ya que

$$|A + B| \le |A| + |B| \tag{8.7.13}$$

Después, usando (8.7.12) y (8.7.13) en (8.7.10), se obtiene

$$|e^a| \le 1 + |A| + \frac{|A|^2}{2!} + \frac{|A|^3}{3!} + \frac{|A|^4}{4!} + \dots = e^{|A|}$$

Puesto que |A| es un número real,  $e^{|A|}$  es finito. Esto muestra que la serie en (8.7.10) converge para cualquier matriz A.

Ahora se verá la utilidad de la serie en la ecuación (8.7.10).

## Teorema 8.7.1

Para cualquier vector constante  $\mathbf{c}$ ,  $\mathbf{x}(t) = e^{At}\mathbf{c}$  es una solución a (8.7.7). Más aún, la solución de (8.7.7) dada por  $\mathbf{x}(t) = e^{At}\mathbf{x}_0$  satisface  $\mathbf{x}(0) = \mathbf{x}_0$ .



## Demostración

Se calcula, usando (8.7.10):

$$\mathbf{x}(t) = e^{At}\mathbf{c} = \left[I + At + A^2 \frac{t^2}{2!} + A^3 \frac{t^3}{3!} + \cdots\right]\mathbf{c}$$
 (8.7.14)

Pero como A es una matriz constante, se tiene

$$\frac{d}{dt}A^{k}\frac{t^{k}}{k!} = \frac{d}{dt}\frac{t^{k}}{k!}A^{k} = \frac{kt^{k-1}}{k!}A^{k}$$

$$= \frac{A^{k}k^{k-1}}{(k-1)!} = \left[A^{k-1}\frac{t^{k-1}}{(k-1)!}\right]$$
(8.7.15)

Entonces, combinando (8.7.14) y (8.7.15) se obtiene (ya que c es un vector constante)

$$\mathbf{x}'(t) = \frac{d}{dt}e^{At}\mathbf{c} = A\left[I + At + A^2\frac{t^2}{2!} + A^3\frac{t^3}{3!} + \cdots\right]\mathbf{c} = Ae^{At}\mathbf{c} = A\mathbf{x}(t)$$

Por último, como  $e^{A.0} = e^{0} = I$ , se tiene

$$\mathbf{x}(0) = e^{A \cdot 0} \mathbf{x}_0 = I \mathbf{x}_0 = \mathbf{x}_0$$



## Definición 8.7.2

## Matriz solución principal

La matriz  $e^{At}$  se denomina la matriz solución principal o matriz exponencial del sistema  $\mathbf{x}' = A\mathbf{x}$ .

Todavía queda un problema importante (y obvio): ¿cómo se calcula  $e^{At}$  de manera práctica? Primero se darán dos ejemplos.