

TỔ CHỨC VÀ CẦU TRÚC MÁY TÍNH II Chương 2 Biểu diễn thông tin

11/4/2020

- Biểu diễn thông tin
- Tính toán trên hệ cơ số 2
- Phương pháp biểu diễn bù 2
- BCD
- Floating point
- ASCII
- Bài tập

Biểu diễn thông tin (1/7) – Hệ thập phân

- Con người sử dụng hệ thập phân để biểu diễn giá trị
 - □ 10 ký số: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - ☐ Kết hợp các ký số có thể biểu diễn giá trị lớn hơn 9
 - Gán trọng số (10ⁱ) cho mỗi ký số trong chuỗi ký số

Biểu diễn 269 trong hệ thập phân có giá trị bao nhiêu?

$$2x10^2 + 6x10^1 + 9x10^0 = 200 + 60 + 9 = 269$$

Giá trị 158 có biểu diễn 5 ký số trong hệ thập phân là gì? ABCDE?

$$158 = Ax10^4 + Bx10^3 + Cx10^2 + Dx10^1 + Ex10^0$$

$$A = 0$$
, $B = 0$, $C = 1$, $D = 5$, $E = 8 -> 00158$

Biểu diễn thông tin (2/7) – Hệ nhị phân

- Máy tính lưu trữ, xử lý và truyền các tín hiệu số
- Tín hiệu số chỉ có 2 giá trị 0 và 1
 - Hệ nhị phân với 2 ký số: 0, 1
 - Đơn vị thông tin là bit (binary digit)

1 B	8 bit
1 KB	1024 B (2 ¹⁰ B)
1 MB	$1024 \text{ KB} (2^{10} \text{ KB})$
1 GB	1024 MB (2 ¹⁰ MB)
1 TB	1024 GB (2 ¹⁰ GB)

Quiz 1 – Quy đổi lượng thông tin

b	В	KB	MB	GB	ТВ
					1
				512	
			1024		
		2048			
	4096				
32768					

Biểu diễn thông tin (3/7) – Số nguyên dương

■Một số nguyên dương được biểu diễn như là một chuỗi bit:

2 ⁹	2^{8}	2 ⁷	2 ⁶	2^5	2^4	2^3	2^2	2^{1}	2°
1	0	1	1	1	0	1	0	0	1

$$v = \sum_{i=0}^{9} 2^{i} b_{i} = 2^{9}.1 + \sum_{i=0}^{1} 1 + 2^{6}.1 + 2^{5}.1 + 2^{3}.1 + 2^{0}.1$$

$$= v = \sum_{i=0}^{9} 2^{i} b_{i} = 2^{9}.1 + \sum_{i=0}^{1} 1 + 2^{6}.1 + 2^{5}.1 + 2^{3}.1 + 2^{0}.1$$

$$= v = \sum_{i=0}^{9} 2^{i} b_{i} = 2^{9}.1 + \sum_{i=0}^{1} 1 + 2^{6}.1 + 2^{5}.1 + 2^{3}.1 + 2^{0}.1$$

$$= v = \sum_{i=0}^{9} 2^{i} b_{i} = 2^{9}.1 + \sum_{i=0}^{1} 1 + 2^{6}.1 + 2^{5}.1 + 2^{3}.1 + 2^{0}.1$$

$$= v = \sum_{i=0}^{9} 2^{i} b_{i} = 2^{9}.1 + \sum_{i=0}^{1} 1 + 2^{6}.1 + 2^{5}.1 + 2^{3}.1 + 2^{0}.1$$

$$= v = \sum_{i=0}^{9} 2^{i} b_{i} = 2^{9}.1 + \sum_{i=0}^{9} 2^{i} b_{i} = 2^{9}.1 + 2^{5}.1$$

Giá trị nhỏ nhất: 0; Giá trị lớn nhất: $2^n - 1$

Quiz 2 – Chuyển đổi nhị phân sang thập phân

Nhị phân	Thập phân
$0_2^{}$	
1_2	
10010 ₂	
101010011 ₂	
101111010011 ₂	
100101011001110 ₂	

Biểu diễn thông tin (4/7) – Số nguyên dương

- Một số nguyên dương được biểu diễn như là một chuỗi bit như thế nào?
 - Làm ngược lại quy trình tính giá trị số nguyên dương
 - Phân tích số nguyên dương thành tổng của các lũy thừa 2
 ☐ Tìm lũy thừa 2 lớn nhất trước
 - Số mũ của các lũy thừa 2 chính là vị trí mà bit có trọng số tương ứng bằng 1
- Ví dụ: 23

Quiz 3 – Chuyển đổi thập phân sang nhị phân

Thập phân	Nhị phân
0	
1	
10	
34	
67	
159	

Biểu diễn thông tin (5/7) – Hệ cơ số 16

- Các chuỗi bit dài dẫn đến nhàm chán và dễ sai sót khi biểu diễn
 - Dề xuất: Sử dụng các hệ cơ số cao hơn
 - Số lượng ký số giảm xuống nhưng ký số trở nên phức tạp
 - ☐ Giải pháp: Lựa chọn hệ cơ số cao hơn, thỏa 2 điều kiện:
 - Biểu diễn lại chuỗi bit chứ không trực tiếp biểu diễn thông tin
 - Đơn giản cho việc khôi phục lại chuỗi bit
- Hệ cơ số 16
 - \square Đủ lớn \rightarrow Số lượng ký số giảm xuống
 - \square Lũy thừa của $2 \rightarrow \Theta$ ơn giản cho việc khôi phục lại chuỗi bit

Biểu diễn thông tin (6/7) – Hệ cơ số 16

Cơ số 10	0	1	2	3	4	5	6	7
Cơ số 2	0000	0001	0010	0011	0100	0101	0110	0111
Cơ số 16	0	1	2	3	4	5	6	7

Cơ số 10	8	9	10	11	12	13	14	15
Cơ số 2	1000	1001	1010	1011	1100	1101	1110	1111
Cơ số 16	8	9	A	В	C	D	E	F

Biểu diễn thông tin (7/7) – Hệ cơ số 16

■ Mỗi ký số trong hệ cơ số 16 tương ứng với 4 bit

$$001011101001_2 = 2E9_{16} = 0x2E9$$

Quiz 4 – Chuyển đổi thập phân sang thập lục phân

Thập phân	Thập lục phân
0	
1	
10	
34	
67	
159	

Tính toán trên hệ cơ số 2

Cộng và trừ trên hệ cơ số 2 tương tự như hệ cơ số 10

Phương pháp biểu diễn bù 2 (1/2)

■ Biểu diễn số nguyên tổng quát (dương, 0, âm) như thế nào?

☐ Thêm 1 bit làm dấu (Dấu và độ lớn): 0 là dấu +, 1 là dấu -

	29	28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	2 ⁰	
0	1	0	1	1	1	0	1	0	0	1	745
	2 ⁹	28	2 ⁷	2 ⁶	25	24	2 ³	2 ²	21	2 ⁰	

- Dễ hiểu
- Có 2 cách biểu diễn giá trị 0 (+0 và -0)
- Tính toán như thế nào? Thực hiện phép tính 745 + (-745)

Phương pháp biểu diễn bù 2 (2/2)

- Đòi hỏi 1 phương pháp biểu diễn ưu việt:
 - ☐ Chỉ còn 1 cách biểu diễn giá trị 0?
 - ☐ Tính toán luôn trên bit dấu (gán trọng số cho bit dấu)?
- Ý tưởng: Bit dấu có trọng số âm (Bù 2)!

-2 ¹⁰	2 ⁹	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
0	1	0	1	1	1	0	1	0	0	1	745

-2 ¹⁰	29	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	21	2 ⁰	
1	0	1	0	0	0	1	0	1	1	1	

$$-745 = -1024 + 256 + 16 + 4 + 2 + 1$$
$$-2^{10} + 2^{8} + 2^{4} + 2^{2} + 2^{1} + 2^{0}$$

Quiz 5 – Biểu diễn bù 2

- Biểu diễn dạng bù 2 với 8 bit các giá trị sau:
 - □ -23
 - 49
 - □ 125
 - □ -128

 - \Box 1
 - □ -1
 - □ -69

Hệ nhị phân

Hệ thập phân

điểm

Uu - Tính toán đơn giản

máy tính

- Phù hợp với phần cứng

Nhươc - Cần nhiều bit để biểu điểm diễn giá trị

- Dễ hiểu cho con người
- Cần ít ký số để biểu diễn

giá tri

- Tính toán phức tạp

- Cần một phương pháp biểu diễn mới!
 - ☐ Phù hợp với phần cứng máy tính
 - ☐ Dễ hiểu cho con người

Binary Coded Decimal Nhị phân mã hóa thập phân

BCD(2/3)

■ BCD (Binary Coded Decimal): Sử dụng mỗi 4 bit để mã hóa duy nhất 1 ký số thập phân.

Ký số thập phân	Mã nhị phân
0	0000
1	0001
2	0010
3	0011
4	0100

Ký số thập phân	Mã nhị phân
5	0101
6	0110
7	0111
8	1000
9	1001

BCD (3/3) – Ví dụ

Giá trị	Biểu diễn nhị phân	Biểu diễn BCD	Giá trị	Biểu diễn nhị phân	Biểu diễn BCD		
4	0100	0100	25	1 1001	0010_0101		
8	1000	1000	31	1 11111	0011_0001		
10	1010	0001_0000	32	100000	0011_0010		
15	1111	0001_0101	99	1100011	1001_1001		
16	10000	0001_0110	100	1100100	0001_0000_0000		

Nhược điểm: Số lượng ký số tăng nhanh hơn

- Nhược điểm của BCD so với Nên sử nhị phân thông thường là gì?
 - dung trong trường hợp nào?
- A. Dễ hiểu hơn cho con người A. Lưu trữ dữ liệu
- B. Số bit cần sử dụng tăng nhanh B. Xử lý dữ liệu hơn khi giá trị cần biểu diễn tăng

 - Xuất dữ liệu

Tính toán đơn giản hơn

- D. Truyền dữ liệu
- D. Cần 4 bit để biểu diễn giá trị 9

Floating Point (1/3)

- Làm sao để biểu diễn các giá trị thực? ±5.25?
 - \Box $\pm 5.25 = \pm (2^2 + 2^0 + 2^{-2}) \rightarrow \pm 101.01$
- Làm sao để biểu diễn dấu chấm (.): 0 hay1?
 - Ý tưởng chuẩn hóa: Trước dấu chấm (.) chỉ được biểu diễn 1 ký số khác 0
 - $\pm 101.01 = \pm 1.0101 \times 2^2$
 - Không cần phải biểu diễn bit trước dấu chấm vì chắc chắn là 1.
 - Phần sau dấu chấm cần bao nhiêu bit? Biểu diễn như thế nào?
 - Số mũ nhị phân là số nguyên bao nhiều bit? Biểu diễn như thế nào?
 - Dấu: Có thể + hoặc -

Floating Point (2/3) – IEEE Std 754-1985

- Hai phiên bản:
 - Chính xác đơn: 32 bit
 - ☐ Chính xác kép: 64 bit

đơn: 8 bits dơn: 23 bits kép: 11 bits kép: 52 bits

S E F

■ Dấu:

$$B = (-1)^S \times (1.F) \times 2^{(E - bias)}$$

- \square Âm: S = 1, KHÔNG âm: S = 0
- Mũ: Biểu diễn quá (excess)
 - ☐ Đảm bảo E không âm
 - \square Chính xác đơn: bias = 127
 - ☐ Chính xác kép: bias = 1023

- Chuẩn hóa:
 - ☐ Không cần biểu diễn bit trước dấu chấm (mặc định là 1)
 - Dịnh trị là "1.F"

Floating Point (3/3) – Chính xác đơn (32 bit)

đơn: 8 bitsđơn: 23 bitskép: 11 bitskép: 52 bits

${f F}$	Biêu diên
0	0
!0	Chưa chuẩn hóa
X	Dấu chấm động
0	Vô cùng lớn / Vô cùng bé
!0	NaN (Not a Number)
	• •

ASCII (1/2)

Phương pháp sử dụng 7 bit để biểu diễn mỗi ký tự

$b_4b_3b_2b_1$								
	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	C	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	4	7	G	W	g	W
1000	BS	CAN	(8	H	X	h	\mathbf{X}
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K]	k	{
1100	FF	FS	,	<	L	\	1	1
1101	CR	GS	701 1 271 -	=	M]	m	}
1110	SO	RS		>	N	^	n	~
1111	SI	US	/	?	O	-	O	DEL

ASCII (2/2) -Ví dụ

■ IT012 có biểu diễn ASCII là:

10010011010100011000001100010110010

■ it006 có biểu diễn ASCII là:

11010011110100011000001100000110110

■ 10011001001111110101101000101 biểu diễn LOVE

Bài tập (1/4)

- Biểu diễn các giá trị 17, 219 bằng 8 bit?
- 0x39, 0x47 biểu diễn các giá trị nào?
- Tìm dải giá trị mà một chuỗi *n* bit có thể biểu diễn trong các trường hợp sau:
 - ☐ Số nguyên không dấu?
 - ☐ Số nguyên có dấu được biểu diễn bằng phương pháp Dấu và Độ lớn?
 - ☐ Số nguyên có dấu được biểu diễn bằng phương pháp Bù 2?
- Thực hiện phép tính trong hệ cơ số 2: $10110_2 + 01011_2$

Bài tập (2/4)

- Biểu diễn giá trị -23 bằng phương pháp Bù 2 sử dụng 8 bit?
- Biểu diễn cơ số 16 bằng phương pháp Bù 2 sử dụng 8 bit cho các giá trị sau:
 - □ 121
 - □ -39
 - □ -128
- Thực hiện phép tính trong hệ cơ số 2 sử dụng phương pháp Bù 2:
 - $\Box 0xB7 + 0x59$
 - $\Box 0x19 0xA2$

Bài tập (3/4)

- Biểu diễn BCD các giá trị sau:
 - 17
 - □ 358
 - □ 629
- (Nâng cao) Biểu diễn dấu chấm động các giá trị sau:
 - □ 0.00125
 - □ 120.5
 - □ -0.005
 - □ -57.25

Bài tập (4/4)

- (Nâng cao) Biểu diễn ASCII các chuỗi sau:
 - ☐ Hello, How are you?
 - ☐ I am fine, And you?
- 0x12345678 biểu diễn thông tin gì trong những ngữ cảnh sau đây:
 - □ Dấu chấm động
 - □ Bù 2
 - □ BCD

 - □ Nguyên Dương (không dấu)

THẢO LUẬN

