统计分析方法第一章作业

16337088 黄宏斌

一、求股票 000001(股票代码)的历史股价的日均值(所有天数的股价求平均)、中位数、0.25 分位数、0.75 分位数,方差,标准差,变异系数,极差,四分位极差,偏度,峰度。

解:

假设天数为 n,每日最低价为 low_i,每日最高价为 high_i, (n=1,2,3,...,n)

日均值:
$$\frac{1}{n}\sum_{i=1}^{n} \frac{low_i + high_i}{2} = 14.270976945902762$$

中位数: 12.825

0.25 分位数: 9.985 0.75 分位数: 16.785

方差:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = 43.48392272115789$$

标准差:
$$s = \sqrt{s^2} = 6.594234051135726$$

变异系数:
$$CV = 100 \times \frac{s}{\bar{x}}$$
(%) = 46.20730645233751%

极差: 42.84999999999994

四分位极差: 6.80000000000001

偏度:
$$g_1 = \frac{n}{(n-1)(n-2)} \frac{1}{s^3} \sum_{i=1}^{n} (x_i - \bar{x})^3 = 1.8013931510673493$$

峰度:
$$g_2 = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \frac{1}{s^4} \sum_{i=1}^{n} (x_i - \bar{x})^4 - \frac{3(n-1)^2}{(n-2)(n-3)} = 4.419173408952879$$

(代码见 problem1.py)

二、对股票 000006 股价进行分析,选取合适组距,进行统计,画出的直方图(价格-频率)和正态 QQ 图,直观判断数据是否来自正态分布总体,给出简要的判断依据。如果对 000006 股价的差值(相邻两个日期的股价差值,忽略缺失日期,例如有 t_1, t_3, t_4,则差值为: t_3-t1, t_4-t_3),同理计算差值的直方图和正态 QQ 图,判断差值是否服从正态分布,给出简要的判断依据。

解:

直方图 (分为 15 组):

正态 QQ 图:

判断:不服从正态分布。

判断依据: 直方图不近似钟形曲线的分布,且 QQ 图较弯曲,不近似在直线上。

差值直方图:

差值正态 QQ 图:

判断:不服从正态分布。

判断依据: 直方图不近似钟形曲线的分布,且 QQ 图并不近似在直线上。(代码见 problem2.py)

三、对股票 000012 进行分析,求股价和成交量的 Pearson, Spearman 相关系数。

解:

Pearson 相关系数 rxy 计算方法:

$$r_{xy} = \frac{s_{xy}}{\sqrt{s_{xx} \, s_{yy}}},$$

其中,

$$S_{xx} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$s_{yy} = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$$
,

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Spearman 相关系数 qxy 的计算方法:

$$q_{xy} = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} d_i^2$$

其中,

 $d_i = R_i - S_i$, i = 1,2,...,n, Ri 和 Si 分别为 xi 和 yi 的秩统计量。

股票 000012 的股价和成交量的相关系数如下:

Pearson: 0.0298159151939864

Spearman: -0.018695776379890283

(代码见 problem3.pv)

四、按照日期,对股票 000001 和股票 000006 的股价进行相关分析。例如股票 000001 在 t_1, t_2, t_4, t_5 四个日期有记录 x_1, x_2, x_4, x_5; 股票 000006 在 t_2, t_3, t_4 三个日期有记录 y_2, y_3, y_4,那么我们选取有共同日期记录的值,t_2,t_4 两个日期的记录,即(x_2, y2)和(x_4,y_4)进行相关分析,而丢掉缺失数据(即 t_1, t_3, t_5 日期的数据)。推广之,对 100 支股票两两进行分析,求 100 支不同股票股价的 Pearson,Spearman 相关矩阵(100×100)。 根据相关矩阵,给出这 100 只股票中,相关性最强(绝对值接近 1) 的 5 对股票和相关性弱(绝对值最接近 0)的 5 对股票,根据 10 对股票,求相关性假设的 p 值。(注意,Pearson,Spearman 矩阵的元素排列依照股票代码,即,000001,000006,000012,…,000717)。

解:

P 值的计算:

① 提出假设:

H0: x_i和 y_i的相关系数 r=0

H1: 总体 A 的相关系数 r≠0

② 计算检验的统计量:

$$T = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \sim t(n-2), n = n_1 + n_2$$

其中, n₁和 n₂分别为 x 和 y 的个数。

③ 根据 t(n-2)计算 p 值。当 p<0.05 时,接受假设 H_0 ,否则拒绝 H_0 。

对股票 000001 和股票 000006 的股价进行相关分析:

计算得到的相关系数如下:

Pearson: 0.777193654335734 Spearman: 0.5098981875846724

对 100 支股票两两进行分析:

计算得到的 Pearson 矩阵储存在文件"R_matrix.json"中;

计算得到的 Spearman 矩阵储存在文件"S_matrix.json"中。

其中,

按 Pearson 相关系数取前五:

股票1	股票 2	Pearson 相关系数	p 值
000069	000046	0.9494846389143639	0.0
000046	000006	0.9464481049611131	0.0
000567	000025	0.9270517821307611	0.0
000069	000006	0.9150686814687823	0.0
000708	000059	0.9061597116938671	0.0

按 Pearson 相关系数取后五:

股票 1	股票 2	Pearson 相关系数	p 值
000632	000525	-0.00028548602317844473	0.5106557433813965
000090	000049	0.0006476817190809916	0.4761144782022949
000661	000521	-0.0008275803432526036	0.5307635433530755
000661	000601	0.0010438976200019272	0.4613204101930314
000425	000036	-0.001680314485977628	0.5616339824038029

按 Spearman 相关系数取前五:

股票1	股票 2	Spearman 相关系数	p值
000661	000028	0.9615927327084826	0.0
000567	000025	0.9431301195402602	0.0
000418	000025	0.9360251169020151	0.0
000661	000423	0.9311030852808425	0.0
000702	000421	0.9308496901011732	0.0

按 Spearman 相关系数取后五:

股票1	股票 2	Spearman 相关系数	p 值
000667	000567	-0.0003671801722200385	0.5136945145192344

000538	000078	-0.00039850684350040133	0.5146794443646401
000088	000001	-0.000675695406699317	0.5248561509604942
000667	000418	0.0007424552672160578	0.472544761446966
000544	000425	-0.0013237493803239797	0.5484981027931313

(代码见 problem4.py)