

Dato un alfabeto \sum , si definisce espressione regolare di \sum una stringa R rappresentante un linguaggio $L(R)\subseteq \sum^*$. Quindi ogni espressione regolare R è in verità il linguaggio L(R) ad essa associata. Le **espressioni regolari (regex)** non sono solo delle stringhe con simboli speciali, ma in **teoria della computazione** sono una notazione compatta per descrivere un **linguaggio formale**, cioè un insieme di stringhe costruite su un alfabeto Σ .

Ogni espressione regolare R corrisponde ad un linguaggio L(R).

Costruzione delle espressioni regolari

L'insieme delle espressioni regolari su un alfabeto Σ , indicato con $re(\Sigma)$, si definisce induttivamente:

Casi base

- $\emptyset \in re(\Sigma)$
 - Linguaggio vuoto: $L(\emptyset) = \{\}$
- $\varepsilon \in re(\Sigma)$
 - ullet Linguaggio contenente solo la stringa vuota: L(arepsilon)=arepsilon
- $a \in re(\Sigma)$ con $a \in \Sigma$
 - Linguaggio con la stringa "a": L(a)=a

Costruzioni induttive (operazioni sui linguaggi)

Se $R1,R2 \in re(\Sigma)$, allora:

- Unione: $R1 \cup R2 \in re(\Sigma)$
 - ullet Linguaggio: $L(R1 \cup R2) = L(R1) \cup L(R2)$ e significa "o R1 o R2"
- Concatenazione: $R1 \circ R2 \in re(\varSigma)$
 - Linguaggio: $L(R1\circ R2)=xy\mid x\in L(R1), y\in L(R2)$ e significa "prima R1, poi R2" Se $R\in re(\Sigma)$, allora:
- Star (Kleene star): $R^* \in re(\varSigma)$
 - ullet Linguaggio: $L(R*)=arepsilon, ww, ww, www, \dots \mid w\in L(R)$ e significa "zero o più ripetizioni di R"
- ullet Plus (Kleene plus): $R^+ \in re(arSigma)$
 - Linguaggio: $L(R^+) = L(R) \circ L(R^*)$ e significa "una o più ripetizioni di R"

Classi dei linguaggi descritti da esp. reg.

Dato un alfabeto Σ , definiamo come classe dei linguaggi di Σ descritti da un'espressione regolare il seguente insieme:

$$L(re) = L \subseteq \Sigma^* | \exists R \in re(\Sigma) t.c. L = L(R)$$