

Unidade 17 - Grafos Eulerianos

Bibliografia

- 📗 Fundamentos da Teoria dos Grafos para Computação M.C. Nicoletti, E.R. Hruschka Jr. 3ª Edição LTC
- Grafos Teoria, Modelos, Algoritmos Paulo Oswaldo Boaventura Netto, 5ª edição
- 👞 Grafos Conceitos, Algoritmos e Aplicações Marco Goldbarg, Elizabetj Goldbarg, Editora Campus
- A first look at Graph Theory John Clark, Derek Allan Holton 1998, World Cientific
- Introduction to Graph Teory Robin J. Wilson 4th Edition Prentice Hall 1996
- Introduction to Graph Theory Douglas West Second Edition 2001 Pearson Edition
- Mathematics A discrete Introduction Third Edition Edward R. Scheinerman 2012
- Discrete Mathematics and its Applications Kenneth H. Rosen 7th edition McGraw Hill 2012
- Data Structures Theory and Practice A. T. Berztiss New York Academic Press 1975 Second Edition
- Discrete Mathematics R. Johnsonbaugh Pearson 2018 Eighth Edition
- Graoy Theory R. **Diestel** Springer 5th Edition 2017
- Teoria Computacional de Grafos Jayme Luiz Szwarcfiter Elsevier 2018

Lembrando...

- ✓ Um grafo G pode ser informalmente definido como um conjunto de objetos chamados vértices e um conjunto de arestas que unem pares desses objetos;
- ✓ A maneira mais comum de se representar um grafo é por meio de um diagrama;
- ✓ Frequentemente, o próprio diagrama é referenciado como um grafo.
- ✓ Generalizando o conceito, em um grafo é possível que mais de uma aresta conecte o mesmo par de vértices (arestas paralelas), bem como uma aresta pode conectar um vértice a si próprio (aresta chamada loop).

Grafo com vértices {v1, v2, v3, v4, v5} e sete arestas, sendo três delas paralelas e duas são loops.

Formalmente...

- Um grafo G = (V(G), E(G)) ou G = (V, E) consiste de dois conjuntos finitos:
 - V(G), (ou V), que é o conjunto de vértices do grafo, o qual é um conjunto não vazio de elementos chamados vértices e
 - ❖ E(G) , (ou E), que é o conjunto de arestas do grafo, o qual é um conjunto (que pode ser vazio) de elementos chamados arestas;
- À cada aresta e em E atribui-se um par não ordenado de vértices (u,v) chamados vértices-extremidade de e;
- Vértices também são referenciados como pontos ou nós.

MAUÁ

Exemplo

Seja o grafo G = (V,E), tal que

$$V = \{a,b,c,d,e,f,g,h,i,j\} e$$

$$E = \{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}, e_{12}\}$$

e as extremidades das arestas expressas por:

$$\begin{array}{lll} e_1 \leftrightarrow (a,b) & e_2 \leftrightarrow (b,c) & e_3 \leftrightarrow (c,c) & e_4 \leftrightarrow (c,e) & e_5 \leftrightarrow (d,f) & e_6 \leftrightarrow (d,f) \\ e_7 \leftrightarrow (c,d) & e_8 \leftrightarrow (c,f) & e_9 \leftrightarrow (e,f) & e_{10} \leftrightarrow (g,h) & e_{11} \leftrightarrow (h,h) & e_{12} \leftrightarrow (h,i) \end{array}$$

A Figura mostra a representação em diagrama do grafo G.

Grafo G com dez vértices e 12 arestas.

Passeio em um Grafo

- ✓ Muitos problemas em Teoria dos Grafos estão relacionados à possibilidade de se chegar
 a um vértice do grafo a partir de outro, seguindo-se uma sequência de arestas;
- ✓ Um passeio em um grafo é uma sequência finita

$$\mathbf{w} = \mathbf{v}_{o} \mathbf{e}_{1} \mathbf{v}_{1} \mathbf{e}_{2} \mathbf{v}_{2} ... \mathbf{v}_{k-1} \mathbf{e}_{k} \mathbf{v}_{k}$$

cujos elementos são, alternativamente, vértices e arestas tal que, para $1 \le i \le k$, a aresta e_i tem vértices-extremidades v_{i-1} e v_i ;

Passeio em um Grafo

$$\mathbf{w} = \mathbf{v_0} \mathbf{e_1} \mathbf{v_1} \mathbf{e_2} \mathbf{v_2} ... \mathbf{v_{k-1}} \mathbf{e_k} \mathbf{v_k}$$

- ✓ Assim, cada aresta e

 i é imediatamente precedida e sucedida pelos vértices aos quais é incidente;
- \checkmark Diz-se que o passeio \forall é um passeio \forall ou um passeio de \forall até \forall
- \checkmark O vértice V_0 é chamado origem do passeio W e o vértice V_k é chamado término de W;
- ✓ Os vértices V_O e V_k não precisam ser distintos;
- \checkmark Os vértices $V_1, ..., V_{k-1}$ são chamados vértices internos.

MAUÁ

Comprimento de um Passeio em um Grafo

- ✓ Considere o grafo G = (V,E) e uma passeio em G dado pela sequência $W = v_0 e_1 v_1 e_2 v_2 ... v_{k-1} e_k v_k$.
- ✓ O inteiro k, que é o número de arestas do passeio, é chamado Comprimento de W;
- ✓ Em um passeio pode haver <u>repetições</u> de <u>vértices</u> e <u>arestas</u>;

✓ No grafo G = (V,E), dados dois vértices $\mathbf{u} \in V$ e $\mathbf{v} \in V$ em G, um passeio $\mathbf{u} - \mathbf{v}$ é fechado

se u = v e aberto se $u \neq v$;

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

 $W1 = v_1 e_1 v_2 e_5 v_3 e_{10} v_3 e_5 v_2 e_3 v_5$ é um passeio aberto de tamanho 5 de v_1 a v_5 .

✓ Observação: A aresta e₅ está sendo repetida no passeio W₁

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

 $W2 = v_1 e_1 v_2 e_1 v_1 e_1 v_2$ é um passeio aberto de tamanho 3 de v_1 a v_2 .

Observação: A aresta e₁ está sendo repetida no passeio W₂

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

Trilha em um Grafo

✓ Seja **G** = (**V**,**E**) um grafo e considere o passeio:

$$\mathbf{w} = \mathbf{v}_{o} \mathbf{e}_{1} \mathbf{v}_{1} \mathbf{e}_{2} \mathbf{v}_{2} \dots \mathbf{v}_{k-1} \mathbf{e}_{k} \mathbf{v}_{k}$$

- ✓ Se as arestas e₁,e₂...,e_k de W forem distintas, então W é chamado Trilha;
- ✓ Uma trilha que começa e termina no mesmo vértice v é chamada Trilha Fechada ou CIRCUITO;
- ✓ Caso contrário é uma Trilha aberta;
- ✓ Pode-se dizer, portanto, que uma Trilha é um passeio no qual nenhuma aresta é repetida.

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

 $W_3 = V_1 e_6 V_5 e_3 V_2 e_4 V_4 e_8 V_3 e_9 V_1$

W3 é uma trilha fechada.

Observação: **W**₃ é uma **trilha fechada**, pois inicia e termina no mesmo vértice e todas as **arestas** são **distintas**!

Considere o grafo G = (V,E) mostrado na Figura

Grafo simples G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ e E= $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}\}$.

Considere o grafo G = (V,E) mostrado na Figura

Grafo simples G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ e E= $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}\}$.

$W2 = v_1 e_1 v_2 e_3 v_3 e_5 v_5 e_7 v_4 e_6 v_3 e_4 v_2 e_2 v_1 \text{\'e} \text{ uma trilha fechada de tamanho 7 de } v_1 \text{ a } v_1.$

- ✓ Todas as arestas de W₂ são distintas!
- √ W₂ inicia em V₁ e termina em V₁;
- ✓ Portanto, W₂ é uma trilha fechada ou um circuito;
- √ W₂ tem 7 arestas, portanto o tamanho de W₂ é 7.

Considere o grafo G = (V,E) mostrado na Figura

Grafo simples G = (V,E), $\overline{\text{em que }} V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\} \text{ e E} = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}\}.$

 $W3 = v_4 e_7 v_5 e_8 v_6 e_9 v_5 e_{10} v_6 e_{11} v_7 e_{13} v_8 \text{ \'e uma trilha aberta de tamanho 6 de } v_4 \text{ a } v_8.$

- √ Todas as arestas de W₃ são distintas!
- ✓ W₃ inicia em V₄ e termina em V₈;
- ✓ Portanto, W₂ é uma trilha aberta;
- ✓ W₃ tem 6 arestas, portanto o tamanho de W₃ é 6.

Passeio e Trilha

Vértice inicial u
Vértice final v

u ≠ v

u = v

PASSEIO

Nenhuma restrição quanto ao número de vezes que um vértice ou aresta pode aparecer

PASSEIO ABERTO

PASSEIO FECHADO

Trilha

Nenhuma aresta pode aparecer mais de uma vez

TRILHA ABERTA

TRILHA FECHADA
ou
CIRCUITO

Caminho

✓ Seja **G** = (**V**,**E**) um grafo e considere a **trilha**:

$$\mathbf{w} = \mathbf{v}_0 \mathbf{e}_1 \mathbf{v}_1 \mathbf{e}_2 \mathbf{v}_2 \dots \mathbf{v}_{k-1} \mathbf{e}_k \mathbf{v}_k$$

- ✓ Se os vértices V₀,V₁...,V_k de W forem distintas, então W é chamado Caminho;
- ✓ Em um caminho, entretanto, é permitido que seus primeiro e últimos vértices possam ser os mesmos;
- ✓ Um caminho que começa e termina no mesmo vértice v é chamada Caminho Fechado ou CICLO;
- ✓ Todo caminho é uma trilha, mas nem sempre uma trilha é um caminho.

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

W4 = $v_2 v_4 v_3 v_5 v_1$ é um caminho de comprimento 4.

- ✓ Em W₄ não há repetição de vértices;
- ✓ Vértice inicial é diferente do vértice final;
- ✓ Portanto, W₄ é um caminho de tamanho 4.

Passeio, Trilha e Caminho

Vértice inicial u Vértice final v	u ≠ v	u = v
PASSEIO Nenhuma restrição quanto ao número de vezes que um vértice ou aresta pode aparecer	PASSEIO ABERTO	PASSEIO FECHADO
Trilha Nenhuma aresta pode aparecer mais de uma vez	TRILHA ABERTA	TRILHA FECHADA ou CIRCUITO
CAMINHO Nenhum vértice pode aparecer mais de uma vez, com a possível exceção de que u e v podem ser o mesmo vértice	CAMINHO ABERTO	CAMINHO FECHADO OU CICLO

Passeio, Trilha e Caminho

- ✓ Uma trilha é um passeio no qual nenhuma aresta é repetida;
- ✓ Um caminho é uma trilha no qual nenhum vértice é repetido;
- ✓ Nem sempre toda trilha é um caminho;
- ✓ Todo caminho é uma trilha;
- ✓ Todo caminho é um passeio;
- ✓ Toda trilha é um passeio;
- ✓ Nem sempre todo passeio é uma trilha;
- ✓ Nem sempre todo passeio é um caminho.

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

• W1 = $v_1 e_1 v_2 e_5 v_3 e_{10} v_3 e_5 v_2 e_3 v_5$ é um passeio aberto de tamanho 5 de v_1 a v_5 .

W1 é trilha? W1 é caminho?

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

W2 = v₁e₁v₂e₁v₁e₁v₂ é um passeio aberto de tamanho 3 de v₁ a v₂.

W2 é trilha? W2 é caminho?

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

W3 = v₁v₅v₂v₄v₃v₁ é um passeio fechado de tamanho 5.

W2 é trilha? W2 é caminho?

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

• W4 = $v_2 v_4 v_3 v_5 v_1$ é um caminho de comprimento 4.

W2 é trilha? W2 é caminho?

- $\sqrt{V_1 = V_1 e_1 V_2 e_2 V_3} e_3 V_5 e_5 V_4 e_4 V_3 e_3 V_5 e_6 V_6 e_7 V_7 e_8 V_8 e_{10} V_{9e10} V_9 e_7 V_7 e_8 V_8 e_{10} V_9 e_{11} V_{10}$
- √ É um passeio aberto de tamanho 14 ?

- $\sqrt{V_1 = V_1} e_1 V_2 e_2 V_3 e_3 V_5 e_5 V_4 e_4 V_3 e_3 V_5 e_6 V_6 e_7 V_7 e_8 V_8 e_{10} V_9 e_{11} V_{10}$
- \checkmark W₁ é passeio fechado ? W₁ é trilha ? W₁ é caminho?

- \checkmark W₂ = $V_3 e_4 V_4 e_4 V_3 e_4 V_4 e_5 V_5 e_3 V_3$.
- ✓ W_2 é passeio fechado? W_2 é ciclo? W_2 é caminho fechado?

- \checkmark W₃ = V₁e₁V₂e₂V₃e₃V₅e₅V₄e₄V₃
- ✓ W_3 é passeio aberto? W_3 é trilha aberta? W_3 é circuito? W_3 é ciclo ?

✓ Considere o grafo simples G = (V,E), mostrado abaixo:

✓ No grafo existe algum ciclo de comprimento 4?

✓ Considere o grafo simples G = (V,E), mostrado abaixo:

✓ No grafo existe algum ciclo de comprimento 3?

✓ Considere o grafo simples G = (V,E), mostrado abaixo:

✓ Defina um passeio de tamanho 5

W = V2 V3 V4 V5 V7 V2

✓ Considere o grafo simples G = (V,E), mostrado abaixo:

✓ Defina uma trilha de tamanho 6

Exercício

✓ Considere o grafo simples G = (V,E), mostrado abaixo:

- ✓ Existe algum ciclo no grafo com tamanho 5?
- ✓ Se sim, defina-o.

Exercício

✓ Considere o grafo simples G = (V,E), mostrado abaixo:

- ✓ Existe algum circuito no grafo com tamanho 6?
- ✓ Se sim, defina-o. V2V7V5V4V3V1V2 é circuito e também ciclo!!!!

Teorema

✓ Dados dois vértices u e v de um grafo G, todo passeio u-v contém um caminho u-v, ou seja, dado qualquer passeio

$$W = u e_1 v_1 e_2 v_2 ... v_{k-1} e_k v$$

Após algumas eliminações de vértices e arestas, se necessário, podese se encontrar uma subsequência P de W, a qual é um caminho u-v.

MAUÁ

Teorema

✓ Dado o grafo G=(V,E)

 \checkmark Considere o passeio: W= $v_1e_1v_2e_5v_3e_{10}v_3e_5v_2e_3v_5$

MAUÁ

Teorema

✓ Dado o grafo G=(V,E)

 \checkmark Considere o passeio: W= $v_1e_1v_2e_5v_3e_{10}v_3e_5v_2e_3v_5$

Teorema

✓ Eliminando-se algumas arestas do passeio, pode-se chegar à subsequência: P = v₁e₁v₂e₃v₅

✓ $P = v_1 e_1 v_2 e_3 v_5$ é um caminho obtido a partir de W

Trilha Euleriana

✓ Uma trilha em um grafo G é chamada Trilha Euleriana se incluir toda aresta de G.

Trilha Euleriana

✓ Uma trilha em um grafo **G** é chamada **Trilha Euleriana** se incluir toda aresta de **G**.

 \checkmark Exemplo: A trilha $V_1V_2V_3V_4V_5V_6V_7V_8$ do grafo **G1** é uma **trilha** de **Euler**.

O grafo G2 acima tem uma trilha de Euler?

O grafo G2 acima NÃO tem uma trilha de Euler!

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver uma trilha fechada (circuito) que inclui todas as arestas de G;

✓ Um grafo **G** é chamado **Grafo de Euler** ou **Grafo Euleriano** se tiver um **trilha** de **Euler** fechada.

✓O grafo **G2** é Euleriano?

MAUÁ

Grafos Eulerianos

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

- ✓ O grafo **G2** é Euleriano?
- ✓ Precisa-se descobrir se há uma trilha de Euler fechada no grafo G2;
- ✓ A trilha V₁e₁V₂e₂V₃e₃V₄e₄V₁e₅V₄e₆V₁ é uma trilha Euleriana fechada;

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

✓ O grafo **G1** é Euleriano?

✓ Um grafo **G** é chamado **Grafo de Euler** ou **Grafo Euleriano** se tiver um **trilha** de **Euler** fechada.

- ✓ O grafo **G1** é Euleriano?
- ✓ Resposta: Não, pois não se consegue construir em G1 uma trilha Euleriana Fechada.

✓ Um grafo **G** é chamado **Grafo de Euler** ou **Grafo Euleriano** se tiver um **trilha** de **Euler** fechada.

✓O grafo G3 é Euleriano?

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

✓ O grafo **G3** é Euleriano?

✓ Resposta: Não, pois não se consegue construir em G3 uma trilha Euleriana Fechada.

✓ Um grafo **G** é chamado **Grafo de Euler** ou **Grafo Euleriano** se tiver um **trilha** de **Euler** fechada.

✓ O grafo G4 é Euleriano?

✓ Um grafo **G** é chamado **Grafo de Euler** ou **Grafo Euleriano** se tiver um **trilha** de **Euler** fechada.

- ✓ O grafo G4 é Euleriano?
- ✓ Resposta: Não, pois não se consegue construir em G4 uma trilha Euleriana Fechada.

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

✓ O grafo **G5** é Euleriano?

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

- ✓ O grafo **G5** é Euleriano?
- ✓ Resposta: Não, pois não se consegue construir em G5 uma trilha Euleriana Fechada.

Como determinar se um grafo é Euleriano?

O problema das pontes de Königsberg é o primeiro e mais famoso problema em teoria dos grafos resolvido por Euler em 1736. Na cidade de Königsberg existiam sete pontes que cruzavam o rio Pregel estabelecendo ligações entre duas ilhas e entre as ilhas e as margens opostas do rio.

O problema consiste em determinar se é possível ou não fazer um passeio pela cidade começando e terminando no mesmo lugar, cruzando cada ponte exatamente uma única vez. Se isto for possível o grafo é chamado grafo Euleriano.

Grafo G = (V, A) V =cjto de vértices $= \{A, B, C, D\}$ A =cjto de arestas $= \{a, b, c, d, e, f, g\}$

✓ Euler provou que o problema não tem solução!

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo 61 abaixo é Euleriano?

- ✓ Um grafo conexo G é um Grafo Euleriano se e somente se o grau de todo o vértice de G for par.
- ✓ Exemplo: O grafo 61 abaixo é Euleriano?

- \checkmark O grafo **G1** acima tem vértices V_2 e V_3 com grau impar;
- ✓ Portanto, o Grafo G1 não é Euleriano!

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for **par**.
- ✓ Exemplo: O grafo G2 abaixo é Euleriano?

✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.

✓ Exemplo: O grafo G2 abaixo é Euleriano?

- ✓ Todos os vértices do grafo G2 acima possuem graus pares;
- ✓ Portanto, o Grafo G2 é Euleriano!
- ✓ Circuito de Euler: $\mathbf{v_1} \mathbf{v_9} \mathbf{v_2} \mathbf{v_4} \mathbf{v_3} \mathbf{v_7} \mathbf{v_9} \mathbf{v_8} \mathbf{v_7} \mathbf{v_6} \mathbf{v_5} \mathbf{v_4} \mathbf{v_7} \mathbf{v_2} \mathbf{v_1}$

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo 63 abaixo é Euleriano?

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo **G3** abaixo é **Euleriano**?

- ✓ Todos os vértices do grafo **G3** acima possuem graus **pares**;
- ✓ Portanto, o Grafo G3 é Euleriano!
- ✓ Circuito de Euler: $V_1 V_2 V_3 V_1 V_4 V_2 V_5 V_3 V_4 V_5 V_1$

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo G4 abaixo é Euleriano?

- ✓ Um grafo conexo G é um Grafo Euleriano se e somente se o grau de todo o vértice de
 G for par.
- ✓ Exemplo: O grafo G4 abaixo é Euleriano?

- ✓ O grafo **G4** acima tem todos os vértices com grau ímpar;
- ✓ Portanto, o Grafo G4 não é Euleriano!

FIM

