TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8157AF, TA8157AFN

STEREO HEADPHONE POWER AMPLIFIER (1.5V USE)

The TA8157AF and TA8157AFN are developed for play-back stereo headphone equipments at low voltage operation (1.5V use). Those are built in bass boost function.

FEATURES

- OCL (Output Condenser Less)
- Built-in ripple filter
- Output power (V_{CC} = 1.5V, f = 1kHz, THD = 10%, R_L = 16Ω)
 P_O = 9mW (Typ.)
- Voltage gain : Gy = 24dB (Typ.)
- Built-in boost amplifier
- Built-in power switch
- Built-in muting circuit
- Low quiescent supply current (Ta = 25°C)
 ICCO = 8mA (Typ.)
- Excellent ripple rejection ratio : RR = 55dB (Typ.)
- Low noise : $V_{no} = 25 \mu V_{rms}$ (Typ.)
- Operating supply voltage range (Ta = 25°C)
 V_{CC} (opr) = 0.9~2.2V

Weight SSOP24-P-300-1.00 : 0.32g (Typ.) SSOP24-P-300-0.65A : 0.14g (Typ.)

BLOCK DIAGRAM

1 2001-06-25

MAXIMUM RATINGS (Ta = 25°C)

CHARACTER	RISTIC	SYMBOL	RATING	UNIT	
Supply Voltage		٧ _{CC}	4.5	V	
Output Current		I _{O (Peak)}	100	mA	
Power Dissipation	TA8157AF	P _D (Note)	400	mW	
	TA8157AFN	PD (More)	500		
Operating Temper	ature	T _{opr}	- 25∼75	°C	
Storage Temperati	ure	T _{stg}	- 55∼150		

(Note) Derated above $Ta = 25^{\circ}C$ in the proportion of $3.2mW/^{\circ}C$ for TA8157AF, and of 4mW/°C for TA8157AFN.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified : V_{CC} = 1.2V, R_L = 16 Ω , R_g = 600 Ω , f = 1kHz, T_a = 25°C SW₁ : a, SW₂ : a, SW₃ : b, SW₄ : a, SW₅ : a SW₆ : a, SW₇ : ON, SW₈ : OPEN

	CHARACTERISITC	SYMBOL	TEST	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent Supply Current		I _{CC1}	1	Power off, SW ₁ : b SW ₂ : b	_	0.1	5	μ A
		I _{CC2}		Power Amp. off, SW ₂ : b	_	2.4	4.0	mA
		ICC3		V _{in} = 0	_	8	11.5	
Power amplifier stage	Voltage Gain 1	G _{V1}	2	$V_{O(A)} = V_{O(B)} = -22dBV$	22	24	26	dB
	Channel Balance	CB1			_	0	1.5	
	Output Power 1	P _{o1}	2	V _{CC} = 1.5V THD (A) = THD (B) = 10%	5	9	ı	mW
	Output Power 2	P _{o2}		V _{CC} = 1.5V THD (A) = THD (B) = 10% V _{in} (A) = V _{in} (B) = -V _{in} (C) f = 100Hz, * BTL operation SW ₃ : a, SW ₅ : b	8	14	ı	
	Total Harmonic Distortion	THD	2	$P_{O(A)} = P_{O(B)} = 1mW$	_	0.6	1	%
	Output Noise Voltage	V _{no}	2	BPF = 20 Hz \sim 20kHz, SW ₄ : b	_	25	40	μ V $_{rms}$
	Cross Talk	СТ	2	$V_0 = -22 dBV, SW_4 : b$	35	42	_	
	Ripple Rejection Ratio	RR1	2	$V_{CC} = 1.0V$, $f_r = 100Hz$ $V_r = -32dBV$, SW_7 : OPEN	45	55	_	dB
	Muting Attenuation	ATT1	2	$V_0 = -22 dBV, SW_2 : a \rightarrow b$	_	73	_	

2001-06-25 6

CH	HARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Bass Boost Function Stage	ADD Amp. Voltage Gain	G _{V2}	2	$V_{in}(A) = V_{in}(B), R_L = 12k\Omega$ $V_{o}(ADD) = -22dBV$ $SW_3 : a/b$	15	17.5	20	dB
	ADD Amp. Maximum Output Voltage	V _{om2}	2	$V_{in}(A) = V_{in}(B)$, $R_L = 12k\Omega$ THD (ADD) = 1%, SW_3 : a/b	80	130	_	mV _{rms}
	BST Amp. Voltage Gain	G _{V3}	2	$V_O = -37 dBV$, $R_L = 16 k\Omega$ SW_6 : b	14	16.5	19	dB
	BST Amp. Maximum Output Voltage	V _{om3}	2	THD (BST) = 3%, R_L = 16 $k\Omega$ SW ₆ : b	55	90	_	mV _{rms}
	BST Amp. Attenuation	ATT3	2	$V_0 = -32 dBV, SW_3 : a \rightarrow b$ SW ₆ : b	_	73	_	dB
Ripple Filter Output Voltage V		V _{RF} OUT	2	$V_{CC} = 1V$, $I_{RF} = 20$ mA	0.9	0.93	_	V
		RR4	2	$V_{CC} = 1V$, $I_{RF} = 20mA$ $f_r = 100Hz$, $V_r = -37dBV$ SW_7 : OPEN	35	43	_	dB
Equalizer On Resistance		RON	1	I_{EQ} = 100 μ A, SW ₃ : a SW ₈ : ON	_	60	_	Ω
Power Switch	On Current	I ₁₁	1	$V_{CC} = 0.9V, V_4 \ge 0.5V$ $SW_1 : c, SW_2 : b$	5	_		μΑ
	Off Voltage	V ₁₁	1	$V_{CC} = 0.9V, V_4 \le 0.2V$ SW ₁ : d, SW ₂ : b	0	_	0.3	٧
Mute Switch	Off Current	I ₁₀	1	$V_{CC} = 0.9V, I_{CC} \ge 4.5 \text{mA}$ $SW_2 : c$	5	_	_	μΑ
	On Voltage	V ₁₀	1	$V_{CC} = 0.9V, I_{CC} \le 3.5 \text{mA}$ $SW_2 : d$	0	_	0.3	٧
Boost Switch	Off Current	I ₁	1	$V_{CC} = 0.9V$, $I_{EQ} = 100 \mu A$ $V_2 \ge 0.7V$, $SW_3 : c$, $SW_8 : ON$	5			μΑ
	On Voltage	V ₁	1	$V_{CC} = 0.9V$, $I_{EQ} = 100 \mu A$ $V_2 \le 0.2V$, $SW_3 : d$, $SW_8 : ON$	0.6	_	0.9	٧

7 2001-06-25