CS 7545: Machine Learning Theory

Fall 2021

Lecture 3

Name: Tyler LaBonte Professor: Santosh S. Vempala

1 Singular Value Decomposition

Theorem 1.1: Singular Value Decomposition

Suppose $\mathbf{A} \in \mathbb{R}^{m \times d}$ and

$$\mathbf{v}_i \coloneqq \underset{\substack{\mathbf{v}: \mathbf{v} \perp \mathbf{v}_j, j \leq i \\ \|\mathbf{v}\| = 1}}{\operatorname{argmax}} \|\mathbf{A}\mathbf{v}\|^2. \tag{1}$$

Then,

1. $V_k := \operatorname{span}\{v_1, v_2, \dots, v_k\}$ is a subspace of dimension k that minimizes

$$\sum_{i=1}^{m} d(\boldsymbol{A}_i, \boldsymbol{v})^2. \tag{2}$$

That is, V_k is a least squares subspace.

2. v_1, v_2, \ldots, v_d are right singular vectors of **A** with corresponding left singular vectors u_1, u_2, \ldots, u_d and singular values $\sigma_1, \sigma_2, \ldots, \sigma_d$. Thus,

$$\mathbf{A} = \sum_{i=1}^{d} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}.\tag{3}$$

Proof: The proof of 2 is an exercise (similar to v_1 from last lecture). Here we prove 1 by induction on k. We showed k = 1 last time. Suppose V_{k-1} is a (k-1)-dimensional least squares subspace. Let V'_k be a k-dimensional least squares subspace. Let w_1, w_2, \ldots, w_k be an orthonormal basis of V'_k such that $w_k \perp V_{k-1}$. Then, V'_k maximizes

$$\sum_{i=1}^{k} \|\mathbf{A}\boldsymbol{w}_i\|^2 \le \sum_{i=1}^{m} d(\boldsymbol{A}_i, V_{k-1})^2 + \|\mathbf{A}\boldsymbol{w}_k\|^2.$$
 (4)

Lecture 3 3-2

Since \mathbf{w}_k was a candidate in the optimization of V_k ,

$$\sum_{i=1}^{m} d(\mathbf{A}_{i}, V_{k-1})^{2} + \|\mathbf{A}\mathbf{w}_{k}\|^{2} \leq \sum_{i=1}^{m} d(\mathbf{A}_{i}, V_{k-1})^{2} + \|\mathbf{A}\mathbf{v}_{k}\|^{2}$$
(5)

$$= \sum_{i=1}^{m} d(\mathbf{A}_{i}, V_{k})^{2}. \tag{6}$$

So V_k is a k-dimensional least squares subspace.

2 SVD and Mixtures of Gaussians

Theorem 2.1: SVD and Mixtures of Gaussians

Suppose F is a mixture of Gaussians with weights w_i and $F_i = \mathcal{N}(\boldsymbol{\mu}_i, \sigma_i^2 \mathbf{I}_d)$. Consider the algorithm which projects the sample to its top-k SVD subspace V_k , then clusters in \mathbb{R}^k using distances (as in last lecture). Then,

- 1. V_k contains $\{\mu_1, \mu_2, ..., \mu_k\}$.
- 2. The algorithm succeeds with probability 1δ if

$$\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\| \ge c \left(\log \frac{m}{\delta} \cdot k\right)^{1/4} \cdot \max(\sigma_i, \sigma_j).$$
 (7)

Proof: 2 follows from 1 and last lecture. Here we prove 1. Suppose k=1, then

$$\mathbf{v}_1 = \underset{\|\mathbf{v}\|=1}{\operatorname{argmax}} \mathbb{E}_F[(\mathbf{x}^{\mathsf{T}} \mathbf{v})^2]$$
 (8)

$$= \mathbb{E}\Big[((\boldsymbol{x} - \boldsymbol{\mu} + \boldsymbol{\mu}) \cdot \boldsymbol{v})^2 \Big]$$
 (9)

$$= \mathbb{E}\left[((\boldsymbol{x} - \boldsymbol{\mu}) \cdot \boldsymbol{v})^2 \right] + (\boldsymbol{\mu} \cdot \boldsymbol{v})^2$$
 (10)

$$= \sigma^2 + (\boldsymbol{\mu} \cdot \boldsymbol{v})^2 \tag{11}$$

$$\implies \boldsymbol{v} = \frac{\boldsymbol{\mu}}{\|\boldsymbol{\mu}\|}.\tag{12}$$

Because the Gaussians are spherical, the best k-dimensional subspace is any subspace containing μ . So for k Gaussians, we just contain all their means; this is optimal for each Gaussian individually, so it is optimal for their mixture.

Note that this strategy works for general Gaussians if the separation grows with the largest variance of the component Gaussians.

Lecture 3 3-3

3 Linearly Independent Mixtures of Gaussians

What if we allow the Gaussians to overlap? Suppose we have a mixture F of k spherical Gaussians as above, and the only assumption we make is that $\mu_1, \mu_2, \ldots, \mu_k$ are linearly independent. We can't use clustering here, but perhaps we can estimate the parameters of the model. Here, second moments will not suffice.

We will need the property of *isotropy* to proceed. F is isotropic if $\mathbb{E}_F[x] = 0$ and $\mathbb{E}_F[xx^{\dagger}] = I$.

Fact 3.1: Isotropy

Any distribution with bounded second moments can be made isotropic by an affine transformation.

Proof: Suppose $\mathbb{E}[x] = \mu$ and $\mathbb{E}[(x - \mu)(x - \mu)^{\intercal}] = \mathbf{A} = \mathbf{B}\mathbf{B}^{\intercal}$. Let

$$y = \mathbf{B}^{-1}(x - \mu) = \mathbf{A}^{-1/2}(x - \mu).$$
 (13)

Then, $\mathbb{E}[y] = 0$ and

$$\mathbb{E}[\boldsymbol{y}\boldsymbol{y}^{\mathsf{T}}] = \mathbf{B}^{-1}\mathbb{E}[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}}](\mathbf{B}^{-1})^{\mathsf{T}}$$
(14)

$$= \mathbf{B}^{-1} \mathbf{B} \mathbf{B}^{\mathsf{T}} (\mathbf{B}^{-1})^{\mathsf{T}} \tag{15}$$

$$= \mathbf{I}. \tag{16}$$