5. Chứng minh rằng phương trình n!= $a^{n-1}+b^{n-1}+c^{n-1}$ chỉ có hữu hạn nghiệm nguyên dương.

Ta sẽ chỉ xét n chẵn thôi.

Trước tiên ta có $\log(1) + \log(2) + ... + \log(n-1) < n\log(n) - n + 1$, điều này có từ diện tích của hình bị chắn bởi hàm $\log(x)$, x=1 và x=n.

Từ đó ta có $(n-1)! < n^n/e^{n-1}$, hay $n! < (n+1)^{n+1}/e^n < n^n(n+1)/e^{n-1}$

Nói chung thì $n!=a^{n-1}+b^{n-1}+c^{n-1}$ nên a,b,c đều phải < n/2 khi n đủ lớn.

Step 1) Nếu n là lũy thừa của 2 và cả a,b,c đều chẵn:

Khi này ta đưa về $n!=2^{n-1}(a_1^{n-1}+b_1^{n-1}+c_1^{n-1})$, với a_1,b_1,c_1 đều < n/4.

Step 1.1) Cả a_1 , b_1 và c_1 đều lẻ. Khi này nếu cả a_1+b_1 , b_1+c_1 , c_1+a_1 là lũy thừa của 2 thì phải có 2 số bằng 1. giả sử là a_1 và b_1 , khi này $n!=2^{n-1}(2+c_1^{n-1})$. Xét mod c_1 thì $c_1=1$, thì khi này n=4.

Nếu a+b ko là lũy thừa của 2 thì xét p | a_1+b_1 và p lẻ thì p< n/4. Để ý p| c_1 và $v_p(a_1^{n-1}+b_1^{n-1})=v_p(a_1+b_1)+v_p(n-1)$ và cái này cần>= [n/p], từ đó $v_p(a_1+b_1)>n/p-1-v_p(n-1)$ hay $a_1+b_1>p^{n/p-1}/n>(n/4)^3/n$ và nó rất lớn so với n (do $x^{1/x}$ nghịch biến).

Step 1.2) Nếu a_1,b_1 chẵn và c_1 lẻ. Xét a_1+c_1 nếu nó có ước nguyên tố lẻ > n/4 thì b_1 cũng phải chia hết cho ước nguyên tố lẻ này nên $b_1>n/4$ và tạch.

Nếu mọi ước nguyên tố lẻ của a_1+c_1 đều < n/4 thì xét đại 1 ước nguyên tố lẻ của nó rồi làm tương tự **Step 1.1**.

Step 2) Nếu a lẻ, b lẻ và c chẵn.

Khi này xét $v_2(a^{n-1}+b^{n-1})=v_2(a+b)$ nên $v_2(a+b)>n/2-1$ nên $a+b>2^{n/2-1}$ nên a+b rất lớn với n, xong.

Vậy ta xét xong mọi th và có đpcm.