Christ University Department of Mathematics

B.Sc. I Semester- MAT 131
Practice Problems: Set- II (Leibniz' Theorem)

1. Find the nth derivative of the following:

i.	$\frac{1}{2x^2-3x-2}$	xi.	$\cos^2 x$
	2x - 3x - 2		
ii.	1	xii.	$\cos^3 x$
	$6x^2 - 5x + 1$		
iii.	x^2	xiii.	$\sin^2 x$
	$\frac{x^2}{(x-1)^2(x-2)}$		
iv.	2x-1	xiv.	sin ⁴ x
	$\overline{x^2-x-2}$		
V.	$\frac{x}{2x^2 + 3x + 1}$	XV.	$\sin^3 x \cos^2 x$
	$2x^2 + 3x + 1$		
vi.	1	xvi.	$e^x sinx$
	$\overline{(x+2)(x-1)}$		
vii.	$\sin^2 5x \cos 3x$	xvii.	$e^{2x}\cos^2x$
viii	$\cos^2 4x \sin 2x$	xviii.	2 - 1
, 111.		71,111,	$\log \sqrt{\frac{2x+1}{3x-2}}$
ix.	sinx sin2x sin3x	xix.	$log(x-3x^2)$
X.	cosx cos2x cos3x	XX.	$\log\left(x^2 - a^2\right)$
Find the n th derivative of the following using Leibniz's theorem:			

2. Find the nth derivative of the following using Leibniz's theorem:

a.
$$x^2 \log x$$

b.
$$x\sin^2 x$$

$$c. \quad x^3 e^{ax}$$

$$d. \quad x^2 e^x \cos x$$

$$e. \quad x^4 log (x+4)$$

$$f. \quad x^3 \sin 5x \cos 2x$$

3. If
$$y = \sin^{-1}x$$
, prove that $(1-x^2)y_{n+2} - (2n+1)x y_{n+1} - n^2y_n = 0$.

4. If
$$y = a \cos(\log x) + b \sin(\log x)$$
, show that $x^2 y_{n+2} + (2n+1) x y_{n+1} + (n^2+1)y_n = 0$.

5. If
$$y = e^{m \sin^{-1} x}$$
, show that $(1-x^2)y_{n+2} - (2n+1)x y_{n+1} - (m^2 + n^2)y_n = 0$.

6. If
$$x = \sin t$$
 and $y = \cos pt$, show that $(1-x^2)y_{n+2} - (2n+1)x y_{n+1} - (n^2 - p^2)y_n = 0$.

7. If
$$y = (x + \sqrt{1 + x^2})^m$$
, prove that $(1 + x^2)y_{n+2} + (2n+1)x y_{n+1} + (n^2 - m^2)y_n = 0$.

8. If
$$y = \tan^{-1} x$$
, show that $(1+x^2)y_{n+1} - 2nx y_n + n(n-1)y_{n-1} = 0$.

9. If
$$y = (\sin h^{-1}x)^2$$
, show that $(1+x^2)y_{n+2} + (2n+1)x y_{n+1} + n^2y_n = 0$.

10. If
$$y = (x^2 - 1)^n$$
, show that $(x^2 - 1)y_{n+2} + 2x y_{n+1} - n (n+1)y_n = 0$.

11. If
$$y^{-1/m} + y^{1/m} = 2x$$
, show that $(x^2 - 1)y_{n+2} + (2n+1)x y_{n+1} + (n^2 - m^2)y_n = 0$.

12. If
$$x = \tan(\log y)$$
, show that $(1 + x^2)y_{n+2} + [2(n+1)x-1]y_{n+1} + n(n+1)y_n = 0$.

13. If
$$\cos^{-1}(y/b) = \log(x/n)^n$$
, show that $x^2 y_{n+2} + (2n+1)xy_{n+1} + 2n^2y_n = 0$.

14. If
$$y = [\log(x + \sqrt{1 + x^2})]^2$$
, show that $(1 + x^2)y_{n+2} + (2n+1)x y_{n+1} + n^2 y_n = 0$.

15. If
$$y = \cos(\log(x^2 - 2x + 1))$$
, show that $(x-1)^2 y_{n+2} + (2n+1)(x-1)y_{n+1} + (n^2+4) = 0$.

16. If
$$y = x^n \log x$$
, show that $y_{n+1} = \frac{n!}{x}$.

17. If
$$y = x^{n-1} \log x$$
, show that $y_n = \frac{(n-1)!}{x}$.

18. Find $y_n(0)$ for the following functions:

(a)
$$y = \cos(\min^{-1} x)$$
 (b) $y = e^{m \sin^{-1} x}$ (c) $y = (\sin^{-1} x)^2$ (d) $y = \log(x + \sqrt{1 + x^2})$

Challenge questions:

19. If
$$x + y = 1$$
, show that $D^{n}(x^{n}y^{n}) = n! [y^{n} - (nc_{1})^{2}y^{n-1}x + (nc_{2})^{2}y^{n-2}x^{2} + \dots + (-1)^{n}x^{n}].$

20. If
$$y = a \cos \sqrt{x} + b \sin \sqrt{x}$$
, show that $4x y_{n+2} + (4n + 2) y_{n+1} + y_n = 0$.

21. If y = cos (m sin⁻¹
$$\sqrt{x}$$
), show that $\frac{y_{n+1}}{y_n} = \frac{4n^2 - m^2}{4n + 2}$ at x =0.

22. If
$$y = A [(x + \sqrt{x^2 - 1}]^m + B [(x - \sqrt{x^2 - 1}]^m]$$
, show that

$$(x^2-1)y_{n+2} + (2n+1)x y_{n+1} + (n^2-m^2)y_n = 0.$$

24. If
$$y = x^2 e^x$$
, show that $y_n = \frac{1}{2} n(n-1) y_2 - n (n-2) y_1 + \frac{1}{2} (n-1) (n-2) y$.

25. Prove that
$$D^n(x^n \log x) = n! \{ \log x + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} \}.$$