #h matrice avec coeff=1/li si i pointe vers i
                                                                                        x = x0
   #s=h ou on rajoute 1/Li à tous les coeffs d'une liane nulle
                                                                                        i = 0
   g=np.transpose(alpha*s+((1-alpha)/n))
                                                                                        t=time()
27 #on creer q=alpha*s +((1-alpha)/n))*E
                                                                                        residu=10
28 #x=np.ones(n)*1/n #vecteur inital pagerank
                                                                                        while residu>1e-7:
   x=np.ones(n)*1/n
                                                                                             ×0=×
                                                                                             x=np.dot(K1.x)+K2
                                                                                             residu=np.linalg.norm(x-x0.1) 38/41
31 A = (np.eye(n)-alpha*np.transpose(s))
```

```
result.append(time()-t)
                                                                 def Ouadruple Extrapolation(x0, x1, x2, x3):
         i += 1
                                                                    v1 = x1 - x0;
                                                                    v2 = x2 - x0:
    return x
                                                                    v3 = x3-x0:
                                                                    Y = np.transpose(np.array([y1, y2]));
def f(x):
                                                                    z = -np.dot(np.linalg.pinv(Y),y3)
    return np.dot(g.x)
                                                                    z1=z[0]; z2=z[1]; z3=1;
                                                                    z0 = -(z1+z2+z3);
def Aitken(x0.x1.x2):
    g = (x1-x0)**2;
                                                                    B0 = 71+72+73:
                                                                    B1 = z2+z3:
    h = x2 - 2*x1 + x0:
                                                                    B2 = Z3;
    return x2-np.divide(g, h)
                                                                    x = B0*x1 + B1*x2 + B2*x3;
def Steffensen(f.x.result):
                                                                    return x
    t=time()
                                                                 def quadratique(f,x0,result):
    x\theta = np. dot(g.x)
                                                                    t=time()
    result.append(time()-t)
                                                                    x1 = f(x0)
    x1=np.dot(g.x0)
                                                                    result.append(time()-t)
    result.append(time()-t)
                                                                    x2 = f(x1)
    i = 2
    residu-10
                                                                    result.append(time()-t)
                                                                    x3 = f(x2)
    while residuate-7:
                                                                    result.append(time()-t)
         v - va
                                                                    i=3
         x0 = x1
                                                                    residu=10
         x1 = np.dot(g,x1)
                                                                    while residu>1e-7:
         if i==3:
              x1 = Aitken(x.x0.x1)
                                                                        x0 = x1:
                                                                        x1 = x2:
         residu=np.linalg.norm(x1-x0.1)
                                                                        x2 = x3;
         result.append(time()-t)
                                                                        x3 = f(x2):
         i + -1
                                                                        if i%2 == 0:
    return x1
                                                                           x3 = Quadruple Extrapolation(x0.x1.x2.x3): 39/41
```

```
x3=x3/np.linalg.norm(x3,1)
        residu=np.linalg.norm(x3-x2,1)
        result.append(time()-t)
    return(x3)
result=[]
#Puissance
result puissance=[0]
print(puissance(g,x,result_puissance))
result.append([result puissance[-1],len(result puissance)-1])
#Jacobi
result jacobi=[0]
M=D
N=-1-II
print(precond(M.N.b.x.result jacobi))
result.append([result jacobi[-1].len(result jacobi)-1])
#Gauss-Seidel
result gauss=[0]
M=D+I
N-M-A
print(precond(M.N.b.x.result gauss))
result.append([result gauss[-1].len(result gauss)-1])
#SSOR
result_ssor=[0]
M=np.dot(np.dot(D+w*L.np.linalg.piny(D)).D+w*U)
N=M-A
```

```
print(precond(M,N,b,x,result ssor))
     result.append([result ssor[-1],len(result ssor)-1])
    #Aitken
    result aitken=[0]
     print(Steffensen(f,x,result aitken))
     result.append([result aitken[-1],len(result aitken)-1])
164 #Ouadratique
     result quadratique=[0]
     print(quadratique(f,x,result quadratique))
     result.append([result quadratique[-1],len(result quadratique)-1])
     print(result)
     x=[result[0][0],result[2][0],result[1][0],result[5][0],result[4][0],result[3][0]]
    y=[result[0][1],result[2][1],result[1][1],result[5][1],result[4][1],result[3][1]]
     color = dict(boxes='DarkGreen', whiskers='DarkOrange', medians='DarkBlue', cans='Gray')
     mydata = pd.DataFrame({"Itérations":v, "Temps":x})
     mydata.index = ["Puissance", "Gauss-Seidel", "Jacobi", "Ouadratique", "Aitken", "SSOR"]
     mydata.plot(kind="bar", secondary y="Itérations", color = ['lightcoral', 'lightskyblue'])
    plt.show()
                                                                                            40/41
```

```
1 import numpy as np
 2 import matplotlib.pvplot as plt
    from time import time
    import pandas as pd
    from pandas import plotting
    n=3031 #taille du graphe
    ext = np.loadtxt('/Users/Beaudinard/Documents/mp/tipe/graphtrue.txt')
    h=np.zeros((n,n))
    for i in range(n):
        ligne=ext[i]
        h[int(ligne[0])][int(ligne[1])]=1
    #Methode de La puissance
    s=np.empty((n,n))
    g=np.emptv((n,n))
17 alpha=0.85
    for i in range(n):
        somme=np.sum(h[i])
        if somme==0:
            s[i]=[1/n]*n
        else:
            s[i]=np.copv(h[i]/somme)
    #h matrice avec coeff=1/li si i pointe vers i
    #s=h ou on rajoute 1/Li à tous les coeffs d'une liane nulle
    g=np.transpose(alpha*s+((1-alpha)/n))
27 #on creer q=alpha*s +((1-alpha)/n))*E
28 #x=np.ones(n)*1/n #vecteur inital pagerank
    x=np.ones(n)*1/n
31 A = (np.eye(n)-alpha*np.transpose(s))
```

```
b = (((1-alpha)/n))*np.ones(n)
D = np.diag(np.diag(A))
L=np.tril(A)-D
U=A-L-D
def puissance(g.x0.result):
    x=x0
    i - 0
    t=time()
    residu=10
    while residuale-7:
        ×0=×
        x=np.dot(g.x)
        residu=np.linalg.norm(x-x0,1)
        result.append(time()-t)
        i + -1
    return x
def precond(M.N.b.x0.result):
    invM=np.linalg.inv(M)
    K1=np.dot(invM.N)
    K2=np.dot(invM.b)
    x = x0
    i = 0
    t=time()
    residu=10
    while residu>1e-7:
        ×0=×
        x=np.dot(K1.x)+K2
        residu=np.linalg.norm(x-x0,1)
```