Syllabus - To be discussed

- Free Electron Theory Some accomplishments and Limitations
- Crystal binding, Structure of solids, Symmetry, unit cell, simple crystal structures
- Diffraction Bragg's law, structure factor, different methods for structure determination
- Perioidic potential in one dimension, electrons in a weak periodic potential, tight-binding approximation, bands, Brillouin zone
- Vibration of lattice Mono- and di- atomic chains, periodic lattice, phonons, phonon spectrum, heat capacity
- · Thermal expansion and resistivity, Boltzman transport theory
- · Discussions on magnetism

Physics of solids without considering their microscopic structure

Electronic Properties of Metals: Drude Theory

Three years after J.J. Thomson's discovery of electron (1897), P. Drude suggested a simple model to explain many of the observed properties of metals. Drude model has many shortcomings, however, is still of fundamental importance for the concepts associated with electrical conductivity

Paul Drude (Wikipedia)

Existence of electrons as charge carriers

+

Highly successful kinetic gas theory

Electronic Properties of Metals: Drude Theory

Three years after J.J. Thomson's discovery of electron (1897), P. Drude suggested a simple model to explain many of the observed properties of metals. Drude model has many shortcomings, however, is still of fundamental importance for the concepts associated with electrical conductivity

Existence of electrons as charge carriers

+

Highly successful kinetic gas theory

Paul Drude (Wikipedia)

Drude model is based on the following assumptions -

(i) The electrons in a solid do not interact with each other at all

(There is no Coulomb interaction and, as opposed to a classical gas model, they do not collide with each other. This is known as independent electron approximation) - Somehow surprisingly good

Assumptions of Drude Theory - Contd.

(ii) The positive charge is located on immobile ion cores. The electrons can collide with the ion cores. These collisions instantaneously change their velocity. However, in between collisions, the electrons do not interact with the ions either. This is known as the free electron approximation. This approximation is not good. Some scattering mechanism exists

Assumptions of Drude Theory - Contd.

(iii) The electrons reach thermal equilibrium with the lattice through the collisions with the ions. According to equipartition theorem, their mean kinetic energy is -

$$\frac{1}{2}m_ev_t^2=\frac{3}{2}k_BT$$

(At room temperature this results in average speed $v_t \sim 10^5$ m/s, We shall see later that mean velocity is 10 times larger)

Immediately after each collision, an electron is taken to emerge with a velocity that is not related with its velocity just before the collision, but randomly directed and with a speed appropriate to the temperature prevailing at the place where the collision occurred

Assumptions of Drude Theory - Contd.

(iii) The electrons reach thermal equilibrium with the lattice through the collisions with the ions. According to equipartition theorem, their mean kinetic energy is -

$$\frac{1}{2}m_ev_t^2=\frac{3}{2}k_BT$$

(At room temperature this results in average speed $v_t \sim \! 10^5$ m/s, We shall see later that mean velocity is 100 times larger)

Immediately after each collision, an electron is taken to emerge with a velocity that is not related with its velocity just before the collision, but randomly directed and with a speed appropriate to the temperature prevailing at the place where the collision occurred

(iv) In between collisions, the electrons move freely. The mean length of this free movement is called the mean free path λ . Given the average speed v_t , the mean free path also corresponds to a mean time between the collisions, given by τ , called the relaxation time, i.e. $\lambda = v_t \tau$

Estimate of radius per electron

A metallic element contains 0.6022 × 10 ²⁴ atonis per mole. contains <u>Sm</u> moles per cm ³
contains sm moles per cm3
(In is the mass density, A is the atomic mass of elevent)
Since each atom contains Z electrons, the no. of electrons/em3
었다시는 지역 장사님은 회문에 대한 본 등을 보고 있다면서 중심성을 하게 하는 전환을 들어야 부족들다. 기를 급하는 속의 등은 원리는 사람들이 되는 것 같다.
$n = \sqrt{\frac{1}{2}} = \left[0.6022 \times 10^{24} \times \frac{10^{24}}{A}\right] \times \frac{2}{4}$
$\frac{1}{N} = \frac{1}{N} = \frac{47173^3}{3}$ $\frac{1}{N} =$
Toolune is equal to the
ing = (3) 1/3 Poliume per conduction electron
(4+m)

Estimate of radius per electron

A metallic element contains 0.6022 × 10 ²⁴ atoms per mole. contains <u>Sm</u> moles per cm ³				
contains Im moles per cm3				
A				
(In is the mass density, A is the atomic mass of elevent)				
ALL MANY MANY LEVEL CO.			0 /	
Since each atom contains Z electrons, the no. of electrons/in3				
$n = \frac{N}{V} = \left[0.6022 \times 10^{24} \times \frac{\text{m}}{A}\right] \times \frac{2}{A}$				
¥ = 1	= 471 753	my radius	of sphere whose	
$\frac{1}{N} = \frac{1}{N} = \frac{4\pi r_3^3}{3}$ r_3 radius of sphere whose volume is equal to the rolume per conduction electron			is equal to the	
·~ - /	3 7/3	roline	per conduction electron	
? = (<u>1</u>	(ethn)	A Lotus of		
Element	- 元	n(1022/cm3)	rs (A)	
L°	1000	4.70	1072	
Na	1	2.65	2.08	

DC - CMP - IIT KGP

In presence of electric field

Accelerated drift motion in the direction opposite to the field

In presence of electric field

Accelerated drift motion in the direction opposite to the field

If we assume that the drift motion is destroyed in a collision with the ions, on average the time for collision free drift is $\boldsymbol{\tau}$

Considering an area A perpendicular to the electru	i field
The number of electrons passing through the as	ea per unt time.
nVA	
Charge crossing through the area per unit time.	
entil A.	
A A STATE OF	TELEBRANE
So the arrient density > j = (7 en v	
vectors	n/
1 = Hen ezz 7 = 027	2 7 6

me

7 =	nezz É
o, the coverent density is in the und proportional to the field of	direction of the electric field
und proportional to the field st	rength S Ohm's law
$\frac{1}{10000000000000000000000000000000000$	[o -> conductivity].
Mobility of the electrons µ	$=\frac{e\tau}{me}=\frac{ \overline{v} }{ E }$

