Simulação 04 - Redes [Propagação]

Prof. Marcos G. Quiles

Aula de hoje

- Representação de grafos (estrutura de dados)
- Formação da rede
 - Redes Regulares
 - Redes Aleatórias
 - Redes Livre de Escala
- Um modelo de propagação simples
 - Tempo/Espaço/Estado: Discreto
 - Dinâmica Estocástica
- Projeto 4 Propagação em Redes

Estrutura de Dados e Tipos de Redes

Grafos / Redes

Estrutura de Dados

- Como representar um grafo no computador?
- Duas formas fundamentais (mais comuns)
 - Matriz de Adjacência
 - Lista de Adjacência
- Qual a melhor?
 - Resposta: depende do uso (algoritmo)

Matriz de Adjacência

- Representação utilizando matrizes
 - Vértices: representados pelos índices das linhas e colunas da matriz
 - Aresta: elementos da matriz

- Matriz de Adjacência (A):
 - Matriz n x n, sendo n o número de vértices
 - $a_{ij} = 1$ se existe aresta entre $i \in j$
 - $a_{ij}=0$ se não existe aresta entre os vértices i e j

Matriz de Adjacência

- Ex. grafo não ponderado e não direcionado: matriz simétrica com valores binários
- Podemos associar uma matriz de pesos W ao grafo, permitindo que valores sejam associados às arestas

Lista de Adjacência

- Representação utilizando Listas
 - Vértices são associados a um vetor de ponteiros
 - Aresta: são representadas por listas ligadas a esses ponteiros

Estrutura (modelos)

- Redes Regulares (latices ou reticulados)
- Redes Aleatórias (Modelo Erdös-Rényi)
- Redes Livre de Escala (Modelo Barabási–Albert)

Medidas:

- Número de vértices / arestas (conexões)
- Graus, grau médio, distribuição do grau
- Distâncias, clusterização, betweenness

Redes Regulares

Redes Aleatórias (Erdös-Rényi)

- Duas formas:
 - G(n,m) m arestas são inseridas aleatoriamente com probabilidade uniforme entres os possíveis pares de vértices de G
 - G(n,p) cada aresta possível em G é criada com probabilidade p
- A distribuição do grau segue uma distribuição Binomial
- Obs. Usaremos a forma I (UM)

Redes Livre de Escala (Barabási-Albert)

- Geração de redes com grau seguindo uma distribuição de lei de potência
- Mecanismo de conexão preferencial (the rich gets richer)
- Algoritmo:
 - I. Iniciar a rede com n₀ vértices inicias conectados
 - Novos vértices são inseridos a rede e conectados a n outros vértices v (com n \leq n₀) com probabilidade proporcional ao grau de dos vértices v existentes

$$p_i = \frac{k_i}{\sum_{j} k_j}$$

Redes Livre de Escala (Barabási-Albert)

Pacotes para manipulação de Grafos

Muitos Pacotes Disponíveis:

- C / C++: iGraph, SNAP, etc.
- Python: NetworkX, igraph, SNAP, etc.
- muitos outros...

Transmissão em Redes

Tipos de Propagação

Propagação de informação na rede

- Informação Propagada
 - Consenso
 - Votação
 - Propagação de rumores
 - Marketing viral
 - Doenças
 - □ Etc.

- Forma de Propagação
 - Determinística
 - Estocástica
 - Tempo Contínuo
 - Tempo Discreto
 - Estado Contínuo
 - Estado Discreto

Consenso

A população atinge um "valor/pensamento" comum:

Votação

A maioria define o resultado: A

Votação

- Influência local:
 - O cidadão pode votar de acordo com suas influências

Votação

- Influência local:
 - O cidadão pode votar de acordo com suas influências

Rumores/Propagandas/Doenças

Questões que podem ser respondidas

- I. Qual a influência do vértice inicial na propagação?
- 2. Poderíamos evitar a propagação removendo alguns nós? Quantos? Como selecioná-los?
- 3. Qual o número mínimo de vértices contaminados para que a informação se torne viral?
- 4. Qual a diferença na dinâmica espaço-temporal ao variar a topologia da rede?
- 5. Etc.

Transmissão em Redes

Exemplo de Simulação Discreta

Ilustração de Simulação

- Modelo com tempo, espaço e estado discreto
- Inicialmente, todos os vértices são susceptíveis, exceto um vértice (vértice 10) que estará infectado
- A propagação ocorre da seguinte forma:
 - Se um indivíduo está ligado a um outro indivíduo infectado, ele pode contrair a doença com probabilidade p
 - Um indivíduo infectado se cura após D dias
 - O passo de simulação (tempo) é medido em dias

Rede Simulada

Questões

- O que acontece se a probabilidade prob=1?
- □ O que acontece se a probabilidade prob=0?
- O que acontece se D for infinito (sem cura)
- Qual a probabilidade mínima para que toda a população seja infectada?
- Dentre outras.

Simulação 04 - Propagação em Rede

- Simular uma rede com pelo menos 500 vértices
 - a. Usar rede aleatória (ER) com grau médio 4
 - ы. Usar rede livre de escala (BA) com grau médio 4
- 2. Definir as regras de propagação (usar probabilidades)
- Realizar diversas simulações variando a probabilidade de contágio, quantidade inicial de indivíduos (vértices) infectados, e tempo de recuperação, etc.
- Obs. Avaliem o sistema real antes de conceber o modelo a ser simulado

Ilustração

