Observation Matrix

Shree K. Nayar Columbia University

Topic: Structure from Motion, Module: Reconstruction II

First Principles of Computer Vision

$$u = \mathbf{i} \cdot \mathbf{x}_c = \mathbf{i}^T \mathbf{x}_c$$

$$v = \mathbf{j} \cdot \mathbf{x}_c = \mathbf{j}^T \mathbf{x}_c$$

$$u = \mathbf{i} \cdot \mathbf{x}_c = \mathbf{i}^T \mathbf{x}_c$$

$$v = \mathbf{j} \cdot \mathbf{x}_c = \mathbf{j}^T \mathbf{x}_c$$

Perspective cameras exhibit orthographic projection when distance of scene from camera is large compared to dept variation within scene (magnification is nearly constant).

$$u = \mathbf{i} \cdot \mathbf{x}_c = \mathbf{i}^T \mathbf{x}_c$$

$$v = \mathbf{j} \cdot \mathbf{x}_c = \mathbf{j}^T \mathbf{x}_c$$

Perspective cameras exhibit orthographic projection when distance of scene from camera is large compared to dept variation within scene (magnification is nearly constant)

$$u = \mathbf{i}^T \mathbf{x}_c$$
$$v = \mathbf{j}^T \mathbf{x}_c$$

$$v = \mathbf{j}^T \mathbf{x}_c$$

$$u = \mathbf{i}^T \mathbf{x}_c$$
$$v = \mathbf{j}^T \mathbf{x}_c$$

$$v = \mathbf{j}^T \mathbf{x}_c$$

$$u = \mathbf{i}^T \mathbf{x}_c$$
$$v = \mathbf{j}^T \mathbf{x}_c$$

$$v = \mathbf{j}^T \mathbf{x}_c$$

$$u = \mathbf{i}^T \mathbf{x}_c = \mathbf{i}^T (\mathbf{x}_w - \mathbf{c}_{w_b})$$
$$v = \mathbf{j}^T \mathbf{x}_c = \mathbf{j}^T (\mathbf{x}_w - \mathbf{c}_w)$$

$$u = \mathbf{i}^T \mathbf{x}_c = \mathbf{i}^T (\mathbf{x}_w - \mathbf{c}_w)$$

$$v = \mathbf{j}^T \mathbf{x}_c = \mathbf{j}^T (\mathbf{x}_w - \mathbf{c}_w)$$

$$u = \mathbf{i}^T \mathbf{x}_c = \mathbf{i}^T (\mathbf{x}_w - \mathbf{c}_w) = \mathbf{i}^T (P - C)$$

$$v = \mathbf{j}^T \mathbf{x}_c = \mathbf{j}^T (\mathbf{x}_w - \mathbf{c}_w) = \mathbf{j}^T (P - C)$$

$$u = \mathbf{i}^{T}(P - C)$$
$$v = \mathbf{j}^{T}(P - C)$$

$$v = \mathbf{j}^T (P - C)$$

$$u = \mathbf{i}^T \mathbf{x}_c = \mathbf{i}^T (\mathbf{x}_w - \mathbf{c}_w) = \mathbf{i}^T (P - C)$$

$$v = \mathbf{j}^T \mathbf{x}_c = \mathbf{j}^T (\mathbf{x}_w - \mathbf{c}_w) = \mathbf{j}^T (P - C)$$

$$u = \mathbf{i}^{T}(P - C)$$
$$v = \mathbf{j}^{T}(P - C)$$

Given corresponding image points (2D) $(u_{f,p}, v_{f,p})$ Find scene points $\{P_p\}$.

Camera Positions $\{C_f\}$, camera orientations $\{(i_f, j_f)\}$ are unkno

Given corresponding image points (2D) $(u_{f,p}, v_{f,p})$ Find scene points $\{P_p\}$.

Camera Positions $\{C_f\}$, camera orientations $\{(i_f, j_f)\}$ are unkno

Given corresponding image points (2D) $(u_{f,p}, v_{f,p})$ Find scene points $\{P_p\}$.

Camera Positions $\{C_f\}$, camera orientations $\{(i_f, j_f)\}$ are unknown

Given corresponding image points (2D), $(u_{f,p}, v_{f,p})$ Find scene points $\{P_p\}$.

Camera Positions $\{C_f\}$, camera orientations $\{(i_f, j_f)\}$ are unkno

$$u_{f,p} = \mathbf{i}_f^T (P_p - C_f)$$

$$u_{f,p} = \mathbf{i}_f^T (P_p - C_f)$$
$$v_{f,p} = \mathbf{j}_f^T (P_p - C_f)$$

$$u_{f,p} = \mathbf{i}_f^T (P_p - C_{f_s})$$

$$u_{f,p} = \mathbf{i}_f^T (P_p - C_f)$$
$$v_{f,p} = \mathbf{j}_f^T (P_p - C_f)$$

$$u_{f,p} = \mathbf{i}_f^T (P_p - C_f)$$
 $v_{f,p_s} = \mathbf{j}_f^T (P_p - C_f)$
Known

$$u_{f,p} = \mathbf{i}_f^T (P_{p_{\downarrow}} - C_f)$$
 $v_{f,p} = \mathbf{j}_f^T (P_p - C_f)$
Known Unknown

$$u_{f,p} = \mathbf{i}_f^T (P_p - C_f)$$
 $v_{f,p} = \mathbf{j}_f^T (P_p - C_f)$
Known Unknown

Image of point P_p in camera frame f:

$$u_{f,p} = \mathbf{i}_f^T (P_p - C_f)$$

$$u_{f,p} = \mathbf{i}_f^T (P_p - C_f)$$
 $v_{f,p} = \mathbf{j}_f^T (P_p - C_f)$
Known Unknown

We can remove $C_f^{\mathbb{R}}$ from equations to simply SFM problem.

Assume origin of world at centroid of scene points:

$$\frac{1}{N}\sum_{p=1}^{N}P_{p}=\bar{P}=\mathbf{0}$$

Assume origin of world at centroid of scene points:

$$\frac{1}{N}\sum_{p=1}^{N}P_{p}=\bar{P}=\mathbf{0}$$

Assume origin of world at centroid of scene points:

$$\frac{1}{N}\sum_{p=1}^{N}P_{p}=\bar{P}_{\downarrow}=\mathbf{0}$$

Assume origin of world at centroid of scene points:

$$\frac{1}{N}\sum_{p=1}^{N}P_{p}=\bar{P}=\mathbf{0}$$

We will compute scene points w.r.t their centroid!

$$\bar{u}_f = \frac{1}{N} \sum_{p=1}^N u_{f,p}$$

$$\bar{u}_f = \frac{1}{N} \sum_{p=1}^N u_{f,p}$$

$$\bar{u}_f = \frac{1}{N} \sum_{p=1}^{N} u_{f,p} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{i}_f^T (P_p - C_f)$$

$$\bar{u}_f = \frac{1}{N} \sum_{p=1}^N u_{f,p} = \frac{1}{N} \sum_{p=1}^N \mathbf{i}_f^T (P_p - C_f)$$

$$\bar{u}_f = \frac{1}{N} \mathbf{i}_f^T \sum_{p=1}^N P_p - \frac{1}{N} \sum_{p=1}^{N^{\flat}} \mathbf{i}_f^T C_f$$

$$\bar{u}_f = \frac{1}{N} \sum_{p=1}^N u_{f,p} = \frac{1}{N} \sum_{p=1}^N \mathbf{i}_f^T (P_p - C_f)$$
$$\bar{u}_f = \frac{1}{N} \mathbf{i}_f^T \sum_{p=1}^N P_p - \frac{1}{N} \sum_{p=1}^N \mathbf{i}_f^T C_f$$

$$\bar{u}_f = \frac{1}{N} \sum_{p=1}^{N} u_{f,p} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{i}_f^T (P_p - C_f)$$

$$\bar{u}_f = \frac{1}{N} \mathbf{i}_f^T \sum_{p=1}^{N} P_p - \frac{1}{N} \sum_{p=1}^{N} \mathbf{i}_{f_b}^T C_f$$

$$\bar{u}_f = -\mathbf{i}_f^T C_f$$

$$\bar{u}_f = \frac{1}{N} \sum_{p=1}^N u_{f,p} = \frac{1}{N} \sum_{p=1}^N \mathbf{i}_f^T (P_p - C_f)$$

$$\bar{u}_f = \frac{1}{N} \mathbf{i}_f^T \sum_{p=1}^N P_p - \frac{1}{N} \sum_{p=1}^N \mathbf{i}_f^T C_f$$

$$\bar{v}_f^c = -\mathbf{i}_f^T C_f$$

$$\bar{u}_{f} = \frac{1}{N} \sum_{p=1}^{N} u_{f,p} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{i}_{f}^{T} (P_{p} - C_{f}) \qquad \qquad \bar{v}_{f} = \frac{1}{N} \sum_{p=1}^{N} v_{f,p} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{j}_{f}^{T} (P_{p} - C_{f})$$

$$\bar{u}_{f} = \frac{1}{N} \mathbf{i}_{f}^{T} \sum_{p=1}^{N} P_{p} - \frac{1}{N} \sum_{p=1}^{N} \mathbf{i}_{f}^{T} C_{f} \qquad \qquad \bar{v}_{f} = \frac{1}{N} \mathbf{j}_{f}^{T} \sum_{p=1}^{N} P_{p} - \frac{1}{N} \sum_{p=1}^{N} \mathbf{j}_{f}^{T} C_{f}$$

$$\bar{u}_f = -\mathbf{i}_f^T C_f$$

$$\bar{v}_f = \frac{1}{N} \sum_{p=1}^{N} v_{f,p} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{j}_f^T (P_p - C_f)$$

$$\bar{v}_f = \frac{1}{N} \mathbf{j}_f^T \sum_{p=1}^N P_p - \frac{1}{N} \sum_{p=1}^N \mathbf{j}_f^T C_f$$

$$\bar{\varphi_f} = -\mathbf{j}_f^T C_f$$

$$\bar{u}_{f} = \frac{1}{N} \sum_{p=1}^{N} u_{f,p} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{i}_{f}^{T} (P_{p} - C_{f}) \qquad \bar{v}_{f} = \frac{1}{N} \sum_{p=1}^{N} v_{f,p} = \frac{1}{N} \sum_{p=1}^{N} \mathbf{j}_{f}^{T} (P_{p} - C_{f})$$

$$\bar{u}_{f} = \frac{1}{N} \mathbf{i}_{f}^{T} \sum_{p=1}^{N} P_{p} - \frac{1}{N} \sum_{p=1}^{N} \mathbf{i}_{f}^{T} C_{f} \qquad \bar{v}_{f} = \frac{1}{N} \mathbf{j}_{f}^{T} \sum_{p=1}^{N} P_{p} - \frac{1}{N} \sum_{p=1}^{N} \mathbf{j}_{f}^{T} C_{f}$$

$$\bar{v}_{c} = -\mathbf{i}_{c}^{T} C_{c}$$

$$\bar{v}_{c} = -\mathbf{i}_{c}^{T} C_{c}$$

$$\bar{v}_f = \frac{1}{N} \sum_{p=1}^N v_{f,p} = \frac{1}{N} \sum_{p=1}^N \mathbf{j}_f^T (P_p)$$

$$\bar{v}_f = \frac{1}{N} \mathbf{j}_f^T \sum_{p=1}^N P_p - \frac{1}{N} \sum_{p=1}^N \mathbf{j}_f^T C_f$$

$$\bar{v}_f = -\mathbf{j}_f^T C_f$$

Shift camera origin to the centroid $(\bar{u}_f, \bar{v}_{\sharp})$.

Shift camera origin to the centroid (\bar{u}_f, \bar{v}_f) .

$$\tilde{u}_{f,p} = u_{f,p} - \bar{u}_f$$

Shift camera origin to the centroid (\bar{u}_f, \bar{v}_f) .

$$\tilde{u}_{f,p} = u_{f,p} - \bar{u}_f$$

$$= \mathbf{i}_f^T (P_p - C_f) - \mathbf{i}_f^T C_f$$

Shift camera origin to the centroid (\bar{u}_f, \bar{v}_f) .

$$\tilde{u}_{f,p} = u_{f,p} - \bar{u}_f$$

$$= \mathbf{i}_f^T (P_p - C_f) - \mathbf{i}_f^T C_f$$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_{\mathbb{P}}$$

Shift camera origin to the centroid (\bar{u}_f, \bar{v}_f) .

$$\tilde{u}_{f,p} = u_{f,p} - \bar{u}_f$$
 \tilde{v}_f

$$= \mathbf{i}_f^T (P_p - C_f) - \mathbf{i}_f^T C_f$$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$
 \tilde{v}_f

$$\tilde{v}_{f,p} = v_{f,p} - \bar{v}_f$$

$$= \mathbf{j}_f^T (P_p - C_f) - \mathbf{j}_f^T C_f$$

$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

Shift camera origin to the centroid (\bar{u}_f, \bar{v}_f) .

Image points w.r.t. (\bar{u}_f, \bar{v}_f) :

$$\tilde{u}_{f,p} = u_{f,p} - \bar{u}_f \qquad \tilde{v}_{f,p} = v_{f,p} - \bar{v}_f
= \mathbf{i}_f^T (P_p - C_f) - \mathbf{i}_f^T C_f \qquad = \mathbf{j}_f^T (P_p - C_f) - \mathbf{j}_f^T C_f
\tilde{u}_{f,p} = \mathbf{i}_f^T P_p \qquad \tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

Camera locations C_f now removed from equations.

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p
\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p \\
\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_{f}^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$
$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_{p_{\text{l}}}$$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$

$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$$

Centroid-Subtracted

Feature Points (Known)

Point 1 Point 2 \mathbf{j}_{1}^{T} \mathbf{j}_{2}^{T} \vdots \mathbf{j}_{F}^{T} $S_{3\times N}$ Scene Structure (Unknown)

Point N

 $M_{2F\times3}$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$

$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$$

Point 1

Point 2

 $S_{3\times N}$

(Unknown)

Point N

Camera Motion (Unknown)

 $M_{2F\times3}$

 \mathbf{j}_{1}^{T} \mathbf{j}_{2}^{T} \vdots \mathbf{j}_{F}^{T}

Centroid-Subtracted Feature Points (Known)

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$

$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$$

Point 1

 $W_{2F\times N}$

Centroid-Subtracted Feature Points (Known)

 \mathbf{i}_{2}^{T} \mathbf{i}_{2}^{T} \mathbf{i}_{F}^{T} \mathbf{j}_{1}^{T} \mathbf{j}_{F}^{T}

 $[P_1 \quad P_2 \quad ... \quad P_N]$ $S_{3\times N}$ Scene Structure (Unknown)

Point 2

 $M_{2F\times3}$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$

$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$$

Point 1

Centroid-Subtracted

Feature Points (Known)

Camera Motion (Unknown)

 \mathbf{j}_{1}^{T} \mathbf{j}_{2}^{T} \vdots \mathbf{j}_{F}^{T} Scene Structure (Unknown)

Point 2

 $S_{3\times N}$

 $M_{2F\times3}$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$

$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$$

Centroid-Subtracted

Feature Points (Known)

Point 1 Point 2 \mathbf{j}_{1}^{T} \mathbf{j}_{2}^{T} \vdots \mathbf{j}_{F}^{T} $S_{3\times N}$ Scene Structure (Unknown)

Point N

 $M_{2F\times3}$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$

$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$$

Centroid-Subtracted

Feature Points (Known)

Point 1 Point 2 \mathbf{j}_{1}^{T} \mathbf{j}_{2}^{T} \vdots \mathbf{j}_{F}^{T} $S_{3\times N}$ Scene Structure (Unknown)

Point N

 $M_{2F\times3}$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$

$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$$

	Point 1	Point 2		Point N	
Image 1	$\lceil \widetilde{u}_{1,1} angle$	$\tilde{u}_{1,2}$		$\tilde{u}_{1,N}$ -	
Image 2	$ ilde{u}_{2,1}$	$\tilde{u}_{2,2}$	•••	$\tilde{u}_{2,N}$	
	:	:	:	:	
Image F	$\tilde{u}_{F,1}$	$\tilde{u}_{F,2}$	***	$\tilde{u}_{F,N}$	
Image 1	$ ilde{v}_{1,1}$	$\tilde{v}_{1,2}$	•••	$ ilde{v}_{1,N}$	
Image 2	$\tilde{u}_{2,1}$	$\tilde{u}_{2,2}$	***	$\tilde{v}_{2,N}$	
	1	:	÷	•	
Image F	$ ilde{v}_{F,1}$	$ ilde{v}_{F,2}$	***	$ ilde{v}_{F,N}$.	
		W			

 $W_{2F\times N}$

Centroid-Subtracted Feature Points (Known)

$$\mathbf{i}_{2}^{T}$$
 \mathbf{i}_{2}^{T}
 \mathbf{i}_{F}^{T}
 \mathbf{j}_{1}^{T}
 \mathbf{j}_{F}^{T}

Point 1 Point 2 Point N $\begin{bmatrix} P_1 & P_2 & ... & P_N \end{bmatrix}$ $S_{3\times N}$ Scene Structure (Unknown)

 $M_{2F imes3}$ nera Motio

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$

$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$$

Centroid-Subtracted

Feature Points (Known)

 $egin{array}{c|cccc} oldsymbol{i_1}^T & oldsymbol{i_2}^T & oldsymbol{i_{Point 1}} & oldsymbol{Point 2} & oldsymbol{Point 2} & oldsymbol{Point N} \\ oldsymbol{i_T}^T & oldsymbol{I_{P_1}} & P_2 & \dots & P_N \end{bmatrix} \\ oldsymbol{j_1}^T & oldsymbol{J}^T \\ oldsymbol{j_2}^T & oldsymbol{Scene Structure} \\ oldsymbol{i_{P_1}} & oldsymbol{Scene Structure} \\ & & & & & & & & & & & & & \\ oldsymbol{j_T} & oldsymbol{J}^T & oldsymbol{Scene Structure} \\ & & & & & & & & & & & \\ oldsymbol{j_T} & oldsymbol{J}^T & oldsymbol{Scene Structure} \\ & & & & & & & & & & & \\ oldsymbol{j_T} & oldsymbol{J}^T & oldsym$

 $M_{2F \times 3}$

$$\tilde{u}_{f,p} = \mathbf{i}_f^T P_p$$

$$\tilde{v}_{f,p} = \mathbf{j}_f^T P_p$$

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} \mathbf{i}_f^T \\ \mathbf{j}_f^T \end{bmatrix} P_p$$

Centroid-Subtracted

Feature Points (Known)

Point 1 Point 2 \mathbf{j}_{1}^{T} \mathbf{j}_{2}^{T} \vdots \mathbf{j}_{F}^{T} $S_{3\times N}$ Scene Structure (Unknown)

Point N

 $M_{2F\times3}$

Centroid-Subtracted Camera Motion Feature Points (Known) (Unknown)

Can we find M and S from W?

Centroid-Subtracted Camera Motion Feature Points (Known) (Unknown)

Can we find *M* and *S* from *W*?

