CONCOURS INTERNE D'INGENIEUR TERRITORIAL

OCTOBRE 2005

EPREUVE ECRITE DE MATHEMATIQUES APPLIQUEES ET DE PHYSIQUE APPLIQUEE

Durée : 4 heures Coefficient : 3

EPREUVE N° 20

MATHEMATIQUES

Les détails des calculs doivent figurer sur la copie ; donner les résultats exacts. Tout résultat non justifié sera considéré comme nul. Il n'est pas nécessaire de tracer la courbe sur du papier millimétré.

PROBLEME I

On considère la matrice à coefficients réels :

$$A = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$$

On note *I* la matrice unité d'ordre 3.

- 1. Calculer le polynôme caractéristique de A; en déduire ses valeurs propres. On vérifiera que 1 est valeur propre double.
- 2. Déterminer une base de chacun de ses sous-espaces propres.
- **3.** Cette matrice est-elle diagonalisable? Justifier.
- **4.** a) Démontrer qu'il existe deux nombres réels a et b, que l'on déterminera, tels que :

$$A(A + aI) = bI$$

b) En déduire que A est inversible et déterminer son inverse.

PROBLEME II

Dans le plan rapporté à un repère orthonormal d'origine O, on note A le point de coordonnées (1, 1).

1. a) Tracer l'arc de courbe (C) défini par :

$$y = x^2$$
, $0 \le x \le 1$

ainsi que le segment OA.

- b) Calculer l'aire S de la partie (D) du plan limitée par (C) et le segment OA.
- **2.** Pour tout entier naturel *n*, on pose :

$$I_n = \iint_{(D)} x^n dx dy$$
 et $J_n = \iint_{(D)} y^n dx dy$

- a) Calculer I_n et J_n .
- b) En déduire I_0 , I_1 , I_2 , J_0 , J_1 et J_2 .
- **3.** On suppose que (D) est une plaque homogène de densité (ou masse surfacique) ρ et de masse M.
 - a) Calculer les coordonnées du centre d'inertie G de (D).
 - b) Calculer en fonction de M les moments d'inertie de (D) par rapport à chacun des axes de coordonnées, puis par rapport à O.

Barème (sur 10)

I (5 points)	II (5 points)
1. 1 + 0,5 pt	1-a. 0,5 pt
2. 1,5 pt	1-b. 0,5 pt
3. 0,5 pt	2-a. 1 + 1 pt
4-a. 1 pt	2-b. 0,5 pt
4-b 0,5 pt	3-a. 0,5 pt
	3-b. 1 pt

PHYSIQUE:

I - Mécanique : (4 points)

On peut lire dans une documentation relative à une rame de TGV duplex que celle-ci a une masse de 380 tonnes à vide et de 425 tonnes en charge, une longueur de 200 m, une vitesse de croisière en palier (en mouvement uniforme horizontal) de 300 km/h, est alimentée sous 25 kV - 50 Hz monophasé et a une capacité de 516 places. Dans tout l'exercice, on considère que le train roule sur un sol horizontal.

Intensité de l'accélération de la pesanteur : $g = 9.8 \text{ m.s}^{-2}$

- 1/ Sachant que le train met 7 minutes pour passer de l'arrêt à sa vitesse de croisière, quelle est son accélération, supposée constante, pendant cette phase ?
- 2/ Ce train, de masse 420 tonnes, passe sur un pont de 570 m de long alors qu'il roule à 300 km/h. Or ce pont fait un bruit caractéristique dès qu'une partie du train roule sur lui. Combien de temps dure ce bruit ?
- 3/ Toujours à la même vitesse, le train aborde une courbe dont le rayon de courbure est de 6 km. Comme les passagers ne sont pas attirés vers les parois latérales des wagons pendant ce tournant, on demande de quel angle la voie est relevée.
- 4/ La puissance électrique consommée étant de 2000 kW en palier, les pertes thermiques et mécaniques dans la motrice étant estimées à 10 % de la puissance absorbée, en déduire l'intensité des forces de frottement opposées à l'avancement du train lorsqu'il roule à 300 km/h en palier.

II - Électricité : (3 points)

Une installation fonctionnant sous 220 V, 50 Hz monophasée comprend :

- un appareillage de puissance utile 29440 W, de rendement η = 0,8 et de facteur de puissance cos φ = 0,75.
- un ensemble de 200 lampes de 100 W chacune.

La ligne qui alimente cette installation est équivalente au dipôle série de caractéristiques : $R_{Li} = 0.05 \Omega$; $L_{Li} = 0.001 \text{ H}$; $C_{Li} = 12500 \mu\text{F}$.

On demande:

- 1/ L'intensité du courant dans la ligne.
- 2/ Le facteur de puissance de l'installation.
- 3/ Les pertes par effet Joule dans la ligne.
- 4/ La puissance apparente au départ de la ligne.
- 5/ La tension au départ de la ligne.
- 6/ Le facteur de puissance au départ de la ligne.

III – Énergétique : (3 points)

On considère un mur de béton de 10 cm d'épaisseur qui sépare un milieu à 18 °C d'un milieu à - 20 °C. La conductivité thermique du béton est : λ = 1,1 W.m⁻¹.K⁻¹

On adoptera h = 8,12 W.m⁻².K⁻¹ pour tous les coefficients globaux de convection et rayonnement entre l'air et le béton.

1/ Calculer le flux thermique φ par m² de paroi.

2/ Le mur étant constitué de deux parois de béton de 5 cm d'épaisseur séparées par une couche d'air de 5 cm, calculer le nouveau flux φ' et les différentes températures dans le mur (on admettra que la transmission de chaleur dans la couche d'air se fait uniquement par convection et rayonnement).

NOTA:

- > Les candidats ne doivent porter aucun signe distinctif sur les copies
- > Les feuilles de brouillon ne seront en aucun cas prises en compte.