Part 1

1. a) The average number of prices per year shows an upward trend. The average price for 2015 is the largest. Some prices in my data are the same in the next 5-15 days that can be considered wrong.

b) Price generally shows an upward trend and it is not stationary. The price reached the maximum in 2015.

2.a) Rt = ln(Pt) - ln(Pt-1)

b) The largest return numbers is 0.272152. There are no pairs of consecutive days that both have extreme returns, one positie and one negative.

```
| 1999/2710 | 324.215 | 0 | 1995/1/30 | 125.857 | 0 | 2000/1/31 | 489.649 | 0 |
| 1999/2711 | 324.215 | 0 | 1995/1/31 | 125.857 | 0 | 2000/271 | 489.949 | 0 |
| 1999/2715 | 324.215 | 0 | 1995/271 | 125.857 | 0 | 2000/272 | 489.649 | 0 |
| 1999/2716 | 324.215 | 0 | 1995/272 | 125.857 | 0 | 2000/273 | 489.649 | 0 |
| 1999/2717 | 324.215 | 0 | 1995/273 | 125.857 | 0 | 2000/273 | 489.649 | 0 |
| 1999/2718 | 324.215 | 0 | 1995/273 | 125.857 | 0 | 2000/274 | 489.649 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/276 | 125.857 | 0 | 2000/274 | 489.649 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/277 | 125.857 | 0 | 2000/274 | 489.649 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/278 | 489.949 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 489.649 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 489.649 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 489.649 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 489.649 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 489.649 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 489.649 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 489.649 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 489.649 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 149.949 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 149.949 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 149.949 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 149.949 | 0 |
| 1999/2728 | 324.215 | 0 | 1995/278 | 125.857 | 0 | 2000/279 | 149.949 | 0 |
```

c) There are many sequences of zeros in the series of returns. Every year has sequences of zeros in my return data. Most of these erroneous data appear around holidays, such as the New Year and National Day.

3. The first picture is the return chart. I can see some evidence of volatility clustering. We look at the second return (2014-2016) graph. Some returns come from high volatility periods (2015/7/1-2016/3/1). Other returns come from low volatility periods (2014/1/1-2015/1/1). (Large changes tend to be followed by large changes and small changes tend to be followed by small changes.)

Part 2

1. a. Plot the data. (CH=Price)

b. Check the data is stationary or not. (Unit root test)

The price is not stationary. (t-Statistic -1.396567 > critical values, can not reject null hypothesis.

So the price has a unit root.)

c. Take first difference.

The price is stationary now. (t-Statistic -38.75791 < critical values, reject null hypothesis, so D(CH) does not have a unit root.)

d. Examine the ACF/PACF.

From the graph, we can not easy to choose AR(p), MA(q) or ARMA(p,q) model.

e. Use the AIC to search model.(Find the smallest AIC)

Dependent Variable: DCH Method: ARMA Maximum Lik Date: 11/26/19 Time: 01:27 Sample: 2 7424 Convergence achieved after 29 iterations
Coefficient covariance computed using outer product of gradients Variable Coefficient Std. Error t-Statistic AR(1) SIGMASQ 0.004138 1.632518 0.007429 0.007295 0.213538 17.95510 R-squared Adjusted R-squared S.E. of regression Sum squared resid Mean dependent var S.D. dependent var 17.88949 2374970. Akaike info criterion 8.606574 Schwarz criterion 8.608436 Log likelihood Durbin-Watson stat 31941 30 Hannan-Quinn criter 8.607214 1.997013 Inverted AR Roots

AR (1) has the smallest AIC that I found.

f. Check if the residual is white noise process.

From the graph, we can see that residual is stationary. (From the ADF test, we can also know that residual does not have a unit root.)

- g. Forecast.
- 2. a. Plot the data.

b. Check the data is stationary or not. (Unit root test)

The return is stationary. (t-Statistic -39.05245 < critical values, reject null hypothesis, so return does not have a unit root.)

c. Examine the ACF/PACF.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ф	l o	1	0.044	0.044	14.068	0.000
4	•	2	0.012	0.011	15.210	0.000
ı <u>lı</u>	l di	3	0.047	0.046	31.527	0.000
ı <u>lı</u>	l di	4	0.050	0.046	49.802	0.000
1		- 5	0.016	0.011	51.588	0.000
ø	l de	6	-0.019	-0.023	54.319	0.000
1		7	0.011	0.008	55.218	0.000
4	4	8	0.025	0.021	59.681	0.000
4		9	0.013	0.011	60.872	0.000
•	. •	10	-0.013	-0.014	62.153	0.000
4		11	0.003	0.001	62.218	0.000
4	•	12	0.021	0.018	65.649	0.000
- 1	1	13	0.021	0.020	69.009	0.000
4	•	14	0.019	0.019	71.646	0.000
- 1	1	15	0.024	0.021	75.839	0.000
•	•	16	0.007	-0.000	76.188	0.000
•	. •	17	-0.003	-0.008	76.271	0.000
•	•	18	0.005	0.002	76.438	0.000
•	. •	19	-0.003	-0.005	76.511	0.000
•	I •	20	-0.002	-0.003	76.537	0.000
•	•	21	0.007	0.007	76.890	0.000
•	I •	22	-0.002	-0.003	76.907	0.000
•	. •	23	-0.003	-0.004	76.975	0.000
ı)	1	24	0.019	0.019	79.753	0.000
•	•	25	0.005	0.003	79.923	0.000
1)	1	26	0.025	0.024	84.709	0.000
•	I •	27	-0.012	-0.016	85.705	0.000
1	I •	28	0.000	-0.003	85.705	0.000
•	•	29	0.010	0.006	86.416	0.000
1		30	0.013	0.012	87.750	0.000
ø	l d	31	-0.017	-0.017	89.909	0.000
•	I •	32	-0.004	-0.002	90.022	0.000
•	•	33	-0.003	-0.006	90.081	0.000
•	I •	34	-0.013		91.257	0.000
•	•	35	0.013	0.016	92.486	0.000
•	l •	36	0.009	0.010	93.073	0.000

From the graph, we can not easy to choose AR(p), MA(q) or ARMA(p,q) model.

d. Use the AIC to search model. (Find the smallest AIC)

Dependent Variable: RETURN_PER_DAY
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 11/26/19 Time: 01:51
Sample: 1 7424
Included observations: 7424
Convergence achieved after 39 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Statistic		Prob.
AR(1) MA(2) SIGMASQ	0.043103 0.008069 0.000448	0.005533 7.790303 0.006001 1.344541 2.43E-06 184.0810		0.0000 0.1788 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.001670 0.001401 0.021160 3.322726 18091.58 2.000193	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui	0.000380 0.021175 -4.873002 -4.870209 -4.872042	
Inverted AR Roots Inverted MA Roots	.04 00+.09i	0009i		

ARMA (1,2) has the smallest AIC that I found.

e. Check if the residual is white noise process.

Null Hypothesis: RESID03 has a unit root Exogenous: Constant Lag Length: 3 (Automatic - based on SIC, maxlag=35)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-39.70935 -3.431054 -2.861736 -2.566916	0.0000

*MacKinnon (1996) one-sided p-values.

From the graph, we can see that residual is stationary. (From the ADF test, we can also know that residual does not have a unit root.)

f. Forecast.

Part 3

1. I think the average annual return lower than I would expect from financial theory. From the graph, the average price is decreasing after 2015. I estimate the annual return will go low. However, the price generally shows an upward trend. So people still will buy the stock. Then the price will rise again. My expect from financial theory will go high.

2.

O DETUE						
Series: RETURN_PER_DAY		Year	Average price	Return per day	Average annual return	
Sample 1 7424	4	1991	78.03846154	0	0.000505991	
Observations 7424		1992	214.3719847	-0.005012542	0.002984082	
Obscivations	1424	1993	277.419272	-0.004936789	-4.69864E-05	
		1994		0.00.000	-0.00202786	
Mean	0.000380	1995		-0.007049117	-0.000832969	
Median	0.000000	1996	220.3527557	-0.005242341	0.004052537	
Median	0.000000	1997		-0.005062779	0.000583187	
Maximum	0.272152	1998		-0.004880338	-0.000395982	
Minimum	-0.233607	1999		-0.009832715		
		2000		-0.004952853	0.001761032	
Std. Dev.	0.021175	2001	582.6687969	-0.004871343		
Skewness	0.446091	2002		-0.005001873		
		2003				
Kurtosis	19.35532	2004				
		2005	283.5687538	-0.005102883	-0.000480191	
Inner Bank	00004 04	2006	396.3832462	-0.004910261	0.002618071	
Jarque-Bera	82991.81	2007	1128.124153	-0.004934491	0.003702178	
Probability	0.000000	2008	903.8584466	-0.004958961	-0.003669321	

The standard deviation of the daily returns is 0.021175. annualized s.d. in 1997 is $0.021175 * \sqrt{0.000583187} = 0.00051138$. The annualized s.d. is lower than I would expect from my reading of Section 4.4.

3.

There is no obvious correlation in the different year.

4. 3 standard deviations above the mean = 3 * 0.021175 + 0.00038 = 0.0639053 standard deviations below the mean = 0.00038 - 3 * 0.021175 = -0.063145I use excel to count them. There are no return more than 3 standard deviations above or below the mean.

5.

Compared with the standarded normal distribution, , estimates of the probability density of daily returns have:

More probability within half a standard deviation (s.d.) of the mean,

More probability three or more s.d. away from the mean.

Less overall probability elsewhere.

Date: 11/26/19 Time: 06:25

6.a). The autocorrelation of the returns

Sample: 1 7424 Included observation						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ф	l di	1 1	0.044	0.044	14.068	0.000
	#	2	0.012	0.011	15.210	0.000
ıþ	1	3	0.047	0.046	31.527	0.000
ılı I	1	4	0.050	0.046	49.802	0.000
	#	5	0.016	0.011	51.588	0.000
	•	6	-0.019	-0.023	54.319	0.000
	#	7	0.011	0.008	55.218	0.000
4	1	8	0.025	0.021	59.681	0.000
	1 4	9	0.013	0.011	60.872	0.000
•	l •	10		-0.014	62.153	0.000
	1 4	11	0.003	0.001	62.218	0.000
4	1 1	12	0.021	0.018	65.649	0.000
- 1	1	13	0.021	0.020	69.009	0.000
4	1 9	14	0.019	0.019	71.646	0.000
- 1	1	15	0.024	0.021	75.839	0.000
•	l •	16		-0.000	76.188	0.000
•	l •	17	-0.003		76.271	0.000
•	1 "	18	0.005	0.002	76.438	0.000
•	l •		-0.003		76.511	0.000
•	l •	20	-0.002		76.537	0.000
•	1 4	21	0.007	0.007	76.890	0.000
•	l •		-0.002		76.907	0.000
•	I •		-0.003		76.975	0.000
1	1 1	24	0.019	0.019	79.753	0.000
<u> </u>	1 •	25	0.005	0.003	79.923	0.000

The autocorrelation of the absolute returns

Date: 11/26/19 Time: 06:26 Sample: 1 7424 Included observations: 7424

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	_ _	1	0.298	0.298	657.99	0.000
ı	<u> </u>	2	0.289	0.220	1278.5	0.000
·		3	0.257	0.144	1770.2	0.000
1	<u> </u>	4	0.254	0.124	2249.2	0.000
ı <u> </u>	1	5	0.213	0.063	2585.0	0.000
·	· •	6	0.189	0.039	2849.4	0.000
ı	1	7	0.172	0.031	3070.2	0.000
· =	1	8	0.165	0.032	3271.8	0.000
· i	•	9	0.142	0.014	3421.3	0.000
ı	1	10	0.175	0.067	3650.0	0.000
· =	1	11	0.158	0.039	3836.0	0.000
ı <u> </u>	l •	12	0.123	-0.006	3948.2	0.000
· !	1	13	0.141	0.031	4096.3	0.000
· =	•	14	0.110	-0.007	4186.5	0.000
· !	1	15	0.162	0.068	4381.1	0.000
· 	1 9	16	0.121	0.009	4489.5	0.000
· 	1 1	17	0.139	0.034	4633.6	0.000
-	1 4	18	0.148	0.044	4797.6	0.000
ı <u> </u>	1 9	19	0.145	0.030	4953.7	0.000
ı 📰	1 1	20	0.162	0.049	5150.0	0.000
-	1 1	21	0.139	0.010	5294.8	0.000
· Þ	I •	22		-0.009	5400.0	0.000
· =	I •	23		-0.006	5496.7	0.000
-	1 1	24	0.132	0.030	5627.0	0.000
· !	1 1	25	0.170	0.071	5841.8	0.000

The autocorrelation of the squared returns

Date: 11/26/19 Time: 05:27 Sample: 1 7424 Included observations: 7424

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
———	 	1	0.199	0.199	293.13	0.000
—		2	0.167	0.133	499.82	0.000
-	•	3	0.164	0.115	699.28	0.000
—		4	0.186	0.127	955.70	0.000
-	1 4	5	0.116	0.035	1055.7	0.000
中	l •	6	0.086	0.010	1110.3	0.000
中	1	7	0.077	0.011	1154.0	0.000
ı)ı	l •	8		-0.013	1171.7	0.000
1	l •	9		-0.014	1178.5	0.000
4	1	10	0.069	0.043	1214.2	0.000
ф	1	11	0.061	0.029	1241.7	0.000
ı j ı	1 1	12	0.034	0.002	1250.5	0.000
ıþ	l •	13	0.034	0.006	1258.9	0.000
4	•	14	0.022	-0.011	1262.5	0.000
ı j ı	1	15	0.045	0.022	1277.8	0.000
4	l •	16	0.030	0.006	1284.7	0.000
ı)ı	1	17	0.043	0.021	1298.2	0.000
ф	1 1	18	0.063	0.043	1327.6	0.000
ф	1 1	19	0.052	0.021	1347.5	0.000
ıþ	1	20	0.047	0.012	1363.7	0.000
ı)ı	1 1	21	0.045	0.007	1378.9	0.000
ı)ı	1 1	22	0.045	0.005	1393.9	0.000
·þ	1	23	0.052	0.018	1414.3	0.000
中		24	0.086	0.057	1469.2	0.000
—		25	0.164	0.132	1670.2	0.000

There is almost no correlation between returns for different days. There is positive dependence between absolute returns on nearby days, and likewise for squared returns.

b). The Q-stat is shown on the graph.

The Q-stst is relatively small for the daily return, not reject null hypothesis. That the daily return is iid.

The Q-stst is relatively large for the absolute return, reject null hypothesis. That the absolute return is not iid.

The Q-stst is relatively large for the squared return, reject null hypothesis. That the squared return is not iid.

- 7. Yes. My returns data provide results that are compatible with the three stylized facts for daily returns.
- a. The distribution of returns is not normal. (We can say of the distribution: It is approximately symmetric. It has fat tails. It has a high peak.)
 - b. There is almost no correlation between returns for different days.
- c. There is positive dependence between absolute returns on nearby days, and likewise for squared returns.