Problema: ossigeno disciolto e ossiemoglobina

 \rightarrow Come posso esprimere la concentrazione totale di ossigeno nel vaso, $C_{V_{tot}}$?

$$C_{V_{tot}} = C_V + C_{HbO2} =$$

 C_V = concentrazione di ossigeno disciolto nel vaso; C_{HbO2} = concentrazione di ossiemoglobina = C_{Hb} $S_{O2}(P_{O2_V})$;

$$= C_V + C_{Hb} S_{O2}(P_{O2_V}) =$$

 C_{Hb} = concentrazione di emoglobina per unità di volume di sangue = H_D MCHC N; H_D = ematocrito;

N = coefficiente di legame (o fattore di Hüfner);

MCHC = mean corpuscolar hemoglobin concentration;

 P_{O2} = pressione parziale di ossigeno disciolto = $\alpha_{pl}^{-1}C_V$ (**Legge di Henry**);

$$= C_V + H_t MCHC N S_{02}(\alpha_{pl}^{-1}C_V)$$

NB: da ora in poi la variabile d'interessa sarà la concentrazione, C_V

Hill e la curva di dissociazione dell'emoglobina

→ La saturazione dei RBC è definita dell' Equazione di Hill:

$$S_{02}(P_{02}) = \frac{P_{02}^{\gamma}}{P_{02}^{\gamma} + P_{50}^{\gamma}\%} = \frac{(C_V)^{\gamma}}{(C_V)^{\gamma} + \alpha_{pl}P_{S,50}^{\gamma}}$$

 $P_{50\%}$ = pressione parziale di ossigeno disciolto al 50% di saturazione; n = costante di Hill;

 P_{50} *e n* sono ottenuti *fittando* l'equazione di Hill con la curva di dissociazione dell'emoglobina.

La curva dipende da:

- Temperatura, T°;
- Acidità del sangue, pH (effetto Bohr);
- Pressione parziale di CO2, P_{CO2} (effetto Haldane);

Concentrazione totale di ossigeno nel vaso, $C_{V_{tot}}$

$$C_{V_{tot}} = C_V + Hk_1 \frac{(C_V)^{\gamma}}{(C_V)^{\gamma} + k_2}$$

Con:

$$k_1 = MCHC N$$

$$k_2 = (\alpha_{pl} P_{S,50})^{\gamma}$$

Trasporto di ossigeno nel tessuto: dominio T

 \rightarrow Trasporto di ossigeno nel tessuto, C_T (equazione generale):

$$\frac{\partial C_T}{\partial t} = \nabla \cdot (D_{O2_T} \nabla C_T - \boldsymbol{u_T} C_T) - M_{O2} + M_{V \to T}$$

 D_{O2_T} = diffusione dell'ossigeno nel tessuto; v = velocità dell'ossigeno attraverso il tessuto; M_{O2} = consumo di ossigeno nel tessuto; $M_{V \to T}$ = sorgente di ossigeno da vaso a tessuto;

 \square Consumo di ossigeno, M_{O2} : Relazione di Michaelis-Menten

$$M_{O2} = \frac{M_0 * P_{O2_T}}{(P_{O2_T} + P_{M,50})} = \frac{M_0 * \alpha_T^{-1} C_T}{(\alpha_T^{-1} C_T + P_{M,50})} = \frac{M_0 * C_T}{(C_T + \alpha_T P_{M,50})}$$

 M_0 = massimo consumo di ossigeno nel tessuto; $P_{M,50}$ = PO2 pari a metà del massimo consumo (Costante di Michaelis-Menten);

Trasporto di ossigeno nel tessuto: dominio T

☐ Sorgente di ossigeno dal vaso al tessuto, inteso come flusso di soluto (ossigeno) attraverso la membrana capillare (membrana parzialmente semipermabile) :

$$M_{V \to T} = J_{soluto,tot} * A_{vaso} = (J_{soluto,diff} + J_{soluto,conv}) * A_{vaso}$$

 $J_{soluto,diff}$ = flusso di soluto diffusivo = $P_L \delta C_{V_{tot}}$; $J_{soluto,conv}$ = flusso di soluto convettivo = $C_V * (1 - \sigma_f)J_{solvente}$; $J_{solvente}$ = flusso di solvente = $L_p (\delta P - \sigma_s \delta \pi)$ (Legge di Kedem-Katchalsky);

$$M_{V\to T} = [P_L(C_V - C_T) + C_V * (1 - \sigma_f)L_p(\delta P - \sigma_s \delta \pi)] * A_{vaso}$$

 P_L = permeanza (permeabilità per unità di spessore, h) = $D_{O2\tau}/h$;

 C_m = concentrazione media nel tessuto = $C_{V_{tot}}$;

 $\sigma_f e \sigma_s$ = coefficienti di riflessione (NB: non necessariamente identici);

 L_p = conduttività idraulica dell'endotelio;

 ΔP = salto di pressione idrostatica;

 $\Delta \pi$ = salto di pressione oncotica;

Modello di perfusione: distribuzione di ossigeno nel volume interstiziale

☐ Nell'ipotesi **stazionarietà** per l'ossigeno:

NB: ipotesi che perde di validità se si considero un farmaco nel flusso ematico, dato che questo viene consumato → variazione nel tempo

Trasporto di ossigeno nel vaso: dominio V

☐ Bilancio di massa su un tratto infinitesimo di ramo, dS:

Su
$$\Lambda$$

$$D_V \frac{\partial^2 C_V}{\partial S^2} - \frac{\partial (C_{V_{tot}} u_V \pi R^2)}{\partial S} = -J_{O2}(C_V, C_T)$$

Modello di Perfusione

Il modello si presenta, nella sua forma non-lineare, come:

$$-D_{O2_T} \Delta C_T + \nabla \cdot (v_T C_T) + \frac{M_0 * C_T}{\left(C_T + \alpha_T P_{M,50}\right)} = J_{O2}(C_V, C_T)$$

$$D_V \frac{\partial^2 C_V}{\partial S^2} - \frac{\partial (u_V C_{V_{tot}} \pi R^2)}{\partial S} = -J_{O2}(C_V, C_T)$$

□ Esplicitando il termine di $C_{V_{tot}} = C_V + Hk_1 \frac{(C_V)^{\gamma}}{(C_V)^{\gamma} + k_2} = C_V + \Psi(C_V(S), H(S)),$ l'equazione di trasporto nel vaso risulta:

$$D_{V} \frac{\partial^{2} C_{V}}{\partial S^{2}} - \left(\frac{\partial (u_{V} C_{V})}{\partial S} + \frac{\partial (u_{V} \Psi(C_{V}(S), H(S)))}{\partial S} \right) \pi R^{2} = -J_{O2}(C_{V}, C_{T})$$

Modello di perfusione risultante

$$-D_{O2_T} \Delta C_T + \nabla \cdot (v_T C_T) + \frac{M_0 C_T}{(C_T + \alpha_T P_{M,50})} = J_{O2}(C_V, C_T)$$

$$D_{V} \frac{\partial^{2} C_{V}(S)}{\partial S^{2}} - \left(\frac{\partial (u_{V}(S) C_{V}(S))}{\partial S} + \frac{\partial \left(u_{V} \Psi \left(C_{V}(S), H(S) \right) \right)}{\partial S} \right) \pi R^{2} = -J_{O2}(C_{V}, C_{T})$$

→ Decido di utilizzare un metodo di punto fisso per linearizzare il sistema, Cosa? e come?

Punto fisso: dominio Ω

Su Ω:

$$-D_{O2_T} \Delta C_T^k + \nabla \cdot (v_T C_T^k) + \frac{M_0 C_T^k}{\left(C_T^{k-1} + \alpha_T P_{M,50}\right)} = J_{O2}(C_V^k, C_T^k)$$

NESSUN PROBLEMA!

Punto fisso: dominio Λ

Cosa decido di linearizzare?

a) La funzione $\Psi(C_V(S), H(S))$;

oppure

b) Le derivate di $\Psi(C_V(S), H(S))$;

Punto fisso su Λ : caso a)

Su Λ:

$$D_{V} \frac{\partial^{2} C_{V}^{k}(S)}{\partial S^{2}} - \left(\frac{\partial \left(u_{V}(S) C_{V}^{k}(S) \right)}{\partial S} + \frac{\partial \left(u_{V} \Psi \left(C_{V}^{k-1}(S), H(S) \right) \right)}{\partial S} \right) \pi R^{2} = -J_{O2}(C_{V}^{k}, C_{T}^{k})$$

Allora:

$$D_{V} \frac{\partial^{2} C_{V}^{k}(S)}{\partial S^{2}} - \frac{\partial \left(u_{V}(S) C_{V}^{k}(S)\right)}{\partial S} \pi R^{2} + J_{02}\left(C_{V}^{k}, C_{T}^{k}\right)$$

$$= \frac{\partial (u_{V})}{\partial S} \Psi\left(C_{V}^{k-1}(S), H(S)\right) \pi R^{2} + u_{V} \frac{\partial \Psi\left(C_{V}^{k-1}(S), H(S)\right)}{\partial H} \frac{\partial H}{\partial S} \pi R^{2}$$

#NOTA: se Cv è nota a priori e H è nota dal problema dell'ematocrito, la derivata di $\frac{\partial \Psi}{\partial H}$ = 0?

Formulazione debole per dominio A

Su Λ:

$$D_{V} \frac{\partial^{2} C_{V}^{k}(S)}{\partial S^{2}} - \frac{\partial \left(u_{V}(S) C_{V}^{k}(S)\right)}{\partial S} \pi R^{2} + J_{02} \left(C_{V}^{k}, C_{T}^{k}\right)$$

$$= \frac{\partial \Psi \left(C_{V}^{k-1}(S), H(S)\right)}{\partial H} \frac{\partial H}{\partial S} u_{V} \pi R^{2} + \frac{\partial (u_{V})}{\partial S} \Psi \left(C_{V}^{k-1}(S), H(S)\right) \pi R^{2}$$

Formulazione debole:

$$\int_{\Lambda_{b}} D_{V} \frac{\partial^{2} C_{V}^{k}}{\partial S^{2}} \varphi \partial S + \\
- \left(\int_{\Lambda_{b}} \frac{\partial (C_{V}^{k})}{\partial S} u_{V} \pi R^{2} \varphi \partial S + \int_{\Lambda_{b}} \frac{\partial (u_{V})}{\partial S} C_{V}^{k} \pi R^{2} \varphi \partial S \right) + \\
+ \int_{\Lambda_{b}} J_{O2}(C_{V}^{k}, C_{T}^{k}) \varphi \partial S = \\
= \int_{\Lambda_{b}} \frac{\partial \left(\Psi(C_{V}^{k-1}, H) \right)}{\partial H} \frac{\partial H}{\partial S} u_{V} \pi R^{2} \varphi \partial S + \int_{\Lambda_{b}} \frac{\partial (u_{V})}{\partial S} \Psi(C_{V}^{k-1}, H) \pi R^{2} \varphi \partial S$$

Formulazione debole per dominio A

Risolvendo per parti...

$$\int_{\Lambda_b} D_V \frac{\partial^2 C_V^k(S)}{\partial S^2} \varphi \partial S = \left[D_V \frac{\partial C_V^k(S)}{\partial S} \varphi \right]_{\partial \Lambda_b} - \int_{\Lambda_b} D_V \frac{\partial C_V^k(S)}{\partial S} \frac{\partial \varphi}{\partial S} \partial S$$

$$\int_{\Lambda_{b}} \frac{\partial \left(\Psi(C_{V}^{k-1}, H) \right)}{\partial H} \frac{\partial H}{\partial S} u_{V} \pi R^{2} \varphi \partial S =$$

$$= \left[\Psi(C_{V}^{k-1}, H) \frac{\partial H}{\partial S} u_{V} \pi R^{2} \varphi \right]_{\partial \Lambda_{b}} - \int_{\Lambda_{b}} \Psi(C_{V}^{k-1}, H) u_{V} \pi R^{2} \frac{\partial H}{\partial S} \frac{\partial \varphi}{\partial H} \partial S$$

Approssimazione numerica per dominio Λ

Formulazione debole risultante:

$$\begin{split} &\int_{\Lambda_{b}} D_{V} \frac{\partial C_{V}^{k}(S)}{\partial S} \frac{\partial \varphi}{\partial S} \partial S - \left(\int_{\Lambda_{b}} \pi R^{2} \frac{\partial \left(C_{V}^{k} \right)}{\partial S} u_{V} \varphi \partial S + \int_{\Lambda_{b}} \pi R^{2} \frac{\partial \left(u_{V} \right)}{\partial S} C_{V}^{k} \varphi \partial S \right) + \\ &= - \int_{\Lambda_{b}} J_{O2} \left(C_{V}^{k}, C_{T}^{k} \right) \varphi \partial S - \int_{\Lambda_{b}} \Psi \left(C_{V}^{k-1}, H \right) \pi R^{2} \frac{\partial H}{\partial S} \frac{\partial \varphi}{\partial H} \partial S + \int_{\Lambda_{b}} \Psi \left(C_{V}^{k-1}, H \right) \pi R^{2} \frac{\partial \left(u_{V} \right)}{\partial S} \varphi \partial S \\ &+ \left[\Psi \left(C_{V}^{k-1}, H \right) \frac{\partial H}{\partial S} u_{V} \pi R^{2} \varphi \right]_{\partial \Lambda_{b}} - \left[D_{V} \frac{\partial C_{V}^{k}(S)}{\partial S} \varphi \right]_{\partial \Lambda_{b}} \end{split}$$

 \Box Discretizzando su una partizione di Λ : $\Lambda_h = \bigcup_{i=0}^{N_V^h} \Lambda_i^h$

$$C_V^k = \sum_j c_v^{k,j} \varphi^j$$
 ; $u_V = \sum_p u_v^p \varphi^p$; $R_1 = \sum_m r^m \varphi^m$; $R_2 = \sum_n r^n \varphi^n$

Approssimazione numerica

LHS:

$$\begin{split} & \sum_{i} \sum_{j} \int_{\Lambda_{b}} D_{V} \frac{\partial (c_{v}^{k,j} \varphi^{j})}{\partial S} \frac{\partial \varphi^{i}}{\partial S} \partial S \\ & \sum_{i} \sum_{j,m,n,p} \int_{\Lambda_{b}} \pi \ r^{m} \varphi^{m} \ r^{n} \varphi^{n} \ \frac{\partial (c_{v}^{k,j} \varphi^{j})}{\partial S} \ u_{v}^{p} \varphi^{p} \ \varphi^{i} \partial S \\ & \sum_{i} \sum_{j,m,n,p} \int_{\Lambda_{b}} \pi \ r^{m} \varphi^{m} \ r^{n} \varphi^{n} \ \frac{\partial (u_{v}^{p} \varphi^{p})}{\partial S} \ c_{v}^{k,j} \varphi^{j} \ \varphi^{i} \partial S \\ & \sum_{i} \sum_{j,g} \int_{\Lambda_{b}} J_{02} (c_{v}^{k,j} \varphi^{j}, c_{t}^{g} \varphi^{g}) \varphi^{i} \end{split}$$

RHS:

$$\begin{split} & \sum_{i} \sum_{m,n,p} \int_{\Lambda_{b}} \Psi \left(C_{V}^{k-1}, H \right) \frac{\partial H}{\partial S} \pi \ r^{m} \varphi^{m} \quad r^{n} \varphi^{n} \quad u_{v}^{p} \varphi^{p} \frac{\partial \varphi^{i}}{\partial H} \partial S \\ & \sum_{i} \sum_{m,n,p} \int_{\Lambda_{b}} \Psi \left(C_{V}^{k-1}, H \right) \pi \ r^{m} \varphi^{m} \quad r^{n} \varphi^{n} \frac{\partial \ u_{v}^{p} \varphi^{p}}{\partial S} \varphi^{i} \partial S \\ & \left[\Psi \left(c_{v}^{k-1}, H \right) \frac{\partial H}{\partial S} \pi \quad r^{m} \varphi^{m} \quad r^{n} \varphi^{n} \quad u_{v}^{p} \varphi^{p} \quad \varphi^{i} \right]_{\partial \Lambda_{b}} - \left[\mathcal{D}_{V} \frac{\partial \left(c_{v}^{k} \right)}{\partial S} \varphi^{i} \right]_{\partial \Lambda_{b}} \quad \text{Su i rami, va a 0} \end{split}$$

Infine...

Punto fisso su Λ : caso b)

$$D_{V} \frac{\partial^{2} C_{V}(S)}{\partial S^{2}} - \left(\frac{\partial (C_{V})}{\partial S} u_{V} + \frac{\partial (u_{V})}{\partial S} C_{V} + \frac{\partial (\Psi(C_{V}, H))}{\partial S} u_{V} + \frac{\partial (u_{V})}{\partial S} \Psi(C_{V}, H)\right) \pi R^{2} = -J_{O2}(C_{V}, C_{T})$$

Scrivo che $\frac{\partial (\Psi(C_V, H))}{\partial S} = \frac{\partial (\Psi(C_V, H))}{\partial C_V} \frac{\partial C_V}{\partial S} + \frac{\partial (\Psi(C_V, H))}{\partial H} \frac{\partial H}{\partial S}$ e linearizzando $\Psi(C_V, H)$ e le sue derivate:

$$D_{V} \frac{\partial^{2} C_{V}^{k}(S)}{\partial S^{2}} - \left(\frac{\partial C_{V}^{k}}{\partial S} u_{V} + \frac{\partial (u_{V})}{\partial S} C_{V}^{k} + \left(\left(\frac{\partial (\Psi(C_{V}, H))}{\partial C_{V}}\right)^{k-1} \frac{\partial C_{V}^{k}}{\partial S} + \left(\frac{\partial (\Psi(C_{V}, H))}{\partial H}\right)^{k-1} \frac{\partial H}{\partial S}\right) u_{V} + \frac{\partial (u_{V})}{\partial S} \Psi(C_{V}^{k-1}, H) \right) \pi R^{2}$$

$$= -J_{O2}(C_{V}^{k}, C_{T}^{k})$$

☐ Mettendo un po' di ordine:

$$D_{V} \frac{\partial^{2} C_{V}^{k}(S)}{\partial S^{2}} - \left(\left(1 + \left(\frac{\partial \left(\Psi(C_{V}, H) \right)}{\partial C_{V}} \right)^{k-1} \right) u_{V} \frac{\partial C_{V}^{k}}{\partial S} \right) \pi R^{2} - \pi R^{2} \frac{\partial \left(u_{V} \right)}{\partial S} C_{V}^{k}$$

$$= -J_{O2} \left(C_{V}^{k}, C_{T}^{k} \right) + \left(\frac{\partial \left(\Psi(C_{V}, H) \right)}{\partial H} \right)^{k-1} \frac{\partial H}{\partial S} u_{V} \pi R^{2} + \frac{\partial \left(u_{V} \right)}{\partial S} \Psi \left(C_{V}^{k-1}, H \right) \pi R^{2}$$

#NOTA: $\left(\frac{\partial \left(\Psi(C_V,H)\right)}{\partial C_V}\right)^{k-1}$ impongo che la **derivata** dipenda da H e da C_V^{k-1}

Formulazione debole per dominio A

Su Λ:

$$D_{V} \frac{\partial^{2} C_{V}^{k}(S)}{\partial S^{2}} - \left(\left(1 + \left(\frac{\partial \left(\Psi(C_{V}, H) \right)}{\partial C_{V}} \right)^{k-1} \right) u_{V} \frac{\partial C_{V}^{k}}{\partial S} \right) \pi R^{2} - \pi R^{2} \frac{\partial \left(u_{V} \right)}{\partial S} C_{V}^{k}$$

$$= -J_{O2} \left(C_{V}^{k}, C_{T}^{k} \right) + \left(\frac{\partial \left(\Psi(C_{V}, H) \right)}{\partial H} \right)^{k-1} \frac{\partial H}{\partial S} u_{V} \pi R^{2} + \frac{\partial \left(u_{V} \right)}{\partial S} \Psi(C_{V}^{k-1}, H) \pi R^{2}$$

Formulazione debole:

$$\int_{\Lambda_{b}} D_{V} \frac{\partial^{2} C_{V}^{k}(S)}{\partial S^{2}} \varphi \partial S + \\
- \left(\int_{\Lambda_{b}} \left(1 + \left(\frac{\partial \left(\Psi(C_{V}, H) \right)}{\partial C_{V}} \right)^{k-1} \right) u_{V} \pi R^{2} \frac{\partial \left(C_{V}^{k} \right)}{\partial S} \varphi \partial S + \int_{\Lambda_{b}} \pi R^{2} \frac{\partial \left(u_{V} \right)}{\partial S} C_{V}^{k} \varphi \partial S \right) \\
= \int_{\Lambda_{b}} J_{O2}(C_{V}^{k}, C_{T}^{k}) \varphi \partial S + \\
+ \int_{\Lambda_{b}} \left(\frac{\partial \left(\Psi(C_{V}, H) \right)}{\partial H} \right)^{k-1} \frac{\partial H}{\partial S} u_{V} \pi R^{2} \varphi \partial S + \int_{\Lambda_{b}} \frac{\partial \left(u_{V} \right)}{\partial S} \Psi(C_{V}^{k-1}, H) \pi R^{2} \varphi \partial S$$

Formulazione debole per dominio A

Risolvendo per parti...

$$\int_{\Lambda_b} D_V \frac{\partial^2 C_V^k(S)}{\partial S^2} \varphi \partial S = \left[D_V \frac{\partial C_V^k(S)}{\partial S} \varphi \right]_{\partial \Lambda_b} - \int_{\Lambda_b} D_V \frac{\partial C_V^k(S)}{\partial S} \frac{\partial \varphi}{\partial S} \partial S$$

Approssimazione numerica per dominio Λ

Formulazione debole:

$$\begin{split} &-\int_{\Lambda_b} D_V \frac{\partial \mathcal{C}_V^k(S)}{\partial S} \frac{\partial \varphi}{\partial S} \, \partial S \, + \\ &-\left(\int_{\Lambda_b} \left(1 + \left(\frac{\partial \left(\Psi(\mathcal{C}_V, H)\right)}{\partial \mathcal{C}_V}\right)^{k-1}\right) \pi R^2 u_V \frac{\partial \left(\mathcal{C}_V^k\right)}{\partial S} \, \varphi \partial S \, + \int_{\Lambda_b} \pi R^2 \frac{\partial \left(u_V\right)}{\partial S} \, \mathcal{C}_V^k \, \varphi \partial S\right) = \\ &= \int_{\Lambda_b} J_{O2}(\mathcal{C}_V^k, \mathcal{C}_T^k) \, \varphi \partial S \, + \int_{\Lambda_b} \left(\frac{\partial \left(\Psi(\mathcal{C}_V, H)\right)}{\partial H}\right)^{k-1} \frac{\partial H}{\partial S} u_V \pi R^2 \, \varphi \partial S \\ &+ \int_{\Lambda_b} \Psi \left(\mathcal{C}_V^{k-1}, H\right) \pi R^2 \frac{\partial \left(u_V\right)}{\partial S} \, \varphi \partial S \, - \left[D_V \frac{\partial \mathcal{C}_V^k(S)}{\partial S} \, \varphi\right]_{\partial \Lambda_b} \\ & \square \text{ Discretizzando su una partizione di Λ: $\Lambda_h = \bigcup_{i=0}^{N_V^k} \Lambda_i^h \end{split}$$

$$C_V^k = \sum_j c_v^{k,j} \varphi^j$$
 ; $u_V = \sum_p u_v^p \varphi^p$; $R_1 = \sum_m r^m \varphi^m$; $R_2 = \sum_n r^n \varphi^n$; $\left(H = \sum_l h^l \varphi^l\right)$???

Approssimazione numerica

LHS:

$$\begin{split} & \sum_{i} \sum_{j} \int_{\Lambda_{b}} D_{V} \frac{\partial (c_{v}^{k,j} \varphi^{j})}{\partial S} \frac{\partial \varphi^{i}}{\partial S} \partial S \\ & \sum_{i} \sum_{j,m,n,p} \int_{\Lambda_{b}} (1 + \left(\frac{\partial (\Psi(C_{V},H))}{\partial C_{V}}\right)^{k-1}) \pi \ r^{m} \varphi^{m} \ r^{n} \varphi^{n} \ \frac{\partial (c_{v}^{k,j} \varphi^{j})}{\partial S} \ u_{v}^{p} \varphi^{p} \ \varphi^{i} \partial S \\ & \sum_{i} \sum_{j,m,n,p} \int_{\Lambda_{b}} \pi \ r^{m} \varphi^{m} \ r^{n} \varphi^{n} \ \frac{\partial (u_{v}^{p} \varphi^{p})}{\partial S} \ c_{v}^{k,j} \varphi^{j} \ \varphi^{i} \partial S \\ & \sum_{i} \sum_{j,g} \int_{\Lambda_{b}} J_{O2}(c_{v}^{k,j} \varphi^{j}, c_{t}^{g} \varphi^{g}) \varphi^{i} \end{split}$$

RHS:

$$\sum_{i} \sum_{m,n,p} \int_{\Lambda_{b}} \left(\frac{\partial (\Psi(C_{V},H))}{\partial H} \right)^{k-1} \frac{\partial H}{\partial S} \pi r^{m} \varphi^{m} r^{n} \varphi^{n} u_{v}^{p} \varphi^{p} \varphi^{i} \partial S$$

$$\sum_{i} \sum_{m,n,p} \int_{\Lambda_{b}} \Psi(C_{V}^{k-1},H) \pi r^{m} \varphi^{m} r^{n} \varphi^{n} \frac{\partial u_{v}^{p} \varphi^{p}}{\partial S} \varphi^{i} \partial S$$

$$- \left[D_{V} \frac{\partial (C_{V}^{k})}{\partial S} \varphi^{i} \right]_{\partial \Lambda_{b}}$$

Infine...

$$\left[\left(D_{V} \frac{\partial \left(c_{v}^{k,j} \varphi^{j} \right)}{\partial S}, \frac{\partial \varphi^{i}}{\partial S} \right)_{\Lambda_{b}} - \left(\left(1 + \left(\frac{\partial \left(\Psi(C_{V}, H) \right)}{\partial C_{V}} \right)^{k-1} \right) \pi R^{2} u_{V} \frac{\partial \left(c_{v}^{k,j} \varphi^{j} \right)}{\partial S}, \varphi^{i} \right)_{\Lambda_{b}} \right. \\
\left. - \left(\pi R^{2} \frac{\partial u_{V}}{\partial S} c_{v}^{k,j} \varphi^{j}, \varphi^{i} \right)_{\Lambda_{b}} + \left(J_{02} \left(c_{v}^{k,j} \varphi^{j}, c_{t}^{g} \varphi^{g} \right), \varphi^{i} \right)_{\Lambda_{b}} \\
\left. = \left(\left(\frac{\partial \left(\Psi(C_{V}, H) \right)}{\partial H} \right)^{k-1} \frac{\partial H}{\partial S} \pi R^{2} u_{V} \varphi^{i} \right)_{\Lambda_{b}} + \left(\Psi(C_{V}^{k-1}, H) \pi R^{2} \frac{\partial u_{V}}{\partial S} \varphi^{i} \right)_{\Lambda_{b}} \right. \right.$$