Le Concept de Graphe.

Jérémy Rouot

e-mail: jeremy.rouot@yncrea.fr

bureau 332

benzène

CYCLE DU CARBONE

····· intervention humaine

graphe (non orienté) G = (X; E)

formé par un couple : un ensemble X et une famille E

$$X = \{x_1, x_2, \dots, x_n\}$$
 où $n \ge 1$ (sommets de G) $n = ordre$ de G

et
$$E = \{e_1, e_2, \dots, e_m\}$$
 avec $m \ge 0$ (arêtes de G),

$$e_i$$
 = paire d'éléments de X

arête $e = \{x,y\}$ x et y sont ses extrémités, lorsque x = y, e est une boucle.

Deux arêtes sont <mark>parallèles</mark> lorsqu'elles ont les mêmes extrémités; un ensemble d'arêtes parallèles est une <mark>arête multiple</mark>.

graphe simple : pas de boucle ni d'arête multiple

graphe d'ordre 4 $X = \{1, 2, 3, 4\}$ $E = \{a, b, c, d, e, f\}$

où $a = \{1, 2\}, b = \{1, 2\}, c = \{1, 3\}, d = \{3, 2\}, e = \{3, 4\}, f = \{4, 4\};$ f est une boucle

a, *b* deux arêtes parallèles.

On considère donc les arêtes comme des paires "étiquetées".

matrice $n \times n$, appelée matrice d'adjacence de G $A(G)=(a_{xv})$

dont les lignes et les colonnes sont indexées par X, définie par:

 a_{xy} = nombre d'arêtes ayant x et y comme extrémités;

	1	2	3	4
1	0	2	1	0
2	2	0	1	0
3	1	1	0	1
4	0	0	1	1

 $O(n^2)$

matrice $n \times m$, appelée matrice d'incidence $B(G) = (b_{xe})$

dont les lignes sont indexées par X et les colonnes par E, définie par: b_{xe} = nombre de fois où x est incident à e.

$$b_{xe} \in \{0;1;2\}$$

la somme des éléments d'une colonne est 2

		а	b	С	d	е	f	
B (G):	1	1	1	1	0	0	0	
	2	1	1	0	011	0	0	O(n · m)
	3	0	0	1	1	1	0	
	4	0	0	0	0	1	2	

Les sommets adjacents à x forment l'ensemble des voisins de x, noté N(x)Si $N(x) \cup \{x\} = X$ le sommet x est universel.

Le *degré* d(x) d'un sommet x est le nombre d'arêtes incidentes à x (une boucle est comptée deux fois).

Si d(x)=0 le sommet x est isolé, si d(x)=1 le sommet x est pendant.

Une *arête pendante* est une arête incidente à un sommet pendant.

Un graphe simple avec *n* sommets deux à deux adjacents

est un *graphe complet* K_n (ainsi $d(x) \equiv n-1$).

Un *couplage* est un ensemble d'arêtes deux à deux non adjacentes.

Le *couplage* est *parfait* si $\forall x \in X$, \exists une arête du couplage incidente à x.

graphe complet

graphe complémentaire

Un *stable* est un ensemble de sommets deux à deux non adjacents.

Nombre de stabilité :

$$\alpha(G) = \max\{|S|, S \text{ est un stable de } G\}$$

Partition de G en 5-stables

On dit que G est un graphe 5-parti

Quels sont les stables du graphe suivant ?

$$\alpha(G) = ?$$

Partition de G en 2-stable : le graphe est <mark>biparti</mark>

$$\alpha(G) = 4$$

G est même dit biparti complet car tous les sommets

de X sont reliés à deux à deux à ceux de Y, on le note $K_{3,4}$.

Un *stable* est un ensemble de sommets deux à deux non adjacents.

Nombre de stabilité :

$$\alpha(G) = \max\{|S|, S \text{ est un stable de } G\}$$

Partition de G en 5-stables

$$\alpha(G) \ge 3$$

Exemple 1:

Trouver un graphe d'ordre 3 avec ses trois degrés différents.

montrer, que

chaque graphe <u>simple</u> G=(X;E), d'ordre au moins 2, contient au moins deux sommets de même degré.

G=(X;E) d'ordre n sans sommet isolé.

$$1 \leq d(x_i) \leq n-1$$

$$1 \geq 0$$

$$1 \leq i \leq n$$

il n'existe pas d'injection de *X* dans *D* !

Il existe donc au moins deux sommets, i et j, tels que $d(x_i) = d(x_j) = d \in D$.

Si le graphe admet un sommet isolé unique, alors on ajuste le raisonnement précédent pour un graphe d'ordre n—1 et quand il y a au moins <u>deux</u> sommets isolés, alors ils ont tous de degré identique égal à zéro.

Dans la démonstration nous avons appliqué un principe fréquemment utilisé dans les raisonnements combinatoires. Connu sous le nom de *principe des cages à pigeons* (ou encore *principe des tiroirs*) il possède l'interprétation suivante:

Soient n pigeons (objets) mis dans m cages (tiroirs);

si n>m alors il existe au moins deux pigeons (objets) dans une même cage (tiroir).

Ce principe est une conséquence du principe d'induction sur \mathbb{N} .

1
$$d(1)=3$$

c $d(2)=3$

d $d(3)=3$

e $d(4)=3$

f $d(4)=3$

$$|E| = |\{a, b, c, d, e, f\}| = 6$$

Théorème 1:

Pour tout graphe G=(X,E) on a : $\sum_{x\in X} d(x) = 2/E/$.

Considérons la matrice d'incidence

Considérons la matrice d'incidence

Théorème 1:

Pour tout graphe G=(X,E) on a : $\sum_{x\in X}d(x)=2|E|$.

Corollaire 1:

Le nombre de sommets de degré impair est toujours ...

Théorème 1:

Pour tout graphe G=(X,E) on a : $\sum_{x\in X}d(x)=2|E|$.

Corollaire 1:

Le nombre de sommets de degré impair est toujours PAIR.

Graphe complet de 8 sommets noté K₈

$$\sum_{x \in X} d(x) = 2|E|$$

$$|E| = 28$$

H=(Y;F) est un sous-graphe du graphe G=(X,E) engendré par Y lorsque $Y\subseteq X$ et F est formé de la totalité des arêtes de E dont les extrémités sont dans Y.

graphe G

un sous-graphe engendré

On appelle un *graphe partiel* de G=(X;E) tout graphe H=(X;F) où $F\subseteq E$.

un graphe partiel

un sous-graphe partiel

