LINEAR ALGEBRA

BASICS OF MATRIX

Matrix Multiplication: Let $A_{m \times n}$, $B_{p \times q}$

1.	$(AB)_{m\times a}$	exist $\Leftrightarrow n = p$	O
----	--------------------	-------------------------------	---

- 2. $(BA)_{p \times n}$ exist $\Leftrightarrow m = q$
- 3. $AB \neq BA$ (Not Cumulative)
- 4. A(BC) = (AB)C (Associative)

5. $AB = 0 \implies A = 0 \text{ or } B = 0$.

6. $(AB)_{m \times q}$ involves No. of multiplications = mnpAnd Number of Additions = mp(n-1) Where,

Trace of Matrix: Let $A_{n \times n}$ Matrix,

Properties:

- 1. $Tr(A \pm B) = Tr(A) \pm Tr(B)$
- 2. $Tr(A) = Tr(A^T)$
- 3. Tr(AB) = Tr(BA)

The Principle Diagonal = $(a_{11} \ a_{22} \ a_{33} \ ... \ a_{nn})$

$$A_{n \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

$$Tr(A) = \textit{Sum of principle diagonal elements}.$$

Diagonal Matrix: If $A_{n \times n}$ is diagonal Matrix, $a_{ij} = 0$, $\forall i \neq j$.

Diagonal Matrix Denoted By $D = diag(a_{11} \ a_{22} \ a_{33} \dots \ a_{nn})$ Note: $D^K = diag(a_{11}^K \ a_{22}^K \ a_{33}^K \dots \ a_{nn}^K)$ Upper Triangular Matrix: In $A_{n \times n}$, $a_{ij} = 0$, for i > j Lower Triangular Matrix: In $A_{n \times n}$, $a_{ij} = 0$, for i < j

Inverse of Matrix:

- 1. If |A| = 0, A is called **Singular Matrix**. And If $|A| \neq 0$, A is called **Non-Singular Matrix.**
- 2. A^{-1} exists $\Leftrightarrow |A| \neq 0$.

1. $(AB)^T = B^T A^T$ 2. $(AB)^{-1} = B^{-1} A^{-1}$

- 3. If AB = BA = I, then B is called the inverse of A. $AA^{-1} = A^{-1}A = I$
- 4. $A^{-1} = \frac{adj(A)}{|A|}$, Where $adj(A) = (Cofactor\ Matrix)^T$
- 6. $|A^{-1}| = 1/|A|$
- 7. $\left| adj \left(adj \left(adj K times (A) \right) \right) \right| = |A|^{(n-1)^K}$
- 8. $adj \left(adj \left(adj K times (A)\right)\right) = |A|^{n-2}A$

Determinant of Matrix (|A|): Sum of Product of any Row/ Column elements and corresponding cofactors.

Properties:

Properties:

1. $|A| = |A^T|$

3. $(A^T)^T = A$

4. $(A^{-1})^{-1} = A$

- 2. If matrix has Zero Row/ Column, |A| = 0.
- 3. If two Row/ Column of matrix are equal/ proportional, |A| = 0.
- 4. If two Row / Column of the matrix interchanged, |A| = (-1)|A|.
- |A| = Product of diagonal elements of Upper/ Lower Triangular Matrix only.
- 6. $|A^K| = |A|^K$

- 7. If all elements of Row / Column are scalar multiple of K then, |A| = K|A|
- 8. If all elements of Matrix are multiplied by scalar multiple (K) then,

 $|A| = K^n |A|$, where n = dimension

- 9. If every element of a Row/ Column is multiplied by a scalar and added to another Row/ Column, then the determinant remains same.
- 10. |AB| = |A||B|

RANK OF MATRIX

RANK OF MATRIX: Let A be any zero matrix of order $m \times n$,

Rank(r) = e(A) = The order of largest Non Zero minor

MINOR: Determinant of Sub-matrix (Square matrix).

SUB-MATRIX: matrix Obtained by deleting rows and columns.

Properties:

- 1. $e(A_{m \times n}) \le \min\{m, n\}$
- 2. If $e(A_{n\times n}) = n$, $|A| \neq 0$ else $e(A_{m\times n}) < n$.
- 3. $e(A) = e(A^T)$
- 4. e(A + B) = e(A) + e(B)

- 5. $e(AB) = \min\{e(A), e(B)\}$
- 6. If e(A) = 0, $A = null\ matrix\ else\ If <math>e(A) \neq 0$.
- 7. If $e(A) = n \Rightarrow e(adj(A)) = n$

$$= n - 1 \Rightarrow e(adj(A)) = 1$$

$$\leq n - 2 \Rightarrow e(adj(A)) = 0.$$

ROW ECHELON FORM OF MATRIX: Let $A_{m \times n}$ Matrix is said to be in Row Echelon Form if,

- 1. Zero Rows (if any) should be below the non-zero rows.
- 2. Zero before first non-zero number in row should be less than zeros before first non-zero number in next row.

$$e(A) = No. of Non - Zero Rows in Echelon Form$$

Note-I: To get Row Echelon Form perform Row Operations only.

Note-II: Rank of the Matrix is not affected by elementary row operations.

SYSTEM OF LINER EQUATIONS

$$\textbf{Matrix Form:} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \\ \Leftrightarrow AX = B \ where, X = Unknown/ \ Variable \ Vector \\ B = Right \ hand \ side \ Vector \end{bmatrix}$$

Solution of System of Equations: The values of vector X satisfies AX = B.

Consistent System: The System has at least one solution. **In-Consistent System:** The System has no solution. **Homogeneous System of Equation:** AX = O. **Non-Homogeneous System of Equation:** AX = B.

tion items general of requirement in the rest of the r				
METHOD TO SOLVE SYSTEM OF EQUATIONS (m = n = 3)				
Matrix Inversion Method	Cramer's Method			
$X = A^{-1}B$	$x_1 = \frac{\Delta_1}{\Lambda}, x_2 = \frac{\Delta_2}{\Lambda}, x_3 = \frac{\Delta_3}{\Lambda}$			

SOLUTIONS:

- 1. Unique Solution: $\Delta \neq 0$ And $x_1 = \frac{\Delta_1}{\Delta}$, $x_2 = \frac{\Delta_2}{\Delta}$, $x_3 = \frac{\Delta_3}{\Delta}$
- 2. Infinitely many solutions: $\Delta = \Delta_1 = \Delta_2 = \Delta_3 = 0$
- 3. **No Solution:** $\Delta = 0$ and atleast one of $\Delta_1, \Delta_2, \Delta_3$ is non zero.

DISADVANTAGES:

- 1. Applicable only for m = n.
- 2. Inverse Method Fails When |A| = 0.
- 3. In Cramer's Method We need to calculate (n+1) determinants of order n. hence, No suitable for n>4.

GAUSSIAN ELIMINATION METHOD: Let AX = B be the given system of linear equation.

AUGMENTED MATRIX: [A|B] = A and B together.

AX = B					
Consistent System of E	quation: $e(A B) = e(A)$	Inconsistent System of Equation: $e(A B) \neq e(A)$			
e(A B) = e(A) = r = n	e(A B) = e(A) = r < n	No Solutions			
Unique Solution	Infinitely many solutions				

HOMOGENEOUS SYSTEM OF EQUATIONS: AX = 0

Trivial/ Zero Solution: $X = 0$	Non-Trivial/ Non-Zero Solution: $X \neq 0$

Note: Every Homogeneous system is always consistent. But Non-Trivial solutions may or may not exists, if exists infinitely many solutions exists.

AX = O						
m =	= n	$m \neq n$				
e(A B) = e(A) = r = n	e(A B) = e(A) = r < n	1. $m < n$ Always possesses infinitely many Non-Trivial				
And $ A \neq 0$	And $ A = 0$	solutions.				
Only Trivial Solution	Infinitely many Non- Trivial solutions	2. $m > n$ If $e(A B) = e(A) = r = n$, Only Trivial Solution If $e(A B) = e(A) = r < n$, Infinitely many Non- Trivial solutions.				

NULL SPACE: Set of all Solutions of AX = 0.

NULLITY: Dimensions of null Space. Nullity = No. of linerarly independent solutions = <math>n - r

Where r = rank of matrix, and n = number of variables.

Rank + Nullity = No. of Variables

Linearly Dependent: $Y \propto X$	Linearly Independent: Y is not proportional to X

EIGEN VALUES AND EIGEN VECTORS

CHARACTERISTIC EQUATIONS: let $A_{n\times n}$ Matrix, then $|A - \lambda I| = 0$ is called characteristic equations of A. **EIGEN VALUES:** Roots of characteristic equations is called Eigen Values.

CAYLEY-HAMILTON THEOREM: Every Square Matrix of order (n>1) satisfies it's own characteristic equation. **ADVANTAGES OF THEOREM:** Easily find A^{-1} . And A^{K} can be express in lower power of A and I.

ALGEBRAIC MULTIPLICITY OF EIGEN VALUE (λ): No. of times eigen value occurred.

EIGEN VECTOR: A Non-Zero vector (X) is said to be eigen vector corresponds to the eigen value (λ) of the matrix (A) if $(A - \lambda I)X = 0$.

NOTE:

- 1. Corresponding to one eigen value infinitely many eigen vector exists.
- 2. **GEOMETRIC MULTIPLICITY** = No. of linearly independent eigen vectors = n r.
- 3. **GEOMETRIC MULTIPLICITY** \leq **ALGEBRAIC MULTIPLICITY** (For any eigen value).

PROPERTY: If λ is eigen value of non-singular matrix (A), 1) $1/\lambda$ is eigen value of A^{-1} 2) $|A|/\lambda$ is eigen value of adj (A).

DIAGONALIZATION: Given Matrix (A) is said to be diagonalizable if there exists a non-singular matrix P such that, $AP = PD \Leftrightarrow A = PDP^{-1}$.

Here P = Matrix with columns are eigen values of A and D = Diagonal matrix with eigen values of A as elements.

PROPERTY:

- 1. $A^K = PD^K P^{-1}$.
- 2. A is diagonalizable $\Leftrightarrow |P| \neq 0$. Eg. A had n linearly in-depend solutions.

PROPERTY OF EIGEN VALUES AND EIGEN VECTORS:

- 1. Sum of the eigen values = Trace of the vector
- 2. Product of the eigen values = determinant of the vector.
- 3. Zero is one of the eigen value of the matrix $(A) \Leftrightarrow |A| = 0$ and e(A) = r < n.
- 4. Eigen values of A and A^{T} are same.
- 5. The eigen values of Upper/Lower Triangular/Diagonal Matrix are just diagonal elements of Matrix only.
- 6. If a + bi is eigen value of the matrix, a bi is also eigen value. [COMPLEX RULE]
- 7. If $a + \sqrt{b}$ is eigen value of the matrix, $a \sqrt{b}$ is also eigen value. [CONJUGATE RULE]
- 8. Eigen vectors corresponding to distinct eigen values are linearly independent.
- 9. For different values of eigen value $\lambda_1, \lambda_2, \lambda_3, ...$ and Corresponding Eigen Vectors $X_1, X_2, X_3, ...$ following rules applicable.
 - a. $1/\lambda$ is eigen value of A^{-1} .
 - b. λ^K is eigen value of A^K .
 - c. $(\lambda \pm K)^m$ is eigen value of $(A \pm KI)^m$.
 - d. $f(A) = a_0 A^K + a_1 A^{K-1} + \dots + a_n I$, then $f(\lambda)$ is eigen value.

MODEL-I: For given matrix, find eigen value.

MODEL-II: For given matrix and eigen value/vector, find eigen vector/vector.

MODEL-III: For given Eigen value And Eigen vectors, find matrix.

MODEL-IV: Find Values using Cayley-Hamilton Theorem.

MODEL-V: Problem Related to properties.

SPECIAL MATRICES

Purely Real Number: $\bar{z} = z$	Purely Imaginary Number: $\bar{z} = -z$

Conjugate of a complex number is Mirror of the point about X axis.

Symmetric Matrix: $A = A^T$	Hermitian Matrix: $A = A^{\theta}$	
Skew-Symmetric Matrix: $A = -A^T$	Skew-Hermitian Matrix: $A = -A^{\theta}$	
Orthogonal Matrix: $AA^T = A^TA = I$	Unitary Matrix: $AA^{\theta} = A^{\theta}A = I$	

OBSERVATIONS: 1. Diagonal Element of Hermitian Matrix are real number. 2. Diagonal Element of Skew-Symmetric Matrix are Zero. 3. Diagonal Element of Skew- Hermitian Matrix are Zero.

RESULTS:	1.	Let $A_{n\times n}$ Matrix, $A_{n\times n}$ can be expressed as sum of symmetric and Skew symmetric matrices.
	2.	Let $A_{n\times n}$ Matrix, $A_{n\times n}$ can be expressed as sum of Hermitian and Skew Hermitian matrices.
	3.	If A is an orthogonal Matrix, the $ A = \pm 1$.
	4.	If A is an orthogonal Matrix, the $A = A^{-1}$.

CONJUGATE MATRIX (\overline{A}): \overline{A} = replace each element by corrosponding conjugates.

CONJUGATE TRANSPOSE MATRIX (A^{θ}) : $A^{\theta} = (\bar{A})^T = \overline{A^T}$

PROPERTY:	1. $\bar{A} = A$
$1. \left(A^{\theta}\right)^{\theta} = A$	$2. \overline{A+B} = \overline{A} + \overline{B}$
$2. (AB)^{\theta} = B^{\theta} A^{\theta}$	3. $\overline{(KA)} = K\overline{A}$
2. (1.5) 5 11	4. $\overline{AB} = \overline{B}\overline{A}$

POSITIVE INTEGER POWER OF $A_{n \times n}$: A^{K}

IDEMPOTENT MATRIX: $A^2 = A$.

NILPOTENT MATRIX: $A^m = 0$ where m = Index of Nilpotent matrix (least positive integer).

INVOLUTORY MATRIX: $A^2 = I$. Where A =Square Matrix

PERIODIC MATRIX: $A^{K+1} = A$. Where K = Periodicity (least positive integer)

MATRIX	EIGEN VALUE		
Hermitian Matrix	Always Real		
Skew-Hermitian Matrix	Either Zero or Pure Imaginary		
Orthogonal/ Unitary Matrix	A = 1 And can be Real or Complex conjugate		
Idempotent Matrix	0 or 1		
Nilpotent Matrix	0		
Involutory Matrix	<u>±</u> 1		

RESULTS: Let A be an orthogonal matrix. If λ is eigen value, $1/\lambda$ is also eigen value.

Orthogonal Vectors (90°): Two vectors are said to be orthogonal if $XY^T = 0$ or $Y^TX = 0$. **Set of Orthogonal Vectors:** $S = \{X_1, X_2, ..., X_n\}$, where $X_iX_i^T = 0$. Every pair is orthogonal.

Norm of Vector: $||X|| = \sqrt{x_1^2 + x_2^2 + x_3^2}$

Normalized Vector: X/||X||

Set of Orthonormal Vectors: $S = \{X_1, X_2, ..., X_n\}$, where $X_i X_j^T = X_i^T X_j = 0$ and $||X_i|| = 1$.

Or If $X_i X_i^T = 0$, $i \neq j$ else 1.

Result: If A is an orthogonal matrix, then it's rows/ columns are orthonormal.

LU DECOMPOSITION

OBJECTIVE: 1) Solving system of linear equations, 2) Finding A^{-1} , 3) A = LU

In $A_{n\times n} = LU$, Each matrix contains n(n+1)/2 unknowns/ Variables. hence total (L+U) has n(n+1) unknowns. By comparing we get n^2 equations.

DOOLITTLE'S METHOD: $l_{ij} = 1$, where i = j in the matrix L

CROUT'S METHOD: $u_{ij} = 1$, where i = j in the matrix U

CHOLESKY METHOD: If a is symmetric matrix then, $A = LL^T$

Note:
 LU Decomposition fails if any of the diagonal elements of L or U is zero.
 LU Decomposition Exists if the matrix is positive definite.

POSITIVE DEFINITE: $A_{n \times n}$ is said to be positive definite if all loading minors of a are positive.

Gauss Elimination method operation involves = $2n^3/3$

LU Decomposition method operation involves = $n^3/3$

Method LU: First find forward substitute (UX=Z and LZ=B) (U) after that backward substitute(L).

RESULT: If a is non singular matrix, then $A_{n \times n} = LU$ can be obtained by row addition operation.

Where, L = Lower triangular matrix with diagonal element 1 And <math>U = Upper triangular matrix.

		<u> </u>	X X		
MINIMAL	1. If $f(A)$	= 0, then we say that t	he polynomial is ar	nihilates t	he matrix A.
POLYNOMIAL:	2. Monic	Polynomial: The Coef	ficient of highest po	ower of x i	s unity.
	Minimal p	olynomial: 1) Lowest I	Degree monic polyn	omial 2) a	nnihilates the matrix A.