ETH zürich

Robot Dynamics

Rotary Wing UAS: Case Study

Weixuan Zhang

151-0851-00 V

Marco Hutter, Roland Siegwart and Thomas Stastny

Contents | Rotary Wing UAS

1. Introduction – Design and Propeller Aerodynamics

2. Propeller Analysis and Dynamic Modeling

3. Control of a Quadrotor

4. Rotor Craft Case Study

Multirotor Configurations

Multirotor Configurations

- Hexacopter/Octocopter
 - Similar to quadcopters
 - Mechanical redundancy
 - More involved control allocation

- Variable pitch rotors
 - More responsive
 - Propellers can reverse thrust
 - Mechanically more complex than fixed-pitch multirotor.

Multirotor Configurations

- Tail-sitter
 - Vertical take off and landing
 - Can cover wide area
 - Difficult transition control

- Tiltrotor
 - Direct control of forces and moments
 - Complex control allocation

Multirotor Applications

Multirotor Applications | Inspection

- Industrial inspection (e.g. pipe thickness)
- Bridge inspection
- Tree cavity inspection

Multirotor Applications | Art

- Light art
- Footage and cinematographic applications

Multirotor Applications | Delivery

- Lightweight objects transportation
- Medicine delivery in remote areas

Multirotor Applications | Surveillance

- Military application and border surveillance
- After disaster inspection and damage assessment
- Search and rescue operations

Micro Aerial Vehicle Autonomy

Micro Aerial Vehicle Autonomy

Autonomous robot is an intelligent machine able to perform tasks without explicit human intervention

Basic components to achieve autonomy:

Micro Aerial Vehicle Autonomy | Control

Autonomous robot is an intelligent machine able to perform tasks without explicit human intervention

Basic components to achieve autonomy:

Control for Micro Aerial Vehicles

- Vehicle dynamics in inertial frame W
 - Translational dynamics

$$\dot{\boldsymbol{p}} = \boldsymbol{R}_{IB} \boldsymbol{p}$$

$$B\dot{\boldsymbol{v}} = \boldsymbol{\omega} \times {}_{B}\boldsymbol{v} + \begin{pmatrix} 0 \\ 0 \\ \frac{U_{1}}{m} \end{pmatrix} + \boldsymbol{R}_{IB}^{T} \boldsymbol{g}$$
Usually negligible small

Rotational dynamics

$$\dot{\boldsymbol{R}}_{IB} = \boldsymbol{R}_{IB} \hat{\boldsymbol{\omega}}$$

$$\dot{\boldsymbol{\omega}} = \boldsymbol{J}^{-1} \left(-\boldsymbol{\omega} \times \boldsymbol{J} \boldsymbol{\omega} + \begin{pmatrix} U_2 \\ U_3 \\ U_4 \end{pmatrix} \right)$$

- Vehicle dynamics
 - Translational dynamics

$$\mathbf{\ddot{p}} = \mathbf{R}_{IB} \mathbf{v} \qquad \mathbf{p}: \text{ vehicle position in inertial frame} \\
\mathbf{\ddot{v}} = -\boldsymbol{\omega} \times {}_{B}\boldsymbol{v} + \begin{pmatrix} 0 \\ 0 \\ \frac{U_{1}}{m} \end{pmatrix} + \mathbf{R}_{IB}^{T} \mathbf{g} \qquad \mathbf{v}: \text{ vehicle velocity in inertial frame} \\
\mathbf{m}: \text{ vehicle mass}$$

Rotational dynamics

$$\begin{cases}
\dot{R}_{IB} = R_{IB}\hat{\omega} & \text{frame to inertial frame} \\
\dot{\omega} = J^{-1} \left(-\omega \times J\omega + \begin{pmatrix} U_2 \\ U_3 \\ U_4 \end{pmatrix} \right) & \omega \text{: vehicle angular velocity} \\
J \text{: vehicle inertia tensor}
\end{cases}$$

p: vehicle position in inertial frame

m: vehicle mass

g: the gravitational acceleration in inertial frame

 $R_{IB} \in SO(3)$: is the rotation matrix from body

 $U_1 \dots U_4$: virtual control inputs

Virtual control input (Control allocation)

$$\begin{pmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \end{pmatrix} = A \begin{pmatrix} \omega_1^2 \\ \vdots \\ \omega_{n_r}^2 \end{pmatrix}$$

A: allocation matrix dependent on rotors geometric configuration

 ω_i : rotational velocity of i-th rotor

 n_r : number of rotors

Control block diagram

^{*}Lee, Taeyoung, Melvin Leoky, and N. Harris McClamroch. "Geometric tracking control of a quadrotor UAV on SE (3)." 49th IEEE conference on decision and control (CDC). IEEE, 2010.

Trajectory Tracking Controller

$$e_p = p - p_d$$

 $e_v = v - v_d$

$$_{I}x_{temp}^{d} = (\cos\psi_{d} \quad \sin\psi_{d} \quad 0)^{T}$$

feed-forward term

$$_{I}y_{B}^{d} = \frac{_{I}z_{B}^{d} \times _{I}x_{temp}^{d}}{\|_{I}z_{B}^{d} \times _{I}x_{temp}^{d}\|}$$

From this construct $\mathbf{R}_{IB}^d = (\mathbf{y}_B^d \times \mathbf{z}_B^d \mathbf{y}_B^d \mathbf{z}_B^d)$

Control block diagram

- Attitude control
 - Attitude dynamics are evolving on a nonlinear manifold SO(3)
 - Euler angles will always have a singularity
 - PD attitude controller is not globally stable, instability occurs at large angular error

Attitude control

$$\begin{pmatrix} U_2 \\ U_3 \\ U_4 \end{pmatrix} = -K_R e_R - K_\omega e_\omega$$
 v-map: the inverse of the hat map Skew-symmetric matrix to vector

v-map: the inverse of the hat map.

$$\boldsymbol{e}_{\boldsymbol{R}} = \frac{1}{2} \left(\left(\boldsymbol{R}_{IB}^{d} \right)^{T} \boldsymbol{R}_{IB} - \boldsymbol{R}_{IB}^{T} \boldsymbol{R}_{IB}^{d} \right)^{\vee}$$

$$\boldsymbol{e}_{\boldsymbol{\omega}} = \boldsymbol{\omega} - \boldsymbol{R}_{IB}^T \boldsymbol{R}_{IB}^d \boldsymbol{\omega}_{\boldsymbol{d}}$$

- Trajectory Tracking Controller
 - Control input

Project thrust vector along current body z-axis

$$U_1 = \left(-K_p e_p - K_v e_v - m(g - a_d)\right) \cdot z_B$$

$$\begin{pmatrix} U_2 \\ U_3 \\ U_4 \end{pmatrix} = -K_R e_R - K_\omega e_\omega + \omega \times J\omega$$

This controller is "almost" globally exponentially stable. This means it can stabilize the vehicle from any initial attitude, except for a set of critical points.

Virtual control input (Control allocation)

$$\begin{pmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \end{pmatrix} = A \begin{pmatrix} \omega_1^2 \\ \vdots \\ \omega_{n_r}^2 \end{pmatrix}$$

A: allocation matrix dependent on rotors geometric configuration

 ω_i : rotational velocity of i-th rotor

 n_r : number of rotors

Control block diagram

- MPC for MAV Trajectory Tracking
 - A simplified model of the system is used to predict the vehicle behavior as a function of the control input
 - Every sampling time, an optimization problem is solved to find the "best" control input that respects system physical constraints
 - In the simple case of no constraints and linearized system, the problem can be solved offline, leading to LQR controller
 - It could be computationally demanding to solve the optimization problem online every time step.

MPC for MAV Trajectory Tracking

- MPC for MAV Trajectory Tracking
 - The Optimal Control Problem we solve every step is given by

$$\min_{\boldsymbol{X},\boldsymbol{U}} \int_{t=0}^{T} \left\| \boldsymbol{x}(t) - \boldsymbol{x}_{ref} \right\|_{\boldsymbol{Q}_{\boldsymbol{X}}} + \left\| \boldsymbol{u}(t) - \boldsymbol{u}_{ref} \right\|_{\boldsymbol{R}_{\boldsymbol{U}}} dt + \left\| \boldsymbol{x}(T) \right\|_{\boldsymbol{P}}$$

$$subject \ to: \begin{cases} \dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}) \\ \boldsymbol{u}(t) \in \mathbb{U} \\ \boldsymbol{x}(t) \in \mathbb{X} \\ \boldsymbol{x}(0) = \boldsymbol{x}(t_0) \end{cases}$$

 Q_x : the penalty on state error

 R_u : the penalty on the control input

P: terminal state penalty

Efficient solvers can solve this OCP problem in less than 2 ms

- MPC for MAV Trajectory Tracking
 - system dynamics are taken into account
 - can handle constraints
 - computationally efficient
 - ensures performance and robustness

Control for MAVs | Machine Learning Based

Fully autonomous airshow

Control for MAVs | Machine Learning Based

Control using reinforcement learning

Controller performance with varying iterations.

The task is to reach the goal pose marked in red from random initial states.

Micro Aerial Vehicle Autonomy | Perception

Autonomous robot is an intelligent machine able to perform tasks without explicit human intervention

Basic components to achieve autonomy:

ETH zürich

Robot Dynamics

Rotary Wing UAS: Case Study

Victor Reijgwart

151-0851-00 V

Marco Hutter, Roland Siegwart and Thomas Stastny

Micro Aerial Vehicle Autonomy | Perception

Autonomous robot is an intelligent machine able to perform tasks without explicit human intervention

Basic components to achieve autonomy:

Perception for Micro Aerial Vehicles

Perception for MAVs

State Estimation (relative, 50-200 hz)

Mapping

Localization (absolute, few hz)

Perception for MAVs | Sensors

- Typical navigation sensors:
 - Inertial sensors (IMU)
 - Accelerometers
 - Gyroscope
 - Camera (mono, stereo, depth)
 - LiDAR
 - **GPS**
 - Magnetometer (compass)
 - Barometers (pressure sensor)

Perception for MAVs | Sensors

Nikolic, Janosch, et al. "A synchronized visual-inertial sensor system with FPGA pre-processing for accurate real-time SLAM." *Robotics and Automation (ICRA), 2014 IEEE International Conference on.* IEEE, 2014.

Perception for MAVs

- Perception onboard of MAVs is challenging:
 - Limited computation power
 - Limited payload
 - Limited sensor quality
 - Fast dynamics
 - Unlike ground robots, MAVs operate in 3D space

Perception for MAVs | State Estimation

- In a perfect world: Twice integrate accelerations and rotational velocities from IMU
 - (doesn't work IMU has non-zero mean noise = BIAS!)
- Idea: Use sensor fusion to constrain/compensate!
- Common:
 - GPS + IMU (Accelerometer + Gyroscope)
 - Visual-Inertial: Camera + IMU (Accelerometer + Gyroscope)

- Kalman Filter based approach:
 - Predict using IMU
 - Update using Pixels intensity error
 - Robust against aggressive motion and illumination change
 - Computationally efficient
 - Large drift over time

Bloesch, Michael, et al. "Iterated Extended Kalman Filter Based Visual-Inertial Odometry Using Direct Photometric Feedback." The International Journal of Robotics Research 36, no. 10 (September 2017): 1053-72. https://doi.org/10.1177/0278364917728574.

Bloesch, Michael, et al. "Iterated Extended Kalman Filter Based Visual-Inertial Odometry Using Direct Photometric Feedback." The International Journal of Robotics Research 36, no. 10 (September 2017): 1053–72. https://doi.org/10.1177/0278364917728574.

- Keyframe/Graph based approach
 - Extract features from frames, triangulate and match them
 - Cannot keep track of everything solution: use keyframes
 - Optimization based method
 - Small drift over time
 - Computationally expensive

Leutenegger, Stefan, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale. "Keyframe-Based Visual-Inertial Odometry Using Nonlinear Optimization." The International Journal of Robotics Research 34, no. 3 (March 2015): 314-34. https://doi.org/10.1177/0278364914554813.

Leutenegger, Stefan, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale. "Keyframe-Based Visual-Inertial Odometry Using Nonlinear Optimization." The International Journal of Robotics Research 34, no. 3 (March 2015): 314-34. https://doi.org/10.1177/0278364914554813.

Leutenegger, Stefan, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale. "Keyframe-Based Visual-Inertial Odometry Using Nonlinear Optimization." The International Journal of Robotics Research 34, no. 3 (March 2015): 314–34. https://doi.org/10.1177/0278364914554813.

Leutenegger, Stefan, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale. "Keyframe-Based Visual-Inertial Odometry Using Nonlinear Optimization." The International Journal of Robotics Research 34, no. 3 (March 2015): 314-34. https://doi.org/10.1177/0278364914554813.

Leutenegger, Stefan, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale. "Keyframe-Based Visual-Inertial Odometry Using Nonlinear Optimization." The International Journal of Robotics Research 34, no. 3 (March 2015): 314-34. https://doi.org/10.1177/0278364914554813.

Perception for MAVs | Sparse Feature Map

Schneider, Thomas, Marcin Dymczyk, Marius Fehr, Kevin Egger, Simon Lynen, Igor Gilitschenski, and Roland Siegwart. "Maplab: An Open Framework for Research in Visual-Inertial Mapping and Localization." IEEE Robotics and Automation Letters 3, no. 3 (July 2018): 1418–25. https://doi.org/10.1109/LRA.2018.2800113.

- Problem: Acquire model of physical environment by a moving robot
- Representation
 - Triangulated Features
 - Topological
 - Volumetric
 - Semantic (Humans)

- Issues with naive occupancy grid
 - Fixed resolution either very coarse or very memory inefficient
 - Sensor noise not accounted for not probabilistic
 - No gradient for planning
 - If we plan through an obstacle, which way do we need to adjust our plan?

- OctoMap (An Efficient Probabilistic 3D Mapping Framework):
 - Grid can be subdivided (octree)
 - Uses probabilistic occupancy estimation
 - Able to model Free, Occupied and Unknown space
 - Memory efficient for large scale environment
 - Assumes known robot pose

Hornung, Armin, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard. "OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees." Autonomous Robots 34, no. 3 (April 2013): 189–206. https://doi.org/10.1007/s10514-012-9321-0.

What if we include distances? E.g. Center of cell to obstacle?
 (greener = further away from obstacle)

- Voxblox
 - Volumetric mapping library
 - Runs realtime on board
 - Constructs occupancy grid and distance fields (ESDF/TSDF)
 - See paper for how they are constructed

Oleynikova, Helen, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto. "Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-Board MAV Planning," 1366–73. IEEE, 2017. https://doi.org/10.1109/IROS.2017.8202315.

Oleynikova, Helen, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto. "Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-Board MAV Planning," 1366–73. IEEE, 2017. https://doi.org/10.1109/IROS.2017.8202315.

Micro Aerial Vehicle Autonomy | Planning

Autonomous robot is an intelligent machine able to perform tasks without explicit human intervention

Basic components to achieve autonomy:

Motion Planning for Micro Aerial Vehicles

Motion Planning for MAVs | Introduction

What is motion planning?

Compute a continuous sequence of **collision-free** robot configuration connecting **initial and goal configurations**

- Motion Planning algorithm input:
 - Initial and goal configurations
 - Environment model
 - Robot kinematics and geometry
- Motion Planning algorithm output:
 - Collision-free path from initial to goal configuration

Motion Planning for MAVs | Example CHOMP

- Plan direct path
- Move control points away along gradient if collision
- Keep smoothness!
- Iterate

Algorithm: Matthew Zucker, et. al. "CHOMP: Covariant Hamiltonian Optimization for Motion Planning" Journal Article, Carnegie Mellon University, International Journal of Robotics Research, May, 2013

Motion Planning for MAVs | Example CHOMP

Visualization: Chris Dellin, https://www.youtube.com/watch?v=41UYgGHGSSo
Algorithm: Matthew Zucker, et. al. "CHOMP: Covariant Hamiltonian Optimization for Motion Planning" Journal Article, Carnegie Mellon University, International Journal of Robotics Research, May, 2013

Motion Planning for MAVs | Collision Avoidance

