What is claimed is:

- 1. A projection objective for microlithography having a lens arrangement comprising:
 - a first lens group having positive power;
 - a second lens group having negative power;
 - a third lens group having positive power;
 - a fourth lens group having negative power;
 - a fifth lens group having positive power; and
 - a sixth lens group having positive power;

wherein a lens at the end of said second lens group, or a lens at the beginning of said third lens group, has an aspheric surface.

- 2. The projection objective according to claim 1, wherein said lens at the end of said second lens group is the last lens of the second lens group.
- 3. The projection objective according to claim 1, wherein said lens at the beginning of said third lens group is the first lens of said third lens.
- 4. The projection objective according to claim 1, wherein said lens arrangement has only one lens having an aspheric surface.
- 5. A projection objective having a lens arrangement having at least a first waist of a pencil of rays, wherein said lens arrangement comprises at least one of the following:
 - a lens having an aspheric surface arranged before said first waist,
 - a lens having an aspheric surface arranged after said first waist, and

lenses having aspheric surfaces arranged before and after said first waist.

- 6. The projection objective according to claim 5, wherein at least two spherical lenses are arranged between said lenses having aspheric surfaces.
- 7. The projection objective according to claim 5, wherein said lens arrangement has a first lens group having positive power, a second lens group having negative power, a third lens group having negative power, and a fifth and sixth lens group respectively having positive power, wherein said first lens group has a lens having an aspheric surface.
- 8. The projection objective according to claim 6, wherein a lens having an aspheric surface is arranged in said second lens group before said waist.
- 9. The projection objective according to claim 7, wherein said third lens group has a lens having an aspheric surface.
- 10. The projection objective according to claim 7, wherein said second lens group has an aspheric surface arranged after said waist.
- 11. The projection objective according to claim 1, wherein said sixth lens group has a first lens having an aspheric surface.
- 12. The projection objective according to claim 1, wherein a last lens of said third lens group has an aspheric surface.
- 13. The projection objective according to claim 1, wherein said lens arrangement does not exceed a maximum lens diameter of 280 mm.
- 14. The projection objective according to claim 13, wherein said lens arrangement does not exceed a maximum lens diameter of 250 mm.

- 15. The projection objective according to claim 1, having an object side and an image side, wherein said lens arrangement has on said image side a numerical aperture of at least 0.75.
- 16. The projection objective according to claim 15, wherein said lens arrangement has on said image side a numerical aperture of 0.8.
- 17. The projection objective according to claim 1, wherein said lens arrangement comprises at least two different materials.
- 18. The projection objective according to claim 17, wherein said different materials comprise quartz glass and a fluoride or two fluorides.
- 19. The projection objective according to claim 8, further comprising an aperture stop wherein at least a last two positive lenses before said aperture stop are comprised of CaF₂.
- 20. The projection objective according to claim 1, wherein said lens arrangement comprises a positive lens comprised of CaF₂, followed by a negative lens of quartz glass, for formation of an achromat.
- 21. The projection objective according to claim 1, wherein said sixth lens group comprises a lens of CaF₂.
- 22. A refractive microlithographic projection objective, having a lens arrangement comprising at least one lens with an aspheric lens surface, wherein all aspheric lens surfaces have a vertex radius (R) of at least 300 mm.
- 23. The refractive microlithographic projection objective according to claim 19, wherein said vertex radius(R) is 350-1,000 mm.
- 24. The refractive microlithographic objective according to claim 19, wherein said vertex

radius (R) is greater than 1,000 mm.

- 25. The projection objective for microlithography according to claim 1, wherein the diameter said lens having an aspheric surface is smaller than 90% of the maximum diameter of said lens arrangement.
- 26. The projection objective according to claim 25, wherein the diameter of said lens having an aspheric surface is smaller than 80% of the maximum diameter of said lens arrangement.
- 27. A projection exposure device for microlithography, comprising a projection objective according to claim 1.
- 28. A projection exposure device for microlithography, comprising an excimer laser light source emitting radiation of wavelength shorter than 250 nm, and a projection objective according to claim 19.
- 29. The projection objective comprising a lens arrangement according to claim 1, wherein said lens arrangement has a high numerical aperture on an objective output side, and all lenses of said lens arrangement have sine values of all angles of incidence of radiation striking a respective lens that are always smaller than the numerical aperture of said lens arrangement.
- 30. The projection objective according to claim 29, wherein said numerical aperture is in the region of 0.85.
- 31. The projection objective comprising a lens arrangement according to claim 1, wherein the maximum diameter of lenses of said third lens group is at least 10% smaller than the maximum diameter of lenses of said fifth lens group.
- 32. The projection objective comprising a lens arrangement according to claim 1, wherein at

least one aspheric lens surface is acted on with an angle loading of at least $\sin i = 0.75$.

33. A process for the production of microstructured components, comprising:

exposing a substrate provided with a photosensitive layer with ultraviolet light by means

of a mask and a projection exposure device with a lens arrangement according to claim 1, and,

if necessary after development of said photosensitive layer, structuring said substrate corresponding to a pattern contained on said mask.

Table	1	•
page	1	

m709a	page I				
Lenses	Radii	Thicknesses		s ½ x L	ens Diameter
	infinity		•		
L101	-143.20731	17.2885		62.436	
	599.77254	6.0000	SIO2	62.972	
L102	-3259.25331	7.6370	He	70.359	
	-215.68976	17.8056	SIO2	72.015	
L103	6352.48088	.7500	He	74.027	
	-222.97760	21.0301 .7500	SIO2	79.278	
L104	375.05253	22.1160	He	80.492	
1.400	-496.09705	.7500	SIO2	83.813	
L105	191.46102	26.2629	He SIO2	83.813	
1.100	-1207.32624	.7500	He	81.276	
L106	180.94629	15.5881	S1O2	80.032	
L107	100.48825	25.3787	He	72.339 62.801	
2.07	-3031.88082 122.14071	6.0000	SIO2	62.147	
L108	-295.91467	23.8679	He	58.984	
	-187.69352	9.3246	SIO2	59.196	
L109	-199.96963	.7500	He	59.874	
	184.23629	6.0000	S102	59.882	
L110	-112.01095	33.9482 6.0000	He	62.911	
	-684.63799 A	12.5079	SIO2	64.128	
L111	-225.51622	18.6069	He	75.868	
	-137.30628	.7500	SIO2	78.258	
L112	5312.93388	38.3345	He SIO2	81.928	
1440	-178.79712	.7500	3102 He	99.979	
L113	344.71979	39.8511	SIO2	101.920	
L114	-397.29552	.7500	He	111.294	
C: 14	165.51327	39.6778	CAF2	111.237	
L115	7755.09540	.7500	He	101.552 99.535	
	195.28524 119.99272	23.8921	SIO2	87.267	
L116	-452.93918	32.2730	He	72.012	
	287.33119	6.0000	S102	70.763	
L117	-218.82578	20.7820	He	66.677	
	166.44429	6.0000 40.5757	S1O2	66.150	
L118	-103.90786	6.4932	He	66.003	
1440	5916.68891	13.3336	SIO2 He	66.694	
L119	-344.93456	19.8584	CAF2'	80.535	
L120	-165.11801	.7500	He	82.790	
C120	-11871.72431	38.5095	CAF2:	86.174	
L121	-174.34079	.7500	He	100.670	
	586.98079	31.6915	CAF2.	102.666 111.739	
	-414.20537 infinity	.7500	He	112.097	•
	stop	3.6849	/He	111.399	
	intinity	.0000	He	111.399	
L122	284.64742	1.2566	He	111.830	
	-414.78783	45.7670 17.9530	CAF2	114.801	
L123	-234.72451		He	114.410	
		17.309/	6102	113.062	

wo	O 00/70407		able 1		PCT/EP99/10233
L124 L125 L126 L127 L128 L129	-593.08647 -323.13567 -229.06128 180.27184 652.02194 143.20049 383.51531 -2122.47818 312.60012 111.92162 53.69539 51.14657 492.53747 infinity infinity	74.7730 42.1874 .7500 31.4105 .7500 28.2444 14.7177 14.1140 1.3119 46.5147 2.2604 27.3776 3.7815 3.0000 12.0000	He SIO2	114.454 114.235 117.505 105.659 103.698 91.476 88.206 85.843 74.816 66.708 40.084 39.074 32.621 29.508 27.848	
	infinity			14.021	

Coefficients of the aspheric surface \underline{n} :

[where n is 21]

EX = 0.0000

C1 = 0,61839643 * 10-8

C 2 =- 0,11347761 * 10"

 $C 3 = 0.32783915 \cdot 10^{-16}$

C 4 = -0,22000186 * 10⁻²⁰

Table 2

m736a				Page 1
Lenses	Radii	Thicknesse	s Glasses	½ x Lens Diameter
	infinity			
L201	-140.9210		SIO2	60.752 61.267
L202	-4944.489 -985.9085	6 16.4036	SIO2	67.230 68.409
L203	-191,7939: 18376,813	46 16.5880	SIO2	70.127 73.993
L204	-262.28779 417.82018	21.1310	S1O2	74.959 77.129
L205	-356.7605 185.38468	23.3034	SIO2	77.193 74.782
L206	-1198.6155 192.13950	50 A7500 11.8744	SIO2	73.634
L207	101.15610 -404.17514	27.6353 7.0000	SIO2	68.213 61.022
L208	129.70591 -235.98146	24.1893 7.0584	SIO2	60.533 58.732
L209	-203.88450 -241.72595	.7500	SIO2	59.144 60.201
L210	196.25453 -122.14995	33.3115	SIO2	60.490 65.017
L211	-454.65265 -263.01247	A 10.8840	SIO2	66.412 77.783
L212	-149.71102 -23862.318	1.6818	SIO2	81.685 86.708
L213	-166.87798 340.37670	.7500 44.9408	•	104.023 106.012
L214	-355.50943 160.11879	.7500 41.8646	SIO2	115.503 115.398
L215	4450.50491 172.51429	.7500 14.8261	SIO2	102.982 100.763
L216	116.88490 -395.46894	35.9100 7.0000	SIO2	85.869 74.187
L217	178.01469 -176.03301	28.0010 7.0000	SIO2	72.771 66.083
L218	188.41213 -112.43820	36.7224 7.0059	SIO2	65.613 66.293
L219	683.42330 -350.01763	17.1440	SIO2	66.917 80.240
L220	-194.58551 -8249.50149	19.1569 .7514	S102	82.329 87.159
L221	-213.88820	35.3656 .7500	SIO2	99.995 103.494
	657.56358 -428.74102	31.3375 .0000	SIO2	114:555 115.245
L222	infinity Stop	2.8420 .0000		116.016 116.016
L223	820.30582 -520.84842	27.7457 18.4284	SIO2	118.196 118.605
	330.19065 -672.92481	37.7586 23.8692	SIO2	118.273 117.550

	WO 00/70407			ole 2 ge 2	PCT/EP99/10233
L224	-233.67936 -538.42627	10.0000 10.4141	S1O2	116.625	
L225	-340.26626 -224.85666	21.8583	SIO2	117.109 116.879	
L226	146.87143 436.70958	34.5675	S1O2	117.492 100.303	
L227	135.52861	7500 29.8244	SIO2	97.643 86.066	
L228	284.57463 -7197.04545	18.9234 11.8089	SIO2	79.427 72.964	
L229	268.01973 100.56453	.7500 27.8623	SIO2	63.351 56.628	
L230	43.02551 42.30652 262.65551	2.0994 30.9541 1.9528	SIO2	36.612 36.023 28.009	
	infinity infinity	12.0000		27.482 13.602	

Coefficients of the aspheric surface \underline{n} :

[where n is 29]

 $EX = -0.17337407 \cdot 10^3$

 $C 1 = 0.15292522 \cdot 10^{-7}$

 $C2 = 0.18756271 \cdot 10^{-11}$

 $C 3 = -0.40702661 \cdot 10^{-16}$

 $C4 = 0.26176919 \cdot 10^{-19}$

 $C 5 = -0.36300252 * 10^{-23}$

 $C6 = 0.42405765 * 10^{-27}$

Coefficients of the aspheric surface \underline{n} : [where \underline{n} is 27]

EX = -0.36949981 * 101

 $C 1 = 0.20355563 * 10^{-7}$

C 2 = -0,22884234 * 10⁻¹¹

 $C 3 = -0.23852614 \cdot 10^{-16}$

 $C4 = -0.19091022 - 10^{-19}$

 $C 5 = 0.27737562 \cdot 10^{-23}$

 $C6 = -0.29709625 \cdot 10^{-27}$

Table 3

m745a		page 1			
Lenses	Radii	Thicknesse	s Glass	es ½ x Lens Diameter	
				- ons Diameter	
	infinity	17.8520			
L301	-131.57692	7.0000	SIO2	60.958	
1200	-195.66940	.7500	0102	61.490	
L302	-254.66366		S102	64.933 65.844	
L303	-201.64480			67.386	
2000	-775.65764		\$102	69.629	
L304	-220.44596 569.58638			70.678	
	-308.25184	18.8956	S102	72.689	
L305	202.68033			72.876	
	-1120.2088	20.7802	SIO2	71.232	
L306	203.03395	12.1137	2100	70.282	
	102.61512	26.3989	SIO2	65.974	
L307	-372.05336	7.0000	SIO2	59.566	
1.200	144.40889	23.3866	0102	59.203	
L308	-207.93626	7.0303	SIO2	58.326 58.790	
L309	-184.65938	.7500		59.985	
6065	-201.97720	7.0000	SIC2	60.229	
L310	214.57715 -121.80702	33.1495		65.721	
-	-398.26353 A	7.0411	SIO2	67.235	
L311	-242.40314			79.043	
	-146.76339	22.4966 .7553	\$102	81.995	
L312	-2729.19964	45.3237	8100	87.352	
	-158.37001	.7762	S1O2	104.995	
L313	356.37642	52.1448	SIO2	107.211	
1214	-341.95165	1.1921	0.02	118.570	
L314	159.83842	44.6278	SIO2	118.519 105.627	
L315	2234.73586	.7698		102.722	
2010	172.14697 119.53455	16.8360	SIO2	88.037	
L316	-392.52196	36.6804		75.665	
	171.18767	7.0000	SIO2	74.246	
L317	-176.75022	29.4986 7.0000	0100	67.272	
	186.50720	38.4360	SIO2	66.843	
L318	445	7.0213	SIO2	67.938	
10.0	893.30270	17.7406	3102	68.650	
L319	-327.77804	18.9809	SIO2	82.870	
L320	-192.72640	.7513		85.090 89.918	
1020	200 00	34.3608	S1O2	103.882	
L321	074 4	.7500		106.573	
	440 4000	32.6220	SIO2	119.191	
	c	0000		119.960	
		2.8420 0000		<i>y</i> 120.991	
L322	774 555		8103	120.991	
200	-525.59771 1	3.4504	SIO2	123.568	
L323	330.53202 4	_	S1O2	124.005	
		3.6787		123.477	
				122.707	

	WO 00/70407		Table 3 page 2	PCT/EP99/10233
L324 L325	-250.00950 10.0000 -513.10270 14.8392 -344.63359 20.3738	S1O2 S1O2	121.877 121.995 121.081	
L326	-239.53067 .7500 146.13385 34.7977 399.32557 .7510	SIO2	121,530 102,544 99,992	
L327 L328	132.97289 29.7786 294.53397 18.8859 -3521.27938 A11.4951	SIO2	87.699 82.024	
L329	287.11066 .7814 103.24804 27.8602	SIO2 SIO2	75.848 65.798 58.287	
L330	41.64286 1.9089 41.28081 31.0202 279.03201 1.9528 infinity 12.0000 infinity	SIO2	36.734 36.281 28.934 28.382 13.603	

Coefficients of the aspheric surface n:

[where <u>n</u> is 29] $EX = -0.16784093 \cdot 10^3$

C 1= 0.49600479 - 10-9

 $C2 = 0.31354487 \cdot 10^{-11}$

C 3 =-0,65827200 * 10-16 $C 4 = 0.44673095 * 10^{-19}$

 $C 5 = -0.73057048 - 10^{-23}$

 $C6 = 0.91524489 \cdot 10^{-27}$

Coefficients of the aspheric surface $\underline{\mathbf{n}}$:

[where \underline{n} is 27] EX = -0.22247325 * 101

 $C 1 = 0.24479896 \cdot 10^{-7}$

C 2= -0.22713172 • 10⁻¹¹

 $C 3 = 0.36324126 \cdot 10^{-15}$

 $C4 = -0.17823969 \cdot 10^{-19}$

 $C 5 = 0.26799048 \cdot 10^{-23}$

 $C6 = -0.27403392 \cdot 10^{-27}$

Coefficients of the aspheric surface \underline{n} :

EX = 0

[where \underline{n} is 31]

C 1 = -0,45136584 * 10-09

 $C 2 = 0.34745936 \cdot 10^{-12}$

 $C3 = 0.11805250 * 10^{-17}$

 $C 4 = -0.87762405 * 10^{-21}$

m791a		page l			
Lenses	Radii	Thicknesse	s Glasses		
			.5 -140000	½ x Lens Diameter	
	infinity	11.4557			
L401	-273.19566	7.0000	8103	61.339	
	-277.09708	.7000	SIO2	62.263	
L402	-861.38886	8.9922	SIO2	63.765	
1.400	-339.26281	.7000	0,02	64.989 65.826	
L403	118124.137		SIO2	66.916	
L404	-365.70154	.7000		67.416	
2104	685.10936	13.1651	SIO2	67.995	
L405	-485.98278 387.56973	.7000		68.012	
	-473.09537 <i>,</i>	17.2335	S1O2	67.247	
L406	268.03965		0.00	66.728	
	149.12863	9.9216 23.8122	SIO2	62.508	
L407	-184.82383	7.0000	8100	58.531	
	176.30719	21.4194	SIC2	58.029	
L408	-186.59114	7.0000	SIO2	57.646	
	218.73570	29.5024	0.02	58.045	
L409	-129.31068	7.0000	SIO2	63.566 65.030	
L410	-531.44773 A			76.481	
L4 10	-307.52016	22.4527	S1O2	85.643	
L411	-148.36184	.7000		88.946	
241,	-1302.18676 -162.48723	41.0516	SIO2	105.065	
L412	621.16978	.7000	•	107.106	
	-294.49119	41.1387 .7000	SIO2	118.007	
L413	160.06951	49.7378	SIO2	118.347	
	-2770.71439	A7000	3102	109.803	
L414	152.16529	16.7403	SIO2	107.961	
1.445	106.43165	39.9369	0.02	89.160	
L415	-530.55958	7.0000	SIO2	76.189 74.955	
L416	170.63853	31.4993		68.381	
2410	-164.61084 262.65931	7.0000	SIO2	67.993	
L417	440 5-444	36.2904		69.679	
		8.4328 21.7682	SIO2	70.272	
L418		16.4890	2100	85.377	
		.8689	SIO2	87.710	
L419	2404 5455	37.5900	SIO2	92.554	
	-214.63481	1.1929	0102	107.590	
L420	2970.07848	32.3261	SIO2	111.045	
1.404	-350.93217	2.5303		122.434 123.849	
L421	1499.34256	25.8265	S102	127.128	
		0000		127.371	
		7510		126.559	
L422	004 000 -	0000	/	126.559	
	1005 05	39.5191 7000	SIO2	127.453	
L423	·		2102	127.499	
		5.0233	SIO2	126.619	
	_			125.851	

V	VO 00/70407			able 4 age 2	PCT/EP99/10233
L424	-242.66564 -891.19390	7.0000 9.7905	SIO2	124.960	
L425	-492.17516 -242.55195	41.0678 .7000	S102	125.057 124.887	
L426	145.04614 406.88892	37.2406 .7008	SIO2	125.845 104.033	
L427	119.31280 249.69473	31.5532 15.2917	SIO2	101.079 85.742	
L428	1411.93157 281.90273	7.8700	SIO2	79.561 74.994	
L429	143.95136 404.13980 infinity infinity	.7011 55.0835 15.0000 .0001	SIO2	66.830 61.517 32.177 13.603 13.603	

Coefficients of the aspheric surface \underline{n} :

[where \underline{n} is 27]

 $EX = 0.45321787 * 10^{2}$

 $C 1 = 0.12027601 \cdot 10^{-7}$

 $C2 = -0.16206398 * 10^{-11}$

 $C 3 = -0.41686011 \cdot 10^{-15}$

 $C4 = 0.38440137 \cdot 10^{-19}$

 $C 5 = -0,15095918 * 10^{-23}$

 $C 6 = -0.84812561 \cdot 10^{-28}$

Coefficients of the aspheric surface \underline{n} :

EX = 0

[where \underline{n} is 29]

 $C 1 = -0.97452539 * 10^{-7}$

 $C 2 = 0.32591079 \cdot 10^{-11}$

 $C 3 = 0.97426255 \cdot 10^{-16}$

 $C 4 = -0.846124 \cdot 10^{-20}$

 $C = -0.12332031 \cdot 10^{-23}$

 $C6 = 0.14443713 \cdot 10^{-27}$

Coefficients of the aspheric surface \underline{n} :

EX = 0

[where \underline{n} is 33]

 $C1 = 0.53144137 \cdot 10^{-8}$

 $C 2 = 0,21837618 \cdot 10^{-12}$

 $C 3 = 0.22801998 \cdot 10^{-18}$

C 4 = -0,87807963 * 10⁻²¹

 $C 5 = 0.42592446 \cdot 10^{-25}$

 $C6 = -0.85709164 \cdot 10^{-30}$

j430a				age l
	Dod::	Th: -1		
Lenses	Radii	Thickness	es Glasse	s ½ x Lens Diameter
			•	
	infinity	9.9853		
L501	-265.92659	5.0000	SIO2	61.649
	857.92226	5.9813	0102	62.237
L502	-2654.69270	14.4343	SIO2	65.916
1.500	-244.65690	.7500	5. 52	66.990
L503	1038.40194	15.9955	SIO2	68.482 71.883
L504	-333.95446	.7500		72.680
2004	359.47552	18.5128	S102	74.430
L505	-532.67816	.7500		74.416
2000	213.38035	21.4562	S102	72.985
L506	-1441.22634 261.90156			72.045
	115.92184	6.5306	SIO2	67.809
L507	-267.21040	28,4856 6.0000		62.818
	175.09702	23.2443	S102	62.411
L508	-213.08557	6.0000	Sioo	61.923
	199.61141	30.8791	SIO2	62.365
L509	-158.73046	6.0337	SIO2	68.251
	-1108.92217	A10.9048	0102	69.962
L510	-314.37706	20.6413	SIO2	81.119
1544	-169.59197	.8014	0.02	84.163
L511	-3239.97175	43.6396	SIO2	88.902
L512	-168.44726	.7500		106.289 108.724
2012		48.8975	S102	123.274
L513		.7500		123.687
		48.7613	S102	113.393
L514	4 4 4	.7500 15.7110		111.134
	40	44.2664	S102	96.188
L515		5.0000	8100	84.961
	4	31.4986	SIO2	83.633
L516	— • • -	5.0000	S102	76.498
15.5	168.30899 5	1.3978	3102	76.180
L517	-117.43130 e	5.5332	S102	77.396
L518	2476.47953 2	1.4666	0.02	78.345
F2 16	-311.36041 1	5.2223	S1O2	98.469 101.209
L519		7500		105.324
	246 76666	7.6761	SIO2	122.239
L520	2000	7500		125.425
	A=	9.6266	SIO2	146.583
L521	1200 000	.1289		148.219
	A 4 A	9.1543 000	SIO2	157.194
	infinity 7	500		157.954
. 2	eton	000	1	158.061
L522	709.88915 36		SIO2	158.061
1.500	-1035.75796 .7	500	3102	160.170
L523	313.44889 ₅₈		SIO2	160.137
		.7484		155.263
				153.730

	WO 00/70407		Tabl pag	_	PCT/EP99/10233
L524		5.0000 4.7084	SIO2	152.447 148.826	
L525		23.9839 7510	SIO2	148.336	
L526	152.28321 4	12.3546 7531	S1O2	148.189 114.055	
L527	124.66784 3	31.8554 16.6796	SiO2	109.924 91.106	
L528	-28987.53974 7		SIO2	86.038 82.126	
L529	180.51161 5	54.1269 15.0000	SIO2	72.044 67.036	
	infinity	0001		37.374 13.604	
	infinity-			13.604	

Coefficients of the aspheric surface n:

EX = $-0.27012883 \cdot 10^3$ [where <u>n</u> is 29]

 $C 1 = -0.48014089 \cdot 10^{-7}$

 $C2 = 0.30075830 * 10^{-11}$

 $C 3 = 0.34922943 \cdot 10^{-16}$

 $C4 = 0.26946301 \cdot 10^{-19}$

 $C 5 = -0.58250631 \cdot 10^{-23}$

 $C6 = 0.68991391 \cdot 10^{-27}$

Coefficients of the aspheric surface n:

EX = $0.41249481 \cdot 10^1$ [where <u>n</u> is 27]

C 1 =-0,38239182 * 10-8

C 2 =-0.14976009 * 10⁻¹¹

 $C 3 = -0.25206193 * 10^{-16}$

C 4 =-0,78282128 * 10⁻²⁰

 $C 5 = 0.13017800 \cdot 10^{-23}$

 $C 6 = -0.14205614 \cdot 10^{-27}$

Coefficients of the aspheric surface \underline{n} :

[where \underline{n} is 33]

 $EX = 0.26320110 \cdot 10^{1}$

C 1 = 0,27448935 * 10-8

 $C = -0.18100074 - 10^{-12}$

 $C 3 = 0.58696756 * 10^{-17}$

C 4 =-0,58955753* 10⁻²¹

 $C = 0.16526308 * 10^{-25}$

C 6 =-0,25708759 * 10-30

WO 00/70407

Table 5 page 3

PCT/EP99/10233

Coefficients of the aspheric surface \underline{n} :

EX =-0.96865859 \cdot 10⁵ [where <u>n</u> is 31]

C 1 =-0,42411179 - 10⁻⁸

C 2 = 0.12306068 • 10⁻¹²

C 3 = 0,69229786 • 10⁻¹⁷

 $C 4 = 0.80135737 * 10^{-20}$

C 5 =-0,14022540 *.10⁻²³

 $C6 = 0.79827308 \cdot 10^{-28}$

m767a			puso	· ·
Lenses	Radii T	hicknesses	Glasses	16 v I on - D:
Delises	raan 1	meknesses	Classes	½ x Lens Diameter
	infinity	5.9005	N2	32.429
L601	-125.95821	3.6410	CAF2	32.780
	243.24465	5.2309	He	35.323
L602	2472.77263	9.2265	CAF2	36.826
	-132.46523	.3958	He	37.854
L603	544.60759	8.6087	CAF2	40.080
100.	-188.98512	.6007	He	40.516
L604	180.26444	10.3984	CAF2	41.764
1.005	-394.70139	.4244	He	41.743
L605	101.06312	12.8236	CAF2	40.955
1.606	-691.58627		He	40.455
L606	135.75849	3.1245	CAF2	37.553
L607	57.03094	16.2396	He	34.284
1607	-268.26919	5.9149	CAF2	33.871
1600	116.53669	10.9654	He	33.188
L608	-142.54676	3.2195	S1O2	33.372
L609	100.09171	16.1921	He	35.360
2009	-83.03185	3.2311	S102	36.264
L610	-453.73264 / -167.92924		He	41.718
2010	-107.92924 -93.29791	12.0560	CAF2	43.453
L611	-1270.46545	.4204	He	47.010
2011	-90.89540		CAF2	56.224
L612	266.81271	1.1471	He	58.224
	-171.23687	25.6379 .3519	CAF2	66.498
L613	82.41217	26.8409	He	66.755
	529.17259 A		CAF2	61.351
L614	81.87977	8.2278	He	60.098
	64.06536	22.9801	CAF2	50.462
L615	-259.83061	3.3437	He SIO2	44.346
	124.29419	13.5357	He	43.473
L616	-197.29109	3.0000	SIO2	40.266
	87.83707	24.5613	He	39.809
L617	-64.97274	4.6170	SIO2	39.571 40.050
	1947.71288	9.3909	He	49.830
L618	-182.16003	7.8052	CAF2	51.480
	-118.82950	.3753	He	53.449
L619	-633.93522	19.7976	CAF2	63.119
	-115.14087	.3706	He	64.793
L620	2647.04517	19.8039	CAF2	75.458
	-197.41705	2.7167	He	76.413
L621	668.45083	30.1057	CAF2	81.369
	-322.45899	.0001	He	82.659
•	infinity	.3948	He .	82.583
ieno	stop "	.0000	*	82.583
L622	395.84774	16.8734	CAF2	83.488
1602	-635.79877	.3500	He	83.449
L623	165.28880	28.1341	CAF2	80.761
	-698.21798	15.6657	He	80.133

•	WO 00/70407			
L624	175 5 4002 -	Table 6 page 2		PCT/EP99/10233
L625	-175.54365 7.9803 -571.27581 9.7972 -265.73712 11.6714 -156.05301 3500	SIO2 He CAF2 He CAF2 He CAF2 He CAF2 He SIO2 He CAF2 N2 N2	79.485 78.592 78.015 78.036 60.151 57.925	
L626	79.45912 22.6348			
L627	199.26460 .3500 67.01872 15.8836			
L628	140.01631 8.6050 2265.71693 A4.0939		48.063 45.305	
L629	167.06050 2.0915 102.24013 24.5664 662.00756 9.4740 UNENDL .0001 UNENDL		43.177 38.352 34.878 22.044 7.166 7.166	

Coefficients of the aspheric surface \underline{n} : [where n is 29]

EX= -0,7980946 * 10²

C 1 = -0.21353640 * 10-6

 $C2 = 0.56257 \cdot 10^{10}$

C 3 =-0,39122939 * 10-14

C 4 =-0,24089766 * 10⁻¹⁸

C 5 = 0.30268982* 10⁻²²

C 6 = 0.1437923 • 10⁻²⁵

Coefficients of the aspheric surface \underline{n} :

EX =0,1660595 * 101

[where \underline{n} is 27]

C 1 =-0.12449719 * 10⁻⁷

C 2 = -0,39565 * 10⁻¹⁰

 $C 3 = -0.10241741 * 10^{-14}$

C 4= -0,19631485 * 10⁻¹⁷

 $C 5 = 0,11604236 * 10^{-20}$

C 6 =-0,4669584 • 10⁻²⁴

Coefficients of the aspheric surface \underline{n} :

EX = 0.1614147 * 10°

[where \underline{n} is 33]

 $C1 = 0.14130608 * 10^{-7}$

C 2 =-0,9747553 • 10⁻¹¹

C 3 = 0.20478684 - 10-15

C 4 = -0,17732262 • 10⁻¹⁸

 $C 5 = 0.29715991 - 10^{-22}$

 $C6 = -0.19032581 \cdot 10^{-26}$

Coefficients of the aspheric surface \underline{n} :

EX = 0

[where \underline{n} is 31]

 $C 1 = -0.18139679 \cdot 10^{-7}$

 $C 2 = 0.26109069 \cdot 10^{-11}$

 $C 3 = 0.23340548 * 10^{-14}$

 $C4 = 0.29943791 \cdot 10^{-17}$

C 5 = -0,13596787 * 10⁻²⁰

 $C 6 = 0.21788235 * 10^{-24}$