A Survey of Course Code Representations for Machine Learning-Based Cybersecurity Task

Alumno: Briceño Quiroz Anthony Angel

Trabajo: Ppt sobre Survey a elección

Curso: Metodología de la Investigación

Fecha de entrega: 17/09/2025

Introducción:

Las vulnerabilidades de software son fallos que comprometen la seguridad y permiten ataques maliciosos. Con la creciente dependencia tecnológica, es vital que los proveedores fortalezcan la seguridad. La inteligencia artificial (IA) y el aprendizaje automático (ML) pueden ayudar a identificar estas vulnerabilidades antes de implementar el software, ahorrando tiempo y dinero.

Los modelos de aprendizaje automático (ML) requieren la conversión del código fuente en datos numéricos para su análisis.

Puntos clave:

- El artículo revisa técnicas para representar código fuente.
- Se examinan lenguajes utilizados y su popularidad en ciberseguridad.
- · Se identifican lagunas de investigación en el campo.

Conclusión: La investigación busca mejorar la comprensión de la representación de código fuente en ML, enfocándose en áreas poco exploradas.

Motivación:

Problema:

Las vulnerabilidades de software son un riesgo se seguridad crítico.

Solución Propuesta:

Usar Aprendizaje Automático para detectar **vulnerabilidades** de forma temprana.

Brecha:

Para que el ML funcione, el código fuente debe estar convertido a formato numérico ("**representación**"). La forma en que se hace esta representación afecta en gran parte al rendimiento del modelo.

Objetivo del Survey:

Analizar y mapear el estado del arte: que representaciones, lenguajes y modelos se están usando en la ciberseguridad basada en ML.

Metodología:

Para llevar a cabo nuestra revisión sistemática, que implica 3 actividades

Planificar

Realizar

Presentar

Preguntas de Investigación:

- ¿Cuáles son las representaciones de código más utilizadas?
- ¿Ciertas tareas de ciberseguridad utilizan sólo o principalmente un tipo de representación del código fuente?
- ¿Qué tareas de ciberseguridad cubren las técnicas que se han creado?
- ¿Qué lenguajes de programación son los principales objetivos de las técnicas basadas en el aprendizaje automático para las tareas de ciberseguridad?
- ¿Qué modelos se utilizan habitualmente con diferentes representaciones?

Método de búsqueda

("machine learning" OR "deep learning" OR "artificial intelligence") AND ("security" OR "vulnerability") AND ("code")

Se buscaron en 3 BD:

- ACM Library
 - IEEE xplore
- Springer Link

La búsqueda dio un resultado de 67512 artículos,

Criterio de Inclusion y Exclusion:

Casey, Santos, et al. "Tabla. 1 Criterio de Inclusión y Exclusión" A Survey of Source Code Representations for Machine Learning-Based Cybersecurity Tasks (2025)

Selección de Artículos:

Casey, Santos, et al. "Fig. 1 Resumen de las tres etapas de nuestro proceso de búsqueda" A Survey of Source Code Representations for Machine Learning-Based Cybersecurity Tasks (2025)

Extracción de Información:

RQ01: ¿Cuáles son las representaciones de código fuente más utilizadas?

Categorías	1	2	3	4	5		
Basada en arboles	Árbol de Sintaxis Abstracta	Árbol de Análisis Sintáctico	AST+				
Basada en grafos	(CFG - Control Flow Graph)	PDG - Program Dependence Graph	DFG - Data Flow Graph	Call Graph	CPG - Code Property Graph		
Representacion es léxicas	Tokenizador (Tokenizer):	iSeVC y sSyVC	Fragmento de Contrato (Contract Snippet)				
Representacion es Misceláneas	Imagen (Image)	Expresión Regular (Regular Expression)	Gadgets de Código (Code Gadgets)	Información de la Aplicación (Application Information) y Llamadas a API (API Calls)	Métricas de Código (Code Metrics)		

RQ02: ¿Ciertas tareas usan solo un tipo de representación?

Casey, Santos, et al. "Relación entre representaciones y tareas" A Survey of Source Code Representations for Machine Learning-Based Cybersecurity Tasks (2025)

RQ3: ¿Qué tareas de ciberseguridad cubren las técnicas basadas en el aprendizaje automático?

Casey, Santos, et al. "Fig. 3: Tareas de ciberseguridad en el ciclo RUP" A Survey of Source Code Representations for Machine Learning-Based Cybersecurity Tasks (2025)

RQ4: ¿Qué lenguajes de programación son los principales objetivos de las técnicas basadas en el aprendizaje automático para tareas de ciberseguridad?

Lang.	#Papers	Lang.	#Papers	Lang.	#Papers	Lang.	#Papers	Lang.	#Papers	Lang.	#Papers	Lang.	#Papers
C	81 (57.4%)	JS	12 (8.5%)	Python	6 (4.3%)	C#	2 (1.4%)	Gecko	1 (0.7%)	Powershell	1 (0.7%)	SM	1 (0.7%)
C++	50 (35.5%)	Solidity	12 (8.5%)	CSS	3 (2.1%)	SQL	2 (1.4%)	Go	1 (0.7%)	Ruby	1 (0.7%)	XML	1 (0.7%)
Java	36 (25.5%)	PHP	8 (5.7%)	Rust	3 (2.1%)	TS	2 (1.4%)	HTML	1 (0.7%)	Smali	1 (0.7%)	XUL	1 (0.7%)

JS = JavaScript; TS = TypeScript; SM = SpiderMonkey.

Casey, Santos, et al. "Tabla 3: Lenguajes cubiertos por las técnicas existentes" A Survey of Source Code Representations for Machine Learning-Based Cybersecurity Tasks (2025)

RQ5: ¿Qué modelos se utilizan habitualmente con diferentes representaciones?

Categorías de Modelos:

- 1. Basado en Secuencia (Mas popular)
 - O CNNs, Transformers y LSTMs
 - O La popularidad de estos tipo de modelo se debe a la potencia que tienen
- Basado en Características
- 3. Basados en Arboles
- 4. Basado en Grafos
- 5. Basado en Redes Neuronales

A pesar de la popularidad de los modelos de secuencia, el modelo individual más utilizado en general fue la **Máquina de Vectores de Soporte (SVM)**. La razón de su éxito es su gran capacidad para aprender y discriminar las características que diferencian distintas clases de código.

Discusión

La investigación muestra que usar **grafos para representar** el código es más **efectivo**. Esto ayuda a los modelos a entender mejor las relaciones semánticas y lógicas, lo que es importante para detectar vulnerabilidades. Tratar el código como texto simple no es efectivo. La **calidad** de las características extraídas es clave para el rendimiento del modelo. Aunque los **tokenizadores** son limitados, pueden ser **útiles** si se mejoran.

Referencias:

ACM Reference Format: Beatrice Casey, Joanna C. S. Santos, and George Perry. 2025. A Survey of Source Code Representations for Machine Learning-Based Cybersecurity Tasks. ACM Comput. Surv. 57, 8, Article 217 (April 2025), 41 pages. https://doi.org/10.1145/3721977