Basic Building Blocks in an IP-based Image/Video Communication System

Laboratory Exercise 3

SSY150

Block diagram of the case study

Block diagram of the case study

Quantization:

Func: quantiz()

Task-1: Scalar Quantization

Task 2: Packetization and depacketization

Packet 1

Packet 2

Task 2: Packetization and depacketization

Task3: RS (Reed-Solomon) encoding and decoding

RS(n,k) is a block coding method.

notation	definition
n	number of symbols per codeword
k	number of symbols per message
m	number of bits per symbol
$t = \lfloor (n-k)/2 \rfloor$	maximum error correcting capability

RS codes are based on Galois field (GF)

$$GF(3) = \{0,1,2\}$$

 $2^{0} = 1$
 $2^{1} = 2$
 $2^{2} = 4 \mod 3 = 1$

Task3: RS (Reed-Solomon) encoding and decoding

• RS(n,k) is a block coding method.

notation	definition
n	number of symbols per codeword
k	number of symbols per message
m	number of bits per symbol
$t = \lfloor (n-k)/2 \rfloor$	maximum error correcting capability

RS encoding is based on Galois field(GF)

$$GF(3) = \{0,1,2\}$$

 $2^{0} = 1$
 $2^{1} = 2$
 $2^{2} = 4 \mod 3 = 1$

Task 4: Image compression Block-based DCT

 Zigzag scanning to produce 1D sequence of coefficient out of all blocks.

Task 5: Noise bit errors and packet losses.

- Two cases:
- Bit errors in the channel

Set t < (n-k)/2

Set t>(n-k)/2

2) Network packet loss

e.g: 10% of the packets

Task 7: Adding matrix interleaver and deinterleaver

Task 7: Adding matrix interleaver and deinterleaver

Task 7: Adding matrix interleaver and deinterleaver

Task 8:

- Test the effect of interleaver de-interleaver on Bit error.
- Test the effect of interleaver de-interleaver on 3% packet loss.
- Compute PSNR and MSSIM.