

Grundlagen der Technischen Informatik 2 Sommersemester 25

Übungsblatt 4

Aufgabe 1: Rechnerarchitektur

- 1. Was sind Unterschiede zwischen RISC und CISC Architekturen. Nennen Sie je ein Beispiel einer RISC bzw. CISC Architektur.
- 2. Was sind Unterschiede zwischen Harvard und von Neumann Architekturen. Nennen Sie je ein Beispiel.

Aufgabe 2: Halbleiterpeicher

1. Ordnen Sie die Speicherarten dem beschriebenen Verhalten in der Tabelle zu. Speicherarten: NV-RAM, ROM, SRAM, EPROM, PROM, DRAM

Speicherart	Programmierbar	Reversibel	Schreibbar	Statisch	Flüchtig
				X	
	X			X	
	X	X		X	
	X	X	X	X	X
	X	X	X		X
	X	X	X	X	

Aufgabe 3: Program Counter

In dieser Aufgabe soll ein simpler 4-Bit Programm Counter entworfen werden.

- 1. Machen Sie sich mit einem Programm Counter vertraut. Was unterscheidet diesen von einem regulären Counter? Welche zusätzliche Funktionalität muss dieser haben, um in dem Programm direkte Sprünge auszuführen?
- 2. Entwerfen Sie einen synchronen 4-Bit Zähler.
- 3. Erweitern Sie Ihren Zähler, um spezifische Adressen speichern zu können. Dafür erhält der Counter zwei zusätzliche Eingaben: Steuersignal s_0 , eine 4-Bit Adresse $a_0...a_3$. Der Programm Counter soll sich wie folgt verhalten:

Steuersignal	4-Bit Adresse	Vorzustand	Neuer Zustand	Funktion
s_0	a_0a_3	$q_{0-1}q_{3-1}$	q_0q_3	
0	Adr	Q ₋₁	$Q = Q_{-1} + 1$	Zählen
1	Adr	Q ₋₁	Q = Adr	Springen

Aufgabe 4: Mini ALU

Sei ein Schaltwerk mit zwei Inputs A und B, zwei Speicherregistern R_0 und R_1 , zwei MUX-Steuersignalen m_0 und m_1 , einem DEMUX-Steuersignal s_0 und einem Takt CLK gegeben.

Konstruieren Sie ein Schaltwerk, welches abhängig von den Steuersignalen entweder A, B, A+B oder A-B in eines der Speicherregister speichert.

Hinweis: Bekannte oder bereits konstruierte Schaltnetze wie Adder, Subtracter und D-FlipFlop müssen nicht aus Gattern konstruiert werden.

1. Konstruieren Sie zunächst einen MUX, dessen 4 Inputs in Abhängigkeit der Steuersignale die folgenden Funktionen darstellen.

m_0	m_1	Funktion
0	0	A
0	1	B
1	0	A + B
1	1	A - B

2. Konstruieren Sie einen DEMUX, der seinen Input, abhängig vom Steuersignal an eins der Speicherregister weiterleitet.

s_0	Register
0	R_0
1	R_1

- 3. Verbinden Sie den Takt mit den Clock-Inputs der Register so, dass ein Register nur überschrieben wird, wenn es auch mit dem DEMUX ausgewählt ist.
- 4. Verbinden Sie nun den Output des MUX mit dem Input des DEMUX und verwenden Sie die Q-Outputs der Register als A und B.
- 5. Welche Operationen kann diese simple ALU durchführen?
- 6. Wie lässt sich diese ALU auf n Bit erweitern?