

Regularization

K. Breininger, V. Christlein, Z. Yang, L. Rist, M. Nau, S. Jaganathan, C. Liu, N. Maul, L. Folle, M. Zinnen,

K Packhäuser

Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-Nürnberg

October 28, 2024

Tasks in this exercise

- 1. Optimization Constraints: Augmenting the loss function
- Dropout Layer
- 3. Batch Normalization Layer
- 4. LeNet: Put everything together (optional)
- 5. RNN layer: Elman Unit
- 6. LSTM layer: Backpropagation at its best! (optional)

Optimization Constraints: Loss function augmentation

- · Constraints change the total loss ...
- ... and have influence on the weight update of the respective layer!

- Constraints change the total loss ...
- ... and have influence on the weight update of the respective layer!
- Implement constraints as separate classes
- → Independent of loss function

- Constraints change the total loss ...
- ... and have influence on the weight update of the respective layer!
- · Implement constraints as separate classes
- → Independent of loss function
- Constraints only need current weights
- → Add constraint objects in the optimizer

- Constraints change the total loss ...
- ... and have influence on the weight update of the respective layer!
- Implement constraints as separate classes
- → Independent of loss function
- Constraints only need current weights
- → Add constraint objects in the optimizer
- Since constraints generate part of the loss:
- → Change Neural Network container class (and associated classes) to "channel" and gather regularization loss for all layers

Workflow

- Forward pass
- → Calculate norm of weights in each trainable layer and gather as regularization loss
- → Add regularization loss to the final loss

Workflow

- Forward pass
- → Calculate norm of weights in each trainable layer and gather as regularization loss
- → Add regularization loss to the final loss
- Backward pass
- → In each trainable layer, include the gradient of norm when calculating update

· Forward pass:

$$\tilde{L}(\mathbf{w}) = L(\mathbf{w}) + \frac{\lambda}{\lambda} \|\mathbf{w}\|_2^2$$

· Backward pass:

$$\mathbf{w}^{(k+1)} = \underbrace{\left(1 - \eta \frac{\lambda}{\lambda}\right) \mathbf{w}^{(k)}}_{\text{Shrinkage}} - \eta \frac{\partial L}{\partial \mathbf{w}^{(k)}}$$

Forward pass:

$$\tilde{L}(\mathbf{w}) = L(\mathbf{w}) + \frac{\lambda}{\lambda} \|\mathbf{w}\|_2^2$$

Backward pass:

$$\mathbf{w}^{(k+1)} = \underbrace{(1 - \eta \lambda) \mathbf{w}^{(k)}}_{\text{Shrinkage}} - \eta \frac{\partial L}{\partial \mathbf{w}^{(k)}}$$

 In the Forward pass the L2 norm gets squared, which eliminates the square root inside and increases the numerical stability as the gradient is easier to compute.

Forward pass:

$$\tilde{L}(\mathbf{w}) = L(\mathbf{w}) + \frac{\lambda}{\lambda} \|\mathbf{w}\|_2^2$$

Backward pass:

$$\mathbf{w}^{(k+1)} = \underbrace{(1 - \eta \lambda) \mathbf{w}^{(k)}}_{\text{Shrinkage}} - \eta \frac{\partial L}{\partial \mathbf{w}^{(k)}}$$

- In the Forward pass the L2 norm gets squared, which eliminates the square root inside and increases the numerical stability as the gradient is easier to compute.
- Notice for matrices we compute here the Frobenius norm, not the Spectral norm.

Forward pass:

$$\tilde{L}(\mathbf{w}) = L(\mathbf{w}) + \frac{\lambda}{\lambda} \|\mathbf{w}\|_2^2$$

Backward pass:

$$\mathbf{w}^{(k+1)} = \underbrace{(1 - \eta \lambda) \mathbf{w}^{(k)}}_{\text{Shrinkage}} - \eta \frac{\partial L}{\partial \mathbf{w}^{(k)}}$$

- In the Forward pass the L2 norm gets squared, which eliminates the square root inside and increases the numerical stability as the gradient is easier to compute.
- Notice for matrices we compute here the Frobenius norm, not the Spectral norm.
- The influence of constraints is controlled via λ. Because lambda is a python keyword, you want to use e.g. alpha instead.

Forward pass:

$$\tilde{L}(\mathbf{w}) = L(\mathbf{w}) + \frac{\lambda}{\lambda} \|\mathbf{w}\|_1$$

Backward pass:

$$\mathbf{w}^{(k+1)} = \underbrace{\mathbf{w}^{(k)} - \eta \lambda \operatorname{sign}\left(\mathbf{w}^{(k)}\right)}_{\text{Other shrinkage}} - \eta \frac{\partial L}{\partial \mathbf{w}^{(k)}}$$

Dropout

Method

Figure: Dropout

• Implement this as a fixed-function layer

Method

Figure: Dropout

- Implement this as a fixed-function layer
- Randomly set **activations** \mapsto 0 with probability 1 -p

Method

Figure: Dropout

- Implement this as a fixed-function layer
- Randomly set **activations** \mapsto 0 with probability 1 -p
- Test-time: multiply activations with p

Inverted Dropout

• Can we get rid of the dropout layer at test-time?

Inverted Dropout

- Can we get rid of the dropout layer at test-time?
- → Change the behavior during training
- Multiply activations in forward-pass only during training by $\frac{1}{p}$
- Note: the backward pass has to be adapted as well!

Batch normalization

ightarrow Normalization as a new layer with 2 parameters, γ and $oldsymbol{eta}$

ightarrow Normalization as a new layer with 2 parameters, γ and $oldsymbol{eta}$

$$ilde{ extsf{X}} = rac{ extsf{X} - \mu_{B}}{\sqrt{\sigma_{B}^{2} + \epsilon}}$$

 μ_B and σ_B^2 from **batch**

ightarrow Normalization as a new layer with 2 parameters, γ and $oldsymbol{eta}$

$$ilde{ extsf{X}} = rac{ extsf{X} - \mu_{B}}{\sqrt{\sigma_{B}^{2} + \epsilon}}$$

 μ_B and σ_B^2 from **batch**

$$\hat{\mathbf{Y}} = \gamma \tilde{\mathbf{X}} + \boldsymbol{eta}$$

ightarrow Normalization as a new layer with 2 parameters, γ and eta

$$ilde{ extsf{X}} = rac{ extsf{X} - \mu_{B}}{\sqrt{\sigma_{B}^{2} + \epsilon}}$$

 μ_B and σ_B^2 from **batch**

$$\hat{\mathbf{Y}} = \gamma \tilde{\mathbf{X}} + \boldsymbol{eta}$$

ullet μ , σ^2 have the same dimension as the input vectors

ightarrow Normalization as a new layer with 2 parameters, γ and eta

$$ilde{ extsf{X}} = rac{ extsf{X} - oldsymbol{\mu}_B}{\sqrt{oldsymbol{\sigma}_B^2 + oldsymbol{\epsilon}}}$$

 μ_{B} and σ_{B}^{2} from **batch**

$$\hat{\mathbf{Y}} = \gamma \tilde{\mathbf{X}} + \boldsymbol{eta}$$

- μ , σ^2 have the same dimension as the input vectors
- ullet eta , $oldsymbol{\gamma}$ and μ_{B} , σ_{B}^{2} have same **dimension** to be able to preserve **identity**

ightarrow Normalization as a new layer with 2 parameters, γ and eta

$$ilde{ extsf{X}} = rac{ extsf{X} - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

 μ_{B} and σ_{B}^{2} from **batch**

$$\hat{\mathbf{Y}} = \gamma \tilde{\mathbf{X}} + \boldsymbol{eta}$$

- μ , σ^2 have the same dimension as the input vectors
- ullet eta , $oldsymbol{\gamma}$ and μ_{B} , σ_{B}^{2} have same **dimension** to be able to preserve **identity**
- Notice that β is a **bias**

ullet Test-time: replace μ_B and σ_B^2 with μ and σ^2 of the **training set**

- ullet Test-time: replace μ_B and σ_B^2 with μ and σ^2 of the **training set**
- It's expensive to calculate the true training set mean and variance

- ullet Test-time: replace μ_B and σ_B^2 with μ and σ^2 of the **training set**
- It's expensive to calculate the true training set mean and variance
- Therefore a moving average is common:

$$\tilde{\mu}^{(k)} \approx \alpha \tilde{\mu}^{(k-1)} + (1 - \alpha) \mu_B^{(k)}$$

$$\tilde{\sigma}^{2(k)} \approx \alpha \tilde{\sigma}^{2(k-1)} + (1 - \alpha) \sigma_B^{2(k)}$$

- ullet Test-time: replace μ_B and σ_B^2 with μ and σ^2 of the **training set**
- It's expensive to calculate the true training set mean and variance
- Therefore a moving average is common:

$$\tilde{\mu}^{(k)} \approx \alpha \tilde{\mu}^{(k-1)} + (1 - \alpha) \mu_B^{(k)}$$

$$\tilde{\sigma}^{2(k)} \approx \alpha \tilde{\sigma}^{2(k-1)} + (1 - \alpha) \sigma_B^{2(k)}$$

- Moving average decay α (e.g. 0.8)
- The exponent (k) and (k-1) are iteration-indices!

Gradient with respect to weights is simply:

$$\frac{\partial L}{\partial \boldsymbol{\gamma}} = \sum_{b=1}^{B} \frac{\partial L}{\partial \hat{\mathbf{Y}}_{b}} \tilde{\mathbf{X}}_{b} = \sum_{b=1}^{B} \mathbf{E}_{b} \tilde{\mathbf{X}}_{b}$$

For the bias likewise we have:

$$\frac{\partial L}{\partial \boldsymbol{\beta}} = \sum_{b=1}^{B} \frac{\partial L}{\partial \hat{\mathbf{Y}}_{b}} = \sum_{b=1}^{B} \mathbf{E}_{b}$$

The gradient with respect to the input is more complicated, but here it is:

$$\begin{split} &\frac{\partial L}{\partial \tilde{\mathbf{X}}} = \frac{\partial L}{\partial \hat{\mathbf{Y}}} \odot \mathbf{Y} \\ &\frac{\partial L}{\partial \boldsymbol{\sigma}_{B}^{2}} = \sum_{b=1}^{B} \frac{\partial L}{\partial \tilde{\mathbf{X}}_{b}} \odot \left(\mathbf{X}_{b} - \boldsymbol{\mu}_{B} \right) \odot \frac{-1}{2} \left(\boldsymbol{\sigma}_{B}^{2} + \boldsymbol{\epsilon} \right)^{\frac{-3}{2}} \\ &\frac{\partial L}{\partial \boldsymbol{\mu}_{B}} = \left(\sum_{b=1}^{B} \frac{\partial L}{\partial \tilde{\mathbf{X}}_{b}} \odot \frac{-1}{\sqrt{\boldsymbol{\sigma}_{B}^{2} + \boldsymbol{\epsilon}}} \right) + \underbrace{\frac{\partial L}{\partial \boldsymbol{\sigma}_{B}^{2}} \odot \frac{\sum_{b=1}^{B} -2(\mathbf{X}_{b} - \boldsymbol{\mu}_{B})}{B}}_{0} \\ &\frac{\partial L}{\partial \mathbf{X}} = \frac{\partial L}{\partial \tilde{\mathbf{X}}} \odot \frac{1}{\sqrt{\boldsymbol{\sigma}_{B}^{2} + \boldsymbol{\epsilon}}} + \frac{\partial L}{\partial \boldsymbol{\sigma}_{B}^{2}} \odot \frac{2(\mathbf{X} - \boldsymbol{\mu}_{B})}{B} + \frac{\partial L}{\partial \boldsymbol{\mu}_{B}} \odot \frac{1}{B} \end{split}$$

• ① denotes an element-wise multiplication. Always check the dimensionality of your matrices!

- denotes an element-wise multiplication. Always check the dimensionality of your matrices!
- To make life easier, we will provide the code for the computation of the gradient with respect to the input:

- denotes an element-wise multiplication. Always check the dimensionality of your matrices!
- To make life easier, we will provide the code for the computation of the gradient with respect to the input:
- compute_bn_gradients

• In CNNs batch normalization is adjusted to work similar to convolution

- In CNNs batch normalization is adjusted to work similar to convolution
- A scalar μ , σ is calculated for the H channels

- In CNNs batch normalization is adjusted to work similar to convolution
- A scalar μ , σ is calculated for the H channels
- Implementation can be reused, by observing
 - \rightarrow that spatial dimensions M, N can be treated like the batch dimension B

- In CNNs batch normalization is adjusted to work similar to convolution
- A scalar μ , σ is calculated for the H channels
- Implementation can be reused, by observing
 - \rightarrow that spatial dimensions M, N can be treated like the batch dimension B
 - \rightarrow we can **reshape** the $B \times H \times M \times N$ tensor to $B \times H \times M \cdot N$
 - → because of our format we have to transpose from B × H × M · N to B × M · N × H
 - \rightarrow and afterwards **reshape again** to have a $B \cdot M \cdot N \times H$ tensor

- In CNNs batch normalization is adjusted to work similar to convolution
- A scalar μ , σ is calculated for the H channels
- Implementation can be reused, by observing
 - \rightarrow that spatial dimensions M, N can be treated like the batch dimension B
 - \rightarrow we can **reshape** the $B \times H \times M \times N$ tensor to $B \times H \times M \cdot N$
 - → because of our format we have to transpose from B × H × M · N to B × M · N × H
 - \rightarrow and afterwards **reshape again** to have a $B \cdot M \cdot N \times H$ tensor
- Consequently we have to reverse this before returning the output

- In CNNs batch normalization is adjusted to work similar to convolution
- A scalar μ , σ is calculated for the H channels
- Implementation can be reused, by observing
 - \rightarrow that spatial dimensions M, N can be treated like the batch dimension B
 - \rightarrow we can **reshape** the $B \times H \times M \times N$ tensor to $B \times H \times M \cdot N$
 - → because of our format we have to transpose from B × H × M · N to B × M · N × H
 - \rightarrow and afterwards **reshape again** to have a $B \cdot M \cdot N \times H$ tensor
- Consequently we have to reverse this before returning the output
- ... and do the same in the backward pass

LeNet (optional)

LeNet architecture

Figure: LeNet

Modified LeNet architecture

Deviations

- Input is 28 × 28
- Our conv only supports "same" padding so C3 has larger activation maps
- Input to C5 is also larger
- We only implemented ReLUs, so no TanH
- We also use the implemented SoftMax instead of RBF units

Figure: LeNet

Thanks for listening.

Any questions?