UB10 – Tutorium Mathe A WS19/20

A. Hanke

Tutorium: 19/12/2019

Aufgabe 1

Wollen Grenzwerte der Folgen bestimmen:

(1)
$$a_n = \frac{n^2}{(n+1)(n+2)};$$
 (2) $a_n = \frac{n^2}{n+1} - \frac{n^3}{(n+1)(n+2)};$ (3) $a_n = n - 5 - \frac{n^3}{n^2+5}$ (4) $a_n = \cos n\pi;$ (5) $a_n = \cos n(n+1)\pi$

(1)

$$a_n = \frac{n^2}{n^2 + 3n + 2} = \frac{n^2}{n^2(1 + \frac{3n}{n^2} + \frac{2}{n^2})} = \frac{1}{1 + \frac{3}{n} + \frac{2}{n^2}} \quad \lim_{n \to \infty} a_n = 1$$

(2)

 $\lim_{n\to\infty}=2$

(3)

 $\lim_{n\to\infty} = -5$

(4)

 $a_n = \cos n\pi$ hat folgende Werte zu begin:

- $a_0 = 1$
- $a_1 = -1$
- $a_2 = 1$

Entspricht der Folge: $(-1)^n$. Diese Konvergiert nicht.

(5)

Hier von interesse ist die enthaltene Reihe:

$$a'_n = n(n+1)$$

Diese Reihe beinhaltet nur gerade Zahlen. Daher ist die Folge a_n :

$$a_n = \cos(n(n+1)\pi) = 1$$
 $\forall n$

Aufgabe 2

$$a_{n+1} = \frac{|a_n|}{2a_n - 1}$$
 $a_1 = b$ $b = \left\{-\frac{1}{4}, \frac{1}{4}\right\}$

(a)

Annahme: $a_n \to a$

Bedingung an a nach rekursionsformel:

$$\lim_{n\to\infty}\frac{|a_n|}{2a_n-1}=\frac{|a|}{2a-1}$$

Nun gilt das a_n gegen a läuft, also: $\lim a_n = a$.

$$a = \frac{|a|}{2a-1} \Leftrightarrow \left\{ \begin{array}{l} 2a^2 - a = |a| \\ 2a^2 - a - |a| = 0 \end{array} \right.$$

Nun können wir zwei Fälle betrachten:

1) Näherung aus dem Positiven $a \ge 0$: a = |a|

$$\begin{array}{ccc} 0 & = 2a^2 - 2a \\ & = a(a-1) \end{array} \right\} \, a = \{0, \, 1\}$$

2) Näherung aus dem Negativen a < 0: $a = -|a| \Leftrightarrow -a = |a|$

$$\begin{array}{ll}
0 & = 2a^2 - a - (-a) \\
& = 2a^2
\end{array} \right\} a = \{0\}$$

(b)

Wir Berechnen der ersten drei weiteren a_n :

$n = 1 \rightarrow -0.25$

n = 2 -> -0.16666666666667

$n = 3 \rightarrow -0.125$

$n = 4 \rightarrow -0.1$

Die obere Beschränktheit zeigen wir nun über die Definition dieser $\forall n \in \mathbb{N}: a_n \leq a$. Also zeigen, dass $a_n < 0$

• $a_1 < 0$

• Annahme: $a_n < 0$

$$a_{n+1} = \frac{|a_n|}{2a_n - 1} = \underbrace{\frac{\stackrel{>0}{-a_n}}{2a_n - 1}}_{\stackrel{>0}{< 0}} < 0.$$

Nun zeigen, dass Folge monoton steigt. Dies ist der Fall, wenn $a_{n+1} - a_n > 0$

$$a_{n+1} - a_n = \frac{-a_n}{2a_n - 1} - a_n$$

$$= \frac{-a_n - 2a_n^2 - a_n}{2a_n - 1}$$

$$= \frac{\stackrel{<0}{-2a_n^2 - 2a_n}}{\stackrel{<0}{2a_n - 1}}$$

$$> 0$$

(c)

Wir beachten den Hinweis:

$n = 1 \rightarrow 0.25$

$n = 2 \rightarrow -0.5$

$n = 3 \rightarrow -0.25$

Und sehen das die Reihe nicht Monoton ist. Auffällig ist, das ab n=2 die Folge negativ ist und das:

$$a_3^{b=\frac{1}{4}} = a_1^{b=-\frac{1}{2}}$$

Somit gilt:

$$a_{n+2}^{b=\frac{1}{4}} = a_n^{b=-\frac{1}{2}}$$

Konvergenz nicht gleich Monotonie und/oder Beschränktheit!

folge ist nicht monoton und nicht beschränkt aber konvergiert.

Diese

(d)

Für $a = -\frac{1}{4}$ konvergiert die Folge (oben beschränkt und monoton steigend). Aus (a) Fall 2 wissen wir, das diese Reihe den Grenzwert 0 hat. Da die Reihe für beide b gleiches verhalten zeigt gilt dies auch für das andere b.

Aufgabe 3