National University of Computer and Emerging Sciences, Lahore Campus Course: **Applied Physics Course Code: EE117 Program:** BS (CS) **Semester: Fall 2019** 20 **Duration:** 30 minutes **Total Marks:** 16-12-2019 **Objective** Paper Date: **Type Section:** All Page(s): 2 **Final** Exam: **Roll No:** Name **Section:** Constants: $g=9.8 \text{ m/s}^2$; $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2}$; $e = \text{charge of electron/proton} = 1.60 \times 10^{-19} \text{ C}$; **Instruction/Notes:** mass of electron= 9.11×10^{-31} kg; $\mu_{0=4\pi} \times 10^{-7}$ T.m/A **Question 1:** Mention only one correction option. i) The coordinate of an object is given as a function of time by $x = 7t - 3t^2$, where x is in meters and t is in seconds. Its average velocity over the interval from t = 0 to t = 2 s is: A) 5 m/sC) -11 m/sB) -5 m/sD) 1 m/s ii) A car moving with an initial velocity of 25 m/s north has a constant acceleration of 3 m/s² south. After 6 seconds its velocity will be: A) 7 m/s north C) 43 m/s north B) 7 m/s south D) 20 m/s north iii) A vector has a component of 10 m in the +x direction, a component of 10 m in the +y direction, and a component of 5 m in the +z direction. The magnitude of this vector is: A) 0 m C) 20 m B) 15 m D) 25 m iv) A vector in the xy plane has a magnitude of 25 and an x component of 12. The angle it makes with the positive x axis is: A) 26° C) 61° B) 29° D) 64° v) The standard 1-kg mass is attached to a compressed spring and the spring is released. If the mass initially has an acceleration of 5.6 m/s², the force of the spring has a magnitude of: A) 2.8 N C) 11.2 N D) 0 N B) 5.6 N vi) An object attached to one end of a spring makes 20 complete vibrations in 10s. Its period is: A) 2 Hz D) 2 s

B) 10 s E) 0.50 s

C) 0.5 Hz

vii) A wave is described by $y(x,t) = 0.1 \sin(3x - 10t)$, where x is in meters, y is in centimeters and t is in seconds. The angular frequency is:

A) 0.10 rad/s D) 20π B) 3.0 rad/s rad/s C) $10\pi \text{ rad/s}$ E) 10 rad/s

viii) The plot on right side shows a mass oscillating as $x = x_m \cos x$ $(\omega t + \varphi)$. What are x_m and φ ?

A) 1 m, 0° D) 2 m, 90° B) $2 \text{ m}, 0^{\circ}$ E) 4 m, 0°

C) 4 m, 90°

ix) The displacement of a string is given by $y(x,t)=y_m$	$sin(kx+\omega t)$, The wavelength of the wave is:
A) $2\pi k/\omega$	C) ωk
B) k/ω	D) $2\pi/k$
x) A 5.0-C charge is 10 m from a -2.0 -C charge. The electrostatic force is on the positive charge is:	
A) 9.0×10^8 N toward the negative charge	•
B) 9.0×10^8 N away from the negative charge	
C) 9.0×10^9 N toward the negative charge	
xi) Two identical charges, 2.0 m apart, exert forces of	of magnitude 4.0 N on each other. The value of
either charge is:	2 magnitude 100 1 (on euch omer) 1 ne value of
A) 1.8×10^{-9} C	C) 4.2×10^{-5} C
B) $2.1 \times 10^{-5} \text{ C}$	D) $1.9 \times 10^5 \text{C}$
,	,
xii) The electric field at a distance of 10 cm from an isolated point particle with a charge of 2×10^{-9} C is:	
A) 1.8 N/C	C) 180 N/C
B) 18 N/C	D) 1800 N/C
,	,
xiii) An electric dipole consists of a particle with a charge of $+6 \times 10^{-6}$ C at the origin and a particle with a charge of -6×10^{-6} C on the <i>x</i> axis at $x = 3 \times 10^{-3}$ m. Its dipole moment is:	
1) 10 10 8 0 1 1	
, 1	C) 0 C·m, because the net charge is 0
B) 1.8×10^{-8} C·m, in the negative x direction	
xiv) A 10-ohm resistor has a constant current. If 120	00 C of charge flow through it in 4 minutes what
is the value of the current?	C) 20 A
A) 3.0 A	C) 20 A
B) 5.0 A	11) 1/20 A
,	D) 120 A
xv) The figure on right side shows a junction. What	11 / //
xv) The figure on right side shows a junction. What currents?	is true of the
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$	11 / //
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$	is true of the C) $i_1 = i_0 - i_2$
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri	is true of the C) $i_1 = i_0 - i_2$
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m ² . What is its resistivity?	is true of the C) $i_1 = i_0 - i_2$ es a current density
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10 ⁸ A/m ² . What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$	is true of the C) $i_1 = i_0 - i_2$
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction.	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is:
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) $0 N$	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) $0 N$ B) $4.5 \times 10^{-14} N$ in the positive z direction	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction D) 4.5×10^{-14} N in the positive y direction
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) $0 N$ B) $4.5 \times 10^{-14} N$ in the positive z direction xviii) The direction of magnetic field in a certain reg	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction D) 4.5×10^{-14} N in the positive y direction gion of space is determined by firing a test
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) $0 \times 10^{-14} \times 1$	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction D) 4.5×10^{-14} N in the positive y direction gion of space is determined by firing a test rections in different trials. The field direction is:
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) $0 N$ B) $4.5 \times 10^{-14} N$ in the positive z direction xviii) The direction of magnetic field in a certain reg	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction D) 4.5×10^{-14} N in the positive y direction gion of space is determined by firing a test rections in different trials. The field direction is:
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) $0 \times 10^{-14} \times 1$	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction D) 4.5×10^{-14} N in the positive y direction gion of space is determined by firing a test rections in different trials. The field direction is:
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) $0 N$ B) $4.5 \times 10^{-14} N$ in the positive z direction xviii) The direction of magnetic field in a certain reg charge into the region with its velocity in various direction of the directions of the velocity when the magnetic field in a certain region with its velocity when the magnetic field in a cert	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction D) 4.5×10^{-14} N in the positive y direction gion of space is determined by firing a test rections in different trials. The field direction is:
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) 0 N B) 4.5×10^{-14} N in the positive z direction xviii) The direction of magnetic field in a certain reg charge into the region with its velocity in various direction of the directions of the velocity when the magnetic force C) the direction of the magnetic force xix) Lines of the magnetic field produced by a long series.	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction D) 4.5×10^{-14} N in the positive y direction gion of space is determined by firing a test rections in different trials. The field direction is: etic force is zero the is a maximum
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) 0 N B) 4.5×10^{-14} N in the positive z direction xviii) The direction of magnetic field in a certain reg charge into the region with its velocity in various direction of the direction of the velocity when the magnetic force C) the direction of the magnetic force	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction D) 4.5×10^{-14} N in the positive y direction gion of space is determined by firing a test rections in different trials. The field direction is: etic force is zero the is a maximum
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) 0 N B) 4.5×10^{-14} N in the positive z direction xviii) The direction of magnetic field in a certain reg charge into the region with its velocity in various direction of the directions of the velocity when the magnetic force C) the direction of the magnetic force xix) Lines of the magnetic field produced by a long series.	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction D) 4.5×10^{-14} N in the positive y direction gion of space is determined by firing a test rections in different trials. The field direction is: etic force is zero the is a maximum
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) 0 N B) 4.5×10^{-14} N in the positive z direction xviii) The direction of magnetic field in a certain regcharge into the region with its velocity in various direction of the direction of the velocity when the magnetic force (C) the direction of the magnetic force (C) the direction of the magnetic field produced by a long standard (C) the direction of the current	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction D) 4.5×10^{-14} N in the positive y direction gion of space is determined by firing a test rections in different trials. The field direction is: etic force is zero the is a maximum Straight wire carrying a current are: C) leave the wire radially D) circles concentric with the wire
xv) The figure on right side shows a junction. What currents? A) $i_1 = i_0 + i_2$ B) $i_2 = i_0 + i_1$ xvi) A wire has an electric field of 6.2 V/m and carri of 2.4 x 10^8 A/m². What is its resistivity? A) $6.7 \times 10^{-10} \Omega \cdot m$ B) $1.5 \times 10^{-8} \Omega \cdot m$ xvii) An electron (charge = -1.6×10^{-19} C) is moving magnetic field of 0.80 T is in the positive z direction. A) 0 N B) 4.5×10^{-14} N in the positive z direction xviii) The direction of magnetic field in a certain regcharge into the region with its velocity in various direction of the directions of the velocity when the magnetic force (C) the direction of the magnetic force (C) the direction of the magnetic field produced by a long of (C) the direction of the current (D) opposite to the direction of the current	is true of the C) $i_1 = i_0 - i_2$ es a current density C) $2.6 \times 10^{-8} \Omega \cdot m$ at 3.0×10^5 m/s in the positive x direction. A The magnetic force on the electron is: C) 4.5×10^{-14} N in the negative z direction D) 4.5×10^{-14} N in the positive y direction gion of space is determined by firing a test rections in different trials. The field direction is: etic force is zero the is a maximum Straight wire carrying a current are: C) leave the wire radially D) circles concentric with the wire