- INF01047 -

Fundamentos Matemáticos da Computação Gráfica

(c) J. Comba; C. Freitas; L. Nedel

Problemas x conceitos

Representação de forma

- Ponto como localização
- · Plano, espaço 3D
- · Sistemas de coordenadas

(c) J. Comba; C. Freitas; L. Nedel

Problemas x conceitos

 Determinação da aparência dos objetos

- Vetores
- Relação espacial entre objetos

Problemas x conceitos

Representação de ação

- Vetores
- · Sistemas de coordenadas
- •

(c) J. Comba; C. Freitas; L. Nedel

Fundamentos Matemáticos de CG

- Vetores, espaços vetoriais
- · Pontos e espaços afins
- · Sistemas de coordenadas
- Linhas e planos

Vetores

Um vetor v é uma entidade geométrica com magnitude (comprimento) e direção, representado graficamente por um segmento de linha orientado

- - Representação de direção (onde está a luz, para onde estou caminhando num jogo, qual a orientação de uma parede)
 - Mudanças de posições: posições de objetos podem ser modificadas por vetores
 - Associação de velocidade a objetos

(c) J. Comba; C. Freitas; L. Nedel

Operações sobre Vetores

Adição:

Operações sobre Vetores

Adição:

(c) J. Comba; C. Freitas; L. Nedel

Propriedades da Adição de Vetores

```
v + w = w + v (comutativa)

u + (v+w) = (u+v) + w (associativa)

v + 0 = v (identidade aditiva)
```

Para cada vetor v, existe –v tal que v + (-v) = 0 (inverso aditivo)

Multiplicação por Escalar

Aplicação num jogo?

Propriedades:

(ab)
$$\mathbf{v} = \mathbf{a}(\mathbf{b}\mathbf{v})$$
 associativa

$$(a+b)v = av + bv$$
 distributiva

$$a(\mathbf{v}+\mathbf{w}) = a\mathbf{v} + a\mathbf{w}$$
 distributiva

(c) J. Comba; C. Freitas; L. Nedel

Espaços Vetoriais Reais

- Representação gráfica x formalismo
- Espaços Vetoriais:
 - Elementos: conjunto não vazio de vetores

•
$$R^2 = \{(x, y) \mid x, y \in R\}$$

•
$$R^3 = \{(x, y, z) \mid x, y, z \in R\}$$

•
$$R^4 = \{(w, x, y, z) \mid w, x, y, z \in R\}$$

• ...

•
$$R^n = \{(x_0,...,x_{n-1}) \mid x_0,...,x_{n-1} \in R\}$$

Espaços Vetoriais Reais

- Operações fundamentais:
 - Adição entre vetores
 - Multiplicação de escalares por vetores
- Adição no R²

$$(x_0, y_0) + (x_1, y_1) = (x_0 + x_1, y_0 + y_1)$$

Multiplicação por escalar

$$a(x_0, y_0) = (a.x_0, a.y_0)$$

(c) J. Comba; C. Freitas; L. Nedel

Combinações Lineares e Base Vetorial

Seja S um conjunto de n vetores

$$S = \{v_0, ..., v_{n-1}\}$$

 Podemos usar estes vetores para criar um novo vetor v usando uma combinação linear:

$$V = a_0V_0 + a_1V_1 + ... + a_{n-1}V_{n-1}$$

onde $a_0, ..., a_{n-1}$ são reais escalares

Exemplo:

$$S = \{(0,2), (4,0), (4,8)\}$$

- * podemos gerar o vetor (0,2) a partir de (4,0) e (4,8)?
- * e o vetor (4,8) pode ser gerado a partir dos outros?

Combinações Lineares e Base Vetorial

 Se um dos vetores do conjunto S é expresso como uma combinação linear dos demais membros de S

$$V_i = a_0 V_0 + ... + a_{i-1} V_{i-1} + a_{i+1} V_{i+1} ... + a_{n-1} V_{n-1}$$

v_i é linearmente dependente

 Se nenhum dos vetores em S é linearmente dependente dos demais ...

$$S1 = \{(0,2), (4,0)\}$$
 $S2 = \{(0,2), (4,8)\}$ $S3 = \{(4,0), (4,8)\}$

(c) J. Comba; C. Freitas; L. Nedel

Base

- Para um dado espaço vetorial V, podemos achar o conjunto β de vetores linearmente independentes em V que gera V: a base β
 - Mais de uma base pode ser encontrada
- Todas as bases possuem o mesmo número de elementos
 - Dimensão do espaço vetorial
- Para o R³, base é composta de 3 elementos
 - Espaço tri-dimensional

Base Padrão (ou canônica)

$$\{e_0, e_1, ..., e_{n-1}\}$$

$$e_0 = (1, 0, ..., 0)$$

$$e_1 = (0, 1, ..., 0)$$
...
$$e_{n-1} = (0, 0, ..., 1)$$

- Propriedade Fundamental da Base:
 - Para cada vetor v no espaço vetorial V, existe somente uma combinação linear de vetores de β que é igual a v

$$v = a_0 v_0 + a_1 v_1 + ... + a_{n-1} v_{n-1}$$

(c) J. Comba; C. Freitas; L. Nedel

Abreviatura na representação

$$v = a_0 v_0 + a_1 v_1 + ... + a_{n-1} v_{n-1}$$

por
 $(a_0, a_1, ..., a_{n-1})$

• Exemplo em 3D:

$$v = xi + yj + zk$$

Operações sobre Vetores

$$V_0 = (x_0, y_0, z_0)$$

$$V_1 = (x_1, y_1, z_1)$$

· Adição:

$$V_0 + V_1 = X_0i + Y_0j + Z_0k + X_1i + Y_1j + Z_1k$$

= $(X_0 + X_1)i + (Y_0 + Y_1)j + (Z_0 + Z_1)k$

· Multiplicação por Escalar:

av =
$$a(xi + yj + zk)$$

= $(ax)i + (ay)k + (az)k$

(c) J. Comba; C. Freitas; L. Nedel

Comprimentos de Vetores

- Norma de um vetor
 - função de comprimento do vetor, com as seguintes propriedades:
 - 1. If $v \mid l \ge 0$, $e \mid l \mid v \mid l = 0$, se e somente se, v = 0
 - 2. II av II = lal II v II
 - 3. $|| v + w || \le || v || + || w ||$

Exemplos de Normas

Distância Euclideana
 II u II = d = sqrt (x² + y²)

$$||(3,2)|| = sqrt(9 + 4) = 3.6055$$

(c) J. Comba; C. Freitas; L. Nedel

Exemplo de Normas

• Distância de Manhattan $|| v ||_{l_1} = \Sigma_i || v_i ||$

$$||(3,2)||_{11} = 3 + 2 = 5$$

Ângulo entre vetores

Lei dos Cossenos

 $||v-w||^2 = ||v||^2 + ||w||^2 - 2||v|| ||w|| \cos \theta$

Ângulo entre vetores

(c) J. Comba; C. Freitas; L. Nedel

Produto Escalar

- · Referenciado por v. w
- · Definido como:

$$v \cdot w = ||v|| ||w|| \cos \theta$$

Propriedades do Produto Escalar

 $\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos 0 = ||\mathbf{v}|| ||\mathbf{w}||$ $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}|| ||\mathbf{v}|| \cos 0 = ||\mathbf{v}||^2$

$$v \cdot w = ||v|| ||w|| \cos 90 = 0$$

```
v \cdot w = w \cdot v

w \cdot (u+v) = (u \cdot w) + (v \cdot w)

a(v \cdot w) = av \cdot w

v \cdot v \ge 0, v \cdot v = 0 se se somente se v = 0
```

(c) J. Comba; C. Freitas; L. Nedel

Aplicações do Produto Escalar

- Usar produto escalar como medida de ângulo entre dois vetores:
 - verificar se dois vetores estão apontando na mesma direção
 - verificar se dois objetos estão se deslocando na mesma direção

Problema

 Estou andando em direção à cabine telefônica ou me afastando dela?

Que vetor usar para comparar com o da minha direção?

(c) J. Comba; C. Freitas; L. Nedel

Produto Vetorial

• Encontrar um vetor ortogonal a outros dois

$$\mathbf{v} \times \mathbf{w} = (y_{v}.z_{w} - y_{w}.z_{v}, z_{v}.x_{w} - x_{v}.z_{w}, x_{v}.y_{w} - x_{w}.y_{v})$$

Produto Vetorial

Encontrar um vetor ortogonal a outros dois

$$\mathbf{w} \times \mathbf{v} = ?$$

(c) J. Comba; C. Freitas; L. Nedel

Produto Vetorial

• Encontrar um vetor ortogonal a outros dois

$$\mathbf{v} \times \mathbf{w} = (\mathbf{v}_{\mathbf{y}} \mathbf{w}_{\mathbf{z}} - \mathbf{w}_{\mathbf{y}} \mathbf{v}_{\mathbf{z}}, \ \mathbf{v}_{\mathbf{z}} \mathbf{w}_{\mathbf{x}} - \mathbf{w}_{\mathbf{z}} \mathbf{v}_{\mathbf{x}}, \ \mathbf{v}_{\mathbf{x}} \mathbf{w}_{\mathbf{y}} - \mathbf{w}_{\mathbf{x}} \mathbf{v}_{\mathbf{y}})$$

Propriedades do Produto Vetorial

- 1. $\mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v}$
- **2.** $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$
- 3. $(u + v) \times w = (u \times w) + (v \times w)$
- 4. $a(\mathbf{v} \times \mathbf{w}) = (a\mathbf{v}) \times \mathbf{w} = \mathbf{v} \times (a\mathbf{w})$
- 5. $\mathbf{v} \times \mathbf{0} = \mathbf{0} \times \mathbf{v} = \mathbf{0}$
- 6. $v \times v = 0$

(c) J. Comba; C. Freitas; L. Nedel

Produto Misto

Produto misto

- O módulo do produto vetorial é a área do paralelogramo
- O produto misto é o volume do paralelepípedo induzido por u, v e w

Fundamentos Matemáticos de CG

- Vetores, espaços vetoriais
- · Pontos e espaços afins
- · Sistemas de coordenadas
- · Linhas e planos

(c) J. Comba; C. Freitas; L. Nedel

Pontos

- Ponto como localização
- Sistema de coordenadas Cartesiano

Espaço Afim

- Conjunto de pontos W e Espaço vetorial V
- Relacionamento entre Vetores e Pontos
 - Para cada par de pontos P e Q em W, existe um único vetor v em V tal que:
 - V = Q P
 - Para cada ponto P em W e cada vetor v em V, existe um único ponto Q tal que:
 - Q = P + V

(c) J. Comba; C. Freitas; L. Nedel

Sistemas de referência

- Dada a origem O e expressando qq ponto P em W:
 - P = O + v
- Escrevendo v como combinação linear de vetores de uma base de V
 - $P = O + a_0 V_0 + a_1 V_1 + ... + a_{n-1} V_{n-1}$
 - $P = (a_0, a_1, ..., a_{n-1})$, coordenadas do ponto P

Sistema de referência

S=
$$(O, \beta)$$

 β = $(v_1, v_2, ..., v_{n-1})$

• Equação implícita:

$$y = mx + b$$

- onde m = coeficiente angular da reta
- onde b = coordenada onde a reta cruza o eixo y
- Exemplo: y = 0.5 x + 1

(c) J. Comba; C. Freitas; L. Nedel

Retas

 Como obter a equação da reta que passa por dois pontos?

$$P = (2,2)$$
 $Q = (4,3)$

Equação Paramétrica:

(c) J. Comba; C. Freitas; L. Nedel

Retas

· Representação genérica de retas:

$$x = Px + t dx (1)$$

 $y = Py + t dy (2)$

• Encontrando t a partir de x:

$$t = (x - Px) / dx$$
 (1)

Substituindo em y (2)

$$y = dy (x-Px)/dx + Py$$

Re-escrevendo:

$$0 = (y-Py)/dy - (x-Px)/dx$$

$$= (-dy)x + (dx) y + (dyPx - dxPy)$$

$$= ax + by + c$$

$$a = -dy$$

 $b = dx$
 $c = dyPx - dxPy = -aPx - bPy$

Note que (a,b) é perpendicular à direção da linha. Por que?

· Como testar em qual lado da linha um ponto está?

(c) J. Comba; C. Freitas; L. Nedel

Retas

- · Como testar em qual lado da linha um ponto está?
 - substituir (x, y) na equação da reta ax+by+c = 0
 - = 0 (sobre a linha)
 - > 0 (no lado apontado pela normal)

- Como testar em qual lado da linha um ponto está?
 - substituir (x, y) na equação da linha ax + by + c = 0
 - = 0 (sobre a linha)

(c) J. Comba; C. Freitas; L. Nedel

Planos

- 3 pontos não-colineares
- 1 ponto e uma normal
- · Equação genérica:
 - $-P_0(x_0, y_0, z_0)$, ponto conhecido
 - Normal (a, b, c)
 - Se um ponto P pertence ao plano, $\mathbf{v} = (P P_0)$ também pertence ao plano
 - Para v e n serem ortogonais, n•v = 0 $a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$
 - Rearranjando:

$$0 = ax + by + cz - (ax_0 + by_0 + cz_0)$$

= ax + by + cz + d

Planos

- Como calcular eq. genérica dados 3 pontos P, Q e R ?
 - Formar 2 vetores sobre o plano
 - u = Q P
 - v = R P
 - Calcular o produto vetorial para achar a normal
 - n = u x v
 - Normalizar a normal obtida
 - · conveniente para cálculos de distâncias
 - Usar coordenadas da normal como a, b e c
 - Usar um ponto no plano (P por exemplo), calcular d:
 - d = -(aPx + bPy + cPz)

(c) J. Comba; C. Freitas; L. Nedel

Planos

- Verificar a situação de um ponto P (x,y,z) em relação a um plano:
 - -ax + by + cz + d = 0 (P sobre o plano)
 - ax + by + cz + d > 0 (P no semi-espaço apontado pela normal)
 - ax + by + cz + d < 0 (P no semi-espaço contrário a direção da normal)

Encontrando a normal de um polígono

(c) J. Comba; C. Freitas; L. Nedel

Pontos e vetores

Qual a diferença entre pontos e vetores ?

$$v = (3, 5, 7)$$

$$P = (5, 3, 1)$$

- Pontos possuem uma localização, mas não tamanho ou direção
- Vetores possuem tamanho e direção, mas não localização
- Tanto pontos como vetores s\(\tilde{a}\) o relativos a um sistema de coordenadas

Confusão qdo. temos vários sistemas de coordenadas → comum em CG

Coordenadas Homogêneas

Qual a diferença entre pontos e vetores ?

$$v = (v_1, v_2, v_3) = v_1a + v_2b + v_3c$$

 $P = (p_1, p_2, p_3) = O + p_1a + p_2b + p_3c$

 Como representar pontos e vetores usando a mesma notação ?

$$V = (V_1, V_2, V_3, 0)$$

$$p = (p_1, p_2, p_3, 1)$$

(c) J. Comba; C. Freitas; L. Nedel

Coordenadas Homogêneas

- · Propriedades:
 - Diferença entre 2 pontos gera 1 vetor:

•
$$(x_0, y_0, z_0, 1) - (x_1, y_1, z_1, 1) = (x_0-x_1, y_0-y_1, z_0-z_1, 0)$$

- Soma de 1 ponto e 1 vetor gera 1 ponto:

•
$$(x, y, z, 1) + (v_1, v_2, v_3, 0) = (x+v_1, y+v_2, z+v_3, 1)$$

Dois pontos não podem ser somados:

•
$$(x_0, y_0, z_0, 1) + (x_1, y_1, z_1, 1) - (x_0 + x_1, y_0 + y_1, z_0 + z_1, 1 + 1)$$

Dois vetores somados geram 1 vetor:

•
$$(V_1, V_2, V_3, 0) + (W_1, W_2, W_3, 0) = (V_1 + W_1, V_2 + W_2, V_3 + W_3, 0)$$

- A escala de um vetor gera outro vetor:

• 3 *
$$(v_1, v_2, v_3, 0) = (3v_1, 3v_2, 3v_3, 0)$$

– Combinação linear de vetores:

•
$$av + bw = (av_1 + bw_1, av_2 + bw_2, av_3 + bw_3, 0),$$

para $v = (v_1, v_2, v_3), w = (w_1, w_2, w_3)$

Coordenadas Homogêneas

- Coordenadas ordinárias para homogêneas
 - Ponto: acrescente 1 na tupla
 - Vetor: acrescente 0 na tupla
- Coordenadas homogêneas para ordinárias
 - Ponto: remova a última coordenada que é 1
 - Vetor: remova a última coordenada que é 0

