Estudo de Caso:

Identificação de Defeitos em Placas de Aço

ASA 2023 Ludmila Dias

Panorama Geral

Objetivo

Encontrar insights a partir dos dados e auxiliar a identificar se o defeito encontrado na placa é do tipo O ou do tipo 1.

Solução Propósta

Modelo de aprendizado supervisionado de Regressão Logística.

Etapas do Processo

01

Importação e Análise dos dados

02

Tratamento de Dados

- Dados Nulos
- Dados Incorretos
- Outliers

03

Encoding

04

Separação de Lotes e Treinamento do modelo

05

Avaliação do Modelo

06

Grid-Search

Importação e Análise dos Dados

Leitura de Dados

Descrição sobre cada coluna de acordo com a documentação. Com exceção de 'slab_thickness' que não foi relatado sobre

- min_x_defect Coordenada x inicial do defeito
- max_x_ defect Coordenada x final do defeito
- min_y_ defect Coordenada y inicial do defeito
- max_y_ defect Coordenada y final do defeito
- · area_pixels Total de pixels presentes na placa
- slab_width Largura da placa (eixo X)
- slab_length Comprimento da placa (eixo Y)
- slab_thickness Grossura ou Densidade da placa (?)
- sum_pixel_luminosity Soma da luminosidade dos pixels
- min_pixel_luminosity Mínima luminosidade dos pixels
- max_pixel_luminosity Máxima luminosidade dos pixels
- conveyer_width Largura da esteira (correia) transportadora (eixo X)
- type_of_steel Identifica a classe do aço: pode pertencer à classe A300 ou A400
- defect_type Tipo de defeito da classe. Pode ser do tipo 0 ou do tipo 1.

Características das Colunas

CSV Importado

defect_type	2
type_of_steel	4
slab_thickness	23
conveyer_width	75
max pixel luminosity	84
min pixel luminosity	115
slab length	142
slab width	151
area pixels	420
min x defect	705
max x defect	706
sum pixel luminosity	951
min y defect	966
max y defect	966
dtype: int64	

min_x_defect	max_x_defect	min_y_defect	max_y_defect	area_pixels	slab_width	slab_length	sum_pixel_luminosity	min_pixel_luminosity	max_pixel_luminosity	conveyer_width
38.0	49.0	735612.0	735624.0	113.0			12652.0	93.0	130.0	1707.0
1252.0	1348.0	355940.0	356016.0	1812.0	119.0	135.0	196003.0	NaN	132.0	1687.0
193.0		612201.0	612252.0	588.0	18.0		62182.0	73.0	135.0	1353.0
1159.0	1170.0	32914.0	32926.0	106.0			12792.0	100.0	134.0	1353.0
366.0	392.0	228379.0	228429.0		46.0			103.0		1687.0
837.0	850.0	231429.0	231443.0	155.0	13.0	14.0	16093.0	55.0	134.0	1687.0
390.0		2513153.0	2513182.0			29.0	26419.0	NaN	126.0	1387.0
1351.0	1360.0	4807459.0	4807479.0	135.0			13096.0	NaN	109.0	1387.0
1325.0	1336.0	4848223.0	4848269.0	376.0			37703.0	NaN		1387.0
542.0	564.0	51943.0	51952.0	132.0	32.0	20.0	14760.0	104.0	119.0	1227.0

Como podemos ver acima, temos valores numéricos, categóricos string e o nosso target é binário. No dataframe acima já podemos ver que existem valores nulos, que devem ser tratados antes do treinamento.

Tratamento de Dados Dados Incorretos

Só há dois valores possíveis para essa coluna

Verificando quantos valores com '???' haviam (9 linhas)

max v defect	area pixels	slab width	slab length	sum pixel luminosity	min pixel luminosity	max pixel luminosity	convever width	slab thickness	type of steel	de
310597.0	335.0	39.0	31.0	35066.0	NaN	127.0	1690.0		TypeOfSteel_????	
335000.0	101.0	12.0	12.0	11471.0	NaN	140.0	1690.0	70.0	TypeOfSteel_????	
643193.0	124.0	17.0	13.0	13135.0	NaN	127.0	1686.0	70.0	TypeOfSteel_????	
1928773.0	192.0	24.0	32.0	19002.0	NaN	125.0	1688.0	70.0	TypeOfSteel_????	
3277821.0	91.0	15.0	17.0	10957.0	105.0	141.0	1658.0	100.0	TypeOfSteel_????	
46725.0	56.0	11.0	11.0	5729.0	NaN	117.0	1362.0	70.0	TypeOfSteel_????	
224035.0	83.0	18.0	31.0	7446.0	71.0	108.0	1360.0	70.0	TypeOfSteel_????	
226495.0	187.0	20.0	21.0	13351.0	49.0	101.0	1362.0	200.0	TypeOfSteel_????	
2278020.0	46.0	10.0	8.0	5003.0	95.0	127.0	1354.0	80.0	TypeOfSteel_????	

Tratamento de Dados Dados Incorretos

```
df.loc[df["type of steel"] == 'TypeOfSteel ????', "type of steel"] = None
df.loc[df["type of steel"].isna()]
df = df.dropna(subset=['type of steel'])
```

Excluindo as 9 linhas incorretas

Sobrescrevendo valores escritos incorretamente e verificando os valores atuais do dataframe

```
df.loc[df["type of steel"] == 'TypeOfStel A300', ["type of steel"]] ='TypeOfSteel A300'
df["type of steel"].unique()
array(['TypeOfSteel A300', 'TypeOfSteel A400'], dtype=object)
```

Tratamento de Dados Dados Nulos

```
print(df.isna().sum(axis=0))
min x defect
max x defect
min y defect
max y defect
area pixels
                          0
slab width
                          0
slab length
                          0
sum pixel luminosity
                          0
min pixel luminosity
                        233
max pixel luminosity
                          0
conveyer width
                          0
slab thickness
                          0
type of steel
defect type
dtype: int64
```

Verificando qual coluna possui dados nulos

233 linhas de dados nulos

Formas de Resolver:

- Substituir o valor pela média dos valores da coluna
- Substituir o valor pela mediana
- Substituir o valor pelos valores mais frequentes

```
[ ] df.loc[df.isna().sum(axis=1) > 0, :]
```

Tratamento de Dados Dados Nulos

Valores após serem preenchidos

min pixel luminosity type of steel 77.0 TypeOfSteel A300 104.0 TypeOfSteel A400 104.0 TypeOfSteel A400 104.0 TypeOfSteel_A400 104.0 TypeOfSteel A400 11 77.0 TypeOfSteel A300 901 77.0 TypeOfSteel_A300 77.0 TypeOfSteel_A300 905 77.0 TypeOfSteel A300 907 77.0 TypeOfSteel_A300 233 rows x 2 columns

Altera valores nulos por valores frequentes de sua categoria

```
from sklearn.impute import SimpleImputer

classes = df['type_of_steel'].unique()

for classe in classes:
    subset = df[df['type_of_steel'] == classe]
    simp = SimpleImputer(strategy='most_frequent')
    subset = simp.fit_transform(subset)
    df.loc[df['type_of_steel'] == classe] = subset
```


	min_x_defect	max_x_defect	min_y_defect	<pre>max_y_defect</pre>	area_pixels	slab_width	slab_length
345	889.0	921.0	12438460.0	12438491.0	699.0	38.0	32.0
346	1094.0	1124.0	12806495.0	12806520.0	571.0	37.0	25.0
548	1135.0	1162.0	12416454.0	12416473.0	305.0	33.0	27.0

Linha 345:

max_y_defect em micrometros ->12.438491 Min_x_defect em micrometros -> 12.43846

> A variação nos valores é muito pequena, em micrômetro esse valor fica mais notório

Exemplo: 37.334 (maior área de pixels) x 252 (maior valor de luminosidade) = 9.408.168 Esse seria um valor máximo hipotético. E o outlier apresentado na coluna abaixo é de aprox. 3M. Podendo ser um valor possível.

conveyer width

3M < 9M

Correlação do comprimento e largura

Correlação da largura da placa com a área de pixels

Correlação da soma da luminosidade e área de pixels

Encoding Ordinal Encoder

```
[ ] from sklearn.preprocessing import OrdinalEncoder
    ord_enc = OrdinalEncoder(dtype=int)
    ord_enc.fit(df[['type_of_steel']])

    df_enc = df.copy()
    df_enc[['type_of_steel']] = ord_enc.transform(df[['type_of_steel']])
    df_enc
```

type_of_steel	
0	
0	
1	
1	
1	
1	
1	
1	
1	
0	

Separação de Lotes e Treinamento do modelo Lotes de Treino e Teste (Folds)

```
from sklearn.model selection import StratifiedKFold
def split data(df enc, N folds = 5):
 # Escolha do número de folds
 N \text{ folds} = 5
 # Criação do Splitter
 splitter = StratifiedKFold(
      n splits=N folds,
      random state=38,
      shuffle=True)
 # Separar X do y
 df sem y = df enc.copy().drop(columns='defect type')
 df y = df enc.copy()['defect type'].to frame()
 return splitter, df sem y, df y
```

Separa os dados em lotes e em conjuntos de treino e de teste

Cria o Splitter e separa o target do resto do df

```
N \text{ folds} = 5
splitter, df sem y, df y = split data(df enc, N folds)
# Listas para armazenar os grupos da validação cruzada
X train fold = []
y train fold = []
X test fold = []
y test fold = []
for index train, index test in splitter.split(df sem y, df y):
  X train = df sem y.iloc[index train]
  y train = df y.iloc[index train]
  X test = df sem y.iloc[index test]
  y test = df y.iloc[index test]
  # adicionar na lista
  X train fold.append(X train)
  y train fold.append(y train)
  X test fold.append(X test)
  y test fold.append(y test)
```

Separação de Lotes e Treinamento do modelo

Treino do Modelo com Validação Cruzada

```
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy score, f1 score, precision score, recall score
from sklearn.linear model import LogisticRegression
# dicionário que vai conter as métricas do treino
train metrics = {
    'accuracy': [],
    'recall': [],
# dicionário que vai conter as métricas do teste
test metrics = {
    'accuracy': [],
    'recall': [],
    'precision': [],
# Listas para guardar as previsões feitas pro grupo de treino e teste
y hat train fold = []
y hat test fold = []
y hat test proba fold = []
# Execução para cada lote
for fold in range(N folds):
  # Recuperando os dados desse fold específico
  X train = X train fold[fold]
  X test = X test fold[fold]
  y train = y train fold[fold]
  y test = y test fold[fold]
```

```
# Criando o scaler aqui dentro para só escalar nos dados de treino
x_scaler = StandardScaler()
x_scaler.fit(X_train)

# Aplicar a normalização
X_train_norm = x_scaler.transform(X_train)
X_test_norm = x_scaler.transform(X_test)

# Treino do modelo
model = LogisticRegression(
    fit_intercept=False,
    random_state=38
)
model.fit(X_train_norm, y_train.iloc[:,0])
```

Separação de Lotes e Treinamento do modelo

Treino do Modelo com Validação Cruzada

```
v hat train = model.predict(X train norm)
y hat test = model.predict(X test norm)
y hat proba test = model.predict proba(X test norm)[:,1]
# Salvar previsões para o conjunto de treino
y hat train fold.append(y hat train)
y hat test fold.append(y hat test)
y hat test proba fold.append(y hat proba test)
# Calcular métricas do treino
acc = accuracy score(y train, y hat train)
train metrics['accuracy'].append(acc)
rec = recall score(y train, y hat train)
train metrics['recall'].append(rec)
precision = precision score(y train, y hat train)
train metrics['precision'].append(precision)
f1 = f1 score(y train, y hat train)
train metrics['f1'].append(f1)
# Calcular métricas do teste
acc = accuracy score(y test, y hat test)
test metrics['accuracy'].append(acc)
rec = recall score(y test, y hat test)
test metrics['recall'].append(rec)
precision = precision score(y test, y hat test)
test metrics['precision'].append(precision)
f1 = f1 score(y test, y hat test)
test metrics['f1'].append(f1)
```

Salvando predições e resultado das métricas (Rec, Precision, Acc, F1)

Avaliação do Modelo Métricas de treino e teste

Média dos valores

	Treino	Teste
accuracy	0.670	0.656
recall	0.766	0.754
precision	0.540	0.527
f1	0.634	0.620

٠	Métricas do Treino								
[]] df_train_metrics = pd.DataFrame(train_metrics) df_train_metrics								
		accuracy	recall	precision	f1				
	0	0.673629	0.761404	0.543860	0.634503				
	1	0.677546	0.800000	0.545455	0.648649				
	2	0.665796	0.744755	0.537879	0.624633				
	3	0.662321	0.762238	0.533007	0.627338				
	4	0.671447	0.762238	0.542289	0.633721				
[]	<pre>df_train_metrics = df_train_metrics.mean(axis=0) df_train_metrics</pre>								
	accuracy recall precision f1 dtype: floate		0.766127 0.540498 0.633769						

	test_metri test_metri		ataFrame(te	est_metric	s)
	accuracy	recall	precision	f1	
0	0.625000	0.736111	0.500000	0.595506	
1	0.671875	0.694444	0.549451	0.613497	
2	0.656250	0.788732	0.523364	0.629213	
3	0.659686	0.788732	0.528302	0.632768	
4	0.664921	0.760563	0.534653	0.627907	
	test_metri test_metri		est_metrics	.mean(axi	s=0)
rec pre f1	uracy all cision pe: floate	0.753717 0.527154 0.619778			

Acurácia: Cerca de 65% das vezes ele previu certo em cima de todas as suas previsões.

Recall: Cerca de 75% por cento do que ele deveria ter acertado, ele acertou.

Precisão: Mais de 50 % das vezes que ele tentou acertar ele acertou

F1: Avalia o equilíbrio no Recall e na precisão, possui

um valor de desempenho acima de 60%.

/erdadeiro

Avaliação do Modelo Matriz de Confusão

```
v test list = []
for y fold in y test fold:
 y test list.extend(y fold.iloc[:,0])
y hat test list = []
for lista fold in y hat test fold:
 y hat test list.extend(lista fold)
y test hat proba list = []
for lista fold in y hat test proba fold:
 y test hat proba list.extend(lista fold)
confusion matrix = pd.DataFrame(
   sklearn.metrics.confusion matrix(y test list, y hat test list),
   index=['Defeito 0', 'Defeito 1'],
   columns=['Defeito 0', ' Defeito 1'],
display(confusion matrix.style.background gradient(axis=None))
          Defeito 0 Defeito 1
Defeito 0
                359
Defeito 1
                 88
                           269
```

Ajuste do threshold

```
import numpy as np
# Lista de thresholds
thresholds = np.arange(0.01, 0.95, 0.01)
f1 scores = []
for threshold in thresholds:
  y pred th = (y test hat proba list > threshold).astype(int)
  f1 = f1 score(y test list, y pred th)
  f1 scores.append(f1)
optimal threshold = thresholds[np.argmax(f1 scores)]
print("Limiar de Decisão Ótimo:", optimal threshold)
Limiar de Decisão Ótimo: 0.45
```

Avaliação do Modelo Matriz de Confusão

Verdadeiro

{ Grid-Search

'C': Parâmetro que controla a força da regularização, sendo valores menores mais fortemente regularizados e valores maiores menos regularizados.

'penalty': Especifica o tipo de regularização, com 'l2' indicando a penalização dos coeficientes quadrados para evitar overfitting.

'class_weight': Atribui pesos às classes, sendo 'balanced' útil para lidar automaticamente com desbalanceamento proporcional às frequências das classes

```
from sklearn.model_selection import train_test_split

# Considere df como o seu DataFrame
X = df_enc.drop('defect_type', axis=1)
y = df_enc['defect_type']

# Dividir os dados em conjuntos de treinamento e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
y_train = y_train.ravel()
y_test = y_test.ravel()
```

 Transformando dados em arrays de 1 dimensão

Grid-Search

```
from sklearn.model selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy score, f1 score, precision score, recall score
from sklearn.linear model import LogisticRegression
# Criando o scaler aqui dentro para só escalar nos dados de treino
x scaler = StandardScaler()
x scaler.fit(X train)
# Aplicar a normalização
X train norm = x scaler.transform(X train)
# Treinar o modelo
model = LogisticRegression(
   random state=38,
   max iter=1000
param_grid = {'C': [ 0.001, 0.01, 0.1, 1, 10, 100, 500, 800, 1000],
              'penalty': ['12'],
              'class weight': [None, 'balanced']
grid search = GridSearchCV(model, param grid, cv=5, scoring='f1')
grid search.fit(X train norm, y train)
best params = grid search.best params
best params
{'C': 500, 'class weight': 'balanced', 'penalty': 'l2'}
```

```
# Treinar o modelo
model = LogisticRegression(
    fit_intercept=False,
    random_state=38,
    C=500,
    class_weight='balanced',
    penalty='l2'
)
model.fit(X_train_norm, y_train.iloc[:,0])
```

	Treino	Teste
accuracy	0.684	0.668
recall	0.810	0.785
precision	0.552	0.538
f1	0.657	0.638

Valores depois do GS

Valores antes do GS

	Treino	Teste
accuracy	0.670	0.656
recall	0.766	0.754
precision	0.540	0.527
f1	0.634	0.620

Questão 1

Questão 1:

O modelo construído será utilizado para reduzir o erro na hora da classificação do defeito. Sabe-se que:

- Cada acerto do modelo significa um custo de 500 reais para a recuperação da placa;
- Identificar o defeito 0 incorretamente como defeito 1 gera um custo de 500 reais para recuperação da placa mais um custo de 3500 reais por conta do custo logístico de ter enviado a placa para o tratamento incorreto;
- Identificar o defeito 1 incorretamente como defeito 0 gera um custo de 500 reais para a recuperação da placa. Além disso, há também um custo de 6213 reais por conta do erro logístico de ter enviado a placa para o tratamento incorreto, sabendo que o tratamento do defeito 1 ocorre numa etapa do processo anterior ao do defeito 0.

Em posse dessas informações, qual seria o custo total do processo com o uso em produção do modelo desenvolvido? Deixe bem claro todo o passo a passo utilizado para a obtenção do resultado.

)		D0	D1	
2	D0	500	500 + 3500	
5	D1	500 + 6213	500	

Predito

Questão 1

```
import numpy as np
from sklearn.metrics import confusion matrix
# Lista de threshold
thresholds = np.arange(0.01, 0.95, 0.01)
scores = []
# Para cada threshold gerado
for threshold in thresholds:
 y test th = (np.array(y test hat proba list) > threshold).astype(int)
  # Criação da matriz de confusão
  cm = pd.DataFrame(
      confusion matrix(y test list, y test th),
      index=['Defeito 0', 'Defeito 1'],
      columns=['Defeito 0', ' Defeito 1'],
  # Verifica a quantidade de acertos e erros, e calcula o valor de custo total
  total = (cm.iloc[0,0]*500)+(cm.iloc[0,1]*4000)+(cm.iloc[1,0]*6713)+(cm.iloc[1,1]*500)
  scores.append(total)
# Impressão do melhor threshold e o menor valor de custo
optimal_threshold = thresholds[np.argmin(scores)]
print("Limiar de Decisão Ótimo:", optimal threshold)
print("Menor Valor de custo:", np.min(scores), "reais")
Limiar de Decisão Ótimo: 0.45
Menor Valor de custo: 1814715 reais
```

Predito

/erdadeiro

Questão 2

Questão 2: Sem uma ferramenta mais tecnológica ao seu dispor, atualmente a distinção dos dois defeitos é feita de forma manual por um especialista. Para esse conjunto de dados específico, ele obteve os seguintes resultados:

- 350 placas com defeito tipo 0 foram identificadas corretamente;
- 256 placas com defeito tipo 0 foram identificadas como defeito tipo 1;
- · 161 placas com defeito tipo 1 foram identificadas corretamente;
- 200 placas com defeito tipo 1 foram identificadas como defeito tipo 0.

Conhecendo o custo de cada tipo de erro (conforme questão 1), qual seria a economia que a utilização do seu modelo traria para o processo? Deixe bem claro todo o passo a passo utilizado para a obtenção do resultado.

```
totalSemModelo = (350*500)+(256*4000)+(200*6713)+(161*500)
     totalComModelo = (cm.iloc[0,0]*500) + (cm.iloc[0,1]*4000) + (cm.iloc[1,0]*6713) + (cm.iloc[1,1]*500)
     print('Total SEM O MODELO:', totalSemModelo)
     print('\nTotal COM O MODELO:', totalComModelo)
     Total SEM O MODELO: 2622100
     Total COM O MODELO: 1814715
Sendo assim teria uma economia financeira de:
    print(f'{(((totalSemModelo-totalComModelo)*100)/totalSemModelo):.2f}%')
     print(f'{totalSemModelo-totalComModelo} reais')
     30.79%
     807385 reais
```

Obrigada pela Atenção!