

ICS3213 – Gestión de Operaciones

Sección 3 Primer Semestre 2025

Profesor: Rodrigo A. Carrasco

Avisos

- La lectura complementaria de esta parte es el Capítulo 17 del libro "Administración de Operaciones" por R. Chase, F. Jacobs y N. Aquilano.
- Recuerden que el lunes tenemos la I1 a las 17:30.
- Nos dieron la sala K204 para la prueba.

Revisión

- Eliminamos el supuesto que la demanda o el período de entrega era conocido.
- Estudiamos un nuevo modelo que considera valores aleatorios en la demanda o el período de entre.
- Para usar el nuevo modelo, definimos el concepto de Nivel de Servicio. ¿Qué implica un nivel de servicio del 93%?
- Mostramos como ese nivel de servicio se conecta con el inventario de seguridad y el punto de reorden.

Inventario Perecible

- En los casos anteriores, el valor de los productos que teníamos en el inventario no variaba en el tiempo.
- Esto ocurre en el caso de los llamados "productos perecibles".
- ¿Qué son los productos perecibles?
- Por ejemplo, un chaleco:
 - Tiene un precio de venta en la tienda de p = \$180.
 - El fabricante cobra c = \$110 a la tienda.
 - La tienda lo ofrece a un precio rebajado de v = \$90.
- ¿Cómo encontramos el inventario óptimo en este caso?
- Modelo del Vendedor de Diarios (Newsvendor)

Costo de pedir "mucho" y "poco"

- C_o = overage cost (costo de excedente)
 - Representa el costo de pedir una unidad más que la demanda real.
 - En otras palabras, C_o es el incremento en ganancia si hubiéramos pedido una unidad menos.
 - Para el chaleco: $C_o = Costo Precio liquidación = c v = 110 90 = 20$
- C_u = underage cost (costo de faltantes)
 - Representa el costo de pedir una unidad menos que la demanda real.
 - En otras palabras, si hay ventas perdidas, C_u es el aumento en ganancia si hubiéramos pedido una unidad adicional.
 - Para el chaleco: $C_u = Precio Costo = p c = 180 110 = 70$

Función de costos

• Si D fuera conocida, la función de costo sería:

$$C(Q, \widetilde{D}) = C_o \max\{0, Q - \widetilde{D}\} + C_u \max\{0, \widetilde{D} - Q\}$$

=
$$C_o(Q - \widetilde{D})^+ + C_u(\widetilde{D} - Q)^-$$

• ¿Cuál es el tamaño óptimo Q?

Demanda estocástica

• En este caso estamos interesados en calcular:

$$(Q) = \mathbb{E}[(Q, \mathbb{D})]$$

$$= C_0 \int_0^\infty (Q - x)^+ f(x) dx + C_0 \int_0^\infty (x - Q)^+ f(x) dx$$

$$= C_0 \int_0^Q (Q - x) f(x) dx + C_0 \int_Q^\infty (x - Q) f(x) dx$$

Función de costos

Costos esperados

Encontrando el valor óptimo

• La función de costo es convexa, por ello nos basta resolver:

$$\frac{dC(Q)}{dQ} = C_0 \int_0^Q f(x) dx + C_0 \int_0^{\infty} -f(x) dx$$

$$= C_0 F(Q) - C_0 (1 - F(Q)) = 0$$

$$F(Q) = C_0 \int_Q^Q f(x) dx + C_0 \int_Q^{\infty} -f(x) dx$$

$$= C_0 \int_Q^Q f(x) dx + C_0 \int_Q^{\infty} -f(x) dx$$

$$= C_0 \int_Q^Q f(x) dx + C_0 \int_Q^{\infty} -f(x) dx$$

$$= C_0 \int_Q^Q f(x) dx + C_0 \int_Q^{\infty} -f(x) dx$$

Veamos el ejemplo del chaleco

• En este caso, la razón crítica es:

$$\frac{C_u}{C_o + C_u} = \frac{70}{20 + 70} = 0.7778.$$

- Supongamos que la demanda sigue una distribución normal de parámetros $N(\mu, \sigma)$
 - ¿Cuanto ordenar?

esternos buscondo Q tol sur
$$P(D \le Q) = 0.7778$$

Acerca del modelo newsvendor

- El modelo puede ser aplicado a ambientes donde...
 - Hay una oportunidad única de orden/producción.
 - Demanda es incierta.
 - Hay un desafío "muy alto-muy bajo":
 - Si la demanda excede la cantidad ordenada, se pierde la venta.
 - Si la demanda es menor que la cantidad ordenada, sobra inventario.
- La empresa debe tener un modelo de demanda que incluya una demanda esperada y la incertidumbre de esa demanda.
 - Con la distribución normal, la incertidumbre en la demanda es capturada por la desviación estándar.
- Al tamaño de orden que maximiza el ingreso esperado, la probabilidad de que la demanda sea menor que el tamaño de la orden es igual a la razón crítica:
 - La cantidad que maximiza el beneficio esperado balancea los costos del "muy alto-muy bajo".

Gestión con Múltiples Períodos

- En todos los casos anteriores el horizonte de planificación era ilimitado.
- Consideremos ahora un horizonte limitado de N períodos.
- La demanda para cada período será: d_1 , d_2 , ..., d_N , conocida.
- No hay demanda perdida (i.e. costos de quiebre de inventario).
- Hay un costo S_t de ordenar en el período t.
- Hay un costo H_t por ítem de mantener inventario del período t al período t+1.
- Queremos determinar en qué períodos debemos producir/abastecernos para minimizar los costos totales.
- A diferencia del EOQ clásico, en este caso la demanda no es uniforme y queremos terminar sin inventario en el período N.

Ejemplo

• Consideremos el siguiente ejemplo:

Semana	1	2	3	4	5	6	7	8	
Demanda	0	10	480	440	800	400	0	0	→D=2130
Inventario	653	643	163	376	229	482	482	482	

- Asumamos que $S_t = \$400$ y $H_t = \$0.5$ para cada período.
- ¿Cuál sería la política usando EOQ clásico?

$$Q^{2} = \sqrt{\frac{2DS}{H}} = \sqrt{\frac{2 \cdot 2130 \cdot 400}{0.5}} = 652.67.$$

Problema de optimización

• Este problema se puede modelar de la siguiente forma

$$\min_{\mathbf{z},\mathbf{Q}} \sum_{k=1}^{T} S_{k} z_{k} + H_{k} I_{k} + C_{k} Q_{k}$$
s.t.
$$I_{k} = I_{k-1} + Q_{k} - D_{k}, \quad k = \{1, ..., T\} \leftarrow Q_{k} \leq M z_{k}, \quad k = \{1, ..., T\}$$

$$I_{T} = 0,$$

$$I_{k}, Q_{k} \geq 0, \quad k = \{1, ..., T\}$$

$$z_{k} \in \{0,1\}, \quad k = \{1, ..., T\}$$

- donde
 - C_k es el costo unitario del producto en el período k.
 - I_k es el inventario que queda al final del período k.
 - Q_k es el tamaño del lote en el período k.
 - z_k es 1 si se compra/produce en el período k.

Como podemos resolver el problema

- Podemos resolver el problema de optimización anterior.
 - Según el número de períodos esto puede ser difícil
- EOQ
 - Vimos que no funciona correctamente.
- Heurísticas de Lotes Dinámicos
 - Silver Meal (SM), Least Unit Cost (LUC), Part Period Balancing (PPB)
- Lote de Tamaño Optimo: Wagner Whitin (WW)

Lotes Óptimos

- Las heurísticas usadas originalmente en planificación (Silver-Meal, Least Unit Cost, Part Period Balancing) son fáciles de calcular pero no necesariamente son óptimas.
- Igual que en los casos anteriores asumimos que no hay inventario inicial y que el inventario final también es cero.
- Podemos calcular los lotes óptimos usando programación dinámica.
- Wagner y Whitin notaron que se puede simplificar el uso de programación dinámica al notar la siguiente propiedad:
 - Hay una solución óptima en la que en cada período k o se tiene inventario inicial o se produce/abastece (i.e. $I_{k-1}Q_k=0$).
- El resultado se conoce como el algoritmo de Wagner-Whitin.

Algoritmo de Wagner - Whitin

- Sea $C_{k,j}$ el costo de comprar/producir en el período k para satisfacer la demanda hasta el período j-1.
- El Algoritmos de W-W es el siguiente:
 - Comenzamos con $I_{T+1} = 0$.
 - Iterativamente calculamos $I_k = \min_{j>k} \{C_{k,j} + I_j\}.$
 - Cuando se llega a I_1 se termina.
 - Según la decisión óptima de cada paso se determina cada Q_k .

Ejemplo WW

• Consideremos el siguiente ejemplo

Período	1	2	3	4	5
Demanda	100	100	50	50	210

• Suponga que S = 50 y H = 0.5, con lo que podemos calcular 50 + 100.05 50 + 150.05 + 50.05

todos los valores de $C_{k,i}$.

		<i>,</i> ,		30 + 1W	.05	504 11
k\j	1	2	3	4	5	6
1		(50)	(100)	(150)	225	645
2			50	75	125	440
3				50		285
4				C315	50	155
5				<i>3</i> .0		50

Ejemplo WW

$$I_{6} = 0$$

$$I_{5} = \min \left\{ \frac{C_{56} + I_{6} + I_{6}}{C_{56} + I_{6}} + I_{6} +$$

Ejemplo WW

• ¿Cómo determinamos Q_k ?

Resumen de Gestión de Inventarios

- Clasificación ABC, modelos de revisión periódica y continua.
- Demanda conocida y homogénea:
 - Modelos EOQ
 - Clave: desarrollar el modelo de costos del inventario.
- Demanda incierta:
 - Modelo con venta perdida.
 - Modelo Newsvendor
 - Modelo con nivel de servicio Inventario de Seguridad
- Demanda variable:
 - Modelos de optimización matemática y W-W

