STATS 217: Introduction to Stochastic Processes I

Lecture 7

Recap

The **inhomogeneous PPP** may be described infinitesimally by

- N(t) is the number of points in [0, t].
- $\mathbb{P}[\text{there is a point in } [t, t + dt]] = \lambda(t)dt \text{ i.e.,}$
 - $\mathbb{P}[N(t+\epsilon)-N(t)=0]=1-\lambda\epsilon+o(\epsilon).$
 - $\mathbb{P}[N(t+\epsilon)-N(t)=1]=\lambda\epsilon+o(\epsilon).$
 - $\mathbb{P}[N(t+\epsilon)-N(t)>1]=o(\epsilon),$

where $o(\epsilon)/\epsilon \to 0$ as $\epsilon \to 0$.

• The number of points in disjoint intervals are independent.

We saw that for any $0 \leq s \leq t$, $N(t) - N(s) \sim \mathsf{Pois}\left(\int_s^t \lambda(u) du\right)$.

Construction: $N(t) = N^{\text{hom}}(\Lambda(0, t))$ is an inhomogeneous PPP, where $N^{\text{hom}}(\cdot)$ is a (homogeneous) PPP with rate 1.

Homogeneous case: Taking $\lambda(t) \equiv \lambda$ gives a (homogeneous) PPP of rate λ , in which case the waiting (interarrival) times are i.i.d. $\text{Exp}(\lambda)$ (not true in the general inhomogeneous case).

Superposition of Poisson processes

Let $N_1(t), \ldots, N_k(t)$ be independent Poisson processes with rates $\lambda_1, \ldots, \lambda_k$.

- Then, $N_1(t) + \cdots + N_k(t)$ is a Poisson process with rate $\lambda_1 + \cdots + \lambda_k$.
- Why? Recall properties (P1), (P2), (P3) from last lecture.
- (P1) and (P3) are immediate.
- As for (P2), for any $s \le t$

$$egin{aligned} & N_1(t) + \dots + N_k(t) - (N_1(s) + \dots + N_k(s)) \ &= (N_1(t) - N_1(s)) + \dots + (N_k(t) - N_k(s)) \ &\sim \mathsf{Pois}(\lambda_1(t-s)) + \dots + \mathsf{Pois}(\lambda_k(t-s)) \ &\sim \mathsf{Pois}((\lambda_1 + \dots + \lambda_k)(t-s)). \end{aligned}$$

Poisson thinning

- Let $\{N(s)\}_{s>0}$ denote a Poisson process with rate λ .
- Let $\alpha_1, \alpha_2, \ldots$ denote the (random) "arrival times".
- Let Y_1, Y_2, \ldots denote a sequence of iid random variables.
- For each $j \in \text{supp}(Y_1)$, let $p_j = \mathbb{P}[Y_1 = j]$
- For each $j \in \text{supp}(Y_1)$, define

$$N_j(s) := |\{i \in \{1, 2, \dots, \lfloor N(s) \rfloor\} : Y_i = j\}|.$$

- Then,
 - $\{N_j(s)\}_{s\geq 0}$ is a Poisson process with rate $p_j\lambda$ and
 - $\{N_1(s)\}_{s\geq 0}, \{N_2(s)\}_{s\geq 0}, \dots$ are independent.

Poisson thinning

- Why? Can check by direct calculation, but for intuition, consider the case when Y ~ Ber(p).
- From the infinitesimal description, it is clear that $N_0(t)$ is a PPP with rate $(1-p)\lambda$ and $N_1(t)$ is a PPP with rate $p\lambda$.
- For independence, note that

$$\begin{split} &\mathbb{P}[\textit{N}_0 \text{ has a point in}[t,t+dt] \mid \textit{N}_1 \text{ has a point in}[t,t+dt]] \\ &= \frac{\mathbb{P}[\textit{N}_0 \text{ and } \textit{N}_1 \text{ have points in } [t,t+dt]]}{p\lambda dt} \\ &\approx (p\lambda dt)^{-1} \cdot \left(e^{-\lambda dt} \cdot \frac{(\lambda dt)^2}{2} \cdot (p(1-p) + (1-p)p) + o((\lambda dt)^2)\right) \\ &\approx (1-p)\lambda dt \\ &= \mathbb{P}[\textit{N}_0 \text{ has a point in } [t,t+dt]]. \end{split}$$

Poisson thinning

The analogous result also holds in the inhomogeneous case using the same argument.

- Let $\{N(s)\}_{s>0}$ denote an inhomogeneous PPP with rate $\lambda(s)$.
- Let $\{Y(s)\}_{s\geq 0}$ denote a collection of independent random variables, each with support $\{1,\ldots,k\}$.
- Let $\alpha_1, \alpha_2, \ldots$ denote the random arrival times.
- For $j = 1, \ldots, k$, define

$$N_j(s) := |\{i \in \{1, 2, \ldots, \lfloor N(s) \rfloor\} : Y(\alpha_i) = j\}|.$$

- Then,
 - $N_j(s)$ is an inhomogeneous PPP with rate $\lambda(s)\mathbb{P}[Y(s)=j]$.
 - $\{N_1(s)\}_{s>0}, \ldots, \{N_k(s)\}_{s>0}$ are independent processes

Example

Example 2.5 from Durrett. Given a Poisson process of red arrivals with rate λ and an independent Poisson process of green arrivals with rate μ , what is the probability that we will get 6 red arrivals before a total of 4 green ones?

- Equivalently, at least 6 red arrivals in the first 9.
- By thinning,

$$\sum_{k=6}^{9} \binom{9}{k} \left(\frac{\lambda}{\lambda+\mu}\right)^k \left(\frac{\mu}{\lambda+\mu}\right)^{9-k}.$$

Example

Example 2.4 from Durrett. Consider a model of telephone traffic in which the system starts empty at time 0. Suppose that the starting times of the calls is a Poisson process with rate λ and that the probability a call started at time s has ended by time t is G(t-s), where G is some CDF with G(0)=0 and mean μ . What is the distribution of the number of calls still in progress at time t?

- Call starting at time $\alpha \in [0, t]$ is kept with probability $(1 G(t \alpha))$.
- Therefore, by thinning, number of calls in progress at time *t* is Poisson with mean

$$\int_{s=0}^t \lambda (1-G(t-s))ds = \lambda \int_{r=0}^t (1-G(r))dr.$$

 \bullet Let $t\to\infty$ to see that in the long run, the number of calls in the system is Poisson with mean

$$\lambda \int_{r=0}^{\infty} \mathbb{P}(G \geq r) dr = \lambda \mu.$$

Lecture 7 STATS 217 8 / 12

Compound Poisson processes

Each of the 'thinned' Poisson processes is a special case of a **compound Poisson** process.

- Let $\{N(s)\}_{s>0}$ denote a Poisson process with rate λ .
- Let $\alpha_1, \alpha_2, \ldots$ denote the (random) "arrival times".
- Let Y_1, Y_2, \ldots denote a sequence of iid random variables. Let $Y_0 = 0$.
- Let

$$S(t) = Y_0 + Y_1 + \cdots + Y_{N(t)}.$$

- Then, $\mathbb{E}[S(t)] = \mathbb{E}[Y_1] \cdot \mathbb{E}[N(t)]$ by the same argument as for branching processes.
- Also, by the same argument as on this week's homework,

$$Var[S(t)] = \mathbb{E}[N(t)] \cdot Var(Y_1) + Var[N(t)] \cdot \mathbb{E}[Y_1]^2$$
.

Poisson conditioning

- Let $\{N(s)\}_{s>0}$ be a Poisson process with rate λ .
- Let $\alpha_1, \alpha_2, \ldots$, denote the (random) "arrival times".
- Conditioned on N(t) = n, what is the distribution of $\alpha_1, \ldots, \alpha_n$?
- It turns out that

$$\{\alpha_1,\ldots,\alpha_n\}\sim\{u_1,\ldots,u_n\},$$

where u_1, \ldots, u_n are iid uniformly distributed in [0, t].

Why? Again, this is intuitive from the infinitesimal description of the process.

Poisson conditioning

Formally,

$$\begin{split} & \mathbb{P}[\text{arrival times } \alpha_1, \dots, \alpha_n \mid \mathcal{N}(t) = n] \\ & = \mathbb{P}[\mathcal{N}(t) = n]^{-1} \mathbb{P}[W_1 = \alpha_1, \dots, W_n = \alpha_n - \alpha_{n-1}, W_{n+1} > t - \alpha_n] \\ & = \mathbb{P}[\mathcal{N}(t) = n]^{-1} \lambda e^{-\lambda \alpha_1} \cdot \dots \lambda e^{-\lambda(\alpha_n - \alpha_{n-1})} \cdot e^{-\lambda(t - \alpha_n)} \\ & = \mathbb{P}[\mathcal{N}(t) = n]^{-1} \cdot \lambda^n e^{-\lambda t}, \end{split}$$

which does not depend on $\alpha_1, \ldots, \alpha_n$.

Example: simulating a PPP

Here is a practical application of Poisson conditioning.

- How might one generate (on a computer) a PPP with rate λ in the time interval [0, t]?
- Poisson conditioning shows that we can do this in two easy steps.
 - First, generate $N(t) \sim \text{Pois}(\lambda t)$.
 - Next, generate $\alpha_1, \ldots, \alpha_{N(t)}$ iid uniformly in [0, t].