Университет ИТМО

Цифровая обработка сигналов Лабораторная работа №1

Вариант 3

Выполнила: Калугина Марина

Группа: Р3402

г. Санкт-Петербург

2020 г.

Задание

Цель работы - определение возможностей метода когерентного накопления для случаев стационарного и квазистационарного сигнала.

Пусть на входе системы наблюдается смесь полезного сигнала и случайного белого шума (т.е. шума с равномерным распределением спектральной плотности). Сигнал является стационарным и описывается от выборки к выборке неизменной функцией (например, является синусоидальным сигналом постоянной частоты и с постоянной начальной фазой). При этом на входе шум по своей амплитуде в несколько раз превышает амплитуду сигнала. Путем когерентного накопления входной смеси для ряда выборок удается увеличить соотношение сигнал/шум.

- 1. По результатам моделирования построить зависимости:
- а) соотношения сигнал/шум в выходной смеси от длительности накопления, т.е. числа накапливаемых выборок при неизменном соотношении сигнал/шум на входе; (число выборок накопления варьируется)
- б) соотношения сигнал/шум на выходе от соотношения сигнал/шум на входе для фиксированного числа выборок (M = 10, 25, 50) (SNR на входе варьируется)
- 2. Повторить п.1 для случая квазистационарного сигнала.
- В качестве полезного сигнала задать прямоугольный импульс постоянной длительности, смещение которого от начала отсчета меняется от выборки к выборке по линейному закону.
- 3. Разработать функциональную схему устройства, выполняющего фильтрацию сигналов методом накопления.

№ варианта	Вид сигнала	Соотношение сигнал/шум	Число циклов накопления	Пределы изменения соотношения сигнал/шум
3	Сумма двух гармонических сигналов	0.1	До 200	0,1-3

Выполнение

Стационарный сигнал

Соотношение сигнал/шум в выходной смеси от длительности накопления, т.е. числа накапливаемых выборок при неизменном соотношении сигнал/шум на входе;

М	SNR out
10	1,0361
20	1,7618
30	1,908
40	1,9687
50	2,3804
60	2,4053
70	2,7306
80	2,727
90	2,91
100	3,3442
110	3,4347
120	4,1073
130	3,5295
140	3,7175
150	3,9081
160	4,346
170	4,3436
180	4,1191
190	4,2235
200	4,459

SNR out относительно параметра "M"

Соотношение сигнал/шум на выходе от соотношения сигнал/шум на входе для фиксированного числа выборок (M = 10, 25, 50) (SNR на входе варьируется)

SNR in	SNR out M10	SNR out M25	SNR out M50
0,1	1,1787	1,4277	2,1795
0,3	3,0756	4,497	6,3243
0,45	5,0085	6,0118	9,3694
0,6	5,675	8,4792	12,6278
0,75	6,7345	10,8364	13,681
0,9	8,6993	11,2311	14,7146
1,05	8,8524	13,6494	16,346
1,2	9,1985	12,9214	16,4313
1,35	9,1002	13,5385	15,9897
1,5	9,7333	13,3475	15,8419
1,65	10,1427	12,5891	16,6354
1,8	10,6581	13,18	15,7
1,95	10,0224	14,3004	16,2138
2,1	14,9196	20	23,9972
2,25	16,0384	21,2458	23,8297
2,4	15,3658	20,5515	24,1911
2,55	15,9708	20,5939	25,3599
2,7	15,07	20,1198	25,3043
2,85	16,5188	20,1711	24,4707
3	18,2102	24,5254	27,9449

SNR out M10, SNR out M25 и SNR out M50

Квазистационарный сигнал

Соотношение сигнал/шум в выходной смеси от длительности накопления, т.е. числа накапливаемых выборок при неизменном соотношении сигнал/шум на входе;

M		SNR out
	10	0,9598
	20	1,0858
	30	0,8895
	40	0,9281
	50	0,9251
	60	1,1706
	70	1,0515
	80	0,9169
	90	0,9258
	100	0,9456
	110	1,0251
	120	1,0478
	130	0,988
	140	0,9477
	150	0,9911
	160	1,0053
	170	1,0287
	180	0,9993
	190	0,9573
	200	1,0332

SNR out относительно параметра "M"

Соотношение сигнал/шум на выходе от соотношения сигнал/шум на входе для фиксированного числа выборок (M = 10, 25, 50) (SNR на входе варьируется)

SNR in	SNR out M10	SNR out M25	SNR out M50
0,1	1,1167	0,9149	1,0144
0,3	1,91	0,9875	0,9935
0,45	2,1174	1,0112	0,9953
0,6	2,2025	1,0229	1,0034
0,75	2,255	1,0179	1,0028
0,9	2,2675	1,0171	0,9938
1,05	2,3503	1,0091	0,996
1,2	2,3507	1,0227	1,0042
1,35	2,4109	1,0164	0,9959
1,5	2,3684	1,0087	0,9969
1,65	2,4213	1,0214	0,9943
1,8	2,3146	1,0149	0,9988
1,95	2,3175	1,0242	1,0071
2,1	2,4853	1,02	1,0011
2,25	2,4845	1,0157	0,9991
2,4	2,4819	1,0216	1,0006
2,55	2,5034	1,0216	1,0013
2,7	2,4565	1,0183	0,9997
2,85	2,471	1,0221	0,9983
3	2,5504	1,0172	0,999

SNR out M10, SNR out M25 и SNR out M50

Схема устройства

Вывод

Для стационарного сигнала увеличение размера выборки приводит к улучшению отношения сигнала к шуму, для квазистационарного данный метод не подходит.