Relatório - Experimento 04

Fausto Emrich Brenner - 17/0009777

I. INTRODUÇÃO

Vimos nos experimentos anteriores que algumas modulações necessitam de demodulações síncronas. Porém, esse sincronismo nem sempre é de fácil manutenção e, como também já vimos no experimento passado, pequenas diferenças entre a fase do sinal recebido e do oscilador podem impossibilitar a recuperação do sinal transmitido. Nesse contexto, o PLL se apresenta como uma solução.

O PLL (*Phase-Lock-Loop*) é um circuito que sincroniza a frequência e fase de um oscilador local com de um sinal externo [1]. Ele é composto por 3 blocos principais: um multiplicador, um filtro passa-baixas (filtro de malha) e um VCO (*voltage controlled oscilator*). Esses blocos estão conectados de forma a criar uma malha de realimentação, conforme a Figura 1.

Figura 1: Circuito PLL analógico

O VCO, como seu nome já indica, gera em sua saída um sinal cuja frequência é controlada pela tensão em sua entrada:

$$V_{vco}(t) = A_c \cos[2\pi f_{vco}(t)t] \tag{1}$$

Esse valor de frequência variável possui duas parcelas, uma diretamente proporcionam à entrada e outra pré determinada (f_c)

$$f_{vco}(t) = f_c + k_{vco}V_e(t) \tag{2}$$

A constante k_{vco} é denominada constante de sensibilidade do VCO, pois, justamente, indica o quão sensível será a frequência da sua saída em função da tensão de sua entrada [Hz/V].

De fato, o comportamento dinâmico do PLL é o de um sistema com realimentação negativa. Pequenas diferenças de fase entre $V_{in}(t)$ e $V_{vco}(t)$ geram um aumento de tensão em $V_e(t)$ que, por sua vez, altera a frequência $f_{vco}(t)$, de forma a diminuir a diferença de fase entre os sinais $V_{in}(t)$ e $V_{vco}(t)$.

Em nossa primeira atividade, usaremos um VCO como gerador de sinais, conforme pode ser visto na Figura 2. Nessa configuração, a frequência do VCO será controlada pela tensão do sinal v(t), de forma que sua saída será $e^{j2\pi k_{vco}v(t)}$. Ao multiplicarmos esse sinal pela portadora, teremos

$$s(t) = A_c e^{j2\pi f_c t} e^{j2\pi k_{vco}v(t)} \tag{3}$$

$$V_{vco}(t) = Re\{s(t)\} = A_c \cos(2\pi f_{vco}t) \tag{4}$$

[T1.a] - Considerando valores pequenos para $k_{vco}v(t)$ e lembrando que $e^x=1+x+\frac{x^2}{12}+\frac{x^3}{13}+...$, para $k_{\omega}=2\pi k_{vco}$, temos

$$s(t) = A_c e^{j2\pi f_c t} \left[1 + jk_\omega v(t) + \frac{[jk_\omega v(t)]^2}{!2} + \frac{[jk_\omega v(t)]^3}{!3} + \dots \right]$$
 (5)

Para valores pequenos do produto $k_{\omega}v(t)$, podemos tratar como desprezíveis os termos de ordem acima de 1, de forma a obter

$$s(t) = A_c e^{j2\pi f_c t} [1 + jk_\omega v(t)] \tag{6}$$

Assim,

$$V_{vco} = Re\{A_c e^{j2\pi f_c t} [1 + jk_\omega v(t)]\}$$
(7)

$$= A_c Re \{ e^{j2\pi f_c t} + jk_\omega v(t)e^{j2\pi f_c t} \}$$

$$\tag{8}$$

$$= A_c \cos(2\pi f_c t) - A_c k_\omega v(t) \sin(2\pi f_c t) \tag{9}$$

[T1.b] Se considerarmos v(t) um sinal modulante, juntando as expressões (4) e (2), obtêm-se

$$V_{vco}(t) = A_c \cos[2\pi (f_c + k_{vco}v(t))t]$$
(10)

Percebe-se então que a informação do sinal modulante está contida na fase/frequência de V_{vco} . Dessa forma, esse sinal seria um sinal modulado em FM.

II. ATIVIDADES

A. AR 01

Figura 2: Configuração da AT para a AR 01.

Nesta AR, iremos testar o funcionamento do PLL em uma simulação do GRC. A configuração da AT utilizada foi a da Figura 2. Os gráficos no tempo (Figura 4) e na frequência (Figura 5) foram analisados simultaneamente nas atividades a seguir.

Primeiramente preenchemos a Tebela I, com dados do funcionamento do VCO. Para isso, variamos os valores de amplitude de v(t) e medindo os valores no espectro de frequências. O coeficiente k_{vco} foi calculado a partir da Eq. (2). Temos que as frequências máximas e mínimas de s(t) serão

$$f_{max} = f_c + max[f_{vco}(t)] \tag{11}$$

$$f_{min} = f_c + min[f_{vco}(t)] \tag{12}$$

A_m [V]	f_{max} [kHz]	f_{min} [kHz]	k_{vco} [Hz/V]	$f_{max} - f_{min}$ [Hz]
0.5	10,5	9,5	1000	1,0
1.0	11,0	9,0	1000	2,0
2.0	12,0	8,0	1000	4,0
5.0	15,0	5,0	1000	10,0
10.0	20,0	0,0	1000	20,0

Tabela I: Recuperação da portadora

Pela Eq. (2), encontramos que

$$max[f_{vco}(t)] = f_c + k_{vco} max[v(t)]$$
(13)

$$min[f_{vco}(t)] = f_c + k_{vco}min[v(t)]$$
(14)

(15)

Como v(t) é uma senoide de amplitude A_m , têm-se

$$max[f_{vco}(t)] = f_c + k_{vco}A_m \tag{16}$$

$$min[f_{vco}(t)] = f_c - k_{vco}A_m \tag{17}$$

(18)

Substituindo esse resultado em (11) e (12)

$$f_{max} = f_c + f_c + k_{vco} A_m \tag{19}$$

$$f_{min} = f_c + f_c - k_{vco} A_m \tag{20}$$

Finalmente, subtraindo as duas equações e isolando k_{vco} , encontra-se sua expressão com base nos valores medidos

$$k_{vco} = \frac{f_{max} - f_{min}}{2A_m} \tag{21}$$

Os resultados (Tabela I) foram precisamente os esperados e a expressão (21) conseguiu estimar o valor configurado para a constante de sensibilidade ($1\,\mathrm{kHz/V}$) com precisão. Foi possível observar que o sinal s(t) apresentou um espectro não estático, cujo deslocamento em frequência é proporcional à amplitude do sinal de entrada do VCO (v(t)). Ou seja, a informação da tensão de v(t) está contida na frequência de s(t) (conforme já debatemos na introdução). Essa característica será importante para testarmos o funcionamento do PLL, pois significa que a fase do sinal de entrada está variando constantemente, e o sinal de saída terá que acompanhar essa variação.

Uma vez que já compreendemos qual será o comportamento de s(t), passaremos para a análise do comportamento do PLL. Essa análise foi feita com $\Delta f=1\,\mathrm{kHz}$ no entorno de $10\,\mathrm{kHz}$. Ao elevar gradualmente o valor de A_m , percebe-se que, para valores baixos, o funcionamento do PLL permanece correto, sem erro de fase. Porém, para valores de A_m a partir de $1.5\,\mathrm{V}$, o circuito passa a apresentar erro de fase. Ou seja, o maior A_m para o qual ele se manteve livre de erro foi $1.0\,\mathrm{V}$. Esse comportamento pode ser observado na Figura 6. Note que, para $A_m=1.0\,\mathrm{V}$, os sinais de entrada e saída estão tão em fase que suas linhas se sobrepõem. Porém, para $A_m=1.5\,\mathrm{V}$, surge uma diferença de fase entre entrada e saída, diferença essa que se intensifica a medida que A_m aumenta.

Agora, vamos tentar entender melhor o comportamento desse erro de fase do PLL. Para tanto, o sinal v(t) foi configurado como uma onda quadrada de média nula, amplitude A_m e frequência $0.1\,\mathrm{Hz}$. Essa configuração nos permite ter apenas dois estados de frequência para s(t), um quando $v(t) = A_m$ e outro quando $v(t) = -A_m$. Assim, para diferentes valores de A_m , a Tabela II foi preenchida. Para medir o

A_m [V]	f_{max} [kHz]	f_{min} [kHz]	$f_{max} - fmin$ [kHz]	$\Delta\theta$ [°]
1.0	11,0	9,0	2,0	0,000
2.0	12,0	8,0	4,0	7,920
3.0	13,0	7,0	6,0	14,904
4.0	14,0	6,0	8,0	22,032
5.0	15,0	5,0	10,0	28,350
6.0	16,0	4,0	12,0	34,632
7.0	17,0	3,0	14,0	40,338
8.0	18,0	2,0	16,0	46,368
9.0	19,0	1,0	18,0	52,200
10.0	20,0	0,0	20,0	57,240

Tabela II: Erro de Estimativa de Fase

valor do erro de fase $(\Delta\theta)$, o atraso de c(t) em relação a s(t) (Δt) foi medido, em milissegundos, no osciloscópio. Então, sabendo a frequência do sinal naquele momento (f_{max}) , calculamos o erro por

$$\Delta \theta = \Delta t \cdot 360^{\circ} f_{max} \tag{22}$$

A partir dos valores medidos de $\Delta\theta$ o gráfico da Figura 7 foi construído no Matlab. Percebe-se uma relação quase linear entre as variáveis. Valores mais altos de A_m significam variações maiores na frequência de s(t). Vemos então que o PLL teve dificuldades para rastrear as variações de frequência com valores de A_m maiores que $1\,\mathrm{V}$. Esse fato está diretamente ligado ao valor de $\Delta f = 1\,\mathrm{kHz}$. De fato, a tensão de v(t) varia entre $+A_m$ e $-A_m$. Essa variação de tensão se reflete em variações na frequência da saída do VCO, dada pela relação (2). Como $k_{vco} = 1000\,\mathrm{Hz/V}$, isso significa que, com $A_m = 1\,\mathrm{V}$, a frequência da saída estará dentro do intervalo de $10\,\mathrm{kHz} \pm \Delta f$. Tensões mais elevadas gerarão valores de $f_{max} - f_{min}$ maiores que $2\Delta f$. Assim, o PLL não consegue acompanhar perfeitamente a fase desses sinais.

Vamos analisar agora como esse circuito responde com a introdução de um ruído gaussiano ao sinal s(t). Para isso, retornamos v(t) para uma senoide de frequência $1\,\mathrm{Hz}$ e amplitude $1\,\mathrm{V}$. Adicionamos ao sinal s(t) um ruído gaussiano de amplitude variável entre $0\,\mathrm{V}$ e $5\,\mathrm{V}$.

O resultado para amplitudes diferentes de ruído foi documentado e se encontra na Figura 8. Podemos perceber que com pequenos valores de ruído, a forma de onda da saída do PLL já sofre deformações. Realmente, a performance do PLL foi afetada pela injeção do ruído. Isso pode representar problemas em sua aplicação pois sinais com ruído irão gerar portadoras "infectadas" por esse ruído em sua demodulação.

B. AR 02

O circuito PLL pode ser usado para recuperar a portadora de um sinal, de forma a possibilitar a demodulação síncrona de sinais cujas frequências foram alteradas pelo meio. Iremos simular essa situação a partir da AR da Figura 3. Nesse circuito temos uma onda em dente de serra que será modulada em AM-DSB+C por uma portadora de frequência variável em $10\,\mathrm{kHz}\pm\Delta f$, igual a gerada na atividade anterior, que irá simular os possíveis efeitos do meio. Nessa modulação, a amplitude da portadora destacada, A_c , será controlada entre valores de $0\,\mathrm{V}$ e $1\,\mathrm{V}$. O sinal modulado será adicionado de um ruído branco gaussiano de amplitude A_n , também controlada no mesmo intervalo de A_c , que simulará um ruído térmico no receptor. O sinal recebido, s(t), percorrerá dois caminhos de demodulação. O primeiro será uma demodulação síncrona por um oscilador em $10\,\mathrm{kHz}$, como já vimos em experimentos anteriores. O segundo caminho será uma passagem por um PLL para recuperarmos a portadora do sinal e usar ela para a demodulação síncrona. Os outros passos serão os mesmos de sempre para demodulação de sinais AM-DSB+C: um filtro passa baixas com $B_m < f_{cut} \ll 2f_c$ e um DC Blocker.

Começaremos nossa análise com $A_m=1\,\mathrm{V},\,A_n=0\,\mathrm{V}$ e $A_c=0\,\mathrm{V}$. Nesse cenário, vemos pela Figura 9(a) que o sinal não foi recuperado por nenhuma de nossas demodulações. Aumentando progressivamente o valor de A_c , percebe-se que a partir de $A_c=0.5\,\mathrm{V}$ a demodulação com a portadora recuperada do PLL

Figura 3: Configuração da AT para a AR 02, com $B_m=3.5\,\mathrm{kHz}$ e $f_c=21\,\mathrm{kHz}$

conseguiu recuperar m(t). Vemos pela Figura 9 que o desempenho do PLL melhorou com o aumento de A_c , mas apenas com $A_c \geq 5\,\mathrm{V}$ ele conseguiu recuperar bem a mensagem. A explicação para isso está no fato de que, enquanto $A_c < 5\,\mathrm{V}$, o sinal AM-DSB+C está sobremodulado. Isso gera regiões de baixa amplitude do sinal e inversão de fase que afetam o funcionamento do PLL, que tem mais dificuldade de acompanhar a fase do sinal. Assim que o sinal deixa de estar sobremodulado, o PLL passa a funcionar corretamente. Percebemos também que, de fato, a falta de sincronia criada tornou o método de demodulação síncrona totalmente desfuncional, como pode ser visto pela forma de onda recuperada nas figuras. Esse resultado foi similar ao observado no experimento passado, em que o sinal recuperado apresenta forma de onda variada.

Verificaremos agora o efeito do ruído no sistema que montamos. Para isso, manteremos $A_c=1\,\mathrm{V}$. Variando a amplitude do ruído, A_c , entre os valores de $0.0\,\mathrm{V}$, $0.2\,\mathrm{V}$ e $0.5\,\mathrm{V}$, os resultados encontram-se nas Figuras 10 a 12, respectivamente. É possível perceber que o sinal demodulado ficou mais contaminado pelo ruído do que a portadora recuperada pelo PLL. Uma evidência disso é que a forma de onda da portadora recuperada sofreu menos alterações, ainda mantendo seus valores entre 1 e -1. O mesmo não pode ser dito sobre a o sinal demodulado, que o efeito do ruido causou picos de amplitude acima dos valores quando $A_n=0$. Porém, é importante notar que, no sistema síncrono sem PLL, a portadora do oscilador da recepção não é afetada pelo ruído do sinal recepcionado.

III. IMAGENS

As imagens de oscilografia e espectrais se encontram ao final do documento, em uma página reservada.

IV. CONCLUSÃO

Neste experimento foi possível estudar o funcionamento e a aplicação do circuito PLL. Tivemos a percepção clara de seu propósito como recuperador de portadora do sinal na recepção e pudemos ver suas fraquezas em situações adversas.

REFERÊNCIAS

[1] B. P Lathi and Z. Ding, Sistemas de Comunicações Analógicos e Digitais Modernos, 4th ed. Rio de Janeiro: LTC, 2019.

Figura 4: Gráfico no tempo da AR01

Figura 5: Gráfico na frequência da AR01

Figura 6: [A1.b] - Oscilografia dos sinais de entrada e saída do PLL para dois valores de A_m , demonstrando o limiar do surgimento do erro de fase na saída do circuito

Figura 7: Relação entre $\Delta \theta$ e $f_{max} - f_{min}$

Figura 8: [A1.d] - Performance do PLL para um sinal com ruído

Figura 9: [A2.a] - Sinais recuperados para as duas demodulações para valores variados de A_c

Figura 10: Sinais observados no tempo e na frequência para os pontos de interesse para verificar o efeito do ruído com $A_n=0.0\,\mathrm{V}$

Figura 11: Sinais observados no tempo e na frequência para os pontos de interesse para verificar o efeito do ruído com $A_n=0.2\,\mathrm{V}$

Figura 12: Sinais observados no tempo e na frequência para os pontos de interesse para verificar o efeito do ruído com $A_n=0.5\,\mathrm{V}$