- 1. Twierdzenie 4.6: $\lim_{x\to 0} \frac{\sin x}{x} = 1$ -(a) oraz $\forall_{x\in\mathbb{R}} |\sin x| \le |x|$ (b)
 - (a) D: Niech $x \in (0, \frac{\pi}{2})$

 $P_{\triangle AOB} < P_{wycinekkolaAOB} < P_{\triangle OAC}$ $\frac{1}{2} \cdot 1 \cdot 1 \cdot \sin x < \frac{x}{2\pi} \pi \cdot 1^2 < \frac{1}{2} \cdot 1 \cdot \tan x$ $\sin x < x < \frac{\sin x}{\cos x}$

Dla $x \in (0, \frac{\pi}{2})$, mamy $\frac{\sin x}{x} < 1$ oraz - $\cos x < \frac{\sin x}{x} < 1$ Dla $-x \in (-\frac{\pi}{2}, 0)$ mamy $\cos(-x) < \frac{\sin(-x)}{-x} < 1$

Dla $y \in \left(-\frac{\pi}{2}, 0\right)$ mamy $\cos y < \frac{\sin y}{y} < 1$

Stąd $\forall_{x \in (-\frac{\pi}{2},0) \cup (0,\frac{\pi}{2})} \cos x < \frac{\sin x}{x} < 1$ tw. o $\lim_{x \to 0} \frac{\sin x}{x} = 1$, bo $\lim_{x \to 0} \cos(x) = 1$

(b) D: Weżmy,że $\forall_{x \in (-\frac{\pi}{2},0) \cup (0,\frac{\pi}{2})} |\frac{\sin x}{x}| < 1$ z czego $\forall_{x \in (-\frac{\pi}{2},0) \cup (0,\frac{\pi}{2})} |\sin x| < |x|$, Dla x = 0, $|\sin x| = 0 \le |x|$ Dla x takich, że $|x| \ge \frac{\pi}{2}$ mamy $|\sin x| \le 1 < \frac{\pi}{2} \le |x|$ Z wszystkich poprzednich $\implies \forall_{x \in \mathbb{R}} |\sin x| \leq |x|$

5. Granice jednostronne, asymptopty i ciągłość funkcji

- 1. Przez cały wykład zakładamy,
ż że $f:D\to\mathbb{R}$ gdzie $D\subset\mathbb{R}$
 - (a) $y = \sqrt{x}$ granicę w zerze możemy liczyć tylko z prawej strony.
 - (b) $y = \begin{cases} \sqrt{x} & x \ge 0 \\ 1 & x < 0 \end{cases} \lim_{x \to 0} f(x)$ nie istnieje. Ale możemy rozważać granicę lewostronną $\lim_{x \to 0^-} f(x)$ i granicę prawostronna $\lim_{x\to 0^+}$
- 2. Def. (Heinego granic jednostronnych)
 - (a) Niech $a \in \mathbb{R}$ będzie punktem skupienia zbioru $D \cap (-\infty, a)$ i niech $g \in \mathbb{R}$. Wtedy g jest granicą lewostronną funkcji fw punkcie a (co zapisujemy $\lim_{x\to a^-} f(x) = g$ lub $f(x) \xrightarrow{x\to a^-} g$ lub $f(a^-) = g$) $\iff \forall_{\{x_n\} \subset D \cap (-\infty, a)} \lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} f(x_n) = g$
 - (b) Niech $a \in \mathbb{R}$ będzie punktem skupienia zbioru $D \cap (a, +\infty)$ i niech $q \in \mathbb{R}$. Wtedy q jest granicą prawostronną funkcji f w punkcie a (co zapisujemy $\lim_{x\to a^+} f(x) = g$ lub $f(x) \xrightarrow{x\to a^+} g$ ub $f(a^+) = g$) $\iff \forall_{\{x_n\} \subset D \cap (a, +\infty)} \lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} f(x_n) = g$
- 3. Twierdzenie 5.1 (def. Cauchy'ego granic jednostronnych funkcji) podkreślone to zmiana od definicji zwykłej granicy
 - (a) Niech $a \in \mathbb{R}$ będzie punktem skupienia zbioru $D \cap (-\infty, a)$
 - i. Jesli $g \in \mathbb{R}$ to $\lim_{x \to a^-} f(x) = g \iff \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} = \delta < x a < 0 \implies |f(x) g| < \epsilon$
 - ii. Jeśli $g = +\infty \lim_{x \to a^-} f(x) = +\infty \iff \forall_{G>0} \exists_{\delta>0} \forall_{x \in D} \underline{-\delta} < x a < 0 \implies f(x) > G$
 - iii. Jeśli $g = -\infty \lim_{x \to a^-} f(x) = -\infty \iff \forall_{G>0} \exists_{\delta>0} \forall_{x \in D} -\delta < x a < 0 \implies f(x) < -G$
 - (b) Niech $a \in \mathbb{R}$ będzie punktem skupienia zbioru $D \cap (a, +\infty)$
 - i. Jesli $g \in \mathbb{R}$ to $\lim_{x \to a^-} f(x) = g \iff \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} \underbrace{0 < x a < \delta} \implies |f(x) g| < \epsilon$
 - ii. Jeśli $g = +\infty \lim_{x \to a^-} f(x) = +\infty \iff \forall_{G>0} \exists_{\delta>0} \forall_{x \in D} 0 < x a < \delta \implies f(x) > G$

- iii. Jeśli $g = -\infty \lim_{x \to a^-} f(x) = -\infty \iff \forall_{G>0} \exists_{\delta>0} \forall_{x \in D} 0 < x a < \delta \implies f(x) < -G$
- 4. Twierdzenie 5.2: Jeśli $a \in \mathbb{R}$ jest punktem skupienia $D \cap (-\infty, a)$ i $D \cap (a, +\infty)$ oraz $g \in \widetilde{\mathbb{R}}$, to $\lim_{x \to a} f(x) = \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = g$
 - (a) $\left[\frac{1}{0^+}\right] = +\infty, \left[\frac{1}{0^-}\right] = -\infty$
- 5. Asymptoty
 - (a) Def. Prosta x = a, gdzie $a \in \mathbb{R}$ jest
 - i. Asymptotą pionową lewostronną (wykresu) funkcji $y=f(x)\iff \lim_{x\to a^-}f(x)=\pm\infty$
 - ii. Asymptotą pionową prawostronną (wykresu) funkcji $y = f(x) \iff \lim_{x \to a^+} f(x) = \pm \infty$
 - iii. Asymptota pionowa obustronna gdy jest asymptota pionowa lewostronna i prawostronna
 - (b) Def. Prosta y = b, gdzie $b \in \mathbb{R}$ jest
 - i. Asymptotą poziomą lewostronną (wykresu) funkcji $y = f(x) \iff \lim_{x \to -\infty} f(x) = g$
 - ii. Asymptotą poziomą prawostronną (wykresu) funkcji $y = f(x) \iff \lim_{x \to +\infty} f(x) = g$
 - iii. Asymptotą poziomą obustronną gdy jest asymptotą poziomą ^lewostronną i prawostronną
 - (c) Def. Prosta y = mx + k, gdzie $m, k \in \mathbb{R}$ jest
 - i. Asymptotą ukośną lewostronną (wykresu) funkcji $y = f(x) \iff \lim_{x \to -\infty} [f(x) (mx + k)] = 0$
 - ii. Asymptotą ukośną prawostronną (wykresu) funkcji $y = f(x) \iff \lim_{x \to +\infty} [f(x) (mx + k)] = 0$
 - iii. Asymptotą ukośną obustronną gdy jest asymptotą poziomą lewostronną i prawostronną
 - iv. Twierdzenie 5.3: Prosta y = mx + k, gdzie $m \in \mathbb{R} \setminus \{0\}$ i $k \in \mathbb{R}$ jest asymptotą ukośną prawo/lewostronnną $\iff m = \lim_{x \to \pm \infty} \frac{f(x)}{x} \wedge k = \lim_{x \to \pm \infty} [f(x) mx]$ (dowód na ćwiczeniach)
 - A. Przykład: Wyznaczmy asymptoty funkcji $y=\frac{\sqrt{x^2+1}}{x}$. $D=\mathbb{R}\setminus\{0\}$ $\lim_{x\to 0^-}\frac{\sqrt{x^2+1}}{x}=\left[\frac{1}{0^-}\right]=-\infty, \lim_{x\to 0^+}\frac{\sqrt{x^2+1}}{x}=\left[\frac{1}{0^+}\right]=+\infty, \text{ Więc } x=0 \text{ to asymptota pionowa obustronna}$ $\lim_{x\to -\infty}\frac{\sqrt{x^2+1}}{x}=\lim_{x\to -\infty}\frac{|x|\sqrt{1+\frac{1}{x^2}}}{x}=\lim_{x\to -\infty}\frac{-x\sqrt{1+\frac{1}{x^2}}}{x}=-1, \lim_{x\to +\infty}\frac{x\sqrt{1+\frac{1}{x^2}}}{x}=1 \text{ asymptota pozioma lewostronna to } y=-1, \text{ prawostronna } y=1$ Brak asymptot ukośnych, bo są asymptoty poziome

6. Ciągłość

- (a) Przypomnienie: $\lim_{x\to a} f(x) = g \iff \forall_{\{x_n\}\subset D\setminus\{a\}} \lim_{x\to\infty} x_n = a \implies \lim_{n\to\infty} f(x_n) = g \iff \forall_{\epsilon>0} \exists_{\delta>0} \forall_{x\in D} 0 < |x-a| < \delta \implies |f(x)-g| < \epsilon$
- (b) Def. (Heinego ciągłości funkcji w punkcie):

Funkcja f jest ciągła w punkcie $\underline{a} \in D$ (musi być w dziedzinie) $\iff \forall_{\{x_n\} \subset D} \lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} f(x_n) = f(a)$ - (CH)

- i. W przypadku funkcji ciągłej f mamy $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$, tzn. z granicą można wejść pod symbol funkcji.
- ii. Uwaga: Jeśli $a \in D$ nie jest punktem skupienia zbioru D, to $\underline{\forall}_{\{x_n\}\subset D} \lim_{n\to\infty} x_n = a \implies \lim_{n\to\infty} f(x_n) = f(a)$ (*) jest spełnione jedynie przez ciągi $\{x_n\}$ takie, że dla wszystkich dalszych $n: x_n = a \implies$ dla wszystkich dużych $n: f(x_n) = f(a) \stackrel{n\to\infty}{\longrightarrow} f(a)$

Zatem warunek (CH) jest spełniony i funkcja jest ciągła w a. Na przykład każda $f: \mathbb{N} \to \mathbb{R}$ jest ciągła w każdym punkcie z $D = \mathbb{N}$, bo każdy taki punkt nie jest punktem skupienia dziedziny

(c) Twierdzenie 5.4 (def. Cauchy'ego ciągłości funkcji w punkcie).

Funkcja f(x) jest ciągła w pkt. $a \in D \iff \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x - a| < \delta \implies |f(x) - f(a)| < \epsilon$ - (CC)

- i. D (gdy a jest punktem skupienia zbioru D): Chcemy pokazać, że (CH) \iff (CC) (CH) \iff $\forall_{\{x_n\}\subset D} \lim_{n\to\infty} x_n = a \implies \lim_{n\to\infty} f(x_n) = f(a) \iff \forall_{\{x_n\}\subset D\setminus\{a\}} \lim_{n\to\infty} x_n = a \implies \lim_{n\to\infty} f(x_n) = f(a) \iff \lim_{x\to a} f(x) = f(a) \iff \forall_{\epsilon>0} \exists_{\delta>0} \forall_{x\in D} 0 < |x-a| < \delta \implies |f(x)-f(a)| < \epsilon \iff (CC)$
- ii. Przy okazji udowodniliśmy następujące twierdzenie:
- (d) Twierdzenie 5.5: Jeśli $a \in D$ jest punktem skupienia zbioru D, to f(x) jest ciagła w punkcie $a \iff \lim_{x\to a} f(x) = f(a)$
- (e) Def. Funkcja f(x) jest ciągła $\iff f(x)$ jest ciągła w każdym punkcie swojej dziedziny, tzn. $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies |f(x) f(a)| < \epsilon \iff f(x)$ jest ciągła w a Przykłady:

- i. Funkcja stała $f: \mathbb{R} \to \mathbb{R}$, f(x) = c gdzie $c \in \mathbb{R}$ $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies |c c| = 0 < \epsilon$ więc jest ciagła
- ii. $f: \mathbb{R} \to \mathbb{R}$, f(x) = x jest ciągła: $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies |x a| < \epsilon$, co zachodzi dla $\delta = \epsilon$
- iii. $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| jest ciągła: $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies ||x| |a|| \le |x a| < \epsilon$, co zachodzi dla $\delta = \epsilon$
- iv. $\sin \alpha \sin \beta = 2 \sin \frac{\alpha \beta}{2} \cos \frac{\alpha + b}{2}$ przydatne do nastepnego $\sin \alpha + \sin \beta = 2 \sin \frac{\alpha \beta}{2} \cos \frac{\alpha b}{2}$ $\sin \alpha \cos \beta = 2 \sin \frac{\alpha \beta}{2} \sin \frac{\alpha + b}{2}$ $\sin \alpha + \cos \beta = 2 \cos \frac{\alpha \beta}{2} \cos \frac{\alpha + b}{2}$
- v. $f,g: \mathbb{R} \to \mathbb{R}, f(x) = \sin(x), g(x) = \cos(x)$ są ciągłe, bo: $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies |\sin x \sin a| = 2|\sin \frac{x a}{2}| \cdot |\cos \frac{x + a}{2}| \le 2 \cdot |\frac{x a}{2}| \cdot |1| \le |x a| < \epsilon \ (\delta = \epsilon)$ $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies |\cos x \cos a| = 2|\sin \frac{x a}{2}| \cdot |\sin \frac{x + a}{2}| \le 2 \cdot |\frac{x a}{2}| \cdot |1| \le |x a| < \epsilon \ (\delta = \epsilon)$