

## **COMP9020**

Foundations of Computer Science

Lecture 1: Course Introduction

# Online chat and Pre-course polls



Lecture chat



Pre-course poll

1

# Acknowledgement of Country

I would like to acknowledge and pay my respect to the Bedegal people who are the Traditional Custodians of the land on which UNSW is built, and of Elders past and present.

## Outline

#### Who am I?

Why are we here?

How will you be assessed?

What do I expect from you?

3

#### COMP9020 22T3 Staff

Lecturer: Paul Hunter

Email: paul.hunter@unsw.edu.au

Lectures: Tuesdays 3pm-5pm and Wednesdays 12-2pm
Consults: Wednesdays 8:30-9:30pm and Sundays 8-9pm
Research: Theoretical CS: Algorithms, Formal verification

#### Interactions

#### Lectures:

- Online stream
- Recordings available on echo360 (through Moodle)

#### Consultations:

- Zoom: https://unsw.zoom.us/j/87192636642 (passcode: 1+1=2)
- Group-based, student-driven
- Wiki for questions

#### Other points of contact:

- Formatif Learning Environment (being set up)
- Course forums
- Email

## Outline

Who am I?

#### Why are we here?

How will you be assessed?

What do I expect from you?

What is this course about?

What is Computer Science?

## Course Aims

Computer Science is about

#### Course Goals

By the end of the course, you should know enough to **understand** the answers to questions like:

What other questions would you like to know the answer to?





- Week 2: Set Theory
- Week 2: Formal Languages
- Week 3: Relations
- Week 4: Functions
- Week 5: Graph Theory



- Week 6: Recursion
- Week 7: Algorithmic Analysis
- Week 7: Induction



- Week 8: Boolean Logic
- Week 8: Propositional Logic



- Week 9: Combinatorics
- Week 9: Probability
- Week 10: Statistics

## Course Material

All course information is placed on the course website

www.cse.unsw.edu.au/~cs9020/

#### Content includes:

- Lecture slides and recordings
- Quizzes and Assignments
- Course Forums
- Practice questions
- Challenge questions

#### Course Material

#### Textbooks:

- KA Ross and CR Wright: Discrete Mathematics
- E Lehman, FT Leighton, A Meyer: Mathematics for Computer Science

#### Alternatives:

• K Rosen: Discrete Mathematics and its Applications

#### Outline

Who am I?

Why are we here?

How will you be assessed?

What do I expect from you?

## Assessment Philosophy

What is the purpose of assessment?

Two types of assessment:

- Formative: Quizzes, Assignments, Formatif Tasks
- Summative: Exam

## Assessment Summary

60% exam, 30% assignments, 10% quizzes:

- 5+ Formatif tasks, worth 0 marks each
- 10 quizzes, worth up to 1.25 marks each
  - Each Quiz: 4-6 threshold questions; 4-6 mastery questions
- 3 assignments, worth up to 10 marks each
- final exam (3 hours) worth up to 60 marks

Quizzes are available for 72 hours before the first lecture of the week. Assignments due on Mondays of weeks 5, 8 and 11.

#### You must achieve 40% on the final exam to pass

Your final score will be taken from your 8 best quiz results, 3 assignments and final exam.

## Late policy and Special Consideration

All assessments are submitted through the course website

#### Lateness policy

- Assignments: 5% of total grade off raw mark per 24 hours or part thereof
- Quizzes: Late submissions not accepted
- Exam: Late submissions not accepted

If you cannot meet a deadline through illness or misadventure you need to apply for Special Consideration.

## More information

View the course outline at:

https://webcms3.cse.unsw.edu.au/COMP9020/22T3/outline

Particularly the sections on **Student conduct** and **Plagiarism**.

## Outline

Who am I?

Why are we here?

How will you be assessed?

What do I expect from you?

## Learning Objectives

I am always looking for you to demonstrate:

- Your understanding of the material
- Your ability to work with the material

#### NB

How you get an answer is as, if not more important than what the answer is.

Why?

## Mathematical communication

#### Guidelines for good mathematical writing

Mathematical writing should be:

- Clear
- Logical
- Convincing

#### NB

All submitted work must be typeset. Diagrams may be hand drawn.

## How can you do well?

The best way to improve is to **practice**.

#### Opportunities for you:

- Formatif tasks proof-based questions in an environment for providing quick feedback
- Practice questions including past exam questions
  - Looking for solutions! (Post to forum)
- Challenge questions
- Textbook and other questions (links on the course website)

#### Opportunities from you:

- Post questions to the forum
- Bring questions to the lectures and/or consultations

#### I am always looking for more questions!

## Examples

#### Example (Bad)



## Examples

# Example (Good)

Ex. 2

$$(A \setminus B) \cup (B \setminus A) = (A \cap B^c) \cup (B \cap A^c)$$
 (Def.)
$$= ((A \cap B^c) \cup B) \cap ((A \cap B^c) \cup A^c)$$
 (Dist.)
$$= (A \cup B) \cap (B^c \cup B)$$
 (Dist.)
$$= (A \cup B) \cap (A^c \cup B^c)$$
 (Ident.)
$$= (A \cup B) \cap (A \cap B)^c$$
 (Def.)
$$= (A \cup B) \setminus (A \cap B)$$
 (Def.)

27

## Examples

#### Example (Good)

Ex. 4a

We will show that if  $R_1$  and  $R_2$  are symmetric, then  $R_1 \cap R_2$  is symmetric.

Suppose  $(a, b) \in R_1 \cap R_2$ .

Then  $(a, b) \in R_1$  and  $(a, b) \in R_2$ .

Because  $R_1$  is symmetric,  $(b, a) \in R_1$ ; and because  $R_2$  is symmetric,  $(b, a) \in R_2$ .

Therefore  $(b, a) \in R_1 \cap R_2$ .

Therefore  $R_1 \cap R_2$  is symmetric.

28

#### **Proofs**

A large component of your work in this course is giving **proofs** of **propositions**.

A proposition is a statement that is either true or false.

#### **Example**

Propositions:

- 3+5=8
- All integers are either even or odd
- There exist a, b, c such that 1/a + 1/b + 1/c = 4

Not propositions:

- 3 + 5
- x is even or x is odd
- 1/a + 1/b + 1/c = 4

## Proposition structure

Common proposition structures include:

```
If A then B (A \Rightarrow B)
A if and only if B (A \Leftrightarrow B)
For all x, A (\forall x.A)
There exists x such that A (\exists x.A)
```

 $\forall$  and  $\exists$  are known as **quantifiers**.

#### **Proofs**

A large component of your work in this course is giving **proofs** of **propositions**.

A proof of a proposition is an argument to convince the reader/marker that the proposition is true.

A **proof** of a proposition is a finite sequence of logical steps, starting from base assumptions (**axioms** and **hypotheses**), leading to the proposition in question.

#### **Proofs**

#### **Example**

Prove: 
$$3 \times 2 = 2 \times 3$$

$$3 \times 2 = (2+1) \times 2$$

$$= (2 \times 2) + (1 \times 2)$$

$$= (1 \times 2) + (2 \times 2)$$

$$= 2 + (2 \times 2)$$

$$= (2 \times 1) + (2 \times 2)$$

$$= 2 \times (1+2)$$

$$= 2 \times 3.$$

32

## Proofs: How much detail?

- Depends on the context (question, expectation, audience, etc)
- Each step should be justified (excluding basic algebra and arithmetic)

#### **Guiding principle**

Proofs should demonstrate your ability and your understanding.

不能从定理开始往下证明 不能左边等于右边

Starting from the proposition and deriving true is not valid.

#### **Example**

Prove: 0 = 1

Does this mean that 0 = 1?

#### Make sure each step is logically valid

## **Example** -20 = -2025 - 45 = 16 - 36So $5^2 - 2 \cdot 5 \cdot \frac{9}{2} = 4^2 - 2 \cdot 4 \cdot \frac{9}{2}$ So So $5^2 - 2 \cdot 5 \cdot \frac{9}{2} + \left(\frac{9}{2}\right)^2 = 4^2 - 2 \cdot 4 \cdot \frac{9}{2} + \left(\frac{9}{2}\right)^2$ $(5-\frac{9}{2})^2 = (4-\frac{9}{2})^2$ So $5 - \frac{9}{2} = 4 - \frac{9}{2}$ So

Does this mean that 5 = 4?

Make sure each step is logically valid

#### **Example**

Suppose a = b. Then,

$$a^{2} = ab$$
So 
$$a^{2} - b^{2} = ab - b^{2}$$
So 
$$(a - b)(a + b) = (a - b)b$$
So 
$$a + b = b$$
So 
$$a = 0$$

This is true no matter what value *a* is given at the start, so does that mean everything is equal to 0?

For propositions of the form  $\forall x.A$  where x can have infinitely many values:

- You cannot enumerate infinitely many cases in a proof.
- Only considering a finite number of cases is not sufficient.

#### **Example**

For all 
$$n$$
,  $n^2 + n + 41$  is prime

True for n = 0, 1, 2, ..., 39. Not true for n = 40.

The order of quantifiers matters when it comes to propositions:

#### **Example**

- For every number x, there is a number y such that y is larger than x
- There is a number y such that for every number x, y is larger than x

# Proof strategies: direct proof

| Proposition form      | You need to do this                        |
|-----------------------|--------------------------------------------|
| $A \Rightarrow B$     | Assume A and prove B                       |
| $A \Leftrightarrow B$ | Prove "If A then B" and "If B then A"      |
| $\forall x.A$         | Show A holds for every possible value of x |
| $\exists x.A$         | Find a value of x that makes A true        |

## Proof strategies: contradiction

To prove A is true, assume A is false and derive a contradiction. That is, start from the negation of the proposition and derive false.

#### **Example**

Prove:  $\sqrt{2}$  is irrational

Proof: Assume  $\sqrt{2}$  is rational ...

# Negating propositions

| Proposition form      | Its negation                       |
|-----------------------|------------------------------------|
| A and $B$             | not A or not B                     |
| A or B                | not $A$ and not $B$                |
| $A \Rightarrow B$     | A and not $B$                      |
| $A \Leftrightarrow B$ | A and not $B$ , or $B$ and not $A$ |
| $\forall x.A$         | $\exists x. \text{ not } A$        |
| $\exists x.A$         | $\forall x. \text{ not } A$        |



# Proof strategies: contrapositive 对等关系

To prove a proposition of the form "If A then B" you can prove "If not B then not A"

#### **Example**

Prove: If  $m + n \ge 73$  then  $m \ge 37$  or  $n \ge 37$ .

# Proof strategies: dealing with $\forall$

How can we check infinitely many cases?

- Choose an arbitrary element: an object with no assumptions about it (may have to check several cases)
- Induction (see week 5)

#### **Example**

Prove: For every integer n,  $n^2$  will have remainder 0 or 1 when divided by 4.

Note: "Arbitrary" is not the same as "random".