

FORMATO DE SYLLABUS Código: AA-FR-003 Macroproceso: Direccionamiento Estratégico Versión: 01 Fecha de Aprobación:

27/07/2023

Proceso: Autoevaluación y Acreditación

FACULTAD: Tecnológica PROYECTO CURRICULAR: Tecnología en Electrónica Industrial CÓDIGO PLAN DE ESTUDIOS: I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO NOMBRE DEL ESPACIO ACADÉMICO: SISTEMAS ELÉCTRICOS Y ELECTRÓNICOS DE POTENCIA Código del espacio académico: 7309 Número de créditos académicos: 2 HTD 2 HTC 2 HTA 2 Distribución horas de trabajo: Tipo de espacio académico: Asignatura х Cátedra NATURALEZA DEL ESPACIO ACADÉMICO: Obligatorio Obligatorio Electivo Electivo Intrínseco Básico Complementario Extrínseco CARÁCTER DEL ESPACIO ACADÉMICO: Teórico-Práctico Cuál: Teórico Práctico Otros: MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO: Presencial con Presencial Virtual Otros: Cuál:

II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS

El estudiante debe contar con fundamentos en circuitos eléctricos, electrónica analógica y digital, sistemas trifásicos, y principios de control. Es recomendable tener conocimientos en el uso de software de simulación (LTSpice, PSIM, MATLAB/Simulink) y habilidades para la programación de microcontroladores. Además, se espera un conocimiento básico en calidad de energía, protecciones eléctricas y sistemas de energía renovable.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

Los sistemas eléctricos y electrónicos de potencia son fundamentales para el funcionamiento eficiente y seguro de la automatización industrial en la era de la industria 4.0. Esta asignatura brinda al estudiante las herramientas necesarias para diseñar, implementar y gestionar convertidores de potencia aplicados al control de máquinas eléctricas, sistemas de energía distribuida e infraestructura de movilidad eléctrica. Su enfoque está alineado con estándares internacionales como ISA-95 e ISA/IEC 62443, promoviendo interoperabilidad, eficiencia energética y seguridad funcional.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Diseñar, simular e implementar sistemas electrónicos de potencia para el control de procesos industriales y aplicaciones energéticas, con base en el uso de dispositivos semiconductores, convertidores y estrategias de control seguras y eficientes.

Objetivos Específicos:

Analizar el comportamiento de sistemas de potencia en cargas lineales y no lineales.

incorporación de TIC

Diseñar convertidores CA-CC, CC-CA y variadores de velocidad para motores.

Evaluar la calidad de energía en redes industriales.

Integrar dispositivos semiconductores de última generación en convertidores.

Aplicar normas ISA para garantizar la interoperabilidad y la seguridad en sistemas de potencia.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de formación:

Implementar soluciones de electrónica de potencia bajo criterios de eficiencia, seguridad y sostenibilidad.

Aplicar principios de control en convertidores electrónicos y sistemas de propulsión industrial.

Analizar el impacto de los sistemas de potencia sobre la calidad de la energía.

Diseñar sistemas según estándares de interoperabilidad y ciberseguridad.

Resultados de Aprendizaje:

Modela y simula convertidores aplicados a procesos industriales.

Evalúa la calidad de la energía eléctrica en entornos de automatización.

Integra soluciones de potencia a sistemas industriales según normas ISA.

Documenta técnica y experimentalmente sus desarrollos electrónicos

VI. CONTENIDOS TEMÁTICOS

Fundamentos de potencia y calidad de energía

Potencia activa, reactiva y aparente en sistemas monofásicos y trifásicos

Distorsión armónica, THD, factor de potencia

Normas IEEE/IEC para calidad de energía

Análisis armónico mediante series de Fourier

Representación de señales no lineales

Aplicaciones en detección de fallas

Semiconductores de potencia y control

MOSFET, IGBT, SCR, SiC y GaN

Métodos de disparo y protección

Convertidores de potencia

CA-CC (rectificadores controlados y no controlados)

CC-CA (inversores tipo puente completo y modulado PWM)

Variadores de velocidad para motores de inducción y DC

Sistemas de energía ininterrumpida (UPS)

Topologías, aplicaciones, criterios de selección

Integración con sistemas industriales inteligentes

Aplicaciones en la industria 4.0

Control de motores en procesos industriales

Electrónica de potencia en energía renovable y movilidad eléctrica

Supervisión remota e interoperabilidad bajo ISA-95

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

La asignatura se desarrollará mediante estrategias de aprendizaje activo, combinando clases magistrales, simulaciones, laboratorios prácticos y proyectos integradores. Se promoverá el uso de herramientas digitales para el diseño, simulación y control de convertidores. Los estudiantes desarrollarán proyectos orientados a necesidades reales de la industria bajo criterios de eficiencia, seguridad e interoperabilidad.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con Simuladores de circuitos (PSIM, LTSpice, MATLAB/Simulink), Bancos de prueba con variadores, convertidores, motores y UPS, Instrumentación para mediciones de calidad de energía, Manuales técnicos y catálogos de semiconductores, Acceso a normas ISA, IEEE e IEC.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se podrán realizar visitas técnicas a subestaciones, empresas de automatización, o industrias con sistemas de energía renovable o control motriz avanzado. También se fomentará la participación en proyectos de energía distribuida y ferias tecnológicas.

XI. BIBLIOGRAFÍA

Rashid, M. (2013). Electrónica de Potencia. Prentice Hall

Mohan, N., Undeland, T., & Robbins, W. (2012). Power Electronics. Wiley

Hart, D. (2011). Power Electronics. Prentice Hall

Maloney, T. Electrónica Industrial. Prentice Hall

Gualda, J. Técnicas de Potencia. Ed. Paraninfo

ISA (2019). ISA-95 Enterprise-Control System Integration

ISA/IEC 62443 (2020). Security for Industrial Automation and Control Systems

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS Fecha revisión por Consejo Curricular: Fecha aprobación por Consejo Curricular: Número de acta: