3.6 Implicit differentiation and related rates

A function is said to be defined explicitly, meaning that y is defined by a rule or formula f(x) in x alone is to be defined implicitly, meaning that y is defined by an equation in x and y.

example :
$$y = x^5 + 7x$$

 $x^2 + y^2 = 25$

<u>Find</u> $\frac{dy}{dx}$ by implicit differentiation

- Differentiate both sides of the equation with respect to x, when differentiating a y, include $\frac{dy}{dx}$.
- 2. Collect all terms involving $\frac{dy}{dx}$ on one side, and all others on the other side.
- Factor out the $\frac{dy}{dx}$ and solve for it by dividing.

$$x^2 + y^2 = 25$$

$$\frac{d}{dx}x^2 + \frac{d}{dx}y^2 = \frac{d}{dx}25$$

$$2x + 2y \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{x}{y}$$

The slope of the circle $x^2 + y^2 = 25$

at (3, 4) is
$$\frac{dy}{dx} = -\frac{x}{y} = -\frac{3}{4}$$

at (3, -4) is
$$\frac{dy}{dx} = -\frac{x}{y} = \frac{3}{4}$$

example 4
$$y^4 + x^4 - 2x^2y^2 = 9$$

$$4y^3 \frac{dy}{dx} + 4x^3 - 4xy^2 - 4x^2y \frac{dy}{dx} = 0$$

$$(4y^{3} - 4x^{2}y)\frac{dy}{dx} = -4x^{3} + 4xy^{2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-x^{3} + xy^{2}}{y^{3} - 4x^{2}y}$$
At (2, 1), $\frac{dy}{dx} = \frac{-6}{-3} = 2$

example 5

demand function
$$x = \sqrt{(1900 - p^3)}$$

 $x^2 = 1900 - p^3$
 $\frac{d}{dx}(x^2) = \frac{d}{dx}(1900 - p^3)$
 $2x = -3p^2 \frac{dp}{dx}$
 $\Rightarrow \frac{dp}{dx} = \frac{-2x}{3p^2}$
At $p = 10$, $x = \sqrt{(1900 - 10^3)} = 30$
 $\Rightarrow \frac{dp}{dx} = -\frac{60}{300} = -0.2$

It says that the rate of change of price with respect to quantity is -0.2