Natural Language Processing (NLP)

### **Text Analysis**



### Text Analysis



- What words/topics does Shakespeare commonly use to set a positive/negative tone?
- How many words/topics?
- What variety of language does he use?
- Does he use some words more commonly than other authors?
- What model describes the word frequency distribution in Shakespearian plays?

### Text Analysis



- What words/topics does Shakespeare commonly use to set a positive/negative tone?
  - What is "common"?
  - Max number of times?
  - Average frequency across all plays?
  - More times than other words?
- How many words/topics?
- What variety of language does he use?
  - How do the word frequencies deviate from each other in the play?
- Does he use some words more commonly than other authors?
  - How do the frequencies deviate from frequencies in other plays?
- What model describes the word frequency distribution in Shakespearian plays?

#### **NLP Data Visualization**



#### **NLP Data Visualization**



- How do we visualize differences between scenes (which have hundreds of words) with one single bar per scene?
- How do we visualize categorical differences?
- Does sentiment evolve similarly in other Shakesperean tragedies? In general tragedies?
- Can we model the evolution of sentiment in a play?
- What model underlies the sentiment evolution of tragedies?

#### Text Analysis with Code

- Specifically for text we'll be looking at today:
  - Auto-summarize text
  - Identify frequent words and distinctively frequent words in a text
  - Identify topics in news posts
  - Identify sentiments

### This is the realm on Natural Language Processing (NLP)

#### Common tasks:

- Tokenization
- Removing stopwords
- Identifying pairs/triples/etc of words
- Word sense disambiguation
- Parts of speech tagging
- Stemming
- Lemmatization

#### NLP Tasks: Tokenization

Once upon a time, there was a cat. It was black and fluffy.

#### NLP Tasks: Tokenization

Once upon a time, there was a cat. It was black and fluffy.

#### **NLP Tasks: Tokenization**



### NLP Tasks: Remove Stopwords

Once upon a time, there was a cat. It was black and fluffy.

### NLP Tasks: Remove Stopwords

Once upon time, there was cat. It was black fluffy.

#### NLP Tasks: N-Grams

Once upon a time, there was a cat. It was black and fluffy.

```
(Once, upon)(Once, upon, a)(upon, a)(upon, a, time)(a, time)(a, time, there)(time, there)(time, there, was)(there, was)(there, was, a)(was, a)(was, a, cat)........
```

### NLP Tasks: Word Sense Disambiguation

Once upon a time, there was a cat. It was black and fluffy.

Cat: feline

Cat: clear air turbulence

Cat: computerized axial tomography

Cat: a man (especially among jazz enthusiasts)

### NLP Tasks: Part-of-speech tagging

adverb prep art noun exis verb art noun verb adj conj adj

Once upon a time, there was a cat. It was black and fluffy.

# NLP Tasks: Stemming

Sail

Sailing

Sailed

Sails

## NLP Tasks: Stemming

Sail

Sail

Sail

Sail

#### **NLP Tasks: Lemmatization**

Lemmatization is more careful with words than stemming.

It usually refers to doing things properly with the use of a vocabulary and morphological analysis of words, normally only removing inflectional endings and to return the base or dictionary form of a word, which is known as the *lemma*.

Should saw be considered similar to "see"? Or to the noun "saw"?

### Challenges of NLP

- Contextual words and phrases and homonyms
- Synonyms
- Irony and sarcasm
- Ambiguity
- Errors in text or speech
- Colloquialisms and slang
- Domain-specific language
- Low-resource languages
- Lack of research and development

**NLTK Intro Notebook** 

### Using NLP to wrangle text

We're breaking text apart and extracting information

- For example, we can get numerical attributes from text
  - Frequency of words that occur in the text

Use that to our advantage

## Using NLP to wrangle text



- Let's say that we have lots of journal articles to read but not enough time, so we only want to read the highlights.
- Auto-generate the bullet points
  - ID the most important sentences

1. Find most important words

2. Assign score to sentences based on their words

3. Output the top-scoring sentences

- 1. Find most important words
  - Authors tend to repeat important words -> use word frequency
- 2. Assign score to sentences based on their words

3. Output the top-scoring sentences

- 1. Find most important words
  - Authors tend to repeat important words -> use word frequency
- 2. Assign score to sentences based on their words
  - Take the words it contains and sum their "importances"
- 3. Output the top-scoring sentences

- 1. Find most important words
  - Authors tend to repeat important words -> use word frequency
- 2. Assign score to sentences based on their words
  - Take the words it contains and sum their "importances"
- 3. Output the top-scoring sentences
  - Rank the sentences

**Bullet Points Notebook** 

#### Distinguishing word usage

 Term frequencies are useful, but sometimes we want to distinguish word usage between different texts

#### • Example:

- Moby Dick might use "starboard" more than Charlotte's Web
- Charlotte's Web might use "pigpen" more than Moby Dick
- They may both use "sky" or "cold" more frequently than either "starboard" or "pigpen"

#### Distinguishing word usage

 Term frequencies are useful, but sometimes we want to distinguish word usage between different texts

- For that, TF-IDF is useful
  - Term Frequency Inverse Document Frequency
  - Takes the term frequencies and gives a low weight to the ones that are common across all documents, but a high weight to ones that are more distinctive
    - TF-IDF of word = (TF of word) \* log [ (total document number) / (documents with word) ]
    - (there are other math options behind this which we'll ignore)

**US Inaugural Speeches Notebook** 

### Text analysis

- Workflow
  - Pick text or group of texts
  - Pick problem type
    - Identifying import words/sentences
    - Using words as a distinguishing feature in text comparisons
  - Represent data using numerical attributes
  - Apply algorithm

### Text analysis

- Workflow
  - Pick text or group of texts
  - Pick problem type
    - Identifying import words/sentences
    - Using words as a distinguishing feature in text comparisons
    - Regression
    - Classification
    - Clustering
    - Recommendations
  - Represent data using numerical attributes
  - Apply algorithm

#### Classification

- Identify distinct categories or topics
  - Cat or dog
  - Sunny or cloudy
  - Tumor or not tumor
  - Spam or not spam
  - Positive tweet or negative tweet
  - Happy lyrics or sad lyrics
- Problem instance
  - An email, a tweet, a song lyric, a picture of an animal
- Assign this instance to a category
  - Spam or not spam, positive tweet or negative tweet, cat or dog

### Clustering

- What if groups are unknown beforehand?
- Clustering
  - Divide articles into different groups based on content
- Might later look at the divisions and determine meaning
  - For example, themes, topics, character associations, ...
- Useful to determine patterns you may not realize exist

**News Topics Notebook** 

- Language is incredibly complex and nuanced
- Trying to ascertain the emotional sentiment of a piece of text is still a developing area of study

- Language is incredibly complex and nuanced
- Trying to ascertain the emotional sentiment of a piece of text is still a developing area of study



- Language is incredibly complex and nuanced
- Trying to ascertain the emotional sentiment of a piece of text is still a developing area of study

- For the moment, a lot of sentiment analysis simply looks at whether a text has a positive or negative connotation
  - Polarity is positive or negative
  - Emoji is happy or not



- Language is incredibly complex and nuanced
- Trying to ascertain the emotional sentiment of a piece of text is still a developing area of study

- For the moment, a lot of sentiment analysis simply looks at whether a text has a positive or negative connotation
  - Polarity is positive or negative
  - Emoji is happy or not
- Binary Classification problem



#### Methods to classification

- Is an email spam or not?
- Rule based method
  - Manually write a list of rules that labels email as spam or not based on the words in the email (identifying keywords)
  - May be difficult, and may not be easy to update
- Machine learning method
  - Use the computer to tailor rules based on historical data
  - If you have a large amount of examples (like 100s of emails in your folder that you've already manually classified as spam and 1000s that you said were ok)
  - And/or if the patterns are dynamic (spam senders getting smarter)

Sentiment Notebook