

National Aeronautics and Space Administration

NASA **TECHNOLOGY
TRANSFER PROGRAM**

BRINGING NASA TECHNOLOGY DOWN TO EARTH

MODULAR DAMAGE DETECTION FOR EXPANDABLE STRUCTURES

Mark E. Lewis⁽¹⁾

Dr. Tracy L. Gibson⁽²⁾

⁽¹⁾NASA Kennedy Space Center, Email:

Mark.E.Lewis@nasa.gov

⁽²⁾Southeastern Universities Research Association, LASSO-008 , KSC, Email: Tracy.L.Gibson@nasa.gov

www.nasa.gov

Agenda

- Background
- Sensor System Design & Attributes
- Sensory Panel
- Embedded Software
- Graphical User Interface
- Testing and Demonstration
- Summary
- Questions & Answers

Background

Micrometeoroids (MM) & Orbital Debris (OD) are serious threats to International Space Station (ISS) & extraterrestrial habitats

- NASA classes MM & OD as primary threats to commercial crew vehicles
 - See article <https://www.nasaspacesflight.com/2016/08/nasa-mmod-primary-threat-crew-vehicles/>
- July 2014, radiator damage observed after review of downlinked camera inspection imagery
 - See article <http://www.nasaspacesflight.com/2014/07/iss-managers-evaluating-mmod-radiator/>

Structural health monitoring and damage detection technologies are identified as critical needs in multiple NASA technology roadmaps

Background

NASA Kennedy Space Center (KSC) has extensive experience developing damage detection technologies

- U.S. Patents 9,233,765; 9,635,302,B2; 10,138,005
- Demonstrated single panel system for Habitat Demonstration Unit (HDU) field demonstration at D-RATS
- Demonstrated damage detection system with multiple sensory panels in crew display avionics for HDU & remote testing capability using secure network (between KSC & JSC)

Desert Research and Technology Studies
(D-RATS) 2011

HDU Integrated Demonstration 2012

Sensor System Design

Modular Damage Detection System (MDDS) is an intelligent damage detection “skin”

- Attached to structures or embedded into composites
- Technology based on sensing electrical integrity of conductive traces
 - When an impact occurs, traces are broken
- Several sensing layers can be implemented in desired pattern
- Design is tailorabile for interior and/or exterior applications
 - Sensing panel material, size, and trace spacing can be customized per application
- Provides lightweight in-situ health monitoring capability

MDDS consists of three main subsystems

- Sensory Panel(s)
- Interface board w/ embedded software for situational awareness and damage detection
- Mobile device with graphical user interface (GUI) to operate/monitor system

Sensor System Attributes

MDDS architecture is flexible and expandable, supporting one or many Sensory Panels organized two-dimensionally in linear or grid patterns

Sensory Panel(s) attributes:

- Active or passive depending on application
- Low power consumption (battery or power supply)
- Interchangeable & Modular: Identical hardware & software
- Operate independently or as multi-panel system
- GUI on mobile device allows users to configure, command, and monitor Sensory Panels wirelessly

Sensory Panel Evolution

Gen 1: Flexible Sensory Panels printed in-house using conductive ink & assembled

Gen 2: Flexible Sensory Panels fabricated by Printed Circuit Board manufacturer & assembled

Gen 2: Panels Assembled with Multiple Layers

Gen 1: Four panels printed

Ag Ink 20 mil

Sensory Panel Evolution

Gen 3: Rigid Sensory Panels with two sensing layers, microcontrollers, embedded software, and Bluetooth wireless communication

- Sensing Layers oriented orthogonally creating 2D grid
- Embedded software for situational awareness & damage detection
- Low power consumption – less than 500mW / panel

Each Sensing Layer has 96 parallel conductive traces with trace-to-trace spacing of approximately 50 mils

Dimensions: 9.5 x 9.5 x 0.062 in. (W x L x D)

Notional MDDS Architecture Block Diagram with Four Sensory Panels

Sensory Panel Evolution

Gen 4: Flexible Sensory Panels for composite applications

Flexible, Thin Printed Circuit Boards

Painted-On Sensory System

Laminate Test Specimens

Composite Test Specimens

Interface Evolution

Interfacing with flexible Sensory Panels evolved

- Gen 1 & 2: Multi-layer panel conductive traces connected to interface frame by solderless method (compression)
- Gen 4: Interface board designed to monitor up to 4 Finger-based Sensory Panels

Gen 4 Electrical Interface Board for 4 Sensory Panels

*Dim:
2 x 4 in.
(W x L)*

4 Zero-Insertion Force (ZIF) connectors

Gen 2 Sensory Panels with Compression Ring

Software Evolution

Gen 1 & 2: Embedded software ONLY monitored & reported electrical integrity of conductive traces

- Custom LabView software provided GUI to control/monitor panels & process results to identify, locate & visualize impact damage

MDDS: Embedded software evolved to handle wireless communication, multi-panel situational awareness & damage detection algorithms to locate damage

- Processes/responds to commands from mobile device & reports Sensory Panel health status upon request
- Executes algorithms to:
 - Determine Master Panels (MPs) & assign MP via GUI
 - Generate active panel map
 - Monitor health status of all active panels

Gen 1 & 2: LabVIEW GUI

Embedded Software Logical Overview

Embedded Software

Sensory Panel initialization & active panel map operations:

- Each panel checks presence of an active panel to its left and/or below it using I2C serial interfaces to determine potential Master Panels (MPs)
 - If no active panels are present to left or below, assigns panel as potential MP & configures Bluetooth
 - One or more potential MPs could be present since configuration is arbitrary
- Once user assigns MP using GUI, all other panels become normal active panels
- Newly-assigned MP starts progressive scan using active panel mapping algorithm to determine spatial relationship to other active panels
 - Communicates with adjacent panels to determine its closest neighboring panels
 - Requests adjacent neighbors to report status of their respective neighbors until no new panels are found
 - Maintains record of the configuration & path to access any active panel

Embedded Software

Each Sensory Panel continuously monitors its health

- Damage detection algorithm evaluates health status injecting test pulses periodically on sensing traces to determine electrical integrity
 - If traces are broken, algorithm calculates location of any faults
 - Relative time stamp is associated with each damage event to establish order of events
 - Helps organize & identify location of damage if subsequent damages occur on same panel later

GUI periodically requests health status from MP of all active panels

- MP gathers, coordinates, and packages damage information and sends it wirelessly to GUI
 - Damage location is reported in rectangular boundaries (bottom left-hand to upper right-hand corners)
 - When damage is detected on top Sensing Layer ONLY, exact damage location is undermined
 - Reports corresponding location in x-axis only

MDDS GUI

MDDS App designed for 3rd gen iPad Pro

- Written in Swift
- GUI allows users to configure, command, control, monitor, and display health status of active Sensory Panels in system
- Receives telemetry wirelessly from MP using Bluetooth

MDDS App Software Logical and Structural Overview

MDDS Application Home Page

MDDS: Testing & Demonstration

Simulated test data used to evaluate MDDS App performance

- Data set consisted of five Sensory Panels laid out in inverted-T pattern

System Operations:

- During initialization, Sensory Panels determine whether they're a potential MP
- User scans for BLE advertisements, assigns MP, configures Sensory Panel settings, and opens BLE private communication service to send & receive information wirelessly
- User requests query of active panels from MP & begins monitoring system
- Sensory Panel health information displayed by clicking on panel graphic

Sensory Panels Layout
for Testing

GUI Displaying Sensory Panel Health Status

MDDS: Testing & Demonstration

Panel 2,3 GUI shows four simulated damage areas:

- Three rectangular/square in red
 - Damage resulting in broken conductive traces on top & bottom Sensing Layers
- One top-only damage in yellow
 - X-only coordinate provided; no y-coordinate can be assigned

Damage details displayed in tabular format

- Damage ID number is assigned
- Bottom left-hand corner & top right-hand corner x- and y-coordinates are shown
- Damage width, height, and calculated area are displayed

*Detailed Damage Information
for Panel 2,3*

Composites: Testing & Demonstration

Panels were exposed to two types of tests to simulate/induce damage: 3-point bend & fatigue

- 3-point bend testing performed per modified version of ASTM D7264
 - Modifications due to differences between specimens provided and those required by standard
 - Goal was to determine if failure of fiberglass face sheets cause ripping/tearing of adhered flexible circuitry
- Low-cycle threshold fatigue test using 3-point flexural test setup
 - Testing conducted where test specimen was subjected to low load & high load for 100 cycles
 - After 100 cycles, test specimen was connected to interface board for damage assessment
 - If no damage observed, low & high loads increased for 100 additional cycles
 - Process continued until damage was detected or sample failed under load

Low-cycle threshold fatigue testing

Composites: Testing & Demonstration

Testing Results – 3-point Bend

- Composites (Fully Encapsulated)
 - 2-finger thin, flexible PCBs showed detectable damage after 3-point bend testing to failure
 - Thin, flexible PCB from Vendor A did not show detectable damage after initial 3-point bend test & only showed damage after flexing
 - Ability to detect damage in composite materials can be greatly impacted by thickness of composite material (face-sheet thickness)
- Laminates (Partially Encapsulated)
 - 2-finger thin, flexible PCBs showed detectable damage after 3-point bend testing to failure

Testing Results – Fatigue

- Results from fatigue testing were not conclusive due to specimen failure

Summary

NASA KSC has been developing and successfully demonstrating damage detection technologies for years

MDDS provides an attractive option for applications where in-situ health monitoring is needed

- Design is tailorable for interior and/or exterior applications
- Architecture is flexible and expandable, supporting one or many Sensory Panels
 - Algorithms provide for situational awareness, self-configuration, and damage detection & localization
 - Supports wireless communication using Bluetooth technology
- Sensory Panels are modular and interchangeable
 - Same hardware and software; low power consumption – less than 500mW / panel
- MDDS App provides users a simple & attractive method to interact with system
- Embedding thin, flexible circuitry into composites does not appear to impact composites overall structural integrity

Acknowledgements

- Dr. Martha Williams
- Dr. Pedro Medelius
- Dr. Luke Roberson
- Sarah Snyder
- Steve Parks
- Mike Csonka
- Teresa Overcash
- Dr. John Lane
- Chris Forney
- Rebecca Oostdyk
- Tim Evans
- Brian Cheshire
- Jeff Sampson
- Thad Johnson
- David McLaughlin

Questions

