

Introduction aux télécommunications

Département sciences du numérique Première année

Séquence 4 Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Introduction aux télécommunications

Département sciences du numérique Première année

Séquence 4 Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Transmissions en bande de base

Transmissions sur fréquence porteuse

Transmissions sur fréquence porteuse

Transmissions sur fréquence porteuse

Classification des modulations sur fréquence porteuse

→ Modulation d'amplitude

$$x(t) = Am(t)\cos(2\pi f_p t)$$
 $x(t) = (A + m(t))\cos(2\pi f_p t), A \ge |m(t)|_{max}$
Modulation d'amplitude sans porteuse Modulation d'amplitude avec porteuse

→ Modulation de phase

$$x(t) = A\cos\left(2\pi f_p t + k_p m(t)\right)$$

→ Modulation de fréquence

$$F_i(t) = \frac{1}{2\pi} \frac{d\Phi_i(t)}{dt} = f_p + k_f m(t) \quad \text{(fréquence instantannée)}$$

$$x(t) = A \cos\left(2\pi f_p t + 2\pi k_f \int_0^t m(u) du\right)$$

$$\Phi_i(t)$$

m(t): message à transmettre = signal modulant

 $\cos(2\pi f_p t)$: cosinus porteur

 f_p : fréquence porteuse

x(t): signal modulé sur porteuse

Classification des modulations sur fréquence porteuse

Modulation mono-dimensionnelle

ou bi-dimensionnelle

$$x(t) = \sum_{k} a_k h(t - kT_s) \cos(2\pi f_p t) - \sum_{k} b_k h(t - kT_s) \sin(2\pi f_p t)$$

$$m_1(t) \qquad m_2(t)$$

Enveloppe complexe associée au signal modulé

 $x_e(t) = I(t) + jQ(t) = \sum_k d_k h(t - kT_s)$ $(d_k = a_k + jb_k)$

Modulations numériques sur fréquence porteuse Classification des transmissions sur fréquence porteuse

Modulation linéaires

$$x(t) = \sum_{k} a_k h(t - kT_s) \cos(2\pi f_p t) - \sum_{k} b_k h(t - kT_s) \sin(2\pi f_p t)$$

$$m_1(t) \qquad m_2(t)$$

$$x(t) = \Re\left[\left(m_1(t) + jm_2(t)\right)e^{j2\pi f_p t}\right]$$

L'enveloppe complexe associée au signal modulé sur porteuse dépend linéairement de l'information à transmettre

ou non linéaires (modulations de fréquence)

$$x(t) = A\cos\left(2\pi f_p t + 2\pi k_f \int_0^t m(u)du\right)$$

$$x(t) = \Re\left[Ae^{j2\pi k_f \int_0^t m(u)du}e^{j2\pi f_p t}\right]$$
 Ce n'est pas le cas ici

Introduction aux télécommunications

Département sciences du numérique Première année

Séquence 4 Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Modulations numériques linéaires sur fréquence porteuse Représentation équivalente du modulateur

$$x(t) = \Re\left[\left(I(t) + jQ(t)\right) e^{j2\pi f_p t}\right] = \Re\left[x_e(t) e^{j2\pi f_p t}\right] \quad \text{avec} \quad x_e(t) = I(t) + jQ(t) = \sum_k d_k h(t - kT_s) \left(d_k = a_k + jb_k\right)$$

Modulations numériques linéaires sur fréquence porteuse Modulations ASK, PSK, QAM

$$x(t) = \sum_{k} a_k h(t - kT_s) \cos{(2\pi f_p t)} - \sum_{k} b_k h(t - kT_s) \sin{(2\pi f_p t)}$$
 I(t) : voie en phase Q(t) : voie en quadrature

Modulations mono-dimensionnelle

$$d_k = a_k \in \{\pm 1, ..., \pm (M-1)\}$$
 M-ASK (Amplitude Shift Keying)

Modulations bi-dimensionnelles

M-QAM (Quadrature Amplitude Modulation) carrée

$$a_k,\ b_k \ \text{symboles} \ \sqrt{M}$$
-aires indépendants $\in \left\{\pm V, \pm 3V, ..., \pm (\sqrt{M}-1)V\right\}$

M-PSK (Phase Shift Keying)

$$d_k \in \{e^{j\left(\frac{2\pi}{M}l + \frac{\pi}{M}\right)}\}, \ l = 0, ..., M - 1$$

Modulations numériques linéaires sur fréquence porteuse Notion de Constellation

Représentation des symboles d_k possibles dans le plan (a_k, b_k)

Constellations ASK

Constellations PSK

Constellations QAM

→ Modulations linéaires mono-dimensionnelle : 2-ASK ou BPSK

Bits	a _k	d_k
0	-1	-1=e ^{jπ}
1	+1	+1=e ⁰

Constellation BPSK

→ Modulations linéaires bi-dimensionnelle : 4-PSK ou 4-QAM ou QPSK (DVB-S)

Bits	a _k	b _k	d_k	x(t)
00	-1	-1	-1-j=e ^{j5π/4}	
01	-1	+1	-1-j=e ^{j3π/4}	
11	+1	+1	-1-j=e ^{jπ/4}	-1 - 0.5 - 1 1 1 1 1 1 1 1 1 1
10	+1	-1	-1-j=e ^{j7π/4}	0 100 200 300 400 500
	01	b _k ▲	11	Q(t) -0.5 -1 -1 -1.5 0 50 100 150 200
	00		10	0 100 200 300 400 500

→ Modulations linéaires bi-dimensionnelle : 8-PSK (DVB-S2)

Constellation 8-PSK

→ Modulations linéaires bi-dimensionnelle : 16-QAM (DVB-C)

Constellation 16-QAM

(Enveloppe non constante)

Introduction aux télécommunications

Département sciences du numérique Première année

Séquence 4 Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

$$x_e(t) = \sum_k d_k h(t - kT_s)$$

$$x_e(t) = \sum_k d_k h(t - kT_s)$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2\frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \mathfrak{Re} \left[R_d(k) e^{j2\pi f k T_s} \right] + \frac{|m_d|^2}{T_s^2} \sum_k \left| H\left(\frac{k}{T_s}\right) \right|^2 \delta\left(f - \frac{k}{T_s}\right)$$

$$x_e(t) = \sum_k d_k h(t - kT_s)$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2\frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \mathfrak{Re} \left[R_d(k) e^{j2\pi f k T_s} \right] + \frac{|m_d|^2}{T_s^2} \sum_k \left| H\left(\frac{k}{T_s}\right) \right|^2 \delta\left(f - \frac{k}{T_s}\right)$$

$$x(t) = \Re\left[x_e(t)e^{j2\pi f_p t}\right] \longrightarrow R_x(\tau) = \frac{1}{2}\Re\left[R_{x_e}(\tau)e^{j2\pi f_p \tau}\right]$$

$$x_e(t) = \sum_k d_k h(t - kT_s)$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2\frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \mathfrak{Re} \left[R_d(k) e^{j2\pi f k T_s} \right] + \frac{|m_d|^2}{T_s^2} \sum_{k} \left| H\left(\frac{k}{T_s}\right) \right|^2 \delta\left(f - \frac{k}{T_s}\right)$$

$$x(t) = \Re\left[x_e(t)e^{j2\pi f_p t}\right] \longrightarrow R_x(\tau) = \frac{1}{2}\Re\left[R_{x_e}(\tau)e^{j2\pi f_p \tau}\right]$$

$$S_x(f) = \frac{1}{4}\left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p)\right)$$
TF

<u>Exemple</u>

Exemple

Exemple

Exemple

Exemple

Modulation mono-dimensionnelle (4-ASK), Modulation bi-dimensionnelle (QPSK), filtre de mise en racine de cosinus surélevé

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \implies B_x = 2B_{x_e}$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2\frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \Re\left[R_d(k)e^{j2\pi fkT_s}\right] + \frac{|m_d|^2}{T_s^2} \sum_{k} \left|H\left(\frac{k}{T_s}\right)\right|^2 \delta\left(f - \frac{k}{T_s}\right)$$

=0 car symboles indépendants =0 car symboles à moyenne nulle

Exemple

Modulation mono-dimensionnelle (4-ASK), Modulation bi-dimensionnelle (QPSK), filtre de mise en racine de cosinus surélevé

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \implies B_x = 2B_{x_e}$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2 \frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \Re \left[R_d(k) e^{j2\pi f k T_s} \right] + \frac{|m_d|^2}{T_s^2} \sum_k \left| H\left(\frac{k}{T_s}\right) \right|^2 \delta \left(f - \frac{k}{T_s} \right)$$

=0 car symboles indépendants =0 car symboles à moyenne nulle

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2$$

$$B_x = 2B_{x_e} = \frac{1+\alpha}{T_s} = \frac{1+\alpha}{\log_2(M)T_b} = \frac{1+\alpha}{\log_2(M)} R_b$$

$$0 \le \alpha \le 1$$

$$B_{x_e} = \frac{1+\alpha}{T_s} = \frac{1+\alpha}{\log_2(M)} R_b$$

Comparaison en termes d'efficacité spectrale

Exemple

Modulation mono-dimensionnelle (4-ASK), Modulation bi-dimensionnelle (QPSK), filtre de mise en racine de cosinus surélevé

$$S_{x}(f) = \frac{1}{4} \left(S_{x_{e}}(f - f_{p}) + S_{x_{e}}(-f - f_{p}) \right) \Rightarrow B_{x} = 2B_{x_{e}}$$

$$S_{x_{e}}(f) = \frac{\sigma_{d}^{2}}{T_{s}} |H(f)|^{2} + 2\frac{\sigma_{d}^{2}}{T_{s}} |H(f)|^{2} \sum_{i=1}^{\infty} \Re\left[R_{d}(k)e^{j2\pi fkT_{s}} \right] + \frac{|m_{d}|^{2}}{T_{s}^{2}} \sum_{i=1}^{\infty} \left| H\left(\frac{k}{T_{s}}\right) \right|^{2} \delta\left(f - \frac{k}{T_{s}}\right)$$

=0 car symboles indépendants

=0 car symboles à moyenne nulle

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2$$

$$B_x = 2B_{x_e} = \frac{1+\alpha}{T_s} = \frac{1+\alpha}{\log_2(M)T_b} = \frac{1+\alpha}{\log_2(M)} R_b$$

$$\eta = \frac{R_b}{B_x} = \frac{\log_2(M)}{1+\alpha}$$

$$\theta_{x_e} = \frac{1+\alpha}{T_s} = \frac{1+\alpha}{\log_2(M)} R_b$$

Exemple

Modulation mono-dimensionnelle (4-ASK), Modulation bi-dimensionnelle (QPSK), filtre de mise en racine de cosinus surélevé

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \implies B_x = 2B_{x_e}$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 + 2\frac{\sigma_d^2}{T_s} |H(f)|^2 \sum_{k=1}^{\infty} \Re\left[R_d(k)e^{j2\pi fkT_s}\right] + \frac{|m_d|^2}{T_s^2} \sum_{k} \left|H\left(\frac{k}{T_s}\right)\right|^2 \delta\left(f - \frac{k}{T_s}\right)$$

=0 car symboles indépendants

=0 car symboles à moyenne nulle

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2$$

$$0 \le \alpha \le 1$$

$$-\frac{1+\alpha}{2T_s} \xrightarrow{B_{T_s}} \frac{1+\alpha}{2T_s}$$

$$B_x = 2B_{x_e} = \frac{1+\alpha}{T_s} = \frac{1+\alpha}{\log_2(M)T_b} = \frac{1+\alpha}{\log_2(M)}R_b$$

$$\eta = \frac{R_b}{B_x} = \frac{\log_2(M)}{1+\alpha}$$

Même filtre de mise en forme, Même nombre de symboles

Introduction aux télécommunications

Département sciences du numérique Première année

Séquence 4 Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Introduction aux télécommunications

Département sciences du numérique Première année

Séquence 4 Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Exemple

Exemple

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \Rightarrow P_x = \frac{P_{x_e}}{2}$$

Exemple

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \Rightarrow P_x = \frac{P_{x_e}}{2}$$

Exemple

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \Rightarrow P_x = \frac{P_{x_e}}{2}$$

Exemple

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \Rightarrow P_x = \frac{P_{x_e}}{2}$$

$$S_{x_e}(f) = \frac{\sigma_d^2}{T_s} |H(f)|^2 \qquad P_{x_e} = \frac{\sigma_d^2}{T_s} \int_R |H(f)|^2 df = \frac{\sigma_d^2}{T_s} \times T_s = \sigma_d^2$$

$$0 \le \alpha \le 1 \qquad \Rightarrow \qquad P_x = \frac{P_{x_e}}{2} = \frac{\sigma_d^2}{2}$$

$$\xrightarrow{-\frac{1+\alpha}{2T_s}} \qquad \xrightarrow{\frac{1+\alpha}{2T_s}} \qquad f \longrightarrow$$

Exemple

$$S_x(f) = \frac{1}{4} \left(S_{x_e}(f - f_p) + S_{x_e}(-f - f_p) \right) \Rightarrow P_x = \frac{P_{x_e}}{2}$$

Exemple

$$P_x = \frac{P_{x_e}}{2} = \frac{\sigma_d^2}{2} \qquad \left\{ \begin{array}{c} \sigma_d^2 = 5V^2 \text{ (4-ASK)} \\ \\ \sigma_d^2 = 2V^2 \text{ (QPSK)} \end{array} \right.$$

$$P_x = \frac{P_{x_e}}{2} = \frac{\sigma_d^2}{2} = 1 \text{ pour } V = \sqrt{\frac{2}{5}} (4 - ASK), \ V = 1 (QPSK)$$

Introduction aux télécommunications

Département sciences du numérique Première année

Séquence 4 Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Démodulation cohérente

Modulations numériques linéaires sur fréquence porteuse Démodulation cohérente

Modulations numériques linéaires sur fréquence porteuse Démodulation cohérente

Modulations numériques linéaires sur fréquence porteuse Démodulation cohérente

Modulations numériques linéaires sur fréquence porteuse Décisions et demapping

Modulations numériques linéaires sur fréquence porteuse Chaine de transmission complète

Modulations numériques linéaires sur fréquence porteuse Chaine de transmission complète

Chaine de transmission complète => Chaine passe-bas équivalente

Vers la chaine passe-bas équivalente : enveloppe complexe associée au signal modulé

→ DSP de l'envelope complexe correspondante :

Vers la chaine passe-bas équivalente : canal passe-bas équivalent

Obtention du bruit passe-bas équivalent

$$b_e(t) = I_b(t) + jQ_b(t)$$
: enveloppe complexe associée à $b(t)$
 $S_{I_b}(f) = S_{Q_b}(f) = N_0$ sur la bande de $b_e(t)$

Vers la chaine passe-bas équivalente : canal passe-bas équivalent

Filtre canal passe-bas équivalent

(Remarque : le canal est supposé ideal sur sa bande passante dans la figure)

$$h_{c_e}(t) = I_{h_c}(t) + jQ_{h_c}(t)$$
: enveloppe complexe associée à $h_c(t)$

Chaine de transmission complète => Chaine passe-bas équivalente

Chaine passe-bas équivalente : Critères de Nyquist et filtrage adapté

Les calculs de TEB en bande de base peuvent être ré-utilisés

Introduction aux télécommunications

Département sciences du numérique Première année

Séquence 4 Transmissions sur fréquence porteuse

- 1- Classification des modulations, notion d'enveloppe complexe
- 2- Modulations linéaires sur fréquence porteuse : ASK, PSK, QAM et variantes
- 3- Comparaison en termes d'efficacité spectrale
- 4- Comparaison en termes d'efficacité en puissance :
 - Exemple,
 - Chaine passe bas-équivalente
 - Calcul de TEBs

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-ASK

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{Vg(t_0)}{\sigma_w}\right)$$
 si critère de Nyquist respecté.

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-ASK

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{Vg(t_0)}{\sigma_w}\right)$$
 si critère de Nyquist respecté.
$$\sigma_w^2 = N_0 \int_{\mathcal{D}} |H_r(f)|^2 df = N_0 g(t_0) \text{ si filtrage adapté.}$$

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-ASK

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{Vg(t_0)}{\sigma_w}\right)$$
 si critère de Nyquist respecté.

$$\sigma_w^2 = N_0 \int_R |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

Attention :
$$E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R |H_e(f)|^2 df \times T_b = \frac{\sigma_a^2}{2 \log_2(M)} g(t_0)$$
 si filtrage adapté.

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

(Symboles supposés indépendants et équiprobables)

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-ASK

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{Vg(t_0)}{\sigma_w}\right)$$
 si critère de Nyquist respecté.

$$\sigma_w^2 = N_0 \int_R |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

Attention :
$$E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R |H_e(f)|^2 df \times T_b = \frac{\sigma_a^2}{2 \log_2(M)} g(t_0)$$
 si filtrage adapté.

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

(Symboles supposés indépendants et équiprobables)

$$\sigma_a^2 = E\left[|a_k - m_a|^2\right] = 2 \times \frac{V^2}{M} \times \left\{1^2 + (3)^2 + \dots + (M-1)^2\right\} = 2 \times \frac{V^2}{M} \frac{M(M^2 - 1)}{6} = \frac{V^2(M^2 - 1)}{3}$$

Modulation Linéaire sur fréquence porteuse

Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-ASK

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\frac{Vg(t_0)}{\sigma_w}\right)$$
 si critère de Nyquist respecté.

$$\sigma_w^2 = N_0 \int_R |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

Attention :
$$E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R |H_e(f)|^2 df \times T_b = \frac{\sigma_a^2}{2 \log_2(M)} g(t_0)$$
 si filtrage adapté.

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

Symboles supposés indépendants et équiprobables)

$$\sigma_a^2 = E\left[|a_k - m_a|^2\right] = 2 \times \frac{V^2}{M} \times \left\{1^2 + (3)^2 + \dots + (M-1)^2\right\} = 2 \times \frac{V^2}{M} \frac{M(M^2 - 1)}{6} = \frac{V^2(M^2 - 1)}{3}$$

$$TES = TES_I = 2\left(1 - \frac{1}{M}\right)Q\left(\sqrt{\frac{6\log_2(M)}{M^2 - 1}\frac{E_b}{N_0}}\right)$$

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-QAM (carrée, M>2)

$$TES = TES_I + TES_Q - TES_I TES_Q$$

$$TES \simeq 2TES_I = \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\frac{Vg(t_0)}{\sigma_{w_I}}\right) \text{si critère de Nyquist respecté.}$$

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-QAM (carrée, M>2)

$$TES = TES_I + TES_Q - TES_I TES_Q$$

$$TES \simeq 2TES_I = \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\frac{Vg(t_0)}{\sigma_{w_I}}\right)$$
 si critère de Nyquist respecté.

$$\sigma_{w_I}^2 = N_0 \int_R |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

Attention :
$$E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R |H_e(f)|^2 df \times T_b = \frac{2\sigma_a^2}{2\log_2(M)} g(t_0) = \frac{\sigma_a^2}{\log_2(M)} g(t_0)$$
 si filtrage adapté.

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

(Symboles supposés indépendants et équiprobables)

Modulation Linéaire sur fréquence porteuse

Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-QAM (carrée, M>2)

$$TES = TES_I + TES_Q - TES_I TES_Q$$

$$TES \simeq 2TES_I = \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\frac{Vg(t_0)}{\sigma_{w_I}}\right)$$
 si critère de Nyquist respecté.

$$\sigma_{w_I}^2 = N_0 \int_{\mathcal{D}} |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

Attention :
$$E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R |H_e(f)|^2 df \times T_b = \frac{2\sigma_a^2}{2 \log_2(M)} g(t_0) = \frac{\sigma_a^2}{\log_2(M)} g(t_0)$$
 si filtrage adapté.

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

(Symboles supposés indépendants et équiprobables)

$$\sigma_a^2 = E\left[|a_k - m_a|^2\right] = 2 \times \frac{V^2}{\sqrt{M}} \times \left\{1^2 + (3)^2 + \dots + (\sqrt{M} - 1)^2\right\} = 2 \times \frac{V^2}{\sqrt{M}} \frac{\sqrt{M}(\sqrt{M}^2 - 1)}{6} = \frac{V^2(M - 1)}{3}$$

Modulation Linéaire sur fréquence porteuse

Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-QAM (carrée, M>2)

$$TES = TES_I + TES_Q - TES_I TES_Q$$

$$TES \simeq 2TES_I = \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\frac{Vg(t_0)}{\sigma_{w_I}}\right)$$
 si critère de Nyquist respecté.

$$\sigma_{w_I}^2 = N_0 \int_{\mathcal{D}} |H_r(f)|^2 df = N_0 g(t_0)$$
 si filtrage adapté.

Attention :
$$E_b = P_x T_b = \frac{P_{x_e}}{2} T_b = \frac{1}{2} \frac{\sigma_d^2}{T_s} \int_R |H_e(f)|^2 df \times T_b = \frac{2\sigma_a^2}{2\log_2(M)} g(t_0) = \frac{\sigma_a^2}{\log_2(M)} g(t_0)$$
 si filtrage adapté.

(Forme d'onde à l'entrée du récepteur :
$$h_e(t) = h(t) * \frac{h_{c_e(t)}}{2} \xrightarrow{TF} H_e(f)$$
)

Symboles supposés indépendants et équiprobables)

$$TES \simeq 2TES_I = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3}{M-1}\frac{E_s}{N_0}}\right) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3\log_2(M)}{M-1}\frac{E_b}{N_0}}\right)$$

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Chaine passe-bas équivalente à la modulation M-PSK

(Symboles supposés indépendants et équiprobables) (Critère de Nyquist + Filtrage adapté)

Modulation Linéaire sur fréquence porteuse Performances des modulations sur porteuse

Comparaison PSK/QAM en termes d'efficacité en puissance

Pour un ordre M donné:

◄ efficacité en puissance pour PSK Même efficacité spectrale