

METODOLOGIA E LINGUAGEM DE PROGRAMAÇÃO ORIENTADA A OBJETOS

Dr^a. Alana Morais alanamm.prof@gmail.com

Ainda não instalou o java!!

Baixe o JDK (8 ou superior) – Atual Java 13

. Instale

. Have fun!!

Como saber que está instalado corretamente?

Roteiro

- Estrutura de uma aplicação em Java
- Gerar uma aplicação simples em Java
- Como rodar uma aplicação em Java
 - Eclipse
 - NetBeans
- Diferenças entre C e Java
- Variáveis
- Operadores
- Laços de repetição em Java

Estrutura de uma aplicação em Java:

- Uma aplicação é estruturada por códigos-fontes;
- Um arquivo em **código-fonte** contem uma definição de classe;
- A classe representa uma parte do programa;

Classe

```
public class Cachorro {
```

}

- Uma classe é composta por **métodos** e **atributos**;
- Essas classes podem estar em **um** ou em **vários** arquivos **.java** no programa;

Método

```
public class Cachorro {
    metodo(){
        instrução1;
      }
}
```

- Cada método é composto por uma série de instruções;
- **Por enquanto**, pode-se pensar no método como um procedimento ou função;

Método

```
public class Cachorro {
    metodo(){
        instrução1;
    }
}
```

• E se eu quisesse adicionar outro grupo de instruções? Como ficaria?

Recapitulando ...

Hello World!

- IDE
 - . Projeto
 - · Classe (pelo menos um deve ter o método main)
 - Programar as classes
 - Testar
- Verifique as classes .class geradas

Verifique os seguintes pontos

- · Java sempre termina uma linha de ação com;
- Java precisa de {} para delimitar o começo e final dos métodos (semelhantes às funções) ou de laços e condicionais.
- Comentários tem uma sintaxe diferente
 - //
 - . /* */
- · Java é uma linguagem Case Sensitive (testem)

Execução de uma aplicação em Java

• O JVM procura por um método chamado:

```
public static void main (String [] args)
{
```

Recapitulando ...

- Todo aplicativo Java, precisa ter:
 - Uma classe;
 - Um método main (dentro da classe);

```
public class NomedaClasse {
  public static void main (String [] args) {
  }
}
```


Em um aplicativo Java só pode haver UM método main;

Classe principal

- · É a classe que contem o método main;
- O que pode inserir no método main?
 - Seu código pode instruir a JVM a:
- - fazer algo;
- fazer algo repetidamente;
- fazer algo sob essa condição.

Seu código pode instruir a JVM a ...

... fazer algo:

```
public class ClassePrincipal{
   public static void main (String [] args){

    String nome = "Aula Java";
    System.out.println (nome);
   }
}
```

Seu código pode instruir a JVM a ...

... fazer algo repetidamente:

```
public class ClassePrincipal{
  public static void main (String [] args){
 int x = 1;
 while (x<12)
     x = x + 1;
     System.out.println(x);
 System.out.println("último valor: "+ x);
```

Seu código pode instruir a JVM a ...

... fazer algo sob essa condição:

```
public class ClassePrincipal{
  public static void main (String [] args){
 int x = 1;
 if (x == 1)
     System.out.print("numero um");
 } else {
       System.out.print("não é numero um");
```

Exercício

- Faça um programa a média de dois números no Eclipse.
 - float n1=10, n2=5;
 - float media;
- O usuário não precisa digitar valores (por enquanto).

Python	C	Java
Orientada a Objetos Classes e Objetos (programada estruturada)	Estruturada Funções Structs, pilhas, etc.	Orientada a Objetos Classes e Obj.
Interpretador	Compilador	JVM
Linguagem alto nível	Linguagem médio nível	Linguagem alto nível
Portável	Portabilidade só se consegue com disciplina na programação	Portável
c = classe()	malloc	New
Dinâmicamente tipada	Estaticamente tipada	Estaticamente tipada
import	include	import
Tratamento de exceções	Ponteiros	Tratamento de exceções
Sem marcador de fim de linha	Fim de linha;	Fim de linha;
Identação	{}	{}

Variáveis

- Uma variável é simplesmente um espaço vago, reservado e rotulado para armazenar dados;
- · Toda variável tem um nome de identificação;
- Ao longo da execução essa variável pode receber um valor;

Sintaxe de uma variável

• Na declaração:

int
$$x$$
;
ou
int $x = 2$;

• Na atribuição:

$$x = x + 2;$$
ou
 $x = 2 / (x*3);$

Identificadores

- Dar nome para variáveis, métodos, classes *etc*. Precisa seguir uma série de regras:
- O primeiro caractere de um identificador deve ser uma letra. Os demais caracteres podem ser quaisquer sequências de numerais e letras;
- 2. Não apenas os numerais e letras latinas podem ser empregadas, como também letras de quaisquer outro alfabeto;

Identificadores

- 3. O underscore "_" e o sinal de dólar "\$" são considerados letras e podem ser usados nos identificadores;
- 4. Os identificadores distinguem o tipo das letras, isto é, as maiúsculas são consideradas distintas das minúsculas;
- 5. Os identificadores não podem ser palavras reservadas, como: class, for, while, public, etc.

Identificadores

- 6. A primeira letra do nome de uma classe é maiúscula. Exemplo: public class **N**ome;
- Se este nome é composto por várias palavras, elas são escritas juntas (sem usar algum separador) e a primeira letra de cada palavra é maiúscula. Exemplo: class **AloPessoal**;
- Para o restante: métodos, atributos e referências a objetos, o estilo é similar ao da classe, porém sendo a primeira letra do identificador minúscula. Exemplo:

boolean luzAcesa;

int qtdeParafusos.

Tipos de dados

- Uma aplicação Java consiste essencialmente em manipulação de dados.
 - Simples tarefas (como escrever mensagens na tela);
 - Até as mais complexas (como resolver equações ou desenhar imagens tridimensionais em animação);

Tipo de dados

Tipo	Descrição	
boolean	Tipo lógico que pode assumir o valor true ou o valor false.	
char	Caractere em notação Unicode de 16 bits. Serve para a armazenagem de dados alfanuméricos.	
byte	Inteiro de 8 bits em notação de complemento de dois. Variáveis deste tipo podem assumir valores entre -2 ⁷ =-128 e 2 ⁷ -1=127.	
short	Inteiro de 16 bits em notação de complemento de dois. Os valores possíveis cobrem a faixa de -2 ¹⁵ =-32.768 a 2 ¹⁵ -1=32.767.	
int	Inteiro de 32 bits em notação de complemento de dois. Pode assumir valores entre -2 ³¹ =-2.147.483.648 e 2 ³¹ -1=2.147.483.647.	
long	Inteiro de 64 bits em notação de complemento de dois. Pode assumir valores entre -2 ⁶³ e 2 ⁶³ -1.	
float	Representa números em notação de ponto flutuante normalizada em precisão simples de 32 bits em conformidade com a norma IEEE 754-1985. O menor valor positivo que pode ser representado por esse tipo é 1.40239846e-46 e o maior é 3.40282347e+38.	
double	Representa números em notação de ponto flutuante normalizada em precisão dupla de 64 bits em conformidade com a norma IEEE 754-1985. O menor valor positivo que pode ser representado é 4.94065645841246544e-324 e o maior valor positivo é 1.7976931348623157e+308.	

Tipo de dados lógicos

- · Variável do tipo boolean:
 - Pode assumir dois valores : **true** ou **false** ;
 - Compõem as operações lógicas. Ex: x > w , y<=i;
 - Operações booleanas:

į	Operador lógico de negação
==, !=	Operadores de igualdade e diferença
&&,	Operadores lógicos E e OU .
&=, =, ^=	Operadores de atribuição com operação lógica E, OU e OU-exclusivo

Tipos de dados inteiros

• Refere-se aos tipos byte, int, short e long;

Operação	Descrição
=	Operador de atribuição
==, !=	Operadores de igualdade e diferença
<, <=, >, >=	Operadores de desigualdade (relacionais)
+, -	Operadores unários
+, -, *, /, %	Adição, subtração, multiplicação, divisão e módulo
+=, -=, *=, /=, %=	Operadores de atribuição com adição, subtração, multiplicação, divisão e módulo
++,	Incremento e decremento
<<, >>, >>>	Operadores de deslocamento de bits
<<=, >>=, >>>=	Operadores de atribuição com deslocamento de bits

Tipo de dado caracter

- Diz respeito a variável do tipo char;
- Armazena um caracter Unicode;

```
Tabela ASCII (códigos de caracteres 0 - 127)
000
        016
                 032
                           048 0
                                   064 @
                                            080 P
                                                    096 `
                                                            112 p
001 @
                 033 !
                           049 1
                                   065 A
                                            081 0
                                                    097 a
                                                            113 q
        017
       018 $
                 034 "
                           050 2
                                   066 B
                                            082 R
                                                    098 b
002
                                                             114 r
003 ♥
        019 !!
                 035 #
                           051 3
                                   067 C
                                            083 S
                                                    099 C
                                                            115 s
004
        020 ¶
                 036 $
                           052 4
                                  068 D
                                                    100 d
                                                            116 t
                                            084 T
                                                    101 e
005
       021 $
                 037 %
                          053 5
                                   069 E
                                            085 U
                                                            117 u
       022
                                                            118 v
006
                 038 &
                           054 6
                                  070 F
                                           086 V
                                                    102 f
007
       023 $
                 039 '
                           055 7
                                   071 G
                                            087 W
                                                    103 q 119 W
                 040
                           056 8
                                   072 H
                                                    104 h
        024 +
                                            088 X
                                                            120 x
008
009
        025 1
                 041 )
                           057 9
                                   073 I
                                            089 Y
                                                    105 i
                                                            121 y
       026 →
                 042 *
                           058 :
                                   074 J
                                            090 Z
                                                    106 j
                                                            122 z
010
011 0
        027 ←
                 043 +
                           059;
                                   075 K
                                            091
                                                    107 k
                                                            123
        028 L
                 044 ,
                           060 <
                                   076 L
                                            0.92
                                                    108 1
                                                            124
012 9
013
        029 ↔
                 045 -
                           061 =
                                                            125
                                   077 M
                                            093
                                                    109 m
014 月
                 046 .
                           062 >
                                            094 ^
                                                            126 ~
        030 🛦
                                   078 N
                                                    110 n
015 ♦
                                            095
        031 V
                 047 /
                           063 ?
                                   079 0
                                                    111 0
                                                            127 △
```

Tipo de dado flutuante

- · Refere-se a variável float e double;
- Além dos possíveis valores numéricos que uma variável de ponto flutuante pode assumir há também os seguintes:
 - menos infinito;
 - mais infinito;
 - Zero;
 - NAN not a number.

Tipo de dado flutuante

Operação	Descrição
=	Operador de atribuição
==, !=	Operadores de igualdade e diferença
<, <=, >, >=	Operadores de desigualdade
+, -	Sinais unários
+, -, *, /	Adição, subtração, multiplicação e divisão
+=, -=, *=, /=	Operadores de atribuição com adição, subtração multiplicação e divisão
++,	Operadores unários de incremento e decremento

Precedências

Operador	Descrição
. [] () (tipo)	Máxima precedência: separador, indexação, parâmetros, conversão de tipo
+ - ~! ++	Operadores unários: positivo, negativo, negação (inversão bit a bit), não (lógico), incremento, decremento
* / %	Multiplicação, divisão e módulo (inteiros)
+ -	Adição, subtração
<< >> >>>	Translação (bit a bit) àesquerda, direita sinalizada, e direita não sinalizada (o bit de sinal será 0)
< <= >= <	Operador relacional: menor, menor ou igual, maior ou igual, maior
== !=	Igualdade: igual, diferente
&	Operador lógico e bit a bit
^	Operador lógico ou exclusivo (xor) bit a bit
	Operador lógico ou bit a bit
&&	Operador lógico e condicional
	Operador lógico ou condicional
?:	Condicional: if-then-else compacto
= += -= *= /= %=	Atribuição

Laços de repetição em Java

- Estruturas de condição
 - if ... else
 - switch...case

- Estruturas de repetição
 - for
 - while
 - do ... while

Estruturas condicionais em Java

• if ... else:

```
if (condição){
    instruções;
    // Entra nesse bloco se a condição for true
} else if (condição){
    instruções;
    // Entra nesse bloco se a condição for true
} else {
    instruções;
    // Entra nesse bloco se a condição for false
}
```

Estruturas condicionais em Java

• if ... else compacto:

[expressão condicional]?[expressão 1]: [expressão 2]

Exemplo

Expressão:

$$y = (x < 1)? x * x : 2 - x;$$

Equivale a:

```
if (x < 1){
    y = x * x;
} else {
    y = 2 - x;
}</pre>
```

Estruturas condicionais em Java

```
• switch ... case:
  switch (expressao){
      case (constante 1):
         instruções;
         break;
      case (constante 2):
         instruções;
         break;
      default:
         instruções;
          break;
```

Estruturas de repetição em Java

for:
 for (expressão 1; condição; expressão 2) {
 instruções;
 }

Estruturas de repetição em Java

• while:

```
while (condição) {
   instruções;
}
```

Estruturas de repetição em Java

do ... while :
do {
 instruções
 } while (condição);

Vamos pensar em um exemplo real Hummm E se eu precisasse calcular a área de um retângulo?

Agora é sua vez!! Faça o mesmo com o cálculo da área de um círculo.

Exercício

• Faça um programa que pergunte o preço de três produtos e informe qual produto você deve comprar, sabendo que a decisão é sempre pelo mais barato.

Exercício

• Desenvolva um gerador de tabuada, capaz de gerar a tabuada de qualquer número inteiro entre 1 a 10. O usuário deve informar de qual número ele deseja ver a tabuada.

Exercício

Faça um Programa que inicialize 2 números inteiros e um número real. Calcule e mostre:

- o produto do dobro do primeiro com metade do segundo.
- a soma do triplo do primeiro com o terceiro.
- o terceiro elevado ao cubo.

TED

- 1. Faça um programa que pergunte quanto você ganha por hora e o número de horas trabalhadas no mês. Calcule e mostre o total do seu salário no referido mês, sabendo-se que são descontados 11% para o Imposto de Renda, 8% para o INSS e 5% para o sindicato, faça um programa que nos dê:
 - o salário bruto.
 - quanto pagou ao IPRF
 - o quanto pagou ao INSS.
 - o quanto pagou ao sindicato.
 - o salário líquido.
 - o valor descontado.

TED

2. Faça um programa em Java, que resolva a equação de 2º grau. O usuário ainda não deve digitar os valores, eles devem vir declarados no programa.

Dúvidas?