第三章 压力容器用材以及环境和时间 对其材料性能的影响

MATERIALS FOR PRESSURE VESSELS
AND INFLUENCES OF ENVIRORMENT AND
TIME ON PROPERTIES OF THESE MATERIALS

第四节 压力容器材料选择

3.4 压力容器材料选择

- 3.4.1 压力容器用钢的基本要求
- 3.4.2 压力容器钢材的选择

3.4 压力容器材料选择

教学重点:

压力容器钢材的选择。

教学难点:

无

3.4 压力容器材料选择

压力容器材料费用占总成本的比例很大,一般超过30%。 材料性能对压力容器运行的安全性有显著的影响。选材不当, 不仅会增加总成本,而且有可能导致压力容器破坏事故。

压力容器材料多种多样

钢——用的最多 有色金属 非金属

压力容器用钢 基本要求

较高的强度

良好的塑性、韧性、制造性能和与介质相容性

化学成分的设计 零件表面改性

本节对压力容器用钢的基本要求作进一步分析。

一、化学成分

钢材化学成分对其性能和热处理有较大的影响。

压力容器用钢的含碳量一般不应大于0.25%

2. 钒、钛、铌等 — 在钢中加入钒、钛、铌等元素, 可提高钢的强度和韧性。

3. S、P钢中最主要的有害元素

硫——能促进非金属夹杂物的形成,使塑性和韧性降低。

磷——能提高钢的强度,但会增加钢的脆性,特别是低温脆性。

将硫和磷等有害元素含 量控制在很低水平,即 大大提高钢材的纯净度

可提高钢材的韧性、抗应 变时效性能、抗回火脆化性能、抗中子辐照脆化能力和耐腐蚀性能。

与一般结构钢相比,压力容器用钢对硫、磷、氢等有害杂质元素含量的控制更加严格。

例如,中国压力容器用钢的硫和磷含量分别应低于0.020%和0.030%。随着冶炼水平的提高,目前已可将硫的含量控制在0.002%以内。

化学成分对热处理也有决定性的影响,如果对成分控制不严,就达不到预期的热处理效果。

二、力学性能

材料的力学性能是指材料在不同环境(温度、介质等) 下,承受各种外加载荷时所表现出的力学行为。

钢材的力学行为,不仅与钢材的化学成分、组织结构 有关,而且与材料所处的应力状态和环境有密切的关系。 钢材的力学性能主要是表征强度、韧性和塑性变形能力的判据,是机械设计时选材和强度计算的主要依据。

a. 压力容器设计中,常用强度判据

b. 压力容器设计中,常用塑性判据

c. 压力容器设计中,常用韧性判据

抗拉强度Rm 屈服点ReL 持久极限Rtn 蠕变极限Rtn 疲劳极限 延伸率A 断面收缩率Z

冲击吸收功KV2

韧脆转变温度

断裂韧性

韧性

韧性对压力容器安全运行具有重要意义。在载荷作用下, 压力容器中的缺陷常会发生扩展, 当裂纹扩展到某一临界尺寸 时将会引起断裂事故, 此临界裂纹尺寸的大小主要取决于钢材 的韧性。

如果钢的韧性高,压力容器所允许的临界裂纹尺寸就越大,安全性也越高。

为防止发生脆性断裂和裂纹快速扩展,压力容器常选用韧性好的钢材。

夏比V型缺口冲击吸收功 A_{kv} 对温度很敏感_,能较好地反映材料的韧性,与断裂韧性有较好的数值联系,世界各国压力容器规范标准都对 A_{kv} 提出了要求。

如Q345R(16MnR)钢板,要求在0 $^{\circ}$ C时的横向(指冲击试件的取样方向) A_{kv} 不小于41J。当使用温度低于或等于-20 $^{\circ}$ C时,需要考虑低温冲击韧性。

在一般设计中,力学性能判据数值可从相关的规范标准中查到。但这些数据仅为规定的必须保证值,实际使用的材料是否满足要求,除要查看质量证明书外,有时还要对材料进行复验;必要时,还应模拟使用环境进行测试。

三、制造工艺性能

◇冷加工的要求

制造过程中进行冷卷、冷冲压加工的零部件要求钢材有良好的冷加工成型性能和塑性,其延伸率 A 应在17%以上。为检验钢板承受弯曲变形能力,一般应根据钢板的厚度,选用合适的弯心直径,在常温下做弯曲角度为180°的弯曲实验。试样外表面无裂纹的钢材方可用于压力容器制造。

三、制造工艺性能

◇焊接的要求

可焊性:指在一定焊接工艺条件下,获得优质焊接接头的难易程度。钢材的可焊性主要取决于它的化学成份,其中影响最大的是含碳量。含碳量愈低,愈不易产生裂纹,可焊性愈好。

合金元素——影响通常是用碳当量 C_{eq} 来表示。碳当量的估算公式较多,国际焊接学会所推荐的公式为:

$$C_{eq} = C + \frac{Mn}{6} + \frac{Ni + Cu}{15} + \frac{Cr + Mo + V}{5}$$

式中的元素符号表示该元素在钢中的百分含量。

一般认为, C_{eq} 小于0.4%时,可焊性优良; C_{eq} 大于0.6%时,可焊性差。

中国《锅炉压力容器制造许可条件》中,碳当量的计算公式为:

$$C_{eq} = C + \frac{Mn}{6} + \frac{\text{Si}}{24} + \frac{\text{Ni}}{40} + \frac{\text{Cr}}{5} + \frac{\text{Mo}}{4} + \frac{\text{V}}{14}$$

按上式计算的碳当量不得大于0.45%。

3.4.2 压力容器钢材的选择

压力容器零件材 料选择综合考虑

压力容器的使用条件 相容性 零件的功能和制造工艺 材料性能 材料使用经验(历史) 综合经济性 规范标准

3.4.2 压力容器钢材的选择

作业: (p95)思考题 1, 2, 3, 4, 5