LEC18: Computer Viewingpart2

Ku-Jin Kim
School of Computer Science & Engineering
Kyungpook National University

Notice: This PPT slide was created by partially extracting & modifying notes from Edward Angel's Lecture Note for E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Contents

- Constructing a View Matrix
- Using Model-View Matrix

View Matrix Construction

- For computing view matrix we can approach
 - Step1) Compute the transformation matrix (C) for the camera to be with the expected orientation (M₁) and location (M₂)
 - $C = M_2 M_1$
 - Step2) Compute the inverse matrix of C to apply it to objects
 - $C^{-1} = M_1^{-1} M_2^{-1}$

Change of Frames (LEC10)

transformed camera frame

Consider two frames:

• We can represent $(\mathbf{u}, \mathbf{v}, \mathbf{n}, \mathbf{p})$ in terms of $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{O})$

$$\mathbf{u} = [\mathbf{u}_{x'} \ \mathbf{u}_{y'} \ \mathbf{u}_{z'} \ \mathbf{0}]^{\mathsf{T}}$$

$$\mathbf{v} = [v_{x'} \ v_{y'} \ v_{z'} \ 0]^T$$

$$\mathbf{n} = [\mathbf{n}_{x'} \ \mathbf{n}_{y'} \ \mathbf{n}_{z'} \ 0]^T$$

•
$$\mathbf{p} = [p_x, p_y, p_z, 1]^T$$

Left hand-rule

•
$$\mathbf{b}_1 = [1, 0, 0, 0]^T$$

•
$$\mathbf{b}_2 = [0, 1, 0, 0]^T$$

•
$$\mathbf{b}_3 = [0, 0, 1, 0]^T$$

•
$$O = [0, 0, 0, 1]^T$$

Right hand-rule

Matrix for constructing transformed camera frame (1)

- Constructing matrix M₁
 - $\mathbf{b}_1 = [1, 0, 0, 0]^T$ to be **u**
 - $\mathbf{b}_2 = [0, 1, 0, 0]^T$ to be \mathbf{v}
 - $\mathbf{b}_3 = [0, 0, 1, 0]^T$ to be \mathbf{n}

$$\mathbf{M}_{1} = \begin{bmatrix} u_{x} & v_{x} & n_{x} & 0 \\ u_{y} & v_{y} & n_{y} & 0 \\ u_{z} & v_{z} & n_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Constructing matrix M₂
 - Translate the origin $\mathbf{O} = [0, 0, 0, 1]^T$ to point $\mathbf{p} = [p_x, p_y, p_z, 1]^T$

$$\mathbf{M}_2 = \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matrix for constructing transformed camera frame (2)

• \mathbf{b}_1 - \mathbf{b}_2 - \mathbf{b}_3 - \mathbf{O} frame is transformed to \mathbf{u} - \mathbf{v} - \mathbf{n} - \mathbf{p} frame by applying M_2M_1

u-v-n-p frame
$$\begin{bmatrix} u_x & v_x & n_x & p_x \\ u_y & v_y & n_y & p_y \\ u_z & v_z & n_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = M_2 M_1 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_2 = \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{M}_1 = \begin{bmatrix} u_x & v_x & n_x & 0 \\ u_y & v_y & n_y & 0 \\ u_z & v_z & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

How can we construct view matrix? (1)

- View matrix: represents objects in camera frame, where objects are defined in the world frame
- Consider two representations of the same point **q** w.r.t two different bases
 - **a** = $[\alpha_1 \ \alpha_2 \ \alpha_3 \ 1]^T$ w.r.t. **b**₁ **b**₂ **b**₃ **O** frame
 - $\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3 \ 1]^T$ w.r.t. $\mathbf{u} \mathbf{v} \mathbf{n} \mathbf{p}$ frame

$$\beta_1$$
u+ β_2 **v** + β_3 **n** + **p** = α_1 **b**₁+ α_2 **b**₂+ α_3 **b**₃ + **O**

$$\begin{bmatrix} u_x & v_x & n_x & p_x \\ u_y & v_y & n_y & p_y \\ u_z & v_z & n_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ 1 \end{bmatrix} = M_2 M_1 \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ 1 \end{bmatrix}$$

 $\mathbf{a} = \mathsf{M}_2 \mathsf{M}_1 \mathbf{b}$

How can we construct view matrix? (2)

- $a = M_2 M_1 b$
- Given point **a** w.r.t. $\mathbf{b}_1 \mathbf{b}_2 \mathbf{b}_3 \mathbf{O}$ (world frame), we need its representation w.r.t. $\mathbf{u} \mathbf{v} \mathbf{n} \mathbf{p}$ frame
- When a is transformed to b by M_{view}
 - M_{view} is a viewing matrix !!!

Computing M_{view} (1)

• $a = M_2 M_1 b$

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_x & v_x & n_x & 0 \\ u_y & v_y & n_y & 0 \\ u_z & v_z & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ 1 \end{bmatrix}$$
(1)

•
$$M_2^{-1}a = M_1b$$

$$\begin{bmatrix} 1 & 0 & 0 & -p_x \\ 0 & 1 & 0 & -p_y \\ 0 & 0 & 1 & -p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & -px \\ 0 & 1 & 0 & -py \\ 0 & 0 & 1 & -pz \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_x & v_x & n_x & 0 \\ u_y & v_y & n_y & 0 \\ u_z & v_z & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ 1 \end{bmatrix}$$

Computing M_{view} (2)

$$\begin{bmatrix} 1 & 0 & 0 - p_x \\ 0 & 1 & 0 - p_y \\ 0 & 0 & 1 - p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ 1 \end{bmatrix} = \begin{bmatrix} u_x & v_x & n_x & 0 \\ u_y & v_y & n_y & 0 \\ u_z & v_z & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ 1 \end{bmatrix}$$
(3)

Since
$$\|\mathbf{u}\| = \|\mathbf{v}\| = \|\mathbf{n}\| = 1$$

 $\rightarrow \mathbf{u}_x \mathbf{u}_x + \mathbf{u}_y \mathbf{u}_y + \mathbf{u}_z \mathbf{u}_z = \mathbf{v}_x \mathbf{v}_x + \mathbf{v}_y \mathbf{v}_y + \mathbf{v}_z \mathbf{v}_z = \mathbf{n}_x \mathbf{n}_x + \mathbf{n}_y \mathbf{n}_y + \mathbf{n}_z \mathbf{n}_z = 1$
Since \mathbf{u} , \mathbf{v} , \mathbf{n} are perpendicular each other
 $\rightarrow \mathbf{u} \cdot \mathbf{v} = \mathbf{u}_x \mathbf{v}_x + \mathbf{u}_y \mathbf{v}_y + \mathbf{u}_z \mathbf{v}_z = 0$, Similarly, $\mathbf{u} \cdot \mathbf{n} = \mathbf{v} \cdot \mathbf{n} = 0$

$$\mathsf{M}_1^\mathsf{T} \; \mathsf{M}_1 = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_x & v_x & n_x & 0 \\ u_y & v_y & n_y & 0 \\ u_z & v_z & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(4)

Computing M_{view} (3)

• We apply the inverse of M_1 to Equation (3)

$$\begin{bmatrix} u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ n_{x} & n_{y} & n_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 - p_{x} \\ 0 & 1 & 0 - p_{y} \\ 0 & 0 & 1 - p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ 1 \end{bmatrix} = \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ 1 \end{bmatrix}$$
 (5)

Computing M_{view} (4)

$$\mathbf{M}_{\text{view}} = \begin{bmatrix} u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ n_{x} & n_{y} & n_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -px \\ 0 & 1 & 0 & -py \\ 0 & 0 & 1 & -pz \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} u_{x} & u_{y} & u_{z} & -\mathbf{p} \cdot \mathbf{u} \\ v_{x} & v_{y} & v_{z} & -\mathbf{p} \cdot \mathbf{v} \\ n_{x} & n_{y} & n_{z} & -\mathbf{p} \cdot \mathbf{n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

model-view, projection matrices in GLSL

```
uniform mat4 mat_model;  // model matrix
uniform mat4 mat_view;  // view matrix
uniform mat4 mat_proj;  // projection matrix
in vec4 aPosition;
void main() {
    gl_Position = mat_proj * mat_view * mat_model * aPosition;
}
```

For a tetrahedron

View Matrix Example (1)

- Ex) View matrix for camera frame
 - VRP: (0, 0, 0.5)
 - VPN: (0, 0, -1)
 - VUP: $\mathbf{v_{up}} = (0, 1, 0)$
 - $\mathbf{p} = (0, 0, 0.5)$

 - normalized $\mathbf{n} = (0, 0, -1)$ $\mathbf{v} = -(\mathbf{v}_{up} \cdot \mathbf{n}) \mathbf{n} + \mathbf{v}_{up}$ normalized $\mathbf{v} = (0, 1, 0)$
 - normalized ${\bf u} = (1, 0, 0)$

LEC18.1_simple_view_matrix.c

View Matrix Example (2)

- Ex) View matrix for camera frame
 - VRP: $\mathbf{p} = (0.1, 0.1, 0.1)$
 - VPN: (-1, -1, -1)
 - VUP: $\mathbf{v}_{up} = (0, 1, 0)$

$$\mathbf{v} = -(\mathbf{v}_{\mathsf{up}} \cdot \mathbf{n}) \mathbf{n} + \mathbf{v}_{\mathsf{up}}$$

$$\mathbf{M}_{\text{view}} = \begin{bmatrix} u_{\chi} & u_{y} & u_{z} & -\mathbf{p} \cdot \mathbf{u} \\ v_{\chi} & v_{y} & v_{z} & -\mathbf{p} \cdot \mathbf{v} \\ n_{\chi} & n_{y} & n_{z} & -\mathbf{p} \cdot \mathbf{n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0.707107 & 0.000000 \\ -0.408248 & 0.816497 \\ -0.577350 & -0.577350 \\ 0 & 0 \end{bmatrix}$$

LEC18.1_simple_view_matrix.c

The LookAt Function (1)

- The GLU library contained the function gluLookAt to form the required modelview matrix through a simple interface
- But, gluLookAt is deprecated
- We can implement LookAt function in GLSL similar to gluLookAt function

mat4 mat_view = LookAt(vec4 eye, vec4 at, vec4 up);

VRP : $\mathbf{p} = [p_x \ p_y \ p_z \ 1]^T = eye$ VPN : $\mathbf{n} = [n_x \ n_y \ n_z \ 0]^T = (at - eye)/||at - eye||$

VUP: $\mathbf{v}_{up} = [\mathbf{v}_{upx} \ \mathbf{v}_{upy} \ \mathbf{v}_{upz} \ \mathbf{0}]^T = \mathbf{up}$

We can compute view matrix by using **u-v-n-p** frame

Other Viewing APIs (1)

- In OpenGL the LookAt function is only one possible API for positioning the camera
- Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - roll, pitch, yaw
 - ex) flight simulation
 - Elevation, azimuth, twist

Other Viewing APIs (2)

HW#18 Fill the LookAt function (20points)

- Due date: This Friday 6:00pm
- Given the file 'HW18.c' in Lecture Note board in LMS, fill the function 'LookAt' to compute the view matrix by changing eye-at-up to u-v-n-p.
- With the given object and eyeat-up, you have to generate this image.
- Other parts except 'LookAt' function must not be modified.

