Limits and Open Sets

Ch.12

econMath.namun+2016su@gmail.com

July 1, 2016

1 Sequences of Real Numbers

(Sub)Sequences of Real Number: Definition

Definition 1 (Sequence of Real Number). $\{x_n\}_{n=1}^{\infty}$ is a <u>sequence of real number</u> if:

$$x: \mathbb{N} \to \mathbb{R}, \quad x(i) = x_i$$

I.e., sequence of real number is just a real function whose domain is \mathbb{N} (the set of (all) natural numbers, or the set of (all) positive integers)

Definition 2 (Subsequence). Let $M = \{n_i\}_{i=1}^{\infty}$ be any infinite subset of \mathbb{N} and $n_i > n_j \forall i > j$. (I.e., increasing sequence of natural numbers). A sequence $\{y_n\}_{n=1}^{\infty}$ is a <u>subsequence</u> of $\{x_n\}_{n=1}^{\infty}$ if:

$$y_j = x_{n_j}, \quad j \in \mathbb{N}$$

Limit and Convergence: Definition

Definition 3 (Limit of a Sequence, Convergence). $\bar{r} \in \mathbb{R}$ is the <u>limit</u> of a sequence of $\{x_n\}_{n=1}^{\infty}$ if:

$$\forall \epsilon > 0, \quad \exists \bar{N} \in \mathbb{N} \quad s.t. \quad \forall n \geq \bar{N} \quad |x_n - \bar{r}| < \epsilon$$

$$Then, \lim x_n = \bar{r} \quad or \quad \lim_{n \to \infty} x_n = \bar{r} \quad or \quad x_n \to \bar{r} \qquad (x_n \text{ converges to } \bar{r})$$

Note 1: Sometimes, $\epsilon \in (0, \bar{\alpha})$ is used (for all small positive real numbers)

Note 2: $|x_n - \bar{r}| < \epsilon$ has alternative notation: ϵ -interval: $x_n \in I_{\epsilon}(\bar{r})$

Definition 4 (Limit of a Real Function $(\lim_{x\to \bar{x}_0} f(x) = \bar{r})$).

$$\forall \epsilon > 0, \exists \delta > 0 \quad s.t. \quad x \in D \land 0 < |x - \bar{x}_0| < \delta \Rightarrow |f(x) - \bar{r}| < \epsilon$$

Algebraic Properties of Limits

Theorem 1 (12.1). A sequence can have at most one limit.

Theorem 2 (12.2).

If
$$x_n \to \bar{x} \land y_n \to \bar{y}$$
,

- 1. $x_n \pm y_n \to \bar{x} \pm \bar{y}$ (Th 12.2)
- 2. $x_n y_n \rightarrow \bar{x}\bar{y}$ (Th 12.3)
- 3. $x_n/y_n \to \bar{x}/\bar{y}$

Theorem 3 (12.4).

$$x_n \to \bar{x} \quad \land \quad x_n \le [\ge] \bar{b} \quad \forall n \Rightarrow \bar{x} \le [\ge] \bar{b}$$

2 Sequences in \mathbb{R}^m

Convergence in \mathbb{R}^m Space

Definition 5 (Sequence of Vector). $\{\mathbf{x_n}\}_{n=1}^{\infty}$ is a <u>sequence of vector</u> if:

$$\mathbf{x}: \mathbb{N} \to \mathbb{R}^m, \quad \mathbf{x}(i) = \mathbf{x_i}$$

Definition 6 (ϵ -ball about \bar{r}). $B_{\epsilon}(\mathbf{r})$, ϵ -ball about \mathbf{r} is defined as:

$$B_{\epsilon}(\mathbf{r}) := \{ \mathbf{x} \in \mathbb{R}^m : ||\mathbf{x} - \mathbf{r}|| < \epsilon \}$$

Note: Geometrically, ϵ -ball is hyperball in m dimensions, or bounded by an m-1 sphere

Definition 7 (Limit of a Sequence of Vector).

$$\mathbf{x_n} \to \mathbf{x}$$
 if $\forall \epsilon > 0$, $\exists \bar{N}$ s.t. $\forall n \geq \bar{N}$, $\mathbf{x_n} \in B_{\epsilon}(\mathbf{x})$

Convergence of Vectors

Theorem 4 (12.5). Let $\mathbf{x_n} = (x_{1n}, \dots, x_{mn})$. $\mathbf{x_n}$ converges iff:

$$x_{in} \to \bar{x}_{in} \quad \forall i$$

Theorem 5 (12.6). If $\mathbf{x_n} \to \mathbf{x}^*$, $\mathbf{y_n} \to \mathbf{y}^*$, and $c_n \to c^*$, then

$$c_n \mathbf{x_n} + \mathbf{y_n} \rightarrow c^* \mathbf{x^*} + \mathbf{y^*}$$

3 Open Sets

Open: Definition

Definition 8 (Open). A set $S \in \mathbb{R}^m$ is open if

$$\forall \mathbf{x} \in S \quad \Rightarrow \quad \exists \epsilon > 0 \quad s.t. \quad B_{\epsilon}(\mathbf{x}) \in S$$

Geometrically, open set has no boundary.

Theorem 6 (12.7). Open balls are open sets

Theorem 7 (12.8). 1. Any union of open set is open

2. The finite intersection of open sets is open

Interior

Definition 9 (Interior). intS, or Interior of S is union of all open sets contained in S

Note: Interior is the largest open subset of S

Open and Closed

4 Closed Sets

Closed: Definition

Definition 10 (Closed). A set $S \in \mathbb{R}^m$ is <u>closed</u> if, the limits of all convergent sequence $\{\mathbf{x}_n\}_{n=1}^{\infty} \in S$ are contained in S

Note: Closed set must contain all its boundary points.

Theorem 8 (12.9). $S \in \mathbb{R}^m$ is closed iff $S^c = \mathbb{R}^m - S$ is open

Theorem 9 (12.10). 1. Any intersection of closed sets is closed

2. The finite union of closed sets is closed

Closure, Boundary

Definition 11 (Closure). clS or \bar{S} is $\underline{closure}$ of S if It is the intersection of all closed sets containing S

Intuitively, closure is the smallest closed set contains S

Definition 12 (Bounadry). \mathbf{x} is in the boundary of a set S if

$$\forall \epsilon > 0, \quad B_{\epsilon}(\mathbf{x}) \cap S \neq \emptyset \quad \land \quad B_{\epsilon}(\mathbf{x}) \cap S^c \neq \emptyset$$

Theorem 10 (12.12). Boundary of $S = clS \cap clS^c$

5 Compact Sets

Bounded, Compact

Definition 13 (bounded). $S \in \mathbb{R}^n$ is bounded if:

$$\exists b \in \mathbb{R} \quad s.t. \quad ||\mathbf{x}|| \le b \quad \forall \mathbf{x} \in S$$

Definition 14 (Compact). $S \in \mathbb{R}^n$ is compact iff S is closed and bounded

Theorem 11 (12.13-14). • Any sequence contained in the compact set [0,1] has a convergent subsequence (Th 12.13)

• Any sequence contained in the compact set $C \in \mathbb{R}^n$ has a convergent subsequence whose limit lies in C (Bolzano-Weierstrass Theorem)