### **Starter:**

A wave transports energy from one place to another.

Mechanical waves require particles to transfer energy (neighbouring particles bump into each other and set their neighbours moving).

Electromagnetic waves consist of changing electric and magnetic fields.

They can travel through a vacuum.

Frequency is measured in hertz (Hz).

wavespeed = frequency x wavelength

The oscillations in a longitudinal wave are parallel to the direction of energy transfer.

The oscillations in a transverse wave are perpendicular to the direction of energy transfer.

Wavelength is the shortest distance between two particles that are oscillating in phase.

It is measured in metres (m)

Period is the time taken for one complete oscillation of a particle in the wave.

It is measured in seconds (s).

Amplitude is the maximum displacement from the equilibrium position.

Frequency is the number of oscillations per second.

# **Progressive Waves**

# In this lesson:

- Describe, explain and apply the terms
   displacement, amplitude, period, phase
   difference and frequency of a waves
- Understand the difference between transverse and longitudinal waves





### AQA spec

### 3.3.1.1 Progressive waves

#### Content

Oscillation of the particles of the medium;

amplitude, frequency, wavelength, speed, phase, phase difference,  $c = f\lambda$   $f = \frac{1}{T}$ 

Phase difference may be measured as angles (radians and degrees) or as fractions of a cycle.

### 3.3.1.2 Longitudinal and transverse waves

### Content

Nature of longitudinal and transverse waves.

Examples to include: sound, electromagnetic waves, and waves on a string.

Students will be expected to know the direction of displacement of particles/fields relative to the direction of energy propagation and that all electromagnetic waves travel at the same speed in a vacuum.



# **Key diagrams**



Where will particle P be a moment of time later?

Position A, B, C, D or E?

# **Key diagrams**

Direction of propagation of wave



"snapshot" of the whole wave at a specific time



Tracking the vibration of *one* point in the wave



# **Wave Equation**

$$c = f\lambda$$

Wave speed = frequency × wavelength

Light travels through a vacuum at  $3\times10^8$  ms<sup>-1</sup>, green light has a wavelength of 500nm, find the frequency of green light.

# **Wave Equation**

 $c=f\lambda$  Wave speed = frequency imes wavelength

| Wave          | Frequency                       | Wavelength | Speed                  | Medium      |
|---------------|---------------------------------|------------|------------------------|-------------|
| Sound         | 2000 Hz                         |            | 340 m s <sup>-1</sup>  | Air         |
| Yellow Light  | $3.6 \times 10^{14} \text{ Hz}$ | 0.61 μm    |                        | Water       |
| X-rays        |                                 | 0.1 nm     |                        | Air         |
| Microwave     | 6 GHz                           |            |                        | Vacuum      |
| Water Ripples | 8 Hz                            |            | 400 mm s <sup>-1</sup> |             |
| Sonar         | 30 kHz                          | 45 mm      |                        | Water       |
| Radio Waves   |                                 | 0.8 m      |                        |             |
| Ultrasound    | 3.5 MHz                         |            | 1600 m s <sup>-1</sup> | Body Tissue |

# **Wave Equation**

 $c=f\lambda$  Wave speed = frequency imes wavelength

| Wave               | Frequency                       | Wavelength | Speed                                | Medium      |
|--------------------|---------------------------------|------------|--------------------------------------|-------------|
| Sound              | 2000 Hz                         | 0.17       | 340 m s <sup>-1</sup>                | Air         |
| Yellow Light       | $3.6 \times 10^{14} \text{ Hz}$ | 0.61 µm    | $2.196 \times 10^8 \text{ m s}^{-1}$ | Water       |
| X-rays             | 3 EHz                           | 0.1 nm     | $3 \times 10^8 \text{ m s}^{-1}$     | Air         |
| Microwave          | 6 GHz                           | 0.05 m     | $3 \times 10^8 \text{ m s}^{-1}$     | Vacuum      |
| Water Ripples 8 Hz |                                 | 0.05 m     | 400 mm s <sup>-1</sup>               | Water       |
| Sonar              | 30 kHz                          | 45 mm      | $6.67 \times 10^5 \text{ m s}^{-1}$  | Water       |
| Radio Waves        | 0.375 GHz                       | 0.8 m      | $3 \times 10^8 \text{ m s}^{-1}$     | Vacuum      |
| Ultrasound         | 3.5 MHz                         | 0.457 mm   | 1600 m s <sup>-1</sup>               | Body Tissue |

# **Period**

$$T = \frac{1}{f}$$

Period = 1/frequency



Bottlenose dolphins produce sounds ranging from 0.2 to 150kHz. What is the corresponding range of periods?

### **Period**

$$T = \frac{1}{f}$$
 Period = 1/frequency

Find the period of a wave with frequency:

- a) 25 kHz
- b) 0.8 Hz
- c) 1.21 GHz
- d) 1 THz

Find the frequency of a wave with period:

- a) 2 s
- b) 1 day c) 0.3 ns
- d) 5.01 μs

### **Period**

$$T = \frac{1}{f}$$
 Period = 1/frequency

Find the period of a wave with frequency:

a) 25 kHz
b) 0.8 Hz
c) 1.21 GHz
d) 1 THz
400 μs
1.25 s
0.826 ns
1 ps

Find the frequency of a wave with period:

a) 2 s
b) 1 day
c) 0.3 ns
d) 5.01 μs
0.5 Hz
11.6 μHz
3.33 GHz
0.1996 MHz

| LONGITUDINAL |  |  |
|--------------|--|--|
| TRANSVERSE   |  |  |
|              |  |  |

The diagram shows a snapshot of a wave on a rope travelling from left to right.



At the instant shown, point P is at maximum displacement and point Q is at zero displacement. Which one of the following lines, A to D, in the table correctly describes the motion of P and Q in the next half-cycle?

|   | Р                | Q                |
|---|------------------|------------------|
| Α | falls then rises | rises            |
| В | falls then rises | rises then falls |
| С | falls            | falls            |
| D | falls            | rises then falls |

How many degrees are in a circle?

Why?

1. Babylonian Mathematicians



# How many degrees are in a circle?

Why?

2. Sailors



# Can we think of something better? Yes!

One <u>radian</u> is the angle <u>subtended</u> from the centre of a circle which intercepts an arc equal in length to the radius of the circle.





Determine the angle (in radians) subtended at the centre of a circle of radius 3cm by each of the following arcs:

- a) arc of length  $6 \, \mathrm{cm}$  b) arc of length  $3 \pi \, \mathrm{cm}$
- c) arc of length 1.5 cm d) arc of length  $6\pi$  cm

# Conversions

| 1310113            |
|--------------------|
| Degrees to Radians |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |

# **Key Values**

| Degrees | Radians |
|---------|---------|
| 30°     |         |
| 45°     |         |
| 60°     |         |
| 90°     |         |
| 180°    |         |
| 270°    |         |
| 360°    |         |

# **Calculators**

answers as exact values.

Degrees

135°

15°

96°

333°

**Radians** 

 $3\pi$ 

 $3\pi/_8$ 

 $7\pi/_{9}$ 

 $4\pi/_{5}$ 

1. Complete the table giving answers as exact values. 2. Complete the table giving answers to 2 d.p.

| answers to 2 d.p. |         |  |  |
|-------------------|---------|--|--|
| Degrees           | Radians |  |  |
| 17°               |         |  |  |
| 49°               |         |  |  |
| 124°              |         |  |  |
| 200°              |         |  |  |
|                   | 0.6     |  |  |
|                   | 2.1     |  |  |
|                   | 3.14    |  |  |
|                   | 1       |  |  |

3. Complete the table writing down all digits on your calculator display.

| x (rads)  | 1 | 0.1 | 0.01 | 0.001 | 0.0001 |
|-----------|---|-----|------|-------|--------|
| $\sin(x)$ |   |     |      |       |        |

4. Find the values of all the labelled angles within these regular polygons in radians.



1. Complete the table giving answers as exact values. 2. Complete the table giving answers to 2 d.p.

| Degrees      | Radians                           |
|--------------|-----------------------------------|
| 135°         | $3\pi/4$                          |
| 15°          | $^{\pi}/_{12}$                    |
| 96°          | $^{8\pi}/_{15}$                   |
| 333°         | $37\pi/_{20}$                     |
| <b>540</b> ° | $3\pi$                            |
| 67.5°        | $3\pi/_8$                         |
| 140°         | $^{7\pi}/_{9}$                    |
| 144°         | $\frac{7\pi}{9}$ $\frac{4\pi}{5}$ |
|              |                                   |

| answers to 2 u.p.       |         |  |  |
|-------------------------|---------|--|--|
| Degrees                 | Radians |  |  |
| 17°                     | 0.30    |  |  |
| 49°                     | 0.86    |  |  |
| 124°                    | 2.16    |  |  |
| 200°                    | 3.49    |  |  |
| 34.38°                  | 0.6     |  |  |
| 120.32°                 | 2.1     |  |  |
| 179.91°                 | 3.14    |  |  |
| <b>57</b> . <b>30</b> ° | 1       |  |  |
|                         |         |  |  |

3. Complete the writing down all digits on your calculator display.

| x (rads)  | 1           | 0.1               | 0.01           | 0.001           | 0.0001                 |
|-----------|-------------|-------------------|----------------|-----------------|------------------------|
| $\sin(x)$ | 0.8414<br>7 | 0.099<br>8334<br> | 0.00999<br>983 | 0.00099<br>9999 | 0.0000<br>999999<br>99 |

4. Find the values of all the labelled angles within these regular polygons in radians.



# What is phase?

- We can describe how far into the wave cycle we are using the idea of phase
- Phase is measured as an angle
- A full cycle corresponds to an angle of 360° or  $2\pi$  radians



# **Phase difference**

- Expressed as an angle
- It could be the phase difference between two different points on the same wave (A)
- or between two different waves(B)



### What is the phase difference between wave A and wave B?



### HINT

- By how much of one cycle does one wave lead the other?
- What fraction of one circle is this?
- How many radians is this?

### What is the phase difference between wave A and wave B?



The waves are completely in phase Phase difference = 0

Wave B leads A by  $\frac{1}{4}$  of a cycle Phase difference =  $\frac{\pi}{2}$ 

Wave A leads B by  $\frac{1}{4}$  of a cycle Phase difference =  $\frac{\pi}{4}$  x 360° =  $\frac{\pi}{2}$ 

Wave A leads B by  $\frac{1}{2}$  of a cycle Phase difference =  $\frac{1}{2}$  x  $360^{\circ}$  =  $\pi$ 

### **HINT**

- By how much of one cycle does one wave lead the other?
- What fraction of one circle is this?
- How many radians is this?

### What is the phase difference between wave A and wave B?





The graph shows, at a particular instant, the variation of the displacement of the particles in a transverse progressive water wave, of wavelength 4 cm, travelling from left to right. Which one of the following statements is **not** true?

A The distance PS = 3 cm.

B The particle velocity at Q is a maximum.

C The particle at S is moving downwards

D Particles at P and R are in phase.



The graph shows, at a particular instant, the variation of the displacement of the particles in a transverse progressive water wave, of wavelength 4 cm, travelling from left to right. Which one of the following statements is **not** true?

A The distance PS = 3 cm.

down

- B The particle velocity at Q is a maximum.
- C The particle at S is moving downwards
- D Particles at P and R are in phase.

Two points on a progressive wave differ in phase by  $\frac{\pi}{4}$ . The distance between them is 0.5 m, and the frequency of the oscillation is 10 Hz. What is the minimum speed of the wave?

- **A**  $0.2 \text{ m s}^{-1}$
- C 10 m s<sup>-1</sup>
- **C** 20 m s<sup>-1</sup>
- **D** 40 m s<sup>-1</sup>

Two points on a progressive wave differ in phase by  $\frac{\pi}{4}$ . The distance between them is 0.5 m, and the frequency of the oscillation is 10 Hz. What is the minimum speed of the wave?

- **A** 0.2 m s<sup>-1</sup>
- C 10 m s<sup>-1</sup>
- **C** 20 m s<sup>-1</sup>
- **D** 40 m s<sup>-1</sup>

### Kerboodle 4.2

### **Summary questions**

- 1 Sound waves in air travel at a speed of 340 m s<sup>-1</sup> at 20 °C. Calculate the wavelength of sound waves in air which have a frequency of **a** 3400 Hz **b** 18 000 Hz.
- Figure 5 shows a waveform on an oscilloscope screen when the y-sensitivity of the oscilloscope was 0.50 V cm<sup>-1</sup> and the time base was set at 0.5 ms cm<sup>-1</sup>. Determine the amplitude and the frequency of this waveform.
- 4 a For the waves in Figure 4, measure
  - i the amplitude and the wavelength
  - ii the phase difference between P and R
  - iii the phase difference between P and S.
  - b What would be the displacement and direction of motion of Q three-quarters of a period after the last snapshot?



### Finished? Try these Isaac Physics questions:

https://isaacphysics.org/questions/waving\_along & https://isaacphysics.org/questions/electromagnetic\_frequencies

# Kerboodle 4.2

### Summary questions

- Sound waves in air travel at a speed of 340 m s<sup>-1</sup> at 20 °C. Calculate the wavelength of sound waves in air which have a frequency of **a** 3400 Hz **b** 18 000 Hz.
- 3 Figure 5 shows a waveform on an oscilloscope screen when the y-sensitivity of the oscilloscope was 0.50 V cm<sup>-1</sup> and the time base was set at 0.5 ms cm<sup>-1</sup>. Determine the amplitude and the frequency of this waveform.
- 4 a For the waves in Figure 4, measure
  - i the amplitude and the wavelength
  - ii the phase difference between P and R
  - iii the phase difference between P and S.
  - b What would be the displacement and direction of motion of Q three-quarters of a period after the last snapshot?



#### Finished? Try these Isaac Physics questions:

https://isaacphysics.org/questions/waving\_along & https://isaacphysics.org/questions/electromagnetic\_frequencies



For more explanation of phase look at the following:

- Phase and Phase difference A level physics online video
- Kerboodle Animation: Radians and phase difference
- Collins 5.2, Looking in detail at waves, p. 87-88

# **Consolidation**

### Practice questions:

- Q1b Interpreting progressive waves
- <u>Q2a ZigZag Summary Questions</u> (skip Q6)
- ESQ 01 Waves from SharePoint
- ESQs Waves Basics from Exampro

Something to try at home (optional):

L1 Measuring the speed of waves in water.

| A neutrino walks through a bar. |  |  |  |  |
|---------------------------------|--|--|--|--|
|                                 |  |  |  |  |
|                                 |  |  |  |  |
|                                 |  |  |  |  |
|                                 |  |  |  |  |
|                                 |  |  |  |  |
|                                 |  |  |  |  |
|                                 |  |  |  |  |
|                                 |  |  |  |  |
|                                 |  |  |  |  |
|                                 |  |  |  |  |
|                                 |  |  |  |  |