ND	SYSTEM FOR	REAL	-TIME FLOC	DR SURFACE	CLASSIFICA	ATION USING I
UND	SISIEMITOR	NEAL	- I IMIL I LUU	JN SUNFACE	CLASSITICE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

METHOD AND SYSTEM FOR REAL-TIME FL

Technical Description and Implementation Overview

NaviFloor Robotics, Inc.

Document Reference: IP-2023-0142

Last Updated: December 15, 2023

1. TECHNICAL OVERVIEW

1. This document describes the proprietary method and system developed by

- 1 -

- 2. The system comprises:
- a) Multiple LiDAR sensors mounted at optimized angles
- b) Real-time data processing algorithms
- c) Surface classification neural network
- d) Terrain mapping database
- e) Dynamic navigation adjustment system

2. SYSTEM ARCHITECTURE

-

1. Hardware Components:

_

Primary LiDAR array (Model: NF-L2000)

2 -
Secondary validation sensors
-
Onboard processing unit (Custom NaviFloor Processing Module)
-
Environmental sensors for calibration
-
Redundant data storage systems
2. Software Architecture:
-
Proprietary surface analysis algorithm (v4.2.1)
-
Machine learning classification engine

- - 3 -

Real-time decision matrix

_

Navigation optimization module

-

Error detection and correction systems

3. IMPLEMENTATION METHOD

-

1. Data Acquisition:

The system employs a multi-beam LiDAR array operating at 120Hz scanning frequency, collecting point cloud data at a minimum density of 2,000 points square meter.

- 4 2. Processing Pipeline:
a) Initial point cloud filtering
b) Surface normal calculation
c) Feature extraction
d) Classification processing
e) Navigation parameter adjustment
3. Classification Categories:
Smooth concrete
Textured concrete

Metal surfaces

Grating

Expansion joints

Transitional surfaces

Inclined surfaces

Wet surfaces

4. PROPRIETARY ELEMENTS

-

1. The following components are deemed proprietary and confidential:
a) Surface classification algorithms
b) Neural network architecture
c) Training datasets
d) Calibration methodologies
e) Error correction protocols
2. Protected Implementation Features:
2. Protected Implementation Features.
-
Sensor array configuration
-
Processing pipeline architecture
-
Classification thresholds

- - 7 -

Navigation adjustment parameters

5. PERFORMANCE SPECIFICATIONS

- 1. System Requirements:
- Processing latency: <50ms
- Classification accuracy: >98%
- Surface type detection: 8 categories
-

Minimum operating speed: 2.5 m/s

- -8-

Maximum operating speed: 4.0 m/s

-

2. Environmental Parameters:

-

Operating temperature: 0° C to 45° C

-

Humidity tolerance: 10-90% non-condensing

_

Lighting conditions: 5-1000 lux

6. INTEGRATION REQUIREMENTS

_

1. Hardware Integration:
-
Compatible with NaviFloor AMR platforms
-
Standard power supply: 24V DC
-
Data interface: Gigabit Ethernet
-
Sensor mounting specifications
-
2. Software Integration:
-
API version 2.3 or higher
-

ROS2 compatibility
-
Custom protocol support
-
Real-time data streaming
7. INTELLECTUAL PROPERTY PROTECTION
-
1. This system and all associated components are protected under:
-
U.S. Patent Application No. 17/234,567
-
U.S. Patent Application No. 17/234,568
-

Related international patent applications
-
NaviFloor trade secrets
- 2. Confidentiality Requirements
2. Confidentiality Requirements:
All information contained herein is strictly confidential and proprietary to
NaviFloor Robotics, Inc.
8. LEGAL NOTICES
This document contains confidential and proprietary information of NaviF
1. This document contains confidential and proprietary information of Wavii
-
2. Copyright © 2023 NaviFloor Robotics, Inc. All rights reserved.

9. DOCUMENT CONTROL

Version: 2.3

Document ID: TD-2023-142

Classification: Confidential

Distribution: Authorized Personnel Only

10. APPROVAL

APPROVED BY:

_

Dr. Elena Kovacs

Chief Research Officer

NaviFlopg Robotics, Inc.

Date: December 15, 2023

_

Marcus Depth

Chief Technology Officer

NaviFloor Robotics, Inc.

Date: December 15, 2023

