Tabelle 10.2: Vergleich der Zusammenhänge von Rotation und Translation, am Beispiel von zwei Dimensionen

Billiciision	ion		
Rotation		Translation	
Ortsvektor	$\vec{r} = r(\theta)$	Ortsvektor	$ec{r} = xec{e_x} + yec{e_y}$
Drehwinkel	$\Delta heta = heta_{ m Ende} - heta_{ m Anfang}$	Verschiebung	$\Delta \vec{r} = \Delta x \vec{e_x} + \Delta y \vec{e_y}$
Bogenlänge	$s = r \cdot \Delta \theta$	Strecke	$\mathrm{s}=\sqrt{\left(\Delta x\right)^2+\left(\Delta y\right)^2}$
Winkelgeschwindigkeit	$\omega = \dot{\theta}(t) = \frac{\mathrm{d}\theta(t)}{\mathrm{d}t}$	Geschwindigkeit	$\vec{v} = \dot{\vec{r}} = \frac{\mathrm{d}\vec{r}(t)}{\mathrm{d}t}$
Winkelbeschleunigung	$\alpha = \frac{\mathrm{d}\omega(t)}{\mathrm{d}t} = \frac{\mathrm{d}^2\theta(t)}{\mathrm{d}t^2}$	Beschleunigung	$\vec{a} = \frac{d\vec{v}(t)}{dt} = \frac{d^2 \vec{r}(t)}{dt^2}$
Gleichungen für den Fall konstanter Winkelbeschleunigung	$\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ $\omega^2(t) = \omega_0^2 + 2\alpha\Delta\theta$	Gleichungen für den Fall konstanter Winkelbeschleunigung	$ec{r} = ec{r}_0 + ec{v}_0 t + rac{1}{2} ec{a} t^2$ $ec{v}^2(t) = ec{v}_0^2 + 2 ec{a} \Delta ec{r}$
Drehmoment	$ec{M}=ec{r} imesec{F}$	Kraft	$ec{F}$
Trägheitsmoment	I	Masse	m
Zweites Newtonsches Axiom	$ec{M}_{ m res} = I ec{lpha} = rac{{ m d}ec{L}}{{ m d}t}$	Zweites Newtonsches Axiom	$\vec{F}_{\mathrm{res}} = m\vec{a} = rac{\mathrm{d}\vec{p}}{\mathrm{d}t}$
Arbeit	$\mathrm{d}W = ec{M}\mathrm{d}ec{ heta}$	Arbeit	$\mathrm{d}W = \vec{F}\mathrm{d}\vec{s}$
Kinetische Energie	$E_{ m kin}=rac{1}{2}I\omega^2$	Kinetische Energie	$E_{ m kin}=rac{1}{2}mv^2$
Leistung	$P = \vec{M} \vec{\omega}$	Leistung	$P = \vec{F} \vec{v}$
Drehimpuls	$\vec{L} = I\vec{\omega} = \vec{r} \times \vec{p}$	Impuls	$ec{p}=mec{v}$