

图像处理与机器学习

Digital Image Processing and Machine Learning

主讲人: 黄琳琳

电子信息工程学院

第二章 图像增强

- ◆引言
- ◆ 空间域增强
- ◆ 频域增强

引言

> 图像增强方法

灰度变换

> 空间域增强

-- 直接对构成图像像素的灰度级操作

输入图像 x(j,i) 输出图像 y(j,i)

$$y(j,i) = T[x(j,i)]$$

灰度变换函数

信号系统分析

- > 信号与系统分析
 - -- 系统:接受输入、产生相应输出
 - -- 分析: 输入与输出之间对应关系
- 一维连续线性时不变系统

$$x(t) \longrightarrow \mathbf{x} \iff y(t)$$

$$y(t) = h(t) * x(t) = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau$$

h(t): 系统冲击响应

一维连续线性时不变系统

$$y(t) = h(t) * x(t) = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau$$

h(t): 系统冲击响应

一维离散线性时不变系统

$$y(i) = h(i) * x(i) = \sum_{n} h(i)x(i+n)$$

h(i): 系统冲击响应

一维离散系统
$$y(i) = h(i) * x(i) = \sum_{i=1}^{n} h(i)x(i+n)$$

> 二维离散系统

二维离散卷积运算:

$$y(j,i) = h(j,i) * x(j,i)$$

$$y(j,i) = \sum \sum h(m,n)x(j+m,i+n)$$

空间域滤波

> 一维离散系统: 均值滤波器

$$h[k] = \{1, 1, 1\}$$

$$H(\mathrm{e}^{\mathrm{j}\Omega}) = DTFT\{h[k]\}$$

$$H(e^{j\Omega}) = \sum_{k=0}^{L-1} h(k)e^{-j\Omega k} = 1 + e^{-j\Omega} + e^{-j2\Omega}$$

$$H(e^{j\Omega}) = \cos^2 \Omega \cdot e^{-j\Omega}$$
 $\left| H(e^{j\Omega}) \right| = \cos^2 \Omega$

> 一维离散系统: 均值滤波器

$$h[k] = \{1, 1, 1\}$$

> 二维离散系统: 均值滤波器

$$h(m,n) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$y(j,i) = \sum \sum h(m,n) x(j+m,i+n)$$

1	1	1	
1	1	1	y
1	1	1	

$$y(j,i) = \frac{1}{9} \sum_{m=-1}^{1} \sum_{n=-1}^{1} x(j+m,i+n)$$

$$y(j,i) = \frac{1}{9} \left[x(j-1,i-1) + x(j-1,i) + x(j-1,i+1) + x(j,i) + \dots \right]$$

输入图像像素及其周边8个点灰度级的平均值

图像均值滤波器

x(j,i)

图像均值滤波器

y(j,i)

$$y(j,i) = \frac{1}{9} \sum_{m=-1}^{1} \sum_{n=-1}^{1} x(j+m,i+n)$$

0	0	0	0	0	0	0	0	0	0
0	0	•	0	0	0	0	0	0	0
0/5	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0%	0	0	0	0	0 %	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	-28	Ç		
				×	
		 X XX			X

x(j,i)

y(j,i)

○ 0	0	0	0	0	0	0	0	0	0
0	0	0	()	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

			,			6	
0	10	20			-7/3		
				\$			
			<i>)</i>				
	<i>-7/2</i>	7			-7/3		

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0 4	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0		0	0	0	0	0	0	0
0	Q	90		0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30				_ _\^	1 C
							X	
							>'	
)				
		-15					-1/2	11/2
		/S				<i>/</i> :	750	
	10							
+					-			\vdash

一维离散系统: 高斯低通滤波器

$$h[k] = \{1, 2, 1\}$$

> 二维离散系统: 高斯低通滤波器

$$h(m,n) = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ \hline 1 & 2 & 1 \end{bmatrix} \times \frac{1}{16}$$
加权平均

▶ 图像滤波器应用 去除噪声

被噪声污染图像

均值滤波

高斯滤波

> 均值滤波器应用

Hubble 空间望远镜获 取图像

提取感兴趣物体

均值滤波

均值滤波图像二值化

原图

高斯低通滤波

低通滤波: 图像平滑

谢谢

本课程所引用的一些素材为主讲老师 多年的教学积累,来源于多种媒体及同事 和同行的交流,难以一一注明出处,特此 说明并表示感谢!