Scilab Textbook Companion for Theory of Alternating Current Machinery by A. S. Langsdorf¹

Created by
Ajay Kumar G
Bachelor of Engineering (B.E.)
Electrical Engineering
Sri Jayachamarajendra College of Engineering
College Teacher
R S Ananda Murthy
Cross-Checked by

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Theory of Alternating Current Machinery

Author: A. S. Langsdorf

Publisher: Tata McGraw - Hill Education

Edition: 1

Year: 1999

ISBN: 978-0-07-099423-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Fundamental Principles of Transformer	5
2	Transformer Connections and Operation	19
3	Transformer structure Insulation Heating and Load Stresses	31
10	The Synchronous Generator	33
16	The Mercury Arc Rectifier	40

List of Scilab Codes

Exa 1.6.14 To find secondary resistance and reactance	5
Exa 1.9.18 To find the secondary terminal voltage	6
Exa 1.13.28To find the regulation of transformer	9
Exa 1.14.29To find regulation by percent method	11
Exa 1.14.31To find the per unit regulation	12
Exa 1.14.33To find the load loss of transformer	13
Exa 1.16.37To measure the core loss of transformer	14
Exa 1.17.41To find the efficiency at different loads	17
Exa 2.3.69 To find primary voltage and current supplied	19
Exa 2.6.76 To find branch currents and voltages	21
Exa 2.22.11 $\mathbb C$ onductively and Inductively transferred power	26
Exa 2.29.13 Positive and negative sequence voltages	27
Exa 2.29.13Positive Negative and Zero sequence voltages	29
Exa 3.16.16To find radial force due to current	31
Exa 10.9.40 To find the field excitation required	33
Exa 10.10.4 Regulation by emf method	36
Exa 10.12.4 Regulation by mmf method	38
Exa 16.9.61 Effect of phase control	40

Fundamental Principles of Transformer

Scilab code Exa 1.6.14 To find secondary resistance and reactance

```
1 // Example1_6_pg14.sce
2 // To find secondary resistance and reactance
3 // Theory of Alternating Current Machinery by
     Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 14
9 clear; clc; close;
10
11 // Given data
12 volt_amp = 10e+3; // Volt Ampere rating of
     transformer is 10kA
13 volt_ratio = 440/110; // Transformer voltage ratio
14 freq_tr = 60; // Frequency of transformer usage is
     60 cps or 60 Hz
15 pri_res = 0.50; // Primary resistance is 0.50 Ohm
16 sec_res = 0.032; // Secondary resistance is 0.032
```

```
Ohm
17 pri_reac = 0.90; // Primary leakage reactance is
     0.90 Ohm
18 sec_reac = 0.06; //Secondary leakage reactance is
     0.06 Ohm
19
20 // Calculations
21 printf ("The ratio of transformation is %d",
     volt_ratio);
22 sec_res_ref_pri = sec_res*(volt_ratio^2); // Ohms
23 sec_reac_ref_pri = sec_reac*(volt_ratio^2); // Ohms
24
25 disp('Hence,');
26 printf ("Secondary resistance referred to the primary
      = \%0.3 \, f \, Ohm \, n, sec_res_ref_pri); // Ohms
27 printf ("Secondary reactance referred to the primary
     = \%0.2 f Ohm, sec_reac_ref_pri); // Ohms
28
29 // Result
30 // The ratio of transformation is 4
31 // Secondary resistance referred to the primary is
     0.512 Ohm
32 // Secondary reactance referred to the primary is
     0.96 Ohm
```

Scilab code Exa 1.9.18 To find the secondary terminal voltage

```
1 // Example1_9_pg18.sce
2 // To find the secondary terminal voltage
3 // Theory of Alternating Current Machinery by
    Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
```

```
6 // Example in Page 18
9 clear; clc; close;
10
11 // Given data
12 v1 = 2000; // Primary voltage, volts
13 v2 = 400; // Secondary Open Voltage, volts
14 pf = +0.8; // Power factor lagging 80\%
15 r1 = 5.5; // Resistance R1, Ohms
16 r2 = 0.2; // Resistance R2, Ohms
17 x1 = 12; // Reactance X1, Ohms
18 x2 = 0.45; // Reactance X2, Ohms
19 va_rating = 10e+3 // volt-ampere rating of
      transformer, VA
20 voltage1 = v1; // Supply input voltage, Volts
21
22 // Calculations
23 current1 = va_rating/voltage1; // Amperes
24 current2 = current1; // Amperes
25 turns_ratio = v1/v2;
26 \text{ r2dash} = \text{turns\_ratio}^2 * \text{r2}; // \text{r2} \text{ as referred to}
      primary side, Ohms
27 sum_ofr = r1 + r2dash; // total equivalent
      resistance referred to primary, Ohms
28 x2dash = turns_ratio^2 * x2; // x2 as referred to
      primary side, Ohms
29 sum_ofx = x1 + x2dash; // Sum of reactances, Ohms
30 // Taking current axis as the reference as per the
     problem
31 vec\_current1 = 5 + 0*\%i; // Vector Current 1,
     Amperes
32 vec_current2 = vec_current1; // Vector Current 2,
      Amperes
33 theta = a\cos(0.8); // lagging phase angle in radians
34 vector_volt1 = voltage1; // Volts
35 function y = ff(voltage2)
    // To solve for secondary voltage from the
36
```

```
equation
            vector_volt1 = vector_volt2 + vec_current2
37
        *((sum_ofr)+(sum_ofx)*\%i);
            vector_volt2 = voltage2*(cos(theta)+sin(
38
        theta) *\%i);
39
            vector_volt1 = voltage2*(cos(theta)+sin(
        theta) *\%i) + vec_current2 *((sum_ofr) + (sum_ofx) *
        %i);
     // Separating real and imaginary parts and
40
        calculating the absolute values, and equating
        it to zero (or here y(1)), the expression would
        look like below
41
     // y(1) = -(vector_volt1^2) + (cos(theta)*
        voltage2(1) + abs(vec\_current2)*sum\_ofr)^2 + (
        voltage2(1)*sin(theta) + abs(vec_current2)*
        sum_ofx)^2;
42
     y(1) = -(vector_volt1^2) + (cos(theta)*voltage2(1))
         + abs(vec_current2)*(sum_ofr))^2 + (sin(theta)
        *voltage2(1) + abs(vec_current2)*(sum_ofx))^2;
     endfunction
43
44 sec_volt_in_terms_of_pri = fsolve ([0.1], ff); // in
       Volts
45 sec_voltage = sec_volt_in_terms_of_pri/turns_ratio;
     // in Volts
46 printf("\nSecondary Voltage as referred to primary
      is %.2f volts \n", sec_volt_in_terms_of_pri);
47 printf ("Secondary Terminal Voltage at full load is %
      .2 f \text{ volts } \n", sec_voltage);
48
49
50 // Result
51 // Secondary Voltage as referred to primary is
      1887.30 volts
52 // Secondary Terminal Voltage at full load is 377.46
       volts
```

Scilab code Exa 1.13.28 To find the regulation of transformer

```
1 // Example 1_1 3_p g 28.sce
2 // To find the regulation of transformer
3 // Theory of Alternating Current Machinery by
     Alexander Langsdorf
  // First Edition 1999, Thirty Second reprint
  // Tata McGraw Hill Publishing Company
  // Example in Page 28
7
9 clear; clc; close;
10
11 // Given data
12 v1 = 1100; // Primary voltage, Volts
13 v2 = 110; // Secondary Open Voltage, Volts
14 volt_sc = 33; // Voltage for Short Circuit full load
       current, Volts
15 pow_sc_in = 85; // Short Circuit input Power, Watts
16 pf = +0.8; // Power factor lagging 80\%
17 va_rating = 5e+3 // volt-ampere rating of
      transformer, VA
18
19 // Calculations
20
21 // Method based on Eq. 1-35
22 // v1^2 = (v2 + volt_sc*cos(thetae - theta2))^2 + (
      volt_sc*sin(thetae - theta2))^2;
23 current1 = va_rating/v1; // Current in Amperes
24 thetae = acos(pow_sc_in /( volt_sc * current1 ));
25 \text{ theta2} = a\cos(pf);
26 function y = ff1(v2)
```

```
27
     y(1) = -(v1^2) + (v2 + volt_sc*cos(thetae - theta2)
        ))^2 + (volt_sc*sin(thetae - theta2))^2;
28
     endfunction
29 volt2 = fsolve ([0.1], ff1); // voltage in volts
30 // \text{Regulation} = ((v1 - volt2)/v1) *100
31 Regulation1 = ((v1 - volt2)/v1)*100;
32 printf("\nRegulation of the Transformer by method 1
      is \%.2\,\mathrm{f} \%\% \n", Regulation1);
33
34 // Method based on Eq. 1-36
35 / v1^2 = (v2 + current1*re*cos(theta2) + current1*
      xe*sin(theta2))^2 + (current1*xe*cos(theta2) -
      current1*re*sin(theta2))^2;
36 current1 = va_rating/v1; // Current in Amperes
37 thetae = acos(pow_sc_in /( volt_sc * current1 ));
38 \text{ theta2} = a\cos(pf);
39 ze = volt_sc/current1; // impedance in Ohms
40 re = pow_sc_in/(current1^2); // Resistance in Ohms
41 xe = (ze^2 - re^2)^0.5; // Reactance in Ohms
42 function y = ff2(v2)
     y(1) = -(v1^2) + (v2 + current1*re*cos(theta2) +
43
        current1*xe*sin(theta2))^2 + (current1*xe*cos(
        theta2) - current1*re*sin(theta2))^2;
     endfunction
44
45 volt2 = fsolve ([0.1], ff2);
46 // Regulation = ((v1 - volt2)/v1) *100
47 \quad Regulation2 = ((v1 - volt2)/v1)*100;
48 printf ("Regulation of the Transformer by method 2 is
      \%.2 \text{ f } \% \text{ } \text{n}", Regulation2);
49
50 // Result
51 // Regulation of the Transformer by method 1 is 2.85
52 // Regulation of the Transformer by method 2 is 2.85
```

Scilab code Exa 1.14.29 To find regulation by percent method

```
1 // Example 1_1 4_pg 29.sce
2 // To find regulation by percent method
3 // Theory of Alternating Current Machinery by
     Alexander Langsdorf
  // First Edition 1999, Thirty Second reprint
  // Tata McGraw Hill Publishing Company
  // Example in Page 29
7
9 clear; clc; close;
10
11 // Given data
12 v1 = 1100; // Primary voltage, volts
13 v2 = 110; // Secondary Open Voltage, volts
14 volt_sc = 33; // Voltage for Short Circuit full load
      current, volts
15 pow_sc_in = 85; // Short Circuit input Power, watts
16 pf = +0.8; // Power factor lagging 80\%
17 va_rating = 5e+3 // volt-ampere rating of
     transformer, VA
18
19 // Calculations
20
21 // Method based on Eq. 1-38
22 // \% regulation = rpc*cos(theta2) + xpc*sin(theta2) +
      ((xpc*cos(theta2) - rpc*sin(theta2))^2)/200;
23 current1 = va_rating/v1; // Current in Amperes
24 thetae = acos(pow_sc_in /( volt_sc * current1 ));
25 theta2 = acos(pf);
26 ze = volt_sc/current1; // Impedance in Ohms
```

Scilab code Exa 1.14.31 To find the per unit regulation

```
1 // Example1_14_pg31.sce
2 // To find the per unit regulation
3 // Theory of Alternating Current Machinery by
        Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 31
7
8
9 clear; clc; close;
10
11 // Given data
12 r_pu = 0.017; // Per-unit resistance
13 x_pu = 0.0247; // Per-unit reactance
14 power_factor = 1; // Unity Power Factor
15 overload = 0.25; // 25% overload
```

```
17 // Calculations
18 phi = acos(power_factor);
19 OL_factor = 1.00 + overload;
20 r_pu = r_pu*OL_factor; // Base value has to be
     changed for 0.25 overload
21 x_pu = x_pu*OL_factor; // Base value has to be
     changed for 0.25 overload
22 // Formula for regulation is, Per-unit-regulation =
     r_pu*cos(phi) + x_pu*sin(phi) + 0.5*(x_pu*cos(phi))
     - r_p u * sin(phi)^2
23 perunit_regulation = r_pu*cos(phi) + x_pu*sin(phi) +
      0.5*(x_pu*cos(phi) - r_pu*sin(phi))^2;
24
25 // disp('Hence,');
26 printf("Per-unit regulation = \%0.4 f",
     perunit_regulation);
27
28 // Result
29 // Per-unit regulation = 0.0217
```

Scilab code Exa 1.14.33 To find the load loss of transformer

```
1 // Example1_15_pg33.sce
2 // To find the load loss of transformer
3 // Theory of Alternating Current Machinery by
    Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 33
7
8
9 clear; clc; close;
10
```

```
11 // Given data
12 Total_Culoss1 = 630; // Total Copper Loss at 20
      degree celcius, watts
13 TrueCopper_loss1 = 504; // Copper loss due to True
     Ohmic resistance at 20 degree celcius, watts
14 temp1 = 20; // Temperature, degree celcius
15 temp2 = 75; // Temperature, degree celcius
16
17 // Calculations
18 eddy_loss1 = Total_Culoss1 - TrueCopper_loss1; //
      Eddy Current loss at 20 degree celsius, watts
19 TrueCopper_loss2 = TrueCopper_loss1 * (temp2 +
      234.5) / (temp1 + 234.5); // True Copper loss at
      75 degree celcius, watts
20 \text{ eddy_loss2} = \text{eddy_loss1} * (\text{temp1} + 234.5) / (\text{temp2} + 234.5)
       234.5); // Eddy Current loss at 75 degree celsius
      , watts
21 load_loss = TrueCopper_loss2 + eddy_loss2; // Load
      loss at 75 degree celsius, watts
22
23 printf ("Eddy Current loss at 20 degree celcius = \%.0
      f watts \n", eddy_loss1);
24 printf ("True Copper loss at 75 degree celcius = \%.0 f
       watts \n", TrueCopper_loss2);
25 printf("Load loss at 75 degree celcius = \%.0 f watts"
      , load_loss);
26
27 // Result
28 // Eddy Current loss at 20 degree celcius = 126
      watts
29 // True Copper loss at 75 degree celcius = 613 watts
30 // Load loss at 75 degree celcius = 717 watts
```

Scilab code Exa 1.16.37 To measure the core loss of transformer

```
1 // Example 1_1 6_pg 37.sce
2 // To measure the core loss of transformer
3 // Theory of Alternating Current Machinery by
      Alexander Langsdorf
  // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 37
9 clear; clc; close;
10
11 // Given data
12 f1 = 30; // Frequency, Hz
13 B1 = 8; // Flux Density, kilogauss
14 P1 = 0.135; // Core loss, watts per lb
15 f2 = 60; // Frequency, Hz
16 B2 = 12; // Flux Density, kilogauss
17 P2 = 0.75; // Core loss, watts per lb
18 P3 = 0.31; // Core loss, watts per lb
19
20 // Calculations
21 \ a = f2/f1;
22 x = (\log(B2^2*(P2 - a^2 * P3))/((P2 - a*P3)*B1^2 - a*(a))
     -1)*P1*B2^2)))/(log(B2/B1));
23 kh = (P2 - a^2 * P3)/(f2*(1 - a)*(B2^x));
24 ke = ((P2 - a*P3)*a)/((a-1)*f2^2*B2^2);
25 \text{ Ph1} = kh*f1*B1^x;
                      Pe1 = ke*f1^2*B1^2; // Hysteresis
      Power loss, watts
26 \text{ Ph2} = \text{kh*f2*B2^x};
                      Pe2 = ke*f2^2*B2^2; // Hysteresis
      Power loss, watts
  Ph3 = kh*f1*B2^x;
                      Pe3 = ke*f1^2*B2^2; // Hysteresis
      Power loss, watts
28 Pt1 = Ph1 + Pe1; // Total Power loss, watts
29 Pt2 = Ph2 + Pe2; // Total Power loss, watts
30 Pt3 = Ph3 + Pe3; // Total Power loss, watts
31 disp('Value of x is'); disp(x);
```

```
32 disp('Value of kh is'); disp(kh);
33 disp('Value of ke is'); disp(ke);
34
35 printf("\n
           f | B, kilogauss | Ph, watts per lb | Pe, watts
        per lb
                   \backslash n
           %d |
                                          %.3 f
                                                               \%.3
                         %d
                     %d |
                                 \%d
                                                  \%.3 f
               \backslash n
            %.3 f
                               %d |
                                           \%d
                                                            \%.3 f
                        \backslash n
                     \%.3 f
                                  \backslash n
      \mathrm{n} , f1, B1, Ph1, Pe1, f2, B2, Ph2, Pe2, f1, B2,
      Ph3, Pe3);
36
   // Result
37
38
39
  // Value of x is
41
           2.0637323
42
   // Value of kh is
43
44
           0.0000484
45
46
47
  // Value of ke is
48
49 //
           0.0000005
50
51
52 // f | B, kilogauss | Ph, watts per lb | Pe, watts
      per lb
53 //
```

```
      54 // 30 | 8
      0.106 | 0.029

      55 // 60 | 12 | 0.490 | 0.260

      56 // 30 | 12 | 0.245 | 0.065
```

Scilab code Exa 1.17.41 To find the efficiency at different loads

```
1 // Example1_17_pg41.sce
2 // To find the efficiency at different loads
3 // Theory of Alternating Current Machinery by
     Alexander Langsdorf
  // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 41
7
9 clear; clc; close;
10
11 // Given data
12 va = 50e+3; // VA rating of transformer, VA
13 v1 = 2200; // Volts
14 v2 = 220; // Volts
15 f = 60; // Frequency, Hz
16 core_loss = 350; // Power loss, watts
17 cu_loss = 630; // Power loss, watts
18 pf0 = 1;
19 pf1 = 0.8;
20
21 // Calculations
22 turns_ratio = v1/v2;
23 upf_full_load_eff = (va*pf0/(va*pf0 + core_loss +
```

```
cu_loss))*100; // Full Load Efficiency at upf
24 \text{ upf\_three\_fourth\_eff} = ((0.75*va*pf0)/(0.75*va*pf0) +
       core_loss + (0.75^2)*cu_loss))*100; //
      Efficiency at three-fourth load at upf
25 full_load_eff = ((va*pf1)/(va*pf1 + core_loss +
      cu_loss))*100; // Efficiency at full load at 0.8
      pf
26 three_fourth_eff = ((0.75*va*pf1)/(0.75*va*pf1 +
      core_loss + (0.75^2)*cu_loss))*100; // Efficiency
       at three-fourth load at 0.8 pf
27
28 printf ('Efficiency at Full load & unity power factor
      = \%.1 f \% \ n ',upf_full_load_eff);
29 printf('Efficiency at Three-fourth the full load &
      unity power factor = \%.1 \text{ f } \% \text{ n},
      upf_three_fourth_eff);
30 printf ('Efficiency at Full load efficiency at 80\%%
     power factor = \%.1 f \% \n ',full_load_eff);
31 printf('Efficiency at three-fourth load efficiency
      at 80\% power factor = \%.1 f \%\\n',
      three_fourth_eff);
32
33 // Result
34 // Efficiency at Full load & unity power factor =
      98.1 %
35 // Efficiency at Three-fourth the full load & unity
     power factor = 98.2 \%
36 // Efficiency at Full load efficiency at 80% power
      factor = 97.6 \%
37 // Efficiency at three-fourth load efficiency at 80%
      power factor = 97.7 \%
```

Transformer Connections and Operation

Scilab code Exa 2.3.69 To find primary voltage and current supplied

```
1 // Example 2_3 pg 69.sce
2 // To find primary voltage and current supplied
3 // Theory of Alternating Current Machinery by
     Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 69
7
9 clear; clc; close;
10
11 // Given data
13 // Transformer A data
14 va_A = 100e+3; // VA rating of Transformer
15 v1_A = 4600; // Voltage in volts
16 v2_A = 230; // Voltage in volts
17 x_A = 0.027; // Reactance in Ohms
18 r_A = 0.008; // Resistance in Ohms
```

```
19
20 // Transformer B data
21 va_B = 200e+3; // VA rating of Transformer
22 v1_B = 4610; // Voltage in volts
23 v2_B = 225; // Voltage in volts
24 \text{ x\_B} = 0.013; // Reactance in ohms
25 \text{ r}_B = 0.003; // Resistance in ohms
26
27 // Common Data
28 P_load = 150e+3; // Power in Watts
29 pf = +0.85; // + denotes lagging power factor
30 vg = 225; // Voltage in volts
31
32
33 // Calculations
34
35 // Transformer A
36 \ a_1 = v1_A / v2_A;
37 z_1 = r_A + x_A * \%i;
38 \quad y_1 = 1 / z_1;
39 y_1_HVside = y_1 / a_1;
40
41 // Transformer B
42 \ a_2 = v1_B / v2_B;
43 z_2 = r_B + x_B * \%i;
44 \quad y_2 = 1 / z_2;
45 \text{ y}_2\text{HVside} = \text{y}_2 / \text{a}_2;
46
47 	 y_K = y_1 + y_2;
48 y_K_HVside = y_1_HVside + y_2_HVside;
49
50 // To find the current
51 I = P_load / (vg * pf);
52 V2\_vec = vg;
53 theta = acos(0.85);
54 I_vec = I*(\cos(theta) - \sin(theta)*%i); // - sign
      indicates I lags V
55
```

```
56 \ V1\_vec = ((V2\_vec * y\_K) + I\_vec) / (y\_K\_HVside) ;
57
58 I1_vec = (I_vec + V1_vec*((y_K / a_1) - y_K_HVside))
       /(z_1 * y_K);
59
60 	ext{ I2_vec} = 	ext{I_vec} - 	ext{I1_vec};
61
62 printf(' Primary Voltage of transformer = \%f / \ \%f
      Volts \ ', abs(V1_vec), (atan((imag(V1_vec))/(real
      (V1_{vec})))*180/%pi);
63 printf (' Current Supplied by transformer A = \%f /
      %f Volts n', abs(I1_vec), (atan((imag(I1_vec))/(
      real(I1_vec))))*180/%pi);
64 printf (' Current Supplied by transformer B = \%f /_
      %f Volts n', abs(I2_vec), (atan((imag(I2_vec))/(
      real(I2_vec))))*180/%pi);
65
66 // Result
67 // Primary Voltage of transformer = 4678.867698 /_
      1.211839 Volts
  // Current Supplied by transformer A = 361.324403 /_
       -44.400715 Volts
69 // Current Supplied by transformer B = 438.858386 /_
       -21.431553 Volts
```

Scilab code Exa 2.6.76 To find branch currents and voltages

```
1 // Example2_6_pg76.sce
2 // To find branch currents and voltages
3 // Theory of Alternating Current Machinery by
    Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
```

```
6 // Example in Page 76
9 clear; clc; close;
10
11 // Given data
12
13 // Transformer data
14 va = 100e+3; // VA rating of Transformer
15 v1 = 11500; // Voltage in volts
16 v2 = 230; // Voltage in volts
17 f = 60; // Frequency in Hz
18 OC_{pow} = 560; // Power in watts
19 \text{ pf} = +0.155;
20 \text{ sc\_volt} = 217.5; // Volts
21 sc_curr = 8.7; // Amperes
22 \text{ sc_pow} = 1135; // Power in watts}
23 ll_volt = 15000; // Line to line voltage
24 z_1 = 0.6; // Impedance
25 \text{ pf2} = +0.866;
26 \text{ pf3} = -0.5;
27
28 // Calculations
29
30 power_factor = sc_pow / (sc_volt * sc_curr);
31 theta_e = acos(power_factor);
32 transformation_ratio = v1 / v2;
33
34 // HT values
35
36 z = sc_volt / sc_curr;
37 r = z*cos(theta_e);
38 x = z*sin(theta_e);
39
40 // LT values
41
42 z_lt = z/(transformation_ratio^2);
43 r_lt = r/(transformation_ratio^2);
```

```
44 x_lt = x/(transformation_ratio^2);
45
46 zz = r_1t + \%i*x_1t ;
47
48 // Referring to figure 2.16(b) in page 77
49
50 z1 = z_1 + zz;
51 z_2 = z_1*(pf2 + %i*abs(pf3));
52 	 z2 = z_2 + zz;
53 z_3 = z_1*(abs(pf3) - \%i*pf2);
54 z3 = z_3 + zz;
55
56 \text{ disp}('z1 = ')
57 disp(z1);
58
59 \text{ disp}('z2 = ')
60 \text{ disp}(z2);
61
62 \text{ disp}('z3 = ')
63 disp(z3);
64
65 disp('By referring to Figure 2.16(b) in page 77, E_A
      , E_B, E_C can be written in terms of the
      unknowns x and y.');
66
67 printf("\nE_A = -(x - 150) + j(259.8 - y) \setminus nE_B = -x
      - jy \ nE_C = (300 - x) - jy");
68 printf("\n \n I_A = E_A / z1 \n I_B = E_B / z2 \n I_C =
      E_C / z3 \n");
69
70 printf ("\nI_A = -1.649x -0.0218y +253.01 + j (425.14
      -1.649y +0.0218x) \nI_B = -1.415x -0.829y + j
      j(-1.439x -0.860y +431.7) n");
71
72 // I_A + I_B + I_C = 0;
73
74 disp('On simplification and by separating the real
```

```
and imaginary parts, we get two equations
       consisting of x and y as variables as shown');
75
76 printf ("\n -3.924x +0.588y +511.01 = 0 \ln -0.588x
       -3.924y + 856.84 = 0 \ n");
77
78 function y = ff(x);
      y(1) = -3.924*x(1)+0.588*x(2)+511.01;
79
      y(2) = -0.588*x(1) -3.924*x(2) +856.84;
80
81 endfunction
82 answer = fsolve([100;100],ff);
83
84 // Answers given in prob is supposed to have some
       mistake in values of x and y
85
86 \times = answer([1]);
87 y = answer([2]);
89 E_A = -(x - 150) + \%i*(259.8 - y) ;
90 E_B = -x - \%i*y;
91 E_C = (300 - x) - \%i*y;
92
93 I_A = E_A / z1 ;
94 I_B = E_B / z2 ;
95 I_C = E_C / z3 ;
96
97 printf("\n \n I_A = \%0.2 f /_ \%0.2 f Amps", abs(I_A),
       atan(imag(I_A)/real(I_A))*180/%pi);
98 printf("\n \n LB = \%0.2 f /_ \%0.2 f Amps", abs(I_B),
       atan(imag(I_B)/real(I_B))*180/%pi);
99 printf("\n\nI_C = \%0.2 f /_ \%0.2 f Amps", abs(I_C),
       atan(imag(I_C)/real(I_C))*180/%pi);
100 printf("\n\nE_A = \%0.2\,\mathrm{f} /_ \%0.2\,\mathrm{f} Volts", abs(E_A),
       atan(imag(E_A)/real(E_A))*180/%pi);
101 printf("\n\nE_B = \%0.2 f /_ \%0.2 f Volts", abs(E_B),
       atan(imag(E_B)/real(E_B))*180/%pi);
102 printf("\n\nE_C = \%0.2 f /_ \%0.2 f Volts", abs(E_C),
       atan(imag(E_C)/real(E_C))*180/%pi);
```

```
103
104 // Result
105 // z1 =
106 //
107 //
          0.6059982 + 0.0080014i
108 //
109 // z2 =
110 //
111 //
          0.5255982 + 0.3080014i
112 //
113 // z3 =
114 //
115 //
          0.3059982 - 0.5115986 i
116 //
117 // By referring to Figure 2.16(b) in page 77, E<sub>A</sub>,
      E_B, E_C can be written in terms of the unknowns
      x and y.
118 // E_A = -(x - 150) + j(259.8 - y)
119 // E_B = -x - jy
120 // E_C = (300 - x) - jy
121 //
122 // I_A = E_A / z1
123 // I_B = E_B / z_2
124 // I_{C} = E_{C} / z3
125 //
126 / I_A = -1.649x -0.0218y +253.01 + j(425.14 -1.649y)
        +0.0218x)
127 // I_B = -1.415x -0.829y + j(0.829x - 1.415y)
   // I_{-}C = -0.860x + 1.439y + 258 + j(-1.439x - 0.860y)
128
       +431.7
129 //
130 // On simplification and by separating the real and
      imaginary parts, we get two equations consisting
       of x and y as variables as shown
131 //
132 // -3.924x +0.588y +511.01 = 0
133 // -0.588x -3.924y +856.84 = 0
134 //
```

```
135  //
136  // I_A = 108.89  /_ -82.59  Amps
137  //
138  // I_B = 412.73  /_ 20.30  Amps
139  //
140  // I_C = 402.59  /_ 4.99  Amps
141  //
142  // E_A = 65.99  /_ -81.84  Volts
143  //
144  // E_B = 251.44  /_ 50.67  Volts
145  //
146  // E_C = 240.00  /_ -54.13  Volts
```

Scilab code Exa 2.22.111 Conductively and Inductively transferred power

```
1 // Example2_22_pg111.sce
2 // Conductively and Inductively transferred power
3 // Theory of Alternating Current Machinery by
     Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 111
9 clear; clc; close;
10
11 // Given data
12
13 // Transformer data
14 va = 10e+3; // VA rating of Transformer, VA
15 v1 = 2300; // Voltage in volts
16 v2 = 230; // Voltage in volts
17 disp('Referring to Fig 2.57, we have');
```

```
18
19 // Calculations
20 V_1 = v1 + v2; // Voltage in volts
21 I_1 = va/v2; // Voltage in volts
22 I_3 = va/v1; // Voltage in volts
23 I_2 = I_1 + I_3; // Current in Amperes
24 \ a = V_1 / v1;
25 P = V_1 * I_1; // Power in watts
26 P_i = P * (a - 1)/a; // Power in watts
27 \text{ P_c} = \text{round}(P/a); // Power in watts}
28
29 printf("\n nTotal volt-amperes supplied from the
      source is = %d VA \nVolt-Amperes supplied
      inductively is = \%d VA \setminus nPower supplied
      conductively is %dVA\n", P, P_i, P_c);
30
31 // Result
32 // Referring to Fig 2.57, we have
33 //
34 //
35 // Total volt-amperes supplied from the source is =
      110000 VA
36 // Volt-Amperes supplied inductively is = 10000 VA
37 // Power supplied conductively is 100000 VA
```

Scilab code Exa 2.29.130 Positive and negative sequence voltages

```
1 // Example2_29_pg130.sce
2 // Positive and negative sequence voltages
3 // Theory of Alternating Current Machinery by
    Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
```

```
6 // Example in Page 130
8
9 clear; clc; close;
10
11 // Given data
12
13 \ V_1 = 1000 + \%i*50;
14 \quad V_2 = -800 + \%i*100;
15 \quad V_3 = -200 - \%i*150;
16 a = \cos(2*\%pi/3) + \%i*\sin(2*\%pi/3);
17
18 // Calculations
19
20 disp('According to Equations 2-88 and 2-89 in page
V_1p = (V_1 + V_2*a + V_3*a^2)/3;
22 V_1n = (V_1 + V_2*a^(-1) + V_3*a^(-2))/3;
23
24 printf("\n nPositive sequence voltage is = \%0.4 \, \text{f} /_
      \%0.2 \,\mathrm{f} Volts \nNegative sequence voltage is = \%0.4
      f /_{\sim} \%0.2 f \text{ Volts} \n", abs(V_1p),atan(imag(V_1p)/
      real(V_1p))*180/%pi, abs(V_1n),atan(imag(V_1n)/
      real(V_1n))*180/%pi);
25
26 // Result
      According to Equations 2-88 and 2-89 in page 130
28 //
29 //
30 // Positive sequence voltage is = 452.7740 /_ -19.11
31 // Negative sequence voltage is = 605.5265 /_ 19.11
      Volts
```

Scilab code Exa 2.29.131 Positive Negative and Zero sequence voltages

```
1 // Example2_29_pg131.sce
2 // Positive Negative and Zero sequence voltages
3 // Theory of Alternating Current Machinery by
      Alexander Langsdorf
  // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 131
9 clear; clc; close;
10
11 // Given data
12 V_1 = 1000 + 50*\%i;
13 \quad V_2 = -800 + 100 * \%i;
14 \quad V_3 = -1100 - 270 * \%i;
15 a = \cos(2*\%pi/3) + \%i*\sin(2*\%pi/3);
16
17 // Calculations
18 disp('According to Equations 2-90, 2-88 and 2-89');
19 \quad V_{0} = (V_{1} + V_{2} + V_{3})/3;
20 V_1p = (V_1 + V_2*a + V_3*a^2)/3;
V_1 = (V_1 + V_2 *a^(-1) + V_3 *a^(-2))/3;
22
23 printf("\n\nZero sequence voltage is = \%0.4 \,\mathrm{f} /_ \%0.2
      f Volts \nPositive sequence voltage is = \%0.4 \,\mathrm{f} /_
       \%0.2 \, \text{f} Volts \nNegative sequence voltage is = \%0
      .4 f /_{-}\%0.2 f Volts n, abs(V_0), atan(imag(V_0)/
      real(V_0))*180/%pi, abs(V_1p), atan(imag(V_1p)/
      real(V_1p))*180/%pi, abs(V_1n),atan(imag(V_1n)/
      real(V_1n))*180/%pi);
24
25 // Result
26 //
       According to Equations 2-90, 2-88 and 2-89
27 //
28 //
29 // Zero sequence voltage is = 302.6549 /_ 7.59 Volts
```

```
30 // Positive sequence voltage is = 558.9050 /_ 13.62 Volts  
31 // Negative sequence voltage is = 757.9524 /_ -3.15 Volts
```

Transformer structure Insulation Heating and Load Stresses

Scilab code Exa 3.16.161 To find radial force due to current

```
1  // Example3_16_pg161.sce
2  // To find radial force due to current
3  // Theory of Alternating Current Machinery by
        Alexander Langsdorf
4  // First Edition 1999, Thirty Second reprint
5  // Tata McGraw Hill Publishing Company
6  // Example in Page 161
7
8
9  clear; clc; close;
10
11  // Given data
12  va = 200e+3;  // Volt Amperes of transformer, VA
13  v1 = 11000;  // Voltage in volts
14  v2 = 2300;  // Voltage in volts
15  T = 46.3;  // Mean length of the turn, inches
16  n = 455;  // Number of turns
```

The Synchronous Generator

Scilab code Exa 10.9.407 To find the field excitation required

```
1 // Example 10_9 pg 407.sce
2 // To find the field excitation required
3 // Theory of Alternating Current Machinery by
     Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 407
9 clear; clc; close;
10
11 // Given data
12 va = 2500e+3; // Volt Ampere rating of machine, VA
13 vll = 6600; // Line to Line voltage in volts
14 N = 3000; // Number of turns
15 f = 50; // Frequency in Hz
16 \text{ slots} = 60;
17 n = 4;
18 \text{ poles = 2};
19 r = 0.073;
20 x = 0.87;
```

```
21 \text{ pf1} = 0.8;
22 pf2 = 1;
23 \text{ pf3} = 0;
24 phase = 3;
25
26 // Calculations
27
28 // For 80\% power factor
29
30 \text{ phi} = a\cos(pf1);
31 V = vll / sqrt(3);
32 I = round(va / (phase*V));
33 \text{ IR}_a = \text{I*r};
34 \text{ IX\_a} = \text{I}*x;
35 V_{\text{vec}} = V*(\cos(\text{phi}) + \%i*\sin(\text{phi}));
36 E = V_{vec} + I*(r + \%i*x);
37 E_mag = sqrt(real(E)^2 + imag(E)^2);
38 conductors = slots * n;
39 turns = conductors/2;
40 N_p = turns / (poles * phase);
41 q = slots / (poles * phase);
42 \text{ gama} = 360 / \text{slots};
43 \text{ gama} = \text{gama*\%pi/2};
44 \text{ k_b1} = (\sin(q*gama/2))/(q*\sin(gama/2));
45 \text{ k_p1} = 1;
46 \ A = (2*sqrt(2)/\%pi)*phase*k_b1*k_p1*N_p*I;
47 \cos_{alpha} = (real(E)/E_mag);
48 \sin_{\alpha} = (imag(E)/E_{mag});
49 alpha = acos(cos_alpha);
50 F_r_mag = 17500;
51 	ext{ F_r = F_r_mag*(cos(alpha + \%pi/2) + \%i*sin(alpha + \)
       %pi/2));
52 F = F_r - A;
53 \text{ F_mag} = \text{sqrt}(\text{real}(F)^2 + \text{imag}(F)^2);
54 disp('The open-circuit voltage corresponding to this
        excitation, determined from Fig. 10-12, is 4450
       volts; ');
55 \text{ oc\_volt} = 4450;
```

```
56 \text{ regulation80} = ((oc\_volt - V)/V)*100;
57 printf("\n\nThe regulation for 80\% power factor is
      \%0.1\,\mathrm{f} %% ", regulation80);
58
59 // For power factor 1.0
60
61 \text{ phi} = a\cos(pf2);
62 V_{\text{vec}} = V*(\cos(\text{phi}) + \%i*\sin(\text{phi}));
63 E = V_{vec} + I*(r + \%i*x);
64 E_mag = sqrt(real(E)^2 + imag(E)^2);
65 \text{ cos\_alpha} = (\text{real}(E)/E_mag);
66 sin_alpha = (imag(E)/E_mag);
67 alpha = acos(cos_alpha);
68 F_r_mag = 16500;
69 F_r = F_r_mag*(cos(alpha + \%pi/2) + \%i*sin(alpha +
      %pi/2));
70 	ext{ F} = 	ext{F_r} - 	ext{A};
71 F_{mag} = sqrt(real(F)^2 + imag(F)^2);
72 disp('The open-circuit voltage corresponding to this
       excitation, determined from Fig. 10-12, is 4150
      volts; ');
73 \text{ oc_volt} = 4150;
74 regulation100 = ((oc_volt - V)/V)*100;
75 printf("\n nThe regulation for 100\% power factor is
       \%0.1 f \%\% ", regulation100);
76
77 // For power factor 0
78
79 phi = acos(pf3);
80 E = V + I*(x);
81 F_r_mag = 18000;
82 F_r = F_r_mag + 11300;
83 printf("\nThe value F_R corresponding to Fig 10-12
      is %d Volts\n", F_r);
84 disp('The open-circuit voltage corresponding to this
       excitation, determined from Fig. 10-12, is 4500
      volts; ');
85 \text{ oc\_volt} = 4500;
```

```
86 regulation0 = ((oc_volt - V)/V)*100;
87 printf("\nThe regulation for 0\%% power factor is \%0
       .1 f \%\% \n", regulation0);
88
89 // Result
90 // The open-circuit voltage corresponding to this
      excitation, determined from Fig. 10-12, is 4450
       volts;
91 //
92 // The regulation for 80\% power factor is 16.8~\%
93 // The open-circuit voltage corresponding to this
      excitation, determined from Fig. 10-12, is 4150
       volts;
94 //
95 // The regulation for 100\% power factor is 8.9~\%
96 // The value F_R corresponding to Fig 10-12 is 29300
       Volts
97
98 // The open-circuit voltage corresponding to this
      excitation, determined from Fig. 10-12, is 4500
      volts;
99
100 // The regulation for 0\% power factor is 18.1\%
```

Scilab code Exa 10.10.413 Regulation by emf method

```
1 // Example10_10_pg413.sce
2 // Regulation by emf method
3 // Theory of Alternating Current Machinery by
         Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 413
```

```
7
9 clear; clc; close;
10
11 // Given data
12 va = 2500e+3; //Volt-Ampere rating of the
      transformer, VA
13 vll = 6600; // Line to Line voltage in volts
14 r = 0.073; // Resistance in Ohms
15 \text{ pf1} = 0.8;
16 \text{ phase} = 3;
17 vref = 3640; // Reference for voltage in volts
18 iref = 340; // Reference for current in Amperes
19
20 // Calculations
21 z_s = vref/iref;
22 x_s = sqrt(z_s^2 - r^2);
23 disp('By Referring to Fig. 10-19');
24 \text{ phi} = a\cos(pf1);
25 \ V = v11 / sqrt(3);
26 I = round(va / (phase*V));
27 V_{\text{vec}} = V*(\cos(\text{phi}) + \%i*\sin(\text{phi}));
28 E = V_{vec} + I*(r + \%i*x_s);
29 E_mag = sqrt(real(E)^2 + imag(E)^2);
30 Regulation = ((E_mag - V)/V)*100;
31
32 printf(" Regulation is found to be \%.2 f \%\%",
      Regulation);
33
34
35
36 // Result
37 // By Referring to Fig. 10-19
38 // Regulation is found to be 45.73 \%
```

Scilab code Exa 10.12.416 Regulation by mmf method

```
1 // Example 10_12_pg 416.sce
2 // Regulation by mmf method
3 // Theory of Alternating Current Machinery by
      Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 416
8 clear; clc; close;
10 // Given data
11 va = 2500e+3; // Volt Ampere rating of the
      transformer, VA
12 vll = 6600; // Line to Line voltage, Volts
13 r = 0.073; // Resistance in Ohms
14 x = 0.87; // Reactance in Ohms
15 \text{ pf1} = 0.8;
16 \text{ phase} = 3;
17
18 // Calculations
19
20 phi = acos(pf1);
21 V = vll / sqrt(3);
22 I = round(va / (phase*V));
23 \text{ IR}_a = \text{I*r};
24 \text{ IX}_a = \text{I}*x;
25 V_{\text{vec}} = V*(\cos(\text{phi}) + \%i*\sin(\text{phi}));
26 E = V_{vec} + IR_a;
27 \text{ E_mag} = \text{sqrt}(\text{real}(E)^2 + \text{imag}(E)^2);
28 F_r1_mag = 16500;
```

```
29 cos_alpha = (real(E)/E_mag);
30 \sin_{\alpha} = (imag(E)/E_{mag});
31 alpha = acos(cos_alpha);
32 \text{ F_r1} = \text{F_r1_mag*}(\cos(\%\text{pi/2} + \text{alpha}) + \%\text{i*}\sin(\%\text{pi/2} + \text{sin})
        alpha));
33 \quad A_plus_Ax = 10000;
34 F = F_r1 - (A_plus_Ax);
35 \text{ F_mag} = \text{sqrt}(\text{real}(F)^2 + \text{imag}(F)^2);
36 printf("\n Magnitude of F is %0.2f amp-turns per
       pole", F_mag);
37 disp('This magnitude of F corresponds to Open-
       circuit voltage of 4330 Volts');
38 \text{ oc_volt} = 4330;
39 regulation = ((oc\_volt - V)/V)*100;
40 printf("\nRegulation is found to be \%0.1 \text{ f } \% \text{ } \text{n}",
       regulation);
41
42 // Result
43 //
      Magnitude of F is 23866.02 amp-turns per pole
44 // This magnitude of F corresponds to Open-circuit
       voltage of 4330 Volts
45
46 // Regulation is found to be 13.6 \%
```

The Mercury Arc Rectifier

Scilab code Exa 16.9.617 Effect of phase control

```
1 // Example 16_9 pg 617.sce
2 // Effect of phase control
3 // Theory of Alternating Current Machinery by
      Alexander Langsdorf
4 // First Edition 1999, Thirty Second reprint
5 // Tata McGraw Hill Publishing Company
6 // Example in Page 617
9 clear; clc; close;
10
11 // Given data
12
13 \text{ phi} = 20;
14 \text{ alpha1} = 30;
15 \text{ alpha2} = 0;
16
17 // Calculations
18
19 ans1 = (\cos(phi*\%pi/(180*2))*\cos(phi*\%pi/(180*2) +
      alpha1*%pi/180)*100);
```