MO 14:

MOCNINY

základ: a∈R

exponent: $n \in N$

 $a^n = a.a.a.a...a$

→ a je tam n-krát

rekurentná definícia mocniny:

•
$$\forall a \in R; \forall n \in N$$
:

$$a^{1} = a$$
$$a^{n+1} = a^{n}.a$$

→ každá nasledujúca mocnina je vyjadrená pomocou predchádzajúcej

n = 0

$$a^{0+1} = a^{0}.a$$

 $a^{1} = a^{0}.a$
 $a = a^{0}.a$ $/:a$ $a \neq 0$
 $1 = a^{0}$

mocnina 0⁰ nie je definovaná

$$\rightarrow n \in N_0 \Rightarrow a \in R - \{0\}$$

• n = -1

$$a^{-1+1} = a^{-1}.a$$

 $a^0 = a^{-1}.a$
 $1 = a^{-1}.a$ /:a $a \ne 0$
 $\frac{1}{a} = a^{-1}$

$$\rightarrow n \in \mathbb{Z} \Rightarrow a \in \mathbb{R} - \{0\}$$

Vety o mocninách

• $\forall a, b \in R - \{0\}; \forall r, s \in Z$:

$$\bullet \quad a^r.a^s = a^{r+s}$$

$$\bullet \quad \frac{a^r}{a^s} = a^{r-s}$$

$$\bullet \quad (a^r)^s = a^{r.s}$$

$$\bullet \quad (a.b)^r = a^r.b^r$$

$$\bullet \quad \left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

MO 14: MOCNINY

• $n \in Q$ (racionálne čísla – v tvare zlomkov)

$$n = \frac{1}{2}$$

$$a^{\frac{1}{2}} = \sqrt{a}$$

$$\rightarrow a \in \mathbb{R}_{0}^{+}; n \in \mathbb{Q} - \{0\}$$

- definícia n-tej odmocniny:
 - n-tou odmocninou z nezáporného čísla a je nezáporné číslo b, pre ktoré platí: a = bⁿ
 - $\sqrt[n]{a} = b; a = b^n$ $\rightarrow a \in \mathbb{R}_0^+; n \in \mathbb{Q} - \{0\}$
- $n \in R$

R = Q \cup I

$$\sqrt{2} = 1,414$$

 $\sqrt{2} = 1,4 = \frac{14}{10}$
 $\sqrt{2} = 1,41 = \frac{141}{100}$

→ snažíme sa I nahradiť Q (aproximovať)

Binomická veta

Pre každé $a,b \in R$ a pre každé $n \in N$ platí:

$$(a+b)^n = \binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b + \dots + \binom{n}{k} a^{n-k} b^k + \dots + \binom{n}{n} a^0 b^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i$$

- → obsahuje kombinačné čísla z n- tého Pascalovho riadka
- → súčet exponentov musí byť vždy n

