Assignment V Connected Slot Array Derivations

EE4620 Spectral Domain Methods in Electromagnetics

Petar V. Peshev, p.v.peshev@student.tudelft.nl

Department of Electrical Engineering, Mathematics, and Computer Science,

Delft University of Technology, Delft, The Netherlands

Abstract

In this assignment, the longitudinal spectral *HM* Green's function, spectral slot voltage, spatial slot voltage, and active input impedance of a single infinite slot and periodic connected slot array are derived.

I. SINGLE INFINITE SLOT

For a single infinite slot, the steps to derive the longitudinal spectral HM Green's function $D^{HM}(k_x)$, spectrum slot voltage $V(k_x)$, spatial slot voltage v(x), and active input impedance Z_{in} are as follows

- 1) define the Magnetic Field Integral Equation (MFIE);
- 2) separate the magnetic current density $m_x(x,y)$ in longitudinal and transverse components and define the longitudinal spatial hm Green's function $d^{hm}(x)$;
- 3) substitute the Inverse Fourier Transform (IFT) of $d^{hm}(x)$ in the MFIE;
- 4) derive the longitudinal spectral HM Green's function $D^{HM}(k_x)$;
- 5) derive the spectral slot voltage $V(k_x)$;
- 6) derive the spatial slot voltage v(x) by taking the IFT of $V(k_x)$;
- 7) derive the active input impedance Z_{in} using the spatial slot voltage v(x).

A. Magnetic Field Integral Equation

The MFIE is defined by applying the Equivalence and image theorems on the slot, while assuming the slot is narrow. It is already defined as

$$-4m_x(x,y) * g_{rr}^{hm}(x,y) = j_{inc,y}(x,y), \tag{1}$$

where $j_{inc,y}(x,y)$ is the impressed current at the slot's feed with orientation along the y-direction and is given by

$$j_{inc,y}(x,y) = I_0 \frac{rect_{\delta_s}(x,y)}{\delta_s}.$$
 (2)

The impressed current is constant and defined over the feed's width δ_s and slot's width w_s . Moreover, the orientation of the magnetic current density $m_x(x,y)$ on the slot is in the slot's axis, x-direction.

B. Define the Longitudinal Spatial hm Green's Function

The MFIE in Eq.1 is rewritten as

$$-4\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}m_x(x',y')g_{xx}^{hm}(x-x',y-y')dx'dy' = I_0\frac{rect_{\delta_s}(x,y)}{\delta_s};$$
(3)

the MFIE is evaluated at the slot's axis, i.e. y = 0,

$$-4\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} m_x(x', y') g_{xx}^{hm}(x - x', -y') dx' dy' = I_0 \frac{rect_{\delta_s}(x)}{\delta_s}.$$
 (4)

Assuming narrow slot, $m_x(x,y)$ can be separated in longitudinal and transverse components. The separation of variables of $m_x(x,y)$ leads to

$$m_x(x,y) = v(x)m_t(y), (5)$$

where v(x) and $m_t(y)$ are the longitudinal and transverse components of the magnetic current. Therefore, the MFIE becomes

$$-4\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} v(x')m_t(y')g_{xx}^{hm}(x-x',-y')dx'dy' = I_0\frac{rect_{\delta_s}(x)}{\delta_s},\tag{6a}$$

$$-4\int_{-\infty}^{\infty} v(x')\int_{-\infty}^{\infty} m_t(y')g_{xx}^{hm}(x-x',-y')dy'dx' = I_0\frac{rect_{\delta_s}(x)}{\delta_s}.$$
 (6b)

From Eq.6b, the longitudinal spatial hm Green's function $d^{hm}(x)$ is recognized as

$$d^{hm}(x) = \int_{-\infty}^{\infty} m_t(y) g_{xx}^{hm}(x, -y) dy; \tag{7}$$

therefore, the MFIE becomes

$$-4\int_{-\infty}^{\infty} v(x')d(x-x')dx' = I_0 \frac{rect_{\delta_s}(x)}{\delta_s}.$$
 (8)

C. Substitute the Inverse Fourier Transform of the Longitudinal Spatial hm Green's Function in the MFIE

The IFT of $d^{hm}(x)$ is defined by

$$d^{hm}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} D^{HM}(k_x) e^{-jk_x x} dk_x,$$
 (9)

therefore, when substituted in the MFIE, the left hand-side (LHS) of Eq.8 becomes

$$-4\frac{1}{2\pi} \int_{-\infty}^{\infty} v(x') \int_{-\infty}^{\infty} D^{HM}(k_x) e^{-jk_x(x-x')} dk_x dx' = -4\frac{1}{2\pi} \int_{-\infty}^{\infty} D^{HM}(k_x) \int_{-\infty}^{\infty} v(x') e^{jk_x x'} dx' e^{-jk_x x} dk_x, \tag{10}$$

The Fourier Transform (FT) of v(x) is recognized as

$$V(k_x) = \int_{-\infty}^{\infty} v(x)e^{jk_x x} dx; \tag{11}$$

therefore the MFIE becomes

$$-4\frac{1}{2\pi} \int_{-\infty}^{\infty} D^{HM}(k_x) \int_{-\infty}^{\infty} v(x') e^{jk_x x'} dx' e^{-jk_x x} dk_x = I_0 \frac{rect_{\delta_s}(x)}{\delta_s}, \tag{12a}$$

$$-4\frac{1}{2\pi} \int_{-\infty}^{\infty} D^{HM}(k_x) V(k_x) e^{-jk_x x} dk_x = I_0 \frac{rect_{\delta_s}(x)}{\delta_s}.$$
 (12b)

D. Derive the Longitudinal Spectral HM Green's Function

Expressing the spatial Green's function $g_{xx}^{hm}(x,y)$ as the IFT of the spectral Green's function $G_{XX}^{HM}(k_x,k_y)$, in the definition of $d^{hm}(x)$, gives

$$d^{hm}(x) = \int_{-\infty}^{\infty} m_t(y') g_{xx}^{hm}(x, -y') dy'$$

$$= \int_{-\infty}^{\infty} m_t(y') \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G_{XX}^{HM}(k_x, k_y) e^{-jk_x x} e^{jk_y y'} dk_x dk_y dy'$$

$$= \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G_{XX}^{HM}(k_x, k_y) \int_{-\infty}^{\infty} m_t(y') e^{jk_y y'} dy' e^{-jk_x x} dk_x dk_y.$$
(13)

Assuming $m_t(y)$ is edge-singular, then, its FT is zeroth-order Bessel function of the first kind and defined by

$$\int_{-\infty}^{\infty} m_t(y')e^{jk_yy'}dy' = J_0(\frac{k_yw_s}{2}),\tag{14}$$

therefore $d^{hm}(x)$ becomes

$$d^{hm}(x) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G_{XX}^{HM}(k_x, k_y) J_0(\frac{k_y w_s}{2}) e^{-jk_x x} dk_x dk_y.$$
 (15)

From the definition of the IFT of $d^{hm}(x)$ in Eq.9, $D^{HM}(k_x)$ is derived as

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} D^{HM}(k_x) e^{-jk_x x} dk_x = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} G_{XX}^{HM}(k_x, k_y) J_0(\frac{k_y w_s}{2}) dk_y e^{-jk_x x} dk_x, \tag{16a}$$

$$D^{HM}(k_x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G_{XX}^{HM}(k_x, k_y) J_0(\frac{k_y w_s}{2}) dk_y.$$
 (16b)

For stratified media, $G_{XX}^{HM}(k_x,k_y)$ is

$$G_{XX}^{HM}(k_x, k_y) = -\frac{i_{TE}k_x^2 + i_{TM}k_y^2}{k_o^2};$$
(17)

therefore, $D^{HM}(k_x)$ becomes

$$D^{HM}(k_x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G_{XX}^{HM}(k_x, k_y) J_0(\frac{k_y w_s}{2}) dk_y,$$
 (18a)

$$D^{HM}(k_x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} -\frac{i_{TE}k_x^2 + i_{TM}k_y^2}{k_\rho^2} J_0(\frac{k_y w_s}{2}) dk_y.$$
 (18b)

E. Derive the Spectral Slot Voltage

The right hand-side (RHS) of the MFIE, in Eq.12b, is expressed in terms of its IFT as

$$I_0 \frac{rect_{\delta_s}(x)}{\delta_s} = I_0 \frac{1}{2\pi} \int_{-\infty}^{\infty} sinc(\frac{k_x \delta_s}{2}) e^{-jk_x x} dk_x;$$
(19)

therefore, the MFIE in Eq.12b becomes

$$-4\frac{1}{2\pi} \int_{-\infty}^{\infty} D^{HM}(k_x) V(k_x) e^{-jk_x x} dk_x = I_0 \frac{1}{2\pi} \int_{-\infty}^{\infty} sinc(\frac{k_x \delta_s}{2}) e^{-jk_x x} dk_x, \tag{20}$$

which is valid for every x, hence, the integrands are equal and the equation is simplified to

$$-4D^{HM}(k_x)V(k_x) = I_0 sinc(\frac{k_x \delta_s}{2}).$$
(21)

Therefore, $V(k_x)$ is

$$V(k_x) = -I_0 \frac{\operatorname{sinc}(\frac{k_x \delta_s}{2})}{4D^{HM}(k_x)}.$$
 (22)

F. Derive the Spatial Slot Voltage

The spatial slot voltage v(x) is derived by taking the IFT of $V(k_x)$

$$v(x) = -I_0 \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{sinc(\frac{k_x \delta_s}{2})}{4D^{HM}(k_x)} e^{-jk_x x} dk_x.$$

$$(23)$$

G. Derive the Active Input Impedance

The active input impedance is equal to the ratio between the total voltage and current on the feed's interface, V_0 and I_0 respectively, defined by

$$Z_{in} = \frac{V_0}{I_0}. (24)$$

The total voltage on the feed's interface is

$$V_0 = \frac{1}{\delta_s} \int_{-\delta_s/2}^{\delta_s/2} v(x) dx; \tag{25}$$

therefore, the input impedance becomes

$$Z_{in} = \frac{1}{I_0} \frac{1}{\delta_s} \int_{-\delta_s/2}^{\delta_s/2} v(x) dx$$

$$= -\frac{1}{I_0} \frac{1}{\delta_s} \int_{-\delta_s/2}^{\delta_s/2} I_0 \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\operatorname{sinc}(\frac{k_x \delta_s}{2})}{4D^{HM}(k_x)} e^{-jk_x x} dk_x dx$$

$$= -\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\operatorname{sinc}(\frac{k_x \delta_s}{2})}{4D^{HM}(k_x)} \frac{1}{\delta_s} \int_{-\delta_s/2}^{\delta_s/2} e^{-jk_x x} dx dk_x,$$
(26)

where the IFT of the rectangular function is recognized as

$$\frac{1}{\delta_s} \int_{-\delta_s/2}^{\delta_s/2} e^{-jk_x x} dx = sinc(\frac{k_x \delta_s}{2}). \tag{27}$$

The input impedance is

$$Z_{in} = -\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{sinc^2(\frac{k_x \delta_s}{2})}{4D^{HM}(k_x)} dk_x.$$
 (28)

II. PERIODIC CONNECTED SLOT ARRAY

For a periodic connected slot array, the derivations of the periodic longitudinal spectral Green's function $D_{\infty}^{HM}(k_x)$, $V(k_x)$, v(x), and Z_a , slot follow similar procedures to the infinite slot derivations and are

- 1) define the Magnetic Field Integral Equation (MFIE);
- 2) separate the magnetic current density $m_x(x,y)$ in longitudinal and transverse components and define the periodic longitudinal spatial hm Green's function $d_{\infty}^{hm}(x)$;
- 3) substitute the Inverse Fourier Transform (IFT) of $d^{hm}(x)$ in the MFIE;
- 4) derive the periodic longitudinal spectral HM Green's function $D_{\infty}^{HM}(k_x)$;
- 5) derive the spectral slot voltage $V(k_x)$;
- 6) derive the spatial slot voltage v(x) by taking the Discrete Inverse Fourier Transform (DIFT) of $V(k_x)$;
- 7) derive the active input impedance $Z_{a,slot}$ using the spatial slot voltage v(x).

However, for a periodic connected slot array the feeds are infinite, spaced in the x and y-directions by d_x and d_y respectively, and $V(k_x)$ is discrete.

A. Magnetic Field Integral Equation

Similarly to the single infinite slot, the MFIE is

$$-4m_x(x,y) * g_{xx}^{hm}(x,y) = j_{inc,y}(x,y),$$
(29)

where $j_{inc,y}(x,y)$ is the sum of the infinite delta-gap sources on the periodic slot array, in contrast to the single source in the single infinite slot, and is given by

$$j_{inc,y}(x,y) = \sum_{n_x,n_y} I_0 \frac{rect_{\delta_s}(x - n_x d_x, y - n_y d_y)}{\delta_s} e^{-jk_{x0}n_x d_x} e^{-jk_{y0}n_y d_y}.$$
 (30)

The array is divided into infinite $d_x \times d_y$ cells with centers at the middle of each respective (n_x, n_y) cell's delta-gap source.

B. Define the Periodic Longitudinal Spatial hm Green's Function

The MFIE in Eq.29 is rewritten as

$$-4\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} m_x(x',y') g_{xx}^{hm}(x-x',y-y') dx' dy' = \sum_{n_x,n_y} I_0 \frac{rect_{\delta_s}(x-n_x d_x,y-n_y d_y)}{\delta_s} e^{-jk_{x0}n_x d_x} e^{-jk_{y0}n_y d_y}, \quad (31)$$

the MFIE is evaluated at the array's axis, i.e. y = 0 and $n_y = 0$,

$$-4\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} m_x(x', y') g_{xx}^{hm}(x - x', -y') dx' dy' = \sum_{n_x = -\infty}^{\infty} I_0 \frac{rect_{\delta_s}(x - n_x d_x)}{\delta_s} e^{-jk_{x0}n_x d_x}.$$
 (32)

The total magnetic field is the sum of the field contributions of each cell, hence, the integration domain is decomposed as

$$-4\sum_{n_x,n_y} \int_{n_x d_x - d_x/2}^{n_x d_x + d_x/2} \int_{n_y d_y - d_y/2}^{n_y d_y + d_y/2} m_x(x', y') g_{xx}^{hm}(x - x', -y') dy' dx' = \sum_{n_x = -\infty}^{\infty} I_0 \frac{rect_{\delta_s}(x - n_x d_x)}{\delta_s} e^{-jk_{x0}n_x d_x}, \quad (33)$$

where the magnetic current and spatial Green's function convolution is carried over each cell and summed.

Similarly to the single infinite slot, $m_x(x,y)$ can be separated in longitudinal and transverse components, however, in this case there is a periodicity in the magnetic current components. The separation of variables of $m_x(x,y)$ leads to

$$m_x(x,y) = v(x)m_t(y), (34a)$$

$$v(x + n_x d_x) = v(x)e^{-jk_{x0}n_x d_x}, (34b)$$

$$m_t(y + n_y d_y) = m_t(y)e^{-jk_{y0}n_y d_y}.$$
 (34c)

Therefore, the MFIE becomes

$$-4\sum_{n_x,n_y} \int_{n_x d_x - d_x/2}^{n_x d_x + d_x/2} \int_{n_y d_y - d_y/2}^{n_y d_y + d_y/2} v(x') m_t(y') g_{xx}^{hm}(x - x', -y') dy' dx' = \sum_{n_x = -\infty}^{\infty} I_0 \frac{rect_{\delta_s}(x - n_x d_x)}{\delta_s} e^{-jk_{x0}n_x d_x}, \quad (35)$$

To simplify the integration limits and make the integrals independent of the cell's indecies (n_x, n_y) , a change of variables is applied defined by

$$x'' = x' - n_x d_x, (36a)$$

$$y'' = y' - n_y d_y; (36b)$$

therefore, the LHS of the MFIE in Eq.35 becomes

$$-4\sum_{n_{x},n_{y}} \int_{n_{x}d_{x}+d_{x}/2}^{n_{x}d_{x}+d_{x}/2} \int_{n_{y}d_{y}-d_{y}/2}^{n_{y}d_{y}+d_{y}/2} v(x')m_{t}(y')g_{xx}^{hm}(x-x',-y')dy'dx'$$

$$= -4\sum_{n_{x},n_{y}} \int_{-d_{x}/2}^{d_{x}/2} \int_{-d_{y}/2}^{d_{y}/2} v(x''+n_{x}d_{x})m_{t}(y''+n_{y}d_{y})g_{xx}^{hm}(x-x''-n_{x}d_{x},-y''-n_{y}d_{y})dy''dx''$$
(37)

Substituting Eq.34b and Eq.34c in Eq.37 leads to

$$-4\sum_{n_{x},n_{y}} \int_{-d_{x}/2}^{d_{x}/2} \int_{-d_{y}/2}^{d_{y}/2} v(x'' + n_{x}d_{x}) m_{t}(y'' + n_{y}d_{y}) g_{xx}^{hm}(x - x'' - n_{x}d_{x}, -y'' - n_{y}d_{y}) dy'' dx''$$

$$= -4\sum_{n_{x},n_{y}} \int_{-d_{x}/2}^{d_{x}/2} \int_{-d_{y}/2}^{d_{y}/2} v(x'') e^{-jk_{x0}n_{x}d_{x}} m_{t}(y'') e^{-jk_{y0}n_{y}d_{y}} g_{xx}^{hm}(x - x'' - n_{x}d_{x}, -y'' - n_{y}d_{y}) dy'' dx''$$

$$= -4\sum_{n_{x}=-\infty}^{\infty} \int_{-d_{x}/2}^{d_{x}/2} v(x'') e^{-jk_{x0}n_{x}d_{x}} \sum_{n_{y}=-\infty}^{\infty} \int_{-d_{y}/2}^{d_{y}/2} m_{t}(y'') e^{-jk_{y0}n_{y}d_{y}} g_{xx}^{hm}(x - x'' - n_{x}d_{x}, -y'' - n_{y}d_{y}) dy'' dx''.$$
(38)

From Eq.38, the periodic longitudinal spatial hm Green's function $d_{\infty}^{hm}(x)$ is recognized as

$$d_{\infty}^{hm}(x) = \sum_{n_y = -\infty}^{\infty} \int_{-d_y/2}^{d_y/2} m_t(y) g_{xx}^{hm}(x, -y - n_y d_y) e^{-jk_{y0}n_y d_y} dy;$$
(39)

therefore, the MFIE becomes

$$-4\sum_{n_x=-\infty}^{\infty} \int_{-d_x/2}^{d_x/2} v(x'') d_{\infty}^{hm}(x - x'' - n_x d_x) e^{-jk_{x0}n_x d_x} dx'' = \sum_{n_x=-\infty}^{\infty} I_0 \frac{rect_{\delta_s}(x - n_x d_x)}{\delta_s} e^{-jk_{x0}n_x d_x}.$$
 (40)

C. Substitute the Inverse Fourier Transform of the Periodic Longitudinal Spatial **hm** Green's Function in the MFIE The IFT of $d_{\infty}^{hm}(x)$ is defined by

$$d_{\infty}^{hm}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} D_{\infty}^{HM}(k_x) e^{-jk_x x} dk_x, \tag{41}$$

therefore, when substituted in the MFIE, the LHS of Eq.40 becomes

$$-4\sum_{n_{x}=-\infty}^{\infty} \int_{-d_{x}/2}^{d_{x}/2} v(x'') \frac{1}{2\pi} \int_{-\infty}^{\infty} D_{\infty}^{HM}(k_{x}) e^{-jk_{x}(x-x''-n_{x}d_{x})} dk_{x} e^{-jk_{x0}n_{x}d_{x}} dx''$$

$$= -4\frac{1}{2\pi} \int_{-\infty}^{\infty} D_{\infty}^{HM}(k_{x}) \int_{-d_{x}/2}^{d_{x}/2} v(x'') e^{jk_{x}x''} dx'' \sum_{n_{x}=-\infty}^{\infty} e^{jk_{x}n_{x}d_{x}} e^{-jk_{x0}n_{x}d_{x}} e^{-jk_{x}x} dk_{x}$$

$$= -4\frac{1}{2\pi} \int_{-\infty}^{\infty} D_{\infty}^{HM}(k_{x}) \int_{-d_{x}/2}^{d_{x}/2} v(x'') e^{jk_{x}x''} dx'' \sum_{n_{x}=-\infty}^{\infty} e^{j(k_{x}-k_{x0})n_{x}d_{x}} e^{-jk_{x}x} dk_{x}.$$

$$(42)$$

The FT of v(x) is recognized as

$$V(k_x) = \int_{-d_x/2}^{d_x/2} v(x)e^{jk_x x} dx;$$
(43)

therefore the MFIE becomes

$$-4\frac{1}{2\pi} \int_{-\infty}^{\infty} D_{\infty}^{HM}(k_x) V(k_x) \sum_{n_x = -\infty}^{\infty} e^{j(k_x - k_{x0})n_x d_x} e^{-jk_x x} dk_x = \sum_{n_x = -\infty}^{\infty} I_0 \frac{rect_{\delta_s}(x - n_x d_x)}{\delta_s} e^{-jk_{x0}n_x d_x}. \tag{44}$$

Applying the Floquet theorem defined by

$$\sum_{n_x = -\infty}^{\infty} e^{j(k_x - k_{x0})n_x d_x} = \frac{2\pi}{d_x} \sum_{m_x = -\infty}^{\infty} \delta(k_x - k_{xm}), \tag{45a}$$

$$k_{xm} = k_{x0} - \frac{2\pi m_x}{d_x}. (45b)$$

on the LHS side of the MFIE gives

$$-4\frac{1}{2\pi} \int_{-\infty}^{\infty} D_{\infty}^{HM}(k_{x})V(k_{x}) \sum_{n_{x}=-\infty}^{\infty} e^{j(k_{x}-k_{x0})n_{x}d_{x}} e^{-jk_{x}x} dk_{x}$$

$$= -4\frac{1}{2\pi} \int_{-\infty}^{\infty} D_{\infty}^{HM}(k_{x})V(k_{x}) \frac{2\pi}{d_{x}} \sum_{m_{x}=-\infty}^{\infty} \delta(k_{x}-k_{xm})e^{-jk_{x}x} dk_{x}$$

$$= -4\frac{1}{d_{x}} \sum_{m_{x}=-\infty}^{\infty} \int_{-\infty}^{\infty} D_{\infty}^{HM}(k_{x})V(k_{x})e^{-jk_{x}x} \delta(k_{x}-k_{xm}) dk_{x}$$

$$= -4\frac{1}{d_{x}} \sum_{m_{x}=-\infty}^{\infty} D_{\infty}^{HM}(k_{xm})V(k_{xm})e^{-jk_{xm}x},$$
(46)

where the definition of the delta function δ is applied. Therefore, the MFIE becomes

$$-4\frac{1}{d_x} \sum_{m_x = -\infty}^{\infty} D_{\infty}^{HM}(k_{xm}) V(k_{xm}) e^{-jk_{xm}x} = \sum_{n_x = -\infty}^{\infty} I_0 \frac{rect_{\delta_s}(x - n_x d_x)}{\delta_s} e^{-jk_{x0}n_x d_x}. \tag{47}$$

D. Derive the Periodic Longitudinal Spectral HM Green's Function

Expressing the spatial Green's function $g_{xx}^{hm}(x,y)$ as the IFT of the spectral Green's function $G_{XX}^{HM}(k_x,k_y)$ in the definition of $d_{\infty}^{hm}(x)$, gives

$$d_{\infty}^{hm}(x) = \sum_{n_{y}=-\infty}^{\infty} \int_{-d_{y}/2}^{d_{y}/2} m_{t}(y'') g_{xx}^{hm}(x, -y'' - n_{y}d_{y}) e^{-jk_{y0}n_{y}d_{y}} dy''$$

$$= \sum_{n_{y}=-\infty}^{\infty} \int_{-d_{y}/2}^{d_{y}/2} m_{t}(y'') \frac{1}{4\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G_{XX}^{HM}(k_{x}, k_{y}) e^{-jk_{x}x} e^{-jk_{y}(-y'' - n_{y}d_{y})} dk_{x} dk_{y} e^{-jk_{y0}n_{y}d_{y}} dy''$$

$$= \frac{1}{4\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-d_{y}/2}^{d_{y}/2} m_{t}(y'') e^{jk_{y}y''} dy'' G_{XX}^{HM}(k_{x}, k_{y}) e^{-jk_{x}x} \sum_{n_{y}=-\infty}^{\infty} e^{j(k_{y} - k_{y0})n_{y}d_{y}} dk_{x} dk_{y}$$

$$= \frac{1}{4\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-d_{y}/2}^{d_{y}/2} m_{t}(y'') e^{jk_{y}y''} dy'' G_{XX}^{HM}(k_{x}, k_{y}) e^{-jk_{x}x} \frac{2\pi}{dy} \sum_{m_{y}=-\infty}^{\infty} \delta(k_{y} - k_{ym}) dk_{x} dk_{y}$$

$$= \frac{1}{d_{y}} \frac{1}{2\pi} \sum_{m_{y}=-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-d_{y}/2}^{-d_{y}/2} m_{t}(y'') e^{jk_{y}y''} dy'' G_{XX}^{HM}(k_{x}, k_{y}) e^{-jk_{x}x} \delta(k_{y} - k_{ym}) dk_{x} dk_{y},$$

$$(48)$$

where the Floquet theorem is applied, and has Floquet modes defined by

$$k_{ym} = k_{y0} - \frac{2\pi m_y}{d_y}. (49)$$

Assuming $m_t(y)$ is edge-singular, then, its FT is zeroth-order Bessel function of first kind, similarly to the single infinite slot, therefore $d_{\infty}^{hm}(x)$ becomes

$$d_{\infty}^{hm}(x) = \frac{1}{d_y} \frac{1}{2\pi} \sum_{m_y = -\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} J_0(\frac{k_y w_s}{2}) G_{XX}^{HM}(k_x, k_y) e^{-jk_x x} \delta(k_y - k_{ym}) dk_y dk_x$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{d_y} \sum_{m_y = -\infty}^{\infty} G_{XX}^{HM}(k_x, k_{ym}) J_0(\frac{k_{ym} w_s}{2}) e^{-jk_x x} dk_x.$$
(50)

From the definition of the IFT of $d_{\infty}^{hm}(x)$ in Eq.41, $D_{\infty}^{HM}(k_x)$ is derived as

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} D_{\infty}^{HM}(k_x) e^{-jk_x x} dk_x = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{d_y} \sum_{m_y = -\infty}^{\infty} G_{XX}^{HM}(k_x, k_{ym}) J_0(\frac{k_{ym} w_s}{2}) e^{-jk_x x} dk_x, \tag{51a}$$

$$D_{\infty}^{HM}(k_x) = \frac{1}{d_y} \sum_{m_y = -\infty}^{\infty} G_{XX}^{HM}(k_x, k_{ym}) J_0(\frac{k_{ym} w_s}{2}).$$
 (51b)

E. Derive the Spectral Slot Voltage

The IFT on RHS of the MFIE, in Eq.47, is taken and the Floquet theorem applied, thus, the RHS becomes

$$\sum_{n_x = -\infty}^{\infty} I_0 \frac{rect_{\delta_s}(x - n_x d_x)}{\delta_s} e^{-jk_{x0}n_x d_x} = I_0 \frac{1}{d_x} \sum_{m_x = -\infty}^{\infty} sinc(\frac{k_{xm}\delta_s}{2}) e^{-jk_{xm}x}; \tag{52}$$

therefore, the MFIE in Eq.47 becomes

$$-4\frac{1}{d_x} \sum_{m_x = -\infty}^{\infty} D_{\infty}^{HM}(k_{xm}) V(k_{xm}) e^{-jk_{xm}x} = I_0 \frac{1}{d_x} \sum_{m_x = -\infty}^{\infty} sinc(\frac{k_{xm}\delta_s}{2}) e^{-jk_{xm}x},$$
 (53)

which is valid for every x, hence, the summating terms are equals and the equation is simplified to

$$-4D_{\infty}^{HM}(k_{xm})V(k_{xm}) = I_0 sinc(\frac{k_{xm}\delta_s}{2}).$$

$$(54)$$

Therefore, $V(k_x)$ is

$$V(k_{xm}) = -I_0 \frac{sinc(\frac{k_{xm}\delta_s}{2})}{4D_{\infty}^{HM}(k_{xm})}.$$
(55)

F. Derive the Spatial Slot Voltage

The spatial slot voltage v(x) is derived by taking the DIFT of $V(k_x)$

$$v(x) = -I_0 \frac{1}{d_x} \sum_{m_x = -\infty}^{\infty} \frac{sinc(\frac{k_{xm}\delta_s}{2})}{4D_{\infty}^{HM}(k_{xm})} e^{-jk_{xm}x}.$$
 (56)

G. Derive the Active Input Impedance

Similarly to the single infinite slot, the active input impedance is

$$Z_{a,slot} = \frac{1}{I_0} \frac{1}{\delta_s} \int_{-\delta_s/2}^{\delta_s/2} v(x) dx$$

$$= \frac{1}{I_0} \frac{1}{\delta_s} \int_{-\delta_s/2}^{\delta_s/2} -I_0 \frac{1}{d_x} \sum_{m_x = -\infty}^{\infty} \frac{sinc(\frac{k_x m \delta_s}{2})}{4D_{\infty}^{HM}(k_{xm})} e^{-jk_{xm}x} dx$$

$$= -\frac{1}{d_x} \sum_{m_x = -\infty}^{\infty} \frac{sinc(\frac{k_x m \delta_s}{2})}{4D_{\infty}^{HM}(k_{xm})} \frac{1}{\delta_s} \int_{-\delta_s/2}^{\delta_s/2} e^{-jk_{xm}x} dx,$$
(57)

where the IFT of the rectangular function is recognized. Therefore, $Z_{a,slot}$ is

$$Z_{a,slot} = -\frac{1}{d_x} \sum_{m_x = -\infty}^{\infty} \frac{sinc^2(\frac{k_{xm}\delta_s}{2})}{4D_x^{HM}(k_{xm})}.$$
 (58)