Section 3.4 – Inverse Matrices

Definition

The matrix A is invertible if there exists a matrix A^{-1} such that:

$$A^{-1}A = AA^{-1} = I$$

where A^{-1} read as "A inverse" and A has to be a square matrix.

Not all matrices have inverses.

- 1. The inverse exists *iff* elimination produces *n* pivots (row exchanges allow).
- 2. The matrix A cannot have two different inverses.
- **3.** If *A* is invertible, the one and only one solution to Ax = B is $x = A^{-1}B$

$$AX = B$$
 $A^{-1}(AX) = A^{-1}B$
 $Multiply both side by A^{-1}$
 $(A^{-1}A)X = A^{-1}B$
 $Associate property$
 $IX = A^{-1}B$
 $Multiplicative inverse property$
 $X = A^{-1}B$
 $Identity property$

- **4.** Suppose there is a *nonzero* vector x such that Ax = 0. Then A cannot have an inverse
- **5.** A 2 by 2 matrix is invertible iff ad bc is not zero.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 Only for 2 by 2 matrices

If ad - bc = 0 is the determinant, then A^{-1} doesn't exist

The Inverse of a Product AB

Theorem

If an $n \times n$ matrix has an inverse, that inverse is unique.

Proof

Suppose that A has an inverse A^{-1} and B is a matrix such that BA = I

$$B = BI = B(AA^{-1}) = (BA)A^{-1} = IA^{-1} = A^{-1}$$

Theorem

If A and B are invertible then so is AB. The inverse of a product AB is $(AB)^{-1} = B^{-1}A^{-1}$

Proof

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$
$$= (AI)A^{-1}$$
$$= AA^{-1}$$
$$= \underline{I}$$

Reverse Order

$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$

Theorem

If A is invertible and n is a nonnegative integer, then:

a)
$$A^{-1}$$
 is invertible and $(A^{-1})^{-1} = A$

b)
$$A^n$$
 is invertible and $(A^n)^{-1} = A^{-n} = (A^{-1})^n$

c) kA is invertible for any nonzero scalar k, and $(kA)^{-1} = k^{-1}A^{-1}$

Proof

$$(kA)(k^{-1}A^{-1}) = k^{-1}(kA)A^{-1} = (k^{-1}k)AA^{-1} = (1)I = I$$
$$(k^{-1}A^{-1})(kA) = k^{-1}(kA^{-1})A = (k^{-1}k)A^{-1}A = (1)I = I$$

Finding A^{-1} using Gauss-Jordan Elimination

$$\lceil A|I \rceil \rightarrow \lceil I|A^{-1} \rceil$$

Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -2 & -1 \\ 3 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & -2 & -1 & 0 & 1 & 0 \\ 3 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{matrix} R_2 - 2R_1 \\ R_3 - 3R_1 \end{matrix} \qquad \begin{matrix} 2 & -2 & -1 & 0 & 1 & 0 \\ -2 & 0 & -2 & -2 & 0 & 0 \\ \hline 0 & -2 & -3 & -2 & 1 & 0 \end{matrix} \qquad \begin{matrix} -3 & 0 & 0 & 0 & 0 & 1 \\ -3 & 0 & -3 & -3 & 0 & 0 \\ \hline 0 & 0 & -3 & -3 & 0 & 1 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & -2 & -3 & -2 & 1 & 0 \\ 0 & 0 & -3 & -3 & 0 & 1 \end{bmatrix} - \frac{1}{2}R_2$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & -3 & -3 & 0 & 1 \end{bmatrix} - \frac{1}{3}R_3$$

$$\begin{bmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} & | & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & | & 1 & 0 & -\frac{1}{3} \end{bmatrix} \quad R_1 - R_3 \qquad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \qquad 0 \quad 1 \quad \frac{3}{2} \quad 1 \quad -\frac{1}{2} \quad 0 \\ R_2 - \frac{3}{2} R_3 \qquad 0 \quad 0 \quad -1 \quad -1 \quad 0 \quad \frac{1}{3} \qquad 0 \quad 0 \quad -\frac{3}{2} \quad -\frac{3}{2} \quad 0 \quad \frac{1}{2} \\ 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \frac{1}{3} \qquad 0 \quad 1 \quad 0 \quad -\frac{1}{2} \quad -\frac{1}{2} \quad \frac{1}{2}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 1 & 0 & -\frac{1}{3} \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 0 & 0 & \frac{1}{3} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & -\frac{1}{3} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 0 & 0 & \frac{1}{3} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & -\frac{1}{3} \end{bmatrix}$$

- ✓ Matrix A is *symmetric* across its main diagonal. So is A^{-1}
- ✓ Matrix *A* is *tridiagonal* (only three nonzero diagonals). But A^{-1} is a full matrix with no zeros. (another reason we don't compute A^{-1})

Singular versus Invertible

 A^{-1} exists when A has a full set of n pivots. (Row exchanges allowed)

- With *n* pivots, elimination solves all the equations $Ax_i = b_i$. The columns x_i go into A^{-1} . Then $AA^{-1} = I$ is at least a *right-inverse*.
- Elimination is really a sequence of multiplications.

Conclusion

- If *A* doesn't have *n* pivots, elimination will lead to a *zero row*.
- Elimination steps are taken by an invertible *M*. So a row of *MA* is zero.
- If AB = I then MAB = M. The zero row of MA, times B, gives a zero row of M.
- The invertible matrix M can't have a zero row! A must have n pivots if AB = I.

Elementary Matrices

Definition

Let e be an elementary row operation. Then the $n \times n$ elementary matrix E associated with e is the matrix obtained by applying e to the $n \times n$ identity matrix. Thus

$$E = eI$$

Example

a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$$
 \rightarrow Multiply R_2 of I by -3

c)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow Interchange the first and second rows$$

$$\begin{array}{c|cccc} d) & \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \rightarrow & Add & -3 \text{ times } R_1 \text{ to } R_2 \end{array}$$

Theorem

Let e be an elementary operation and let E be the corresponding elementary matrix E = e(I). Then for every $m \times n$ matrix A

$$e(A) = EA$$

That is, an elementary row operation can be performed on *A* by multiplying *A* on the left by the corresponding elementary matrix.

Example $m \times m$

Let
$$A = \begin{bmatrix} 2 & -2 & 3 & 1 \\ 1 & 0 & 2 & 4 \\ -6 & 2 & 1 & 5 \end{bmatrix}$$
 $M = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$

$$MA = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 & 1 \\ 1 & 0 & 2 & 4 \\ -6 & 2 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 4 & -4 & 6 & 2 \\ 1 & 0 & 2 & 4 \\ -6 & 2 & 1 & 5 \end{bmatrix}$$

This result can be obtained from A by multiplying the first row by 2.

$$PA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 & 1 \\ 1 & 0 & 2 & 4 \\ -6 & 2 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 3 & 1 \\ -6 & 2 & 1 & 5 \\ 1 & 0 & 2 & 4 \end{bmatrix}$$

This result can be obtained from A by interchanging rows 2 and 3.

$$EA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 & 1 \\ 1 & 0 & 2 & 4 \\ -6 & 2 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 3 & 1 \\ 1 & 0 & 2 & 4 \\ 0 & -4 & 10 & 8 \end{bmatrix}$$

This result can be obtained from *A* by adding 3 times row 1 to row 3.

Uniqueness of Echelon Form

Two matrices A and B are row-equivalent if and only if they have the same reduced echelon form.

Proof

If A and B have the same reduced echelon form E, then A is row-equivalent to E and E is row-equivalent to B. It follows that A is row-equivalent to B.

Now Suppose A and B are row-equivalent. Let E_1 be a reduced echelon form of A and E_2 be a reduced echelon form of B. Then E_1 and E_2 are row equivalent.

Suppose $E_1=IF_1$ and $E_2=IF_2$. Since E_1 and E_2 are row equivalent, $E_2=CE_1$ for some matrix C. This means I=CI and $F_2=CF_1$. But then C=I and $F_2=F_1$.

Example

Show that the two matrices are row equivalent

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \end{pmatrix}$

Solution

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \quad \begin{aligned} R_1 + R_2 \\ R_2 - 2R_1 \\ = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \end{pmatrix} \\ &= B \end{aligned}$$

Definition

A relationship ~ (equivalent) between elements of a set is called an equivalence relation if

- ✓ A ~ A is always true,
- ✓ $A \sim B$ always implies $B \sim A$,
- ✓ $A \sim B$ and $B \sim C$ always implies $A \sim C$.

Exercises Section 3.4 – Inverse Matrices

1. Apply Gauss-Jordan method to find the inverse of this triangular "Pascal matrix"

Triangular Pascal matrix
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{bmatrix}$$

- **2.** If *A* is invertible and AB = AC, prove that B = C
- 3. If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, find two matrices $B \neq C$ such that AB = AC
- **4.** If A has row 1 + row 2 = row 3, show that A is not invertible
 - a) Explain why Ax = (1, 0, 0) can't have a solution.
 - b) Which right sides (b_1, b_2, b_3) might allow a solution to Ax = b
 - c) What happens to **row** 3 in elimination?
- **5.** True or false (with a counterexample if false and a reason if true):
 - a) A 4 by 4 matrix with a row of zeros is not invertible.
 - b) A matrix with 1's down the main diagonal is invertible.
 - c) If A is invertible then A^{-1} is invertible.
 - d) If A is invertible then A^2 is invertible.
- 6. Do there exist 2 by 2 matrices A and B with real entries such that AB BA = I, where I is the identity matrix?
- 7. If B is the inverse of A^2 , show that AB is the inverse of A.
- **8.** Find and check the inverses (assuming they exist) of these block matrices.

$$\begin{bmatrix} I & 0 \\ C & I \end{bmatrix} \quad \begin{bmatrix} A & 0 \\ C & D \end{bmatrix} \quad \begin{bmatrix} 0 & I \\ I & D \end{bmatrix}$$

- 9. For which three numbers c is this matrix not invertible, and why not? $A = \begin{bmatrix} 2 & c & c \\ c & c & c \\ 8 & 7 & c \end{bmatrix}$
- **10.** Find A^{-1} and B^{-1} (if they exist) by elimination. $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$

11. Find A^{-1} using the Gauss-Jordan method, which has a remarkable inverse.

$$A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

12. Find the inverse.

a)
$$\begin{bmatrix} 6 & -4 \\ -3 & 2 \end{bmatrix}$$
b) $\begin{bmatrix} 1 & 4 \\ 2 & 7 \end{bmatrix}$
e) $\begin{bmatrix} \frac{1}{5} & \frac{1}{5} & -\frac{2}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{10} \\ \frac{1}{5} & -\frac{4}{5} & \frac{1}{10} \end{bmatrix}$
g) $\begin{bmatrix} -8 & 17 & 2 & \frac{1}{3} \\ 4 & 0 & \frac{2}{5} & -9 \\ 0 & 0 & 0 & 0 \\ -1 & 13 & 4 & 2 \end{bmatrix}$
c) $\begin{bmatrix} -3 & 6 \\ 4 & 5 \end{bmatrix}$
f) $\begin{bmatrix} \sqrt{2} & 3\sqrt{2} & 0 \\ -4\sqrt{2} & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$

13. Show that A is not invertible for any values of the entries

$$A = \begin{bmatrix} 0 & a & 0 & 0 & 0 \\ b & 0 & c & 0 & 0 \\ 0 & d & 0 & e & 0 \\ 0 & 0 & f & 0 & g \\ 0 & 0 & 0 & h & 0 \end{bmatrix}$$

14. Prove that if *A* is an invertible matrix and *B* is row equivalent to *A*, then *B* is also invertible.

15. Determine if the given matrix has an inverse, and find the inverse if it exists. Check your answer by multiplying $A \cdot A^{-1} = I$

a)
$$\begin{bmatrix} 2 & 3 \\ -3 & -5 \end{bmatrix}$$
b)
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & 3 & 5 \end{bmatrix}$$

16. Show that the inverse of $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ is $\begin{bmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix}$