Exercise Session: Game Theory I

COMP4418 Knowledge Representation and Reasoning

Patrick Lederer¹

¹School of Computer Science and Engineering, UNSW Australia

These slides are based on lecture slides by Prof. Felix Brandt.

a) Consider the following game. Which outcomes are Pareto-optimal? Can the game be solved by iterated strict dominance?

	V	/	×	(У	/	Z	:
а	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	V	/	>	(У	′	Z	
а	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	V	/	×	(У	/	Z	
а	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	·	/	×	(У	/	Z	
а	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	W	1	×	(У	′	Z	
a	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	·	/	×	(У	/	Z	
а	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	·	/	X		у		Z	
а	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	·	/	X		у		Z	
а	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	·	/	×	X		/	Z	
а	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	·	/	X		у		Z	
а	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	·	/	×	X		y z		
а	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	W	1	×	x y		/	Z	
а	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

Can the game be solved by iterated strict dominance?

	W	/	×	(у	•	Z	
a	0	0	3	2	2	1	1	0
b	3	1	0	1	5	1	3	2
С	3	2	2	1	0	5	0	1
d	5	1	1	4	4	0	0	0

	W	/	×	(У	/	Z		$\frac{1}{3}x + \frac{1}{3}$	$y + \frac{1}{3}z$
а	0	0	3	2	2	1	1	0	2	1
b	3	1	0	1	5	1	3	2	8 3	4 / 3
С	3	2	2	1	0	5	0	1	<u>2</u> 3	7 /3
d	5	1	1	4	4	0	0	0	<u>2</u> 3	4/3

	W	/	×	(У	,	Z		$\frac{1}{3}x + \frac{1}{3}$	$y + \frac{1}{3}z$
a	0	0	3	2	2	1	1	0	2	1
b	3	1	0	1	5	1	3	2	8 3	4 / 3
С	3	2	2	1	0	5	0	1	<u>2</u> 3	7 /3
d	5	1	1	4	4	0	0	0	<u>2</u> 3	4/3

	X		У	,	Z		
a	3	2	2	1	1	0	
b	0	1	5	1	3	2	
С	2	1	0	5	0	1	
d	1	4	4	0	0	0	

	Х		У	,	Z	
a	3	2	2	1	1	0
b	0	1	5	1	3	2
С	2	1	0	5	0	1
d	1	4	4	0	0	0

	X		У	/	Z	
a	3	2	2	1	1	0
b	0	1	5	1	3	2
d	1	4	4	0	0	0

	×	(У	,	Z		$\frac{2}{3}x +$	$-\frac{1}{3}y$
а	3	2	2	1	1	0	7/3	4 / 3
b	0	1	5	1	3	2	1	4 3
d	1	4	4	0	0	0	<u>2</u> 3	8/3

	Х	y	y z	
a	3 2	2 1	1 0	$\frac{7}{3}$ $\frac{4}{3}$
b	0 1	5 1	3 2	$1^{\frac{4}{3}}$
d	1 4	4 0	0 0	2 8 3 3

	×	(Z		
a	3	2	1	0	
b	0	1	3	2	
d	1	4	0	0	

None of the remaining actions is dominated.

b) Consider the following game. Which outcomes are Pareto-optimal? Can the game be solved by iterated strict dominance?

	b_1	<i>b</i> ₂		b_1	
<i>a</i> ₁	(2, <mark>3</mark> , 2)	(0, 5, 2)		(4, <mark>5</mark> , 1)	
<i>a</i> ₂	(1, 4, 1)	(2, 1 , 1)	a ₂	(2, 0, 3)	(1, 5, 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> 3	(1, 2, 0)	(2, 2, 1)
	-	1		C	2

	b_1	<i>b</i> ₂		b_1	
<i>a</i> ₁	(2, 3, 2)	(0, 5, 2)	a_1	(4, 5, 1)	(1, 0, 1)
<i>a</i> ₂	(1, 4, 1)	(2, 1 , 1)	<i>a</i> ₂	(2, <mark>0</mark> , 3)	(1, 5, 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)
	C	1		C	2

	b_1	<i>b</i> ₂		b_1	<i>b</i> ₂
<i>a</i> ₁	(2, 3, 2)	(0, 5, 2)	a_1	(4, 5, 1)	(1, 0, 1)
<i>a</i> ₂	(1, 4, 1)	(2, 1 , 1)	<i>a</i> ₂	(2, <mark>0</mark> , 3)	(1, 5, 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)
		1		C	2

	b_1	<i>b</i> ₂		b_1	<i>b</i> ₂
<i>a</i> ₁	(2, 3, 2)	(0, 5, 2)	a_1	(4, 5, 1)	(1, <mark>0</mark> , 1)
a ₂	(1, 4, 1)	(2, 1 , 1)	<i>a</i> ₂	(2, 0, 3)	(1, 5, 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)
<i>c</i> ₁				-	

	b_1	<i>b</i> ₂		b_1	<i>b</i> ₂
<i>a</i> ₁	(2, 3, 2)	(0, 5, 2)	a_1	(4, 5, 1)	(1, 0, 1)
<i>a</i> ₂	(1, 4, 1)	(2, 1 , 1)	<i>a</i> ₂	(2, 0, 3)	(1, 5, 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)		(1, 2, 0)	
c_1				C	2

	<i>b</i> ₁	<i>b</i> ₂		b_1	
<i>a</i> ₁	(2, 3, 2)	(0, 5, 2)		(4, 5, 1)	
<i>a</i> ₂	(1, 4, 1)	(2, 1 , 1)	<i>a</i> ₂	(2, 0, 3)	(1, 5 , 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)
c_1				C	· · · · · · · · · · · · · · · · · · ·

	<i>b</i> ₁	<i>b</i> ₂		b_1	<i>b</i> ₂
<i>a</i> ₁	(2, 3, 2)	(0, 5, 2)		(4, 5, 1)	
<i>a</i> ₂	(1, 4, 1)	(2, 1 , 1)	a ₂	(2, 0, 3)	(1, 5, 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)
c ₁			•	C	2

	b_1	<i>b</i> ₂		b_1	<i>b</i> ₂
<i>a</i> ₁	(2, 3, 2)	(0, 5, 2)		(4, 5, 1)	
<i>a</i> ₂	(1, 4, 1)	(2, 1 , 1)	<i>a</i> ₂	(2, 0, 3)	(1, 5, 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)
c_1				C	<u> </u>

	<i>b</i> ₁	<i>b</i> ₂		b_1	
<i>a</i> ₁	(2, 3, 2)	(0, 5, 2)		(4, 5 , 1)	
<i>a</i> ₂	(1, 4, 1)	(2, 1 , 1)	<i>a</i> ₂	(2, 0, 3)	(1, <mark>5</mark> , 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)
c_1				C	2

	<i>b</i> ₁	b_2		b_1	
<i>a</i> ₁	(2, 3, 2)	(0, 5, 2)	<i>a</i> ₁	(4, 5, 1)	(1, 0, 1)
<i>a</i> ₂	(1, 4, 1)	(2, 1, 1)	<i>a</i> ₂	(2, 0 , 3)	(1, 5, 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)
c_1				C	2

Can the game be solved by iterated strict dominance?

	b_1	<i>b</i> ₂		b_1	b_2
<i>a</i> ₁	(2, <mark>3</mark> , 2)	(0, 5, 2)	a ₁	(4, 5, 1)	(1, <mark>0</mark> , 1)
a ₂	(1, 4, 1)	(2, 1 , 1)	a ₂	(2, <mark>0</mark> , 3)	(1, 5, 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)

	b_1	<i>b</i> ₂		b_1	b_2
a_1	(2, 3, 2)	(0, 5, 2)	a_1	(4, 5 , 1)	(1, <mark>0</mark> , 1)
a ₂	(1, 4, 1)	(1, 1, 1)	a ₂	(2, <mark>0</mark> , 3)	(1, 5, 3)
a ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)
$\frac{1}{2}a_1 + \frac{1}{2}a_3$	$(\frac{3}{2}, 2, \frac{3}{2})$	$(\frac{5}{2}, \frac{9}{2}, 2)$	$\frac{1}{2}a_1 + \frac{1}{2}a_3$	$\left(\frac{5}{2}, \frac{7}{2}, \frac{1}{2}\right)$	$(\frac{3}{2}, 1, 1)$
	C	i		C	······································

	b_1	<i>b</i> ₂		b_1	<i>b</i> ₂
	(2, 3, 2)		a ₁	(4, 5 , 1)	(1, <mark>0</mark> , 1)
<i>a</i> ₂	(1, 4, 1)	(1, 1 , 1)	a ₂	(2, <mark>0</mark> , 3)	(1, 5, 3)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	a ₃	(1, 2, 0)	(2, 2, 1)
$\frac{1}{2}a_1 + \frac{1}{2}a_3$	$(\frac{3}{2}, 2, \frac{3}{2})$	$\left(\frac{5}{2}, \frac{9}{2}, 2\right)$	$\frac{1}{2}a_1 + \frac{1}{2}a_3$	$\left(\frac{5}{2}, \frac{7}{2}, \frac{1}{2}\right)$	$(\frac{3}{2}, 1, 1)$
				_	

	b_1	b_2		b_1	<i>b</i> ₂
a_1	(2, 3, 2)	(0, 5, 2)	a_1	(4, 5, 1)	(1, 0, 1)
a ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)
	C	ì		C	2

	b_1	b_2		b_1	<i>b</i> ₂
a_1	(2, 3, 2)	(0, 5 , 2)			(1, 0, 1)
a ₃	(1, 1, 1)	(5, 4, 2)	a ₃	(1, 2, 0)	(2, 2, 1)
	C	ì		C	2

	b_1	b_2		b_1	<i>b</i> ₂
	(2, 3, 2)				(1, 0, 1)
<i>a</i> ₃	(1, 1, 1)	(5, 4, 2)	<i>a</i> ₃	(1, 2, 0)	(2, 2, 1)
	C	ì		c	2

The game can be solved via iterated strict dominance!

a) Consider the following formulation of rock-paper-scissors. What are the maximin strategies and the security level of both players?

	F	?	F)	5	5
R	0	0	-1	1	1	-1
Р	1	-1	0	0	-1	1
S	-1	1	1	-1	0	0

	F	?	F)	5	5
R	0	0	-1	1	1	-1
Р	1	-1	0	0	-1	1
S	-1	1	1	-1	0	0

	F	?	F)	5	5
R	0	0	-1	1	1	-1
Р	1	-1	0	0	-1	1
S	-1	1	1	-1	0	0

$$u_{\min}(s) = \min(u_1(s, R), u_1(s, P), u_i(s, S))$$

	F	?	F)	5	5
R	0	0	-1	1	1	-1
P	1	-1	0	0	-1	1
S	-1	1	1	-1	0	0

$$u_{\min}(s) = \min(u_1(s, R), u_1(s, P), u_i(s, S))$$

= $\min(0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S),$

	F	?	F)	5	5
R	0	0	-1	1	1	-1
P	1	-1	0	0	-1	1
S	-1	1	1	-1	0	0

$$u_{\min}(s) = \min(u_1(s, R), u_1(s, P), u_i(s, S))$$

= $\min(0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S),$
 $-1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S),$

	F	?	F)	5	5
R	0	0	-1	1	1	-1
Р	1	-1	0	0	-1	1
S	-1	1	1	-1	0	0

$$\begin{aligned} u_{\min}(s) &= \min(u_1(s, R), u_1(s, P), u_i(s, S)) \\ &= \min(0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S), \\ &-1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S), \\ &1 \cdot s(R) - 1 \cdot s(P) + 0 \cdot s(S)) \end{aligned}$$

subject to
$$0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) \ge u$$
 (1)

$$-1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S) \ge u \tag{2}$$

$$1 \cdot s(R) - 1 \cdot s(P) + 0 \cdot s(S) \ge u \tag{3}$$

subject to
$$0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) \ge u$$
 (1)

$$-1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S) \ge u \tag{2}$$

$$1 \cdot s(R) - 1 \cdot s(P) + 0 \cdot s(S) \ge u$$
 (3)
 $s(R) + s(P) + s(S) = 1$

$$s(R) \geq 0, s(P) \geq 0, s(S) \geq 0$$

subject to
$$0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) \ge u$$
 (1)

$$-1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S) \ge u \tag{2}$$

$$1 \cdot s(R) - 1 \cdot s(P) + 0 \cdot s(S) \ge u \tag{3}$$

$$s(R) + s(P) + s(S) = 1$$

$$s(R) \geq 0, s(P) \geq 0, s(S) \geq 0$$

$$(0-1+1)s(R)+(1+0-1)s(P)+(-1+1+0)s(S)\geq 3u$$

subject to
$$0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) \ge u$$
 (1)

$$-1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S) \ge u \tag{2}$$

$$1 \cdot s(R) - 1 \cdot s(P) + 0 \cdot s(S) \ge u$$

$$s(R) + s(P) + s(S) = 1$$
(3)

$$s(R) \ge 0, s(P) \ge 0, s(S) \ge 0$$

$$(0-1+1)s(R) + (1+0-1)s(P) + (-1+1+0)s(S) \ge 3u$$

 $\iff 0 \ge u$

$$s(P) - s(S) \ge 0 \tag{1}$$

$$-s(R) + s(S) \ge 0 \tag{2}$$

$$s(R) - s(P) \ge 0 \tag{3}$$

$$s(R) + s(P) + s(S) = 1$$

$$s(R) \geq 0, s(P) \geq 0, s(S) \geq 0$$

$$s(P) - s(S) \ge 0 \tag{1}$$

$$-s(R) + s(S) \ge 0 \tag{2}$$

$$s(R) - s(P) \ge 0 \tag{3}$$

$$s(R) + s(P) + s(S) = 1$$

$$s(R) \ge 0, s(P) \ge 0, s(S) \ge 0$$

$$s(P) \ge s(S) \ge s(R) \ge s(P)$$

$$s(P) - s(S) \ge 0 \tag{1}$$

$$-s(R) + s(S) \ge 0 \tag{2}$$

$$s(R) - s(P) \ge 0 \tag{3}$$

$$s(R) + s(P) + s(S) = 1$$

$$s(R) \geq 0, s(P) \geq 0, s(S) \geq 0$$

$$s(P) \ge s(S) \ge s(R) \ge s(P)$$

 $\implies s(P) = s(S) = s(R)$

$$s(P) - s(S) \ge 0 \tag{1}$$

$$-s(R) + s(S) \ge 0 \tag{2}$$

$$s(R) - s(P) \ge 0 \tag{3}$$

$$s(R) + s(P) + s(S) = 1$$

$$s(R) \geq 0, s(P) \geq 0, s(S) \geq 0$$

$$s(P) \geq s(S) \geq s(R) \geq s(P)$$

$$\implies s(P) = s(S) = s(R)$$

$$\Longrightarrow s(P) = s(S) = s(R) = \frac{1}{3}$$

	F	?	F)	5	5
R	0	0	-1	1	1	-1
Р	1	-1	0	0	-1	1
S	-1	1	1	-1	0	0

The maximin strategy of player 1 is given by $s(R) = s(P) = s(S) = \frac{1}{3}$. His security level is 0.

A symmetric analysis shows that player 2 has the same maximin strategy and security level.

	R		F)	S		
R	0	0	-1	1	1	-1	
Р	1	-1	0	0	-1	1	
S	-1	1	1	-1	0	0	

	R		Р		S		W
R	0	0	-1	1	1	-1	
Р	1	-1	0	0	-1	1	
S	-1	1	1	-1	0	0	
W							

	R		Р		S		W	
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1		
S	-1	1	1	-1	0	0		
W								

	R		Р		S		W	
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1		
S	-1	1	1	-1	0	0		
W	1	-1						

b) Model the situation with well as a fourth option that beats rock and scissor but loses again paper. What are the maximin strategies and the security levels of both players?

	F	?	F)		5	V	V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0		
W	1	-1	-1	1				

b) Model the situation with well as a fourth option that beats rock and scissor but loses again paper. What are the maximin strategies and the security levels of both players?

	F	3	F)		5	V	/
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1		

b) Model the situation with well as a fourth option that beats rock and scissor but loses again paper. What are the maximin strategies and the security levels of both players?

	F	3	F)		5	V	V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1	0	0

	F	2	F)	9	5	٧	V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1	0	0

	F	?	F	Р		S		V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1	0	0

max u

subject to
$$0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) + 1 \cdot s(W) \ge u$$
 (1)

$$-1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S) - 1 \cdot s(W) \ge u$$
 (2)

$$1 \cdot s(R) - 1 \cdot s(P) + 0 \cdot s(S) + 1 \cdot s(W) \ge u \qquad (3)$$

$$-1 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) + 0 \cdot s(W) \ge u \qquad (4)$$

$$s \in \mathcal{L}(A_1)$$

	F	?	F	Р		S		V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1	0	0

$$0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) + 1 \cdot s(W) \ge u \tag{1}$$

$$-1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S) - 1 \cdot s(W) \ge u \tag{2}$$

$$1 \cdot s(R) - 1 \cdot s(P) + 0 \cdot s(S) + 1 \cdot s(W) \ge u \tag{3}$$

$$-1 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) + 0 \cdot s(W) \ge u \tag{4}$$

	F	?	F	Р		S		V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1	0	0

$$0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) + 1 \cdot s(W) \ge u \tag{1}$$

$$-1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S) - 1 \cdot s(W) \ge u \tag{2}$$

$$1 \cdot s(R) - 1 \cdot s(P) + 0 \cdot s(S) + 1 \cdot s(W) \ge u \tag{3}$$

$$-1 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) + 0 \cdot s(W) \ge u \tag{4}$$

It is always weakly better for player 1 to put probability on W rather than on R.

	F	?	F		9	5	٧	V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1	0	0

$$1 \cdot s(P) - 1 \cdot s(S) + 1 \cdot s(W) \ge u \tag{1}$$

$$0 \cdot s(P) + 1 \cdot s(S) - 1 \cdot s(W) \ge u \tag{2}$$

$$-1 \cdot s(P) + 0 \cdot s(S) + 1 \cdot s(W) \ge u \tag{3}$$

$$1 \cdot s(P) - 1 \cdot s(S) + 0 \cdot s(W) \ge u \tag{4}$$

	F	?	F	Р		S		V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1	0	0

$$1 \cdot s(P) - 1 \cdot s(S) + 1 \cdot s(W) \ge u \tag{1}$$

$$0 \cdot s(P) + 1 \cdot s(S) - 1 \cdot s(W) \ge u \tag{2}$$

$$-1 \cdot s(P) + 0 \cdot s(S) + 1 \cdot s(W) \ge u \tag{3}$$

$$1 \cdot s(P) - 1 \cdot s(S) + 0 \cdot s(W) \ge u \tag{4}$$

	F	?	F)	9	5	٧	V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1	0	0

$$1 \cdot s(P) - 1 \cdot s(S) + 1 \cdot s(W) \ge u \tag{1}$$

$$0 \cdot s(P) + 1 \cdot s(S) - 1 \cdot s(W) \ge u \tag{2}$$

$$-1 \cdot s(P) + 0 \cdot s(S) + 1 \cdot s(W) \ge u \tag{3}$$

$$1 \cdot s(P) - 1 \cdot s(S) + 0 \cdot s(W) \ge u \tag{4}$$

Inequality (4) makes than Inequality (1) redundant.

	F	?	F		9	5	٧	V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1	0	0

$$0 \cdot s(P) + 1 \cdot s(S) - 1 \cdot s(W) \ge u \tag{2}$$

$$-1 \cdot s(P) + 0 \cdot s(S) + 1 \cdot s(W) \ge u \tag{3}$$

$$1 \cdot s(P) - 1 \cdot s(S) + 0 \cdot s(W) \ge u \tag{4}$$

	F	?	F		9	5	٧	V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1	0	0

$$0 \cdot s(P) + 1 \cdot s(S) - 1 \cdot s(W) \ge u \tag{2}$$

$$-1 \cdot s(P) + 0 \cdot s(S) + 1 \cdot s(W) \ge u \tag{3}$$

$$1 \cdot s(P) - 1 \cdot s(S) + 0 \cdot s(W) \ge u \tag{4}$$

These are the same conditions we had before!

	F	?	F)	9	5	٧	V
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	1	-1
S	-1	1	1	-1	0	0	-1	1
W	1	-1	-1	1	1	-1	0	0

$$0 \cdot s(P) + 1 \cdot s(S) - 1 \cdot s(W) \ge u \tag{2}$$

$$-1 \cdot s(P) + 0 \cdot s(S) + 1 \cdot s(W) \ge u \tag{3}$$

$$1 \cdot s(P) - 1 \cdot s(S) + 0 \cdot s(W) \ge u \tag{4}$$

These are the same conditions we had before! The maximin strategy of player 1 is given by $s(P) = s(S) = s(W) = \frac{1}{3}$ and his security level is 0.

c) Assume there is lava as a fourth option. Lava beats all other option, but if both players play lava, they both experience a super lose with a utility of -100. What are the maximin strategies and the security levels of both players?

c) Assume there is lava as a fourth option. Lava beats all other option, but if both players play lava, they both experience a super lose with a utility of -100. What are the maximin strategies and the security levels of both players?

	R	Р	S	L	
R	0 0	-1 1	1 -1	-1	
Р	1 -1	0 0	-1 1	-1	
S	-1	1 -1	0 0	-1	
L	1 -1	1 -1	1 -1	-100	

	R		F)	5	5	L	
R	0	0	-1	1	1	-1	-1	1
Р	1	-1	0	0	-1	1	-1	1
S	-1	1	1	-1	0	0	-1	1
L	1	-1	1	-1	1	-1	-100	-100

subject to
$$0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) + 1 \cdot s(L) \ge u$$

$$-1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S) + 1 \cdot s(L) \ge u$$

$$1 \cdot s(R) - 1 \cdot s(P) + 0 \cdot s(S) + 1 \cdot s(L) \ge u$$

$$-1 \cdot s(R) - 1 \cdot s(P) - 1 \cdot s(S) - 100 \cdot s(L) \ge u$$

$$s \in \mathcal{L}(A_1)$$

	R	Р	S	L
R	0 0	-1	1 -1	-1
Р	1 -1	0 0	-1	-1
S	-1 1	1 -1	0 0	-1
L	1 -1	1 -1	1 -1	-100

subject to
$$0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) + 1 \cdot s(L) \ge u$$

$$-1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S) + 1 \cdot s(L) \ge u$$

$$1 \cdot s(R) - 1 \cdot s(P) + 0 \cdot s(S) + 1 \cdot s(L) \ge u$$

$$-1 \cdot s(R) - 1 \cdot s(P) - 1 \cdot s(S) - 100 \cdot s(L) \ge u$$

$$s \in \mathcal{L}(A_1)$$

$$-1 \cdot s(R) - 1 \cdot s(P) - 1 \cdot s(S) - 100 \cdot s(L) \ge u$$

The security level of player 1 is at most -1.

$$-1 \cdot s(R) - 1 \cdot s(P) - 1 \cdot s(S) - 100 \cdot s(L) \ge u$$

The security level of player 1 is at most -1.

The security level of player 1 can only be -1 if he never plays lava!

$$-1 \cdot s(R) - 1 \cdot s(P) - 1 \cdot s(S) - 100 \cdot s(L) \ge u$$

The security level of player 1 is at most -1.

The security level of player 1 can only be -1 if he never plays lava!

$$\begin{aligned} \max u \\ \text{subject to } 0 \cdot s(R) + 1 \cdot s(P) - 1 \cdot s(S) &\geq u \\ -1 \cdot s(R) + 0 \cdot s(P) + 1 \cdot s(S) &\geq u \\ 1 \cdot s(R) - 1 \cdot s(P) + 0 \cdot s(S) &\geq u \\ -1 \cdot s(R) - 1 \cdot s(P) - 1 \cdot s(S) &\geq u \\ s &\in \mathcal{L}(A_1) \end{aligned}$$

	R	Р	S	L
R	0 0	-1	1 -1	-1
Р	1 -1	0 0	-1	-1
S	-1	1 -1	0 0	-1
L	1 -1	1 -1	1 -1	-100

Every strategy s with s(L) = 0 is a maximin strategy! The security level of both players is -1.

Assume that $A=\{a,b,c\}$ and let \succsim denote a rational and independent preference relation on $\mathcal{L}(A)$ such that $[1:a]\succ [1:b]$ and $[\frac{1}{2}:b,\frac{1}{2}:c]\sim [\frac{2}{3}:a,\frac{1}{3}:c]$.

a) Show that $[1:c] \succ [1:a]$.

A preference relation \succsim on $\mathcal{L}(A)$ is

• rational if

A preference relation \succsim on $\mathcal{L}(A)$ is

- rational if
 - it is complete: $L_1 \succsim L_2$ or $L_2 \succsim L_1$ for all $L_1, L_2 \in \mathcal{L}(A)$

A preference relation \succeq on $\mathcal{L}(A)$ is

- rational if
 - it is complete: $L_1 \succsim L_2$ or $L_2 \succsim L_1$ for all $L_1, L_2 \in \mathcal{L}(A)$
 - and transitive: $L_1 \succsim L_2$ and $L_2 \succsim L_3$ implies $L_1 \succsim L_3$ for all $L_1, L_2, L_3 \in \mathcal{L}(A)$.

A preference relation \succeq on $\mathcal{L}(A)$ is

- rational if
 - it is complete: $L_1 \succsim L_2$ or $L_2 \succsim L_1$ for all $L_1, L_2 \in \mathcal{L}(A)$
 - and transitive: $L_1 \succsim L_2$ and $L_2 \succsim L_3$ implies $L_1 \succsim L_3$ for all $L_1, L_2, L_3 \in \mathcal{L}(A)$.
- continuous if, for all $L_1, L_2, L_3 \in \mathcal{L}(A)$ with $L_1 \succ L_2 \succ L_3$, there is $\epsilon > 0$ such that

$$[1-\epsilon:L_1,\epsilon:L_3]\succ L_2\succ [1-\epsilon:L_3,\epsilon:L_1].$$

A preference relation \succeq on $\mathcal{L}(A)$ is

- rational if
 - it is complete: $L_1 \succsim L_2$ or $L_2 \succsim L_1$ for all $L_1, L_2 \in \mathcal{L}(A)$
 - and transitive: $L_1 \succsim L_2$ and $L_2 \succsim L_3$ implies $L_1 \succsim L_3$ for all $L_1, L_2, L_3 \in \mathcal{L}(A)$.
- continuous if, for all $L_1, L_2, L_3 \in \mathcal{L}(A)$ with $L_1 \succ L_2 \succ L_3$, there is $\epsilon > 0$ such that

$$[1-\epsilon:L_1,\epsilon:L_3] \succ L_2 \succ [1-\epsilon:L_3,\epsilon:L_1].$$

• independent if, for all lotteries L_1, L_2, L_3 and all $p \in (0, 1)$, it holds that

$$L_1 \succsim L_2 \iff [p:L_1,(1-p):L_3] \succsim [p:L_2,(1-p):L_3].$$

7

- Let $L_x = [1:x]$ for $x \in \{a, b, c\}$, $L_1 = [\frac{2}{3}:a, \frac{1}{3}:c]$, and $L_2 = [\frac{1}{2}:b, \frac{1}{2}:c]$
- By assumption, $L_2 \sim L_1$.

- Let $L_x = [1:x]$ for $x \in \{a, b, c\}$, $L_1 = [\frac{2}{3}:a, \frac{1}{3}:c]$, and $L_2 = [\frac{1}{2}:b, \frac{1}{2}:c]$
- By assumption, $L_2 \sim L_1$.
- Let $L_3 = [\frac{3}{4} : b, \frac{1}{4} : c]$. It holds that $L_2 = [\frac{2}{3} : L_3, \frac{1}{3} : L_c]$.

- Let $L_x = [1:x]$ for $x \in \{a, b, c\}$, $L_1 = [\frac{2}{3}:a, \frac{1}{3}:c]$, and $L_2 = [\frac{1}{2}:b, \frac{1}{2}:c]$
- By assumption, $L_2 \sim L_1$.
- Let $L_3 = [\frac{3}{4} : b, \frac{1}{4} : c]$. It holds that $L_2 = [\frac{2}{3} : L_3, \frac{1}{3} : L_c]$.
- By independence, $L_3 \sim L_a$ since $L_1 = [\frac{2}{3} : L_a, \frac{1}{3} : L_c]$.

- Let $L_x = [1:x]$ for $x \in \{a,b,c\}$, $L_1 = [\frac{2}{3}:a,\frac{1}{3}:c]$, and $L_2 = [\frac{1}{2}:b,\frac{1}{2}:c]$
- By assumption, $L_2 \sim L_1$.
- Let $L_3 = [\frac{3}{4} : b, \frac{1}{4} : c]$. It holds that $L_2 = [\frac{2}{3} : L_3, \frac{1}{3} : L_c]$.
- By independence, $L_3 \sim L_a$ since $L_1 = [\frac{2}{3} : L_a, \frac{1}{3} : L_c]$.
- Now, assume that $L_b \gtrsim L_c$.

- Let $L_x = [1:x]$ for $x \in \{a,b,c\}$, $L_1 = [\frac{2}{3}:a,\frac{1}{3}:c]$, and $L_2 = [\frac{1}{2}:b,\frac{1}{2}:c]$
- By assumption, $L_2 \sim L_1$.
- Let $L_3 = [\frac{3}{4} : b, \frac{1}{4} : c]$. It holds that $L_2 = [\frac{2}{3} : L_3, \frac{1}{3} : L_c]$.
- By independence, $L_3 \sim L_a$ since $L_1 = \left[\frac{2}{3} : L_a, \frac{1}{3} : L_c\right]$.
- Now, assume that $L_b \succsim L_c$.
 - By independence, $[\frac{3}{4}:L_b,\frac{1}{4}:L_b] \succsim [\frac{3}{4}:L_b,\frac{1}{4}:L_c]$

- Let $L_x = [1:x]$ for $x \in \{a,b,c\}$, $L_1 = [\frac{2}{3}:a,\frac{1}{3}:c]$, and $L_2 = [\frac{1}{2}:b,\frac{1}{2}:c]$
- By assumption, $L_2 \sim L_1$.
- Let $L_3 = [\frac{3}{4} : b, \frac{1}{4} : c]$. It holds that $L_2 = [\frac{2}{3} : L_3, \frac{1}{3} : L_c]$.
- By independence, $L_3 \sim L_a$ since $L_1 = [\frac{2}{3} : L_a, \frac{1}{3} : L_c]$.
- Now, assume that $L_b \succsim L_c$.
 - By independence, $\left[\frac{3}{4}:L_b,\frac{1}{4}:L_b\right] \succsim \left[\frac{3}{4}:L_b,\frac{1}{4}:L_c\right]$
 - This shows that $L_a \succ L_b \succsim L_3$, contradiction.

- Let $L_x = [1:x]$ for $x \in \{a,b,c\}$, $L_1 = [\frac{2}{3}:a,\frac{1}{3}:c]$, and $L_2 = [\frac{1}{2}:b,\frac{1}{2}:c]$
- By assumption, $L_2 \sim L_1$.
- Let $L_3 = [\frac{3}{4} : b, \frac{1}{4} : c]$. It holds that $L_2 = [\frac{2}{3} : L_3, \frac{1}{3} : L_c]$.
- By independence, $L_3 \sim L_a$ since $L_1 = [\frac{2}{3} : L_a, \frac{1}{3} : L_c]$.
- Now, assume that $L_a \succsim L_c \succ L_b$.

- Let $L_x = [1:x]$ for $x \in \{a, b, c\}$, $L_1 = [\frac{2}{3}:a, \frac{1}{3}:c]$, and $L_2 = [\frac{1}{2}:b, \frac{1}{2}:c]$
- By assumption, $L_2 \sim L_1$.
- Let $L_3 = [\frac{3}{4} : b, \frac{1}{4} : c]$. It holds that $L_2 = [\frac{2}{3} : L_3, \frac{1}{3} : L_c]$.
- By independence, $L_3 \sim L_a$ since $L_1 = [\frac{2}{3} : L_a, \frac{1}{3} : L_c]$.
- Now, assume that $L_a \succsim L_c \succ L_b$.
 - By independence, $\left[\frac{3}{4}:L_c,\frac{1}{4}:L_c\right]\succ \left[\frac{3}{4}:L_b,\frac{1}{4}:L_c\right]$

- Let $L_x = [1:x]$ for $x \in \{a, b, c\}$, $L_1 = [\frac{2}{3}:a, \frac{1}{3}:c]$, and $L_2 = [\frac{1}{2}:b, \frac{1}{2}:c]$
- By assumption, $L_2 \sim L_1$.
- Let $L_3 = [\frac{3}{4} : b, \frac{1}{4} : c]$. It holds that $L_2 = [\frac{2}{3} : L_3, \frac{1}{3} : L_c]$.
- By independence, $L_3 \sim L_a$ since $L_1 = [\frac{2}{3} : L_a, \frac{1}{3} : L_c]$.
- Now, assume that $L_a \succsim L_c \succ L_b$.
 - By independence, $[\frac{3}{4}:L_c,\frac{1}{4}:L_c] \succ [\frac{3}{4}:L_b,\frac{1}{4}:L_c]$
 - This shows that $L_a \succ L_c \succsim L_3$, contradiction.

- Let $L_x = [1:x]$ for $x \in \{a, b, c\}$, $L_1 = [\frac{2}{3}:a, \frac{1}{3}:c]$, and $L_2 = [\frac{1}{2}:b, \frac{1}{2}:c]$
- By assumption, $L_2 \sim L_1$.
- Let $L_3 = [\frac{3}{4} : b, \frac{1}{4} : c]$. It holds that $L_2 = [\frac{2}{3} : L_3, \frac{1}{3} : L_c]$.
- By independence, $L_3 \sim L_a$ since $L_1 = \left[\frac{2}{3} : L_a, \frac{1}{3} : L_c\right]$.
- Now, assume that $L_a \succsim L_c \succ L_b$.
 - By independence, $[\frac{3}{4}:L_c,\frac{1}{4}:L_c] \succ [\frac{3}{4}:L_b,\frac{1}{4}:L_c]$
 - This shows that $L_a \succ L_c \succsim L_3$, contradiction.
- Hence, the only possibility is that $L_c \succ L_a \succ L_b$.

Assume that $A = \{a, b, c\}$ and let \succsim denote a rational and independent preference relation on $\mathcal{L}(A)$ such that $[1:a] \succ [1:b]$ and $[\frac{1}{2}:b,\frac{1}{2}:c] \sim [\frac{2}{3}:a,\frac{1}{3}:c]$.

b) Show that, if \succsim is additionally continuous, then it can be represented by the vNM utility function u given by u(c)=1, $u(a)=\frac{1}{4},\ u(b)=0$.

8

 By the von-Neuman-Morgenstern Theorem: If ∑ is rational, continuous, and independent, it can be represented by a vNM utility function.

- By the von-Neuman-Morgenstern Theorem: If ≿ is rational, continuous, and independent, it can be represented by a vNM utility function.
- Let u be a vNM function that represents \geq .

- By the von-Neuman-Morgenstern Theorem: If ≿ is rational, continuous, and independent, it can be represented by a vNM utility function.
- Let u be a vNM function that represents \geq .
- Since $L_c \succ L_a \succ L_b$, it must be that u(c) > u(a) > u(b).

- By the von-Neuman-Morgenstern Theorem: If ≿ is rational, continuous, and independent, it can be represented by a vNM utility function.
- Let u be a vNM function that represents \succeq .
- Since $L_c \succ L_a \succ L_b$, it must be that u(c) > u(a) > u(b).
- vNM utility functions are invariant under addition. Hence, define u' by u'(x) = u(x) u(b) for all $x \in \{a, b, c\}$

- By the von-Neuman-Morgenstern Theorem: If ≿ is rational, continuous, and independent, it can be represented by a vNM utility function.
- Let u be a vNM function that represents ≿.
- Since $L_c \succ L_a \succ L_b$, it must be that u(c) > u(a) > u(b).
- vNM utility functions are invariant under addition. Hence, define u' by u'(x) = u(x) u(b) for all $x \in \{a, b, c\}$
- vNM utility functions are invariant under multiplication with a positive scalar. Hence, define v(x) = u'(x)/u'(c) for all $x \in \{a, b, c\}$.

• In particular, v(c) = 1 and v(b) = 0.

- In particular, v(c) = 1 and v(b) = 0.
- \bullet Finally, $[\frac{1}{2}:b,\frac{1}{2}:c]\sim [\frac{2}{3}:a,\frac{1}{3}:c]$ implies that

- In particular, v(c) = 1 and v(b) = 0.
- Finally, $\left[\frac{1}{2}:b,\frac{1}{2}:c\right]\sim\left[\frac{2}{3}:a,\frac{1}{3}:c\right]$ implies that

$$\frac{1}{2}v(b) + \frac{1}{2}v(c) = \frac{2}{3}v(a) + \frac{1}{3}v(c)$$

- In particular, v(c) = 1 and v(b) = 0.
- Finally, $\left[\frac{1}{2}:b,\frac{1}{2}:c\right]\sim\left[\frac{2}{3}:a,\frac{1}{3}:c\right]$ implies that

$$\frac{1}{2}v(b) + \frac{1}{2}v(c) = \frac{2}{3}v(a) + \frac{1}{3}v(c)$$
$$\frac{1}{2} = \frac{2}{3}v(a) + \frac{1}{3}$$

- In particular, v(c) = 1 and v(b) = 0.
- Finally, $[\frac{1}{2}:b,\frac{1}{2}:c] \sim [\frac{2}{3}:a,\frac{1}{3}:c]$ implies that

$$\frac{1}{2}v(b) + \frac{1}{2}v(c) = \frac{2}{3}v(a) + \frac{1}{3}v(c)$$
$$\frac{1}{2} = \frac{2}{3}v(a) + \frac{1}{3}$$
$$\frac{1}{6} = \frac{2}{3}v(a)$$

- In particular, v(c) = 1 and v(b) = 0.
- Finally, $[\frac{1}{2}:b,\frac{1}{2}:c] \sim [\frac{2}{3}:a,\frac{1}{3}:c]$ implies that

$$\frac{1}{2}v(b) + \frac{1}{2}v(c) = \frac{2}{3}v(a) + \frac{1}{3}v(c)$$
$$\frac{1}{2} = \frac{2}{3}v(a) + \frac{1}{3}$$
$$\frac{1}{6} = \frac{2}{3}v(a)$$
$$v(a) = \frac{1}{4}$$

- In particular, v(c) = 1 and v(b) = 0.
- Finally, $[\frac{1}{2}:b,\frac{1}{2}:c] \sim [\frac{2}{3}:a,\frac{1}{3}:c]$ implies that

$$\frac{1}{2}v(b) + \frac{1}{2}v(c) = \frac{2}{3}v(a) + \frac{1}{3}v(c)$$
$$\frac{1}{2} = \frac{2}{3}v(a) + \frac{1}{3}$$
$$\frac{1}{6} = \frac{2}{3}v(a)$$
$$v(a) = \frac{1}{4}$$

• Hence, \succeq is represented by the utility function v with v(c)=1, $v(a)=\frac{1}{4}$, and v(b)=0.

Let \succsim denote the rational preference relation over a set

$$A = \{x_1, \dots, x_m\}$$
 given by $x_1 \succ x_2 \succ \dots \succ x_m$.

Is the following relation a rational preference relation on $\mathcal{L}(A)$? Is it continuous and independent? Prove your answers!

The relation \succsim_1 is defined by $L_1 \succsim_1 L_2$ if and only if $x \succsim y$ for all $x, y \in A$ with $L_1(x) > 0$ and $L_2(y) > 0$.

 "All alternatives that can be chosen by L₁ must be weakly preferred to all alternatives that can be chosen by L₂"

- "All alternatives that can be chosen by L₁ must be weakly preferred to all alternatives that can be chosen by L₂"
- \succeq_1 is not rational:

- "All alternatives that can be chosen by L₁ must be weakly preferred to all alternatives that can be chosen by L₂"
- \succsim_1 is not rational:
 - \succsim_1 is not complete.

- "All alternatives that can be chosen by L₁ must be weakly preferred to all alternatives that can be chosen by L₂"
- - \succsim_1 is not complete.
 - Let $L_1 = \left[\frac{1}{3} : x_1, \frac{2}{3} : x_2\right]$ and $L_2 = \left[x_1 : \frac{1}{2}, x_2 : \frac{1}{2}\right]$.

- "All alternatives that can be chosen by L₁ must be weakly preferred to all alternatives that can be chosen by L₂"
- \succsim_1 is not rational:
 - \succsim_1 is not complete.
 - Let $L_1 = \left[\frac{1}{3} : x_1, \frac{2}{3} : x_2\right]$ and $L_2 = \left[x_1 : \frac{1}{2}, x_2 : \frac{1}{2}\right]$.
 - It holds that $x_1 \succ x_2$ and $L_1(x_2) > 0$ and $L_2(x_1) > 0$, so $L_1 \not\succsim_1 L_2$.

- "All alternatives that can be chosen by L₁ must be weakly preferred to all alternatives that can be chosen by L₂"
- \succsim_1 is not rational:
 - \succsim_1 is not complete.
 - Let $L_1 = [\frac{1}{3} : x_1, \frac{2}{3} : x_2]$ and $L_2 = [x_1 : \frac{1}{2}, x_2 : \frac{1}{2}]$.
 - It holds that $x_1 \succ x_2$ and $L_1(x_2) > 0$ and $L_2(x_1) > 0$, so $L_1 \not\succsim_1 L_2$.
 - Similarly, $L(x_1) > 0$ and $L_2(x_2) > 0$, so $L_2 \not \succsim_1 L_1$.

The relation \succsim_1 is defined by $L_1 \succsim_1 L_2$ if and only if $x \succsim y$ for all $x, y \in A$ with $L_1(x) > 0$ and $L_2(y) > 0$.

• \succsim_1 is not rational:

- \succeq_1 is not rational:
 - \succsim_1 is transitive.

- \succsim_1 is not rational:
 - \succeq_1 is transitive.
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_1 L_2$ and $L_2 \succsim_1 L_3$.

- \succsim_1 is not rational:
 - \succsim_1 is transitive.
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_1 L_2$ and $L_2 \succsim_1 L_3$.
 - It holds that

- \succsim_1 is not rational:
 - \succeq_1 is transitive.
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_1 L_2$ and $L_2 \succsim_1 L_3$.
 - It holds that
 - $x \succsim y$ for all $x, y \in A$ with $L_1(x) > 0$ and $L_2(y) > 0$ and

- - \succeq_1 is transitive.
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_1 L_2$ and $L_2 \succsim_1 L_3$.
 - It holds that
 - $x \succeq y$ for all $x, y \in A$ with $L_1(x) > 0$ and $L_2(y) > 0$ and
 - $y \gtrsim z$ for all $y, z \in A$ with $L_2(y) > 0$ and $L_3(z) > 0$.

- \succeq_1 is not rational:
 - \succsim_1 is transitive.
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_1 L_2$ and $L_2 \succsim_1 L_3$.
 - It holds that
 - $x \succeq y$ for all $x, y \in A$ with $L_1(x) > 0$ and $L_2(y) > 0$ and
 - $y \succsim z$ for all $y, z \in A$ with $L_2(y) > 0$ and $L_3(z) > 0$.
 - By the transitivity of \succsim , it follows that $x \succsim z$ for all $x, z \in A$ with $L_1(x) > 0$ and $L_3(z) > 0$.

- \succeq_1 is not rational:
 - \succeq_1 is transitive.
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_1 L_2$ and $L_2 \succsim_1 L_3$.
 - It holds that
 - $x \succeq y$ for all $x, y \in A$ with $L_1(x) > 0$ and $L_2(y) > 0$ and
 - $y \succsim z$ for all $y, z \in A$ with $L_2(y) > 0$ and $L_3(z) > 0$.
 - By the transitivity of \succsim , it follows that $x \succsim z$ for all $x, z \in A$ with $L_1(x) > 0$ and $L_3(z) > 0$.
 - This means that $L_1 \succsim_1 L_3$.

The relation \succsim_1 is defined by $L_1 \succsim_1 L_2$ if and only if $x \succsim y$ for all $x, y \in A$ with $L_1(x) > 0$ and $L_2(y) > 0$.

• \succsim_1 fails continuity:

- \succeq_1 fails continuity:
 - Let $L_1 = [1 : x_1]$, $L_2 = [1 : x_2]$ and $L_3 = [1 : x_3]$.

- \succeq_1 fails continuity:
 - Let $L_1 = [1 : x_1]$, $L_2 = [1 : x_2]$ and $L_3 = [1 : x_3]$.
 - It holds that $L_1 \succ_1 L_2 \succ_1 L_3$.

- \succeq_1 fails continuity:
 - Let $L_1 = [1 : x_1]$, $L_2 = [1 : x_2]$ and $L_3 = [1 : x_3]$.
 - It holds that $L_1 \succ_1 L_2 \succ_1 L_3$.
 - However, for every $\epsilon > 0$, $[1 \epsilon : L_1, \epsilon : L_3] \not\gtrsim L_2$ because $L(x_3) = \epsilon > 0$ for $L = [1 \epsilon : L_1, \epsilon : L_3]$ and $L_2(x_2) > 0$.

- \succeq_1 fails continuity:
 - Let $L_1 = [1 : x_1]$, $L_2 = [1 : x_2]$ and $L_3 = [1 : x_3]$.
 - It holds that $L_1 \succ_1 L_2 \succ_1 L_3$.
 - However, for every $\epsilon > 0$, $[1 \epsilon : L_1, \epsilon : L_3] \not\gtrsim L_2$ because $L(x_3) = \epsilon > 0$ for $L = [1 \epsilon : L_1, \epsilon : L_3]$ and $L_2(x_2) > 0$.
 - \succsim_1 fails independence:

- \succsim_1 fails continuity:
 - Let $L_1 = [1 : x_1]$, $L_2 = [1 : x_2]$ and $L_3 = [1 : x_3]$.
 - It holds that $L_1 \succ_1 L_2 \succ_1 L_3$.
 - However, for every $\epsilon > 0$, $[1 \epsilon : L_1, \epsilon : L_3] \not\gtrsim L_2$ because $L(x_3) = \epsilon > 0$ for $L = [1 \epsilon : L_1, \epsilon : L_3]$ and $L_2(x_2) > 0$.
 - \succsim_1 fails independence:
 - Let $L_4 = [\frac{1}{2} : L_1, \frac{1}{2} : L_3]$ and $L_5 = [\frac{1}{2} : L_2, \frac{1}{2} : L_3]$.

The relation \succsim_1 is defined by $L_1 \succsim_1 L_2$ if and only if $x \succsim y$ for all $x, y \in A$ with $L_1(x) > 0$ and $L_2(y) > 0$.

- \succeq_1 fails continuity:
 - Let $L_1 = [1 : x_1]$, $L_2 = [1 : x_2]$ and $L_3 = [1 : x_3]$.
 - It holds that $L_1 \succ_1 L_2 \succ_1 L_3$.
 - However, for every $\epsilon > 0$, $[1 \epsilon : L_1, \epsilon : L_3] \not\gtrsim L_2$ because $L(x_3) = \epsilon > 0$ for $L = [1 \epsilon : L_1, \epsilon : L_3]$ and $L_2(x_2) > 0$.
 - \succeq_1 fails independence:
 - Let $L_4 = [\frac{1}{2} : L_1, \frac{1}{2} : L_3]$ and $L_5 = [\frac{1}{2} : L_2, \frac{1}{2} : L_3]$.
 - While $L_1 \succ_1 L_2$, we have $L_4 \not\succ_1 L_5$.

Let \succeq denote the rational preference relation over a set $A = \{x_1, \dots, x_m\}$ given by $x_1 \succ x_2 \succ \dots \succ x_m$.

Is the following relation a rational preference relation on $\mathcal{L}(A)$? Is it continuous and independent? Prove your answers!

b) We define $\max(\succsim, X)$ as the most preferred alternative in X and $\Delta(L_1, L_2) = \max(\succsim, \{x \in A \colon L_1(x) \neq L_2(x)\})$. The relation \succsim_2 is defined by $L_1 \succsim_2 L_2$ if and only if $L_1 = L_2$ or $L_1(\Delta(L_1, L_2)) \geq L_2(\Delta(L_1, L_2))$.

We define $\max(\succsim, X)$ as the most preferred alternative in X with respect to \succsim and $\Delta(L_1, L_2) = \max(\succsim, \{x \in A \colon L_1(x) \neq L_2(x)\})$. The relation \succsim_2 is defined by $L_1 \succsim_2 L_2$ if and only if $L_1 = L_2$ or $L_1(\Delta(L_1, L_2)) \ge L_2(\Delta(L_1, L_2))$.

We define $\max(\succsim, X)$ as the most preferred alternative in X with respect to \succsim and $\Delta(L_1, L_2) = \max(\succsim, \{x \in A \colon L_1(x) \neq L_2(x)\})$. The relation \succsim_2 is defined by $L_1 \succsim_2 L_2$ if and only if $L_1 = L_2$ or $L_1(\Delta(L_1, L_2)) \ge L_2(\Delta(L_1, L_2))$.

"Lexicographic preferences"

We define $\max(\succsim, X)$ as the most preferred alternative in X with respect to \succsim and $\Delta(L_1, L_2) = \max(\succsim, \{x \in A \colon L_1(x) \neq L_2(x)\})$. The relation \succsim_2 is defined by $L_1 \succsim_2 L_2$ if and only if $L_1 = L_2$ or $L_1(\Delta(L_1, L_2)) \geq L_2(\Delta(L_1, L_2))$.

- "Lexicographic preferences"
- \gtrsim_2 is rational:

We define $\max(\succsim, X)$ as the most preferred alternative in X with respect to \succsim and $\Delta(L_1, L_2) = \max(\succsim, \{x \in A \colon L_1(x) \neq L_2(x)\})$. The relation \succsim_2 is defined by $L_1 \succsim_2 L_2$ if and only if $L_1 = L_2$ or $L_1(\Delta(L_1, L_2)) \geq L_2(\Delta(L_1, L_2))$.

- "Lexicographic preferences"
- \gtrsim_2 is rational:
 - \succsim_2 is complete:

We define $\max(\succsim, X)$ as the most preferred alternative in X with respect to \succsim and $\Delta(L_1, L_2) = \max(\succsim, \{x \in A \colon L_1(x) \neq L_2(x)\})$. The relation \succsim_2 is defined by $L_1 \succsim_2 L_2$ if and only if $L_1 = L_2$ or $L_1(\Delta(L_1, L_2)) \ge L_2(\Delta(L_1, L_2))$.

- "Lexicographic preferences"
- \succsim_2 is rational:
 - \succsim_2 is complete:
 - If $L_1 = L_2$, then $L_1 \sim_2 L_2$ by definition.

We define $\max(\succsim, X)$ as the most preferred alternative in X with respect to \succsim and $\Delta(L_1, L_2) = \max(\succsim, \{x \in A \colon L_1(x) \neq L_2(x)\})$. The relation \succsim_2 is defined by $L_1 \succsim_2 L_2$ if and only if $L_1 = L_2$ or $L_1(\Delta(L_1, L_2)) \geq L_2(\Delta(L_1, L_2))$.

- "Lexicographic preferences"
- \succsim_2 is rational:
 - \succsim_2 is complete:
 - If $L_1 = L_2$, then $L_1 \sim_2 L_2$ by definition.
 - If $L1 \neq L_2$, then $\Delta(L_1, L_2)$ is well-defined, so either $L_1 \succsim_2 L_2$ or $L_2 \succsim_2 L_2$.

- "Lexicographic preferences"
- \succsim_{2} is rational:
 - \gtrsim_2 is transitive:

- "Lexicographic preferences"
- \succeq_2 is rational:
 - \succsim_2 is transitive:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_2 L_2$ and $L_2 \succsim_2 L_3$.

- "Lexicographic preferences"
- \succeq_2 is rational:
 - \succsim_2 is transitive:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_2 L_2$ and $L_2 \succsim_2 L_3$.
 - If $L_1 = L_2$ or $L_2 = L_3$, it trivially holds that $L_1 \succsim_2 L_3$.

- "Lexicographic preferences"
- \succeq_2 is rational:
 - \succsim_2 is transitive:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_2 L_2$ and $L_2 \succsim_2 L_3$.
 - If $L_1 = L_2$ or $L_2 = L_3$, it trivially holds that $L_1 \succsim_2 L_3$.
 - Assume $L_1 \neq L_2$ and $L_2 \neq L_3$. Let $x_1 = \Delta(L_1, L_2)$, $x_2 = \Delta(L_2, L_3)$, and $x^* = \max(\succsim, \{x_1, x_2\})$.

- "Lexicographic preferences"
- \succeq_2 is rational:
 - \succsim_2 is transitive:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_2 L_2$ and $L_2 \succsim_2 L_3$.
 - If $L_1 = L_2$ or $L_2 = L_3$, it trivially holds that $L_1 \succsim_2 L_3$.
 - Assume $L_1 \neq L_2$ and $L_2 \neq L_3$. Let $x_1 = \Delta(L_1, L_2)$, $x_2 = \Delta(L_2, L_3)$, and $x^* = \max(\succsim, \{x_1, x_2\})$.
 - By definition, we have that $L_1(x) = L_2(x) = L_3(x)$ for all x with $x \succ x^*$.

- "Lexicographic preferences"
- \succsim_2 is rational:
 - \succsim_2 is transitive:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_2 L_2$ and $L_2 \succsim_2 L_3$.
 - If $L_1 = L_2$ or $L_2 = L_3$, it trivially holds that $L_1 \succsim_2 L_3$.
 - Assume $L_1 \neq L_2$ and $L_2 \neq L_3$. Let $x_1 = \Delta(L_1, L_2)$, $x_2 = \Delta(L_2, L_3)$, and $x^* = \max(\succsim, \{x_1, x_2\})$.
 - By definition, we have that $L_1(x) = L_2(x) = L_3(x)$ for all x with $x \succ x^*$.
 - If $x^* = x_1$, then $L_1(x^*) > L_2(x^*) \ge L_3(x^*)$. Hence, $\Delta(L_1, L_3) = x^*$ and $L_1 \succsim_2 L_3$.

- "Lexicographic preferences"
- \succeq_2 is rational:
 - \succsim_2 is transitive:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_2 L_2$ and $L_2 \succsim_2 L_3$.
 - If $L_1 = L_2$ or $L_2 = L_3$, it trivially holds that $L_1 \succsim_2 L_3$.
 - Assume $L_1 \neq L_2$ and $L_2 \neq L_3$. Let $x_1 = \Delta(L_1, L_2)$, $x_2 = \Delta(L_2, L_3)$, and $x^* = \max(\succsim, \{x_1, x_2\})$.
 - By definition, we have that L₁(x) = L₂(x) = L₃(x) for all x with x ≻ x*.
 - If $x^* = x_1$, then $L_1(x^*) > L_2(x^*) \ge L_3(x^*)$. Hence, $\Delta(L_1, L_3) = x^*$ and $L_1 \succsim_2 L_3$.
 - If $x^* = x_2$, then $L_1(x^*) \ge L_2(x^*) > L_3(x^*)$. Hence, $\Delta(L_1, L_3) = x^*$ and $L_1 \succsim_2 L_3$.

The relation \succeq_2 is defined by $L_1 \succeq_2 L_2$ if and only if $L_1 = L_2$ or $L_1(\Delta(L_1, L_2)) > L_2(\Delta(L_1, L_2))$.

• \gtrsim_2 is independent:

- \succsim_2 is independent:
- Let $L_1, L_2, L_3 \in \Delta(A)$. Moreover, let $\lambda \in (0, 1)$ and $L_4 = [\lambda : L_1, 1 \lambda : L_3]$ and $L_5 = [\lambda : L_2, 1 \lambda : L_3]$.

- \gtrsim_2 is independent:
- Let $L_1, L_2, L_3 \in \Delta(A)$. Moreover, let $\lambda \in (0, 1)$ and $L_4 = [\lambda : L_1, 1 \lambda : L_3]$ and $L_5 = [\lambda : L_2, 1 \lambda : L_3]$.
- It holds that $\Delta(L_1, L_2) = \Delta(L_4, L_5)$ and that $L_1(\Delta(L_1, L_2)) > L_2(\Delta(L_1, L_2))$ if and only if $L_4(\Delta(L_4, L_5)) > L_5(\Delta(L_4, L_5))$ because for all $x \in A$

$$L_4(x) - L_5(x) = \lambda L_1(x) + (1 - \lambda)L_3(x) - \lambda L_2(x) + (1 - \lambda)L_3(x)$$

= $\lambda (L_1(x) - L_2(x))$.

The relation \succeq_2 is defined by $L_1 \succeq_2 L_2$ if and only if $L_1 = L_2$ or $L_1(\Delta(L_1, L_2)) > L_2(\Delta(L_1, L_2))$.

- \gtrsim_2 is independent:
- Let $L_1, L_2, L_3 \in \Delta(A)$. Moreover, let $\lambda \in (0, 1)$ and $L_4 = [\lambda : L_1, 1 \lambda : L_3]$ and $L_5 = [\lambda : L_2, 1 \lambda : L_3]$.
- It holds that $\Delta(L_1, L_2) = \Delta(L_4, L_5)$ and that $L_1(\Delta(L_1, L_2)) > L_2(\Delta(L_1, L_2))$ if and only if $L_4(\Delta(L_4, L_5)) > L_5(\Delta(L_4, L_5))$ because for all $x \in A$

$$L_4(x) - L_5(x) = \lambda L_1(x) + (1 - \lambda)L_3(x) - \lambda L_2(x) + (1 - \lambda)L_3(x)$$

= $\lambda (L_1(x) - L_2(x))$.

• This shows that $L_1 \succsim_2 L_2$ if and only if $L_4 \succsim_2 L_5$.

The relation \succeq_2 is defined by $L_1 \succeq_2 L_2$ if and only if $L_1 = L_2$ or $L_1(\Delta(L_1, L_2)) > L_2(\Delta(L_1, L_2))$.

• \succsim_2 fails continuity:

- \succsim_2 fails continuity:
 - Let $L_1 = [1 : x_1]$, $L_2 = [1 : x_2]$, and $L_3 = [1 : x_3]$.

- \succsim_2 fails continuity:
 - Let $L_1 = [1 : x_1]$, $L_2 = [1 : x_2]$, and $L_3 = [1 : x_3]$.
 - It holds that $L_1 \succ_2 L_2 \succ_2 L_3$.

- - Let $L_1 = [1 : x_1]$, $L_2 = [1 : x_2]$, and $L_3 = [1 : x_3]$.
 - It holds that $L_1 \succ_2 L_2 \succ_2 L_3$.
 - However, for every $\epsilon > 0$, we have that $\Delta([\epsilon:L_1,1-\epsilon:L_3],L_2) = x_1$.

- - Let $L_1 = [1 : x_1]$, $L_2 = [1 : x_2]$, and $L_3 = [1 : x_3]$.
 - It holds that $L_1 \succ_2 L_2 \succ_2 L_3$.
 - However, for every $\epsilon > 0$, we have that $\Delta([\epsilon : L_1, 1 \epsilon : L_3], L_2) = x_1$.
 - Hence, it holds for every $\epsilon > 0$ that $[\epsilon : L_1, 1 \epsilon : L_3] \succ_2 L_2$.

Let \succeq denote the rational preference relation over a set

 $A = \{x_1, \dots, x_m\}$ given by $x_1 \succ x_2 \succ \dots \succ x_m$.

Is following relation a rational preference relation on $\mathcal{L}(A)$? Is it continuous and independent? Prove your answers!

The relation \succeq_3 is defined by $L_1 \succeq_3 L_2$ if and only if $L_1(x_1) \geq L_2(x_1)$.

 \bullet "We compare lotteries only based on the probability of x_1 ."

- "We compare lotteries only based on the probability of x_1 ."
- \succeq_3 is rational:

- "We compare lotteries only based on the probability of x_1 ."
- \succeq_3 is rational:
 - \gtrsim_3 is complete.

- "We compare lotteries only based on the probability of x_1 ."
- \succsim_3 is rational:
 - \gtrsim_3 is complete.
 - For all lotteries L_1 , L_2 it holds that either $L_1(x_1) \ge L_2(x_1)$ or $L_1(x_1) \le L_1(x_3)$.

- "We compare lotteries only based on the probability of x_1 ."
- \succeq_3 is rational:
 - \gtrsim_3 is complete.
 - For all lotteries L_1 , L_2 it holds that either $L_1(x_1) \ge L_2(x_1)$ or $L_1(x_1) \le L_1(x_3)$.
 - \gtrsim_3 is transitive.

- "We compare lotteries only based on the probability of x_1 ."
- \succeq_3 is rational:
 - \gtrsim_3 is complete.
 - For all lotteries L_1 , L_2 it holds that either $L_1(x_1) \ge L_2(x_1)$ or $L_1(x_1) \le L_1(x_3)$.
 - \succeq_3 is transitive.
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_3 L_2 \succsim_3 L_3$.

- "We compare lotteries only based on the probability of x_1 ."
- \succeq_3 is rational:
 - \gtrsim_3 is complete.
 - For all lotteries L_1 , L_2 it holds that either $L_1(x_1) \ge L_2(x_1)$ or $L_1(x_1) \le L_1(x_3)$.
 - \succsim_3 is transitive.
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succsim_3 L_2 \succsim_3 L_3$.
 - Hence, $L_1(x_1) \ge L_2(x_1) \ge L_3(x_1)$ and thus also $L_1 \succsim_3 L_3$

The relation \succsim_3 is defined by $L_1 \succsim_3 L_2$ if and only if $L_1(x_1) \ge L_2(x_1)$.

• \gtrsim_3 is independent:

- \succeq_3 is independent:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$. Let $\lambda \in (0, 1)$, $L_4 = [\lambda : L_1, (1 \lambda) : L_3]$, and $L_5 = [\lambda L_2, (1 \lambda) : L_3]$

- \succeq_3 is independent:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$. Let $\lambda \in (0, 1)$, $L_4 = [\lambda : L_1, (1 \lambda) : L_3]$, and $L_5 = [\lambda L_2, (1 \lambda) : L_3]$
 - It holds that $L_4(x_1) = \lambda L_1(x_1) + (1 \lambda)L_3(x_1)$ and $L_5(x_1) = \lambda L_2(x_1) + (1 \lambda)L_3(x_1)$.

- \succeq_3 is independent:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$. Let $\lambda \in (0, 1)$, $L_4 = [\lambda : L_1, (1 \lambda) : L_3]$, and $L_5 = [\lambda L_2, (1 \lambda) : L_3]$
 - It holds that $L_4(x_1) = \lambda L_1(x_1) + (1 \lambda)L_3(x_1)$ and $L_5(x_1) = \lambda L_2(x_1) + (1 \lambda)L_3(x_1)$.
 - Hence, $L_1(x_1) \ge L_2(x)$ if and only if $L_4(x_1) \ge L_5(x)$.

- \succeq_3 is independent:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$. Let $\lambda \in (0, 1)$, $L_4 = [\lambda : L_1, (1 \lambda) : L_3]$, and $L_5 = [\lambda L_2, (1 \lambda) : L_3]$
 - It holds that $L_4(x_1) = \lambda L_1(x_1) + (1 \lambda)L_3(x_1)$ and $L_5(x_1) = \lambda L_2(x_1) + (1 \lambda)L_3(x_1)$.
 - Hence, $L_1(x_1) \ge L_2(x)$ if and only if $L_4(x_1) \ge L_5(x)$.
 - This shows that $L_1 \succsim_3 L_2$ if and only if $L_4 \succsim_3 L_5$.

The relation \succeq_3 is defined by $L_1 \succeq_3 L_2$ if and only if $L_1(x_1) \geq L_2(x_1)$.

• \gtrsim_3 is continuous:

- ≿₃ is continuous:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succ_3 L_2 \succ_3 L_3$.

- ≿₃ is continuous:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succ_3 L_2 \succ_3 L_3$.
 - This means that $L_1(x_1) > L_2(x_1) > L_3(x_1)$.

- ≿₃ is continuous:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succ_3 L_2 \succ_3 L_3$.
 - This means that $L_1(x_1) > L_2(x_1) > L_3(x_1)$.
 - There is $\epsilon \in (0,1)$ such that

$$(1-\epsilon)L_1(x_1) + \epsilon L_3(x_1) > L_2(x_1) > (1-\epsilon)L_3(x_1) + \epsilon L_1(x).$$

The relation \succsim_3 is defined by $L_1 \succsim_3 L_2$ if and only if $L_1(x_1) \ge L_2(x_1)$.

- ≿₃ is continuous:
 - Let $L_1, L_2, L_3 \in \mathcal{L}(A)$ such that $L_1 \succ_3 L_2 \succ_3 L_3$.
 - This means that $L_1(x_1) > L_2(x_1) > L_3(x_1)$.
 - There is $\epsilon \in (0,1)$ such that

$$(1-\epsilon)L_1(x_1) + \epsilon L_3(x_1) > L_2(x_1) > (1-\epsilon)L_3(x_1) + \epsilon L_1(x).$$

• Hence, $[1 - \epsilon : L_1, \epsilon : L_3] \succ_3 L_2 \succ_3 [1 - \epsilon : L_3, \epsilon : L_1]$.