

Presentation plan

Models

Methodology

Learning Rate

Batch Size

Data Augmentation

Best models for 4 label dataset

Results for all label dataset

Summary

Models

- Wav2Vec2.0: A self-supervised model that learns speech representations from raw audio. It pretrains on unlabeled data and is fine-tuned for tasks like speech recognition, reducing the need for large labeled datasets.
- LSTM-CNN Network(LSTM): A custom-built model combining CNNs for extracting features from audio and LSTMs for capturing temporal patterns, trained from scratch.
- Audio Spectrogram Transformer (AST): A transformer-based model that operates on spectrograms, leveraging transformer architecture strengths for audio understanding.

Methodology

- Models were first trained on a small dataset (4 labels: yes, no, stop, go), with 1000 samples per label.
- Data split: 70% training, 15% validation, 15% testing.
- Multiple hyperparameter and augmentation combinations were tested.
- Best-performing setups were then trained on the full dataset with all labels.
- AST and Wav2Vec2.0: fine-tuned from pretrained weights (feature extractors frozen).
- LSTM-CNN: trained from scratch.
- Training done in TensorFlow on Google Colab for 10 epochs per model.

Methodology

- Learning Rate:
 - **0.0001**
 - **0.001**
 - **0.01**
- Batch Size:
 - **32**
 - **6**4
- Data Augmentations:
 - Background Noise Injection (BN)
 - Time Masking (TM)
 - No Augmentation

Learning rate

Table 4.2. Best test accuracy for different learning rates

Model	LR=0.01	LR=0.001	LR=0.0001
Wav2Vec	0.938	0.958	0.863
AST	0.888	0.883	0.792
LSTM	0.703	0.895	0.783

Learning rate

Batch size

Model	BS=32	BS=64	
Wav2Vec	0.958	0.945	
AST	0.883	0.888	
LSTM	0.893	0.895	

Data Augmentation

Table 4.4. Best test accuracy for different data augmentations

Model	DA=None	DA=BN	DA=TN
Wav2Vec	0.958	0.918	0.940
AST	0.868	0.888	0.858
LSTM	0.860	0.895	0.893

Best models for 4 label dataset

Table 4.5. Best performing configuration for each model for 4 label dataset

Model	Learning Rate	Batch Size	Augmentation	Accuracy
AST	0.01	64	BN	0.888
LSTM	0.001	64	BN	0.895
Wav2Vec	0.001	32	None	0.958

Best models for 4 label dataset

Results for all label dataset - Wav2Vec

Results for all label dataset - LSTM

Results for all label dataset - AST

Summary

- A learning rate of 0.001 generally got the best performance
- Wav2Vec achieved its highest accuracy with a smaller batch size (32), whereas AST and LSTM slightly benefited from a larger batch size (64).
- Data augmentation using background noise (BN) improved performance for AST and LSTM, while Wav2Vec performed best without any augmentation.
- On the 4-label dataset, Wav2Vec achieved the highest accuracy (95.8%), followed by LSTM (89.5%) and AST (88.8%) with their respective best configurations.
- On the dataset with all labels, Wav2Vec also outperformed other models (86.7%), with LSTM reaching 80.2% and AST achieving 65.7%.

Bibliography

- Y. Gong, Y. Chung, and J. R. Glass, "AST: audio spectrogram transformer", CoRR, vol. abs/2104.01778, 2021. arXiv: 2104.01778. [Online]. Available https://arxiv.org/abs/2104.01778.
- [2] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, "Wav2vec 2.0: A framework for self-supervised learning of speech representations", CoRR, vol. abs/2006.11477, 2020.arXiv: 2006.11477. [Online]. Available: https://arxiv.org/abs/2006.11477.
- [3] J. Donahue, L. A. Hendricks, S. Guadarrama, et al., "Long-term recurrent convolutional networks for visual recognition and description", CoRR, vol. abs/1411.4389, 2014. arXiv: 1411.4389. [Online]. Available: http://arxiv.org/abs/1411.4389.
- https://machinelearningmastery.com/cnn-long-short-term-memory-networks/
- https://huggingface.co/facebook/wav2vec2-base
- https://huggingface.co/docs/transformers/en/model_doc/audio-spectrogram-transformer