1 Introduction

Let E be a finite set, a *chain* on E is a mapping f of E into \mathbb{F}_2

If $x \in E$ then fx is the coefficient of x in f

Chains can be added to give new chains by adding coefficients for each $x \in E$

Thus chains form an additive group

Any subgroup of this group is called a chain-group on E

The zero element in a chain group is the chain in which each coefficient is zero, this is the zero chain

Let N be a chain-group on E, the elements of E are *cells* of N

A cell x is filled if fx = 1 for some chain f of N and empty otherwise

N is a full chain group if it has no empty cells

A colouring of N is a pair $\{f,g\}$ of chains of N such that for each $x \in E$ either fx = 1 or gx = 1

N is chromatic if it has a colouring, and achromatic otherwise

A chromatic chain-group is necessarily full

2 The Cycles and Coboundaries of a Graph

An edge is a loop if the ends are the same, a link if the ends are different

Graphs are assumed to be finite - both V(G) and E(G) are finite sets

A path is a sequence $(a_0, A_1, a_1, A_2, a_2, \dots, A_n, a_n)$ of vertices a_i and edges A_j such that:

1. If $1 \le i \le n$ the ends of A_i are a_{i-1} and a_i

2. If $1 \le i \le n$ then $a_{i-1} = a_i$ iff A_i is a loop

If all terms in path are distinct, then the path is simple

If all terms are distinct except that $a_0 = a_n$, then the path is *circular*