Équations différentielles

Feuille d'exercices #17

⊘ Partie A – Équations linéaires scalaires d'ordre 1

Exercice 1 — Intégrer les équations différentielles suivantes :

$$y' + y = \sin(t)$$
; $\cos(t)y' + \sin(t)y = t$; $y' - \cos(t)y = \sin(2t)$
 $2ty' + y = 1 + t$; $y' - 2y = \sin(2t)e^{t}$; $(1 - t)y' + y = t$

Exercice 2 — Déterminer l'unique solution qui s'annule en 0 de :

$$(1+t)^3y' + 2(1+t)^2y = 1$$

Exercice 3 — Résoudre sur \mathbb{R} l'équation $|x|y' - y = x^2$.

Exercice 4 — Déterminer l'ensemble des fonctions f continues sur \mathbb{R} vérifiant :

$$\forall x \in \mathbb{R}, \quad f(x) - \int_0^x t f(t) \, \mathrm{d}t = 1$$

Exercice 5 — Soit $a: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue et intégrable. Établir que les solutions de l'équation différentielle y' - a(t)y = 0 sont bornées sur \mathbb{R}_+ .

Exercice 6 —

- 1. Soit $b: \mathbb{R} \to \mathbb{C}$ continue et de limite nulle en $+\infty$. Montrer que les solutions de l'équation différentielle y'+y=b ont une limite nulle en $+\infty$.
- 2. Soit $f: \mathbb{R} \to \mathbb{C}$ de classe \mathscr{C}^1 sur \mathbb{R} . On suppose que $f(x) + f'(x) \xrightarrow[x \to +\infty]{} \ell$. Montrer que $f(x) \xrightarrow[x \to +\infty]{} \ell$.

Exercice 7 — Déterminer un développement limité à l'ordre 4 au voisinage de 0 de la fonction f vérifiant f(0) = 0 et solution de l'équation différentielle :

$$2(x-1)y' + y = \sin(2x) + x^2$$

Exercice 8 — Soient $a, b : \mathbb{R} \to \mathbb{R}$ continues et T-périodiques. Montrer que toute solution φ de y' + a(x)y = b(x) est T-périodique si et seulement si $\varphi(0) = \varphi(T)$.

Exercice 9 — Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue et bornée sur \mathbb{R}_+^* . On considère l'équation :

$$xy' - y + f(x) = 0$$

- 1. Démontrer que l'équation admet une unique solution φ telle que φ' ait une limite nulle en $+\infty$.
- 2. Montrer que si f admet une limite en $+\infty$, alors il en va de même pour φ .

⊗ Partie B – Équations linéaires scalaires d'ordre 2

Exercice 10 — Intégrer les équations différentielles suivantes :

$$y'' + y' + y = t^2 e^t + t$$
; $y'' + 4y' + 4y = \sin t$

$$y'' - 3y' + 2y = \sinh(2t)$$
; $y'' + 4y' + 4y = \frac{e^{-2t}}{1 + t^2}$

Exercice 11 — Résoudre pour $m \in \mathbb{R}$ les équations différentielles suivantes :

$$y'' + 2my' + y = e^{-t}$$
; $y'' - 2y' + y = e^{mt}$; $y'' - 2my' + (m^2 + 1)y = e^x \sin x$

Exercice 12 — Soit l'équation $(1 + x^2)y'' + xy' - y = 0$ (*E*)

- 1. Déterminer une solution polynomiale puis toutes les solutions de (*E*).
- 2. Construire la courbe intégrale passant par le point A(0,1) avec une tangente parallèle à la première bissectrice.

Exercice 13 — Résoudre le problème de Cauchy suivant à l'aide de séries entières :

$$y'' - 2xy' - y = 0$$
; $y(0) = 1$; $y'(0) = 0$

Exercice 14 — Intégrer $(1 + x^2)y'' + xy' - y = 0$ en posant x = sh(t).

Exercice 15 — Résoudre $t^3y'' + ty' - y = 0$ sur \mathbb{R}_+^* via une solution polynomiale.

Exercice 16 — On considère l'équation différentielle :

$$(2x+1)y'' + (4x-2)y' - 8y = 0 (E)$$

- 1. Déterminer les solutions polynomiales de (E) sur \mathbb{R} .
- 2. Déterminer les solutions de la forme $x \mapsto e^{\alpha x}$ de (E) sur \mathbb{R} .
- 3. Résoudre (E) sur un intervalle ne contenant pas -1/2.

Exercice 17 — Soit $\alpha \in \mathbb{R}$. On considère sur] – 1,1[l'équation différentielle :

$$(1 - x^2)y'' - \alpha x y' + \alpha y = 0$$
 (E_{α})

- 1. Déterminer les solutions de (E_2) développables en séries entières. A-t-on toutes les solutions de (E_2) ?
- 2. Soient un entier $n \ge 3$ et φ définie sur $\mathbb{R}_n[X]$ par $\varphi(P) = (1 X^2)P'' 3XP'$.
 - a) Montrer que $\varphi \in \mathbb{R}_n[X]$ et donner sa matrice dans la base canonique.
 - b) Montrer que φ est diagonalisable et en déduire toutes les solutions polynomiales de l'équation (E_3).
- 3. Résoudre l'équation (E_1) à l'aide du changement de variable $x = \sin t$.

Exercice 18 — Soit l'équation différentielle :

$$x^{2}y'' + 4xy' + (2 - x^{2})y = 1$$
 (E)

Intégrer (*E*) sur \mathbb{R}_{+}^{*} et \mathbb{R}_{-}^{*} en posant $z = x^{2}y$. Étudier le recollement en 0.

Exercice 19 —

- 1. Résoudre l'équation différentielle $y'' + y = \cos(nt)$ pour $n \in \mathbb{N}$.
- 2. Soit $\sum a_n$ une série absolument convergente. Résoudre l'équation :

$$y'' + y = \sum_{n=0}^{+\infty} a_n \cos(nt)$$

Exercice 20 — Soient $a, b : \mathbb{R} \to \mathbb{R}$ deux fonctions continues et T-périodiques. Montrer qu'une solution de l'équation y'' + a(x)y' + b(x)y = 0 est T-périodique si et seulement si y(0) = y(T) et y'(0) = y'(T).

Exercice 21 — Soit $a: \mathbb{R} \to \mathbb{R}$ une fonction continue et paire. Montrer qu'une solution de l'équation y'' + a(x)y = 0 est impaire si et seulement si elle vérifie y(0) = 0.

Exercice 22 — Soit $q: \mathbb{R}_+ \to \mathbb{R}$ supposée continue et intégrable sur \mathbb{R}_+ . On considère l'équation différentielle y'' + q(x)y = 0.

- 1. Soit f une solution bornée de cette équation sur \mathbb{R}_+ . Montrer que f' admet une limite nulle en $+\infty$.
- 2. À l'aide du wronskien, montrer que deux solutions bornées sont liées.
- 3. Toujours à l'aide du wronskien, montrer que deux solutions linéairement indépendantes ne peuvent avoir de zéro commun.
- 4. Montrer que les zéros de toute solution non nulle sont isolés.

Exercice 23 — Équation de Bessel

Soit α un réel positif. On appelle équation de Bessel l'équation différentielle :

$$t^2y'' + ty' + (t^2 - \alpha^2)y = 0$$

1. Montrer qu'elle admet sur \mathbb{R}^*_{\perp} une unique solution de la forme :

$$J_{\alpha}(t) = t^{\alpha} \sum_{n=0}^{+\infty} a_n t^n$$
 en imposant $a_0 = 1$

Une telle solution est appelée fonction de Bessel.

- 2. Exprimer pour $\alpha = 1/2$ toutes les solutions à l'aide des fonctions circulaires.
- 3. On suppose désormais que $\alpha = 0$ et on admet que J_0 possède une infinité dénombrable de racines distinctes sur \mathbb{R}_+^* . On note $(\lambda_n)_{n \in \mathbb{N}}$ la suite croissante des racines de J_0 .
 - a) Montrer que $\psi_n: x \mapsto J_0(\lambda_n x)$ vérifie l'équation $y'' + \frac{y'}{x} + \lambda_n^2 y = 0$.
 - b) On considère alors l'espace vectoriel $E = \underset{n \in \mathbb{N}}{\text{Vect}}(\psi_n)$.

Montrer que $(f,g) \mapsto \int_0^1 t f(t)g(t) dt$ défini un produit scalaire sur E.

- c) Vérifier que $\phi: f \mapsto f'' + \frac{f'}{t}$ est un endomorphisme autoadjoint de E.
- d) En déduire que pour $i \neq j$, $\int_0^1 x J_0(\lambda_i x) J_0(\lambda_j x) dx = 0$.

⊗ Partie C – Exponentielles de matrices

Exercice 24 — Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- 1. Montrer que pour tout $k \in [0, p]$, $\binom{p}{k} \frac{1}{p^k} \le \frac{1}{k!}$.
- 2. En déduire par permutation de limites que $\lim_{p \to +\infty} \left(I_n + \frac{A}{p} \right)^p = \exp(A)$.

Exercice 25 — On pose
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
.

- 1. Calculer A^3 et en déduire le polynôme minimal de A.
- 2. En déduire $\exp(A)$.

Exercice 26 — Soient
$$a \in \mathbb{R}_+^*$$
 et $A = \begin{bmatrix} 0 & a & a^2 \\ 1/a & 0 & a \\ 1/a^2 & 1/a & 0 \end{bmatrix}$.

- 1. Déterminer le polynôme minimal de *A* et diagonaliser *A*.
- 2. Calculer $\exp(A)$ à l'aide d'une division euclidienne de X^n par π_A .

Exercice 27 — Soit $\varphi : \mathbb{R} \to \mathscr{M}_n(\mathbb{R})$ de classe \mathscr{C}^1 vérifiant :

$$\forall (s,t) \in \mathbb{R}^2, \quad \varphi(s+t) = \varphi(s)\varphi(t)$$

Montrer qu'il existe $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que $A^2 = A$ et $\varphi(t) = A \exp(tB)$ pour $t \in \mathbb{R}$.

⊗ Partie D – Équations différentielles linéaires vectorielles

Exercice 28 — Résoudre les sytèmes différentiels suivants :

$$\begin{cases} x' = 3x - y + 2 \\ y' = x + y + 2 \end{cases} \begin{cases} x' = 5x - 2y + e^{t} \\ y' = -x + 6y + t \end{cases}$$

$$\begin{cases} x' = 2x - \frac{1}{2}y - \frac{1}{2}z + 1 \\ y' = x + \frac{1}{2}y - \frac{1}{2}z + 1 \\ z' = -x + \frac{1}{2}y + \frac{3}{2}z + 1 \end{cases} \begin{cases} x' = x + z \\ y' = -y - z \\ z' = 2y + z \end{cases}$$

Exercice 29 — Montrer sans les déterminer que les trajectoires du système différentiel suivant sont planes :

$$\begin{cases} x' = 4x - 3y + 2z \\ y' = 6x - 5y + 4z \\ z' = 4x - 4y + 4z \end{cases}$$

Généraliser aux systèmes linéaires de la forme X' = AX où $A \in \mathcal{M}_3(\mathbb{R})$ et $\det(A) = 0$.

Exercice 30 — Résoudre les problèmes différentiels suivants :

$$\begin{cases} x'' = x + 8y - 2 \\ y'' = 2x + y + 1 \end{cases} \begin{cases} x' = x - y - z + t \\ y' = -x + y - z + t \\ z' = -x - y + z + t \end{cases}$$

Exercice 31 — Soit $A \in \mathcal{M}_{2n}(\mathbb{R})$ vérifiant $A^2 + I_{2n} = 0$. Déterminer les solutions de l'équation X'(t) = AX(t).

Exercice 32 — On cherche à exprimer les solutions des équations différentielles linéaires homogènes à coefficients constants.

Pour tout polynôme $P = \sum_{k=1}^{n} a_k X^k \in \mathbb{C}[X]$ et $f \in \mathcal{C}^n(\mathbb{R}; \mathbb{C})$, on a :

$$P(D)(f) = \sum_{k=1}^{n} a_k f^{(k)} = a_n f^{(n)} + \dots + a_1 f' + a_0 f$$

où D désigne l'opérateur de dérivation $f \mapsto f'$.

On note enfin \mathcal{S}_P l'espace vectoriel des solutions de l'équation P(D)(y) = 0.

- 1. a) Soient P_1, \ldots, P_r des polynômes deux à deux premiers entre eux. On pose $P = P_1 \times \cdots \times P_r$. Montrer que $\mathcal{S}_P = \mathcal{S}_{P_1} \oplus \cdots \oplus \mathcal{S}_{P_r}$.
 - b) En déduire les solutions de l'équation $y^{(3)} + 2y'' + y' + 2y = 0$.
- 2. Montrer par récurrence que pour $P = (X \alpha)^n$, les solutions sont les fonctions de la forme $t \mapsto e^{\alpha t} Q(t)$ avec $Q \in \mathbb{C}_{n-1}[X]$.
- 3. En déduire la forme générale des solutions pour $P \in \mathbb{C}[X]$ quelconque.