KD EDUCATION ACADEMY [9582701166] street no. 21 A-1 Bengali colony sant nagar burari delhi -110084

Time: 6 Hour Kd 90+ ch-3 classification of elements and periodicity in properties

*	Choose The Right Ar	nswer From The	Given Options.[1 Marks I	Each]	[74]		
1.	Which of the following elements will gain one electron more readily in comparison to other elements of their group?						
	(A) S(g)	(B) Na(g)	(C) O(g)	(D) Cl(g)			
2.	Compound of a metal 'M' is M_2O_3 . The formula of its nitride will be-						
	(A) M ₃ N	(B) MN	(C) M_3N_2	(D) M_2N_3			
3.	The electronegativitie	es of C, N, Si and I	Pare in order of:				
	(A) $Si < P < C < N$		(B) $Si < P < N < C$				
	(C) $P < Si < N < C$		(D) $P < Si < C < N$	I			
4.	An element belongs to following properties we have a conductor of the cond	vill be shown by the	group-13 of the periodic tab he element? (B) Liquid, metalli (D) Solid, non me	66			
5.	Which of the following to right and from top		1st to 8th All Subjects rse properties on moving al		:		
	(A) Atomic radius and	electron gain en	thalpy (negative value).				
	(B) Nuclear charge an	<mark>d ionisation enth</mark>	alpy:E, NEET, NDA, CUET				
	(C) Ionisation enthalp	y and electron ga	in enthalpy (negative value).			
	(D) None of the above	Graduation (B.SC Electronics Hons. Regular) Man Hansral College (D.U.) S YEARS TEACHING EXP. Add- Gali No- 2	1, A-1 Block Near Gupta Hardware Bangali Colony, Sant Nagar, Burari, Delhi- 110	1084			
6.	Which of the following	g compounds is/ a	are amphoteric in nature?				
	(A) Cl ₂ O ₇		(B) Al ₂ O ₃				
	(C) As ₂ O ₃		(D) Both (b) and (d	c).			
7.	Which of the following	g decreases in go	ing down the halogen group)?			
	(A) Ionic radius		(B) Atomic radius				
	(C) Ionisation potentia	ıl	(D) Boiling point				
8.	The oxide formed by the element on extreme right and in the left of periodic table are generally:						
	(A) Acidic, amphoteric	respectively.	(B) Acidic, basic re	espectively.			
	(C) Neutral, amphoter	ic respectively.	(D) Basic, neutral	respectively.			
9.	I.P. of sodium is 5.14 eV then I.P. of potassium will be:						
	(A) Equal to sodium		(B) 5.68 eV				
	(C) 4.34 eV		(D) 10.28 eV				
10.	The alkaline earth me	etal which shows	properties similar to alumin	ium is:			
	(A) Ca	(B) Be	(C) Sr	(D) Ba			
11.							

A solution of CuSO₄ was kept in an iron pot. After few days the iron pot was found to have a number of holes in it. The balance equation of the reaction involve is: (A) 2Fe + CuSO₄ \rightarrow Fe₂(SO₄)₃ + Cu (B) Fe + CuSO₄ \rightarrow FeSO₄ + Cu (C) 3Fe + CuSO₄ \rightarrow Fe₃(SO₄)₄ + Cu (D) Fe + CuSO₄ \rightarrow Fe₂SO₄ + Cu 12. The electronic configuration of gadolinium (Atomic number 64) (A) $[Xe] 4f^3 5d^5 6s^2$ (B) $[Xe] 4f^7 5d^2 6s^1$ (C) $[Xe] 4f^7 5d^1 6s^2$ (D) $\left[\mathrm{Xe}\right] \, 4\mathrm{f}^8 \, 5\mathrm{d}^6 \, 6\mathrm{s}^2$ The first ionisation enthalpies of Na, Mg, Al and Si are in the order: 13. (A) Na < mg > Al < Si (B) Na > mg > Al > Si(C) Na < Mg < Al < Si(D) Na > mg > Al < Si Alkaline earth (group 2 or IIA elements) differ from group 12 (or IIB) elements in the 14. electronic configuration of their: (A) Anitipenultimate shell (B) Innermost shell (C) Outermost shell (D) Penultimate shell 15. IE of an element does not depend on: (A) Its nuclear charge (B) The shielding effect (C) Electron neutrality (D) Penetration effect 16. The element with positive electron gain enthalpy is: (A) Hydrogen. (B) Sodium. (C) Oxygen. (D) Neon. 17. The polarizing power of the following anions N^{3} , O^{2} and F^{-} , follow the order. (B) $O^{2-} < N^{3-} < F^{-}$ (A) $N^{3-} < F^{-} < O^{2-}$ (D) $N^{3-} > O^{2-} > F^{-}$ (C) $O^{2-} < F^{-} < N^{3-}$ 18. Which one of the following is correct order of electron gain enthalpy? (A) S < O < CI < Fजोह: KD SIR की अपी) CL < F < S < O Add-Gali No-21, A-1 Block Near Gupta Hartwate Bandan Colony, Sam Nana, Rinari Fishi School (C) F < CI < O < SThe property which regularly increases down the group in the periodic table is: 19. (A) Ionisation energy (B) Electronegativity (C) Reducing nature (D) Electron affinity Who developed the long form of the periodic table? 20. (A) Niels Bohr. (B) Moseley. (C) Mendeleef. (D) Lothar Meyer. Arrange Be, Ca, Ba, Ra in increasing order of ionisation energy: 21. (A) Be < Ra < Ca < Ba(B) Ba < Ca < Ra < Be(C) Ra < Ba < Ca < Be(D) Ba < Ra < Ca < Be22. Which is incorrect configuration for s-block elements? (A) $[Ar]3d^{10}4s^2$ (B) [Arl3d¹⁰4s¹ (C) Both A and B (D) None of these In which of the following, which of the following is incorrect: 23. (A) I < Br < CI < F (increasing electron gain enthalpy) (B) Li < Na < K < Rb (increasing metallic radius) (C) Al < Mg < Na < F increasing ionic size)

24.	(D) B < C < O < N (increasing first ionisation enthalpy) General outer electronic configuration of d-block elements is:						
	(A) (n - 1)d ¹⁻¹⁰ ns ³	J	(B) $(n + 1)d^{1-10} ns^{0-2}$				
	(C) $(n - 1)d^{1-10} ns^{0-2}$		(D) (n - 1)d ⁰ ns ⁰⁻²				
25.		ectronegativity of Na, O					
	(A) Na > O > F		(B) O > F > Na				
	(C) O > Na > F		(D) F > O > Na				
26.	terms of oxidizing prop	perty is:	rrect order of their chem	-			
		(B) F>O>Cl>N	(C) Cl>F>O>N	(D) O>F>N>Cl			
27.		ons, the increasing order					
	(A) Cl ⁻ , S ²⁻ , P ³⁻		(B) P ³⁻ , S ²⁻ , Cl ⁻				
	(C) S ²⁻ , Cl ⁻ , P ³⁻		(D) S ²⁻ , P ³⁻ , Cl ⁻				
28.	The properties of	were predicted by N	Mendeleev before their is	solation.			
	(A) Co and Ni						
	(B) I and Te						
	(C) Sc, Ga and Ge	MULDEEP VERMA SIR	M. 9582701166				
20	(D) Cl, Ar and K Which one of the following arrangement represents the correct order of electron gain						
29.	enthalpy of the given atomic species? 1st to 8th All Subjects						
	(A) CI < F < S < 0	Day-1 9th & 10 MA	THS SCIENCE & S.ST (B) S < O < F < CI				
	(C) S < 0 < Cl < F	MATHS, PHYSIC	$cs(D) E_1 < Cl < 0 < S$				
30.	Which of the following	sets contain only isoeled	ctronic ions?UET				
	(A) ${ m Zn}^{2+},~{ m Ca}^{2+},~{ m Ga}^{3}$	Ass-10th BARD 35F Admarks in Act 3 T Ass-52th Ass-52th Table CBSE	$^{ m su}(B) { m K}^{+}, { m Ca}^{2+}, { m Sc}^{3+},$	Cl^-			
	Cer Gra Fro	ared interditional Silver Olympiad (11 Rank) lifetate From ISRO SIR (5) Silver Olympiad (14 Rank) lifetate From ISRO section (8.5C Electronics Hons, Regulary in Hanara College (0.XL)	Haroware Jangail Colony, S2nt Hagar, Buran? Delin-110084	ζ^+			
	(D) $\mathrm{Ti}^{4+},~\mathrm{Ar},~\mathrm{Cr}^{3+},$	V5+	Tanarrane bangan botong bank ragan bahari benir 110004				
31.	The 100 th element is r						
	(A) Einstein	(B) Bohr	(C) Fermi	(D) Curie			
32.	Arrange the following of Te, Po.	elements in order of the	ir increasing ionization e	nergies O, S, Se,			
	(A) Se, Te, S, Po, O		(B) O, S, Se, Te, Po				
	(C) Po, Te, Se, S, O		(D) Te, O, S, Po, Se				
33.	Which of the following	is the correct order of si	ze of the given species:				
	(A) $\mathrm{I}>\mathrm{I}^->\mathrm{I}^+$		(B) $\mathrm{I}^+ > \mathrm{I}^- > \mathrm{I}$				
	(C) $\mathrm{I}>\mathrm{I}^+>\mathrm{I}^-$		(D) $\mathrm{I}^- > \mathrm{I} > \mathrm{I}^+$				
34.	In Mendeleev's periodi	c table, gaps were left fo	or the elements to be dis	covered later.			
Which of the following elements found a place in the periodic table later?							
	(A) Germanium		(B) Chlorine				
	(C) Oxygen		(D) Silicon				
35.		nts does not show diagoi	•	(D) C B			
	(A) Li, Mg	(B) Be, Al	(C) B, Si	(D) C, P			

36.	6. Anomalous pair among the following is:							
	(A) Boron - silicon		(B) Aluminium - nickel					
	(C) Beryllium - indium		(D) Cobalt - nickel					
37.	Electronic configurati	ons of fou	ır elements	A, B, C and D	are given bel	ow:		
	A. $1s^2 \ 2s^2 \ 2p^6$ B. $1s^2$	A. $1s^2\ 2s^2\ 2p^6$ B. $1s^2\ 2s^2\ 2p^4$ C. $1s^2\ 2s^2\ 2p^6\ 3s^1$ D. $1s^2\ 2s^2\ 2p^5$						
	Which of the following is the correct order of increasing tendency to gain electron:							
	(A) A < C < B < D		(B) A < B < C < D		3 < C < D			
	(C) D < B < C < A		(D) D < A < B < C					
38.	Which of the following statements is incorrect?							
	(A) Mendeleev's arranged elements in horizontal rows and vertical columns.							
	(B) Mendeleev's arrar	nged elem	ents in orde	er of their incr	easing atomic	c number.		
	(C) Mendeleev's syste	m of class	sifying elem	ents was more	e elaborate th	nan that of Lother N	√leyer.	
	(D) None of the above	<u>)</u> .						
39.	The order of screenin atom on its outer shell	_		of s, p, d and f	orbitals of a	given shell of an		
	(A) $s > p > d > f$			(B) f > d	l > p > s			
	(C) $p < d < s > f$			(D) f > p	•			
40.	Which elements is ex	pected to	have lowes	t ionization en	thalpv?4466			
	A) Sr	(B) As	KD FD/	(C) Xe	CADEMY	(D) S		
41.	The horizontal rows a	nd the ve	rtical colum		odic table are	termed as		
	respectively?		Day-1 9th &	10 MATHS, SCIENCE				
	(A) Periods, groups.	ECAN		11th (B) Grou	ıps, periods.			
	(C) Series, periods.		BIOLOGY, H	(D) Fam	ily, periods.			
42.	Which important prop	erty did N		on result rather than		in his periodic		
	table?	Cleared International Silver Olympiad (71 R Certificate From ISRO Graduation (B.SC Electronics Hons. Reg From Hansrai College (D.U.)	lack.	Rकी उनी है आगे ड				
	(A) Atomic weight.	5 YEARS TEACHING EXP.	Add- Gali No- 21, A-1 Block	Near Gupta Har(B) an Atom				
40	(C) Melting point.				e of these.			
43.	43. In which of the following options order of arrangement does not agree with the variation of property indicated against it?							
	(A) $AI^{3+} < Mg^{2+} < Na$	+ < F ⁻ (in	creasing ior	nic size)				
	(B) B $<$ C $<$ N $<$ O (increasing first ionisation enthalpy)							
	(C) I < Br < Cl < F (increasing electron gain enthalpy)							
	D) Li < Na < K < Rb (increasing metallic radius)							
44.	Why do elements in the	_	•		al and chemic	cal properties?		
	A) Because of same electronic configuration.							
		use of same number of electrons.						
	(C) Because of same number of protons. (D) Because of same valence electrons.							
45	,			DAC system for	the clament	with stamic		
45.	The symbol and name number = 120, respec		•	AC System for	trie eiement	with atomic		
	(A) Ubn and unbiniliur			. ,	and unbiuniu			
	(C) Ubn and unnilbium	٦.		(D) Ubn	and unnilium	1.		

46.	Consider the isoelectronic species, Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ . The correct order of increasing length of their radii is					
	(A) $ m F^- < O^{2-} < mg^{2+} < Na^+$					
	(B) $ m Mg^{2+} < Na^+ <$	9				
	(C) $O^{2-} < F^{-} < Na$					
	(D) $O^{2-} < F^{-} < M$	O .				
47	, ,	9	a haan dissayarad with	atamic number		
47.	(A) 113, 114	(3) two new elements have(B) 114, 115				
			(C) 115, 116	(D) 113, 115		
48.	In general second ionisation enthalpy of an atom will be: (A) Higher than the first ionisation enthalpy.					
	(B) Equal to the first					
	•	hird ionisation enthalpy.				
	(D) Equal to the third					
49.	The pair of amphote					
	(A) AI(OH) ₃ , LiOH	,	(B) Be(OH) ₂ , Mg(OH) ₂)		
	(C) B(OH) ₃ , Be(OH) ₂		(D) Be(OH) ₂ , Zn(OH) ₂	_		
50.	The elements in whi	ch electrons are progress	vely filled in 4f-orbital are called:			
	(A) Actinoids.	KULDEEP VERMA SIR	(B) Transition elemer	nts.		
	(C) Lanthanoids.	K.D. EDUK	(B) Transition elemer (D) Halogens.			
51.	Write the electronic configuration of the Can thin absence of Aufbau Principle.					
	(A) 1s ² , 2s ² p ⁶ , 3s ² 3p ⁶		¹¹ (B) 1s ² , 2s ² 2p ⁶ , 3s ² 3p ³ 4d ³			
	(C) $1s^2$, $2s^22p^6$, $3s^{23}$	p ⁵ 4d ¹ BIOLOGY, HISTO	RY. (D) None of these			
52.	The decreasing orde	er of the sec <mark>ond ionization</mark>	potential of K, Ca and E	Ba is:		
	(A) K>Ca>Ba	CLASS-12th BOARD CBSE Cleared International Silver Olympiad (71 Rank) Certificate From ISRO Certificate From I	अ(B) Ca>Ba>Kर्जी है।			
	(C) Ba>K>Ca	From Hansay College (D.U.) 5 YEARS TEACHING EXP. Add- Gali No- 21, A-1 Block Near Gup	ta Har (D) o K > Ba > Cai, Delhi-110084			
53.	Which of the following	ng types of elements show	variable valency?			
	(A) Transition elemen	nts.	(B) s-block elements.			
	(C) f-block elements.		(D) Both (a) and (c).			
54.	Elements having simin:	ilar outer shell electronic	configuration in their a	toms are arranged		
	(A) Groups.		(B) Vertical columns.			
	(C) Families.		(D) All of these.			
55.	Mendeleev corrected	d the atomic weight of:				
	(A) Be	(B) N	(C) O	(D) CI		
56.	Which of the following	ng have no unit?				
	(A) Electronegativity.		(B) Electron gain enthalpy.			
	(C) Lonisation enthalpy.		(D) Metallic character.			
57.	Which of the followir enthalpy respectivel	ng will have the most nega y, P, S, Cl and F?	ative and least negative	electron gain		
	(A) Pand Cl.	(B) S and Cl.	(C) Cl and F.	(D) Cl and P.		
58.	The ionization energ	ies from Ga to TI do not d	ecrease due to:			

	(A) Shielding effect		(B) Improper shield	(B) Improper shielding effect.		
	(C) Increase in the ato	omic size.	(D) Decrease in the	(D) Decrease in the nuclear charge.		
59.	The element with configuration 1s ² , 2s ² , 2p ⁶ , 3s ² would be:					
	(A) A metal		(B) A non-metal			
	(C) A inert gas		(D) A metalloid			
60.			cleus with nuclear charge 11 times and the electronic configuration of the element?			
	(A) 2, 1	(B) 2, 8, 1	(C) 2, 8	(D) 2, 8, 8, 3		
61.	Which of the following	g elements can sho	ow covalency greater than 4	?		
	(A) Be	(B) P	(C) S	(D) B		
62.	The most reactive me	etal is:				
	(A) Sodium		(B) Magnesium			
	(C) Potassium		(D) Calcium			
63.	3d-transition series of elements starts with scandium which has the electronic configuration:					
	(A) $3d^{1} 4s^{2}$	(B) 3d ¹ 4s ¹	(C) $3d^2 4s^2$	(D) 3d ³ 4s ²		
64.	Which of the following	g is not a noble ga	s?			
	(A) Helium	(B) Xenonumer ve	erma sır (C) Radium 9582701166	(D) Radon		
65.	Outer electronic configuration of f-block elements is:					
	(A) $(n + 1)f^{1-14}(n - 1)c$	1 ⁰⁻¹ ns ²	1st to 8 (B) (n) - 2)f ¹⁻¹⁴ (n + 3	1)d ⁰⁻¹ ns ²		
	(C) (n - 2)f ¹⁻¹⁴ (n - 1)d ⁰	0-1ns ²	9th & 10 MATHS SCIENCE & S.ST. (D) None of the abo	ve.		
66.	From Be to Ra, ioniza	tion energies: MAT	THS, PHYSICS, CHEMISTRY, (By KD Sir)			
	(A) Increases	100% Marks in Every Subjects	I- JEE, NE(B), Decreases			
	(C) Remain same	CLASS- 10th BOARD CBSE 95% Marks in (PCM) CLASS- 12th BOARD CBSE Classe Interprised Slive (Worded (71 Rank))	lieve on resu(D) None of these Ф SIR ඩෙනග් සින්නාන නැදෙනි සත් සිට			
67.	The chemistry of lithium is very similar to that of magnesium even though they are placed in different groups. Its reason is that:					
	(A) Both are found together in nature.					
	(B) Both have nearly the same size.					
	(C) Both have similar electronic configurations.					
	(D) The ratio of their charge to size is nearly the same.					
68.	As we go down in the electro-chemical series of metals, the reactivity					
	(A) Decreases and then increases		` '	(B) Increases and then decreases		
	(C) Decreases		(D) Increases			
69.	The period number in the long form of the periodic table is equal to:					
	(A) Magnetic quantum number of any element of the period.					
	(B) Atomic number of any element of the period.					
	(C) Maximum principal quantum number of any element of the period.					
7.0	(D) Maximum azimuthal quantum number of any element of the period.					
70.	A pair of atomic num			(D) 2 12		
74	(A) 7, 15	(B) 6, 12	(C) 9, 17	(D) 3, 12		
71.	i ne ionisation energy	or nitrogen is mo	re than oxygen because of:			

	(C) $1s^2$, $2s^2$, $2p^1$			(D) 1s ² , 2s ² ,	(D) 1s ² , 2s ² , 2p ⁶		
74. The first ionisation potential is maximum for:							
	(A) Lithiu	m	(B) Uranium	(C) Iron	(D) Hydrogen		
*	a state	ment of Asse	ertion (A) is follow	ed by a statement o	of Reason (R).	[2]	
Cho	ose the	correct option	on.				
75.	Note: In the following questions a statement of Assertion (A) followed by a statement of reason (R) is given. Choose the correct option out of the choices given below each question.						
	Assert	ion (A): Boro	n has a smaller first	ionisation enthalpy	than beryllium.		
	electro electro	n hence 2p el ns.	ectron is more shiel		is more than the 2p e of electrons than the 2s t reason is not correct		
	i. ii. iii. iv.	explanation Assertion is Assertion an explanation	for assertion. correct statement b d reason both are c for assertion.	orrect statements of 11th & 12th ut reason is wrong st orrect statements ar eve on result rather than prom yrong statements.	atement. od reason is correct		
76.	6. Note: In the following questions a statement of Assertion (A) followed by a statement of reason (R) is given. Choose the correct option out of the choices given below each question.						
	Assert	ion (A): Gene	erally, ionisation ent	halpy increases from	left to right in a period.		
Reason (R): When successive electrons are added to the orbitals in the same principal quantum level, the shielding effect of inner core of electrons does not increase very much to compensate for the increased attraction of the electron to the nucleus.						al	
	i. ii.	<u> </u>					
	iii.		d reason both are w	_			
	iv.	Assertion is	wrong statement an	d reason is correct s	tatement.		
*	Answei	r The Followi	ng Questions In O	ne Sentence.[1 Ma	rks Each]	[17]	
77.	-	one of the foll	owing factors does	not affect the valence	chemistry of the element e shell?		
	a. b. c. d.	Nuclear cha Nuclear mas	_	ber (n)			

[7]

(C) 108

(B) $1s^2$, $2s^2$, $2p^6$, $3s^1$

Which of the following has maximum difference in 1^{st} and 2^{nd} ionisation enthalpy.

(D) 115

(A) More attraction of electrons by the nucleus.(B) The extra stability of half-filled p-orbitals.(C) The ionic radius of nitrogen atom is smaller.

(B) 114

(D) All of the above are correct.
The atomic number of Uut is:

(A) $1s^2$, $2s^2$, $2p^6$, $3s^1$

72.

73.

(A) 113

- 78. Which element do you think would have been named by: Lawrence Berkeley Laboratory.
- 79. What is the total number of sigma and pi bonds in the following molecules? C_2H_{Δ}
- 80. Electronegativity of F on Pauling scale is 4.0. What is the value on Mulliken's scale.
- The electronic configuration of ${\rm Re^{3+}}$ is ${\rm [Xe]4f^{14}5d^4}$. Calculate the number of unpaired electrons in this ion.
- 82. What is covalency of Al in $[AlCl_4]^-$?
- 83. State modern periodic law.
- 84. Which is the smallest among Na⁺, Mg²⁺, Al³⁺ and why?
- 85. An element belongs to 5th period and 3rd group, identify the element.
- 86. Which hybrid orbitals are used by carbon atoms in the following molecules? CH_3 -CH= CH_2 ;
- 87. How do the basic character and solubility in water vary from $Be(OH)_2$ to $Ba(OH)_2$?
- 88. An element X belongs to the third period of p-block. It has 4 electrons in the outermost shell. Name the element.
- 89. Considering the elements B, C, N, F, and Si, the correct order of their non-metallic character is:
 - a. B > C > Si > N > F
 - b. Si > C > B > N > F
 - c. F > N > C > B > Si
 - d. F > N > C > Si > B

One Day
Day-1

| 1st to 8th All Subjects |
| 9th & 10 MATHS, SCIENCE & S.ST

MATHS, PHYSICS, CHEMISTRY, (By KD Sir) BIOLOGY, HISTORY, ECO. POLITY, GEOGRAPHY

- 90. Explain why chlorine can be converted into chloride ion more easily as compared to fluoride ion from fluorine. **BOARD CBSE*** TWO Believe on result rather than promises.
- 91. To which series do manade elements belong?
- 92. Write the IUPAC name and symbol for the element with atomic number 109.
- 93. Arrange the following species in increasing order of their size: Mg^{2+} , Al^{3+} , Na^+ , O^{2-} , F^- .

* Given Section consists of questions of 2 marks each.

[24]

- 94. Magnesium and Lithium both form nitride, why? Write the equation for formation of their nitride.
- 95. How does ionisation energy vary (i) down the group, (ii) along the period from left to right?
- 96. Give the name and atomic number of the inert gas tom in which total number of delectrons is equal to difference in number of total 'p' and s-electrons.
- 97. Among the elements of the third period Na to Ar, pick out the element:
 - i. With highest first ionisation enthalpy.
 - ii. With largest atomic radius.
 - iii. Which is most reactive non-metal.
 - iv. Which is most reactive metal.

98.

Arrange the following elements in the increasing order of non-metallic character. Give reason.

B, C, O, N, F

- 99. i. Name the most metallic element in second period and most non-metallic
 - ii. Name the element with (a) largest atomic radius, (b) smallest atomic radius in third period.
 - iii. Name the element having general electronic configuration $ns^2 np^4$ in fourth period.
- 100. What would be IUPAC names and symbols for elements with atomic numbers 122, 127, 135, 149 and 150?
- 101. i. How do the electronic configurations of the elements with Z = 107 to 109 differ from one another?
 - ii. Rn (Z = 86) is the last noble gas discovered. Predict what will be the atomic number of the next noble gas to be discovered. Write its symbol.
- 102. Element 'Al' belongs to group 13 forms ionic compounds. Write,
 - Formula of its oxide.
 - b. Arrange the following in decreasing order of electropositive character Li, Na, K, Cs Give reason.
- 103. Eka-aluminium and eka-silicon were the names given by Mandeleev for the then unknown elements gallium and germanium respectively. A recently discovered element was first named as eka-mercury. What is its atomic number? Write its group number, electronic configuration, IUPAC and official names.
- i. How does basic charac<mark>ter of oxides and hydroxides down th</mark>e group in alkali metals change? Why? BIOLOGY, HISTORY, ECO. POLITY, GEOGRAPHY
 - ii. How does reducing power of elements vary in Group I?
- 105. Name the species that will be iso<mark>electronic with the following atoms or ions:</mark>
 - i. Na

From Hansraj College (D.U.)
5 YEARS TEACHING E

Add- Gali No. 21, A-1 Block Near Gunta Hardware Bangali Colony, Sant Nagar, Burari, Delhi, 11008

- ii. Cl-
- iii. Ca²⁺
- iv. Rb+

* Given Section consists of questions of 3 marks each.

[15]

- 106. How would you react to the statement that the electronegativity of N on Pauling scale is 3.0 in all the nitrogen compounds?
- 107. Give reason for the following:
 - i. Halogens act as good oxidising agent.
 - ii. Electron gain enthalpy of noble gas is almost zero.
 - iii. Na and Mg⁺ have same number of electrons but removal of electron from Mg⁺ requires more energy.
- 108. Consider the element N, P, O and S and arrange them in order of:
 - i. Increasing first ionisation enthalpy.
 - ii. Increasing negative electron gain enthalpy.
 - iii. Increasing non-metallic character.

109.

- a. Name the group of the elements in which electrons are progressively filled in 4f-orbital and 5f orbitals.
- b. Which of the following is the correct order of size of the given species: I, I⁺, I⁻?
- c. Which of the following elements can show covalency greater than 4? Be, P, S, B
- 110. Among the elements B, Al, C and Si:
 - i. Which element has the highest first ionisation enthalpy?
 - ii. Which element has the most metallic character? Justify your answer in each case.

* Case study based questions

[8]

The s-Block Elements The elements of Group 1 (alkali metals) and Group 2 (alkaline 111. earth metals) which have ns1and ns2 outermost electronic configuration belong to the s-Block Elements. They are all reactive metals with low ionization enthalpies. They lose the outermost electron(s) readily to form 1+ ion (in the case of alkali metals) or 2+ ion (in the case of alkaline earth metals). The metallic character and the reactivity increase as we go down the group. Because of high reactivity they are never found pure in nature. The compounds of the s-block elements, with the exception of those of lithium and beryllium are predominantly ionic. The p-Block Elements comprise those belonging to Group 13 to 18 and these together with the s-Block Elements are called the Representative Elements or Main Group Elements. The outermost electronic configuration varies from ns2np1 to ns2np6 in each period. At the end of each period is a noble gas element with a closed valence shell ns2np6 configuration. All the orbitals in the valence shell of the noble gases are completely filled by electrons and it is very difficult to alter this stable arrangement by the addition or removal of electrons. The noble gases thus exhibit very low chemical reactivity. Preceding the noble gas family are two chemically important groups of non-metals. They are the halogens (Group 17) and the chalcogens (Group 16). The non-metallic character increases as we move from left to right across a period and metallic character increases as we go down the group. These are the elements of Group 3 to 12 in the centre of the Periodic Table. These are characterised by the filling of inner d orbitals by electrons and are therefore referred to as d-Block Elements. These elements have the general outer electronic configuration (n-1)d1-10ns0-2. They are all metals. They mostly form coloured ions, exhibit variable valence (oxidation states), paramagnetism and oftenly used as catalysts. However, Zn, Cd and Hg which have the electronic configuration, (n-1) d10ns2 do not show most of the properties of transition elements. In a way, transition metals form a bridge between the chemically active metals of s-block elements and the less active elements of Groups 13 and 14 and thus take their familiar name "Transition Elements". The two rows of elements at the bottom of the Periodic Table, called the Lanthanoids, Ce(Z = 58) - Lu(Z)= 71) and Actinoids, Th(Z = 90) - Lr (Z = 103) are characterised by the outer electronic configuration (n-2)f 1-14 (n-1)d 0-1ns2. The last electron added to each element is filled in f- orbital. These two series of elements are hence called the Inner- Transition Elements (f-Block Elements). They are all metals. Within each series, the properties of the elements are quite similar. The chemistry of the early actinoids is more complicated than the corresponding lanthanoids, due to the large number of oxidation states possible for these actinoid elements. Actinoid elements are radioactive. Many of the actinoid elements have been made only in nanogram quantities or even less by nuclear reactions and their chemistry is not fully studied. The elements after uranium are called Transuranium Elements. The elements can be divided into Metals and Non-Metals. In contrast, non-metals are located at the top right hand side of the Periodic Table. The elements become more metallic as we go down a group; the non- metallic character

increases as one goes from left to right across the Periodic Table. Periodic Table show properties that are characteristic of both metals and non- metals. These elements are called Semi-metals or Metalloids.

- i. Alkali metal and alkaline earth metal belongs to ..
 - a. S block
 - b. P block
 - c. D block
 - d. F block
- ii. The metallic character and the reactivity ... as we go down the group.
 - a. Decreases
 - b. Increases
 - c. Remains Constant
 - d. None of Above
- iii. Group ... Elements known as chalcogens.
 - a. 12
 - b. 14
 - c. 16
 - d. 18
- iv. Elements Ce(Z = 58) to Lu(Z = 71) are known as:
 - a. Halogens
 - b. Chalcogens
 - c. Actinoids
 - d. Lanthenoids
- KULDEEP VERMA SIR M. 958270116
- v. The elements after uranium are called ... Elements.
 - a. Halogens
 - b. Chalcogens
 - c. Actinoids
 - d. Transuranium

Day | 1st to 8th All Subjects | 9th & 10 MATHS, SCIENCE & S.ST

MATHS, PHYSICS, CHEMISTRY, (By KD Sir)
BIOLOGY, HISTORY, ECO, POLITY, GEOGRAPH

We must bear in mind that when Mendeleev developed his Periodic Table, chemists 112. knew nothing about the internal structure of atom. However, the beginning of the 20th century witnessed profound developments in theories about sub-atomic particles. In 1913, the English physicist, Henry Moseley observed regularities in the characteristic Xray spectra of the elements. A plot of ν (where ν is frequency of X-rays emitted) against atomic number (Z) gave a straight line and not the plot of v vs atomic mass. He thereby showed that the atomic number is a more fundamental property of an element than its atomic mass. Mendeleev's Periodic Law was, therefore, accordingly modified. This is known as the Modern Periodic Law and can be stated as: The physical and chemical properties of the elements are periodic functions of their atomic numbers. Numerous forms of Periodic Table have been devised from time to time. Some forms emphasise chemical reactions and valence, whereas others stress the electronic configuration of elements. A modern version, the so-called "long form" of the Periodic Table of the elements, is the most convenient and widely used. The horizontal rows (which Mendeleev called series) are called periods and the vertical columns, groups. Elements having similar outer electronic configurations in their atoms are arranged in vertical columns, referred to as groups or families. According to the recommendation of International Union of Pure and Applied Chemistry (IUPAC), the groups are numbered from 1 to 18 replacing the older notation of groups IA ... VIIA, VIII, IB ... VIIB and 0. There are altogether seven periods. The period number corresponds to the highest principal quantum number (n) of the elements in the period. The first period contains 2 elements. The subsequent periods consists of 8, 8, 18, 18 and 32 elements, respectively. The seventh period is incomplete and like the sixth period would have a theoretical maximum (on the basis of quantum numbers) of 32 elements. In this form of the

Periodic Table, 14 elements of both sixth and seventh periods (lanthanoids and actinoids, respectively) are placed in separate panels at the bottom. the IUPAC has made recommendation that until a new element's discovery is proved, and its name is officially recognised, a systematic nomenclature be derived directly from the atomic number of the element using the numerical roots for 0 and numbers 1-9. The roots are put together in order of digits which make up the atomic number and "ium" is added at the end. Groupwise Electronic Configurations Elements in the same vertical column or group have similar valence shell electronic configurations, the same number of electrons in the outer orbitals, and similar properties. theoretical foundation for the periodic classification. The elements in a vertical column of the Periodic Table constitute a group or family and exhibit similar chemical behaviour. This similarity arises because these elements have the same number and same distribution of electrons in their outermost orbitals. We can classify the elements into four blocks viz., s-block, p-block, d-block and f-block depending on the type of atomic orbitals that are being filled with electrons. Two exceptions to this categorisation. Strictly, helium belongs to the s-block but its positioning in the p-block along with other group 18 elements is justified because it has a completely filled valence shell (1s) and as a result, exhibits properties characteristic of other noble gases. The other exception is hydrogen. It has only one s-electron and hence can be placed in group 1 (alkali metals). It can also gain an electron to achieve a noble gas arrangement and hence it can behave similar to a group 17 (halogen family) elements. Because it is a special case, we shall place hydrogen separately at the top of the Periodic Table.

In 1913, the English physicist, observed regularities in the characteristic Xray spectra of the elements.

Johann Dobereiner a.

b. John Alexander Newlands th & 10

Demitri Mendeleev c.

d. Henry Moseley

ii. Horizontal row in periodic table called:

Group 100% Marks in Every Subjects CLASS- 10th BOARD CBSE b. Period

Triad

d. Octave

c.

iii. Vertical Column in periodic table called:

- Group
- b. Period
- c. Triad
- d. Octave
- iv. According to Modern Periodic Law the physical and chemical properties of the elements are periodic functions of their
 - a. Atomic mass
 - b. Atomic numbers
 - Atomic structure c.
 - d. Atomic size
- ٧. What is IUPAC name of element having atomic number 107.
 - Unnilpentium
 - b. Unnilhexium
 - Unnilseptium c.
 - d. Unniloctium

Given Section consists of questions of 5 marks each.

[60]

113.

What is the significance of the terms — 'isolated gaseous atom' and 'ground state' while defining the ionization enthalpy and electron gain enthalpy?

Hint: Requirements for comparison purposes.

114. Consider the following species:

$$N^{3-}$$
, O^{2-} , F^- , Na^+ , Mg^{2+} and Al^{3+}

- a. What is common in them?
- b. Arrange them in the order of increasing ionic radii.
- 115. The first ionization enthalpy values (in kJ mol⁻¹) of group 13 elements are:

B Al Ga In TI 801 577 579 558 589

How would you explain this deviation from the general trend?

- 116. Distinguish between a sigma and a pi bond.
- 117. Among the second period elements the actual ionization enthalpies are in the order Li < B < Be < C < O < N < F < Ne.Explain why,
 - i. Be has higher $\Delta_{
 m t}H$ than B
 - ii. O has lower $\Delta_t H$ than N and F?
- 118. Among the second period elements the actual ionization enthalpies are in the order Li < B < Be < C < O < N < F < Ne.Explain why,
 - i. Be has higher $\Delta_t H$ than B EEP VERMA SIR M. 9582701166
 - ii. O has lower $\Delta_t H$ than N and F?
- 119. On the basis of quantum numbers, justify that the sixth period of the should have 32 elements.

 9th & 10 MATHS, SCIENCE & S.ST
- 120. p-Block elements form acidic, basic and amphoteric oxides. Explain each property by giving two examples and also write the reactions of these oxides with water.
- 121. Write the drawbacks in Mendeleev's periodic table that led to its modification.
- 122. Explain why cation are smaller and anions larger in radii than their parent atoms?
- 123. Consider the following species:

$$N^{3-}$$
, O^{2-} , F^{-} , Na^{+} , Mg^{2+} and Al^{3+}

- a. What is common in them?
- b. Arrange them in the order of increasing ionic radii.
- 124. What is the basic difference in approach between the Mendeleev's Periodic Lawand the Modern Periodic Law?
