

When does this converge? (contraction mapping)

Defin: $\phi: [a,b] \to \mathbb{R}$ is called a strict contraction if $\exists \bot \bot \in (0,1)$ s.t. $|\phi(x) - \phi(x')| \le \bot |x-x|$, $\forall x,z' \in [a,b]$.

Lemma: Let $\phi: [a,b] \to \mathbb{R}$ be differentiable on [a,b] and that $\exists \bot \in (0,1)$ s.t. $|\phi'(x)| \le \bot |x \in [a,b]$. Then ϕ is a strict contraction with constant \bot .

Proof: Let $x,x' \in [a,b]$. By MVT $|\phi(x) - \phi(x')| = |\phi'(s)| |x-x'| \le \bot |x-x'|$.

Theorem (C.M.T.)

Let
$$\phi: [a_1b] \to \mathbb{R}$$
 be a strict contraction with constant $A \in (a_1)$.

Suppose that $\phi: [a_1b] \to \mathbb{R}$ be a strict contraction with constant $A \in (a_1b)$.

Suppose that $\phi: [a_1b] \to [a_1b]$ or all $x \in [a_1b]$.

(i) $\phi: [a_1b] \to [a_1b]$.

(ii) $f: [a_1b] \to [a_1b]$

(iii) the iteration $f: [a_1b] \to [a_1b]$ converges to $f: [a_1b] \to [a_1b]$.

(iii) the iteration $f: [a_1b] \to [a_1b]$ converges to $f: [a_1b] \to [a_1b]$.

(iii) the convergence is linear, with $f: [a_1b] \to [a_1b]$.

[$f: [a_1b] \to [a_1b] \to [a_1b]$.

Recall: (iii) \Rightarrow $|x_k-x| \leqslant \bigwedge^k |x_0-x|$, had.

Note: α is unknown but we can bound $|x_0-x| \leqslant b-a$ to get a My explicit bound $|x_k-a| \leqslant \bigwedge^k (b-a)$.

Proof: ϕ contraction \Rightarrow ϕ continuous, so existence of α follows from Brouwer fixed point theorem.

To show uniqueness, suppose α , $\neq x_2$ are two fixed points.

Then $|\alpha_1-\alpha_2| = |\phi(\alpha_1)-\phi(\alpha_2)| \leqslant \bigwedge^k |\alpha_1-\alpha_2| \leqslant |$

Remark: If $\phi: [a_1b] \to \mathbb{R}$ is continuously differentiable, and $x_k \neq x$ for any k, then $\lim_{k \to \infty} \frac{x_{k+1} - x}{x_k - x} = \phi'(x)$.

Proof: By the MNT \exists \S_R between x and $x_k = x_k$.

So $x_{k+1} - x = \phi(x_k) - \phi(x) = \phi'(\S_k)(x_k - x)$ so $x_{k+1} - x = \phi'(\S_k) \to \phi'(x)$ by this, the continuity of $\phi'(x_k) \to \phi'(x_k) \to \phi'(x_k)$ and the fact that $x_k \to \infty$.

Proof: (sketch!)

Step 1: Use continuity of ϕ' to find $\delta > 0$ S.t. $|\phi'(x)| \leq 1 + |\phi'(x)| \leq 1 +$