Introdução ao aprendizado de máquina 5

Aula 5- Redes Neurais

Aplicações de redes neurais

- 1. Classificação de imagens
- 2. Reconhecimento de dígitos
- 3. Perguntas sobre imagens
- 4. Reconhecimento de fala
- 5. Modelos de processamento de linguagem natural
- 6. Carros autônomos
- 7. Modelos de previsão de séries temporais

Por que regressão logística não basta?

- Para treinar uma regressão logística com N características e todas combinações de segunda ordem, precisamos treinar $O(n^2)$ parâmetros
- Uma foto colorida de 50 pixels tem 50x50x3= 7500 parâmetros iniciais
- Essa abordagem fica computacionalmente complicada muito rapidamente

Um paralelo com biologia

Origens de redes neurais

- Redes neurais foram inspiradas pela estrutura do cérebro humano
- Um neurônio humano é uma de aprendizado geral
- Foi vastamente usada nos anos 80 e no começo da década de 90, mas ao término da década de 90 caiu em desuso
- Melhores computadores e mais dado levarem ao renascimento de redes neurais.
- Atualmente, a maioria das técnicas de fronteira usa redes neurais

Representação de um Neurônio

Um Exemplo

Exemplo de redes neurais

- ullet Chamados o resultado de cada camada a_i
- $heta_{01}$ é o parâmetro associado ao input 0 na sigmoid 1
- Quantos parâmetros cada sigmoid terá?

Matematica das redes neurais

$$a_1 = \Omega \left(heta_{10} + heta_{11} x_1 + heta_{12} x_2 + heta_{13} x_3
ight) \ a_2 = \Omega \left(heta_{20} + heta_{21} x_1 + heta_{22} x_2 + heta_{23} x_3
ight) \ a_3 = \Omega \left(heta_{30} + heta_{31} a_1 + heta_{32} a_2
ight) \ \hat{y} = a_3$$

Precisamos iniciar os parâmetros aleatoriamente para quebrar simetria!!

Propagação para frente e para trás

Propagação para frente

 $A = \Omega(\Theta_{12}X)$

 $\hat{Y} = \Omega(\Theta_3 A)$

Propagação para trás

$$egin{aligned} a_1 &= \Omega \left(heta_{10} + heta_{11} x_1 + heta_{12} x_2 + heta_{13} x_3
ight) \ a_2 &= \Omega \left(heta_{20} + heta_{21} x_1 + heta_{22} x_2 + heta_{23} x_3
ight) \ a_3 &= \Omega \left(heta_{30} + heta_{31} a_1 + heta_{32} a_2
ight) \ \hat{y} &= a_3 \end{aligned}$$

Redes mais complicadas

Resolvendo com método do gradiente

Calculando os gradientes

$$egin{aligned} a_1 &= \Omega \left(heta_{10} + heta_{11} x_1 + heta_{12} x_2
ight) \ a_2 &= \Omega \left(heta_{20} + heta_{21} x_1 + heta_{22} x_2
ight) \ a_3 &= \Omega \left(heta_{30} + heta_{31} a_1 + heta_{32} a_2
ight) \ \hat{y} &= a_3 \ \Omega(z) &= rac{1}{1 + e^{-z}} \ J(heta) &= - \sum \left(y_i \log(\hat{y}) + (1 - y_i) \log(1 - \hat{y})
ight) \end{aligned}$$

Calculando os gradientes

$$egin{aligned} a_1 &= \Omega \left(heta_{10} + heta_{11} x_1 + heta_{12} x_2
ight) \ a_2 &= \Omega \left(heta_{20} + heta_{21} x_1 + heta_{22} x_2
ight) \ a_3 &= \Omega \left(heta_{30} + heta_{31} a_1 + heta_{32} a_2
ight) \ \hat{y} &= a_3 \ \Omega(z) &= rac{1}{1 + e^{-z}} \ J(heta) &= - \sum \left(y_i \log(\hat{y}) + (1 - y_i) \log(1 - \hat{y})
ight) \end{aligned}$$

Teorema da aproximação universal

Teorema da aproximação universal

Teorema: "Uma rede neural com uma simples camada escondida pode aproximar arbitrariamente bem, qualquer função contínua"

Esse resultado é poderoso, mas não diz nada sobre o número de neurônios nas camadas os como calcular os parâmetros.

Isso quer dizer que as redes neurais de fronteira têm apenas uma camada? Não

Outras funções de ativação

Interpretação de um neurônio

Interpretação de parâmetros em outros modelos

Regressão:
$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Logistica:
$$\hat{y} = \Omega \left(\gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 \right)$$

Em redes neurais a interpretação é ainda mais difícil

Exemplo: "e" e "ou" redes

$$y = \Omega \left(-50 + 30 x_1 + 30 x_2
ight)$$

$$y = \Omega \left(-20 + 30 x_1 + 30 x_2
ight)$$

x=1 or x=0

O que um neurônio vê?

Dropout (abandono)

Regularização: dropout

Multiplas classes e reutilizando o aprendizado

Exemplos com múltiplas classes

Transferir o aprendizado

