Source reconstruction

Advanced cognitive neuroscience October 3 and October 5 2023

Learning goals

Learning

- what the ingredients of a forward model are
- how the forward model links sources of the brain to sensors, electrodes or magnetic sensors
- why the volume conductors needed for MEG and EEG respectively differ
- what co-registration of MRI and MEG amounts to

We want to go here:

Brain activation

But we only have magnetic fields and scalp potentials outside the brain...

Problem

Superposition of source activity

The problem in a nutshell

$$Y = WX$$

Y: the measured signal (magnetic field)

X: the neural generators

W: a weighting matrix (the leadfield)

Inverse modelling

inverse model (source reconstruction)

Forward modelling

Without a plausible forward model restricting the

IMPORTANT

solution space, an infinite number of inverse models could explain the data

Ingredients for a forward model

- A source model <u>src</u>
 - Telling us the origin of brain activity
- A volume conductor <u>bem</u>
 - Telling us how the volume currents spread on their way to the sensors <u>bem solution</u>
- Sensor positions <u>info</u>
 - Telling us *where* the sensors are relative to the sources

What do we see?

Source model examples

Restricted to the cortical surface

Volumetric grid

Volume conductor (head model)

An anatomical model that models the conductivities of different tissues bem

Electric conductivity

- How "allowing" a given material is in allowing an electrical potential of passing through
 - Think of an analogy
 - Throwing a ball under water versus throwing a ball in the air

Electrical Conductivity

Electrical Conductivity

Electrical Conductivity

Primary current: Magnetic field – does not depend on the medium (inside a spherical (!) conductor)

Volume conductor (head model)

For *EEG*, we need to model the brain, skull and scalp with different conductivities

Volume conductor (head model)

For MEG, the model can be much simpler since the magnetic field spreads homogeneously

(This is why MEG has better spatial resolution than EEG)

Sensor positions

- The MR-images and the helmet/electrode data will be represented in different coordinate systems
 - Thus, they have to be co-registered

Construct a head model based on the MRI

1. Nasion

Plot in fiducial points (these are acquired before recording)

- 1. Nasion
- 2. Left pre-auricular point

Plot in fiducial points (these are acquired before recording)

- 1. Nasion
- 2. Left pre-auricular point
- 3. Right pre-auricular point

Plot in fiducial points (these are acquired before recording)

- 1. Nasion
- 2. Left pre-auricular point
- 3. Right pre-auricular point

Plot extra head points (as seen on lab tour)

- 1. Nasion
- 2. Left pre-auricular point
- 3. Right pre-auricular point

Use an algorithm to minimize the distance between points and head shape. The MR and the MEG are now co-registered

Without co-registration With co-registration

Now we can create the forward model (leadfield)

The forward model models how each source in the source space *would* be seen by the sensors in the helmet, *given* that that source is active

forward model

and so on for each source in the source model ...

inverse model

Ill-posed problems and how we solve them

The minimum norm estimate

based on

Sekihara, K., Nagarajan, S.S., 2008. Adaptive Spatial Filters for Electromagnetic Brain Imaging. Springer Science & Business Media.

Equations

$$b(t) = \sum_{n=1}^{N} L(r_n) s(r_n, t)$$

 $m{b}(t)$: summed magnetic field measured over a time course t $m{L}(r_n)$: leadfield (forward model) for each of N sources, r $m{s}(r_n,t)$: source time courses for each of N sources, r as they develop over time t

Equations

$$b(t) = \sum_{n=1}^{N} L(r_n) s(r_n, t)$$

$$L_{v} = [L(r_1), L(r_2), ..., L(r_n)] \quad v_{vox}(t) = \begin{bmatrix} s(r_1, t) \\ s(r_2, t) \\ \vdots \\ s(r_n, t) \end{bmatrix}$$

$$b(t) = L_{v} v_{vox}(t)$$

Equations

$$b(t) = L_{v} v_{vox}(t)$$

if these were scalar variables, how would you isolate $\mathbf{v}_{vox}(t)$?

$$(Y = WX)$$

We cannot divide with matrices, but multiplying by the inverse is possible, e.g.

$$Y = X Z$$

$$X^{-1} Y = X^{-1} X Z$$

$$X^{-1} Y = I Z$$

$$X^{-1} Y = Z$$

 $Z = X^{-1}Y$

but L_v is an $M \times 3N$ matrix and M < 3N

(M= number of sensors, N= number of sources)

Is the inverse matrix of L_v then defined?

No, but the generalised inverse is L_{ν}^{\dagger}

$$\boldsymbol{L}_{\boldsymbol{V}}^{+} = \boldsymbol{L}_{\boldsymbol{V}}^{\boldsymbol{T}} [\boldsymbol{L}_{\boldsymbol{V}} \boldsymbol{L}_{\boldsymbol{V}}^{\boldsymbol{T}}]^{(-1)}$$

thus we can isolate $\mathbf{v}_{vox}(t)$ by multiplying both sides with the generalised inverse

$$b(t) = L_{v} v_{vox}(t)$$

and our estimate for $\mathbf{v}_{vox}(t)$ becomes:

$$\mathbf{v_{vox}^{\hat{}}}(t) = \mathbf{L_{v}^{T}}[\mathbf{L_{v}L_{v}^{T}}]^{(-1)}\mathbf{b}(t)$$

$$\mathbf{v}_{vox}(t) = \mathbf{L}_{v}^{T} [\mathbf{L}_{v} \mathbf{L}_{v}^{T}]^{(-1)} \mathbf{b}(t)$$

$$G = L_V L_V^T$$

$$\mathbf{v}_{vox}(t) = \mathbf{L}_{v}^{T} \mathbf{G}^{(-1)} \mathbf{b}(t)$$

G is square (306 x 306) so in principle invertible, but it is rank-deficient, because sensors see the same things

How can we make it invertible?

Regularisation

$$\mathbf{v_{vox}}(t) = \mathbf{L_v}^T (\mathbf{G} + \epsilon \mathbf{I})^{(-1)} \mathbf{b}(t)$$

 ϵ : a scalar

I: the identity matrix

and minimising the cost function is done by F:

$$F = \| \boldsymbol{b}(t) - \boldsymbol{L}_{\boldsymbol{V}} \boldsymbol{v}_{vox}(t) \|^{2} + \epsilon \| \boldsymbol{v}_{vox}(t) \|^{2}$$

Voila – the minimum norm estimate – optimising two constraints

$$F = \|\boldsymbol{b}(t) - \boldsymbol{L}_{\boldsymbol{V}} \boldsymbol{v}_{vox}^{\hat{}}(t)\|^{2} + \epsilon \|\boldsymbol{v}_{vox}^{\hat{}}(t)\|^{2}$$

Minimising the unexplained variance of the solution

Minimising the norm of the solution (less current is better than more current)