Homework 3

Anurag Amin - Q.2 & Q.3(b) & Michael Noyes - Q.1 & Q.3(a)3/1/2018

Problem 1: E-M algorithm

The complete log-likelihood can be written as:

$$l_n^c(\Psi) = \sum_{i=1}^n \log[p(y_i, \mathbf{x}_i, z_i; \Psi)] = \sum_{i=1}^n \sum_{j=1}^m z_{ij} \log[\pi_j \phi(y_i - \mathbf{x}_i^T \beta_j; 0, \sigma^2]] = \sum_{i=1}^n \sum_{j=1}^m z_{ij} \log[\pi_j * \phi(y_i - \mathbf{x}_i^T \beta_j; 0, \sigma^2)]$$

E-Step:

$$Q(\Psi \mid \Psi^{(k)}) = E_z[l_n^c(\Psi)] = E_z[\sum_{i=1}^n \sum_{j=1}^m z_{ij} \log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}] = \sum_{i=1}^n \sum_{j=1}^m E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}] = \sum_{i=1}^n \sum_{j=1}^m E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}] = \sum_{i=1}^n \sum_{j=1}^m E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}] = \sum_{i=1}^n \sum_{j=1}^m E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}] = \sum_{i=1}^n \sum_{j=1}^m E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}] = \sum_{i=1}^n \sum_{j=1}^m E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}] = \sum_{i=1}^n \sum_{j=1}^n E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}] = \sum_{i=1}^n \sum_{j=1}^n E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}] = \sum_{i=1}^n \sum_{j=1}^n E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}] = \sum_{i=1}^n \sum_{j=1}^n E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}] = \sum_{i=1}^n \sum_{j=1}^n E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log\{\pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}}\}]$$

So,

$$Q(\Psi \mid \Psi^{(k)}) = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)} [log\{\pi_{j}^{(k)} * \phi(y_{i} - \mathbf{x}_{i}^{T} \beta_{j}^{(k)}; 0, \sigma^{2}^{(k)})\}]$$

Note, using Bayes' Rule we can see that:

$$p_{ij}^{(k+1)} = E[z_{ij} \mid y_i \mathbf{x}_i; \boldsymbol{\Psi}^{(k)}] = \frac{p(z_{ij}; \boldsymbol{\pi}) p(\mathbf{x}_i \mid y_i, z_i; \boldsymbol{\Psi}^{(k)})}{p(y_i, \mathbf{x}_i; \boldsymbol{\Psi}^{(k)})} = \frac{\pi_j^{(k)} \phi(y_i - \mathbf{x}_i^T \boldsymbol{\beta}_j^{(k)}; 0, \sigma^{2^{(k)}})}{\sum_{j=1}^m \pi_j^{(k)} \phi(y_i - \mathbf{x}_i^T \boldsymbol{\beta}_j^{(k)}; 0, \sigma^{2^{(k)}})}$$

Also note that zij = 1 if observation i is from component j; zij = 0 otherwise

M-Step: We maximize the conditional expectation with respect to Ψ to obtain $(\beta^{(k+1)}, \sigma^{2(k+1)})$

$$Q(\Psi \mid \Psi^{(k)}) = \sum_{i=1}^{n} \sum_{j=1}^{m} E[z_{ij} \mid y_i, \mathbf{x}_i; \Psi^{(k)}][\log \pi_j^{(k)} * \phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}})] = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)} \log[\pi_j^{(k)}] + \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)} \log[\phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}})] = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)} \log[\pi_j^{(k)}] + \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)} \log[\phi(y_i - \mathbf{x}_i^T \beta_j^{(k)}; 0, \sigma^{2^{(k)}})] = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)} \log[\pi_j^{(k)}] + \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k)} + \sum_{j=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k)} \log[\pi_j^{(k)}] + \sum_{j=1}^{m} \sum_{j=1}^{m} p_{ij}^{(k)} \log[\pi_j^{(k)}] + \sum_{j=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k)} \log[\pi_j^{(k)}] + \sum_{j=1}^{m} \sum_{j=1}^{m} p_{ij}^{(k)} \log[\pi_j^{(k)}] + \sum_{j=1}^{m} \sum_{j=1$$

$$Q(\Psi \mid \Psi^{(k)}) = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)} \log[\pi_{j}^{(k)}] + \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)} \log[\frac{1}{\sqrt{2\pi * \sigma^{2}^{(k)}}}] - \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)} \frac{(y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta}_{j}^{(k)})^{2}}{2 * \sigma^{2}^{(k)}}$$

From lecture notes we know that maximization can be obtained by finding a solution for L'(q1,...,qk)=0, i.e.

$$\frac{\partial L(q_1, ... q_k)}{\partial q_k} = 0$$

where

$$L(q_1, ..., q_k) = \sum_{k=1}^{K} W_k log[q_k] - \lambda \sum_{k=1}^{K} (q_k - 1)$$

with λ a Lagrange multiplier.

Now, we must apply the Lagrange equation to the solution above with the constraint that $\sum_{j=1}^{m} \pi_j = 1$. We get the following:

$$L[\pi_1^{(k)}, ..., \pi_m^{(k)}; \lambda] = Q(\Psi \mid \Psi^{(k)}) - \lambda(\sum_{j=1}^m \pi_j^{(k)} - 1)$$

Next, we must take the derivative of the L with respect to $\pi_j^{(k)}$. Setting the resulting derivative equal to 0 we get the following:

$$\frac{\partial L}{\partial \pi_j^{(k)}} = \sum_{i=1}^n p_{ij}^{(k+1)} \frac{1}{\pi_j^{(k+1)}} - \lambda = 0$$

We get

$$\pi_j^{(k+1)} = \frac{\sum_{i=1}^n p_{ij}^{(k+1)}}{n}$$

$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)}}{\lambda} = \frac{n}{\lambda} = 1$$

Now, we must refer back to the equation equal to $Q(\Psi | \Psi^{(k)})$. First, to get $\beta_j^{(k+1)}$ we must take the derivative of the equation with respect to $\beta_j^{(k)}$. Setting this equal to 0, we get:

$$\frac{\partial Q}{\partial \beta_j^{(k)}} \propto \sum_{i=1}^n p_{ij}^{(k+1)} \mathbf{x}_i (y_i - \mathbf{x}_i^T \beta_j^{(k+1)}) = 0$$

Rearranging this equation, we get:

$$\sum_{i=1}^{n} p_{ij}^{(k+1)} \mathbf{x}_{i} y_{i} = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \beta_{j}^{(k+1)} p_{ij}^{(k+1)}$$

Ultimately solving to get:

$$\beta_j^{(k+1)} = \left[\sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^T p_{ij}^{(k+1)}\right]^{-1} \left[\sum_{i=1}^n \mathbf{x}_i p_{ij}^{(k+1)} y_i\right]$$

where j ranges from 1 to m.

Next, we need to solve for $\sigma^{2(k+1)}$. Again, we must take the derivative of the equation equal to $Q(\Psi | \Psi^{(k)})$, but this time with respect to $\sigma^{2(k)}$. Setting this equal to 0 we get:

$$\sigma^{2(k+1)} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)} (y_i - \mathbf{x}_i^T \beta_j^{(k+1)})^2}{\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)}}$$

$$\sigma^{2(k+1)} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^{(k+1)} (y_i - \mathbf{x}_i^T \beta_j^{(k+1)})^2}{n}$$

Problem 2: Gamma mixture models and Rejection Sampling

Our goal here is to simulate observations from a given density function f(x). We will achieve this by using the Rejection Sampling Method with instrumental density function g(x).

$$f(x) \propto \sqrt{(4+x)}x^{\theta-1}e^{-x} \tag{1}$$

$$g(x) \propto (2x^{\theta-1} + x^{\theta-\frac{1}{2}})e^{-x}$$
 (2)

(a) Here, we try to find the value of the normalizing constant C in the density function g(x).

$$g(x) = C * (2x^{\theta-1} + x^{\theta-\frac{1}{2}})e^{-x}$$

Since g(x) is a density function, its integral over all values of x will result to "1". Hence:

$$\int_{0}^{\infty} g(x)dx = 1$$

$$\int_{0}^{\infty} C * (2x^{\theta - 1} + x^{\theta - \frac{1}{2}})e^{-x}dx = 1$$

$$C \Big[\int_{0}^{\infty} 2x^{\theta - 1}e^{-x}dx + \int_{0}^{\infty} x^{\theta - \frac{1}{2}}e^{-x}dx \Big] = 1$$

$$C \Big[2\Gamma(\theta) \int_{0}^{\infty} \frac{x^{\theta - 1}e^{-x}}{\Gamma(\theta)}dx + \Gamma(\theta + \frac{1}{2}) \int_{0}^{\infty} \frac{x^{(\theta + \frac{1}{2}) - 1}e^{-x}}{\Gamma(\theta + \frac{1}{2})}dx \Big] = 1$$
(3)

It can be observed that the integral in the above equation is a mixture of two gamma density integral functions, namely $\Gamma(rate=1, shape=\theta)$ and $\Gamma(rate=1, shape=\theta+\frac{1}{2})$.

$$C\left[2\Gamma(\theta)\int_0^\infty \frac{x^{\theta-1}e^{-x}}{\Gamma(\theta)}dx + \Gamma(\theta + \frac{1}{2})\int_0^\infty \frac{x^{(\theta + \frac{1}{2}) - 1}e^{-x}}{\Gamma(\theta + \frac{1}{2})}dx\right] = 1$$

$$C\left[2\Gamma(\theta) + \Gamma(\theta + \frac{1}{2})\right] = 1$$

$$C = \left[\frac{1}{2\Gamma(\theta) + \Gamma(\theta + \frac{1}{2})}\right]$$

So, the density function g(x) is given as follows:

$$\begin{split} g(x) &= \frac{1}{2\Gamma(\theta) + \Gamma(\theta + \frac{1}{2})} (2x^{\theta - 1} + x^{\theta - \frac{1}{2}})e^{-x} \\ g(x) &= \frac{2\Gamma(\theta)}{2\Gamma(\theta) + \Gamma(\theta + \frac{1}{2})} \Big(\frac{x^{\theta - 1}e^{-x}}{\Gamma(\theta)}\Big) + \frac{\Gamma(\theta + \frac{1}{2})}{2\Gamma(\theta) + \Gamma(\theta + \frac{1}{2})} \Big(\frac{x^{(\theta + \frac{1}{2}) - 1}e^{-x}}{\Gamma(\theta + \frac{1}{2})}\Big) \end{split}$$

g(x) is a mixture density function of two gamma densities, $\Gamma(rate=1, shape=\theta)$ and $\Gamma(rate=1, shape=\theta+\frac{1}{2})$ with weights $\alpha_1=\frac{2\Gamma(\theta)}{2\Gamma(\theta)+\Gamma(\theta+\frac{1}{2})}$, $\alpha_2=\frac{\Gamma(\theta+\frac{1}{2})}{2\Gamma(\theta)+\Gamma(\theta+\frac{1}{2})}$ such that

$$\alpha_1 + \alpha_2 = 1$$

(b) Now, we will sample from g and plot the kernel density approximation and true density.

Plot of Kernel Density and True Density

Hence, from the plot we can see that our kernel density approximation is pretty good.

(c) Now, we will use Rejection Sampling to sample from f(x)

$$f(x) \propto \sqrt{(4+x)}x^{\theta-1}e^{-x} \tag{4}$$

Let
$$q(x) = \sqrt{(4+x)}x^{\theta-1}e^{-x}$$
 (5)

$$q(x) \le (\sqrt{4} + \sqrt{x})x^{\theta - 1}e^{-x} \tag{6}$$

$$q(x) \le (2x^{\theta - 1} + x^{\theta - \frac{1}{2}})e^{-x} \tag{7}$$

$$q(x) \le g(x) \tag{8}$$

$$\alpha = 1 \tag{9}$$

(10)

Graph of estimated density of sample generated from f

Problem 3: Two methods to sample from f

(a) Our goal is to simulate observations from a given density. Note, the density looks similar to the sum of Beta distributions.

$$f(x) \propto \frac{x^{\theta-1}}{1+x^2} + \sqrt{2+x^2}(1-x)^{\beta-1}where0 < x < 1$$

We can show that

$$f(x) \propto \frac{x^{\theta-1}}{1+x^2} + \sqrt{2+x^2}(1-x)^{\beta-1}q(x) = \frac{x^{\theta-1}}{1+x^2} + \sqrt{2+x^2}(1-x)^{\beta-1}q(x) \leq x^{\theta-1} + \sqrt{2}(1-x)^{\beta-1} + \sqrt{x^2}(1-x)^{\beta-1}q(x) \leq alphag$$

because
$$\sqrt{2+x^2} \le \sqrt{2} + x$$
 and $1 \le (1+x^2)$

We must show that g(x) is less than $\alpha g(x)$ in order to simulate using rejection sampling and the mixture of beta distributions. Solving for alpha we get:

$$g(x) \propto x^{\theta-1} + \sqrt{2}(1-x)^{\beta-1} + x(1-x)^{\beta-1}g(x) = C[B(\theta,1)\frac{x^{\theta-1}}{B(\theta,1)} + \sqrt{2}B(1,\beta)\frac{(1-x)^{\beta-1}}{B(1,\beta)} + B(2,\beta)\frac{x(1-x)^{\beta-1}}{B(2,\beta)} + C[B(\theta,1)\frac{x^{\theta-1}}{B(\theta,1)} + \sqrt{2}B(1,\beta)\frac{(1-x)^{\beta-1}}{B(1,\beta)} + B(2,\beta)\frac{x(1-x)^{\beta-1}}{B(2,\beta)} + C[B(\theta,1)\frac{x^{\theta-1}}{B(\theta,1)} + \sqrt{2}B(1,\beta)\frac{(1-x)^{\beta-1}}{B(1,\beta)} + B(2,\beta)\frac{x(1-x)^{\beta-1}}{B(2,\beta)} + C[B(\theta,1)\frac{x^{\theta-1}}{B(2,\beta)} + C[B(\theta,1)\frac{x^{\theta-1}}{B$$

$$\int_0^\infty g(x) = 1/C[B(\theta,1) + B(1,\beta) + B(2,\beta)] = 1/C = \frac{1}{B(\theta,1) + B(1,\beta) + B(2,\beta)}$$

$$\alpha = \frac{1}{C} = B(\theta, 1) + B(1, \beta) + B(2, \beta)$$

Note: I am having a lot of trouble getting this code to run. I'm out of time, however, so I will submit the solution as is.

(b) Here, we use the two parts of the function separately and then sample from f.

$$\begin{split} f(x) &\propto \left(\frac{x^{\theta-1}}{1+x^2}\right) + \left(\sqrt{2+x^2}(1-x)^{\beta-1}\right) \\ f(x) &\propto \sum_{i=1}^2 q_i(x) \\ where \ \ q_1(x) &= \frac{x^{\theta-1}}{1+x^2} \\ q_2(x) &= \sqrt{2+x^2}(1-x)^{\beta-1} \\ q_1(x) &\leq B(\theta,1) \frac{x^{\theta-1}}{B(\theta,1)} \\ g_1(x) &= \frac{x^{\theta-1}}{B(\theta,1)} \\ q_1(x) &= \frac{x^{\theta-1}}{B(\theta,1)} \\ q_2(x) &\leq \sqrt{2}(1-x)^{\beta-1} + x(1-x)^{\beta-1} \\ q_2(x) &\leq \sqrt{2}B(1,\beta) \frac{(1-x)^{\beta-1}}{B(1,\beta)} + B(2,\beta) \frac{x(1-x)^{\beta-1}}{B(2,\beta)} \\ q_2(x) &\leq \left(\sqrt{2}B(1,\beta) + B(2,\beta)\right) \left(\frac{\sqrt{2}B(1,\beta)}{\sqrt{2}B(1,\beta)} + \frac{B(2,\beta)}{B(1,\beta)} + \frac{x(1-x)^{\beta-1}}{\sqrt{2}B(1,\beta) + B(2,\beta)}\right) \\ q_2(x) &= \frac{\sqrt{2}B(1,\beta)}{\sqrt{2}B(1,\beta) + B(2,\beta)} \frac{(1-x)^{\beta-1}}{B(1,\beta)} + \frac{B(2,\beta)}{\sqrt{2}B(1,\beta) + B(2,\beta)} \frac{x(1-x)^{\beta-1}}{B(2,\beta)} \\ q_2 &= \sqrt{2}B(1,\beta) + B(2,\beta) \end{split}$$

Now, we plot the estimated density -

Estimated Density

