BACHELOR OF COMPUTER SCIENCE SCHOOL OF COMPUTER SCIENCE BINA NUSANTARA UNIVERSITY JAKARTA

ASSESSMENT FORM

Course: SCIE6063001– Computational Physics

Method of Assessment: Case Study

Semester/Academic Year: 3/2023 - 2024

Name of Lecturer : Agung Trisetyarso, S.Si., M.Si., Ph.D.

Date : January 6, 2024

Class : LB01

Topic : Voltage and Current

Resistance and Capacitance

Circuits Design & Analysis

Induction and inductance

Electromagnetic Oscillation and Alternating Current

Group Members :	1 Jonathan Alvindo Fernandi 2
-----------------	-------------------------------

Student Outcomes:

(SO 1) Mampu menganalisis masalah komputasi yang kompleks dan mengaplikasikan prinsip komputasi dan keilmuan lain yang sesuai untuk mengidentifikasi solusi.

Able to analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions

Learning Objectives:

(LObj 1.2) Mampu menerapkan prinsip komputasi dan disiplin ilmu terkait lainnya untuk mengidentifikasi solusi.

Able to apply principles of computing and other relevant disciplines to identify solutions

No	Assessment criteria	Weight	Excellent (85 - 100)	Good (75-84)	Average (65-74)	Poor (0 - 64)	Score	(Score x Weight)
1	Ability to use potential method, serial, and parallel connection concept to provide the solution.	50%	Able to solve in both numerical and computational approaches well without errors.	Able to solve in both numerical and computational approaches well with some errors.	Able to solve in either numerical or computational approaches well with some errors	Able to solve in either numerical or computational approaches with major errors, or not able to solve at all.		
2	Ability to solve problems in topics of Voltage and Current, Resistance and Capacitance, Electromagnetic Oscillation and Alternating Current	50%	Able to solve in both numerical and computational approaches well without errors.	Able to solve in both numerical and computational approaches well with some errors.	Able to solve in either numerical or computational approaches well with some errors	Able to solve in either numerical or computational approaches with major errors		
	Total Score: ∑(Score	x Weight)					

Remarks:		

ASSESSMENT METHOD

Instructions

Individual Assignment

Answer these problems in numerical approach and computational approach using Python Power Electronics. Beside your numerical answer, attached your circuit topology, parameters, and simulation output graph. Submit your answer in .PDF format

Problem 1

From the following circuit, proof your manual calculation using PPE simulation to calculate parameters below:

- 1. Total current flow in the circuit
- 2. Potential difference at each end of the resistance
- 3. The amount of current that passes through resistance 2 and resistance 3

Answer:

- a. Numerical Approach
 - 1. Total current flow in the circuit

$$R_1 = 2 \Omega$$

$$R_2 = 2 \Omega$$

$$R_3 = 2 \Omega$$

$$V = 3 V$$

- 1) Resistor total
 - i. Resistor paralel

$$\frac{1}{Rp} = \frac{1}{R2} + \frac{1}{R3}$$
$$\frac{1}{Rp} = \frac{1}{3} + \frac{1}{6}$$

$$\frac{1}{Rp} = \frac{1}{2}$$

$$Rp = 2 \Omega$$

ii. Resistor seri

$$Rs = R_1 + Rp$$

$$Rs = 2 + 2$$

$$Rs = 4 \Omega$$

$$Rt = Rs$$

$$Rt = 4 \Omega$$

2) Total current

$$It = \frac{V}{Rt}$$

$$It = \frac{3}{4}$$

$$It = \frac{3}{4}$$

$$It = 0.75 A$$

2. Potential difference at each end of the resistance

$$It = 0.75 A$$

$$R_1 = 2 \Omega$$

$$Rp = 2 \Omega$$

$$V_1 = It \ \cdot \ R_1$$

$$V_1 = 0.75 \cdot 2$$

$$V_1 = 1,5 V$$

$$V_2 = It \cdot Rp$$

$$V_2 = 0.75 \cdot 2$$

$$V_2 = 1,5 V$$

$$V_3 = It \cdot Rp$$

$$V_3 = 0.75 \cdot 2$$

$$V_3 = 1,5 V$$

3. The amount of current that passes through resistance 2 and resistance 3

$$V_2 = 1,5 \text{ V}$$

$$R_2 = 3 \Omega$$

$$V_3 = 1,5 V$$

$$R_3 = 6 \Omega$$

$$I_2 = \frac{V2}{R2}$$

$$I_2 = \frac{1.5}{3}$$

$$I_2 = 0,5 A$$

$$I_3 = \frac{V3}{R3}$$

$$I_3 = \frac{1.5}{6}$$

$$I_2 = 0,25 A$$

- b. Computational Approach using PPE
 - 1) Circuit topology

4	A B	С	D	E	F	G	Н			K	L	М	N	0	Р
								wire	Voltmeter_load2	wire	wire	wire			
								wire				wire			
	wire	wire	Voltmeter_load1	wire	wire		wire	wire	Resistor_load2	wire	Ammeter_load2	wire	wire		
	wire				wire		wire						wire		
	wire				wire		wire						wire		
wire	wire	Resistor_load1	wire	Ammeter_load1	wire	wire	wire						wire	wire	wire
wire							wire						wire		wire
wire							wire						wire		wire
wire							wire	wire	Resistor_load3	wire	Ammeter_load3	wire	wire		wire
wire								wire				wire			wire
wire								wire	Voltmeter_load3	wire	wire	wire			wire
wire															wire
wire															wire
wire															wire
wire															wire
wire	wire	Ammeter source	wire	Resistor source	wire	VoltageSource dcsource	wire	wire	wire	wire	wire	wire	wire	wire	wire

2) Circuit parameters

1.	Component type: Ammeter Component name: load1 Component position: 6E Positive direction of current: 6F	Ammeter positive direction of current: searah jarum jam
2.	Component type: Ammeter	Resistor_source value = $0.01~\Omega$ (bernilai rendah guna menjaga stabilitas tegangan dan arus)
	Component name: load2 Component position: 3L Positive direction of current: 3M	VoltageSource_dcsource peak value = $V \cdot \sqrt{2}$
3.	Component type: Ammeter	VoltageSource_dcsource peak value = $3 \cdot \sqrt{2}$
_	Component name: load3 Component position: 9L Positive direction of current: 9M	VoltageSource_dcsource peek value = 4,243 V
4.	Component type: Ammeter Component name: source Component position: 16C Positive direction of current: 16B	Voltmeter_load voltage level = 1000 V (memerlukan tegangan tinggi)
5.	Component type: Resistor Component name: load1 Component position: 6C Resistor value: 2.0	
6.	Component type: Resistor Component name: load2 Component position: 3J Resistor value: 3.0	
7.	Component type: Resistor Component name: load3 Component position: 9J Resistor value: 6.0	
8.	Component type: Resistor Component name: source Component position: 16E Resistor value: 0.01	
9.	Component type: VoltageSource Component name: desource Component position: 16G Peak value: 4.243 Frequency: 60.0 Phase angle: 0.0 Do offset: 0.0 Positive polarity: 16F	
10.	Component type: Voltmeter Component name: load1 Component position: 3D Voltage level: 1000.0 Positive direction of voltage: 3C	
11.	Component type: Voltmeter Component name: load2 Component position: 1J Voltage level: 1000.0 Positive direction of voltage: 1I	
12.	Component type: Voltmeter Component name: load3	

Component position: 11J Voltage level: 1000.0 Positive direction of voltage: 11I

- 3) Simulation output graph
 - 1. Total current flow in the circuit

2. Potential difference at each end of the instance

3. The amount of current that passes through resistance 2 and resistance 3

PPE simulation files: https://drive.google.com/drive/folders/1SmjqZFVOmJM8qQlxkeFPpewiryQ_RpOb?usp=sharing

Problem 2

You are planning to conduct a small electronic project. You are planning to make a simple LED circuit (see diagram). The circuit contains three green LED lights that connected using parallel connections. From the LED specification sheet, you know that the LED will works on a minimum voltage of 2 V. Also, you gain information that the LED will break if the current that flow through it exceed 20 mA. For that, you need to use some resistor to limit the current that flow through the LED.

To power the circuit, you are planning to use a micro hydro generator that you already have. However, you realize that you need to convert the current from AC to DC so you can light up the LED. But you don't have the proper converter at the moment. So, you decide to make your own rectifier, *a basic RLC rectifier*, from only the components you have (see table) at hand. Assume that your component supply is large enough, so you can use any number of each component.

Assume that your LED does not have any internal resistance. The LED circuit will be connected to the rectifier at point a and b (see diagram). The generator has an output of 5 V with frequency of 20 Hz. So, what is your solution for the basic RLC rectifier? Assume that each component on the table (including the EMF) has internal resistance of 0.1 Ω .

No	Component	Value						
1		3 Ω						
2		24 Ω						
3		36 Ω						
4	Resistor	100 Ω						
5		130 Ω						
6		220 Ω						
7		510 Ω						
8		1.0 μF						
9	Capacitor	3.3 μF						
10		22 μF						
11		2 μΗ						
12	Industra	5.1 μΗ						
13	Inductor	2 mH						
14	1	400 mH						

Answer:

a. Numerical Approach

Minimum voltage for the LED to work = 2 V

LED maximum current = 20 mA

LED maximum current = $20 \cdot 10^{-3}$ A

LED maximum current = 0,02 A

Generator output voltage = 5 V

Frequency = 20 Hz

Internal resistance = 0.1Ω

Resistors, capacitors, and inductors values:

No	Component	Value					
1		3 Ω					
2		24 Ω					
3		36 Ω					
4	Resistor	100 Ω					
5		130 Ω					
6		220 Ω					
7	1	510 Ω					
8		$1.0~\mu F$					
9	Capacitor	3.3 µF					
10		22 μF					
11		2 μΗ					
12	Inductor	5.1 μH					
13	Inductor	2 mH					
14		400 mH					

$$\frac{1}{Rp} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$$
$$\frac{1}{Rp} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$$
$$\frac{1}{Rp} = 3$$

$$Rp = \frac{1}{3}\Omega$$

- 1. Resistor value
 - 1) 3 Ω Resistor

$$R = \frac{1}{3} \cdot 3$$

$$R = 1 \Omega$$

$$I = \frac{V}{R}$$
$$I = \frac{2}{1}$$

$$I = \frac{2}{3}$$

I = 2 A (tidak dapat digunakan karena I > 0.02 A)

2) 24Ω Resistor

$$R = \frac{1}{3} \cdot 24$$

$$R = 8 \Omega$$

$$I = \frac{V}{R}$$

$$I = \frac{2}{8}$$

I = 0.25 A (tidak dapat digunakan karena I > 0.02 A)

3) 36Ω Resistor

$$R = \frac{1}{3} \cdot 36$$

$$R = 12 \Omega$$

$$\mathbf{I} = \frac{V}{R}$$

$$I = \frac{2}{12}$$

I = 0.167 A (tidak dapat digunakan karena I > 0.02 A)

4) 100Ω Resistor

$$R = \frac{1}{3} \cdot 100$$

$$R = 33,333 \Omega$$

$$I = \frac{V}{R}$$

$$I = \frac{2}{33,333}$$

I = 0.06 A (tidak dapat digunakan karena I > 0.02 A)

5) 130Ω Resistor

$$R = \frac{1}{3} \cdot 130$$

$$R = 43,333 \Omega$$

$$I = \frac{V}{R}$$

$$I = \frac{V}{R}$$

$$I = \frac{2}{43,333}$$

I = 0.046 A (tidak dapat digunakan karena I > 0.02 A)

6) 220 Ω Resistor

$$R = \frac{1}{3} \cdot 220$$

$$R = 73,333 \Omega$$

$$I = \frac{V}{R}$$

$$I = \frac{2}{73,333}$$

I = 0.027 A (tidak dapat digunakan karena I > 0.02 A)

7) 510Ω Resistor

$$R = \frac{1}{3} \cdot 510$$

$$R = 170 \Omega$$

$$I = \frac{V}{R}$$

$$I = \frac{2}{170}$$

I = 0.012 A (dapat digunakan karena $I \le 0.02 \text{ A}$)

$$R_1 = R_2 = R_3 = 510 \ \Omega$$

- 2. Generator resistor
 - 1) 3Ω Resistor

$$I = \frac{V}{R}$$

$$I = \frac{5}{3}$$

I = 1,667 A (tidak digunakan karena I kurang mendekati 0,02 A)

2) 24Ω Resistor

$$I = \frac{V}{R}$$

$$I = \frac{5}{24}$$

I = 0,208 A (tidak digunakan karena I kurang mendekati 0,02 A)

3) 36Ω Resistor

$$I = \frac{V}{R}$$

$$I = \frac{5}{36}$$

I = 0,139 A (tidak digunakan karena I kurang mendekati 0,02 A)

4) 100Ω Resistor

$$I = \frac{V}{R}$$

$$I = \frac{5}{100}$$

I = 0,05 A (tidak digunakan karena I kurang mendekati 0,02 A)

5) 130Ω Resistor

$$I = \frac{V}{R}$$

$$I = \frac{5}{130}$$

$$I = 0.038 \text{ A (tidak digunakan karena I kurang mendekati 0.02 A)}$$

6) 220 Ω Resistor

$$I = \frac{V}{R}$$

$$I = \frac{5}{220}$$

$$I = 0.023 \text{ A (tidak digunakan karena I kurang mendekati 0.02 A)}$$

7) 510Ω Resistor

$$I = \frac{V}{R}$$

$$I = \frac{5}{510}$$

$$I = 0,01 \text{ A (tidak digunakan karena I kurang mendekati 0,02 A)}$$

rload = 220
$$\Omega$$

- b. Computational Approach using PPE
 - 1) Circuit topology

A	В	C	D	E	F	G	H			K		M	N	0	P	Q	R			U	V	W		Y
															wire	wire	wire	wire	Voltmeter_load1	wire	wire	wire	wire	wire
															wire			wire				wire		wire
															wire			wire	Resistor_load1	wire	Ammeter_load1	wire		wire
															wire									wire
															wire	wire	wire	wire	Voltmeter_load2	wire	wire	wire	wire	wire
															wire			wire				wire		wir
															wire			wire	Resistor_load2	wire	Ammeter_load2	wire		wir
															wire									wir
															wire	wire	wire	wire	Voltmeter_load3	wire	wire	wire	wire	wir
															wire			wire				wire		wir
															wire			wire	Resistor_load3	wire	Ammeter_load3	wire		wir
															wire									wir
															wire									wir
															wire									wir
															wire									wir
															wire									wir
wire	wire	Ammeter_Isource	wire	Resistor_Ramn	wire	Diode_Dfilter	Inductor_Ifilter	r wire	Resistor_Rfilte	wire	wire	wire	wire	wire	wire									wir
wire										wire														wir
wire										wire														wir
wire	wire	wire								wire	wire	wire												wir
wire		wire								wire		wire												wir
wire		wire								wire		wire												wir
Resistor_Rsource		wire								Capacitor_Cfilter		wire												wir
wire		Voltmeter_Vsource								wire		Voltmeter_Cfilter												wir
VoltageSource_Vsource		wire								Resistor_Cfilter		wire												wir
wire		wire								wire		wire												wir
wire		wire								wire		wire												wir
wire	wire	wire								wire	wire	wire												wir
wire										wire														wir
wire										wire														wir
wire	wire	wire	wire	wire	wire	wire	Resistor Rload	wire	wire	wire	wire	wire	wire	wire	wire	wire	wire	wire	wire	wire	wire	wire	wire	wire

2) Circuit parameters

1.	Component type: Ammeter Component name: Isource Component position: 17C	13.	Component type: Resistor Component name: load1	Ammeter positive direction of current: searah jarum jam
	Positive direction of current: 17D		Component position: 3T Resistor value: 510.0	Capacitor_Cfilter value = 1 uF
2.	Component type: Ammeter Component name: load1			Capacitor_Cfilter value = $1 \cdot 10^{-6}$ F
	Component position: 3V Positive direction of current: 3W	14.	Component type: Resistor Component name: load2 Component position: 7T Resistor value: 510.0	Capacitor_Cfilter value = 1e-06 F
3.	Component type: Ammeter Component name: load2		100000 1000	Diode voltage level = Voltmeter voltage level = 1000 V (memerlukan
	Component position: 7V Positive direction of current: 7W	15.	Component type: Resistor Component name: load3	tegangan tinggi)
4.	Component type: Ammeter		Component position: 11T Resistor value: 510.0	Diode direction of cathode: searah jarum jam
	Component name: load3 Component position: 11V		100000 1000	Voltmeter positive direction of voltage: berlawanan arah jarum jam
	Positive direction of current: 11W	16.	Component type: VoltageSource Component name: Vsource	
5.	Component type: Capacitor		Component position: 25A	Inductor value = 1 mH
	Component name: Cfilter Component position: 23K Capacitor value: 1e-06		Peak value: 7.071 Frequency: 20.0	Inductor value = $1 \cdot 10^{-3} \text{ H}$
	Positive polarity: 24K		Phase angle: 0.0 Dc offset: 0.0 Positive polarity: 24A	Inductor value = 0,001 H
6.	Component type: Diode Component name: Dfilter Component position: 17G	17.	Component type: Voltmeter	Resistor value = 0.01Ω (bernilai rendah guna menjaga stabilitas tegangan
	Voltage level: 1000.0 Direction of cathode: 17H		Component name: Cfilter Component position: 24M Voltage level: 1000.0	dan arus)
7.	Component type: Inductor Component name: Ifilter		Positive direction of voltage: 23M	VoltageSource peak voltage = $V \cdot \sqrt{2}$
	Component position: 17H Inductor value: 0.001	18.	Component type: Voltmeter	VoltageSource peak voltage = $5 \cdot \sqrt{2}$
		10.	Component name: Vsource	VoltageSource peak voltage = 7,071 V
8.	Component type: Resistor Component name: Cfilter		Component position: 24C Voltage level: 1000.0	
	Component position: 25K Resistor value: 0.01		Positive direction of voltage: 23C	
9.	Component type: Resistor	19.	Component type: Voltmeter Component name: load1	
	Component name: Ramm Component position: 17E		Component position: 1T	
	Resistor value: 0.01		Voltage level: 1000.0 Positive direction of voltage: 1S	
10.	Component type: Resistor Component name: Rfilter			
	Component position: 17J	20.	Component type: Voltmeter	
	Resistor value: 0.01		Component name: load2 Component position: 5T	
11.	Component type: Resistor Component name: Rload Component position: 31H		Voltage level: 1000.0 Positive direction of voltage: 5S	
	Resistor value: 220.0	21.	Component type: Voltmeter	
12.	Component type: Resistor		Component name: load3 Component position: 9T	
14.	Component name: Rsource		Voltage level: 1000.0	
	Component position: 23A		Docitive direction of voltage: 95	

Positive direction of voltage: 9S

Resistor value: 0.01

- 3) Simulation output graph
 - 1. Voltage at each resistance

2. The amount of current at each resistance

PPE Simulation Files: https://drive.google.com/drive/folders/1RA0fDDzcEF70HYXHN8ydTsX_pAqjDaHZ?usp=sharing

Note for Lecturers:

- 1. The lecturers are advised to assess student's understanding towards the topics included in the assignment.
- 2. The students will submit their answer in .pdf format through BINUSMAYA.
- 3. The deadline of this comprehensive assignment is at the end of the semester.