

Informatique

Classe: 4ème Scientifique

(Math + Sciences + Tech)

Série: Devoir synthèse 1 (90 minutes)

*** Enoncé ***

Prof : Mr Dhifallah Fathi

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

ESSAYEZ DE FAIRE L'EXERCICE AVANT DE REGARDER LA CORRECTION.

Exercice 1

(5) 15 min

2,5 Pts

Pour chaque instruction algorithmique, donner le résultat à afficher ainsi que le type de résultat sachant que :

ch← " polydivisible "

Séquence	Résultat affiché	Type du résultat
Dh←Majus(ch) ecrire(Dh)		
Eh←souschaine(ch,2,8) ecrire(Eh)		
Fh=pos("polyx", ch) ecrire(Fh)		
Gh=(long(ch) mod3)=0 ecrire(Gh)		
Ih= efface(ch,0,6) ecrire(Ih)		

Exercice 2

(S) 20 min

4 Pts

Soit la procédure **inconnue** suivante : (sachant que **tab** défini un type de tableau de **13** caractères et que **n**, la taille du tableau **T**, est <u>strictement inférieure</u> à **13**) :

Procédure inconnue (@ T : tab, n : entier, p :, c :)

Début $n \leftarrow n+1$ Pour i de n-1 à p+1 (pas=-1) Faire $T[\ i] \leftarrow T[\ i-1]$ Fin Pour $T[p] \leftarrow c$ Fin

- a) Compléter les pointillées par les types manquants.
- **b)** Soit le tableau T suivant (avec n = 5):

"B"	"a"	"2"	"0"	"2"
0	1	2	3	4

Remplir T après l'appel suivant : inconnue (T, n, 2, "c") :

- c) Quel est le rôle de cette procédure ?
- ,.....
- **d)** Dans le programme principal qui fait appel à la procédure **inconnue**, on trouve les variables globales suivantes :
 - T de type Tab
 - **n** et **k** deux variables de type **entier**
 - s une variable de type caractère

Appel de la procédure inconnue au niveau du programme principal	Valide
inconnue (T, n, k, s)	
inconnue (T,10, 5, "z")	
inconnue (T, n, 5, "z")	
inconnue (T, 10, k, s)	

e)	Est ce qu'on peut remplacer la procédure inconnue par une fonction ? Justifier.
• •	
• •	

Exercice 3

(5) 20 min

3.5 Pts

Un nombre **polydivisible** est un entier naturel s'écrivant avec les chiffres **abcdef** qui possède les propriétés suivantes :

- 1. Le nombre formé par ses deux premiers chiffres ab est un multiple de 2.
- 2. Le nombre formé par ses trois premiers chiffres abc est un multiple de 3.
- 3. Le nombre formé par ses quatre premiers chiffres abcd est un multiple de 4.
- 4. etc.

Par exemple : 345654 est un nombre polydivisible à six chiffres
22845696 est un nombre polydivisible à huit chiffres
123456 ne l'est pas, parce que 1234 n'est pas un multiple de 4.

Exemple:

En effet, 345654 et 22845696 sont deux nombres polydivisibles car :

- 34 est divisible par 2
- 345 est divisible par 3
- 3456 est divisible par 4
- 34565 est divisible par 5
- 345654 est divisible par 6

- 22 est divisible par 2
- 228 est divisible par 3
- 2284 est divisible par 4
- 22845 est divisible par 5
- 228456 est divisible par 6
- 2284569 est divisible par 7
- 22845696 est divisible par 8

Travail demandé:

Ecrire_	l'algorithme	et <u>le</u>	<u>tableau</u>	de	déclaration	des	<u>objets</u>	d'une	fonction	qui	permet	de
vérifie	er si unnombre	e N est	un nom	bre :	Polydivisib	le en	n utilisa	nt la m	éthode d	écrite	ci-dess	sus.

onction polydivisible (
)ébut
Fin T.D.O.L

ure	Object

Exercice 4

(\$ 35 min

10 Pts

Écrire un algorithme d'un programme intitulé **Minimum** qui permet d'effectuer sur un tableau T de N éléments de type entier (5 < N < 20) les opérations suivantes :

- > Saisir deux entiers positifs Ind_i et Ind_j avec $(0 < Ind_i < Ind_j \le N)$
- ➤ Déterminer et afficher la valeur minimale (**Min**) de la partie du tableau **T** comprise entre les indices **Ind_i** et **Ind_j**.

Page 6 sur 9

➤ Déterminer et afficher tous les multiples de la valeur **Min** sauf lui-même dans le tableau T.

Exemple:

T	23	11	72	80	15	24	2	48	16
	1	2	3	4	5	6	7	8	9
		•					A		
		Ind i					Ind i		

Pour $Ind_i = 2$, $Ind_j = 7$

Le programme affichera:

La valeur Min est : 2

Les multiples de Min sont : **72 80 24** 48 16

Travail demandé:

Ecrire l'algorithme du programme principal « **Minimum** » en le décomposant en modules. Développer l'algorithme de chaque module envisagé.

Solution:

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

∰ www.takiacademy.tom

73.832.000