YouTube Political Channel Comment Analysis

Analyzing channel characteristics from different perspectives

using News Tornado and News Wawawa as examples

Po-Jen Hsieh

Research Question

Research Question

- Do different political commentary channels attract different topics of comments?
- Are there any unique characteristics in the comments made by suspected internet trolls?
- Can differences in stance be identified through word embeddings trained on different texts?
- Do word embeddings trained on different texts imply different latent political biases?

Exploratory DataAnalysis

Exploratory Data Analysis

Dataset Overview

- Data counts: News Tornado 180,578 entries, News Wawawa 167,487 entries.
- Columns: videoId, commentId, authorDisplayName, textOriginal, likeCount, publishedAt.
- Time coverage:
 - News Tornado: from 2019-01-01 00:02:14 to 2020-08-05 06:27:10.
 - News Wawawa: from 2014-06-11 11:12:26 to 2020-07-18 13:43:05.

Exploratory Data Analysis

News Tornado

News Wawawa

Definition

What defines a potential internet troll?

- Literature review: Active during weekdays, high popularity response, multiple IP locations.
- My naive approach: For both News Tornado and News Wawawa, calculate for each unique author:
 - Total number of comments
 - Average likes
 - Weekday commenting ratio
 - Classified as a suspected internet troll if meeting the following criteria:
 - Total number of comments above the 90th percentile
 - Average likes above the 90th percentile
 - Weekday commenting ratio over 85%

Topic Modeling

- Text: Includes all comments from News Tornado and News Wawawa
- Unit: By author
- Number of topics: 3

Do different political commentary channels attract different topics of comments?

Are there any unique characteristics in the comments made by suspected internet trolls?

I trained the following 5 types of word2vec models with the texts below:

- Wikipedia Chinese (Backup from 2022/06/01)
- All comments from News Tornado
- All comments from News Wawawa
- Comments from suspected internet trolls on News Tornado
- Comments from suspected internet trolls on News Wawawa

Can differences in stance be identified through word embeddings trained on different texts?

• The word2vec trained on Wikipedia data, showing the top 100 words most similar to Tsai Ing-wen and Han Kuo-yu.

• The word2vec trained on all comments of News Wawawa, showing the top 100 words most similar to Tsai Ing-wen and Han Kuo-yu.

• The word2vec trained on all comments of News Tornado, showing the top 100 words most similar to Tsai Ing-wen and Han Kuo-yu.

• The word2vec trained on comments of suspected internet trolls on News Tornado, showing the top 100 words most similar to Tsai Ing-wen and Han Kuo-yu.

Do word embeddings trained on different texts imply different latent political biases?

- USA: ['USA', 'Democratic Party', 'Republican Party', 'Washington D.C.', 'White House', 'Trump']
- China: ['China', 'CCP', 'Communist Party', 'Beijing', 'Zhongnanhai', 'Xi Jinping']
- Concepts: ['betrayal', 'evil', 'dictatorship', 'hypocrisy', 'threat', 'oppression', 'freedom', 'human rights', 'rule of law', 'equality']
- Using a method similar to Garg et al. (2017), compare each concept to see whether it is closer to China or the USA

		Wikipedia	News Wawawa	News Tornado
	betrayal	China	China	China
)	evil	US	China	US
	dictatorship	US	China	China
	hypocrisy	US	China	N/A
	threat	US	US	US
	oppression	China	China	China
	freedom	China	China	China
	human rights	US	US	China
	rule of law	China	China	China
	equality	China	China	China

Thanks!