

Mise en situation

Analyse des réponses fréquentielles en boucle ouverte

Question 1 En prenant C(p) = 1, compléter par le tracé asymptotique le diagramme de Bode de la fonction de transfert en boucle ouverte fourni.

Correction

On a pour
$$H_1(p)$$
, $\frac{1}{\omega_0^2} = 0.01 \Leftrightarrow \omega_0 = 10 \text{ et } 2\frac{\xi}{\omega_0} = 0.1 \text{ soit } \xi = 0.1 \times 10/2 = 0.5. \text{ Les}$

pulsations caractéristiques de la FTBO sont donc $\omega_0 = 10 \text{ rad s}^{-1}$ et $1/0,05 = 20 \text{ rad s}^{-1}$. Pour tracer un diagramme de Bode avec un intégrateur, il est nécessaire de définir un point pour définir la « hauteur » du tracé. Pour cela on prend un point pour lequel seul l'intégrateur

et les constantes ont de l'effet. Ainsi, pour $\omega = 0.1 \, \mathrm{rad \, s^{-1}}$, on a FTBO(p) $\simeq \frac{2000 \times 45 \times 10^{-6}}{p}$ On a donc $20 \log 0$, $09 - 20 \log 0$, $1 \simeq -0.92 \, \mathrm{dB}$.

On peut dresser le tableau de variations de la FTBO puis tracer les asymptotes.

	$\omega \rightarrow 0$ $\omega =$		= 10 ω =		: 20	$\omega o \infty$
$ H_1(j\omega) _{dB}$	$20\log 2000$		-40 dB/decade		-40 dB/decade	
$ H_2(j\omega) _{dB}$	-20 dB/decade		-20 dB/decade		−20 dB/decade	
$ M(j\omega) _{dB}$	0		0		−20 dB/decade	
$ FTBO(j\omega) _{dB}$	-20 dB/decade		-60 dB/decade		-80 dB/decade	
$Arg(FTBO(j\omega))$	-90°		-270°		− 360 °	

Synthèse du régulateur de la boucle de régulation

On décide d'implémenter un régulateur de type P.I. dont la fonction de transfert est : $C(p) = K_r \left(1 + \frac{1}{T_i p} \right)$.

Question 2 Calculer la valeur que doit prendre l'argument de C(p) afin d'assurer la marge de phase imposée par le cahier des charges à la pulsation de coupure ω_c souhaitée.

Méthode - Marge de phase

Si on note ω_c on définit la pulsation de coupure telle que $|{\rm FTBO}\,(j\omega_c)|=0$ dB. On peut alors définir la marge de phase par $M\varphi={\rm arg}\,[{\rm FTBO}\,(j\omega_c)]-(-180^\circ)$.

Correction

La pulsation de coupure souhaitée est $\omega_c \simeq 1 \, \mathrm{rad} \, \mathrm{s}^{-1}$. On cherche donc K_r et T_i tels que arg [FTBO $(j\omega_c)$] – (-180°) = 60° .

$$\arg \left[\text{FTBO} (j\omega) \right] = \arg \left[\underbrace{\frac{2000}{1 + 0, 1p + 0, 01p^2}}_{\rightarrow -5,7^{\circ} \text{ qd } \omega = \omega_c} \cdot \underbrace{\frac{1}{1 + 0, 05p}}_{\rightarrow -2,8^{\circ} \text{ qd } \omega = \omega_c} \cdot \underbrace{\frac{K_r}{T_i p}}_{\rightarrow 0} \left(1 + \frac{1}{T_i p} \right) \cdot \underbrace{\frac{45 \cdot 10^{-6}}{p}}_{\rightarrow -90^{\circ}} \right] = \arg \left[\left(1 + \frac{1}{T_i p} \right) \right] - 98,5$$

Remarque

Ci-dessus, ce sont les **arguments** que l'on évalue lorsque $\omega=\omega_c$. L'argument du produit est égal à la somme des arguments.

$$\arg\left[\mathrm{FTBO}\left(j\omega\right)\right] = \arg\left[\frac{T_ip+1}{T_ip}\right] - 98,5.$$
 Pour respecter la marge souhaitée, il est donc nécessaire que $\arg\left[\mathrm{FTBO}\left(j\omega_c\right)\right] - (-180) \ge 60$ Soit $\arg\left[\frac{T_ip+1}{T_ip}\right] - 98,5 + 180 \ge 60$ et $\arg\left[\frac{T_ip+1}{T_ip}\right] \ge -21,5\,^{\circ}$.

Question 3 Calculer la valeur minimale, T_{imin} , que l'on peut conférer à la constante T_i de l'action intégrale du régulateur.

Correction

On en déduit que pour $\omega = \omega_c = 1$, $\arg \left[\frac{T_i p + 1}{T_i p} \right] \ge -21.5^\circ \Leftrightarrow \arctan(T_i \omega) - 90 \ge -21.5^\circ$ $\Leftrightarrow \arctan(T_i \omega) \ge 68.5^\circ \text{ et donc} \Rightarrow T_i \ge \tan(68.5) = 2.54 \text{ s.}$

Attention : à ce stade, la marge de phase serait de 60° SI la pulsation de coupure était de $1 \, \text{rad s}^{-1}$ ce qui n'est pas encore le cas pour le moemnt.

Question 4 En adoptant $T_i = T_{\text{imin}}$, déterminer alors le gain K_r du régulateur permettant de satisfaire la pulsation de coupure et la marge de phase souhaitées. (Approche graphique demandée, approche analytique facultative)

Méthode -

Il faut chercher K_r tel que $20 \log ||FTBO(j\omega_c)|| = 0$.

Correction

En raisonnant graphiquement à l'aide du diagramme en boucle ouverte non corrigé, on lit que le gain est d'environ -20 dB lorsque $\omega=1$. La fonction de transfert du correcteur est $C(p)=K_r\left(1+\frac{1}{T_ip}\right)=K_r\frac{T_ip+1}{T_ip}$. Le gain dB du correcteur doit donc être de 20 dB lorsque $\omega=1:20\log K_r+20\log \sqrt{T_i^2\omega^2+1}-20\log T_i\omega=20 \Leftrightarrow \log K_r+\log \sqrt{T_i^2+1}-\log T_i=1$ $\Leftrightarrow \log K_r=1-\log \sqrt{T_i^2+1}+\log T_i$. On a donc $K_r=9,3$.

Anlaytiquement (à vérifier....)
$$20 \log ||FTBO(j\omega_c)|| = 0 \Rightarrow ||FTBO(j\omega_c)|| = 1$$
.
 $||FTBO(j\omega)|| = \left\| \frac{2000}{1 + 0, 1p + 0, 01p^2} \cdot \frac{1}{1 + 0, 05p} \cdot K_r \left(1 + \frac{1}{T_i p}\right) \cdot \frac{45 \cdot 10^{-6}}{p} \right\|$

$$= \left\| \frac{2000}{1 + 0, 1p + 0, 01p^2} \cdot \frac{1}{1 + 0, 05p} \cdot K_r \frac{1 + T_i p}{T_i p} \frac{45 \cdot 10^{-6}}{p} \right\|$$

$$= \frac{K_r}{T_i \omega^2} 90 \cdot 10^{-3} \sqrt{1 + T_i^2 \omega^2} \left\| \frac{1}{1 + 0, 1p + 0, 01p^2} \frac{1}{1 + 0, 05p} \right\| = \frac{K_r}{T_i \omega^2} 90 \cdot 10^{-3} \frac{\sqrt{1 + T_i^2 \omega^2}}{\sqrt{1 + 0, 05^2 \omega^2}} \frac{1}{\sqrt{(1 - 0, 01^2 \omega^2)^2 + 0, 1^2 \omega^2}}$$

$$= \frac{K_r}{T_i} 90 \cdot 10^{-3} \frac{\sqrt{1 + T_i^2}}{\sqrt{1 + 0, 05^2}} \frac{1}{\sqrt{(1 - 0, 01^2)^2 + 0, 1^2}}$$

Question 5 Le système étant bouclé par le régulateur dimensionné à la question précédente, déterminer la marge de gain. Conclure sur les marges de stabilité obtenues. (Approche graphique demandée, approche analytique facultative)

Méthode -

Soit ω_{φ} la pulsation telle que $\varphi(\omega_{\varphi}) = -180^{\circ}$. La marge de gain s'exprime alors par $MG = -20 \log ||H(j\omega_{\varphi})||$.

Correction

Approche analytique On résout arg [FTBO
$$(j\omega)$$
] = -180° arg [FTBO $(j\omega)$] = arg $\left[\frac{2000}{1+0,1p+0,01p^2} \cdot \frac{1}{1+0,05p} \cdot K_r \left(1 + \frac{1}{T_i p}\right) \cdot \frac{45 \cdot 10^{-6}}{p}\right]$ Approche graphique

Vérification du cahier des charges vis-à-vis de la consigne de glissement

Question 6 En examinant les diagrammes de Bode suivants de la fonction de transfert en boucle fermée F(p), justifier l'expression adoptée et compléter les diagrammes fournis par leur tracé asymptotique.

Correction

Question 7 Proposer les valeurs numériques pour les différents paramètres associés à cette fonction de transfert.

Correction

- ► $K_f = 1$: lorsque ω tend vers 0, le gain tend vers 0;
- ► $\omega_0 = 0.5$: valeur de la pulsation de résonance; ► $\tau_1 = \frac{1}{0.9} = 1.11 \text{ s};$ ► $\tau_2 = \frac{1}{7} = 0.14 \text{ s};$

Question 8 En justifiant votre réponse, montrer que l'on peut approcher la fonction de transfert F(p) par la forme suivante : $F(p) = \frac{v_1(p)}{v_c(p)} = \frac{K_f (1 + \tau_1 p)}{(1 + \tau_2 p)^2}$.

Correction

La pulsation propre ω_0 est relativement loin de la bande passante, en conséquence sa dynamique sera rapide vis-à-vis du zéro et du pôle double (pôles dominants). On adopte donc :

$$F(p) = \frac{v_1(p)}{v_c(p)} = \frac{(1+3,3p)}{(1+1,66p)^2}$$

On donne la réponse temporelle vis-à-vis de la consigne de glissement : f(t) =

$$\left(\frac{\tau_2 - \tau_1}{\tau_2^3} t + \frac{\tau_1}{\tau_2^2}\right) e^{-\frac{t}{\tau_2}} u(t).$$

Question 9 Calculer le temps du 1^{er} maximum et en déduire le dépassement en réponse à une variation en échelon de la consigne de glissement relatif $v_c(t) = v_{c0}u(t)$ où u(t) désigne l'échelon unité.

Correction

Calcul du temps du 1^{er} maximum

Le temps du 1^{er} maximum est donné par $f(t_m) = 0$, soit pour :

$$\frac{\tau_2 - \tau_1}{\tau_2^3} t_m + \frac{\tau_1}{\tau_2^2} = 0$$

On obtient done:

$$t_m = \frac{\tau_2 \tau_1}{\tau_1 - \tau_2}$$

L'application numérique avec les valeurs adoptées conduit à $t_m = 3,3$ s.

Calcul du dépassement

La réponse indicielle peut être obtenue par intégration de la réponse impulsionnelle, le dépassement étant donné par la valeur de la sortie pour $t = t_m$:

$$v(t_m) = \int_{0}^{t_m} f(t)dt = \int_{0}^{t_m} (ay(t) + b\dot{y}(t))dt = a\int_{0}^{t_m} y(t)dt + b[y(t)]_{0}^{t_m}$$

Avec $y(t) = te^{-t/\tau_2}$ dont l'intégration peut être effectuée facilement par parties :

$$\int_{0}^{t_{m}} t e^{-t/\tau_{2}} = \left[-\tau_{2} t e^{-t/\tau_{2}} - \tau_{2}^{2} e^{-t/\tau_{2}} \right]_{0}^{t_{m}} = -\tau_{2} t_{m} e^{-t_{m}/\tau_{2}} - \tau_{2}^{2} e^{-t_{m}/\tau_{2}} + \tau_{2}^{2}$$

$$v(t_m) = \frac{1}{\tau_2^2} \left[-\tau_2 t_m e^{-t_m/\tau_2} - \tau_2^2 e^{-t_m/\tau_2} + \tau_2^2 \right] + \frac{\tau_1}{\tau_2^2} t_m e^{-t_m/\tau_2}$$

Pour $t = t_m$ on obtient $v(t_m) = 1.13$, soit un dépassement de 13%.

Question 10 Vérifier le cahier des charges en réponse à une variation en échelon de la

La Martinière

consigne de glissement relatif.

Correction

Correction

- Le temps du 1^{er} maximum est inférieur à 3,5 s. et le dépassement inférieur à 20% ce qui vérifie le cahier des charges.
- Le régulateur comportant une action intégrale, l'erreur statique est nulle vis-à-vis d'une consigne constante.

Analyse des performances temporelles en réponse à des variations d'adhérence

Question 11 Déterminer la fonction de transfert $F_2(p) = \frac{\nu_1(p)}{F_{\rm ext}(p)}$ entre le glissement et la force de perturbation que vous expliciterez en fonction des différentes transmittances de la boucle de régulation (on suppose ν_c nulle). En expliquant soigneusement votre démarche, montrer que le module de la réponse fréquentielle, notée $||F_2(j\omega)||$, de cette fonction peut être approché par la relation : $||F_2(j\omega)|| = \min \left[||H_2(j\omega)||; \frac{1}{||C(j\omega)H_1(j\omega)M(j\omega)||} \right]$.

On a directement
$$F_2(p) = -\frac{H_2(p)}{1 + H_2(p)M(p)C(p)H_1(p)}$$
.

On peut alors déterminer le module et on a $||F_2(j\omega)|| = \left\| \frac{H_2(j\omega)}{1 + H_2(j\omega)M(j\omega)C(j\omega)H_1(j\omega)} \right\|$ Dans ces conditions :

▶ si
$$||H_2(j\omega)M(j\omega)C(j\omega)H_1(j\omega)||$$
 >> 1 alors $||F_2(j\omega)||$ \simeq $\left\|\frac{H_2(j\omega)}{H_2(j\omega)M(j\omega)C(j\omega)H_1(j\omega)}\right\| \simeq \left\|\frac{1}{M(j\omega)C(j\omega)H_1(j\omega)}\right\|;$
▶ si $||H_2(j\omega)M(j\omega)C(j\omega)H_1(j\omega)||$ << 1 alors $||F_2(j\omega)|| \simeq ||H_2(j\omega)||.$

On peut en conclure que $||F_2(j\omega)|| = \min \left[||H_2(j\omega)||; \frac{1}{||C(j\omega)H_1(j\omega)M(j\omega)||} \right]$

Question 12 La figure suivante comporte le tracé de la fonction $\frac{1}{||C(j\omega)H_1(j\omega)M(j\omega)||}$. Tracer directement sur cette figure le diagramme asymptotique de la fonction $||H_2(j\omega)||$.

Xavier Pessoles Sciences Industrielles de l'Ingénieur – PSI★

Question 13 En déduire la forme du tracé asymptotique de la fonction $||F_2(j\omega)||$. En analysant les brisures de ce diagramme et en supposant que le système bouclé est stable, donner directement sous forme numérique, l'expression de la fonction de transfert $F_2(p)$ entre le glissement et la perturbation due à la variation d'adhérence.

En analysant les brisures de F_2 , on peut proposer la fonction de transfert suivante : $F_2 = \frac{Kp}{(1+\tau_1p)(1+\tau_2p)}$ avec $\tau_1 = \frac{1}{0.35} \simeq 2.9 \, \text{s}$, $\tau_2 = \frac{1}{1.8} \simeq 0.6 \, \text{s}$. Avec cette proposition, en basse fréquence, seul le dérivateur existe, ona donc $20 \log K\omega = 20 \log 0.01K = -123 \, \text{soit}$ $K = 100 \times 10^{-123/20} \simeq 7 \cdot 10^{-5}$.

Au final,
$$F_2 = -\frac{7 \cdot 10^{-5} p}{(1 + 2, 9p)(1 + 0, 6p)}$$
.

Question 14 Préciser les pôles de la fonction $F_2(p)$ déterminée à la question précédente et en justifiant votre réponse proposer une fonction approchée de cette fonction sous la forme : $F_2(p) = \frac{K_2 p}{1 + T p}$.

Correction

Cette fonction de transfert est caractérisée par deux pôles :

$$\begin{cases} p_1 = -0.35 \\ p_2 = -2 \end{cases}$$

Le pôle p_2 étant caractérisé par une dynamique relativement rapide par rapport à celle de p_1 , on va pouvoir le négliger pour l'étude de la réponse temporelle. Soit la fonction approchée :

$$F_2(p) = -\frac{\frac{p}{12100}}{(1+2,8p)}$$

Question 15 En utilisant cette fonction de transfert, donner l'expression de l'évolution temporelle du glissement relatif $v_1(t)$ en réponse à une variation en échelon de la force perturbatrice $F_{\rm ext} = F_0 u(t)$, où u(t) représente l'échelon unité et avec $F_0 = 2000$ N.

Correction

La réponse à un échelon de perturbation est donnée sur la figure suivante, c'est la réponse typique d'une fonction du 1^{er} ordre en partant d'une condition non nulle ($\nu_1 = 0,05$) avec une entrée nulle. Le temps de réponse est alors de $t_r = 3T = 8,4$ s.

Question 16 Tracer l'allure de l'évolution temporelle du glissement relatif $\nu_1(t)$ en précisant la valeur initiale $\nu_1(0)$. En vous référant à des fonctions ou des résultats connus, déterminer un ordre de grandeur du temps de réponse t_r à partir duquel le glissement reste en dessous de 5 % de la valeur initiale $\nu_1(0)$ (valeurs à considérer en valeur absolue).

Retour sur le cahier des charges

Question 17 Conclure sur les performances obtenues vis-à-vis des exigences du cahier des charges en réponse à des variations de l'adhérence.

Correction

- Le temps de réponse de 8,4 s. est inférieur au temps de réponse de 9 s. demandé. En conséquence on peut conclure que le cahier des charges est satisfait au regard de cette contrainte.
- Le régulateur comportant une action intégrale (donc avant le point d'entrée de la perturbation) l'erreur statique est nulle comme montré sur la réponse temporelle.

