Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

> Отчёт по лабораторной работе №1 по дисциплине «Математическая статистика»

> > Выполнил студент: Самутичев Евгений Романович группа: 3630102/70201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1	Постановка задачи	2
2	Теория 2.1 Распределения 2.2 Гистограмма	3 3 4
3	Реализация	5
4	Результаты 4.1 Гистограммы и графики	6
5	Обсуждение	9
6	Приложения	10
Cı	писок литературы	10

1 Постановка задачи

Для каждого из 5 распределений:

- 1. Нормального N(x, 0, 1)
- 2. Коши C(x, 0, 1)
- 3. Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- 4. Пуассона P(k, 10)
- 5. Равномерного $U(x, -\sqrt{3}, \sqrt{3})$

сгенерировать массив случайных данных (выборку) размера: 10, 50, 1000 и построить графики плотности вероятности (функции вероятности для распределения Пуассона как дискретного).

2 Теория

2.1 Распределения

Пусть задано вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P})$, на котором определена *случайная* величина $\xi: \Omega \to \mathbb{R}$ т.е. функция $\xi(\omega)$ такая что $\xi^{-1}(B) \in \mathcal{F}, \forall B \in \mathcal{B}(\mathbb{R})$. Она индуцирует вероятностную меру на \mathbb{R} как $\mathbf{P}_{\xi}(B) = \mathbf{P}(\xi^{-1}(B))$ которая и носит название распределения вероятностей случайной величины [1].

Функция $F_{\xi}(x) = \mathbf{P}_{\xi}(-\infty, x], x \in \mathbb{R}$ называется функцией распределения случайной величины ξ . Случайная величина может быть:

- 1. $\partial ucкретной$, если распределение представимо в виде $\mathbf{P}_{\xi}(B) = \sum_{k:x_k \in B} p(x_k)$, где $p(x_k) = \mathbf{P}_{\xi}\{x_k\}$ для конечного $\{x_1,...,x_n\}$ или счетного $\{x_1,...,x_k,...\}$ подмножества вещественных чисел. В этом случае функция $p(x_k)$ называется таблицей распределения.
- 2. *непрерывной*, если F(x) непрерывна
- 3. абсолютно непрерывной, если существует такая неотрицательная функция $f_{\xi}(x)$ называемая плотностью вероятности, что $F(x)=\int\limits_{-\infty}^{x}f(y)dy$

В работе рассматриваются следующие распределения:

1. *Нормальное* N(x,0,1) - абсолютно непрерывное, задается плотностью

$$f_N(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

2. $Kowu\ C(x,0,1)$ - абсолютно непрерывное, задается плотностью

$$f_C(x) = \frac{1}{\pi(x^2 + 1)}$$

3. $\mathit{Лапласa}\ L(x,0,\frac{1}{\sqrt{2}})$ - абсолютно непрерывное, задается плотностью

$$f_L(x) = \frac{1}{2\sqrt{2}}e^{-\frac{1}{\sqrt{2}}|x|}$$

4. Пуассона P(k, 10) - дискретное, задается на $\{1, 2, ..., k, ...\}$ как

$$p(k) = \frac{10^k}{k!}e^{-10}$$

5. *Равномерное* $U(x, -\sqrt{3}, \sqrt{3})$ - абсолютно непрерывное, задается плотностью

$$f_U(x) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{если } x \in [-\sqrt{3}, \sqrt{3}] \\ 0 & \text{иначе} \end{cases}$$

3

2.2 Гистограмма

Все приведенные распределения характеризуются таблицей (для дискретных) или плотностью (для абсолютно непрерывных). Эмпирическим аналогом таблицы или плотности является $\mathit{гиствограммa}$ [2]. Гистрограмма строится по группированным данным. Предполагаемую область значений случайной величины ξ делят на некоторое количество интервалов:

Пусть $A_1,...,A_k$ - интервалы на прямой. Обозначим $\nu_j,j\in\{1,...,k\}$ - число элементов выборки, попавших в интервал A_j . Размер выборки в этих обозначениях равен $n=\sum\limits_{j=1}^k \nu_j$. На каждом из интервалов строят прямоугольник, площадь которого пропорциональна ν_j , общая площадь всех прямоугольников должна равняться единице (нормировка гистограммы), поэтому высота каждого определяется как $f_j=\frac{\nu_j}{nl_j}$. Полученная фигура из объединения прямоугольников и называется гистограммой.

3 Реализация

Работа выполнена с использованием языка **Python** в интегрированной среде разработки **PyCharm**, были задействованы библиотеки:

- NumPy работа с массивами данных
- SciPy модуль stats для генерации данных по распределениям
- Matplotlib отрисовка гистограмм и графиков плотности/функции вероятности

Для случайной генерации было выбрано зерно 102 (для повторяемости в дальнейших экспериментах), исходный код работы приведен в приложении. Число интервалов гистограммы выбрано как округление к большему к целому \sqrt{n} , где n - размер выборки.

4 Результаты

4.1 Гистограммы и графики

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Распределение Пуассона

Рис. 5: Равномерное распределение

5 Обсуждение

Проведенный эксперимент подтверждает **утверждение**: пусть плотность распределения по которому построена выборка является непрерывной функцией. Если число интервалов гистограммы k(n) стремится к бесконечности таким образом что $\lim_{n\to\infty}\frac{k(n)}{n}=0$, то имеет место сходимость по вероятности гистограммы к плотности. [2] Действительно мы взяли $k(n)=\lceil \sqrt{n} \rceil$ и очевидно условие утверждения в таком случае выполнено, при этом гистограмма при увеличении n заполняет площадь под графиком плотности (кусочнолинейной функции вероятности для распределения Пуассона), а это и означает сходимость по вероятности.

6 Приложения

1. Исходный код лабораторной https://github.com/zhenyatos/statlabs/tree/master/Lab1

Список литературы

- [1] А. Н. Ширяев, Вероятность-1. Изд. МЦНМО, Москва, 2017. 551 стр.
- [2] Н. И. Чернова, Математическая статистика: Учеб. пособие. Новосиб. гос. ун-т. Новосибирск, 2007. 148 стр.