Nombre y apellido:

Carrera: LCC - LA - LM - LF - PM - PF - LMA

Condición: Regular - Libre

Para la aprobación del examen se requiere aprobar por separado la Parte Práctica y la Parte Teórica. Justifique todas sus respuestas.

Parte práctica.

1. (10 pts.) Sea $A \in \mathbb{C}^{3 \times 3}$ tal que

$$\begin{split} \det A(1|1) &= 0, \quad \det A(1|2) = 0, \quad \det A(1|3) = -1, \\ \det A(2|1) &= 0, \quad \det A(2|2) = -i, \quad \det A(2|3) = 0, \\ \det A(3|1) &= i, \quad \det A(3|2) = 0, \quad \det A(3|3) = i, \end{split}$$

donde, para todo $1 \le i, j \le 3$, A(i|j) es la matriz que se obtiene de A suprimiendo la fila i y a columna j.

- a) Hallar la matriz adjunta de A.
- b) Sabiendo que det(A) = 1, determinar la matriz A.
- 2. (15 pts.) Sea W el subespacio de \mathbb{R}^4 generado los vectores $\alpha_1 = (-3, 1, 0, 0), \alpha_2 = (-2, 0, 1, 0)$ y $\alpha_3 = (1, -1, 1, -1)$.
 - a) Probar que $\mathcal{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ es base de W y dar las coordenadas de un vector (x, y, z, t) de W en la base ordenada \mathcal{B}
 - b) Extender el conjunto \mathcal{B} a una base de \mathbb{R}^4 .
 - c) Determinar todos los valores de $a \in \mathbb{R}$ tales que la intersección de W con el subespacio generado por los vectores (1,0,a,0) y (2,0,-1,-a) tenga dimensión 1.
- 3. (20 pts.) Definir una transformación lineal inyectiva (monomorfismo) $T: \mathbb{R}^3 \to \mathbb{R}^{2\times 2}$ tal que

$$T(1,0,-1) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad T(-1,1,0) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

- a)¿ Existe una única transformación lineal que cumpla estas condiciones?
- b) Dar la matriz de T con respecto a las bases ordenadas canónicas de \mathbb{R}^3 y $\mathbb{R}^{2\times 2}$.
- c) Dar una descripción implícita de la imagen de T, calcular su dimensión y mostrar una base.
- 4. (10 pts.) Sean $T: \mathbb{R}^3 \to \mathbb{R}^3$ el operador lineal definido por

$$T(x, y, z) = (0, x - z, y + 2z).$$

- a) Determinar el polinomio característico y los autovalores de T.
- b) Decidir si T es diagonalizable.

Parte Teórica.

- 5. (15 pts.) Sea V un espacio vectorial sobre un cuerpo F.
 - a) Dar la definición de subespacio de V.
 - b) Probar que si V es de dimensión finita y W es un subespacio de V entonces todo subconjunto linealmente independiente de W es finito y es parte de una base de W.
- 6. (15 pts.) Sea V un espacio vectorial de dimensión finita sobre el cuerpo F y sea $\{\alpha_1, \ldots, \alpha_n\}$ una base ordenada de V. Sea W un espacio vectorial sobre F y β_1, \ldots, β_n vectores cualesquiera de W. Probar que existe una única transformación lineal $T: V \to W$ tal que $T(\alpha_i) = \beta_i$, para todo $i = 1, \ldots, n$.
- 7. (15 pts.) Sea A una matriz $m \times n$ con coeficientes en un cuerpo F. Probar que el rango fila de A es igual a su rango columna.

Parte práctica	1	2	3	4	Total
Evaluación					

Parte teórica	5	6	7	Total	Total General
Evaluación					