

O1 Context & Data Preparation

02 Multiple Regression

03 Classification Models

04 DataRobot & Conclusion

Context

- Trigger health issues
- Business problems

- Study the relationship
- The outcome optimized models help oversee and cut down

2 Data Wrangling

Credible Data Source

- <u>https://www.kaggle.com/uciml/pm25-data-for-five-chinese-cities</u>
- "Assessing Beijing's PM2.5 pollution: severity, weather impact, APEC and winter heating", Liang, X., Zou, T., Guo, B., Li, S., Zhang, H., Zhang, S., Huang, H. and Chen, S. X. (2015)

Trifacta Data Wrangling

49,579 valid observations and 13 variables; Time period 2010-2015

- Drop missing values (5.7%)
- Create 4 dummy variables for wind direction (NE, NW, SE, SW)

Variables	Description
Year	
PM_US.Post	PM2.5 (ug/m^3)
HUMI	Humidity (%)
DEWP	Dew Point (Celsius Degree)
TEMP	Temperature (Celsius Degree)
PRES	Pressure (Pa)
seasonadj	Season
lws	Wind Speed (m/s)
precipitation	Precipitation (mm)
SW	Wind from southwest direction
SE	Wind from southeast direction
NW	Wind from northwest direction
NE	Wind from northeast direction

Data Visualization

Multiple Regression-Modeling Process

Add Logarithmic form

Log(PM 2.5)

VIF test

- Temperature > 5
- Dew Point > 5

Variables Selection

- forward selection. backward selection and exhaustive search
- 10 variables (delete temperature & dew point)

Try polynomial term in our model

- Air pressure^2
- Wind speed*wind direction

Outliers

Delete 21 Obs (0.053%)

Multiple Regression-Variable Selection

```
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                                             <2e-16 ***
(Intercept) 1.984e+01 6.140e-01 32.311
HUMI
               2.022e-02 1.739e-04 116.279
                                             <2e-16 ***
seasonadjSummer -7.310e-01 1.285e-02 -56.869
                                             <2e-16 ***
seasonadjFall -2.820e-01 1.209e-02 -23.318
                                             <2e-16 ***
seasonadjWinter 3.547e-01 1.345e-02 26.375
                                             <2e-16 ***
               -2.964e-03 8.908e-05 -33.272
                                             <2e-16 ***
Iws
cbwdNW
               -1.262e-01 1.384e-02 -9.119
                                             <2e-16 ***
            6.476e-01 1.346e-02 48.127
                                             <2e-16 ***
cbwdSE
                                             <2e-16 ***
cbwdSW
         4.733e-01 1.428e-02 33.155
precipitation -5.723e-02 4.481e-03 -12.773
                                             <2e-16 ***
                                             <2e-16 ***
PRES
               -1.663e-02 6.038e-04 -27.536
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Residual standard error: 0.7797 on 39652 degrees of freedom Multiple R-squared: 0.4481, Adjusted R-squared: 0.448 F-statistic: 3219 on 10 and 39652 DF, p-value: < 2.2e-16

Forward selection, backward selection:

10 variables: humidity, wind speed, precipitation, air pressure, three season dummies, three wind direction dummies.

Exhaustive search:

set maximum variables number: 10, (still add 12 variables into the model.)
Delete temperature and dew point

Multiple Regression-Polynomial Terms

Wind speed* SW, Wind speed* SE, Wind speed* NW

Hourly Wind Speed*combined wind direction (categorical variable).

Wind from some specific directions may have more influence on PM2.5 in Beijing

Pressure ^2

Plots between numeric variables and log(PM 2.5) log(PM 2.5) - Air Pressure - quadratic function log(PM 2.5) - Air Pressure^2 – linear relationship

Beijing: The Relationship between Pressure and log(PM2.5_US.Post)

Multiple Regression-Outliers

5

Coefficients:

Multiple Regression-Interpretation

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                           1.744e-04 113.439
HUMI
seasonadjSummer -6.368e-01
                           1.341e-02 -47.481
seasonadiFall
                           1.212e-02 -24.529
seasonadjWinter 3.930e-01
                           1.345e-02
                           3.640e-03 -16.662 < 2e-16
               -6.065e-02
Iws
cbwdNW
               -2.532e-01
                           1.519e-02 -16.667 < 2e-16
cbwdSE
                           1.555e-02
                                      31.901 < 2e-16
                                      22,101
cbwdSW
               -1.176e-01
                           7.111e-03 -16.535
precipitation
I(PRES^2)
               -7.498e-04
                           3.838e-05 -19.537
               1.510e+00
                           7.812e-02
                                      19.334
PRES
I(Iws * SW) 1.313e-02
                           1.944e-03
                                       6.751 1.49e-11
I(Iws * SE)
              1.581e-02
                           8.529e-04
                                      18.536
I(Iws * NW)
                1.445e-02
                          7.929e-04
                                     18.221
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 0.7697 on 39627 degrees of freedom
                               Adjusted R-squared: 0.4614
Multiple R-squared: 0.4616,
F-statistic: 2427 on 14 and 39627 DF, p-value: < 2.2e-16
                   ME
                           RMSE
Test set -6.565243e-17 0.7695204 0.6098349
```

Test set -0.0006729632 0.7770129 0.616476 -Inf

Adjusted R^2 :0.4614 RMSE(Training): 0.7695 RMSE(Validation): 0.7770

Humidity:

coefficient = 0.01978 > 0.

When humidity increases by 1%, PM2.5 increases by 1.978%.

Wind direction:

(compared with wind from northeast)

PRES and PRES^2:

Coefficient(PRES) is positive, Coefficient(PRES^2) is negative. (under extreme situations, PM2.5 tends to have a negative relationship with pressure.)

Target Variable Justification

Target variable: Air Condition

If PM2.5 is less than or equal to $50 \mu g/m^3$, we consider it to be a 'Good' air condition, which is only unhealthy for sensitive groups.

If PM2.5 is more than 50µg/m³, we consider it to be a 'Bad' air condition, which is unhealthy for everyone.

AQI Category	Index Values	Revised Breakpoints (μg/m³, 24-hour average)
Good	0 - 50	0.0 - 12.0
Moderate	51 - 100	12.1 – 35.4
Unhealthy for Sensitive Groups	101 – 150	35.5 – 55.4
Unhealthy	151 – 200	55.5 – 150.4
Very Unhealthy	201 – 300	150.5 – 250.4
Hazardous	301 – 400	250.5 - 350.4
Hazardous	401 – 500	350.5 – 500

Image source: https://medium.com/mongolian-data-stories/air-pollution-part-2-f9f4da33a1bd

Logistic Regression-Modeling Process

Logistic Regression-Final Model

Test Set		Reference	
		Bad	Good
Prediction	Bad	8375	2235
	Good	737	3527

Accuracy:0.8002 (0.7969)Sensitivity:0.9191 (0.9156)F1:0.8493 (0.8450)AUC:0.8499

Logistic Regression-Coefficient Interpretation

Odds Ratios of Logistic regression

Covariates	Logit coef.	Odds Ratio
Humidity	-0.050	0.951
Air pressure	-4.227	0.015
Air pressure^2	0.002	1.002
North west	0.280	1.323
South east	-1.830	0.160
South west	-1.162	0.313
Wind speed	0.010	1.010
Precipitation	0.953	2.594
Precipitation^2	-0.077	0.926
Summer	1.641	5.160
Fall	1.014	2.756
Winter	-0.775	0.461

Positive Correlation: Humidity, South wind, Winter.

Negative Correlation: North wind, Wind speed, Summer, Fall.

Air Pressure: Always negative.

Precipitation: First positive and then

becomes negative.

5

Decision Tree-Pruning Process

Initial Model

- Training (70%)Validation (30%)
- 'Bad' weather as positive class

Decision Tree-Final Model

Test Set		Reference	
		Bad	Good
Prediction	Bad	8246	1890
	Good	866	3872

Accuracy: 0.8147 (0.8214)
Sensitivity: 0.9050 (0.9093)
F1: 0.8570 (0.8602)
AUC: 0.8290

DataRobot-Comparison of Regression Models

The AVG Blender has a RMSE of **0.4167**Our best handmake model has a RMSE of **0.78**

Something Important!

DataRobot-Feature Importance

Deleting Outliers

Creating Polynomial Variables

VIF Test

The AVG Blender has 15 variables. Our best model has 14 variables.

3

DataRobot-Comparison of Classification Models

4

DataRobot-Overfitting issue

The AVG Blender

The Regression Model

The Classification Model

Help Prevent Overfitting Issue

5 DataRobot-Time Consumed

Time Consuming

Conclusion & Reflection

THANKS

For Watching