$$\Rightarrow \exists A^{-1} \text{ such that } A^{-1}A = AA^{-1} = I$$

where I is Identity Matrix

a) Prove:
$$\varphi(x) = \varphi(x') \longrightarrow x = x'$$

$$\Rightarrow A \times = A \cdot \times'$$

$$\Rightarrow A^{-1}A \times = A^{-1}A \times '$$

$$\Rightarrow x = x'$$

$$\forall y \in R^{+}, I y = y$$

$$\Leftrightarrow (AA^{-1}) \mathcal{I} = \mathcal{I}$$

let
$$X = A^{-1}y$$
, we have $A \times = y$
which is equal to $Q(X) = y$

(luestion - 2

$$X = \begin{bmatrix} 50 & 100 & 75 & 50 & 100 \\ 35 & 35 & 75 & 115 & 115 \end{bmatrix}$$

iii.) Find scale factor

IV.) Transform the landmarks X

(Rounding all elements to 2 decimal places)

$$SX = \begin{bmatrix} 75.59 & 151.2 & 113.4 & 75.59 & 151.2 \\ 52.92 & 52.92 & 113.4 & 173.9 & 173.9 \end{bmatrix}$$

sX and I don't match exactly.

Reason: Y is not exactly proportional to X, which means the rectangles of the landmarks of X/Y, have different aspect ratio, 80:50 and 125:75.

The image was transformed in the opposite direction, i.e. $I(x) \rightarrow I(sx)$, so it didn't match image).

VI) Transform the image with the observer equation

Now it matches image I, because when looping through each pixel, it finds value from the priginal Image, unlike the 'naively'.

```
Question - 3
```

i.)
$$J(\epsilon) = C[Y(x) + \epsilon h(x)]$$

$$= \int_{a}^{b} x (Y(x) + \epsilon h(x))^{\dagger} dx$$

$$= \int_{a}^{b} x (Y(x)^{\dagger} + 2Y'(x) \epsilon h'(x) + \epsilon^{\dagger} h'(x)^{\dagger}) dx$$

ii.)
$$\frac{d}{d\epsilon} J(\epsilon) = \frac{d}{d\epsilon} \int_{a}^{b} x \left[y'(x)^{2} + 2y'(x) 6h'(x) + 6^{2}h'(x)^{2} \right] dx$$

$$= \int_{a}^{b} x \left[2y'(x) h'(x) + 2 \epsilon h'(x)^{2} \right] dx$$

$$= 2 \int_{a}^{b} x h'(x) \left(y'(x) + \epsilon h'(x) \right) dx$$

$$(t=0) = 2 \int_{a}^{b} x y'(x) \cdot h'(x) dx$$

that is when
$$E=0$$
, $J(E) \rightarrow J_{min}$

So we have the equation:
$$\frac{d}{d\epsilon}J(\epsilon)\Big|_{\epsilon=0}=0$$

according to the Lemma:

$$J'(x) + \times J''(x) = 0$$

$$J(x) + \times J(x) - JJ'(x) dx = C$$

$$Finally, we have $\times J'(x) = C$$$

```
Question - 4
      a) i.) A = \frac{d}{dx} + 1, k(x) = e^{-x} \mathcal{U}_s(x)
                       Ak(x) = \left(\frac{d}{dx} + 1\right) e^{-x} U_S(x)
                                   = - e-x Us(x) + e-x S(x) + e-x Us(x)
                                  = e^{-x} \{(x)
                        considering \delta(x) = \begin{cases} 1 & x=0 \\ 0 & p_1 w_1 \end{cases}
                      \Rightarrow A k(x) = \int e^{x} f(0) = 1, x = 0
                       \Rightarrow Ak(x) = \delta(x) in this case
             ii.) A = -\frac{d}{dx} + 1, k(x) = e^{x} \mathcal{U}_{s}(-x)
                     Ak(x) = \left(-\frac{d}{dx} + 1\right) e^{x} U_{s}(-x)
                                  = - \left[ e^{x} \mathcal{U}_{s}(-x) + e^{x} \left( - \delta(x) \right) \right] + e^{x} \mathcal{U}_{s}(-x)
                                 = e^{x} \cdot \delta(x)
                       Similar to the first case,
                      \ell^{\times} f(x) = f(x)
                      Sp that Ak(x) = & (x)
             (iii.) A = -\frac{d^2}{dx^2} + 1, k(x) = \frac{1}{2}e^{-1x}
                      Ak(x) = \left(-\frac{\ell^2}{Mx^2} + 1\right) \frac{1}{2} \ell^{-1\times 1}
                                = \left(-\frac{\alpha^2}{\alpha x^2} + 1\right) \frac{1}{2} \left(e^{-x} u_s(x) + e^{-x} u_s(-x)\right)
                                = - 1 · d' ( e-* Us(x) + e *Us(-x))
                                   + + ( e - * Us(x) + e * Us(-x))
                                = -\frac{1}{2} \frac{d}{dx} \left[ -\ell^{-x} u_{s(x)} + \ell^{-x} \delta(x) + \ell^{x} u_{s(-x)} - \ell^{x} \delta(x) \right]
```

$$+\frac{1}{2}\left[e^{-x}u_{S(x)} + e^{-x}u_{S(x)}\right]$$

$$= -\frac{1}{2}\left[e^{-x}u_{S(x)} - e^{-x}\delta(x) + e^{x}u_{S(-x)} - e^{-x}\delta(x)\right]$$

$$+\frac{1}{2}\left[e^{-x}u_{S(x)} + e^{-x}u_{S(x)}\right]$$

$$=\frac{1}{2}e^{-x}\delta(x) + \frac{1}{2}e^{-x}\delta(x)$$

$$=\frac{1}{2}e^{-x}\delta(x) + \frac{1}{2}e^{-x}\delta(x)$$

$$=\frac{1}{2}e^{-x}\delta(x) + \frac{1}{2}e^{-x}\delta(x)$$

$$=\frac{1}{2}e^{-x}\delta(x) + \frac{1}{2}e^{-x}\delta(x)$$

$$=\frac{1}{2}e^{-x}u_{S(x)} + \frac{1}{2}e^{-x}u_{S(x)}$$

ii.)
$$A = -\frac{d^3}{dx^3} - \frac{d^2}{dx^2} + \frac{d}{dx} + 1$$

$$= (\frac{d^2}{dx^2} + 2\frac{d}{dx} + 1)(-\frac{d}{dx} + 1)$$

$$\Rightarrow k(x) = (xe^{-x}) * [e^x u_s (-x)]$$

$$= \int_{-\infty}^{+\infty} \tau e^{-\tau} e^{x-\tau} u_s (\tau - x) d\tau$$

$$= \int_{x}^{\infty} \tau e^x e^{-x\tau} d\tau$$

$$= e^x \int_{x}^{\infty} \tau e^{-x\tau} d\tau$$

$$= e^x \left[-\frac{1}{2}\tau e^{-x\tau} \right]_{\tau=x}^{\tau=+\infty} - \int_{x}^{\infty} -\frac{1}{2}e^{-x\tau} d\tau$$

1
$= \ell^{\times} \left[\frac{1}{2} \times \ell^{-2 \times} - \frac{1}{4} \ell^{-1 \times} \right]$
$= e^{\times} [\pm \times e^{-2\times} + \pm e^{-2\times}]$
$= \frac{\times}{2} e^{-x} + \frac{1}{4} e^{-x}$
$= e^{-x} \left(\frac{x}{2} + \frac{1}{4} \right)$