LAB3 CEG2136 ARITHMETIC LOGIC UNIT

PRELAB

Figure 3: Hierarchy of the files

OPTIONAL: A 4-bit register made from D Flip Flops. The Diagram is already provided in Figure 8 on page 6 of the lab manual.

Figure 8: Diagram of a 4-bit register

5.3.1 REQUIRED: Show a 1 bit Logic and Shift Circuit (logiccircuit1bit.bdf)

	_		-
S2	S1	S0	CL_i
0	0	0	$CL_i \leftarrow 0$
0	0	1	$CL_i \leftarrow 1$
0	1	0	$CL_i \leftarrow A_i \wedge B_i$
0	1	1	$CL_i \leftarrow A_i \vee B_i$
1	0	0	$CL_i \leftarrow A_i \oplus B_i$
1	0	1	$CL_i \leftarrow A_i \wedge \overline{B}$
1	1	0	$CL_i \leftarrow A_{i-1}$
1	1	1	$CL_i \leftarrow A_{i+1}$

Fig. 4: LSC_i incomplete logic diagram

5.3.2 REQUIRED: Show a 4-bits Logic and Shift Circuit (logiccircuit4bits.bdf)

lnst3

OPTIONAL: Show a 1-bit Full Adder (fulladder1bit.bdf). The diagram is already provided in Figure 9 on page 7 of the lab manual.

Figure 9: Logic diagram of a full adder (marked \sum in Fig. 6)

5.4.1 REQUIRED: Complete the Truth table for a 1-bit Arithmetic Circuit (AC or 1-bitfulladder) corresponding to Figure 5 on Page 4

Complete the following truth table with the corresponding values derived from Table 1.

Fig. 5: AC block diagram

5.4.2 REQUIRED: Two possible ways.

First Alternative (Not Efficient): Using two 8-to-1 multiplexers with S0,S1 and S2 as Select

5.4.2 REQUIRED (CONT.)

Second Alternative (Efficient): Using two 4-to-1 multiplexers with S2 and S1 as Select

5.4.3. REQUIRED. Equation for Cy (Can be obtained from K-maps for example)

5.4.4 REQUIRED. Complete block diagram for ACi

5.5 REQUIRED. Complete block diagram for Aci

Z=(C3 OR C2 OR C1 OR C0)' S=C3 Cy=S3 AND Cy_in V=Cy_in1 XOR Cy_in2

Bonus if there is an overflow here

Table 5: Sequence of micro-operations to simulate

Clock Cycle	RTL Micro-operations	S3	S2	S1	S0	op1 ← A	op2←B	С	V,Z,N,Cy	S16	A ₁₆	B ₁₆	C16	St ₁₆
1	$A \leftarrow$ "1010", $B \leftarrow$ "0011", $C \leftarrow A \land \overline{B}$	0	1	0	1	1010	0011	1000	1010					
2	$A \leftarrow$ "0110", $C \leftarrow a$ shl A	0	1	1	0	0110	xxxx	1100	0010					
3	$A \leftarrow "0011", B \leftarrow "0101", C \leftarrow A + B$	1	0	0	0	0011	0101	1000	1010					
4	$A \leftarrow$ "1100", $C \leftarrow A + 1$	1	0	1	1	1100	xxxx	1101	0010					
5	$A \leftarrow "0011", B \leftarrow "0101", C \leftarrow A \oplus B$	0	1	0	0	0011	0101	0110	0000					
6	$A \leftarrow$ "1010", $C \leftarrow \overline{A}$	1	1	1	0	1010	хххх	0101	0000					
7	<i>C</i> ←"0000"	0	0	0	0	XXXX	XXXX	0000	0100					
8	$A \leftarrow "0101", B \leftarrow "0011", C \leftarrow A + \overline{B} + 1$	1	1	0	1	0101	0011	0010	0001					
9	$A \leftarrow$ "1110", $C \leftarrow A$	1	0	1	0	1110	xxxx	1110	0010					
10	$A \leftarrow$ "0110", $C \leftarrow \overline{A} + 1$	1	1	1	1	0110	хххх	1110	0010					
11	$A \leftarrow "0101", B \leftarrow "0011", C \leftarrow A \wedge B$	0	0	1	0	0101	0011	0001	0000					
12	$A \leftarrow "0001", B \leftarrow "0010", C \leftarrow A + B + 1$	1	0	0	1	0001	0010	0100	0000					
13	$A \leftarrow$ "I 101", $C \leftarrow a$ shr A	0	1	1	1	1101	xxxx	1110	0010					
14	$A \leftarrow "0110", B \leftarrow "0101", C \leftarrow A + \overline{B}$	1	1	0	0	0110	0101	0000	0101					
15	<i>C</i> ←"1111"	0	0	0	1	XXXX	XXXX	1111	хххх					
16	$A \leftarrow "1100", B \leftarrow "1010", C \leftarrow A \vee B$	0	0	1	1	1100	1010	1110	0010					

Some students may use inverted S3 (i.e $0 \rightleftharpoons 1$) This is also corrected