# NAVAL POSTGRADUATE SCHOOL Monterey, California



# 19960618 005

#### A Combined (USN/USCG) Patrol Corvette (CPCX)

by

C.N. Calvano CDR M.A. Witt, USN LT E. Anderson, USN LT J. Comar, USCG LT J. Hurley, USCG

May 1996

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School Monterey, CA 93943

DTIC QUALITY INSPICIED 1

# DISCLAIMER NOTICE



THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

#### NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

REAR ADMIRAL M. J. EVANS, USN Superintendent

Dr. RICHARD S. ELSTER Provost

This report was prepared as an integral part of the Total Ship Systems Engineering program educational process. Externally provided funds were not used. Reproduction of all or part of this report is authorized

This report was prepared by:

CHARLES N. CALVANO

Associate Professor, Total Ship Systems Engineering

Mechanical Engineering Department

Reviewed by:

TERRY R. MCNELLEY

Chairman and Professor

Mechanical Engineering Department

Released by:

GORDON SCHACHER

Dean of Research (Acting)

#### REPORT DOCUMENTATION PAGE

AGENCY USE ONLY (Leave blank) 2 REPORT DATE

Form Approved
OMB No. 0704-0188

REPORT TYPE AND DATES COVERED

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, \$215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

| The state of the s | May 10, 1996                                                                                                         | Technic                                                                       | cal (7/95-12/95)                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------|
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |                                                                               | 5. FUNDING NUMBERS                                     |
| A Combined (USN/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | USCG) Patrol Corvette (C                                                                                             | CPCX)                                                                         |                                                        |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                               |                                                        |
| Prof. C. N. Calvano; C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DR M. A. Witt, USN; LT                                                                                               |                                                                               | •                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ohn Comar, USCG; LT Jii                                                                                              | m Hurley, USCG                                                                |                                                        |
| 7. PERFORMING ORGANIZATION NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      | 8. PERFORMING ORGANIZATION REPORT NUMBER                                      |                                                        |
| Naval Postgraduate Sch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hool                                                                                                                 |                                                                               | NPS-ME-96-004                                          |
| Monterey, CA 93943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                                                               |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , , , , , , , , , , , , , , , , , ,                                                                                |                                                                               |                                                        |
| 9. SPONSORING/MONITORING AGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NAME(S) AND ADDRESS(ES)                                                                                              |                                                                               | 10. SPONSORING / MONITORING<br>AGENCY REPORT NUMBER    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                               |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                               |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                               |                                                        |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                                                                               |                                                        |
| The views expressed in th officical policy or posit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is report are those                                                                                                  | ot the author and t of Defense on                                             | nd do not reflect the                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      | U U DETENSE UI                                                                |                                                        |
| 12a. DISTRIBUTION/AVAILABILITY STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TEMENT                                                                                                               |                                                                               | 12b. DISTRIBUTION CODE                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                    | ,                                                                             |                                                        |
| Approved for public rele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ase; distribution is                                                                                                 | unlimited.                                                                    |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                               |                                                        |
| 13. ABSTRACT (Maximum 200 words)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |                                                                               | <u> </u>                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | approach to the prelimina                                                                                            | ry design of a com                                                            | bined-usage (USN/USCG)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                               | vbreakers become more soph-                            |
| isticated and heavily-arn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ned, the Coast Guard's la                                                                                            | w enforcement ope                                                             | erations become more similar                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                    | •                                                                             | in Operations Other than                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      | •                                                                             | ions, is becoming more like                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                               | his situation, pursues two                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      | -                                                                             | •                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • , ,                                                                                                                |                                                                               | 0 0                                                    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                               | •                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                               | _                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                    |                                                                               | fectiveness and analysis of                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ares, as well as other design                                                                                        |                                                                               |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      | -                                                                             | V - V - C - T                                          |
| variants of a single basic<br>payload. Major objectiv<br>ship to be built than eith<br>between the two variants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c ship one with a Coast<br>wes of the design are (1) co<br>her service, alone, would n<br>s and (2) provision of the | Guard payload and ost savings by permaged, with a high deality to rapidly re- | d one with a Navy combat nitting larger numbers of the |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | as well as omer desi                                                                                                 | on ructors, are addre                                                         | ossou.                                                 |
| 14. SUBJECT TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                               | 15. NUMBER OF PAGES                                    |

Ship Design, corvette, Navy, Coast Guard, conversion

OF THIS PAGE

18. SECURITY CLASSIFICATION

**UNCLAS** 

NSN 7540-01-280-5500

OF REPORT

17. SECURITY CLASSIFICATION

**UNCLAS** 

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18

16. PRICE CODE

19. SECURITY CLASSIFICATION OF ABSTRACT

**UNCLAS** 

433

20. LIMITATION OF ABSTRACT

## COMBINED PATROL CORVETTE

## **CPCX**



Total Ship Systems Engineering

Report Authors
Prof. C. N. Calvano
Commander M. A. Witt, USN
LT Eric Anderson, USN
LT John Comar, USCG
LT Jim Hurley, USCG

May 1996

#### The Combined Patrol Corvette (CPCX)

This report documents a Total Ship Systems Engineering capstone design project undertaken by students at the Naval Postgraduate School, under the direction of Prof. C. N. Calvano, assisted by CDR M. A. Witt, USN. The design team consisted of: LCDR Jay Renken, USN; LT Eric Anderson, USN; LT Bob Armstrong, USN; LT John Comar, USCG; LT Jim Hurley, USCG; LT Helen Kilty, USCG; LT Thomas Jean, USN and LT Bob Jones, USN. These officer students all contributed to the performance of the design project over a six month period. The present report, however, represents a significant re-work of the team's design project report, hence the listed authorship of Calvano, Witt, Anderson, Comar and Hurley.

#### Abstract

A Systems Engineering approach to the preliminary design of a combined-usage (USN/USCG) corvette is presented. The design responds to recognition that as lawbreakers become more sophisticated and heavily-armed, the Coast Guard's law enforcement operations become more similar to warfare; and at the same time, the Navy's increasing involvement in Operations Other than War (OOW), such as sanction enforcement and humanitarian operations, is becoming more like traditional law enforcement operations.

The design, responding to this situation, pursues two variants of a single basic ship -one with a Coast Guard payload and one with a Navy combat payload. Major objectives of
the design are (1) cost savings by permitting larger numbers of the ship to be built than either
service, alone, would need, with a high degree of commonality between the two variants and
(2) provision of the ability to rapidly reconfigure the Coast Guard variant into the Navy
variant when there is an expectation of increased combatant ship needs. Mission analysis,
payload selection, development of measures of effectiveness and analysis of Naval
Architecture features, as well as other design factors, are addressed.

#### TABLE OF CONTENTS

| I. REQUIREMENTS PHASE                                   | 2    |
|---------------------------------------------------------|------|
| A. MISSION NEED STATEMENT/FACULTY GUIDANCE              | 2    |
| B. OPERATIONAL REQUIREMENTS DOCUMNET                    | 5    |
| II. FEASIBILITY STUDY/COMBAT SYSTEM SELECTION           | 17   |
| A. INTRODUCTION                                         | 17   |
| B. COMBAT SYSTEM REQUIREMENTS                           | 17   |
| C. FUNCTIONAL ALLOCATIONS                               | 18   |
| D. COMBAT SYSTEMS ELEMENTS                              | 18   |
| E. TRADE-OFF STUDY: SONAR                               | 18   |
| F. TRADE OFF STUDY: RADAR                               | 20   |
| G. MEASURES OF EFFECTIVENESS                            | 21   |
| H. WHOLE SHIP OPTIONS                                   | 26   |
| I. ELEMENT VS. ELEMENT INTERFACES                       | 26   |
| J. ELEMENST VS. SHIP SUPPORT SYSTEM                     | 26   |
| K. ELECTROMAGNETIC INTERFERENCE (EMI)                   | 28   |
| L. ANALYSIS OF OPTIONS                                  | 28   |
| M. RECOMMENDATION, NAVY                                 | 29   |
| N. RECOMENDATION, COAST GUARD                           | 30   |
| III. COMBAT SYSTEM JUSTIFICATION                        | . 31 |
| A. DETECTION SYSTEMS/SENSORS                            | 31   |
| B. COMMUNICATIONS                                       | 33   |
| C. WEAPON CONTROL                                       | 33   |
| D. NAVIGATION SYSTEM                                    | 34   |
| E. ENGAGEMENT/WEAPONS                                   | 34   |
| F. COUNTERMEASUERS                                      | 36   |
| IV. PRELIMINARY DESIGN PHASE                            | 38   |
| A. COMBAT SYSTEM ARCHITECTURE                           | 38   |
| B. HULL, MECHANICAL, AND ELECTRICAL (HM&E) ARCHITECTURE | 46   |
| C. ARRANGEMENTS                                         | 56   |
| D. NAVAL ARCHITECTURE                                   | 59   |
| E. DETAILED DRAWINGS                                    | 72   |
| F. MANNING AND BATTLE ORGANIZATION                      | 73   |
| G. CONVERSION                                           | 82   |
| V. DESIGN EVALUATION                                    | 84   |
| A. SURVIVABILITY FEATURES                               | 84   |
| B. FURTHER STUDY                                        | 85   |
| C. DESIGN AS A LEARNING TOOL                            | 86   |
| D. CONCLUSION                                           | 86   |
| LICT OF DEFENDE                                         | 00   |
| LIST OF REFERENCES                                      | 88   |

#### I. REQUIREMENTS PHASE

#### A. MISSION NEED STATEMENT/FACULTY GUIDANCE

The following was provided by the faculty as guidance for this Total Ship System Engineering design project.

#### 1. World View

The United States will continue to find itself faced with a threatening world, but one in which the nature of the threat is unpredictable. The following characteristics are expected to mark the world the U.S. must face in the timeframe 2000-2020:

- (a) Major, all-out oceanic Naval warfare will remain unlikely.
- (b) Regional conflicts among and between "third world" nations will be likely.
- (c) International (U.N., NATO) organizations will attempt to maintain world peace and order and U.S. forces will operate under control of such organizations.
- (d) Operations other than war (OOW) (trade interdiction, embargo, port closure, humanitarian relief, peacekeeping patrols, etc.) are likely employment for U.S. ships.
- (e) Budgets will remain extremely tight; the lack of a clear cut threat to the existence of the United States will make it difficult to obtain defense funding.
- (f) Pressures to decrease the size of the federal government and of the armed forces will continue, causing consolidations of roles for the armed forces.
  - (g) Proliferation of high-technology weapons among nations will continue.
- (h) Law enforcement at sea (anti-drug, anti-piracy, etc.) will get more frequent and be conducted against more sophisticated and more heavily-armed criminals.
- (i) The "CNN effect" will continue to make it vital to reduce the likelihood and numbers of U.S. (and even enemy) casualties.

#### 2. Background

There has been a lengthy national debate, involving the Congress, the State Department, DOD, other Executive Branch departments and the White House. It has been decided to proceed with a ship design and procurement that has the following characteristics.

- (a) There will be two variants of the ship. One will be operated by the Navy for its role in littoral operations and OOW; one will be operated by the Coast Guard in increasingly challenging law enforcement scenarios. It is noted that as the Navy does more OOW, its operations begin to look more like law enforcement; and that as the Coast Guard takes on more sophisticated and richer criminals, its operations will begin to look more like war. Hence a convergence toward a ship which can, at least in part, meet both needs has strong political attractiveness.
- (b) As much as possible of the two variants will be kept the same, to reduce costs and ease production. The variants will differ where that is made necessary by their different missions.
- (c) Keeping costs down is of great importance because it is intended to buy these ships in large numbers. There is a significant consensus that "small" is desirable.
- (d) To keep costs down, and reduce the risk to human life, the crews are to be small as feasible for the ships' size and equipment.
- (e) The ships are to use automation and other high technology approaches to make them survivable.
  - (f) Initial Operational Capability (IOC) is to be 2010.

#### 3. Guidance

The following is general guidance from senior levels in the Navy and Coast Guard.

Navy Variant:

(a) Will be fully deployable and fleet-compatible. The Coast Guard version will be

capable of easily being made so.

- (b) Will be operating in the presence of AEGIS combatants and, therefore, do not need an area AAW capability.
- (c) Must be capable of operating effectively in the littoral environment, with specific capabilities defined by the Operational Requirements Document.
- (d) Must be capable of independent as well as battlegroup operations; in the Coast Guard role, the ships will operate in one or two ship groups.

#### Coast Guard Variant:

- (a) Must be capable of detecting, intercepting and, if necessary, defeating well-equipped drug smugglers and pirates who may have the resources to purchase significant militarized equipment. Specific capabilities will be defined in the Operational Requirements Document.
  - (b) Will be used to interdict illegal immigration and smuggling.
  - (c) Must perform search and rescue.

#### Conversion:

(a) It would be desirable to be able, quickly and cheaply, to convert one variant into the other, with a short (less than four weeks) shippard availability. The design must provide for this conversion as much as is possible.

#### 4. Amplifying Information

The Coast Guard wants a ship whose primary uses will be drug, smuggling, and illegal immigration interdiction (board and search), fisheries protection, search and rescue, escort, navigation, and survey and general maritime police duties. Low maintenance and support costs is a primary concern.

The Navy wants a robust self defense capability, some strike capability and sophisticated air search capabilities. Low observability for special operations and operations in the littoral is considered a necessity. Helicopter capabilities will be essential and multi-mission considerations are expected to govern. The ship will support amphibious operations, perform choke point clearance and function as an alternative mine hunter. Cooperative Engagement Capability and the ability to operate in the rapidly-changing littoral environment are essential. A radar that handles land clutter well without losing low/slow targets is essential.

The applications of new technologies and concepts such as interlinking ship control, administration, combat systems, C<sup>4</sup> I data, training and control systems are desirable. The concept of human casualty avoidance possibly through reduced crew sizes, which in turn require excellent organic training capabilities, is an important feature to be considered for incorporation into the ship system.

#### B. OPERATIONAL REQUIREMENTS DOCUMENT

#### 1. Description Of Operational Capability

The system is defined as a Combined Patrol Corvette (CPCX) suitable for use by either the Coast Guard or the Navy. The ship will be required to operate in an all weather environments year-round in all oceans of the world, particularly in littoral waters. Transit of ice covered waters is not required. Two variants will be designed and each will be convertible into the other in a shipyard availability.

The Navy variant will provide independent forward presence and operate as an integral part of joint and allied maritime expeditionary warfare operations. CPCX will launch and support precision strike weapons and will provide firepower support for amphibious and other ground forces. The ship will protect itself and friendly forces against air, surface, and subsurface threats. CPCX will perform escort duties of other military and civilian craft. The ship will conduct and support special operation forces

worldwide. The ability to conduct blockade operations will be required. The ship will perform board and search operations, choke point clearance, picket and patrol duties and will function as an alternative mine hunter. The ship will maintain sea lines of communication and will protect and enforce the freedom of navigation of US and allied vessels in the navigable waters of the world. Coastal intelligence gathering will be conducted by the ship. Humanitarian assistance in the form of at sea rescues, emergency medical care, sustenance and protection will be provided. CPCX will be capable of both humanitarian evacuations and those resulting from military action. The ship will perform search and rescue (SAR) operations involving people and property.

The Coast Guard variant will primarily conduct SAR and Enforcement of Laws and Treaties operations. Humanitarian assistance in the form of at sea rescues, emergency medical care, sustenance and protection will be provided. The ship will detect, intercept, and defeat drug smugglers and pirates. It will also interdict illegal immigration and smuggling. Fisheries protection, escort, safety of navigation, survey, and general maritime police duties will be carried out by the Coast Guard variant. Coastal intelligence gathering will be conducted by the ship. Port security duties in the form of searching and boarding vessels will be performed. The ship will carry and station small navigational buoys. The ship will assist in the containment of oil spills. The Coast Guard variant will be capable of joining the Naval fleet in joint operations and in time of war.

#### 2. Threat Summary

While traits of projected threats cannot be predicted exactly, reasonable threat estimates can be made by identifying projected threat environments, extrapolating data from current weapon systems, and examining possible technologies for future weapon systems.

Major all-out oceanic warfare will remain unlikely while regional conflicts among and between third world nations will occur. Limited warfare in the littorals requires different resources than currently exist. Operations other than war such as trade

interdiction, embargo, port closure, humanitarian relief, and peacekeeping are expected. Proliferation of high technology weapons among nations will continue. Encountering more sophisticated and heavily armed criminals will be commonplace.

Future weapon systems include missile threats that, when compared to today's weapon systems, will be smaller, faster, capable of flying at lower or higher altitudes, will have smaller radar cross sections, and improved targeting and avoidance systems. Gun threats include guided as well as unguided projectiles that will be challenging to detect, engage, and defeat. Threats will also include combined arms attacks intent on eroding ship self-defenses and removing offensive capabilities.

Specific projected threats categorized by threat environments are as follows:

(1) Law Enforcement (Independent operations - ship operating independently in littoral waters):

Small arms - 20 mm and smaller bullets (armor piercing).

Projected grenades - 40 mm explosive and chemical.

Mortar - 80 mm explosive and chemical.

Guns - 76 mm, 20 km range.

Missiles - Mach 2.0, -40 dB, 3 km range.

(2) Low Intensity Conflict (Independent and Group operations - ship(s) operating jointly in littoral waters):

Small arms - 20 mm and smaller bullets (armor piercing).

Projected grenades - 40 mm explosive and chemical.

Mortar - 80 mm explosive and chemical.

Guns - 76 mm, 20 km range.

- 127 mm, 28 km range.

Missiles - Various flight profiles

- Mach 2.0, -40 dB, 3 km range.

- Mach 3.0, -35 dB, 100 km range.

- Mach 1.5, -30 dB, 200 km range.

Mines

- Bottom or moored, -25 dB.

**Torpedoes** 

- 100 knots, -30 dB, 7.5 km range.

(3) Major Regional Conflict (Force operations - operating as a junior member of an amphibious or carrier battle group task force in littoral or deep waters).

Guns

- 76 mm, 20 km range.

- 127 mm (unguided), 30 km range.

- 127 mm (guided), 30 km range.

ETC guns

- 127 mm (rocket assisted), 110 km range.

Missiles

- Various flight profiles

- Mach 2.0, -40 dB, 3 km range, dual mode seeker.

- Mach 3.0, -35 dB, 100 km range.

- Mach 1.5, -30 dB, 200 km range, dual mode seeker.

- Mach 4.0, -20 dB, 700 km range.

Mines

- Bottom or moored, -25 dB.

Torpedoes

- 100 knots, -30 dB, 7.5 km range.

#### 3. Shortcomings Of Existing Systems

Current ship designs are inadequate to meet the needs of the Navy and Coast Guard into the 21st century. Existing ship designs such as the Navy's Spruance, Kidd and Perry classes and the Coast Guard's Hamilton, Reliance and Bear class cutters will reach the end of service life before the year 2010. A new surface combatant is necessary to maintain the required surface combatant force level capable of countering the 2010 and beyond threat.

Present ship designs were built for open ocean battle group operations, with strong steady logistic support, and defense in depth. These ships were not designed to operate for extended periods far from the strength and support of the battle group. Our current

fleet is being taxed by the need to provide global forward presence in littoral waters with limited numbers of ships.

Present designs employ an inflexible architecture that prevents timely and cost effective updates and reconfigurations. Shortfalls include obsolete computers and software, with the inability to introduce subsystems into an effective total ship system. These shortfalls make current designs vulnerable to threats from advanced aircraft, small fast surface craft, mobile and fixed land-based weapon systems, and submarines.

Current designs have large manning requirements but have inadequate ship self-defense systems to protect the ship and its crew from close in attack. Shortfalls in accuracy, reaction time, target discrimination, and kill assessment create vulnerabilities. Mines and diesel submarines are cheap, viable threats that must be countered. Present ships have no mine avoidance capability and their active and passive sonar systems are designed for open ocean operations. They are vulnerable to attack from mines, torpedoes, and anti-ship missiles making them "littorally challenged."

#### 4. Range Of Capabilities Required

#### **BOTH VARIANTS**

CPCX must be able to operate independently in its patrol area. The ship must be fully interoperable with other Naval expeditionary, interagency, joint and allied forces. The ship must maneuver in formation at sustained Naval expeditionary force speeds in excess of 25 knots (kts). The ship will have a minimum range of 8000 nautical miles (nm) at a cruise speed of 14 kts. The ship must be able to perform seamanship, airmanship, and navigation tasks and to prevent and control damage. Underway fueling at sea capability is required as well as the ability to provide fuel to an astern rig. The ship must be able to embark and support armed rotary-wing aircraft, and conduct rotary-wing aircraft operations. The ability to stop, board and disable other vessels is required. CPCX will have a reduced electronic, magnetic, thermal, and acoustic signature to achieve low observability. A sensor suite able to operate in both open ocean and close to land with

minimal detection degradation is required. The communications suite must have an integrated database capable of interfacing in a Joint Task Force/Combined Task Force (JTF/CTF) environment to include compatibility with joint systems such as the Global Command and Control System (GCCS) and the Joint Worldwide Intelligence Communications System (JWICS). The ship must have a full suite of radios and antennas to support full connectivity via EHF/SHF/UHF/SATCOM. The ship must be able to support the equipment and personnel of a mine disposal system. Weather deck connections for temporary sewage and sanitation facilities must be provided. In water personnel rescue is required from the ship. The ship will be capable of providing routine health care, first aid assistance, triage, and resuscitation, to include care of evacuees numbering 50% of crew size. Towing capability is needed for seized vessels up to 10,000 LT displacement. Multi-purpose ship's small boats will be readily deployable, have a minimum capacity of 8 people, and be able to perform in waters up to sea state 4. Modularized mission specific items for future updates will be used and will lend toward quick conversion between variants. Minimization of crew size while maintaining capability is essential.

#### **NAVY VARIANT**

The ship must destroy or neutralize enemy targets afloat and ashore through the use of coordinated, precision strike weapons. The ship must be capable of performing ship self defense against foreign military enemies and civilian terrorists at sea and in port. The ship must be capable of conducting engagements cooperatively with other ships, submarines, aircraft, space systems, and land systems. The ship must detect and chart underwater mines. The ship must detect, identify, and engage air, surface, and underwater threats. The ship must capable of defending itself against raids comprised of 3 ASCMs arriving within a one minute interval.

#### COAST GUARD VARIANT

The ship must destroy or neutralize enemy targets afloat and ashore. The ship must be capable of performing ship self defense against foreign military enemies and

civilian terrorists at sea and in port. The ship must be capable of conducting engagements with other ships, military and civilian aircraft, and land systems. The ship must detect and chart underwater mines. The ship must detect, identify, and engage air and surface threats. Capability to transport and station small navigational buoys is required. A system for prisoner containment will be provided.

#### 5. Integrated Logistic Support (ILS)

The ultimate goal of the logistic support system will be to develop a "paperless" ship, one that is able to devote 100% of its personnel and equipment to its assigned missions. The CPCX will be designed with a squadron type basing system. This will simplify the logistic support planning and requirements.

Maintenance Planning: The CPCX will incorporate minimum-manning concepts wherever possible. The onboard crews will be expected to perform routine, recurring minor maintenance (less than 3 hours per individual task) and casualty repairs while underway. Shore based Maintenance Augmentation Teams (MAT) will assist the ship's force with non-depot level maintenance and repairs while the CPCX is in port. MATs shall incorporate both contract and government personnel. The maintenance philosophy will consist of the Preventative Maintenance System (PMS) and Condition Based Maintenance System (CBMS). CBMS shall be implemented to the greatest extent possible using the technology available.

Depot level repair: Systems shall be designed for extended cycles between depot level availabilities. A 5 year drydocking cycle with one pierside availability near the halfway point shall be the minimum major maintenance intervals.

Support Equipment: All combat and HM&E systems shall include built-in diagnostic capabilities to reduce troubleshooting man-hours. Artificial intelligence driven trouble-shooting systems are to be included with all combat and HM&E systems. Tools required for onboard maintenance and repair shall be available on CPCX. This shall

include a small machine shop for emergency repair (underway) functions. The use of special tools required for maintenance and repair shall be minimized.

Human Systems Integration: The use of minimum-manning requires each crewmember to be trained for multiple skills. Pipeline and/or squadron training facilities shall be utilized to reduce on-the-job training (OJT) requirements for primary skills. This will enable OJT to be utilized for cross-training. Combat systems and HM&E systems (to the greatest extent possible) shall incorporate individual and team training functions without external support.

Computer Resources: Software shall be written using existing languages with code length and storage requirements minimized to the greatest extent possible. Hardware shall consist of militarized Commercial-Off-the-Shelf (COTS) equipment wherever possible, militarized only as required. Components chosen shall be open systems compliant.

Other Logistic Considerations: Provisioning shall be consistent with current Navy/Coast Guard policy at the time of implementation. Home port piers shall be designed to moor at least one half of a six-ship squadron at all times. Adequate office space shall be provided for squadron staff, consistent with the goals of this system, the "paperless ship".

#### 6. Infrastructure Support and Interoperability

The CPCX shall be designed as a squadron supported ship. It will be based in large groups (6 or more). The CPCX will depend on its squadron staff for the bulk of its administration, maintenance, planning, contracting, supply, training, and personnel functions thereby minimizing manning requirements on the ships.

The CPCX shall be designed with standardization (within ship class) as a priority. The ability for a rapid reconfiguration between the Navy and Coast Guard variants is desired. Commonality with existing US and NATO systems to the greatest extent possible is highly desired.

#### 7. Force Structure

The introduction of a corvette sized hull with modular combat systems suitable for mission tailoring for combined Navy and Coast Guard use would require a change in the mindset of ship-counters. These combined service corvettes are not suited to be one for one replacements for ships of the line such as DDG-51 class destroyers and CG-47 class cruisers and will not be expected to fulfill all the missions of an Aegis fleet. CPCX cannot be viewed as one for one replacements for the DD-693 and FFG-7 classes because of differences in the types of missions required in the littoral regions of the world.

Although the CPCX would not be a direct replacement for current combatants, ship class life cycle comparisons provide a basis for the future force structure. In 2005 the DD-963 hull will have completed 30 years of service and will be nearing the retirement phase of the Spruance and Kidd Classes (35 hulls 1200 officers, 11,100 crew). In 2007 the FFG-7 will have completed 30 years of service and will be nearing the retirement phase of the Oliver Hazard Perry Class (51 hulls, 1000 officers, 10,000 crew). In 2013 the CG-47 will have completed 30 years of service and will either be upgraded to extend their life cycle or begin the retirement phase of the Ticonderoga Class (27 hulls, 900 officers, 10,000 crew). In 2011 the DDG-51 will have been in service for 20 years and will still have at least 10 years of service remaining for the Burke Class (28 hulls, 644 officers, 7,840 crew). With the retirement of the non-Aegis ships and the high cost of the Aegis platforms, the CPCX would be ideally suited to perform independent or small group operations in the littorals or support battle group or amphibious group operations.

In view of this information, the integration of the CPCX into the Navy should be in proportion to the number of major combatants in service which would include aircraft carriers, large deck amphibious ships (LHD's, LHA's, and LPD's), cruisers and destroyers. It is estimated that the future major combatant fleet size in 2010 will be approximately 120 hulls. In consideration of the future fleet size, a two one ratio of major combatants to the CPCX is appropriate. This will result in 60 CPCX hulls for Navy use.

The Coast Guard's need for a new ship class is more pressing than the Navy's need. The Coast Guard's ships are older, and therefore will require a significantly higher percentage of maintenance and financial resources. In 1997 the WHEC-715 hull (Hamilton class 378 ft HEC) will have completed 30 years of service (12 hulls 250 officers, 1,870 crew). All twelve hulls were modernized between 1988 and 1992 and the class can be expected to be operational for a 40 year hull life. In 1994 the WMEC-615 hull (Reliance class 210 ft MEC) will have completed 30 years of service (16 hulls 130 officers, 870 crew). All sixteen hulls where modernized between 1989 and 1994 and the class can be expected to be operational for a 40 year hull life. In 2013 the WMEC-901 hull (Bear class 270 ft MEC) will have completed 30 years of service (13 hulls 143 officers, 1365 crew). Service life could easily be extended to 35 years with proper maintenance and planning. In view of the age and time in service of the above classes it is proposed that they be replaced by the CPCX as the new hulls become available. The current Coast Guard force would be replace by 40 CPCX's.

The production strategy for CPCX is to construct two hulls (one Navy variant, one Coast Guard variant) in 2009 for acceptance trials and testing resulting in delivery in 2010. A second hull of each variant will be produced by the same yard or yards the following year to validate production processes prior to commencing full production of the class. It is expected that the production run will last between 10 and 15 years. A total of 100 ships would be built resulting in the construction of 7 to 10 hulls per year. The first five years of production should be 8 units per year divided 5-3 in favor of the Coast Guard. This will help alleviate financial and manning strains on the Coast Guard and will help to keep production costs down in the early part of the production run. After five years the number of hulls constructed will be 25 Coast Guard variants and 15 Navy variants. The second five years of production should continue at 8 units per year in a 6-2 split in favor of the Navy. This will allow continued modernization of the Coast Guard fleet and timely retirement of non-Aegis combatants. After ten years the number of hulls constructed will be 35 Coast Guard variants and 45 Navy variants. The last five years of production will complete the production run with 4 hulls per year and a 3-1 split between Navy and Coast Guard. The total number of hulls constructed will be 40 Coast Guard variants and 60

Navy variants. A replacement for Aegis platforms will probably start production around the year 2020 reducing the funds available for the CPCX program.

#### 8. Schedule Considerations

The ship will be considered fully operational after acceptance trials, and completion of Post-Shakedown Availability (PSA), as well as having all support and maintenance facilities in place and operable.

A projected timeline for design and production processes is as follows:

| Present - 2002 | Feasibility studies and Preliminary Design    |
|----------------|-----------------------------------------------|
| 2003           | Contract Design                               |
| 2004           | Bid process                                   |
| 2005           | Award contract                                |
| 2006           | Detail Design and begin construction          |
| 2010           | Deliver First ship (testing and PSA complete) |
|                | Every 5 years review and update design        |
| 2025           | End production                                |
| 2050           | Begin decommissioning                         |

The ships crew and squadron will stand up approximately one year prior to delivery to begin the precommisioning process. All personnel required to attend critical rate schools prior to reporting will complete training pipelines no less than 6 months prior to ship delivery. The remaining period prior to delivery will be used for on the job training, team trainers, and training with mockups or with actual shipboard equipment when possible.

Shore based maintenance and logistics facilities and systems will be in place 6 months to a year prior to ship delivery.

#### 9. Cost Considerations

Cost is one of the primary factors concerning the design of this class of ship. The high costs of current combatants preclude their use to satisfy the mission defined for the littoral regions. The CPCX must be a more cost effective system for dealing with littoral warfare. The missions required of this ship will dictate that ship self defense will be of the highest priority. This along with the desire to automate systems while maintaining a robust ship self defense capability will tend to increase the acquisition costs. Reduced manning, however, should lead to lower operational costs and fewer potential personnel casualties. In view of these points it is intended that this ship type will be significantly less expensive than the current Aegis platforms being constructed. The ship price (averaged over the production run) may not exceed \$450 Million (Navy variant) or \$375 Million (CG variant), 1995 dollars. The displacement may not exceed 4000 LT (either variant).

#### II. FEASIBILITY STUDY/COMBAT SYSTEM SELECTION

#### A. INTRODUCTION

The design team was given the task of designing two separate ships, one Navy Variant and one Coast Guard Variant. Each variant must be easily convertible into the other, meet the design constraints in terms of weight and cost, and satisfy the requirements as defined by the Operational Requirements Document (ORD). The team divided into two sub-teams: a U.S. Navy team, and a U.S. Coast Guard team, with each team consisting of both Navy and Coast Guard members. The following chapter outlines the feasibility study which was conducted to measure the suitability of the CPCX design for service in the Navy and Coast Guard.

The first task was to develop "threat scenarios" based on expected future threats. While the traits of future threats cannot be projected exactly, reasonable threat estimates can be determined by identifying projected threat environments, extrapolating data from current weapon systems, and examining possible technologies for future weapon systems. The expected threats were broken down into service specific threat scenarios. A threat level and opportunity analysis was done to assist in prioritizing the emphasis on specific warfare areas for each design. These threat scenarios are included in Appendix (A).

The design constraints, specific design requirements, and projected threat summary provided the bases for the Combat System selection. The following sections provide a detailed analysis of the Combat System selection process including: Combat System elements considered, method of element selection, trade-off studies, option analysis, measures of effectiveness, and final design recommendations.

#### **B. COMBAT SYSTEM REQUIREMENTS**

The requirements set forth in the ORD were reduced to reflect requirements which pertained to Combat Systems and separated into three areas; common requirements for both variants, Navy specific requirements, and Coast Guard specific requirements. These Combat Systems requirements are included in Appendix (B).

#### C. FUNCTIONAL ALLOCATION

A functional allocation table was developed to link each operational requirement to a specific warfare area and functional area. The Combat System requirements listed in Appendix (B) were broken down into functional and warfare areas. Functional areas include: Detection, Control and Engagement. The warfare areas include: Anti-Air Warfare (AAW), Anti-Submarine Warfare (ASW), Anti-Surface Warfare (ASuW), Mine Warfare (MIW), Strike Warfare, Amphibious Warfare (AMW), Enforcement of Laws and Treaties (ELT), Search and Rescue (SAR), and Other Than Warfare (OTW). These nine warfare areas are a subset of each functional area which linked each specific requirement in the ORD to a warfare and functional area. Table (1) contains an example of a functional allocation table. Under each warfare area, The functional allocation tables were used as a tool to ensure all requirements are satisfied and each warfare function will be performed by at least one element in the Combat System suite.

#### D. COMBAT SYSTEM ELEMENTS

The threat scenarios and functional analysis guided the team toward general Combat System areas. Six warfare/Combat System areas were investigated: Guns, ASW sonars, air/surface search sensors, missiles, mine hunting devices, and small boats. These investigations were conducted by two-person "mini"-teams (consisting of one member from each parent team). The mini-teams compiled lists of data on existing systems and systems under development. The lists for some of the sensor and engagement systems are included in Appendix (C). This raw data was examined and used to evaluate the identified systems in terms of performance, ship impact, cost, and convertibility. A detailed system trade-off study was conducted in two areas: sonar and air search radars.

#### E. TRADE-OFF STUDY: SONAR

Sonar selection for the CPCX was a difficult problem. The Navy obviously needed some sort of active sonar but the Coast Guard did not want a sonar system. The desire to use the same hull for both variants and the difficulties of installing or removing a hull mounted sonar drove the selection toward a smaller hull mounted system or some sort of

| П            | Inorganic   |   |                    | Γ        | Г  |    |          |          |    |    | 1      |          | Γ        |     |     |     |   | Г        |          |          |          |          |          | Т        |
|--------------|-------------|---|--------------------|----------|----|----|----------|----------|----|----|--------|----------|----------|-----|-----|-----|---|----------|----------|----------|----------|----------|----------|----------|
| <b>1</b>     | Organic     | - | ┝                  | -        | ×  | -  | -        | L        | ×  | ×  | ×      | -        | -        | H   | H   | -   | - | ┝        | $\vdash$ | -        | -        | -        | $\vdash$ | -        |
| l            | Visual      | - | -                  | ┝        | ×  | -  | ┢        | _        | _  | ×  | ×      | -        | ┝        | ┝   | ┝   | -   | - | ├        | ├        | -        | $\vdash$ | $\vdash$ | $\vdash$ | ┝        |
| l≥⊦          | IR          | - | $\vdash$           | ┝        | ×  | -  | H        | H        | H  | ×  | ^<br>× | $\vdash$ | ┝        | ┝   | H   | -   | - | $\vdash$ | H        | $\vdash$ | -        | -        | $\vdash$ | $\vdash$ |
| MIO-         | ESM         | - | H                  | H        | ⊢  | -  | H        | ├        |    | ⊢  | ⊢      | -        | L        | ├   | H   | -   | - | -        | -        | ┞        | -        | -        | -        | H        |
| -            |             | - | -                  | ┝        | ×  | H  | L        | H        | H  | -  | ×      | -        | H        | L   | H   | -   | L | -        | ┝        | -        | H        | ┞        | L        | 1        |
|              | Surf Search | L | ┡                  | ┝        | ×  | H  |          | L        | -  | ×  | ×      | L        | H        | L   | -   | -   | - | -        | H        | H        | L        | -        | L        | H        |
| H            | Vol. Search | _ | -                  | L        | ×  | -  | L        | _        | L  | ×  | ×      | L        | L        | L   | _   | L   | L | L        | L        | L        | L        | L        | L        | L        |
| -            | Inorganic   | L | L                  | L        | L  | L  | L        | L        | L  | L  | L      | L        | L        | _   |     | L   | L | L        | L        | L        | L        | L        | L        | L        |
|              | Organic     | _ | L                  | L        | ×  | _  | L        | ×        | ×  |    | -      | _        | L        | _   | L   | L   | L | L        | L        | L        | -        | L        | L        | L        |
| <u>ا</u> يما | Visual      | _ | L                  | L        | ×  | L  | L        | _        | _  | -  | ×      | L        | L        | L   | _   | _   | _ | L        | L        | L        | L        | L        | L        | L        |
| SAR          | IR          | _ | _                  | _        | ×  | L  | L        | L        | L  | ×  | ×      | L        | L        | L   | L   | L   | _ | L        | L        | L        |          | L        | L        | L        |
|              | ESM         |   | _                  | _        | ×  |    | L        | L        |    | ×  | ×      | L        |          | L   | L   | L   | L | L        | L        | L        | L        | L        | L        | L        |
| L            | Surf Search |   | L                  | L        | ×  | L  | L        | L        |    | ×  | ×      | L        |          | L   | L   |     | L | L        |          | L        | L        | L        | L        | L        |
| Ц            | Vol. Search |   | _                  | L        | ×  |    | L        |          |    | ×  | ×      |          | L        | L   | L   | L   | L | L        | L        | L        | L        | L        | L        | L        |
|              | Inorganic   |   |                    | L        | L  | L  | L        | L        | L  |    |        |          |          | L   | L   |     | L | L        | L        |          | L        | L        | L        | L        |
|              | Organic     |   | L                  | L        | ×  |    | ×        | ×        | ×  |    | ×      |          |          | L   | L   | L   | L | L        | L        | L        |          |          |          | L        |
|              | Visual      |   | L                  |          | ×  | L  | ×        | L        |    |    | ×      |          | L        | L   |     |     |   |          |          |          |          |          |          |          |
|              | IR          |   |                    |          | ×  |    | ×        |          |    |    | ×      |          |          |     |     |     |   |          |          |          |          |          |          |          |
|              | ESM         |   |                    |          | ×  |    | ×        |          |    |    | ×      |          |          |     |     |     |   |          |          |          |          |          |          |          |
|              | Surf Search |   |                    |          | ×  |    | ×        |          |    |    | ×      |          |          |     |     |     |   |          | Γ        |          |          |          | Γ        |          |
|              | Vol. Search |   |                    |          | ×  |    | ×        |          |    |    | ×      |          |          |     |     |     |   |          | Г        |          |          |          |          |          |
|              | Inorganic   |   |                    |          |    | Γ  |          | Γ        |    |    |        |          |          |     |     |     |   |          |          |          |          |          | Γ        |          |
| AMW          | Organic     |   | Γ                  |          |    |    |          | ×        | ×  |    |        |          | Г        |     |     |     |   | Γ        | ×        | Г        |          |          |          |          |
|              | Visual      |   | Г                  |          | Γ  | Γ  |          |          |    |    |        |          | Г        |     |     |     |   |          | ×        |          |          |          |          |          |
| 3            | Inorganic   |   |                    |          |    | Γ  | Γ        | Г        |    |    |        |          | Г        | Г   | Г   |     |   | Г        | Г        |          |          |          |          | Г        |
| WTS.         | Organic     |   |                    |          |    |    |          | ×        | ×  |    |        |          | Г        |     | Г   |     |   | ×        |          |          | Γ        |          | Г        | Г        |
|              | Inorganic   |   |                    | Γ        |    | Г  |          | Г        | _  |    |        |          | Г        |     |     | Г   |   | Γ        |          | Γ        | Г        |          |          | Г        |
| N<br>N       | Organic     |   |                    | Γ        | Г  | Г  | Г        |          |    |    |        |          | ×        |     |     |     |   |          | Г        |          |          |          |          | ×        |
|              | Ship Board  |   |                    |          |    |    |          |          |    |    | ×      |          | ×        |     |     |     |   |          | T        | Г        | Г        |          |          | ×        |
|              | Inorganic   |   | T                  | Г        |    |    | -        |          | _  | П  |        |          |          | Г   |     |     |   | Г        | Г        | Г        |          | Γ        |          | l        |
|              | Organic     | _ |                    |          | ×  | Г  | ×        | ×        | ×  |    | ×      | _        |          |     |     |     | Г | Г        | r        | ×        | ×        |          | ×        | -        |
| ≥            | Visual      |   | _                  |          | ×  |    | ×        | Т        | _  |    | ×      |          |          |     |     |     |   |          | Г        | ×        | ×        |          | ×        | $\vdash$ |
| ASUW         | IR          |   | T                  |          | ×  |    | ×        |          |    |    | ×      |          |          |     |     |     |   |          | Г        | ×        | ×        |          | ×        |          |
|              | ESM         |   |                    |          | ×  |    | ×        | -        |    |    | ×      | _        | Г        |     |     | Г   |   | r        | H        | ×        | ×        |          | ×        |          |
|              | Surf Search |   | -                  | H        | ×  |    | ×        |          | _  | -  | ×      |          |          |     |     |     |   | H        | -        | ×        | ×        |          | ×        | H        |
| H            | Inorganic   |   | -                  |          | -  | -  | $\vdash$ | <u> </u> |    | Н  | Н      |          | $\vdash$ |     | -   |     |   | -        | H        |          | H        |          |          |          |
| >            | Organic     |   |                    | $\vdash$ | ×  | -  |          | ×        | ×  |    | ×      |          | H        |     |     |     | - | $\vdash$ | -        | ×        | ×        | -        | ×        | H        |
| ASW          | Passive     | _ | H                  | H        | ×  |    | -        |          |    | -  | ×      | -        | H        |     |     | -   | - | -        | H        | ×        | ×        | -        | ×        | H        |
| -            | Active      |   | -                  | -        | ×  | H  |          |          | _  |    | ×      |          | ┝        |     |     |     | H | -        | H        | ├        | ×        |          | ×        | -        |
|              | Inorganic   | - | $\vdash$           | $\vdash$ | H  | -  |          | -        |    | -  |        | -        | $\vdash$ |     | Ė   |     |   | -        | -        | H        | H        | -        | -        | $\vdash$ |
|              | Organic     | - | -                  | -        | ×  | -  | -        | ×        | ×  |    | ×      | _        | -        | -   | -   | -   |   | -        | $\vdash$ | ×        | ×        | ×        | ×        | -        |
| >            | Visual      |   | $\vdash$           | $\vdash$ | ×  | -  | -        | -        | -  |    | ×      |          | H        | H   |     | -   | - | -        | -        | ×        | -        | ×        | -        | -        |
| AAW          | IR          |   | $\vdash$           |          | ×  | -  | -        | -        | -  | Н  | ×      |          |          |     |     | -   |   | $\vdash$ | H        | ×        | Н        | ×        | ×        | H        |
| -            | ESM         | _ |                    | -        | ×  | H  | H        |          |    |    | ×      | _        | -        | -   | H   | H   | H | -        | -        | ×        | -        | ×        | ×        | -        |
| -            | Vol Search  |   | -                  | -        | ×  | -  |          |          | Н  | _  | ×      | -        | -        | -   | -   | H   | H | -        |          | H        | $\vdash$ | ×        | ┝╌       | -        |
| +            | voi Geardii |   |                    | $\vdash$ | Ĥ  | -  | -        | -        | -  | _  |        |          | H        | H   | Н   | H   | - | -        | _        | F        | F        | 1        | Ĥ        | $\vdash$ |
| Elements     |             |   | Oper. Requirements | A1       | A2 | A3 | A4       | A5       | A6 | A7 | A8     | A9       | A10      | A11 | A12 | A13 |   | <b>B</b> | B2       | 83       | 94       | 92       | B6       | R7       |
|              | _           |   | ŏ                  |          |    |    |          |          |    |    |        |          |          |     |     |     |   |          |          |          |          |          |          |          |

removable system. With this logic in mind two major options were selected for the active sonar system. The hull mounted SQS-56 and an active towed array system called ATAS.

To analyze the active capabilities of the two systems a sample detection scenario was used and range detection predictions were calculated. The target of interest was a submarine with a Target Strength of 15 dB, at a depth of 150 meters in water 2000 meters deep. Assumptions made for the analysis included 50% probability of detection and straight ray path propagation. It was realized that the constant velocity sound propagation is not realistic but this was the best tool available for analysis. Actual propagation paths will be addressed in the discussion of the system selected. Factors considered in the calculation included; spreading losses, reverberation, ambient noise levels, array characteristics, power level, and geometry. The calculation spread sheets are included as Appendix (D). The Signal Excess for the SQS-56 system is positive to a range of 30,000 meters while the Signal Excess for the ATAS is positive in excess of 40,000 meters.

The ranges from the sonar analysis are not important in themselves, but they do show that the ATAS outperforms the SQS-56. Another factor not considered in the model was self noise. The towed array system would see much less self noise than the hull mounted system which would improve the towed array's performance relative to the hull system. Another major consideration for the selection is the effect of velocity profile on prediction ranges. Because the propagation paths will not be straight, both systems should experience performance degradation. The degradation of the hull mounted system performance should be much greater than that of the towed array system because the hull mounted system operates above the surface layer while the towed system has the capability to be lowered to a depth of 300 meters. Based on this sonar analysis, the ATAS has better performance characteristics.

#### F. TRADE-OFF STUDY: RADAR

A table of detection ranges for various radars against the incoming threat missiles was created. To analyze radar performance, the characteristics of each radar were entered into known radar equations to compute signal excess versus range plots. From the signal

excess plots and the radar cross section (RCS) of each threat missile, the maximum detectable range can be found. The table of detection ranges is located in Appendix (E).

The comparison of radar characteristics shows that a radar such as a SPY-1D with 5 MW of peak power has the longest detection range and can detect an incoming missile at the greatest range. This provides more time for the CPCX to react and defeat the incoming missile threat. A radar such as the SPS-49 has much less power output and shorter range detection capability. Power output is an important characteristic in the detection of a high flying or beam centered (CL) target. The detection of a sea skimming (SS) target is much more difficult than the detection of a high flyer. The sea skimming target is masked by the earth's curvature and its detection range is based primarily on the CPCX's height of radar. A height of 20 meters was used for all radar calculations.

Two radars which stand out in this analysis are the SPY-1D and XPAR or X-band Phased Array Radar. The XPAR is similar in design to a SPY-1D but operates with an X band frequency. The reduced size and weight of the XPAR are more compatible with a small ship design such as the CPCX. In addition, the X-band phased array design operates at a higher frequency and offers improved resolution over the S-band SPY-1D in open ocean and littoral environments.

#### G. MEASURES OF EFFECTIVENESS (MOE)

Measures of effectiveness were developed for each vital mission area as determined from the ORD. Each MOE provided a relative gauge of the Combat System capability with respect to cost in a specific mission area. A description of each MOE is located below.

The strike MOE equates the parameters used for the number of strike missiles  $(N_M)$ , range (R), ability to target  $(P_T)$ , circle error probability (CEP), ship cost (CS) and the number of missiles needed for a kill  $(N_K)$ . The strike MOE evaluated the CPCX's capability to launch long range strike missiles against land targets. The Coast Guard Variant was not evaluated with this MOE because it was not expected to carry out strike warfare missions.

Strike MOE = 
$$\frac{N_M * R * P_T}{CEP * CS * N_K}$$

The air engagement MOE equates the parameters used for defense efficiency (DE), probability of kill given a hit for the ship  $(P_{K/H})$ , ship cost (CS) and the number of air defense missiles  $(N_M)$ . The air engagement MOE evaluated the CPCX's capability to defend itself against enemy missiles. Both variants were evaluated with this MOE based on the threat of missile attack.

Air Engagement 
$$MOE = \frac{1 - \left[DE * P_{k/h} * N_M\right]}{CS}$$

The sub-surface engagement MOE equates the parameters used for number of vertically launched ASROC or VLA  $(N_A)$ , range of VLA  $(R_A)$ , number of surface vessel torpedoes  $(N_S)$ , range of surface vessel torpedoes  $(R_S)$ , effectiveness of MK 50 torpedo  $(P_K)$ , and ship cost (CS). The sub-surface engagement MOE evaluated the CPCX's capability to defend itself against an underwater submarine threat. The Coast Guard Variant was not evaluated with this MOE based on little need for ASW detection capability.

Sub-surface Engagement MOE = 
$$\frac{\left[\left(N_A * R_A\right) + \left(N_S * R_S\right)\right] * P_K}{CS}$$

The Naval Gun Fire Support (NGFS) MOE equates the parameters used for number of guns ( $N_G$ ), range of gun fire in kilometers ( $R_G$ ), weight of each round (W), number of rounds ( $N_R$ ), circle error probability (CEP), and ship cost (CS). The NGFS MOE evaluated the CPCX's capability to provide gun fire support. There was no requirement for the Coast Guard Variant to have a large caliber gun so the Coast guard Variant was not evaluated with the NGFS MOE.

NGFS MOE = 
$$\frac{N_G * R_G *W * N_R}{CEP *CS}$$

The patrol area MOE equates the parameters used for search width in nautical miles (W), velocity in knots (V), search time in hours (T), area of search in square nautical miles (A), and ship cost (CS). The patrol area MOE evaluated the CPCX's capability to effectively search large areas of ocean.

Patrol Area MOE = 
$$\frac{1 - \left\{ \left[ e^{-(W*V*T/A)} \right]_{ship} + \left[ e^{-(W*V*T/A)} \right]_{helo} \right\}}{CS}$$

The convertibility MOE equates the relative difficulty involved in the conversion of each major job. A numerical factor will be assigned to each major conversion job based on its estimated completion time. The scale below shows the weighting factors (RD) with the respective cutoff times:

RD=0.25 - Critical path job with estimated completion time greater than 14 days.

RD=0.50 - Non-critical path job with estimated completion time greater than 14 days.

RD=0.75 - Non-critical path job with estimated completion time greater than 7 but less than 14 days.

RD=1.00 - Non-critical path job with estimated completion less than 7 days.

The product of these conversion factors is the convertibility MOE which was evaluated for both Variants. Each Variant is required to be convertible to the other in a four week period.

Convertibility 
$$MOE = RD_1 * RD_2 * RD_3 * .... RD_n$$

The ship signature MOE equates the parameters used for ship displacement (LT), estimated stack temperature in degrees Celsius (T), estimated machinery plant noise in decibels (N), and ship cost (CS). The ship signature MOE evaluated the CPCX's susceptibility to acoustic and infrared detection.

Ship Signature 
$$MOE = \frac{1}{D*T*N*CS}$$

The boarding MOE equates the parameters used for number of boarding parties (N<sub>P</sub>), number of small boats (N<sub>B</sub>), Availability of boats (A<sub>B</sub>), and ship cost (CS). The boarding MOE evaluated the CPCX's capability to conduct boarding operations.

Boarding MOE = 
$$\frac{N_p * N_B * A_B}{CS}$$

**Table 2 - Navy Variant Whole Ship Options** 

|                         | Option 1      | Option 2           | Option 3           |  |  |  |  |  |
|-------------------------|---------------|--------------------|--------------------|--|--|--|--|--|
| Radar                   | SPY-1D        | XPAR               | SPS-49             |  |  |  |  |  |
|                         | SPS-67        | SPS-67             | SPS-67             |  |  |  |  |  |
|                         | TAS           | -                  | TAS                |  |  |  |  |  |
| ASW Sonar               | SQR-19        | ATAS               | SQR-19             |  |  |  |  |  |
|                         | SQS-56        | -                  | -                  |  |  |  |  |  |
| Mine Sonar              | SH-100        | SH-100             | SUTEC DOUBLE EAGLE |  |  |  |  |  |
| Passive Element         | SLQ-32        | SLQ-32             | SLQ-32             |  |  |  |  |  |
|                         | VIDEO/OPTICAL | VIDEO/OPTICAL      | VIDEO/OPTICAL      |  |  |  |  |  |
|                         | IR Mk-46      | IR MK-46           | IR MK-46           |  |  |  |  |  |
| Helicopter              | PANTHER       | PANTHER            | PANTHER            |  |  |  |  |  |
| Small Boats             | 4             | 2                  | 2                  |  |  |  |  |  |
| MFCS                    | MK 99         | MK 99              | -                  |  |  |  |  |  |
| lliuminator             | SPG-62        | SPG-62             | -                  |  |  |  |  |  |
| GFCS                    | Mk 34 GFCS    | Mk 34 GFCS         | MK 86 GFCS         |  |  |  |  |  |
| GFCS Radar              | SPG-60/SPQ-9  | SPG-60/SPQ-9       | SPG-60/SPQ-9       |  |  |  |  |  |
| ASW System              | SQQ-89        | SQQ-89             | SQQ-89             |  |  |  |  |  |
| ASW FCS                 | Mk-309 ASWFC  | Mk-309 ASWFC       |                    |  |  |  |  |  |
| Command & Decision      | VOICE COMMS   | <b>VOICE COMMS</b> | VOICE COMMS        |  |  |  |  |  |
|                         | GPS           | GPS                | GPS                |  |  |  |  |  |
|                         | TACAN         | TACAN              | TACAN              |  |  |  |  |  |
|                         | IFF           | iFF                | IFF                |  |  |  |  |  |
|                         | WCS           | WCS                | wcs                |  |  |  |  |  |
|                         | ACDS          | ACDS               | ACDS               |  |  |  |  |  |
|                         | CEC           | CEC                | CEC                |  |  |  |  |  |
|                         | JMICS         | JMICS              | JMICS              |  |  |  |  |  |
| Air Defense System      | ISDS          | ISDS               | ISDS               |  |  |  |  |  |
| Large Gun               | 155 mm        | 127 mm             | 127 mm             |  |  |  |  |  |
| Small Gun/Point Defense | (2) CIWS      | (2) 40 mm          | (2) 40 mm          |  |  |  |  |  |
| Launcher                | Mk 49 (RAM)   | Mk 49 (RAM)        | MK49 (RAM)         |  |  |  |  |  |
| AA Missile              | RAM           | RAM                | RAM                |  |  |  |  |  |
| Launcher                | -             | •                  | CANNISTER          |  |  |  |  |  |
| Anti Ship Missile       | HARPOON       | HARPOON            | HARPOON            |  |  |  |  |  |
| Launcher                | VLS           | VLS                | ABL                |  |  |  |  |  |
| Strike Missile          | TOMAHAWK      | TOMAHAWK           | TOMAHAWK           |  |  |  |  |  |
| AA Missile              | ESS           | ESS                | -                  |  |  |  |  |  |
|                         | SM-2 MR       | SM-2 MR            | -                  |  |  |  |  |  |
| ASW rocket              | VLA           | VLA                | -                  |  |  |  |  |  |
| Torpedo Launcher        | SVTT          | SVTT               | SVTT               |  |  |  |  |  |
|                         | MK 50         | MK 50              | MK 50              |  |  |  |  |  |
| Decoy                   | SRBOC         | SRBOC              | SRBOC              |  |  |  |  |  |
|                         | NIXIE         | NIXIE              | NIXIE              |  |  |  |  |  |
| Mine Disposal           | EOD TEAM      | EOD TEAM           | EOD TEAM           |  |  |  |  |  |

**Table 3 - Coast Guard Variant Whole Ship Options** 

|                         | Option 1          | Option 2          | Option 3           |  |  |  |  |  |
|-------------------------|-------------------|-------------------|--------------------|--|--|--|--|--|
| Radar                   | SPY-1D            | XPAR              | SPS-49             |  |  |  |  |  |
|                         | SPS-67            | SPS-67            | SPS-67             |  |  |  |  |  |
|                         | TAS               | TAS               | _                  |  |  |  |  |  |
| ASW Sonar               | SQS-56            | -                 | -                  |  |  |  |  |  |
| Mine Sonar              | SH-100            | SH-100            | SUTEC DOUBLE EAGLE |  |  |  |  |  |
| Passive                 | SLQ-32            | SLQ-32            | SLQ-32             |  |  |  |  |  |
|                         | VIDEO/OPTICAL     | VIDEO/OPTICAL     | VIDEO/OPTICAL      |  |  |  |  |  |
|                         | IR Mk-46          | IR Mk-46          | IR Mk-46           |  |  |  |  |  |
| Helicopter              | DOLPHIN           | DOLPHIN           | DOLPHIN            |  |  |  |  |  |
| Small Boats             | 4                 | 4                 | 3                  |  |  |  |  |  |
| GFCS                    | MK 92 GFCS        | GFCS              | GFCS               |  |  |  |  |  |
| GFCS Radar              | CAS/STIR          | GFCS RADAR        | GFCS RADAR         |  |  |  |  |  |
| ASW System              | SQQ-89            | -                 | -                  |  |  |  |  |  |
| ASW FCS                 | Mk-309 ASWFC      | •                 | -                  |  |  |  |  |  |
| Command & Decision      | VOICE COMMS       | VOICE COMMS       | VOICE COMMS        |  |  |  |  |  |
|                         | GPS               | GPS               | GPS ·              |  |  |  |  |  |
|                         | TACAN             | TACAN             | TACAN              |  |  |  |  |  |
|                         | DATA FUSION       | DATA FUSION       | DATA FUSION        |  |  |  |  |  |
|                         | wcs               | wcs               | wcs                |  |  |  |  |  |
|                         | ACDS              | ACDS              | ACDS               |  |  |  |  |  |
|                         | CEC               | CEC               | CEC                |  |  |  |  |  |
|                         | JMCIS             | JMCIS             | JMCIS              |  |  |  |  |  |
|                         | !FF               | IFF               | IFF                |  |  |  |  |  |
| Air Defense System      | ISDS              | ISDS              | ISDS .             |  |  |  |  |  |
| Large Gun               | 76 MM             | -                 |                    |  |  |  |  |  |
| Small Gun/Point Defense | CIWS (1)          | (2) 40 mm         | (1) 40 mm          |  |  |  |  |  |
| Launcher                | Mk 49 (RAM)       | Mk 49 (RAM)       | -                  |  |  |  |  |  |
| AA Missiles             | RAM               | RAM               | STINGER            |  |  |  |  |  |
| Torpedo Launch          | SVTT              | -                 | -                  |  |  |  |  |  |
| Torpedo                 | MK 50             | -                 | -                  |  |  |  |  |  |
| Decoy                   | SRBOC             | SRBOC             | SRBOC              |  |  |  |  |  |
|                         | NIXIE             | NIXIE             | NIXIE              |  |  |  |  |  |
| Buoy Handling           | CRANE and STOWAGE | CRANE and STOWAGE | CRANE and STOWAGE  |  |  |  |  |  |
| Mine Disposal           | EOD TEAM          | EOD TEAM          | EOD TEAM           |  |  |  |  |  |
|                         |                   |                   |                    |  |  |  |  |  |

The overall MOE equates the individual MOEs discussed above with an individual weighting factor for the relative importance of that MOE against the other MOEs. The equation below shows the overall Measure of Effectiveness:

$$MOE_{overall} = \sum MOE_i * WF_i$$

#### H. WHOLE SHIP OPTIONS

The functional allocation requirements and individual system evaluations were used to define three whole Combat System suite options for the CPCX. These whole ship options are shown in Table (2) for the Navy Variant and Table (3) for the Coast Guard Variant. The Combat System elements chosen for each whole ship option were analyzed on the basis of satisfying operational requirements and performing warfare functions in the detect, control, engagement sequence. The functional allocation tables for each whole ship option are contained in Appendix (F). Each whole ship option has varying capabilities and cost, but all options satisfy the requirements in the ORD and defeat the projected threats.

#### I. ELEMENT VS. ELEMENT INTERFACES

The Combat System suite for each whole ship option was placed in a table to develop the architecture for each suite. Each specific element was linked to other elements in the system by means of either an electrical, data, mechanical, or logical interface. These interfaces show how the whole system will be connected and provide a basis on which to develop the Combat System architecture. The systems chosen drove the Combat Systems architecture or Ring Information Network (RIN). The network is depicted in Figure (1), which shows how the information from outside the loop is used to make decisions inside the loop and then flows back out to be implemented. The Element Interface Tables are included in Appendix (G).

#### J. ELEMENT VS. SHIP SUPPORT SYSTEM

A table of ship support systems for each Combat System element was developed. The first of three whole ship options was used to generate the table, which is included as

## Comms Exterior Damage Control Information Network Combat System Engineering Sensors Control C & D Display Automated Weapons Logistics Control Administration Weapons Elements

Figure 1. Combat System Architecture - Ring Network

Appendix (H). This ship option had the most equipment and the other options could be characterized as a subset of the first ship. For the most part, the support system interfaces were determined from experience and the TS4000 course notes. Almost all of the elements required electric power. The shipboard electric distribution system is not specified. It could be either AC or DC. The type of electric power is only specified for 400 Hz power. The 400 Hz power is used mainly in topside equipment to reduce the size and weight of motors.

During the preliminary design of a single ship option, the exact requirements for each system will be investigated to determine the capacity required for the individual support systems. The shipboard electric distribution will be finalized and sized to allow for growth and emergency backup capacity.

#### K. ELECTROMAGNETIC INTERFERENCE (EMI):

To provide a basic gauge of which systems are likely to induce or be subjected to EMI, a table of operating frequencies was developed. This table is included as Appendix (I). The EMI table shows the frequency band where each Combat System element operates. The L and X frequency bands contain most of the Combat Systems elements and are the areas most likely to experience EMI. The X band is shared by the surface search radar, fire control radars and SHF communication frequencies. The L band is shared by the TAS, IFF, TACAN and VHF/UHF communication frequencies.

#### L. ANALYSIS OF OPTIONS

After researching Combat System suites and choosing three whole ship options, each option was again dissected to come up with the "best" choice. The following tools were used for this process: Warship 21, self-defense engagement scenarios, and MOE analysis.

#### 1. Warship 21 Analysis:

Warship 21 provided initial cost and size data. Each option's payload was entered into Warship 21 along with a standard propulsion and electrical plant that met the ORD

requirements of sustained speed and range. The program provided cost data which was used as input for the MOEs. The printouts from Warship 21 are included in Appendix (J).

#### 2. Self-Defense Engagement Scenarios:

Engagement scenarios were completed on each option to determine whether the combat systems payload could meet the prospective threats as defined by the ORD.

Defense efficiencies were calculated from the engagement scenarios. Self-defense data is included in Appendix (K). This data includes a sample engagement description, summary table of defense efficiencies, and the individual engagement diagrams.

#### 3. MOE Analysis:

The MOEs described earlier were used to quantify the relationship between each whole ship option. Data collected from individual system characteristics, Warship-21, and self-defense engagements were used with the MOE equations to determine which ship option was most effective in each mission area. Weighting factors were then used to indicate relative importance of each mission area and the overall MOE for each option was calculated. A summary of the MOE tables are contained in Appendix (L). The highest overall MOE was used to select the recommended Combat System payload for each variant.

#### M. RECOMMENDATION, NAVY

All three whole ship options met or exceeded survivability requirements and are feasible. The balance of requirements and costs led to the conclusion that the "Option Two" vessel was the best solution to the diverse requirements established by joint interoperability, convertibility, survivability and broad utility as reflected in the MOEs. Option One, which included high-end systems offered increased capability but at a higher cost, which approached the maximum ship cost leaving no margin for unforeseeable costs. Option Three, which included low-end systems appeared to meet all requirements and was rapidly convertible but lacked significant offensive payload. The chosen option offers a formidable weapon payload capable of effective self-defense against sea skimming

missiles, strong offensive firepower to strike targets tens of miles away, and rapid conversion to a Coast Guard Variant. The broad spectrum of possible options presented by modular combat systems allows the chosen option to be improved with future combat system upgrades as they become available. Option Two provides the most balanced design between cost and capability for a small naval combatant for the 21st Century.

#### N. RECOMMENDATION, COAST GUARD

All three whole ship options met or exceeded survivability requirements and are feasible. The balance of requirements and costs led to the conclusion that the "Option Two" vessel was the best solution to the diverse requirements established by joint interoperability, convertibility, survivability and broad utility as reflected in the MOEs. Option One, which included high-end systems, offered increased capability but at a higher cost which exceeded the maximum ship cost. This option also included a sonar system which is not necessary for the Coast Guard mission but was included to enhance convertibility in the event the Navy chose Option One. Option Three, which included low-end systems, appeared to meet all requirements but was more difficult to convert to an effective Navy variant. The chosen option offers a formidable weapon payload capable of effective selfdefense against sea skimming missiles, adequate offensive firepower to conduct Enforcement of Laws and Treaties, and rapid conversion to a Navy Variant. The broad spectrum of possible options presented by modular combat systems allows the chosen option to be improved with future combat system upgrades as they become available. Option Two provides the most balanced design between cost and capability for a Coast Guard Cutter for the 21st Century.

## III. COMBAT SYSTEMS JUSTIFICATION

The following is a brief summary and justification of each combat system element included in the design.

#### A. DETECTION SYSTEMS

### 1. Air Search Radar: XPAR (1)

The X-band phased array radar (XPAR) incorporates most of the capabilities of a SPY-1D, in a scaled down version. XPAR's higher frequency allows the radar's dimensions and weight to be reduced significantly while it provides long range detection, tracking and over-the-land capability. It is capable of surface search, air search, fire control, and navigation. The non-rotating antenna design promotes stealthy architecture. The XPAR looks to the future as radars continue to get smaller and lighter.

The Navy variant was required to defend against three sea skimming missiles in a period of one minute. This requirement drove the need for a high performance radar that could detect this threat and provide an instantaneous fire control solution to fire weapons in defense. The Coast Guard variant was not faced with this same threat, but the XPAR was included as part of its Combat System suite to minimize conversion issues.

### 2. Surface Search Radar: SPS-67 (1) & Furuno (1)

The SPS-67 will be employed as the primary surface search radar, with the primary navigation radar, the Furuno, as the backup. Both radars are currently in use on numerous naval craft surface craft and thus do not require any additional research and development or operational testing. The combination of these two radars provides for excellent navigation functions and target resolution in a modern, lightweight package.

### 3. IR Search: MK 46 Electro-Optical detector (1)

The MK 46 will be used for infrared detection and tracking. IR in combination with the video/optical system provides visual pictures during low light and adverse weather conditions. Additionally, the MK 46 can detect heat plumes of sea skimming missiles over the horizon, enhancing self defense capability.

### 4. Helicopter: HH-65 Dolphin (1) USCG AS-565 Panther (1) USN

The Dolphin is currently in use by the Coast Guard and many foreign navies. It is lightweight, compact and offers a good balance between long range capability and mission flexibility. The militarized version of the HH-65, Panther, will be utilized with the Navy variant. It is capable of carrying sonobuoys and torpedoes for ASW as well as air-to-surface missiles for surface engagements and over-the-horizon targeting.

# 5. Identification: Identify Friend or Foe (IFF)

IFF will be used as an identification system to differentiate enemy from friend. In today's and the future's battle situation, IFF will play a key role in preventing fratricide.

## 6. ESM: SLQ-32(V)3 (2)

The SLQ-32 is the standard system for active/passive electronic support in the U.S. Navy. It provides highly directional electromagnetic detection and jamming capability to enhance survivability characteristics.

### 7. Sonar: Active Towed Array Sonar (ATAS) (1)

ATAS provides the capability of an active hull mounted sonar with the flexibility and modularity of a tail which can be easily removed to meet conversion requirements. The lack of a required Coast Guard sonar capability along with the inherent

limited effectiveness of a hull-mounted sonar, eliminated the hull-mounted sonar from consideration. Other factors such as the extra weight, volume, cost and maintenance associated with a hull mounted sonar contributed to its elimination.

### 8. Mine Sonar: SH-100 (1)

The hull mounted SH-100 provides mine localization and identification up to 1000 meters. Additionally, it provides bottom mapping and survey capability. The SH-100 is retractable and accessible from within the ship for ease of operation and maintenance. The SH-100 is installed in both the Navy and Coast Guard variants.

### **B. COMMUNICATIONS**

## 1. External Communications: (Misc.)

The communications suite will consist of the following types of equipment: HF, UHF, VHF, and SATCOM. The ship will have the ability to access any and all strategic or tactical data networks, such as JMCIS or ACDS and CEC networks. Cooperative Engagement Capability (CEC) allows the CPCX to conduct engagements cooperatively with other ships. The goal is real time communication for worldwide connectivity.

### 2. Internal Communications (Misc.)

The interior communication system will consist of a fiber optic digital multiplexing system for voice and data distribution, with traditional sound powered phones and portable wire-free radios for damage control and emergency backup voice communications.

### C. WEAPON CONTROL SYSTEM

1. Missile Fire Control System: MK 99 (1)

The MK 99 MFCS uses the XPAR to control SM-2 anti-aircraft missiles in flight. This system is currently used by all Aegis cruisers and destroyers and will require little research and development to integrate the Mk 99 with the XPAR.

### 2. Gun Fire Control System: MK 34 (1)

The MK 34 fire control system allows the use of the XPAR as a gun fire control radar. This eliminates the need for additional radars, reducing cost and topside weight.

3. Anti-Submarine Warfare Fire Control System: MK-309 (1)

The ASW fire control system to be used with the ATAS, Vertical Launched ASROC (VLA), and Surface Vessel Torpedo Tubes (SVTT).

#### D. NAVIGATION SYSTEM

1. Navigation radar: Furuno, GPS, TACAN (1 ea.)

The Furuno radar is a commercial grade, low cost navigation radar. It was chosen over the SPS-64 because it is cheaper and easier to operate. It does, however, introduce an interface problem that needs to be solved. In addition, the Global Positioning System (GPS) will be used for accurate automated navigation. Portable GPS units will be used for small boat navigation. TACAN will be used for helicopter support.

### E. ENGAGEMENT/WEAPONS

1. Long Range Intercept Missile: SM-2 MR (12 cells), ESS (4 cells)

After debating the various missile parameters, SM-2 was chosen for long range intercept of air targets. It offers accurate, long range capability and future upgrades and blocks within the standard missiles series will offer even greater capability including Theater Ballistic Missile Defense (TBMD). It is U.S. made and a standard on U.S. Naval

combatants. Enhanced Sea Sparrow (ESS) was chosen for intermediate engagements, thereby increasing the number of missiles carried and improving engagement flexibility. Both missiles are fully compatible with the vertical launching system.

# 2. Short Range Intercept Missile: RAM (21)

The Rolling Airframe Missile (RAM) was chosen as the short range missile for intercept of airborne targets. It offers passive IR and RF guidance and a trainable launcher for short range, high speed intercepts.

## 3. Anti-Ship Missile: Harpoon (8 cells)

The upgraded version of the Harpoon, featuring IR capability and VLS compatibility, will be used. The Harpoon offers long range anti-ship capability. The innovative feature of the missile is that it will be launched from the Vertical Launching System, thereby eliminating the need for a separate launcher.

## 4. Land Strike Missile: Tomahawk (9 cells)

The Tomahawk missile provides the capability to destroy or neutralize enemy targets ashore. It was chosen for the strike mission because of its high performance level and integration capability with VLS launcher.

# 5. Point Defense System: Bofors L70 40mm gun (2)

The 40mm guns serve dual purposes. They will be used for ultra-short range (point defense) airborne target intercept and in a more traditional sense as a self defense weapon against small surface targets. The need for a separate "CIWS" system is eliminated saving weight, space, and cost.

## 6. Small Caliber Gun: Bofors L70 40mm (2)

As stated above, the 40mm gun serves a dual purpose. The 40mm gun enhances the AAW point defense capability, improves self defense capability, and provides a meaningful weapon against small boats for boarding operations.

# 7. Large Caliber Gun: 5" -54 MK 45

The 5" gun provides the Navy variant with the capability to provide firepower support for amphibious and other ground forces. It is the standard U.S. large caliber gun for naval combatants and has the capability of accepting barrel and propellant source upgrades for future munitions.

### 8. Torpedo: MK 50

The MK 50 torpedo will provide the Navy variant with ASW engagement capability. It will be launched from the SVTT MK 32 torpedo tubes or with the Vertical Launch ASROC (VLA) launched from the VLS.

#### 9. Missile Launching System: Vertical Launch System (VLS)

The VLS will hold SM-2, ESS, Tomahawk, Harpoon, and VLA missiles.

This launcher configuration eliminates the need for additional launching systems. Topside space is made available and radar cross section is be reduced.

#### F. COUNTERMEASURES

### 1. ECM: SRBOC, NIXIE, SLQ-32(V3) (Misc.)

All available countermeasure systems will be used. The anti-missile versions will be launched using the MK 36 Super Rapid Bloom Offboard

Countermeasures (SRBOC) Launcher. The SRBOC munitions provide protection against

missiles with active and passive radar and infrared homing systems. New countermeasures under development will be incorporated into the system.

# IV. PRELIMINARY DESIGN PHASE

#### A. COMBAT SYSTEMS ARCHITECTURE

## 1. Design Statement

The CPCX Combat System and supporting elements are designed to meet the requirements delineated in ORD. Specifically, the combat system must:

- (a) Provide anti-air self-defense against limited intensity threats;
- (b) Provide anti-surface defense against third-world surface naval forces;
- (c) Provide anti-submarine defense in deep and shallow water while employed independently;
  - (d) Provide firepower support for amphibious and other ground forces;
- (e) Destroy or neutralize enemy targets afloat and ashore through the use of coordinated, precision strike weapons;
- (f) Conduct engagements cooperatively with other ships, submarines, aircraft, space systems, and land systems;
  - (g) Detect and chart underwater mines;
  - (h) Defend itself against raids of 3 ASCM's arriving within a one minute interval;
- (i) Be capable of joining the Naval Fleet in joint operations and during time of war;
  - (j) Provide coastal intelligence gathering.

## 2. Top Level Design Goals

Based on the above requirements, the top level combat system design goals are:

- (a) self-defense;
- (b) discriminate targets minimize unwanted damage;
- (c) fight hurt--minimize damage by effective assessment and rapid restoration;
- (d) continuous high readiness for extended periods;
- (e) self-sufficient, capable of independent or small group operations;
- (f) reduced manning;
- (g) built in automatic reconfigurability of ship's based on evolving threat scenario/condition;
  - (h) built in fault identification with rapid repair capability; and
  - (i) combat system automation with preset options for layered self-defense.

## 3. Combat System Description and Capability

Figure 2 depicts the functional arrangements of the CPCX combat system. General design attributes include:

(a) Primary connectivity between elements is provided by a multi-channel, multi-redundant fiber optic ring bus. Envisioned is a series of five functionally redundant data buses geographically separated within the ship to decrease vulnerability. Each system has multiple channel capacity and each channel has the capability to carry multiplexed data. Determination of data types and flow that allow use of multiplexing vice dedicated channels must be determined during detailed combat system design. The application of the Fiber Optic Data Multiplexing System (FODMS) and Fiber Optic Interior Voice Communications System (FOIVCS) improves capability and enhances survivability while reducing ship acquisition cost, primarily via the associated weight and volume savings.



Figure 2 Ring Information Network Distribution

- (b) The processing capabilities for all shipwide systems are distributed throughout the ship instead of being located in one central location. There will be no "central computer" in the traditional sense. The computer processing power required by all combat systems is distributed among the individual elements and linked by the fiber optic ring bus. This distributed processing capability provides redundant computational capacity and eliminates processing bottlenecks. The system will contain the following types of hardware:
- (1) System Repository Units. These units perform the system control functions and provide the system software storage capability. There are four of these units distributed throughout the ship. This ensures that the system will have a control station in the event of a casualty to the system or battle damage.
- (2) Multipurpose Man Machine Interface (MMI) Consoles. These represent generic, programmable operator interface consoles that provide the man/machine interface for the combat system elements or administrative data elements. These consoles are militarized versions of modern, commercial workstations. They allow the operator to access all information on the data bus and perform the watch station functions as required by the watch organization or administrative duty. Each MMI unit will contain processor hardware.
- (3). Local element processing units. Each Combat System element will have a local processor unit designed to function primarily as the processor for that element. The system control station will have the capability to access the local processor to perform other system functions as necessary.
- (c) The system is design to integrate not only the combat system elements, but also other functions vital to the ship's mission. Engineering and Damage Control stations will be included to automatically provide up to date equipment status to the decision makers. Automated logistics functions will be performed to reduce equipment

downtime and all administrative functions will be maintained electronically to eliminate paper.

- (d) Two manned Combat Information Center (CIC) spaces are provided. CIC #1 is the primary control space and is supported by CIC #2. Although the spaces are designed to function as a single control unit, equipment functional redundancy is provided between the two spaces to allow a single space to function individually if necessary. The processing equipment, display panels and number of control operator stations are almost identical. The two CIC's are located in separate enclaves to improve survivability. The elements in the spaces utilize all available sensors and external information data stream to provide the necessary information to create a complete tactical picture. The tactical picture created must be complete and coherent enough to provide necessary reaction time for ship defense. The major functions performed by the combat system elements are:
- (1) Detection. These elements determine contact detection and develop basic track data on contacts. The elements exports the track data to the ring bus for distribution and use by other combat system elements. This function is performed by sensor equipment including, but not limited to AN/SPS-67 radar, X Band Phased Array radar, ATAS, AN/SLQ-32, Helicopter sensor suite, and all other passive or active elements.
- (2) Control. These elements perform all control functions to go from contact detection to contact engagement. Track data from various detection elements on and off the ship is correlated and integrated into central track files. Track correlation contact parameters are initially fed into the ring bus. The next control functions are threat assessment as friendly, neutral, or enemy. The system then coordinates engagement decisions and sets the engagement priorities. Additionally, it coordinates own ship operations with the operations of other ships or aircraft in the task force. The system is capable of fully automated ship self-defense operation. The level of automation employed is determined by the Commanding Officer based on the tactical situation. Weapons selection and engagement coordination is also performed by these elements. The system maintains an inventory of available ordnance and carries out the engagement planning

needed for weapons release. The system coordinates the use of individual weapon elements to prevent interference between own ship weapons and damage to friendly forces. Following engagement battle damage assessment is also performed.

- (3) Engagement. These elements deliver ordnance on target at the direction of the control elements. The necessary data for engagement is relayed by the ring bus. These elements are the guns, missile launchers, active countermeasures, torpedoes and all other similar systems.
- (e) The power interface module provides the interface management function between the ship's engineering plant electric plant control module and the combat systems with regards to load shed command and coordination. The primary backup system is an uninterruptable power supply (UPS) which provides short term power backup. If there is continued loss of electrical generation capacity due to casualty, the electric plant control module sends a load shed command to the combat system, essentially conveying available generating and bus configuration. The interface module communicates with the control element to determine combat system needs commensurate with tactical situation. With a balance between power requirements (demand) versus generating capacity, the power system interface module transmits shut down commands to appropriate combat system elements and also communicates electric plant reconfiguration requests to the electric plant control module.
- (f) Readiness assessment, fault detection and localization. The survivability management and readiness assessment (SM/RA) module works in conjunction with the various combat system element's built-in test and evaluation (BITE) capabilities to provide an integrated system readiness assessment. All the combat system elements must have this BITE capability. An additional BITE feature is the requirement that all combat system elements provide automated troubleshooting capability. This enhances fault localization and subsequent repair to place equipment fully operational in as short a time as practical. The readiness assessment sub-module provides the commanding officer (CO) and tactical action officer (TAO) with a real-time comprehensive assessment of the ship's ability to continue fighting. Additionally, it enables the

combat information center officer of the watch (CICO) and engineering officer of the watch (EOOW) to better coordinate efforts to maintain/recover mission readiness prioritized to current mission needs. The readiness data includes current status of mission capabilities, times to failure and times to recovery. Readiness data is obtained from all systems including auxiliaries that supply the individual combat systems.

- (g) Survivability and reconfigurability. System survivability is enhanced by a number of design features, including:
- (1) dual Control element functionality geographically separated in CIC #1 and CIC #2;
  - (2) multiple, distributed processing capabilities;
  - (3) multiple redundant connectivity between all combat system elements;
- (4) graceful degradation of overall system capability due to power loss through the uninterruptable power supply and smart load shed management. With the available redundant/alternate functional capabilities, system reconfiguration is practical to optimize combat system employment during casualty conditions.
- (h) Embedded training. The integrated combat system includes an embedded training module to allow realistic threat scenario engagement exercises. These training scenarios will exercise the control elements and watchstanders. Essentially, this entails the capability to run pre-programmed engagement scenarios by injection of track and other necessary data directly onto the data bus.
- (i) Embedded support service management. Primary support services for the combat system are electrical, chilled water, sea water, ambient space cooling and high pressure air. With the zonal scheme, each zone has fully self-contained capability with the exception of

electrical power generation. Status of these systems is maintained by Damage Control Central (DCC) and the engineering plant status module. Support service configuration is coordinated with required combat system capability as determined by the tactical situation during casualty situations. Maximum capability will be maintained consistent with available capacity remaining during casualties. With input to/from the survivability management system, certain automatic damage control actions can be accomplished before a weapons hit occurs.

(j) Automated Communications Suite. To enhance manning reduction and increase external communications, the external communications suite is automated. This automation allows incorporation of the external communications function as an integral part of the integrated combat systems suite. Features such as automated electronic message routing with dispersed remote terminals streamline message dissemination. Automated external connectivity allows integration of the ship in a task force/battle group scenario. Export of sensor data and import of weapon command functions to extend the integrated fighting power of the task force/battle group. Import of real time data from outer sources provides a coherent, integrated picture of the battle space. With continuously updated information, the ship could support or be supported by other ships, engaging targets its own sensors cannot detect.

## B. HULL, MECHANICAL AND ELECTRICAL (HM&E) ARCHITECTURE

The CPCX HM&E architecture was developed using Advanced Surface Ship Evaluation Tool (ASSET). ASSET can be used to construct a model of a entirely new ship, or a modification of an existing ship. ASSET uses historical data and empirical formulas to model the ship's geometry, its powerplant, weight, performance, cost, manning, etc. It is used as a preliminary design tool to determine whether or not a proposed design is feasible. ASSET is a powerful tool, but has it's limitations. The biggest limitation appears to be that it can not model what has never been tried before, either for a new hull design or a non-traditional use of a existing system.

## 1. Ship's Power Generation and Distribution System

A variety of engineering configurations were evaluated using ASSET. The combination of endurance and displacement requirements demanded a low volume, low weight, high efficiency power plant. The CODAG/Integrated Electric Propulsion offered the lightest vessel that met our requirements for speed, endurance and payload. The Additional benefits of the electric drive ship are numerous, including:

- More flexible power generation arrangements
- More freedom in plant arrangements
- Propulsion arrangement is not limited by shaft alignment
- Propulsion prime movers and generators can be smaller and more numerous
- Power can be generated in the most convent and/or efficient wave form
- More adaptable to future growth:

Directed energy weapons

ETC Gun Technology

Design conversion to fuel cells

Better fuel economy

- Capability of operation at the most economic engine combination at any given speed
- Active Ship silencing capability
- Allows the power to the main engines to be adjusted to counteract cyclic load imbalances in order to reduce propulsion generated vibration

# HULL, MECHANICAL AND ELECTRICAL (HM&E) ARCHITECTURE

1. Ship's Power Generation and Distribution System CPCX uses an integrated Combined Diesel and Gas Turbine (CODAG) Power Off Main Bus (POMB) propulsion/ships service power plant. The power plant architecture consists of the following functional areas: power generation, power distribution, power conversion and conditioning, power storage, system loads, system control and information.

### (a) Power Generation

There are four power generation sets,: two LM-1600 ICR gas turbines, each driving a 15 MW generator, and two Alco 12V270 diesels, each driving a 3000 KW generator. The power output is multiphase AC that is immediately rectified to DC for distribution on the DC Zonal Electric Distribution System (DC ZED).

# (b) DC Zonal Electric Distribution System.

The power distribution system consists of port and starboard main busses feeding distribution zones as shown in Figure 3. The main lines aft of No. 1 ER are sized to provide full propulsion power on via either main bus. Portions of the main bus that are not expected to carry propulsion loads are sized to carry a full combat load.

# (c) CS power supplies

The use of the DC ZED system allows multiple source paths without complex paralleling and switching systems. The power supply to the CS takes advantage of this ability by providing disbursed supplies from each of the main generators and



Figure 3 Electrical Distribution System

directly from the battery as shown in Figure 3. The four Combat System power buses (CSPB) are electrically the closest to the generators and the battery, Isolation and switching nodes can protect the CSPB's from abnormalities on the rest of the distribution system. The solid state controllers and isolation and switching nodes can present the combat system with an "infinite" bus as long as there is sufficient power available.

## (d) Battery backup

To maximize survivability and system flexibility, a 30 ton battery was installed to provide emergency power in the event that all main generators go off line. The primary advantage of this, is that the battery is static and thus not as susceptible to shock as the generators. It will provide bus inertia and stability during shock events and continuing power when the generators trip off line on impact. A secondary but no less desirable benefit of the battery is the ability to cruise using the most efficient power plant alignment. Figure 4 shows the power generation requirements vs. speed for CPCX. It is important to note that most speeds can be attained using one gas turbine or two diesels engines operating at a moderate to heavy loaded. The battery allows operating turbines at their most efficient loading without compromising combat readiness of the ship during cruising and patrol/loitering operations. The ability to provide uninterrupted power during casualty loss of generators is also beneficial during Restricted Maneuvering conditions wherein the ship would still be able to maintain bare steerage propulsion and rudder control. The battery would also help reduce the run time on the ships engines, since only those engines required to provide power need be running. Standby engines can be started when necessary and can be allowed to pre-lube and soft start rather than emergency start at the lose of the on-line units (tactical situation permitting)

### (e) Control and Monitoring

The power distribution system is overlaid with fiber optic control and monitoring network. This network connects the solid state controllers of the ships equipment to the control stations and monitoring computers. The solid state controllers effectively isolate the individual loads from the main bus and allow more accurate

Total Power Vs. Speed



Figure 4 Power Curves

monitoring of cyclic load fluctuations of the individual loads. Central monitoring and control of the ships equipment allows more accurate failure analysis, faster fault detection and isolation, and smarter, more effective load shedding and load restoration. Automatic central control and monitoring greatly enhances the ability to implement condition based maintenance and significantly improves trend analysis and reduces the need for paper equipment logs.

### 2. Hull, Mechanical and Electrical Arrangements

## (a) Machinery Spaces

The CPCX incorporates two main machinery spaces, Engine Room 1 (ER1) and Engine Room 2 (ER2). Each engine contains two power generation sets (gensets), one gas turbine and one diesel. The gas turbine gensets consist of General Electric LM1600 RGT, producing 15,902 Bhp, which is connected to a 14.94 MW AC generator. The diesel gensets consist of a Alco 12V270 producing 4000 Bhp, driving a 3,000 kW AC Generator. The AC power produced by the generators is rectified to DC for propulsion power and ship's service distribution throughout the ship. Both engine rooms are completely independent of each other with respect to support equipment.

Below is a listing of the major machinery components found in the engine rooms.

| EQUIPMENT                                    | NUMBER INSTALLED  |  |
|----------------------------------------------|-------------------|--|
|                                              | (per Engine Room) |  |
| Gas turbine genset module                    | 1                 |  |
| Diesel genset                                | 1                 |  |
| Lube oil service and purification system     | 1                 |  |
| Fuel oil service and purification system     | 1                 |  |
| High pressure air compressor                 | 1                 |  |
| Low pressure air compressor (ship's service) | 1                 |  |
| Power Conversion Modules                     | As required       |  |

| Power Distribution Modules                        | As required |
|---------------------------------------------------|-------------|
| Machinery Control Equipment (local)               | As required |
| Jacket water system (Diesel cooling)              | 1           |
| Salt water cooling system (Diesel and generators) | 1           |
| Fire Suppression and Extinguishing System         | 1           |
| Bilge Eductor                                     | 1           |
| Machinery Room Ventilation System                 | · 1         |
| Anti-roll fin system (in ER2 only)                | 1           |
| Auxiliary Boilers (electric powered)              | 1           |

## (b) Auxiliary Machinery Spaces

The CPCX incorporates 3 Auxiliary Machinery Spaces (AMS1,2 & 3), all on the fourth deck. AMS1 is located just aft of the VLS compartment, and includes access to the mine detection sonar trunk. Major equipments found in AMS1 include a vacuum type sewage collection, holding and transfer system that serves the forward end of the ship. A fire pump, air conditioning plant, fuel oil distribution manifold.

AMS2 is located between ER1 and ER2 and contains the reverse osmosis/potable water system, fire pump and air conditioning plant for the middle of the ship.

AMS3 is located aft of ER2. Its major equipment is the oily water separation system, and the third fire pump.

#### (c) Miscellaneous Engineering Spaces

The Miscellaneous Engineering Spaces include the Pod Machinery Room, After-Steering, stern launch area and the assorted shops (Machine, Electrical, Filter, and Damage Control).

The Pod Support Room will contain the Power Conditioning Modules (PCMs) for the motors in the pods. After steering will contain the steering gear and associated equipment, while the stern launch area will contain ATAS or boats and NIXIE equipment, as well as handling equipment.

It is in the stern launch area where the most noticeable HM&E difference between the Navy and Coast Guard version exists. For the Coast Guard variant, this is the location of the Aft Boat Launch and Retrieval System. It consists of a pivoting, semi-buoyant, V-shaped ramp, which is lowered (drawbridge style) into the wake to allow for Rigid Hull Inflatable launch and recovery. The ramp is a steel framework, with rubber rollers along the sides of the V, much like a recreational boat trailer. The Navy variant will also have a similar system for launching and handling ATAS.

### (d) Fuel Capacities

All diesel fuel tankage is distributed on the 3rd and 4th (inner bottom) decks of the CPCX Navy version. The Coast Guard version retains all of the Navy tanks and adds 7 more at the bottom of the VLS well and below it. The total diesel fuel tankage for the Navy Version is 143,976 gal. (466.6 ltons) and 183,160 gal. (593.6 ltons) for the Coast Guard version. The additional weight of the Coast Guard tankage, is offset by the removal of the VLS and the 5" gun and its ammunition. Both versions also carry 23,578 gal. (71.3 ltons) of JP-5 aviation fuel. The JP-5 tank is also located in the inner bottom, forward of ER2. The tank characteristic tables and graphs are shown in Appendix (M).

## (e) Firemain System

The Firemain system for the CPCX is a hybrid of the traditional Navy (wet) and Coast Guard (dry) systems. It consists of 3 pumps (one in each Auxiliary Machinery Space), on a ring, that is segregatable into 3 independent loops. The firemain system will be used only for fire-fighting capability, vice as a fire and flushing/cooling system.

Auxiliary cooling water for major systems will be provided via Auxiliary Saltwater (ASW) cooling pumps. This feature is intended to reduce maintenance on cooling systems, by providing cooling water at much lower pressures (30-60 psi vice 115-150 psi).

The key feature of the firemain system, are the hydro-pneumatic accumulator (HPA) tanks (3 each). The accumulator tanks will pressurize the entire main, each capable of provide 1 minute of firefighting water to two 95 gpm nozzles. This is sufficient time for the firepump(s) to start up and supply the system. The normal operating mode for the firepumps will be in a standby (off) status. The pumps will be activated via pressure switches on the accumulator tanks. A simple line diagram of the system is shown in Figure 4.



Figure 5 Firemain Line Diagram

The HPA tanks are charged off the ship's service low pressure air system. This system is designed to reduce the overall maintenance requirements for the pumps. While it can be expected that maintenance will increase on the starting circuits, the reduced maintenance on the pumps, and piping systems will more than offset the slight increase in electrical maintenance.

### (f) Miscellaneous Engineering Features

Several key features of the CPCX in addition to those discussed above, include: Collective Protection System (CPS), federated compartments, vacuum sewage system, reverse osmosis distillation plant, combat system holdup battery, and automated machinery control system.

#### C. ARRANGEMENTS

## 1. Navy Variant

The detailed arrangement drawings for the Navy variant are included in Insert Pages (1) through (6). The drawings start on the 02 level and work down through the ship.

- Insert (1): 02 Level -- Equipment placed here includes the 40mm multipurpose guns,
   Signal Shack, SRBOC locker, SPG-62 Equipment room, and mounts for various antennas.
- Insert (2): 01 Level -- Major spaces include the Bridge, CO's Cabin, Chart Room, RAM Launcher and various equipment rooms. The location of the CO's cabin provides immediate access to the Bridge.
- Insert (3): 1st Deck (Main) -- Key features include the 5" Gun, VLS Missile Modules (on Foc'sle), Officer Staterooms, Operations Office, Wardroom, Ship's Office, Helicopter Hangar, Aviation Repair Shop, Boat Rooms, Torpedo Rooms and Flight Deck. The Flight Deck is sized to launch/recover all current US/NATO inventory rotary wing aircraft with the exception of the CH-53. The Helicopter Hangar is composed of two major components, a fixed portion and telescoping portion, which will enable the stowage of the selected airframe, the AS-565 Panther.
- Insert (4): 2nd Deck -- The 2nd Deck is characterized by two main outboard passageways, port and starboard, which run nearly the length of the ship. In addition to simplifying access, these passageways provide a protective buffer zone for small arms fire and shrapnel from close aboard misses. Major spaces forward include the Bos'n Locker, Forward Windlass Room, 5" Gun Control Room (immediately below gun), VLS compartment, Weapons Control Room for VLS, Repair Locker #2, Supply and Log Offices, and the Casualty Control Station (CCS), which is located between the two engine rooms. Immediately forward of amidships lies the Mess Deck, CPO Mess, Galley, Scullery, and Recycling (Trash) spaces. The AFFF station for the foward Engineroom is outboard of the Recycling Space. Aft of amidships is the secondary Combat Information Center, CIC #2. Repair Locker 5 (Machinery Repair) is situated between the two engine

rooms. The aft portion of the second deck contains CPO and crew berthing, Sick Bay, Fitness Room, Collective Protection System (CPS) airlocks and various storerooms. Furthest aft lies After Steering, which contains ATAS, NIXIE, and the steering gear.

- Insert (5): 3rd Deck -- The forward portion of the 3rd Deck contains mostly unmanned spaces (Chain Locker, Upper 5" Magazine, VLS, and a storeroom). Amidships lies the majority of the respective technician shops and storerooms (machine, filters, electrical, tool room), the combat system holdup batteries (UPS) and laundry. The after end of the 3rd deck contains fuel tanks, storerooms, and the Pod Machinery Room.
- Insert (6): 4th Deck -- The 4th Deck is the information and propulsion center of the CPCX. It houses the main warfighting, communication, and mobility stations onboard. The forward 3 compartments of the 4th deck contains the same spaces as the 3rd Deck (Chain Locker, Lower 5" Magazine, and VLS). Aft of the VLS is the SH-100 Mine Sonar Trunk, and Auxiliary Machinery Space #1. The primary Combat Information Center, CIC #1 is located just forward of Engine Room #1. This location provides two watertight bulkheads and one deck seperation between primary and secondary CICs. The space between the enginerooms is occuppied by Auxiliary Machinery Space #2, Refrigerated and Dry Stores, and Radio. Aft of Engineroom #2 is Auxiliary Machinery Space #3. Below the 4th deck are the majority of the CPCX fuel tanks, JP-5 and potable water tanks.

# 2. Coast Guard Variant

The detailed arrangement drawings for the Coast Guard variant are included in Insert Pages (7) through (12). The drawings start on the 02 level and work down through the ship. The only differences between Navy and Coast Guard layouts will be discussed below.

- Insert (7): 02 Level -- Similar.
- Insert (8): 01 Level -- Similar
- Insert (9): 1st (Main) Deck -- On the foc'sle, the 5" Gun and VLS have been replaced by a hydraulic crane and storage well, respectively. The Torpedo Rooms have been converted into Prisoner Containment Rooms as well.

- Insert (10): 2nd Deck -- The gun hydraulics in the space known as the Gun Control Room on the Navy version will remain to power the crane. The remainder of the space will be used for storage of an environmental containment skirt. The space once occuppied by the VLS is now dedicated to large item storage, such as bouys. The ATAS/NIXIE Room aft has been converted into a Rigid Hull Inflatable (RHI) Launch and Recovery Room, with an integral ramp through the transom.
- Insert (11): 3rd Deck -- The Upper 5" Magazine has been converted into a storage room for an environmental containment skirt. Removable fuel tanks have been installed in the VLS space.
- Insert (12): 4th Deck -- The Lower 5" Magazine has been converted into a storage room for an environmental containment skirt. Removable fuel tanks have been installed in the VLS space.





Insert 1 Navy Layout



Insert 2 Navy Layout



Insert 3 Navy Layout



Insert 4 Navy Layout



ER#2



ER#1



Insert 5 Navy Layout



Insert 6 Navy Layout





Insert 7 Coast Guard Layout



Insert 8 Coast Guard Layout





Insert 10 Coast Guard Layout



Insert 11 Coast Guard Layout



Insert 12 Coast Guard Layout

#### D. NAVAL ARCHITECTURE

The initial naval architecture calculations were done using ASSET, and the results are provided in Appendix (N) (ASSET printed reports) and Appendix (O) (ASSET Drawings). The offsets from the hull form were imported into "General Hydrostatics" (GHS), and analyzed. The naval architecture figures and calculations provided include: lines drawing, curves of form, cross curves of stability, floodable length, static stability, weight distribution, and bending moments. The computer models run through GHS were based on a full load displacement of approximately 4000 tons. This is a slight difference from the ASSET predictions of 3980 tons displacement. This displacement difference can be attributed to several factors: Appendages (pods, propellers, rudders, fins, bilge keels, skeg) were not modeled on GHS, but their respective weights were (due to complexity and time-constraints). Actual tankage vs. required tankages were also different. For example, ASSET did not include any lube oil storage capacity while the GHS model accounts for 9.62 ltons. The actual modeling of the tankage has several inherent inaccuracies as well. The tank size, location and permeability inputs for GHS were all estimated. Further iterations of the design would refine the geometry, most likely resulting in smaller tanks.

The most significant discrepancy with the hull geometry is the full load trim. It is at 3.5 ft forward. This is most likely due to the weight distribution (combat payload and fuel tankage) in the forward half of CPCX. Possible remedies include a redesign of the bow section to make it fuller, ballast aft, rearrangement of fuel tanks, and rearrangement of combat payload (VLS and main gun). The following charts and graphs were plotted from and computed by GHS and included in Appendix (P).

### 1. Body Plan and Isometric View

The Body plan and Isometric view are shown in Figure 6.

# 2. General Hydrostatics

The General Hydrostatic curves are shown in Figure 7.

#### 3. Curves of Form

The curves of form are shown in Figure 8.

# 4. Cross Curves of Stability

The Cross Curves of Stability are shown in Figure 9. It provides a display of the ship's righting arm for various angles of heel, over a range of displacements. The curves displayed need to be corrected for the assumed KG, which in the figure shown is 0.0 ft.

### 5. Floodable Length

The floodable length curve is used to determine the allowable compartment lengths which will ensure that the margin line is not submerged, should the compartments spanning the defined factor of subdivision become flooded. As described in Design Data Sheet (DDS) 079-1, *Stability and Buoyancy of Naval Surface Ships*, the factor of subdivision for combatants is 15% of LBP, with a margin line of three inches below the bulkhead deck (main deck). The factor of subdivision for the CPCX is 57 feet. The standard values of permeability given in Principles of Naval Architecture, Vol. I (p. 190) are:

Cargo and Stores 0.6
Accommodations and voids 0.95
Machinery Spaces 0.85

GHS was used to calculate Floodable Length based on hull form, and the results were used to verify the bulkhead placement generated by ASSET. A worst case and best case scenario were used for the permeability value for the CPCX hull form. Worst case assumed a permeability of 0.95 for the entire ship, best case assumed a permeability of 0.70. The results are shown in Figure 10. CPCX meets the worst case foldable length criteria, except at the stern. There is one three bulkhead group that is 57 feet apart and another that is 57.5 feet apart. This necessitates further analysis into the actual placement and expected permeability's, which is recommended for future iterations of the design.

# 6. Static Stability Curve at Design Load Condition

The CPCX static stability curve is shown in Figure 11. The CPCX reaches a maximum righting arm of 5.140 ft at 46.1° of heel.

#### 7. Hull Load Distribution Curve

The hull load distribution curve is shown as part of the bending moment curves described below.

#### 8. Bending Moment Curve (sagging)

The Bending Moment curve (sagging) is shown in Figure 12. CPCX has a maximum bending (sagging) moment of 62,961 LT-ft at 191 ft aft of the forward perpendicular.

## 9. Bending Moment Curve (hogging)

The Bending Moment curve (hogging) is shown in Figure 13. CPCX has a maximum bending (hogging) moment of 57,893 LT-ft at 195 ft aft of the forward perpendicular.

# 10. Midship Section Structural Design

The Midship Section Structural Design developed by ASSET is shown in Figure 14.





Figure 6 Body plan and Isometric View





- ① Displacement 1=30 LT
- ② LCB (use top scale)
- 3 UCB (KB) 1=0.09 FT
- (4) Immersion 1=0.2 LT/IN
- 4 WPA 1=84 Sq.FT
- (5) LCF (use top scale)
- 6 Moment/Trim 1=300 FT-LT/De
- 7 KML 1=7 FT
- 8 KMT 1=0.09 FT

Specific Gravity = 1.025 Assumed KG = 20.21 FT "K" = Baseline

Figure 7 Hydrostatic Curves







1 Volume 1=40000 CU.FT 2 Block Coef.

3 Displ/Length Ratio 1=20

- (4) Waterplane Coef.
  - (5) Maximum Section Coef.
- Long. Prismatic
- Vertical Prismatic

Depth is relative to HULL Reference Point

Figure 8 Curves of Form



Figure 9 Cross Curves of Stability



Figure 10 Floodable Length



Figure 11 Static Stability Curve





- 1 Weight 1=0.05 LT/FT
- 2 Point Weight 1=0.1 LT
- 3 Buoyancy 1=0.05 LT/FT
- 4 Shear 1=2 LT
- 5 Bending Mom. 1=100 LT-FT

Figure 12 Bending Moment Curve (Sagging)



Figure 13 Bending Moment Curve (Hogging)



Figure 14 Midship Section

# E. DETAILED DRAWINGS

Detailed space arrangements are included for the following spaces as Insert pages (13 through (15).

Combat Information Center 1

Combat Information Center 2

Pilothouse

Various topside views of the Navy variant are included as Insert pages (16) through (23).

Various topside views of the Coast Guard Variant are included as Insert pages (24) through (30).



4

Insert 13

# CIC #2



# BRIDGE







Insert 17



Insert 18



Insert 19



Insert 20



Insert 21



Insert 22







Insert 25



Insert 26



Insert 27



Insert 28



Insert 29



Insert 30

#### F. MANNING AND BATTLE ORGANIZATION

#### 1. MANNING

With the requirement of a significant reduction in crew compared to current standards, each position was critically analyzed. Our manning figures were driven by watchstation requirements during General Quarters Condition 1. Two points contributed to our reduction of crew; Service, pay, and health records will be maintained ashore, and major preventative maintenance will be accomplished by shore facilities. Based on our own shipboard experience and our level of automation, these numbers were developed. The manning levels and ratings are included as Tables 1 and 2. Additionally Figures (15) and (16) show the departmental organizational charts for the Navy and Coast Guard. Although this is not a formal manning document, it is an attempt to determine the number of personnel required to man the ship

Navy Variant

| OFFICERS      | CPO'S                                                                            | ENLISTED                                                                                                                               | TOTAL                                                                                                |
|---------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| CO, XO, SUPPO | HMC, MSC                                                                         | MS (3), SH(2)                                                                                                                          | 13                                                                                                   |
| (3)           | (2)                                                                              | SK(2), YN/PN                                                                                                                           |                                                                                                      |
|               |                                                                                  | (8)                                                                                                                                    |                                                                                                      |
| CSO,OPS,EMO,  | BMC, ETC,                                                                        | BM (8), ET (4),                                                                                                                        | 52                                                                                                   |
| WEPS          | FCC, GMC,                                                                        | EW (3), FC (4),                                                                                                                        |                                                                                                      |
| (4)           | OSC, RMC,STC                                                                     | GM (4), OS (8),                                                                                                                        |                                                                                                      |
|               | (7)                                                                              | QM (2), RM (4),                                                                                                                        |                                                                                                      |
|               |                                                                                  | SM, ST (2), TM,                                                                                                                        |                                                                                                      |
|               |                                                                                  | (41)                                                                                                                                   |                                                                                                      |
| CHENG, MPA,   | EMC, ENC,                                                                        | EM (6), EN (7),                                                                                                                        | 34                                                                                                   |
| DCA, A&E      | GSC, HTC/DCC                                                                     | GS (7), HT/DC                                                                                                                          |                                                                                                      |
| (4)           | (4)                                                                              | (4), MM (2)                                                                                                                            |                                                                                                      |
|               |                                                                                  | (26)                                                                                                                                   |                                                                                                      |
| PILOTS        | ATC                                                                              | AIR CREW                                                                                                                               | 11                                                                                                   |
| (4)           | (1)                                                                              | AIR TECHS                                                                                                                              |                                                                                                      |
|               |                                                                                  | (6)                                                                                                                                    |                                                                                                      |
| 15            | 14                                                                               | 81                                                                                                                                     | 110                                                                                                  |
|               |                                                                                  |                                                                                                                                        |                                                                                                      |
|               | CO, XO, SUPPO (3)  CSO, OPS, EMO, WEPS (4)  CHENG, MPA, DCA, A&E (4)  PILOTS (4) | CO, XO, SUPPO (3) HMC, MSC (2)  CSO, OPS, EMO, BMC, ETC, FCC, GMC, OSC, RMC, STC (7)  CHENG, MPA, DCA, A&E (4) (4)  PILOTS (4) ATC (1) | CO, XO, SUPPO (3) (3) (2) (2) (3) (3) (2) (3) (4) (5) (5) (6) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8 |

Table 1

#### Coast Guard Variant

| Coast Guard Varia |               |               |                 |       |
|-------------------|---------------|---------------|-----------------|-------|
| DEPARTMENT        | OFFICERS      | CPO'S         | ENLISTED        | TOTAL |
| SHIP SUPPORT      | CO, XO, SUPPO | HSC, SKC, SSC | SS (5), SK(2),  | 14    |
|                   | (3)           | (3)           | YN/PN           |       |
|                   |               |               | (8)             |       |
| COMBAT            | CSO,CICO,     | ETC, FTC,     | ET (5), FT (2), | 31    |
| SYSTEMS           | WEPS          | RMC, RDC      | GM (4), RD (8), |       |
|                   | (3)           | (4)           | RM (5)          | ,     |
|                   |               |               | (24)            |       |
| OPERATIONS        | OPS           | BMC, QMC      | BM (14), QM (3) | 21    |
|                   | 1ST LT (2)    | (2)           | (17)            |       |
| ENGINEERING       | EO, MPA, DCA, | EMC, MKC (2), | EM (6), MK      | 34    |
|                   | A&E           | DCC           | (16), DC (4)    |       |
|                   | (4)           | (4)           | (26)            |       |
| AIR               | PILOTS        | (0)           | AIR CREW        | 6     |
| DETACHMENT        | (2)           |               | AIR TECHS       |       |
|                   |               |               | (4)             |       |
| AVAILABLE         | 14            | 13            | 79              | 106   |
| MANNING           |               |               |                 |       |

Table 2



Figure 15 DEPARTMENTAL ORGANIZATION - NAVY



Figure 16 DEPARTMENTAL ORGANIZATION - COAST GUARD

#### 2. BATTLE ORGANIZATION

The manning requirements for the ship drive many design parameters, especially in the Combat System area. Manning is primarily driven by watchstation requirements during battle conditions, and to a lesser extent by normal ship operations. The CPCX's Condition I and Condition III Battle Organizations are given in Figures 17 and 18 and 19 and 20 respectively. The connectivity of the watch organization is for supervisory functions only, and has nothing to do with the flow of information to each watch station. Since each watch station will be connected to the data multiplexed ring bus, all watch stations will have access to any desired information. The watch stations that require consoles will be established with either one of two different types:

- (a) a multi-purpose console (MMI) capable of performing any watch station function.
- (b) or a watch station specific console used only for local equipment control and specific functions.

The capability of the combat system watch team during Condition III is that it can fight the ship in a short duration, limited capacity until the ship can man Condition I watch stations. The CPCX's manning will allow, with the exception of radio, all watch stations to be stood in a three section, 4 hours on/8 hours off, watch rotation. This will allow ample time for the off watch sections to conduct training, maintenance and housekeeping.



#### **LEGEND**

| AAWC  | ANTI-AIR WARFARE COORDINATOR       |
|-------|------------------------------------|
| ASAC  | ANTI-SUBMARINE AIRCRAFT CONTROLLER |
| ASUWC | ANTI-SURFACE WARFARE COORDINATOR   |
| ASWC  | ANTI-SUBMARINE WARFARE COORDINATOR |
| AEO   | AIR ENGAGEMENT OFFICER             |
| CO    | COMMANDING OFFICER                 |
| DCA   | DAMAGE CONTROL ASSISTANT           |
| EOOW  | ENGINEERING OFFICER THE WATCH      |
| OOD   | OFFICER OF THE DECK                |
| LO    | LOCAL OPERATOR                     |
| SEO   | SURFACE ENGAGEMENT OFFICER         |
| SSEO  | SUB-SURFACE ENGAGEMENT OFFICER     |
| TAO   | TACTICAL ACTION OFFICER            |
| TIC   | TRACK INFORMATION OFFICER          |
| XO    | EXECUTIVE OFFICER                  |
|       | CIC 2 (ALTERNATE CIC)              |

Figure 17 CONDITION I BATTLE ORGANIZATION - NAVY



| ANTI-AIR WARFARE COORDINATOR       |
|------------------------------------|
| ANTI-SUBMARINE AIRCRAFT CONTROLLER |
| ANTI-SURFACE WARFARE COORDINATOR   |
|                                    |
| AIR ENGAGEMENT OFFICER             |
| DAMAGE CONTROL ASSISTANT           |
| ENGINEER OF THE WATCH              |
| COMMANDING OFFICER                 |
| LOCAL OPERATOR                     |
| OFFICER OF THE DECK                |
| SURFACE ENGAGEMENT OFFICER         |
| TACTICAL ACTION OFFICER            |
| TRACK INFORMATION OFFICER          |
| EXECUTIVE OFFICER                  |
|                                    |

Figure 18 CONDITION I BATTLE ORGANIZATION - COAST GUARD



#### **LEGEND**

| CICO | COMBAT INFORMATION CENTER OFFICER |
|------|-----------------------------------|
| EOOW | ENGINEERING OFFICER OF THE WATCH  |
| OOD  | OFFICER OF THE DECK               |

Figure 19 CONDITION III BATTLE ORGANIZATION - NAVY



#### **LEGEND**

| CICO        | COMBAT INFORMATION CENTER OFFICER |
|-------------|-----------------------------------|
| EOOW        | ENGINEER OF THE WATCH             |
| OOD         | OFFICER OF THE DECK               |
| <b>BMOW</b> | BOATSWAIN MATE OF THE WATCH       |

Figure 20 CONDITION III BATTLE ORGANIZATION - COAST GUARD

#### G. CONVERSION

The ORD dictated the requirement of two ship variants form one hull, one operated by the Navy, the other by the Coast Guard. As much as possible the variants were kept the same to reduce costs and to ease production. The variants differ where it was necessary by due to their different missions. The Navy variant requires a robust self defense capability, some strike capability, and sophisticated air search capabilities. The Coast Guard variant will be used in drug, smuggling, and illegal immigration interdiction, fisheries protection, SAR, escort, and general maritime police duties. In addition, different maximum costs were set for each variant, the Coast Guard variant's being \$375 million and the Navy variant's being \$450 million. Conversion must take place in under four weeks. Because of these mission differences, the following conversions are required for the Navy variant to become the Coast Guard variant and vice versa.

1. <u>Remove: VLS Install:</u> fuel storage, buoy storage area with sinkers and chain and environmental clean- up gear.

The VLS will be constructed as one unit that can be removed all at once. All missiles will be removed from the ship and then the VLS unit will be lifted out and removed. Associated fire control illuminators will be removed from topside. In its place will be fuel storage tank twelve feet from the keel. A buoy storage room will be on top of the fuel tank. An overboard drainage system will be installed. Flush with the main deck will be a watertight 12'X 12' hatch.

#### 2. Remove: 5" gun Install: buoy crane

Ammunition will be removed from the gun magazine. The ammunition elevator will be removed. A watertight door will be installed at the frame 66' aft of the forward perpendicular. An environmental containment skirt will be stored in the former magazine

and will be assessable by this door. The gun will be removed on the main deck and in its place a crane to lift buoys and the skirt will be installed.

#### 3. Remove: ATAS Install: 2 RHI small boats

The ATAS will be removed from the "well deck". Associated equipment in the well deck will be removed. CIC will remain unaffected. Two RHI small boats will be placed in the well deck. Rails are already in place.

#### 4. Remove: Torpedo tubes Install: Prisoner containment room

Remove torpedoes. Remove "bolt on" torpedo tubes and electrical cabling. Patch opening for torpedoes. Install one commode, shower for prisoner head. Fresh water piping will be pre-staged. Install four sets of bunks, three high.

#### V. DESIGN EVALUATION

#### A. SURVIVABILITY FEATURES:

The CPCX's survivability characteristics received significant emphasis to support its independent operating nature. Signature reduction was accomplished in three areas by incorporating; radar cross section (RCS) reduction features, infrared (IR) reduction features, and acoustic reduction features. In addition, redundant systems and control spaces further enhance survivability.

The hull, superstructure, and mast consist of flat surfaces, angled at 10 degrees with respect to vertical. All topside equipment such as small boats, deck fittings, torpedo tubes, and miscellaneous gear have been located within the superstructure. These measures will significantly eliminate corner reflectors and reduce the RCS of the CPCX. Further enhancements include the glass reinforced plastic mast and Radar Absorbing Material (RAM) applied to all superstructure and mast surfaces to reduce the reflection of electromagnetic energy.

Infrared cross section reduction methods consist of IR insulation, regenerative gas turbine engines and stack eductors to reduce prime move exhaust temperature.

Acoustic reduction methods include; double sound isolators on the diesel prime movers, acoustic modules on the gas turbine engines, prairie and masker air systems to mask hull noise, and active ship silencing.

The propulsion system was divided among two main engineering spaces located on the 3rd deck. Each engine room contains one diesel and one gas turbine engine to provide main propulsion and electrical power through an electric drive configuration. This propulsion system combined with the DC zonal electrical distribution effectively eliminated all single point failures or "Choke Points" in the engineering system. With a loss of one engine room, the maximum attainable speed is 23kts. In addition, an uninterruptable power supply (UPS) battery is directly connected to the four combat system vital buses. In the event of generator casualties, a seamless transition from primary to alternate power occurs.

Two physically separate CIC's act as a single entity. For the Navy variant, both CIC's are manned during General Quarters. If #1 CIC is lost, the other, although not having as many

84

consoles, is capable of effectively fighting the ship. For the Coast Guard variant, only one CIC is manned during General Quarters. CIC #2 is capable of fighting the ship if CIC #1 is lost and enough personnel are available to main the alternate space.

Finally, the CPCX's information is distributed through several fiber optic paths in a ring information network. This fiber optic ring allows processing capability to be spread throughout the ship while maintaining a rapid flow of information to all users.

The only single point of failure is the mast which contains the XPAR, surface search radar, forward missile illuminator, IR detectors, and CEC antenna. A casualty to the mast would eliminate navigation and combat systems capability entirely.

#### **B. FURTHER STUDY**

This design is the result of one iteration of the design spiral. Areas that require further attention in subsequent iterations include; the single mast, Coast Guard cost, weight management, cost analysis, and a comparison of CPCX with similar ships.

The air search and surface search radars, as well as other vital equipment, are located on a single mast. Placing a second mast on the ship should be investigated. Alternate locations for topside and other systems would also need to be analyzed.

The Coast Guard is buying high cost sensors for ease of convertibility. Modularized detection elements would eliminate this problem. With the indications provided by future technological areas, this concept is possible.

The CPCX is at the upper limits of its service life weight margin. Critical analysis needs to be completed in this area by compiling more accurate weights and by reevaluating system placement.

Cost data was obtained from the ASSET model. This Cost was calculated using weight based empirical formulas. Future study would require accurate costs provided by manufactures, particularly for new technology systems.

Finally, an effectiveness analysis should be conducted on the CPCX and then compared to other ships with similar size, mission, and payload. This analysis would clearly show which ship is "better".

#### C. DESIGN AS A LEARNING TOOL

The value of this design process as a learning tool was in the use of systems engineering principles to design one of the ultimate engineering systems - a multi-mission capable ship. The learning and adoption of a systems engineering approach can be divided into two broad areas. The first area includes the technical or "textbook" aspects of implementing a structured design process that leads to a finished product, in this case a ship design completed through the preliminary design phase. The second area relates to the teamwork or "human" aspects of working on a relatively long term, large scale project as a member of an eight person team. Each of these areas had its related challenges and demands.

The process of transforming operational requirements into a preliminary design demonstrated the multitude of trade-off, optimizations, analysis methods, and engineering judgments that are required for a large system design. The design process using a system engineering approach shed new light on just how integrated ship systems need to be if they are to operate at an optimal level. Progressing from the definition of a need for a new system through to the preliminary design phase with high level of concern for how the various subsystems will integrate to form a whole system is a concept applicable to not just ships or military craft, but any system having two or more components.

The importance of the teamwork aspect to the design process was manifested early. The realization came that in order for any of our ship systems to be integrated, our efforts as a team had to be integrated as well. Everything from previous experience tours to individual schedules and work habits came into play in completing each aspect of the design. The personal experiences, strengths, and interests of each team member had to be considered so that contributions by each team member could be optimized and the common goal of a successful preliminary ship design could be achieved.

#### D. CONCLUSION

The CPCX is a multi-mission capable ship that satisfies Navy and Coast Guard needs for a replacement vessel in the year 2010. It is suited for use in littoral as well as blue waters. The

86

incorporated concept of convertibility allows for a rapid response to ever changing threat environments.

The CPCX meets all requirements as dictated by the ORD. In a successful adherence to our design philosophy, we were able to meet or better the constraints of maximum cost, minimum range, and maximum displacement. In addition, the RCS features previously discussed contribute to the ship's high survivability. The maximum mission effectiveness was achieved by choosing the ship option with the highest measure of effectiveness. A significant reduction in manning was achieved by reviewing current crew positions as well as by incorporating features that implement automation into the design. Our logistics plan along with a menu-driven maintenance system provide the ship with little required maintenance other than basic preventive and essential corrective maintenance. Finally, the quality of life aspect of the crew was important for a minimally manned crew. To improve habitability, crew service spaces were concentrated around the messdecks, the per person space allotment was increased, and recreation spaces were included.

With the items in further study addressed, the design should provide Navy and Coast Guard policy makers a low cost, easily maintainable, minimum manned ship in 2010.

#### LIST OF REFERENCES

#### A. Software

- 1. Manual for General Hydrostatics (GHS) by Creative Systems, Creative Systems, Inc., 1993.
  - 2. Warship-21 (v1.53)
  - 3. Microsoft Office (Word 5.0, Excel 4.0, Power Point 3.0)
  - 4. Autocad (v12 & v13)
- 5. Advanced Surface Ship Evaluation Tool (ASSET), User Manual, David Taylor Research Center, 1990.

#### **B.** Literature

- 1. The Naval Institute Guide to Ships and Aircraft of the U.S. Fleet, 15th Edition, ed. Polmar, N., 1993
  - 2. The Naval Institute Guide to World Naval Weapons Systems, ed. Friedman, N., 1989.
  - 3. Jane's Fighting Ships 1994-95, Ninety-seventh Edition, ed. Sharpe, R., 1994.
- 4. Jane's All The World's Aircraft, 1994-95, Eighty-fifth Year of Issue, ed. Lambert, M., 1994.
  - 5. Jane's Naval Weapon Systems, ed. Hooton, E., 1994.

## **APPENDIX A**

THREAT SCENARIOS

#### **SUMMARY**

The initial step in the Combat System selection process is to estimate the future threat scenarios so the CPCX can be designed with a Combat System suite capable of defeating this threat. Threat scenarios were developed to estimate the expected threat the CPCX will encounter beyond an IOC of 2010.

The future threats located on page (A-3) were provided by the faculty advisors. From these future threats, the design teams identified the projected threat environments and selected the possible threats that may be encountered in each environment. The threats were then broken down by specific service. The Navy threat scenarios are located on page (E-4) and the Coast Guard threat scenarios are located on page (E-6). The following letter scale was used to evaluate each specific threat based on the probability of encountering and the capability of that specific threat.

- AA High probability of encountering/High capability threat
- AB High probability of encountering/Low capability threat
- BA Medium probability of encountering/High capability threat
- BB Medium probability of encountering/Low capability threat
- CA Low probability of encountering/High capability threat
- CB Low probability of encountering/Low capability threat
- DA Very Low probability of encountering/High capability threat
- DB Very Low probability of encountering/Low capability threat

### **Future Threats**

#### Missiles:

A= anti-ship missile, M= other missile

| Designation | Cruise (Mach) | Altitude(ft) | Range (nm) | RCS (dB) | Notes                                                  |
|-------------|---------------|--------------|------------|----------|--------------------------------------------------------|
| A-1         | 4.0           | 150,000      | 200        | -40      | RF(active & passive)/IR/video seeker 60 deg dive angle |
| A-2         | 2.0           | 50           | 100        | -40      | 10g termnvr/IR/video seeker<br>terminal alt. 7 ft      |
| A-3         | 0.9           | 20           | 75         | -30      | Multiple termnvr/RF/IR seeker A/J                      |
| A-4         | 0.9           | 10           | 60         | -20      | RF seeker<br>A/J                                       |
| M-1         | 2.5           | LOS          | 2.5        | -45      | IR shoulder or multi launcher                          |
| M-2         | 3.5           | Various      | 100        | -40      | air launched ARM                                       |

|     | Populations:                  | Distribution: (who owns, # of nations, |
|-----|-------------------------------|----------------------------------------|
| (%  | of total missile populations) | assuming 250 littoral nations)         |
| A-1 | 5                             | 10                                     |
| A-2 | 20                            | 50                                     |
| A-3 | 50                            | 187                                    |
| A-4 | 25                            | 50                                     |

#### Guns:

Small arms through 127mm, guided (IR/Laser/RF) and ballistic, ETC and standard propellant.

#### Mines:

Bottom. moored, floating. All influences

#### **Torpedoes:**

Surface and sub launched. Speeds to 80 kts. Contact/magnetic/acoustic triggers.

#### Misc.:

Mortars, grenades, etc., Chemical and biological agents dispersed through various vectors/methods.

#### Note:

All ASCMs may be launched from air, surface, or subsurface platforms. Any torpedo may be launched from any submarine.

#### Navy Threat Scenarios

#### 1. Independent Operations:

- Constitutes the high end of low intensity conflict.
- Conduct law enforcement, board and search, drug operations, blockade, Freedom of Navigation (FON), show the flag, Special Operations Force (SOF), intelligence operations, etc. Primarily littoral environments.
- Operate at long distances from the battle group which can also be considered independent operations.
- Reduced signatures are needed for inherent self-defense capability.
- Threat of three missiles in one minute (AA)
- ASCM threats will originate from small fishing vessels and small hostile combatants A-1 (CB), A-2 (CA), A-3 (BA), A-4 (BA)
- Other missiles: M-1 (BB), M-2 (BA)
- Guns (AB)
- Mines (BA), the CPCX may be conducting mine hunting ops.
- Diesel/electric submarines (BA)
- Will likely see a single threat in a single medium (ie. one airplane, one submarine, one missile) vice several threats from various areas.
- CPCX will spend a significant portion of its time at sea conducting independent operations.
- Must have adequate ship self-defense to protect itself.

#### 2. Group operations without AEGIS support:

- Part of ARG or SAG (non-Aegis)
- Significant contribution to the fleet will include ASW capability, early warning air detection, and mine hunting.
- CPCX in this scenario will be conducting ASW, escort ops, and/or mine hunting
- These scenarios tend to be more blue water oriented. (No matter how "littoral capable" we design the CPCX it will still be expected to operate in blue water with the fleet.)
- CPCX will operate along threat axis (50-150 mi.) ahead of group.
- The CPCX will not have the support of Aegis cruiser/destroyer.
- Air defense (if required) will be provided by missile shooters (NTU CGN, DD with VLS, FFG)
- Mines (CA) less likely in this scenario. (blue water nature)
- The probability of seeing missile A-1 (DA)
- ASCM threat: A-2 (AA), A-3 (AA), A-4 (AA)
- Other missile threat: M-1 (DB), M-2 (AA)
- Missile M-1 is very short range and difficult to counter.
- Missile threat includes three incoming missiles in one minute.
- Diesel/electric submarines (AA)
- Guns (AB)
- This scenario will be the most demanding scenario for the CPCX. Other ships will be present, but CPCX will not have the Aegis umbrella for protection.

#### 3. Group operations with AEGIS support:

- This scenario will be similar to above but the CPCX will have the assistance of an AEGIS cruiser/destroyer. Part of CVBG or SAG.
- Aegis will provide long range air search and air defense.
- CPCX will operate along threat axis (50-150 mi.) ahead of Aegis for ASW capability and early warning air detection an tracking. Can provide Aegis with "heads up" to possible incoming air attack.
- Missile threat is high, but the missile most difficult to counter A-1 (CA) will most likely be targeted for other platforms such as Aegis/CV/LHD, not CPCX.
- Missile threat: A-2 (AA), A-3 (AA), A-4 (AA), M-1 (DB) and M-2 (AA)
- missile M-1 and M-2 are very short range and difficult to counter
- Missile threat includes three incoming missiles in one minute.
- Diesel/electric submarines (AA)
- Guns (BB)

#### **Coast Guard Threat Scenarios**

#### 1. Independent Operations: Routine ELT Patrol:

- Fisheries: belligerent fisherman using primitive small arms, large fishing vessels attempting to ram. Threats: M-1 (CB), small arms (BC).
- AMIO: large numbers of migrants, non-threatening unless actually aboard own vessel. Riot risk, possible takeover attempts (internal security issue). Threats: small arms (BC).
- Drug Interdiction/Smuggling/Piracy (AA): high speed surface and aircraft, equipped with high tech small arms, OTS (over the shoulder) missiles, rocket propelled grenades. Threat: A-4 (DA),M-1 (CB)
- Territorial/Sovereignty issues: Foreign governments desiring to make a "statement" concerning Freedom of Navigation issues, international waters fishing treaties (i.e. Recent Canada/Spain fishing rights dispute). May involve use of covert special forces aboard commercial vessels, using a few, but very potent high tech weapons. May also involve shore based threats (aircraft, missiles, gunboats, etc.) if operating near or in foreign littorals (but in international waters). Threat: A-3 (DA), A-4 (CA), M-1 (CB), M-2 (DB).
- Underwater Terrorism: In US port or foreign port, factions placing mines on ship. Terrorist swimmers harassing ship, trying to come aboard, trying to sabotage. Threat: mines (DA).

#### 2. Low Intensity/Group Operations

- Support of limited invasion operations of Third World nations. In concert with other Navy/Coast Guard forces, generally in own hemisphere, i.e. Haiti, Grenada, Panama. May be first US asset on scene. Threats include aircraft and/or small warships (corvette size or smaller). Very limited high tech threats, but abundant weapons of 1990's technology. Threats: A-3 (CA), A-4 (CA), M-1 (BB), M-2 (CB).
- Foreign littorals: UN/US Economic sanctions, embargoes. Commercial ships that are intercepted may contain OTS missiles, small arms. Ramming also a possibility. Threats: M-1 (CB).
- Escort duties for allied shipping in US and foreign littorals. Threats include small surface/sub-surface craft, aircraft and mines. Threats: A-3 (CA), A-4 (BA), M-1 (AB), M-2 (CA). Harbor control duties in foreign ports in support of inland operations. Small surface/sub-surface craft, and mines are potential threats. Threats: A-4 (CA), M-1 (BB), M-2 (CB), and mines (BA)

#### 3. Battlegroup Operations:

 Against First World high tech threats. Involvement limited to configuration capabilities. A-1 (CA), A-2 (CA), A-3 (CA), A-4 (BA), M-2 (CB), torpedoes (BB), mines (AA), misc. (BB)

# APPENDIX B

COMBAT SYSTEM REQUIREMENTS

#### **Summary**

This Appendix (B) contains the Combat Systems requirements broken down by common requirements for both variants, Navy specific requirements, and Coast Guard specific requirements.

#### **COMBAT SYSTEMS REQUIREMENTS**

#### Category A - Both Variant Specific Requirements

- 1. Fully inter-operable with other Naval expeditionary, interagency, joint and allied forces.
- 2. Broad band sensor suite (open ocean and close to land) with minimal detection degradation.
- 3. Communications suite must have an integrated database capable of interfacing in a Joint Task Force/Combined Task Force (JTF/CTF) environment to include compatibility with joint systems such as the Global Command and Control System (GCCS) and the Joint Worldwide Intelligence Communications System (JWICS). The ship must have a full suite of radios and antennas to support full connectivity via EHF/SHF/UHF/SATCOM.
- 4. Stop, board and disable other vessels.
- 5. Embark and support armed rotary-wing aircraft, and conduct rotary-wing aircraft operations.
- 6. Small boats, minimum capacity of 8 people, up to sea state 4.
- 7. Humanitarian assistance in the form of at sea rescues, emergency medical care, sustenance and protection.
- 8. Coastal intelligence gathering.
- 9. Conduct and support special operation forces worldwide.
- 10. Support the equipment and personnel of a mine disposal system.
- 11. Have a reduced electronic, magnetic, thermal, and acoustic signature.
- 12. Modularized mission specific items for future updates will be used and will lend toward quick conversion between variants.
- 13. Minimization of crew size while maintaining capability is essential.

#### Category B - Navy Specific

- 1. Destroy or neutralize enemy targets afloat and ashore through the use of coordinated, precision strike weapons.
- 2. Provide firepower support for amphibious and other ground forces.

- 3. Detect, identify, and engage air, surface, and underwater threats.
- 4. Perform ship self defense against foreign military enemies and civilian terrorists at sea and in port.
- 5. Defend itself against raids comprised of 3 ASCMs arriving within a one minute.
- 6. Conduct engagements cooperatively with other ships, submarines, aircraft, space systems, and land systems.
- 7. Detect and chart underwater mines.

#### Category C - Coast Guard Specific

- 1. Detect, identify, and engage air and surface threats.
- 2. Perform ship self defense against foreign military enemies and civilian terrorists at sea and in port.
- 3. Conduct engagements cooperatively with other ships, military and civilian aircraft, and land systems.
- 4. Detect and chart underwater mines.
- 5. System for prisoner containment.
- 6. Transport and station small navigational buoys.
- 7. Assist in the containment of oil spills.
- 8. Be capable of joining the Naval fleet in joint operations and in time of war.

# **APPENDIX C**

COMBAT SYSTEMS ELEMENTS CONSIDERED

#### **SUMMARY**

A summary of Combat System elements considered for the CPCX design is contained in the following appendix. The design teams researched guns, ASW sonars, air /surface search sensors, missiles, mine hunting devices, and small boats from various countries. This provided a database of current weapon systems and their capabilities from which the design teams could pick the elements needed to satisfy given requirements and meet projected threats.

#### **GUNS**

| LARGE                         |           |                   |                     |         |
|-------------------------------|-----------|-------------------|---------------------|---------|
| Name                          | Weight    | Rate              | Ranges (surface/AA) | Source  |
| 5"-54 MK 45                   | 24.27 t   | 16-20 rds/min     | 12.4 nm / 15 km     | US      |
| Oto Melara 127 (Alleggeritto) | 20.5 t    | 45 rds/min        | 8.6 nm / 13.6 km    | Italy   |
| Vickers 4.5"                  | 23.25 t   | 25 rds/min        | 11.9 nm             | UK      |
| Bofors TAK 120                | 28.8 t    | 80 rds/min        | 10 nm               | Sweden  |
| MEDIUM                        |           |                   |                     |         |
| Name                          | Weight    | Rate              | Ranges (surface/AA) | Source  |
| Greusat-Loire 100             | 13.5 t    | 10,40, 90 rds/min | 9.15 nm / 6 km      | France  |
| Oto Melara 76                 | 7.5 t     | 80 rds/min        | 16 km               | Italy   |
| Bofors TAK 76                 | 6.5 t     | 30 rds/min        | 6.8 nm              | Sweden  |
| Bofors 40                     | 5.6 t     | 600 rds/min       | 6  km / .4  km      | Sweden  |
| Breda Fast 40                 | 6 t       | 900 rds/min       | 6.75 nm / 8.7 km    | Italy   |
| Trinity 40                    | 4000 kg   | 330 rds/min       | 1.61 nm / 6 km      | Sweden  |
| SMALL                         |           |                   | •                   |         |
| Name                          | Weight    | Rate              | Ranges (surface/AA) | Source  |
| Mk 88 Bushmaster 25           | _         | 180 rds/min       | 1.33 nm             | US      |
| Giat 20                       | 222 kg    | 650 rds/min       | 1 <b>nm</b>         | France  |
| Oerlikon 20                   | 500 kg    | 800 rds/min       | 1 nm                | Int'l   |
| ANTI-SHIP MISSIL              | E DEFENSE |                   |                     |         |
| Name                          | Weight    | Rate              | Range               | Source  |
| Midas 27                      | 4.6 t     | 7200 rds/min      |                     | Germany |
| Myriad 25                     | 7700 kg   | 10,000 rds/min    | 1.07 nm             | Italy   |
| Sea Zenith 25                 | 5450 kg   | 3400 rds/min      | 1.07 nm             | Switz   |
| Goalkeeper 30                 | 6800 kg   | 4200 rds/min      | 1.61 nm             | Neth    |
| CIWS 20                       | 6.18 t    | 4500 rds/min      | .75 nm              | US      |

#### **NEW TECHNOLOGIES**

ETC: Liquid propellant, Large mounts only

Rocket Assisted Projectiles

Guided Munitions: Command Guidance, IR seeker, laser designator, Semi-active

#### **ASW SONARS**

| HULL MOUNTED             |                |                  |            |
|--------------------------|----------------|------------------|------------|
| Name                     | Frequency      | Weight           | Source     |
| ANT COC FOE              | E 4 7777       |                  | <b>6</b> 1 |
| AN-SQS 505               | 5.4 KHz        |                  | Canada     |
| Type 5051 (505 improved) | 5.4 or 7 KHz   |                  | Canada     |
| Diodon                   | 12 KHz         | 1500 kg          | France     |
| PHS-32                   | 3 freqs        | 2500-8000 kg     | Neth       |
| Sea Hunter               | 10.5 KHz       |                  | UK         |
| Sea Searcher             | 6 to 9 KHz     |                  | UK         |
| AN-SQS 56                | 5.4 KHz        |                  | US         |
| AN-SQS 53                | 3.5 KHz        | 60000 lb dome    | US         |
|                          |                |                  |            |
| TOWED ARRAY OR VDS       | S              |                  |            |
| Name                     | Frequency      | Weight           | Source     |
| CONTACTOR                |                |                  |            |
| SONAC PTA                |                |                  | Fin        |
| Diodon                   | 12 KHz         | 8 tonnes         | France     |
| Salmon                   | 19 KHz         | 7630 kg          | France     |
| ATAS                     |                | 4.7 tonnes (mod) | UK         |
| COMTASS                  |                |                  | UK         |
| AN-SQS 35                | 13 KHz         |                  | US         |
| AN-SQR 19                |                |                  | US         |
|                          |                |                  |            |
| DIPPING SONARS           |                |                  |            |
| AN-AQS 13                | 9.25-10.75 KHz | 775 lb           | US         |
| AN-AQS 18                | 9.25-10.75 KHz | 600 lb           | US         |
| ALFS                     |                |                  |            |
|                          |                |                  |            |

#### **NEW DEVELOPMENTS**

Twin Tails

Bi-static towed arrays

Combined fish and array

#### **Radar Characteristics**

| COUNTRY    | DESIG.    | Peak Pwr<br>(KW) | Avg. Pwr.<br>(KW) | Freq         | Pulse length (microsec) | Gain<br>(dB) | BW<br>horiz (deg) | BW<br>vert (deg) |
|------------|-----------|------------------|-------------------|--------------|-------------------------|--------------|-------------------|------------------|
| Israel     | EL/M-2207 | 425              | 425               | 3.1-3.3 GHz  | 0.4-1.4                 | 28           | 3.3               | 10               |
| US         | SPS-49    | 360              | 13                | 850-942 MHz  | 125                     | 29           | 3.3               | 9                |
| US         | SPS-65/ER | 25               | 1.2               | 1.2-1.35 GHz | 7                       | 23           | 3                 |                  |
| US         | FAST      | 1000             | 10                | 5.4-5.9 GHz  | 0.6-200                 | -            | 3                 | 9                |
| France     | CASTOR II | 30               | 0.12              | 6.2-10.4 GHz | 7.5                     | 43           | 0.67              | 1.5              |
| Netherland | SMART     | 150              | -                 |              | 0.6                     | 31.5         | 2                 | 7                |
| -          | XPAR      | 5000             | 58                | 10 GHz       | 5.5                     | 40           | 1.5               | 1.5              |
| US         | SPY-1D    | 5000             | 58                | 3.1-3.5 GHz  | var                     | 42           | 1.7               | 1.7              |

# ANTI-SURFACE MISSLES

| (ibs) (Km) (Mech) (2998 96 0.9                                                  | LAUNCH         WEIGHT         RANGE         SPEED           Vehicle         (lbs)         (Km)         (Mach)           ship/shore         2998         95         0.9 | (ibs) (Km) (Mech) (2998 96 0.9 | (Km) (Mach)                 | SPEED<br>(Mach)<br>0.9 |                      | CRUIS<br>(fe | UISE ALT<br>(feet) | CRUISE ALT ATTACK ALT (feet) 30-50 | WARHEAD WOT WARHEAD TYPE (Ibs) 613 blast | WARHEAD TYPE                  | GUIDANCE<br>MPR.IR.    | DIAMETER<br>(ft)<br>0.78 | (ft)<br>7.36        | COST<br>(Dollars)                   | COMMENTS                               |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|------------------------|----------------------|--------------|--------------------|------------------------------------|------------------------------------------|-------------------------------|------------------------|--------------------------|---------------------|-------------------------------------|----------------------------------------|
| -1 ship/shore                                                                   | ship/shore                                                                                                                                                             | 000                            | 2                           |                        | 9                    |              |                    | 30                                 | 613                                      | 200                           | MPR                    | 2                        | 95.7                |                                     |                                        |
| ship/shore 1300 60 0.9                                                          | 1300 60 0.9                                                                                                                                                            | 1300 60 0.9                    | 60                          | 6.                     |                      |              |                    | skimmer                            | 366                                      | သွ                            | "Anti-Jam"             | 0.54                     | 9                   |                                     |                                        |
| FL-7 ship/shore 1800 32 1.4 60 C801/802 ship/shir 815 80-50 0.9 20              | 1800 32 1.4<br>815 80-50 0.9                                                                                                                                           | 1800 32 1.4<br>815 80-50 0.9   | 32 1.4<br>80-50 0.9         | 1.4                    |                      | 2 60         | 50-100<br>20-30    | 6-7                                | 166                                      | SC                            | ECCM features<br>MPR   | 0.54                     | 6.6                 |                                     |                                        |
| France ship/air/sub 760 42-66 0.93 ship/air 860 180 2                           | ship/air/sub 760 42-66 0.93<br>ship/air 860 180 2                                                                                                                      | 760 42-65 0.93<br>850 180 2    | 42-65 0.93<br>180 2         | 0.93                   |                      |              | 9<br>high alt      | 2.5-8<br>skim/weave                | 166<br>180                               | Blast/frag<br>SAP             | see note 1             | 0.348                    | 6.2<br>6.7          | \$400,000                           |                                        |
| SS 11 ship/air/ 66 3.3 580 fps<br>SS12M ship/air/shore 166 6.6 580 fps          | 66 3.3<br>165 6.5                                                                                                                                                      | 66 3.3<br>165 6.5              | 66 3.3<br>165 6.5           |                        | 580 fps<br>580 fps   |              | s01<br>s01         | \$01<br>\$01                       | 16                                       | 3.5 # HE blast<br>SAP,several | Wire Guided<br>WG      | 6.4 in<br>7.1 in         | 47.6 in<br>73.7 in  | \$1,800                             | obsolete                               |
|                                                                                 | ship/air/shore 600 40<br>660 36<br>960 200                                                                                                                             | 600 40<br>660 36<br>860 200    | 600 40<br>660 36<br>860 200 |                        | 0.65<br>0.85<br>0.85 |              |                    | 1.6                                | 180<br>160<br>200                        |                               | optical/CG<br>FAAS     | 0.35<br>0.34<br>0.43     | 3.35<br>3.85<br>4.7 | \$400,000<br>\$450,000<br>\$675,000 |                                        |
| Italy ship/ 770 60                                                              | ship/ 770 60                                                                                                                                                           | 770 60                         | 09                          |                        | 6.0                  |              | 08                 | 176 pop                            | 210                                      | blast                         | Xbnd AS                |                          |                     | \$400,000                           | 83 known launch<br>platforms           |
| 180 0.9                                                                         |                                                                                                                                                                        |                                |                             |                        | 6.0                  |              |                    | skim                               |                                          |                               | CG helo/               |                          |                     |                                     |                                        |
| 183-380 2<br>330 26 1.9                                                         | 193-380<br>25                                                                                                                                                          | 193-380<br>25                  | 193-380<br>25               |                        | 1.9                  |              | ю                  | 3.4                                | 100<br>70                                | HE frag                       | AS/IR/TV<br>beam rider | 0.32                     | 4.84                |                                     |                                        |
| SSM-1 Japan ship/air 661 150 0.9                                                | ship/air 661 150                                                                                                                                                       | 661 160                        | 150                         | _                      | 6.0                  |              |                    |                                    | 226                                      |                               |                        | 0.36                     | ю                   | \$680,000                           | Harpoon Copy Cat                       |
| AGM-119 Norway Ship/shore 330 40 0.8                                            | Ship/shore 330 40                                                                                                                                                      | 330 40                         | 40                          |                        | 8.0                  |              | 100                | skim                               | 260 #                                    | SAP                           | æ                      | 0.28                     | 2.86                | \$220,000-                          |                                        |
| Rb 08A Sweden ship/shore 782 76 0.65<br>Rb 12                                   | ship/shore 782 76                                                                                                                                                      | 782 76                         | 76                          |                        | 0.65                 |              |                    |                                    | 260                                      | blast frag                    |                        | 0.65                     | 6.7                 |                                     |                                        |
| RBS 16 ship/eir 698 70 0.7                                                      | 698 70                                                                                                                                                                 | 698 70                         | 70                          |                        | 0.7                  |              |                    |                                    | 260                                      | SAP                           | X,Ku                   | 9,0                      | 4.35                | \$478,000                           |                                        |
| SS-N-2 Russia Ship/Shore 2300 26 0.9 SS-N-12 ship/ 6000 300mm 2.5 SS-N-22 ship/ | Ship/Shore 2300 26<br>ship/ 6000 300nm<br>ship/ 68nm                                                                                                                   | 2300 26<br>6000 300nm<br>68nm  | 25<br>300nm<br>68nm         |                        | 0.9<br>2.5<br>2.5    |              | 400                | 100                                | 500<br>1000<br>454                       | 포                             | I band active          | 0.76                     | 6.5<br>11.7<br>8.15 |                                     |                                        |
| AGM-114A USA ship/sir/shore 50 3nm 1+                                           | ship/air/shore 50 3nm                                                                                                                                                  | 50 3nm                         | 50 3nm                      | -                      | +                    | 1            |                    |                                    | 1.6                                      | SC                            | SAL                    | 18                       | 1.63                |                                     |                                        |
| TLAM/TASM Ship/air/sub 2640 260-700 0.75 ship/air 620 80nm 0.85                 | 2640 250-700<br>520 80nm                                                                                                                                               | 2640 250-700<br>520 80nm       | 250-700<br>80nm             |                        | 0.76                 |              | 16-100m            | 30m                                | 464 kg<br>. 226                          | various<br>var                | Inertial/Tercom<br>var | 34.3                     | 18.06<br>4.63       | \$1,800,000                         | 40% of production<br>for foreign sales |

| MPR  | Mono Pulse Radar              |
|------|-------------------------------|
| CCP  | Course Correcting Projectile  |
| SAP  | Semi Armor Plercing           |
| FAAS | Frequency Agile Active Seeker |
| AP   | Armor Plercing                |
| SAL  | Semi-Active Lasar             |

# ANTI-AIR MISSLES

| NAME        | of Origin     | LAUNCHER        | WEIGHT (fbs) | RANGE<br>(Km) | (Mach) | GUIDANCE          | DIAMETER LENGTH | HIBN31 | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|---------------|-----------------|--------------|---------------|--------|-------------------|-----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MASCURA     | France        | twin            | 4600         | 30            | ဗ      | Semi-Active       | 1.3             | L      | Need 3D radar reloading serul-auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MISTRAL     |               | launch tube     | 4            | 3.7           | 2.8    | Active            | 0.3             |        | CONT. WINE BUILDING TO SOLUTION OF SOLUTIO |
| CROTALE     |               | VLS R&D         | 231          | 0             | 2,5    | Semi-Active IR TV | 9.0             |        | designed to counter air saturation attacks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RAM         | USA           | bolt on several | 1821         | 9 9           | 101    | Passive RE/IR     | 0.42            | ç      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STINGER     |               | Shoulder        | 22.3         | e             | 2.2    | Optical IR Homing | 0.23            | , u    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |               |                 |              |               | ,      | Passive IR/UV     |                 | ,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SM-2 ER     |               | VLS/Rall        | 2888         | 30+           | 2.6    | Semi-Active       | 1.13            | 28.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SM-2 MR     |               | VLS/Reil        | 1386         | 10+           | 2.5    | Semi-Active       | 1.13            | 14.7   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SEA SPARROW |               | VLS R&D/Box     | 200          | 12            | -      | Semi-Active CW RF | 0.67            | 12     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SEA DART    | Great Britain | Cannister       | 1210         | 5             | ,      | Compl Assista     | :               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SEA WOLF    |               | vertical        | 1761         | 4             | 0 01   | Semi-Active       | 9.0             | 6.5    | launch and control automatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ASPIDE      | İtaly         | рох             | 485          | =             | 2.5    | Semi-Active       | 0.7             | 12.1   | good in ECM and clutter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GRAIL       | Russia        | shoulder        | 201          | 8             | 1.5    | Active IR         | 0.2             | 4.8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# ANTI-SUB MISSLES

| (Mach) Action | (lbs) (Km) (Mach) |
|---------------|-------------------|
|               | Active            |
| Action        |                   |

# Mine Hunting Devices

| Hull Mounted                             | Manufacturer              | Frequencies                | Weight                          | Power Required | Max/Min<br>Depths    | Beamwidths                                                          | Cost | Notes/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|---------------------------|----------------------------|---------------------------------|----------------|----------------------|---------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SH100                                    | Simrad                    | 95/335кн2                  |                                 |                | up to 100 m          | Search:<br>45° hor,1.6° ver<br>Classification:<br>16° hor, .25° ver |      | Retractable, detects 600 m, classify 200 m, can operate search and classification sonars simultaneously, 10° vertical coverage in both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Variable Depth/<br>Towed/Side Scan/ROV   |                           |                            |                                 |                |                      |                                                                     |      | Sepon Control of the |
| RMOP-Dolphin                             | ISE (UK) / NSWC           | 7.3 m long<br>1 m diameter | 2832 kg                         | 150 shp        | semi-<br>submersible |                                                                     |      | air breathing, diesel powered<br>semi-submersible, connect to<br>ship via LOS UHF data link.<br>24 hr endurance at 12 kts.<br>Operable in Sea State 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SEABAT6012                               | Reson Systems             | 455kHz                     | 100 lbs                         | N/A            | A/N                  | Search:<br>165° hor,15° ver<br>Classification:<br>1.5° hor, 15° ver |      | Volume search and near surface surveillance sonar mounted on keel of Dolphin. Up to 200 m range. Multiple beams (60), with 20 kHz bandwidth. Operates at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AN/AQS-14                                | Westinghouse              |                            |                                 |                |                      |                                                                     |      | speeds up to 12 kts. towed array behind RMOP. Used for bottom scanning. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SQQ-14/30                                | Martin Marietta           | 80/350 kHz                 |                                 |                | 45 m                 | Search:<br>100° hor, 10° ver<br>Classification:<br>18° hor, 10° ver |      | P. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PVDS: Sutec Double<br>Eagle/TSM 2022 Mk3 | Bofors/<br>Thomson Sintra | 165/400 kHz                | 480 kg<br>(including<br>payload |                | 300m                 | Search:<br>63° hor,19° ver<br>Classification:<br>12° hor, 7° ver    |      | 5 kts, 600 m umbilical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Notes            | Self righting, self        | bailing Self bailing, 12" fender minimum (5 | kt bumper), stern<br>launchable |  |
|------------------|----------------------------|---------------------------------------------|---------------------------------|--|
| Engine           | Diesel                     | Diesel                                      |                                 |  |
| Range            | 50 nm @ 10 kts             | 25 nm @ max<br>speed, 50 nm @ 10            | kts                             |  |
| Max Weight       | 5000 lbs light             | 4000 lbs light                              |                                 |  |
| Cargo/Passengers | 3500 lbs or 16             | 1800 lbs or 8 passengers                    |                                 |  |
| Max speed        | 16 kts light, 12<br>loaded | 30 kts                                      |                                 |  |
| Beam             | 8 ft                       | 8.5 ft                                      |                                 |  |
| Length           | 26 ft                      | 21-24 ft                                    |                                 |  |
| Туре             | Surf boat                  | Fast boat                                   |                                 |  |
|                  |                            |                                             |                                 |  |

### APPENDIX D

**SONAR CALCULATIONS** 

## **Summary**

Sonar calculations were completed for two sonar systems, a SQS-56 hull-mounted sonar and a Active Towed Array Sonar (ATAS). Using a Microsoft Excel V5.0 spreadsheet, parameters for frequency, power output, sound speed, depth, and pulse width were used to calculate the detection range for a submarine with a target strength of 15dB, at a depth of 150 meters in water 2000 meters deep. Assumptions included a 50% probability of detection and straight ray path propagation.

Page D-3&4 contains the range calculations for the SQS-56 sonar

Page D-5&6 contains the range calculations for the ATAS

| Total Control of the last of t |                       |        |            |          |      |           |            |          |          | _            |            | _ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|------------|----------|------|-----------|------------|----------|----------|--------------|------------|---|
| SQS-56 sonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onar                  |        |            |          |      |           |            |          |          |              |            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |        |            |          |      |           |            |          |          |              |            |   |
| Constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |            |          |      |           |            |          |          |              |            |   |
| #5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1500                  |        | <b>=</b> J | 7500     |      | de        | depth=     | 4        |          | =M           | 125        |   |
| diameter=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2                   |        | h=         | 1.2      |      | ď         | Power=     | 3600     |          |              |            |   |
| DT=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                     |        | alpha=     | 0.000704 |      | <u>  </u> | <b>1</b> 1 | 0.1      |          |              |            |   |
| alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calculated parameters | S      |            |          |      |           |            |          |          |              |            |   |
| BWh=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.75205               |        | BWv≈       | 8.468383 |      | Ă         | AG=        | 26.98954 |          |              |            |   |
| SLt=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 233.5526              |        | DT=        | -2.49877 |      |           |            |          |          |              |            |   |
| Target parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ameters               |        |            |          |      |           |            |          |          |              |            |   |
| depth=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150                   |        | TS=        | 15       |      | de        | depth b=   | 2000     |          |              |            |   |
| evel Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ulations              |        |            |          |      |           |            |          |          |              |            |   |
| Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spreading Atten       |        | 2TL        | PHIE     | 2ARt | SLr       |            | Vol      | RSv      | 2EARv        | RLv        |   |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120                   | 1.408  | 121.408    | 8.395191 | Í    | -1.5      | 125.6446   | 86.74975 |          | -73 -22.4279 | 9 103.4665 |   |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 132.0412              | 2.816  | 134.8572   | 4.186316 | P    | -0.5      | 113.1954   | 92.75301 | 1-       | -73 -22.4517 | 7 95.99668 |   |
| 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144.0824              | 5.632  | 149.7144   | 2.091761 |      | 0         | 98.83817   | 95.76331 | <u> </u> | -73 -15.6634 | 4 90.93809 |   |
| 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 151.1261              | 8.448  | 159.5741   | 1.394335 |      | 0         | 88.97852   | 97.52422 | 1-       | -73 -15.6634 | 1 82.83935 |   |
| 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 156.1236              | 11.264 | 167.3876   | 1.045706 |      | 0         | 81.16497   | 98.77361 | 7-       | -73 -15.6634 | 1 76.27519 |   |
| 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                     | 14.08  | 174.08     | 0.836548 |      | 0 7       | 74.47257   | 99.74271 | 7-       | -73 -15.6634 | 1 70.55189 |   |
| 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 167.0437              | 21.12  | 188.1637   | 0.557688 |      | 0         | 60.38892   | 101.5036 |          | -73 -15.6634 | 1 58.22915 |   |
| 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 172.0412              | 28.16  | 200.2012   | 0.418263 |      | 0         | 48.35137   | 102.753  |          | -73 -15.6634 | 47.44099   |   |
| 30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179.0849              | 42.24  | 221.3249   | 0.278841 |      | 0         | 27.22772   | 104.5139 |          | -73 -15.6634 | 1 28.07825 |   |
| 40000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 184.0824              | 56.32  | 240.4024   | 0.20913  |      | 0         | 8.150167   | 105.7633 |          | -73 -15.6634 | 10.25009   |   |
| 60000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 191.1261              | 84.48  | 275.6061   | 0.13942  |      | 0         | -27.0535   | 107 5242 | -7       | -73 -15 6634 | 1 -23 1926 |   |



Page 2

|                               |            |           | 125    | 0         |        |                       |          | 1.27    | rr= 25   |                   |        |                    | 3v RI v         | 47         |          |          | 4          | +         |           |          |           | _          | 2        | 1        |
|-------------------------------|------------|-----------|--------|-----------|--------|-----------------------|----------|---------|----------|-------------------|--------|--------------------|-----------------|------------|----------|----------|------------|-----------|-----------|----------|-----------|------------|----------|----------|
|                               |            |           | =/M    | denth h=  | 5      |                       |          | BWhr=   | BWvr=    |                   |        |                    | RSv 2FARv       | -73        |          |          |            |           | $\perp$   | i        |           |            |          | 70       |
|                               |            |           | 100    | 2500      | 0.1    |                       | !        | 18.9217 | 31.17162 |                   |        |                    | Vol             | 87.14634   |          | ↓_       | 1          | _         | 1_        | 1        | 1         | -          | _        | 407 5040 |
|                               |            |           | depth= | Power=    | L      |                       | 100      | AGI=    | AGr=     |                   |        |                    | SLr             | 5 118.0011 | 1        | 1_       | 0 85.37505 | 0 79.5775 | 0 74.9011 | 9        | 0 58.8599 | 0 47.81625 | 38.8187  | 30377 00 |
|                               |            |           | 0      | 2         | 2      |                       |          | 0       | 7        |                   | 2      |                    | 2ARt            | +          |          |          |            |           |           |          |           |            | 0        |          |
|                               |            |           | 3000   | 1.2       | 0.0002 |                       | 24 27260 | 21.2130 | -2.49877 |                   | 15     |                    | PHE             | 2.865984   | _        | 0.716216 | 0.47747    | 0.358101  | 0.28648   | 0.190986 | 0.14324   | 0.095493   | 0.07162  | 0.047746 |
|                               |            |           | î      | =         | alpha= |                       | -/ / / 0 | - ^ ^   | DT=      |                   | TS=    |                    | 2TL             | 120.4      | 132.8412 | 145.6824 | 153.5261   | 159.3236  | 164       | 173.0437 | 180.0412  | 191.0849   | 200.0824 | 215 1261 |
| rediction                     |            |           |        |           |        |                       | 0        |         |          |                   |        |                    | Atten           | 4.0        | 0.8      | 1.6      | 2.4        | 3.2       | 7         | 9        | 8         | 12         | 16       | 74       |
| Active sonar range prediction | ar         |           | 1500   | 0.3       | 0      | Calculated parameters | אכן      | 200 000 | 223.9011 | ameters           | 150    | ulations           | Spreading Atten | 120        | 132.0412 | 144.0824 | 151.1261   | 156.1236  | 160       | 167.0437 | 172.0412  | 179.0849   | 184.0824 | 191,1261 |
| Active sor                    | ATAS sonar | Constants | C.II   | diameter= | DT=    | Calculated            | BWh=     |         | SLT=     | Target parameters | depth= | Level Calculations | Range           | 1000       | 2000     | 4000     | 0009       | 8000      | 10000     | 15000    | 20000     | 30000      | 40000    | 00009    |

D-5



Page 2

# APPENDIX E

RADAR CALCULATIONS

### **Summary**

Radar calculations were completed on several radars from various countries of origin including: EL/M-2207 (Israel), SPS-49 (US), FAST (US), Castor II (France), SMART (Netherlands), SPY-1D (US), and X-band Phased Array Radar (XPAR). The XPAR is a conceptual radar design utilized by the CPCX design team to achieve high performance radar characteristics combined with the advantage of low weight and reduced volume. XPAR has many of the features and capabilities of a SPY-1D radar, however the XPAR utilizes a X-band operating frequency instead of the SPY's S-band to achieve weight reduction in many system components including: array size, waveguide dimensions and computers.

The calculations utilized each radar's specific characteristics including power output, beamwidth, pulse width, and frequency to calculate the signal excess in terms of range. Each threat missile's radar cross section (RCS) was then used with the signal excess vs range plot to determine the maximum detection range. These calculations were performed for each radar against each missile flying either a beam centered or sea skimming attack trajectory. An example of these calculations for the SPY-1D radar is located in tables (E-1) and (E-2) respectively. A summary of all radars and their maximum detection range for each missile is located in table (E-3).

Table E-1: SPY-1D Radar Calculation, Beam Centerline Target

| Constants  |            |         |         |          |                    |                 |           |         |
|------------|------------|---------|---------|----------|--------------------|-----------------|-----------|---------|
| h=         | 20         |         | C=      | 3E+08    |                    | TS=             | 0         |         |
| d=         | 3.75       |         | DT=     |          |                    | t=              | 2.17E-03  |         |
| Pt=        | 5.00E+06   |         | Pavg=   |          |                    |                 | 2.171-03  |         |
| Parameter  | s          |         |         |          |                    |                 |           |         |
| T=         | 1.40E-06   |         | f=      | 3.30E+09 |                    | olobo=          | 9.005.06  |         |
| BWh=       | 1.70       |         | Lv=     |          | _                  |                 | 8.00E-06  |         |
| Lh=        | 2.71       |         | BWv=    | 1.70     |                    | Phi(cl)=<br>AG= |           |         |
| rpm(max)   | 130.77     |         |         |          |                    |                 | 38.54     |         |
| ipin(max)  | 130.77     |         | rpm=    | 60       |                    | Pul             | ses/look= | 2.1     |
| Noise Lev  | el         |         |         |          |                    |                 |           |         |
| NL(amb)    | -148.00    |         | NL(int) | -132.46  |                    | NL(tot)=        | -132.34   |         |
| Source Le  | vel        |         |         |          |                    |                 |           |         |
|            |            |         |         |          |                    |                 |           |         |
| Range      | SLt        | 2*AR    | 2*TL    | TS       | SLr                | DT              | SLr*      |         |
| 10         | 94.53      | -1      | -40.00  | 0        | 53.53              | -1.53           |           |         |
| 30         | 94.53      | -1      | -59.09  | 0        | 34.44              | -1.53           | 55.06     |         |
| 100        | 94.53      | -1      | -80.00  | 0        | 13.52              |                 | 35.97     |         |
| 300        | 94.53      | -1      | -99.09  | 0        | -5.56              | -1.53           | 15.05     |         |
| 1000       | 94.53      | -1      | -120.02 | 0        | -26.49             | -1.53           | -4.03     |         |
| 3000       | 94.53      | -1      | -139.13 | 0        | -45.61             | -1.53           | -24.96    |         |
| 10000      | 94.53      | -1      | -160.16 | 0        | -66.63             | -1.53           | -44.08    |         |
| 22583.18   | 94.53      | -1      | -174.51 | 0        |                    | -1.53           | -65.10    |         |
| 45166.36   | 94.53      | -1      | -180.92 |          | -80.99             | -1.53           | -79.46    |         |
| 100000     | 94.53      | -1      | -186.60 | 0        | -87.39             | -1.53           | -85.86    |         |
| 200000     | 94.53      | -1      | -201.24 | 0        | -93.07             | -1.53           | -91.54    |         |
| 300000     | 94.53      | -1      | -201.24 | 0        | -107.72            | -1.53           | -106.19   |         |
| 400000     | 94.53      | -1      | -211.00 | 0        | -118.36<br>-126.96 | -1.53           | -116.83   |         |
| 100000     | 04.00      |         | -220.40 | U        | -120.90            | -1.53           | -125.43   |         |
| Reverberat | tion Level |         | max=    | 22583.18 |                    |                 |           |         |
|            | 21.        |         |         |          |                    |                 |           |         |
| Range      | SLt        | 2*TL    | Area    | Phi      | RSs                | EAR             | 2*AR      | RLs     |
| 30         | 94.53      | -59.09  | 45.98   | -90.00   | -15                | -23.26          | -35       | 8.10    |
| 100        | 94.53      | -80.00  | 51.20   | -17.46   | -48                | -23.26          | -8        | -13.5   |
| 300        | 94.53      | -99.09  | 55.98   | -5.74    | -57                | -23.26          | -4        | -32.8   |
| 1000       | 94.53      | -120.02 | 61.20   | -1.72    | -64                | -23.26          | -2        | -53.5   |
| 3000       | 94.53      | -139.13 | 65.98   | -0.57    | -77                | -23.26          | -1        | -79.8   |
| 10000      | 94.53      | -160.16 | 71.20   | -0.17    | -92                | -23.26          | -1        | -110.6  |
| 22583.18   | 94.53      | -174.51 | 74.74   | -0.08    | -100               | -23.26          | -1        | -129.50 |

Table E-1: SPY-1D Radar Calculation, Beam Centerline Target

| ignal Exc | ess                                                                          |         |         |         |       |      |
|-----------|------------------------------------------------------------------------------|---------|---------|---------|-------|------|
|           |                                                                              |         |         |         |       |      |
| Range     | RLs                                                                          | NL(tot) | NL+RLs  | SLr*    | SE    |      |
| 10        | 28.00                                                                        | -132.34 | 28.00   | 55.06   | 27.06 |      |
| 30        | 8.16                                                                         | -132.34 | 8.16    | 35.97   | 27.81 |      |
| 100       | -13.53                                                                       | -132.34 | -13.53  | 15.05   | 28.58 |      |
| 300       | -32.85                                                                       | -132.34 | -32.85  | -4.03   | 28.81 |      |
| 1000      | -53.54                                                                       | -132.34 | -53.54  | -24.96  | 28.58 |      |
| 3000      | -79.89                                                                       | -132.34 | -79.89  | -44.08  | 35.81 |      |
| 10000     | -110.69                                                                      | -132.34 | -110.66 | -65.10  | 45.55 |      |
| 22583.18  | -129.50                                                                      | -132.34 | -127.68 | -79.46  | 48.23 |      |
| 15166.36  |                                                                              | -132.34 | -132.34 | -85.86  | 46.48 |      |
| 100000    |                                                                              | -132.34 | -132.34 | -91.54  | 40.80 |      |
| 200000    |                                                                              | -132.34 | -132.34 | -106.19 | 26.16 |      |
| 300000    |                                                                              | -132.34 | -132.34 | -116.83 | 15.51 |      |
| 400000    |                                                                              | -132.34 | -132.34 | -125.43 | 6.91  |      |
| SE-db     | 50.00<br>45.00<br>40.00<br>35.00<br>30.00<br>25.00<br>15.00<br>10.00<br>5.00 |         |         |         |       | → SE |
| 1         | 0.00                                                                         |         |         |         |       |      |

Table E-2: SPY-1D Radar Calculation, Sea Skimming Target

| Constants |             |         |         |          | <del></del> |          |            |          |
|-----------|-------------|---------|---------|----------|-------------|----------|------------|----------|
| h=        | 20          |         | C=      | 3E+08    |             | TS=      | 0          |          |
| d=        | 3.75        |         | DT=     | -1.53    |             | t=       | 2.17E-03   |          |
| Pt=       | 5.00E+06    |         | Pavg=   | 3230.77  |             |          |            |          |
| Parameter | c           |         |         |          |             |          |            |          |
| T=        | 1.40E-06    |         | f=      | 3.30E+09 |             | alnha=   | 8.00E-06   |          |
| BWh=      | 1.7         |         | Lv=     | 2.71     |             | Phi(cl)= |            |          |
| Lh=       | 2.71        |         | BWv=    | 1.70     |             | AG=      |            |          |
| rpm(max)  | 130.77      |         | rpm=    | 60       |             |          | lses/look= | 2.40     |
| ipin(max) | 130.77      |         | i þin-  | 00       |             | Pu       | ISES/IOUK= | 2.18     |
| Noise Lev |             |         |         |          |             |          |            |          |
| NL(amb)   | -148.00     |         | NL(int) | -132.46  |             | NL(tot)= | -132.34    |          |
| Source Le | vel         |         |         |          |             |          |            |          |
|           | 94.52561    |         |         |          |             |          |            |          |
| Range     | SLt         | 2*AR    | 2*TL    | TS       | SLr         | DT       | SLr*       |          |
| 10        | 94.53       | -1      | -40.00  | 0        | 53.53       | -1.53    | 55.06      |          |
| 30        | 94.53       | -1      | -59.09  | 0        | 34.44       | -1.53    | 35.97      |          |
| 100       | 94.53       | -1      | -80.00  | 0        | 13.52       | -1.53    | 15.05      |          |
| 300       | 94.53       | -1      | -99.09  | 0        | -5.56       | -1.53    | -4.03      |          |
| 1000      | 94.53       | -1      | -120.02 | 0        | -26.49      | -1.53    | -24.96     |          |
| 3000      | 94.53       | -1      | -139.13 | 0        | -45.61      | -1.53    | -44.08     |          |
| 10000     | 94.53       | -1      | -160.16 | 0        | -66.63      | -1.53    | -65.10     |          |
| 18439.09  | 94.53       | -1      | -170.92 | 0        | -77.40      | -1.53    | -75.87     |          |
| 36878.18  | 94.53       | -1      | -178.26 | 0        | -84.74      | -1.53    | -83.21     |          |
| Reverbera | tion I evel |         | rmax=   | 18439.09 | tarh=       | 5        | range=     | 9219.544 |
|           | LIGHT LOVE  |         | mux     | 10400.00 | tani        | 3        | range-     | 3213.344 |
| Range     | SLt         | 2*TL    | Area    | Phi      | RSs         | EAR      | 2*AR       | RLs      |
| 30        | 94.53       | -59.09  | 45.98   | -90      | -15         | -23.26   | -35        | 8.16     |
| 100       | 94.53       | -80.00  | 51.20   | -17.4576 | -48         | -23.26   | -8         | -13.53   |
| 300       | 94.53       | -99.09  | 55.98   | -5.73917 | -57         | -23.26   | -4         | -32.85   |
| 1000      | 94.53       | -120.02 | 61.20   |          | -64         | -23.26   | -2         | -53.54   |
| 3000      | 94.53       | -139.13 | 65.98   |          | -77         | -23.26   | -1         | -79.89   |
| 10000     | 94.53       | -160.16 | 71.20   | -0.17189 | -92         | -23.26   | -1         | -110.69  |
| 18439.09  | 94.53       | -170.92 | 73.86   | -0.09322 | -100        | -23.26   | -1         | -126.80  |
|           |             |         |         |          |             |          |            |          |
|           |             |         |         |          |             |          |            |          |

Table E-2: SPY-1D Radar Calculation, Sea Skimming Target

|                                                                                             | cess                                               |         |            |            |             |            |             |      |
|---------------------------------------------------------------------------------------------|----------------------------------------------------|---------|------------|------------|-------------|------------|-------------|------|
| Range                                                                                       | RLs                                                | NL(tot) | NL+RLs     | SLr*       | SE          |            |             |      |
| 10                                                                                          |                                                    | -132.34 | 28.00      | 55.06      | 27.06       |            |             |      |
| 30                                                                                          | 8.16                                               | -132.34 | 8.16       | 35.97      | 27.81       |            |             |      |
| 100                                                                                         | -13.53                                             | -132.34 | -13.53     | 15.05      | 28.58       |            |             |      |
| 300                                                                                         | -32.85                                             | -132.34 | -32.85     | -4.03      | 28.81       |            |             |      |
| 1000                                                                                        | -53.54                                             | -132.34 | -53.54     | -24.96     | 28.58       |            |             |      |
| 3000                                                                                        | -79.89                                             | -132.34 | -79.89     | -44.08     | 35.81       |            |             |      |
| 10000                                                                                       | -110.69                                            | -132.34 | -110.66    | -65.10     | 45.55       |            |             |      |
| 18439.09                                                                                    |                                                    | -132.34 | -125.73    | -75.87     | 49.86       |            |             |      |
| 27658.63                                                                                    |                                                    | -132.34 | -132.34    | -83.21     | 49.14       |            |             |      |
| 30000                                                                                       |                                                    |         |            |            | -10         | (Target no | ot visible) |      |
|                                                                                             |                                                    |         |            |            |             |            | -           |      |
|                                                                                             | 50.00                                              |         | Signal Exc | ess (sea s | okuminer)   |            |             |      |
|                                                                                             | 40.00 -                                            |         | Signal Exc | ess (38a 3 | skillillel) |            |             |      |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                    |         | Signal Exc | 0 0        | skillillel) |            |             | ◆ SE |
| SE - db                                                                                     | 40.00 <b>-</b><br>30.00 <b>-</b>                   |         | Signal Exc |            | Skillillel) |            |             | ◆-SE |
| SE - db                                                                                     | 40.00 <b>-</b><br>30.00 <b>-</b><br>20.00 <b>-</b> | 1D      | 100        | 100        |             | 0000       | 100000      | ◆—SE |

E-7

# Radar Summary Chart\*

CL is a beam centered target SS is a sea skimming target

| M-1 (-45) M-2 (-40) weight (kg) | 20   | 20 5-15 ant=245       | 50 - 60 - 1425 above deck 6325 below deck |                   | 60 - 75 5-15 antenna=3182 total=9227 | 23 15-30 30 10-30 antenna=620 | - 7-20 - 4-25 antenna=1200 | 65 - 85 15-30 est. 25000 | 00 1000 0100 |
|---------------------------------|------|-----------------------|-------------------------------------------|-------------------|--------------------------------------|-------------------------------|----------------------------|--------------------------|--------------|
| A-4 (-20)                       | SS   | 30                    | 1-30                                      | 3-30              | 3-30                                 | 3-30                          | 30                         | 15-30                    | 0,0          |
| A-4                             | CF   | 99                    | 180                                       | 20                | 200                                  | 95                            | 45                         | 230                      | 070          |
| A-3 (-30)                       | SS   | 30                    | 2-30                                      | 5-30              | 1-30                                 | 5-30                          | 30                         | 4-30                     | 7 20         |
| A-3                             | CL   | 37                    | 107                                       | 28                | 120                                  | 22                            | 25                         | 140                      | 100          |
| A-2 (-40)                       | SS   | 5-15                  | •                                         | ı                 | 5-15                                 | 10-30                         | 4-25                       | 15-30                    | 2 20         |
| A-2                             | CL   | 20                    | 09                                        |                   | 75                                   | 30                            | •                          | 85                       | 110          |
| A-1 (-40)                       | SS** |                       | ı                                         |                   | 1                                    | 1                             | •                          | •                        |              |
| A-1                             | CĽ   | 20                    | 09                                        | ı                 | 75                                   | 30                            | 1                          | 85                       | 110          |
| A-1 (-40                        |      | EL/M-2207<br>(Israel) | SPS-49<br>(US)                            | SPS-65/ER<br>(US) | FAST (S band) (US)                   | Castor II<br>(France)         | SMART<br>(Netherlands)     | XPAR                     | CPV-17       |

\* All ranges in Km \*\* Missile A-1 is not sea skimming

# **APPENDIX F**

FUNCTIONAL ALLOCATION TABLES

### **SUMMARY**

Functional allocation tables were constructed for each whole ship option to ensure all operational requirements were satisfied and all functions within the detect, control, engage sequence were performed by at least one element in the Combat System suite. The Functional Allocation tables depicted in this appendix are listed below:

- Table F-1: Functional Allocation Detection (Navy option 1)
- Table F-2: Functional Allocation Control (Navy option 1)
- Table F-3: Functional Allocation Engagement (Navy option 1)
- Table F-4: Functional Allocation Detection (Navy option 2)
- Table F-5: Functional Allocation Control (Navy option 2)
- Table F-6: Functional Allocation Engagement (Navy option 2)
- Table F-7: Functional Allocation Detection (Navy option 3)
- Table F-8: Functional Allocation Control (Navy option 3)
- Table F-9: Functional Allocation Engagement (Navy option 3)
- Table F-10: Functional Allocation Detection (Coast Guard option 1)
- Table F-11: Functional Allocation Control (Coast Guard option 1)
- Table F-12: Functional Allocation Engagement (Coast Guard option 1)
- Table F-13: Functional Allocation Detection (Coast Guard option 2)
- Table F-14: Functional Allocation Control (Coast Guard option 2)
- Table F-15: Functional Allocation Engagement (Coast Guard option 2)
- Table F-16: Functional Allocation Detection (Coast Guard option 3)
- Table F-17: Functional Allocation Control (Coast Guard option 3)
- Table F-18: Functional Allocation Engagement (Coast Guard option 3)

Table F-1: Functional Allocation - Detection (Navy option 1)

| Γ    |               | T        |          |           | T   | Τ        |             | T                 |              |         | T         | П                      | Τ           | П           | Τ            | П                 | П          | T        | П            | T                 | П         | T                 |              |                   | Ţ        |          | $\top$            |           | _                 | Π                 | П                   | $\top$       |          |                  | T        |           |     | T            | П                   | 1                 | П                   | 7         | T        | _         | 1        |             |
|------|---------------|----------|----------|-----------|-----|----------|-------------|-------------------|--------------|---------|-----------|------------------------|-------------|-------------|--------------|-------------------|------------|----------|--------------|-------------------|-----------|-------------------|--------------|-------------------|----------|----------|-------------------|-----------|-------------------|-------------------|---------------------|--------------|----------|------------------|----------|-----------|-----|--------------|---------------------|-------------------|---------------------|-----------|----------|-----------|----------|-------------|
| L    |               | 1        |          |           | -   |          |             | -                 |              |         |           |                        | $\perp$     |             |              |                   |            |          |              |                   |           |                   |              |                   |          |          |                   |           |                   |                   |                     |              |          |                  |          |           |     |              |                     |                   |                     |           |          |           |          |             |
|      | Inorgani      | +        | H        | $\dashv$  | +   | +        | $\Box$      | _                 | $\sqcup$     | 4       | $\perp$   | Ц                      | $\perp$     | Ц           | 1            | 4                 | Ц          | $\perp$  | П            | $\perp$           | Ц         |                   |              |                   |          |          |                   |           |                   | П                 |                     |              | П        |                  | T        |           |     |              | П                   |                   | П                   |           | П        | T         |          |             |
|      | Organi        | С        | L        | Ц         | 1   | _        | Ц           |                   |              | -       | < ×       | Ц                      | $\perp$     |             |              |                   | Ш          |          |              |                   | П         |                   |              |                   | T        | П        |                   | П         | T                 | П                 | $\prod$             |              | ×        |                  | ×        | ×         | ××  | <            | Ħ                   | $\top$            | $\Box$              | +         | $\sqcap$ | T         | T        | П           |
| >    | Visus         | al       |          | Ц         |     | L        |             | ×                 | Ш            | >       | < ×       | Ш                      | L           |             |              |                   |            |          | П            |                   | П         |                   |              |                   | T        | П        | T                 | П         |                   | $\sqcap$          | $\sqcap$            | 1            | ×        | $\top$           | T        | П         | ××  | <            | $\Box$              | +                 | $\dagger \dagger$   | +         | $\vdash$ | $\dagger$ |          | П           |
| MIO  | if            | ₹        |          |           |     |          |             |                   |              | >       | <         |                        |             |             | ×            |                   |            | T        |              |                   |           |                   | П            |                   | 1        | $\sqcap$ | $\top$            | $\Box$    | 1                 | $\dagger \dagger$ | $\dagger \dagger$   | +            | ×        | $\top$           | +        | Н         | ××  | <del>-</del> | $^{\dagger\dagger}$ | +                 | +                   | +         | +        | +-        |          | Н           |
| •    | ESM           | 4        |          |           | T   | Т        | ×           |                   |              | >       | <         | П                      |             | $\top$      |              | $\top$            | П          | +        | $\sqcap$     |                   | $\forall$ | 1                 | Н            | +                 | +        | $\vdash$ | +-                | $\forall$ | +                 | +                 | +                   | +            | ×        | +                | +        | 1-1       | ××  | +            | +                   | +                 | ++                  | +         | H        | +-        | H        | Н           |
|      | Surf Sean     | dK       | ×        | ×         | T   | T        | П           |                   | П            | >       | <         | $\vdash$               |             | ,           | \ \ \        | +                 | H          | +        | $\vdash$     | +                 | H         | +                 | H            | +                 | +        | $\vdash$ | +                 | $\vdash$  | +                 | H                 | +                   | +            | +        | +                | +        | ┥┥        | -   | +-           | ╁┼                  | +                 | +                   | -         | H        | +-        | Н        | Н           |
|      | Vol. Search   | +-       | 1-1      | -         | +   | +        | Н           | +                 | Н            | -       | +-        | $\vdash$               | +           |             | <u>`</u>     | +                 | H          | +        | $\forall$    | +-                | Н         | +                 | H            | +                 | +        | H        | +                 | H         | +                 | $\vdash$          | +                   | +            | ×        | -                | +        | ₩         | × > | +-           | 1                   | -                 | $\square$           | _         | $\sqcup$ | _         | Ш        | Ц           |
| _    | Inorganie     | +        | Ĥ        | 7         | +   | +        | $\vdash$    | +                 | $\vdash$     |         | +         | $\vdash$               | +-          | ď           | +            | +                 | Н          | +        | H            | +                 | 4         | +-                | Н            | 4                 | -        | $\perp$  | 4                 | Ш         | 4                 | Ш                 | Ш                   | $\perp$      | ×        | _                | 1        | Ш         | ××  | 4            | Н                   | $\perp$           | Ш                   |           | Ш        |           |          |             |
|      |               | +-       | Н        | +         | +   | $\perp$  | H           | +                 | $\vdash$     | +       | +         | $\vdash$               | $\perp$     | 4           | -            | +                 | $\sqcup$   | $\perp$  | Н            | 4                 |           | _                 | Ц            |                   | 1        | Ш        |                   | Ш         |                   |                   | Ш                   |              |          |                  |          |           |     |              |                     |                   |                     |           |          |           |          |             |
|      | Organie       | +        | Ш        | 4         | +   | L        | H           | $\perp$           | Н            | -+-     | <×        |                        | $\perp$     | _           | $\perp$      |                   | Ш          |          | Ш            |                   |           |                   |              |                   |          | Ш        |                   |           |                   |                   |                     | 1            | ×        |                  | ×        | ×         | × > | <            |                     |                   |                     |           | П        | Ţ         | П        |             |
| ~    | Visua         | M .      | Ц        | _         | 1   |          | L!          | ×                 | Ц            | >       | <×        |                        |             |             | $\perp$      |                   | Ш          |          |              |                   |           |                   |              |                   |          |          |                   | П         | Т                 | П                 | П                   | 1            | ×        |                  | T        |           | ××  | <            | П                   | 1                 | $\Box$              |           | П        | 1         | П        |             |
| SAR  | IF            | ₹        |          |           |     |          |             |                   |              | >       | <         |                        |             |             | ×            |                   |            | T        | П            |                   |           | 7                 | П            |                   |          |          |                   |           | $\top$            |                   | П                   | $\top$       | ×        | $\top$           | Ť        | П         | ××  | <u> </u>     | ††                  | $\top$            | $^{\dagger\dagger}$ | $^{+}$    | H        | +         | Н        | Н           |
|      | ESA           | 4        |          |           |     | Π        | ×           |                   | П            | >       | <         |                        | П           |             |              |                   | П          |          | $\Box$       |                   | $\dashv$  |                   | $\sqcap$     | $\top$            |          |          | +-                | Н         | +                 |                   | $^{\dagger\dagger}$ | +            | ×        | +                | +        | $\vdash$  | ××  | +            | -                   | +                 | +                   | +         | +        | +         | $\vdash$ | Н           |
|      | Surf Sean     | *        | ×        | ×         | T   |          |             | T                 | П            | >       | <         |                        | Н           | >           | <del>\</del> | +                 |            | +        | Н            | +                 | +         | +                 | $\forall$    | +                 | 1-       | $\vdash$ | +                 | $\vdash$  | +                 | ++                | +                   | ╁╌           | ×        | +                | +        | $\vdash$  | +   | +            | H                   |                   | $\vdash$            | +         | +        | +-        | H        | $\dashv$    |
|      | Voi. Search   | ×        | ×        | ×         | +   | H        | +           | +                 | Н            | -<br>×  | +-        | +                      | H           | +           |              | +                 | H          | +-       | H            | +                 | +         | +                 | +            | +                 | +        | 1        | +                 | Н         | +                 | $\vdash$          | H                   | +-           | $\vdash$ | +                | +        | -         | ××  | +            | 1-1                 | +                 | ++                  | +         | 1        | +         | Н        | Ц           |
|      | Inorganic     | +        | H        | +         | +   | Н        | +           | +                 | Н            | +       | +         | +                      | H           | +           | +            | +                 | H          | +        | -            | +                 | +         | +                 | 1            | +                 | +        | $\dashv$ | +                 | H         | +                 |                   | -                   | -            | ×        | 1                | -        | Н         | ××  | 4_           | Н                   | 1                 | 11                  | $\perp$   | Ш        | 1         | Ш        | Ц           |
|      |               | +-       | H        | +         | +   | +        | +           | +                 | H            | -       | H         | +                      | +           | +           | +            | +                 | H          | +        | 1            | $\dashv$          | $\perp$   | +                 | +            | -                 | ļ.       | 4        | +                 | 1         | +                 | -                 | $\sqcup$            | 1            | Ц        | 1                | 1        | Ц         | 1   | $\perp$      |                     |                   | Ш                   |           | Ш        | L         | Ш        |             |
|      | Organio       | +        | Н        | +         | +   | H        | +           | -                 | -            |         | ×         | +                      | +           | +           | +            | +                 | 4          | -        | 1            | $\perp$           | 4         | $\perp$           | 4            | _                 | Ц        | $\perp$  | 1                 | $\sqcup$  | 1                 |                   | $\coprod$           | $\perp$      | ×        | ×                | ×        | ×         | ×   | <            |                     |                   |                     |           |          |           |          |             |
| -    | Visua         | +        | $\sqcup$ | +         | +   | Н        |             | 4                 | Н            | _ ×     | ×         | 4                      | Ш           | 1           | $\sqcup$     | $\perp$           | $\perp$    |          |              | Ш                 | $\perp$   |                   |              |                   |          |          |                   |           |                   |                   |                     |              | ×        | ×                | :        |           | ×   | <            |                     |                   | П                   |           | П        | Τ         |          |             |
| 3    | IF            | +        |          | 4         | 1   | Ц        | 1           | 1                 | Ш            | ×       | Ш         | $\perp$                | Ц           |             | ×            |                   |            |          |              |                   |           | $\perp$           |              |                   |          |          |                   |           |                   |                   | ΙT                  |              | ×        | ×                | Г        | П         | ×   |              |                     |                   |                     | T         |          |           | П        |             |
|      | ESN           | 1        |          |           | L   | Ш        | ×           |                   |              | ×       |           |                        | $\prod$     |             |              |                   |            |          |              | П                 | Τ         | П                 | T            | T                 | П        | T        | T                 |           | T                 |                   | $\prod$             | П            | ×        | ×                |          | П         | ×   | <            | П                   | +                 | $\sqcap$            | +         |          | 1         | H        | 1           |
|      | Surf Searc    | ×        | ×        | ×         |     |          |             |                   | IT           | ×       |           | T                      | П           | ×           |              |                   |            | П        |              | $\sqcap$          | T         | П                 | $\top$       | 1                 | П        |          | T                 | 1         |                   |                   | $\Box$              | +            | ×        | - <del> </del> × | 1        | 1         | ×   | +-           | H                   | +                 | H                   | +         | +        | +         | H        | +           |
|      | Vol. Search   | ×        | ×        | ×         | T   | П        |             | T                 |              | ×       |           | 1                      |             | ×           |              | $\top$            | +          | П        | +            | $\dagger \dagger$ | +         | $\dagger \dagger$ | $\dagger$    | +                 | H        | +        | +                 | $\vdash$  | +                 | -                 | +                   | +            | ×        | ×                | ₩        | H         | ×   | +            | H                   | +                 | +                   | +         | -        | +         | H        | +           |
|      | Inorganic     |          |          | 1         | 1   | П        | +           |                   | 1            | +       | $\forall$ | $\top$                 | $\parallel$ | +           | H            | +                 | +          | Н        | +            | +                 | +         | +                 | +            | +                 | Н        | -        | +                 | +         | +                 | +                 | ++                  | +            | 7        | +                | $\vdash$ | $\dashv$  | - ^ | +            | +                   | +                 | +                   | +         | +        | +         | -        | $\dashv$    |
| AWA. | Organic       | -        | 7        | $\dagger$ | +   | H        | +           | +                 |              | ×       | ×         | +                      | +           | +           | ++           | +-                | +          | +        | +            | +                 | +         | ++                | +            | +                 | H        | +        | +                 | +         | +                 | +                 | ++                  | +            | 1        | +                | -        |           | - - | -            | 4                   | +                 | 1                   | +         | $\vdash$ | $\perp$   | Н        | 4           |
| Ē    | Visua         | +-+      | +        | +         | +   | H        | -           |                   | +            | +-      | ×         | +                      | H           | +           | ++           | +                 | +          | H        | +            | +                 | +         | +                 | +            | +                 | Н        | +        | +                 | +         | +                 |                   | 1                   | $\sqcup$     | 4        | _                | ×        | ×         | 1   | 1            | $\sqcup$            | +                 | $\sqcup$            | 1         | ×        |           | Ц        | 1           |
| 7    |               | $\vdash$ | +        | +         | +   | Н        | +           | +                 | +            | +^      | H         | +                      | H           | +           | ++           | +                 | +          | H        | +            | +                 | +         | +                 | +            | +                 | $\sqcup$ | 4        | +                 | 4         | $\mathbb{H}$      | Ц.                | $\perp$             | $\sqcup$     | $\perp$  | 1                | Ц        | Ц         | 1   | L            | Ш                   | 1                 |                     |           | ×        | Ц         |          |             |
| 8    | Inorganic     | +-+      | +        | +         | +   | H        | +           | +-                | 4            | +       | $\vdash$  | +                      | H           | +           | +            | $\perp$           | 4          | 11       | -            | $\sqcup$          | 4         | $\sqcup$          | 4            | 1                 |          | $\perp$  | 1                 |           | Ш                 |                   | Ш                   |              |          | $\perp$          |          |           |     |              |                     |                   |                     |           |          | 1         |          | -           |
| 4    | Organic       | 1-1      | 4        | 1         | 1   | Ц        | 1           | $\perp$           | 1            | ×       | ×         | 1                      | $\coprod$   | $\perp$     | Ш            | Ш                 | $\perp$    |          |              | Ш                 |           |                   |              |                   | Ш        |          |                   |           | $\perp$           |                   | $\prod_{i=1}^{n}$   |              |          |                  | ×        | ×         |     |              | T                   |                   | Π                   | ×         |          |           | П        | 1           |
| _    | Inorganic     | +-       | 1        | $\perp$   | 1   | Ц        | $\perp$     | Ш                 | $\perp$      | 1       | Ц         | $\perp$                | Ш           | $\perp$     |              | $\perp$           |            |          |              |                   |           |                   |              |                   |          |          |                   | T         |                   |                   | IT                  | П            | 1        | T                | П        |           |     | П            | $\Box$              |                   | $\sqcap$            |           | $\sqcap$ |           |          | $\top$      |
| Σ    | Organic       | + +      |          | $\perp$   | L   | Ш        |             | $\perp$           |              | ×       | ×         | $\prod_{i=1}^{\infty}$ |             | _[ ]        | ΙT           |                   | T          |          | T            | П                 |           | $\prod$           | T            |                   | П        |          |                   |           | H                 | ×                 |                     | П            | 1        | 1                | П        | 1         | +   | Н            | ×                   |                   | 1                   | H         | +        | H         | H        | 1           |
|      | Ship Board    |          | _]`      | $\Gamma$  | ×   | ×        |             | П                 | T            | T       | П         | T                      | П           | T           | П            |                   | 1          | $\sqcap$ |              | $\prod$           | 1         | $\sqcap$          | +            | +                 |          | $\top$   | Н                 | +         | ††                | 1                 | 1                   | $\dagger$    | +        | +                | $\vdash$ | +         | ×   | +-1          | ×                   |                   | +                   | +         | +        | H         | H        | - ;         |
| ٦    | Inorganic     |          | T        | T         | T   | П        | T           | $\top$            | $\top$       |         |           | 1                      | П           | 十           | $\sqcap$     | $\top$            | $\uparrow$ | $\Box$   | $\top$       | $\dagger \dagger$ | $\dagger$ | 11                | $^{\dagger}$ | +                 | Н        | +        | Н                 | +         | H                 | +                 | +                   | $\forall$    | +        | +-               | Н        | +         | +   | -            | +                   | +                 | +                   | +         | +        | Н         | +        | -           |
| Ì    | Organic       | П        | 7        | $\dagger$ | T   | H        | +           | +1                | $\top$       | ×       | ×         | +                      | $\Box$      | +           | H            | $\forall \exists$ | +          | H        | +            | +                 | +         | ++                | +            | +                 | Н        | +        | +                 |           | +                 | +                 | -                   | H            | -        | +                |          | -         | +   | H            | +                   | +                 |                     | +         | +        | H         | 1        | +           |
| اح   | Visual        | 1-1      | $^{+}$   | +         | +   | Н        | ×           |                   | +            | -       | ×         | +                      | Н           | +           | +            | +                 | +          | H        | +-           | +                 | +         | H                 | +            | -                 | Н        | +        | Н                 | +         | +-                | +                 | <u> </u>            | $\leftarrow$ | ×        | +                | ×        | $\times$  | ×   | ₩            | +                   | 4                 | Ц.                  | Ш         | ×        | ×         | 1        | ×           |
| ASS  | IR.           | 1-1      | +        | +         | +   | Н        | Ŧ           | +                 | +            | ×       | 1 +       | +                      | ₩           | +           |              | +                 | +          | $\vdash$ | +-           | $^{+}$            | +         | H                 | +            | _                 | Н        | _        | $\vdash$          | $\perp$   | 11                | $\perp$           |                     | Н            | ×        | ×                | Ц        | 4         | ×   | Ш            |                     | $\perp$           |                     | Ш         | ×        | ×         | :        | ×           |
| 1    |               | Н        | +        | +         | H   | $\dashv$ | +           | +                 | +            | +-      | ╌         | +                      | $\square$   | +           | ×            | +                 | +          | Н        | $\downarrow$ | Н                 | 1         | 11                | 4            | _                 | Ш        | 1        | Ц                 | $\perp$   | П                 |                   | Ш                   |              | ×        | ×                |          |           | ×   |              |                     |                   |                     |           | ×        | ×         | :        | ×           |
| ŀ    | ESM           | Н        | +        | +         | ×   | ,        | <u> </u>    | 44                | 4            | ×       | +         | 4                      | Ш           | 1           | Ш            | 11                | 1          | Ш        | $\perp$      | Ш                 | $\perp$   |                   | 1            |                   |          |          |                   |           | Ш                 |                   |                     |              | $\times$ | ×                |          |           | ×   |              |                     |                   |                     |           | ×        | ×         | 1        | ×           |
| 4    | Surf Searc    | -        | × >      | 4         | L   | 1        | 1           | $\sqcup$          | _            | ×       | $\sqcup$  | 1                      | Ц           | ×           |              | $\sqcup$          | $\perp$    | Ц        | $\perp$      |                   | $\perp$   |                   |              |                   |          |          |                   |           | П                 |                   |                     |              | ×        | ×                | П        | T         | ×   |              |                     | П                 |                     |           | ×        | ×         | ,        | $\times$    |
| -    | Inorganic     |          | 1        | 1         | L   | 4        | $\perp$     | Ш                 |              | $\perp$ | Ц         | _                      | Ц           | L           |              |                   |            |          |              |                   |           | $\prod$           |              |                   | LT       |          |                   | T         | П                 |                   |                     | П            | 1        | T                | П        | $\dashv$  |     | П            |                     | П                 | 1                   | H         | +        | П         | +        | +           |
| 2    | Organic       | Ц        | 1        |           |     |          |             | Ц                 |              | ×       |           |                        | LĪ          |             | LT           |                   |            | П        | T            |                   | T         | П                 | T            | Π                 |          | T        | П                 | 1         | П                 |                   |                     | 1            | ×        | 1                | ×        | ×         | ×   | $\Box$       | +                   | $\dagger \dagger$ | +                   | $\forall$ | <br> x   | ×         | 1        | ×           |
| ť    | Passive       |          |          | ×         | ×   | T        |             | П                 |              | ×       | Π         | T                      | П           | T           | П            | $\sqcap$          | 1          | П        | T            | П                 | T         | $\sqcap$          | 1            |                   |          | +        | H                 | +         | $\forall$         | 11                | +                   | 1-1          | ×        | +                | H        | +         | ×   | $\vdash$     | +                   | H                 | +                   | $\forall$ | -        | ++        | -+       | +           |
| ſ    | Active        | П        |          |           | ×   | $\top$   | T           | П                 |              | ×       | -         |                        |             | T           | 11           | 11                | $\dagger$  | Н        | +            | H                 | $\dagger$ | 11                | +            | +                 | +        | +        | $\dagger \dagger$ | +         | +                 | +                 | +                   |              | ×        | +-               | H        | +         | -   | +-+          | +                   | +                 | +                   | H         |          | ×         | -        | ×           |
| 1    | Inorganic     | $\sqcap$ | +        |           | Н   | +        | +           | $\dagger \dagger$ | $^{\dagger}$ | +       | H         | +                      | H           | +           | +            | ++                | +          | H        | +-           | +                 | +         | +                 | +            | +                 | +        | +        | H                 | +         | ++                | +                 | +                   | H            | 7        | +                | H        | +         | ×   |              | +                   | +1                | 4                   | +-        | _ ×      | ×         | 1        | $^{\prime}$ |
| 1    | Organic       | -        | +        | +         | H   | +        | +           | +                 | +            | ×       | +         | +                      | $\vdash$    | +           | +            | ++                | +          | -        | +            | H                 | +         | ++                | +            | +                 | +        | +        | H                 | +         | H                 |                   | +                   | $\sqcup$     | +        | $\sqcup$         |          | 4         | 4-  | Ц            | 1                   | $\sqcup$          |                     | $\sqcup$  | 1        | Ш         |          | 1           |
|      | Visual        | H        | +        | +         | Н   | +        | ×           | +                 | +            | +       | -         | +                      | +           | +           | +            | +-                | +          | -        | +            | H                 | +         | H                 | +            | +                 | +        | +        | $\sqcup$          | +         | $\sqcup$          | +                 | 1                   |              | ×        | $\sqcup$         | ×        | ×         | ×   | + +          |                     | Ц                 |                     | Ш         | _        | ×         |          | ×           |
|      |               | +        | +        | +         | Н   | +        | -\ <u>^</u> | H                 | +            | ×       | H         | +                      | $\dashv$    | +           | -            | $\dashv$          | +          | $\sqcup$ | 1            | $\sqcup$          | +         | $\sqcup$          | 1            | $\sqcup$          | 4        | _        | Ц                 | 1         | Ц                 | $\perp$           | $\perp$             |              | ×        |                  |          |           | ×   | Ш            |                     |                   |                     |           | ×        |           |          | ×           |
| 1    | IR            | 4        | +        | +         | Н   | 4        | $\perp$     | $\sqcup$          | +            | ×       | Ц         | 1                      | Ц           | L           | ×            | Ш                 | $\perp$    | Ц        | $\perp$      | Ц                 |           |                   | 1            |                   |          |          | Ш                 |           | Ш                 |                   |                     |              | ×        |                  |          | T         | ×   | П            | T                   |                   | T                   | П         | ×        |           |          | ×           |
| 1    | ESM           | 1        | 1        | 1         | Ц   | >        | <           | $\Box$            | $\perp$      | ×       |           | 1                      | Ш           | L           |              | Ш                 |            | Ц        |              | Ш                 | L         |                   |              | 1                 | _[       |          |                   |           | ΙŢ                |                   |                     | ;            | ×        | П                |          |           | ×   |              |                     | П                 | 1                   | Ħ         | ×        |           | ×Þ       |             |
| 1    | Voi Search    | ×        | < >      | 1         |     |          |             |                   |              | ×       |           |                        |             | ×           | IT           | $\prod$           | T          | 1        | -            | П                 | T         | П                 | T            |                   |          |          | П                 | T         |                   | $\Box$            |                     | H;           | ×        | $\sqcap$         | 1        | $\dagger$ | ×   | +            | +                   | $\dagger \dagger$ | +                   | $\forall$ |          | ×         |          |             |
| ľ    |               |          |          | T         |     | T        |             | П                 | T            | П       |           | T                      |             | T           |              | П                 | 1          |          | 2            | $\sqcap$          | 1         | $\sqcap$          |              | $\dagger \dagger$ | +        | +        | Н                 | +         | $\dagger \dagger$ | +                 |                     | $\vdash$     | -        | +                | +        | +         | +-  | Н            | +                   | H                 | +                   | H         | +        | H         | +        | +           |
|      | Navy Option 1 | 10       | 10.      | -19       | -56 | 90       | OVOPTICAL   | ACDS              | S            | Sc      | LL BOATS  | 6                      | PG-62       | 9G-60/SPQ-9 | 6-46         | - Mk-309 ASWFC    | C COMMO    | NI       | INTON WATER  | N IO              | (2)       | (RAM LNCHR)       | No.          | RPOON             | MAHAWK   | 1-2 MR   | ¥                 | . 50      | ပ္ခ               | EOD TEAM          | r. Requirements     | A1           | A2       | A4               | A5       | A6        | A8  | A9           | A10                 | A12               | A13                 | 91        | 83       | B4        | B5       | 97          |
|      |               | SPY.     | TAS      | SOR       | SQS | - Ho     | VIDE        | ACD               |              | Z       | SMA       | MK 9                   | S 44        | S.          | R M¥         | ž                 | GPS        | TACA     | WCS          | ISDS<br>155 m     | CIWS      | MK 49             | VLS<br>VLS   | - HA              |          | SW -     | 7                 | N WK      | SRBO              | EOD 1             | Oper.               |              |          |                  |          |           |     |              |                     |                   |                     |           |          |           |          | Ì           |

| _        |              |                                                   | ,                  | ,            | _           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,            | ,                                            |          |                   |                        |           |            | ,         |              |                     |          |              |          |                         |              |             |            |              | _            |           |              |                   | _            |              |          |              |                   |           |                   |          |              |            |           | _       |           |                   |              |
|----------|--------------|---------------------------------------------------|--------------------|--------------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------|----------|-------------------|------------------------|-----------|------------|-----------|--------------|---------------------|----------|--------------|----------|-------------------------|--------------|-------------|------------|--------------|--------------|-----------|--------------|-------------------|--------------|--------------|----------|--------------|-------------------|-----------|-------------------|----------|--------------|------------|-----------|---------|-----------|-------------------|--------------|
|          | Command      | d                                                 | $\coprod$          | 1            | Ш           |         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;            | ×                                            | П        |                   | Ц                      |           |            |           | ×            |                     | ××       | <            | П        |                         | Ц            | I           |            | I            |              | П         |              | $\coprod$         | П            | T            | $\prod$  | T            |                   | >         | <                 |          | Γ            |            |           |         |           | ×                 |              |
| WIO      | Display      | y                                                 | Ш                  |              | Ш           | ××      | <×                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,            | ×                                            | Ц        |                   | >                      | <×        | ×          |           |              | L                   | ×        | L            | П        |                         | Ц            |             | П          | $\int$       |              | Ц         |              | Ш                 | $\coprod$    |              | П        | $\int$       | Ц                 | >         | <                 |          | Γ            |            |           |         |           | ×                 | $\prod$      |
| 0        | Identify     | y                                                 | $\perp \downarrow$ |              |             | ××      | < ×                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,            | ××                                           | : ×      | <u> </u>          |                        | ×         | ×          |           |              |                     | ×        |              |          | L                       |              |             | Ш          |              |              |           |              |                   |              |              |          |              |                   | >         | <                 |          |              |            |           |         |           | ×                 | П            |
| L        | Voice Comm   |                                                   | $\perp$            |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                              |          |                   |                        |           |            |           | ×            |                     |          |              | П        |                         |              |             | П          |              |              | П         |              | П                 |              | ×            |          | ×            | П                 | >         |                   | П        |              | П          | П         |         |           | ×                 | П            |
|          | Command      | 1                                                 | $\prod$            |              |             |         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>     | ×                                            |          |                   |                        |           | J          |           | ×            | ×                   | ××       | <            | $\Box$   | T                       |              | T           |            | T            |              |           |              | $\Box$            | П            | T            |          |              | П                 | >         |                   |          | Γ            | $\sqcap$   | П         | T       | П         | T                 | $\prod$      |
|          | Correlate    | e                                                 | П                  | ×            | $\prod_{i}$ | ,       | </th <th>[],</th> <th>××</th> <th>×</th> <th>K</th> <th>&gt;</th> <th></th> <th>T</th> <th>П</th> <th></th> <th>Τ</th> <th>×</th> <th>Π</th> <th>П</th> <th>Τ</th> <th>П</th> <th></th> <th>П</th> <th></th> <th>П</th> <th></th> <th>T</th> <th><math>\sqcap</math></th> <th>77</th> <th></th> <th>П</th> <th>1</th> <th>П</th> <th>&gt;</th> <th></th> <th></th> <th>T</th> <th>T</th> <th>77</th> <th></th> <th>11</th> <th>1</th> <th>T</th> | [],          | ××                                           | ×        | K                 | >                      |           | T          | П         |              | Τ                   | ×        | Π            | П        | Τ                       | П            |             | П          |              | П            |           | T            | $\sqcap$          | 77           |              | П        | 1            | П                 | >         |                   |          | T            | T          | 77        |         | 11        | 1                 | T            |
| œ        | Track        | (                                                 | $\Box$             | ×            | $\Box$      |         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ××                                           |          |                   |                        | ×         | T          | П         | $\top$       | T                   | ×        | T            | П        | T                       |              | +           | П          |              | T            | П         | T            | П                 | $\Box$       | $\dagger$    | П        | 十            | $\forall$         | >         | $\top$            |          | T            | $\Box$     | $\Box$    | $\top$  | 11        | +                 | $\forall$    |
| SAR      | Identify     |                                                   | $\sqcap$           |              | $\Box$      | ××      |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | ××                                           | T        | _                 |                        | $\top$    | ×          | П         | 1            | T                   | ×        | T            | П        | $\top$                  | П            | 十           | $\Box$     | 1            |              |           | +            | Ħ                 | Ħ            | T            | П        | $\dagger$    | 11                | ,         |                   |          | $^{\dagger}$ | H          | $\Box$    |         | 11        | +                 | $^{\dagger}$ |
| ı        | Display      |                                                   | $\sqcap$           | 1            |             | × >     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | П            | <                                            |          |                   |                        | ×         |            | T         | 1            |                     | ×        | $^{\dagger}$ | H        | +                       | H            | +           | $\Box$     | +            |              | H         | +            | Ħ                 | $\forall$    | ×            | .††      | $\dagger$    | H                 |           |                   | $\vdash$ | +            | H          | $\Box$    | +       | +         | +                 | $\forall$    |
|          | Voice Comm   | +                                                 | $\Box$             | T            | H           |         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                | ď            | +                                            | $\vdash$ | $\top$            | H                      | Î         | 7          | Н         |              | +                   | 7        | +            | Н        | +                       | Н            | +           | Н          | +            | T            | $\vdash$  | +            | $\vdash$          | $^{\dagger}$ | $\top$       |          | -            | +                 | -   >     |                   | -        | +            | $\vdash$   | +         | +       | +         | +                 | ++           |
|          | Command      | 11                                                | ++                 | +            | H           | +       |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1            | +                                            | Н        | +                 | 1                      | 11        | -          |           | ×            |                     | +        | +            | $\vdash$ | +                       | H            | +           | Н          | +            | Н            | Н         | +            | $\forall$         | +            | ×            | H        | ×            | +                 | <u> </u>  |                   | $\vdash$ |              | +          | +         | +       | +         | +                 | +            |
|          | Weapons Asso | +-+-                                              | ++                 | +            | H           | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <                                            |          | ╁                 | $\vdash$               | +         | +          |           | ×            | Т.                  | ××       | Т            | $\vdash$ | +                       | H            | +           | $\vdash$   | +            | Н            | H         | +            | $\vdash$          | ++           | -            | +        | ×            |                   | +         | +i                | +        | +            | $\vdash$   | +         | +       | ++        | +                 | +            |
| П        |              | 1                                                 | ++                 | +            | Н           | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <                                            | +        | +                 |                        | ×         | +          | H         | ×            |                     | ××       | +            | H        | +                       | H            | +           | H          | +            | $\mathbb{H}$ | Н         | +            | $\vdash$          | +            | +            | $\vdash$ | ×            |                   | +         | +                 |          | +            | $\vdash$   | H         | +       | ++        | +                 | $\forall$    |
|          | Correlate    | ++-                                               | $\forall$          | ×            | $\Box$      | >       | <×                                                                                                                                                                                                                                                                                                                                                                                                                                               | П            | _                                            | ×        | <                 | ×                      | 1         | +          | Н         | +            | +                   | ×        | +            | H        | +                       | $\vdash$     | +           | $\dashv$   | +            | +            | +         | +            | +                 | +            | +            | $\vdash$ | - ×          |                   | +         | +                 |          | +            | $\vdash$   | H         | +       | ₩         | +                 | $\vdash$     |
| ELT      | Track        | +                                                 | +                  | ×            | $\vdash$    | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Box$       | ¥                                            | TT       | +                 | ×                      | ×         | +          | H         | +            | +                   | ×.       | +            | Н        | +                       | $\mathbb{H}$ | +           | -          | +            | +            | H         | +            | H                 | +            | +            | H        | ×            | -                 | +         | $\mathbb{H}$      | -        | -            | $\vdash$   | +         | +       | ++        | +                 | $\vdash$     |
| П        | Threat Eval  | 1                                                 | ₩                  | +            | H           | ××      | <×                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ٧×                                           | ×        | <                 | -                      | ×         | ×          | H         | -            | +                   | ×        | +            | Н        | +                       |              | +           | H          | +            | +            | H         | +            | $\vdash$          | $\sqcup$     | +            |          | ×            | 4-4               | +         | $\sqcup$          | 4        | $\perp$      | $\vdash$   | 44        | $\perp$ | #         | $\perp$           | $\sqcup$     |
| Н        | Identify     | -1-                                               | ++                 | +            | $\vdash$    | ××      | ٧×                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ٧×                                           | ×        | <                 | -                      | +         | ×          | H         | +            | +                   | ×        | +            | $\vdash$ | $\perp$                 | 1            | +           | Н          | 4            | Н            | 4         | 4            | 1                 | $\sqcup$     | 1            | H        | ×            | 4                 | 4         | $\dashv$          | 4        | $\perp$      | 4          | $\sqcup$  | _       | $\coprod$ | 4.                | $\sqcup$     |
| П        | Display      | ++                                                | ++                 | +            | Н           | ××      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,            | 4                                            | $\vdash$ | +                 | ×                      | ×         | ×          | $\sqcup$  | 4            | $\perp$             | ×        | $\perp$      | Н        | +                       | 4            | _           | $\sqcup$   | +            | $\sqcup$     | 4         | ╀            | $\coprod$         | $\sqcup$     | _×           | $\sqcup$ | ×            |                   | 1         | $\sqcup$          | $\perp$  | 1            | $\vdash$   | $\square$ | $\perp$ | $\sqcup$  | $\perp$           | Ш            |
| Н        | Voice Comm   | 11                                                | $\vdash$           | +            |             | _       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н            | +                                            | Н        | $\perp$           |                        | $\square$ | $\perp$    | Ш         | ×            | Ц                   | _        | L            |          | 1                       | Ц            |             | Н          | 4            | $\sqcup$     |           | _            |                   | Ш            | ×            | 1        | ××           | 4                 | 1         | Ш                 | $\perp$  |              | Ш          | 11        |         | Щ         |                   | $\perp$      |
|          | Command      | + +-                                              | $\sqcup$           | 4            | Ц           | 4       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | >            | <                                            | $\sqcup$ | 1                 |                        | Ш         | _          | Ш         | ×            | ×                   | ××       | 4            |          | $\perp$                 | 4            |             | Ц          | 1            | Ш            | Ц         | 1            |                   | 1            | -            | П        | 1            | Ш                 |           |                   | $\perp$  | Ш            | $\sqcup$   | 11        | ×       | $\Box$    | $\perp$           | Ц            |
|          | Weapons Asso | <b>.</b>                                          | $\sqcup$           | +            | $\sqcup$    | 4       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | >            | <                                            | $\sqcup$ |                   | ×                      | ×         | _          | $\sqcup$  | ×            | Ш                   | ××       |              | $\sqcup$ |                         |              | $\perp$     | Ц          | 1            | Ш            |           | 1            |                   | $\coprod$    |              | Ш        | $\downarrow$ | Ш                 | 1         | $\sqcup$          |          | Ш            | $\perp$    | $\sqcup$  | ×       |           | $\perp$           |              |
|          | Сотте!аte    |                                                   | Ц                  | 1            | Ц           | >       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | >            | < ×                                          | ×        | $\perp$           | ×                      | Ш         |            |           | $\perp$      | $\perp$             | ×        | $\perp$      |          |                         |              |             | Ц          |              | Ш            |           | 1            |                   | Ц            |              | Ш        |              | Ц                 |           | Ц                 |          |              | Ш          | $\prod$   | ×       |           | $\perp$           |              |
| AMW      | Track        |                                                   | Ш                  |              | Ц           |         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | >            | < ×                                          | ×        | $\perp$           | ×                      | ×         | 1          | Ш         | $\perp$      |                     | ×        | $\perp$      |          |                         |              |             | Ц          |              | Ш            |           |              |                   | Ш            |              |          | 1            | $\coprod$         |           |                   |          |              |            | $\prod$   | ×       | 1.        | $\prod_{i=1}^{n}$ |              |
| ₹        | Threat Eval  | Ш                                                 | П                  |              |             | ××      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | < ×                                          | ×        | $\perp$           |                        | ×         | ×          |           |              |                     | ×        | $\prod$      | Ц        |                         | _[           |             | IJ         |              | $\prod$      |           |              |                   | $\prod$      |              | $\prod$  |              |                   |           |                   |          |              | LT         | П         | ×       | []        |                   | IT           |
|          | Identify     |                                                   |                    |              |             | ××      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,            | < ×                                          | ×        |                   |                        |           | ×          |           |              |                     | ×        |              |          | П                       |              | T           |            |              |              |           |              |                   |              |              | П        |              | П                 | T         |                   |          |              | П          | П         | ×       | $\prod$   | T                 |              |
|          | Display      | ,                                                 | $\prod$            |              | П           | ××      | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                | >            | Т                                            | []       |                   | ×                      | ×         | $\neg$     |           | T            |                     | ×        | П            |          | П                       |              | T           | П          |              | П            |           | Τ            | П                 | П            | ×            |          | T            |                   |           | П                 |          | П            | $\sqcap$   | П         | ×       |           | $\top$            | $\sqcap$     |
|          | Voice Comms  |                                                   | П                  |              | П           |         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Т                                            |          | П                 |                        | П         | T          | П         | ×            | П                   |          | П            |          |                         |              |             | П          | T            | $\sqcap$     |           | T            |                   | П            | ×            |          |              | $\Box$            | $\top$    | $\Box$            | $\top$   | П            | $\sqcap$   | $\sqcap$  | ×       | $\top$    | $\top$            | $\top$       |
| П        | Command      | П                                                 | П                  | T            | П           | T       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,            | <                                            | П        | $\top$            |                        |           | 1          |           | ××           |                     | ××       |              |          |                         |              | T           |            | T            | П            | 1         |              |                   | $\sqcap$     |              | П        | Ϊ            | П                 | T         | П                 | $\top$   | П            | $\sqcap$   | Ħ.        | ×       | 11        | $\top$            | $\Box$       |
| 2        | Identify     | ,                                                 | П                  |              |             | ××      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Box$       | <                                            |          |                   |                        | П         | 十          | П         |              |                     | ×        |              |          | П                       | 7            | T           | П          | T            | П            | $\top$    | T            |                   | П            | Ť            | H        | +            | $\dagger \dagger$ | $\top$    | П                 | +        | H            | $\top$     | TT        | ×       | +         | +                 | H            |
| STW      | Display      | ,                                                 | П                  | $\top$       |             | ××      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,            |                                              | П        |                   | +                      | П         |            | П         | $\top$       |                     | ×        | П            |          | $\top$                  | +            | $\top$      | П          | $^{\dagger}$ | П            | $\top$    | T            |                   | 11           | ×            | H        | $^{\dagger}$ | Ħ                 | $\dagger$ | $\Box$            | $\top$   | Н            | $\top$     |           | ×       | H         | $\top$            | $\vdash$     |
| 11       | Voice Comms  |                                                   | П                  | $\top$       |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T            | Ť                                            | $\sqcap$ |                   | 1                      | П         | _          |           | ×            | П                   |          | П            |          | $\Box$                  | 7            | $\top$      | П          | T            | $\sqcap$     | $\dagger$ | $^{\dagger}$ | $\vdash$          | Ħ            | ×            | >        | _            | Ħ                 | Ť         | $\dagger \dagger$ | +        | Н            | $\top$     |           | ×       | +         | +                 | $\vdash$     |
| П        | Command      |                                                   | $\sqcap$           | T            | П           | $\top$  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,            | <u>,                                    </u> |          | $\Box$            | $\top$                 | П         | $\uparrow$ | П         | +            | J                   | ××       |              | 1        | $\forall$               | _            | $\dagger$   |            | 1            | T            | T         |              |                   | $\sqcap$     | Î            | T        | +            | $\sqcap$          | +         | П                 | ×        |              | $\top$     | H         | 十       | +         | +                 |              |
|          | Correlate    |                                                   | $\top$             | T            |             | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\neg$       | < ×                                          | ×        | Ħ                 | +                      | $\Box$    | +          | П         | T            | П                   | ×        |              | $\top$   | $\forall$               | 1            | $\top$      | H          | t            | Н            | T         | $\top$       |                   | $\Box$       | +            | $\vdash$ | $\dagger$    | $\sqcap$          | +         | $\dagger \dagger$ |          | П            | +          | H         | +       | +         | +                 | Hî           |
|          | Track        |                                                   | $\sqcap$           | 十            |             | Ť       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <×                                           |          | +                 | +                      | Н         | +          | H         | $^{\dagger}$ |                     | <u></u>  | $\Box$       | $^{+}$   |                         | $\dagger$    | +           |            | +            | H            | +         | T            | +                 | $\vdash$     | $^{\dagger}$ | H        | +            | ++                | +         | H                 | ×        | $\Box$       | +          | ++        | +       | +         | +                 | H.           |
| Sign.    | Threat Eval. |                                                   | 11                 | $^{\dagger}$ |             | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (×                                           |          | H                 | +                      | $\Box$    | +          | H         | +            |                     |          | $\forall$    | +        | $\dagger \dagger$       | +            |             | 1          | 十            | H            | +         | +            | $\vdash$          | $\vdash$     | +            | $\vdash$ | $^{+}$       | ++                | +         | H                 | ×        |              | +          | +         | +       | H         | +                 | ×            |
| 2        | Identify     |                                                   | $\Box$             | $\dagger$    | ×           | $^{+}$  | ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (×                                           |          | $\forall$         | +                      | H         | +          | H         | +            |                     | ×        | Н            | +        | +                       | +            | +           | Н          | +            | Н            | +         | Н            | +                 | $\vdash$     | +            | H        | +            | Н                 | +         | H                 | ×        | П            | +          | H         | +       | +         | +                 | ×            |
|          | Display      | -                                                 | $\vdash$           | +            | ×           | $^{+}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - /2         | $\top$                                       |          | $\forall$         | +                      | H         | +          |           | +            | $\Box$              | ×        | Н            | +        | $\dagger \dagger$       | +            | +           | Н          | +            | H            | +         | Н            |                   | $\vdash$     |              | H        | +            | Н                 | +         | H                 | ×        | П            | +          | H         | +       | ++        | +                 | ×            |
| lt       | Voice Comms  | <del>                                      </del> | H                  | +            |             | +       | f                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 12         | -                                            |          | H                 | +                      | $\forall$ | +          | Н         |              | Н                   | <u> </u> | H            | +        | +                       | +            | +           | Н          | +            | H            | +         | +            |                   | H            | ×            | -        | +            | $\forall$         | +         | +                 | ×        |              | +          | $\vdash$  | +-      | +         | ++                | ×            |
| H        | Command      |                                                   |                    | +            | H           | $^{+}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +            |                                              | $\vdash$ | +                 | +                      | H         | +-         |           | <u> </u>     | $^{\dagger\dagger}$ | +        | Н            | +        | H                       | +            | +           | +          | +            | Н            | +         | Н            | +                 | ╁┼           | ×            | >        | +            | H                 | +         | H                 | ×        | Н            | +          | $\vdash$  | +       | +         | +-                | H×           |
| ŀ        | Weapons Assg |                                                   | $\vdash$           | +            | H           | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |                                              | $\vdash$ | +                 | +                      | Н         | +-         | П         | ××           | T                   | ××       | H            | +        | H                       | +            | +           | $\vdash$   | +            | Н            | +         | +            | +                 | ++           | +            | H        | ×            | $\sqcap$          | +         | H                 | +        | Н            | +          | ╁         | +       | ×         | +                 | ×            |
|          |              |                                                   | $\vdash$           | +            | H           | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |                                              | +        | +                 |                        | ×         | +          | -         | <u> </u>     |                     | ××       |              | +        | +                       | +            | +-          | +          | +            | $\vdash$     | +         | Н            | +                 | -            | +            | H        | ×            | H                 | +         | ₩                 | -        | Н            | +          | +         | +       | ×         | +-                | ×            |
| 7        | Correlate    | -                                                 | ++                 | ×            | +           | - ×     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | ×                                            | ××       | +                 | ×                      |           | +          | Н         | +            |                     | ×        | Н            | +        | H                       | +            | +           | H          | +            | H            | +         | +            | +                 | $\vdash$     | +            | H        | ×            | $\vdash$          | +         | Н                 | +        | Н            | +          | $\vdash$  | +       | ×         | +                 | ×            |
| ASUW     | Track        | -                                                 | H                  | ×            | H           | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ×                                            |          | +                 | ×                      | ×         | +          | H         | +            | H                   | ×        | Н            | +        | $\vdash$                | +            | +           | H          | +            | Н            | +         | +            | +                 | -            | +            | H        | ×            |                   | +         | -                 |          | Н            | +          | H         | +       | ×         | 4                 | ×            |
| ۲        | Threat Eval. | +                                                 | $\vdash$           | +            | -           | ××      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                              | ××       | $\Box$            | +                      | ×:        |            | $\vdash$  | +            |                     | ×        | Н            | +        | H                       | +            | +-          | -          | +            |              | +         | $\mathbb{H}$ | -                 | $\vdash$     | -            | -        | ×            | H                 | +         | $\vdash$          | +        | Н            | +          | Н         | +-      | ×         | H                 | ×            |
|          | Identify     |                                                   | $\vdash$           | +            | '           | ××      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <u> </u> × | ×                                            | ××       | 4                 | +                      |           | <u> </u>   | H         | +            | H                   | ×        | Н            | +        | +                       | +            | +           | +          | +            | H            | +         | +            |                   | -            | +            | $\vdash$ | ×            | H                 | +         | ++                | +        | Н            | +          | ₩         | -       | ×         | +                 | ×            |
|          | Display      |                                                   | -                  | +            | - ?         | ××      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | -                                            | -        | ++                | ×                      | ×:        | <          | H         | +            | +                   | ×        | Н            | +        | $\vdash$                | +            | -           | +          | +            | Н            | +         | $\sqcup$     | +                 | -            | ×            | 1        | ×            | $\vdash$          | 1         | -                 | _        | Н            | +          | Н         | $\perp$ | ×         | 4                 | ×            |
| Н        | Voice Comm   |                                                   | -                  | +            | -           | +       | $\mathbb{H}$                                                                                                                                                                                                                                                                                                                                                                                                                                     | +            | Н                                            | +        | $\vdash$          | +                      | H         | +          |           | <_           | H                   | +        | H            | +        | $\sqcup$                | 4            | +           | 4          | +            | $\sqcup$     | +         | $\square$    | $\perp$           | 1            | ×            | >        | <×           | $\sqcup$          | +         | Н                 | 4        |              | $\perp$    | Н         | $\perp$ | ×         | $\sqcup$          | ×_           |
| ŀ        | Command      | -                                                 | $\vdash$           | +            | $\vdash$    | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | $\Box$                                       | $\Box$   | H                 | +                      | H         | $\perp$    | ;         | ××           | ×                   | ××       | $\sqcup$     | +        | $\prod$                 | +            |             | Н          | $\perp$      | Н            | +         | $\sqcup$     | 4                 |              | $\perp$      | 1        | +            | Н                 | +         | Н                 | _        | Ц            | $\perp$    | 1         |         | ×         | $\perp$           | ×            |
|          | Weapons Assg | h.                                                | 1                  | $\perp$      | $\sqcup$    | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |                                              | 4        | 1-1               | 1                      | $\sqcup$  | ×          | ×         | < _          |                     | ××       | Н            | 4        | $\sqcup$                | $\perp$      | $\perp$     | 4          | $\perp$      | Ц            | 1         | $\sqcup$     | $\perp$           |              |              |          | $\perp$      | Н                 | 1         | $\Box$            | 4        | П            | $\perp$    |           | Ш       | ×         | $\perp$           | ×            |
|          | Correlate    | -                                                 | >                  | ××           | ×           | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | ×                                            | _        | +                 | +                      | $\sqcup$  |            | ×         | $\perp$      |                     | ×_       | Н            | _        | $\sqcup$                | +            | $\perp$     | 4          | $\perp$      | Ц            | +         | $\sqcup$     | _                 | Н            | Ш            | $\perp$  | 1            | Н                 | -         | 11                | 4        | Ц            | $\perp$    | Ш         | $\perp$ | ×         | $\perp$           | ×            |
| ASW      | Track        |                                                   | >                  | ×            | ×           | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | ×                                            | 4        | $\sqcup$          | _                      | $\sqcup$  | ×          | ×         | +            |                     | ×        | П            | 1        | $\downarrow \downarrow$ | 1            | $\perp$     | _          | 1            | Ц            | $\perp$   | Н            | $\bot$            | Ц.           | $\perp$      | 4        | _            | Н                 | $\perp$   | Н                 | $\perp$  | Ш            | 4          | Ш         | Ш       | ×         | Ш                 | ×            |
| 4        | Threat Eval. | 4                                                 | >                  | ×            | ×           | +       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | ×                                            | 4        | $\vdash$          | _                      | Н         | ×          | ×         | 1            |                     | <        | Н            | 4        | $\sqcup$                | 4            | $\perp$     | 1          | $\perp$      | Н            | 1         | Н            | $\perp$           |              | Ц            | 1        | $\perp$      | Ш                 | 1         | Ш                 | $\perp$  | Ш            | $\perp$    | Ш         | Ш       | ×         | Ш                 | ×            |
|          | Identify     |                                                   | >                  | ×            | ×           | $\perp$ | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | ×                                            |          | $\sqcup$          | _                      | Ш         |            |           | 1            |                     | <        | Н            | _        | Ц                       | 4            | Ш           | 4          |              | Ш            | 1         | Ш            | _                 |              |              |          | Ļ            | Ш                 |           |                   | $\perp$  | Ц            | $\perp$    | Ш         | $\perp$ | ×         | $\perp$           | ×            |
|          | Display      |                                                   | Ш                  | ×            | ×           | 4       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | $\Box$                                       |          | Ш                 | 1                      |           | ×          | ×         | $\perp$      | :                   | K        | Ц            | $\perp$  | Ц                       |              | Ш           | $\perp$    | $\perp$      | Ц            | $\perp$   | Ш            |                   |              | ×            |          |              | Ц                 |           | Ш                 | $\perp$  | Ш            |            |           |         | ×         |                   | ×            |
| Ц        | Voice Comm   |                                                   | 1                  | 1            |             | 1       | $\sqcup$                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1            | $\sqcup$                                     |          | $\sqcup$          |                        |           | $\perp$    | >         | <            |                     | _        | Ц            | $\perp$  | Ц                       | 1            | $\perp$     | 1          |              | Ц            | $\perp$   | $\sqcup$     | $\perp$           | Ш            | ×            | ×        | <            | Ш                 |           | Ш                 |          |              |            | Ш         |         | ×         | Ш                 | ×            |
|          | Command      |                                                   | Ц                  | 1            |             | _       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ××           |                                              | $\perp$  | Ш                 | _                      | Ц         | $\perp$    | >         | < ×          | ×                   | ××       | ×            | ×        |                         |              | Ш           |            | $\perp$      | Ц            | 1         | Ш            | $\perp$           |              |              | $\perp$  |              | Ш                 |           | П                 |          |              |            | Ш         | $\perp$ | ×         | ×                 | ×            |
|          | Weapons Assg | n.                                                | $\coprod$          | $\perp$      | >           | <       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ××           |                                              |          | ×                 | ×                      | ×         | $\perp$    | ,         | <            | :                   | ××       | ×            | _×       |                         |              | Ш           |            | $\perp$      | Ш            |           | $\perp$      |                   |              |              |          |              | Ш                 |           | Ц                 | $\perp$  | Ц            |            | Ш         |         | ×         | ×                 | ×            |
|          | Correlate    |                                                   | Ш                  | $\perp$      |             | ×       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ××           | ×                                            | ×        | ×                 | ×                      |           | $\perp$    | Ш         | 1            | :                   | <        | ×            | ×        |                         |              | Ш           |            |              |              |           | Ш            |                   |              | $\perp$      | $\perp$  |              | Ц                 |           |                   | $\perp$  | $\Box$       |            | Ц         |         | ×         | ×                 | ×            |
| A<br>A   | Track        |                                                   | Ш                  | $\sqcup$     |             | $\perp$ | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ××           | ×                                            |          | ×                 | ×                      | ×         |            |           |              | ∐;                  | <        |              | _×       |                         | $\int$       |             | $\int$     |              |              |           |              |                   |              |              |          |              |                   |           | $\prod$           | T        |              |            |           | П       | ×         | ×                 |              |
| ₹        | Threat Eval. |                                                   |                    |              | >           | <×      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                | ××           | ×                                            | ×        |                   |                        | ××        | <          |           |              |                     | <        |              | ×        | Т                       |              | П           | T          |              |              |           | П            |                   |              | П            | T        |              |                   |           |                   | T        | П            |            | П         | $\prod$ | ×         | ×                 |              |
|          | Identify     |                                                   |                    |              | >           | < ×     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | ×                                            | ×        |                   | T                      |           | <          | T         |              |                     | <        | П            | T        | П                       | T            | $\prod$     | T          |              |              | T         | П            | T                 |              | П            |          | T            | П                 | $\top$    | П                 | T        |              |            | П         | $\top$  | ×         | ×                 |              |
|          | Display      |                                                   |                    | П            |             | < ×     | П                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | $\Box$                                       | $\top$   | П                 | ×                      |           |            |           |              | Π.                  |          | П            |          | П                       |              | П           | $\uparrow$ |              |              | 1         | П            | $\top$            |              | ×            |          | T            |                   | +         | П                 | T        | $\sqcap$     |            | 1         | П       | ×         | ×                 | $\top$       |
|          | Voice Comm   |                                                   | $\sqcap$           | П            | Ť           | 1       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            | П                                            |          |                   | 1                      | ΠÍ        |            | ١,        | 1            | T,                  | -        | П            | +        | Ħ                       |              | П           | $\dagger$  | T            | $\parallel$  |           | П            | +                 |              | ×            |          |              | $\Box$            | +         | $\parallel$       |          | H            | +          | $\dagger$ |         |           |                   |              |
| 1        |              |                                                   | $\vdash$           | 11           | $\top$      | +       | $\parallel \parallel$                                                                                                                                                                                                                                                                                                                                                                                                                            | $\dagger$    | H                                            | +        | $\dagger \dagger$ | +                      | 1         | $\top$     | 1         | +            |                     | 2        | 1            | +        | H                       | $\dagger$    | $\parallel$ | +          |              |              | +         | ++           | +                 | H.           | 1            | ×        | +            | +                 | +         | $\parallel$       | +        | $\vdash$     | +          | +         | +       | ×         | ×                 | 1            |
|          | 4            |                                                   |                    |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                              |          |                   | - SPG-62<br>MK 34 GFCS | 6         |            | ပ         |              | 1                   | 2        |              |          | HR)                     |              |             | -          |              |              |           |              |                   | Requirements |              |          |              |                   |           |                   |          |              |            |           |         |           |                   |              |
| ents     | offen        | SPY-1D<br>SPS-67                                  |                    |              |             | CAL     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                              | S        |                   |                        | ď         |            | SW        | 2            |                     | 124      |              | -        | S                       |              | -           | ¥          |              |              |           |              | NIXIE<br>EOD TEAM | iren         | 5            | 2.       |              |                   |           |                   |          | L.           | 2 0        |           |         |           |                   |              |
| Elements | ر<br>بر      |                                                   |                    |              |             | PTK     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                              | 30A      |                   | FCS                    | 8/09      |            | A 60      | 5            |                     | 2        |              | 5        | AM                      |              | Ó           | HA         | ₩<br>K       |              |           |              | ×                 | Regi         | V            | A A      | Y4           | AE                | Y         | A                 | A I      | F            | A12<br>A13 | ă         | 82      | B3        | 188               | 87           |
| -        | Nav          | -10                                               | 1.                 | -28          | 8           | 5 S     | S                                                                                                                                                                                                                                                                                                                                                                                                                                                | S            | PS                                           |          | 66                | 7 5<br>0 5             | 9         | F-89       | \$-3<br>1 | 4            | AN .                | 2/10     | (,)          | S (2)    | 9 (R                    | Z Y          | 4RP         | WO U       | M-2          | ⊴.           | X 50      | 8            | E E               | Oper         |              |          |              |                   | 1         |                   |          |              |            |           |         |           |                   |              |
|          |              | SPS                                               | TAS                | SOS          | TS C        |         | AC                                                                                                                                                                                                                                                                                                                                                                                                                                               | S S          | AM                                           | SMA      | ₹,                | ¥3,                    | S         | SOC        | 2 5       | SPS          | TAC                 | Ž        | SOS          | 155 X    | ₹ 4                     | 2            |             | ⊢ ú        | S            | > 2          | - N       | SRB          |                   | 6            | 1            |          |              |                   |           |                   |          |              |            |           |         |           |                   |              |
| _        |              | -                                                 | -                  | -            | -           |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -                                            | _        |                   |                        |           |            |           |              | -                   | -        |              |          |                         |              |             |            |              |              |           | ,            |                   |              |              | _        | ٠.,          |                   | -         |                   |          | _ '          | _ 1        | 1 - 1 -   |         | 4         |                   |              |

| >        | Facilities (Med. etc | c)    | Ц   | 4   | 1     | $\downarrow$ | 1       | Ц   | 4       | 1       |       | Ц        | 1       |     | Ш   | 1        |        |     |          | Ш         |           |        |        |           |              |           |           | T         |           | T         |             |                                       |              | ×            | H         |                   | П         |              | T        | T            | ×         |           | 1        |           | V         | T         | Τ         |          | Τ         | Τ         | Τ         | 1         | Т        |
|----------|----------------------|-------|-----|-----|-------|--------------|---------|-----|---------|---------|-------|----------|---------|-----|-----|----------|--------|-----|----------|-----------|-----------|--------|--------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|-------------|---------------------------------------|--------------|--------------|-----------|-------------------|-----------|--------------|----------|--------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|----------|
| 013      | Evaluation           | n     | Ц   | 4   | 1     | 1            | $\perp$ | Ц   | 1       | $\perp$ | ×     | ×        | $\perp$ |     |     |          |        |     |          |           |           |        |        |           | T            | 1         | T         |           | П         | 7         | T           | П                                     |              |              | П         |                   | П         |              | \_       | ×            | ×         | 1         | Ť        | +         | Î         | $\dagger$ | $\dagger$ | t        | t         | $^{+}$    | t         | $\dagger$ | +        |
| L        | Platform Deliver     | у     |     |     | 1     | 1            |         | Ш   |         |         | ×     | ×        |         |     |     |          |        |     | ĺ        |           | Ţ         |        |        |           |              |           | T         |           | П         |           |             |                                       |              | T            |           | $\dagger$         |           | 1            | _        | ×            |           |           | T        | 1         | H         | +         | t         | t        | t         | $\dagger$ | $\dagger$ | +         | +        |
| _        | Facilities (Med. etc | c     | Ц   |     | 1     |              |         |     |         |         |       |          |         |     |     |          |        |     | Т        |           |           |        |        |           | 1            |           | T         |           | П         | 1         | Т           | $\sqcap$                              |              | ×            | 11        | $\dagger$         | П         | +            | Ť        | 1            |           | 1         | ×        |           | Н         | $\dagger$ | +         | t        | $\dagger$ | $\dagger$ | $\dagger$ | $^{+}$    | +        |
| SAR      | Evaluation           | 1     |     | 1   |       |              |         |     |         |         | ×     | ×        |         |     |     |          |        |     | T        | П         |           |        | Γ      | П         |              | T         |           |           | П         | 1         | Ť           | П                                     | T            | 1            | П         | $\dagger$         | П         | $\forall$    |          | ×            |           | +         | Ť        | +         | $\vdash$  | +         | $^{+}$    | +        | $\dagger$ | t         | +         | +         | +        |
| Ц        | Platform Delivery    | y_    |     |     |       | L            |         |     |         |         | ×     | ×        | T       |     |     | T        | П      |     |          |           |           | T      |        | П         | $\top$       | +         | T         |           |           | Ť         | 1           | П                                     | -            | t            |           | $^{\dagger}$      | H         | 1            | _        | ×            |           | +         | +        | +         | Н         | $\dagger$ | +         | +        | t         | t         | +         | +         | +        |
|          | Kil Eval             | ×     | ×   | ×   | 1     | $\perp$      | ×       | ×   | $\perp$ |         | ×     | ×        |         |     | ×   | ×        |        | T   | T        |           |           | T      |        | П         |              | T         |           |           | П         | 1         | T           |                                       |              | $\dagger$    | Ħ         | $\dagger$         | П         | 1            | < ×      |              |           | $\dagger$ | +        | +         | $\forall$ | $\dagger$ | +         | +        | t         |           | +         | $^{+}$    | +        |
|          | Soft Kil             |       |     |     |       |              | ×       |     | T       |         |       | T        | Τ       |     |     | T        |        |     | T        | П         |           | T      |        | П         | 1            | T         | T         | T         |           | 1         | +           | П                                     | ×            | $\dagger$    | $\forall$ | $\dagger$         |           | Τ,           |          | 1            | H         | +         | +        | +         | H         | +         | ╁         | +        | t         | ×         | T         | +         | +        |
|          | Guidance             | 3     |     |     |       |              |         |     |         |         | П     |          | T       | ×   | 1   | <u> </u> | П      | T   | T        | П         |           | T      |        |           | 1            | 1         | T         | Г         |           | +         | 1           | П                                     | 7            | t            | $\vdash$  | +                 |           | 1,           | +        | H            | H         | +         | +        | ╁         | H         | +         | +         | t        | +         | ×         | T         | +         | +        |
| 딢        | Weapon Delivery      |       |     |     |       |              |         |     | T       |         |       | T        | T       |     |     | T        | П      | 1   | T        | П         | 1         | $\top$ |        | П         | 1            | $\dagger$ | T         |           | 1         | +         | +-          | Н                                     | +            | $^{\dagger}$ | $\vdash$  | $\dagger$         | H         | +            | +        | H            | H         | +         | +        | +         | H         | +         | +         | +        | +         | ×         | +         | +         | +        |
|          | Humination           | 1     |     | ×   |       | Γ            | П       | П   | T       | T       | П     | 7        | T       | ×   | 1,  | <        | П      | T   |          |           | $\top$    | T      |        |           | +            | 1         | †         | $\vdash$  | $\top$    | $\dagger$ | $\dagger$   | $\Box$                                | $\dagger$    | $^{\dagger}$ | $\vdash$  | +                 | H         | -            | 1        |              | H         | +         | +        | +         | $\vdash$  | +         | +         | H        | ┝         | ×         | +         | +         | +        |
|          | Board                | í     |     |     |       |              |         |     |         |         | ×     | ×        | T       |     | 7   |          | П      | T   | T        |           | 1         | T      |        | Ħ         | $\dagger$    | T         | 1         |           | +         | t         |             | Н                                     | $^{\dagger}$ | $\dagger$    | $\vdash$  | $^{+}$            | H         | 7            |          |              | H         | +         | +        |           | Н         | +         | +         | $\vdash$ | ┝         | ×         | +         | +         | +        |
| Ц        | Intercept            | t     |     |     | T     |              |         |     | T       |         | ×     | ×        | T       | П   | 1   | 1        |        | T   | T        | П         | T         | T      |        |           | +            | $\dagger$ | T         |           | +         | +         | T           | $\vdash$                              | $\dagger$    | +            |           | +                 | H         | $\top$       | < ×      |              | H         | $^{+}$    | +        | +         | $\forall$ | +         | +         | $\vdash$ | ┝         | ┝         | ╀         | +         | +        |
|          | Kill Eval.           |       | J   |     |       |              |         | ×   | T       |         | ×     | T        |         | П   | 1   | ×        | П      | T   | 1        | П         | 1         | T      |        |           | 1            | +         |           |           | $\dagger$ | +         | Ħ           | $  \cdot  $                           | $\dagger$    |              | +         | +                 | H         | +            | < ×      | ×            | $\forall$ | +         | +        | +-        | +         | +         | +         | +        | +         | +         | +         | +         | +        |
| AMIV     | Guidance             |       | I   | I   | I     |              |         |     | T       | T       | П     | T        |         |     | ,   | <        | П      | T   |          |           | 1         | T      |        |           | +            | 1         |           | П         | 1         | +         |             |                                       | +            | T            | +         | +                 | $\forall$ | +            | Ť        | H            | $\vdash$  | +         | +        | +         | +         | +         | +         | $\vdash$ | $\vdash$  | +         | +         | +         | +        |
| ₹        | Weapon Delivery      |       |     |     |       | Ī.           | П       |     | T       |         | П     |          | T       | П   | 1   |          | П      | 1   |          |           | T         | T      | П      |           |              | $\dagger$ |           |           | +         | $\dagger$ | 1           | Н                                     | +            |              | +         | $\dagger$         |           | +            | +        | Н            | $\dashv$  | +         | +        | Н         | +         | +         | +         | ×        | H         | +         | ╁         | ╁         | +        |
| Ц        | Burnination          |       |     |     |       |              | П       |     |         | T       |       |          | T       |     | ,   | <        |        |     |          |           | T         |        |        |           | $\top$       | $\dagger$ |           | Н         | $\top$    | t         |             | +                                     | $\dagger$    |              | +         | +                 |           | $\dagger$    | +        | Н            | +         | +         | +        | H         | +         | +         | +         | ×        | H         | -         | H         | +         | +        |
| STW      | Kil Eval.            |       |     |     | Γ     |              |         |     | T       | Т       | П     |          | T       | П   | 1   |          | П      | T   |          | $\exists$ | $\dagger$ |        |        |           | T            | T         | Н         |           | +         | t         | Н           | +                                     | +            | $\dagger$    | +         | +                 | +         | +            | +        | Н            | +         |           | +        | Н         | +         | +         | +         | ×        | $\vdash$  | ┝         | H         | ╀         | +        |
| S        | Weapon Delivery      |       |     | T   |       |              |         |     | T       |         |       | ×        |         | П   | 1   | T        | П      | +   | П        | 1         |           |        |        | $\top$    | $^{\dagger}$ | L         | $\Box$    |           | +         | $\dagger$ | Н           | 1                                     | +            |              | +         | $\vdash$          | 1         | +            | +        | H            | +         | <b> </b>  | 1        | Н         | +         | +         | ×         | $\vdash$ | -         | ┝         | -         | ┝         | ╀        |
| MW.      | Clear                |       |     | T   |       |              |         | T   |         |         | П     | 1        | T       | П   | T   | 1        | П      | T   | П        | 1         | $\top$    |        |        | $\dagger$ | 1            | r         | П         | Ĥ         | +         | t         | $\Box$      | +                                     | $\dagger$    | ×            | +         | +                 | +         | +            | +-       | Н            | +         | >         | +        | Н         | +         | +         | ×         | -        | H         | H         | $\vdash$  | ┝         | $\vdash$ |
| Σ        | Mark                 |       |     |     |       |              |         |     |         |         |       | T        |         |     | T   | T        |        | T   | П        | T         | T         | П      |        |           | T            | 1         |           |           | $\dagger$ | -         | П           | +                                     | $^{\dagger}$ | ,            | +         | 1                 | $\forall$ | +            | +        |              | +         | +         | ×        | Н         | +         | +         | ╁         | -        | H         | H         | ┝         | +         | ×        |
|          | Kill Eval.           | ×     | ×,  | <   |       |              | ×       | ×   |         |         | ×     | ×        | Τ       |     | ×   | T        | ×,     | <   | П        |           | T         |        |        | 1         | T            | T         |           |           | T         | $\dagger$ | П           | 1                                     | +            | ĥ            | $\top$    | T                 | +         | +            |          |              | +         | +         | ×        | Н         | +         | +         | +         |          | -         | -         | -         | ╁         | ×        |
| >        | Soft Kill            |       |     |     |       |              | ×       |     |         |         |       | T        | T       |     |     | ×        |        | Ť   | $\sqcap$ | 7         | 1         | П      |        | 1         | $\dagger$    | $\dagger$ | П         |           | +         | t         | H           | 1                                     | <u> </u>     | Н            | +         | H                 | +         | <u>&gt;</u>  |          | ×            | +         | +         | +        | H         | +         | +         | +         |          | ×         | _         | Г         | ×         | П        |
| ASUW     | Guidance             |       |     |     |       |              |         |     |         | П       | 1     |          |         | ×   | ,   |          | П      | 1   |          |           | T         | П      |        | 1         | T            | 1         | Н         |           | $\dagger$ | T         |             | ť                                     |              | Н            | +         |                   | +         | ×            | $\top$   | +            | $\pm$     | +         | +        | H         | +         | +         | +         |          |           | ×         | ┝         | ×         | Н        |
|          | Weapon Delivery      |       |     |     |       |              |         |     |         |         |       | T        | Γ       |     | T   | T        |        | T   | П        | 1         |           | П      | 1      | 1         | 1            | Ļ         | ×         |           | +         | Ť         |             | $\forall$                             | +            | Н            | _         | Н                 | +         | ×            |          |              | +         | +         | +-       | Н         | +         | +-        |           |          | ×         |           | H         | ×         | Н        |
| $\perp$  | Illumination         |       |     |     |       |              |         |     | Ι       |         |       |          |         | ×   | >   | ,        |        | T   |          |           | T         | П      |        | +         | T            | r         |           | 7         | $\dagger$ | t         | П           | +                                     | $^{+}$       | Н            | +         | Н                 | $\dagger$ | 7            | П        |              | +         | +         | +        | H         | +         | +         | +         | Н        | -         | ×         | -         | ×         | Н        |
| 1        | Kill Eval.           |       |     | ×   | ×     | ×            |         |     |         |         | ×     | T        |         |     | T   | T        | × >    | ,   |          | T         |           | П      |        | 1         | T            |           |           | 1         | $\dagger$ | T         | Н           | $\top$                                | +            | Н            | +         | H                 | +         | ×            |          | -            | +         | +         | +        | H         | +         | +         |           | Н        | ×         | ×         | -         | ×         | Н        |
| ASW      | Soft Kill            |       |     |     |       |              |         |     |         |         | T     | T        |         |     |     | T        |        | T   |          | $\top$    | 1         |        | 1      | 1         |              |           |           | 1         | Ť         | $\dagger$ | П           | 1                                     | ×            | П            | +         |                   | $\dagger$ | +            | ×        | +            | +         | +         |          | H         | +         | +         | $\vdash$  | Н        | ×         |           |           | ×         | П        |
| 1        | Weapon Delivery      |       |     |     |       |              |         |     |         |         | ×     |          |         |     | 1   |          |        |     | П        | 1         |           |        | 7      |           | T            | V         |           | 1         | +         |           | ×           |                                       | 1            | Н            | +         | H                 | +         | +            |          | +            | +         | +         | $\vdash$ | H         | +         | +-        |           |          |           | ×         | -         | ×         | $\Box$   |
|          | Kil Eval.            | ×     | < > |     |       |              | ××      | <   |         |         | ×     | T        | П       | ,   | <   | ×        |        |     | П        | 1         | T         |        | 1      | +         | T            |           | $\forall$ | $\dagger$ | +         | Î         |             | 7                                     | +            | H            | +         |                   | +         | $^{\dagger}$ | ×        | +            | +         | +         | H        | H         | +         | +         | H         |          | ×         |           | -         | ×         | Н        |
| _        | Soft Kill            |       |     | Ĺ   |       |              | ×       |     | Ī       |         | I     |          |         |     | T   |          |        | Т   | П        | $\top$    | T         |        | 7      | 1         | T            |           | $\vdash$  | 1         | +         | T         |             | ,                                     | -            | H            | +         | $\forall$         | +         | +            | ×        | +            | +         | +         | Н        | H         | +         | +         | $\vdash$  |          | ×         | ×         |           | ×         | Н        |
| <b></b>  | Guidance             |       |     | L   |       |              |         |     | L       |         | I     | I        |         | ×   | ×   |          |        |     | П        | T         |           |        | 1      | 1         | T            | П         |           | $\dagger$ | $\top$    | T         | 1           | 1                                     | +            | H            | +         | Н                 | +         | +            | H        | +            | +         | +         | Н        | H         | +         | +         | -         |          | ×         | ×         | ×         | ×         | Н        |
|          | Weapon Delivery      |       |     |     |       |              |         |     |         |         | I     |          |         |     |     |          | T      | Τ.  | П        |           |           |        | × ;    | < ×       | (×           | ×         | _         | 1,        | < ×       |           |             | $\dagger$                             | 1            | Н            | +         |                   | +         | 1            | H        | +            | -         | +         | Н        | H         | +         | +         | Н         |          | ×         |           | ×         | r         | М        |
| _        | Mumination           |       | ×   | :   |       |              |         |     |         |         | I     | $\Gamma$ |         | ×   | ×   |          | T      | П   | П        | -         |           | T i    | $\neg$ |           | _            |           | 1         | Ť         | 1         | T         |             | +                                     |              | $\forall$    | $\dagger$ | $\dagger \dagger$ | +         | +            | H        | +            | +         | +         | H        | $\forall$ | +         | +         | H         |          | ×         | $\neg$    |           |           | П        |
|          |                      |       |     |     |       |              | T       | T   |         | П       | T     | Τ        |         |     | T   | П        | T      |     |          | N.        |           |        | 1      | T         | Ť            | П         | 7         | +         | T         |           | $\parallel$ | $\dagger$                             | $^{\dagger}$ | 1            | -         | H                 | $\dagger$ |              | $\vdash$ | $^{\dagger}$ | +         | +         | H        | $\vdash$  | +         | +         | Н         | 1        | ×         | ×         | ×         | ×         | Н        |
| ر<br>ا   | -                    |       |     |     |       |              |         |     |         | П       |       |          |         |     | 6   |          | C      |     |          | Ö         |           |        |        | E E       |              |           | Ì         |           |           |           |             |                                       |              |              | nents     |                   |           |              |          |              |           |           |          |           |           |           |           |          |           |           |           |           |          |
| Elements | Optio                |       |     |     |       |              | Š       | 5   |         |         | Q.    | 2        |         |     | SPO |          | No.    | IMS |          | SMA       |           |        | _      | N         |              |           | z         | ¥         | - SM-2 MR |           |             |                                       |              |              | uiren     | A1                | ~ ~       |              |          |              |           | 1-        |          | _         | y c       | ,         |           |          |           | _         |           |           |          |
| ii<br>ii | avy                  |       |     | 6   | 2     | _            | 200     | 5   |         |         | Š     | Ì        |         | 29  |     | 9        | No A   | Ö   |          | FOR       |           |        | 3      | Z N N     |              |           |           | AHA       | MR        |           |             |                                       |              | AM           | Red       | A                 | 3         | ( ¥          | ¥        | ¥ :          | Y Y       | 8         | A        | A         | A         |           | 8         | 82       | 8         | 84        | 82        | 98        | 87       |
|          | z                    | -   G | 5   | R-1 | 35-5( | 100          | 9 5     | SOS | ပ       | S       | Σ   S | 2        | 66      | SP  | SPG | MK-4     | ő   ¥  | Ü   | S        |           | S         | S      |        | 49.0      | ZAM          |           | HAR       | 201       | SM-2      | Ž         |             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | NIXIE        | EOD TEAM     | Oper.     |                   |           |              |          |              |           |           |          |           |           |           |           |          | İ         |           |           |           |          |
|          | Navy Opton 1         | S     | Z Z | S   | S     | 히            | 3       | N N | S       | ₹.      | 5     | 트        | Ĭ       | . 3 | £ . | ď        | SQQ-89 | 9   | 0        | 2 2       | Š         | S      | 2      | 3 ₹       | •            | 3         | -]        |           |           |           | SVTT        | SR                                    | Ž            | EOC          | 0         |                   |           |              |          |              |           |           |          |           |           |           |           | 1        |           |           | -         |           |          |
|          |                      |       |     |     |       |              |         |     |         |         |       |          |         |     |     |          |        |     |          |           |           |        |        |           |              |           |           |           |           |           |             |                                       |              |              |           |                   |           |              |          |              |           |           |          |           |           |           |           |          |           |           |           | _         | _        |

Table F-3: Functional Allocation - Engagement (Navy option 1)

|     | Inorganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|     | Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ××                                                                   | <del>                                      </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × ×××                                                                                      |
| Ì   | Visual ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ××                                                                   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>┤┤┊┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋</del>                                          |
| >   | 1 1100001   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del></del>                                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                                          |
| 3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |
| -   | ESM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\times$                                                                                   |
| ļ   | Surf Searc X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                                                                    | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                                          |
|     | Vol. SearchX X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                                                                    | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                                          |
|     | Inorganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
| 1   | Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ××                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                          |
| 1   | Visual ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ××                                                                   | <del>┤┤┧╃╡╎╞╎┧╏╏╏╏╏</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>┊╞╒╃═┋╒┩═╏╒┋╒┩═╏</del> ╒┼ <del>╒╏╒</del> ┼╒╃╒╃╒╃╒╃╒╃╒╃┋                               |
| 200 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                    | <del>                                      </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>├────────────────────────────────────</del>                                           |
| 5   | IR I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                                                          |
| ŀ   | ESM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                          |
| -   | Surf SearchX X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |
|     | Vol. SearchXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                    | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                                          |
|     | Inorganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
| 1   | Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ××                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × ×× ×                                                                                     |
| t   | Visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ××                                                                   | <del>                                      </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>╒┪╸╏╶┋╶┩╸╏╶╏╶┩</del> ╶ <del>╏╶╏</del>                                                 |
| ;   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                    | <del>                                      </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>╒┪╛┩╌┪┪┈┊┩┈┆╶┪╸╏╸</del> ┇                                                             |
| 1   | IR I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del></del>                                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × × × ×                                                                                    |
| F   | ESM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                                                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | × × × ×                                                                                    |
| -   | Surf Search ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × × × ×                                                                                    |
| 1   | Vol. SearchXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×××                                                                                        |
|     | Inorganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
|     | Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ××                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ××                                                                                         |
| 1   | Visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ××                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
| t   | Inorganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +++++                                                                | <del>+</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del></del>                                                                                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ××                                                                   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            |
| +   | Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 177                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×         ×                                                                                |
|     | Inorganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
|     | Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | × ×                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                          |
| Ŀ   | Ship Board X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ××                                                                                         |
|     | Inorganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
| Γ   | Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ××                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × ××× × × ×                                                                                |
| ŀ   | Visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ××                                                                   | <del>┪┍┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                |
| -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                    | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | × × × ×                                                                                    |
| +   | IR I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>                                     </del>                     | <del>┍╋┈╏╒┩┈╏╶╏╶┪┈╏╶╏╒╏╒</del> ╇┼ <del>╒╏╒╏</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × × × ×                                                                                    |
| H   | ESM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                                                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×  ×                                                                                       |
| Ļ   | Surf Search XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×  ×                                                                                       |
| L   | Inorganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
|     | Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                          |
| -   | Passive X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × × ×                                                                                      |
| 1   | Active ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
| +   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +++++                                                                | <del>┇╏┋╒╣╏╏╏╒╇╬╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇╇</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | × X X                                                                                      |
| H   | Inorganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +++++++++++++++++++++++++++++++++++++++                                                    |
| -   | Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                    | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\times$                                                                                   |
| -   | Visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                          |
| L   | IR III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × ×××                                                                                      |
| L   | ESM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                          |
| 1   | Vol Search × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × XXX                                                                                      |
| _   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                      </del>                                          |
|     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      | IR MK-46 SQQ-69 SQQ-69 WCS TACAN RING INFO. NETWORK WCS ISDS 127 mm GUN 40 mm GUNS (2) VLS TOMAHAWW TESS SM-2 MR SM-2 MR WS SM-2 MR WS SM-2 MR WS SM-2 MR WS SM-2 MR WS SM-2 MR WS SM-2 MR WS SM-2 MR WS SM-2 MR WS SM-2 MR WS SM-2 MR WS SM-3 WR SM-3 WR WS SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM-3 WR SM- |                                                                                            |
|     | Navy Option 2 XPAR SPS-67 ATAS SH-00 SLQ-32 VIDEOIOPTICAL ACDS ACDS ACDS ACDS ACDS ACC ACC ACC ACC ACC ACC ACC ACC ACC AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PANTHER<br>SMALL BOATS (2)<br>IFF<br>MK 89<br>· SPG-62<br>MK 34 GFCS | SPG-60/SPQ-9 R MK-46 SQC-96 SQ |                                                                                            |
|     | Opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STAN                                                                 | SS   SS   NON NS   NO | A2<br>A3<br>A4<br>A6<br>A7<br>A7<br>A7<br>A7<br>A10<br>A10<br>A11<br>A13<br>B8<br>B8<br>B8 |
|     | law /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 開<br>日<br>3-62<br>3-62<br>3-62                                       | SPG-60/SPG-8  R MK-46  SR MK-46  OMK-116 ASWF  VOICE COMMS  TACAN  RING INFO. NETV  WCS  ISOS  127 mm GUNS (2)  VLS  - HARPOON  - TOMAHAWK  - ESS  - SM-2 MR  - VLA  SW-17  SM-2  NIXIE  EOD TEAM  Oper. Requirem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |
|     | AR AR A S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65. S 65 | 34 SPG 89 AL                                                         | SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLEN SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON BELLE SON |                                                                                            |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A WILLY A                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |

|       | Command                                 |                    | П        | П                    | 1.       |               | Ţ١                 | Т              |           |                     | П            |                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              | ,        | Π.              | ٦           |          | $\top$       |          | П         | 1                 |                   |           | T            |                   |                    | _            | T            | 7            | T            |           |           | П            |              | 11                |                   | T                 | _            |          | _                       |
|-------|-----------------------------------------|--------------------|----------|----------------------|----------|---------------|--------------------|----------------|-----------|---------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|----------|-----------------|-------------|----------|--------------|----------|-----------|-------------------|-------------------|-----------|--------------|-------------------|--------------------|--------------|--------------|--------------|--------------|-----------|-----------|--------------|--------------|-------------------|-------------------|-------------------|--------------|----------|-------------------------|
| ≥     |                                         | +-+-               | $\sqcap$ | ×                    | ××       |               | $\hat{\mathbf{x}}$ |                | H         | +                   | ν,           | <th>H</th> <th> <u>*</u></th> <th>+</th> <th>1</th> <th>× ×</th> <th></th> <th>+</th> <th>H</th> <th>+</th> <th>t</th> <th><math>\vdash</math></th> <th><math>\forall</math></th> <th>+</th> <th><math>\forall</math></th> <th><math>\forall</math></th> <th><math>^{\dagger}</math></th> <th>Н</th> <th>+</th> <th>+</th> <th></th> <th>×</th> <th>Н</th> <th>+</th> <th>+</th> <th>+</th> <th>+</th> <th>+</th> <th>×</th> <th>+</th> | H            | <u>*</u>     | +        | 1               | × ×         |          | +            | H        | +         | t                 | $\vdash$          | $\forall$ | +            | $\forall$         | $\forall$          | $^{\dagger}$ | Н            | +            | +            |           | ×         | Н            | +            | +                 | +                 | +                 | +            | ×        | +                       |
| MT0   | Identif                                 |                    | П        |                      | ××       | 1             | ××                 | < ×            | ×         |                     |              | <×                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | $\dagger$    |          |                 | ~           | П        | $\dagger$    | $\sqcap$ | +         | T                 | $\sqcap$          | П         | $\dagger$    | $\dagger\dagger$  | +                  | $\dagger$    |              | $\dagger$    | +            |           | <u> </u>  | H            | +            | $\dagger$         | +                 | $\forall$         | +            | ×        | +                       |
|       | Voice Comm                              |                    |          |                      |          |               |                    |                |           |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | ×            |          | Ť               | Ť           | П        | T            | П        | T         | T                 |                   | П         | $\dagger$    | 11                | $\top$             | ·   ×        |              | ×            | +            |           | <u> </u>  | П            | $\top$       | $\dagger \dagger$ | +                 | $\dagger \dagger$ | +            | ×        | $\dagger$               |
|       | Command                                 |                    |          |                      | ×        |               | ×                  |                | П         |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | ×            |          | ×               | <×          |          | I            |          |           |                   |                   | П         |              | $\top$            | T                  | 1            | Ħ            |              | T            |           | <         | П            | Ť            | П                 | T                 | $\sqcap$          |              | n        | +                       |
|       | Correlate                               |                    |          | $\perp \mid$         | ××       |               | ××                 | < ×            | ×         |                     | ×            |                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ш            |              |          | ,               | <           |          |              |          |           |                   |                   |           |              |                   |                    |              |              |              |              | ,         | <         |              | T            |                   | 1                 | П                 |              | $\sqcap$ | T                       |
| SAR   | Traci                                   |                    |          | $\coprod$            | _×       |               | ××                 | <×             | Ш         | Ш                   | ××           | <                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ц            | 1            | Ц        |                 | <           | Ш        | $\perp$      |          |           |                   |                   | Ш         |              | Ш                 |                    |              |              |              |              | ;         | <         |              |              |                   |                   |                   |              |          |                         |
| ψ     | Identify                                | +                  | 1        | ×                    | ××       |               | ××                 | <×             | ×         | Н                   | 4            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ш            | $\downarrow$ | Н        | ,               | <           | Ц        | 1            | Ш        | 1         | $\perp$           | Ш                 | Ш         | _            | Ш                 | $\perp$            | $\perp$      |              | $\perp$      |              | _ ;       | <         | Ш            | 1            | Ш                 |                   |                   |              |          |                         |
|       | Display                                 | 1-1-               | $\vdash$ | ×                    | ××       | $\sqcup$      | ×                  | +              | $\vdash$  | +                   | ××           | <×                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н            | $\downarrow$ | Н        | ,               | <           | Ц        | $\perp$      | Н        | 4         | 4                 |                   | Н         | 4            | $\coprod$         | 4                  | ×            |              | $\downarrow$ | _            | ;         | <         | Ц            | 1            | Ц                 | $\perp$           | Ш                 | 1            | Ц        |                         |
| -     | Voice Comm                              | 1                  | H        | H                    | +        | $\dashv$      | +                  | +-             | 1         | +                   | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                       | Н            | ×            | $\sqcup$ | 4               | +           |          | +            |          | +         | $\perp$           | 4                 | Н         | -            | 44                | 11                 | ×            |              | ×            | $\perp$      |           | <         | Н            | 4            |                   | 1                 | Н                 | _            | Ц        | $\perp$                 |
|       | Command                                 | 1-1-               | $\vdash$ | +                    | ×        | H             | ×                  | +              | H         | +                   | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                       | H            | ×            | Н        | $\neg$          | <u> </u>    | $\dashv$ | +            | H        | +         | +                 | +                 | H         | +            | ++                | +                  | +            | $\mathbb{H}$ | - >          | <_           | +         | +         | H            | +            | H                 | +                 | $\sqcup$          | -            | -        | -                       |
| į     | Weapons Assgr<br>Correlate              |                    | -        | H                    | ×        | 1             | ×                  | +              | $\vdash$  | +                   | ×            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | ×            |          |                 | <×          | Н        | +            | Н        | +         | +                 | +                 | Н         | +            | $\mathbb{H}$      | +                  | +            | H            | -            | ۷            | +         | +-        | H            | +            | Н                 | +                 | $\dashv$          | +            | $\vdash$ | +                       |
|       | Track                                   |                    | H        | H                    | ××       | П             | ××                 | T              | ×         | Н                   | ×            | H                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | +            | Н        |                 | <           | Н        | +            | Н        | +         | +                 | +                 | H         | +            | H                 | +                  | +            | H            |              |              | +         | +-        | H            | +            | Н                 | +                 | H                 | +            | H        | +                       |
| 굡     | Threat Eval                             |                    |          | J                    | ××       | П             | ××                 | ×              |           | $\dagger \dagger$   | $\neg$       | <×                                                                                                                                                                                                                                                                                                                                                                                                                                      | +            | +            | Н        | >               | 1           | Н        | +            | H        | $^{+}$    | +                 | +                 | Н         | +            | $\Box$            | +                  | +            | Н            | ->           | 4            | +         | +         | H            | +            | H                 | +                 | H                 | +-           | H        | +                       |
|       | Identify                                | #                  | H        |                      | ××       | П             |                    | ×              |           | Н                   | ť            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\vdash$     | $^{\dagger}$ | Н        | 7               | <           | 1        | +            | Н        | +         | $\dagger \dagger$ | +                 | Н         | +            | $\dagger \dagger$ | +                  | +            | Н            | 1            |              | +         | +         | H            | +            | $\dagger\dagger$  | +                 | +                 | +            | H        | +                       |
|       | Display                                 |                    |          | TT                   | ××       | П             | ×                  |                |           | П                   | ××           | (×                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\top$       | $\dagger$    | П        | 1,              | T           | П        | $\dagger$    | Ħ        | $\dagger$ | $\Box$            |                   | П         | $\dagger$    | H                 | ++                 | <br> ×       | Н            | ,            |              | +         | +         | H            | +            | H                 | +                 | H                 | +            | H        | +                       |
|       | Voice Comm                              |                    |          |                      |          |               |                    |                |           | П                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | ×            |          | 1               | 1           | П        | $\top$       | П        |           | П                 |                   | П         | $\top$       | $\top$            | tt                 | T,           | $\Box$       | ×   >        | $\Box$       | 1         | $\dagger$ | Н            | $\top$       | $\Box$            | $\dagger$         | H                 | $\dagger$    | H        | $\dagger$               |
|       | Command                                 |                    |          | Ц                    | ×        |               | ×                  |                |           |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | ×            |          | ×>              | <×          |          |              |          |           |                   |                   |           |              | П                 | П                  |              |              |              |              |           | T         | П            | T            | П                 |                   | Π,                | ×            |          |                         |
|       | Weapons Assgr                           |                    | Ш        | Ц                    | ×        |               | ×                  | L              | Щ         | Ш                   | ××           |                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | ×            |          | _ >             | <×          | Ц        | $\perp$      | Ц        |           |                   |                   |           |              |                   |                    | I            |              |              |              |           |           |              |              |                   |                   | Ţ,                | ×            |          |                         |
|       | Correlate                               |                    | 4        |                      | ××       |               | ××                 | ×              |           | Н                   | ×            | $\sqcup$                                                                                                                                                                                                                                                                                                                                                                                                                                | 4            | 1            | Ц        | _               | <           |          | $\perp$      | $\sqcup$ | 1         |                   | 1                 | Ц         | 1            | Ш                 | $\coprod$          | 1            | Ц            |              | Ш            | 1         |           | Ц            | L            | Ц                 |                   | IJ,               | ×            |          |                         |
| Š     | Track                                   | -                  | +        | H                    | ×        | П             | ××                 |                | 1         | $\sqcup$            | ××           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1            | +            | $\sqcup$ | >               | <           | 4        | +            | $\sqcup$ | +         | $\sqcup$          | 4                 |           | +            | $\sqcup$          | #                  | 1            | Ц            | 1            | $\sqcup$     | 1         | 1         | Ц            | 1            | Ц                 | _                 | ,                 | ×            | Ш        | $\perp$                 |
| 4     | *************************************** | -                  | +        | ×                    | ××       |               | ××                 |                | -         | H                   | >            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | +            | H        | >               | 4           | 4        | +            | H        | +         | $\dashv$          | +                 | H         | +            | H                 | H                  | +            | $\sqcup$     | +            | $\perp$      | 4         | 1         | Ц            | -            | $\sqcup$          | +                 |                   | ×            | Ц        | $\perp$                 |
| ŀ     | Identify                                | 1                  | +        | П                    | ××       |               | ××                 | ×              | +         | Н                   | +            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | +            | Н        |                 | 4           |          | +            | H        | +         | H                 | +                 | Н         | +            | $\dashv$          | ++                 | +            |              | +            | H            | +         | +         | 4            | $\downarrow$ | $\dashv$          | 1                 |                   | ×            | 1        | $\downarrow \downarrow$ |
| -     | Display<br>Voice Comms                  | 1                  | +        | ×                    | ××       | 1             | <u> </u>           | Н              | +         | H                   | ××           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | +            | Н        | ->              | <           | +        | +            | H        | +         | H                 | +                 | H         | +            | +                 | ++                 | ×            | 1            | +            | H            | +         | +         | +            | +            | H                 | +                 | 1                 | ×            | +        | +                       |
| +     | Command                                 | 1                  | +        | H                    | V        | H.            | ×                  | H              | -         | $\forall$           | +            | H                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | ×            | ×        |                 |             | +        | +            | H        | +         | H                 | +                 | Н         | +            | +                 | +                  | ×            | H            | ×            | Н            | +         |           | +            | +            | H                 | +-                | +                 | <b>×</b>     | +        | +                       |
| >     | Identify                                | $\vdash$           | $\dashv$ | V,                   | ××       | П             | ×                  | $\sqcap$       | +         | H                   | $\dagger$    | H                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ť            | Î            | ñ        | ,               | ×           | Ť        | +            | $\vdash$ | +         | H                 | +                 | Н         | +            | $\forall$         | +                  | +            | $\Box$       | +            |              | $^{+}$    | H         | +            | +            | $\forall$         | +                 | ×                 | +            | +        | +                       |
| STW   | Display                                 |                    |          | TT                   | ××       |               | ×                  | Ħ              |           | П                   | $\top$       | Ħ                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\top$       | 1            | П        |                 |             |          | $\top$       | Н        | Ť         | Ħ                 | $\dagger$         | H         | $\dagger$    | H                 | $\dagger \dagger$  | ×            | H            | +            | H            | +         | H         | +            | +            | $\vdash$          | +                 | ×                 | +            | +        | $^{+}$                  |
|       | Voice Comms                             |                    |          |                      |          |               |                    |                |           |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | ×            | П        |                 |             | T        | Т            | П        |           | П                 |                   | П         | $\top$       |                   | $\dagger \dagger$  | ×            | $\Box$       | _            | $\sqcap$     | 1         | П         | $\dagger$    | $\dagger$    | П                 | +                 | ×                 | $^{\dagger}$ | +        | $\top$                  |
|       | Command                                 |                    |          |                      | ×        | L.            | ×                  |                |           |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |          | ××              | ×           |          |              |          |           |                   |                   |           | I            | П                 |                    |              |              |              |              | 1         |           | ,            | <            | П                 | +                 | Î                 |              | $\top$   | П                       |
| -     | Correlate                               |                    | ×        | 1                    | ×        | Į,            | ××                 | ×              | 4         | Ш                   | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4            | 1            | Ц        | _ ×             |             | 1        | $\perp$      | Ц        | 1         | Ш                 |                   |           |              |                   | П                  |              |              | $\perp$      | П            |           |           | ,            | <            |                   |                   |                   |              |          |                         |
| 2     | Track                                   |                    | _×       | H                    | ×        | ;             | ××                 | ×              | +         | Н                   | 4            | $\sqcup$                                                                                                                                                                                                                                                                                                                                                                                                                                | 4            | $\perp$      | Н        | _×              |             | 4        | $\perp$      | H        | 1         | Ш                 | _                 | Ш         | $\downarrow$ | Ш                 | 11                 | 1            | Ц            | $\perp$      | Ц            |           |           | ,            | <            |                   |                   |                   |              |          |                         |
| Σ.    | Threat Eval.                            |                    | ×        | Н                    | ×        |               | ××                 | ×              | +         | $\vdash$            | +            | H                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4            | $\perp$      | H        | _  ×            |             | +        | $\sqcup$     | H        | +         | $\sqcup$          | $\perp$           |           | -            | Н                 | ++                 | 1            | -            | $\downarrow$ | Н            | _         |           | -            | <_           |                   | $\perp$           | Ц                 |              |          | Ш                       |
| -     | Identify                                | -                  | ×        |                      | ×        | ;             | ××                 | ×              | +         | Н                   | +            | H                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | +            | H        | ×               |             | +        | 4            | H        | +         | Н                 | +                 | $\dashv$  | +            | -                 |                    | $\perp$      | $\sqcup$     | +            | H            | +         | $\Box$    | ->           | <            | $\sqcup$          | 1                 | $\vdash$          | $\perp$      | +        | $\sqcup$                |
| +     | Display<br>Voice Comms                  |                    | ×        | H                    | ×        | ;             | <u> </u>           | H              | +         | H                   | +            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | +            | Н        | ×               |             | +        | +            | Н        | +         | H                 | +                 | Н         | +            | +                 | +                  | ×            | $\vdash$     | +            | $\mathbb{H}$ | +         | H         | ->           | 4            | $\vdash$          | +                 | H                 | +            | $\perp$  | +                       |
| +     | Command                                 |                    | +        | H                    | ×        | H.            | +                  | +              | +         | $^{\dagger\dagger}$ | +            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | ×            |          | +               |             | +        | +            |          | +-        | Н                 | +                 | +         | +            | $\vdash$          | +                  | ×            | H            | <u> </u>     | Н            | +         | H         | -            | <            | $\vdash$          | +                 | +                 | +            | +        | H                       |
| ŀ     | Weapons Assgn                           |                    | 1        |                      | ×        |               | <u> </u>           | Н              | $\dagger$ | H,                  | ××           |                                                                                                                                                                                                                                                                                                                                                                                                                                         | +            | ×            | ×        | $\top$          | ×           | +        | +            | H        | +         |                   | $^{+}$            | +         | +            | $\vdash$          | +                  | +            | +            | ×            |              | +         | H         | +            | +            | +                 | +                 | $\vdash$          | ×            | +        | ×                       |
|       | Correlate                               |                    | $\top$   | ١,                   | <×       | 1             | ×                  | ×              | ×         |                     | ×            |                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ť            |              | П        | T <sub>×</sub>  | Î           | 1        | $\parallel$  | $\top$   | $\top$    | П                 | $\dagger$         | $\top$    | $\dagger$    | $\vdash$          | $\dagger \dagger$  |              |              | ×            |              | +         | Н         | $^{\dagger}$ | +            | H                 | +                 | $\vdash$          | ×            | +        | ×                       |
| }     | Track                                   |                    |          |                      | ×        | ,             | Κ×                 | ×              |           |                     | ××           |                                                                                                                                                                                                                                                                                                                                                                                                                                         | I            |              |          | ×               |             |          |              |          |           |                   |                   | 1         | T            |                   |                    | П            | $\top$       | ×            |              | $\dagger$ | $\sqcap$  | 1            |              |                   |                   | $\vdash$          | ×            | 1        | ×                       |
| 2     | Threat Eval.                            |                    | 1        | ×                    | <×       | ,             | ××                 | ×              | ×         | Ц                   | ×            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\perp$      |              |          | ×               |             |          | •            |          | I         |                   |                   |           |              |                   |                    |              |              | ×            |              |           |           |              |              |                   | П                 |                   | ×            | $\top$   | ×                       |
| -     | Identify                                | 44                 | +        | ××                   | <×       | >             | < ×                | ×              | ×         |                     | 1            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                       | _            |              |          | ×               |             | 1        | Ш            |          | 1         | Ц                 |                   |           | L            |                   |                    |              |              | ×            |              |           |           |              |              |                   |                   |                   | ×            |          | /×                      |
| +     | Display                                 |                    | +        | ××                   | ٧×       | >             | 4                  |                | +         |                     | ××           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4            | $\sqcup$     | 4        | ×               |             | $\perp$  | $\sqcup$     | _        | +         | Н                 | $\perp$           | 1         | 4            | Ш                 | $\sqcup$           | ×            |              | ×            | Ц            | $\perp$   | Ш         | 1            | Ш            | 1                 | Ш                 |                   | ×            |          | ×                       |
| +     | Voice Comm                              |                    | +        |                      | +        | +             | +                  | Н              | +         | H                   | +            | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | ×            | +        | +               | Н           | +        | $\mathbb{H}$ | +        | +         | H                 | +                 | +         | +            | Н-                | ++                 | ×            | - >          | < ×          | H            | +         | $\sqcup$  | $\downarrow$ | $\perp$      | Н                 | Н                 | 1                 | ×            | 1        | ×                       |
| Ì,    | Command<br>Weapons Assgn                |                    | +        | +                    | ×        | -             | 1                  | Н              | +         | H                   | +            | H                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | ×            | ×:       | <del>\</del>    |             | +        | +            | +        | +         | Н                 | +                 | +         | +            | $\vdash$          | ₩                  | Н            | +            | +            | H            | +         | +         | +            | Н            | H                 | $\perp$           | +                 | ×            | +        | ×                       |
| -     | Correlate                               |                    | ××       |                      | ×        |               | < -                | H              | +         | +                   | +            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                       | ××           | П            | +        | ×               | ×           | +        | +            | +        | +         | $\forall$         | +                 | +         | +            | +                 | +                  | Н            | +            | +            | +            | +         | H         | +            | +            | +                 | +                 | +                 | ×            | +        | ×                       |
| 2     | Track                                   |                    | ××       |                      | ×        |               | (X                 | П              | $\top$    | $\sqcap$            | +            | Ħ.                                                                                                                                                                                                                                                                                                                                                                                                                                      | ××           | П            | +        | ×               | 1           | +        | $\forall$    | +        | +         | 1                 | +                 | +         | $\forall$    | +                 |                    | Н            | +            | +            | H            | +         | H         | +            | H            |                   | H                 | +                 | ×            | +        | ×                       |
| NO.   | Threat Eval.                            |                    | ××       |                      | ×        |               | (×                 |                | _         |                     | T            |                                                                                                                                                                                                                                                                                                                                                                                                                                         | ××           | $\Box$       | 1        | ×               | $\parallel$ | +        | H            | +        | +         | $\vdash$          | +                 | +         | $\forall$    | +                 | 1                  | H            | +            | +            | H            | +         | H         | +            | H            | +                 | Н                 | +                 | ×            | +        | ×                       |
|       | Identify                                |                    | ××       |                      | ×        | 7             | < ×                | П              |           |                     | T            |                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |          | ×               |             |          | $\prod$      | 1        | I         |                   |                   | 1         | П            |                   | $\prod$            | П            | +            | 1            | Н            | +         | Ħ         | +            | $\forall$    | +                 | $\dagger \dagger$ | +                 | ×            | +        | ×                       |
| -     | Display                                 | Ш                  | ×        |                      | ×        | >             | <                  |                | $\perp$   |                     |              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                       | ××           |              | I        | ×               | П           |          | П            | I        | I         |                   |                   | I         |              |                   |                    | ×            |              |              |              | I         |           |              |              |                   | $\prod$           |                   | ×            |          | ×                       |
| +     | Voice Comm                              | $\perp \downarrow$ | 1        | 1                    | $\sqcup$ | 4             | +                  | Ц              | $\perp$   | Ц                   | -            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1            | ×            | 4        | -               | Ц           | 1        |              | 1        | $\perp$   | Ц                 | $\perp$           | $\int$    | $\Box$       |                   | Щ                  | ×            | ,            | <            |              | I         | П         | I            | П            | 1                 |                   | I                 | ×            | I        | ×                       |
| -     | Command                                 | +                  | +        | +                    | ×        | ××            | <                  | $\vdash$       | +         | 4                   | +            | H                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | ×            | ×        | <×              | ×           | ×        | ×            | 1        | $\perp$   | $\sqcup$          | $\perp$           | 4         | $\sqcup$     |                   | 1                  | Ц            | 1            | 1            |              | -         | Ц         |              | $\coprod$    | 1                 | $\perp$           | $\prod$           | ×            | ×        | ×                       |
| 1     | Weapons Assgn                           | ++                 | +        | ×                    | 11       | ××            | 4                  | -              | ×         |                     | <×           | H                                                                                                                                                                                                                                                                                                                                                                                                                                       | -            | ×            | +        |                 | ×           | ×        | ×            | +        | +         | $\vdash$          | +                 | -         | $\dashv$     | _                 | 1                  | Н            | 4            | +            |              | +         | $\sqcup$  | 4            | $\sqcup$     | 1                 | $\perp \mid$      | 1                 | ×            | ×        | ×                       |
|       | Correlate                               | +                  | +        | >                    | TT       |               | <×                 | ;              | ××        | >                   | 1            | H                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | H            | +        | ×               | П           | ×        | ×            | +        | +         | $\vdash$          | +                 | +         | +            | +                 | +                  | H            | +            | +            | $\sqcup$     | +         | $\sqcup$  | 4            | $\prod$      | +                 | $\square$         | +                 | ×            | ×        | ×                       |
|       | Track Threat Eval.                      | +                  | +        | +                    | 11       | ××            |                    | H              | ×         | ->                  | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                         | +            | H            | +        | ×               | H           | +        | ×            | -        | +         | +                 | +                 | +         | H            | +                 | +                  | H            | +            | +            | $\mathbb{H}$ | +         | H         | +            | H            | +                 | H                 | +                 | ×            | ×        | ×                       |
| 1     | Inreat Eval.                            | +                  | +        | ××                   |          | ××            | 1                  | - ;            | ×         | +                   | ×            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | H            | +        | ×               | H           | +        | ×            | -        | +         | +                 | $\forall$         | +         | H            | +                 | -                  | H            | +            | +            | H            | +         | H         | +            | H            | +                 | +                 | +                 | ×            | ×        | ×                       |
|       | Display                                 | ++                 | +        | ×                    | T        | - <u>&gt;</u> |                    | H              | ×         | -                   |              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | H            | +        | ×               | H           | +        | +            | +        | +         | +                 | +                 | +         | +            | +                 | +                  | H            | +            | -            | H            | +         | +         | +            | H            | +                 | H                 | -                 | ×            | ×        | ×                       |
| -     |                                         | ++                 | +        | 7                    | 1        | 1             | -                  | H              | +         |                     | <×           |                                                                                                                                                                                                                                                                                                                                                                                                                                         | +            | J            | +        | ×               | H           | +        | $\forall$    | +        |           | $\dashv$          | $\dagger \dagger$ | +         | H            | +                 | +                  | ×            | 1            | -            | H            | +         | +         | +            | H            | +                 | H                 | +                 | ×            | 7        | ×                       |
| -     |                                         | -                  | +        | +                    | ++       | +             | +                  | +              | ++        | +                   | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                       | +            | M            | +        | ¥               | H           | +        | +            | +        | +         | -                 | +                 | +         | +            | +-                | $\vdash$           | ×            |              | -            | $\vdash$     | +         | $\vdash$  | +            | +            | +                 | 1                 | 1                 | ×            | ×        | ×                       |
|       | Voice Comm                              |                    |          |                      | 1 1      | - 1           |                    |                | -   -     | - 1                 |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1          | 1 1          | J        | 1~              |             | 1        | 1 1          |          |           | 1                 | 1 1               | - 1       |              |                   | 1 .                | 1            |              | 1            | 1            |           | 1         |              |              |                   |                   | - 1               |              | - 1      |                         |
|       | Voice Comm                              |                    |          |                      |          |               |                    | (2)            |           |                     | 6            |                                                                                                                                                                                                                                                                                                                                                                                                                                         | ပူ           |              |          | WOR             |             |          |              |          |           |                   |                   |           |              |                   | nents              |              |              |              |              |           |           |              |              |                   |                   |                   |              |          |                         |
| CHICA | Voice Comm                              |                    |          | 1CA1                 |          |               |                    | ATS (2)        |           | f                   | SPQ-9        |                                                                                                                                                                                                                                                                                                                                                                                                                                         | ASWFC        | MMS          |          | NETWOR          |             | Z        | (2) (3)      | NC       | 3WK       |                   |                   |           |              |                   | zuirements         | -            | 9 "          | 4            | 5            | 7         | 8)        | 0            | =            | 12                | 2                 | - ~               |              | 5        | 9                       |
|       | Voice Comm                              | 7                  | 0        | 2<br>MODITICAL       | 1001     |               | YER                | L BOATS (2)    |           | G-62                | 3-60/SPQ-9   | -46                                                                                                                                                                                                                                                                                                                                                                                                                                     | -116 ASWFC   | COMMS        |          | NFO. NETWOR     |             | NO GUN   | GUNS (2)     | NOON     | WAHAWK    | 3                 |                   | 50        |              | EAM               | Requirements       | A1           | A2           | A4           | AS           | A7        | A8        | A10          | A11          | A12               | 2                 | 25 E3             | 83           | 85       | B6                      |
|       | Voice Comm                              | XPAR<br>SPS-67     | 4-100    | LQ-32<br>DEOMOPTICAL | CDS      | EC            | ANTHER             | MALL BOATS (2) | MK 99     | SPG-62              | SPG-60/SPQ-9 | IR MK-46                                                                                                                                                                                                                                                                                                                                                                                                                                | MK-116 ASWFC | DICE COMMS   | PS       | NG INFO. NETWOR | SO          | 7 mm GUN | mm GUNS (2)  | HARPOON  | TOMAHAWK  | ESS               | · VLA             | MK 50     | BOC          | NIXIE<br>EOD TEAM | Oper. Requirements | A1           | A2           | A4           | AS           | A7        | A8        | A10          | A11          | A12<br>A13        | 2                 | B1                | B3           | 85       | Be                      |

| _        |                     | -          | _       |         | -      | _  | · · · | _       | -,-             | , ,          | _       | -        | -,-      |                |          | _       | -,-    |      |           | _   | ,        |         | , ,      | .,     | _        |        | _         | , ,                | <u> </u> |           | _      | ,        |        |   | <del>, ,</del> |             | , . , .  | -,                |          | -       | <del>,</del> |                    | _            |
|----------|---------------------|------------|---------|---------|--------|----|-------|---------|-----------------|--------------|---------|----------|----------|----------------|----------|---------|--------|------|-----------|-----|----------|---------|----------|--------|----------|--------|-----------|--------------------|----------|-----------|--------|----------|--------|---|----------------|-------------|----------|-------------------|----------|---------|--------------|--------------------|--------------|
| _        | Facilities (Med. et | _          |         | 4       | 1      | _  |       | Ш       | _               | $\coprod$    | 1       | $\sqcup$ | _        |                | Ш        | $\perp$ |        | L    |           |     | Ш        |         | Ш        | _      |          | >      | <         | Ц                  |          | Ц         |        |          | ×      | _ | ×              | ×           | $\sqcup$ |                   |          | $\perp$ | Ш            | Ц                  |              |
| MTO      | Evaluation          |            | Ц       | _       |        |    | Ш     | ×       | ×               | $\sqcup$     | $\perp$ |          | $\perp$  |                |          |         |        | L    |           |     |          | $\perp$ |          |        |          |        |           | Ш                  |          |           | ×      | ×        | ×      |   |                |             |          |                   |          |         | Ш            | Ш                  |              |
|          | Platform Delivery   |            |         | $\perp$ |        |    |       | ×       | ×               |              |         |          |          |                |          |         |        |      |           |     |          |         |          |        |          |        |           |                    |          |           | ×      | ×        | ×      |   |                |             |          |                   |          |         |              | П                  |              |
|          | Facilities (Med. et |            |         |         |        |    |       |         |                 |              |         |          |          |                | Ш        |         |        |      |           |     |          |         |          |        |          | ,      | <         |                    |          |           |        |          | ×      |   | ×              |             |          |                   |          |         |              | П                  |              |
| SAR      | Evaluation          |            |         |         |        |    |       | ×       | ×               |              |         |          |          |                |          |         |        |      |           |     |          |         |          |        |          |        |           |                    |          |           | ×      | ×        | ×      |   | П              |             |          |                   |          |         |              | П                  |              |
|          | Platform Delivery   |            |         |         |        |    |       | ×       | ×               |              |         |          |          |                | Ш        |         |        |      |           |     |          |         |          |        |          |        |           |                    | Ι        |           | ×      | ×        | ×      |   | П              |             |          |                   |          |         | П            | П                  |              |
|          | Kill Eval.          | ××         |         |         | ××     |    |       | ×       | ×               |              | ×       |          | ×        |                |          |         |        |      | Ţ         | T   |          |         |          |        |          | П      | T         | П                  |          |           | ××     | ×        |        | Т |                |             | П        | П                 | T        | ×       | П            | П                  |              |
| П        | Soft Kill           |            |         |         | ×      |    |       |         |                 |              |         |          |          |                |          |         |        |      | T         |     | П        | Τ       |          |        | ×        |        | T         |                    | Τ        |           | ×      |          |        | T | П              |             |          |                   |          | ×       |              | П                  |              |
| Ш        | Guidance            |            |         |         |        |    |       |         |                 | $\prod_{i}$  | ×       | ×        | T        |                | П        |         | T      |      |           |     | П        | T       | П        |        |          |        |           |                    | T        |           | ×      |          | T      | T |                |             |          |                   |          | ×       | П            | П                  |              |
| 딦        | Weapon Delivery     |            |         |         |        |    |       |         | T               | П            |         | П        |          | П              | П        |         |        |      |           |     |          |         | П        |        |          |        | T         |                    |          | ,         | ×      |          |        |   |                |             |          |                   | T        | ×       | П            | T                  | ٦            |
|          | Illumination        |            | П       |         |        |    |       | T       |                 |              | ×       | ×        | T        | П              |          |         |        |      |           |     | П        | Τ       | П        |        |          | П      | T         | П                  |          |           | ×      |          | 1      | T | П              |             | П        |                   | 1        | ×       | 1            | $\top$             |              |
|          | Board               |            | П       |         |        |    |       | ×       | ×               | П            | T       | П        |          | П              | П        |         |        |      |           | T   |          |         | П        |        |          |        |           |                    |          |           | ××     | ×        |        |   |                |             |          | П                 |          | 1       |              | $\top$             | ٦            |
|          | Intercept           |            | П       |         | T      | П  |       | ×       | ×               | П            | T       | П        |          |                | П        |         |        | Г    | T         | T   |          | T       | П        | T      |          |        | Τ         | П                  | T        |           | ××     | 1        |        |   | Т              |             |          | $\sqcap$          | $\top$   |         | П            | $\top$             | ٦            |
|          | Kill Eval.          |            | П       |         | ×      |    |       | ×       |                 | $\prod$      |         | П        | ×        | П              | П        |         | $\top$ | П    | $\top$    | 1   | П        | T       | П        | T      | П        |        | T         | П                  | T        | ΠŤ        | ×      |          | $\top$ | T | $\sqcap$       | $\top$      |          | $\sqcap$          |          |         | П            | _                  | 1            |
| 3        | Guidance            |            | П       | 1       | T      | П  |       |         | $\top$          | $\sqcap$     | $\top$  | ×        | Ť        |                | $\sqcap$ |         |        | П    | $\top$    |     | $\sqcap$ | T       | $\sqcap$ | $\top$ |          |        | $\top$    | $\sqcap$           | 1        | П         | 1      |          | $\top$ | T |                |             | $\sqcap$ | $\dagger \dagger$ | ×        |         |              | 1                  |              |
| AMW      | Weapon Delivery     |            | $\prod$ | 7       | T      | П  |       | $\prod$ | 1               | П            |         | Ħ        |          |                | $\sqcap$ |         |        |      | $\top$    | T   | $\sqcap$ | T       | П        | $\top$ | П        |        | $\dagger$ | $\prod$            | $\top$   |           | 1      | $\sqcap$ | 1      |   |                | $\top$      |          | $\dagger \dagger$ | ×        |         | $\sqcap$     | 1                  | -            |
|          | Illumination        |            | П       | 1       | $\top$ |    |       |         | $\top$          | П            | $\top$  |          | 1        |                | $\sqcap$ |         |        | П    | $\dagger$ |     |          | T       | $\sqcap$ | 1      |          |        | $\top$    | $\Box$             |          |           | $\top$ | П        | $\top$ |   |                |             | $\sqcap$ | $\dagger \dagger$ | ×        | T       | $\sqcap$     | +                  | -            |
| 3        | Kill Eval.          | T          | П       |         |        |    |       |         | 7               | П            |         |          |          |                | $\sqcap$ | П       | Ť      | П    | Ť         | T   | П        | 1       | Ħ        | T      | П        |        | T         | П                  |          | T         | +      | $\sqcap$ | Ť      | × | $\top$         |             |          | ×                 |          |         | П            | _                  | 1            |
| STW      | Weapon Delivery     |            | П       | T       |        |    |       |         | ×               |              | T       | П        |          |                | П        |         |        |      | ×         |     | ×        | T       | П        | T      |          |        | T         |                    |          | $\exists$ | $\top$ |          | T      | × |                |             |          | ×                 |          |         | П            | $\top$             | 1            |
| >        | Clear               |            | П       | T       |        | П  |       |         |                 | П            | T       | П        |          |                |          |         |        | П    | Ť         |     |          | T       | П        | T      | П        | ,      | <         |                    |          |           |        | П        |        |   | ×              |             | $\top$   |                   | 1        |         | П            |                    | $\downarrow$ |
| Š        | Mark                |            | П       | T       |        |    |       | П       |                 | П            | T       | П        | T        |                |          | П       |        | П    | T         | T   | П        | T       | П        |        | П        | ,      | <         |                    |          |           | T      | П        |        |   | ×              |             |          | П                 | $\top$   | T       | П            |                    | ×            |
| П        | Kill Eval.          | ××         |         | 1,      | ××     |    |       | ×       | ×               | П            | ×       | П        | ×        | ×              |          |         |        | П    | T         | T   | П        | T       | П        | T      |          |        | T         | П                  |          | ,         | ××     | ×        | T      |   |                |             |          |                   | ×        | <×      |              | ×                  | Ì            |
|          | Soft Kill           |            |         | 1       | ×      | П  |       |         | T               | П            |         | П        | ×        |                |          |         |        |      |           | Т   | П        | $\top$  | П        | 1      | ×        |        | T         |                    | $\top$   |           | ×      |          | $\top$ | T |                | $\top$      | $\top$   | П                 |          | (×      | П            | ×                  |              |
| ASUW     | Guidance            |            |         |         |        | П  |       |         |                 | Π,           | ×       | ×        | T        |                |          | П       |        |      | T         | T   | П        |         | П        |        |          |        | T         |                    |          | ,         | ×      | Ħ        | T      |   |                |             |          | $\Box$            |          | ×       | $\Box$       | ×                  |              |
| ٧        | Weapon Delivery     |            |         |         |        |    |       | П       |                 | П            |         |          | T        | П              |          | П       |        |      | ×         | ×   | П        |         | П        | T      |          |        |           |                    | T        | ,         | ×      | П        | T      |   |                |             |          |                   |          | ×       |              | ×                  |              |
|          | Illumination        |            |         |         | T      | П  |       | П       |                 | ,            | K       | ×        | T        |                |          |         |        |      | T         |     |          | T       | П        |        |          |        | T         |                    |          | ,         | ×      |          |        |   |                |             |          |                   | ×        | <×      |              | ×                  | 1            |
|          | Kill Eval.          |            | ×       | ×       |        |    |       | ×       |                 | П            | T       | П        | ×        | ×              |          |         |        |      | T         |     |          |         |          |        |          |        | T         |                    |          |           | ×      |          | T      |   |                |             |          |                   | _        | ×       |              | ×                  |              |
| ASW      | Soft Kill           |            |         |         | T      |    |       | П       |                 | П            |         | П        | T        |                | П        |         |        |      | T         |     |          |         |          |        |          | ×      | T         |                    |          |           |        |          |        |   |                |             |          | П                 |          | (×      |              | ×                  |              |
|          | Weapon Delivery     |            | П       |         |        |    | T     | ×       | T               | $\sqcap$     | T       |          |          |                | П        |         |        |      | ×         |     |          |         | ×        | ××     |          |        | T         |                    |          |           | ×      | П        |        |   |                |             |          |                   |          | ×       |              | <u> </u>           | 1            |
|          | Kill Eval.          | ××         |         | ,       | < ×    |    |       | ×       | T               |              | ×       |          | <u> </u> |                |          |         | T      |      |           |     |          |         |          | 1      |          |        |           |                    |          |           | ×      | П        |        |   | 1              |             |          |                   |          | ×       |              | ×                  | 1            |
|          | Soft Kill           |            |         | ,       | <      |    |       | T       |                 | П            | T       |          |          |                |          |         |        |      | $\top$    |     |          | T       | $\sqcap$ |        | ×        | 1      | 1         |                    |          | 1         | 1      | П        | 1      | П |                |             | 1        |                   |          | ×       | χ,           | ×                  |              |
| AAW      | Guidance            |            |         |         |        |    |       |         |                 | ,            | <       | ×        |          |                |          |         |        |      |           |     |          | T       | П        |        |          | 1      | T         |                    |          | 1         | T      | П        | 1      |   |                | $\parallel$ |          | П                 | ×        | ×       | ×,           | $\hat{\mathbf{x}}$ |              |
|          | Weapon Delivery     |            |         |         |        |    |       | П       |                 |              |         |          |          |                | П        |         |        | ×    | ××        |     | ,        | ×       | П        |        | $\sqcap$ | $\top$ | 1         |                    |          | 7         | 1      | $\sqcap$ | 1      | П | +              |             |          | П                 |          | ×       |              | +                  |              |
|          | Illumination        |            | П       |         | T      | П  |       | П       |                 | ,            | <       | ×        | T        |                | $\sqcap$ |         |        |      |           |     |          | T       | П        |        | $\sqcap$ |        | T         |                    |          |           | T      | П        | $\top$ | Ħ |                |             | $\top$   |                   |          | ×       | П            | $\neg$             |              |
| П        |                     |            |         |         |        | П  |       | П       |                 | П            | T       | П        |          |                |          | 쏬       |        | П    | $\top$    |     |          |         | П        |        |          | +      | 1         | S                  | $\top$   |           | 1      | $\sqcap$ | $\top$ | П | +              | $\top$      | $\top$   | $\prod$           | 1        |         |              | +                  | 1            |
| s        | 2                   |            |         |         |        |    |       |         | 2               |              |         | ရ        |          | - MK-116 ASWFC |          | MO      |        |      |           |     |          |         |          |        |          |        |           | Oper. Requirements |          | -         |        |          |        |   |                |             |          |                   |          |         |              |                    |              |
| Elements | Navy Option 2       |            |         |         | CAL    |    |       |         | YTS             |              | (0      | SPQ      |          | ASW            |          | F       |        | z    | 15 (2     | Z   | Š        | ~       |          |        |          |        |           | uire.              | - 2      | 60        | 4 ro   | ဖြ       | . 60   | 6 | ٥,             | A12         | 33       |                   | B2<br>B3 | 4       | 2            | 10                 |              |
| Elen     | liy O               |            |         |         | OPT    |    |       |         | 80              | 8            | žĮŠ     | .60/     | ء ا      | 9 5            |          | 5       |        | ည    | GC.       | POC | AHA      | 2 MR    |          | Ç      |          | ARA    | Š         | Rec                | X X      | × ·       | ₹ ₹    | V        | 4      | × | V              | ZZ          | V        | <b>m</b>          | 00 00    | m       | 8            | 20 0               | а            |
|          | 2                   | AR<br>S-67 | 4S      | 900     | )EO/   | SS | OS    | MPS     | SMALL BOATS (2) | 66           | 34 6    | SPG      | 0-89     | ₹<br>E         | SAN      | 9       | SS     | mm / | E         | HAR | TOM      | SM-     | VLA      | MK     | BOC      |        | 7         | per.               |          |           |        |          |        |   |                |             |          |                   |          |         |              |                    |              |
| I I      |                     | م ام       | 15      | 됬       | 쉬는     | S  | IJZ   | ₹       | 泛               | <del>\</del> | ,   ₹   |          | 200      | . 9            | E S      | 1       | >lg    | 2    |           | 1   |          | 1       |          | > .    | 200      | 싉      |           | 0                  |          |           |        |          |        |   | İ              | 1 1         |          | 1                 |          | 1 1     |              | 1                  | ١            |

| Γ        |               |                                                   |           |                   |                     |                   |               | T                      |                   | П            |                   | T         | T                 | I                | T             |           | T                 |         |              |                         | T         |                  | T         |                    |                    | Τ                 | П        | T        | Τ        |          | Т       | Τ                 |           |              | Т         | П         | T             |          |          | Ţ         | Τ         |
|----------|---------------|---------------------------------------------------|-----------|-------------------|---------------------|-------------------|---------------|------------------------|-------------------|--------------|-------------------|-----------|-------------------|------------------|---------------|-----------|-------------------|---------|--------------|-------------------------|-----------|------------------|-----------|--------------------|--------------------|-------------------|----------|----------|----------|----------|---------|-------------------|-----------|--------------|-----------|-----------|---------------|----------|----------|-----------|-----------|
|          |               |                                                   |           |                   |                     |                   |               |                        |                   |              |                   |           |                   |                  |               |           |                   |         |              |                         |           |                  |           |                    |                    |                   |          |          |          |          |         |                   |           |              |           |           |               |          |          |           |           |
| 1        | Inorganio     |                                                   |           |                   | Ш                   |                   |               | Ш                      |                   | Ш            |                   |           |                   |                  |               |           |                   |         |              |                         | 1         |                  |           |                    |                    | Γ                 | П        |          | Τ        |          |         |                   | П         |              |           |           | T             | П        |          | T         | T         |
| ı        | Organic       |                                                   |           |                   |                     | Ш                 |               | ×                      | ×                 |              |                   |           |                   |                  |               |           |                   |         | T            |                         | T         | П                |           |                    |                    | П                 | ×        |          | ×        | ×        | ××      | <                 | П         | 1            | $\Box$    |           | 1             | П        |          | $\dagger$ | T         |
|          | Visua         | 1                                                 |           |                   | >                   | <                 |               | ×                      | ×                 |              |                   | T         | П                 |                  |               |           | 1                 | П       | П            |                         |           |                  | 1         |                    |                    |                   | ×        | Ť        | T        | П        | ××      | <                 | Ħ         |              | $\Box$    |           | $^{\dagger}$  | П        | +        | Ť         | +         |
| Ě        | IR            | 2                                                 |           | T                 |                     | П                 |               | ×                      |                   |              | ×                 |           |                   |                  | T             |           | T                 |         | T            | $\Box$                  | $\dagger$ | $\Box$           | $\top$    |                    | $\top$             |                   | ×        | _        | 十        | Ħ        | ××      | <del>,</del>      | H         | +            | $\forall$ | $\top$    | $^{+}$        | 1        | +        | +         | +         |
| ľ        | ESM           | ,                                                 |           |                   | ×                   |                   |               | ×                      | $\top$            | Ħ            |                   | $\top$    | $\Box$            | $\dagger$        | +             |           | +                 |         | +            | $\Box$                  | +         | Ħ                | +         | +                  | +                  |                   | ×        | +        | t        | $\vdash$ | ××      | +                 | Н         | +            | +         | -         | +             | Н        | +        | +         | H         |
| ı        | Surf Searc    | ××                                                | ×         |                   | $\vdash$            | $\top$            |               | ×                      | +                 | Ħ,           | <                 | $\dagger$ | 11                | +                | 1             | $\vdash$  | +                 |         | +            |                         | +         | H                | +         | +                  | +                  | +                 | ×        | +        | ╁        | 1-       | ××      | +                 | H         | +            | +         | +         | +             | H        | +        | +         | $\vdash$  |
|          | Vol. Searc    | +                                                 |           | $\top$            | $\vdash$            | +                 | +             | ×                      | +                 | +            | <                 | +         | 11                | +                | +             | +         | +                 | +       | H            | ++                      | +         | +                | +         | +                  | +                  |                   | ×        | +        | ╁        | +-+      | × >     |                   | H         | +            | +         |           | +             | H        | $\dashv$ | +         | +         |
| H        | Inorganic     | 1                                                 | +         | +                 | $\vdash$            | +                 | +             | H                      | +                 | +            | +                 | +         | H                 | +                | +             | +         | +-                | H       | H            | ++                      | +         | +                | +         | +                  | -                  | Н                 | 7        | +        | ╀        | H        | 7       | -                 | $\Box$    | +            | +         | -         | +             | $\vdash$ | 4        | +         | 1         |
| ı        |               |                                                   | +         | +                 | -                   | +                 | +             | ×                      | _                 | $\vdash$     | +                 | +         | +                 | +                | Н             | +         | +                 | -       | Н            |                         | +         | H                | +         | +                  | -                  |                   | -        | +        | $\vdash$ | Н        | $\perp$ | +                 | Н         | _            | 44        | $\perp$   | ╀             |          | 1        | 1         | 1         |
| ı        | Organic       | +                                                 | +         | +                 | >                   | , -               | +             | ×;                     |                   |              | ++                | +         | +                 | +                | $\mathbb{H}$  | +         | +                 | -       | $\mathbb{H}$ | $\dashv$                | +         | $\vdash$         | +         | $\perp$            | -                  | +-+               | ×        | +        | ×        | + +      | ××      | -                 | Н         | $\perp$      | Ш         | 4         | Ļ             | $\sqcup$ | 4        | 1         | Ļ         |
| 2        | Visual        | +++                                               | +         | +                 | 1                   | $\mathbb{H}$      | +             | -                      | 4                 | Н            | +                 |           | $\sqcup$          | +                | $\square$     | +         | +                 |         | $\sqcup$     | $\perp \perp$           | 1         | $\sqcup$         | _         | $\perp$            |                    | Ш                 | ×        | _        | L        | Ц        | ××      | 4                 | Ш         | $\perp$      | Ш         | $\perp$   | L             |          |          |           | L         |
| SAR      |               | 1-1-1                                             | 4         | -                 | 1                   | +                 | _             | ×                      | $\perp$           | Н            | ×                 | 4         | $\sqcup$          | 1                | $\perp$       | 1         | $\perp$           |         | Ц            |                         | $\perp$   | П                | 1         |                    |                    |                   | ×        | $\perp$  | L        |          | ××      |                   |           |              |           |           |               |          |          |           |           |
| L        | ESM           | <del>       </del>                                | 4         | Ш                 | ×                   | $\perp$           |               | ×                      | $\perp$           | Ш            | $\perp \perp$     | $\perp$   | $\perp$           | $\perp$          | Ш             |           |                   |         | Ц            |                         |           | Ш                |           |                    |                    |                   | ×        |          |          |          | ××      |                   |           |              |           |           |               |          |          | T         |           |
| ı        | Surf Searc    |                                                   |           | Ш                 |                     |                   |               | ×                      |                   | P            |                   |           |                   |                  |               |           |                   |         |              |                         |           |                  |           |                    |                    |                   | ×        |          | Γ        |          | ××      |                   | П         |              | П         |           | T             | П        |          |           |           |
| L        | Vol. Searc    | ××                                                | ×         | Ш                 |                     |                   |               | ×                      |                   | >            | <u> </u>          |           |                   |                  |               |           |                   |         | $\prod$      |                         |           | $\prod$          | T         |                    |                    |                   | ×        | T        |          |          | ××      |                   |           |              | $\prod$   | $\top$    |               | П        | 1        |           |           |
| 1        | Inorganic     |                                                   |           |                   |                     |                   |               | $\prod$                |                   |              | IT                | T         |                   | T                | П             | T         | Τ                 |         | П            | $\top$                  | T         |                  | T         | T                  | $\top$             | П                 | $\top$   |          | T        | $\sqcap$ | +       | T                 | $\top$    | +            | H         |           | T             | $\sqcap$ | +        | +         | Н         |
|          | Organic       |                                                   | T         | П                 |                     | П                 | $\top$        | ××                     | K                 |              | $\prod$           |           | П                 | 1                | $\prod$       | $\top$    | T                 |         | П            | +                       | T         | $\sqcap$         | +         | 11                 | +                  | $\dagger \dagger$ | ×        | ×        | ×        | ×        | ×       | $\vdash$          | $\vdash$  | +            | +         | +         | +             | $\vdash$ | +        | +         | +         |
|          | Visual        | +++                                               | $\dagger$ |                   | ×                   | 1                 | 1             | ××                     | <                 | $\dagger$    | 11                | $\dagger$ | $\dagger \dagger$ | Ť                | $\forall$     | +         | +                 | +       | $\dagger$    | +                       | +         | $\vdash$         | +         | +                  | +                  | +                 | ×        | ×        | +-       | +        | ×       | 4-4               | +         | +            | +         | +         | +             | H        | +        | +         | H         |
| Ė        |               | +++                                               | $\dagger$ | $\forall$         | +                   | $\dagger \dagger$ | +             | ×                      | +                 | $\vdash$     | ×                 | +         | $\dagger\dagger$  | $\dagger$        | +             | $\dagger$ | +                 |         | $\forall$    | +                       | +         | +                | +         | ++                 | +                  | 1-1               | ×        | ×        | ₩        | H        | - ^     | 1                 | +         | +            | H         | +         | +             | +        | +        | +         | Н         |
| ľ        | ESM           | $\overline{}$                                     | $\dagger$ | $\dagger \dagger$ | ×                   | +                 | +             | ×                      | +                 | +            | +                 | +         | +                 | +                | Н             | +         | +                 | +       | H            | $\dashv +$              | +         | H                | +         | ++                 | +                  | ╌                 | ×        | ×        | +        |          | ×       | +                 | +         | +            | ++        | +         | +             | $\vdash$ | +        | +         | Н         |
|          | Surf Searc    |                                                   | ×         | 11                | +                   | +                 | +             | ×                      | +                 | >            | ,                 | +         | ++                | +                | ╁╅            | +         | +                 | +       | Н            | ++                      | ╁         | $\vdash$         | +         | ++                 | +                  | ┿                 | <u> </u> | +        | -        | Н        | -       | $\vdash$          | +         | +            | $\dashv$  | +         | $\vdash$      | $\perp$  | +        | +         | Н         |
|          | Vol. Searc    |                                                   |           | ╁┪                | +                   | +                 | +             | ×                      | +                 | >            | + +               | +         | +                 | +                | ${\mathbb H}$ | +         | +                 | +       | H            |                         | +         | $\vdash$         | +         | +                  | +                  | $\vdash$          | -        | ×        | -        | $\sqcup$ | ×       | +                 | -         | 4            | $\dashv$  | 4         | -             | H        | 4        | 1         | Ш         |
| $\vdash$ |               | 1                                                 | +         | +                 | +                   | ++                | +             | 1                      | +                 | -            | +                 | +         | ╁                 | +                | H             | +         | +                 | -       | H            |                         | ╄         | H                | +         | ++                 | +                  | Н                 | ×        | ×        | _        | $\sqcup$ | ×       |                   | +         | $\downarrow$ | $\sqcup$  | _         | 1             |          | 1        | $\perp$   | Ц         |
| ≥        | Inorganic     |                                                   | +         | H                 | +                   | +                 |               |                        | -                 | +            | +                 | +         | +                 | $\perp$          | $\dashv$      | $\perp$   | +                 | $\perp$ | H            |                         | ╁.        |                  | +         | $\perp \downarrow$ | -                  | Ш                 | 4        | 1        | L        | Ц        | _       | Ц                 | 1         | 1            | Ц         |           | L             |          |          | L         | Ц         |
| AMA      |               | <del>                                      </del> | +         | $\mathbb{H}$      | -                   | $\mathbb{H}$      | -             | ××                     | -                 | -            | $\dashv$          | $\perp$   | -                 | +                | $\sqcup$      | +         |                   |         | $\sqcup$     | $\perp$                 | 1         | $\coprod$        | 1         | 11                 | _                  | Ш                 | _        | 1        | ×        | ×        |         | Ц                 | $\perp$   | $\perp$      | Ш         |           | ×             | Ц        | $\perp$  | L         | Ш         |
| H        | Visual        |                                                   | +         | +                 | ×                   |                   | +             | ××                     |                   | _            | 11                | +         | 11                | 1                | $\sqcup$      | 1         | $\sqcup$          | _       | Ш            | $\perp \perp$           | L         | Ц                | $\perp$   | 11                 | _                  |                   |          | _        |          |          |         |                   | $\perp$   |              |           |           | ×             |          |          |           |           |
| STW      | Inorganic     |                                                   | +         | $\sqcup$          | _                   | $\perp$           |               |                        | 44                | _            | $\bot \downarrow$ | 1         | Ш                 | $\perp$          | Ц             | _         | Ш                 | $\perp$ | Ц            |                         | 1         |                  |           | Ш                  |                    |                   |          |          |          |          |         |                   |           |              |           |           |               |          |          |           |           |
| ۳        | Organic       | Ш                                                 | 1         | Ш                 | _                   | 11                | 4             | ××                     | $\Box$            | _            | Ц                 | $\perp$   | Ш                 | 1                |               |           |                   | $\perp$ |              |                         | L         |                  |           | Ш                  |                    |                   |          |          | ×        | ×        |         |                   |           |              |           | ×         |               | П        |          |           | П         |
|          | Inorganic     | Ш                                                 | 1         | Ш                 | _                   |                   | $\perp$       |                        |                   |              |                   |           |                   | $\perp$          | Ш             |           |                   |         |              |                         |           |                  |           |                    |                    |                   |          |          |          |          | Τ       |                   |           | T            | П         |           | Г             |          |          |           |           |
| Σ        | Organic       |                                                   |           |                   |                     | Ш                 |               | ××                     | <                 | $\perp$      |                   |           |                   |                  |               |           |                   |         |              |                         |           |                  | T         | ×                  | П                  |                   |          |          |          |          |         | П                 | ×         | T            | П         | T         |               |          | T        |           | ×         |
| L        | Ship Board    |                                                   |           | ×                 |                     |                   |               |                        |                   |              |                   |           |                   |                  |               |           |                   | T       | П            | ΪΠ                      |           |                  |           | П                  |                    | П                 | T        |          |          | $\top$   | ×       | П                 | ×         |              | П         | $\top$    |               |          | +        | T         | $\times$  |
|          | Inorganic     |                                                   |           | Ш                 |                     |                   |               |                        | П                 |              | П                 | T         | П                 |                  | П             |           |                   |         | П            |                         |           | T                | $\top$    | $\sqcap$           |                    | П                 | $\top$   | T        |          | $\top$   |         | П                 | $\top$    | 1            | H         | $^{+}$    |               | +        | +        | $\top$    |           |
| ı        | Organic       |                                                   |           | П                 | T                   | П                 |               | ××                     | <                 |              |                   |           | П                 | Τ                | П             | $\top$    |                   |         |              | $\top$                  | Τ         | $\top$           | 1         | $\Box$             | +                  | ١,                | ×        | ×        | ×        | ×        | ×       | $\dagger \dagger$ | $\dagger$ | T            | H         | +         | $\vdash$      | ×        | 1        | ×         | $\exists$ |
| l≥       | Visual        |                                                   | T         |                   | ×                   |                   |               | ××                     | <                 | T            | $\sqcap$          |           |                   |                  | П             | 1         | П                 |         | П            | 11                      | T         | $\top$           | $\dagger$ | T                  | $\top$             | ١,                | ×        | ×        |          | +        | ×       | -                 | +         | +            | H         | +-        | -             | ××       | -        | ×         |           |
| ASUW     | IR            |                                                   | $\top$    | $\sqcap$          |                     |                   |               | ×                      | 11                | $\top$       | ×                 | T         | $\vdash$          | T                | $\dagger$     | $\dagger$ | Н                 | $\top$  | H            | ++                      |           | +                | +         | $^{\dagger}$       | +                  |                   | ×        | ×        | $\vdash$ | +        | ×       | 1-1               | +         | +            | $\vdash$  | +-        |               | ××       | +        | ×         | _         |
|          | ESM           |                                                   | +         | ×                 | ×                   | $\sqcap$          |               | ×                      | $\dagger \dagger$ | $\top$       | Ħ                 | $\dagger$ | T                 | +                | H             | Ť         | $\dagger \dagger$ | +       | $\vdash$     | +                       |           | +                | +         | +                  | +                  | +                 | ×        | ×        | +        | +        | ×       |                   | +         | ╁            | $\vdash$  | +         | Н             | × >      | +        | ×         |           |
|          | Surf Searc    | ×××                                               | <         | $\sqcap$          | +                   | $\forall$         | +1            | ×                      | ++                | ×            | +                 | +         |                   | +                | H             | +         | H                 | +-      | H            | ++                      | $\vdash$  | +                | +         | +                  | +                  | -                 | +        | +        | -        | +        | -       | 1                 | +         | -            | $\vdash$  | +         | Н             |          | +        | +-        | -         |
| H        | Inorganic     | 1                                                 | +         | H                 | +                   | $\vdash$          | $\forall$     | +                      | ++                | +            | +                 | +         | $\vdash$          | +                | $\vdash$      | +         | H                 | +       | H            | ++                      | -         | +                | +         | +                  | +-                 | H                 | <u> </u> | ×        |          | +        | ×       | $\vdash$          | +         | $\perp$      | $\vdash$  | -         |               | ×>       | 4        | ×         | _         |
|          | Organic       | +                                                 | +         | $\forall$         | +                   | +                 | +             | ×                      | +                 | +            | ++                | +         | +                 | +                | H             | +         | H                 | +       | +            | ++-                     | $\vdash$  | +                | +         | H                  | +                  | +                 | -        | Н        |          | -        | +       | H                 | +         | +            | +         | +         | Н             | 1        | +        |           | 4         |
| ASW      |               | ++                                                | Y         | ×                 | +                   | ++                | $\rightarrow$ | ×                      | H                 | +            | ++                | +-        | $\vdash$          | +                | +             | +         | H                 | +       | +            | +                       | $\vdash$  | +                | +         | $\vdash$           | +                  | -                 | <u> </u> | $\sqcup$ | ×        | ×        | ×       | Н                 | 4         | +            | $\dashv$  | +         | $\rightarrow$ | ××       | -        | ×         | $\perp$   |
|          | Passive       | +                                                 | +         | ×                 | +                   | H                 | +             | -                      | H                 | +            | $\vdash$          | +         | $\vdash$          | +                | $\dashv$      | +         | $\forall$         | +       | $\vdash$     | +                       | Н         | +                | +         | $\vdash$           | +                  | -                 | <        | $\sqcup$ | 4        | 4        | ×       |                   | 4         | 1            | $\sqcup$  | $\perp$   |               | ××       |          | ×         | $\rfloor$ |
| $\vdash$ | Active        | ++                                                | +         | A                 | +                   | +                 | +             | <u>×</u>               | $\dashv$          | +            | +                 | +         | 4                 | -                | 1             | +         | $\vdash$          | +       | 4            | -                       | Н         | -                | -         | 1                  | $\coprod$          | >                 | <        | $\sqcup$ | 4        | _        | ×       |                   | $\perp$   | $\perp$      | Ц         | $\perp$   | Ц             | ××       | <        | ×         |           |
|          | Inorganic     | ++                                                | +         | H                 | +                   | H                 | +             |                        | 11                | +            | $\sqcup$          | +         | 4                 | -                | $\perp$       | -         |                   | $\perp$ | 4            | 4                       | Ц         | 4                | 1         | $\coprod$          | $\sqcup$           | 1                 | 1        | Ц        | 1        | 1        | 1       | Ц                 |           | Ш            | Ц         |           |               | $\perp$  |          | Ш         | ╝         |
|          | Organic       |                                                   | +         | $\sqcup$          | +                   | 1                 |               | ×                      | $\sqcup$          | 1            | $\sqcup$          | $\perp$   |                   | H                | $\sqcup$      | -         | $\sqcup$          | $\perp$ | $\Box$       | $\perp \perp$           | Ц         | $\perp$          | 1         | Ш                  | Ц                  | >                 | <        | Ш        | ×        | ×        | ×       |                   |           |              |           |           |               | ××       |          |           |           |
| AAW      | Visual        | +                                                 | $\perp$   | $\sqcup$          | ×                   | $\sqcup$          | +-+           | ×                      | $\sqcup$          | _            |                   | 1         | Ш                 |                  | Ц             |           | Ц                 |         | $\perp$      |                         |           |                  | L         |                    | $\coprod$          | >                 | <        |          |          |          | ×       |                   |           |              | LT        |           |               | ××       | < ×      | ×         | 7         |
| ۲        | IR            | 11                                                | 1         | $\sqcup$          | 1                   | Ц                 | +-+           | ×                      | Ц                 | $\perp$      | ×                 | 1         |                   | Ц                | Ц             | 1         | Ш                 | Ш       |              |                         | Ш         | $\perp$          | L         | $\prod$            |                    | >                 | <        | $\Box$   | Ī        | T        | ×       |                   |           | П            | IT        |           |               | ××       | < ×      | ×         | ٦         |
|          | ESM           | 11                                                | 1         | >                 | ×                   | Ц                 |               | ×                      | Ц                 |              |                   | 1         |                   |                  |               |           |                   |         |              |                         |           |                  |           |                    | $\prod$            | >                 | <        | П        |          | T        | ×       |                   | T         | П            | T         |           |               | ××       |          |           | 1         |
| Ц        | Vol Search    |                                                   |           | Ш                 |                     |                   |               | ×                      |                   | ×            |                   |           |                   |                  |               |           |                   |         |              |                         |           |                  |           | I                  | П                  | >                 | <        | П        |          |          | ×       |                   | 1         | П            | $\top$    | $\top$    |               | ××       |          |           | 1         |
|          |               |                                                   |           | Щ                 |                     |                   |               |                        | $\prod$           |              |                   |           |                   |                  |               | Γ         | П                 | П       | T            | $\prod$                 | П         | T                |           | П                  |                    | $\top$            | T        | П        | 1        | $\top$   |         |                   | +         | $\parallel$  | $\top$    | $\forall$ | $\forall$     | 1        | 1        | П         | 1         |
| Elements | Navy Option 3 | S-49<br>S-67<br>S                                 | R-19      | TEC DOUBLE EAG    | G-32<br>DEO/OPTICAL | SO                | JMICS         | NTHER<br>ALL BOATS (2) | 0010              | SPG-60/SPQ-9 | MK-46             | ICE COMMS | S                 | IG INFO. NETWORK | SS            | , mm GUN  | mm GUNS (2)       | HARPOON | TOWARIANA    | MK49 (RAM LNCHER) - RAM | E         | - MK 50<br>SRBOC | ш         | D TEAM             | Oper. Requirements | A1                | A3       | A4       | A5       | A7       | A8      | A9                | A10       | A12          | A13       | 81        | B2            | 83       | B5       | 98        | 87        |
|          |               | SPS-49<br>SPS-67<br>TAS                           | SQR-1     | SUTEC             | VIDEO               | ACDS              | JMICS         | SMALL                  | 보                 | MK 85        | SOO R             | VOICE     | GPS               | RING I           | WCS           | 127 mm    | 40 mm             | - HAF   | ABL          | MK49 (                  | SVTT      | SRBOC            | NIXIE     | EOD TE             | Ope                |                   |          |          |          |          |         |                   |           |              |           |           |               |          | -        |           |           |

| Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Voice Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |
| Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| Correlate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |
| Track                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |
| Identify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |
| Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| Voice Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |
| Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| Weapons Assg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| Correlate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |
| Track                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |
| Threat Eval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| Voice Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |
| Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| Weapons Assg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| Correlate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                                 |
| Track                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                                 |
| Threat Eval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                 |
| Identify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                 |
| Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                 |
| Voice Comms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                 |
| Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                 |
| Identify   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -     ×                                           |
| Display XXX X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                 |
| Voice Comme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>                                      </del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                 |
| Command X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |
| Correlate × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |
| Track × ××××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| Threat Eval. × × ×××× × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |
| Identify X X XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |
| Display X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
| Voice Comms X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × ×                                               |
| Weapons Assg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×     ×                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×   ×                                             |
| Theoret Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ××                                                |
| Irlandifu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |
| Display XXX XXXX X X XXX X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| Voice Comm ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×××                                               |
| Command X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×××                                               |
| Weapons Assg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ××                                                |
| Correlate XX X XX X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ××                                                |
| Track XX XXX X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                                                 |
| irred eval. XX XX X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
| Identify XX XX XX X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ××                                                |
| Display X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ××                                                |
| Voice Comm  Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
| Western Asset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | × ××                                              |
| Veelpons Assig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| ₹         Track         ××××         ×         ×           Threat Eval.         ×××××         ×         ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |
| Identify XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | × ××                                              |
| Display XXX X XXX X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |
| Voice Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×××                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| Newy Option 3 SPS-49 SPS-49 SPS-49 SOR-49 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC-10 SUTEC- |                                                   |
| Newy Option 3 SPS-49 TAS SOR-19 SULTEC DOUBLE EA SULCE-32 VIDEO/OPTICAL ACDS CEC PANTHER SMALL BOATS (2) FF MK 86 GFCS SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SOR-89 SO |                                                   |
| A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13 - 2 2 2 2 3 3                                  |
| Naw SPS-49 SPS-49 SPS-49 TAS SUTEC DOI SUR-19 SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI SUTEC DOI  | A13<br>A13<br>B1<br>B2<br>B3<br>B4<br>B6<br>B6    |
| SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEPERATE SEP | A13<br>A13<br>B1<br>B2<br>B4<br>B4<br>B6<br>B6    |

| Г        | Facilities (Med. et     | П         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T         | П            | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | П         | T            | П        | T            | П            |                    |                   |        | П                 | T            | П            | Т        | П         |             |                   |     | T            | П        | J      |                    | П                 |    | П         | T        |              | П    | Τ.,          |              |         | П            | $\top$  |           | Т        | П        | $\neg$   |
|----------|-------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|----------|--------------|--------------|--------------------|-------------------|--------|-------------------|--------------|--------------|----------|-----------|-------------|-------------------|-----|--------------|----------|--------|--------------------|-------------------|----|-----------|----------|--------------|------|--------------|--------------|---------|--------------|---------|-----------|----------|----------|----------|
| WT0      | Evaluation              | П         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | П         |              | ×:       | ,            | H            | Ħ                  | 11                | $\top$ | $\sqcap$          | +            | $\sqcap$     | +        | $\dagger$ |             | П                 | +   | +            | $\vdash$ | Ť      | H                  | +                 | +  | Н         |          | Ť            |      | Ť            |              | ~       | $\forall$    | +       | H         | +        | +        | $\dashv$ |
| ľ        | Platform Delivery       | П         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sqcap$  |              | ×:       |              |              | ††                 | $\forall$         | 1      | $\dagger \dagger$ | $\dagger$    | $\forall$    | +        | $\dagger$ | H           | $\forall \exists$ | +   | +-           | $\vdash$ | +      | +                  | $\forall \exists$ | +  | H         | <u> </u> |              | +    | +            | +            | +       | $\forall$    | +       | Н         | +        | +        | $\dashv$ |
|          | Facilities (Med. et     | +         | $\dagger$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\forall$ | 1            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ħ         | Ť            |          | 1            | $\top$       | $\forall$          | $\dagger \dagger$ | +      | T                 | +            | $\Box$       | +        | H         | $\vdash$    | +                 | +   | +            | $\vdash$ | +      |                    | +                 | +  | H         | ××       | 1            | H    | +            | H            | +       | H            | +       | H         | +        | H        | $\dashv$ |
| SAR      | Evaluation              | П         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | П         | $\uparrow$   | $^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H         | +            | ×,       |              | +            | $\dagger \dagger$  | $\dagger$         | +      | tt                | +            | H            | +        | Н         | $\vdash$    | +                 | +   | +            | $\vdash$ | ×      | +                  | $\forall$         | +  | $\forall$ | +        | ×            | +    | ×            |              | +       | H            | +       | $\forall$ | +        | H        | $\dashv$ |
| ľ        | Platform Delivery       | H         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н         |              | $^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\forall$ | +            | ×;       |              | +            | $\forall t$        | +                 | +      | $\forall$         | +            | H            | +        | $\forall$ | $\parallel$ | +1                | +   | +            | +        | +-     | $\vdash$           | +                 | +  |           | ×        |              | +    | +            | H            | +       | H            | +       | Н         | +        | H        | +        |
| r        | Kill Eval.              | ×I;       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | ,            | </td <td><math>\vdash</math></td> <td>+</td> <td>×</td> <td></td> <td>×</td> <td>×</td> <td><math>\dagger</math></td> <td>+</td> <td><math>\vdash</math></td> <td>+</td> <td><math>^{\dagger}</math></td> <td>+</td> <td>+</td> <td>+</td> <td><math>\forall</math></td> <td>+</td> <td>+</td> <td>H</td> <td>+</td> <td><math>\vdash</math></td> <td>+</td> <td>+</td> <td>T</td> <td></td> <td>×</td> <td>+</td> <td>+</td> <td><math>\vdash</math></td> <td>+</td> <td>+</td> <td>+</td> <td>Н</td> <td>+</td> <td>Н</td> <td><math>\dashv</math></td> | $\vdash$  | +            | ×        |              | ×            | ×                  | $\dagger$         | +      | $\vdash$          | +            | $^{\dagger}$ | +        | +         | +           | $\forall$         | +   | +            | H        | +      | $\vdash$           | +                 | +  | T         |          | ×            | +    | +            | $\vdash$     | +       | +            | +       | Н         | +        | Н        | $\dashv$ |
|          | Soft Kill               | ff        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\vdash$  | +            |          |              | ^            |                    | H                 | ╁      | $\vdash$          | +            | H            | +        | Н         | +           | +                 | +   | +            | $\vdash$ | +      | H                  | H                 | +  | ×         | ××       | <            | +    | +            | Н            | +       | +-           | +-      | +         | ×        | H        | -        |
|          | Guidance                | H         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\forall$ | -            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H         | +            | $\vdash$ | +            | -            | +                  | $\forall \exists$ | -      | Н                 | +            | $\vdash$     | +        | +         | +           |                   | +   | +            | ×        | +      | H                  | $\vdash$          | +  | ×         | +        | H            | +    | +            | $\vdash$     | +       | $\vdash$     | +       | -         | × -      | H        | -        |
| ELT      | Weapon Delivery         | $\forall$ | $^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\forall$ | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H         | +            | H        | +            | ×            | +                  | +                 | +      | H                 | +            | H            | +        | Н         | +           | +                 | +   | +            | $\vdash$ | +      | -                  | H                 | +  | ×         | +        | +            | +    | +            | $\vdash$     |         | $\vdash$     | +       | H         | <u> </u> | $\vdash$ | +        |
| ۳        | Illumination            | $\vdash$  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H         | +            | $\vdash$ | +            | +            | ++                 | H                 | +      | -                 | +            | H            | +        | Н         | +           | +                 | +   | +            | H        | +      | -                  | $\forall$         | +  | ×         | +        | H            | +    | +            | H            | +       | $\dashv$     | +       | +         | ×        | H        | -        |
|          | Board                   | H         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H         | +            |          | +            | ×            |                    | +1                | +      | H                 | +            | $\vdash$     | +        | Н         | -           | +                 | +   | +            | $\vdash$ | +      | H                  | +                 | +  | ×         | +        | +            | +    | +            | H            | +       | Н            | +       | -         | ×        | $\vdash$ | -        |
| П        | Intercept               | $\vdash$  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н         | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H         | +            | ××       |              | +            | ++                 | Н                 | -      | H                 | +-           | $\vdash$     | +        | H         | +           | +                 | +   | +            | +        | +      | -                  | H                 | +  | ×         | ××       | 4            | +    | +            | H            | +       | $\mathbb{H}$ | +       | Н         | +        | $\vdash$ | 4        |
| H        | Kill Eval.              | $\vdash$  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | +            | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -         | +            | ××       | -            | +            |                    | H                 | +      |                   | +            | $\vdash$     | +-       | H         | +           | ╁┤                | +   | +            | +        | +      | -                  | $\forall$         | +  | ×         | ××       | 4            | +    | +            | H            | +       | ₩            | +       | Н         | +        | $\sqcup$ | 4        |
| _        | Guidance                | $\vdash$  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н         | +            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H         | +            | ×        | +            | +            | ×                  | H                 | +      | +                 | +            | H            | +        | Н         | +           | +                 | +   | +            | +        | +      | -                  | +                 | +  | -         | ×        | +            | +    | +            | H            | +       | H            | +       | $\sqcup$  | +        | $\vdash$ | 4        |
| ₩        | Weapon Delivery         | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\forall$ | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | +            |          | +            | ×            | +                  | ╁┼                | +      | $\vdash$          | +            | H            | +        | Н         | +           | +                 | +   | +            | +        | +      | 1                  | H                 | +  | H         | +        | +            | +    | +            | $\vdash$     | +       | H            | ×       | H         | $\perp$  | H        | 4        |
|          | Illumination            | +         | ╁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н         | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\vdash$  | +            | $\vdash$ | +            | ╁            | ₩                  | H                 | +-     | +                 | +            | H            | +        | H         | +           | +                 | +   | +            | +        | +-     | +                  | $\vdash$          | +  | H         | +        | $\mathbb{H}$ | +    | +            | $\vdash$     | -       | H            | ×       | Н         | +        | H        | 4        |
| H        | Kill Eval.              | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | +            | $\vdash$ | +            | ×            | +                  | +                 | +      | +                 | +            | H            | +        | Н         | +           | +                 | +   | H            | +        | +      | -                  | H                 | +  | -         | +        | $\dashv$     | +    | +            | $\sqcup$     | 4-      | H            | ×       | Н         | -        | Н        | -        |
| ES       | Weapon Delivery         | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | +        | $\mathbb{H}$ | +            | $\vdash$           | H                 | +      | $\vdash$          | +            | Н            | +        | H         | +           | ++                | +   | +            | +        | +      | +                  | $\vdash$          | +  | 1         | +        | +            | _  > | 4            | H            | +       | l l          | 4       | Н         | +        | $\sqcup$ | 4        |
| H        | Clear                   | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +-           |          | 4            | +            |                    | H                 | +      | +                 | +            | -            | +        | Н         | ××          | +                 | +   | +            | +        | +      | +                  | $\vdash$          | +  | 1         | +        | H            | >    | 4            | $\sqcup$     | +       |              | 4-      | Н         | -        | $\sqcup$ | -        |
| Š.       | Mark                    | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | +        | +            | +            | +                  | +                 | +      | +                 | +            | +            | +        | Н         | +           | H                 | +   | H            | +        | ×      | -                  | H                 | +  | $\sqcup$  | +        | H            | +    | ×            | -            | +       | 1            | +       | Н         | -        |          | ≤        |
| Н        | Kill Eval.              | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н         | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | +        | +            | +            | $\vdash$           | H                 | +      | +                 | +            | -            | +        | Н         | +           | ++                | +   | +            | +        | ×      | +                  | $\vdash$          | +  | -         | -        | $\mathbb{H}$ | +    | ×            | -            | +       | Н            | +-      |           |          | ;        | ≚        |
| Н        | Soft Kill               | × >       | ×</td <td>H</td> <td><math>\top</math></td> <td>×</td> <td>+</td> <td>+</td> <td>××</td> <td>4</td> <td>×</td> <td>×</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+-</td> <td>Н</td> <td>+</td> <td><math>\dashv</math></td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>H</td> <td>+</td> <td>×</td> <td>××</td> <td><math>\Box</math></td> <td>+</td> <td>+</td> <td>H</td> <td>+</td> <td>H</td> <td><math>\perp</math></td> <td>×</td> <td>&lt;</td> <td>×</td> <td>4</td> | H         | $\top$       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | ××       | 4            | ×            | ×                  | +                 | +      | +                 | +            | +            | +-       | Н         | +           | $\dashv$          | +   | +            | +        | +      | +                  | H                 | +  | ×         | ××       | $\Box$       | +    | +            | H            | +       | H            | $\perp$ | ×         | <        | ×        | 4        |
| MOS      | Guidance                | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | - >          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | +        | ++           | +            | ×                  | +                 | +      | +                 | +            | +            | +        | Н         | +           | ++                | +   | H            | ×        | +      | +                  | $\mathbb{H}$      | +  | ×         | +-       | $\mathbb{H}$ | +    | +            | $\mathbb{H}$ | +       | H            | 1       | ×         | 4        | ×        | -        |
| AS.      | Weapon Delivery         | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | +            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | +        | H            | - ×          | $\vdash$           | H                 | +      | +                 | +            | +            | +        | Н         | +           | $\vdash$          | +   | +-           | +        | +-     | +                  | H                 | +  | ×         | +        |              | -    | +            | H            | +       | Н            | -       | ×         | <        | ×        | -        |
|          | Illumination            | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | +            | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | +        | +            | +            | $\vdash$           | H                 | +      | +                 | Н            | +            | ×        | ×         | +           | ₩                 | +   | +            | +        | +      | +                  | H                 | +  | ×         | +        | H            | +    | $\vdash$     |              | $\perp$ | Н            | +-      | ××        | 4        | ×        | 4        |
| $\vdash$ |                         | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | +            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | +        | +            | ×            | -                  | ₩                 | +      | +                 | $\mathbb{H}$ | +            | +        | Н         | +           | +                 | +   | $\dashv$     | +        | +      | -                  | $\vdash$          | +  | ×         | +        | $\vdash$     | _    | $\perp$      |              |         | $\sqcup$     | +       | ×         | <        | ×        | 4        |
| ASW      | Kill Eval.<br>Soft Kill | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×:        | <del>*</del> | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | ×        | +            | +            | ×                  | +                 | +      | +                 | Н            | +            | +        | H         | +           | H                 | +   | +            | +        | +      | +-                 | ++                | +  | - >       | 4        | +            | 4    | $\mathbb{H}$ | Н            | -       |              | 1       | ××        |          | ×        | 4        |
| ¥        | Weapon Delivery         | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | +            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -         | +            | +        | +            | +            | $\vdash$           | -                 | +      | +                 | Н            | +            | +        | H         | +           | +                 | +-  | $\mathbb{H}$ | ×        |        | +-                 | H                 | +  | $\sqcup$  | +        | $\vdash$     | +    | $\perp$      | 4            | -       | Н            | +       | ××        |          | ×        | -        |
| Н        | Kill Eval.              | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H         | +            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | $\mathbb{H}$ | ×        | +            | +            | H                  | H                 | +      | +                 | Н            | +            | +        | H         | +           | H                 | ×   | ×            | +        | +      | -                  | $\vdash$          | +  | - >       | <        | 1            | +    | -            | 4            |         |              | +       | ××        |          | ×        | 1        |
| 1        | Soft Kill               | ××        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$  |              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | ×        | H            | ×            | ×                  | +                 | +      | +                 | +            | +            | +        | Н         | +           | H                 | +   | H            | +        | +      | +                  | H                 | +  | >         | <        | H            | +    | H            | +            | $\perp$ | Ц.           | $\perp$ | ×Þ        | <×       | ×        | -        |
| AAW      | Guidance                | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н         | ×            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | +        | +            | +            | -                  | 1                 | +      | +                 | +            | +            | +        | Н         | +           | $\vdash$          | +   | +            | ×        | +      | +                  | 1                 | +  | -         | -        | H            | +    |              | $\vdash$     | _       | Ц.           | $\perp$ | ×>        | ×        | ×        | -        |
| À        |                         | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$  | +            | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | +        | +            | ×            | -                  | +                 | +      | +                 | H            | +            | +        | Н         | +           | H                 | +   | $\dashv$     | +        | ++     | +                  | $\vdash$          | +  | -         | +        | H            | +    | $\square$    | 4            | 1       |              | $\perp$ | ××        | (×       | ×        | _        |
|          | Weapon Delivery         | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | +            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | +        | H            | +            | $\vdash$           | H                 | +      | +                 | Н            | ××           |          | Н         | +           | ×                 | 4   | H            | +        | +      | +                  | $\vdash$          | +  | 4         | -        | H            | +    | $\sqcup$     | +            | $\perp$ | -            | $\perp$ |           | ×        | ×        | -        |
| H        |                         | +         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +         | +            | +        | +            | ×            | -                  | 1                 | +      | +                 | H            | +            | $\vdash$ | Н         | +           | +                 | +   | $\dashv$     | +        | +      | -                  | H                 | +  |           | _        | H            | +    | $\sqcup$     | +            | $\perp$ | 4            | $\perp$ | ×>        | <×       | ×        | 1        |
| Elements | Navy Option 3           | 5S.49     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2R-19     | O-32         | DEO/OPTICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOS       | JMICS        | ANTHER   |              | SPG-60/SPQ-9 | IR MK-46<br>SQQ-89 | DICE COMMS        | CAN    | NG INFO. NETWORK  | SC           | 7 mm GUN     | NNISTER  | HARPOON   | TOMAHAWK    | MK49 (RAM LNCHER) | KAM | - MK 50      | BOC      | D TEAM | Oper. Requirements |                   | A3 | A4        | A6       | A7           | A9   | A10          | A11          | A13     | B            | 82      | B3        | B5       | 86       | 0/       |
| Ш        | -                       | ν v       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŏ         | ν (v         | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ĕΰ        |              | a S      | 드            | Σ '          | ≃<br>ဗ             | ا خا              | 5 ≤    | æ Š               | N<br>N       | 5 2          | ि        | '         | A,          | Σ                 | . S | .            |          |        |                    |                   |    |           |          |              |      |              |              |         |              | ال      |           |          |          |          |

| Γ        | Inorganic                      |                    |           | Т            |                    |              |                   |         | T             |           | T            | П         |                   |             | Т         |                 |              |              | Т         | T         | T         |           | T                                       | Т                       |           |              |          |               | $\top$       | T        | П            | T            | П            | $\top$       |           |         | Т         | П        |              |           |           |         |
|----------|--------------------------------|--------------------|-----------|--------------|--------------------|--------------|-------------------|---------|---------------|-----------|--------------|-----------|-------------------|-------------|-----------|-----------------|--------------|--------------|-----------|-----------|-----------|-----------|-----------------------------------------|-------------------------|-----------|--------------|----------|---------------|--------------|----------|--------------|--------------|--------------|--------------|-----------|---------|-----------|----------|--------------|-----------|-----------|---------|
|          | Organic                        | $\vdash$           | +         | +            | Н                  | $\dagger$    |                   | ×       | <×            | $\vdash$  | +            | +         | +                 | Н           | +         | +               | $\forall$    | +            | $\forall$ | +         | +         | +         | +                                       | +                       | H         | -            |          | ×             | +            | t        | ×            | +            | H            | +            | +         |         | +         | H        | +            | +         | Н         | -       |
|          | Visual                         | +                  | +         | +            | Н                  | ×            | +                 | ×       | +-            |           | +            | $\vdash$  | +                 | $\vdash$    | +         | +               | Н            | +            | Н         | +         | +         | H         | +                                       | +                       | $\vdash$  | $\dashv$     | +-       | $\frac{1}{x}$ | +            | ₽        | <del> </del> |              | $\vdash$     | +-           | +         |         | +         | Н        | +            | +         | $\vdash$  | +       |
| I≥       |                                | +                  | +         | ╁            | Н                  | 7            |                   | -       | +-            | $\vdash$  | +            |           | +                 | Н           | -         | +               | H            | +            | Н         | +         | +         |           | +                                       | -                       | $\vdash$  | -            | -        |               | +            | +        | -            | <u> </u>     | $\mathbb{H}$ | +            | +         | -       | +         | $\vdash$ | -            | +         | $\square$ | -       |
| o<br>N   |                                | +                  | +         | +            |                    | +            | +                 | ×       | +-            | -         | -            | ×         | +                 |             | +         | -               |              | +            | $\sqcup$  | +         | -         | H         | 1                                       | +                       | H         | +            | $\perp$  | ×             | 4            | 1        | -            | <            | Н            | _            |           | 1       | 1         |          | 4            | $\perp$   | Ц         |         |
| ľ        | ESM                            | +                  | +         | +            | ×                  | +            |                   | ×       | +-            | $\vdash$  | $\perp$      | Н         | +                 |             | +         | +               | Ц            | +            | $\sqcup$  | 4         | +         | Н         | 4                                       | $\perp$                 |           | 1            | $\perp$  | ×             | _            | $\perp$  | ;            | <u> </u>     | Ц            | 1            | Ш         |         | 1         | Ш        | 1            | $\perp$   | Ц         |         |
|          | Surf Search                    |                    | 4         | +            |                    | 4            | $\perp$           | ×       | -             |           | ×            |           | +                 | Н           | 1         | $\perp$         | Ц            | 1            | Ш         | 1         | 1         | Ш         | 4                                       |                         |           | 4            | $\perp$  | ×             | 1            | _        | ;            | <            | Ц            | $\downarrow$ | $\perp$   | _       | 1         |          |              | $\perp$   | Ц         | $\perp$ |
| L        | Vol. Search                    | ×                  | _         | $\perp$      |                    | 4            | $\perp$           | ×       | $\Box$        | $\perp$   | ×            |           | $\perp$           |             | 4         | _               |              |              | П         | 1         | 1         |           | $\perp$                                 | $\perp$                 |           | _            | Ш        | ×             |              |          |              | <            |              |              | Ш         |         |           |          |              |           |           | $\perp$ |
|          | Inorganic                      | $\perp \downarrow$ | 1         | 1            | Ц                  | _            |                   |         |               |           | _            |           | $\perp$           | П           | 1         | 1               | Ц            |              | Ц         | $\perp$   | $\perp$   | Ц         | $\perp$                                 | $\perp$                 |           | $\perp$      |          |               |              |          |              | $\perp$      |              |              | Ш         |         |           |          |              |           |           |         |
| l        | Organic                        | $\perp$            | $\perp$   | $\perp$      |                    | _            |                   | ×       | ×             |           |              | Ц         |                   |             | 1         | $\perp$         |              |              | Ш         |           |           |           |                                         |                         |           |              | Ш        | ×             |              | ×        | ×            | <            |              |              |           |         |           |          |              |           |           |         |
| l.,      | Visual                         |                    |           |              |                    | ×            | Ш                 | ×       | ×             |           | L            |           |                   |             |           |                 |              |              |           |           |           |           |                                         |                         |           |              |          | ×             |              |          |              | <            |              |              |           |         |           |          |              | Ţ         |           |         |
| SAR      | IR                             |                    |           |              |                    |              |                   | ×       |               |           |              | ×         |                   |             |           |                 |              |              |           |           |           |           |                                         |                         | П         |              |          | ×             |              |          |              | <            |              | T            | П         |         |           | П        | 7            |           | П         |         |
|          | ESM                            |                    |           |              | ×                  |              |                   | ×       | (             |           | Т            | П         | T                 |             | Τ         |                 |              |              |           |           |           | П         | T                                       |                         | П         |              | П        | ×             |              |          | ,            | <            |              |              | П         |         | T         |          |              | $\top$    | П         |         |
|          | Surf Search                    | ×                  |           | Π            |                    |              |                   | ×       | :             |           | ×            |           | Ī                 | П           | T         | T               |              | T            | П         | T         | T         |           |                                         |                         | П         | $\top$       | $\Box$   | ×             | $\dagger$    | 1        | ١,           | <            |              | T            | $\Box$    | +       | $\dagger$ | П        | $\uparrow$   | $\dagger$ | П         | $\top$  |
| l        | Vol. Search                    | ×                  | T         | П            | П                  | T            | $\sqcap$          | ×       |               |           | ×            |           |                   |             |           | Т               |              | T            | П         | T         |           | П         | 7                                       |                         | П         | 1            |          | ×             | $\dagger$    |          | ,            | <del>\</del> | П            | $\dagger$    | $\top$    | +       | $\dagger$ |          |              | 1         | $\forall$ | +       |
| Г        | Inorganic                      | $\Box$             | Ť         | T            | П                  | 1            | $\Box$            |         | $\top$        |           | 1            |           | $\dagger$         | П           | $\top$    |                 | 1            | †            | $\Box$    | 1         | T         | П         | $^{\dagger}$                            |                         | П         | +            | H        | +             | +            |          | $\forall$    | +            | Н            | Ť            | H         | 1       | +         |          | +            | +         | Н         | +       |
|          | Organic                        | $\sqcap$           | $\top$    | T            | П                  | +            |                   | ×       | ×             | $\top$    | 1            |           | T                 | $\parallel$ | +         |                 |              | +            | $\vdash$  | +         | +         |           | +                                       | +                       | $\vdash$  | +            | H        | ×             | ×            | ×        | ×            | ×            | H            | +            | $\forall$ | +       | ×         | ×        | <u>,</u>     | +         | H         | ×       |
|          | Visual                         | $\dagger \dagger$  | +         | $\dagger$    |                    | ×            | $\dagger \dagger$ | +       | ×             | +         | +            | +         | +                 | H           | +         | $\forall$       | +            | +            |           | +         | +         | 1         | +                                       | +                       | H         | +            | ++       | ×             | ×            | +-       | +            | ×            | +            | +            | +         | +       | ×         | H        | -+-          | +         | H         | 1       |
| ELT      | IR                             | H                  | +         | +            |                    |              | +                 | ×       | 1-1           | +         | +            | ×         | +                 | H           | +         | $\forall$       | +            | +            | +         | +         | +         | H         | +                                       | +                       | $\vdash$  | +            | +        | ×             | ×            | +-       | +            | ×            | +            | +            | +         | +       | 1-        | ×        | -+           | +         | H         | -       |
| "        | ESM                            | $\vdash$           | +         | +            | ×                  | +            | +                 | ×       | +-+           | +         | +            |           | +                 | Н           | +         | $\vdash$        | +            | +            | $\forall$ | +         | +         | H         | +                                       | +                       | $\dashv$  | +            | +        | ×             | +            | +        | +            | ×            | H            | +            | +         | +       |           | -        | -            | +         | $\vdash$  | -       |
|          | Surf Search                    | ×                  | +         | Н            | +                  | +            | +                 |         | +-+           | +         | ×            | +         | +                 | $\vdash$    | +         | Н               | +            | +            | +         | +         | +         | $\vdash$  | +                                       | +                       | $\vdash$  | +            | $\vdash$ | ^<br>×        | ×            | +-       | -            | ×            | +            | +            | H         | +       | ×         | ×        | ×            | +         | H         | ×       |
|          | Vol. Search                    | +                  | +         | H            | $\vdash$           | +            | ++                | ×       | 1-            | +         | ×            | +         | +                 | Н           | +         | Н               | +            | +            | $\vdash$  | +         | $\vdash$  | $\vdash$  | +                                       | +                       | +         | +            | -        | ^<br>×        | 1            | -        | +            | +            | Н            | +            | H         | +       | -         | -+       | -+-          | +         | $\vdash$  | ×       |
| $\vdash$ |                                |                    | +         | +            | $\vdash$           | +            | +                 | +       |               | +         | Ĥ            | +         | +                 | +           | +         | H               | +            | +            | +         | +         | $\vdash$  | $\vdash$  | +                                       | +                       | -         | +            | H        | 4             | 1            |          | -            | ×            | H            | +            | +         | -       | ×         | ×        | ×            | -         |           | ×       |
| ≥        | Inorganic                      | ╁┼                 | +         | H            | +                  | +            | ++                | -       |               | +         | H            | _         | +                 | H           | +         | +               | +            | +-           | +         | +         | $\vdash$  | H         | +                                       | +                       | $\dashv$  | +            | $\sqcup$ | +             | +            | $\vdash$ | +            | +            | $\sqcup$     | -            | $\sqcup$  | _       |           | 4        | +            | $\perp$   | $\sqcup$  | _       |
| AMW      | Organic                        | $\vdash \vdash$    | +         | $\vdash$     | -1.                | +            | +                 | ×       | ++            | +         |              | ×         | +                 | 1           | +         | $\mathbb{H}$    | +            | +            | -         | +         | $\sqcup$  | Н         | +                                       | $\perp$                 | 1         | +            | Н        | +             | +            |          | $\perp$      |              |              | $\downarrow$ | $\sqcup$  | 1       | Н         |          | _            | _         |           | $\perp$ |
| Н        | Visual                         | -                  | +         | $\mathbb{H}$ | - [                | <u> </u>     | +                 | ×       | ×             | 4         | H            | +         | $\perp$           |             | $\perp$   | $\sqcup$        | +            | +            |           | -         |           | $\sqcup$  | +                                       | $\perp$                 | _         | _            | Н        | 4             | $\downarrow$ | $\sqcup$ | 4            | $\perp$      | Н            | 1            | $\sqcup$  | $\perp$ | Ш         | 1        | 1            | _         | Ц         | $\perp$ |
| MLS      | Inorganic                      | $\vdash$           | +         | $\mathbb{H}$ | 4                  | -            | +                 | -       | Н             | $\perp$   | $\mathbb{H}$ | 4         | $\perp$           | 4           | _         | Н               | $\perp$      | $\downarrow$ | 1         | +         | Ц         | 4         | _                                       | $\perp$                 | -         | +            | $\sqcup$ | 4             | _            | Ш        | 4            | $\perp$      |              | $\perp$      | Ш         | _       | Ц         | 1        | _            | _         |           | $\perp$ |
| <u>"</u> | Organic                        | $\vdash$           | +         | $\mathbb{H}$ | $\dashv$           | +            | +                 | ×       | ×             | +         | $\sqcup$     | _         | $\perp$           | 4           | +         | Н               | $\downarrow$ | $\perp$      | 4         | _         | H         | _         | 1                                       |                         | 4         | $\perp$      | Ц        | 1             | _            | Ш        |              |              |              | 1            | Ш         |         | Ш         | 4        | 1            |           |           | $\perp$ |
| >        | Inorganic                      | $\sqcup$           | -         | $\sqcup$     | 4                  | $\perp$      | ++                | $\perp$ | Н             | _         | Н            | 4         | Ц                 | 4           | 1         | $\sqcup$        | _            | 1            | 4         | _         | Ц         |           | 1                                       | Ш                       | ×         |              | Ш        | 1             | 1            | Ш        | 1            |              |              | 1            | Ш         | $\perp$ | Ц         |          | <b>×</b>     | <         |           |         |
| M        | Organic                        | $\sqcup$           | 1         | Н            | _                  | 4            | $\sqcup$          | ×       | ×             | $\perp$   |              | 4         |                   | 4           | _         | Ш               | _            | _            | _         | 1         |           |           | $\perp$                                 |                         | _         | _            | Ц        |               |              | ×        | ×            | $\perp$      | >            | <            | Ш         |         |           |          | <u> </u>     | <         |           |         |
| Ц        | Ship Board                     | $\perp$            | ×         | ×            | ;                  | <u> </u>     | 11                |         | Ш             |           |              | _         | Ш                 | _           |           | Ш               | $\perp$      |              | _         |           | Ц         |           | 1                                       | $\downarrow \downarrow$ |           |              |          | ×             |              |          |              |              | >            | <            |           |         |           |          | ×            | <         |           |         |
|          | Inorganic                      | Ш                  |           | Ш            |                    | $\perp$      | $\perp \perp$     |         |               | $\perp$   |              | 1         |                   |             |           | Ц               |              |              |           |           |           |           |                                         | Ш                       |           |              |          |               |              |          |              |              |              |              |           |         |           |          |              |           |           |         |
|          | Organic                        |                    |           |              | $\perp$            |              |                   | ×       | ×             | L         |              |           |                   |             |           |                 |              |              |           |           |           |           |                                         |                         |           |              |          | ×             | ×            |          |              | ×            |              |              |           |         | ×         | ×        | K            |           |           | ×       |
| ASUW     | Visual                         |                    |           |              | >                  | <            |                   | ×       | ×             |           |              |           |                   |             |           |                 |              |              |           |           |           |           |                                         |                         |           |              | ;        | ×             | ×            |          |              | ×            |              |              | П         |         | ×         | ××       | <            |           |           | ×       |
| AS       | IR                             |                    |           |              |                    |              |                   | ×       |               |           |              | ×         |                   |             |           |                 |              |              |           |           |           |           |                                         |                         |           | T            |          | ×             | ×            |          |              | ×            |              |              |           |         | ×         | ××       | <            |           |           | ×       |
|          | ESM                            |                    | ×         |              | ×                  |              |                   | ×       |               | T         | П            |           | П                 | T           |           |                 |              | Τ            | T         | Τ         | П         |           |                                         |                         |           |              | ;        | ×             | ×            | П        |              | ×            | Т            |              | П         |         | ×         | ××       | <            | T         |           | ×       |
|          | Surf Search                    | ×>                 | <         |              |                    |              |                   | ×       |               | Τ         | ×            |           | П                 | T           |           |                 |              |              |           | Τ         | П         | 1         |                                         | $\prod$                 |           |              |          | ×             | ×            |          | T            | ×            | T            | T            | П         | 1       | ×         | ××       | <            | T         |           | ×       |
|          | Inorganic                      |                    |           |              |                    |              | П                 | Г       |               |           | П            |           |                   |             | T         | П               |              |              |           |           | П         | T         | T                                       | П                       |           |              |          |               |              |          | T            | П            |              | T            |           | 1       | П         | +        | T            | 1         |           |         |
| ASW      | Organic                        |                    | Т         | П            | $\top$             | T            | П                 | ×       | ×             |           |              | T         |                   |             |           | П               | T            | T            |           |           | П         | 1         | T                                       | $\sqcap$                |           | T            | ,        | <             |              | ×        | ×            | П            | $\top$       | T            | $\sqcap$  |         |           | >        | <            |           |           |         |
| AS       | Passive                        |                    | ×         | П            | >                  | <            |                   | ×       |               |           |              |           |                   |             |           |                 |              |              |           |           | П         |           | T                                       | П                       |           |              | ,        | <             |              | П        | $\top$       |              | 7            | T            | T         |         | П         | >        | <            | T         | $\top$    |         |
|          | Active                         |                    | ×         |              |                    |              | П                 | ×       |               |           | П            |           |                   | T           | T         |                 |              |              | 1         |           |           | 1         | $\top$                                  | $\sqcap$                | T         |              | ,        | <             | $\dagger$    | П        | 1            | $\Box$       |              | $\top$       | П         |         | П         | ٦,       | <del>\</del> | $\dagger$ | +         | $\top$  |
| П        | Inorganic                      | П                  | T         | П            | 1                  | T            | Ħ                 |         |               |           | П            | $\top$    |                   |             | T         | П               | 1            | П            |           | T         | П         | $\top$    | $\top$                                  | $\Pi$                   |           | $\dagger$    | П        | Ť             | $\dagger$    | П        | +            | $\Box$       | +            | T            |           | +       |           | +        | +            |           | +         | +       |
|          | Organic                        |                    | T         | П            | $\dagger$          |              |                   | ×       |               |           | П            | $\dagger$ | П                 | 1           | $\top$    | П               | $\dagger$    | П            | $\top$    | T         | П         | +         | +                                       | $\forall$               | 1         | +            | ١,       | <             | +            | ×        | ×            | ×            | +            | +-           |           | +       | ×         | $\times$ | <            | +         | +         | ×       |
| 3        | Visual                         | $\Box$             | 1         | П            | ,                  | <del>\</del> | 11                | ×       |               | Ť         | П            | $\top$    | П                 | $\dagger$   | $\dagger$ | H               | 1            | H            | +         | $\dagger$ | $\sqcap$  | +         | +                                       | $\forall$               | $\dagger$ | +            | ,        | +             | +            | Н        | $^{+}$       | ×            | +            | +            | Н         |         | -         | ×,       | +            | Н         | +         | ×       |
| AAW      | IR                             | H                  | $\dagger$ |              | 1                  | +            | Ħ                 | ×       | $\parallel$   | +         |              | ×         | $\dagger \dagger$ | +           | +         |                 | +            | $\Box$       | +         | +         | H         | $\dagger$ | t                                       | $^{\dagger\dagger}$     | $\dagger$ | +            | +        | <             | +            | H        | +            | ×            | +            | +            | $\vdash$  |         | -         | ××       |              | +         | +         | ×       |
|          | ESM                            |                    | +         |              | ×                  | +            | ++                | ×       | H             | $\dagger$ | $\vdash$     | +         | H                 | +           | +         | Н               | +            | Н            | +         | +         | $\forall$ | +         | +                                       | +                       | +         | +            | $\vdash$ | <             | +            |          | +            | ×            | +            | +            |           | -       |           | × >      | +            | +         | +         | +       |
| -        | Vol Search ×                   | ××                 |           |              | +                  | +            | ++                | ×       |               | ╁         | ×            | +         | Н                 | +           | +         |                 | +            | $\forall$    | +         | +         | -         | +         | +                                       | $^{+}$                  | +         | +            | Н        | <             | +            | $\vdash$ | +            | ×            | +            | +            | H         | +       | -         | +        | +            | $\vdash$  | +         | ×       |
| +        |                                |                    |           | $\vdash$     | +                  | +            | H                 | -       | H             | +         |              | +         | H                 | +           | +         | Y               | +            | H            | +         | ╀         | Н         | +         | -                                       | +                       | +         | +            | -        | +             | +            | H        | +            | A            | +            | +            | $\vdash$  | +-      | ×         | × >      | +            | +         | +         | ×       |
| Elements | Coast Guard Option 1<br>SPY-1D | S-67               | S-56      | SH-100       | 2-32<br>FOLOBTICAL | DS IICAL     | CEC               | LPHIN   | ALL BOATS (4) | 92 GFCS   | CAS/STIR     | 2-89      | Wk-309 ASWFC      | ICE COMMS   | SAN       | IG INFO. NETWOR | N W          | 76 MM        | VS (1)    | SAM       | _         | MK 50     | 田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田 | BUOY EQUIP              | O TEAM    | Requirements | A1       | A3            | A4           | A5       | A5<br>A7     | A8           | A10          | A11          | A12       | SIX     | 5         | 3 2      | 3 2          | CS        | 90        | 08      |
|          | ပြန္တ                          | SPS                | SO        | 냜            |                    | Ą            | E C               |         | SM            | ¥<br>¥    | ١            | SQC       | 2                 | Š Č         | TAC       | Z<br>Z          |              | 76 N         | Z S       | 2         | S         | 2 0       |                                         | 200                     | O.        |              |          |               |              |          |              |              |              |              |           |         |           |          |              |           |           |         |

|     | Command                        |           |                   | T       |              |           | ×        | 1        | ×            | T            |          | П            | T          | Τ          |          | ×            |          | ×             |              | T            |           | П                   | Т       | T         | П            |              | T                 |             | T                 |           | П         | T            |           | ×        | T         | T            |              | Т            | Т             | П         | Т                                               | Т        | П          |              | Г |
|-----|--------------------------------|-----------|-------------------|---------|--------------|-----------|----------|----------|--------------|--------------|----------|--------------|------------|------------|----------|--------------|----------|---------------|--------------|--------------|-----------|---------------------|---------|-----------|--------------|--------------|-------------------|-------------|-------------------|-----------|-----------|--------------|-----------|----------|-----------|--------------|--------------|--------------|---------------|-----------|-------------------------------------------------|----------|------------|--------------|---|
| 3   | Display                        |           | $\prod$           | T       | T            |           | ×        | 7        | ×            | 1            | T        | ×            | 1          | T          |          | ×            | $\top$   | ×             |              | +            | T         | Ħ                   | $\top$  | +         | T            | $\top$       | +                 | H           | ×                 | +         | Н         | $^{+}$       | +         | ×        | +         | $\dagger$    | Н            | $^{\dagger}$ | +             | Н         | $\dagger$                                       | +        | H          | Н            | Г |
| 8   | Identify                       | 1         | П                 |         |              |           | ×        | 7        | × >          | < ×          | ×        | П            | 7          | <          |          | ×            | +        | ×             | H            | 1            | T         | П                   |         | $\dagger$ | $\sqcap$     | $\top$       | +                 | Н           | $\top$            | T         | H         | +            | H         | ×        | +         | $\dagger$    | $\Box$       | +            | +             | H         | $^{+}$                                          | +        | Н          | H            | Г |
|     | Voice Comm                     |           | П                 | 7       | 1            | П         |          |          | T            | T            | T        | П            | $\top$     | T          |          | ×            | 1        | Ť             | Ħ            | T            | T         | H                   | 1       | T         | H            |              | +                 | Н           | ×                 | 1         | ×         | +            | H         | ×        | +         | ╁            | H            | +            | $^{+}$        |           | +                                               | +        | H          | Н            | Н |
|     | Command                        | T         | $\dagger \dagger$ | 7       | 1            | П         | ×        | ,        | ×            | 1            | T        | П            | +          | $\dagger$  | Н        | ×            | ××       | \<br>\        | 11           | +            | +         | H                   | $\top$  | +         | Ħ            | +            | +                 | Н           | +                 | +         | H         | $^{+}$       | H         | ×        | +         | $^{+}$       | Н            | +            | +             | ×         | ×,                                              | +        | H          | Н            | - |
|     | Correlate                      | T         | 1                 | ×       | ×            | ×         | ×        | ٦,       | <   ×        | √×           | ×        | ×:           | ×   >      | 1          | Н        | 1            | $^{+}$   | ×             | Н            | +            | $\dagger$ | H                   | +       | +         | H            | +            | +                 | H           | +                 |           | +         | +            | +         | ×        | +         | +            | Н            | +            | +             | -         | × >                                             | +        | Н          | Н            |   |
| ~   | Track                          | +         | ++                | X)      | $^{\dagger}$ | ×         | $\vdash$ | +        | +            | <×           | -        | ×            | +          | +          | Н        | +            | +        | ×             | ₩            | +            | +         | Н                   | +       | +         | H            | +            | +                 | $\vdash$    | +                 | +         | +         | +            | H         | <u> </u> | +-        | +            | Н            | +            | +             | ╁         | +                                               | +-       | Н          | Н            | - |
| SAR | Identify                       | +         | ††                | +       | ×            | ×         | $\vdash$ | +        |              | <×           | +        | H            | ,          | +          | $\dashv$ | +            | +        | ×             | +1           | +            | +         | H                   | +       | +         | H            | +            | +                 | H           | +                 | Н         | +         | +            | Н         | <u> </u> | +         | +            | Н            | +            | +             | $\vdash$  | ×)>                                             | +        | Н          | H            | _ |
|     |                                | +         | +                 | +       | ×            | +         | ×        | +        | <            | +            | -        | ×            | -          | -          | H        | +            | +        | ×             | -            | +            | +         | Н                   | +       | +         | H            | +            | +                 | Н           | -                 | H         | H         | +            | +-+       | +        | +         | +            | H            | +            | -             |           | *                                               | +        | H          | Н            | _ |
|     | Display                        | +         | +                 | +       | ₽            | Н         | 7        | ť        | +            | +            | -        | 7            | 4          | +          |          | -            | +        | 1             | Н            | +            | +         | H                   | +       | +         | H            | +            | $\perp$           | H           | ×                 | ₩         | 4         | +            | +         | ×        | +         | -            | Н            | -            | 1             | ×         | <u> </u>                                        | 1        | Н          | $\perp$      | _ |
| -   | Voice Comm                     | +         | ++                | +       | +            | Н         | _        | +        | +            | +            | $\vdash$ |              | +          | ╁          | _        | ×            | 1        | 1             |              | +            | 1         | H                   | +       | +         | $\vdash$     | -            | -                 | H           | ×                 | Н         | 4         | +            | Н         | ×        | $\perp$   | 1            | Н            | _            | Ļ             | Н         |                                                 | 4        | Ц          |              | _ |
|     | Command                        | +         | ₩                 | +       | +            | H         | ×        | ->       | +-           | +            | H        | -            | +          | $\perp$    | -        | +            | <u> </u> | +             | ×            | -            | H         | Н                   | +       | +         | H            | _            | H                 | Н           | +                 | Ц         | -         | 4            | Ш         |          | $\perp$   | L            | Ц            | _            | L             | ×         | < !>                                            | 1        | Ц          | $\Box$       | _ |
|     | Weapons Assg                   | +         | H                 | +       | +            | Н         | ×        | +        | 1            | +            | 4        | ×            | +          | Н          |          | ×            | +        | +-            | ×            | 4            | $\perp$   | Ц                   | 1       | 1         | Ц            | 1            | $\perp$           | Ц           | $\perp$           | Ц         | >         | 1            | Ц         |          | ╧         |              | Ц            | $\perp$      |               | ×         | < >                                             | ١.       | Ц          |              |   |
|     | Correlate                      | +         | 1                 | 4       | ×            | ×         | ×        | +        |              | +            | -        | ×            | +          |            | _        | 4            | $\perp$  | ×             | Ц            | 1            |           | Ц                   | $\perp$ | 1         | Ш            | $\perp$      | Ц                 | Ц           |                   | Ш         | >         | 4            |           |          |           |              | Ц            |              |               | ×         | < >                                             | <        |            |              |   |
| 1   | Track                          | $\perp$   |                   | 4       | 1            | ×         | ×        | _  >     | ٩×           | ×            |          | ×            | <          | Ш          | $\perp$  |              | 1        | ×             | Ш            |              |           | Ц                   |         |           | Ш            |              |                   |             |                   |           | >         | <            |           |          |           |              |              |              |               | ×         | < >                                             |          | П          |              |   |
| ١   | Threat Eval.                   |           | Ц                 | $\perp$ | ×            | ×         | ×        | >        | < ×          | ×            | ×        |              | ×          |            |          |              | Ĺ        | ×             | Ш            |              |           |                     |         |           |              |              |                   | П           |                   |           | >         | <            |           | T        | Г         | Π            | П            |              | П             | ×         | <>                                              |          | П          |              | _ |
|     | Identify                       |           | Ш                 | 1       | ×            | ×         | ×        | >        | < ×          | ×            | ×        |              | ×          |            |          |              |          | ×             |              |              |           |                     | -       |           | П            | T            | П                 | П           |                   | П         | >         | 4            | П         | 1        | T         | Г            | П            | T            | П             | ×         | </td <td></td> <td>П</td> <td>T</td> <td>_</td> |          | П          | T            | _ |
|     | Display                        |           |                   |         | ×            | ×         | ×        | >        | <            | Γ            |          | ×            | ×          |            | T        | T            | T        | ×             |              | Τ            |           | П                   | T       | T         | П            |              | П                 | П           | ×                 |           | >         | <            | П         | 1        | T         |              | П            | $\top$       | Н             | ×         |                                                 |          | ΠŤ         | 7            | - |
|     | Voice Comm                     | T         | П                 | Т       | Τ            | П         | T        | T        | 1            | T            |          | T            | T          | П          | 1        | ×            | T        | T             |              | Ť            |           | П                   | 1       | T         | П            | 1            | П                 | $\Box$      | ×                 | Ħ         | ×>        | <del>,</del> | П         | +        | +         | T            | H            | +            | Н             | $\top$    | -                                               | H        | П          | +            | - |
| ٦   | Command                        | T         | П                 | T       |              | П         | T        | 1        | T            | Τ            | П        | $\top$       | T          | $\sqcap$   |          | T            | T        | T             | П            | 1            |           |                     | +       | T         | H            | +            | П                 | Н           | $\dagger$         | Н         | +         | $\dagger$    | Н         | +        | +         | t            | $\forall$    | +            | H             | +         | +                                               | H        | $\vdash$   | +            |   |
| Ī   | Weapons Assg                   | 1         | Ħ                 | T       | T            | П         | 1        | +        | +            | T            | П        | 7            | Ť          | П          | 1        | 1            | T        | $^{\dagger}$  | H            | +            | H         | $\forall$           | 1       | 1         | H            | +            | H                 | H           | +                 | Н         | +         | +            | H         | +        | +         | Н            | H            | +            | Н             | H         | +                                               | +        | Н          | +            | - |
| -   | Согтејате                      | +         | 11                | +       | 1            |           | ×        | >        | 1            | T            | Н        | +            | $\dagger$  | H          | +        | $\dagger$    | +        | ×             | +            | +            | H         | $\forall$           | +       | +         | +            | +            | H                 | H           | +                 | H         | +         | +            | H         | +        | +         |              | H            | +            | $\forall$     | +         | +                                               | +        | H          | +            |   |
|     | Track                          | +         | $\forall$         | +       | +            | H         | ×        | -        | 1            | -            | Н        | +            | +          | H          | +        | +            | +        | ×             | H            | +            | H         | +                   | +       | +         | H            | +            | +                 | H           | +                 | H         | +         | +            | H         | +        | +         | H            | $\forall$    | +            | H             | +         | +                                               | H        | H          | +            | - |
|     | Threat Eval.                   | +         | 1                 | +       | +            | ×         | +        | >        | +-           | H            | Н        | +            | +          | +          | +        | +            | +        | ×             | $\vdash$     | +            | +         | +                   | +       | 1         | H            | +            | H                 | H           | +                 | Н         | +         | +            | H         | +        | +         | H            | Н            | +            | H             | -         | +                                               | H        | $\vdash$   | +            | - |
| -   | identify                       | +         | ++                | +       | +            | ×         | -        |          | +            | H            | H        | +            | +          | H          | +        | +            | +        | ×             | $\vdash$     | +            | +         | +                   | +       | -         | H            | +            | +                 | $\dashv$    | +                 | H         | +         | +            | H         | -        | +         | H            | $\vdash$     | +-           | H             | -         | +                                               | +        | 4          | 4            | _ |
| ŀ   |                                | +         | ╁┼                | +       | +            | ×         | +        | \<br>\   | +-           | $\vdash$     | Н        | +            | +          | $\dashv$   | +        | +            | +        | +-            | +            | +            | Н         | +                   | +       | +         | H            | +            | $\dashv$          | $\dashv$    | -                 | Н         | +         | +-           | Н         | +        | $\vdash$  |              | Н            | +            | Н             | 1         | 1                                               | Ш        | 4          | 4            | _ |
| ŀ   | Display                        | +         | H                 | +       | H            |           | 7        | - *      | +            | <del> </del> | H        | +            | +          | $\vdash$   | +        | +            | +        | ×             | H            | +            | H         | 4                   | +       | 4         | H            | +            | $\sqcup$          | Ц           | +                 | Н         | 4         | 1            | Ц         | $\perp$  | Ļ         |              | Ц            | Ļ            | $\sqcup$      | 4         | 4                                               | Ц        | $\perp$    | 4            |   |
| +   | Voice Comms                    | +         | H                 | +       | ╀            | Н         | -        | +        | +            | H            | Н        | +            | +          | Н          | +        | 4            | +        | H             | 4            | +            | Н         | 1                   | +       | +         | Н            | $\perp$      | Н                 |             | _                 | Ц         | 1         |              | Ц         | 1        | Ш         | Ц            |              | 1            | Ц             |           | $\perp$                                         |          |            | 1            |   |
| ŀ   | Command                        | $\perp$   | -                 | +       | 1            | H         | Υ.       | ×        | -            | -            | Н        | 4            | 1          | Н          | -        | 4            | 1        | ×             | 4            | 1            | Ц         | 1                   | 1       |           | Ц            | _            | $\Box$            |             |                   | Ц         | 1         |              | Ш         |          | L         | Ш            | Ц            | $\perp$      |               | 1         |                                                 | Ш        | l          | Ĺ            |   |
|     | Identify                       | 1         | 1                 | 1       | L            | ×         | ×        | ×        | 1            | L            | Ц        | 4            | 1          | Ц          | 1        | 1            | Ļ        |               |              | 1            | Ц         |                     |         |           | Ш            |              | Ш                 |             |                   |           |           | L            | Ц         |          |           |              |              |              | Ш             |           |                                                 |          |            |              |   |
| 1   | Display                        | 1         | Ш                 | $\perp$ | L            | 1         | ×        | <u> </u> | 4            |              | Ц        | $\perp$      |            | Ш          | 1        |              |          | ×             | Ц            |              |           |                     | $\perp$ |           | Ш            |              |                   |             |                   |           |           |              |           |          | П         |              |              | П            | П             | T         | T                                               | П        | T          | T            |   |
| 1   | Voice Comms                    | ┸         | Ц                 | 1       | Ш            | Ц         | 1        |          | L            | Ц            |          |              | L          | Ш          | ;        | <            | L        | Ш             |              |              |           |                     |         |           |              |              |                   |             |                   |           |           | Π            | П         | Τ        |           | П            | T            |              | П             |           | T                                               | П        | T          | T            | _ |
| ļ   | Command                        | L         | Ш                 | $\perp$ |              | Ŀ         | ×        | ×        | <            | Ш            |          |              |            |            | >        | < >          | < ×      | ×             |              |              |           |                     |         |           | П            | T            | П                 | T           |                   |           | T         | Π            | П         | T        | П         | ×            |              | П            | П             |           | $\uparrow$                                      | ×        |            | T            | - |
| -   | Correlate                      |           |                   | ×       |              |           | ×        | ×        | ×            | ×            |          |              |            |            | T        |              |          | ×             |              | Γ            | П         |                     | Τ       | П         |              | T            | П                 | T           | П                 | П         |           |              |           | T        | П         | ×            | Т            | 17           | П             | $\top$    | 1                                               | ×        | $\uparrow$ | $\dagger$    | _ |
| L   | Track                          |           |                   | ×       |              | 1         | ×        | ×        | ×            | ×            |          |              |            | П          | T        |              | Τ        | ×             | $\top$       |              | П         |                     |         |           |              | T            | П                 | T           |                   |           | T         |              | T         |          | П         | $\times$     | $\top$       | $\top$       | П             | +         | T                                               | ×        | $\dagger$  | +            | _ |
|     | Threat Eval.                   | Π         | П                 | ×       | П            | ×         | ×        | ×        | ×            | ×            | П        | T            | T          | П          | 1        | T            | T        | ×             | $\top$       | T            | П         | 7                   | T       |           |              | T            | $\dagger \dagger$ |             |                   |           | $\dagger$ | T            | 7         | Ť        | Н         | ×            | +            | $\forall$    | H             | +         | t                                               | ×        | +          | $\dagger$    | - |
| Ī   | identify                       |           | П                 | ×       | П            | ×         | ×        | ×        | ×            | ×            |          |              | T          | П          | T        | 1            | T        | ×             | $\top$       | $\top$       | П         | 1                   | +       | П         | П            | $\dagger$    | Ħ                 | $\top$      | $\top$            |           | +         |              | +         | +        | H         | ×            | +            | +            | Н             | +         | $^{+}$                                          | ×        | +          | +            | - |
| Ī   | Display                        |           |                   | ×       |              | ,         | ×        | ×        |              | П            |          | T            | $\uparrow$ | П          | $\top$   | T            | †        | ×             | $\top$       | t            | Н         | $^{+}$              | t       | H         | $\forall$    | +-           | $\dagger$         | $\dagger$   | ×                 | $\forall$ | +         | H            |           | +        | Н         | ×            | +            | +i           | H             | +         | +                                               | ×        | +          | +            | _ |
| ľ   | Voice Comms                    | T         |                   | 1       |              | T         | T        | T        | T            | П            |          | T            | $\dagger$  | H          | ,        | <del>-</del> | +        | 1             | 十            | $^{\dagger}$ | П         | $^{+}$              | T       | Н         | 1            | $^{\dagger}$ | $\dagger$         | $\dagger$   | ×                 | ١,        | ×         | Н            | +         | +        | $\forall$ | ×            | +            | +            | H             | +         | ┿                                               | ×        | +          | +            | - |
| t   | Command                        | 1         | $\vdash$          | T       | $\Box$       | ,         | ×        | ×        | +            |              | 1        | $^{\dagger}$ | $\dagger$  | Н          | -        |              | ×        | ×             | ×            | +            | H         | +                   | +       | Н         | +            | $^{+}$       | H                 | +           | H                 |           | \<br>\    | Н            | +         | +        | Н         |              | +            | +            | Н             | × >       |                                                 | +-+      | +          | +            | - |
| r   | Weapons Assg                   | +         | $\vdash$          |         | Н            | ,         | ×        | ×        | 1            | Н            | 1        | ×            | $\dagger$  | $\vdash$   | $\neg$   | ↲            | ╁        | ×             | _            | +            | H         | 十                   | +       | Н         | +            | $^{+}$       | H                 | +           | +                 | +         | ×         | $\mathbf{H}$ | +         | +        | Н         | +            | +            | +            | -             | +         | +-                                              | +-+      | +          | +            | _ |
| ŀ   | Соптелате                      | +         | ×                 | +       | ×            | ××        | +        | +        | ٠.           | ×            | -        | ××           |            | H          | +        | +            | +        | ×             | +            | +            | Н         | +                   | +       | Н         | +            | +            | H                 | +           | +                 | +         | +-        | Н            | +         | +        | Н         | $\dashv$     | +            | +            | -             | × >       | +                                               | -        | +          | +            |   |
| ŀ   |                                |           | ×                 | +       |              | +         | -        | +        | ┿            | ╌            | -+       | +            | ┿          | Н          | +        | +            | ╁        | ×             | +            | +            | Н         | +                   | +       | Н         | +            | +            | H                 | +           | +                 | +         | ×         | + 1          | +         | $\perp$  | Н         | 4            | 4            | $\perp$      | ↤             | <u> </u>  | +-                                              | +        | 4          | 4            |   |
| -   | Track                          | +         | +                 | +       |              |           | 7        | +        | 1            | -            | -        | ××           | -          | H          | +        | +            | +        | ×             | +            | ╀            | H         | +                   | +       | Н         | 4            | 4            | Н                 | +           | +                 |           | ×         |              | 4         | 1        | Ц         |              | $\downarrow$ | Ш            | Ц             | <u> </u>  | ¥×                                              | Ц        | 4          | 1            |   |
| 1   | Threat Eval.                   | -         | +                 | ╀       |              | Ŷ         | 1        | ×        | $\leftarrow$ | $\vdash$     | -        | +            | ×          | Н          | +-       | +            | 1        | ×             | $\downarrow$ | +            | H         | $\perp$             | +       | Н         | 4            | 4            | $\sqcup$          | 4           | 11                | 4         | ×         |              | 1         | $\perp$  | Ш         |              | 1            | $\perp$      | L!            | ×  >      | ١×                                              | Ц        | _          |              |   |
| ŀ   | Identify                       | -         | +                 | $\perp$ | ₩            | ××        | -        | +        | +-           | ×            | -+       | $\perp$      | ×          | H          | 1        | $\perp$      | L        | ×             | _            | 1            | Н         | 1                   | +       | Ц         | 4            | 1            | Ц                 | 4           | Ш                 | 4         | ×         | Ц            | 4         |          | Ц         | _            | _            | Ш            | L!            | × >       | ×                                               | Ц        |            | $\perp$      | _ |
| ŀ   | Display                        | Н         | -                 | ╀       | ľ            | ××        | 4        | ×        |              | Н            | -        | 4            | ×          | Н          | +        | +            | $\perp$  | ×             | +            | 1            | H         | $\perp$             | $\perp$ | Ц         | 4            | 1            | Ш                 | 4           | ×                 |           | ×         | +            | $\perp$   |          | Ц         | _            | _            | Ш            | LI:           | ××        | ×                                               | Ш        |            |              |   |
| ŀ   | Voice Comm                     | $\vdash$  | -                 | 1       | Н            | 4         | -        | +        | L            |              | 4        | 1            | Н          | Н          | _ ^      | ┿            | L        |               | +            | L            | Ц         | _                   | ∔       | Ц         | 4            | $\perp$      | Ц                 | $\perp$     | ×                 | ,         | < ×       | Ц            | 1         |          | Ш         |              | 1            | Ш            | Ц             |           | ×                                               |          | $\perp$    | $\perp$      |   |
| L   | Command                        | Ц         |                   | L       |              | >         | 4        | ×        |              | Ц            | 4        | 1            | Ц          | ×          |          | ٩×           | ×        | ×             | ×            | L            | Ц         | $\perp$             |         | Ц         |              | L            |                   |             |                   |           |           |              |           |          | Ll        |              | ĺ            |              |               |           |                                                 |          | T          | T            |   |
| Ļ   | Weapons Assg                   | Ц         |                   | L       | Ц            | -         | 4        | ×        | +-           | Ц            | 4        | $\downarrow$ |            | ×          |          | 4            | -        | ×             | ×            |              | Ц         | $\perp$             |         |           | $\perp$      |              |                   |             |                   |           |           |              |           |          | П         |              |              |              |               |           | Γ                                               | П        | T          | T            |   |
| L   | Correlate                      | Ш         | ×                 | +       | ×            | ×Þ        | 4        | ×        | ×            | Ц            | $\perp$  | 1            |            |            | 1        | 1            |          | ×             |              |              |           |                     | L       | Ц         | $\perp$      |              |                   |             | $\prod$           |           |           | IJ           | $\prod$   |          | Π         | T            |              | П            | T             |           |                                                 | П        | T          | T            |   |
| L   | Track                          | Ш         | ×                 | -       |              | -         | <        | +-       | ×            |              |          |              | Ш          | ××         | _        | Ĺ            |          | ×             | $\perp$      | L            | Ш         |                     | L       | IJ        |              | Γ            |                   |             | П                 | J         |           |              |           | П        | П         |              | T            | П            | $\top$        | T         |                                                 | П        | T          | T            |   |
| L   | Threat Eval.                   | Ш         | ×                 |         | ×            | ×Þ        | <        | ×        | ×            |              | 1        |              |            | ××         | 4        |              | Ш        | ×             |              | L            |           | $\int_{-}^{\infty}$ |         | $\Box$    |              |              |                   |             | П                 | T         | T         | П            |           |          | П         |              | T            | П            | $\Box$        | T         |                                                 | П        | T          | T            | - |
|     | Identify                       |           | ×                 |         | ×            | ××        | <        | ×        | ×            |              | $\perp$  |              |            |            |          |              |          | ×             |              |              |           | T                   | Т       | П         | Ī            | Г            | П                 | T           | П                 | 1         |           | П            |           | П        | П         | 7            | T            | $\prod$      | T             | 1         | T                                               | П        | $\dagger$  | +            | - |
|     | Display                        |           | ×                 |         |              | >         | <        | ×        |              |              |          |              |            | ××         | <        |              |          | ×             | T            |              | П         | T                   | Τ       | П         | 1            | Т            | П                 | T           | П                 | 1         |           |              |           | П        | П         | 1            | T            | T            | $\top$        | $\dagger$ |                                                 | П        | T          | $^{\dagger}$ | - |
|     | Voice Comm                     | П         |                   | П       |              |           | T        | T        | ×            |              | T        | T            | П          |            | ×        |              |          | П             | T            |              |           | T                   | T       | П         | $\top$       |              | $\sqcap$          | +           | $\dagger \dagger$ | $\top$    | $\dagger$ |              | $\dagger$ | Ħ        | П         | +            | +            | $\forall$    | +             | +         | t                                               | $\sqcap$ | +          | +            | - |
| _   | Command                        | П         |                   | П       | T            | >         | < ×      | ×        | П            | 1            | 1        | 1            | П          | 7          | ×        | ×            | ×        | ×             | ××           |              | ×         | +                   | +       | H         | $^{\dagger}$ | +            | H                 | +           | +                 | $^{+}$    | +         |              | +         | +        | Н         | $^{\dagger}$ | +            | +            | ۲,            | <×        | t                                               | $\vdash$ | +          | +            | _ |
| r   | Weapons Assg                   | П         | $\top$            |         | ×            | >         | +        | ×        |              | +            | >        | <            | П          | $\top$     | ×        | +            | +-1      | -             | ××           | -            | ×         | +                   | +       | H         | +            |              | +                 | +           | +                 | +         | +         | H            | +         | H        | Н         | +            | +            | +            | $\rightarrow$ | +         | -                                               | $\vdash$ | +          | +            | - |
| -   | Correlate                      | $\dagger$ | +                 | Н       | ×            | ××        | -        | ×        | ×            | 1            | -        | \<br>\       | ×          | +          | +        | ╁            | Н        | ×             | ×            | -            | +         | +                   | +       | Н         | +            | +            | H                 | +           | H                 | +         | ┿         | $\vdash$     | +         | Н        | $\vdash$  | -+           | +            | ₩            |               | -         | ×                                               | $\vdash$ | +          | +            | _ |
|     | Track                          | H         | +                 | H       | +            | +         | ( ×      | +        | H            | +            |          | (×           | 1 1        | +          | +        | +            | Н        | ×             | +            | $\vdash$     | ×         | +                   | +       | H         | +            | Н            | +                 | +           | H                 | +         | +         | H            | +         | H        | +         | +            | +            | H            | -             | <×        | +                                               | +        | +          | +            |   |
|     | Threat Eval.                   | H         | +                 | Н       | ×            | >         | -        | ×        |              | +            | ×        | +            | ×          | +          | +        | +            | Н        | ×             | +            | -            | ×         | +                   | +       | Н         | +            | +            | $\dashv$          | +           | H                 | +         | +         | Н            | +         | H        | H         | +            | +            | H            | +             | +         | ×                                               | $\vdash$ | +          | +            | - |
|     |                                | Н         | +                 | Н       | -            | ××        | +        | ×        | Н            | -+           | <u> </u> | +            | ×          | +          | +        | +            | $\vdash$ | +             | +            | H            | 7         | +                   | +       | 1         | +            | H            | $\vdash$          | +           | H                 | +         | +         | H            | +         | H        | 4         | 4            | +            | $\sqcup$     | - 2           | +-        | ×                                               | 1        | 4          | 4            | _ |
| _   | Identify                       | H         | +                 | H       | -            | +         | +        | +        | Ĥ            | - 1          | -+-      | +            | +          | +          | +        | H            | +        | ×             | +            |              | -         | +                   | H       | 1         | 4            | H            | 4                 | 1           | $\prod$           | +         |           | Ц            | 1         | Ц        | 4         | 1            | 1            | $\coprod$    | - -           | -         | ×                                               | $\perp$  | 1          | 1            |   |
|     | Display                        | -         | +                 | Н       | ×            | <u> </u>  | -        | ×        | Н            | 4            | *        | 1            | ×          |            | +        | 1            | Ш        | ×             | +            | Ц            | 4         | 1                   | $\perp$ | Ц         | 1            | $\sqcup$     | $\perp$           | _           | ×                 |           | L         | 1            | 1         |          |           |              | $\perp$      | Ц            | >             | < ×       | ×                                               | Ц        | $\perp$    |              |   |
| _   | Voice Comm                     | $\sqcup$  | 4                 | Н       | 1            | +         | 1        | L        | Ц            | 4            | 1        | 1            | Ц          | 4          | ×        | 1            | Ц        |               | 1            | L            | 1         | 1                   | $\perp$ | Ц         | _            | Ц            |                   | 1           | ×                 | >         | 4         |              | $\perp$   | Ш        |           |              | $\perp$      | Ц            |               | 1         | X                                               |          |            |              |   |
|     | Coast Guard Option 1<br>SPY-1D | 25        | 99                | 0       | 12           | J/OPTICAL |          | 8        | ZZ           | L BOATS (4)  | 0000     | S/STIR       | 46         | 39 A SIACE | COMMS    |              | z        | INFO. NETWORK |              |              | CIWS (1)  | M LINCHR)           |         | 50        | O            | BUOY EQUIP   | EAM               | equirements | A1                | A2        | A4        | A5           | A7        | A8       | A9        | A10          | A11          | A13          |               | 2 5       | C3                                              | 04       | 5 5        | 3 6          | 5 |
|     | Coar                           | SPS       | TAS<br>SQS-E      | SH-10   | SLO-3        | VIDE      | CEC      | JMCIS    | DOLP         | SMAL         | MK 93    | 5            | R MK       | SOO        | VOICE    | SPS          | TACA     | RING          | SDS          | 76 MM        | CIWS      | RAI                 | SVTT    | ¥         | NIXIE        | BUOY         | EOD 1             | ۵           |                   |           |           |              |           |          |           | Ì            |              |              |               |           |                                                 |          |            |              |   |

|          |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т            | _         | 1       | -         | 1            |              | $\neg$       |           |                 | _         | 7         | $\top$   |           | -            | $\overline{}$ | _        | _   | 1         | -            |           | _         | 7         | -            | _            | -            | -            |              |           | _            | _         | -         | _        |           | -        | _            | -        | _        | _        | -         | -       | _            | _         | _        | _        |        |           | <del></del> |
|----------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|---------|-----------|--------------|--------------|--------------|-----------|-----------------|-----------|-----------|----------|-----------|--------------|---------------|----------|-----|-----------|--------------|-----------|-----------|-----------|--------------|--------------|--------------|--------------|--------------|-----------|--------------|-----------|-----------|----------|-----------|----------|--------------|----------|----------|----------|-----------|---------|--------------|-----------|----------|----------|--------|-----------|-------------|
| Z        | Facilities (Med. et  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\perp$      | +         | 1       |           |              | $\downarrow$ | $\perp$      | +         | $\sqcup$        | 4         | 1         | +        | Н         | 4            | 4             | 1        | L   | Ш         | 4            | _         | $\perp$   | Ц         | _            | _            | 1            | _            | ×            | Ц         | _            | _         | $\perp$   | _        |           | - 1      | ×            | _        | ×        |          | ×         | $\perp$ | 1            |           |          |          | Ц      | ×         | : ×         |
| S<br>V   | Evaluation           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _            | 1         | $\perp$ |           | ×            | 4            | +            | +         | ×               | 4         | 4         | _        | Ц         | 4            | $\downarrow$  | 1        | L   | Ц         | 1            | 1         | 1         | Ш         | 1            | _            |              | 1            | $\downarrow$ | Ц         | 1            | 1         | _         |          | ×         | ×        | ×            | _        | L        |          | Ц         |         | $\perp$      | $\perp$   |          |          | Ц      |           | ×           |
| L        | Platform Delivery    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\perp$      | 1         | _       | L         | Ц            | _            | 1            | ×         | ×               | 1         | 1         |          | Ш         | 1            | $\perp$       | 1        |     |           | $\perp$      | $\perp$   | L         | Ш         | 1            | _            |              | ×            |              | Ш         |              |           |           | L        | ×         | ×        | ×            | L        |          |          |           |         | $\perp$      | 1         |          |          | :      | ×         | ×           |
| ~        | Facilities (Med. et  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _            | 1         | 1       |           |              |              | 1            | $\perp$   |                 |           |           | 1        | Ш         | _            | $\perp$       | L        | L   |           | $\perp$      |           |           |           |              |              |              | $\perp$      | ×            | Ц         |              | L         |           |          |           | :        | <            |          | ×        |          |           |         |              |           |          |          | ×      |           | ×           |
| SAR      | Evaluation           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |         |           | ×            |              |              | ×         | ×               |           |           |          |           |              |               |          | L   |           |              |           |           |           |              |              |              |              |              |           |              |           |           |          | ×         | $\times$ | <            |          |          |          |           |         |              |           |          |          |        |           | ×           |
| L        | Platform Delivery    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |         |           |              |              |              | ×         | ×               |           |           |          |           |              |               |          |     |           |              |           |           |           |              |              |              |              |              |           | T            | T         |           |          | ×         | ×        | <            |          |          |          |           |         |              | T         | T        | П        | T      | T         | ×           |
|          | Kill Eval.           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ××           |           | L       | ×         | ×            |              |              | ×         | ×               | >         | <         | ×        |           |              |               |          |     |           |              |           |           |           |              |              |              |              |              |           | T            | T         | T         | ×        | ×         | ×        |              | Τ        |          |          |           | T       | ×            | ×         | ×        | П        |        | T         | ×           |
|          | Soft Kill            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |         | ×         |              |              |              |           |                 |           |           |          |           |              |               |          |     |           |              | T         |           |           |              | >            | <            |              |              | П         |              |           | Γ         | ×        |           |          | 1            | T        |          |          | $\exists$ |         | ×            | ×         | ×        | П        |        | $\top$    | ×           |
|          | Guidance             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |         |           |              |              | T            |           |                 |           |           | Τ        |           |              |               |          |     |           |              | T         |           |           |              |              | 1            | T            |              |           | T            |           | Γ         | ×        |           |          |              | 1        |          | П        |           | T       | ×            | ×         | ×        | П        | $\top$ | +         | ×           |
| 딥        | Weapon Delivery      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | Π       |           |              |              | T            | Τ         | ×               |           | T         |          |           |              | Τ             |          |     |           | >            | <         | ١.        | П         | T            |              | T            |              |              |           |              | Τ         |           | ×        | ×         | ×        | T            | 1        |          |          | $\exists$ | 1       | ×            | ×         | ×        | П        | $\top$ | $\dagger$ | ×           |
|          | Illumination         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | :         | Γ       |           | П            | T            | T            |           | П               |           | ×         |          |           | $\top$       | T             |          |     | П         | T            |           | Г         | П         |              | 1            | $\top$       | T            | П            |           | T            | $\top$    |           | ×        |           | 7        | +            | T        | Г        |          | 7         |         | ×            | ×         | ×        | П        | $\top$ | +         | ×           |
|          | Board                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T            |           |         |           |              |              | T            | ×         | ×               |           | T         |          |           | 7            | T             | T        |     | П         | T            | T         | T         | Ħ         | 7            | 1            |              | T            | П            |           | T            | T         | 1         | ×        | ×         | ×        | †            | T        |          | П        | 7         | Ť       | ×            | +         | T        | H        | +      | +         | ×           |
|          | Intercept            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | T         | T       |           | П            | 7            |              | ×         | ×               | Ť         | $\dagger$ | T        | П         | 1            | T             | T        |     |           | $\dagger$    |           |           |           | $\top$       | $\dagger$    | $\dagger$    | 1            |              |           | $^{+}$       | $\dagger$ |           | ×        | ×         | ×        | $^{\dagger}$ | +        |          |          | +         | +       | ×            | :         | $\vdash$ |          | +      | +         | H           |
|          | Kill Eval.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\top$       | T         | T       |           | ×            |              | +            | ×         |                 | $\dagger$ | T         | T        | П         | $\top$       | T             | T        |     |           | $\uparrow$   | T         | H         |           | $\dagger$    | $\dagger$    | +            | +-           | $\Box$       | $\top$    | +            | $^{+}$    | $\dagger$ |          | ×         | +        | +            | t        | -        | H        | $\dashv$  | +       | $^{+}$       | +         | $\vdash$ | Н        | +      | +         | Н           |
| 3        | Guidance             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T            | T         | T       |           | П            | $\top$       | 十            | T         | П               | $\top$    | Ť         | T        | П         | $\top$       | Ť             | 1        |     |           | 1            | $\top$    |           | $\Box$    | +            | $\dagger$    | Ť            | $\dagger$    |              |           | $\dagger$    | $\dagger$ | $\vdash$  |          |           | +        | $\dagger$    | +        | -        | H        | +         | +       | $^{\dagger}$ | t         |          | $\vdash$ | +      | +         | Н           |
| AMW      | Weapon Delivery      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            | T         |         |           |              | +            | $\top$       | T         | Н               | 1         | $\dagger$ | T        | П         | +            | T             | T        |     | T         | $\dagger$    | T         | П         | Н         |              | +            | $\dagger$    | $\dagger$    | Ħ            | $\dagger$ | +            | t         |           | Н        | +         | Ť        | $\dagger$    | +        | -        | H        | +         | +       | $\dagger$    | $\dagger$ | $\vdash$ | H        | +      | +         | Н           |
| li       | Illumination         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\dagger$    | T         |         |           |              | 十            | $\top$       | $\dagger$ |                 | +         | ×         | :        | Н         | $^{\dagger}$ | T             |          |     | 1         | $\dagger$    | $\dagger$ |           |           | $\dagger$    | $\dagger$    | $\dagger$    | +            | $\vdash$     | $\dagger$ | $^{+}$       | $\dagger$ | $\vdash$  | H        | +         | +        | t            | 1        | -        | +        | +         | +       | +            | H         |          | H        | +      | +         | Н           |
| >        | Kill Eval.           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T            | $\dagger$ |         |           | T            | +            | +            | +         | $\forall$       | +         | t         | 1        |           | +            | $\dagger$     |          |     | $\forall$ | +            | +         | П         | H         | $\dagger$    | $^{\dagger}$ | $\dagger$    | $^{\dagger}$ | Н            | +         | +            | +         | $\vdash$  | Н        | +         | +        | +            | +        | H        |          | +         | +       | +            | $\vdash$  |          | Н        | +      | +         | Н           |
| WIS      | Weapon Delivery      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ┪            | T         | П       | 1         | 7            | +            | T            | T         | ×               | 1         | Ť         | +        |           | $\dagger$    | +             | $\vdash$ |     | $\dagger$ | +            | t         | П         |           | $^{+}$       | $\dagger$    | $^{\dagger}$ | $^{\dagger}$ | Н            | +         | +            | +         |           |          | +         | ×        | +            | ×        |          | -        | +         | +       | +            | H         |          | $\vdash$ | +      | +         | Н           |
| 5        | Clear                | $\dagger$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\dagger$    | $\vdash$  |         |           | $\dashv$     | $\dagger$    | +            | T         |                 | $^{+}$    | +         |          |           | $\dagger$    | $\dagger$     | Н        |     | +         | +            | +         | Н         | $\forall$ | +            | $\dagger$    | +            | +            | ×            | $\dagger$ | $^{\dagger}$ | +         |           |          | $\forall$ | +        | +            | +        | ×        | +        | +         | +       | +-           | +         | $\vdash$ | ×        | +      | +         |             |
| MW.      | Mark                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | T         |         |           | $\forall$    | $\dagger$    | T            | T         | $\Box$          | +         | +         | t        |           | +            | $\dagger$     |          |     | $\top$    | $^{\dagger}$ | +         | Н         |           | +            | $\dagger$    | +            | ×            |              | +         | +            | +         |           |          | $\dashv$  | +        | +            | +-       |          | $\dashv$ | +         | +       | +            | ┝         | Н        | ×        | +      | +         |             |
| П        | Kill Eval.           | × ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < ×          | T         | П       | ×         | ×            | +            | +            | ×         | ×               | ×         | <i>,</i>  | ×        | $\vdash$  | $\uparrow$   | $\dagger$     |          |     | $\top$    | +            | +         | H         |           | $\dagger$    | t            | $^{+}$       | +            | H            | $\dagger$ | +            | ╁         |           |          | ×:        | ×        | +            |          |          | +        | +         | +       | Ţ            | ×         | ×        |          | +      | +         | ×           |
|          | Soft Kill            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\dagger$    | 1         |         | ×         | 1            | $\top$       | +            |           | $\top$          | +         | +         | $\vdash$ | +         | +            | $\dagger$     |          |     | +         | $\dagger$    | t         |           | $\vdash$  | $^{\dagger}$ | \<br>\       | +            | +            | $\forall$    | +         | +            | +         | Н         | ×        | +         | +        | +            | +        | _        | +        | +         | +       | +-           | +-        | ×        | $\dashv$ | +      | +         | ×           |
| ASUW     | Guidance             | $\dagger$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $^{\dagger}$ |           | П       | 7         | 1            | $^{\dagger}$ | $^{\dagger}$ | T         | $\top$          | $\dagger$ | t         | T        |           | $\dagger$    | $\dagger$     | Н        | 1   | $\dagger$ | $^{\dagger}$ | +-        |           | +         | $^{+}$       | $\dagger$    | $\dagger$    | +            | $\vdash$     | +         | +            | +         | Н         |          | +         | +        | $^{+}$       | +        | -        | +        | +         | +       | -            |           |          | $\vdash$ | +      | +         | Ĥ           |
| ¥        | Weapon Delivery      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T            | Ì         |         | 7         | $\top$       | +            | $\dagger$    | H         |                 | +         | t         | T        | $\forall$ | $^{\dagger}$ | t             | Н        | 7   | +         | +<br>×       | +         | H         | +         | +            | +            | $\dagger$    | +            | H            | +         | +            | +         | Н         | ×        | +         | +        | +            |          |          | +        | +         | +       | ×            | ×         | ×        | $\dashv$ | +      | +         | H           |
|          | Illumination         | †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\top$       | T         |         | $\forall$ | 1            | $\dagger$    | T            | T         |                 | +         | ×         |          | $\forall$ | $\dagger$    | T             |          | 7   | $\dagger$ | +            | t         | H         | +         | $\dagger$    | $^{\dagger}$ | +            | 1-           | $\vdash$     | +         | +            | +         | -         | ×        | +         | +        | +            | $\vdash$ |          | +        | +         | +       | -            | ×         | ×        | $\dashv$ | +      | +         | Ž           |
| $\Box$   | Kill Eval.           | †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T            | ×         |         | 1         | $\top$       | $^{+}$       | $\dagger$    | ×         | T               | +         | $\dagger$ |          | ×         | <            | T             |          | 7   | $\dashv$  | $^{+}$       | t         | Н         | +         | +            | t            | t            | +            | H            | $\dagger$ | $^{\dagger}$ | +         | Н         |          | ×         | $^{+}$   |              | +-       |          | +        | +         | +       | +-           | ×         | 1-1      | +        | +      | +         | ×           |
| ASW      | Soft Kill            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\top$       |           | H       |           | 1            | $\dagger$    | $\dagger$    |           |                 | $\dagger$ | t         |          |           | $\dagger$    | +             | H        | +   | +         | +            | +         | Н         | +         | $^{+}$       | $\dagger$    | ×            |              | H            | +         | +            | +         | $\vdash$  |          | +         | +        | +            | Н        |          | +        | +         | +       | ×            | ⊢         | $\vdash$ | +        | +      | +         | Ĵ           |
| 4        | Weapon Delivery      | $\dagger$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\dagger$    | -         | H       | 1         | $\dagger$    | $\dagger$    | +            | ×         | +               | +         | t         |          | +         | +            | +             | Н        |     | +         | +            | t         | H         | ,         | <   >        | +            | +            |              | H            | +         | $^{\dagger}$ | ╁         | Н         | +        | ×         | +        | +            | Н        | -        | +        | +         | +       | ×            | ├-        | ×        | +        | +      | +         | ×           |
| 7        | Kill Eval.           | </td <td>&lt;×</td> <td>H</td> <td>H</td> <td>×</td> <td>×</td> <td><math>\dagger</math></td> <td><math>\dagger</math></td> <td>Н</td> <td>+</td> <td>×</td> <td>:</td> <td>×</td> <td></td> <td><math>^{+}</math></td> <td><math>\dagger</math></td> <td><math>\Box</math></td> <td>1</td> <td><math>\dagger</math></td> <td><math>\dagger</math></td> <td>+</td> <td></td> <td>+</td> <td>+</td> <td><math>\dagger</math></td> <td>+</td> <td><math>\vdash</math></td> <td>H</td> <td>+</td> <td>+</td> <td>+</td> <td>Н</td> <td>-</td> <td>1</td> <td>+</td> <td>+</td> <td>Н</td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>×</td> <td></td> <td>+</td> <td>+</td> <td>+-</td> <td>Ĵ</td> | <×           | H         | H       | ×         | ×            | $\dagger$    | $\dagger$    | Н         | +               | ×         | :         | ×        |           | $^{+}$       | $\dagger$     | $\Box$   | 1   | $\dagger$ | $\dagger$    | +         |           | +         | +            | $\dagger$    | +            | $\vdash$     | H            | +         | +            | +         | Н         | -        | 1         | +        | +            | Н        |          | +        | +         | +       | +            | ×         |          | +        | +      | +-        | Ĵ           |
| -        | Soft Kill            | $\dagger$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +            |           |         | ×         | +            | +            | +            | Н         | +               | +         | +         |          | +         | +            | +             | H        | +   | +         | $^{\dagger}$ | +         | $\exists$ | +         | +            | ×            | +            | +            | H            | +         | +            | +         | Н         | +        | +         | +        | +            |          | $\dashv$ | +        | +         | +       | +-           | ×         | $\vdash$ | +        | +      | +         | Ĵ           |
| AAW      | Guidance             | $\dagger$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +            |           | Н       | $\dagger$ | +            | $^{+}$       | $\dagger$    | Н         | $\dagger$       | $\dagger$ | +         |          | $\dagger$ | +            | t             | H        | +   | +         | $^{\dagger}$ | -         | $\dashv$  | +         | +            | +            | +            | $\vdash$     | Н            | Ť         | +            | ╁         | Н         | +        | +         | +        | +            | Н        | -        | +        | +         | +       |              | _         |          | +        | +      | +         | Ĥ           |
| 4        | Weapon Delivery      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |           |         | 1         | +            | +            | +            | П         | +               | +         | +         | Н        | $\dagger$ | +            | H             | Н        | +   | +         | ×            | ×         | ×         | $\times$  | +            | $\dagger$    | +            | ╁            | H            |           | +            | ╁         | H         | $\dashv$ | +         | +        | +            | Н        | -        | +        | +         | +       | ×            | ×         |          | +        | +      | +         | $\forall$   |
| f        | Illumination         | $\dagger$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×            |           | H       | +         | $^{\dagger}$ | +            | t            |           | +               | +         | ×         | Н        | $\dagger$ | +            | +             | Н        | +   | +         | +            |           |           | +         | +            | +            | +            | $\vdash$     | $\vdash$     | +         | +            | +         |           | $\dashv$ | +         | +        | +            | Н        | $\dashv$ | +        | +         | +       |              | ×         | LL       | +        | +      | +         | Ĵ           |
|          |                      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +-           |           |         | +         | $^{+}$       | +            |              | Н         | +               | +         | +         |          | +         | $^{+}$       |               | H        | Y   | +         | +            |           | +         | +         | +            | +            | +            |              | Н            | +         | +-           | +         | Н         | 1        | +         | +        | +            | $\vdash$ | -        | +        | +         | +       |              | ^         |          | +        | +      | +         | Ĥ           |
| rn.      | Coast Guard Option 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |         |           |              |              |              |           | 4               |           |           |          | ç         | اد           |               |          | WOR |           |              | CIWS (1)  | 띥         |           |              |              |              |              |              | y.        |              |           |           |          |           |          |              |          |          |          |           |         |              |           |          |          |        |           |             |
| Elements | Op                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |         |           | S            |              |              |           | SMALL BOATS (4) | (0        | 0         |          | 10        | VOICE COMMS  |               |          | Ä   | 1         |              |           | LNC       |           |              |              |              | a            |              | mer       | -            | 2         | 3         | 4        | 2         | 0 1      |              | A9       | 0        | -        | 70        | 0       | -            | 2         | 6        | 4        | o «    | 2         |             |
| Eler     | Gua                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |         | 1         | P            |              |              | z         | BO              | SFC       | /STI      | 9        | 2         |              |               |          | 6   |           |              |           | SAM       |           | c            |              |              | O            | ΑM           | guire     | A            | V         | ¥         | Y.       | <   <     | ۷        | ¥            | ×        | Ā        | ¥.       | <         | 2       | O            | Ö         | Ö        | O        | ع اد   | CZ        | Õ           |
|          | oast                 | 2 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S            | S-56      | -100    | 0-32      |              | 30           | CIS          | E         | ALL             | 92 (      | CAS       | IR Mk-46 | 88        | N I          | S             | SAN      | 2   | S C       | 2 \          | VS (1     | 49 (      | RAM       | MK 50        | 300          | Ш            | 3 VC         | O TE         | R.        |              |           |           |          |           |          |              |          |          |          |           |         |              |           |          |          |        |           |             |
|          | Ö                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ž            | SQ        | 꼾       | is s      |              |              | Š            | 8         | S L             | ₹         |           | ĸ        | S         | 2            | GP            | TAC      |     | × 5       | 78           | S         | ž         | RA<br>FA  | ò            | SR           | ž            | BC           |              |           |              |           |           |          |           |          |              |          |          |          |           |         |              |           |          |          |        |           |             |

Table F-13: Functional Allocation - Detection (Coast Guard option 2)

| -        | Command              | J       | T       | T       | T  | T    | ×  | {  | × | :       |     |         |         |          | -        | ×        |         | × |        |         | T       |         |         |         | $\prod$ |         |   |         |         |         | Τ       | × |        | T       | T | T   |         |            | T   | T   |    |        |     |     |
|----------|----------------------|---------|---------|---------|----|------|----|----|---|---------|-----|---------|---------|----------|----------|----------|---------|---|--------|---------|---------|---------|---------|---------|---------|---------|---|---------|---------|---------|---------|---|--------|---------|---|-----|---------|------------|-----|-----|----|--------|-----|-----|
| 3        | Display              | 1       | Ť       | T       |    | T    | ×  | 4  | × | :       |     |         | ×       |          | 1        | ×        |         | × |        |         | 1       | T       |         |         | $\Box$  |         | × |         |         | 1       | T       | × | П      | Ť       | T | T   | П       |            | 1   | Ť   | 1  |        |     |     |
| <u>₹</u> | Identify             |         | I       |         |    | I    | ×  | 4  | × | ×       | ×   | ×       |         |          | ×        | ×        |         | × |        |         |         |         |         |         |         | T       |   | П       |         |         | 1       | × |        |         | T | T   | П       |            | T   | T   | T  |        |     |     |
|          | Voice Comm           |         |         |         |    | I    | I  | I  |   |         |     |         |         |          |          | ×        |         |   |        |         |         |         |         |         |         |         | × |         | ×       |         |         | × |        |         |   |     |         |            |     |     |    |        | Ì   |     |
|          | Command              |         |         |         |    |      | ×  | <  | × |         |     |         |         |          | 1        | ×)       | < ×     | × |        | I       |         | L       |         |         |         |         |   |         |         |         |         | × |        |         | I | L   |         | >          | < > | ×   | :  |        |     |     |
|          | Correlate            |         |         |         | ×  | <×   | ×  | <  | × | ×       | ×   | ×       | ×       | ×        | ×        |          |         | × |        |         |         |         |         |         |         | Ţ       |   |         |         |         |         | × |        |         |   |     |         | >          | < × | ×   |    |        |     |     |
| SAR      | Track                |         |         |         |    | ×    | ×  | <  | × | ×       | ×   |         | ×       | ×        |          |          |         | × |        |         | Ι       |         |         |         |         |         |   |         |         |         |         | × |        |         |   |     |         | >          | <×  | ×   |    |        |     |     |
| ò        | Identify             |         | 1       | $\perp$ | ×  | ×    | ĺ× | 4  | × | ×       | ×   | ×       |         |          | ×        | 1        |         | × |        | 1       |         |         | Ц       |         |         |         |   |         |         |         |         | × |        |         |   |     |         | >          | <×  | ×   |    |        |     |     |
|          | Display              |         |         |         | ×  | 1    | ×  | 1  | × | L       | L   |         | ×       |          | ×        |          | L       | × | Ш      |         |         |         |         |         |         |         | × |         |         |         |         | × |        |         |   |     |         | >          | < × | ×   |    |        |     |     |
| 1        | Voice Comm           | 1       | 1       | 1       |    | 1    | L  | L  |   | L       | L   | L       |         |          | 1        | ×        | $\perp$ | L | Ц      | 1       |         |         | Ц       |         | Ш       |         | × |         |         |         |         | × |        |         |   |     | Ш       |            |     | ×   |    |        |     |     |
|          | Command              | 1       | 1       | L       | L  |      | ×  | 1  | × | L       | L   |         |         | 1        | 1        | ×Þ       | <×      | × | ×      | ×       |         | L       |         | $\perp$ | Ш       |         |   |         |         | ×       | $\perp$ |   |        |         |   | L   | Ш       | >          | <×  | ×   |    |        |     |     |
|          | Weapons Assg         | 1       |         |         |    |      | ×  | 1  | × |         | L   |         | ×       | 1        | <u> </u> | ×        | 1       | × | ×      | ×       | $\perp$ |         |         |         | Ш       |         | 1 | Ц       |         | ×       |         | L |        | $\perp$ | 1 |     |         | >          | ۲×  | ×   |    |        |     |     |
|          | Correlate            | 1       | 1       | 1       | ×  | ×    | ×  | 1  | × | ×       | ×   | ×       | ×       | ×        | ≼        | 1        | L       | × | Ц      | 1       | $\perp$ |         | Ц       |         | Ш       |         |   | Ц       |         | ×       |         |   |        |         |   |     |         | ×          | ٩×  | ×   |    |        |     |     |
|          | Track                | 1       | 1       |         | L  | ×    | ٩× | 1  | × | ×       | ×   | Ц       | ×       | ×        | 1        | 1        |         | × | Ц      |         |         |         |         |         | Ш       |         | L | Ц       |         | ×       | L       |   |        | $\perp$ |   |     | Ш       | <u> </u> × | ×   | ×   |    |        |     |     |
| ۳        | Threat Eval.         | 1       | $\perp$ |         | ×  | ×    | ×  | 1  | × | ×       | ×   | ×       |         | 1        | ¥        | _        | $\perp$ | × | Ц      | 1       |         | L       | Ц       | $\perp$ | Ш       |         |   |         |         | ×       | L       |   |        | $\perp$ |   |     |         | ×          | ×   | ×   | L  |        |     |     |
|          | Identify             | 1       |         |         | ×  | ×    | ×  | 1  | × | ×       | ×   | ×       |         | _ !      | ×        | $\perp$  | L       | × |        |         |         | Ц       | Ц       |         | Ц       |         |   |         |         | ×       | Ĺ       |   |        |         |   |     |         | ×          | < × | ×   |    |        |     |     |
|          | Display              |         | 1       |         | ×  | ×    | ×  | 1  | × |         |     | Ц       | ×       | ,        | ×        | 1        |         | × | Ц      |         | $\perp$ | Ш       |         |         | Ш       |         | × |         |         | ×       |         |   |        |         |   |     |         | ×          | ĺ×  | ×   |    |        |     |     |
|          | Voice Comm           | $\perp$ | L       |         | L  |      | L  | L  |   |         |     |         |         |          | 1        | <u> </u> |         |   |        | $\perp$ | $\perp$ | Ш       |         | 1       | Ш       |         | × | Ш       | ×       | ×       |         |   |        | L       | L |     |         | 1          |     | ×   |    |        |     |     |
|          | Command              |         |         |         | L  |      |    |    |   | L       | L   |         |         |          | 1        |          |         | L |        |         |         |         |         |         | Ш       |         |   |         |         |         |         |   |        |         |   |     |         |            |     |     |    |        |     |     |
|          | Weapons Assg         | 1       | 1       | 1       | L  | L    | L  | 1  | L | L       | L   | Ц       |         |          |          |          | Ĺ       | L |        |         | Ţ       | Ш       |         |         | П       |         | Ĺ | П       |         |         |         | Ц |        | $\int$  | Ĺ |     |         | Ţ          |     | Ĺ   | L  | I      |     | J   |
|          | Correlate            |         | Ī       | I       | L  | L    | ×  | 1  | × |         | L   |         |         | $\int$   | $\int$   |          |         | × |        |         |         |         |         | $\prod$ | П       |         |   |         |         |         |         |   | Ī      | $\int$  |   |     |         | I          |     |     |    | J      | J   | J   |
| ]چ       | Track                |         |         | Ĺ       | Ĺ  |      | ×  | 1  | × | L       | Ĺ   |         |         |          | $\int$   |          |         | × |        |         |         |         |         |         | П       |         | L |         | I       | I       | I       |   |        |         |   |     |         |            | I   |     |    | I      | I   | J   |
| AMK.     | Threat Eval.         | $\prod$ | ſ       | ſ       | Ĺ  | ×    | ×  |    | × |         | Ĺ   |         |         | I        | $\int$   |          |         | × |        | I       |         |         | J       |         |         | Ι       | I |         |         | I       | Γ       |   |        | I       | I |     |         | I          | Γ   |     |    |        | J   | J   |
|          | Identify             | I       | I       | ſ       | ſ  | ×    | ×  |    | × |         |     |         |         | I        | I        | I        |         | × |        | I       | I       |         | Ī       | I       |         | I       | I |         |         | I       | Γ       |   | I      | T       | I |     |         | I          | Ι   |     |    |        | I   | J   |
|          | Display              |         |         |         |    | ×    | ×  |    | × |         |     |         |         |          |          |          |         | × |        |         |         |         |         |         |         |         |   |         |         |         |         |   |        |         |   |     |         | L          |     |     |    |        |     |     |
|          | Voice Comms          |         |         | L       |    |      | L  |    |   |         |     |         |         | $\perp$  | >        | <        | L       |   |        |         |         |         |         |         |         |         |   |         |         |         |         |   |        |         |   |     |         |            |     |     |    |        |     |     |
|          | Command              |         | L       | L       |    |      | ×  |    | × |         |     |         |         |          | >        | <        |         | × |        | 1       |         |         |         |         |         |         |   |         |         |         |         |   |        |         |   |     |         |            |     |     |    |        |     | T   |
| 8        | Identify             |         |         |         |    | ×    | ×  |    | × |         |     |         |         |          |          |          |         |   |        |         |         |         |         |         |         |         |   |         |         |         |         |   |        | I       |   |     |         |            |     |     |    |        |     |     |
| 7        | Display              |         | I       | I       |    | Ι    | ×  |    | × |         |     |         |         |          |          |          |         | × |        | I       |         |         |         | T       |         |         |   |         |         | T       | T       |   |        |         |   |     |         | T          |     |     |    |        |     |     |
|          | Voice Comms          |         |         | L       |    |      | L  |    |   |         |     |         |         |          | >        | <        |         |   |        |         |         |         |         |         |         |         |   |         |         |         |         |   |        |         |   |     |         |            |     |     |    |        |     | I   |
|          | Command              | I       | Ι       |         |    |      | ×  |    | × |         |     |         |         |          | >        | < ×      | ×       | × |        | I       | L       |         |         |         |         | I       |   |         |         | Ι       | I       |   | I      | ×       |   |     |         |            |     |     | ×  |        |     |     |
|          | Сопеlate             |         |         | ×       |    | L    | ×  | L  | × | ×       | ×   |         |         | 1        |          |          |         | × |        |         |         |         |         |         |         |         |   |         |         |         |         |   |        | ×       |   |     |         | T          |     |     | X  |        | Ţ   |     |
|          | Track                | 1       |         | ×       |    | L    | ×  | L  | × | ×       | ×   |         |         |          |          | 1        |         | × |        |         |         |         |         |         |         |         |   |         |         | $\perp$ | L       | Ш |        | ×       | - | Ш   |         |            | L   |     | ×  |        |     |     |
| 3        | Threat Eval.         |         |         | ×       |    | ×    | ×  |    | × | ×       | ×   |         |         |          |          |          | L       | × |        |         |         | Ш       |         |         |         |         |   |         |         |         |         |   |        | ×       |   |     |         |            |     |     | ×  |        | I   |     |
|          | Identify             | 1       |         | ×       |    | ×    | ×  |    | × | ×       | ×   |         |         |          | 1        |          |         | × |        |         | L       |         |         |         |         |         |   |         |         |         |         |   |        | ×       |   |     |         |            |     |     | ×  |        |     | -   |
|          | Display              |         |         | ×       | L  |      | ×  | L  | × |         |     |         |         | 1        | 1        |          |         | × |        |         |         |         |         |         | Ц       |         | × |         |         |         | L       |   |        | ×       |   |     |         |            | L   |     | ×  |        |     | :   |
| 1        | Voice Comms          | 1       |         | L       | L  |      | L  | L  |   |         |     |         | 1       | 1        | >        | <        |         |   |        |         |         |         |         |         |         |         | × | :       | ×       |         |         |   |        | ×       |   |     |         |            | L   |     | ×  |        |     | :   |
|          | Command              |         |         |         | L  | L    | ×  | L  | × |         |     |         | 1       |          | >        | < ×      | ×       | × | ×      |         |         |         | $\perp$ |         |         |         |   |         | ,       | <       |         |   |        |         |   |     |         | ×          | ×   | ×   |    |        |     |     |
|          | Weapons Assg         |         | L       | L       | L  |      | ×  |    | × | Ш       |     |         | ×       |          | >        | 4        |         | × | ×      |         |         | Ш       | $\perp$ |         |         |         |   | Ш       | 1       | <       | L       |   |        | L       |   |     |         | ×          | ×   | ×   |    |        |     | ŀ   |
| 1        | Correlate            | 1       | L       | L       | ×  | ×    | ×  |    | × | ×       | ×   | ×       | ×       | ×þ       | 4        |          | L       | × |        |         | $\perp$ |         | $\perp$ |         | Ц       | $\perp$ |   |         | 1       | <       |         |   |        |         |   |     |         | ×          | ×   | ×   |    |        |     | 1   |
| -        | Track                |         | L       | L       |    | L    | ×  | L  | × | ×       | ×   |         | ×:      | ×        | 1        | 1        | L       | × |        |         |         |         |         |         |         |         | L |         | ,       | <       |         |   |        |         | L |     |         | ×          | ×   | ×   |    |        |     | -   |
| 2        | Threat Eval.         |         | L       | L       | ×  | ×    | ×  |    | × | ×       | ×   | ×       |         | ·        | 4        | $\perp$  | L       | × |        |         |         | Ш       |         |         |         |         |   |         | 1       | <       | L       |   |        |         | L | Ш   |         | ×          | ×   | ×   |    |        |     | 1   |
|          | Identify             | 1       |         | L       | ×  | ×    | ×  |    | × | ×       | ×   | ×       | _       | >        | 4        | _        | L       | × | 1      | 1       |         |         |         |         | Ш       |         |   | Ц       | 1       | <       |         |   |        |         | L | Ш   |         | ×          | ×   | ×   |    |        |     | 1   |
| L        | Display              | $\perp$ | L       | L       | ×  | ×    | ×  | L  | × |         |     |         | ×       | >        | 4        | $\perp$  | L       | × | 1      | 1       |         | Ц       |         | L       | Ц       | L       | × | Ц       |         | <       | L       |   | 1      |         |   |     |         | ×          | ×   | ×   |    |        |     | ŀ   |
|          | Voice Comm           |         |         | L       | L  |      | L  | L  |   |         |     |         | 1       | 1        | >        | <        | L       |   |        | $\perp$ |         | Ц       | $\perp$ | L       | Ш       | $\perp$ | × | Į;      | ×Þ      | <       | L       |   | 1      |         |   |     |         | L          |     | ×   |    |        |     | _   |
| 1        | Command              |         |         | L       | L  | L    | ×  |    | × |         |     |         |         |          | þ        | < ×      | ×       | × | ×      | 1       |         |         | $\perp$ | _       |         |         |   | Ц       |         | $\perp$ |         |   |        |         |   | Ш   |         |            | L   | L   |    |        |     | ;   |
| L        | Weapons Assg         |         |         |         |    |      | ×  |    | × |         |     |         |         |          | Þ        | <        |         | × | ×      |         |         |         | $\perp$ | $\perp$ |         |         |   |         |         |         | L       |   |        | L       |   |     |         |            |     |     |    |        | 1   | 1   |
| 1        | Соггенате            | 1       | L       | L       | ×  | ×    | +- | +- | × | ×       |     |         | $\perp$ |          | 1        | 1        |         | × |        | L       |         | Ц       |         | L       |         | Ţ       |   |         |         |         |         |   |        |         | Ĺ | Ц   |         | Ĺ          | Ĺ   | Ĺ   | Ц  |        | Ţ   | 1   |
| 2        | Track                |         | L       | L       |    | L    | ×  |    | × | ×       |     | $\prod$ |         | $\int$   | Ĺ        |          |         | × |        | I       | Ĺ       | Ц       |         | Ĺ       | П       |         |   |         | I       | I       |         |   | $\int$ | ſ       | Ĺ | П   | I       | $\int$     | Ĺ   | Ĺ   |    | I      | I   | 3   |
|          | Threat Eval.         | 1       | L       |         | ×  | +    | -  | +  | × | ×       |     |         |         | 1        |          | $\perp$  |         | × |        | L       |         | Ц       | $\perp$ | L       | Ц       |         |   |         | $\int$  | Ī       |         |   |        | Ĺ       | Ĺ | Ц   |         |            | Ĺ   | Ĺ   |    | $\int$ | I   | ;   |
|          | Identify             | 1       | L       |         | ×  | ×    | ×  | L  | × | ×       |     |         | 1       | 1        | $\perp$  | 1        |         | × | 1      | 1       |         | Ц       | 1       |         | Ц       | 1       | Ц |         |         |         |         |   |        | 1       | L | Ц   |         |            | L   | L   |    | $\int$ |     | ;   |
|          | Display              |         | L       | L       | L  | L    | ×  | L  | × |         |     | 1       |         | $\perp$  | 1        |          | L       | × |        |         | $\perp$ |         | $\perp$ | L       |         |         |   |         |         |         |         |   |        |         |   |     |         |            |     |     |    |        |     | ;   |
| 1        | Voice Comm           | $\perp$ |         | L       | L. | L    |    |    |   | ×       |     |         |         |          | >        | <        |         |   |        |         |         |         |         |         |         |         |   |         |         |         |         |   |        |         | L |     |         |            |     |     |    |        |     | ;   |
| L        | Command              |         | L       |         | L  | L    | ×  | ×  | × |         |     |         | _       | 1        | >        | <        | ×       | × | × >    | <×      | oxed    |         |         | L       |         |         |   |         |         |         |         |   |        |         |   |     |         | ×          | ×   | ×   |    |        |     | ;   |
| L        | Weapons Assg         | 1       | L       | L       | ×  | L    | ×  | ×  | × | Ш       |     | -       | ×       | 1        | >        | 4        |         | × | ××     | <       |         | Ц       |         | L       |         |         |   |         | $\perp$ |         |         |   |        | Ī       | Ĺ | П   | $\perp$ | ×          | ×   | ×   |    | I      |     | 1   |
| Ĺ        | Correlate            | 1       | L       | Ĺ       | ×  | ×    | ×  | ×  | × | ×       |     | ×       | ×       | < >      | <        |          |         | × | >      | 4       |         |         | $\int$  |         |         |         |   |         | $\int$  | Ī       | $\prod$ |   | $\int$ |         | Ĺ |     | $\prod$ | ×          | ×   | ×   |    | I      | I   | ŀ   |
|          | Track                | I       | Ĺ       |         | Ĺ  | Ĺ    | ×  | ×  | × |         |     | ]:      | ×Þ      | <        |          | I        |         | × | I      | ×       |         |         | I       |         | П       |         |   |         | I       | I       |         | J | I      | I       |   |     |         | ×          | ×   | ×   |    |        | I   |     |
| 1        | Threat Eval.         | $\perp$ | Ĺ       | Ĺ       | ×  | Ĺ    | ×  | ×  | × | ×       |     | ×       |         | >        | <        | L        | Ĺ       | × | $\int$ | ×       |         |         |         |         |         |         | П | $\prod$ | I       | $\prod$ |         |   | I      |         | L |     |         | ×          | ×   | ×   |    | I      | I   | 1   |
| Ĺ        | Identify             | L       | L       | L       | ×  | ×    | ×  |    | × | ×       |     | ×       |         | ×        | <        |          | $\Box$  | × |        |         |         |         |         | L       |         | L       | Ц |         | $\int$  | Ī       |         |   | $\int$ |         | L |     |         | ×          | ×   | ×   |    | I      | I   | ŀ   |
|          | Display              | $\prod$ | L       | L       | ×  | Ĺ    | ×  |    | × |         |     | _[;     | ×       | >        | <        |          |         | × |        | I       |         | $\prod$ |         |         | Ш       | $\perp$ | × |         |         |         |         | J |        |         |   |     |         | ×          | ×   | ×   |    | J      | I   | 1   |
| ſ        | Voice Comm           | ſ       | Ĺ       | Ĺ       | L  | Ĺ    |    |    |   |         | J   | J       | J       | $\prod$  | >        | <        |         | J |        |         |         |         |         |         |         |         | × | ,       | ×       | ſ       |         | T | T      |         |   |     |         |            |     | ×   |    | T      |     | 1   |
| T        | 25                   | T       | Γ       |         |    |      |    | П  |   |         |     | 1       | T       | T        | T        | T        | П       | Ä | T      | T       |         |         | 1       | П       | П       |         |   | 1       | 1       | T       |         | 1 | T      | T       |   | П   |         | T          |     |     |    | 1      |     | 1   |
| ,        | Coast Guard Option 2 |         |         |         |    | یــا |    |    |   |         | €   |         |         |          |          |          |         | × | WCS    | 2       | CHR     |         | }       |         |         | S       |   |         |         |         |         |   |        |         |   |     |         |            |     |     |    |        |     |     |
| :1       | 9                    |         | 1       |         |    | IÇ   |    |    |   | DOLPHIN | ATS |         |         | Y        | MM       | GPS      |         | 쀨 |        | 13 (2   | Z       |         |         | ۵       |         | eme     | - | واد     | 2/2     | 2/2     | 9       | 2 | 0      | 9 0     | - | 12  | 2       | 1_         | 12  | 60  | 74 | 5      | 3/  | 1   |
|          |                      |         |         |         |    |      |    |    |   |         |     |         |         |          |          |          |         |   |        |         |         |         |         |         |         |         |   |         |         |         |         |   |        |         |   |     | 5 I     | 10         | 100 | 100 |    |        | 110 | -10 |
|          | Gua                  | -       |         | _       | ۲. | d0/  |    |    |   | ₽       | 8   |         | GFCS    | IR Mk.46 | 5        | 3        | _       | 밁 |        | no<br>O | ₹<br>Š  | _       | 0       | 100     | EAM     | equir   |   |         |         |         |         |   |        | A       | ¥ | A12 | ¥       | Ö          | O   | O   |    |        | İ   | 1   |

|             | Facilities (Med. et  |          |      | Γ       |      |      | Γ          |        |     |        |               | T         |           | Г        | T        |         |           |                   | -         | Т         |             | T                 | T         |          |   |            | ×         | Т            |              |           | Τ         | T         |    | T  | ×  | Π        |    | ×          |          | ×        |           | Т         | Т                                                                                                                                                    |           | 1         | Т            | Т         |           | <b>&lt;</b> : | ×             |
|-------------|----------------------|----------|------|---------|------|------|------------|--------|-----|--------|---------------|-----------|-----------|----------|----------|---------|-----------|-------------------|-----------|-----------|-------------|-------------------|-----------|----------|---|------------|-----------|--------------|--------------|-----------|-----------|-----------|----|----|----|----------|----|------------|----------|----------|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------|-----------|-----------|---------------|---------------|
| Σ<br>Σ<br>Ι | Evaluation           |          |      |         |      |      | ×          | T      |     |        | ×             | <         |           | Γ        |          |         |           |                   | 1         | $\top$    | 1           | $\top$            | T         |          |   |            | 7         | +            | $\dagger$    | +         | $\dagger$ | +         | ×  | ×  | ×  | $\vdash$ |    | -          |          | -        | H         | +         | +                                                                                                                                                    | +         | +         | +            | +         | +         | +             | _             |
|             | Platform Delivery    |          |      | Γ       |      |      |            |        |     |        | ××            | <         |           | T        |          |         |           | T                 | 1         | 1         | 1           | T                 |           | T        |   | ×          |           |              | +            |           | $\dagger$ | +         | +  | ×  | -  | H        | -  |            |          | -        | $\vdash$  | +         | +                                                                                                                                                    | 1         | +         | +            | ١;        | ×         | -,            | _             |
| П           | Facilities (Med. et  |          |      |         |      | Г    |            |        |     | $\top$ | $\top$        | $\top$    | $\dagger$ | T        |          |         | 7         | 1                 | 1         | _         | T           | $\dagger$         |           |          |   |            | ×         | $\dagger$    | +            | $\dagger$ | $\dagger$ |           |    | -  | ×  |          | -  | ×          |          |          | Н         | +         | +                                                                                                                                                    | +         | $\dashv$  | +            | ×         | +         | +             |               |
| SAR         | Evaluation           | $\vdash$ |      |         | T    |      | ×          | -      |     | :      | ×>            | <         |           | T        | $\vdash$ |         | 1         | 1                 | +         | +         | $\dagger$   | $\dagger$         | -         | -        |   |            | +         |              | $\dagger$    | +         | $\dagger$ | +         | ×  | ×  | ×  | ├-       |    | -          |          | -        | $\vdash$  | +         | +                                                                                                                                                    | +         | +         | +            | +         | +         | -             | )             |
|             | Platform Delivery    |          |      |         |      |      |            |        |     | 1      | × >           | <         | T         |          |          |         | 7         | +                 | 1         | +         | +           | $\dagger$         |           | $\vdash$ |   | H          | +         | +            | $^{\dagger}$ | +         | +         | +         | +- | ×  | -  | -        |    | -          | $\dashv$ |          | H         | +         | +                                                                                                                                                    | +         | +         | +            | +         | +         | -             |               |
|             | Kill Eval.           | ×        | ×    | ×       |      | ×    | ×          | T      |     | :      | × >           | <         | ×         |          | ×        |         | 1         | 1                 | $\dagger$ |           | $\dagger$   | $\dagger$         | -         |          |   |            | 1         | +            | +            | +         | $\dagger$ | ×         | +  | ×  |    |          | -  | -          | $\dashv$ | -        | $\vdash$  | ,         | <;                                                                                                                                                   | <         | ×         | +            | +         | +         | >             |               |
|             | Soft Kill            |          |      |         |      | ×    |            |        |     | 1      | $\dagger$     | $\dagger$ |           | T        |          |         | +         | †                 | 1         | $\top$    | $\dagger$   | $\dagger$         | _         | ×        |   |            | +         | $\dagger$    | +            | +         | +         | ×         | +- | -  |    | -        |    | $\dashv$   | 1        | _        |           |           | +                                                                                                                                                    | <         | +         | +            | +         | +         | >             | 4             |
|             | Guidance             |          |      |         | ľ    | _    |            |        |     | 1      | $\top$        | Ť         | T         | T        |          |         | +         | 1                 | 7         | 1         | $\dagger$   | t                 |           |          | H | $\forall$  | $\dashv$  | +            | +            | +         | +         | ×         | ╀  | -  | _  |          | _  | -          | 1        |          | H         | -         | +                                                                                                                                                    | +         | ×         | +            | +         | +         | +             | \<br>\        |
| 급           | Weapon Delivery      |          |      |         |      |      |            | П      |     |        | >             | <         | 1         | T        |          |         | +         | +                 | $\top$    | $\dagger$ | <br> ×      |                   | $\dagger$ |          |   |            | +         | +            | +            | +         | $\dagger$ | ×         | ×  | ×  |    | -        |    | 1          |          |          | Н         | -         | +                                                                                                                                                    | +         | ×         | +            | +         | +         | ,             | ┨             |
|             | Illumination         |          |      | ×       |      |      | T          |        |     | 1      | 1             | 1         |           | ×        |          |         | 1         | $\dagger$         | +         | +         | +           | ╁                 | -         |          | Н |            | +         | $\dagger$    | $\dagger$    | +         | +         | ×         | +- |    | -  | $\vdash$ |    | 1          | +        |          |           | +         | +                                                                                                                                                    | < :       | +         | +            | +         | +         | >             | 4             |
|             | Board                |          |      |         |      |      |            |        |     | 7      | < >           | <         | $\dagger$ |          |          |         | 1         | $\dagger$         | t         | +         | t           | +                 | -         |          | Н | -          | $\dagger$ | $\dagger$    | +            | +         | +         | ×         | +- | ×  |    |          |    | $\dashv$   | 1        |          |           | -         | +                                                                                                                                                    | 7         |           | +            | +         | +         | - ×           | $\dashv$      |
|             | Intercept            |          |      |         |      |      |            |        |     | 7      | < >           | <         |           | T        |          |         | $\dagger$ | $\dagger$         | +         | $\dagger$ | $\top$      | $\dagger$         | T         |          |   |            | 1         | $\dagger$    | $\dagger$    | +         | t         | +-        | ×  | -  |    | $\vdash$ |    |            | +        | _        |           | -         | <                                                                                                                                                    | +         | +         | +            | +         | +         | +             | Ť             |
| П           | Kill Eval.           |          |      |         |      |      | ×          | $\Box$ |     | 7      | <             | $\top$    |           | T        |          |         | +         | +                 | 1         | $\top$    | $\dagger$   | -                 |           |          |   | $\dagger$  | +         | +            | $\dagger$    | $\dagger$ | +         | +         | ×  | -  | _  |          |    | -          | +        | -        | -         | +         | +                                                                                                                                                    | +         | +         | +            | +         | +         | +             | d             |
| 3           | Guidance             |          |      |         |      |      |            | П      |     | $\top$ | $\dagger$     | +         | T         |          |          |         | 1         | $\dagger$         | 1         | +         | ╁           | $\dagger$         |           |          |   | 1          | $\dagger$ | 1            | $\dagger$    | +         | $\dagger$ | $\dagger$ | -  |    |    |          | 1  | +          | 1        | $\dashv$ | $\vdash$  | +         | +                                                                                                                                                    | +         | +         | +            | +         | +         | +             | $\frac{1}{2}$ |
| AMW         | Weapon Delivery      |          |      |         |      |      |            |        |     |        | T             |           | Γ         | _        |          | 7       | 1         | 1                 | 1         | $\top$    | 1           | $\dagger$         |           |          |   | $\top$     | +         | +            | $\dagger$    | $\dagger$ | +         | -         | H  | -  | _  |          | 7  | 7          | +        | -        |           | +         | +                                                                                                                                                    | $\dagger$ | +         | +            | +         | +         | t             | $\forall$     |
|             | Illumination         |          |      |         |      | _    |            | П      | T   | 1      | T             | T         |           | ×        |          |         |           | 1                 | $\dagger$ | $\dagger$ | T           |                   |           |          |   | $\top$     | $\dagger$ | $\dagger$    | $\dagger$    | +         | $\dagger$ | T         |    |    |    |          | 1  | +          | +        | 7        | $\vdash$  | +         | +                                                                                                                                                    | +         | $\dagger$ | +            | $\dagger$ | +         | +             | 1             |
| 3           | Kill Eval.           |          |      |         |      |      |            | П      |     |        | T             | T         |           |          |          | 7       | 1         |                   | †         | 1         | $\dagger$   | T                 |           |          |   |            | $\dagger$ | $\dagger$    | $\dagger$    | $\dagger$ | t         | $\dagger$ | T  |    |    |          |    | +          | +        | $\dashv$ | +         | +         | $\dagger$                                                                                                                                            | +         | $\dagger$ | +            | +         | +         | +             | ┨             |
| STW         | Weapon Delivery      |          |      |         |      |      |            |        |     |        | >             | <         | Γ         |          |          | 7       | 1         | Ť                 | T         | 1         |             |                   | П         |          |   | $\top$     | 1         | 1            | $\dagger$    |           |           |           |    | ×  | _  |          | ×  | 1          | +        |          |           | $\top$    | $\dagger$                                                                                                                                            | $\dagger$ | +         | $\dagger$    | +         | +         | $\dagger$     | 1             |
| 3           | Clear                |          |      |         |      |      |            | П      |     |        |               |           |           |          |          |         | 1         | 1                 | 1         | 1         | Ť           |                   |           |          |   | >          | ×         | +            | T            | Ť         | $\dagger$ | $\vdash$  | H  |    |    |          |    | $\times$   |          |          | +         | $\dagger$ | +                                                                                                                                                    | +         | -         | $\prec$      | $\dagger$ | +         | ×             | ł             |
| MIM         | Mark                 |          |      |         |      |      |            |        |     |        | T             |           |           |          |          | 1       | T         | Ť                 | 1         | T         |             |                   |           |          |   | ×          | +         | $\dagger$    | T            | $\dagger$ | $\dagger$ |           |    |    |    |          | 7  | +          | 1        | +        | +         | 1         | $\dagger$                                                                                                                                            | +         | ,         | <del>,</del> | $^{+}$    | +         | ×             | 1             |
|             | Kill Eval.           | ×        | ×    | ×       |      | ×    | ×          |        |     | >      | < ×           |           | ×         |          | ×        |         |           |                   | T         |           |             |                   |           |          |   | +          | 1         | 1            |              | T         | 1         |           | ×  | ×  |    |          | 1  | 1          | +        |          | $\forall$ | ×         | <  >                                                                                                                                                 | <>        | <         | $\dagger$    | +         | +         | ×             | ┧             |
| >           | Soft Kill            |          |      |         |      | ×    |            |        |     |        |               |           |           |          |          |         | T         |                   | 1         | T         |             |                   |           | ×        |   | T          | 1         | 1            | T            | T         | İ         | ×         |    |    |    |          | 1  | 1          | 1        |          | 7         | ×         | < >                                                                                                                                                  | <>        | <         | +            | $\dagger$ | $\dagger$ | ×             | ╡             |
| ASUW        | Guidance             |          |      |         |      |      |            |        |     |        |               |           |           |          |          |         |           |                   |           |           | Γ           |                   |           |          |   | $\top$     | 1         |              | T            | T         | T         |           |    |    |    |          |    | 1          | 7        | 1        |           | Ť         | $\dagger$                                                                                                                                            | T         | $\dagger$ | $\dagger$    | +         | $\dagger$ | $\dagger$     | 1             |
| ٩           | Weapon Delivery      |          |      |         |      |      |            |        |     |        |               | Γ         |           |          |          |         |           | T                 |           |           | ×           |                   |           |          |   | T          | T         | 1            |              | T         |           | ×         |    |    |    | 1        | 1  | 1          | 1        | 7        | $\top$    | ×         | </td <td>&lt;&gt;</td> <td>&lt;</td> <td><math>\dagger</math></td> <td><math>\dagger</math></td> <td><math>\dagger</math></td> <td>×</td> <td>;</td> | <>        | <         | $\dagger$    | $\dagger$ | $\dagger$ | ×             | ;             |
|             | Illumination         |          |      |         |      |      |            |        |     |        |               |           |           | ×        |          |         |           |                   |           |           |             |                   |           |          |   | 1          |           |              | T            | T         | T         | ×         |    |    |    | 1        |    | 1          |          | 1        | 1         | ×         | < >                                                                                                                                                  | <>        | <         | Ť            | +         | $\dagger$ | ×             | 1             |
|             | Kill Eval.           |          |      |         |      |      |            |        |     | >      | <             |           |           |          |          |         |           | T                 |           |           |             |                   |           |          |   |            |           |              | T            | T         | Г         |           | ×  |    |    |          |    |            |          | 1        | 1         | ×         | <   >                                                                                                                                                | <>        | <         | +            | +         | $\dagger$ | ×             | 1             |
| ASW         | Soft Kill            |          |      |         |      |      |            |        |     |        |               |           |           |          |          |         |           |                   |           |           |             |                   |           |          | × |            | T         |              | T            |           |           |           |    |    |    | 1        | 1  | 1          |          | 1        | 7         | ×         | ( <b>&gt;</b>                                                                                                                                        | <>        | <         | +            | Ť         | +         | ×             | 1             |
|             | Weapon Delivery      |          |      |         |      |      |            |        |     | >      | <             |           |           |          |          |         |           |                   |           |           |             |                   |           |          |   |            |           |              | T            |           |           |           | ×  |    |    |          | 1  | 1          | Ť        |          | $\top$    | ×         | ( ×                                                                                                                                                  | <>        | <         | T            | +         | T         | ×             | 1             |
|             | Kill Eval.           | ×        | ×    | ×       |      | ×    | ×          |        |     |        |               |           | ×         |          | ×        |         |           | Τ                 |           |           |             |                   |           |          |   |            |           |              |              |           |           |           |    |    |    | 1        |    | 1          | 1        | 1        | $\top$    | ×         | ( ×                                                                                                                                                  | <>        | <         | $^{\dagger}$ | T         | T         | ×             | 1             |
| >           | Soft Kill            |          |      |         | -    | ×    |            |        |     |        |               |           |           |          |          |         |           |                   |           | 1.        |             |                   |           | ×        |   | 1          | 1         | T            | T            |           | T         |           |    |    |    | 7        | 1  | $\uparrow$ | 1        |          | 1         | ×         | ( ×                                                                                                                                                  | < >       | <         | $\dagger$    | $\dagger$ | $\dagger$ | ×             | ;             |
| ₩.          | Guidance             |          |      | $\perp$ |      |      |            |        |     |        |               |           |           |          |          |         |           |                   |           |           |             |                   |           |          | 1 | 1          |           |              |              |           |           |           |    |    |    |          | 1  |            | 1        |          |           |           |                                                                                                                                                      | t         | †         | Ť            | †         | T         | T             | 1             |
|             | Weapon Delivery      |          |      |         |      |      |            |        |     |        |               |           |           |          |          |         |           |                   |           | I         | ×           | ×                 | ×         |          |   |            | 1         | T            |              |           |           |           |    |    |    | 1        | 1  | 1          | 7        | 1        | 7         | ×         | ×                                                                                                                                                    | < >       | <         | +            | T         | T         | ×             |               |
|             | Illumination         |          |      | ×       |      |      |            |        |     |        |               |           |           | ×        |          |         |           |                   |           |           |             |                   |           |          |   |            |           | T            |              |           |           |           |    |    |    |          |    | T          | 1        | 1        |           | -         | +                                                                                                                                                    | <b></b>   |           | +            | +         | T         | ×             | :             |
| Elements    | Coast Guard Option 2 | AR.      | 2-67 | (0)     | 100  | 7-32 | EO/OPTICAL | ACDS   | 0,0 | DHIN   | ALL BOATS (4) | IFF       | GFCS      | SS RADAR | IR Mk-46 | CECCMMS | AM        | RING INFO NETWORK | 2         | S         | AM GUNS (2) | Mk 49 (RAM LNCHR) | SAM       | 200      | E | BOOY EQUIP | - E-MAI   | Requirements | A1           | A2        | A3        | A4        | A5 | A6 | Α/ | AB       | AB | A10        | - C      | A12      | A13       | 2         | 60                                                                                                                                                   | 3 8       | 3 2       | 5 6          | 80        | C7        | 83            |               |
|             | ဝိ                   | XPAR     | SPS  | TAS     | HS C | מר   | Ω̈́<br>Ž   | A C    | 2 2 |        | SMA           | IFF       | OFO.      | SF<br>D  | 2 2      |         | L A       | N N               | Ž         | SDS       | 40 N        | ₹                 | 2         | SRBOC    |   |            | 3         |              |              |           |           |           |    |    |    |          |    |            |          |          |           |           |                                                                                                                                                      |           |           |              |           |           |               |               |

Table F-15: Functonal Allocation - Engagement (Coast Guard option 2)

| WITO     | Inorganio            |           |           |          |          |               |          |           |             |                 |          |            | - 1      |            |           |                | - 1          | - 1       | - 1        | 1        | 1 1          | - 1          | i         | 1         | ı            |           | 1        |              |          |              |          |           |           |           |          | 1 1      | - 1       | - 1       |               |           |           |           |                           |
|----------|----------------------|-----------|-----------|----------|----------|---------------|----------|-----------|-------------|-----------------|----------|------------|----------|------------|-----------|----------------|--------------|-----------|------------|----------|--------------|--------------|-----------|-----------|--------------|-----------|----------|--------------|----------|--------------|----------|-----------|-----------|-----------|----------|----------|-----------|-----------|---------------|-----------|-----------|-----------|---------------------------|
| W        | Inorganic            | T-        | -         | ┢        | ļ.,      |               | Ш        | Ц         | _           |                 | 1        |            | 1        | $\perp$    |           |                |              | 1         |            |          |              |              |           |           | L            |           |          |              |          |              |          |           |           |           |          |          |           |           |               |           |           |           |                           |
| WI       |                      |           |           |          | L        |               | Ш        | Ц         | $\perp$     | _               | 1        |            | $\perp$  | $\perp$    |           |                |              |           |            |          |              |              |           |           |              |           |          |              |          |              |          |           |           |           | L        |          |           |           |               |           |           |           |                           |
| 2        | Organic              |           |           | L        | L        |               |          |           | >           | < ×             |          |            |          |            |           |                |              |           |            |          |              |              |           |           |              |           | ×        |              |          | ××           | ×        |           |           |           |          |          |           |           |               |           |           |           |                           |
| 12       | Visual               |           |           |          |          | ×             |          |           | >           | <  ×            | 1        |            |          |            | İ         |                |              |           |            |          |              |              |           |           |              |           | ×        |              |          |              | ×        |           |           |           |          |          |           |           |               | T         | П         | T         | T                         |
| ΙĊ       | IR.                  |           |           |          |          |               |          |           | >           | <               |          |            |          | <u> </u>   |           |                |              |           |            |          |              |              |           |           | T            |           | ×        |              |          | T            | ×        |           |           |           | Г        |          |           | T         |               | Τ         | П         |           | 1                         |
| ľ        | ESM                  |           |           |          | ×        |               |          |           | >           | <               |          |            |          |            |           |                |              |           | T          | T        |              |              | T         |           |              |           | ×        |              |          |              | ×        |           | T         |           | 1        | П        | 1         |           | T             |           | П         | T         | $\top$                    |
|          | Surf Search          | ×         | ×         |          |          |               |          |           | >           | <               |          |            | ×        |            |           |                |              |           |            |          |              |              | T         | Γ         |              |           | ×        |              |          |              | ×        |           |           | T         |          | П        |           | T         | T             | T         |           | T         | +                         |
| L        | Vol. Search          | ×         | ×         |          |          |               |          |           | >           | <               |          |            | ×        | T          |           |                |              | T         |            |          | П            |              |           |           | T            |           | ×        |              |          | T            | ×        | П         |           |           | Т        | П        |           | T         |               | T         | Ħ         | 7         | +                         |
| Г        | Inorganic            |           |           |          |          |               |          |           |             |                 |          |            | 1        |            |           |                | 1            | T         | T          |          |              | 1            |           |           |              |           |          |              |          |              | T        |           | +         | 1         | T        |          |           | T         | T             | T         |           | $\dagger$ | $\dagger$                 |
| l        | Organic              |           |           |          |          |               |          |           | >           | < ×             | :        |            |          | T          |           |                |              | 1         | T          |          |              |              |           | T         |              | П         | ×        | $\top$       | >        | <  ×         | ×        |           |           | 1         | 1        | П        |           | 1         | t             | T         |           | $\dagger$ | $\dagger$                 |
|          | Visual               |           |           |          |          | ×             |          |           | >           | < ×             |          |            |          |            |           |                | 1            | T         | T          |          |              |              | T         | T         | Г            | П         | ×        |              | T        | 1            | ×        |           | T         | $\top$    | T        |          | +         | 1         |               | $\vdash$  | $\Box$    | $\top$    | T                         |
| SAR      | IR                   |           |           |          |          | П             |          |           | >           | <               |          |            | >        | <          | П         | 1              | 1            |           | $\dagger$  |          |              | 1            | T         |           | Т            | П         | ×        |              | †        | 1            | ×        |           | $\dagger$ | +         | +        | $\sqcap$ | +         | +         | ┢             | T         | Н         | $\top$    | +                         |
| ľ        | ESM                  |           |           |          | ×        | П             |          | T         | ×           | <               |          | 7          | T        | T          | $\Box$    |                | T            | T         |            |          | П            |              | $\dagger$ | T         | T            | П         | ×        | $\dashv$     | 1        | T            | ×        |           | Ť         | $\dagger$ | $^{+}$   | Ħ        | $\dagger$ | $\dagger$ | t             | $\vdash$  | $\vdash$  | +         | +                         |
|          | Surf Search          | ×         | ×         | П        |          | П             |          | $\dagger$ | -<br>×      | <               |          | 1;         | ×        | $\top$     | П         | 1              | $\dagger$    | $\dagger$ | t          |          |              | $^{\dagger}$ | $\dagger$ | H         | $\vdash$     |           | ×        | +            | +        | +            | ×        | H         | +         | +         | $^{+}$   | $\vdash$ | +         | +         | ╁             | +         | Н         | +         | +                         |
| ١        | Vol. Search          |           |           |          |          | Н             |          | +         | -<br> >     | <del>,</del>    |          | 1          | ×        | +          | $\forall$ | +              | +            | +         | +          |          |              | +            | +         |           |              | -         | ×        | $\dashv$     | +        | +            | ×        | Н         | +         | +         | +        |          | +         | +         | +             | -         | Н         | +         | +                         |
| H        | Inorganic            | 1         | -         |          |          | H             |          | +         | +           | +               | H        | +          | +        | +          | H         | +              | +            | +         | +          | -        | $\forall$    | +            | +         | -         | -            | $\vdash$  | 1        | +            | +        | +            | H        | +         | +         | +         | -        | H        | +         | +         | +             | H         | H         | +         | +                         |
|          | Organic              |           | _         | Н        | $\vdash$ |               | -        | +         | ×           | (×              |          | $\dashv$   | +        | +          | H         | +              | +            | +         | +          | $\vdash$ | +            | +            | +         | -         | $\vdash$     | H         | ×        | -            | <        | < ×          | -        | ×         | +         | +         | +        | -        | -         | -         |               | $\vdash$  | $\dashv$  | +         | -                         |
|          | Visual               | $\vdash$  | _         | $\vdash$ | Н        | ×             | +        | +         | ×           | +-              | Н        | +          | +        | +          | $\dashv$  | +              | +            | +         | +          | H        | $\forall$    | +            | -         | -         | H            | H         | ^ <br>×  | -            | +        | 1            | $\vdash$ | ×         | +         | +         | +        | H        | +-        | ( ×       | +             | -         | $\vdash$  | +         | ×                         |
| ELT      | ļ                    |           | $\dashv$  | Н        | _        | H             | +        | +         | ×           | +               | H        | +          | ,        | +          | $\dashv$  | +              | +            | +         | -          | H        | $\dashv$     | +            | +         | -         | H            | -         | ×        | -            | <  <br>< | +            | H        | ×         | -         | +         | -        | -        | +         | ×         | +             |           | H         | +         | ×                         |
| Ψ        |                      | H         | -         | +        | ×        | Н             | +        | +         | \<br>\<br>\ | +-              | Н        | +          | +        | +          | Н         | +              | +            | +         | ╀          | Н        | -            | +            | +         | _         |              | $\vdash$  | +        | +            | +        | +            | Н        | -         | $\perp$   | +         | -        |          | ×         | ╁         | ╁             | L         |           | +         | ×                         |
| ١        | ESM                  |           | ×         |          | ^        | Н             | $\dashv$ | +         | +           | +-              | Н        | -          |          | +          |           | +              | +            | +         | $\vdash$   |          | -            | +            | -         | _         |              | -         | ×        | -            | <        | +            | Н        | ×         | +         | +         | $\perp$  |          | ×         | +-        | -             |           |           | _         | ×                         |
| l        | Surf Search          | -         | -         |          |          | Н             | +        | +         | ×           | +-              | H        | -          | ×        | +          | Н         | +              | +            | +         | 1          | H        | -            | +            | +         |           |              | $\vdash$  | ×        | +            | <        | +            |          | ×         | 1         | +         | 1        |          | +-        | ×         | ╄             |           | 4         | _         | ×                         |
| $\vdash$ | Vol. Search          | -         | ×         |          |          | H             | +        | +         | ×           | -               | H        | -          | <u> </u> | +-         | Н         | +              | +            | +         | H          | H        | $\dashv$     | +            | +         |           | Н            | H         | ×        | - >          | 4        | +            |          | ×         | 4         | 4         |          |          | ×         | ×         | ×             |           | 4         | 1         | ×                         |
| 3        | Inorganic            |           | 4         |          |          | $\sqcup$      | 4        | +         | +           | _               | $\vdash$ | +          | +        | +          | $\Box$    | -              | 1            | +         | L          |          | $\downarrow$ | +            | 1         |           | Ц            |           | 4        | $\downarrow$ | 4        | $\perp$      | Н        | 4         | _         | _         | Ш        |          | 1         | _         | L             |           | $\perp$   | _         | $\perp$                   |
| AMV      |                      | $\dashv$  | _         |          | -        |               | 4        | +         | +           | ×               | $\vdash$ | +          | >        | 4          |           | 1              | +            | 4         | _          |          | $\downarrow$ | 4            |           |           |              |           | 4        | 1            | 1        | 1            |          | 4         | _         | _         | Ш        | $\perp$  | _         | 1         | L             |           | _         | $\perp$   | ┸                         |
| L        | Visual               |           | 4         | 4        | _        | ×             | $\perp$  | 4         | ×           | ×               |          | $\perp$    | 4        | 1          | $\sqcup$  | 4              | 4            | +         | L          |          | 4            | 1            | 1         |           |              |           | 4        | $\perp$      | 1        | $\downarrow$ |          | _         | 1         | Ļ         |          |          | $\perp$   | L         |               |           |           | 1         |                           |
| STW      | Inorganic            |           | _         | 4        |          |               | 1        | 4         | $\perp$     | 1               |          | 4          | 4        | 1          | Н         | 4              | $\downarrow$ | 1         |            |          | _            | $\perp$      |           |           |              |           | 1        |              | 1        | 1            |          | 1         | _         |           |          | Ц        |           | L         | L             |           | _         | $\perp$   | $\perp$                   |
| Ľ        | Organio              | _         | _         | 4        |          |               | 4        | 4         | ×           | ×               | Щ        | 4          | 1        | 1          | Н         | 1              | _            | 1         | L          |          | 4            | 1            | Ц         |           | Ц            |           | 4        |              | 1        | _            | Ш        | 1         |           | $\perp$   |          |          |           | L         | L             |           |           |           |                           |
| >        | Inorganic            | _         | _         | _        | 4        |               | _        | 1         | _           |                 |          | 1          | 4        | $\perp$    |           | 1              | 1            | 1         | L          |          |              | 1            | ×         |           |              |           | _        |              | 1        | _            |          |           |           |           |          |          |           |           |               | ×         |           | $\perp$   |                           |
| Š        | Organic              | _         | 4         | ×        |          |               | 4        | 1         | ×           | ×               | Ш        | 4          | _        | _          | Ц         | 1              | 1            | $\perp$   |            |          |              |              |           |           |              | _         |          |              | <u> </u> | ×            |          |           | ×         | <         |          |          |           |           |               | ×         |           |           |                           |
| L        | Ship Board           | _         | 1         |          |          | ×             | _        | 1         | $\perp$     |                 | Ц        |            | $\perp$  |            | Ц         |                |              | $\perp$   |            |          | $\perp$      |              |           |           |              | 1         | ×        |              |          |              |          |           | ×         |           |          |          |           |           |               | ×         |           |           |                           |
|          | Inorganic            |           |           |          |          |               |          |           | L           |                 |          |            |          |            | Ш         |                |              |           |            |          |              |              |           |           |              |           |          |              |          |              |          |           |           |           |          |          |           | Γ         |               |           |           | T         |                           |
|          | Organic              |           |           |          |          |               |          |           | ×           | ×               |          |            |          |            |           |                |              |           |            |          |              |              |           |           |              | ;         | ×        | ×            | <        |              |          | ×         |           | Г         |          |          | ×         | ×         | ×             |           |           |           | ×                         |
| ₹        | Visual               |           |           |          |          | ×             |          |           | ×           | X               |          |            |          |            | П         | T              |              | T         |            |          | T            |              |           |           |              | ;         | ×        | ×            | <        | Г            |          | ×         | T         |           | П        |          | ×         | ×         | ×             |           | $\top$    | Ť         | ×                         |
| ASL      | IR                   |           |           |          |          |               |          |           | ×           |                 |          |            | ×        |            |           | T              |              |           |            |          |              |              |           |           |              | 1         | ×        | ×            | <        | T            | П        | ×         | 1         | T         |          |          | ×         | ×         | ×             |           | $\top$    | $\top$    | ×                         |
|          | ESM                  |           |           | :        | ×        |               | T        |           | ×           |                 |          | T          |          | T          |           | T              |              |           |            |          |              |              | П         |           |              | ;         | ×        | ×            | <        |              |          | ×         | T         | T         |          |          | ×         | ×         | ×             |           | +         | t         | ×                         |
|          | Surf Search          | ×         | ×         |          |          |               |          | T         | ×           |                 |          | >          | <        |            |           |                | T            |           |            |          | 1            | T            | $\prod$   |           |              | ,         | ×        | ×            | <        | $\vdash$     |          | ×         | $\dagger$ |           | П        | $\top$   | ×         | ×         | ×             |           | $\dagger$ | ╁         | ×                         |
|          | Inorganic            |           |           |          |          |               | T        | T         | T           | П               |          |            |          | T          |           |                | T            | T         |            |          |              |              | П         |           |              | 1         | Ť        | 1            | 1        | 1            | П        | +         | 1         |           |          | $\top$   |           |           |               |           | +         | +         | Н                         |
| 3        | Organic              | 1         | 1         | 1        |          | 1             | 1        |           | ×           | ×               |          | $\dagger$  | T        | T          |           | $\dagger$      | +            | 1         | П          | 1        | $\dagger$    | $\dagger$    | П         |           |              | >         | ×        | +            | ×        | ×            | H        | $\dagger$ | +         |           | H        | +        | +         | -         | ×             | $\forall$ | +         | $\dagger$ | $\dagger \dagger$         |
| ASW      | Passive              | T         | 7         |          | 1        | ×             | $\top$   |           | ×           | П               |          | T          | 1        |            |           | 1              | T            |           |            |          | $\dagger$    |              | $\sqcap$  | 1         | 1            | ,         | ×        | $\top$       | 1        |              |          | +         | +         |           | Н        | +        | $\top$    |           | ×             | 1         | +         | +         | $\forall$                 |
|          | Active               | 1         | 1         | 1        |          |               |          |           | ×           | 1 -1            |          | $\dagger$  | T        |            |           | +              | $\dagger$    | T         |            | 1        | †            | T            |           |           | +            | >         | ×        | +            | T        |              | H        | +         | +         | $\vdash$  |          | +        | $\dagger$ | -         | ×             | $\dagger$ | +         | $\dagger$ | $\forall$                 |
| П        | Inorganic            | 1         | 1         |          | 1        | $\dagger$     | +        |           | T           | П               | +        | +          | 1        |            |           | $\dagger$      | +            |           | П          |          | +            | +            | H         | 1         | +            | $\dagger$ | +        | $\top$       | †        |              |          | +         | +         | $\vdash$  | H        | +        | +         |           | H             | +         | +         | +         | $\forall$                 |
|          | Organic              | 1         |           | 1        | +        | $\top$        | +        |           | ×           | $\dagger$       | +        | $\dagger$  | +        |            |           | +              | +            |           | П          | 1        | +            | $\dagger$    | $\forall$ | $\forall$ | +            | ,         | ×        | +            | ×        | ×            | 1        | ×         | +         | $\vdash$  | Н        | +        | ×         | ×         | ×             | +         | +         | $\dagger$ | ×                         |
| 3        | Visual               | +         | +         | +        | 1        | ×             | +        | +         | ×           | 1-1             | 1        | $\dagger$  | +        |            | +         | $\dagger$      | $\dagger$    |           |            | +        | +            | +            | H         | +         | +            | -         | ×        | +            | 1        |              | -        | ×         | +         | +         | $\dashv$ | +        | -         | -         | -             | +         | +         | +         | ×                         |
| AAW      | IR                   | +         | +         | +        | +        | +             | +        | +         | ×           | H               | +        | +          | ×        |            | +         | +              | $\dagger$    |           | Н          |          | +            | +            | H         | +         | +            |           | <u> </u> | +            | +        |              |          | ×         | +         | Н         | -        | +        | ×         | -         | ×             | +         | +         | +         | ×                         |
|          | ESM                  | $\dagger$ | $\dagger$ | 1        | ×        | 1             | +        |           | ×           | $  \cdot  $     | +        | +          | +        |            | +         | +              | $\dagger$    | Н         | Н          | +        | +            | +            | ++        | +         | +            | +         | <u> </u> | +            | +        | H            |          | ×         | +         | H         | -        | +        | +         | -         |               | +         | +         | +         | ×                         |
|          | Voi Search           | ××        | <         | +        | +        | +             | +        | +         | ×           | $\forall$       | +        | ×          | 1        | $\vdash$   | +         | +              | +            |           |            | -        | +            | +            | +         | +         | +            | +         | <u> </u> | +            | +        | Н            | -        | ×         | +         |           | +        | +        | -         | ×         | $\rightarrow$ | +         | +         | +         | $\stackrel{\sim}{\times}$ |
| +        |                      | +         | -         | ال       | +        | +             | +        | +         | +           | H               | +        |            |          | H          | +         | ×              | -            | H         | +          | +        | +            | +            | $\vdash$  | +         | +            | +         | +        | +            | +        | $\vdash$     | +        | +         | +         | H         | +        | -        | 1         | Ĥ         | 7             | +         | +         | +         | A                         |
| Elements | Coast Guard Option 3 | PS-49     | T-0-0/    | O 33     | -U-32    | VIDEO/OPTICAL | - CDS    | VOIS      | DOLPHIN     | SMALL BOATS (3) | le F     | GECS RADAR | Mk-46    | DICE COMMS | GPS       | NG INFO NETWOR | CS           | DS        | MM GUN (1) | STINGER  | SKBOC        | BUOY EQUIP   | OD TEAM   |           | Requirements | A1        | A2       | A4 A3        | A5       | A6           | A7       | AB        | A10       | A11       | A12      | A13      | D C       | C5        | C3            | 20        | 3 3       | C7        | 80                        |

| ŀ        | Command              | _        | L     |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×            | L        | ×             |         |                 |         |              |           | 1            | 4                                                                                                                                                                                                                                                                                                                                                                                         | 1               | ×                  | L        | Ш            | _            | 1        |           | 1          |              | Ц            | _            | $\perp$      | 1        |          |              | ^        | 1        | L         | L        | L        | L        |           | Ш            |          | Ш                                                                |         |           |         |              |
|----------|----------------------|----------|-------|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|---------------|---------|-----------------|---------|--------------|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|----------|--------------|--------------|----------|-----------|------------|--------------|--------------|--------------|--------------|----------|----------|--------------|----------|----------|-----------|----------|----------|----------|-----------|--------------|----------|------------------------------------------------------------------|---------|-----------|---------|--------------|
| ≥        | Display              | L        | L     | L         |          | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | L        | ×             |         | L               | Ш       | ×            |           | 1            | ×                                                                                                                                                                                                                                                                                                                                                                                         | 1               | ×                  | L        | Ц            |              |          |           | L          |              |              | >            | <⊥           | L        |          |              | >        | (        |           |          |          | L        |           |              |          |                                                                  |         |           |         | T            |
| ō        | Identify             |          |       |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×            |          | ×             | ×       | ×               | ×       |              | :         | ×            | ×                                                                                                                                                                                                                                                                                                                                                                                         | Τ               | ×                  |          |              | Ţ            | T        | I         | П          |              |              |              | T            | Τ        |          | T            | 7        | 1        | Τ         |          | Γ        | Г        |           | П            |          |                                                                  |         | Т         | T       | Ť            |
|          | Voice Comm           |          | Г     |           |          | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          | Г             |         |                 |         |              |           | 1            | ×                                                                                                                                                                                                                                                                                                                                                                                         | T               |                    |          |              | 1            | T        | 1         | T          | П            | $\forall$    | ,            | <            | ×        | П        | $\top$       | ,        | :        | 1         | t        | t        | t        | Н         | П            |          |                                                                  | 1       | +         | $^{+}$  | $^{\dagger}$ |
| 7        | Command              | 1        |       |           |          | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |          | ×             | T       |                 | Н       |              | 7         | 1            | ۲,                                                                                                                                                                                                                                                                                                                                                                                        | را <sub>×</sub> | ×                  |          | H            | +            | +        | $^{+}$    | +          |              | $\forall$    | $^{\dagger}$ | +            | +        | Н        | $^{\dagger}$ | >        | +        | t         | t        | +        | H        | Н         | Н            | ×        |                                                                  | ×       | +         | +       | +            |
| ŀ        | Correlate            | -        | _     | Н         | J        | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | -        | -             | -       |                 |         |              | ×         | -            | +                                                                                                                                                                                                                                                                                                                                                                                         | +               | ×                  | $\vdash$ | Н            | +            | +        | +         | +          | -            | +            | +            | +            | +        | Н        | +            | +        | +        | ╀         | 1-       | -        | +-       | H         | Н            | -1       | -                                                                | -       | +         | +       | +            |
| -        |                      | +        | _     | Н         | ^        | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н            | Н        | -             | ⊢       | Н               | Н       | -            | -+        | 7            | +                                                                                                                                                                                                                                                                                                                                                                                         | +               | ┿                  | -        | 4            | +            | +        | +         | $\perp$    | Н            | 4            | +            | +            | 1        | Н        | 4            | ×        | 1        | ╀         | 1        | L        | 1        | Ш         | Н            | ×        | ×                                                                | ×       | 4         | 1       | 4            |
| SAR      | Track                | -        | L     | Ц         |          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | L        | -             | 1       | Н               | Н       | ×            | ×         | 4            | 1                                                                                                                                                                                                                                                                                                                                                                                         | 4               | ×                  | L        | Ц            | 1            | 4        | 1         |            |              | $\perp$      | 1            | $\downarrow$ | 1        | Ц        | 1            | <u> </u> | 1        |           | L        | L        | L        | Ш         |              | ×        | ×                                                                | ×       | 1         |         | _            |
| "        | Identify             |          |       | Ц         | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |          | ×             | ×       | ×               | ×       |              | - 1       | ×            | 1                                                                                                                                                                                                                                                                                                                                                                                         | 1               | ×                  |          |              |              |          | L         | Ш          |              |              |              | $\perp$      |          |          |              | ×        |          |           |          |          |          | Н         |              | ×        | ×                                                                | ×       |           |         |              |
| 1        | Display              |          |       | П         | ×        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×            |          | ×             |         |                 |         | ×            | ;         | ×            |                                                                                                                                                                                                                                                                                                                                                                                           |                 | ×                  |          |              | Ţ            | T        | Τ         |            |              |              | >            | <            | Γ        |          | T            | ×        |          | Γ         | T        |          | Г        |           |              | ×        | ×                                                                | ×       | T         |         | T            |
|          | Voice Comm           |          |       | П         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |          | Г             |         |                 | П       |              | T         | 1            | <                                                                                                                                                                                                                                                                                                                                                                                         |                 | T                  |          |              | 1            | 1        | T         | П          | П            |              | 7            | <            |          |          | +            | \<br>×   | 1        | $\dagger$ | T        | T        | T        | П         |              | 7        | 7                                                                | ×       | +         | $^{+}$  | +            |
| 7        | Command              | Г        |       | П         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×            |          | ×             | Τ.      |                 |         | ٦            | 7         | ٦,           | </td <td>(×</td> <td>×</td> <td>×</td> <td>×</td> <td>+</td> <td>+</td> <td>+</td> <td>Н</td> <td>Н</td> <td><math>\forall</math></td> <td><math>^{+}</math></td> <td>+</td> <td>+</td> <td>×</td> <td>+</td> <td>+</td> <td>╁</td> <td>+</td> <td>t</td> <td>1</td> <td>-</td> <td>Н</td> <td>1</td> <td>×</td> <td><math>\vdash</math></td> <td>×</td> <td>+</td> <td>+</td> <td>+</td> | (×              | ×                  | ×        | ×            | +            | +        | +         | Н          | Н            | $\forall$    | $^{+}$       | +            | +        | ×        | +            | +        | ╁        | +         | t        | 1        | -        | Н         | 1            | ×        | $\vdash$                                                         | ×       | +         | +       | +            |
| 1        | Weapons Assg         | -        |       | Н         | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×            |          | ×             | -       | Н               | Н       | J            | +         | -            | <                                                                                                                                                                                                                                                                                                                                                                                         | +               | +-                 | ×        | ×            | +            | +        | +-        | Н          | Н            | +            | +            | +            | +        | -        | +            | +        | ╁        | ╀         | ╀        | ⊬        | H        | H         |              | $\dashv$ | $\dashv$                                                         | +       | +         | +       | +            |
| 1        |                      | -        | -     | Н         | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | H        | ⊢             | -       |                 |         |              | -         | +            | 7                                                                                                                                                                                                                                                                                                                                                                                         | +               | ┿                  | Н        | 7            | +            | +        | +         | H          | Н            | +            | +            | +            | +        | ×        | +            | +        | ╀        | ╀         | ╄        | L        | 1        | Н         | -            | -        | -                                                                | ×       | 4         | 4       | 4            |
| 1        | Correlate            | -        | _     | Н         | ×        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н            | Н        | -             | ×       | Н               | ×       | -            | ×         | ~            | +                                                                                                                                                                                                                                                                                                                                                                                         | +               | ×                  | Ш        | 4            | 4            | 1        | 1         | $\sqcup$   |              |              | 1            | 1            | L        | ×        | 4            | $\perp$  | L        |           | $\perp$  | L        | L        |           |              | ×        | ×                                                                | ×       | 4         | 1       | 1            |
| ٦.       | Track                |          |       | Ц         | _        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |          | ×             | ×       | ×               |         | ×            | ×         | 1            | $\perp$                                                                                                                                                                                                                                                                                                                                                                                   | 1               | ×                  |          |              | 1            | 1        |           | Ш          |              | 1            |              |              |          | ×        |              |          | L        | L         |          |          |          |           |              | ×        | ×                                                                | ×       | $\perp$   |         |              |
|          | Threat Eval.         |          |       |           | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |          | ×             | ×       | ×               | ×       |              | 1         | ×            |                                                                                                                                                                                                                                                                                                                                                                                           |                 | ×                  |          |              | 1            |          |           |            |              |              |              |              |          | ×        |              |          |          |           |          |          |          |           |              | ×        | ×                                                                | ×       | T         | T       | T            |
|          | Identify             |          |       |           | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |          | ×             | ×       | ×               | ×       |              | ,         | ×            |                                                                                                                                                                                                                                                                                                                                                                                           | Τ               | ×                  | П        |              |              | T        | T         |            |              | T            | T            | 1            | Г        | ×        | +            | 1        | T        | T         | Г        | Г        | T        |           |              | ×        | $\times$                                                         | ×       | +         | T       | +            |
| t        | Display              |          |       | П         | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |          | ×             |         |                 |         | ×            | ٦,        | <u> </u>     | $^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                              | $^{\dagger}$    | ×                  | Н        | 1            | $^{+}$       | +        | +         | Н          |              | +            | 1            | 1            |          | ×        | $^{+}$       | +        | H        | t         | t        | 1        | -        | Н         | $\dashv$     | -        | -                                                                | ×       | +         | $^{+}$  | +            |
| t        |                      |          | -     |           | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н            |          | -             | Н       | -               | +       | 1            | +         | +            | <del>\</del>                                                                                                                                                                                                                                                                                                                                                                              | +               | +                  | Н        | +            | +            | +        | +         | Н          | -            | +            | 1            | }-           | Н        | -        | +            | +        | ╁        | ⊬         | ╀        | H        | ⊢        | Н         | +            | 7        | -+                                                               | -+      | +         | +       | +            |
| +        | Voice Comm           | $\vdash$ | -     | $\dashv$  | 4        | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н            |          | -             | H       | Н               | +       | +            | +         | -1           | +                                                                                                                                                                                                                                                                                                                                                                                         | +               | ╀                  | Н        | +            | +            | +        | +         | Н          | -            | 4            | *            | 4            | ×        | ×        | +            | +        | Ļ        | L         | ┡        | L        | L        | Н         | 4            | 4        | 1                                                                | ×       | 4         | 1       | 4            |
| -        | Command              | Ц        | _     | Ц         | 4        | Ц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш            |          |               | L       | Ц               | Щ       | 4            | 1         | 4            | 1                                                                                                                                                                                                                                                                                                                                                                                         | $\perp$         | L                  |          | 1            | $\perp$      | ┸        | 1         | Ц          |              |              | 1            | $\perp$      | Ц        |          |              | l        |          | L         |          |          |          |           |              |          |                                                                  |         |           |         | Ĺ            |
| 1        | Weapons Assg         |          |       |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ш            | Ш        | L             | Ш       |                 |         |              |           |              | 1                                                                                                                                                                                                                                                                                                                                                                                         | L               | L                  |          |              | 1            | 1        |           |            |              |              |              |              |          |          |              |          | 1        |           |          |          |          | LĪ        |              | 1        | 1                                                                |         |           |         | ſ            |
|          | Correlate            |          | 1     |           | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×            |          | ×             |         |                 | 1       | T            | T         |              |                                                                                                                                                                                                                                                                                                                                                                                           |                 | ×                  |          | T            | T            | T        | Γ         | П          | 1            | T            | T            | T            |          |          | T            | T        |          | Г         | Γ        | Г        | Г        | П         | 1            | 7        | 7                                                                | T       | T         | T       | T            |
| اج       | Track                |          | _     |           |          | П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | П        | ×             | П       |                 | 7       | 1            | +         | 1            | $\dagger$                                                                                                                                                                                                                                                                                                                                                                                 | 1               | ×                  |          | 1            | $\top$       | +        | $\dagger$ | H          | 1            | +            | +            | +            | П        | 1        | +            | +        | T        | H         | T        | T        | Н        | Н         | +            | +        | +                                                                | +       | +         | +       | +            |
| <b>§</b> | Threat Eval.         | H        | -     |           | +        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            | Н        | ×             | Н       | -               | +       | +            | +         | +            | +                                                                                                                                                                                                                                                                                                                                                                                         | +               | ×                  |          | +            | +            | +        | +         | Н          | -            | +            | +            | +            | Н        | +        | +            | +        | -        | -         | -        | H        | Н        | H         | +            | +        | +                                                                | +       | +         | +       | +            |
| 1        |                      | Н        | -     | H         |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н            | Н        | Н             | Н       | 4               | 4       | +            | +         | +            | +                                                                                                                                                                                                                                                                                                                                                                                         | +               | -                  |          | +            | +            | +        | +         | H          | 4            | +            | +            | +            | Н        | 4        | +            | +        | -        | -         | 1        | L        | H        | Н         | 4            | 4        | 4                                                                | 4       | +         | +       | 4            |
| 1        | Identify             | Н        | _     | 4         | $\dashv$ | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н            | Ц        | ×             | Ц       | 4               | 4       | 4            | 1         | 1            | 1                                                                                                                                                                                                                                                                                                                                                                                         | 1               | ×                  | Ц        | $\downarrow$ | 1            | 1        | 1         | Ш          | _            | 1            | 1            | 1            | Ш        | $\perp$  | 1            | 1        | 1        | L         | L        |          | L        | Ц         |              | $\perp$  |                                                                  | $\perp$ | $\perp$   |         | 1            |
| 1        | Display              | Ц        |       |           |          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |          | ×             |         |                 |         |              |           | 1            | 1                                                                                                                                                                                                                                                                                                                                                                                         | L               | ×                  |          | $\perp$      | 1            | 1        | 1         | Ц          |              |              | 1            | 1            |          |          |              |          |          |           | 1        | L        |          |           |              |          |                                                                  |         |           | _       |              |
|          | Voice Comms          |          |       |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |          |               |         |                 | _ [     |              | _ [       | _ >          | <                                                                                                                                                                                                                                                                                                                                                                                         |                 |                    |          |              |              | 1        | 1         | 17         | Ī            | T            | Γ            | T            | П        | T        | T            | Γ        |          |           |          |          | П        | 1         | T            | T        | 7                                                                | T       | T         | T       | T            |
| T        | Command              |          |       |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×            |          | ×             | П       |                 | T       | T            | T         | >            | <                                                                                                                                                                                                                                                                                                                                                                                         | T               | ×                  | П        |              | $\top$       | Ť        | T         |            |              | 1            | T            | T            | П        | 7        | 1            | T        | Г        |           | -        | П        | П        | П         | +            | 7        | 1                                                                | †       | +         | +       | †            |
|          | Identify             |          |       |           | 7        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |          | ×             | П       | 7               | 7       | +            | +         | $^{\dagger}$ | +                                                                                                                                                                                                                                                                                                                                                                                         | +               |                    | H        | +            | $^{\dagger}$ | t        | t         | $\dagger$  | +            | +            | $^{\dagger}$ | +            | Н        | +        | $^{\dagger}$ | +        | +        | H         | $\vdash$ | Н        | Н        | Н         | +            | +        | +                                                                | +       | +         | +       | +            |
| }        |                      | Н        | -     | $\dashv$  | +        | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×            | $\dashv$ | ×             | Н       | -               | +       | +            | +         | +            | +                                                                                                                                                                                                                                                                                                                                                                                         | +               | ×                  |          | +            | +            | +        | ╁         | H          | +            | +            | +            | ╁            | Н        | +        | +            | +-       | +        | -         | ⊬        | Н        | Н        | Н         | +            | +        | 1                                                                | +       | +         | +       | +            |
| 1        | Display              | Н        | -     | +         | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A            | $\dashv$ | $\hat{-}$     | Н       | +               | +       | +            | +         | +            | +                                                                                                                                                                                                                                                                                                                                                                                         | +               |                    |          | +            | +            | +        | +         | H          | $\dashv$     | +            | +            | +            | Н        | 4        | 4            | ╀        |          | L         | _        |          | Ц        |           | 4            | 4        | 4                                                                | 4       | 1         | 1       | 1            |
| 4        | Voice Comms          |          | 4     | 4         | 4        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ц            | _        | _             |         | 4               | 1       | 1            | _         | ^            | 4                                                                                                                                                                                                                                                                                                                                                                                         | L               |                    |          | 1            | $\perp$      | $\perp$  | $\perp$   | Ш          | _            | 1            | ⊥            | $\perp$      |          | 1        | $\perp$      |          | L        | L         |          |          |          |           |              | 1        | $\perp$                                                          | 1       |           |         |              |
| L        | Command              |          |       |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×            |          | ×             |         |                 |         | ŀ            |           | >            | ٩×                                                                                                                                                                                                                                                                                                                                                                                        | ×               | ×                  |          |              |              |          |           |            |              | 1            |              |              | 1        | Į        | -            |          |          |           | ×        |          |          |           | T            | T        | T                                                                | ,       | ×         | Τ       | Τ            |
|          | Correlate            |          |       | ×         |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |          | ×             | ×       | ×               | T       | T            | T         | Т            | Τ                                                                                                                                                                                                                                                                                                                                                                                         | Т               | ×                  |          | T            | Ţ            | Γ        | Τ         | П          | 7            | T            | T            | T            | П        |          | T            | T        |          |           | ×        |          |          | П         | T            | Ť        | 7                                                                | ٦,      | <         | T       | T            |
| ſ        | Track                |          |       | ×         |          | ٦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | $\neg$   | ×             | ×       | ×               | 1       | T            | T         | $\top$       | T                                                                                                                                                                                                                                                                                                                                                                                         | Τ               | ×                  |          | 1            | T            | T        | T         | П          |              | 7            |              | T            | П        | 7        | +            | t        |          |           | ×        | Н        | Н        | Ħ         | +            | +        | +                                                                | ۲,      | <         | +       | †            |
| 1        | Threat Eval.         |          | 7     | ×         | 7        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | $\dashv$ | ×             | ×       | ×               | 7       | $^{\dagger}$ | +         | $^{\dagger}$ | +                                                                                                                                                                                                                                                                                                                                                                                         | t               | ×                  | 7        | +            | +            | +        | +         | Н          | +            | +            | +            | $^{+}$       | Н        | +        | +            | +        |          | -         | ×        |          |          | +         | +            | +        | +                                                                | +       | <         | +       | +            |
| 돡-       |                      | $\dashv$ | -     | +         | +        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +            | -        | $\dashv$      | -       | -               | +       | +            | +         | +            | ╁                                                                                                                                                                                                                                                                                                                                                                                         | ╁               | $\vdash$           | +        | +            | +            | +        | ╀         | ₩          | +            | +            | +            | +            | Н        | +        | +            | ╀        | H        | -         | -        | Н        | Н        | 4         | +            | +        | +                                                                | +       | +-        | +       | +            |
| -        | Identify             | +        |       | ×         | 4        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | -        | ×             | 7       | ×               | +       | +            | +         | +            | +                                                                                                                                                                                                                                                                                                                                                                                         | ╀               | ×                  | 4        | +            | +            | +        | 1         | Н          | 4            | +            | +            | 1            | Н        | 4        | 1            | 1        |          |           | ×        |          |          | 1         | 4            | 1        | 4                                                                | 1       | 4         | 1       | 1            |
| L        | Display              |          | 4     | ×         | 4        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | _        | ×             | _       | _               | 4       | 4            | 1         | 1.           |                                                                                                                                                                                                                                                                                                                                                                                           | L               | ×                  |          |              | L            | L        |           |            |              | $\perp$      | ×            | 1            | Ш        |          |              |          |          |           | ×        |          |          |           |              | _        |                                                                  | >       | <         |         |              |
| 1        | Voice Comms          |          |       | 1         | $\perp$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |          |               |         |                 | ┙       |              | _         | <b> </b> ×   |                                                                                                                                                                                                                                                                                                                                                                                           |                 |                    |          |              |              |          |           |            | 1            |              | ×            | 1            | ×        |          |              |          |          |           | ×        |          |          |           |              |          |                                                                  | >       | <         | T       | T            |
| 1        | Command              |          |       |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×            | _        | ×             |         | 1               | T       | Т            | T         | ×            | <                                                                                                                                                                                                                                                                                                                                                                                         | ×               | ×                  | ×        | T            | Т            | Т        | Τ         | П          |              | T            | T            |              |          | ×        | T            | T        |          | П         | П        |          |          |           | ٦,           | × ;      | × :                                                              | ~       | +         | T       | T            |
|          | Weapons Assg         |          | 7     | T         | 1        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | 7        | ×             | 7       | 1               | 1;      | ×            | $^{+}$    | >            | 1                                                                                                                                                                                                                                                                                                                                                                                         | T               | ×                  | ×        | $^{\dagger}$ | $^{\dagger}$ | †        | $\vdash$  | H          | 7            | $^{\dagger}$ | $^{+}$       | $^{+}$       | Н        | ×        | +            | +        | Н        |           |          | H        | -        | +         | +            | ×        | +                                                                | -       | +         | +       | t            |
| r        | Correlate            | 1        | 7     | 1         | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | 7        | ×             | ×       | × :             | ×İ;     | χ,           | <  ×      | -            | +-                                                                                                                                                                                                                                                                                                                                                                                        | +               | ×                  | 7        | +            | +            | +        |           | H          | +            | +            | +            | ╁            | ₩        | ×        | +            | +        | Н        |           | Н        | $\dashv$ | $\dashv$ | +         | +            | +        | +                                                                | +       | +         | +       | +            |
| ٠        |                      | +        | +     | +         | +        | -+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×            | -        | -             | +       | $\rightarrow$   | +       | +            | +         | 7            | +                                                                                                                                                                                                                                                                                                                                                                                         | -               | Н                  | +        | +            | +            | ╁        | $\vdash$  | Н          | +            | +            | +            | +            | H        | +        | +            | ╀        | Н        | Н         | Н        | -        | -        | 4         | -            | -        | -                                                                | ×       | +         | +       | ╀            |
| 2        | Track                | 4        | 4     | 4         | 4        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            | -+       | -             | ×       | +               | -+      | × >          | +         | +            | +                                                                                                                                                                                                                                                                                                                                                                                         | -               | ×                  | 4        | +            | $\perp$      | ╀        | L         | Н          | 4            | 1            | ╀            | L            | П        | <u>~</u> | 1            | L        |          |           | Ц        |          |          | 4         |              | × !>     | </td <td>1</td> <td><math>\perp</math></td> <td></td> <td>L</td> | 1       | $\perp$   |         | L            |
| ٤        | Threat Eval.         | 4        | 4     | 1         | × :      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | _        | ×             | ×       | <u> </u>        | ×       | 1            | <b> </b>  | 4            | L                                                                                                                                                                                                                                                                                                                                                                                         | L               | ×                  | 4        | 1            | ļ.           | L        |           | Ш          | 1            |              |              |              |          | ×        |              | L        |          |           |          |          |          |           | _ >          | ×  >     | <>                                                               | <       | L         |         |              |
| L        | Identify             |          |       | _!        | <u> </u> | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×            | 1        | ×             | ×       | ×               | ×       |              | ×         | 4            |                                                                                                                                                                                                                                                                                                                                                                                           | L               | ×                  |          |              |              |          |           |            | -            |              |              |              |          | ×        |              |          |          |           |          |          |          | Ī         | >            | × >      | <>                                                               | K       | Τ         | Т       | Γ            |
|          | Display              | 1        |       | ;         | <        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | 1        | ×             | 7       | T               | >       | <            | ×         | <            | Τ                                                                                                                                                                                                                                                                                                                                                                                         | Г               | ×                  | T        | Т            | T            | Г        |           |            |              |              | ×            |              |          | ×        | T            |          |          |           |          |          |          | T         | ,            | χ,       | < :                                                              | ∢†      | 1         | T       | T            |
| Γ        | Voice Comm           |          | 7     | T         | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |          | 7             | 1       | 1               | +       | T            | T         | ×            | 1                                                                                                                                                                                                                                                                                                                                                                                         |                 | П                  | 7        | $^{\dagger}$ | T            | T        |           | П          | 1            | $^{\dagger}$ | ×            | 1            | ×        | ×        | $^{\dagger}$ | 1        |          |           |          | 7        | 1        | +         | $^{\dagger}$ | $^{+}$   | ١,                                                               | ↲       | +         | $^{+}$  | t            |
| +        | Command              | +        | +     | +         | +        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>,</del> | ١,       | ×             | +       | +               | +       | +            | +         | t            | t                                                                                                                                                                                                                                                                                                                                                                                         | t               | ×                  | ℷ        | +            | +            | +        |           | Н          | +            | +            | +            | +            |          | +        | +            | ╁        | Н        | -         | +        | +        | +        | +         | +            | +        | +                                                                | +       | +         | +       | ╀            |
| H        |                      | +        | +     | +         | +        | -{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _            | +        | +             | +       | +               | +       | +            | +         | +            | +                                                                                                                                                                                                                                                                                                                                                                                         | -               | -                  | -        | +            | ╀            | +        | H         | $\vdash$   | +            | +            | ╀            | H            | +        | +        | +            | +        | Н        |           | Н        | $\dashv$ | -        | +         | $^{+}$       | 4        | +                                                                | +       | $\perp$   | +       | Ļ            |
| F        | Weapons Assg         | +        | +     | +         | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | -+       | ×             | +       | +               | +       | +            | +         | ×            | -                                                                                                                                                                                                                                                                                                                                                                                         | H               | ×                  | 7        | +            | +            | +        |           | $\sqcup$   | 1            | +            | +            | L            | $\sqcup$ | 1        | 1            | 1        | Ц        |           |          | 4        | 4        | 4         | 1            | 1        | 1                                                                | 1       | 1         | 1       | 1            |
| H        | Correlate            | 1        | 1     | 1,        | <b>\</b> | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | +        | -+            | ×       | 4               | 4       | 4            | 1         | 1            | 1                                                                                                                                                                                                                                                                                                                                                                                         | L               | ×                  | 4        | 1            | 1            | 1        |           | Ц          | 1            | 1            | 1            | $\perp$      | Ц        | 1        | 1            | L        |          |           |          |          |          |           | 1            | 1        | 1                                                                | 1       | 1         | $\perp$ | 1            |
| -        | Track                |          | 1     |           | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | 1        | ×             | ×       | 1               | $\perp$ | 1            | $\perp$   | 1            | L                                                                                                                                                                                                                                                                                                                                                                                         | L               | ×                  | ╛        | $\perp$      |              |          |           |            |              |              |              |              |          |          |              | 1        |          |           |          | _[       | _ [      |           |              |          | 1                                                                |         |           |         | 1            |
| ć        | Threat Eval.         |          | 1     | 1         | < :      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | 1        | ×             | ×       | ſ               | 1       | ſ            |           | 1            | 1                                                                                                                                                                                                                                                                                                                                                                                         |                 | ×                  | T        | T            |              |          | П         | T          | T            |              | Γ            |              | T        | T        | T            |          |          |           |          | 7        |          | 1         | T            | Ť        | T                                                                | 7       | $\top$    | T       | T            |
| Γ        | Identify             |          | 1     | 1         | <        | ×:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×            | 1;       | ×             | ×       | †               | 1       | Ť            | $\dagger$ | Ť            |                                                                                                                                                                                                                                                                                                                                                                                           |                 | ×                  | +        | +            | +            |          | Н         | $\forall$  | +            | +            | $^{\dagger}$ | Н            | +        | +        | +            | Н        | -        | 1         | +        | +        | +        | +         | +            | +        | +                                                                | +       | +         | +       | +            |
| 1        |                      | +        | +     | $\dagger$ | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | +        | ×             | +       | +               | +       | +            | +         | +            | +                                                                                                                                                                                                                                                                                                                                                                                         | H               | ×                  | +        | +            | +            | +        | H         | +          | +            | +            | +            | H            | +        | +        | +-           | $\vdash$ | $\vdash$ | -         | 4        | +        | +        | +         | +            | +        | +                                                                | +       | +         | +       | +            |
| $\vdash$ | Display              | +        | +     | +         | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7            | +        | -             | +       | +               | +       | +            | +         | +            | -                                                                                                                                                                                                                                                                                                                                                                                         | Н               | 7                  | +        | +            | +            | -        | Н         | -          | +            | +            | +            | Н            | +        | +        | +            | H        |          | 4         | 4        | 4        | 4        | +         | +            | 4        | +                                                                | +       | +         | 1       | 1            |
| +        | Voice Comm           | +        | 4     | +         | +        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            | 4        | +             | ×       | 1               | 4       | 1            | 1         | ×            | 1                                                                                                                                                                                                                                                                                                                                                                                         | Ц               | Ц                  | 1        | 1            | 1            | L        | Ц         |            | 1            | 1            | L            | $\sqcup$     | $\perp$  | _        | 1            | L        |          |           |          | $\perp$  | _        | $\perp$   | 1            | 1        | 1                                                                | 1       | 1         | 1       | 1            |
| L        | Command              | 1        | 1     | 1         | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × :          | <u> </u> | ×             | 1       | 1               | 1       | 1            | L         | ×            | ×                                                                                                                                                                                                                                                                                                                                                                                         | ×               | ×                  | ×!       | < ×          | 1            |          | Ш         |            | 1            |              | L            |              |          |          | $\perp$      |          |          |           |          | _[       | _        | _         | _            | <>       | <>                                                               | <       |           |         |              |
| L        | Weapons Assg         |          |       | 1         | 4        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | ×        | ×             |         |                 | >       | <            |           | ×            | 1                                                                                                                                                                                                                                                                                                                                                                                         |                 | ×                  | ×        | < ×          | 1            |          |           |            |              |              |              | 17           | T        | T        | ſ            |          | 1        | 7         | 1        | T        | T        | T         | >            | <>       | <>                                                               | <       | T         | Г       | Γ            |
| ſ        | Correlate            | T        | T     | 1         | <        | × :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×            | ×;       | ×             | ×       | ,               | <>      | <>           | < ×       |              |                                                                                                                                                                                                                                                                                                                                                                                           |                 | ×                  | ,        | <            | T            | П        | П         | T          | 1            | 1            | T            | П            | 7        | 1        | T            | П        | 7        | 1         | 7        | 1        | 1        | +         | 1            | ↲        | ↲                                                                | <       | $\dagger$ | T       | T            |
| Г        | Track                | +        | +     | †         | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | × ;      | ×             | +       | +               | -       | <>           | +         | 1            | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                  | H               | ×                  | +        | -<br>-       | 1            |          | Н         |            | $^{\dagger}$ | +            | +            | Н            | +        | +        | +            |          | +        | +         | +        | +        | +        | +         | -            |          | +                                                                | 4       | +         | +       | +            |
| -        |                      | +        | +     | +         | 1        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +            | +        | -             | 1       | 1.              | +       | +            | +         | +            | +                                                                                                                                                                                                                                                                                                                                                                                         | Н               | -+                 | +        | +            | +            | H        | Н         | +          | +            | +            | +            | H            | +        | +        | +            | H        | -        | +         | +        | +        | +        | +         | +            | +        | +                                                                | +       | +         | +       | -            |
| H        | Threat Eval.         | +        | +     | +         | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×!>          | +        | $\rightarrow$ | ×       | +               | 4       | +            | ×         | ┿            | 1                                                                                                                                                                                                                                                                                                                                                                                         | Ц               | ×                  | 4        | ×            | -            | Н        | Ц         | 1          | 4            | +            | 1            | Ш            | 4        | 1        | -            | Ц        | 1        | _         | 1        | 4        | 1        | 1         | 1            | ⇡        | 4                                                                | 1       | 1         | $\perp$ |              |
| L        | Identify             | 4        | 1     | +         | +        | </td <td>×</td> <td>1</td> <td>×!</td> <td>×</td> <td>)</td> <td>&lt;</td> <td>1</td> <td>×</td> <td>1</td> <td>L</td> <td></td> <td>×</td> <td>1</td> <td></td> <td></td> <td><math>\sqcup</math></td> <td>Ц</td> <td><math>\perp</math></td> <td>1</td> <td>1</td> <td>L</td> <td><math>\sqcup</math></td> <td></td> <td><math>\perp</math></td> <td></td> <td>Ц</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_ &gt;</td> <td>&lt;&gt;</td> <td>&lt;&gt;</td> <td>4</td> <td></td> <td></td> <td></td> | ×            | 1        | ×!            | ×       | )               | <       | 1            | ×         | 1            | L                                                                                                                                                                                                                                                                                                                                                                                         |                 | ×                  | 1        |              |              | $\sqcup$ | Ц         | $\perp$    | 1            | 1            | L            | $\sqcup$     |          | $\perp$  |              | Ц        |          |           |          |          |          |           | _ >          | <>       | <>                                                               | 4       |           |         |              |
| L        | Display              |          |       | )         | <        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |          | ×             |         |                 | >       | 4            | ×         | :            |                                                                                                                                                                                                                                                                                                                                                                                           |                 | ×                  |          | 1            |              |          |           |            |              |              | ×            |              | T        | Γ        |              | П        | T        | 1         | 1        | T        | T        | T         | >            | <>       | <>                                                               | <       | T         | Г       | Γ            |
| ſ        | Voice Comm           | T        | T     | T         | T        | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T            | T        | T             | T       | T               | T       | T            | T         | ×            |                                                                                                                                                                                                                                                                                                                                                                                           |                 | 1                  | 1        | T            |              | П        | П         |            | T            | 1            | ×            | П            | ×        | $\top$   | 1            | П        | 7        | 1         | 1        | +        | 1        | $\dagger$ | 十            | +        | +                                                                | ⇃       | 1         | 1       | t            |
| t        |                      | †        | 1     | الِـ      | †        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +            | +        | +             | +       | +               | +       | +            | +         | -            |                                                                                                                                                                                                                                                                                                                                                                                           | H               | ¥                  | +        | +            | +            |          | H         | +          | +            | +            | H            | Н            | +        | +        | +            | Н        | +        | +         | +        | +        | +        | +         | +            | +        | Ŧ                                                                | +       | +         | +       | +            |
|          | 5                    |          | 1     | 2         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1            |          |               |         |                 |         |              |           |              |                                                                                                                                                                                                                                                                                                                                                                                           |                 | 80                 |          |              |              |          |           |            |              | 1            |              |              |          |          |              | П        |          |           |          |          |          |           |              |          |                                                                  |         | -         |         |              |
|          | Coast Guard Option 3 | 1        | ا     | TI.       | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ACDS         |          |               | 1       | 2               |         | 0            | 5         | S            |                                                                                                                                                                                                                                                                                                                                                                                           |                 | RING INFO. NETWORK |          | _            | 1            |          |           |            |              | Requirements |              | П            |          |          |              | П        |          |           |          |          |          |           |              | -        |                                                                  |         |           |         |              |
|          | ard                  | 1        | 1     | 200       | 19       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1        |               | 1       | SMALL BOATS (3) |         | CECS BADAB   | È         | Š            | GPS                                                                                                                                                                                                                                                                                                                                                                                       |                 | ž                  |          | 5            | STINGER      |          |           | ₽          |              | rem          | 4            | 3            | A3       | t L      | 9            | 5        | 8        | 8         | 9        | =        | 2        | 2         | 1            | 3 5      | 3 5                                                              | 3 7     | . 50      | 90      | 1            |
| 1        | 3                    | ٦.       | J     | 5         | إ        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          | 1             | DOLPHIN |                 |         | 0            | 9         | 00           |                                                                                                                                                                                                                                                                                                                                                                                           |                 | 띩                  |          | 150          | 2            |          |           | BUOY EQUIP | 3            | , Se         | 1            |              |          | 1        |              | `        |          |           | 4        | 4        | 4        | •         | 1            | 1        | 1                                                                | 1       |           |         | ٦            |
| 1        |                      | 4 6      | وًا إ | 316       | 2        | راد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20           | 10       | JMCIS         | -1-     | -11             | 1,      | ء اد         | R MK-46   | .Jw          | 1                                                                                                                                                                                                                                                                                                                                                                                         | 13              | =1                 | ٦.       | . 2          | 15           | 18       | اا        | ᅫ          | =            | 18           | 1            | ιl           | - 1      |          | 1            | П        | - [      | -         | - 1      | - 1      | - 1      | - 1       | - 1          | -1       | - 1                                                              | 1       | 1         | 1       | 1            |
|          | SEC                  | ble      | bli   | = } _     | 410      | 21/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | זוני     | 313           | 1       | N L             | 110     | 5 15         |           | O            | 100                                                                                                                                                                                                                                                                                                                                                                                       | 15              | 9                  | مارد     | 0 >          | 12           | m        | =         | Ola        | <u>ا</u> د   |              | }            |              | - 1      | - 1      | í            |          | - 1      | - 1       |          | - 1      |          | 1         |              |          |                                                                  | 1       |           | 1       |              |

| _            | T                    |          | -                   | _       | 1             | _       | _            |         | T             | _                | _        | 1 1        | -1        | Т       | _   |         | 1           |           | _       |             |        | -         | .]        | 1            | 1 1    | _          | -         | -   |           | _  | _  | _  | 1         | -         | _            | _         | _        | - | , |           |            |           | <del></del> |
|--------------|----------------------|----------|---------------------|---------|---------------|---------|--------------|---------|---------------|------------------|----------|------------|-----------|---------|-----|---------|-------------|-----------|---------|-------------|--------|-----------|-----------|--------------|--------|------------|-----------|-----|-----------|----|----|----|-----------|-----------|--------------|-----------|----------|---|---|-----------|------------|-----------|-------------|
| >            | Facilities (Med. et  |          | -                   | 4       | 4             | 4       | +            | $\perp$ | _             | +                | +        | Н          | 1         | 1       | +   | _       |             | 1         | _       |             | П      | >         | 4         | -            |        | _          | 1         | 1   | 1         | ×  | -  |    | ×         | _;        | ×            | _         | L        |   |   |           | Ш          | _ >       | <u> </u>    |
| oTV          | Evaluation           | $\sqcup$ | 4                   | 4       | -             | ×       | $\downarrow$ | -       | ×             | -                | -        |            | _         | 1       | 1   | _       | Ц           | $\perp$   | 1       |             |        | $\perp$   | 1         | _            |        |            | 1         | >   | <u> </u>  | ×  |    |    |           | _         | 1            | _         |          |   |   |           | Ц          | _         | ×           |
| L            | Platform Delivery    | 1 1      | 4                   | 1       | $\downarrow$  | $\perp$ | _            | Ц       | ×             | ×                | $\perp$  |            | $\perp$   | 1       | _   |         |             | 1         |         |             | H      | ×         | 1         | L            | Ш      | 1          | 1         | >   | <  ×      | ×  |    |    |           | 1         | $\perp$      | 1         |          |   |   |           |            | ×         | ×           |
| <sub>~</sub> | Facilities (Med. et  | Ш        | _                   | 4       | 1             |         | $\perp$      | Ш       |               |                  | $\perp$  | Ш          |           | 1       | _   | L       | Ц           | 1         | L       | Ш           | Ш      | >         |           |              |        | _          | _         |     |           | ×  |    |    | ×         |           |              |           |          |   |   |           | ×          |           | ×           |
| SAR          | Evaluation           |          | _                   | 1       |               | ×       |              | Ц       | ×             | ×                |          | Ш          | 1         | $\perp$ |     |         |             |           |         |             |        |           |           |              |        |            |           | >   | <  ×      | ×  |    |    |           |           |              |           |          |   |   |           |            |           | ×           |
| L            | Platform Delivery    |          | 1                   | _       |               |         | $\perp$      | Ш       | ×             | ×                | L        |            | _         | $\perp$ | L   |         |             | $\perp$   |         |             |        |           |           |              |        |            |           | >   | < ×       | (× |    |    |           |           |              |           |          |   |   |           |            |           | ×           |
|              | Kill Eval.           | ×        | ×                   |         | ×             | ×       |              |         | ×             | ×                | ×        |            | ×         |         |     |         |             | 1         |         |             |        |           |           |              |        |            | >         | < > | <×        | :  |    |    |           |           |              |           | ×        | × | × |           |            |           | ×           |
|              | Soft Kill            |          | 4                   | 3       | ×             |         |              |         |               |                  |          |            |           |         |     |         |             |           |         | ×           |        |           |           | L            |        |            | >         | <   |           |    |    |    |           |           |              |           | ×        | × | × |           |            |           | ×           |
| ı            | Guidance             |          |                     |         |               |         |              |         |               |                  |          |            |           |         |     |         |             | L         |         |             |        |           |           |              |        |            | >         | <   |           |    |    |    |           |           |              |           | ×        | X | × | П         | П          |           | ×           |
| 믑            | Weapon Delivery      |          |                     |         |               |         |              |         | :             | ×                |          |            |           |         |     |         |             | ×         |         |             |        |           |           |              |        |            | >         | < × | <\×       |    |    |    |           |           |              | T         | ×        | × | × | П         | П          |           | ×           |
|              | Illumination         |          |                     |         |               |         |              |         |               |                  |          | ×          |           |         |     |         |             |           |         |             |        |           | T         |              |        |            | >         | <   | T         |    |    |    |           |           |              | T         | ×        | × | × | П         | П          | T         | ×           |
|              | Board                |          |                     |         |               |         |              | П       | ×             | ×                |          |            |           |         |     |         |             |           |         |             |        |           | T         |              | П      | T          | >         | < > | < ×       | :  |    |    |           |           | T            | T         | ×        |   |   | П         | П          | 1         | ×           |
|              | Intercept            |          |                     |         |               | T       |              |         | ×             | ×                |          | П          | T         |         | П   |         |             | T         | Γ       | П           |        | T         |           |              | П      |            | >         | < × | <×        |    |    |    |           | İ         | T            | T         | ×        |   |   | П         | П          | T         | T           |
| Г            | Kill Eval.           | П        |                     | 1       | >             | <       |              |         | ×             |                  | T        | П          |           | T       |     |         |             |           |         | П           |        |           |           |              |        | 1          |           | ×   | <         | T  |    |    | 1         | 1         |              | T         | T        |   |   |           | $\sqcap$   | T         | +           |
| ≥            | Guidance             |          |                     |         |               | T       |              |         |               |                  | T        |            |           |         |     |         |             | T         |         | П           |        |           | T         | Ī            | П      | 1          | T         | T   | T         |    |    | 7  | 1         | T         | $\dagger$    | +         |          |   |   |           | T          | $\dagger$ | $\top$      |
| AMW          | Weapon Delivery      | П        |                     | T       |               |         | T            |         | 1             |                  | T        |            |           | T       |     |         | 1           | T         | T       |             | П      | $\top$    | T         | Г            | П      | $\uparrow$ |           |     | Ť         |    | П  | 7  | 7         | T         | T            | $\top$    |          |   |   |           | T          | $\dagger$ | T           |
|              | Illumination         | П        |                     | T       | T             | T       |              |         |               |                  |          | ×          |           | T       |     |         | T           | T         | T       |             | T      | T         | T         |              | П      | $\top$     | 1         | T   | T         |    |    | 1  | 1         | $\dagger$ | Ť            | +         | $\vdash$ |   |   |           | T          | $\dagger$ | $^{+}$      |
| >            | Kill Eval.           |          | T                   | 1       | 1             |         |              | П       | T             |                  | T        |            | 1         | T       |     |         | T           | $\dagger$ | T       |             |        | Ť         |           |              |        | 1          | T         | t   | t         | T  |    | 1  | 1         | +         | $\dagger$    | $\dagger$ |          |   |   |           | $\top$     | $\top$    | $\dagger$   |
| STW          | Weapon Delivery      |          | 1                   | 1       | Ť             |         | П            | П       | >             | ×                | T        |            |           | T       | П   |         | $\top$      | 1         |         | П           |        | $\top$    | T         |              | T      | 1          | Ť         | +   | ×         | +  | П  | ×  | $\dagger$ | +         | $\dagger$    | $\top$    |          |   |   |           | T          | T         | 十           |
| >            | Clear                |          |                     | 1       | T             | T       | П            |         | $\top$        |                  | <b>T</b> |            |           | T       |     | 7       |             | T         |         | П           |        | ×         |           |              | $\top$ | 1          | +         | T   | T         | T  |    | 1  | ×         | 1         | $\dagger$    | +         | T        | П | 7 | ×         | $\uparrow$ | +         | ×           |
| Σ            | Mark                 |          | T                   | T       | 1             | T       | П            |         | $\top$        |                  | $\top$   |            | 1         | T       |     |         | 7           | T         |         |             | ,      | <         |           |              |        | Ť          | T         | T   | T         | Ì  |    |    | 1         | $\dagger$ | t            | 1         | 1        | Н |   | ×         | $\top$     | $\dagger$ | ×           |
| П            | Kill Eval.           | ×        | ×                   | ,       | <>            | <       |              |         | ××            | <                | ×        | :          | ×         | T       |     |         | 1           | T         |         |             | 1      | 7         | $\dagger$ | Г            |        | 7          | T         | ×   | ×         | 1  |    | 1  | 1         | $\dagger$ | $\dagger$    | $\dagger$ | ×        | × | × |           | 1          | +         | ×           |
|              | Soft Kill            |          |                     | >       | <             | T       |              |         | $\top$        |                  |          |            | 1         | T       | П   |         |             | T         |         | ×           | 1      | $\top$    |           |              | 1      | 1          | ×         | <   | T         | T  |    | 7  | 1         | 1         | $\dagger$    | $\dagger$ | ×        | × | × | $\exists$ | $\top$     | 十         | ×           |
| SUW          | Guidance             |          |                     | T       | 1             | T       |              |         | T             | $\top$           | Т        | 1          | T         | T       | П   |         |             | T         |         |             | 1      | T         | T         |              |        | +          | +         | T   | T         | Γ  |    | 1  | 1         | $\dagger$ | T            | +         |          |   | + | $\exists$ | $\top$     | +         |             |
| ¥            | Weapon Delivery      |          | 1                   | 1       | T             | T       | П            |         | 1             | $\top$           |          | 1          | $\dagger$ | T       | П   | 1       | $\top$      | ×         |         | П           | 1      | T         |           |              | $\top$ | +          | ×         | (   | $\dagger$ | T  |    | 1  | 1         | $\dagger$ | T            | T         | ×        | × | × | $\forall$ | $\top$     | $\top$    | ×           |
|              | Illumination         | П        | T                   | T       | T             | T       |              |         | 1             |                  |          | ×          | T         | T       | П   |         |             | 1         | П       | П           | $\top$ | 1         |           |              | 1      | 1          | ×         | 1   | Ť         | Г  |    | 1  | 1         | $\dagger$ | Ť            | +         | ×        | × | × | 1         | $\top$     | $\dagger$ | ×           |
|              | Kill Eval.           | П        | T                   | T       | T             | T       | П            | 1       | ×             | T                |          |            |           |         |     |         | 1           | T         |         |             |        | T         |           |              | $\top$ | 1          | T         | ×   | +         |    |    | 7  | 1         | 1         | T            | +         | ×        | × | × | $\forall$ | $\top$     | $\dagger$ | ×           |
| ASW          | Soft Kill            |          |                     | T       |               |         | П            |         | T             | T                |          |            |           |         |     |         |             | T         |         | :           | ×      | T         | Г         |              | $\top$ | $\top$     | t         | T   | +         |    | 7  | 7  | 1         | Ť         | $\top$       | +         | ×        | × | × | 7         | $\top$     | 7         | ×           |
|              | Weapon Delivery      |          | T                   | T       | T             |         | П            | -       | ×             | T                |          | T          |           | T       | П   | 7       | $\top$      | T         |         | $\Box$      | $\top$ |           |           |              | 1      | †          | 1         | ×   | :         |    | T  | 1  | $\dagger$ | +         | +            | T         | ×        | × | × | +         | +          | +         | ×           |
|              | Kill Eval.           | ×        | <                   | >       | <>            | <       |              |         |               |                  | ×        | ;          | <         | T       | П   |         | $\top$      | T         |         |             | 1      | $\dagger$ |           |              | 1      | $\dagger$  | $\dagger$ | 1   | T         |    |    | 1  | $\dagger$ | +         | +            | $\dagger$ | ×        | × | × | 7         | $\dagger$  | $\dagger$ | ×           |
|              | Soft Kill            |          |                     | >       | <             |         | П            |         |               | T                |          |            |           |         |     | 7       | $\top$      |           |         | ×           |        | 1         | Г         |              | $\top$ |            | T         | 1   | T         |    |    | 1  | 7         | 1         | 1            |           | ×        | × | × | 7         | $\top$     | +         | ×           |
| AW           | Guidance             |          |                     |         | T             |         |              |         |               |                  | П        |            |           |         | П   |         |             |           |         |             | 1      | T         |           |              | T      | +          | +         |     |           |    | 1  | 7  | 1         | T         | T            | 1         |          |   | T | $\forall$ | $\top$     | $\dagger$ |             |
|              | Weapon Delivery      |          | T                   | T       | T             |         | П            |         |               |                  |          |            |           |         | П   |         |             | ×         | ×       |             | T      | T         |           |              | 7      | +          | 1         | T   |           |    | 1  | 1  | $\dagger$ | 1         | $\dagger$    |           | ×        | × | × | 7         | $\top$     | T         | ×           |
|              | Illumination         |          |                     |         |               |         |              |         |               |                  |          | ×          | $\top$    | T       |     | 1       |             |           | П       |             | 1      |           |           | П            | 1      |            |           | Ť   | T         |    |    | 1  | 1         | $\dagger$ | $^{\dagger}$ | T         | ×        | × | × | 7         | $\dagger$  | +         | ×           |
|              | ion 3                |          |                     | 1946    | T             |         |              |         |               |                  |          |            |           |         |     | VORK    |             | T         |         |             |        |           |           |              | 1      |            |           |     | T         |    | 1  |    | 1         | +         |              | T         |          |   | 1 | 1         | $\dagger$  | 1         |             |
| Elements     | ard Opt              |          |                     | JOBLE . | TICAL         | 2       |              |         | NATO (3       | 0014             |          | SADAR      | MMS       |         |     | O. NET  |             | N(I)      |         |             | OII    | -         |           | Requirements | A1     | A2         | A4        | 45  | A6        | A7 | 48 | A9 | 110       | 112       | A13          |           | CJ       | 2 | 8 | 8         | કુટ        | 315       | 88          |
| Ele          | Coast Guard Option 3 | SPS-49   | 01-0-07<br>01-17-10 | 2000    | VIDEO/OPTICAL | DS (C)  | CEC          | JMCIS   | VEHIN         | SIMALL BOATS (3) | GFCS     | GFCS RADAR | NR-40     | S       | CAN | NG INFO | WCS         | MM GU     | STINGER | BOC         | NIXIE  | EOD TEAM  |           | Redui        |        |            |           |     |           | `  |    |    | 1         |           | A            |           |          |   |   |           |            |           |             |
|              | O                    | က်       | ก็น                 | ο o     | 5             | N N     | ö            | 3       | <u>ت</u> ا لا |                  | ပ်       | 9          | <u> </u>  | ठि      | TA  | Y       | ≥  <u>0</u> | 8         | S       | <u>ال</u> ح | ž      |           |           |              |        |            |           | L   |           |    |    |    | $\perp$   |           |              |           |          |   |   |           |            |           |             |

# **APPENDIX G**

ELEMENT INTERFACE TABLES

### **SUMMARY**

Element Interface tables were used to depict how each element in the system will be connected to other elements in the system and provided a basis on which to develop the Comabt System architecture. An element interface matrix was constructed for each whole ship option and are located in the tables listed below:

- G-1: Element Interface Matrix (Navy option 1)
- G-2: Element Interface Matrix (Navy option 2)
- G-3: Element Interface Matrix (Navy option 3)
- G-4: Element Interface Matrix (Coast Guard option 1)
- G-5: Element Interface Matrix (Coast Guard option 2)
- G-6: Element Interface Matrix (Coast Guard option 3)

Table G-1: Element Interface Matrix (Navy option 1)

| EOD TEAM          | 1         |          |          |          |          |               |      | _        |          | L        | ≊               |          |          |          |            |                                           |        |                | ш           | ו        |           |                    |          |          |            |                |          |           |            |           |           |          |          |          |          |          | ×        |              |           | _ |
|-------------------|-----------|----------|----------|----------|----------|---------------|------|----------|----------|----------|-----------------|----------|----------|----------|------------|-------------------------------------------|--------|----------------|-------------|----------|-----------|--------------------|----------|----------|------------|----------------|----------|-----------|------------|-----------|-----------|----------|----------|----------|----------|----------|----------|--------------|-----------|---|
| NIXIE             |           |          |          |          |          | L             |      |          |          |          |                 |          |          |          |            |                                           | 1      | 2              |             |          |           |                    |          |          |            |                |          |           |            |           |           |          |          |          |          | ×        |          |              |           |   |
| SRBOC             |           |          |          |          | ب        |               |      |          |          |          |                 |          |          |          |            |                                           |        |                |             |          |           | ۵                  |          | ۵        |            |                |          |           |            |           |           |          |          |          | X        |          |          |              |           |   |
| - MK 50           |           |          |          |          |          |               |      |          |          | E        |                 |          |          |          |            |                                           |        | u              | u           |          |           |                    |          |          |            |                |          |           |            |           |           |          | E<br>E   | ×        |          |          |          |              |           |   |
| SVTT              |           |          |          |          |          |               |      |          |          |          |                 |          |          |          |            |                                           |        | c              | 2           |          |           |                    |          |          |            |                |          |           |            |           |           |          | ×        | E        |          |          |          |              |           | _ |
| - VLA             |           |          |          | ľ        |          |               |      |          |          |          |                 |          |          |          |            |                                           |        |                |             |          |           |                    |          |          |            |                | Z<br>E   |           |            |           |           | ×        |          |          |          |          |          |              |           |   |
| - SM-2 MR         |           |          |          |          |          |               |      |          |          |          |                 |          |          |          |            |                                           |        |                |             |          |           |                    |          |          |            |                | EM       |           |            |           | ×         |          |          |          |          |          |          |              |           | _ |
| - ESS             |           |          |          |          |          |               |      |          |          |          |                 |          |          |          |            |                                           |        |                |             |          |           |                    |          |          |            |                | Σ        |           | :          | ×         |           |          |          |          |          |          |          | T            |           | _ |
| - TOMAHAWK        |           |          |          |          |          |               |      |          |          |          |                 |          |          |          |            |                                           |        |                |             |          |           |                    |          |          |            |                | EM       |           | ×          |           |           |          |          |          |          |          |          | T            |           | - |
| - HARPOON         |           |          |          |          |          |               |      |          |          |          |                 | Ì        |          |          |            |                                           |        |                |             |          |           |                    |          |          |            |                | Σ        |           |            |           |           |          |          |          |          |          |          | T            |           |   |
| VLS               |           |          |          | T        |          |               |      |          |          |          |                 |          | ۵        |          |            |                                           |        | c              | 2           |          |           |                    |          | Ω        |            |                | ×        | Σ         | ∑ :        | <b>∑</b>  | <b>Z</b>  | Σ        |          |          |          |          |          | T            | 1         | _ |
| 40 mm GUNS (2)    | T         |          | T        | T        |          | T             |      |          |          |          |                 |          |          |          | 7          | 1                                         |        |                |             |          |           | ۵                  |          | ۵        |            | ×              |          |           |            |           |           |          |          |          |          |          | 1        | $\dagger$    | T         | _ |
| 127 mm GUN        | <u> </u>  |          |          |          |          | T             |      |          |          |          |                 |          |          |          | ۵          | 1                                         |        | Ť              |             | T        | $\vdash$  | _                  |          |          | ×          |                |          |           |            |           | Ť         |          |          |          |          |          |          | +            | 1         | - |
| ISDS              | T         | T        |          |          |          |               |      |          |          |          |                 |          | ۵        |          |            | 1                                         |        | $\dagger$      |             |          | T         | ۵                  | Ω        | ×        |            | ۵              | ۵        | +         | +          | +         | 1         |          |          |          | ۵        |          | +        | $\dagger$    | $\dagger$ | - |
| WCS               | 1         |          |          |          | t        |               |      |          |          |          | 7               | $\dashv$ | ۵        | 7        |            |                                           |        | ء د            | 1           |          | +         | ۵                  | ×        | ۵        |            |                |          | $\dashv$  | +          | +         |           |          | +        | -        |          | _        | -        | +            |           | - |
| RING INFO. NET.   | ۵         | ۵        | ۵        | Ω        | ۵        | ٥             | ۵    | ۵        | ۵        | ۵        |                 | ۵        | ۵        |          | ٥          | וב                                        | 2 0    | 2 0            | <u>ا</u> د  | 0        |           | -                  | ۵        | -        |            | ۵              |          | +         | +          | +         | $\dashv$  | +        | -        |          | ۵        |          | 1        | -            |           | - |
| TACAN             | $\vdash$  | H        |          | +        | -        | -             | -    |          |          | ۵        |                 |          |          |          |            | +                                         | +      | +              | +           | $\vdash$ | ×         | ⊢                  |          |          |            |                | -        | $\dashv$  | +          | +         | +         | -        |          |          |          |          | $\dashv$ | +            | +         | - |
| GPS               | -         | $\vdash$ | +        | $\vdash$ | -        | $\vdash$      |      | Н        |          |          | +               | -        |          | -        | +          | +                                         | +      | +              | +           | ×        | +         | Ω                  | H        |          |            |                | +        | -         | +          | +         | +         | +        | -        | -        |          | -        | ۵        | -            | +         | - |
| VOICE COMMS       | +         | -        | -        | T        | -        |               | -    | H        |          | ш        | ш               | -        | -        | -        | +          | +                                         | +      | +              | ×           | +-       | +         | -                  |          |          |            |                |          | +         | +          | +         | +         | +        |          |          |          | -        | ш        | +            | +         | - |
| - MK-116 ASWFC    | -         |          | Ω        | -        |          | -             |      |          |          |          |                 | -        | +        | -        | +          | +                                         | -      | > ×            |             | -        | -         | ۵                  | ۵        | H        |            |                |          | +         | +          | +         | +         | +        | ۵        | ш        |          | -        | +        | +            | -         | _ |
| SQQ-89            | $\dagger$ |          | ۵        | _        |          |               |      |          |          | ۵        |                 | 1        |          | $\dashv$ | +          | +                                         | +      | < c            | +           | t        | $\dagger$ | -                  | ٥        |          | -          |                | 1        | 1         | +          | +         | +         | +        |          | -        |          | Σ        | +        | 十            | _         | - |
| IR MK-46          |           |          | ╁        | $\vdash$ | -        | ۵             |      |          |          |          |                 | 1        | ۵        | 1        | ۵          | 1;                                        | ×      | t              | +           | $\vdash$ | +         | ۵                  |          |          |            |                | +        | +         | +          | +         | +         | 1        | 1        | 1        | -        | -        | +        | -            |           |   |
| - SPG-60/SPQ-9    | ╁         |          |          | $\vdash$ |          |               |      |          |          |          | +               | -        |          |          | Δ;         | +                                         | -      | $\dagger$      | $\dagger$   | +        |           | ۵                  |          |          |            | 1              | $\dashv$ | +         | $\dagger$  | +         | +         | +        | -        | -        |          | +        | +        | $\dashv$     |           |   |
| Mk 34 GFCS        | Ω         | ۵        |          | -        |          | Ω             |      |          |          |          | 1               | 1        | -        | -+       | ×          | +                                         | +      | $\dagger$      | +           | -        |           | -                  | ۵        | Ω        | ۵          |                | +        | 1         | +          | $\dagger$ | 1         | 7        | 1        |          | -        | 1        | $\dashv$ | 1            |           |   |
| - SPG-62          |           | $\vdash$ |          | l        |          |               |      |          |          |          | +               | +        | ۵        | -        | +          | +                                         | +      | +              | +           |          | -         | -                  |          |          |            | -              |          | +         | +          | +         | $\dagger$ | $\dashv$ | +        |          | 1        |          | $\dashv$ | +            |           |   |
| - 3FG-02<br>MK 99 | ۵         | ۵        | -        | -        |          | ۵             |      |          |          |          | +               | -        | ×        | -        | $\dagger$  | -                                         | _      | $\dagger$      | +           | -        | -         | ۵                  | ۵        | ۵        |            | -              | ۵        | +         | +          | +         | +         | +        | +        | -        | -        | +        | +        | -            |           |   |
| IFF               | -         | ш        | $\vdash$ | -        | -        | _             |      |          |          | $\dashv$ |                 | ×        |          |          | +          | +                                         | +      | $\dagger$      |             | -        | +         | 0                  |          |          |            | $\dashv$       | +        | +         | +          | +         | +         | +        | +        | -        | +        | +        | +        | $\dashv$     |           |   |
| SMALL BOATS (2)   | $\vdash$  | -        | -        |          | -        |               |      |          | $\dashv$ |          | ×               |          | 1        | +        | +          | +                                         | +      | $\dagger$      | ш           |          | H         |                    |          |          | -          | +              | +        | +         | +          | +         | +         | $\dashv$ | $\dashv$ | +        | -        | +        | Σ        | 190          | 9         |   |
| PANTHER           | $\vdash$  |          | -        | ╁        | _        | -             | _    |          | -        | ×        |                 | -        | .        | +        | +          | +                                         | -      | 1              | ш           | $\vdash$ |           | ۵                  |          |          |            | -              | +        | +         | +          | +         | +         | +        | +        | EM       | +        | -        | -        | = =          | 1         |   |
| JMICS             | -         | -        | -        | +        |          |               |      |          | ×        |          | $\dashv$        | $\dashv$ | $\dashv$ | +        | +          | +                                         | +      | +              | +           | -        | F         | 0                  |          | H        |            | -              | +        | +         | +          | +         | +         | +        | -        | Ш        | +        | $\dashv$ | +        |              |           |   |
| CEC               | 0         | ۵        | -        | -        | -        | -             | -    | ×        | 1        |          | +               | +        | $\dashv$ | +        | +          | +                                         | +      | +              | +           | -        | +         | ם                  | $\vdash$ | H        | -          | 1              | +        | +         | +          | +         | -         | +        | -        | -        | $\dashv$ | +        | +        | D=Data       | 1         |   |
| ACDS              | F         | F        |          |          | -        | _             | ×    | . ,      | -        | +        | +               | +        | $\dashv$ | +        | +          | +                                         | +      | +              | +           | -        | -         | ٥                  | Н        | H        | $\dashv$   | -              | -        | +         | +          | +         | +         | +        | $\dashv$ | +        | +        | $\dashv$ | +        |              |           |   |
| VIDEO/OPTICAL     | -         | -        | -        | -        | -        | ×             |      | $\dashv$ | -        |          | +               |          | ۵        | ١,       |            | -                                         |        | +              | +           | -        | $\vdash$  | ٥                  |          |          | -          | +              | +        | +         | +          | +         | +         | +        | +        | -        |          | -        | +        | nic a        |           |   |
| SLQ-32            | _         |          |          |          | ×        | -             |      |          | -        |          | $\dashv$        | +        | -        | +        | +          | +                                         | +      | +              | +           | -        | +         | ۵                  |          | H        | +          | +              | +        | +         | -          | +         | +         | +        | +        | -        | _        | $\dashv$ | +        | M=Mechanical |           |   |
| SH-100            | -         | F        |          | ×        | <u> </u> | -             |      | H        | -        |          | +               | +        | +        | +        | +          | +                                         | +      | +              | +           | -        | -         | ٥                  |          |          | -          | +              | +        | +         | +          | +         | +         | +        | +        | +        | 7        | +        | _        | - I          |           |   |
| ATAS              | -         | -        | ×        | -        | -        | -             |      |          | $\dashv$ | -        | +               | -        | +        | +        | +          | +                                         | -      | 2 0            | -           |          | $\vdash$  | ۵                  | H        |          | -          | +              | +        | +         | +          | +         | +         | +        | +        | $\dashv$ | $\dashv$ | 1        | +        |              |           |   |
| SPS-67            |           | ×        |          |          |          |               |      | ۵        |          | -        | -               | ш        |          | +        |            | +                                         | +      | +              | +           |          |           | ۵                  | H        | $\dashv$ | -          | +              | +        | +         | +          | +         | +         | +        | +        | +        | $\dashv$ | +        | +        | F=Flectronic |           |   |
| XPAR              | ×         | -        | -        | -        |          |               |      | ۵        | -        | +        | +               | -        |          | +        |            | +                                         | +      | +-             | +           | -        | -         | ٥                  |          |          | +          | +              | +        | +         | +          | +         | +         | +        | +        | +        | +        | +        | +        | FE           | i         |   |
| N AN              | Ĥ         |          |          |          | F        |               |      | _        |          | -        | -               | -        |          | -1,      | +          | +                                         | +      | +              | +           | -        | -         | _                  |          | $\dashv$ | -          | +              | -        | +         | +          | +         | +         | +        | +        | +        | +        | +        | +        | ü            | _         | _ |
| Navy Option 2     | XPAR      | SPS-67   | ATAS     | SH-100   | SLQ-32   | VIDEO/OPTICAL | ACDS | CEC      | JMICS    | PANTHER  | SMALL BOATS (2) | 4        | MK 99    | - SPG-62 | MK 34 GFCS | 9-0-00/01-0-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0 | SOO-89 | - MK-116 ASWEC | VOICE COMMS | GPS      | TACAN     | RING INFO. NETWORK | WCS      | ISDS     | 127 mm GUN | 40 mm GUNS (2) | VLS      | - HARPOON | - IOMAHAWK | - 500     | - SM-Z MK | - VLA    | SVIT     | - MK 50  | SRBOC    | NIXIE    | EOD TEAM | LEGEND       |           |   |

Table G-3: Element Interface Matrix (Navy option 3)

| EOD TEAM             | Γ      |        |     | Π        | ١      |        |               | <u> </u> |          |          |         | Σ               |          | Т          |          |          |        |              | ш           |     |       |                    |     |      |       |          |                   |     | _    |       |       | Γ        |           | ×        |   | T            |         | Т        |
|----------------------|--------|--------|-----|----------|--------|--------|---------------|----------|----------|----------|---------|-----------------|----------|------------|----------|----------|--------|--------------|-------------|-----|-------|--------------------|-----|------|-------|----------|-------------------|-----|------|-------|-------|----------|-----------|----------|---|--------------|---------|----------|
| BUOY EQUIP           | -      |        |     | Г        |        | -      |               |          |          |          |         |                 | _        |            |          |          |        |              |             |     |       |                    |     |      |       |          |                   |     |      |       |       | $\vdash$ | ×         |          |   |              |         | 1        |
| NIXIE                |        | _      |     |          |        |        |               |          |          |          |         |                 |          |            |          |          | _      |              |             |     |       |                    |     |      |       |          |                   |     |      | -     |       | ×        | -         | _        |   |              |         |          |
| SRBOC                | -      |        |     |          | ļ      |        | -             |          |          |          |         |                 |          |            |          |          |        |              | _           |     |       |                    | _   |      |       |          |                   |     | _    |       | ×     |          | -         |          | - |              |         |          |
| MK 50                |        |        |     | _        |        |        |               |          | _        |          | M,E     |                 |          | 1          |          |          |        |              |             |     |       |                    |     |      |       |          |                   |     | M,E  | ×     | -     | -        |           |          |   |              |         |          |
| SVTT                 | _      | -      |     | T-       |        | -      |               |          |          |          | _       |                 |          | $\forall$  |          |          |        | ш            |             | -   |       |                    |     |      |       |          |                   |     | ×    | ΜE    |       | -        |           |          | - |              |         |          |
| RAM                  |        |        | -   | <u> </u> |        | T      |               |          |          |          |         |                 |          | 1          | 1        |          |        | ۵            |             |     |       |                    |     |      |       |          | Ψ                 | ×   |      | _     |       |          |           |          |   |              |         |          |
| Mk 49 (RAM LNCHR     |        | Г      | ۵   | T        |        |        |               |          | -        |          |         |                 |          | 1          |          | 1        |        |              |             |     |       |                    |     | ۵    |       | $\neg$   | ×                 | M,E |      |       |       |          |           |          |   |              |         | 1        |
| ciws                 |        |        |     |          |        |        |               |          | _        |          |         |                 |          | 7          | 1        |          |        |              |             |     |       | ۵                  |     | ۵    |       | ×        |                   | ~   |      |       |       |          |           |          |   |              |         | 1        |
| 76 mm GUN            | Г      |        |     |          |        |        |               |          |          |          |         |                 |          | Δ          | 7        | 1        |        |              |             |     |       |                    |     |      | ×     |          |                   |     |      |       | -     |          | -         | -        |   |              | ,       | 1        |
| ISDS                 | _      |        |     |          | ┪      | _      |               |          |          |          |         |                 |          | Δ          | 7        |          |        |              |             |     |       | ۵                  | ۵   | ×    |       | Ω        | ۵                 |     |      |       |       | <u> </u> |           |          |   | -            |         | 7        |
| wcs                  |        |        |     |          |        |        | L             |          |          |          |         |                 |          | Δ          | 7        |          | ٥      | ۵            |             |     |       | ٥                  | ×   | ۵    |       |          |                   |     |      | -     |       |          |           |          | _ |              |         |          |
| RING INFO NET.       | ۵      | ۵      | ۵   | ۵        | ۵      | a      | Ω             | ۵        | Ω        | ۵        | Ω       |                 | Ω        |            | ٥        |          | ۵      | 0            |             | ۵   |       | ×                  | ۵   | ۵    |       | Ω        |                   |     |      |       |       |          |           |          | - |              | $\neg$  | $\dashv$ |
| TACAN                |        |        | -   |          |        |        |               |          |          |          | ۵       |                 |          |            | 1        |          |        |              |             |     | ×     |                    |     |      |       |          |                   |     |      |       |       |          |           |          |   | _            |         |          |
| GPS                  |        |        |     | Г        |        |        |               |          |          |          |         |                 |          | $\top$     | 1        |          |        |              |             | ×   |       | ۵                  |     |      |       |          |                   |     | -    | -     |       | -        |           |          |   | M=MECHANICAL |         |          |
| VOICE COMMS          |        |        |     |          |        |        |               |          |          |          | ш       | ш               |          | 1          | 1        | 7        |        |              | ×           |     |       |                    |     |      |       |          |                   |     |      | -     |       |          |           | ш        |   | HA           | ATA     |          |
| Mk-309 ASWFC         |        |        |     | ۵        |        |        |               |          |          |          |         |                 |          | 1          | 1        | T        | ۵      | ×            |             |     |       | ٥                  | ۵   |      |       |          |                   |     | ۵    | ш     |       |          |           |          |   | MEC          | D=DATA  |          |
| SQQ-89               |        |        |     | ۵        |        |        |               |          |          |          |         |                 |          | 7          | 1        |          | ×      | ۵            |             |     |       | ۵                  | ۵   |      |       |          |                   |     |      |       |       |          |           |          |   | 2            |         |          |
| IR MK-46             |        |        |     |          |        |        | ۵             |          |          |          |         |                 |          | ۵          |          | ×        |        |              |             |     |       | ۵                  |     |      |       |          |                   |     |      |       |       |          |           |          |   |              |         |          |
| CAS/STIR             |        |        |     |          |        |        |               |          |          |          |         |                 |          | ; ۵        | <        |          |        |              |             |     |       | ۵                  |     |      |       |          |                   |     |      |       |       |          |           |          |   | S            |         |          |
| Mk 92 GFCS           | ۵      | ۵      | ۵   |          |        |        | ۵             |          |          |          |         |                 |          | ×          | ב        | ۵        |        |              |             |     |       | Ω                  | Δ   | Δ    | Δ     |          |                   |     |      |       |       |          |           |          |   | E=ELECTRONIC |         |          |
| IFF                  | ш      | ш      |     |          | Г      |        |               |          |          |          |         | 1               | ×        |            |          |          |        |              |             |     |       | ۵                  |     |      |       |          |                   |     | -    |       |       |          |           |          |   | LEC          | L=LOGIC |          |
| SMALL BOATS (4)      |        |        |     |          |        | _      |               |          |          | T        |         | ×               |          | 1          |          |          |        |              | ш           |     |       |                    |     |      |       |          |                   |     |      |       |       |          |           | Σ        |   | E=E          | 1=1     |          |
| DOLPHIN              |        |        |     |          |        |        |               |          |          |          | ×       |                 |          |            | T        |          | ۵      |              | ш           |     | ۵     | Δ                  |     |      |       |          |                   |     |      |       |       |          |           |          |   |              |         |          |
| JMCIS                |        |        |     |          |        |        |               |          |          | ×        |         |                 |          |            |          |          |        |              |             |     |       | Ω                  |     |      |       |          |                   |     |      |       |       |          |           |          |   |              |         | 7        |
| CEC                  | ۵      | ۵      | ۵   |          |        |        |               |          | ×        |          |         |                 |          |            |          |          |        |              |             |     |       | Δ                  |     |      |       |          |                   |     |      |       |       |          |           |          |   |              |         |          |
| ACDS                 |        |        |     |          |        |        |               | ×        |          |          |         |                 |          |            |          |          |        |              |             |     |       | ۵                  |     |      |       |          |                   |     |      |       |       |          |           |          |   |              |         |          |
| VIDEO/OPTICAL        |        |        |     |          |        |        | ×             |          |          |          |         |                 |          |            | 1        |          |        |              |             |     |       | ۵                  |     |      |       |          |                   |     |      |       |       |          |           |          |   |              |         |          |
| SLQ-32               |        |        |     |          |        | ×      |               |          |          |          |         |                 |          |            | 1        |          |        |              |             |     |       | ۵                  |     |      |       |          |                   |     |      |       | نـ    |          |           |          |   |              |         |          |
| SH-100               |        |        |     |          | ×      |        |               |          |          |          |         |                 |          |            |          |          |        |              |             |     |       | ۵                  |     |      |       |          |                   |     |      |       |       |          |           | _        |   |              |         | 1        |
| SQS-56               |        |        |     | ×        |        |        |               |          |          |          |         |                 |          |            | 1        |          | ۵      | ۵            |             |     |       | ۵                  |     |      |       |          |                   |     |      |       |       |          |           |          |   |              |         | 1        |
| TAS                  |        |        | ×   |          |        | _      |               |          | ۵        |          |         |                 |          |            | 7        |          |        |              |             |     |       | ۵                  |     |      | 1     |          | Ω                 |     |      |       |       |          |           |          |   |              |         | +        |
| SPS-67               |        | ×      |     |          |        | _      |               |          | ۵        | 1        |         | 1               | ш        |            |          |          |        |              |             |     |       | ۵                  |     |      | 1     |          |                   |     |      |       |       |          |           |          |   |              |         | $\top$   |
| SPY-1D               | ×      |        |     |          |        |        |               |          | ۵        | $\dashv$ |         | 1               | ш        |            | 1        |          |        |              |             |     |       | Δ                  | 1   |      |       | 1        |                   |     |      |       |       |          |           |          |   |              |         | -        |
| COAST GUARD Option 1 | SPY-1D | SPS-67 | TAS | SQS-56   | SH-100 | SLQ-32 | VIDEO/OPTICAL | ACDS     | <u>ا</u> | JMCIS    | DOLPHIN | SMALL BOATS (4) | <u>+</u> | MK 92 GFCS | CAS/SIIR | IR MK-46 | SQQ-89 | Mk-309 ASWFC | VOICE COMMS | GPS | TACAN | RING INFO. NETWORK | WCS | ISDS | 76 MM | CIWS (1) | Mk 49 (RAM LNCHR) | RAM | SVTT | MK 50 | SRBOC | NIXIE    | JOY EQUIP | EOD TEAM |   |              |         |          |

Table G-5: Element Interface Matrix (Coast Guard option 2)

| EOD TEAM             | T      |        |                    |        |               |      |     |       |         |                 | Σ  |      | Γ          |          |             | ш   | Γ     |                   |     |      |               |         |         |       |            | ×        |   | Τ |              |         |   |
|----------------------|--------|--------|--------------------|--------|---------------|------|-----|-------|---------|-----------------|----|------|------------|----------|-------------|-----|-------|-------------------|-----|------|---------------|---------|---------|-------|------------|----------|---|---|--------------|---------|---|
| BUOY EQUIP           |        | Γ      | 1                  |        | Γ             |      |     |       |         |                 |    |      | -          |          | _           |     | -     | -                 |     |      | -             |         |         |       | ×          |          |   | + | $\vdash$     | -       |   |
| NIXIE                |        |        |                    |        |               |      |     |       |         |                 |    |      |            |          |             | T   |       |                   |     |      |               | -       |         | ×     |            | T        |   | T |              |         |   |
| SRBOC                |        |        |                    | ب      |               |      |     |       |         |                 |    |      |            |          |             |     |       |                   |     |      |               |         | ×       |       |            |          |   |   |              |         |   |
| STINGER              |        |        |                    |        |               |      |     |       |         |                 |    |      |            |          |             |     |       |                   |     |      |               | ×       |         |       |            | Γ        | T |   |              |         |   |
| 40 mm GUN (1)        |        |        |                    |        |               |      |     |       |         |                 |    |      |            |          |             |     |       | ۵                 |     | ۵    | ×             |         |         |       |            |          |   |   |              |         |   |
| ISDS                 |        |        |                    |        |               |      |     |       |         |                 |    | ۵    |            |          |             |     |       | ۵                 | ۵   | ×    | ۵             |         |         |       |            |          |   |   |              |         |   |
| wcs                  |        |        |                    |        |               |      |     |       |         |                 |    | Δ    |            |          |             |     |       | ۵                 | ×   | ۵    |               |         |         |       |            |          |   |   |              |         |   |
| RING INFO NET.       | ۵      | Δ      | ۵                  | ۵      | ۵             | ۵    | ۵   | ۵     | ۵       |                 | ۵  | ۵    | ۵          | ۵        |             | ۵   |       | ×                 | ۵   | ۵    | ۵             |         |         |       |            |          |   |   |              |         |   |
| TACAN                |        |        |                    |        |               |      |     |       | ۵       |                 |    |      |            |          |             |     | ×     |                   |     |      |               |         |         |       |            |          |   |   |              |         |   |
| GPS                  |        |        |                    |        |               |      |     |       |         |                 |    |      |            |          |             | ×   |       | ۵                 |     |      |               |         |         |       |            |          |   |   |              |         |   |
| VOICE COMMS          |        |        |                    |        |               |      |     |       | ш       | ш               |    |      |            |          | ×           |     |       |                   |     |      |               |         |         |       |            | ш        |   |   | M=MECHANICAL |         |   |
| IR MK-46             |        |        |                    |        | ۵             |      |     |       |         |                 |    | ۵    |            | ×        |             |     |       | ۵                 |     |      |               |         |         |       |            |          | Γ | T | HAN          | ATA     |   |
| GFCS RADAR           |        |        |                    |        |               |      |     |       |         |                 |    | ۵    | ×          |          |             |     |       | ۵                 |     |      |               |         |         |       |            |          |   | T | MEC          | <u></u> |   |
| GFCS                 | ۵      | ۵      |                    |        | ۵             |      |     |       |         |                 |    | ×    | ۵          | ۵        |             |     |       | ۵                 | ۵   | ۵    |               |         |         |       |            |          |   |   | Ψ            |         |   |
| IFF                  | ш      | ш      |                    |        |               |      |     |       |         |                 | ×  |      |            |          |             |     |       | ۵                 |     |      |               |         |         |       |            |          |   |   |              |         |   |
| SMALL BOATS (3)      |        |        |                    |        |               |      |     |       |         | ×               |    |      |            |          | ш           |     |       |                   |     |      |               | ٦       |         |       |            | Σ        |   |   | S            |         |   |
| DOLPHIN              |        |        |                    |        |               |      |     |       | ×       |                 |    |      |            |          | ш           |     | ۵     | ۵                 |     |      |               |         |         |       |            |          |   |   | RO           |         | П |
| JMCIS                |        |        |                    |        |               |      |     | ×     |         |                 |    |      |            |          |             |     |       | ۵                 |     |      |               |         |         |       |            |          |   |   | E=ELECTRONIC | L=LOGIC |   |
| CEC                  | ۵      | ۵      |                    |        |               |      | ×   |       |         |                 |    |      |            |          |             |     |       | ۵                 |     |      |               |         |         |       |            |          |   |   | 3=3          |         |   |
| ACDS                 |        |        |                    |        |               | ×    |     |       |         |                 |    |      |            |          |             |     |       | ۵                 |     |      |               |         |         |       |            |          |   |   |              |         |   |
| VIDEO/OPTICAL        |        |        |                    |        | ×             |      |     |       |         |                 |    | ۵    |            | ۵        |             |     |       | Ω                 |     |      |               |         |         |       |            |          |   |   |              |         |   |
| SLQ-32               | _      | _      |                    | ×      |               |      |     |       |         |                 |    |      |            |          |             |     |       | ۵                 |     |      |               |         |         |       |            |          |   |   |              |         |   |
| SUTEC DOUBLE EA      |        |        | ×                  |        |               |      |     |       |         |                 |    |      |            |          |             |     |       | ۵                 |     |      |               |         |         |       |            |          |   |   |              |         |   |
| SPS-67               |        | ×      |                    | 7      |               |      | D   |       |         |                 | ш  | ۵    |            |          |             |     |       | ۵                 |     |      |               |         |         |       |            |          |   |   |              |         |   |
| SPS-49               | ×      |        |                    | 7      |               |      | D   |       |         |                 | ш  | ۵    |            |          |             |     |       | ۵                 |     |      |               |         |         |       |            |          |   |   |              |         |   |
| COAST GUARD Option 3 | SPS-49 | SPS-67 | SUTEC DOUBLE EAGLE | SLQ-32 | VIDEO/OPTICAL | ACDS | CEC | JMCIS | DOLPHIN | SMALL BOATS (3) | FF | GFCS | GFCS RADAR | IR Mk-46 | VOICE COMMS | GPS | TACAN | RING INFO NETWORK | WCS | ISDS | 40 MM GUN (1) | STINGER | SRBOC - | NIXIE | BUOY EQUIP | EOD TEAM |   |   |              |         |   |

## APPENDIX H

ELEMENT VS. SHIP SUPPORT MATRICES

### **SUMMARY**

A ship support matrix was constructed for each whole ship option to provide a basis for the type and amount of support needed from the ship to operate each Combat System suite. The Navy option 1 and Coast Guard option 1 suites are shown in this appendix due to their extensive list of high-end systems. The remaining suites can be characterized as a subset of the suites shown below:

H-1: Ship Support Matrix (Navy option 1)

H-2: Ship Support Matrix (Coast Guard option 1)

| Elements                 | SPY-1D | SPS-67   | AS  | SQR-19 | SQS-56 | 3H-100 | LQ-32 | IDEO/OPTICAL | 2000          | JMCIS | PANTHER | MALL BOATS (4) | FF | MK 99 | -SFG-62<br>Mk 34 GFCS | SPG-60/SPQ-9 | R Mk-46 | SQQ-89 | Mk-309 ASWFC | VOICE COMMS | TACAN | RING INFO NET. | /CS | SDS | 155 mm GUN | CIVVS (2) | MK 49 (KAM LNCHK) | NIC. | HARPOON  | DMAHAWK | FSS | SM-2 MR | VLA | SVTT | MK 50 | SRBOC | NIXIE | TEAM |
|--------------------------|--------|----------|-----|--------|--------|--------|-------|--------------|---------------|-------|---------|----------------|----|-------|-----------------------|--------------|---------|--------|--------------|-------------|-------|----------------|-----|-----|------------|-----------|-------------------|------|----------|---------|-----|---------|-----|------|-------|-------|-------|------|
| Electric power           | ×      | ×        | ×   | ×      | ×      | ×      | ×     | ×            | < >           | < ×   | ×       | ×              | ×  | ×     | ×                     | ×            |         | ×      | ×            | ×           | < >   | ×              | ×   | ×   | ×          | Κ:        | ×                 | >    | <        |         |     |         |     | ×    |       | ××    | ×     | >    |
| 400 Hz Electric          | ×      | ×        | ×   | ×      | ×      |        | ×     | ×            |               |       | ×       |                | ×  | ×     | ××                    | ×            | ×       | ×      | ×            |             |       |                |     |     | ×          | × :       | ×                 |      |          |         |     |         |     |      |       | 1     |       |      |
| Chilled Water            | ×      | ×        | ×   |        | ×      | ×      |       |              |               |       |         |                |    | ×     | ××                    | ×            |         |        |              |             |       |                |     |     | ×          | ×         |                   |      |          |         |     |         |     |      |       |       |       |      |
| A/C Ventilation          | ×      | ×        | ×   | ×      | ×      | ×      | ×     | ×            | <b>&lt;</b> > | < ×   |         |                | ×  | ×     | ××                    | ×            | ×       | ×      | ×            | ×           | >     | <×             | ×   | ×   |            |           |                   |      |          |         |     |         |     |      |       |       |       |      |
| High Strength Structure  |        | ×        | ×   |        | ×      |        |       |              |               |       | ×       |                |    |       | ×                     | ×            |         |        |              |             |       |                |     |     | XX         | ×         |                   | >    | <        |         |     |         |     |      |       |       |       |      |
| Fire Protection System   |        |          |     |        |        |        |       |              |               |       | ×       |                |    |       |                       |              |         |        |              |             |       |                |     |     | ×          | ×         |                   |      |          |         |     |         |     |      | ×     | ×     |       | -    |
| mmunition loading equipm |        |          |     |        |        |        |       |              |               |       | ×       |                |    |       |                       |              |         |        |              |             |       |                |     |     | ×          |           |                   | ,    | <        |         |     |         |     | ×    | ×     |       |       | -    |
| Hydraulic Systems        |        |          |     |        |        |        |       |              |               |       | ×       | ×              |    |       |                       |              |         |        |              |             |       |                |     |     | ×          |           |                   | ,    | <        |         |     |         |     |      |       |       |       | -    |
| HP air                   |        |          |     |        |        |        |       |              |               |       | ×       |                |    |       |                       |              |         |        |              |             |       |                |     |     | ×          |           |                   | ,    | <b>×</b> |         |     |         |     | ×    | ×     |       |       | 1    |
| LP air                   | ×      | ×        | ×   |        | ×      |        | ×     |              |               |       | ×       |                |    |       | ×                     | ×            | <       |        |              |             |       |                |     |     | ×          |           |                   | ,    | <        |         |     |         |     |      | ×     |       |       | 1    |
| Nitroger                 |        | , amount |     |        |        |        |       |              |               |       |         |                |    |       |                       |              |         |        |              |             |       |                |     |     |            |           |                   |      |          |         |     |         |     |      |       |       |       |      |
| Salt Water Cooling       | ,      | ×        | < × | <      | ×      |        |       |              |               |       |         | ×              |    |       | ×                     | ×            | <       |        |              |             |       |                |     |     | ×          |           |                   |      |          |         |     |         |     |      |       |       |       |      |
| Gyro Inputs              | ×      | ×        | < > | <      | ×      | ×      | ×     | ×            |               |       |         |                |    | ×     | × >                   | < >          | < ×     | ×      | ×            |             | :     | <              | ×   |     | ×          | ×         | ×                 | ×    | × >      | < >     | × > | < >     | < × | ×    | ×     |       |       |      |

|                           | Т      | Т      | T   | T      | Т      | Т      | Τ             | Ţ    | Т   |       |   |                 | Г        |            | Τ        | Т        |        |              |             |     |       | 7              | Т   | _       |           | _                     | 1          | -     |               | _    | _    | $\top$       | $\top$   |
|---------------------------|--------|--------|-----|--------|--------|--------|---------------|------|-----|-------|---|-----------------|----------|------------|----------|----------|--------|--------------|-------------|-----|-------|----------------|-----|---------|-----------|-----------------------|------------|-------|---------------|------|------|--------------|----------|
| Gyro Inputs               | ×      | ×      | ×   | ×      | ×      | ×      | ×             |      |     |       |   |                 |          | ×          | ×        | ×        | ×      | ×            |             |     | ×     |                | ×   |         | ×         | ×                     | ×          | ×     | × :           | ×    |      |              |          |
| Salt Water Cooling        | ,      | ×      | ×   | ×      |        |        |               |      |     |       |   | ×               |          |            | ×        |          |        |              |             |     |       |                |     |         | ×         |                       |            |       |               |      |      |              |          |
| Nitrogen                  |        |        |     |        |        |        |               |      |     |       |   |                 |          |            | ×        |          |        |              |             |     |       |                |     |         |           |                       |            |       |               |      |      |              |          |
| LP air                    | ×      | ×      | ×   | ×      |        | ×      |               |      |     |       | × |                 |          | ×          | ×        |          |        |              |             |     |       |                |     | ,       | ×         |                       |            |       | >             | <    |      | ×            | <        |
| HP air                    |        |        |     |        |        |        |               |      |     |       | × |                 |          |            |          |          |        |              |             |     |       |                |     |         | ×         |                       |            | ,     | <b>&lt;</b> > | <    |      |              | BYOA     |
| Hydraulic Systems         |        |        | -   |        |        |        |               |      |     |       | × | ×               |          |            |          |          |        |              |             |     |       |                |     | ;       | ×         |                       |            |       |               |      |      | ×            |          |
| Ammunition loading equipm |        |        |     |        |        |        |               |      |     |       | × |                 |          |            |          |          |        |              |             |     |       |                |     | ;       | <         |                       |            | ,     | <>            | <    |      |              |          |
| Fire Protection System    |        |        |     |        |        |        |               |      |     |       | × |                 |          |            |          |          |        |              |             |     |       |                |     | ,       | <>        | <                     |            |       | >             | <;   | <    |              |          |
| High Strength Structure   |        | ×      | ×   | ×      |        |        |               |      |     |       | × |                 |          |            | ×        |          |        |              |             |     |       |                |     | ,       | < >       | <                     |            |       |               |      |      | ×            | :        |
| A/C Ventilation           | ×      | ×      | ×   | ×      | ×      | ×      | ×             | ×    | ×   | ×     |   |                 | ×        | ×          | ×        | ×        | ×      | ×            | ×           |     | ×     | × ;            | <>  | <       |           |                       |            |       |               |      |      |              |          |
| Chilled Water             | ×      | ×      | ×   | ×      | ×      |        |               |      |     |       |   |                 |          | ×          | ×        |          |        |              |             |     |       |                |     | >       | < >       | <                     |            |       |               |      |      |              |          |
| 400 Hz Electric           | ×      | ×      | ×   | ×      |        | ×      | ×             |      |     |       | × |                 | ×        | ×          | ×        | ×        | ×      | ×            |             |     |       |                |     | >       | <>        | < >                   | <          |       |               |      |      |              |          |
| Electric power            | ×      | ×      | ×   | ×      | ×      | ×      | ×             | ×    | ×   | ×     | × | ×               | ×        | ×          | ×        | ×        | ×      | ×            | ×           | ×   | × :   | < >            | < > | <>      | < >       | <>                    | <          | >     | <             | >    | < ×  | ×            | ×        |
| Elements                  | SPY-1D | SPS-67 | TAS | SQS-56 | SH-100 | SLQ-32 | VIDEO/OPTICAL | ACDS | CEC | JMCIS |   | SMALL BOATS (4) | <u>+</u> | MK 92 GFCS | CAS/STIR | IR Mk-46 | SQQ-89 | Mk-309 ASWFC | VOICE COMMS | GPS | IACAN | AING INFO NET. | SOM | 75 8484 | CHAIR (4) | MAL AD ABAM I NICIDEN | PAM LINCHA | 17/13 | MAK SO        | Codo | NXIN | NOY HANDLING | EOD TEAM |

# **APPENDIX I**

ELECTROMAGNETIC INTERFERENCE MATRIX

### **SUMMARY**

A table containing the operating frequencies for each element of the Combat System suite was constructed to examine areas of possible electromagnetic interference. The following tables contain the EMI matrices for each whole ship option:

- Table I-1: EMI Matrix (Navy option 1)
- Table I-2: EMI Matrix (Navy option 2)
- Table I-2: EMI Matrix (Navy option 3)
- Table I-4: EMI Matrix (Coast Guard option 1)
- Table I-5: EMI Matrix (Coast Guard option 2)
- Table I-6: EMI Matrix (Coast Guard option 3)

|                     |                |        |      |        |                                       | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Τ                                              | T                                                       | Τ             | Т                                                   | Т            | Τ       | T       | T               | T | Τ     | Τ      | Т          | Т            | Τ        | Τ      | Т            | Т           | T   | Τ     | Τ              | Τ   | Τ    | Τ          | Τ        | T                | Т   | Т   | Τ       | Τ        | Τ   | Т       | Т   |      | Т     | Т     | T     | Т        |
|---------------------|----------------|--------|------|--------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|---------------|-----------------------------------------------------|--------------|---------|---------|-----------------|---|-------|--------|------------|--------------|----------|--------|--------------|-------------|-----|-------|----------------|-----|------|------------|----------|------------------|-----|-----|---------|----------|-----|---------|-----|------|-------|-------|-------|----------|
|                     |                |        |      |        | L                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.                                             |                                                         |               |                                                     |              | 1       |         |                 |   |       |        |            |              |          |        |              |             |     |       |                |     |      |            |          |                  |     |     |         |          |     |         |     |      |       |       |       |          |
| W                   | 2H5 001-9c     |        |      |        |                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LQ-32                                          | s of the SLQ-32                                         |               | nar or light                                        |              |         |         |                 |   |       |        |            |              |          |        |              |             |     |       |                |     |      |            |          |                  |     |     |         |          |     |         |     |      |       | -     |       |          |
| V 03.04             | 46-56 GHZ      |        |      |        | the element                           | a and common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | peration for the S                             | nming capabilitie                                       |               | are shown, no so                                    |              |         |         |                 |   |       |        |            |              |          |        |              |             |     |       |                |     |      |            |          |                  |     |     |         |          |     |         |     |      |       |       |       |          |
| 00                  | 30-40 GHZ      |        |      | -      | X - Indicates the band of the element | o de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la consta | F - Indicates Passive operation for the SEQ-32 | A - Indicates Active Jamming capabilities of the SLQ-32 |               | Only radio frequencies are shown, no sonar or light | ıcies.       |         |         |                 |   |       |        |            |              |          |        |              |             |     |       |                |     |      |            |          |                  |     |     |         |          |     |         |     |      |       |       |       |          |
| Ka<br>22.36.0⊔-     | 33-30 GHZ      |        |      | Legend | X - Indi                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IIII.                                          | A - Indi                                                |               | Only ra                                             | frequencies. |         |         |                 |   |       |        |            |              |          |        |              |             |     |       |                |     |      |            |          |                  |     |     |         |          |     |         |     |      |       |       |       |          |
| Ku<br>6 26 17 36 GH | HD C7.11-C7.C  |        |      |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | D/A                                                     |               | HHS                                                 | H.S.         | SH.     | 5       |                 |   |       |        |            |              |          |        |              | SHF         |     |       |                |     |      |            | ×        |                  | ×   |     |         |          |     |         |     |      |       |       |       |          |
| X<br>62 10 9 CHz    | _              | >      | <    |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | D/A                                                     |               | 77.                                                 | T.S.         | SHF     |         |                 |   |       | ×      |            | ×            |          |        |              | 出め          |     |       |                |     |      |            |          |                  | ×   |     |         |          |     |         |     |      |       |       |       |          |
| C 20.67             | 3.9-0.2 GHZ    |        |      |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | P/A                                                     |               | SHR                                                 | 宏            | 墨       |         |                 |   |       |        |            |              |          |        |              | SHF         |     |       |                |     |      |            |          |                  | ×   |     |         |          |     |         |     |      |       |       |       |          |
| S<br>1 55.3 0 GHz   | X X            | <      |      |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | ۵                                                       |               | UHF/SHF                                             | UHF/SHF      | UHF/SHF |         |                 |   |       |        |            |              |          |        |              | UHF/SHF     |     |       |                |     |      |            |          |                  |     |     |         |          |     |         |     |      |       |       |       |          |
| 1<br>390-1550 MH2   | 2011 000 1-000 |        | ,    | ×      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | ۵                                                       |               | FHO                                                 | H-D          | 품       |         |                 | × |       |        |            |              |          |        |              | 불           |     | ×     |                |     |      |            |          |                  |     |     |         |          |     |         |     |      |       |       |       |          |
| P<br>225-390 MHz    | +              |        |      |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | ۵                                                       |               | VHE/UHF                                             | VHF/UHF      | VHF/UHF |         |                 |   |       |        |            |              |          |        |              | VHF/UHF     |     |       |                |     |      |            |          |                  |     |     |         |          |     |         |     |      |       |       |       |          |
| G<br>150-225 MHz    | 7 111 17 -00   |        |      |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                         |               | Y.F.                                                | VHF          | VHF     |         |                 |   |       |        |            |              |          |        |              | VHF         |     |       |                |     |      |            |          |                  |     |     |         |          |     |         |     |      |       |       |       |          |
| 100-150 MHz         | 20 100 100     |        |      |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                         |               | 岩                                                   | VHF          | VHF     |         |                 |   |       |        |            |              |          |        |              | VHF         |     |       |                |     |      |            |          |                  |     |     |         |          |     |         |     |      |       |       |       |          |
| Flements            | SPY-1D         | SPS-67 | 1001 | 27.00  | SQR-19                                | SQS-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SH-100                                         | SLQ-32                                                  | VIDEO/OPTICAL | ACDS                                                | CEC          | JMCIS   | PANTHER | SMALL BOATS (4) | 占 | MK 99 | SPG-62 | Mk 34 GFCS | SPG-60/SPQ-9 | IR Mk-46 | SQQ-89 | Mk-309 ASWFC | VOICE COMMS | GPS | TACAN | RING INFO NET. | WCS | SOSI | 155 mm GUN | CIWS (2) | K 49 (RAM LNCHR) | RAM | VLS | HARPOON | TOMAHAWK | ESS | SM-2 MR | VLA | SVTT | MK 50 | SRBOC | NIXIE | FOD TEAM |

| Γ             |               | T    |        |      |        |                 |                                       |                  |                                                         |         |                                                     |                 |    |       |        |            |              |          |        |              |             |     |       |                |     |      |            | T              | T   |         |          |     |         |     |      |       |       |       | _        |
|---------------|---------------|------|--------|------|--------|-----------------|---------------------------------------|------------------|---------------------------------------------------------|---------|-----------------------------------------------------|-----------------|----|-------|--------|------------|--------------|----------|--------|--------------|-------------|-----|-------|----------------|-----|------|------------|----------------|-----|---------|----------|-----|---------|-----|------|-------|-------|-------|----------|
| *             | 56-100 GHz    |      |        |      |        |                 | 1                                     |                  | s SLQ-32                                                |         | light                                               |                 |    |       |        |            |              |          |        |              |             |     |       |                |     |      |            |                |     |         |          |     |         |     |      |       |       |       |          |
| >             | 46-56 GHz     |      |        |      |        | 4               | ement at a a a                        | n for the SLQ-32 | capabilities of the                                     |         | own, no sonar or                                    |                 |    |       |        |            |              |          |        |              |             |     |       |                |     |      |            |                |     |         |          |     |         |     |      |       |       |       |          |
| σ             | 36-46 GHz     |      |        |      |        | the head of the | A - Indicates the band of the element | Passive operatio | A - Indicates Active Jamming capabilities of the SLQ-32 |         | Only radio frequencies are shown, no sonar or light |                 |    |       |        |            |              |          |        |              |             |     |       |                |     |      |            |                |     |         |          |     |         |     |      |       |       |       |          |
| Ka            | 33-36 GHz     |      |        |      | legend | V Indiantes     | A - Indicates                         | P - Indicates    | A - Indicates                                           | Т       | Only radio fre                                      | frequencies.    |    |       |        |            |              |          |        |              |             |     |       |                |     |      |            |                |     |         |          |     |         |     |      |       |       |       |          |
| Ϋ́            | 5.25-17.25 GH |      |        |      |        | V/Q             | 2                                     | SHE              | 100                                                     |         |                                                     |                 |    |       |        |            |              |          |        |              | AHE.        |     |       |                |     |      |            | ×              |     |         |          |     |         |     |      |       |       |       |          |
| $\rightarrow$ | 6.2-10.9 GHz  |      | ×      |      |        | V/Q             | 2                                     | H.V.             | u u                                                     | 5 2     | 5                                                   |                 |    |       | >      |            | >            | <        |        |              | SHE         |     |       |                |     |      |            |                |     |         |          |     |         |     |      |       |       |       |          |
| O             | 3.9-6.2 GHz   |      |        |      |        | D/A             |                                       | SHR              | S.HE                                                    | 77.     | =                                                   |                 |    |       |        |            |              |          |        |              | SFF         |     |       |                |     |      |            |                |     |         |          |     |         |     |      |       |       |       | 1        |
| S             | 1.55-3.9 GHz  | ×    |        |      |        | ۵               |                                       | UHF/SHF          | UHE/SHE                                                 | HE/SHE  |                                                     |                 |    |       |        |            |              |          |        |              | UHF/SHF     |     |       |                |     |      |            |                |     |         |          |     |         |     |      |       |       |       |          |
| _             | 390-1550 MHz  |      |        |      |        | ۵               |                                       | HS-              | H-D                                                     | 45      |                                                     |                 | ×  |       |        |            |              |          |        |              | H-S         |     | ×     |                |     |      |            |                |     |         |          |     |         |     |      |       |       |       | -        |
| _             | 225-390 MHz   |      |        |      |        | ۵.              |                                       | VHF/UHF          | VHF/UHF                                                 | VHE/UHF |                                                     |                 |    |       |        |            |              |          |        |              | VHF/U-F     |     |       |                |     |      |            |                |     |         |          |     |         |     |      |       |       |       |          |
| +             | ZHW 677-061   |      |        |      |        |                 |                                       | YH.              | 长                                                       | 사       |                                                     |                 |    |       |        |            |              |          |        |              | VHF         |     |       |                |     |      |            |                |     |         |          |     |         |     |      |       |       |       |          |
| +             | ZHW 0CL-001   |      |        |      |        |                 |                                       | VAF              | VHF                                                     | H-N     |                                                     |                 |    |       |        |            |              |          |        |              | VHF         |     |       |                |     |      |            |                |     |         |          |     |         |     |      |       |       |       |          |
| 20000         | Clements      | XPAK | SPS-67 | ATAS | SH-100 | SLQ-32          | VIDEO/OPTICAL                         | ACDS             | CEC                                                     | JMCIS   | PANTHER                                             | SMALL BOATS (2) | 44 | MK 99 | SPG-62 | Mk 34 GFCS | SPG-60/SPQ-9 | IR MK-46 | SQQ-89 | MK-116 ASWFC | VOICE COMMS | GPS | TACAN | RING INFO NET. | WCS | SDSI | 127 mm GUN | 40 mm GUNS (2) | VLS | HARPOON | TOMAHAWK | ESS | SM-2 MR | VLA | SVTT | MK 50 | SRBOC | NIXIE | TOP TANK |

|                     | -           |             | ۵.          | _            | S                                     | 0           | ×             | Ϋ́            | K3             | c                 | >                                                  | , 41       |
|---------------------|-------------|-------------|-------------|--------------|---------------------------------------|-------------|---------------|---------------|----------------|-------------------|----------------------------------------------------|------------|
| Elements            | 100-150 MHz | 150-225 MHz | 225-390 MHz | 390-1550 MHz | 155-39 GHz                            | 3 9.6 2 GHz | R 2.10 0 GHz  | 5 25 47 25 G⊔ | 23 36 61 12    | 1 000             | A 02 04                                            | ۸۸         |
| SPS-49              |             |             | +-          | ×            | ×                                     | 20.00       | 0.2-10.9 GFIZ | HD 07'/1-07'0 | 33-30 GHZ      | 30-40 GHZ         | 46-56 GHZ                                          | 56-100 GHz |
| SPS-67              |             |             |             |              |                                       |             | >             |               |                |                   |                                                    |            |
| SQR-19              |             |             |             |              |                                       |             | <             |               |                |                   |                                                    |            |
| SUTEC DOUBLE EAGLE  |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| SLQ-32              |             |             | ۵           | ۵            | ۵                                     | D/A         | V/Q           | ×/0           | regend         |                   |                                                    |            |
| VIDEO/OPTICAL       |             |             |             |              |                                       |             |               | K.            | X - Indicates  | the band of the   | slement                                            |            |
| ACDS                | 사           | THY.        | VHF/UHF     | UHF          | IHE/SHE                               | 니다          | THC.          | טרוט          | P - Indicates  | Passive operation | P - Indicates Passive operation for the SLQ-32     |            |
| CEC                 | 上           | Y.F.        | VHF/UHF     | 445          | IHE/SHE                               | uHZ.        | - L           | בוט           | A - Indicates  | Active Jamming    | capabilities of the                                | SLQ-32     |
| JMCIS               | H-V         | ¥           | VHF/UHF     | 1 1 1        | I I I I I I I I I I I I I I I I I I I | 500         | בווים         | בונים         | J              |                   |                                                    |            |
| PANTHER             |             |             |             | 5            | 2                                     | 100         | LLO           | TEN           | Only radio fre | aduencies are sh  | Only radio frequencies are shown no sonar or light | inht       |
| SMALL BOATS (2)     |             |             |             |              |                                       |             |               |               | frequencies    |                   |                                                    |            |
| 보                   |             |             |             | ×            |                                       |             |               |               |                |                   |                                                    |            |
| MK 86 GFCS          |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| SPG-60/SPQ-9        |             |             |             |              |                                       |             | >             |               |                |                   |                                                    |            |
| IR MK-46            |             |             |             |              |                                       |             | <             |               |                |                   |                                                    |            |
| SQQ-89              |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| VOICE COMMS         | 받           | VHF         | VHF/UHF     | 1HI          | I IHE/SHE                             | SHE         | SUE           | EFFE          |                |                   |                                                    |            |
| GPS                 |             |             |             |              |                                       | 5           | 5             | 5             |                |                   |                                                    |            |
| TACAN               |             |             |             | ×            |                                       |             |               |               |                |                   |                                                    |            |
| RING INFO NET.      |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| WCS                 |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| SDS                 |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| 127 mm GUN          |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| 40 mm GUNS (2)      |             |             |             |              |                                       |             |               | >             |                |                   |                                                    |            |
| CANNISTER           |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| HARPOON             |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| ABL                 |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| TOMAHAWK            |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| RAM                 |             |             |             |              |                                       | ×           | *             | >             |                |                   |                                                    |            |
| MK49 (RAM LAUNCHER) |             |             |             |              |                                       |             | <             | <             |                |                   |                                                    |            |
| SVTT                |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| MK 50               |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| SRBOC               |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| NIXIE               |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |
| EOD TEAM            |             |             |             |              |                                       |             |               |               |                |                   |                                                    |            |

| 3  | 56-100 GHz    |        |        |     |        |        |                    |                    | Q-32                                                    |         | _                                                   |             |                 |    |            |          |          |        |              |             |     |       |               |     |      |       |          |                   |     |      |       |       |       |          |
|----|---------------|--------|--------|-----|--------|--------|--------------------|--------------------|---------------------------------------------------------|---------|-----------------------------------------------------|-------------|-----------------|----|------------|----------|----------|--------|--------------|-------------|-----|-------|---------------|-----|------|-------|----------|-------------------|-----|------|-------|-------|-------|----------|
| >  | 46-56 GHz 5   | +      |        |     |        |        | ment               | or the SLQ-32      | pabilities of the SL                                    |         | n. no sonar or ligh                                 | ,           |                 |    |            |          |          |        |              |             |     |       |               |     |      |       |          |                   |     |      |       |       |       |          |
| 0  | 36-46 GHz     |        |        |     |        |        | he band of the ele | assive operation f | A - Indicates Active Jamming capabilities of the SLQ-32 |         | Only radio frequencies are shown, no sonar or light |             |                 |    |            |          |          |        |              |             |     |       |               |     |      |       |          |                   |     |      |       |       |       |          |
| Ka | 33-36 GHz     |        |        |     |        |        | X - Indicates t    | P - Indicates      | A - Indicates /                                         |         | Only radio free                                     | frequencies |                 |    |            |          |          |        |              |             |     |       |               |     |      |       |          |                   |     |      |       |       |       |          |
| Ϋ́ | 5.25-17.25 GH |        |        |     |        |        | P/A                |                    | SHF                                                     | SHE     | SHF                                                 |             |                 |    |            |          |          |        |              | SHE         | 5   |       |               |     |      |       | ×        |                   | ×   |      |       |       |       |          |
| ×  | 6.2-10.9 GHz  | +      | ×      |     |        |        | P/A                |                    | SHE                                                     | 出       | 出                                                   |             |                 |    |            | ×        |          |        |              | 生           |     |       |               |     |      |       |          |                   | ×   |      |       |       |       |          |
| O  | 3.9-6.2 GHz   |        |        |     |        |        | P/A                |                    | SET.                                                    | TES.    | SH.                                                 |             |                 |    |            |          |          |        |              | SHF         |     |       |               |     |      |       |          |                   | ×   |      |       |       |       |          |
| ഗ  | 1.55-3.9 GHz  | ×      |        |     |        |        | Д                  |                    | UHF/SHF                                                 | UHF/SHF | UHF/SHF                                             |             |                 |    |            |          |          |        |              | UHF/SHF     |     |       |               |     |      |       |          |                   |     |      |       |       |       |          |
| _  | 390-1550 MHz  |        |        |     |        |        | ۵                  |                    | HHO                                                     | 품       | H5                                                  |             |                 | ×  |            |          |          |        |              | THO.        |     | ×     |               |     |      |       |          |                   |     |      |       |       |       |          |
| م  | 225-390 MHz   |        |        |     |        |        | ۵                  |                    | VHF/UHF                                                 | VHF/UHF | VHF/CHF                                             |             |                 |    |            |          |          |        |              | VHF/UHF     |     |       |               |     |      |       |          |                   |     |      |       |       |       |          |
| g  | 150-225 MHz   |        |        |     |        |        |                    |                    | YH.                                                     | ᅪ       | 불                                                   |             |                 |    |            |          |          |        |              | 보           |     |       |               |     |      |       |          |                   |     |      |       |       |       |          |
| _  | 100-150 MHz   |        |        |     |        |        |                    |                    | VHF                                                     | VHF     | -HA                                                 |             |                 |    |            |          |          |        |              | HA.         |     |       |               |     |      |       |          |                   |     |      |       |       |       |          |
|    | Elements      | SPY-1D | SPS-67 | TAS | SQS-56 | SH-100 | SLQ-32             | VIDEO/OPTICAL      | ACDS                                                    | CEC     | JMCIS                                               | DOLPHIN     | SMALL BOATS (4) | FF | MK 92 GFCS | CAS/STIR | IR Mk-46 | SQQ-89 | Mk-309 ASWFC | VOICE COMMS | GPS | TACAN | RING INFO NET | WCS | SDSI | 76 MM | CIWS (1) | MK 49 (RAM LNCHR) | RAM | SVTT | MK 50 | SRBOC | NIXIE | EOD TEAM |

|                   | -           | 9           | Д.          |              | S            | O           | ×            | Ϋ́            | Ka             | C                                                       | >                   | 14          |
|-------------------|-------------|-------------|-------------|--------------|--------------|-------------|--------------|---------------|----------------|---------------------------------------------------------|---------------------|-------------|
| Elements          | 100-150 MHz | 150-225 MHz | 225-390 MHz | 390-1550 MHz | 1.55-3.9 GHz | 3.9-6.2 GHz | 6.2-10.9 GHz | 5 25-17 25 GH | 33-36 GHz      | 36.46 GH2                                               | 46.56.CU3           | 58 400 011- |
| XPAR              |             |             |             |              | ×            |             |              | 200           |                | 31 10 04-00                                             | 710 00-04           | 3-6-        |
| SPS-67            |             |             |             |              |              |             | ×            |               |                |                                                         |                     |             |
| TAS               |             |             |             | ×            |              |             | <            |               |                |                                                         |                     |             |
| SH-100            |             |             |             |              |              |             |              |               | , , , ,        |                                                         |                     |             |
| SLQ-32            |             |             | م           | ۵            | ۵            | D/A         | D/A          | V/Q           | Tedeno         |                                                         |                     |             |
| VIDEO/OPTICAL     |             |             |             |              |              |             |              |               | A - Indicates  | A - Indicates the band of the element                   | element             |             |
| ACDS              | 사           | 北           | VHF/UHF     | H-N          | UHF/SHF      | 3HR         | H.           | SHE           | P - Indicates  | Rassive operation                                       | n for the SLQ-32    |             |
| CEC               | HY.         | 불           | VHF/UTF     | H-N          | UHF/SHF      | SHF         | H.           | JHZ.          | A - Indicates  | A - Indicates Active Jamming capabilities of the SLQ-32 | capabilities of the | SLQ-32      |
| JMCIS             | 부           | 불           | VHF/UHF     | 보            | IHE/SHE      | 발           | 110          | 2 2           | 1              |                                                         |                     |             |
| DOLPHIN           |             |             |             |              |              | 5           | 5            | 100           | Only radio fre | Only radio frequencies are shown, no sonar or light     | own, no sonar or    | ight        |
| SMALL BOATS (4)   |             |             |             |              |              |             |              |               | frequencies    |                                                         |                     |             |
| 44                |             |             |             | ×            |              |             |              |               | -              |                                                         |                     |             |
| GFCS              |             |             |             |              |              |             |              |               |                |                                                         |                     |             |
| GFCS RADAR        |             |             |             |              |              |             | >            |               |                |                                                         |                     |             |
| IR Mk-46          |             |             |             |              |              |             | <            |               |                |                                                         |                     |             |
| VOICE COMMS       | YHF         | 사           | VHF/UHF     | #HO          | UHE/SHF      | HH.         | JH7          | טרונ          |                |                                                         |                     |             |
| GPS               |             |             |             |              |              | 5           | 5            | LLD           |                |                                                         |                     |             |
| TACAN             |             |             | -           | ×            |              |             |              |               |                |                                                         |                     |             |
| RING INFO NET     |             |             |             |              |              |             |              |               |                |                                                         |                     |             |
| WCS               |             |             |             |              |              |             |              |               |                |                                                         |                     |             |
| SDSI              |             |             |             |              |              |             |              |               |                |                                                         |                     |             |
| 40 MM GUNS (2)    |             |             |             |              |              |             |              | >             |                |                                                         |                     |             |
| MK 49 (RAM LNCHR) |             |             |             |              |              |             |              |               |                |                                                         |                     |             |
| RAM               |             |             |             |              |              | >           | >            | ,             |                |                                                         |                     |             |
| SRBOC             |             |             |             |              |              | <           | <            | <             |                |                                                         |                     |             |
| NIXIE             |             |             |             |              |              |             |              |               |                |                                                         |                     |             |
| EOD TEAM          |             |             |             |              |              |             |              |               |                |                                                         |                     |             |

|                    | _           | 9           | Ь           | ب            | S            | O           | ×            | Κu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ka             | ø                                     | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >          |
|--------------------|-------------|-------------|-------------|--------------|--------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Elements           | 100-150 MHz | 150-225 MHz | 225-390 MHz | 390-1550 MHz | 1.55-3.9 GHz | 3.9-6.2 GHz | 6.2-10.9 GHz | 5.25-17.25 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33-36 GHz      | 36-46 GHz                             | 46-56 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56-100 GHz |
| SPS-49             |             |             |             | ×            | ×            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| SPS-67             |             |             |             |              |              |             | ×            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| SUTEC DOUBLE EAGLE |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Legend         |                                       | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |            |
| SLQ-32             |             |             | ۵           | ۵            | ۵            | P/A         | P/A          | P/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X - Indicates  | X - Indicates the hand of the element | lement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| VIDEO/OPTICAL      |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D Indicator    | Daneillo operation                    | D - Indicates Descive operation for the CLO 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| ACDS               | VHF         | YHF         | VHF/UHF     | 남            | UHF/SHF      | HS.         | SFF          | 北の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r - Illuicates | A stire lemmin                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6          |
| CEC                | NHF.        | VHF         | VHF/UHF     | H-I          | UHF/SHF      | HS.         | 出            | 上SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A - Indicates  | Active Jamming                        | A - Indicates Active Jamming capabilities of the SLQ-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SLU-32     |
| JMCIS              | YH.         | 사           | VAF/UAF     | 품            | UHF/SHF      | SHF         | SFF          | S.F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| DOLPHIN            |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Only radio fre | equencies are sh                      | Only radio frequencies are shown, no sonar or light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | light      |
| SMALL BOATS (3)    |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | frequencies.   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 4                  |             |             |             | ×            |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| GFCS               |             |             |             |              |              |             |              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| GFCS RADAR         |             |             |             |              |              |             | ×            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| IR Mk-46           |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| VOICE COMMS        | YH.         | 사           | VHF/UHF     | JHN          | UHF/SHF      | 胀           | SHF          | 岩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| GPS                |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| TACAN              |             |             |             | ×            |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| RING INFO NET      |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| WCS                |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| SOSI               |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 40 MM GUN (1)      |             |             |             |              |              |             |              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| STINGER            |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| SRBOC              |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| NIXIE              |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| EOD TEAM           |             |             |             |              |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |

# **APPENDIX J**

WARSHIP 21 DATA

### SUMMARY

Warship-21 is a combatant ship design program developed by John J. McMullen Associates for NAVSEA (03D). Its intended use is directed toward feasibility studies and initial design comparisons. It is a menu-driven program that uses desired (by the user) performance and mission characteristics, empirical relationships, and known equipment characterizations to define a ship's top level characteristics (length, beam, speed, combat payload, etc.).

Enclosed in this appendix (H) are the Warship-21 reports for the various Navy version options (pp H-3 to H-12), and Coast Guard version options (H-13 to H-22). There are three options for each variant, with option 2 of each variant broken down in to three sub-options. The three sub-options were used to characterize (volume and weight) three different existing air search radars (Spy-1D, SPS-48E, and SPS-49D) as surrogates for a yet-to-be-produced, small, phased array radar (X-PAR). The option number of each report is in the upper left hand corner of each page.

The only other differences between input parameters were endurance range and speed. The Navy versions were modeled using 5,000 NM @ 20 knots. The Coast Guard versions used 8,000 NM @ 14 knots.

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 1 -- 09/17/95 17:29:47

SHIP DATA FILE: CPCN2.SDF

SHIP DESCRIPTION: CPCX Option 1

NAVY OPT 1 5000 NM @ 20

DESIGN MODE:

Payload Fixed

### PRINCIPAL CHARACTERISTICS

### POWER PLANT SUMMARY

| LBP                                    | MAIN ENG: GE LM-1600 ICR NO. MAIN ENG: 1  SEP. CRUISE ENG: MTU 16V1163 TB83 Diesel                                                |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| DEPTH @ STA 10 30.00 FT<br>GMT 5.39 FT | ENG. @ CRUISE: 2                                                                                                                  |
| GMT/BEAM RATIO                         | INSTALLED BHP: 36,780 HP SUST. SPEED: 26.57 KTS SUST. SHP: 19,007 HP CRUISE SPEED: 20.00 KTS CRUISE SHP: 7,196 HP RANGE: 5,000 NM |

## WEIGHT SUMMARY (LT) \* INDICATES MODIFIED SWBS

## ELECTRIC PLANT SUMMARY \* INDICATES MODIFIED LOAD

| 100 HULL STR   | UCTURE 1,400 |
|----------------|--------------|
| 200 PROPULSI   | ON 305       |
| 300 ELECTRIC   | 'AL ' 241    |
| 400 COMM. &    | SURVEIL. 145 |
| 500 *AUX SYST  | EMS 547      |
| 600 OUTFIT &   | FURN. 261    |
| 700 *ARMAMENT  | 223          |
|                |              |
| SUM GROUPS 1-7 | 3,122        |
| WEIGHT MARGIN  | 3            |
|                |              |
| LIGHTSHIP WEIG | 5,123        |
| FUEL WEIGHT    | 294          |
| OTHER LOADS    | 150          |
| Ditt told bron |              |
| FULL LOAD DISP |              |
| FULL LOAD KG   | 19.99 FT     |

| GEN. MODEL:   | 501-K34  |
|---------------|----------|
| NO. GEN.:     | 3        |
| INSTALLED WW. | 1 500 20 |

\*ELECTRIC LOAD: 2,604 kW (w/Margins)

### COMBAT SYSTEM SUMMARY

PRIMARY RADAR: Aegis (SPY-1D)
SECOND. RADAR: [None]
COMM./CONTROL: Medium (FFG-7)
SONAR: SQS-56
HELICOPTER: 1 SH-60B
GUNS: 1 155mm
CIWS: 2 Phalanx
TORPEDOES: 2 Mk-32
SHORT RNG AAW: 1 21-cell RAM
NO. VLS CELLS: 32
STANDARD: 13
TOMAHAWK: 11
ASROC: 8
NIXIE: Yes
TACTASS: Yes

## VOLUME SUMMARY (CUFT) \* INDICATES MODIFIED SSCS

| 1                    | MISSION SUPPORT | 135,630 |  |
|----------------------|-----------------|---------|--|
| 2                    | HUMAN SUPPORT   | 53,681  |  |
| 3                    | SHIP SUPPORT    | 148,830 |  |
| 4                    | SHIP MACHINERY  | 145,594 |  |
| TOTAL VOLUME 483,734 |                 |         |  |

## COST ESTIMATE SUMMARY \* INDICATES MODIFIED COST

| 1992       |                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------|
| 30         |                                                                                                  |
| \$843.635  | $\mathtt{MIL}$                                                                                   |
| \$756.460  | MIL                                                                                              |
| \$156.593  | $\mathtt{MIL}$                                                                                   |
| \$176.335  | MIL                                                                                              |
| \$432.139  | MIL                                                                                              |
| 92.00 %    |                                                                                                  |
| 2,402      |                                                                                                  |
| 1,982      |                                                                                                  |
| \$11.04 MI | L                                                                                                |
|            | 30<br>\$843.635<br>\$756.460<br>\$156.593<br>\$176.335<br>\$432.139<br>92.00<br>\$2,402<br>1,982 |

## MANNING SUMMARY (50% MANNING REDUCTION)

| OFFICE<br>CHIEFS | 3                         | 12<br>10   |
|------------------|---------------------------|------------|
| ENLIST           |                           | 84         |
|                  | MANNING<br>ACCOMMODATIONS | 106<br>119 |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 2 -- 09/17/95 17:29:49

SHIP DATA FILE:

CPCN2.SDF

SHIP DESCRIPTION: CPCX Option 1

NAVY OPT 1 5000 NM @ 20

DESIGN MODE:

Payload Fixed

TECHNOLOGIES INCLUDED IN MODEL:

50% Manning Reduction
Bow Bulb
Fiberoptics
Fire Zones
High Speed Hull Form
IR Insulation
Lightweight Cable
Lightweight Foundations
Machinery Monitoring & Control

Modular Combat System Orthotropic Deckhouse Orthotropic Decks Producible Ship Reverse Osmosis Stern Wedge URN Reduction Waste Heat Boilers

| DESCRIPTION             | SWBS  | WT(LT)    | KG(FT) | KW LOAD |
|-------------------------|-------|-----------|--------|---------|
| rhib                    | 000   | 2.00      | 20.000 | 0.00    |
| rhib                    | 000   | 2.00      | 20.000 | 0.00    |
| Stern Ramp              | 500   | 2.00      | 15.000 | 25.00   |
| SH100 Minehunting Sonar | 700   | 1.25      | 5.000  | 6.00    |
| HARPOON 4 PK            | . 000 | 4.00      | 40.000 | 2.00    |
| HARPOON 4 PK            | 000   | 4.00      | 40.000 | 2.00    |
| DESCRIPTION             | SSCS  | VOL(CUFT) | COST ( | \$1983) |
| rhib                    | 0.000 | 2000.00   | 5.     | 00E+04  |
| rhib                    | 0.000 | 2000.00   | 5.     | 00E+04  |
| Stern Ramp              | 0.000 | 6000.00   | 2.     | 00E+05  |
| SH100 Minehunting Sonar | 0.000 | 200.00    | 1.     | 00E+06  |
| HARPOON 4 PK            | 0.000 | 0.00      | 3.     | 50E+05  |
| HARPOON 4 PK            | 0.000 | 0.00      | 3.     | 50E+05  |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 1 -- 09/17/95 17:23:23

SHIP DATA FILE: CPCN2.SDF

SHIP DESCRIPTION: CPCX Option 2

NAVY OPT 2 5000 NM @ 20

SPS-49D sub for MINI SPY

DESIGN MODE: Payload Fixed

### PRINCIPAL CHARACTERISTICS

| LBP400.83 FT           |
|------------------------|
| LOA434.10 FT           |
| BEAM44.54 FT           |
| DRAFT TO KEEL12.98 FT  |
| DEPTH @ STA 1030.00 FT |
| GMT5.52 FT             |
| GMT/BEAM RATIO0.124    |
| CP0.588                |
| CX0.785                |
| CB0.462                |
| L/B9.000               |
| B/T3.430               |
| DISP/LENGTH RATIO48    |

## POWER PLANT SUMMARY

MAIN ENG: GE LM-1600 ICR NO. MAIN ENG: 1 SEP. CRUISE ENG: MTU 16V1163 TB83 Diesel ENG. @ CRUISE: 2 INSTALLED BHP: 36,780 HP
SUST. SPEED: 27.08 KTS
SUST. SHP: 19,007 HP
CRUISE SPEED: 20.00 KTS
CRUISE SHP: 6,592 HP
RANGE: 5,000 NM KTS KTS

### WEIGHT SUMMARY (LT) \* INDICATES MODIFIED SWBS

| 100   | HULL STRUCTURE   | 1,219 |
|-------|------------------|-------|
| 200   | PROPULSION       | 302   |
| 300   | ELECTRICAL       | 234   |
| 400   | COMM. & SURVEIL. | 60    |
| 500   | *AUX SYSTEMS     | 485   |
| 600   | OUTFIT & FURN.   | 227   |
| 700   | *ARMAMENT        | 192   |
|       |                  |       |
| SUM   | GROUPS 1-7       | 2,719 |
| WEIG  | HT MARGIN        | 3     |
|       |                  |       |
| LIGH' | TSHIP WEIGHT     | 2,722 |
| FUEL  | WEIGHT           | 204   |
| OTHE  | R LOADS          | 134   |
|       |                  |       |

### ELECTRIC PLANT SUMMARY \* INDICATES MODIFIED LOAD

| GEN. MODEL:    | 501-K34     |             |
|----------------|-------------|-------------|
| NO. GEN.:      | 3           |             |
| INSTALLED kW:  | 4,500 kW    |             |
| *ELECTRIC LOAD | D: 1,535 kW | (w/Margins) |
|                |             |             |

### VOLUME SUMMARY (CUFT) \* INDICATES MODIFIED SSCS

FULL LOAD DISP. 3,060 FULL LOAD KG 18.59 FT

| 1    | MISSION SUPPORT | 100,464 |
|------|-----------------|---------|
| 2    | HUMAN SUPPORT   | 45,201  |
| 3    | SHIP SUPPORT    | 118,987 |
| 4    | SHIP MACHINERY  | 131,758 |
|      |                 |         |
| TOT. | AL VOLUME       | 396,410 |

### COMBAT SYSTEM SUMMARY

| SPS-49 V(5) 2D |
|----------------|
| [None]         |
| Medium (FFG-7) |
| [None]         |
| 1 SH-60B       |
| 1 5-inch Mk 45 |
| 2 Phalanx      |
| 2 Mk-32        |
| [None]         |
| 32             |
| 13             |
| 11             |
| 8              |
| Yes            |
| Yes            |
|                |

### MANNING SUMMARY (50% MANNING REDUCTION)

| OFFICE |                           | 10        |
|--------|---------------------------|-----------|
| ENLIST | -                         | 70        |
|        | MANNING<br>ACCOMMODATIONS | 89<br>100 |

### COST ESTIMATE SUMMARY \* INDICATES MODIFIED COST

| COST YEAR:        | 1992          |
|-------------------|---------------|
| NUMBER OF SHIPS:  | 30            |
| LEAD SHIP COST:   | \$741.241 MIL |
| FOURTH SHIP COST: | \$666.651 MIL |
| *PAYLOAD COST:    | \$125.093 MIL |
| NONRECUR. COST:   | \$163.266 MIL |
| AVERAGE COST:     | \$370.402 MIL |
| LEARNING CURVE:   | 92.00 %       |
| HOURS @ SEA:      | 2,402         |
| HOURS IN PORT:    | 1,982         |
| ANNUAL O&S COST:  | \$10.75 MIL   |
|                   |               |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 2 -- 09/17/95 17:23:24

SHIP DATA FILE:

CPCN2.SDF

SHIP DESCRIPTION: CPCX Option 2

NAVY OPT 2 5000 NM @ 20

SPS-49D sub for MINI SPY

DESIGN MODE:

Payload Fixed

TECHNOLOGIES INCLUDED IN MODEL:

50% Manning Reduction Bow Bulb Fiberoptics Fire Zones High Speed Hull Form IR Insulation Lightweight Cable Lightweight Foundations Machinery Monitoring & Control

Modular Combat System Orthotropic Deckhouse Orthotropic Decks Producible Ship Reverse Osmosis Stern Wedge URN Reduction Waste Heat Boilers

| DESCRIPTION rhib rhib Stern Ramp SH100 Minehunting Sonar | SWBS<br>000<br>000<br>500<br>700 | WT(LT)<br>2.00<br>2.00<br>2.00<br>1.25 | KG(FT)<br>20.000<br>20.000<br>15.000<br>5.000 | KW LOAD<br>0.00<br>0.00<br>25.00<br>6.00 |
|----------------------------------------------------------|----------------------------------|----------------------------------------|-----------------------------------------------|------------------------------------------|
| 40MM CIWS ADJUSTMENTS                                    | 000                              | 0.50                                   | 40.000                                        | 10.00                                    |
| 40MM CIWS ADJUSTMENTS                                    | 000                              | 0.50                                   | 40.000                                        | 10.00                                    |
| HARPOON 4 PK                                             | 000                              | 4.00                                   | 40.000                                        | 2.00                                     |
| HARPOON 4 PK                                             | 000                              | 4.00                                   | 40.000                                        | 2.00                                     |
| DESCRIPTION                                              | SSCS                             | VOL(CUFT)                              | cos                                           | T(\$1983)                                |
| rhib                                                     | 0.000                            | 2000.00                                |                                               | 5.00E+04                                 |
| rhib                                                     | 0.000                            | 2000.00                                |                                               | 5.00E+04                                 |
| Stern Ramp                                               | 0.000                            | 6000.00                                |                                               | 2.00E+05                                 |
| SH100 Minehunting Sonar                                  | 0.000                            | 200.00                                 |                                               | 1.00E+06                                 |
| 40MM CIWS ADJUSTMENTS                                    | 0.000                            | 1000.00                                |                                               | 2.50E+05                                 |
| 40MM CIWS ADJUSTMENTS                                    | 0.000                            | 1000.00                                |                                               | 2.50E+05                                 |
| HARPOON 4 PK                                             | 0.000                            | 0.00                                   |                                               | 3.50E+05                                 |
| HARPOON 4 PK                                             | 0.000                            | 0.00                                   |                                               | 3.50E+05                                 |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 1 -- 09/17/95 17:20:56

SHIP DATA FILE:

CPCN2.SDF

SHIP DESCRIPTION: CPCX Option 2

NAVY OPT 2 5000 NM @ 20

SPS-48E sub for MINI SPY

DESIGN MODE:

Payload Fixed

### PRINCIPAL CHARACTERISTICS

### POWER PLANT SUMMARY

| LBP                                                                                             | MAIN ENG: GE LM-1600 ICR<br>NO. MAIN ENG: 1                                                                                       |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| DRAFT TO KEEL. 13.25 FT DEPTH @ STA 10 30.00 FT GMT                                             | SEP. CRUISE ENG: MTU 16V1163 TB83 Diesel ENG. @ CRUISE: 2                                                                         |
| CMT/BEAM RATIO. 0.115 CP. 0.588 CX. 0.785 CB. 0.462 L/B. 9.000 B/T. 3.430 DISP/LENGTH RATIO. 48 | INSTALLED BHP: 36,780 HP SUST. SPEED: 27.03 KTS SUST. SHP: 19,007 HP CRUISE SPEED: 20.00 KTS CRUISE SHP: 6,824 HP RANGE: 5,000 NM |

## WEIGHT SUMMARY (LT) \* INDICATES MODIFIED SWBS

## ELECTRIC PLANT SUMMARY \* INDICATES MODIFIED LOAD

| 100 HULL STRUCTURE 200 PROPULSION 300 ELECTRICAL 400 COMM. & SURVEIL 500 *AUX SYSTEMS 600 OUTFIT & FURN 700 *ARMAMENT | 303<br>238<br>. 76<br>521 |  |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------|--|
|                                                                                                                       |                           |  |
| SUM GROUPS 1-7                                                                                                        | 2,898                     |  |
| WEIGHT MARGIN                                                                                                         | 3                         |  |
|                                                                                                                       |                           |  |
| LIGHTSHIP WEIGHT                                                                                                      | 2,901                     |  |
| FUEL WEIGHT                                                                                                           | 208                       |  |
|                                                                                                                       |                           |  |
| OTHER LOADS                                                                                                           | 142                       |  |
|                                                                                                                       |                           |  |
| FULL LOAD DISP.                                                                                                       | 3,251                     |  |
| FULL LOAD KG                                                                                                          | 19.38 FT                  |  |
|                                                                                                                       |                           |  |
|                                                                                                                       |                           |  |

| GEN.MODEL:    | 501-K34  |
|---------------|----------|
| NO. GEN.:     | 3        |
| INSTALLED kW: | 4,500 kW |

| *ELECTRIC  | LOAD:  | 1,575   | ΚM   | (w/Margins) |
|------------|--------|---------|------|-------------|
|            |        |         |      |             |
| COMBA      | AT SYS | rem sui | 1MAF | ŚĀ          |
| PRIMARY RA | ADAR:  | SPS-48  | 3E 3 | 3 D         |

SECOND. RADAR: [None]
COMM./CONTROL: Medium (FFG-7)
SONAR: [None]
HELICOPTER: 1 SH-60B
GUNS: 1 5-inch Mk 45
CIWS: 2 Phalanx
TORPEDOES: 2 Mk-32
SHORT RNG AAW: [None]
NO. VLS CELLS: 32
STANDARD: 13
TOMAHAWK: 11
ASROC: 8

ASROC: 8
NIXIE: Yes
TACTASS: Yes

## VOLUME SUMMARY (CUFT) \* INDICATES MODIFIED SSCS

| 1                    | MISSION SUPPORT | 127,375 |
|----------------------|-----------------|---------|
| 2                    | HUMAN SUPPORT   | 47,618  |
| 3                    | SHIP SUPPORT    | 132,509 |
| 4                    | SHIP MACHINERY  | 139,825 |
|                      |                 |         |
| TOTAL VOLUME 447,327 |                 |         |

## COST ESTIMATE SUMMARY \* INDICATES MODIFIED COST

| COST YEAR:        | 1992          |
|-------------------|---------------|
| NUMBER OF SHIPS:  | 30            |
| LEAD SHIP COST:   | \$761.117 MIL |
| FOURTH SHIP COST: | \$684.683 MIL |
| *PAYLOAD COST:    | \$125.093 MIL |
| NONRECUR. COST:   | \$168.294 MIL |
| AVERAGE COST:     | \$379.609 MIL |
| LEARNING CURVE:   | 92.00 %       |
| HOURS @ SEA:      | 2,402         |
| HOURS IN PORT:    | 1,982         |
| ANNUAL O&S COST:  | \$10.67 MIL   |
|                   |               |

### MANNING SUMMARY

(50% MANNING REDUCTION)

| OFFICE | ERS            | 10  |
|--------|----------------|-----|
| CHIEFS | 5              | 10  |
| ENLIST | TED            | 74  |
|        |                |     |
| LATOT  | MANNING        | 94  |
| TOTAL  | ACCOMMODATIONS | 105 |
|        |                |     |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 2 -- 09/17/95 17:20:58

SHIP DATA FILE: CPCN2.SDF

SHIP DESCRIPTION: CPCX Option 2

NAVY OPT 2 5000 NM @ 20 SPS-48E sub for MINI SPY

DESIGN MODE:

Payload Fixed

TECHNOLOGIES INCLUDED IN MODEL:

50% Manning Reduction Bow Bulb Fiberoptics Fire Zones High Speed Hull Form IR Insulation Lightweight Cable Lightweight Foundations Machinery Monitoring & Control

Modular Combat System Orthotropic Deckhouse Orthotropic Decks Producible Ship Reverse Osmosis Stern Wedge URN Reduction Waste Heat Boilers

| DESCRIPTION             | SWBS  | WT(LT)    | KG(FT) KW LOAD |
|-------------------------|-------|-----------|----------------|
| rhib                    | 000   | 2.00      | 20.000 0.00    |
| rhib                    | 000   | 2.00      | 20.000 0.00    |
| Stern Ramp              | 500   | 2.00      | 15.000 25.00   |
| SH100 Minehunting Sonar | 700   | 1.25      | 5.000 6.00     |
| 40MM CIWS ADJUSTMENTS   | 000   | 0.50      | 40.000 10.00   |
| 40MM CIWS ADJUSTMENTS   | 000   | 0.50      | 40.000 10.00   |
| HARPOON 4 PK            | 000   | 4.00      | 40.000 2.00    |
| HARPOON 4 PK            | 000   | 4.00      | 40.000 2.00    |
| DESCRIPTION             | sscs  | VOL(CUFT) | COST(\$1983)   |
| rhib                    | 0.000 | 2000.00   | 5.00E+04       |
| rhib                    | 0.000 | 2000.00   | 5.00E+04       |
| Stern Ramp              | 0.000 | 6000.00   | 2.00E+05       |
| SH100 Minehunting Sonar | 0.000 | 200.00    | 1.00E+06       |
| 40MM CIWS ADJUSTMENTS   | 0.000 | 1000.00   | 2.50E+05       |
| 40MM CIWS ADJUSTMENTS   | 0.000 | 1000.00   | 2.50E+05       |
| HARPOON 4 PK            | 0.000 | 0.00      | 3.50E+05       |
| HARPOON 4 PK            | 0.000 | 0.00      | 3.50E+05       |
|                         |       |           |                |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 1 -- 09/17/95 17:17:32

SHIP DATA FILE:

CPCN2.SDF

SHIP DESCRIPTION: CPCX Option 2

NAVY OPT 2 5000 NM @ 20

SPY-1D sub for MINI SPY

DESIGN MODE:

Payload Fixed

### PRINCIPAL CHARACTERISTICS

### POWER PLANT SUMMARY

| LBP                                                                                      | MAIN ENG: GE LM-1600 ICR<br>NO. MAIN ENG: 1                                                                                       |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| DRAFT TO KEEL                                                                            | SEP. CRUISE ENG: MTU 16V1163 TB83 Diesel ENG. @ CRUISE: 2                                                                         |
| GMT/BEAM RATIO 0.120 CP 0.588 CX 0.785 CB 0.462 L/B 9.000 B/T 3.430 DISP/LENGTH RATIO 48 | INSTALLED BHP: 36,780 HP SUST. SPEED: 26.75 KTS SUST. SHP: 19,007 HP CRUISE SPEED: 20.00 KTS CRUISE SHP: 7,048 HP RANGE: 5,000 NM |

## WEIGHT SUMMARY (LT)

### \* INDICATES MODIFIED SWBS

| 100<br>200<br>300<br>400<br>500<br>600<br>700 | HULL STRUCTURE PROPULSION ELECTRICAL COMM. & SURVEIL. *AUX SYSTEMS OUTFIT & FURN. *ARMAMENT | 1,357<br>304<br>239<br>120<br>533<br>252<br>194 |    |
|-----------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|----|
|                                               | GROUPS 1-7<br>HT MARGIN                                                                     | 2,999                                           |    |
| FUEL                                          | TSHIP WEIGHT<br>WEIGHT<br>R LOADS                                                           | 3,002<br>295<br>145                             |    |
|                                               | LOAD DISP.<br>LOAD KG                                                                       | 3,442                                           | FΤ |

### VOLUME SUMMARY (CUFT) \* INDICATES MODIFIED SSCS

| 1    | MISSION SUPPORT | 128,207 |
|------|-----------------|---------|
| 2    | HUMAN SUPPORT   | 49,334  |
| 3    | SHIP SUPPORT    | 143,622 |
| 4    | SHIP MACHINERY  | 142,398 |
|      |                 |         |
| TOTA | AL VOLUME       | 463,562 |

### MANNING SUMMARY

(50% MANNING REDUCTION)

| OFFICE<br>CHIEFS<br>ENLIST | 5              | 10<br>10<br>78 |
|----------------------------|----------------|----------------|
|                            |                |                |
| TOTAL                      | MANNING        | 98             |
| TOTAL                      | ACCOMMODATIONS | 110            |

### ELECTRIC PLANT SUMMARY \* INDICATES MODIFIED LOAD

| GEN. MODEL: | :     | 501-K | 34 |             |
|-------------|-------|-------|----|-------------|
| NO. GEN.:   |       | 3     |    |             |
| INSTALLED   | kW:   | 4,500 | kW |             |
| *ELECTRIC   | LOAD: | 2,608 | kW | (w/Margins) |

### COMBAT SYSTEM SUMMARY

| PRIMARY RADAR: SECOND. RADAR: COMM./CONTROL: SONAR: HELICOPTER: GUNS: CIWS: TORPEDOES: SHORT RNG AAW: NO. VLS CELLS: STANDARD: TOMAHAWK: ASROC: NIXIE: | Aegis (SPY-1D) [None] Medium (FFG-7) [None] 1 SH-60B 1 5-inch Mk 45 2 Phalanx 2 Mk-32 [None] 32 13 11 8 Yes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| TACTASS:                                                                                                                                               | Yes                                                                                                         |
|                                                                                                                                                        | 100                                                                                                         |

### COST ESTIMATE SUMMARY \* INDICATES MODIFIED COST

| COST YEAR:        | 1992          |
|-------------------|---------------|
| NUMBER OF SHIPS:  | 30            |
| LEAD SHIP COST:   | \$773.932 MIL |
| FOURTH SHIP COST: | \$696.701 MIL |
| *PAYLOAD COST:    | \$125.093 MIL |
| NONRECUR. COST:   | \$173.161 MIL |
| AVERAGE COST:     | \$383.735 MIL |
| LEARNING CURVE:   | 92.00 %       |
| HOURS @ SEA:      | 2,402         |
| HOURS IN PORT:    | 1,982         |
| ANNUAL O&S COST:  | \$10.85 MIL   |
|                   |               |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 2 -- 09/17/95 17:17:34

SHIP DATA FILE:

CPCN2.SDF

SHIP DESCRIPTION: CPCX Option 2

NAVY OPT 2 5000 NM @ 20 SPY-1D sub for MINI SPY

DESIGN MODE:

Payload Fixed

TECHNOLOGIES INCLUDED IN MODEL:

50% Manning Reduction
Bow Bulb
Fiberoptics
Fire Zones
High Speed Hull Form
IR Insulation
Lightweight Cable
Lightweight Foundations
Machinery Monitoring & Control

Modular Combat System Orthotropic Deckhouse Orthotropic Decks Producible Ship Reverse Osmosis Stern Wedge URN Reduction Waste Heat Boilers

| DESCRIPTION             | Ct-ID C | f.100 / r. m \ |        |            |
|-------------------------|---------|----------------|--------|------------|
| rhib                    | SWBS    | WT(LT)         | KG(FT) | KW LOAD    |
|                         | 000     | 2.00           | 20.000 | 0.00       |
| rhib                    | 000     | 2.00           | 20,000 | 0.00       |
| Stern Ramp              | 500     | 2.00           | 15.000 | 25.00      |
| SH100 Minehunting Sonar | 700     | 1.25           | 5.000  | 6.00       |
| 40MM CIWS ADJUSTMENTS   | 000     | 0.50           | 40.000 | 10.00      |
| 40MM CIWS ADJUSTMENTS   | 000     | 0.50           | 40.000 | 10.00      |
| HARPOON 4 PK            | 000     | 4.00           | 40.000 | 2.00       |
| HARPOON 4 PK            | 000     | 4.00           | 40.000 | 2.00       |
| DESCRIPTION             | 2222    |                |        |            |
|                         | SSCS    | VOL(CUFT)      | · CO   | ST(\$1983) |
| rhib                    | 0.000   | 2000.00        |        | 5.00E+04   |
| rhib                    | 0.000   | 2000.00        |        | 5.00E+04   |
| Stern Ramp              | 0.000   | 6000.00        |        | 2.00E+05   |
| SH100 Minehunting Sonar | 0.000   | 200.00         |        | 1.00E+06   |
| 40MM CIWS ADJUSTMENTS   | 0.000   | 1000.00        |        | 2.50E+05   |
| 40MM CIWS ADJUSTMENTS   | 0.000   | 1000.00        |        | 2.50E+05   |
| HARPOON 4 PK            | 0.000   | 0.00           |        | 3.50E+05   |
| HARPOON 4 PK            | 0.000   | 0.00           |        | 3.50E+05   |
|                         |         |                |        |            |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 1 -- 09/17/95 17:12:05

SHIP DATA FILE:

CPCN3.SDF

NAVY OPT 3 5000 NM @ 20 SHIP DESCRIPTION: CPCX Option 3

DESIGN MODE:

Payload Fixed

| PRINCIPAL | CHARACTERISTICS |
|-----------|-----------------|
|-----------|-----------------|

### POWER PLANT SUMMARY

| LBP                    | MAIN ENG:<br>NO. MAIN ENG: | GE LM-1 | 600 ICR  |
|------------------------|----------------------------|---------|----------|
| BEAM43.37 FT           |                            |         |          |
| DRAFT TO KEEL12.64 FT  | SEP. CRUISE ENG            | : MT    | U 16V116 |
| DEPTH @ STA 1030.00 FT | ENG. @ CRUISE:             |         |          |
| GMT5.48 FT             |                            | _       |          |
| GMT/BEAM RATIO0.126    | INSTALLED BHP:             | 36,780  | HР       |
| CP0.588                | SUST. SPEED:               |         | KTS      |
| CX0.785                | SUST. SHP:                 | 19.007  | HP       |
| CB0.462                | CRUISE SPEED:              | 20.00   | KTS      |
| T /T                   |                            | • •     | ***      |

SEP. CRUISE ENG: MTU 16V1163 TB83 Diesel ENG. @ CRUISE: 2 INSTALLED BHP: 36,780 HP SUST. SPEED: 27.49 KTS

L/B.....9.000 B/T.....3.430 DISP/LENGTH RATIO.....48

19,007 HP SUST. SHP: CRUISE SPEED: 20.00 KTS CRUISE SHP: 6,300 ΗP RANGE: 5,000 NM

### WEIGHT SUMMARY (LT) \* INDICATES MODIFIED SWBS

### ELECTRIC PLANT SUMMARY \* INDICATES MODIFIED LOAD

| HULL STRUCTURE PROPULSION LECTRICAL COMM. & SURVEIL. AUX SYSTEMS COUTFIT & FURN. | 1,160<br>300<br>231<br>55<br>465<br>215 |
|----------------------------------------------------------------------------------|-----------------------------------------|
| 700 *ARMAMENT                                                                    | 120                                     |
|                                                                                  |                                         |
| SUM GROUPS 1-7                                                                   | 2,547                                   |
| WEIGHT MARGIN                                                                    | 3                                       |
| LIGHTSHIP WEIGHT<br>FUEL WEIGHT<br>OTHER LOADS                                   | 2,549<br>205<br>70                      |
|                                                                                  |                                         |

GEN.MODEL: 501-K34 NO. GEN.: NO. GEN.: 3 INSTALLED kW: 4,500 kW \*ELECTRIC LOAD: 1,546 kW (w/Margins)

2 Phalanx

2 Mk-32

# FULL LOAD DISP. 2,825 FULL LOAD KG 17.99 FT

### COMBAT SYSTEM SUMMARY

VOLUME SUMMARY (CUFT) \* INDICATES MODIFIED SSCS

| PRIMARY RADAR: | SPS-49 V(5) 2D |
|----------------|----------------|
| SECOND. RADAR: | [None]         |
| COMM./CONTROL: | Medium (FFG-7) |
| SONAR:         | [None]         |
| HELICOPTER:    | 1 SH-60B       |
| GUNS:          | 1 5-inch Mk 45 |

MISSION SUPPORT 87,361 HUMAN SUPPORT 42,300 3 SHIP SUPPORT 111,979 SHIP MACHINERY 127,426 \_\_\_\_\_ TOTAL VOLUME

SHORT RNG AAW: 1 21-cell RAM
NO. VLS CELLS: 0 STANDARD: 0 TOMAHAWK: 0 ASROC: 0 NIXIE: TACTASS:

TORPEDOES:

CIWS:

### MANNING SUMMARY (50% MANNING REDUCTION)

### COST ESTIMATE SUMMARY \* INDICATES MODIFIED COST

Yes

| OFFICERS<br>CHIEFS |                |    |  |  |
|--------------------|----------------|----|--|--|
| ENLIST             | red            | 69 |  |  |
|                    |                |    |  |  |
| TOTAL              | MANNING        | 85 |  |  |
| TOTAL              | ACCOMMODATIONS | 95 |  |  |
|                    |                |    |  |  |

COST YEAR: 1992 NUMBER OF SHIPS: 30 LEAD SHIP COST: \$760.976 MIL FOURTH SHIP COST: \$681.816 MIL \*PAYLOAD COST: \$146.093 MIL NONRECUR. COST: \$156.867 MIL AVERAGE COST: \$392.242 MIL LEARNING CURVE: 92.00 % HOURS @ SEA: 2,402 HOURS IN PORT: 1,982 ANNUAL O&S COST: \$11.06 MIL

369,066

the comment of the season and the

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 2 -- 09/17/95 17:12:07

SHIP DATA FILE:

CPCN3.SDF

SHIP DESCRIPTION: CPCX Option 3

NAVY OPT 3 5000 NM @ 20

DESIGN MODE:

Payload Fixed

TECHNOLOGIES INCLUDED IN MODEL:

50% Manning Reduction
Bow Bulb
Fiberoptics
Fire Zones
High Speed Hull Form
IR Insulation
Lightweight Cable
Lightweight Foundations
Machinery Monitoring & Control

Modular Combat System Orthotropic Deckhouse Orthotropic Decks Producible Ship Reverse Osmosis Stern Wedge URN Reduction Waste Heat Boilers

| DESCRIPTION             | SWBS  | WT(LT)    | KG(FT) | KW LOAD    |
|-------------------------|-------|-----------|--------|------------|
| rhib                    | 000   | 2.00      | 20.000 | 0.00       |
| rhib                    | 000   | 2.00      | 20.000 | 0.00       |
| Stern Ramp              | 500   | 2.00      | 15.000 | 25.00      |
| SH100 Minehunting Sonar | 700   | 1.25      | 5.000  | 6.00       |
| 40MM CIWS ADJUSTMENTS   | 000   | 0.50      | 40.000 | 10.00      |
| 40MM CIWS ADJUSTMENTS   | 000   | 0.50      | 40.000 | 10.00      |
| HARPOON 4 PK            | 000   | 4.00      | 40.000 | 2.00       |
| HARPOON 4 PK            | 000   | 4.00      | 40.000 | 2.00       |
| THAWK IN ABL 4PK        | 000   | 10.00     | 35.000 | 2.00       |
| THAWK IN ABL 4PK        | 000   | 10.00     | 35.000 | 2.00       |
|                         | 000   | 10.00     | 33.000 | 2.00       |
| DESCRIPTION             | SSCS  | VOL(CUFT) | CO     | ST(\$1983) |
| rhib                    | 0.000 | 2000.00   |        | 5.00E+04   |
| rhib                    | 0.000 | 2000.00   |        | 5.00E+04   |
| Stern Ramp              | 0.000 | 6000.00   |        | 2.00E+05   |
| SH100 Minehunting Sonar | 0.000 | 200.00    |        | 1.00E+06   |
| 40MM CIWS ADJUSTMENTS   | 0.000 | 1000.00   |        | 2.50E+05   |
| 40MM CIWS ADJUSTMENTS   | 0.000 | 1000.00   |        | 2.50E+05   |
| HARPOON 4 PK            | 0.000 | 0.00      |        | 3.50E+05   |
| HARPOON 4 PK            | 0.000 | 0.00      |        | 3.50E+05   |
| THAWK IN ABL 4PK        | 0.000 | 0.00      |        | 5.00E+06   |
| THAWK IN ABL 4PK        | 0.000 | 0.00      |        | 5.00E+06   |
|                         |       |           |        |            |

```
SHIP DATA FILE: CPCCG1.SDF
              SHIP DESCRIPTION: CPCX Option 4
                                                                                             31
CG OPTION 1
              DESIGN MODE:
                                  Payload Fixed
              PRINCIPAL CHARACTERISTICS
                                                         POWER PLANT SUMMARY
                                               MAIN ENG: GE LM-1600 ICR
NO. MAIN ENG: 1
        LBP.....424.40 FT
        LOA......459.63 FT
        BEAM.....47.16 FT
        SEP. CRUISE ENG: MTU 16V1163 TB83 Diesel
        DEPTH @ STA 10......30.00 FT
                                                   ENG. @ CRUISE: 2
        INSTALLED BHP: 36,780 HP
                                                    SUST. SPEED: 26.58 KTS
SUST. SHP: 19,007 HP
                                                    SUST. SHP:
        CX.....0.785
        CRUISE SPEED: 14.00 KTS
CRUISE SHP: 2,531 HP
RANGE: 8,000 NM
        L/B.....9.000
        B/T.....3.430
        DISP/LENGTH RATIO.....48
              WEIGHT SUMMARY (LT)
                                                        ELECTRIC PLANT SUMMARY
               * INDICATES MODIFIED SWBS
                                                         * INDICATES MODIFIED LOAD
             HULL STRUCTURE 1,345
PROPULSION 305
ELECTRICAL 239
        100
                                                  GEN. MODEL:
                                                                    501-K34
        200
                                                   NO. GEN.:
                                              NO. GEN.: 3
INSTALLED kW: 4,500 kW
        300 ELECTRICAL
              COMM. & SURVEIL. 133
*AUX SYSTEMS 534
        400
                                                   *ELECTRIC LOAD: 2,651 kW (w/Margins)
        400 COMM. & SURVEIL. 155
500 *AUX SYSTEMS 534
600 OUTFIT & FURN. 252
700 *ARMAMENT 54
                                   54
                                                       COMBAT SYSTEM SUMMARY
        ______
                                            PRIMARY RADAR: Aegis (SPY-1D)
SECOND. RADAR: [None]
COMM./CONTROL: Medium (FFG-7)
SONAR: [None]
HELICOPTER: 1 SH-60B
GUNS: 1 76mm
CIWS: 2 Phalanx
TORPEDOES: [None]
SHORT RNG AAW: 1 21-cell RAM
NO. VLS CELLS: 0
STANDARD: 0
        SUM GROUPS 1-7 2,863
WEIGHT MARGIN 3
        LIGHTSHIP WEIGHT 2,866
FUEL WEIGHT 680
COULDED LOADS 86
         -----
        FULL LOAD DISP. 3,632
FULL LOAD KG 18.25 FT
                                                    STANDARD: 0
TOMAHAWK: 0
ASROC: 0
              VOLUME SUMMARY (CUFT)
              * INDICATES MODIFIED SSCS
                                                   NIXIE:
                                                                    Yes
            MISSION SUPPORT 94,819
HUMAN SUPPORT 50,220
SHIP SUPPORT 173,459
SHIP MACHINERY 141,896
                                                   TACTASS:
                                  141,896
                                                        COST ESTIMATE SUMMARY
               ______
                                                         * INDICATES MODIFIED COST
        TOTAL VOLUME
                                 460,393
                                                   COST YEAR:
                                                                       1995
                                                   NUMBER OF SHIPS: 100
LEAD SHIP COST: $779
              MANNING SUMMARY
                                                                       $779.260 MIL
                                                   FOURTH SHIP COST: $702.344 MIL
              (50% MANNING REDUCTION)
                                                   *PAYLOAD COST: $126.318 MIL
        OFFICERS
                                                                      $177.877 MIL
$382.449 MIL
                                   11
                                                   NONRECUR. COST:
                                   10
        CHIEFS
                                                  AVERAGE COST:
                                                  LEARNING CURVE: 93.00 %
        ENLISTED
                                  78
                                                  HOURS @ SEA: 3,000
HOURS IN PORT: 1,982
                                 ----
        TOTAL MANNING 99
        TOTAL ACCOMMODATIONS 111
                                                  ANNUAL O&S COST: $11.12 MIL
```

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 1 -- 09/17/95 16:33:36

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 2 -- 09/17/95 16:33:38

SHIP DATA FILE:

CPCCG1.SDF

SHIP DESCRIPTION: CPCX Option 4

CG OPTION 1

DESIGN MODE:

Payload Fixed

TECHNOLOGIES INCLUDED IN MODEL:

50% Manning Reduction
Bow Bulb
Fiberoptics
Fire Zones
High Speed Hull Form
IR Insulation
Lightweight Cable
Lightweight Foundations
Machinery Monitoring & Control

Modular Combat System Orthotropic Deckhouse Orthotropic Decks Producible Ship Reverse Osmosis Stern Wedge URN Reduction Waste Heat Boilers

| DESCRIPTION             | SWBS  | WT(LT)    | KG(FT) | KW LOAD    |
|-------------------------|-------|-----------|--------|------------|
| rhib                    | 000   | 2.00      | 20.000 | 0.00       |
| rhib                    | 000   | 2.00      | 20.000 | 0.00       |
| MSB                     | 000   | 2.50      | 30.000 | 0.00       |
| MSB Davits              | 000   | 4.00      | 35.000 | 25.00      |
| Stern Ramp              | 500   | 2.00      | 15.000 | 25.00      |
| MSB                     | 000   | 2.50      | 30.000 | 0.00       |
| MSB Davits              | 000   | 4.00      | 35.000 | 25.00      |
| Crane                   | 500   | 4.00      | 30.000 | 25.00      |
| SH100 Minehunting Sonar | 700   | 1.25      | 5.000  | 6.00       |
| DESCRIPTION             | sscs  | VOL(CUFT) | cos    | ST(\$1983) |
| rhib                    | 0.000 | 2000.00   |        | 5.00E+04   |
| rhib                    | 0.000 | 2000.00   |        | 5.00E+04   |
| MSB                     | 0.000 | 2500.00   |        | 7.50E+04   |
| MSB Davits              | 0.000 | 3000.00   |        | 1.00E+05   |
| Stern Ramp              | 0.000 | 6000.00   |        | 2.00E+05   |
| MSB                     | 0.000 | 2500.00   |        | 7.50E+04   |
| MSB Davits              | 0.000 | 3000.00   |        | 1.00E+05   |
| Crane                   | 0.000 | 1500.00   |        | 7.50E+04   |
| SH100 Minehunting Sonar | 0.000 | 200.00    |        | 1.00E+06   |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 1 -- 09/17/95 16:52:36

SHIP DATA FILE: CPCCG2.SDF

SHIP DESCRIPTION: CPCX Option 5

COAST GUARD opt 2 sps49 sub for mini SPY

DESIGN MODE:

Payload Fixed

## PRINCIPAL CHARACTERISTICS

### POWER PLANT SUMMARY

| LBP                                                                                             | MAIN ENG: (                                                        | GE LM-1600 ICR<br>1                                                      |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|
| DRAFT TO KEEL. 12.93 FT DEPTH @ STA 10 30.00 FT GMT                                             | SEP. CRUISE ENG:<br>ENG. @ CRUISE: 2                               | THE TOTAL THOSE THE SET                                                  |
| GMT/BEAM RATIO. 0.160 CP. 0.588 CX. 0.785 CB. 0.462 L/B. 9.000 B/T. 3.430 DISP/LENGTH RATIO. 48 | SUST. SPEED: 2<br>SUST. SHP: 1<br>CRUISE SPEED: 1<br>CRUISE SHP: 2 | 36,780 HP<br>27.15 KTS<br>19,007 HP<br>14.00 KTS<br>2,270 HP<br>3,000 NM |
|                                                                                                 |                                                                    | •                                                                        |

### WEIGHT SUMMARY (LT) \* INDICATES MODIFIED SWBS

### ELECTRIC PLANT SUMMARY \* INDICATES MODIFIED LOAD

| 100<br>200<br>300<br>400<br>500<br>600<br>700 | HULL STRUCTURE PROPULSION ELECTRICAL COMM. & SURVEIL. *AUX SYSTEMS OUTFIT & FURN. *ARMAMENT | 1,142<br>302<br>231<br>68<br>463<br>213<br>44 |    |
|-----------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------|----|
|                                               | GROUPS 1-7<br>HT MARGIN                                                                     | 2,462                                         |    |
| FUEL                                          | TSHIP WEIGHT<br>WEIGHT<br>R LOADS                                                           | 2,465<br>484<br>70                            |    |
|                                               | LOAD DISP.<br>LOAD KG                                                                       | 3,019                                         | FT |

### GEN. MODEL: 501-K34 NO. GEN.: 3 INSTALLED kW: 4,500 kW NO. GEN.: \*ELECTRIC LOAD: 1,615 kW (w/Margins)

## COMBAT SYSTEM SUMMARY

| PRIMARY RADAR:<br>SECOND. RADAR: | SPS-49 V(5) 2D |
|----------------------------------|----------------|
|                                  | [None]         |
| COMM./CONTROL:                   | Medium (FFG-7) |
| SONAR:                           | [None]         |
| HELICOPTER:                      | 1 SH-60B       |
| GUNS:                            | [None]         |
| CIWS:                            | 2 Phalanx      |
| TORPEDOES:                       | [None]         |
| SHORT RNG AAW:                   | 1 21-cell RAM  |
| NO. VLS CELLS:                   | 0              |
| STANDARD:                        | 0              |
| TOMAHAWK:                        | 0 ,            |
| ASROC:                           | 0              |
| NIXIE:                           | Yes            |
| TACTASS:                         | No             |
|                                  |                |

### VOLUME SUMMARY (CUFT) \* INDICATES MODIFIED SSCS

| 1<br>2 | MISSION SUPPORT HUMAN SUPPORT | 59,619<br>43,484 |
|--------|-------------------------------|------------------|
| _      |                               |                  |
| _      | HUMAN SUPPORT                 | 43,484           |
| 3      | SHIP SUPPORT                  | 132,218          |
| 4      | SHIP MACHINERY                | 126,236          |
|        |                               |                  |
| TOTA   | AL VOLUME                     | 361.557          |

### COST ESTIMATE SUMMARY \* INDICATES MODIFIED COST

| COST YEAR:        | 1992          |
|-------------------|---------------|
| NUMBER OF SHIPS:  | 30            |
| LEAD SHIP COST:   | \$689.573 MIL |
| FOURTH SHIP COST: | \$622.654 MIL |
| *PAYLOAD COST:    | \$104.818 MIL |
| NONRECUR. COST:   | \$162.165 MIL |
| AVERAGE COST:     | \$333.126 MIL |
| LEARNING CURVE:   | 92.00 %       |
| HOURS @ SEA:      | 2,402         |
| HOURS IN PORT:    | 1,982         |
| ANNUAL O&S COST:  | \$10.97 MIL   |

### MANNING SUMMARY (50% MANNING REDUCTION)

| OFFICE<br>CHIEFS<br>ENLISS | 5                         | 10<br>9<br>66 |
|----------------------------|---------------------------|---------------|
|                            | MANNING<br>ACCOMMODATIONS | 85<br>95      |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 2 -- 09/17/95 16:52:38

SHIP DATA FILE:

CPCCG2.SDF

SHIP DESCRIPTION: CPCX Option 5

COAST GUARD opt 2 sps49 sub for mini SPY

DESIGN MODE:

Payload Fixed

TECHNOLOGIES INCLUDED IN MODEL:

50% Manning Reduction
Bow Bulb
Fiberoptics
Fire Zones
High Speed Hull Form
IR Insulation
Lightweight Cable
Lightweight Foundations
Machinery Monitoring & Control

Modular Combat System
Orthotropic Deckhouse
Orthotropic Decks
Producible Ship
Reverse Osmosis
Stern Wedge
URN Reduction
Waste Heat Boilers

| DESCRIPTION             | SWBS  | WT(LT)    | KG(FT) | KW LOAD    |
|-------------------------|-------|-----------|--------|------------|
| rhib                    | 000   | 2.00      | 20.000 | 0.00       |
| rhib                    | 000   | 2.00      | 20.000 | 0.00       |
| MSB                     | 000   | 2.50      | 30.000 | 0.00       |
| MSB Davits              | 000   | 4.00      | 35.000 | 25.00      |
| Stern Ramp              | 500   | 2.00      | 15.000 | 25.00      |
| MSB                     | 000   | 2.50      | 30.000 | 0.00       |
| MSB Davits              | 000   | 4.00      | 35.000 | 25.00      |
| Crane                   | 500   | 4.00      | 30.000 | 25.00      |
| SH100 Minehunting Sonar | 700   | 1.25      | 5.000  | 6.00       |
| 40MM CIWS ADJUSTMENTS   | 000   | 0.50      | 40.000 | 10.00      |
| 40MM CIWS ADJUSTMENTS   | 000   | 0.50      | 40.000 | 10.00      |
| DESCRIPTION             | SSCS  | VOL(CUFT) | CC     | ST(\$1983) |
| rhib                    | 0.000 | 2000.00   |        | 5.00E+04   |
| rhib                    | 0.000 | 2000.00   |        | 5.00E+04   |
| MSB                     | 0.000 | 2500.00   |        | 7.50E+04   |
| MSB Davits              | 0.000 | 3000.00   |        | ·1.00E+05  |
| Stern Ramp              | 0.000 | 6000.00   |        | 2.00E+05   |
| MSB                     | 0.000 | 2500.00   |        | 7.50E+04   |
| MSB Davits              | 0.000 | 3000.00   |        | 1.00E+05   |
| Crane                   | 0.000 | 1500.00   |        | 7.50E+04   |
| SH100 Minehunting Sonar | 0.000 | 200.00    |        | 1.00E+06   |
| 40MM CIWS ADJUSTMENTS   | 0.000 | 1000.00   |        | 2.50E+05   |
| 40MM CIWS ADJUSTMENTS   | 0.000 | 1000.00   |        | 2.50E+05   |
|                         |       |           |        |            |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 1 -- 09/17/95 17:35:20

SHIP DATA FILE:

CPCCG2.SDF

SHIP DESCRIPTION: CPCX Option 5

COAST GUARD opt 2

SPS-48E sub for Mini SPY

DESIGN MODE:

Payload Fixed

### PRINCIPAL CHARACTERISTICS

### POWER PLANT SUMMARY

| LBP407.75 FT           | MAIN ENG:        | GE LM-1 | 600 ICR  |
|------------------------|------------------|---------|----------|
| LOA441.59 FT           | NO. MAIN ENG:    | 1       |          |
| BEAM45.31 FT           |                  |         |          |
| DRAFT TO KEEL13.21 FT  | SEP. CRUISĘ ENG: | MTU     | J 16V116 |
| DEPTH @ STA 1030.00 FT | ENG. @ CRUÎSE:   | 2       |          |
| GMT6.78 FT             |                  |         |          |
| GMT/BEAM RATIO0.150    | INSTALLED BHP:   | 36,780  | HP       |
| CP0.588                | SUST. SPEED:     | 27.08   | KTS      |
| CX0.785                | SUST. SHP:       | 19,007  | HP       |
| CB0.462                | CRUISE SPEED:    | 14.00   | KTS      |
| L/B9.000               | CRUISE SHP:      | 2,358   | HP       |
| B/T3.430               | RANGE:           | 8,000   | NM       |
| DISP/LENGTH RATIO48    |                  |         |          |
|                        |                  |         |          |

SEP. CRUISE ENG: MTU 16V1163 TB83 Diesel ENG. @ CRUİSE: 2

### WEIGHT SUMMARY (LT) \* INDICATES MODIFIED SWBS

| 100  | HULL STRUCTURE   | 1,247 |    |
|------|------------------|-------|----|
| 200  | PROPULSION       | 303   |    |
| 300  | ELECTRICAL       | 235   |    |
| 400  | COMM. & SURVEIL. | 83    |    |
| 500  | *AUX SYSTEMS     | 501   |    |
| 600  | OUTFIT & FURN.   | 233   |    |
| 700  | *ARMAMENT        | 45    |    |
|      |                  |       |    |
|      | GROUPS 1-7       | 2,648 |    |
| WEIG | HT MARGIN        | 3     |    |
|      |                  |       |    |
|      | rship weight     | 2,651 |    |
|      | WEIGHT           | 493   |    |
| OTHE | R LOADS          | 78    |    |
|      |                  |       |    |
|      | LOAD DISP.       | 3,221 |    |
| FULL | LOAD KG          | 17.75 | FΤ |
|      |                  |       |    |

### ELECTRIC PLANT SUMMARY \* INDICATES MODIFIED LOAD

GEN.MODEL: 501-K34 NO. GEN.: 3 INSTALLED kW: 4,500 kW NO. GEN.: \*ELECTRIC LOAD: 1,654 kW (w/Margins)

### COMBAT SYSTEM SUMMARY

PRIMARY RADAR: SPS-48E 3D SECOND. RADAR: [None] COMM./CONTROL: Medium (FFG-7) [None] 1 SH-60B [None] SONAR: HELICOPTER: GUNS:

CIWS: 2 Phalanx TORPEDOES: [None] SHORT RNG AAW: 1 21-cell RAM

NO. VLS CELLS: 0 STANDARD: 0 TOMAHAWK: Ω ASROC: 0 NIXIE: Yes TACTASS: No

### VOLUME SUMMARY (CUFT) \* INDICATES MODIFIED SSCS

| 1   | MISSION SUPPORT | 86,567  |
|-----|-----------------|---------|
| 2   |                 |         |
| ~   | HUMAN SUPPORT   | 45,901  |
| 3   | SHIP SUPPORT    | 146,305 |
| 4   | SHIP MACHINERY  | 134,417 |
|     |                 |         |
| TOT | AL VOLUME       | 413 190 |

### COST ESTIMATE SUMMARY \* INDICATES MODIFIED COST

| COST YEAR:        | 1992          |
|-------------------|---------------|
| NUMBER OF SHIPS:  | 30            |
| LEAD SHIP COST:   | \$710.496 MIL |
| FOURTH SHIP COST: | \$641.650 MIL |
| *PAYLOAD COST:    | \$104.818 MIL |
| NONRECUR. COST:   | \$167.513 MIL |
| AVERAGE COST:     | \$342.757 MIL |
| LEARNING CURVE:   | 92.00 %       |
| HOURS @ SEA:      | 2,402         |
| HOURS IN PORT:    | 1,982         |
| ANNUAL O&S COST:  | \$10.86 MIL   |
|                   |               |

### MANNING SUMMARY

(50% MANNING REDUCTION)

| OFFICERS             | 10  |
|----------------------|-----|
| CHIEFS               | 10  |
| ENLISTED             | 70  |
|                      |     |
| TOTAL MANNING        | 90  |
| TOTAL ACCOMMODATIONS | 101 |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 2 -- 09/17/95 17:35:22

SHIP DATA FILE:

CPCCG2.SDF

SHIP DESCRIPTION: CPCX Option 5

COAST GUARD opt 2 SPS-48E sub for Mini SPY

DESIGN MODE:

Payload Fixed

TECHNOLOGIES INCLUDED IN MODEL:

50% Manning Reduction
Bow Bulb
Fiberoptics
Fire Zones
High Speed Hull Form
IR Insulation
Lightweight Cable
Lightweight Foundations
Machinery Monitoring & Control

Modular Combat System
Orthotropic Deckhouse
Orthotropic Decks
Producible Ship
Reverse Osmosis
Stern Wedge
URN Reduction
Waste Heat Boilers

| DESCRIPTION             | SWBS  | WT (LT)   | KG(FT) | KW LOAD     |
|-------------------------|-------|-----------|--------|-------------|
| rhib                    | 000   | 2.00      | 20.000 | 0.00        |
| rhib                    | 000   | 2.00      | 20.000 | 0.00        |
| MSB                     | 000   | 2.50      | 30.000 | 0.00        |
| MSB Davits              | 000   | 4.00      | 35.000 | 25.00       |
| Stern Ramp              | 500   | 2.00      | 15.000 | 25.00       |
| MSB                     | 000   | 2.50      | 30.000 | 0.00        |
| MSB Davits              | 000   | 4.00      | 35.000 | 25.00       |
| Crane                   | 500   | 4.00      | 30.000 | 25.00       |
| SH100 Minehunting Sonar | 700   | 1.25      | 5.000  | 6.00        |
| 40MM CIWS ADJUSTMENTS   | 000   | 0.50      | 40.000 | 10.00       |
| 40MM CIWS ADJUSTMENTS   | 000   | 0.50      | 40.000 | 10.00       |
| DESCRIPTION             | SSCS  | VOL(CUFT) | C      | OST(\$1983) |
| rhib                    | 0.000 | 2000.00   |        | 5.00E+04    |
| rhib                    | 0.000 | 2000.00   |        | 5.00E+04    |
| MSB                     | 0.000 | 2500.00   |        | 7.50E+04    |
| MSB Davits              | 0.000 | 3000.00   |        | 1.00E+05    |
| Stern Ramp              | 0.000 | 6000.00   |        | 2.00E+05    |
| MSB                     | 0.000 | 2500.00   |        | 7.50E+04    |
| MSB Davits              | 0.000 | 3000.00   |        | 1.00E+05    |
| Crane                   | 0.000 | 1500.00   |        | 7.50E+04    |
| SH100 Minehunting Sonar | 0.000 | 200.00    |        | 1.00E+06    |
| 40MM CIWS ADJUSTMENTS   | 0.000 | 1000.00   |        | 2.50E+05    |
| 40MM CIWS ADJUSTMENTS   | 0.000 | 1000.00   | ,      | 2.50E+05    |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 1 -- 09/17/95 16:57:19

SHIP DATA FILE: CPCCG2.SDF

SHIP DESCRIPTION: CPCX Option 5

COAST GUARD opt 2 SPY-1D sub for Mini SPY

DESIGN MODE: Payload Fixed

### PRINCIPAL CHARACTERISTICS

### POWER PLANT SUMMARY

| LBP422.32 FT           |
|------------------------|
| LOA457.38 FT           |
| BEAM                   |
| DRAFT TO KEEL          |
| DEPTH @ STA 1030.00 FT |
| GMT7.40 FT             |
| GMT/BEAM RATIO0.158    |
| CP0.588                |
| CX0.785                |
| CB0.462                |
| L/B9.000               |
| B/T3.430               |
| DISP/LENGTH RATIO48    |

MAIN ENG: GE LM-1600 ICR NO. MAIN ENG: 1

SEP. CRUISE ENG:

MTU 16V1163 TB83 Diesel

ENG. @ CRUISE: 2

INSTALLED BHP: 36,780 HP SUST. SPEED: 26.55 KTS SUST. SHP: 19,007 HP KTS SUST. SHP: CRUISE SPEED: 14.00 KTS CRUISE SHP: 2,509 HP RANGE: 8,000 NM HP

### WEIGHT SUMMARY (LT) \* INDICATES MODIFIED SWBS

### ELECTRIC PLANT SUMMARY \* INDICATES MODIFIED LOAD

| 100   | HULL STRUCTURE   | 1,318 |    |
|-------|------------------|-------|----|
| 200   | PROPULSION       | 305   |    |
| 300   | ELECTRICAL       | 238   |    |
| 400   | COMM. & SURVEIL. | 131   |    |
| 500   | *AUX SYSTEMS     | 525   |    |
| 600   | OUTFIT & FURN.   | 246   |    |
| 700   | *ARMAMENT        | 46    |    |
|       |                  |       |    |
| SUM G | ROUPS 1-7        | 2,808 |    |
| WEIGH | T MARGIN         | 3     |    |
|       |                  |       |    |
| LIGHT | SHIP WEIGHT      | 2,811 |    |
| FUEL  | WEIGHT           | 684   |    |
| OTHER | LOADS            | 83    |    |
|       |                  |       |    |
| FULL  | LOAD DISP.       | 3,579 |    |
| FULL  | LOAD KG          | 18.01 | FT |

| GEN.MODEL: |       | 501-K3 | 34 |            |
|------------|-------|--------|----|------------|
| NO. GEN.:  |       | 3      |    |            |
| INSTALLED  | kW:   | 4,500  | kW |            |
| * ELECTRIC | LOAD: | 2.675  | kW | (w/Margins |

### COMBAT SYSTEM SUMMARY

PRIMARY RADAR: Aegis (SPY-1D)
SECOND. RADAR: [None]
COMM./CONTROL: Medium (FFG-7) SONAR: [None]
HELICOPTER: 1 SH-60B [None]
CIWS: 2 Phalanx
TORPEDOES: [None] GUNS: LORPEDOES: [None]
SHORT RNG AAW: 1 21-cell RAM
NO. VLS CELLS: 0
STANDARD.

STANDARD: 0 TOMAHAWK: 0 TOMAHAWK: ASROC: 0 NTXIE: Yes TACTASS: No

## VOLUME SUMMARY (CUFT)

## \* INDICATES MODIFIED SSCS

| 1                    | MISSION SUPPORT | 88,285  |
|----------------------|-----------------|---------|
| 2                    | HUMAN SUPPORT   | 48,476  |
| 3                    | SHIP SUPPORT    | 170,216 |
| 4                    | SHIP MACHINERY  | 139,727 |
|                      |                 |         |
| TOTAL VOLUME 446,704 |                 |         |

### COST ESTIMATE SUMMARY \* INDICATES MODIFIED COST

| COST YEAR:        | 1992          |
|-------------------|---------------|
| NUMBER OF SHIPS:  | 30            |
| LEAD SHIP COST:   | \$734.005 MIL |
| FOURTH SHIP COST: | \$663.727 MIL |
| *PAYLOAD COST:    | \$104.818 MIL |
| NONRECUR. COST:   | \$176.574 MIL |
| AVERAGE COST:     | \$350.177 MIL |
| LEARNING CURVE:   | 92.00 %       |
| HOURS @ SEA:      | 2,402         |
| HOURS IN PORT:    | 1,982         |
| ANNUAL O&S COST:  | \$11.03 MIL   |
|                   |               |

### MANNING SUMMARY (50% MANNING REDUCTION)

| OFFICE | ERS            | 10  |
|--------|----------------|-----|
| CHIEFS | 3              | 10  |
| ENLIST | ED             | 76  |
|        |                |     |
| TOTAL  | MANNING        | 96  |
| TOTAL  | ACCOMMODATIONS | 108 |

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 2 -- 09/17/95 16:57:21

SHIP DATA FILE:

CPCCG2.SDF

SHIP DESCRIPTION: CPCX Option 5

COAST GUARD opt 2

SPY-1D sub for Mini SPY

DESIGN MODE:

Payload Fixed

TECHNOLOGIES INCLUDED IN MODEL:

50% Manning Reduction Bow Bulb Fiberoptics Fire Zones High Speed Hull Form IR Insulation Lightweight Cable Lightweight Foundations Machinery Monitoring & Control

Modular Combat System Orthotropic Deckhouse Orthotropic Decks Producible Ship Reverse Osmosis Stern Wedge URN Reduction Waste Heat Boilers

| DESCRIPTION rhib rhib MSB MSB Davits Stern Ramp MSB MSB Davits Crane SH100 Minehunting Sonar 40MM CIWS ADJUSTMENTS | SWBS<br>000<br>000<br>000<br>500<br>000<br>500<br>700<br>000                 | WT(LT) 2.00 2.00 2.50 4.00 2.50 4.00 4.00 1.25 0.50                                | KG (FT)         KW LOAD           20.000         0.00           20.000         0.00           30.000         0.00           35.000         25.00           15.000         25.00           30.000         0.00           35.000         25.00           30.000         25.00           5.000         25.00           40.000         10.00           40.000         10.00           40.000         10.00 |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION rhib rhib MSB MSB Davits Stern Ramp MSB MSB Davits Crane SH100 Minehunting Sonar 40MM CIWS ADJUSTMENTS | SSCS<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | VOL (CUFT)  2000.00  2000.00  2500.00  3000.00  2500.00  3000.00  1500.00  1000.00 | COST(\$1983) 5.00E+04 5.00E+04 7.50E+04 1.00E+05 2.00E+05 7.50E+04 1.00E+05 7.50E+04 1.00E+05 2.50E+05 2.50E+05                                                                                                                                                                                                                                                                                        |

```
WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 1 -- 09/17/95 17:00:15
              SHIP DATA FILE:
                                CPCCG3 SDF
              SHIP DESCRIPTION: CPCX Option 6
CG OPTION 3
              DESIGN MODE:
                                Payload Fixed
              PRINCIPAL CHARACTERISTICS
                                                        POWER PLANT SUMMARY
        LBP......394.91 FT
                                                  MAIN ENG: GE LM-1600 ICR NO. MAIN ENG: 1
        LOA.....427.68 FT
        BEAM.....43.88 FT
        DRAFT TO KEEL.....12.79 FT
                                                   SEP. CRUISE ENG:
                                                                       MTU 16V1163 TB83 Diesel
        DEPTH @ STA 10......30.00 FT
                                                   ENG. @ CRUISE: 2
        GMT.....7.20 FT
        GMT/BEAM RATIO.....0.164
                                                   INSTALLED BHP: 36,780 HP
                                                  SUST. SPEED: 27.31 KIS
        CP.....0.588
                                                                            KTS
        CX.....0.785
                                                  CRUISE SPEED: 14.00 KTS
CRUISE SHP: 2,229 HP
RANGE: 8,000 NM
        CB.....0.462
                                                                            KTS
        L/B.....9.000
        B/T.....3.430
                                                  RANGE:
        DISP/LENGTH RATIO.....48
             WEIGHT SUMMARY (LT)
                                                        ELECTRIC PLANT SUMMARY
              * INDICATES MODIFIED SWBS
                                                        * INDICATES MODIFIED LOAD
        AUDL STRUCTURE 1,103
200 PROPULSION 301
300 ELECTRICAL 220
                                                  GEN. MODEL:
                                                                   501-K34
                                                NO. GEN.:
                                                                   3
        300 ELECTRICAL 229
400 COMM. & SURVEIL. 64
500 *AUX SYSTEMS 449
600 OUTFIT & FURN. 204
700 *ARMAMENT 35
                                                 INSTALLED kW: 4,500 kW
                                                   *ELECTRIC LOAD: 1,568 kW (w/Margins)
        700 *ARMAMENT
                                                        COMBAT SYSTEM SUMMARY
        SUM GROUPS 1-7 2,385
                                               PRIMARY RADAR: SPS-49 V(5) 2D SECOND. RADAR: [None] COMM./CONTROL: Medium (FFG-7)
        ______
                                                SONAR: [None]
HELICOPTER: 1 SH-60B
GUNS: [None]
        LIGHTSHIP WEIGHT 2,387
        FUEL WEIGHT 473
OTHER LOADS 65
        OTHER LOADS
                                   65
                                                  TORPEDOES: [None]

SHOPM
             _______
                                                  CIWS:
        FULL LOAD DISP. 2,926
FULL LOAD KG 16.55 FT
                                                TORPEDOES: [None]
SHORT RNG AAW: 1 21-cell RAM
NO. VLS CELLS: 0
                                                   STANDARD: 0
TOMAHAWK: 0
ASROC: 0
             VOLUME SUMMARY (CUFT)
              * INDICATES MODIFIED SSCS
                                                  NIXIE:
                                                                   Yes
        1 MISSION SUPPORT 54,214
2 HUMAN SUPPORT 39,025
3 SHIP SUPPORT 126,613
4 SHIP MACHINERY 123,324
            MISSION SUPPORT
                                                  TACTASS:
                                                        COST ESTIMATE SUMMARY
                                                        * INDICATES MODIFIED COST
        TOTAL VOLUME
                                343,176
                                                  COST YEAR:
                                                                      1992
                                                  NUMBER OF SHIPS: 30
             MANNING SUMMARY
                                                  LEAD SHIP COST: $670.937 MIL
FOURTH SHIP COST: $606.279 MIL
             (50% MANNING REDUCTION)
                                                  *PAYLOAD COST: $99.693 MIL
                                                 NONRECUR. COST: $159.661 MIL
AVERAGE COST: $322.029 MIL
LEARNING CURVE: 92.00 %
        OFFICERS
                                   8
        CHIEFS
                                  7
        ENLISTED
                                 6.3
                                                 HOURS @ SEA: 2,402
HOURS IN PORT: 1,982
                                 _ _ _ _
```

ANNUAL O&S COST: \$10.91 MIL

78

TOTAL MANNING

TOTAL ACCOMMODATIONS 87

WARSHIP-21 SHIP DESIGN MODEL (VER 1.53) -- PAGE 2 -- 09/17/95 17:00:17

SHIP DATA FILE:

CPCCG3.SDF

CG OPTION 3

SHIP DESCRIPTION: CPCX Option 6

DESIGN MODE:

Payload Fixed

TECHNOLOGIES INCLUDED IN MODEL:

50% Manning Reduction
Bow Bulb
Fiberoptics
Fire Zones
High Speed Hull Form
IR Insulation
Lightweight Cable
Lightweight Foundations
Machinery Monitoring & Control

Modular Combat System Orthotropic Deckhouse Orthotropic Decks Producible Ship Reverse Osmosis Stern Wedge URN Reduction Waste Heat Boilers

#### USER-DEFINED PAYLOAD LIST:

| DESCRIPTION             | SWBS  | WT(LT)    | KG(FT) | KW LOAD    |
|-------------------------|-------|-----------|--------|------------|
| rhib                    | 000   | 2.00      | 20.000 | 0.00       |
| rhib                    | 000   | 2.00      | 20.000 | 0.00       |
| MSB                     | 000   | 2.50      | 30.000 | 0.00       |
| MSB Davits              | 000   | 4.00      | 35.000 | 25.00      |
| Stern Ramp              | 500   | 2.00      | 15.000 | 25.00      |
| Crane                   | 500   | 4.00      | 30.000 | 25.00      |
| SH100 Minehunting Sonar | 700   | 1.25      | 5.000  | 6.00       |
| 40MM CIWS ADJUSTMENTS   | 000   | 0.50      | 40.000 | 10.00      |
| DESCRIPTION             | SSCS  | VOL(CUFT) | COS    | ST(\$1983) |
| rhib                    | 0.000 | 2000.00   |        | 5.00E+04   |
| rhib                    | 0.000 | 2000.00   |        | 5.00E+04   |
| MSB                     | 0.000 | 2500.00   |        | 7.50E+04   |
| MSB Davits              | 0.000 | 3000.00   |        | 1.00E+05   |
| Stern Ramp              | 0.000 | 6000.00   |        | 2.00E+05   |
| Crane                   | 0.000 | 1500.00   |        | 7.50E+04   |
| SH100 Minehunting Sonar | 0.000 | 200.00    |        | 1.00E+06   |
| 40MM CIWS ADJUSTMENTS   | 0.000 | 1000.00   |        | 2.50E+05   |

# **APPENDIX K**

SELF DEFENSE DATA

### **Summary**

Self-defense capabilities of CPCX variants were evaluated against a variety of inbound missile threats. The summary of "Self-Defense Efficiencies" of each CPCX variant against respective threats was shown in table (K-1). The self-defense efficiency was defined as the product of all the individual kill probabilities for each defensive system used in particular engagement. Individual defensive system kill probabilities were provided by the faculty and were also shown in table (K-2). Self-defense efficiencies were determined for individual as well as combined inbound threat missiles, using threat scenarios described in the Operational Requirements Document.

The model used to determine self-defense efficiencies was the "Engagement Sequence Diagram", an example of which was shown on page (K-5). The self-defense engagement model incorporated delays that occur due to human decision making such as reaction and evaluation times. Incorporation of actual operational doctrine the ship might use in detecting and engaging threats of a particular scenario was beyond the scope of this design project.

A summary of the number of self-defense weapons expended against various threats was shown in table (K-3). Characteristics of threat missiles A-1, A-2, etc. were identical to those shown in Appendix E.

## **Engagement Sequence Diagram Description**

A description of the Engagement Sequence Diagram shown on page (K-5), used to depict a CPCX Navy 1 Variant defense against a single inbound sea skimming A-3 missile, is as follows:

- 1. The plot has axes of the inbound missile's time to impact vs. range from ship.

  The diagonal line from the upper left to lower right represents the range at any time after launch of the inbound missile, in this case the A-3, traveling at mach 0.9.
- The inbound A-3 missile is detected at a range of 25 km, based on information found in Appendix E - Radar Calculations.
- 3. After a ten-second reaction time, the first self-defense anti-missile weapon in the Navy 1 Variant's arsenal, an Enhanced Sea Sparrow is fired. The slope of the solid line labeled "ESS" represents the Sea Sparrow's outbound speed. The Sea Sparrow's projected impact with the A-3 is represented by point "1".
- 4. After ten seconds of evaluation time, the second self-defense weapon, a Rolling Air Frame (RAM) missile, is fired. The projected impact point of this missile is represented by point "2".
- 5. In a similar manner, after an evaluation time, the second RAM is fired with projected impact point "3".
- 6. The self-defense efficiency of this engagement is therefore the product of individual kill probabilities for each defensive system used, as shown in the following equation. The CIWS point defense and Chaff decoy systems' kill probabilities were

included also.

$$P_k = 1 - (1 - 0.7)(1 - 0.7)(1 - 0.7)(1 - 0.5)(1 - 0.4)$$
  
= 0.992

This self-defense efficiency was entered in table (K-1) for variant "Navy 1" and single missile threat "A-3".

7. The numbers of self-defense weapons expended for this engagement (one ESS, two RAM, CIWS, and CHAFF) were entered in the appropriate blocks in table (K-3).

## ENGAGEMENT SEQUENCE DIAGRAM

### NAVY VARIANT 1 - MISSILE A-3



Table K-1: Self-Defense Efficiencies

|                         |       |       | VARI  | ANT   |       |       |
|-------------------------|-------|-------|-------|-------|-------|-------|
|                         | NAVY  | NAVY  | NAVY  | CG    | CG    | CG    |
| SINGLE MISSILE THREAT   | 1     | 2     | 3     | 1     | 2     | 3     |
| A-1                     | 0.996 | 0.997 | 0.989 | 0.989 | 0.989 | 0.874 |
| A-2                     | 0.986 | 0.952 | 0.700 | 0.973 | 0.973 | 0.910 |
| A-3                     | 0.992 | 0.992 | 0.992 | 0.992 | 0.992 | 0.910 |
| A-4                     | 0.998 | 0.998 | 0.998 | 0.995 | 0.998 | 0.998 |
| M-2                     | 0.995 | 0.995 | 0.943 | 0.943 | 0.943 | 0.881 |
|                         |       |       |       |       |       |       |
| COMBINED MISSILE THREAT |       |       |       |       |       |       |
| THREE A-3'S             |       |       |       |       |       |       |
| (similar bearings)      | 0.993 | 0.993 | 0.987 |       |       |       |
| TWO A-3'S and ONE A-1   | •     |       |       |       |       |       |
| (different bearings)    | 0.991 | 0.992 | 0.936 |       |       |       |

Table K-2: Individual Defensive System Kill Probabilities (provided by faculty)

| Defensive Missile System | A-1 | A-2 | A-3 | A-4 | M-1 | M-2 |
|--------------------------|-----|-----|-----|-----|-----|-----|
| SM2-MR                   | 0.6 | 0.8 | 0.7 | 0.7 |     | 0.7 |
| ESS                      | 0.6 | 0.8 | 0.7 | 0.7 |     | 0.7 |
| RAM                      | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| STINGER                  | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| CIWS/40 MM GUN           | 0.3 | 0.5 | 0.5 | 0.5 | 0.2 | 0.3 |
| SLQ-32/CHAFF/DECOYS      | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.1 |

|             |     |     | SINGLE  | SINGLE A-1 MISSILE   |      |      |       |             |     |            | SINGLE     | SINGLE M-2 MISSILE                      | .,       |          |       |
|-------------|-----|-----|---------|----------------------|------|------|-------|-------------|-----|------------|------------|-----------------------------------------|----------|----------|-------|
| SHIP OPTION | SM2 | ESS | RAM     | STINGER              | CIWS | 40MM | CHAFF | SHIP OPTION | SM2 | ESS        | RAM        | STINGER                                 | CIWS     | 40MM     | CHAFF |
| NAVY 1      | 2   | 2   | 0       | 0                    | ×    |      | ×     | NAVY 1      | 2   | 2          | 0          | 0                                       | ×        |          | ×     |
| NAVY 2      | 2   | -   | -       | 0                    |      | ×    | ×     | NAVY 2      | 2   | 2          | 0          | 0                                       |          | ×        | ×     |
| NAVY 3      | 0   | 0   | ო       | 0                    |      | ×    | ×     | NAVY 3      | 0   | 0          | 2          | 0                                       |          | ×        | ×     |
| CG 1        | 0   | 0   | ဗ       | 0                    | ×    |      | ×     | CG 1        | 0   | 0          | 2          | 0                                       | ×        |          | ×     |
| CG 2        | 0   | 0   | ო       | 0                    |      | ×    | ×     | CG 2        | 0   | 0          | 2          | 0                                       |          | ×        | ×     |
| CG 3        | 0   | 0   | 0       | -                    |      | ×    | ×     | CG 3        | 0   | 0          | 0          | 2                                       |          | ×        | ×     |
|             |     |     |         |                      |      |      |       |             |     |            |            |                                         | ;        |          |       |
|             |     |     | SINGLE  | SINGLE A-2 MISSILE   |      |      |       |             |     | THREE A    | -3 MISSILL | THREE A-3 MISSILES ON SIMILIAR BEARINGS | IAR BEAL | SUNGS    |       |
| SHIP OPTION | SM2 | ESS | RAM     | STINGER              | CIWS | 40MM | CHAFF | SHIP OPTION | SM2 | ESS        | RAM        | STINGER                                 | CIWS     | 40MM     | CHAFF |
| NAVY 1      | 0   | 2   | 0       | 0                    | ×    |      | ×     | NAVY 1      | 2   | 2          | 2          | 0                                       | ×        |          | ×     |
| NAVY 2      | 0   | 2   | 1       | 0                    |      | ×    | ×     | NAVY 2      | 2   | 2          | 2          | 0                                       |          | ×        | ×     |
| NAVY 3      | 0   | 0   | 0       | 0                    |      | ×    | ×     | NAVY 3      | 0   | 0          | 8          | 0                                       |          | ×        | ×     |
| CG 1        | 0   | 0   | 2       | 0                    | ×    |      | ×     | CG 1        |     |            |            |                                         |          |          |       |
| CG 2        | 0   | 0   | 2       | 0                    |      | ×    | ×     | CG 2        |     |            |            |                                         |          |          |       |
| CG 3        | 0   | 0   | 0       | 2                    |      | ×    | ×     | ce 3        |     |            |            |                                         |          |          |       |
|             |     |     |         |                      |      |      |       |             |     |            |            |                                         |          |          |       |
|             |     |     | SINGLEA | A-3 MISSILE          |      |      |       |             |     | TWO A-3'S, | f .        | ONE A-1 MISSILE ON DIFFERENT BEARINGS   | N DIFFER | ENT BEAL | RINGS |
| SHIP OPTION | SM2 | ESS | RAM     | STINGER              | CIWS | 40MM | CHAFF | SHIP OPTION | SM2 | ESS        | RAM        | STINGER                                 | CIWS     | 40MM     | CHAFF |
| NAVY 1      | 0   | -   | 2       | 0                    | ×    |      | ×     | NAVY 1      | 2   | S          | S          | 0                                       | ×        |          | ×     |
| NAVY 2      | 0   | 0   | 0       | 0                    |      | ×    | ×     | NAVY 2      | 2   | 10         | 0          | 0                                       |          | ×        | ×     |
| NAVY 3      | 0   | 0   | က       | 0                    |      | ×    | ×     | NAVY 3      | 0   | 0          | 6          | 0                                       |          | ×        | ×     |
| CG 1        | 0   | 0   | 3       | 0                    | ×    |      | ×     | CG 1        |     |            |            |                                         |          |          |       |
| CG 2        | 0   | 0   | က       | 0                    |      | ×    | ×     | CG 2        |     |            |            |                                         |          |          |       |
| CG 3        | 0   | 0   | 0       | 2                    |      | ×    | ×     | CG 3        |     |            |            |                                         |          |          |       |
|             |     |     |         |                      |      |      |       |             |     |            |            |                                         |          |          |       |
|             |     |     | SINGLE  | SINGI F A.4 MISSII F |      |      |       |             |     |            |            |                                         |          |          |       |
| SHIP OPTION | SM2 | ESS | RAM     | STINGER              | CIWS | 40MM | CHAFF |             |     |            |            |                                         |          |          |       |
| NAVY 1      | -   | 3   | 0       | 0                    | ×    |      | ×     |             |     |            |            |                                         |          |          |       |
| NAVY 2      | 1   | 3   | 0       | 0                    |      | ×    | ×     |             |     |            |            |                                         |          |          |       |
| NAVY 3      | 0   | 0   | 4       | 0                    |      | ×    | ×     |             |     |            |            |                                         |          |          |       |
| CG 1        | 0   | 0   | 4       | 0                    | ×    |      | ×     |             |     |            |            |                                         |          |          |       |
| CG 2        | 0   | 0   | 4       | 0                    |      | ×    | ×     |             |     |            |            |                                         |          |          |       |
| CG 3        | 0   | 0   | 0       | 2                    |      | ×    | ×     |             |     |            |            |                                         |          |          |       |

## APPENDIX L

MEASURES OF EFFECTIVENESS

### **SUMMARY**

The measures of effectiveness were equated to show the relationship between each whole ship option in several designated mission areas. A weighing factor was then used to show the relative importance of each mission area and the overall MOE was determined. The following tables show the MOE calculations for each whole ship option.

Table L-1: Navy Variant MOE Calculations

Table L-2: Coast Guard MOE Calculations

|                                          | USN Variant |          |          |  |
|------------------------------------------|-------------|----------|----------|--|
|                                          | Option 1    | Option 2 | Option 3 |  |
|                                          |             |          |          |  |
| Number of strike missles =               | 9           | 9        | 4        |  |
| Range of missle (km) =                   | 2500        | 2500     | 2500     |  |
| Ability to target =                      | 0.95        | 0.95     | 0.95     |  |
| Circle error probability (m) =           | 5           | 5        | 5        |  |
| Ship cost (M\$) =                        | 430         | 380      | 340      |  |
| Number of missles needed for kill =      | 1           | 1        | 1        |  |
| Strike effectiveness =                   | 0.994186    | 1.125    | 0.558824 |  |
|                                          |             |          |          |  |
|                                          |             |          |          |  |
| Defense efficiency =                     | 0.992       | 0.992    | 0.992    |  |
| Probability of kill given hit for ship = | 0.4         | 0.4      | 0.4      |  |
| Number of air self defense missles =     | 46          | 25       | 21       |  |
| Air engagement effectiveness =           | 0.198326    | 0.242105 | 0.274353 |  |
|                                          |             |          |          |  |
|                                          |             |          |          |  |
| Number of ASROC =                        | 4           | 4        | 0        |  |
| Range of ASROC (m) =                     | 10000       | 10000    |          |  |
| Number of SVTT =                         | 6           | 6        | 6        |  |
| Range of SVTT (m) =                      | 2000        | 2000     | 2000     |  |
| Effectiveness of torpedo (MK50) =        | 0.7         | 0.7      | 0.7      |  |
| Sub-surface engagement effec. =          | 0.846512    | 0.957895 | 0.247059 |  |
|                                          |             |          |          |  |
|                                          |             |          |          |  |
| Number of guns =                         | 1           | 1        | 1        |  |
| Range of gun fire (m) =                  | 30000       | 26000    | 26000    |  |
| Weight of round (kg) =                   | 4.7         | 3.5      | 3.5      |  |
| Number of rounds =                       | 280         | 400      | 400      |  |
| Circle error probability (m) =           | 120         | 100      | 100      |  |
| NGFS effectiveness =                     | 0.765116    | 0.957895 | 1.070588 |  |
|                                          |             |          |          |  |
|                                          |             |          |          |  |
| Search width - ship (nm) =               | 35          | 25       | 15       |  |
| Velocity - ship (knots) =                | 14          | 14       | 14       |  |
| Time of search - ship (hrs) =            | 24          | 24       | 24       |  |
| Search area - ship (sq-nm) =             | 10000       | 10000    | 10000    |  |
| Search width - helo (nm) =               | 50          | 50       | 50       |  |
| Velocity - helo (knots) =                | 100         | 100      | 100      |  |
| Time of search - helo (hrs) =            | 4           | 4        | 4        |  |
| Search area - helo (sq-nm) =             | 10000       | 10000    | 10000    |  |
| Patrol area effectiveness =              | 0.160812    | 0.14955  | 0.116438 |  |

|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ····     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Conversion factor 1 =             | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.75     | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Conversion factor 2 =             | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.75     | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Conversion factor 3 =             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.75     | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Conversion factor 4 =             | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Conversion factor 5 =             | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.75     | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Conversion factor 6 =             | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Convertability effectiveness =    | 0.263672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.197754 | 0.197754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Displacement (LT) =               | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3600     | 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Stack exhaust temp. (C) =         | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Machinery plant noise (dB) =      | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 155      | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ship signature effectiveness =    | 0.250063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.314406 | 0.395319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                   | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |          | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Numbr of boarding parties =       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Number of boats =                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Availability of boats =           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9      | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Boarding effectiveness =          | 0.837209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.947368 | 1.058824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Strike weighting factor =         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Air engagement weighting factor = | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sub-surface weighting factor =    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NGFS weighting factor =           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Patrol area weighting factor =    | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Convertability weighting factor = | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4      | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ship signature weighting factor = | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Boarding weighting factor =       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Overall variant effectiveness =   | 5.566236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.163862 | 5.233905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                          | USCG Variant |          |          |
|------------------------------------------|--------------|----------|----------|
|                                          | Option 1     | Option 2 | Option 3 |
|                                          |              |          |          |
| Ship cost (M\$) =                        | 380          | 340      | 320      |
| Defense efficiency =                     | 0.992        | 0.992    | 0.91     |
| Probability of kill given hit for ship = | 0.4          | 0.4      | 0.4      |
| Number of air self defense missles =     | 21           | 21       | 4        |
| Air engagement effectiveness =           | 0.245474     | 0.274353 | 0.2675   |
|                                          |              |          |          |
|                                          |              |          |          |
| Search width - ship (nm) =               | 30           | 25       | 20       |
| Velocity - ship (knots) =                | 14           | 14       | 14       |
| Time of search - ship (hrs) =            | 24           | 24       | 24       |
| Search area - ship (sq-nm) =             | 10000        | 10000    | 10000    |
| Search width - helo (nm) =               | 50           | 50       | 50       |
| Velocity - helo (knots) =                | 100          | 100      | 100      |
| Time of search - helo (hrs) =            | 4            | 4        | 4        |
| Search area - helo (sq-nm) =             | 10000        | 10000    | 10000    |
| Patrol area effectiveness =              | 0.167119     | 0.167144 | 0.152911 |
| Tatiof area effectiveriess -             | 0.107119     | 0.107144 | 0.152911 |
|                                          |              |          |          |
| Conversion factor 1 =                    | 0.75         | 0.75     |          |
| Conversion factor 2 =                    | 0.75         | 0.75     | 0.75     |
|                                          | 0.75         | 0.75     | 0.75     |
| Conversion factor 3 =                    | 1            | 0.75     | 0.75     |
| Conversion factor 4 =                    | 0.25         | 0.25     | 0.25     |
| Conversion factor 5 =                    | 0.75         | 0.75     | 0.75     |
| Conversion factor 6 =                    | 0.25         | 0.25     | 0.25     |
| Convertability effectiveness =           | 0.263672     | 0.197754 | 0.197754 |
|                                          |              |          |          |
| Displacement (LT) =                      | 3500         | 3200     | 3000     |
| Stack exhaust temp. (C) =                | 150          | 150      | 150      |
| Machinery plant noise (dB) =             | 155          | 155      | 155      |
| Ship signature effectiveness =           | 0.323389     | 0.395319 | 0.448029 |
|                                          |              |          |          |
| Number of boarding parties =             | 2            | 2        | 2        |
| Number of boats =                        | 4            | 4        | 3        |
| Availability of boats =                  | 0.9          | 0.9      | 0.9      |
| Boarding effectiveness =                 | 1.894737     | 2.117647 | 1.6875   |
|                                          |              |          |          |
| Air engagement weighting factor =        | 1            | · 1      | 1        |
| Patrol area weighting factor =           | 1            | 1        | 1        |
| Convertability weighting factor =        | 1            | 1        | 1        |
| Ship signature weighting factor =        | 0.5          | 0.5      | 0.5      |
| Boarding weighting factor =              | 1            | 1        | 1        |
| Overall variant effectiveness =          | 4.173298     | 4.216945 | 3.961856 |

Table L-2: Coast Guard Variant MOE Calculations

|  |   | ı |
|--|---|---|
|  |   | ı |
|  |   | ı |
|  |   | ı |
|  |   | ı |
|  |   | ı |
|  |   | ı |
|  |   | l |
|  |   |   |
|  |   | ı |
|  |   |   |
|  |   |   |
|  |   | ı |
|  |   | ı |
|  |   | ı |
|  |   | ı |
|  |   | ı |
|  |   |   |
|  |   |   |
|  |   | 1 |
|  |   | ı |
|  |   | 1 |
|  |   | 1 |
|  |   | ı |
|  |   |   |
|  |   | l |
|  |   | l |
|  |   |   |
|  |   |   |
|  |   | l |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   | ı |
|  |   | l |
|  |   | - |
|  |   |   |
|  | • |   |
|  |   | 1 |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   | 1 |
|  |   |   |
|  |   | 1 |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   | 1 |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   | 1 |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |

## **APPENDIX M**

TANK DATA

#### **SUMMARY**

The software tool used to design the tanks, their geometries, and model their contents, was General Hydrostatics (GHS), by Creative Systems. GHS's Tank Maker module is a user-driven tank modeler. It uses coordinate (top, bottom, forward end, aft end, width) data input by the user, along with appropriate characteristics (contents, permeability, hull fitting) to specify where in the hull the tank is, how much it holds (volume) and how much the contents weigh. Tank Maker also computes soundings for the tanks, allowing the user to calculate the stability (from within the parent program, GHS) for various tank loads.

Several inherent inaccuracies are present in the model at this time. These are due to lack of sufficient detail in the actual hull structure, for computing tank boundaries and permeabilities. The values used were estimated based on information at time of modeling (offsets for hull, and bulkhead locations). A more detailed analysis based on the detailed design of the hull structure is required and is the next logical step in the tank modeling.

Page M-3 contains a summary of the various tanks and their capacities for both versions (Navy and Coast Guard) of the CPCX.

Page M-4 is a graphical representation of the Navy version tanks.

Page M-5 lists the longitudinal location of each tank (Navy), relative to the forward perpendicular.

Page M-6 is a graphical representation of the Coast Guard version tanks.

Page M-7 lists the longitudinal location of each tank (Coast Guard), relative to the forward perpendicular.

### Navy and Coast Guard Tanks

| DFM Tankage   | Percent Capacity |             |
|---------------|------------------|-------------|
| Ŭ             | 95%              | 100%        |
| 2.S           | 1227             | 1292        |
| 2.P           | 1227             | 1292        |
| 3.5           | 2198             | 2314        |
| 3.P           | 2198             | 2314        |
| 5.S           | 2743             | 2887        |
| 5.P           | 2743             | 2887        |
| 6I.S          | 5951             | 6264        |
| 6I.P          | 5951             | 6264        |
| 6.8           | 614              | 646         |
| 6.P           | 614              | 646         |
| 7.S           | 2692             | 2834        |
| 7.P           | 2692             | 2834        |
| 7I.S          | 9545             | 10047       |
| 71.P          | 9545             | 10047       |
| 8.8           | 3355             | 3532        |
| 8.P           | 3355             | 3532        |
| 81.5          | 8301             | 8738        |
| 81.P          | 8301             | 8738        |
| 10.5          | 1565             | 1647        |
| 10.P          | 1565             | 1647        |
| 10I.S         | 7090             | 7463        |
| 10I.P         | 7090             | 7463        |
| 12.8          | 13074            | 13762       |
| 12.P          | 13074            | 13762       |
| 13.S          | 10034            | 10562       |
| 13.P          | 10034            | 10562       |
| Total Tankage | 136,777 Gal      | 143,976 Gal |
| Wgt of fuel   | 443.26 Lton      | 466.59 Lton |

| Coast Guard a | dded tanks  |             |
|---------------|-------------|-------------|
| 14.C          | 4821        | 5075        |
| 15.S          | 4821        | 5075        |
| 15.P          | 4821        | 5075        |
| 16.S          | 4821        | 5075        |
| 16.P          | 4821        | 5075        |
| 17.C          | 9256        | 9743        |
| 18.C          | 3863        | 4066        |
| Total Tankage | 174,001 Gal | 183,160 Gal |
| Wgt of fuel   | 563.9 Lton  | 593.58 Lton |

| Ballast Water (Peak Tank) | Percent Capacity |           |
|---------------------------|------------------|-----------|
|                           | 95%              | 100%      |
| 1.C                       | 2121             | 2233      |
| Total Tankage             | 2121 Gal         | 2233 Gal  |
| Wgt of ballast water      | 8.10 Lton        | 8.53 Lton |

| LUBE OIL        | Percent Capacity |           |
|-----------------|------------------|-----------|
|                 | 95%              | 100%      |
| 5.C             | 2654             | 2794      |
| Total Tankage   | 2,654 Gal        | 2,794 Gal |
| Wgt of lube oil | 9.14 Lton        | 9.62 Lton |

| POTABLE WATER        | Percent Capacity |            |  |
|----------------------|------------------|------------|--|
|                      | 95%              | 100%       |  |
| 4.S                  | 3133             | 3298       |  |
| 4.P                  | 3133             | 3298       |  |
| Total Tankage        | 6,266 Gal        | 6,596 Gal  |  |
| Wgt of potable water | 23.35 Lton       | 24.58 Lton |  |

| WASTE OIL        | Percent Capacity |            |  |  |
|------------------|------------------|------------|--|--|
|                  | 95%              | . 100%     |  |  |
| 11.C             | 3014             | 3173       |  |  |
| Total Tankage    | 3,014 Gal        | 3,173 Gal  |  |  |
| Wgt of waste oil | 10.67 Lton       | 11.23 Lton |  |  |

| JP-5 AVIATION FUEL | Percent Capacity |            |  |  |
|--------------------|------------------|------------|--|--|
|                    | 95%              | 100%       |  |  |
| 91.5               | 8123             | 8550       |  |  |
| 91.5               | 8123             | 8550       |  |  |
| 9.5                | 3077             | 3239       |  |  |
| 9.P                | 3077             | 3239       |  |  |
| Total Tankage      | 22,399 Gal       | 23,578 Gal |  |  |
| Wgt of JP-5        | 67.77 Lton       | 71.34 Lton |  |  |

CPCX



Scale = 1:550

95-10-31 09:33 GHS-GHS/PM 2.18

CPCX

Page 2 .

Comments

Offsets derived from SHCP data.

| Part Name | Class | Description | Location   |         | Volume  |
|-----------|-------|-------------|------------|---------|---------|
| HULL      | HULL  |             | 18.36f to  | 380.00a |         |
| TANK1.C   | TANK  |             | 6.50a to   | 18.80a  | 298.500 |
| TANK2.S   | TANK  |             | 18.80a to  | 42.50a  | 172.666 |
| TANK2.P   | TANK  |             | 18.80a to  | 42.50a  | 172.666 |
| TANK3.S   | TANK  |             | 42.50a to  | 65.50a  | 309.295 |
| TANK3.P   | TANK  |             | 42.50a to  | 65.50a  | 309.295 |
| TANK5.S   | TANK  |             | 88.50a to  | 112.10a | 385.975 |
| TANK5.P   | TANK  |             | 88.50a to  | 112.10a | 385.975 |
| TANK5.C   | TANK  |             | 98.50a to  | 112.10a | 373.464 |
| TANK7.S   | TANK  |             | 135.70a to | 170.24a | 378.919 |
| TANK7.P   | TANK  |             | 135.70a to | 170.24a | 378.919 |
| TANK7I.S  | TANK  |             | 135.70a to | 170.24a | 1343.13 |
| TANK7I.P  | TANK  |             | 135.70a to | 170.24a | 1343.13 |
| TANK8.S   | TANK  |             | 170.24a to | 199.40a | 472.232 |
| TANK8.P   | TANK  |             | 170.24a to | 199.40a | 472.232 |
| TANK8I.S  | TANK  |             | 170.24a to | 199.40a | 1168.17 |
| TANK8I.P  | TANK  |             | 170.24a to | 199.40a | 1168.17 |
| TANK10.S  | TANK  |             | 228.90a to | 264.32a | 220.209 |
| TANK10.P  | TANK  |             | 228.90a to | 264.32a | 220.209 |
| TANK101.S | TANK  |             | 228.90a to | 264.32a | 997.696 |
| TANK10I.P | TANK  | •           | 228.90a to | 264.32a | 997.696 |
| TANK4.S   | TANK  |             | 65.50a to  | 88.50a  | 440.828 |
| TANK4.P   | TANK  |             | 65.50a to  | 88.50a  | 440.828 |
| TANK6I.S  | TANK  |             | 112.10a to | 135.70a | 837.379 |
| TANK6I.P  | TANK  |             | 112.10a to | 135.70a | 837.379 |
| TANK6.S   | TANK  | •           | 112.10a to | 135.70a | 86.364  |
| TANK6.P   | TANK  |             | 112.10a to | 135.70a | 86.364  |
| TANK11.C  | TANK  |             | 266.32a to | 294.50a | 424.105 |
| TANK12.S  | TANK  |             | 266.32a to | 294.50a | 1839.76 |
| TANK12.P  | TANK  |             | 266.32a to | 294.50a | 1839.76 |
| TANK13.S  | TANK  |             | 294.50a to | 323.30a | 1411.90 |
| TANK9I.S  | TANK  |             | 199.40a to | 228.90a | 1143.06 |
| TANK9I.P  | TANK  | ,           | 199.40a to | 228.90a | 1143.06 |
| TANK9.S   | TANK  |             | 199.40a to | 228.90a | 432.944 |
| TANK9.P   | TANK  |             | 199.40a to | 228.90a | 432.944 |
| TANK13.P  | TANK  |             | 294.50a to |         | 1411.90 |

Locations in Feet fwd/aft of the origin. Volumes in cubic Feet.

95-11-27 11:56 GHS-GHS/PM 2.18

CPCX COAST GUARD

Page

1



Scale = 1:550 M-6

95-11-27 11:56 GHS-GHS/PM 2.18

CPCX COAST GUARD

Comments

Offsets derived from SHCP data.

| Part Name | Class | Description | Location  |         | Volume |
|-----------|-------|-------------|-----------|---------|--------|
| HULL      | HULL  |             | 18.36f to | 380.00a |        |

| TANKAI.C TANK 6.50a to 18.80a 298.500 TANKAI.C TANK 6.50a to 18.80a 298.500 TANKAI.C TANK 18.80a to 42.50a 172.666 TANK2.P TANK 18.80a to 42.50a 172.666 TANK3.S TANK 42.50a to 65.50a 309.295 TANK3.S TANK 42.50a to 65.50a 309.295 TANK5.S TANK 88.50a to 112.10a 385.975 TANK5.C TANK 88.50a to 112.10a 385.975 TANK5.P TANK 88.50a to 112.10a 385.975 TANK5.P TANK 88.50a to 112.10a 373.464 TANK7.S TANK 98.50a to 112.10a 373.464 TANK7.S TANK 135.70a to 170.24a 378.919 TANK7.S TANK 135.70a to 170.24a 378.919 TANK7I.S TANK 135.70a to 170.24a 378.919 TANK7I.S TANK 135.70a to 170.24a 1343.13 TANK7I.F TANK 135.70a to 170.24a 1343.13 TANK8I.F TANK 170.24a to 199.40a 472.232 TANK8.P TANK 170.24a to 199.40a 472.232 TANK8.P TANK 170.24a to 199.40a 1168.17 TANK10.S TANK 170.24a to 199.40a 1168.17 TANK10.S TANK 228.90a to 264.32a 200.209 TANK10.S TANK 228.90a to 264.32a 200.209 TANK10.S TANK 228.90a to 264.32a 200.209 TANK10.S TANK 65.50a to 88.50a 440.828 TANK4.P TANK 121.00a to 135.70a 837.379 TANK6.P TANK 122.00a to 135.70a 837.379 TANK6.P TANK 65.50a to 88.50a 440.828 TANK4.P TANK 122.00a to 135.70a 837.379 TANK6.P TANK 122.00a to 135.70a 837.379 TANK6.P TANK 122.00a to 135.70a 837.379 TANK6.P TANK 122.00a to 135.70a 837.379 TANK6.P TANK 122.00a to 135.70a 837.379 TANK6.P TANK 122.00a to 135.70a 837.379 TANK6.P TANK 122.00a to 135.70a 837.379 TANK6.P TANK 122.00a to 135.70a 837.379 TANK6.P TANK 122.00a to 294.50a 1839.76 TANK11.C TANK 122.00a to 294.50a 1839.76 TANK11.C TANK 122.00a to 228.90a 143.06 TANK11.P TANK 122.00a to 228.90a 143.06 TANK13.P TANK 122.00a to 228.90a 143.06 TANK13.P TANK 122.00a to 28.90a 143.06 TANK13.P TANK 122.00a to 28.90a 143.06 TANK13.P TANK 122.00a to 28.90a 143.06 TANK13.P TANK 122.00a to 28.90a 143.06 TANK13.P TANK 122.00a to 28.90a 143.06 TANK13.P TANK 122.00a to 89.00a 143.06 TANK13.P TANK 122.00a to 89.00a 678.487 TANK15.P TANK 122.00a to 89.00a 678.487 TANK15.P TANK 122.00a to 89.00a 678.487 TANK15.P TANK 122.00a to 89.00a 678.487 TANK15.P TANK 122.00a to 89.00a 678.487                        | Part Name | Class | Description | Location   |         | Volume  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------------|------------|---------|---------|
| TANK1.C         TANK         6.50a to         18.80a         298.500           TANK2.S         TANK         18.80a to         42.50a         172.666           TANK2.P         TANK         18.80a to         42.50a         172.666           TANK3.S         TANK         42.50a to         65.50a         309.295           TANK3.P         TANK         42.50a to         65.50a         309.295           TANK5.P         TANK         88.50a to         112.10a         385.975           TANK5.P         TANK         98.50a to         112.10a         385.975           TANK7.P         TANK         98.50a to         112.10a         373.464           TANK7.P         TANK         135.70a to         170.24a         378.919           TANK7.P         TANK         135.70a to         170.24a         378.919           TANK7.S         TANK         135.70a to         170.24a         378.919           TANK7.P         TANK         135.70a to         170.24a         378.919           TANK7.S         TANK         135.70a to         170.24a         378.919           TANK8.S         TANK         135.70a to         170.24a         378.919           TANK8.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HULL      | HULL  |             | 18.36f to  | 380.00a |         |
| TANK2.S         TANK         18.80a to         42.50a         172.666           TANK2.P         TANK         18.80a to         42.50a         172.666           TANK3.S         TANK         42.50a to         65.50a         309.295           TANK3.P         TANK         42.50a to         65.50a         309.295           TANKS.P         TANK         88.50a to         112.10a         385.975           TANK5.C         TANK         98.50a to         112.10a         385.975           TANK5.C         TANK         98.50a to         112.10a         385.975           TANK7.S         TANK         135.70a to         170.24a         378.919           TANK71.S         TANK         135.70a to         170.24a         378.919           TANK71.F         TANK         135.70a to         170.24a         378.919           TANK71.F         TANK         135.70a to         170.24a         378.919           TANK8.S         TANK         135.70a to         170.24a         378.919           TANK8.S         TANK         135.70a to         170.24a         343.13           TANK8.S         TANK         170.24a to         199.40a         1168.17           TANK8.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TANK1.C   |       |             |            |         | 298.500 |
| TANK2.P TANK 18.80a to 42.50a 172.666 TANK3.S TANK 42.50a to 65.50a 309.295 TANK3.S TANK 42.50a to 65.50a 309.295 TANK5.S TANK 42.50a to 65.50a 309.295 TANK5.S TANK 88.50a to 112.10a 385.975 TANK5.P TANK 88.50a to 112.10a 385.975 TANK5.P TANK 98.50a to 112.10a 385.975 TANK5.P TANK 98.50a to 112.10a 373.464 TANK7.S TANK 135.70a to 170.24a 378.919 TANK7.P TANK 135.70a to 170.24a 378.919 TANK7.P TANK 135.70a to 170.24a 1343.13 TANK7.P TANK 135.70a to 170.24a 1343.13 TANK7.P TANK 135.70a to 170.24a 1343.13 TANK7.P TANK 135.70a to 170.24a 1343.13 TANK8.S TANK 170.24a to 199.40a 472.232 TANK8.S TANK 170.24a to 199.40a 472.232 TANK8.P TANK 170.24a to 199.40a 1168.17 TANK81.S TANK 170.24a to 199.40a 1168.17 TANK81.S TANK 170.24a to 199.40a 1168.17 TANK10.S TANK 228.90a to 264.32a 20.209 TANK10.P TANK 228.90a to 264.32a 20.209 TANK10.P TANK 228.90a to 264.32a 20.209 TANK10.S TANK 228.90a to 264.32a 20.209 TANK10.S TANK 122.80a to 264.32a 997.696 TANK4.S TANK 122.80a to 264.32a 997.696 TANK4.S TANK 122.10a to 135.70a 837.379 TANK6.S TANK 122.10a to 135.70a 837.379 TANK6.S TANK 112.10a to 135.70a 86.364 TANK6.P TANK 122.10a to 135.70a 86.364 TANK6.P TANK 122.10a to 135.70a 86.364 TANK12.S TANK 122.10a to 135.70a 86.364 TANK12.S TANK 122.10a to 135.70a 86.364 TANK12.S TANK 122.10a to 135.70a 86.364 TANK6.P TANK 122.10a to 135.70a 86.364 TANK12.P TANK 122.10a to 135.70a 86.364 TANK12.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TANK91.P TANK 199.40a to 228.90a 1143.06 TAN | TANK2.S   |       |             |            |         |         |
| TANK3.S         TANK         42.50a to         65.50a         309.295           TANK3.P         TANK         42.50a to         65.50a         309.295           TANKS.S         TANK         88.50a to         11.10a         385.975           TANK5.P         TANK         88.50a to         112.10a         385.975           TANK5.C         TANK         98.50a to         112.10a         373.464           TANK7.S         TANK         135.70a to         170.24a         378.919           TANK7.P         TANK         135.70a to         170.24a         1343.13           TANK71.S         TANK         135.70a to         170.24a         1343.13           TANK71.P         TANK         135.70a to         170.24a         1343.13           TANK8.S         TANK         170.24a to         199.40a         472.232           TANK8.S.TANK         170.24a to         199.40a         472.232           TANK8.S.TANK         170.24a to         199.40a         1168.17           TANKBI.S.TANK         170.24a to         199.40a         1168.17           TANKBI.S.TANK         170.24a to         199.40a         126.31           TANKBI.S.TANK         170.24a to         199.40a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TANK2.P   |       |             |            |         |         |
| TANKS.P         TANK         42.50a to         65.50a         309.295           TANKS.S.         TANK         88.50a to         112.10a         385.975           TANKS.P         TANK         88.50a to         112.10a         385.975           TANKS.C         TANK         98.50a to         112.10a         373.464           TANK7.S         TANK         135.70a to         170.24a         378.919           TANK7I.S         TANK         135.70a to         170.24a         1343.13           TANK7I.F         TANK         135.70a to         170.24a         1343.13           TANK7I.F         TANK         135.70a to         170.24a         1343.13           TANKS.S         TANK         170.24a to         199.40a         170.232           TANK8.P         TANK         170.24a to         199.40a         176.232           TANK81.S         TANK         170.24a to         199.40a         1168.17           TANK81.P         TANK         170.24a to         199.40a         1168.17           TANK10.S         TANK         170.24a to         199.40a         1168.17           TANK10.S         TANK         228.90a to         264.32a         290.20.20           TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |       |             |            |         |         |
| TANKS.S         TANK         88.50a to         112.10a         385.975           TANKS.P.F         TANK         88.50a to         112.10a         385.975           TANKS.C         TANK         88.50a to         112.10a         385.975           TANK7.S         TANK         135.70a to         170.24a         378.919           TANK7.P.F         TANK         135.70a to         170.24a         1343.13           TANK7I.P.F         TANK         135.70a to         170.24a         1343.13           TANK7I.P.F         TANK         135.70a to         170.24a         1343.13           TANK8.S.F         TANK         170.24a to         199.40a         472.232           TANK8.P.F         TANK         170.24a to         199.40a         1168.17           TANKSI.P.F         TANK         228.90a to         264.32a         290.20           TANKIOL.S         TANK         228.90a to         264.32a         290.20      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |       |             |            |         |         |
| TANKS.P         TANK         88.50a to         112.10a         385.975           TANKS.C         TANK         98.50a to         112.10a         373.464           TANKT.S         TANK         135.70a to         170.24a         378.919           TANKT.P         TANK         135.70a to         170.24a         378.919           TANKTI.S         TANK         135.70a to         170.24a         1343.13           TANKRI.P         TANK         135.70a to         170.24a         1343.13           TANKS.S         TANK         170.24a to         199.40a         472.232           TANKS.P         TANK         170.24a to         199.40a         472.232           TANKSI.S         TANK         170.24a to         199.40a         1168.17           TANKIO.S         TANK         170.24a to         199.40a         1168.17           TANKIO.S         TANK         228.90a to         264.32a         290.20.20 <th< td=""><td>TANK5.S</td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TANK5.S   |       |             |            |         |         |
| TANKS.C         TANK         98.50a to         112.10a         373.464           TANK7.S         TANK         135.70a to         170.24a         378.919           TANK7.P         TANK         135.70a to         170.24a         1343.13           TANK7I.S         TANK         135.70a to         170.24a         1343.13           TANK7I.P         TANK         135.70a to         170.24a         1343.13           TANK8.S         TANK         170.24a to         199.40a         472.232           TANK8.P         TANK         170.24a to         199.40a         472.232           TANK8I.P         TANK         170.24a to         199.40a         1168.17           TANK8I.P         TANK         170.24a to         199.40a         1168.17           TANK8I.P         TANK         170.24a to         199.40a         1168.17           TANKIO.P         TANK         228.90a to         264.32a         220.209           TANK10.P         TANK         228.90a to         264.32a         297.696           TANK10.P         TANK         228.90a to         264.32a         297.696           TANK4.S         TANK         12.10a to         135.70a         837.379           T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK5.P   |       |             | 88.50a to  |         |         |
| TANK7.S         TANK         135.70a to         170.24a         378.919           TANK7.P         TANK         135.70a to         170.24a         378.919           TANK7I.S         TANK         135.70a to         170.24a         1343.13           TANK7I.P         TANK         135.70a to         170.24a         1343.13           TANKS.S         TANK         170.24a to         199.40a         472.232           TANKS.P         TANK         170.24a to         199.40a         472.232           TANKSI.S         TANK         170.24a to         199.40a         1168.17           TANKSI.P         TANK         170.24a to         199.40a         1168.17           TANKIO.S         TANK         170.24a to         199.40a         1168.17           TANKIO.P         TANK         228.90a to         264.32a         220.209           TANKIO.P         TANK         228.90a to         264.32a         290.696           TANKA.S         TANK         228.90a to         264.32a         297.696           TANKA.S         TANK         65.50a to         88.50a         440.828           TANKA.S         TANK         65.50a to         88.50a         440.828           TANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK5.C   |       |             |            |         |         |
| TANK7.P         TANK         135.70a to         170.24a         1343.13           TANK7I.F         TANK         135.70a to         170.24a         1343.13           TANK7I.F         TANK         135.70a to         170.24a         1343.13           TANKS.S         TANK         170.24a to         199.40a         472.232           TANKS.P         TANK         170.24a to         199.40a         1168.17           TANKSI.F         TANK         170.24a to         199.40a         1168.17           TANKSI.P         TANK         170.24a to         199.40a         1168.17           TANKIO.S         TANK         170.24a to         199.40a         1168.17           TANKIO.P         TANK         228.90a to         264.32a         220.209           TANKIO.P         TANK         228.90a to         264.32a         297.696           TANKIOI.S         TANK         228.90a to         264.32a         997.696           TANKA.S         TANK         65.50a to         88.50a         440.828           TANKA.S         TANK         12.10a to         135.70a         837.379           TANKA.S         TANK         112.10a to         135.70a         837.379           T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK7.S   |       |             |            |         |         |
| TANK7I.S         TANK         135.70a to         170.24a         1343.13           TANK7I.P         TANK         135.70a to         170.24a         1343.13           TANKS.S         TANK         170.24a to         199.40a         472.232           TANKS.P         TANK         170.24a to         199.40a         472.232           TANKSI.S         TANK         170.24a to         199.40a         1168.17           TANKSI.P         TANK         170.24a to         199.40a         1168.17           TANKSI.S         TANK         170.24a to         199.40a         1168.17           TANKIO.S         TANK         170.24a to         199.40a         1168.17           TANKIO.S         TANK         228.90a to         264.32a         220.209           TANKIOI.S         TANK         228.90a to         264.32a         297.696           TANKIOI.S         TANK         228.90a to         264.32a         997.696           TANKA.S         TANK         228.90a to         264.32a         997.696           TANKA.S         TANK         65.50a to         88.50a         440.828           TANKA.S         TANK         112.10a to         135.70a         837.379 <t< td=""><td>TANK7.P</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TANK7.P   |       |             |            |         |         |
| TANK7I.P         TANK         135.70a to         170.24a         1343.13           TANKS.S         TANK         170.24a to         199.40a         472.232           TANKS.P         TANK         170.24a to         199.40a         472.232           TANKSI.S         TANK         170.24a to         199.40a         1168.17           TANKSI.P         TANK         170.24a to         199.40a         1168.17           TANKIO.S         TANK         228.90a to         264.32a         220.209           TANKIO.S         TANK         228.90a to         264.32a         297.696           TANKIOI.P         TANK         228.90a to         264.32a         997.696           TANKA.S         TANK         228.90a to         264.32a         997.696           TANKA.S         TANK         65.50a to         88.50a         440.828           TANKA.S         TANK         65.50a to         88.50a         440.828           TANKA.S         TANK         112.10a to         135.70a         837.379           TANKGI.S         TANK         112.10a to         135.70a         837.379           TANKE.S         TANK         12.10a to         135.70a         86.364           TANKI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK7I.S  |       |             |            |         |         |
| TANKE.S         TANK         170.24a to         199.40a         472.232           TANKE.P         TANK         170.24a to         199.40a         472.232           TANKEI.S         TANK         170.24a to         199.40a         1168.17           TANKEI.P         TANK         170.24a to         199.40a         1168.17           TANKIO.S         TANK         228.90a to         264.32a         220.209           TANKIO.P         TANK         228.90a to         264.32a         297.696           TANKIOI.P         TANK         228.90a to         264.32a         997.696           TANKAUI.P         TANK         228.90a to         264.32a         997.696           TANKAUI.P         TANK         228.90a to         264.32a         997.696           TANKAUI.P         TANK         65.50a to         88.50a         440.828           TANKAUI.P         TANK         65.50a to         88.50a         440.828           TANKAUI.P         TANK         112.10a to         135.70a         837.379           TANKEI.P         TANK         112.10a to         135.70a         86.364           TANKII.C         TANK         122.10a to         135.70a         86.364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TANK7I.P  | TANK  |             | 135.70a to |         |         |
| TANK8.P         TANK         170.24a to         199.40a         472.232           TANKEI.S         TANK         170.24a to         199.40a         1168.17           TANKBI.P         TANK         170.24a to         199.40a         1168.17           TANKIO.S         TANK         228.90a to         264.32a         220.209           TANKIO.P         TANK         228.90a to         264.32a         297.696           TANKIOI.P         TANK         228.90a to         264.32a         997.696           TANKIOI.P         TANK         228.90a to         264.32a         997.696           TANKA.S         TANK         228.90a to         264.32a         997.696           TANKA.S         TANK         65.50a to         88.50a         440.828           TANK4.P         TANK         65.50a to         88.50a         440.828           TANK6I.P         TANK         112.10a to         135.70a         837.379           TANK6I.P         TANK         112.10a to         135.70a         86.364           TANK11.C         TANK         121.0a to         135.70a         86.364           TANK12.S         TANK         266.32a to         294.50a         1839.76           TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK8.S   | TANK  |             | 170.24a to |         | 472.232 |
| TANK8I.S         TANK         170.24a to         199.40a         1168.17           TANK8I.P         TANK         170.24a to         199.40a         1168.17           TANK10.S         TANK         2228.90a to         264.32a         220.209           TANK10.S         TANK         228.90a to         264.32a         290.209           TANK10.S         TANK         228.90a to         264.32a         997.696           TANK10.P         TANK         228.90a to         264.32a         997.696           TANK4.S         TANK         228.90a to         264.32a         997.696           TANK4.S         TANK         228.90a to         264.32a         997.696           TANK4.S         TANK         65.50a to         88.50a         440.828           TANK4.S         TANK         65.50a to         88.50a         440.828           TANK6I.S         TANK         112.10a to         135.70a         837.379           TANK6I.S         TANK         112.10a to         135.70a         86.364           TANK11.C         TANK         266.32a to         294.50a         424.105           TANK12.S         TANK         266.32a to         294.50a         1839.76           T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK8.P   | TANK  |             | 170.24a to |         | 472.232 |
| TANK8I.P         TANK         170.24a to         199.40a         1168.17           TANK10.S         TANK         228.90a to         264.32a         220.209           TANK10.P         TANK         228.90a to         264.32a         220.209           TANK10I.S         TANK         228.90a to         264.32a         997.696           TANK10I.P         TANK         228.90a to         264.32a         997.696           TANK4.S         TANK         65.50a to         88.50a         440.828           TANK4.P         TANK         65.50a to         88.50a         440.828           TANK6I.S         TANK         112.10a to         135.70a         837.379           TANK6.S         TANK         112.10a to         135.70a         86.364           TANK6.P         TANK         112.10a to         135.70a         86.364           TANK11.C         TANK         12.10a to         135.70a         86.364           TANK11.C         TANK         12.10a to         135.70a         86.364           TANK12.S         TANK         266.32a to         294.50a         1839.76           TANK12.P         TANK         266.32a to         294.50a         1839.76           TANK9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK8I.S  |       |             |            |         |         |
| TANK10.S         TANK         228.90a to         264.32a         220.209           TANK10.P         TANK         228.90a to         264.32a         220.209           TANK10I.S         TANK         228.90a to         264.32a         997.696           TANK10I.P         TANK         228.90a to         264.32a         997.696           TANK4.S         TANK         65.50a to         88.50a         440.828           TANK4.P         TANK         65.50a to         88.50a         440.828           TANK6.S         TANK         112.10a to         135.70a         837.379           TANK6.P         TANK         112.10a to         135.70a         86.364           TANK6.P         TANK         166.32a to         294.50a         424.105           TANK12.S         TANK         266.32a to         294.50a         424.105           TANK13.S         TANK         199.40a to         228.90a         1143.06           TANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK8I.P  | TANK  | •           | 170.24a to |         |         |
| TANK10.P         TANK         228.90a to         264.32a         220.209           TANK101.S         TANK         228.90a to         264.32a         997.696           TANK101.P         TANK         228.90a to         264.32a         997.696           TANK4.S         TANK         228.90a to         264.32a         997.696           TANK4.S         TANK         65.50a to         88.50a         440.828           TANK4.P         TANK         112.10a to         135.70a         837.379           TANK6I.P         TANK         112.10a to         135.70a         837.379           TANK6.S         TANK         112.10a to         135.70a         86.364           TANK6.P         TANK         112.10a to         135.70a         86.364           TANK11.C         TANK         112.10a to         135.70a         86.364           TANK12.S         TANK         266.32a to         294.50a         424.105           TANK12.S         TANK         266.32a to         294.50a         1839.76           TANK13.S         TANK         294.50a to         323.30a         1411.90           TANK91.S         TANK         199.40a to         228.90a         1143.06           T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK10.S  |       |             | 228.90a to |         |         |
| TANK10I.S         TANK         228.90a to         264.32a         997.696           TANK10I.P         TANK         228.90a to         264.32a         997.696           TANK4.S         TANK         65.50a to         88.50a         440.828           TANK4.P         TANK         65.50a to         88.50a         440.828           TANK6I.S         TANK         112.10a to         135.70a         837.379           TANK6.P         TANK         112.10a to         135.70a         86.364           TANK6.P         TANK         112.10a to         135.70a         86.364           TANK11.C         TANK         112.10a to         135.70a         86.364           TANK11.C         TANK         112.10a to         135.70a         86.364           TANK11.C         TANK         122.10a to         135.70a         86.364           TANK12.S         TANK         122.10a to         135.70a         86.364           TANK12.S         TANK         266.32a to         294.50a         424.105           TANK12.S         TANK         294.50a to         323.30a         1411.90           TANK3.S         TANK         199.40a to         228.90a         1143.06           TANK9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK10.P  |       |             | 228.90a to |         |         |
| TANK4.S         TANK         65.50a to         88.50a         440.828           TANK4.P         TANK         65.50a to         88.50a         440.828           TANK6I.S         TANK         112.10a to         135.70a         837.379           TANK6I.P         TANK         112.10a to         135.70a         86.364           TANK6.S         TANK         112.10a to         135.70a         86.364           TANK6.P         TANK         112.10a to         135.70a         86.364           TANK11.C         TANK         266.32a to         294.50a         424.105           TANK12.S         TANK         266.32a to         294.50a         424.105           TANK12.P         TANK         294.50a to         294.50a         1839.76           TANK13.S         TANK         199.40a to         228.90a         1143.06           TANK91.S         TANK         199.40a to         228.90a         1143.06           TANK9.S         TANK         199.40a to         228.90a         432.944           TANK9.S         TANK         199.40a to         228.90a         432.944           TANK13.P         TANK         294.50a to         323.30a         411.90           TANK15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK10I.S | TANK  |             | 228.90a to |         |         |
| TANK4.P         TANK         65.50a to         88.50a         440.828           TANK6I.S         TANK         112.10a to         135.70a         837.379           TANK6I.P         TANK         112.10a to         135.70a         837.379           TANK6.S         TANK         112.10a to         135.70a         86.364           TANK6.P         TANK         112.10a to         135.70a         86.364           TANK11.C         TANK         266.32a to         294.50a         424.105           TANK12.S         TANK         266.32a to         294.50a         1839.76           TANK12.P         TANK         266.32a to         294.50a         1839.76           TANK13.S         TANK         294.50a to         323.30a         1411.90           TANK91.S         TANK         199.40a to         228.90a         1143.06           TANK9.S         TANK         199.40a to         228.90a         432.944           TANK9.P         TANK         199.40a to         228.90a         432.944           TANK13.P         TANK         294.50a to         323.30a         1411.90           TANK15.S         TANK         294.50a to         323.30a         1411.90           TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK10I.P | TANK  |             | 228.90a to | 264.32a | 997.696 |
| TANK6I.S TANK 112.10a to 135.70a 837.379 TANK6I.P TANK 112.10a to 135.70a 837.379 TANK6.S TANK 112.10a to 135.70a 86.364 TANK6.P TANK 112.10a to 135.70a 86.364 TANK11.C TANK 1266.32a to 294.50a 424.105 TANK12.S TANK 266.32a to 294.50a 1839.76 TANK12.P TANK 266.32a to 294.50a 1839.76 TANK13.S TANK 294.50a to 323.30a 1411.90 TANK9I.S TANK 199.40a to 228.90a 1143.06 TANK9I.P TANK 199.40a to 228.90a 1143.06 TANK9.S TANK 199.40a to 228.90a 432.944 TANK9.P TANK 199.40a to 228.90a 432.944 TANK13.P TANK 294.50a to 323.30a 1411.90 TANK14.C TANK 67.50a to 74.60a 677.808 TANK15.S TANK 67.50a to 74.60a 677.808 TANK15.S TANK 74.70a to 81.80a 678.487 TANK15.P TANK 82.00a to 89.10a 678.487 TANK16.P TANK 82.00a to 89.10a 678.487 TANK16.P TANK 82.00a to 89.10a 678.487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TANK4.S   | TANK  |             | 65.50a to  | 88.50a  | 440.828 |
| TANK6I.P TANK 112.10a to 135.70a 837.379 TANK6.S TANK 112.10a to 135.70a 86.364 TANK6.P TANK 112.10a to 135.70a 86.364 TANK11.C TANK 266.32a to 294.50a 424.105 TANK12.S TANK 266.32a to 294.50a 1839.76 TANK12.P TANK 266.32a to 294.50a 1839.76 TANK13.S TANK 266.32a to 294.50a 1839.76 TANK9I.S TANK 199.40a to 228.90a 1143.06 TANK9I.P TANK 199.40a to 228.90a 1143.06 TANK9.S TANK 199.40a to 228.90a 432.944 TANK9.P TANK 199.40a to 228.90a 432.944 TANK13.P TANK 199.40a to 228.90a 432.944 TANK13.P TANK 199.40a to 228.90a 432.944 TANK13.P TANK 199.40a to 228.90a 432.944 TANK15.S TANK 67.50a to 74.60a 677.808 TANK15.S TANK 74.70a to 81.80a 678.487 TANK15.P TANK 82.00a to 89.10a 678.487 TANK16.P TANK 82.00a to 89.10a 678.487 TANK16.P TANK 82.00a to 89.10a 678.487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TANK4.P   | TANK  |             | 65.50a to  | 88.50a  | 440.828 |
| TANK6.S TANK TANK6.P TANK TANK11.C TANK TANK12.S TANK TANK12.P TANK TANK13.S TANK TANK91.P TANK TANK91.P TANK TANK91.P TANK TANK91.P TANK TANK9.S TANK TANK9.S TANK TANK9.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK13.P TANK TANK14.C TANK TANK15.S TANK TANK15.S TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK15.P TANK TANK16.P TANK TANK16.P TANK TANK16.P TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17.C TANK TANK17. | TANK6I.S  | TANK  |             | 112.10a to | 135.70a | 837.379 |
| TANK6.P       TANK       112.10a to       135.70a       86.364         TANK11.C       TANK       266.32a to       294.50a       424.105         TANK12.S       TANK       266.32a to       294.50a       1839.76         TANK12.P       TANK       266.32a to       294.50a       1839.76         TANK13.S       TANK       294.50a to       323.30a       1411.90         TANK91.S       TANK       199.40a to       228.90a       1143.06         TANK9.S       TANK       199.40a to       228.90a       432.944         TANK9.P       TANK       199.40a to       228.90a       432.944         TANK13.P       TANK       199.40a to       228.90a       432.944         TANK15.S       TANK       294.50a to       323.30a       1411.90         TANK15.S       TANK       67.50a to       74.60a       677.808         TANK15.P       TANK       74.70a to       81.80a       678.487         TANK16.S       TANK       82.00a to       89.10a       678.487         TANK16.P       TANK       74.80a to       89.00a       1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TANK6I.P  | TANK  |             | 112.10a to | 135.70a | 837.379 |
| TANK11.C       TANK       266.32a to       294.50a       424.105         TANK12.S       TANK       266.32a to       294.50a       1839.76         TANK12.P       TANK       266.32a to       294.50a       1839.76         TANK13.S       TANK       294.50a to       323.30a       1411.90         TANK91.S       TANK       199.40a to       228.90a       1143.06         TANK9.P       TANK       199.40a to       228.90a       432.944         TANK13.P       TANK       199.40a to       228.90a       432.944         TANK13.P       TANK       294.50a to       323.30a       1411.90         TANK14.C       TANK       67.50a to       74.60a       677.808         TANK15.S       TANK       74.70a to       81.80a       678.487         TANK16.S       TANK       82.00a to       89.10a       678.487         TANK16.P       TANK       82.00a to       89.10a       678.487         TANK17.C       TANK       74.80a to       89.00a       1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TANK6.S   | TANK  |             | 112.10a to | 135.70a | 86.364  |
| TANK12.STANK266.32a to294.50a1839.76TANK12.PTANK266.32a to294.50a1839.76TANK13.STANK294.50a to323.30a1411.90TANK9I.STANK199.40a to228.90a1143.06TANK9.PTANK199.40a to228.90a432.944TANK13.PTANK199.40a to228.90a432.944TANK13.PTANK294.50a to323.30a1411.90TANK14.CTANK67.50a to74.60a677.808TANK15.STANK74.70a to81.80a678.487TANK16.STANK82.00a to89.10a678.487TANK16.PTANK82.00a to89.10a678.487TANK17.CTANK82.00a to89.10a678.487TANK17.CTANK74.80a to89.00a1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TANK6.P   | TANK  |             | 112.10a to | 135.70a | 86.364  |
| TANK12.PTANK266.32a to294.50a1839.76TANK13.STANK294.50a to323.30a1411.90TANK9I.STANK199.40a to228.90a1143.06TANK9I.PTANK199.40a to228.90a432.944TANK9.PTANK199.40a to228.90a432.944TANK13.PTANK294.50a to323.30a1411.90TANK14.CTANK67.50a to74.60a677.808TANK15.STANK74.70a to81.80a678.487TANK15.PTANK74.70a to81.80a678.487TANK16.STANK82.00a to89.10a678.487TANK16.PTANK82.00a to89.10a678.487TANK17.CTANK74.80a to89.00a1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK11.C  | TANK  | •           | 266.32a to | 294.50a | 424.105 |
| TANK13.STANK294.50a to323.30a1411.90TANK9I.STANK199.40a to228.90a1143.06TANK9I.PTANK199.40a to228.90a432.944TANK9.STANK199.40a to228.90a432.944TANK9.PTANK199.40a to228.90a432.944TANK13.PTANK294.50a to323.30a1411.90TANK14.CTANK67.50a to74.60a677.808TANK15.STANK74.70a to81.80a678.487TANK15.PTANK74.70a to81.80a678.487TANK16.STANK82.00a to89.10a678.487TANK16.PTANK82.00a to89.10a678.487TANK17.CTANK74.80a to89.00a1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TANK12.S  | TANK  |             | 266.32a to | 294.50a | 1839.76 |
| TANK9I.STANK199.40a to228.90a1143.06TANK9I.PTANK199.40a to228.90a1143.06TANK9.STANK199.40a to228.90a432.944TANK9.PTANK199.40a to228.90a432.944TANK13.PTANK294.50a to323.30a1411.90TANK14.CTANK67.50a to74.60a677.808TANK15.STANK74.70a to81.80a678.487TANK15.PTANK74.70a to81.80a678.487TANK16.STANK82.00a to89.10a678.487TANK16.PTANK82.00a to89.10a678.487TANK17.CTANK74.80a to89.00a1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TANK12.P  | TANK  |             | 266.32a to | 294.50a | 1839.76 |
| TANK9I.PTANK199.40a to228.90a1143.06TANK9.STANK199.40a to228.90a432.944TANK9.PTANK199.40a to228.90a432.944TANK13.PTANK294.50a to323.30a1411.90TANK14.CTANK67.50a to74.60a677.808TANK15.STANK74.70a to81.80a678.487TANK15.PTANK74.70a to81.80a678.487TANK16.STANK82.00a to89.10a678.487TANK16.PTANK82.00a to89.10a678.487TANK17.CTANK74.80a to89.00a1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TANK13.S  | TANK  |             | 294.50a to | 323.30a | 1411.90 |
| TANK9.STANK199.40a to228.90a432.944TANK9.PTANK199.40a to228.90a432.944TANK13.PTANK294.50a to323.30a1411.90TANK14.CTANK67.50a to74.60a677.808TANK15.STANK74.70a to81.80a678.487TANK15.PTANK74.70a to81.80a678.487TANK16.STANK82.00a to89.10a678.487TANK16.PTANK82.00a to89.10a678.487TANK17.CTANK74.80a to89.00a1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TANK9I.S  | TANK  |             | 199.40a to | 228.90a | 1143.06 |
| TANK9.PTANK199.40a to228.90a432.944TANK13.PTANK294.50a to323.30a1411.90TANK14.CTANK67.50a to74.60a677.808TANK15.STANK74.70a to81.80a678.487TANK15.PTANK74.70a to81.80a678.487TANK16.STANK82.00a to89.10a678.487TANK16.PTANK82.00a to89.10a678.487TANK17.CTANK74.80a to89.00a1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TANK9I.P  | TANK  |             | 199.40a to | 228.90a | 1143.06 |
| TANK13.P       TANK       294.50a to       323.30a       1411.90         TANK14.C       TANK       67.50a to       74.60a       677.808         TANK15.S       TANK       74.70a to       81.80a       678.487         TANK15.P       TANK       74.70a to       81.80a       678.487         TANK16.S       TANK       82.00a to       89.10a       678.487         TANK16.P       TANK       82.00a to       89.10a       678.487         TANK17.C       TANK       74.80a to       89.00a       1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TANK9.S   | TANK  |             | 199.40a to | 228.90a | 432.944 |
| TANK14.C       TANK       67.50a to       74.60a       677.808         TANK15.S       TANK       74.70a to       81.80a       678.487         TANK15.P       TANK       74.70a to       81.80a       678.487         TANK16.S       TANK       82.00a to       89.10a       678.487         TANK16.P       TANK       82.00a to       89.10a       678.487         TANK17.C       TANK       74.80a to       89.00a       1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TANK9.P   | TANK  |             | 199.40a to | 228.90a | 432.944 |
| TANK15.S       TANK       74.70a to       81.80a       678.487         TANK15.P       TANK       74.70a to       81.80a       678.487         TANK16.S       TANK       82.00a to       89.10a       678.487         TANK16.P       TANK       82.00a to       89.10a       678.487         TANK17.C       TANK       74.80a to       89.00a       1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TANK13.P  | TANK  |             | 294.50a to | 323.30a | 1411.90 |
| TANK15.P         TANK         74.70a to         81.80a         678.487           TANK16.S         TANK         82.00a to         89.10a         678.487           TANK16.P         TANK         82.00a to         89.10a         678.487           TANK17.C         TANK         74.80a to         89.00a         1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TANK14.C  | TANK  |             | 67.50a to  | 74.60a  | 677.808 |
| TANK16.S       TANK       82.00a to       89.10a       678.487         TANK16.P       TANK       82.00a to       89.10a       678.487         TANK17.C       TANK       74.80a to       89.00a       1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TANK15.S  | TANK  |             | 74.70a to  | 81.80a  | 678.487 |
| TANK16.P TANK 82.00a to 89.10a 678.487 TANK17.C TANK 74.80a to 89.00a 1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TANK15.P  | TANK  |             | 74.70a to  | 81.80a  | 678.487 |
| TANK17.C TANK 74.80a to 89.00a 1302.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TANK16.S  | TANK  |             | 82.00a to  | 89.10a  | 678.487 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TANK16.P  | TANK  |             | 82.00a to  | 89.10a  | 678.487 |
| TANK18.C TANK 67.70a to 74.80a 543.529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TANK17.C  | TANK  |             | 74.80a to  | 89.00a  | 1302.49 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TANK18.C  | TANK  |             | 67.70a to  | 74.80a  | 543.529 |

Locations in Feet fwd/aft of the origin. Volumes in cubic Feet.

# **APPENDIX** N

ASSET PRINTED REPORTS

#### **SUMMARY**

ASSET is a family of interactive computer programs developed by Boeing Computer Services, for use in the exploratory and feasibility design phases of Navy surface ships. A distinct program exists for each of several ship types, including monohull surface combatants, small waterplane area twin hull (SWATH) ships, and hydrofoils. Each program features design synthesis capability, database management, and extensive input/output options including interactive graphics and use of either English or metric units.

CPCX was designed using the monohull surface combatant program.

ASSET works in a logical fashion. It starts with an initialization section, which is followed by the synthesis section (hull (and superstructure) design, resistance, machinery, weight and space). If convergence is not achieved, the synthesis section iterates upon itself until convergence is achieved. Synthesis is followed by the analysis section which includes: performance, hydrostatics, seakeeping, manning and cost.

Two ASSET design reports are contained in this appendix (N). The first is for the selected Navy version, the second is the selected Coast Guard version. While these printed reports describe the ship in fairly high detail, it should be noted that they represent a preliminary design, not a detailed design.

## NAVY VERSION ASSET PRINTED REPORT



ADVANCED SURFACE SHIP EVALUATION TOOL (ASSET)
MONOHULL SURFACE COMBATANT PROGRAM (MONOSC)
VERSION 3.3+ DATED OCTOBER 3, 1994

ASSET/MONOSC VERSION 3.3+ - HULL GEOM MODULE - 2/11/95 10.45.20.

PRINTED REPORT NO. 1 - HULL GEOMETRY SUMMARY

| HULL OFFSETS IND-GENERATE                   | MIN BEAM, FT          | 36.00 |
|---------------------------------------------|-----------------------|-------|
| HULL DIM IND-B+T                            | MAX BEAM, FT          | 51.00 |
| MARGIN LINE IND-CALC                        | HULL FLARE ANGLE, DEG | 7.00  |
| HULL STA IND-OPTIMUM<br>HULL BC IND-CONV DD | FORWARD BULWARK, FT   | 0.00  |

#### HULL PRINCIPAL DIMENSIONS (ON DWL)

| LBP, FT<br>LOA, FT<br>BEAM, FT<br>BEAM @ WEATHER DECK, FT<br>DRAFT, FT                              | 380.00<br>398.36<br>51.00<br>54.56<br>15.50 | MAX SECTION COEF WATERPLANE COEF                                           | 0.570<br>0.795<br>0.730<br>0.515<br>1.00 |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|
| DEPTH STA 0, FT<br>DEPTH STA 3, FT<br>DEPTH STA 10, FT<br>DEPTH STA 20, FT<br>FREEBOARD @ STA 3, FT | 37.60<br>34.42<br>30.00<br>30.76<br>18.92   | RAISED DECK HT, FT<br>RAISED DECK FWD LIM, STA<br>RAISED DECK AFT LIM, STA | 0.00                                     |
| STABILITY BEAM, FT                                                                                  | 50.23                                       | AREA BEAM, FT                                                              | 52.51                                    |

#### BARE HULL DATA ON LWL STABILITY DATA ON LWL

| LGTH ON WL, FT        | 380.00   | KB, FT               | 9.54   |
|-----------------------|----------|----------------------|--------|
| BEAM, FT              | 51.00    | BMT, FT              | 16.42  |
| DRAFT, FT             | 15.50    | KG, FT               | 19.74  |
| FREEBOARD @ STA 3, FT | 18.92    | FREE SURF COR, FT    | 0.10   |
| PRISMATIC COEF        | 0.570    | SERV LIFE KG ALW, FT | 0.50   |
| MAX SECTION COEF      | 0.795    |                      |        |
| WATERPLANE COEF       | 0.734    | GMT, FT              | 5.62   |
| WATERPLANE AREA, FT2  | 14229.80 | GML, FT              | 827.27 |
| WETTED SURFACE, FT2   | 19071.06 | GMT/B AVAIL          | 0.110  |
|                       |          | GMT/B REQ            | 0.100  |
| BARE HIRL DISPL. LTON | 3892.53  |                      |        |

BARE HULL DISPL, LTON 3892.53
APPENDAGE DISPL, LTON 87.58
FULL LOAD WT, LTON 3980.10

PRINTED REPORT NO. 2 - HULL OFFSETS

| STATION N | O. 1, AT X = - | -18.356 FT    | STATION NO. | 2, AT X =    | -9.178 FT     |
|-----------|----------------|---------------|-------------|--------------|---------------|
| POINT     | HALF BEAM, FT  | WATERLINE, FT | POINT H     | ALF BEAM, FT | WATERLINE, FT |
| 1         | 0.000          | 38.503        | 1           | 0.000        | 26.708        |
| 2         | 0.328          | 38.561        | 2           | 1.196        | 29.566        |
| 3         | 0.762          | 38.620        | 3           | 3.299        | 32.424        |
| 4         | 1.203          | 38.678        | 4           | 5.765        | 35.282        |
| 5         | 1.424          | 38.736        | 5           | 7.922        | 38.140        |

| STATION NO. | 3, AT $X =$   | 0.000 FT      |
|-------------|---------------|---------------|
| POINT       | HALF BEAM, FT | WATERLINE, FT |
| 1           | 0.128         | 15.503        |
| 2           | 1.445         | 21.018        |
| 3           | 3.869         | 26.534        |
| 4           | 6.994         | 32.049        |
| 5           | 10.413        | 37.564        |

| STATION NO POINT  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | HALF BEAM,FT 0.000 0.005 0.049 0.171 0.378 0.628 0.840 0.932 0.897 0.858 1.116 2.639 5.164 8.373 11.949 | 5.504 FT WATERLINE,FT 4.541 4.552 4.628 4.837 5.242 5.911 6.909 8.301 10.153 12.532 15.503 20.919 26.335 31.752 37.168 | STATION NO POINT  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | . 5, AT X = HALF BEAM,FT 0.000 0.018 0.099 0.243 0.443 0.670 0.878 1.038 1.181 1.448 2.123 3.821 6.430 9.704 13.397 | 13.009 FT WATERLINE,FT 0.000 0.016 0.124 0.419 0.992 1.938 3.349 5.318 7.938 11.302 15.503 20.823 26.142 31.461 36.781 |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                                       |                                                                                                         |                                                                                                                        |                                                       |                                                                                                                     |                                                                                                                        |
| STATION NO                                            | 6. 6, AT $X = 3$                                                                                        | 2.133 FT                                                                                                               | STATION                                               |                                                                                                                     | 51.257 FT                                                                                                              |
| POINT                                                 | HALF BEAM, FT                                                                                           | WATERLINE, FT                                                                                                          |                                                       | HALF BEAM, FT                                                                                                       | WATERLINE, FT                                                                                                          |
| 1                                                     | 0.753                                                                                                   | 0.000                                                                                                                  | 1                                                     | 1.000                                                                                                               | 0.000                                                                                                                  |
| 2                                                     | 0.779                                                                                                   | 0.016                                                                                                                  | 2                                                     | 1.039                                                                                                               | 0.016                                                                                                                  |
| 3<br>4                                                | 0.889                                                                                                   | 0.124                                                                                                                  | 3<br><b>4</b>                                         | 1.213<br>1.531                                                                                                      | 0.124                                                                                                                  |
| 5                                                     | 1.072<br>1.328                                                                                          | 0.419<br>0.992                                                                                                         | 5                                                     | 2.007                                                                                                               | 0.419<br>0.992                                                                                                         |
| 6                                                     | 1.654                                                                                                   | 1.938                                                                                                                  | 6                                                     | 2.652                                                                                                               | 1.938                                                                                                                  |
| 7                                                     | 2.052                                                                                                   | 3.349                                                                                                                  | 7                                                     | 3.463                                                                                                               | 3.349                                                                                                                  |
| 8                                                     | 2.534                                                                                                   | 5.318                                                                                                                  | 8                                                     | 4.434                                                                                                               | 5.318                                                                                                                  |
| 9                                                     | 3.146                                                                                                   | 7.938                                                                                                                  | 9                                                     | 5.570                                                                                                               | 7.938                                                                                                                  |
| 10                                                    | 3.987                                                                                                   | 11.302                                                                                                                 | 10                                                    | 6.907                                                                                                               | 11.302                                                                                                                 |
| 11                                                    | 5.226                                                                                                   | 15.503                                                                                                                 | 11                                                    | 8.517                                                                                                               | 15.503                                                                                                                 |
| 12                                                    | 7.269                                                                                                   | 20.552                                                                                                                 | 12                                                    | 10.681                                                                                                              | 20.303                                                                                                                 |
| 13                                                    | 10.023                                                                                                  | 25.602                                                                                                                 | 13                                                    | 13.425                                                                                                              | 25.103                                                                                                                 |
| 14                                                    | 13.364                                                                                                  | 30.651                                                                                                                 | 14                                                    | 16.647                                                                                                              | 29.904                                                                                                                 |
| 15                                                    | 17.163                                                                                                  | 35.700                                                                                                                 | 15                                                    | 20.243                                                                                                              | 34.704                                                                                                                 |
|                                                       |                                                                                                         |                                                                                                                        |                                                       |                                                                                                                     |                                                                                                                        |
| STATION NO                                            | ). 8, AT X = 70.381 F                                                                                   | r                                                                                                                      | STATION NO                                            | 9, AT X = 89.505 F                                                                                                  | т .                                                                                                                    |
|                                                       | LF BEAM,FT WATE                                                                                         |                                                                                                                        |                                                       | F BEAM,FT WAT                                                                                                       |                                                                                                                        |
| 1                                                     | 1.000                                                                                                   | 0.000                                                                                                                  | 1                                                     | 1.000                                                                                                               | 0.000                                                                                                                  |
| 2                                                     | 1.059                                                                                                   | 0.016                                                                                                                  | 2                                                     | 1.089                                                                                                               | 0.016                                                                                                                  |
| 3                                                     | 1.336                                                                                                   | 0.124                                                                                                                  | 3                                                     | 1.511                                                                                                               | 0.124                                                                                                                  |
| 4                                                     | 1.870                                                                                                   | 0.419                                                                                                                  | 4                                                     | 2.328                                                                                                               | 0.419                                                                                                                  |
| 5                                                     | 2.697                                                                                                   | 0.992                                                                                                                  | 5                                                     | 3.583                                                                                                               | 0.992                                                                                                                  |
| 6                                                     | 3.819                                                                                                   | 1.938                                                                                                                  | 6                                                     | 5.254                                                                                                               | 1.938                                                                                                                  |
| 7                                                     | 5.189                                                                                                   | 3.349                                                                                                                  | 7                                                     | 7.226                                                                                                               | 3.349                                                                                                                  |
| 8                                                     | 6.732                                                                                                   | 5.318                                                                                                                  | 8                                                     | 9.326                                                                                                               |                                                                                                                        |
| 9                                                     | 8.376                                                                                                   | 7.938                                                                                                                  | 9                                                     | 11.391                                                                                                              | 5.318<br>7.938                                                                                                         |
| 10                                                    | 10.085                                                                                                  | 11.302                                                                                                                 | 10                                                    | 13.324                                                                                                              | 11.302                                                                                                                 |
| 11                                                    | 11.871                                                                                                  | 15,503                                                                                                                 | 11                                                    | 15.116                                                                                                              | 15.503                                                                                                                 |
| 12                                                    | 13.971                                                                                                  | 20.075                                                                                                                 | 12                                                    | 17.016                                                                                                              | 19.868                                                                                                                 |
| 13                                                    | 16.563                                                                                                  |                                                                                                                        | 13                                                    | 19.338                                                                                                              | 24.233                                                                                                                 |
| 14                                                    | 19.514                                                                                                  | 24.647<br>29.219                                                                                                       | 14                                                    |                                                                                                                     |                                                                                                                        |
| 15                                                    |                                                                                                         |                                                                                                                        |                                                       | 21.912                                                                                                              | 28.599                                                                                                                 |
| 13                                                    | 22.692                                                                                                  | 33.792                                                                                                                 | 15                                                    | 24.567                                                                                                              | 32.964                                                                                                                 |

| CT ATION | N NO. 10, AT X = 108.629 l  | ना          | STATION NO. | 11, AT X = 127.753 FT |            |
|----------|-----------------------------|-------------|-------------|-----------------------|------------|
|          | HALF BEAM,FT WATE           | CRLINE,FT   | POINT HAL   | F BEAM, FT WATER      | LINE,FI    |
|          | 1.000                       | 0.000       | 1           | 1.000                 | 0.000      |
| 1        | 1.135                       | 0.016       | 2           | 1.198                 | 0.016      |
| 2 3      | 1.757                       | 0.124       | 3           | 2.074                 | 0.124      |
|          |                             | 0.419       | 4           | 3.637                 | 0.419      |
| 4        | 2.923<br>4.665              | 0.992       | 5           | 5.885                 | 0.992      |
| 5        |                             | 1.938       | 6           | 8.694                 | 1.938      |
| 6        | 6.918                       | 3.349       | 7           | 11.772                | 3.349      |
| 7        | 9.479                       | 5.318       | 8           | 14.737                | 5.318      |
| 8        | 12.066                      | 7.938       | 9           | 17.259                | 7.938      |
| 9        | 14.427                      | 11.302      | 10          | 19.190                | 11.302     |
| 10       | 16.424                      | 15.503      | 11          | 20.621                | 15.503     |
| 11       | 18.079                      | 19.682      | 12          | 21.929                | 19.518     |
| 12       | 19.698                      | 23.862      | 13          | 23.526                | 23.532     |
| 13       | 21.674                      |             | 14          | 25.219                | 27.547     |
| 14       | 23.814                      | 28.041      | 15          | 26.816                | 31.561     |
| 15       | 25.923                      | 32.220      | 15          | 201024                |            |
|          | 146.070                     | T~T         | STATION     | NO. 13, AT X = 166.00 | 2 FT       |
|          | N NO. 12, AT X = 146.878    | FI OD DE CT | POINT F     | IALF BEAM,FT WAT      | TERLINE,FT |
|          |                             | ERLINE,FT   | 1           | 1.000                 | 0.000      |
| 1        | 1.000                       | 0.000       | 2           | 1.304                 | 0.016      |
| 2        | 1.264                       | 0.016       | 3           | 2.604                 | 0.124      |
| 3        | 2.397                       | 0.124       | 4           | 4.828                 | 0.419      |
| 4        | 4.346                       | 0.419       | 5           | 7.903                 | 0.992      |
| 5        | 7.060                       | 0.992       |             | 11.598                | 1.938      |
| 6        | 10.356                      | 1.938       | 6           | 15.457                | 3.349      |
| 7        | 13.859                      | 3.349       | 7           | 18.922                | 5.318      |
| 8        | 17.098                      | 5.318       | 8           | 21.546                | 7.938      |
| 9        | 19.685                      | 7.938       | 9           | 23.193                | 11.302     |
| 10       | 21.477                      | 11.302      | 10          | 24.141                | 15.503     |
| 11       | 22.653                      | 15.503      | 11          | 24.141                | 19.251     |
| 12       | 23.661                      | 19.374      | 12.         |                       | 23.000     |
| 13       | 24.883                      | 23.245      | 13          | 25.764                | 26.748     |
| 14       | 26.153                      | 27.116      | 14          | 26.653                | 30,496     |
| 15       | 27.303                      | 30.987      | 15          | 27.440                | 30.490     |
|          |                             |             | cm + TT O); | NO. 15, AT X = 204.25 | O FT       |
| STATIC   | ON NO. 14, AT $X = 185.126$ | FT          | STATION     | HALF BEAM,FT WA       | TERLINE,FT |
| POINT    | HALF BEAM, FT WAT           | ERLINE,FT   |             | 1.000                 | 0.000      |
| 1        | 1.000                       | 0.000       | 1           |                       | 0.016      |
| 2        | 1.310                       | 0.016       | 2           | 1.309                 | 0.124      |
| 3        | 2.654                       | 0.124       | 3           | 2.645                 | 0.419      |
| 4        | 4.990                       | 0.419       | 4           | 4.961                 | 0.992      |
| 5        | 8.257                       | 0.992       | 5           | 8.200                 | 1.938      |
| 6        | 12.202                      | 1.938       | 6           | 12.130                | 3.349      |
| 7        | 16.317                      | 3.349       | 7           | 16.270                | 5.318      |
| 8        | 19.974                      | 5.318       | 8           | 20.019                |            |
| 9        | 22.674                      | 7.938       | 9           | 22.879                | 7.938      |
| 10       | 24.272                      | 11.302      | 10          | 24.656                | 11.302     |
| 11       | 25.097                      | 15.503      | 11          | 25.569                | 15.503     |
| 12       | 25.667                      | 19.150      | 12          | 26.064                | 19.069     |
| 13       | 26.285                      | 22.797      | 13          | 26.539                | 22.636     |
| 14       | 26.895                      | 26.443      | 14          | 26.996                | 26.202     |
| 15       | 27.440                      | 30.090      | 15          | 27.440                | 29.768     |
| 12       | 2                           |             |             |                       |            |

| STATION | NO. 16, AT X = 22   | 26.219 FT    | STATIO  | N NO. 17, AT X = 24 | 48 188 FT    |
|---------|---------------------|--------------|---------|---------------------|--------------|
|         | HALF BEAM, FT       |              |         | HALF BEAM, FT       |              |
| 1       | 1.000               | 0.258        | 1       | 1.000               | 1.084        |
| 2       | 1.259               | 0.273        | 2       | 1.160               | 1.099        |
| 3       |                     |              |         |                     |              |
| 4       | 2.417               | 0.380        | 3       | 1.990               | 1.200        |
|         | 4.514               | 0.670        | 4       | 3.746               | 1.474        |
| 5       | 7.554               | 1.234        | 5       | 6.556               | 2.007        |
| 6       | 11.352              | 2.164        | 6       | 10.280              | 2.887        |
| 7       | 15.473              | 3.551        | 7       | 14.467              | 4.199        |
| 8       | 19.340              | 5.487        | 8       | 18.488              | 6.030        |
| 9       | 22.442              | 8.063        | 9       | 21.769              | 8.467        |
| 10      | 24.509              | 11.372       | 10      | 23.994              | 11.596       |
| 11      | 25.604              | 15.503       | 11      | 25.196              | 15.503       |
| 12      | 26.115              | 19.003       | 12      | 25.815              | 18.964       |
| 13      | 26.574              | 22.503       | 13      | 26.403              | 22.426       |
| 14      | 27.007              | 26.003       | 14      | 26.949              | 25.887       |
| 15      | 27.440              | 29.503       | 15      |                     |              |
| 13      | 27.440              | 29.303       | 13      | 27.440              | 29.348       |
| STATION | NO. 18, AT $X = 27$ | 0.156 FT     | STATION | NO. 19, AT $X = 29$ | 2.125 FT     |
| POINT   | HALF BEAM,FT        | WATERLINE,FT | POINT   | HALF BEAM,FT        | WATERLINE,FT |
| 1       | 1.000               | 2.507        | 1       | 1.000               | 4,469        |
| 2       | 1.101               | 2.520        | 2       | 1.069               | 4.480        |
| 3       | 1.721               | 2.611        | 3       | 1.558               | 4.558        |
| 4       | 3.218               | 2.858        | 4       | 2.850               | 4.767        |
| 5       | 5.784               | 3.339        | 5       | 5.159               | 5.176        |
| 6       | 9.317               | 4.132        | 6       |                     |              |
| 7       |                     |              | 7       | 8.421               | 5.849        |
|         | 13.395              | 5.314        |         | 12.268              | 6.853        |
| 8       | 17.402              | 6.965        | 8       | 16.140              | 8.254        |
| 9       | 20.758              | 9.161        | 9       | 19.486              | 10.119       |
| 10      | 23.111              | 11.981       | 10      | 21.925              | 12.513       |
| 11      | 24.423              | 15.503       | 11      | 23.318              | 15.503       |
| 12      | 25.221              | 18.954       | 12      | 24.307              | 18.971       |
| 13      | 26.042              | 22.404       | 13      | 25.340              | 22.438       |
| 14      | 26.798              | 25.855       | 14      | 26.280              | 25.906       |
| 15      | 27.400              | 29.306       | 15      | 26.988              | 29.374       |
| STATIO  | N NO. 20, AT X = 3  | 14 094 FT    | OTATION | NO. 21, AT X = 33   | 36 063 FT    |
| POINT   | HALF BEAM,FT        | WATERLINEFT  |         | HALF BEAM,FT        |              |
| 1       | 1.000               | 6.831        | 1       | 1.000               | 9.396        |
| 2       | 1.050               | 6.840        | 2       | 1.037               | 9.402        |
| 3       | 1.445               | 6.900        | 3       |                     |              |
| 4       | 2.555               |              |         | 1.358               | 9.444        |
| 5       |                     | 7.065        | 4       | 2.292               | 9.560        |
|         | 4.594               | 7.386        | 5       | 4.043               | 9.786        |
| 6       | 7.531               | 7.915        | 6       | 6.612               | 10.159       |
| 7       | 11.067              | 8.704        | 7       | 9. <i>7</i> 78      | 10.715       |
| 8       | 14.722              | 9.806        | 8       | 13.148              | 11.490       |
| 9       | 17.988              | 11.271       | 9       | 16.269              | 12.523       |
| 10      | 20.460              | 13.153       | 10      | 18.708              | 13.848       |
| 11      | 21.874              | 15.503       | 11      | 20.069              | 15.503       |
| 12      | 23.062              | 19.016       | 12      | 21.475              | 19.088       |
| 13      | 24.281              | 22.528       | 13      | 22.880              | 22.674       |
| 14      | 25.373              | 26.041       | 14      | 24.121              | 26.259       |
| 15      | 26.179              | 29.553       | 15      | 25.033              | 29.844       |
|         | 20.117              | 27.333       | 1.7     | 20.000              | 23.044       |

| STATION NO. 22, |          |               |       | NO. 23, AT X = |        |
|-----------------|----------|---------------|-------|----------------|--------|
| POINT HALF      | BEAM, FT | WATERLINE, FT | POINT | HALF BEAM, FT  |        |
| 1               | 1.000    | 11.952        | 1     | 1.000          | 14.315 |
| 2               | 1.028    | 11.956        | 2     | 1.024          | 14.317 |
| 3               | 1.284    | 11.981        | 3     | 1.231          | 14.325 |
| 4               | 2.046    | 12.048        | 4     | 1.833          | 14.347 |
| 5               | 3.496    | 12.180        | 5     | 2.987          | 14.391 |
| 6               | 5.667    | 12.396        | 6     | 4.752          | 14.464 |
| 7               | 8.415    | 12.719        | 7     | 7.066          | 14.572 |
| 8               | 11.444   | 13.170        | 8     | 9.727          | 14.723 |
| 9               | 14.359   | 13.770        | 9     | 12.401         | 14.924 |
| 10              | 16.700   | 14.541        | 10    | 14.601         | 15.181 |
|                 | 17.931   | 15,503        | 11    | 15.646         | 15.503 |
|                 | 19.580   | 19,189        | 12    | 17.541         | 19.317 |
|                 | 21.183   | 22.875        | 13    | 19.309         | 23.132 |
|                 | 22.580   | 26.561        | 14    | 20.827         | 26.946 |
| 15              | 23,610   | 30.247        | 15    | 21.968         | 30.760 |

PRINTED REPORT NO. 3 - HULL BOUNDARY CONDITIONS

| HULL OFFSETS IND-GENERATE<br>HULL BC IND-CONV DD                            |                                  | HULL STA IND-OPTIMUM                                   |                                           |
|-----------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------|-------------------------------------------|
| LBP, FT BEAM, FT DRAFT, FT DEPTH STA 0, FT DEPTH STA 3, FT DEPTH STA 10, FT | 51.00<br>15.50<br>37.60<br>34.42 | FWD RAISED DECK LIMIT                                  | 0.515<br>0.571<br>1.00<br>0.00            |
| DEPTH STA 20, FT<br>PRISMATIC COEF<br>MAX SECTION COEF                      | 30.76<br>0.570                   | RAISED DECK HT, FT                                     | 0.00<br>0.730                             |
| NO POINTS ABOVE DWL<br>POINT DIST FAC ABOVE DWL<br>POINT DIST FAC BELOW DWL | 4.<br>3.000<br>1.000<br>0.049    | BOW ANGLE, DEG<br>BOW SHAPE FAC<br>STA 20 SECTION COEF | 0.034<br>0.538<br>50.00<br>0.000<br>0.700 |

#### SECTIONAL AREA AND DWL CURVES

|                    |        | ======= |
|--------------------|--------|---------|
|                    | AREA   | DWL     |
|                    |        |         |
| STA 0 ORDINATE     | 0.000  | 0.005   |
| STA 0 SLOPE        | -0.833 | -1.117  |
| STA 20 ORDINATE    | 0.041  | 0.610   |
| STA 20 SLOPE       | 0.722  | 0.751   |
| PARALLEL MID LGTH  | 0.000  | 0.000   |
| STA MAX ORDINATE   | 10.500 | 11.400  |
| STA MAX AREA SLOPE | 0.000  | 0.000   |
| TENSOR NO 1        | 0.000  | 0.000   |
| TENSOR NO 2        | 0.000  | 0.000   |
| TENSOR NO 3        | 0.000  | 0.000   |
| TENSOR NO 4        | 0.000  | 0.000   |
| TENSOR/POLY SWITCH | -1.000 | -1.000  |

| DECK AT EDGE CURVE  |        | FLAT OF BOTTOM CURVE     |        |
|---------------------|--------|--------------------------|--------|
|                     |        |                          |        |
| STATION 0 OFFSET    | 0.406  | STA OF TRANS START       | 10.000 |
| STA 0 SLOPE         | -1.800 | SLOPE-STA OF TRANS START | 0.000  |
| STA 10 OFFSET       | 1.070  | STA OF START OF MID      | 10.000 |
| STA 10 SLOPE        | 0.000  | STA OF END OF MID        | 10.000 |
| STATION 20 OFFSET   | 0.856  | STA OF TRANS END         | 10.000 |
| STA 20 SLOPE        | 0.584  | SLOPE-STA OF TRANS END   | 0.000  |
| PARALLEL MID LGTH   | 0.254  | FLAT OF BOT ANGLE, DEG   | 0.050  |
| STA OF PARALLEL MID | 11.205 | ELLIPSE RATIO            | 1.000  |

#### SLOPES AT SECTION CURVES

|                      | BOT     | DWL    | DAE    |
|----------------------|---------|--------|--------|
|                      |         |        |        |
| STA 0 ORDINATE, DEG  | 44.437  | 83.500 | 58.107 |
| STA 0 SLOPE          | 126.543 | 96.943 | 68.339 |
| STA 10 ORDINATE, DEG | 2.351   | 82.000 | 83.000 |
| STA 10 SLOPE         | -0.500  | 0.000  | 0.000  |
| STA 20 ORDINATE, DEG | 3.000   | 63.333 | 76.556 |
| STA 20 SLOPE         | 60.000  | 25.000 | 11.667 |
| PARALLEL MID LGTH    | 0.060   | 0.000  | 0.000  |
| STA OF PARALLEL MID  | 10.500  | 10.252 | 10.500 |

PRINTED REPORT NO. 4 - MARGIN LINE

MARGIN LINE IND-CALC
MIN FREEBOARD MARGIN, FT 0.25

| DIST FROM FP<br>FT | HT ABOVE BL<br>FT | PRINTED REPORT NO. 5 - HULL SECTIONAL AREA CURVE |
|--------------------|-------------------|--------------------------------------------------|
| -18.36             | 38.49             |                                                  |
| -9.18              | 37.89             | STATION LOCATION, FT AREA, FT2                   |
| 0.00               | 37.31             | 1 -18.36 0.00                                    |
| 6.50               | 36.92             | 2 -9.18 0.00                                     |
| 13.01              | 36.53             | 3 0.00 0.00                                      |
| 32.13              | 35.45             | 4 6.50 18.18                                     |
| 51.26              | 34.45             | 5 13.01 36.89                                    |
| 70.38              | 33.54             | 6 32.13 96.67                                    |
| 89.51              | 32.71             | 7 51.26 164.94                                   |
| 108.63             | 31.97             | 8 70.38 240.98                                   |
| 127.75             | 31.31             | 9 89.51 321.80                                   |
| 146.88             | 30.74             | 10 108.63 402.87                                 |
| 166.00             | 30.25             | 11 127.75 478.80                                 |
| 185.13             | 29.84             | 12 146.88 543.96                                 |
| 204.25             | 29.52             | 13 166.00 593.18                                 |
| 226.22             | 29.25             | 14 185.13 622.22                                 |
| 248.19             | 29.10             | 15 204.25 628.21                                 |
| 270.16             | 29.06             | 16 226.22 605.33                                 |
| 292.13             | 29.12             | 17 248.19 552.18                                 |
| 314.09             | 29.30             | 18 270.16 473.62                                 |
| 336.06             | 29.59             | 19 292.13 377.59                                 |
| 358.03             | 30.00             | 20 314.09 274.32                                 |
| 380.00             | 30.51             | 21 336.06 175.00                                 |
|                    |                   | 22 358.03 89.92                                  |
|                    |                   | 23 380.00 26.03                                  |

ASSET/MONOSC VERSION 3.3+ - HULL SUBDIV MODULE - 2/11/95 10.45.50.

PRINTED REPORT NO. 1 - SUMMARY

HULL SUBDIV IND-CALC SHAFT SUPPORT TYPE IND-POD INNER BOT IND-PRESENT

| LBP, FT              | 380.00  | HULL AVG DECK HT, FT | 10.57 |
|----------------------|---------|----------------------|-------|
| DEPTH STA 10, FT     | 30.00   |                      |       |
|                      |         | NO INTERNAL DECKS    | 2     |
| HULL VOLUME, FT3     | 388003. | NO TRANS BHDS        | 13    |
| MR VOLUME, FT3       | 49678.  | NO LONG BHDS         | 0     |
| TANKAGE VOL REQ, FT3 | 22382.  | NO MACHY RMS         | 2     |
| EXCESS TANKAGE, FT3  | 7813.   | NO PROP SHAFTS       | 2     |

ARR AREA LOST TANKS, FT2 32.2 HULL ARR AREA AVAIL, FT2 29486.0 32.2

PRINTED REPORT NO. 2 - TRANSVERSE BULKHEADS

HULL SUBDIV IND-CALC NO TRANS BHDS 0.077 TRANS BHD SPACING(/LBP)

| BULKHEAD<br>NO | DISTANCE<br>FROM FP,FT | DISTANCE<br>FROM FP/LBP | MR FWD<br>BHD LOC |
|----------------|------------------------|-------------------------|-------------------|
| 1              | 19.00                  | 0.050                   |                   |
| 2              | 42.49                  | 0.112                   |                   |
| 3              | 65.98                  | 0.174                   |                   |
| 4              | 89.47                  | 0.235                   |                   |
| 5              | 112.96                 | 0.297                   |                   |
| 6              | 136.45                 | 0.359                   | MMR               |
| 7              | 171.97                 | 0.453                   |                   |
| 8              | 201.23                 | 0.530                   |                   |
| 9              | 230.49                 | 0.607                   | MMR               |
| 10             | 266.00                 | 0.700                   |                   |
| 11             | 294.50                 | 0.775                   |                   |
| 12             | 323.00                 | 0.850                   |                   |
| 13             | 351.50                 | 0.925                   |                   |

PRINTED REPORT NO. 3 - LONGITUDINAL BULKHEADS

45118.

311791.

NO LONG BHDS

IB

HOLD TOTAL 4225.1

29486.0

PRINTED REPORT NO. 4 - INTERNAL DECKS AND INNER BOTTOM

INNER BOT IND-PRESENT HULL SUBDIV IND-CALC ----- INNER BOTTOM -----NO INTERNAL DECKS DEPTH STA 10, FT HULL AVG DECK HT, FT 30.00 CVK HT, FT HORZ OFFSET HT, FT 10.57 HORZ OFFSET, FT FLAT FWD LOC, FT RAISED DECK HT, FT 0.00 19.00 FLAT AFT LOC, FT OFFSET FWD LOC, FT OFFSET AFT LOC, FT 292.42 INT DIST FROM DECK DECK BL AT SHEER NO .5 LBP,FT FRAC ==== \_\_\_\_ 1 20.00 1.0 2 12.25 0.0 4.50 ARR AREA INT AVL ARR AVL ARR USABLE VOIDS DECK AREA VOL TANKAGE LOST TO FT3 FT3 FT3 TANKS, FT2 0. \_\_\_\_ ====== \_\_\_\_ 1 15905.2 174346. 0. 0.0 606. 245. 2 9355.7 92327. 309. 0.0 0. 56.

29344.

30195.

366.

32.2

32.2

PRINTED REPORT NO. 5 - LARGE OBJECT SPACES

SHAFT SUPPORT TYPE IND-POD

FOREPEAK VOID VOL, FT3 366.
FOREPEAK TANKAGE, FT3 731.
CHAIN LOCKER VOL, FT3 1097.
SEWAGE VOL REQ, FT3 245.
SHAFT ALLEY VOL, FT3 0.
ADDED STEER GEAR VOL, FT3 4895.
MR AFT BHD POS, FT 266.00
INNER BOT VOL, FT3 17508.

| MR  |      | FWD<br>BHD | UPR<br>DECK | LGTH<br>AVL | LGTH<br>ROD | HT<br>AVL | HT<br>ROD | MR<br>VOL | INNER<br>BOT VOL |
|-----|------|------------|-------------|-------------|-------------|-----------|-----------|-----------|------------------|
| LIL |      | מחם        | DECK        | WAT         | RQD         | AVL       | RQD       | VOL       | DOI VOL          |
| NO  | TYPE | ID         | ID          | FT          | FT          | FT        | FT        | FT3       | FT3              |
| === | ==== | ===        | ====        |             | =====       | =====     |           | ======    |                  |
| 1   | MMR  | 6          | 1           | 35.51       | 35.51       | 20.00     | 19.63     | 25422.    | 3505.            |
| 2   | MMR  | 9          | 1           | 35.51       | 35.51       | 20.00     | 19.63     | 24255.    | 2233.            |
|     |      |            |             |             |             |           |           | ~~~~~~    | ~~~~             |
|     |      |            |             |             |             |           | TOTAL     | 49678.    | 5738.            |

PRINTED REPORT NO. 6 - HULL COMPARTMENT

ARRANGEABLE AREA

NUMBER OF INTERNAL DECKS - 2 NUMBER OF TRANSVERSE BULKHEADS - 13 INNER BOTTOM INDICATOR - PRESENT

AREAS FOR EACH HULL COMPARTMENT:

| DECK HT, | FT ABL | 20.0   | 12.3   | 4.5    |
|----------|--------|--------|--------|--------|
| COMP 1,  | FT2    | 284.0  |        |        |
|          | FT2    | 462.3  | 190.9  | 105.6  |
| COMP 3,  | FT2    | 640.1  | 365.9  | 205.3  |
| COMP 4,  | FT2    | 800.9  | 553.2  | 330.0  |
| COMP 5,  | FT2    | 940.1  | 737.6  | 473.7  |
| COMP 6,  | FT2    | 1052.9 | 900.6  | 620.5  |
| COMP 7,  | FT2    | 1741.9 | MMR    | MMR    |
|          | FT2    | 1511.4 | 1437.5 | 1086.4 |
| COMP 9,  | FT2    | 1532.5 | 1460.3 | 1060.0 |
| COMP 10, | FT2    | 1836.3 | MMR    | MMR    |
| COMP 11, | FT2    | 1420.2 | 1287.4 | 375.9  |
| COMP 12, | FT2    | 1341.7 | 1140.7 |        |
| COMP 13, | FT2    | 1234.6 | 845.7  |        |
| COMP 14, | FT2    | 1106.3 | 435.7  |        |

ASSET/MONOSC VERSION 3.3+ - DECKHOUSE MODULE - 2/11/95 10.46.02.

\*\* WARNING - DECKHOUSE MODULE \*\* (W-DKHSAUTOXLIMIT-DKSCOM)
DECKHOUSE DIMENSIONS HAVE REACHED MAXIMUM ALLOWABLE LIMITS FOR "AUTO X"
DECKHOUSE SIZING MODE. FOR A TOTAL SHIP AREA BALANCE, THE ADDITIONAL
AMOUNT OF DECKHOUSE ARRANGEABLE AREA REQUIRED IS 1222.5 FT2.

PRINTED REPORT NO. 1 - DECKHOUSE SUMMARY

| DKHS GEOM IND-GENERATE DKHS SIZE IND-AUTO X DKHS MTRL TYPE IND-HTS                                                                                                       | BLAST RESIST IND-7 PSI<br>FIRE PROTECT IND-NONE                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| LBP, FT 380.00 BEAM, FT 51.00 AREA BEAM, FT 52.51                                                                                                                        | DRHS LENGTH OA, FT 200.37 DRHS MAX WIDTH, FT 54.93 DRHS HT (W/O PLTHS), FT 42.50       |
| DKHS FWD LIMIT- STA 4.0 DKHS AFT LIMIT- STA 14.5 DKHS AVG DECK HT, FT 9.84 DKHS NO LVLS 2 DKHS AVG SIDE CLR, FT .00 DKHS AVG SIDE ANG, DEG 10.00                         | HULL ARR AREA AVAIL, FT2 29486.04 DKHS ARR AREA REO. FT2 4850.58                       |
| DKHS NO PRISMS  DKHS ARR AREA DERIV, FT2  DKHS MIN ALW BEAM, FT  BRIDGE L-O-S OVER BOW, FT  DKHS SIDE CLR OFFSET, FT  DKHS SIDE ANG OFFSET, DEG  DKHS DECK HT OFFSET. FT | DKHS ARR AREA AVAIL, FT2 10911.68 DKHS VOLUME, FT3 110685.53  DKHS WEIGHT, LTON 212.74 |

PRINTED REPORT NO. 2 - SUPERSTRUCTURE DECKHOUSES

| NO OF SS DECKHOUSE BLKS<br>DKHS VOLUME, FT3<br>DKHS ARR AREA AVAIL, FT2                                                                                                                                       | 20<br>110686.<br>10911.7                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                               | DECKHOUSE NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DIST FROM BOW, FT<br>LENGTH, FT<br>DIST FROM CL, FT                                                                                                                                                           | 1 2 3 4 5<br>76.00 86.55 97.09 107.64 118.18<br>10.55 10.55 10.55 10.55                                                                                                                                                                                                                                                                                                                                                                                 |
| FWD/PORT/BTM AFT/PORT/BTM FWD/STBD/BTM AFT/STBD/BTM FWD/PORT/TOP AFT/PORT/TOP FWD/STBD/TOP                                                                                                                    | -23.30     -24.31     -25.16     -25.86     -26.43       -24.31     -25.16     -25.86     -26.43     -26.85       23.30     24.31     25.16     25.86     26.43       24.31     25.16     25.86     26.43     26.85       -21.57     -22.58     -23.42     -24.13     -24.69       -22.58     -23.42     -24.13     -24.69     -25.11       21.57     22.58     23.42     24.13     24.69     25.11       22.58     23.42     24.13     24.69     25.11 |
| AFT/STBD/TOP DIST ABV BASELINE FWD, FT DIST ABV BASELINE AFT, FT HEIGHT, FT VOLUME, FT3 ARR AREA, FT2                                                                                                         | 33.54     33.09     32.66     32.26     31.88       33.09     32.66     32.26     31.88     31.53       9.84     9.84     9.84     9.84     9.84       4873.     5064.     5221.     5348.     5445.       474.4     493.6     509.6     522.7     532.9                                                                                                                                                                                                |
| DIST FROM BOW, FT                                                                                                                                                                                             | DECKHOUSE NUMBER 6 7 8 9 10 128.73 139.28 149.82 160.37 170.91                                                                                                                                                                                                                                                                                                                                                                                          |
| LENGTH, FT<br>DIST FROM CL, FT                                                                                                                                                                                | 10.55 10.55 10.55 10.55 10.55                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FWD/PORT/BTM AFT/PORT/BTM FWD/STBD/BTM AFT/STBD/BTM FWD/PORT/TOP AFT/PORT/TOP                                                                                                                                 | -26.85     -27.15     -27.35     -27.44     -27.44       -27.15     -27.35     -27.44     -27.44     -27.44       26.85     27.15     27.35     27.44     27.44       27.15     27.35     27.44     27.44     27.44       -25.11     -25.42     -25.61     -25.70     -25.70       -25.42     -25.61     -25.70     -25.70     -25.70                                                                                                                   |
| FWD/STBD/TOP<br>AFT/STBD/TOP<br>DIST ABV BASELINE FWD, FT<br>DIST ABV BASELINE AFT, FT<br>HEIGHT, FT<br>VOLUME, FT3                                                                                           | 25.11 25.42 25.61 25.70 25.70 25.70 25.42 25.61 25.70 25.70 25.70 31.53 31.20 30.91 30.63 30.38 30.16 9.84 9.84 9.84 9.84 9.84 5515. 5560. 5583. 5585. 5579.                                                                                                                                                                                                                                                                                            |
| ARR AREA, FT2                                                                                                                                                                                                 | 540.4 545.5 548.5 549.4 549.5                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DIST FROM BOW, FT<br>LENGTH, FT<br>DIST FROM CL, FT                                                                                                                                                           | DECKHOUSE NUMBER 11 12 13 14 15 181.46 192.01 202.55 213.10 223.64 10.55 10.55 10.55 10.55                                                                                                                                                                                                                                                                                                                                                              |
| FWD/PORT/BTM AFT/PORT/BTM FWD/STBD/BTM AFT/STBD/BTM FWD/PORT/TOP AFT/PORT/TOP FWD/STBD/TOP AFT/STBD/TOP AFT/STBD/TOP DIST ABV BASELINE FWD, FT DIST ABV BASELINE AFT, FT HEIGHT, FT VOLUME, FT3 ARR AREA, FT2 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                               | DECKHOUSE NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DIST FROM BOW, FT<br>LENGTH, FT<br>DIST FROM CL, FT                                                                                                                                                           | 16 17 18 19 20<br>234.19 244.74 255.28 265.83 76.00<br>10.55 10.55 10.55 22.64                                                                                                                                                                                                                                                                                                                                                                          |
| FWD/PORT/BTM AFT/PORT/BTM FWD/STBD/BTM AFT/STBD/BTM AFT/STBD/BTM FWD/PORT/TOP AFT/PORT/TOP FWD/STBD/TOP AFT/STBD/TOP AFT/STBD/TOP DIST ABV BASELINE FWD, FT DIST ABV BASELINE AFT, FT HEIGHT, FT VOLUME, FT3  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                    |
| ARR AREA, FT2                                                                                                                                                                                                 | 549.5 549.8 549.7 548.2 700.8                                                                                                                                                                                                                                                                                                                                                                                                                           |

PRINTED REPORT NO. 3 - DECKHOUSE STRUCTURE WEIGHT SUMMARY

DKHS MTRL TYPE IND-HTS FIRE PROTECT IND-NONE BLAST RESIST IND-7 PSI DKHS STRUCT DENSITY, LBM/FT3 4.18 HANGER VOL, FT3 0.

|       |         | VCG     |
|-------|---------|---------|
| DECK  | VOLUME  | FROM BL |
| HOUSE | FT3     | FT      |
|       |         | ======  |
| NO. 1 | 4873.   | 38.28   |
| NO. 2 | 5064.   | 37.84   |
| NO. 3 | 5221.   | 37.42   |
| NO. 4 | 5348.   | 37.03   |
| NO. 5 | 5445.   | 36.66   |
| NO. 6 | 5515.   | 36.31   |
| NO. 7 | 5560.   | 36.00   |
| NO. 8 | 5583.   | 35.70   |
| NO. 9 | 5585.   | 35.44   |
| NO.10 | 5579.   | 35.20   |
| NO.11 | 5571.   | 34.98   |
| NO.12 | 5564.   | 34.79   |
| NO.13 | 5557.   | 34.62   |
| NO.14 | 5550.   | 34.49   |
| NO.15 | 5543.   | 34.37   |
| NO.16 | 5536.   | 34.28   |
| NO.17 | 5531.   | 34.22   |
| NO.18 | 5524.   | 34.19   |
| NO.19 | 5501.   | 34.17   |
| NO.20 | 7035.   | 47.33   |
|       |         |         |
|       | 110686. | 36.29   |

ASSET/MONOSC VERSION 3.3+ - HULL STRUCT MODULE - 2/11/95 10.46.19.

PRINTED REPORT NO. 1 - SUMMARY

INNER BOT IND-PRESENT HULL LOADS IND-CALC STIFFENER SHAPE IND-CALC

----- HULL STRENGTH AND STRESS -----HOGGING BM, FT-LTON
SAGGING BM, FT-LTON
MIDSHIP MOI, FT2-IN2
DIST N.A. TO KEEL, FT
DIST N.A. TO DECK, FT
SEC MOD TO KEEL, FT-IN2 65606. PRIM STRESS KEEL-HOG, KSI 15.46 PRIM STRESS KEEL-SAG, KSI 12.89 54696. PRIM STRESS DECK-HOG, KSI PRIM STRESS DECK-SAG, KSI 139568. 16.14 13.45 14.68 15.33 HULL MARGIN STRESS, KSI SEC MOD TO DECK, FT-IN2 2.24 9106. 9507.

HULL STRUCTURE COMPONENTS

NO OF MATERIAL NO SEGMENT TYPE WET. DECK HTS 1 SIDE SHELL HTS 4 1 BOTTOM SHELL HTS 1 INNER BOTTOM HTS 5 INT. DECK HTS STRINGER, SHEER HTS LONG BULKHEAD TRANS BULKHEAD HTS 13

HULL STRUCTURE WEIGHT

| SWBS   | COMPONENT           | WEIGHT, LTON | VCG, FT |
|--------|---------------------|--------------|---------|
| 100 HU | LL STRUCTURE        | 759.2        | 18.72   |
| 110    | SHELL+SUPPORT       | 362.0        | 13.95   |
| 120    | HULL STRUCTURAL BHD | 78.0         | 18.79   |
| 130    | HULL DECKS          | 261.0        | 26.76   |
| 140    | HULL PLATFORM/FLATS | 58.2         | 12.21   |

PRINTED REPORT NO. 2 - HULL STRUCTURES WEIGHT

| SWBS COMPONENT              | WT-LTON                                 | VCG-FT |
|-----------------------------|-----------------------------------------|--------|
|                             | ======================================= |        |
| 100 HULL STRUCTURES         | 759.2                                   | 18.72  |
| 110 SHELL + SUPPORTS        | 362.0                                   | 13.95  |
| 111 PLATING                 | 218.6                                   | 18.75  |
| 113 INNER BOTTOM            | 36.5                                    | 4.50   |
| 115 STANCHIONS              | 5.1                                     | 15.00  |
| 116 LONG FRAMING            | 63.8                                    | 1.47   |
| 117 TRANS FRAMING           | 38.1                                    | 16.24  |
| 120 HULL STRUCTURAL BULKHDS | 78.0                                    | 18.79  |
| 121 LONG BULKHDS            |                                         |        |
| 122 TRANS BULKHDS           | 66.6                                    | 18.79  |
| 123 TRUNKS + ENCLOSURES     | 11.3                                    | 18.79  |
| 130 HULL DECKS              | 261.0                                   | 26.76  |
| 131 MAIN DECK               | 153.3                                   | 31.05  |
| 132 2ND DECK                | 107.7                                   | 20.66  |
| 133 3RD DECK                |                                         |        |
| 134 4TH DECK                |                                         |        |
| 135 5TH DECK+DECKS BELOW    |                                         |        |
| 136 01 HULL DECK            |                                         |        |
| 140 HULL PLATFORMS/FLATS    | 58.2                                    | 12.21  |
| 141 1ST PLATFORM            | 58.2                                    | 12.21  |
| 142 2ND PLATFORM            |                                         |        |
| 143 3RD PLATFORM            |                                         |        |
| 144 4TH PLATFORM            |                                         |        |
| 145 5TH PLAT+PLATS BELOW    |                                         |        |

\* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

PRINTED REPORT NO. 3 - WEATHER DECK

DECK MTRL TYPE-HTS

STRINGER PLATE MTRL TYPE-HTS

|                             |     | SHELL   | STRINGER PLATE |
|-----------------------------|-----|---------|----------------|
| MODULUS OF ELASTICITY, KSI  |     | 29600.0 | 29600.0        |
| DENSITY, LBM/FT3            |     | 489.02  | 489.02         |
| YIELD STRENGTH, KSI         |     | 45.00   | 45.00          |
| MAX PRIMARY STRENGTH, KSI   |     | 21.28   | 21.28          |
| ALLOWABLE WORKING STRENGTH, | KSI | 38.00   | 38.00          |
|                             |     |         |                |

HULL LOADS IND-CALC

MAX MIN STIFFENER SPACING, IN 24.00 24.00 STRINGER PLATE WIDTH, FT 6.00

HULL LOADS IND-CALC

| SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                                                                                                                                                      |                                                                                                                                       |                                                                                    |                                                         |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE COORD,                                                   | FT                                                                                                                                                   |                                                                                                                                       | SCND. LO                                                                           | AD, FT                                                  |                                                   |
| SEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZIB                                                         | YOB                                                                                                                                                  | ZOB                                                                                                                                   | HEAD1                                                                              | HEAD2                                                   |                                                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.01                                                       | 6.86                                                                                                                                                 | 30.01                                                                                                                                 | 8.25                                                                               |                                                         |                                                   |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.01                                                       | 13.72                                                                                                                                                | 30.01                                                                                                                                 | 8.25                                                                               |                                                         |                                                   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.01                                                       | 20.58                                                                                                                                                | 30.01                                                                                                                                 | HEAD1<br>8.25<br>8.25<br>8.25<br>8.25                                              |                                                         |                                                   |
| -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.01                                                       | 27.44                                                                                                                                                | 30.01                                                                                                                                 | 8.25                                                                               |                                                         |                                                   |
| SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SCANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | īGS                                                         |                                                                                                                                                      |                                                                                                                                       |                                                                                    |                                                         |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                           | CANTLINGS                                                                                                                                            | OF STIFFE                                                                                                                             | NED PLATES-                                                                        |                                                         |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STIFFENE                                                    | RS                                                                                                                                                   |                                                                                                                                       | CATLG NO.OF                                                                        | PLATE                                                   | SPACING                                           |
| SEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -INXINXIN                                                   | /IN                                                                                                                                                  |                                                                                                                                       | NO STIFF                                                                           | TK, IN                                                  | IN                                                |
| 1 *F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.745X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.940X                                                      | 0.170/                                                                                                                                               | 0.205                                                                                                                                 | 1. 3                                                                               | 0.3438                                                  | 20.58                                             |
| 2 *F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.745X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.940X                                                      | 0.170/                                                                                                                                               | 0.205                                                                                                                                 | 1. 3                                                                               | 0.3438                                                  | 20.58                                             |
| 3 *F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.745X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.940X                                                      | 0.170/                                                                                                                                               | 0.205                                                                                                                                 | 1. 3                                                                               | 0.3438                                                  | 20.58                                             |
| 4 *F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.745X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.940X                                                      | 0.170/                                                                                                                                               | 0.205                                                                                                                                 | NED PLATES-<br>CATLG NO.OF<br>NO STIFF<br>1. 3<br>1. 3<br>1. 3                     | 0.3438                                                  | 20.58                                             |
| NOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A SIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DS FOR RO.                                                  | LLED SHAPE                                                                                                                                           |                                                                                                                                       |                                                                                    |                                                         |                                                   |
| SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ES                                                          |                                                                                                                                                      |                                                                                                                                       |                                                                                    |                                                         |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220                                                         | PERTIES OF                                                                                                                                           | STIFFENE                                                                                                                              | D PLATES                                                                           |                                                         |                                                   |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             | N.A. TO                                                                                                                                              | SEC                                                                                                                                   | MOD<br>FLANGE<br>IN3<br>3.91<br>3.91<br>3.91<br>3.91                               |                                                         | SMEAR                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SHEAR                                                       | PLATE                                                                                                                                                | PLATE                                                                                                                                 | FLANGE                                                                             | WT/FT                                                   | RATIO                                             |
| SEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IN2                                                         | IN                                                                                                                                                   | IN3                                                                                                                                   | IN3                                                                                | LBF/FT                                                  |                                                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.73                                                        | 0.70                                                                                                                                                 | 19.92                                                                                                                                 | 3.91                                                                               | 28.92                                                   | 0.20                                              |
| . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.73                                                        | 0.70                                                                                                                                                 | 19.92                                                                                                                                 | 3.91                                                                               | 28.92                                                   | 0.20                                              |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.73                                                        | 0.70                                                                                                                                                 | 19.92                                                                                                                                 | 3.91                                                                               | 28.92                                                   | 0.20                                              |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.73                                                        | 0.70                                                                                                                                                 | 19.92                                                                                                                                 | 3.91                                                                               | 28.92                                                   | 0.20                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                                                                                                      |                                                                                                                                       |                                                                                    |                                                         |                                                   |
| PRINTEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REPORT N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0. 4 - SI                                                   | DE SHELL                                                                                                                                             |                                                                                                                                       |                                                                                    |                                                         |                                                   |
| STDE SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ELL MTRL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | סתע_שמעת                                                    |                                                                                                                                                      |                                                                                                                                       |                                                                                    |                                                         |                                                   |
| CHEED C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | מתוא מצגמתי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | יותנו מכועות ד                                              | \$                                                                                                                                                   |                                                                                                                                       |                                                                                    |                                                         |                                                   |
| CILLET C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JIIGHG MIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n iirm-iii.                                                 | 3                                                                                                                                                    | SHELL                                                                                                                                 | CHEED C                                                                            | TOAKE                                                   |                                                   |
| MODUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | US OF ELA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STICITY.                                                    | KST                                                                                                                                                  | 29600.0                                                                                                                               | 29600                                                                              | . 0                                                     |                                                   |
| DENSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TY, LBM/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T3                                                          |                                                                                                                                                      | 489.02                                                                                                                                | 489.                                                                               | 02                                                      |                                                   |
| YIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STRENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , KSI                                                       |                                                                                                                                                      | 45.00                                                                                                                                 | 45.                                                                                | 00                                                      |                                                   |
| MAX P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RIMARY ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RENGTH, K                                                   | SI                                                                                                                                                   | 21.28                                                                                                                                 | 21.                                                                                | 28                                                      |                                                   |
| ALLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WABLE WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ING STRENG                                                  | GTH, KSI                                                                                                                                             | 38.00                                                                                                                                 | SHEER S<br>29600<br>489.<br>45.<br>21.                                             | 00                                                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                                                                                                      |                                                                                                                                       |                                                                                    |                                                         |                                                   |
| HULL LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DADS IND-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALC                                                         |                                                                                                                                                      |                                                                                                                                       |                                                                                    |                                                         |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                                                                                                      |                                                                                                                                       |                                                                                    |                                                         |                                                   |
| COTOTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mn anaar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | MAX                                                                                                                                                  | MIN                                                                                                                                   |                                                                                    |                                                         |                                                   |
| STIFFEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ER SPACIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G, IN                                                       | MAX<br>24.00                                                                                                                                         | MIN<br>24.00                                                                                                                          |                                                                                    |                                                         |                                                   |
| STIFFEN<br>SHEER S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ER SPACING<br>STRAKE WID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G, IN<br>TH, FT                                             | MAX<br>24.00<br>6.00                                                                                                                                 | MIN<br>24.00                                                                                                                          |                                                                                    |                                                         |                                                   |
| SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                                                                                                                                                      |                                                                                                                                       |                                                                                    |                                                         |                                                   |
| SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DR GOODD                                                    | T                                                                                                                                                    |                                                                                                                                       | SCND. IC                                                                           | ΆD. ΈΥ                                                  |                                                   |
| SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DR GOODD                                                    | T                                                                                                                                                    |                                                                                                                                       | SCND. LC<br>HEAD1                                                                  | AD, FT<br>HEAD2                                         |                                                   |
| SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DR GOODD                                                    | T                                                                                                                                                    |                                                                                                                                       | SCND. LC<br>HEAD1<br>7.81                                                          | AD, FT<br>HEAD2                                         |                                                   |
| SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DR GOODD                                                    | T                                                                                                                                                    |                                                                                                                                       | SCND. LC<br>HEAD1<br>7.81<br>12.00                                                 | AD, FT<br>HEAD2                                         |                                                   |
| SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DR GOODD                                                    | T                                                                                                                                                    |                                                                                                                                       | SCND. LC<br>HEAD1<br>7.81<br>12.00<br>17.89                                        | AD, FT<br>HEAD2                                         |                                                   |
| SEGMENT<br>SEG<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GEOMETRY<br>YUPR<br>27.44<br>26.55<br>25.91<br>24.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DE COORD,<br>ZUPR<br>30.01<br>24.01<br>20.00<br>12.25       | T                                                                                                                                                    |                                                                                                                                       | SCND. LC<br>HEAD1<br>7.81<br>12.00<br>17.89<br>25.20                               | AD, FT<br>HEAD2                                         |                                                   |
| SEGMENT<br>SEG<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GEOMETRYNO YUPR 27.44 26.55 25.91 24.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DE COORD,<br>ZUPR<br>30.01<br>24.01<br>20.00<br>12.25<br>GS | FT<br>YLWR<br>26.55<br>25.91<br>24.58<br>20.81                                                                                                       | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00                                                                                               | HEAD1<br>7.81<br>12.00<br>17.89<br>25.20                                           | HEAD2                                                   |                                                   |
| SEGMENT<br>SEG<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GEOMETRY YUPR 27.44 26.55 25.91 24.58 CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRIBUTE CONTRI | DE COORD,<br>ZUPR<br>30.01<br>24.01<br>20.00<br>12.25<br>GS | FT<br>YLWR<br>26.55<br>25.91<br>24.58<br>20.81                                                                                                       | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00                                                                                               | HEAD1<br>7.81<br>12.00<br>17.89<br>25.20                                           | HEAD2                                                   |                                                   |
| SEGMENT SEG 1 2 3 4 SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GEOMETRYNO YUPR 27.44 26.55 25.91 24.58 CANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DE COORD,                                                   | FT<br>YLWR<br>26.55<br>25.91<br>24.58<br>20.81<br>CANTLINGS                                                                                          | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE                                                                                  | HEAD1<br>7.81<br>12.00<br>17.89<br>25.20<br>NED PLATES-<br>CATLG NO.OF             | HEAD2                                                   | SPACING                                           |
| SEGMENT SEG 1 2 3 4 SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GEOMETRYNO YUPR 27.44 26.55 25.91 24.58 CANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DE COORD,                                                   | FT<br>YLWR<br>26.55<br>25.91<br>24.58<br>20.81<br>CANTLINGS                                                                                          | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE                                                                                  | HEAD1<br>7.81<br>12.00<br>17.89<br>25.20<br>NED PLATES-<br>CATLG NO.OF             | HEAD2                                                   | SPACING                                           |
| SEGMENT SEG 1 2 3 4 SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GEOMETRYNO YUPR 27.44 26.55 25.91 24.58 CANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DE COORD,                                                   | FT<br>YLWR<br>26.55<br>25.91<br>24.58<br>20.81<br>CANTLINGS                                                                                          | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE                                                                                  | HEAD1<br>7.81<br>12.00<br>17.89<br>25.20<br>NED PLATES-<br>CATLG NO.OF             | HEAD2                                                   | SPACING                                           |
| SEGMENT SEG 1 2 3 4 SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GEOMETRYNO YUPR 27.44 26.55 25.91 24.58 CANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DE COORD,                                                   | FT<br>YLWR<br>26.55<br>25.91<br>24.58<br>20.81<br>CANTLINGS                                                                                          | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE                                                                                  | HEAD1<br>7.81<br>12.00<br>17.89<br>25.20<br>NED PLATES-<br>CATLG NO.OF             | HEAD2                                                   | SPACING                                           |
| SEGMENT SEG 1 2 3 4 SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GEOMETRYNO YUPR 27.44 26.55 25.91 24.58 CANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DE COORD,                                                   | FT<br>YLWR<br>26.55<br>25.91<br>24.58<br>20.81<br>CANTLINGS                                                                                          | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE                                                                                  | HEAD1<br>7.81<br>12.00<br>17.89<br>25.20<br>NED PLATES-<br>CATLG NO.OF             | HEAD2                                                   | SPACING                                           |
| SEGMENT SEG 1 2 3 4 SEGMENT SEGMENT SEG 1 *R 2 *R 3 *R 4 *R NOTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GEOMETRY VUPR 27.44 26.55 25.91 24.58 CANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DE COORD,                                                   | FT<br>YLWR<br>26.55<br>25.91<br>24.58<br>20.81<br>CANTLINGS                                                                                          | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE                                                                                  | HEAD1<br>7.81<br>12.00<br>17.89<br>25.20                                           | HEAD2                                                   | SPACING                                           |
| SEGMENT SEG 1 2 3 4 SEGMENT SEGMENT SEG 1 *R 2 *R 3 *R 4 *R NOTE SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GEOMETRY VUPR 27.44 26.55 25.91 24.58 SCANTLIN 3.745X 3.745X 3.745X 4.730X **R STAN PROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.170/ 0.190/ LLED SHAPE                                                             | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE<br>0.205<br>0.205<br>0.205<br>0.205                                              | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2813<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT  SEG  1  2  3  4  SEGMENT  SEG  1 *R  2 *R  3 *R  4 *R  NOTE  SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GEOMETRY YUPR 27.44 26.55 25.91 24.58 SCANTLIN 3.745X 3.745X 4.730X **R STANN PROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF                                                         | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE<br>0.205<br>0.205<br>0.205<br>0.210                                              | HEAD1 7.81 12.00 17.89 25.20  NED PLATES-CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4  | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2813<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT  SEG  1  2  3  4  SEGMENT  SEG  1 *R  2 *R  3 *R  4 *R  NOTE  SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GEOMETRY  YUPR  27.44  26.55  25.91  24.58  SCANTLIN  3.745X 3.745X 3.745X 4.730X 4.730X FROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF                                                  | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE<br>0.205<br>0.205<br>0.205<br>0.210                                              | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT SEG 1 2 3 4 SEGMENT SEGMENT SEGMENT SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GEOMETRY  YUPR  27.44  26.55  25.91  24.58  SCANTLIN  3.745X 3.745X 3.745X 4.730X 4.730X FROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF                                                  | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE<br>0.205<br>0.205<br>0.205<br>0.210                                              | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT SEG 1 2 3 4 SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GEOMETRY  YUPR  27.44  26.55  25.91  24.58  SCANTLIN  3.745X 3.745X 3.745X 4.730X 4.730X FROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF                                                  | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE<br>0.205<br>0.205<br>0.205<br>0.210                                              | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT SEG 1 2 3 4 SEGMENT SEGMENT SEG 1 *R 2 *R 3 *R 4 *R NOTE SEGMENT SEGMENT SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GEOMETRY  YUPR  27.44  26.55  25.91  24.58  SCANTLIN  3.745X 3.745X 3.745X 4.730X 4.730X FROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF                                                  | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE<br>0.205<br>0.205<br>0.205<br>0.210                                              | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT SEG 1 2 3 4 SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GEOMETRY  YUPR  27.44  26.55  25.91  24.58  SCANTLIN  3.745X 3.745X 3.745X 4.730X 4.730X FROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF                                                  | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE<br>0.205<br>0.205<br>0.205<br>0.210                                              | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT  SEG  1 2 3 4 SEGMENT  SEG 1 *R 2 *R 3 *R 4 *R NOTE SEGMENT  SEGMENT  SEGMENT  SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GEOMETRY  YUPR  27.44  26.55  25.91  24.58  SCANTLIN  3.745X 3.745X 3.745X 4.730X 4.730X FROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF                                                  | ZLWR<br>24.01<br>20.00<br>12.25<br>6.00<br>OF STIFFE<br>0.205<br>0.205<br>0.205<br>0.210                                              | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT  SEG  1 2 3 4 SEGMENT  SEG  1 *R 2 *R 3 *R 4 *R NOTE SEGMENT  SEGMENT  SEGMENT  SEGMENT  SEGMENT  4 4 8 4 8 8 8 8 9 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GEOMETRY  YUPR 27.44 26.55 25.91 24.58 SCANTLIN  3.745X 3.745X 4.730X E *R STANN PROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF N.A. TO PLATE IN 0.87 0.94 0.70 0.89                    | ZLWR 24.01 20.00 12.25 6.00  OF STIFFE  0.205 0.205 0.205 0.210  STIFFENE SEC PLATE IN3 14.53 13.18 19.58 26.20                       | HEAD1 7.81 12.00 17.89 25.20  NED PLATES-CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4  | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT  SEG  1 2 3 4 SEGMENT  SEG  1 *R 2 *R 3 *R 4 *R NOTE SEGMENT  SEGMENT  SEGMENT  SEGMENT  SEGMENT  4 4 8 4 8 8 8 8 9 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GEOMETRY  YUPR 27.44 26.55 25.91 24.58 SCANTLIN  3.745X 3.745X 4.730X E *R STANN PROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF N.A. TO PLATE IN 0.87 0.94 0.70 0.89                    | ZLWR 24.01 20.00 12.25 6.00  OF STIFFE  0.205 0.205 0.205 0.210  STIFFENE SEC PLATE IN3 14.53 13.18 19.58 26.20                       | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT  SEG  1 2 3 4 SEGMENT  SEG  1 *R 2 *R NOTE SEGMENT  SEGMENT  SEGMENT  SEGMENT  PRINTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YUPR 27.44 26.55 25.91 24.58 SCANTLIN 3.745X 3.745X 3.745X 4.730X *R STAN PROPERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF N.A. TO PLATE IN 0.87 0.94 0.70 0.89  FTOM SHELL        | ZLWR 24.01 20.00 12.25 6.00  OF STIFFE  0.205 0.205 0.205 0.210  STIFFENE SEC PLATE IN3 14.53 13.18 19.58 26.20                       | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT  SEG  1  2  3  4  SEGMENT  SEG  1 *R  2 *R  3 *R  NOTE  SEGMENT  SEGMENT  SEGMENT  PRINTED  BOTTOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GEOMETRY  VUPR  27.44  26.55  25.91  24.58  SCANTLIN  3.745X  3.745X  3.745X  4.730X  ** R STAN  PROPERTI:  TOTAL  IN2  5.99  5.50  8.08  8.71  REPORT NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF N.A. TO PLATE IN 0.87 0.94 0.70 0.89  FTOM SHELL | ZLWR 24.01 20.00 12.25 6.00  OF STIFFE  0.205 0.205 0.205 0.210  STIFFENE SEC PLATE IN3 14.53 13.18 19.58 26.20                       | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT SEG 1 2 3 4 SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SE | GEOMETRY  YUPR 27.44 26.55 25.91 24.58 SCANTLIN  3.745X 3.745X 3.745X 4.730X FROPERTI  PROPERTI  TOTAL IN2 5.99 5.50 8.08 8.71 REPORT NO SHELL MTRI US OF ELAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF N.A. TO PLATE IN 0.87 0.94 0.70 0.89  FTOM SHELL | ZLWR 24.01 20.00 12.25 6.00  OF STIFFE  0.205 0.205 0.205 0.210  STIFFENE SEC PLATE IN3 14.53 13.18 19.58 26.20  29600.0              | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT  SEG  1  2  3  4  SEGMENT  SEG  1 *R  2 *R  3 *R  4 *R  NOTE  SEGMENT  SEGMENT  SEGMENT  DENSION  MODUL  DENSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GEOMETRY VUPR 27.44 26.55 25.91 24.58 SCANTLIN 3.745X 3.745X 4.730X ** ** ** STANT PROPERTITION IN2 5.99 5.50 8.08 8.71 REPORT NO SHELL MTRI US OF ELA: TY, LBM/FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF N.A. TO PLATE IN 0.87 0.94 0.70 0.89  FTOM SHELL | ZLWR 24.01 20.00 12.25 6.00  OF STIFFE  0.205 0.205 0.205 0.210  STIFFENEI SEC PLATE IN3 14.53 13.18 19.58 26.20  29600.0 489.02      | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT SEG 1 2 3 4 SEGMENT SEG 1 *R 2 *R NOTE SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT | GEOMETRY  YUPR 27.44 26.55 25.91 24.58 SCANTLIN  3.745X 3.745X 3.745X 4.730X *R STAN PROPERTI IN2 5.99 5.50 8.08 8.71 REPORT NO SHELL MTRI US OF ELA: TY, LBM/F; STRENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.190/ LIED SHAPE PERTIES OF N.A. TO PLATE IN 0.87 0.94 0.70 0.89  FTOM SHELL        | ZLWR 24.01 20.00 12.25 6.00  OF STIFFE  0.205 0.205 0.205 0.210  STIFFENE SEC PLATE IN3 14.53 13.18 19.58 26.20  29600.0 489.02 45.00 | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT SEG 1 2 3 4 SEGMENT SEG 1 *R 2 *R NOTE SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT | GEOMETRY  YUPR 27.44 26.55 25.91 24.58 SCANTLIN  3.745X 3.745X 3.745X 4.730X *R STAN PROPERTI IN2 5.99 5.50 8.08 8.71 REPORT NO SHELL MTRI US OF ELA: TY, LBM/F; STRENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.190/ LIED SHAPE PERTIES OF N.A. TO PLATE IN 0.87 0.94 0.70 0.89  FTOM SHELL        | ZLWR 24.01 20.00 12.25 6.00  OF STIFFE  0.205 0.205 0.205 0.210  STIFFENE SEC PLATE IN3 14.53 13.18 19.58 26.20  29600.0 489.02 45.00 | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |
| SEGMENT SEG 1 2 3 4 SEGMENT SEG 1 *R 2 *R NOTE SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT | GEOMETRY  YUPR 27.44 26.55 25.91 24.58 SCANTLIN  3.745X 3.745X 3.745X 4.730X *R STAN PROPERTI IN2 5.99 5.50 8.08 8.71 REPORT NO SHELL MTRI US OF ELA: TY, LBM/F; STRENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE COORD,                                                   | FT YLWR 26.55 25.91 24.58 20.81  CANTLINGS RS /IN 0.170/ 0.170/ 0.170/ 0.190/ LLED SHAPE PERTIES OF N.A. TO PLATE IN 0.87 0.94 0.70 0.89  FTOM SHELL | ZLWR 24.01 20.00 12.25 6.00  OF STIFFE  0.205 0.205 0.205 0.210  STIFFENE SEC PLATE IN3 14.53 13.18 19.58 26.20  29600.0 489.02 45.00 | HEAD1 7.81 12.00 17.89 25.20  NED PLATES— CATLG NO.OF NO STIFF 1. 4 1. 2 1. 3 2. 4 | PLATE<br>TK, IN<br>0.2500<br>0.2500<br>0.2501<br>0.3125 | SPACING<br>IN<br>18.20<br>16.24<br>23.60<br>22.33 |

| SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STIFFEN  | ER SPACING,  | IN                | MAX<br>24.00 | MIN<br>24.00 |               |           |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|-------------------|--------------|--------------|---------------|-----------|---------|
| SEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEGMENT  | GEOMETRY     |                   |              |              |               |           | •       |
| STIFFENERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | NODE         | COORD,            | FT           |              | SCND. LO      | AD, FT    |         |
| STIFFENERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SEG      | YUPR         | ZUPR              | YLWR         | ZLWR         | HEAD1         | HEAD2     |         |
| STIFFENERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | 20.81        | 6.00              | 18.61        | 4.50         | 28.83         |           |         |
| STIFFENERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2        | 18.61        | 4.50              | 16.46        | 3.44         | 30.06         |           |         |
| STIFFENERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3        | 16.46        | 3.44              | 12.35        | 2.00         | 31.35         |           |         |
| STIFFENERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4        | 12.35        | 2.00              | 8.23         | 0.99         | 32.55         |           |         |
| STIFFENERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5        | 8.23         | 0.99              | 4.12         | 0.31         | 33.39         |           |         |
| STIFFENERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6        | 4.12         | 0.31              | 0.00         | 0.00         | 33.89         |           |         |
| STIFFENERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | SCANTLINGS   |                   |              |              |               |           |         |
| SEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | C            | m = 1111111111111 | 20           |              | GREET G NO OF | מות א דוד | CDACING |
| SEGMENT PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | one.     | 5            | TIFEENE           | (5)          |              | CATLG NO.OF   | PLAIS.    | SPACING |
| SEGMENT PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SEG      |              | NXTNXTN           | / IN         | 0 205        | NO STIFF      | 0 3439    | 16 03   |
| SEGMENT PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 *R     | 3.745X       | 3.940X            | 0.1707       | 0.205        | 1. 1          | 0.3430    | 10.03   |
| SEGMENT PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 *R     | 3.745X       | 3.940X            | 0.170/       | 0.205        | 1. 1          | 0.3438    | 14.21   |
| SEGMENT PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 *R     | 4.730X       | 3.960X            | 0.190/       | 0.210        | 2. 2          | 0.3438    | 17.45   |
| SEGMENT PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 *R     | 4.730X       | 3.960X            | 0.190/       | 0.210        | 2. 2          | 0.3438    | 17.03   |
| SEGMENT PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 *R     | 4.730X       | 3.960X            | 0.190/       | 0.210        | 2. 2          | 0.3438    | 16.49   |
| SEGMENT PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 *R     | 4.730X       | 3.960X            | 0.190/       | 0.210        | 2. 1          | 0.3438    | 19.14   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NOTE     | : *R STANDS  | FOR ROI           | LLED SHAPE   |              |               |           |         |
| TOTAL SHEAR PLATE PLATE FLANGE WT/FT RATIO  SEG IN2 IN2 IN IN3 IN3 LBF/FT  1 6.95 0.73 0.82 16.36 3.89 23.60 0.26  2 6.33 0.73 0.89 14.84 3.88 21.48 0.29  3 7.73 1.00 1.00 22.85 5.37 26.25 0.29  4 7.59 1.00 1.02 22.39 5.36 25.76 0.30  5 7.40 1.00 1.04 21.80 5.36 25.13 0.31  6 8.31 1.00 0.95 24.65 5.38 28.22 0.26  PRINTED REPORT NO. 6 - INNER BOTTOM  INNER BOT IND-PRESENT  INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  MAX MIN STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY  NODE COORD FET COURS SEE SCAND LOAD FET |          |              |                   |              |              |               |           |         |
| PRINTED REPORT NO. 6 - INNER BOTTOM  INNER BOT IND-PRESENT  INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                             | _        |              | PRO               | PERTIES OF   | STIFFENE     | D PLATES      |           |         |
| PRINTED REPORT NO. 6 - INNER BOTTOM  INNER BOT IND-PRESENT  INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                             |          | AREA         | 1                 | N.A. TO      | SEC          | MOD           |           | SMEAR   |
| PRINTED REPORT NO. 6 - INNER BOTTOM  INNER BOT IND-PRESENT  INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                             |          | TOTAL S      | HEAR              | PLATE        | PLATE        | FLANGE        | WT/FT     | RATIO   |
| PRINTED REPORT NO. 6 - INNER BOTTOM  INNER BOT IND-PRESENT  INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                             | SEG      | IN2          | IN2               | IN           | IN3          | IN3           | LBF/FT    |         |
| PRINTED REPORT NO. 6 - INNER BOTTOM  INNER BOT IND-PRESENT  INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                             | 1        | 6.95         | 0.73              | 0.82         | 16.36        | 3.89          | 23.60     | 0.26    |
| PRINTED REPORT NO. 6 - INNER BOTTOM  INNER BOT IND-PRESENT  INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                             | 2        | 6.33         | 0.73              | 0.89         | 14.84        | 3.88          | 21.48     | 0.29    |
| PRINTED REPORT NO. 6 - INNER BOTTOM  INNER BOT IND-PRESENT  INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                             | 3        | 7.73         | 1.00              | 1.00         | 22.85        | 5.37          | 26.25     | 0.29    |
| PRINTED REPORT NO. 6 - INNER BOTTOM  INNER BOT IND-PRESENT  INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                             | 4        | 7.59         | 1.00              | 1.02         | 22.39        | 5.36          | 25.76     | 0.30    |
| PRINTED REPORT NO. 6 - INNER BOTTOM  INNER BOT IND-PRESENT  INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                             | 5        | 7.40         | 1.00              | 1.04         | 21.80        | 5.36          | 25.13     | 0.31    |
| PRINTED REPORT NO. 6 - INNER BOTTOM  INNER BOT IND-PRESENT  INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                             | 6        | 8.31         | 1.00              | 0.95         | 24.65        | 5.38          | 28.22     | 0.26    |
| INNER BOTTOM MTRL TYPE-HTS  MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  MAX MIN STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |              |                   |              |              |               |           |         |
| MODULUS OF ELASTICITY, KSI 29600.0 DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  MAX MIN STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INNER BO | OT IND-PRES  | ENT               |              |              |               |           |         |
| DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  MAX MIN STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INNER BO | OTTOM MTRL   | TYPE-HTS          | 5            |              |               |           |         |
| DENSITY, LBM/FT3 489.02 YIELD STRENGTH, KSI 45.00 MAX PRIMARY STRENGTH, KSI 21.28 ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  MAX MIN STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODUL    | US OF ELAST  | ICITY, I          | KSI          | 29600.0      |               |           |         |
| ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  MAX MIN  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DENSI'   | TY, LBM/FT3  |                   |              | 489.02       |               |           |         |
| ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  MAX MIN  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY  SCAND LOAD FET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YIELD    | STRENGTH, 1  | KSI               |              | 45.00        |               |           |         |
| ALLOWABLE WORKING STRENGTH, KSI 38.00  HULL LOADS IND-CALC  MAX MIN  STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY  SCAND LOAD FET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAX P    | RIMARY STRE  | NGTH, KS          | SI           | 21.28        |               |           |         |
| STIFFENER SPACING, IN 24.00 24.00  SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALLOW    | ABLE WORKING | G STREN           | GTH, KSI     | 38.00        |               |           |         |
| SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HULL LO  | ADS IND-CAL  | С                 | W2.7-        |              |               |           |         |
| SEGMENT GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STIFFEN  | ER SPACING,  | IN                | MAX<br>24.00 | MIN<br>24.00 |               |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEGMENT  | GEOMETRY     |                   |              |              |               |           |         |
| SEG         YUPR         ZUPR         YLWR         ZLWR         HEAD1         HEAD2           1         18.61         4.50         16.46         4.50         2.62         30.92           2         16.46         4.50         12.35         4.50         2.70         29.44           3         12.35         4.50         8.23         4.50         2.70         27.38           4         8.23         4.50         4.12         4.50         2.70         25.32           5         4.12         4.50         0.00         4.50         2.70         23.26                                                                                                                                          | -        | NODE         | COORD,            | FT           |              | SCND. LC      | AD, FT    |         |
| 1 18.61 4.50 16.46 4.50 2.62 30.92 2 16.46 4.50 12.35 4.50 2.70 29.44 3 12.35 4.50 8.23 4.50 2.70 27.38 4 8.23 4.50 4.12 4.50 2.70 25.32 5 4.12 4.50 0.00 4.50 2.70 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEG      | YUPR         | ZUPR              | YLWR         | ZLWR         | HEAD1         | HEAD2     |         |
| 2 16.46 4.50 12.35 4.50 2.70 29.44<br>3 12.35 4.50 8.23 4.50 2.70 27.38<br>4 8.23 4.50 4.12 4.50 2.70 25.32<br>5 4.12 4.50 0.00 4.50 2.70 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        | 18.61        | 4.50              | 16.46        | 4.50         | 2.62          | 30.92     |         |
| 3 12.35 4.50 8.23 4.50 2.70 27.38<br>4 8.23 4.50 4.12 4.50 2.70 25.32<br>5 4.12 4.50 0.00 4.50 2.70 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 16.46        | 4.50              | 12.35        | 4.50         | 2.70          | 29.44     |         |
| 4 8.23 4.50 4.12 4.50 2.70 25.32<br>5 4.12 4.50 0.00 4.50 2.70 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3        | 12.35        | 4.50              | 8.23         | 4.50         | 2.70          | 27.38     |         |
| 5 4.12 4.50 0.00 4.50 2.70 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4        | 8.23         | 4.50              | 4.12         | 4.50         | 2.70          | 25.32     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5        | 4.12         | 4.50              | 0.00         | 4.50         | 2.70          | 23.26     |         |

| SCANTLINGS OF STIFFENED PLATES |     |           |          |          |       |        |         |        |       |
|--------------------------------|-----|-----------|----------|----------|-------|--------|---------|--------|-------|
|                                |     | S         |          | CATLG    | NO.OF | PLATE  | SPACING |        |       |
| SEC                            | 3   | I         |          | NO       | STIFF | TK, IN | IN      |        |       |
| 1                              | *R  | 3.745X    | 3.940X   | 0.170/   | 0.205 | 1.     | 1       | 0.2188 | 12.87 |
| 2                              | *R  | 3.745X    | 3.940X   | 0.170/   | 0.205 | 1.     | 2       | 0.2500 | 16.46 |
| 3                              | *R  | 3.745X    | 3.940X   | 0.170/   | 0.205 | 1.     | 2       | 0.2500 | 16.46 |
| 4                              | *R  | 3.745X    | 3.940X   | 0.170/   | 0.205 | 1.     | 2       | 0.2500 | 16.46 |
| 5                              | *R  | 3.745X    | 3.940X   | 0.170/   | 0.205 | 1.     | 2       | 0.2500 | 16.46 |
| NO                             | TE: | *R STANDS | FOR ROLL | ED SHAPE |       |        |         |        |       |

#### SEGMENT PROPERTIES

|     |       | PF    | ROPERTIES OF | STIFFENED | PLATES |        |       |
|-----|-------|-------|--------------|-----------|--------|--------|-------|
|     | ARE   | A     | N.A. TO      | SEC MOD   |        |        | SMEAR |
|     | TOTAL | SHEAR | PLATE        | PLATE     | FLANGE | WT/FT  | RATIO |
| SEG | IN2   | IN2   | IN           | IN3       | IN3    | LBF/FT |       |
| 1   | 4.26  | 0.71  | 1.15         | 9.70      | 3.72   | 14.45  | 0.51  |
| 2   | 5.56  | 0.71  | 0.93         | 13.34     | 3.79   | 18.87  | 0.35  |
| 3   | 5.56  | 0.71  | 0.93         | 13.34     | 3.79   | 18.87  | 0.35  |
| 4   | 5.56  | 0.71  | 0.93         | 13.34     | 3.79   | 18.87  | 0.35  |
| 5   | 5.56  | 0.71  | 0.93         | 13.34     | 3.79   | 18.87  | 0.35  |

PRINTED REPORT NO. 7 - INTERNAL DECKS

NUMBER OF INTERNAL DECKS 2

| 29600.0 |
|---------|
| 489.02  |
| 45.00   |
| 21.28   |
| 38.00   |
|         |

HULL LOADS IND-CALC

MAX MIN STIFFENER SPACING, IN 24.00 24.00

#### SEGMENT GEOMETRY

| _       | NO    | DE COORD, | FT    |       | SCND. LO | DAD, FT |
|---------|-------|-----------|-------|-------|----------|---------|
| SEG     | YIB   | ZIB       | YOB   | ZOB   | HEAD1    | HEAD2   |
| DECK NO | .1    |           |       |       |          |         |
| SEG     |       |           |       |       |          |         |
| 1       | 0.00  | 20.00     | 6.86  | 20.00 | 2.67     | 17.21   |
| 2       | 6.86  | 20.00     | 13.72 | 20.00 | 2.67     | 20.64   |
| 3       | 13.72 | 20.00     | 20.58 | 20.00 | 2.67     | 25.07   |
| 4       | 20.58 | 20.00     | 25.91 | 20.00 | 2.72     | 20.46   |
| DECK NO | . 2   |           |       |       |          |         |
| SEG     |       |           |       |       |          |         |
| 1       | 0.00  | 12.25     | 6.86  | 12.25 | 2.67     | 17.21   |
| 2       | 6.86  | 12.25     | 13.72 | 12.25 | 2.67     | 20.64   |
| 3       | 13.72 | 12.25     | 24.58 | 12.25 | 2.67     | 25.07   |

#### SEGMENT SCANTLINGS

|      |     |           | SCI       | ANTLINGS  | OF STIFF | ENED P | LATES- |        |         |
|------|-----|-----------|-----------|-----------|----------|--------|--------|--------|---------|
|      |     | S         | TIFFENERS | 3         |          | CATLG  | NO.OF  | PLATE  | SPACING |
| SEC  | з.  | I         | NXINXIN/I | N         |          | NO     | STIFF  | TK, IN | IN      |
| DECK | NO. | 1         |           |           |          |        |        | •      |         |
| SEC  | 3   |           |           |           |          |        |        |        |         |
| 1    | *R  | 3.745X    | 3.940X    | 0.170/    | 0.205    | 1.     | 3      | 0.2188 | 20.58   |
| 2    | *R  | 3.745X    | 3.940X    | 0.170/    | 0.205    | 1.     | 3      | 0.2188 | 20.58   |
| 3    | *R  | 3.745X    | 3.940X    | 0.170/    | 0.205    | 1.     | 3      | 0.2188 | 20.58   |
| 4    | *R  | 3.745X    | 3.940X    | 0.170/    | 0.205    | 1.     | 2      | 0.2813 | 21.32   |
| DECK | NO. | 2         |           |           |          |        |        |        |         |
| SEC  | 3   |           |           |           |          |        |        |        |         |
| 1    | *R  | 3.745X    | 3.940X    | 0.170/    | 0.205    | 1.     | 3      | 0.2188 | 20.58   |
| 2    | *R  | 3.745X    | 3.940X    | 0.170/    | 0.205    | 1.     | 3      | 0.2188 | 20.58   |
| 3    | *R  | 3.745X    | 3.940X    | 0.170/    | 0.205    | 1.     | 5      | 0.2188 | 21.72   |
| N    | TE: | *R STANDS | FOR ROLI  | LED SHAPE |          |        |        |        |         |

#### SEGMENT PROPERTIES

|        |       | PI    | ROPERTIES O | F STIFFENED | PLATES |        |       |
|--------|-------|-------|-------------|-------------|--------|--------|-------|
|        | ARE   | A     | N.A. TO     | SEC N       | 10D    |        | SMEAR |
|        | TOTAL | SHEAR | PLATE       | PLATE       | FLANGE | WT/FT  | RATIO |
| SEG    | IN2   | IN2   | IN          | IN3         | IN3    | LBF/FT |       |
| DECK 1 | 10.1  |       |             |             |        |        |       |
| SEG    |       |       |             |             |        |        |       |
| 1      | 5.94  | 0.71  | 0.86        | 14.60       | 3.78   | 20.18  | 0.32  |
| 2      | 5.94  | 0.71  | 0.86        | 14.60       | 3.78   | 20.18  | 0.32  |
| 3      | 5.94  | 0.71  | 0.86        | 14.60       | 3.78   | 20.18  | 0.32  |
| 4      | 7.44  | 0.72  | 0.74        | 18.03       | 3.85   | 25.25  | 0.24  |
| DECK 1 | Ю.2   |       |             |             |        |        |       |
| SEG    |       |       |             |             |        |        |       |
| 1      | 5.94  | 0.71  | 0.86        | 14.60       | 3.78   | 20.18  | 0.32  |
| 2      | 5.94  | 0.71  | 0.86        | 14.60       | 3.78   | 20.18  | 0.32  |
| 3      | 6.19  | 0.71  | 0.83        | 15.29       | 3.79   | 21.03  | 0.30  |

PRINTED REPORT NO. 8 - STRENGTH AND STRESS OF STIFFENED PLATE AT DESIGN LOAD

#### INNER BOT IND-PRESENT

| SEG    | -PRIMARY | STRESS- | -LOCAL | STRESS- |        | -STRENGTH- |        |
|--------|----------|---------|--------|---------|--------|------------|--------|
|        | TENSION  | COMP.   | BEND.  | SHEAR   | BUCKL. | ULTIMATE   | COLUMN |
|        | KSI      | KSI     | KSI    | KSI     | KSI    | KSI        | KSI    |
| WET D  | ECK      |         |        |         |        |            |        |
| 1      | 16.11    | 13.43   | 6.61   | 2.22    | 29.86  | 33.05      | 33.54  |
| 2      | 16.11    | 13.43   | 6.61   | 2.22    | 29.86  | 33.05      | 33.54  |
| 3      | 16.11    | 13.43   | 6.61   | 2.22    | 29.86  | 33.05      | 33.54  |
| 4      | 16.11    | 13.43   | 6.61   | 2.22    | 29.86  | 33.05      | 33.54  |
| SIDE : | SHELL    |         |        |         |        |            |        |
| 1      | 14.53    | 12.27   | 5.69   | 1.90    | 20.20  | 28.69      | 36.11  |
| 2      | 11.95    | 10.38   | 7.84   | 2.60    | 25.37  | 31.21      | 36.70  |
| 3      | 8.90     | 8.14    | 16.66  | 5.59    | 15.21  | 25.70      | 33.81  |
| 4      | 9.81     | 10.47   | 15.99  | 5.37    | 20.96  | 29.10      | 38.31  |
| BOT S  | HELL     |         |        |         |        |            |        |
| 1      | 10.94    | 12.35   | 18.10  | 6.03    | 38.99  | 38.68      | 35.27  |
| 2      | 11.32    | 12.99   | 16.79  | 5.57    | 41.08  | 41.17      | 35.98  |
| 3      | 11.72    | 13.66   | 15.54  | 5.19    | 36.98  | 36.79      | 39.15  |
| 4      | 12.09    | 14.28   | 15.76  | 5.26    | 37.60  | 37.34      | 39.27  |
| 5      | 12.35    | 14.72   | 15.67  | 5.22    | 38.37  | 38.06      | 39.43  |
| 6      | 12.50    | 14.98   | 18.38  | 6.16    | 34.25  | 34.71      | 38.69  |
| INNER  |          |         |        |         |        |            |        |
| 1      | 11.15    | 12.71   | 16.31  | 5.35    | 30.95  | 33.46      | 38.13  |
| 2      | 11.15    | 12.71   | 19.48  | 6.47    | 24.67  | 30.90      | 36.63  |
| 3      | 11.15    | 12.71   | 18.12  | 6.01    | 24.67  | 30.90      | 36.63  |
| 4      | 11.15    | 12.71   | 16.76  | 5.56    | 24.67  | 30.90      |        |
| 5      | 11.15    | 12.71   | 15.39  | 5.11    | 24.67  | 30.90      | 36.63  |
| INT D  | ECK      |         |        |         |        |            |        |
| NO. 1  |          |         |        |         |        |            |        |
| 1      |          | 9.62    |        |         | 12.10  |            |        |
| 2      | 10.91    | 9.62    | 17.12  | 5.71    | 12.10  |            | 36.08  |
| 3      | 10.91    | 9.62    | 20.79  | 6.94    | 12.10  | 23.43      | 36.08  |
| 4      | 10.91    | 9.62    | 17.25  | 5.78    | 18.63  | 27.82      | 34.52  |
| INT D  | ECK      |         |        |         |        |            |        |
| NO. 2  |          |         |        |         |        |            |        |
| 1      |          | 0.00    |        | 4.76    |        |            |        |
| 2      | 0.00     | 0.00    | 17.12  | 5.71    | 12.10  |            |        |
| 3      | 0.00     | 0.00    | 21.90  | 7.32    | 10.86  | 22.41      | 35.78  |
|        |          |         |        |         |        |            |        |

PRINTED REPORT NO. 9 - FACTOR OF SAFETY OF STIFFENED PLATE AT DESIGN LOAD

INNER BOT IND-PRESENT

|         | PLATE-   | -STIFFENER- | ST        | IFFENED PI | ATE          |
|---------|----------|-------------|-----------|------------|--------------|
| SEG     | BUCKLING | SHEAR       | COMP+BEND | ULTIMATE   | TENSION+BEND |
| WET DEC | K        |             |           |            |              |
| 1       | 2.12     | 10.29       | 1.30      | 1.40       | 1.67         |
| 2       | 2.12     | 10.29       | 1.30      | 1.40       | 1.67         |
| 3       | 2.12     | 10.29       | 1.30      | 1.40       | 1.67         |
| 4       | 2.12     | 10.29       | 1.30      | 1.40       | 1.67         |
| SIDE SH | ELL      |             |           | 2          | 2.07         |
| 1       | 1.55     | 12.03       | 1.52      | 1.41       | 1.88         |
| 2       | 2.20     | 8.77        | 1.59      | 1.76       | 1.92         |
| 3       | 1.55     | 4.08        | 1.25      | 1.57       | 1.49         |
| 4       | 1.72     | 4.24        | 1.31      | 1.63       | 1.47         |
| BOT SHE |          |             |           | 1.03       | 1.41         |
| 1       | 2.68     | 3.78        | 1.00      | 1.67       | 1.31         |
| 2       | 2.70     | 4.09        | 1.02      | 1.73       | 1.35         |
| 3       | 2.38     | 4.39        | 1.18      | 1.65       | 1.39         |
| 4       | 2.32     | 4.33        | 1.15      | 1.61       | 1.36         |
| 5       | 2.30     | 4.36        | 1.14      | 1.60       | 1.36         |
| 6       | 2.01     | 3.70        | 1.03      | 1.40       | 1.23         |
| INNER B |          | 5.70        | 1.05      | 1.40       | 1.23         |
| 1       | 9.64     | 4.26        | 2.33      | 7.07       | 2.33         |
| 2       | 8.68     | 3.53        | 1.95      | 7.08       | 1.95         |
| 3       | 9.33     | 3.79        | 2.10      | 7.61       | 2.10         |
| 4       | 10.09    | 4.10        | 2.27      | 8.23       | 2.27         |
| 5       | 10.98    | 4.46        | 2.47      | 8.95       | 2.47         |
| INT DEC |          | 4.40        | 2.41      | 0.93       | 2.4/         |
| NO. 1   | •        |             |           | •          |              |
| 1       | 6.37     | 4.79        | 2.66      | 7.91       | 2.66         |
| 2       | 5.31     | 3.99        | 2.22      | 6.60       | 2.22         |
| 3       | 4.37     | 3.29        | 1.83      | 5.43       | 1.83         |
| 4       | 9.84     | 3.95        | 2.20      | 9.02       | 2.20         |
| INT DEC |          | 3433        | 2.20      | 3.02       | 2.20         |
| NO. 2   |          |             |           |            |              |
| 1       | 6.37     | 4.79        | 2.66      | 7.91       | 2.66         |
| 2       | 5.31     | 3.99        | 2.22      | 6.60       | 2.00         |
| 3       | 3.90     | 3.12        | 1.73      |            |              |
| -       | 3.30     | 3.12        | 1./3      | 5.11       | 1.73         |

PRINTED REPORT NO. 10 - GIRDER PROPERTIES, STRENGTH ,STRESSES AND FACTOR OF SAFETY

DECK MTRL TYPE-HTS BOT MTRL TYPE-HTS

HULL LOADS IND-CALC GIRDER/STIFF., POSITION

|             |    | -COORDINAT | E, FT | SCND  | LOAD, FT |
|-------------|----|------------|-------|-------|----------|
|             |    | YLOC       | ZLOC  | HEAD1 | HEAD2    |
| WET DECK    |    | 1200       | 2000  | HEADI | nead2    |
| GIRDER      |    |            |       |       |          |
| 1           |    | 0.00       | 30.01 | 8.40  |          |
| 1<br>2<br>3 |    |            | 30.01 | 8.40  |          |
| 3           |    |            | 30.01 | 8.40  |          |
| 4           |    |            | 30.01 | 8.40  |          |
| INT DECK    | 1. | 2000       | 50.01 | 0.40  |          |
| GIRDER      |    |            |       |       |          |
| 1           |    | 0.00       | 20.00 | 2.70  | 8.82     |
| 2           |    |            | 20.00 | 2.70  |          |
| 3           |    |            | 20.00 | 2.70  |          |
| 4           |    | 20.58      | 20.00 | 2.70  | 19.11    |
| INT DECK    | 2. |            |       |       |          |
| GIRDER      |    |            |       |       |          |
| 1           |    | 0.00       | 12.25 | 2.70  | 15.53    |
| 2           |    | 6.86       | 12.25 | 2.70  | 18.96    |
| 3           |    | 13.72      | 12.25 | 2.70  | 22.39    |
| BOTTOM      |    |            |       |       |          |
| GIRDER      |    |            |       |       |          |
| 1           |    | 0.00       | 0.00  | 0.29  | 34.01    |
| 2           |    | 4.12       | 0.31  | 0.29  | 33.70    |
| 3           |    | 8.23       | 0.99  | 0.29  | 33.02    |
| 4           |    | 12.35      | 2.00  | 0.29  | 32.01    |
| 5           |    | 16.46      | 3.44  | 0.29  | 31.31    |
| BOTTOM      |    |            |       |       |          |
| STIFF.      |    |            |       |       |          |
| 1           |    | 0.00       | 2.25  | 0.29  | 31.76    |
| 2           |    | 4.12       | 2.41  | 0.27  | 31.60    |
| 3           |    | 8.23       | 2.75  | 0.21  | 31.26    |
|             |    |            |       |       |          |

4 12.35 3.25 0.21 30.76 5 16.46 3.97 0.21 30.77

|                  |                         | . دون       | 1.12-                                |                                      |     |            |                                           |       |          |
|------------------|-------------------------|-------------|--------------------------------------|--------------------------------------|-----|------------|-------------------------------------------|-------|----------|
|                  |                         | GIRDER/ST   |                                      |                                      |     | PLATE      | SUPPC<br>WIDT                             |       |          |
| TSSE CO          | ostone Des              | sign Projec | XIN/IN<br>t                          |                                      | NO  | TK, I      | N IN                                      |       | CPCX     |
| GIRDER           |                         |             |                                      |                                      |     |            |                                           |       | <br>CICA |
|                  | 13.490X                 |             |                                      |                                      | 49. | 0.343      | 8 82.                                     |       |          |
| 2 *F             |                         | 5.030X      | 0.255/                               | 0.420                                | 49. | 0.343      | 8 82.                                     | 32    |          |
| 3 *F             | 13.490X                 | 5.030X      | 0.255/                               | 0.420                                | 49. | 0.343      | 8 82.<br>8 82.                            | 32    |          |
| 4 *F<br>INT DECK |                         | 5.030X      | 0.255/                               | 0.420                                | 49. | 0.343      | 8 82.                                     | 32    |          |
| GIRDER           | т.                      |             |                                      |                                      |     |            |                                           |       |          |
|                  | 9.780X                  | 4.010X      | 0.240/                               | 0.330                                | 29. | 0.218      | 8 82.                                     | 32    |          |
| 2 *F             | 11.810X                 | 4.010X      | 0.235/                               | 0.350                                | 35. | 0.218      |                                           |       |          |
|                  |                         |             | 0.230/                               | 0.380                                | 45. | 0.218      | 8 82.                                     | 32    |          |
|                  |                         | 6.490X      |                                      | 0.380                                | 45. | 0.218      | 8 82.<br>8 73.                            | 14    |          |
| INT DECK         | 2.                      |             | •                                    |                                      |     |            |                                           |       |          |
| GIRDER           |                         |             |                                      |                                      |     |            |                                           |       |          |
| 1 *F             | 11.840X                 | 6.490X      | 0.230/                               | 0.380                                | 45. | 0.218      | 8 82.                                     | 32    |          |
| 2 *F             | 13.490X                 | 5.030X      | 0.255/                               | 0.420                                | 49. | 0.218      | 8 82.                                     | 32    |          |
|                  | 15.430X                 | 6.990X      | 0.295/                               | 0.430                                | 67. | 0.218      | 8 106.                                    | 31    |          |
| BOTTOM           |                         |             |                                      |                                      |     |            |                                           |       |          |
| GIRDER           |                         |             |                                      |                                      |     |            |                                           |       |          |
| 1                | 54.000X                 | 17.190X     | 0.344/                               | 0.250                                |     | 0.343      | 8 38.<br>8 43.<br>8 50.<br>8 51.<br>8 52. | 28    |          |
| 2                | 50.276X                 | 15.625X     | 0.313/                               | 0.250                                |     | 0.343      | 8 43.                                     | 87    |          |
| 3                | 42.085X                 | 12.500X     | 0.250/                               | 0.250                                |     | 0.343      | 8 50.                                     | 28    |          |
| 4                | 30.031X                 | 12.500X     | 0.250/                               | 0.250                                |     | 0.343      | 8 51.                                     | 73    |          |
| 5                | 12.745X                 | 12.500X     | 0.313/<br>0.250/<br>0.250/<br>0.250/ | 0.219                                |     | 0.343      | 8 52.                                     | 36    |          |
| BOTTOM           |                         |             |                                      |                                      |     |            |                                           |       |          |
| STIFF.           |                         |             |                                      |                                      |     |            |                                           |       |          |
| 1 *R             | 3.745X                  | 3.940X      | 0.170/                               | 0.205                                | 1.  | 0.343      | 8 27.                                     | 00    |          |
| 2 *R             | 3.745X                  | 3.940X      | 0.170/                               | 0.205                                | 1.  | 0.312      | 5 27.                                     | 00    |          |
| 3 *R             | 3.745X                  | 3.940X      | 0.170/                               | 0.205                                | 1.  | 0.250      | 0 27.                                     | 00    |          |
| 4 *R             | 3.745X                  | 3.940X      | 0.170/<br>0.170/<br>0.170/<br>0.170/ | 0.205                                | 1.  | 0.250      | 0 27.                                     | 00    |          |
| 2 *R             | 3./45X                  | 3.940X      | 0.170/<br>BRICATED S                 | 0.205                                | 1.  | 0.250      | 0 27.                                     | 00    |          |
|                  | AREA-                   | h           | PERTIES OF<br>N.A. TO<br>PLATE       | GDR/STF<br>SEC<br>PLATE              | MOD |            | <br>WT/FT                                 | SMEAR |          |
|                  | IN2                     | IN2         | IN                                   | IN3                                  |     |            | WI/FT<br>LBF/FT                           | RATIO |          |
| WET DECK         |                         | 2112        | 211                                  | 1143                                 |     | N3 .       | LDF / F I                                 |       |          |
| GIRDER           |                         |             |                                      |                                      |     |            |                                           |       |          |
| 1                | 33.85                   | 3.63        | 1.74                                 | 310.30                               | 43  | .13        | 114 96                                    | 0 20  |          |
| 2                | 33.85<br>33.85<br>33.85 | 3.63        | 1.74                                 | 310.30<br>310.30<br>310.30<br>310.30 | 43  | .13        | 114.96<br>114.96                          | 0.20  |          |
| 3                | 33.85                   | 3.63        | 1.74                                 | 310.30                               | 43  | .13        | 114.96                                    | 0.20  |          |
| 4                | 33.85                   | 3.63        | 1.74<br>1.74                         | 310.30                               | 43  | .13        | 114.96                                    | 0.20  |          |
| INT DECK         | 1.                      |             |                                      |                                      |     |            |                                           |       |          |
| GIRDER           |                         |             |                                      |                                      |     |            |                                           |       |          |
| 1                | 21.68                   | 2.48        | 1.26                                 | 144.09                               | 20  | .09        | 73.63                                     | 0.20  |          |
| 2                | 21.68<br>22.19<br>23.20 | 2.91        | 1.63                                 | 176.39                               | 26  | .70        | 75.36                                     | 0.23  |          |
| 3                | 23.20                   | 2.86        | 2.11                                 | 190.55                               | 38  | .86        | 78.79                                     | 0.29  |          |
|                  | 21.19                   | 2.86        | 2.30                                 | 171.01                               | 38  | .72        | 73.63<br>75.36<br>78.79<br>71.97          | 0.32  |          |
| INT DECK         | 2.                      |             |                                      |                                      |     |            |                                           |       |          |
| GIRDER           |                         |             |                                      |                                      |     |            |                                           |       |          |
|                  | 23.20                   | 2.86        | 2.11                                 | 190. <b>5</b> 5                      |     | .86        | 78.79                                     | 0.29  |          |
|                  | 23.56                   | 3.60        | 2.35                                 | 212.34                               |     | .30        | 80.01                                     | 0.31  |          |
|                  | 30.82                   | 4.74        | 2.80                                 | 318.24                               | 67  | .18        | 104.66                                    | 0.33  |          |
| BOTTOM           |                         |             |                                      | -                                    |     |            |                                           |       |          |
| GIRDER           | 20 77                   | 10 77       | 05.65                                |                                      |     |            |                                           |       | ,        |
|                  | 28.77                   | 18.77       | 25.81                                | 463.68                               |     |            | 97.71                                     | 0.00  |          |
|                  | 24.99                   | 15.90       | 23.99                                | 383.00                               |     |            | 84.86                                     | 0.00  |          |
|                  | 17.94<br>14.93          | 10.67       | 19.99                                | 242.71                               |     |            | 60.94                                     | 0.00  |          |
|                  | 10.22                   | 7.66        | 14.16                                | 158.96                               |     |            | 50.70                                     | 0.00  |          |
| BOTTOM           |                         | 3.33        | 5.70                                 | 58.18                                | 43  | .58        | 34.70                                     | 0.00  |          |
| STIFF.           |                         |             |                                      |                                      |     |            |                                           |       |          |
|                  | 10.72                   | 0.73        | 0.60                                 | 24 42                                | _   | 0.3        | 26 41                                     | 0 16  |          |
| 2                | 9.88                    | 0.73        | 0.60                                 | 24.43                                |     | .93        | 36.41                                     | 0.16  |          |
| 3                | 8.19                    | 0.72        | 0.67                                 | 23.21                                |     | .90        | 33.54                                     | 0.17  |          |
| 4                | 8.19                    | 0.71        | 0.67                                 | 20.21<br>20.21                       |     | .84        | 27.81                                     | 0.21  |          |
| 5                | 8.19                    | 0.71        | 0.67                                 | 20.21                                |     | .84<br>.84 | 27.81<br>27.81                            | 0.21  |          |
| -                |                         | 0 - 1 -     | 0.07                                 | 20.21                                | 3   | .04        | 21.01                                     | 0.21  |          |
|                  |                         |             |                                      |                                      |     |            |                                           |       |          |

| TSSE Capstone Design | n Project |
|----------------------|-----------|
|----------------------|-----------|

**CPCX** 

------SCANTLINGS OF GDR/STF AND PLATE-----

| ## TENSION COMP. BEND. SHEAR BUCKL. ULTIMATE COLUMN KSI KSI KSI KSI KSI KSI KSI KSI KSI COLUMN KSI KSI KSI KSI KSI KSI KSI KSI KSI KSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -       | STRENGTH AND STRESSES OF GDR.STF |         |       |          |            |           |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------|---------|-------|----------|------------|-----------|--------|
| TENSION   COMP.   SEIN.   SSEAR   BUCKL.   ULTITAMTE   COLUMN   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI      |         | -PRIMARY                         | STRESS- | -LOCA | AT. STRE | SS         | STRENGTH_ |        |
| WEST DECK   SET   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI   KSI    |         | TENSION                          | COMP.   | BEND. | SHI      | EAR BUCKT. | ULTIMATE  | COLUMN |
| WET DECK GIRDER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                  |         |       |          |            |           |        |
| GINDER  1 10.91 9.62 36.11 7.14 41.28 41.44 30.58 2 10.91 9.62 37.73 8.45 37.24 37.02 35.42 3 10.91 9.62 37.73 8.45 37.24 37.02 35.42 3 10.91 9.62 36.06 11.91 36.60 36.48 38.74 INT DECK 2. GINDER 2. GIRDER  1 0.00 0.00 32.87 10.90 36.60 36.48 38.16 2 0.00 0.00 36.86 10.57 35.83 35.87 39.82 3 0.00 0.00 35.40 12.24 36.16 36.12 42.11 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 2 12.44 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 4 11.92 14.00 12.11 5.27 29.66 32.98 45.00 5 11.48 13.26 37.59 12.02 44.39 45.00 42.86 BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58  THEAT OWN HAVE TO BE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAV | CIDDED  |                                  |         |       |          |            |           |        |
| GINDER  1 10.91 9.62 36.11 7.14 41.28 41.44 30.58 2 10.91 9.62 37.73 8.45 37.24 37.02 35.42 3 10.91 9.62 37.73 8.45 37.24 37.02 35.42 3 10.91 9.62 36.06 11.91 36.60 36.48 38.74 INT DECK 2. GINDER 2. GIRDER  1 0.00 0.00 32.87 10.90 36.60 36.48 38.16 2 0.00 0.00 36.86 10.57 35.83 35.87 39.82 3 0.00 0.00 35.40 12.24 36.16 36.12 42.11 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 2 12.44 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 4 11.92 14.00 12.11 5.27 29.66 32.98 45.00 5 11.48 13.26 37.59 12.02 44.39 45.00 42.86 BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58  THEAT OWN HAVE TO BE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAV | 1       | 16.11                            | 13.43   | 16.01 | 4.6      | 35.83      | 35.87     | 37.43  |
| GINDER  1 10.91 9.62 36.11 7.14 41.28 41.44 30.58 2 10.91 9.62 37.73 8.45 37.24 37.02 35.42 3 10.91 9.62 37.73 8.45 37.24 37.02 35.42 3 10.91 9.62 36.06 11.91 36.60 36.48 38.74 INT DECK 2. GINDER 2. GIRDER  1 0.00 0.00 32.87 10.90 36.60 36.48 38.16 2 0.00 0.00 36.86 10.57 35.83 35.87 39.82 3 0.00 0.00 35.40 12.24 36.16 36.12 42.11 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 2 12.44 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 4 11.92 14.00 12.11 5.27 29.66 32.98 45.00 5 11.48 13.26 37.59 12.02 44.39 45.00 42.86 BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58  THEAT OWN HAVE TO BE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAV | 2       | 16.11                            | 13.43   | 16.01 | 4.6      | 35.83      | 35.87     | 37.43  |
| GINDER  1 10.91 9.62 36.11 7.14 41.28 41.44 30.58 2 10.91 9.62 37.73 8.45 37.24 37.02 35.42 3 10.91 9.62 37.73 8.45 37.24 37.02 35.42 3 10.91 9.62 36.06 11.91 36.60 36.48 38.74 INT DECK 2. GINDER 2. GIRDER  1 0.00 0.00 32.87 10.90 36.60 36.48 38.16 2 0.00 0.00 36.86 10.57 35.83 35.87 39.82 3 0.00 0.00 35.40 12.24 36.16 36.12 42.11 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 2 12.44 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 4 11.92 14.00 12.11 5.27 29.66 32.98 45.00 5 11.48 13.26 37.59 12.02 44.39 45.00 42.86 BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58  THEAT OWN HAVE TO BE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAV | 3       | 16.11                            | 13.43   | 16.01 | 4.6      | 35.83      | 35.87     | 37.43  |
| GINDER  1 10.91 9.62 36.11 7.14 41.28 41.44 30.58 2 10.91 9.62 37.73 8.45 37.24 37.02 35.42 3 10.91 9.62 37.73 8.45 37.24 37.02 35.42 3 10.91 9.62 36.06 11.91 36.60 36.48 38.74 INT DECK 2. GINDER 2. GIRDER  1 0.00 0.00 32.87 10.90 36.60 36.48 38.16 2 0.00 0.00 36.86 10.57 35.83 35.87 39.82 3 0.00 0.00 35.40 12.24 36.16 36.12 42.11 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 2 12.44 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 4 11.92 14.00 12.11 5.27 29.66 32.98 45.00 5 11.48 13.26 37.59 12.02 44.39 45.00 42.86 BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58  THEAT OWN HAVE TO BE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAVE TOWN HAV | 4       | 16.11                            | 13.43   | 16.01 | 4.6      | 35.83      | 35.87     | 37.43  |
| GENDER  1 0.00 0.00 32.87 10.90 36.60 36.48 38.16 2 0.00 0.00 35.40 12.24 36.16 36.12 42.11 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 3 12.24 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 42.86 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 41.19 11.48 13.26 37.59 12.02 44.39 45.00 42.86 BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 33.10 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58 5 11.31 12.98 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.95 11.08 14.60 14.18 13.87 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 | CIPDED  | OK I.                            |         |       |          |            |           |        |
| GENDER  1 0.00 0.00 32.87 10.90 36.60 36.48 38.16 2 0.00 0.00 35.40 12.24 36.16 36.12 42.11 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 3 12.24 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 42.86 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 41.19 11.48 13.26 37.59 12.02 44.39 45.00 42.86 BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 33.10 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58 5 11.31 12.98 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.95 11.08 14.60 14.18 13.87 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 | 1       | 10.91                            | 9.62    | 36.11 | 7.3      | 41.28      | 41.44     | 30.58  |
| GENDER  1 0.00 0.00 32.87 10.90 36.60 36.48 38.16 2 0.00 0.00 35.40 12.24 36.16 36.12 42.11 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 3 12.24 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 42.86 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 41.19 11.48 13.26 37.59 12.02 44.39 45.00 42.86 BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 33.10 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58 5 11.31 12.98 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.95 11.08 14.60 14.18 13.87 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 | 2       | 10.91                            | 9.62    | 37.73 | 8.4      | 37.24      | 37.02     | 35.43  |
| GENDER  1 0.00 0.00 32.87 10.90 36.60 36.48 38.16 2 0.00 0.00 35.40 12.24 36.16 36.12 42.11 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 3 12.24 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 42.86 BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 41.19 11.48 13.26 37.59 12.02 44.39 45.00 42.86 BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 33.10 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58 5 11.31 12.98 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.95 11.08 14.60 14.18 13.87 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19 | 4       | 10.91                            | 9.62    | 33.19 | 11.0     | 36.60      | 36.48     | 38.16  |
| GIRDER  1 0.00 0.00 32.87 10.90 36.60 36.48 38.16 2 0.00 0.00 35.40 12.24 36.16 36.12 42.11  BOTTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 2 12.44 14.88 0.04 0.02 16.54 26.55 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 4 11.92 14.00 12.11 5.27 29.66 32.98 45.00  BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TNT DEC | TK 2.                            | 9.02    | 30.06 | 17.5     | 36.60      | 36.48     | 38.74  |
| 1 0.00 0.00 32.87 10.90 36.60 36.48 38.18 2 0.00 0.00 36.86 10.57 35.83 35.67 39.82 STOTOM GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 2 12.44 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 5 11.48 13.26 37.59 12.02 44.39 45.00 42.86  BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58  STIFFE BUCKLING WET DECK GIRDER  1 2.46 4.92 1.05 1.64 1.18 2 2.46 4.92 1.05 1.64 1.18 3 2.46 4.92 1.05 1.64 1.18 INT DECK 1.  GIRDER  1 15.97 3.19 1.05 1.64 1.18 INT DECK 2.  GIRDER  1 15.97 3.19 1.05 1.64 1.18 INT DECK 2.  GIRDER  1 10.63 2.09 1.16 7.19 1.16 3 10.53 2.07 1.15 7.12 1.15 4 8.73 1.91 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 1.15 1559.32 2.39 1.44 3.02 3 1.49 3.04 3.04 3.04 3 1.55 3.07 1.90 1.01 2.37 1.01  BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02 3 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 5 5 3.07 1.90 1.01 2.37 1.01  BOTTOM  STIFF.  1 1.64 2.65 2.04 1.14 9.11 1.14 3 13.66 2.02 1.15 8.95 1.15 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ****    | 2.                               |         |       |          |            |           |        |
| GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 2 12.44 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 4 11.92 14.00 12.11 5.77 29.66 32.98 45.00 5 11.48 13.26 37.59 12.02 44.39 45.00 42.86  BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58  WET DECK GIRDER  1 2.46 4.92 11.05 11.09 44.66 45.00 33.58 2 2.46 4.92 11.05 1.64 1.18 4 2.46 4.92 1.05 1.64 1.18 1 15.97 3.19 1.05 1.64 1.18 1 15.97 3.19 1.05 1.64 1.18 INT DECK 1.  GIRDER  1 15.97 3.19 1.05 1.64 1.18 4 2.46 4.92 1.05 1.64 1.18  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 1.64 1.18  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 1.64 1.18  A 2.46 4.92 1.05 1.64 1.18  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 1.15 1559.32 2.39 1.44 3.02  2 9.50 2.16 1.03 6.73 1.03  3 9.42 1.86 1.07 7.05 1.07  BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02  2 1.11 1152.26 2.41 1.43 3.04  3 4.30 6.01 4.90 5.84 4.90  4 5.55 4.32 3.14 4.94 3.14  BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14  2 15.52 2.03 1.14 8.90 1.14  3 13.66 2.02 1.13 8.22 1.13  4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 0.00                             | 0.00    | 32.87 | 10.0     | 26 60      | 36 48     | 38 16  |
| GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 2 12.44 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 4 11.92 14.00 12.11 5.77 29.66 32.98 45.00 5 11.48 13.26 37.59 12.02 44.39 45.00 42.86  BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58  WET DECK GIRDER  1 2.46 4.92 11.05 11.09 44.66 45.00 33.58 2 2.46 4.92 11.05 1.64 1.18 4 2.46 4.92 1.05 1.64 1.18 1 15.97 3.19 1.05 1.64 1.18 1 15.97 3.19 1.05 1.64 1.18 INT DECK 1.  GIRDER  1 15.97 3.19 1.05 1.64 1.18 4 2.46 4.92 1.05 1.64 1.18  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 1.64 1.18  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 1.64 1.18  A 2.46 4.92 1.05 1.64 1.18  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 1.15 1559.32 2.39 1.44 3.02  2 9.50 2.16 1.03 6.73 1.03  3 9.42 1.86 1.07 7.05 1.07  BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02  2 1.11 1152.26 2.41 1.43 3.04  3 4.30 6.01 4.90 5.84 4.90  4 5.55 4.32 3.14 4.94 3.14  BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14  2 15.52 2.03 1.14 8.90 1.14  3 13.66 2.02 1.13 8.22 1.13  4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 0.00                             | 0.00    | 36.86 | 10.5     | 57 35.83   | 35.87     | 39.82  |
| GIRDER  1 12.54 15.04 0.03 0.01 17.35 27.07 45.00 2 12.44 14.88 0.04 0.02 16.54 26.56 45.00 3 12.23 14.53 7.75 3.79 15.11 25.63 45.00 4 11.92 14.00 12.11 5.77 29.66 32.98 45.00 5 11.48 13.26 37.59 12.02 44.39 45.00 42.86  BOTTOM STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58  WET DECK GIRDER  1 2.46 4.92 11.05 11.09 44.66 45.00 33.58 2 2.46 4.92 11.05 1.64 1.18 4 2.46 4.92 1.05 1.64 1.18 1 15.97 3.19 1.05 1.64 1.18 1 15.97 3.19 1.05 1.64 1.18 INT DECK 1.  GIRDER  1 15.97 3.19 1.05 1.64 1.18 4 2.46 4.92 1.05 1.64 1.18  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 1.64 1.18  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 1.64 1.18  A 2.46 4.92 1.05 1.64 1.18  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 15.97 3.19 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 1.15 1559.32 2.39 1.44 3.02  2 9.50 2.16 1.03 6.73 1.03  3 9.42 1.86 1.07 7.05 1.07  BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02  2 1.11 1152.26 2.41 1.43 3.04  3 4.30 6.01 4.90 5.84 4.90  4 5.55 4.32 3.14 4.94 3.14  BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14  2 15.52 2.03 1.14 8.90 1.14  3 13.66 2.02 1.13 8.22 1.13  4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3       | 0.00                             | 0.00    | 35.40 | 12.2     | 36.16      | 36.12     | 42.11  |
| STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CIDDED  |                                  |         |       |          |            |           |        |
| STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1       | 12.54                            | 15.04   | 0.03  | 0.0      | 17.35      | 27.07     | 45.00  |
| STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2       | 12.44                            | 14.88   | 0.04  | 0.0      | 16.54      | 26.56     | 45.00  |
| STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3       | 12.23                            | 14.53   | 7.75  | 3.7      | 9 15.11    | 25.63     | 45.00  |
| STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4       | 11.92                            | 14.00   | 12.11 | 5.2      | 29.66      | 32.98     | 45.00  |
| STIFF.  1 11.84 13.87 33.24 11.19 44.66 45.00 31.28 2 11.79 13.79 33.33 11.22 44.66 45.00 32.01 3 11.69 13.62 33.49 11.26 44.66 45.00 33.58 4 11.53 13.35 32.95 11.08 44.66 45.00 33.58 5 11.31 12.98 32.96 11.09 44.66 45.00 33.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5       | 11.48                            | 13.26   | 37.59 | 12.0     | 2 44.39    | 45.00     | 42.86  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |         |       |          |            |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 11.84                            | 13.87   | 33.24 | 11.1     | .9 44.66   | 45.00     | 31.28  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2       | 11.79                            | 13.79   | 33.33 | 11.2     | 2 44.66    | 45.00     | 32.01  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3       | 11.69                            | 13.62   | 33.49 | 11.2     | 44.66      | 45.00     | 33.58  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4       | 11.53                            | 13.35   | 32.95 | 11.0     | 44.66      | 45.00     | 33.58  |
| ## DESIGN LOAD ## DECK SHEAR   STIFFENER   COMP+BEND   ULTIMATE   TENSION+BEND   ## TOTAL   TENSION+BEND   ULTIMATE   TENSION+BEND   ## TOTAL   TENSION+BEND   ULTIMATE   TENSION+BEND   ## TOTAL   TENSION+BEND   ULTIMATE   TENSION+BEND   ## TOTAL   TENSION+BEND   ULTIMATE   TENSION+BEND   ## TOTAL   TENSION+BEND   ULTIMATE   TENSION+BEND   ## TOTAL   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENSION   TENS | 5       | 11.31                            | 12.98   | 32.96 | 11.0     | 9 44.66    | 45.00     | 33.58  |
| WET DECK GIRDER  1 2.46 4.92 1.05 1.64 1.18 2 2.46 4.92 1.05 1.64 1.18 3 2.46 4.92 1.05 1.64 1.18 INT DECK 1.  GIRDER  1 15.97 3.19 1.05 8.72 1.05 2 12.70 2.70 1.01 7.95 1.01 3 10.53 2.07 1.15 7.12 1.15 4 8.73 1.91 1.05 5.99 1.05 INT DECK 2.  GIRDER  1 10.63 2.09 1.16 7.19 1.16 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07  BOTTOM GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5 DECTIOM STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | -                                |         | FACTO |          |            |           |        |
| BUCKLING SHEAR COMP+BEND ULTIMATE TENSION+BEND.  WET DECK GIRDER  1 2.46 4.92 1.05 1.64 1.18 2 2.46 4.92 1.05 1.64 1.18 4 2.46 4.92 1.05 1.64 1.18  INT DECK 1.  GIRDER  1 15.97 3.19 1.05 8.72 1.05 2 12.70 2.70 1.01 7.95 1.01 3 10.53 2.07 1.15 7.12 1.15 4 8.73 1.91 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 10.63 2.09 1.16 7.19 1.16 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07  BOTTOM GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5 5 3.07 1.90 1.01 2.37 1.01  BOTTOM STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | PLATE                            | STIFF   | ENER  | A1 DE    | STER LOAD  | . A TIP   |        |
| WET DECK GIRDER  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                  | G SHE   | AR CC | MP+BEND  | TT-TMATTE  | TENSION+B | END.   |
| 1 2.46 4.92 1.05 1.64 1.18 2 2.46 4.92 1.05 1.64 1.18 3 2.46 4.92 1.05 1.64 1.18  INT DECK 1.  GIRDER  1 15.97 3.19 1.05 8.72 1.05 2 12.70 2.70 1.01 7.95 1.01 3 10.53 2.07 1.15 7.12 1.15 4 8.73 1.91 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 10.63 2.09 1.16 7.19 1.16 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07  BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5 3.07 1.90 1.01 BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WET DEC | CK                               |         |       |          |            |           | 21.2   |
| A 2.46 4.92 1.05 1.64 1.18  INT DECK 1.  GIRDER  1 15.97 3.19 1.05 8.72 1.05 2 12.70 2.70 1.01 7.95 1.01 3 10.53 2.07 1.15 7.12 1.15 4 8.73 1.91 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 10.63 2.09 1.16 7.19 1.16 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07  BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5 3.07 1.90 1.01 2.37 1.01  BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                  |         |       |          |            |           |        |
| A 2.46 4.92 1.05 1.64 1.18  INT DECK 1.  GIRDER  1 15.97 3.19 1.05 8.72 1.05 2 12.70 2.70 1.01 7.95 1.01 3 10.53 2.07 1.15 7.12 1.15 4 8.73 1.91 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 10.63 2.09 1.16 7.19 1.16 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07  BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5 3.07 1.90 1.01 2.37 1.01  BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 2.46                             | 4.9     | 2     | 1.05     | 1.64       | 1.18      |        |
| A 2.46 4.92 1.05 1.64 1.18  INT DECK 1.  GIRDER  1 15.97 3.19 1.05 8.72 1.05 2 12.70 2.70 1.01 7.95 1.01 3 10.53 2.07 1.15 7.12 1.15 4 8.73 1.91 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 10.63 2.09 1.16 7.19 1.16 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07  BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5 3.07 1.90 1.01 2.37 1.01  BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 2.46                             | 4.9     | 2     | 1.05     | 1.64       | 1.18      |        |
| INT DECK 1.  GIRDER  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3       | 2.40                             | 4.9     |       |          | 1.64       | 1.18      |        |
| GIRDER  1 15.97 3.19 1.05 8.72 1.05 2 12.70 2.70 1.01 7.95 1.01 3 10.53 2.07 1.15 7.12 1.15 4 8.73 1.91 1.05 5.99 1.05  INT DECK 2.  GIRDER  1 10.63 2.09 1.16 7.19 1.16 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07  BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5 5 3.07 1.90 1.01 2.37 1.01  BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  | 4.9     | 2     | 1.05     | 1.64       | 1.18      |        |
| 3 10.53 2.07 1.15 7.12 1.15 4 8.73 1.91 1.05 5.99 1.05 INT DECK 2.  GIRDER  1 10.63 2.09 1.16 7.19 1.16 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07 BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5.55 3.07 1.90 1.01 2.37 1.01 BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2.37 BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2.37 1.01 BOTTOM  STIFF.  1 16.26 2.04 1.14 8.90 1.14 3.02 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4 | GIRDER  |                                  |         |       |          |            |           |        |
| 3 10.53 2.07 1.15 7.12 1.15 4 8.73 1.91 1.05 5.99 1.05 INT DECK 2.  GIRDER  1 10.63 2.09 1.16 7.19 1.16 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07 BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5.55 3.07 1.90 1.01 2.37 1.01 BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2.37 BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2.37 1.01 BOTTOM  STIFF.  1 16.26 2.04 1.14 8.90 1.14 3.02 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4.94 3.14 4 |         | 15.97                            | 3.1     | 9     | 1.05     | 8.72       | 1.05      |        |
| INT DECK 2.  GIRDER  1 10.63 2.09 1.16 7.19 1.16 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07  BOTTOM  GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5 3.07 1.90 1.01 2.37 1.01  BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 12.70                            | 2.7     | 0     |          |            |           |        |
| INT DECK 2.  GIRDER  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>1  | 10.53                            | 2.0     | 7     | 1.15     |            |           |        |
| 1 10.63 2.09 1.16 7.19 1.16 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07 BOTTOM GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5 3.07 1.90 1.01 2.37 1.01 BOTTOM STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INT DEC |                                  | 1.9     | 1     | 1.05     | 5.99       | 1.05      |        |
| 2 9.50 2.16 1.03 6.73 1.03 3 9.42 1.86 1.07 7.05 1.07  BOTTOM GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5 3.07 1.90 1.01 2.37 1.01  BOTTOM STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 10 63                            | 2 0     | ٥     | 1 16     | 7 10       |           |        |
| 3 9.42 1.86 1.07 7.05 1.07  BOTTOM GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5.55 3.07 1.90 1.01 2.37 1.01  BOTTOM STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                  |         |       |          |            |           |        |
| BOTTOM GIRDER  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                  |         |       |          |            |           |        |
| GIRDER  1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5 3.07 1.90 1.01 2.37 1.01  BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 3.42                             | 1.0     | U     | 1.07     | 7.05       | 1.07      |        |
| 1 1.15 1559.32 2.39 1.44 3.02 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5.307 1.90 1.01 2.37 1.01 BOTTOM STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GIRDER  |                                  |         |       |          |            |           |        |
| 2 1.11 1152.26 2.41 1.43 3.04 3 4.30 6.01 4.90 5.84 4.90 4 5.55 4.32 3.14 4.94 3.14 5.55 3.07 1.90 1.01 2.37 1.01 BOTTOM STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 1.15                             | 1559.3  | 2     | 2.39     | 1.44       | 3.00      |        |
| 3 4.30 6.01 4.90 5.84 4.90<br>4 5.55 4.32 3.14 4.94 3.14<br>3.07 1.90 1.01 2.37 1.01<br>BOTTOM<br>STIFF.  1 16.26 2.04 1.14 9.11 1.14<br>2 15.52 2.03 1.14 8.90 1.14<br>3 13.66 2.02 1.13 8.22 1.13<br>4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2       |                                  |         |       |          |            |           |        |
| 4 5.55 4.32 3.14 4.94 3.14 5.55 3.07 1.90 1.01 2.37 1.01 BOTTOM STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                  |         |       |          |            |           |        |
| 5 3.07 1.90 1.01 2.37 1.01  BOTTOM  STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                  |         |       |          |            |           |        |
| STIFF.  1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 3.07                             | 1.9     | 0     | 1.01     |            |           |        |
| 1     16.26     2.04     1.14     9.11     1.14       2     15.52     2.03     1.14     8.90     1.14       3     13.66     2.02     1.13     8.22     1.13       4     13.88     2.06     1.15     8.35     1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                  |         |       |          |            |           |        |
| 2 15.52 2.03 1.14 8.90 1.14<br>3 13.66 2.02 1.13 8.22 1.13<br>4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | , , , , ,                        |         |       |          |            |           |        |
| 3 13.66 2.02 1.13 8.22 1.13<br>4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                  |         |       |          |            |           |        |
| 4 13.88 2.06 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                  |         |       |          |            |           |        |
| 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                  |         |       |          |            |           |        |
| 2.00 2.00 1.15 8.35 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                  |         |       |          |            |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J       | 73.00                            | 2.0     | o .   | 1.12     | 8.35       | 1.15      |        |

PRINTED REPORT NO. 11 - LONGITUDINAL BULKHEADS

NUMBER OF LONG BHD 0

PRINTED REPORT NO. 12 - TRANSVERSE BULKHEADS TRANS BHD MTRL TYPE-HTS

| DENSIT<br>YIELD<br>MAX PR | Y, LBM/F'<br>STRENGTH<br>IMARY ST | , KSI<br>RENGTH, KS | SI    | 29600.0<br>489.02<br>45.00<br>21.28<br>38.00 |           |        |
|---------------------------|-----------------------------------|---------------------|-------|----------------------------------------------|-----------|--------|
| HULL LOA                  | DS IND-C                          | ALC                 |       |                                              |           |        |
|                           |                                   |                     | MAX   | MIN                                          |           |        |
| STIFFENE                  | R SPACING                         | G, IN               | 24.00 | 24.00                                        |           |        |
| SEGMENT                   | GEOMETRY                          |                     |       |                                              |           |        |
|                           | NO                                | DE COORD,           | FT    |                                              | SCND. LO. | AD, FT |
| SEG                       | YUPR                              | ZUPR                | YLWR  | ZLWR                                         | HEAD1     | HEAD2  |
| 1                         | 0.00                              | 30.01               | 0.00  | 20.00                                        | 21.57     |        |
| 2                         | 0.00                              | 20.00               | 0.00  | 12.25                                        | 27.62     |        |
|                           |                                   |                     |       | 4.50                                         |           |        |

| SEGMENT                   | SCANTLING                                                       |                                                                  |                                                              |                                                    |             |                                            |                              |
|---------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-------------|--------------------------------------------|------------------------------|
|                           |                                                                 | S                                                                | CANTLINGS                                                    | OF STIFF                                           | ENED PLATI  | S                                          | CDAGING                      |
| SEG                       |                                                                 | -INXTNXTN                                                        | /TN                                                          |                                                    | NO ST       | OF PLATE (FF TK, IN 0.1875 0.1875 0.1875   | SPACING                      |
| 1 *F                      | 7.685X                                                          | 3.940X                                                           | 0.170/                                                       | 0.205                                              | 6 16        | 0.1875                                     | 24.02                        |
| 2 *R                      | 5.735X                                                          | 3.970X                                                           | 0.200/                                                       | 0.225                                              | 5 15        | 0.1875                                     | 23.25                        |
| 3 *F                      | 7.685X                                                          | 3.940X                                                           | 0.170/                                                       | 0.205                                              | 6 15        | 0.1875                                     | 23.25                        |
| NOTE                      | . T DIM                                                         | DO FOR FA                                                        | DKTCHIED S                                                   | CARPL                                              |             |                                            |                              |
|                           | *R STAN                                                         | DS FOR RO                                                        | LLED SHAPE                                                   |                                                    |             |                                            |                              |
| SEGMENT                   | PROPERTI                                                        | ES                                                               |                                                              |                                                    |             |                                            |                              |
| _                         |                                                                 | DDO                                                              | PERTIES OF                                                   | STIFFEN                                            | ED PLATES-  |                                            |                              |
|                           | AREA                                                            |                                                                  | N.A. TO                                                      | SEC                                                | MOD         | WT/FT<br>LBF/FT<br>22.46<br>21.73<br>21.97 | SMEAR                        |
|                           | TOTAL                                                           | SHEAR                                                            | PLATE                                                        | PLATE                                              | E FLANGE    | WT/FT                                      | RATIO                        |
| SEG                       | IN2                                                             | IN2                                                              | IN                                                           | IN                                                 | 3 IN3       | LBF/FT                                     |                              |
| 1                         | 6.61                                                            | 1.37                                                             | 1.83                                                         | 31.02                                              | 2 9.09      | 22.46                                      | 0.47                         |
| 3                         | 6.40                                                            | 1.23                                                             | 1.45                                                         | 22.02                                              | 7.00        | 21.73                                      | 0.47                         |
| •                         | 0.17                                                            | 1.57                                                             | 1.07                                                         | 50.1-                                              | ± 3.07      | 21.51                                      | 0.40                         |
|                           |                                                                 | STREN                                                            | GTH AND ST                                                   | RESSES                                             |             |                                            |                              |
|                           |                                                                 |                                                                  | DESIGN LO                                                    |                                                    |             |                                            |                              |
|                           | LOCAL                                                           | STRESS                                                           |                                                              | -STRENGT                                           | H           |                                            |                              |
|                           | KSI                                                             | SHEAR                                                            | BUCKL.<br>KSI                                                | ULTIMAT                                            | LE COLOMN   |                                            |                              |
| SEG                       |                                                                 |                                                                  |                                                              |                                                    |             |                                            |                              |
| 1                         | 35.16                                                           | 8.51                                                             | 10.86                                                        | 22.41                                              | 35.78       |                                            |                              |
| 2                         | 37.91                                                           | 9.78                                                             | 10.86                                                        | 22.41                                              | 35.78       |                                            |                              |
| 3                         | 34.13                                                           | 11.54                                                            | 10.86<br>10.86<br>10.86                                      | 22.41                                              | 35.78       |                                            |                              |
|                           |                                                                 |                                                                  |                                                              |                                                    |             |                                            |                              |
|                           |                                                                 |                                                                  |                                                              | OR OF SAL<br>T DESIGN                              |             |                                            | -                            |
|                           | PLATE-                                                          | -STIFFE                                                          |                                                              |                                                    |             |                                            | _                            |
|                           |                                                                 |                                                                  |                                                              |                                                    |             | NSION+BEND                                 |                              |
| SEG                       |                                                                 |                                                                  |                                                              |                                                    |             |                                            |                              |
| 1                         | 3.90                                                            | 2.6                                                              | 8 1.                                                         | 08                                                 | 5.11        | 1.73                                       |                              |
| 2<br>3                    | 3.90                                                            | 2.3                                                              | 8 1.<br>3 1.<br>8 1.                                         | 00                                                 | 5.11        | 1.73                                       |                              |
| J                         | 3.50                                                            | 1.9                                                              |                                                              | 11                                                 | 3.11        | 1.73                                       |                              |
| PRINTED                   | REPORT NO                                                       | o. 13 – s                                                        | IDE AND BO                                                   | TTOM FRAM                                          | ÆS          |                                            |                              |
| EDAME C                   | PACING, F                                                       | ,                                                                |                                                              |                                                    |             |                                            |                              |
| FRAME 5                   | FACING, F                                                       | ı                                                                | 8.00                                                         |                                                    |             |                                            |                              |
| SEGMENT                   | GEOMETRY                                                        |                                                                  |                                                              |                                                    |             |                                            |                              |
|                           | NO                                                              | DE COORD,                                                        | FT                                                           |                                                    | SCND.       | LOAD, FT                                   |                              |
| SEG                       | YUPR                                                            | ZUPR                                                             | YLWR                                                         | ZLWR                                               | HEAD1       | HEAD2                                      |                              |
| SIDE FRA                  | AME                                                             |                                                                  |                                                              |                                                    |             |                                            |                              |
| 1                         | 27.44                                                           | 30.01                                                            | 25.91                                                        | 20 00                                              | 14 01       |                                            |                              |
| 2                         | 25.91                                                           | 20.00                                                            | 25.91<br>24.58<br>18.61                                      | 12.25                                              | 21.76       |                                            |                              |
| 3                         | 24.58                                                           | 12.25                                                            | 18.61                                                        | 4.50                                               | 29.51       |                                            |                              |
| BOT FRAM                  | ME                                                              |                                                                  |                                                              |                                                    |             |                                            |                              |
| SEG                       | 10 61                                                           | 4 50                                                             |                                                              |                                                    |             |                                            |                              |
| 2                         | 16.01                                                           | 4.50                                                             | 16.46<br>12.35<br>8.23                                       | 3.44                                               | 30.57       |                                            |                              |
| 3                         | 12.35                                                           | 2.00                                                             | 8.23                                                         | 0.00                                               | 32.01       |                                            |                              |
| 4                         | 0.23                                                            | 0.99                                                             | 4.12                                                         | 0.31                                               | 33.70       |                                            |                              |
| 5                         | 4.12                                                            | 0.31                                                             | 0.00                                                         | 0.00                                               | 34.01       |                                            |                              |
|                           |                                                                 |                                                                  |                                                              |                                                    |             |                                            |                              |
| SEGMENT                   | SCANTLING                                                       |                                                                  | ראווייד דוורכ                                                | OF CHIEFE                                          | יאופר חדאות | S                                          |                              |
|                           |                                                                 |                                                                  |                                                              |                                                    |             | PLATE                                      | SPAN                         |
|                           |                                                                 | -INXINXIN                                                        | RS<br>/IN                                                    |                                                    | NO          | TK, IN                                     | FT                           |
| SIDE FRA                  |                                                                 |                                                                  |                                                              |                                                    |             | •                                          |                              |
| SEG                       |                                                                 |                                                                  |                                                              |                                                    |             |                                            |                              |
| 3 +z.                     | 11.810X                                                         | 4.010X                                                           | 0.235/                                                       | 0.350                                              | 35.         | 0.2500                                     | 10.01                        |
| 3 *F                      | 13.405Y                                                         | 5 000Y                                                           | 0.235/                                                       | 0.350                                              | 35.         | 0.2500<br>0.2500<br>0.2813                 | 7.75                         |
| BOT FRAM                  | ALL TO TAGE                                                     | J.000A                                                           | 0.2307                                                       | 0.333                                              | 40.         | 0.2013                                     | 1.75                         |
| SEG                       | 11.                                                             |                                                                  |                                                              |                                                    |             |                                            |                              |
| 1                         |                                                                 |                                                                  |                                                              |                                                    |             |                                            |                              |
| Ţ                         |                                                                 | 6.372X                                                           | 0.219/                                                       | 0.219                                              |             | 0.3438                                     | 2.39                         |
| 2                         |                                                                 | 6.372X<br>12.500X                                                | 0.219/                                                       | 0.219                                              |             | 0.3438<br>0.3438                           | 4.36                         |
| 2 3                       |                                                                 | 6.372X<br>12.500X<br>12.500X                                     | 0.219/<br>0.250/<br>0.250/                                   | 0.219<br>0.250<br>0.250                            |             | 0.3438                                     | 4.36                         |
| 2<br>3<br>4<br>5          |                                                                 | 6.372X<br>12.500X<br>12.500X<br>12.500X                          | 0.219/<br>0.250/<br>0.250/<br>0.250/                         | 0.219<br>0.250<br>0.250<br>0.250                   |             | 0.3438<br>0.3438<br>0.3438                 | 4.36<br>4.24<br>4.17         |
| 2<br>3<br>4<br>5<br>Note: | 6.372X<br>21.388X<br>36.058X<br>46.180X<br>52.138X              | 6.372X<br>12.500X<br>12.500X<br>12.500X<br>12.500X<br>OS FOR FAI | 0.219/<br>0.250/<br>0.250/<br>0.250/<br>0.250/<br>BRICATED S | 0.219<br>0.250<br>0.250<br>0.250<br>0.250          |             | 0.3438<br>0.3438<br>0.3438                 | 4.36                         |
| NOTE                      | 6.372X<br>21.388X<br>36.058X<br>46.180X<br>52.138X<br>*F STANI  | OS FOR FA                                                        | 0.219/<br>0.250/<br>0.250/<br>0.250/<br>0.250/<br>BRICATED S | 0.219<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250 |             | 0.3438<br>0.3438<br>0.3438                 | 4.36<br>4.24<br>4.17         |
| SEGMENT                   | 6.372X<br>21.388X<br>36.058X<br>46.180X<br>52.138X<br>*F STANK  | es for fa                                                        | BRICATED S                                                   | HAPE                                               |             | 0.3438<br>0.3438<br>0.3438<br>0.3438       | 4.36<br>4.24<br>4.17<br>4.13 |
| SEGMENT                   | 6.372X<br>21.388X<br>36.058X<br>46.180X<br>52.138X<br>**F STANI | S FOR FAI                                                        | BRICATED S                                                   | HAPE<br>STIFFENE                                   | D PLATES-   | 0.3438<br>0.3438<br>0.3438<br>0.3438       | 4.36<br>4.24<br>4.17<br>4.13 |
| SEGMENT                   | 6.372X<br>21.388X<br>36.058X<br>46.180X<br>52.138X<br>**F STANI | S FOR FAI                                                        | BRICATED S                                                   | HAPE<br>STIFFENE                                   | D PLATES-   | 0.3438<br>0.3438<br>0.3438<br>0.3438       | 4.36<br>4.24<br>4.17<br>4.13 |
| SEGMENT                   | 6.372X<br>21.388X<br>36.058X<br>46.180X<br>52.138X<br>**F STANI | S FOR FAI                                                        | BRICATED S                                                   | HAPE<br>STIFFENE                                   | D PLATES-   | 0.3438<br>0.3438<br>0.3438<br>0.3438       | 4.36<br>4.24<br>4.17<br>4.13 |

| SIDE F | RAME  |       |       |        |        |        |      |
|--------|-------|-------|-------|--------|--------|--------|------|
| SEG    |       |       |       |        |        |        |      |
| 1      | 28.18 | 2.92  | 1.32  | 225.92 | 26.95  | 95.70  | 0.17 |
| 2      | 28.18 | 2.92  | 1.32  | 225.92 | 26.95  | 95.70  | 0.17 |
| 3      | 31.76 | 3.22  | 1.53  | 290.81 | 35.58  | 107.87 | 0.18 |
| BOT FR | AME   |       |       |        |        |        |      |
| SEG    |       |       |       |        |        |        |      |
| 1      | 4.98  | 1.52  | 2.98  | 14.47  | 10.88  | 16.91  | 0.18 |
| 2      | 12.77 | 5.50  | 10.03 | 106.10 | 89.02  | 43.37  | 0.18 |
| 3      | 16.44 | 9.16  | 17.07 | 199.36 | 173.70 | 55.82  | 0.18 |
| 4      | 18.97 | 11.69 | 21.99 | 273.87 | 242.96 | 64.41  | 0.18 |
| 5      | 20.46 | 13.18 | 24.90 | 321.64 | 287.80 | 69.47  | 0.18 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ampras -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STRESS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND FACTOR<br>KSI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OF SAFET<br>FOS<br>BENDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y<br>                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| SIDE FRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.06<br>1.13<br>1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.84                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| BOT FRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.55<br>vn:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.25                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.84                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.48                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.80                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.18<br>4.88<br>9.63<br>13.49<br>16.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.36<br>8.31                                                                                                                                                            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ECK BEAMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| FRAME SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PACING, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GEOMETRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| SEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DE COORD,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ZOB                                                                                                                                                                     | SCND.                                                                                                                     | LOAD, FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                 |
| WET DECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                           | HEAD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.01                                                                                                                                                                   | 8.40                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.01                                                                                                                                                                   | 8.40                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.01                                                                                                                                                                   | 8.40                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.01<br>30.01<br>30.01<br>30.01                                                                                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.00<br>20.00<br>20.00<br>20.00                                                                                                                                        | 2.70                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.00                                                                                                                                                                   | 2.70                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.00                                                                                                                                                                   | 2.81                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| SEC NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00<br>6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.25<br>12.25<br>12.25                                                                                                                                                 | 2.70                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.25                                                                                                                                                                   | 2.70                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.20                                                                                                                                                                   | 2.70                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SCANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SCANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gs<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CANTLINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OF STIFFE                                                                                                                                                               | NED PLATE                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SCANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gs<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CANTLINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OF STIFFE                                                                                                                                                               | NED PLATE                                                                                                                 | S<br>PLATE<br>TK. IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SPAN<br>FT                                                                                        |
| SEGMENT WET DECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SCANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GS<br>S<br>STIFFENE<br>-INXINXIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CANTLINGS<br>RS<br>/IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OF STIFFE                                                                                                                                                               | NED PLATE<br>CATLG<br>NO                                                                                                  | PLATE<br>TK, IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPAN<br>FT                                                                                        |
| SEGMENT WET DECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SCANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GS<br>S<br>STIFFENE<br>-INXINXIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CANTLINGS<br>RS<br>/IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OF STIFFE                                                                                                                                                               | NED PLATE<br>CATLG<br>NO                                                                                                  | PLATE<br>TK, IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPAN<br>FT                                                                                        |
| SEGMENT WET DECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SCANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GS<br>S<br>STIFFENE<br>-INXINXIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CANTLINGS<br>RS<br>/IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OF STIFFE                                                                                                                                                               | NED PLATE<br>CATLG<br>NO                                                                                                  | PLATE<br>TK, IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPAN<br>FT                                                                                        |
| SEGMENT WET DECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SCANTLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GS<br>S<br>STIFFENE<br>-INXINXIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CANTLINGS<br>RS<br>/IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OF STIFFE                                                                                                                                                               | NED PLATE<br>CATLG<br>NO                                                                                                  | PLATE<br>TK, IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPAN<br>FT                                                                                        |
| WET DECK<br>SEG<br>1 *R<br>2 *R<br>3 *R<br>4 *R<br>DECK NO.<br>SEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.735x<br>5.735x<br>5.735x<br>5.735x<br>5.735x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GS<br>S<br>STIFFENE<br>-INXINXIN<br>3.970X<br>3.970X<br>3.970X<br>3.970X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CANTLINGS<br>RS<br>/IN<br>0.200/<br>0.200/<br>0.200/<br>0.200/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.225<br>0.225<br>0.225<br>0.225                                                                                                                                        | NED PLATE CATLG NO 5. 5. 5.                                                                                               | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.3438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86                                                        |
| WET DECK<br>SEG<br>1 *R<br>2 *R<br>3 *R<br>4 *R<br>DECK NO.<br>SEG<br>1 *R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.735x<br>5.735x<br>5.735x<br>5.735x<br>5.735x<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GS<br>S<br>STIFFENE<br>-INXINXIN<br>3.970X<br>3.970X<br>3.970X<br>3.970X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CANTLINGS<br>RS<br>/IN<br>0.200/<br>0.200/<br>0.200/<br>0.200/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.225<br>0.225<br>0.225<br>0.225                                                                                                                                        | NED PLATE CATLG NO 5. 5. 5.                                                                                               | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.3438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86                                                        |
| WET DECK<br>SEG<br>1 *R<br>2 *R<br>3 *R<br>4 *R<br>DECK NO.<br>SEG<br>1 *R<br>2 *R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.735x<br>5.735x<br>5.735x<br>5.735x<br>5.735x<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GS<br>S<br>STIFFENE<br>-INXINXIN<br>3.970X<br>3.970X<br>3.970X<br>3.970X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CANTLINGS<br>RS<br>/IN<br>0.200/<br>0.200/<br>0.200/<br>0.200/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.225<br>0.225<br>0.225<br>0.225                                                                                                                                        | NED PLATE CATLG NO  5. 5. 5. 1.                                                                                           | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.3438<br>0.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86                                                |
| WET DECK<br>SEG<br>1 *R<br>2 *R<br>3 *R<br>4 *R<br>DECK NO.<br>SEG<br>1 *R<br>2 *R<br>3 *R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CANTLINGS<br>RS<br>/IN<br>0.200/<br>0.200/<br>0.200/<br>0.200/<br>0.170/<br>0.170/<br>0.170/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.225<br>0.225<br>0.225<br>0.225<br>0.225                                                                                                                               | NED PLATE CATLG NO 5. 5. 5. 5. 1. 1. 1. 1.                                                                                | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.3438<br>0.2188<br>0.2188<br>0.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86                                        |
| WET DECK<br>SEG<br>1 *R<br>2 *R<br>3 *R<br>4 *R<br>DECK NO.<br>SEG<br>1 *R<br>2 *R<br>3 *R<br>4 *R<br>DECK NO.<br>SEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>3.745X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CANTLINGS RS /IN 0.200/ 0.200/ 0.200/ 0.200/ 0.170/ 0.170/ 0.170/ 0.170/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.225                                                                                                                      | NED PLATE CATLG NO  5. 5. 5. 1. 1. 1.                                                                                     | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.3438<br>0.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86                                                |
| WET DECK<br>SEG<br>1 *R<br>2 *R<br>3 *R<br>4 *R<br>DECK NO.<br>SEG<br>1 *R<br>2 *R<br>3 *R<br>4 *R<br>DECK NO.<br>SEG<br>1 *R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>3.745X<br>3.745X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CANTLINGS<br>RS<br>/IN<br>0.200/<br>0.200/<br>0.200/<br>0.200/<br>0.170/<br>0.170/<br>0.170/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205                                                                                                    | NED PLATE CATLG NO 5. 5. 5. 5. 1. 1. 1. 1. 1.                                                                             | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.3438<br>0.2188<br>0.2188<br>0.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>5.33                                |
| WET DECK SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CANTLINGS RS /IN 0.200/ 0.200/ 0.200/ 0.200/ 0.170/ 0.170/ 0.170/ 0.170/ 0.170/ 0.170/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205                                                                                                    | NED PLATE CATLG NO  5. 5. 5. 1. 1.                                                                                        | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.3438<br>0.2188<br>0.2188<br>0.2188<br>0.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>5.33                                |
| WET DECK<br>SEG<br>1 *R<br>2 *R<br>3 *R<br>4 *R<br>DECK NO.<br>SEG<br>1 *R<br>2 *R<br>3 *R<br>4 *R<br>DECK NO.<br>SEG<br>1 *R<br>2 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>3 *R<br>4 *R<br>4 *R<br>5 *R<br>5 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 *R<br>6 * | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>2<br>3.745X<br>2<br>3.745X<br>3.745X<br>5.685X<br>*F STANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5  | CANTLINGS RS /IN 0.200/ 0.200/ 0.200/ 0.170/ 0.170/ 0.170/ 0.170/ 0.170/ BRICATED S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205                                                                                  | NED PLATE CATLG NO  5. 5. 5. 1. 1.                                                                                        | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.3438<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>5.33                                |
| WET DECK SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *F NOTE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>3.745X<br>2<br>3.745X<br>2<br>3.745X<br>5.685X<br>*F STANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5.940X 5  | CANTLINGS<br>RS<br>/IN<br>0.200/<br>0.200/<br>0.200/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205                                                                                  | NED PLATE CATLG NO  5. 5. 5. 1. 1.                                                                                        | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.3438<br>0.2188<br>0.2188<br>0.2188<br>0.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>5.33                                |
| WET DECK SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *R 0 *R 0 *R 0 *R 0 *R 0 *R 0 *R 0 *R 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>2<br>3.745X<br>2<br>3.745X<br>2<br>3.745X<br>4.745X<br>2<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X<br>4.745X | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3  | CANTLINGS RS /IN 0.200/ 0.200/ 0.200/ 0.170/ 0.170/ 0.170/ 0.170/ 0.170/ BRICATED S LLED SHAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205                                                                                  | NED PLATE CATLG NO  5. 5. 5. 1. 1. 1. 1. 2. 3.                                                                            | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>5.33<br>6.86<br>6.86<br>10.86               |
| WET DECK SEG  1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *F NOTE: SEGMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>3.745X<br>2<br>3.745X<br>3.745X<br>4.745X<br>5.685X<br>*F STANI*R STANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3  | CANTLINGS RS /IN 0.200/ 0.200/ 0.200/ 0.170/ 0.170/ 0.170/ 0.170/ 0.170/ BRICATED S LLED SHAPE PERTIES OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205                                                                                  | NED PLATE CATLG NO  5. 5. 5. 1. 1. 1. 1. 1. 2. 3.                                                                         | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>5.33<br>6.86<br>10.86                       |
| WET DECK SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *F NOTE: SEGMENT SEG WET DECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>3.745X<br>2<br>3.745X<br>2<br>3.745X<br>5.685X<br>*F STANI<br>*R STANI<br>PROPERTIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3  | CANTLINGS RS /IN 0.200/ 0.200/ 0.200/ 0.170/ 0.170/ 0.170/ 0.170/ 0.170/ BRICATED S LLED SHAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205                                                                                  | NED PLATE CATLG NO  5. 5. 5. 1. 1. 1. 1. 1. 1. FLANGE                                                                     | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>5.33<br>6.86<br>10.86                       |
| WET DECK SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *R 0 *R 0 *R 0 *R 0 *R 0 *R 0 *R 0 *R 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.735x<br>5.735x<br>5.735x<br>5.735x<br>5.735x<br>1<br>3.745x<br>3.745x<br>3.745x<br>2<br>3.745x<br>2<br>3.745x<br>4.745x<br>5.685x<br>*F STANI<br>*R STANI<br>PROPERTII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X CS FOR FAI DS FOR ROLL ESPROLL SHEAR IN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CANTLINGS RS /IN 0.200/ 0.200/ 0.200/ 0.200/ 0.170/ 0.170/ 0.170/ 0.170/ 0.170/ BRICATED S LLED SHAPE PERTIES OF N.A. TO PLATE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205<br>0.215<br>SHAPE                                                                | NED PLATE CATLG NO  5. 5. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 3.                                                          | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SPAN<br>FT<br>6.86<br>6.86<br>6.86<br>6.86<br>6.86<br>5.33<br>6.86<br>6.86<br>10.86               |
| WET DECK SEG  1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *F NOTE: SEGMENT SEG WET DECK SEG 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>3.745X<br>2<br>3.745X<br>5.685X<br>*F STANI<br>*R STANI<br>PROPERTIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3  | CANTLINGS RS /IN 0.200/ 0.200/ 0.200/ 0.200/ 0.170/ 0.170/ 0.170/ 0.170/ 0.170/ BRICATED S LLED SHAPE PERTIES OF N.A. TO PLATE IN 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205<br>0.215<br>SHAPE  STIFFENEL SEC PLATE IN3                                       | NED PLATE CATLG NO  5. 5. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 3.                                                                | PLATE<br>TK, IN  0.3438 0.3438 0.3438 0.3438 0.2188 0.2188 0.2188 0.2188 0.2188 0.2188 0.2188 1.2188 0.2188 1.2188 1.2188 1.2188 1.2188 1.2188 1.2188 1.2188 1.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPAN<br>FT  6.86 6.86 6.86 6.86 6.86 5.33  6.86 6.86 10.86                                        |
| WET DECK SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *F NOTE: SEGMENT SEG WET DECK SEG 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.735x<br>5.735x<br>5.735x<br>5.735x<br>5.735x<br>1<br>3.745x<br>3.745x<br>3.745x<br>2<br>3.745x<br>2<br>3.745x<br>4.745x<br>5.685x<br>*F STANI<br>*R STANI<br>PROPERTII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X CS FOR FAI DS FOR ROLL ESPROLL SHEAR IN2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CANTLINGS RS /IN 0.200/ 0.200/ 0.200/ 0.200/ 0.170/ 0.170/ 0.170/ 0.170/ 0.170/ BRICATED S LLED SHAPE PERTIES OF N.A. TO PLATE IN 0.42 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205<br>0.215<br>SHAPE  STIFFENEL SEC PLATE IN3  103.33 103.33               | NED PLATE CATLG NO  5. 5. 5. 1. 1. 1. 1. 1. 1. 7.46 7.46                                                                  | PLATE<br>TK, IN  0.3438 0.3438 0.3438 0.3438 0.2188 0.2188 0.2188 0.2188 0.2188 0.2188 0.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPAN<br>FT  6.86 6.86 6.86 6.86 6.86 5.33  6.86 6.86 10.86  SMEAR RATIO  0.06 0.06                |
| WET DECK SEG  1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *F NOTE: SEGMENT SEG WET DECK SEG 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>3.745X<br>2<br>3.745X<br>3.745X<br>4.745X<br>5.685X<br>*F STANI<br>*R STANI<br>PROPERTIN<br>————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3  | CANTLINGS RS /IN 0.200/ 0.200/ 0.200/ 0.200/ 0.170/ 0.170/ 0.170/ 0.170/ 0.170/ BRICATED S LLED SHAPE PERTIES OF N.A. TO PLATE IN 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205<br>0.215<br>SHAPE  STIFFENEL SEC PLATE IN3                                       | NED PLATE CATLG NO  5. 5. 5. 5. 1. 1. 1. 1. 1. 1. 1. 1. 7.46 7.46 7.46 7.46                                               | PLATE<br>TK, IN<br>0.3438<br>0.3438<br>0.3438<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>0.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188<br>1.2188 | SPAN<br>FT  6.86 6.86 6.86 6.86 6.86 5.33  6.86 6.86 10.86                                        |
| WET DECK SEG  1 *R 2 *R 3 *R 4 *R DECK NO. SEG  1 *R 2 *R 3 *R 4 *R DECK NO. SEG  1 *R 2 *R 3 *F NOTE:  SEGMENT  SEG  WET DECK SEG  1 2 3 4 DECK NO. SEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>3.745X<br>5.685XN<br>*F STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R STANI<br>*R                                                                                                                                                                                                    | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3  | 0.200/<br>0.200/<br>0.200/<br>0.200/<br>0.200/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/ | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205<br>0.215<br>SHAPE  STIFFENERSEC PLATE IN3  103.33 103.33 103.33         | NED PLATE CATLG NO  5. 5. 5. 1. 1. 1. 1. 1. 1. 1. 1. 7.46 7.46 7.46 7.46                                                  | PLATE<br>TK, IN  0.3438 0.3438 0.3438 0.3438 0.2188 0.2188 0.2188 0.2188 0.2188 0.2188 0.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPAN<br>FT  6.86 6.86 6.86 6.86 6.86 6.86 6.86 6.                                                 |
| WET DECK SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *F NOTE:  SEGMENT SEG WET DECK SEG 1 2 3 4 DECK NO. SEG 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>3.745X<br>3.745X<br>5.685X<br>*F STANI<br>PROPERTIN<br>PROPERTIN<br>1N2<br>35.04<br>35.04<br>35.04<br>35.04<br>35.04<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3. | CANTLINGS RS /IN 0.200/ 0.200/ 0.200/ 0.200/ 0.170/ 0.170/ 0.170/ 0.170/ 0.170/ BRICATED S LLED SHAPE PERTIES OF N.A. TO PLATE IN  0.42 0.42 0.42 0.42 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205<br>0.215<br>SHAPE  STIFFENEL SEC PLATE IN3  103.33 103.33 103.33 103.33 | NED PLATE CATLG NO  5. 5. 5. 5. 1. 1. 1. 1. 1. 1. 1. 1. 3.  PLATES MOD FLANGE IN3  7.46 7.46 7.46 7.46 7.46 7.46 7.46 7.4 | PLATE<br>TK, IN  0.3438 0.3438 0.3438 0.3438 0.2188 0.2188 0.2188 0.2188 0.2188 0.2188 0.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188 10.2188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPAN FT  6.86 6.86 6.86 6.86 6.86 5.33  6.86 6.86 10.86  SMEAR RATIO  0.06 0.06 0.06 0.06         |
| WET DECK SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *R 4 *R DECK NO. SEG 1 *R 2 *R 3 *F NOTE:  SEGMENT SEG WET DECK SEG 1 2 3 4 DECK NO. SEG 1 2 3 4 DECK NO. SEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.735X<br>5.735X<br>5.735X<br>5.735X<br>5.735X<br>1<br>3.745X<br>3.745X<br>3.745X<br>3.745X<br>3.745X<br>5.685X<br>*F STANI<br>PROPERTIN<br>PROPERTIN<br>1N2<br>35.04<br>35.04<br>35.04<br>35.04<br>35.04<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GSS STIFFENE -INXINXIN 3.970X 3.970X 3.970X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3.940X 3  | 0.200/<br>0.200/<br>0.200/<br>0.200/<br>0.200/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.170/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/<br>0.00/ | 0.225<br>0.225<br>0.225<br>0.225<br>0.225<br>0.205<br>0.205<br>0.205<br>0.205<br>0.205<br>0.215<br>SHAPE  STIFFENERSEC PLATE IN3  103.33 103.33 103.33                  | NED PLATE CATLG NO  5. 5. 5. 5. 1. 1. 1. 1. 1. 2. PLATES MOD FLANGE IN3  7.46 7.46 7.46 7.46 7.46 7.46 7.46 7.4           | PLATE<br>TK, IN  0.3438 0.3438 0.3438 0.3438 0.2188 0.2188 0.2188 0.2188 0.2188 0.2188 1.2188 0.2188 1.2188 1.2188 1.2188 1.2188 1.2188 1.2188 1.2188 1.2188 1.2188 1.2188 1.2288 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.2388 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.23888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.238888 1.2388888 1.2388888 1.23888888 1.23888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SPAN<br>FT  6.86 6.86 6.86 6.86 6.86 6.86 5.33  6.86 6.86 10.86  SMEAR RATIO  0.06 0.06 0.06 0.06 |

| 28.44 | 0.72           | 0.30                     | 51.70                              | 3.93                                           | 96.60                                                    | 0.05                                                                 |
|-------|----------------|--------------------------|------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|
| 0. 2  |                |                          |                                    |                                                |                                                          |                                                                      |
|       |                |                          |                                    |                                                |                                                          |                                                                      |
| 22.44 | 0.71           | 0.31                     | 48.67                              | 3.88                                           | 76.22                                                    | 0.07                                                                 |
| 22.44 | 0.71           | 0.31                     | 48.67                              | 3.88                                           | 76.22                                                    | 0.07                                                                 |
| 22.81 | 1.04           | 0.45                     | 83.34                              | 6.66                                           | 77.48                                                    | 0.09                                                                 |
|       | 22.44<br>22.44 | 22.44 0.71<br>22.44 0.71 | 22.44 0.71 0.31<br>22.44 0.71 0.31 | 22.44 0.71 0.31 48.67<br>22.44 0.71 0.31 48.67 | 22.44 0.71 0.31 48.67 3.88<br>22.44 0.71 0.31 48.67 3.88 | 22.44 0.71 0.31 48.67 3.88 76.22<br>22.44 0.71 0.31 48.67 3.88 76.22 |

|                          | STRESS AN                        | D FACTOR                                       | OF SAFET                            | Y                            |                                                                                                                                               |       |
|--------------------------|----------------------------------|------------------------------------------------|-------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                          | -STRESS,<br>BENDING              | KSI-<br>SHEAR                                  | FO<br>BENDING                       | S                            |                                                                                                                                               |       |
| WET DEC                  | CK                               |                                                |                                     |                              |                                                                                                                                               |       |
| 1                        | 35.07<br>35.07<br>35.07<br>35.07 | 11.76                                          | 1.08                                | 1.94                         |                                                                                                                                               |       |
| 2                        | 35.07                            | 11.76                                          | 1.08                                | 1.94                         |                                                                                                                                               |       |
| 3                        | 35.07                            | 11.76                                          | 1.08                                | 1.94                         |                                                                                                                                               |       |
| DECK N                   | 35.07                            | 11.76                                          | 1.08                                | 1.94                         |                                                                                                                                               |       |
| SEG                      | . 1                              |                                                |                                     |                              |                                                                                                                                               |       |
| 1                        | 21.90<br>21.90<br>21.90<br>13.52 | 6.74                                           | 1.74                                | 3.38                         |                                                                                                                                               |       |
| 2                        | 21.90                            | 6.74                                           | 1.74                                | 3.38                         |                                                                                                                                               |       |
| 4                        | 13.52                            | 5.36                                           | 2 81                                | 3.38                         |                                                                                                                                               |       |
| SEG NC                   | )· Z                             |                                                |                                     |                              |                                                                                                                                               |       |
| 1                        | 21.90                            | 6.74                                           | 1.74                                | 3.38                         |                                                                                                                                               |       |
| 2                        | 21.90                            | 6.74                                           | 1.74                                | 3.38                         |                                                                                                                                               |       |
| 3                        | 21.90<br>21.90<br>31.93          | 7.27                                           | 1.19                                | 3.14                         |                                                                                                                                               |       |
| PRINTER                  | REPORT N                         | D. 15 - I                                      | LONGITUDII                          | NAL BU                       | LKHEAD VERTICAL STIFFENERS                                                                                                                    |       |
| NUMBE                    | R OF LONG                        | BHD 0                                          |                                     |                              |                                                                                                                                               |       |
|                          |                                  |                                                |                                     |                              | DULE - 2/11/95 10.47.01. DTATSHIFT-FINREP)                                                                                                    |       |
| ABOUT F  ** WARN FWD FIN | O0.74<br>'IN ROOT                | FT (UPWA<br>10.00 DE<br>ENDAGE MO<br>EN RESIZE | ARD POSITI<br>EG (CLOCK<br>DDULE ** | IVE) AN<br>WISE PO<br>(W-FIN | FTING FIN ROOT ND BY ROTATING DSITIVE). SPANRESIZE-FINRES)                                                                                    |       |
| PRINTED                  | REPORT NO                        | ). 1 - ST                                      | MMARY                               |                              |                                                                                                                                               |       |
| APPENDA                  | GE DISP. T                       | TON.                                           | 97 6                                |                              |                                                                                                                                               |       |
| SHELL D                  | GE DISP, I<br>ISP, LTON          | 31014                                          | 15.0                                |                              |                                                                                                                                               |       |
|                          |                                  |                                                | 13.0                                |                              | UDDER TYPE IND O RUDDERS OF RUDDER CHORD, FT UDDER THK, FT UDDER SPAN, FT UDDER PROJECTED AREA, FT2 UDDER DISP, LTON OF SIZE IND OF FIN PAIRS |       |
| SKEG IN                  | D                                |                                                | PRESENT                             | RU                           | JDDER TYPE IND                                                                                                                                | SPADE |
| SKEG DI                  | SP, LTON                         |                                                | 9.9                                 | NO                           | RUDDERS                                                                                                                                       | 2     |
| SKEG AF                  | T LIMIT/LE                       | 3P                                             | 0.8591                              | ΑV                           | G RUDDER CHORD, FT                                                                                                                            | 9.93  |
| SKEG TH                  | K, FT                            |                                                | 1.00                                | RU                           | JDDER THK, FT                                                                                                                                 | 1.11  |
| SKEG PR                  | OJECTED AR                       | EA, FT2                                        | 346.4                               | RU                           | JDDER SPAN, FT                                                                                                                                | 12.08 |
| BILGE K                  | EET. TND                         |                                                | DDDCHNM                             | RI                           | JDDER PROJECTED AREA, FT2                                                                                                                     | 120.0 |
| BILGE K                  | EEL DISP                         | T.TON                                          | FRESENT                             | K                            | DDDER DISP, LTON                                                                                                                              | 5.1   |
| BILGE K                  | EEL LGTH.                        | FT                                             | 80 78                               | דים                          | N CIPE IND                                                                                                                                    |       |
|                          |                                  |                                                | 03.70                               | NC<br>E I                    | N SIZE IND                                                                                                                                    | CALC  |
| SHAFT S                  | UPPORT TYP                       | E IND                                          | POD                                 | שיק                          | D FIN                                                                                                                                         | 1     |
| CIMIL 1                  | OFFORT DIS                       | P, LTON                                        | 44.6                                | _ ,                          | CHORD, FT                                                                                                                                     | 10.64 |
| SHAFT D                  | ISP, LTON                        | •                                              | 0.0                                 |                              | THK, FT                                                                                                                                       | 1.60  |
|                          |                                  |                                                |                                     |                              | SPAN, FT                                                                                                                                      | 9.79  |
| PROP TY                  |                                  |                                                | FP                                  |                              | PROJECTED AREA, FT2                                                                                                                           | 104.2 |
|                          | ADE DISP,                        | LTON                                           | 0.8                                 |                              | DISP, LTON (PER PAIR)                                                                                                                         | 6.3   |
| NO PROP                  |                                  |                                                | 2                                   | AF                           | T FIN                                                                                                                                         |       |
| PROP DI                  | A, FT                            |                                                | 11.67                               |                              | CHORD, FT                                                                                                                                     |       |
| CONTAD S                 | OME TARE                         |                                                |                                     |                              | THK, FT                                                                                                                                       |       |
| SONAR D                  |                                  |                                                | NONE                                |                              | SPAN, FT                                                                                                                                      |       |
| SUMME D.                 | ISP, LTON                        |                                                | 0.0                                 |                              | PROJECTED AREA, FT2                                                                                                                           |       |
|                          |                                  |                                                |                                     |                              | DISP, LTON (PER PAIR)                                                                                                                         |       |

PRINTED REPORT NO. 2 - APPENDAGE BUOYANCY AND WEIGHT

|                |            | CENTER | OF BUOY | ANCY  |
|----------------|------------|--------|---------|-------|
| APPENDAGE      | DISP, LTON | X, FT  | Y, FT   | Z, FT |
|                | =======    | =====  |         | ===== |
| SHELL          | 15.0       | 195.70 | 0.00    | 9.65  |
| SKEG           | 9.9        | 295.83 | 0.00    | 2.54  |
| BILGE KEELS*   | 5.8        | 147.25 | 18.12   | 6.22  |
| PODS*          | 44.6       | 354.70 | 8.30    | 3.88  |
| PROP BLADES*   | 0.8        | 345.45 | 8.30    | 2.19  |
| RUDDERS*       | 5.1        | 372.88 | 8.30    | 7.00  |
| ROLL FIN PAIR* | 6.3        | 209.00 | 21.80   | 0.83  |
|                |            |        |         |       |
| TOTAL, LTON    | 87.6       |        |         |       |

\* TRANSVERSE C.B. PER SIDE IS SHOWN

SWBS114, SHLL APNDG, LTON 17.24 SWBS565, ROLL FINS, LTON 36.46

ASSET/MONOSC VERSION 3.3+ - RESISTANCE MODULE - 2/11/95 10.47.12.

PRINTED REPORT NO. 1 - SUMMARY

| RESID RESIST IND FRICTION LINE IND ENDUR DISP IND ENDUR CONFIG IND SONAR DRAG IND SKEG IND | ITTC<br>AVG DISP   | SHAFT SUPPORT TYP<br>PRPLN SYS RESIST<br>PROP TYPE IND<br>SONAR DOME IND | E IND POD IND CALC FP NONE       |
|--------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------|----------------------------------|
| FULL LOAD WT, LTON AVG ENDUR DISP, LTON USABLE FUEL WT, LTON NO RUDDERS NO FIN PAIRS       | 394.3              | TRAILSHAFT PWR FA                                                        | C                                |
| PROP TIP CLEAR RATIO                                                                       | 0.25               | MAX SPEED                                                                | 0.186                            |
| NO PROP SHAFTS                                                                             | 2.                 | SUSTN SPEED                                                              | 0.207                            |
| PROP DIA, FT                                                                               | 11.67              | ENDUR SPEED                                                              | 0.408                            |
| CONDITION SPEED                                                                            | RESID AF           | PDG WIND MARGIN                                                          | TOTAL LBF                        |
| MAX 26.05 5812.<br>SUSTN 25.00 5156.                                                       | 8365. 4<br>6074. 3 | 156. 214. 1484.                                                          | 20032. 250565.<br>16245. 211746. |

PRINTED REPORT NO. 2 - SPEED-POWER MATRIX

RESID RESIST IND NRC ENDUR DISP IND AVG DISP

SPEED AND POWER FOR FULL LOAD DISP

FULL LOAD WT, LTON 3980.1

| SPEED |       | EFFECT | IVE HORS | EPOWER | , HP   |        | DRAG    |
|-------|-------|--------|----------|--------|--------|--------|---------|
| KT    | FRIC  | RESID  | APPDG    | WIND   | MARGIN | TOTAL  | LBF     |
| 2.00  | 3.    | 0.     | 7.       | 0.     | 1.     | 12.    | 1882.   |
| 4.00  | 25.   | 3.     | 36.      | 1.     | 5.     | 71.    | 5778.   |
| 6.00  | 82.   | 18.    | 96.      | 3.     | 16.    | 214.   | 11627.  |
| 8.00  | 189.  | 56.    | 194.     | 6.     | 36.    | 480.   | 19565.  |
| 10.00 | 360.  | 136.   | 338.     | 12.    | 68.    | 914.   | 29771.  |
| 12.00 | 611.  | 281.   | 534.     | 21.    | 116.   | 1563.  | 42443.  |
| 14.00 | 956.  | 427.   | 777.     | 33.    | 175.   | 2369.  | 55140.  |
| 16.00 | 1409. | 554.   | 1070.    | 50.    | 247.   | 3329.  | 67805.  |
| 18.00 | 1984. | 973.   | 1452.    | 71.    | 358.   | 4838.  | 87586.  |
| 20.00 | 2695. | 1596.  | 1914.    | 97.    | 504.   | 6806.  | 110889. |
| 22.00 | 3555. | 2478.  | 2464.    | 129.   | 690.   | 9315.  | 137979. |
| 24.00 | 4578. | 4461.  | 3183.    | 167.   | 991.   | 13380. | 181674. |
| 26.00 | 5779. | 8236.  | 4128.    | 213.   | 1468.  | 19824. | 248465. |
| 28.00 | 7169. | 15862. | 5473.    | 266.   | 2302.  | 31071. | 361607. |
|       |       |        |          |        |        |        |         |

# SPEED AND POWER FOR AVE ENDUR DISP

AVE ENDUR DISP, LTON 3810.6

| SPEED |       | EFFECTI | VE HORS | EPOWER | , HP   |        | DRAG    |
|-------|-------|---------|---------|--------|--------|--------|---------|
| KT    | FRIC  | RESID   | APPDG   | WIND   | MARGIN | TOTAL  | LBF     |
| 2.00  | 3.    | 0.      | 7.      | 0.     | 1.     | 11.    | 1866.   |
| 4.00  | 25.   | 3.      | 36.     | 1.     | 5.     | 70.    | 5726.   |
| 6.00  | 80.   | 18.     | 96.     | 3.     | 16.    | 212.   | 11518.  |
| 8.00  | 185.  | 55.     | 194.    | 6.     | 35.    | 476.   | 19379.  |
| 10.00 | 354.  | 135.    | 337.    | 12.    | 67.    | 905.   | 29488.  |
| 12.00 | 600.  | 280.    | 532.    | 21.    | 115.   | 1548.  | 42042.  |
| 14.00 | 939.  | 416.    | 773.    | 34.    | 173.   | 2334.  | 54319.  |
| 16.00 | 1383. | 503.    | 1061.   | 50.    | 240.   | 3236.  | 65916.  |
| 18.00 | 1947. | 838.    | 1433.   | 72.    | 343.   | 4634.  | 83887.  |
| 20.00 | 2645. | 1377.   | 1886.   | 98.    | 481.   | 6487.  | 105698. |
| 22.00 | 3489. | 2208.   | 2430.   | 131.   | 661.   | 8918.  | 132099. |
| 24.00 | 4494. | 4033.   | 3134.   | 170.   | 946.   | 12777. | 173479. |
| 26.00 | 5672. | 7582.   | 4058.   | 216.   | 1402.  | 18929. | 237243. |
| 28.00 | 7036. | 15019.  | 5386.   | 269.   | 2217.  | 29927. | 348298. |

PRINTED REPORT NO. 3 - SHIP GEOMETRIC DATA FOR RESISTANCE COMPUTATIONS

RESID RESIST IND NRC ENDUR DISP IND AVG DISP

|                                                                                                                                                                                                                                                                                   | FULL LOAD | AVE ENDUR DISP |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| BARE HULL DISP, LTON                                                                                                                                                                                                                                                              | 3892.6    | 3723.0         |
| APPENDAGE DISP, LTON                                                                                                                                                                                                                                                              | 87.5      | . 87.5         |
| TOTAL DISP, LTON                                                                                                                                                                                                                                                                  | 3980.1    | 3810.6         |
| LBP, FT                                                                                                                                                                                                                                                                           | 380.00    | 380.00         |
| WL LENGTH, FT                                                                                                                                                                                                                                                                     | 380.00    | 379.80         |
| BEAM AT MAX AREA STA, FT                                                                                                                                                                                                                                                          | 51.00     | 50.94          |
| DRAFT AT MAX AREA STA, FT                                                                                                                                                                                                                                                         | 15.50     | 15.08          |
| TAYLOR WETTED SURF AREA, FT2                                                                                                                                                                                                                                                      | 19631.6   | 19344.8        |
| SHIP WETTED SURF AREA, FT2                                                                                                                                                                                                                                                        | 19631.6   | 19344.8        |
| SKEG WETTED SURF AREA, FT2                                                                                                                                                                                                                                                        | 692.9     | 692.9          |
| BARE HULL DISP, LTON APPENDAGE DISP, LTON TOTAL DISP, LTON LBP, FT WL LENGTH, FT BEAM AT MAX AREA STA, FT DRAFT AT MAX AREA STA, FT TAYLOR WETTED SURF AREA, FT2 SHIP WETTED SURF AREA, FT2 SKEG WETTED SURF AREA, FT2 WIND FRONT AREA, FT2                                       | 1664.3    | 1685.6         |
|                                                                                                                                                                                                                                                                                   |           |                |
| FROUDE WETTED SURF COEF                                                                                                                                                                                                                                                           | 7.2061    | 7.2858         |
| LENGTH-BEAM RATIO                                                                                                                                                                                                                                                                 | 7.4510    | 7.4555         |
| BEAM-DRAFT RATIO                                                                                                                                                                                                                                                                  | 3.2906    | 3.3781         |
| PRISMATIC COEF                                                                                                                                                                                                                                                                    | 0.5699    | 0.5645         |
| MAX SECTION COEF                                                                                                                                                                                                                                                                  | 0.7953    | 0.7905         |
| DISP-LENGTH RATIO                                                                                                                                                                                                                                                                 | 70.9400   | 67.9538        |
| LCB-LENGTH RATIO                                                                                                                                                                                                                                                                  | 0.5036    | 0.5007         |
| HALF ANG ENTRANCE, DEG                                                                                                                                                                                                                                                            | 8.74      | 8.54           |
| HALF ANG RUN, DEG                                                                                                                                                                                                                                                                 | 5.94      | 9.65           |
| TRANSOM BUTTOCK ANG, DEG                                                                                                                                                                                                                                                          | 5.93      | 5.93           |
| BOW SECT AREA COEF                                                                                                                                                                                                                                                                | 0.0000    | 0.0000         |
| TRANSOM SECT AREA COEF                                                                                                                                                                                                                                                            | 0.0412    | 0.0219         |
| FROUDE WETTED SURF COEF LENGTH-BEAM RATIO BEAM-DRAFT RATIO PRISMATIC COEF MAX SECTION COEF DISP-LENGTH RATIO LCB-LENGTH RATIO HALF ANG ENTRANCE, DEG HALF ANG RUN, DEG TRANSOM BUTTOCK ANG, DEG BOW SECT AREA COEF TRANSOM SECT AREA COEF TRANSOM BREADTH COEF TRANSOM DEPTH COEF | 0.6135    | 0.5451         |
| TRANSOM DEPTH COEF                                                                                                                                                                                                                                                                | 0.0763    | 0.0507         |

PRINTED REPORT NO. 4 - APPENDAGE DATA

| SKEG IND<br>SKEG AREA, FT2                                                                                     | PRESENT<br>346.4                     |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                                                | PRESENT                              |
| SHAFT SUPPORT TYPE IND POD STRUT CHORD LGTH, FT POD STRUT THICKNESS, FT POD BARREL LGTH, FT POD BARREL DIA, FT | POD<br>8.57<br>2.48<br>24.50<br>7.43 |
| POD STRUT TE OFFSET, FT                                                                                        | 7.56                                 |
| NO PROP SHAFTS WET SHAFT LGTH (PORT), FT WET SHAFT LGTH (STBD), FT INTRMDT SHAFT DIA, FT                       | 2.<br>0.00<br>0.00                   |
| PROP TYPE IND<br>PROP DIA, FT                                                                                  | FP<br>11.67                          |
| SONAR DOME IND<br>SONAR DRAG IND<br>SONAR SECT AREA, FT2                                                       | NONE                                 |
| NO RUDDERS<br>RUDDER AREA, FT2                                                                                 | 2.<br>120.0                          |
| NO FIN PAIRS<br>ROLL FIN AREA, FT2                                                                             | 1.<br>208.4                          |

ASSET/MONOSC VERSION 3.3+ - PROPELLER MODULE - 2/11/95 10.47.26.

#### PRINTED REPORT NO. 1 - SUMMARY

| ENDUR CONFIG IND                      | NO TS  |                        |          |
|---------------------------------------|--------|------------------------|----------|
| PROP TYPE IND                         | FP     | PROP SERIES IND        | ANALYTIC |
| PROP TYPE IND<br>PROP DIA IND         | CALC   | PROP LOC IND           | CALC     |
| PROP AREA IND                         | CALC   | PROP ID IND            |          |
| SHAFT SUPPORT TYPE IND                | POD    | RUDDER TYPE IND        | SPADE    |
| MAX SPEED, KT<br>MAX EHP (/SHAFT), HP | 26.05  | ENDUR SPEED, KT        | 14.00    |
| MAX EHP (/SHAFT), HP                  | 10016. | ENDUR EHP (/SHAFT), HP | 1167.    |
| MAX SHP (/SHAFT), HP                  | 14388. | ENDUR SHP (/SHAFT), HP | 1619.    |
| MAX PROP RPM                          | 220.0  | ENDUR PROP RPM         | 110.3    |
| MAX PROP RPM<br>MAX PROP EFF          | 0.696  | ENDUR PROP EFF         | 0.721    |
| SUSTN SPEED, KT                       | 25.00  | PROP DIA, FT           | 11.67    |
| SUSTN EHP (/SHAFT), HP                | 8122.  | NO BLADES              | 7.       |
| SUSTN SHP (/SHAFT), HP                | 11529. | PITCH RATIO            | 1.26     |
| SUSTN PROP RPM                        | 206.6  | EXPAND AREA RATIO      | 0.905    |
| SUSTN PROP EFF                        | 0.705  | CAVITATION NO          | 1.71     |
| NO PROP SHAFTS                        | 2.0    |                        |          |
| TOTAL PROPELLER WT, LTON              | 13.97  |                        |          |

PRINTED REPORT NO. 2 - PROPELLER CHARACTERISTICS

| PROP ID IND       |       |
|-------------------|-------|
| NO PROP SHAFTS    | 2.    |
| PROP DIA, FT      | 11.67 |
| NO BLADES         | 7.    |
| PITCH RATIO       | 1.26  |
| EXPAND AREA RATIO | 0.905 |
| THRUST DED COEF   | 0.050 |
| TAYLOR WAKE FRAC  | 0.050 |
| HULL EFFICIENCY   | 1.000 |
| REL ROTATE EFF    | 1.000 |

| CHARACTERISTICS      | MAXIMUM | CONDITIONS<br>SUSTAINED | ENDURANCE |
|----------------------|---------|-------------------------|-----------|
| SPEED, KT            | 26.05   | 25.00                   | 14.00     |
| RPM                  | 220.0   | 206.6                   | 110.3     |
| THRUST/SHAFT, LBF    | 131878. | 111446.                 | 28589.    |
| EHP/SHAFT, HP        | 10016.  | 8122.                   | 1167.     |
| TORQUE/SHAFT, FT-LBF | 343480. | 293081.                 | 77103.    |
| SHP/SHAFT, HP        | 14388.  | 11529.                  | 1619.     |
| ADVANCE COEF (J)     | 0.976   | 0.997                   | 1.046     |
| THRUST COEF (KT)     | 0.265   | 0.254                   | 0.229     |
| TORQUE COEF (10KQ)   | 0.592   | 0.573                   | 0.529     |
| OPEN WATER EFFY      | 0.696   | 0.705                   | 0.721     |
| PC                   | 0.696   | 0.705                   | 0.721     |

PRINTED REPORT NO. 3 - CAVITATION CHARACTERISTICS

| MAX SPEED OF ADV, KT      | 24.75   |
|---------------------------|---------|
| MAX THRUST, LBF           | 131878. |
| MAX PROP RPM              | 220.0   |
| PROP DIA, FT              | 11.67   |
|                           | 13.31   |
| STD CAV NO                | 1.71    |
| LOCAL CAV NO (.7R)        | 0.28    |
| MEAN THRUST LOADING COEF  | 0.17    |
| EXPAND AREA RATIO         | 0.905   |
| MIN EAR REQUIRED          | 0.905   |
| BACK CAV ALLOWED, PERCENT | 10.0    |

PRINTED REPORT NO. 4 - PROPELLER ARRANGEMENT

```
PROP DIA, FT 11.67
FULL LOAD DRAFT, FT 15.50
HUB DEPTH FROM DWL, FT 13.31
LONG LOC FROM AP, FT 34.55
HUB POS FROM CL, FT 8.30
TIP CLR FROM BL, FT -3.65
TIP CLR FROM MAX HB, FT 13.30
TIP CLR FROM HULL BOT, FT 2.77

TOTAL PROPELLER WT, LTON 13.97
```

TOTAL PROPELLER WT, LTON 13.97

ASSET/MONOSC VERSION 3.3+ - MACHINERY MODULE - 2/11/95 10.47.57.

```
** WARNING - MACHINERY MODULE ** (W-TORQGOVRNSHDIA-SHSIZN)
PROPELLER SHAFT DIAMETER IS GOVERNED BY TORQUE.

** WARNING - MACHINERY MODULE ** (W-MRDIM2SMALL-MRDIMR)
DIMENSIONS OF THE FOLLOWING MACHINERY ROOMS ARE TOO SMALL
TO ENCLOSE MACHINERY: 2

** WARNING - MACHINERY MODULE ** (W-LT1ENGPERSHAFTE-MHYMSG)
```

WARNING - MACHINERY MODULE \*\* (W-LTIENGPERSHAFTE-MHYMSG)
LESS THAN ONE PROPULSION ENGINE PER PROPELLER SHAFT IS OPERATING
AT ENDURANCE (DUE TO SELECTION OF VALUES WITHIN THE PARAMETER
ELECT PG ARR OP ARRAY). THIS IS NOT CURRENT STANDARD NAVAL PRACTICE.

\*\* WARNING - MACHINERY MODULE \*\* (W-TOTALSSGENLT3-MHYMSG)
TOTAL NUMBER OF SHIP SERVICE GENERATORS (INCLUDING VSCF, IF ANY),

IS LESS THAN THREE.

\*\* WARNING - MACHINERY MODULE \*\* (W-ZEROSBYSSGEN-MHYMSG)

NO STANDBY SHIP-SERVICE GENERATORS EXIST AT BATTLE ELECTRICAL

LOADING CONDITION.

\*\* WARNING - MACHINERY MODULE \*\* (W-OPSSGENENDURLT2-MHYMSG)

NUMBER OF SHIP SERVICE GENERATORS OPERATING AT ENDURANCE CONDITION IS
LESS THAN TWO.

PRINTED REPORT NO. 1 - SUMMARY

TRANS TYPE IND

ELECT MAX SPEED, KT

26.05

| ELECT PRPLN TYPE IND<br>SHAFT SUPPORT TYPE I<br>NO PROP SHAFTS<br>ENDUR CONFIG IND<br>SEC ENG USAGE IND<br>MAX MARG ELECT LOAD,<br>AVG 24 HR ELECT LOAD<br>SWBS 200 GROUP WT, L<br>SWBS 300 GROUP WT, L                                                                                                                                | ACR-DCS END POD 2. NO TS  KW 2755. 2, KW 1142. LTON 281.3 LTON 261.7  | SUSTN SPEED<br>SUSTN SPEED<br>ENDUR SPEED<br>ENDUR SPEED<br>DESIGN MODE<br>ENDURANCE,<br>USABLE FUEL<br>SUSTN SPEED | IND<br>, KT<br>IND<br>, KT<br>IND<br>NM<br>WT,<br>POWE | LTON<br>R FRAC       | GIVEN<br>25.00<br>GIVEN<br>14.00<br>ENDURANCE<br>6000.<br>394.3<br>0.80 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------|-------------------------------------------------------------------------|
| ARRANGEMENT OR SS GE                                                                                                                                                                                                                                                                                                                   | IN TYPE                                                               | NO<br>INSTALLED                                                                                                     | NO OM                                                  | NLINE N              | O ONLINE<br>NDURANCE                                                    |
| ELECT PG ARR 1 IND                                                                                                                                                                                                                                                                                                                     | M-PG                                                                  | 0                                                                                                                   |                                                        | 0 2                  | 1<br>0<br>2<br>1<br>0                                                   |
|                                                                                                                                                                                                                                                                                                                                        | MAIN ENG                                                              | SEC ENG                                                                                                             |                                                        | SS                   | ENG                                                                     |
| ENG SELECT IND ENG MODEL IND G ENG TYPE IND ENG SIZE IND NO INSTALLED ENG PWR AVAIL, HP ENG RPM ENG SFC, LBM/HP-HR ENG LOAD FRAC                                                                                                                                                                                                       | GIVEN GE-LM1600-VAN2 RGT CALC 2 15902.                                |                                                                                                                     | 0                                                      |                      | GIVEN A-12V270 D DIESEL CALC 2 4002. 900.0 .336 1.000                   |
| PRINTED REPORT NO. 2<br>NO<br>EACH ITEM                                                                                                                                                                                                                                                                                                | P - MACHINERY EQUI                                                    | WEIGHT LEN                                                                                                          | GTH                                                    | WIDTH<br>FT          | HEIGHT<br>FT                                                            |
| PROPULSION PLAN  MAIN ENGINE (  MAIN ENGINE (  MAIN ENGINE I  SEC ENGINE (B  SEC ENGINE EN  SEC ENGINE IN  RACER STEAM T  RACER CONDENS  LIDR GEAR (01  FRANCO TOSI R  VSCF COMB/STE  RACER REDUCTI  SPD SOLAR E  OFFSET GEAR (  OFFSET COMB (  CR EPIC GEAR  ZDRIVE SPIRA  PLANETARY RED  CR BI-COUPLED  STAR EPIC RED  STAR EPIC RED | BARE) BARE) BARE) BARE) BARE) BARE BARE BARE BARE BARE BARE BARE BARE | 1.6<br>8.1 1<br>2.1                                                                                                 | 9.55<br>8.91<br>4.48                                   | 4.46<br>7.96<br>5.05 | 4.46<br>7.26<br>5.05                                                    |
| ELECTRIC PLANT SS ENGINE (BA SS ENGINE ENC SS REDUCTION SEPARATE SS G VSCF SS GENER VSCF SS CYCLO                                                                                                                                                                                                                                      | CLOSURE MODULE<br>GEAR (17)<br>ENERATOR<br>NATOR                      | 22.4 1                                                                                                              | 6.64<br>7.14                                           |                      |                                                                         |

PRINTED REPORT NO. 3 - ENGINES

|                                                                                                                                                                                             | MAIN ENG          | SEC ENG | SS ENG                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|-----------------------------------|
| ENG SELECT IND ENG TYPE IND                                                                                                                                                                 | GIVEN<br>RGT      |         | GIVEN<br>D DIESEL<br>A-12V270     |
| ENG SIZE IND NO INSTALLED ENG BARE WT, LTON                                                                                                                                                 | CALC              |         | CALC<br>2<br>22.4                 |
| ENG SIZE IND NO INSTALLED ENG BARE WT, LTON ENG LENGTH, FT ENG WIDTH, FT ENG HEIGHT, FT ENG PWR AVAIL, HP ENG RPM ENG MASS FL, LBM/SI ENG EXH TEMP, DEGF ENG SFC EQN IND ENG SFC, LBM/HP-HR | 2                 | 0       | 2                                 |
| ENG BARE WT, LTON                                                                                                                                                                           | 1.6               |         |                                   |
| ENG LENGTH, FT                                                                                                                                                                              | 9.55              |         | 16.64                             |
| ENG WIDTH, FT                                                                                                                                                                               | 4.46              |         | 6.34                              |
| ENG HEIGHT, FT                                                                                                                                                                              | 4.46              |         | 8.01                              |
| ENG PWR AVAIL, HP                                                                                                                                                                           | 15902.            |         | 4002.1                            |
| ENG RPM                                                                                                                                                                                     | 4522.4            |         | 900.0                             |
| ENG MASS FL, LBM/SI                                                                                                                                                                         | EC 74.2           |         | 13.7                              |
| ENG EAR TEMP, DEGE                                                                                                                                                                          | 0/0.0             |         | 900.0<br>.13.7<br>818.9<br>DIESEL |
| ENG SEC LOW IND                                                                                                                                                                             | POLY QN           |         | DIESEL                            |
| ENG SEC, LBM/ HP-HR                                                                                                                                                                         | 0.343             |         | .336                              |
| MAX SPEED CONDITION                                                                                                                                                                         | N                 |         |                                   |
| NO OPERATING                                                                                                                                                                                | -                 | 0       | 2                                 |
| ENG PWR. HP                                                                                                                                                                                 | 15902             | 0       | 1922.2                            |
| ENG RPM                                                                                                                                                                                     | 4522.4            |         | 900.0                             |
| ENG MASS FL. LBM/SI                                                                                                                                                                         | EC 74.2           |         | 10.3                              |
| ENG EXH TEMP, DEGF                                                                                                                                                                          | 676.6             |         | 677.6                             |
| NO OPERATING ENG PWR, HP ENG RPM ENG MASS FL, LBM/SI ENG EXH TEMP, DEGF ENG SFC, LBM/HP-HR                                                                                                  | .345              |         | .337                              |
| SUSTN SPEED CONDIT                                                                                                                                                                          | ION               |         |                                   |
| NO OPERATING ENG PWR, HP ENG RPM ENG MASS FL, LBM/SI ENG EXH TEMP, DEGF                                                                                                                     | 2                 | 0       | 2                                 |
| ENG PWR, HP                                                                                                                                                                                 | 12721.            | · ·     | 1922.2                            |
| ENG RPM                                                                                                                                                                                     | 4247.1            |         | 900.0                             |
| ENG MASS FL, LBM/SI                                                                                                                                                                         | EC 68.1           |         | 10.3                              |
| ENG EXH TEMP, DEGF                                                                                                                                                                          | 620.4             |         | 677.6                             |
| ENG SFC, LBM/HP-HR                                                                                                                                                                          | .334              |         | .337                              |
| ENDUR SPEED CONDIT                                                                                                                                                                          | ION               |         |                                   |
| PMC PMDITO DDM TND                                                                                                                                                                          | CATC              |         |                                   |
| NO OPEDATING                                                                                                                                                                                | CALC              | •       |                                   |
| ENG ENDUR RPM IND<br>NO OPERATING<br>ENG PWR, HP<br>ENG RPM<br>ENG MASS FL, LBM/SI<br>ENG EXH TEMP, DEGF                                                                                    | 3907              | 0       | 1503 5                            |
| ENG RPM                                                                                                                                                                                     | JOS / .<br>4522 / |         | 1593.5<br>900.0                   |
| ENG MASS FT. TRM/ST                                                                                                                                                                         | 4344.4<br>EC 43.2 |         |                                   |
| ENG EXH TEMP, DEGE                                                                                                                                                                          | 407 0             |         | 9.6<br>658.5                      |
| ENG SFC, LBM/HP-HR                                                                                                                                                                          | .342              |         | .343                              |
|                                                                                                                                                                                             | .542              |         | .343                              |

NOTE - ENGINE OPERATING DATA ARE BASED ON USE OF DFM FUEL.

PRINTED REPORT NO. 4 - GEARS

| NO<br>EACH | ITEM                                             |       | LENGTH<br>FT |    |  |
|------------|--------------------------------------------------|-------|--------------|----|--|
|            |                                                  |       |              |    |  |
|            | 2-STAGE REDUCTION GEARS                          |       |              |    |  |
| 0          | LTDR GEAR (01)                                   |       |              |    |  |
| 0          | CR BI-COUPLED EPIC GEAR (13)                     |       |              |    |  |
|            | 1ST STAGE REDUCTION GEARS                        |       |              |    |  |
| 0          | OFFSET GEAR (07)                                 |       |              |    |  |
| 0          | OFFSET COMB (2-1) GEAR (08)                      |       |              |    |  |
|            | OFFSET COMB (3-2) GEAR (09)                      |       |              |    |  |
| 0          | STAR EPIC REDUCTION GEAR (15)                    |       |              |    |  |
|            | 2ND STAGE REDUCTION GEARS                        |       |              |    |  |
| 0          | CR EPIC GEAR (10)                                |       |              |    |  |
| 0          | <ul> <li>PLANETARY REDUCTION GEAR(12)</li> </ul> |       |              |    |  |
|            | SPECIAL GEARS                                    |       |              |    |  |
| 0          | EPIC REV PINION GEAR (02)                        |       |              |    |  |
| 0          | FRANCO TOSI REV GEAR (03)                        |       |              |    |  |
| 0          | VSCF COMB/STEP-UP GEAR (04)                      |       |              |    |  |
| 0          | RACER REDUCTION GEAR (05)                        |       |              |    |  |
| 0          | 2 SPD SOLAR EPIC GEAR (06)                       |       |              |    |  |
| 0          | Z DRIVE SPIRAL BVL GEAR (11)                     |       |              |    |  |
| 0          | STAR EPIC REV GEAR (14)                          |       |              |    |  |
| 0          | COMBINING STEP-UP GEAR (16)                      |       |              |    |  |
| 0          | SS REDUCTION GEAR (17)                           |       |              |    |  |
| REDUC      | CTION GEAR DESIGN FACTORS                        | 1ST   | 2100         |    |  |
|            |                                                  | STAGE |              | SS |  |
| REDUC      | CTION RATIO                                      |       |              |    |  |
|            |                                                  |       |              |    |  |

K FACTOR FACE WIDTH RATIO CASING WT FACTOR

GEAR FACE WIDTH, FT PINION GEAR DIA, FT REDUCTION GEAR DIA, FT SUN GEAR DIA, FT PLANET GEAR DIA, FT RING GEAR DIA, FT RING GEAR THK, FT NO PLANETS

PRINTED REPORT NO. 5 - ELECTRIC PROPULSION AND VSCF EQUIPMENT

TRANS TYPE IND-ELECT ELECT PRPLN TYPE IND-ACR-DCS SWITCHGEAR TYPE IND-ADV TRANS LINE NODE PT IND-CALC ELECT PRPLN RATING IND-CALC

TRANS LINE NODE PT X, FT 258.20
TRANS LINE NODE PT Y, FT -6.17
TRANS LINE NODE PT Z, FT 15.00

#### MOTORS AND GENERATORS

|                         | PRPLN<br>GENERATOR |        | VSCF<br>GENERATOR |
|-------------------------|--------------------|--------|-------------------|
|                         |                    |        |                   |
| INSTALLED NUMBER        | 2                  | 2      | 0                 |
| TYPE                    | AC                 | DCS    |                   |
| FREQUENCY CONTROL       | NO                 |        |                   |
| DRIVE                   |                    | DIRECT |                   |
| ROTOR COOLING           | AIR                | LIQUID |                   |
| ROTOR TIP SPEED, FT/MIN | 28500.             |        |                   |
| STATOR COOLING          | LIQUID             | LIQUID |                   |
| ARM ELECT LOAD, AMP/IN  | 2400.              |        |                   |
| POWER RATING, MW        | 14.94              | 10.73  |                   |
| ROTATIONAL SPEED, RPM   | 4522.              | 220.   |                   |
| NUMBER OF POLES         | 4.                 | 6.     |                   |
| LENGTH, FT              | 13.6               | 8.6    |                   |
| WIDTH, FT               | 5.4                | 4.5    |                   |
| HEIGHT, FT              | 5.4                | 4.5    |                   |
| WEIGHT, LTON            | 13.7               | 14.4   |                   |

# OTHER ELECTRIC PROPULSION AND VSCF EQUIPMENT

WEIGHT LTON

| CONTROLS                 | 1.4  |
|--------------------------|------|
| BRAKING RESISTORS        | 2.1  |
| EXCITERS                 | 7.4  |
| SWITCHGEAR               | 1.5  |
| POWER CONVERTERS         | .0   |
| DEIONIZED COOL WATER SYS | 13.4 |
| PRPLN TRANS LINE         | 36.9 |
| RECTIFIERS               | 3.8  |
| HELIUM REFRIGERATION SYS | 4.6  |
| VSCF CYCLOCONVERTERS     | .0   |
|                          |      |

PRINTED REPORT NO. 6 - SHIP SERVICE GENERATORS

SS SYS TYPE IND-SEP GEN SIZE IND-NON STD

ELECT LOAD DES MARGIN FAC
ELECT LOAD SL MARGIN FAC
ELECT LOAD IMBAL FAC
MAX MARG ELECT LOAD, KW
MAX STANDBY LOAD, KW
2754.9
MAX STANDBY LOAD, KW
1627.5
1141.9

#### VSCF SS CYCLOCONVERTERS

| CONDITION            | no<br>Install | NO<br>ONLINE | REQ<br>KW/CYCLO | AVAIL<br>KW/CYCLO | LOADING<br>FRAC |  |
|----------------------|---------------|--------------|-----------------|-------------------|-----------------|--|
|                      |               |              |                 |                   |                 |  |
|                      |               |              |                 |                   |                 |  |
| WINTER BATTLE        | 0             | 0            |                 |                   | 0.000           |  |
| WINTER CRUISE        | 0             | 0            |                 |                   | 0.000           |  |
| SUMMER CRUISE        | 0             | 0            |                 |                   | 0.000           |  |
| ENDURANCE(24 HR AVG) | 0             | 0            |                 |                   | 0.000           |  |

#### SEPARATE SS GENERATORS

| CONDITION                                                      | NO               | NO          | REQ                              | AVAIL                            | LOADING                          |
|----------------------------------------------------------------|------------------|-------------|----------------------------------|----------------------------------|----------------------------------|
|                                                                | INSTALL          | ONLINE      | KW/GEN                           | KW/GEN                           | FRAC                             |
| WINTER BATTLE WINTER CRUISE SUMMER CRUISE ENDURANCE(24 HR AVG) | 2<br>2<br>2<br>2 | 2<br>1<br>1 | 1377.<br>2581.<br>1899.<br>1142. | 2868.<br>2868.<br>2868.<br>2868. | 0.480<br>0.900<br>0.662<br>0.398 |

#### TOTALS

\_\_\_\_\_

| CONDITION                                                      | REQ   | AVAIL | LOADING |
|----------------------------------------------------------------|-------|-------|---------|
|                                                                | KW    | KW    | FRAC    |
| WINTER BATTLE WINTER CRUISE SUMMER CRUISE ENDURANCE(24 HR AVG) | 2755. | 5736. | 0.480   |
|                                                                | 2581. | 2868. | 0.900   |
|                                                                | 1899. | 2868. | 0.662   |
|                                                                | 1142. | 2868. | 0.398   |

PRINTED REPORT NO. 7 - INTAKE DUCTS

INLET TYPE IND-PLENUM DUCT SILENCING IND-BOTH GT ENG ENCL IND-84 DBA

|         |      |       |       |     | MAIN ENG | SEC | ENG | SS ENG   |
|---------|------|-------|-------|-----|----------|-----|-----|----------|
|         |      |       |       |     |          |     |     |          |
| ENG TYP | PE.  |       |       |     | RGT      |     |     | D DIESEL |
| INLET I | DUCT | XSECT | AREA, | FT2 | 54.5     |     | .0  | .0       |
| INLET D | DUCT | XSECT | LTH,  | FT  | 6.85     |     | .0  | .0       |
| INLET D | DUCT | XSECT | WID,  | FT  | 7.96     |     | .0  | .0       |

#### MMR1

|                     | MAIN    | ENG    | SEC      | ENG    |
|---------------------|---------|--------|----------|--------|
|                     | WT,LTON | VCG,FT | WT, LTON | VCG,FT |
|                     |         |        |          |        |
| INLET               | 0.5     | 37.05  |          |        |
| INLET DUCTING       | 0.8     | 29.84  |          |        |
| INLET SILENCER      | 1.1     | 35.67  |          |        |
| GT COOLING SUPPLY   | 0.8     | 24.64  |          |        |
| GT BLEED AIR SUPPLY | 2.1     | 21.77  |          |        |

MMR2

|                                                                          |                                 | VCG,FT                                    | WT,LTON |  |
|--------------------------------------------------------------------------|---------------------------------|-------------------------------------------|---------|--|
| INLET INLET DUCTING INLET SILENCER GT COOLING SUPPLY GT BLEED AIR SUPPLY | 0.5<br>0.7<br>1.1<br>0.7<br>2.1 | 35.28<br>28.95<br>35.67<br>23.98<br>21.31 |         |  |

NOTE - NUMERIC DATA PRESENTED ABOVE ARE ON A PER ENGINE BASIS.

# TRUNK AREA AND VOLUME REQUIREMENTS

|                      | ARE   | A,FT2 | VOLUME,FT3 |       |  |
|----------------------|-------|-------|------------|-------|--|
| ENGINE CATEGORY      | HULL  | DKHS  | HULL       | DKHS  |  |
|                      |       |       |            |       |  |
| MAIN ENGINES         | 138.6 | 138.6 | 1386.      | 1383. |  |
| SECONDARY ENGINES    | 0.0   | 0.0   | 0.         | 0.    |  |
| SHIP-SERVICE ENGINES | 0.0   | 0.0   | 0.         | 0.    |  |
|                      |       |       |            |       |  |
| TOTALS               | 138.6 | 138.6 | 1386.      | 1383. |  |

PRINTED REPORT NO. 8 - EXHAUST DUCTS

EXHAUST IR SUPPRESS IND-PRESENT

DUCT SILENCING IND-BOTH GT ENG ENCL IND-84 DBA

EXHAUST STACK TEMP, DEGF 350.0 EDUCTOR DESIGN FAC 1.000

|                           | MAIN ENG | SEC ENG | SS ENG   |
|---------------------------|----------|---------|----------|
|                           |          |         |          |
| ENG TYPE                  | RGT      |         | D DIESEL |
| ENG EXH TEMP, DEG         | 677.     |         | 819.     |
| ENG MASS FL, LBM/SEC      | 74.2     |         | 13.7     |
| EXH DUCT GAS TEMP, DEG    | 609.     |         | 819.     |
| EXH DUCT GAS DEN, LBM/FT3 | 0.0366   |         | .0306    |
| EXH DUCT MASS FL, LBM/SEC | 84.6     |         | 13.7     |
| EXH DUCT AREA, FT2        | 21.5     |         | 4.2      |
|                           |          |         |          |

MMR1

|                                                                                                                                   |                                        |                                           | WT,LTON |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|---------|--|
| EXH DUCT (TO BOILER/REG) EXH BOILER (RACER) EXH REGENERATOR EXH DUCT (TO STACK) EXH SILENCER EXH STACK EXH SPRAY RING EXH EDUCTOR | 11.5<br>1.9<br>3.1<br>1.1<br>.6<br>1.7 | 33.63<br>38.56<br>47.35<br>32.45<br>45.91 |         |  |

| m | m | ĸ | ~ |  |
|---|---|---|---|--|
| = | = | = | = |  |

|                                                                                                                                             |                                 | ENG<br>VCG,FT                    | SEC<br>WT,LTON |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|----------------|--|
| EXH DUCT (TO BOILER/REG) EXH BOILER (RACER) EXH REGENERATOR EXH DUCT (TO STACK) EXH SILENCER EXH STACK EXH STACK EXH SPRAY RING EXH EDUCTOR | 11.5<br>1.7<br>3.1<br>1.1<br>.6 | 32.75<br>38.56<br>45.58<br>31.27 |                |  |

NOTE - NUMERIC DATA PRESENTED ABOVE ARE ON A PER ENGINE BASIS.

## TRUNK AREA AND VOLUME REQUIREMENTS

|                      | ARE   | FT2   | VOLUME | E,FT3 |
|----------------------|-------|-------|--------|-------|
| ENGINE CATEGORY      | HULL  | DKHS  | HULL   | DKHS  |
|                      |       |       |        |       |
| MAIN ENGINES         | 342.6 | 182.1 | 3426.  | 1817. |
| SECONDARY ENGINES    | 0.0   | 0.0   | 0.     | 0.    |
| SHIP-SERVICE ENGINES | 69.6  | 69.6  | 696.   | 693.  |
|                      |       |       |        |       |
| TOTALS               | 412.3 | 251.8 | 4123.  | 2510. |

PRINTED REPORT NO. 9 - PROPELLERS AND SHAFTS

SHAFT SUPPORT TYPE IND-POD SHAFT SYS SIZE IND-CALC PROP TYPE IND-FP

PROP DIA, FT 4.91
HUB DIA, FT 4.91
PROP BLADE WT, LTON 3.2
PROP HUB WT, LTON 3.8
BEND STRESS CON FAC 1.000
OVRHG PROP MOM ARM RATIO 7.0
ALLOW BEND STRESS, LBF/IN2 6000.
FATIGUE LIMIT, LBF/IN2 75000.
TORQUE MARGIN FAC 1.200
NO STRUTS PER SHAFT 0

#### PORT SHAFT

|        |                                              | LINE<br>SECTION                                    |
|--------|----------------------------------------------|----------------------------------------------------|
|        |                                              |                                                    |
| -5.81  |                                              |                                                    |
| 2.92   |                                              |                                                    |
| 1.22   |                                              |                                                    |
| .550   |                                              |                                                    |
| .7     |                                              |                                                    |
| 348.06 |                                              |                                                    |
| -8.30  |                                              |                                                    |
| 2.45   |                                              |                                                    |
|        |                                              |                                                    |
|        | SECTION -5.81 2.92 1.22 .550 .7 348.06 -8.30 | SECTION SECTION5.81 2.92 1.22 .550 .7 348.06 -8.30 |

#### STBD SHAFT

|                  |        | INTERMED<br>SECTION | LINE<br>SECTION |
|------------------|--------|---------------------|-----------------|
|                  |        |                     |                 |
| ANGLE, DEG       | -5.81  |                     |                 |
| LENGTH, FT       | 2.92   |                     |                 |
| DIAMETER, FT     | 1.22   |                     |                 |
| BORE RATIO       | .550   |                     |                 |
| WEIGHT, LTON     | .7     |                     |                 |
| LCG, FT          | 348.06 |                     |                 |
| TCG, FT          | 8.30   |                     |                 |
| VCG, FT          | 2.45   |                     |                 |
| FACTOR OF SAFETY |        |                     |                 |

PRINTED REPORT NO. 10 - STRUTS, PODS, AND RUDDERS

SHAFT SUPPORT TYPE IND-POD SHAFT SYS SIZE IND-CALC

PROP DIA, FT 11.67
NO STRUTS PER SHAFT 0
NO SHAFTS 2
OVRHG PROP MOM ARM RATIO 0.340

PODS

STRUT WALL THICKNESS, FT .05
STRUT CHORD, FT 8.57
STRUT THICKNESS, FT 2.48
BARREL LTH, FT 24.50
BARREL DIA, FT 7.43

RUDDERS

RUDDER TYPE IND-SPADE
RUDDER SIZE IND-CALC
NO RUDDERS 2.
RUDDER WT (PER), LTON 13.7
RUDDER DISP (PER), LTON 2.5

PRINTED REPORT NO. 11 - ELECTRIC LOADS

400 HZ ELECT LOAD FAC

SPADE RUDDER

0.200

| PAYLOAD LOADS                                                                                                                                                                                                        | CRUISE<br>KW                                                      | WINTER<br>BATTLE<br>KW                                   | CRUISE<br>KW                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|
| COMMAND AND SURVEILLANCE (60 HZ) COMMAND AND SURVEILLANCE (400 HZ) ARMAMENT (60 HZ) ARMAMENT (400 HZ) OTHER PAYLOAD (60 HZ) OTHER PAYLOAD (400 HZ)                                                                   | 106.9<br>26.7<br>35.2<br>8.8<br>0.0                               | 464.8<br>116.2<br>122.4<br>30.6<br>0.0                   | 106.9<br>26.7<br>39.2<br>9.8<br>0.0                     |
| SUB-TOTAL                                                                                                                                                                                                            | 177.6                                                             | 734.0                                                    | 182.6                                                   |
| NON-PAYLOAD LOADS (* INDICATES US                                                                                                                                                                                    |                                                                   | •                                                        |                                                         |
| PROPULSION AND STEERING LIGHTING MISCELLANEOUS ELECTRIC HEATING VENTILATION AIR CONDITIONING AUXILIARY BOILER AND FRESH WATER FIREMAIN UNREP AND HANDLING MISC AUXILIARY MACHINERY SERVICES AND WORK SPACES SUBTOTAL | 225.4<br>114.7<br>49.9<br>7.8<br>99.8<br>42.7<br>1801.7           | 211.8<br>84.9<br>70.3<br>12.9*<br>55.9<br>14.1<br>1379.6 | 336.4<br>114.7<br>49.9<br>7.8<br>99.8<br>42.7<br>1273.8 |
| MAX MARG ELECT LOAD 24 HR AVG ELECT LOAD CONNECTED ELECT LOAD ANCHOR ELECT LOAD VITAL ELECT LOAD EMERGENCY ELECT LOAD MAX STBY ELECT LOAD                                                                            | 2754.9<br>1141.9<br>5601.1<br>1627.5<br>1049.4<br>675.8<br>1627.5 | 2754.9                                                   | 1838.0                                                  |

PRINTED REPORT NO. 12 - POWERING

SUSTN SPEED IND-GIVEN ENDUR SPEED IND-GIVEN TRANS EFF IND-CALC

100 PCT POWER TRANS EFF 0.9048 25 PCT POWER TRANS EFF 0.9141

|                         | MAX<br>SPEED | SUSTN<br>SPEED | ENDUR<br>SPEED |
|-------------------------|--------------|----------------|----------------|
| GUITE GREER WE          |              |                |                |
| SHIP SPEED, KT          | 26.05        | 25.00          | 14.00          |
| PROP RPM                | 220.0        | 206.6          | 110.3          |
| NO OP PROP SHAFTS       | 2            | 2              | 2              |
| EHP (/SHAFT), HP        | 10016.       | 8122.          | 1167.          |
| PROPULSIVE COEF         | 0.696        | 0.705          | 0.721          |
| ENDUR PWR ALW           | 1.0          | 1.0            | 1.1            |
| SHP (/SHAFT), HP        | 14387.       | 11529.         | 1781.          |
| TRANS EFFY              | 0.905        | 0.906          | 0.914          |
| CP PROP TRANS EFFY MULT | 1.000        | 1.000          | 1.000          |
| PROPUL PWR (/SHAFT), HP | 15902.       | 12721.         | 1948.          |
| PD GEN PWR (/SHAFT), HP | 0.           | 0.             | 0.             |
| BHP (/SHAFT), HP        | 15902.       | 12721.         | 1948.          |

PRINTED REPORT NO. 13 - HULL STRUCTURE AND MISCELLANEOUS WEIGHT

| SWBS COMPONENT                        | WT,LTON | LCG,FT | VCG,FT |
|---------------------------------------|---------|--------|--------|
| 160 SPECIAL STRUCTURES                |         |        |        |
| 161 CASTINGS, FORGINGS, AND WELDMENTS | 33.1    | 268.42 | 9.19   |
| 162 STACKS AND MASTS                  | 2.1     | 202.03 | 46.46  |
| 180 FOUNDATIONS                       |         |        |        |
| 182 PROPULSION PLANT FOUNDATIONS      | 93.2    | 249.31 | 7.48   |
| 183 ELECTRIC PLANT FOUNDATIONS        | 45.8    | 194.49 | 12.82  |

<sup>\*</sup> DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

## PRINTED REPORT NO. 14 - PROPULSION PLANT WEIGHT

| SWBS COMPONENT                                                                                                                                          | WT,LTON | T.CG FT | VCG FT |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------|
|                                                                                                                                                         |         | ======  |        |
| 200 PROPULSION PLANT 210 ENERGY GENERATING SYSTEM (NUCLEAR) 220 ENERGY GENERATING SYSTEM (NON-NUCLEAR) 230 PROPULSION UNITS                             | 281.3   | 246.35  | 13.45  |
| 210 ENERGY GENERATING SYSTEM (NUCLEAR)                                                                                                                  | 0.0     | 0.00    | 0.00   |
| 220 ENERGY GENERATING SYSTEM (NON-NUCLEAR)                                                                                                              | 0.0     | 0.00    | 0.00   |
| 230 PROPULSION UNITS                                                                                                                                    | 186.8   | 253.04  | 12.19  |
| 233 PROPULSION INTERNAL COMBUSTION ENGINES                                                                                                              | 0.0     | 0.00    | 0.00   |
| 234 PROPULSION GAS TURBINES                                                                                                                             | 60.8    | 195.96  | 17.38  |
| 234 PROPULSION GAS TURBINES 235 ELECTRIC PROPULSION 240 TRANSMISSION AND PROPULSOR SYSTEMS                                                              | 126.0   | 280.58  | 9.68   |
| 240 TRANSMISSION AND PROPULSOR SYSTEMS                                                                                                                  | 21.7    | 347.13  | 2.36   |
| 241 PROPULSION REDUCTION GEARS 242 PROPULSION CLUTCHES AND COUPLINGS                                                                                    | 0.0     | 0.00    | 0.00   |
| 242 PROPULSION CLUTCHES AND COUPLINGS                                                                                                                   | 0.0     | 0.00    | 0.00   |
| 242 PROPULSION CLUTCHES AND COUPLINGS 243 PROPULSION SHAFTING 244 PROPULSION SHAFT BEARINGS 245 PROPULSORS 250 PRPLN SUPPORT SYS (EXCEPT FUEL+LUBE OIL) | 1.4     | 348.06  | 2.45   |
| 244 PROPULSION SHAFT BEARINGS                                                                                                                           | 6.3     | 350.62  | 2.71   |
| 245 PROPULSORS                                                                                                                                          | 14.0    | 345.45  | 2.19   |
| 245 PROPULSORS 250 PRPLN SUPPORT SYS (EXCEPT FUEL+LUBE OIL)                                                                                             | 36.6    | 198.61  | 28.42  |
| 250 FREIN SUPPORT SIS (EXCEPT FUEL+LUBE OIL) 251 COMBUSTION AIR SYSTEM 252 PROPULSION CONTROL SYSTEM 256 CIRCULATING AND COOLING SEA WATER SYSTEM       | 10.5    | 187.34  | 27.43  |
| 252 PROPULSION CONTROL SYSTEM                                                                                                                           | 9.4     | 195.96  | 19.50  |
|                                                                                                                                                         |         |         |        |
| 259 UPTAKES (INNER CASING) 260 PRPLN SUPPORT SYS (FUEL+LUBE OIL) 261 FUEL SERVICE SYSTEM                                                                | 14.2    | 201.28  | 38.18  |
| 260 PRPLN SUPPORT SYS (FUEL+LUBE OIL)                                                                                                                   | 23.7    | 187.73  | 12.44  |
| 261 FUEL SERVICE SYSTEM                                                                                                                                 | 9.4     | 176.96  | 11.38  |
| 262 MAIN PROPULSION LUBE OIL SYSTEM                                                                                                                     | 10.2    | 195.96  | 12.00  |
| 264 LUBE OIL FILL, TRANSFER, AND PURIF                                                                                                                  | 4.1     | 191.96  | 16.00  |
| 290 SPECIAL PURPOSE SYSTEMS                                                                                                                             | 12.5    | 222.19  | 9.55   |
| 298 OPERATING FLUIDS                                                                                                                                    | 9.3     | 228.00  | 8.00   |
| 299 REPAIR PARTS AND SPECIAL TOOLS                                                                                                                      | 3.2     | 205.20  | 14.10  |

<sup>\*</sup> DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

#### PRINTED REPORT NO. 15 - ELECTRIC PLANT WEIGHT

| SWBS COMPONENT                       | WT,LTON | LCG,FT | VCG,FT |
|--------------------------------------|---------|--------|--------|
|                                      | ======  | =====  | =====  |
| 300 ELECTRIC PLANT                   | 261.7   | 198.72 | 16.88  |
| 310 ELECTRIC POWER GENERATION        | 129.3   | 194.06 | 12.16  |
| 311 SHIP SERVICE POWER GENERATION    |         | 196.20 |        |
| 313 BATTERIES AND SERVICE FACILITIES | 24.1    | 196.20 | 6.00   |
| 314 POWER CONVERSION EQUIPMENT       | 11.0    | 171.00 | 27.00  |
| 320 POWER DISTRIBUTION SYSTEMS       | 55.6    | 204.23 | 24.76  |
| 321 SHIP SERVICE POWER CABLE         | 34.9    | 201.40 | 27.00  |
| 324 SWITCHGEAR AND PANELS            | 20.7    | 209.00 | 21.00  |
| 330 LIGHTING SYSTEM                  | 18.8    | 199.99 | 27.22  |
| 331 LIGHTING DISTRIBUTION            | 11.8    | 201.40 | 27.00  |
| 332 LIGHTING FIXTURES                | 7.0     | 197.60 | 27.60  |
| 340 POWER GENERATION SUPPORT SYSTEMS | 39.2    | 194.38 | 17.56  |
| 342 DIESEL SUPPORT SYSTEMS           | 39.2    | 194.38 | 17.56  |
| 343 TURBINE SUPPORT SYSTEMS          | 0.0     | 0.00   | 0.00   |
| 390 SPECIAL PURPOSE SYSTEMS          | 18.8    | 222.20 | 14.25  |
| 398 OPERATING FLUIDS                 | 14.1    | 196.20 | 12.00  |
| 399 REPAIR PARTS AND SPECIAL TOOLS   | 4.7     | 300.20 | 21.00  |

#### \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

#### PRINTED REPORT NO. 16 - MACHINERY ROOMS

| NO | MAIN MACHINERY ROOMS  | 2 |
|----|-----------------------|---|
| NO | AUX MACHINERY ROOMS   | C |
| NO | OTHER MACHINERY ROOMS | C |

#### BULKHEAD LOCATIONS

| MR | MR   |        | FWD BHD | )     | AFT BHD |        |       |  |
|----|------|--------|---------|-------|---------|--------|-------|--|
| NO | ID   | BHD NO | X, FT   | X/LBP | BHD NO  | X, FT  | X/LBP |  |
|    |      |        |         |       |         |        |       |  |
| 1  | MMR1 | 6.     | 136.45  | 0.359 | 7.      | 171.97 | 0.453 |  |
| 2  | MMR2 | 9.     | 230.49  | 0.607 | 10.     | 266.00 | 0.700 |  |

# DIMENSIONS

| MR | MR   | LENGTH | , FT  | WIDTH, | FT    | HEIGHT | , FT  |
|----|------|--------|-------|--------|-------|--------|-------|
| NO | ID   | AVAIL  | REQ   | AVAIL  | REQ   | AVAIL  | REQ   |
|    |      |        |       |        |       |        |       |
| 1  | MMR1 | 35.51  | 35.51 | 49.17  | 21.30 | 21.29  | 19.63 |
| 2  | MMR2 | 35.51  | 35.51 | 51.76  | 21.30 | 19.46  | 19.63 |

# ARRANGEMENTS

| MR | MR    | ROTATION   |
|----|-------|------------|
| NO | ID    | ANGLE, DEG |
|    |       |            |
| 1  | MMR1  | 0.00       |
| 2  | MMR 2 | 0 00       |

PRINTED REPORT NO. 17 - MACHINERY ARRANGEMENTS

#### CLEARANCES (MACHINERY TO MACHINERY)

| ENG TO ENG CLR, FT          | 1.00 |
|-----------------------------|------|
| ENG TO GEAR CLR, FT         | 1.00 |
| OR ENG TO GEN CLR           |      |
| OR GEAR TO GEN CLR          |      |
| MTR TO GEAR CLR, FT         | 2.50 |
| PRPLN ARR TO SS ARR CLR, FT | 6.00 |
| AISLE WIDTH CLR, FT         | 2.50 |
| PORT/CL TB TO GEAR CLR, FT  | .00  |
| STBD TB TO GEAR CLR, FT     | .00  |

#### SEPARATIONS (BETWEEN HULL AND MACHINERY)

| 0 |
|---|
| 0 |
| 0 |
| 0 |
|   |

## ARRANGEMENTS

| ARRANGEMENT        | TYPE   | NO<br>INSTALLED | NO ONLINE<br>MAX+SUSTN | NO ONLINE<br>ENDURANCE |
|--------------------|--------|-----------------|------------------------|------------------------|
|                    |        |                 |                        | ~                      |
| ELECT PG ARR 1 IND | M-PG   | 2               | 2                      | 1                      |
| ELECT PG ARR 2 IND |        | 0               | 0                      | 0                      |
| ELECT DL ARR IND   | MTR    | 2               | 2                      | 2                      |
| SHIP SERVICE ARR   | DIESEL | 2               | 2                      | 1                      |

#### MACHINERY COMPONENT LOCATIONS

|           |       | CG     | LOC, FT | r     |
|-----------|-------|--------|---------|-------|
| COMPONENT | MR ID | X      | Y       | Z     |
|           |       |        |         |       |
| MAIN ENG  | MMR1  | 146.91 | -6.17   | 15.00 |
| MAIN ENG  | MMR2  | 240.94 | -6.17   | 15.00 |
| SS ENG    | MMR1  | 145.77 | 6.98    | 12.00 |
| SS ENG    | MMR2  | 239.81 | 6.98    | 12.00 |
| PRPLN MTR |       | 356.21 | -8.30   | 3.28  |
| PRPLN MTR |       | 356.21 | 8.30    | 3.28  |

#### SHAFTING

|            | END    | POINT LOC, | FT   |       |        |     |
|------------|--------|------------|------|-------|--------|-----|
| SHAFT TYPE | X      | Y          | Z    | SHAFT | ANGLE, | DEG |
|            |        |            |      |       |        |     |
| PORT SHAFT | 349.51 | -8.30      | 2.60 | -5    | .81    |     |
| STBD SHAFT | 349.51 | 8.30       | 2.60 | -5    | .81    |     |

PRINTED REPORT NO. 18 - MACHINERY SPACE REQUIREMENTS

## MACHINERY ROOM VOLUME REQUIREMENTS

| VOLUME CATEGORY                                                                | VOLUME, FT3      |
|--------------------------------------------------------------------------------|------------------|
| CITC CROSS CAA                                                                 |                  |
| SWBS GROUP 200                                                                 | 71910.           |
| PROPULSION POWER GENERATION                                                    | 13921.           |
| PROPULSION ENGINES                                                             | 9126.            |
| PROPULSION REDUCTION GEARS AND GENERATORS                                      | 4794.            |
| DRIVELINE MACHINERY                                                            | 0.               |
| REDUCTION AND BEVEL GEARS WITH Z-DRIVE<br>ELECTRIC PROPULSION MOTORS AND GEARS | 0.               |
| ELECTRIC PROPULSION MOTORS AND GEARS                                           | 0.               |
| REMOTELY-LOCATED THRUST BEARINGS                                               | 0.               |
| PROPELLER SHAFT                                                                | 0.               |
| ELECTRIC PROPULSION MISCELLANEOUS EQUIPMENT                                    | 9922.            |
| CONTROLS                                                                       | 1489.            |
| BRAKING RESISTORS                                                              | 774.             |
| MOTOR AND GENERATOR EXCITERS                                                   | 1489.            |
| SWITCHGEAR                                                                     | 726.             |
| POWER CONVERTERS                                                               | 669.             |
| DEIONIZED COOLING WATER SYSTEMS                                                | 2352.            |
| RECTIFIERS                                                                     | 550.             |
| HELIUM REFRIGERATION SYSTEMS                                                   | 1872.            |
| PROPULSION AUXILIARIES                                                         | 48068.           |
| PROPILSION LOCAL CONTROL CONSOLES                                              | 3601.            |
| CP PROP HYDRAULIC OIL POWER MODILES                                            | 0.               |
| CP PROP HYDRAULIC OIL POWER MODULES FUEL OIL PUMPS                             | 24467.           |
| LUBE OIL PUMPS                                                                 | 2618.            |
| LUBE OIL PURIFIERS                                                             | 15270.           |
| ENGINE LUBE OIL CONDITIONERS                                                   | 599.             |
| SEAWATER COOLING PUMPS                                                         | 1512.            |
| SEAWATER COOLING FOMPS                                                         | 1512.            |
| SWBS GROUP 300                                                                 | 24822.           |
| ELECTRIC PLANT POWER GENERATION                                                | 10232.           |
| ELECTRIC PLANT ENGINES                                                         | 6354.            |
| ELECTRIC PLANT GENERATORS AND GEARS                                            | 3879.            |
| SHIP SERVICE SWITCHBOARDS                                                      | 14590.           |
| CYCLOCONVERTERS                                                                | 0.               |
| SWBS GROUP 500                                                                 | 41070            |
| AUXILIARY MACHINERY                                                            | 41979.<br>41979. |
| AIR CONDITIONING PLANTS                                                        |                  |
|                                                                                | 8787.            |
| AUXILIARY BOILERS                                                              | 1135.            |
| FIRE PUMPS                                                                     | 2486.            |
| DISTILLING PLANTS                                                              | 10881.           |
| AIR COMPRESSORS                                                                | 5937.            |
| ROLL FIN PAIRS                                                                 | 10157.           |
| SEWAGE PLANTS                                                                  | 2596.            |
|                                                                                |                  |

ARRANGEABLE AREA REQUIREMENTS

NOTE: \* DENOTES INCLUSION OF PAYLOAD OR

ADJUSTMENTS

|        |                               | ====      |           |  |
|--------|-------------------------------|-----------|-----------|--|
|        |                               | FT        | 2         |  |
| SSCS   | GROUP NAME                    | HULL/DKHS | DKHS ONLY |  |
|        |                               |           |           |  |
| 4.31   | AUXILIARY MACHINERY DELTA     | 8419.9    | 0.0       |  |
| 4.3311 | SHIP SERVICE POWER GENERATION | 0.0       | 0.0       |  |
| 4.132  | INTERNAL COMB ENG COMB AIR    | 0.0       | 0.0       |  |
| 4.133  | INTERNAL COMB ENG EXHAUST     | 69.6      | 69.6      |  |
| 4.142  | GAS TURBINE ENG COMB AIR      | 138.6     | 138.6     |  |
| 4.143  | GAS TURBINE ENG EXHAUST       | 342.6     | 182.1     |  |
|        |                               |           |           |  |

PRINTED REPORT NO. 19 - SURFACE SHIP ENDURANCE CALCULATION FORM

DESIGN MODE IND-ENDURANCE ENDUR DISP IND-AVG DISP ENDUR DEF IND-USN SHIP FUEL TYPE IND-JP-5

ENG ENDUR RPM IND-CALC

SHIP FUEL LHV, BTU/LBM DFM FUEL LHV, BTU/LBM 18300. 18360.

| (1)   | ENDURANCE REQUIRED, NM ENDURANCE SPEED, KT FULL LOAD DISPLACEMENT, LTON AVERAGE ENDURANCE DISPLACEMENT, LTON RATED FULL POWER SHP, HP | 6000.       |   |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|---|
| (2)   | ENDURANCE SPEED, KT                                                                                                                   | 14.00       |   |
| (3)   | FULL LOAD DISPLACEMENT, LTON                                                                                                          | 3980.1      |   |
| (3A)  | AVERAGE ENDURANCE DISPLACEMENT, LTON                                                                                                  | 3810.6      |   |
| (4)   | RATED FULL POWER SHP, HP                                                                                                              | 28775.      |   |
| (5)   | DESIGN ENDURANCE POWER SHP @ (2)&(3A), HP                                                                                             | 3238.       |   |
| (6)   | AVERAGE ENDURANCE POWER (SHP), HP                                                                                                     | 3562.       |   |
| (7)   | RATIO, AVG END SHP/RATED F.P. SHP                                                                                                     | 0.12379     |   |
| ( · ) | (6)/(4)                                                                                                                               | 0.120,5     |   |
| (8)   | AVERAGE ENDURANCE BHP, HP                                                                                                             | 3897.       |   |
| ` '   | (8A)+(8B)                                                                                                                             |             |   |
| (8A)  | AVERAGE PRPLN ENDURANCE BHP, HP                                                                                                       | 3897.       |   |
|       | (6)/TRANSMISSION EFFICIENCY                                                                                                           |             |   |
|       | SHIP SERV PWR SUPPLIED BY PRPLN ENG, HP                                                                                               | 0.<br>1142. |   |
|       | 24 HOUR AVERAGE ELECTRIC LOAD, KW                                                                                                     | 1142.       |   |
| (9A)  | 24 HOUR AVERAGE ELECTRIC LOAD PORTION                                                                                                 |             |   |
|       | SUPPLIED BY SS ENG, KW                                                                                                                | 1142.       |   |
| (10)  | CALCULATED PROPULSION FUEL RATE @(8), LBM/HP-HR                                                                                       | 0.342       |   |
|       | CALC PRPLN FUEL CONSUMPTION, LBM/HR                                                                                                   | 1334.2      |   |
|       | (10)X(8)                                                                                                                              |             |   |
| (12)  | CALC SS GEN FUEL RATE @ (9A), LBM/KW-HR                                                                                               | 0.479       |   |
| (13)  | CALC SS GEN FUEL CONSUMPTION, LBM/HR                                                                                                  | 547.0       |   |
| , ,   | (12)X(9A)                                                                                                                             |             |   |
| (14)  | CALC FUEL CONSUMPTION FOR OTHER SERVICES, LBM/HR TOTAL CALC ALL-PURPOSE FUEL CONSUMPTION, LBM/HR                                      | 0.0         |   |
| (15)  | TOTAL CALC ALL-PURPOSE FUEL CONSUMPTION, LBM/HR                                                                                       | 1881.2      |   |
|       | (11)+(13)+14                                                                                                                          |             |   |
| (16)  | CALC ALL-PURPOSE FUEL RATE, LBM/HP-HR                                                                                                 | 0.528       |   |
|       | (15)/(6)                                                                                                                              |             |   |
| (17)  | FUEL RATE CORRECTION FACTOR BASED ON (7)                                                                                              | 1.0400      |   |
| (18)  | SPECIFIED FUEL RATE, LBM/HP-HR                                                                                                        | 0.549       |   |
|       | (16)X(17)                                                                                                                             |             |   |
| (19)  | AVG ENDURANCE FUEL RATE, LBM/HP-HR                                                                                                    | 0.577       |   |
|       | (18)XI.02                                                                                                                             |             |   |
|       | ENDURANCE FUEL (BURNABLE), LTON                                                                                                       | 394.3       | * |
|       | (1)X(6)X(19)/(2)X2240                                                                                                                 |             |   |
| (21)  | TAILPIPE ALLOWANCE FACTOR                                                                                                             | 0.95        |   |
| (22)  | ENDURANCE FUEL LOAD, LTON                                                                                                             | 415.1       |   |
|       | (20)/(21)                                                                                                                             |             |   |
|       |                                                                                                                                       |             |   |

ENG ENDUR RPM INDpkÄ?

## PRINTED REPORT NO. 20 - MACHINERY MARGINS

### PROPULSION PLANT

| MAIN ENG MAX LOAD FRAC | 1.000 |
|------------------------|-------|
| SEC ENG MAX LOAD FRAC  |       |
| TORQUE MARGIN FAC      | 1.200 |
| ELECTRIC PLANT         |       |
|                        |       |

| تلىلتا | CTRIC | PLANT. |
|--------|-------|--------|
|        |       |        |

| SS ENG MAX | LOAD FRAC      | 1.000 |
|------------|----------------|-------|
| ELECT LOAD | DES MARGIN FAC | 0.200 |
| ELECT LOAD | SL MARGIN FAC  | 0.100 |
| ELECT LOAD | IMBAL FAC      | 0.900 |

ASSET/MONOSC VERSION 3.3+ - AUXILIARY SYS MODULE - 2/11/95 10.48.51.

| PRINTED | REPORT | NO. | 1 | _ | SUMMARY |
|---------|--------|-----|---|---|---------|
|---------|--------|-----|---|---|---------|

| FRINIED REPORT NO. 1 - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |                                                                                                                                                                 |                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| LBP,FT BEAM,FT TOTAL AREA,FT2 TOTAL VOLUME,FT3 USABLE FUEL WT,LTON FULL LOAD WT,LTON MAX SHP, HP SEP GEN: 5736.0 KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 380.0                                                                                                              | TOTAL ACCOM                                                                                                                                                     | 122.0                                                      |
| BEAM, FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51.0                                                                                                               | COLL PROT SYS IND                                                                                                                                               | PRESENT                                                    |
| TOTAL AREA, FT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40398.                                                                                                             | COMP HTR TYPE IND                                                                                                                                               | ELECTRIC                                                   |
| TOTAL VOLUME, FT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 498689.                                                                                                            | DISTILLER TYPE IND                                                                                                                                              | RE OSMOSIS                                                 |
| USABLE FUEL WT, LTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 394.3                                                                                                              | WATER HTR TYPE IND                                                                                                                                              | INSTANT                                                    |
| FULL LOAD WT, LTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3980.1                                                                                                             | ANCHOR LOC IND                                                                                                                                                  | BOTTOM                                                     |
| MAX SHP, HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31804.                                                                                                             | MACKED CAC IND                                                                                                                                                  | DRESENT                                                    |
| SEP GEN: 5736.0 KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    | MASKER SIS IND                                                                                                                                                  | 1100011                                                    |
| 022 02111 070010 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |                                                                                                                                                                 |                                                            |
| TOTAL AIRCOND LOAD, TON NO AIRCOND UNITS TOTAL AIRCOND CAP, TON SWBS 514 WT,LTON  BOAT SELECT IND BOAT TYPE IND BOAT COMPLEMENT 2 RIB SWBS 583 WT,LTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 176.1                                                                                                              | TOTAL STEAM LOAD, LB/H                                                                                                                                          | 110.                                                       |
| NO AIRCOND UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                                                                                                | AUX BOILER TYPE IND                                                                                                                                             | ELECTRIC                                                   |
| TOTAL AIRCOND CAP, TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 375.0                                                                                                              | NO AUX BOILERS                                                                                                                                                  | 2.                                                         |
| SWBS 514 WT,LTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.3                                                                                                               | TOTAL AUX BLR CAP, LB/                                                                                                                                          | IR 200.                                                    |
| DOAM CELEGE TAID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a Tima                                                                                                             | SWBS 517 WT, LTON                                                                                                                                               | 0.3                                                        |
| BOAT SELECT IND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GIVEN                                                                                                              |                                                                                                                                                                 |                                                            |
| BOAT COMPLEMENT 2 RIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KID                                                                                                                | NO FAS STATIONS                                                                                                                                                 | 2.                                                         |
| SWBS 583 WT.LTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.6                                                                                                                | RAS STATIONS: NO                                                                                                                                                | TYPE                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    | 2.                                                                                                                                                              | BULKHEAD                                                   |
| STRIKE GEAR: NO 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |                                                                                                                                                                 |                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    | SSCS 3.53 AREA,FT2                                                                                                                                              | 212.9                                                      |
| STRIKE GEAR: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TYPE                                                                                                               | SWBS 571 WT,LTON                                                                                                                                                | 10.7                                                       |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PALLET                                                                                                             |                                                                                                                                                                 |                                                            |
| CEDY DECK YORK EMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170 6                                                                                                              | CHOMPCE ADEA PH2                                                                                                                                                | 2427 0                                                     |
| SIRK DECK AREA, FIZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4/0.0                                                                                                              | STOWAGE AREA, FIZ                                                                                                                                               | A 3                                                        |
| STRK DECK AREA,FT2<br>SWBS 572 WT,LTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.1                                                                                                               | SWBS 672 WT LTON                                                                                                                                                | 27.1                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    | BMBE 072 WI,BION                                                                                                                                                | 27.1                                                       |
| PRINTED REPORT NO. 2- A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IRCONDITIONI                                                                                                       | NG                                                                                                                                                              |                                                            |
| AIRCOND MARGIN SHIP AIRCOND LOAD, TON AIRCOND MARGIN LOAD, TON TOTAL AIRCOND LOAD, TON AIRCOND UNIT CAP, TON NO AIRCOND UNITS TOTAL AIRCOND CAP, TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                    |                                                                                                                                                                 |                                                            |
| AIRCOND MARGIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                                                                               | TOTAL ACCOM                                                                                                                                                     | 122.0                                                      |
| SHIP AIRCOND LOAD, TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 146.7                                                                                                              | COLL PROT SYS IND                                                                                                                                               | PRESENT                                                    |
| TOTAL ATROND TOAD, TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 176 1                                                                                                              | CMDC 514 NW I TON                                                                                                                                               | 7/ 3                                                       |
| ATROND INTO CAR TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125 0                                                                                                              | SWBS 514 WI, BION                                                                                                                                               | 17.2                                                       |
| NO AIRCOND UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                                                                                                | SHEE 314 VGG/11                                                                                                                                                 | 17.2                                                       |
| TOTAL AIRCOND CAP, TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 375.0                                                                                                              |                                                                                                                                                                 |                                                            |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                                                                                                                                                 |                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                                                                                 |                                                            |
| PRINTED REPORT NO. 3- AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UXILIARY BOI                                                                                                       | LERS                                                                                                                                                            |                                                            |
| PRINTED REPORT NO. 3- AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UXILIARY BOI                                                                                                       | LERS                                                                                                                                                            |                                                            |
| PRINTED REPORT NO. 3- AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UXILIARY BOI                                                                                                       | LERS                                                                                                                                                            |                                                            |
| PRINTED REPORT NO. 3- AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UXILIARY BOI                                                                                                       | LERS                                                                                                                                                            |                                                            |
| PRINTED REPORT NO. 3- AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UXILIARY BOI                                                                                                       | LERS                                                                                                                                                            |                                                            |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UXILIARY BOI ELECTRIC 2. 100. 200.                                                                                 | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UXILIARY BOI ELECTRIC 2. 100. 200.                                                                                 | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UXILIARY BOI ELECTRIC 2. 100. 200.                                                                                 | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UXILIARY BOI ELECTRIC 2. 100. 200.                                                                                 | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UXILIARY BOI ELECTRIC 2. 100. 200.                                                                                 | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UXILIARY BOI ELECTRIC 2. 100. 200.                                                                                 | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UXILIARY BOI ELECTRIC 2. 100. 200.                                                                                 | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UXILIARY BOI ELECTRIC 2. 100. 200.                                                                                 | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELECTRIC 2. 100. 200.  863. 30. 0. 138. 0. 933. 604. 49. 61.                                                       | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 533 STEAM LOAD SWBS 533 STEAM LOAD SWBS 541 STEAM LOAD SWBS 651 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61.                                                        | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 531 STEAM LOAD SWBS 533 STEAM LOAD SWBS 541 STEAM LOAD SWBS 541 STEAM LOAD SWBS 651 STEAM LOAD SWBS 6651 STEAM LOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61.                                                        | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 264 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 531 STEAM LOAD SWBS 533 STEAM LOAD SWBS 541 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ELECTRIC 2. 100. 200.  863. 30. 0. 138. 0. 933. 604. 49. 61.                                                       | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 533 STEAM LOAD SWBS 533 STEAM LOAD SWBS 541 STEAM LOAD SWBS 651 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELECTRIC 2. 100. 200.  863. 30. 0. 138. 0. 933. 604. 49. 61.                                                       | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 531 STEAM LOAD SWBS 531 STEAM LOAD SWBS 531 STEAM LOAD SWBS 541 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM L | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                     | LERS  TOTAL ACCOM  COLL PROT SYS IND  COMP HTR TYPE IND  DISTILLER TYPE IND                                                                                     | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS                 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 264 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 531 STEAM LOAD SWBS 531 STEAM LOAD SWBS 541 STEAM LOAD SWBS 541 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 ST | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                     | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT                                                             | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS<br>74.3<br>17.2 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 531 STEAM LOAD SWBS 531 STEAM LOAD SWBS 531 STEAM LOAD SWBS 541 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM L | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                     | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON                         | 122.0 PRESENT ELECTRIC RE OSMOSIS 74.3 17.2                |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 264 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 531 STEAM LOAD SWBS 531 STEAM LOAD SWBS 541 STEAM LOAD SWBS 541 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 ST | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                     | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT                                                             | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS<br>74.3<br>17.2 |
| AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 511 STEAM LOAD SWBS 531 STEAM LOAD SWBS 533 STEAM LOAD SWBS 533 STEAM LOAD SWBS 541 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD TOTAL STEAM LOAD TOTAL STEAM LOAD, LB/HR PRINTED REPORT NO. 4- BO BOAT SELECT IND BOAT TYPE IND BOAT COMPLEMENT 2 RIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                     | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON SWBS 583 VCG,FT         | 122.0 PRESENT ELECTRIC RE OSMOSIS 74.3 17.2                |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 264 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 531 STEAM LOAD SWBS 531 STEAM LOAD SWBS 541 STEAM LOAD SWBS 541 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 ST | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                     | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON SWBS 583 VCG,FT         | 122.0 PRESENT ELECTRIC RE OSMOSIS 74.3 17.2                |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 531 STEAM LOAD SWBS 531 STEAM LOAD SWBS 531 STEAM LOAD SWBS 541 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD TOTAL STEAM LOAD, LB/HR PRINTED REPORT NO. 4- BOAT SELECT IND BOAT TYPE IND BOAT COMPLEMENT 2 RIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                     | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON SWBS 583 VCG,FT         | 122.0 PRESENT ELECTRIC RE OSMOSIS 74.3 17.2                |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 531 STEAM LOAD SWBS 531 STEAM LOAD SWBS 531 STEAM LOAD SWBS 541 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD TOTAL STEAM LOAD, LB/HR PRINTED REPORT NO. 4- BOAT SELECT IND BOAT TYPE IND BOAT COMPLEMENT 2 RIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELECTRIC 2. 100. 200.  863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                    | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON SWBS 583 VCG,FT         | 122.0 PRESENT ELECTRIC RE OSMOSIS 74.3 17.2                |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 533 STEAM LOAD SWBS 533 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD TOTAL STEAM LOAD, LB/HR PRINTED REPORT NO. 4- BOAT SELECT IND BOAT TYPE IND BOAT COMPLEMENT 2 RIB PRINTED REPORT NO. 5- RINO FAS STATIONS FAS STATION WT,LTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELECTRIC 2. 100. 200.  863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                    | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON SWBS 583 VCG,FT         | 122.0 PRESENT ELECTRIC RE OSMOSIS 74.3 17.2                |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 533 STEAM LOAD SWBS 533 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD TOTAL STEAM LOAD, LB/HR PRINTED REPORT NO. 4- BOAT SELECT IND BOAT TYPE IND BOAT COMPLEMENT 2 RIB PRINTED REPORT NO. 5- RINO FAS STATIONS FAS STATION WT,LTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELECTRIC 2. 100. 200.  863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                    | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON SWBS 583 VCG,FT         | 122.0 PRESENT ELECTRIC RE OSMOSIS 74.3 17.2                |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 533 STEAM LOAD SWBS 533 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD TOTAL STEAM LOAD, LB/HR PRINTED REPORT NO. 4- BOAT SELECT IND BOAT TYPE IND BOAT COMPLEMENT 2 RIB PRINTED REPORT NO. 5- RINO FAS STATIONS FAS STATION WT,LTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELECTRIC 2. 100. 200.  863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                    | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON SWBS 583 VCG,FT         | 122.0 PRESENT ELECTRIC RE OSMOSIS 74.3 17.2                |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 517 STEAM LOAD SWBS 518 STEAM LOAD SWBS 541 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD TOTAL STEAM LOAD, LB/HR PRINTED REPORT NO. 4- BOAT SELECT IND BOAT TYPE IND BOAT COMPLEMENT 2 RIB PRINTED REPORT NO. 5- RINO FAS STATIONS FAS STATIONS FAS STATIONS: NO 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61 110.  DATS GIVEN RIB  EPLENISHMENT 2. 0.5 TYPE BULKHEAD | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON SWBS 583 VCG,FT SYSTEMS | 122.0 PRESENT ELECTRIC RE OSMOSIS 74.3 17.2                |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 533 STEAM LOAD SWBS 533 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 ST | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                     | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON SWBS 583 VCG,FT SYSTEMS | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS<br>74.3<br>17.2 |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 264 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 533 STEAM LOAD SWBS 533 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 STEAM LOAD SWBS 671 ST | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61 110.  DATS GIVEN RIB  EPLENISHMENT 2. 0.5 TYPE BULKHEAD | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON SWBS 583 VCG,FT SYSTEMS | 122.0 PRESENT ELECTRIC RE OSMOSIS 74.3 17.2                |
| PRINTED REPORT NO. 3- AND AUX BOILER TYPE IND NO AUX BOILERS AUX BLR UNIT CAP, LB/HR TOTAL AUX BLR CAP, LB/HR TOTAL AUX BLR CAP, LB/HR SWBS 261 STEAM LOAD SWBS 511 STEAM LOAD SWBS 517 STEAM LOAD SWBS 533 STEAM LOAD SWBS 533 STEAM LOAD SWBS 651 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 STEAM LOAD SWBS 655 ST | ELECTRIC 2. 100. 200. 863. 30. 0. 138. 0. 933. 604. 49. 61. ——————————————————————————————————                     | TOTAL ACCOM COLL PROT SYS IND COMP HTR TYPE IND DISTILLER TYPE IND SWBS 517 WT,LTON SWBS 517 VCG,FT  BOAT COMP WT,LTON SWBS 583 WT,LTON SWBS 583 VCG,FT SYSTEMS | 122.0<br>PRESENT<br>ELECTRIC<br>RE OSMOSIS<br>74.3<br>17.2 |

PRINTED REPORT NO. 6- STRIKE GEAR

STRIKE GEAR: NO TYPE
2. PALLET

STRK DECK AREA,FT2 478.6
SWBS 572 WT,LTON 35.1
SWBS 572 VCG,FT 23.9

PRINTED REPORT NO. 7- STOWAGE SYSTEMS

| STOWAGE SSC  | S SPACES AND | D ASSOCIAT | ED FACTORS |            |
|--------------|--------------|------------|------------|------------|
| SSCS         | STOW UTIL    | STOW EFF   | DECK LOAD  | STACK      |
| SPACES       | FACTOR       | FACTOR     | LB/FT2     | HEIGHT, FT |
| A1390        | 0.36         | 0.45       | 25.00      | 6.50       |
| A2230        | 1.00         | 0.50       | 3.70       | 6.50       |
| A2410        | 0.67         | 0.47       | 14.70      | 6.50       |
| A2620        | 0.58         | 0.45       | 14.70      | 6.50       |
| A3700        | 0.54         | 0.45       | 32.10      | 6.50       |
| STOWAGE AREA | A,FT2        | 2427.0     |            |            |
| SWBS 671 WT  | LTON         | 4.3        |            |            |
| SWBS 671 VC  | G,FT         | 22.3       |            |            |
| SWBS 672 WT  | LTON         | 27.1       |            |            |
| SWBS 672 VC  | S,FT         | 14.2       |            |            |

| SMBS 072 VCG, FT 14.2                                                                                                                                                                                                                            |                   |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
| PRINTED REPORT NO. 8 - AUXILIARY SYSTEMS  SWBS COMPONENT  ==================================                                                                                                                                                     | WEIGHT<br>WT-LTON | VCG-FT  |
| 500 NIVII TARV CYCHENG CRAFIDAT                                                                                                                                                                                                                  | 404 2             | 10.00   |
| 510 CLIMATE COMPOS                                                                                                                                                                                                                               | 494.2             | 18.80   |
| 510 CLIMATE CONTROL                                                                                                                                                                                                                              | 134.0             | 22.40   |
| 511 COMPARTMENT HEATING SYSTEM                                                                                                                                                                                                                   | 4.5               | 25.83   |
| 512 VENTILATION SYSTEM                                                                                                                                                                                                                           | 44.0              | 28.97   |
| 513 MACHINERY SPACE VENT SYSTEM                                                                                                                                                                                                                  | 9.1               | 32.71   |
| 514 AIR CONDITIONING SYSTEM                                                                                                                                                                                                                      | 74.3              | 17.24   |
| 516 REFRIGERATION SYSTEM                                                                                                                                                                                                                         | 1.9               | 14.97   |
| 51/ AUX BOILERS+OTHER HEAT SOURCES                                                                                                                                                                                                               | . 3               | 17.63   |
| 520 SEA WATER SYSTEMS                                                                                                                                                                                                                            | 40.6              | 19.65   |
| 521 FIREMAIN+SEA WATER FLUSHING SYS                                                                                                                                                                                                              | 21.5              | 18.75   |
| 522 SPRINKLING SYSTEM                                                                                                                                                                                                                            |                   | 21.82   |
| 523 WASHDOWN SYSTEM                                                                                                                                                                                                                              | 3.0               | 34.11   |
| 524 AUXILIARY SEAWATER SYSTEM                                                                                                                                                                                                                    |                   |         |
| 526 SCUPPERS+DECK DRAINS<br>527 FIREMAIN ACTUATED SERV, OTHER                                                                                                                                                                                    | .8                | 31.85   |
| 527 FIREMAIN ACTUATED SERV, OTHER                                                                                                                                                                                                                |                   |         |
| 527 FIREMAIN ACTUATED SERV, OTHER 528 PLUMBING DRAINAGE 529 DRAINAGE+BALLASTING SYSTEM 530 FRESH WATER SYSTEMS 531 DISTILLING PLANT * 532 COOLING WATER 533 POTABLE WATER 534 AUX STEAM + DRAINS IN MACH BOX 535 AUX STEAM + DRAINS OUT MACH BOX | 12.0              | 19.64   |
| 529 DRAINAGE+BALLASTING SYSTEM                                                                                                                                                                                                                   | 3.4               | 9.91    |
| 530 FRESH WATER SYSTEMS                                                                                                                                                                                                                          | 23.8              | 20.74   |
| 531 DISTILLING PLANT                                                                                                                                                                                                                             | 3.8               | 15-91   |
| * 532 COOLING WATER                                                                                                                                                                                                                              | 4 - 0             | 47.47   |
| 533 POTABLE WATER                                                                                                                                                                                                                                | 6.0               | 19 70   |
| 534 AUX STEAM + DRAINS IN MACH BOY                                                                                                                                                                                                               | 10.0              | 12 40   |
| 535 AUX STEAM + DRAINS OUT MACH BOX                                                                                                                                                                                                              | 10.0              | 12.43   |
| 536 AUXILIARY FRESH WATER COOLING                                                                                                                                                                                                                |                   |         |
| 540 FIFTS / LIBRICANTS HANDLING                                                                                                                                                                                                                  | 21 1              | 10 50   |
| 540 FUELS/LUBRICANTS, HANDLING+STORAGE<br>541 SHIP FUEL+COMPENSATING SYSTEM<br>542 AVIATION-GENERAL PURPOSE FUELS                                                                                                                                | 21.1              | 12.55   |
| 542 AVIATION+GENERAL PURPOSE FUELS                                                                                                                                                                                                               | 29.8              | 12.91   |
| 543 AVIATION+GENERAL PURPOSE LUBO                                                                                                                                                                                                                |                   |         |
| 544 LIQUID CARGO                                                                                                                                                                                                                                 |                   |         |
|                                                                                                                                                                                                                                                  |                   |         |
| 545 TANK HEATING                                                                                                                                                                                                                                 | 1.3               | 3.88    |
| 549 SPEC FUEL+LUBRICANTS HANDL+STOW<br>550 AIR,GAS+MISC FLUID SYSTEM<br>551 COMPRESSED AIR SYSTEMS                                                                                                                                               |                   |         |
| 550 AIR, GAS+MISC FLUID SYSTEM                                                                                                                                                                                                                   | 43.5              | 18.69   |
| 551 COMPRESSED AIR SYSTEMS                                                                                                                                                                                                                       | 20.1              | 16.63   |
| 552 COMPRESSED GASES                                                                                                                                                                                                                             |                   |         |
| 553 O2 N2 SYSTEM                                                                                                                                                                                                                                 |                   |         |
| 554 LP BLOW                                                                                                                                                                                                                                      |                   |         |
| 555 FIRE EXTINGUISHING SYSTEMS                                                                                                                                                                                                                   | 23.5              | 20.47   |
| 556 HYDRAULIC FLUID SYSTEM                                                                                                                                                                                                                       |                   |         |
| 557 LIQUID GASES, CARGO                                                                                                                                                                                                                          |                   |         |
|                                                                                                                                                                                                                                                  |                   |         |
| 560 SHIP CNTL SYS                                                                                                                                                                                                                                | 75.6              | 5.63    |
| 561 STEERING+DIVING CNTL SYS                                                                                                                                                                                                                     | 11.7              | 17.36   |
| 556 SPECIAL PIPING SYSTEMS 560 SHIP CNTL SYS 561 STEERING+DIVING CNTL SYS 562 RUDDER 565 TRIM+HEEL SYSTEMS 568 MANEUVERING SYSTEMS 570 UNDERWAY REPLENISHMENT SYSTEMS 571 REPLENISHMENT-AT-SEA SYSTEMS 572 SHIP STORES-FEQUIP HANDLING SYS       | 27.4              | 7.00    |
| 565 TRIM+HEEL SYSTEMS                                                                                                                                                                                                                            | 36.5              | .83     |
| 568 MANEUVERING SYSTEMS                                                                                                                                                                                                                          |                   |         |
| 570 UNDERWAY REPLENTSHMENT SYSTEMS                                                                                                                                                                                                               | 45.8              | 26 . 91 |
| 571 REPLENTSHMENT-AT-SEA SYSTEMS                                                                                                                                                                                                                 | 10.7              | 36 82   |
| 572 SHIP STORES+EQUID HAMDIING GVG                                                                                                                                                                                                               | 35 1              | 20.02   |
| 573 CARGO HANDLING SYSTEMS                                                                                                                                                                                                                       | . 33.1            | 23.00   |
| C. CEMICO MANDITA SISIEMS                                                                                                                                                                                                                        |                   |         |

|   | 574   | VERTICAL REPLENISHMENT SYSTEMS        |      |                |
|---|-------|---------------------------------------|------|----------------|
|   | 580 M | ECHANICAL HANDLING SYSTEMS            | 48.7 | 26.27          |
|   | 581   | ANCHOR HANDLING+STOWAGE SYSTEMS       | 24.1 | 18.78          |
|   | 582   | MOORING+TOWING SYSTEMS                | 10.1 | 30.76          |
|   | 583   | BOATS, HANDLING+STOWAGE SYSTEMS       | 9.6  | 3 <b>7.</b> 00 |
|   | 584   | MECH OPER DOOR, GATE, RAMP, TTBL SYS  |      |                |
|   | 585   | ELEVATING + RETRACTING GEAR           |      |                |
|   | 586   | AIRCRAFT RECOVERY SUPPORT SYS         |      |                |
|   | 587   | AIRCRAFT LAUNCH SUPPORT SYSTEM        |      |                |
| * | 588   | AIRCRAFT HANDLING, SERVICING, STOWAGE | 5.0  | 32.76          |
|   | 589   | MISC MECH HANDLING SYSTEMS            |      |                |
|   |       | PECIAL PURPOSE SYSTEMS                | 51.0 | 16.75          |
|   | 591   | SCIENTIFIC+OCEAN ENGINEERING SYS      |      |                |
|   | 592   |                                       |      |                |
|   | 593   | ENVIRONMENTAL POLLUTION CNTL SYS      | 9.8  | 11.38          |
|   | 594   | SUBMARINE RESC+SALVG+SURVIVE SYS      |      |                |
|   | 595   | TOW, LAUNCH, HANDLE UNDERWATER SYS    |      |                |
|   | 596   | HANDLING SYS FOR DIVER+SUBMR VEH      |      |                |
|   | 597   | SALVAGE SUPPORT SYSTEMS               |      |                |
|   | 598   | AUX SYSTEMS OPERATING FLUIDS          | 35.7 | 18.34          |
|   | 599   | AUX SYSTEMS REPAIR PARTS+TOOLS        | 5.4  | 16.01          |

#### OUTFIT+FURNISHINGS WEIGHT

| SWBS | COMPONENT               | WT-LTON | VCG-FT |
|------|-------------------------|---------|--------|
| ==== |                         |         |        |
| 671  | LOCKERS+SPECIAL STOWAGE | 4.3     | 22.29  |
| 672  | STOREROOMS+ISSUE ROOMS  | 27.1    | 14.15  |

\* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS ASSET/MONOSC VERSION 3.3+ - WEIGHT MODULE - 2/11/95 10.49.06.

### PRINTED REPORT NO. 1 - SUMMARY

|                                               |                                                                                        |                                        | G H T                                        | LCG                                  | VCG                                    | RESULTA        |        |
|-----------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|----------------|--------|
| SWBS                                          | GROUP                                                                                  | LTON                                   | PER CENT                                     | FT                                   | FT                                     | WT-LTON        | VCG-FT |
| ====                                          |                                                                                        |                                        | ======                                       |                                      | =====                                  | =====          |        |
| 100                                           | HULL STRUCTURE                                                                         | 1320.9                                 | 33.2                                         | 187.33                               | 21.35                                  |                |        |
| 200                                           | PROP PLANT                                                                             | 281.3                                  | 7.1                                          | 246.35                               | 13.45                                  |                |        |
| 300                                           | ELECT PLANT                                                                            | 261.7                                  | 6.6                                          | 198.72                               | 16.88                                  |                |        |
| 400                                           | COMM + SURVEIL                                                                         | 144.9                                  | 3.6                                          | 144.40                               | 25.34                                  | 97.6           | .60    |
| 500                                           | AUX SYSTEMS                                                                            | 494.2                                  | 12.4                                         | 209.00                               | 18.80                                  |                |        |
| 600                                           | OUTFIT + FURN                                                                          | 314.0                                  | 7.9                                          | 190.00                               | 20.68                                  |                |        |
| 700                                           | ARMAMENT                                                                               | 209.6                                  | 5.3                                          | 171.00                               | 18.29                                  | 197.4          | .92    |
| M11                                           | D+B WT MARGIN                                                                          | 378.3                                  | 9.5                                          | 194.43                               | 19.72                                  |                |        |
|                                               |                                                                                        |                                        |                                              |                                      |                                        |                |        |
|                                               | D+B KG MARGIN                                                                          |                                        |                                              | +                                    | 2.47                                   |                |        |
| ====                                          |                                                                                        |                                        | ~                                            |                                      |                                        |                |        |
| L                                             | IGHTSHIP                                                                               | 3405.0                                 | 85.6                                         | 194.43                               | 22.19                                  | 295.0          | 1.52   |
| L                                             |                                                                                        |                                        | =======                                      |                                      |                                        |                | ====== |
| L<br>====<br>F00                              | FULL LOADS                                                                             | 575.1                                  | 85.6<br>==================================== | 203.24                               | 5.24                                   | 295.0<br>108.4 | 1.52   |
| F10                                           | FULL LOADS<br>CREW + EFFECTS                                                           | 575.1<br>13.0                          | =======                                      | 203.24<br>178.60                     | 5.24<br>22.98                          |                | ====== |
| F10<br>F20                                    | FULL LOADS                                                                             | 575.1<br>13.0<br>44.6                  | =======                                      | 203.24<br>178.60<br>167.20           | 5.24<br>22.98<br>9.48                  |                | ====== |
| F10                                           | FULL LOADS<br>CREW + EFFECTS                                                           | 575.1<br>13.0                          | =======                                      | 203.24<br>178.60<br>167.20           | 5.24<br>22.98<br>9.48<br>17.23         |                | ====== |
| F10<br>F20<br>F30<br>F40                      | FULL LOADS CREW + EFFECTS MISS REL EXPEN SHIPS STORES                                  | 575.1<br>13.0<br>44.6                  | =======                                      | 203.24<br>178.60<br>167.20           | 5.24<br>22.98<br>9.48<br>17.23<br>3.97 |                | ====== |
| F10<br>F20<br>F30                             | FULL LOADS CREW + EFFECTS MISS REL EXPEN SHIPS STORES                                  | 575.1<br>13.0<br>44.6<br>17.4          | =======                                      | 203.24<br>178.60<br>167.20<br>205.20 | 5.24<br>22.98<br>9.48<br>17.23         |                | ====== |
| F10<br>F20<br>F30<br>F40                      | FULL LOADS CREW + EFFECTS MISS REL EXPEN SHIPS STORES FUELS + LUBRIC                   | 575.1<br>13.0<br>44.6<br>17.4<br>482.0 | =======                                      | 203.24<br>178.60<br>167.20<br>205.20 | 5.24<br>22.98<br>9.48<br>17.23<br>3.97 |                | ====== |
| F10<br>F20<br>F30<br>F40<br>F50               | FULL LOADS CREW + EFFECTS MISS REL EXPEN SHIPS STORES FUELS + LUBRIC FRESH WATER       | 575.1<br>13.0<br>44.6<br>17.4<br>482.0 | =======                                      | 203.24<br>178.60<br>167.20<br>205.20 | 5.24<br>22.98<br>9.48<br>17.23<br>3.97 |                | ====== |
| F10<br>F20<br>F30<br>F40<br>F50<br>F60<br>M24 | FULL LOADS CREW + EFFECTS MISS REL EXPEN SHIPS STORES FUELS + LUBRIC FRESH WATER CARGO | 575.1<br>13.0<br>44.6<br>17.4<br>482.0 | =======                                      | 203.24<br>178.60<br>167.20<br>205.20 | 5.24<br>22.98<br>9.48<br>17.23<br>3.97 |                | ====== |

PRINTED REPORT NO. 2 - HULL STRUCTURES WEIGHT

| SWBS    | COMPONENT  COMPONENT  COMPONENT  COMPONENT  L STRUCTURES  HELL + SUPPORTS  PLATING  INNER BOTTOM  SHELL APPENDAGES  STANCHIONS  LONGIT FRAMING  TRANSV FRAMING  ULL STRUCTURAL BULKHDS  LONGIT STRUCTURAL BULKHDS  TRANSV STRUCTURAL BULKHDS  TRANSV STRUCTURAL BULKHDS  TRANSV STRUCTURAL BULKHDS  TRUNKS + ENCLOSURES  BULKHEADS, TORPEDO PROTECT SYS | WT-LTON      | VCG-FT                  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|
| 100 HUL | L STRUCTURES                                                                                                                                                                                                                                                                                                                                            | 1320.9       | 21.35                   |
| 110 S   | HELL + SUPPORTS                                                                                                                                                                                                                                                                                                                                         | 379.3        | 13-49                   |
| 111     | PLATING                                                                                                                                                                                                                                                                                                                                                 | 218.6        | 18.75                   |
| 113     | INNER BOTTOM                                                                                                                                                                                                                                                                                                                                            | 36.5         | 4.50                    |
| 114     | SHELL APPENDAGES                                                                                                                                                                                                                                                                                                                                        | 17.2         | 3.69                    |
| 115     | STANCHIONS                                                                                                                                                                                                                                                                                                                                              | 5.1          | 15.00                   |
| 116     | LONGIT FRAMING                                                                                                                                                                                                                                                                                                                                          | 63.8         | 1.47                    |
| 117     | TRANSV FRAMING                                                                                                                                                                                                                                                                                                                                          | 38.1         | 16.24                   |
| 120 H   | ULL STRUCTURAL BULKHDS                                                                                                                                                                                                                                                                                                                                  | 78.0         | 18.79                   |
| 121     | LONGIT STRUCTURAL BULKHDS                                                                                                                                                                                                                                                                                                                               |              |                         |
| 122     | TRANSV STRUCTURAL BULKHDS                                                                                                                                                                                                                                                                                                                               | 66.6         | 18.79                   |
| 123     | TRUNKS + ENCLOSURES BULKHEADS, TORPEDO PROTECT SYS                                                                                                                                                                                                                                                                                                      | 11.3         | 18.79                   |
| 124     | BULKHEADS, TORPEDO PROTECT SYS                                                                                                                                                                                                                                                                                                                          |              |                         |
| 130 H   | ULL DECKS                                                                                                                                                                                                                                                                                                                                               | 261.0        | 26.76<br>31.05<br>20.66 |
|         | MAIN DECK                                                                                                                                                                                                                                                                                                                                               | 153.3        | 31.05                   |
|         | 2ND DECK                                                                                                                                                                                                                                                                                                                                                | 107.7        | 20.66                   |
|         | 3RD DECK                                                                                                                                                                                                                                                                                                                                                |              |                         |
|         | 4TH DECK                                                                                                                                                                                                                                                                                                                                                | •            |                         |
|         | 5TH DECK+DECKS BELOW                                                                                                                                                                                                                                                                                                                                    |              |                         |
|         | 01 HULL DECK                                                                                                                                                                                                                                                                                                                                            |              |                         |
|         | 02 HULL DECK                                                                                                                                                                                                                                                                                                                                            |              |                         |
|         | 03 HULL DECK                                                                                                                                                                                                                                                                                                                                            |              |                         |
|         | 04 HULL DECK                                                                                                                                                                                                                                                                                                                                            |              |                         |
|         | ULL PLATFORMS/FLATS                                                                                                                                                                                                                                                                                                                                     | 58.2<br>58.2 | 12.21                   |
|         | 1ST PLATFORM                                                                                                                                                                                                                                                                                                                                            | 58.2         | 12.21                   |
|         | ZND PLATFORM                                                                                                                                                                                                                                                                                                                                            |              |                         |
|         | 3RD PLATFORM                                                                                                                                                                                                                                                                                                                                            |              |                         |
|         | 4TH PLATFORM                                                                                                                                                                                                                                                                                                                                            |              |                         |
|         | 5TH PLAT+PLATS BELOW                                                                                                                                                                                                                                                                                                                                    |              |                         |
| 149     | FLATS                                                                                                                                                                                                                                                                                                                                                   |              |                         |
| 150 D   | ECK HOUSE STRUCTURE PECIAL STRUCTURES CASTINGS+FORGINGS+EQUIV WELDMT STACKS AND MACKS SEA CHESTS                                                                                                                                                                                                                                                        | 212.7        | 36.29                   |
| 100 S   | PECIAL STRUCTURES                                                                                                                                                                                                                                                                                                                                       | 61.5         | 15.94                   |
| 161     | CASTINGS+FORGINGS+EQUIV WELDMT                                                                                                                                                                                                                                                                                                                          | 33.1         | 9.19                    |
| 162     | STACKS AND MACKS                                                                                                                                                                                                                                                                                                                                        | 2.1          | 46.46                   |
| 163     | BALLISTIC PLATING                                                                                                                                                                                                                                                                                                                                       | 3.3          | 3.70                    |
| 165     | SONAR DOMES                                                                                                                                                                                                                                                                                                                                             |              |                         |
| 166     | CDONCONG                                                                                                                                                                                                                                                                                                                                                |              |                         |
| 167     | HILL STRUCTURAL CLOSURES                                                                                                                                                                                                                                                                                                                                | 10 1         | 21 07                   |
| 168     | DKHS STRUCTURAL CLOSURES                                                                                                                                                                                                                                                                                                                                | 10.1         | 38 64                   |
| 169     | SPECIAL PURPOSE CLOSURES+STRUCT                                                                                                                                                                                                                                                                                                                         | 4.2          | 33.05                   |
| 170 M   | HULL STRUCTURAL CLOSURES DKHS STRUCTURAL CLOSURES SPECIAL PURPOSE CLOSURES+STRUCT ASTS+KINGPOSTS+SERV PLATFORM MASTS, TOWERS, TETRAPODS KINCPOSTS AND SUPPORT FRAMES                                                                                                                                                                                    | 31.6         | 79 40                   |
| 171     | MASTS. TOWERS. TETRAPODS                                                                                                                                                                                                                                                                                                                                | 31.6         | 79.40                   |
| 172     | KINGPOSTS AND SUPPORT FRAMES                                                                                                                                                                                                                                                                                                                            | 01.0         | ,3.40                   |
| 179     | SERVICE PLATFORMS                                                                                                                                                                                                                                                                                                                                       |              |                         |
| 180 F   | OUNDATIONS                                                                                                                                                                                                                                                                                                                                              | 225.5        | 11.81                   |
| 181     | HULL STRUCTURE FOUNDATIONS                                                                                                                                                                                                                                                                                                                              |              |                         |
| 182     | PROPULSION PLANT FOUNDATIONS                                                                                                                                                                                                                                                                                                                            | 93.2         | 7.48                    |
| 183     | ELECTRIC PLANT FOUNDATIONS                                                                                                                                                                                                                                                                                                                              | 45.8         | 12.82                   |
| 184     | COMMAND+SURVEILLANCE FDNS                                                                                                                                                                                                                                                                                                                               | 11.9         | 23.57                   |
| 185     | AUXILIARY SYSTEMS FOUNDATIONS                                                                                                                                                                                                                                                                                                                           | 49.4         | 14.03                   |
| 186     | HULL STRUCTURE FOUNDATIONS PROPULSION PLANT FOUNDATIONS ELECTRIC PLANT FOUNDATIONS COMMAND+SURVEILLANCE FDNS AUXILIARY SYSTEMS FOUNDATIONS OUTFIT+FURNISHINGS FOUNDATIONS ARMAMENT FOUNDATIONS PECIAL PURPOSE SYSTEMS BALLAST+BOUYANCY UNITS                                                                                                            | 9.5          | 18.08                   |
| 187     | ARMAMENT FOUNDATIONS                                                                                                                                                                                                                                                                                                                                    | 15.7         | 14.84                   |
| 190 S   | PECIAL PURPOSE SYSTEMS                                                                                                                                                                                                                                                                                                                                  | 13.1         | 4.00                    |
| 191     | PECIAL PURPOSE SYSTEMS BALLAST+BOUYANCY UNITS WELDING AND RIVETS                                                                                                                                                                                                                                                                                        |              |                         |
| 197     | WELDING AND RIVETS                                                                                                                                                                                                                                                                                                                                      |              |                         |
| 198     | FREE FLOODING LIQUIDS                                                                                                                                                                                                                                                                                                                                   | 13.1         | 4.00                    |
|         |                                                                                                                                                                                                                                                                                                                                                         |              |                         |

<sup>\*</sup> DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

## PRINTED REPORT NO. 3 - PROPULSION PLANT WEIGHT

| SWBS   | COMPONENT                                                                                                                                   | WT-LTON             | VCG-FT  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|
|        |                                                                                                                                             | 281.3               | 13.45   |
| 210 EN | VERGY GEN SYS (NUCLEAR)                                                                                                                     | 201.5               | 10.40   |
| 220 EN | VERGY GENERATING SYSTEM (NONNUC)                                                                                                            |                     |         |
|        | PROPULSION BOILERS                                                                                                                          |                     |         |
|        | GAS GENERATORS                                                                                                                              |                     |         |
|        | MAIN PROPULSION BATTERIES                                                                                                                   |                     |         |
|        | MAIN PROPULSION FUEL CELLS                                                                                                                  |                     |         |
| 230 PF | ROPULSION UNITS                                                                                                                             | 186.8               | 12.19   |
|        | STEAM TURBINES                                                                                                                              | 200.0               |         |
|        | STEAM ENGINES                                                                                                                               |                     |         |
|        | DIESEL ENGINES                                                                                                                              |                     |         |
|        | GAS TURBINES                                                                                                                                | 60.8                | 17.38   |
| 235    | ELECTRIC PROPULSION                                                                                                                         | 126.0               | 9.68    |
| 236    | SELF-CONTAINED PROPULSION SYS                                                                                                               |                     |         |
| 237    | AUXILIARY PROPULSION DEVICES                                                                                                                |                     |         |
| 240 TF | ANSMISSION+PROPULSOR SYSTEMS                                                                                                                | 21.7                | 2.36    |
| 241    |                                                                                                                                             |                     |         |
| 242    | CLUTCHES + COUPLINGS                                                                                                                        |                     |         |
|        | SHAFTING                                                                                                                                    | 1.4                 | 2.45    |
| 244    | SHAFT BEARINGS                                                                                                                              | 1.4<br>6.3          | 2.71    |
| 245    | PROPULSORS                                                                                                                                  | 14.0                | 2.19    |
| 246    | PROPULSOR SHROUDS AND DUCTS                                                                                                                 |                     |         |
| 247    | WATER JET PROPULSORS                                                                                                                        |                     |         |
| 250 St | JPPORT SYSTEMS                                                                                                                              | 36.6<br>10.5<br>9.4 | 28.42   |
| 251    | COMBUSTION AIR SYSTEM PROPULSION CONTROL SYSTEM                                                                                             | 10.5                | 27.43   |
| 252    | PROPULSION CONTROL SYSTEM                                                                                                                   | 9.4                 | 19.50   |
|        | MAIN STEAM PIPING SYSTEM                                                                                                                    |                     |         |
| 254    | CONDENSERS AND AIR EJECTORS                                                                                                                 |                     |         |
| 255    | FEED AND CONDENSATE SYSTEM                                                                                                                  |                     |         |
| 256    | CIRC + COOL SEA WATER SYSTEM                                                                                                                | 2.6                 | 10.80   |
| 258    | H.P. STEAM DRAIN SYSTEM                                                                                                                     |                     |         |
| 259    | UPTAKES (INNER CASING)                                                                                                                      | 14.2                | 38.18   |
| 260 PF | UPTAKES (INNER CASING) ROPUL SUP SYS- FUEL, LUBE OIL                                                                                        | 23.7                | 12.44   |
| 261    | FUEL SERVICE SYSTEM                                                                                                                         | 9.4                 | . 11.38 |
| 262    | MAIN PROPULSION LUBE OIL SYSTEM                                                                                                             | 10.2                | 12.00   |
| 264    | LUBE OIL HANDLING                                                                                                                           | 4.1                 | 16.00   |
| 290 SE | ROPUL SUP SYS- FUEL, LUBE OIL FUEL SERVICE SYSTEM MAIN PROPULSION LUBE OIL SYSTEM LUBE OIL HANDLING PECIAL PURPOSE SYSTEMS OPERATING FLUIDS | 12.5                | 9.55    |
| 298    | OPERATING FLUIDS                                                                                                                            | 9.3                 | 8.00    |
| 299    | REPAIR PARTS + TOOLS                                                                                                                        | 3.2                 | 14.10   |
|        |                                                                                                                                             |                     |         |

#### \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

# PRINTED REPORT NO. 4 - ELECTRIC PLANT WEIGHT

| SWBS COMPONENT                    | WT-LTON | VCG-FT |
|-----------------------------------|---------|--------|
|                                   | 261.7   | 16.88  |
| 310 ELECTRIC POWER GENERATION     | 129.3   | 12.16  |
| 311 SHIP SERVICE POWER GENERATION | 94.1    | 12.00  |
| 312 EMERGENCY GENERATORS          |         |        |
| 313 BATTERIES+SERVICE FACILITIES  | 24.1    | 6.00   |
| 314 POWER CONVERSION EQUIPMENT    | 11.0    | 27.00  |
| 320 POWER DISTRIBUTION SYS        | 55.6    | 24.76  |
| 321 SHIP SERVICE POWER CABLE      | 34.9    | 27.00  |
| 322 EMERGENCY POWER CABLE SYS     |         |        |
| 323 CASUALTY POWER CABLE SYS      |         |        |
| 324 SWITCHGEAR+PANELS             | 20.7    | 21.00  |
| 330 LIGHTING SYSTEM               | 18.8    | 27.22  |
| 331 LIGHTING DISTRIBUTION         | 11.8    | 27.00  |
| 332 LIGHTING FIXTURES             |         | 27.60  |
| 340 POWER GENERATION SUPPORT SYS  | 39.2    | 17.56  |
| 341 SSTG LUBE OIL                 |         |        |
| 342 DIESEL SUPPORT SYS            | 39.2    | 17.56  |
| 343 TURBINE SUPPORT SYS           | 03.12   |        |
| 390 SPECIAL PURPOSE SYS           | 18.8    | 14.25  |
| 398 ELECTRIC PLANT OP FLUIDS      | 14.1    |        |
| 399 REPAIR PARTS+SPECIAL TOOLS    | 4.7     | 21.00  |
|                                   |         | 22.00  |

<sup>\*</sup> DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

PRINTED REPORT NO. 5 - COMMAND+SURVEILLANCE WEIGHT

| SWBS  | COMPONENT ========  COMMAND+SURVEILLANCE COMMAND+CONTROL SYS |               | VCG-FT                  |
|-------|--------------------------------------------------------------|---------------|-------------------------|
| 400   | COMMAND+SIPVETLLANCE                                         | 144.0         |                         |
| * 410 | COMMAND+CONTROL SYS                                          | 144.9<br>37.0 | 1 47                    |
| 4     | 11 DATA DISPLAY GROUP                                        | 37.0          | 1.4/                    |
|       | 12 DATA PROCESSING GROUP                                     |               |                         |
|       | 13 DIGITAL DATA SWITCHBOARDS                                 |               |                         |
|       | 14 INTERFACE EQUIPMENT                                       |               |                         |
|       | 15 DIGITAL DATA COMMUNICATIONS                               |               |                         |
|       | 17 COMMAND+CONTROL ANALOG SWBD                               |               |                         |
| * 420 | NAVIGATION SYS                                               | 3.8           | 45 94                   |
|       | INTERIOR COMMUNICATIONS                                      | 19.7          | 45.94<br>25.42<br>21.80 |
| * 440 | EXTERIOR COMMUNICATIONS                                      | 16.0          | 21 80                   |
|       | 41 RADIO SYSTEMS                                             | 10.0          | 21.00                   |
|       | 42 UNDERWATER SYSTEMS                                        |               |                         |
| 4     | 43 VISUAL + AUDIBLE SYSTEMS                                  |               |                         |
| 4     | 44 TELEMETRY SYSTEMS                                         |               |                         |
|       | 45 TTY + FACSIMILE SYSTEMS                                   |               |                         |
|       | 46 SECURITY EQUIPMENT SYSTEMS                                |               |                         |
| 450   | SIDE SIDU SVS (DADAD)                                        | 22.0          | 61.59                   |
| * 4   | SURF SURV SYS (RADAR)<br>51 SURFACE SEARCH RADAR             | 1.8           | 59.50                   |
| 4     | 52 AIR SEARCH RADAR (2D)                                     | 1.0           | 39.30                   |
| Λ.    | 53 AIR SEARCH RADAR (3D)                                     |               |                         |
| 1     | 54 AIRCRAFT CONTROL APPROACH RADAR                           |               |                         |
| * 1   | 55 IDENTIFICATION SYSTEMS (IFF)                              | 2 2           | 60.00                   |
| * 1   | 56 MULTIPLE MODE RADAR                                       | 10.0          | 60.00<br>62.00          |
|       | 59 SPACE VEHICLE ELECTRONIC TRACKG                           | 10.0          | 62.00                   |
| * 460 | UNDERWATER SURVEILLANCE SYSTEMS                              | 1.4.2         | 25 02                   |
| 400   | 61 ACTIVE SONAR                                              | 14.3          | 25.83                   |
|       | 62 PASSIVE SONAR                                             | 14.1          | 25.76                   |
|       | 63 MULTIPLE MODE SONAR                                       | 14.1          | 25.70                   |
|       | 64 CLASSIFICATION SONAR                                      |               |                         |
|       | 65 BATHYTHERMOGRAPH                                          |               |                         |
|       | 66 LAMPS ELECTRONICS                                         |               |                         |
|       | COUNTERMEASURES                                              | 22.3          | 25 57                   |
|       | 71 ACTIVE + ACTIVE/PASSIVE ECM                               | 22.5          | 23.31                   |
|       | 72 PASSIVE ECM                                               | 3.0           | 51.00                   |
|       | 73 TORPEDO DECOYS                                            | 3.6           | 22.76                   |
| 4     | 74 DECOYS (OTHER)                                            | 3.0           | 22.70                   |
| Ā     | 75 DEGAUSSING                                                | 15.7          | 21,34                   |
|       | 76 MINE COUNTERMEASURES                                      | 13.7          | 21.34                   |
| 480   | FIRE CONTROL SYS                                             |               |                         |
|       | 81 GUN FIRE CONTROL SYSTEMS                                  |               |                         |
|       | 82 MISSILE FIRE CONTROL SYSTEMS                              |               |                         |
| 4     | 83 UNDERWATER FIRE CONTROL SYSTEMS                           |               |                         |
| 4     | 84 INTEGRATED FIRE CONTROL SYSTEMS                           |               |                         |
| 4     | 89 WEAPON SYSTEM SWITCHBOARDS                                |               |                         |
| 490   | SPECIAL PURPOSE SYS                                          | 10.8          | 20 91                   |
|       | 91 ELCTRNC TEST, CHKOUT, MONITR EQPT                         | 10.0          | 29.81<br>33.72          |
| 4     | 92 FLIGHT CHTRL+THSTR LANDING SVS                            |               |                         |
| 4     | 93 NON-COMBAT DATA PROCESSING SYS                            | 2 2           | 21.82                   |
| 4     | 94 METEOROLOGICAL SYSTEMS                                    | 2.3           | 21.02                   |
| 4     | 95 SPEC PURPOSE INTELLIGENCE SYS                             |               |                         |
|       | 98 C+S OPERATING FLUIDS                                      |               |                         |
|       | 99 REPAIR PARTS+SPECIAL TOOLS                                | 2.1           | 26.00                   |
| -4    | SO THEATH PARISTSPECIAL TOURS                                | 2.1           | 26.99                   |
|       |                                                              |               |                         |

# \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

# PRINTED REPORT NO. 6 - AUXILIARY SYSTEMS WEIGHT

| SWBS COMPONENT                    | WT-LTON  | VCG-FT |
|-----------------------------------|----------|--------|
| 500 AUXILIARY SYSTEMS, GENERAL    | 494.2    | 18.80  |
| 510 CLIMATE CONTROL               | 134.0    | 22.40  |
| 511 COMPARTMENT HEATING SYSTEM    | 4.5      | 25.83  |
| 512 VENTILATION SYSTEM            | 44.0     | 28.97  |
| 513 MACHINERY SPACE VENT SYSTEM   | 9.1      | 32.71  |
| 514 AIR CONDITIONING SYSTEM       | 74.3     | 17.24  |
| 516 REFRIGERATION SYSTEM          | 1.9      | 14.97  |
| 517 AUX BOILERS+OTHER HEAT SOURCE | ES .3    | 17.63  |
| 520 SEA WATER SYSTEMS             | 40.6     | 19.65  |
| 521 FIREMAIN+SEA WATER FLUSHING   | SYS 21.5 | 18.75  |
| 522 SPRINKLING SYSTEM             |          | 21.82  |
| 523 WASHDOWN SYSTEM               | 3.0      | 34.11  |
| 524 AUXILIARY SEAWATER SYSTEM     |          |        |
| 526 SCUPPERS+DECK DRAINS          | .8       | 31.85  |
| 527 FIREMAIN ACTUATED SERV, OTH   | IR .     |        |
| 528 PLUMBING DRAINAGE             | 12.0     | 19.64  |
| 529 DRAINAGE+BALLASTING SYSTEM    | 3.4      | 9.91   |

|   | 530 FRESH WATER   | SYSTEMS                                                                                      | 23.8<br>3.8<br>4.0<br>6.0<br>10.0 | 20.74 |
|---|-------------------|----------------------------------------------------------------------------------------------|-----------------------------------|-------|
|   | 531 DISTILLING    |                                                                                              | 3.8                               | 15.91 |
|   | 532 COOLING WA    |                                                                                              | 4.0                               | 47.47 |
|   | 533 POTABLE W     | ATER                                                                                         | 6.0                               | 19.70 |
|   | 534 AUX STEAM     | + DRAINS IN MACH BOX                                                                         | 10.0                              | 12.49 |
|   | 535 AUX STEAM     | + DRAINS OUT MACH BOX                                                                        |                                   |       |
|   | ESE SINTETADV     | PDPCH WATER COOLING                                                                          |                                   |       |
|   | 540 FUELS/LUBRIC  | CANTS, HANDLING+STORAGE<br>+COMPENSATING SYSTEM                                              | 31.1                              | 12.53 |
|   | 541 SHIP FUEL     | +COMPENSATING SYSTEM                                                                         | 29.8                              | 12.91 |
|   | 542 AVIATION+     | GENERAL PURPOSE FUELS                                                                        |                                   |       |
|   |                   | GENERAL PURPOSE LUBO                                                                         |                                   |       |
|   | 544 LIQUID CA     |                                                                                              |                                   |       |
|   | 545 TANK HEAT     | ING                                                                                          | 1.3                               | 3.88  |
|   | 549 SPEC FUEL     | +LUBRICANTS HANDL+STOW                                                                       |                                   |       |
|   | 550 ATR.GAS+MIS   | C FLUID SYSTEM                                                                               | 43.5                              | 18.69 |
|   | 551 COMPRESSE     | C FLUID SYSTEM<br>D AIR SYSTEMS                                                              | 43.5<br>20.1                      | 16.63 |
|   | 552 COMPRESSE     | D GASES                                                                                      |                                   |       |
|   | 553 O2 N2 SYS     |                                                                                              |                                   |       |
|   | 554 T.P. BLOW     |                                                                                              |                                   |       |
|   | 555 FIRE EXTI     | NGUISHING SYSTEMS                                                                            | 23.5                              | 20.47 |
|   | 556 HYDRAULIC     |                                                                                              |                                   |       |
|   | 557 LIQUID GA     |                                                                                              |                                   |       |
|   |                   |                                                                                              |                                   |       |
|   | 560 SHID CHITT. S | YS                                                                                           | 75.6                              | 5.63  |
|   | 561 STEERING+     | DIVING CNTL SYS                                                                              | 75.6<br>11.7<br>27.4<br>36.5      | 17.36 |
|   | 562 RUDDER        | 011110 01111 010                                                                             | 27.4                              | 7.00  |
|   | 565 TRIM+HEEL     | SYSTEMS                                                                                      | 36.5                              | .83   |
|   |                   |                                                                                              |                                   |       |
|   | 570 UNDERWAY RE   | ng systems<br>Plenishment systems<br>Ment-AT-sea systems<br>ES+EQUIP Handling sys            | 45.8                              | 26.91 |
|   | 571 REPLENISH     | MENT-AT-SEA SYSTEMS                                                                          | 10.7                              | 36.82 |
|   | 572 SHIP STOR     | ES+EQUIP HANDLING SYS                                                                        | 35.1                              | 23.88 |
|   | 573 CARGO HAN     | DLING SYSTEMS                                                                                |                                   |       |
|   |                   | REPLENISHMENT SYSTEMS                                                                        |                                   |       |
|   | 580 MECHANICAL    | HANDLING SYSTEMS                                                                             | 48.7<br>24.1<br>10.1<br>9.6       | 26.27 |
|   | 581 ANCHOR HA     | NDLING+STOWAGE SYSTEMS<br>OWING SYSTEMS                                                      | 24.1                              | 18.78 |
|   | 582 MOORING+T     | OWING SYSTEMS                                                                                | 10.1                              | 30.76 |
|   | 583 BOATS, HAN    | DLING+STOWAGE SYSTEMS DOOR,GATE,RAMP,TTBL SYS                                                | 9.6                               | 37.00 |
|   | 584 MECH OPER     | DOOR, GATE, RAMP, TTBL SYS                                                                   |                                   |       |
|   | 585 ELEVATING     | + RETRACTING GEAR                                                                            |                                   |       |
|   |                   | RECOVERY SUPPORT SYS                                                                         |                                   |       |
|   | 587 AIRCRAFT      | LAUNCH SUPPORT SYSTEM                                                                        |                                   |       |
| * | 588 AIRCRAFT      | HANDLING, SERVICING, STOWAGE                                                                 | 5.0                               | 32.76 |
|   | 589 MISC MECH     | HANDLING SYSTEMS                                                                             |                                   |       |
|   | 590 SPECIAL PUR   | POSE SYSTEMS                                                                                 | 51.0                              |       |
|   | 591 SCIENTIFI     | C+OCEAN ENGINEERING SYS IVER SUPPORT+PROT SYS NTAL POLLUTION CNTL SYS RESC+SALVG+SURVIVE SYS |                                   |       |
|   | 592 SWIMMER+D     | IVER SUPPORT+PROT SYS                                                                        |                                   |       |
|   | 593 ENVIRONME     | NTAL POLLUTION CNTL SYS                                                                      | 9.8                               | 11.38 |
|   |                   |                                                                                              |                                   |       |
|   |                   | H, HANDLE UNDERWATER SYS                                                                     |                                   |       |
|   |                   | SYS FOR DIVER+SUBMR VEH                                                                      |                                   |       |
|   | 597 SALVAGE S     | UPPORT SYSTEMS                                                                               |                                   |       |
|   |                   | MS OPERATING FLUIDS                                                                          | 35.7<br>5.4                       | 18.34 |
|   | 599 AUX SYSTE     | MS REPAIR PARTS+TOOLS                                                                        | 5.4                               | 16.01 |
|   |                   |                                                                                              |                                   |       |

<sup>\*</sup> DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

PRINTED REPORT NO. 7 - OUTFIT+FURNISHINGS WEIGHT

| SWBS    | COMPONENT<br>=======<br>FIT+FURNISHING,GENERAL                                                              | WT-LTON                          |                                                                      |
|---------|-------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|
| 600 OUT | FIT+FURNISHING GENERAL                                                                                      | 314.0                            | 20.68                                                                |
| 610 S   | HIP FITTINGS                                                                                                | 8.9                              | 35.34                                                                |
| 611     | HITT PIRMINCS                                                                                               | 1.8                              | 35.34<br>28.15                                                       |
| 612     | RAILS.STANCHIONS+LIFELINES                                                                                  | 6.3                              | 36.29                                                                |
| 613     | RAILS, STANCHIONS+LIFELINES RIGGING+CANVAS                                                                  | 72.7<br>19.4<br>38.9<br>9.3      | 43.55                                                                |
| 620 H   | ULL COMPARTMENTATION                                                                                        | 72.7                             | 19.05                                                                |
| 621     | NON-STRUCTURAL BULKHEADS                                                                                    | 19.4                             | 27.15                                                                |
| 622     | FLOOR PLATES+GRATING                                                                                        | 38.9                             | 12.74                                                                |
|         | LADDERS                                                                                                     | 9.3                              | 22.25                                                                |
| 624     |                                                                                                             | 3.9<br>1.1                       | 26.99                                                                |
| 625     | AIRPORTS, FIXED PORTLIGHTS, WINDOWS                                                                         | 1.1                              | 43.87                                                                |
|         | RESERVATIVES+COVERINGS                                                                                      | 128.2                            | 26.99<br>43.87<br>20.84<br>17.24                                     |
|         | PAINTING                                                                                                    | 31.2                             | 17.24                                                                |
| 632     | ZINC COATING                                                                                                |                                  |                                                                      |
|         | CATHODIC PROTECTION                                                                                         | 2.2                              | 7.00                                                                 |
|         | DECK COVERINGS                                                                                              | 26.9                             | 23.67                                                                |
|         | HULL INSULATION                                                                                             | 41.5                             | 26.62                                                                |
|         | HULL DAMPING                                                                                                | 13.3                             | 4.04                                                                 |
| 637     |                                                                                                             | 8.2                              | 7.00<br>23.67<br>26.62<br>4.04<br>28.80<br>17.67                     |
| 638     | REFRIGERATION SPACES                                                                                        | 4.9                              | 17.67                                                                |
|         | RADIATION SHIELDING                                                                                         |                                  |                                                                      |
| 640 T   | TVING SPACES                                                                                                | 24.7                             | 21.78                                                                |
| 641     | OFFICER BERTHING+MESSING                                                                                    | 6.8                              | 30.55                                                                |
|         |                                                                                                             | 3.0                              | 23.13                                                                |
| 643     | ENLISTED PERSONNEL B+M                                                                                      | 12.1                             | 16.58                                                                |
| 644     | NON-COMM OFFICER B+M ENLISTED PERSONNEL B+M SANITARY SPACES+FIXTURES LEISURE+COMMUNITY SPACES ERVICE SPACES | 1.5                              | 22.25                                                                |
| 645     | LEISURE+COMMUNITY SPACES                                                                                    | 1.2                              | 20.07                                                                |
| 650 S   | ERVICE SPACES                                                                                               | 6.8<br>3.0<br>12.1<br>1.5<br>1.2 | 22.15                                                                |
|         | COMMISSARY SPACES                                                                                           | 4.9                              | 22.15<br>22.25                                                       |
|         | MEDICAL SPACES                                                                                              | 1.3                              |                                                                      |
|         | DENTAL SPACES                                                                                               |                                  |                                                                      |
| 654     | UTILITY SPACES                                                                                              | 1.2                              | 25.31                                                                |
|         | LAUNDRY SPACES                                                                                              | 2.2                              | 18.33                                                                |
| 656     | TRASH DISPOSAL SPACES                                                                                       | . 4                              | 23.13                                                                |
| 660 W   | ORKING SPACES                                                                                               | 35.0 ·4                          | 23.60                                                                |
| 661     | OFFICES                                                                                                     | 10.3                             | 23.78                                                                |
| 662     | MACH CNTL CENTER FURNISHING<br>ELECT CNTL CENTER FURNISHING                                                 | .7                               | 13.76                                                                |
| 663     | ELECT CNTL CENTER FURNISHING                                                                                | 5.3                              | 29.45                                                                |
| 664     | DAMAGE CNTL STATIONS                                                                                        | 8.0                              | 24.22                                                                |
| 665     | WORKSHOPS, LABS, TEST AREAS                                                                                 | 10.7                             | 20.73                                                                |
| 670 S   | TOWAGE SPACES                                                                                               | 31.4                             | 15.26                                                                |
|         | LOCKERS+SPECIAL STOWAGE                                                                                     | 4.3                              | 22.29                                                                |
|         | STOREROOMS+ISSUE ROOMS                                                                                      | 27.1                             | 23.78<br>13.76<br>29.45<br>24.22<br>20.73<br>15.26<br>22.29<br>14.15 |
| 673     | CARGO STOWAGE                                                                                               |                                  |                                                                      |
| 690 S   | PECIAL PURPOSE SYSTEMS                                                                                      | 3.3                              | 18.94                                                                |
| 698     | OPERATING FLUIDS                                                                                            |                                  |                                                                      |
| 699     | REPAIR PARTS+SPECIAL TOOLS                                                                                  | 3.1                              | 18.87                                                                |

<sup>\*</sup> DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

#### PRINTED REPORT NO. 8 - ARMAMENT WEIGHT

| S | WBS    | COMPONENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WT-LTON | VCG-FT |
|---|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| = | ====   | THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF THE PARTY STATE AND ADDRESS OF |         |        |
| 7 | 00 ARM | PAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 209.6   | 18.29  |
| * |        | UNS+AMMUNITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.3    | 27.00  |
|   |        | GUNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |
|   |        | AMMUNITION HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |
|   |        | AMMUNITION STOWAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |
|   |        | ISSLES+ROCKETS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 157.0   | 16.70  |
| * |        | LAUNCHING DEVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 157.0   | 16.70  |
|   |        | MISSILE, ROCKET, GUID CAP HANDL SYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |
|   |        | MISSILE+ROCKET STOWAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | •      |
|   |        | MISSILE HYDRAULICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |
|   |        | MISSILE GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |
|   |        | MISSILE COMPENSATING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |
|   |        | MISSILE LAUNCHER CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |
|   |        | MISSILE HEAT, COOL, TEMP CNTRL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |
|   |        | MISSILE MONITOR, TEST, ALINEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        |
|   | 730 M  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |
|   |        | MINE LAUNCHING DEVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |
|   | 732    | MINE HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |
|   | 733    | MINE STOWAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |
|   | 740 D  | EPTH CHARGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |
|   | 741    | DEPTH CHARGE LAUNCHING DEVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |
|   | 742    | DEPTH CHARGE HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |        |
|   | 743    | DEPTH CHARGE STOWAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |

| * | 750 TORPEDOES 751 TORPEDO TUBES 752 TORPEDO HANDLING              | 2.7        | 2.50           |
|---|-------------------------------------------------------------------|------------|----------------|
|   | 753 TORPEDO STOWAGE 760 SMALL ARMS+PYROTECHNICS                   | 1.7        | 27.30          |
|   | 761 SMALL ARMS+PYRO LAUNCHING DEV<br>762 SMALL ARMS+PYRO HANDLING | 1.0        | 27.30          |
|   | 763 SMALL ARMS+PYRO STOWAGE<br>770 CARGO MUNITIONS                | .7         | 27.30          |
|   | 772 CARGO MUNITIONS HANDLING<br>773 CARGO MUNITIONS STOWAGE       |            |                |
| * | 780 AIRCRAFT RELATED WEAPONS 782 AIRCRAFT RELATED WEAPONS HANDL   | 1.4        | 28.30          |
|   | 783 AIRCRAFT RELATED WEAPONS STOW<br>790 SPECIAL PURPOSE SYSTEMS  | 10.5       | 13.23          |
|   | 791 SPECIAL WEAPONS 792 SPECIAL WEAPONS HANDLING                  |            |                |
|   | 793 SPECIAL WEAPONS STOWAGE<br>797 MISC ORDINANCE SPACES          | 0.0        | 10 20          |
|   | 798 ARMAMENT OPERATING FLUIDS 799 ARMAMENT REPAIR PART+TOOLS      | 2.3<br>8.1 | 19.30<br>11.51 |

#### \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

#### PRINTED REPORT NO. 9 - LOADS WEIGHT (FULL LOAD CONDITION)

| SWBS COMPONENT |                                                        | WT-LTON                     | VCG-FT         |  |
|----------------|--------------------------------------------------------|-----------------------------|----------------|--|
| ====           |                                                        | E7E 1                       | 5 24           |  |
| F00 LC         | SHIPS FORCE                                            | 575.1<br>13.0<br>2.7<br>1.9 | 22.98          |  |
|                | OFFICERS                                               | 2 7                         | 22.98          |  |
| E17            | NON COMMISSIONED OFFICERS                              | 1.9                         | 22.98          |  |
| F12            | NON-COMMISSIONED OFFICERS<br>ENLISTED MEN              | 8.4                         | 22.98          |  |
|                | MARINES                                                | 0.1                         |                |  |
|                | TROOPS                                                 |                             |                |  |
| F16            | AIR WING PERSONNEL                                     |                             |                |  |
|                | OTHER PERSONNEL                                        |                             |                |  |
| F20            | MISSION RELATED EXPENDABLES+SYS                        | 44.6                        | 9.48           |  |
|                | SHIP AMMUNITION                                        | 38.2                        | 8.72           |  |
|                | ORD DEL SYS AMMO                                       |                             |                |  |
| * F23          | ORD DEL SYS (AIRCRAFT)                                 | 4.4                         | 5.00           |  |
| F24            | ORD DEL SYS (AIRCRAFT) ORD REPAIR PARTS (SHIP)         |                             |                |  |
| F25            | ORD REPAIR PARTS (ORD)                                 |                             |                |  |
|                |                                                        | 2.0                         | 33.76          |  |
| F29            | ORD DEL SYS SUPPORT EQUIP OSPECIAL MISSION RELATED SYS |                             |                |  |
| F30            | STORES                                                 | 17.4                        | 17.23<br>16.82 |  |
| F31            | PROVISIONS+PERSONNEL STORES                            | 14.2                        | 16.82          |  |
| F32            | GENERAL STORES                                         | 3.2                         | 19.05          |  |
| F33            | MARINES STORES (SHIPS COMPLEM)                         |                             |                |  |
| F39            | SPECIAL STORES                                         |                             |                |  |
| F40            | LIQUIDS, PETROLEUM BASED                               | 482.0                       | 3.97           |  |
| F41            | DIESEL FUEL MARINE                                     | 482.0<br>415.1<br>63.8      | 3.10           |  |
|                |                                                        | 63.8                        | 9.84           |  |
|                | 3 GASOLINE                                             |                             |                |  |
|                | DISTILLATE FUEL                                        |                             |                |  |
| F45            | NAVY STANDARD FUEL OIL (NSFO)                          | 2.1                         |                |  |
|                | LUBRICATING OIL                                        | 3.1                         |                |  |
|                | SPECIAL FUELS AND LUBRICANTS                           | 18.1                        | . 4 22         |  |
|                | LIQUIDS, NON-PETRO BASED                               | 18.1                        | 4.33           |  |
|                | SEA WATER                                              | 10 1                        | 4.33           |  |
|                | FRESH WATER                                            | 18.1                        | 4.33           |  |
|                | RESERVE FEED WATER                                     |                             |                |  |
|                | HYDRAULIC FLUID                                        |                             |                |  |
|                | SANITARY TANK LIQUID                                   |                             |                |  |
|                | 5 GAS (NON FUEL TYPE)<br>9 MISC LIQUIDS, NON-PETROLEUM |                             |                |  |
|                | CARGO                                                  |                             |                |  |
|                | CARGO, ORDINANCE + DELIVERY SYS                        |                             |                |  |
|                | CARGO, ORDINANCE + DEBIVERI SIS                        |                             |                |  |
|                | CARGO, STORES CARGO, FUELS + LUBRICANTS                |                             |                |  |
|                | 4 CARGO, LIQUIDS, NON-PETROLEUM                        |                             |                |  |
|                | CARGO, CRYOGENIC+LIQUEFIED GAS                         |                             |                |  |
|                | CARGO, AMPHIBIOUS ASSAULT SYS                          |                             |                |  |
|                | 7 CARGO, GASES                                         |                             |                |  |
|                | CARGO, MISCELLANEOUS                                   |                             |                |  |
|                | FUTURE GROWTH MARGIN                                   |                             |                |  |
| ****           |                                                        |                             |                |  |

<sup>\*</sup> DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

PRINTED REPORT NO. 10 - WEIGHT AND KG MODIFICATION SUMMARY

|    | P+A NAME                                                                   |                 |                |           |
|----|----------------------------------------------------------------------------|-----------------|----------------|-----------|
|    | WT ORIGINAL WT CHNG, RESULTNT KEYS WT, LTON LTON WT, LTON                  | ORIGINAL KG, FT | KG CHNG,<br>FT | RESU LINT |
|    | CIC COMMAND AND DECISION MODFIG W410 0.0 7.0                               | UNKNOWN         | -7.2           |           |
| 11 | CS HOLD UP BATTERY 30.0 37.0                                               |                 | 3.5            | 1.5       |
| 3  | NAV SYS (1/2 DDG 51)<br>W420 UNKNOWN UNKNOWN 3.8<br>EXCOMM (1/2 DDG51)     |                 | 46.0           | 45.9      |
| 2  |                                                                            |                 |                |           |
| 4  | W440 0.0 16.0 16.0 SPS-67 SSR                                              |                 | 21.8           |           |
| 6  | W451 0.0 1.8 1.8<br>MK XII ATMS IFF                                        | UNKNOWN         | 59.5           | 59.5      |
| 5  | SPS-67 SSR<br>W451 0.0 1.8 1.8<br>MK XII AIMS IFF<br>W455 0.0 2.3 2.3      | UNKNOWN         | 60.0           | 60.0      |
| ~  | W456 0.0 18.0 18.0                                                         | UNKNOWN         | 62.0           | 62.0      |
| 26 | AQS-13F ACTIVE HELO DIPPING SONAH<br>W460 14.1 0.2 14.3                    | 25.8            | 30.6           | 25.8      |
| 7  | SQR-19 TACTAS<br>W462 0.0 14.1 14.1                                        |                 |                | 25.8      |
| 9  | SLQ-32(V)3 ACTIVE/PASSIVE ECM<br>W472 0.0 3.0 3.0                          |                 |                |           |
| 8  | SLO-25 NIXIE                                                               |                 |                |           |
| 16 | W473 0.0 3.6 3.6<br>OPER READINESS AND TEST SYS                            |                 |                | 22.8      |
|    | W491 2.6 3.0                                                               |                 | 32.5           |           |
| 12 | 0.7 6.3<br>SENSOR COOLING SYSTEMS                                          |                 | 30.0           | 33.7      |
|    | W532 UNKNOWN UNKNOWN 4.0<br>RAST/TALON HELO COMBO                          | UNKNOWN         | 10.0           | 47.5      |
|    | W588 0.0 5.0                                                               | UNKNOWN         | 32.8           |           |
| 18 | RAST CONTROL STATION 0.0 5.0                                               |                 | 0.0            | 32.8      |
| 20 | 0.0 5.0<br>1X MK45 5IN/54 GUN<br>W710 0.0 24.1                             | UNKNOWN         | 23.7           |           |
| 21 | W710 0.0 24.1<br>1X 40MM CIWS/MULTI PURP GUN<br>6.1                        |                 | 34.7           |           |
|    | 1X 40MM CIWS/MULTI PURP GUN<br>6.1 36.3                                    |                 | 32.3           | 27.0      |
| 23 | 1.25 MK41 VLS MISSILE LAUNCHER (1                                          | LOADED)         |                |           |
| 25 | W721 0.0 157.0 157.0<br>2X MK32 SVTT ON DECK                               |                 |                |           |
| 41 | W750 0.0 2.7 2.7 AIRCRAFT RELATED WEAPONS                                  |                 |                |           |
| 20 | W780 0.0 1.4 1.4                                                           | UNKNOWN         | 28.3           | 28.3      |
| 20 | 51N/54 AMMO 400 RDS<br>WF21 0.0 22.0<br>40MM AMMO (MIXED) 3000 RNDS<br>7.4 | UNKNOWN         | 9.0            |           |
| 29 | 7.4                                                                        |                 | 24.7           |           |
|    | 40MM AMMO (MIXED) 3000 RNDS 7.4                                            |                 | -7.0           |           |
|    | MK46 LIGHTWEIGHT ASW TORPEDOES - 1.4 38.2                                  |                 | 3.0            | 8.7       |
| 34 | HELO AS565 PANTHER: (DOLPHIN) WF23 0.0 4.4 4.4                             | UNKNOWN         | 5.0            | 5.0       |
| 19 | LAMPS MKIV: AVIATION SUPPORT & SI<br>WF26 0.0 2.0 2.0                      | PARES           |                |           |
| 37 | LAMPS MKIII: FUEL [JP-5] WF42 0.0 63.8 63.8                                | ONKNOWN         | 33.0           |           |
|    | WF42 0.0 63.8 63.8                                                         | UNKNOWN         | 9.8            | 9.8       |

PRINTED REPORT NO. 11 - P+A WEIGHTS AND VCGS

| ROW | P+A<br>WT KEY | WEIGHT<br>ADD | WEIGHT<br>FAC,LTON | VCG<br>KEY    | VCG<br>ADD,FT | VCG<br>FAC | == |
|-----|---------------|---------------|--------------------|---------------|---------------|------------|----|
| 1   | CIC COM       | MAND AND DE   | CISION MOD         | FIG           |               |            |    |
|     | W410          | 7.00          | 0.00               | D6.5          | -7.22         | 0.00       |    |
| 11  | CS HOLD       | UP BATTERY    |                    |               |               |            |    |
|     | W410          | 30.00         | 0.00               | $\mathtt{BL}$ | 3.50          | 1.00       |    |
| 3   | NAV SYS       | (1/2 DDG 5    | 1)                 |               |               |            |    |
|     | W420          | 3.80          | -1.00              | D10           | 16.00         | 1.00       |    |
| 2   | EXCOMM        | (1/2 DDG51)   |                    |               |               |            |    |
|     | W440          | 16.00         | 0.00               | D10           | -8.20         | 1.00       |    |
| 4   | SPS-67        | SSR           |                    |               |               |            |    |
|     | W451          | 1.75          | 0.00               | D10           | 29.50         | 1.00       |    |
| 6   | MK XII .      | AIMS IFF      |                    |               |               |            |    |
|     | W455          | 2.30          | 0.00               | D10           | 30.00         | 1.00       |    |

| 5   | SPY-3C (MINI-SPY)               |           |         |      |
|-----|---------------------------------|-----------|---------|------|
|     | W456 18.00 0.00                 | DM10      | 32.00   | 1.00 |
| 26  | AOS-13F ACTIVE HELO DIPPING SON | AR ION SH |         |      |
|     | W460 0.20 0.00                  | BL        | 30.56   | 0.00 |
| 7   | SOR-19 TACTAS                   |           |         |      |
| ,   | W462 14.10 0.00                 | D20       | -5.00   | 1.00 |
| 9   | SLQ-32(V)3 ACTIVE/PASSIVE ECM   | DEO       | 5.00    |      |
| 9   | W472 3.00 0.00                  | D10       | 21.00   | 1.00 |
| •   |                                 | DIO       | 21.00   | 1.00 |
| 8   | SLQ-25 NIXIE                    | 220       | 0 00    | 1.00 |
|     | W473 3.60 0.00                  | D20       | -8.00   | 1.00 |
| 16  | OPER READINESS AND TEST SYS     |           |         | 7 00 |
|     | W491 3.00 0.00                  | D10       | 2.50    | 1.00 |
| 38  | ADMIN LAN                       |           |         |      |
|     | W491 0.70 0.00                  | BL        | 30.00   | 0.00 |
| 12  | SENSOR COOLING SYSTEMS          |           |         |      |
|     | W532 4.00 -1.00                 | BL        | 10.00   | 1.00 |
| 17  | RAST/TALON HELO COMBO           |           |         |      |
|     | W588 5.00 0.00                  | D20       | 2.00    | 1.00 |
| 18  | RAST CONTROL STATION            |           |         |      |
|     | W588 0.00 0.00                  | D20       | 0.00    | 0.00 |
| 20  | 1X MK45 5IN/54 GUN              |           |         |      |
|     | W710 24.10 0.00                 | D6.5      | -8.00   | 1.00 |
| 21  | 1X 40MM CIWS/MULTI PURP GUN     | D0.5      | 0.00    |      |
| 21  | W710 6.10 0.00                  | D6.5      | 3.00    | 1.00 |
|     | = -                             | 00.5      | 3.00    | 1.00 |
| 22  | 1X 40MM CIWS/MULTI PURP GUN     |           | 2 00    | 1.00 |
|     | W710 6.10 0.00                  | D15       | 3.00    | 1.00 |
| 23  | 1.25 MK41 VLS MISSILE LAUNCHER  |           |         |      |
|     | W721 157.00 0.00                | D6.5      | -15.00  | 1.00 |
| 25  | 2X MK32 SVTT ON DECK            |           |         |      |
|     | W750 2.70 0.00                  | D15       | 2.50    | 0.00 |
| 41  | AIRCRAFT RELATED WEAPONS        |           |         |      |
|     | W780 1.40 0.00                  | BL        | 28.30   | 0.00 |
| 28  | 5IN/54 AMMO 400 RDS             |           |         |      |
|     | WF21 22.00 0.00                 | BL        | 9.00    | 1.00 |
| 29  | 40MM AMMO (MIXED) 3000 RNDS     |           |         |      |
|     | WF21 7.40 0.00                  | D6.5      | -7.00   | 1.00 |
| 32  | 40MM AMMO (MIXED) 3000 RNDS     |           |         |      |
|     | WF21 7.40 0.00                  | D15       | -7.00   | 0.00 |
| 33  | MK46 LIGHTWEIGHT ASW TORPEDOES  |           |         |      |
| -   | WF21 1.40 0.00                  | D15       | 3.00    | 0.00 |
| 34  | HELO AS565 PANTHER: (DOLPHIN)   | 210       | 0.00    |      |
| 5-4 | WF23 4.40 0.00                  | D20       | 5.00    | 0.00 |
| 19  | LAMPS MKIV: AVIATION SUPPORT &  |           | 5.00    |      |
| 13  | WF26 2.00 0.00                  | D20       | 3.00    | 1.00 |
| 37  | LAMPS MKIII: FUEL [JP-5]        | DEU       | 5.00    |      |
| 31  |                                 | BL        | 9.84    | 0.00 |
|     | WF42 63.80 0.00                 | DГ        | J . O 4 | 0.00 |

ASSET/MONOSC VERSION 3.3+ - SPACE MODULE - 2/11/95 10.49.47.

\*\* WARNING - SPACE MODULE \*\* (W-TOTALAREAINADO-SPACE)
THE REQUIRED ARRANGEABLE AREA FOR THE TOTAL SHIP EXCEEDS
THE AVAILABLE ARRANGEABLE AREA WITHIN THE TOTAL SHIP.

PRINTED REPORT NO. 1 - SUMMARY

| COLL PROTECT SYSTEM-PRESE<br>SONAR DOME-NONE                                |                                    |                                         | NDARD-NAVY<br>MMANDER-NONE |                      |
|-----------------------------------------------------------------------------|------------------------------------|-----------------------------------------|----------------------------|----------------------|
|                                                                             | PAYLOAD<br>REQUIRED                | AREA FT2 TOTAL REQUIRED                 | TOTAL AVAILABLE            | VOL FT3 TOTAL ACTUAL |
| DKHS ONLY<br>HULL OR DKHS                                                   | 891.0<br>3505.0                    | 4850.6<br>36769.7                       | 10911.7<br>29486.0         | 110686.<br>388003.   |
|                                                                             | 4396.0                             |                                         | 40397.7                    | 498689.              |
| SSCS GROUP                                                                  | TOTAL<br>AREA FT                   | DKHS 2 AREA FT                          | PERCENT<br>2 TOTAL AREA    |                      |
| 1. MISSION SUPPORT 2. HUMAN SUPPORT 3. SHIP SUPPORT 4. SHIP MOBILITY SYSTEM | 6272.<br>7923.<br>12407.<br>13035. | 0 1508.<br>7 381.<br>7 1651.<br>0 1077. | 5 15.1<br>5 19.0<br>8 29.8 |                      |
| TOTAL                                                                       | 41620.                             | 3 4850.                                 | 6 100.0                    |                      |

PRINTED REPORT NO. 2 - MISSION SUPPORT AREA

| SSCS . | MISSION SUPPORT COMMAND, COMMUNICATION+SURV EXTERIOR COMMUNICATIONS RADIO UNDERWATER SYSTEMS SURVEILLANCE SYS SURFACE SURV (RADAR) UNDERWATER SURV (SONAR) COMMAND+CONTROL COMBAT INFO CENTER CONNING STATIONS PILOT HOUSE CHART ROOM COUNTERMEASURES ELECTRONIC TORPEDO MISSILE INTERIOR COMMUNICATIONS ENVIRONMENTAL CNTL SUP SYS WEAPONS GUNS MISSILES ROCKETS TORPEDOS DEPTH CHARGES MINES MULT EJECT RACK STOW WEAP MODULE STA & SERV INTER AVIATION AVIATION LAUNCH+RECOVERY LAUNCHING+RECOVERY AREAS LAUNCHING+RECOVERY AREAS LAUNCHING+RECOVERY EQUIP AVIATION CONTROL FLIGHT CONTROL NAVIGATION OPERATIONS AVIATION ADMINISTRATION AVIATION MAINTENANCE AVIATION MAINTENANCE AVIATION MAINTENANCE CONTROL HANDLING STOWAGE AVIATION FUEL SYS AVIATION STORES AMPHBIOUS CARGO INTERMEDIATE MAINT FAC STOWAGE WEAPONS FLAG FACILITIES HANDLING STOWAGE WEAPONS FLAG FACILITIES HANDLING STOWAGE SPECIAL MISSIONS SM ARMS, PYRO+SALU BAT SM ARMS (LOCKER) PYROTECHNICS (LOCKER) SALUTING BAT (MAGAZINE) SECURITY FORCE EQUIP | TOTAL<br>AREA FT2 | DKHS<br>AREA FT2                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|
| 1      | MISSION SUPPORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 1500 5                          |
| 1 1    | COMMAND COMMINICATION CIDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2074 4            | 1305.5                          |
| 1 11   | EYMEDIOD COMMINICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 720 0             | 1303.0                          |
| +1 111 | DADIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 730.0             | 95.0                            |
| 1 112  | INDEDMATED CACAEMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 730.0             | 93.0                            |
| 1 12   | CINDERWALER SISIEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 670 0             | 470.0                           |
| *1 121 | CIDENCE CIDII (DADADA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 670.0             | 470.0                           |
| 1 122  | INDEPENATED CIPT (CONAD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0.0             | 470.0                           |
| 1.122  | COMMAND+COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1009 0            | 608 0                           |
| +1 121 | COMPAND TAKES CENTRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 400 0             | 608.0<br>528.0<br>80.0<br>132.0 |
| 1 132  | CONNINC CHARTONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 608.0             | 608.0                           |
| 1 1321 | DILOW POHEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 528 0             | 528 0                           |
| 1 1221 | CUADE DOOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90.0              | 220.0                           |
| 1.1322 | CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.0             | 132 0                           |
| ±1 141 | EI POMPONIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 172.0             | 132.0                           |
| 11.141 | ELECTRONIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 172.0             | 132.0                           |
| -1.142 | TORPEDO<br>MEGGEL D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.0              |                                 |
| 1.143  | MIDDING CONSUMING MIDDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 244 1             |                                 |
| 1.15   | INTERIOR COMMUNICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 344.1             |                                 |
| 1.10   | ENVIRONMENTAL CNTL SUP SYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.3              | 144.0                           |
| 1.2    | WEAPONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17/9.0            | 144.0                           |
| *1.21  | GUNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 879.0             | 144.0                           |
| 1.22   | MISSILES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 900.0             |                                 |
| 1.23   | ROCKETS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                 |
| 1.24   | TORPEDOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                 |
| 1 25   | DEPTH CHARGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                 |
| 1.20   | MILE FIELD DACK CHOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                 |
| 1.27   | MULT EDECT RACK STOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                 |
| 1.20   | WEAP MODULE STA & SERV INTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 625 0             | 50 0                            |
| 1.3    | AVIATION I AUDICH-DECOVEDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.0              | 30.0                            |
| 1 211  | TAUNCHTNG DECOUERY ADEAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.0              |                                 |
| *1 312 | I AINCUING TRECOVER I AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.0              |                                 |
| 1 32   | AVIATION COMPOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.0              |                                 |
| 1 321  | FITCHT CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                 |
| 1.322  | NAVIGATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                 |
| 1.323  | OPERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                 |
| 1.33   | AVIATION HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                 |
| *1.34  | ATROPART STOWAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 450.0             |                                 |
| 1.35   | AVIATION ADMINISTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000              |                                 |
| *1.36  | AVIATION MAINTENANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.0              | 50.0                            |
| 1.37   | AVIATION ORDINANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                                 |
| 1.372  | CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                 |
| 1.373  | HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                 |
| 1.374  | STOWAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                 |
| 1.38   | AVIATION FUEL SYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                 |
| *1.39  | AVIATION STORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0             |                                 |
| 1.4    | AMPHIBIOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                 |
| 1.5    | CARGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                 |
| 1.6    | INTERMEDIATE MAINT FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 731.7             |                                 |
| 1.64   | STOWAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 731.7             |                                 |
| 1.641  | WEAPONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 731.7             |                                 |
| 1.7    | FLAG FACILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                 |
| 1.73   | HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                 |
| 1.74   | STOWAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                 |
| 1.8    | SPECIAL MISSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                 |
| 1.9    | SM ARMS, PYRO+SALU BAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 161.9             | 9.5                             |
| 1.91   | SM ARMS (LOCKER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.4              |                                 |
| 1.92   | PYROTECHNICS (LOCKER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.5               | 9.5                             |
| 1.93   | SALUTING BAT (MAGAZINE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.0              |                                 |
| 1.95   | SECURITY FORCE EQUIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.1              |                                 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                 |

PRINTED REPORT NO. 3 - HUMAN SUPPORT AREA

HAB STD = NAVY

| SSCS   | GROUP          | TOTAL<br>AREA FT2 | DKHS<br>AREA FT2 |
|--------|----------------|-------------------|------------------|
| 2. H   | UMAN SUPPORT   | 7923.7            | 381.5            |
| 2.1    | LIVING         | 4403.5            | 340.0            |
| 2.11   | OFFICER LIVING | 1565.0            | 340.0            |
| 2.111  | BERTHING       | 1360.0            | 260.0            |
| 2.1111 | SHIP OFFICER   | 1360.0            | 260.0            |
| 2.1115 | FLAG OFFICER   |                   |                  |
| 2.112  | SANITARY       | 205.0             | 80.0             |
| 2.1121 | SHIP OFFICER   | 205.0             | 80.0             |

| 2.1125 | FLAG OFFICER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500 F  |      |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| 2.12   | CPO LIVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 392.3  |      |
| 2.121  | BERTHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 465.0  |      |
| 2.122  | SANITARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 127.5  |      |
| 2.13   | CREW LIVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2097.0 |      |
| 2.131  | BERTHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1800.0 |      |
| 2.132  | SANITARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 297.0  |      |
| 2.133  | RECREATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |      |
| 2.1332 | LIBRARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |      |
| 2.14   | GENERAL SANITARY FACILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.0  |      |
| 2.141  | LADIES RETIRING ROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80.0   |      |
| 2.142  | BRIDGE WASHROOM+WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0   |      |
| 2.143  | DECK WASHROOM+WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.0   |      |
| 2.15   | SHIP RECREATION FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.0   |      |
| 2.152  | MOTION PIC FILM+EQUIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.4   |      |
| 2.153  | PHYSICAL FITNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.6   |      |
| 2.154  | TV ROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |      |
| 2.16   | TRAINING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |      |
| 2.2    | COMMISSARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2316.7 |      |
| 2.21   | FOOD SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1448.0 |      |
| 2.211  | OFFICER (MESS+LOUNGE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 496.6  |      |
| 2.212  | CPO (MESS+LOUNGE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 394.0  |      |
| 2.213  | CREW (MESS+LOUNGE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 557.4  |      |
| 2.22   | COMMISSARY SERVICE SPACES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 544.6  |      |
| 2.23   | FOOD STORAGE+ISSUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 324.2  |      |
| 2.231  | CHILL PROVISIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79.4   |      |
| 2.232  | FROZEN PROVISIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77.7   |      |
| 2.233  | DRY PROVISIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 167.0  |      |
| 2.234  | ISSUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |      |
| 2.3    | MEDICAL+DENTAL (MEDICAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300.0  |      |
| 2.4    | GENERAL SERVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 523.2  |      |
| 2.41   | SHIP STORE FACILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 244.6  |      |
| 2.411  | SHIP STORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61.0   |      |
| 2.416  | SHIP STORE STORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 183.6  |      |
| 2.42   | LAUNDRY FACILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 186.7  |      |
| 2.43   | DRY CLEANING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |
| 2.44   | BARBER SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.0   |      |
| 2.46   | POSTAL SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |      |
| 2.47   | BRIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |      |
| 2.48   | RELIGIOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.0   |      |
| 2.5    | PERSONNEL STORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150.4  | 41.5 |
| 2.51   | BAGGAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.4   |      |
| 2.52   | MESSROOM STORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59.0   | 11.5 |
| 2.55   | FOUL WEATHER GEAR (LOCKER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.0   | 30.0 |
| 2.57   | FOLDING CHAIR STOREROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40.0   |      |
| 2.6    | CBR PROTECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 209.8  |      |
| 2.61   | CBR DECON STATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |
| 2.62   | CBR DEFENSE EQP STRMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 209.8  |      |
| 2.63   | CPS AIRLOCKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |      |
| 2.7    | FLAG OFFICER CPO LIVING BERTHING SANITARY CREW LIVING BERTHING SANITARY RECREATION LIBRARY GENERAL SANITARY FACILITIES LADIES RETIRING ROOM BRIDGE WASHROOM+WC DECK WASHROOM+WC SHIP RECREATION FAC MOTION PIC FILM+EQUIP PHYSICAL FITNESS TV ROOM TRAINING COMMISSARY FOOD SERVICE OFFICER (MESS+LOUNGE) CPO (MESS+LOUNGE) CPO (MESS+LOUNGE) COMMISSARY SERVICE SPACES FOOD STORAGE+ISSUE CHILL PROVISIONS FROZEN PROVISIONS DRY PROVISIONS ISSUE MEDICAL+DENTAL (MEDICAL) GENERAL SERVICES SHIP STORE FACILITIES SHIP STORE SHIP STORE SHIP STORES LAUNDRY FACILITIES DRY CLEANING BARBER SERVICE POSTAL SERVICE BRIG RELIGIOUS PERSONNEL STORES BAGGAGE MESSROOM STORES FOUL WEATHER GEAR (LOCKER) FOLDING CHAIR STOREROOM CBR DECON STATIONS CBR DEFENSE EQP STRMS CPS AIRLOCKS LIFESAVING EQUIPMENT LIFEJACKET LOCKER | 20.0   |      |
| 2.71   | LIFEJACKET LOCKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0   |      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |      |

# PRINTED REPORT NO. 4 - SHIP SUPPORT AREA

| SSCS  | GROUP                                                                                           | TOTAL<br>AREA FT2 | DKHS<br>AREA FT2 |
|-------|-------------------------------------------------------------------------------------------------|-------------------|------------------|
| 3     | SHIP SUPPORT                                                                                    | 12407.7           | 1651.8           |
| 3 1   | SHIP CNTL SYS(STEERING&DIVING)                                                                  | 564.0             |                  |
| 3 2   | DAMAGE CONTROL                                                                                  | 375.5             |                  |
| 3 22  | PEDATE STATIONS                                                                                 | 182.0             |                  |
| 3 25  | FIRE FIGHTING                                                                                   | 193.5             |                  |
| 3 3   | SHIP CNTL SYS(STEERING&DIVING) DAMAGE CONTROL REPAIR STATIONS FIRE FIGHTING SHIP ADMINISTRATION | 972.4             |                  |
| 3 5   | FIRE FIGHTING SHIP ADMINISTRATION DECK AUXILIARIES ANCHOR HANDLING LINE HANDLING                | 696.6             | 212.9            |
|       | ANCHOR HANDLING                                                                                 | 309.2             |                  |
|       | LINE HANDLING                                                                                   | 174.5             |                  |
|       | TRANSFER-AT-SEA                                                                                 | 212.9             | 212.9            |
| 3.6   | SHIP MAINTENANCE                                                                                | 1143.0            |                  |
| 3.61  | ENGINEERING DEPT AUX (FILTER CLEANING)                                                          | 699.1             |                  |
| 3.611 | AUX (FILTER CLEANING)                                                                           | 90.0              |                  |
| 3.612 | ELECTRICAL                                                                                      | 99.7              |                  |
| 3.613 | ELECTRICAL MECH (GENERAL WK SHOP) PROPULSION MAINTENANCE                                        | 449.3             |                  |
| 3.614 | PROPULSION MAINTENANCE                                                                          | 60.0              |                  |
| 3.62  | OPERATIONS DEPT (ELECT SHOP)                                                                    | 314.1             |                  |
| 3.63  | OPERATIONS DEPT (ELECT SHOP) WEAPONS DEPT (ORDINANCE SHOP) DECK DEPT (CARPENTER SHOP) STOWAGE   | 59.8              |                  |
| 3.64  | DECK DEPT (CARPENTER SHOP)                                                                      | 70.0              |                  |
| 3.7   | STOWAGE                                                                                         | 2173.1            |                  |
|       |                                                                                                 |                   |                  |
| 3.711 | HAZARDOUS MATL                                                                                  | 146.0             |                  |
| 3.712 | SPECIAL CLOTHING                                                                                | 46.1              |                  |
| 3.713 | SUPPLY DEPT  HAZARDOUS MATL  SPECIAL CLOTHING  GEN USE CONSUM+REPAIR PART                       | 933.2             |                  |
|       |                                                                                                 |                   |                  |

| 3.714 | MISCELLANEOUS                   | 37.1   |        |
|-------|---------------------------------|--------|--------|
| 3.715 | STORES HANDLING                 | 478.6  |        |
| 3.72  | ENGINEERING DEPT                | 30.7   |        |
| 3.73  | OPERATIONS DEPT                 | 42.8   |        |
| 3.74  | DECK DEPT (BOATSWAIN STORES)    | 379.3  |        |
| 3.75  | WEAPONS DEPT                    | 27.3   |        |
| 3.76  | EXEC DEPT (MASTER-AT-ARMS STOR) | 31.7   |        |
| 3.78  | CLEANING GEAR STOWAGE           | 20.5   |        |
| 3.8   | ACCESS (INTERIOR-NORMAL)        | 6483.0 | 1438.9 |

## PRINTED REPORT NO. 5 - SHIP MACHINERY SYSTEM AREA

| SSCS   | GROUP                                                                                                  | TOTAL   |        |
|--------|--------------------------------------------------------------------------------------------------------|---------|--------|
|        | GNOO1                                                                                                  |         |        |
| 4.     | SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION                                            | 13035.0 | 1077.8 |
| 4.1    | PROPULSION SYSTEM                                                                                      | 2421.3  | 390.4  |
| 4.13   | INTERNAL COMBUSTION                                                                                    | 679.3   | 69.6   |
| 4.132  | COMBUSTION AIR                                                                                         |         |        |
| 4.133  | COMBUSTION AIR EXHAUST CONTROL GAS TURBINE                                                             | 139.3   | 69.6   |
| 4.134  | CONTROL                                                                                                | 540.0   |        |
| 4.14   | GAS TURBINE                                                                                            | 1742.0  |        |
| 4.142  | COMBUSTION AIR                                                                                         |         | 138.6  |
| 4.143  | EXHAUST                                                                                                |         | 182.1  |
|        | CONTROL                                                                                                | 940.0   |        |
| 4.17   | AUX PROPULSION SYSTEMS<br>PROPULSOR & TRANSMISSION SYST                                                |         |        |
| 4.2    | PROPULSOR & TRANSMISSION SYST                                                                          |         |        |
| 4.3    | AUX MACHINERY                                                                                          | 10613.7 | 687.5  |
| 4.31   | GENERAL (AUX MACH DELTA)                                                                               | 8419.9  |        |
| 4.32   | A/C & REFRIGERATION                                                                                    | 1439.9  | 687.5  |
| 4.321  | A/C (INCL VENT)                                                                                        | 1342.7  | 687.5  |
| 4.322  | GENERAL (AUX MACH DELTA) A/C & REFRIGERATION A/C (INCL VENT) REFRIGERATION ELECTRICAL POWER GENERATION | 97.2    |        |
| 4.33   | ELECTRICAL                                                                                             | 270.1   |        |
| 4.331  | POWER GENERATION                                                                                       | 143.1   |        |
| 4.0011 | . Ship Service PWR Gen                                                                                 |         |        |
| 4.3314 | 400 HERTZ                                                                                              | 143.1   |        |
| 4.332  | 400 HERTZ PWR DIST & CNTRL DEGAUSSING POLUTION CONTROL SYSTEMS                                         | 2.0     |        |
| 4.334  | DEGAUSSING                                                                                             | 125.0   |        |
|        |                                                                                                        |         |        |
| 4.35   | MECHANICAL SYSTEMS                                                                                     | 349.3   |        |

PRINTED REPORT NO. 6 - REQUIRED TANKAGE

POLLUTION CNTRL IND-PRESENT

| ENDURANCE FUEL, FT3  | 18305. |
|----------------------|--------|
| AVIATION FUEL, FT3   | 2814.  |
| FRESH WATER, FT3     | 653.   |
| SEWAGE, FT3          | 245.   |
| WASTE OIL WATER, FT3 | 366.   |
| CLEAN BALLAST, FT3   | 0.     |
| TANKAGE MARGIN, FT3  | 0.     |
|                      |        |
| TANKAGE VOL REQ, FT3 | 22382. |

ASSET/MONOSC VERSION 3.3+ - DESIGN SUMMARY - 2/11/95 10.50.12.

PRINTED REPORT NO. 1 - SUMMARY

SHIP COMMENT TABLE

| PRINCIPAL CHARACTERISTICS - FT  LBP                               | WEIGHT SUMMARY - LTON GROUP 1 - HULL STRUCTURE 1320.9 GROUP 2 - PROP PLANT 281.3 GROUP 3 - ELECT PLANT 261.7 GROUP 4 - COMM + SURVEIL 144.9 GROUP 5 - AUX SYSTEMS 494.2 GROUP 6 - OUTFIT + FURN 314.0 GROUP 7 - ARMAMENT 209.6 |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FREEBOARD ( STA 3 18.9 GMT 5.6 CP 0.570 CX 0.795                  | CIM CDOIDS 1-7 3026.7                                                                                                                                                                                                          |
| SPEED(KT): MAX= 26.1 SUST= 25.0 ENDURANCE: 6000.0 NM AT 14.0 KTS  | LIGHTSHIP WEIGHT 3405.0                                                                                                                                                                                                        |
| TRANSMISSION TYPE: ELECT MAIN ENG: 2 RGT € 15901.8 HP             | FULL LOAD DISPLACEMENT 3980.1                                                                                                                                                                                                  |
| SHAFT POWER/SHAFT: 14387.5 HP<br>PROPELLERS: 2 - FP - 11.7 FT DIA | MILITARY PAYLOAD WT - LTON 410.5<br>USABLE FUEL WT - LTON 394.3                                                                                                                                                                |
| SEP GEN: 2 D DIESEL @ 2868.0 KW                                   | SUPERSTRUCTURE AREA - 10911.7                                                                                                                                                                                                  |
| 24 HR LOAD 1141.9<br>MAX MARG ELECT LOAD 2754.9                   | TOTAL AREA 40397.7  VOLUME SUMMARY - FT3                                                                                                                                                                                       |
| OFF CPO ENL TOTAL MANNING 15 13 82 110 ACCOM 17 15 90 122         | HULL VOLUME - 388003.2                                                                                                                                                                                                         |
| ACCOM 1/ 15 90 122                                                | TOTAL VOLUME 498688.7                                                                                                                                                                                                          |

PRINTED REPORT NO. 2 - MANNING AND ACCOMMODATION SUMMARY

CREW ACCOM MARGIN FAC 0.10

|          | SHIPS | AIR    | FLAG STAFF | TOTAL   | TOTAL         |
|----------|-------|--------|------------|---------|---------------|
|          | CREW  | DETACH | /OTHER     | MANNING | ACCOMMODATION |
| OFFICERS | 11.   | 4.     | 0.         | 15.     | 17.           |
| CPO      | 12.   | 1.     | 0.         | 13.     | 15.           |
| OEM      | 76.   | 6.     | 0.         | 82.     | 90.           |
| TOTAL.   | 99.   | 11.    | 0.         | 110.    | 122.          |

#### PRINTED REPORT NO. 3 - INDICATORS

MISSION DESIGN MODE IND-ENDURANCE ENDUR DISP IND -AVG DISP ENDUR DEF IND -USN SUSTN SPEED IND-GIVEN ENDUR SPEED IND-GIVEN HULL FORM FACTORS HULL OFFSETS IND-GENERATE HULL DIM IND -B+THULL BOUNDARY CONDITIONS -CONV DD -OPTIMUM HULL BC IND HULL STA IND SHELL APPENDAGES BILGE KEEL IND -PRESENT SKEG IND -PRESENT MARGIN LINE MARGIN LINE IND-CALC HULL SUBDIVISION FACTORS HULL SUBDIV IND-CALC INNER BOTTOM INNER BOTTOM IND-PRESENT HULL LOADS HULL LOADS IND -CALC SHOCK FNDTN IND-SHOCK STRUCTURAL ARANGEMENT BOT PLATE LIMIT IND-CALC STIFFENERS STIFFENER SHAPE IND-CALC DKHS GEOM FACTORS DKHS GEOM IND -GENERATE DKHS SIZE IND -AUTO X DKHS MATERIALS DKHS MTRL TYPE IND-HTS FIRE PROTECT IND -NONE DKHS LOADS BLAST RESIST IND-7 PSI ARRANGEMENT TYPES MECH CL ARR IND MECH PORT ARR IND -MECH STBD ARR IND -ELECT PG ARR 1 IND-M-PG ELECT PG ARR 2 IND-ELECT DL ARR IND -MTR ARRANGEMENT CG MACHY KG IND -CALC ENGINE CONFIG FACTORS ENG ENDUR RPM IND -CALC SEC ENG USAGE IND ENDUR CONFIG IND -NO TS GT ENG ENCL IND -84 DBA DIESEL ENG MOUNT IND-COMPOUND MAIN ENGINES MAIN ENG SELECT IND-GIVEN MAIN ENG MOD IND -GE-LM1600-VAN2 MAIN ENG TYPE IND -RGT MAIN ENG SFC EQ IND-POLY QN MAIN ENG SIZE IND -CALC SEC ENGINES SEC ENG SELECT IND -SEC ENG MODEL IND -SEC ENG TYPE IND SEC ENG SFC EQN IND-SEC ENG SIZE IND TRANSMISSION FACTORS TRANS TYPE IND -ELECT TRANS EFF IND -CALC ELECTRICAL TRANSMISSION ELECT PRPLN TYPE IND -ACR-DCS

ELECT PRPLN RATIND IND-CALC AC SYNC ROTOR COOL IND-AIR TRANS LINE NODE PT IND-CALC SWITCHGEAR TYPE IND -ADV

SEC ENG 2 SPD GEAR IND-GEAR IMPED MASS IND -NONE PROPULSION SHAFTING SHAFT SUPPORT TYPE IND-POD SHAFT SYS SIZE IND PROPULSION SHAFT BEARING THRUST BRG LOC IND-CALC PROPELLER FACTORS PROP TYPE IND -FP
PROP SERIES IND-ANALYTIC PROP DIA IND -CALC
PROP AREA IND -CALC
PROP LOC IND -CALC PROP LOC IND -CALC PITCH RATIO IND-CALC OPEN WATER PROP DATA PROP TO TWO PROPULSION SUPPORT SYS -PLENUM INLET TYPE IND DUCT SILENCING IND -BOTH EXHAUST IR SUPP IND-PRESENT SS GENERATOR FACTORS SS SYS TYPE IND-SEP FREQ CONV IND -SS GENERATOR SIZE SS GEN SIZE IND-NON STD SS ENGINES SS ENG SELECT IND -GIVEN SS ENG MODEL IND -A-12V270 SS ENG TYPE IND -D DIESEL SS ENG SFC EQN IND-DIESEL SS ENG SIZE IND -CALC SONAR SYSTEM SONAR DOME IND -NONE SONAR DRAG IND -CLIMATE CONTROL

COLL PROTECT SYS IND-PRESENT REFER MACHY LOC IND -OUTSIDE AUX BOILER TYPE IND -ELECTRIC SEA WATER SYSTEMS

AIR AND MISC FLUID SYSTEM

RUDDERS
RUDDER SIZE IND-CALC
RUDDER TYPE IND-SPADE
ROLL FINS
FIN SIZE IND -CALC
REPLENISHMENT SYSTEMS

SPECIAL PURPOSE SYSTEMS
POLLUTION CNTL IND-PRESENT
OUTFIT AND FURNISHINGS
UNIT CMDR IND -NONE

FUELS AND LUBRICANTS
SHIP FUEL TYPE IND-JP-5
RESISTANCE FACTORS
FRICTION LINE IND -ITTC
RESID RESIST IND -NRC
WORM CURVE IND PRPLN SYS RESIST IND-CALC
SHIP WEIGHT
SHIP LCG INPUT IND-CALC

PRINTED REPORT NO. 4 - MARGINS

| MIN FREEBOARD MARGIN, FT | .25  |
|--------------------------|------|
| HULL MARGIN STRESS, KSI  | 2.24 |

TORQUE MARGIN FAC 1.200

ELECTRIC PLANT ELECT LOAD DES MARGIN FAC .200 ELECT LOAD SL MARGIN FAC .100

AUXILIARY SYSTEMS AC MARGIN FAC .200

OUTFIT AND FURNISHINGS CREW ACCOM MARGIN FAC .100

WEIGHT MARGINS GROWTH WT MARGIN, LTON .0 D+B WT MARGIN, LTON .0 .125 D+B WT MARGIN FAC D+B KG MARGIN, FT .00 D+B KG MARGIN FAC .125

RESISTANCE FACTORS DRAG MARGIN FAC .080

SPACE FACTORS SPACE MARGIN FAC .050 PASSWAY MARGIN FAC .000 TANKAGE MARGIN FAC .000

PRINTED REPORT NO. 5 - PAYLOAD AND ADJUSTMENTS

#### ROW PAYLOAD AND ADJUSTMENT NAME

- 1 CIC COMMAND AND DECISION MODFIG
- EXCOMM (1/2 DDG51) NAV SYS (1/2 DDG 51) 3
- 4 5
- SPS-67 SSR SPY-3C (MINI-SPY) MK XII AIMS IFF SQR-19 TACTAS
- 6
- 7 8
- SLQ-25 NIXIE 9 SLQ-32(V)3 ACTIVE/PASSIVE ECM
- 11 CS HOLD UP BATTERY
- 12 SENSOR COOLING SYSTEMS
- 16 OPER READINESS AND TEST SYS
- 17 RAST/TALON HELO COMBO
- 18 RAST CONTROL STATION
- 19 LAMPS MKIV: AVIATION SUPPORT & SPARES
- 20 1X MK45 5IN/54 GUN
- 21 1X 40MM CIWS/MULTI PURP GUN
- 22 1X 40MM CIWS/MULTI PURP GUN
- 23 1.25 MK41 VLS MISSILE LAUNCHER (LOADED)
- LONGITUDNAL BULKHEADS AROUND MAGAZINE 25
- 2X MK32 SVTT ON DECK
- AQS-13F ACTIVE HELO DIPPING SONAR [ON SH
- 5IN/54 AMMO 400 RDS

- 40MM AMMO (MIXED) 3000 RNDS 40MM AMMO (MIXED) -- 3000 RNDS MK46 LIGHTWEIGHT ASW TORPEDOES -- 6 RDS
- 34 HELO AS565 PANTHER: (DOLPHIN)
- LAMPS MKIII: FUEL [JP-5]
- ADMIN LAN
- AIRCRAFT RELATED WEAPONS
- 42 AVIATION STORES
- 44 MINE DETECTION HULL MOUNTED SONAR

PRINTED REPORT NO. 3 - DETAILED MISSION PERFORMANCE

| SIG WAVE HT, FT = 0.0<br>PROBABILITY OF<br>OCCURANCE, PCNT = 1.7   | SPEED<br>KT                         | PROBABILITY<br>PCNT                | DRAG<br>LBF                                       | REQ PROP                                    | FUEL CONS                          |
|--------------------------------------------------------------------|-------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------|------------------------------------|
|                                                                    | 6.0<br>14.0<br>20.0<br>25.0<br>26.0 | 11.9<br>46.6<br>35.6<br>4.4<br>1.5 | 11627.<br>55140.<br>110889.<br>211746.<br>250371. | 330.<br>3600.<br>10349.<br>25441.<br>31804. | 18.0<br>17.5<br>11.3<br>6.1<br>5.0 |
| SIG WAVE HT, FT = 4.0<br>PROBABILITY OF<br>OCCURANCE, PCNT = 15.7  | SPEED<br>KT                         | PROBABILITY<br>PCNT                | DRAG<br>LBF                                       | REQ PROP                                    | FUEL CONS<br>NM/LTON               |
| ,                                                                  | 6.0<br>14.0<br>20.0<br>25.0<br>26.0 | 11.9<br>46.6<br>35.6<br>4.4<br>1.5 | 11654.<br>55266.<br>111141.<br>212227.<br>250442. | 331.<br>3609.<br>10375.<br>25507.<br>31804. | 18.0<br>17.4<br>11.2<br>6.1<br>5.0 |
| SIG WAVE HT, FT = 6.5<br>PROBABILITY OF<br>OCCURANCE, PCNT = 11.6  | SPEED<br>KT                         | PROBABILITY<br>PCNT                | DRAG<br>LBF                                       | REQ PROP                                    | FUEL CONS<br>NM/LTON               |
| occounted for a 11.0                                               | 6.0<br>14.0<br>20.0<br>25.0<br>26.0 | 11.9<br>46.6<br>35.6<br>4.4<br>1.5 | 11716.<br>55562.<br>111738.<br>213366.<br>250736. | 333.<br>3630.<br>10436.<br>25663.<br>31804. | 17.9<br>17.4<br>11.2<br>6.1<br>5.0 |
| SIG WAVE HT, FT = 10.2<br>PROBABILITY OF<br>OCCURANCE, PCNT = 42.0 |                                     |                                    |                                                   |                                             |                                    |
| COCCURANCE, FUNT - 42.0 -                                          | 6.0<br>14.0<br>20.0<br>25.0<br>25.9 | 11.9<br>46.6<br>35.6<br>4.4<br>1.5 | 11902.<br>56442.<br>113507.<br>216745.<br>251230. | 339.<br>3694.<br>10619.<br>26129.<br>31804. | 17.9<br>17.2<br>11.0<br>6.0<br>5.0 |
| SIG WAVE HT, FT = 17.0<br>PROBABILITY OF<br>OCCURANCE, PCNT = 29.0 | SPEED<br>KT                         | PROBABILITY<br>PCNT                | DRAG<br>LBF                                       | REQ PROP                                    | FUEL CONS<br>NM/LTON               |
|                                                                    | 6.0                                 | 11.9<br>46.6<br>35.6<br>4.4<br>1.5 | 12612                                             | 362                                         | 17 7                               |

ASSET/MONOSC VERSION 3.3+ - SEAKEEPING ANALYSIS - 2/11/95 10.51.01.

PRINTED REPORT NO. 1 - SUMMARY

APPENDAGE IND-WITH

FULL LOAD WT, LTON 3980.1

|                                                 | FULL LOAD |
|-------------------------------------------------|-----------|
|                                                 |           |
| BALES RANK                                      |           |
| RANK OF THE SYNTHESIZED SHIP (ACTUAL DISP)      | 1.975     |
| RANK OF THE SYNTHESIZED SHIP (NORMALIZED)       | 2.743     |
| RANK OF THE CLOSEST DATA BASE HULL (NORMALIZED) | 2.730     |
| ID NO OF CLOSEST DATA BASE SHIP                 | 4         |
| MCCREIGHT RANK                                  |           |
| RANK OF THE SYNTHESIZED SHIP (ACTUAL SHIP)      | 4.464     |
| RANK OF THE CLOSEST DATA BASE HULL              | 4.402     |
| ID NO OF CLOSEST DATA BASE SHIP                 | 32        |
|                                                 |           |

PRINTED REPORT NO. 2 - SHIP GEOMETRY DATA

FULL LOAD WT, LTON 3980.1

|                           | FULL LOAD |
|---------------------------|-----------|
| ACTUAL SHIP               |           |
| LBP, FT                   | 380.00    |
| BEAM, FT                  | 50.53     |
| DRAFT, FT                 | 15.50     |
| VERT PRISMATIC COEF (FWD) | 0.7334    |
| VERT PRISMATIC COEF (AFT) |           |
| WATERPLANE COEF (FWD)     | 0.5865    |
| WATERPLANE COEF (AFT)     | 0.8958    |
| WP AREA AFT MIDSHIPS, FT2 | 8599.97   |
| LCB FROM FP, FT           | 197.93    |
|                           | 217.03    |
| BML, FT                   | 856.32    |
|                           | 32.13     |
| NORMALIZED SHIP           |           |
| DISP, LTON                | 4232.1    |
| LBP, FT                   | 387.86    |
| BEAM. FT                  | 51.57     |
| DRAFT, FT                 | 15.82     |
| CUT-UP PT FROM FP, FT     | 32.80     |
|                           |           |

ASSET/MONOSC VERSION 3.3+ - COST ANALYSIS - 2/11/95 10.51.20.

\*\* WARNING - COST ANALYSIS \*\* (W-DEFAULTVALUES-CSTMPL)
THE FOLLOWING PARAMETERS WERE PROVIDED DEFAULT VALUES:
PAYLOAD THE COST LEAD PAYLOAD COST
FOLLOW PAYLOAD COST ANNUAL TRNG ORD COST
PAYLOAD FUEL RATE TECH ADV COST
ADDL FACILITY COST DEFERRED MMHRS REQ
UNREP UNIT CAPACITY UNREP UNIT COST
UNREP OHS COST KN FACTOR ARRAY
SHIP FUEL RATE

NOTE-THIS INTERIM MODULE PROVIDES GUIDANCE FOR DECISIONS REGARDING SHIP DESIGN TRADEOFFS AND COMPARATIVE EVALUATIONS. REQUESTS FOR ESTIMATES OF SHIP COSTS FOR BUDGETARY PURPOSES SHOULD BE DIRECTED TO NAVSEA.

PRINTED REPORT NO. 1 - SUMMARY

| YEAR \$                    | 1995. | NO OF SHIPS ACQUIRED | 100.   |
|----------------------------|-------|----------------------|--------|
| INFLATION ESCALATION FAC   | 1.513 | SERVICE LIFE, YR     | 30.0   |
| LEARNING RATE              | 0.970 | ANNUAL OPERATING HRS | 3000.0 |
| FUEL COST, \$/GAL          | 1.000 | MILITARY P/L, LTON   | 410.5  |
| PAYLOAD FUEL RATE, LTON/HR | 0.33  | LIGHTSHIP WT, LTON   | 3405.0 |
| SHIP FUEL RATE, LTON/HR    | 0.92  | FULL LOAD WT, LTON   | 3980.1 |

|                                     | COSTS (MI | LLIONS OF | DOLLARS) |
|-------------------------------------|-----------|-----------|----------|
| COST ITEM                           | TOT SHIP  | + PAYLOAD | = TOTAL  |
|                                     |           |           |          |
| LEAD SHIP                           | 529.7     | 223.2*    | 752.9    |
| FOLLOW SHIP                         | 249.9     | 198.6*    | 448.6    |
| AVG ACQUISITION COST/SHIP(** SHIPS) | 217.2     | 198.9*    | 416.1    |
| LIFE CYCLE COST/SHIP(30 YEARS)      |           |           | 1117.6   |
| TOTAL LIFE CYCLE COST(30 YEARS)     |           |           | 111758.1 |
| DISCOUNTED LIFE CYCLE COST/SHIP     |           |           | 67.4**   |
| DISCOUNTED TOTAL LIFE CYCLE COST    |           |           | 6743.3** |

<sup>\*</sup>ESTIMATED VALUE

<sup>\*\*</sup>DISCOUNTED AT 10 PERCENT

| SWBS<br>GROUP                                  | D REPORT NO. 2 - UNIT 1                                                                                                                    | ACQUISIT  UNITS                 |                               | KN     | LEAD<br>SHIP<br>COSTS<br>\$K                  | FOLLOW<br>SHIP<br>COSTS<br>\$K    |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|--------|-----------------------------------------------|-----------------------------------|
| 100                                            | HULL STRUCTURE                                                                                                                             | LTON                            | 1320.9                        | 1.00   | 13179.                                        | 12388.                            |
| 200                                            | PROPULSION PLANT                                                                                                                           | HP                              | 31803.6                       | 2.35   | 28667.                                        | 26947.                            |
| 300                                            | ELECTRIC PLANT                                                                                                                             | LTON                            | 261.7                         | 1.00   | 17999.                                        | 16919.                            |
| 400                                            | COMMAND+SURVEILLANCE                                                                                                                       | LTON                            |                               | 3.15   |                                               | 10488.                            |
| 500                                            | AUX SYSTEMS                                                                                                                                | LTON                            | 494.2                         | 1.53   | 28027.                                        | 26345.                            |
| 600                                            | OUTFIT+FURNISHINGS                                                                                                                         | LTON                            | 314.0                         | 1.00   | 13527.                                        |                                   |
| 700                                            | ARMAMENT                                                                                                                                   | LTON                            |                               | 1.00   | 2478.                                         | 2330.                             |
|                                                | MARGIN                                                                                                                                     | LTON                            | 378.3                         |        | 14379.                                        | 13516.                            |
| 800                                            | DESIGN+ENGINEERING                                                                                                                         |                                 |                               | 26.06  |                                               |                                   |
| 900                                            | CONSTRUCTION SERVICES                                                                                                                      |                                 |                               |        | 34052.                                        | 32009.                            |
|                                                | OTAL CONSTRUCTION COST                                                                                                                     |                                 |                               |        | 360737.                                       | 175455.                           |
|                                                | CONSTRUCTION COST<br>PROFIT(10.0 PERCENT<br>PRICE                                                                                          |                                 |                               |        | 360737.<br>36074.<br>396811.                  | 175455.<br>17546.                 |
| ·                                              | CHANGE ORDERS (12/8 F<br>NAVSEA SUPPORT (2.5 F<br>POST DELIVERY CHARGE<br>OUTFITTING (4 PERCENT<br>H/M/E + GROWTH (10 PE<br>OTAL SHIP COST | ERCENT (<br>S(5 PERC<br>OF PRIC | OF PRICE)<br>CENT OF E<br>CE) | PRICE) | 47617.<br>9920.<br>19841.<br>15872.<br>39681. | 4825.<br>9650.<br>7720.<br>19300. |
| 1                                              | OTAL SHIP COST                                                                                                                             |                                 |                               |        | 529742.                                       | 249936.                           |
|                                                | STIMATED PAYLOAD COST                                                                                                                      |                                 |                               |        | 223202.                                       |                                   |
| SHIP P<br>ADJUST<br>COMBAT<br>PROPUL<br>ADJUST | LUS PAYLOAD COST ED FIRST UNIT SHIP COST SYSTEM WEIGHT, LTON SION SYSTEM WEIGHT, LTO ED FIRST UNIT SHIP COST W SHIP TOTAL COST DIVID       | , \$K<br>N<br>EQUALS            |                               |        | 752944.                                       |                                   |

## PRINTED REPORT NO. 3 - LIFE CYCLE COSTS

| IOC YEAR                 | 2010. | PAYLOAD FUEL RATE, LTON/HR | 0.33 |
|--------------------------|-------|----------------------------|------|
| R+D PROGRAM LENGTH, YRS  | 10.   | SHIP FUEL RATE, LTON/HR    | 0.92 |
| NUMBER OF SHIPS ACQUIRED | 100.  | TECH ADV COST, \$M         | 0.00 |
| SERVICE LIFE, YRS        | 30.   | ADDL FACILITY COST, \$M    | 0.00 |
| NO OF OFFICERS/SHIP      | 15.   | DEFERRED MMHRS REO, HR/WK  | 0.   |
| NO OF ENLISTED MEN/SHIP  | 95.   | PRODUCTION RATE, SHIPS/YR  | 8.00 |

| 30 | <br>YEAR | SYSTEMS | COST |
|----|----------|---------|------|
|    |          |         |      |

| U - YEAR SISTEMS CO                |           | (MILLIO           | ONS OF YE | AR 1995 D            | OLLARS) |         |
|------------------------------------|-----------|-------------------|-----------|----------------------|---------|---------|
| COST ELEMENT                       | NONREC    | PAYLOAD<br>NONREC | NONREC    | NONREC               | RECUR   | SYSTEM  |
| R+D TOTAL                          | 501       | 41                | 0         | 634                  |         | 634.    |
| DESIGN+DEVELMNT                    | 185.      |                   | 0.        | 185.                 |         | 185.    |
| DESIGN+DEVELMNT<br>TEST+EVALUATION | 409.      | 41.               | 0.        | 450.                 |         | 450.    |
| INVESTMENT                         | 23455.    | 26452.            | 50.       | 49958.               |         | 49958.  |
| EQUIPMENT                          | 22804.    | 23867.            |           | 46670.               |         | 46670.  |
| PRIME                              |           |                   |           | 46670.<br>41607.     |         | 41607.  |
| SUPPORT                            | 1086.     | 3978.             |           | 5064.                |         | 5064.   |
| FACILITIES                         |           |                   | 0.        | 5064.<br>0.<br>3237. |         | 0.      |
| INITIAL SPARES                     | 652.      | 2586.             |           | 3237.                |         | 3237.   |
| ASSOCIATED SYS                     |           |                   | 50.       | 50.                  |         | 50.     |
| OPERATIONS+SUPPRT                  |           |                   |           |                      | 63907.  | 63907.  |
| PERSONNEL                          |           |                   |           |                      | 6757.   |         |
| OPERATIONS                         |           |                   |           |                      | 6123.   | 6123.   |
| MAINTENANCE                        |           |                   |           |                      | 19386.  |         |
| ENERGY                             |           |                   |           |                      | 2827.   | 2827.   |
| REPL SPARES                        |           |                   |           |                      | 21041.  | 21041.  |
| MAJOR SUPPORT                      |           |                   |           |                      | 7589.   | 7589.   |
| ASSOCIATED SYS                     |           |                   |           |                      | 184.    | 184.    |
| LESS RESIDUAL VALU                 | E         |                   |           |                      |         | 2741.   |
| LIFE CYCLE TOTAL S                 | YSTEMS CO | <br>ST            |           |                      |         | 111758. |
| DISCOUNTED AT 10 P                 |           |                   |           |                      |         | 6743.   |
| COST PER VEHICLE-U                 | NDISCOUNT | ED 111:           | 8.        |                      |         |         |

COST PER VEHICLE-UNDISCOUNTED 1118. COST PER VEHICLE-DISCOUNTED 67.

ASSET/MONOSC VERSION 3.3+ - MANNING ANALYSIS - 2/11/95 10.51.32.

NOTE-THIS INTERIM MANNING MODEL PROVIDES GROSS TREND ANALYSIS BASED ON HISTORICAL MANNING DATA OF EXISTING SHIPS. REQUESTS FOR SHIP MANNING DETERMINATION SHOULD BE DIRECTED TO NAVSEA.

PRINTED REPORT NO. 1 - SUMMARY

FULL LOAD WT, LTON 3980.1

|                      |        |                      | -   |
|----------------------|--------|----------------------|-----|
| TOTAL MMHRS REQ/WK   | 6817.8 | NO WATCH STATIONS    | 5.  |
| TOTAL MMHRS AVAIL/WK | 5920.0 | NO WATCHSTANDERS     | 14. |
| DEFERRED MMHRS/WK    | 897.8  | NO NON-WATCHSTANDERS | 74. |

|                                            | OFFICERS         | CPO              | ENLISTED            | TOTAL                |
|--------------------------------------------|------------------|------------------|---------------------|----------------------|
| REQ MANNING<br>AVAIL MANNING<br>DIFFERENCE | 11.<br>15.<br>4. | 11.<br>13.<br>2. | 104.<br>82.<br>-22. | 126.<br>110.<br>-16. |
| ACCOMMODATIONS                             | 17.              | 15.              | 90.                 | 122.                 |

PRINTED REPORT NO. 2 - MANNING AND ACCOMMODATION SUMMARY

CREW ACCOM MARGIN FAC 0.10

|                        | SHIPS<br>CREW     | AIR<br>DETACH  | FLAG STAFF<br>/OTHER | ACCOMMODATION     |
|------------------------|-------------------|----------------|----------------------|-------------------|
| OFFICERS<br>CPO<br>OEM | 11.<br>12.<br>76. | 4.<br>1.<br>6. | 0.                   | 17.<br>15.<br>90. |
| TOTAL                  | 99.               | 11.            | . 0.                 | 122.              |

PRINTED REPORT NO. 3 - DEPARTMENTAL MANNING ANALYSIS

| DEPARTMENT       | MANNING<br>FACTOR | OFFICERS | CPO | ENLISTED | TOTAL |
|------------------|-------------------|----------|-----|----------|-------|
| CO/EXEC/NAV/MED  | 0.7               | 1.       | 2.  | 10.      | 13.   |
| OPERATIONS       | 0.5               | 1.       | 2.  | 25.      | 28.   |
| COMBAT           | 0.5               | 2.       | 3.  | 20.      | 25.   |
| ENGINEERING      | 0.8               | 2.       | 2.  | 28.      | 32.   |
| SUPPLY           | 0.5               | 1.       | 1.  | 15.      | 17.   |
| AVIATION         | 1.0               | 4.       | 1.  | 6.       | 11.   |
| FLAG STAFF/OTHER |                   | 0.       | 0.  | 0.       | 0.    |
| REQ MANNING      |                   | 11.      | 11. | 104.     | 126.  |
| AVAIL MANNING    |                   | 15.      | 13. | 82.      | 110.  |
| DIFFERENCE       |                   | 4.       | 2.  | -22.     | -16.  |

## PRINTED REPORT NO. 4 - WEEKLY FUNCTIONAL WORKLOAD ANALYSIS

| FUNCTION                                                      | WORKLOAD<br>FACTOR | WEEKLY<br>MHRS<br>REQ | WEEKLY<br>MHRS<br>AVAIL | PERCENT |
|---------------------------------------------------------------|--------------------|-----------------------|-------------------------|---------|
| OPERATIONAL MANNING (OM) PLANNED MAINTENANCE (PM)             | 0.5                | 2251.4                |                         | 33.0    |
| + CORRECTIVE MAINTENANCE (CM)                                 | 0.5                | 700.9                 |                         | 10.3    |
| OWN UNIT SUPPORT (OUS)                                        | 0.5                | 1368.9                |                         | 20.1    |
| FACILITY MAINTENANCE (FM)                                     | 0.5                | 488.7                 |                         | 7.2     |
| PRODUCTIVITY ALLOWANCE (PA) SERVICE DIVERSION ALLOWANCE (SDA) | 1.0                | 511.7                 |                         | 7.5     |
| + TRAINING (T)                                                | 1.5                | 1496.2                |                         | 21.9    |
| TOTAL MMHRS RÉQ/WK                                            |                    | 6817.8                |                         | 100.0   |
| WATCHSTANDERS (74HRS/MAN-WK)                                  |                    |                       | 1036.0                  |         |
| NON-WATCHSTANDERS (66HRS/MAN-WK)                              |                    |                       | 4884.0                  |         |
| TOTAL MMHRS AVAIL/WK                                          |                    |                       | 5920.0                  | 86.8    |
| DEFERRED MMHRS/WK                                             |                    |                       | 897.8                   | 13.2    |

# COAST GUARD VERSION ASSET PRINTED REPORT



# PRINTED REPORT NO. 1 - HULL GEOMETRY SUMMARY

| HULL OFFSETS IND-GIVEN HULL DIM IND-GEOSIM MARGIN LINE IND-CALC HULL STA IND-OPTIMUM HULL BC IND-CONV DD |                | MIN BEAM, FT<br>MAX BEAM, FT<br>HULL FLARE ANGLE, DEG<br>FORWARD BULWARK, FT                                       | 36.00<br>51.00<br>0.00 |
|----------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------|------------------------|
| HULL I                                                                                                   | PRINCIPAL DIME | PRISMATIC COEF MAX SECTION COEF WATERPLANE COEF LCB/LCP HALF SIDING WIDTH, FT                                      |                        |
| LBP, FT                                                                                                  | 380.00         | PRISMATIC COEF                                                                                                     | 0.570                  |
| LOA, FT                                                                                                  | 398.29         | MAX SECTION COEF                                                                                                   | 0.795                  |
| BEAM, FT                                                                                                 | 51.00          | WATERPLANE COEF                                                                                                    | 0.734                  |
| BEAM @ WEATHER DECK, FT                                                                                  | 54.54          | LCB/LCP                                                                                                            | 0.515                  |
| DRAFT, FT                                                                                                | 15.58          | HALF SIDING WIDTH, FT                                                                                              | 1.00                   |
| DEPTH STA O, FT                                                                                          | 37.56          | BOT RAKE, FT RAISED DECK HT, FT RAISED DECK FWD LIM, STA RAISED DECK AFT LIM, STA BARE HULL DISPL, LTON            | 0.00                   |
| DEPTH STA 3, FT                                                                                          | 34.42          | RAISED DECK HT, FT                                                                                                 | 0.00                   |
| DEPTH STA 10, FT                                                                                         | 30.00          | RAISED DECK FWD LIM, STA                                                                                           |                        |
| DEPTH STA 20, FT                                                                                         | 30.76          | RAISED DECK AFT LIM, STA                                                                                           |                        |
| FREEBOARD @ STA 3, FT                                                                                    | 18.84          | BARE HULL DISPL, LTON                                                                                              | 3911.60                |
| STABILITY BEAM, FT                                                                                       | 49.70          | AREA BEAM, FT                                                                                                      | 50.13                  |
| BARE HULL DATA ON                                                                                        | LWL            | STABILITY DATA ON L                                                                                                | WL                     |
| I CTH ON MI TO                                                                                           | 320 70         | KB, FT  KB, FT  BMT, FT  KG, FT  FREE SURF COR, FT  SERV LIFE KG ALW, FT  GMT, FT  GML, FT  GMT/B AVAIL  GMT/B REQ |                        |
| PEAM PT                                                                                                  | 3/9./9         | KB, FT                                                                                                             | 9.31                   |
| DDAFT FT                                                                                                 | 50.94          | BMT, FT                                                                                                            | 16.87                  |
| FREEROAPH 6 CTA 3 FT                                                                                     | 10.12          | KG, FT                                                                                                             | 19.52                  |
| PRISMATIC COFF                                                                                           | 19.30          | FREE SURF COR, FT                                                                                                  | 0.10                   |
| MAX SECTION COEF                                                                                         | 0.304          | SERV LIFE KG ALW, FT                                                                                               | 0.50                   |
| WATERPLANE COEF                                                                                          | 0.790          | CMT PT                                                                                                             | 6.06                   |
| WATERPLANE AREA, FT2                                                                                     | 14110 88       | CMI PT                                                                                                             | 6.06                   |
| WETTED SURFACE, FT2                                                                                      | 18716 17       | CMT/P AVATI                                                                                                        | 0 110                  |
| MECCES CONTINUE, 112                                                                                     | 10/10.1/       | CMT/B DEO                                                                                                          | 0.119                  |
| BARE HULL DISPL, LTON                                                                                    | 3726.75        | GHI/B KEQ                                                                                                          | 0.100                  |
| APPENDAGE DISPL, LTON                                                                                    | 86.61          |                                                                                                                    |                        |
| BARE HULL DISPL, LTON<br>APPENDAGE DISPL, LTON<br>FULL LOAD WT, LTON                                     | 3813.36        |                                                                                                                    |                        |
| PRINTED REPORT NO. 2 - H                                                                                 |                |                                                                                                                    |                        |
| STATION NO. 1, AT $X = -$                                                                                | 18.292 FT      |                                                                                                                    |                        |
| POINT HALF BEAM, FT                                                                                      | WATERLINE F    | T                                                                                                                  |                        |
| 1 0.000                                                                                                  | 38.500         |                                                                                                                    |                        |
| 2 0.328                                                                                                  | 38.558         |                                                                                                                    |                        |
| 1 0.000<br>2 0.328<br>3 0.761                                                                            | 38.616         |                                                                                                                    |                        |
| 4 1 202                                                                                                  | 20 674         |                                                                                                                    |                        |

38.674 38.732

0.761 1.203 1.424

4 5

| STATION POINT 1 2 3 4 5 STATION POINT 1                           | HALF   | BEAM, FT<br>0.000<br>1.197<br>3.303<br>5.770<br>7.923<br>, AT X =                                                 | -9.146 FT WATERLINE,FT 26.746 29.594 32.442 35.290 38.138 0.000 FT WATERLINE,FT 15.581                                 |
|-------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5<br>STATION<br>POINT                              |        | 1.447<br>3.875<br>7.000<br>10.410<br>, AT X = BEAM,FT                                                             | 21.076<br>26.572<br>32.068<br>37.564<br>6.537 FT<br>WATERLINE,FT                                                       |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 |        | 0.000<br>0.005<br>0.050<br>0.173<br>0.381<br>0.633<br>0.845<br>0.938<br>0.902<br>0.862<br>1.121<br>2.646<br>5.176 | 4.563<br>4.574<br>4.652<br>4.861<br>5.269<br>5.941<br>6.943<br>8.342<br>10.204<br>12.595<br>15.581<br>20.977<br>26.373 |
| 14<br>15<br>STATION<br>POINT<br>1<br>2<br>3<br>4<br>5<br>6<br>7   | NO. 5, | 8.387<br>1.953<br>AT X =<br>BEAM,FT<br>0.000<br>0.018<br>0.100<br>0.245<br>0.447<br>0.675<br>0.884<br>1.044       | 31.769<br>37.166<br>13.074 FT<br>WATERLINE,FT<br>0.000<br>0.016<br>0.125<br>0.421<br>0.997<br>1.948<br>3.365<br>5.344  |
| 9<br>10<br>11<br>12<br>13<br>14<br>15                             |        | 1.187<br>1.454<br>2.133<br>3.833<br>6.448<br>9.724<br>3.407                                                       | 7.977<br>11.358<br>15.581<br>20.880<br>26.179<br>31.478<br>36.777                                                      |
| POINT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                         | HALF   | AT X = BEAM,FT 0.753 0.779 0.890 1.075 1.332 1.660 2.059 2.541 3.152 3.993 5.236 7.279 0.039 3.381 7.170          | 32.191 FT                                                                                                              |

| STATION<br>POINT<br>1 | NO. 7, AT X = HALF BEAM, FT 1.000 | 51.309 FT<br>WATERLINE,FT<br>0.000 |
|-----------------------|-----------------------------------|------------------------------------|
| 2 3                   | 1.039<br>1.215                    | 0.016<br>0.125                     |
| 4                     | 1.534                             | 0.421                              |
| 5<br>6                | 2.012<br>2.659                    | 0.997<br>1.948                     |
| 7<br>8                | 3.472<br>4.442                    | 3.365<br>5.344                     |
| 9                     | 5.576                             | 7.977                              |
| 10<br>11              | 6.912<br>8.526                    | 11.358<br>15.581                   |
| 12<br>13              | 10.689<br>13.438                  | 20.361<br>25.141                   |
| 14                    | 16.661                            | 29.921                             |
| 15<br>STATION         | 20.246 NO. 8, AT X =              | 34.701<br>70.427 FT                |
| POINT<br>1            | HALF BEAM, FT<br>1.000            | WATERLINE, FT 0.000                |
| 2                     | 1.059                             | 0.016                              |
| 3<br>4                | 1.338<br>1.874                    | 0.125<br>0.421                     |
| 5<br>6                | 2.704<br>3.827                    | 0.997<br>1.948                     |
| 7                     | 5.198                             | 3.365                              |
| 8<br>9                | 6.740<br>8.381                    | 5.344<br>7.977                     |
| 10<br>11              | 10.089<br>11.879                  | 11.358<br>15.581                   |
| 12<br>13              | 13.977<br>16.572                  | 20.133                             |
| 14                    | 19.523                            | 24.685<br>29.237                   |
| 15<br>STATION         | NO. $9$ , AT $X =$                | 33.790<br>89.544 FT                |
| POINT<br>1            | HALF BEAM, FT<br>1.000            | WATERLINE, FT                      |
| 2                     | 1.090                             | 0.000<br>0.016                     |
| 3<br>4                | 1.514<br>2.332                    | 0.125<br>0.421                     |
| 5<br>6                | 3.590<br>5.263                    | 0.997<br>1.948                     |
| 7<br>8                | 7.235                             | 3.365                              |
| 9                     | 9.333<br>11.396                   | 5.344<br>7.977                     |
| 10<br>11              | 13.327<br>15.122                  | 11.358<br>15.581                   |
| 12<br>13              | 17.019                            | 19.926                             |
| 14                    | 19.344<br>21.917                  | 24.271<br>28.617                   |
| 15<br>STATION         | 24.563 NO. 10, AT X =             | 32.962<br>108.662 FT               |
| POINT<br>1            | HALF BEAM, FT                     | WATERLINE, FT                      |
| 2                     | 1.000<br>1.136                    | 0.000<br>0.016                     |
| 3<br>4                | 1.761<br>2.929                    | 0.125<br>0.421                     |
| 5<br>6                | 4.673<br>6.927                    | 0.997                              |
| 7                     | 9.487                             | 1.948<br>3.365                     |
| 8<br>9                | 12.072<br>14.430                  | 5.344<br>7.977                     |
| 10<br>11              | 16.425<br>18.083                  | 11.358<br>15.581                   |
| 12                    | 19.699                            | 19.740                             |

| 13<br>14<br>15<br>STATION<br>POINT<br>1<br>2<br>3<br>4<br>5<br>6                | 21.676<br>23.815<br>25.916<br>NO. 11, AT X =<br>HALF BEAM,FT<br>1.000<br>1.199<br>2.078<br>3.644<br>5.894<br>8.703                                |                                                                                                                                           |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>STATION<br>POINT             | 11.778<br>14.740<br>17.260<br>19.190<br>20.624<br>21.929<br>23.525<br>25.217<br>26.808<br>NO. 12, AT X =<br>HALF BEAM,FT                          | 3.365<br>5.344<br>7.977<br>11.358<br>15.581<br>19.576<br>23.570<br>27.565<br>31.560<br>146.897 FT<br>WATERLINE,FT                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13               | 1.000<br>1.265<br>2.402<br>4.355<br>7.070<br>10.365<br>13.864<br>17.099<br>19.684<br>21.475<br>22.655<br>23.660<br>24.880<br>26.148               | 0.000<br>0.016<br>0.125<br>0.421<br>0.997<br>1.948<br>3.365<br>5.344<br>7.977<br>11.358<br>15.581<br>19.432<br>23.283<br>27.135           |
| 15<br>STATION<br>POINT<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 27.294 NO. 13, AT X = HALF BEAM, FT 1.000 1.305 2.610 4.838 7.913 11.606 15.461 18.922 21.544 23.191 24.142 24.886                                |                                                                                                                                           |
| 13<br>14<br>15<br>STATION<br>POINT<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 25.760<br>26.646<br>27.430<br>NO. 14, AT X =<br>HALF BEAM,FT<br>1.000<br>1.311<br>2.660<br>4.999<br>8.267<br>12.210<br>16.321<br>19.973<br>22.671 | 23.038<br>26.767<br>30.496<br>185.132 FT<br>WATERLINE,FT<br>0.000<br>0.016<br>0.125<br>0.421<br>0.997<br>1.948<br>3.365<br>5.344<br>7.977 |

| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>11<br>12<br>13<br>14<br>15<br>STATION<br>POINT<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 24.269<br>25.097<br>25.664<br>26.280<br>26.888<br>27.430<br>NO. 15, AT X =<br>HALF BEAM,FT<br>1.000<br>1.310<br>2.650<br>4.970<br>8.210<br>12.137<br>16.273<br>20.018<br>22.875<br>24.653<br>25.569<br>26.062 |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                            | 26.534                                                                                                                                                                                                        |                      |
| STATION NO. 16, AT X = POINT HALF BEAM, FT 1.000         WATERLINE, FT 1.000         WATERLINE, FT 0.259           2 1.260         0.275         3         2.422         0.382           4 4.522         0.673         1.240         6         1.240           6 11.359         2.174         7         15.476         3.569         8         19.339         5.514         9         22.439         8.104         10         24.507         11.428         11         25.604         15.581         12         26.112         19.061         13         26.569         22.542         14         27.000         26.022         25.503         29.503         STATION NO. 17, AT X = 248.188 FT         WATERLINE, FT         1         1.000         20.022         25.502         29.503         29.503         STATION NO. 17, AT X = 248.188 FT         WATERLINE, FT         1         1.000         2.002         2.542         14         27.000         26.022         2.542         14         27.000         26.022         2.542         14         27.000         26.022         2.542         14         27.000         26.022         2.542         14         2.002         1.090         1.090         1.090         1.090         1.090         1.090         1.090         1.090 </td <td></td> <td></td> <td></td> |                                                                                                               |                                                                                                                                                                                                               |                      |
| 1 1.000 0.259 2 1.260 0.275 3 2.422 0.382 4 4.522 0.673 5 7.563 1.240 6 11.359 2.174 7 15.476 3.569 8 19.339 5.514 9 22.439 8.104 10 24.507 11.428 11 25.604 15.581 12 26.112 19.061 13 26.569 22.542 14 27.000 26.022 15 27.430 29.503  STATION NO. 17, AT X = 248.188 FT  POINT HALF BEAM,FT WATERLINE,FT 1 1.000 1.090 2 1.161 1.104 3 1.993 1.206 4 3.751 1.481 5 6.562 2.017 6 10.285 2.901 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT  POINT HALF BEAM,FT WATERLINE,FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |                                                                                                                                                                                                               | 226.219 FT           |
| 2 1.260 0.275 3 2.422 0.382 4 4.522 0.673 5 7.563 1.240 6 11.359 2.174 7 15.476 3.569 8 19.339 5.514 9 22.439 8.104 10 24.507 11.428 11 25.604 15.581 12 26.112 19.061 13 26.569 22.542 14 27.000 26.022 15 27.430 29.503  STATION NO. 17, AT X = 248.188 FT  POINT HALF BEAM,FT WATERLINE,FT 1 1.000 1.090 2 1.161 1.104 3 1.993 1.206 4 3.751 1.481 5 6.562 2.017 6 10.285 2.901 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT  POINT HALF BEAM,FT WATERLINE,FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               |                                                                                                                                                                                                               |                      |
| 4 4.522 0.673 5 7.563 1.240 6 11.359 2.174 7 15.476 3.569 8 19.339 5.514 9 22.439 8.104 10 24.507 11.428 11 25.604 15.581 12 26.112 19.061 13 26.569 22.542 14 27.000 26.022 15 27.430 29.503  STATION NO. 17, AT X = 248.188 FT  POINT HALF BEAM,FT WATERLINE,FT 1 1.000 1.090 2 1.161 1.104 3 1.993 1.206 4 3.751 1.481 5 6.562 2.017 6 10.285 2.901 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT  POINT HALF BEAM,FT WATERLINE,FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.6624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                                                                                                                                                                                                               |                      |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                             | 2.422                                                                                                                                                                                                         | 0.382                |
| 6 11.359 2.174 7 15.476 3.569 8 19.339 5.514 9 22.439 8.104 10 24.507 11.428 11 25.604 15.581 12 26.112 19.061 13 26.569 22.542 14 27.000 26.022 15 27.430 29.503  STATION NO. 17, AT X = 248.188 FT POINT HALF BEAM,FT WATERLINE,FT 1 1.000 1.090 2 1.161 1.104 3 1.993 1.206 4 3.751 1.481 5 6.562 2.017 6 10.285 2.901 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT POINT HALF BEAM,FT WATERLINE,FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               |                                                                                                                                                                                                               |                      |
| 8 19.339 5.514 9 22.439 8.104 10 24.507 11.428 11 25.604 15.581 12 26.112 19.061 13 26.569 22.542 14 27.000 26.022 15 27.430 29.503 STATION NO. 17, AT X = 248.188 FT POINT HALF BEAM,FT WATERLINE,FT 1 1.000 1.090 2 1.161 1.104 3 1.993 1.206 4 3.751 1.481 5 6.562 2.017 6 10.285 2.901 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348 STATION NO. 18, AT X = 270.156 FT POINT HALF BEAM,FT WATERLINE,FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                             |                                                                                                                                                                                                               |                      |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               |                                                                                                                                                                                                               | 3.569                |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |                                                                                                                                                                                                               |                      |
| 12 26.112 19.061 13 26.569 22.542 14 27.000 26.022 15 27.430 29.503  STATION NO. 17, AT X = 248.188 FT POINT HALF BEAM,FT WATERLINE,FT 1 1.000 1.090 2 1.161 1.104 3 1.993 1.206 4 3.751 1.481 5 6.562 2.017 6 10.285 2.901 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT POINT HALF BEAM,FT WATERLINE,FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                            | 24.507                                                                                                                                                                                                        | 11.428               |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |                                                                                                                                                                                                               |                      |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                            |                                                                                                                                                                                                               |                      |
| STATION NO. 17, AT X = 248.188 FT         POINT HALF BEAM, FT       WATERLINE, FT         1       1.000       1.090         2       1.161       1.104         3       1.993       1.206         4       3.751       1.481         5       6.562       2.017         6       10.285       2.901         7       14.469       4.220         8       18.488       6.060         9       21.767       8.509         10       23.992       11.654         11       25.196       15.581         12       25.812       19.023         13       26.398       22.464         14       26.942       25.906         15       27.430       29.348         STATION NO. 18, AT X = 270.156 FT       POINT HALF BEAM, FT       WATERLINE, FT         1       1.000       2.520         2       1.102       2.533         3       1.723       2.624         4       3.221       2.872         5       5.788       3.356                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                               |                      |
| POINT HALF BEAM, FT 1.000 1.090 2 1.161 1.104 3 1.993 1.206 4 3.751 1.481 5 6.562 2.017 6 10.285 2.901 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT  POINT HALF BEAM, FT WATERLINE, FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                                                                                                                                                                                                               | 29.503<br>248.188 FT |
| 2 1.161 1.104 3 1.993 1.206 4 3.751 1.481 5 6.562 2.017 6 10.285 2.901 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT POINT HALF BEAM, FT WATERLINE, FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | POINT                                                                                                         | HALF BEAM, FT                                                                                                                                                                                                 | WATERLINE, FT        |
| 3 1.993 1.206 4 3.751 1.481 5 6.562 2.017 6 10.285 2.901 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT POINT HALF BEAM, FT WATERLINE, FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                                                                               |                      |
| 4 3.751 1.481 5 6.562 2.017 6 10.285 2.901 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT POINT HALF BEAM, FT WATERLINE, FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                             |                                                                                                                                                                                                               |                      |
| 6 10.285 2.901 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT POINT HALF BEAM, FT WATERLINE, FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 3.751                                                                                                                                                                                                         |                      |
| 7 14.469 4.220 8 18.488 6.060 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT POINT HALF BEAM, FT WATERLINE, FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>6                                                                                                        |                                                                                                                                                                                                               |                      |
| 9 21.767 8.509 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT POINT HALF BEAM,FT WATERLINE,FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                             | 14.469                                                                                                                                                                                                        |                      |
| 10 23.992 11.654 11 25.196 15.581 12 25.812 19.023 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT POINT HALF BEAM,FT WATERLINE,FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                                                                                                                                                                                                               |                      |
| 11 25.196 15.581<br>12 25.812 19.023<br>13 26.398 22.464<br>14 26.942 25.906<br>15 27.430 29.348<br>STATION NO. 18, AT X = 270.156 FT<br>POINT HALF BEAM, FT WATERLINE, FT<br>1 1.000 2.520<br>2 1.102 2.533<br>3 1.723 2.624<br>4 3.221 2.872<br>5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               |                                                                                                                                                                                                               |                      |
| 13 26.398 22.464 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT POINT HALF BEAM,FT WATERLINE,FT 1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |                                                                                                                                                                                                               | 15.581               |
| 14 26.942 25.906 15 27.430 29.348  STATION NO. 18, AT X = 270.156 FT  POINT HALF BEAM, FT WATERLINE, FT  1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                                                                                                                                                                                                               |                      |
| STATION NO. 18, AT X = 270.156 FT         POINT HALF BEAM,FT WATERLINE,FT         1       1.000       2.520         2       1.102       2.533         3       1.723       2.624         4       3.221       2.872         5       5.788       3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                            |                                                                                                                                                                                                               |                      |
| POINT HALF BEAM, FT WATERLINE, FT  1 1.000 2.520 2 1.102 2.533 3 1.723 2.624 4 3.221 2.872 5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                                                                                                                                                               |                      |
| 1 1.000 2.520<br>2 1.102 2.533<br>3 1.723 2.624<br>4 3.221 2.872<br>5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               |                                                                                                                                                                                                               |                      |
| 3 1.723 2.624<br>4 3.221 2.872<br>5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                             | 1.000                                                                                                                                                                                                         | 2.520                |
| 4 3.221 2.872<br>5 5.788 3.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2<br>3                                                                                                        |                                                                                                                                                                                                               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                             | 3.221                                                                                                                                                                                                         | 2.872                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               |                                                                                                                                                                                                               |                      |

| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>STATION<br>POINT | 13.397<br>17.403<br>20.756<br>23.109<br>24.423<br>25.217<br>26.037<br>26.791<br>27.390<br>NO. 19, AT X =<br>HALF BEAM,FT<br>1.000 |                                                                                                                         |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14  | 1.069<br>1.559<br>2.852<br>5.162<br>8.424<br>12.270<br>16.141<br>19.484<br>21.923<br>23.318<br>24.303<br>25.335<br>26.273         | 4.503<br>4.580<br>4.791<br>5.201<br>5.878<br>6.887<br>8.295<br>10.169<br>12.575<br>15.581<br>19.029<br>22.477<br>25.925 |
| 15<br>STATION                                                       | 26.978 NO. 20, AT X =                                                                                                             | 29.374                                                                                                                  |
| POINT                                                               | HALF BEAM, FT                                                                                                                     | WATERLINE, FT                                                                                                           |
| 1<br>2                                                              | 1.000<br>1.050                                                                                                                    | 6.865<br>6.874                                                                                                          |
| 3                                                                   | 1.446                                                                                                                             | 6.935                                                                                                                   |
| <b>4</b><br>5                                                       | 2.557<br>4.596                                                                                                                    | 7.100<br>7.423                                                                                                          |
| 6                                                                   | 7.533                                                                                                                             | 7.955                                                                                                                   |
| 7<br>8                                                              | 11.069<br>14.723                                                                                                                  | 8.748<br>9.854                                                                                                          |
| 9                                                                   | 17.987                                                                                                                            | 11.327                                                                                                                  |
| 10<br>11                                                            | 20.458<br>21.874                                                                                                                  | 13.219<br>15.581                                                                                                        |
| 12                                                                  | 23.057                                                                                                                            | 19.074                                                                                                                  |
| 13<br>14                                                            | 24.275<br>25.366                                                                                                                  | 22.567<br>26.060                                                                                                        |
| 15                                                                  | 26.170                                                                                                                            | 29.553                                                                                                                  |
| STATION<br>POINT                                                    | NO. 21, AT X = HALF BEAM, FT                                                                                                      |                                                                                                                         |
| 1                                                                   | 1.000                                                                                                                             | 9.442                                                                                                                   |
| 2<br>3<br>4                                                         | 1.037<br>1.358                                                                                                                    | 9.449<br>9.492                                                                                                          |
| 4                                                                   | 2.293                                                                                                                             | 9.608                                                                                                                   |
| 5<br>6                                                              | 4.044<br>6.614                                                                                                                    | 9.835<br>10.210                                                                                                         |
| 7                                                                   | 9.780                                                                                                                             | 10.768                                                                                                                  |
| 8<br>9                                                              | 13.149<br>16.268                                                                                                                  | 11.548<br>12.585                                                                                                        |
| 10                                                                  | 18.707                                                                                                                            | 13.917                                                                                                                  |
| 11<br>12                                                            | 20.069<br>21.470                                                                                                                  | 15.581<br>19.146                                                                                                        |
| 13                                                                  | 22.874                                                                                                                            | 22.712                                                                                                                  |
| 14<br>15                                                            | 24.115<br>25.025                                                                                                                  | 26.278<br>29.844                                                                                                        |
| STATION                                                             | NO. 22, AT $X =$                                                                                                                  | 358.031 FT                                                                                                              |
| POINT<br>1                                                          | HALF BEAM, FT<br>1.000                                                                                                            | WATERLINE, FT 12.012                                                                                                    |
| 2 3                                                                 | 1.028                                                                                                                             | 12.016                                                                                                                  |
| 3                                                                   | 1.285                                                                                                                             | 12.041                                                                                                                  |

| 4       | 2.046            | 12.108        |
|---------|------------------|---------------|
| 5       | 3.497            | 12.241        |
| 6       | 5.668            | 12.458        |
| 7       | 8.416            | 12.783        |
| 8       | 11.445           | 13.236        |
| 9       | 14.358           | 13.839        |
| 10      | 16.699           | 14.613        |
| 11      | 17.931           | 15.581        |
| 12      | 19.575           | 19.247        |
| 13      | 21.177           | 22.914        |
| 14      | 22.574           | 26.580        |
| 15      | 23.602           | 30.247        |
| STATION | NO. 23, AT $X =$ |               |
| POINT   | HALF BEAM, FT    | WATERLINE, FT |
| 1       | 1.000            | •             |
|         |                  | 14.387        |
| 2<br>3  | 1.024            | 14.388        |
| 4       | 1.231            | 14.396        |
| 4       | 1.834            | 14.419        |
| 5       | 2.988            | 14.463        |
| 6       | 4.753            | 14.536        |
| 7       | 7.066            | 14.645        |
| 8       | 9.727            | 14.796        |
| 9       | 12.401           | 14.998        |
| 10      | 14.600           | 15.257        |
| 11      | 15.646           | 15.581        |
| 12      | 17.535           | 19.375        |
| 13      | 19.303           | 23.170        |
| 14      | 20.821           | 26.965        |
| 15      | 21.961           | 30.760        |

PRINTED REPORT NO. 3 - HULL BOUNDARY CONDITIONS

HULL OFFSETS IND-GIVEN

PRINTED REPORT NO. 4 - MARGIN LINE

MARGIN LINE IND-CALC
MIN FREEBOARD MARGIN, FT 0.25

| DIST | FROM | FP | HT | ABOVE | BL |
|------|------|----|----|-------|----|
|      | FT   |    |    | FT    |    |
| -18  | 3.29 |    |    | 38.48 |    |
| -9   | 9.15 |    |    | 37.89 |    |
| (    | 0.00 |    |    | 37.31 |    |
| 6    | 5.54 |    |    | 36.92 |    |
| 13   | 3.07 |    |    | 36.53 |    |
| 32   | 2.19 |    |    | 35.45 |    |
| 51   | 1.31 |    |    | 34.45 |    |
| 70   | .43  |    |    | 33.54 |    |
| 89   | .54  |    | :  | 32.71 |    |
| 108  | 3.66 |    |    | 31.97 |    |
| 127  | .78  |    | :  | 31.31 |    |
| 146  | .90  |    |    | 30.74 |    |
| 166  | .01  |    | 3  | 30.25 |    |
| 185  | .13  |    | 2  | 29.84 |    |
| 204  | .25  |    | 2  | 29.52 |    |
| 226  | .22  |    | 2  | 29.25 |    |
| 248  | .19  |    | 2  | 29.10 |    |
| 270  | .16  |    |    | 29.06 |    |
| 292  | .13  |    | 2  | 29.12 |    |
| 314  | .09  |    |    | 29.30 |    |
| 336  | .06  |    |    | 29.59 |    |
|      | .03  |    |    | 30.00 |    |
|      | .00  |    |    | 30.51 |    |
| 700  |      |    | -  |       |    |

PRINTED REPORT NO. 5 - HULL SECTIONAL AREA CURVE

| STATION          | LOCATION, FT | AREA, FT |  |  |  |  |
|------------------|--------------|----------|--|--|--|--|
| 1                | -18.29       | 0.00     |  |  |  |  |
| 2                | -9.15        | 0.00     |  |  |  |  |
| 3                | 0.00         | 0.00     |  |  |  |  |
| 4                | 6.54         | 18.36    |  |  |  |  |
| 5                | 13.07        | 37.27    |  |  |  |  |
| 6                | 32.19        | 97.35    |  |  |  |  |
| 7                | 51.31        | 165.96   |  |  |  |  |
| 8                | 70.43        | 242.37   |  |  |  |  |
| 9                | 89.54        | 323.58   |  |  |  |  |
| 10               | 108.66       | 405.02   |  |  |  |  |
| 11               | 127.78       | 481.29   |  |  |  |  |
| 12               | 146.90       | 546.74   |  |  |  |  |
| 13               | 166.01       | 596.17   |  |  |  |  |
| 14               | 185.13       | 625.33   |  |  |  |  |
| 15               | 204.25       | 631.35   |  |  |  |  |
| 16               | 226.22       | 608.36   |  |  |  |  |
| 17               | 248.19       | 554.94   |  |  |  |  |
| 18               | 270.16       | 475.99   |  |  |  |  |
| 19               | 292.13       | 379.48   |  |  |  |  |
| 20               | 314.09       | 275.69   |  |  |  |  |
| 21               | 336.06       | 175.87   |  |  |  |  |
| 22               | 358.03       | 90.37    |  |  |  |  |
| 23               | 380.00       | 26.16    |  |  |  |  |
| C,E>RUN,HULL SUB |              |          |  |  |  |  |
| COMMAND S        |              |          |  |  |  |  |

COMMAND STRING IS:

RUN, HULL SUBDIV MODULE

ASSET/MONOSC VERSION 3.3+ - HULL SUBDIV MODULE - 2/11/95 10.57.05.

PRINTED REPORT NO. 1 - SUMMARY

HULL SUBDIV IND-CALC SHAFT SUPPORT TYPE IND-POD INNER BOT IND-PRESENT

| LBP, FT<br>DEPTH STA 10, FT | 380.00<br>30.00 | HULL AVG DECK HT, FT               | 10.57   |
|-----------------------------|-----------------|------------------------------------|---------|
| HULL VOLUME, FT3            | 387374.         | NO INTERNAL DECKS<br>NO TRANS BHDS | 2<br>13 |
| MR VOLUME, FT3              | 48700.          | NO LONG BHDS                       | 0       |
| TANKAGE VOL REQ, FT3        | 28195.          | NO MACHY RMS                       | 2       |
| EXCESS TANKAGE, FT3         | 1775.           | NO PROP SHAFTS                     | 2       |

ARR AREA LOST TANKS, FT2 32.2 HULL ARR AREA AVAIL, FT2 29531.5

PRINTED REPORT NO. 2 - TRANSVERSE BULKHEADS

HULL SUBDIV IND-CALC NO TRANS BHDS 13 TRANS BHD SPACING(/LBP) 0.077

| BULKHEAD | DISTANCE    | DISTANCE    | MR FWD  |
|----------|-------------|-------------|---------|
| NO       | FROM FP, FT | FROM FP/LBP | BHD LOC |
| =======  |             | =========   | ======= |
| 1        | 19.00       | 0.050       |         |
| 2        | 42.76       | 0.113       |         |
| 3        | 66.53       | 0.175       |         |
| 4        | 90.29       | 0.238       |         |
| 5        | 114.06      | 0.300       |         |
| 6        | 137.82      | 0.363       | MMR     |
| 7        | 172.65      | 0.454       |         |
| 8        | 201.91      | 0.531       |         |
|          |             |             |         |

| 11                                                    | 231.1<br>266.0<br>294.5<br>323.0<br>351.5                                                            | 0                              | 0.775                                                            | MMR          |                                   |       |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------|--------------|-----------------------------------|-------|
| PRINTE                                                | D REPORT NO.                                                                                         | 3 - LON                        | GITUDINAL B                                                      | ULKHEADS     |                                   |       |
| NO LON                                                | G BHDS                                                                                               |                                | 0                                                                |              |                                   |       |
| PRINTE                                                | D REPORT NO.                                                                                         | 4 - INT                        | ERNAL DECKS                                                      | AND INNER    | BOTTOM                            |       |
| HULL S                                                | UBDIV IND-CA                                                                                         | LC                             |                                                                  | INNER BOT    | IND-PRESENT                       |       |
| DEPTH                                                 | ERNAL DECKS<br>STA 10, FT<br>VG DECK HT,<br>DECK HT, FT                                              |                                | 10.57                                                            | CVK HT, FT   | CT HT, FT                         | 4.50  |
| INT<br>DECK<br>NO<br>====                             | DIST FROM BL AT .5 LBP,FT ====================================                                       | DECK<br>SHEER<br>FRAC<br>===== |                                                                  | FLAT FWD I   | OC, FT<br>OC, FT<br>LOC, FT       | 19.00 |
| 2                                                     | 12.25<br>4.50                                                                                        | 0.0                            |                                                                  |              |                                   |       |
| INT<br>DECK<br>NO                                     | AVL ARR<br>AREA<br>FT2                                                                               | AVL ARR<br>VOL<br>FT3          | USABLE<br>TANKAGE<br>FT3                                         | VOIDS<br>FT3 | ARR AREA<br>LOST TO<br>TANKS, FT2 |       |
| . 1<br>2<br>IB<br>HOLD                                | 15889.8<br>9391.9<br>4249.8                                                                          | 174243.<br>92645.<br>45361.    | 0.<br>602.<br>245.                                               | 307.         | 0.0<br>0.0<br>32.2                |       |
| TOTAL                                                 | 29531.5                                                                                              | 312250.                        | 29970.                                                           | 363.         | 32.2                              |       |
|                                                       | D REPORT NO.                                                                                         |                                |                                                                  |              |                                   |       |
|                                                       | SUPPORT TYPE                                                                                         |                                |                                                                  |              |                                   |       |
| FOREPE<br>CHAIN<br>SEWAGE<br>SHAFT<br>ADDED<br>MR AFT | AK VOID VOL, AK TANKAGE, LOCKER VOL, VOL REQ, FT ALLEY VOL, F STEER GEAR VO BHD POS, FT BOT VOL, FT3 | FT3<br>FT3<br>3<br><b>r</b> 3  | 363.<br>727.<br>1090.<br>245.<br>0.<br>4981.<br>266.00<br>17460. |              |                                   |       |

| 11111     | DIC DO     | ı voı     | , 115      | -              | 17400.         |             |                |                  |                |
|-----------|------------|-----------|------------|----------------|----------------|-------------|----------------|------------------|----------------|
| INNE      | R          | FWD       | UPR        | LGTH           | LGTH           | HT          | HT             | MR               |                |
| MR<br>VOL |            | BHD       | DECK       | AVL            | RQD            | AVL         | RQD            | VOL              | BOT            |
| NO<br>=== | TYPE       | ID<br>=== | ID<br>==== | FT<br>=====    | FT<br>=====    | FT<br>===== | FT<br>=====    | FT3              | FT3            |
| ====      | ===        |           |            |                |                |             |                |                  |                |
| 1<br>2    | MMR<br>MMR | 6<br>9    | 1          | 34.83<br>34.83 | 34.83<br>34.83 | 20.00       | 19.58<br>19.58 | 24964.<br>23737. | 3452.<br>2159. |
|           |            |           |            |                |                |             | TOTAL          | 48700.           | 5611.          |

# PRINTED REPORT NO. 6 - HULL COMPARTMENT ARRANGEABLE AREA

NUMBER OF INTERNAL DECKS -NUMBER OF TRANSVERSE BULKHEADS - 13 INNER BOTTOM INDICATOR - PRESENT

#### AREAS FOR EACH HULL COMPARTMENT:

| DECK HT, FT ABL    | 20.0   | 12.3   | 4.5    |
|--------------------|--------|--------|--------|
| COMP 1, FT2        | 283.0  |        |        |
| COMP 2, FT2        | 467.9  | 193.2  | 107.2  |
| COMP 3, FT2        | 649.4  | 372.1  | 209.3  |
| COMP 4, FT2        | 813.4  | 563.7  | 337.1  |
| COMP 5, FT2        | 955.0  | 752.0  | 484.2  |
| COMP 6, FT2        | 1069.3 | 917.6  | 633.8  |
| COMP 7, FT2        | 1711.2 | MMR    | MMR    |
| COMP 8, FT2        | 1511.7 | 1437.7 | 1084.9 |
| COMP 9, FT2        | 1532.0 | 1458.7 | 1055.4 |
| COMP 10, FT2       | 1799.6 | MMR    | MMR    |
| COMP 11, FT2       | 1419.1 | 1284.9 | 370.1  |
| COMP 12, FT2       | 1340.4 | 1136.5 |        |
| COMP 13, FT2       | 1233.2 | 833.2  |        |
| COMP 14, FT2       | 1104.6 | 442.3  |        |
| C, E>RUN, DECKHOUS |        |        |        |
| COMMAND STRING IS  | •      |        |        |

COMMAND STRING IS:

RUN, DECKHOUSE MODULE

ASSET/MONOSC VERSION 3.3+ - DECKHOUSE MODULE - 2/11/95 10.58.49.

# PRINTED REPORT NO. 1 - DECKHOUSE SUMMARY

| DKHS GEOM IND-GENERATE DKHS SIZE IND-AUTO X DKHS MTRL TYPE IND-HTS | BLAST RESIST IND-7 PSI<br>FIRE PROTECT IND-NONE                                                                                                                |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LBP, FT 380.00 BEAM, FT 51.00 AREA BEAM, FT 50.13                  | DKHS LENGTH OA, FT 188.81 DKHS MAX WIDTH, FT 54.91 DKHS HT (W/O PLTHS), FT 42.55                                                                               |
| DKHS AFT LIMIT STA 13 9                                            | OTHER ARR AREA REQ, FT2 34896.52 HULL ARR AREA AVAIL, FT2 29531.47 DKHS ARR AREA REQ, FT2 4849.69 HANGER ARR AREA REQ, FT2 0.00 PLTHS ARR AREA REQ, FT2 608.00 |
| DKHS MIN ALW BEAM, FT 20.73<br>BRIDGE L-O-S OVER BOW, FT 247.57    | DKHS ARR AREA AVAIL, FT2 10307.76<br>DKHS VOLUME, FT3 104558.43                                                                                                |

PRINTED REPORT NO. 2 - SUPERSTRUCTURE DECKHOUSES

NO OF SS DECKHOUSE BLKS 20 DKHS VOLUME, FT3 104558. DKHS ARR AREA AVAIL, FT2 10307.8

|                                                                                                                                                                                                                   |                                               | HOUSE                                                                                              | NUMBER                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| DIST FROM BOW, FT                                                                                                                                                                                                 | 1 2<br>76.00 85.94                            | 3<br>1 95.88                                                                                       | 4 5<br>105.81 115.75                                                  |
| LENGTH, FT                                                                                                                                                                                                        | 9.94 9.94                                     | 9.94                                                                                               | 9.94 9.94                                                             |
| DIST FROM CL, FT FWD/PORT/BTM AFT/PORT/BTM FWD/STBD/BTM AFT/STBD/BTM FWD/PORT/TOP AFT/PORT/TOP FWD/STBD/TOP AFT/STBD/TOP DIST ABV BASELINE FWD, FT DIST ABV BASELINE AFT, FT HEIGHT, FT VOLUME, FT3 ARR AREA, FT2 | -23.30                                        | 25.74<br>25.06<br>25.74<br>2-23.33<br>3-24.01<br>23.33<br>24.01<br>32.71<br>32.32<br>9.84<br>4893. | 24.57 25.00<br>32.32 31.97<br>31.97 31.63<br>9.84 9.84<br>5011. 5104. |
| , 112                                                                                                                                                                                                             |                                               |                                                                                                    | 490.1 499.8                                                           |
|                                                                                                                                                                                                                   | D E C K H O 6 7                               | USE NU                                                                                             | M B E R<br>9 10                                                       |
| DIST FROM BOW, FT<br>LENGTH, FT                                                                                                                                                                                   | 125.69 135.63                                 | 145.56                                                                                             | 155.50 165.44                                                         |
| DIST FROM CL, FT                                                                                                                                                                                                  | 9.94 9.94                                     | 9.94                                                                                               | 9.94 9.94                                                             |
| FWD/PORT/BTM<br>AFT/PORT/BTM<br>FWD/STBD/BTM                                                                                                                                                                      | -26.73 -27.05<br>-27.05 -27.27<br>26.73 27.05 | -27.40<br>27.27                                                                                    |                                                                       |
| AFT/STBD/BTM<br>FWD/PORT/TOP                                                                                                                                                                                      | 27.05 27.27<br>-25.00 -25.31                  | 27.40<br>-25.54                                                                                    | 27.43 27.43<br>-25.66 -25.70                                          |
| AFT/PORT/TOP<br>FWD/STBD/TOP                                                                                                                                                                                      | -25.31 -25.54                                 | -25.66                                                                                             | -25 70 -25 69                                                         |
| AFT/STBD/TOP                                                                                                                                                                                                      | 25.00 25.31<br>25.31 25.54                    | 25.54<br>25.66                                                                                     | 25.66 25.70<br>25.70 25.69<br>30.75 30.51                             |
| DIST ABV BASELINE FWD, FT<br>DIST ABV BASELINE AFT, FT                                                                                                                                                            | 31.63 31.31<br>31.31 31.02                    | 31.02<br>30.75                                                                                     | 30.75 30.51<br>30.51 30.29                                            |
| HEIGHT, FT                                                                                                                                                                                                        | 9.84 9.84                                     | 9.84                                                                                               |                                                                       |
| VOLUME, FT3<br>ARR AREA, FT2                                                                                                                                                                                      | 5172. 5220.<br>507.1 512.3                    |                                                                                                    | 9.84 9.84<br>5258. 5255.<br>517.3 517.6                               |
|                                                                                                                                                                                                                   |                                               |                                                                                                    |                                                                       |
|                                                                                                                                                                                                                   | DECKHO<br>11 12                               | 13                                                                                                 | M B E R<br>14 15                                                      |
| DIST FROM BOW, FT<br>LENGTH, FT                                                                                                                                                                                   | 175.38 185.31<br>9.94 9.94                    |                                                                                                    | 205.19 215.13<br>9.94 9.94                                            |
| DIST FROM CL, FT                                                                                                                                                                                                  |                                               |                                                                                                    |                                                                       |
| FWD/PORT/BTM<br>AFT/PORT/BTM                                                                                                                                                                                      | -27.43 -27.43<br>-27.43 -27.43                | -27.43<br>-27.43                                                                                   | -27.43 -27.43<br>-27.43 -27.43                                        |
| FWD/STBD/BTM<br>AFT/STBD/BTM                                                                                                                                                                                      | 27.43 27.43                                   | 27.43                                                                                              | 27.43 27.43                                                           |
| FWD/PORT/TOP                                                                                                                                                                                                      | <b>-25.69 -25.69</b>                          |                                                                                                    | 27.43 27.43<br>-25.69 -25.69                                          |
| AFT/PORT/TOP<br>FWD/STBD/TOP                                                                                                                                                                                      | -25.69 -25.69<br>25.69 25.69                  |                                                                                                    | -25.69 -25.69                                                         |
| AFT/STBD/TOP                                                                                                                                                                                                      | 25.69 25.69                                   | 25.69                                                                                              | 25.69 25.69                                                           |
| DIST ABV BASELINE FWD, FT<br>DIST ABV BASELINE AFT, FT                                                                                                                                                            | 30.29 30.09<br>30.09 29.91                    |                                                                                                    | 29.75 29.62<br>29.62 29.51                                            |
| HEIGHT, FT<br>VOLUME, FT3                                                                                                                                                                                         | 9.84 9.84                                     | 9.84                                                                                               | 9.84 9.84                                                             |
| ARR AREA, FT2                                                                                                                                                                                                     | 5249. 5243.<br>517.6 517.6                    | 5237.<br>517.6                                                                                     | 5231. 5225.<br>517.6 517.6                                            |
|                                                                                                                                                                                                                   | DECKHO                                        | USE NU                                                                                             | MBER                                                                  |
| DIST FROM POW PM                                                                                                                                                                                                  | 16 17                                         | 18                                                                                                 | 19 20                                                                 |
| DIST FROM BOW, FT<br>LENGTH, FT                                                                                                                                                                                   | 225.06 235.00<br>9.94 9.94                    |                                                                                                    | 254.88 76.00<br>9.94 22.65                                            |
| DIST FROM CL, FT FWD/PORT/BTM                                                                                                                                                                                     |                                               |                                                                                                    |                                                                       |
| AFT/PORT/BTM                                                                                                                                                                                                      | -27.43 -27.43<br>-27.43 -27.43                |                                                                                                    | -27.46 -15.56<br>-27.43 -17.74                                        |
| FWD/STBD/BTM                                                                                                                                                                                                      | 27.43 27.43                                   | 27.43                                                                                              | 27.46 15.56                                                           |

| AFT/STBD/BTM              | 27.43  | 27.43  | 27.46  | 27.43  | 17.74  |
|---------------------------|--------|--------|--------|--------|--------|
| FWD/PORT/TOP              | -25.69 | -25.69 | -25.69 | -25.72 | -13.83 |
| AFT/PORT/TOP              | -25.69 | -25.69 | -25.72 | -25.70 | -16.01 |
| FWD/STBD/TOP              | 25.69  | 25.69  | 25.69  | 25.72  | 13.83  |
| AFT/STBD/TOP              | 25.69  | 25.69  | 25.72  | 25.70  | 16.01  |
| DIST ABV BASELINE FWD, FT | 29.51  | 29.43  | 29.36  | 29.32  | 42.55  |
| DIST ABV BASELINE AFT, FT | 29.43  | 29.36  | 29.32  | 29.31  | 42.55  |
| HEIGHT, FT                | 9.84   | 9.84   | 9.84   | 9.84   | 9.84   |
| VOLUME, FT3               | 5219.  | 5213.  | 5210.  | 5204.  | 7038.  |
| ARR AREA, FT2             | 517.6  | 517.6  | 517.8  | 517.9  | 701.0  |
|                           |        |        |        |        |        |

PRINTED REPORT NO. 3 - DECKHOUSE STRUCTURE WEIGHT SUMMARY

DKHS MTRL TYPE IND-HTS FIRE PROTECT IND-NONE BLAST RESIST IND-7 PSI DKHS STRUCT DENSITY, LBM/FT3 4.18 HANGER VOL, FT3 0.

|            |         | WT-LTON | VCG-FT | LCG-FT |
|------------|---------|---------|--------|--------|
|            |         | ======  | =====  | =====  |
| CALCULATED | SWBS150 | 201.0   | 36.41  | 166.15 |

|       |         | VCG     |
|-------|---------|---------|
| DECK  | VOLUME  | FROM BL |
| HOUSE | FT3     | FT      |
| ===== | =====   | ======  |
| NO. 1 | 4579.   | 38.29   |
| NO. 2 | 4750.   | 37.87   |
| NO. 3 | 4893.   | 37.47   |
| NO. 4 | 5011.   | 37.10   |
| NO. 5 | 5104.   | 36.75   |
| NO. 6 | 5172.   | 36.42   |
| NO. 7 | 5220.   | 36.11   |
| NO. 8 | 5248.   | 35.82   |
| NO. 9 | 5258.   | 35.56   |
| NO.10 | 5255.   | 35.32   |
| NO.11 | 5249.   | 35.10   |
| NO.12 | 5243.   | 34.91   |
| NO.13 | 5237.   | 34.74   |
| NO.14 | 5231.   | 34.59   |
| NO.15 | 5225.   | 34.46   |
| NO.16 | 5219.   | 34.36   |
| NO.17 | 5213.   | 34.28   |
| NO.18 | 5210.   | 34.22   |
| NO.19 | 5204.   | 34.19   |
| NO.20 | 7038.   | 47.38   |
|       | 104558. | 36.41   |
|       |         |         |

C,E>RUN,HULL STRUC COMMAND STRING IS:

RUN, HULL STRUCT MODULE

ASSET/MONOSC VERSION 3.3+ - HULL STRUCT MODULE - 2/11/95 10.59.21.

PRINTED REPORT NO. 1 - SUMMARY

INNER BOT IND-PRESENT STIFFENER SHAPE IND-CALC HULL LOADS IND-CALC

|                         | HULL STRENGTH | AND STRESS                |       |
|-------------------------|---------------|---------------------------|-------|
| HOGGING BM, FT-LTON     | 65606.        | PRIM STRESS KEEL-HOG, KSI | 15.46 |
| SAGGING BM, FT-LTON     | 54696.        | PRIM STRESS KEEL-SAG, KSI | 12.89 |
| MIDSHIP MOI, FT2-IN2    | 139566.       | PRIM STRESS DECK-HOG, KSI | 16.14 |
| DIST N.A. TO KEEL, FT   | 14.68         | PRIM STRESS DECK-SAG, KSI | 13.46 |
| DIST N.A. TO DECK, FT   | 15.33         | HULL MARGIN STRESS, KSI   | 2.24  |
| SEC MOD TO KEEL, FT-IN2 | 9508.         | SEC MOD TO DECK, FT-IN2   | 9105. |

| HIII.T. | STRUCTURE | COMPONENTS |
|---------|-----------|------------|
| null    | SIRUCTURE | COMPONENTS |

|                   |            | NO OF<br>SEGMENT | NO      |         |
|-------------------|------------|------------------|---------|---------|
| WET. DECK         | HTS        | 4                | 1       |         |
| SIDE SHELL        | HTS        |                  | 1       |         |
| BOTTOM SHELL      |            |                  | 1       |         |
| INNER BOTTOM      |            | 5                | 1       |         |
| INT. DECK         |            | 4                | 2       |         |
| STRINGER, SHEER   | HTS        | 1                | 1       |         |
| LONG BULKHEAD     |            |                  | 0       |         |
| TRANS BULKHEAD    | HTS        |                  | 13      |         |
| HULL STRUCTURE WE | GHT        |                  |         |         |
| SWBS COMPONENT    |            | WEIGH            | T, LTON | VCG, FT |
| 100 HULL STRUCTUR | Æ          | 75               | 9.4     | 18.71   |
| 110 SHELL+SUPE    | PORT       |                  |         | 13.95   |
| 120 HULL STRUC    | CTURAL BHD |                  | 78.0    | 18.79   |
| 130 HULL DECKS    | S          |                  | 260.9   | 26.76   |
| 140 HULL PLATE    | FORM/FLATS |                  | 58.5    | 12.22   |

# PRINTED REPORT NO. 2 - HULL STRUCTURES WEIGHT

| SWBS  | COMPONENT              | WT-LTON   | VCG-FT   |
|-------|------------------------|-----------|----------|
| ====  | ========               | ========= | ======== |
|       | L STRUCTURES           | 759.4     | 18.71    |
|       | HELL + SUPPORTS        | 362.1     | 13.95    |
|       | PLATING                | 218.4     |          |
|       | INNER BOTTOM           | 36.4      | 4.50     |
|       | STANCHIONS             | 5.1       | 15.00    |
|       | LONG FRAMING           | 64.2      | 1.49     |
|       | TRANS FRAMING          | 38.0      | 16.26    |
|       | ULL STRUCTURAL BULKHDS | 78.0      | 18.79    |
|       | LONG BULKHDS           |           |          |
|       | TRANS BULKHDS          | 66.6      | 18.79    |
| 123   | TRUNKS + ENCLOSURES    |           | 18.79    |
| 130 H | ULL DECKS              |           | 26.76    |
|       | MAIN DECK              | 153.3     |          |
| 132   | 2ND DECK               |           | 20.66    |
| 133   | 3RD DECK               |           |          |
| 134   | 4TH DECK               |           |          |
| 135   | 5TH DECK+DECKS BELOW   |           |          |
| 136   | 01 HULL DECK           |           |          |
| 140 H | ULL PLATFORMS/FLATS    | 58.5      | 12.22    |
|       | 1ST PLATFORM           | 58.5      |          |
| 142   | 2ND PLATFORM           |           | 12.22    |
| 143   | 3RD PLATFORM           |           |          |
| 144   | 4TH PLATFORM           |           |          |
| 145   | 5TH PLAT+PLATS BELOW   |           |          |
|       |                        |           |          |

# \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

PRINTED REPORT NO. 3 - WEATHER DECK

DECK MTRL TYPE-HTS STRINGER PLATE MTRL TYPE-HTS

|                                 | SHELL   | STRINGER PLATE |
|---------------------------------|---------|----------------|
| MODULUS OF ELASTICITY, KSI      | 29600.0 | 29600.0        |
| DENSITY, LBM/FT3                | 489.02  | 489.02         |
| YIELD STRENGTH, KSI             | 45.00   | 45.00          |
| MAX PRIMARY STRENGTH, KSI       | 21.28   | 21.28          |
| ALLOWABLE WORKING STRENGTH, KSI | 38.00   | 38 00          |

| TSSE Capst   | tone Design P            | roject              |                     |                |                                                      |           | CPCX    |
|--------------|--------------------------|---------------------|---------------------|----------------|------------------------------------------------------|-----------|---------|
| HIII. I OA   | DS IND-CAI               | · C                 |                     |                |                                                      |           |         |
| TODE LOA     | DS IND-CAL               |                     | MAX                 | MTN            |                                                      |           |         |
| STIFFEN      | ER SPACING               | 2. TN               | 24 00               | 34 UU<br>WIN   |                                                      |           |         |
| STRINGE      | ER SPACING<br>R PLATE WI | DTH, FT             | 6.00                | 24.00          |                                                      |           |         |
| SEGMENT      | GEOMETRY                 |                     |                     |                |                                                      |           |         |
| _            | NOI                      | DE COORD,           | FT                  |                | SCND. LO                                             | DAD, FT   |         |
| SEG          | YIB                      | ZIB                 | YOB                 | ZOB            | HEAD1                                                | HEAD2     |         |
| 1            | 0.00                     | 30.01               | 6.86                | 30.01          | 8.25                                                 |           |         |
| 2            | 6.86                     | 30.01               | 13.72               | 30.01          | 8.25                                                 |           |         |
| 3<br>4       | 20.57                    | 30.01<br>30.01      | 20.57<br>27.43      | 30.01<br>30.01 | 8.25<br>8.25<br>8.25<br>8.25<br>8.25                 |           |         |
|              | SCANTLING                |                     |                     |                | 3,723                                                |           |         |
|              |                          |                     | CANTLINGS           | OF STIFFE      | NED PLATES-                                          |           |         |
|              |                          | STIFFENER           | RS                  |                | CATLG NO.OR                                          | PLATE     | SPACING |
| SEG          |                          | -INXINXIN/          | /IN                 |                | NO STIFE                                             | TK, IN    | IN      |
| 1 *R         | 3.745X                   | 3.940X              | 0.170/              | 0.205          | 1. 3                                                 | 0.3438    | 20.5    |
| 2 *R         | 3.745X                   | 3.940X              | 0.170/              | 0.205          | 1. 3                                                 | 0.3438    | 20.5    |
| 3 *R         | 3.745X                   | 3.940X              | 0.170/              | 0.205          | 1. 3                                                 | 0.3438    | 20.5    |
| 4 *R<br>NOTE | 3.745X<br>: *R STAND     | 3.940X<br>S FOR ROT | 0.170/<br>LED SHAPE | 0.205          | CATLG NO.OI<br>NO STIFI<br>1. 3<br>1. 3<br>1. 3      | 0.3438    | 20.5    |
|              |                          |                     |                     | •              |                                                      |           |         |
|              | PROPERTIE                | DDOT                | PERTIES OF          | STIFFENE       | D PLATES                                             |           |         |
|              | AREA-                    | N                   | I.A. TO             | SEC            | MOD                                                  |           | SMEA    |
|              | TOTAL                    | SHEAR               | PLATE               | PLATE          | FLANGE                                               | WT/FT     | RATI    |
| SEG          | IN2                      | IN2                 | IN                  | IN3            | IN3                                                  | LBF/FT    |         |
| 1            | 8.51                     | 0.73                | 0.71                | 19.92          | 3.91                                                 | 28.91     | 0.2     |
| 2            | 8.51                     | 0.73                | 0.71                | 19.92          | 3.91                                                 | 28.91     | 0.2     |
| 3            | 8.51                     | 0.73                | 0.71                | 19.92          | MOD<br>FLANGE<br>IN3<br>3.91<br>3.91<br>3.91<br>3.91 | 28.91     | 0.2     |
|              |                          |                     |                     | 19.92          | 3.91                                                 | 28.91     | 0.20    |
| PRINTED      | REPORT NO                | . 4 - SID           | E SHELL             |                |                                                      |           |         |
|              | ELL MTRL T               |                     |                     |                |                                                      |           |         |
|              |                          |                     |                     | SHELL          | SHEER S                                              | TRAKE     |         |
| MODULI       | US OF ELAS               | TICITY, K           | SI                  | 29600.0        | 29600                                                | 0.0       |         |
| DENSI        | TY, LBM/FT               | 3                   |                     | 489.02         | 29600<br>489.                                        | 02        |         |
| TIPLD        | STRENGTH,                | KSI                 |                     | 45.00          | 45.                                                  | 00        |         |
| MAX PI       | RIMARY STR               | ENGTH, KS           | I                   | 21.28          | 21.                                                  | 28        |         |
|              | ABLE WORKI               |                     | TH, KSI             | 38.00          | 38.                                                  | 00        |         |
| HOLL LOY     | ADS IND-CA               | LC                  |                     |                |                                                      |           |         |
| COT BEENI    | ED CDACTNC               | TN                  | MAX                 |                |                                                      |           |         |
| SHEER ST     | ER SPACING<br>IRAKE WIDT | H, FT               | 6.00                | 24.00          |                                                      |           |         |
|              |                          | ,                   |                     |                |                                                      |           |         |
|              | GEOMETRY                 | E COORD.            | FT                  |                | scnd. Lo                                             | ב-יוים ממ |         |
| SEG          | YUPR                     | ZUPR                | YT.WR               | zt.wr          | HEAD1                                                | HEAD2     |         |
| 1            | 27.43                    | 30.01               | 26.54               | 24.01          | 7.81                                                 | menu 2    |         |
| 2            | 27.43<br>26.54<br>25.90  | 24.01               | 25.90               | 20.00          | 12.00                                                |           |         |
| 3            | 25.90                    | 20.00               | 24.56               | 12.25          | 17.89                                                |           |         |
| 4            | 24.56                    | 12.25               | 20.77               | 6.00           | 25.20                                                |           |         |
| SEGMENT      | SCANTLING                |                     |                     |                |                                                      |           |         |
|              |                          | SC                  | ANTLINGS            | OF STIFFE      | NED PLATES-                                          |           |         |
| CEC          |                          | DTIFFENER           | 5<br>TN             |                | CATLG NO.OF NO STIFF 1. 4                            | PLATE     | SPACING |
| 1 *P         | 3 7/5V                   | 3 ONUA<br>THYTHYTH  | 0 170/              | 0.205          | NO STIFF                                             | TK, IN    | IN 20   |
| 2 *R         | 3.745X                   | 3.940x              | 0.170/              | 0.205          | 1. 4                                                 | 0.2500    | 16.20   |
|              | O . / TJA                | こ・フェロム              | 0.1/0/              | 0.200          | 4.                                                   | 0.2300    | 10.24   |

|      | II        |        |        |       |    |   |        |       |
|------|-----------|--------|--------|-------|----|---|--------|-------|
| 1 *R | 3.745X    | 3.940X | 0.170/ | 0.205 | 1. | 4 | 0.2500 | 18.20 |
| 2 *R | 3.745X    | 3.940X | 0.170/ | 0.205 | 1. | 2 | 0.2500 | 16.24 |
| 3 *R | 3.745X    | 3.940X | 0.170/ | 0.205 | 1. | 3 | 0.2813 | 23.60 |
| 4 *R | 4.730X    | 3.960X | 0.190/ | 0.210 | 2. | 4 | 0.3125 | 22.36 |
|      | *R STANDS |        |        |       |    |   |        |       |
|      |           |        |        |       |    |   |        |       |

#### SEGMENT PROPERTIES

|     |       | P     | ROPERTIES OF | STIFFENED | PLATES |        |       |
|-----|-------|-------|--------------|-----------|--------|--------|-------|
|     | ARE   | A     | N.A. TO      | SEC N     | 10D    |        | SMEAR |
|     | TOTAL | SHEAR | PLATE        | PLATE     | FLANGE | WT/FT  | RATIO |
| SEG | IN2   | IN2   | IN           | IN3       | IN3    | LBF/FT |       |
| 1   | 5.99  | 0.71  | 0.87         | 14.53     | 3.80   | 20.34  | 0.32  |
| 2   | 5.50  | 0.71  | 0.94         | 13.18     | 3.79   | 18.68  | 0.35  |
| 3   | 8.08  | 0.72  | 0.70         | 19.59     | 3.86   | 27.43  | 0.22  |
| 4   | 8.72  | 1.00  | 0.89         | 26.22     | 5.36   | 29.60  | 0.25  |

PRINTED REPORT NO. 5 - BOTTOM SHELL

| BOTTOM SHELL MTRL TYPE-HTS      |         |
|---------------------------------|---------|
| MODULUS OF ELASTICITY, KSI      | 29600.0 |
| DENSITY, LBM/FT3                | 489.02  |
| YIELD STRENGTH, KSI             | 45.00   |
| MAX PRIMARY STRENGTH, KSI       | 21.28   |
| ALLOWABLE WORKING STRENGTH, KST | 38.00   |

HULL LOADS IND-CALC

MAX MIN STIFFENER SPACING, IN 24.00 24.00

#### SEGMENT GEOMETRY

|     | NODE  | COORD, | FT    |      | -SCND. | LOAD, FT |
|-----|-------|--------|-------|------|--------|----------|
| SEG |       | ZUPR   | YLWR  | ZLWR | HEAD1  | •        |
| 1   | 20.77 | 6.00   | 18.57 | 4.50 | 28.83  |          |
| 2   | 18.57 | 4.50   | 16.46 | 3.45 | 30.05  |          |
| 3   | 16.46 | 3.45   | 12.34 | 2.00 | 31.34  |          |
| 4   | 12.34 | 2.00   | 8.23  | 1.00 | 32.55  |          |
| 5   | 8.23  | 1.00   | 4.11  | 0.31 | 33.39  |          |
| 6   | 4.11  | 0.31   | 0.00  | 0.00 | 33.89  |          |
|     |       |        |       |      |        |          |

#### SEGMENT SCANTLINGS

|     |     |           | SCI              | ANTLINGS  | OF STIFF | ENED PI | LATES |        |         |
|-----|-----|-----------|------------------|-----------|----------|---------|-------|--------|---------|
|     |     | S'        | <b>TIFFENERS</b> | 5         |          | CATLG   | NO.OF | PLATE  | SPACING |
| SEC | 3   | II        | NXINXIN/         | [N        |          | NO      | STIFF | TK, IN | IN      |
| 1   | *R  | 3.745X    | 3.940X           | 0.170/    | 0.205    | 1.      | 1     | 0.3438 | 16.04   |
| 2   | *R  | 3.745X    | 3.940X           | 0.170/    | 0.205    | 1.      | 1     | 0.3438 | 14.00   |
| 3   | *R  | 4.730X    | 3.960X           | 0.190/    | 0.210    | 2.      | 2     | 0.3438 | 17.46   |
| 4   | *R  | 4.730X    | 3.960X           | 0.190/    | 0.210    | 2.      | 2     | 0.3438 | 16.99   |
| 5   | *R  | 4.730X    | 3.960X           | 0.190/    | 0.210    | 2.      | 2     | 0.3438 | 16.52   |
| 6   | *R  | 4.730X    | 3.960X           | 0.190/    | 0.210    | 2.      | 1     | 0.3438 | 19.13   |
| NC  | TE: | *R STANDS | FOR ROLI         | LED SHAPE |          |         |       |        |         |

#### SEGMENT PROPERTIES

|     |       | P     | ROPERTIES OF | STIFFENED | PLATES |        |       |
|-----|-------|-------|--------------|-----------|--------|--------|-------|
|     | ARE   | A     | N.A. TO      | SEC 1     | MOD    |        | SMEAR |
|     | TOTAL | SHEAR | PLATE        | PLATE     | FLANGE | WT/FT  | RATIO |
| SEG | IN2   | IN2   | IN           | IN3       | IN3    | LBF/FT |       |
| 1   | 6.96  | 0.73  | 0.82         | 16.37     | 3.89   | 23.62  | 0.26  |
| 2   | 6.25  | 0.73  | 0.90         | 14.66     | 3.87   | 21.24  | 0.30  |
| 3   | 7.73  | 1.00  | 1.00         | 22.85     | 5.37   | 26.26  | 0.29  |
| 4   | 7.57  | 1.00  | 1.02         | 22.35     | 5.36   | 25.71  | 0.30  |
| 5   | 7.41  | 1.00  | 1.04         | 21.83     | 5.36   | 25.16  | 0.30  |
| 6   | 8.31  | 1.00  | 0.95         | 24.64     | 5.38   | 28.22  | 0.26  |

PRINTED REPORT NO. 6 - INNER BOTTOM

INNER BOT IND-PRESENT

INNER BOTTOM MTRL TYPE-HTS
MODULUS OF ELASTICITY, KSI 29600.0
DENSITY, LBM/FT3 489.02

| YIELD       | STRENGTH   | KSI        | SI             | 45.00     |                                                              |            |         |
|-------------|------------|------------|----------------|-----------|--------------------------------------------------------------|------------|---------|
| MAX PI      | KIMAKI STI | KENGTH, K  | SI<br>GTH, KSI | 21.28     |                                                              |            |         |
| ADDOM       | ADDE WORK  | ING SIREM  | JIH, KSI       | 30.00     |                                                              |            |         |
| HULL LO     | ADS IND-CA | ALC        |                |           |                                                              |            |         |
| OMT DEDNI   |            |            | MAX<br>24.00   | MIN       |                                                              |            |         |
| STIFFEN     | ER SPACING | G, IN      | 24.00          | 24.00     |                                                              |            |         |
| SEGMENT     | GEOMETRY   |            |                |           |                                                              |            |         |
| -           | NOI        | DE COORD,  | FT             |           | scnd. Lo                                                     | DAD, FT    |         |
| SEG         | YUPR       | ZUPR       | YLWR           | ZLWR      | HEAD1                                                        | HEAD2      |         |
| 1           | 18.57      | 4.50       | 16.46          | 4.50      | 2.61                                                         | 30.91      |         |
| 2           | 10.46      | 4.50       | 12.34          | 4.50      | 2.70                                                         | 29.43      |         |
| 4           | 2 23       | 4.50       | 0.23<br>1.11   | 4.50      | 2.70                                                         | 27.38      |         |
| 5           | 4.11       | 4.50       | 0.00           | 4.50      | 2.61<br>2.70<br>2.70<br>2.70<br>2.70                         | 23.26      |         |
|             |            |            |                |           | _,,,                                                         |            |         |
| SEGMENT     | SCANTLING  |            |                |           |                                                              |            |         |
|             |            | S(         | CANTLINGS      | OF STIFFE | NED PLATES-                                                  |            | CDAGTYC |
| SEC         |            | OTTERENE!  |                |           | CATLG NO.OF                                                  | PLATE      | SPACING |
| 1 *R        | 3.745X     | 3.940X     | 0.170/         | 0.205     | 1. 1<br>1. 2<br>1. 2<br>1. 2                                 | 0 2188     | 10 66   |
| 2 *R        | 3.745X     | 3.940X     | 0.170/         | 0.205     | 1. 2                                                         | 0.2500     | 16.46   |
| 3 *R        | 3.745X     | 3.940X     | 0.170/         | 0.205     | 1. 2                                                         | 0.2500     | 16.46   |
| 4 *R        | 3.745X     | 3.940X     | 0.170/         | 0.205     | 1. 2                                                         | 0.2500     | 16.46   |
| 5 *R        | 3.745X     | 3.940X     | 0.170/         | 0.205     | 1. 2                                                         | 0.2500     | 16.46   |
| NOTE        | : *R STAND | S FOR ROI  | LLED SHAPE     |           |                                                              |            |         |
| SEGMENT     | PROPERTIE  | rs.        |                |           |                                                              |            |         |
|             |            | BBOI       | PERTIES OF     | STIFFENE  | D PLATES                                                     |            |         |
|             | AREA-      | I          | OT .A.         | SEC       | MOD                                                          |            | SMEAR   |
|             | TOTAL      | SHEAR      | PLATE          | PLATE     | FLANGE                                                       | WT/FT      | RATIO   |
| SEG         | IN2        | IN2        | IN             | IN3       | IN3                                                          | LBF/FT     |         |
| 1           | 4.21       | 0.71       | 1.17           | 9.56      | 3.71                                                         | 14.30      | 0.52    |
| 2           | 5.55       | 0.71       | 0.93           | 13.33     | 3.79                                                         | 18.86      | 0.35    |
| 4           | 5.55       | 0.71       | 0.93           | 13.33     | 3.79                                                         | 18 86      | 0.35    |
| 5           | 5.55       | 0.71       | 0.93           | 13.33     | MOD<br>FLANGE<br>IN3<br>3.71<br>3.79<br>3.79<br>3.79<br>3.79 | 18.86      | 0.35    |
|             |            |            |                |           |                                                              |            |         |
| PRINTED     | REPORT NO  | ). 7 - INT | TERNAL DEC     | KS        |                                                              |            |         |
| NUMBER (    | OF INTERNA | I. DECKS   | 2              |           |                                                              |            |         |
| NONDER (    | JE INTERNA | L DECKS    | 2              |           |                                                              |            |         |
| INTERNAI    | L DECK MTF | L TYPE-HI  | rs             |           |                                                              |            |         |
| MODULU      | JS OF ELAS | STICITY, F | KSI            | 29600.0   |                                                              |            |         |
| DENSI       | ry, LBM/F1 | .3         |                | 489.02    |                                                              |            |         |
|             | STRENGTH,  |            |                | 45.00     |                                                              |            |         |
|             | RIMARY STR |            |                | 21.28     |                                                              |            |         |
| ALLOW       | ABLE WORKI | NG STRENG  | eth, KSI       | 38.00     |                                                              |            |         |
| HIII.I. LOZ | ADS IND-CA | T.C        |                |           |                                                              |            |         |
|             |            |            | MAX            | MIN       |                                                              |            |         |
| STIFFENE    | ER SPACING | , IN       | 24.00          | 24.00     |                                                              |            |         |
|             | 670VD00V   |            |                |           |                                                              |            |         |
|             | GEOMETRY   | E COODD    | FT             |           | scnd. Lo                                                     | ייחים רומנ |         |
|             | YIB        | ZIB        | YOB            |           | HEAD1                                                        | HEAD2      |         |
| DECK NO.    |            | 210        | 100            | 200       | HEADI                                                        | HEADE      |         |
| SEG         |            |            |                |           |                                                              |            |         |
| 1           | 0.00       | 20.00      | 6.86<br>13.72  | 20.00     | 2.67                                                         | 17.21      |         |
| 2           | 6.86       | 20.00      | 13.72          | 20.00     | 2.67                                                         | 20.64      |         |
|             | 13.72      |            | 20.57          |           | 2.67                                                         |            |         |
| 4           | 20.57      | 20.00      | 25.90          | 20.00     | 2.72                                                         | 20.46      |         |
|             |            |            |                |           |                                                              |            |         |

| DECK NO | .2    |       |       |       |      |       |
|---------|-------|-------|-------|-------|------|-------|
| SEG     |       |       |       |       |      |       |
| 1       | 0.00  | 12.25 | 6.86  | 12.25 | 2.67 | 17.21 |
| 2       | 6.86  | 12.25 | 13.72 | 12.25 |      | 20.64 |
| 3       | 13.72 | 12.25 | 24.56 | 12.25 | 2.67 | 25.07 |

# SEGMENT SCANTLINGS

|                 | SCANTLINGS       | OF STIFF | ENED P | LATES |        |         |
|-----------------|------------------|----------|--------|-------|--------|---------|
|                 | TIFFENERS        |          | CATLG  | NO.OF | PLATE  | SPACING |
| SEGIN           | NXINXIN/IN       |          | NO     | STIFF | TK, IN | IN      |
| DECK NO.1       | ·                |          |        |       | ,      | ++1     |
| SEG             |                  |          |        |       |        |         |
| 1 *R 3.745X     | 3.940x 0.170/    | 0.205    | 1.     | 3     | 0.2188 | 20.57   |
| 2 *R 3.745X     | 3.940X 0.170/    | 0.205    | 1.     | . 3   | 0.2188 | 20.57   |
| 3 *R 3.745X     | 3.940X 0.170/    | 0.205    | 1.     | `3    | 0.2188 | 20.57   |
| 4 *R 3.745X     | 3.940X 0.170/    | 0.205    | 1.     | 2     | 0.2813 | 21.30   |
| DECK NO.2       | •                |          |        | _     |        | 21.30   |
| SEG             |                  |          |        |       |        |         |
| 1 *R 3.745X     | 3.940X 0.170/    | 0.205    | 1.     | 3     | 0.2188 | 20.57   |
| 2 *R 3.745X     | 3.940X 0.170/    | 0.205    | 1.     | 3     | 0.2188 | 20.57   |
| 3 *R 3.745X     | 3.940X 0.170/    | 0.205    | 1.     | 5     | 0.2188 | 21.69   |
| NOTE: *R STANDS | FOR ROLLED SHAPE | !        |        | •     | 0.2100 | 21.00   |

## SEGMENT PROPERTIES

|           |       | PF    | ROPERTIES | OF | STIFFENED PLATES |        |        |        |
|-----------|-------|-------|-----------|----|------------------|--------|--------|--------|
|           | AREA  |       | N.A. TO   |    | SEC              | MOD    |        | SMEAR  |
|           | TOTAL | SHEAR | PLATE     |    | PLATE            | FLANGE | WT/FT  | RATIO  |
| SEG       | IN2   | IN2   | IN        |    | IN3              | IN3    | LBF/FT | 141110 |
| DECK N    | 10.1  |       |           |    |                  |        |        |        |
| SEG       |       |       |           |    |                  |        |        |        |
| 1         | 5.94  | 0.71  | 0.86      |    | 14.59            | 3.78   | 20.18  | 0.32   |
| 2         | 5.94  | 0.71  | 0.86      |    | 14.59            | 3.78   | 20.18  | 0.32   |
| 3         | 5.94  | 0.71  | 0.86      |    | 14.59            | 3.78   | 20.18  | 0.32   |
| 4         | 7.43  | 0.72  | 0.75      |    | 18.02            | 3.85   | 25.24  | 0.24   |
| DECK NO.2 |       |       |           |    |                  |        | 20121  | 0.24   |
| SEG       |       |       |           |    |                  |        |        |        |
| 1         | 5.94  | 0.71  | 0.86      |    | 14.59            | 3.78   | 20.18  | 0.32   |
| 2         | 5.94  | 0.71  | 0.86      |    | 14.59            | 3.78   | 20.18  | 0.32   |
| 3         | 6.19  | 0.71  | 0.83      |    | 15.27            | 3.79   | 21.01  | 0.30   |

PRINTED REPORT NO. 8 - STRENGTH AND STRESS OF STIFFENED PLATE AT DESIGN LOAD

## INNER BOT IND-PRESENT

| SEG        | -PRIMARY STRESS- |       |       | -LOCAL STRESS- |        | STRENGTH |        |  |  |
|------------|------------------|-------|-------|----------------|--------|----------|--------|--|--|
|            | TENSION          | COMP. | BEND. | SHEAR          | BUCKL. | ULTIMATE | COLUMN |  |  |
|            | KSI              | KSI   | KSI   | KSI            | KSI    | KSI      | KSI    |  |  |
| WET DECK   |                  |       |       |                |        |          |        |  |  |
| 1          | 16.11            | 13.43 | 6.61  | 2.21           | 29.89  | 33.06    | 33.54  |  |  |
| 2          | 16.11            | 13.43 | 6.61  | 2.21           | 29.89  | 33.06    | 33.54  |  |  |
| 3          | 16.11            | 13.43 | 6.61  | 2.21           | 29.89  | 33.06    | 33.54  |  |  |
| 4          | 16.11            | 13.43 | 6.61  | 2.21           | 29.89  | 33.06    | 33.54  |  |  |
| SIDE SHELL |                  |       |       |                |        |          |        |  |  |
| 1          | 14.54            | 12.28 | 5.69  | 1.90           | 20.20  | 28.69    | 36.11  |  |  |
| 2          | 11.96            | 10.38 | 7.84  | 2.60           | 25.37  | 31.21    | 36.70  |  |  |
| 3          | 8.90             | 8.14  | 16.67 | 5.59           | 15.21  | 25.70    | 33.81  |  |  |
| 4          | 9.81             | 10.47 | 16.01 | 5.38           | 20.91  | 29.07    | 38.30  |  |  |
| BOT SHELL  |                  |       |       |                |        |          |        |  |  |
| 1          | 10.93            | 12.35 | 18.12 | 6.04           | 38.96  | 38.65    | 35.26  |  |  |
| 2          | 11.31            | 12.99 | 16.55 | 5.49           | 41.29  | 41.46    | 36.07  |  |  |
| 3          | 11.71            | 13.66 | 15.54 | 5.19           | 36.97  | 36.79    | 39.15  |  |  |
| 4          | 12.09            | 14.28 | 15.72 | 5.25           | 37.66  | 37.40    | 39.28  |  |  |
| 5          | 12.35            | 14.72 | 15.69 | 5.23           | 38.33  | 38.02    | 39.42  |  |  |
| 6          | 12.50            | 14.98 | 18.37 | 6.15           | 34.26  | 34.71    |        |  |  |
| •          | -2.50            | 11.50 | 10.57 | 0.13           | 24.20  | 34./1    | 38.69  |  |  |

| INNER  | BOT   |       |       |      |       |       |       |
|--------|-------|-------|-------|------|-------|-------|-------|
| 1      | 11.15 | 12.70 | 16.06 | 5.26 | 31.97 | 33.83 | 38.19 |
| 2      | 11.15 | 12.70 | 19.47 | 6.46 | 24.69 | 30.91 | 36.64 |
| 3      | 11.15 | 12.70 | 18.11 | 6.01 | 24.69 | 30.91 | 36.64 |
| 4      | 11.15 | 12.70 | 16.75 | 5.56 | 24.69 | 30.91 | 36.64 |
| 5      | 11.15 | 12.70 | 15.39 | 5.11 | 24.69 | 30.91 | 36.64 |
| INT DE | ECK   |       |       |      |       |       |       |
| NO. 1  |       |       |       |      |       |       |       |
| 1      | 10.92 | 9.62  | 14.27 | 4.76 | 12.10 | 23.43 | 36.08 |
| 2      | 10.92 | 9.62  | 17.11 | 5.71 | 12.10 | 23.43 | 36.08 |
| 3      | 10.92 | 9.62  | 20.78 | 6.93 | 12.10 | 23.43 | 36.08 |
| 4      | 10.92 | 9.62  | 17.23 | 5.77 | 18.67 | 27.84 | 34.53 |
| INT DE | ECK   |       |       |      |       |       |       |
| NO. 2  |       |       |       |      |       |       |       |
| 1      | 0.00  | 0.00  | 14.27 | 4.76 | 12.10 | 23.43 | 36.08 |
| 2      | 0.00  | 0.00  | 17.11 | 5.71 | 12.10 | 23.43 | 36.08 |
| 3      | 0.00  | 0.00  | 21.88 | 7.31 | 10.89 | 22.43 | 35.79 |

PRINTED REPORT NO. 9 - FACTOR OF SAFETY OF STIFFENED PLATE AT DESIGN LOAD

INNER BOT IND-PRESENT

| PLF        | ATESTIE | FENER   | STI     | FFENED PLA | ATE           |
|------------|---------|---------|---------|------------|---------------|
| SEG BUCKI  | LING SH | HEAR CO | MP+BEND | ULTIMATE   | TENSION+BEND. |
| WET DECK   |         |         |         |            |               |
|            | .12 10  | 0.30    | 1.30    | 1.40       | 1.67          |
|            |         | .30     | 1.30    | 1.40       | 1.67          |
|            |         | .30     | 1.30    | 1.40       | 1.67          |
|            | .12 10  | .30     | 1.30    | 1.40       | 1.67          |
| SIDE SHELL |         |         |         |            |               |
|            |         | 2.03    | 1.52    | 1.41       | 1.88          |
| 2 2.       |         | 3.77    | 1.59    | 1.76       | 1.92          |
|            |         | .08     | 1.25    | 1.57       | 1.49          |
|            | .72 4   | .24     | 1.31    | 1.63       | 1.47          |
| BOT SHELL  |         | •       |         |            |               |
| 1 2.       |         | 3.78    | 1.00    | 1.66       | 1.31          |
|            |         |         | 1.03    | 1.75       | 1.36          |
| 3 2.       |         |         | 1.18    | 1.65       | 1.39          |
|            | .32 4   | .35     | 1.15    | 1.61       | 1.37          |
|            | .30 4   | .36     | 1.14    | 1.60       | 1.36          |
| 6 2.       | .01 3   | .70     | 1.03    | 1.40       | 1.23          |
| INNER BOT  |         |         |         |            |               |
| 1 9.       | .98 4   | .34     | 2.37    | 7.17       | 2.37          |
| 2 8.       | .68 3   | .53     | 1.95    | 7.08       | 1.95          |
| 3 9.       |         |         | 2.10    | 7.61       | 2.10          |
|            |         |         | 2.27    | 8.23       | 2.27          |
| 5 10.      | .99 4   | .46     | 2.47    | 8.96       | 2.47          |
| INT DECK   |         |         |         |            |               |
| NO. 1      |         |         |         |            |               |
|            |         | .79     | 2.66    | 7.91       | 2.66          |
| 2 5.       |         | .99     | 2.22    | 6.60       | 2.22          |
|            |         | .29     | 1.83    | 5.43       | 1.83          |
| 4 9.       | .86 3   | .95     | 2.20    | 9.03       | 2.20          |
| INT DECK   |         |         |         |            |               |
| NO. 2      |         |         |         |            |               |
|            |         | . 79    | 2.66    | 7.91       | 2.66          |
|            |         | .99     | 2.22    | 6.60       | 2.22          |
| 3 3.       | 91 3    | .12     | 1.74    | 5.12       | 1.74          |

PRINTED REPORT NO. 10 - GIRDER PROPERTIES, STRENGTH ,STRESSES AND FACTOR OF SAFETY

DECK MTRL TYPE-HTS BOT MTRL TYPE-HTS

| HULL  | LOADS   | IND-CALC    |
|-------|---------|-------------|
| GIRDE | ER/STIE | F. POSITION |

| oriably brill tylobrillon |    |       |       |         |          |  |  |  |
|---------------------------|----|-------|-------|---------|----------|--|--|--|
|                           |    |       | E, FT | SCND. ] | LOAD, FT |  |  |  |
|                           |    | YLOC  | ZLOC  | HEAD1   | HEAD2    |  |  |  |
| WET DECK                  |    |       |       |         |          |  |  |  |
| GIRDER                    |    |       |       |         |          |  |  |  |
| 1                         |    | 0.00  | 30.01 | 8.40    |          |  |  |  |
| 2                         |    | 6.86  | 30.01 | 8.40    |          |  |  |  |
| 2 3                       |    | 13.72 | 30.01 | 8.40    |          |  |  |  |
| 4                         |    | 20.57 |       | 8.40    |          |  |  |  |
| INT DECK                  | 1. | 20.37 | 30.01 | 0.40    |          |  |  |  |
| GIRDER                    | 1. |       |       |         |          |  |  |  |
| 1                         |    | 0 00  | 20.00 | 0 70    |          |  |  |  |
|                           |    | 0.00  | 20.00 | 2.70    | 8.82     |  |  |  |
| 2                         |    | 6.86  | 20.00 | 2.70    | 12.25    |  |  |  |
| 3                         |    | 13.72 | 20.00 | 2.70    | 15.68    |  |  |  |
| 4                         |    | 20.57 | 20.00 | 2.70    | 19.10    |  |  |  |
| INT DECK                  | 2. |       |       |         |          |  |  |  |
| GIRDER                    |    |       |       |         |          |  |  |  |
| 1                         |    | 0.00  | 12.25 | 2.70    | 15.53    |  |  |  |
|                           |    | 6.86  | 12.25 | 2.70    |          |  |  |  |
| 2                         |    | 13.72 | 12.25 |         |          |  |  |  |
| BOTTOM                    |    | 13.72 | 12.25 | 2.70    | 22.39    |  |  |  |
|                           |    |       |       |         |          |  |  |  |
| GIRDER                    |    |       |       |         |          |  |  |  |
| 1                         |    | 0.00  | 0.00  | 0.29    | 34.01    |  |  |  |
| 2                         |    | 4.11  | 0.31  | 0.29    | 33.70    |  |  |  |
| 3                         |    | 8.23  | 1.00  | 0.29    | 33.01    |  |  |  |
| 4                         |    | 12.34 | 2.00  | 0.29    | 32.00    |  |  |  |
| 5                         |    | 16.46 | 3.45  | 0.29    | 31.30    |  |  |  |
| BOTTOM                    |    |       |       | 0.25    | 31.30    |  |  |  |
| STIFF.                    |    |       |       |         |          |  |  |  |
| 1                         |    | 0.00  | 2.25  | 0.20    | 21 76    |  |  |  |
|                           |    | 4.11  |       | 0.29    | 31.76    |  |  |  |
| 2                         |    |       | 2.41  | 0.27    | 31.60    |  |  |  |
| 2<br>3<br>4               |    | 8.23  | 2.75  | 0.21    | 31.26    |  |  |  |
| 4                         |    | 12.34 | 3.25  | 0.21    | 30.76    |  |  |  |
| 5                         |    | 16.46 | 3.98  | 0.24    | 30.79    |  |  |  |
|                           |    |       |       |         |          |  |  |  |

| SCANTLINGS | OF | GDR/STF | AND | PLATE |
|------------|----|---------|-----|-------|
|            |    |         |     |       |

|                    |         | GIRDER/STI |        |       | CATLG<br>NO | PLATE<br>TK, IN | SUPPORT<br>WIDTH<br>IN |
|--------------------|---------|------------|--------|-------|-------------|-----------------|------------------------|
| WET DECK<br>GIRDER |         |            | •      |       |             | ,               |                        |
| 1 *F               | 13.490X |            | 0.255/ | 0.420 | 49.         | 0.3438          | 82.29                  |
| 2 *F               | 13.490X | 5.030X     | 0.255/ | 0.420 | 49.         | 0.3438          | 82.29                  |
| 3 *F               | 13.490X | 5.030X     | 0.255/ | 0.420 | 49.         | 0.3438          | 82.29                  |
| 4 *F               | 13.490X | 5.030X     | 0.255/ | 0.420 | 49.         | 0.3438          | 82.29                  |
| INT DECK           | 1.      |            |        |       |             |                 |                        |
| GIRDER             |         |            |        |       |             |                 |                        |
| 1 *F               | 9.780X  | 4.010X     | 0.240/ | 0.330 | 29.         | 0.2188          | 82.29                  |
| 2 *F               | 11.810X | 4.010X     | 0.235/ | 0.350 | 35.         | 0.2188          | 82.29                  |
| 3 *F               | 11.840X | 6.490X     | 0.230/ | 0.380 | 45.         | 0.2188          | 82.29                  |
| 4 *F               | 11.840X | 6.490X     | 0.230/ | 0.380 | 45.         | 0.2188          | 73.09                  |
| INT DECK           | 2.      |            |        |       |             |                 |                        |
| GIRDER             |         |            |        |       |             |                 | •                      |
| 1 *F               | 11.840X | 6.490X     | 0.230/ | 0.380 | 45.         | 0.2188          | 82.29                  |
| 2 *F               | 13.490X | 5.030X     | 0.255/ | 0.420 | 49.         | 0.2188          | 82.29                  |
| 3 *F               | 15.430X | 6.990X     | 0.295/ | 0.430 | 67.         | 0.2188          | 106.23                 |
| BOTTOM             |         |            |        |       |             |                 |                        |
| GIRDER             |         |            |        |       |             |                 |                        |
| 1                  | 54.000X | 17.190X    | 0.344/ | 0.250 |             | 0.3438          | 38.27                  |
| 2                  | 50.272X | 15.625X    | 0.313/ | 0.250 |             | 0.3438          | 43.91                  |
| 3<br>4<br>5        | 42.037X | 12.500X    | 0.250/ | 0.250 |             | 0.3438          | 50.26                  |
| 4                  | 29.959X | 12.500X    | 0.250/ | 0.250 |             | 0.3438          | 51.67                  |
| 5                  | 12.594X | 12.594X    | 0.281/ | 0.219 |             | 0.3438          | 52.37                  |

| BOTTOM STIFF. |           |          |            |       |            |        |       |
|---------------|-----------|----------|------------|-------|------------|--------|-------|
|               |           |          |            |       |            |        |       |
| 1 *R          | 3.745X    | 3.940X   | 0.170/     | 0.205 | 1.         | 0.3438 | 27.00 |
| 2 *R          | 3.745X    | 3.940X   | 0.170/     | 0.205 | 1.         | 0.3125 | 27.00 |
| 3 *R          | 3.745X    |          | 0.170/     |       | 1.         | 0.2500 | 27.00 |
|               |           |          |            |       | <b>+</b> • | 0.2300 | 27.00 |
| 4 *R          | 3.745X    | 3.940X   | 0.170/     | 0.205 | 1.         | 0.2500 | 27.00 |
| 5 *R          | 3.745X    | 3.940X   | 0.170/     | 0.205 | 1.         | 0.2813 | 27.00 |
| NOTE:         | *F STANDS | FOR FABR | RICATED SE | HAPE  |            |        |       |
|               | *R STANDS |          |            |       |            |        |       |

|        |       | PI    | ROPERTIES | OF GDR/STF | AND PLATES |        |       |
|--------|-------|-------|-----------|------------|------------|--------|-------|
|        | ARI   | EA    | N.A. TO   |            | MOD        |        | SMEAR |
|        | TOTAL | SHEAR | PLATE     | PLATE      | FLANGE     | WT/FT  | RATIO |
|        | IN2   | IN2   | IN        | IN3        | IN3        | LBF/FT |       |
| WET DE |       |       |           |            |            | •      |       |
| GIRDER |       |       |           |            |            |        |       |
| 1      | 33.84 | 3.63  | 1.74      | 310.21     | 43.13      | 114.93 | 0.20  |
| 2      | 33.84 | 3.63  | 1.74      | 310.21     | 43.13      | 114.93 | 0.20  |
| 3      | 33.84 | 3.63  | 1.74      | 310.21     | 43.13      | 114.93 | 0.20  |
| 4      | 33.84 | 3.63  | 1.74      | 310.21     | 43.13      | 114.93 | 0.20  |
| INT DE | CK 1. |       |           |            |            |        |       |
| GIRDER |       |       |           |            |            |        |       |
| 1      | 21.68 | 2.48  | 1.26      | 144.05     | 20.09      | 73.61  | 0.20  |
| 2      | 22.19 | 2.91  | 1.63      | 176.34     | 26.70      | 75.34  | 0.23  |
| 3      | 23.20 | 2.86  | 2.11      | 190.49     | 38.86      | 78.77  | 0.29  |
| 4      | 21.18 | 2.86  | 2.30      | 170.92     | 38.72      | 71.94  | 0.32  |
| INT DE | CK 2. |       |           |            |            |        |       |
| GIRDER |       |       |           |            |            |        |       |
| 1      | 23.20 | 2.86  | 2.11      | 190.49     | 38.86      | 78.77  | 0.29  |
| 2      | 23.56 | 3.60  | 2.35      | 212.27     | 42.30      | 79.99  | 0.31  |
| 3      | 30.80 | 4.74  | 2.80      | 318.02     | 67.18      | 104.61 | 0.33  |
| BOTTOM |       |       |           |            |            |        |       |
| GIRDER |       |       |           |            |            |        |       |
| 1      | 28.77 | 18.77 | 25.81     | 463.68     | 415.90     | 97.71  | 0.00  |
| 2      | 24.99 | 15.90 | 23.99     | 382.95     | 341.78     | 84.86  | 0.00  |
| 3      | 17.93 | 10.66 | 19.97     | 242.36     | 213.55     | 60.90  | 0.00  |
| 4      | 14.91 | 7.64  | 14.12     | 158.49     |            | 50.64  | 0.00  |
| 5      | 10.63 | 3.70  | 5.67      | 58.43      | 44.20      | 36.09  | 0.00  |
| BOTTOM |       |       |           |            |            |        |       |
| STIFF. |       |       |           |            |            |        |       |
| 1      | 10.72 | 0.73  | 0.60      | 24.43      | 3.93       | 36.41  | 0.16  |
| 2      | 9.88  | 0.72  | 0.61      | 23.21      | 3.90       | 33.54  | 0.17  |
| 3      | 8.19  | 0.71  | 0.67      | 20.21      | 3.84       | 27.81  | 0.21  |
| 4      | 8.19  | 0.71  | 0.67      | 20.21      | 3.84       | 27.81  | 0.21  |
| 5      | 9.04  | 0.72  | 0.64      | 21.81      | 3.87       | 30.68  | 0.19  |

AT DESIGN LOAD

|        |          |         |        | MI DESIG | M TOUD |            |        |
|--------|----------|---------|--------|----------|--------|------------|--------|
|        | -PRIMARY | STRESS- | -LOCAL | STRESS-  |        | -STRENGTH- |        |
|        | TENSION  | COMP.   | BEND.  | SHEAR    | BUCKL. | ULTIMATE   | COLUMN |
|        | KSI      | KSI     | KSI    | KSI      | KSI    | KSI        | KSI    |
| WET DE | ECK      |         |        |          |        |            |        |
| GIRDER | ₹        |         |        |          |        |            |        |
| 1      | 16.11    | 13.43   | 16.00  | 4.64     | 35.83  | 35.87      | 37.43  |
| 2      | 16.11    | 13.43   | 16.00  | 4.64     | 35.83  | 35.87      | 37.43  |
| 3      | 16.11    | 13.43   | 16.00  | 4.64     | 35.83  | 35.87      | 37.43  |
| 4      | 16.11    | 13.43   | 16.00  | 4.64     | 35.83  | 35.87      | 37.43  |
| INT DE | ECK 1.   |         |        |          |        |            |        |
| GIRDER | ₹        |         |        |          |        |            |        |
| 1      | 10.92    | 9.62    | 36.09  | 7.14     | 41.28  | 41.44      | 30.58  |
| 2      | 10.92    | 9.62    | 37.71  | 8.45     | 37.24  | 37.02      | 35.43  |
| 3      | 10.92    | 9.62    | 33.17  | 11.00    | 36.60  | 36.48      | 38.16  |
| 4      | 10.92    | 9.62    | 36.04  | 11.90    | 36.60  | 36.48      | 38.75  |
|        |          |         |        |          |        |            |        |

1

2

3

4

1

2

INT DECK 2. GIRDER

15.97

12.70

10.54

8.73

10.63

NUMBER OF LONG BHD 0

9.50

| INT DEC  | K 2.           |        |        |          |           |               |       |
|----------|----------------|--------|--------|----------|-----------|---------------|-------|
| GIRDER   |                |        |        |          |           |               |       |
| 1        | 0.00           | 0.00   | 32.86  | 10.89    | 36.60     | 36.48         | 38.16 |
| 2        | 0.00           | 0.00   | 36.85  | 10.56    |           |               |       |
| 3        | 0.00           | 0.00   | 35.37  | 12.23    | 36.16     | 36.12         | 42.11 |
| BOTTOM   |                |        |        |          |           |               |       |
| GIRDER   |                |        |        |          |           |               |       |
| 1        | 12.54          | 15.04  |        | 0.01     | 17.35     | 27.07         | 45.00 |
| 2        | 12.44          |        |        | 0.02     | 16.54     | 26.57         | 45.00 |
|          | 12.23          |        | 7.76   |          | 15.14     | 25.65         | 45.00 |
| 4        | 11.92          | 14.00  | 12.13  | 5.28     | 29.81     | 33.03         | 45.00 |
| 5        | 11.47          | 13.25  | 37.05  | 10.80    | 44.63     | 45.00         | 42.59 |
| BOTTOM   |                |        |        |          |           |               |       |
| STIFF.   | 11 01          |        |        |          |           |               |       |
| 1        | 11.84          | 13.87  |        | 11.19    | 44.66     |               | 31.28 |
| 2        | 11.79          | 13.79  | 33.33  | 11.22    | 44.66     | 45.00         | 32.01 |
| 4        | 11.69<br>11.53 | 13.61  | 33.49  |          | 44.66     | 45.00         | 33.58 |
| 5        | 11.33          | 13.35  |        | 11.08    | 44.66     | 45.00         | 33.58 |
| 5        | 11.31          | 12.98  | 32.72  | 11.01    | 44.66     | 45.00         | 32.77 |
|          |                |        | -<br>  | OF SAFET | V OF CDD  | CMP           |       |
|          |                |        | THOTOK | AT DESIG | I OF GDR. | .517          |       |
|          | PLATE-         | -STIFF | ENER   | STIF     | FENED DIA | TF            |       |
|          | BUCKLING       | SHE    |        |          | LTIMATE   | TENSION+B     | END   |
| WET DEC  | K              |        |        |          |           | TERESTOR : B. | END.  |
| GIRDER   |                |        |        |          |           |               |       |
| 1        | 2.46           | 4.9    | 92     | 1.05     | 1.64      | 1.18          |       |
| 2        | 2.46           | 4.9    | 92     | 1.05     | 1.64      | 1.18          |       |
| 3        | 2.46           | 4.9    |        | 1.05     | 1.64      | 1.18          |       |
| 4        | 2.46           | 4.9    | 92     | 1.05     | 1.64      | 1.18          |       |
| INT DECI | K 1.           |        |        |          |           |               |       |
| GIRDER   |                |        |        |          |           |               |       |

1.05

1.01

1.15

1.05

1.16

1.03

8.72

7.95

7.12

6.00

7.19

6.73

1.05

1.01

1.15

1.05

1.16

1.03

3 9.43 1.86 1.07 7.05 1.07 BOTTOM GIRDER 1 1.15 1559.71 2.39 1.44 3.02 2 1.11 1151.28 2.41 1.43 3.04 3 4.31 6.01 4.90 5.84 4.90 4 5.57 4.32 3.13 4.94 3.13 5 3.10 2.11 1.03 2.37 1.03 BOTTOM STIFF. 1 16.26 2.04 1.14 9.11 1.14 2 15.52 2.03 1.14 8.90 1.14 3 13.66 2.02 1.13 8.22 1.13 4 13.88 2.06 1.15 8.35 1.15 5 14.97 2.07 1.16 8.79 1.16 PRINTED REPORT NO. 11 - LONGITUDINAL BULKHEADS

3.19 2.70

2.07

1.92

2.09

2.16

PRINTED REPORT NO. 12 - TRANSVERSE BULKHEADS

TRANS BHD MTRL TYPE-HTS
MODULUS OF ELASTICITY, KSI 29600.0

| DENSI                  | TY, LBM/F                                         | г3                     |                        | 489.02    |                                                 |                                   |         |
|------------------------|---------------------------------------------------|------------------------|------------------------|-----------|-------------------------------------------------|-----------------------------------|---------|
| YIELD                  | STRENGTH                                          | , KSI                  |                        | 45.00     |                                                 |                                   |         |
| MAX P                  | RIMARY ST                                         | RENGTH, K              | SI                     | 21.28     |                                                 |                                   |         |
| ALLOW                  | TY, LBM/FT<br>STRENGTH<br>RIMARY STI<br>ABLE WORK | ING STRENG             | GTH, KSI               | 38.00     |                                                 |                                   |         |
|                        |                                                   |                        |                        |           |                                                 |                                   |         |
| HULL LO                | ADS IND-C                                         |                        | 147.14                 | MEN       |                                                 |                                   |         |
| CTTTTTN                | ER SPACING                                        | " TNI                  | MAX                    | WIN       |                                                 |                                   |         |
| BITTEN                 | ER SPACIN                                         | 3, IN                  | 24.00                  | 24.00     |                                                 |                                   |         |
| SEGMENT                | GEOMETRY                                          |                        |                        |           |                                                 |                                   |         |
| _                      | NOI                                               | DE COORD,              | FT                     |           | SCND. LO                                        | DAD, FT                           |         |
| SEG                    | YUPR                                              | ZUPR                   | YLWR                   | ZLWR      | HEAD1<br>21.56<br>27.61<br>31.32                | HEAD2                             |         |
| 1                      | 0.00                                              | 30.01                  | 0.00                   | 20.00     | 21.56                                           |                                   |         |
| 2                      | 0.00                                              | 20.00                  | 0.00                   | 12.25     | 27.61                                           |                                   |         |
| 3                      | 0.00                                              | 12.25                  | 0.00                   | 4.50      | 31.32                                           |                                   |         |
| SEGMENT                | SCANTLING                                         | GS                     |                        |           |                                                 |                                   |         |
|                        |                                                   | S                      | CANTLINGS              | OF STIFFE | ENED PLATES-                                    |                                   |         |
|                        |                                                   | STIFFENER              | RS                     |           | CATLG NO.OF<br>NO STIFF<br>6 16<br>5 15<br>6 15 | PLATE                             | SPACING |
| SEG                    |                                                   | -INXINXIN,             | /IN                    |           | NO STIFE                                        | TK, IN                            | IN      |
| 1 *F                   | 7.685X                                            | 3.940X                 | 0.170/                 | 0.205     | 6 16                                            | 0.1875                            | 24.02   |
| 2 *R                   | 5.735X                                            | 3.970X                 | 0.200/                 | 0.225     | 5 15                                            | 0.1875                            | 23.25   |
| 3 × F.                 | 7.685X<br>: *F STANI                              | 3.940X                 | 0.170/                 | 0.205     | 6 15                                            | 0.1875                            | 23.25   |
| NOTE                   | . T DIAM                                          | OS FOR ROI             | MICHIED :              | DIMEE     |                                                 |                                   |         |
|                        | "K SIMI                                           | JS FOR ROI             | LED SHAFE              | 2         |                                                 |                                   |         |
| SEGMENT                | PROPERTIE                                         | ES                     |                        |           |                                                 |                                   |         |
|                        |                                                   | DDOI                   | PERTIES OF             | STIFFENE  | ED PLATES                                       |                                   |         |
|                        | AREA-                                             | N                      | I.A. TO                | SEC       | C MOD                                           |                                   | SMEAR   |
| 676                    | TOTAL                                             | SHEAR                  | PLATE                  | PLATE     | FLANGE                                          | WT/FT                             | RATIO   |
| SEG                    | 1N2                                               | 1 27                   | 1 N2                   | INS       | IN3                                             | LBF/FT                            | 0.47    |
| 2                      | 6.40                                              | 1.37                   | 1.63                   | 31.02     | 2 9.09                                          | 22.46                             | 0.47    |
| 3                      | 6.47                                              | 1.37                   | 1.87                   | 30.14     | MOD E FLANGE B IN3 P 9.09 T 7.00 P 9.07         | 21.73                             | 0.47    |
| •                      | 0.17                                              | 1.0.                   | 1.07                   | 30.11     | , ,,,,                                          | 21.57                             | 0.40    |
|                        |                                                   | STRENG                 | TH AND ST              | TRESSES   |                                                 |                                   |         |
|                        |                                                   | AT                     | DESIGN LO              | DAD       |                                                 |                                   |         |
|                        | LOCAL                                             | STRESS<br>SHEAR<br>KSI |                        | STRENGTH  | I                                               |                                   |         |
|                        | BEND.                                             | SHEAR                  | BUCKL.                 | ULTIMAT   | re column                                       |                                   |         |
| SEG                    | KSI                                               | KSI                    | KSI                    | KSI       | KSI                                             |                                   |         |
| 1                      | 35.15                                             | 8.51                   | 10.89                  | 22.43     | 35.79                                           |                                   |         |
| 2                      | 37.90                                             | 9.78                   | 10.89                  | 22.43     | 35.79                                           |                                   |         |
| 3                      | 34.11                                             | 11.53                  | 10.89                  | 22.43     | 35.79                                           |                                   |         |
|                        |                                                   |                        |                        |           |                                                 |                                   |         |
|                        |                                                   |                        |                        |           | ETY                                             | THE COST COST COST COST COST COST |         |
|                        | - DIAME.                                          | COL PERN               |                        | AT DESIGN |                                                 |                                   |         |
|                        | BUCKLING                                          |                        |                        |           | ENED PLATE<br>TIMATE TENS                       |                                   |         |
| SEG                    | DOCKLING                                          | BIIDAI                 | COMP                   | BEND OLI  | IMALE IENS                                      | TONTBEND.                         | •       |
| 1                      | 3.91                                              | 2.68                   | 1.                     | .08       | 5.12                                            | 1.74                              |         |
| 2                      | 3.91                                              |                        | 1.                     | .00       | 5.12                                            | 1.74                              |         |
| 3                      | 3.91                                              | 1.98                   | 1.                     | 11        | 5.12                                            | 1.74                              |         |
|                        |                                                   |                        |                        |           |                                                 |                                   |         |
| PRINTED                | REPORT NO                                         | ). 13 - SI             | DE AND BO              | TTOM FRAM | ŒS                                              |                                   |         |
| FRAME SI               | PACING, FT                                        | ,                      | 8.00                   |           |                                                 |                                   |         |
|                        |                                                   |                        | 0.00                   |           |                                                 |                                   |         |
|                        | GEOMETRY                                          |                        |                        |           |                                                 |                                   |         |
|                        | GEOMETRY                                          | E COORD,               | FT                     |           | SCND. LC                                        | AD, FT                            |         |
|                        |                                                   | DE COORD,<br>ZUPR      |                        |           | SCND. LC<br>HEAD1                               | AD, FT<br>HEAD2                   |         |
| SEG<br>SIDE FRA        | NOL<br>YUPR                                       |                        |                        |           |                                                 |                                   |         |
| SEG<br>SIDE FRA<br>SEG | NOD<br>YUPR<br>AME                                | ZUPR                   | YLWR                   | ZLWR      | HEAD1                                           |                                   |         |
| SEG<br>SIDE FRA<br>SEG | NOD<br>YUPR<br>AME                                | ZUPR                   | YLWR                   | ZLWR      | HEAD1                                           |                                   |         |
| SEG<br>SIDE FRA<br>SEG | NOL<br>YUPR                                       | ZUPR<br>30.01<br>20.00 | YLWR<br>25.90<br>24.56 | ZLWR      | HEAD1<br>14.01<br>21.76                         |                                   |         |

| BOT FR  | AME        |                     |             |                                                              |           |        |       |
|---------|------------|---------------------|-------------|--------------------------------------------------------------|-----------|--------|-------|
| SEG     | 40         |                     |             |                                                              |           |        |       |
| Ţ       | 18.57      | 4.50                | 16.46       | 3.45<br>2.00<br>1.00                                         | 30.56     |        |       |
| 2       | 16.46      | 3.45                | 12.34       | 2.00                                                         | 32.00     |        |       |
| 3       | 12.34      | 2.00                | 8.23        | 1.00                                                         | 33.01     |        |       |
| 4       | 8.23       | 1.00                | 4.11        | 0.31                                                         | 33.70     |        |       |
| 5       | 4.11       | 0.31                | 0.00        | 0.31                                                         | 34.01     |        |       |
| SEGMEN  | T SCANTLI  |                     |             |                                                              |           |        |       |
|         |            |                     | SCANTLING   | S OF STIFFE                                                  | NED PLATE | S      |       |
|         |            | STIFFENI<br>TNXTNXT | SRS<br>1/TN |                                                              | CATLG     | PLATE  | SPAN  |
| SIDE F  | RAME       | 111111111111        | 1/ 111      |                                                              | NO        | IV, IN | FT    |
| SEG     |            |                     |             |                                                              |           |        |       |
| 1 *     | F 11.810   | x 4.0103            | 0.235       | / 0.350                                                      | 35        | 0.2500 | 10 01 |
| 2 *     | F 11.810   | x 4.0103            | 0.235       | / 0.350                                                      | 35.       | 0.2500 | 10.01 |
| 3 *1    | F 13.4053  | x 5 0003            | 0.233       | / 0.350<br>/ 0.335                                           | 35.       | 0.2500 | 7.75  |
| BOT FR  | AME        | 1 5.0002            | 0.230       | / 0.335                                                      | 40.       | 0.2813 | 7.75  |
|         |            |                     |             |                                                              |           |        |       |
| 1       | 6 2073     | v 6 2073            | , , , , , , | / 0.010                                                      |           |        |       |
| J       | 0.29/2     | n 0.29/2            | 0.219       | / 0.219                                                      |           | 0.3438 | 2.36  |
| 2       | 21.277     | x 12.500            | 0.250       | / 0.250                                                      |           | 0.3438 | 4.36  |
| 3       | 35.998     | X 12.500X           | 0.250       | / 0.250                                                      |           | 0.3438 | 4.24  |
| 4       | 46.154     | X 12.500            | 0.250       | / 0.250                                                      |           | 0.3438 | 4.17  |
| 5       | 52.136     | X 12.500            | 0.250       | / 0.250                                                      |           | 0.3438 | 4.13  |
| NOT     | E: *F STAN | NDS FOR FA          | BRICATED    | / 0.219<br>/ 0.250<br>/ 0.250<br>/ 0.250<br>/ 0.250<br>SHAPE |           |        |       |
|         | T PROPERTI |                     |             |                                                              |           |        |       |
|         |            | PRC                 | PERTIES (   | OF STIFFENE                                                  | D PLATES- |        |       |
| -       | ARE        | <del>}</del>        | N.A. TO     | SEC PLATE IN3                                                | MOD       |        | SMEAR |
|         | TOTAL      | SHEAR               | PLATE       | PLATE                                                        | FLANGE    | WT/FT  | RATIO |
| SEG     | IN2        | IN2                 | IN          | IN3                                                          | IN3       | LBF/FT |       |
| SIDE F  | RAME       |                     |             |                                                              |           |        |       |
| SEG     |            |                     |             |                                                              |           |        |       |
| 1       | 28.18      | 2.92                | 1.32        | 225.92                                                       | 26.95     | 95.70  | 0.17  |
| 2       | 28.18      | 2.92                | 1.32        | 225.92<br>290.81                                             | 26.95     | 95 70  | 0.17  |
| 3       | 31.76      | 3.22                | 1.53        | 290.81                                                       | 35 58     | 107 87 | 0.17  |
| BOT FRA | AME        |                     |             | 270.01                                                       | 55.50     | 107.07 | 0.10  |
|         |            |                     |             |                                                              |           |        |       |
| 1       | 4 92       | 1 50                | 2 0/        | 1/ 12                                                        | 10 60     | 16 71  | 0.10  |
| 2       | 12 7/      | E 47                | 0.00        | 14.13                                                        | 10.62     | 16./1  | 0.18  |
| 2       | 16 42      | 0.15                | 9.90        | 105.46                                                       | 88.45     | 43.27  | 0.18  |
| 3       | 10.42      | 9.15                | 17.04       | 198.95                                                       | 173.32    | 55.77  | 0.18  |
| 4       | 18.96      | 11.69               | 21.98       | 273.67                                                       | 242.77    | 64.39  | 0.18  |
| 5       | 20.46      | 13.18               | 24.90       | 14.13<br>105.46<br>198.95<br>273.67<br>321.62                | 287.78    | 69.47  | 0.18  |
|         | STRESS A   | AND FACTOR          | OF SAFET    | ry                                                           |           |        |       |
|         |            | KSI-                |             |                                                              |           |        |       |
| OTDE    |            | SHEAR               | RENDING     | SHEAR                                                        |           |        |       |
| SIDE FF | KAME       |                     |             |                                                              |           |        |       |
| SEG     |            |                     |             |                                                              |           |        |       |
| 1       | 36.00      | 12.38               | 1.06        | 1.84                                                         |           |        |       |
| 2       | 33.53      | 14.89               | 1.13        | 1.53                                                         |           |        |       |
| 3       | 34.55      | 18.26               | 1.10        | 1.25                                                         |           |        |       |
| BOT FRA | AME        |                     |             |                                                              |           |        |       |
| SEG     |            |                     |             |                                                              |           |        |       |
| 1       | 17.31      | 12.36               | 2.20        | 1.85                                                         |           |        |       |
| 2       | 7.83       |                     |             |                                                              |           |        |       |
|         |            | 6.58                | 4.85        | 3.47                                                         |           |        |       |
| 3       | 3.95       | 3.94                | 9.61        | 5.79                                                         |           |        |       |
| 4       | 2.82       | 3.10                |             | 7.36                                                         |           |        |       |
| 5       | 2.36       | 2.74                | 16.10       | 8.31                                                         |           |        |       |
| RINTED  | REPORT N   | io. 14 - D          | ECK BEAMS   | 3                                                            |           |        |       |
|         |            |                     |             |                                                              |           |        |       |

FRAME SPACING, FT 8.00

SEG 1

0.07

| SEGMENT         |                | DE COORD,                            | TP.TT        |                  | COMP          |                   |              |
|-----------------|----------------|--------------------------------------|--------------|------------------|---------------|-------------------|--------------|
| SEG             | YIB            | ZIB                                  | YOB          | ZOB              | HEAD1         | LOAD, FT<br>HEAD2 | -            |
| WET DEC         | K              |                                      |              |                  |               |                   |              |
| 1               | 0.00           | 30.01                                | 6.86         | 30.01            | 8.40          |                   |              |
| 2               | 6.86           | 30.01                                | 13.72        | 30.01            | 8.40          |                   |              |
| 3               | 13.72          | 30.01<br>30.01<br>30.01              | 20.57        | 30.01            | 8.40          |                   |              |
| DECK NO         | . 1            | 30.01                                | 21.43        | 30.01            | 8.40          |                   |              |
| SEG             |                |                                      |              |                  |               |                   |              |
| 1               | 0.00           | 20.00                                | 6.86         | 20.00            | 2.70          |                   |              |
| 3               | 13.72          | 20.00                                | 20.57        | 20.00            | 2.70          |                   |              |
| 4               | 20.57          | 20.00<br>20.00<br>20.00              | 25.90        | 20.00            | 2.81          |                   |              |
| DECK NO.        | . 2            |                                      |              |                  |               |                   |              |
| SEG<br>1        | 0.00           | 12.25                                | 6.86         | 12 25            | 2 70          |                   |              |
| 2               | 6.86           | 12.25<br>12.25                       | 13.72        | 12.25            | 2.70          |                   |              |
| 3               | 13.72          | 12.25                                | 24.56        | 12.25            | 2.70          |                   |              |
| SEGMENT         | SCANTLING      | 35                                   |              |                  |               |                   |              |
|                 |                | sc                                   | ANTLINGS     | OF STIFFE        | NED PLATES    | 5                 |              |
|                 |                | STIFFENER<br>-INXINXIN/              | S            |                  | CATLG         | PLATE             | SPAN         |
| WET DECK        | ζ              | -INXINXIN/                           | IN           |                  | NO :          | rk, in            | FT           |
| SEG             |                |                                      |              |                  |               |                   |              |
| 1 *R            | 5.735X         | 3.970X                               | 0.200/       | 0.225            | 5.            | 0.3438            | 6.86         |
| 2 *R<br>3 *R    | 5.735X         | 3.970X                               | 0.200/       | 0.225            | 5.<br>5       | 0.3438            | 6.86         |
| 4 *R            | 5.735X         | 3.970X<br>3.970X<br>3.970X<br>3.970X | 0.200/       | 0.225            | 5.            | 0.3438            | 6.86         |
| DECK NO.        | . 1            |                                      | ŕ            |                  |               |                   |              |
| SEG<br>1 *R     | 3.745X         | 3.940x                               | 0.170/       | 0.205            | 1             | 0 2100            | 6 96         |
| 2 *R            | 3.745X         | 3.940X                               | 0.170/       | 0.205            | 1.            | 0.2188            | 6.86         |
| 3 *R            | 3.745X         | 3.940X<br>3.940X<br>3.940X<br>3.940X | 0.170/       | 0.205            | 1.            | 0.2188            | 6.86         |
| DECK NO.        | 3.745X         | 3.940X                               | 0.170/       | 0.205            | 1.            | 0.2813            | 5.32         |
| SEG             |                |                                      |              |                  |               |                   |              |
| 1 *R            | 3.745X         | 3.940X                               | 0.170/       | 0.205            | 1.            | 0.2188            | 6.86         |
| 2 *R            | 3.745X         | 3.940X<br>3.940X<br>3.940X           | 0.170/       | 0.205            | 1.            | 0.2188            | 6.86         |
| NOTE:           | *F STAND       | S FOR FAB                            | RICATED S    | HAPE             | ٥.            | 0.2188            | 10.85        |
|                 |                | S FOR ROL                            |              |                  |               |                   |              |
| SEGMENT         | PROPERTIE      | !S                                   |              |                  |               |                   |              |
|                 |                | PROP                                 | ERTIES OF    | STIFFENE         | PLATES        |                   |              |
|                 |                | N                                    | .A. TO       | SEC              | MOD           |                   | SMEAR        |
| SEG             | TOTAL<br>IN2   | SHEAR<br>IN2                         | PLATE<br>IN  | PLATE<br>IN3     | FLANGE<br>IN3 | ,                 | RATIO        |
| WET DECK        |                |                                      | ***          | 1117             | TMO           | בים בים בים       |              |
| SEG             | 25 04          | 1 06                                 | 0.40         |                  |               |                   |              |
|                 | 35.04<br>35.04 | 1.26<br>1.26                         | 0.42<br>0.42 | 103.33<br>103.33 |               |                   | 0.06<br>0.06 |
|                 | 35.04          | 1.26                                 | 0.42         | 103.33           |               | 119.01            | 0.06         |
|                 | 35.04          | 1.26                                 | 0.42         | 103.33           | 7.46          | 119.01            | 0.06         |
| DECK NO.<br>SEG | Τ              |                                      |              |                  |               |                   |              |
|                 | 22.44          | 0.71                                 | 0.31         | 48.67            | 3.88          | 76.22             | 0.07         |
|                 | 22.44          | 0.71                                 | 0.31         | 48.67            | 3.88          | 76.22             | 0.07         |
|                 | 22.44<br>28.44 | 0.71<br>0.72                         | 0.31<br>0.30 | 48.67<br>51.70   |               | 76.22             | 0.07         |
| DECK NO.        |                | J. 12                                | 0.30         | 51.70            | 3.93          | 96.60             | 0.05         |
| SEC             |                |                                      |              |                  |               |                   |              |

22.44 0.71 0.31 48.67 3.88 76.22

| 2            | 22.44<br>22.81      | 0.71<br>1.04 | 0.31<br>0.45         | 48.67<br>83.34                                                  | 3.88<br>6.66 | 76.22<br>77.48 | 0.07         |
|--------------|---------------------|--------------|----------------------|-----------------------------------------------------------------|--------------|----------------|--------------|
|              |                     |              |                      |                                                                 |              |                | 0.03         |
|              |                     |              | R OF SAFETY          |                                                                 |              |                |              |
|              | BENDING             | SHEAR        | BENDING S            | HEVD                                                            |              |                |              |
| WET DEC      | K                   |              | DBND1NG B            | IILAK                                                           |              |                |              |
| SEG          |                     |              |                      |                                                                 |              |                |              |
| 1            | 35.05               | 11.76        | 1.08<br>1.08<br>1.08 | 1.94                                                            |              |                |              |
| 2            | 35.05               | 11.76        | 1.08                 | 1.94                                                            |              |                |              |
| 3<br>4       | 35.05               | 11.76        | 1.08                 | 1.94                                                            |              |                |              |
| DECK NO      | . 1                 | 11.76        | 1.08                 | 1.94                                                            |              |                |              |
| SEG          | •                   |              |                      |                                                                 |              |                |              |
| 1            | 21.88               | 6.74         | 1.74<br>1.74         | 3.38                                                            |              |                |              |
| 2            | 21.88               | 6.74         | 1.74                 | 3.38                                                            |              |                |              |
| 3            | 21.88               | 6.74         | 1.74                 | 3.38                                                            |              |                |              |
| 4<br>DEGK NO | 13.50               | 5.36         | 2.82                 | 4.26                                                            |              |                |              |
| DECK NO      | . 2                 |              |                      |                                                                 |              |                |              |
|              | 21 88               | 6 71         | 1 74                 | 2 .20                                                           |              |                |              |
| 2            | 21.88               | 6.74         | 1.74                 | 3.38                                                            |              |                |              |
| 3            | 31.87               | 7.26         | 1.74<br>1.74<br>1.19 | 3.14                                                            |              |                |              |
|              |                     |              |                      | L BULKHEAD VE                                                   | ERTICAL ST   |                |              |
|              | R OF LONG           |              |                      |                                                                 |              |                |              |
| C,E>RUN      | ADDEN               |              |                      |                                                                 |              |                |              |
|              | STRING IS           | s •          |                      |                                                                 |              | •              |              |
|              | PPENDAGE 1          |              |                      |                                                                 |              |                |              |
| ** WARN:     | ING - APPI          | ENDAGE MO    | DDULE ** (W-         | -FINROTATSHIE                                                   | T-FINRED     | <b>\</b>       |              |
| FWD FIN:     | S HAVE BEI          | EN RE-POS    | SITIONED BY          | SHIFTING FIN                                                    | I ROOT       |                |              |
| Z-COORD      | -0.74               | FT (UPW      | ARD POSITIVI         | E) AND BY ROT                                                   | TATING       |                |              |
| ABOUT F.     | IN ROOT             | 10.00 DI     | EG (CLOCKWI          | SE POSITIVE).                                                   |              |                |              |
| FWD FINS     | HAVE BEI            | ENDAGE MO    | Συ·<br>ΣΠΩΤΈ: ** (M· | FINSPANRESIZ                                                    | E-FINRES)    | )              |              |
| CHAI         | NGE IN CHO          | ORD          | 0.77 1               | ייזיי                                                           |              |                |              |
| CHAI         | NGE IN THE          | ζ.           | 0.77 I<br>0.12 F     | 2                                                               |              |                |              |
| CH           | ANGE IN SI          | PAN          | -0.72 I              | T                                                               |              |                |              |
| CHAI         | NGE IN ARE          | EA           | 0.00 I               | T2                                                              |              |                |              |
| ASSET        | r/monosc v          | ERSION 3     | 3.3+ - APPE          | DAGE MODULE                                                     | - 2/11/95    | 11.01.         | 00.          |
| PRINTED      | REPORT NO           | ). 1 - st    | JMMARY               |                                                                 |              |                |              |
| APPENDAC     | GE DISP, I          | TON          | 86.6                 |                                                                 |              |                |              |
|              | SP, LTON            |              |                      |                                                                 |              |                |              |
| SKEG INI     |                     |              | PRESENT              | RUDDER TYP<br>NO RUDDERS<br>AVG RUDDER<br>RUDDER THK            | E IND        |                | SPADE        |
| SKEG DIS     | SP, LTON            | _            | 10.0                 | NO RUDDERS                                                      |              |                | 2            |
| SKEG AFT     | TIWIT/LE            | 3P           | 0.8597               | AVG RUDDER                                                      | CHORD, F     | T              | 9.96         |
| SKEG PRO     | L, FI<br>LIECTED AD | כיחים מים    | 1.00<br>350.1        | RUDDER THK<br>RUDDER SPA                                        | , FT         |                |              |
| DIG TIC      | OECIED AF           | CA, FIZ      | 350.1                | RUDDER SPA                                                      | N, FT        |                | 12.11        |
| BILGE KE     | EL IND              |              | PRESENT              | RUDDER PRO<br>RUDDER DIS<br>FIN SIZE I<br>NO FIN PAI<br>FWD FIN | DECTED AR    | EA, FT2        | 120.6<br>5.1 |
| BILGE KE     | EL DISP,            | LTON         | 5.8                  | KODDEK DIS                                                      | F, LION      |                | 5.1          |
| BILGE KE     | EL LGTH,            | FT           | 89.78                | FIN SIZE I                                                      | ND           |                | CALC         |
|              |                     |              |                      | NO FIN PAI                                                      | RS           |                | 1            |
| SHAFT SU     | PPORT TYP           | E IND        | POD                  |                                                                 |              |                | _            |
| SHAFT SU     | PPORT DIS           | P, LTON      | 43.1                 | CHORD,                                                          | FT           |                | 11.10        |
| SHAFT DI     | SP, LTON            |              | 0.0                  | THK, FT                                                         |              |                | 1.66         |
| PROP TYP     | E IND               |              | ਰਾਜ                  | SPAN, F<br>PROJECT                                              | T<br>ED ADES | TO CO          | 9.62         |
|              |                     |              | FP                   | PROJECT                                                         | EU AKEA,     | rTZ            | 106.7        |

| PROP BLADE DISP, LTON | 0.8   | DISP, LTON (PER PAIR) | 6.8 |
|-----------------------|-------|-----------------------|-----|
| NO PROP SHAFTS        | 2     | AFT FIN               |     |
| PROP DIA, FT          | 11.58 | CHORD, FT             |     |
|                       |       | THK, FT               |     |
| SONAR DOME IND        | NONE  | SPAN, FT              |     |
| SONAR DISP, LTON      | 0.0   | PROJECTED AREA, FT2   |     |
|                       |       | DISP, LTON (PER PAIR) |     |

PRINTED REPORT NO. 2 - APPENDAGE BUOYANCY AND WEIGHT

|                |            | CENTER | OF BUOYA | NCY   |
|----------------|------------|--------|----------|-------|
| APPENDAGE      | DISP, LTON | X, FT  | Y, FT    | Z, FT |
| ========       | ========   | =====  | ======   | ===== |
| SHELL          | 15.0       | 195.70 | 0.00     | 9.69  |
| SKEG           | 10.0       | 296.00 | 0.00     | 2.56  |
| BILGE KEELS*   | 5.8        | 147.25 | 18.08    | 6.22  |
| PODS*          | 43.1       | 354.79 | 8.22     | 4.03  |
| PROP BLADES*   | 0.8        | 345.68 | 8.22     | 2.35  |
| RUDDERS*       | 5.1        | 372.86 | 8.22     | 7.04  |
| ROLL FIN PAIR* | 6.8        | 209.00 | 21.72    | 0.90  |
|                | ========   |        |          |       |
| TOTAL, LTON    | 86.6       |        |          |       |

### \* TRANSVERSE C.B. PER SIDE IS SHOWN

SWBS114, SHLL APNDG, LTON 17.14 SWBS565, ROLL FINS, LTON 37.36 C,E>RUN,RESI COMMAND STRING IS:
RUN,RESISTANCE MODULE

ASSET/MONOSC VERSION 3.3+ - RESISTANCE MODULE - 2/11/95 11.01.11.

## PRINTED REPORT NO. 1 - SUMMARY

| RESID RESIST IND FRICTION LINE IND ENDUR DISP IND ENDUR CONFIG IND SONAR DRAG IND SKEG IND | ITTC<br>AVG DISP<br>NO TS         | SHAFT SUPPORT TYPE IND PRPLN SYS RESIST IND PROP TYPE IND SONAR DOME IND | POD<br>CALC               |
|--------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------|---------------------------|
| USABLE FUEL WT, LTON                                                                       | 517.1                             | CORR ALW<br>DRAG MARGIN FAC<br>TRAILSHAFT PWR FAC                        | 0.00050<br>0.080          |
| NO RUDDERS NO FIN PAIRS PROP TIP CLEAR RATIO NO PROP SHAFTS PROP DIA, FT                   | 0.25                              | PRPLN SYS RESIST FRAC MAX SPEED SUSTN SPEED ENDUR SPEED                  |                           |
| KT FRIC<br>MAX 26.04 5699.<br>SUSTN 25.00 5060.                                            | RESID API<br>7711. 40<br>5549. 31 | HORSEPOWER, HP                                                           | LBF<br>238929.<br>201858. |

PRINTED REPORT NO. 2 - SPEED-POWER MATRIX

RESID RESIST IND NRC ENDUR DISP IND AVG DISP

### SPEED AND POWER FOR FULL LOAD DISP

FULL LOAD WT, LTON

3813.4

| SPEED |       | EFFECTI | VE HORS | EPOWER | , HP   |        | DRAG    |
|-------|-------|---------|---------|--------|--------|--------|---------|
| KT    | FRIC  | RESID   | APPDG   | WIND   | MARGIN | TOTAL  | LBF     |
| 2.00  | 3.    | 0.      | 7.      | 0.     | 1.     | 11.    | 1847.   |
| 4.00  | 25.   | 3.      | 35.     | 1.     | 5.     | 70.    | 5681.   |
| 6.00  | 80.   | 18.     | 95.     | 3.     | 16.    | 211.   | 11447.  |
| 8.00  | 185.  | 55.     | 191.    | 6.     | 35.    | 473.   | 19280.  |
| 10.00 | 353.  | 135.    | 333.    | 12.    | 67.    | 901.   | 29363.  |
| 12.00 | 600.  | 281.    | 527.    | 21.    | 114.   | 1543.  | 41892.  |
| 14.00 | 938.  | 416.    | 765.    | 34.    | 172.   | 2325.  | 54128.  |
| 16.00 | 1383. | 502.    | 1050.   | 50.    | 239.   | 3224.  | 65662.  |
| 18.00 | 1947. | 836.    | 1420.   | 71.    | 342.   | 4617.  | 83579.  |
| 20.00 | 2645. | 1374.   | 1870.   | 98.    | 479.   | 6466.  | 105349. |
| 22.00 | 3489. | 2205.   | 2410.   | 130.   | 659.   | 8894.  | 131736. |
| 24.00 | 4493. | 4040.   | 3110.   | 169.   | 945.   | 12757. | 173218. |
| 26.00 | 5671. | 7609.   | 4031.   | 215.   | 1402.  | 18929. | 237239. |
| 28.00 | 7036. | 15094.  | 5357.   | 269.   | 2220.  |        | 348871. |
|       |       |         |         |        |        |        |         |

### SPEED AND POWER FOR AVE ENDUR DISP

AVE ENDUR DISP, LTON 3591.0

| SPEED |       | EFFECTI | VE HORS | EPOWER | , HP   |        | DRAG    |
|-------|-------|---------|---------|--------|--------|--------|---------|
| KT    | FRIC  | RESID   | APPDG   | WIND   | MARGIN | TOTAL  | LBF     |
| 2.00  | 3.    | 0.      | 7.      | 0.     | 1.     | 11.    | 1818.   |
| 4.00  | 24.   | 3.      | 35.     | 1.     | 5.     | 68.    | 5573.   |
| 6.00  | 78.   | 16.     | 94.     | 3.     | 15.    | 206.   | 11196.  |
| 8.00  | 179.  | 52.     | 190.    | 6.     | 34.    | 462.   | 18812.  |
| 10.00 | 342.  | 127.    | 330.    | 12.    | 65.    | 877.   | 28587.  |
| 12.00 | 581.  | 264.    | 522.    | 22.    | 111.   | 1499.  | 40706.  |
| 14.00 | 909.  | 447.    | 766.    | 34.    | 172.   | 2328.  | 54182.  |
| 16.00 | 1340. | 664.    | 1064.   | 51.    | 249.   | 3368.  | 68597.  |
| 18.00 | 1886. | 991.    | 1430.   | 73.    | 350.   | 4731.  | 85647.  |
| 20.00 | 2562. | 1512.   | 1875.   | 100.   | 484.   | 6533.  |         |
| 22.00 | 3380. | 2386.   | 2417.   | 133.   | 665.   |        | 106436. |
| 24.00 | 4353. | 4509.   | 3142.   | 172.   |        | 8981.  | 133026. |
| 26.00 | 5494. | 8078.   | 4058.   |        | 974.   | 13149. | 178535. |
| 28.00 | 6816. | 13845.  |         | 219.   | 1428.  | 19277. | 241605. |
| 20.00 | 0010. | 12042.  | 5227.   | 273.   | 2093.  | 28254. | 328822. |

PRINTED REPORT NO. 3 - SHIP GEOMETRIC DATA FOR RESISTANCE COMPUTATIONS

RESID RESIST IND ENDUR DISP IND

NRC AVG DISP

| FULL LOAD | AVE ENDUR DISP                                                                                          |
|-----------|---------------------------------------------------------------------------------------------------------|
| 3726.8    | 3504.5                                                                                                  |
| 86.6      | 86.6                                                                                                    |
| 3813.4    | 3591.0                                                                                                  |
| 380.00    | 380.00                                                                                                  |
| 379.79    | 379.53                                                                                                  |
| 50.94     | 50.81                                                                                                   |
| 15.12     | 14.56                                                                                                   |
| 19347.1   | 18828.5                                                                                                 |
| 19347.1   | 18828.5                                                                                                 |
| 700.3     | 700.3                                                                                                   |
| 1682.9    | 1711.2                                                                                                  |
| 7.2802    | 7.3470                                                                                                  |
| 7.4562    | 7.4689                                                                                                  |
|           | 3726.8<br>86.6<br>3813.4<br>380.00<br>379.79<br>50.94<br>15.12<br>19347.1<br>19347.1<br>700.3<br>1682.9 |

| BEAM-DRAFT RATIO         | 3.3690  | 3.4892  |
|--------------------------|---------|---------|
| PRISMATIC COEF           | 0.5640  | 0.5566  |
| MAX SECTION COEF         | 0.7901  | 0.7840  |
| DISP-LENGTH RATIO        | 68.0321 | 64.1060 |
| LCB-LENGTH RATIO         | 0.5006  | 0.4964  |
| HALF ANG ENTRANCE, DEG   | 8.53    | 8.27    |
| HALF ANG RUN, DEG        | 10.31   | 27.05   |
| TRANSOM BUTTOCK ANG, DEG | 5.96    | 5.96    |
| BOW SECT AREA COEF       | 0.0000  | 0.0000  |
| TRANSOM SECT AREA COEF   | 0.0203  | 0.0020  |
| TRANSOM BREADTH COEF     | 0.5332  | 0.2111  |
| TRANSOM DEPTH COEF       | 0.0484  | 0.0121  |
|                          |         |         |

## PRINTED REPORT NO. 4 - APPENDAGE DATA

| SKEG IND<br>SKEG AREA, FT2                                                                                                             | PRESENT<br>350.1                             |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| BILGE KEEL IND                                                                                                                         |                                              |
| SHAFT SUPPORT TYPE IND POD STRUT CHORD LGTH, FT POD STRUT THICKNESS, FT POD BARREL LGTH, FT POD BARREL DIA, FT POD STRUT TE OFFSET, FT | POD<br>8.47<br>2.45<br>24.21<br>7.35<br>7.65 |
| NO PROP SHAFTS WET SHAFT LGTH (PORT), FT WET SHAFT LGTH (STBD), FT INTRMDT SHAFT DIA, FT                                               | 2.<br>0.00<br>0.00                           |
| PROP TYPE IND<br>PROP DIA, FT                                                                                                          | FP<br>11.58                                  |
| SONAR DOME IND<br>SONAR DRAG IND<br>SONAR SECT AREA, FT2                                                                               | NONE                                         |
| NO RUDDERS<br>RUDDER AREA, FT2                                                                                                         | 2.<br>120.6                                  |
| NO FIN PAIRS ROLL FIN AREA, FT2 C,E>RUN,RESI COMMAND STRING IS: RUN,RESISTANCE MODULE                                                  | 1.<br>213.5                                  |

ASSET/MONOSC VERSION 3.3+ - RESISTANCE MODULE - 2/11/95 11.12.43.

## PRINTED REPORT NO. 1 - SUMMARY

| RESID RESIST IND FRICTION LINE IND ENDUR DISP IND ENDUR CONFIG IND SONAR DRAG IND SKEG IND                | NRC<br>ITTC<br>AVG DISP<br>NO TS<br>PRESENT | BILGE KEEL IND SHAFT SUPPORT TYPE IND PRPLN SYS RESIST IND PROP TYPE IND SONAR DOME IND RUDDER TYPE IND | PRESENT<br>POD<br>CALC<br>FP<br>NONE<br>SPADE |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| FULL LOAD WT, LTON AVG ENDUR DISP, LTON USABLE FUEL WT, LTON NO RUDDERS NO FIN PAIRS PROP TIP CLEAR RATIO | 3591.0<br>517.1<br>2.                       |                                                                                                         | 0.00050<br>0.080                              |

| NO PROP S<br>PROP DIA,    |                                        |                                | 2.<br>11.58                               |                                            | SUSTN<br>ENDUR |                 |                                    | 0.211<br>0.400                              |
|---------------------------|----------------------------------------|--------------------------------|-------------------------------------------|--------------------------------------------|----------------|-----------------|------------------------------------|---------------------------------------------|
| CONDITION MAX SUSTN ENDUR | SPEED<br>KT<br>26.04<br>25.00<br>14.00 | FRIC<br>5699.<br>5060.<br>909. | EFFECT<br>RESID<br>7711.<br>5549.<br>447. | IVE HOR<br>APPDG<br>4054.<br>3538.<br>766. | WIND<br>216.   | MARGIN<br>1414. | TOTAL<br>19095.<br>15486.<br>2328. | DRAG<br>LBF<br>238929.<br>201858.<br>54182. |

PRINTED REPORT NO. 2 - SPEED-POWER MATRIX

RESID RESIST IND ENDUR DISP IND

NRC AVG DISP

SPEED AND POWER FOR FULL LOAD DISP ------

FULL LOAD WT, LTON

3813.4

| SPEED |       |        | VE HORS | FDOWER | UD     |        | 222     |
|-------|-------|--------|---------|--------|--------|--------|---------|
| KT    | FRIC  | RESID  |         |        | •      |        | DRAG    |
|       |       |        | APPDG   | WIND   | MARGIN | TOTAL  | LBF     |
| 2.00  | 3.    | 0.     | 7.      | 0.     | 1.     | 11.    | 1847.   |
| 4.00  | 25.   | 3.     | 35.     | 1.     | 5.     | 70.    | 5681.   |
| 6.00  | 80.   | 18.    | 95.     | 3.     | 16.    | 211.   | 11447.  |
| 8.00  | 185.  | 55.    | 191.    | 6.     | 35.    | 473.   | 19280.  |
| 10.00 | 353.  | 135.   | 333.    | 12.    | 67.    | 901.   | 29363.  |
| 12.00 | 600.  | 281.   | 527.    | 21.    | 114.   | 1543.  | 41892.  |
| 14.00 | 938.  | 416.   | 765.    | 34.    | 172.   | 2325.  | 54128.  |
| 16.00 | 1383. | 502.   | 1050.   | 50.    | 239.   | 3224.  | 65662.  |
| 18.00 | 1947. | 836.   | 1420.   | 71.    | 342.   | 4617.  | 83579.  |
| 20.00 | 2645. | 1374.  | 1870.   | 98.    | 479.   | 6466.  | 105349. |
| 22.00 | 3489. | 2205.  | 2410.   | 130.   | 659.   | 8894.  | 131736. |
| 24.00 | 4493. | 4040.  | 3110.   | 169.   | 945.   | 12757. | 173218. |
| 26.00 | 5671. | 7609.  | 4031.   | 215.   | 1402.  | 18929. | 237239. |
| 28.00 | 7036. | 15094. | 5357.   | 269.   | 2220.  | 29977. | 348871. |
|       |       |        |         |        |        |        |         |

## SPEED AND POWER FOR AVE ENDUR DISP

AVE ENDUR DISP, LTON 3591.0

| SPEED |       | EFFECTI | VE HORS | EPOWER | HP     |        | DRAG    |
|-------|-------|---------|---------|--------|--------|--------|---------|
| KT    | FRIC  | RESID   | APPDG   | WIND   | MARGIN | TOTAL  | LBF     |
| 2.00  | 3.    | 0.      | 7.      | 0.     | 1.     | 11.    | 1818.   |
| 4.00  | 24.   | 3.      | 35.     | 1.     | 5.     | 68.    | 5573.   |
| 6.00  | 78.   | 16.     | 94.     | 3.     | 15.    | 206.   | 11196.  |
| 8.00  | 179.  | 52.     | 190.    | 6.     | 34.    | 462.   | 18812.  |
| 10.00 | 342.  | 127.    | 330.    | 12.    | 65.    | 877.   | 28587.  |
| 12.00 | 581.  | 264.    | 522.    | 22.    | 111.   | 1499.  | 40706.  |
| 14.00 | 909.  | 447.    | 766.    | 34.    | 172.   | 2328.  | 54182.  |
| 16.00 | 1340. | 664.    | 1064.   | 51.    | 249.   | 3368.  | 68597.  |
| 18.00 | 1886. | 991.    | 1430.   | 73.    | 350.   | 4731.  | 85647.  |
| 20.00 | 2562. | 1512.   | 1875.   | 100.   | 484.   | 6533.  | 106436. |
| 22.00 | 3380. | 2386.   | 2417.   | 133.   | 665.   | 8981.  | 133026. |
| 24.00 | 4353. | 4509.   | 3142.   | 172.   | 974.   | 13149. | 178535. |
| 26.00 | 5494. | 8078.   | 4058.   | 219.   | 1428.  | 19277. | 241605. |
| 28.00 | 6816. | 13845.  | 5227.   | 273.   | 2093.  |        | 328822  |

PRINTED REPORT NO. 3 - SHIP GEOMETRIC DATA FOR RESISTANCE COMPUTATIONS

RESID RESIST IND NRC ENDUR DISP IND AVG DISP

N-97

| BARE HULL DISP, LTON APPENDAGE DISP, LTON TOTAL DISP, LTON LBP, FT WL LENGTH, FT BEAM AT MAX AREA STA, FT DRAFT AT MAX AREA STA, FT TAYLOR WETTED SURF AREA, FT2 SHIP WETTED SURF AREA, FT2 SKEG WETTED SURF AREA, FT2 WIND FRONT AREA, FT2 | FULL LOAD<br>3726.8<br>86.6<br>3813.4<br>380.00<br>379.79<br>50.94<br>15.12 | AVE ENDUR DISP<br>3504.5<br>86.6<br>3591.0<br>380.00<br>379.53<br>50.81<br>14.56 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| SHIP WETTED SHEE AREA, FT2                                                                                                                                                                                                                  | 19347.1                                                                     | 18828 5                                                                          |
| SKEG WETTED SURF AREA, FT2                                                                                                                                                                                                                  | 700.3                                                                       | 700.3                                                                            |
| WIND FRONT AREA, FT2                                                                                                                                                                                                                        | 1682.9                                                                      | 1711.2                                                                           |
| FROUDE WETTED SURF COEF LENGTH-BEAM RATIO BEAM-DRAFT RATIO PRISMATIC COEF                                                                                                                                                                   | 7.2802<br>7.4562                                                            | 7.3470<br>7.4689                                                                 |
| TRANSOM SECT AREA COEF TRANSOM BREADTH COEF TRANSOM DEPTH COEF                                                                                                                                                                              | 0.0203<br>0.5332<br>0.0484                                                  | 0.0000<br>0.0020<br>0.2111<br>0.0121                                             |

## PRINTED REPORT NO. 4 - APPENDAGE DATA

| SKEG IND                                                                                                                               | PRESENT               |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| SKEG AREA, FT2                                                                                                                         | 350.1                 |
| BILGE KEEL IND                                                                                                                         | PRESENT               |
| SHAFT SUPPORT TYPE IND POD STRUT CHORD LGTH, FT POD STRUT THICKNESS, FT POD BARREL LGTH, FT POD BARREL DIA, FT POD STRUT TE OFFSET, FT | 2.45<br>24.21<br>7.35 |
| NO PROP SHAFTS WET SHAFT LGTH (PORT), FT WET SHAFT LGTH (STBD), FT INTRMDT SHAFT DIA, FT                                               | 2.<br>0.00<br>0.00    |
| PROP TYPE IND<br>PROP DIA, FT                                                                                                          | FP<br>11.58           |
| SONAR DOME IND<br>SONAR DRAG IND<br>SONAR SECT AREA, FT2                                                                               | NONE                  |
| NO RUDDERS<br>RUDDER AREA, FT2                                                                                                         | 2.<br>120.6           |
| NO FIN PAIRS ROLL FIN AREA, FT2 C,E>RUN,PROP COMMAND STRING IS: RUN,PROPELLER MODULE                                                   | 1.<br>213.5           |

ASSET/MONOSC VERSION 3.3+ - PROPELLER MODULE - 2/11/95 11.13.09.

PRINTED REPORT NO. 1 - SUMMARY

| ENDUR CONFIG IND PROP TYPE IND PROP DIA IND PROP AREA IND SHAFT SUPPORT TYPE IND            | NO TS<br>FP<br>CALC<br>CALC<br>POD         | PROP LOC IND<br>PROP ID IND      | ANALYTIC<br>CALC<br>SPADE                 |
|---------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------|-------------------------------------------|
| MAX SPEED, KT MAX EHP (/SHAFT), HP MAX SHP (/SHAFT), HP MAX PROP RPM MAX PROP EFF           | 26.04<br>9548.<br>13637.<br>220.0<br>0.700 | ENDUR PROP RPM                   | 14.00<br>1164.<br>1613.<br>111.5<br>0.721 |
| SUSTN SPEED, KT SUSTN EHP (/SHAFT), HP SUSTN SHP (/SHAFT), HP SUSTN PROP RPM SUSTN PROP EFF | 25.00<br>7743.<br>10928.<br>206.7<br>0.709 | PITCH RATIO<br>EXPAND AREA RATIO | 11.58<br>7.<br>1.27<br>0.890<br>1.69      |

NO PROP SHAFTS 2.0

TOTAL PROPELLER WT, LTON 13.33

PRINTED REPORT NO. 2 - PROPELLER CHARACTERISTICS

PROP ID IND NO PROP SHAFTS 2. PROP DIA, FT 11.58 7. NO BLADES PITCH RATIO 1.27 EXPAND AREA RATIO 0.890 THRUST DED COEF 0.050 TAYLOR WAKE FRAC 0.050 HULL EFFICIENCY 1.000 REL ROTATE EFF 1.000

|                      |          | CONDITIONS                             |           |
|----------------------|----------|----------------------------------------|-----------|
| CHARACTERISTICS      | MUMIXAM  | SUSTAINED                              | ENDURANCE |
|                      | ======== | ====================================== |           |
| SPEED, KT            | 26.04    | 25.00                                  | 14.00     |
| RPM                  | 220.0    | 206.7                                  | 111.5     |
| THRUST/SHAFT, LBF    | 125754.  | 106242.                                | 28517.    |
| EHP/SHAFT, HP        | 9548.    | 7743.                                  | 1164.     |
| TORQUE/SHAFT, FT-LBF | 325554.  | 277711.                                | 75971.    |
| SHP/SHAFT, HP        | 13637.   | 10928.                                 | 1613.     |
| ADVANCE COEF (J)     | 0.984    | 1.005                                  | 1.043     |
| THRUST COEF (KT)     | 0.262    | 0.250                                  | 0.231     |
| TORQUE COEF (10KQ)   | 0.585    | 0.565                                  | 0.531     |
| OPEN WATER EFFY      | 0.700    | 0.709                                  | 0.721     |
| PC                   | 0.700    | 0.709                                  | 0.721     |
|                      |          | 7 0 3                                  | 0.721     |

PRINTED REPORT NO. 3 - CAVITATION CHARACTERISTICS

| MAX SPEED OF ADV, KT     | 24.74   |
|--------------------------|---------|
| MAX THRUST, LBF          | 125754. |
| MAX PROP RPM             | 220.0   |
| PROP DIA, FT             | 11.58   |
| HUB DEPTH, FT            | 12.77   |
| STD CAV NO               | 1.69    |
| LOCAL CAV NO (.7R)       | 0.28    |
| MEAN THRUST LOADING COEF | 0.17    |
| EXPAND AREA RATIO        | 0.890   |

MIN EAR REQUIRED 0.890 BACK CAV ALLOWED, PERCENT 10.0

#### PRINTED REPORT NO. 4 - PROPELLER ARRANGEMENT

PROP DIA, FT 11.58 FULL LOAD DRAFT, FT 15.12 HUB DEPTH FROM DWL, FT 12.77 LONG LOC FROM AP, FT 34.31 HUB POS FROM CL, FT 8.22 TIP CLR FROM BL, FT -3.44TIP CLR FROM MAX HB, FT 13.43 TIP CLR FROM HULL BOT, FT 2.74

TOTAL PROPELLER WT, LTON 13.33

C, E>RUN, MACH

COMMAND STRING IS:

LOADING CONDITION.

RUN, MACHINERY MODULE

- \*\* WARNING MACHINERY MODULE \*\* (W-TORQGOVRNSHDIA-SHSIZN)
- PROPELLER SHAFT DIAMETER IS GOVERNED BY TORQUE.
- \*\* WARNING MACHINERY MODULE \*\* (W-MRDIM2SMALL-MRDIMR)
- DIMENSIONS OF THE FOLLOWING MACHINERY ROOMS ARE TOO SMALL

TO ENCLOSE MACHINERY: 2

- \*\* WARNING MACHINERY MODULE \*\* (W-LT1ENGPERSHAFTE-MHYMSG)
  LESS THAN ONE PROPULSION ENGINE PER PROPELLER SHAFT IS OPERATING
  AT ENDURANCE (DUE TO SELECTION OF VALUES WITHIN THE PARAMETER
- ELECT PG ARR OP ARRAY). THIS IS NOT CURRENT STANDARD NAVAL PRACTICE.
  \*\* WARNING MACHINERY MODULE \*\* (W-TOTALSSGENLT3-MHYMSG)
- TOTAL NUMBER OF SHIP SERVICE GENERATORS (INCLUDING VSCF, IF ANY), IS LESS THAN THREE.
- \*\* WARNING MACHINERY MODULE \*\* (W-ZEROSBYSSGEN-MHYMSG)
  NO STANDBY SHIP-SERVICE GENERATORS EXIST AT BATTLE ELECTRICAL
- \*\* WARNING MACHINERY MODULE \*\* (W-OPSSGENENDURLT2-MHYMSG)
  NUMBER OF SHIP SERVICE GENERATORS OPERATING AT ENDURANCE CONDITION IS
  LESS THAN TWO.

ASSET/MONOSC VERSION 3.3+ - MACHINERY MODULE - 2/11/95 11.16.47.

#### PRINTED REPORT NO. 1 - SUMMARY

| TRANS TYPE IND           | ELECT   | MAX SPEED, KT          | 26.04            |
|--------------------------|---------|------------------------|------------------|
| ELECT PRPLN TYPE IND     | ACR-DCS | SUSTN SPEED IND        | GIVEN            |
| SHAFT SUPPORT TYPE IND   | POD     | SUSTN SPEED, KT        | 25.00            |
| NO PROP SHAFTS           | 2.      | ENDUR SPEED IND        | GIVEN            |
| ENDUR CONFIG IND         | NO TS   | ENDUR SPEED, KT        | 14.00            |
| SEC ENG USAGE IND        |         | DESIGN MODE IND        | <b>ENDURANCE</b> |
| MAX MARG ELECT LOAD, KW  | 2564.   | ENDURANCE, NM          | 8000.            |
| AVG 24 HR ELECT LOAD, KW | 1075.   | USABLE FUEL WT, LTON   | 517.1            |
| SWBS 200 GROUP WT, LTON  | 272.3   | SUSTN SPEED POWER FRAC | 0.80             |
| SWBS 300 GROUP WT, LTON  | 248.0   |                        |                  |
|                          |         | NO NO ONLINE           | NO ONLINE        |
| ARRANGEMENT OR SS GEN    | TYPE    | INSTALLED MAX+SUSTN    | ENDURANCE        |

| ARRANGEMENT OR SS GEN | TYPE     | INSTALLED | MAX+SUSTN | ENDURANCE |
|-----------------------|----------|-----------|-----------|-----------|
| ELECT PG ARR 1 IND    | M-PG     | 2         | 2         | 1         |
| ELECT PG ARR 2 IND    |          | 0         | 0         | 0         |
| ELECT DL ARR IND      | MTR      | 2         | 2         | 2         |
| SEP SS GEN            | 2738. KW | 2         | 2         | 1         |
| VSCF SS CYCLO         | KW       | 0         | 0         | 0         |
|                       |          |           |           |           |

|                | MAIN ENG       | SEC ENG | SS ENG   |
|----------------|----------------|---------|----------|
|                |                |         | ~        |
| ENG SELECT IND | GIVEN          |         | GIVEN    |
| ENG MODEL IND  | GE-LM1600-VAN2 |         | A-12V270 |

| ENG TYPE IND ENG SIZE IND NO INSTALLED ENG PWR AVAIL, HP ENG RPM ENG SFC, LBM/HP-HR ENG LOAD FRAC | RGT<br>CALC<br>2<br>15108.<br>4627.8<br>0.347<br>1.000 | 0 | D DIESEL CALC 2 3820. 900.0 .337 1.000 |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|---|----------------------------------------|
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|---|----------------------------------------|

# PRINTED REPORT NO. 2 - MACHINERY EQUIPMENT LIST

| NO<br>EACH                              |                                                                                       | LTON | LENGTH<br>FT | WIDTH<br>FT          | HEIGHT<br>FT |
|-----------------------------------------|---------------------------------------------------------------------------------------|------|--------------|----------------------|--------------|
| 222000000000000000000000000000000000000 | PROPULSION PLANT MAIN ENGINE (BARE)                                                   |      |              | 4.36<br>7.86<br>4.94 |              |
| 2<br>0                                  | Thousand Discontinuing                                                                | 21.0 | 16.29        | 6.21                 | 7.84         |
| 0<br>2<br>0<br>0                        | SS REDUCTION GEAR (17) SEPARATE SS GENERATOR VSCF SS GENERATOR VSCF SS CYCLOCONVERTER | 12.2 | 6.92         | 5.09                 | 6.59         |

## PRINTED REPORT NO. 3 - ENGINES

|                                                                                                      | MAIN ENG                                                   | SEC ENG | SS ENG                              |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------|-------------------------------------|
| ENG SELECT IND ENG TYPE IND ENG MODEL IND ENG SIZE IND NO INSTALLED ENG BARE WT, LTON ENG LENGTH, FT | GIVEN<br>RGT<br>GE-LM1600-VAN2<br>CALC<br>2<br>1.5<br>9.33 | 0       | GIVEN D DIESEL A-12V270 CALC 2 21.0 |
| ENG WIDTH, FT<br>ENG HEIGHT, FT<br>ENG PWR AVAIL, HP                                                 | 4.36<br>4.36<br>15108.                                     |         | 16.29<br>6.21<br>7.84<br>3820.0     |

| ENG RPM ENG MASS FL, LBM/SEC ENG EXH TEMP, DEGF ENG SFC EQN IND ENG SFC, LBM/HP-HR                            | 4627.8<br>70.9<br>677.5<br>POLY QN<br>0.347    |   | 900.0<br>13.2<br>819.8<br>DIESEL<br>.337     |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------|---|----------------------------------------------|
| MAX SPEED CONDITION                                                                                           |                                                |   |                                              |
| NO OPERATING ENG PWR, HP ENG RPM ENG MASS FL, LBM/SEC ENG EXH TEMP, DEGF ENG SFC, LBM/HP-HR                   | 2<br>15108.<br>4627.8<br>70.9<br>677.5<br>.347 | 0 | 2<br>1788.7<br>900.0<br>9.8<br>675.6<br>.339 |
| SUSTN SPEED CONDITION                                                                                         |                                                |   |                                              |
| NO OPERATING ENG PWR, HP ENG RPM ENG MASS FL, LBM/SEC ENG EXH TEMP, DEGF ENG SFC, LBM/HP-HR                   | 2<br>12087.<br>4347.5<br>65.0<br>621.2<br>.336 | 0 | 2<br>1788.7<br>900.0<br>9.8<br>675.6<br>.339 |
| ENDUR SPEED CONDITION                                                                                         |                                                |   |                                              |
| ENG ENDUR RPM IND NO OPERATING ENG PWR, HP ENG RPM ENG MASS FL, LBM/SEC ENG EXH TEMP, DEGF ENG SFC, LBM/HP-HR | 1<br>3891.<br>4627.8<br>42.0<br>501.1          | 0 | 1<br>1500.0<br>900.0<br>9.2<br>658.0<br>.345 |

NOTE - ENGINE OPERATING DATA ARE BASED ON USE OF DFM FUEL.

PRINTED REPORT NO. 4 - GEARS

| T |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

REDUCTION GEAR DESIGN FACTORS 1ST 2ND
AND DIMENSIONS STAGE STAGE SS

REDUCTION RATIO K FACTOR FACE WIDTH RATIO CASING WT FACTOR

GEAR FACE WIDTH, FT PINION GEAR DIA, FT REDUCTION GEAR DIA, FT SUN GEAR DIA, FT PLANET GEAR DIA, FT RING GEAR DIA, FT RING GEAR THK, FT NO PLANETS

PRINTED REPORT NO. 5 - ELECTRIC PROPULSION AND VSCF EQUIPMENT

TRANS TYPE IND-ELECT
ELECT PRPLN TYPE IND-ACR-DCS
SWITCHGEAR TYPE IND-ADV
TRANS LINE NODE PT IND-CALC
ELECT PRPLN RATING IND-CALC

TRANS LINE NODE PT X, FT 258.33
TRANS LINE NODE PT Y, FT -6.10
TRANS LINE NODE PT Z, FT 15.00

PRPLN PRPLN VSCF
GENERATOR MOTOR GENERAT GENERATOR \_\_\_\_\_\_ INSTALLED NUMBER 2 2 0 TYPE AC DCS FREQUENCY CONTROL DRIVE DIRECT ROTOR COOLING AIR LIQUID ROTOR TIP SPEED, FT/MIN 28500. STATOR COOLING LIQUID ARM ELECT LOAD, AMP/IN 2400.  $2\overline{400}$ . 14.19 POWER RATING, MW 10.17 4628. ROTATIONAL SPEED, RPM 220. NUMBER OF POLES 4. 6. LENGTH, FT 13.3 8.5 WIDTH, FT 5.3 4.4 4.4 HEIGHT, FT 5.3 WEIGHT, LTON 12.9 13.9

# OTHER ELECTRIC PROPULSION AND VSCF EQUIPMENT

WEIGHT LTON CONTROLS 1.4 BRAKING RESISTORS 2.0 EXCITERS 7.4 SWITCHGEAR 1.5 POWER CONVERTERS .0 13.4 DEIONIZED COOL WATER SYS PRPLN TRANS LINE 36.8 RECTIFIERS 3.8

HELIUM REFRIGERATION SYS

VSCF CYCLOCONVERTERS

4.6

.0

PRINTED REPORT NO. 6 - SHIP SERVICE GENERATORS

SS SYS TYPE IND-SEP GEN SIZE IND-NON STD

ELECT LOAD DES MARGIN FAC 0.200
ELECT LOAD SL MARGIN FAC 0.100
ELECT LOAD IMBAL FAC 0.900
MAX MARG ELECT LOAD, KW 2563.6
MAX STANDBY LOAD, KW 1515.3
24 HR AVG ELECT LOAD, KW 1075.0

# VSCF SS CYCLOCONVERTERS

|                       | МО      | NO     | REQ      | AVAIL    | LOADING |
|-----------------------|---------|--------|----------|----------|---------|
| CONDITION             | INSTALL | ONLINE | KW/CYCLO | KW/CYCLO | FRAC    |
|                       |         |        |          |          |         |
| WINTER BATTLE         | . 0     | 0      |          | •        | 0.000   |
| WINTER CRUISE         | 0       | C      |          |          | 0.000   |
| SUMMER CRUISE         | 0       | 0      |          |          | 0.000   |
| ENDURANCE (24 HR AVG) | 0       | 0      |          |          | 0.000   |

# SEPARATE SS GENERATORS

| CONDITION            | NO<br>INSTALL | NO<br>ONLINE | REQ<br>KW/GEN | AVAIL<br>KW/GEN | LOADING<br>FRAC |
|----------------------|---------------|--------------|---------------|-----------------|-----------------|
| WINTER BATTLE        | 2             | 2            | 1282.         | 2738.           | 0.468           |
| WINTER CRUISE        | 2             | 1            | 2464.         | 2738.           | 0.900           |
| SUMMER CRUISE        | 2             | 1            | 1783.         | 2738.           | 0.651           |
| ENDURANCE(24 HR AVG) | 2             | 1            | 1075.         | 2738.           | 0.393           |

## TOTALS

| ======================================= |       |       |               |  |  |
|-----------------------------------------|-------|-------|---------------|--|--|
|                                         | REQ   | AVAIL | LOADING       |  |  |
| CONDITION                               | KW    | KW    | FRAC          |  |  |
|                                         |       |       | ~ ~ ~ ~ ~ ~ ~ |  |  |
| CITHERD DAMES                           | 0564  | - 4   | 5 465         |  |  |
| WINTER BATTLE                           | 2564. | 5475. | 0.468         |  |  |
| WINTER CRUISE                           | 2464. | 2738. | 0.900         |  |  |
| SUMMER CRUISE                           | 1783. | 2738. | 0.651         |  |  |
| ENDURANCE (24 HR AVG)                   | 1075. | 2738. | 0.393         |  |  |

PRINTED REPORT NO. 7 - INTAKE DUCTS

INLET TYPE IND-PLENUM DUCT SILENCING IND-BOTH GT ENG ENCL IND-84 DBA

|                  | MA        | IN ENG | SEC ENG | SS ENG   |
|------------------|-----------|--------|---------|----------|
|                  |           |        |         |          |
| ENG TYPE         |           | RGT    |         | D DIESEL |
| INLET DUCT XSECT | AREA, FT2 | 52.1   | .0      | .0       |
| INLET DUCT XSECT | LTH, FT   | 6.63   | .0      | .0       |
| INLET DUCT XSECT | WID, FT   | 7.86   | .0      | .0       |

INLET DUCTING

INLET SILENCER

GT COOLING SUPPLY

GT BLEED AIR SUPPLY

MMR1

|                     | MAIN<br>WT,LTON |         | SEC<br>WT,LTON | ENG<br>VCG,FT |
|---------------------|-----------------|---------|----------------|---------------|
| INLET               | 0.4             | 36.87   |                |               |
| INLET DUCTING       | 0.8             | 29.72   |                |               |
| INLET SILENCER      | 1.1             | 35.20   |                |               |
| GT COOLING SUPPLY   | 0.8             | 24.57   |                |               |
| GT BLEED AIR SUPPLY | 2.0             | 21.73   |                |               |
|                     |                 |         |                |               |
|                     | MMR2            | 2       |                |               |
|                     | ====            | =       |                |               |
|                     |                 |         |                |               |
|                     |                 |         | SEC            |               |
|                     | WT, LTON        | VCG, FT | WT,LTON        | VCG, FT       |
| INLET               |                 | 25.05   |                |               |
| INLEI               | 0.4             | 35.27   |                |               |

NOTE - NUMERIC DATA PRESENTED ABOVE ARE ON A PER ENGINE BASIS.

0.7

1.1

0.7

2.0

28.92

35.20

23.98

21.31

# TRUNK AREA AND VOLUME REQUIREMENTS

|                      | ARE   | A, FT2 | VOLUME, FT3 |       |
|----------------------|-------|--------|-------------|-------|
| ENGINE CATEGORY      | HULL  | DKHS   | HULL        | DKHS  |
|                      |       |        |             |       |
| MAIN ENGINES         | 133.0 | 133.0  | 1330.       | 1317. |
| SECONDARY ENGINES    | 0.0   | 0.0    | 0.          | 0.    |
| SHIP-SERVICE ENGINES | 0.0   | 0.0    | 0.          | 0.    |
|                      |       |        |             |       |
| TOTALS               | 133.0 | 133.0  | 1330.       | 1317. |

PRINTED REPORT NO. 8 - EXHAUST DUCTS

EXHAUST IR SUPPRESS IND-PRESENT DUCT SILENCING IND-BOTH GT ENG ENCL IND-84 DBA

EXHAUST STACK TEMP, DEGF 350.0 EDUCTOR DESIGN FAC 1.000

| 1                         | MAIN ENG | SEC ENG | SS ENG   |
|---------------------------|----------|---------|----------|
|                           |          |         |          |
| ENG TYPE                  | RGT      |         | D DIESEL |
| ENG EXH TEMP, DEG         | 677.     |         | 820.     |
| ENG MASS FL, LBM/SEC      | 70.9     |         | 13.2     |
| EXH DUCT GAS TEMP, DEG    | 610.     |         | 820.     |
| EXH DUCT GAS DEN, LBM/FT3 | 0.0366   |         | .0306    |
| EXH DUCT MASS FL, LBM/SEC | 80.8     |         | 13.2     |
| EXH DUCT AREA, FT2        | 20.6     |         | 4.0      |
|                           |          |         |          |

MMR1

| MATN | ENG     | SEC | ENC     |
|------|---------|-----|---------|
|      | VCG, FT |     | VCG, FT |
|      |         |     |         |

EXH DUCT (TO BOILER/REG)

EXH BOILER (RACER)

EXH REGENERATOR 11.0 22.29

| EXH DUCT (TO STACK) | 1.9 | 33.43 |
|---------------------|-----|-------|
| EXH SILENCER        | 2.9 | 38.03 |
| EXH STACK           | 1.0 | 47.17 |
| EXH SPRAY RING      | .6  | 32.33 |
| EXH EDUCTOR         | 1.6 | 45.63 |

MMR2

|     |                      |      | ENG<br>VCG,FT | SEC<br>WT,LTON |  |
|-----|----------------------|------|---------------|----------------|--|
|     |                      |      |               |                |  |
| EXH | DUCT (TO BOILER/REG) |      |               |                |  |
| EXH | BOILER (RACER)       |      |               |                |  |
| EXH | REGENERATOR          | 11.0 | 22.29         |                |  |
| EXH | DUCT (TO STACK)      | 1.7  | 32.63         |                |  |
| EXH | SILENCER             | 2.9  | 38.03         |                |  |
| EXH | STACK                | 1.0  | 45.57         |                |  |
| EXH | SPRAY RING           | .6   | 31.26         |                |  |
| EXH | EDUCTOR              | 1.6  | 44.03         |                |  |

NOTE - NUMERIC DATA PRESENTED ABOVE ARE ON A PER ENGINE BASIS.

# TRUNK AREA AND VOLUME REQUIREMENTS

|                      | AREA, FT2 |       | VOLUME | ,FT3  |
|----------------------|-----------|-------|--------|-------|
| ENGINE CATEGORY      | HULL      | DKHS  | HULL   | DKHS  |
|                      |           |       |        |       |
| MAIN ENGINES         | 332.4     | 177.1 | 3324.  | 1753. |
| SECONDARY ENGINES    | 0.0       | 0.0   | 0.     | 0.    |
| SHIP-SERVICE ENGINES | 68.0      | 68.0  | 680.   | 672.  |
|                      |           |       |        |       |
| TOTALS               | 400.4     | 245.1 | 4004.  | 2425. |

PRINTED REPORT NO. 9 - PROPELLERS AND SHAFTS

SHAFT SUPPORT TYPE IND-POD SHAFT SYS SIZE IND-CALC PROP TYPE IND-FP

| PROP DIA, FT               | 11.58  |
|----------------------------|--------|
| HUB DIA, FT                | 4.86   |
| PROP BLADE WT, LTON        | 3.1    |
| PROP HUB WT, LTON          | 3.6    |
| BEND STRESS CON FAC        | 1.000  |
| OVRHG PROP MOM ARM RATIO   | 0.340  |
| EQUIV FP PROP WT, LTON     | 6.7    |
| ALLOW BEND STRESS, LBF/IN2 | 6000.  |
| FATIGUE LIMIT, LBF/IN2     | 47500. |
| YIELD POINT, LBF/IN2       | 75000. |
| TORQUE MARGIN FAC          | 1.200  |
| OFF-CENTER THRUST FAC      | 1.000  |
| NO STRUTS PER SHAFT        | 0      |

### PORT SHAFT

|                                                                                   | ==                                            | ======           |                 |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------|------------------|-----------------|--|
|                                                                                   | PROP<br>SECTION                               | INTERMED SECTION | LINE<br>SECTION |  |
|                                                                                   | DECTION                                       | DECTION          | SECTION         |  |
| ANGLE, DEG<br>LENGTH, FT<br>DIAMETER, FT<br>BORE RATIO<br>WEIGHT, LTON<br>LCG, FT | -5.85<br>2.89<br>1.21<br>.550<br>.7<br>348.28 |                  |                 |  |
|                                                                                   |                                               |                  |                 |  |

TCG, FT -8.22
VCG, FT 2.62
FACTOR OF SAFETY

STBD SHAFT

|                  | PROP    | INTERMED | LINE    |
|------------------|---------|----------|---------|
|                  | SECTION | SECTION  | SECTION |
|                  |         |          |         |
| ANGLE, DEG       | -5.85   |          |         |
| LENGTH, FT       | 2.89    |          |         |
| DIAMETER, FT     | 1.21    |          |         |
| BORE RATIO       | .550    |          |         |
| WEIGHT, LTON     | .7      |          |         |
| LCG, FT          | 348.28  |          |         |
| TCG, FT          | 8.22    |          |         |
| VCG, FT          | 2.62    |          |         |
| FACTOR OF SAFETY |         |          |         |

PRINTED REPORT NO. 10 - STRUTS, PODS, AND RUDDERS

SHAFT SUPPORT TYPE IND-POD SHAFT SYS SIZE IND-CALC

PROP DIA, FT 11.58
NO STRUTS PER SHAFT 0
NO SHAFTS 2
OVRHG PROP MOM ARM RATIO 0.340

STRUTS

MAIN INTERMED STRUT STRUT

WALL THICKNESS, FT CHORD, FT THICKNESS, FT BARREL LTH, FT BARREL DIA, FT

PODS ====

STRUT WALL THICKNESS, FT .05

STRUT CHORD, FT 8.47

STRUT THICKNESS, FT 2.45

BARREL LTH, FT 24.21

BARREL DIA, FT 7.35

RUDDERS

RUDDER TYPE IND-SPADE RUDDER SIZE IND-CALC NO RUDDERS

NO RUDDERS 2.
RUDDER WT (PER), LTON 13.8
RUDDER DISP (PER), LTON 2.6

CHORD, FT THICK, FT SPAN, FT

SPADE RUDDER 9.96 1.11 12.11

PRINTED REPORT NO. 11 - ELECTRIC LOADS 400 HZ ELECT LOAD FAC 0.200

| 400 HZ ELECT LOAD FAC 0.200                                                                                                                                                                                 |                        |                        |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|
| PAYLOAD LOADS                                                                                                                                                                                               | WINTER<br>CRUISE<br>KW | WINTER<br>BATTLE<br>KW | SUMMER<br>CRUISE<br>KW |
| **                                                                                                                                                                                                          | ~~~~                   | KW                     |                        |
| COMMAND AND SURVEILLANCE (60 HZ)                                                                                                                                                                            | 86.1                   | 441.6                  | 86.1                   |
| COMMAND AND SURVEILLANCE (400 HZ)                                                                                                                                                                           | 21.5                   | 110.4                  | 21.5                   |
| ARMAMENT (60 HZ)                                                                                                                                                                                            | 8.0                    | 49.6                   | 8.0                    |
| ARMAMENT (400 HZ)                                                                                                                                                                                           | 2.0                    | 12.4                   | 2.0                    |
| OTHER PAYLOAD (60 HZ)                                                                                                                                                                                       | 0.0                    | 0.0                    | 0.0                    |
| COMMAND AND SURVEILLANCE (60 HZ) COMMAND AND SURVEILLANCE (400 HZ) ARMAMENT (60 HZ) ARMAMENT (400 HZ) OTHER PAYLOAD (60 HZ) OTHER PAYLOAD (400 HZ)                                                          | 0.0                    | 0.0                    | 0.0                    |
| SUB-TOTAL                                                                                                                                                                                                   | 117.6                  | 614.0                  | 117.6                  |
| NON-PAYLOAD LOADS (* INDICATES US                                                                                                                                                                           | ER ADJUSTI             | ED VALUE)              |                        |
| PROPULSION AND STEERING LIGHTING MISCELLANEOUS ELECTRIC HEATING VENTILATION AIR CONDITIONING AUXILIARY BOILER AND FRESH WATER FIREMAIN UNREP AND HANDLING MISC AUXILIARY MACHINERY SERVICES AND WORK SPACES | 255 4                  | 283 4                  | 194 0                  |
| LIGHTING                                                                                                                                                                                                    | 101.0                  | 99 0                   | 101 0                  |
| MISCELLANEOUS ELECTRIC                                                                                                                                                                                      | 46.1                   | 40.1                   | 46 1                   |
| HEATING                                                                                                                                                                                                     | 598.3                  | 305.1                  | 29 9                   |
| VENTILATION                                                                                                                                                                                                 | 234.9                  | 180.9                  | 234.9                  |
| AIR CONDITIONING                                                                                                                                                                                            | 220.6                  | 207.4                  | 329.2                  |
| AUXILIARY BOILER AND FRESH WATER                                                                                                                                                                            | 114.7                  | 84.9                   | 114.7                  |
| FIREMAIN                                                                                                                                                                                                    | 49.2                   | 69.4                   | 49.2                   |
| UNREP AND HANDLING                                                                                                                                                                                          | 7.7                    | 12.9*                  | 7.7                    |
| MISC AUXILIARY MACHINERY                                                                                                                                                                                    | 101.6                  | 56.9                   | 101.6                  |
| SERVICES AND WORK SPACES                                                                                                                                                                                    | 42.7                   | 14.1                   | 42.7                   |
| SUBTOTAL                                                                                                                                                                                                    | 1772.1                 | 1353.9                 | 1251.0                 |
| TOTAL                                                                                                                                                                                                       | 1889.7                 | 1967.9                 | 1368.6                 |
| TOTAL (INCLUDING MARGINS)                                                                                                                                                                                   | 2463.8                 | 2563.6                 | 1783.3                 |
| MAX MARG ELECT LOAD 24 HR AVG ELECT LOAD CONNECTED ELECT LOAD ANCHOR ELECT LOAD VITAL ELECT LOAD EMERGENCY ELECT LOAD MAX STBY ELECT LOAD                                                                   | 2563.6                 |                        |                        |
| 24 HR AVG ELECT LOAD                                                                                                                                                                                        | 1075.0                 |                        |                        |
| CONNECTED ELECT LOAD                                                                                                                                                                                        | 5215.0                 |                        |                        |
| ANCHOR ELECT LOAD                                                                                                                                                                                           | 1515.3                 |                        |                        |
| VITAL ELECT LOAD                                                                                                                                                                                            | 993.2                  |                        |                        |
| EMERGENCY ELECT LOAD                                                                                                                                                                                        | 607.5                  |                        |                        |
| MAX STBY ELECT LOAD                                                                                                                                                                                         | 1515.3                 |                        |                        |
| PRINTED REPORT NO. 12 - POWERING                                                                                                                                                                            |                        |                        |                        |

SUSTN SPEED IND-GIVEN ENDUR SPEED IND-GIVEN TRANS EFF IND-CALC

100 PCT POWER TRANS EFF 0.9026 25 PCT POWER TRANS EFF 0.9124

|                            | MAX<br>SPEED   | SUSTN<br>SPEED | ENDUR<br>SPEED |
|----------------------------|----------------|----------------|----------------|
| SHIP SPEED, KT<br>PROP RPM | 26.04<br>220.0 | 25.00<br>206.7 | 14.00          |
| NO OP PROP SHAFTS          | 2              | 2              | 2              |
| EHP (/SHAFT), HP           | 9548.          | 7743.          | 1164.          |
| PROPULSIVE COEF            | 0.700          | 0.709          | 0.721          |
| ENDUR PWR ALW              | 1.0            | 1.0            | 1.1            |
| SHP (/SHAFT), HP           | 13637.         | 10928.         | 1775.          |
| TRANS EFFY                 | 0.903          | 0.904          | 0.912          |
| CP PROP TRANS EFFY MULT    | 1.000          | 1.000          | 1.000          |
| PROPUL PWR (/SHAFT); HP    | 15108.         | 12087.         | 1945.          |
| PD GEN PWR (/SHAFT), HP    | 0.             | 0.             | 0.             |
| BHP (/SHAFT), HP           | 15108.         | 12087.         | 1945.          |

## PRINTED REPORT NO. 13 - HULL STRUCTURE AND MISCELLANEOUS WEIGHT

| SWBS         | COMPONENT                    | WT,LTON | LCG, FT | VCG, FT |
|--------------|------------------------------|---------|---------|---------|
|              | =======                      | ======  | ======  | =====   |
|              | STRUCTURES                   |         |         |         |
|              | NGS, FORGINGS, AND WELDMENTS | 31.4    | 267.80  | 9.30    |
| 162 STACKS   | S AND MASTS                  | 2.1     | 202.67  | 46.37   |
| 180 FOUNDAT: | IONS                         |         |         |         |
| 182 PROPUI   | LSION PLANT FOUNDATIONS      | 90.3    | 250.18  | 7.47    |
| 183 ELECTI   | RIC PLANT FOUNDATIONS        | 43.8    | 195.19  | 12.82   |

## \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

## PRINTED REPORT NO. 14 - PROPULSION PLANT WEIGHT

| CMDC COMPONENTS                                                                                                                                                 |         |        |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-------|
|                                                                                                                                                                 | WT,LTON |        |       |
| 000 PROPERTOR                                                                                                                                                   | ======  | =====  | ===== |
| 200 PROPULSION PLANT                                                                                                                                            | 272.3   | 247.04 | 13.40 |
| 210 ENERGY GENERATING SYSTEM (NUCLEAR)                                                                                                                          | 0.0     | 0.00   | 0.00  |
| 220 ENERGY GENERATING SYSTEM (NON-NUCLEAR)                                                                                                                      | 0.0     | 0.00   | 0.00  |
| 200 PROPULSION PLANT 210 ENERGY GENERATING SYSTEM (NUCLEAR) 220 ENERGY GENERATING SYSTEM (NON-NUCLEAR) 230 PROPULSION UNITS                                     | 181.3   | 254.06 | 12.17 |
| 233 PROPULSION INTERNAL COMBUSTION ENGINES                                                                                                                      | 0.0     | 0 00   | 0 00  |
| 234 PROPULSION GAS TURBINES 235 ELECTRIC PROPULSION 240 TRANSMISSION AND PROPULSOR SYSTEMS 241 PROPULSION REDUCTION GEARS 242 PROPULSION CLUTCHES AND COUPLINGS | 58.2    | 196.74 | 17.33 |
| 235 ELECTRIC PROPULSION                                                                                                                                         | 123.1   | 281.14 | 9.73  |
| 240 TRANSMISSION AND PROPULSOR SYSTEMS                                                                                                                          | 20.6    | 347.32 | 2.52  |
| 241 PROPULSION REDUCTION GEARS                                                                                                                                  | 0.0     | 0.00   | 0.00  |
| 242 PROPULSION CLUTCHES AND COUPLINGS                                                                                                                           | 0.0     | 0.00   | 0.00  |
| 243 PROPULSION SHAFTING                                                                                                                                         | 1.4     | 348.28 | 2.62  |
| 243 PROPULSION SHAFTING 244 PROPULSION SHAFT BEARINGS 245 PROPULSORS                                                                                            | 5.9     | 350.79 | 2.88  |
| 245 PROPULSORS                                                                                                                                                  | 13.3    | 345.69 | 2.35  |
| 250 PRPLN SUPPORT SYS (EXCEPT FUEL+LUBE OIL)                                                                                                                    | 35.0    | 199.33 | 28 20 |
| 251 COMBUSTION AIR SYSTEM                                                                                                                                       | 10.0    | 188.31 | 27.25 |
| 251 COMBUSTION AIR SYSTEM<br>252 PROPULSION CONTROL SYSTEM                                                                                                      | 8.9     | 196.74 | 19.50 |
| 256 CIRCULATING AND COOLING SEA WATER SYSTEM                                                                                                                    | 2.4     | 239.40 | 10.80 |
| 259 UPTAKES (INNER CASING)                                                                                                                                      | 13.6    | 201.98 | 37.76 |
| 259 UPTAKES (INNER CASING) 260 PRPLN SUPPORT SYS (FUEL+LUBE OIL) 261 FUEL SERVICE SYSTEM 262 MAIN PROPULSION LUBE OIL SYSTEM                                    | 23.4    | 188.42 | 12.42 |
| 261 FUEL SERVICE SYSTEM                                                                                                                                         | 9.4     | 177.74 | 11.33 |
| 262 MAIN PROPULSION LUBE OIL SYSTEM                                                                                                                             | 10.0    | 196.74 | 12 00 |
| 264 LUBE OIL FILL, TRANSFER, AND PURIF<br>290 SPECIAL PURPOSE SYSTEMS<br>298 OPERATING FLUIDS                                                                   | 4.0     | 192 74 | 16.00 |
| 290 SPECIAL PURPOSE SYSTEMS                                                                                                                                     | 12.0    | 222.74 | 9 53  |
| 298 OPERATING FLUIDS                                                                                                                                            | 9.0     | 228 00 | 8 00  |
| 299 REPAIR PARTS AND SPECIAL TOOLS                                                                                                                              | 3.0     | 205 20 | 14 10 |
|                                                                                                                                                                 | 5.0     | 200.20 | 14.10 |

## \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

## PRINTED REPORT NO. 15 - ELECTRIC PLANT WEIGHT

| SWBS COMPONENT                       | WT,LTON | LCG, FT | VCG, FT |
|--------------------------------------|---------|---------|---------|
|                                      | ======  | ======  | =====   |
| 300 ELECTRIC PLANT                   | 248.0   | 199.42  | 16.82   |
| 310 ELECTRIC POWER GENERATION        | 121.9   | 195.11  | 12.01   |
| 311 SHIP SERVICE POWER GENERATION    | 89.8    | 197.08  | 12.00   |
| 313 BATTERIES AND SERVICE FACILITIES | 22.8    | 197.08  | 6.00    |
| 314 POWER CONVERSION EQUIPMENT       | 9.2     | 171.00  | 27.00   |
| 320 POWER DISTRIBUTION SYSTEMS       | 51.7    | 204.24  | 24.76   |
| 321 SHIP SERVICE POWER CABLE         | 32.4    | 201.40  | 27.00   |
| 324 SWITCHGEAR AND PANELS            | 19.3    | 209.00  | 21.00   |
| 330 LIGHTING SYSTEM                  | 18.7    | 200.00  | 27.22   |
| 331 LIGHTING DISTRIBUTION            | 11.8    | 201.40  | 27.00   |
| 332 LIGHTING FIXTURES                | 6.9     | 197.60  | 27.60   |
| 340 POWER GENERATION SUPPORT SYSTEMS | 37.7    | 195.27  | 17.56   |
| 342 DIESEL SUPPORT SYSTEMS           | 37.7    | 195.27  | 17.56   |
| 343 TURBINE SUPPORT SYSTEMS          | 0.0     | 0.00    | 0.00    |
| 390 SPECIAL PURPOSE SYSTEMS          | 18.0    | 222.86  | 14.25   |

398 OPERATING FLUIDS 399 REPAIR PARTS AND SPECIAL TOOLS 13.5 197.08 12.00 4.5 300.20 21.00

### \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

PRINTED REPORT NO. 16 - MACHINERY ROOMS

NO MAIN MACHINERY ROOMS 2
NO AUX MACHINERY ROOMS 0
NO OTHER MACHINERY ROOMS 0

#### BULKHEAD LOCATIONS

==============

| MR | MR   |        | FWD BHD |       | AFT BHD |        |       |  |
|----|------|--------|---------|-------|---------|--------|-------|--|
| ИО | ID   | BHD NO | X, FT   | X/LBP | BHD NO  | X, FT  | X/LBP |  |
|    |      |        |         |       |         |        |       |  |
| 1  | MMR1 | 6.     | 137.82  | 0.363 | 7.      | 172.65 | 0.454 |  |
| 2  | MMR2 | 9.     | 231.17  | 0.608 | 10.     | 266.00 | 0.700 |  |

#### DIMENSIONS

========

|   | MR<br>ID | AVAIL | FT<br>REQ | WIDTH, AVAIL | FT<br>REQ | HEIGHT,<br>AVAIL | FT<br>REQ |
|---|----------|-------|-----------|--------------|-----------|------------------|-----------|
| _ | MMR1     | 34.83 | 34.83     | 49.25        | 21.06     | 21.25            | 19.58     |
|   | MMR2     | 34.83 | 34.83     | 51.72        | 21.06     | 19.46            | 19.58     |

### ARRANGEMENTS

=========

MR MR ROTATION
NO ID ANGLE, DEG
-- ---1 MMR1 0.00
2 MMR2 0.00

PRINTED REPORT NO. 17 - MACHINERY ARRANGEMENTS

## CLEARANCES (MACHINERY TO MACHINERY)

TD PM

ENG TO ENG CLR, FT 1.00
ENG TO GEAR CLR, FT 1.00
OR ENG TO GEN CLR
OR GEAR TO GEN CLR
MTR TO GEAR CLR, FT 2.50
PRPLN ARR TO SS ARR CLR, FT 6.00
AISLE WIDTH CLR, FT 2.50
PORT/CL TB TO GEAR CLR, FT .00
STBD TB TO GEAR CLR, FT .00

### SEPARATIONS (BETWEEN HULL AND MACHINERY)

LONG (TO BHD), FT 1.00
TRANS (TO SIDE SHELL), FT 1.00
VERT (TO HULL BOT), FT 1.00
RADIAL (TO POD), FT 1.00

## ARRANGEMENTS

========

| ARRANGEMENT        | TYPE   | NO<br>INSTALLED | NO ONLINE MAX+SUSTN | NO ONLINE ENDURANCE |
|--------------------|--------|-----------------|---------------------|---------------------|
|                    |        |                 | ~                   |                     |
| ELECT PG ARR 1 IND | M-PG   | 2               | 2                   | 1                   |
| ELECT PG ARR 2 IND |        | 0               | 0                   | 0                   |
| ELECT DL ARR IND   | MTR    | 2               | 2                   | 2                   |
| SHIP SERVICE ARR   | DIESEL | 2               | 2                   | 1                   |

# MACHINERY COMPONENT LOCATIONS

|           |       | CG     | LOC, 1 | FT      |
|-----------|-------|--------|--------|---------|
| COMPONENT | MR ID | X      | Y      | Z       |
|           |       |        |        |         |
| MAIN ENG  | MMR1  | 148.06 | -6.10  | 15.00   |
| MAIN ENG  | MMR2  | 241.41 | -6.10  | 15.00   |
| SS ENG    | MMR1  | 146.97 | 6.93   | 3 12.00 |
| SS ENG    | MMR2  | 240.32 | 6.93   | 3 12.00 |
| PRPLN MTR |       | 356.30 | -8.22  | 3.44    |
| PRPLN MTR |       | 356.30 | 8.22   | 3.44    |

## SHAFTING

======

|            | END P  | OINT LOC, | FT   |                  |
|------------|--------|-----------|------|------------------|
| SHAFT TYPE | X      | Y         | Z    | SHAFT ANGLE, DEG |
|            |        |           |      |                  |
| PORT SHAFT | 349.72 | -8.22     | 2.77 | -5.85            |
| STBD SHAFT | 349.72 | 8.22      | 2.77 | -5.85            |

PRINTED REPORT NO. 18 - MACHINERY SPACE REQUIREMENTS

## MACHINERY ROOM VOLUME REQUIREMENTS

| VOLUME CATEGORY                             | VOLUME, FT3     |
|---------------------------------------------|-----------------|
| SWBS GROUP 200                              | 71423.          |
| PROPULSION POWER GENERATION                 | 13512.          |
| PROPULSION ENGINES                          |                 |
| PROPULSION REDUCTION GEARS AND GENERATORS   | 8846.           |
| DRIVELINE MACHINERY                         | 4666.<br>0.     |
| REDUCTION AND BEVEL GEARS WITH Z-DRIVE      |                 |
| ELECTRIC PROPULSION MOTORS AND GEARS        | 0.<br>0.        |
| REMOTELY-LOCATED THRUST BEARINGS            | 0.              |
| PROPELLER SHAFT                             | 0.              |
| ELECTRIC PROPULSION MISCELLANEOUS EQUIPMENT | 0016            |
| CONTROLS                                    | 1489.           |
| BRAKING RESISTORS                           | 771.            |
| MOTOR AND GENERATOR EXCITERS                | 1489.           |
| SWITCHGEAR                                  |                 |
| POWER CONVERTERS                            | 726.            |
| DEIONIZED COOLING WATER SYSTEMS             | 669.            |
| RECTIFIERS                                  | 2352.           |
| HELIUM REFRIGERATION SYSTEMS                | 548.            |
| PROPULSION AUXILIARIES                      | 1872.           |
| PROPULSION LOCAL CONTROL CONSOLES           | 47995.          |
| CP PROP HYDRAULIC OIL POWER MODULES         | 3601.           |
| FUEL OIL PUMPS                              | 0.              |
| LUBE OIL PUMPS                              | 24465.          |
| LUBE OIL PURIFIERS                          | 2590.<br>15269. |
| ENGINE LUBE OIL CONDITIONERS                |                 |
| SEAWATER COOLING PUMPS                      | 599.            |
| DEMINITER COOPERS FORES                     | 1470.           |
| SWBS GROUP 300                              | 23987.          |
| ELECTRIC PLANT POWER GENERATION             | 9898.           |
| ELECTRIC PLANT ENGINES                      | 6130.           |
| ELECTRIC PLANT GENERATORS AND GEARS         | 3768.           |
| SHIP SERVICE SWITCHBOARDS                   | 14089.          |
| CYCLOCONVERTERS                             | 0.              |
| SWBS GROUP 500                              | 40613.          |
| AUXILIARY MACHINERY                         | 40613.          |
| AIR CONDITIONING PLANTS                     | 7395.           |
| AUXILIARY BOILERS                           | 1135.           |
|                                             |                 |

| FIRE PUMPS DISTILLING PLANTS   | 2427.<br>10881. |
|--------------------------------|-----------------|
| AIR COMPRESSORS ROLL FIN PAIRS | 5895.<br>10305. |
| SEWAGE PLANTS                  | 2576.           |

# ARRANGEABLE AREA REQUIREMENTS

|                                   | FT        | 2         |
|-----------------------------------|-----------|-----------|
| SSCS GROUP NAME                   | HULL/DKHS | DKHS ONLY |
|                                   |           |           |
| 4.31 AUXILIARY MACHINERY DELTA    | 8258.6    | 0.0       |
| 4.3311 SHIP SERVICE POWER GENERAT | O.O       | 0.0       |
| 4.132 INTERNAL COMB ENG COMB AIR  | 0.0       | 0.0       |
| 4.133 INTERNAL COMB ENG EXHAUST   | 68.0      | 68.0      |
| 4.142 GAS TURBINE ENG COMB AIR    | 133.0     | 133.0     |
| 4.143 GAS TURBINE ENG EXHAUST     | 332.4     | 177.1     |

NOTE: \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

PRINTED REPORT NO. 19 - SURFACE SHIP ENDURANCE CALCULATION FORM

DESIGN MODE IND-ENDURANCE ENDUR DISP IND-AVG DISP ENDUR DEF IND-USN SHIP FUEL TYPE IND-JP-5

#### ENG ENDUR RPM IND-CALC

SHIP FUEL LHV, BTU/LBM 18300. DFM FUEL LHV, BTU/LBM 18360.

| (4)  | ENDURANCE REQUIRED, NM ENDURANCE SPEED, KT FULL LOAD DISPLACEMENT, LTON AVERAGE ENDURANCE DISPLACEMENT, LTON RATED FULL POWER SHP, HP DESIGN ENDURANCE POWER SHP @ (2)&(3A), HP AVERAGE ENDURANCE POWER (SHP), HP (5) X 1.10 | 27273.  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| (7)  | RATIO, AVG END SHP/RATED F.P. SHP (6)/(4)                                                                                                                                                                                    | 0.13015 |
| (8)  | ` ' ' ' '                                                                                                                                                                                                                    | 3891.   |
|      | AVERAGE PRPLN ENDURANCE BHP, HP (6)/TRANSMISSION EFFICIENCY                                                                                                                                                                  | 3891.   |
| (8B) |                                                                                                                                                                                                                              | 0.      |
|      | 24 HOUR AVERAGE ELECTRIC LOAD, KW                                                                                                                                                                                            | 1075.   |
| (9A) | 24 HOUR AVERAGE ELECTRIC LOAD PORTION                                                                                                                                                                                        |         |
|      | SUPPLIED BY SS ENG, KW                                                                                                                                                                                                       | 1075.   |
| (10) | CALCULATED PROPULSION FUEL RATE @(8), LBM/HP-HR                                                                                                                                                                              | 0.342   |
| (11) | CALC PRPLN FUEL CONSUMPTION, LBM/HR (10)X(8)                                                                                                                                                                                 | 1332.1  |
|      | CALC SS GEN FUEL RATE @ (9A), LBM/KW-HR                                                                                                                                                                                      | 0.482   |
| (13) | CALC SS GEN FUEL CONSUMPTION, LBM/HR                                                                                                                                                                                         | 518.0   |
|      | (12)X(9A)                                                                                                                                                                                                                    |         |
| (14) | CALC FUEL CONSUMPTION FOR OTHER SERVICES, LBM/HR                                                                                                                                                                             | 0.0     |
| (15) | TOTAL CALC ALL-PURPOSE FUEL CONSUMPTION, LBM/HR                                                                                                                                                                              | 1850.1  |
|      | (11)+(13)+14)                                                                                                                                                                                                                |         |
|      | CALC ALL-PURPOSE FUEL RATE, LBM/HP-HR (15)/(6)                                                                                                                                                                               | 0.521   |
|      | FUEL RATE CORRECTION FACTOR BASED ON (7)                                                                                                                                                                                     | 1.0400  |
| (18) | SPECIFIED FUEL RATE, LBM/HP-HR                                                                                                                                                                                               | 0.542   |
|      | (16)X(17)                                                                                                                                                                                                                    |         |
|      |                                                                                                                                                                                                                              |         |

|                                   | 569   |
|-----------------------------------|-------|
| (18) X1.05                        |       |
|                                   | 7.1 * |
| (1)X(6)X(19)/(2)X2240             |       |
| (21) TAILPIPE ALLOWANCE FACTOR    | .95   |
| (22) ENDURANCE FUEL LOAD, LTON 54 | 4.3   |
| (20)/(21)                         |       |

ENG ENDUR RPM IND-

PRINTED REPORT NO. 20 - MACHINERY MARGINS

PROPULSION PLANT \_\_\_\_\_\_

MAIN ENG MAX LOAD FRAC 1.000 SEC ENG MAX LOAD FRAC TORQUE MARGIN FAC 1.200

ELECTRIC PLANT

SS ENG MAX LOAD FRAC SS ENG MAX LOAD FRAC
ELECT LOAD DES MARGIN FAC
ELECT LOAD SL MARGIN FAC
ELECT LOAD IMBAL FAC
0.900 1.000 C, E>RUN, AUX COMMAND STRING IS:

RUN, AUXILIARY SYS MODULE

ASSET/MONOSC VERSION 3.3+ - AUXILIARY SYS MODULE - 2/11/95 11.18.11.

PRINTED REPORT NO. 1 - SUMMARY

| LBP,FT BEAM,FT TOTAL AREA,FT2 TOTAL VOLUME,FT3 USABLE FUEL WT,LTON FULL LOAD WT,LTON MAX SHP, HP  SEP GEN: 5475.0 KW | 491932.<br>517.1<br>3813.4<br>30217.   | COMP HTR TYPE IND DISTILLER TYPE IND WATER HTR TYPE IND ANCHOR LOC IND              | DI DOMBITO                        |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------|
| BOAT SELECT IND<br>BOAT TYPE IND                                                                                     | 3.0<br>255.0<br>55.7<br>GIVEN<br>MIXED | AUX BOILER TYPE IND<br>NO AUX BOILERS<br>TOTAL AUX BLR CAP, LB/<br>SWBS 517 WT,LTON | ELECTRIC<br>2.<br>'HR 200.<br>0.3 |
| SWBS 583 WT,LTON BULKHEAD                                                                                            | ·UB/UB<br>35.6                         | NO FAS STATIONS RAS STATIONS: NO 2.                                                 | 2.<br>TYPE                        |
| STRIKE GEAR: NO 2.                                                                                                   | TYPE<br>PALLET                         | SSCS 3.53 AREA,FT2<br>SWBS 571 WT,LTON                                              | 212.9<br>10.7                     |
| STRK DECK AREA, FT2<br>SWBS 572 WT, LTON                                                                             | 472.2<br>35.1                          | STOWAGE AREA,FT2<br>SWBS 671 WT,LTON<br>SWBS 672 WT,LTON                            | 4.0                               |

212.9

| PRINTED | REPORT | NO. | 2- | AIRCONDITIONING |
|---------|--------|-----|----|-----------------|
|         |        |     |    |                 |

| AIRCOND MARGIN           | 0.20  | TOTAL ACCOM       | 122.0   |
|--------------------------|-------|-------------------|---------|
| SHIP AIRCOND LOAD, TON   | 137.1 | COLL PROT SYS IND | PRESENT |
| AIRCOND MARGIN LOAD, TON | 27.4  |                   |         |
| TOTAL AIRCOND LOAD, TON  | 164.6 | SWBS 514 WT,LTON  | 55.7    |
| AIRCOND UNIT CAP, TON    | 85.0  | SWBS 514 VCG,FT   | 17.1    |
| NO AIRCOND UNITS         | 3.0   | ·                 |         |
| TOTAL AIRCOND CAP, TON   | 255.0 |                   |         |

### PRINTED REPORT NO. 3- AUXILIARY BOILERS

| AUX BOILER TYPE IND<br>NO AUX BOILERS<br>AUX BLR UNIT CAP, LB/HR<br>TOTAL AUX BLR CAP, LB/HR | 100.                                                          | COLL PROT SYS IND COMP HTR TYPE IND   | PRESENT<br>ELECTRIC |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|---------------------|
|                                                                                              | 818.<br>30.<br>0.<br>134.<br>0.<br>933.<br>573.<br>49.<br>61. | · · · · · · · · · · · · · · · · · · · | 55.7<br>17.1        |
| TOTAL STEAM LOAD, LB/HR                                                                      | 110.                                                          |                                       |                     |

#### PRINTED REPORT NO. 4- BOATS

| BOAT SELECT IND | GIVEN       | BOAT COMP WT, LTON | 33.7 |
|-----------------|-------------|--------------------|------|
| BOAT TYPE IND   | MIXED       |                    |      |
| BOAT COMPLEMENT | 2 RIB+UB/UB | SWBS 583 WT, LTON  | 35.6 |
|                 |             | SWBS 583 VCG,FT    | 39.0 |

#### PRINTED REPORT NO. 5- REPLENISHMENT SYSTEMS

| NO FAS STATIONS<br>FAS STATION WT, |         | 2.<br>0.5 |
|------------------------------------|---------|-----------|
| RAS STATIONS:                      | NO<br>2 | TYPE      |

| 2.                   | BULKHEAD |                     |       |
|----------------------|----------|---------------------|-------|
| RAS STATION WT, LTON | 10.2     | DKHS ONLY AREA, FT2 | 212.9 |

RAS STATION WT, LTON

RAS STATION VCG, FT

SWBS 571 WT, LTON

10.2

SSCS 3.53 AREA, FT2

SWBS 571 VCG, FT

36.8

### PRINTED REPORT NO. 6- STRIKE GEAR

| STRIKE GEAR:    | NO<br>2. | TYPE<br>PALLET |  |
|-----------------|----------|----------------|--|
| STRK DECK AREA  | FT2      | 472.2          |  |
| SWBS 572 WT,LTC | ON       | 35.1           |  |
| SWBS 572 VCG,FT | r        | 23.9           |  |

#### PRINTED REPORT NO. 7- STOWAGE SYSTEMS

## STOWAGE SSCS SPACES AND ASSOCIATED FACTORS

| SSCS   | STOW UTIL | STOW EFF | DECK LOAD | STACK      |
|--------|-----------|----------|-----------|------------|
| SPACES | FACTOR    | FACTOR   | LB/FT2    | HEIGHT, FT |
| A1390  | 0.36      | 0.45     | 25.00     | 6.50       |
| A2230  | 1.00      | 0.50     | 3.70      | 6.50       |

| A2410                                                                                       | 0.67    | 0.47                                  | 14.70 | 6.50 |
|---------------------------------------------------------------------------------------------|---------|---------------------------------------|-------|------|
| A2620                                                                                       | 0.58    | 0.45                                  | 14.70 | 6.50 |
| A3700                                                                                       | 0.54    | 0.45                                  | 32.10 | 6.50 |
| STOWAGE AREA,FT<br>SWBS 671 WT,LTC<br>SWBS 671 VCG,FT<br>SWBS 672 WT,LTC<br>SWBS 672 VCG,FT | ON<br>C | 2299.7<br>4.0<br>22.3<br>25.3<br>14.1 |       |      |

# PRINTED REPORT NO. 8 - AUXILIARY SYSTEMS WEIGHT

| SWBS          | COMPONENT  ========  KILIARY SYSTEMS, GENERAL  CLIMATE CONTROL  COMPARTMENT HEATING SYSTEM  VENTILATION SYSTEM  MACHINERY SPACE VENT SYSTEM                                                                                              | WT-LTON | VCG-FT |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| *500 AUX      | KILIARY SYSTEMS, GENERAL                                                                                                                                                                                                                 | 516 0   | 20 20  |
| 510           | CLIMATE CONTROL                                                                                                                                                                                                                          | 114.3   | 20.39  |
| 511           | COMPARTMENT HEATING SYSTEM VENTILATION SYSTEM MACHINERY SPACE VENT SYSTEM AIR CONDITIONING SYSTEM REFRIGERATION SYSTEM AUX BOILERS+OTHER HEAT SOURCES EA WATER SYSTEMS FIREMAIN+SEA WATER FLUSHING SYS SPRINKLING SYSTEM WASHDOWN SYSTEM | 4.4     | 25.01  |
| 512           | VENTILATION SYSTEM                                                                                                                                                                                                                       | 43.4    | 28 77  |
| 513           | MACHINERY SPACE VENT SYSTEM                                                                                                                                                                                                              | 8.7     | 32 71  |
| 514           | AIR CONDITIONING SYSTEM                                                                                                                                                                                                                  | 55.7    | 17.12  |
| 516           | REFRIGERATION SYSTEM                                                                                                                                                                                                                     | 1.9     | 14 86  |
| 517           | AUX BOILERS+OTHER HEAT SOURCES                                                                                                                                                                                                           | .3      | 17.51  |
| 520 s         | EA WATER SYSTEMS                                                                                                                                                                                                                         | 39.9    | 19.58  |
| 521           | FIREMAIN+SEA WATER FLUSHING SYS                                                                                                                                                                                                          | 20.5    | 18.75  |
| 522           | SPRINKLING SYSTEM                                                                                                                                                                                                                        |         | 21.67  |
| 523           | WASHDOWN SYSTEM                                                                                                                                                                                                                          | 3.0     | 34.23  |
| 524           | WASHDOWN SYSTEM AUXILIARY SEAWATER SYSTEM SCUPPERS+DECK DRAINS                                                                                                                                                                           |         |        |
| 526           | SCUPPERS+DECK DRAINS                                                                                                                                                                                                                     | .8      | 31.63  |
| 527           | FIREMAIN ACTUATED SERV, OTHER                                                                                                                                                                                                            |         |        |
| 528           | PLUMBING DRAINAGE                                                                                                                                                                                                                        | 12.0    | 19.50  |
| 529           | DRAINAGE+BALLASTING SYSTEM                                                                                                                                                                                                               | 3.6     | 9.90   |
| 53U F         | RESH WATER SYSTEMS                                                                                                                                                                                                                       | 23.6    | 17.07  |
| * 532         | FIREMAIN ACTUATED SERV, OTHER PLUMBING DRAINAGE DRAINAGE+BALLASTING SYSTEM RESH WATER SYSTEMS DISTILLING PLANT COOLING WATER                                                                                                             | 3.8     | 15.91  |
| 500           | DOMESTIC WILLIAM                                                                                                                                                                                                                         | 4.0     | 25.73  |
| 534           | AUX STEAM + DRAINS IN MACH BOX                                                                                                                                                                                                           | 5.9     | 19.56  |
| 535           | AUX STEAM + DRAINS IN MACH BOX                                                                                                                                                                                                           | 9.8     | 12.49  |
| 536           | AUXILIARY FRESH WATER COOLING                                                                                                                                                                                                            |         |        |
| 540 F         | UELS/LUBRICANTS, HANDLING+STORAGE                                                                                                                                                                                                        | 21 1    |        |
| 541           | SHIP FIEL+COMPENSATING SYSTEM                                                                                                                                                                                                            | 31.1    | 12.53  |
| 542           | SHIP FUEL+COMPENSATING SYSTEM<br>AVIATION+GENERAL PURPOSE FUELS                                                                                                                                                                          | 29.8    | 12.91  |
| 543           | AVIATION+GENERAL PURPOSE LUBO                                                                                                                                                                                                            |         |        |
| 544           | LIQUID CARGO                                                                                                                                                                                                                             |         |        |
| 545           | TANK HEATING                                                                                                                                                                                                                             | 1 2     | 3.90   |
| 549           | SPEC FUEL+LURRICANTS HANDI +STOW                                                                                                                                                                                                         |         | 3.90   |
| 550 A         | IR, GAS+MISC FLUID SYSTEM COMPRESSED AIR SYSTEMS                                                                                                                                                                                         | 43.0    | 18 56  |
| 551           | COMPRESSED AIR SYSTEMS                                                                                                                                                                                                                   | 19.8    | 16.51  |
| 552           | COMPRESSED GASES                                                                                                                                                                                                                         | 17.0    | 10.51  |
|               | O2 N2 SYSTEM                                                                                                                                                                                                                             |         |        |
| 554           | LP BLOW                                                                                                                                                                                                                                  |         |        |
| 555           | FIRE EXTINGUISHING SYSTEMS                                                                                                                                                                                                               | 23.2    | 20.32  |
| 556           | HYDRAULIC FLUID SYSTEM                                                                                                                                                                                                                   |         |        |
| 557           | LIQUID GASES, CARGO                                                                                                                                                                                                                      |         |        |
| 558           | SPECIAL PIPING SYSTEMS                                                                                                                                                                                                                   |         |        |
| 560 SI        | HIP CNTL SYS                                                                                                                                                                                                                             | 76.8    | 5.66   |
| 261           | STEERING+DIVING CNTL SYS                                                                                                                                                                                                                 | 11.8    | 17.45  |
|               | RUDDER                                                                                                                                                                                                                                   | 27.6    | 7.04   |
| 565<br>568    |                                                                                                                                                                                                                                          | 37.4    | .90    |
|               | MANEUVERING SYSTEMS                                                                                                                                                                                                                      |         |        |
| 570 01<br>571 | NDERWAY REPLENISHMENT SYSTEMS<br>REPLENISHMENT-AT-SEA SYSTEMS                                                                                                                                                                            | 45.8    | 26.90  |
|               | SHIP STORES+EQUIP HANDLING SYS                                                                                                                                                                                                           | 10.7    | 36.82  |
| 572<br>573    | CARGO HANDLING SYSTEMS                                                                                                                                                                                                                   | 35.1    | 23.88  |
| 574           | VERTICAL REPLENISHMENT SYSTEMS                                                                                                                                                                                                           |         |        |
| 580 MI        | ECHANICAL HANDLING SYSTEMS                                                                                                                                                                                                               | 74 -    | 20.00  |
|               | united the otototo                                                                                                                                                                                                                       | 74.5    | 30.98  |

|   | 581                                    | ANCHOR HANDLING+STOWAGE SYSTEMS                                                                                                                                                                       | 23.9        | 18.78          |
|---|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
|   | 582                                    | MOORING+TOWING SYSTEMS                                                                                                                                                                                | 10.1        | 30.76          |
|   | 583                                    | BOATS, HANDLING+STOWAGE SYSTEMS                                                                                                                                                                       | 35.6        | 39.00          |
|   | 584                                    | MECH OPER DOOR, GATE, RAMP, TTBL SYS                                                                                                                                                                  |             |                |
|   | 585                                    | ELEVATING + RETRACTING GEAR                                                                                                                                                                           |             |                |
|   | 586                                    | AIRCRAFT RECOVERY SUPPORT SYS                                                                                                                                                                         |             |                |
|   | 587                                    | AIRCRAFT LAUNCH SUPPORT SYSTEM                                                                                                                                                                        |             |                |
| * |                                        | AIRCRAFT HANDLING, SERVICING, STOWAGE                                                                                                                                                                 | 5.0         | 32.76          |
|   | 589                                    | MISC MECH HANDLING SYSTEMS                                                                                                                                                                            |             |                |
|   |                                        |                                                                                                                                                                                                       |             |                |
|   | 590 S                                  | PECIAL PURPOSE SYSTEMS                                                                                                                                                                                | 47.9        | 17.30          |
|   | 591                                    | PECIAL PURPOSE SYSTEMS SCIENTIFIC+OCEAN ENGINEERING SYS                                                                                                                                               | 47.9        | 17.30          |
|   |                                        |                                                                                                                                                                                                       | 47.9        | 17.30          |
|   | 591                                    | SCIENTIFIC+OCEAN ENGINEERING SYS                                                                                                                                                                      | 47.9<br>9.7 | 17.30<br>11.44 |
|   | 591<br>592                             | SCIENTIFIC+OCEAN ENGINEERING SYS<br>SWIMMER+DIVER SUPPORT+PROT SYS                                                                                                                                    |             |                |
|   | 591<br>592<br>593                      | SCIENTIFIC+OCEAN ENGINEERING SYS<br>SWIMMER+DIVER SUPPORT+PROT SYS<br>ENVIRONMENTAL POLLUTION CNTL SYS                                                                                                |             |                |
|   | 591<br>592<br>593<br>594               | SCIENTIFIC+OCEAN ENGINEERING SYS<br>SWIMMER+DIVER SUPPORT+PROT SYS<br>ENVIRONMENTAL POLLUTION CNTL SYS<br>SUBMARINE RESC+SALVG+SURVIVE SYS                                                            |             |                |
|   | 591<br>592<br>593<br>594<br>595        | SCIENTIFIC+OCEAN ENGINEERING SYS SWIMMER+DIVER SUPPORT+PROT SYS ENVIRONMENTAL POLLUTION CNTL SYS SUBMARINE RESC+SALVG+SURVIVE SYS TOW, LAUNCH, HANDLE UNDERWATER SYS                                  |             |                |
|   | 591<br>592<br>593<br>594<br>595<br>596 | SCIENTIFIC+OCEAN ENGINEERING SYS SWIMMER+DIVER SUPPORT+PROT SYS ENVIRONMENTAL POLLUTION CNTL SYS SUBMARINE RESC+SALVG+SURVIVE SYS TOW, LAUNCH, HANDLE UNDERWATER SYS HANDLING SYS FOR DIVER+SUBMR VEH |             |                |

# \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS OUTFIT+FURNISHINGS WEIGHT

| SWBS | COMPONENT               | WT-LTON    | VCG-FT    |  |
|------|-------------------------|------------|-----------|--|
| ==== |                         | ========== | ========= |  |
| 671  | LOCKERS+SPECIAL STOWAGE | 4.0        | 22.29     |  |
| 672  | STOREROOMS+ISSUE ROOMS  | 25.3       | 14.15     |  |

\* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS C,E>RUN,WEIGH COMMAND STRING IS:
RUN,WEIGHT MODULE

ASSET/MONOSC VERSION 3.3+ - WEIGHT MODULE - 2/11/95 11.18.28.

### PRINTED REPORT NO. 1 - SUMMARY

|      |                                        | WEI      | GHT      | LCG     | VCG     | RESULTA | NT ADJ  |
|------|----------------------------------------|----------|----------|---------|---------|---------|---------|
| SWBS |                                        | LTON 1   | PER CENT | FT      | FT      | WT-LTON | VCG-FT  |
| ==== | ========                               | ====== : | ======   | =====   | =====   | ======  | ======  |
| 100  | HULL STRUCTURE                         | 1289.7   | 33.8     | 186.46  | 21.40   | 1.0     | .00     |
| 200  | PROP PLANT                             |          | 7.1      | 247.04  | 13.40   |         |         |
| 300  | ELECT PLANT                            |          | 6.5      | 199.42  | 16.82   |         |         |
| 400  | COMM + SURVEIL                         | 129.8    | 3.4      | 144.40  | 25.23   | 83.4    | .53     |
| 500  | AUX SYSTEMS                            |          | 13.6     | 209.00  | 20.39   | 20.0    | .19     |
| 600  | OUTFIT + FURN                          |          | 8.1      | 190.00  | 20.62   |         |         |
| 700  |                                        |          | 0.5      | 171.00  | 33.68   | 16.2    | .15     |
| M11  | D+B WT MARGIN                          | 347.9    | 9.1      | 196.04  | 20.21   |         |         |
|      |                                        |          |          |         |         |         |         |
|      | D+B KG MARGIN                          |          |          | +       | 2.53    |         |         |
| ==== |                                        | =======  |          | ======= | ======  |         | ======= |
|      | IGHTSHIP                               |          | 82.1     |         |         | 120.6   | .88     |
|      |                                        |          |          |         |         |         |         |
| F00  |                                        |          | 17.9     |         |         | 85.0    | .22     |
| F10  | CREW + EFFECTS                         |          |          | 178.60  |         |         |         |
| F20  | MISS REL EXPEN                         | 21.2     |          | 167.20  |         |         |         |
| F30  |                                        | 17.4     |          |         | 17.23   |         |         |
| F40  | FUELS + LUBRIC                         |          |          | 195.44  | 3.79    |         |         |
| F50  | FRESH WATER                            | 18.1     |          |         | 4.33    |         |         |
| F60  | CARGO                                  |          |          |         |         |         |         |
| M24  | FUTURE GROWTH                          |          |          |         |         |         |         |
| ==== | :===================================== | =======  |          |         | ======= | ======= | ======  |
|      | ILL LOAD WT                            | 3813.2   |          | 195.70  | 19.52   | 205.6   | 1.10    |

PRINTED REPORT NO. 2 - HULL STRUCTURES WEIGHT

| SWBS    | COMPONENT ======= LL STRUCTURES SHELL + SUPPORTS                                                                                                                                        | WT-LTON                                       | VCG-FT         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------|
| 100 HUI | LL STRUCTURES                                                                                                                                                                           | 1289 7                                        | 21 40          |
|         | SHELL + SUPPORTS                                                                                                                                                                        | 379.2<br>218.4<br>36.4<br>17.1<br>5.1<br>64.2 | 21.40          |
| 111     | PLATING                                                                                                                                                                                 | 218 /                                         | 10.40          |
| 113     | INNER BOTTOM                                                                                                                                                                            | 36 4                                          | 10.70          |
| 114     | INNER BOTTOM<br>SHELL APPENDAGES                                                                                                                                                        | 17 1                                          | 2.50           |
| 115     | SHELL APPENDAGES STANCHIONS LONGIT FRAMING TRANSV FRAMING HULL STRUCTURAL BULKHDS LONGIT STRUCTURAL BULKHDS TRANSV STRUCTURAL BULKHDS TRUNKS + ENCLOSURES BULKHEADS TOPPEDO PROTECT SYS | 5 1                                           | 15 00          |
| 116     | LONGIT FRAMING                                                                                                                                                                          | 64.2                                          | 1 40           |
| 117     | TRANSV FRAMING                                                                                                                                                                          | 38.0<br>78.0                                  | 16 26          |
| 120 H   | HULL STRUCTURAL BULKHDS                                                                                                                                                                 | 78.0                                          | 10.20          |
| 121     | LONGIT STRUCTURAL BULKHDS                                                                                                                                                               | 70.0                                          | 10.79          |
| 122     | TRANSV STRUCTURAL BULKHDS                                                                                                                                                               | 66.6                                          | 10 70          |
| 123     | TRUNKS + ENCLOSURES                                                                                                                                                                     | 11 3                                          | 18.79          |
| 124     | BULKHEADS, TORPEDO PROTECT SYS                                                                                                                                                          | 11.3                                          | 10.79          |
| 130 H   | MULL DECKS                                                                                                                                                                              | 260.9                                         | 26 76          |
|         | MAIN DECK                                                                                                                                                                               | 260.9                                         | 20.70          |
|         | 2ND DECK                                                                                                                                                                                | 107.6                                         | 31.05          |
| 133     | 3RD DECK                                                                                                                                                                                | 107.6                                         | 20.66          |
| 134     | 3RD DECK<br>4TH DECK                                                                                                                                                                    |                                               |                |
| 135     | 5TH DECK+DECKS BELOW                                                                                                                                                                    |                                               |                |
| 136     | 01 HULL DECK                                                                                                                                                                            |                                               |                |
| 137     | 02 HULL DECK                                                                                                                                                                            |                                               |                |
|         | 03 HULL DECK                                                                                                                                                                            |                                               |                |
|         | 04 HULL DECK                                                                                                                                                                            |                                               |                |
|         |                                                                                                                                                                                         | F0 F                                          | 10.00          |
| 141     | 1ST PLATFORM                                                                                                                                                                            | 58.5                                          | 12.22          |
|         | 2ND PLATFORM                                                                                                                                                                            | 58.5                                          | 12.22          |
| 143     | 3RD PLATFORM                                                                                                                                                                            |                                               |                |
| 144     | 4TH PLATFORM                                                                                                                                                                            |                                               |                |
|         | 5TH PLAT+PLATS BELOW                                                                                                                                                                    |                                               |                |
|         | FLATS                                                                                                                                                                                   |                                               |                |
|         |                                                                                                                                                                                         | 201 0                                         | 25.44          |
| 160 S   | ECK HOUSE STRUCTURE PECIAL STRUCTURES CASTINGS+FORGINGS+EQUIV WELDMT                                                                                                                    | 201.0                                         | 36.41          |
| 161     | CASTINGS+FORGINGS+FOULV WELDAT                                                                                                                                                          | 29.3                                          | 16.12          |
| 162     | STACKS AND MACKS                                                                                                                                                                        | 2 1                                           | 9.30           |
| 163     | SEA CHESTS                                                                                                                                                                              | 2.1                                           | 46.37<br>3.70  |
|         | BALLISTIC PLATING                                                                                                                                                                       | 3.1                                           | 3.70           |
| 165     | SONAR DOMES                                                                                                                                                                             |                                               |                |
|         | SPONSONS                                                                                                                                                                                |                                               |                |
| 167     | HULL STRUCTURAL CLOSURES                                                                                                                                                                | 17.9                                          | 21 07          |
| 168     | HULL STRUCTURAL CLOSURES<br>DKHS STRUCTURAL CLOSURES                                                                                                                                    | 17.9                                          | 21.97          |
| 169     |                                                                                                                                                                                         | 4 1                                           | 30.03          |
|         | ASTS+KINGPOSTS+SERV PLATFORM                                                                                                                                                            | 31.6                                          | 33.05          |
|         | MASTS, TOWERS, TETRAPODS                                                                                                                                                                |                                               | , , , , , ,    |
| 172     |                                                                                                                                                                                         | 31.6                                          | 79.40          |
| 179     | SERVICE PLATFORMS                                                                                                                                                                       |                                               |                |
|         | OUNDATIONS                                                                                                                                                                              | 207.5                                         | 11.98          |
| 181     | HULL STRUCTURE FOUNDATIONS                                                                                                                                                              | 207.3                                         | 11.90          |
| 182     | PROPULSION PLANT FOUNDATIONS                                                                                                                                                            | 90.3                                          | 7.47           |
| 183     | ELECTRIC PLANT FOUNDATIONS                                                                                                                                                              | 43.8                                          |                |
| 184     |                                                                                                                                                                                         | 10.7                                          | 12.82<br>23.46 |
| 185     | AUXILIARY SYSTEMS FOUNDATIONS                                                                                                                                                           | 51.7                                          | 15.22          |
| 186     |                                                                                                                                                                                         | 9.5                                           |                |
| 187     |                                                                                                                                                                                         | 1.5                                           | 17.97          |
|         | PECIAL PURPOSE SYSTEMS                                                                                                                                                                  | 13.8                                          | 27.32<br>3.78  |
| 191     | BALLAST+BOUYANCY UNITS                                                                                                                                                                  |                                               |                |
|         | WELDING AND RIVETS                                                                                                                                                                      | 1.0                                           | 1.00           |
| 198     |                                                                                                                                                                                         | 12.8                                          | 4 00           |
|         | TIME THOUSENED BY YOUR                                                                                                                                                                  | 12.0                                          | 4.00           |

<sup>\*</sup> DENOTES' INCLUSION OF PAYLOAD OR ADJUSTMENTS

## PRINTED REPORT NO. 3 - PROPULSION PLANT WEIGHT

| SWBS COMPONENT ==== ================================                                                              | WT-LTON       | VCG-FT       |
|-------------------------------------------------------------------------------------------------------------------|---------------|--------------|
| 200 PROPULSION PLANT 210 ENERGY GEN SYS (NUCLEAR) 220 ENERGY GENERATING SYSTEM (NONNUCLEAR)                       | 272 3         | 12 40        |
| 210 ENERGY GEN SYS (NUCLEAR)                                                                                      | 2/2.3         | 13.40        |
| 220 ENERGY GENERATING SYSTEM (NONNUC                                                                              |               |              |
| 221 PROPULSION BOILERS                                                                                            | ,             |              |
| 222 GAS GENERATORS                                                                                                |               |              |
| 223 MAIN PROPULSION BATTERIES                                                                                     |               |              |
| 224 MAIN PROPULSION FUEL CELLS                                                                                    |               |              |
| 230 PROPULSION UNITS                                                                                              | 181.3         | 10 17        |
| 231 STEAM TURBINES                                                                                                | 101.5         | 12.17        |
| 232 STEAM ENGINES                                                                                                 |               |              |
| 233 DIESEL ENGINES                                                                                                |               |              |
|                                                                                                                   | E0 2          | 17 22        |
| 234 GAS TURBINES 235 ELECTRIC PROPULSION                                                                          | 58.2<br>123.1 | 17.33        |
| 236 SELF-CONTAINED PROPULSION SYS                                                                                 | 123.1         | 9.73         |
| 237 AUXILIARY PROPULSION DEVICES                                                                                  |               |              |
| 240 TRANSMISSION+PROPULSOR SYSTEMS                                                                                | 20.6          | 0 50         |
| 241 REDUCTION GEARS                                                                                               | 20.6          | 2.52         |
| 242 CLUTCHES + COUPLINGS                                                                                          |               |              |
| 243 SHAFTING                                                                                                      | 1 4           | 2.52         |
| 244 SHAFT BEARINGS                                                                                                | 1.4           | 2.62<br>2.88 |
| 245 PROPULSORS                                                                                                    | 12.2          | 2.88         |
| 246 PROPULSOR SHROUDS AND DUCTS                                                                                   | 13.3          | 2.35         |
| 247 WATER JET PROPULSORS                                                                                          |               |              |
| 250 SUPPORT SYSTEMS                                                                                               | 35.0          | 20.20        |
| 250 SUPPORT SYSTEMS 251 COMBUSTION AIR SYSTEM 252 PROPULSION CONTROL SYSTEM                                       | 35.0<br>10.0  | 28.20        |
| 252 PROPULSION CONTROL SYSTEM                                                                                     | 8.9           | 19.50        |
| 253 MAIN STEAM PIPING SYSTEM                                                                                      | 0.9           | 19.50        |
| 254 CONDENSERS AND AIR EJECTORS                                                                                   |               |              |
| 0.55                                                                                                              |               |              |
| 255 FEED AND CONDENSATE SYSTEM<br>256 CIRC + COOL SEA WATER SYSTEM                                                | 2.4           | 10.00        |
| 258 H.P. STEAM DRAIN SYSTEM                                                                                       | 2.4           | 10.80        |
| 259 HPTAKES (INNER CASING)                                                                                        | 12 6          | 37.76        |
| 258 H.P. STEAM DRAIN SYSTEM 259 UPTAKES (INNER CASING) 260 PROPUL SUP SYS- FUEL, LUBE OIL 261 FUEL SERVICE SYSTEM | 23 1          | 12 /2        |
| 261 FUEL SERVICE SYSTEM                                                                                           | 23.4          | 11 22        |
| 262 MAIN PROPULSION LUBE OIL SYSTEM                                                                               | 10.0          | 12.00        |
| 264 LUBE OIL HANDLING                                                                                             | 4.0           | 16.00        |
| 261 FUEL SERVICE SYSTEM 262 MAIN PROPULSION LUBE OIL SYSTEM 264 LUBE OIL HANDLING 290 SPECIAL PURPOSE SYSTEMS     | 12 0          | 9 53         |
| 298 OPERATING FLUIDS                                                                                              | 9.0           | 8.00         |
| 299 REPAIR PARTS + TOOLS                                                                                          | 3.0           | 14.10        |
|                                                                                                                   | 3.0           | 14.10        |

## \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

## PRINTED REPORT NO. 4 - ELECTRIC PLANT WEIGHT

| SWBS COMPONENT                    | WT-LTON | VCG-FT |
|-----------------------------------|---------|--------|
| 300 ELECTRIC PLANT, GENERAL       | 248.0   | 16.82  |
| 310 ELECTRIC POWER GENERATION     | 121.9   | 12.01  |
| 311 SHIP SERVICE POWER GENERATION | 89.8    | 12.00  |
| 312 EMERGENCY GENERATORS          |         |        |
| 313 BATTERIES+SERVICE FACILITIES  | . 22.8  | 6.00   |
| 314 POWER CONVERSION EQUIPMENT    | 9.2     | 27.00  |
| 320 POWER DISTRIBUTION SYS        | 51.7    | 24.76  |
| 321 SHIP SERVICE POWER CABLE      | 32.4    | 27.00  |
| 322 EMERGENCY POWER CABLE SYS     |         |        |
| 323 CASUALTY POWER CABLE SYS      |         |        |
| 324 SWITCHGEAR+PANELS             | 19.3    | 21.00  |
| 330 LIGHTING SYSTEM               | 18.7    | 27.22  |
| 331 LIGHTING DISTRIBUTION         | 11.8    | 27.00  |
| 332 LIGHTING FIXTURES             | 6.9     | 27.60  |
| 340 POWER GENERATION SUPPORT SYS  | 37.7    | 17.56  |

|    | 341               | SSTG LUBE OIL                                              |               |        |
|----|-------------------|------------------------------------------------------------|---------------|--------|
|    |                   | DIESEL SUPPORT SYS                                         | 37.7          | 17.56  |
|    | 200 6             | TURBINE SUPPORT SYS<br>SPECIAL PURPOSE SYS                 |               |        |
|    | 390 5             | FIRCTRIC DIAME OR BILLING                                  | 18.0          | 14.25  |
|    | 300               | ELECTRIC PLANT OP FLUIDS REPAIR PARTS+SPECIAL TOOLS        | 13.5          | 12.00  |
| *  | ייים אינים<br>פכב | ES INCLUSION OF PAYLOAD OR ADJUSTMEN                       | 4.5           | 21.00  |
|    | DENOTE            | THE INCLUSION OF PAILOAD OR ADJUSTMEN                      | TS            |        |
| PF | RINTED F          | REPORT NO. 5 - COMMAND+SURVEILLANCE                        | WEIGHT        |        |
| S  | WBS               | COMPONENT                                                  | WT-I.TON      | WCC-Em |
| =  | ===               | =======                                                    | ==========    | VCG-F1 |
| 4  | OO COM            | COMPONENT ======  MMAND+SURVEILLANCE                       | 129.8         | 25.23  |
| *  | 410               | COMMAND+CONTROL SIS                                        | 129.8<br>37.0 | 1.47   |
|    | 411               | DATA DISPLAY GROUP                                         |               |        |
|    | 412               | DATA PROCESSING GROUP                                      |               |        |
|    | 413               | DIGITAL DATA SWITCHBOARDS                                  |               |        |
|    | 414               | INTERFACE EQUIPMENT                                        |               |        |
|    | 415               | DIGITAL DATA COMMUNICATIONS<br>COMMAND+CONTROL ANALOG SWBD |               |        |
| *  | 420 K             | IAVIGATION SYS                                             |               |        |
|    |                   |                                                            | 3.8           | 44.83  |
| *  | 440 F             | EXTERIOR COMMUNICATIONS                                    | 18.5          |        |
|    | 441               | RADIO SYSTEMS                                              | 16.0          | 21.80  |
|    |                   | UNDERWATER SYSTEMS                                         |               |        |
|    | 443               | VISUAL + AUDIBLE SYSTEMS                                   |               |        |
|    | 444               | TELEMETRY SYSTEMS                                          |               |        |
|    | 445               | TTY + FACSIMILE SYSTEMS                                    |               |        |
|    | 446               | SECURITY EQUIPMENT SYSTEMS                                 |               |        |
|    | 450 S             | URF SURV SYS (RADAR)<br>SURFACE SEARCH RADAR               | 22.0          | 61.59  |
| *  | 451               | SURFACE SEARCH RADAR                                       | 1.8           | 59.50  |
|    | 452               | AIR SEARCH RADAR (2D)                                      |               |        |
|    | 453               | AIR SEARCH RADAR (3D)                                      |               |        |
| *  | 454               | AIRCRAFT CONTROL APPROACH RADAR                            |               |        |
| *  | 455               | IDENTIFICATION SYSTEMS (IFF) MULTIPLE MODE RADAR           | 2.3           | 60.00  |
| •  | 450               | SPACE VEHICLE ELECTRONIC TRACKG                            | 18.0          | 62.00  |
|    | 460 11            | NDERWATER SURVEILLANCE SYSTEMS                             |               | •      |
|    | 461               | ACTIVE SONAR                                               |               |        |
|    |                   | PASSIVE SONAR                                              |               |        |
|    |                   | MULTIPLE MODE SONAR                                        |               |        |
|    | 464               | CLASSIFICATION SONAR                                       |               |        |
|    | 465               | BATHYTHERMOGRAPH                                           |               |        |
|    |                   | LAMPS ELECTRONICS                                          |               |        |
|    | 470 C             | OUNTERMEASURES                                             | 22.3          | 25.57  |
|    | 471               | ACTIVE + ACTIVE/PASSIVE ECM                                |               |        |
| *  | 472               | PASSIVE ECM                                                | 3.0           |        |
| ^  |                   | TORPEDO DECOYS<br>DECOYS (OTHER)                           | 3.6           | 22.76  |
|    |                   | DEGAUSSING                                                 | 45.5          |        |
|    |                   | MINE COUNTERMEASURES                                       | 15.7          | 21.34  |
|    | 480 F             | IRE CONTROL SYS                                            |               |        |
|    |                   | GUN FIRE CONTROL SYSTEMS                                   |               |        |
|    | 482               | MISSILE FIRE CONTROL SYSTEMS                               |               |        |
|    | 483               | UNDERWATER FIRE CONTROL SYSTEMS                            |               |        |
|    | 484               | INTEGRATED FIRE CONTROL SYSTEMS                            |               |        |
|    | 489               | WEAPON SYSTEM SWITCHBOARDS                                 |               |        |
|    |                   | PECIAL PURPOSE SYS                                         | 10.3          | 29.70  |
| *  | 491               |                                                            | 6.0           | 33.61  |
|    | 492               | FLIGHT CNTRL+INSTR LANDING SYS                             |               |        |
|    | 493               | NON-COMBAT DATA PROCESSING SYS<br>METEOROLOGICAL SYSTEMS   | 2.3           | 21.67  |
|    | 494               | SPEC PURPOSE INTELLIGENCE SYS                              |               |        |
|    | 498               |                                                            |               |        |
|    | 499               | REPAIR PARTS+SPECIAL TOOLS                                 | 1 0           | 26.0   |
|    |                   | * DENOTES INCLUSION OF PAYLOAD OR                          | 1.9           | 26.9   |
|    |                   | ON THE PARTY OF                                            | THOUSTHEMIS   |        |

PRINTED REPORT NO. 6 - AUXILIARY SYSTEMS WEIGHT

| SWBS       | COMPONENT  =======  UXILIARY SYSTEMS, GENERAL  CLIMATE CONTROL  1 COMPARTMENT HEATING SYSTEM  2 VENTILATION SYSTEM  3 MACHINERY SPACE VENT SYSTEM  4 AIR CONDITIONING SYSTEM  6 REFRIGERATION SYSTEM  7 AUX BOILERS+OTHER HEAT SOURCES  SEA WATER SYSTEMS  1 FIREMAIN+SEA WATER FLUSHING SYS | WT-LTON | VCG-FT         |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|
| *500 P     | UXILIARY SYSTEMS, GENERAL                                                                                                                                                                                                                                                                    | 516.9   | 20.39          |
| 510        | CLIMATE CONTROL                                                                                                                                                                                                                                                                              | 114.3   | 23.01          |
| 51         | 1 COMPARTMENT HEATING SYSTEM                                                                                                                                                                                                                                                                 | 4.4     | 25.65          |
| 51         | 2 VENTILATION SYSTEM                                                                                                                                                                                                                                                                         | 43.4    | 28.77          |
| 51         | 3 MACHINERY SPACE VENT SYSTEM                                                                                                                                                                                                                                                                | 8.7     | 32.71          |
| 51         | 4 AIR CONDITIONING SYSTEM                                                                                                                                                                                                                                                                    | 55.7    | 17.12          |
| 51         | 6 REFRIGERATION SYSTEM                                                                                                                                                                                                                                                                       | 1.9     | 14.86          |
| 51         | 7 AUX BOILERS+OTHER HEAT SOURCES                                                                                                                                                                                                                                                             | .3      | 17.51          |
| 520        | SEA WATER SYSTEMS                                                                                                                                                                                                                                                                            | 39.9    | 19.58          |
| 52         | 1 FIREMAIN+SEA WATER FLUSHING SYS                                                                                                                                                                                                                                                            | 20.5    | 18.75          |
| 52         | 2 SPRINKLING SYSTEM                                                                                                                                                                                                                                                                          |         | 21.67          |
| 52         | 3 WASHDOWN SYSTEM                                                                                                                                                                                                                                                                            | 3.0     | 34.23          |
| 52         | 4 AUXILIARY SEAWATER SYSTEM                                                                                                                                                                                                                                                                  |         |                |
| 52         | 6 SCUPPERS+DECK DRAINS                                                                                                                                                                                                                                                                       | .8      | 31.63          |
| 52         | 7 FIREMAIN ACTUATED SERV, OTHER                                                                                                                                                                                                                                                              |         |                |
| 52         | 8 PLUMBING DRAINAGE                                                                                                                                                                                                                                                                          | 12.0    | 19.50          |
| 52         | 9 DRAINAGE+BALLASTING SYSTEM                                                                                                                                                                                                                                                                 | 3.6     | 9.90           |
| 530        | FRESH WATER SYSTEMS                                                                                                                                                                                                                                                                          | 23.6    | 17.07          |
| 53         | 7 FIREMAIN ACTUATED SERV, OTHER 8 PLUMBING DRAINAGE 9 DRAINAGE+BALLASTING SYSTEM FRESH WATER SYSTEMS 1 DISTILLING PLANT 2 COOLING WATER 3 POTABLE WATER                                                                                                                                      | 3.8     | 15.91          |
| * 53       | 2 COOLING WATER                                                                                                                                                                                                                                                                              | 4.0     | 25.73          |
| 53         | 3 POTABLE WATER                                                                                                                                                                                                                                                                              | 5.9     | 19.56          |
| 53         | 4 AUX SIEAM + DRAINS IN MACH BUX                                                                                                                                                                                                                                                             | 9.8     | 12.49          |
|            | 5 AUX STEAM + DRAINS OUT MACH BOX                                                                                                                                                                                                                                                            |         |                |
| _ 53       | 6 AUXILIARY FRESH WATER COOLING<br>FUELS/LUBRICANTS, HANDLING+STORAGE<br>1 SHIP FUEL+COMPENSATING SYSTEM                                                                                                                                                                                     |         |                |
| 540        | FUELS/LUBRICANTS, HANDLING+STORAGE                                                                                                                                                                                                                                                           | 31.1    | 12.53          |
| 54         | 1 SHIP FUEL+COMPENSATING SYSTEM<br>2 AVIATION+GENERAL PURPOSE FUELS                                                                                                                                                                                                                          | 29.8    | 12.91          |
| 54         | 2 AVIATION+GENERAL PURPOSE FUELS                                                                                                                                                                                                                                                             |         |                |
|            | 3 AVIATION+GENERAL PURPOSE LUBO                                                                                                                                                                                                                                                              |         |                |
|            | 4 LIQUID CARGO                                                                                                                                                                                                                                                                               |         |                |
|            | 5 TANK HEATING                                                                                                                                                                                                                                                                               |         | 3.90           |
| 54         | 9 SPEC FUEL+LUBRICANTS HANDL+STOW                                                                                                                                                                                                                                                            | 42.0    | 10 56          |
| 550        | AIR,GAS+MISC FLUID SYSTEM 1 COMPRESSED AIR SYSTEMS                                                                                                                                                                                                                                           | 43.0    | 18.56<br>16.51 |
| 55         | COMPRESSED AIR SISTEMS COMPRESSED GASES                                                                                                                                                                                                                                                      | 19.8    | 16.51          |
|            | O NO SYSTEM                                                                                                                                                                                                                                                                                  |         |                |
|            | 4 LP BLOW                                                                                                                                                                                                                                                                                    |         |                |
|            | 5 FIRE EXTINGUISHING SYSTEMS                                                                                                                                                                                                                                                                 | 23.2    | 20 22          |
|            | 6 HYDRAULIC FLUID SYSTEM                                                                                                                                                                                                                                                                     | 23.2    | 20.32          |
|            | 7 LIQUID GASES, CARGO                                                                                                                                                                                                                                                                        |         |                |
|            | 8 SPECIAL PIPING SYSTEMS                                                                                                                                                                                                                                                                     |         |                |
| F C O      | CILTE CUMT CUC                                                                                                                                                                                                                                                                               | 76.8    | 5.66           |
| 56         | SHIP CATE SYS 1 STEERING+DIVING CATE SYS                                                                                                                                                                                                                                                     | 11.8    | 17.45          |
| 56         | 2 RUDDER                                                                                                                                                                                                                                                                                     | 27.6    | 7.04           |
| 56         | 5 TRIM+HEEL SYSTEMS                                                                                                                                                                                                                                                                          | 37.4    | .90            |
| 5.6        | 8 MANEUVERING SYSTEMS                                                                                                                                                                                                                                                                        |         |                |
| 570        | UNDERWAY REPLENISHMENT SYSTEMS                                                                                                                                                                                                                                                               | 45.8    | 26.90          |
| 57         |                                                                                                                                                                                                                                                                                              | 10.7    | 36.82          |
|            | 2 SHIP STORES+EQUIP HANDLING SYS                                                                                                                                                                                                                                                             | 35.1    | 23.88          |
|            | 3 CARGO HANDLING SYSTEMS                                                                                                                                                                                                                                                                     |         |                |
| 57         |                                                                                                                                                                                                                                                                                              |         |                |
|            | MECHANICAL HANDLING SYSTEMS                                                                                                                                                                                                                                                                  | 74.5    | 30.98          |
| 58         |                                                                                                                                                                                                                                                                                              | 23.9    | 18.78          |
| 58         |                                                                                                                                                                                                                                                                                              | 10.1    | 30.76          |
| 58         |                                                                                                                                                                                                                                                                                              | 35.6    | 39.00          |
| 58         |                                                                                                                                                                                                                                                                                              |         |                |
| 58         |                                                                                                                                                                                                                                                                                              |         |                |
| 58         |                                                                                                                                                                                                                                                                                              |         |                |
| 58<br>* 58 |                                                                                                                                                                                                                                                                                              | E       | 20.76          |
| * 58<br>58 |                                                                                                                                                                                                                                                                                              | E 5.0   | 32.76          |
| 20         | ATTO MECH HUNDHING SISIEMS                                                                                                                                                                                                                                                                   |         |                |

| 590 SI<br>591 | PECIAL PURPOSE SYSTEMS SCIENTIFIC+OCEAN ENGINEERING SYS | 47.9 | 17.30 |
|---------------|---------------------------------------------------------|------|-------|
| 592           | SWIMMER+DIVER SUPPORT+PROT SYS                          |      |       |
|               | ENVIRONMENTAL POLLUTION CNTL SYS                        | 9.7  | 11.44 |
| 594           | SUBMARINE RESC+SALVG+SURVIVE SYS                        |      |       |
| 595           | TOW, LAUNCH, HANDLE UNDERWATER SYS                      |      |       |
| 596           | HANDLING SYS FOR DIVER+SUBMR VEH                        |      |       |
| 597           | SALVAGE SUPPORT SYSTEMS                                 |      |       |
| 598           | AUX SYSTEMS OPERATING FLUIDS                            | 32.8 | 19.26 |
| 599           | AUX SYSTEMS REPAIR PARTS+TOOLS                          | 5.5  | 15.90 |
|               | * DENOTES INCLUSION OF PAYLOAD OR                       |      | 13.90 |

## PRINTED REPORT NO. 7 - OUTFIT+FURNISHINGS WEIGHT

| SWBS     | COMPONENT ======= CFIT+FURNISHING,GENERAL CHIP FITTINGS                                                                                           | WT-LTON                                  | VCG-FT                                                      |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|
| 600 0117 | PTT-FIIDNICUING COMBDAI                                                                                                                           | ==========                               | =========                                                   |
| 610      | SHIP FITTINGS                                                                                                                                     | 307.2                                    | 20.62                                                       |
| 611      |                                                                                                                                                   | 0.0                                      | 22.47                                                       |
| 612      | HULL FITTINGS  RAILS, STANCHIONS+LIFELINES  RIGGING+CANVAS  ULL COMPARTMENTATION                                                                  | 1.8<br>6.2<br>.8<br>71.3<br>19.1<br>38.1 | 27.95                                                       |
| 612      | RAILS, STANCHIONS+LIFELINES                                                                                                                       | 6.2                                      | 36.41                                                       |
| 613      | RIGGING+CANVAS                                                                                                                                    | .8                                       | 43.70                                                       |
| 62U H    | TULL COMPARTMENTATION                                                                                                                             | 71.3                                     | 19.04                                                       |
| 621      | NON-STRUCTURAL BULKHEADS                                                                                                                          | 19.1                                     | 27.15                                                       |
|          | FLOOR PLATES+GRATING                                                                                                                              | 38.1                                     | 12.73                                                       |
| 623      |                                                                                                                                                   | 9.2                                      | 22.10                                                       |
| 624      | NON-STRUCTURAL CLOSURES AIRPORTS, FIXED PORTLIGHTS, WINDOWS RESERVATIVES+COVERINGS                                                                | 3.9                                      | 27.15<br>12.73<br>22.10<br>26.99<br>44.00<br>20.70<br>17.12 |
| 625      | AIRPORTS, FIXED PORTLIGHTS, WINDOWS                                                                                                               | 1.0                                      | 44.00                                                       |
| 630 P    | RESERVATIVES+COVERINGS                                                                                                                            | 126.6                                    | 20.70                                                       |
| 621      | PAINTING                                                                                                                                          | 30.7                                     | 17.12                                                       |
|          | ZINC COATING                                                                                                                                      |                                          |                                                             |
| 633      | CATHODIC PROTECTION                                                                                                                               | 2.1                                      | 7.00<br>23.51<br>26.43<br>4.03<br>28.60                     |
| 634      | DECK COVERINGS                                                                                                                                    | 26.6                                     | 23 51                                                       |
| 635      | HULL INSULATION                                                                                                                                   | 41.0                                     | 26 43                                                       |
| 636      | HULL DAMPING                                                                                                                                      | 13.2                                     | 4 03                                                        |
| 637      | SHEATHING                                                                                                                                         | 8.1                                      | 28 60                                                       |
| 638      | REFRIGERATION SPACES                                                                                                                              | 4.9                                      | 17.55                                                       |
| 639      | RADIATION SHIELDING                                                                                                                               | 4.5                                      | 17.55                                                       |
|          |                                                                                                                                                   | 24.7                                     | 21.63                                                       |
| 641      | OFFICER BERTHING+MESSING                                                                                                                          | 6.9                                      | 21.03                                                       |
| 642      | NON-COMM OFFICER R+M                                                                                                                              | 3.0                                      | 30.33<br>22.97                                              |
| 643      | ENLISTED PERSONNEL B+M                                                                                                                            | 12 1                                     | 22.97                                                       |
| 644      | SANITARY SPACES+FIXTURES                                                                                                                          | 12.1                                     | 16.47                                                       |
| 645      | LEISHRE+COMMUNITY SPACES                                                                                                                          | 1.5                                      | 22.10                                                       |
| 650 S    | IVING SPACES OFFICER BERTHING+MESSING NON-COMM OFFICER B+M ENLISTED PERSONNEL B+M SANITARY SPACES+FIXTURES LEISURE+COMMUNITY SPACES ERVICE SPACES | 6.8<br>3.0<br>12.1<br>1.5<br>1.2         | 19.93<br>21.99                                              |
|          | COMMISSARY SPACES                                                                                                                                 | 2 • 2                                    | 21.99                                                       |
| 652      | MEDICAL SPACES                                                                                                                                    | 4.9<br>1.3                               | 22.10                                                       |
| 653      | DENTAL SPACES                                                                                                                                     | 1.3                                      | 24.92                                                       |
|          | UTILITY SPACES                                                                                                                                    | 1.0                                      |                                                             |
|          | LAUNDRY SPACES                                                                                                                                    | 1.2                                      | 25.13                                                       |
| 656      | TRASH DISPOSAL SPACES                                                                                                                             | 2.2                                      | 18.20                                                       |
| 660 W    | ORKING SPACES                                                                                                                                     | .4                                       | 22.97                                                       |
|          |                                                                                                                                                   | 33.3                                     | 25.13<br>18.20<br>22.97<br>23.51<br>23.62                   |
| 662      | OFFICES MACH CNTL CENTER FURNISHING ELECT CNTL CENTER FURNISHING DAMAGE CNTL STATIONS                                                             | 10.2                                     | 23.62                                                       |
| 663      | FIRCT CNTL CENTER FURNISHING                                                                                                                      | • /                                      | 13.76                                                       |
| 664      | DAMACE CHIEF CENTER FURNISHING                                                                                                                    | 5.1                                      | 29.25                                                       |
| 665      | MODVEYORE TARE MEET APPAG                                                                                                                         | 7.9                                      | 24.05                                                       |
| 670 5    | TOWAGE SPACES                                                                                                                                     | 9.4                                      | 20.58                                                       |
| 671      |                                                                                                                                                   | 29.3                                     | 24.05<br>20.58<br>15.25                                     |
| 0/1      | LOCKERS SPECIAL STOWAGE                                                                                                                           | 4.0<br>25.3                              | 22.29                                                       |
| 672      | STOREROOMS+ISSUE ROOMS                                                                                                                            | 25.3                                     | 14.15                                                       |
|          | CARGO STOWAGE                                                                                                                                     |                                          |                                                             |
| 690 S    | PECIAL PURPOSE SYSTEMS                                                                                                                            | 3.2                                      | 18.81                                                       |
| 698      | OPERATING FLUIDS                                                                                                                                  | .2                                       | 20.12                                                       |
| 699      | REPAIR PARTS+SPECIAL TOOLS                                                                                                                        | 3.0                                      | 18.74                                                       |
|          |                                                                                                                                                   |                                          |                                                             |

<sup>\*</sup> DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

# PRINTED REPORT NO. 8 - ARMAMENT WEIGHT

| SWBS    | COMPONENT                           | WT-LTON                                 |       |
|---------|-------------------------------------|-----------------------------------------|-------|
|         |                                     | ======================================= |       |
| 700 ARI |                                     | 20.6<br>12.2                            | 33.68 |
|         | GUNS+AMMUNITION                     | 12.2                                    | 33.52 |
|         | GUNS                                |                                         |       |
| /12     | AMMUNITION HANDLING                 |                                         |       |
|         | AMMUNITION STOWAGE                  |                                         |       |
|         | MISSLES+ROCKETS                     | 4.0                                     | 44.00 |
|         | LAUNCHING DEVICES                   |                                         |       |
| 722     | MISSILE, ROCKET, GUID CAP HANDL SYS |                                         |       |
|         | MISSILE+ROCKET STOWAGE              |                                         |       |
|         | MISSILE HYDRAULICS                  |                                         |       |
| . — -   | MISSILE GAS                         |                                         |       |
| 726     | MISSILE COMPENSATING                |                                         |       |
|         | MISSILE LAUNCHER CONTROL            |                                         |       |
|         | MISSILE HEAT, COOL, TEMP CNTRL      |                                         |       |
| 729     | MISSILE MONITOR, TEST, ALINEMENT    |                                         |       |
| 730 1   |                                     |                                         |       |
| 731     | MINE LAUNCHING DEVICES              |                                         |       |
| 732     | MINE HANDLING                       |                                         |       |
| 733     | MINE STOWAGE                        |                                         |       |
| 740 I   | DEPTH CHARGES                       |                                         |       |
| 741     | DEPTH CHARGE LAUNCHING DEVICES      |                                         |       |
|         | DEPTH CHARGE HANDLING               |                                         |       |
|         | DEPTH CHARGE STOWAGE                |                                         |       |
|         | PORPEDOES                           |                                         |       |
|         | TORPEDO TUBES                       |                                         |       |
|         | TORPEDO HANDLING                    |                                         |       |
|         | TORPEDO STOWAGE                     |                                         |       |
|         | SMALL ARMS+PYROTECHNICS             | 1.7                                     | 27.30 |
|         | SMALL ARMS+PYRO LAUNCHING DEV       | 1.0                                     | 27.30 |
|         | SMALL ARMS+PYRO HANDLING            | 1.0                                     | 27.50 |
|         | SMALL ARMS+PYRO STOWAGE             | .7                                      | 27.30 |
|         | CARGO MUNITIONS                     | • /                                     | 27.50 |
|         | CARGO MUNITIONS HANDLING            |                                         |       |
|         | CARGO MUNITIONS STOWAGE             |                                         |       |
|         | AIRCRAFT RELATED WEAPONS            |                                         |       |
|         | AIRCRAFT RELATED WEAPONS HANDL      |                                         |       |
|         | AIRCRAFT RELATED WEAPONS STOW       |                                         |       |
|         | SPECIAL PURPOSE SYSTEMS             | 2.7                                     | 23.02 |
|         | SPECIAL WEAPONS                     | 2. • /                                  | 23.02 |
|         | SPECIAL WEAPONS HANDLING            |                                         |       |
|         | SPECIAL WEAPONS STOWAGE             |                                         |       |
|         | MISC ORDINANCE SPACES               |                                         |       |
|         | ARMAMENT OPERATING FLUIDS           | .2                                      | 36.66 |
|         | ARMAMENT REPAIR PART+TOOLS          | 2.4                                     |       |
| 199     | ANTARIANI KEPAIK PAKITIOULS         | 2.4                                     | 21.86 |

#### \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

# PRINTED REPORT NO. 9 - LOADS WEIGHT (FULL LOAD CONDITION)

| SWBS    | COMPONENT                 | WT-LTON    | VCG-FT    |
|---------|---------------------------|------------|-----------|
| ====    |                           | ========== | ========= |
| FOO LOA | DS                        | 680.8      | 4.72      |
| F10 S   | HIPS FORCE                | 13.0       | 22.98     |
| F11     | OFFICERS                  | 2.7        | 22.98     |
| F12     | NON-COMMISSIONED OFFICERS | 1.9        | 22.98     |
| F13     | ENLISTED MEN              | 8.4        | 22.98     |
| F14     | MARINES                   |            |           |
| F15     | TROOPS                    |            |           |
| F16     | AIR WING PERSONNEL        |            |           |
| F19     | OTHER PERSONNEL           |            |           |

|   | <b>=00</b> |                                                 |              |                      |
|---|------------|-------------------------------------------------|--------------|----------------------|
| * | F20 N      | MISSION RELATED EXPENDABLES+SYS SHIP AMMUNITION | 21.2         | 10.40                |
| * | F21        | SHIP AMMUNITION                                 | 14.8         | 8.85                 |
| * | 122        | ORD DEL SIS AMMO                                |              |                      |
| * | F23        | ORD DEL SYS (AIRCRAFT)                          | 4.4          | 5.00                 |
|   | F24        | ORD REPAIR PARTS (SHIP)                         |              |                      |
|   | F25        | ORD REPAIR PARTS (ORD)                          |              |                      |
| * | F26        | ORD DEL SYS SUPPORT EQUIP                       | 2.0          | 33.76                |
|   | F29        | SPECIAL MISSION RELATED SYS                     |              |                      |
|   | F30 S      |                                                 | 17.4<br>14.2 | 17.23                |
|   | F31        | PROVISIONS+PERSONNEL STORES                     | 14.2         | 16.82                |
|   |            | GENERAL STORES                                  | 3.2          | 19.05                |
|   | F33        | MARINES STORES (SHIPS COMPLEM)                  |              |                      |
|   |            | SPECIAL STORES                                  |              |                      |
|   | F40 I      | IQUIDS, PETROLEUM BASED                         | 611.1        | 3.79                 |
|   |            | DIESEL FUEL MARINE                              | 544.3        | 3 10                 |
| * |            | JP-5                                            | 63.8         | 3.79<br>3.10<br>9.84 |
|   |            | GASOLINE                                        | 32.2         | 3.04                 |
|   | F44        | DISTILLATE FUEL                                 |              |                      |
|   | F45        | NAVY STANDARD FUEL OIL (NSFO)                   |              |                      |
|   | F46        | LUBRICATING OIL                                 | 3.0          |                      |
|   | F49        | SPECIAL FUELS AND LUBRICANTS                    |              |                      |
|   | F50 L      | JQUIDS, NON-PETRO BASED                         | 18.1         | 4.33                 |
|   |            | SEA WATER                                       |              | 4.55                 |
|   | F52        | FRESH WATER                                     | 18.1         | 4.33                 |
|   | F53        | RESERVE FEED WATER                              | 10.1         | 4.55                 |
|   | F54        | HYDRAULIC FLUID                                 |              |                      |
|   | F55        | SANITARY TANK LIQUID                            |              |                      |
|   | F56        | GAS (NON FUEL TYPE)                             |              |                      |
|   | F59        | MISC LIQUIDS, NON-PETROLEUM                     |              |                      |
|   | F60 C      | ARGO                                            |              |                      |
|   | F61        | CARGO, ORDINANCE + DELIVERY SYS                 |              |                      |
|   | F62        | CARGO, STORES                                   |              |                      |
|   | F63        | CARGO, FUELS + LUBRICANTS                       |              |                      |
|   | F64        | CARGO, LIQUIDS, NON-PETROLEUM                   |              |                      |
|   | F65        | CARGO, CRYOGENIC+LIQUEFIED GAS                  |              |                      |
|   | F66        | CARGO, AMPHIBIOUS ASSAULT SYS                   |              |                      |
|   | F67        | CARGO, GASES                                    |              |                      |
|   | F69        | CARGO, MISCELLANEOUS                            |              |                      |
|   | M24 F      | UTURE GROWTH MARGIN                             |              |                      |
|   |            |                                                 |              |                      |

# \* DENOTES INCLUSION OF PAYLOAD OR ADJUSTMENTS

PRINTED REPORT NO. 10 - WEIGHT AND KG MODIFICATION SUMMARY

#### ROW P+A NAME

| LAN MANT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| ======   | =======                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =====                                               | ========                                                                      |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   | =======                                                                                             |
| WT OF    | RIGINAL WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHNG,                                               | RESULTNT                                                                      | ORIGINAL                                                                                        | KG CHNG,                                                                                                                                                                                                                                                                                                                                                                                          | RESU LINT                                                                                           |
| KEYS WI  | T, LTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LTON                                                | WT, LTON                                                                      | KG, FT                                                                                          | FT                                                                                                                                                                                                                                                                                                                                                                                                | KG, FT                                                                                              |
|          | ====== ==                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =====                                               | =======                                                                       | =======                                                                                         | ======                                                                                                                                                                                                                                                                                                                                                                                            | ==== ====                                                                                           |
| BALLIST  | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |
| W191     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                 | 1.0                                                                           | UNKNOWN                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                               | 1.0                                                                                                 |
| CIC COM  | MAND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DECISIO                                             | ON MODFIG                                                                     |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |
| W410     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.0                                                 |                                                                               | UNKNOWN                                                                                         | -7.2                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |
| CS HOLD  | UP BATTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RY                                                  |                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | 37.0                                                                          |                                                                                                 | 3.5                                                                                                                                                                                                                                                                                                                                                                                               | 1.5                                                                                                 |
| NAV SYS  | (1/2 DDG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51)                                                 |                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | 3.8                                                                           | UNKNOWN                                                                                         | 46.0                                                                                                                                                                                                                                                                                                                                                                                              | 44.8                                                                                                |
| EXCOMM   | (1/2 DDG5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1)                                                  |                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |
| W440     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.0                                                | 16.0                                                                          | UNKNOWN                                                                                         | 21.8                                                                                                                                                                                                                                                                                                                                                                                              | 21.8                                                                                                |
| SPS-67   | SSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   | 2100                                                                                                |
| W451     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8                                                 | 1.8                                                                           | UNKNOWN                                                                                         | 59.5                                                                                                                                                                                                                                                                                                                                                                                              | 59.5                                                                                                |
| MK XII   | AIMS IFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                                                                               |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |
| W455     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3                                                 | 2.3                                                                           | UNKNOWN                                                                                         | 60.0                                                                                                                                                                                                                                                                                                                                                                                              | 60.0                                                                                                |
| SPY-3C   | (MINI-SPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                                                   |                                                                               |                                                                                                 | 33.3                                                                                                                                                                                                                                                                                                                                                                                              | 30.0                                                                                                |
| W456     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.0                                                | 18.0                                                                          | UNKNOWN                                                                                         | 62.0                                                                                                                                                                                                                                                                                                                                                                                              | 62.0                                                                                                |
|          | WT OF KEYS WT OF KEYS WT OF KEYS WT OF KEYS WT OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNICATION OF COMMUNI | REYS WT, LTON ==== ================================ | WT ORIGINAL WT CHNG, KEYS WT, LTON LTON  === ================================ | WT ORIGINAL WT CHNG, RESULTNT KEYS WT, LTON LTON WT, LTON  === ================================ | WT ORIGINAL WT CHNG, RESULTNT ORIGINAL KEYS WT, LTON LTON WT, LTON KG, FT  BALLIST W191 0.0 1.0 1.0 UNKNOWN CIC COMMAND AND DECISION MODFIG W410 0.0 7.0 UNKNOWN CS HOLD UP BATTERY  30.0 37.0 NAV SYS (1/2 DDG 51) W420 UNKNOWN UNKNOWN 3.8 UNKNOWN EXCOMM (1/2 DDG51) W440 0.0 16.0 16.0 UNKNOWN SPS-67 SSR W451 0.0 1.8 1.8 UNKNOWN MK XII AIMS IFF W455 0.0 2.3 2.3 UNKNOWN SPY-3C (MINI-SPY) | WT ORIGINAL WT CHNG, RESULTNT ORIGINAL KG CHNG, KEYS WT, LTON LTON WT, LTON KG, FT FT  BALLIST W191 |

| 9  | SLQ-32(V)3 ACTIVE/PASSIVE ECM                          |      |      |
|----|--------------------------------------------------------|------|------|
|    | W472 0.0 3.0 3.0 UNKNOWN                               | 51.0 | 51.0 |
| 8  | SLQ-25 NIXIE                                           |      |      |
|    | W473 0.0 3.6 3.6 UNKNOWN                               | 22.8 | 22.8 |
| 16 | OPER READINESS AND TEST SYS                            |      |      |
| 22 | W491 2.3 3.0 -12.0 ADMIN LAN                           | 32.5 |      |
| 32 | 0.7 6.0                                                |      | 22.6 |
| 14 | CRANE                                                  | 30.0 | 33.6 |
|    | W500 496.9 20.0 516.9 19.7                             | 36.7 | 20 4 |
| 12 | CENCOD COOLING GUGERNO                                 |      | 20.4 |
|    | W532 UNKNOWN UNKNOWN 4.0 UNKNOWN                       | 10.0 | 25.7 |
| 17 | RAST/TALON HELO COMBO<br>W588 0.0 5.0 UNKNOWN          |      |      |
|    | W588 0.0 5.0 UNKNOWN                                   | 32.8 |      |
| 18 | RAST CONTROL STATION                                   |      |      |
| 21 | 0.0 5.0                                                | 0.0  | 32.8 |
| 21 | 1X 40MM CIWS/MULTI PURP GUN W710 0.0 6.1 UNKNOWN       | 34.7 |      |
| 22 | 1Y AOMM CIME/MILTER DUDD CUM                           |      |      |
|    | 6.1 12.2                                               | 32 3 | 33.5 |
| 23 | 21 CELL RAM LAUNCHED                                   |      | 33.3 |
|    | W720 0.0 4.0 4.0 UNKNOWN                               | 44.0 | 44.0 |
| 26 | 40MM AMMO (MIXED) 3000 RNDS                            |      |      |
|    | WF21 0.0 7.4 UNKNOWN 40MM AMMO (MIXED) 3000 RNDS       | 24.7 |      |
| 27 | 40MM AMMO (MIXED) 3000 RNDS<br>7.4 14.8                |      |      |
|    | 7.4 14.8                                               | -7.0 | 8.9  |
| 23 | HELO AS565 PANTHER: (DOLPHIN) WF23 0.0 4.4 4.4 UNKNOWN |      | F 0  |
| 19 | LAMPS MKIV: AVIATION SUPPORT & SPARES                  | 5.0  | 5.0  |
|    | WF26 0.0 2.0 2.0 UNKNOWN                               | 33.8 | 33.8 |
| 30 | LAMPS MKIII: FUEL [JP-5]                               |      | 22.0 |
|    | LAMPS MKIII: FUEL [JP-5] WF42 0.0 63.8 63.8 UNKNOWN    | 9.8  | 9.8  |
|    |                                                        |      |      |

PRINTED REPORT NO. 11 - P+A WEIGHTS AND VCGS

|     |         | WEIGHT      | WEIGHT      | VCG           | VCG     | VCG       |   |
|-----|---------|-------------|-------------|---------------|---------|-----------|---|
| ROW | WT KEY  | ADD         | FAC, LTON   | KEY           | ADD, FT | FAC       |   |
| === | =====   | =======     | =======     | =====         | ======= | ==== ==== | = |
| 15  | BALLIST |             |             |               |         |           |   |
|     | W191    |             | 0.00        | BL            | 1.00    | 1.00      |   |
| 1   | CIC COM | MAND AND DE | CISION MODE | FIG           |         |           |   |
|     | W410    | 7.00        | 0.00        | D6.5          | -7.22   | 0.00      |   |
| 11  | CS HOLD | UP BATTERY  |             |               |         |           |   |
|     | W410    | 30.00       | 0.00        | $\mathtt{BL}$ | 3.50    | 1.00      |   |
| 3   | NAV SYS | (1/2 DDG 5  | 1)          |               |         |           |   |
|     | W420    | 3.80        | -1.00       | D10           | 16.00   | 1.00      |   |
| 2   | EXCOMM  | (1/2 DDG51) |             |               |         |           |   |
|     |         | 16.00       | 0.00        | D10           | -8.20   | 1.00      |   |
| 4   | SPS-67  |             |             |               |         |           |   |
|     | W451    | 1.75        | 0.00        | D10           | 29.50   | 1.00      |   |
| 6   | MK XII  | AIMS IFF    |             |               |         |           |   |
|     | W455    | 2.30        | 0.00        | D10           | 30.00   | 1.00      |   |
| 5   | SPY-3C  | (MINI-SPY)  |             |               |         |           |   |
|     | W456    | 18.00       | 0.00        | DM10          | 32.00   | 1.00      |   |
| 9   | SLO-32( | V)3 ACTIVE/ |             |               |         | 2000      |   |
|     | W472    |             | 0.00        | D10           | 21.00   | 1.00      |   |
| 8   | SLQ-25  | NIXIE       |             |               |         | 2.00      |   |
|     | W473    |             | 0.00        | D20           | -8.00   | 1.00      |   |
| 16  | OPER RE | ADINESS AND |             |               |         | 2.00      |   |
|     | W491    | 3.00        | 0.00        | D10           | 2.50    | 1.00      |   |
| 32  | ADMIN L |             |             | 210           | 2.50    | 1.00      |   |
|     | W491    | 0.70        | 0.00        | BL            | 30.00   | 0.00      |   |
| 14  | CRANE   | 00,0        |             | 22            | 30.00   | 0.00      |   |
|     | W500    | 20.00       | 0.00        | D6.5          | 5.00    | 1.00      |   |
| 12  |         | COOLING SYS |             | 20.3          | 3.00    | 1.00      |   |
|     |         | CCCLING DID | * ***       |               |         |           |   |

|        | W532 4.00 -1.            | 00 BL   | 10.00                                   | 1.00 |
|--------|--------------------------|---------|-----------------------------------------|------|
| 17     | RAST/TALON HELO COMBO    |         |                                         |      |
|        | W588 5.00 0.             | 00 D20  | 2.00                                    | 1.00 |
| 18     | RAST CONTROL STATION     |         |                                         |      |
|        | W588 0.00 0.             | 00 D20  | 0.00                                    | 0.00 |
| 21     | 1X 40MM CIWS/MULTI PURP  | GUN     |                                         |      |
|        |                          | 00 D6.5 | 3.00                                    | 1.00 |
| 22     | 1X 40MM CIWS/MULTI PURP  | GUN     |                                         |      |
|        | W710 6.10 0.             |         | 3.00                                    | 1.00 |
| 23     | 21 CELL RAM LAUNCHER     |         | • • • • • • • • • • • • • • • • • • • • | 1.00 |
|        | W720 4.00 0.             | 00 DM10 | 14.00                                   | 1.00 |
| 26     | 40MM AMMO (MIXED) 3000 R |         | 14.00                                   | 1.00 |
| 20     |                          |         |                                         |      |
|        |                          | 00 D6.5 | -7.00                                   | 1.00 |
| 27     | 40MM AMMO (MIXED) 300    |         |                                         |      |
|        | WF21 7.40 0.             |         | -7.00                                   | 0.00 |
| 29     | HELO AS565 PANTHER: (DOL | PHIN)   |                                         |      |
|        | WF23 4.40 0.             | 00 D20  | 5.00                                    | 0.00 |
| 19     | LAMPS MKIV: AVIATION SUP |         |                                         | 0.00 |
|        | WF26 2.00 0.             |         | 3.00                                    | 1.00 |
| 30     | LAMPS MKIII: FUEL [JP-5] |         | 3.00                                    | 1.00 |
|        |                          | 00 BL   | 9.84                                    | 0.00 |
| C, E>1 | RUN, SPAC                |         |                                         |      |
| COMM   | AND STRING IS:           |         |                                         |      |
|        | N,SPACE MODULE           |         |                                         |      |
|        | .,                       |         |                                         |      |

ASSET/MONOSC VERSION 3.3+ - SPACE MODULE - 2/11/95 11.19.11.

PRINTED REPORT NO. 1 - SUMMARY

COLL PROTECT SYSTEM-PRESENT SONAR DOME-NONE

HAB STANDARD-NAVY UNIT COMMANDER-NONE

| FULL LOAD WT, LTON<br>TOTAL CREW ACC<br>HULL AVG DECK HT, FT<br>MR VOLUME, FT3 | 3813.2<br>122.<br>10.57<br>48700. | PASSWA<br>AC MAR | CANDARD FAC<br>AY MARGIN FAC<br>RGIN FAC<br>MARGIN FAC | 0.000<br>0.000<br>0.200<br>0.050<br>VOL FT3 |
|--------------------------------------------------------------------------------|-----------------------------------|------------------|--------------------------------------------------------|---------------------------------------------|
|                                                                                | REQUIRED                          | REQUIRED         | TOTAL<br>AVAILABLE                                     | TOTAL<br>ACTUAL                             |
|                                                                                |                                   |                  |                                                        |                                             |
| DKHS ONLY                                                                      | 991.0                             | 4849.4           | 10307.8                                                | 104558.                                     |
| HULL OR DKHS                                                                   | 2670.0                            | 34896.6          | 29531.5                                                | 387374.                                     |
| TOTAL                                                                          | 3661.0                            | 39746.0          | 39839.2                                                | 491932.                                     |

| SSCS GROUP              | TOTAL<br>AREA FT2 | DKHS<br>AREA FT2 | PERCENT<br>TOTAL AREA |
|-------------------------|-------------------|------------------|-----------------------|
| 4                       |                   |                  |                       |
| 1. MISSION SUPPORT      | 4985.4            | 1608.3           | 12.5                  |
| 2. HUMAN SUPPORT        | 7923.7            | 381.5            | 19.9                  |
| 3. SHIP SUPPORT         | 12144.9           | 1572.1           | 30.6                  |
| 4. SHIP MOBILITY SYSTEM | 12799.3           | 1056.5           | 32.2                  |
| 5. UNASSIGNED           | 1892.7            | 230.9            | 4.8                   |
|                         |                   |                  |                       |
| TOTAL                   | 39746.0           | 4849.4           | 100.0                 |

PRINTED REPORT NO. 2 - MISSION SUPPORT AREA

| sscs      | GROUP                                       | TOTAL<br>AREA FT2 | DKHS<br>AREA FT2 |
|-----------|---------------------------------------------|-------------------|------------------|
| 1.<br>1.1 | MISSION SUPPORT COMMAND, COMMUNICATION+SURV | 4985.4<br>2869.7  | 1608.3<br>1305.0 |
| 1.11      | EXTERIOR COMMUNICATIONS                     | 730 0             | 9E 0             |

| *1.111         | RADIO                                        | 730.0           | 95.0           |
|----------------|----------------------------------------------|-----------------|----------------|
| 1.112          | UNDERWATER SYSTEMS                           |                 | 33.0           |
| 1.12           | SURVEILLANCE SYS                             | 570.0           | 470.0          |
| *1.121         |                                              | 570.0           | 470.0          |
| 1.122          | UNDERWATER SURV (SONAR)                      |                 |                |
| 1.13<br>*1.131 |                                              | 1008.0          | 608.0          |
| 1.132          |                                              | 400.0           | 600.0          |
| 1.1321         |                                              | 608.0<br>528.0  | 608.0<br>528.0 |
| 1.1322         |                                              | 80.0            | 80.0           |
| 1.14           | COUNTERMEASURES                              | 192.0           | 132.0          |
| *1.141         | ELECTRONIC                                   | 172.0           | 132.0          |
| *1.142         | TORPEDO                                      | 20.0            |                |
| 1.143          | MISSILE                                      | •               |                |
| 1.15           | INTERIOR COMMUNICATIONS                      | 339.4           |                |
| 1.16           | ENVIRONMENTAL CNTL SUP SYS                   |                 |                |
| 1.2<br>*1.21   | WEAPONS<br>GUNS                              | 1144.0<br>144.0 | 244.0          |
| *1.22          |                                              | 100.0           | 144.0<br>100.0 |
| 1.23           | ROCKETS                                      | 100.0           | 100.0          |
| 1.24           | TORPEDOS                                     |                 |                |
| 1.25           | DEPTH CHARGES                                |                 |                |
| *1.26          | MINES                                        | 900.0           |                |
| 1.27           | MULT EJECT RACK STOW                         |                 |                |
| 1.28           |                                              |                 |                |
| 1.3<br>1.31    | AVIATION AVIATION LAUNCH+RECOVERY            | 625.0           | 50.0           |
| 1.31           |                                              | 25.0            |                |
| *1.312         |                                              |                 |                |
| 1.32           |                                              | 23.0            |                |
| 1.321          | FLIGHT CONTROL                               |                 |                |
| 1.322          | NAVIGATION                                   |                 |                |
| 1.323          | OPERATIONS                                   |                 |                |
| 1.33           | AVIATION HANDLING                            |                 |                |
| *1.34<br>1.35  |                                              | 450.0           |                |
| *1.36          | AVIATION ADMINISTRATION AVIATION MAINTENANCE | 50.0            | FO 0           |
| 1.37           | AVIATION MAINTENANCE                         | 30.0            | 50.0           |
| 1.372          | CONTROL                                      |                 |                |
| 1.373          | HANDLING                                     |                 | •              |
| 1.374          | STOWAGE                                      |                 |                |
| 1.38           | AVIATION FUEL SYS                            |                 |                |
| *1.39          | AVIATION STORES                              | 100.0           |                |
| 1.4            | AMPHIBIOUS<br>CARGO                          |                 |                |
|                | INTERMEDIATE MAINT FAC                       | 185.7           |                |
| 1.64           | STOWAGE                                      | 185.7           |                |
| 1.64<br>1.641  | STOWAGE<br>WEAPONS                           | 185.7           |                |
| 1.7            | FLAG FACILITIES                              |                 |                |
| 1.73           | HANDI.TNG                                    |                 |                |
|                | STOWAGE                                      |                 |                |
| 1.8            | SPECIAL MISSIONS                             | 161 0           |                |
| 1.91           | SM ARMS, PYRO+SALU BAT SM ARMS (LOCKER)      | 161.0<br>40.8   | 9.3            |
| 1.92           | PYROTECHNICS (LOCKER)                        | 9.3             | 9.3            |
| 1.93           | SALUTING BAT (MAGAZINE)                      | 13.8            | 7.5            |
| 1.95           | SALUTING BAT (MAGAZINE) SECURITY FORCE EQUIP | 97.1            |                |
| PRINTED        | REPORT NO. 3 - HUMAN SUPPORT                 | AREA            |                |
| HAB STD        | = NAVY                                       |                 |                |
| 0000           | anoun.                                       | TOTAL           | DKHS           |
| SSCS           | GROUP                                        | AREA FT2        | AREA FT2       |
|                |                                              |                 |                |

| 2.<br>2.1<br>2.11<br>2.111 | LIVING  OFFICER LIVING  BERTHING  SHIP OFFICER  FLAG OFFICER  SANITARY  SHIP OFFICER  FLAG OFFICER  FLAG OFFICER  CPO LIVING  BERTHING  SANITARY  CREW LIVING  BERTHING  SANITARY  RECREATION  LIBRARY  GENERAL SANITARY FACILITIES  LADIES RETIRING ROOM  BRIDGE WASHROOM+WC  DECK WASHROOM+WC  SHIP RECREATION FAC  MOTION PIC FILM+EQUIP  PHYSICAL FITNESS  TV ROOM  TRAINING  COMMISSARY  FOOD SERVICE  OFFICER (MESS+LOUNGE)  CPO (MESS+LOUNGE)  CPO (MESS+LOUNGE)  COMMISSARY SERVICE SPACES  FOOD STORAGE+ISSUE  CHILL PROVISIONS  FROZEN PROVISIONS  ISSUE  MEDICAL+DENTAL (MEDICAL)  GENERAL SERVICES | 7923.7<br>4403.5<br>1565.0<br>1360.0<br>1360.0 | 381.5<br>340.0<br>340.0<br>260.0 |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|
| 2 1115                     | FIAC OFFICER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1360.0                                         | 260.0                            |
| 2.112                      | SANTARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30F 0                                          |                                  |
| 2.1121                     | SHIP OFFICER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 205.0<br>205.0                                 | 80.0                             |
| 2.1125                     | FLAG OFFICER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 205.0                                          | 80.0                             |
| 2.12                       | CPO LIVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 592 5                                          |                                  |
| 2.121                      | BERTHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 465.0                                          |                                  |
| 2.122                      | SANITARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127.5                                          |                                  |
| 2.13                       | CREW LIVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2097-0                                         |                                  |
| 2.131                      | BERTHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1800-0                                         |                                  |
| 2.132                      | SANITARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 297.0                                          |                                  |
| 2.133                      | RECREATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                  |
| 2.1332                     | LIBRARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                  |
| 2.14                       | GENERAL SANITARY FACILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.0                                          |                                  |
| 2.141                      | LADIES RETIRING ROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.0                                           |                                  |
| 2.142                      | BRIDGE WASHROOM+WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.0                                           |                                  |
| 2.143                      | DECK WASHROOM+WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.0                                           |                                  |
| 2.15                       | SHIP RECREATION FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39.0                                           |                                  |
| 2.152                      | MOTION PIC FILM+EQUIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                                           |                                  |
| 2.153                      | PHYSICAL FITNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.6                                           |                                  |
| 2.154                      | TV ROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                  |
| 2.16                       | TRAINING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                                  |
| 2.2                        | COMMISSARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2316.7                                         |                                  |
| 2.21                       | FOOD SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1448.0                                         |                                  |
| 2.211                      | OFFICER (MESS+LOUNGE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 496.6                                          |                                  |
| 2.212                      | CPO (MESS+LOUNGE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 394.0                                          |                                  |
| 2.213                      | CREW (MESS+LOUNGE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 557.4                                          |                                  |
| 2.22                       | COMMISSARY SERVICE SPACES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 544.6                                          |                                  |
| 2.23                       | FOOD STORAGE+1SSUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 324.2                                          |                                  |
| 2 2 2 2 2                  | EDOZEN PROVISIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79.4                                           |                                  |
| 2.232                      | DRA BROATSTONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 167.0                                          |                                  |
| 2.234                      | ISSUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 167.0                                          |                                  |
| 2.3                        | DRY PROVISIONS ISSUE MEDICAL+DENTAL (MEDICAL) GENERAL SERVICES SHIP STORE FACILITIES SHIP STORE SHIP STORE STORES LAUNDRY FACILITIES DRY CLEANING BARBER SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300 0                                          |                                  |
| 2.4                        | GENERAL SERVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 523 2                                          |                                  |
| 2.41                       | SHIP STORE FACILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 244.6                                          |                                  |
| 2.411                      | SHIP STORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61.0                                           |                                  |
| 2.416                      | SHIP STORE STORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 183-6                                          |                                  |
| 2.42                       | LAUNDRY FACILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 186.7                                          |                                  |
| 2.43                       | DRY CLEANING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                                  |
| 2 + 3 3                    | DANDER SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.0                                           |                                  |
| 2.46                       | POSTAL SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                                  |
| 2.47                       | BRIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                                  |
| 2.48                       | RELIGIOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.0                                           |                                  |
|                            | PERSONNEL STORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150.4                                          | 41.5                             |
| 2.51                       | BAGGAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.4                                           |                                  |
| 2.52                       | MESSROOM STORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59.0                                           | 11.5                             |
| 2.55                       | FOUL WEATHER GEAR (LOCKER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.0                                           | 30.0                             |
| 2.57                       | FOLDING CHAIR STOREROOM CBR PROTECTION CBR DECON STATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.0                                           |                                  |
| 2.61                       | CBR DECON STATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 209.8                                          |                                  |
| 2.62                       | CBR DEFENSE EQP STRMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200 0                                          |                                  |
| 2.63                       | CPS AIRLOCKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 209.8                                          |                                  |
| 2.7                        | LIFESAVING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 0                                           |                                  |
| 2.71                       | LIFEJACKET LOCKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0                                           |                                  |
| /-                         | LII DONORDI DOORER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.0                                           |                                  |
| PRINTED                    | REPORT NO. 4 - SHIP SUPPORT AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                  |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL                                          | DVUC                             |
| SSCS                       | GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AREA FT2                                       | DKHS<br>AREA FT2                 |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | mun fiz                          |

| -                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                       |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 3.                                                               | SHIP SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12144.9                                                                                                                   | 1572.1                                                                |
| 3.1                                                              | SHIP CNTL SYS(STEERING&DIVING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 564.0                                                                                                                     |                                                                       |
| 3.2                                                              | DAMAGE CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 371.6                                                                                                                     |                                                                       |
| 3.22                                                             | REPAIR STATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 179.6                                                                                                                     |                                                                       |
| 3.25                                                             | FIRE FIGHTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 192 0                                                                                                                     |                                                                       |
| 3 3                                                              | CHID ADMINITERDATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 192.0                                                                                                                     |                                                                       |
| 3.5                                                              | DECK MUSICIANTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 959.3                                                                                                                     | 010 0                                                                 |
| 2.5                                                              | DECK MUXILIARIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 687.6                                                                                                                     | 212.9                                                                 |
| 3.51                                                             | ANCHOR HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 302.5                                                                                                                     |                                                                       |
| 3.52                                                             | LINE HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 172.2                                                                                                                     |                                                                       |
| 3.53                                                             | TRANSFER-AT-SEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 212.9                                                                                                                     | 212.9                                                                 |
| 3.6                                                              | SHIP MAINTENANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1128.0                                                                                                                    |                                                                       |
| 3.61                                                             | ENGINEERING DEPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 694.4                                                                                                                     |                                                                       |
| 3.611                                                            | AUX (FILTER CLEANING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90.0                                                                                                                      |                                                                       |
| 3.612                                                            | ELECTRICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.4                                                                                                                      |                                                                       |
| 3.613                                                            | MECH (GENERAL WK SHOP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 446.0                                                                                                                     |                                                                       |
| 3.614                                                            | PROPULSION MAINTENANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.0                                                                                                                      |                                                                       |
| 3.62                                                             | OPERATIONS DEPT (ELECT SHOP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 304 6                                                                                                                     |                                                                       |
| 3.63                                                             | WEAPONS DEPT (ORDINANCE SHOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 504.0                                                                                                                     |                                                                       |
| 3 64                                                             | DECK DEET (CARRENTER CHOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.0                                                                                                                      |                                                                       |
| 3.04                                                             | STOWNER (CARPENIER SHOP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.0                                                                                                                      |                                                                       |
| 2.71                                                             | SIOWAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2039.4                                                                                                                    |                                                                       |
| 3.71                                                             | SUPPLY DEPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1548.3                                                                                                                    |                                                                       |
| 3.711                                                            | HAZARDOUS MATL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 134.7                                                                                                                     |                                                                       |
| 3.712                                                            | SPECIAL CLOTHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.1                                                                                                                      |                                                                       |
| 3.713                                                            | GEN USE CONSUM+REPAIR PART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 861.1                                                                                                                     |                                                                       |
| 3.714                                                            | MISCELLANEOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.2                                                                                                                      |                                                                       |
| 3.715                                                            | STORES HANDLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 472.2                                                                                                                     |                                                                       |
| 3.72                                                             | ENGINEERING DEPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.3                                                                                                                      |                                                                       |
| 3.73                                                             | OPERATIONS DEPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.5                                                                                                                      |                                                                       |
| 3.74                                                             | DECK DEPT (BOATSWAIN STORES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 350.0                                                                                                                     |                                                                       |
| .3.75                                                            | WEAPONS DEPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.2                                                                                                                      |                                                                       |
| 3.76                                                             | EXEC DEPT (MASTER-AT-ARMS STO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DR) 29.3                                                                                                                  |                                                                       |
|                                                                  | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.0                                                                                                                      |                                                                       |
| 3.78                                                             | CLEANING GEAR STOWAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 9                                                                                                                      |                                                                       |
| 3.78<br>3.8                                                      | CLEANING GEAR STOWAGE ACCESS (INTERIOR-NORMAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.9<br>6395.1                                                                                                            | 1359 3                                                                |
| 3.78<br>3.8                                                      | CLEANING GEAR STOWAGE<br>ACCESS (INTERIOR-NORMAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.9<br>6395.1                                                                                                            | 1359.3                                                                |
| 3.78<br>3.8<br>PRINTER                                           | CLEANING GEAR STOWAGE ACCESS (INTERIOR-NORMAL)  REPORT NO. 5 - SHIP MACHINERY S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.9<br>6395.1                                                                                                            | 1359.3                                                                |
| 3.78<br>3.8<br>PRINTEI                                           | SHIP SUPPORT  SHIP CNTL SYS(STEERING&DIVING)  DAMAGE CONTROL  REPAIR STATIONS  FIRE FIGHTING  SHIP ADMINISTRATION  DECK AUXILIARIES  ANCHOR HANDLING  LINE HANDLING  TRANSFER-AT-SEA  SHIP MAINTENANCE  ENGINEERING DEPT  AUX (FILTER CLEANING)  ELECTRICAL  MECH (GENERAL WK SHOP)  PROPULSION MAINTENANCE  OPERATIONS DEPT (ELECT SHOP)  WEAPONS DEPT (ORDINANCE SHOP)  STOWAGE  SUPPLY DEPT  HAZARDOUS MATL  SPECIAL CLOTHING  GEN USE CONSUM+REPAIR PART  MISCELLANEOUS  STORES HANDLING  ENGINEERING DEPT  OPERATIONS DEPT  DECK DEPT (BOATSWAIN STORES)  WEAPONS DEPT  EXEC DEPT (MASTER-AT-ARMS STOCLEANING GEAR STOWAGE  ACCESS (INTERIOR-NORMAL) | 18.9<br>6395.1<br>SYSTEM AREA                                                                                             | 1359.3                                                                |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOTAL                                                                                                                     | DKHS                                                                  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOTAL                                                                                                                     | DKHS                                                                  |
|                                                                  | CLEANING GEAR STOWAGE ACCESS (INTERIOR-NORMAL)  REPORT NO. 5 - SHIP MACHINERY S  GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOTAL                                                                                                                     | DKHS                                                                  |
| SSCS                                                             | GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOTAL<br>AREA FT2                                                                                                         | DKHS<br>AREA FT2                                                      |
| SSCS                                                             | GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOTAL<br>AREA FT2                                                                                                         | DKHS<br>AREA FT2                                                      |
| SSCS                                                             | GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOTAL<br>AREA FT2                                                                                                         | DKHS<br>AREA FT2                                                      |
| SSCS                                                             | GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOTAL<br>AREA FT2                                                                                                         | DKHS<br>AREA FT2                                                      |
| SSCS<br><br>4.<br>4.1<br>4.13                                    | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL<br>AREA FT2                                                                                                         | DKHS<br>AREA FT2                                                      |
| SSCS<br><br>4.<br>4.1<br>4.13<br>4.132                           | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION COMBUSTION AIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOTAL<br>AREA FT2<br>12799.3<br>2391.6<br>676.1                                                                           | DKHS<br>AREA FT2<br>1056.5<br>378.2<br>68.0                           |
| SSCS<br><br>4.<br>4.1<br>4.13<br>4.132<br>4.133                  | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION COMBUSTION AIR EXHAUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOTAL<br>AREA FT2<br>12799.3<br>2391.6<br>676.1                                                                           | DKHS<br>AREA FT2                                                      |
| SSCS<br><br>4.<br>4.1<br>4.13<br>4.132<br>4.133<br>4.134         | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION COMBUSTION AIR EXHAUST CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOTAL<br>AREA FT2<br>12799.3<br>2391.6<br>676.1<br>136.1<br>540.0                                                         | DKHS<br>AREA FT2<br>1056.5<br>378.2<br>68.0                           |
| SSCS<br><br>4.<br>4.1<br>4.13<br>4.132<br>4.133<br>4.134<br>4.14 | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION COMBUSTION AIR EXHAUST CONTROL GAS TURBINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL AREA FT2  12799.3 2391.6 676.1 136.1 540.0 1715.5                                                                   | DKHS<br>AREA FT2<br>1056.5<br>378.2<br>68.0<br>68.0                   |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION COMBUSTION AIR EXHAUST CONTROL GAS TURBINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL AREA FT2  12799.3 2391.6 676.1 136.1 540.0 1715.5 266.1                                                             | DKHS<br>AREA FT2<br>1056.5<br>378.2<br>68.0<br>68.0<br>310.1<br>133.0 |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION COMBUSTION AIR EXHAUST CONTROL GAS TURBINE COMBUSTION AIR EXHAUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOTAL AREA FT2  12799.3 2391.6 676.1 136.1 540.0 1715.5 266.1 509.5                                                       | DKHS<br>AREA FT2<br>1056.5<br>378.2<br>68.0<br>68.0                   |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION COMBUSTION AIR EXHAUST CONTROL GAS TURBINE COMBUSTION AIR EXHAUST COMBUSTION AIR EXHAUST CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOTAL AREA FT2  12799.3 2391.6 676.1 136.1 540.0 1715.5 266.1                                                             | DKHS<br>AREA FT2<br>1056.5<br>378.2<br>68.0<br>68.0<br>310.1<br>133.0 |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM  PROPULSION SYSTEM  INTERNAL COMBUSTION  COMBUSTION AIR  EXHAUST  CONTROL  GAS TURBINE  COMBUSTION AIR  EXHAUST  CONTROL  AUX PROPULSION SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL AREA FT2  12799.3 2391.6 676.1 136.1 540.0 1715.5 266.1 509.5                                                       | DKHS<br>AREA FT2<br>1056.5<br>378.2<br>68.0<br>68.0<br>310.1<br>133.0 |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM  PROPULSION SYSTEM  INTERNAL COMBUSTION  COMBUSTION AIR  EXHAUST  CONTROL  GAS TURBINE  COMBUSTION AIR  EXHAUST  CONTROL  AUX PROPULSION SYSTEMS  PROPULSOR & TRANSMISSION SYST                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL AREA FT2  12799.3 2391.6 676.1 136.1 540.0 1715.5 266.1 509.5 940.0                                                 | DKHS AREA FT2  1056.5 378.2 68.0 68.0 310.1 133.0 177.1               |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION COMBUSTION AIR EXHAUST CONTROL GAS TURBINE COMBUSTION AIR EXHAUST CONTROL AUX PROPULSION SYSTEMS PROPULSOR & TRANSMISSION SYST                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOTAL AREA FT2  12799.3 2391.6 676.1 136.1 540.0 1715.5 266.1 509.5 940.0                                                 | DKHS<br>AREA FT2<br>1056.5<br>378.2<br>68.0<br>68.0<br>310.1<br>133.0 |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM  PROPULSION SYSTEM  INTERNAL COMBUSTION  COMBUSTION AIR  EXHAUST  CONTROL  GAS TURBINE  COMBUSTION AIR  EXHAUST  CONTROL  AUX PROPULSION SYSTEMS  PROPULSOR & TRANSMISSION SYST  AUX MACHINERY  GENERAL (AUX MACH DELTA)                                                                                                                                                                                                                                                                                                                                                                                                     | TOTAL AREA FT2  12799.3 2391.6 676.1 136.1 540.0 1715.5 266.1 509.5 940.0  10407.7 8258.6                                 | DKHS AREA FT2  1056.5 378.2 68.0 68.0 310.1 133.0 177.1               |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM  PROPULSION SYSTEM  INTERNAL COMBUSTION  COMBUSTION AIR  EXHAUST  CONTROL  GAS TURBINE  COMBUSTION AIR  EXHAUST  CONTROL  AUX PROPULSION SYSTEMS  PROPULSOR & TRANSMISSION SYST  AUX MACHINERY  GENERAL (AUX MACH DELTA)  A/C & REFRIGERATION                                                                                                                                                                                                                                                                                                                                                                                | TOTAL AREA FT2  12799.3 2391.6 676.1 136.1 540.0 1715.5 266.1 509.5 940.0                                                 | DKHS AREA FT2  1056.5 378.2 68.0 68.0 310.1 133.0 177.1               |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM  PROPULSION SYSTEM  INTERNAL COMBUSTION  COMBUSTION AIR  EXHAUST  CONTROL  GAS TURBINE  COMBUSTION AIR  EXHAUST  CONTROL  AUX PROPULSION SYSTEMS  PROPULSOR & TRANSMISSION SYST  AUX MACHINERY  GENERAL (AUX MACH DELTA)  A/C & REFRIGERATION  A/C (INCL VENT)                                                                                                                                                                                                                                                                                                                                                               | TOTAL AREA FT2  12799.3 2391.6 676.1 136.1 540.0 1715.5 266.1 509.5 940.0  10407.7 8258.6                                 | DKHS AREA FT2  1056.5 378.2 68.0 68.0 310.1 133.0 177.1               |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM  PROPULSION SYSTEM  INTERNAL COMBUSTION  COMBUSTION AIR  EXHAUST  CONTROL  GAS TURBINE  COMBUSTION AIR  EXHAUST  CONTROL  AUX PROPULSION SYSTEMS  PROPULSOR & TRANSMISSION SYST  AUX MACHINERY  GENERAL (AUX MACH DELTA)  A/C & REFRIGERATION  A/C (INCL VENT)                                                                                                                                                                                                                                                                                                                                                               | TOTAL AREA FT2  12799.3 2391.6 676.1  136.1 540.0 1715.5 266.1 509.5 940.0  10407.7 8258.6 1422.0                         | DKHS AREA FT2  1056.5 378.2 68.0 68.0 310.1 133.0 177.1               |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM  PROPULSION SYSTEM  INTERNAL COMBUSTION  COMBUSTION AIR  EXHAUST  CONTROL  GAS TURBINE  COMBUSTION AIR  EXHAUST  CONTROL  AUX PROPULSION SYSTEMS  PROPULSOR & TRANSMISSION SYST  AUX MACHINERY  GENERAL (AUX MACH DELTA)  A/C & REFRIGERATION  A/C (INCL VENT)  REFRIGERATION                                                                                                                                                                                                                                                                                                                                                | TOTAL AREA FT2  12799.3 2391.6 676.1  136.1 540.0 1715.5 266.1 509.5 940.0  10407.7 8258.6 1422.0 1324.8                  | DKHS AREA FT2  1056.5 378.2 68.0 68.0 310.1 133.0 177.1               |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM  PROPULSION SYSTEM  INTERNAL COMBUSTION  COMBUSTION AIR  EXHAUST  CONTROL  GAS TURBINE  COMBUSTION AIR  EXHAUST  CONTROL  AUX PROPULSION SYSTEMS  PROPULSOR & TRANSMISSION SYST  AUX MACHINERY  GENERAL (AUX MACH DELTA)  A/C & REFRIGERATION  A/C (INCL VENT)  REFRIGERATION  ELECTRICAL                                                                                                                                                                                                                                                                                                                                    | TOTAL AREA FT2  12799.3 2391.6 676.1  136.1 540.0 1715.5 266.1 509.5 940.0  10407.7 8258.6 1422.0 1324.8 97.2 246.6       | DKHS AREA FT2  1056.5 378.2 68.0 68.0 310.1 133.0 177.1               |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM  PROPULSION SYSTEM  INTERNAL COMBUSTION  COMBUSTION AIR  EXHAUST  CONTROL  GAS TURBINE  COMBUSTION AIR  EXHAUST  CONTROL  AUX PROPULSION SYSTEMS  PROPULSOR & TRANSMISSION SYST  AUX MACHINERY  GENERAL (AUX MACH DELTA)  A/C & REFRIGERATION  A/C (INCL VENT)  REFRIGERATION  ELECTRICAL  POWER GENERATION                                                                                                                                                                                                                                                                                                                  | TOTAL AREA FT2  12799.3 2391.6 676.1  136.1 540.0 1715.5 266.1 509.5 940.0  10407.7 8258.6 1422.0 1324.8 97.2             | DKHS AREA FT2  1056.5 378.2 68.0 68.0 310.1 133.0 177.1               |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION COMBUSTION AIR EXHAUST CONTROL GAS TURBINE COMBUSTION AIR EXHAUST CONTROL AUX PROPULSION SYSTEMS PROPULSOR & TRANSMISSION SYST AUX MACHINERY GENERAL (AUX MACH DELTA) A/C & REFRIGERATION A/C (INCL VENT) REFRIGERATION ELECTRICAL POWER GENERATION SHIP SERVICE PWR GEN                                                                                                                                                                                                                                                                                                               | TOTAL AREA FT2  12799.3 2391.6 676.1  136.1 540.0 1715.5 266.1 509.5 940.0  10407.7 8258.6 1422.0 1324.8 97.2 246.6 119.7 | DKHS AREA FT2  1056.5 378.2 68.0 68.0 310.1 133.0 177.1               |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION COMBUSTION AIR EXHAUST CONTROL GAS TURBINE COMBUSTION AIR EXHAUST CONTROL AUX PROPULSION SYSTEMS PROPULSOR & TRANSMISSION SYST AUX MACHINERY GENERAL (AUX MACH DELTA) A/C & REFRIGERATION A/C (INCL VENT) REFRIGERATION ELECTRICAL POWER GENERATION SHIP SERVICE PWR GEN                                                                                                                                                                                                                                                                                                               | TOTAL AREA FT2  12799.3 2391.6 676.1  136.1 540.0 1715.5 266.1 509.5 940.0  10407.7 8258.6 1422.0 1324.8 97.2 246.6 119.7 | DKHS AREA FT2  1056.5 378.2 68.0 68.0 310.1 133.0 177.1               |
| SSCS<br>                                                         | GROUP  SHIP MACHINERY SYSTEM PROPULSION SYSTEM INTERNAL COMBUSTION COMBUSTION AIR EXHAUST CONTROL GAS TURBINE COMBUSTION AIR EXHAUST CONTROL AUX PROPULSION SYSTEMS PROPULSOR & TRANSMISSION SYST AUX MACHINERY GENERAL (AUX MACH DELTA) A/C & REFRIGERATION A/C (INCL VENT) REFRIGERATION ELECTRICAL POWER GENERATION SHIP SERVICE PWR GEN 400 HERTZ PWR DIST & CNTRL                                                                                                                                                                                                                                                                                    | TOTAL AREA FT2  12799.3 2391.6 676.1  136.1 540.0 1715.5 266.1 509.5 940.0  10407.7 8258.6 1422.0 1324.8 97.2 246.6 119.7 | DKHS AREA FT2  1056.5 378.2 68.0 68.0 310.1 133.0 177.1               |

4.34 POLUTION CONTROL SYSTEMS 134.4 4.35 MECHANICAL SYSTEMS 346.0

PRINTED REPORT NO. 6 - REQUIRED TANKAGE

#### POLLUTION CNTRL IND-PRESENT

ENDURANCE FUEL, FT3 24003.

AVIATION FUEL, FT3 2814.

FRESH WATER, FT3 653.

SEWAGE, FT3 245.

WASTE OIL WATER, FT3 480.

CLEAN BALLAST, FT3 0.

TANKAGE MARGIN, FT3 0.

TANKAGE VOL REQ, FT3 28194.

C, E>RUN, DESIGN

COMMAND STRING IS:

RUN, DESIGN SUMMARY

ASSET/MONOSC VERSION 3.3+ - DESIGN SUMMARY - 2/11/95 11.21.00.

PRINTED REPORT NO. 1 - SUMMARY

#### SHIP COMMENT TABLE

| BEAM, DWL 51.0 BEAM, WEATHER DECK 54.5                            | WEIGHT SUMMARY - LTON GROUP 1 - HULL STRUCTURE 1289.7 GROUP 2 - PROP PLANT 272.3 GROUP 3 - ELECT PLANT 248.0 GROUP 4 - COMM + SURVEIL 129.8 GROUP 5 - AUX SYSTEMS 516.9 GROUP 6 - OUTFIT + FURN 307.2 GROUP 7 - ARMAMENT 20.6 |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GMT 6.1<br>CP 0.570<br>CX 0.795                                   | SUM GROUPS 1-7 2784.5<br>DESIGN MARGIN 347.9                                                                                                                                                                                  |
| SPEED(KT): MAX= 26.0 SUST= 25.0 ENDURANCE: 8000.0 NM AT 14.0 KTS  | LIGHTSHIP WEIGHT 3132.4<br>LOADS 680.8                                                                                                                                                                                        |
|                                                                   | FULL LOAD DISPLACEMENT 3813.2<br>FULL LOAD KG: FT 19.5                                                                                                                                                                        |
| SHAFT POWER/SHAFT: 13636.6 HP<br>PROPELLERS: 2 - FP - 11.6 FT DIA |                                                                                                                                                                                                                               |
| SEP GEN: 2 D DIESEL @ 2737.5 KW                                   | AREA SUMMARY - FT2 HULL AREA - 29531.5 SUPERSTRUCTURE AREA - 10307.8                                                                                                                                                          |
| 24 HR LOAD 1075.0<br>MAX MARG ELECT LOAD 2563.6                   | TOTAL AREA 39839.2  VOLUME SUMMARY - FT3                                                                                                                                                                                      |
| OFF CPO ENL TOTAL MANNING 15 13 82 110 ACCOM 17 15 90 122         | HULL VOLUME - 387373.8<br>SUPERSTRUCTURE VOLUME - 104558.4                                                                                                                                                                    |
| •                                                                 | TOTAL VOLUME 491932.2                                                                                                                                                                                                         |

#### PRINTED REPORT NO. 2 - MANNING AND ACCOMMODATION SUMMARY

CREW ACCOM MARGIN FAC 0.10

|                        | SHIPS<br>CREW     | AIR DETACH     | FLAG STAFF<br>/OTHER | TOTAL<br>MANNING  | TOTAL<br>ACCOMMODATION |
|------------------------|-------------------|----------------|----------------------|-------------------|------------------------|
| OFFICERS<br>CPO<br>OEM | 11.<br>12.<br>76. | 4.<br>1.<br>6. | 0.<br>0.<br>0.       | 15.<br>13.<br>82. | 17.<br>15.<br>90.      |
| TOTAL                  | 99.               | 11.            | 0.                   | 110.              | 122.                   |

#### PRINTED REPORT NO. 3 - INDICATORS

MISSION DESIGN MODE IND-ENDURANCE
ENDUR DISP IND -AVG DISP
ENDUR DEF IND -USN
SUSTN SPEED IND-GIVEN

SEC ENG 2 SPD GEAR INDGEAR IMPED MASS IND -1
PROPULSION SHAFTING SUSTN SPEED IND-GIVEN
ENDUR SPEED IND-GIVEN
HULL FORM FACTORS
HULL OFFSETS IND-GIVEN
HULL DIM IND
HULL BOUNDARY CONDITIONS
HULL BC IND
HULL STA IND
FROPTIMUM
PROP DIA IND
FROP TYPE IND
PROP SERIES IND-ANALYTI
PROP DIA IND
FROP TYPE IND
PROP DIA IND
FROP CALC SHELL APPENDAGES BILGE KEEL IND -PRESENT
SKEG IND -PRESENT MARGIN LINE MARGIN LINE IND-CALC HULL SUBDIVISION FACTORS PROPULSION SUPPORT SYS
HULL SUBDIV IND-CALC INLET TYPE IND -I INNER BOTTOM INNER BOTTOM IND-PRESENT

INNER BOTTOM IND-PRESENT

EXHAUST IR SUPP IND

SS GENERATOR FACTORS

HULL LOADS IND -CALC

SHOCK FNDTN IND-SHOCK

FREQ CONV IND 
TRUCTURAL ARANGEMENT

SS GENERATOR SIZE HULL LOADS STRUCTURAL ARANGEMENT BOT PLATE LIMIT IND-CALC STIFFENERS DKHS GEOM FACTORS DKHS MATERIALS DKHS LOADS BLAST RESIST IND-7 PSI ARRANGEMENT TYPES MECH CL ARR IND MECH PORT ARR IND -MECH STBD ARR IND -ELECT PG ARR 1 IND-M-PG ELECT PG ARR 2 IND-ELECT DL ARR IND -MTR ARRANGEMENT CG MACHY KG IND -CALC ENGINE CONFIG FACTORS ENG ENDUR RPM IND -CALC SEC ENG USAGE IND -ENDUR CONFIG IND -NO TS ROLL FINS
GT ENG ENCL IND -84 DBA FIN SIZE

GEARS GEAR IMPED MASS IND -NONE SHAFT SUPPORT TYPE IND-POD THRUST BRG LOC IND-CALC PROP SERIES IND-ANALYTIC PROP SERIES IND-ANALY
PROP DIA IND -CALC PROP AREA IND -CALC
PROP LOC IND -CALC
PITCH RATIO IND-CALC
OPEN WATER PROP DATA PROP ID IND -INLET TYPE IND -PLENUM
DUCT SILENCING IND -BOTH EXHAUST IR SUPP IND-PRESENT SS GEN SIZE IND-NON STD SS ENGINES

SS ENGINES

SS ENGINES

SS ENGINES

SS ENG SELECT IND -GIVEN

SS ENG MODEL IND -A-12V270

SS ENG MODEL IND -A-12V270

SS ENG TYPE IND -D DIESEL

SS ENG SFC EQN IND-DIESEL

SS ENG SFC EQN IND-DIESEL

SS ENG SIZE IND -CALC

SS ENG SYSTEM

SS ENG SIZE IND -CALC

SONAR SYSTEM

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE

SONAR DOME THE CLIMATE CONTROL

> COLL PROTECT SYS IND-PRESENT REFER MACHY LOC IND -OUTSIDE AUX BOILER TYPE IND -ELECTRIC SEA WATER SYSTEMS

AIR AND MISC FLUID SYSTEM

RUDDERS RUDDER SIZE IND-CALC RUDDER TYPE IND-SPADE FIN SIZE IND -CALC

| DIESEL ENG MOUNT IND-COMPOUND MAIN ENGINES                                                                                                                                                                                                                                                                                                        |                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| MAIN ENG SELECT IND-GIVEN MAIN ENG MOD IND -GE-LM1600-VAN MAIN ENG TYPE IND -RGT MAIN ENG SFC EQ IND-POLY QN MAIN ENG SIZE IND -CALC SEC ENGINES                                                                                                                                                                                                  | SPECIAL PURPOSE SYSTEMS POLLUTION CNTL IND-PRESENT OUTFIT AND FURNISHINGS UNIT CMDR IND -NONE |
| SEC ENGINES  SEC ENG SELECT IND - SEC ENG MODEL IND - SEC ENG TYPE IND - SEC ENG SFC EQN IND- SEC ENG SIZE IND - TRANSMISSION FACTORS TRANS TYPE IND -ELECT TRANS EFF IND -CALC ELECTRICAL TRANSMISSION ELECT PRPLN TYPE IND -ACR-DCS ELECT PRPLN RATIND IND-CALC AC SYNC ROTOR COOL IND-AIR TRANS LINE NODE PT IND-CALC SWITCHGEAR TYPE IND -ADV |                                                                                               |
| PRINTED REPORT NO. 4 - MARGINS                                                                                                                                                                                                                                                                                                                    |                                                                                               |
| HULL MIN FREEBOARD MARGIN, FT HULL MARGIN STRESS, KSI                                                                                                                                                                                                                                                                                             | .25<br>2.24                                                                                   |
| PROPULSION PLANT<br>TORQUE MARGIN FAC                                                                                                                                                                                                                                                                                                             | 1.200                                                                                         |
| ELECTRIC PLANT ELECT LOAD DES MARGIN FAC ELECT LOAD SL MARGIN FAC                                                                                                                                                                                                                                                                                 | .200<br>.100                                                                                  |
| AUXILIARY SYSTEMS<br>AC MARGIN FAC                                                                                                                                                                                                                                                                                                                | .200                                                                                          |
| OUTFIT AND FURNISHINGS<br>CREW ACCOM MARGIN FAC                                                                                                                                                                                                                                                                                                   | .100                                                                                          |
| WEIGHT MARGINS GROWTH WT MARGIN, LTON D+B WT MARGIN, LTON D+B WT MARGIN FAC D+B KG MARGIN, FT D+B KG MARGIN FAC                                                                                                                                                                                                                                   | .0<br>.0<br>.125<br>.00                                                                       |
| RESISTANCE FACTORS DRAG MARGIN FAC                                                                                                                                                                                                                                                                                                                | .080                                                                                          |
| SPACE FACTORS SPACE MARGIN FAC PASSWAY MARGIN FAC TANKAGE MARGIN FAC                                                                                                                                                                                                                                                                              | .050<br>.000<br>.000                                                                          |
| PRINTED REPORT NO. 5 - PAYLOAD AND                                                                                                                                                                                                                                                                                                                | AD THE THE NEW C                                                                              |

# PRINTED REPORT NO. 5 - PAYLOAD AND ADJUSTMENTS

# ROW PAYLOAD AND ADJUSTMENT NAME

- 1 CIC COMMAND AND DECISION MODFIG 2 EXCOMM (1/2 DDG51) 3 NAV SYS (1/2 DDG 51)

- SPS-67 SSR
- 5 SPY-3C (MINI-SPY)
- 6 MK XII AIMS IFF
- 8 SLQ-25 NIXIE
- 9 SLQ-32(V)3 ACTIVE/PASSIVE ECM
- 11 CS HOLD UP BATTERY
- 12 SENSOR COOLING SYSTEMS
- 14 CRANE
- 15 BALLIST
- 16 OPER READINESS AND TEST SYS
- 17 RAST/TALON HELO COMBO
- 18 RAST CONTROL STATION
- 19 LAMPS MKIV: AVIATION SUPPORT & SPARES
- 21 1X 40MM CIWS/MULTI PURP GUN
- 22 1X 40MM CIWS/MULTI PURP GUN
- 23 21 CELL RAM LAUNCHER
- LONGITUDNAL BULKHEADS AROUND MAGAZINE
- 40MM AMMO (MIXED) 3000 RNDS
- 40MM AMMO (MIXED) -- 3000 RNDS HELO AS565 PANTHER: (DOLPHIN) 27
- 29
- LAMPS MKIII: FUEL [JP-5] 30
- 32 ADMIN LAN
- 34 AVIATION STORES
- 36 MINE DETECTION HULL MOUNTED SONAR

| ROW | WT KEY | WT ADD<br>LTON | WT FAC  | VCG KEY       | VCG ADD<br>FT | VCG FAC |
|-----|--------|----------------|---------|---------------|---------------|---------|
| === | ====   | =======        | ======= |               | =======       | ======= |
| 1   | W410   | 7.00           | .000    | D6.5          | -7.22         | .000    |
| 2   | W440   | 16.00          | .000    | D10           | -8.20         | 1.000   |
| 3   | W420   | 3.80           | -1.000  | D10           | 16.00         | 1.000   |
| 4   | W451   | 1.75           | .000    | D10           | 29.50         | 1.000   |
| 5   | W456   | 18.00          | .000    | DM10          | 32.00         | 1.000   |
| 6   | W455   | 2.30           | .000    | D10           | 30.00         | 1.000   |
| 8   | W473   | 3.60           | .000    | D20           | -8.00         | 1.000   |
| 9   | W472   | 3.00           | .000    | D10           | 21.00         | 1.000   |
| 11  | W410   | 30.00          | .000    | $\mathbf{BL}$ | 3.50          | 1.000   |
| 12  | W532   | 4.00           | -1.000  | $_{ m BL}$    | 10.00         | 1.000   |
| 14  | W500   | 20.00          | .000    | D6.5          | 5.00          | 1.000   |
| 15  | W191   | 1.00           | .000    | BL            | 1.00          | 1.000   |
| 16  | W491   | 3.00           | .000    | D10           | 2.50          | 1.000   |
| 17  | W588   | 5.00           | .000    | D20           | 2.00          | 1.000   |
| 18  | W588   | .00            | .000    | D20           | .00           | .000    |
| 19  | WF26   | 2.00           | .000    | D20           | 3.00          | 1.000   |
| 21  | W710   | 6.10           | .000    | D6.5          | 3.00          | 1.000   |
| 22  | W710   | 6.10           | .000    | D15           | 3.00          | 1.000   |
| 23  | W720   | 4.00           | .000    | DM10          | 14.00         | 1.000   |
| 24  | NONE   | .00            | .000    | BL            | .00           | .000    |
| 26  | WF21   | 7.40           | .000    | D6.5          | -7.00         | 1.000   |
| 27  | WF21   | 7.40           | .000    | D15           | -7.00         | .000    |
| 29  | WF23   | 4.40           | .000    | D20           | 5.00          | .000    |
| 30  | WF42   | 63.80          | .000    | BL            | 9.84          | .000    |
| 32  | W491   | .70            | .000    | BL            | 30.00         | .000    |
| 34  | NONE   | 2.00           | .000    | D20           | 3.00          | .000    |
| 36  | NONE   | 2.00           | .000    | BL            | .00           | .000    |
|     | AREA   |                | DD, FT2 |               | A FAC         |         |
| ROW | KEY    | HULL/SS        | SS/ONLY | HULL/SS       | SS/ONLY       |         |
| === | =====  | =======        |         | =======       |               |         |
| 1   | A1131  | 400.00         | .00     | .000          |               |         |
| 2   | A1111  | 635.00         | 95.00   | .000          | .000          |         |
| 3   | NONE   | .00            | .00     | .000          | .000          |         |
| 4   | A1121  | .00            | 70.00   | .000          | .000          |         |
| 5   | A1121  | 100.00         | 400.00  | .000          | .000          |         |
| 6   | 71171  | 00             | 00      | 000           | 000           |         |

| 8  | A1142 | 20.00  | .00    | .000 | .000 |
|----|-------|--------|--------|------|------|
| 9  | A1141 | 40.00  | 132.00 | .000 | .000 |
| 11 | NONE  | 250.00 | .00    | .000 | .000 |
| 12 | NONE  | .00    | .00    | .000 | .000 |
| 14 | A1260 | 900.00 | .00    | .000 | .000 |
| 15 | NONE  | .00    | .00    | .000 | .000 |
| 16 | NONE  | .00    | .00    | .000 | .000 |
| 17 | A1312 | 25.00  | .00    | .000 | .000 |
| 18 | A1312 | .00    | .00    | .000 | .000 |
| 19 | A1360 | .00    | 50.00  | .000 | .000 |
| 21 | A1210 | .00    | 72.00  | .000 | .000 |
| 22 | A1210 | .00    | 72.00  | .000 | .000 |
| 23 | A1220 | .00    | 100.00 | .000 | .000 |
| 24 | NONE  | .00    | .00    | .000 | .000 |
| 26 | NONE  | .00    | .00    | .000 | .000 |
| 27 | NONE  | .00    | .00    | .000 | .000 |
| 29 | A1340 | 450.00 | .00    | .000 | .000 |
| 30 | A1380 | .00    | .00    | .000 | .000 |
| 32 | NONE  | .00    | .00    | .000 | .000 |
| 34 | A1390 | 100.00 | .00    | .000 | .000 |
| 36 | NONE  | 12.00  | .00    | .000 | .000 |

|     | KW   | K        | W ADD, KW |          |          | KW FAC-  |          |
|-----|------|----------|-----------|----------|----------|----------|----------|
| ROW | KEY  | W CRUISE | W BATTLE  | S CRUISE | W CRUISE | W BATTLE | S CRUISE |
| === | ==== | =======  | =======   | =======  | =======  | =======  | =======  |
| 1   | NONE | 4.00     | 10.00     | 4.00     | .000     | .000     | .000     |
| 2   | NONE | 4.00     | 7.00      | 5.00     | .000     | .000     | .000     |
| 3   | NONE | 8.20     | 10.30     | 8.20     | .000     | .000     | .000     |
| 4   | C+S  | 8.00     | 7.00      | 8.00     | .000     | .000     | .000     |
| 5   | C+S  | 90.00    | 475.00    | 90.00    | .000     | .000     | .000     |
| 6   | C+S  | 3.20     | 4.00      | 3.20     | .000     | .000     | .000     |
| 8   | NONE | 3.00     | 4.20      | 3.00     | .000     | .000     | .000     |
| 9   | C+S  | 6.40     | 66.00     | 6.40     | .000     | .000     | .000     |
| 11  | NONE | 2.00     | .00       | 2.00     | .000     | .000     | .000     |
| 12  | NONE | 8.00     | 8.00      | 8.00     | .000     | .000     | .000     |
| 14  | NONE | .00      | 25.00     | .00      | .000     | .000     | .000     |
| 15  | NONE | .00      | .00       | .00      | .000     | .000     | .000     |
| 16  | NONE | 12.00    | 1.00      | 12.00    | .000     | .000     | .000     |
| 17  | UNRE | .00      | 10.00     | .00      | .000     | .000     | .000     |
| 18  | UNRE | .00      | 1.00      | .00      | .000     | .000     | .000     |
| 19  | NONE | .00      | .00       | .00      | .000     | .000     | .000     |
| 21  | ARM  | 4.00     | 16.00     | 4.00     | .000     | .000     | .000     |
| 22  | ARM  | 4.00     | 16.00     | 4.00     | .000     | .000     | .000     |
| 23  | ARM  | 2.00     | 5.00      | 2.00     | .000     | .000     | .000     |
| 24  | NONE | .00      | .00       | .00      | .000     | .000     | .000     |
| 26  | NONE | .00      | .00       | .00      | .000     | .000     | .000     |
| 27  | NONE | .00      | .00       | .00      | .000     | .000     | .000     |
| 29  | ARM  | .00      | 25.00     | .00      | .000     | .000     | .000     |
| 30  | NONE | .00      | .00       | .00      | .000     | .000     | .000     |
| 32  | NONE | 1.00     | .00       | 1.00     | .000     | .000     | .000     |
| 34  | NONE | .00      | .00       | .00      | .000     | .000     | .000     |
| 36  | NONE | 5.00     | 1.00      | 5.00     | .000     | .000     | .000     |

\*\* WARNING - PERFORMANCE ANALYSIS \*\* (W-DEFAULTVALUES-PRFMPL)

THE FOLLOWING PARAMETERS WERE PROVIDED DEFAULT VALUES:

ELECT DL ARR NO ARRAY SIG WAVE HT MSN SPEED ARRAY

SIG WAVE HT ARRAY HULL FOULING FAC PERF DISP IND
MONTHS IN SERVICE
MSN SPEED PROB ARRAY
SEA STATE PROB ARRAY
PROP FOULING FAC

\*\* WARNING - PERFORMANCE ANALYSIS \*\* (W-CANTMAKEMAXSPDWV-PRFMSN) AVAILABLE POWER FROM MAIN ENGINES IS INADEQUATE TO MEET THE MAXIMUM MISSION SPEED AT WAVE HEIGHTS OF 0.0 FT OR GREATER.

ASSET/MONOSC VERSION 3.3+ - PERFORMANCE ANALYSIS - 2/11/95 11.22.08.

PRINTED REPORT NO. 1 - SUMMARY

| PERF DISP IND<br>TOWED BODY IND | FULL LOAD NONE | MAIN ENG NO 2. MAIN ENG TYPE IND RGT |  |
|---------------------------------|----------------|--------------------------------------|--|
| SHIP FUEL TYPE IND              | JP-5           | MAIN ENG PWR AVAIL, HP 15108.        |  |
| PROP TYPE IND                   | FP             | SEC ENG NO O.                        |  |
| NO PROP SHAFTS                  | 2.             | SEC ENG TYPE IND                     |  |
| SIG WAVE HT, FT                 | 0.00           | SEC ENG PWR AVAIL, HP                |  |
| MONTHS IN SERVICE               | 0.00           | SS ENG NO 2.                         |  |
| HULL FOULING FAC                | 0.011          | SS ENG TYPE IND D DIESEL             |  |
| PROP FOULING FAC                | 0.000          | 24 HR AVG ELECT LOAD, KW 1075.0      |  |
| ANNUAL FUEL USAGE, BBL          |                | 20/310                               |  |

#### SPEED PERFORMANCE SUMMARY

| SPEED<br>KT | DRAG<br>LBF | RANGE<br>NM | REQ<br>BHP<br>HP | PRI<br>ENG<br>MN | O/L | SFC<br>LBM/HP-HR | FUEL<br>FLOW<br>LTON/HR | FUEL<br>CONS<br>NM/LTON | PROP<br>COEF | TRNSP<br>EFF |
|-------------|-------------|-------------|------------------|------------------|-----|------------------|-------------------------|-------------------------|--------------|--------------|
| 14.0        | 54127.      | 9289.       | 3532.            | 1                | 0   | .540             | .78                     | 18.0                    | 722          | 103.9        |
| 15.0        | 59431.      | 8989.       | 4138.            | 1                | 0   | .510             | .86                     | 17.4                    | 725          | 95.0         |
| 16.0        | 65659.      | 8585.       | 4863.            | 1                | 0   | .485             | .96                     | 16.6                    | .727         | 86.2         |
| 17.0        | 73875.      | 8012.       | 5812.            | 1                | 0   | .462             | 1.09                    | 15.5 0                  | .727         | 76.7         |
| 18.0        | 83575.      | 7368.       | 6968.            | 1                | 0   | .444             | 1.26                    | 14.2 0                  | .726         | 67.7         |
| 19.0        | 94317.      | 6717.       | 8316.            | 1                | 0   | .431             | 1.46                    | 13.0 0                  | 725          | 59.9         |
| 20.0        | 105344.     | 6122.       | 9797.            | 1                | 0   | .423             | 1.68                    | 11.8 0                  | .725         | 53.5         |
| 21.0        | 116941.     | 5565.       | 11440.           | 1                | 0   | .419             | 1.94                    | 10.8 0                  | .724         | 48.1         |
| 22.0        | 131730.     | 4901.       | 13552.           | 2                | 0   | .421             | 2.31                    | 9.5 0                   | .723         | 42.6         |
| 23.0        | 150355.     | 4416.       | 16266.           | 2                | 0   | .408             | 2.68                    | 8.5 0                   | .719         | 37.1         |
| 24.0        | 173210.     | 3890.       | 19706.           | 2                | 0   | .399             | 3.18                    | 7.5 0                   | .715         | 31.9         |
| 25.0        | 201849.     | 3326.       | 24172.           | 2                | 0   | .397             | 3.87                    | 6.4 0                   | .709         | 27.1         |
| 26.0        | 237229.     | 2750.       | 29935.           | 2                | 0   | .404             | 4.87                    | 5.3 0                   | .701         | 22.8         |
| 26.0        | 238919.     | 2725.       | 30216.           | 2                | 0   | .405             | 4.93                    | 5.3 0                   | .700         | 22.6         |

PRINTED REPORT NO. 2 - MISSION PERFORMANCE SUMMARY

ANNUAL FUEL USAGE, BBL 28963.

| KT                                  | MISSION<br>SPEED<br>PERCENT        |                                   | G WAV<br>PERCENT                    | RANGE<br>NM | FUEL<br>FLOW<br>LTON/HR | FUEL<br>CONS<br>NM/LTON | PROPUL<br>COEF | TRNSP<br>EFF |
|-------------------------------------|------------------------------------|-----------------------------------|-------------------------------------|-------------|-------------------------|-------------------------|----------------|--------------|
| 6.0<br>14.0<br>20.0<br>25.0<br>30.0 | 11.9<br>46.6<br>35.6<br>4.4<br>1.5 | 0.0<br>4.0<br>6.5<br>10.2<br>17.0 | 1.7<br>15.7<br>11.6<br>42.0<br>29.0 | 7662.       | 1.28                    | 14.8                    | 0.718          | 121.8        |
| 15                                  | 5.8                                | 1                                 | 0.6                                 |             |                         |                         |                |              |

PRINTED REPORT NO. 3 - DETAILED MISSION PERFORMANCE

| SIG WAVE HT, FT = PROBABILITY OF OCCURANCE, PCNT = |     | SPEED<br>KT                         | PROBABILITY<br>PCNT         | DRAG<br>LBF                                       | REQ PROP<br>HP                             | FUEL CONS<br>NM/LTON        |
|----------------------------------------------------|-----|-------------------------------------|-----------------------------|---------------------------------------------------|--------------------------------------------|-----------------------------|
|                                                    | 207 | 6.0<br>14.0<br>20.0<br>25.0<br>26.0 | 11.9<br>46.6<br>35.6<br>4.4 | 11446.<br>54127.<br>105344.<br>201849.<br>238851. | 325.<br>3532.<br>9797.<br>24172.<br>30217. | 18.8<br>18.0<br>11.8<br>6.4 |

| SIG WAVE HT, FT = 4.0<br>PROBABILITY OF<br>OCCURANCE, PCNT = 15.7                                                                                                                                                              | SPEED<br>KT                         | PROBABILITY<br>PCNT                | DRAG<br>LBF                                       | REQ PROP                                    | FUEL CONS<br>NM/LTON               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------|------------------------------------|--|--|
|                                                                                                                                                                                                                                | 6.0<br>14.0<br>20.0<br>25.0<br>26.0 | 11.9<br>46.6<br>35.6<br>4.4<br>1.5 | 202308.                                           | 9822.<br>24234.                             | 18.8<br>17.9<br>11.8<br>6.4<br>5.3 |  |  |
| SIG WAVE HT, FT = 6.5<br>PROBABILITY OF<br>OCCURANCE, PCNT = 11.6                                                                                                                                                              | SPEED<br>KT                         | PROBABILITY<br>PCNT                | DRAG<br>LBF                                       | REQ PROP                                    | FUEL CONS<br>NM/LTON               |  |  |
|                                                                                                                                                                                                                                | 6.0<br>14.0<br>20.0<br>25.0<br>26.0 | 11.9<br>46.6<br>35.6<br>4.4<br>1.5 | 11534.<br>54541.<br>106150.<br>203394.<br>239078. | 328.<br>3562.<br>9880.<br>24383.<br>30217.  | 18.8<br>17.9<br>11.8<br>6.4<br>5.3 |  |  |
| SIG WAVE HT, FT = 10.2<br>PROBABILITY OF<br>OCCURANCE, PCNT = 42.0 -                                                                                                                                                           | SPEED<br>KT                         | PROBABILITY<br>PCNT                | DRAG<br>LBF                                       | REQ PROP<br>HP                              | FUEL CONS<br>NM/LTON               |  |  |
| 72.0                                                                                                                                                                                                                           | 6.0<br>14.0<br>20.0<br>25.0<br>25.9 | 11.9<br>46.6<br>35.6<br>4.4<br>1.5 |                                                   | 334.<br>3625.<br>10052.<br>24824.<br>30217. | 18.7<br>17.7<br>11.6<br>6.3<br>5.2 |  |  |
| SIG WAVE HT, FT = 17.0<br>PROBABILITY OF<br>OCCURANCE, PCNT = 29.0 -                                                                                                                                                           | SPEED<br>KT                         | PROBABILITY<br>PCNT                | DRAG<br>LBF                                       | REQ PROP                                    | FUEL CONS<br>NM/LTON               |  |  |
| C, E>RUN, HYDRO                                                                                                                                                                                                                | 6.0<br>14.0<br>20.0<br>25.0<br>25.6 | 11.9<br>46.6<br>35.6<br>4.4<br>1.5 |                                                   | 357.<br>3866.<br>10720.<br>26532.<br>30217. | 18.5<br>17.0<br>10.9<br>5.8<br>5.2 |  |  |
| COMMAND STRING IS: RUN, HYDROSTATIC ANALYSIS  ** FATAL ERROR - HYDROSTATIC ANALYSIS ** (E-INVALIDDATA-HYSMPL)  THE FOLLOWING PARAMETERS CONTAIN INVALID OR MISSING DATA: COMP DEF IND COMP SYM INDEX ARRAY  DAMAGED COMP ARRAY |                                     |                                    |                                                   |                                             |                                    |  |  |

\*\* ENTERING PROMPT MODE \*\* ENTER 'QUIT' TO RETURN TO COMMAND LEVEL.

COMP DEF IND

ALLOWABLE OPTIONS ARE:

1 GIVEN 2 CALC PLEASE ENTER OPTION NUMBER OR OPTION STRING. I>

COMP SYM INDEX ARRAY = (21X 1)1 0.1000E+37

PLEASE ENTER ARRAY INPUT COMMANDS.

DAMAGED COMP ARRAY = (21X 1)1 0.1000E+37

PLEASE ENTER ARRAY INPUT COMMANDS.

I>

C, E>RUN, SEAK

COMMAND STRING IS:

RUN, SEAKEEPING ANALYSIS

\*\* WARNING - SEAKEEPING ANALYSIS \*\* (W-BALRNKRNG1-SEARNK)

AT THE FULL LOAD DRAFT, THE FOLLOWING HULL FORM PARAMETERS ARE OUT OF THE

RANGE OF THE BALES DATA:

CUT-UP/LBP \*\*\*\*\* % OUT OF RANGE VERT. PRISMATIC COEF AFT -13.45 % OUT OF RANGE

ASSET/MONOSC VERSION 3.3+ - SEAKEEPING ANALYSIS - 2/11/95 11.23.50.

PRINTED REPORT NO. 1 - SUMMARY

APPENDAGE IND-WITH

FULL LOAD WT, LTON 3813.2

|                                                 | FULL LOAD |
|-------------------------------------------------|-----------|
|                                                 |           |
| BALES RANK                                      |           |
| RANK OF THE SYNTHESIZED SHIP (ACTUAL DISP)      | 1.828     |
| RANK OF THE SYNTHESIZED SHIP (NORMALIZED)       | 3.104     |
| RANK OF THE CLOSEST DATA BASE HULL (NORMALIZED) | 3.460     |
| ID NO OF CLOSEST DATA BASE SHIP                 | 3         |
| MCCREIGHT RANK                                  |           |
| RANK OF THE SYNTHESIZED SHIP (ACTUAL SHIP)      | 4.191     |
| RANK OF THE CLOSEST DATA BASE HULL              | 3.991     |
| ID NO OF CLOSEST DATA BASE SHIP                 | 32        |

PRINTED REPORT NO. 2 - SHIP GEOMETRY DATA

FULL LOAD WT, LTON 3813.2

|                                                                                                              | FULL LOAD                   |
|--------------------------------------------------------------------------------------------------------------|-----------------------------|
| ACTUAL SHIP                                                                                                  |                             |
| LBP, FT                                                                                                      | 380.00                      |
|                                                                                                              |                             |
| DRAFT, FT                                                                                                    | 50.47<br>15.12              |
| VERT PRISMATIC COEF (FWD)                                                                                    | 0.7310                      |
| VERT PRISMATIC COEF (AFT)                                                                                    | 0.5323                      |
| WATERPLANE COEF (FWD)                                                                                        | 0.5832                      |
| WATERPLANE COEF (FWD) WATERPLANE COEF (AFT)                                                                  | 0.8888                      |
| WP AREA AFT MIDSHIPS, FT2                                                                                    | 8524.01                     |
| LCB FROM FP, FT                                                                                              | 196.94                      |
| LCB FROM FP, FT LCF FROM FP, FT                                                                              | 216.76                      |
| BML, FT                                                                                                      | 876.94                      |
| BML, FT<br>CUT-UP PT FROM FP, FT                                                                             | 32.19                       |
| NORMALIZED SHIP                                                                                              |                             |
| DISP, LTON<br>LBP, FT<br>BEAM, FT                                                                            | 4232.1                      |
| LBP, FT                                                                                                      | 393.43                      |
| BEAM, FT                                                                                                     | 52.26                       |
| DRAFT, FT                                                                                                    | 15.65                       |
| CUT-UP PT FROM FP, FT                                                                                        | 33.33                       |
| C, E>RUN, COST                                                                                               |                             |
| COMMAND STRING IS:                                                                                           |                             |
| RUN, COST ANALYSIS                                                                                           |                             |
| ** WARNING - COST ANALYSIS                                                                                   | ** (W-DEFAULTVALUES-CSTMPL) |
| THE FOLLOWING PARAMETERS WE                                                                                  | RE PROVIDED DEFAULT VALUES: |
| PAYLOAD T+E COST                                                                                             | LEAD PAYLOAD COST           |
| FOLLOW PAYLOAD COST                                                                                          | ANNUAL TRNG ORD COST        |
| PAYLOAD FUEL RATE                                                                                            | TECH ADV COST               |
| ADDL FACILITY COST                                                                                           | DEFERRED MMHRS REQ          |
| PAYLOAD T+E COST FOLLOW PAYLOAD COST PAYLOAD FUEL RATE ADDL FACILITY COST UNREP UNIT CAPACITY UNREP O+S COST | UNREP UNIT COST             |
|                                                                                                              | KN FACTOR ARRAY             |
| SHIP FUEL RATE                                                                                               |                             |

ASSET/MONOSC VERSION 3.3+ - COST ANALYSIS - 2/11/95 11.24.13.

NOTE-THIS INTERIM MODULE PROVIDES GUIDANCE FOR DECISIONS REGARDING SHIP DESIGN TRADEOFFS AND COMPARATIVE EVALUATIONS. REQUESTS FOR ESTIMATES OF SHIP COSTS FOR BUDGETARY PURPOSES SHOULD BE DIRECTED TO NAVSEA.

# PRINTED REPORT NO. 1 - SUMMARY

| YEAR \$ INFLATION ESCALATION FAC LEARNING RATE FUEL COST, \$/GAL PAYLOAD FUEL RATE, LTON/HR SHIP FUEL RATE, LTON/HR | 1995.<br>1.513<br>0.970<br>1.000<br>0.33<br>0.90 | NO OF SHIPS ACQUIRED SERVICE LIFE, YR ANNUAL OPERATING HRS MILITARY P/L, LTON LIGHTSHIP WT, LTON FULL LOAD WT, LTON | 100.<br>30.0<br>3000.0<br>191.5<br>3132.4<br>3813.2 |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|

| TOT SHIP + | PAYLOAD :  | = TOTAL     |
|------------|------------|-------------|
|            |            |             |
| 508.4      | 99.7*      | 608.1       |
| 240.4      | 90.7*      | 331.1       |
| 208.9      | 90.8*      | 299.7       |
|            |            | 819.8       |
|            |            | 81979.8     |
|            |            | 47.8**      |
|            |            | 4781.8**    |
|            | TOT SHIP + | 240.4 90.7* |

<sup>\*</sup>ESTIMATED VALUE

# PRINTED REPORT NO. 2 - UNIT ACQUISITION COSTS

| SWBS<br>GROUP                                                                     | ·                                                                                                                                                           | UNITS                                 |                                              | KN<br>FACTORS                                        | LEAD<br>SHIP<br>COSTS<br>\$K                   | COSTS<br>\$K                                                                        |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------|
| 100<br>200<br>300<br>400<br>500<br>600<br>700<br>800<br>900                       | HULL STRUCTURE PROPULSION PLANT ELECTRIC PLANT COMMAND+SURVEILLANCE AUX SYSTEMS OUTFIT+FURNISHINGS ARMAMENT MARGIN DESIGN+ENGINEERING CONSTRUCTION SERVICES | LTON HP LTON LTON LTON LTON LTON LTON | 1289.7<br>30216.9<br>248.0<br>129.8<br>516.9 | 1.00<br>2.35<br>1.00<br>3.15<br>1.53<br>1.00<br>1.00 | 27505.<br>17137.<br>10426.<br>29030.<br>13295. | 12162.<br>25855.<br>16109.<br>9800.<br>27288.<br>12498.<br>236.<br>12989.<br>20872. |
| TOTAL CONSTRUCTION COST 346235. 168775.  CONSTRUCTION COST 346235 168775          |                                                                                                                                                             |                                       |                                              |                                                      |                                                |                                                                                     |
| PROFIT(10.0 PERCENT OF CONSTRUCTION COST) 34624. 16877.                           |                                                                                                                                                             |                                       |                                              |                                                      |                                                | 16877.<br>185652.                                                                   |
| OUTFITTING(4 PERCENT OF PRICE)  H/M/E + GROWTH(10 PERCENT OF PRICE)  38086. 18565 |                                                                                                                                                             |                                       |                                              |                                                      |                                                | 4641.<br>9283.<br>7426.                                                             |
| E=====                                                                            | STIMATED PAYLOAD COST                                                                                                                                       |                                       |                                              |                                                      | 99700.                                         | 90703.                                                                              |
| ADJUST                                                                            | LUS PAYLOAD COST<br>ED FIRST UNIT SHIP COST<br>SYSTEM WEIGHT, LTON                                                                                          | , \$K                                 | 255765.4<br>191.5                            |                                                      | 608146.                                        |                                                                                     |

<sup>\*\*</sup>DISCOUNTED AT 10 PERCENT

PROPULSION SYSTEM WEIGHT, LTON 272.3
ADJUSTED FIRST UNIT SHIP COST EQUALS
FOLLOW SHIP TOTAL COST DIVIDED BY 0.940

PRINTED REPORT NO. 3 - LIFE CYCLE COSTS

| IOC YEAR                 | 2010. | PAYLOAD FUEL RATE, LTON/HR | 0.33 |
|--------------------------|-------|----------------------------|------|
| R+D PROGRAM LENGTH, YRS  | 10.   | SHIP FUEL RATE, LTON/HR    | 0.90 |
| NUMBER OF SHIPS ACQUIRED | 100.  | TECH ADV COST, \$M         | 0.00 |
| SERVICE LIFE, YRS        | 30.   | ADDL FACILITY COST, \$M    | 0.00 |
| NO OF OFFICERS/SHIP      | 15.   | DEFERRED MMHRS REQ, HR/WK  | 0.   |
| NO OF ENLISTED MEN/SHIP  | 95.   | PRODUCTION RATE, SHIPS/YR  | 8.00 |

30 - YEAR SYSTEMS COST

|                                    | SHIP      | (MILLIO |        |        | OLLARS) |        |
|------------------------------------|-----------|---------|--------|--------|---------|--------|
| COST ELEMENT                       | NONREC    | NONREC  | NONREC | NONREC | RECUR   | SYSTEM |
| R+D TOTAL                          | 458.      | 15.     | 0.     | 473.   |         | 473.   |
| DESIGN+DEVELMNT                    | 169.      |         | 0.     | 169.   |         | 169.   |
| DESIGN+DEVELMNT<br>TEST+EVALUATION | 290.      | 15.     | 0.     | 305.   |         | 305.   |
| INVESTMENT                         |           |         |        |        |         | 34687. |
| EQUIPMENT                          | 21935.    | 10895.  |        | 32830. |         | 32830. |
| PRIME                              | 20891.    |         |        |        |         | 29970. |
| SUPPORT                            | 1045.     | 1816.   |        | 2860.  |         | 2860.  |
| FACILITIES                         |           |         | 0.     | 0.     |         | 0.     |
| INITIAL SPARES                     | 627.      | 1180.   |        |        |         | 1807.  |
| ASSOCIATED SYS                     |           |         | 49.    | 49.    |         | 49.    |
| OPERATIONS+SUPPRT                  |           |         |        |        | 49456.  | 49456. |
| PERSONNEL                          |           |         |        |        | 6757.   |        |
| OPERATIONS                         |           |         |        |        | 4018.   |        |
| MAINTENANCE                        |           |         |        |        |         | 17152. |
| ENERGY                             |           |         |        |        | 2782.   |        |
| REPL SPARES                        |           |         |        |        | 11746.  |        |
| MAJOR SUPPORT                      |           |         |        |        |         | 6821.  |
| ASSOCIATED SYS                     |           |         |        |        | 181.    | 181.   |
| LESS RESIDUAL VALUE                | _         |         |        |        |         | 2637.  |
| LIFE CYCLE TOTAL S                 | YSTEMS CO |         |        |        |         | 81980. |
| DISCOUNTED AT 10 P                 | ERCENT    |         |        |        |         | 4782.  |

COST PER VEHICLE-UNDISCOUNTED 820.
COST PER VEHICLE-DISCOUNTED 48.
C,E>RUN,MANN
COMMAND STRING IS:
RUN,MANNING ANALYSIS

ASSET/MONOSC VERSION 3.3+ - MANNING ANALYSIS - 2/11/95 11.24.28.

NOTE-THIS INTERIM MANNING MODEL PROVIDES GROSS TREND ANALYSIS BASED ON HISTORICAL MANNING DATA OF EXISTING SHIPS. REQUESTS FOR SHIP MANNING DETERMINATION SHOULD BE DIRECTED TO NAVSEA.

PRINTED REPORT NO. 1 - SUMMARY

| FULL LOAD WT, LTON   | 3813.2 |                      |     |
|----------------------|--------|----------------------|-----|
| TOTAL MMHRS REQ/WK   | 6696.1 | NO WATCH STATIONS    | 5.  |
| TOTAL MMHRS AVAIL/WK | 5920.0 | NO WATCHSTANDERS     | 14. |
| DEFERRED MMHRS/WK    | 776.1  | NO NON-WATCHSTANDERS | 74. |

|                                            | OFFICERS         | CPO              | ENLISTED            | TOTAL                |
|--------------------------------------------|------------------|------------------|---------------------|----------------------|
| REQ MANNING<br>AVAIL MANNING<br>DIFFERENCE | 11.<br>15.<br>4. | 11.<br>13.<br>2. | 101.<br>82.<br>-19. | 123.<br>110.<br>-13. |
| ACCOMMODATIONS                             | 17.              | 15.              | 90.                 | 122.                 |

PRINTED REPORT NO. 2 - MANNING AND ACCOMMODATION SUMMARY

CREW ACCOM MARGIN FAC 0.10

OFFICERS CPO OEM

TOTAL

| SHIPS<br>CREW     | AIR<br>DETACH  | FLAG STAFF<br>/OTHER | ACCOMMODATION     |
|-------------------|----------------|----------------------|-------------------|
| 11.<br>12.<br>76. | 4.<br>1.<br>6. | 0.                   | 17.<br>15.<br>90. |
| <br>99.           | 11.            | 0.                   | 122.              |

PRINTED REPORT NO. 3 - DEPARTMENTAL MANNING ANALYSIS

| DEPARTMENT                                                                     | MANNING<br>FACTOR                      | OFFICERS                   | СРО                              | ENLISTED                              | TOTAL                                  |
|--------------------------------------------------------------------------------|----------------------------------------|----------------------------|----------------------------------|---------------------------------------|----------------------------------------|
| CO/EXEC/NAV/MED OPERATIONS COMBAT ENGINEERING SUPPLY AVIATION FLAG STAFF/OTHER | 0.7<br>0.5<br>0.5<br>0.8<br>0.5<br>1.0 | 1.<br>2.<br>2.<br>1.<br>4. | 2.<br>2.<br>3.<br>2.<br>1.<br>0. | 10.<br>24.<br>20.<br>27.<br>14.<br>6. | 13.<br>27.<br>25.<br>31.<br>16.<br>11. |
| REQ MANNING<br>AVAIL MANNING<br>DIFFERENCE                                     |                                        | 11.<br>15.<br>4.           | 11.<br>13.<br>2.                 | 101.<br>82.<br>-19.                   | 123.<br>110.<br>-13.                   |

PRINTED REPORT NO. 4 - WEEKLY FUNCTIONAL WORKLOAD ANALYSIS

| FUNCTION                                                                                 | WORKLOAD<br>FACTOR |                  | WEEKLY<br>MHRS<br>AVAIL    | PERCENT       |
|------------------------------------------------------------------------------------------|--------------------|------------------|----------------------------|---------------|
| OPERATIONAL MANNING (OM) PLANNED MAINTENANCE (PM)                                        | 0.5                | 2199.1           |                            | 32.8          |
|                                                                                          | 0.5                | 1360.8           |                            | 10.2          |
| PRODUCTIVITY ALLOWANCE (PA) SERVICE DIVERSION ALLOWANCE (SDA)                            | 0.5<br>1.0         | 504.4            |                            | 7.2<br>7.5    |
| + TRAINING (T) TOTAL MMHRS REQ/WK                                                        | 1.5                | 1470.7<br>6696.1 |                            | 22.0<br>100.0 |
| WATCHSTANDERS (74HRS/MAN-WK)<br>NON-WATCHSTANDERS (66HRS/MAN-WK)<br>TOTAL MMHRS AVAIL/WK |                    |                  | 1036.0<br>4884.0<br>5920.0 | 88.4          |
| DEFERRED MMHRS/WK C,E>EXIT DO YOU WISH TO SAVE CURRENT MODEL I> N                        | (Y/N)?             |                  | 776.1                      | 11.6          |
| DO YOU WISH TO EXIT PROGRAM (Y/N) I> Y                                                   | ?                  |                  |                            |               |

# **APPENDIX O**

**ASSET DIAGRAMS** 

# Summary and Contents

Appendix O contains the printed graphics displays from the ASSET runs compile by the CPCX design team. The printed reports are broken down as follows:

### Section 1, Common Reports between Variants

- Hull Geometry Graphic Display No. 1 Body Plan
- Hull Geometry Graphic Display No. 2 Hull Isometric View
- Hull Geometry Graphic Display No. 3 Hull Profile and Weatherdeck Plan View
- Hull Geometry Graphic Display No. 4 Design Waterline Plan View
- Hull Geometry Graphic Display No. 5 Hull Sectional Area Curve
- Hull Subdivision Graphic Display No. 1 Midship Section
- Hull Subdivision Graphic Display No. 2 Hull Decks and Platforms (Main Deck)
- Hull Subdivision Graphic Display No. 3 Hull Decks and Platforms (2nd Deck)
- Hull Subdivision Graphic Display No. 4 Hull Decks and Platforms (1st Platform)
- Hull Structure Graphic Display No. 1 Midship Section
- Hull Structure Graphic Display No. 2 Segment Node Points
- Appendage Graphic Display No. 1 Hull Profile and Plan View with Appendages
- Appendage Graphic Display No. 2 Fwd Fin Tip Position
- Propeller Graphic Display No. 2 Transverse Section
- Machinery Graphic Display No. 1 Ship Machinery Layout
- Machinery Graphic Display No. 2 Machinery Box
- Machinery Graphic Display No. 3 MR Plan Views (MMR1 & MMR2)
- Machinery Graphic Display No. 4 MR Profile Views (MMR1 & MMR2)
- Machinery Graphic Display No. 5 Propulsion Appendages Profile View

#### Section 2, Navy Variant Specific Reports

- Resistance Graphics Display No. 1 Resistance Versus Speed
- Resistance Graphics Display No. 2 EHP Versus Speed (3980 Lt & 3810 Lt))
- Performance Analysis Graphic Display No. 1 Drag Versus Speed
- Performance Analysis Graphic Display No. 2 Range Versus Speed
- Performance Analysis Graphic Display No. 3 Total Power Versus Speed
- Performance Analysis Graphic Display No. 4 SFC Versus Speed
- Performance Analysis Graphic Display No. 5 Fuel Flow Versus Speed
- Performance Analysis Graphic Display No. 6 Fuel Consumption Versus Speed
- Performance Analysis Graphic Display No. 7 Propulsive Coefficient Versus Speed
- Performance Analysis Graphic Display No. 8 Transport Efficiency Versus Speed

#### Section 3, Coast Guard Variant Specific Reports

- Resistance Graphics Display No. 1 Resistance Versus Speed
- Resistance Graphics Display No. 2 EHP Versus Speed (3813 Lt & 3591 Lt)
- Performance Analysis Graphic Display No. 1 Drag Versus Speed
- Performance Analysis Graphic Display No. 2 Range Versus Speed
- Performance Analysis Graphic Display No. 3 Total Power Versus Speed
- Performance Analysis Graphic Display No. 4 SFC Versus Speed
- Performance Analysis Graphic Display No. 5 Fuel Flow Versus Speed
- Performance Analysis Graphic Display No. 6 Fuel Consumption Versus Speed

# SECTION 1 COMMON REPORTS BETWEEN VARIANTS









































## SECTION 2 NAVY VARIANT SPECIFIC REPORTS

























# SECTION 3 COAST GUARD VARIANT SPECIFIC REPORTS

















### **APPENDIX P**

NAVAL ARCHITECTURE DATA

#### **SUMMARY**

This appendix (P) contains the data calculated by GHS for developing the charts in the Naval Architecture section of this design report. All of the charts were generated by GHS, with the exception of the Floodable Length Curve which was generated using Microsoft Excel v5.0.

95-11-21 18:56:14 GHS 6.38D

CPCX

Page 1

## HYDROSTATIC PROPERTIES Trim: Fwd 0.53 deg., No Heel, VCG = 20.21

| LCF      | Displacement   |         | cy-Ctr.  | Weight/  |         | Moment/   |          |        |
|----------|----------------|---------|----------|----------|---------|-----------|----------|--------|
| Draft-   | Weight(LT)     | LCB     | VCB      | Inch-    | LCF     | -Deg trim | KML      | KMT    |
| 2.000    | 122.52         | 133.89a | 1.30     | 8.06     | 150.57a | 4871.36   | 2298.0   | 23.36  |
| 4.000    | 403.64         | 151.72a | 2.54     | 13.59    | 165.33a | 9843.80   | 1417.3   | 28.74  |
| 6.000    | 801.76         | 161.05a | 3.79     | 18.04    | 174.71a | 15255     | 1110.2   | 29.58  |
| 8.000    | 1,300.48       | 168.02a | 5.03     | 21.80    | 183.29a | 21435     | 964.4    | 28.75  |
| 10.000   | 1,880.38       | 173.83a | 6.26     | 24.98    | 190.39a | 28010     | 873.6    | 27.62  |
| 12.000   | 2,539.82       | 179.11a | 7.50     | 28.10    | 197.98a | 36206     | 836.9    | 26.90  |
| 14.000   | 3,271.11       | 184.08a | 8.74     | 30.94    | 205.07a | 45324     | 814.0    | 26.33  |
| 16.000   | 4,076.32       | 189.02a | 9.98     | 33.84    | 212.49a | 57080     | 822.4    | 25.95  |
| 18.000   | 4,914.28       | 193.21a | 11.18    | 35.43    | 213.40a | 63191     | 756.9    | 25.60  |
| 20.000   | 5,773.68       | 196.12a | 12.34    | 36.65    | 212.09a | 67414     | 689.1    | 25.55  |
| 22.000   | 6,662.25       | 198.15a | 13.50    | 37.96    | 210.50a | 72092     | 640.1    | 25.84  |
| 24.000   | 7,581.86       | 199.54a | 14.65    | 39.32    | 208.73a | 77142     | 603.1    | 26.35  |
| 26.000   | 8,533.83       | 200.48a | 15.81    | 40.66    | 207.02a | 81946     | 570.3    | 27.00  |
| 28.000   | 9,516.36       | 201.05a | 16.97    | 42.00    | 204.98a | 87154     | 544.9    | 27.73  |
| 30.000   | 10,472.61      | 201.27a | 18.06    | 32.37    | 194.51a | 89239     | 508.4    | 25.36  |
| Distance |                |         | ific Gra | vity = 1 | .025    | M         | oment in | Ft-LT. |
| Draft is | s from Baselin | ne.     |          |          |         |           |          |        |

95-11-21 18:56:14 GHS 6.38D

CPCX

Page 5

## CURVES OF FORM HULL.C Component of Part HULL

Trim: zero Heel: zero

| Ref Pt    | Volume   | Block  | Displ/  | WaterPl   | MaxSect | Prismat | icCoefs |
|-----------|----------|--------|---------|-----------|---------|---------|---------|
| Depth     | (Cu Ft)- | Coef   | Length  | Coef      |         |         | Vert    |
| 2.00      | 4510     | 0.351  | 8.0     | 0.590     | 0.634   | 0.559   | 0.595   |
| 4.00      | 14368    | 0.358  | 18.7    | 0.604     | 0.656   | 0.549   | 0.593   |
| 6.00      | 28338    | 0.370  | 29.7    | 0.623     | 0.678   | 0.549   | 0.595   |
| 8.00      | 45795    | 0.389  | 40.0    | 0.649     | 0.708   | 0.551   | 0.600   |
| 10.00     | 66164    | 0.405  | 49.0    | 0.668     | 0.737   | 0.553   | 0.606   |
| 12.00     | 89265    | 0.418  | 56.3    | 0.687     | 0.759   | 0.555   | 0.609   |
| 14.00     | 115006   | 0.428  | 61.7    | 0.709     | 0.780   | 0.554   | 0.604   |
| 16.00     | 143062   | 0.456  | 74.2    | 0.733     | 0.796   | 0.576   | 0.622   |
| 18.00     | 172210   | 0.481  | 88.2    | 0.746     | 0.811   | 0.596   | 0.645   |
| 20.00     | 202311   | 0.501  | 102.3   | 0.760     | 0.821   | 0.613   | 0.660   |
| 22.00     | 233438   | 0.518  | 116.6   | 0.775     | 0.830   | 0.627   | 0.669   |
| 24.00     | 265644   | 0.534  | 131.0   | 0.791     | 0.836   | 0.640   | 0.675   |
| 26.00     | 298960   | 0.547  | 145.6   | 0.807     | 0.841   | 0.652   | 0.678   |
| 28.00     | 333366   | 0.559  | 160.3   | 0.823     | 0.845   | 0.664   | 0.681   |
| 30.00     | 364957   | 0.565  | 173.4   | 0.449     | 0.844   | 0.671   | 1.259   |
| Distances | in FEET  | Length | is true | waterline | 2       |         |         |

HULL Reference Point: Long.= 0.00 Trans.= 0.00 Vert.= 0.00

95-11-21 18:56:14 GHS 6.38D

CPCX

Page 3

### CROSS CURVES OF STABILITY Showing righting arms in heel at VCG = 0.00

Trim: zero at zero heel (trim righting arm held at zero)

| Displacement |        | Heel     | Angles   | in Degre | es     |        |
|--------------|--------|----------|----------|----------|--------|--------|
| LONG TONS    | 10.00s | 20.00s   | 30.00s   | 40.00s   |        | 60.00s |
| 128.83       | 5.10s  | 10.13s   | 13.75s   | 16.12s   | 17.76s | 19.43s |
| 410.42       | 5.31s  | 9.82s    | 13.30s   | 15.88s   | 18.04s | 21.20s |
| 809.51       | 5.22s  | 9.59s    | 13.03s   | 15.81s   | 18.48s | 21.77s |
| 1,308.16     | 5.06s  | 9.39s    | 12.91s   | 15.95s   | 19.06s | 21.73s |
| 1,890.03     | 4.89s  | 9.23s    | 12.91s   | 16.22s   | 19.39s | 21.47s |
| 2,549.92     | 4.75s  | 9.12s    | 12.99s   | 16.59s   | 19.45s | 21.14s |
| 3,285.22     | 4.65s  | 9.05s    | 13.13s   | 16.81s   | 19.33s | 20.75s |
| 4,086.67     | 4.57s  | 9.02s    | 13.31s   | 16.77s   | 19.01s | 20.26s |
| 4,919.31     | 4.50s  | 9.02s    | 13.31s   | 16.47s   | 18.53s | 19.70s |
| 5,779.16     | 4.48s  | 9.05s    | 13.09s   | 15.98s   | 17.94s | 19.12s |
| 6,668.31     | 4.52s  | 9.03s    | 12.66s   | 15.35s   | 17.28s | 18.51s |
| 7,588.33     | 4.60s  | 8.82s    | 12.08s   | 14.64s   | 16.57s | 17.90s |
| 8,540.00     | 4.65s  | 8.39s    | 11.39s   | 13.87s   | 15.84s | 17.29s |
| 9,522.85     | 4.36s  | 7.70s    | 10.59s   | 13.06s   | 15.11s | 16.70s |
| 10,425.27    | 3.62s  | 6.81s    | 9.71s    | 12.27s   | 14.43s | 16.14s |
| Distances in | FEETS  | pecific  | Gravity  | = 1.025. |        |        |
|              |        | Free sur | face ign | nored.   |        |        |

95-11-02 09:21:49 GHS/FL 1.54

CPCX

Page 4 C:\GHS\TS

FLOODABLE LENGTHS

Initial Origin Depth = 15.50 Initial Trim = 0.00 Degrees Vertical C.G. = 19.74 Permeability =0.700

| ORIGIN | rtical C.G. |        | Permeabil | -1 = 0.700 |      |  |
|--------|-------------|--------|-----------|------------|------|--|
|        | Deg TRIM    |        | LENGTH    | MARGIN     | GMt  |  |
| 37.02  | -4.24       | 81.00  | 205.87    | 0.25       | 8.10 |  |
| 37.04  | -4.21       | 90.00  | 192.84    | 0.25       | 8.19 |  |
| 37.07  | -4.11       | 99.00  | 189.40    | 0.25       |      |  |
| 37.12  | -3.99       | 108.00 | 190.75    | 0.25       | 8.66 |  |
| 37.17  | -3.84       | 117.00 | 195.15    | 0.25       | 8.95 |  |
| 37.22  | -3.67       | 126.00 | 201.96    | 0.25       | 9.26 |  |
| 37.24  | -3.49       | 135.00 | 211.02    | 0.25       | 9.59 |  |
| 37.21  | -3.28       | 144.00 | 221.57    | 0.25       | 9.82 |  |
| 37.10  | -3.04       | 153.00 | 233.55    | 0.25       | 9.88 |  |
| 36.87  | -2.75       | 162.00 | 247.24    | 0.25       | 9.90 |  |
| 36.46  | -2.42       | 171.00 |           | 0.25       | 9.88 |  |
| 35.80  | -2.03       | 180.00 | 274.32    | 0.25       | 9.78 |  |
| 34.77  | -1.58       | 189.00 | 284.52    | 0.25       | 9.59 |  |
| 33.26  | -1.06       | 198.00 | 289.66    | 0.25       | 9.25 |  |
| 31.20  | -0.49       | 207.00 | 287.37    | 0.25       |      |  |
| 28.66  | 0.08        | 216.00 |           | 0.25       |      |  |
| 25.89  | 0.62        | 225.00 | 263.78    | 0.25       | 7.47 |  |
| 23.09  | 1.10        | 234.00 | 246.88    | 0.25       | 6.79 |  |
| 20.41  | 1.52        | 243.00 | 229.32    | 0.25       | 6.18 |  |
| 18.02  | 1.88        | 252.00 |           | 0.25       |      |  |
| 15.93  | 2.20        | 261.00 | 199.40    | 0.25       | 5.39 |  |
| 14.09  | 2.47        | 270.00 | 187.51    | 0.25       | 5.16 |  |
| 12.49  | 2.71        | 279.00 | 177.60    | 0.25       | 4.99 |  |
| 11.08  | 2.92        | 288.00 |           | 0.25       |      |  |
| 9.84   | 3.11        | 297.00 |           | 0.25       | 4.82 |  |
| 9.39   | 3.18        | 306.00 | 170.07    | 0.25       | 4.80 |  |
|        |             |        |           |            |      |  |

5-10-31 13:51:59 HS/FL 1.54

CPCX

Page 1 C:\GHS\TS

FLOODABLE LENGTHS
Initial Origin Depth = 15.50 Initial Trim = 0.00 Degrees

| Ve     | rtical C.G.       | = 19.74 | Permeabil | ity =0.950 | 9     |
|--------|-------------------|---------|-----------|------------|-------|
| ORIGIN |                   | FLO     | ODED      | _          |       |
| DEPTH  | Deg TRIM          | CENTER  | LENGTH    | MARGIN     | GMt   |
| 36.85  | -4.72             | 45.00   | 160.95    | 0.25       | 7.20  |
| 36.85  | -4.72             | 54.00   | 142.97    | 0.25       | 7.20  |
| 36.86  | -4.69             | 63.00   | 130.37    | 0.25       | 7.32  |
| 36.88  | -4.61             | 72.00   | 124.30    | 0.25       | 7.51  |
| 36.92  | <del>-</del> 4.52 | 81.00   | 121.30    | 0.25       | 7.71  |
| 36.96  | -4.41             | 90.00   | 120.69    | 0.25       | 7.93  |
| 37.01  | -4.28             | 99.00   | 121.56    | 0.25       | 8.16  |
| 37.06  | -4.14             | 108.00  | 123.84    | 0.25       | 8.44  |
| 37.12  | -3.98             | 117.00  | 127.48    | 0.25       | 8.75  |
| 37.18  | -3.81             | 126.00  | 132.30    | 0.25       | 9.12  |
| 37.24  | <del>-</del> 3.61 | 135.00  | 138.29    | 0.25       | 9.54  |
| 37.24  | -3.40             | 144.00  | 145.09    | 0.25       | 9.95  |
| 37.17  | -3.16             | 153.00  | 152.86    | 0.25       | 10.27 |
| 36.97  | -2.86             | 162.00  | 161.31    | 0.25       | 10.51 |
| 36.59  | -2.51             | 171.00  | 169.98    | 0.25       | 10.72 |
| 35.92  | -2.09             | 180.00  | 178.22    | 0.25       | 10.83 |
| 34.84  | -1.61             | 189.00  | 184.70    | 0.25       | 10.75 |
| 33.23  | -1.05             | 198.00  | 188.30    | 0.25       | 10.40 |
| 31.04  | -0.45             | 207.00  | 187.84    | 0.25       | 9.79  |
| 28.37  | 0.14              | 216.00  | 183.42    | 0.25       | 8.97  |
| 25.45  | 0.70              | 225.00  | 175.72    | 0.25       | 8.09  |
| 22.53  | 1.19              | 234.00  | 165.89    | 0.25       | 7.24  |
| 19.82  | 1.61              | 243.00  | 155.43    | 0.25       | 6.51  |
| 17.43  | 1.97              | 252.00  | 145.86    | 0.25       | 5.96  |
| 15.36  | 2.28              | 261.00  | 137.56    | 0.25       | 5.56  |
| 13.58  | 2.55              | 270.00  | 130.42    | 0.25       | 5.25  |
| 12.02  | 2.78              | 279.00  | 124.32    | 0.25       | 5.03  |
| 10.67  | 2.99              | 288.00  | 119.10    | 0.25       | 4.87  |
| 9.47   | 3.17              | 297.00  | 114.49    | 0.25       | 4.75  |
| 8.43   | 3.32              | 306.00  | 110.74    | 0.25       | 4.67  |
| 7.49   | 3.46              | 315.00  | 107.53    | 0.25       | 4.63  |
| 6.66   | 3.59              | 324.00  | 104.90    | 0.25       | 4.61  |
| 6.31   | 3.64              | 333.00  | 113.72    | 0.25       | 4.62  |
|        |                   |         |           |            |       |

nvalid command

95-11-21 18:56:14 GHS 6.38D

CPCX

Page 7

#### RIGHTING ARMS VS HEEL ANGLE

Fixed CG: LCG = 187.01a TCG = 0.00 VCG = 20.21

| Origin    | Degre  | es of  | Displacement    | Righting | Arms    |
|-----------|--------|--------|-----------------|----------|---------|
| Depth     | -Trim  | Heel   | Weight(LT)      | -in Trim | in Heel |
| 17.790    | 0.53f  | 0.00   | 4,001.58        | 0.02f    | 0.000   |
| 17.737    | 0.54f  | 5.00s  | 4,001.09        | 0.00     | 0.674s  |
| 17.581    | 0.58f  | 10.00s | 4,001.98        | 0.02f    | 1.350s  |
| 17.273    | 0.62f  | 15.00s | 4,001.34        | 0.00     | 2.022s  |
| 16.818    | 0.69f  | 20.00s | 4,001.31        | 0.00     | 2.696s  |
| 16.189    | 0.76f  | 25.00s | 4,001.34        | 0.00     | 3.379s  |
| 15.356    | 0.84f  | 30.00s | 4,001.35        | 0.00     | 4.079s  |
| 14.362    | 0.92f  | 35.00s | 4,001.32        | 0.00     | 4.663s  |
| 13.270    | 1.00f  | 40.00s | 4,001.32        | 0.00     | 5.007s  |
| 12.090    | 1.08f  | 45.00s | 4,001.34        | 0.00     | 5.135s  |
| 11.809    | 1.09f  | 46.10s | 4,001.35        | 0.04a    | 5.140s  |
| 10.819    | 1.14f  | 50.00s | 4,001.35        | 0.00     | 5.087s  |
| 9.464     | 1.19f  | 55.00s | 4,001.35        | 0.00     | 4.892s  |
| 8.043     | 1.23f  | 60.00s | 4,001.36        | 0.00     | 4.579s  |
| Distances | in FEE | TSpec  | cific Gravity = | 1.025    |         |

Note: The Center of Gravity shown above is for the Fixed Weight of 3439.07 LT. As the tank load centers shift with heel and trim, the total Center of Gravity varies. The righting arms shown above include the effect of the C.G. variation.

CPCX

Page 7

#### WAVE DESCRIPTION

Wave type: TROCHOID

Phase of crest relative to origin: 0.0 degrees (0.00 Ft)
Wave length: 380.00 Ft Crest-to-trough height: 21.44 Ft

#### LONGITUDINAL STRENGTH

| LOCATION | WEIGHT | BUOYANCY | SHEAR | MOMENT             |
|----------|--------|----------|-------|--------------------|
| Ft       |        | LT/Ft    | LT    | LT-Ft              |
| 18.36f   | 0.00   |          |       |                    |
| 18.36f   | 0.01   |          | -0.0  | 0                  |
| 18.00f   | 0.03   |          | -0.0  | 1                  |
| 18.00f   | 0.07   |          | -0.0  | 1                  |
| 15.12f   | 0.17   | 0.00     | -0.4  | 5                  |
| 9.18f    | 0.39   | 0.95     | 0.8   | 15                 |
| 0.00     | 0.88   | 3.84     | 17.0  | -37                |
| 0.00     | 0.93   | 3.84     | 17.0  | -37                |
| 6.50a    | 1.71   | 5.68     | 39.3  | -207               |
| 6.50a    | 2.04   | 5.68     | 39.3  | -207               |
| 13.00a   | 2.81   | 7.35     | 65.9  | <del>-</del> 536   |
| 15.00a   |        | 7.80     | 75.4  | -674               |
| 15.00a   | 24.09* | 7.80     | 51.3  | <del>-</del> 674   |
| 18.80a   | 2.95   | 8.64     | 71.5  | <del>-</del> 901   |
| 18.80a   | 2.18   | 8.64     | 71.5  | -901               |
| 22.57a   | 2.13   | 9.48     | 97.5  | -1,213             |
| 25.00a   |        | 9.91     | 115.7 | -1,469             |
| 25.00a   | 5.05*  | 9.91     | 110.7 | -1,469             |
| 27.02a   | 2.37   | 10.27    | 126.4 | -1,704             |
| 32.13a   | 2.62   | 11.18    | 168.5 | -2,450             |
| 41.69a   | 3.06   | 12.44    | 254.2 | <b>-</b> 4,450     |
| 42.50a   | 3.10   | 12.51    | 261.8 | <del>-</del> 4,657 |
| 42.50a   | 3.16   | 12.51    | 261.8 | <b>-4</b> ,657     |
| 50.08a   | 3.55   | 13.21    | 333.9 | -6,902             |
| 51.25a   | 3.60   | 13.32    | 345.2 | -7 <b>,</b> 298    |
| 54.00a   |        | 13.48    | 372.0 | -8,280             |
| 54.00a   | 9.80*  | 13.48    | 362.2 | -8,280             |
| 55.00a   |        | 13.54    | 372.0 | -8,646             |
| 55.00a   | 26.39* | 13.54    | 345.6 | -8,646             |
| 60.81a   | 4.03   | 13.87    | 402.5 | -10,810            |
| 65.50a   | 4.21   | 13.98    | 448.5 | -12,799            |
| 65.50a   | 4.37   | 13.98    | 448.5 | -12,800            |
| 68.00a   | 4.50   | 14.04    | 472.4 | -13,947            |
| 68.00a   | 12.35  | 14.04    | 472.4 | -13,947            |
| 70.38a   | 12.47  | 14.10    | 476.4 | -15,073            |
| 73.40a   | 12.62  | 14.10    | 481.1 | -16,514            |
| 79.94a   | 12.90  | 14.10    | 489.8 | -19,681            |
| 88.00a   | 14.08  | 13.93    | 494.1 | -23,641            |
| 88.00a   | 6.23   | 13.93    | 494.1 | -23,642            |
| 88.50a   | 6.31   | 13.92    | 497.9 | -23,889            |

CPCX

Page 8

| LOCATION           | WEIGHT         | BUOYANCY       | SHEAR          | MOMENT              |
|--------------------|----------------|----------------|----------------|---------------------|
| 88.50a             | 5.78           |                | LT             | LT-Ft               |
| 89.50a             | 5.78           | 13.92          | 497.9          | -23,889             |
| 90.00a             | 5.98           | 13.89          | 505.9          | -24,389             |
| 90.00a             | 6.85           | 13.87          | 509.9          | -24,642             |
| 91.00a             | 6.94           | 13.87          | 509.9          | -24,643             |
| 91.00a<br>91.00a   | 8.37           | 13.83          | 516.9          | -25,154             |
| 92.00a             | 0.37           | 13.83          | 516.9          | -25,154             |
| 92.00a             | 2.00*          | 13.79<br>13.79 | 522.3          | -25,672             |
| 95.00a             | 2.00*          |                | 520.3          | -25,673             |
| 95.00a             | 6.10*          | 13.67          | 535.6          | -27,252             |
| 98.46a             |                | 13.67          | 529.6          | -27,252             |
|                    | 9.04           | 13.53          | 545.8          | -29,106             |
| 98.50a<br>98.50a   | 9.05           | 13.53          | 546.0          | -29,130             |
|                    | 9.74           | 13.53          | 546.0          | -29,130             |
| 99.07a             | 9.79           | 13.50          | 548.1          | -29,438             |
| 99.07a             | 9.79           | 13.50          | 548.2          | -29,441             |
| 103.00a            | 0.104          | 13.29          | 560.1          | <del>-</del> 31,615 |
| 103.00a            | 8.10*          | 13.29          | 552.0          | -31,615             |
| 106.00a            | E 004          | 13.13          | 557.6          | -33,276             |
| 106.00a            | 5.00*          | 13.13          | 552.6          | -33,276             |
| 108.00a            | 12.36          | 13.02          | 554.6          | -34,380             |
| 108.00a            | 11.60          | 13.02          | 544.4          | -34,380             |
| 108.00a            | 10 204         | 13.02          | 544.4          | -34,380             |
| 108.00a            | 10.20*         | 13.02          | 544.4          | -34,380             |
| 108.63a            | 11.78          | 12.99          | 545.2          | -34,722             |
| 112.10a            | 11.88          | 12.75          | 548.8          | -36,616             |
| 112.10a            | 12.01          | 12.75          | 548.8          | -36,616             |
| 113.00a            | 12.05          | 12.68          | 549.4          | -37,109             |
| 113.00a            | 11.45          | 12.68          | 549.4          | -37,109             |
| 114.00a            | 0.70+          | 12.61          | 550.6          | -37,657             |
| 114.00a<br>115.00a | 0.70*<br>11.54 | 12.61          | 549.9          | -37,658             |
| 115.00a<br>115.00a |                | 12.55          | 551.0          | -38,206             |
| 115.00a<br>115.00a | 12.74          | 12.55<br>12.55 | 548.9          | <del>-</del> 38,207 |
| 115.00a<br>115.00a | 2.10*          |                | 548.9          | -38,207             |
| 117.00a            |                | 12.55          | 548.9          | -38,207             |
| 117.00a<br>117.00a | 12.83<br>13.02 | 12.41<br>12.41 | 548.3<br>548.3 | -39,301<br>-30,301  |
| 117.00a<br>117.35a | 13.02          | 12.38          |                | -39,301<br>-39,493  |
| 117.33a<br>118.19a | 13.06          |                | 548.0          | -39,493             |
|                    | 13.00          | 12.33          | 547.5          | -39,951<br>-40,038  |
| 120.00a            | 2 154          | 12.19          | 546.0          | -40,938             |
| 120.00a            | 3.15*          | 12.19          | 542.8          | -40,938             |
| 123.00a<br>123.00a | 4.30*          | 11.97          | 539.6          | -42,557             |
| 123.00a            | 4.30*          | 11.97<br>11.97 | 533.0<br>539.6 | -42,558<br>-42,557  |
| 123.00a            | 2.30*          | 11.97          | 533.0          | -42,557             |
| 126.00a            | 2.30"          | 11.74          | 528.8          | -42,558<br>-44,146  |
| 126.00a            | 4.00*          | 11.74          | 524.8          | -44,146<br>-44,146  |
| 120.00a            | 13.33          | 11.66          | 523.0          | -44,146<br>-44,712  |
| 127.75a            | 13.34          | 11.61          | 521.9          | -45,059             |
| 130.00a            | 13.38          | 11.43          | 517.8          | -46,226             |
| 130.00a            | 13.30          | 77.47          | 211.0          | 40,220              |

95-11-22 12:05:36 GHS 6.38D

CPCX

| LOCATION | WEIGHT | BUOYANCY | SHEAR             | MOMENT                   |
|----------|--------|----------|-------------------|--------------------------|
| Ft       | · ·    | LT/Ft    | LT                | LT-Ft                    |
| 130.00a  | 12.18  | 11.43    | 517.8             | -46,226                  |
| 135.70a  | 12.29  | 10.96    | 511.8             | -49,153                  |
| 135.70a  | 12.56  | 10.96    | 511.8             | -49,153                  |
| 136.45a  | 12.59  | 10.90    | 510.6             | -49,536                  |
| 136.45a  | 18.97  | 10.90    | 510.6             | -49,536                  |
| 136.50a  | 18.97  | 10.90    | 510.2             | -49,561                  |
| 136.50a  | 18.76  | 10.90    | 510.2             | -49,561                  |
| 137.00a  |        | 10.86    | 506.2             | -49,814                  |
| 137.00a  | 10.00* | 10.86    | 496.2             | -49,815                  |
| 137.32a  | 18.79  | 10.83    | 493.7             | -49,970                  |
| 146.88a  | 19.13  | 10.06    | 412.3             | -54,298                  |
| 147.03a  | 19.13  | 10.04    | 410.9             | -54,359                  |
| 152.00a  |        | 9.66     | 364.6             | -56,280                  |
| 152.00a  | 15.54* | 9.66     | 349.1             | -56,280                  |
| 153.00a  |        | 9.58     | 339.5             | -56,623                  |
| 153.00a  | 1.00*  | 9.58     | 338.5             | -56,623                  |
| 156.33a  | 19.28  | 9.32     | 305.8             | -57,691                  |
| 156.44a  | 19.28  | 9.32     | 304.7             | -57 <b>,</b> 725         |
| 166.00a  | 19.29  | 8.65     | 206.2             | -60,158                  |
| 170.24a  | 18.79  | 8.40     | 161.6             | <b>-</b> 60 <b>,</b> 932 |
| 170.24a  | 19.21  | 8.40     | 161.6             | -60,932                  |
| 171.97a  | 19.05  | 8.29     | 143.0             | -61,193                  |
| 171.97a  | 12.67  | 8.29     | 143.0             | -61,193                  |
| 172.00a  | 12.67  | 8.29     | 142.8             | -61,197                  |
| 172.00a  | 12.92  | 8.29     | 142.8             | -61,197                  |
| 175.00a  | 12.64  | 8.11     | 129.1             | -61,600                  |
| 175.00a  | 13.10  | 8.11     | 129.1             | -61,600                  |
| 175.57a  | 13.04  | 8.08     | 126.3             | -61,672                  |
| 175.57a  | 13.04  | 8.08     | 126.3             | -61,672                  |
| 177.77a  | 12.97  | 7.98     | 115.3             | -61,935                  |
| 180.00a  |        | 7.88     | 104.2             | -62,176                  |
| 180.00a  | 4.10*  | 7.88     | 100.1             | -62,176                  |
| 184.83a  | 12.64  | 7.66     | 76.0              | <b>-62,595</b>           |
| 185.13a  | 12.63  | 7.65     | 74.5              | -62,617                  |
| 191.00a  |        | 7.47     | 45.9              | -62,961                  |
| 191.00a  | 45.78* | 7.47     | 0.1               | -62,961                  |
| 194.69a  | 12.02  | 7.36     | -17.3             | -62,924                  |
| 195.00a  |        | 7.36     | -18.7             | -62,918                  |
| 195.00a  | 3.30*  | 7.36     | -22.0             | -62,918                  |
| 198.00a  |        | 7.32     | -35.9             | -62,827                  |
| 198.00a  | 1.90*  | 7.32     | -37.8             | -62,827                  |
| 199.40a  | 11.88  | 7.30     | -44.2             | -62,768                  |
| 199.40a  | 12.12  | 7.30     | -44.2             | -62,768                  |
| 200.00a  |        | 7.29     | -47.1             | -62,739                  |
| 200.00a  | 4.30*  | 7.29     | -51.4             | -62,739                  |
| 201.00a  | 12.11  | 7.27     | <b>-</b> 56.3     | -62,684                  |
| 201.00a  | 11.75  | 7.27     | <del>-</del> 56.3 | -62,684                  |
| 202.00a  | 11.74  | 7.26     | -60.7             | -62,624                  |
| 202.00a  | 12.19  | 7.26     | -60.7             | -62,624                  |

CPCX

Page 10

| LOCATION           | WEIGHT | BUOYANCY     | SHEAR              | MOMENT              |
|--------------------|--------|--------------|--------------------|---------------------|
| Ft                 |        | LT/Ft        |                    | LT-Ft               |
| 204.25a            | 12.17  | 7.23         | <del>-</del> 71.9  | -62,472             |
| 205.00a            | 12.09  | 7.23         | -75.5              | -62,415             |
| 205.00a            | 11.63  | 7.23         | <del>-</del> 75.5  | -62,415             |
| 207.48a            | 11.37  | 7.22         | -86.1              | -62,211             |
| 212.00a            |        | 7.22         | -103.6             | -61,775             |
| 212.00a            | 3.15*  | 7.22         | -106.8             | -61,775             |
| 213.90a            | 10.60  | 7.22         | -113.4             | <del>-</del> 61,562 |
| 215.00a            | 10.46  | 7.22         | -117.1             | -61,434             |
| 215.00a            | 11.36  | 7.22         | -119.6             | -61,434             |
| 215.00a            |        | 7.22         | -119.6             | -61,434             |
| 215.00a            | 2.50*  | 7.22         | <del>-</del> 119.6 | -61,434             |
| 215.24a            | 11.33  | 7.22         | -120.5             | -61,406             |
| 215.24a            | 11.33  | 7.22         | -120.6             | -61,405             |
| 216.00a            |        | 7.23         | -123.7             | -61,311             |
| 216.00a            | 4.10*  | 7.23         | -127.8             | -61,311             |
| 222.00a            |        | 7.32         | -151.0             | -60,465             |
| 222.00a            | 29.99* | 7.32         | -181.0             | -60,465             |
| 225.00a            |        | 7.36         | -191.9             | -59,901             |
| 225.00a            | 3.20*  | 7.36         | -195.1             | -59,901             |
| 226.22a            | 10.83  | 7.38         | -199.3             | -59,659             |
| 228.90a            | 10.76  | 7.45         | -208.4             | -59,109             |
| 228.90a            | 11.28  | 7.45         | -208.4             | -59,108             |
| 230.00a            | 11.27  | 7.47         | -212.6             | -58,875             |
| 230.00a            | 9.91   | 7.47         | -212.6             | -58,875             |
| 230.50a            | 9.91   | 7.49         | <del>-</del> 213.8 | -58,768             |
| 230.50a            | 16.28  | 7.49<br>7.65 | -213.8<br>-272.0   | -58,768<br>-57,129  |
| 237.21a            | 16.23  | 7.80         | -272.0<br>-304.2   | -56,030             |
| 241.00a<br>241.00a | 36.49* | 7.80         | -340.7             | <b>-</b> 56,029     |
| 241.00a<br>244.37a | 16.12  | 7.93         | -368.6             | -54,829             |
| 247.63a            | 16.02  | 8.05         | -394.9             | -53,580             |
| 248.00a            | 10.02  | 8.07         | -397.9             | <b>-</b> 53,433     |
| 248.00a            | 15.54* | 8.07         | -413.4             | <b>-</b> 53,433     |
| 248.19a            | 16.00  | 8.07         | -414.9             | -53,354             |
| 250.00a            | 10.00  | 8.16         | -429.0             | <b>-</b> 52,587     |
| 250.00a            | 4.10*  | 8.16         | -433.1             | -52,587             |
| 259.17a            | 14.47  | 8.58         | -494.9             | -48,307             |
| 259.17a            | 14.47  | 8.59         | -494.9             | -48,304             |
| 264.32a            | 14.86  | 8.88         | <del>-</del> 525.5 | -45,672             |
| 264.32a            | 14.22  | 8.88         | <del>-</del> 525.5 | -45,672             |
| 266.00a            | 14.44  | 8.97         | <del>-</del> 534.6 | -44,779             |
| 266.00a            | 8.06   | 8.97         | -534.6             | -44,779             |
| 266.32a            | 8.10   | 8.99         | -534.3             | -44,608             |
| 266.32a            | 12.90  | 8.99         | -534.3             | -44,608             |
| 268.89a            | 13.01  | 9.14         | -544.3             | -43,219             |
| 270.00a            | 13.04  | 9.20         | -548.6             | -42,610             |
| 270.00a            | 13.50  | 9.20         | <del>-</del> 553.6 | -42,610             |
| 270.00a            |        | 9.20         | -553.6             | -42,610             |
| 270.00a            | 5.00*  | 9.20         | -553.6             | -42,610             |

CPCX

Page 11

|                 | WEIGHT  | BUOYANCY | SHEAR                       | MOMENT              |
|-----------------|---------|----------|-----------------------------|---------------------|
|                 |         | LT/Ft    | LT                          | LT-Ft               |
| 270.16a         | 13.50   | 9.21     | -554.2                      | -42,521             |
| 275.00a         | 0 604   | 9.51     | -572.8                      | -39,785             |
| 275.00a         | 9.60*   | 9.51     | -582.4                      | <del>-</del> 39,785 |
| 277.70a         | 12.57   | 9.68     | -590.9                      | -38,198             |
| 281.14a         | 12.11   | 9.89     | -599.7                      | -36,143             |
| 281.14a         | 12.11   | 9.89     | -599.7                      | -36,140             |
| 288.00a         |         | 10.35    | -606.7                      | -31,986             |
| 288.00a         | 6.10*   | 10.35    | -612.8                      | -31,986             |
| 291.07a         | 9.28    | 10.56    | -610.5                      | -30,102             |
| 292.13a         | 9.01    | 10.63    | -609.0                      | -29,455             |
| 294.50a         | 8.50    | 10.78    | -604.4                      | -28,013             |
| 294.50a         | 9.55    | 10.78    | -604.4                      | -28,013             |
| 297.00a         | 9.02    | 10.94    | -600.4                      | -26,503             |
| 297.00a         | 8.11    | 10.94    | -600.4                      | <del>-</del> 26,503 |
| 300.00a         |         | 11.14    | -590.7                      | -24,712             |
| 300.00a         | 5.00*   | 11.14    | <del>-</del> 595 <b>.</b> 7 | -24,711             |
| 300.77a         | 7.32    | 11.19    | <del>-</del> 592.8          | <del>-</del> 24,255 |
| 303.11a         | 6.79    | 11.34    | <del>-</del> 582.9          | -22,874             |
| 314.09a         | 5.80    | 11.99    | -524.0                      | -16,764             |
| 323.00a         | 5.04    | 12.38    | -463.8                      | -12,342             |
| 323.00a         | 4.89    | 12.38    | -463.8                      | -12,342             |
| <b>323.</b> 30a | 4.87    | 12.40    | <b>-</b> 461.5              | -12,203             |
| 323.30a         | 3.56    | 12.40    | -461.5                      | -12,203             |
| 324.00a         | 3.54    | 12.43    | -455.3                      | -11,881             |
| 324.00a         | 3.36    | 12.43    | -455.3                      | -11,881             |
| 325.08a         | 3.33    | 12.48    | -445.5                      | -11,395             |
| 336.06a         | 3.11    | 12.76    | -342.3                      | -7,047              |
| 347.05a         | 2.89    | 12.69    | -235.5                      | -3,856              |
| 358.03a         | 2.68    | 12.23    | -129.2                      | -1,839              |
| 360.00a         |         | 12.07    | -110.5                      | -1,600              |
| 360.00a         | 56.78*  | 12.07    | -167.3                      | -1,600              |
| 369.02a         | 2.49    | 11.32    | -85.1                       | -453                |
| 378.00a         |         | 10.16    | -10.3                       | -18                 |
| 378.00a         | 5.05*   | 10.16    | -15.4                       | -18                 |
| 380.00a         | 2.32    | 9.90     | -0.0                        | -0                  |
| 380.00a         | 0.00    |          |                             |                     |
| * Point weight  | in LONG | TONS     |                             |                     |

#### reading the policy folia

#### SUMMARY

Largest Shear: -612.8 LT at 288.00a
Largest Bending Moment: -62,961 LT-Ft at 191.00a (Sagging)

CPCX

Page 1

#### WAVE DESCRIPTION

Wave type: TROCHOID

Phase of crest relative to origin: 180.0 degrees (190.00 Ft)
Wave length: 380.00 Ft Crest-to-trough height: 21.44 Ft

#### LONGITUDINAL STRENGTH

| LOCATION Ft      | WEIGHT        | BUOYANCY     | SHEAR              | MOMENT         |
|------------------|---------------|--------------|--------------------|----------------|
| 18.36f           | LT/Ft<br>0.00 | LT/Ft        |                    | LT-Ft          |
| 18.36f           | 0.01          |              | -0.0               | 0              |
| 18.00f           | 0.03          |              | -0.0               | 0              |
| 18.00f           | 0.07          |              | -0.0               | 0              |
| 9.18f            | 0.39          |              | -2.0               | 9              |
| 0.00             | 0.88          |              | -7.9               | 54             |
| 0.00             | 0.93          |              | <b>-7.</b> 9       | 54             |
| 6.50a            | 1.71          |              | -16.5              | 132            |
| 6.50a            | 2.04          |              | -16.5              | 132            |
| 8.72a            | 2.30          | 0.00         | -21.3              | 175            |
| 13.00a           | 2.81          | 0.09         | -32.0              | 289            |
| 15.00a           |               | 0.12         | -37.4              | 359            |
| 15.00a           | 24.10*        | 0.12         | <del>-</del> 61.5  | 359            |
| 18.80a           | 2.96          | 0.16         | -72.1              | 614            |
| 18.80a           | 2.18          | 0.16         | -72.1              | 614            |
| 22.57a           | 2.12          | 0.20         | -79.5              | 900            |
| 25.00a           |               | 0.24         | -84.3              | 1,100          |
| 25.00a           | 5.05*         | 0.24         | -89.3              | 1,100          |
| 32.13a           | 2.62          | 0.36         | -104.6             | 1,793          |
| 41.69a           | 3.09          | 0.57         | -127.4             | 2,902          |
| 42.50a           | 3.13          | 0.60         | -129.5             | 3,007          |
| 42.50a           | 3.14          | 0.60         | -129.5             | 3,007          |
| 51.25a           | 3.58          | 0.94         | -152.1             | 4,240          |
| 54.00a<br>54.00a | 9.80*         | 1.10<br>1.10 | -159.4<br>-169.2   | 4,670          |
| 55.00a           | J. 60^        | 1.16         | <del>-</del> 171.8 | 4,670<br>4,840 |
| 55.00a           | 26.40*        | 1.16         | <del>-</del> 198.2 | 4,840          |
| 60.81a           | 4.06          | 1.51         | -213.1             | 6,037          |
| 65.50a           | 4.27          | 1.92         | -224.6             | 7,065          |
| 65.50a           | 4.35          | 1.92         | -224.6             | 7,065          |
| 68.00a           | 4.47          | 2.13         | -230.6             | 7,635          |
| 68.00a           | 12.32         | 2.13         | -230.6             | 7,635          |
| 70.38a           | 12.43         | 2.34         | -254.7             | 8,213          |
| 79.94a           | 12.91         | 3.54         | <del>-</del> 347.7 | 11,101         |
| 88.00a           | 14.17         | 4.90         | -422.8             | 14,209         |
| 88.00a           | 6.32          | 4.90         | -422.8             | 14,209         |
| 88.50a           | 6.40          | 4.99         | <del>-</del> 423.5 | 14,421         |
| 88.50a           | 5.76          | 4.99         | -423.5             | 14,421         |
| 89.50a           | 5.92          | 5.15         | -424.3             | 14,845         |
| 90.00a           | 5.96          | 5.26         | -424.7             | 15,057         |

CPCX

Page 2

| LOCATION           | WEIGHT | BUOYANCY       | CHEAD              | MOMENT           |
|--------------------|--------|----------------|--------------------|------------------|
| Ft                 |        | LT/Ft          | SHEAR<br>LT        | MOMENT           |
| 90.00a             | 6.84   | 5.26           | -424.7             | 15,057           |
| 91.00a             | 6.92   | 5.47           | -426.2             | 15,483           |
| 91.00a             | 8.35   | 5.47           | -426.2             | 15,483           |
| 92.00a             |        | 5.69           | -429.0             | 15,911           |
| 92.00a             | 2.00*  | 5.69           | -431.0             | 15,911           |
| 95.00a             |        | 6.33           | -438.7             | 17,217           |
| 95.00a             | 6.10*  | 6.33           | -444.8             | 17,217           |
| 98.50a             | 9.02   | 7.07           | -452.4             | 18,788           |
| 98.50a             | 9.69   | 7.07           | -452.4             | 18,788           |
| 99.07a             | 9.74   | 7.20           | <del>-</del> 453.8 | 19,044           |
| 99.07a             | 9.74   | 7.20           | -453.8             | 19,047           |
| 103.00a            |        | 8.22           | -464.1             | 20,851           |
| 103.00a            | 8.10*  | 8.22           | -472.2             | 20,851           |
| 106.00a            |        | 8.99           | -480.5             | 22,281           |
| 106.00a            | 5.00*  | 8.99           | <del>-</del> 485.5 | 22,281           |
| 108.00a            | 12.41  | 9.51           | -491.2             | 23,258           |
| 108.00a            | 11.65  | 9.51           | -501.4             | 23,258           |
| 108.00a            |        | 9.51           | -501.4             | 23,258           |
| 108.00a            | 10.20* | 9.51           | -501.4             | 23,258           |
| 108.63a            | 11.84  | 9.68           | -502.8             | 23,575           |
| 112.10a            | 11.98  | 10.69          | -508.8             | 25,332           |
| 112.10a            | 11.95  | 10.69          | -508.8             | 25,332           |
| 113.00a            | 11.99  | 10.95          | -509.8             | 25,790           |
| 113.00a            | 11.39  | 10.95          | -509.8             | 25,791           |
| 114.00a            | 0 70+  | 11.24          | -510.2             | 26,301           |
| 114.00a            | 0.70*  | 11.24          | <b>-510.9</b>      | 26,301           |
| 115.00a<br>115.00a | 11.48  | 11.53          | -510.9             | 26,812           |
| 115.00a            | 12.68  | 11.53          | <b>-</b> 513.0     | 26,812           |
| 115.00a<br>115.00a | 2.10*  | 11.53<br>11.53 | -513.0<br>-513.0   | 26,812           |
| 117.00a            | 12.76  | 12.12          | -513.0<br>-514.8   | 26,812           |
| 117.00a            | 12.76  | 12.12          | -514.8<br>-514.8   | 27,841           |
| 118.19a            | 13.00  | 12.47          | -514.8<br>-515.6   | 27,841           |
| 120.00a            | 13.00  | 13.04          | -515.0<br>-516.1   | 28,454           |
| 120.00a            | 3.15*  | 13.04          | -510.1<br>-519.3   | 29,388<br>29,388 |
| 123.00a            | 3.13.  | 14.00          | -518.1             | 30,946           |
| 123.00a            | 4.30*  | 14.00          | -524.7             | 30,946           |
| 123.00a            |        | 14.00          | -518.1             | 30,946           |
| 123.00a            | 2.30*  | 14.00          | -524.7             | 30,946           |
| 126.00a            |        | 14.96          | -521.0             | 32,516           |
| 126.00a            | 4.00*  | 14.96          | -525.0             | 32,516           |
| 127.75a            | 13.37  | 15.52          | -521.6             | 33,432           |
| 130.00a            | 13.45  | 16.26          | -516.1             | 34,600           |
| 130.00a            | 12.25  | 16.26          | -516.0             | 34,600           |
| 135.70a            | 12.44  | 18.12          | -488.4             | 37,469           |
| 135.70a            | 12.50  | 18.12          | -488.4             | 37,469           |
| 136.45a            | 12.53  | 18.37          | -484.1             | 37,834           |
| 136.45a            | 18.91  | 18.37          | -484.1             | 37,834           |
| 136.50a            | 18.91  | 18.38          | -484.2             | 37,858           |
|                    |        |                |                    |                  |

95-11-22 12:05:36 GHS 6.38D

CDCV

| ) |          |        | CPCX     |         |                  |
|---|----------|--------|----------|---------|------------------|
|   | LOCATION | WEIGHT | BUOYANCY | SHEAR   | MOMENT           |
|   | Ft       | •      | LT/Ft    | LT      | LT-Ft            |
|   | 136.50a  | 18.70  | 18.38    | -484.2  | 37,858           |
|   | 137.00a  | 10 004 | 18.55    | -484.3  | 38,101           |
|   | 137.00a  | 10.00* | 18.55    | -494.3  | 38,101           |
|   | 137.32a  | 18.73  | 18.65    | -494.3  | 38,256           |
|   | 146.88a  | 19.04  | 21.71    | -481.9  | 42,949           |
|   | 152.00a  | 15 554 | 23.21    | -464.7  | 45,376           |
|   | 152.00a  | 15.55* | 23.21    | -480.3  | 45,377           |
|   | 153.00a  | 1 00 t | 23.50    | -476.1  | 45,855           |
|   | 153.00a  | 1.00*  | 23.50    | -477.1  | 45,855           |
|   | 156.44a  | 19.27  | 24.50    | -460.7  | 47,470           |
|   | 166.00a  | 19.45  | 26.85    | -400.3  | 51,604           |
|   | 170.24a  | 19.03  | 27.62    | -366.4  | 53,233           |
|   | 170.24a  | 19.13  | 27.62    | -366.4  | 53,233           |
|   | 171.97a  | 18.97  | 27.93    | -351.3  | 53,854           |
|   | 171.97a  | 12.59  | 27.93    | -351.3  | 53,854           |
|   | 172.00a  | 12.58  | 27.94    | -350.9  | 53,865           |
|   | 172.00a  | 12.83  | 27.94    | -350.9  | 53,865           |
|   | 175.00a  | 12.54  | 28.48    | -304.3  | 54,849           |
|   | 175.00a  | 13.00  | 28.48    | -304.3  | 54,849           |
|   | 175.57a  | 12.95  | 28.59    | -295.5  | 55,018           |
|   | 175.57a  | 12.95  | 28.59    | -295.4  | 55,020           |
|   | 180.00a  |        | 29.06    | -224.7  | 56,174           |
|   | 180.00a  | 4.10*  | 29.06    | -228.8  | 56,174           |
|   | 185.13a  | 12.59  | 29.61    | -143.4  | 57,132           |
|   | 191.00a  |        | 29.75    | -42.3   | 57,680           |
|   | 191.00a  | 45.80* | 29.75    | -88.1   | 57,680           |
|   | 194.69a  | 12.16  | 29.83    | -23.3   | 57 <b>,</b> 887  |
|   | 195.00a  |        | 29.82    | -17.9   | 57,893           |
|   | 195.00a  | 3.30*  | 29.82    | -21.2   | 57,893           |
|   | 198.00a  |        | 29.63    | 31.6    | 57,878           |
|   | 198.00a  | 1.90*  | 29.63    | 29.7    | 57,878           |
|   | 199.40a  | 12.12  | 29.55    | 54.1    | 57,820           |
|   | 199.40a  | 12.05  | 29.55    | 54.1    | 57,820           |
|   | 200.00a  |        | 29.51    | 64.6    | 57,784           |
|   | 200.00a  | 4.30*  | 29.51    | 60.3    | 57,784           |
|   | 201.00a  | 12.03  | 29.45    | 77.8    | 57,716           |
|   | 201.00a  | 11.67  | 29.45    | 77.8    | 57,716           |
|   | 202.00a  | 11.67  | 29.39    | 95.5    | 57,629           |
|   | 202.00a  | 12.11  | 29.39    | 95.5    | 57,629           |
|   | 204.25a  | 12.09  | 29.26    | 134.3   | 57,371           |
|   | 205.00a  | 12.00  | 29.15    | 147.2   | 57,266           |
|   | 205.00a  | 11.54  | 29.15    | 147.2   | 57,266           |
|   | 212.00a  |        | 28.12    | 269.5   | 55,808           |
|   | 212.00a  | 3.15*  | 28.12    | 266.4   | 55,808           |
|   | 215.00a  | 10.43  | 27.68    | 318.3   | 54,932<br>54,932 |
|   | 215 00-  | 11 77  | 1/60     | 4 I K V | 5/1 U ( )        |

27.68

27.68

27.68

27.65

11.33

2.50\*

11.31

215.00a

215.00a

215.00a

215.24a

315.8

315.8

315.8

319.6

54,932

54,932

54,932

54,858

95-11-22 12:05:36 GHS 6.38D

CPCX

| LOCATION           | WEIGHT         | BUOYANCY       | SHEAR          | MOMENT           |
|--------------------|----------------|----------------|----------------|------------------|
| Ft<br>215.24a      | 11.31          | LT/Ft          | LT             | LT-Ft            |
| 216.00a            | 11.31          | 27.65          | 319.7          | 54,856           |
| 216.00a<br>216.00a | 4.10*          | 27.48<br>27.48 | 332.1          | 54,609<br>54,609 |
| 222.00a            | 4.10"          | 26.13          | 328.0<br>421.6 | 52,358           |
| 222.00a<br>222.00a | 30.00*         | 26.13          | 391.6          | 52,358           |
| 225.00a            | 30.00"         | 25.46          | 435.7          | 51,118           |
| 225.00a            | 3.20*          | 25.46          | 432.5          | 51,117           |
| 226.22a            | 10.99          | 25.18          | 450.0          | 50,579           |
| 228.90a            | 10.97          | 24.40          | 487.0          | 49,324           |
| 228.90a            | 11.25          | 24.40          | 487.0          | 49,324           |
| 229.44a            | 11.24          | 24.25          | 494.1          | 49,057           |
| 230.00a            | 11.24          | 24.08          | 501.3          | 48,781           |
| 230.00a            | 9.88           | 24.08          | 501.3          | 48,781           |
| 230.50a            | 9.87           | 23.94          | 508.4          | 48,529           |
| 230.50a            | 16.25          | 23.94          | 508.4          | 48,529           |
| 237.21a            | 16.17          | 21.99          | 553.7          | 44,963           |
| 241.00a            |                | 20.74          | 573.5          | 42,824           |
| 241.00a            | 36.50*         | 20.74          | 537.0          | 42,824           |
| 248.00a            |                | 18.42          | 561.8          | 38,971           |
| 248.00a            | 15.55*         | 18.42          | 546.2          | 38,971           |
| 248.19a            | 15.97          | 18.36          | 546.7          | 38,867           |
| 250.00a            |                | 17.71          | 550.6          | 37,875           |
| 250.00a            | 4.10*          | 17.71          | 546.5          | 37,874           |
| 259.17a            | 14.59          | 14.43          | 554.8          | 32,812           |
| 259.17a            | 14.59          | 14.43          | 554.8          | 32,810           |
| 264.32a            | 15.04          | 12.57          | 548.1          | 29,969           |
| 264.32a            | 14.22          | 12.57          | 548.1          | 29,969           |
| 266.00a            | 14.44          | 11.96          | 544.6          | 29,051           |
| 266.00a            | 8.06           | 11.96          | 544.6          | 29,051           |
| 266.32a            | 8.10           | 11.84          | 545.8          | 28,877           |
| 266.32a            | 12.76<br>12.90 | 11.84          | 545.8          | 28,877           |
| 270.00a<br>270.00a | 13.36          | 10.51<br>10.51 | 539.7<br>534.7 | 26,879           |
| 270.00a<br>270.00a | 13.30          | 10.51          | 534.7          | 26,879<br>26,879 |
| 270.00a            | 5.00*          | 10.51          | 534.7          | 26,879           |
| 270.16a            | 13.36          | 10.46          | 534.3          | 26,793           |
| 275.00a            | 13.30          | 8.78           | 517.5          | 24,247           |
| 275.00a            | 9.60*          | 8.78           | 507.9          | 24,247           |
| 281.14a            | 12.13          | 6.64           | 478.6          | 21,216           |
| 281.14a            | 12.13          | 6.64           | 478.5          | 21,214           |
| 288.00a            |                | 4.55           | 440.1          | 18,066           |
| 288.00a            | 6.10*          | 4.55           | 434.0          | 18,066           |
| 292.13a            | 9.16           | 3.29           | 410.1          | 16,324           |
| 293.36a            | 8.89           | 3.01           | 402.8          | 15,823           |
| 294.50a            | 8.66           | 2.75           | 396.1          | 15,369           |
| 294.50a            | 9.46           | 2.75           | 396.1          | 15,369           |
| 297.00a            | 8.93           | 2.18           | 379.3          | 14,401           |
| 297.00a            | 8.01           | 2.18           | 379.3          | 14,401           |
| 300.00a            |                | 1.50           | 361.7          | 13,290           |
|                    |                |                |                |                  |

95-11-22 12:05:36 GHS 6.38D

CPCX

|                    | WEIGHT        | BUOYANCY      | SHEAR | MOMENT |
|--------------------|---------------|---------------|-------|--------|
|                    |               | LT/Ft<br>1.50 | 356.7 | 13,290 |
| 300.00a            | 5.00*<br>6.72 | 0.79          | 338.4 | 12,210 |
| 303.11a<br>311.26a | 6.08          | 0.00          | 289.4 | 9,654  |
| 314.09a            | 5.86          | 0.00          | 272.5 | 8,859  |
| 323.00a            | 5.19          |               | 223.3 | 6,657  |
| 323.00a            | 5.04          |               | 223.3 | 6,657  |
| 323.30a            | 5.02          |               | 221.8 | 6,590  |
| 323.30a            | 3.56          |               | 221.8 | 6,590  |
| 324.00a            | 3.54          |               | 219.3 | 6,436  |
| 324.00a            | 3.36          |               | 219.3 | 6,436  |
| 325.08a            | 3.34          |               | 215.7 | 6,202  |
| 336.06a            | 3.11          |               | 180.3 | 4,033  |
| 347.05a            | 2.89          |               | 147.3 | 2,239  |
| 358.03a            | 2.68          |               | 116.7 | 795    |
| 360.00a            |               |               | 111.4 | 570    |
| 360.00a            | 56.80*        |               | 54.6  | 570    |
| 369.02a            | 2.49          |               | 31.5  | 186    |
| 378.00a            |               |               | 9.7   | 4      |
| 378.00a            | 5.05*         |               | 4.7   | 4      |
| 380.00a            | 2.32          |               | -0.0  | . 0    |
| 380.00a            | 0.00          |               |       | _      |
| * Point weight     | in LONG       | TONS          |       |        |

#### S U M M A R Y

Largest Shear: 573.5 LT at 241.00a
Largest Bending Moment: 57,893 LT-Ft at 195.00a (Hogging)

#### **Initial Distribution List**

| Dudley Knox Library                  | 2   |
|--------------------------------------|-----|
| Naval Postgraduate School            |     |
| Monterey, CA 93943                   |     |
| Research Administration Office       | 1   |
| Naval Postgraduate School            |     |
| Monterey, CA 93943                   |     |
| Defense Technical Information Center | 2   |
| Cameron Station                      |     |
| Alexandria, VA 22304                 |     |
| Department of Mechanical Engineering | 1   |
| Naval Postgraduate School            |     |
| Monterey, CA 93943                   |     |
| Naval Sea Systems Command            | 2   |
| SEA 03D                              |     |
| 2531 Jefferson Davis Hwy             |     |
| Arlington, VA 20362                  |     |
| Naval Sea Systems Command            | 1   |
| SEA 03D1                             |     |
| ATTN: Mr. Christopher J. Ryan        |     |
| 2531 Jefferson Davis Hwy             |     |
| Arlington, VA 20362                  |     |
| Carderock Division                   | . 1 |
| Naval Surface Warfare Center         |     |
| ATTN: Mr. Robert Keane (Code 20)     |     |
| Bethesda, MD 20084-5000              |     |
| Carderock Division                   | 1   |
| Naval Surface Warfare Center         |     |
| ATTN: Mr. Bruce Wintersteen          |     |
| Bethesda, MD 20084-5000              |     |
| Professor Wayne P. Hughes, Jr.       | 1   |
| Code OR/Hl                           |     |
| Naval Postgraduate School            |     |
| Monterey CA 93943                    |     |

| Prof. George Conner Institute for Joint Warfare Analysis Naval Postgraduate School Monterey, CA 93943                           | 1  |
|---------------------------------------------------------------------------------------------------------------------------------|----|
| Prof. Bob Harney Physics Department Naval Postgraduate School Monterey, CA 93943                                                | 1  |
| Prof. C. N. Calvano<br>Code ME/Ca<br>Naval Postgraduate School<br>Monterey, CA 93943                                            | 25 |
| Commander Mike Witt Curriculum Officer (Code 33) Naval Postgraduate School Monterey, CA 93943                                   | 1  |
| CAPT Al Brown, USN Prof. Naval Construction Dept of Ocean Engineering Massachusetts Institute of Technology Cambridge, MA 02139 | 1  |
| Naval Sea Systems Command<br>ATTN: CDR Joe Berner, USN<br>NAVSEA 03D1<br>2531 Jefferson Davis Hwy<br>Arlington, VA 22242-5160   | 1  |
| Commander Naval Sea Systems Command ATTN: SEA 03 (RADM Lewis Felton) 2531 Jefferson Davis Hwy Arlington, VA 20362               | 1  |