Lecture 3: Cholesky and QR

Michael S. Floater

September 19, 2018

These notes are based on Sections 2.4–2.5 of the book.

1 Cholesky factorization

Let $A = [A_{i,j}]$ be an $n \times n$ symmetric matrix, i.e., such that $A_{i,j} = A_{j,i}$ for i, j = 1, ..., n. A Cholesky factorization of A is a factorization $A = LDL^T$, where L is lower triangular with ones on its diagonal and D is a diagonal matrix. Expressing L using its columns this means that

$$A = \begin{bmatrix} \mathbf{l}_1 & \cdots & \mathbf{l}_n \end{bmatrix} \begin{bmatrix} D_{1,1} & 0 & \cdots & 0 \\ 0 & D_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_{n,n} \end{bmatrix} \begin{bmatrix} \mathbf{l}_1^T \\ \vdots \\ \mathbf{l}_n^T \end{bmatrix} = \sum_{k=1}^n D_{k,k} \mathbf{l}_k \mathbf{l}_k^T.$$

This requires roughly half the storage required by an LU factorization. The algorithm is similar to that of LU:

- Initialize $A_0 = A$.
- For k = 1, ..., n, let \mathbf{l}_k be the k-th column of A_{k-1} scaled so that $L_{k,k} = 1$. Let $D_{k,k} = (A_{k-1})_{k,k}$ and calculate $A_k = A_{k-1} D_{k,k} \mathbf{l}_k \mathbf{l}_k^T$.

As we saw with LU, this algorithm is not always valid since it assumes that $(A_{k-1})_{k,k} \neq 0$ for each k.

As an example, we find the Cholesky factorization of

$$A = \begin{bmatrix} 3 & 4 \\ 4 & 6 \end{bmatrix}.$$

We initialize $A_0 = A$. In the first step we use the first column of A_0 :

$$\mathbf{l}_1 = \frac{1}{3} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 4/3 \end{bmatrix},$$

and the first diagonal element of A_0 :

$$D_{1,1} = 3.$$

Then we find

$$\mathbf{l}_1 \mathbf{l}_1^T = \begin{bmatrix} 1 & 4/3 \\ 4/3 & 16/9 \end{bmatrix},$$

and so

$$D_{1,1}\mathbf{l}_1\mathbf{l}_1^T = \begin{bmatrix} 3 & 4 \\ 4 & 16/3 \end{bmatrix},$$

and we let

$$A_1 = A_0 - D_{1,1} \mathbf{l}_1 \mathbf{l}_1^T = \begin{bmatrix} 0 & 0 \\ 0 & 2/3 \end{bmatrix}.$$

In the second step we use the second column of A_1 :

$$\mathbf{l}_2 = \frac{1}{2/3} \begin{bmatrix} 0\\2/3 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix},$$

and the second diagonal element of A_1 :

$$D_{2,2} = 2/3.$$

This completes the factorization:

$$\begin{bmatrix} 3 & 4 \\ 4 & 6 \end{bmatrix} = \begin{bmatrix} \mathbf{l}_1 & \mathbf{l}_2 \end{bmatrix} \begin{bmatrix} D_{1,1} & 0 \\ 0 & D_{2,2} \end{bmatrix} \begin{bmatrix} \mathbf{l}_1^T \\ \mathbf{l}_2^T \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 4/3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2/3 \end{bmatrix} \begin{bmatrix} 1 & 4/3 \\ 0 & 1 \end{bmatrix}.$$

Two more examples are

$$\begin{bmatrix} -3 & 4 \\ 4 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -4/3 & 1 \end{bmatrix} \begin{bmatrix} -3 & 0 \\ 0 & 34/3 \end{bmatrix} \begin{bmatrix} 1 & -4/3 \\ 0 & 1 \end{bmatrix},$$

and

$$\begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2/3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -4/3 \end{bmatrix} \begin{bmatrix} 1 & 2/3 \\ 0 & 1 \end{bmatrix}.$$

Recall that A is positive definite if $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.

Theorem 1 Let A be a real $n \times n$ symmetric matrix. It is positive definite if and only if an LDL^T factorization exists where the diagonal elements of D are all positive.

Proof. Suppose first that $A = LDL^T$ with $D_{i,i} > 0$ for i = 1, ..., n and let $\mathbf{x} \neq 0$. Since L has ones on the diagonal, it is nonsingular and so $\mathbf{y} = L^T \mathbf{x}$ is nonzero. Hence

$$\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y} = \sum_{i=1}^n D_{i,i} y_i^2 > 0,$$

and A is positive definite.

Conversely, suppose A is positive definite. Let $\mathbf{e}_k \in \mathbb{R}^n$ denote the k-th unit vector. Firstly, $A_{1,1} = \mathbf{e}_1^T A \mathbf{e}_1 > 0$ and so \mathbf{l}_1 and $D_{1,1}$ are well-defined with $D_{1,1} > 0$. To complete the proof we will show that $(A_{k-1})_{k,k} > 0$ for all $k = 1, \ldots, n$ and hence that \mathbf{l}_k and $D_{k,k}$ are well-defined with $D_{k,k} > 0$. We proceed by induction on k, and assume that

$$A_{k-1} = A - \sum_{i=1}^{k-1} D_{i,i} \mathbf{l}_i \mathbf{l}_i^T$$

has been computed successfully, with $D_{1,1}, \ldots, D_{k-1,k-1} > 0$. Let $\mathbf{x} \in \mathbb{R}^n$ be such that $x_{k+1} = x_{k+2} = \cdots = x_n = 0$, $x_k = 1$, and $x_j = -\sum_{i=j+1}^k L_{i,j} x_i$ for $j = k-1, k-2, \ldots, 1$. With this choice of \mathbf{x} ,

$$\mathbf{1}_{j}^{T}\mathbf{x} = \sum_{i=1}^{n} L_{i,j}x_{i} = \sum_{i=j}^{k} L_{i,j}x_{i} = x_{j} + \sum_{i=j+1}^{k} L_{i,j}x_{i} = 0, \qquad j = 1, \dots, k-1.$$

Since the first k-1 rows and columns of A_{k-1} and the last n-k components of \mathbf{x} vanish and $x_k = 1$, we have

$$(A_{k-1})_{k,k} = \mathbf{x}^T A_{k-1} \mathbf{x} = \mathbf{x}^T \left(A - \sum_{i=1}^{k-1} D_{i,i} \mathbf{l}_i \mathbf{l}_i^T \right) \mathbf{x}$$
$$= \mathbf{x}^T A \mathbf{x} - \sum_{i=1}^{k-1} D_{j,j} (\mathbf{l}_j^T \mathbf{x})^2 = \mathbf{x}^T A \mathbf{x} > 0.$$

The conclusion from the theorem is that we can check whether a symmetric matrix is positive definite by attempting to calculate its LDL^T factorization. Moreover, if A is indeed positive definite, we can can define $D^{1/2}$ as the diagonal matrix where $(D^{1/2})_{k,k} = \sqrt{D_{k,k}}$. Then $D^{1/2}D^{1/2} = D$ and so we obtain the alternative Cholesky factorization

$$A = RR^T$$
.

where

$$R = LD^{1/2}.$$

2 QR factorization

Now we consider a different way to factorize a matrix which applies both to square matrices and to rectangle matrices where the number of rows is greater than the number of columns.

The scalar product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x}.$$

The scalar product is a linear function of both \mathbf{x} and \mathbf{y} : for any \mathbf{x} , \mathbf{y} , \mathbf{z} in \mathbb{R}^n and $\alpha, \beta \in \mathbb{R}$,

$$\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle.$$

The norm or Euclidean length of $\mathbf{x} \in \mathbb{R}^n$ is

$$\|\mathbf{x}\| = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \langle \mathbf{x}, \mathbf{x} \rangle^{1/2} \ge 0.$$

The norm of \mathbf{x} is zero if and only if \mathbf{x} is the zero vector.

Two vectors **x**, **y** are orthogonal to each other if

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0.$$

A set of vectors $\mathbf{q}_1, \dots, \mathbf{q}_m \in \mathbb{R}^n$ is called *orthonormal* if

$$\langle \mathbf{q}_k, \mathbf{q}_l \rangle = \begin{cases} 1, & k = l, \\ 0, & k \neq l, \end{cases} \quad k, l = 1, \dots, m.$$

Let $Q = [\mathbf{q}_1 \cdots \mathbf{q}_n]$ be an $n \times n$ real matrix. It is called *orthogonal* if its columns are orthonormal. It follows from $(Q^T Q)_{k,l} = \langle \mathbf{q}_k, \mathbf{q}_l \rangle$ that $Q^T Q = I$ where I is the identity matrix. Thus Q is nonsingular and the inverse exists, $Q^{-1} = Q^T$. Furthermore,

$$QQ^T = Q^T Q = I.$$

Therefore the rows of an orthogonal matrix are also orthonormal and Q^T is also an orthogonal matrix. Further,

$$1 = \det I = \det(QQ^T) = \det Q\det(Q^T) = (\det Q)^2$$

and we deduce

$$\det Q = \pm 1.$$

Lemma 1 If P,Q are orthogonal, then so is PQ.

Proof. Since $P^TP = Q^TQ = I$, we have

$$(PQ)^T(PQ) = (Q^TP^T)(PQ) = Q^T(P^TP)Q = Q^TQ = I.$$

Definition 1 (QR factorization) Let A be a real $n \times m$ matrix with m linearly independent columns, $n \geq m$. The QR factorization of A has the form A = QR, where Q is an $n \times n$ orthogonal matrix and R is an upper triangular $n \times m$ matrix (i.e., $R_{i,j} = 0$ for i > j).

Denoting the columns of A by $\mathbf{a}_1, \dots, \mathbf{a}_m$ and the columns of Q by $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^n$, we can write the factorization as

$$\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_m \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} R_{1,1} & R_{1,2} & \cdots & R_{1,m} \\ 0 & R_{2,2} & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & R_{m,m} \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix}.$$

5

Then

$$\mathbf{a}_k = \sum_{i=1}^k R_{i,k} \mathbf{q}_i, \qquad k = 1, \dots, m, \tag{1}$$

so the k-th column of A is a linear combination of the first k columns of Q. The QR factorization can be used to solve $A\mathbf{x} = \mathbf{b}$ when A is $n \times n$. We first solve $Q\mathbf{y} = \mathbf{b}$ by letting $\mathbf{y} = Q^T\mathbf{b}$. We then find \mathbf{x} that solves $R\mathbf{x} = \mathbf{y}$ by back substitution.

3 Exercises

Exercise 2.6 Calculate the Cholesky factorization of the matrix

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 & 0 \\ 0 & 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 & 1 & \lambda \end{bmatrix}.$$

Deduce from the factorization the value of λ which makes the matrix singular.

Exercise 2.7 Let a_1 , a_2 , a_3 be the columns of the matrix

$$\begin{bmatrix} 3 & 6 & -1 \\ -6 & -6 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

Using the Gram-Schmidt procedure, generate orthonormal vectors \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 such that $\mathbf{a}_k = \sum_{i=1}^k R_{i,k}\mathbf{q}_i$, k = 1, 2, 3. Thus express A as the product A = QR where Q is orthogonal and R is upper triangular.