## Cyber Attack Detection in IoT Systems

CS698 T Group 13

#### Team Members:

- 1. Ayushi Mishra (21111262)
- 2. Shubham Sinha (21111409)
- 3. Rahul Kumar (21111069)

## Literature Review

- 1. A. Abeshu and N. Chilamkurti, "Deep Learning: The Frontier for Distributed Attack Detection in Fog-to-Things Computing," in *IEEE Communications Magazine*, vol. 56, no. 2, pp. 169-175, Feb. 2018, doi: 10.1109/MCOM.2018.1700332.
- 2. E. Anthi, L. Williams, M. Słowińska, G. Theodorakopoulos and P. Burnap, "A Supervised Intrusion Detection System for Smart Home IoT Devices," in *IEEE Internet of Things Journal*, vol. 6, no. 5, pp. 9042-9053, Oct. 2019, doi: 10.1109/JIOT.2019.2926365.
- 3. N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac and P. Faruki, "Network Intrusion Detection for IoT Security Based on Learning Techniques," in *IEEE Communications Surveys & Tutorials*, vol. 21, no. 3, pp. 2671-2701, thirdquarter 2019, doi: 10.1109/COMST.2019.2896380.
- 4. E. Benkhelifa, T. Welsh and W. Hamouda, "A Critical Review of Practices and Challenges in Intrusion Detection Systems for IoT: Toward Universal and Resilient Systems," in *IEEE Communications Surveys & Tutorials*, vol. 20, no. 4, pp. 3496-3509, Fourthquarter 2018, doi: 10.1109/COMST.2018.2844742.
- 5. M. Roopak, G. Yun Tian and J. Chambers, "Deep Learning Models for Cyber Security in IoT Networks," 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), 2019, pp. 0452-0457, doi: 10.1109/CCWC.2019.8666588.
- 6. Bandekar, Ashutosh & Javaid, Ahmad. (2017). Cyber-attack Mitigation and Impact Analysis for Low-power IoT Devices. 1631-1636. 10.1109/CYBER.2017.8446380.

| Authors and Year     | Dataset              | Classification Type                                                | Mechanism                                                                                                  | Evaluation Metrics                                                                             |
|----------------------|----------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Pahl et al. 2018     | Own                  | Multiclass                                                         | K-Means and Birch<br>Clustering                                                                            | Acc=96.3%                                                                                      |
| Diro et al. 2018     | NSL-KDD              | Multiclass                                                         | Neural Network                                                                                             | Acc= 98.27                                                                                     |
| Anthi et al. 2018    | Own                  | Binary                                                             | Naïve Bayes                                                                                                | N/A                                                                                            |
| D'angelo et al. 2015 | NSL-KDD              | Binary                                                             | U-BRAIN                                                                                                    | Acc=94.1                                                                                       |
| Pajouh et al. 2018   | NSL- KDD             | Two-Tier                                                           | Naïve Bayes                                                                                                | I. $R = 84.82$                                                                                 |
| Milon et al. 2019    | DS2OS Traffic Traces | Multiclass                                                         | ANN, SVM, DT, RF,<br>Logistic Regression                                                                   | Acc = 99.4 % for RF                                                                            |
| Our System           | DS2OS Traffic Traces | Multiclass + Handled the class imbalance problem (Smote Algorithm) | XGBoost<br>, LightGBM, Dense<br>Neural Network, RNN,<br>LSTM, GRU, CNN +<br>ML Algorithms( SVM,<br>DT, RF) | Acc = 98.81% for GRU/Deep NN Acc = 98.8% for CNN CNN + LSTM = 98.69% Acc = 99.27% for LightGBM |

## Dataset Collection

A virtual IoT environment is created using Distributed Smart Space Orchestration System (DS2OS). Separate systems, software, and sensors are combined into a unified management platform using IoT orchestration.







Washing Service



Service



Sources



**Thermostat** 



Smartphone



Rooms, Kitchen, Garage, Entrance, Bathroom, Living Room, Dining Room

### Proposed Method



#### Dataset

- 1. The dataset was collected from Kaggle.
- 2. A virtual IoT smart home environment was created that produced synthetic data. All the services communicated with each other using MQTT protocol.
- 3. The dataset contains 357,952 samples and 13 features.
- 4. The dataset has 347,935 Normal data and 10,017 anomalous data and contains eight classes which were classified.
- 5. There are seven classes of attacks:
  - **Denial of Service** (Dos): Having too many traffic in a single source and receiver.
  - **Data Type Probing**: a malicious node can write a different datatype than an intended datatype.
  - Malicious Control: attacker can gain a session key and can control the entire system.
  - Malicious Operation: it is generally caused by the malware which affects the device's performance.
  - Scan: when data is acquired by hardware while scanning, the data may get corrupted sometimes.
  - **Spying**: the attacker uses a backdoor system to cause vulnerabilities in the system and steal confidential information.
  - Wrong Setup: a wrong system setup can also disrupt the data.

| Classes of Attack   | Count |
|---------------------|-------|
| Denial of Service   | 5780  |
| Data Type Probing   | 342   |
| Malicious Control   | 889   |
| Malicious Operation | 805   |
| Scan                | 1547  |
| Spying              | 532   |
| Wrong Setup         | 122   |

| Features                    | Data Type   |
|-----------------------------|-------------|
| Source ID                   | Categorical |
| Source Address              | Categorical |
| Source Location             | Categorical |
| Source Destination          | Categorical |
| Destination Service Address | Categorical |
| Destination Service Type    | Categorical |
| Destination Location        | Categorical |
| Accessed Node Address       | Categorical |
| Accessed Node Type          | Categorical |
| Operation                   | Categorical |
| Value                       | Continuous  |
| Timestamp                   | Discrete    |
| Normality                   | Categorical |

#### Data Preprocessing

#### 1. Data Cleaning:

- Handling Missing Values: Features like Accessed Node Type and Value contain some empty fields. The empty values for Accessed Node Type are dropped and the empty fields in Value are filled with mean values.
- 2. Features like Timestamp was dropped as it does not have any significant impact on the data analysis.

#### 3. Feature Engineering:

- It is vital to look at the datatype of all the features.
- The categorical features are converted into vectors. We have used Label Encoding to convert it into feature vectors.
- Using Label Encoding will not increase the dimensionality of the data and processing time will be less.
- Normalizing the Training data to make it in a same scale.

## Data Analysis



Feature Description



I) Source Type



III) Accessed Node Type



II) Destination Location



IV) Destination

#### Labels Description



| Labels                         | Total % of the data |
|--------------------------------|---------------------|
| Anomalous(DoSattack)           | 1.61%               |
| Anomalous(scan                 | 0.43%               |
| Anomalous(malitiousCont rol)   | 0.24%               |
| Anomalous(malitiousOper ation) | 0.22%               |
| Anomalous(spying)              | 0.14%               |
| Anomalous(dataProbing)         | 0.09%               |
| Anomalous(wrongSetUp)          | 0.03%               |

Class Imbalance Problem

#### Training Models before handling Class Imbalance Problem

1. Considered some traditional Machine Learning classification algorithms like Logistic Regression, Decision Trees and Random Forest.

| ML Algorithms       | Accuracy | Test Time (Micro Secs) |
|---------------------|----------|------------------------|
| Logistic Regression | 98.38%   | 0.03                   |
| Decision Trees      | 99.40%   | 0.04                   |
| Random Forest       | 99.40%   | 0.78                   |

2. To avoid the problem of overfitting, Class Imbalance problem needs to be handled.

#### 1. Handling Class Imbalance Problem: Using SMOTE Algorithm

Before OverSampling, counts of label '0': 4045

Before OverSampling, counts of label '1': 237

Before OverSampling, counts of label '2': 618

Before OverSampling, counts of label '3': 567

Before OverSampling, counts of label '4': 1102

Before OverSampling, counts of label '5': 370

Before OverSampling, counts of label '6': 93

Before OverSampling, counts of label '7': 243534



After OverSampling, counts of label '0': 243534
After OverSampling, counts of label '1': 243534
After OverSampling, counts of label '2': 243534
After OverSampling, counts of label '3': 243534
After OverSampling, counts of label '4': 243534
After OverSampling, counts of label '5': 243534
After OverSampling, counts of label '6': 243534
After OverSampling, counts of label '6': 243534



#### Machine Learning Models

- 1. First we trained our model with traditional ML algorithms.
- 2. Logistic Regression performs poorly in the model prediction with the accuracy of 41%.
- 3. Decision Trees gave the accuracy of 74.5%
- 4. Random Forest gave the accuracy of 98.80%.

| ML Algorithms       | Accuracy | Test Time (Micro Secs) |
|---------------------|----------|------------------------|
| Logistic Regression | 41%      | 0.32                   |
| Decision Trees      | 74.5%    | 0.062                  |
| Random Forest       | 98.80    | 34                     |



# Reasons for Tree based Ensemble Classifiers

- 1. Non-linear classifier
- 2. Unbounded by kernel
- 3. Structured dataset
- 4. Less training time
- 5. Resistance to overfitting
- 6. Hardware optimizations like cache friendliness, parallel jobs.
- 7. Dataset friendliness like support for missing values, categorical values.



|    | = confu<br>nt(cm) | sion_ma | trix(y_ | test, p | redicti | ons) |      |        |
|----|-------------------|---------|---------|---------|---------|------|------|--------|
| [[ | 1735              | 0       | 0       | 0       | 0       | 0    | 0    | 0]     |
| [  | 0                 | 105     | 0       | 0       | 0       | 0    | 0    | 0]     |
| [  | 0                 | 0       | 271     | 0       | 0       | 0    | 0    | 0]     |
| [  | Θ                 | 0       | 0       | 238     | 0       | 0    | 0    | 0]     |
| [  | 0                 | 0       | 0       | 0       | 445     | 0    | 0    | 0]     |
| [  | 0                 | 0       | 0       | 0       | 0       | 162  | 0    | 0]     |
| [  | 0                 | 0       | 0       | 0       | 0       | 0    | 29   | 0]     |
| [  | 747               | 0       | 1       | 26      | 0       | 3    | 0 10 | 3624]] |

- 0 anomalous(DoSattack)
- 1 anomalous(dataProbing)
- 2 anomalous(malitiousControl)
- 3 anomalous(malitiousOperation)
- 4 anomalous(scan)
- 5 anomalous(spying)
- 6 anomalous(wrongSetUp)
- 7 normal

| precision            | recall                                                                                       | f1-score                                                                                                                                                             | support                                                                                                                                                                                                                                      |
|----------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.699033             | 1.000000                                                                                     | 0.822860                                                                                                                                                             | 1735                                                                                                                                                                                                                                         |
| 1.000000             | 1.000000                                                                                     | 1.000000                                                                                                                                                             | 105                                                                                                                                                                                                                                          |
| 0.996324             | 1.000000                                                                                     | 0.998158                                                                                                                                                             | 271                                                                                                                                                                                                                                          |
| 0.901515             | 1.000000                                                                                     | 0.948207                                                                                                                                                             | 238                                                                                                                                                                                                                                          |
| 1.000000             | 1.000000                                                                                     | 1.000000                                                                                                                                                             | 445                                                                                                                                                                                                                                          |
| 0.981818             | 1.000000                                                                                     | 0.990826                                                                                                                                                             | 162                                                                                                                                                                                                                                          |
| 1.000000             | 1.000000                                                                                     | 1.000000                                                                                                                                                             | 29                                                                                                                                                                                                                                           |
| 1.000000             | 0.992558                                                                                     | 0.996265                                                                                                                                                             | 104401                                                                                                                                                                                                                                       |
|                      |                                                                                              | 0.992764                                                                                                                                                             | 107386                                                                                                                                                                                                                                       |
| 0.947336<br>0.994882 | 0.999070<br>0.992764                                                                         | 0.969539<br>0.993373                                                                                                                                                 | 107386<br>107386                                                                                                                                                                                                                             |
|                      | 0.699033<br>1.000000<br>0.996324<br>0.901515<br>1.000000<br>0.981818<br>1.000000<br>1.000000 | 0.699033 1.000000<br>1.000000 1.000000<br>0.996324 1.000000<br>0.901515 1.000000<br>1.000000 1.000000<br>0.981818 1.000000<br>1.000000 1.000000<br>1.000000 0.992558 | 0.699033 1.000000 0.822860<br>1.000000 1.000000 1.000000<br>0.996324 1.000000 0.998158<br>0.901515 1.000000 0.948207<br>1.000000 1.000000 1.000000<br>0.981818 1.000000 0.990826<br>1.000000 1.000000 1.000000<br>1.000000 0.992558 0.996265 |

## Trained Hyper-parameters

| Function                                                   | XGBoost                                                                                                                                                                                                                                                                                   | CatBoost                                                                                                                                                                                                                                                                                 | Light GBM                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Important<br>parameters<br>which<br>control<br>overfitting | <ol> <li>learning_rate or eta         <ul> <li>optimal values lie</li> <li>between 0.01-0.2</li> </ul> </li> <li>max_depth</li> <li>min_child_weight:         <ul> <li>similar to min_child</li> <li>leaf; default is 1</li> </ul> </li> </ol>                                            | <ol> <li>Learning_rate</li> <li>Depth - value can be any integer up to 16.         Recommended - [1 to 10]</li> <li>No such feature like min_child_weight</li> <li>I2-leaf-reg: L2 regularization coefficient. Used for leaf value calculation (any positive integer allowed)</li> </ol> | <ol> <li>learning_rate</li> <li>max_depth: default is 20. Important to note that tree still grows leaf-wise. Hence it is important to tune num_leaves (number of leaves in a tree) which should be smaller than 2^(max_depth). It is a very important parameter for LGBM</li> <li>min_data_in_leaf: default=20, alias= min_data, min_child_samples</li> </ol> |
| Parameters<br>for<br>controlling<br>speed                  | <ol> <li>colsample_bytree:         subsample ratio of         columns</li> <li>subsample:         subsample ratio of         the training instance</li> <li>n_estimators:         maximum number of         decision trees; high         value can lead to         overfitting</li> </ol> | <ol> <li>rsm: Random subspace method. The percentage of features to use at each split selection</li> <li>No such parameter to subset data</li> <li>iterations: maximum number of trees that can be built; high value can lead to overfitting</li> </ol>                                  | <ol> <li>feature_fraction: fraction of features to be taken for each iteration</li> <li>bagging_fraction: data to be used for each iteration and is generally used to speed up the training and avoid overfitting</li> <li>num_iterations: number of boosting iterations to be performed; default=100</li> </ol>                                              |



| Searched Parameters         | Values   |
|-----------------------------|----------|
| max_depth, depth            | 5        |
| learning_rate               | 0.1,0.25 |
| iterations                  | 25       |
| Feature_fraction, subsample | 0.5, 0.6 |

Model Training time



## Deep Learning Models

1D Convolutional Neural Network (1D CNN)





| Epoch               | 10                       |
|---------------------|--------------------------|
| Batch Size          | 512                      |
| Loss                | Categorical Crossentropy |
| Activation Function | ReLU & Softmax           |
| Optimizer           | Adam                     |
| Accuracy            | 98.8%                    |

## **DL** Models

| Layer (type)             | Output Shape | Param # |
|--------------------------|--------------|---------|
| simple_rnn (SimpleRNN)   | (None, 1, 8) | 160     |
| dropout (Dropout)        | (None, 1, 8) | θ       |
| simple_rnn_1 (SimpleRNN) | (None, 8)    | 136     |
| dropout_1 (Dropout)      | (None, 8)    | Θ       |
| dense (Dense)            | (None, 8)    | 72      |
| activation (Activation)  | (None, 8)    | θ       |

Total params: 368 Trainable params: 368 Non-trainable params: 0

#### Simple RNN

| Layer (type)              | Output Shape  | Param # |
|---------------------------|---------------|---------|
| gru (GRU)                 | (None, 1, 32) | 4320    |
| dropout_4 (Dropout)       | (None, 1, 32) | θ       |
| gru_1 (GRU)               | (None, 1, 32) | 6336    |
| dropout_5 (Dropout)       | (None, 1, 32) | Θ       |
| gru_2 (GRU)               | (None, 1, 32) | 6336    |
| dropout_6 (Dropout)       | (None, 1, 32) | 0       |
| gru_3 (GRU)               | (None, 32)    | 6336    |
| dropout_7 (Dropout)       | (None, 32)    | Θ       |
| dense_2 (Dense)           | (None, 8)     | 264     |
| activation_2 (Activation) | (None, 8)     | Θ       |

Total params: 23,592 Trainable params: 23,592 Non-trainable params: 0

| Layer (type)              | Output | Shape | Param # |
|---------------------------|--------|-------|---------|
| lstm (LSTM)               | (None, | 1, 8) | 640     |
| dropout_2 (Dropout)       | (None, | 1, 8) | Θ       |
| lstm_1 (LSTM)             | (None, | 8)    | 544     |
| dropout_3 (Dropout)       | (None, | 8)    | θ       |
| dense_1 (Dense)           | (None, | 8)    | 72      |
| activation_l (Activation) | (None, | 8)    | Θ       |

Total params: 1,256 Trainable params: 1,256 Non-trainable params: 0

#### LSTM

| Layer (type)              | Output | Shape | Param # |
|---------------------------|--------|-------|---------|
| flatten (Flatten)         | (None, | 11)   | θ       |
| dense_3 (Dense)           | (None, | 1024) | 12288   |
| dropout_8 (Dropout)       | (None, | 1024) | θ       |
| dense_4 (Dense)           | (None, | 768)  | 787200  |
| dropout_9 (Dropout)       | (None, | 768)  | θ       |
| dense_5 (Dense)           | (None, | 8)    | 6152    |
| activation_3 (Activation) | (None, | 8)    | Θ       |

Total params: 805,640 Trainable params: 805,640 Non-trainable params: 0

## Results

Simple RNN - Confusion Matrix with labels



GRU - Confusion Matrix with labels



LSTM - Confusion Matrix with labels



Deep NN - Confusion Matrix with labels



Predicted Values

#### Hyperparameter

| Epoch               | 10                       |
|---------------------|--------------------------|
| Batch Size          | 512                      |
| Loss                | Categorical Crossentropy |
| Activation Function | ReLU & Softmax           |
| Optimizer           | Adam                     |

#### Accuracy Score

| Models     | Accuracy Score |  |  |
|------------|----------------|--|--|
| Simple RNN | 97.33          |  |  |
| LSTM       | 98.69          |  |  |
| GRU        | 98.80          |  |  |
| Deep NN    | 98.81          |  |  |

#### Ensemble Methods

CNN + LSTM



CNN+LSTM - Confusion Matrix with labels

|          |         |      |     |     |     |     |     |    |        | _        |
|----------|---------|------|-----|-----|-----|-----|-----|----|--------|----------|
|          | 0       | 1735 | 0   | 0   | 0   | 0   | 0   | 0  | 0      | - 100000 |
|          | г·      | - 0  | 105 | 0   | 0   | 0   | 0   | 0  | 0      | - 80000  |
|          | α.      | - 0  | 0   | 271 | 0   | 0   | 0   | 0  | 0      |          |
| Values   | ო -     | - 0  | 0   | 0   | 238 | 0   | 0   | 0  | 0      | - 60000  |
| Actual \ | 4       | - 0  | 0   | 0   | 0   | 445 | 0   | 0  | 0      | - 40000  |
| Ā        | w.      | - 0  | 0   | 0   | 0   | 0   | 162 | 0  | 0      |          |
|          | 9 -     | - 0  | 0   | 0   | 0   | 0   | 0   | 29 | 0      | - 20000  |
|          | <u></u> | 1318 | 26  | 15  | 22  | 10  | 9   | 0  | 103001 |          |
|          |         | ó    | i   | 2   | 3   | 4   | 5   | 6  | 7      | - 0      |

| Epoch               | 10                       |
|---------------------|--------------------------|
| Batch Size          | 512                      |
| Loss                | Categorical Crossentropy |
| Activation Function | ReLU & Softmax           |
| Optimizer           | Adam                     |
| Accuracy            | 98.69%                   |

Predicted Values

## Stacked ML Method



| Algorithms             | Accuracy | Model Training Time |
|------------------------|----------|---------------------|
| Logistic Regression    | 41%      | 0.32                |
| Decision Trees         | 74.5%    | 0.062               |
| Random Forest          | 98.80%   | 49 sec              |
| XGBoost                | 98.76    | 32 sec              |
| LightGBM               | 99.28%   | 26 sec              |
| Hist Gradient Boosting | 99.37%   | 213 sec             |
| CNN                    | 98.8%    | 1200.5 sec          |
| RNN                    | 96.03%   | 1519 sec            |
| LSTM                   | 98.54%   | 1795 sec            |
| GRU                    | 98.80%   | 2701.Sec            |
| Deep NN                | 98.74%   | 601.88sec           |
| CNN + LSTM             | 98.70%   | 1582.07sec          |
| Stacked ML             | 98%      | 2400sec             |

## Showing one DoS Attack (UDP Flooding)

- 1. 5 Sender Nodes (Represented by Green Nodes)
- 2. 1 Base Station (Represented by Orange Node)
- 3. 1 Malicious Node with UDP Flooding packets (Represented by Violet Node)
- 4. Following a Star Topology
- 5. Used VMware workstation Player
- 6. Contiki Operating System
- 7. Cooja Simulator

#### Simulation without Attack



#### Simulation with Attack



## Challenges

- 1. As there was no experimental setup for the traces collected from different sensors and services, we cannot deploy any kind of attacks.
- 2. In future, different classes of attacks can be deployed from laptop, which consists of all the data packets captured while communicating with different devices.
- 3. To make a trustworthy ML or DL models, it is required to make models robust and smart in any kind of situations.
- 4. Presently, the various ML and DL techniques used can't guarantee their success in some of the critical conditions like in Healthcare, where if a cyber-attack occurs then it can also leads to death of a patient.

## Future Work

- 1. After collection of data, we can deploy the attacks.
- 2. A notification can be send to the smartphone if a cyber-attack occurs.
- 3. We can use Digital Forensics to investigate the data and collect evidence. This will help in gathering information like which part of the system got affected and what kind of data, whether it was a file artifact or emails, audio and video files.

## Individual Contribution



## Thank You