

COLLEGE OF ENGINEERING

ECE/CS 472/572 Computer Architecture: Memory Hierarchy Introduction

Prof. Lizhong Chen Spring 2019

Principle of Locality

- Programs access a small proportion of their address space at any time
- Temporal locality
 - Items accessed recently are likely to be accessed again soon
 - e.g., instructions in a loop, induction variables
- Spatial locality
 - Items near those accessed recently are likely to be accessed soon
 - E.g., sequential instruction access, array data

Taking Advantage of Locality

- Memory hierarchy
- Store everything on disk
- Copy recently accessed (and nearby) items from disk to smaller DRAM memory
 - Main memory
- Copy more recently accessed (and nearby) items from DRAM to smaller SRAM memory
 - Cache memory attached to CPU

Memory Hierarchy Levels

- Block (aka line): unit of copying
 - May be multiple words
- Hit: if accessed data is present in upper level
 - Hit ratio: hits/accesses
- Miss: If accessed data is absent
 - Block copied from lower level
 - Time taken: miss penalty
 - Miss ratio: misses/accesses = 1 hit ratio
 - The accessed data is then supplied from upper level

Memory Technology

- Static RAM (SRAM) cache (on-chip)
 - 0.5ns 2.5ns, \$2000 \$5000 per GB
- Dynamic RAM (DRAM) main memory
 - 50ns 70ns, \$20 \$75 per GB
- Magnetic disk
 - 5ms 20ms, \$0.20 \$2 per GB
- Ideal memory
 - Access time of SRAM
 - Capacity and cost/GB of disk

DRAM Technology

- Data stored as a charge in a capacitor
 - Single transistor used to access the charge
 - Must be refreshed periodically
 - Read contents and write back
 - Performed on a DRAM "row"

- Module
- Rank
- DRAM chip
- Bank
- Row

http://www.anandtech.com/s how/3851/everything-youalways-wanted-to-knowabout-sdram-memory-butwere-afraid-to-ask/2

Advanced DRAM Organization

Row buffer

- Allows several words to be read in parallel
- Successive words from a row have reduced latency
- Double data rate (DDR) DRAM
 - Transfer on rising and falling clock edges
- Synchronous DRAM (SDRAM)
 - Allows for consecutive accesses in bursts without needing to send each address
- DRAM banking
 - Allows simultaneous access to multiple DRAMs
 - Improves bandwidth

DRAM Generations

Year	Capacity	\$/GB
1980	64Kbit	\$1500000
1983	256Kbit	\$500000
1985	1Mbit	\$200000
1989	4Mbit	\$50000
1992	16Mbit	\$15000
1996	64Mbit	\$10000
1998	128Mbit	\$4000
2000	256Mbit	\$1000
2004	512Mbit	\$250
2007	1Gbit	\$50

Flash Storage

- Nonvolatile semiconductor storage
 - 100× 1000× faster than disk
 - Smaller, lower power, more robust
 - But more \$/GB (between disk and DRAM)

Flash Types

- NOR flash: bit cell like a NOR gate
 - Random read/write access
 - Used for instruction memory in embedded systems
- NAND flash: bit cell like a NAND gate
 - Denser (bits/area), but block-at-a-time access
 - Cheaper per GB
 - Used for USB keys, media storage, ...
- Flash bits wears out after 10K-100K of accesses
 - Not suitable for direct RAM or disk replacement(?)
 - Wear leveling: remap data to less used blocks

Disk Storage

Nonvolatile, rotating magnetic storage

Disk Sectors and Access

- Each sector records
 - Sector ID
 - Data (512 bytes, 4096 bytes proposed)
 - Error correcting code (ECC)
 - Used to hide defects and recording errors
 - Synchronization fields and gaps
- Access to a sector involves
 - Queuing delay if other accesses are pending
 - Seek: move the heads
 - Rotational latency
 - Data transfer
 - Controller overhead

Disk Access Example

- Given
 - 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer rate, 0.2ms controller overhead
- Average read time
 - 4ms seek time
 - $+ \frac{1}{2} / (15,000/60) = 2 \text{ms rotational latency}$
 - + 512 / 100MB/s = 0.005ms transfer time
 - + 0.2ms controller delay
 - = 6.2 ms
- If actual average seek time is 1ms
 - Average read time = 3.2ms