ESC201A Assignment 2

Instructor Abhishek Gupta 2023-2024 Semester I

Topics

Superposition, Nodal/Mesh analysis, Thevenin/Nortan equivalent, Power

Questions

1. Determine $I_x,\,I_y$ and V_z using superposition:

- 2. Determine the power supplied by the 5V source using
 - (a) Mesh analysis
 - (b) Nodal analysis
 - (c) Superposition principle
 - (d) Thevenin's equivalent circuit between terminals A and B.

3. Use Thevenin's theorem to determine i_o .

4. Determine current i through 2Ω resistor by building Thevenin's equivalent for the rest of the circuit.

5. Find Voltage V_L across the load resister R_L , and the current I_L flowing through the load resistor R_L , in the below circuit, by using Norton's Theorem. Where $R_L = 1.5\Omega$.

6. Find the Norton resistance R_N , and the Norton current I_N , at the terminals A-B.

7. Determine the power dissipated in the 10Ω resistor in the following circuit

- 8. A practical current source provides 10W to 250Ω load and, 20W to 80Ω load. A resistance R_L with voltage v_L across it, and with current i_L through it, is connected to the source. Find the values of R_L , v_L , and i_L if,
 - (a) $v_L.i_L$ is maximum.
 - (b) v_L is maximum.
 - (c) i_L is maximum.
- 9. Determine the value of R_L in the below circuit, such that maximum power is delivered into R_L . Calculate the value of the maximum power.

