Variables aléatoires 1^{ère} STMG

Variable aléatoire et loi de probabilité

Définition : Variable aléatoire

Une variable aléatoire X associe un nombre réel à chaque issue de l'univers Ω .

Définition : Variable aléatoire

Une variable aléatoire X associe un nombre réel à chaque issue de l'univers Ω .

Soit l'expérience aléatoire : "On lance un dé à six faces et on regarde le résultat."

Soit l'expérience aléatoire : "On lance un dé à six faces et on regarde le résultat." L'ensemble de toutes les issues possibles $\Omega=\{1;2;3;4;5;6\}$ s'appelle l'univers des possibles.

Soit l'expérience aléatoire : "On lance un dé à six faces et on regarde le résultat." L'ensemble de toutes les issues possibles $\Omega = \{1; 2; 3; 4; 5; 6\}$ s'appelle l'univers des possibles.

On considère le jeu suivant :

- Si le résultat est **pair**, on gagne 2€.
- Si le résultat est 1, on gagne 3€.
- Si le résultat est **3** ou **5**, on perd 4€.

On peut définir ainsi une variable aléatoire X sur $\Omega = \{1; 2; 3; 4; 5; 6\}$ qui peut prendre les valeurs $\mathbf{2}$, $\mathbf{3}$ ou $\mathbf{-4}$.

On peut définir ainsi une variable aléatoire X sur $\Omega = \{1; 2; 3; 4; 5; 6\}$ qui peut prendre les valeurs $\mathbf{2}$, $\mathbf{3}$ ou $\mathbf{-4}$.

- Pour les issues 2, 4 ou 6, on a : X=2
- Pour l'issue 1, on a : X=3
- Pour les issues 3 et 5, on a : X=-4

On peut définir ainsi une variable aléatoire X sur $\Omega = \{1; 2; 3; 4; 5; 6\}$ qui peut prendre les valeurs $\mathbf{2}$, $\mathbf{3}$ ou $\mathbf{-4}$.

- Pour les issues 2, 4 ou 6, on a : X=2
- Pour l'issue 1, on a : X=3
- Pour les issues 3 et 5, on a : X=-4

FIGURE 1: Variable aléatoire X

Définition : Loi de probabilité

La **loi de probabilité** de X est donnée par toutes les probabilités $P(X = x_i)$.

Définition : Loi de probabilité

La **loi de probabilité** de X est donnée par toutes les probabilités $P(X = x_i)$.

X _i	<i>x</i> ₁	<i>x</i> ₂	 ΧN
$P(X=x_i)$	p_1	p_2	 pΝ

On considère la variable aléatoire X définie dans l'exemple précédent.

On considère la variable aléatoire X définie dans l'exemple précédent.

FIGURE 2: Variable aléatoire X

On considère la variable aléatoire X définie dans l'exemple précédent.

FIGURE 2: Variable aléatoire X

Chaque issue du lancer de dé est équiprobable et égale à $\frac{1}{6}$.

La probabilité que la variable aléatoire prenne la valeur ${\bf 2}$ est égale à $\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2}.$

La probabilité que la variable aléatoire prenne la valeur ${\bf 2}$ est égale à $\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2}.$

On note :
$$P(X = 2) = \frac{1}{2}$$
.

La probabilité que la variable aléatoire prenne la valeur ${\bf 2}$ est égale à $\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2}$.

On note :
$$P(X = 2) = \frac{1}{2}$$
.

De même :
$$P(X = 3) = \frac{1}{6}$$
 et $P(X = -4) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$.

La probabilité que la variable aléatoire prenne la valeur 2 est égale à $\frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$.

On note :
$$P(X = 2) = \frac{1}{2}$$
.

De même :
$$P(X = 3) = \frac{1}{6}$$
 et $P(X = -4) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$.

On peut résumer les résultats dans un tableau :

Xi	-4	2	3
D(V)	1	1	1
$P(X = x_i)$	3	$\overline{2}$	6

Ce tableau résume la loi de probabilité de la variable aléatoire X.

Remarques:

- $P(X = x_i)$ peut se noter p_i .
- $p_1 + p_2 + ... + p_N = 1$

Remarques:

- $P(X = x_i)$ peut se noter p_i .
- $p_1 + p_2 + ... + p_N = 1$

Exemple

Dans l'exemple traité plus haut : $p_1 + p_2 + p_3 = \frac{1}{3} + \frac{1}{2} + \frac{1}{6} = 1$.

Méthode : Déterminer une loi de probabilité

Soit l'expérience aléatoire : "On tire une carte dans un jeu de 32 cartes."

FIGURE 3: Jeu de 32 cartes

Méthode : Déterminer une loi de probabilité

Soit l'expérience aléatoire : "On tire une carte dans un jeu de 32 cartes."

FIGURE 3: Jeu de 32 cartes

On considère le jeu suivant :

- Si on tire un coeur, on gagne 2€.
- Si on tire un roi, on gagne 5€.
- Si on tire une autre carte, on perd 1€.

On appelle X la variable aléatoire qui, à une carte tirée, associe un gain ou une perte.

a) Déterminer la loi de probabilité de X.

On appelle X la variable aléatoire qui, à une carte tirée, associe un gain ou une perte.

- a) Déterminer la loi de probabilité de X.
- b) Calculer $P(X \ge 5)$ et interpréter le résultat.

(a) La variable aléatoire X peut prendre les valeurs $\mathbf{2}$, $\mathbf{5}$, $\mathbf{-1}$ mais aussi $\mathbf{7}$. En effet, si on tire le roi de coeur, on gagne $\mathbf{5}$ € pour le roi et $\mathbf{2}$ € pour le coeur $\mathbf{=7}$ €.

- (a) La variable aléatoire X peut prendre les valeurs 2, 5, -1 mais aussi 7. En effet, si on tire le roi de coeur, on gagne 5€ pour le roi et 2€ pour le coeur = 7€.
 - Si la carte tirée est un coeur (autre que le roi de coeur), X=2.

$$P(X=2)=\frac{7}{32}$$

- (a) La variable aléatoire X peut prendre les valeurs 2, 5, -1 mais aussi 7. En effet, si on tire le roi de coeur, on gagne 5€ pour le roi et 2€ pour le coeur = 7€.
 - Si la carte tirée est un coeur (autre que le roi de coeur), X=2.

$$P(X=2)=\frac{7}{32}$$

• Si la carte tirée est un roi (autre que le roi de coeur), X=5.

$$P(X=5)=\frac{3}{32}$$

- (a) La variable aléatoire X peut prendre les valeurs 2, 5, -1 mais aussi 7. En effet, si on tire le roi de coeur, on gagne 5€ pour le roi et 2€ pour le coeur = 7€.
 - Si la carte tirée est un coeur (autre que le roi de coeur), X=2.

$$P(X=2)=\frac{7}{32}$$

• Si la carte tirée est un roi (autre que le roi de coeur), X=5.

$$P(X=5)=\frac{3}{32}$$

• Si la carte tirée est le roi de coeur, X=7.

$$P(X=7)=\frac{1}{32}$$

• Si la carte tirée n'est ni un coeur, ni un roi, X = -1.

$$P(X = -1) = \frac{21}{32}$$

x _i	-1	2	5	7
	21	7	3	1
<i>p</i> _i	32	32	32	32

On constate que :
$$p_1 + p_2 + p_3 + p_4 = \frac{21}{32} + \frac{7}{32} + \frac{3}{32} + \frac{1}{32} = 1$$

Xi	-1	2	5	7
_	21	7	3	1
<i>p_i</i>	32	32	32	32

On constate que :
$$p_1 + p_2 + p_3 + p_4 = \frac{21}{32} + \frac{7}{32} + \frac{3}{32} + \frac{1}{32} = 1$$

(b) $P(X \ge 5) = P(X = 5) + P(X = 7) = \frac{3}{32} + \frac{1}{32} = \frac{4}{32} = \frac{1}{8}$. La probabilité de gagner plus de 5€ est égale à $\frac{1}{8}$.

Espérance

Définition : Espérance mathématique

L'espérance mathématique de la loi de probabilité de X est :

$$E(x) = p_1 \times x_1 + p_2 \times x_2 + \dots + p_n \times x_n$$

Méthode : Calculer l'espérance d'une loi de probabilité

On considère le jeu du paragraphe précédent dont la loi de probabilité de X est la suivante.

Χį	-1	2	5	7
	21	7	3	1
р _і —	32	32	32	32

a) Calculer l'espérance de la loi de probabilité de X et interpréter le résultat.

(a)
$$E(X) = \left(\frac{21}{32} \times (-1)\right) + \left(\frac{7}{32} \times 2\right) + \left(\frac{3}{32} \times 5\right) + \left(\frac{1}{32} \times 7\right) = \frac{15}{32}$$

(a)
$$E(X) = \left(\frac{21}{32} \times (-1)\right) + \left(\frac{7}{32} \times 2\right) + \left(\frac{3}{32} \times 5\right) + \left(\frac{1}{32} \times 7\right) = \frac{15}{32}$$

L'espérance est égale à $\frac{15}{32}\approx 0,5$ signifie qu'en jouant, on peut espérer gagner environ 0,50€.

(a)
$$E(X) = \left(\frac{21}{32} \times (-1)\right) + \left(\frac{7}{32} \times 2\right) + \left(\frac{3}{32} \times 5\right) + \left(\frac{1}{32} \times 7\right) = \frac{15}{32}$$

L'espérance est égale à $\frac{15}{32}\approx 0,5$ signifie qu'en jouant, on peut espérer gagner environ $0,50 \in$.

Remarque

L'espérance est donc la **moyenne** que l'on peut *espérer* si l'on répète l'expérience un grand nombre de fois.