Interpretable Machine Learning of PET Imaging for Individualized Predictions of Seizure Outcomes after Temporal Lobe Epilepsy Surgery

2022 GDMA Nuclear Medicine Annual Conference

Huanhua Wu Prof. Hao Xu*

The First Affiliated Hospital of Jinan University

2022-12-03

Introduction

The Data

The Model

The Explanation

Conclusion

Introduction

Background

Figure 1: Epilepsy Epidemiology

Aims

Figure 2: Focus on Interpretability of ML

Scheme

Figure 3: Flowchart of TLE Postsurgical IML

The Data

Introduction The Data The Model The Explanation Conclusion References

Combined of PET Radiomics and Clinical Features

Figure 4: PET Radiomics Score and Clinical-PET Features

Exploratory Data Analysis

Figure 5: Heatmap of Clinical-PET Features

The Model

Benchmark

Table 1: Performance Comparison Eleven ML algorithms and K-folds Cross-validation of the Selected AdaBoost

								Folds\Tuned_A	Ada Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	APC
								1	0.882	0.733	0.000	0.000	0.000	0.000	0.000	0.361
Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Ada Boost Classifier	0.883	0.789	0.400	0.433	0.393	0.345	0.357	4								
Extreme Gradient Boosting	0.884	0.777	0.300	0.400	0.333	0.287	0.295	3	0.824	0.550	0.000	0.000	0.000	-0.085	-0.091	0.183
Random Forest Classifier	0.884	0.763	0.200	0.350	0.250	0.217	0.230	4	0.875	0.893	0.000	0.000	0.000	0.000	0.000	0.500
Gradient Boosting Classifier	0.890	0.762	0.350	0.483	0.390	0.346	0.360	5	0.938	0.929	0.500	1.000	0.667	0.636	0.683	0.750
Light Gradient Boosting Machine		0.749	0.250	0.325	0.267	0.211	0.221	6	0.938	0.964	0.500	1.000	0.667	0.636	0.683	0.833
Logistic Regression	0.878	0.669	0.050	0.100	0.067	0.055	0.059	U								
Extra Trees Classifier	0.884	0.662	0.100	0.200	0.133	0.118	0.127	7	0.875	0.554	0.000	0.000	0.000	0.000	0.000	0.321
K Neighbors Classifier	0.865	0.646	0.200	0.200	0.183	0.140	0.149	8	0.938	0.964	0.500	1.000	0.667	0.636	0.683	0.833
Linear Discriminant Analysis	0.884	0.642	0.100	0.200	0.133	0.119	0.128	9	0.938	1.000	0.500	1.000	0.667	0.636	0.683	1.000
Naive Bayes	0.251	0.586	0.900	0.129	0.226	0.014	0.072	10		0.679	0.500	1.000	0.667	0.636	0.683	0.591
Decision Tree Classifier	0.798	0.584	0.300	0.264	0.259	0.158	0.167									
								Mean	0.914	0.827	0.350	0.600	0.433	0.410	0.432	0.637
								Std	0.047	0.172	0.320	0.490	0.367	0.368	0.384	0.200

AdaBoost Algorithm

Figure 6: Illustration of AdaBoost Algorithm

 AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=0.2, n_estimators=230, random_state=123)

The Explanation

Introduction The Data The Model The Explanation Conclusion References

Permutation Importance

Figure 7: Permutation Importance of AdaBoost

Partial Dependence Plot

Conclusion

Key Points

- Metabolic radiomics are helpful to predict the postsurgical seizure outcomes;
- Combination of PET Radiomics and Clinical Features are more robust;
- IML technique can further deepen the understanding of the principle of ML models and the decision-making process for professional and intuitive interpretation

Limitations

- More data, especially external validation cohort;
- Fusion of PET/MRI multimodal imaging;
- Other subtypes of drug-resistant epilepsy

For more theoretical approaches to machine learning model explanation, see Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, refer to (Beghi et al., 2019), (Rajpurkar, 2021), (Marc Becker, 2022), (Molnar, 2022).

Email: wane199@outlook.com

THANKS!

References I

Beghi, E., Giussani, G., Nichols, E., Abd-Allah, F., Abdela, J., Abdelalim, A., Abraha, H. N., Adib, M. G., Agrawal, S., Alahdab, F., et al. (2019). Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the global burden of disease study 2016. *The Lancet Neurology*, 18(4):357–375.

Marc Becker, e. a. (2022). mlr3book.

Molnar, C. (2022). *Interpretable Machine Learning*. 2 edition.

Rajpurkar, P. S. (2021). *Deep Learning for Medical Image Interpretation*. Stanford University.

