Московский Физико-Технический Институт

КАФЕДРА ОБЩЕЙ ФИЗИКИ Вопрос по выбору, 3 семестр

Связанные колебания магнитных стрелок

Студент Ришат ИСХАКОВ 513 группа Преподаватель Валерий Алексеевич Данилин

Цель работы: Изучение характера связанных колебаний магнитных стрелок двух расположенных рядом компасов.

В работе используются: неокуб, линейка, штатив, нитки, секундомер.

1. Описание установки

Две стрелки, собранные из шести магнитных шариков неокуба, подвесим на нити за середину на некотором расстоянии l друг от друга так, чтобы их оси совпадали. Под осью понимается прямая, соединяющая северный и южный конец стрелки. Стрелки будут направлены по магнитному полю Земли.

Если в начальный момент времени (t=0) мы отклоним первую стрелку, вторую при этом придерживая в состоянии равновесия, а затем одновременно отпустим обе стрелки, мы будем наблюдать уменьшение амплитуды колебаний первой стрелки, в то время как для второй стрелки угол отклонения от оси будет расти. В некоторый момент первая стрелка остановится, при этом вторая стрелка будет иметь амплитуду и энергию колебания первой стрелки в начальный момент. Из-за наличия сил трения колебания будут постепенно затухать, но заметно это становится после 4-5 колебаний, трением можно будет пренебречь.

Такое явление наложения двух колебаний называется биением. Система ведет себя как связанные маятники, но в данном случае в роли соединения выступает магнитное взаимодействие между двумя намагниченными стрелками.

Рис. 1: Поле постоянного магнита

Если отклонить стрелки одновременно в одном направлении, будем наблюдать так называемые синфазные колебания. Если отклонить стрелки в разных направлениях одновременно, будем наблюдать противофазные колебания.

Для объяснения природы таких колебания слегка изменим условия эксперимента: поместим стрелки так, чтобы их оси были параллельны. Так биения видно еще лучше, в связи с природой распределения магнитного поля стрелки. На конце стрелки поле более неоднородно, чем на перпендикуляре к оси стрелки в плоскости стрелки.

2. Теория

2.1. Уравнение движения

$$\Im \cdot \vec{\varepsilon} = \vec{M},\tag{1}$$

где \mathfrak{I} - момент инерции стрелки относительно центра масс, M - момент внешних сил.

$$M = \left[\vec{p_m}, \vec{B} \right], \tag{2}$$

где $\vec{p_m} = \vec{I} \cdot V$ - магнитный момент, который зависит от намагниченности I и объема V стрелки, B - вектор магнитной индукции внешнего поля (горизонтальная компонента магнитного поля Земли)

Для малых углов φ отклонения:

$$M = -p_m \cdot B \cdot \sin \varphi \approx -p_m \cdot B \cdot \varphi \tag{3}$$

Дополнительный момент сил:

$$M_1 = p_m \cdot B_1 \cdot (\varphi_2 - \varphi_1), \tag{4}$$

где $\vec{B_1}$ - вектор магнитной индукции, созданной второй стрелкой.

Так как стрелки одинаковы, то p_m и $\mathfrak I$ для них будем считать равными. При таких условиях запишем уравнения движения обеих стрелок.

$$\Im \ddot{\varphi}_{1} + p_{m}B\varphi_{1} - p_{m}B_{1}(\varphi_{2} - \varphi_{1}) = 0,
\Im \ddot{\varphi}_{2} + p_{m}B\varphi_{2} - p_{m}B_{1}(\varphi_{1} - \varphi_{2}) = 0.$$
(5)

Сложим и вычтем уравнения, введем замену: $\alpha_1 = \varphi_1 + \varphi_2$, $\alpha_2 = \varphi_1 - \varphi_2$, получим

$$\ddot{\alpha_1} + \omega_1 \alpha_1 = 0,$$

$$\ddot{\alpha_2} + \omega_2 \alpha_2 = 0,$$
(6)

где
$$\omega_1=\sqrt{\frac{p_mB}{\Im}},\;\omega_2=\sqrt{\frac{p_mB}{\Im}+2\frac{p_mB_1}{\Im}}=\sqrt{\frac{p_m(B+2B_1)}{\Im}}$$

В общем случае колебания такого магнитного маятника состоят из двух независимых колебаний с частотами ω_1 и ω_2 , определяемые уравнениями выше и называются нормальными частотами.

Если стрелки отклонять в одном и том же направлении на один угол, они колеблются синхронно с частотой ω_1 . Если же стрелки отклонить на одинаковый угол от положения равновесия в разных направлениях, тогда колебания происходят с частотой ω_2 .

В произвольном же случае колебаний происходят сложные колебания каждого из маятников, природа которых объясняется наличием связей. Если считать, что $B_1 \ll B$, то есть стрелки удалены на достаточное расстояние, то можно найти связь между ω_1 и ω_2 $(\sqrt{1+x}\approx 1+\frac{x}{2}).$

$$\omega_2 = \sqrt{\frac{p_m(B+2B_1)}{\Im}} = \sqrt{\frac{p_mB}{\Im}} \cdot \sqrt{1 + \frac{2B_1}{B}} \approx \omega_1(1 + \frac{B_1}{B}) \tag{7}$$

Если разность между ω_1 и ω_2 невелика по сравнению с самими величинами, мы видим периодическое увеличение и уменьшение амплитуды колебаний маятников. Такое явление называется биением. Их частота определяется:

$$\omega_6 = \omega_2 - \omega_1 \approx \frac{B_1}{B} \sqrt{\frac{p_m B}{\Im}} \tag{8}$$

Тогда $T_6 = \frac{2\pi}{\omega_6}$ есть время, за которое происходит перекачка энергии.

В первом приближении $B_1 \ll B$, то есть связь слабая. Тогда поле диполя на направлении, перпендикулярном оси: $B_1 = \mu_0 \frac{p_m}{r^3}$. Тогда циклическая частота биений

$$\omega_6 = \frac{B_1}{B} \sqrt{\frac{p_m B}{\Im}} \sim \frac{1}{r^3}$$

Однако в нашем случае положение стрелок сильно зависит от \vec{B}_1 , поэтому нужно посчитать поле магнитной стрелки более строго.

2.2. Поле магнитной стрелки при сильной связи

Магнитные стрелки будем рассматривать как магнитные диполи.

Поле диполя:

$$\vec{B} = \frac{\mu_0}{4\pi} \left(\frac{3(\vec{p_m} \cdot \vec{r}) \cdot \vec{r}}{r^5} - \frac{\vec{p_m}}{r^3} \right)$$

Задача плоская, поэтому: $\vec{p}_m(0,0,p_m)$, $\vec{r}(x,0,z-z')$. Здесь поле в точке (x,0,z), которое создается магнитным моментом в точке (0,0,z').

Разбиваем стрелку на элементарные диполи: $dp_m = \frac{p_m}{l}dz'$, где l - длина этой стрелки.

Тогда поле элемента стрелки равно:

$$d\vec{B} = \frac{\mu_0}{4\pi} \left(\frac{3 \cdot (dp_m \cdot (z - z')) \cdot (\vec{i} \cdot x + \vec{k} \cdot (z - z'))}{r^5} - \frac{\vec{k} \cdot dp_m}{r^3} \right)$$
(9)

Выделим две компоненты: dB_x и dB_z и проинтегрируем их по всем элементам.

$$B_{x} = \frac{\mu_{0}}{4\pi} \int_{-\frac{l}{2}}^{\frac{l}{2}} \left(\frac{3 \cdot (z - z') \cdot x}{(x^{2} + (z - z')^{2})^{\frac{5}{2}}} \right) \frac{p_{m}}{l} dz' = \dots =$$

$$= \frac{\mu_{0}}{4\pi} \frac{x \cdot p_{m}}{l} \left(\frac{1}{(x^{2} + (z - \frac{l}{2})^{2})^{\frac{3}{2}}} - \frac{1}{(x^{2} + (z + \frac{l}{2})^{2})^{\frac{3}{2}}} \right)$$

$$(10)$$

$$B_{z} = \frac{\mu_{0}}{4\pi} \frac{p_{m}}{l} \left(\int_{-\frac{l}{2}}^{\frac{l}{2}} \frac{3 \cdot (z - z')^{2} \cdot dz'}{(x^{2} + (z - z')^{2})^{\frac{5}{2}}} - \int_{-\frac{l}{2}}^{\frac{l}{2}} \frac{dz'}{(x^{2} + (z - z')^{2})^{\frac{3}{2}}} \right) = \dots =$$

$$= \frac{\mu_{0}}{4\pi} \frac{p_{m}}{lx^{2}} \left(\frac{\left(z + \frac{l}{2}\right)^{3}}{\left(\left(z + \frac{l}{2}\right)^{2} + x^{2}\right)^{\frac{3}{2}}} \right)$$

$$(11)$$

Для второй стрелки с учетом малости углов отклонения элементарный дипольный момент можно положить равным:

 $dp_m \approx \frac{p_m}{l} dz$

Тогда вращательный момент, действующей со стороны первой стрелки на элемент второй стрелки:

$$d\vec{M} = \left[d\vec{p_m}, \vec{B} \right] = \vec{k} (dp_{mx} \cdot B_z - dp_{mz} \cdot B_x) \tag{12}$$

$$dp_{mx} \cdot B_z = dp_m \cdot B_z \cdot \sin \varphi \approx \frac{p_m \cdot \varphi}{l} \cdot B_z dz$$

$$dp_{mz} \cdot B_x = dp_m \cdot B_x \cdot \cos \varphi \approx \frac{p_m}{l} \cdot B_x dz$$

Вычислим интегралы:

$$\int_{-\frac{l}{2}}^{\frac{l}{2}} B_z dz = \dots = \frac{\mu_0 \cdot p_m}{2\pi \cdot x^2}$$
 (13)

$$\int_{-\frac{l}{2}}^{\frac{l}{2}} B_x dz = 0 \tag{14}$$

Тогда вращательный момент будет:

$$M \approx \frac{\mu_0 \cdot p_m^2}{2\pi \cdot lx^2} \cdot \varphi \tag{15}$$

То есть $\omega_6 \sim \frac{1}{r}$ при условии наличия сильной связи между магнитными стрелками.

3. Эксперимент

Подвесим две стрелки на нитях на различных расстояниях r. Будем выводить одну из стрелок из равновесия, придерживая другую. Замерим n биений за некоторое время t. Найдем период биений $T_6 = \frac{t}{n}$.

r, cm	17.5	19	20	22	23	24.5	25	26	27	28	30	32	33	35
t, c	14.35	12.37	13.23	14.41	11.28	16.07	16.72	13.26	14.13	15.92	13.68	7.65	17.4	20.25
n	5	4	4	4	3	4	4	3	3	3	2	1	2	2
T_6 , c	2.87	3.09	3.31	3.60	3.76	4.02	4.18	4.42	4.71	5.31	6.84	7.65	8.7	10.13
$\ln r$	2.86	2.94	3.00	3.09	3.14	3.20	3.22	3.26	3.30	3.33	3.40	3.47	3.50	3.56
$\ln T$	1.05	1.13	1.20	1.28	1.32	1.39	1.43	1.49	1.55	1.67	1.92	2.03	2.16	2.32

Таблица 1: Данные эксперимента

Построим график $\ln T(\ln r)$, углом наклона которого будет α в зависимости $T=C\cdot r^{\alpha}$

Рис. 2: Логарифмический график

4. Вывод

- При малых расстояниях между магнитными стрелками их можно рассматривать как связанные маятники с сильной связью и наблюдать явление биения, $\omega_b \sim \frac{1}{r}$.
- На больших расстояниях влияние поля стрелок друг на друга уменьшается, но биения до сих пор присутствуют с $\omega_b \sim \frac{1}{r^3}$.