

From Statistics to Data Mining

Master 1
COlour in Science and Industry (COSI)
Cyber-Physical Social System (CPS2)
Saint-Étienne, France

Fabrice MUHLENBACH

https://perso.univ-st-etienne.fr/muhlfabr/

e-mail: fabrice.muhlenbach@univ-st-etienne.fr

Linear Algebra and Convex Optimization

- Introduction
- ➤ Linear algebra → branch of mathematics concerning vector spaces, linear transformations, systems of linear equations...
- > Interests
- solving so-called "linear" equations
- linear maps in vector space
 - → representation of shifting in elementary geometric spaces such as a straight line, plane or physical space
 - → generalization of the notion of space to any dimensions

- Introduction
- > History
- Al-Khawarizmi (780-850) → « algebra »
 - → translation of Indian mathematics texts and reinterpretation of Greek school work
- René Descartes (1596-1650) → association between geometry and algebra thanks to the notion of coordinates ("Cartesian" coordinate system)
- Carl Friedrich Gauss (1777-1855)
 - → generic method for solving systems of linear equations ("Gaussian elimination" = row reduction)
 - → linear algebra becomes a branch of mathematics in its own right

From Statistics to Data Mining

F. Muhlenbach

- Introduction
- Basic notions
- an eigenvector is a linear map of a space in itself
- an eigenvector corresponds to the study of the privileged axes, according to which the mapping behaves like a dilation, multiplying the vectors by the same constant
- this expansion ratio is called eigenvalue, the vectors to which it applies are called eigenvectors, united in an eigen space
- knowing the eigenvectors and eigenvalues provides key information on the linear map considered

- Introduction
- > Some examples of linear algebra applications:
- o geometry → study of quadratic shapes
- functional analysis
- classical mechanics → various problems (e.g. study of the movements of a vibrating string)
- quantum mechanics → study of the Schrödinger equation
- general theory of relativity -> determining the space-time structure
- convex optimization → search for minima
- Google → web page ranking algorithm
- linear regression
- principal component analysis
- o k-means classification: intra / inter-class variance optimizat^o5

- Introductory example: linear equation system
- solving the following system of linear equations:

$$(S) = \begin{cases} 3x_1 & +2x_2 & = 7\\ x_1 & -3x_2 & = -5 \end{cases}$$

- this system of linear equations S can be solved in different ways (e.g., by Gaussian elimination, by the Gauss-Jordan method, etc.)
- possible use of matrix notation as an approach
- o for that, we rewrite *S* as follows:

$$(S): AX = b$$

- o where $A = \begin{pmatrix} 3 & 2 \\ 1 & -3 \end{pmatrix}$, $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $b = \begin{pmatrix} 7 \\ -5 \end{pmatrix}$
- **theorem:** if A is a non singular matrix, then the equation system AX = b has the solution $X = A^{-1}b$

- Introductory example: linear equation system
- o linear equation system:

$$(S) = \begin{cases} 3x_1 & +2x_2 & = 7\\ x_1 & -3x_2 & = -5 \end{cases}$$

- o rewriting of S: (S): AX = bwhere $A = \begin{pmatrix} 3 & 2 \\ 1 & -3 \end{pmatrix}$, $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $b = \begin{pmatrix} 7 \\ -5 \end{pmatrix}$
- o solution $X = A^{-1}b$ (need to compute the inverse matrix of A)

Introduction: linear algebra and image processing

- vectors can represent an offset in 2D or 3D space
- o points are just vectors from the origin

- data (pixels, gradients at an image keypoint, etc.) can also be treated as a vector
- such vectors do not have a geometric interpretation, but calculations like "distance" can still have value

- Introduction: linear algebra and image processing
- o a matrix $A \in \mathbb{R}^{m \times n}$ is an array on numbers with size m by n, i.e., m rows and n columns

$$A = \begin{bmatrix} a_{1;1} & \cdots & a_{1;n} \\ \vdots & \ddots & \vdots \\ a_{m;1} & \cdots & a_{m;n} \end{bmatrix}$$

- a digital image is represented as a matrix of pixel brightness
- note that, in many computer languages, the upper left corner is [y,x] = (0,0)

- Introduction: linear algebra and image processing
- o grayscale images have one number per pixel, and are stored as an $m \times n$ matrix
- color images have 3 numbers per pixel –red, green, and blue brightnesses (RGB)
- o color matrices are stored as $m \times n \times 3$ matrices

Matrix Multiplication

Definition

- matrix multiplication
 - = binary operation that produces a matrix from two matrices
- o a matrix A is characterized by its dimensions: m rows et n columns ($m \times n$ matrix) and can be multiplied with a matrix B with dimension ($m' \times n'$ matrix) iff n = m'
 - \rightarrow for matrix multiplication, the number of columns in the first matrix (n) must be equal to the number of rows in the second matrix (m')
- resulting matrix = matrix product, has the number of rows of the first and the number of columns of the second matrix
 - \rightarrow the matrix product AB has dimensions $(m \times n')$

Matrix Multiplication

> Definition

o if the (i,k)-entry of a $m \times n$ matrix A is indicated by a_{ik} , and the (k,j)-entry of a $n \times p$ matrix B is indicated by b_{kj} , then the (i,j)-entry of the $m \times p$ product matrix, denoted AB, is indicated by c_{ij} , is the sum of the products of corresponding entries from row i of A and column j of B:

$$\forall i, j: c_{ij} = \sum_{i=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}$$

- Matrix Multiplication
- **example:** computation of the coefficients c_{12} and c_{33} of the product matrix AB if A is (4,2)-dimension matrix, and B is a (2,3)-dimension matrix
- $\forall i,j: c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}$

$$c_{12} = \sum_{k=1}^{n-2} a_{1k} b_{k2} = a_{11} b_{12} + a_{12} b_{22}$$

$$c_{33} = \sum_{k=1}^{N-1} a_{3k} b_{k3} = a_{31} b_{13} + a_{32} b_{23}$$
13

Identity Matrix

- the **identity matrix** (or **unit matrix**) of size n is the $n \times n$ square matrix with ones on the main diagonal and zeros elsewhere
- since matrices can be multiplied on the condition that their types are compatible, there are unit matrices of any order
- \circ I_n is a square matrix of order n is defined as a diagonal matrix with 1 of all entries of it main diagonal

$$I_1 = (1), I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ etc.}$$

$$\circ I_n A = AI_p = A$$

Matrix Transposition

- o the transposed matrix of a matrix $A \in M_{(m,n)}(K)$ is the matrix denoted ${}^tA \in M_{(n,m)}(K)$ (also denoted A^t or A^T), obtained by reflecting A over its main diagonal (which runs from top-left to bottom-right) to obtain A^T
- o if $B = A^{\mathrm{T}}$ then $\forall (i,j) \in \{1,\cdots,n\} \times \{1,\cdots,m\}, \ b_{j,i} = a_{i,j}$
- o example: if $A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$ then $A^{T} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$
- o proprieties:
- $\succ (A^{\mathrm{T}})^{\mathrm{T}} = A$
- $(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}$
- \triangleright for all scalar r, $(rA)^{\mathrm{T}} = rA^{\mathrm{T}}$
- $\triangleright (AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$

Matrix Determinant

- computation of the matrix determinant -> useful to check if a matrix can be inverted or to compute the inverted matrix
- the general formula to compute the determinant
 not easy for important size matrices
 - (→ but other techniques exist)
- o for A, a (2×2) square matrix with $A = \begin{pmatrix} x & x' \\ y & y' \end{pmatrix}$, the determinant is: $\det(A) = xy' yx'$
- geometric interpretation: if X = (x, y) and X' = (x', y') are two vectors of Euclidian space, then the area of the parallelogram defined by X and X' is equal to the absolute

value xy' - yx' which is the determinant of the (2×2) square matrix A = [X, X']

Matrix Determinant

the Leibniz formula expresses the determinant of a square

matrix elements with the following formula:

$$\det(A) = |A| = \sum_{\sigma \in \mathcal{D}_n} \mathcal{E}(\sigma) \prod_{i=1} a_{\sigma(i);i}$$

where \wp_n denotes the permutations of $\{1, \dots, n\}$ and $\mathcal{E}(\sigma)$ is the sign function of permutations σ in the permutation group \wp_n , which returns +1 and -1 for even and odd permutations, respectively

From Statistics to Data Mining

F. Muhlenbach

Matrix Determinant

o for $n \geq 2$, the determinant of a square (n,n)-dimension matrix $A[a_{ij}]$ is the sum of n terms such as $\pm a_{ij} \times \det(A_{ij})$, with alternating plus or minus signs, with A_{ij} is the sub-matrix composed by removing the i^{th} row and j^{th} column of A:

$$\det(A) = a_{11}\det(A_{11}) - a_{12}\det(A_{12}) + \dots + (-1)^{1+n}a_{1n}\det(A_{1n})$$

$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1j})$$

From Statistics to Data Mining

F. Muhlenbach

Matrix Determinant

o for a (3,3)-dimension square matrix
$$A\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\det(A) = a_{11} \det(A_{11}) - a_{12} \det(A_{12}) + a_{13} \det(A_{13})$$

$$\det(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

o example: computation of the matrix $A \begin{pmatrix} 1 & 2 & 4 \\ 2 & -1 & 3 \\ 4 & 0 & 1 \end{pmatrix}$

$$\begin{vmatrix} 1 & 2 & 4 \\ 2 & -1 & 3 \\ 4 & 0 & 1 \end{vmatrix} = 1 \times \begin{vmatrix} -1 & 3 \\ 0 & 1 \end{vmatrix} - 2 \times \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} + 4 \times \begin{vmatrix} 2 & -1 \\ 4 & 0 \end{vmatrix}$$
$$= 1 \times (-1) - 2 \times (-10) + 4 \times (4) = -1 + 20 + 16$$
$$= 35 \neq 0 \text{ therefore the matrix can be inverted}$$

Matrix Inversion

- o an n-by-n square matrix A is called **invertible** (also "nonsingular" or "nondegenerate"), if there exists an n-by-n square B denoted $B = A^{-1}$ such that $AB = BA = I_n$ where I_n denotes the n-by-n identity matrix
- o **theorem**: if $det(A) \neq 0$, then A is invertible
- **theorem**: if det(A) = 0, then A is not invertible, this is a **singular matrix**
- o **properties**: if A and B are invertible matrices, then:
- 1. $(A^{-1})^{-1} = A$
- 2. $(AB)^{-1} = B^{-1}A^{-1}$
- 3. $(A^{\mathrm{T}})^{-1} = (A^{-1})^{\mathrm{T}}$

Matrix Inversion

- \circ inverse of a 2 \times 2 matrix:
- $\circ \ \text{let } A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
- o if $det(A) \neq 0$, then the inverse matrix of A is:

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$=\frac{1}{ad-bc}\begin{pmatrix}d&-b\\-c&a\end{pmatrix}$$

Matrix Inversion

 \circ example with the matrix inversion of a 3 \times 3 square matrix:

1. computation of the determinant of *A*:

$$\det(A) = a_{11}\det(A_{11}) - a_{12}\det(A_{12}) + \dots + (-1)^{1+n}a_{1n}\det(A_{1n})$$

$$= a_{11}\det(A_{11}) - a_{12}\det(A_{12}) + a_{13}\det(A_{13})$$

$$= 1 \times (8-6) - 1 \times (4-3) + 1 \times (2-2) = 1$$

2. computation of the transposed matrix A^{T} :

$$A^{\mathrm{T}} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4 \end{pmatrix}$$

Matrix Inversion

 \circ example with a 3 \times 3 square matrix (contined):

- 1. computation of the determinant of A: det(A) = 1
- 2. computation of the transposed matrix of A: $A^{T} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4 \end{pmatrix}$
- 3. computation of the adjugate matrix A_{adj} from the determinants of each 2-by-2 matrices resulting from A^{T} :

$$A_{\rm adj} = \begin{pmatrix} 2 \times 4 - 3 \times 2 & 1 \times 4 - 1 \times 2 & 1 \times 3 - 1 \times 2 \\ 1 \times 4 - 3 \times 1 & 1 \times 4 - 1 \times 1 & 1 \times 3 - 1 \times 1 \\ 1 \times 2 - 2 \times 1 & 1 \times 2 - 1 \times 1 & 1 \times 2 - 1 \times 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

Matrix Inversion

 \circ example with a 3 \times 3 square matrix (continued):

4. sign matrix:

$$\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$

5. computation of the inverse matrix A^{-1} by multiplying $\frac{1}{\det(A)}A_{\mathrm{adj}}$ by the sign matrix:

$$A^{-1} = \begin{pmatrix} 2 & -2 & 1 \\ -1 & 3 & -2 \\ 0 & -1 & 1 \end{pmatrix}$$

- Matrix Inversion
- \triangleright Algorithm for finding A^{-1} , inverse matrix of A
- \circ with elementary operations on the rows of A, transform A in the identity matrix I_n
- \circ simultaneously perform the same operations on I_n
- o at the end, A is transformed in I_n and I_n is transformed in A^{-1}
- o in practice, we form the following table:

$$(A|I_n) \to (I_n|B) = (I_n|A^{-1})$$

- elementary operations authorized on the rows:
- 1. multiply a row by a non-zero real value: $L_i \leftarrow \lambda L_i$ with $\lambda \neq 0$
- 2. add to row L_i a multiple of L_i : $L_i \leftarrow L_i + \lambda L_i$
- 3. swap two rows: $L_i \leftrightarrows L_i$
- 4. warning: what is done on the left part of the augmented matrix must also be done on the right part

- Matrix Inversion
- \triangleright Algorithm for finding A^{-1} , inverse matrix of A (example)

o compute the inverse matrix of
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 4 & 0 & -1 \\ -1 & 2 & 2 \end{pmatrix}$$

o here, the augmented matrix is:

$$(A|I_n) = \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 4 & 0 & -1 & 0 & 1 & 0 \\ -1 & 2 & 2 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} L_1 \\ L_2 \\ L_3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & -8 & -5 & -4 & 1 & 0 \\ -1 & 2 & 2 & 0 & 0 & 1 \end{pmatrix} L_2 \leftarrow L_2 - 4L_1$$

- Matrix Inversion
- \triangleright Algorithm for finding A^{-1} , inverse matrix of A (continued)

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & -8 & -5 & -4 & 1 & 0 \\ 0 & 4 & 3 & 1 & 0 & 1 \end{pmatrix} L_3 \leftarrow L_3 + L_1$$

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{5}{8} & \frac{1}{2} & -\frac{1}{8} & 0 \\ 0 & 4 & 3 & 1 & 0 & 1 \end{pmatrix} L_2 \leftarrow -\frac{1}{8}L_2$$

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{5}{8} & \frac{1}{2} & -\frac{1}{8} & 0 \\ 0 & 0 & \frac{1}{2} & -1 & \frac{1}{2} & 1 \end{pmatrix} L_3 \leftarrow L_3 - 4L_2$$

- Matrix Inversion
- \triangleright Algorithm for finding A^{-1} , inverse matrix of A (continued)

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{5}{8} & \frac{1}{2} & -\frac{1}{8} & 0 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{pmatrix} L_3 \leftarrow 2L_3$$

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{7}{4} & -\frac{3}{4} & -\frac{5}{4} \\ 0 & 0 & 1 & -2 & 1 & 2 \end{pmatrix} L_2 \leftarrow L_2 - \frac{5}{8}L_3$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 2 \end{pmatrix} \xrightarrow{-\frac{1}{2}} \frac{\frac{1}{2}}{\frac{1}{2}} L_1 \leftarrow L_1 - 2L_2 - L_3$$

- Matrix Inversion
- \triangleright Algorithm for finding A^{-1} , inverse matrix of A (continued)

$$\begin{pmatrix}
1 & 0 & 0 & | & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & 0 & | & \frac{7}{4} & -\frac{3}{4} & -\frac{5}{4} \\
0 & 0 & 1 & | & -2 & 1 & 2
\end{pmatrix}$$

therefore
$$A^{-1} = \frac{1}{4} \times \begin{pmatrix} -2 & 2 & 2 \\ 7 & -3 & -5 \\ -8 & 4 & 8 \end{pmatrix}$$

we can check that
$$A \times A^{-1} = I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Trace of a Matrix
- o the **trace** of a $n \times n$ square matrix A, denoted Tr(A), is dened to be the sum of the elements on the main diagonal:

$$Tr(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

- the trace can be seen as a linear form on the vector space of the matrices
- o the trace verifies the identity: Tr(AB) = Tr(BA)
- o example:
- \blacktriangleright let a 2 × 2 square matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
- \rightarrow Tr(A) = 2 + 2 = 4

- Row Echelon Form of a Matrix
- a matrix is in echelon form if it has the shape resulting from a Gaussian elimination
- a matrix being in row echelon form means that Gaussian elimination has operated on the rows, and column echelon form means that Gaussian elimination has operated on the columns
- in other words, a matrix is in column echelon form if its transpose is in row echelon form
- the similar properties of column echelon form are easily deduced by transposing all the matrices

- Row Echelon Form of a Matrix
- o specifically, a matrix is in row echelon form if
- ☐ all rows consisting of only zeroes are at the bottom
- □ the leading coefficient (also called the pivot) of a nonzero row is always strictly to the right of the leading coefficient of the row above it
- example where the * denote arbitrary coefficients and the
 denotes the pivots (i.e., non-zero coefficients):

$$\begin{pmatrix} \bigoplus & * & * & * & * & * & * & * & * & * \\ 0 & 0 & \bigoplus & * & * & * & * & * & * \\ 0 & 0 & 0 & \bigoplus & * & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & \bigoplus & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bigoplus & 0 \end{pmatrix}$$

- Row Echelon Form of a Matrix
- Transformation to row echelon form
- by means of a finite sequence of elementary row operations, any matrix can be transformed to row echelon form
- since elementary row operations preserve the row space of the matrix, the row space of the row echelon form is the same as that of the original matrix
- authorized operations (> Gaussian elimination):
- swap two lines
- multiply a row by a non-zero constant
- add to a row the multiple of another row 3.
- the number of rows with a non-zero pivot is equal to the rank of the initial matrix (> rank = maximal number of linearly independent columns of the matrix)

- Vector space, image and kernel
- o let A be a matrix with m rows and n columns, and rank r (the rank corresponds to the dimension of the vector space spanned by its rows)
- let C be the matrix constituted by the r first rows at the row echelon form of the corresponding matrix (the following rows are equal to zero)
- the transformation to row echelon form is made by blocs $(A|I_m)$ where I_m is the identity matrix with m rows
- \circ let $\begin{pmatrix} C & K \\ 0 & L \end{pmatrix}$ the corresponding bloc row echelon form matrix
- \circ the matrices C and L allow to determine some sub-spaces associated to the matrix A
- o in the case of m = n = r, the matrix K is A^{-1}

- Vector space, image and kernel
- > Kernel of a matrix
- the kernel of a linear mapping, also known as the null space, is the set of vectors in the domain of the mapping which are mapped to the zero vector
- o the **kernel** Ker(A) of matrix A is defined as the vector subspace of \mathbb{K}^n constituted by the columns X solutions of the linear system AX = 0
- o if (e_1, e_2, \dots, e_n) are the components of the basis of \mathbb{K}^n and (k_1, k_2, \dots, k_n) are the indices of the columns with the pivots,
- o then a basis of Ker(A) is given by $e_j \sum_{k_i < j} c_{ij} e_{ki}$

- Vector space, image and kernel
- > Image of a matrix
- o the **image** Im(A) of matrix A:
- \square vector subspace of \mathbb{K}^m
- \Box constituted by AX
- \square when X is a column with n terms
- this image is generated by the columns of A, and a basis is formed by the columns whose index contains, after reduction, a pivot (i.e., a non-zero coefficient)

- Vector space, image and kernel
- example with a rectangular matrix characterizing a linear map f:

$$\begin{pmatrix} 1 & 3 & 1 \\ -1 & 0 & 2 \\ 2 & 5 & 1 \\ 1 & 3 & 1 \end{pmatrix}$$

o here, the linear map is $f: \mathbb{R}^3 \to \mathbb{R}^4$

$$\begin{pmatrix} 1 & 3 & 1 \\ -1 & 0 & 2 \\ 2 & 5 & 1 \\ 1 & 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 3y + z \\ -x + 2z \\ 2x + 5y + z \\ x + 3y + z \end{pmatrix}$$

- Vector space, image and kernel
- o for the kernel, we look for x, y and z which verify the following equations:

$$\begin{pmatrix} x & +3y & +z = 0 \\ -x & +2z = 0 \\ 2x & +5y & +z = 0 \\ x & +3y & +z = 0 \end{pmatrix}$$

for the image, we are looking for a relation between x', y', z'
 and t':

$$\begin{pmatrix} x & +3y & +z = x' \\ -x & +2z = y' \\ 2x & +5y & +z = z' \\ x & +3y & +z = t' \end{pmatrix}$$

- Eigenvectors and Eigenvalues
- the eigenvectors of a square matrix A are the vectors other than zero which, after multiplication by A, remain parallel to the original vector
- o for any eigenvector \vec{x} , there exists a corresponding **eigenvalue** λ which is the factor by which the eigenvector \vec{x} is resized by multiplication with A
- o \vec{x} is an eigenvector of \vec{A} if there is a scalar $\vec{\lambda}$ such that $\vec{A}\vec{x} = \vec{\lambda}\vec{x}$
- with *T*, transformation by linear map:

$$T: \mathbb{R}^n \to \mathbb{R}^n$$
$$T(\vec{v}) = \lambda \vec{v}$$

o the vector \vec{v} , when we apply the transformation T to it, is only modified by a factor λ (it is just made smaller or larger)

From Statistics to Data Mining

 $\overrightarrow{v_2}$

Eigenvectors and Eigenvalues

- o example: linear map $T: \mathbb{R}^2 \to \mathbb{R}^2$
- o $\overrightarrow{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of the mapping T with eigenvalue $\lambda = 1$

- $\overrightarrow{v_2} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ is an eigenvector of the
- o mapping T with eigenvalue $\lambda = -1$

linear map T:
 mirror (or symmetrical)
 with respect to D

Eigenvectors and Eigenvalues

- $T(\overrightarrow{v_1}) = \overrightarrow{v_1} \Longrightarrow T(\overrightarrow{v_1}) = 1 \times \overrightarrow{v_1}$
- $T(\overrightarrow{v_2}) = -\overrightarrow{v_2} \Longrightarrow T(\overrightarrow{v_2}) = -1 \times \overrightarrow{v_2}$
- o by mapping T, the vectors $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$ will not change a lot: the orientation will be the same but the direction or the amplitude can change
- o the vectors $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$ are the eigenvectors of the mapping T and λ is the corresponding eigenvalue ($\lambda_1 = 1$ and $\lambda_2 = -1$)
- o **interest**: in a basis defined by two vectors $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$, the corresponding matrix to the linear map T can easily been expressed
- eigenvectors are good candidates for a basis of space and for simply expressing the linear map

From Statistics to Data Mining

Eigenvectors and Eigenvalues

 \circ in the general case, with a matrix A:

$$T(\vec{x}) = A\vec{x}$$
$$T(\vec{v}) = \lambda \vec{v} = A\vec{v}$$

- \circ we will say that \vec{v} is an eigenvector associated with the linear map T but \vec{v} is also an eigenvector of A, and the scalar λ is an eigenvalue of A
- o therefore we have:

$$A\vec{v} = \lambda\vec{v}$$

- what are the solutions of this equation?
- o we will not be interested in the obvious solution $\vec{v} = \vec{0}$

- Eigenvectors and Eigenvalues
- o in the general case, with a matrix A, the eigenvalues of A are the solutions λ of the characteristic equation:

$$\det(A - \lambda I_n) = 0$$

o other writing:

$$A\vec{v} = \lambda \vec{v} \text{ for } \vec{v} \neq \vec{0}$$

iff $\det(\lambda I_n - A) = 0$

o λ is an eigenvalue of A iff $\det(\lambda I_n - A) = 0$

- Eigenvectors and Eigenvalues
- o example with a 2 x 2 square matrix:
- $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ and suppose that λ is an eigenvalue of A
- \circ det $(\lambda I_2 A) = 0$

$$\Leftrightarrow \det \left(\lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \right) = 0$$

$$\Leftrightarrow \det \begin{pmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \end{pmatrix} = 0$$

$$\Leftrightarrow \det\left(\begin{bmatrix} \lambda - 1 & -2 \\ -4 & \lambda - 3 \end{bmatrix}\right) = 0 \quad \text{with } \det\begin{pmatrix} x & x' \\ y & y' \end{pmatrix} = xy' - yx'$$

$$\Leftrightarrow (\lambda - 1)(\lambda - 3) - (-4 \times -2) = 0$$

$$\Leftrightarrow (\lambda - 1)(\lambda - 3) - 8 = 0$$

$$\Leftrightarrow \lambda^2 - 3\lambda - \lambda + 3 - 8 = 0$$

$$\Leftrightarrow \lambda^2 - 4\lambda - 5 = 0$$

Eigenvectors and Eigenvalues

- example with a 2 × 2 square matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ (continued):
- $0 \lambda^2 4\lambda 5 = 0 \rightarrow$ we call this polynomial the "characteristic polynomial" of A
- o we have to find two value λ_1 and λ_2 such that their product will be -5 and their sum will be 4
- → solutions of a quadratic equation
- $0 \lambda^2 4\lambda 5 = 0 \rightarrow \Delta = b^2 4ac = (-4)^2 4(1 \times (-5))$
- $\Delta = 16 + 20 = 36 = 6^2$
- o solutions:

$$\lambda_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{+4+6}{2 \times 1} = \frac{10}{2} = 5$$

$$\lambda_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{+4 + 6}{2 \times 1} = \frac{10}{2} = 5$$

$$\lambda_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{+4 - 6}{2 \times 1} = \frac{-2}{2} = -1$$

Eigenvectors and Eigenvalues

- o example with a 2 × 2 square matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ (continued):
- $\lambda^2 4\lambda 5 = 0$ → eigenvalues: $\lambda_1 = 5$ and $\lambda_2 = -1$
- o to find the eigenvectors associated with the eigenvalues, we start from the basic equation $A\vec{v} = \lambda \vec{v}$ with $\vec{v} \neq \vec{0}$

$$\Leftrightarrow \vec{0} = \lambda \vec{v} - A\vec{v}$$

$$\Leftrightarrow \vec{0} = \lambda I_n \vec{v} - A \vec{v}$$

$$\Leftrightarrow \vec{0} = \lambda (I_n - A)\vec{v}$$

o for any eigenvalue λ , the eigenspace associated with the eigenvalue λ is $E_{\lambda} = \operatorname{Ker}(\lambda I_n - A)$

Eigenvectors and Eigenvalues

- o example with a 2 × 2 square matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ (continued):
- o with $E_{\lambda} = \text{Ker}(\lambda I_n A)$, pour $\lambda_1 = 5$:

$$\circ E_5 = \operatorname{Ker}(5 I_2 - A) = \operatorname{Ker}\left(\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}\right) = \operatorname{Ker}\left(\begin{bmatrix} 4 & -2 \\ -4 & 2 \end{bmatrix}\right)$$

- we try to find the kernel of this matrix
- → we compute the reduced row echelon form of this matrix

$$\circ \begin{bmatrix} 4 & -2 \\ -4 & 2 \end{bmatrix} \begin{matrix} L_1 \\ L_2 \end{matrix} \to \begin{bmatrix} 4 & -2 \\ 0 & 0 \end{bmatrix} \begin{matrix} L_2 \leftarrow L_2 + L_1 \end{matrix} \to \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 0 \end{bmatrix} \begin{matrix} L_1 \leftarrow L_1/4 \end{matrix}$$

o we multiply the reduced row echelon form matrix by a vector $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ and we establish that the matrix product is zero

$$\circ \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Eigenvectors and Eigenvalues

- o example with a 2 × 2 square matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ (continued):
- o with $E_{\lambda} = \text{Ker}(\lambda I_n A)$, for $\lambda_1 = 5$:

$$\circ \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow v_1 - \frac{1}{2}v_2 = 0 \Leftrightarrow v_1 = \frac{1}{2}v_2$$

- o if we say that $v_2 = t$ then $v_1 = \frac{1}{2}t$
- we can rewrite the eigenspace associated with the eigenvalue
 5 which is the kernel of this matrix:

$$E_{5} = \left\{ \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} = t \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}, t \in \mathbb{R} \right\}$$

$$E_{5} = \text{Vect}\left(\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix} \right)$$

Eigenvectors and Eigenvalues

- o example with a 2 × 2 square matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ (continued):
- o with $E_{\lambda} = \text{Ker}(\lambda I_n A)$, for $\lambda_2 = -1$:

$$\circ E_{-1} = \operatorname{Ker}(-I_2 - A) = \operatorname{Ker}\left(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}\right) = \operatorname{Ker}\left(\begin{bmatrix} -2 & -2 \\ -A & -A \end{bmatrix}\right)$$

we transform the matrix in its reduced row echelon form

$$\circ \begin{bmatrix} -2 & -2 \\ -4 & -4 \end{bmatrix} \begin{matrix} L_1 \\ L_2 \end{matrix} \longrightarrow \begin{bmatrix} -2 & -2 \\ 0 & 0 \end{bmatrix} \begin{matrix} L_2 \leftarrow L_2 - 2L_1 \end{matrix} \longrightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{matrix} L_1 \leftarrow -L_1/4 \end{matrix}$$

 \circ to have the kernel, we multiply the matrix by the vector $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

$$\circ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Eigenvectors and Eigenvalues

- o example with a 2 × 2 square matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ (continued):
- o with $E_{\lambda} = \text{Ker}(\lambda I_n A)$, for $\lambda_2 = -1$:

$$\circ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow v_1 + v_2 = 0 \Leftrightarrow v_1 = -v_2$$

- o if we say that $v_2 = t$ then $v_1 = -t$
- we can rewrite the eigenspace associated with the eigenvalue
 -1 which is the kernel of this matrix:

$$E_{-1} = \left\{ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = t \begin{bmatrix} -1 \\ 1 \end{bmatrix}, t \in \mathbb{R} \right\}$$
$$E_{-1} = \text{Vect}\left(\begin{bmatrix} -1 \\ 1 \end{bmatrix} \right)$$

- Eigenvectors and Eigenvalues
- \circ example with a 3 x 3 square matrix:

 $\circ \det(\lambda I_3 - A) = 0$

$$\Leftrightarrow \det \left(\lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & -1 & 2 \end{bmatrix} \right) = 0$$

$$\Leftrightarrow \det \begin{pmatrix} \begin{bmatrix} 10 & 0 & 11 & 1 & 2 & -1 & 2 \\ \lambda + 1 & -2 & -2 & -2 \\ -2 & \lambda - 2 & 1 \\ -2 & 1 & \lambda - 2 \end{pmatrix} = 0$$

o to get the determinant of a 3×3 matrix is less easy than a 2×2 matrix

From Statistics to Data Mining

- Eigenvectors and Eigenvalues
- example with a 3 x 3 square matrix (continued):
- method to obtain the determinant: consider the products of the coefficients on the diagonals by alternating the sign in the sum of the products and repeating the start of the matrix

Eigenvectors and Eigenvalues

example with a 3 x 3 square matrix (continued):

$$(\lambda + 1)(\lambda - 2)(\lambda - 2) + 4 + 4 - 4(\lambda - 2) - (\lambda + 1) - 4(\lambda - 2) = 0$$

$$\Leftrightarrow (\lambda + 1)(\lambda^2 - 4\lambda + 4) + 8 - 4\lambda + 8 - \lambda - 1 - 4\lambda + 8 = 0$$

$$\Leftrightarrow \lambda^3 - 4\lambda^2 + 4\lambda + \lambda^2 - 4\lambda + 4 - 9\lambda + 23 = 0$$

$$\Leftrightarrow \lambda^3 - 3\lambda^2 - 9\lambda + 27 = 0$$

- this is the characteristic polynomial of the matrix A
- this equation is not easy to solve, but the roots of this equation are bound to be divisors of 27, i.e., necessarily 1, 3, 9 or 27
- o we will test these roots to see if they work:
- \circ 1: 1-3-9 + 27 \neq 0 so 1 is not root
- \circ 3: 27-3 × 9-9 × 3 + 27 = 0 so 3 is a root
- \circ we can factorize by $(\lambda 3)$

From Statistics to Data Mining

Eigenvectors and Eigenvalues

- example with a 3 x 3 square matrix (continued):
- o $\lambda^3 3\lambda^2 9\lambda + 27 = 0$ and we can factorize by $(\lambda 3)$
- $(\lambda 3)(\lambda^2 9) = 0 \Leftrightarrow (\lambda 3)(\lambda 3)(\lambda + 3)$
- so we get the eigenvalues $\lambda = 3$ or $\lambda = -3$
- we try to find now the eigenvectors and the eigenspaces associated with the eigenvalues
- the eigenvectors belong to the kernel of the matrix A
- o for $\lambda = 3$, $\lambda I_n A$:

$$\circ \ 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & -2 & -2 \\ -2 & 1 & 1 \\ -2 & 1 & 1 \end{bmatrix}$$

From Statistics to Data Mining

- Eigenvectors and Eigenvalues
- example with a 3 x 3 square matrix (continued):
- o for $\lambda = 3$, $\lambda I_n A$:

$$\circ \begin{bmatrix} 4 & -2 & -2 \\ -2 & 1 & 1 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- we put the matrix in reduced row echelon form to be able to easily find the kernel of this matrix
- we keep the 1st row and we will replace the 2nd row by 2 times the 2nd row + the 1st row (the same for the 3rd row)
- then we divide the 1st row by 4

$$\circ \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Eigenvectors and Eigenvalues

example with a 3 x 3 square matrix (continued):

$$\begin{vmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 therefore $v_1 - \frac{1}{2}v_2 - \frac{1}{2}v_3 = 0$

o if
$$v_2 = a$$
, $v_3 = b$ then $v_1 = \frac{1}{2}a + \frac{1}{2}b$

→ eigenspace corresponding to the kernel of the matrix

$$\circ E_3 = \operatorname{Vect}\left(\begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ 0 \\ 1 \end{bmatrix}\right)$$

- Eigenvectors and Eigenvalues
- \circ example with a 3 \times 3 square matrix (continued):
- o now we try to find the eigenspace associated to the eigenvalue $\lambda = -3$, $\lambda I_n A$:

$$\circ -3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & -2 & -2 \\ -2 & -5 & 1 \\ -2 & 1 & -5 \end{bmatrix}$$

- we divide the 1st row by -2 then we replace the 2nd row by the
 2nd row the 1st row (the same for the 3rd row)
- o we divide the 2nd row by −3 then we replace the 3rd row by the 3rd row + the 2nd row

$$\circ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Eigenvectors and Eigenvalues

o example with a 3 x 3 square matrix (continued):

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
therefore
$$\begin{cases} v_1 + v_2 + v_3 = 0 \\ v_2 - v_3 = 0 \end{cases}$$

- o we say that v_3 is the free variable : $v_3 = t$
- o then $v_2 = t$ et $v_1 = -2t$
- → eigenspace corresponding to the kernel of the matrix

$$\circ E_{-3} = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = t \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, t \in \mathbb{R} \right\}$$

$$\circ E_{-3} = \text{Vect} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$$

From Statistics to Data Mining

- Eigenvectors and Eigenvalues
- example with a 3 x 3 square matrix (continued):
- o remarkable element: if we make the scalar product of $\begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$ of the eigenspace E_{-3} with one of the eigenvectors of E_3 ,

i.e.,
$$\begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix}$$
 or $\begin{bmatrix} \frac{1}{2} \\ 0 \\ 1 \end{bmatrix}$, we get 0

- therefore the vectors are orthogonal
- the eigenspace associated with the eigenvalue -3 is orthogonal to the eigenspace associated with the value 3

- Introduction
- ➤ Convex optimization → problem of minimizing convex functions over convex sets
- the convexity property can make optimization in some sense "easier" than the general case: indeed, any local minimum must be a global minimum.
- > Objective: find a stationary point

- Convex optimization and linear algebra
- > convex optimization problem:

$$\begin{cases} max_{\mathbf{u}}\mathbf{u}^{T}S\mathbf{u} & (1) \\ \text{subject to } \mathbf{u}^{T}\mathbf{u} = 1 & (2) \end{cases}$$

- > Solving problem (1) under the constraint (2), we get: $S\mathbf{u} = \lambda \mathbf{u}$, which says that \mathbf{u} must be an **eigenvector** of S.
- We can deduce that $\mathbf{u}^T S \mathbf{u} = \lambda$, and so the variance will be maximum when we set \mathbf{u} equal to the eigenvector having the largest **eigenvalue** λ .
- Note that the eigenvalues of a matrix S are the solutions to the following characteristic equation: $det(S \lambda I) = 0$, where det is the **determinant**.

- Introductory example: length & width of a rectangle
- let R be a rectangle of width W and length L
- let us solve the following problem: "Find W and L which minimize the perimeter P of R under the constraint that the

area A of R is equal to 4"

 more formally, this takes the form of the following optimization problem:

$$\begin{cases} min_{W,L} 2W + 2L \\ R = W \times L = 4 \end{cases}$$

From Statistics to Data Mining

- Introductory example: length & width of a rectangle
- o the method of **Lagrange multipliers** tells us that solving the previous optimization problem boils down to minimizing the following problem: $min_{W,L}2W + 2L + \lambda(W \times L 4)$ for some λ
- o solving $\nabla(2W + 2L + \lambda(W \times L 4)) = 0$ we get:

$$\begin{cases} \frac{\partial(2W+2L+\lambda(W\times L-4))}{\partial W} = 0 \Leftrightarrow 2+\lambda W = 0 \Leftrightarrow W = -\frac{2}{\lambda} \\ \frac{\partial(2W+2L+\lambda(W\times L-4))}{\partial L} = 0 \Leftrightarrow 2+\lambda L = 0 \Leftrightarrow L = -\frac{2}{\lambda} \end{cases}$$
(1)

$$\frac{\partial (2W+2L+\lambda(W\times L-4))}{\partial \lambda} = 0 \Leftrightarrow W \times L - 4 = 0 \Leftrightarrow W \times L = 4 \quad (3)$$

• Introductory example: length & width of a rectangle

$$W = -\frac{2}{\lambda} \qquad (1)$$

$$L = -\frac{2}{\lambda} \qquad (2)$$

$$W \times L = 4 \qquad (3)$$

plugging Eq.(1) and (2) into Eq.(3), we obtain $\frac{4}{\lambda^2} = 4$ therefore $\lambda^2 = 1$, we get that $\lambda = 1$ or $\lambda = -1$ and we deduce that Width = 2 and Length = 2

$$\circ$$
 \rightarrow perimeter $P = 2W + 2L = 8$

From Statistics to Data Mining

- Definition
- > Optimization Problem \rightarrow determine value of **optimization** variable within **feasible region/set** to optimize **optimization** objective $\min f(x)$

s. t.
$$x \in \mathcal{F}$$

- o optimization variable $x \in \mathbb{R}^n$ (x: vector in n real-valued entries)
- o feasible region/set $\mathcal{F} \subset \mathbb{R}^n$
- o optimization objective $f: \mathcal{F} \to \mathbb{R}$
- o Optimal solution: $x^* = \operatorname{argmin} f(x)$
- Optimal objective value $f^* = \min_{x \in \mathcal{F}} f(x) = f(x^*)$

Definition

$$\min_{x} f(x)$$

s. t. $x \in \mathcal{F}$

- \triangleright An optimization problem whose optimization objective f is a **convex function** and feasible region \mathcal{F} is a **convex set**
- → a special class of optimization problem

From Statistics to Data Mining

Definition: Local optima and global optima

$$\min_{x} f(x)$$

s. t. $x \in \mathcal{F}$

- \triangleright Given an optimization problem, a point $x \in \mathbb{R}^n$ is **globally optimal** if $x \in \mathcal{F}$ and $\forall y \in \mathcal{F}, f(x) \leq f(y)$
- Figure Given an optimization problem, a point $x \in \mathbb{R}^n$ is **locally optimal** if $x \in \mathcal{F}$ and $\exists R > 0$ such that $\forall y : y \in \mathcal{F}$ and $||x y||_2 \le R$, $f(x) \le f(y)$
- > Theorem: for a convex optimization problem, all locally optimal points are globally optimal

Definition

$$\min_{x} f(x)$$

s. t. $x \in \mathcal{F}$

- \triangleright Optimization variable $x \in \mathbb{R}^n$
- discrete variables → combinatorial optimization
- continuous variables → Continuous optimization
- mixed -> some variables are discrete, and some continuous
- o example: shortest path, traveling salesman problem...

Definition

$$\min_{x} f(x)$$

s. t. $x \in \mathcal{F}$

- \succ Feasible region/set $\mathcal{F} \subset \mathbb{R}^n$
- o unconstrained optimization: $\mathcal{F} = \mathbb{R}^n$
- o constrained optimization: $\mathcal{F} \subsetneq \mathbb{R}^n$
 - \rightarrow find a feasible point $x \in \mathcal{F}$ can already be difficult

Definition

$$\min_{x} f(x)$$

s. t. $x \in \mathcal{F}$

- ➤ Optimization objective $f: \mathcal{F} \to \mathbb{R}$
- o f(x) = 1: feasibility problem
- o simple functions:
- \Box linear function $f(x) = a^T x$
- convex function
- complicated functions
- \square even can be implicitly represented through an algorithm which takes $x \in \mathcal{F}$ as input, and outputs a value

From Statistics to Data Mining

Definition

$$\min_{x} f(x)$$

s. t. $x \in \mathcal{F}$

Minimization can be converted to maximization (and vice versa): $\max_{x} g(x) = -f(x)$

s.t.
$$x \in \mathcal{F}$$

o same optimal solution optimal objective value $g^* = -f^*$

Example 1: Traveling Salesman Problem (TSP)

$$\min_{x} f(x)$$

s. t. $x \in \mathcal{F}$

- \triangleright Problem: n cities, distance from city i to city j is d(i,j), find a tour (a closed path that visits every city exactly once) with minimal total distance
- Variable x: ordered list of cities being visited
- \circ x_i is the index of the i^{th} city being visited
- \triangleright Feasible set $F=\{x: each city visited exactly once\}$
- $F = \{x : x \in \{1..n\}^n; \sum_k \mathbb{I}(x_k = i) = 1, \forall i \in \{1..n\}\}$
- \triangleright Objective function f(x)= total distance when following x

$$f(x) = \sum_{k=1}^{n-1} d(x_k, x_{k+1}) + d(x_n, x_1)$$

From Statistics to Data Mining

Example 2: 8-Queens Problem

$$\min_{x} f(x)$$

s. t. $x \in \mathcal{F}$

- ➤ Problem: placing eight chess queens on an 8x8 chessboard so that no two queens threaten each other (→ two queens don't share the same row/column/diagonal)
- > Variable x: location of the queen in each column
- \circ x_i is the row index of the queen in i^{th} column
- \triangleright Feasible set $F=\{x: \text{ no queens in the row, col, diag}\}$
- $F = \{x, y: x, y \in \{1...8\}^8; \sum_{i} \mathbb{I}(x_i = k) = 1, \forall k \in \{1...8\}; \\ \sum_{i} \mathbb{I}(y_i = k) = 1, \forall k \in \{1...8\}; |x_i x_j| \neq |y_i y_j|, \forall i, j \in \{1...8\}\}$
- \triangleright Objective function f(x) = 1 (dummy)

From Statistics to Data Mining

• Example 3: Linear Regression

$$\min_{a} f(a)$$

s. t. $a \in \mathbb{R}$

x_i	1.0	2.0	3.5
y_i	2.1	3.98	7.0

- \triangleright Problem: Find a such that $y_i \approx ax_i$, $\forall i = 1...3$
- Variable a
- ➤ Feasible region ℝ
- \triangleright Objective function f(a)?

$$\min_{a} \sum_{i=1}^{s} |y_i - ax_i|$$
s.t. $a \in \mathbb{R}$

$$\min_{a} \sum_{i=1}^{3} (y_i - ax_i)^2$$
s.t. $a \in \mathbb{R}$

From Statistics to Data Mining

- How to determine if a function is convex
- Prove by definition
- > Use properties:
- Sum of convex functions is convex
 - □ If $f(x) = \sum_i w_i f_i(x)$, $w_i \ge 0$, $f_i(x)$ convex, then f(x) is convex
- Convexity is preserved under a linear transformation
 - ☐ If f(x) = g(Ax + b), g convex, then f(x) is convex
- o If f is a twice differentiable function of one variable, f is convex on an interval $[a,b] \subset \mathbb{R}$ iff (if and only if) its second derivative $f''(x) \geq 0$ in [a,b]

- How to solve
- No general way to solve
- \triangleright Many algorithms developed for special classes of optimization problems (i.e., when f(x) and \mathcal{F} satisfy certain constraints):
- convex optimization problem (CO)
- linear program (LP)
- (mixed) integer linear program (MILP)
- quadratic program (QP), (Mixed) integer quadratic program (MIQP), semidefinite program (SDP), second-order cone program (SOCP), ...
- > Existing solvers and code packages for these problems

- How to solve
- Local search
- > Iteratively improving an assignment
- > Continuous and differentiable setting:
- \circ Iteratively improving value of x
- Based on gradient

- How to solve
- \triangleright For $f: \mathbb{R}^n \to \mathbb{R}$, **gradient** is the vector of partial derivative
- o a multi-variable generalization of the derivative
- point in the direction of steepest increase in f

$$\nabla_x f(x) \in \mathbb{R}^n = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

From Statistics to Data Mining

- How to solve
- \triangleright Gradient descent: iteratively update the value of x
- o a simple algorithm for unconstrained optimization $\min_{x \in \mathbb{R}^n} f(x)$

Algorithm: Gradient Descent

```
Input: function f, initial point x_0, step size \alpha > 0
```

```
Initialize x \leftarrow x_0
```

Repeat

$$x \leftarrow x - \alpha \nabla_x f(x)$$

Until convergence

- Variants:
- \square How to choose x_0 , e.g., $x_0 = 0$
- □ How to update α, e.g., $α^{i+1} = \frac{(x^{i+1}-x^i)^T (\nabla_x f(x^{i+1}) \nabla_x f(x^i))}{\|\nabla_x f(x^{i+1}) \nabla_x f(x^i)\|_2^2}$
- \square How to define "convergence", e.g., $||x^{i+1} x^i||_2 \le \epsilon$

From Statistics to Data Mining

- How to solve
- ightharpoonup Projected Gradient Descent: iteratively update the value of x while ensuring $x \in \mathcal{F}$

Algorithm: Projected Gradient Descent

Input: function f, initial point x_0 , step size $\alpha > 0$

Initialize $x \leftarrow x_0$

Repeat

$$x \leftarrow P_{\mathcal{F}}(x - \alpha \nabla_{x} f(x))$$

Until convergence

- \circ $P_{\mathcal{F}}$ projects a point to the constraint set
- Variants
- \square How to choose $P_{\mathcal{F}}$, e.g., $P_{\mathcal{F}}(x) = \underset{x' \in \mathcal{F}}{\operatorname{argmin}} \|x x'\|_2^2$

- How to solve
- Unconstrained and differentiable
- gradient descent
- set derivative to be 0:
- closed form solution
- ☐ Newton's method (if twice differentiable)
- Constrained and differentiable
- projected gradient descent
- interior point method
- Non-differentiable
- \circ ϵ -subgradient method
- o cutting plane method

- Apply
- Model a problem as a convex optimization problem
- o define variable, feasible set, objective function
- prove it is convex (convex function + convex set)
- Solve the convex optimization problem
- Build up the model
- Call a solver, for example:
- ☐ in R: CVXR
- ☐ in Python: cvxpy, cvxopt
- ☐ in MATLAB: fmincon, cvx
- Map the solution back to the original problem

From Statistics to Data Mining

- □ Hogben L. (Ed.) (2013).
 Handbook of Linear Algebra, 2nd edition,
 Chapman and Hall Book CRC Press
- □ Boyd S. and L. Vandenberghe (2004).
 Convex Optimization,
 Cambridge University Press