Go Go Green It

What's in your constraints?

Motivation: 50% by 2030

- California has ambitious goals for renewable growth and integration
- Opportunity to leverage DER assets to store and discharge electricity
- Focus on cost competitiveness and site-specific economic potential
- Reliability problems/extra costs
- Risk and uncertainty in investing

Problem: Uncertainty

- Current practice assumes perfect knowledge of future loads and solar generation in order to manage energy storage controls and sizing.
- Realistically, solar energy generation is intermittent and uncertain.
- Inaccuracies in forecasting can result in significant economic losses and issues in power system reliability

- "NRG is the leading integrated power company in the U.S., built on the strength of the nation's largest and most diverse competitive electric generation portfolio and leading retail electricity platform."
- "At Station A, our mission is to drive a clean, distributed energy future through analytics, engineering and commercial solutions."

Data for Irvine, CA Site

Solution: Statistically Relax Constraints

Second Order Cone Program

Objective: size solar and battery storage capacities to minimize costs from capital and use phase monetary costs and optimize for an ideal dispatch profile

A second order cone program was utilized to incorporate uncertainty in solar output and system load [KW].

minimize
$$c_b \cdot b + c_s \cdot s + \sum_{k=0}^{N} c_G(k) \cdot [\overline{L}(k) - s \cdot \overline{S}(k) - B_d(k) + B_c(k)]$$

subject to: $E(k+1) = E(k) + \left[\eta_c B_c(k) - \frac{1}{\eta_d} B_d(k) \right] \Delta t$
 $0 \le E(k) \le b \cdot E_{\text{max}}$
 $0 \le B_c(k) \le b \cdot B_{\text{max}}, \quad 0 \le B_d(k) \le b \cdot B_{\text{max}}$
 $\sqrt{\sigma_S^2(k) \cdot s^2 + \sigma_L^2(k)} \le \frac{1}{\Phi^{-1}(\alpha)} \left[s \cdot \overline{S}(k) + B_d(k) - B_c(k) - \overline{L}(k) + G_{\text{max}} \right]$
 $\sqrt{\sigma_S^2(k) \cdot s^2 + \sigma_L^2(k)} \le \frac{1}{\Phi^{-1}(\alpha)} \left[-s \cdot \overline{S}(k) - B_d(k) + B_c(k) + \overline{L}(k) + G_{\text{max}} \right]$

Results Visualization

Effect of Chance Constraints

\$1.917

Saved when investing in Solar & Battery over baseline

53.1.7

Saved from baseline scenario when deploying GGGI tool

63%

Savings from current practice

Conclusion: Robust Sizing Tool

Scalable and efficient.

Incorporating statistics and data analytics provides more accurate, efficient, and profitable methods for sizing distributed energy resource (DER) assets

Questions?

Liam Weaver

Dirk MacDonald

Kan Ito

Appendix: Sensitivity to System Life

Varying Battery Life, solar life = 12 y, α = 99.9%

Battery Life (y)	Cost (\$/day)	Battery Size	Solar Size
10	913	0.48	1.8
12	899	0.48	1.8
14	880	0.75	2
20	840	1	1.8

Varying Solar Life, battery life = 12.3 y, α = 99.9%

Solar Life (y)	Cost (\$/day)	Battery Size	Solar Size
10	957	0.48	1.8
12	894	0.48	1.8
14	845	0.75	2
20 (756	0.75	2

Constants

B _{max}	0.8*Peak Load
E _{max}	B _{max} *4
G _{max}	600 kW
η -discharge	0.9
η-charge	0.85

