THE Compressor

B. Bunt, B. Lee, E. Taglia, P. Sklavounos

Compressor Design

- NACA Inspired Blade Profile (NACA-8)
- 4 stages
- Uniform chord Length &36 of blades per stage
- * Shell of further components shown as well (turbine, exhaust, etc.)

Compressor Design

NACA-8 blade

45-degree Angle of Attack

Fluid for Meshing/CFD Simulation

CFD Setup: Meshing

Material Selection

Solid: Carbon Fiber/Graphite Composite

Fluid: Air (@ STP and 37000ft).

Material properties changed in CFD program

Reasoning

- Composite can provide a weight savings of about 53 lbs in comparison to all-aluminum vanes
- Composite demonstrated better fatigue performance margins than single material vanes

Size & Weight

Part	Dry Weight (lb.)
Rotors/Stators	280
Glass Fiber Shell	373
Graphite Core	3154
Total	<u>3806</u>

Aircraft Model	Compression Ratio	Number of Compressor Stages	Compressor Weight
Boeing 737-800	30:1	13	1,560 lb (707 kg)
Airbus A320	30:1	10	1,764 lb (800 kg)
Boeing 747-8	30:1	18	6,056 lb (2,748 kg)
Airbus A380	40:1	16	6,173 lb (2,800kg)
Bombardier CRJ-700	16:1	7	327 lb (148 kg)
Embraer E170	17:1	7	462lb (210 kg)
Gulfstream G650	16.9:1	14	1,636 lb (742 kg)
Cessna Citation X+	8.5:1	2	252 lb (114 kg)
Lockheed Martin F-22 Raptor	N/A	2	1,042 lb (472 kg)
Eurofighter Typhoon	N/A	2	2,314lb (1,050 kg)

Operating Parameters

STP (~0 ft)

- "Start-up condition"
 - 0.5 s at 500 rpm
 - 0.5 s at 1500 rpm
 - 0.5 s at 2500 rpm

High altitude (37000 ft)

- "Cruising speed condition"
 - Constant rotational speed of 20000 rpm

100 timesteps at5 ms/timestep

At most, 200 timesteps at 5 ms/timestep

Results (Stage 1, Stage 2)

Compression Ratio: Stage 1@37kft, 20krpm

Compression Ratio: Stage 2 @ 37kft, 20krpm

Compression: 2.08

Compression: 2.43

Results (Stage 3, Stage 4)

Compression Ratio: Stage 3 @ 37kft, 20krpm

Compression: 3.04

Compression Ratio: Stage 4 @ 37kft, 20krpm

Compression: 4.95

Results (examples at STP/sea level)

Compressor Performance

At 37,000 ft & constant speed of 20,000 rpm

Stage		Inlet gage	Outlet gage	Compression ratio	
	1	6.21	12.91		2.08
	2	0.99	2.43		2.43
	3	5.06	15.36		3.04
	4	2.94	14.53		4.95
TOTAL					75.97

Compressor Performance

At 37,000 ft & constant speed of 20,000 rpm

Stage	Inlet g	age Outle	et gage C	Compression ratio
	1	0.17	0.87	5.00
	2	0.12	0.69	5.62
TOTAL				28.11

(and beyond!)

Calculated Entrance and Exit Temperatures

Assumption: ideal gas, adiabatic process

Given: Inlet temperature is 25 C, Pressure Ratio is 20:1 (outlet pressure =

20x larger)

At Sea Level:

$$T_2 = T_1 \cdot \left(\frac{P_2}{P_1}\right)^{\frac{\Gamma-1}{\Gamma}}$$

Where

$$T_1 = 80^{\circ}F, P_1:P_2 = 1:20$$

And

$$P_1 = 1 atm, P_2 = 20 atm$$

$$\Gamma = \frac{c_p}{c_v} = \frac{1}{0.718} = 1.4$$
 at STP

$$T_2 = \left(\frac{20 \ atm}{1 \ atm}\right)^{\frac{1.4 - 1}{1.4}}$$

$$T_2 = 679.17 F$$

At 37,000 ft:

$$T_{altitude} = T_{sea\; level} + (Lapse\; Rate \cdot Altitude)$$

Tropopause sublayer that has a temperature that decreases linearly with altitude:

Lapse rate: -3.57°*F* per 1,000 ft

$$T_{37,000\,ft} = 80^{\circ}F + \frac{-3.57 * 37000}{1000} = -70^{\circ}F$$

$$\Gamma = \frac{C_p}{C_v} = 1.4$$

$$T_2 = 213K \cdot \left(\frac{20 \ atm}{1 \ atm}\right)^{\frac{1.4 - 1}{1.4}} = 501.3K = 442.67F$$

Approximate Power Approximation

$$\begin{split} P_{is} &= 2.31 \cdot \frac{\gamma}{\gamma - 1} \cdot \frac{T_2 - T_1}{M} \dot{m} \\ W_{actual} &= \dot{m}c_p \left(T_{03} - T_{02} \right) \\ W_{actual} &= 2 \frac{lb}{s} * 0. \frac{24BTU}{lbm * R} (\mathbf{1075 - 901}) = \mathbf{84} \ kg \frac{m^2}{s^2} \\ W_{adiabatic} &= c_p T_{02} \left[\left(\frac{P_{03}}{P_{02}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right] \\ W_{actual} &= W_{adiabatic} \cdot \eta_c \\ \eta_c &= \frac{84}{143} = 0.58 \\ \eta_t &= \frac{W_{adiabatic}}{W_{actual}} = 1.7 \\ \eta &= \frac{T_{04} - T_{02}}{c_p T_{03} - c_p T_{02}} \cdot \frac{1}{P_R \frac{\gamma - 1}{\gamma}} \cdot \frac{1}{\eta_c \eta_t} \end{split}$$

Actual Power Calculations

	Operating speed(rpm)	Operating speed(rpm)	Operating speed(rpm)	
Compression ratio	@ 1st 0.5s	@2nd 0.5s	@3rd 0.5s	Power (kW)
At least 20:1	500	1500	2500	21.5
76:1	20,000	20,000	20,000	172.3

(at least...)

Design Benefits:

- 1. Specified pressure ratio of ≥20:1 achieved
- 2. Outermost diameter no bigger than 6 ft
- 3. Reasonable weight
- 4. Reasonable efficiency (~82%)
 - On average, efficiency between 70% & 85%

Lessons from CFD Simulations

- Start with more stages than likely needed, cut back if applicable
 - Original design had 6 removed 2
- Rerun simulation if results diverge
 - Sometimes, results will converge even with same settings

Design Time Estimate

>360 hours

Questions?