

Type977 fitting for heat pump SINH-9TE Parametric Heat Pump calculation

Dani Carbonell

dani. carbonell@spf.ch

2019/03/12 at: 16:05:01 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
		[kW]
P_{Q_1}	1 st condenser polynomial coefficient	8.7893e+00
P_{Q_2}	2^{st} condenser polynomial coefficient	1.0066e + 02
P_{Q_3}	3^{st} condenser polynomial coefficient	1.8447e + 01
P_{Q_4}	4 st condenser polynomial coefficient	-1.2643e+02
P_{Q_5}	5^{st} condenser polynomial coefficient	3.0567e + 02
P_{Q_6}	6 st condenser polynomial coefficient	-8.8420e+01
P_{COP_1}	1 st COP polynomial coefficient	5.6287e + 00
P_{COP_2}	2 st COP polynomial coefficient	4.3339e+01
P_{COP_3}	3 st COP polynomial coefficient	3.7308e+00
P_{COP_4}	4 st COP polynomial coefficient	-7.5311e+01
P_{COP_5}	5 st COP polynomial coefficient	1.2561e + 02
P_{COP_6}	6 st COP polynomial coefficient	-9.3240e+01
\dot{m}_{cond}	$1550.00 \ [kg/h]$	
\dot{m}_{evap}	$1550.00 \ [kg/h]$	
$\overline{COP_{nom} \text{ (A0W35)}}$	4.45	
$Q_{cond,nom}$ (A0W35)	8.97 [kW]	
$Q_{evap,nom}$ (A0W35)	$6.96 \ [kW]$	
$W_{comp,nom}$ (A0W35)	2.02~[kW]	
RMS_{COP}	4.93e - 02	
$RMS_{Q_{cond}}$	9.00e - 02	
$RMS_{W_{comp}}$	2.39e - 02	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	${}^{o}C$	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	3.96	3.99	0.7	7.80	7.90	1.3	1.97	1.98	0.55
35.00	0.00	4.48	4.41	1.8	9.08	8.90	2.0	2.02	2.02	0.21
35.00	5.00	5.10	5.12	0.5	10.52	10.55	0.3	2.06	2.06	0.20
50.00	-5.00	2.78	2.78	0.1	7.62	7.69	1.0	2.74	2.77	0.87
50.00	0.00	3.24	3.14	3.2	8.80	8.65	1.7	2.71	2.75	1.49
50.00	5.00	3.81	3.76	1.2	10.15	10.19	0.4	2.67	2.71	1.60
45.00	-5.00	3.23	3.29	1.7	7.73	7.80	0.9	2.39	2.37	0.77
45.00	0.00	3.72	3.68	1.1	8.94	8.78	1.9	2.40	2.39	0.75
45.00	5.00	4.30	4.35	1.1	10.33	10.37	0.4	2.40	2.38	0.72
55.00	0.00	2.71	2.73	0.8	8.61	8.53	0.9	3.17	3.12	1.71
55.00	5.00	3.26	3.30	1.3	9.93	10.02	0.8	3.05	3.04	0.45
35.00	10.00	5.77	5.81	0.6	12.13	12.20	0.6	2.10	2.10	0.01
35.00	15.00	6.51	6.47	0.6	13.88	13.85	0.2	2.13	2.14	0.39
50.00	10.00	4.43	4.40	0.8	11.67	11.73	0.5	2.63	2.67	1.33
50.00	15.00	5.12	5.06	1.2	13.34	13.27	0.5	2.60	2.62	0.72
45.00	10.00	4.94	5.02	1.5	11.87	11.97	0.8	2.40	2.38	0.78
45.00	15.00	5.65	5.69	0.8	13.57	13.56	0.1	2.40	2.38	0.85
55.00	10.00	3.87	3.90	0.8	11.42	11.50	0.7	2.95	2.95	0.10
55.00	15.00	4.54	4.53	0.1	13.06	12.98	0.6	2.88	2.87	0.48
Sum				20.0			15.6			13.96
RMS_{COP}	4.93e - 02									
RMS_{O}	9.00e - 02									
$RMS_{W_{comp}}$	2.39e - 02									

${\it Meier/SINH-9TE/SINH-9TE-Qcond.pdf}$

Figure 1: Q_{cond} differences between experiments and fitted data

${\it Meier/SINH-9TE/SINH-9TE-Qcomp.pdf}$

Figure 2: W_{comp} differences between experiments and fitted data

${\it Meier/SINH-9TE/SINH-9TE-COP.pdf}$

Figure 3: COP differences between experiments and fitted data