Department of Medical Physics and Biomedical Engineering

Centre for Medical Image Computing (CMIC)

Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS)



# Deep Learning

MPHY0041 Machine Learning in Medical Imaging

Yipeng Hu yipeng.hu@ucl.ac.uk





# **Medical Imaging Applications**

### Medical Imaging Applications



Diagnosis, prognosis and clinical decision prediction

Object detection

Segmentation

Acquisition and reconstruction

Image quality assessment

Denoising and artifact correction

Super-resolution and quality-transfer

Synthesis

Registration

Applications with other types of data, e.g. Digital medical record, longitudinal data, surgical data

• • •

Tutorials in module repository





## Encoding the output

- Nominal, One-hot vector, binary
- Ordinal encoding

| Sample<br>s | 0 - Ubuntu<br>1 - Mac<br>2 - PC<br>3 - Other | Ubuntu | Mac | PC | Other |
|-------------|----------------------------------------------|--------|-----|----|-------|
| 1           | 2                                            | 0      | 0   | 1  | 0     |
| 2           | 1                                            | 0      | 1   | 0  | 0     |
| 3           | 0                                            | 1      | 0   | 0  | 0     |
| 4           | 1                                            | 0      | 1   | 0  | 0     |
| 5           | 0                                            | 1      | 0   | 0  | 0     |
| 6           | 2                                            | 0      | 0   | 1  | 0     |

Q: how about these classes: High, medium, low; Young, middle-age, elderly; pT2, pT3a, pT3b, pT4



### Which architecture?

| Model               | Size   | Top-1 Accuracy | Top-5 Accuracy | Parameters  | Depth |
|---------------------|--------|----------------|----------------|-------------|-------|
| <u>Xception</u>     | 88 MB  | 0.790          | 0.945          | 22,910,480  | 126   |
| <u>VGG16</u>        | 528 MB | 0.713          | 0.901          | 138,357,544 | 23    |
| <u>VGG19</u>        | 549 MB | 0.713          | 0.900          | 143,667,240 | 26    |
| ResNet50            | 98 MB  | 0.749          | 0.921          | 25,636,712  | -     |
| ResNet101           | 171 MB | 0.764          | 0.928          | 44,707,176  | -     |
| ResNet152           | 232 MB | 0.766          | 0.931          | 60,419,944  | -     |
| ResNet50V2          | 98 MB  | 0.760          | 0.930          | 25,613,800  | -     |
| ResNet101V2         | 171 MB | 0.772          | 0.938          | 44,675,560  | -     |
| ResNet152V2         | 232 MB | 0.780          | 0.942          | 60,380,648  | -     |
| InceptionV3         | 92 MB  | 0.779          | 0.937          | 23,851,784  | 159   |
| InceptionResNetV2   | 215 MB | 0.803          | 0.953          | 55,873,736  | 572   |
| <u>MobileNet</u>    | 16 MB  | 0.704          | 0.895          | 4,253,864   | 88    |
| MobileNetV2         | 14 MB  | 0.713          | 0.901          | 3,538,984   | 88    |
| DenseNet121         | 33 MB  | 0.750          | 0.923          | 8,062,504   | 121   |
| DenseNet169         | 57 MB  | 0.762          | 0.932          | 14,307,880  | 169   |
| DenseNet201         | 80 MB  | 0.773          | 0.936          | 20,242,984  | 201   |
| <u>NASNetMobile</u> | 23 MB  | 0.744          | 0.919          | 5,326,716   | -     |
| NASNetLarge         | 343 MB | 0.825          | 0.960          | 88,949,818  | -     |



# Multiple Anatomical Structure Recognition in Fetal Ultrasound Images



18<sup>+0</sup> to 20<sup>+6</sup> FASP ultrasound scan base menu

| Structure/Area  | Detail                                                                                     | Fetal Measurements*                                                                      | Images/measurements<br>to capture/archive                                                                                                                        |  |
|-----------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Skull     Brain | Head shape                                                                                 | *Head circumference<br>(HC)                                                              | Yes, to include HC<br>measurement, CSP,<br>posterior horn and<br>measurement of the<br>ventricular atrium at the<br>level of the glomus of<br>the choroid plexus |  |
| Neck            | Cavum septum<br>pellucidum (CSP)                                                           | Measurementnot required                                                                  |                                                                                                                                                                  |  |
|                 | Ventricular Atrium (VA)                                                                    | *Atrium of the lateral<br>Ventricle                                                      |                                                                                                                                                                  |  |
|                 | Cerebellum                                                                                 | *Transcerebellar<br>diameter (TCD)                                                       | Yes, to include<br>measurement of the<br>TCD in the<br>suboccipitobregmatic<br>view                                                                              |  |
|                 | Nuchal Fold (NF)<br>Measure if appears large                                               | Distance between the<br>outer border of the<br>occipital bone and the<br>outer skin edge | Yes, if measurement ≥ 6mm                                                                                                                                        |  |
| Facial Features | Coronal view of lips & nasal tip                                                           | Measurementnot required                                                                  | Yes                                                                                                                                                              |  |
| - Lungs - Heart | Visceral situs/laterality of heart                                                         | Measurementnot required                                                                  | No                                                                                                                                                               |  |
|                 | a) Four chamber view<br>(FCV)                                                              |                                                                                          |                                                                                                                                                                  |  |
|                 | b) Aorta (Ao) arising<br>from left ventricle                                               |                                                                                          | No                                                                                                                                                               |  |
|                 | c) Pulmonary artery (PA)<br>arising from right<br>ventricle, or the 3 vessel<br>view (3VV) |                                                                                          | No                                                                                                                                                               |  |
|                 | d) 3 vessel and trachea<br>view (3VT)                                                      |                                                                                          | No                                                                                                                                                               |  |

#### Head circumference (HC) and ventricular atrium (VA)



#### Transcerebella diameter (TCD) and nuchal fold (NF)



#### Abdominal circumference (AC





#### Medical Imaging Applications | Classification | Tutorial









De Fauw, J., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H., Glorot, X., O'Donoghue, B., Visentin, D. and van den Driessche, G., 2018. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature medicine, 24(9), pp.1342-1350.



# Medical Imaging Applications | Segmentation

# Medical Imaging Applications | Segmentation



- What is medical image segmentation
- Why is this useful









### Representation of segmentation





| 1 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |



- Loss for segmentation
  - Cross-entropy at each voxel

# $CE_{voxel} = R \log(P) + (1-R) \log (1-P)$

WCE = 
$$-\frac{1}{N} \sum_{n=1}^{N} w r_n \log(p_n) + (1 - r_n) \log(1 - p_n)$$

Overlap measures, e.g. Dice

# Dice = 2(P & R) / (P + R)

$$DL_2 = 1 - \frac{\sum_{n=1}^{N} p_n r_n + \epsilon}{\sum_{n=1}^{N} p_n + r_n + \epsilon} - \frac{\sum_{n=1}^{N} (1 - p_n)(1 - r_n) + \epsilon}{\sum_{n=1}^{N} 2 - p_n - r_n + \epsilon}$$











Medical Imaging Applications | Segmentation | Tutorial





# Medical Imaging Applications | Registration



**Dense Correspondence** 



- Dense Displacement Field
- Transformation Model



**Moving Image** 

**Fixed Image** 



Stacks on the new subject

## **Registration applications**

- Multi-modal, e.g. image-guided interventions
- Inter-subject, e.g. atlas-based segmentation
- Intra-subject, e.g. longitudinal analysis







### Unsupervised image registration





## Inter-subject head-and-neck CT images



### Medical Imaging Applications | Registration | DeepReg



# DeepReg.net









DeepReg: a deep learning toolkit for medical image registration

Yunguan Fu<sup>1, 2, 3</sup>, Nina Montaña Brown<sup>1, 2</sup>, Shaheer U. Saeed<sup>1, 2</sup>, Adrià Casamitjana<sup>2</sup>, Zachary M. C. Baum<sup>1, 2</sup>, Rémi Delaunay<sup>1, 4</sup>, Qianye Yang<sup>1, 2</sup>, Alexander Grimwood<sup>1, 2</sup>, Zhe Min<sup>1</sup>, Stefano B. Blumberg<sup>2</sup>, Juan Eugenio Iglesias<sup>2, 5, 6</sup>, Dean C. Barratt<sup>1, 2</sup>, Ester Bonmati<sup>1, 2</sup>, Daniel C. Alexander<sup>2</sup>, Matthew J. Clarkson<sup>1, 2</sup>, Tom Vercauteren<sup>2</sup>, and Yipeng Hu<sup>1, 2</sup>

1 Wellcome/EPSRC Centre for Surgical and Interventional Sciences, University College London, London, UK 2 Centre for Medical Image Computing, University College London, London, UK 3 InstaDeep, London, UK 4 Department of Surgical & Interventional Engineering, King's College London, London, UK 5 Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA 6 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA

#### Software

- Review 🖰
- Repository &

DOI: 10.21105/joss.02705

Archive ©

#### Summary

Image fusion is a fundamental task in medical image analysis and computer-assisted inter-





# Medical Imaging Applications | Synthesis



### **Medical image simulation**

- Training models
- Training clinicians
- Provide "extra" information, e.g. super-res./IQT
- Providing prior knowledge for training other ML models
  - Domain adaptation
  - Transfer learning
- Registration
- Generative modelling for unsupervised learning

U-Net-like encoder-decoder supervised learning, Autoencoder, GANs and variants



### Ultrasound simulation









# Freehand hand-held ultrasound imaging with spatial tracking







### Medical Imaging Applications | Synthesis





## Medical Imaging Applications | Synthesis | Tutorial







### Where are we now?



