Moserのツイストの定理

まるげり

2025年9月11日

Levi-Moser[1] のノート. 面積保存ツイスト写像の母関数に解析性を課すが, ツイスト定理の証明としては一番読みやすいと思う.

1 背景: 面積保存ツイスト写像, 母関数

アニュラス $\mathbb{A}=\mathbb{S}^1 \times \mathbb{R}$ 上の面積保存ツイスト写像 $\varphi(x_1,y_1)=(x_2,y_2)$ とは、面積保存性 $\varphi^*(dy_2 \wedge dx_2)=dy_1 \wedge dx_1$ とツイスト性 $\frac{\partial x_2}{\partial y_1}>0$ を持つものである.

記号の濫用で、 $\mathbb{S}^1 \times \mathbb{R}$ の普遍被覆 \mathbb{R}^2 上の元もまた (x,y) のように書き、また φ の \mathbb{R}^2 への持ち上げも φ と書くことにすると、面積保存ツイスト写像 φ が特に \mathbb{A} 上の完全シンプレクティック写像 $(\varphi^*(ydx)-ydx)$ が \mathbb{A} 上の完全形式になる)とき、 φ の母関数と呼ばれる、次の性質を満たす関数 $h:\mathbb{R}^2 \to \mathbb{R}$ が存在する:

 h_1, h_2 をそれぞれ h の第 1 成分、第 2 成分での偏微分としたときに、 $h(x_1+1, x_2+1) = h(x_1, x_2), h_{12} < 0$ であり、さらに

$$\begin{cases} h_1(x_1, x_2) = -y_1 \\ h_2(x_1, x_2) = y_2 \end{cases} \iff \varphi(x_1, y_1) = (x_2, y_2)$$

となる.

(たぶん, \mathbb{R}^2 で考える以上はポアンカレの補題から閉形式 $\varphi^*(ydx) - ydx$ が完全形式になることが保証されるけど, アニュラス \mathbb{R} 上でもなお h が意味を持つためには別で \mathbb{R} 上で完全形式になることを保証しないといけない... のだと思う.) 特に φ が母関数 h を持つなら, (x_1,y_1) が与えられた下で, $\{(x_n,y_n)\}_n$ が軌道 $\{\varphi^n(x_1,y_1)\}_n$ になることと

$$h_2(x_{i-1}, x_i) + h_1(x_i, x_{i+1}) = 0, \ y_i = -h_2(x_i, x_{i+1}) \quad (\forall i \in \mathbb{Z})$$

が同値であることがわかる.

2 不変曲線と差分方程式への簡約化

面積保存ツイスト写像 φ の不変曲線 $\gamma \subset \mathbb{A}$ とは, φ の不変集合であって \mathbb{R}^2 上への持ち上げを $w(\theta) = (u(\theta), v(\theta))$ としたときに $u(\theta) - \theta$ および $v(\theta)$ が周期 1 の周期関数となるものである.これは, $u(\theta+1) - (\theta+1) = u(\theta) - \theta$ より $u(\theta+1) - u(\theta) = 1$ より,アニュラス \mathbb{A} を x 方向に一周して戻ってくる曲線であることを意味している.

さて、ある回転数 ω についての不変曲線 γ 、つまり

$$\varphi(w(\theta)) = w(\theta + \omega)$$

を見つけたい. これはラグランジュ方程式と呼ばれることもある次の2階差分方程式

$$E[u(\theta)] = h_1(u(\theta), u(\theta + \omega)) + h_2(u(\theta), u(\theta - \omega)) \equiv 0$$

が解ければ、 $v(\theta)=-h_1(u(\theta),u(\theta+\omega))$ とおくことで不変曲線を見つけることができる. 以下、 $u^+(\theta)=u(\theta+\omega),u^-(\theta)=u(\theta-\omega)$ とする.

Remark 1. あとで使うので, $u_{\theta}E[u]$ の平均値 $\int_{0}^{1} (u_{\theta}E[u])(\theta)d\theta = 0$ を計算しておく.

$$\frac{\partial h}{\partial \theta}(u, u^+) = u_{\theta}(h_1(u, u^+) + h_2(u, u^+))$$

より、 $\nabla f := f(\theta + \omega) - f(\theta)$ と表記すれば、

$$\frac{\partial h}{\partial \theta}(u, u^{+}) - u_{\theta} h_{2}(u^{-}, u) = u_{\theta}(h_{1}(u, u^{+}) + h_{2}(u, u^{+}) - h_{2}(u, u^{+}) + h_{2}(u^{-}, u))$$

$$= u_{\theta}(h_{1}(u, u^{+}) + h_{2}(u^{-}, u))$$

$$= u_{\theta} E[u]$$

したがって.

$$u_{\theta}E[u] = \frac{\partial h}{\partial \theta}(u, u^{+}) - u_{\theta}h_{2}(u^{-}, u)$$

と表すことができる.ここで, $h(x_1+1,x_2+1)=h(x_1,x_2)$ であることと, $f(\theta)$ が周期1の周期関数であれば $\int_0^1 (\nabla f)(\theta)d\theta=\int_0^1 (f(\theta+\omega)-f(\theta))d\theta=0$ であることから,結局

$$\int_0^1 (u_\theta E[u])(\theta) d\theta = 0$$

である.

TO DO: ツイスト定理の証明をまとめる

参考文献

[1] M. Levi and J. Moser, A Lagrangian proof of the invariant curve theorem for twist mappings, Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math. **69**, 733-746, Amer. Math. Soc., Providence, RI, 2001