THE LNM INSTITUTE OF INFORMATION TECHNOLOGY JAIPUR, RAJASTHAN

Quiz-3	MATH-II, 16^{th} April 2014
Section: A	Time: 15 minutes, Maximum Marks: 10
Name:	Roll No.:

- 1. Find the integral surface of the first order PDE xp-yq=z contains the curve $\Gamma: x_0=s^2, y_0=s+1, z_0=s$. (Here $z=z(x,y), p=z_x, q=z_y$)
 - **Sol.** The characteristic curve is given by

$$\frac{dx}{x} = -\frac{dy}{y} = \frac{dz}{z}$$

From first and second term of the identity we get $u = xy = c_1$.

By taking first and third term we get $v = \frac{x}{z} = c_2$.

These are two independent solutions of the characteristic curve. So the general solutions is given by F(u,v)=0, or $F(xy,\frac{x}{z})=0$, or $xy=G(\frac{x}{z})$, where F and G are arbitrary functions.

We seek an integral surface contains the initial curve $\Gamma: x_0 = s^2, y_0 = s+1, z_0 = s$. Imposing this condition on the general solution we find

$$s^{2}(s+1) = G(\frac{s^{2}}{s}) = G(s).$$

Hence, $xy = G(\frac{x}{z})$ implies the desired integral surface as $yz^3 = x(x+z)$.