Supplementary Handout for Dis 5: Random Variables; Discrete Probability Distributions

1 Random Variables

• A random variable **assigns a number to each outcome** of an experiment. e.g. Let *X* be a random variable recording the outcome of rolling a fair, six-sided die, then

Rolling a 1
$$\rightarrow$$
 $X = 1$

Rolling a 2
$$\rightarrow$$
 $X = 2$

. . .

Rolling a 6
$$\rightarrow$$
 $X = 6$

- There are two types of random variables:
 - 1. Discrete random variable: numbers assigned to the random variable are countable.
 - 2. Continuous random variable: numbers assigned to the random variable are NOT countable.

Aside: what does it mean to be countable?

(A pretty loose definition:) as long as you can sequentially count all the numbers assigned – even though it might take forever – then such series of numbers is considered as countable.

Exercise. Is the following random variable discrete or continuous?

- 1. X = whether the result from a fair coin flip is head or not
- 2. X = amount of time it takes for a student to complete a 60-minute exam
- 3. X = the number of rolls it takes to get a 6 from rolling a six-sided die

2 Discrete Probability Distributions

• **Probability distribution**: a table / formula / graph that describes the values of a random variable and the associated probabilities (at these values).

- In the case of **discrete probability distribution** for discrete random variable X, we need some way to describe P(x) at all possible x values.
 - * Conditions that a discrete probability distribution needs to satisfy:
 - 1. $0 \le P(x) \le 1$ for all x
 - 2. $\sum_{x} P(x) = 1$
- If we already know that some other random variable Y yields outcome y, and want to describe all possible probabilities related to x after y outcome (that is, P(X = x | Y = y) for all x), then **discrete conditional probability distribution** is appropriate.
 - * Conditions that a discrete conditional probability distribution needs to satisfy:
 - 1. $0 \le P(x|y) \le 1$ for all x
 - $2. \sum_{x} P(x|y) = 1$
- Since a probability distribution describes the probability at all possible outcomes, this is a representation of the **population**.
 - Thus, one can use a probability distribution to write down the calculation of some **parameters**:

Parameter Name	Notation	Formula	Shortcut
Expected value (mean)	$E(X) = \mu = \mu_X$	$\sum_{x} x P(x)$	-
Variance	$V(X) = \sigma^2 = \sigma_X^2$	$\sum_{x}(x-\mu)^{2}P(x)$	$E(X^2) - [E(X)]^2$
Standard deviation	$\sigma = \sigma_X$	$\sqrt{V(X)}$	-

When there is more than one probability distribution (say, distributions for random variables *X* and *Y*), then **parameters** on the relationship between two random variables can be expressed:

Parameter Name	Notation	Formula	Shortcut
Covariance	$Cov(X,Y) = \sigma_{XY}$	$\sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) P(x, y)$	$ \begin{vmatrix} E(XY) \\ -E(X)E(Y) \end{vmatrix} $
Correlation (of coefficient)	$Corr(X,Y) = \rho_{XY}$	$\frac{\sigma_{XY}}{\sigma_{X} \cdot \sigma_{Y}}$	-

- Common parameter operations, when the random variable is transformed in some way: (Let *X* and *Y* be random variables, *a*, *b*, *c*, *d* be constants.)
 - * Expected value (mean):

$$\cdot E(c) =$$

$$\cdot E(aX + b) =$$

$$\cdot E(X+Y) =$$

* Variance:

$$\cdot V(c) =$$

$$V(aX + b) =$$

$$V(X \pm Y) =$$

* Covariance:

$$\cdot Cov(a,b) =$$

$$\cdot Cov(X,X) =$$

$$\cdot Cov(aX + b, cY + d) =$$

- Two examples of discrete probability distribution:
 - 1. **Binomial distribution**: distribution of success among *n* trials
 - Random variable $X \sim \text{Binomial}(n, p)$ if the following holds:
 - * There are fixed number (*n*) of trials.
 - * Each trial has two outcomes: success, and failure.
 - * P(success) = p is constant across all trials.
 - * Trials are independent.
 - − Once $X \sim \text{Binomial}(n, p)$ is established, then

*
$$P(x) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$$
 for $x = 0, 1, 2, ..., n$

$$*E(X) = np$$

*
$$V(X) = np(1-p)$$

- 2. **Poisson distribution**: distribution of success within a fixed time period / fixed interval, with success arriving at rate $\mu > 0$
 - − Random variable $X \sim \text{Poisson}(\mu)$ if the following holds:
 - * Number of success in any interval is independent of the number of success in any other interval.
 - * Probability of a success in any equal-size interval is constant.
 - * Probability of a success is proportional to the size of the interval.
 - * Probability of more than one success in an interval approaches 0 as the interval becomes smaller.
 - − Once $X \sim \text{Poisson}(\mu)$ is established, then

*
$$P(x) = \frac{e^{-\mu}\mu^x}{x!}$$
 for $x = 0, 1, 2, ...$

*
$$E(X) = \mu$$

*
$$V(X) = \mu$$