Coursera-Stanford-ML-Notes

Quentin Truong

20 June 2017 - ? July 2017

Contents

1	Veek 1: Introduction		2	
	1.1 Overview		2	
2	2 Week 2: Linear Regression with Multiple Variables	;	3	
	2.1 Overview		3	
	2.2 Notation		3	
	2.3 Gradient Descent		3	
	2.4 Normal Equation		3	
3	3 Week 3: Logistic Regression		4	
	3.1 Overview		4	
	3.2 Logistic Regression Hypothesis Function		4	
	3.3 Logistic Regression Cost Function		4	
	3.4 Proof of Logistic Regression Cost Function Derivative		5	
	3.5 Regularization		6	
4	4 Week 4: Artificial Neural Networks Representation	,	7	
	4.1 Overview		7	
	4.2 Notation		7	
	4.3 Equations		7	
	4.4 Sample Three Layer System		7	
5	5 Week 5: Artificial Neural Network Learning	:	8	
	5.1 Notation		8	
	5.2 Cost Function		8	
	5.3 Backpropagation Algorithm		8	
	5.4 Backpropagation Derivation - Base Case		9	
	5.5 Backpropagation Derivation - Recursive Case		9	
	5.6 Backpropagation Intuition			
	5.7 Gradient Checking			
	5.8 Random Initialization			
6	6 Sources	1:	1	

1 Week 1: Introduction

1.1 Overview

- Machine Learning: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
- Supervised Learning: know what our correct output looks like
 - Regression: want continuous output
 - Classification: want discrete output
- Unsupervised Learning: little or no idea what our results should look like
 - Clustering: find groups according to similarity in various variables
 - Nonclustering: find structure in chaos

2 Week 2: Linear Regression with Multiple Variables

2.1 Overview

- Use linear regression for continuous output
- Choose gradient descent if many features (million+) because the inverse matrix required for the normal equation can become expensive to compute
- Normal equation will directly compute theta
- Normalize features if using gradient descent

2.2 Notation

$$m = number \ of \ samples$$
 $n = number \ of \ feature$
 $x = (n \times 1)$
 $X = (m \times n)$
 $X_j = (m \times 1)$
 $\theta = (n \times 1)$
 $\theta_j = (1 \times 1)$

2.3 Gradient Descent

Hypothesis Function $h_{\theta}(x) = \theta^{\intercal} \times x$ Vectorized Hypothesis Function $h_{\theta}(X) = X \cdot \theta$ Linear Regression Cost Function $J(\theta) = \frac{1}{2m} \sum (h_{\theta}(X) - y)^2$ Derivative of Linear Regression CF wrt θ_j $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum (h_{\theta}(X) - y) \cdot *X_j$ Change in θ_j $\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j}$ $= \theta_j - \alpha \frac{1}{m} \sum (h_{\theta}(X) - y) \cdot *X_j$ Vectorized Change in θ $\theta = \theta - \alpha \frac{1}{m} X^{\intercal}(X \cdot \theta - y)$

2.4 Normal Equation

$$\theta = (X^{\mathsf{T}} \cdot X)^{\mathsf{-}1} \cdot X^{\mathsf{T}} \cdot y$$

3 Week 3: Logistic Regression

3.1 Overview

- Use logistic regression for discrete output (classification)
 - $h_{\theta}(x) = (y = 1|x;\theta)$; gives probability that the output is 1 given x
 - Sigmoid/Logistic function maps any real number to (0, 1)
 - Logarithm turns sum into product, allowing easier differentiation without altering search space
- For multi-class classification, use one-vs-all
 - Pick class i that maximizes $h_{\theta}^{i}(x)$
- Overfitting is when learned hypothesis fits training data well but fails to generalize; underfitting is when doesn't fit training data
- Address overfitting by reducing number of features, model selection, and regularization
 - Regularization results in simpler hypothesis and less overfitting
 - Extremely large λ will result in underfitting and gradient descent will fail to converge
 - Do not regularize λ_0
- Use other prewritten optimization algorithms (conjugate gradient, BFGS, L-BFGS) because they are faster

3.2 Logistic Regression Hypothesis Function

Sigmoid/Logistic Function
$$g(z) = \frac{1}{1 + e^{-z}}$$
Hypothesis Function
$$h_{\theta}(x) = g(\theta^{\mathsf{T}}x)$$

$$= \frac{1}{1 + e^{-\theta^{\mathsf{T}}x}}$$

3.3 Logistic Regression Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$
$$= -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{i}), y^{i})$$
$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} \left[y^{i} \log(h_{\theta}(x^{i})) + (1 - y^{i}) \log(1 - h_{\theta}(x^{i})) \right]$$

3.4 Proof of Logistic Regression Cost Function Derivative

$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} [y^i \log(h_{\theta}(x^i)) + (1 - y^i) \log(1 - h_{\theta}(x^i))]$$

$$\log(h_{\theta}(x^i)) = \log(\frac{1}{1 + e^{-\theta x^i}}) = -\log(1 + e^{-\theta x^i})$$

$$\log(1 - h_{\theta}(x^i)) = \log(1 - \frac{1}{1 + e^{-\theta x^i}}) = \log(e^{-\theta x^i}) - \log(1 + e^{-\theta x^i}) = -\theta x^i - \log(1 + e^{-\theta x^i})$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[-y^i (\log(1 + e^{-\theta x^i})) + (1 - y^i)(-\theta x^i - \log(1 + e^{-\theta x^i})) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \theta x^i - \theta x^i - \log(1 + e^{-\theta x^i}) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \theta x^i - \log(e^{\theta x^i}) - \log(1 + e^{-\theta x^i}) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \theta x^i - \log(1 + e^{\theta x^i}) \right]$$

$$\frac{\partial}{\partial \theta_j} y^i \theta x^i = y^i x^i_j$$

$$\frac{\partial}{\partial \theta_j} \log(1 + e^{\theta x^i}) = \frac{x^i_j e^{\theta x^i}}{1 + e^{-\theta x^i}}$$

$$= \frac{x^j_j}{1 + e^{-\theta x^i}}$$

$$= x^j_j h_{\theta}(x^i)$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^i x^i_j - x^i_j h_{\theta}(x^i) \right]$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[h_{\theta}(x^i) - y^i \right] x^i_j$$

Credit¹

¹https://math.stackexchange.com/questions/477207/derivative-of-cost-function-for-logistic-regression

3.5 Regularization

Regularizing Term
$$\lambda \sum_{j=1}^{n} \theta_{j}^{2}$$
 Regularized Linear Regression CF
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2}$$
 Regularized Logistic Regression CF
$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} \left[y^{i} \log(h_{\theta}(x^{i})) + (1 - y^{i}) \log(1 - h_{\theta}(x^{i})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$
 Regularized GD (Lin/Log Regression)
$$\begin{cases} \theta_{0} = \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i}) x_{0}^{i} \right] \\ \theta_{j} = \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i}) x_{j}^{i} + \frac{\lambda}{m} \theta_{j} \right] (j=1,2,...,n) \end{cases}$$
 Regularized Normal Equation
$$\theta = (X^{\mathsf{T}}X + \lambda) \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

4 Week 4: Artificial Neural Networks Representation

4.1 Overview

- Neural networks allow for non-linear classification in situations with many features
 - Necessary b/c 100 features at 3rd level polynomials generates 170k features, which quickly becomes intractable
 - "One learning algorithm" hypothesis; you can see with your tongue : brain learns using one algorithm, not thousands of different programs
 - Can have multiple hidden layers
 - Can have multiple outputs (one-vs-all for multi-class classification)
 - If network has s_j units in layer j and s_{j+1} units in layer j+1, then Θ^j will be of dimension $s_{j+1} \times s_j + 1$ – The +1 comes from the addition in $\Theta^{(j)}$ of the bias node, x_0 and $\Theta_0^{(j)}$
- Forward Propogation is used to predict based on learned parameters
- Bias node gives each node a trainable constant value
 - Allows bias weight to shift the activation curve left/right
 - Other weights affect steepness

4.2 Notation

- q(x): sigmoid function
- $-\Theta^{(j)}$: matrix of weights controlling function mapping from layer j to layer j+1; each layer gets own Θ^{j}
- $-\Theta_{j,0},...,\Theta_{j,n}$ weights corresponding to the inputs $a_0,...,a_n$ going into z_j
- $-w_{0,j},...,w_{n,j}$ weights corresponding to the inputs $a_0,...,a_n$ going into z_j
- $-z_k^{(j)}$: encompasses parameters inside of g function
- $-a_i^{(j)}$: "activation" of unit i in layer j

4.3 Equations

$$\begin{split} z_k^{(j)} &= \Theta_{k,0}^{(j-1)} x_0 + \Theta_{k,1}^{(j-1)} x_1 + \ldots + \Theta_{k,n}^{(j-1)} x_n \\ &= \Theta_{k,0}^{(j-1)} a_0^{(j-1)} + \Theta_{k,1}^{(j-1)} a_1^{(j-1)} + \ldots + \Theta_{k,n}^{(j-1)} a_n^{(j-1)} \\ z^{(j)} &= \Theta^{(j-1)} a^{(j-1)} \\ a^{(j)} &= g(z^{(j)}) \end{split}$$

4.4 Sample Three Layer System

$$\begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow \begin{bmatrix} a_1^{(2)} \\ a_2^{(2)} \\ a_3^{(2)} \end{bmatrix} \rightarrow h_{\Theta}(x)$$

$$a_{1}^{(2)} = g(\Theta_{1,0}^{(1)}x_{0} + \Theta_{1,1}^{(1)}x_{1} + \Theta_{1,2}^{(1)}x_{2} + \Theta_{1,3}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{2,0}^{(1)}x_{0} + \Theta_{2,1}^{(1)}x_{1} + \Theta_{2,2}^{(1)}x_{2} + \Theta_{2,3}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{3,0}^{(1)}x_{0} + \Theta_{3,1}^{(1)}x_{1} + \Theta_{3,2}^{(1)}x_{2} + \Theta_{3,3}^{(1)}x_{3})$$

$$h_{\Theta}(x) = g(\Theta_{1,0}^{(2)}a_{0}^{(2)} + \Theta_{1,1}^{(2)}a_{1}^{(2)} + \Theta_{1,2}^{(2)}a_{2}^{(2)} + \Theta_{1,3}^{(2)}a_{3}^{(2)})$$

$$= g(z^{3})$$

$$= a_{1}^{(3)}$$

5 Week 5: Artificial Neural Network Learning

5.1 Notation

-L: total number of layers in the network

 $-s_l$: number of units (not counting bias unit) in layer l

-K: number of output units/classes

 $-h_{\Theta}(x)_k$: hypothesis that results in the kth output

 $-\delta_k$: Error signal

5.2 Cost Function

$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[y_k^{(i)} \log((h_{\Theta}(x^{(i)}))_k) + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{j,i}^{(l)})^2$$

Picking training example	$\sum_{i=1}^{m}$
Picking output node	$\sum_{k=1}^{K}$
Picking layer	$\sum_{l=1}^{L-1}$
Picking node	$\sum_{i=1}^{s_l}$
Picking Θ	$\sum_{j=1}^{s_{l+1}}$

5.3 Backpropagation Algorithm

1. Set a(1) := x(t)

2. Perform forward propagation to compute a(l) for l=2,3,L

3. Using $y^{(t)}$, compute $\delta^L = a^{(L)} - y^{(t)}$

4. Compute $\delta^{(L-1)}, \delta^{(L-2)}, \dots, \delta^{(2)}$ using $\delta^{(l)} = ((\Theta^{(l)})^T \delta^{(l+1)}) \cdot * a^{(l)} \cdot * (1-a^{(l)})$

5. $\Delta_{i,j}^{(l)} := \Delta_{i,j}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$ or with vectorization $\Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)} (a^{(l)})^{\mathsf{T}}$

6. $\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)} \text{ where } \begin{cases} D_{i,j}^{(l)} := \frac{1}{m} \Delta_{i,j}^{(l)} \ (\mathbf{j} = 0) \\ D_{i,j}^{(l)} := \frac{1}{m} \left(\Delta_{i,j}^{(l)} + \lambda \Theta_{i,j}^{(l)} \right) \ (\mathbf{j} \neq 0) \end{cases}$

5.4 Backpropagation Derivation - Base Case

$$\begin{split} \frac{\partial C}{\partial w_{ij}} &= \frac{\partial C}{\partial z_{j}} \frac{\partial z_{j}}{\partial w_{ij}} & \text{Cost } C \text{ varies wrt input accumulator } z_{j}, z_{j} \text{ varies wrt } w_{ij} \text{ (Chain Rule)} \\ \frac{\partial C}{\partial z_{j}} &= \frac{\partial}{\partial z_{j}} (y_{j} - a_{j})^{2} & \text{Cost defined as } (y_{j} - a_{j})^{2} \\ &= \frac{\partial}{\partial z_{j}} (y_{j} - g(z_{j}))^{2} \\ &= -2(y_{j} - g(z_{j}))g'(z_{j}) \\ g'(z_{j}) &= \frac{d}{dz_{j}} \frac{1}{1 + e^{-z_{j}}} & \text{Derivative of logistic function} \\ &= \frac{1}{1 + e^{-z_{j}}} \frac{e^{-z_{j}}}{1 + e^{-z_{j}}} \\ &= g(z_{j})(1 - g(z_{j})) \\ \frac{\partial C}{\partial z_{j}} &= -2(y_{j} - g(z_{j}))g(z_{j})(1 - g(z_{j})) \\ &= -2(y_{j} - a_{j})a_{j}(1 - a_{j}) \\ \frac{\partial C}{\partial w_{ij}} &= \frac{\partial}{\partial w_{ij}} \sum_{q} a_{q}w_{q,j} & \text{Definition of } z_{j} \text{ as sum of previous node's inputs and their weights} \\ &= a_{i} \\ \frac{\partial C}{\partial w_{ij}} &= -2(y_{j} - a_{j})a_{j}(1 - a_{j})(a_{i}) \\ &= -\Delta_{j}a_{i} \end{split}$$

5.5 Backpropagation Derivation - Recursive Case

$$\begin{split} \frac{\partial C}{\partial w_{i,j}} &= \sum_k (\frac{\partial C}{\partial z_k} \frac{\partial z_k}{\partial a_j} \frac{\partial a_j}{\partial z_j} \frac{\partial z_j}{\partial w_{i,j}}) \qquad C \text{ depends on } z_k, \, z_k \text{ depends on } a_j, \, a_j \text{ depends on } x_j, \, z_j \text{ depends on } w_{i,j} \\ \frac{\partial C}{\partial z_k} &= -\Delta_k \\ \frac{\partial z_k}{\partial a_j} &= \frac{\partial}{\partial a_j} \sum_s a_s w_{s,k} \\ &= w_{j,k} \\ \frac{\partial a_j}{\partial z_j} &= \frac{\partial}{\partial z_j} g(z_j) \\ &= g(z_j)(1-g(z_j)) \\ &= a_j(1-a_j) \\ \frac{\partial z_j}{\partial w_{i,j}} &= \frac{\partial}{\partial w_{i,j}} \sum_q a_q w_{q,j} \\ &= a_i \\ \frac{\partial C}{\partial w_{i,j}} &= \sum_k (-\Delta_k w_{j,k} a_j (1-a_j) a_i) \\ &= \sum_k (-\Delta_k w_{j,k}) a_j (1-a_j) a_i \\ &= -\Delta_j a_i \end{split}$$

Backpropagation Intuition

 δ_k is the error signal from the output

$$\delta_k = (a_k - t_k)g_k'(z_k)$$

so, error wrt output weights is

$$\frac{\partial E}{\partial w_{i,k}} = \delta_k a_j$$

similarly, error wrt internal weights is

$$\frac{\partial E}{\partial w_{i,j}} = \delta_j a_i$$

the error is determined by following layer's error, so it may also be understood as

$$\frac{\partial E}{\partial w_{i,j}} = g_j'(z_j) \sum_k (\delta_k w_{j,k}) a_i$$

Gradient Checking

- Gradient checking ensures that backpropagation is actually working
 - Turn off gradient checking once backpropagation is verified to work
- Approximate the derivative of cost function using slope
 - Pick $\epsilon = 10^{-4}$
 - Check all Θ_i

$$\frac{\partial}{\partial \Theta_j} J(\Theta) \approx \frac{J(\Theta_1, \dots, \Theta_j + \epsilon, \dots, \Theta_n) - J(\Theta_1, \dots, \Theta_j - \epsilon, \dots, \Theta_n)}{2\epsilon}$$

Random Initialization 5.8

- Need Symmetry Breaking
 - All hidden units would receive the same signal and the same updates
 - Results in finding only one feature, redundantly copied many times over
- Fixed by randomly initializing each $\Theta_{ij}^{(l)}$ to a value in $[-\epsilon, \epsilon]$ A good choice of ϵ init is $\epsilon = \frac{\sqrt{6}}{\sqrt{L_{in} + L_{out}}}$, where $L_{in} = s_l$ and $L_{out} = s_{l+1}$, the number of units in the layers adjacent to $\Theta^{(l)}$

 $^{^{2}} https://pdfs.semanticscholar.org/69c2/814c7f8ca16aa836fd32e3c4975f8208e63f.pdf$

³https://stats.stackexchange.com/questions/94387/how-to-derive-errors-in-neural-network-with-the-backpropagation-algorithm

⁴https://theclevermachine.wordpress.com/2014/09/06/derivation-error-backpropagation-gradient-descent-for-neural-networks/

6 Sources