Revisión de Procesos de Renovación y Regenerativos

Carlos E. Martínez Rodríguez

Academia de Matemáticas

Academia de Modelación Matemática

Plantel Casa Libertad

Universidad Autónoma de la Ciudad de México

 $Correo\ Electr\'onico:\ \underline{carlos.martinez@uacm.edu.mx}$

y cemroder@gmail.com

carlosmartinez.expresauacm.org

December 9, 2015

Contents

1	Pro	ocesos Estocásticos: Thorisson	2
2	Procesos Regenerativos		7
	2.1	Procesos Regenerativos Sigman, Thorisson y Wolff [12]	7
	2.2	Procesos Regenerativos Estacionarios - Stidham [14]	9
3	Procesos de Renovación		10
	3.1	Teorema Principal de Renovación	11
	3.2	Propiedades de los Procesos de Renovación	12
	3.3	Función de Renovación	21
4	Renewal and Regenerative Processes: Serfozo[11]		23
5	Ejemplos, Notas importantes		33
	5.1	Procesos Regenerativos	33
6	Res	sultados para Procesos de Salida	38

1 Procesos Estocásticos: Thorisson

Definición 1.1. Un elemento aleatorio en un espacio medible (E, \mathcal{E}) en un espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$ a (E, \mathcal{E}) , es decir, para $A \in \mathcal{E}$, se tiene que $\{Y \in A\} \in \mathcal{F}$, donde $\{Y \in A\} := \{w \in \Omega : Y(w) \in A\} =: Y^{-1}A$.

Nota 1.1. También se dice que Y está soportado por el espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$ y que Y es un mapeo medible de Ω en E, es decir, es \mathcal{F}/\mathcal{E} medible.

Definición 1.2. Para cada $i \in \mathbb{I}$ sea P_i una medida de probabilidad en un espacio medible (E_i, \mathcal{E}_i) . Se define el espacio producto $\otimes_{i \in \mathbb{I}} (E_i, \mathcal{E}_i) := (\prod_{i \in \mathbb{I}} E_i, \otimes_{i \in \mathbb{I}} \mathcal{E}_i)$, donde $\prod_{i \in \mathbb{I}} E_i$ es el producto cartesiano de los E_i 's, $y \otimes_{i \in \mathbb{I}} \mathcal{E}_i$ es la σ -álgebra producto, es decir, es la σ -álgebra más pequeña en $\prod_{i \in \mathbb{I}} E_i$ que hace al i-ésimo mapeo proyección en E_i medible para toda $i \in \mathbb{I}$ es la σ -álgebra inducida por los mapeos proyección.

$$\otimes_{i \in \mathbb{I}} \mathcal{E}_i := \sigma \left\{ \left\{ y : y_i \in A \right\} : i \in \mathbb{I} \ y \ A \in \mathcal{E}_i \right\}.$$

Definición 1.3. Un espacio de probabilidad $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ es una extensión de otro espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$ si $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ soporta un elemento aleatorio $\xi \in (\Omega, \mathcal{F})$ que tienen a \mathbb{P} como distribución.

Teorema 1.1. Sea \mathbb{I} un conjunto de índices arbitrario. Para cada $i \in \mathbb{I}$ sea P_i una medida de probabilidad en un espacio medible (E_i, \mathcal{E}_i) . Entonces existe una única medida de probabilidad $\otimes_{i \in \mathbb{I}} P_i$ en $\otimes_{i \in \mathbb{I}} (E_i, \mathcal{E}_i)$ tal que

$$\bigotimes_{i \in \mathbb{I}} P_i \left(y \in \prod_{i \in \mathbb{I}} E_i : y_i \in A_{i_1}, \dots, y_n \in A_{i_n} \right) = P_{i_1} \left(A_{i_n} \right) \cdots P_{i_n} \left(A_{i_n} \right)$$

para todos los enteros n > 0, toda $i_1, \ldots, i_n \in \mathbb{I}$ y todo $A_{i_1} \in \mathcal{E}_{i_1}, \ldots, A_{i_n} \in \mathcal{E}_{i_n}$

La medida $\otimes_{i\in\mathbb{I}}P_i$ es llamada la medida producto $y\otimes_{i\in\mathbb{I}}(E_i,\mathcal{E}_i,P_i):=\left(\prod_{i\in\mathbb{I}},E_i,\otimes_{i\in\mathbb{I}}\mathcal{E}_i,\otimes_{i\in\mathbb{I}}P_i\right)$, es llamado espacio de probabilidad producto.

Definición 1.4. Un espacio medible (E,\mathcal{E}) es Polaco si existe una métrica en E tal que E es completo, es decir cada sucesión de Cauchy converge a un límite en E, y separable, E tienen un subconjunto denso numerable, y tal que E es generado por conjuntos abiertos.

Definición 1.5. Dos espacios medibles (E, \mathcal{E}) y (G, \mathcal{G}) son Borel equivalentes isomorfos si existe una biyección $f: E \to G$ tal que f es \mathcal{E}/\mathcal{G} medible y su inversa f^{-1} es \mathcal{G}/\mathcal{E} medible. La biyección es una equivalencia de Borel.

Definición 1.6. Un espacio medible (E, \mathcal{E}) es un espacio estándar si es Borel equivalente a (G, \mathcal{G}) , donde G es un subconjunto de Borel de [0,1] y \mathcal{G} son los subconjuntos de Borel de G.

Nota 1.2. Cualquier espacio Polaco es un espacio estándar.

Definición 1.7. Un proceso estocástico con conjunto de índices \mathbb{I} y espacio de estados (E, \mathcal{E}) es una familia $Z = (\mathbb{Z}_s)_{s \in \mathbb{I}}$ donde \mathbb{Z}_s son elementos aleatorios definidos en un espacio de probabilidad común $(\Omega, \mathcal{F}, \mathbb{P})$ y todos toman valores en (E, \mathcal{E}) .

Definición 1.8. Un proceso estocástico one-sided continuous time (**PEOSCT**) es un proceso estocástico con conjunto de índices $\mathbb{I} = [0, \infty)$.

Sea $(E^{\mathbb{I}}, \mathcal{E}^{\mathbb{I}})$ denota el espacio producto $(E^{\mathbb{I}}, \mathcal{E}^{\mathbb{I}}) := \bigotimes_{s \in \mathbb{I}} (E, \mathcal{E})$. Vamos a considerar \mathbb{Z} como un mapeo aleatorio, es decir, como un elemento aleatorio en $(E^{\mathbb{I}}, \mathcal{E}^{\mathbb{I}})$ definido por $Z(w) = (Z_s(w))_{s \in \mathbb{I}}$ y $w \in \Omega$.

Nota 1.3. La distribución de un proceso estocástico Z es la distribución de Z como un elemento aleatorio en $(E^{\mathbb{I}}, \mathcal{E}^{\mathbb{I}})$. La distribución de Z esta determinada de manera única por las distribuciones finito dimensionales.

Nota 1.4. En particular cuando Z toma valores reales, es decir, $(E, \mathcal{E}) = (\mathbb{R}, \mathcal{B})$ las distribuciones finito dimensionales están determinadas por las funciones de distribución finito dimensionales

$$\mathbb{P}\left(Z_{t_1} \le x_1, \dots, Z_{t_n} \le x_n\right), x_1, \dots, x_n \in \mathbb{R}, t_1, \dots, t_n \in \mathbb{I}, n \ge 1.$$

Nota 1.5. Para espacios polacos (E, \mathcal{E}) el Teorema de Consistencia de Kolmogorov asegura que dada una colección de distribuciones finito dimensionales consistentes, siempre existe un proceso estocástico que posee tales distribuciones finito dimensionales.

Definición 1.9. Las trayectorias de Z son las realizaciones Z(w) para $w \in \Omega$ del mapeo aleatorio Z.

Nota 1.6. Algunas restricciones se imponen sobre las trayectorias, por ejemplo que sean continuas por la derecha, o continuas por la derecha con límites por la izquierda, o de manera más general, se pedirá que caigan en algún subconjunto H de $E^{\mathbb{I}}$. En este caso es natural considerar a Z como un elemento aleatorio que no está en $(E^{\mathbb{I}}, \mathcal{E}^{\mathbb{I}})$ sino en (H, \mathcal{H}) , donde \mathcal{H} es la σ -álgebra generada

por los mapeos proyección que toman a $z \in H$ a $z_t \in E$ para $t \in \mathbb{I}$. A \mathcal{H} se le conoce como la traza de H en $E^{\mathbb{I}}$, es decir,

$$\mathcal{H} := E^{\mathbb{I}} \cap H := \left\{ A \cap H : A \in E^{\mathbb{I}} \right\}. \tag{2}$$

Nota 1.7. Z tiene trayectorias con valores en H y cada Z_t es un mapeo medible de (Ω, \mathcal{F}) a (H, \mathcal{H}) . Cuando se considera un espacio de trayectorias en particular H, al espacio (H, \mathcal{H}) se le llama el espacio de trayectorias de Z.

Nota 1.8. La distribución del proceso estocástico Z con espacio de trayectorias (H, \mathcal{H}) es la distribución de Z como un elemento aleatorio en (H, \mathcal{H}) . La distribución, nuevemente, está determinada de manera única por las distribuciones finito dimensionales.

Definición 1.10. Sea Z un PEOSCT con espacio de estados (E, \mathcal{E}) y sea T un tiempo aleatorio en $[0, \infty)$. Por Z_T se entiende el mapeo con valores en E definido en Ω en la manera obvia:

$$Z_T(w) := Z_{T(w)}(w) . w \in \Omega.$$

Definición 1.11. Un PEOSCT Z es conjuntamente medible (CM) si el mapeo que toma $(w, t) \in \Omega \times [0, \infty)$ a $Z_t(w) \in E$ es $\mathcal{F} \otimes \mathcal{B}[0, \infty) / \mathcal{E}$ medible.

Nota 1.9. Un PEOSCT-CM implica que el proceso es medible, dado que Z_T es una composición de dos mapeos continuos: el primero que toma w en (w, T(w)) es $\mathcal{F}/\mathcal{F}\otimes\mathcal{B}[0, \infty)$ medible, mientras que el segundo toma (w, T(w)) en $Z_{T(w)}(w)$ es $\mathcal{F}\otimes\mathcal{B}[0, \infty)$ / \mathcal{E} medible.

Definición 1.12. Un PEOSCT con espacio de estados (H, \mathcal{H}) es canónicamente conjuntamente medible (CCM) si el mapeo $(z,t) \in H \times [0,\infty)$ en $Z_t \in E$ es $\mathcal{H} \otimes \mathcal{B}[0,\infty) / \mathcal{E}$ medible.

Nota 1.10. Un PEOSCTCCM implica que el proceso es CM, dado que un PECCM Z es un mapeo de $\Omega \times [0, \infty)$ a E, es la composición de dos mapeos medibles: el primero, toma (w, t) en (Z(w), t) es $\mathcal{F} \otimes \mathcal{B}[0, \infty) / \mathcal{H} \otimes \mathcal{B}[0, \infty)$ medible, y el segundo que toma (Z(w), t) en $Z_t(w)$ es $\mathcal{H} \otimes \mathcal{B}[0, \infty) / \mathcal{E}$ medible. Por tanto CCM es una condición más fuerte que CM.

Definición 1.13. Un conjunto de trayectorias H de un PEOSCT Z, es internamente shift-invariante (ISI) si

$$\{(z_{t+s})_{s\in[0,\infty)}: z\in H\}=H, t\in[0,\infty).$$

Definición 1.14. Dado un PEOSCTISI, se define el mapeo-shift θ_t , $t \in [0, \infty)$, de H a H por

$$\theta_t z = (z_{t+s})_{s \in [0,\infty)}, \ z \in H.$$

Definición 1.15. Se dice que un proceso Z es shift-medible (SM) si Z tiene un conjunto de trayectorias H que es ISI y además el mapeo que toma $(z,t) \in H \times [0,\infty)$ en $\theta_t z \in H$ es $\mathcal{H} \otimes \mathcal{B}[0,\infty)$ / \mathcal{H} medible.

Nota 1.11. Un proceso estocástico con conjunto de trayectorias H ISI es shift-medible si y sólo si es CCM

- **Nota 1.12.** Dado el espacio polaco (E, \mathcal{E}) se tiene el conjunto de trayectorias $D_E[0, \infty)$ que es ISI, entonces cumpe con ser CCM.
 - Si G es abierto, podemos cubrirlo por bolas abiertas cuay cerradura este contenida en G, y como G es segundo numerable como subespacio de E, lo podemos cubrir por una cantidad numerable de bolas abiertas.

Nota 1.13. Los procesos estocásticos Z a tiempo discreto con espacio de estados polaco, también tiene un espacio de trayectorias polaco y por tanto tiene distribuciones condicionales regulares.

Teorema 1.2. El producto numerable de espacios polacos es polaco.

Definición 1.16. Sea $(\Omega, \mathcal{F}, \mathbb{P})$ espacio de probabilidad que soporta al proceso $Z = (Z_s)_{s \in [0,\infty)}$ $y \ S = (S_k)_0^{\infty}$ donde Z es un PEOSCTM con espacio de estados (E, \mathcal{E}) y espacio de trayectorias (H, \mathcal{H}) y además S es una sucesión de tiempos aleatorios one-sided que satisfacen la condición $0 \le S_0 < S_1 < \cdots \to \infty$. Considerando S como un mapeo medible de (Ω, \mathcal{F}) al espacio sucesión (L, \mathcal{L}) , donde

$$L = \left\{ (s_k)_0^{\infty} \in [0, \infty)^{\{0, 1, \dots\}} : s_0 < s_1 < \dots \to \infty \right\},\,$$

donde \mathcal{L} son los subconjuntos de Borel de L, es decir, $\mathcal{L} = L \cap \mathcal{B}^{\{0,1,\ldots\}}$.

Así el par (Z, S) es un mapeo medible de (Ω, \mathcal{F}) en $(H \times L, \mathcal{H} \otimes \mathcal{L})$. El par $\mathcal{H} \otimes \mathcal{L}^+$ denotará la clase de todas las funciones medibles de $(H \times L, \mathcal{H} \otimes \mathcal{L})$ en $([0, \infty), \mathcal{B}[0, \infty))$.

Definición 1.17. Sea θ_t el mapeo-shift conjunto de $H \times L$ en $H \times L$ dado por

$$\theta_t \left(z, (s_k)_0^{\infty} \right) = \theta_t \left(z, \left(s_{n_t - +k} - t \right)_0^{\infty} \right)$$

donde $n_{t-} = \inf \{ n \ge 1 : s_n \ge t \}.$

Nota 1.14. Con la finalidad de poder realizar los shift's sin complicaciones de medibilidad, se supondrá que Z es shit-medible, es decir, el conjunto de trayectorias H es invariante bajo shifts del tiempo y el mapeo que toma $(z,t) \in H \times [0,\infty)$ en $z_t \in E$ es $\mathcal{H} \otimes \mathcal{B}[0,\infty) / \mathcal{E}$ medible.

Definición 1.18. Dado un proceso **PEOSSM** (Proceso Estocástico One Side Shift Medible) Z, se dice regenerativo clásico con tiempos de regeneración S si

$$\theta_{S_n}\left(Z,S\right) = \left(Z^0,S^0\right), n \ge 0$$

y además $\theta_{S_n}(Z, S)$ es independiente de $((Z_s)s \in [0, S_n), S_0, \dots, S_n)$ Si lo anterior se cumple, al par (Z, S) se le llama regenerativo clásico.

Nota 1.15. Si el par (Z, S) es regenerativo clásico, entonces las longitudes de los ciclos X_1, X_2, \ldots , son i.i.d. e independientes de la longitud del retraso S_0 , es decir, S es un proceso de renovación. Las longitudes de los ciclos también son llamados tiempos de inter-regeneración y tiempos de ocurrencia.

Teorema 1.3. Supóngase que el par (Z,S) es regenerativo clásico con $\mathbb{E}[X_1] < \infty$. Entonces (Z^*,S^*) en el teorema 2.1 es una versión estacionaria de (Z,S). Además, si X_1 es lattice con span d, entonces (Z^{**},S^{**}) en el teorema 2.2 es una versión periodicamente estacionaria de (Z,S) con periodo d.

Definición 1.19. Una variable aleatoria X_1 es spread out si existe una $n \geq 1$ y una función $f \in \mathcal{B}^+$ tal que $\int_{\mathbb{R}} f(x) dx > 0$ con X_2, X_3, \dots, X_n copias i.i.d de X_1 ,

$$\mathbb{P}(X_1 + \dots + X_n \in B) \ge \int_B f(x) dx$$

para $B \in \mathcal{B}$.

Definición 1.20. Dado un proceso estocástico Z se le llama wide-sense regenerative (WSR) con tiempos de regeneración S si $\theta_{S_n}(Z,S) = (Z^0,S^0)$ para $n \geq 0$ en distribución y $\theta_{S_n}(Z,S)$ es independiente de (S_0,S_1,\ldots,S_n) para $n \geq 0$. Se dice que el par (Z,S) es WSR si lo anterior se cumple.

Nota 1.16. • El proceso de trayectorias $(\theta_s Z)_{s \in [0,\infty)}$ es WSR con tiempos de regeneración S pero no es regenerativo clásico.

• Si Z es cualquier proceso estacionario y S es un proceso de renovación que es independiente de Z, entonces (Z, S) es WSR pero en general no es regenerativo clásico

Nota 1.17. Para cualquier proceso estocástico Z, el proceso de trayectorias $(\theta_s Z)_{s \in [0,\infty)}$ es siempre un proceso de Markov.

Teorema 1.4. Supongase que el par (Z,S) es WSR con $\mathbb{E}[X_1] < \infty$. Entonces (Z^*,S^*) en el teorema 2.1 es una versión estacionaria de (Z,S).

Teorema 1.5. Supongase que (Z,S) es cycle-stationary con $\mathbb{E}[X_1] < \infty$. Sea U distribuida uniformemente en [0,1) e independiente de (Z^0,S^0) y sea \mathbb{P}^* la medida de probabilidad en (Ω,\mathbb{P}) definida por

$$d\mathbb{P}^* = \frac{X_1}{\mathbb{E}\left[X_1\right]} d\mathbb{P}$$

. Sea (Z^*, S^*) con distribución $\mathbb{P}^*\left(\theta_{UX_1}\left(Z^0, S^0\right) \in \cdot\right)$. Entonces (Z^*, S^*) es estacionario,

$$\mathbb{E}\left[f\left(Z^{*},S^{*}\right)\right] = \mathbb{E}\left[\int_{0}^{X_{1}} f\left(\theta_{s}\left(Z^{0},S^{0}\right)\right) ds\right] / \mathbb{E}\left[X_{1}\right]$$

 $f \in \mathcal{H} \otimes \mathcal{L}^+$, and S_0^* es continuo con función distribución G_{∞} definida por

$$G_{\infty}\left(x\right):=\frac{\mathbb{E}\left[X_{1}\right]\wedge x}{\mathbb{E}\left[X_{1}\right]}$$

para $x \ge 0$ y densidad $\mathbb{P}[X_1 > x] / \mathbb{E}[X_1]$, con $x \ge 0$.

Teorema 1.6. Sea Z un Proceso Estocástico un lado shift-medible one-sided shift-measurable stochastic process, (PEOSSM), y S_0 y S_1 tiempos aleatorios tales que $0 \le S_0 < S_1$ y

$$\theta_{S_1} Z = \theta_{S_0} Z \ en \ distribuci\'on. \tag{3}$$

Entonces el espacio de probabilidad subyacente $(\Omega, \mathcal{F}, \mathbb{P})$ puede extenderse para soportar una sucesión de tiempos aleatorios S tales que

$$\theta_{S_n}(Z,S) = (Z^0, S^0), n \ge 0, \text{ en distribución},$$
 (4)

$$(Z, S_0, S_1)$$
 depende de $(X_2, X_3, ...)$ solamente a traves de $\theta_{S_1} Z$. (5)

2 Procesos Regenerativos

2.1 Procesos Regenerativos Sigman, Thorisson y Wolff [12]

Definición 2.1 (Definición Clásica). Un proceso estocástico $X = \{X(t) : t \ge 0\}$ es llamado regenerativo is existe una variable aleatoria $R_1 > 0$ tal que

- i) $\{X(t+R_1): t \geq 0\}$ es independiente de $\{\{X(t): t < R_1\},\}$
- ii) $\{X(t+R_1): t \geq 0\}$ es estocásticamente equivalente a $\{X(t): t > 0\}$

Llamamos a R_1 tiempo de regeneración, y decimos que X se regenera en este punto.

 $\{X(t+R_1)\}$ es regenerativo con tiempo de regeneración R_2 , independiente de R_1 pero con la misma distribución que R_1 . Procediendo de esta manera se obtiene una secuencia de variables aleatorias independientes e idénticamente distribuidas $\{R_n\}$ llamados longitudes de ciclo. Si definimos a $Z_k \equiv R_1 + R_2 + \cdots + R_k$, se tiene un proceso de renovación llamado proceso de renovación encajado para X.

Nota 2.1. La existencia de un primer tiempo de regeneración, R_1 , implica la existencia de una sucesión completa de estos tiempos $R_1, R_2 \ldots$, que satisfacen la propiedad deseada [13].

Nota 2.2. Para la cola GI/GI/1 los usuarios arriban con tiempos t_n y son atendidos con tiempos de servicio S_n , los tiempos de arribo forman un proceso de renovación con tiempos entre arribos independientes e identicamente distribuidos $(i.i.d.)T_n = t_n - t_{n-1}$, además los tiempos de servicio son i.i.d. e independientes de los procesos de arribo. Por estable se entiende que $\mathbb{E}S_n < \mathbb{E}T_n < \infty$.

Definición 2.2. Para x fijo y para cada $t \ge 0$, sea $I_x(t) = 1$ si $X(t) \le x$, $I_x(t) = 0$ en caso contrario, y defínanse los tiempos promedio

$$\overline{X} = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{\infty} X(u) du$$

$$\mathbb{P}(X_{\infty} \le x) = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{\infty} I_{x}(u) du,$$

cuando estos límites existan.

Como consecuencia del teorema de Renovación-Recompensa, se tiene que el primer límite existe y es igual a la constante

$$\overline{X} = \frac{\mathbb{E}\left[\int_0^{R_1} X(t) dt\right]}{\mathbb{E}\left[R_1\right]},$$

suponiendo que ambas esperanzas son finitas.

Nota 2.3. Funciones de procesos regenerativos son regenerativas, es decir, si X(t) es regenerativo y se define el proceso Y(t) por Y(t) = f(X(t)) para alguna función Borel medible $f(\cdot)$. Además Y es regenerativo con los mismos tiempos de renovación que X.

En general, los tiempos de renovación, Z_k de un proceso regenerativo no requieren ser tiempos de paro con respecto a la evolución de X(t).

Nota 2.4. Una función de un proceso de Markov, usualmente no será un proceso de Markov, sin embargo será regenerativo si el proceso de Markov lo es.

Nota 2.5. Un proceso regenerativo con media de la longitud de ciclo finita es llamado positivo recurrente.

- Nota 2.6. a) Si el proceso regenerativo X es positivo recurrente y tiene trayectorias muestrales no negativas, entonces la ecuación anterior es válida.
 - b) Si X es positivo recurrente regenerativo, podemos construir una única versión estacionaria de este proceso, $X_e = \{X_e(t)\}$, donde X_e es un proceso estocástico regenerativo y estrictamente estacionario, con distribución marginal distribuida como X_{∞}

2.2 Procesos Regenerativos Estacionarios - Stidham [14]

Un proceso estocástico a tiempo continuo $\{V(t), t \geq 0\}$ es un proceso regenerativo si existe una sucesión de variables aleatorias independientes e idénticamente distribuidas $\{X_1, X_2, \ldots\}$, sucesión de renovación, tal que para cualquier conjunto de Borel A,

$$\mathbb{P}\left\{V\left(t\right) \in A | X_1 + X_2 + \dots + X_{R(t)} = s, \left\{V\left(\tau\right), \tau < s\right\}\right\} = \mathbb{P}\left\{V\left(t - s\right) \in A | X_1 > t - s\right\},\$$

para todo $0 \le s \le t$, donde $R(t) = \max\{X_1 + X_2 + \dots + X_j \le t\}$ =número de renovaciones (puntos de regeneración) que ocurren en [0,t]. El intervalo $[0,X_1)$ es llamado primer ciclo de regeneración de $\{V(t), t \ge 0\}$, $[X_1, X_1 + X_2)$ el segundo ciclo de regeneración, y así sucesivamente.

Sea $X = X_1$ y sea F la función de distribución de X

Definición 2.3. Se define el proceso estacionario, $\{V^*(t), t \geq 0\}$, para $\{V(t), t \geq 0\}$ por

$$\mathbb{P}\left\{V\left(t\right)\in A\right\} = \frac{1}{\mathbb{E}\left[X\right]} \int_{0}^{\infty} \mathbb{P}\left\{V\left(t+x\right)\in A | X>x\right\} \left(1-F\left(x\right)\right) dx,$$

para todo $t \ge 0$ y todo conjunto de Borel A.

Definición 2.4. Una distribución se dice que es aritmética si todos sus puntos de incremento son múltiplos de la forma $0, \lambda, 2\lambda, \ldots$ para alguna $\lambda > 0$ entera.

Definición 2.5. Una modificación medible de un proceso $\{V(t), t \geq 0\}$, es una versión de este, $\{V(t, w)\}$ conjuntamente medible para $t \geq 0$ y para $w \in S$, S espacio de estados para $\{V(t), t \geq 0\}$.

Teorema 2.1. Sea $\{V(t), t \geq\}$ un proceso regenerativo no negativo con modificación medible. Sea $\mathbb{E}[X] < \infty$. Entonces el proceso estacionario dado por la ecuación anterior está bien definido y tiene función de distribución independiente de t, además

i)

$$\mathbb{E}\left[V^{*}\left(0\right)\right] = \frac{\mathbb{E}\left[\int_{0}^{X} V\left(s\right) ds\right]}{\mathbb{E}\left[X\right]}$$

ii) Si $\mathbb{E}\left[V^{*}\left(0\right)\right] < \infty$, equivalentemente, si $\mathbb{E}\left[\int_{0}^{X} V\left(s\right) ds\right] < \infty$, entonces

$$\frac{\int_{0}^{t}V\left(s\right)ds}{t}\rightarrow\frac{\mathbb{E}\left[\int_{0}^{X}V\left(s\right)ds\right]}{\mathbb{E}\left[X\right]}$$

con probabilidad 1 y en media, cuando $t \to \infty$.

Corolario 2.1. Sea $\{V(t), t \geq 0\}$ un proceso regenerativo no negativo, con modificación medible. Si $\mathbb{E} < \infty$, F es no-aritmética, y para todo $x \geq 0$, $P\{V(t) \leq x, C > x\}$ es de variación acotada como función de t en cada intervalo finito $[0, \tau]$, entonces V(t) converge en distribución cuando $t \to \infty$ y

$$\mathbb{E}V = \frac{\mathbb{E}\int_{0}^{X} V(s) \, ds}{\mathbb{E}X}$$

Donde V tiene la distribución límite de V(t) cuando $t \to \infty$.

Para el caso discreto se tienen resultados similares.

3 Procesos de Renovación

Definición 3.1. Sean $0 \le T_1 \le T_2 \le \dots$ son tiempos aleatorios infinitos en los cuales ocurren ciertos eventos. El número de tiempos T_n en el intervalo [0,t) es

$$N(t) = \sum_{n=1}^{\infty} \mathbb{1}(T_n \le t), \qquad (6)$$

para $t \geq 0$.

Si se consideran los puntos T_n como elementos de \mathbb{R}_+ , y N(t) es el número de puntos en \mathbb{R} . El proceso denotado por $\{N(t): t \geq 0\}$, denotado por N(t), es un proceso puntual en \mathbb{R}_+ . Los T_n son los tiempos de ocurrencia, el proceso puntual N(t) es simple si su número de ocurrencias son distintas: $0 < T_1 < T_2 < \dots$ casi seguramente.

Definición 3.2. Un proceso puntual N(t) es un proceso de renovación si los tiempos de interocurrencia $\xi_n = T_n - T_{n-1}$, para $n \geq 1$, son independientes e identicamente distribuidos con distribución F, donde F(0) = 0 y $T_0 = 0$. Los T_n son llamados tiempos de renovación, referente a la independencia o renovación de la información estocástica en estos tiempos. Los ξ_n son los tiempos de inter-renovación, y N(t) es el número de renovaciones en el intervalo [0,t)

Nota 3.1. Para definir un proceso de renovación para cualquier contexto, solamente hay que especificar una distribución F, con F(0) = 0, para los tiempos de inter-renovación. La función F en turno degune las otra variables aleatorias. De manera formal, existe un espacio de probabilidad y una sucesión de variables aleatorias ξ_1, ξ_2, \ldots definidas en este con distribución F. Entonces las otras cantidades son $T_n = \sum_{k=1}^n \xi_k$ y $N(t) = \sum_{n=1}^\infty 1 (T_n \le t)$, donde $T_n \to \infty$ casi seguramente por la Ley Fuerte de los Grandes Nmeros.

3.1 Teorema Principal de Renovación

Nota 3.2. Una función $h: \mathbb{R}_+ \to \mathbb{R}$ es Directamente Riemann Integrable en los siguientes casos:

- a) $h(t) \ge 0$ es decreciente y Riemann Integrable.
- b) h es continua excepto posiblemente en un conjunto de Lebesgue de medida 0, $y | h(t) | \le b(t)$, donde b es DRI.

Teorema 3.1 (Teorema Principal de Renovación). $Si\ F$ es no aritmética y h(t) es Directamente Riemann Integrable (DRI), entonces

$$\lim_{t\to\infty} U \star h = \frac{1}{\mu} \int_{\mathbb{R}_+} h(s) \, ds.$$

Proposición 3.1. Cualquier función H(t) acotada en intervalos finitos y que es 0 para t < 0 puede expresarse como

$$H(t) = U \star h(t)$$
, donde $h(t) = H(t) - F \star H(t)$

Definición 3.3. Un proceso estocástico X(t) es crudamente regenerativo en un tiempo aleatorio positivo T si

$$\mathbb{E}\left[X\left(T+t\right)|T\right] = \mathbb{E}\left[X\left(t\right)\right], \ para \ t \geq 0,$$

y con las esperanzas anteriores finitas.

Proposición 3.2. Supóngase que X(t) es un proceso crudamente regenerativo en T, que tiene distribución F. Si $\mathbb{E}[X(t)]$ es acotado en intervalos finitos, entonces

$$\mathbb{E}\left[X\left(t\right)\right] = U \star h\left(t\right), \ donde \ h\left(t\right) = \mathbb{E}\left[X\left(t\right) \mathbb{1}\left(T > t\right)\right].$$

Teorema 3.2 (Regeneración Cruda). Supóngase que X(t) es un proceso con valores positivo crudamente regenerativo en T, y defínase $M = \sup\{|X(t)| : t \leq T\}$. Si T es no aritmético y M y MT tienen media finita, entonces

$$\lim_{t\to\infty}\mathbb{E}\left[X\left(t\right)\right] = \frac{1}{\mu}\int_{\mathbb{R}_{+}}h\left(s\right)ds,$$

donde $h(t) = \mathbb{E}[X(t) \mathbb{1}(T > t)].$

3.2 Propiedades de los Procesos de Renovación

Los tiempos T_{n} están relacionados con los conteos de $N\left(t\right)$ por

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$T_{N(t)} \le t < T_{N(t)+1},$$

además $N(T_n) = n$, y

$$N(t) = \max\{n : T_n \le t\} = \min\{n : T_{n+1} > t\}$$

Por propiedades de la convolución se sabe que

$$P\left\{T_n \le t\right\} = F^{n\star}\left(t\right)$$

que es la n-ésima convolución de F. Entonces

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$P\{N(t) \le n\} = 1 - F^{(n+1)\star}(t)$$

Además usando el hecho de que $\mathbb{E}\left[N\left(t\right)\right]=\sum_{n=1}^{\infty}P\left\{N\left(t\right)\geq n\right\}$ se tiene que

$$\mathbb{E}\left[N\left(t\right)\right] = \sum_{n=1}^{\infty} F^{n\star}\left(t\right)$$

Proposición 3.3. Para cada $t \geq 0$, la función generadora de momentos $\mathbb{E}\left[e^{\alpha N(t)}\right]$ existe para alguna α en una vecindad del 0, y de aquí que $\mathbb{E}\left[N\left(t\right)^{m}\right] < \infty$, para $m \geq 1$.

Nota 3.3. Si el primer tiempo de renovación ξ_1 no tiene la misma distribución que el resto de las ξ_n , para $n \geq 2$, a N(t) se le llama Proceso de Renovación retardado, donde si ξ tiene distribución G, entonces el tiempo T_n de la n-ésima renovación tiene distribución $G \star F^{(n-1)\star}(t)$

Teorema 3.3. Para una constante $\mu \leq \infty$ (o variable aleatoria), las siguientes expresiones son equivalentes:

$$\lim_{n \to \infty} n^{-1} T_n = \mu, c.s. \tag{7}$$

$$\lim_{t \to \infty} t^{-1} N(t) = 1/\mu, \ c.s. \tag{8}$$

Es decir, T_n satisface la Ley Fuerte de los Grandes Números sí y sólo sí N/t) la cumple.

Corolario 3.1 (Ley Fuerte de los Grandes Números para Procesos de Renovación). Si N(t) es un proceso de renovación cuyos tiempos de inter-renovación tienen media $\mu \leq \infty$, entonces

$$t^{-1}N(t) \to 1/\mu$$
, c.s. cuando $t \to \infty$. (9)

Considerar el proceso estocástico de valores reales $\{Z(t):t\geq 0\}$ en el mismo espacio de probabilidad que N(t)

Definición 3.4. Para el proceso $\{Z(t): t \geq 0\}$ se define la fluctuación máxima de Z(t) en el intervalo $(T_{n-1}, T_n]$:

$$M_{n} = \sup_{T_{n-1} < t \le T_{n}} |Z\left(t\right) - Z\left(T_{n-1}\right)|$$

Teorema 3.4. Supóngase que $n^{-1}T_n \to \mu$ c.s. cuando $n \to \infty$, donde $\mu \le \infty$ es una constante o variable aleatoria. Sea a una constante o variable aleatoria que puede ser infinita cuando μ es finita, y considere las expresiones límite:

$$\lim_{n \to \infty} n^{-1} Z(T_n) = a, c.s. \tag{10}$$

$$\lim_{t \to \infty} t^{-1} Z(t) = a/\mu, \ c.s. \tag{11}$$

La segunda expresión implica la primera. Conversamente, la primera implica la segunda si el proceso Z(t) es creciente, o si $\lim_{n\to\infty} n^{-1}M_n = 0$ c.s.

Corolario 3.2. Si N(t) es un proceso de renovación, $y(Z(T_n) - Z(T_{n-1}), M_n)$, para $n \ge 1$, son variables aleatorias independientes e idénticamente distribuidas con media finita, entonces,

$$\lim_{t\to\infty} t^{-1}Z(t) \to \frac{\mathbb{E}\left[Z(T_1) - Z(T_0)\right]}{\mathbb{E}\left[T_1\right]}, \ c.s. \ cuando \ t\to\infty.$$
 (12)

Los tiempos T_n están relacionados con los conteos de $N\left(t\right)$ por

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$T_{N(t)} \le t < T_{N(t)+1},$$

además $N(T_n) = n, y$

$$N(t) = \max\{n : T_n \le t\} = \min\{n : T_{n+1} > t\}$$

Por propiedades de la convolución se sabe que

$$P\left\{T_n \le t\right\} = F^{n\star}\left(t\right)$$

que es la n-ésima convolución de F. Entonces

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$P\{N(t) \le n\} = 1 - F^{(n+1)\star}(t)$$

Además usando el hecho de que $\mathbb{E}\left[N\left(t\right)\right]=\sum_{n=1}^{\infty}P\left\{N\left(t\right)\geq n\right\}$ se tiene que

$$\mathbb{E}\left[N\left(t\right)\right] = \sum_{n=1}^{\infty} F^{n\star}\left(t\right)$$

Proposición 3.4. Para cada $t \geq 0$, la función generadora de momentos $\mathbb{E}\left[e^{\alpha N(t)}\right]$ existe para alguna α en una vecindad del 0, y de aquí que $\mathbb{E}\left[N\left(t\right)^{m}\right] < \infty$, para $m \geq 1$.

Nota 3.4. Si el primer tiempo de renovación ξ_1 no tiene la misma distribución que el resto de las ξ_n , para $n \geq 2$, a N(t) se le llama Proceso de Renovación retardado, donde si ξ tiene distribución G, entonces el tiempo T_n de la n-ésima renovación tiene distribución $G \star F^{(n-1)\star}(t)$

Teorema 3.5. Para una constante $\mu \leq \infty$ (o variable aleatoria), las siguientes expresiones son equivalentes:

$$\lim_{n \to \infty} n^{-1} T_n = \mu, c.s. \tag{13}$$

$$\lim_{t \to \infty} t^{-1} N(t) = 1/\mu, \ c.s. \tag{14}$$

Es decir, T_n satisface la Ley Fuerte de los Grandes Números sí y sólo sí N/t) la cumple.

Corolario 3.3 (Ley Fuerte de los Grandes Números para Procesos de Renovación). Si N(t) es un proceso de renovación cuyos tiempos de inter-renovación tienen media $\mu \leq \infty$, entonces

$$t^{-1}N(t) \to 1/\mu$$
, c.s. cuando $t \to \infty$. (15)

Considerar el proceso estocástico de valores reales $\{Z(t):t\geq 0\}$ en el mismo espacio de probabilidad que N(t)

Definición 3.5. Para el proceso $\{Z(t): t \geq 0\}$ se define la fluctuación máxima de Z(t) en el intervalo $(T_{n-1}, T_n]$:

$$M_{n} = \sup_{T_{n-1} < t \le T_{n}} |Z\left(t\right) - Z\left(T_{n-1}\right)|$$

Teorema 3.6. Supóngase que $n^{-1}T_n \to \mu$ c.s. cuando $n \to \infty$, donde $\mu \le \infty$ es una constante o variable aleatoria. Sea a una constante o variable aleatoria que puede ser infinita cuando μ es finita, y considere las expresiones límite:

$$\lim_{n\to\infty} n^{-1} Z(T_n) = a, c.s.$$
 (16)

$$\lim_{t \to \infty} t^{-1} Z(t) = a/\mu, \ c.s. \tag{17}$$

La segunda expresión implica la primera. Conversamente, la primera implica la segunda si el proceso Z(t) es creciente, o si $\lim_{n\to\infty} n^{-1}M_n = 0$ c.s.

Corolario 3.4. Si N(t) es un proceso de renovación, $y(Z(T_n) - Z(T_{n-1}), M_n)$, para $n \ge 1$, son variables aleatorias independientes e idénticamente distribuidas con media finita, entonces,

$$\lim_{t\to\infty} t^{-1}Z(t) \to \frac{\mathbb{E}\left[Z(T_1) - Z(T_0)\right]}{\mathbb{E}\left[T_1\right]}, \ c.s. \ cuando \ t\to\infty.$$
 (18)

Los tiempos T_n están relacionados con los conteos de $N\left(t\right)$ por

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$T_{N(t)} \le t < T_{N(t)+1},$$

además $N(T_n) = n, y$

$$N(t) = \max\{n : T_n \le t\} = \min\{n : T_{n+1} > t\}$$

Por propiedades de la convolución se sabe que

$$P\left\{T_n \le t\right\} = F^{n\star}\left(t\right)$$

que es la n-ésima convolución de F. Entonces

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$P\{N(t) \le n\} = 1 - F^{(n+1)\star}(t)$$

Además usando el hecho de que $\mathbb{E}\left[N\left(t\right)\right]=\sum_{n=1}^{\infty}P\left\{N\left(t\right)\geq n\right\}$ se tiene que

$$\mathbb{E}\left[N\left(t\right)\right] = \sum_{n=1}^{\infty} F^{n\star}\left(t\right)$$

Proposición 3.5. Para cada $t \geq 0$, la función generadora de momentos $\mathbb{E}\left[e^{\alpha N(t)}\right]$ existe para alguna α en una vecindad del 0, y de aquí que $\mathbb{E}\left[N\left(t\right)^{m}\right] < \infty$, para $m \geq 1$.

Nota 3.5. Si el primer tiempo de renovación ξ_1 no tiene la misma distribución que el resto de las ξ_n , para $n \geq 2$, a N(t) se le llama Proceso de Renovación retardado, donde si ξ tiene distribución G, entonces el tiempo T_n de la n-ésima renovación tiene distribución $G \star F^{(n-1)\star}(t)$

Teorema 3.7. Para una constante $\mu \leq \infty$ (o variable aleatoria), las siguientes expresiones son equivalentes:

$$\lim_{n \to \infty} n^{-1} T_n = \mu, c.s. \tag{19}$$

$$\lim_{t \to \infty} t^{-1} N(t) = 1/\mu, \ c.s. \tag{20}$$

Es decir, T_n satisface la Ley Fuerte de los Grandes Números sí y sólo sí N/t) la cumple.

Corolario 3.5 (Ley Fuerte de los Grandes Números para Procesos de Renovación). Si N(t) es un proceso de renovación cuyos tiempos de inter-renovación tienen media $\mu \leq \infty$, entonces

$$t^{-1}N\left(t\right) \to 1/\mu, \ c.s. \ cuando \ t \to \infty.$$
 (21)

Considerar el proceso estocástico de valores reales $\{Z(t):t\geq 0\}$ en el mismo espacio de probabilidad que N(t)

Definición 3.6. Para el proceso $\{Z(t): t \geq 0\}$ se define la fluctuación máxima de Z(t) en el intervalo $(T_{n-1}, T_n]$:

$$M_{n} = \sup_{T_{n-1} < t \le T_{n}} |Z(t) - Z(T_{n-1})|$$

Teorema 3.8. Supóngase que $n^{-1}T_n \to \mu$ c.s. cuando $n \to \infty$, donde $\mu \le \infty$ es una constante o variable aleatoria. Sea a una constante o variable aleatoria que puede ser infinita cuando μ es finita, y considere las expresiones límite:

$$\lim_{n\to\infty} n^{-1} Z\left(T_n\right) = a, \ c.s. \tag{22}$$

$$\lim_{t \to \infty} t^{-1} Z(t) = a/\mu, \ c.s. \tag{23}$$

La segunda expresión implica la primera. Conversamente, la primera implica la segunda si el proceso Z(t) es creciente, o si $\lim_{n\to\infty} n^{-1}M_n = 0$ c.s.

Corolario 3.6. Si N(t) es un proceso de renovación, $y(Z(T_n) - Z(T_{n-1}), M_n)$, para $n \ge 1$, son variables aleatorias independientes e idénticamente distribuidas con media finita, entonces,

$$\lim_{t\to\infty} t^{-1}Z(t) \to \frac{\mathbb{E}\left[Z(T_1) - Z(T_0)\right]}{\mathbb{E}\left[T_1\right]}, \ c.s. \ cuando \ t\to\infty.$$
 (24)

Los tiempos T_n están relacionados con los conteos de $N\left(t\right)$ por

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$T_{N(t)} \le t < T_{N(t)+1},$$

además $N(T_n) = n$, y

$$N(t) = \max\{n : T_n \le t\} = \min\{n : T_{n+1} > t\}$$

Por propiedades de la convolución se sabe que

$$P\left\{T_n \le t\right\} = F^{n\star}\left(t\right)$$

que es la n-ésima convolución de F. Entonces

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$P\{N(t) \le n\} = 1 - F^{(n+1)\star}(t)$$

Además usando el hecho de que $\mathbb{E}\left[N\left(t\right)\right]=\sum_{n=1}^{\infty}P\left\{N\left(t\right)\geq n\right\}$ se tiene que

$$\mathbb{E}\left[N\left(t\right)\right] = \sum_{n=1}^{\infty} F^{n\star}\left(t\right)$$

Proposición 3.6. Para cada $t \geq 0$, la función generadora de momentos $\mathbb{E}\left[e^{\alpha N(t)}\right]$ existe para alguna α en una vecindad del 0, y de aquí que $\mathbb{E}\left[N\left(t\right)^{m}\right] < \infty$, para $m \geq 1$.

Nota 3.6. Si el primer tiempo de renovación ξ_1 no tiene la misma distribución que el resto de las ξ_n , para $n \geq 2$, a N(t) se le llama Proceso de Renovación retardado, donde si ξ tiene distribución G, entonces el tiempo T_n de la n-ésima renovación tiene distribución $G \star F^{(n-1)\star}(t)$

Teorema 3.9. Para una constante $\mu \leq \infty$ (o variable aleatoria), las siguientes expresiones son equivalentes:

$$lim_{n\to\infty}n^{-1}T_n = \mu, c.s.$$
 (25)

$$\lim_{t \to \infty} t^{-1} N(t) = 1/\mu, \ c.s. \tag{26}$$

Es decir, T_n satisface la Ley Fuerte de los Grandes Números sí y sólo sí N/t) la cumple.

Corolario 3.7 (Ley Fuerte de los Grandes Números para Procesos de Renovación). Si N(t) es un proceso de renovación cuyos tiempos de inter-renovación tienen media $\mu \leq \infty$, entonces

$$t^{-1}N(t) \to 1/\mu, \ c.s. \ cuando \ t \to \infty.$$
 (27)

Considerar el proceso estocástico de valores reales $\{Z\left(t\right):t\geq0\}$ en el mismo espacio de probabilidad que $N\left(t\right)$

Definición 3.7. Para el proceso $\{Z(t): t \geq 0\}$ se define la fluctuación máxima de Z(t) en el intervalo $(T_{n-1}, T_n]$:

$$M_{n} = \sup_{T_{n-1} < t \le T_{n}} |Z\left(t\right) - Z\left(T_{n-1}\right)|$$

Teorema 3.10. Supóngase que $n^{-1}T_n \to \mu$ c.s. cuando $n \to \infty$, donde $\mu \le \infty$ es una constante o variable aleatoria. Sea a una constante o variable aleatoria que puede ser infinita cuando μ es finita, y considere las expresiones límite:

$$\lim_{n \to \infty} n^{-1} Z(T_n) = a, c.s.$$
 (28)

$$\lim_{t \to \infty} t^{-1} Z(t) = a/\mu, \ c.s. \tag{29}$$

La segunda expresión implica la primera. Conversamente, la primera implica la segunda si el proceso Z(t) es creciente, o si $\lim_{n\to\infty} n^{-1}M_n = 0$ c.s.

Corolario 3.8. Si N(t) es un proceso de renovación, $y(Z(T_n) - Z(T_{n-1}), M_n)$, para $n \ge 1$, son variables aleatorias independientes e idénticamente distribuidas con media finita, entonces,

$$\lim_{t\to\infty} t^{-1}Z(t) \to \frac{\mathbb{E}\left[Z(T_1) - Z(T_0)\right]}{\mathbb{E}\left[T_1\right]}, \ c.s. \ cuando \ t\to\infty.$$
 (30)

Los tiempos T_{n} están relacionados con los conteos de $N\left(t\right)$ por

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$T_{N(t)} \le t < T_{N(t)+1},$$

además $N(T_n) = n, y$

$$N\left(t\right)=\max\left\{ n:T_{n}\leq t\right\} =\min\left\{ n:T_{n+1}>t\right\}$$

Por propiedades de la convolución se sabe que

$$P\left\{T_n \le t\right\} = F^{n\star}\left(t\right)$$

que es la n-ésima convolución de F. Entonces

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$P\{N(t) \le n\} = 1 - F^{(n+1)\star}(t)$$

Además usando el hecho de que $\mathbb{E}\left[N\left(t\right)\right]=\sum_{n=1}^{\infty}P\left\{ N\left(t\right)\geq n\right\}$ se tiene que

$$\mathbb{E}\left[N\left(t\right)\right] = \sum_{n=1}^{\infty} F^{n\star}\left(t\right)$$

Proposición 3.7. Para cada $t \geq 0$, la función generadora de momentos $\mathbb{E}\left[e^{\alpha N(t)}\right]$ existe para alguna α en una vecindad del 0, y de aquí que $\mathbb{E}\left[N\left(t\right)^{m}\right] < \infty$, para $m \geq 1$.

Nota 3.7. Si el primer tiempo de renovación ξ_1 no tiene la misma distribución que el resto de las ξ_n , para $n \geq 2$, a N(t) se le llama Proceso de Renovación retardado, donde si ξ tiene distribución G, entonces el tiempo T_n de la n-ésima renovación tiene distribución $G \star F^{(n-1)\star}(t)$

Teorema 3.11. Para una constante $\mu \leq \infty$ (o variable aleatoria), las siguientes expresiones son equivalentes:

$$\lim_{n\to\infty} n^{-1} T_n = \mu, \ c.s. \tag{31}$$

$$lim_{t\to\infty}t^{-1}N\left(t\right) = 1/\mu, \ c.s. \tag{32}$$

Es decir, T_n satisface la Ley Fuerte de los Grandes Números sí y sólo sí N/t) la cumple.

Corolario 3.9 (Ley Fuerte de los Grandes Números para Procesos de Renovación). Si N(t) es un proceso de renovación cuyos tiempos de inter-renovación tienen media $\mu \leq \infty$, entonces

$$t^{-1}N\left(t\right) \to 1/\mu, \ c.s. \ cuando \ t \to \infty.$$
 (33)

Considerar el proceso estocástico de valores reales $\{Z(t):t\geq 0\}$ en el mismo espacio de probabilidad que N(t)

Definición 3.8. Para el proceso $\{Z(t): t \geq 0\}$ se define la fluctuación máxima de Z(t) en el intervalo $(T_{n-1}, T_n]$:

$$M_{n} = \sup_{T_{n-1} < t \le T_{n}} |Z\left(t\right) - Z\left(T_{n-1}\right)|$$

Teorema 3.12. Supóngase que $n^{-1}T_n \to \mu$ c.s. cuando $n \to \infty$, donde $\mu \le \infty$ es una constante o variable aleatoria. Sea a una constante o variable aleatoria que puede ser infinita cuando μ es finita, y considere las expresiones límite:

$$\lim_{n \to \infty} n^{-1} Z(T_n) = a, c.s. \tag{34}$$

$$\lim_{t \to \infty} t^{-1} Z(t) = a/\mu, \ c.s. \tag{35}$$

La segunda expresión implica la primera. Conversamente, la primera implica la segunda si el proceso Z(t) es creciente, o si $\lim_{n\to\infty} n^{-1}M_n = 0$ c.s.

Corolario 3.10. Si N(t) es un proceso de renovación, $y(Z(T_n) - Z(T_{n-1}), M_n)$, para $n \ge 1$, son variables aleatorias independientes e idénticamente distribuidas con media finita, entonces,

$$\lim_{t\to\infty} t^{-1}Z(t) \to \frac{\mathbb{E}\left[Z(T_1) - Z(T_0)\right]}{\mathbb{E}\left[T_1\right]}, \ c.s. \ cuando \ t\to\infty.$$
 (36)

3.3 Función de Renovación

Definición 3.9. Sea h(t) función de valores reales en \mathbb{R} acotada en intervalos finitos e igual a cero para t < 0 La ecuación de renovación para h(t) y la distribución F es

$$H(t) = h(t) + \int_{[0,t]} H(t-s) dF(s), t \ge 0,$$
 (37)

donde H(t) es una función de valores reales. Esto es $H=h+F\star H$. Decimos que H(t) es solución de esta ecuación si satisface la ecuación, y es acotada en intervalos finitos e iguales a cero para t<0.

Proposición 3.8. La función $U \star h(t)$ es la única solución de la ecuación de renovación (47).

Teorema 3.13 (Teorema Renovación Elemental).

$$t^{-1}U(t) \to 1/\mu$$
, cuando $t \to \infty$.

Supóngase que N(t) es un proceso de renovación con distribución F con media finita μ .

Definición 3.10. La función de renovación asociada con la distribución F, del proceso N(t), es

$$U\left(t\right) = \sum_{n=1}^{\infty} F^{n\star}\left(t\right), \ t \ge 0,$$

 $donde\ F^{0\star}\left(t\right)=1\!\!1\left(t\geq0\right).$

Proposición 3.9. Supóngase que la distribución de inter-renovación F tiene densidad f. Entonces U(t) también tiene densidad, para t > 0, y es $U'(t) = \sum_{n=0}^{\infty} f^{n\star}(t)$. Además

$$\mathbb{P}\left\{ N\left(t\right)>N\left(t-\right)\right\} =0,\ t\geq0.$$

Definición 3.11. La Transformada de Laplace-Stieljes de F está dada por

$$\hat{F}\left(\alpha\right) = \int_{\mathbb{R}_{+}} e^{-\alpha t} dF\left(t\right), \ \alpha \geq 0.$$

Entonces

$$\hat{U}(\alpha) = \sum_{n=0}^{\infty} \hat{F}^{n\star}(\alpha) = \sum_{n=0}^{\infty} \hat{F}(\alpha)^n = \frac{1}{1 - \hat{F}(\alpha)}.$$

Proposición 3.10. La Transformada de Laplace $\hat{U}(\alpha)$ y $\hat{F}(\alpha)$ determina una a la otra de manera única por la relación $\hat{U}(\alpha) = \frac{1}{1-\hat{F}(\alpha)}$.

Nota 3.8. Un proceso de renovación N(t) cuyos tiempos de inter-renovación tienen media finita, es un proceso Poisson con tasa λ si y sólo sí $\mathbb{E}[U(t)] = \lambda t$, para $t \geq 0$.

Teorema 3.14. Sea N(t) un proceso puntual simple con puntos de localización T_n tal que $\eta(t) = \mathbb{E}[N(t)]$ es finita para cada t. Entonces para cualquier función $f: \mathbb{R}_+ \to \mathbb{R}$,

$$\mathbb{E}\left[\sum_{n=1}^{N()} f\left(T_{n}\right)\right] = \int_{\left(0,t\right]} f\left(s\right) d\eta\left(s\right), \ t \geq 0,$$

suponiendo que la integral exista. Además si $X_1, X_2, ...$ son variables aleatorias definidas en el mismo espacio de probabilidad que el proceso N(t) tal que $\mathbb{E}[X_n|T_n=s]=f(s)$, independiente de n. Entonces

$$\mathbb{E}\left[\sum_{n=1}^{N(t)} X_n\right] = \int_{(0,t]} f(s) d\eta(s), t \ge 0,$$

suponiendo que la integral exista.

Corolario 3.11 (Identidad de Wald para Renovaciones). Para el proceso de renovación N(t),

$$\mathbb{E}\left[T_{N(t)+1}\right] = \mu \mathbb{E}\left[N\left(t\right) + 1\right], \ t \ge 0,$$

Definición 3.12. Sean $0 \le T_1 \le T_2 \le \dots$ son tiempos aleatorios infinitos en los cuales ocurren ciertos eventos. El número de tiempos T_n en el intervalo [0,t) es

$$N(t) = \sum_{n=1}^{\infty} \mathbb{1}(T_n \le t), \qquad (38)$$

para $t \geq 0$.

Si se consideran los puntos T_n como elementos de \mathbb{R}_+ , y N(t) es el número de puntos en \mathbb{R} . El proceso denotado por $\{N(t): t \geq 0\}$, denotado por N(t), es un proceso puntual en \mathbb{R}_+ . Los T_n son los tiempos de ocurrencia, el proceso puntual N(t) es simple si su número de ocurrencias son distintas: $0 < T_1 < T_2 < \dots$ casi seguramente.

Definición 3.13. Un proceso puntual N(t) es un proceso de renovación si los tiempos de interocurrencia $\xi_n = T_n - T_{n-1}$, para $n \geq 1$, son independientes e identicamente distribuidos con distribución F, donde F(0) = 0 y $T_0 = 0$. Los T_n son llamados tiempos de renovación, referente a la independencia o renovación de la información estocástica en estos tiempos. Los ξ_n son los tiempos de inter-renovación, y N(t) es el número de renovaciones en el intervalo [0,t)

Nota 3.9. Para definir un proceso de renovación para cualquier contexto, solamente hay que especificar una distribución F, con F(0) = 0, para los tiempos de inter-renovación. La función F en turno degune las otra variables aleatorias. De manera formal, existe un espacio de probabilidad y una sucesión de variables aleatorias ξ_1, ξ_2, \ldots definidas en este con distribución F. Entonces las otras cantidades son $T_n = \sum_{k=1}^n \xi_k \ y \ N(t) = \sum_{n=1}^\infty \mathbb{1} (T_n \leq t)$, donde $T_n \to \infty$ casi seguramente por la Ley Fuerte de los Grandes Nmeros.

4 Renewal and Regenerative Processes: Serfozo[11]

Definición 4.1. Sean $0 \le T_1 \le T_2 \le \dots$ son tiempos aleatorios infinitos en los cuales ocurren ciertos eventos. El número de tiempos T_n en el intervalo [0,t) es

$$N(t) = \sum_{n=1}^{\infty} \mathbb{1}(T_n \le t), \qquad (39)$$

para $t \geq 0$.

Si se consideran los puntos T_n como elementos de \mathbb{R}_+ , y N(t) es el número de puntos en \mathbb{R} . El proceso denotado por $\{N(t): t \geq 0\}$, denotado por N(t), es un proceso puntual en \mathbb{R}_+ . Los T_n son los tiempos de ocurrencia, el proceso puntual N(t) es simple si su número de ocurrencias son distintas: $0 < T_1 < T_2 < \dots$ casi seguramente.

Definición 4.2. Un proceso puntual N(t) es un proceso de renovación si los tiempos de interocurrencia $\xi_n = T_n - T_{n-1}$, para $n \geq 1$, son independientes e identicamente distribuidos con distribución F, donde F(0) = 0 y $T_0 = 0$. Los T_n son llamados tiempos de renovación, referente a la independencia o renovación de la información estocástica en estos tiempos. Los ξ_n son los tiempos de inter-renovación, y N(t) es el número de renovaciones en el intervalo [0,t)

Nota 4.1. Para definir un proceso de renovación para cualquier contexto, solamente hay que especificar una distribución F, con F(0) = 0, para los tiempos de inter-renovación. La función F en turno degune las otra variables aleatorias. De manera formal, existe un espacio de probabilidad y una sucesión de variables aleatorias ξ_1, ξ_2, \ldots definidas en este con distribución F. Entonces las otras cantidades son $T_n = \sum_{k=1}^n \xi_k \ y \ N(t) = \sum_{n=1}^\infty \mathbb{1} (T_n \leq t)$, donde $T_n \to \infty$ casi seguramente por la Ley Fuerte de los Grandes Números.

Los tiempos T_n están relacionados con los conteos de N(t) por

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$T_{N(t)} \le t < T_{N(t)+1},$$

además $N(T_n) = n, y$

$$N(t) = \max\{n : T_n \le t\} = \min\{n : T_{n+1} > t\}$$

Por propiedades de la convolución se sabe que

$$P\left\{T_n < t\right\} = F^{n\star}\left(t\right)$$

que es la n-ésima convolución de F. Entonces

$$\{N(t) \ge n\} = \{T_n \le t\}$$

$$P\{N(t) \le n\} = 1 - F^{(n+1)\star}(t)$$

Además usando el hecho de que $\mathbb{E}\left[N\left(t\right)\right] = \sum_{n=1}^{\infty} P\left\{N\left(t\right) \geq n\right\}$ se tiene que

$$\mathbb{E}\left[N\left(t\right)\right] = \sum_{n=1}^{\infty} F^{n\star}\left(t\right)$$

Proposición 4.1. Para cada $t \geq 0$, la función generadora de momentos $\mathbb{E}\left[e^{\alpha N(t)}\right]$ existe para alguna α en una vecindad del 0, y de aquí que $\mathbb{E}\left[N\left(t\right)^{m}\right] < \infty$, para $m \geq 1$.

Ejemplo 4.1 (Proceso Poisson). Suponga que se tienen tiempos de inter-renovación i.i.d. del proceso de renovación N(t) tienen distribución exponencial $F(t) = q - e^{-\lambda t}$ con tasa λ . Entonces N(t) es un proceso Poisson con tasa λ .

Nota 4.2. Si el primer tiempo de renovación ξ_1 no tiene la misma distribución que el resto de las ξ_n , para $n \geq 2$, a N(t) se le llama Proceso de Renovación retardado, donde si ξ tiene distribución G, entonces el tiempo T_n de la n-ésima renovación tiene distribución $G \star F^{(n-1)\star}(t)$

Teorema 4.1. Para una constante $\mu \leq \infty$ (o variable aleatoria), las siguientes expresiones son equivalentes:

$$\lim_{n \to \infty} n^{-1} T_n = \mu, c.s. \tag{40}$$

$$\lim_{t \to \infty} t^{-1} N(t) = 1/\mu, \ c.s. \tag{41}$$

Es decir, T_n satisface la Ley Fuerte de los Grandes Números sí y sólo sí N/t) la cumple.

Corolario 4.1 (Ley Fuerte de los Grandes Números para Procesos de Renovación). Si N(t) es un proceso de renovación cuyos tiempos de inter-renovación tienen media $\mu \leq \infty$, entonces

$$t^{-1}N\left(t\right) \to 1/\mu, \ c.s. \ cuando \ t \to \infty.$$
 (42)

Considerar el proceso estocástico de valores reales $\{Z(t):t\geq 0\}$ en el mismo espacio de probabilidad que N(t)

Definición 4.3. Para el proceso $\{Z(t): t \geq 0\}$ se define la fluctuación máxima de Z(t) en el intervalo $(T_{n-1}, T_n]$:

$$M_{n} = \sup_{T_{n-1} < t \le T_{n}} |Z\left(t\right) - Z\left(T_{n-1}\right)|$$

Teorema 4.2. Supóngase que $n^{-1}T_n \to \mu$ c.s. cuando $n \to \infty$, donde $\mu \le \infty$ es una constante o variable aleatoria. Sea a una constante o variable aleatoria que puede ser infinita cuando μ es finita, y considere las expresiones límite:

$$\lim_{n \to \infty} n^{-1} Z(T_n) = a, c.s. \tag{43}$$

$$\lim_{t \to \infty} t^{-1} Z(t) = a/\mu, \ c.s. \tag{44}$$

La segunda expresión implica la primera. Conversamente, la primera implica la segunda si el proceso Z(t) es creciente, o si $\lim_{n\to\infty} n^{-1}M_n = 0$ c.s.

Corolario 4.2. Si N(t) es un proceso de renovación, $y(Z(T_n) - Z(T_{n-1}), M_n)$, para $n \ge 1$, son variables aleatorias independientes e idénticamente distribuidas con media finita, entonces,

$$\lim_{t\to\infty} t^{-1}Z(t) \to \frac{\mathbb{E}\left[Z(T_1) - Z(T_0)\right]}{\mathbb{E}\left[T_1\right]}, \ c.s. \ cuando \ t\to\infty.$$
 (45)

Supóngase que N(t) es un proceso de renovación con distribución F con media finita μ .

Definición 4.4. La función de renovación asociada con la distribución F, del proceso N(t), es

$$U\left(t\right) = \sum_{n=1}^{\infty} F^{n\star}\left(t\right), \ t \ge 0,$$

donde $F^{0\star}(t) = 1 (t \ge 0)$.

Proposición 4.2. Supóngase que la distribución de inter-renovación F tiene densidad f. Entonces U(t) también tiene densidad, para t > 0, y es $U'(t) = \sum_{n=0}^{\infty} f^{n\star}(t)$. Además

$$\mathbb{P}\{N(t) > N(t-)\} = 0, t > 0.$$

Definición 4.5. La Transformada de Laplace-Stieljes de F está dada por

$$\hat{F}(\alpha) = \int_{\mathbb{R}_{+}} e^{-\alpha t} dF(t), \ \alpha \ge 0.$$

Entonces

$$\hat{U}(\alpha) = \sum_{n=0}^{\infty} \hat{F}^{n\star}(\alpha) = \sum_{n=0}^{\infty} \hat{F}(\alpha)^n = \frac{1}{1 - \hat{F}(\alpha)}.$$

Proposición 4.3. La Transformada de Laplace $\hat{U}(\alpha)$ y $\hat{F}(\alpha)$ determina una a la otra de manera única por la relación $\hat{U}(\alpha) = \frac{1}{1-\hat{F}(\alpha)}$.

Nota 4.3. Un proceso de renovación N(t) cuyos tiempos de inter-renovación tienen media finita, es un proceso Poisson con tasa λ si y sólo sí $\mathbb{E}[U(t)] = \lambda t$, para $t \geq 0$.

Teorema 4.3. Sea N(t) un proceso puntual simple con puntos de localización T_n tal que $\eta(t) = \mathbb{E}[N(t)]$ es finita para cada t. Entonces para cualquier función $f: \mathbb{R}_+ \to \mathbb{R}$,

$$\mathbb{E}\left[\sum_{n=1}^{N()} f\left(T_{n}\right)\right] = \int_{\left(0,t\right]} f\left(s\right) d\eta\left(s\right), \ t \geq 0,$$

suponiendo que la integral exista. Además si X_1, X_2, \ldots son variables aleatorias definidas en el mismo espacio de probabilidad que el proceso N(t) tal que $\mathbb{E}[X_n|T_n=s]=f(s)$, independiente de n. Entonces

$$\mathbb{E}\left[\sum_{n=1}^{N(t)} X_n\right] = \int_{(0,t]} f(s) \, d\eta(s), \ t \ge 0,$$

suponiendo que la integral exista.

Corolario 4.3 (Identidad de Wald para Renovaciones). Para el proceso de renovación N(t),

$$\mathbb{E}\left[T_{N(t)+1}\right] = \mu \mathbb{E}\left[N\left(t\right) + 1\right], \ t \ge 0,$$

Definición 4.6. Sea h(t) función de valores reales en \mathbb{R} acotada en intervalos finitos e igual a cero para t < 0 La ecuación de renovación para h(t) y la distribución F es

$$H(t) = h(t) + \int_{[0,t]} H(t-s) dF(s), t \ge 0,$$
 (46)

donde H(t) es una función de valores reales. Esto es $H=h+F\star H$. Decimos que H(t) es solución de esta ecuación si satisface la ecuación, y es acotada en intervalos finitos e iguales a cero para t<0.

Proposición 4.4. La función $U \star h(t)$ es la única solución de la ecuación de renovación (47).

Teorema 4.4 (Teorema Renovación Elemental).

$$t^{-1}U(t) \to 1/\mu$$
, cuando $t \to \infty$.

Supóngase que N(t) es un proceso de renovación con distribución F con media finita μ .

Definición 4.7. La función de renovación asociada con la distribución F, del proceso N(t), es

$$U\left(t\right) = \sum_{n=1}^{\infty} F^{n\star}\left(t\right), \ t \ge 0,$$

 $donde\ F^{0\star}\left(t\right)=1\!\!1\left(t\geq0\right).$

Proposición 4.5. Supóngase que la distribución de inter-renovación F tiene densidad f. Entonces U(t) también tiene densidad, para t > 0, y es $U'(t) = \sum_{n=0}^{\infty} f^{n\star}(t)$. Además

$$\mathbb{P}\left\{ N\left(t\right)>N\left(t-\right)\right\} =0,\ t\geq0.$$

Definición 4.8. La Transformada de Laplace-Stieljes de F está dada por

$$\hat{F}(\alpha) = \int_{\mathbb{R}_{+}} e^{-\alpha t} dF(t), \ \alpha \ge 0.$$

Entonces

$$\hat{U}(\alpha) = \sum_{n=0}^{\infty} \hat{F}^{n\star}(\alpha) = \sum_{n=0}^{\infty} \hat{F}(\alpha)^n = \frac{1}{1 - \hat{F}(\alpha)}.$$

Proposición 4.6. La Transformada de Laplace $\hat{U}(\alpha)$ y $\hat{F}(\alpha)$ determina una a la otra de manera única por la relación $\hat{U}(\alpha) = \frac{1}{1-\hat{F}(\alpha)}$.

Nota 4.4. Un proceso de renovación N(t) cuyos tiempos de inter-renovación tienen media finita, es un proceso Poisson con tasa λ si y sólo sí $\mathbb{E}[U(t)] = \lambda t$, para $t \geq 0$.

Teorema 4.5. Sea N(t) un proceso puntual simple con puntos de localización T_n tal que $\eta(t) = \mathbb{E}[N(t)]$ es finita para cada t. Entonces para cualquier función $f: \mathbb{R}_+ \to \mathbb{R}$,

$$\mathbb{E}\left[\sum_{n=1}^{N()} f\left(T_{n}\right)\right] = \int_{\left(0,t\right]} f\left(s\right) d\eta\left(s\right), \ t \geq 0,$$

suponiendo que la integral exista. Además si $X_1, X_2, ...$ son variables aleatorias definidas en el mismo espacio de probabilidad que el proceso N(t) tal que $\mathbb{E}[X_n|T_n=s]=f(s)$, independiente de n. Entonces

$$\mathbb{E}\left[\sum_{n=1}^{N(t)} X_n\right] = \int_{(0,t]} f(s) d\eta(s), t \ge 0,$$

suponiendo que la integral exista.

Corolario 4.4 (Identidad de Wald para Renovaciones). Para el proceso de renovación N(t),

$$\mathbb{E}\left[T_{N(t)+1}\right] = \mu \mathbb{E}\left[N\left(t\right) + 1\right], \ t \ge 0,$$

Definición 4.9. Sea h(t) función de valores reales en \mathbb{R} acotada en intervalos finitos e igual a cero para t < 0 La ecuación de renovación para h(t) y la distribución F es

$$H(t) = h(t) + \int_{[0,t]} H(t-s) dF(s), t \ge 0,$$
 (47)

donde H(t) es una función de valores reales. Esto es $H=h+F\star H$. Decimos que H(t) es solución de esta ecuación si satisface la ecuación, y es acotada en intervalos finitos e iguales a cero para t<0.

Proposición 4.7. La función $U \star h(t)$ es la única solución de la ecuación de renovación (47).

Teorema 4.6 (Teorema Renovación Elemental).

$$t^{-1}U(t) \to 1/\mu$$
, cuando $t \to \infty$.

Nota 4.5. Una función $h: \mathbb{R}_+ \to \mathbb{R}$ es Directamente Riemann Integrable en los siguientes casos:

- a) $h(t) \ge 0$ es decreciente y Riemann Integrable.
- b) h es continua excepto posiblemente en un conjunto de Lebesgue de medida 0, $y | h(t) | \le b(t)$, donde b es DRI.

Teorema 4.7 (Teorema Principal de Renovación). Si F es no aritmética y h (t) es Directamente Riemann Integrable (DRI), entonces

$$\lim_{t\to\infty} U \star h = \frac{1}{\mu} \int_{\mathbb{R}_+} h(s) \, ds.$$

Proposición 4.8. Cualquier función H(t) acotada en intervalos finitos y que es 0 para t < 0 puede expresarse como

$$H(t) = U \star h(t)$$
, donde $h(t) = H(t) - F \star H(t)$

Definición 4.10. Un proceso estocástico X(t) es crudamente regenerativo en un tiempo aleatorio positivo T si

$$\mathbb{E}\left[X\left(T+t\right)|T\right] = \mathbb{E}\left[X\left(t\right)\right], \ para \ t \geq 0,$$

y con las esperanzas anteriores finitas.

Proposición 4.9. Supóngase que X(t) es un proceso crudamente regenerativo en T, que tiene distribución F. Si $\mathbb{E}[X(t)]$ es acotado en intervalos finitos, entonces

$$\mathbb{E}\left[X\left(t\right)\right] = U \star h\left(t\right), \; donde \; h\left(t\right) = \mathbb{E}\left[X\left(t\right) \, 1\!\!1 \left(T > t\right)\right].$$

Teorema 4.8 (Regeneración Cruda). Supóngase que X(t) es un proceso con valores positivo crudamente regenerativo en T, y defínase $M = \sup\{|X(t)| : t \leq T\}$. Si T es no aritmético y M y MT tienen media finita, entonces

$$\lim_{t\to\infty}\mathbb{E}\left[X\left(t\right)\right] = \frac{1}{\mu}\int_{\mathbb{R}_{+}}h\left(s\right)ds,$$

 $donde\ h\left(t\right)=\mathbb{E}\left[X\left(t\right)\mathbb{1}\left(T>t\right)\right].$

Nota 4.6. Una función $h: \mathbb{R}_+ \to \mathbb{R}$ es Directamente Riemann Integrable en los siguientes casos:

- a) $h(t) \ge 0$ es decreciente y Riemann Integrable.
- b) h es continua excepto posiblemente en un conjunto de Lebesgue de medida 0, $y | h(t) | \le b(t)$, donde b es DRI.

Teorema 4.9 (Teorema Principal de Renovación). Si F es no aritmética y h (t) es Directamente Riemann Integrable (DRI), entonces

$$\lim_{t\to\infty}U\star h=\frac{1}{\mu}\int_{\mathbb{R}_+}h\left(s\right)ds.$$

Proposición 4.10. Cualquier función H(t) acotada en intervalos finitos y que es θ para t < 0 puede expresarse como

$$H(t) = U \star h(t)$$
, donde $h(t) = H(t) - F \star H(t)$

Definición 4.11. Un proceso estocástico X(t) es crudamente regenerativo en un tiempo aleatorio positivo T si

$$\mathbb{E}\left[X\left(T+t\right)|T\right] = \mathbb{E}\left[X\left(t\right)\right], \ para \ t > 0,$$

y con las esperanzas anteriores finitas.

Proposición 4.11. Supóngase que X(t) es un proceso crudamente regenerativo en T, que tiene distribución F. Si $\mathbb{E}[X(t)]$ es acotado en intervalos finitos, entonces

$$\mathbb{E}[X(t)] = U \star h(t)$$
, donde $h(t) = \mathbb{E}[X(t) \mathbb{1}(T > t)]$.

Teorema 4.10 (Regeneración Cruda). Supóngase que X(t) es un proceso con valores positivo crudamente regenerativo en T, y defínase $M = \sup\{|X(t)| : t \leq T\}$. Si T es no aritmético y M y MT tienen media finita, entonces

$$\lim_{t\to\infty} \mathbb{E}\left[X\left(t\right)\right] = \frac{1}{\mu} \int_{\mathbb{R}_+} h\left(s\right) ds,$$

 $donde\ h\left(t\right)=\mathbb{E}\left[X\left(t\right)\mathbb{1}\left(T>t\right)\right].$

Definición 4.12. Para el proceso $\{(N(t), X(t)) : t \ge 0\}$, sus trayectoria muestrales en el intervalo de tiempo $[T_{n-1}, T_n)$ están descritas por

$$\zeta_n = (\xi_n, \{X(T_{n-1} + t) : 0 \le t < \xi_n\})$$

Este ζ_n es el n-ésimo segmento del proceso. El proceso es regenerativo sobre los tiempos T_n si sus segmentos ζ_n son independientes e idénticamente distribuidos.

Observación 4.1. Si $\tilde{X}(t)$ con espacio de estados \tilde{S} es regenerativo sobre T_n , entonces $X(t) = f\left(\tilde{X}(t)\right)$ también es regenerativo sobre T_n , para cualquier función $f: \tilde{S} \to S$.

Observación 4.2. Los procesos regenerativos son crudamente regenerativos, pero no al revés.

Nota 4.7. Un proceso estocástico a tiempo continuo o discreto es regenerativo si existe un proceso de renovación tal que los segmentos del proceso entre tiempos de renovación sucesivos son i.i.d., es decir, para $\{X(t): t \geq 0\}$ proceso estocástico a tiempo continuo con espacio de estados S, espacio métrico.

Para $\{X(t): t \geq 0\}$ Proceso Estocástico a tiempo continuo con estado de espacios S, que es un espacio métrico, con trayectorias continuas por la derecha y con límites por la izquierda c.s. Sea N(t) un proceso de renovación en \mathbb{R}_+ definido en el mismo espacio de probabilidad que X(t), con tiempos de renovación T y tiempos de inter-renovación $\xi_n = T_n - T_{n-1}$, con misma distribución F de media finita μ .

Definición 4.13. Para el proceso $\{(N(t), X(t)) : t \ge 0\}$, sus trayectoria muestrales en el intervalo de tiempo $[T_{n-1}, T_n)$ están descritas por

$$\zeta_n = (\xi_n, \{X(T_{n-1} + t) : 0 \le t < \xi_n\})$$

Este ζ_n es el n-ésimo segmento del proceso. El proceso es regenerativo sobre los tiempos T_n si sus segmentos ζ_n son independientes e idénticamente distribuidos.

Nota 4.8. Un proceso regenerativo con media de la longitud de ciclo finita es llamado positivo recurrente.

Teorema 4.11 (Procesos Regenerativos). Suponga que el proceso

Definición 4.14 (Renewal Process Trinity). Para un proceso de renovación N(t), los siguientes procesos proveen de información sobre los tiempos de renovación.

- A(t) = t T_{N(t)}, el tiempo de recurrencia hacia atrás al tiempo t, que es el tiempo desde la última renovación para t.
- B(t) = T_{N(t)+1} t, el tiempo de recurrencia hacia adelante al tiempo t, residual del tiempo de renovación, que es el tiempo para la próxima renovación después de t.
- $L\left(t\right)=\xi_{N\left(t\right)+1}=A\left(t\right)+B\left(t\right),\ la\ longitud\ del\ intervalo\ de\ renovación\ que\ contiene\ a\ t.$

Nota 4.9. El proceso tridimensional (A(t), B(t), L(t)) es regenerativo sobre T_n , y por ende cada proceso lo es. Cada proceso A(t) y B(t) son procesos de MArkov a tiempo continuo con trayectorias continuas por partes en el espacio de estados \mathbb{R}_+ . Una expresión conveniente para su distribución conjunta es, para $0 \le x < t, y \ge 0$

$$P\{A(t) > x, B(t) > y\} = P\{N(t+y) - N((t-x)) = 0\}$$
(48)

Ejemplo 4.2 (Tiempos de recurrencia Poisson). Si N(t) es un proceso Poisson con tasa λ , entonces de la expresión (48) se tiene que

$$P\{A(t) > x, B(t) > y\} = e^{-\lambda(x+y)}, \quad 0 \le x < t, y \ge 0,$$

que es la probabilidad Poisson de no renovaciones en un intervalo de longitud x + y.

Nota 4.10. Una cadena de Markov ergódica tiene la propiedad de ser estacionaria si la distribucion de su estado al tiempo 0 es su distribución estacionaria.

Definición 4.15. Un proceso estocástico a tiempo continuo $\{X(t): t \geq 0\}$ en un espacio general es estacionario si sus distribuciones finito dimensionales son invariantes bajo cualquier traslado: para cada $0 \leq s_1 < s_2 < \cdots < s_k \ y \ t \geq 0$,

$$(X(s_1+t),...,X(s_k+t)) =_d (X(s_1),...,X(s_k)).$$

Nota 4.11. Un proceso de Markov es estacionario si $X(t) =_d X(0)$, $t \ge 0$.

Considerese el proceso $N\left(t\right)=\sum_{n}\mathbbm{1}\left(\tau_{n}\leq t\right)$ en $\mathbb{R}_{+},$ con puntos $0<\tau_{1}<\tau_{2}<\cdots$

Proposición 4.12. Si N es un proceso puntual estacionario $y \mathbb{E}[N(1)] < \infty$, entonces $\mathbb{E}[N(t)] = t\mathbb{E}[N(1)]$, $t \ge 0$

Teorema 4.12. Los siguientes enunciados son equivalentes

- i) El proceso retardado de renovación N es estacionario.
- ii) EL proceso de tiempos de recurrencia hacia adelante B(t) es estacionario.
- $iii) \mathbb{E}[N(t)] = t/\mu,$

iv)
$$G(t) = F_e(t) = \frac{1}{\mu} \int_0^t [1 - F(s)] ds$$

Cuando estos enunciados son ciertos, $P\{B(t) \le x\} = F_e(x)$, para $t, x \ge 0$.

Nota 4.12. Una consecuencia del teorema anterior es que el Proceso Poisson es el único proceso sin retardo que es estacionario.

Corolario 4.5. El proceso de renovación N(t) sin retardo, y cuyos tiempos de inter renonación tienen media finita, es estacionario si y sólo si es un proceso Poisson.

5 Ejemplos, Notas importantes

5.1 Procesos Regenerativos

Observación 5.1. Si $\tilde{X}(t)$ con espacio de estados \tilde{S} es regenerativo sobre T_n , entonces $X(t) = f(\tilde{X}(t))$ también es regenerativo sobre T_n , para cualquier función $f: \tilde{S} \to S$.

Observación 5.2. Los procesos regenerativos son crudamente regenerativos, pero no al revés.

Definición 5.1 (Definición Clásica). Un proceso estocástico $X = \{X(t) : t \ge 0\}$ es llamado regenerativo is existe una variable aleatoria $R_1 > 0$ tal que

- i) $\{X(t+R_1): t \geq 0\}$ es independiente de $\{\{X(t): t < R_1\},\}$
- ii) $\{X(t+R_1): t \geq 0\}$ es estocásticamente equivalente a $\{X(t): t > 0\}$

Llamamos a R_1 tiempo de regeneración, y decimos que X se regenera en este punto.

 $\{X(t+R_1)\}$ es regenerativo con tiempo de regeneración R_2 , independiente de R_1 pero con la misma distribución que R_1 . Procediendo de esta manera se obtiene una secuencia de variables aleatorias independientes e idénticamente distribuidas $\{R_n\}$ llamados longitudes de ciclo. Si definimos a $Z_k \equiv R_1 + R_2 + \cdots + R_k$, se tiene un proceso de renovación llamado proceso de renovación encajado para X.

Definición 5.2. Para x fijo y para cada $t \ge 0$, sea $I_x(t) = 1$ si $X(t) \le x$, $I_x(t) = 0$ en caso contrario, y defínanse los tiempos promedio

$$\overline{X} = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{\infty} X(u) du$$

$$\mathbb{P}(X_{\infty} \le x) = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{\infty} I_{x}(u) du,$$

cuando estos límites existan.

Como consecuencia del teorema de Renovación-Recompensa, se tiene que el primer límite existe y es igual a la constante

$$\overline{X} = \frac{\mathbb{E}\left[\int_0^{R_1} X(t) dt\right]}{\mathbb{E}\left[R_1\right]},$$

suponiendo que ambas esperanzas son finitas.

- Nota 5.1. a) Si el proceso regenerativo X es positivo recurrente y tiene trayectorias muestrales no negativas, entonces la ecuación anterior es válida.
 - b) Si X es positivo recurrente regenerativo, podemos construir una única versión estacionaria de este proceso, $X_e = \{X_e(t)\}$, donde X_e es un proceso estocástico regenerativo y estrictamente estacionario, con distribución marginal distribuida como X_{∞}

Para $\{X(t): t \geq 0\}$ Proceso Estocástico a tiempo continuo con estado de espacios S, que es un espacio métrico, con trayectorias continuas por la derecha y con límites por la izquierda c.s. Sea N(t) un proceso de renovación en \mathbb{R}_+ definido en el mismo espacio de probabilidad que X(t), con tiempos de renovación T y tiempos de inter-renovación $\xi_n = T_n - T_{n-1}$, con misma distribución F de media finita μ .

Definición 5.3. Para el proceso $\{(N(t), X(t)) : t \ge 0\}$, sus trayectoria muestrales en el intervalo de tiempo $[T_{n-1}, T_n)$ están descritas por

$$\zeta_n = (\xi_n, \{X(T_{n-1} + t) : 0 \le t < \xi_n\})$$

Este ζ_n es el n-ésimo segmento del proceso. El proceso es regenerativo sobre los tiempos T_n si sus segmentos ζ_n son independientes e idénticamente distribuidos.

Observación 5.3. Si $\tilde{X}(t)$ con espacio de estados \tilde{S} es regenerativo sobre T_n , entonces $X(t) = f\left(\tilde{X}(t)\right)$ también es regenerativo sobre T_n , para cualquier función $f: \tilde{S} \to S$.

Observación 5.4. Los procesos regenerativos son crudamente regenerativos, pero no al revés.

Definición 5.4 (Definición Clásica). Un proceso estocástico $X = \{X(t) : t \ge 0\}$ es llamado regenerativo is existe una variable aleatoria $R_1 > 0$ tal que

- i) $\{X(t+R_1): t \geq 0\}$ es independiente de $\{\{X(t): t < R_1\},\}$
- ii) $\{X(t+R_1): t \geq 0\}$ es estocásticamente equivalente a $\{X(t): t > 0\}$

Llamamos a R_1 tiempo de regeneración, y decimos que X se regenera en este punto.

 $\{X(t+R_1)\}$ es regenerativo con tiempo de regeneración R_2 , independiente de R_1 pero con la misma distribución que R_1 . Procediendo de esta manera se obtiene una secuencia de variables aleatorias independientes e idénticamente distribuidas $\{R_n\}$ llamados longitudes de ciclo. Si definimos a $Z_k \equiv R_1 + R_2 + \cdots + R_k$, se tiene un proceso de renovación llamado proceso de renovación encajado para X.

Nota 5.2. Un proceso regenerativo con media de la longitud de ciclo finita es llamado positivo recurrente.

Definición 5.5. Para x fijo y para cada $t \ge 0$, sea $I_x(t) = 1$ si $X(t) \le x$, $I_x(t) = 0$ en caso contrario, <math>y defínanse los tiempos promedio

$$\overline{X} = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{\infty} X(u) du$$

$$\mathbb{P}(X_{\infty} \le x) = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{\infty} I_{x}(u) du,$$

cuando estos límites existan.

Como consecuencia del teorema de Renovación-Recompensa, se tiene que el primer límite existe y es igual a la constante

$$\overline{X} = \frac{\mathbb{E}\left[\int_0^{R_1} X(t) dt\right]}{\mathbb{E}\left[R_1\right]},$$

suponiendo que ambas esperanzas son finitas.

- Nota 5.3. a) Si el proceso regenerativo X es positivo recurrente y tiene trayectorias muestrales no negativas, entonces la ecuación anterior es válida.
 - b) Si X es positivo recurrente regenerativo, podemos construir una única versión estacionaria de este proceso, $X_e = \{X_e(t)\}$, donde X_e es un proceso estocástico regenerativo y estrictamente estacionario, con distribución marginal distribuida como X_{∞}

Un proceso estocástico a tiempo continuo $\{V(t), t \geq 0\}$ es un proceso regenerativo si existe una sucesión de variables aleatorias independientes e idénticamente distribuidas $\{X_1, X_2, \ldots\}$, sucesión de renovación, tal que para cualquier conjunto de Borel A,

$$\mathbb{P}\left\{ V\left(t\right) \in A | X_{1} + X_{2} + \dots + X_{R(t)} = s, \left\{ V\left(\tau\right), \tau < s \right\} \right\} = \mathbb{P}\left\{ V\left(t - s\right) \in A | X_{1} > t - s \right\},$$

para todo $0 \le s \le t$, donde $R(t) = \max\{X_1 + X_2 + \dots + X_j \le t\}$ =número de renovaciones (puntos de regeneración) que ocurren en [0,t]. El intervalo $[0,X_1)$ es llamado primer ciclo de regeneración de $\{V(t), t \ge 0\}$, $[X_1, X_1 + X_2)$ el segundo ciclo de regeneración, y así sucesivamente.

Sea $X = X_1$ y sea F la función de distribución de X

Definición 5.6. Se define el proceso estacionario, $\{V^*(t), t \geq 0\}$, para $\{V(t), t \geq 0\}$ por

$$\mathbb{P}\left\{V\left(t\right)\in A\right\} = \frac{1}{\mathbb{E}\left[X\right]} \int_{0}^{\infty} \mathbb{P}\left\{V\left(t+x\right)\in A|X>x\right\} \left(1-F\left(x\right)\right) dx,$$

para todo $t \ge 0$ y todo conjunto de Borel A.

Definición 5.7. Una distribución se dice que es aritmética si todos sus puntos de incremento son múltiplos de la forma $0, \lambda, 2\lambda, \ldots$ para alguna $\lambda > 0$ entera.

Definición 5.8. Una modificación medible de un proceso $\{V(t), t \geq 0\}$, es una versión de este, $\{V(t, w)\}$ conjuntamente medible para $t \geq 0$ y para $w \in S$, S espacio de estados para $\{V(t), t \geq 0\}$.

Teorema 5.1. Sea $\{V(t), t \geq\}$ un proceso regenerativo no negativo con modificación medible. Sea $\mathbb{E}[X] < \infty$. Entonces el proceso estacionario dado por la ecuación anterior está bien definido y tiene función de distribución independiente de t, además

$$\mathbb{E}\left[V^{*}\left(0\right)\right] = \frac{\mathbb{E}\left[\int_{0}^{X} V\left(s\right) ds\right]}{\mathbb{E}\left[X\right]}$$

ii) Si $\mathbb{E}\left[V^{*}\left(0\right)\right]<\infty$, equivalentemente, si $\mathbb{E}\left[\int_{0}^{X}V\left(s\right)ds\right]<\infty$, entonces

$$\frac{\int_{0}^{t} V\left(s\right) ds}{t} \to \frac{\mathbb{E}\left[\int_{0}^{X} V\left(s\right) ds\right]}{\mathbb{E}\left[X\right]}$$

con probabilidad 1 y en media, cuando $t \to \infty$.

Un proceso estocástico a tiempo continuo $\{V(t), t \geq 0\}$ es un proceso regenerativo si existe una sucesión de variables aleatorias independientes e idénticamente distribuidas $\{X_1, X_2, \ldots\}$, sucesión de renovación, tal que para cualquier conjunto de Borel A,

$$\mathbb{P}\left\{V\left(t\right) \in A | X_1 + X_2 + \dots + X_{R(t)} = s, \left\{V\left(\tau\right), \tau < s\right\}\right\} = \mathbb{P}\left\{V\left(t - s\right) \in A | X_1 > t - s\right\},\,$$

para todo $0 \le s \le t$, donde $R(t) = \max\{X_1 + X_2 + \dots + X_j \le t\}$ =número de renovaciones (puntos de regeneración) que ocurren en [0,t]. El intervalo $[0,X_1)$ es llamado primer ciclo de regeneración de $\{V(t), t \ge 0\}$, $[X_1, X_1 + X_2)$ el segundo ciclo de regeneración, y así sucesivamente.

Sea $X = X_1$ y sea F la función de distribución de X

Definición 5.9. Se define el proceso estacionario, $\{V^*(t), t \geq 0\}$, para $\{V(t), t \geq 0\}$ por

$$\mathbb{P}\left\{V\left(t\right) \in A\right\} = \frac{1}{\mathbb{E}\left[X\right]} \int_{0}^{\infty} \mathbb{P}\left\{V\left(t+x\right) \in A | X > x\right\} \left(1 - F\left(x\right)\right) dx,$$

para todo $t \ge 0$ y todo conjunto de Borel A.

Definición 5.10. Una distribución se dice que es aritmética si todos sus puntos de incremento son múltiplos de la forma $0, \lambda, 2\lambda, \ldots$ para alguna $\lambda > 0$ entera.

Definición 5.11. Una modificación medible de un proceso $\{V(t), t \geq 0\}$, es una versión de este, $\{V(t, w)\}$ conjuntamente medible para $t \geq 0$ y para $w \in S$, S espacio de estados para $\{V(t), t \geq 0\}$.

Teorema 5.2. Sea $\{V(t), t \geq\}$ un proceso regenerativo no negativo con modificación medible. Sea $\mathbb{E}[X] < \infty$. Entonces el proceso estacionario dado por la ecuación anterior está bien definido y tiene función de distribución independiente de t, además

$$\mathbb{E}\left[V^{*}\left(0\right)\right] = \frac{\mathbb{E}\left[\int_{0}^{X} V\left(s\right) ds\right]}{\mathbb{E}\left[X\right]}$$

ii) Si $\mathbb{E}\left[V^{*}\left(0\right)\right]<\infty$, equivalentemente, si $\mathbb{E}\left[\int_{0}^{X}V\left(s\right)ds\right]<\infty$, entonces

$$\frac{\int_{0}^{t} V\left(s\right) ds}{t} \to \frac{\mathbb{E}\left[\int_{0}^{X} V\left(s\right) ds\right]}{\mathbb{E}\left[X\right]}$$

con probabilidad 1 y en media, cuando $t \to \infty$.

6 Resultados para Procesos de Salida

En Sigman, Thorison y Wolff [13] prueban que para la existencia de un una sucesión infinita no decreciente de tiempos de regeneración $\tau_1 \leq \tau_2 \leq \cdots$ en los cuales el proceso se regenera, basta un tiempo de regeneración R_1 , donde $R_j = \tau_j - \tau_{j-1}$. Para tal efecto se requiere la existencia de un espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$, y proceso estocástico $X = \{X(t) : t \geq 0\}$ con espacio de estados (S, \mathcal{R}) , con \mathcal{R} σ -álgebra.

Proposición 6.1. Si existe una variable aleatoria no negativa R_1 tal que $\theta_{R1}X =_D X$, entonces $(\Omega, \mathcal{F}, \mathbb{P})$ puede extenderse para soportar una sucesión estacionaria de variables aleatorias $R = \{R_k : k \geq 1\}$, tal que para $k \geq 1$,

$$\theta_k(X,R) =_D (X,R)$$
.

Además, para $k \geq 1$, $\theta_k R$ es condicionalmente independiente de (X, R_1, \dots, R_k) , dado $\theta_{\tau k} X$.

- Doob en 1953 demostró que el estado estacionario de un proceso de partida en un sistema de espera $M/G/\infty$, es Poisson con la misma tasa que el proceso de arribos.
- Burke en 1968, fue el primero en demostrar que el estado estacionario de un proceso de salida de una cola M/M/s es un proceso Poisson.
- Disney en 1973 obtuvo el siguiente resultado:

Teorema 6.1. Para el sistema de espera M/G/1/L con disciplina FIFO, el proceso I es un proceso de renovación si y sólo si el proceso denominado longitud de la cola es estacionario y se cumple cualquiera de los siguientes casos:

- a) Los tiempos de servicio son identicamente cero;
- b) L = 0, para cualquier proceso de servicio S;
- c) $L = 1 \ y \ G = D$;

d)
$$L = \infty$$
 $y G = M$.

En estos casos, respectivamente, las distribuciones de interpartida $P\{T_{n+1} - T_n \leq t\}$ son

a)
$$1 - e^{-\lambda t}$$
, $t \ge 0$;

b)
$$1 - e^{-\lambda t} * F(t), t \ge 0;$$

c)
$$1 - e^{-\lambda t} * \mathbb{1}_d(t), t \ge 0;$$

d)
$$1 - e^{-\lambda t} * F(t), t \ge 0.$$

- Finch (1959) mostró que para los sistemas M/G/1/L, con $1 \le L \le \infty$ con distribuciones de servicio dos veces diferenciable, solamente el sistema $M/M/1/\infty$ tiene proceso de salida de renovación estacionario.
- King (1971) demostro que un sistema de colas estacionario M/G/1/1 tiene sus tiempos de interpartida sucesivas D_n y D_{n+1} son independientes, si y sólo si, G = D, en cuyo caso le proceso de salida es de renovación.
- Disney (1973) demostró que el único sistema estacionario M/G/1/L, que tiene proceso de salida de renovación son los sistemas M/M/1 y M/D/1/1.
- El siguiente resultado es de Disney y Koning (1985)

Teorema 6.2. En un sistema de espera M/G/s, el estado estacionario del proceso de salida es un proceso Poisson para cualquier distribución de los tiempos de servicio si el sistema tiene cualquiera de las siguientes cuatro propiedades.

a)
$$s = \infty$$

- b) La disciplina de servicio es de procesador compartido.
- c) La disciplina de servicio es LCFS y preemptive resume, esto se cumple para $L < \infty$
- d) G = M.
- El siguiente resultado es de Alamatsaz (1983)

Teorema 6.3. En cualquier sistema de colas GI/G/1/L con $1 \le L < \infty$ y distribución de interarribos A y distribución de los tiempos de servicio B, tal que A(0) = 0, A(t)(1-B(t)) > 0 para alguna t > 0 y B(t) para toda t > 0, es imposible que el proceso de salida estacionario sea de renovación.

Estos resultados aparecen en Daley (1968) [5] para $\{T_n\}$ intervalos de inter-arribo, $\{D_n\}$ intervalos de inter-salida y $\{S_n\}$ tiempos de servicio.

- Si el proceso $\{T_n\}$ es Poisson, el proceso $\{D_n\}$ es no correlacionado si y sólo si es un proceso Poisso, lo cual ocurre si y sólo si $\{S_n\}$ son exponenciales negativas.
- Si $\{S_n\}$ son exponenciales negativas, $\{D_n\}$ es un proceso de renovación si y sólo si es un proceso Poisson, lo cual ocurre si y sólo si $\{T_n\}$ es un proceso Poisson.
- $\mathbb{E}(D_n) = \mathbb{E}(T_n)$.
- Para un sistema de visitas GI/M/1 se tiene el siguiente teorema:

Teorema 6.4. En un sistema estacionario GI/M/1 los intervalos de interpartida tienen

$$\mathbb{E}\left(e^{-\theta D_n}\right) = \mu \left(\mu + \theta\right)^{-1} \left[\delta \theta - \mu \left(1 - \delta\right) \alpha \left(\theta\right)\right] \left[\theta - \mu \left(1 - \delta\right)^{-1}\right]$$

$$\alpha \left(\theta\right) = \mathbb{E}\left[e^{-\theta T_0}\right]$$

$$var\left(D_n\right) = var\left(T_0\right) - \left(\tau^{-1} - \delta^{-1}\right) 2\delta \left(\mathbb{E}\left(S_0\right)\right)^2 \left(1 - \delta\right)^{-1}.$$

Teorema 6.5. El proceso de salida de un sistema de colas estacionario GI/M/1 es un proceso de renovación si y sólo si el proceso de entrada es un proceso Poisson, en cuyo caso el proceso de salida es un proceso Poisson.

Teorema 6.6. Los intervalos de interpartida $\{D_n\}$ de un sistema M/G/1 estacionario son no correlacionados si y sólo si la distribución de los tiempos de servicio es exponencial negativa, es decir, el sistema es de tipo M/M/1.

REFERENCES 41

References

- [1] Asmussen Soren, Applied Probability and Queues, John Wiley and Sons, 1987.
- [2] Dai Jean G., On positive Harris Recurrence of Multiclass Queueing Networks: A Unified Approach Via Fluid Limit Models, The Annals of Applied Probability, vol. 5, No. 1, 1995, pp. 49-77.
- [3] Dai Jim G. and Meyn Sean P., Stability and Convergence of Moments for Multiclass Queueing Networks via Fluid Limit Models, IEEE transactions on Automatic Control, vol. 40, No. 11, 1995, pp. 1889-1904.
- [4] Dai Jim G. and Weiss G., Stability and Inestability of Fluid Models for Reentrant Lines, Mathematics of Operation Research, vol. 21, no. 1, 1996, pp. 115-134.
- [5] D.J. Daley, The correlation structure of the output process of some single server queueing systems, The Annals of Mathematical Statistics, Vol. 39. No. 3, pp. 1007-1019, 1968.
- [6] D. Down, On the Stability of Polling Models with Multiple Servers, Journal of Applied Probability, Vol. 335, no. 4, pp. 925-935, 1998.
- [7] Kaspi H. and Mandelbaum A., Regenerative Closed Queueing Networks, Stochastics: An International Journal of Probability and Stochastic Processes, vol. 39, no. 4, 1992, pp. 239-258.
- [8] Meyn S. P. and Tweedie R. L., Markov Chains and Stochastic Stability, 1993.
- [9] Meyn, S.P. and Down, D., Stability of Generalized Jackson Networks, The Annals of Applied Probability, 1994.
- [10] Vishnevskii V.M. and Semenova O.V., Mathematical Methods to Study the Polling Systems, Automation and Remote Control, vol. 67, no. 2, 2006, pp. 173-220.
- [11] Richard Serfozo, Basics of Applied Stochastic Processes, Springer-Verlag, 2009.
- [12] Karl Sigman and Ronald W. Wolff, A Review of Regenerative Processes, SIAM Review, Vol. 38, No. 2, pp. 269-288, 1993.
- [13] Karl Sigman, Hermann Thorisson and Ronald W. Wolff, A Note on the Existence of Regeneration Times, Journal of Applied Probability, vol. 31, pp. 1116-1122, 1994.

REFERENCES 42

[14] Shaler Stidham, Jr., Regenerative Processes in the theory ow queues, with applications to the alternating priority queue, Advances in Applied Probability, Vol. 4, no. 3, 1972,pp. 542-577.