Übung 1

Ausgabe: 15.04.2014, Abgabe: 22.04.2014, Besprechung: 24./25.04.2014

1.1 Komplexe Zahlen

Rechnen mit komplexen Zahlen

Wir betrachten zwei komplexe Zahl z_j mit Realteil a_j und Imaginärteil b_j $(j = 1, 2; a, b \in \mathbb{R})$:

$$z_1 = a_1 + ib_1, z_2 = a_2 + ib_2 (1)$$

Es gilt $i^2=-1$ und die komplexe Konjugation ist definiert als $z_j^*\equiv a_j-\mathrm{i} b_j$

- 1. Berechnen Sie $z_1 + z_2$ und $z_1 \cdot z_2$.
- 2. Wie lautet der Absolutbetrag $|z_1| = \sqrt{z_1 z_1^*}$?
- 3. Zeigen sie, dass $(z_1 z_2)^* = z_1^* z_2^*$ gilt.

Man kann eine komplexe Zahl auch durch

$$z_j = r_j e^{i\phi_j}$$
 $r_j, \phi_j \in \mathbb{R}$ (2)

ausdrücken.

- 4. Welcher Zusammenhang gilt zwischen a_j, b_j und r_j, ϕ_j ?
- 5. Wie lautet z_i^* ?
- 6. Berechnen Sie $z_1 \cdot z_2$ und z_1/z_2 .
- 7. Berechnen Sie $|z_1 + z_2|$

Eulersche Formel

Zeigen sie, dass

$$e^{ix} = \cos x + i\sin x \tag{3}$$

gilt. (Tipp: Taylorentwicklung!)

1.2 Interferenz ebener Wellen

Betrachten Sie zwei ebene Wellen Ψ_j mit gleicher Frequenz ω , aber unterschiedlicher Amplitude \vec{A}_j und unterschiedlichem Wellenvektor \vec{k}_j (j=1,2):

$$\Psi_1 = \vec{A}_1 e^{i(\omega t - \vec{k}_1 \vec{x})} \tag{4}$$

$$\Psi_2 = \vec{A}_2 e^{i(\omega t - \vec{k}_2 \vec{x})} \tag{5}$$

Wir nehmen an, dass beide Wellen sich kohärent überlagern.

- 1. Berechnen Sie die Intensität $I=|\Psi_1+\Psi_2|^2$ der beiden Wellen.
- 2. Wie würde die Intensität der beiden Wellen lauten, wenn diese nicht kohärent wären?
- 3. Wie lautet die Bedingung für k_1, k_2 , so dass die Itensität minimal (maximal) wird?
- 4. Unter welcher Bedingung können sich die beiden Wellen exakt aufheben?

1.3 Beugung am Einfachspalt

Wir betrachten einen Spalt der Breite d auf den eine ebene Lichtwelle mit der Wellenlänge λ eintrifft. Wir zerlegen den entsprechend breiten Lichtstrahl in eine gerade Anzahl von N=2n Bündeln gleicher Dicke. Weiterhin bezeichnen wir den Winkel zwischen den gebeugten Lichtstrahlen und der Einfallsachse mit α .

- 1. Wie lautet der Gangunterschied Δ zwischen zwei bencharbarten Bündeln, die unter dem Winkel α gebeugt werden?
- 2. Wie lautet die Bedingung für Δ für Intensitätsminima, d.h. dass sich bencharbarte Bündel exakt auslöschen? Unter welchen Winkeln treten damit Beugungsminima auf?
- 3. Unter welchen Winkeln erscheinen die Beugungsmaxima?
- 4. Was muss für die Wellenlänge λ und die Spaltbreite d gelten damit die Beugungsmuster beobachtet werden können?

Bislang haben wir nur die Lage der Intensitätsminima und -maxima bestimmt. Wir möchten nun deren relative Intensität betrachten. Hierfür gehen wir davon aus, dass nach dem Huygenschen Prinzip von jedem Spaltelement d/N eine Elementarwelle mit der Amplitude A ausgeht. Der Gangunterschied benachbarter Wellen wird wieder als Δ bezeichnet. Eine beliebige Elementarwelle Ψ_j $(j=0,\ldots,N-1)$ hat damit die Form

$$\Psi_j = Ae^{i(k(r+j\Delta) - \omega t)} \tag{6}$$

5. Um die Gesamtintensität zu erhalten, müssen zunächst alle Elementarwellen Ψ_j aufaddiert werden. Schreiben Sie $\Psi = \sum_j \Psi_j$ als geometrische Reihe und verwenden Sie

$$1 + e^{ix} + e^{2ix} + \dots + e^{(N-1)ix} = \frac{e^{iNx} - 1}{e^{ix} - 1}$$
 (7)

6. Zeigen Sie, dass

$$\frac{e^{iN\Delta} - 1}{e^{i\Delta} - 1} = e^{i(N-1)\Delta/2} \frac{\sin N\Delta/2}{\sin \Delta/2}$$
(8)

gilt.

- 7. Drücken Sie Δ durch d, N und α aus und betrachten Sie Ψ im Grenzfall $N \to \infty$.
- 8. Zeichnen Sie das Verhalten der Intensität $I=|\Psi|^2$ als Funktion von $\sin\alpha$.