Taylor with error term

$$f(x) = \sum_{m=0}^{n} \frac{f^{(m)}(a)}{m!} (x-a)^{m} + R_{n}(x)$$
error or
remainder

Formulas for Ra(x)

$$(\bar{n})$$
 $||R_n(x)|| = \frac{f^{(n+1)}}{(n+1)!} (x-q)^{n+1}$

$$(\overline{u})$$
 $R_{n}(x) = \frac{f'(x+1)}{f'(x)} (x-c)^{n} (x-a)$

$$(\overline{u})$$
 $R_{n(x)} = \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t) (x-t)^{n} dt$

$$(\overline{Integral})$$

Consider
$$n = 0$$
 $f(x) = f(a) + Ro(x)$

(i) $Ro(x) = f''(c) (x-a)$

(ii) $Ro(x) = f'(c) (x-a)$

same as Lagrange

(iii) $Ro(x) = \int_{a}^{x} f'(t) dt$
 $= f(x) - f(a)$ correct \sqrt{x}

Fro C (Fundamental Theorem of Calculus)

Can prove general case by induction (see later problems on integration)

For
$$h=0$$
 Lagrange and Cauchy give
$$f(x) = f(a) + f'(c)(x-a)$$
 or
$$f(x) - f(a) = f'(c)$$

This is the Mean Value Theorem (MVT):

Suppose f is continuous on [a,b] and differentiable on (a,b). Then there exists $C \in (a,b)$ such that

$$\frac{f(b)-f(a)}{b-a}=f'(c)$$

Graphically € (a, b) so that the tangent at (c, fail is parallel Joining (a, f(a)) and (b, f(b)

See your analysis modules!

Cowchy form easier to derive them Lagrange problems) form (see Can derive Cauchy form from the Mean Value Theorem for integrals! Suppose 9 is continuous on [a,b] $\int_{a}^{b} g(x) dx = g(c)(b-a)$ for some $c \in (a,b)$

$$\int_{a}^{b} \frac{y}{z} = g(x)$$

where c is between

a and b

$$\int_{a}^{x} g(t) dt = g(c) (x-a)$$
for some $c \in (a,b)$

Take $g(t) = \frac{1}{n!} f^{(n+1)}(t) (x-t)^n$

This gives Cauchy form of

remainder (assuming integral form is true).

What happens as n -> 00

If $R_n(x) \rightarrow 0$ as $n \rightarrow \infty$

(for some or all x - x hept fixed as limit taken)

Conclude that

 $f(x) = \lim_{n \to \infty} \frac{f^{(n)}(q)}{m!} (x-q)^m$

or $f(x) = \sum_{m=0}^{\infty} \frac{f^{(m)}(a)(x-a)^m}{m!}$

This is the infinite form

$$f(x) = \sum_{m=0}^{n} \frac{f^{(m)}(a)}{m!} (x-a)^{m}$$
which is valid if f
is a polynomial of degree
$$n \quad (or less)$$

Example
$$f(x) = e^{x}$$
, $a = 0$ Maclaurin
 $f^{(m)}(x) = e^{x}$, $f^{(m)}(o) = 1$
 $f(x) = \sum_{m=0}^{n} \frac{x^{m}}{m!} + R_{n}(x)$
Use Lagrange from
 $R_{n}(x) = \frac{f^{(n+1)}(c)}{(n+1)!} \times x^{n+1}$
 $= \frac{e^{c} x^{n+1}}{(n+1)!} = \frac{e^{c} x^$

$$\left| R_{n}(x) \right| \leq e^{\left| x \right|} \frac{\left| x \right|^{n+1}}{\left(n+1 \right)!}$$

Can write
$$e^{x} = \frac{\sum_{m=0}^{\infty} \frac{x^{m}}{m!}}{\sum_{m=0}^{\infty} \frac{x^{m}}{m!}} \quad \text{for any}$$

However computing limit lim Rn(x) can be difficult Have formula $f(x) = \frac{\infty}{m} \frac{f(m)(a)}{m!} (x-a)^{m}$ which holds if $R_{n}(x) \to 0$ as $n \to \infty$.

The RHS of formula

The RHS of formula

is a power Series

[in (x-a) rather than x]

This has a radius of

Convergence R. RHS

is meaning ful for -R=X-a=R

Claim If |x-a| < Rcan show (using Complex analysis) that Rn(x) -> 0 as $n \rightarrow \infty$. That is if infinite Taylor series $\sum_{m} \frac{f^{(m)}(x)}{m!} (x-a)^m$ is absolutely convergent then it equals f(x) Alus Example

General Bransian Expansion

$$f(x) = (1+x)^p$$
 p constant

$$f'(x) = p(1+x)^{p-1}$$

$$f''(x) = p(p-1)(1+x)^{p-2}$$

$$f^{(m)}(x) = p(p-1) - - - (p-m+1)(1+x)^{p-m}$$

$$(1+x)^{P} = \frac{\infty}{m=0} \frac{f^{(m)}(0)}{m!} x^{m}$$

$$f^{(m)}(0) = p(p-1) - - (p-m+1)$$

$$(|+X|)^p = \sum_{m=0}^{\infty} C_m X^m$$

$$Cm = \frac{p(p-1) - ... (p-m+1)}{m!}$$

Formula valid for IXI<R

R = radius of convergence

of power series.

Apply ratio test

to
$$a_{m} = \frac{p(p-1) - - - (p-m+1)}{m!} \times m$$

compute limit

lim

m-) oo | am+1 | am |