0.1 Exponentials

Definition 1. For a category C with binary products, an exponential C^B is associated with two objects and an evaluation arrow $\epsilon: A \times B \to \text{if}$

$$A \times B \stackrel{f}{\longrightarrow} C$$

then there exists a unique

$$A\times B\stackrel{\tilde{f}}{-\!\!\!-\!\!\!-\!\!\!-} C^B$$

where \tilde{f} is the transpose of f such that

$$C^{B} \times B \xrightarrow{\varepsilon} C \quad C^{B}$$

$$\uparrow \tilde{f} \times 1_{B} \qquad and \quad g \uparrow$$

$$A \times B \qquad A$$

Check the transpose of the transpose is the thing...

$$\varepsilon \circ f \times 1_B = \tilde{f}$$

$$\bar{\tilde{f}} = \varepsilon \circ (\tilde{f} \times 1_B) = f$$

$$\bar{g} = \varepsilon \circ (g \times 1_B) : \tilde{\tilde{g}} = g$$

In set:

$$C^{B} = \{f : B \to C\}$$
$$\varepsilon : C^{B} \times B \to C$$
$$\varepsilon(f, b) = f(b)$$

So...

$$f: A \times B \to C$$

$$f(a,b) = c$$

$$f(\tilde{a}) = f(a,*): B \to C$$

$$g: A \to C^{B}$$

$$\bar{g}: A \times B \to C$$

$$\bar{g}(a,b) = (g(a))(b)$$

This is just currying!

0.2 More Exponentials

Another way to write $A \times B \to C$ is as $A \to C^B$, meaning $Hom(A \times B, C) \cong Hom(A, C^B)$ is natural. This is an example of a left adjoint $(- \times B)$ and a right adjoint $(-^B)$.

TODO: Example 6.6 with graphs pg 124

 $-^A:C\to C$ is a functor. For a functor we need to know what it does with objects and with morphisms.

Define
$$\beta: B^A \to C^A$$
 and $\varepsilon: < TODO >$. then $B \longmapsto B^A$ $B \stackrel{\beta}{\longrightarrow} C$ $B^A \stackrel{\beta \circ \varepsilon}{\longrightarrow} C^A$