Структуры и сигнатуры, интерпретации и модели.

Определение: Элементарная математическая структура - это множество, которое называется носителем структуры, и выделенные объекты (элементы носителя, операции на носителях, отношения на носителях).

Пример

 $\overline{\Gamma}$ руппа - это множество М(носитель) + выделенные элементы носителя(единица, групповая операция, обратная операция)

Для упорядоченного множества выделено отношение порядка: ≺, ≼

Пример

Запишем отношение инцидентности в геометрии: $\forall x \forall y [T_0(x) \& T_0(y) \Rightarrow \exists z (\Pi P(z) \& \Pi(z, x) \& \Pi(z, y)).$

В структуре все выделенные элементы снабжаются именами.

Определение: Сигнатура - это список имен выделенных объектов структуры, то есть сигнатура данной структуры.

Сигнатура - это:

- 1) Индивидные имена;
- 2) Функциональные имена (имена операций);
- 3) Предикатные имена (имена отношений).

Функциональные и предикатные имена имеют валентность - количество аргументов.

Рассмотрим изоморфизм между структурами. Он определен только для структур одинаковой сигнатуры (набор символов с валентностью).

Рассмотрим 2 структуры - M_1 и M_2 с выделенными объектами.

Определение: Изоморфизм - это биекция между носителями, такая что элемент сигнатуры из M_1 с именем а переходит в элемент сигнатуры M_2 с тем же именем и выполняются слудующие условия:

- 1) Для функции $f^{(n)}:f^{(n)}(x_1,...,x_n)=U\Leftrightarrow f^{(n)}(\varphi x_1,...,\varphi x_n)=\varphi U$
- 2) Для отношения $P^{(n)}: P^{(n)}(x_1,...,x_n) \Leftrightarrow P^{(n)}(\varphi x_1,...,\varphi x_n)$

Язык сигнатуры $\Sigma = \langle$ индивиды, функционалы, предикаты \rangle (состоит из выражений вида: $f^{(2)}(a;b)=b)$ или $P^{(3)}(a;b;a)$).

Если к элементарному языку -), (, =, \neg , &, \lor , \Rightarrow , \forall , \exists , Σ + индивиды x,y,z.. - добавить функциональные и предикатные переменные, то уже не элементарный язык.

Функциональные переменные: $\varphi^{(i)}, \psi^{(j)}...$

Определение: Функциональная буква - это функциональное имя или переменная.

Определение: Предикатная буква - это предикатное имя или переменная.

Определение: Индивидная буква - это индивидное имя или переменная.

Определим понятия терма, атомной формулы и формулы.

Определение: Терм:

- 1) Каждая индивидная буква есть терм;
- 2) Если $t_1,...,t_n$ термы, а q функциональная буква валентности n, то $q(t_1,...,t_n)$ терм.

Определение: Атомная формула:

- 1) Если $\overline{t_1,t_2}$ -термы, то $t_1=t_2$ атомная формула.
- 2) Если $t_1,...,t_n$ термы, а Q предикатная буква валентности n, то $Q(t_1,...,t_n)$ атомная формула.

Определение: Формула:

- 1) Каждая атомная формула есть формула.
- 2) Если α формула, то $\neg \alpha$ формула.
- 3) Если α и β формулы, то $\alpha \& \beta, \alpha \lor \beta, \alpha \Rightarrow \beta$ формулы.
- 4) Если α формула, а ξ переменная, то $\forall \xi \alpha$ и $\exists \xi \alpha$ тоже формулы.

Определение: Интерпретация языка (сигнатуры) - это любая матаематическая структура

данной сигнатуры.

Чтобы задать интерпретацию нужно:

- 1) Фиксировать непустое множество М носитель;
- 2) Каждоя константе из сигнатуры сопоставить элемент из носителя;
- 3) Каждому k-местному функциональному символу из сигнатуры сопоставить k-местную функцию:

 $f: M^k \to M;$

4) Каждому k-местному предикатному символу из сигнатуры сопоставить k-местный предикат:

 $P:M^k\to \Pi.\Pi$;

Если Р есть 0-местный предикатный символ, то ему сопоставляется одно из двух истинностных значений.

Пусть I - структура, F - формула.

Определение: $I \models F$ означает, что F истинна при интерпретации I(B) основном только для замкнутых).

При заданной интерпретации можно сравнивать формулы на эквивалентность.

Определение: Формула называется общезначимой, если она истина в любой интерпретации.

Общезначимые формулы выражают законы логики, поскольку верны вне зависимости от интерпретации.

Примеры Общезначимые формулы:

- $1) \ \forall x\alpha \Rightarrow \exists x\alpha;$
- 2) $\forall x \forall y (x = y \Rightarrow f(x) = f(y)).$

Обозначение: $\forall I(I \models F)$ обозначают $\models F$

Формула Лейбница

 $\overline{\forall W(W(x) \Rightarrow W(y))} \equiv x = y$, где W - предикат.

Определение: Аксиомы - это зафиксированные выделенные формулы; список аксиом.

Определение: Модель данного списка аксиом - это такая интерпретация, при которой все аксиомы становятся истинными.

Пример

Группа - эта та интерпретация групп, в которой выполняются аксиомы групп, то есть это - модель списка аксиом группы.

Определение: Следствие списка аксиом - это формула, истинная в любой модели этих аксиом.

 $\overline{\Pi_{\text{УСТЬ}} \text{ S}}$ - список аксиом, то $S \models F$ означает, что F - есть следствие S.

Все языки отличаются друг от друга только сигнатурой.

Пример

 $\overline{\text{Рассмотрим}}$ язык арифметической логики: <0,'>

х' - следующий за х. Наример, 2 - это 0".

Можно рассмотреть следующие аксиомы:

- 1) $\neg \exists x : (x' = 0);$
- 2) $\forall x \forall y (x' = y' \Rightarrow x = y)$

Например, если $0'''' = 0'' \Rightarrow 0''' = 0' \Rightarrow 0'' = 0$, чего быть не может.

Определение: Стандартная модель - это модель, которая изоморфна тому замыслу, для которого написаны аксиомы.

Определение: Нестандартная модель - это модель, которая неизоморфна тому замыслу, для которого написаны аксиомы.

Например, плоскость \to язык(точки, прямые, инциденетность...) \to модель(выполняются все аксиомы).

Аксиома: $\forall W\{[W(0)\&\forall x(W(x)\Rightarrow W(x'))]\Rightarrow \forall xW(x)\}$

Это аксиома индукции. Если ее записать, то в качестве W можновзять свойство: "получаться из нуля п штрихами". Пусть этот предикат P, то есть: $[P(0)\&\forall x(P(x)\Rightarrow P(x'))]\Rightarrow \forall xP(x)$. Ясно, что он подходит для W. Тут модель единственна.

Пусть сигнатура $< 0,',+,\cdot,\prec, \preccurlyeq >$.

$$x \prec y \equiv \exists z (x + z' \preccurlyeq y)$$

 $x : 3 \equiv \exists z ((z \cdot 0''') = x)$

Такая формула задает множество чисел : 3.

Определение: Арифметическое множество - множество, для которого существует выражающая его формула.

Пусть α - формула с единственной свободной переменной ξ .

Определение: $\widehat{\alpha}$ - это множество таких $n|\models\alpha(n/\xi)$, то есть те, для которых α верна.

Значит множество чисел : 3 - арифметическое.

- 1) Если множество арифметическое, то его дополнение арифметическое;
- 2) Для двух арифметических множеств, их пересечение/объединение также арифметическое, то есть класс арифметических множеств замкнут.

Так как всего формул счетно(это слова в конечном алфавите), а всего множеств несчетно, то существют неарифметические множества.

Определение: Если есть формула с двумя свободными элементами $(\alpha(\xi,\eta)),$

$$\overline{\text{TO }\widehat{\alpha} = \{(m;n)|} \models \alpha(m/\xi)(n/\eta)\}$$

Для формул нужно задавать порядок подстановки переменных, иначе это множество определено некорректно.

Ясно, что (m; n)|m:n - арифметическое.

Прямое произведение арифметических множеств - арифметическое.

Пример

$$A = \{m|m:2\} = \widehat{\alpha}; \ \alpha = \exists z((z \cdot 0'') = x)$$

$$B = \{n | n : 3\} = \widehat{\beta}; \ \beta = \exists z ((z \cdot 0'') = y)$$

Тогда $A \times B = \{ < m; n > | m = 2, n = 3 \}.$

Определение: Пусть дана функция $f(x_1,...,x_n)=y$. Тогда график функции - это множество таких $\{< x_1,...,x_n,y>|f(x_1,...,x_n)=y\}$

Определение: Арифметическая функция - это функция, график которой есть арифметическое множество.

Определение: Проекция множества: $y \in B \equiv \exists x : (\langle x; y \rangle \in A) \equiv \exists x : \alpha(x; y)$

Ясно, что проекция арифметического множества - арифметическая.

Teopema: Образ арифметического множества при арифметической функции является арифметическим.

Доказательство: ∢ ??? ▶

Teopema: Полный прообраз арифметического множества при арифметической функции является арифметическим.

Определение: Вычислимая функция - это функция с существующим вычисляющим её алгоритмом.

Алгоритмов - счётное число(так как это - текст)

Вычислимых функций - счётное число.

Значит всякая вычислимая функция являтся арифметической.

Машина Тьюринга

Устройство машины:

Имеется лента(разбитая на ячейки) либо 1) бесконечная в обе стороны, либо 2) ограниченная слева.

Будем изучать 1).

Вдоль ленты разъезжает каретка (списывающая и записывающая). У нее есть состояния: $q_0, q_1, ...,$ причем первые два состояния есть обязательно.

Имеется ленточный алфавит $B = \{\#, ...\}$, причем # есть обязательно - это пустой символ, то есть если в ячейке ничего нет, то там записано #.

Машина работает шагами:

- 1) Смотрит, что в обозреваемой ячейке;
- 2) В зависимости от 1) и состояния печатает символ в обозреваемую ячейку и сдвигается(вправо/влево/на месте);
- 3) Переходит в другое состояние;

Обозначение: ∇ - сдвижение вправо/влево/на месте.

Определение: Команда машины Тьюринга: $q_k a_i \rightarrow a_i \nabla q_l$.

Определение: Программа машины Тьюринга - однозначный набор команд.

Принцип работы машины: Вначале каретка находится в состоянии q_1 , вручную устанавливается в определенное место ленты и машина работает по программе до состояния q_0 . Если машина приходит в состояние q_0 то это называют результативной остановкой.

Также возможна безрезультативная остановка: когда машина не находит нужной команды, или пытается сдвинуться сдвинуться за предел ленты.

Вычисление функции на машине Тьюринга

В ленточном алфавите выделяется конечная часть - рабочий алфавит. Пусть Б - алфавит, а $\mathcal{A}(\subset B)$ - рабочий алфавит.

Начальное состояние ленты: на ленте, в заданном месте записн х, и больше ничего на ленте нет. Каретка ставится на место, предществующее слову.

Необходимо вычислить y = f(x)

Возможны два варианта ответов:

1) Слабый:

На ленте между двумя символами α и β (причем $\alpha, \beta, \# \overline{\in} Д$) записан у. Каретка стоит в произвольной ячейке слова у.

2) Сильный:

На ленте ничего кроме у нет. Каретка стоит на месте предществующем началу слова у.

Пусть дана $f: Д^* \to Д^*$

Определение: f вычислима в слабом(сильном) смысле, если ∃Б∋Д и такая машина Тьюринга, что f вычисляется в слабом(сильном) смысле на этой машине.

Можно доказать, что из слабого ответа можно получить сильный. Сделать это можно, стирая нерабочие символы с лента(каждый раз проходя все дальше в обе стороны) и учитывая, что ответ ограничен двумя нерабочими символами.