Probability, Statistics & Mathematics (Cheat Sheet)

Author: Anik Chakraborty

Contents

1	\mathbf{Pro}	Probability				
	1.1	Theory of	of Probability	1		
		1.1.1 S	Sigma Field	1		
		1.1.2 F	Properties	1		
		1.1.3	Conditional Probability	2		
		1.1.4 S	Stochastic Independence	3		
	1.2	Random	Variable	3		
		1.2.1 U	Jnivariate	3		
		1.2.2 E	Bivariate	5		
		1.2.3 F	Results	5		
	1.3	Generati	ing Functions	6		
		1.3.1 N	Moments	6		
		1.3.2 C	Cumulants	6		
		1.3.3	Characteristic Function	7		
		1.3.4 P	Probability Generating Function	7		
	1.4	Inequalit	ties	7		
		1.4.1 N	Markov & Chebyshev	7		
			Cauchy-Schwarz	8		
		1.4.3 J	Jensen	8		
		1.4.4 L	yapunov	8		
	1.5	Theoreti	ical Distributions	9		
		1.5.1 I	Discrete	9		
			Continuous	10		
		1.5.3 N	Multivariate	12		
		1.5.4 T	Truncated Distribution	14		
	1.6		g Distributions	15		
			$\overset{\circ}{\text{Chi-square, t, F}}$	15		
			Order Statistics	16		
	1.7	Distribu	tion Relationships	17		
			Binomial	17		
			Negative Binomial	17		
		1.7.3 F	Poisson	17		
		1.7.4 N	Normal	18		
			Gamma	18		
			Beta	18		
			Cauchy	18		
			Others	18		

CONTENTS ii

	1.8	Transformations 19 1.8.1 Orthogonal 19 1.8.2 Polar 19 1.8.3 Special Transformations 19
2	Stat	istics 21
	2.1	Point Estimation
		2.1.1 Minimum MSE
		2.1.2 Consistency
		2.1.3 Sufficiency
		2.1.4 Completeness
		2.1.5 Exponential Family
		2.1.6 Methods of finding UMVUE
		2.1.7 Cramer-Rao Inequality
		2.1.8 Methods of Estimation
	2.2	Testing of Hypothesis
		2.2.1 Tests of Significance
	2.3	Interval Estimation
		2.3.1 Methods of finding C.I
		2.3.2 Wilk's Optimum Criteria
		2.3.3 Test Inversion Method
	2.4	Large Sample Theory
		2.4.1 Modes of Convergence
3	Mat	hematics 35
U	3.1	Basics
	0.1	3.1.1 Combinatorial Analysis
		3.1.2 Difference Equation
	3.2	Linear Algebra
	J.2	3.2.1 Vectors & Vector Spaces
		3.2.2 Matrices
		3.2.3 Determinants
		3.2.4 System of Linear Equation
		v ±

Chapter 1

Probability

1.1 Theory of Probability

1.1.1 Sigma Field

 Ω : Universal Set. A non-empty class \mathcal{A} of few subsets of Ω is said to form a sigma field on Ω if it satisfies the following properties-

- (i) $A \in \mathcal{A} \implies A^c \in \mathcal{A}$ (Closed under complementation)
- (ii) $A_1, A_2, \dots, A_n, \dots \in \mathcal{A} \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$ (Closed under countable union)

Theorems

- (1) A σ -field is closed under finite unions.
- (2) A σ -field must include the null set, ϕ and the whole set, Ω .
 - (a) $\mathcal{A} = \{\emptyset, \Omega\}$ is the smallest/minimal σ -field on Ω .
 - (b) If $A \in \Omega$, then $\mathcal{A} = \{\emptyset, A, A^c, \Omega\}$ is the minimal σ -field containing A, on Ω .
 - (c) The power set of Ω (the set of all subsets of Ω) is the largest σ -field on Ω .
- (3) A σ -field is closed under countable intersections.

1.1.2 Properties

- (1) For two sets $A, B \in \mathcal{A}$ -
 - (a) Monotonic Property: If $A \subseteq B$, $P(A) \le P(B)$
 - (b) $P(A \cup B) = P(A) + P(B) P(A \cap B) \implies P(A \cup B) \le P(A) + P(B)$
 - (c) $P(A \cup B) = P(A B) + P(B A) + P(A \cap B)$
 - (d) $P(A \cap B) \le \min\{P(A), P(B)\} \implies P(A \cap B) \le \sqrt{P(A) \cdot P(B)}$
 - (e) $P(A \cap B) \ge P(A) + P(B) 1$
 - (f) $P(A) = P(A \cap B) + P(A \cap B^c) \implies P(A B) = P(A) P(A \cap B)$

- (2) For any n events $A_1, A_2, \ldots, A_n \in \mathcal{A}$
 - (a) Boole's inequality: $P\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} P(A_i)$
 - (b) Bonferroni's inequality: $P\left(\bigcap_{i=1}^{n} A_i\right) \ge \sum_{i=1}^{n} P(A_i) (n-1)$

(c)
$$\sum_{i=1}^{n} P(A_i) - \sum_{1 \le i_1 < i_2 \le n} P(A_{i_1} \cap A_{i_2}) \le P\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} P(A_i)$$

(d) Poincare's theorem:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i_{1} < i_{2} \leq n} P(A_{i_{1}} \cap A_{i_{2}}) + \sum_{1 \leq i_{1} < i_{2} < i_{3} \leq n} P(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}) - \cdots$$

$$\cdots + (-1)^{n-1} P\left(\bigcap_{i=1}^{n} A_{i}\right)$$

- (e) Jordan's theorem:
 - i. The probability that exactly m of the n events will occur is -

$$P_{(m)} = S_m - {m+1 \choose m} S_{m+1} + {m+2 \choose m} S_{m+2} - \dots + (-1)^{n-m} {n \choose m} S_n$$

ii. The probability that at least m of the n events will occur is -

$$P_m = P_{(m)} + P_{(m+1)} + \dots + P_{(n)}$$

$$= S_m - \binom{m}{m-1} S_{m+1} + \binom{m+1}{m-1} S_{m+2} - \dots + (-1)^{n-m} \binom{n-1}{m-1} S_n$$

where,
$$S_r = \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_r}), r = 1(1)n$$

1.1.3 Conditional Probability

Consider, a probability space $(\Omega, \mathcal{A}, \mathcal{P})$.

- (1) Compound probability: n events $A_1, A_2, \dots, A_n \in \mathcal{A}$ are such that $P\left(\bigcap_{i=1}^{n-1} A_i\right) > 0$. Then, $P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1) \cdot P(A_2/A_1) \cdot P(A_3/A_1 \cap A_2) \cdot \dots \cdot P(A_n/\bigcap_{i=1}^{n-1} A_i)$
- (2) Total Probability Theorem: If $(B_1, B_2, ..., B_n)$ is a partition of Ω with $P(B_i) > 0 \ \forall i$, then for any event $A \in \mathcal{A}$, $P(A) = \sum_{i=1}^{n} P(B_i) \cdot P(A/B_i)$
- (3) Bayes' Theorem: $P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\sum\limits_{k=1}^{n} P(B_k)P(A/B_k)}, i = 1(1)n, \text{ if } P(A) > 0$

(4) Bayes' theorem with future events: Let, $C \in \mathcal{A}$ be an event under the previous conditions with $P(A/B_i) > 0$, i = 1(1)n. Then,

$$P(C/A) = \frac{\sum_{i=1}^{n} P(B_i) P(A/B_i) P(C/A \cap B_i)}{\sum_{i=1}^{n} P(B_i) P(A/B_i)}$$

1.1.4 Stochastic Independence

(1) For two independent events A, B -

$$P(A/B) = P(A/B^c) = P(A) \iff P(A \cap B) = P(A) \cdot P(B)$$

(2) Pairwise independence: For n events $A_1, A_2, \ldots, A_n \in \mathcal{A}$ are said to be 'pairwise' independent if -

$$P(A_{i_1} \cap A_{i_2}) = P(A_{i_1}) \cdot P(A_{i_2}), \forall i_1 < i_2$$

(3) Mutual independence: The above events are 'mutually' independent if -

$$P(A_{i_1} \cap A_{i_2}) = P(A_{i_1}) \cdot P(A_{i_2}), \ \forall i_1 < i_2$$

$$P(A_{i_1} \cap A_{i_2} \cap A_{i_3}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot P(A_{i_3}), \ \forall i_1 < i_2 < i_3$$

$$\vdots$$

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) \cdot P(A_2) \cdots P(A_n)$$

1.2 Random Variable

1.2.1 Univariate

 $X: \Omega \to \mathbb{R}$, such that $\{\omega: X(\omega) \le x\} \in \mathcal{A}, \forall x \in \mathbb{R} \text{ is a random variable on } \{\Omega, \mathcal{A}\}.$

- (1) The same variable $X(\cdot)$ is a R.V. for a particular choice of σ -field but may not for another choice of σ -field.
- (2) X is a R.V. on $(\Omega, \mathcal{A}) \implies f(X)$ is also a R.V. on (Ω, \mathcal{A}) . (for any f)
- (3) Continuity theorem of Probability: $(A_1 \subset A_2 \subset ...)$ or $(A_1 \supset A_2 \supset ...)$

$$\implies \lim_{n \to \infty} P(A_n) = P\left(\lim_{n \to \infty} A_n\right)$$

- (4) CDF: $F_X(x) = P[\{\omega : X(\omega) \le x\}], \forall x \in \mathbb{R}$
 - (a) Non-decreasing: $-\infty < x_1 < x_2 < \infty \implies F(x_1) \le F(x_2)$
 - (b) Normalized: $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$
 - (c) Right Continuous: $\lim_{x\to a^+} F(x) = F(a), \ \forall a \in \mathbb{R}$

For any R.V. X with CDF $F(\cdot)$ -

$$P(a < X < b) = F(b - 0) - F(a)$$
 $P(a \le X \le b) = F(b) - F(a - 0)$

$$P(a < X \le b) = F(b) - F(a)$$
 $P(a \le X < b) = F(b - 0) - F(a - 0)$

- (5) **Decomposition theorem:** $F(x) = \alpha F_c(x) + (1 \alpha)F_d(x)$ where, $0 \le \alpha \le 1$ and $F_c(x), F_d(x)$ are continuous and discrete D.F., respectively.
 - (a) $\alpha = 0 \implies X$ is purely discrete.
 - (b) $\alpha = 1 \implies X$ is purely continuous.
 - (c) $0 < \alpha < 1 \implies X$ is mixed.
- (6) X is non-negative with $E(X) = 0 \implies P(X = 0) = 1$
- (7) $P(a \le X \le b) = 1 \implies Var(X) \le \frac{(b-a)^2}{4}$
- (8) $P(|X| \le M) = 1$ for some $0 \le M < \infty \implies \mu'_r$ exists $\forall r$
- (9) $P(X \in \{0, \mathbb{N}\}) = 1 \implies E(X) = \sum_{x=0}^{\infty} \{1 F(x)\}\$
- (10) $P(X \in [0, \infty)) = 1 \implies \lim_{x \to \infty} x\{1 F(x)\} = 0$, if E(X) exists.
- (11) $E(X) = \int_{0}^{\infty} \{1 F(x)\} dx$ for any non-negative R.V. X.

$$E(X^{r}) = \int_{0}^{\infty} r \, x^{r-1} \left\{ 1 - F(x) \right\} dx$$

- $(12) \ln(GM_X) = E(\ln X)$
- (13) p^{th} quantile: ξ_p such that $F(\xi_p 0) \le p \le F(\xi_p)$. For continuous case, $F(\xi_p) = p$

Symmetry

X has a symmetric distribution about 'a' if any of the following, holds -

- (a) $P(X \le a x) = P(X \ge a + x), \forall x \in \mathbb{R}$
- (b) F(a-x) + F(a+x) = 1 + P(a+x)

Again, if X is continuous then F(a-x) + F(a+x) = 1 or $f(a-x) = f(a+x), \ \forall x \in \mathbb{R}$

- E(X) = a, if it exists
- $\operatorname{Med}(X) = a$

1.2.2 Bivariate

- $\binom{X}{Y}: \Omega \to \mathbb{R}^2$, such that $\{\omega: X(\omega) \le x, Y(\omega) \le y\} \in \mathcal{A}, \forall (x,y) \in \mathbb{R}^2 \text{ is a bivariate random variable on } \{\Omega, \mathcal{A}\}.$
 - (1) CDF: $F(x,y) = P[\{\omega : X(\omega) \le x, Y(\omega) \le y\}], \forall (x,y) \in \mathbb{R}^2$
 - (a) F(x,y) is non-decreasing and right continuous w.r.t. each of the arguments x and y.
 - (b) $F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1$
 - (c) For $x_1 < x_2, y_1 < y_2$ -

$$P(x_1 < X < x_2, y_1 < Y < y_2) = F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1) \ge 0$$

Marginal CDF

$$F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y), \ F_Y(y) = \lim_{x \to \infty} F_{X,Y}(x,y)$$

•
$$F_X(x) + F_Y(y) - 1 \le F_{X,Y}(x,y) \le \sqrt{F_X(x) \cdot F_Y(y)}, \forall (x,y) \in \mathbb{R}^2$$

- (2) Joint distribution cannot be determined uniquely from the marginals.
- (3) $f_{X,Y}(x,y) = f_X(x) \cdot f_{Y|X}(y|x) = f_Y(y) \cdot f_{X|Y}(x|y)$

(4)
$$f_{X,Y}(x,y;\alpha) = f_X(x) f_Y(y) \left\{ 1 + \alpha \cdot \overline{2F_X(x) - 1} \cdot \overline{2F_Y(y) - 1} \right\}, \ \alpha \in [-1,1]$$

Stochastic Independence

- (5) $F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y), \ \forall (x,y) \in \mathbb{R}^2 \implies f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y), \ \forall (x,y)$
- (6) $X \perp \!\!\!\perp Y \implies f(X) \perp \!\!\!\perp g(Y)$ (converse is true when f, g is 1-1)
- (7) $X \perp \!\!\!\perp Y \text{ iff } f_{X,Y}(x,y) = k \cdot f_1(x) \cdot f_2(y), \ \forall \ x,y \in \mathbb{R} \text{ for some } k > 0.$

1.2.3 Results

- (1) Sum Law: E(X + Y) = E(X) + E(Y), if all exists
- (2) Product Law: $X \perp\!\!\!\perp Y \implies E(XY) = E(X) \cdot E(Y)$ $\operatorname{Cov}(X,Y) = 0 \Rightarrow X \perp\!\!\!\perp Y$
- (3) X, Y identically distributed $\Rightarrow P(X = Y) = 1$
- (4) X_1, X_2, \dots, X_n are *iid* and continuous R.V.s $\implies n!$ arrangements are <u>equally likely</u>
- (5) $X \stackrel{iid}{\sim} Y \implies (X Y)$ is symmetric
- (6) PDF of $\max\{X,Y\}: f_U(u) = \int_{-\infty}^u \{f(u,t) + f(t,u)\}dt$ f: Joint PDF of (X,Y)

Conditional Distribution

- (7) $X \perp \!\!\!\perp Y \implies E(Y|X=x) = k$, some constant $\forall x$
- (8) $X \perp \!\!\!\perp \left(Y \rho \frac{\sigma_Y}{\sigma_X}\right) \implies E(Y|X=x)$ is linear in x
- (9) E(Y) = E[E(Y|X)] or E(X) = E[E(X|Y)]
- **(10)** $Var(Y) = Var\{E(Y|X)\} + E\{Var(Y|X)\}$
- (11) Correlation ratio: $\eta_{YX}^2 = \frac{Var\{E(Y|X)\}}{Var(Y)}$
- (12) Wald's equation: $\{X_n\}$: sequence of *iid* R.V.s, $P(N \in \mathbb{N}) = 1$. Define, $S_N = \sum_{i=1}^N X_i$

$$\implies E(S_N) = E(X_1) E(N)$$

$$\implies Var(S_N) = Var(X_1) \cdot E(N) + E^2(X_1) \cdot Var(N)$$

1.3 Generating Functions

1.3.1 Moments

- (1) MGF: $M_X(t) = E\left(e^{tX}\right)$, $|t| < t_0$, for some $t_0 > 0$ [if $E\left(e^{tX}\right) < \infty$] It determines a distribution uniquely.
- (2) μ_r' : coefficient of $\frac{t^r}{r!}$ in the expansion of $M_X(t)$, $r=0,1,2,\ldots$
- (3) If the power series: $\sum_{r=0}^{\infty} \frac{t^r \mu'_r}{r!}$ converges absolutely, then a sequence of moments $\{\mu'_r\}$ determine a distribution uniquely. For a bounded R.V this always holds.
- (4) X_i are independent with MGF $M_i(t) \implies M_S(t) = \prod_{i=1}^n M_i(t)$, where $S = \sum_{i=1}^n X_i$
- (5) Bivariate MGF: $M_{X,Y}(t_1, t_2) = E(e^{t_1X + t_2Y})$ for $|t_i| < h_i$ for some $h_i > 0$, i = 1, 2
- (6) $\mu'_{r,s}$: coefficient of $\frac{t_1^r t_2^s}{r!s!}$ in the expansion of $M_{X,Y}(t_1,t_2)$
- (7) Also, $\frac{\partial^{r+s}}{\partial t_1^r \partial t_2^s} M_{X,Y}(t_1, t_2) \mid_{(t_1=0, t_2=0)} = \mu'_{r,s}$
- (8) Marginal MGF: $M_X(t) = M_{X,Y}(t,0) \& M_Y(t) = M_{X,Y}(0,t)$
- (9) X & Y are independent 'iff' $M_{X,Y}(t_1, t_2) = M_{X,Y}(t_1, 0) \cdot M_{X,Y}(0, t_2), \ \forall (t_1, t_2)$

1.3.2 Cumulants

- (1) CGF: $K_X(t) = \ln\{M_X(t)\}$, provided the expansion is a convergent power series.
- (2) $k_1 = \mu'_1$ (mean), $k_2 = \mu_2$ (variance), $k_3 = \mu_3 \& k_4 = \mu_4 3k_2^2$
- (3) For two independent R.V. X & Y, $k_r(X+Y) = k_r(X) + k_r(Y)$

1.3.3 Characteristic Function

- (1) **CF:** $\phi_X(t) = E(e^{itX})$
- (2) $\phi_X(0) = 1, |\phi_X(t)| \le 1$
- (3) $\phi_X(t)$ is continuous on \mathbb{R} and always exists for $t \in \mathbb{R}$
- $(4) \ \phi_X(-t) = \overline{\phi_X(t)}$
- (5) If X has a symmetric distribution about '0' then $\phi_X(t)$ is real valued and an even function of t.
- (6) Uniqueness property and independence as of MGF.
- (7) Inversion theorem: If $\int_{-\infty}^{\infty} \phi_X(t)dt < \infty$, then pdf of the distribution is -

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itX} \phi_X(t) dt$$

1.3.4 Probability Generating Function

- (1) **PGF:** $P_X(t) = E(t^X)$, if |t| < 1
- (2) It generates probability and factorial moments. It also determines a distribution uniquely.
- (3) r^{th} order factorial moment: $\mu_{[r]} = \frac{d^r}{dt^r} P_X(t) \mid_{(t=1)}, r = 0, 1, \dots$
- (4) X_1, X_2, \dots, X_n are independent with PGF $P_i(t) \implies P_S(t) = \prod_{i=1}^n P_i(t)$, where $S = \sum_{i=1}^n X_i$

1.4 Inequalities

1.4.1 Markov & Chebyshev

- (1) Markov: For a non-negative R.V. X, $P(X \ge a) \le \frac{E(X)}{a}$, for a > 0. '=' holds if X has a two-point distribution.
- (2) Chebyshev: $P(|X \mu| \ge t\sigma) \le \frac{1}{t^2}$, t > 0 where $\mu = E(X) \& \sigma^2 = Var(X) < \infty$. '=' holds if X is such that -

$$f(x) = \begin{cases} \frac{1}{2t^2} & \text{, if } x = \mu \pm t\sigma \\ 1 - \frac{1}{t^2} & \text{, if } x = \mu \end{cases}$$
 $(t > 1)$

(3) One-sided Chebyshev: E(X) = 0, $Var(X) = \sigma^2 < \infty$

$$P(X \ge t) \begin{cases} \le \frac{\sigma^2}{\sigma^2 + t^2} & \text{, if } t > 0 \\ \ge \frac{t^2}{\sigma^2 + t^2} & \text{, if } t < 0 \end{cases}$$

(4) If also $\mu_4 < \infty$ then,

$$P(|X - \mu| \ge t\sigma) \le \frac{\mu_4 - \sigma^4}{\mu_4 - \sigma^4 + (t^2 - 1)^2 \sigma^4}$$

It is an improvement over Chebyshev's inequality if $t^2 \geq \frac{\mu_4}{\sigma^4}$

(5) Bivariate Chebyshev: (X_1, X_2) is a bivariate R.V. with means (μ_1, μ_2) , variances (σ_1^2, σ_2^2) & correlation ρ . Then for t > 0,

$$P(|X_1 - \mu_1| \ge t\sigma_1 \text{ or } |X_2 - \mu_2| \ge t\sigma_2) \le \frac{1 + \sqrt{1 - \rho^2}}{t^2}$$

1.4.2 Cauchy-Schwarz

If a bivariate R.V. (X,Y) has finite variances and E(XY) exists, then -

$$E^2(XY) \le E(X^2)E(Y^2)$$

'=' holds iff X & Y are linearly related passing through the origin i.e. $P(X + \lambda Y = 0) = 1$, for any λ .

1.4.3 Jensen

 $f(\cdot)$ is convex function and E(X) exists, then $E[f(X)] \ge f[E(X)]$

Note: A function, $f(\cdot)$ is said to be **convex** on an interval I, if for $x_1, x_2 \in I$ and for some $\lambda \in [0, 1]$, if

$$f[\lambda x_1 + (1 - \lambda)x_2] \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

If $f(\cdot)$ is twice differentiable then $f''(x) \geq 0$ is the condition for convexity.

1.4.4 Lyapunov

For a R.V. X, define $\beta_r = E(|X|^r)$ (assuming it exists) then -

$$\left\{\beta_r^{\frac{1}{r}}\right\}$$
 is non decreasing i.e. $\beta_r^{\frac{1}{r}} \leq \beta_{r+1}^{\frac{1}{r+1}}$

1.5 Theoretical Distributions

1.5.1 Discrete

X	CDF	PDF	$\mathbf{E}(\mathbf{X})$	$\operatorname{Var}(\mathrm{X})$	MGF
$\mathrm{U}\left\{x_1,\ldots,x_N\right\}$	$\frac{\#\{i: x_i \leqslant x\}}{N}$	$\frac{1}{N}$	$\frac{N+1}{2}$	$\frac{N^2-1}{12}$	$\frac{e^t}{N} \left(\frac{e^{Nt} - 1}{e^t - 1} \right)$
Bernoulli (p)	$(1-p)^{1-x}$	$p^x(1-p)^{1-x}$	p	p(1-p)	$(1 - p + pe^t)$
Bin(n,p)	$I_{1-p}(n-x,x+1)^{[1]}$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$(1 - p + pe^t)^n$
$\mathrm{Hyp}\left(N,n,p\right)$	-	$\frac{\binom{Np}{x}\binom{N-Np}{n-x}}{\binom{N}{n}}$	np	$np(1-p)\left(\frac{N-n}{N-1}\right)$	-
$\mathrm{Geo}\left(p\right)$	$1 - (1 - p)^{x+1}$	$p(1-p)^x$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{1 - (1 - p)e^t}$
NB(n,p)	$I_p(n,x+1)^{[1]}$	$\binom{n+x-1}{n-1} p^n (1-p)^x$	$\frac{n(1-p)}{p}$	$\frac{n(1-p)}{p^2}$	$\left(\frac{p}{1 - (1 - p)e^t}\right)^n$
Poisson (λ)	$\int\limits_{\lambda}^{\infty} \frac{e^{-t}t^x}{\Gamma(x+1)} dt$	$e^{-\lambda} \frac{\lambda^x}{x!}$	λ	λ	$e^{\lambda\left(e^t-1\right)}$

[1] $I_p(k, n-k+1) = \int_0^p \frac{t^{k-1}(1-t)^{n-k}}{B(k,n-k+1)} dt$ (Incomplete Beta Function)

Properties

Binomial

- (1) Mode: [(n+1)p] if (n+1)p is not an integer, else $\{(n+1)p-1\}$ and (n+1)p.
- (2) Factorial Moment: $\mu_{(r)} = (n)_r p^r$
- (3) Bin (n, p) is symmetric iff $p = \frac{1}{2}$
- (4) Variance of Bin (n, p) is minimum iff $p = \frac{1}{2}$ and minimum variance $= \frac{n}{4}$.
- (5) $X, Y \stackrel{iid}{\sim} \operatorname{Bin}(n, \frac{1}{2}) \implies P(X = Y) = {2n \choose n} \left(\frac{1}{2}\right)^{2n}$

Geometric

- (1) X: number of trials required to get the 1^{st} success, then $E(X) = \frac{1}{p}$ and $Var(X) = \frac{1-p}{p^2}$
- (2) Lack of Memory: $X \sim \text{Geo}\left(p\right) \iff P(X > m + n \mid X > m) = P(X \geqslant n), \ \forall m, n \in \mathbb{N}$

Negative Binomial

- (1) Mode: $\left[\frac{(n-1)(1-p)}{p}\right]$ if $\frac{(n-1)(1-p)}{p}$ is not an integer, else $\left(\frac{(n-1)(1-p)}{p}-1\right)$, $\frac{(n-1)(1-p)}{p}$.
- (2) NB $(n, p) \equiv \text{Bin}(-n, P)$ where, $P = -\frac{1-p}{p}$

(3) Y: number of trials required to get the r^{th} success. Then -

$$P(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \ y = r, r+1, \dots$$

Here, Y is discrete waiting time R.V. (Pascal Distribution)

(4)
$$X \sim \operatorname{Bin}(n, p), Y \sim \operatorname{NB}(r, p) \implies P(X \ge r) = P(Y \le n)$$

Poisson

(1) Mode: $[\lambda]$ if λ is not an integer, else $(\lambda - 1)$ and λ .

1.5.2 Continuous

X	CDF	PDF	E(X)	$\operatorname{Var}(\mathrm{X})$	MGF
$\mathrm{U}\left(a,b ight)$	$\frac{x-a}{b-a}$	$\frac{I\{a < x < b\}}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
$\operatorname{Gamma}\left(n,\theta\right)$	$\Gamma_x (n, \theta)^{[2]}$	$\frac{e^{-\frac{x}{\theta}}x^{n-1}}{\theta^n\Gamma(n)}$	$n\theta$	$n heta^2$	$\frac{1}{(1-t\theta)^n}$
$\mathrm{Exp}\left(\theta\right)$	$1 - e^{-\frac{x}{\theta}}$	$\frac{1}{\theta} e^{-\frac{x}{\theta}}$	heta	$ heta^2$	$\frac{1}{(1-t\theta)}$
$\mathrm{Beta}\left(m,n\right)$	$I_x(m,n)$	$\frac{x^{m-1}(1-x)^{n-1}}{B(m,n)}$	$\frac{m}{m+n}$	$\frac{mn}{(m+n)^2(m+n+1)}$	-
$\mathrm{Beta}_{2}\left(m,n\right)$	-	$\frac{1}{B(m,n)} \cdot \frac{x^{m-1}}{(1+x)^{m+n}}$	$\frac{m}{n-1} \ (n > 1)$	$\frac{m(m+n-1)}{(n-2)(n-1)^2}$ $(n>2)$	-
$\mathcal{N}\left(\mu,\sigma^2 ight)$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{t\mu + \frac{t^2\sigma^2}{2}}$
$\Lambda\left(\mu,\sigma^2\right)$	$\Phi\left(\frac{\ln x - \mu}{\sigma}\right)$	$\frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}$	$e^{\mu + \frac{1}{2}\sigma^2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	×
$\mathcal{C}\left(\mu,\sigma ight)$	$\frac{1}{2} + \frac{1}{\pi} \tan^{-1} \left(\frac{x - \mu}{\sigma} \right)$	$\frac{\sigma}{\pi\{\sigma^2 + (x-\mu)^2\}}$	×	×	×
$\mathrm{SE}\left(\mu,\sigma ight)$	$1 - e^{-\left(\frac{x-\mu}{\sigma}\right)}$	$\frac{1}{\sigma} e^{-\left(\frac{x-\mu}{\sigma}\right)}$	$\mu + \sigma$	σ^2	$\frac{e^{t\mu}}{(1-t\sigma)}$
$\mathrm{DE}\left(\mu,\sigma ight)$	$\begin{cases} \frac{1}{2} e^{\frac{x-\mu}{\sigma}} &, x \le \mu \\ 1 - \frac{1}{2} e^{-\frac{x-\mu}{\sigma}} &, x > \mu \end{cases}$	$\frac{1}{2\sigma} e^{-\frac{ x-\mu }{\sigma}}$	μ	$2\sigma^2$	$\frac{e^{t\mu}}{(1-t^2\sigma^2)}$
Pareto (x_0, θ)	$1-\left(\frac{x_0}{x}\right)^{\theta}$	$\frac{\theta x_0^{\theta}}{x^{\theta+1}}$	$\frac{\theta x_0}{\theta - 1} \ (\theta > 1)$	$\frac{\theta x_0^2}{(\theta - 2)(\theta - 1)^2} \ (\theta > 2)$	-
Logistic (α, β)	$\frac{1}{1+e^{-\left(\frac{x-\alpha}{\beta}\right)}}$	$\frac{1}{\beta} \frac{e^{\frac{x-\alpha}{\beta}}}{\left\{1 + e^{\frac{x-\alpha}{\beta}}\right\}^2}$	α	$\frac{\beta^2\pi^2}{3}$	$\frac{\pi\beta t\ e^{t\alpha}}{\sin(\pi\beta t)}$

[2]
$$\Gamma_x(n,\theta) = \int_0^x \frac{e^{-\frac{t}{\theta}}t^{n-1}}{\theta^n\Gamma(n)}dt$$
 (Incomplete Gamma Function)

Properties

Uniform

- (1) $\mu'_r = \frac{b^{r+1} a^{r+1}}{(r+1)(b-a)}$
- (2) $X \sim U(0, n), n \in \mathbb{N} \implies X [X] \sim U(0, 1)$
- (3) Classical & Geometric definition of probability is based on 'Uniform distribution' over <u>discrete</u> & <u>continuous</u> space, respectively.

Gamma

- (1) Moments: $\mu'_r = \theta^r \frac{\Gamma(n+r)}{\Gamma(n)}$, if r > -n
- (2) **HM**: $(n-1)\theta$, if n > 1
- (3) Mode: Mode is at $(n-1)\theta$, if n > 1; 0, if n = 1 and for 0 < n < 1 no mode.

Exponential

- (1) $\mu_r' = \theta^r r!$
- (2) $\xi_p = -\theta \ln(1-p) \implies \text{Median} = \theta \ln 2$
- (3) Mode is at x = 0, $MD_{\theta} = \frac{2\theta}{e}$
- (4) Lack of Memory: $X \sim \text{Exp}(\theta) \iff P(X > m + n \mid X > m) = P(X > n), \ \forall m, n > 0$
- (5) $\frac{F'(x)}{1-F(x)} = \text{constant } \forall x > 0 \iff X \sim \text{Exponential}$
- (6) $X \sim \operatorname{Exp}(\lambda) \implies [X] \sim \operatorname{Geo}\left(p = 1 e^{-\frac{1}{\lambda}}\right) \text{ and } X \perp \!\!\!\perp [X]$
- (7) $X \sim DE(\theta, 1) \implies P[X_{(1)} \le \theta \le X_{(n)}] = 1 \left(\frac{1}{2}\right)^{n-1}$

Beta

- (1) $\mu'_r = \frac{B(r+m,n)}{B(m,n)}$, if r+m>0
- (2) **HM:** $\frac{m-1}{m+n-1}$, if m > 1
- (3) Mode: $\frac{m-1}{m+n-2}$, if m > 1, n > 1
- (4) If m = n, median $= \frac{1}{2}$, $\forall n > 0$ and mode $= \frac{1}{2}$, if n > 1, else no mode.
- (5) Beta $(1,1) \stackrel{D}{\equiv} U(0,1)$

Beta₂

- (1) $\mu'_r = \frac{B(r+m,n-r)}{B(m,n)}$, if -m < r < n
- (2) **HM:** $\frac{n}{m-1}$, if m > 1
- (3) Mode: $\frac{m-1}{n+1}$, if m > 1, for 0 < m < 1, no mode.

Normal

(1) median = mode = μ and bell-shaped (unimodal)

(2)
$$\mu_{2r-1} = 0$$
, $\mu_{2r} = (2\sigma^2)^r \frac{\Gamma(r+\frac{1}{2})}{\sqrt{\pi}} = \{(2r-1)\cdot(2r-3)\cdots5\cdot3\cdot1\} \sigma^{2r}$

(3)
$$MD_{\mu} = \sigma \sqrt{\frac{2}{\pi}}$$

(4)
$$\int t \, \phi(t) \, dt = -\phi(t) + c$$

(5) For
$$x > 0$$
, $\left\{ \frac{1}{x} - \frac{1}{x^3} \right\} < \frac{1 - \Phi(x)}{\phi(x)} < \frac{1}{x} \implies 1 - \Phi(x) \simeq \frac{\phi(x)}{x}$, for large $x \ (x > 3)$

(6)
$$X \sim \mathcal{N}(0,1) \implies E[X] = -\frac{1}{2}$$

Lognormal

(1)
$$\mu_r' = e^{r\mu + \frac{1}{2}r^2\sigma^2}$$

(2) HM:
$$e^{\mu - \frac{1}{2}\sigma^2}$$
, GM: e^{μ} , Median: e^{μ} , Mode: $e^{\mu - \sigma^2}$
 \implies Mean > Median > Mode \implies Positively skewed

(3)
$$X_i \stackrel{iid}{\sim} \Lambda(\mu, \sigma^2) \implies GM(X) \sim \Lambda(\mu, \frac{\sigma^2}{n})$$

Cauchy

- (1) μ'_r exists for -1 < r < 1
- (2) Median = Mode = μ

1.5.3 Multivariate

A 'p'-component (dimensional) **Random Vector** (R.V.), $X^{p\times 1} = (X_1 \ X_2 \cdots X_p)'$ defined on (Ω, \mathcal{A}) is a vector of p real-valued functions $X_1(\cdot), X_2(\cdot), \ldots, X_p(\cdot)$ defined on ' Ω ' such that - $\{\omega : X_1(\omega) \leq x_1, X_2(\omega) \leq x_2, \cdots, X_p(\omega) \leq x_p\} \in \mathcal{A}, \forall x \in (x_1 \ x_2 \cdots x_p)' \in \mathbb{R}^p$ is a random vector.

(1) CDF:
$$F_{\underline{X}}(\underline{x}) = P\left[\left\{\omega : X_1(\omega) \le x_1, X_2(\omega) \le x_2, \cdots, X_p(\omega) \le x_p\right\}\right], \ \forall \underline{x} \in \mathbb{R}^p$$

- (a) $F_{\underline{X}}(\underline{x})$ is <u>non-decreasing</u> and <u>right continuous</u> w.r.t. each of x_1, x_2, \dots, x_p .
- (b) $F_{\underline{X}}(+\infty, +\infty, \dots, +\infty) = 1$, $\lim_{x_i \to -\infty} F_{\underline{X}}(\underline{x}) = 0$, $\forall i = 1(1)p$
- (c) For $h_1, h_2, \dots, h_p > 0$

$$P(x_1 < X_1 < x_1 + h_1, x_2 < X_2 < x_2 + h_2, \dots, x_p < X_p < x_p + h_p) \ge 0$$

(2)
$$\sum_{i=1}^{p} F_{X}(x_i) - (p-1) \le F_{X}(x) \le \sqrt[p]{F_{X_1}(x_1) F_{X_2}(x_2) \cdots F_{X_p}(x_p)}$$

- (3) The distribution of any sub-vector is a marginal distribution. There are $(2^p 1)$ marginals.
- (4) Independence: $X^{p \times 1} = \begin{pmatrix} X_{(1)} \\ X_{(2)} \end{pmatrix}, \ X_{(1)} \perp \!\!\!\perp X_{(2)} \iff F_{X}(x) = F_{X_{(1)}}(x_{(1)}) \cdot F_{X_{(2)}}(x_{(2)}), \ \forall x \in \mathbb{R}^{p}$

- $(\mathbf{5}) \ E(\underline{a}'\underline{X}) = \underline{a}'\mu, \ Var(\underline{a}'\underline{X}) = \underline{a}' \ \Sigma \ \underline{a}, \ Cov(\underline{a}'\underline{X}, \underline{b}'\underline{X}) = \underline{a}' \ \Sigma \ \underline{b} \ \text{for non-stochastic vectors} \ \underline{a}, \underline{b} \in \mathbb{R}^p$
- (6) $E(AX) = A\mu$, $D(AX) = A\Sigma A'$, $Cov(AX, BX) = A\Sigma B'$ for non-stochastic matrices $A^{q\times p}$, $B^{r\times p}$
- (7) $E[(X \alpha)'A(X \alpha)] = \operatorname{trace}(A\Sigma) + (\mu \alpha)'A(\mu \alpha)$
- (8) A matrix $\Sigma = (\sigma_{ij})$ is a dispersion matrix if and only if it is **n.n.d.**
- (9) Generalized variance: $\det(\Sigma)$, where $\Sigma = E\left\{(\tilde{X} \tilde{\mu})(\tilde{X} \tilde{\mu})'\right\} = E(\tilde{X}\tilde{X}') \tilde{\mu}\tilde{\mu}' = D\left(\tilde{X}^{p\times 1}\right)$
- (10) Σ is **p.d.** iff there is no $\underline{a} \neq \underline{0}$ for which $P(\underline{a}'\underline{X} = c) = 1$ Σ is **p.s.d.** iff there is a vector $\underline{a} \neq \underline{0}$ for which $P[\underline{a}'(\underline{X} \mu) = 0] = 1$
- $(\mathbf{11}) \ \det(\Sigma) > 0 \implies \text{Non-singular, } \det(\Sigma) = 0 \implies \text{Singular Distribution}$
- (12) $\Sigma = BB'$ for any dispersion matrix Σ , where B is n.n.d.
- (13) Σ is p.d. $\Longrightarrow \Sigma = BB'$, B is non-singular and let, $Y = B^{-1}(X \mu) \Longrightarrow E(Y) = 0$, $D(Y) = I_p$

(14)
$$\rho_{12\cdot 3} = \frac{\rho_{12} - \rho_{23}\rho_{31}}{\sqrt{1 - \rho_{13}^2}\sqrt{1 - \rho_{23}^2}}$$

Multinomial

PMF: $(X_1, X_2, \dots, X_k) \sim \text{Multinomial}(n; p_1, p_2, \dots, p_k)$

(a) Singular -

$$f_{X}(x_{1}, x_{2}, \dots, x_{k}) = \begin{cases} \frac{n!}{x_{1}! x_{2}! \cdots x_{k}!} p_{1}^{x_{1}} p_{k}^{x_{k}} \cdots p_{k}^{x_{k}} & \text{, if } \sum_{i=1}^{k} x_{i} = n, \sum_{i=1}^{k} p_{i} = 1\\ 0 & \text{, otherwise} \end{cases}$$

(b) Non-singular -
$$\sum_{i=1}^{k-1} x_i \le n$$
, $\sum_{i=1}^{k-1} p_i < 1$ $\left(x_k = n - \sum_{i=1}^{k-1} x_i, \ p_k = 1 - \sum_{i=1}^{k-1} p_i \right)$

Properties

(1)
$$E(X_i) = np_i$$
, $Cov(X_i, X_j) = \begin{cases} np_i(1 - p_i) & \text{, if } i = j \\ -np_ip_j & \text{, if } i \neq j \end{cases}$, $i, j = 1, 2, \dots, k - 1$

(2)
$$\rho_{ij} = \rho(X_i, X_j) = -\sqrt{\frac{p_i p_j}{(1 - p_i)(1 - p_j)}}, i \neq j \quad \left(\text{As } \sum_{i=1}^k X_i = n, X_i \uparrow \Longrightarrow X_j \downarrow \text{ on an average}\right)$$

(3)
$$\det(\Sigma) = n^{k-1} \det(D - PP') = n^{k-1} \det(D)(1 - PD^{-1}P)$$

$$D = \operatorname{diag}(p_1, p_2, \dots, p_{k-1})$$
$$P = (p_1, p_2, \dots, p_{k-1})'$$

(4)
$$X^{\overline{k-1}\times 1} \sim \text{Multinomial}(n; p_1, \dots, p_{k-1}), \sum_{i=1}^{k-1} p_i < 1$$

$$\implies X_1 \mid (X_2 = x_2, \dots, X_{k-1} = x_{k-1}) \sim \text{Bin}\left(n - \sum_{i=2}^{k-1} x_i, \frac{p_1}{1 - \sum_{i=2}^{k-1} p_i}\right)$$

 \implies the regression of X_1 on $X_2, X_3, \ldots, X_{k-1}$ is linear and the distribution is <u>heteroscedastic</u>.

(5) MGF:
$$E\left(e^{t'\bar{X}}\right) = \left[1 + \sum_{i=1}^{k-1} p_i \left(e^{t_i} - 1\right)\right]^n$$

Multiple Correlation

(6) For singular case, $\rho_{1:23\cdots k} = 1$

(7) For non-singular case,
$$\rho_{1 \cdot 23 \cdots k-1}^{2} = \frac{p_{1} \cdot \sum_{i=2}^{k-1} p_{i}}{(1-p_{1}) \left(1 - \sum_{i=2}^{k-1} p_{i}\right)}$$

$$\rho_{12 \cdot 34 \cdots k-1} = -\frac{\sqrt{p_{1} p_{2}}}{\sqrt{(1-p_{2} - p_{3} - \cdots - p_{k-1})} \sqrt{(1-p_{1} - p_{3} - \cdots - p_{k-1})}}$$

Bivariate Normal

$$(X,Y) \sim \mathrm{BN}(\mu_1,\mu_2,\sigma_1,\sigma_2,\rho)$$

(1)
$$X \sim \mathcal{N}(\mu_1, \sigma_1^2), Y \mid X = x \sim \mathcal{N}\left(\mu_2 + \rho \frac{\sigma_2}{\sigma_2}(x - \mu_1), \sigma_2^2(1 - \rho^2)\right)$$

(2)
$$Q(X,Y) = \frac{1}{1-\rho^2} \left\{ \left(\frac{X-\mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{X-\mu_1}{\sigma_1} \right) \left(\frac{Y-\mu_2}{\sigma_2} \right) + \left(\frac{Y-\mu_2}{\sigma_2} \right)^2 \right\} = U^2 + V^2 \sim \chi_2^2$$

where, $U = \frac{Y - \mu_2 - \rho \frac{\sigma_2}{\sigma_1} (X - \mu_1)}{\sigma_2 \sqrt{1 - \rho^2}}$, $V = \frac{X - \mu_1}{\sigma_1} \stackrel{iid}{\sim} \mathcal{N}(0, 1)$

(3)
$$(X,Y)$$
 is independent $\iff \rho = 0$

(4)
$$(X,Y) \sim BN(0,0,1,1,\rho)$$

(a)
$$(X+Y) \perp \!\!\! \perp (X-Y) \implies \frac{X+Y}{X-Y} \sim \mathcal{C}\left(0, \sqrt{\frac{1+\rho}{1-\rho}}\right)$$

(b)
$$E\{\max(X,Y)\} = \sqrt{\frac{1-\rho}{\pi}}, \text{ PDF: } f_U(u) = 2\phi(u)\Phi\left(u\sqrt{\frac{1-\rho}{1+\rho}}\right)$$

(c)
$$\rho(X^2, Y^2) = \rho^2$$

(5)
$$(X,Y) \sim \text{BN}(0,0,1,1,0), Y_1 = X_1 \operatorname{sgn}(X_2), Y_2 = X_2 \operatorname{sgn}(X_1), \text{ where } \operatorname{sgn}(X) = \begin{cases} -1, & X < 0 \\ 1, & X > 0 \end{cases}$$

 $\implies (Y_1,Y_2) \nsim \text{BN}, \ \rho(Y_1,Y_2) = \frac{2}{\pi}$

1.5.4 Truncated Distribution

Univariate

F(x) be the CDF of X over the sample space \mathfrak{X} . Let, $A=(a,b]\subset\mathfrak{X}$, then the CDF of X over truncated space A is -

$$G(x) = P(X \le x \mid X \in A) = \begin{cases} 0 & , x \le a \\ \frac{F(x) - F(a)}{F(b) - F(a)} & , a < x \le b \\ 1 & , x > b \end{cases}$$

PMF/PDF: $\frac{f(x)}{P(X \in A)}$, $x \in A$

Results

- $E(X) = E(X|A) \cdot P(X \in A) + E(X|A^c) \cdot P(X \in A^c)$
- $X \sim \text{Geo}(p) \implies (X k) \mid X \ge k \sim \text{Geo}(p)$
- Truncated Normal distribution is platykurtic.
- Truncated Cauchy distribution has <u>finite moments</u>.

Bivariate

(X,Y): bivariate R.V. with PDF, f(x,y) over the sample space, $\mathfrak{X} \subseteq \mathbb{R}^2$. Let, $A \subset \mathfrak{X}$, then the PDF over the truncated space is -

$$g(x,y) = \frac{f(x,y)}{P[(X,Y) \in A]}$$
, if $(x,y) \in A$

•
$$\mu'_{r,s}(A) = E(X^rY^s|A) = \iint\limits_A x^r y^s \frac{f(x,y)}{P\left[(X,Y)\in A\right]} dx dy$$

1.6 Sampling Distributions

1.6.1 Chi-square, t, F

 χ_n^2

(1)
$$E(X) = n$$
, $Var(X) = 2n$

(2)
$$\mu'_r = 2^r \cdot \frac{\Gamma(\frac{n}{2} + r)}{\Gamma(\frac{n}{2})}$$
, if $r > -\frac{n}{2}$

(3)
$$\chi_n^2 \stackrel{D}{\equiv} \text{Gamma}\left(\frac{n}{2}, 2\right), n \in \mathbb{N}$$

 t_n

(1)
$$E(X) = 0 \ (n > 1), Var(X) = \frac{n}{n-2} \ (n > 2)$$

(2)
$$\mu'_{2r} = n^r \cdot \frac{\Gamma(\frac{1}{2} + r)}{\sqrt{\pi}} \cdot \frac{\Gamma(\frac{n}{2} - r)}{\Gamma(\frac{n}{2})}$$
, if $-1 < 2r < n$

(3)
$$t_1 \stackrel{D}{\equiv} \mathcal{C}(0,1)$$

$$(4) \ t_n^2 \stackrel{D}{\equiv} F_{1,n}$$

 F_{n_1,n_2}

(1)
$$E(X) = \frac{n_2}{n_2 - 2}$$
 (if $n_2 > 2$), $Var(X) = \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)}$ (if $n_2 > 4$)

(2) Mode:
$$\frac{n_2(n_1-2)}{n_1(n_2+2)}$$
 (if $n_1 > 2$) \implies Mean $> 1 >$ Mode (if $n_1, n_2 > 2$)

(3)
$$\mu'_r = \left(\frac{n_2}{n_1}\right)^r \cdot \frac{\Gamma(\frac{n_1}{2} + r)}{\Gamma(\frac{n_1}{2})} \cdot \frac{\Gamma(\frac{n_2}{2} - r)}{\Gamma(\frac{n_2}{2})}, \text{ if } -n_1 < 2r < n_2$$

- (4) ξ_p and ξ_p' are p^{th} quantile of F_{n_1,n_2} and F_{n_2,n_1} respectively $\implies \xi_p \, \xi_{1-p}' = 1$
- (5) $F \sim F_{n,n} \implies F \stackrel{D}{=} \frac{1}{F}$ and median (F) = 1
- (6) $F \sim F_{n_1,n_2} \implies \frac{n_1}{n_2} F \sim \text{Beta}_2\left(\frac{n_1}{2},\frac{n_2}{2}\right)$
- (7) Points of inflexion are equidistant from mode (if n > 4)

1.6.2 Order Statistics

Order Statistics: $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$

(1)
$$F_{X_{(r)}}(x) = \sum_{k=r}^{n} {n \choose k} \{F(x)\}^k \{1 - F(x)\}^{n-k} = I_{F(x)}(r, n-r+1)$$

(2)
$$F_{X_{(1)},X_{(n)}}(x_1,x_2) = \{F(x_2)\}^n - \{F(x_2) - F(x_1)\}^n, x_1 < x_2$$

Only for Absolutely Continuous Random Variable - CDF: F(x), PDF: f(x)

(3)
$$f_{X_{(r)}}(x) = \frac{n!}{(r-1)!(n-r)!} \{F(x)\}^{r-1} f(x) \{1 - F(x)\}^{n-r}, x \in \mathbb{R}$$

(4) Joint PDF:
$$\frac{n!}{(r-1)!(s-r-1)!(n-r)!} \left\{ F(x) \right\}^{r-1} f(x) \left\{ F(y) - F(x) \right\}^{s-r-1} f(y) \left\{ 1 - F(y) \right\}^{n-s}, \quad x < y$$
 $(r < s)$

(5) Sample Range:
$$f_R(r) = n(n-1) \int_{-\infty}^{\infty} \{F(r+s) - F(s)\}^{n-2} f(r+s) f(s) ds, \ 0 < r < \infty$$

Results

(6)
$$X_i \stackrel{iid}{\sim} U(0,1) \implies X_{(r)} \sim \text{Beta}(r, n-r+1), r = 1, 2, \dots, n$$

(7)
$$X_1, X_2 \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2) \implies E[X_{(1)}] = \mu - \frac{\sigma}{\sqrt{\pi}}, \ E[X_{(2)}] = \mu + \frac{\sigma}{\sqrt{\pi}}$$

(8)
$$X_1, X_2, X_3 \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2) \implies \text{Sample Range: } \frac{1}{2} \left(|X_1 - X_2| + |X_2 - X_3| + |X_3 - X_1| \right)$$

(9)
$$X_i \stackrel{iid}{\sim} \operatorname{Exp}(\theta) \implies E[X_{(n)}] = \theta \left(1 + \frac{1}{2} + \frac{1}{3} \cdots + \frac{1}{n}\right)$$

(10)
$$X_i \stackrel{iid}{\sim} \operatorname{Exp}(\theta) \implies U_i = X_{(i)} - X_{(i-1)} \stackrel{\perp}{\sim} \operatorname{Exp}\left(\frac{\theta}{n-i+1}\right), \ X_{(0)} = 0$$

(11) $X_1, X_2, \ldots, X_{2k+1}$: random sample from a **continuous** distribution, **symmetric about** μ $\Longrightarrow E(\tilde{X}) = \mu$, $E\left(\frac{X_{(1)} + X_{(n)}}{2}\right) = \mu$ (if exists)

(12)
$$X_i \stackrel{iid}{\sim} \text{Shifted Exp}(\theta, 1) \implies (n - i + 1) \left(X_{(i)} - X_{(i-1)} \right) \stackrel{iid}{\sim} \text{Exp}(1)$$

 $\implies 2n \left[X_{(1)} - \theta \right] \sim \chi_2^2 \perp 2 \sum_{i=2}^n \left[X_{(i)} - X_{(1)} \right] \sim \chi_{2n-2}^2$

1.7 Distribution Relationships

1.7.1 Binomial

(1)
$$X_i \stackrel{iid}{\sim} \text{Bernoulli}(p) \implies \sum_{i=1}^n X_i \sim \text{Bin}(n,p)$$

(2)
$$X_i \stackrel{\perp}{\sim} \text{Bin}(n_i, p) \implies \sum_{i=1}^k X_i \sim \text{Bin}\left(\sum_{i=1}^k n_i, p\right)$$

(3)
$$X_1, X_2 \stackrel{iid}{\sim} \text{Bin}(n, \frac{1}{2}) \implies X_1 - X_2 \text{ is symmetric about '0'}.$$

(4)
$$X_i \stackrel{\perp}{\sim} \text{Bin}(n_i, p) \implies X_k \mid \sum_{i=1}^m X_i = t \sim \text{Hyp}\left(N = \sum_{i=1}^k n_i, t, \frac{n_k}{N}\right), k = 1(1)m$$

(5) Bin
$$(n, p) \to \text{Poisson}(\lambda = np)$$
, for $n \to \infty$ and $p \to 0$ such that np is finite.

(6) Bin
$$(n,p) \to \mathcal{N}(np, np(1-p))$$
, for large n and moderate p .

1.7.2 Negative Binomial

(1)
$$X_i \stackrel{iid}{\sim} \text{Geo}(p) \implies X_{(1)} \sim \text{Geo}(1 - q^n)$$
, where $q = 1 - p$

(2)
$$X, Y \stackrel{iid}{\sim} \text{Geo}(p) \iff X | X + Y = t \sim \text{U}\{0, 1, 2, \dots, t\}$$

(3)
$$X, Y \stackrel{iid}{\sim} \text{Geo}(p) \implies \min\{X, Y\} \perp \!\!\! \perp (X - Y)$$

(4)
$$X_i \stackrel{iid}{\sim} \text{Geo}(p) \implies \sum_{i=1}^n X_i \sim \text{NB}(n, p)$$

(5)
$$X_i \stackrel{\perp}{\sim} \text{NB}(n_i, p) \implies \sum_{i=1}^k X_i \sim \text{NB}\left(\sum_{i=1}^k n_i, p\right)$$

(6) NB
$$(n,p) \to \text{Poisson}(\lambda = n(1-p))$$
, for $n \to \infty$ and $p \to 1$ such that $n(1-p)$ is finite.

1.7.3 Poisson

(1)
$$X_i \stackrel{\perp}{\sim} \text{Poisson}(\lambda_i) \implies \sum_{i=1}^k X_i \sim \text{Poisson}\left(\sum_{i=1}^k \lambda_i\right)$$

(2)
$$X_i \stackrel{\perp}{\sim} \text{Poisson}(\lambda_i) \implies X_k \left| \sum_{i=1}^m X_i = t \sim \text{Bin}\left(t, p = \frac{\lambda_k}{\lambda}\right), k = 1(1)m, \text{ where } \lambda = \sum_{i=1}^m \lambda_i \right|$$

(3)
$$X_i \stackrel{\perp}{\sim} \text{Poisson}(\lambda_i) \implies (X_1, X_2, \dots, X_k) \left| \sum_{i=1}^k X_i = t \sim \text{Multinomial}(t, p_1, p_2, \dots, p_k), \text{ where } \right|$$

$$p_i = \frac{\lambda_i}{\sum_{i=1}^k \lambda_i}, i = 1, 2, \dots, k$$

1.7.4 Normal

(1)
$$X \sim \mathcal{N}(0, \sigma^2) \implies X \stackrel{D}{\equiv} -X$$

(2)
$$X_i \stackrel{\perp}{\sim} \mathcal{N}(\mu_i, \sigma_i^2) \implies \sum_{i=1}^n a_i X_i \sim \mathcal{N}\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$$

(3)
$$X_i \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$
, $\sum_{i=1}^n a_i X_i \perp \!\!\! \perp \sum_{i=1}^n b_i X_i \iff \underline{a}.\underline{b} = 0$
 \bar{X} and $(X_1 - \bar{X}, X_2 - \bar{X}, \dots, X_n - \bar{X})$ are independently distributed

1.7.5 Gamma

(1)
$$X_i \stackrel{iid}{\sim} \operatorname{Exp}(\theta) \implies X_{(1)} \sim \operatorname{Exp}\left(\frac{\theta}{n}\right)$$

(2)
$$X, Y \stackrel{iid}{\sim} \text{Exp}(\theta) \implies X | X + Y = t \sim \text{U}(0, t)$$

(3)
$$X \sim \text{Shifted Exp}(\mu, \theta) \implies (X - \mu) \sim \text{Exp}(\theta)$$

(4)
$$X \sim \text{DE}(\mu, \sigma) \implies \left|\frac{X - \mu}{\sigma}\right| \sim \text{Exp}(\theta = 1) \text{ and } |X| \sim \text{Shifted Exp}(\mu, \sigma)$$

(5)
$$X_i \stackrel{iid}{\sim} \text{Exp}(\theta) \equiv \text{Gamma}(n=1,\theta) \implies \sum_{i=1}^n X_i \sim \text{Gamma}(n,\theta)$$

(6)
$$X_i \stackrel{\perp}{\sim} \text{Gamma}(n_i, \theta) \implies \sum_{i=1}^n X_i \sim \text{Gamma}\left(\sum_{i=1}^k n_i, \theta\right)$$

1.7.6 Beta

(1)
$$X \sim \operatorname{Beta}(m, n) \implies \frac{X}{1 - X} \sim \operatorname{Beta}_2(m, n)$$

(2)
$$X \sim \operatorname{Beta}_{2}(m, n) \implies \frac{X}{1+X} \sim \operatorname{Beta}(m, n)$$

(3)
$$X_1 \sim \operatorname{Beta}(n_1, n_2) \& X_2 \sim \operatorname{Beta}(n_1 + \frac{1}{2}, n_2)$$
, independently $\implies \sqrt{X_1 X_2} \sim \operatorname{Beta}(2n_1, 2n_2)$

1.7.7 Cauchy

(1)
$$X_i \stackrel{iid}{\sim} \mathcal{C}(\mu, \sigma) \implies \bar{X}_n \sim \mathcal{C}(\mu, \sigma)$$

(2)
$$X_i \stackrel{iid}{\sim} \mathcal{C}(0, \sigma) \implies \frac{1}{X_i} \stackrel{iid}{\sim} \mathcal{C}\left(0, \frac{1}{\sigma}\right) \implies HM_{\bar{X}} \sim \mathcal{C}(0, \sigma)$$

(3)
$$X_i \stackrel{\perp}{\sim} \mathcal{C}(\mu_i, \sigma_i) \implies \sum_{i=1}^n X_i \sim \mathcal{C}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i\right)$$

1.7.8 Others

(1)
$$X_i \stackrel{iid}{\sim} \mathcal{N}(0,1) \implies \sum_{i=1}^n X_i^2 \sim \chi_n^2$$

(2)
$$U \sim \mathcal{N}(0,1), \ V \sim \chi_n^2$$
, independently $\Longrightarrow \frac{U}{\sqrt{V/n}} \sim t_n$

(3)
$$U_i \stackrel{\perp}{\sim} \chi_{n_i}^2 \implies \frac{U_1/n_1}{U_2/n_2} \sim F_{n_1,n_2}$$

(4) X is symmetric about '0'
$$\implies X \stackrel{D}{\equiv} -X$$

1.8 Transformations

1.8.1 Orthogonal

 $\underline{\tilde{y}} = T(\underline{\tilde{x}}) = A^{n \times n} \underline{\tilde{x}}^{n \times 1} \to \text{Linear Transformation. [If } \det(A) \neq 0, \text{ Jacobian: } J = \det(A^{-1})].$

- (1) If $T(\underline{x})$ is orthogonal transformation then $A^TA = I_n \implies \det(A) = \pm 1 \& |J| = 1$
- (2) $y^T y = x^T x \implies |y|^2 = |x|^2$ (length is preserved)
- (3) Cochran's theorem: $X_i \stackrel{iid}{\sim} \mathcal{N}(0,1)$ & $\sum_{i=1}^n X_i^2 = \bar{X}^T A_1 \bar{X} + \bar{X}^T A_2 \bar{X}$, where A_1, A_2 are n.n.d. matrices with ranks $r_1, r_2, r_1 + r_2 = n$

$$\implies \tilde{X}^T A_1 \tilde{X} \sim \chi_{r_1}^2$$
 and $\tilde{X}^T A_2 \tilde{X} \sim \chi_{r_2}^2$, independently.

1.8.2 Polar

(1) For a point with Cartesian coordinates (x_1, x_2, \dots, x_n) in \mathbb{R}^n -

$$x_1 = r \cos \theta_1$$

$$x_2 = r \sin \theta_1 \cos \theta_2$$

$$x_3 = r \sin \theta_1 \sin \theta_2 \cos \theta_3$$

$$\vdots$$

$$x_{n-1} = r \sin \theta_1 \cdots \sin \theta_{n-2} \cos \theta_{n-1}$$

where,
$$r^2 = \sum_{i=1}^{n} x_i^2$$
, $0 < r < \infty$ and $0 < \theta_1, \theta_2, \dots, \theta_{n-2} < \pi$, $0 < \theta_{n-1} < 2\pi$

Jacobian: $|J| = r^{n-1}(\sin \theta_1)^{n-2}(\sin \theta_2)^{n-3} \cdots \sin \theta_{n-2}$

(2) $X = R\cos\theta, Y = R\sin\theta, \ 0 < R < \infty, 0 < \theta < 2\pi$

 $x_n = r \sin \theta_1 \cdots \sin \theta_{n-2} \sin \theta_{n-1}$

$$X, Y \stackrel{iid}{\sim} \mathcal{N}(0, 1) \iff \frac{\theta \sim \mathrm{U}(0, 2\pi)}{R^2 \sim \mathrm{Exp}(2) \stackrel{D}{\equiv} \chi_2^2}$$
, independently.

(3) $\theta \sim \mathrm{U}(0,2\pi) \perp \!\!\! \perp R^2 \sim \chi_2^2 \implies R \sin(\theta + \theta_0) \sim \mathcal{N}(0,1), \; \theta_0 \; \mathrm{is \; a \; fixed \; quantity}$

1.8.3 Special Transformations

- (1) $X \sim U(a, b) \implies -\ln\left(\frac{X-a}{b-a}\right) \sim \text{Exp}(1)$
- (2) $X_1, X_2 \stackrel{iid}{\sim} U(0,1) \implies X_1 + X_2 \sim \text{Triangular } (0,2), |X_1 X_2| \sim \text{Beta } (1,2)$
- (3) Box-Muller Transformation:

$$X_1, X_2 \stackrel{iid}{\sim} \mathrm{U}\left(0, 1\right) \implies Y_1 = \sqrt{-2 \ln X_1} \cos(2\pi X_2) \stackrel{iid}{\sim} \mathcal{N}\left(0, 1\right)$$

- (4) $X \sim \text{Gamma}(n_1, \theta), Y \sim \text{Gamma}(n_2, \theta)$ $\implies X + Y \sim \text{Gamma}(n_1 + n_2, \theta), \frac{X}{X + Y} \sim \text{Beta}(n_1, n_2), \text{ independently}$ $\implies X + Y \sim \text{Gamma}(n_1 + n_2, \theta), \frac{X}{Y} \sim \text{Beta}_2(n_1, n_2), \text{ independently}$
- (5) $X, Y \stackrel{iid}{\sim} \mathcal{N}(0, 1) \implies \frac{X}{Y}, \frac{X}{|Y|} \sim \mathcal{C}(0, 1)$
- (6) $X_1, X_2 \stackrel{iid}{\sim} \operatorname{Exp}(\theta), R \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right) \implies (X_1 X_2), RX_1 (1 R)X_2 \sim \operatorname{DE}\left(0, \frac{1}{\theta}\right)$
- (7) $X \sim \text{Beta}(a, b) \perp Y \sim \text{Beta}(a + b, c) \implies XY \sim \text{Beta}(a, b + c)$
- (8) $X \sim U\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \iff \tan X \sim \mathcal{C}(0, 1)$
- (9) Dirichlet Transformation: $X_i \stackrel{iid}{\sim} \text{Exp}(\theta)$

$$\implies Y_1 = \sum_{i=1}^{n} X_i \sim \text{Gamma}(n, \theta), \ Y_k = \frac{\sum_{i=1}^{n-k+1} X_i}{\sum_{i=1}^{n-k+2} X_i} \sim \text{Beta}(n-k+1, 1), \ k = 2, 3, \dots, n$$

 Y_1, Y_2, \ldots, Y_n are independently distributed.

(10)
$$X_1, X_2, X_3, X_4 \stackrel{iid}{\sim} \mathcal{N}(0, 1) \implies X_1 X_2 \pm X_3 X_4 \sim \text{DE}(0, 1)$$
 (valid for any combination)

(11)
$$X_i \stackrel{iid}{\sim} \operatorname{Exp}(\theta) \implies \frac{2}{\theta} \sum_{i=1}^n X_i \sim \chi_{2n}^2$$

(12)
$$X \sim \operatorname{Beta}(\theta, 1) \implies -\ln X \sim \operatorname{Exp}\left(\frac{1}{\theta}\right)$$

(13)
$$X \sim \operatorname{Pareto}(\theta, x_0) \implies \ln\left(\frac{X}{x_0}\right) \sim \operatorname{Exp}\left(\frac{1}{\theta}\right)$$

(14)
$$X_1, X_2 \sim \chi_2^2 \implies \frac{aX_1 + bX_2}{X_1 + X_2} \sim U(a, b)$$
 $(a < b)$

Chapter 2

Statistics

2.1 Point Estimation

2.1.1 Minimum MSE

- (1) Measures of Closeness: T: Statistic/Estimator, $\psi(\theta)$: Parametric function Destroying the <u>randomness</u>, general measures of closeness are -
 - (a) $E|T \theta|^r$, for some r > 0 (smaller value is better)
 - (b) $P[|T \theta| < \epsilon]$, for $\epsilon > 0$ (higher value is better)
- (2) Mean Square Error: $MSE_{\psi(\theta)}(T) = E[T \psi(\theta)]^2 = Var(T) + [b(\psi(\theta), T)]^2$ T can be said a 'good estimator' of $\psi(\theta)$ if it has a small variance.
- (3) $E(m'_r) = \mu'_r$, if μ'_r exists $\implies E(\bar{X}) = \mu$, provided $\mu = E(X_1)$ exists
- (4) $E\left(s^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i \bar{X})^2\right) = \sigma^2$, population variance (if exists) but $E(m_2) \neq \sigma^2 = \mu_2$
- (5) $X_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2) \implies E\left(T_1 = \sqrt{\frac{\pi}{2}} \cdot \frac{1}{n} \sum_{i=1}^n |X_i|\right) = \sigma^2 = E\left(T_2 = C_n \sqrt{\sum_{i=1}^n X_i^2}\right).$ Here, T_1, T_2 are two UEs of σ^2 based on $\sum_{i=1}^n |X_i|$ and $\sum_{i=1}^n X_i^2$, respectively. $\left(C_n = \frac{\Gamma(\frac{n}{2})}{\sqrt{2}\Gamma(\frac{n+1}{2})}\right)$
- (6) $X_i \stackrel{iid}{\sim} \operatorname{Exp}(\theta) \implies E(\bar{X}) = \theta, E\left(\frac{n-1}{n\bar{X}} = \frac{1}{\theta}\right)$
- (7) $X_i \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2) \implies T' = \frac{n-1}{n+1} \cdot s^2$ has the smallest MSE in the class $\{bs^2 : b > 0\}$ i.e. a biased estimator T' is better than an UE s^2 , in terms of MSE.
- (8) $X \sim \text{Poisson}(\lambda) \implies T(X) = (-1)^X$ is the UMVUE of $e^{-2\lambda}$ which is an <u>absurd UE</u>. **Note:** Absurd unbiased estimator is that unbiased estimator which can take values outside the parameter space.

- (9) $X_i \stackrel{iid}{\sim} \text{Poisson}(\lambda) \implies T_{\alpha} = \alpha \bar{X} + (1 \alpha)s^2 \text{ is an UE of } \lambda \text{ for any } \alpha \in [0, 1]$ \implies There may be infinitely many UEs
- (10) Estimable Parametric Functions
 - (a) $X \sim \text{Bin}(n, p) \implies E[(X)_r] = (n)_r p^r, r = 1, 2, ..., n$ $\implies \text{Only polynomials of degree} \leq n \text{ are estimable.}$
 - (b) $X \sim \text{Bernoulli}(p) \implies \text{Only } \psi(p) = a + bp \text{ is estimable.}$
 - (c) $X \sim \text{Poisson}(\lambda) \implies E[(X)_r] = \lambda^r, r = 1, 2, \dots \implies e^{-\lambda} \text{ is estimable but not } \frac{1}{\lambda}, \sqrt{\lambda}.$
- (11) $X \sim \text{Bernoulli}(\theta), T_1(X) = X \text{ and } T_2(X) = \frac{1}{2}$ $\implies \text{Between } T_1 \text{ and } T_2 \text{ none are uniformly better than the other, in terms of MSE.}$
- (12) $X_i \stackrel{iid}{\sim} f(x;\theta), E[T(X_1)] = \theta, Var[T(X_1)] < \infty$ $\implies \lim_{n \to \infty} Var(S_n) = 0$, where S_n is the UMVUE of θ
- (13) Best Linear Unbiased Estimator (BLUE)

 T_1, T_2, \ldots, T_k be UEs of $\psi(\theta)$ with known variances v_1, v_2, \ldots, v_k and are independent

$$\implies$$
 BLUE of $\psi(\theta): T = \frac{1}{\sum\limits_{i=1}^{k} \frac{1}{v_i}} \sum\limits_{i=1}^{k} \frac{T_i}{v_i}$

2.1.2 Consistency

 $T_n \text{ is consistent for } \theta \iff P[|T_n - \theta| < \epsilon] \to 1$ or $P[|T_n - \theta| < \epsilon] \to 0$ as $n \to \infty$, $\forall \theta \in \Omega$ for every $\epsilon > 0$ $P[|T_n - \theta| > \epsilon] \to 0$

(1) Sufficient Condition

$$E(T_n - \theta)^2 \to 0 \iff E(T_n) \to \theta, Var(T_n) \to 0 \text{ as } n \to \infty \implies T_n \stackrel{P}{\longrightarrow} \theta$$

- (2) $m'_r = \frac{1}{n} \sum_{i=1}^n x_i^r \xrightarrow{P} \mu'_r = E(X_1^r), r = 1, 2, \dots, k$ (if k^{th} order moment exists)
- (3) If $T_n \xrightarrow{P} \theta$ then -
 - (a) $b_n T_n \xrightarrow{P} \theta$, if $b_n \to 1$ as $n \to \infty$
 - (b) $a_n + T_n \xrightarrow{P} \theta$, if $a_n \to 0$ as $n \to \infty$

This also shows that, 'unbiasedness' and 'consistency' are <u>not interrelated</u>.

(4) Invariance Property: $T_n \xrightarrow{P} \theta \implies \psi(T_n) \xrightarrow{P} \psi(\theta)$, provided $\psi(\cdot)$ is <u>continuous</u>

2.1.3 Sufficiency

S is sufficient for $\theta \iff (X_1, X_2, \dots, X_n) \mid S = s$ is independent of $\theta, \forall s$ S is sufficient for $\theta \iff T \mid S = s$ is independent of $\theta, \forall s$, for all statistic T.

- (1) Any one-to-one function of a sufficient statistic is also sufficient for a parameter.
- (2) Factorization Theorem

$$\prod_{i=1}^{n} f(x_i; \theta) = g(T(\underline{x}); \theta) \cdot h(\underline{x}) \iff T(\underline{X}) \text{ is sufficient for } \theta$$

where, $g(T(x);\theta)$ depends on θ and on x only through T(x) and h(x) is independent of θ .

- (3) Trivial Sufficient Statistic: $(X_1, X_2, ..., X_n)$ and $(X_{(1)}, X_{(2)}, ..., X_{(n)})$. Sufficiency means "space reduction without losing any information". In this aspect, the order statistics, $(X_{(1)}, X_{(2)}, ..., X_{(n)})$ is better as a sufficient statistic than the whole sample i.e. $(X_1, X_2, ..., X_n)$, with respect to <u>data summarization</u>.
- (4) T_1, T_2 are two sufficient statistic for $\theta \implies$ they are related
- (5) $X_i \stackrel{iid}{\sim} \text{DE}(\mu, \sigma)$, \exists non-trivial sufficient statistic if μ is known (say, μ_0) and that is $\sum_{i=1}^n |X_i \mu_0|$.

Minimal Sufficient Statistic

- (6) T_0 is a minimal sufficient of θ if,
 - (a) T_0 is sufficient
 - (b) T_0 is a function of every sufficient statistic
- (7) **Theorem:** For two sample points \underline{x} and \underline{y} , the ratio $\frac{f(\underline{x};\theta)}{f(\underline{y};\theta)}$ is independent of θ if and only if $T(\underline{x}) = T(y)$, then $T(\underline{X})$ is minimal sufficient for θ .

2.1.4 Completeness

$$T \text{ is complete for } \theta \iff \text{``}E[h(T)] = 0, \forall \theta \in \Omega \implies P[h(T) = 0] = 1, \forall \theta \in \Omega\text{''}$$

Remark

If a two component statistic (T_1, T_2) is minimal sufficient for a single component parameter θ , then in general (T_1, T_2) is not complete.

It is possible to find $h_1(T_1)$ and $h_2(T_2)$ such that,

$$E[h_1(T_1)] = \psi(\theta) = E[h_2(T_2)], \ \forall \theta$$

$$\implies E[h(T_1, T_2)] = 0, \ \forall \theta \text{ where, } h(T_1, T_2) = h_1(T_1) - h_2(T_2) \neq 0$$

 $\implies (T_1, T_2)$ is not complete.

2.1.5 Exponential Family

One Parameter

An one parameter family of PDFs or PMFs, $\{f(x;\theta):\theta\in\Omega\}$ that can be expressed in the form -

$$f(x;\theta) = \exp \left[T(x)u(\theta) + v(\theta) + w(x)\right], x \in \mathcal{S}$$

with the following regularity conditions -

 C_1 : The support, $S = \{x : f(x; \theta) > 0\}$ is independent of θ

 C_2 : The parameter space, Ω is an open interval in $\mathbb R$ i.e. $\Omega = \{\theta : a < \theta < b\}$

 C_3 : $\{1, T(x)\}$ and $\{1, u(\theta)\}$ are linearly independent i.e. T(x) and $u(\theta)$ are non-constant functions is called One Parameter Exponential Family (OPEF)

K Parameter

A K-parameter family of PDFs or PMFs, $\{f(x; \underline{\theta}) : \underline{\theta} \in \Omega \subseteq \mathbb{R}^k\}$ satisfying the form -

$$f(x; \underline{\theta}) = \exp \left[\sum_{i=1}^{k} T_i(x) u_i(\underline{\theta}) + v(\underline{\theta}) + w(x) \right], \ x \in \mathcal{S}$$

with the following regularity conditions -

 C_1 : The support, $S = \{x : f(x; \underline{\theta}) > 0\}$ is independent of $\underline{\theta}$

 C_2 : The parameter space, $\Omega \subseteq \mathbb{R}^k$ is an open rectangle in \mathbb{R}^k i.e. $a_i < \theta_i < b_i, \ i = 1(1)k$

 C_3 : $\{1, T_1(x), \dots, T_k(x)\}$ and $\{1, u_1(\underline{\theta}), \dots, u_k(\underline{\theta})\}$ are linearly independent

is called K-parameter Exponential Family

Theorem

- (a) $X \stackrel{iid}{\sim} f(x;\theta) \in \text{OPEF} \implies \sum_{i=1}^{n} T(X_i)$ is complete and sufficient for the family.
- (b) $X \stackrel{iid}{\sim} f(x; \underline{\theta}) \in K$ -parameter Exponential Family $\implies \left(\sum_{i=1}^n T_1(X_i), \dots, \sum_{i=1}^n T_k(X_i)\right)$ is complete and sufficient for the family.

Distributions in Exponential Family

- (a) $f(x;\theta) = \frac{a(x)\theta^x}{g(\theta)}$, x = 0, 1, 2, ...; $0 < \theta < \rho$, $a(x) \ge 0$, $g(\theta) = \sum_{x=0}^{\infty} a(x)\theta^x$ (Power Series) \implies Binomial (n known), Poisson, Negative Binomial (n known) are in OPEF.
- (b) Normal, Exponential, Gamma, Beta, Pareto $(x_0 \text{ known})$ are in the Exponential family.
- (c) Uniform, Cauchy, Laplace, Shifted Exponential, $\{\mathcal{N}(\theta, \theta^2) : \theta \neq 0\}$, $\{\mathcal{N}(\theta, \theta) : \theta > 0\}$ are not in the Exponential Family.

The last two families are identified by Lehmann as 'Curved Exponential Family'.

2.1.6 Methods of finding UMVUE

Theorem 2.1.6.1 (Necessary & Sufficient Condition for UMVUE) Let X has a distribution from $\{f(x;\theta):\theta\in\Omega\}$. Define, $U_{\psi}=\left\{T(X):E_{\theta}\big[T(X)\big]=\psi(\theta), Var_{\theta}\big[T(X)\big]<\infty, \forall \theta\in\Omega\right\}$ and $U_0=\left\{u(X):E_{\theta}\big[T(X)\big]=0, Var_{\theta}\big[u(X)\big]<\infty, \forall \theta\in\Omega\right\}$. Then, $T_0\in U_{\psi}$ is UMVUE of θ if and only if $Cov_{\theta}(T_0,u)=0, \forall \theta\in\Omega, \forall u\in U_0$

Results

- UMVUE if exists, is unique
- T_i is UMVUE of $\psi(\theta) \implies \sum_{i=1}^k a_i T_i$ is UMVUE of $\sum_{i=1}^k a_i \psi_i(\theta)$
- T is UMVUE $\implies T^k$ is UMVUE \implies any polynomial function, f(T) is UMVUE of their expectations

Theorem 2.1.6.2 (Rao-Blackwell) Let X has a distribution from $\{f(x;\theta):\theta\in\Omega\}$ and h be a statistic from $U_{\psi}=\{h:E(h)=\psi(\theta),Var(h)<\infty,\forall\theta\in\Omega\}$. Let, T be a <u>sufficient</u> statistic for θ . Then-

- (a) $E(h \mid T)$ is an UE of $\psi(\theta)$
- (b) $Var[E(h \mid T)] \leq Var(h), \forall \theta \in \Omega$

Implication: UMVUE is necessarily a function of minimal sufficient statistic

Theorem 2.1.6.3 (Lehmann-Scheffe) Let X has a distribution from $\{f(x;\theta):\theta\in\Omega\}$ and T be a complete sufficient statistic for θ . Then-

- (a) If $E[h(T)] = \psi(\theta)$, then UMVUE of $\psi(\theta)$ is the unique UE, h(T)
- (b) If h^* is an UE of $\psi(\theta)$, then $E(h^* \mid T)$ is the UMVUE of $\psi(\theta)$

UMVUE of Different Families

Binomial

 $X_i \stackrel{iid}{\sim} \text{Bernoulli}(p) \implies \text{Complete Sufficient: } T = \sum_{i=1}^n X_i$

(1)
$$p = E(X_1) : \frac{T}{n}$$

(2)
$$p(1-p) = Var(X_1) : \frac{T(n-T)}{n(n-1)}$$

(3)
$$p^r: \frac{(T)_r}{(n)_r} = \frac{T(T-1)\cdots(T-r+1)}{n(n-1)\cdots(n-r+1)}, r=1,2,\ldots,n$$

 $X_i \stackrel{iid}{\sim} \text{Bin}(n, p) \implies \text{Complete Sufficient: } T = \sum_{i=1}^n X_i$ $\to p : \frac{\bar{X}_n}{n} = \frac{T}{n^2}$

Poisson

$$X_i \stackrel{iid}{\sim} \text{Poisson}(\lambda) \implies \text{Complete Sufficient: } T = \sum_{i=1}^n X_i$$

(1)
$$\lambda^r : \frac{(T)_r}{n^r}, \ r = 1, 2, \dots$$

(2)
$$e^{-k} \frac{\lambda^k}{k!} = P(X_1 = k) : {T \choose k} \frac{(n-1)^{T-k}}{n^T}$$

(3)
$$e^{-k\lambda} = P(X_1 = 0, X_2 = 0, \dots, X_k = 0) : \left(1 - \frac{k}{n}\right)^T, \ 1 \le k < n$$

Geometric

$$X_i \stackrel{iid}{\sim} \text{Geo}(p) \implies \text{Complete Sufficient: } T = \sum_{i=1}^n X_i$$

 $\to p = P(X_1 = 0) : \frac{n-1}{n-1+T}$

Uniform

- (1) Discrete: $X_i \stackrel{iid}{\sim} \mathrm{U}\{1,2,\ldots,N\} \implies \text{Complete Sufficient: } T = X_{(n)}$ $\to N : \frac{T^{n+1} - (T-1)^{n+1}}{T^n - (T-1)^n}$
- (2) Continuous: $X_i \stackrel{iid}{\sim} \mathrm{U}(0,\theta) \implies \text{Complete Sufficient: } T = X_{(n)}$ $\to \psi(\theta) : \left\{ \frac{T\psi'(T)}{n} + \psi(T) \right\} \qquad \left[\psi(\theta) = \theta^r : \left(\frac{n+r}{n} \right) T^r \right]$ Also if, $X_i \stackrel{iid}{\sim} \mathrm{U}(\theta_1, \theta_2) \implies \text{Complete Sufficient: } T = \left(X_{(1)}, X_{(n)} \right)$ $\to \theta_1 : \frac{nX_{(1)} X_{(n)}}{n-1} \qquad \theta_2 : \frac{nX_{(n)} X_{(1)}}{n-1}$

Gamma

$$X_i \stackrel{iid}{\sim} \operatorname{Exp}(\theta) \implies \operatorname{Complete Sufficient:} T = \sum_{i=1}^n X_i$$

(1)
$$\theta = E(X_1) : \frac{T}{n}$$

(2)
$$\frac{1}{\theta} : \frac{n-1}{T}$$

(3)
$$P(X_1 > k) = e^{-\frac{k}{\theta}} : \left(1 - \frac{k}{T}\right)^{n-1}$$
, if $k < T$

(4)
$$f(k;\theta) = \frac{1}{\theta}e^{-\frac{k}{\theta}} : \frac{(n-1)}{T} \left(1 - \frac{k}{T}\right)^{n-2}$$
, if $k < T$

$$X_i \stackrel{iid}{\sim} \text{Gamma}(p, \theta) \implies \text{Complete Sufficient: } \left(\sum_{i=1}^n \ln X_i, \sum_{i=1}^n X_i\right)$$
 (mean = $p \theta$)

For known
$$p, \ \theta^r : \frac{\Gamma(np)}{\Gamma(np+r)} T^r, \ r > -np$$

$$X_i \stackrel{iid}{\sim} \text{Shifted Exp}(\theta, \sigma_0) \implies \text{Complete Sufficient: } X_{(1)} \to \theta : X_{(1)} - \frac{\sigma_0}{n}$$

$$X_i \stackrel{iid}{\sim} \mathrm{DE}(\mu_0, \sigma) \implies \mathrm{Complete Sufficient:} \ T = \sum_{i=1}^n |X_i - \mu_0| \to \sigma^r : \frac{\Gamma(n)}{\Gamma(n+r)} T^r, \ r > -n$$

Beta

$$X_i \stackrel{iid}{\sim} \text{Beta}(\theta_1, \theta_2) \implies \text{Complete Sufficient: } \left(\sum_{i=1}^n \ln X_i, \sum_{i=1}^n \ln(1 - X_i)\right)$$

For $\theta_2 = 1$, UMVUE of θ_1 is $\frac{n-1}{-\sum_{i=1}^n \ln X_i}$

Normal

$$X_i \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma_0^2) \implies \text{Complete Sufficient: } \sum_{i=1}^n X_i \text{ or } \bar{X} \longrightarrow \mu : \bar{X} \quad \mu^2 : \bar{X}^2 - \frac{\sigma_0^2}{n}$$

$$X_i \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \sigma^2) \implies \text{Complete Sufficient: } \sum_{i=1}^n (X_i - \mu_0)^2 \text{ or } S_0^2 \longrightarrow \sigma^r : S_0^r K_{n,r}, \ r > -n$$

$$X_i \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2) \implies \text{Complete Sufficient: } \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right) \text{ or } \left(\bar{X}, S^2\right)$$

(1)
$$\mu = E(X_1) : \bar{X}$$

(2)
$$\sigma^2: S^2$$
, $\sigma^r: S^r K_{n-1,r}, \ r > -(n-1)$
$$\left[K_{n-1,r} = \frac{(n-1)^{\frac{r}{2}} \Gamma(\frac{n-1}{2})}{2^{\frac{r}{2}} \Gamma(\frac{n-1+r}{2})} \right]$$

(3)
$$\frac{\mu}{\sigma^r}$$
: $\bar{X} \cdot K_{n-1,-r} S^{-r}$, $r < (n-1)$

(4)
$$p^{th}$$
 quantile of $X_1 = \xi_p = \mu + \sigma \Phi^{-1}(p) : \bar{X} + K_{n-1,1} S \Phi^{-1}(p)$

$$X_i \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$$
 $\left[\phi(x; \mu, \sigma^2) : \text{PDF of } \mathcal{N}(\mu, \sigma^2)\right]$

(1)
$$\Phi(k - \theta) = P(X_1 \le k) : \Phi\left[(k - \bar{X}) \sqrt{\frac{n}{n-1}} \right]$$

(2)
$$\phi(k;\theta,1):\phi(k;\bar{X},\frac{n-1}{n})$$

(3)
$$e^{h\theta}:e^{h\bar{X}-\frac{h^2}{2n}}$$

Others

$$X_i \stackrel{iid}{\sim} \operatorname{Pareto}(\theta, x_0) \implies \operatorname{Complete Sufficient}: \prod_{i=1}^n X_i \text{ or } \sum_{i=1}^n \ln X_i$$
 $(x_0 \text{ known})$ $\rightarrow \frac{1}{\theta^r} : \frac{\Gamma(n)}{\Gamma(n+r)} \left\{ \sum_{i=1}^n \ln \left(\frac{X_i}{x_0} \right) \right\}^r, \ r > -n$

Special case:
$$r = -1 \implies \theta : \frac{n-1}{\sum\limits_{i=1}^{n} \ln\left(\frac{X_i}{x_0}\right)}$$

$$X_i \stackrel{iid}{\sim} \operatorname{Pareto}(\theta_0, \alpha) \implies \operatorname{Complete Sufficient:} X_{(1)}$$
 $(\theta_0 \text{ known})$

$$\rightarrow \alpha^r : \left(1 - \frac{r}{n\theta_0}\right) X_{(1)}^r \quad [\text{if } r < n\theta_0]$$

2.1.7 Cramer-Rao Inequality

Let X has a distribution from $\{f(x;\theta):\theta\in\Omega\}$ satisfying the following regularity conditions -

- (i) The parameter space, Ω is an open interval in \mathbb{R} i.e. $\Omega = \{\theta : a < \theta < b\}$
- (ii) The support, $S = \{x : f(x; \theta) > 0\}$ is independent of θ
- (iii) For each $x \in \mathcal{S}, \frac{\partial}{\partial \theta} \left[\ln f(x; \theta) \right]$ exists and finite
- (iv) The identity " $\sum_{x \in \mathcal{S}} f(x; \theta) = 1$ " or " $\int_{\mathcal{S}} f(x; \theta) dx = 1$ " can be differentiated under the summation or integral sign.
- (v) $T \in U_{\psi} = \{T(X) : E_{\theta}[T(X)] = \psi(\theta), Var_{\theta}[T(X)] < \infty, \forall \theta \in \Omega \}$ is an UE of $\psi(\theta)$ such that the derivative of $\psi(\theta) = E[T(X)]$ with respect to θ can be evaluated by differentiating under the summation or integral sign.

Then,
$$Var\left[T(X)\right] \ge \frac{\{\psi'(\theta)\}^2}{I(\theta)}$$
 where $I(\theta) = E\left[\frac{\partial}{\partial \theta}\left\{\ln f(x;\theta)\right\}\right]^2 > 0$

Equality Case

'=' holds in CR Inequality iff -

$$\frac{\partial}{\partial \theta} \left[\ln f(x; \theta) \right] = \pm \frac{I(\theta)}{\psi'(\theta)} \{ T - \psi(\theta) \} \text{ a.e. } \dots (*)$$

 \iff the family $\{f(x;\theta):\theta\in\Omega\}$ belongs to OPEF

 \rightarrow (*) is the **necessary and sufficient** condition for attaining CRLB by an UE, T(X) of $\psi(\theta)$.

Remarks

- (1) Even in OPEF, the only parametric function for which T(X) attains CRLB, is that E[T(X)]
- (2) If MVBUE T(X) of $\psi(\theta)$ exists, then it is given by, $T(X) = \psi(\theta) \pm \frac{\psi'(\theta)}{I(\theta)} \cdot \frac{\partial}{\partial \theta} \{ \ln f(X; \theta) \}$ MVBUE is also the UMVUE but UMVUE may not be MVBUE always -
 - Non-regular case: one of the regularity conditions does not hold, eg. $\{U(0,\theta): \theta > 0\}$
 - If all the regularity conditions hold but CRLB is not attainable, then there may exist UMVUE but that is not the MVBUE
- (3) Fisher's Information

(a)
$$I(\theta) = E\left[\frac{\partial}{\partial \theta} \left\{ \ln f(X; \theta) \right\} \right]^2 = E\left[-\frac{\partial^2}{\partial \theta^2} \left\{ \ln f(X; \theta) \right\} \right]$$

- (b) $I_{\underline{X}}(\theta) = n \cdot I_{X_1}(\theta)$, if the regularity conditions hold
- (c) $X \stackrel{iid}{\sim} \{f(x;\theta) : \theta \in \Omega\} \implies \text{for any statistic } T(X), I_{T(X)}(\theta) \leq I_{X}(\theta)$ '=' holds if and only if T(X) is sufficient
- (4) Lower bound for the MSE of any estimator: $MSE_{\psi(\theta)}(T) \ge \frac{\left\{\frac{\partial}{\partial \theta}E(T)\right\}^2}{I(\theta)} = \frac{\{\psi'(\theta) + b'(\theta)\}^2}{I(\theta)}$
- (5) $\{C(\theta,1): \theta \in \mathbb{R}\}$ is a regular family as the CR inequality holds, but CRLB is not attainable

2.1.8 Methods of Estimation

Method of Moments

If the sample drawn is a good representation of the population, then this method is quite reasonable. Equate 'k' sample moments m'_r with <u>corresponding</u> population moments μ'_r and solve for k unknowns for a k-parameter family.

Method of Least Squares

Here we minimize the sum of squares of errors with respect to the parameter $(\theta_1, \theta_2, \dots, \theta_k)$

Model: $y_i = E(Y | X = x_i) + z_i$

Assumptions: Conditional distribution of $Y \mid X = x_i$ is <u>homoscedastic</u>.

Method of Maximum Likelihood

- (1) Bernoulli (p)
 - (a) $p \in (0,1) \implies \text{No MLE of } p \text{ when } \underline{x} = \underline{0} \text{ or } \underline{x} = \underline{1}, \text{ else } \overline{X}$
 - (b) $\Omega = \{p : p \in \{\mathbb{Q}' \cap [0,1]\}\} \implies \text{No MLE of } p \in \Omega$
- (2) $X_i \stackrel{iid}{\sim} U(0,\theta), \ \theta > 0 \implies \hat{\theta} = X_{(n)}$
- (3) $X_i \stackrel{iid}{\sim} \mathrm{U}(\alpha, \beta), \ \alpha < \beta \implies \hat{\theta} = (\hat{\alpha}, \hat{\beta}) = (X_{(1)}, X_{(n)})$
- (4) MLE is not unique

$$X_i \stackrel{iid}{\sim} U(\theta - k_1, \theta + k_2) \implies \hat{\theta} = \alpha(X_{(n)} - k_2) + (1 - \alpha)(X_{(1)} + k_1), \ \alpha \in [0, 1]$$

(5)
$$X_i \stackrel{iid}{\sim} U(-\theta, \theta), \ \theta > 0 \implies \hat{\theta} = \max_{i=1(1)n} \{|X_i|\} = \max\{-X_{(1)}, X_{(n)}\}$$

(6)
$$X_i \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2) \implies \left(\hat{\mu}, \widehat{\sigma^2}\right) = \left(\bar{X}, \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2\right)$$

(7)
$$X_i \stackrel{iid}{\sim} \text{Gamma}(p_0, \theta) \implies \hat{\theta} = \frac{\bar{X}}{p_0}$$
 ($p_0 \text{ known}$)

(8)
$$X_i \stackrel{iid}{\sim} \operatorname{Beta}(\theta, 1) \implies \hat{\theta} = \frac{n}{-\sum\limits_{i=1}^{n} \ln X_i}$$

(9)
$$X_i \stackrel{iid}{\sim} \operatorname{Pareto}(x_0, \theta) \implies \left(\hat{x_0}, \hat{\theta}\right) = \left(X_{(1)}, \frac{n}{\sum_{i=1}^n \ln\left(\frac{X_i}{X_{(1)}}\right)}\right)$$

(10)
$$X_i \stackrel{iid}{\sim} \text{DE}(\mu, \sigma) \implies (\hat{\mu}, \hat{\sigma}) = \left(\tilde{X}, \frac{1}{n} \sum_{i=1}^n |X_i - \tilde{X}|\right)$$

(11)
$$X_i \stackrel{iid}{\sim} \text{Shifted Exp}(\mu, \sigma) \implies (\hat{\mu}, \hat{\sigma}) = (X_{(1)}, \bar{X} - X_{(1)})$$

In particular if $\mu = \sigma > 0$, then $\hat{\mu} = X_{(1)}$

(12) Truncated parameter: $X_i \stackrel{iid}{\sim} \text{Bernoulli}(p), \ p \in \left[\frac{1}{4}, \frac{3}{4}\right]$. Here, the MLE of p is -

$$\hat{p}(\bar{X}) = \begin{cases} \frac{1}{4}, & \text{if } \bar{X} < \frac{1}{4} \\ \bar{X}, & \text{if } \frac{1}{4} \le \bar{X} \le \frac{3}{4} \\ \frac{3}{4}, & \text{if } \bar{X} > \frac{3}{4} \end{cases}$$

It is better than the UMVUE, \bar{X} of $p \in \begin{bmatrix} \frac{1}{4}, \frac{3}{4} \end{bmatrix}$, in terms of variability

Properties

- (13) MLE, if exists is a function of (minimal) sufficient statistic
- (14) Under the regularity conditions of CR inequality MVBUE exists, then that is the MLE
- (15) Invariance property: $\hat{\theta}$ is the MLE of $\theta \implies h(\hat{\theta})$ is the MLE of $h(\theta)$ for any function $h(\cdot)$
- (16) For large n, the bias of MLE become insignificant
- (17) Under normality, LSE \equiv MLE.
- (18) Asymptotic property
 - (a) Under certain regularity conditions, the MLE $\hat{\theta}$ of θ is consistent and also

$$\hat{\theta} \stackrel{a}{\sim} \mathcal{N}\left(\theta, \frac{1}{nI_1(\theta)} = \frac{1}{I_n(\theta)}\right) \qquad \underline{\text{or}} \qquad \sqrt{n}\left(\hat{\theta} - \theta\right) \stackrel{a}{\sim} \mathcal{N}\left(0, \frac{1}{I_1(\theta)}\right)$$

(b) In OPEF, let $\hat{\theta}$ is the MLE of θ then -

$$\sqrt{n}\left(\hat{\theta} - \theta\right) \stackrel{a}{\sim} \mathcal{N}\left(0, \frac{1}{I_1(\theta)}\right) \implies \sqrt{n}\left\{\psi(\hat{\theta}) - \psi(\theta)\right\} \stackrel{a}{\sim} \mathcal{N}\left(0, \frac{\left\{\psi'(\theta)\right\}^2}{I_1(\theta)}\right)$$

2.2 Testing of Hypothesis

2.2.1 Tests of Significance

Univariate Normal

- (1) $H_0: \mu = \mu_0 \text{ against } H_1: \mu \neq \mu_0$
 - (a) $\sigma = \sigma_0 \text{ (known)} \to \omega = \left\{ \bar{x} : \left| \frac{\sqrt{n}(\bar{x} \mu_0)}{\sigma_0} \right| > \tau_{\frac{\alpha}{2}} \right\} \qquad \left(\frac{\sqrt{n}(\bar{x} \mu_0)}{\sigma_0} > \tau_{\alpha} \text{ if } H_1 : \mu > \mu_0 \right)$
 - (b) $\sigma \text{ unknown} \to \omega = \left\{ \bar{x} : \left| \frac{\sqrt{n}(\bar{x} \mu_0)}{s} \right| > t_{\frac{\alpha}{2}; n-1} \right\}, \ s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$
- (2) $H_0: \sigma = \sigma_0 \text{ against } H_1: \sigma \neq \sigma_0$
 - (a) $\mu = \mu_0$ (known), $Z = \frac{ns_0^2}{\sigma_0^2} \to \omega = \left\{ Z_{obs} > \chi_{\frac{\alpha}{2};n}^2 \text{ or } Z_{obs} < \chi_{1-\frac{\alpha}{2};n}^2 \right\}$
 - (b) μ unknown, $Z = \frac{(n-1)s^2}{\sigma_0^2} \rightarrow \omega = \left\{ Z_{obs} > \chi_{\frac{\alpha}{2}; n-1}^2 \text{ or } Z_{obs} < \chi_{1-\frac{\alpha}{2}; n-1}^2 \right\}$

Two Independent Univariate Normal

(1)
$$H_0: \mu_1 - \mu_2 = \xi_0$$
 (known) against $H_0: \mu_1 - \mu_2 \neq \xi_0$

(a)
$$\sigma_1, \sigma_2$$
 are known $Z = \frac{\bar{X}_1 - \bar{X}_2 - \xi_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \to \omega = \{|Z_{obs}| > \tau_{\frac{\alpha}{2}}\}$

(b)
$$\sigma_1 = \sigma_2 = \sigma \text{ (unknown)}, Z = \frac{\bar{X}_1 - \bar{X}_2 - \xi_0}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \rightarrow \omega = \{|Z_{obs}| > t_{\frac{\alpha}{2}; n_1 + n_2 - 2}\}, s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

(2)
$$H_0: \frac{\sigma_1}{\sigma_2} = \xi_0$$
 (known) against $H_1: \frac{\sigma_1}{\sigma_2} \neq \xi_0$

(a)
$$\mu_1, \mu_2$$
 are known, $F = \frac{s_{10}^2}{s_{20}^2} \cdot \frac{1}{\xi_0^2} \to \omega = \left\{ F_{obs} > F_{\frac{\alpha}{2}; n_1, n_2} \text{ or } \frac{1}{F_{obs}} > F_{\frac{\alpha}{2}; n_2, n_1} \right\}$

(b)
$$\mu_1, \mu_2$$
 are unknown $F = \frac{s_1^2}{s_2^2} \cdot \frac{1}{\xi_0^2} \to \omega = \left\{ F_{obs} > F_{\frac{\alpha}{2}; n_1 - 1, n_2 - 1} \text{ or } \frac{1}{F_{obs}} > F_{\frac{\alpha}{2}; n_2 - 1, n_1 - 1} \right\}$

Bivariate Normal (Correlated Case)

(1)
$$H_0: \mu_1 - \mu_2 = \xi_0 \text{ (known)} \rightarrow \omega = \left\{ (\underline{x}, \underline{y}) : \left| \frac{\sqrt{n}(\bar{x} - \bar{y} - \xi_0)}{s_{xy}} \right| > t_{\frac{\alpha}{2}; n-1} \right\}, \ s_{xy}^2 = s_x^2 + s_y^2 + 2rs_x s_y$$

(2)
$$H_0: \rho = 0 \to \omega = \left\{ \left| \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \right| > t_{\frac{\alpha}{2};n-2} \right\}$$
 [r: sample correlation coefficient of $(\underline{x},\underline{y})$]

(3)
$$H_0: \frac{\sigma_1}{\sigma_2} = \xi_0 \to \omega = \left\{ \left| \frac{r_{uv}\sqrt{n-2}}{\sqrt{1-r_{uv}^2}} \right| > t_{\frac{\alpha}{2};n-2} \right\}$$
 $U = X + \xi_0 Y$ $V = X - \xi_0 Y$

Binomial Proportion

- (I) Single Proportion $H_0: p = p_0$, observed value: x_0
 - (a) $H_1: p > p_0$, p-value = $P_1 = P_{H_0}(X \ge x_0)$
 - (b) $H_1: p < p_0$, p-value = $P_2 = P_{H_0}(X \le x_0)$
 - (c) $H_1: p \neq p_0$, p-value $= P_3 = 2 \cdot \min\{P_1, P_2\}$ (Reject H_0 if p-value $\leq \alpha$)
- (II) Two Proportions $H_0: p_1 = p_2 = p$, observed value of $X_1: x_{10}$ and $X_1 + X_2: x_0$
 - (a) $H_1: p_1 > p_2$, p-value = $P_1 = P_{H_0}(X_1 \ge x_{10} \mid X_1 + X_2 = x_0)$
 - (b) $H_1: p_1 < p_2$, p-value = $P_2 = P_{H_0}(X_1 \le x_{10} \mid X_1 + X_2 = x_0)$
 - (c) $H_1: p_1 \neq p_2$, p-value $= P_3 = 2 \cdot \min\{P_1, P_2\}$ (Reject H_0 if p-value $\leq \alpha$)

Poisson Mean

- (I) Single Population $H_0: \lambda = \lambda_0$, observed value of $S = \sum_{i=1}^n X_i: s_0$
 - (a) $H_1: \lambda > \lambda_0$, p-value $= P_1 = P_{H_0}(S \ge s_0)$
 - (b) $H_1: \lambda < \lambda_0$, p-value $= P_2 = P_{H_0}(S \le s_0)$
 - (c) $H_1: \lambda \neq \lambda_0$, p-value $= P_3 = 2 \cdot \min\{P_1, P_2\}$ (Reject H_0 if p-value $\leq \alpha$)

- (II) Two Populations $H_0: \lambda_1 = \lambda_2 = \lambda$, observed value of $S_1 = \sum_{i=1}^{n_1} X_{1i}: s_{10}$ and $S_1 + S_2: s_0$
 - (a) $H_1: \lambda > \lambda_0$, p-value $= P_1 = P_{H_0}(S_1 \ge s_{10} \mid S_1 + S_2 = s_0)$
 - (b) $H_1: \lambda < \lambda_0$, p-value $= P_2 = P_{H_0}(S_1 \le s_{10} \mid S_1 + S_2 = s_0)$
 - (c) $H_1: \lambda \neq \lambda_0$, p-value $= P_3 = 2 \cdot \min\{P_1, P_2\}$ (Reject H_0 if p-value $\leq \alpha$)

2.3 Interval Estimation

T: sufficient statistic and $(\theta_1(T), \theta_2(T))$ is a confidence interval with confidence coefficient $(1-\alpha)$

$$\implies P\left[\left(\theta_1(T), \theta_2(T)\right) \ni \psi(\theta)\right] = 1 - \alpha \quad \forall \theta \in \Omega$$

2.3.1 Methods of finding C.I.

Find a function $\phi(T, \theta)$, whose sampling distribution is completely specified. This is the <u>pivot</u>. Then find c_1, c_2 based on the restriction: $P_{\theta}[c_1 < \phi(T, \theta) < \overline{c_2}] = 1 - \alpha$

Note

For a parameter θ , the method of guessing θ is known as <u>estimation</u> and an interval estimate of θ is known as confidence interval for θ .

For a R.V. Y, a method of guessing Y is known as <u>prediction</u> and an interval prediction of Y is known as prediction limits.

$$X_i \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2), \ i = 1(1)n \implies \text{Prediction limits for } X_{n+1} : \left(\bar{X} \mp t_{\frac{\alpha}{2}; n-1} \sqrt{\frac{n+1}{n}} s\right)$$

2.3.2 Wilk's Optimum Criteria

Definition: A $(1-\alpha)$ level confidence interval $(\underline{\theta}^*(T), \overline{\theta}^*(T))$ of $\theta \in \Omega$, is said to be shortest length confidence interval, in the class of all level $(1-\alpha)$ confidence intervals based on a pivot $\psi(T, \theta)$, if

$$E_{\theta}[\underline{\theta}^*(T) - \overline{\theta}^*(T)] \le E_{\theta}[\underline{\theta}(T) - \overline{\theta}(T)], \ \forall \theta \in \Omega$$

whatever the other $(1 - \alpha)$ level confidence interval $(\underline{\theta}(T), \overline{\theta}(T))$ based on $\psi(T, \theta)$.

2.3.3 Test Inversion Method

Let $A(\theta_0)$ be the "Acceptance Region" of a size ' α ' test of $H_0: \theta = \theta_0$. Define,

$$I(\underline{x}) = \{ \theta \in \Omega : A(\theta) \ni x \}, \ \underline{x} \in \mathfrak{X}$$

then $I(\underline{x})$ is a confidence interval for θ at confidence coefficient $(1 - \alpha)$.

List of Confidence Intervals

(1)
$$X_i \stackrel{iid}{\sim} \mathrm{U}(0,\theta) : Pivot = \frac{X_{(n)}}{\theta} \implies \left(X_{(n)}, \frac{X_{(n)}}{\sqrt[n]{\alpha}}\right)$$

(2)
$$X_i \stackrel{iid}{\sim} \text{Shifted Exp}(\mu, \sigma_0) : Pivot = \frac{n}{\sigma_0} [X_{(1)} - \mu] \implies [X_{(1)} + \frac{\sigma_0}{n} \ln \alpha, X_{(1)}]$$
 (finite length)
Infinite Length: $\left[-\infty, X_{(1)} + \frac{\sigma_0}{n} \ln(1 - \alpha)\right]$ (σ_0 known)

(3)
$$X_i \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2) : Pivot = \sqrt{n} \left(\frac{\bar{X} - \mu}{S} \right) \implies \left(\bar{X} \mp t_{\frac{\alpha}{2}; n-1} \frac{S}{\sqrt{n}} \right)$$

(4)
$$X_i \stackrel{iid}{\sim} \operatorname{Exp}(\theta) : Pivot = \frac{2}{\theta} \sum_{i=1}^{n} X_i \implies \left(\frac{2T}{\chi_{\frac{\alpha}{2};2n}^2}, \frac{2T}{\chi_{1-\frac{\alpha}{2};2n}^2} \right)$$

Based on
$$X_{(1)}$$
, $Pivot = \frac{2n}{\theta} X_{(1)} \implies \left(\frac{2nX_{(1)}}{\chi_{\frac{\alpha}{2};2}^2}, \frac{2nX_{(1)}}{\chi_{1-\frac{\alpha}{2};2}^2} \right)$

2.4 Large Sample Theory

2.4.1 Modes of Convergence

(I) Convergence in Distribution

Definition: A sequence $\{X_n\}$ of random variables with the corresponding sequence $F_n(x)$ of D.F.s is said to converge to a random variable X with D.F. F(x), if

$$\lim_{n\to\infty} F_n(x) = F(x), \quad at \ every \ continuity \ point \ of \ F(x)$$

Results

(1)
$$X_n \stackrel{iid}{\sim} \mathrm{U}(0,\theta) \implies n\left(\theta - X_{(n)}\right) \stackrel{D}{\longrightarrow} \mathrm{Exp}\left(\theta\right) \stackrel{D}{\longleftarrow} nX_{(1)}$$

(2)
$$X_n \stackrel{iid}{\sim} \text{Shifted Exp}(0,\theta) \implies n(X_{(n)} - \theta) \stackrel{D}{\longrightarrow} \text{Exp}(1)$$

(3)
$$X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2) \implies \bar{X} \stackrel{D}{\longrightarrow} \mu$$

(4)
$$X_n \sim \text{Geo}(p_n = \frac{\theta}{n}) \implies \frac{X_n}{n} \stackrel{D}{\longrightarrow} \text{Exp}(\frac{1}{\theta})$$

(5)
$$X \sim NB(n, p) \implies 2pX \xrightarrow{D} \chi_{2n}^2 \text{ as } p \to 0$$

(6)
$$X_n \sim \text{Gamma}(n,\beta) \implies \frac{X_n}{n} \xrightarrow{D} \beta$$

Limiting MGF

- (7) MGF $\to X_n : M_n(t), X : M(t), E(X_n)$ exists $\forall n \text{ and } X_n \xrightarrow{D} X$ If $\lim_{n \to \infty} M_n(t), \lim_{n \to \infty} E(X_n)$ is finite then $M_N(t) \to M(t), E(X_n) \to E(X)$ as $n \to \infty$
- (8) **Theorem:** Let, $\{F_n\}$ be a sequence of D.F.s with corresponding M.G.F.s $\{M_n\}$ and suppose that $M_n(t)$ exists for $|t| \leq t_0$, $\forall n$. If there exists a D.F. F with corresponding M.G.F. M, which exists for $|t| \leq t_1 < t_0$, such that $M_n(t) \to M(t)$ as $n \to \infty$ for every $t \in [-t_1, t_1]$, then $F_n \xrightarrow{W} F$

(II) Convergence in Probability

Definition: Let, $\{X_n\}$ be a sequence of R.V.s defined on the probability space $(\Omega, \mathcal{A}, \mathcal{P})$. Then we say that $\{X_n\}$ converges in probability to a R.V. X, defined on $(\Omega, \mathcal{A}, \mathcal{P})$, if for every $\epsilon > 0$,

$$\lim_{n \to \infty} P[|X_n - X| < \epsilon] = 1 \qquad or \qquad \lim_{n \to \infty} P[|X_n - X| > \epsilon] = 0$$

Sufficient Condition: If $\{X_n\}$ is a sequence of R.V.s such that $E(X_n) \to C$ and $Var(X_n) \to 0$ as $n \to \infty$ or $E(X_n - C)^2 \to 0$ as $n \to \infty$, then $X_n \stackrel{P}{\longrightarrow} C$.

Counter example:

$$P(X_n = x) = \begin{cases} 1 - \frac{1}{n} & , x = k \\ \frac{1}{n} & , x = k + n \end{cases} \implies E(X_n - k)^2 \not\to 0 \text{ as } n \to \infty \text{ but } X_n \xrightarrow{P} k$$

Results

(1)
$$X_i \stackrel{iid}{\sim} \mathrm{U}(0,1) \implies \left(\prod_{i=1}^n X_i\right)^{\frac{1}{n}} \stackrel{P}{\longrightarrow} \frac{1}{e}$$

(2)
$$X_n \xrightarrow{P} X$$
, $\lim_{n \to \infty} a_n = a \in \mathbb{R} \implies a_n X_n \xrightarrow{P} aX$

(3)
$$X_n \xrightarrow{D} X$$
, $\lim_{n \to \infty} a_n = \infty$, $a_n > 0 \,\forall n \implies a_n^{-1} X_n \xrightarrow{P} 0$

- (4) Limit Theorems: If $X_n \stackrel{P}{\longrightarrow} X$, $Y_n \stackrel{P}{\longrightarrow} Y$, then,
 - (a) $X_n \pm Y_n \xrightarrow{P} X \pm Y$
 - (b) $X_n Y_n \xrightarrow{P} XY$
 - (c) $g(X_n) \xrightarrow{P} g(X)$, if $g(\cdot)$ is continuous (Invariance Property)
 - (d) $\frac{X_n}{Y_n} \xrightarrow{P} \frac{X}{Y}$, provided $P(Y_n = 0) = 0 = P(Y = 0)$

Chapter 3

Mathematics

3.1 Basics

3.1.1 Combinatorial Analysis

(1) For a population with n elements, the number of samples of size r is -

ordered sample =
$$\begin{cases} n^r & \text{, WR} \\ {}^nP_r \text{ or } (n)_r & \text{, WOR} \end{cases}$$

unordered sample =
$${}^{n}C_{r}$$
 or $\binom{n}{r}$, WOR

(2) Partition of population - The number of ways in which a population of n elements can be divided into k ordered parts of which i^{th} part consists of r_i members, i = 1, 2, ..., k is -

$$\binom{n}{r_1} \binom{n-r_1}{r_2} \cdots \binom{n-r_1-r_2-\cdots-r_{k-1}}{r_k}, \ r_1+r_2+\cdots+r_k=n$$

$$= \frac{n!}{r_1!r_2!\cdots r_k!} = \binom{n}{r_1 \ r_2\cdots r_k}$$

(a) The number of different distributions of r identical balls into n cells i.e. the number of different solutions (r_1, r_2, \ldots, r_n) of the equation:

$$r_1 + r_2 + \dots + r_n = r$$
 where, $r_i \ge 0$, are integers, is $\binom{n+r-1}{r} = \binom{n+r-1}{n-1}$

(b) The number of different distributions of r indistinguishable balls into n cells in which no cell remains empty i.e. the number of different solutions $(r_1, r_2, ..., r_n)$ of the equation:

$$r_1 + r_2 + \dots + r_n = r$$
 where, $r_i \ge 1$, are integers, is $\binom{r-1}{n-1}$

(3) (a)
$$\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$$

(b)
$$\binom{n}{0}\binom{n}{m} + \binom{n}{1}\binom{n}{m+1} + \dots + \binom{n}{n-m}\binom{n}{n} = \binom{2n}{n-m}$$

3.1.2 Difference Equation

 $\{x_n\}$ is a sequence, $x_n = f(x_{n-1}, \dots, x_2, x_1)$ is difference equation

A.P.:
$$x_n = x_{n-1} + d$$

G.P.:
$$x_n = r x_{n-1}$$

 $x_n = a_1 x_{n-1} + \cdots + a_p x_{n-p}$ is a linear difference equation of order p.

First Order Linear Difference Equation

$$x_n = ax_{n-1} + b, \ n \ge 1$$

 $\implies x_n - c = (x_1 - c)a^{n-1}, \ b = c(1 - a)$

Second Order Linear Difference Equation

$$x_n = ax_{n-1} + bx_{n-2}, \ n \ge 2$$

Characteristic Equation: $u^2 - au - b = 0$ with roots u_1, u_2

Case I:
$$u_1 \neq u_2 \implies x_n = Au_1^n + Bu_2^n$$

Case II: $u_1 = u_2 = u \implies x_n = (A + Bn)u^n$

3.2 Linear Algebra

3.2.1 Vectors & Vector Spaces

- (1) Length of $\underline{a} = \sqrt{\sum_{i=1}^n a_i^2}$ and $\sum_{i=1}^n a_i = \underline{1}.\underline{a}$ where, $\underline{1} = \{1, 1, \dots, 1\}$
- (2) Distance between \underline{a} and $\underline{b} = |\underline{b} \underline{a}| = \sqrt{(\underline{b} \underline{a}) \cdot (\underline{b} \underline{a})} = \sqrt{\sum_{i=1}^{n} (b_i a_i)^2}$
- (3) Angle (θ) between two non-null vectors \underline{a} and \underline{b} is given by, $\cos \theta = \frac{\underline{a}.\underline{b}}{|\underline{a}||\underline{b}|}$
- (4) Cauchy-Schwarz: $(\underline{a}.\underline{b})^2 \le |\underline{a}|^2 |\underline{b}|^2$ ('=' holds iff $\underline{b} = \lambda \underline{a}$ for some λ)
- (5) Triangular Inequality: $|a b| + |b c| \ge |a b|$

Vector Spaces

A vector space V over a field \mathcal{F} is a non-empty collection of elements, satisfying the following axioms:

- (a) $a, b \in V \implies a + b \in V$ [closed under vector addition]
- (b) $a \in V \implies \alpha a \in V, \ \forall \alpha \in \mathcal{F}$ [closed under scalar multiplication]

Note: Every vector space must include the <u>null vector</u> (0).

Useful Results

- (1) " $\sum_{i=1}^{r} \lambda_{i} \underline{a}_{i} = \underline{0} \implies \underline{\lambda} = \underline{0}$ " $\iff \{\underline{a}_{1}, \underline{a}_{2}, \dots, \underline{a}_{r}\}$ are Linearly Independent. The set is L.D. iff $\exists \underline{\lambda} \neq \underline{0}$ for which $\sum_{i=1}^{r} \lambda_{i} \underline{a}_{i} = \underline{0}$
- (2) A set of vectors is LIN \implies any subset is LIN A set of vectors is LD \implies any superset is LD
- (3) Basis Vector: (i) Spans V (ii) LIN
 - (a) $\{1, t, t^2, \dots, t^n\}$: polynomial of degree $\leq n$
 - (b) $\{\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_n\}: n$ dimensional vector space
- (4) The representation of **every** vector in terms of basis is **unique**.
- (5) Replacement theorem: $\{\underline{a}_1, \underline{a}_2, \dots, \underline{a}_r\}$ is a basis vector and $\underline{b} = \sum_{i=1}^r \lambda_i \underline{a}_i$ If $\lambda_i \neq 0$ then replace \underline{a}_i by $\underline{b} \implies \{\underline{a}_1, \underline{a}_2, \dots, \underline{a}_{i-1}, \underline{b}, \underline{a}_{i+1}, \dots, \underline{a}_r\}$ is also a basis vector.
- (6) (a) Any set of basis of basis vector for V_n space contains exactly n vectors
 - (b) Any n LIN vectors from V_n form a basis for V_n
 - (c) Any set of (n+1) vectors from V_n is LD

- (7) Extension theorem: A set of m(< n) LIN vectors from V_n can be extended to a basis of V_n
- (8) **Dimension:** Number of vectors in a basis **or** maximum number of LIN vectors in the space **Dimension of a subspace:** {Total no. of vectors} {No. of LIN restrictions}
- (9) $V = \{0\}$ has no basis $\implies \dim(V)$ is undefined [We assume $\dim(V) = 0$]
- (10) Consider two subspaces S, T of a vector space V over the field \mathcal{F} -
 - (a) $S \cap T$ is also a subspace and $\dim(S \cap T) \leq \min\{\dim(S), \dim(T)\} \leq \sqrt{\dim(S)\dim(T)}$
 - (b) $S + T = \{a + b : a \in S, b \in T\} \implies \dim(S + T) = \dim(S) + \dim(T) \dim(S \cap T)$
 - (c) $S \subseteq T \implies \dim(S) \le \dim(T)$ and $\dim(S) = \dim(T) \iff S = T$ In general, $\dim(S) = \dim(T) \not\Rightarrow S = T$

Orthogonal Vectors

- (11) $\underline{a}, \underline{b} \in E^n$ are orthogonal (\perp) if $\underline{a}.\underline{b} = 0$ [0 is orthogonal to every vector]
- (12) The set of vectors $\{a_1, a_2, \dots, a_n\}$ is mutually orthogonal if $a_i \cdot a_j = 0, \ \forall i \neq j$
- (13) If a mutually orthogonal set includes the null vector then it becomes LD, else LIN
- (14) $E^n \ni \underline{a} \perp S_n \subseteq E^n \iff \underline{a}$ is orthogonal to a basis of S_n
- (15) Ortho complement of $S_n = \mathcal{O}(S_n)$: Collection of all vectors in E^n which are orthogonal to S_n
- (16) (a) $S_n \cap \mathcal{O}(S_n) = \{0\}$ (b) $S_n + \mathcal{O}(S_n) = E^n$ (c) $\mathcal{O}\{\mathcal{O}(S_n)\} = S_n$ where, S_n is a subspace of E^n
- (17) $S \oplus T$ if, $S + T = \{\underline{x} + \underline{y} : \underline{x} \in S, \underline{y} \in T\}$
- (19) $S, T \in V$ is said to be complement if $S \oplus T = V$
- (20) $M_{n\times n}(R)$: Vector space of all $(n\times n)$ real matrices $S:(n\times n)$ Symmetric matrices, $T:(n\times n)$ Skew-symmetric matrices $\Longrightarrow S,T$ are subspaces of $M_{n\times n}$ and $S\oplus T=M_{n\times n}$, $\dim(S)=\frac{n(n+1)}{2}$, $\dim(T)=\frac{n(n-1)}{2}$

3.2.2 Matrices

- (1) Consider a matrix $A^{m \times n}$
 - (a) Row Space: $\mathcal{R}(A) = \{ \underline{x}'A : \underline{x} \in \mathbb{R}^m \}$
 - (b) Column Space: $C(A) = \{Ax : x \in \mathbb{R}^n\}$
 - (c) Null Space: $\mathcal{N}(A) = \{x \in \mathbb{R}^n : Ax = 0\}$
 - (d) Left Null Space: $\mathcal{N}'(A) = \{ \underline{x} \in \mathbb{R}^m : \underline{x}'A = \underline{0}' \}$
- (2) $\mathcal{N}(A) = \mathcal{O}\{\mathcal{R}(A)\} \implies \dim \mathcal{N}(A) = n \dim \mathcal{R}(A) = \text{nullity of } A$

(3)
$$A^{m \times n}, B^{n \times p} \ni AB = O \implies \mathcal{C}(B) \subseteq \mathcal{N}(A) \implies r(A) + r(B) \le n$$

(4)
$$A^{n \times n} \ni A^2 = A \implies \mathcal{C}(I_n - A) = \mathcal{N}(A)$$

Rank

(5)
$$r(A^{m \times n}) \le \min\{m, n\}$$

(6)
$$r(AB) \le \min\{r(A), r(B)\}\$$
if AB is defined

(7)
$$r(AB) = r(A)$$
, if det $B \neq 0$

(8)
$$A^2 = A \iff r(A) + r(I_n - A) = n$$

(9)
$$r(A + B) \le r(A) + r(B)$$

(10)
$$r(A) = r(A') = r(A'A) = r(AA')$$

(11)
$$r(A) = r \implies A = \sum_{k=1}^{r} M_k \text{ with } r(M_k) = 1, \ k = 1, 2, \dots, r$$

(12)
$$r(AB - I) \le r(A - I) + r(B - I)$$

(13)
$$A^{m \times n}, B^{s \times n} \ni AB' = O \implies r(A'A + B'B) = r(A) + r(B)$$

(14)
$$A^2 = A, B^2 = B, \det(I - A - B) \neq 0 \implies r(A) = r(B)$$

(15)
$$r \begin{pmatrix} A & B \\ O & C \end{pmatrix} \ge r(A) + r(C)$$

(16) Sylvester Inequality:
$$r(AB) \ge r(A) + r(B) - n$$

 $\implies r(A) + r(B) - n < r(AB) < \min\{r(A), r(B)\}$

(17)
$$r(A+B) \le r(A) + r(B) \le r(AB) + n$$
, provided $AB, (A+B)$ is defined

(18)
$$r(AB) = r(B) - \dim \{ \mathcal{N}(A) \cap \mathcal{C}(B) \}$$

(19)
$$r(\underline{x}'\underline{x}) = r(\underline{x}'y) = r(\underline{x}y') = 1$$
, where $\underline{x}, y \neq \underline{0} \in \mathbb{R}^n$

Other Results

- (20) Sum of all entries in a matrix $A: \underline{1}'A\underline{1}$
- (21) $A^2 = A \implies (I_n A)$ is also idempotent

(22)
$$C^{m \times r} = A^{m \times n} B^{n \times r} \implies C = (c_{ij}) = \sum_{k=1}^{n} a_{ik} b_{kj}$$

(23)
$$tr(A+B) = tr(A) + tr(B)$$

 $tr(AB) = tr(BA)$

3.2.3 Determinants

(1)
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

(2)
$$\begin{vmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{vmatrix}_{n \times n} = \left(a + \overline{n-1}b\right)(a-b)^{n-1}$$

(3)
$$\begin{vmatrix} a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c \end{vmatrix} = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \times \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$$

(4) Tridiagonal matrix

$$A_{n} = \begin{vmatrix} a & b & 0 & 0 & \cdots & 0 & 0 \\ c & a & b & 0 & \cdots & 0 & 0 \\ 0 & c & a & b & \cdots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & c & a \end{vmatrix}_{n \times n} \implies A_{n} = aA_{n-1} - bcA_{n-2} = 1 + bc + (bc)^{2} + \cdots + (bc)^{n}$$

$$(5) \begin{vmatrix} x_1^2 + y_1^2 & x_1x_2 + y_1y_2 & \cdots & x_1x_n + y_1y_n \\ x_2x_1 + y_2y_1 & x_2^2 + y_2^2 & \cdots & x_2x_n + y_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_nx_1 + y_ny_1 & x_nx_2 + y_ny_2 & \cdots & x_n^2 + y_n^2 \end{vmatrix} = |A| |A'| = 0, \ A = \begin{pmatrix} x_1 & y_1 & 0 & \cdots & 0 \\ x_2 & y_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & 0 & \cdots & 0 \end{pmatrix}$$

(6)
$$A^{n\times n}$$
 and $B^{n\times n}$ differ only by a single row (or column) $\Longrightarrow |A+B|=2^{n-1}(|A|+|B|)$

(7)
$$A = (a_{ij}), B = (b_{ij}) = r^{i-j}a_{ij} \implies |B| = |A|$$

$$\begin{vmatrix} I & O \\ O & A \end{vmatrix} = |A|, \ \begin{vmatrix} I & B \\ O & A \end{vmatrix} = |A| \implies \begin{vmatrix} A & B \\ O & C \end{vmatrix} = \begin{vmatrix} I & O \\ O & C \end{vmatrix} \times \begin{vmatrix} A & B \\ O & I \end{vmatrix} = |C||A| = |A||C|$$

(9)
$$A^{n \times n}$$
, $A(\text{adj } A) = (\text{adj } A)A = |A| I_n$

$$\sum_{i=1}^n a_{ri} A_{si} = \begin{cases} |A|, & r = s \\ 0, & r \neq s \end{cases}$$
 $r, s = 1, 2, \dots, n$

(10) (a)
$$|\operatorname{adj} A| = |A|^{n-1}$$

(b)
$$(\operatorname{adj} A)^{-1} = \operatorname{adj} (A^{-1}) = \frac{A}{|A|}$$

(c)
$$\operatorname{adj}(\operatorname{adj} A) = |A|^{n-2}A$$

(d)
$$|\operatorname{adj}(\operatorname{adj} A)| = |A|^{(n-1)^2}$$

(11)
$$|kA| = k^n |A|$$
, $adj(kA) = k^{n-1}adj A$

(12)
$$\operatorname{adj}(AB) = \operatorname{adj}(B) \operatorname{adj}(A)$$
 [if $|A|, |B| \neq 0$]

(13) Adjoint of a symmetric matrix is symmetric

Adjoint of a skew-symmetric matrix is symmetric for even order, skew-symmetric if odd order Adjoint of a diagonal matrix is diagonal

(14)
$$r(\text{adj } A) = \begin{cases} 0, & \text{if } r(A) \le n - 2\\ 1, & \text{if } r(A) = n - 1\\ n, & \text{if } r(A) = n \end{cases}$$

Inverse of a Matrix

(15) (a)
$$(AB)^{-1} = B^{-1}A^{-1}$$

(b)
$$(A^{-1})' = (A')^{-1}$$

(c)
$$|A + B| \neq 0 \implies |A^{-1} + B^{-1}| \neq 0 \implies (B^{-1} + A^{-1})^{-1} = A(A + B)^{-1}B$$

(16)
$$A^{n \times n} = \begin{pmatrix} A_{11}^{k \times k} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, |A| \neq 0$$

$$|A| = \begin{cases} |A_{11}||A_{22} - A_{21}A_{11}^{-1}A_{12}|, & \text{if } |A_{11}| \neq 0\\ |A_{22}||A_{11} - A_{12}A_{22}^{-1}A_{21}|, & \text{if } |A_{22}| \neq 0 \end{cases}$$

(17)
$$M = \begin{pmatrix} A & -u \\ v & 1 \end{pmatrix}, |A| \neq 0 \implies |M| = |A|(1 + v'A^{-1}u) = |A + uv'|$$

(18)
$$|A| \neq 0$$
, $|A + uv'| \neq 0 \iff (1 + v'A^{-1}u) \neq 0$

$$(A + \underline{u}\underline{v}')^{-1} = A^{-1} - \frac{A^{-1}\underline{u}\underline{v}'A^{-1}}{1 + \underline{v}'A^{-1}\underline{u}}$$

(19)
$$A_{a,b}^{n \times n} = (a-b)I_n + b \, 11' \implies A_{a,b}^{-1} = A_{c,d} \text{ iff } \Delta = (a-b)(a+\overline{n-1}\,b) \neq 0$$

where, $c = \frac{a+(n-2)b}{\Delta}, \ d = -\frac{b}{\Delta}$

(20)
$$A^{n \times n} = (a_{ij}), |A| \neq 0, \sum_{j=1}^{n} a_{ij} = k, \ \forall i \implies \sum_{j=1}^{n} b_{ij} = \frac{1}{k}, \ \forall i \text{ where } A^{-1} = (b_{ij})$$

Orthogonal Matrix

(21)
$$A^{n \times n} = \begin{pmatrix} a'_1 \\ a'_2 \\ \vdots \\ a'_n \end{pmatrix}$$
 where, $a'_i = \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix}, i = 1, 2, \dots, n$

$$AA' = I_n \implies \underline{a}_i' \underline{a}_j = \begin{cases} 1, & \text{when } i = j \\ 0, & \text{when } i \neq j \end{cases} \quad |A| = \pm 1$$

(22)
$$AA' = A'A = I_n, (I_n + A) \neq 0 \implies (I_n + A)^{-1}(I_n - A)$$
 is skew-symmetric

(23)
$$A, B$$
 real orthogonal $\ni |A| + |B| = 0 \implies |A + B| = 0$

$$(24) AA' = kI_n \implies A'A = kI_n$$

Rank & Determinant

- (25) **Theorem:** For a matrix $A^{m \times n}$ the rank of A is the order of the "highest order non-vanishing minor" of A.
- (26) $A^{n \times n}$, $r(A) = n \iff |A| \neq 0$
- (27) Elementary Matrices: An elementary matrix is a matrix which differs from the Identity matrix by single row (or column) operation.
- (28) Elementary Row Operation ≡ Pre-multiplying by corresponding elementary row matrix Elementary Column Operation ≡ Post-multiplying by corresponding elementary column matrix
- (29) $r(A^{m \times n}) = k, \exists P^{m \times m}, Q^{n \times n}, |P|, |Q| \neq 0 \ni PAQ = \begin{pmatrix} I_k & O \\ O & O \end{pmatrix}$ (Normal Form)
- (30) Any non-singular matrix can be written as a product of elementary matrices
- (31) Rank Factorization: Let, $r(A^{m\times n}) = k$, then a pair $(P^{m\times k}, Q^{k\times n})$ of matrices is said to be a rank factorization of A if, $A^{m\times n} = P^{m\times k} Q^{k\times n}$ (non-unique way)
- (32) $A^{m \times n} = P^{m \times k} Q^{k \times n}, r(A) \le k$, the following statements are equivalent -
 - (a) r(A) = k i.e. (P, Q) is a rank factorization of A
 - (b) $r(P^{m \times k}) = r(Q^{k \times n}) = k$
 - (c) The columns of P forms a basis of $\mathcal{C}(A)$ and the rows of Q forms a basis of $\mathcal{R}(A)$
- (33) $A^2 = A$, $A^{m \times m} = P^{m \times k} Q^{k \times m}$ where $k = r(A) \implies (i) QP = I_n$ (ii) r(A) = tr(A)
- (34) $r(A \mid B) = r(A) \iff B = AC$, for some C

3.2.4 System of Linear Equation

System of Linear Equations: $A^{m \times n} \tilde{x}^{n \times 1} = \tilde{b}^{m \times 1}$

- (1) Homogeneous System: Ax = 0
 - (a) x = 0 is always consistent as x = 0 is a trivial solution
 - (b) $A^{m \times n} x = 0$ has a non-trivial solution iff r(A) < n
 - (c) The no. of LIN solutions of $Ax = 0 = \dim \mathcal{N}(A) = n r(A)$
 - (d) Elementary row operation on a matrix A doesn't alter the $\mathcal{N}(A)$
- (2) General System: $A\underline{x}=\underline{b},\ \underline{b}\neq\underline{0}$
 - (a) $r(A \mid \underline{b})$ is either r(A) or r(A) + 1 $C(A \mid \underline{b}) \supseteq C(A)$
 - (b) $Ax = b \to \begin{cases} \text{Consistent} \iff \mathbf{r}(A \mid b) = \mathbf{r}(A) \\ \text{Inconsistent} \iff \mathbf{r}(A \mid b) > \mathbf{r}(A) \end{cases}$
 - (c) $A^{m \times n} x = b$ is consistent $\rightarrow \begin{cases} \text{Unique solution} \iff \mathbf{r}(A) = n \\ \text{At least two solutions} \iff \mathbf{r}(A) < n \end{cases}$

- (d) $A\bar{x}_1 = A\bar{x}_2 = \bar{b} \implies \alpha \bar{x}_1 + (1 \alpha)\bar{x}_2$ is also a solution \implies If a system has two distinct solutions then it has infinitely many solutions
- (3) **Theorem:** $A\underline{\tilde{x}} = \underline{\tilde{b}}$ be a consistent system with $\underline{\tilde{x}}_0$ as a particular solution. Then the set of all possible solutions of $A\underline{\tilde{x}} = \underline{\tilde{b}}$ is given by $\underline{\tilde{x}}_0 + \mathcal{N}(A) = \{\underline{\tilde{x}}_0 + \underline{\tilde{y}} : \underline{\tilde{y}} \in \mathcal{N}(A)\}$
- Point, lines, planes not necessarily passing through the origin are called 'flats'. If W is non-empty flat and x_0 is a fixed vector, then the translation of W by x_0 is, $x_0 + W = \{x_0 + w : w \in W\}$ and is a flat parallel to W.