Multi-sensor rail track detection in automatic train operations

Master's thesis in Data Science

Student: Attila Kovacs

1st Advisor: Lukas Rohatsch (FH Technikum)

2nd Advisor: Daniele Capriotti (M2C Expert Control GmbH)

Alignment: 17.01.2024

Problem setting

What is Automatic train operations (ATO)

Technology is used to automate tasks that were previously performed by rail personnel (e.g., conductor)

Dataset

- Deutschbahn:
 - Multisensor dataset
 - Infrared
 - RGB 5MP
 - RGB 12MP
 - Left, right, and center, respectively
 - Large similarity between frames of video → split on videos

Data split: train, validation, test

Modelling rail detection as segmentation

- Semantic segmentation

 deep learning algorithm that associates a label or category with every pixel in an image
- Distinguish background pixels and track pixels
- In the data tracks are annotated by lines rather than pixel masks

Modelling rail detection as segmentation

Modelling rail detection as segmentation

Example RailSem

Performance metrics

Of all positive predictions, how many are really positive?

Recall

Of all real positive cases, how many are predicted positive:

		Real Class	
		Positive	Negative
Predicted Class	Positive	TP	FP
	Negative	FN	TN

		Real Class	
		Positive	Negative
Predicted Class	Positive	TP	FP
	Negative	FN	TN

Zeya, 202

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Accuracy = \frac{TP + TN}{TP + TN + FN + FP}$$

$$Dice = \frac{2TP}{2TP + FP + FN}$$

$$IoU = \frac{TP}{TP + FP + FN}$$

Performance metrics

Performance metrics

precision = (tp + self.eps) / (tp + fp + self.eps)

Baselining with fast line detection

Baselining with fast line detection Good examples and bad examples

Deep learning approach

- YOLOv8 as framework
- Can be used for segmentation and object detection
- State-of-the-art computer vision model built by Ultralytics
- Easy to use
- Open source

YOLO experiments

- Model backbone: yolov8n-seg
- Combined loss function consisting of
 - bounding box loss (error between the predicted and the ground truth boxes' geometry)
 - objectness loss (how confident the model is about the presence of an object in the bounding box)
 - segmentation loss (how close the predicted segmentation map is to the ground truth map)

Paramters

- epochs: 300
- image size: 640, 1280 (where applicable)
- batch size: auto selection based on image size and available memory
- Yolo defaults
- Logging: Comet ML

YOLOv8 First experiments - RGB

Without RailSem data

With RailSem data

9 models have been trained and validated

YOLOv8 vs FDL Performance on **validation** data

DEMO

Conclusion

- Image segmentation seems to be a proper approach for modelling and solving the rail track detection problem
- Dice or f1 are well suited to assess the performance of different segmentation approaches
- Fast line detection provides a solid baseline, however YOLO outperforms FDL in most scenarios
- It seems that the performance across different sensors is similar the orientation of the sensors has a larger impact on the results
- FH Pois Opplied Sciences is well suited to be applied in real life due to fast inference TECHNIKUM

Timeline

Thank you!

