Expected value and variance of Negative Binomial (r, p) random variables.

Think: X is Negative Binomial (r, p)

then $X = X_1 + X_2 + \dots + X_r$ where the X_i 's are independent Geometric(p)

So $E(X) = E(X_1 + X_2 + \dots + X_r)$ random variables. $= E(X_1) + E(X_2) + \dots + E(X_r)$ $= C(X_1) + C(X_2) + \dots + C(X_r)$ $= C(X_1) + C(X_2) + \dots + C(X_r)$ also $Var(X_1) = Var(X_1 + X_2 + \dots + X_r)$ $C(X_1) = C(X_1) + \dots + C(X_r)$ independent $= C(X_1) + \dots + C(X_r)$ $= C(X_1) + \dots + C(X_r)$ = C(

One more note: It takes at least r trials to reach the rth success, so X must be r or larger.

 $P_{X}(x) = P(X=r) = {x-1 \choose r-1} pq$ if x < r then binomial coefficient is 0.

safe to ignore x < r here.

With that in mind, you know if you have a random variable defined on r, r+1, r+2, to end to the potential values your random variable night be negative binomial (r, p).