# Язык программирования Си++

Иванов А.П., Князева О.С.

# Семинар 5. Введение в программирование графики и математическое моделирование.

#### 1. Постановка задачи

В типовом задании требуется построить траекторию движения тела массы m в поле силы тяжести (ускорение св. падения g), если это тело вбрасывается на левой границе поля зрения на высоте h с горизонтальной начальной скоростью V0.

Тело может отскакивать от нижнего края экрана (упруго, или неупруго – с потерей f % энергии при каждом ударе о поверхность).

В момент выхода тела за правый кран экрана (ширину экрана будем считать равной L) или его остановки (при неупругом ударе), выполнение задачи заканчивается.

# 2. Программирование графики

Последовательность создания проекта:

- 1. Завести проект Win32 Console Application.
- 2. Выбрать пункт меню Project/Add New Item
- 3. В карточке выбрать C++ Source file, назвать его как-нибудь.
- 4. Повторить пункт 3.
- 5. В карточке выбрать Resource Script, тоже как-то назвать файл.
- 6. По щелчку правой кнопки мыши выбрать Add Resource.
- 7. В карточке выбора типа ресурса выбрать Dialog и нажать кнопку New.
- 8. Удалить с диалога кнопку Cancel.
- 9. В заголовке диалога написать (можно по-русски) название задачи.
- 10. В окне редактирования свойств диалога (правая кнопка мыши) надо поставить галочки Set Foreground и Visible.
- 11. Закрыть окно редактирования ресурсов.
- 12. Писать программу.

Рекомендуется сначала добиться того, чтобы программа хоть что-то нарисовала в графическом окне и лишь по достижении этого результата переходить к обсчету и рисованию траектории для конкретной физической задачи.

```
#include <iostream>
#include <windows.h>
#include "resource.h"
using namespace std;

/* Блок глобальных переменных (массивы заранее рассчитанных координат)
в двух системах: физической (вещественные координаты) и пиксельной,
связанной с текущим окном, в котором производится отрисовка траектории.
*/
int x1, y1, x2, y2;
int WINAPI DlgProc( HWND hDlg, WORD wMsg, WORD wParam, DWORD )
{
    PAINTSTRUCT ps;
```

13.11.2011

```
if( wMsg == WM_CLOSE || wMsg == WM COMMAND && wParam == IDOK ) {
        EndDialog(hDlg,0);
    } else
   if( wMsg == WM INITDIALOG ) {
/* Узнаем размер окна (ось ОУ направлена вниз): */
       RECT rc;
        GetClientRect(hDlg,&rc);
       int dx = rc.right - rc.left;
       int dy = rc.bottom- rc.top;
/* После этого нужно отмасштабировать физические координаты траектории,
  чтобы они помещались в поле зрения окна. То есть, нужно рассчитать
  для каждой точки траектории пиксельные координаты в системе координат
  данного окна. Само окно пользователь еще не видит.
    } else
   if( wMsq == WM PAINT ) {
       BeginPaint(hDlg, &ps);
/* Зададим цвет линий: */
       HPEN hPen = (HPEN) CreatePen (PS SOLID, 1, RGB (0, 0, 255));
       HPEN hOldPen = (HPEN) SelectObject(ps.hdc,hPen);
 Вот что вообще можно здесь рисовать:
   MoveToEx(ps.hdc,int x,int y,NULL);
        ( последний параметр - адрес структуры POINT
          для возврата координат предыдущей позиции )
   LineTo(ps.hdc,int x,int y); (с первого пиксела, но без последнего)
   TextOut(ps.hdc,int x,int y,char* szText,lstrlen(szText));
   Rectangle(ps.hdc,int left,int top,int right,int bottom);
   Ellipse(ps.hdc,int left,int top,int right,int bottom);
   Polygon(ps.hdc,const POINT * lp,int nPoints);
   Polyline(ps.hdc,const POINT * lp,int nPoints);
   SetPixel(ps.hdc,int x,int y, RGB(red,green,blue));
/* Здесь - производится отрисовка расчитанных пиксельных координат
  траектории в виде ломаной, в цикле по общему количеству точек.
        POINT ptOld;
        MoveToEx (ps.hdc, x1, y1, &ptOld);
       LineTo(ps.hdc,x2,y2);
/* Перо нам больше не требуется, уничтожим его: */
        SelectObject(ps.hdc,hOldPen);
        DeleteObject(hPen);
       EndPaint(hDlg, &ps);
   return 0;
void main()
/* Ввод параметров задачи: */
   cout << "Please, enter 4 coords:\n" << flush;</pre>
   cin >> x1 >> y1 >> x2 >> y2;
   cout << "x1 = " << x1 << "\ny1 = " << y1
         << "\nx2 = " << x2 << "\ny2 = " << y2 << "\n" << flush;
```

13.11.2011

```
/*
Здесь, перед показом, нужно расчитать координаты
всех точек траектории в физической системе координат.
Массивы х-у координат должны быть доступны глобально -
в DlgProc и в функции main.
*/
DialogBox(NULL,MAKEINTRESOURCE(IDD_DIALOG1),NULL,(DLGPROC)DlgProc);
}
```

# 3. Метод решения

Отвлечемся от процесса визуализации и сосредоточимся на расчете координат тела в последовательные моменты времени.

Уравнение движения тела под действием силы тяжести записывается в виде:

$$m\frac{d^2\vec{r}}{dt^2}=mg$$
 — это дифференциальное уравнение второго порядка. Сделаем замену

переменной  $\frac{d\vec{r}}{dt} = \vec{v}$ , тогда получим систему дифференциальных уравнений первого порядка, которую будем решать методом конечных разностей (методом Эйлера).

$$\begin{cases} d\vec{v} / dt = \vec{g} \\ d\vec{r} / dt = \vec{v} \end{cases}$$

Так как мы заранее не знаем, какая будет скорость и как скоро тело вылетит за пределы поля зрения, то будем действовать следующим образом: зададим систему координат с центром в точке вброса тела, осью Y, направленной вертикально вниз и осью X, направленной вправо. При этом, начальное положение тела (0,0), а поверхность земли проходит по линии h оси Y.

В любой момент времени (между ударами), горизонтальная составляющая скорости сохраняется постоянной, а вертикальная изменяется по закону:

$$V_v = gt$$

Зададим некоторый дискретный шаг отсчета времени  $\Delta t$ .

Состояние тела в любой момент будет описываться четырьмя параметрами:

$$X, Y, V_x, V_y$$

Изменения этого состояния можно вычислять рекуррентно:

$$X[i] = X[i\text{-}1] + V_x \Delta t$$

$$Y[i] = Y[i-1] + V_y[i-1]\Delta t$$

$$V_y[i] = V_y[i-1] + g\Delta t$$

При этом, надо будет обнаружить два события:

- выход тела за нижнюю границу экрана (когда выполнится условие Y[i] > h)
- выход тела за правую границу экрана (когда выполнится условие X[i] > L)

В первом случае надо сменить знак скорости на противоположный (неупругий удар далее не рассматривается), а во втором — закончить просчет траектории и перейти к ее выводу, после чего можно будет завершить задачу.

После удара о поверхность, который поменяет знак вертикальной компоненты скорости на отрицательный (при неупругом ударе – еще уменьшится абсолютное значение скорости), формула изменения скорости приобретет вид:

$$V_v = V_{v1} + gt$$

где  $V_{y1}$  будет отрицательной величиной.

Описанный рекуррентный метод решения известен как метод Эйлера и применим, в том числе и к задачам, где внешняя сила меняется с течением времени. Однако, следует помнить, что точность этого метода — невысока, кроме того, он характерен накоплением ошибок вычислений с течением времени.

Для более точного решения поставленной задачи следует в выражении:

$$y(t_1) = y(t_0) + \int_{t_0}^{t_1} y'(t)dt$$

заменить определенный интеграл не по формуле прямоугольников (как это делается в методе Эйлера), а по формуле трапеций:

$$y(t_1) = y(t_0) + \Delta t (y'(t_0) + y'(t_1)) / 2$$

#### 1. Вариант

Построить траекторию падения тела в поле силы тяжести, если тело начало движение в точке  $(x_0,y_0)$ , с начальной скоростью  $(V_{x0},V_{y0})$ . Начальные условия задает пользователь. Удар о землю абсолютно неупругий. Следовательно, траектория должна заканчиваться либо в точке удара тела о землю, либо в точке вылета тела за границы экрана.

#### 2. Вариант

Построить траекторию падения тела в поле силы тяжести, если тело начало движение в точке  $(x_0,y_0)$ , с начальной скоростью  $(V_{x0},V_{y0})$ . Начальные условия задает пользователь. Удар о землю абсолютно упругий. Построение траектории должно заканчиваться в момент вылета тела за границы экрана.

#### 3. Вариант

Построить траекторию падения тела в поле силы тяжести, если тело начало движение в точке  $(x_0,y_0)$ , с начальной скоростью  $(V_{x0},V_{y0})$ . Начальные условия задает пользователь. При ударе о землю тело теряет 10% своей кинетической энергии. Построение траектории должно заканчиваться в момент вылета тела за границы экрана.

## 4. Вариант

Построить траекторию движения заряженной частицы в электрическом поле с напряженностью  $\vec{E}$ . Частица начинает движение в точке  $(x_0,y_0)$ , с начальной скоростью  $(V_{x0},V_{y0})$ . Построение траектории должно заканчиваться в момент вылета частицы за границы экрана.

Уравнение движения: 
$$m \frac{d\vec{V}}{dt} = q\vec{E}$$
.

#### 5. Вариант

Построить траекторию движения заряженной частицы в однородном магнитном поле  $\mathbf{B}$ =(0,0,B). Частица начинает движение в точке ( $\mathbf{x}_0$ , $\mathbf{y}_0$ ), с начальной скоростью ( $\mathbf{V}_{\mathbf{x}0}$ , $\mathbf{V}_{\mathbf{y}0}$ ). Построение траектории должно заканчиваться в момент вылета частицы за границы экрана.

Уравнение движения: 
$$m\frac{d\vec{V}}{dt} = q[\vec{V} \times \vec{B}]$$
.

#### 6. Вариант

Построить траекторию движения заряженной частицы в поле электрического диполя. Частица начинает движение в точке  $(x_0,y_0)$ , с начальной скоростью  $(V_{x0},V_{y0})$ . Построение траектории должно заканчиваться в момент вылета частицы за границы экрана.

#### 7. Вариант

Построить траекторию движения заряженной частицы в поле электрического квадруполя. Частица начинает движение в точке  $(x_0,y_0)$ , с начальной скоростью  $(V_{x0},V_{y0})$ . Построение траектории должно заканчиваться в момент вылета частицы за границы экрана.

#### 8. Вариант

Построить траекторию движения тела брошенного под углом к горизонту с учетом сопротивления воздуха ( $\vec{F}_s = -\xi \vec{V}$ ). Тело начало движение в точке (0,0), с начальной

скоростью  $(V_{x0}, V_{y0})$ . Траектория должна заканчиваться либо в точке удара тела о землю, либо в точке вылета тела за границы экрана.

#### 9. Вариант

Построить траекторию движения тела брошенного под углом к горизонту, с учетом сопротивления воздуха, пропорционального квадрату скорости тела относительно воздуха. Тело начало движение в точке  $(x_0,y_0)$ , с начальной скоростью  $(V_{x0},V_{y0})$ . Траектория должна заканчиваться либо в точке удара тела о землю, либо в точке вылета тела за границы экрана.

#### 10. Вариант

Построить траекторию движения 2 заряженных частиц, соединенных пружинкой, жесткостью k, в однородном электрическом поле c напряженностью E. Расчет заканчивается, когда частицы вылетают за границы экрана.

## 11. Вариант

Построить траекторию движения частицы в стакане. Частица начинает движение в точке  $(x_0,y_0)$ , с начальной скоростью  $(V_{x0},V_{y0})$ . Отражение от стенок стакана абсолютно упругое, внешних полей, действующих на частицу нет. Вычисление должно заканчиваться либо при вылете частицы из стакана, либо через определенное пользователем время T.

#### 12. Вариант

Построить траекторию движения частицы в стакане, состоящем из дна и бесконечных вертикальных стенок. Частица начинает движение в точке  $(x_0,y_0)$ , с начальной скоростью  $(V_{x0},V_{y0})$ . Отражение от стенок стакана неупругое с потерей 10% кинетической энергии, на частицу действует сила тяжести. Вычисление должно заканчиваться через определенное пользователем время T.

#### 13. Вариант

Задача двух тел. Построить траекторию движения спутника массы  $m_1$  вокруг планеты  $m_2$ .

Уравнение движения: 
$$m_2 \frac{d^2 \vec{r}}{dt^2} = -\gamma \frac{m_1 m_2}{|\vec{r}|^3} \vec{r}$$

 $\gamma$  – гравитационная постоянная, r – радиус вектор от центра планеты к спутнику.

#### 14. Вариант

Построить графики зависимости смещения из положения равновесия от времени для двух масс, сцепленных пружинкой и прикрепленных пружинками к боковым стенкам с учетом трения о нижнюю поверхность

## 15. Вариант

Задача трех тел. Построить траектории движения трех гравитирующих масс  $m_1$ ,  $m_2$ ,  $m_3$ . Уравнение движения – система дифференциальных уравнений:

$$m_j \frac{d^2 \vec{r}_j}{dt^2} = -\gamma \sum_{k \neq j}^3 \frac{m_k m_j}{\left| \vec{r}_k - \vec{r}_j \right|^3} (\vec{r}_k - \vec{r}_j), j=1,2,3.$$

Для задачи трех тел нужно сложить действующие на тело силы, рассчитав их независимо друг от друга.

#### 16. Вариант

Построить графики зависимости смещений из положения равновесия от времени для двух маятников, подвешенных рядом и соединенных невесомой пружиной.



#### 17. Вариант

Построить графики зависимости смещений из положения равновесия от времени для двух маятников на жестком подвесе, подвешенных один к другому.



#### 18. Вариант

Построить график зависимости смещения из положения равновесия от времени для груза массы m, подвешенного на пружине (пружинный маятник).

## 19. Вариант

Построить график зависимости смещения из положения равновесия от времени для шарика массы m, прикрепленного к стенке пружиной, жесткостью k (см. рис.), с учетом силы трения  $\vec{F}_{\text{comp}} = -\xi \vec{V}$ .



если в начале его отклонили от равновесного положения на L.

#### 20. Вариант

Построить график зависимости координат от времени для шарика под действием силы тяжести, помещенного в гладкую сферическую полость радиусом R.

#### 21. Вариант

Построить график зависимости координаты от времени для положительно заряженного шарика (заряд Q, масса M), помещенного между двумя неподвижными точечными зарядами (+q). Шарик может двигаться только вдоль прямой, соединяющей эти два заряда.

#### 22. Вариант

Построить траекторию броуновского движения частицы в вязкой среде (  $\vec{F}_s = -\xi \vec{V}$  ) , т.е. с учетом силы трения и случайной силы.

#### 23. Вариант

Построить траекторию движения двух заряженных частиц (+q и -q) и массами m1 и m2, начинающих движение на расстояние L друг от друга, с начальными скоростями  $\vec{V}_1 = (0, Vy_0)$ ,  $\vec{V}_2 = (0, Vy_0)$ , в поле силы тяжести.

#### 24. Вариант

Задача Циолковского. Ракета стартует под углом к горизонту, в единицу времени  $\Delta t$  она теряет часть своей начальной массы  $\Delta m$ , которая истекает против движения ракеты со скоростью V относительно ракеты. В силу этого, ракета за каждый интервал  $\Delta t$  приобретает дополнительный импульс, действующий на остающуюся массу. Построить траекторию движения такой ракеты до момента, когда она израсходует 80% своей первоначальной массы.

#### 25. Вариант

По плоскому полю равномерно распределено несколько липких шаров радиуса R. Центральный шар начинает двигаться c начальной скоростью  $(V_{x0},V_{y0})$ . Построить траекторию движения этого шара, считая удары c любым другим шаром абсолютно неупругими, а c боковыми стенками – абсолютно упругими.

13.11.2011