Anatomy of an extremely fast LVCSR decoder

George Saon, Daniel Povey and Geoffrey Zweig

IBM T.J. Watson Research Center
phone (914)-945-2985, email saon@watson.ibm.com

Abstract

We report in detail the decoding strategy that we used for the past two Darpa Rich Transcription evaluations (RT'03 and RT'04) which is based on finite state automata (FSA). We discuss the format of the static decoding graphs, the particulars of our Viterbi implementation, the lattice generation and the likelihood evaluation. Experimental results are given on the EARS database (English conversational telephone speech) with emphasis on our faster than real-time system.

Viterbi search speed-ups

- Graph memory layout: graph stored as a linear array of arcs sorted by origin state
- Successor look-up table: maps static to dynamic state indices
- Running beam pruning: pruning based on current maximum score estimate

Lattice generation

Static decoding graphs

They are acceptors (instead of transducers)
Arcs in graph have three different types of labels:

leaf labels (context-dependent output distribu-

Keep track of the N-best distinct word sequences arriving at every state

Two different types of states:

epsilon labels (e.g. due to LM back-off states).

word labels and

tions)

emitting states for which all incoming arcs are labeled by the same leaf and

null states which have incoming arcs labeled by

words or epsilon.

1709.7	451.0	29.4	Lattice link density
10	Ö	2	N-pest degree

D AW AOG G DOG K AE T CAT H D AGED JH D AGED

Likelihood computation

Speaker-adapted decoding LM rescoring + consensus

RT03 17.4% 16.1%

14.5% 13.0%

15.2%

16.4%

DEV04

RT04

- Hierarchical decoupled
- On-demand
- Hierarchical on-demand

Experimental setup (1xRT system)

EARS 2004 evaluation submission in the one times real-time (or 1xRT) category. Two-pass decoding scheme with three adaptation passes inbetween (VTLN, FMLLR, MLLR).

Decoding graph statistics:

Number of arcs	Number of states	Number of n-grams	Number of words	Number of leaves	Phonetic context		
44.5M	18.5M	3.9M	32.9K	7.9K	±2	IS	
68.7M	26.7M	4.2M	32.9K	21.5K	±3	SA	

Search statistics:

15.0K	5.0K	Max. states/frame
43.5K	7.5K	Avg. Gaussians/frame
55/45	60/40	Likelihood/search ratio
0.55xRT	0.14xRT	Run-time factor
0.3%	2.2%	Search errors
19.0%	28.7%	Word error rate
SA	SI	

= emitting state

 \bigcirc = null state