

# Deep learning: An Introduction for Applied Mathematicians

Mark Blyth



## Definition (Neural network)

A nonlinear model that's general enough to fit most data



### Definition (Neural network)

A nonlinear model that's general enough to fit most data

 $m{k}$  Take input vectors  $\mathbf{x}_i$ 



### Definition (Neural network)

A nonlinear model that's general enough to fit most data

- lacktriangle Take input vectors  $\mathbf{x}_i$
- $\norm{1}{k}$  Take output vectors  $\mathbf{y}_i$



### Definition (Neural network)

A nonlinear model that's general enough to fit most data

- $\kappa$  Take input vectors  $\mathbf{x}_i$
- $\norm{1}{k}$  Take output vectors  $\mathbf{y}_i$
- $\ensuremath{\mathbb{K}}$  Fit some nonlinear model  $\mathbf{y} = f(\mathbf{x})$



# Drilling site example

 $\mathbf{k}$  Input data:  $\mathbf{x}_i = (u_i, v_i)$ , oil well location

 $m{\&}$  Output data:  $y_i \in \{0,1\}$ , success or failure

Learn some nonlinear model mapping locations to drill successes



How do we create a nice general model?

A neural network is just a convenient representation of 'stringed nonlinearities'



- A neural network is just a convenient representation of 'stringed nonlinearities'
- lacktriangle Take a simple nonlinearity, eg. sigmoid  $\sigma(x)$



- A neural network is just a convenient representation of 'stringed nonlinearities'
- lacktriangle Take a simple nonlinearity, eg. sigmoid  $\sigma(x)$
- String a load of them together



- A neural network is just a convenient representation of 'stringed nonlinearities'
- k Take a simple nonlinearity, eg. sigmoid  $\sigma(x)$
- String a load of them together

$$f(x) = \sigma(\sigma(\dots \sigma(x) \dots)$$



How do we create a nice general model?

- A neural network is just a convenient representation of 'stringed nonlinearities'
- k Take a simple nonlinearity, eg. sigmoid  $\sigma(x)$
- String a load of them together

$$f(x) = \sigma(\sigma(\ldots \sigma(x) \ldots)$$

lacktriangle More useful: can shift mean, scale with a linear transform  $\sigma(wx+b)$ 



- A neural network is just a convenient representation of 'stringed nonlinearities'
- k Take a simple nonlinearity, eg. sigmoid  $\sigma(x)$
- String a load of them together

$$f(x) = \sigma(\sigma(\dots \sigma(x) \dots)$$

- lacktriangle More useful: can shift mean, scale with a linear transform  $\sigma(wx+b)$ 
  - $f(x) = \sigma(b + w\sigma(b + w\sigma(\dots \sigma(b + w\sigma(x)) \dots))$



How do we create a nice general model?

- A neural network is just a convenient representation of 'stringed nonlinearities'
- $\normalfont{\mathsf{K}}$  Take a simple nonlinearity, eg. sigmoid  $\sigma(x)$
- String a load of them together

$$f(x) = \sigma(\sigma(\dots \sigma(x) \dots)$$

lacktriangle More useful: can shift mean, scale with a linear transform  $\sigma(wx+b)$ 

$$f(x) = \sigma(b + w\sigma(b + w\sigma(\dots \sigma(b + w\sigma(x))\dots))$$

K Fit the model



How do we create a nice general model?

- A neural network is just a convenient representation of 'stringed nonlinearities'
- $\normalfont{\mathsf{K}}$  Take a simple nonlinearity, eg. sigmoid  $\sigma(x)$
- String a load of them together

$$f(x) = \sigma(\sigma(\ldots \sigma(x) \ldots)$$

 $\normalfont{m{arkappa}}{}$  More useful: can shift mean, scale with a linear transform  $\sigma(wx+b)$ 

$$f(x) = \sigma(b + w\sigma(b + w\sigma(\dots \sigma(b + w\sigma(x))\dots))$$

- K Fit the model
  - Find appropriate values for each w, b



## Why 'neural network'?

We can represent the equation nicely as a graph





Node inputs = weighted sum of previous layer's outputs



Node inputs = weighted sum of previous layer's outputs

 $lackbox{
ho}$  Vector form:  $\mathbf{i}_k = W_k \mathbf{o}_{k-1} + \mathbf{b}_k$ 



- Node inputs = weighted sum of previous layer's outputs
  - ightharpoonup Vector form:  $\mathbf{i}_k = W_k \mathbf{o}_{k-1} + \mathbf{b}_k$
- Node output = sigmoid of inputs



- ✓ Node inputs = weighted sum of previous layer's outputs
  - ightharpoonup Vector form:  $\mathbf{i}_k = W_k \mathbf{o}_{k-1} + \mathbf{b}_k$
- Node output = sigmoid of inputs
  - $\bullet_k = \sigma(\mathbf{i}_k)$



- ✓ Node inputs = weighted sum of previous layer's outputs
  - ightharpoonup Vector form:  $\mathbf{i}_k = W_k \mathbf{o}_{k-1} + \mathbf{b}_k$
- Node output = sigmoid of inputs
  - $ightharpoonup \mathbf{o}_k = \sigma(\mathbf{i}_k)$
- Inputs can be efficiently computed with some linear algebra



- - ightharpoonup Vector form:  $\mathbf{i}_k = W_k \mathbf{o}_{k-1} + \mathbf{b}_k$
- Node output = sigmoid of inputs
  - $\mathbf{o}_k = \sigma(\mathbf{i}_k)$
- Inputs can be efficiently computed with some linear algebra
- Much neater representation than 'stringed nonlinearities'



## Why does this work?

Loosely speaking...

k Having lots of  $W_k$ ,  $b_k$  gives us a very general model



## Why does this work?

Loosely speaking...

- k Having lots of  $W_k$ ,  $b_k$  gives us a very general model
- We can fit the data by selecting W, b to minimise the error  $\sum \|f(\mathbf{x}_i \mathbf{y}_i)\|^2$



# Why does this work?

Loosely speaking...

- k Having lots of  $W_k$ ,  $b_k$  gives us a very general model
- We can fit the data by selecting W, b to minimise the error  $\sum \|f(\mathbf{x}_i \mathbf{y}_i)\|^2$
- Universal approximator!



We now have a model; how do we fit it?

## Definition (Gradient descent)



We now have a model; how do we fit it?

### Definition (Gradient descent)

Optimisation method that iteratively updates parameters with a most-improving step

Like a massless ball rolling down a hill



We now have a model; how do we fit it?

## **Definition (Gradient descent)**

- Like a massless ball rolling down a hill
  - Travels in the direction of greatest slope



We now have a model; how do we fit it?

### Definition (Gradient descent)

- Like a massless ball rolling down a hill
  - Travels in the direction of greatest slope
  - Reaches a flat bit eventually



We now have a model; how do we fit it?

### Definition (Gradient descent)

- K Like a massless ball rolling down a hill
  - Travels in the direction of greatest slope
  - Reaches a flat bit eventually
- Flat bit means cost stops changing



We now have a model; how do we fit it?

### Definition (Gradient descent)

- Like a massless ball rolling down a hill
  - ► Travels in the direction of greatest slope
  - Reaches a flat bit eventually
- Flat bit means cost stops changing
  - Could be a good fit, could be a saddle or local minimum



$$\mathbf{k}$$
 Let  $\cos t_p = \sum_i \|f_p(\mathbf{x}_i) - \mathbf{y}_i\|^2$ 



$$\mathbf{k}$$
 Let  $\cos t_p = \sum_i \|f_p(\mathbf{x}_i) - \mathbf{y}_i\|^2$ 

$$\mathbf{k}$$
 Iteratively let  $p_{i+1} = p_i - \eta \frac{\partial \mathrm{cost}}{\partial p_i}$ 



$$\mathbf{k}$$
 Let  $\cos t_p = \sum_i \|f_p(\mathbf{x}_i) - \mathbf{y}_i\|^2$ 

- $\mathbf{k}$  Iteratively let  $p_{i+1} = p_i \eta \frac{\partial \mathrm{cost}}{\partial p_i}$ 
  - Alternatively, calculate the cost over some 'minibatches' and perform iterations on these



$$\mathbf{k}$$
 Let  $\cos t_p = \sum_i \|f_p(\mathbf{x}_i) - \mathbf{y}_i\|^2$ 

- $\mathbf{k}$  Iteratively let  $p_{i+1} = p_i \eta \frac{\partial \mathrm{cost}}{\partial p_i}$ 
  - Alternatively, calculate the cost over some 'minibatches' and perform iterations on these
- $\mathbb{K}$  How do we find  $\frac{\partial \cos t}{\partial p_i}$ ?



# Backprop

## Definition (Backpropagation)

A method for finding cost-function gradient, given

a cost function

a nonlinearity

a network topology

Backprop is the core of NN training!



# How does backprop work?

For a single input...

How does cost function change with last layer's outputs?



For a single input...

How does cost function change with last layer's outputs?



For a single input...

How does cost function change with last layer's outputs?

k How does ith layer output change with ith layer input?



For a single input...

How does cost function change with last layer's outputs?

 $\bigvee$  How does *i*th layer output change with *i*th layer input?

$$ightharpoonup \frac{\partial \text{output}}{\partial \text{input}} = \sigma'(\text{input})$$



- How does cost function change with last layer's outputs?
- $\bigvee$  How does *i*th layer output change with *i*th layer input?
  - $ightharpoonup \frac{\partial \text{output}}{\partial \text{input}} = \sigma'(\text{input})$
- k How does ith layer input change with ith layer weights, biases?



- How does cost function change with last layer's outputs?
- k How does *i*th layer output change with *i*th layer input?
  - $ightharpoonup \frac{\partial \text{output}}{\partial \text{input}} = \sigma'(\text{input})$
- $\bigvee$  How does ith layer input change with ith layer weights, biases?
  - $ightharpoonup \frac{\partial \text{input}}{\partial \text{weights}} = (i-1)' \text{th layer output}$



- How does cost function change with last layer's outputs?
- ★ How does ith layer output change with ith layer input?
  - $ightharpoonup \frac{\partial \text{output}}{\partial \text{input}} = \sigma'(\text{input})$
- ★ How does ith layer input change with ith layer weights, biases?
  - $ightharpoonup \frac{\partial \text{input}}{\partial \text{weights}} = (i-1)' \text{th layer output}$
  - $ightharpoonup \frac{\partial \text{input}}{\partial \text{biases}} = 1$



- How does cost function change with last layer's outputs?
- k How does *i*th layer output change with *i*th layer input?
  - $ightharpoonup \frac{\partial \text{output}}{\partial \text{input}} = \sigma'(\text{input})$
- ★ How does ith layer input change with ith layer weights, biases?
  - $ightharpoonup \frac{\partial \text{input}}{\partial \text{weights}} = (i-1)' \text{th layer output}$
  - $\frac{\partial \text{input}}{\partial \text{biases}} = 1$
- ✓ Can find cost function gradient by chain-ruling these all together



- How does cost function change with last layer's outputs?
- k How does ith layer output change with ith layer input?
  - $ightharpoonup \frac{\partial \text{output}}{\partial \text{input}} = \sigma'(\text{input})$
- We How does ith layer input change with ith layer weights, biases?
  - $ightharpoonup \frac{\partial \text{input}}{\partial \text{weights}} = (i-1)' \text{th layer output}$
  - $\frac{\partial \text{input}}{\partial \text{biases}} = 1$
- Can find cost function gradient by chain-ruling these all together
- Keep Can sum the resulting gradient across the full minibatch



Backprop gives us an easy way to compute  $\frac{\partial cost}{\partial weights}$  and  $\frac{\partial cost}{\partial biases}$ 

Forward pass: find each node's inputs and outputs



Backprop gives us an easy way to compute  $\frac{\partial cost}{\partial weights}$  and  $\frac{\partial cost}{\partial biases}$ 

Forward pass: find each node's inputs and outputs

Backward pass:



- Forward pass: find each node's inputs and outputs
- Backward pass:
  - Relate last layer's output to cost function gradient



- Forward pass: find each node's inputs and outputs
- Backward pass:
  - Relate last layer's output to cost function gradient
  - Relate each previous layer's outputs, weights, biases to next layer's error



- Forward pass: find each node's inputs and outputs
- Backward pass:
  - Relate last layer's output to cost function gradient
  - ▶ Relate each previous layer's outputs, weights, biases to next layer's error
  - Relate next layer's error to cost function gradient



- Forward pass: find each node's inputs and outputs
- Backward pass:
  - Relate last layer's output to cost function gradient
  - ▶ Relate each previous layer's outputs, weights, biases to next layer's error
  - Relate next layer's error to cost function gradient
- Propagates errors backward through the network



#### Convolutional neural networks

- Visual cortex has a 'receptive field'
- CNN mirror this with local kernel transforms
- Convolutional layers automatically extract features
- Allows NNs to efficiently manipulate high-dimensional data



# Practical aspects

#### **Definition (Overfitting)**

Representing the training data too closely, and losing the ability to generalise



We don't have to use sigmoids



- We don't have to use sigmoids
  - ReLU: linear activation with positive support



- We don't have to use sigmoids
  - ReLU: linear activation with positive support
  - Alternative: small gradient for negative numbers, large gradient for positive numbers



- We don't have to use sigmoids
  - ReLU: linear activation with positive support
  - Alternative: small gradient for negative numbers, large gradient for positive numbers
- We don't have to use residuals



- We don't have to use sigmoids
  - ReLU: linear activation with positive support
  - Alternative: small gradient for negative numbers, large gradient for positive numbers
- We don't have to use residuals
  - Softmax-log-loss



### The essence of ML

- Machine learning sounds flashy and cool; it's just big statistics
- Large-scale model definitions and cost-function-fitting



Why use NNs?

When do other methods generalise better?



₭ How robust are the results?

Do small input changes matter much? Should they?



What's a sensible nonlinearity?

Is there any reason to choose ReLU over sigmoids?



What topology do we need?

How many hidden layers? How big?



- Can we regularise?
  - Reduce overfitting by penalising model complexity



- Explainability
  - Why should NNs give good results? Why do they give the results they do?



#### Discussion

- Why use NNs vs. another method?
- What topology do we need?
- What's a sensible nonlinearity?
- We How robust are the results, and how much do we care?
- Can we regularise?
- Explainability how much do we trust the results?
- How much can we actually learn from a black box?
- ₭ How much data is enough data?
- What are the applications to nonlinear dynamics?



# Next paper

Someone to lead?

Suggestion: Heinonen, Markus, et al. "Learning unknown ODE models with Gaussian processes." arXiv preprint arXiv:1803.04303 (2018).