Folic Acid Biosynthesis Inhibitors

- SAR requirements
 - Sulfonamides
 - PABA mimic
 - Benzene ring is essential
 - Amine is essential
 - Must be un-substituted
 - Must be para to the sulfonamide
 - Sulfonamide is essential
 - Must be un-ionized to cross bacterial cell membrane
 - Must be ionized to interact with DHPS active site
 - Mono-substitution allowed (EWG & heterocycle are favorable)
 - Di-substitution abolishes activity
 - Must be para to the amine

- SAR requirements
 - Trimethoprim
 - Circled parts are characteristic of this compound

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or decrease activity?

$$H_2N$$
 \longrightarrow H_2N \longrightarrow

- ANSWER: Increase
 - Addition of heterocycle to sulfonamide is favorable and decreases pH to optimal range

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or decrease activity?

$$H_2N$$
 \longrightarrow NH_2 \longrightarrow NH_2

- ANSWER: Decrease
 - Amine essential for activity

- PRACTICE PROBLEM: Compare Compounds
 - Which of the two compounds has greatest antimicrobial activity?

- ANSWER: Compound 1
 - The negative charge on the sulfonamide can be stabilized by resonance with the ring

- PRACTICE PROBLEM: Compare Compounds
 - Which is a prodrug?

- ANSWER: Compound 1 (prontosil)
 - Metabolized by reductases to give active form of sulfonamide

- PRACTICE PROBLEM: Compare Compounds
 - Which is the longest acting sulfonamide?

$$H_2N$$
 H_3CO
 OCH_3
 H_2N
 OCH_3
 H_2N
 OCH_3
 OCH_3

- ANSWER: Compound 2 (sulfadoxine)
 - Has a half life of 150 hours

- PRACTICE PROBLEM: Choose the Correct Answer
 - Which characteristics, at physiological pH, would provide the most effective sulfonamide?
 - Low lipophilicity, unionized
 - High lipophilicity, unionized
 - Low lipophilicity, ionized
 - High lipophilicity, ionized

- ANSWER: High lipophilicity, ionized
 - Lipophilicity is needed to enter the cell and ionization is required to bind to enzyme

- PRACTICE PROBLEM: Mechanism of Action
 - Which of the following inhibits DHPS?

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2CO
 OCH_3
 O

ANSWER: Compound 1 (sulfamethoxazole)

- PRACTICE PROBLEM: Mechanism of Action
 - Which of the following inhibits DHFR?

$$H_2N$$
 H_2
 H_3CO
 OCH_3
 H_2
 OCH_3
 H_2N
 OCH_3
 OC

ANSWER: Compound 1 (trimethoprim)

- PRACTICE PROBLEM: SAR Clinical Case Study
 - KT has a history of Steven Johnson Syndrome, which antibiotic is best avoided in her?

- ANSWER: Compound 3 (sulfamethoxazole)
 - Sulfonamides can to this life-threatening rash

DNA Topoisomerase Inhibitors

SAR requirements

Quinolones

- Position 1: nitrogen can allow substitutions of alkyl
 (Me, Et, cPr) or aryl (2,4-difluorophenyl) groups
- Position 2: can be either a carbon or nitrogen
- Position 3: must be unsubstituted carboxylic acid
- Position 4: must be ketone
- Position 6: fluorine substitution increases activity and broadens spectrum
- Position 7: substitution with nitrogen containing heterocycles (piperazine ring) broadens spectrum; potential for zwitterion
- Position 8: substitution with small polar groups (OCH₃,
 F, CI) increases activity

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or decrease activity?

- ANSWER: Increase
 - Ketone at position 4 is essential to bind to target

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or decrease activity?

- ANSWER: Increase
 - F at position 6 increases activity and broadens spectrum

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or decrease activity?

- ANSWER: Increase
 - Methoxy substitution at position 8 increases activity

- PRACTICE PROBLEM: Compare Compounds
 - Which is the most active quinolone?

- ANSWER: Compound 1 (moxifloxacin)
 - Addition of methoxy at position 8 improves activity

- PRACTICE PROBLEM: Choose the Correct Answer
 - What is the importance of the circled group?
 - Improves activity
 - Increases half life
 - Broadens spectrum
 - Decreases resistance

- ANSWER: Broadens spectrum
 - Increases activity against pseudomonas

- PRACTICE PROBLEM: Choose the Correct Answer
 - What is the circled group responsible for?
 - Broadening spectrum
 - Increasing half life
 - Decreasing resistance
 - Chelation with metals

- ANSWER: Chelation with metals
 - Chelation with metals can reduce oral absorption; do not take with antacids, mineral supplements, or dairy products

- PRACTICE PROBLEM: SAR Clinical Case Study
 - O JT is a 4-year-old boy diagnosed with a gram-negative infection, which antibiotic do you NOT recommend?

- ANSWER: Compound 2 (ciprofloxacin)
 - Quinolones can lead to tendon rupture in young children and should never be used first line

- PRACTICE PROBLEM: SAR Clinical Case Study
 - AM is diagnosed with a pseudomonal infection, which antibiotic do you recommend?

- ANSWER: Compound 2 (norfloxacin)
 - Contains piperazine ring, which gives it anti-pseudomonal activity

30S Protein Synthesis Inhibitors

SAR requirements

- Aminoglycosides
 - Polycationic at physiological pH
 - Poor oral absorption
 - Ring I
 - Crucial for broad-spectrum activity.
 - First target of inactivating enzymes.
 - The 2-, 3-, 4- hydroxyl groups are not essential for activity
 - Methylation of the amine will retain activity and will lower susceptibility to transferases.
 - All substitutions must be equatorial.

Ring II

- Many modifications are possible, for example the 3- amine can be substituted or acylated
- Ring III:
 - The amine can be methylated or changed to a hydroxyl group, but its removal will abolish activity

SAR requirements

Tetracyclines

- Positions 1, 10, 11, 12 and 12a: any changes will completely abolish activity, even changes in the stereochemical configuration.
 - Resonance between position 10 and 11 needed for activity
- Position 2: any changes leads to decreased activity, even substitution to the amide
- **Position 4:** amine in the α-position is essential, but monosubstitution is also active.
- Position 5: R4 can be a hydroxyl, keto group or a hydrogen, and all are active
- Position 6: both substitutions (R2 and R3) are not necessary.
- Position 7: CI, F, Br, NO2 and a tertiary amine are all active.
- Position 8: any electron withdrawing or donating group is still active.
- Position 9: bulky substitution decreases resistance

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or decrease chemical stability?

- ANSWER: Increase
 - Replacement of OH with CH3 at position 6 makes the compound more stable

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or decrease bacterial resistance?

- ANSWER: Decrease
 - Addition of bulky group protects the compound from inactivating enzymes

- PRACTICE PROBLEM: Compare Compounds
 - Which of the following binds to both the 30S and 50S ribosomal units?

- ANSWER: Compound 2 (tobramycin)
 - Tobramycin is the only aminoglycoside that binds to both ribosomal units

- PRACTICE PROBLEM: Compare Compounds
 - Which of the following is only used topically?

- ANSWER: Compound 1 (neomycin)
 - Only used topically due to nephrotoxicity

- PRACTICE PROBLEM: Compare Compounds
 - Which of the following does NOT bind to the 30S ribosomal unit?

- ANSWER: Compound 3 (azithromycin)
 - Macrolides bind to the 50S ribosomal unit

- PRACTICE PROBLEM: Compare Compounds
 - Which of the following is NOT bactericidal?

- ANSWER: Compound 2 (tetracycline)
 - **■** Tetracyclines are bacteriostatic

- PRACTICE PROBLEM: Compare Compounds
 - Which is less susceptible to bacterial resistance?

- ANSWER: Compound 3 (tigecycline)
 - Addition of bulky group to position 9

- PRACTICE PROBLEM: Compare Compounds
 - Which antibiotic is used primarily by IV injections?

- ANSWER: Compound 3 (gentamicin)
 - Aminoglycosides are not orally absorbed

- PRACTICE PROBLEM: Choose the Correct Answer
 - What is the main advantage of the circled group?
 - Retains activity
 - Increases half life
 - Broadens spectrum
 - Decreases resistance

- ANSWER: Decreases resistance
 - Less spots for inactivating enzymes to act

- PRACTICE PROBLEM: Choose the Correct Answer
 - What is the importance of retaining the stereochemistry of the circled group?
 - Retains activity
 - Increases half life
 - Broadens spectrum
 - Decreases resistance

- ANSWER: Retains activity
 - Essential for activity

- PRACTICE PROBLEM: Choose the Correct Answer
 - Which reaction of this compound leads to a toxic product?
 - Acidic medium
 - Basic medium
 - Chelation
 - Epimerization

- ANSWER: Acidic medium
 - Nephrotoxic product

- PRACTICE PROBLEM: Choose the Correct Answer
 - Which reaction(s) inactivate this compound?
 - Acidic medium
 - Basic medium
 - Chelation
 - Epimerization

ANSWER: Epimerization & Basic medium

- PRACTICE PROBLEM: SAR Clinical Case Study
 - CS is going on vacation to sunny florida, which antibiotic(s) should she avoid?

- ANSWER: Compound 1 (doxycline) & Compound 2 (ciprofloxacin)
 - Both tetracyclines and quinolones can lead to phototoxicity

50S Protein Synthesis Inhibitors

SAR requirements

- Macrolides
 - Large lactone ring (12, 14, or 16 membered ring)
 - Contain one or two sugars usually desosamine and/or cladinose

SAR requirements

- Ketolides
 - Replacement of the L-cladinose sugar of erythromycin A with a 3-keto functional group
 - Restores activity against bacteria with inducible resistance mediated by Erm, and enhances activity against streptococci with Mef-mediated macrolide efflux
 - Addition of a carbamate side chain
 - Promotes activity against both erythromycin-sensitive and erythromycin-resistant bacteria by introducing an interaction with domain II of the 23S rRNA

- SAR requirements
 - Lincosamides
 - Eight carbon sugar
 - Amide bond

- SAR requirements
 - Streptogramins
 - Type A and Type B are used together synergistically

Type A: Quinupristin

Type B: Dalfopristin

SAR requirements

- Chloramphenicol
 - Nitro group: can be replaced with other EWG, but activity decreases
 - Aromatic ring: essential for activity
 - Chlorines: can be removed or replaced with other halogens, but activity decreases
 - R, R stereoisomer: essential for activity

- SAR requirements
 - Oxazolidinones
 - Oxazolidinone ring

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or decrease chemical stability?

- ANSWER: Increase
 - Replacement of OH with OCH3 reduces acid-catalyzed degradation

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or acid stability?

- ANSWER: Increase
 - 15 member ring (with no ketone) increases acid stability and permits accumulation of azithromycin in the cell

- PRACTICE PROBLEM: Activity change
 - Will the following change increase or decrease chemical stability?

- ANSWER: Decrease
 - CI increases lipophilicity and has better oral absorption

- PRACTICE PROBLEM: Compare Compounds
 - Which compound is less susceptible to bacteria resistance?

- ANSWER: Compound 1 (telithromycin)
 - Addition of 3-keto group and carbamate side chain

- PRACTICE PROBLEM: Compare Compounds
 - Which of the following is NOT bacteriostatic?

- ANSWER: Compound 1 (gentamicin)
 - Aminoglycosides are bactericidal

- PRACTICE PROBLEM: Choose the Correct Answer
 - Gray Baby Syndrome results from inability to produce which metabolite?
 - Dechlorination
 - N-reduction
 - 3-O-glucuronidation

ANSWER: 3-O-glucuronidation

- PRACTICE PROBLEM: SAR Clinical Case Study
 - LM is experiencing diarrhea after taking her antibiotic, which compound did she most likely take?

- ANSWER: Compound 3 (clindamycin)
 - Clindamycin has highest incidence of pseudomembranous colitis

- PRACTICE PROBLEM: SAR Clinical Case Study
 - LM is experiencing aplastic anemia, which antibiotic did she take?

- ANSWER: Compound 1 (chloramphenicol)
 - Clindamycin has highest incidence of pseudomembranous colitis