ODPReco - A Tool to Recommend Ontology Design Patterns

Maleeha Arif Yasvi, Raghava Mutharaju

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

CONTENTS

- Ontology Vs ODP
- Why use ODPs in Ontology
- Approach
- Our Dataset
- Ontology Analysis
- Machine Learning on existing ODPs
- Work Done so far
- Conclusion

Ontology VS ODP

Ontology is the description of knowledge as a set of concepts and the relationship that holds between them.

ODPs are the re-usable patterns that are used to improve quality of an ontology and make it more modular.

Why use ODP in an Ontology

- Ontologies are non-modular
- Difficult to comprehend
- High maintenance cost

RECOMMENDED

Approach

ODPReco analyzes the **lexical**,**structural** and **behavioural** aspects of an ontology and compares it with that of the ODPs in order to **recommend** an ODP.

DATASET

Dataset referred as Collection. It includes:

- ODPs from the ODP repository (220 ODPs)
- MODL: Modular Ontology Design Library

ODP Repository

220 ODPs:

MODL

- Well-Documented ODPs.
- Collection of annotated OWL files with complete description of each pattern.

Ontology Analysis

- Lexical- Description along with the names of classes, properties and individuals of an ontology compared against the collection.
- Behavioural- Competency questions being compared.

Structural- Axioms being compared

Ontology Analysis

 Combining the scores of three and setting a threshold above which the list of ODPs can be recommended.

Machine Learning on existing ODPs

Features considered are:

Lexical, Structural and behavioural.

Machine Learning on existing ODPs

Some drawbacks with this approach are:

- Training data is limited
- Feature Selection is cumbersome
- Prediction might not be accurate

Work Done so far

Lexical Analysis:

Description of Ontology

Stop Word Removal

Comparing with ODP by implementing Doc2Vec

Obtaining the similarity

- merged file.txt 🖾 📄 mergedFile ... D Structural ... GCD.iava Bulk.iava I first demo.iava App.iava 1 beAWARE ontology an "all-around" lightweight crisis management ontology climate-related r 2 To represent that some agent is acting in order to forward the action of a social (non-ph 3 This pattern represents a flexible schema for linked data querying of chess games. Player 4 To formally represent a conceptualization or a descriptive context. This CP allows the des 5 The hazardous situation ontology design pattern provides a building block for modelling s 6 This pattern is a basic one, which allows to talk about attributes/parameters/dimensions, 7 The intent of the pattern is to be able to represent climatic zones for aquatic resources Markers □ Properties 🤼 Servers 🎬 Data Source Explorer 🖺 Snippets 📮 Console 🛭 <terminated> ParagraphVectorsTextExample [Java Application] C:\Users\Admin\Desktop\java\bin\javaw.exe (Oct 20, 2019, 1:17:52 PM) 13:18:00,477 INFO ~ Epoch [1] finished; Elements processed so far: [258]; Sequences proces

· 😘 🕶 😭 🕶 😂 😂 😂 🗲 🗇 🔞 🔞 🔞 🕶 🔞 🕶 🗢 🕶

Lexical Analysis

Extracting the signature

Signature of Ontology using OWL api

IRI Removal

Comparing with ODP signature using Doc2Vec

Obtaining the Similarity

Work Done so Far

Behavioural Analysis:

Competency Questions of Ontology

Stop Word Removal

Comparing with ODP by implementing Doc2Vec

Obtaining the similarity

Work Done so Far

Structural Analysis:

Axioms of Ontology using the OWL api

IRI Removal

Comparing with ODP by implementing Doc2Vec

Obtaining the similarity

Conclusion

Using this tool, ODPs can be recommended for bulk ontologies and hence, can help in improving the quality of the ontology.

Questions to the community

- 1. Are there a set of ontologies that have the "before applying ODPs" and "after applying ODPs" versions?
- 2. Apart from the three features that are discussed, are there any other aspects that could be used as features in the ML algorithm?
- 3. Apart from user study, are there any other mechanisms to validate this tool?
- 4. What other features would you like to see in this tool?

THANK YOU

maleeha18112@iiitd.ac.in

raghava.mutharaju@iiitd.ac.in

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

