Image Clustering using K-means algorithm

Code: https://github.com/parthjindal/Linear-Algebra-AIML/tree/master/Assignment1
The code notebook has also been attached as a pdf to this document

In the MNIST dataset, each image is of the shape (28, 28) which on flattening creates a feature vector of shape (784,) The training dataset for clustering is of size 10 * 100 = 1000. Thus N = 1000, n = 784

For convergence the following criteria has been taken:

 $If \ mean(Norm_{l2}(centroids_{t} - centroids_{t-1})) < tolerance:$

converge()

else: continue

where tolerance is a hyperparameter in (1e $^{-4}$, 1e $^{-6}$)

For k = 20, The following cluster representatives were observed with their labels found by finding the maximum labelled images present inside this cluster

Initial Seed representative for cluster centroids:

From Given training Dataset

Random Initialization of Seed representatives:

Note: In random initialization, it might happen that certain clusters are empty during clustering assignment, Which might lead to poor convergence and high J_{clust} .

The following representatives are found by reassigning those cluster representatives as **zero feature vectors for convergence**

The following representatives are found by reassigning those cluster representatives as **random feature vectors for convergence.** Observe the random noise images representatives in the final cluster representatives

K	Accuracy	Initial Seed	Final J _{clust}	Total iterations
20	58%	Random	35.95	53
20	60%	Dataset	35.27	21

J_{clust} vs No. of iterations

Training Data Seed

Random Seed

	Loss		
К	Random Seed	Training Set seed	
5	43.143	44.128	
6	42.063	42.177	
7	41.787	41.219	
8	40.718	40.553	
9	39.597	39.858	
10	39.487	39.015	
11	38.421	38.264	
12	37.978	37.859	
13	37.582	37.328	
14	37.298	37.456	
15	37.077	36.674	
16	36.366	35.836	
17	35.937	35.508	
18	35.025	34.969	
19	35.778	35.270	
20	34.730	35.9747	

J_{clust} vs Number of Clusters

Random Seed

From training dataset

For the random initialization: The best representative is for k = 20 according to J_{clust} , For data-set initialization: The best representative is for k = 18 according to J_{clust}. However the loss will continue to decrease as we increase k(overfitting), We can use the elbow method to find the optimal no. of clusters.

For random: it is around 12, and for dataset initialization it is around 13.

Even though essentially the no. of classes are 10, k > 10 performs better due to their being various styles of writing digits and their inherent distributions.

Yes, The choice of initial condition has an effect on the k-means algorithm. A random initialization is very much prone to finding a cluster representative not in the distribution of any of the training set feature vectors, This leads to empty cluster formation which needs to be handled by reinitialization.

With a data-set initialization, generally we find a small J_{clust} loss, higher average accuracy on test dataset and a lesser variance test accuracy in comparison to random initialization.

It is to be noted that we can certainly view initialization as a very important part of Kmeans since it converges to a local minima very easily. Newer' algorithms such as KMeans++ uses the same base algorithm but define a heuristic to find the seeds of cluster centroid representatives.