

V1 Update & Q1 Roadmap

The vLLM Meetup at Google Cloud

The vLLM Team

Agenda

- V1 Deep Dive (Woosuk)
- vLLM's Q1 Roadmap (Simon)

Build the fastest and
easiest-to-use open-source
LLM inference & serving engine

√LLM Today

https://github.com/vllm-project/vllm

\$ pip install vllm

34.5K Stars

vLLM API (1): LLM class

A Python interface for offline batched inference

```
from vllm import LLM

# Example prompts.
prompts = ["Hello, my name is", "The capital of France is"]
# Create an LLM with HF model name.
llm = LLM(model="meta-llama/Meta-Llama-3.1-8B")
# Generate texts from the prompts.
outputs = llm.generate(prompts) # also Llm.chat(messages)]
```

vLLM API (2): OpenAI-compatible server

A FastAPI-based server for online serving

Server

```
$ vllm serve meta-llama/Meta-Llama-3.1-8B
```

Client

```
$ curl http://localhost:8000/v1/completions \
   -H "Content-Type: application/json" \
   -d '{
        "model": "meta-llama/Meta-Llama-3.1-8B",
        "prompt": "San Francisco is a",
        "max_tokens": 7,
        "temperature": 0
}'
```

vLLM V1

Woosuk Kwon

What is vLLM V1?

Re-architect the "core" of vLLM

based on the lessons from V0 (current version)

Unchanged

- User-level APIs
- Models
- GPU Kernels
- Utility functions
- ...

Changed

- Scheduler
- Memory Manager
- Model Runner
- API Server
- ..

Why vLLM V1?

- Main goals:
 - Simple & easy-to-hack codebase
 - High performance with near-zero CPU overheads
 - Combining all key optimizations & enabling them by default

Key changes in vLLM V1

1. Optimized engine loop & API server

2. Simplified scheduler

3. Clean implementation of distributed inference

4. Piecewise CUDA graphs

Optimized Engine Loop & API Server

Goal: Make sure GPU is not stalled

- By pre-processing
 - E.g., converting JPEG images into input tensors (resizing, cropping, ...)

- By post-processing
 - E.g., de-tokenizing output token IDs into output strings

- By HTTP request handling
 - E.g., streaming outputs to 100s of concurrent users

Optimized Engine Loop & API Server (cont'd)

- Two-process approach
 - Process 0 (Frontend): Pre-/post-processing & API Server
 - Importantly, de-tokenization happens in Process 0
 - Process 1 (EngineCore): Schedule & execute the model every step
 - A busy loop that is NOT blocked by Process 0

Optimized Engine Loop & API Server (cont'd 2)

- We are not there yet!
 - How to handle emerging modalities such as videos and audios?
 - It would be increasingly difficult to build a fast & reliable server
- We would like to solicit for more community engagement & contributions

Simplified Scheduler

- Synchronous single-step scheduler
- Chunked prefills (aka Dynamic SplitFuse) by default
 - The scheduling decision is simply represented as a dictionary of {request_id: num_tokens}

Simplified Scheduler (cont'd)

- Unification of "prefill" and "decode"
 - In V1, there's no concept of prefill and decode
 - Schedule based on the difference between num compute tokens and len(all token ids)
- Ex1) "Prefill" & "Decode"

Schedule 1 token ("decode")

Simplified Scheduler (cont'd)

- Unification of "prefill" and "decode"
 - o In V1, there's no concept of prefill and decode
 - Schedule based on the difference between num_compute_tokens and len(all_token_ids)
- Ex2) Chunked prefills

Simplified Scheduler (cont'd)

- Unification of "prefill" and "decode"
 - o In V1, there's no concept of prefill and decode
 - Schedule based on the difference between num_compute_tokens and len(all_token_ids)
- Ex3) Prefix caching

Simplified Scheduler: Next Steps

 Current: First-come-first-served policy is baked in the scheduler

- Next step 1: Support various scheduling policies
 - Priority-based scheduling
 - Fair scheduling
 - Predictive scheduling

- Next step 2: Pluggable scheduler
 - E.g., workload-specific scheduler
 - E.g., different schedulers for different hardware backends

V0 Architecture

V0 Architecture Scheduler (Proc 0) Worker 0 Worker N-1 (Proc 0) (Proc N-1) Input Prep. **Broadcast** Model Model Sampler

- Problem 1: Broadcasting whole input <u>tensors</u> every step
 - Significant communication overheads

V0 Architecture Scheduler (Proc 0) Worker 0 Worker N-1 (Proc N-1) (Proc 0) Input Prep. Broadcast Model Model Sampler

- Problem 1: Broadcasting whole input tensors every step
 - Significant communication overheads

- Problem 2: Scheduler and Worker 0 share the same process
 - Increased complexity due to the asymmetric architecture

- Broadcasting the scheduler outputs (Python data structures)
 - Key optimization: Only sending the diff every step by caching the request states in the worker

- Symmetric architecture
 - Each worker has its own process
 - No code divergence between worker 0 and other workers
- Overall, most of the code for distributed inference is abstracted away

Piecewise CUDA Graphs

V0: Single CUDA graph for the entire model

 Pros: Minimal CPU overheads in model execution

- Cons: Limited flexibility
 - Static shapes are required
 - No CPU operations are allowed
 - → Increased development burden

Piecewise CUDA Graphs (cont'd)

Piecewise CUDA Graphs (cont'd)

- V1: Splits the model into pieces
 - Runs the attention op in eager-mode PyTorch
 - Runs other ops with CUDA graphs
 - Easy to capture, since the ops are token-wise
 - Critical to capture the all-reduce op
- Pros: Maximum freedom in implementing the attention op
 - No restriction on shapes
 - Any CPU operations are allowed

- Cons: CPU overheads unhidden by CUDA graphs could slow down the model execution
 - Negligible for 8B+ models on H100

Use Case: Cascade Attention for System Prompts

- What is system prompt?
 - A text prefix describing the task, style, tools, safety rules, etc.
 - Typically shared for all requests to the model
 - The length varies a lot by models & applications
 - E.g., Copilot: ~570 tokens, ChatGPT-4o: ~1200 tokens, Sonnet 3.5: ~2400 tokens

```
You are an AI programming assistant.
When asked for your name, you must respond with "GitHub Copilot".
Follow the user's requirements carefully & to the letter.
Follow Microsoft content policies.
Avoid content that violates copyrights.
...
```

Use Case: Cascade Attention for System Prompts

- What is system prompt?
 - A text prefix describing the task, style, tools, safety rules, etc.
 - Typically shared for all requests to the model
 - The length varies a lot by models & applications
 - E.g., Copilot: ~570 tokens, ChatGPT-4o: ~1200 tokens, Sonnet 3.5: ~2400 tokens
- What is cascade attention?
 - Proposed by <u>Zihao Ye (UW) et al.</u>
 - A GPU kernel trick to optimize attention with shared KV cache
 - Was difficult to integrate because the trick makes the kernel more dynamic, making it less compatible with CUDA graph

Use Case: Cascade Attention (cont'd)

- Thanks to piecewise CUDA graphs, vLLM V1 was able to smoothly integrate cascade attention and enable it by default
 - Automatically detects the system prompt & applies the optimization

- Performance improvements
 - ShareGPT + system prompts of varying lengths
 - 0-50% throughput increase
 - Makes the system prompt almost free

Potential Use Cases of Piecewise CUDA Graphs

Piecewise CUDA graphs will allow vLLM to easily integrate new optimizations such as:

- KV cache offloading to CPU memory (#11532)
- KV cache offloading to disk
- Sparse KV cache
- Brand-new attention algorithms
- ...

Other Important Enhancements in V1

- FlashAttention 3 integration
 - Also available in V0
- Prefix caching for image inputs
 - Useful for multi-turn chat with images
- Miscellaneous Python-level optimizations
 - Avoid frequently creating new objects
 - Minimize garbage-collection overhead

• ...

V1 Engine Performance (Llama 3 8B)

- Same throughput as V0 + 8-step scheduling
- Lower TTFT & TPOT than V0 + 8-step scheduling

V1 Current Status

- Will do alpha release very soon
 - The code can be found in <u>vllm/v1/</u>
- Set VLLM USE V1=1 to use the V1 engine
 - Same end-user APIs as V0 (OpenAI server & LLM class)
- Supported models
 - Decoder-only Transformers (e.g., Llama, Mixtral)
 - Llava-style VLMs (e.g., Pixtral, Qwen2-VL)
- Features
 - Supported: chunked prefills, prefix caching, tensor parallelism
 - WIP: LoRA, spec decoding, pipeline parallelism, structured outputs
- Only supports NVIDIA GPUs for now
 - Actively working to also integrate other hardware backends

Q1 Roadmap

Simon Mo

vLLM 2025 Vision

- 1. Support **Emerging** Models
- 2. Production Deployments
- 3. Open Architecture

1. Support **Emerging Models**

...GPT4o level model in 1 GPU, and very large models

- Small yet mighty models + large models coexist
- System Optimizations for:
 - KV Cache
 - o MoE
 - Long Context
- Tailored Inference System for:
 - Reasoning
 - Coding
 - Agents
 - Creative Writing
- vLLM being used in data curation and RLHF

Illustration of adding multimodal capabilities to Llama 3

2. Production Deployment

...hundreds of thousands of GPUs scale

- The year of productionization of scaled deployments
- Recipes and ecosystems for routing, caching, and scaling
- High performance by default:
 - Quantization (< FP8, KV Cache, Attention)
 - Speculative Decoding
 - Predicted and Structured Outputs
- Cluster solutions increase in importance; support for prefill disaggregation
- vLLM being tuned for specific models, leading hardwares, and extreme workloads

3. Open Architecture is Our Key to Adoption

- A community of passionate users, adopters, and contributors
- vLLM can be easily extended and modified
 - Forks and monetization are welcomed
- Technically
 - We will ship a performant yet modular V1 architecture.
 - o torch.compile as an extension point for fusion
 - o Researchers will build on it for new ideas
 - Users will extend it with private use cases
- A coordinated engineering organization spanning multiple companies
- A positive ROI for everyone involved

Our Q1 Roadmap

- roadmap.vllm.ai
- vLLM Core
- Emerging Features
- Ecosystem Projects

vLLM Core

- Ship a performant and modular V1 architecture
 - V1 on by default, spec decode, hybrid memory allocator and more!
- Support large and long context models
 - Sparsity in attention and MoEs
 - Disaggregated prefill support
- Improved performance in batch mode
 - o RLHF
 - Long Generation

Built-in RLHF support

- If vLLM is an OS,
 - User requests are normal processes running on the OS
 - And the OS also provides "system call" to control the behavior of the system
- RLHF community has been a key driving-factor for adding new "system calls", and vLLM has been their primary inference engine
 - OpenRLHF, veRL, open_instruct, LLaMA-Factory, ...
- vLLM provides built-in "system calls" that are difficult to implement out-of-tree
 - <u>Sleep mode</u>: unmap the kv cache and model weights, put vLLM in sleep mode. Give up
 GPU resource temporarily for training or other models.
- RLHF frameworks can also easily customize and add new "system calls"
 - Provide a new worker class, and use Ilm.collective_rpc to call the new functions.
 - For more details, please check the <u>PR</u>.

Features

- Model Support
 - Arbitrary HF model
 - Alternative checkpoint format
- Hardware Support
 - Blackwell
 - Improved Tranium/Inferentia, Gaudi
 - Productionize and support large scale deployment of vLLM on TPU
 - Out of tree support for IBM Spyre, Ascend, Tenstorrent
- Optimizations
 - AsyncTP/Flux
 - FlashAttention
- Usability
 - Multi-platform wheels and distributions

Ecosystem Projects

- Distributed batch inference
- Large scale serving
- Prefix aware router
- Multi-modality output

vLLM ecosystem project: LLM inference stack

A stack on top of vLLM!

LLMStack: Monitoring Web UI (e.g. Grafana) Monitoring A Stack on top of VLLM User Requests Router Observability gateaway Metrics (e.g. Prometheus) vLLM engines **vLLM** engines **vLLM** engines **<---**Horizontal autoscaling module (model A) (model B) (model C) Sharable KV cache storage (LMCache) Cloud / production environments (e.g. K8s / Ray)

Key features of LLMStack

One-click deployable on kubernetes via helm install

- Optimized performance
 - Smart router & KV cache offloading (LMCache)
 - Handle 2x more QPS with lower TTFT than commercial alternative!

Cluster-wide observability dashboard

Thank you sponsors (funding compute!)

novita.ai 🕪 NVIDIA SEQUOIA 📙

Our Goal

Build the fastest and
easiest-to-use open-source
LLM inference & serving engine

Building the fastest and easiest-to-use open-source LLM inference & serving engine!

https://github.com/vllm-project/vllm

https://slack.vllm.ai

https://twitter.com/vllm_project

https://opencollective.com/vllm