THANTHAI PERIYAR GOVERNMENT INSTITUTE OF TECHNOLOGY, VELLORE.

IOT BASED SAFETY GADGET FOR CHILD SAFETY MONITORING &NOTIFICATION

DOMAIN: INTERNET OF THINGS

TEAM MEMBERS:

- KEERTHIVASAN P 513119106043
- JEEVA R 513119106033
- KESAVARAJA K 513119106044
- ABISHEK R 513119106004

1.INTRODUCTION

1.1 OVERVIEW

This paper presents the design and implementation of a portable IOT-based safety and health monitoring system for children through a sensor embedded health monitoring device for safety and emergency services. It is known that the technological advancements are increasing at a faster pace. But the utilization of technologies in various sectors is very low. We know that people of different age group face different difficulties. But the security for children's is very low. There is lot of cases registered regarding child safety.

1.2 PURPOSE

Nowadays, the schools and the parents are very much worried about their school children's for school transport and other places. So, the safety and monitoring the school children is very much difficult. In this project we are introducing the IOT based embedded system is used in this project. So we propose a system to continuously monitor the parameters of the child and also their location for safety purpose. The system provides smart child tracking and monitoring system.

2 LITERATURE SURVEY

PAPER 1: Smart Waste Management System Using LoRa and TensorFlow Deep Learning Model

Publication year: August 12, 2020

Author name: TEOH JI SHENG 1, MOHAMMAD SHAHIDUL ISLAM 1, (Graduate Student Member, IEEE), NORBAHIAH MISRAN 1, (Senior Member, IEEE), MOHD HAFIZ BAHARUDDIN 1, (Member, IEEE), HASLINA ARSHAD 2, MD. RASHEDUL ISLAM 1, MUHAMMAD E. H. CHOWDHURY 3, (Member, IEEE), HATEM RMILI 4, (Senior Member, IEEE), AND MOHAMMAD TARIQUL ISLAM 1, (Senior Member, IEEE).

Summary: Traditional waste management system operates based on daily and allow for better waste management. The aim of this research is to develop a smart waste management system using LoRa communication protocol and TensorFlow based deep learning model. LoRa sends the sensor data and TensorFlow performs real time object detection and classification. The bin consists of several compartments to segregate the waste including metal, plastic,

paper, and general waste compartment which are controlled by the servo motors. Object detection and waste classification is done in TensorFlow framework with pre-trained object detection model. This object detection model is trained with images of waste to generate a frozen inference graph used for object detection which is done through a camera connected to the Raspberry Pi 3 Model B+ as the main processing unit. Ultrasonic sensor is embedded into each waste compartment to monitor the filling level of the waste. GPS module is integrated to monitor the location and real time of the bin. LoRa communication protocol is used to transmit data about the location, real time and filling level of the bin. RFID module is embedded for the purpose of waste management personnel identification.

Methodology used: This work was supported in part by the Ministry of Malaysia under Grant LRGS MRUN/F2/01/2019/1/2, and in part by the Deanship of Scientific Research (DSR), King Abdul-Aziz University, Jeddah, Saudi Arabia, under Grant RG-39-135-40.

Conclusion: This article presented a smart waste management system by implementing sensors to monitor the status of the bin, LoRa communication protocol for low power and long-range data transmission, and TensorFlow Based object detection to perform waste identification and classification. The pretrained object detection model, SSDMobilnetV2 is able to perform well in Raspberry Pi 3 Model B+ due to its lightweight nature. The model was able to detect and classify waste according to classes such as metal, plastic, and paper. However, the accuracy of the model can be improved by increasing the number of training data—in this case, the number of waste images—and by increasing the training time. The segregation of waste is interfaced and coordinated well between the object detection performed by Raspberry Pi and the servo motor controlling the lid of the individual waste compartment. An RFID module controls the locking mechanism of the bin. Ultrasonic sensors monitor the filling level, while the GPS module monitors the location and real-time of the bin. LoRa operating at a frequency band of 915MHz transmits data regarding the status of the bin regarding filling level, location, and real-time from the bin to the LoRa gateway. The data received at the gateway is decoded by a terminal program, RealTerm. This automated segregation and monitoring system implementation in the bin aims to reduce the operating cost and improve the waste management system. At the same time, we are eager to develop the city into asmart city. In the future, the waste detection model is to be improved by increasing the number of waste images in the dataset to increase the flexibility of the system in identifying waste. Moreover, an automated routing system can be developed to identify and pinpoint the shortest path to the bin for the purpose of maintenance. With this in

mind, the existing waste management system can be improved and bring society towards a greener and healthier life.

PAPER 2: Smart City Platform Environment for Waste Management Publication vear: 05 | May 2019

Author name: G. Paulin Nancy1, R. Resmi2 Journal name: International Research Journal of Engineering and Technology (IRJET)

Summary: Coimbatore city is one of the smart cities. There are many projects going on for the development of Coimbatore as a smart city. Waste management has become a challenge before society as it is being continuously neglected in the field of environment which is getting harmful for the health of living organism's as well as the environment. Effective waste management strategies are required that involves a synchronized system of controlling the production and disposal of wastes. Most of the waste management techniques like landfills, incineration, sanitary landfills provide a variety of environmental benefits but have negative impacts too like emission of large amount of green house gas. This paper reveals the risk and issues occurred during all stages of waste management and find the smart solution for those major issues thereby developing the platform of smart city for waste management.

Methodology used: Identifying the key risk factors of waste management process by reviewing the literature and through the additions that could be made by the participants i.e. workers .Questions are prepared based on the identified risk factors such as storage system, lack of proper segregation, area coverage, capacity issue, climatic change, etc. Major factors and issues are identified with the help of questionnaire survey. Providing practical suggestions and recommendations pointing toward upgrading waste management process and improve the performance of workers thereby create platform of smart city.

Conclusion: From the survey report, several risk factors such as storage system, lack of proper segregation, area coverage, capacity issue, climatic change were identified. Based on these risk factors, smart solutions recommended were automated sorting system, automated solid waste management, smart planning by using web camera & load sensor, Smart garbage.

PAPER 3: IoT-based smart waste level monitoring system for smart cities **Publication year**: January 2021

Author name: A.A.I. Shah1, S.S.M. Fauzi2, R.A.J.M. Gining3, T.R.Razak4, M.N.F.Jamaluddin5, R. Maskat6 Journel name: Indonesian Journal of Electrical Engineering and Computer Science

Summary: Smart cities are covering the population that are seeking the best lifestyle and fulfilling their needs. Through smart cities, necessary modern facilities using ICT emerging technologies such as the internet of things (IoT) had been installed to ensure the sustainability of the city. In the perspective of waste management, several different IoT-based solutions also had been proposed as an

alternative to monitor and to ensure the health of communities. This paper reviews existing IoT-based solutions in smart cites' waste level management system to bring together the state-of-the-art. We performed reviews on 16 research articles from the past 5 years in the literature to provide a comprehensive review of different works on IoT-based solutions related to the smart waste level monitoring system, possible solutions and technologies used. The results obtained shows that existing solutions were similar in the platform used to integrate with the IoT technologies but had some differences in term of the used of sensors and communication technologies. The study also shows that many of the prior studies used Arduino Uno. Results from this study will assist the researcher, focusing on expanding further the used of different technologies or improved the existing system

Methdology used: This study employs a necessary systematic mapping study (SMS) steps [35]. An SMS is intended to encompass an exhaustive search. It aims to provide a thorough and repeatable analysis of all relevant literature. The five main steps in the method are: definition of research questions, searching for relevant papers, screening papers, keywording of abstracts, and data extraction and mapping

Conclusion: This study contributes to research on smart waste level monitoring system by synthesising the literature on the current state-of-the-art. This study is crucial as it provides a clear overview of the state-ofthe-art of the development and implementation of the smart waste level monitoring system. An in-depth review suggests that the existing solutions were similar in the platform used to integrate with the IoT technologies but have some differences in term of the used of sensors and communication technologies. The study also shows that many of the prior studies used Arduino Uno. In future research, we intend to identify the requirement of the proposed

2.1 EXISTING PROBLEM

This system requires network connectivity, satellite communication, and high-speed data connection when we use web camera and GPS to lively monitor. It is difficult to monitor when there occurs any hindrance to satellite communication or any network issue.

2.2 REFERENCES

<u>Child safety wearable device | IEEE Conference Publication | IEEE Xplore</u>

<u>RFID-based system for school children transportation safety enhancement | IEEE Conference</u>

<u>Publication | IEEE Xplore</u>

<u>Design and development of an IOT based wearable device for the safety and security of women and girl children | IEEE Conference Publication | IEEE Xplore</u>

2.3 PROBLEM STATEMENT DEFINITION

3.IDEATION & PROPOSED SOLUTION

3.1 Empathy map Canvas

3.2 Ideation & Brainstorming:

Step 1: Team Gathering, Collaboration and Select the Problem Statement

Step 2: Brainstorm, Idea listing and Grouping

Step 3:Idea Prioritization:

3.3 Proposed Solution

S.NO	PARAMETER	DESCRIPTION
1`	Problem Statement (Problem Solved)	Safety of children is
		very critical since

		children cannot protect themselves. A momentary lack in parental supervision should be combated with an appropriate IT solution in context
2	Idea/Solution description	In our system, we automatically monitor the child in real time using Internet of Things, with the help of GPS, GSM. This system requires network connectivity, satellite communication, and high-speed data connection when we use web camera and GPS to lively monito
3	Novelty/Uniqueness	The novelty of the work is that the system automatically alerts the parent/caretaker by sending SMS, when immediate attention is required for the child during emergency. The parameters such as touch, temperature &heartbeat of the child are used for parametric analysis and results are plotted for the same
4	Social Impact/Customer Satisfaction	Safer society for the children. Receive immediate information about child and feel secure.

5	Business Model(Revenue Model)	Prevention against immediately and safely if in dang
6	Scalability of the Solution	To monitor health conditions of a child (heart rate, body temperature, body posture).

3.4 PROBLEM SOLUTION FIT

Output Caretaker Parent	6.CUSTOMER CONSTRAINTS • Easy to use • compatible and weightless • low cost	5.AVAILABLE SOLUTION • Knowlege about setting geofence • Device • Internet				
2. JOBS TO-BE-DONE/PROBLEMS To manage data store network connectivity? To alert the parents in case of emergency	9. PROBLEM ROOT CAUSE • Crimes • missing children • Irresponsible parents	7. BEHAVIOUR Tracking devices for kids provide you with real-time GPS details of your child's location. This is extremely useful tool when your child is walking to a friends house from any instant distance where your child's current whereabout could be uncertain.				
3. TRIGGERS Social media neighbour places fear of losing child 4.EMOTIONS: BEFORE/ AFTER	10. YOUR SOLUTION Gadget ensure the safety and tracking of children. The android app use GPS and mobile service to find the child	8 CHANNELS of BEHAVIOR • 81 ONLINE • web applicationGPS module communication				
Parents are panic that they lost the child They fell happy after they find the child One of the child One of the child of the child One of the child	location and secretly stored accurate location wihout knowing the children	Distance Calculations gadget using time				

4.REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENT

FR.NO	Functional Requirement	Sub Requirement (Story/Sub-Task)
FR-1	User Registration	Registration through Gmail

FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	login	Check credentials
FR-4	Checks the location	Through GPS
FR-5	Monitors the location and video	Capture the video and
	capture	location through the
		gadget which the child
		wears
FR-6	logout	Exit

4.2 NON-FUNCTIONAL REQUIREMENT

NFR.NO	Non-Functional Requirement	Description
NFR-1	Usability	Easy to use the gadget.
NFR-2	Security	Make sure your child
		understands that they should
		always tell you if a stranger
		approaches, and never to keep
		this secret
NFR-3	Reliability	Child's surroundings can be
		located with the help of
		accurate and precise real-time
		location
NFR-4	Performance	It easy to track the smart
		gadget
NFR-5	Availability	Audio, video, GPS and sensor
NFR-6	Scalability	Young children may refuse to
		cooperate unless allowed to
		play with their gadgets

5.PROJECT DESIGN

5.1. Data Flow Diagram

5.2 Solution & Technical Architecture

5.3 Outline Architecture

5.3 User Stories

6.PROJECT PLANNING & SCHEDULING

6.1.SPRINT PLANNING & ESTIMATION

Sprint	Functional Requirement(E pic)	User Story Number	User Story / Task	Story Points	Priority	Team members
Sprint-1	Login	USN-1	As a customer, I might ensure login credential through Gmail ease manner for the purpose of sending alert message to the parents or guardians (or) informing through normal message.	2	High	Subalakshmi, Ranjithkumar,Tamizh, Velmurugan

Sprint-1	Registration	USN-2	As a user, I have to registered my details and tools details in a simple and easy manner by considering the safety of child, this registered system sends notification to.	2	High	Subalakshmi, Tamizh, Ranjithkumar, Velmurugan
----------	--------------	-------	--	---	------	---

Sprint-2	Dashboard	USN-3	As a user, In case of any emergency situation parents(I) must get the alert notification and location of the child.	3	Medium	Subalakshmi, Velmurugan
Sprint-3	Dashboard		As a user, I(parent) need to safeguard child and tracking the child's location and it is important to notify near police station	2	High	Subalakshmi, Ranjithkumar
Sprint-3	orint-3 Dashboard USN-5		As a user, Its good to have a IOT based system to safeguard monitoring without presence of parent.	2	High	Subalakshmi, Tamizh
Sprint -4	Monitoring the environment	USN 1	User can monitor the situation of the environment from a dashboard that displays sensor information about the environment and child health.	2	High	Subalakshmi, Velmurugan
Sprint- 4	Event Notification	USN 6	Sending an alert SMS to the parents and guardians in case of panic situation.	2	High	Subalakshmi

6.2 SPRINT DELIVERY AND SCHEDULE

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

6.3 REPORTS FROM JIRA

Date

Report: WPD Sprint 2 "Issue added after sprint st

7. CODING AND SOLUTIONING

7.1 FEATURE 1

```
| Property | Description | Property | Proper
```

7.2 FEATURE 2

7.3 FEATURE 3

8. TESTING

8.1 TEST CASE

				Date		Team ID: PNT2022TMID36015						
Test case ID	Feature Type	Componen t	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actu al Resu It	Statu	TC for Automati on (Y/N)	BU G ID	Executed By
IBM CLOUD_TC_001	Functional	IBM Cloud Servic e	Verify the login cloud services	Softwa re	I. Logm musme cloud bem.com 2 Obtain promocode in ICT 3. Then apply code the and Login 4. The page will be directed to the IBM cloud account	email: 310819106301@smar tintern z.com Password: PNTIBMBb22	Successfully created the IBM account	Working as expect ed	Pass	YE S	NIL	1 ROZEN BERG 2 THARUN RAJ 3 BHAGYA NARAYANAN 4 MATHUBAALA 5 JANANIPRIYA
IBM Watson IoT Platform_TC_002	Functional	IBM Cloud Servic e	Verify create a device in the IBMWatson IoT platform and get the device credentials.	IBM Cloud Service	In IBM Cloud Service go to catalog: : Create and launch the IBM Watson loT Platform 3.Login to the Platform by clicking organization ID 4 Create a device & configure the device type and ID5 Generate the API Key	Create a device & integrate with code	l'name': 'Smartbridge'. 'lat': 17.4219272, 'lon': 78.5488783}	Working as expect ed	Pass	YE S	NIL	I ROZEN BERG 2.THARUN RAJ 3.BHAGYA NARAYANAN 4.MATHUBAALA 5.JANANIPRIYA
PythonCode_TC_OO3	Code	Python 3.9	Verify wheather the python code is without error by running it	Softwa re	i. Download the python version 3.9 2. Type the program and save it with the extention, py 3. Verify it by compiling the code	import json import wotp.sdk.device import time import random myConfig = { "dentity":{ orgid": 401qxb*	022-11-18 12-25-57,235 wiotp-sdk-device- client. DeviceClient INFO Connected successfully: d:401qxb: TestDeviceType: 12345	Working as expect ed	Pass	YE S	NIL	I ROZEN BERG 2. THARUN RAJ 3. BHAGYA NARAYANAN 4. MATHUBAALA 5. JANANIPRIYA
Node_Red_TC_004	Non- Functional	IBM Cloud Servic e	Verify to create a node-red services	IBM cloud services	I. In IBM cloud go to catalog: 1. To create a Node-Red app 5. Click onto Deploy App 4. Vist the app Or App 5. We need to connect the Node-Red with the IBM watson	We use a geofence node to form a cirlce shaped range whether the child is present in the circle or not.	Successfully created thenode- red	Working as expect ed	Pass	NO	NIL	I ROZEN BERG 2 THARUN RAJ 3 BHAGYA NARAYANAN 4 MATHUBAALA 5 JANANIPRIYA
CloundantDB_TC_005	Dataset	IBM Cloud Servic e	Verify the events is stored in the database	IBM Cloud Service	i. Go to IBM Cloud Services : In resources list, click onto cloudant : Click onto the launch dashbord to redirect to the cloud DB 4.Click onto create DB.	Document tracker	Successfully created the Database	Working as expect ed	Pass	NO	NIL	I ROZEN BERG 2 THARUN RAJ 3 BHAGYA NARAYANAN 4 MATHUBAALA 5 JANANIPRIYA
Web UI_TC_006	Functional	Node- Red Servic	To create a web UI to interact with user	Node-Red Service	1. Go to Node-Red Dashboard 2. Make the necessary connection and deploy it. 3. Copy the URL and paste it in the new tab with "/ui" extention. 4. Display the child and geofence location.	Shows the locaion of parent and child	And as expected it displays the Position of the child and parent	Working as expect ed	Pass	NO	NIL	1 ROZEN BERG 2 THARUN RAJ 3 BHAGYA NARAYANAN 4 MATHUBAALA 5 JANANIPRIYA
astSMS Service_TC_007	Functional	Fast2S MS Servic e	To send SMS to the particular child's guardian	Softwa re	i. Login to Fast/SMS Service : GC to Dev Fal and select quick API i. SMS will be sent using Flash SMS option to the registered number	Show the pop up SMS	Alert: The person is not in the particular geofence area	Working as expect ed	Pass	NO	NIL	1 ROZEN BERG 2 THARUN RAJ 3 BHAGYA NARAYANAN 4 MATHUBAALA 5 JANANIPRIYA

Test Scenarios

- 1.) Verify the login cloud services
- 2.) Verify create a device in the IBM Watson IoT platform and get the device credentials.
- 3.) Verify wheather the python code is without error by running it
- 4.) Verify to create a node-red services
- 5.) Verify the events is stored in the database
- 6.) To create a web UI to interact with user
- 7.) To send SMS to the particular child's guardian

8.2 USER ACCEPTANCE TESTING

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resoluti on	Severi ty 1	Severi ty 2	Severi ty 3	Severi ty 4	Subtotal
By Design	4	4	2	0	10
Duplicate	0	0	0	1	1
External	2	0	0	1	3
Fixed	7	2	0	0	9
Not Reproduced	0	1	1	0	2
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	13	7	3	2	2 5

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	1	0	0	1
Client Application	1	0	0	1
Security	1	0	0	1
Outsource Shipping	1	0	0	1
Exception Reporting	1	0	0	1
Final Report Output	1	0	0	1
Version Control	1	0	0	1

9. RESULTS

9.1 PERFORMANCE METRICS

			Team ID	PNT2022TMID36015		
			Project	Project - IoT Based		
			Name	Safety Gadget for Child		
				Safety Monitoring &		
				Notification		
				FI - Risk Assessment		
NS	Project	Scope/feat	Eunctional	Hardware Changes	Risk Score	Justification
1	InTillased Salaty Gadget for	New	Changes	Change	GREEN	professiffilly
-	Harris Salas Angry Hage For Kares		Changes	- Ingrae		project successfully
				NFT - Detailed Test Plan Project Overview		
			No	Project Overview	Approach	
			INO	This project	Approach	
				proposes a model		
			1	for child safety	Load Test	
				through	Load Test	
				smartphones that		
				can track their		
				children's location		
				and give the		
				precise		
				coordinates of the		
				child's location in		
				real-time		
				anywhere.		
_				End Of Test		
	D	XIII-II-II-	SILIN	End Of Test Report		
Nö	Overview Overview	NFT Test approach	Met -	Outgom	Approx44s	
	The application aside from					
1	conceding you to track	Load Test	Nil	Respone time meet	Approved	
	down your children when			the actual Result		
	they're within Geofence					
	range, also functions when					
	your kids go farther afield.					
	Its competence as a tracker					
	is outstanding if you live in					
	densely populated areas					
	like cities or big towns.					
	ince enties or org towns.					
1	v		1			

NFT Test approach				
Load Test				
Scenario Name	Load Test - Location Tracker SAMPLE PROJECT			
Scenario Type	Load Test - Duration 15 minutes			
	To Stimulate Python Code(Location Details) and to monitor the performance			
Scenario Objectives	of Location Tracker SAMPLE PROJECT			
	We have integrate IBM Watson IoT Platform in order to get this Location			
	details from python program.			
	2. We also integrate fast SMS service in order to send an alert to guardian or			
Steps	parent			
	Test data is set-up. All the Components(software & hardware) is set-up. It is			
Entry Criteria	completed successfully.			
	Response time meets the actual Result.			
Exit Criteria	Test completion report is agreed upon by mentors			

10. ADVANTAGES

- **1.**) Trace whereabouts and Minimise the Tragedy
- 2.) Create unassailable environment
- 3.) Toddlers in hamlet and metropolis can be saved
- 4.) ceaseless Surveillance and instantaneous notification regime
- **5.)** High dependability and data accuracy
- **6.**) Eradicates ambiguity and Pays way for a tech-driven community

DISADVANTAGES

- 1.) Inadequate battery supply leads to switching off the device
- **2.)** Impractical to use the device forever
- 3.) Improper weather condition
- **4.**) Improper connectivity
- **5.)** Misplacement or losing the tag
- **6.)** Over usage of data

11. CONCLUSION

The System put forward this paper to ensure the safety of children and increase their confidence. Many experimenters are operating in this area and have formulated different technologies to aid children. The key represented in this paper takes the advantage of smartphones which proposes affluent elements like Google maps, SMS, etc. The child safety and protection device is proficient in acting as a smart IoT device. It equips parents with real-time location, the surrounding temperature, and along with an alarm buzzer for their child's circumstances and the capability to locate their child. This paper depicts the fundamental design concept and functionality along with the anticipated consequensee.

The application aside from conceding you to track down your children when they're within Bluetooth range, it also functions when your kids go farther afield. Its competence as a tracker is outstanding and if you live in densely populated areas like cities or big towns. This means you will be able to see the identity of the participating devices and It helps to diminish their vulnerability in harmful situations and also protects the children in emergency situations.

Parents take measures both at home and outdoors to safeguard their kids from hurting themselves. But sometimes, it's impossible to pre-empt what can cause a treacherous encounter. However, it's possible to prevent such hazards with some forethought and simple measures using these safety gadgets.

12. FUTURE SCOPE

Ceaseless Surveillance:

If any deviant readings are disclosed by the sensor, then an SMS and

phone calls are set off to the parent's mobile.

Create unassailable environment:

Precisely predicting the circumstances of the children and swiftly

sensing the problems around children will make parents at ease. It helps to

diminish their vulnerability in harmful situations and also protects the

children in emergency situations.

Pays way for a tech-driven community:

Children and their parents are veering around to digital solutions more

than ever to support children's cognition and it notifies the information about

the child in a web application.

13. APPENDIX

GITHUB LINK

https://github.com/IBM-EPBL/IBM-Project-5458-1658765864

SOURCE CODE

```
tation can bearing times the
import json
import time
import wiotp.sdk.device
import ibmiotf.application
import ibmiotf.device
import random
myConfig={
    "identity":{
         "orgId":"8tiskp",
"typeId":"Bigbang",
         "deviceId": "0431"
     "auth":{
          "token": "12345678"
def myCommandCallback(cmd):
    print ("command received: %s"%cmd.data['command'])
    status=cmd.data['command']
    if status=="locationon":
    print("location is on")
     elif status == "locationoff":
         print ("location is off")
         print("please send proper cmd")
client=wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
lat=[12.934968, 28.644800,19.076090,22.572645,13.067439]
lon=[77.216721,77.216721,72.877426,88.363892,80.237617]
while True:
    name="child"
     latitude=random.choice(lat);
    longitude=random.choice(lon);
    mydata={'name':name, 'lat':latitude, 'lon':longitude}
client.publishEvent(eventId="status",msgFormat="json",data=mydata, qos=0, onPublish=None)
    print("data published to IBM IOt platform:", mydata)
     time.sleep(5)
    client.commandCallback = myCommandCallback
client.disconnect()
```