Muckpile Shape Prediction with a Physics-Informed AI Framework for Blast Modeling

College of Science
Chester F. Carlson Center for Imaging Science

Fei Zhang, Michael Gartley, Emmett Ientilucci

I. Introduction

Blast control is vital to mining efficiency and safety. The muckpile—the rock pile left after a blast—shapes downstream loading and hauling performance. By fusing physics-based simulation with modern AI algorithms, our team aims to see seconds into the future: predicting the post-blast muckpile directly from the pre-blast terrain and explosive setup.

II. What Happens When a Blast Unfolds

Blasting is an inherently complex process involving explosive detonation, rock fracturing, and gas-rock interactions.

Example of a field blast setup with multiple charged boreholes.

distribution, fragment geometry, rigid body properties, gravity...

End-to-End Machine Learning-

MLP

LSTM

Transformer

PINN

based Simulation (Student) Scale Numerical models & Finite Element Method (FEM) Train Feature-grouped MLP Computational Fluid Dynamics (CFD) Discrete Element Method (DEM) Simulation Engines

Physics-based Simulation (Teacher)

Blender (Bullet), Musen, ...

Outputs: Trajectories of the fragments; Muckpile shape at t = N second.

V. Prototype Experiments

Experiment #1: Single-point blast test. A cube model (100 shards) subjected to a single impulsive force field, simulating a localized explosion.

Experiment #2: Sequential-blast test. A bench-shaped model (2000 shards) subjected to two sequential impulsive force fields, simulating multi-point detonation.