UFPR: Análise de Séries Temporais - Lista 03

Luiz Paulo Tavares

2024-09-10

1) O que faz o Método Recursivo de J. Durbin publicado em 1960 no artigo *The fitting of time series models* na revista Review of International Statistical Institute? Detalhe o procedimento?

No artigo é apresentado um método recursivo para estimar os parâmetros de modelos autorregresivos de forma eficiente. O método recursivo de Durbin pode ser compreendido tomando algumas etapas dado um modelo AR(p):

$$Z_t = \phi_1 z_{t-1} + \phi_2 z_{t-2} + \dots + \phi_n z_{t-n} + \epsilon_t$$

Passo 1: seleção da ordem p. A seleção da ordem de defasagem p pode ser baseada em conhecimento prévio ou com base em algum critério de seleção como, por exemplo, Critério de Informação Akaike (AIC) ou o Critério de Informação Bayesiana (BIC).

Passo 2: ajustar o modelo para os primeiros p valores da série com um método tradicional (como o método de mínimos quadrados, por exemplo). A ideia é ter um ponto de partida para o processo recursivo.

Passo 3: calcular os resíduos. Para cada observação após p, ou seja, t=p+1, p+2, ..., n:

$$\epsilon_t = z_t - (\phi_1 z_{t-1} + \phi_2 z_{t-2} + \dots + \phi_p z_{t-p})$$

A inovação do método de Durbin está na forma como os parâmetros $\phi_1, \phi_2,, \phi_p$ são atualizados de maneira recursiva à medida que novos dados z_{t+1} são observados. O objetivo é minimizar os resíduos quadráticos ϵ_t^2 continuamente, sem a necessidade de recalcular o ajuste de todos os dados anteriores.

A atualização dos parâmetros ϕ_1, \ldots, ϕ_p ocorre de maneira recursiva à medida que novos dados são observados. O objetivo é minimizar iterativamente os resíduos quadráticos ϵ_t^2 , sem recalcular todo o modelo a cada nova observação.

Passo 4: Atualização

4.1. Geração do novo dado

Quando um novo valor y_{t+1} é observado, o modelo ajustado anteriormente é usado para prever \hat{y}_{t+1} com base nas observações passadas $y_t, y_{t-1}, \dots, y_{t-p+1}$.

4.2. Cálculo do resíduo atualizado

O resíduo ϵ_{t+1} é calculado como a diferença entre o valor observado y_{t+1} e o valor ajustado pelo modelo:

$$\epsilon_{t+1} = y_{t+1} - (\phi_1 y_t + \phi_2 y_{t-1} + \dots + \phi_n y_{t-n+1})$$

4.3. Correção dos parâmetros

A correção dos parâmetros ϕ_1, \dots, ϕ_p é feita utilizando o algoritmo de mínimos quadrados recursivo (Recursive Least Squares - RLS), que atualiza os parâmetros conforme novos resíduos são observados. A fórmula de atualização recursiva é dada por:

$$\phi_{t+1} = \phi_t + K_t \epsilon_{t+1}$$

onde: - $\phi_t = (\phi_1, \dots, \phi_p)$ representa o vetor dos parâmetros no tempo t, - K_t é a matriz de ganho que depende da covariância dos dados até o tempo t, - ϵ_{t+1} é o resíduo calculado no passo anterior.

A matriz de ganho K_t controla a magnitude da atualização dos parâmetros, permitindo que o modelo se ajuste gradualmente às novas observações sem se desviar excessivamente.

2) Escreva as equações que definem o Método Recursivo de Durbin

3) 10.15 - Dada a série temporal adiante que corresponde ao número de ações judiciais sofridas anualmente pela empresa X pede-se:

a) Descrição da série estimando sua média e o seu desvio padrão

média	desvio
78.96203	37.39548

b) O gráfico horizontal da série.

Número de Ações Judiciais

c) O correlograma da FAC

```
stats::acf(empresa_ts,lag.max = 36, main = "Função de Autocorrelação (FAC)")
```

Função de Autocorrelação (FAC)

d) O correlograma da FACP.

stats::pacf(empresa_ts,lag.max = 36, main = "Função de Autocorrelação Parcial (FACP)")

Função de Autocorrelação Parcial (FACP)

e) Ajuste um modelo à série aplicando a Seleção Automática do Modelo e compare-o com outros possíveis modelos usando o Critério de Informação de Akaike -AIC

```
# Passar por um rápida análise exploratória antes da modelagem

# TSstudio::ts_decompose(empresa_ts, type = "both")

# TSstudio::ts_seasonal(empresa_ts)

# TSstudio::ts_heatmap(empresa_ts, padding = FALSE)

# TSstudio::ts_lags(empresa_ts, lags = 1:12)

# Auto-ARIMA \*

# auto_arima = forecast::auto.arima(empresa$n)

# checkresiduals(auto_arima)

# Auto-SARIMA \*

auto_sarima = forecast::auto.arima(empresa_ts)

forecast::checkresiduals(auto_sarima)
```

Residuals from ARIMA(0,1,2)(1,0,0)[12]


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,2)(1,0,0)[12]
## Q* = 8.8139, df = 13, p-value = 0.7868
##
## Model df: 3. Total lags used: 16
```

Residuals from ARIMA(0,1,2) with drift


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,2) with drift
## Q* = 15.809, df = 14, p-value = 0.3252
##
## Model df: 2. Total lags used: 16
```

Residuals from ARIMA(0,1,2)(1,0,0)[12] with drift

residuals

```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,2)(1,0,0)[12] with drift
## Q* = 8.2566, df = 13, p-value = 0.8265
##
## Model df: 3. Total lags used: 16
```

Lag

knitr::kable(models)

model	AIC	AICc	BIC
SARIMA Automático	676.4214	676.9694	685.8483
ARIMA Manual	684.8611	NA	NA
SARIMA Manual	677.6715	678.5048	689.4550

```
# model_select <- models %>% dplyr::filter(AIC == min(models['AIC'])) %>% print()
pred = forecast::forecast(auto_sarima, h = 24)
plot(pred)
```

Forecasts from ARIMA(0,1,2)(1,0,0)[12]

f) O gráfico do Periodograma Integrado (Acumulado)

stats::cpgram(empresa_ts, main = "Cumulative periodogram of residuals")

Cumulative periodogram of residuals

4) 10.16 - O arquivo de séries temporais IBOVESPA (em EXCEL) foi postado nos arquivos TEAMS, espaço da disciplina. Então:

- a) Verifique se a série temporal IBOV tem parte sistemática para ser estimada aplicando o Gráfico do Periodograma Integrado;
- b) Faça o gráfico horizontal da série;