Лабораторная работа № 1 МАКРОСТРУКТУРНЫЙ АНАЛИЗ МЕТАЛЛОВ И СПЛАВОВ

Цель работы: ознакомиться с методикой проведения макроструктурного анализа; изучить коллекцию макродефектов, коллекцию изломов и выявить распределение серы в макрошлифе стали или чугуна.

Приборы и материалы: коллекция макродефектов, коллекция изломов, коллекция макрошлифов, 5 % раствор серной кислоты в воде, 10 % раствор гипосульфита, фильтровальная бумага, вата, спирт, шлифовальная машина с набором наждачной бумаги различной зернистости.

Выполнение работы рекомендуется проводить в следующем порядке:

1. Ознакомиться по методическому указанию с назначением и методикой проведения макроструктурного анализа

Макроструктурный анализ (макроанализ) — это метод исследования металлов и сплавов, выполняемый невооруженным глазом или при небольшом увеличении (до 30 крат) с помощью лупы или специального микроскопа.

Существует три основных способа изучения макроструктуры:

- 1. Осмотр поверхности готового изделия.
- 2. Изучение специально приготовленных макрошлифов.
- 3. Изучение изломов.

Возможности макроструктурного анализа велики, по выполнению он прост и не требует сложного оборудования. Преимуществом макроанализа является то, что ему может быть подвергнут большой объем металла, т. е. все изделие или его основные части. Поэтому в ГОСТах на большинство металлоизделий различные виды макроанализа включены как обязательные.

Макроанализ проводится с целью изучения макроструктуры и выявления макродефектов, возникающих на различных этапах производства заготовок и изделий.

Оценка макроструктуры стали производится по ГОСТ 10243-75.

Макроанализ позволяет установить:

- 1. Строение металла или сплава в литых деталях и слитках; наличие дефектов и распределение зон кристаллизации.
- 2. Химическую неоднородность (ликвацию), получаемую в процессе кристаллизации.
 - 3. Строение металла после горячей обработки давлением.
- 4. Неоднородность состава и структуры, созданной термической или химико-термической обработкой, глубину и характер распределения закаленного, цементированного, азотированного и других слоев.
 - 5. Характер излома и характер разрушения.

2. Оценка поверхности металла

При осмотре поверхности отливки или детали можно обнаружить следующие основные дефекты:

Газовые раковины — пустоты, расположенные на поверхности или внутри отливки. Форма раковин сферическая или округленная. Причина их образования может быть связана с большим содержанием газов вследствие:

- а) плохого качества исходных материалов;
- б) пониженной газопроницаемости или повышенной влажности формовочных и стержневых материалов;
 - в) недостаточной вентиляции форм и стержней;
 - г) низкой температуры заливаемого сплава;
 - д) чрезмерно быстрого заполнения формы.

Песочные раковины — закрытые или открытые раковины, полностью или частично заполненные формовочным материалом. Причинами их образования могут быть:

- а) недостаточная прочность формовочной и стержневой смеси;
- б) применение неисправных моделей;
- в) слабая или неравномерная набивка формы или стержней;
- г) местное разрушение и засорение формы при сборке;
- д) нетехнологичность конструкции отливки и др.

Пригар — поверхность отливки шероховатая или бугристая и связана с пригоранием формовочной земли к стенкам отливки из-за очень высокой температуры заливаемого металла.

Пористость или рыхлость – крупнозернистое и неплотное строение сплава с наличием межкристаллических пустот.

Причинами брака могут быть:

- а) неправильная конструкция отливки;
- б) недостаточное питание отливки жидким металлом в процессе затвердевания;
 - в) чрезмерно высокая температура заливки и др.

Спай – сквозные или поверхностные щели в теле отливки, образованные неслившимися потоками металла.

Причина их образования может быть связанна с:

- а) низкой температурой расплава при заливке;
- б) неправильным устройством литниковой системы (встречные потоки);
- в) низкой скоростью заливки.

Трещины – сквозные или несквозные разрывы в стенках отливок или деталей.

Причинами трещин в отливках могут быть:

- а) неправильная конструкция отливки с резким переходом от толстых к тонким сечениям;
 - б) острые углы в отливках;
 - в) чрезмерная плотность набивки;
 - г) неправильный состав формовочных и стержневых смесей;

д) неправильный режим заливки.

Горячие трещины в отливках имеют "рваные", а холодные – ровные и гладкие края.

Причинами трещин в стальных поковках и заготовках могут быть:

- а) большое загрязнение слитка неметаллическими включениями;
- б) наличие литейных дефектов;
- в) чрезмерные обжатия по сечению и др.

Трещины в термически обработанных деталях возникают из-за высоких напряжений термического или структурного характера вследствие:

- а) неправильного температурного режима термической обработки;
- б) неправильного выбора охлаждающей среды;
- в) нетехнологичности конструкции деталей и др.

Шлифовочные трещины в виде сетки на поверхности детали возникают в результате больших растягивающих напряжений при неправильных режимах шлифования. Такие трещины выявляются после шлифования и травления поверхности. В качестве травителя можно использовать 10-15 % спиртовой или водный раствор азотной кислоты или персульфата аммония.

Трещины в сварных швах возникают в результате больших внутренних растягивающих напряжений при охлаждении наплавленного металла в результате:

- а) неправильного режима сварки;
- б) насыщения шва водородом при использовании влажных электродных покрытий из флюсов и из окружающего воздуха;
 - в) плохой свариваемости металлов.

3. Изучение макрошлифов

Макрошлифом (темплетом) называется образец, вырезанный в определенном месте детали и имеющий плоскую шлифованную поверхность, которая в зависимости от цели исследования протравливается специальным травителем.

Для изучения строения металла слитков, отливок, катаных и кованных заготовок и готовых деталей образцы вырезают в направлении, перпендикулярном продольной оси. При изучении строения сварного шва образцы вырезают в продольном направлении.

Контролируемую поверхность образцов торцуют, строгают и шлифуют. Шлифование ведут до полного уничтожения рисок, оставшихся после торцовки. Когда на шлифе останутся риски только от шлифовальной бумаги, шлифование прерывают и повторяют обработку поверхности на бумаге с более мелким зерном, каждый раз изменяя направление движения шлифа на 90° .

Уже на шлифованной поверхности можно обнаружить после внимательного исследования невооруженным глазом или в лупу некоторые внутренние дефекты металла: пузыри, пустоты, трещины и крупные шлаковые включения. Но такие дефекты, как мелкая пористость, волосовины — еле заметные трещины, мелкие раковины, неоднородность металла (ликвация), а также кристаллическая структура металла выявляются только в

результате так называемого макроскопического травления растворами кислот (серной, азотной, соляной, пикриновой, хромистой или их смесями) или же специальными реактивами, среди которых наиболее распространены 10 % водный раствор персульфата аммония и реактивы, содержащие хлористую медь.

Для выявления кристаллической структуры литой стали наиболее подходящим реактивом является 10-20% водный раствор персульфата аммония. Для выявления неравномерности в распределении фосфора и углерода рекомендуют реагент с хлористой медью.

Макротравлением можно определить способ изготовления изучаемой детали, в частности, является ли она литой или изготовлена ковкой (штамповкой), или резанием (рис. 1).

Рис. 1. Схема макроструктуры изделия, изготовленного: а — штамповкой; δ — резанием; ϵ — литьем

Неметаллические включения в стали (сульфиды, оксиды, шлаки) и ликвационные участки, неоднородные по составу и структуре, при обработке давлением (прокатке, ковке, штамповке) частично раздробляются и вытягиваются вдоль направления деформации, образуя характерную продольную волокнистость. Волокна металла вследствие неодинакового состава и строения имеют различную травимость. Поэтому реактив, содержащий 85 г CuCl₂ и 54 г NH₄Cl на 1000 мл воды, хорошо выявляет полосчатость. Макрошлиф в этом случае надо изготавливать в продольном направлении.

Ввиду важности направления волокон для конструкционной прочности изделия, этот способ получил широкое применение и послужил толчком для рациональной постановки процессов ковки и штамповки специальных изделий (коленчатых валов, шестерен и пр.). Волокнистость, повторяющая конфигурацию сечения детали, свидетельствует о правильной технологии горячей обработки давлением. При несоответствии расположения волокон контуру детали в местах перехода от одной конфигурации к другой создаются напряжения, сокращающие эксплуатационный срок ее службы.

Макроанализ выявляет зональную (в различных частях) и дендритную (в пределах одного кристалла — дендрита) ликвацию в стали углерода и вредных примесей — серы и фосфора, а также ликвацию по удельному весу (гравитационную). Наиболее часто для выявления ликвации используется метод травления. Выявить ликвацию серы в стали или чугуне можно

методом Баумана. Принцип метода заключается в следующем: обычную неотфиксированную фотобумагу при дневном свете пропитывают в течение 8-10 мин. 5 %-м раствором серной кислоты и затем лишнюю кислоту с фотобумаги удаляют фильтровальной бумагой. Потом бумагу прижимают эмульсионным слоем приблизительно на 2 мин к предварительно отшлифованному, промытому и обезжиренному образцу, причем прикладывать фотобумагу необходимо плотно, чтобы не осталось пузырьков воздуха между бумагой и образцом. В результате реакции сернистого железа металла с серной кислотой фотобумаги образуется сероводород:

$$FeS + H_2SO_4 = FeSO_4 + H_2S \uparrow$$
,

который реагирует с бромистым серебром фотоэмульсии и образует на бумаге сернистое серебро:

$$2AgBr + H_2S = 2HBr + Ag_2S$$

темного цвета. Фотобумага снимается со шлифа, промывается водой, фиксируется 6-10 мин в 10 %-м растворе гипосульфита, после чего снова промывается водой и просушивается.

Темно-коричневые пятна указывают на места, обогащенные серой и на форму скоплений сульфидов по сечению образца.

Для определения глубины поверхностного слоя, образованного после закалки или цементации, образец травят 20 %-м раствором соляной кислоты при 80 0 C в течение 3 мин, а затем промывают водой. После травления цементованный или закаленный слой имеет более темную окраску.

4. Изучение изломов

Изломом называется поверхность, по которой произошло разрушение образца или детали.

Изучение излома позволяет выявить причины и характер эксплуатационного разрушения, оценить качество стали, выявить дефекты, которые не выявляются при анализе макроструктуры на темплетах, позволяет с достаточной для практических целей точностью выявить глубину закаленного и цементованного слоев, оценить вязкость материалов.

В зависимости от состава, строения, режима термической обработки и условий эксплуатации изделия могут разрушаться вязко или хрупко. В соответствии с этим изломы делятся на вязкие, хрупкие и смешанные. Большинство металлов и сплавов могут разрушаться и вязко, и хрупко. Состояние поверхности — один из важнейших факторов, влияющих на механические свойства материала. Поверхностные неровности при плохой обработке, небольшие выступы или впадины могут играть роль хрупких трещин и снижать прочность материала. На увеличение хрупкости материала влияет масштабный фактор, так как вероятность существования опасного дефекта уменьшается при уменьшении размеров образца. Тщательная полировка поверхности, а также создание на поверхности сжимающих

напряжений дробеструйной обработкой, обкаткой роликами, термической и химико-термической обработкой, препятствующих раскрытию поверхностных трещин, существенно увеличивает срок службы деталей. Для обеспечения конструктивной прочности изделий излом материала должен быть вязким, так как хрупкий излом происходит мгновенно и создает ситуацию, называемую "аварией".

Вязкий излом (рис. 2а, 3а) (волокнистый) имеет пепельно-серый цвет.

На поверхности отсутствуют кристаллические фасетки. В связи с этим по излому нельзя судить о форме и размере зерна. Волокнистая структура образуется при длительном воздействии напряжения, превышающего предел текучести, и свидетельствует о пластической деформации зерен поликристалла. В результате вязкого разрушения образуется "косой" излом – его поверхность в макромасштабе наклонена под углом 45⁰ к направлению действия максимального напряжения.

Вязкий излом может образоваться в результате:

- а) соскальзывания одной части кристалла по другой или уменьшения сечения при деформации до нуля;
 - б) зарождения трещины и ее дальнейшего распространения.

Вязкому разрушению предшествует значительная макропластическая деформация. Вязкая трещина — тупая и скорость ее распространения мала. Волокнистый — матовый излом указывает на достаточную вязкость материала.

Хрупкий излом (рис. 26, в, 36, 4) имеет кристаллическое строение. Обычно в хрупком изломе можно видеть форму и размер зерен металла, т. к. излом происходит без значительной пластической деформации, и зерна при разрушении металла не искажаются. Такие изломы бывают крупно- и мелкокристаллические. Чем крупнее зерно на изломе, тем выше хрупкость материала.

Хрупкий излом прямой. По характеру отражения света излом может быть светлым, характерным для сталей и белых чугунов, серым, характерным для серых чугунов и темным, бархатистым, характерным для ковких и высокопрочных чугунов.

Хрупкий излом, как и вязкий, образуется в результате зарождения трещины и дальнейшего ее распространения. "Хрупкая" трещина — острая, ветвящаяся, ее распространение происходит при низких напряжениях и рост трещины на определенной стадии становится неуправляемым. Скорость распространения трещины близка к скорости звука.

Разновидностями хрупкого излома является также шиферный или слоистый, нафталинистый и дендритный изломы.

Шиферный излом (рис. 5) — выявляется в кованой и катанной стали после закалки и отпуска. Получил свое название по аналогии с изломом шифера, легко раскалывающегося по плоскости в одном направлении.

Причинами шиферного излома являются:

а) наличие неметаллических включений, вытягивающихся вдоль направления прокатки;

б) наличие разнородных по пластическим свойствам участков металла, как результат неравномерного распределения примесей и фаз.

Таким образом, шиферный (слоистый) излом свидетельствует о загрязнении материала неметаллическими включениями и низком качестве материала.

Нафталинистый излом (рис. 6) характеризуется крупнозернистостью и наличием своеобразного блеска, напоминающего блеск чешуек нафталина. Такой излом указывает на повышенную хрупкость стали. Обнаруживается чаще всего у быстрорежущей стали при нарушении технологии ее обработки, а также у других сталей, как результат сильного перегрева.

Дендритный излом выявляется у литого металла. Разрушение в этом случае происходит по границам сопряженных дендритных кристаллов и наблюдается у белых чугунов.

Смешанный излом (рис. 2c, 3в) — излом кристаллический в одних участках и волокнистый в других. Смешанный излом наблюдается в условиях усталостного разрушения (усталостный излом) у сталей с несквозной прокаливаемостью.

Этот излом можно также наблюдать на образцах после ударных испытаний: темная каемка на периферии образца — вязкая составляющая — довольно резко отличается от светлой сердцевины, где имеет место хрупкое разрушение.

Усталостный излом всегда имеет две зоны разрушения. Одна из них соответствует участку развития усталостной трещины и имеет характерный (иногда блестящий) вид. На поверхности этой зоны часто видны концентрические контуры фронта распространения трещин, которые сходятся в очаге разрушения. Вторая зона — зона долома — возникает в результате быстрого окончательного разрушения. Она может иметь либо хрупкое, либо вязкое, либо смешанное строение в зависимости от условий испытания или работы детали. Такой излом наблюдается у деталей, работающих в условиях повторнопеременных нагрузок (шатуны, коленчатые валы и др.).

На поверхности изломов можно обнаружить различные дефекты: поры — пузыри, грубую пятнистую ликвацию, которая в изломе имеет вид темных полос и флокены. Флокены (трещины, заполненные водородом) в изломе имеют вид светлых округлых пятен с кристаллической поверхностью серебристого или светлого оттенка, а на протравленном макрошлифе видны тонкие нитевидные трещины, соответствующие белым пятнам на изломе.

При оценке вида излома необходимо учитывать характер прилагаемой нагрузки, т. к. один и тот же материал в одном и том же структурном состоянии может иметь волокнистый излом при статическом нагружении и кристаллический излом – при ударном нагружении.

Рис. 2. Схема изломов: a — вязкого; δ — мелкозернистого хрупкого; ϵ — крупнозернистого хрупкого; ϵ — смешанного

Puc. 3. Изломы стали: a – вязкий; δ – хрупкий; ϵ – смешанный

Рис. 4. Хрупкий межкристаллический излом

Рис. 5. Шиферный излом стали

Рис. 6. Нафталинистый излом быстрорежущей стали

5. Экспериментальная часть

- 1. Изучить коллекцию макродефектов и перечислить обнаруженные макродефекты.
- 2. Изготовить макрошлиф и выявить распределение серы по методу Баумана.
 - 3. Изучить и зарисовать коллекцию изломов.
 - 4. Оформить отчет по работе.

6. Содержание отчета

- 1. Основные теоретические данные о назначении и методике проведения макроструктурного анализа.
 - 2. Результаты изучения поверхности деталей.
 - 3. Отпечаток макрошлифа на фотобумаге.
 - 4. Рисунки макроструктуры коллекции изломов.

7. Контрольные вопросы

- 1. Назначение и задачи макроструктурного анализа.
- 2. Какими основными способами проводится макроструктурный анализ?
- 3. Какие дефекты можно обнаружить с помощью макроструктурного анализа?
 - 4. Что такое ликвация, типы ликваций и методы их определения.
 - 5. Виды изломов, их характеристика и связь со свойствами металла.
 - 6. Что можно сказать о металле по его излому?