

Computação Básica

Prof. Alexandre Zaghetto <u>zaghetto@gmail.com</u>

Atenção: para o problema abaixo, escreva o **código em portugol**, o **fluxograma** e o **programa em linguagem de programação C.**

Localização de Máximos e Mínimos

Diz-se que uma função, f(x), tem um $m\acute{a}ximo$ em um intervalo (a,b) se houver um ponto x_{max} para o qual $f(x_{max})$ é maior do que qualquer outro valor da função no intervalo. A função tem um $m\acute{n}nimo$ se houver um ponto x_{min} , para o qual $f(x_{min})$ seja menor do que qualquer outro valor da função no intervalo. O termo genérico para máximo e $m\acute{n}nimo$ é $m\acute{n}nimo$ e $m\acute{n}nimo$ e

Suponhamos que você tenha de fazer a maior caixa possível com uma folha de papelão com 50cm de comprimento e 25cm de largura. Um modo de fazer a caixa consiste em cortar quadrados de lado x dos cantos, dobrar as beiradas e juntar os cantos. Naturalmente o volume da caixa é o produto de seu comprimento por sua largura e altura.

Que tamanho deveriam ter os quadrados cortados (qual deve ser o valor de x) de maneira a se obter o volume máximo?

Vamos supor que:

- a) a função f(x) tem um único máximo no intervalo (a, b);
- b) indo-se da esquerda para a direita, o gráfico de f(x) aumenta progressivamente até o máximo, ou seja, sem intervalos de decréscimos temporários;
- c) indo mais ainda para a direita, f(x) decresce progressivamente a partir do máximo, sem intervalos de acréscimos temporários.

Em outras palavras, f(x) teria o aspecto abaixo.

Para buscar o máximo de uma função f(x) é razoável avaliar a função em um ponto x_1 , dentro de (a, b). O que podemos aprender de $f(x_1)$? Podemos sempre encontrar funções que têm seu máximo em qualquer lado de x_1 , e continuaremos como antes, sem saber onde está o máximo.

É igualmente razoável avaliar a função em algum segundo ponto x_2 em (x_1, b) .

Se $f(x_2) > f(x_1)$, temos as seguintes possíveis situações:

Supondo que o máximo estivesse entre a e x_1 , a função teria de aumentar a partir de f(a) até seu máximo, decrescer temporariamente até $f(x_1)$, crescer novamente para $f(x_2)$ e finalmente decrescer para f(b). Então teria de haver um intervalo de acréscimo temporário entre o máximo e f(b), o que fere a suposição (c). Logo, uma vez que $f(x_2)>f(x_1)$, máximo não pode estar entre a e x_1 , só podendo estar em (x_1, b) .

Se $f(x_2) < f(x_1)$, temos as seguintes possíveis situações:

Agora, supondo que o máximo estivesse no intervalo (x_2, b) , a função teria que aumentar de a até $f(x_1)$, decrescer temporariamente até $f(x_2)$, crescer novamente até seu máximo e finalmente decrescer até f(b). Então teria de haver um intervalo de decrescimento temporário entre f(a) e o máximo, o que fere a suposição (b). Logo, uma vez que $f(x_2) < f(x_1)$, o máximo não pode estar entre x_2 e b, só podendo estar em (a, x_2) .

Uma vez tendo sido limitado o intervalo de busca, podemos continuar repetindo este processo, reduzindo o intervalo tantas vezes quanto queiramos, achando a cada iteração em que parte do intervalo o máximo está localizado. A cada etapa, porém, antes de decidirmos prosseguir, podemos verificar a extensão do intervalo, isto é, |b-a|. Se for suficientemente pequeno (digamos menor que um valor ϵ) aceitamos o valor (b+a)/2 como sendo o máximo.

Uma forma conveniente de se escolher os valores de x_1 e x_2 é o Método da Trissecção, que divide o intervalo (a, b) em suas terças partes, ou seja, $x_1 = (a+(b-a))/3$ e $x_2 = (b-(b-a))/3$.

Uma análise análoga pode ser utilizada na procura por um mínimo.

Referência

[1] A. I. Forsythe, T. A. Keenan, E. I. Organick, W. Stenberg, "Ciência de Computadores", Volume 2, Série Ciência de Computação, Ao Livro Técnico S.A., Rio de Janeiro - Guanabara, 1972.