4. It may be a value which does not correspond to actual value.

5. It cannot be obtained by inspection.

Uses:

1. It is used in those cases where it is necessary to average ratios which express rate of change.

2. It is also used for the construction of index numbers.

Example 47. Compute the Geometric Mean for the following data; 10, 110, 120, 50, 52, 80, 37, 60.

Solution. Let us prepare the following table:

	log x	Value of log x
Size of item (x)		1.000
10	log 10	17 (257 (257)
110	log 110	2.0414
120	log 120	2.0792
50	log 50	1.6990
52	log 52	1.7160
80	log 80	1.9031
37	log 37	1.5682
60	log 60	1.7782
n = 8		$\Sigma \log x = 13.7851$

Now

::

$$\log G = \frac{1}{n} \sum \log x = \frac{13.7851}{8} = 1.723.$$

G = antilog 1.723 = 52.84.

Example 48. Calculate the geometric mean for the following data:

<i>x</i> :	12	13	14	15	16	17
f:	5	4	4	3	2	1

Solution. Let us prepare the following table in order to calculate the geometric mean for the given data:

	and the second s	$n = \sum f = 19$	$\sum f \log x = 21.6029$
17	1.2304	1	1.2304
16	1.2041	2	2.4092
15	1.1761	3	3.5283
14	1.1461	4	4.5844
13	1.1139	4	4.4556
12	1.0792	5	5.3960
х	log x	f	$f \times log x$

Неге

$$n = 19$$

$$\log G = \frac{\sum f \log x}{n} = \frac{21.6029}{19} = 1.137.$$

$$G = \text{Antilog } (1.137) = 13.71.$$

Example 49. Find the geometric mean for the following data:

Marks :	0 10				
	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
No. of students:	4	8	10		7

wethod!

Solution. Let us prepare the following table in order to calculate the geometric mean for the given data:

Marks	Mid-value (x)	Frequency (f)	log x	$f \times log x$
0 - 10	5	4	0.6990	2.7960
10 - 20	15	8	1.1761	9.4088
20 - 30	25	10	1.3979	13.9790
30 - 40	35	6	1.5441	9.2646
40 - 50	45	7	1.6532	11.5724
	Total	$\Sigma f = n = 35$		$\sum f \log x = 47.0208$

:.

$$\log G = \frac{\sum f \log x}{n} = \frac{47.0208}{35} = 1.3435.$$

$$G = \text{antilog} (1.3435) = 22.055 \text{ marks.}$$

Example 50. Find the geometric mean of the following distribution:

Marks

$$0 - 10$$

$$10 - 20$$

$$0-10$$
 $10-20$ $20-30$

3

No. of students

Solution. Let us prepare the following table in order to calculate geometric mean for the given data:

Marks	Mid-value (x)	Frequency (f)	log x	$f \times log x$
0 - 10 10 - 20 20 - 30 30 - 40	5 15 25 35	5 8 3 4	0.6990 1.1761 1.3979 1.5441	3.495 9.4088 4.1937 6.1764
	1	n=20		$\Sigma f \log x = 23.273$

$$\log G = \frac{\sum f \log x}{n} = \frac{23.2739}{20} = 1.1637$$

 \Rightarrow

٠.

 $\log G = 1.1636.$

G = Antilog (1.1637) = 14.578 marks.

4.22 HARMONIC MEAN

Definition. The harmonic mean of n items $x_1, x_2, x_3, \dots, x_n$ is defined as;

Harmonic Mean =
$$\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_n}}$$

For example, the harmonic mean of 2, 4 and 5 is
$$=\frac{3}{\frac{1}{2} + \frac{1}{4} + \frac{1}{5}} = \frac{60}{19} = 3.16$$
.

Harmonic Mean =
$$\frac{f_1 + f_2 + f_3 + \dots + f_n}{\left(\frac{f_1}{x_1} + \frac{f_2}{x_2} + \frac{f_3}{x_3} + \dots + \frac{f_n}{x_n}\right)} = \frac{\sum f_i}{\sum f_i \times \frac{1}{x_i}}$$

4.23 MERITS, DEMERITS AND USES OF HARMONIC MEAN

Merits:

- 1. It is easy to calculate.
- 2. It is rigidly defined.
- 3. It gives largest weight to the smallest items and can be used whenever so desired.
- 4. It is a useful average when we deal with average of rates.

Demerits:

It cannot be located by inspection.

Uses:

- The harmonic mean is especially useful in averaging time rates, in finding the average
 price per unit when the data gives the amount of commodity for a given price and in the
 development of index numbers.
- 2. It is used when rates are expressed as x per y, where x is constant.

It is illustrated by the following example:

Example 51. Compute the harmonic mean for the following data:

Marks obtained	20	21	22	23	24	25
No. of students	4	2	7	1	3	,

Solution. Let us compute the following table:

x	<u>1</u>	f	f _w 1
20	0.05000		$f \times \frac{-}{x}$
21	0.05000	4	0.2000
22	0.04762	2	0.09524
23	0.04545	7	0.31815
23	0.04348	1	0.04348
25	0.04167	3	0.12501
23	0.04000	1	0.04000
	Total	18	$\Sigma f \times \frac{1}{r} = 0.82188$

$$\Sigma f \times \frac{1}{x} = 0.82188 \text{ and } n = 18.$$

: Harmonic Mean =
$$\frac{18}{0.82188}$$
 = 21.9.

4.25 CHOICE OF AN AVERAGE FOR DECISION MAKING

We have studied the various kinds of averages such as: Arithmetic mean, Median, Mode, Geometric mean and Harmonic mean. It is important to know when and how to use which average? Thus averages cannot be used indiscriminately. A judicial selection of averages for sound statistical analysis depends upon the following factors:

- (i) The nature of the variable involved.
- (ii) The purpose of analysis.
- (iii) The system of classification adopted.
- (iv) The quality, nature and availability of data.
- (v) The study of average for further statistical computation required for the enquiry in mind. We give below the suitability of some of the averages.

Arithmetic Mean. It is, generally, used in business. Whenever, we talk of average cost of production or sale or average wages, we use arithmetic mean. It is also used for further statistical calculations such as standard deviation. Arithmetic mean is not recommended while dealing with frequency distribution with extreme observations or open end classes.

Median. It is to be used for finding the average when the data is qualitative, i.e., for finding average of intelligence, honesty, beauty etc., median is the only average to be used. It is a positional average as it divides the entire series in two equal parts, 50% of actual values will be below and 50% will be above it. It is suitable when there are open extreme classes or where there are extreme

values. It is commonly used for average wages of worker as it would avoid the influence of a few very high or very low wage rates.

Mode. It is a positional average. It is to be used while dealing with open end classes. It is particularly used in business, when the businessman is not interested in the magnitude but only in the most common or fashionable value.

Geometric and Harmonic Means. Geometric mean and Harmonic mean are known as ratio averages as they are most appropriate where the data comprise rates, ratios or percentages instead of actual quantities. Geometric mean is to be used while dealing with rates and ratios. Harmonic mean is to be used in compiling special types of average rates or ratios, where time factor is variable and the act being performed, e.g., distance is constant.

4.26 COMPARISON AMONG MEAN, MEDIAN AND MODE

	Mean	Median	Mode
Average	It is a calculated	It is a positional	It is a positional
	average.	average.	average.
Calculation	It is based on all the	It is the middle most	It is the value around
	observations.	value which divides	which the items of the
		the series into two	series tend to concen-
		equal parts.	trate densely.
Treatment	It is capable of mathe-	It is not capable of	It is not capable of
	matical treatments.	mathematical treat-	mathematical treat-
		ments.	ments.
Items	It involves all the	It does not consider all	Does not consider all
	items for calculation.	the items.	the items.
Array	It does not require	Arraying of the values	Arraying of the values
	arraying.	of the items in the	of the items in the
	901	series is essential.	series is essential.
Extreme	It is affected by	It is not affected by	It is not affected by
values	extreme and abnormal	the extreme values.	the extreme values.
	values of the items in		
	the series.		
Result	There is only one	There is only one	In a series there may
	mean.	median.	be one mode or more
			than one mode or no
Day			modę.
Reliability	Most reliable measure.	Less reliable.	Less reliable.
Use	It is simple and widely	Not popular and is	Not popular and is
	used in statistical	used only in appropri-	used only in appropri-
	treatment and inter	ate cases.	ate cases.
	pretation.		