

Дискретная математика

Лекция 1

Множества и отношения

Множество

• *Множество* – это набор каких-либо объектов, рассматриваемый как одно целое.

 Объекты, составляющие множество, называют элементами. Все элементы множества отличаются друг от друга.

• Порядок элементов в множестве не имеет значения.

Понятие множества – одно из фундаментальных математических понятий. Оно используется в любой математической теории.

Понятие множества *не определяется*, а *поясняется* указанием (приблизительных) синонимов: коллекция, класс, совокупность, ансамбль, собрание...

Георг Кантор (1845-1918) – создатель теории множеств, немецкий математик.

Созвездие – множество звезд

Стая – множество птиц

Толпа – множество людей

Команда – множество людей

Сообщество – множество людей

Множества, рассматриваемые в математике, состоят из математических объектов:

- числа
- функции
- точки
- линии
- и т.д.

Обозначения:

• $x \in A$ означает "элемент x принадлежит множеству A"

• $x \notin A$ означает "элемент x не принадлежит множеству A"

Обозначения:

• $x \in A$ означает "элемент x принадлежит множеству A"

• $x \notin A$ означает "элемент x не принадлежит множеству A"

Пустое множество не имеет ни одного элемента, оно обозначается знаком \varnothing .

Множества бывают конечные и бесконечные.

Конечное множество может быть задано перечислением его элементов. Элементы перечисляются в фигурных скобках:

```
A = \{1, 2, 4, 8\},\
B = \{x, y, z\},\
C = \{красный, желтый, зеленый\},\
D = \{понедельник, вторник, среда, четверг, пятница, суббота, воскресенье\}.
```

$$|\{a,b,c\}| =$$

$$|\{a,b,c\}|=3,$$

$$|\{a,b,c\}|=3,$$

$$|\{-2, -1, 0, 1, 2\}| =$$

$$|\{a, b, c\}| = 3,$$

 $|\{-2, -1, 0, 1, 2\}| = 5,$

$$|\{a, b, c\}| = 3,$$

 $|\{-2, -1, 0, 1, 2\}| = 5,$
 $|\emptyset| =$

$$|\{a, b, c\}| = 3,$$

 $|\{-2, -1, 0, 1, 2\}| = 5,$
 $|\emptyset| = 0,$

$$|\{a, b, c\}| = 3,$$

 $|\{-2, -1, 0, 1, 2\}| = 5,$
 $|\emptyset| = 0,$
 $|\{\emptyset\}| =$

$$|\{a, b, c\}| = 3,$$

 $|\{-2, -1, 0, 1, 2\}| = 5,$
 $|\emptyset| = 0,$
 $|\{\emptyset\}| = 1.$

Примеры бесконечных множеств:

- $\mathbb{N} = \{1, 2, 3, ...\}$ множество натуральных чисел;
- $\mathbb{N}_{\mathbf{0}} = \{0, 1, 2, 3, \dots\};$
- $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, ...\}$ множество целых чисел;
- \mathbb{R} множество вещественных чисел;
- множество всех точек плоскости.

<u>Подмножество</u>

Множество A называется **подмножеством** множества B, если *каждый* элемент из A принадлежит B.

Отношение "A является подмножеством B" символически записывается так:

$$A \subset B$$
.

Это можно прочитать также как "A включено в B".

<u>Подмножество</u>

Множество A называется **подмножеством** множества B, если *каждый* элемент из A принадлежит B.

Отношение "A является подмножеством B" символически записывается так:

$$A \subset B$$
.

Это можно прочитать также как "A включено в B".

Подмножество мощности k называют k-подмножеством.

$$\mathbb{N} \subseteq \mathbb{Z}$$

$$\mathbb{Z} \subseteq \mathbb{R}$$

$$\{2,4\} \subseteq \{1,2,3,4\}$$

$$[5,6) \subseteq [4,10]$$

Множество точек малого круга есть подмножество множества точек большого круга

Некоторые свойства отношения включения

- $\emptyset \subseteq A$ для любого множества A.
- $A \subseteq A$ для любого множества A.
- Если $A \subseteq B$ и $B \subseteq A$, то A = B.
- Если $A \subseteq B$ и $B \subseteq C$, то $A \subseteq C$.

Иногда полезно считать, что есть некоторое универсальное множество (унивёрс) <math>U, содержащее все элементы, которые нас интересуют.

Иногда полезно считать, что есть некоторое универсальное множество (унивёрс) <math>U, содержащее все элементы, которые нас интересуют.

Например, если мы изучаем свойства натуральных чисел, то можно положить $U = \mathbb{N}$.

Если нас интересуют геометрические объекты на плоскости, то можно взять в качестве U множество всех точек плоскости.

Часто множество задают указанием свойства P, выделяющего элементы этого множества среди всех элементов универса U.

Тот факт, что элемент x имеет свойство P, записывают так: P(x).

Множество всех элементов из U, имеющих свойство P, представляется в форме:

$$\{x \in U : P(x)\}$$

ИЛИ

$$\{x: x \in U \text{ и } P(x)\}$$

или просто

$$\{x: P(x)\},\$$

если ясно, о каком универсе идет речь.

$${x \in \mathbb{N} : x \text{ чётно}}$$

$$\{x \in \mathbb{N} : x$$
чётно $\}$

$$\{x \in \mathbb{Z} : x > 0\}$$

$${x \in \mathbb{N} : x \ чётно}$$

$$\{x \in \mathbb{Z} : x > 0\} = \mathbb{N}$$

$$\{x \in \mathbb{N} : x \text{ чётно}\}$$
 $\{x \in \mathbb{Z} : x > 0\} = \mathbb{N}$ $\{x \in \mathbb{R} : 1 < x \le 4\} = (1, 4]$

$$\{x \in \mathbb{N} : x \text{ чётно}\}$$
 $\{x \in \mathbb{Z} : x > 0\} = \mathbb{N}$
 $\{x \in \mathbb{R} : 1 < x \le 4\} = (1, 4]$
 $\{x : x \in \mathbb{R} \text{ и } x^2 - 2 = 0\} = 0$

$$\{x \in \mathbb{N} : x \text{ чётно}\}$$
 $\{x \in \mathbb{Z} : x > 0\} = \mathbb{N}$ $\{x \in \mathbb{R} : 1 < x \le 4\} = (1,4]$ $\{x : x \in \mathbb{R} \text{ и } x^2 - 2 = 0\} = \{\sqrt{2}, -\sqrt{2}\}$

Операции над множествами

Объединение множеств A и B определяется как множество

$$A \cup B = \{ x: x \in A \text{ или } x \in B \}.$$

Операции над множествами

Объединение множеств A и B определяется как множество

$$A \cup B = \{ x: x \in A \text{ или } x \in B \}.$$

Пример:

$$A = \{0, 1, 4\},$$
 $B = \{1, 2, 4\},$ $A \cup B = \{0, 1, 2, 4\}.$

Пересечение множеств *A* и *B* определяется как множество

$$A \cap B = \{ x : \text{ одновременно } x \in A \text{ и } x \in B \}$$

Пересечение множеств *A* и *B* определяется как множество

$$A \cap B = \{ x : \text{ одновременно } x \in A \text{ и } x \in B \}$$

Пример:

$$A = \{0, 1, 4\},$$
 $B = \{1, 2, 4\},$ $A \cap B = \{1, 4\}.$

Пересечение множеств *A* и *B* определяется как множество

$$A \cap B = \{ x : \text{ одновременно } x \in A \text{ и } x \in B \}$$

Пример:

$$A = \{0, 1, 4\},$$
 $B = \{1, 2, 4\},$ $A \cap B = \{1, 4\}.$

Если $A \cap B = \emptyset$, то говорят, что множества A и B не пересекаются.

<u>Диаграмма Венна</u>

Диаграмма Венна – это способ графического представления взаимоотношений между множествами.

Универс изображается в виде *прямоугольника*, а его подмножества – в виде *кругов* (*круги Эйлера*) или *других фигур*, расположенных *внутри* этого прямоугольника.

$$B \subseteq A$$

$$A \cap B = \emptyset$$

 $A\cup B$

 $A \cap B$

Свойства операций объединения и пересечения

Следующие равенства верны для любого множества A:

$$A \cup A = A$$

$$A \cap A = A$$

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

$$A \cup U = U$$

$$A \cap U = A$$

• Обе операции коммутативны:

$$A \cup B = B \cup A$$
,

$$A \cap B = B \cap A$$
 для любых множеств A, B .

• Обе операции коммутативны:

$$A \cup B = B \cup A$$
,

$$A \cap B = B \cap A$$
 для любых множеств A, B .

• Обе операции ассоциативны:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$
 для любых множеств A, B .

Благодаря ассоциативности, можно опускать скобки и писать просто:

$$A \cup B \cup C$$

$$A \cap B \cap C$$
.

Можно записывать объединение или пересечение любого числа множеств, не указывая порядок действий:

$$A_1 \cup A_2 \cup \ldots \cup A_n$$
,

$$A_1 \cap A_2 \cap \ldots \cap A_n$$
.

Сокращенные обозначения:

$$A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i,$$

$$A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i.$$

Операции объединения и пересечения связаны между собой двумя *дистрибутивными законами*:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

для любых множеств A, B, C.

Вывод новых тождеств

Из основных тождеств можно с помощью эквивалентных преобразований выводить новые.

Пример: $A \cup (A \cap B)$.

Так как $A=A\cap U$, можно первое вхождение A заменить на $A\cap U$:

$$A \cup (A \cap B) = (A \cap U) \cup (A \cap B).$$

Пример: $A \cup (A \cap B)$.

Так как $A=A\cap U$, можно первое вхождение A заменить на $A\cap U$:

$$A \cup (A \cap B) = (A \cap U) \cup (A \cap B).$$

Теперь применяем дистрибутивный закон

$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C)$$

и получаем

$$A \cup (A \cap B) = (A \cap U) \cup (A \cap B) = A \cap (U \cup B).$$

Пример: $A \cup (A \cap B)$.

Так как $A=A\cap U$, можно первое вхождение A заменить на $A\cap U$:

$$A \cup (A \cap B) = (A \cap U) \cup (A \cap B).$$

Теперь применяем дистрибутивный закон

$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C)$$

и получаем

$$A \cup (A \cap B) = (A \cap U) \cup (A \cap B) = A \cap (U \cup B).$$

Применяя тождества $U \cup B = U$, $A \cap U = A$, получаем

$$A \cup (A \cap B) = A \cap (U \cup B) = A \cap U = A.$$

Тождество $A \cup (A \cap B) = A$ называют законом поглощения.

Имеется второй закон поглощения:

$$A \cap (A \cup B) = A$$
,

он может быть доказан аналогично.

Другие операции

Pазность множеств A и B есть множество

$$A-B=\{x: x\in A, \text{ } Ho x\notin B\}.$$

$$A - B$$

Другие операции

Pазность множеств A и B есть множество

$$A-B=\{x: x\in A, \text{ } Ho \text{ } x\notin B\}.$$

$$A - B$$

Пример:

$$A = \{0, 1, 4\}, \qquad B = \{1, 2, 4\},$$

$$A - B = \{0\}.$$

Дополнение множества A до универса U – это множество

$$\overline{A} = U - A$$
.

Дополнение множества A до универса U — это множество

$$\overline{A} = U - A$$
.

Пример:

$$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$$

$$A = \{0, 2, 4, 6, 8\},\$$

$$\overline{A} = \{1, 3, 5, 7, 9\}.$$

Операции объединения, пересечения и дополнения связаны двумя *законами де Моргана*:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
,

$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Симметрическая разность

множеств A и B определяется как множество

$$A \otimes B = (A - B) \cup (B - A).$$

 $A \otimes B$

Симметрическая разность

множеств A и B определяется как множество

$$A \otimes B = (A - B) \cup (B - A)$$
.

 $A \otimes B$

Пример:

$$A = \{0, 1, 4\}, \qquad B = \{1, 2, 4\},$$

$$A \otimes B = \{0,2\}.$$

Для строгого доказательства любого из приведенных тождеств нужно показать, что любой элемент множества, записанного в левой части равенства, содержится в множестве из правой части, и наоборот.

Пример: доказательство первого закона де Моргана.

$$x \in \overline{A \cup B} \quad \leftrightarrow \quad \\ \leftrightarrow \quad x \notin A \cup B \quad \leftrightarrow \quad \\ \leftrightarrow \quad x \notin A \quad \text{if } x \notin B \quad \leftrightarrow \quad \\ \leftrightarrow \quad x \in \overline{A} \quad \text{if } x \in \overline{B} \quad \leftrightarrow \quad \\ \leftrightarrow \quad x \in \overline{A} \cap \overline{B}$$

В справедливости тождеств можно также убедиться с помощью диаграмм Венна (но это не является строгим доказательством). Например, для дистрибутивного закона:

Еще несколько тождеств

$$\overline{A} = A$$

$$A \cap \overline{A} = \emptyset$$

$$A \cup \overline{A} = U$$

$$A - B = A \cap \overline{B}$$

$$A \otimes B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$$

Отношения включения и равенства множеств могут быть выражены в терминах операций:

$$A \subseteq B \quad \leftrightarrow \quad A \cap B = A$$

$$A \subseteq B \quad \leftrightarrow \quad A \cup B = B$$

$$A \subseteq B \quad \leftrightarrow \quad A - B = \emptyset$$

 $A = B \quad \leftrightarrow \quad A \otimes B = \emptyset$