

REST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-150051

(43)Date of publication of application: 13.06.1995

(51)Int.CI.

C08L101/00 CO8K 5/00 CO8L 95/00

(21)Application number: 05-326285

(71)Applicant:

NIPPON OIL CO LTD

(22)Date of filing:

30.11.1993

(72)Inventor:

KUBO JUNICHI

(54) THERMOPLASTIC ELASTOMER COMPOSITION

(57)Abstract:

PURPOSE: To obtain a thermoplastic elastomer composition capable of suppressing an oxidative deterioration under a condition in its use, and also preventing effectively a thermally oxidative deterioration during its high temperature molding process.

CONSTITUTION: In 100wt.pt. of a thermoplastic elastomer, at least one of a hydrogenated oil of 0.1-20wt.pt. selected from the following groups of (I), (II) and (III) is mixed. (I) A hydrogenated oil obtained by hydrogenation treatment of a liquid product which is obtained by heat-treating a coal tar or its fraction at a temperature of 400° C or higher. (II) A hydrogenated oil obtained by hydrogenating a liquid product obtained by heat treatment at 400° C or higher, of a crube oil, a petroleum fraction or a liquid hydrocarbon obtained by catalytic cracking, hydrocracking or catalytic reforming of the petroleum fraction. (III) A hydrogenated oil obtained by hydrogenation treatment of a thermally cracked tar which is a product of thermal cracking of the crude oil or the petroleum fraction.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平7-150051

(43)公開日 平成7年(1995)6月13日

(51) Int.Cl.8

識別記号

FΙ

技術表示箇所

C08L 101/00

C08K 5/00

KAJ

C08L 95/00

LSS

審査請求 未請求 請求項の数2 FD (全 9 頁)

(21)出願番号

(22)出願日

特願平5-326285

(71)出願人 000004444

平成5年(1993)11月30日

東京都港区西新橋1丁目3番12号

(72)発明者 久保 純一

神奈川県横浜市中区千鳥町8番地 日本石

油株式会社中央技術研究所内

(74)代理人 弁理士 岡澤 英世 (外1名)

日本石油株式会社

(54)【発明の名称】 熱可塑性エラストマー組成物

(57)【要約】

【目的】 成型品の使用条件下での酸化劣化を抑制できると共に、高温成型時での熱酸化劣化をも効果的に防止 し得る熱可塑性エラストマー組成物の提供。

【構成】 熱可塑性エラストマー100 重量部当り、 下記の(I)、(II)及び(III)から選ばれる少なくとも一種の水素化油を0.1 ~20重量部を配合する。

- (I) 石炭系タール又はその留分を400 ℃以上の温度で 熱処理して得た液状生成物を、水素化処理して得られる 水素化油
- (II) 原油、石油留分又は石油留分を接触分解、水素化分解もしくは接触改質して得た液状炭化水素を400 ℃以上の温度で熱処理して得た液状生成物を、水素化処理して得られる水素化油
- (III)原油又は石油留分を熱分解して得た熱分解タールを水素化処理して得られる水素化油

1

【特許請求の範囲】

【請求項1】 (A)熱可塑性エラストマー100 重量部 と、(B)下記の(I)、(II)及び(III)から選ば れる少なくとも一種の水素化油0.1 ~20重量部を含有す る熱可塑性エラストマー組成物。

- (Ⅰ) 石炭系タール又はその留分を400 ℃以上の温度で 熱処理して得た液状生成物を、水素化処理して得られる 水素化油
- (II)原油、石油留分又は石油留分を接触分解、水素化 分解もしくは接触改質して得た液状炭化水素を400 ℃以 10 上の温度で熱処理して得た液状生成物を、水素化処理し て得られる水素化油
- (III) 原油又は石油留分を熱分解して得た熱分解ター ルを水素化処理して得られる水素化油

【請求項2】 (A) 熱可塑性エラストマー100 重量部 と、(B) 下記の(I)、(II) および(III) から選 ばれる少なくとも一種以上の水素化油0.1 ~20重量部 と、(C)フェノール系酸化防止剤、リン系酸化防止 剤、硫黄系酸化防止剤およびアミン系酸化防止剤からな る群から選ばれる少なくとも一種の酸化防止剤0.01~20 20 重量部を含有する熱可塑性エラストマー組成物。

- (Ⅰ)石炭系タール又はその留分を400 ℃以上の温度で 熱処理して得た液状生成物を、水素化処理して得られる 水素化油
- (II)原油、石油留分又は石油留分を接触分解、水素化 分解もしくは接触改質して得た液状炭化水素を400 ℃以 上の温度で熱処理して得た液状生成物を、水素化処理し て得られる水素化油
- (III)原油又は石油留分を熱分解して得た熱分解ター ルを水素化処理して得られる水素化油

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は酸化安定性に優れた熱可 塑性エラストマー組成物に関するものであって、さらに 詳しくは、常温での酸化劣化並びに髙温での熱酸化劣化 に、耐久性を備えた熱可塑性エラストマー組成物に係 る。

[0002]

【従来の技術】熱可塑性エラストマーはゴムとプラスチ ックの性質を併せ持っている関係で、最近これに対する 40 関心が高まっているが、その歴史が比較的浅いことか ら、酸化に原因するエラストマーの劣化を防止する方策 については、未だ十分な検討がなされていない。現状で は、ゴム又はプラスチック用に開発された酸化防止剤を 代用して、エラストマーの酸化劣化を抑制ないしは防止 することが実行されているが、これら酸化防止剤の性能 並びに経済性の両面で、改善の余地を残している。特 に、エラストマーは、ゴムと異なり成型温度が高いの で、成型時の熱酸化劣化が問題とされている。

[0003]

【発明が解決しようとする課題】本発明は上記の問題点 に鑑み、成型品の使用条件下での酸化劣化を抑制できる と共に、高温成型時での熱酸化劣化をも効果的に防止し 得る熱可塑性エラストマーを提供するものである。

2

[0004]

【課題を解決するための手段】本発明は石炭系タール又 は石油留分(これには蒸留残渣が含まれる)に、熱処理 と水素化処理を施して得られる物質を、熱可塑性エラス トマーに少量添加することにより、熱可塑性エラストマ 一の酸化安定性の向上を図るものである。従って、本発 明に係る熱可塑性エラストマー組成物は、(A)熱可塑 性エラストマーと、(B)下記の(I)、(II)及び (III) から選ばれる少なくとも1種の水素化油を含有 し、(B)成分の含有量が(A)成分100 重量部当り、 0.1~20重量部であることを特徴とする。

- (Ⅰ) 石炭系タール又はその留分を400 ℃以上の温度で 熱処理して得た液状生成物を、水素化処理して得られる 水素化油。
- (II)原油、石油留分又は石油留分を接触分解、水素化 分解もしくは接触改質して得た液状炭化水素を400 ℃以 上の温度で熱処理して得た液状生成物を、水素化処理し て得られる水素化油。
- (III)原油又は石油留分を熱分解して得た熱分解ター ルを水素化処理して得られる水素化油。

【0005】上記組成物の(A)成分である熱可塑性エ ラストマーとしては、例えば硬質相(ハードゼグメン ト)がポリスチレンで、軟質相(ソフトセグメント)が ポリイソプレンゴム、ポリブタジエンゴム、水素化イソ プレンゴム又は水素化ブタジエンゴムであるスチレン系 熱可塑性エラストマー;硬質相がポリエチレン又はポリ プロピレンで、軟質相がエチレンプロピレンゴム(EP R又はEPDM)、アクリルゴム、アクリロニトリルブ タジエンゴム、エチレン・酢酸ビニル共重合体、塩素化 ポリエチレン、天然ゴム、エポキシ化天然ゴム、ブチル ゴム又はクロロプレンゴムであるオレフィン系熱可塑性 エラストマー;硬質相が結晶ポリ塩化ビニルで、軟質相 が非結晶ポリ塩化ビニル又はアクリロニトリルブタジエ ンゴムである塩化ビニル系熱可塑性エラストマー;硬質 相がウレタン構造で、軟質相がポリエーテル又はポリエ ステルであるウレタン系熱可塑性エラストマー;硬質相 がポリエステルで軟質相がポリエーテル、ポリエステ ル、クロロプレンゴム又はアクリルゴムであるエステル 系熱可塑性エラストマー;硬質相がポリアミドで、軟質 相がポリエーテル又はポリエステルであるアミド系熱可 塑性エラストマーを挙げることができる。この他、硬質 相が結晶ポリエチレンで、軟質相が塩素化ポリエチレン である熱可塑性エラストマー、硬質相が金属カルボキシ レートイオンクラスターで、軟質相が非結晶ポリエチレ ンである熱可塑性エラストマー、硬質相がジンジオタク 50 チックー1, 2ープタジエンゴムで、軟質相が非結晶ブ

タジエンゴムである熱可塑性エラストマー、硬質相がトランス-1,4-イソプレンゴムで、軟質相が非結晶イソプレンゴムである熱可塑性エラストマー、硬質相がフッ素樹脂で、軟質相がフッ素ゴムである熱可塑性エラストマー、硬質相が結晶ポリエチレンで、軟質相がエチレン・酢酸ビニル共重合体又はエチレン・エチルアクレート共重合体である熱可塑性エラストマー、硬質相がナイロンで、軟質相がアクニロニトリルブタジエンゴム、塩素化ポリエチレン、アクリルゴム又はウレタンである熱可塑性エラストマー等も、本発明の(A)成分として使10用することができる。

【0006】組成物の(B)成分である水素化油は、上 記した通り、(I)~(III)から選ばれる。水素化油 (1) において、石炭系タールとは石炭を乾留したとき 留出する成分を総称するが、一般には沸点範囲150~60 0 ℃のものが好ましい。また、石炭系タールの留分と は、当該タールを分留して得られる成分を総称するが、 一般には沸点範囲200 ℃以上、例えば200 ~500 ℃のも のが好ましい。石炭系タールの留分の具体例には、洗浄 油、アントラセン油、タール油、タール軽油、カルボー 20 ル油、ナフタレン油、ピッチ油、クレオソート油、石炭 液化油又はこれらの混合物が含まれる。水素化油 (1) としては、アントラセン油又はピッチ油を原料として得 られる水素化油が特に好ましい。水素化油(II)又は (III) において、石油留分とは原油を常圧蒸留又は減 圧蒸留して得られる各種の留分及び残渣を意味する。そ して、石油留分に対して施される接触分解、水素化分解 又は接触改質とは、石油精製技術で採用される通常の接 触分解、水素化分解及び接触改質を意味し、同様にし て、原油又は石油留分に対して施される熱分解とは、石 30 油精製技術で採用される通常の熱分解を意味する。ちな みに、接触分解は流動化触媒の存在下に重質油を軽質化 する操作で、反応温度には通常400~600℃が採用され る。水素化分解は触媒及び高圧水素の存在下で重質油を 軽質化する操作で、反応温度には通常350 ~500 ℃が採 用される。また、接触改質は改質触媒の存在下でガソリ ンのオクタン価を向上させる操作で、反応温度には通常 450 ~550 ℃が、反応圧力には通常 5~40kg/cm² が採 用される。熱分解は重質油を熱によって分解する操作 で、反応温度には通常400 ~800 ℃が採用される。本発 40 明の熱処理を施す対象として、接触分解、水素化分解又 は接触改質を経て得られる液状炭化水素を選んだ場合に は、その液状炭化水素は沸点200℃以上、好ましくは 250℃以上で、芳香族成分に富んでいることが好まし く、その典型例は接触分解残油、水素化分解残油、接触 改質残油である。

【0007】本発明の水素化油(1)及び(II)を取得する場合の熱処理について言えば、その熱処理は0.5~1 5kg/cm²の圧力条件下に、温度400℃以上、好ましくは4 50~600℃、さらに好ましくは450~520℃の温度で行 50

われる。処理時間は温度との関連で決定されるが、通常 1~60分間、好ましくは2~30分間の間で選ばれる。熱 処理装置の形状には特に制限はなく、コイル状、直管、 タンク型などがいずれも使用可能である。この熱処理で 得られる生成物は、必要に応じて常温でガス状の生成物 と、常温で液状の生成物とに分離され、液状生成物は次 の水素化処理に供される。この場合、沸点250 ℃以下の 軽質成分を液状生成物から除去しておくことが好まし い。また、液状生成物に少量の固形物が混在している場 合には、水素化処理に先立ち、これを除去しておくこと が好ましい。なお、水素化油(III)を取得するに際し ては、上記の熱処理操作は省かれ、原料である原油又は 石油留分の熱分解によって得た熱分解タールが、好まし くは沸点250 ℃以下の軽質成分を除去した後、水素化処 理に供される。本発明の水素化処理は、公知の水素化触 媒及び高圧水素の存在下で一般に行われ、反応条件は使 用する水素化触媒の種類に応じて適宜選択される。例え は、周期律表第V~第VIII族から選ばれる少なくとも1 種の金属元素、特にニッケル、コバルト、モリブデン、 バナジウム及びタングステンから選ばれる金属の酸化 物、硫化物などを、アルミナ、シリカーアルミナ、カチ オン置換ゼオライト等から選ばれる無機質担体に担持さ せてなる脱硫触媒又は脱窒素触媒を使用した場合には、 温度300 ~400 ℃、水素圧30~150 気圧を採用すること ができる。また、例えば、ニッケル、酸化ニッケル、ニ ッケルー銅、白金、白金ーロジウム、白金ーリチウム、 ロジウム、パラジウム、コバルト、ラミーコバルト、ル テニウム等から選ばれる少なくとも1種を、活性炭、ア ルミナ、シリカーアルミナ、けいそう土、ゼオライト等 から選ばれる無機質担体に担持させた核水素化触媒を使 用した場合には、温度150 ~350 ℃、水素圧30~150 気 圧を採用することができる。水素化処理を実施する反応 装置の形式には特に制限はなく、一般に使用される固定 床、移動床並びに流動床反応装置が使用できる。水素化 処理装置から生成物は、これをそのまま本発明の水素化 油として使用可能であるが、好ましくは沸点200 ℃未満 の留分を除去した水素化油が、熱可塑性エラストマーに 配合される。

【0008】本発明はまた、上記した水素化油に加えて、さらに公知の酸化防止剤の少なくとも1種を、熱可塑性エラストマー100重量部当り、0.01~20重量部、好ましくは0.05~10重量部の範囲で含有する熱可塑性エラストマー組成物を包含し、この組成物は一段と優れた酸化安定性を発揮する。ここで使用される酸化防止剤としては、次のようなものが例示できる。

フェノール系酸化防止剤; トリエチレングリコールービス [3-(3-t-7)+N-5-x+N-4-k+1] ス [3-(3-t-7)+N-5-x+N-4-k+1] ス [3-(3-t-7)+N-4-k+1] ス [3-(3-t-7)+N-4-k+1]

- (3´, 5´-ジ-t-ブチル-4´-ヒドロキシフ ェニル)プロピオネート]メタン、1、3、5ートリメ チルー2, 4, 6ートリスー(3, 5ージーtーブチル -4-ヒドロキシベンジル)ベンゼン、トリス(3,5 ージーtーブチルー4ーヒドロキシベンジル) イソシア ヌレート、N, N´-ヘキサメチレンビス(3, 5-ジ - t - ブチルー 4 - ヒドロキシーヒドロシンナアミ ド)、ジーt - ブチルパラクレゾール等

アミン系酸化防止剤;オクチル化ジフェニルアミン、 2, 4-ビス- (n-オクチルチオ) -6- (4-ヒド 10 ロキシ-3, 5-ジ-t-ブチルアニリノ) <math>-1, 3, 5-トリアジン、フェニルー1-ナフチルアミン、ポリ (2, 2, 4-トリメチルー1, 2-ジヒドロキノリ ン、N, N´ージフェニルーpーフェニレンジアミン等 <u>イオウ系酸化防止剤</u>;ジラウリルチオジプロピオネー ト、ジステアリルチオジプロピオネート、ペンタエリス リトールーテトラキスー (β-ラウリルーチオプロピオ・ ネート)等

<u>リン系酸化防止剤;トリス(2,4-ジーt-ブチルフ</u> ェニルフォスファイト、テトラキス(2, 4-ジ-t-20ブチルフェニル) -4, 4 -ビフェニレンフォスフォ ナイト、ジ(2, 4-ジーtーブチルフェニル)ペンタ エリスリトールジフォスファイト、トリスノニルフェニ ルフォスファイト、ジフェニルイソオクチルフォスファ イト、テトラトリデシルー4、4 ーブチリデンビスー (3-メチルー6-t-ブチルフェニル) ージフォスフ アイト等

* なお、本発明の熱可塑性エラストマー組成物には、本発 明の特性を損わない範囲で、ベンゾトリアゾール系、ベ ンゾフェノン系、サリシレート系、ニッケル錯塩系及び ヒンダードアミン系の光安定剤、重金属不活性剤、金属 石けん類、増核剤、可塑剤、有機スズ化合物、難燃剤、 帯電防止剤、滑剤、抗ブロック剤、充填剤、発泡剤、架 橋剤等をさらに含有させることも可能である。

6

[0009]

【実施例】以下、実施例及び比較例に基づいて本発明を さらに具体的に説明するが、本発明はこれらによって限 定されるものではない。

実施例1、比較例1

熱可塑性エラストマーとしてスチレンーブタジエンース チレン(SBS)を選び、これにナフテン系油、クマロ ン樹脂及び添加剤B1を、表1に示す割合で配合して混 練りし(空気中、初期温度180℃)、3種の組成物を得 た。基材のSBSには、シェルジャパン(株)製のカリ フレックス (Carifrex TR1101) を使用し、添加剤B1 には次のように調製した水素化油を使用した。石油の流 動接触分解装置から得られる分解残油を460 ℃で30分間 熱処理し、得られた液状生成物から沸点250 ℃以下の軽 質分を蒸留によって除去した後、その液状生成物を市販 の重質油脱流触媒(Co-Mo/Al₂O₃)の存在 下、温度380 ℃、水素圧135 気圧、LHS V0.35 h r - 1 で水素化処理し、得られた水素化生成物から沸点250 ℃ 以下の軽質分を除去したものを添加剤B1とした。

[0010]

表 1

エラストマー組成物 (重量部)

	比較例1	実施例1a	実施例 1 b
SBS	100	100	100
ナフテン系油	1 0	1 0	1 0
クマロン樹脂	5	5	5
添加剤 B 1	_	2	5

【0011】図1は各組成物を混練りしている過程での トルク変化と、組成物の温度上昇を示すグラフである。 図1から明らかな通り、添加剤B1を含まない比較例1 の組成物は、混練りを開始して間もなくトルクが急激に 上昇し、これに伴い組成物の温度も260 ℃以上にまで上 昇する。これに対し、添加剤B1を含有する実施例1a ※40

※及び1b の組成物は、トルク上昇が殆なく、温度上昇も 比較例1の組成物に比べて小さい。各組成物の混練り時 間とゲル分率との関係を表2に示す。ここで、ゲル分率 とは組成物中に含まれるテトラヒドロフラン(THF) 不溶分(於40℃)の含有率を言う。

[0012]

表2

	混練り時間(分)	ゲル分率 (wt%)
比較例1	1 0	1 6
	2 0	8 3
実施例 1 a	1 0	1 5
	2 0	2 2
実施例1b	1 0	1 6
	2 0	1 9

表 2 に示す通り、混練り時間10分間でのゲル分率は各組

は添加剤B1を含まない比較例1の組成物はゲル分率が 成物ともそれほど変わらない。しかし、20分の混練りで 50 83%にも達するが、添加剤 B 1 を加えた組成物のゲル分

率は20%前後に過ぎず、添加剤B1が組成物のゲル化抑 制に効果を発揮することが分かる。

【0013】混練り時間10分及び20分の各サンプルにつ*

*いて、硬さHs (JIS A) 、引張り強さT。、破断伸びE ・並びに伸び300 %におけるモデュラスM300 を測定 し、その結果を表3に示す。

ጸ

	表 3		
	比較例 1	実施例 1 a	実施例1b
混練り時間:10分			
Hs(JIS A)	6 9	7 3	7 1
T _B (MPa)	6.1	22.1	18.7
E ₈ (%)	640	9 4 0	870
M ₃₀₀ (MPa)	2. 6	2. 4	2. 1
混練り時間:20分			
Hs(JIS A)	7 6	7 3	7 5
T _B (MPa)	1. 8	3. 2	15.6
E , (%)	3 0	410	8 4 0
M ₃₀₀ (MPa)		2. 4	2. 3

添加剤B1の配合によって組成物の機械的性質が改善さ れることは、表3から明らかであり、特に実施例1bの 組成物(添加剤B1を5重量部含有)は、混練りを20 分間行った後においても、比較例1の組成物(添加剤B 優れた機械的性質を備えている。

【0014】比較例1及び実施例1a、1bの各組成物 のTHF可溶分について、ゲルパーミエーションクロマ トグラフィーによりそれぞれの分子量分布を測定した。 そのチャートを平均分子量(MN及びMW)と共に図2及 び図3に示す。図2から明らかな通り、比較例1の組成 物は混練り時間の多寡によって分子量分布が著しく変化 し、20分間混練りを行った場合には、その分子量分布 が基材であるSBSの分子量分布と全く異なっている。 これとは対照的に、実施例1a及び1bの組成物は、図 30 添加剤B2とした。 3が示す通り、基材である SBSと 殆ど異ならない分子 量分布にある。

※【0015】実施例2、比較例2

熱可塑性エラストマーとしてスチレンーイソプレンース チレン(SIS)を選び、これにナフテン系油、クマロ ン樹脂及び添加剤 B 2 を表 1 に示す割合で配合して混練 1 を含まない)を 1 0 分間混練りしたものより、格段に 20 りし(空気中、初期温度180 ℃)、比較例 2 および実施 例2の組成物を得た。基材のSISには、日本合成ゴム (株) 製のSIS5000を使用し、添加剤B2には次のよ うに調製した水素化油を使用した。中東系石油から得ら れる常圧残油を480 ℃、20分間熱分解し、このとき得ら れる熱分解タールの軽質分(250℃以下)を蒸留で除去 し、残余の重質分を市販の重質油水素化脱硫触媒 (Ni - C o - M o / A l 。 O₃) 存在下で温度400 ℃、水素 圧155 気圧、LHSVO.5 hr¹で水素化処理し、得ら れた水素化油の軽質分(250 ℃以下)を除去したものを

[0016]

表 4

エラストマー組成物 (重量部)

	比較例2	実施例 2
SIS	100	100
ナフテン系油	1 0	1 0
クマロン樹脂	5	5
添加剤B2	_	5

SISを基材に使用した場合、添加剤B2を添加しなく ても組成物のゲル化は殆ど起こらず、混練り時のトルク の上昇も認められなかった。そこで、実施例2及び比較 例2の組成物について、実施例1と同様に、それぞれの★ ★機械的性質と分子量分布を測定した。結果を表5及び図 4に示す。

[0017]

表 5

	比較的	列 2	実施例 2
混練り時間 (分)	3	2 0	2 0
Hs(JIS A)	2 8	2 5	3 0
T, (MPa)	10.1	5. 2	13.3
E. (%)	> 1 4 0 0 50	>1400	>1400

M ₁₀₀	(MPa)	0.	4	0.	4	Ο.	5
$M_{3\;0\;0}$	(MPa)	0.	6	0.	5	0.	7
$M_{\text{5 0 0}}$	(MPa)	0.	8	0.	6	0.	9

注) M₁₀₀ : 伸び100 %におけるモデュラス

Msoo : 伸び500 %におけるモデュラス

【0018】添加剤B1を含有しない比較例2の組成物は、混練り3分でも物性の変化が著しく、混練りを20分続けると、組成物は殆どゴムの状態を示さなくなるのに対し、添加剤B2を配合した実施例2の組成物は、混練りを20分続けても、3分間混練りした比較例2の組 10成物を凌ぐ物性を保持している。また、分子量分布につ*

*いて言えば、図4に示すように、比較例2の組成物は混練り時間の増加に伴い、分子量分布が変動するが、実施例2の組成物は基材であるSISと殆ど変わらない分子量分布にある。

10

【0019】実施例3

実施例1で使用した添加剤B1に代えて、下記の添加剤B3を使用した以外は実施例1と同様にして表6に示す組成物を調製した。

表 6

エラストマー組成	物(重量部)
----------	--------

	比較例1	実施例3
SBS	100	100
ナフテン系油	1 0	1 0
クマロン樹脂	5	5
添加剤B3	_	2

【0020】石炭から得られる脱晶アントラセン油を43 5 ℃で20分間熱処理し、得られた液状生成物を蒸留によ 20 り軽質分 (200 ℃以下)を除去し、残余の重質分を市販の核水素化触媒(ニッケル/けいそう土)の存在下、温度310 ℃、水素圧120 気圧、LHS V0.22 h r 'で水素化処理し、得られた水素化生成物から軽質分 (200 ℃以下)を除去した水素化油を添加剤B3とした。実施例3の組成物について、混練り時間と混練りに際してのトル※

※ク変化並びに組成物の温度変化との関係を、比較例1の 組成物と対比して図5に示す。これから明らかなよう に、添加剤B3の配合は混練り時のトルク上昇と組成物 温度の上昇を効果的に抑制する。また、実施例1と同様 に、実施例2の組成物について、混練り時間10分及び 20分におけるゲル分率を測定し、これを比較例1の組成物と比較した。結果を表7に示す。

[0021]

表7

	混練り時間(分)	ゲル分率(wt%)
比較例1	1 0	1 6
	2 0	8 3
実施例3	1 0	1 6
	2 0	2 3

表7から明らかな通り、添加剤B3を配合することで、 組成物のゲル化が効果的に抑制される。

【0022】実施例4、比較例4

中東系石油を450 $^{\circ}$ 、50分間熱分解することによって得られる液状生成物のうち、沸点250 $^{\circ}$ C以下の軽質分及び固形物を除いた後、その液状生成物を市販の重質油脱硫触媒($Co-Mo/Al_2O_3$)の存在下、温度382 $^{\circ}$ C、水素圧140気圧、LHS V0.30 hr $^{\circ}$ で水素化処理し、得られた水素化生成物から沸点250 $^{\circ}$ C以下の軽質油を除去したものを添加物 B4 とした。この添加物 B4 を次のようにして製造したポリマーに添加することにより、そ *

★の添加効果をみた。即ち、EPM(エチレンープロピレンゴム)にDCP(ジクミルパーオキサイド)を40:0.3(重量比)の割合で加え、180℃ 空気中で1分間充分に混合した後、PP(ポリプロピレン)並びに添加剤B4をそれぞれEPM40に対し60及び2(重量比)で加え、2分間充分混合した。このようにして出来たポリマーから厚さ1mmのシートを作成し、その機械的強度を測定した。実施例4と同じ条件で製造し、添加剤B4を加えない場合(比較例3)と比較して、その結果を表8に示す。

表8

	実施例 4	比較例 4
硬さ(デュロメーターD)	4 5	3 7
T, (MPa)	9. 7	5. 1
E ₁ (%)	101	2 2
M_{100} (MPa)	6. 1	3. 0

表8から明らかなように、添加剤B4を配合することに 50 より、組成物の変質が明らかに抑制されている。

表α

【0023】実施例5、比較例5

石油留分を接触改質して得られる液状生成物のうち、沸点200℃以上の接触改質残油を445℃で15分間熱処理し、得られた液状生成物を蒸留により軽質分(200℃以下)を除去し、残余の重質分を市販の重質油水素化脱硫触媒(Co-Mo/Al₂О₃)の存在下、378℃、水素圧155気圧、LHSV0.23h r ⁻¹ で水素化処理し、得られた水素化生成物から軽質分(250℃以下)を除去した残余の重質分を添加剤 B 5 とした。この添加剤 B 5 を塩素化*

Hs	(JIS A)
$T_{\scriptscriptstyle B}$	(MPa)
E_{B}	(%)
М10	o (MPa)

表 9 から明らかなように、添加剤 B 5 の添加効果が明らかである。

[0024]

【発明の効果】一般に熱可塑性エラストマーは空気中で加熱されると、その物性が変化し、例えば実施例1及び203で使用したSBSは、空気中で加熱(180℃)されると、主としてゲル化(架橋)が生じることに原因して物性が変化し、実施例2で使用したSISは主として主鎖の切断することによって物性が変化する。然るに、本発明の水素化油は、上記したようなゲル化(架橋)並びに主鎖の切断を効果的に抑制する。従って、本発明の水素化油を配合した熱可塑性エラストマー組成物は、混練り時並びに成型時に比較的高温度に曝されても、酸化によって物性が変化することがなく、また、その成形品も使用中に酸化劣化してしまうことがない。そして、本発明※30

*ポリエチレン(CPE)100重量部に添加する効果をみた。ラボプラストミルにおいて110℃、空気中で3分間充分に混合し、添加剤B5を2重量部及びジーtーブチルパラクレゾール0.2重量部を加えた。このようにして得たポリマーから厚さ1mmのシートを作成し、その機械的強度を測定した。この際、全く同一の条件で、添加剤Bを加えないものについても同様に機械的強度を測定し、この両者を比較した。その測定結果を表9に示す。

12

12.0		
実施例 5	比較例 4	
5 2	8 3	
12.2	6. 3	
610	120	
7. 0	10.8	

※の水素化油は、石炭または石油から製造されるために、 従来の酸化防止剤に比較して経済的にも有利である。 【図面の簡単な説明】

【図1】実施例1及び比較例1で示す各組成物の混練り 時間と、組成物温度及びトルクとの関係を示すグラフで

ある。 【図2】比較例1の組成物の分子量分布を示すグラフで

【図3】実施例1の組成物2種の分子量分布を示すグラフである。

【図4】SIS、実施例2の組成物及び比較例2の組成物の分子量分布を示すグラフである。

【図5】実施例3の組成物の混練り時間と、組成物温度 及びトルクとの関係を示すグラフである。

【図3】

分子量

【図4】

【図5】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.