03-13 - Probabilidade

Aula passada

- Espaço de probabilidade (Ω, \mathbb{A}, P) Propriedades:
- 6. Se $A_n\uparrow A$, então $P(A_n)\uparrow P(A)$ Aqui, $A_n\uparrow A$ significa que como $A_n\subset A_{n+1}, \forall n$,

$$\cup_{n=1}^{\infty}=\{x ext{ tais que }\exists n ext{ tal que }x\in A_n\ A_1\cup A_2\cup\ldots$$

Se $A_n \downarrow A$, então $P(A_n) \downarrow P(A)$

Caso particular: Se $A_n \downarrow \phi$ então $P(A_n) \downarrow \phi$. (continuidade do vazio)

Se A_1,A_2,\ldots são disjuntos 2 a 2, então

$$P(\cup_{n=1}^{\infty}=\sum_{n=1}^{\infty}P(A_n)$$

Exemplo:

Seja $B_1 = A_1$

Para cada n>1, seja $B_n=A_n-A_{n-1}$

Então $\cup_{n=1}^{\infty}A_n=\cup_{n=1}^{\infty}B_n$

Como $\cup_{n=1}^{\infty} B_n$ é uma união disjunta, temos

$$P(A)=P(\cup_{n=1}^{\infty}B_n)=\sum_{n=1}^{\infty}P(B_n)=\sum_{n=1}^{\infty}[P(A_n)-P(A_{n-1})]=\lim_{n\longmapsto\infty}P(A_n)$$

Verdadeiro ou falso?

Se $\cup_{n=1}^{\infty}A_n=A$, então $\lim_{n\longmapsto\infty}P(A_n)=P(A)$

Os intervlos A_n podem ser $A_1, \phi, A_2, \phi, \dots$

Como construir espaços de probabilidade?

a) Caso discreto: $\Omega = \{w_1, w_2, \ldots\}$

Definir $p_i = P(\{w_i\})$ para cada i, de modo que $\sum pi = 1$

$$\mathbb{A}=2^\Omega=\{A|A\subset\Omega\}$$

 $orall A \in \mathbb{A}$, definir $P(A) = \sum_{w_1 \in \mathbb{A}} p_i$

1.
$$P(A) \geq 0$$

2.
$$P(\Omega) = \sum p_i = 1$$

3. Se A e B são disjuntos

$$P(A \cup B) = \sum_{w_i \in A \cup B} p_i = \sum_{w_i \in A} p_i + \sum_{w_i \in B} p_i = P(A) + P(B)$$

- b) Caso contínuo: $\Omega=\mathbb{R}$ (ou um intervalo)
- $A=B(\sigma ext{-\'algebra}$ de Borel) (menor álgebra que contém todos os intervalos)
- Definir probabilidade para os intervalos e estender para a álgebra os intervalos de modo que valham as proprosições 1,2, e
 3.

$$P(-\infty, a] \longmapsto P(x), x \in B$$

satisfazendo algumas condições

Definição

A probabilidade condicional de A dado B $(A, B \in AeP(B) > 0$ é:

$$P(A|B) = rac{P(A\cap B)}{P(B)}$$

Obs: i) P(B|B) = 1

ii) $(\Omega, \mathbb{A}, P(.|B))$ é um novo espaço de probabilidade

Exemplo: Dado equilibrado lançado das vezes;

- 1. $A = 1^{\circ}$ resultado sair 5
- 2. B = soma = 6
- 3. C = soma = 2
 - a) P(A) = 1/6
 - b) P(B) = 1/5
 - c) P(C) = 0

Exemplo: uma urna contém 6 bolas brancas e 4 bolas pretas tiradas uma a uma sem reposição Qual é a probbilidade de a) 1ª branca e 2ª preta?p