Uncertainty in Recurrent Decision Tree Classifiers

Stefan Wezel

Explainable Machine Learning

October 17, 2020

- There are a lot of architectures that perform great on image classification tasks
- o Maybe, most prominently: ResNet
- o However, they only yield a classification
- In many settings a classification is not worth much without the reasoning behind it

- o Two agents
- o One is asking questions and one is answering them
- o The unfolding decision process is an interpretable tree

- o Two agents
- o One is asking questions and one is answering them
- o The unfolding decision process is an interpretable tree

Why do we need uncertainty?

- The ornithologist is tasked to survey bird species, which she automates using a drone and computer vision software
- She uses our model to go through the vast amount of collected data
- Some bird species unknown to the model appear in the data.
 The model yields high uncertainty and the ornithologist can classify them manually

- o Data points can be described by (infinitely) many functions
- o A GP is a PDF over these functions
- $\circ\,$ Parameterized by mean function and covariance function
- The variance resembles the model uncertainty where no data is given

	AWA2	aPY	CUB	
ResNet [HZRS16]	98.2± 0.0	85.1± 0.6	79.0± 0.2	
DT	78.0± 0.4	64.3± 0.6	19.3± 0.3	
dNDF[KFCRB15]	97.6± 0.2	85.0± 0.6	73.8± 0.3	
RDTC[AA19]	98.0± 0.1	85.7± 0.7	78.1± 0.2	
XDT	73.9± 0.9	59.9± 1.5	4.9± 1.3	
aRDTC[AA19]	98.6	86.1	77.9± 0.6	
remRDTC(ours)	98.7	86.4	77.7	
extRDTC(ours)	98.7	85.4	77.8	

	aRDTC [AA19]	Random Baseline	remRDTC	extRDTC
AWA2				
Class	98.6	98.5	98.7	98.7
Attribute	e 80.4	84.6	87.5	82.31
aPY				
Class	86.1	86.5	86.4	85.4
Attribute	e 86.4	86.2	87.6	87.12
CUB				
Class	77.9	76.8	77.7	77.8
Attribute	e 68.6	70.0	77.4	82.6

Conclusions A qualitative Example

- [AA19] Stephan Alaniz and Zeynep Akata. Explainable observer-classifier for explainable binary decisions. arXiv preprint arXiv:1902.01780, 2019.
- [HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
- [KFCRB15] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural decision forests. In Proceedings of the IEEE international conference on computer vision, pages 1467–1475, 2015.