

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

МОДЕЛИ КОНКУРЕНЦИИ В ЭКОЛОГИИ И ЭКОНОМИКЕ

(Модель с двумя хищниками)

КУРСОВАЯ РАБОТА

Направление подготовки 01.03.02 «Прикладная математика и информатика»

		Выполнил студент гр.		
		Б9121-01.03.02сп		
		Держапольский Ю.В.		
Регистрационный	$N_{\underline{0}}$	(Ф.И.О.) (подпись		
	2024 г.	Руководитель проф. д.фм. н.		
« <u> </u> »		Абакумов А. И.		
		(Ф.И.О.) (подг	ись)	
(И.О.Фамилия)	(подпись)	« <u>21</u> » <u>июня</u> 20 <u>24</u> г.		

г. Владивосток

Оглавление

1	Вве	едение			
2	Ma	Математический аппарат			
	2.1	Метод	цы анализа	4	
	2.2	Числе	енные методы	5	
3	Модель Лотки-Вольтерры				
	3.1	1 Математическая модель			
	3.2	Анали	из модели	8	
3.3 Вычислительные эксперименти		Вычи	слительные эксперименты	12	
		3.3.1	При вымершей первой популяции	13	
		3.3.2	При вымершей второй популяции	14	
		3.3.3	При вымершей третьей популяции	15	
		3.3.4	Несколько изначально не вымерших популяций	15	
4	Мод	цель Ко	лмогорова	17	
	4.1	Матем	иатическая модель	17	
	4.2	Анали	из модели	19	
	4.3	Вычи	слительные эксперименты	23	
		4.3.1	При вымершей первой популяции	23	
		4.3.2	При вымершей второй популяции	24	
		4.3.3	При вымершей третьей популяции	24	
		4.3.4	Несколько изначально не вымерших популяций	25	
5	Зак	лючени	ie	28	
6	Спи	ісок ли	тературы	29	

1. Введение

Вводный текст с описанием задачи и схемы.

2. Математический аппарат

2.1. Методы анализа

Исследуемые далее модели конкуренции представляют собой автономные системы трёх дифференциальных уравнений.

$$\dot{x} = f(x), \quad x = (x_1, x_2, x_3).$$

Для данных систем будет проведён анализ точек равновесия:

$$\dot{x} = 0 \Rightarrow f(x) = 0$$

Для каждой точки равновесия (x^* – решение данной однородной системы уравнений) будет проведён анализ по методу первого приближения[3].

В матрицу Якоби данной системы $\left(\frac{\partial f}{\partial x}\right)$ нужно подставить точку равновесия. После чего нужно найти собственные значения этой матрицы:

$$\det\left(\lambda I - \frac{\partial f}{\partial x}\Big|_{x^*}\right) = 0 \implies b_0\lambda^3 + b_1\lambda^2 + b_2\lambda + b_3 = 0.$$

Для того, чтобы точка была устойчивой, необходимо, чтобы $\forall i \; \text{Re} \; \lambda_i < 0.$ Однако, напрямую решать кубическое уравнение может быть непросто, поэтому можно воспользоваться критерием Payca-Гурвица[4]. Для этого построим матрицу Гурвица:

$$\Delta = \begin{pmatrix} b_1 & b_3 & 0 \\ b_0 & b_2 & 0 \\ 0 & b_1 & b_3 \end{pmatrix}$$

Если $b_0 > 0$, то для устойчивости необходимо, чтобы все главные миноры матрицы Δ были положительны:

$$\Delta_1 = b_1,$$

$$\Delta_2 = b_1 b_2 - b_3 b_0,$$

$$\Delta_3 = b_3 \Delta_2.$$

2.2. Численные методы

Для получения численных решений системы дифференциальный уравнений будет использоваться метод Рунге-Кутты 4 порядка[5].

Для программной реализации используется язык Python с библиотеками numpy и matplotlib.

3. Модель Лотки-Вольтерры

3.1. Математическая модель

Классическая модель хищник-жертва для одной популяции жертвы x(t) и хищника y(t) называется такая модель[1]:

$$\begin{cases} \dot{x} = \alpha(x) - V(x)y, \\ \dot{y} = kV(x)y - \beta(y), \end{cases}$$
(1)

где коэффициенты α , β — функции естественного прироста жертв и естественной смертности хищников соответственно. Также их можно называть коэффициентом, обозначающим разность рождаемости и смертности в популяциях. Без взаимодеиствия жертвы беспрепятственно питаются и поэтому их рождается больше чем умирает, а у хищников — из-за отсутствия питания — наоборот, умирают больше, чем рождаются.

Функция V(x) показывает количество жертв, потребляемых одним хищником за единицу времени, причём k-тая часть полученной с этой биомассой энергией расходуется хищником на воспроизводство.

При малых значениях x, когда почти все жертвы становятся добычей хищника, который всегда голоден и насыщения не наступает, тогда функцию V(x) можно считать линейной функцией численности жертв: V=vx. Беря функции прироста линейными, получим систему:

$$\begin{cases} \dot{x} = \alpha x - vxy, \\ \dot{y} = kvxy - \beta y, \end{cases}$$
 (2)

Эта линейная система (2) совпадает с моделью В. Вольтерра, который показал, что такая система имеет неасимптотическую точку равновесия (центр) и поэтому эти популяции живут на замкнутых кривых на фазовой плоскости[1].

Аналогичными предположениями приведём исследуемую схему к подоб-

ной системе:

$$\begin{cases} \dot{x_1} = \varepsilon_1(x_1) - V_{12}(x_1)x_2 - V_{13}(x_1)x_3, \\ \dot{x_2} = \varepsilon_2(x_2) + k_{12}V_{12}(x_1)x_2 - V_{23}(x_2)x_3, \\ \dot{x_3} = -\varepsilon_3(x_3) + k_{13}V_{13}(x_1)x_3 + k_{23}V_{23}(x_2)x_3, \end{cases}$$
(3)

где:

- 1. $\varepsilon_i(x_i)$ функции прироста соответствующих популяций без взаимодействия с другими. Предполагаем, что жертва и первый хищник (x_1, x_2) имеют положительный прирост, а второй хищник (x_3) отрицательный.
- 2. $V_{ij}(x_i)$ функции, показывающие какое количество из популяции x_i поглощается одним хищником популяции x_j за единицу времени. k_{ij} соответствующие части полученной при поглощении энергии, которые идут на воспроизводство популяции x_j .

Имеем автономную систему $\dot{x}=f(x)$, где $k_{ij}>0$. Аналогично примем функции в системе (3) за линейные функции:

$$\varepsilon_i(x_j) = \varepsilon_i \cdot x_j, \ V_{ij}(x_k) = \alpha_{ij} \cdot x_k, \quad \varepsilon_i, \alpha_{ij} > 0$$

Тогда получим систему:

$$\begin{cases} \dot{x}_{1} = \varepsilon_{1}x_{1} - \alpha_{12}x_{1}x_{2} - \alpha_{13}x_{1}x_{3}, \\ \dot{x}_{2} = \varepsilon_{2}x_{2} + k_{12}\alpha_{12}x_{1}x_{2} - \alpha_{23}x_{2}x_{3}, \\ \dot{x}_{3} = -\varepsilon_{3}x_{3} + k_{13}\alpha_{13}x_{1}x_{3} + k_{23}\alpha_{23}x_{2}x_{3}. \end{cases}$$

$$(4)$$

Проанализируем, какое поведение популяций будет в этой модели.

3.2. Анализ модели

Матрица Якоби для данной системы:

$$J = \frac{\partial f}{\partial x} = \begin{pmatrix} \varepsilon_1 - \alpha_{12}x_2 - \alpha_{13}x_3 & -\alpha_{12}x_1 & -\alpha_{13}x_1 \\ k_{12}\alpha_{12}x_2 & \varepsilon_2 + k_{12}\alpha_{12}x_1 - \alpha_{23}x_3 & -\alpha_{23}x_2 \\ k_{13}\alpha_{13}x_3 & k_{23}\alpha_{23}x_3 & -\varepsilon_3 + k_{13}\alpha_{13}x_1 + k_{23}\alpha_{23}x_2 \end{pmatrix}$$

Найдём точки равновесия дифференциального уравнения, т.е. решения (x_1,x_2,x_3) системы уравнений:

$$\begin{cases} \varepsilon_{1}x_{1} - \alpha_{12}x_{1}x_{2} - \alpha_{13}x_{1}x_{3} = 0, \\ \varepsilon_{2}x_{2} + k_{12}\alpha_{12}x_{1}x_{2} - \alpha_{23}x_{2}x_{3} = 0, \\ -\varepsilon_{3}x_{3} + k_{13}\alpha_{13}x_{1}x_{3} + k_{23}\alpha_{23}x_{2}x_{3} = 0. \end{cases} \Rightarrow \begin{cases} x_{1}(\varepsilon_{1} - \alpha_{12}x_{2} - \alpha_{13}x_{3}) = 0, \\ x_{2}(\varepsilon_{2} + k_{12}\alpha_{12}x_{1} - \alpha_{23}x_{3}) = 0, \\ x_{3}(-\varepsilon_{3} + k_{13}\alpha_{13}x_{1} + k_{23}\alpha_{23}x_{2}) = 0. \end{cases}$$

1. Если две любых переменных равны нулю, то в оставшейся строчке остаётся уравнение $\varepsilon_i x_i = 0$, т.е. все переменные равны нулю. Получаем тривиальное решение $x^{(0)} = (0,0,0)$.

$$J\Big|_{x^{(0)}} = \begin{pmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & -\varepsilon_3 \end{pmatrix}$$

Откуда получаем собственные значения матрицы:

$$\lambda_1 = \varepsilon_1 > 0$$
, $\lambda_2 = \varepsilon_2 > 0$, $\lambda_1 = -\varepsilon_3 < 0$.

Значит около начала координат в плоскостях $x_1 = 0, x_2 = 0$ эта точка является седлом, а в $x_3 = 0$ – неустойчивым узлом.

2. Если $x_1 = 0; x_2, x_3 \neq 0$:

$$\begin{cases} \varepsilon_2 - \alpha_{23} x_3 = 0, \\ -\varepsilon_3 + k_{23} \alpha_{23} x_2 = 0. \end{cases} \Rightarrow x^{(1)} = \left(0, \frac{\varepsilon_3}{k_{23} \alpha_{23}}, \frac{\varepsilon_2}{\alpha_{23}}\right)$$

$$A = J \Big|_{x^{(1)}} = \begin{pmatrix} \varepsilon_1 - \alpha_{12} \frac{\varepsilon_3}{k_{23}\alpha_{23}} - \alpha_{13} \frac{\varepsilon_2}{\alpha_{23}} & 0 & 0 \\ k_{12}\alpha_{12} \frac{\varepsilon_3}{k_{23}\alpha_{23}} & 0 & -\alpha_{23} \frac{\varepsilon_3}{k_{23}\alpha_{23}} \\ k_{13}\alpha_{13} \frac{\varepsilon_2}{\alpha_{23}} & k_{23}\alpha_{23} \frac{\varepsilon_2}{\alpha_{23}} & 0 \end{pmatrix}$$

$$\begin{split} \det(\lambda I - A) &= \left(\lambda - \left(\varepsilon_1 - \frac{\varepsilon_3 \alpha_{12}}{k_{23} \alpha_{23}} - \frac{\varepsilon_2 \alpha_{13}}{\alpha_{23}}\right)\right) \left(\lambda^2 + \varepsilon_2 \varepsilon_3\right) = 0. \\ \lambda_1 &= \varepsilon_1 - \frac{\varepsilon_3 \alpha_{12}}{k_{23} \alpha_{23}} - \frac{\varepsilon_2 \alpha_{13}}{\alpha_{23}}, \quad \lambda_{2,3} = \pm i \sqrt{\varepsilon_2 \varepsilon_3}. \end{split}$$

Точка $x^{(1)}$ – неустойчивая. В плоскости $x_1 = 0$ точка будет являться центром (асимптотически неустойчивая точка), т.е. создавать вокруг себя замкнутые кривые.

3. Если $x_2 = 0; x_1, x_3 \neq 0$:

$$\begin{cases} \varepsilon_1 - \alpha_{13}x_3 = 0, \\ -\varepsilon_3 + k_{13}\alpha_{13}x_1 = 0. \end{cases} \Rightarrow x^{(2)} = \left(\frac{\varepsilon_3}{k_{13}\alpha_{13}}, 0, \frac{\varepsilon_1}{\alpha_{13}}\right)$$

$$A = J \Big|_{x^{(2)}} = \begin{pmatrix} 0 & -\alpha_{12} \frac{\varepsilon_3}{k_{13}\alpha_{13}} & -\alpha_{13} \frac{\varepsilon_3}{k_{13}\alpha_{13}} \\ 0 & \varepsilon_2 + k_{12} \alpha_{12} \frac{\varepsilon_3}{k_{13}\alpha_{13}} - \alpha_{23} \frac{\varepsilon_1}{\alpha_{13}} & 0 \\ k_{13} \alpha_{13} \frac{\varepsilon_1}{\alpha_{13}} & k_{23} \alpha_{23} \frac{\varepsilon_1}{\alpha_{13}} & 0 \end{pmatrix}$$

$$\begin{split} \det(\lambda I - A) &= \left(\lambda - \left(\varepsilon_2 + k_{12}\alpha_{12}\frac{\varepsilon_3}{k_{13}\alpha_{13}} - \alpha_{23}\frac{\varepsilon_1}{\alpha_{13}}\right)\right)(\lambda^2 + \varepsilon_1\varepsilon_3) = 0.\\ \lambda_1 &= \varepsilon_2 + k_{12}\alpha_{12}\frac{\varepsilon_3}{k_{13}\alpha_{13}} - \alpha_{23}\frac{\varepsilon_1}{\alpha_{13}}, \quad \lambda_{2,3} = \pm i\sqrt{\varepsilon_1\varepsilon_3}. \end{split}$$

Аналогично предыдущей точке, $x^{(2)}$ – неустойчивая и в плоскости $x_2 = 0$ является центром и будет создавать вокруг себя замкнутые кривые.

4. Если $x_3 = 0; x_1, x_2 \neq 0$:

$$\begin{cases} \varepsilon_1 - \alpha_{12} x_2 = 0, \\ \varepsilon_2 + k_{12} \alpha_{12} x_1 = 0. \end{cases} \Rightarrow x^{(*)} = \left(-\frac{\varepsilon_2}{k_{12} \alpha_{12}}, \frac{\varepsilon_1}{\alpha_{12}}, 0 \right)$$

Данная точка всегда будет находиться вне исследуемой области.

5. Если $x_1, x_2, x_3 \neq 0$:

$$\begin{cases} \varepsilon_1 - \alpha_{12}x_2 - \alpha_{13}x_3 = 0, \\ \varepsilon_2 + k_{12}\alpha_{12}x_1 - \alpha_{23}x_3 = 0, \\ -\varepsilon_3 + k_{13}\alpha_{13}x_1 + k_{23}\alpha_{23}x_2 = 0. \end{cases}$$

Тогда решение $x^{(3)}$:

$$\begin{cases} x_1 = \frac{-\varepsilon_1 \alpha_{23} k_{23} + \varepsilon_2 k_{23} \alpha_{13} + \varepsilon_3 \alpha_{12}}{\alpha_{12} \alpha_{13} (k_{13} - k_{12} k_{23})}, \\ x_2 = \frac{\varepsilon_1}{\alpha_{12}} - \frac{\alpha_{13}}{\alpha_{12}} x_3 = \frac{\varepsilon_1 \alpha_{23} k_{13} - \varepsilon_2 \alpha_{13} k_{13} - \varepsilon_3 \alpha_{12} k_{12}}{\alpha_{12} \alpha_{23} (k_{13} - k_{12} k_{23})}, \\ x_3 = \frac{\varepsilon_2}{\alpha_{23}} + \frac{k_{12} \alpha_{12}}{\alpha_{23}} x_1 = \frac{-\varepsilon_1 \alpha_{23} k_{12} k_{23} + \varepsilon_2 \alpha_{13} k_{13} + \varepsilon_3 \alpha_{12} k_{12}}{\alpha_{13} \alpha_{23} (k_{13} - k_{12} k_{23})}. \end{cases}$$

$$A = J \Big|_{x^{(3)}} = \begin{pmatrix} 0 & -\alpha_{12}x_1 & -\alpha_{13}x_1 \\ k_{12}\alpha_{12}x_2 & 0 & -\alpha_{23}x_2 \\ k_{13}\alpha_{13}x_3 & k_{23}\alpha_{23}x_3 & 0 \end{pmatrix}$$

$$\det(\lambda I - A) = \lambda^3 - \lambda(k_{12}\alpha_{12}^2x_1x_2 + k_{13}\alpha_{13}^2x_1x_3 + k_{23}\alpha_{23}^2x_2x_3) + x_1x_2x_3\alpha_{12}\alpha_{13}\alpha_{23}(k_{12}k_{23} - k_{13}) = 0$$

Явное решение данного уравнения будет непростым, поэтому воспользуемся критерием Рауса-Гурвица.

$$b_0 = 1$$
, $b_1 = 0$, $b_2 = -(k_{12}\alpha_{12}^2x_1x_2 + k_{13}\alpha_{13}^2x_1x_3 + k_{23}\alpha_{23}^2x_2x_3)$,
 $b_3 = x_1x_2x_3\alpha_{12}\alpha_{13}\alpha_{23}(k_{12}k_{23} - k_{13})$.

Матрица Гурвица и главные миноры:

$$\Delta = \begin{pmatrix} 0 & b_3 & 0 \\ 1 & b_2 & 0 \\ 0 & 0 & b_3 \end{pmatrix} \Rightarrow \begin{cases} \Delta_1 = 0, \\ \Delta_2 = -b_3, \\ \Delta_3 = b_3 \cdot \Delta_2 = -b_3^2 \le 0. \end{cases}$$

Это значит, что данная точка вне зависимости от положения будет неустойчивой.

3.3. Вычислительные эксперименты

Возьмём параметры для модели:

$$\varepsilon_1 = 10, \varepsilon_2 = 8, \varepsilon_3 = 6,$$

$$\alpha_{12} = 6, \alpha_{13} = 2, \alpha_{23} = 0.5,$$

$$k_{12} = 4, k_{13} = 1, k_{23} = 0.5.$$

Тогда точки равновесия и их собственные значения равны:

$$x^{(0)} = (0, 0, 0), \ \lambda_i = (10, 8, -6),$$

$$x^{(1)} = (0, 24, 16), \ \lambda_i = (-166, \pm i \cdot 6.93...),$$

$$x^{(2)} = (3, 0, 5), \ \lambda_i = (77.5, \pm i \cdot 7.74...),$$

$$x^{(3)} = (-3.458..., 46.66..., -150), \ \lambda_i = (-160..., 153.5..., 6.54...),$$

При этом точка равновесия $x^{(3)}$ не будет иметь влияния, поскольку находится на большом удалении в отрицательных координатах.

3.3.1. При вымершей первой популяции

Рис. 1: На отрезке времени [0, 3].

При $x_1=0$ (Рис. 1) обе популяции хищников никогда не вымрут и будут двигаться по замкнутым кривым.

3.3.2. При вымершей второй популяции

Рис. 2: На отрезке времени [0, 3].

При $x_2=0$ (Рис. 2) популяция жертв и вторая популяция хищников не вымрут и тоже будут двигаться по замкнутым кривым.

3.3.3. При вымершей третьей популяции

Рис. 3: На отрезке времени [0, 0.1].

При $x_3=0$ (Рис. 3) нулевая точка является неустойчивым узлом, при этом популяция жертв со временем вымрет, а первая популяция хищников безгранично будет увеличиваться.

3.3.4. Несколько изначально не вымерших популяций

Рассмотрим поведение решений во всей исследуемой области.

Рис. 4: На отрезке времени [0,3].

На рисунке 4 видно, что если присутствует вторая популяция хищников, то популяция жертв вымрет, а хищники останутся конкурировать друг с другом и никогда не вымрут.

4. Модель Колмогорова

4.1. Математическая модель

Моделью Колмогорова при одной популяции жертвы x(t) и одной хищника y(t) называется такая модель [1]:

$$\begin{cases} \dot{x} = \alpha(x)x - V(x)y, \\ \dot{y} = K(x)y, \end{cases}$$
(5)

с такими предположениями:

- 1. В популяции хищников отсутствует внутривидовая конкуренция.
- 2. $\alpha' < 0$; $\alpha(0) > 0 > \alpha(\infty)$. В отсутствии хищников прирост жертв с увеличением популяции уменьшается до критического момента.
- 3. K' > 0; $K(0) < 0 < K(\infty)$. Коэффициент прироста хищников.
- 4. $V(x) > 0, x > 0; \ V(0) = 0.$ Коэффициент поглощения жертв.

Адаптируем данную модель (5) для нашей схемы взаимодеиствия популяций жертвы и хищников и подробнее опишем качественные предположения о функциях:

$$\begin{cases} \dot{x}_1 = \varepsilon(x_1)x_1 - V_{12}(x_1)x_2 - V_{13}(x_1)x_3, \\ \dot{x}_2 = K_{12}(x_1)x_2 - V_{23}(x_2)x_3, \\ \dot{x}_3 = K_{13}(x_1)x_3 + K_{23}(x_2)x_3. \end{cases}$$
(6)

Предположения:

1. $\varepsilon' < 0$; $\varepsilon(0) > \varepsilon(\bar{x}_1) = 0 > \varepsilon(\infty)$. Здесь у жертв ограниченное количество ресурса и за него существует конкуренция. Поэтому без хищников прирост жертв с увеличением их количества в некоторый момент прекратится и стабилизируется на уровне \bar{x}_1 .

- 2. $K'_{ij} > 0$; $K_{ij}(0) < K_{ij}(x_i^*) = 0 < K_{ij}(\infty)$. Это значит, что при увеличении численности жертв коэффициент естественного прироста хищников возрастает. Коэффициент переходит от отрицательных значения при недостатке пищи к положительным.
- 3. $V_{ij}(0) = 0$; $V_{ij}(x_i) > 0$, $x_i > 0$. Этот коэффициент показывает количество жертв, поглощаемых одним хищником.

Имеем автономную систему $\dot{x} = f(x)$.

Будем исследовать систему с линейными функциями, которые удовлетворяют указанным предположениям.

$$\varepsilon(x) = -\varepsilon \cdot x + \delta, \qquad \varepsilon, \delta > 0,$$

$$K_{ij}(x) = k_{ij} \cdot x - m_{ij}, \quad k_{ij}, m_{ij} > 0,$$

$$V_{ij}(x) = v_{ij} \cdot x, \qquad v_{ij} > 0.$$

Тогда система (6) будет выглядеть так:

$$\begin{cases} \dot{x}_{1} = (-\varepsilon x_{1} + \delta) x_{1} - v_{12} x_{1} x_{2} - v_{13} x_{1} x_{3}, \\ \dot{x}_{2} = (k_{12} x_{1} - m_{12}) x_{2} - v_{23} x_{2} x_{3}, \\ \dot{x}_{3} = (k_{13} x_{1} - m_{13}) x_{3} + (k_{23} x_{2} - m_{23}) x_{3}. \end{cases}$$

$$(7)$$

4.2. Анализ модели

Найдём точки равновесия дифференциального уравнения и исследуем их устойчивость.

Матрица Якоби:

$$J = \begin{pmatrix} -2\varepsilon x_1 + \delta - v_{12}x_2 - v_{13}x_3 & -v_{12}x_1 & -v_{13}x_1 \\ k_{12}x_2 & (k_{12}x_1 - m_{12}) - v_{23}x_3 & -v_{23}x_2 \\ k_{13}x_3 & k_{23}x_3 & k_{13}x_1 - m_{13} + k_{23}x_2 - m_{23} \end{pmatrix}$$

Нужно найти решения (x_1, x_2, x_3) системы уравнений:

$$\begin{cases} (-\varepsilon x_1 + \delta) x_1 - v_{12} x_1 x_2 - v_{13} x_1 x_3 = 0, \\ (k_{12} x_1 - m_{12}) x_2 - v_{23} x_2 x_3 = 0, \\ (k_{13} x_1 - m_{13}) x_3 + (k_{23} x_2 - m_{23}) x_3 = 0. \end{cases}$$

Для удобства вынесем общие множители:

$$\begin{cases} (-\varepsilon x_1 + \delta - v_{12}x_2 - v_{13}x_3) x_1 = 0, \\ (k_{12}x_1 - m_{12} - v_{23}x_3) x_2 = 0, \\ (k_{13}x_1 - m_{13} + k_{23}x_2 - m_{23}) x_3 = 0. \end{cases}$$

1. Если $x_2 = x_3 = 0$, то остаётся уравнение

$$(-\varepsilon x_1 + \delta)x_1 = 0.$$

Получаем тривиальное решение $x^{(0)} = (0,0,0)$ и $x^{(1)} = \left(\frac{\delta}{\varepsilon},0,0\right)$.

(a)
$$J\Big|_{x^{(0)}} = \begin{pmatrix} \delta & 0 & 0 \\ 0 & -m_{12} & 0 \\ 0 & 0 & -m_{13} - m_{23} \end{pmatrix}$$

$$\lambda_1 = \delta > 0, \ \lambda_2 = -m_{12} < 0, \ \lambda_3 = -m_{13} - m_{23} < 0.$$

Значит, в плоскостях $x_2=0$ и $x_3=0$ начало координат является седлом и направление x_1 — неустойчивое. В плоскости $x_1=0$ точка является устойчивым узлом.

(b)
$$J\Big|_{x^{(1)}} = \begin{pmatrix} -\delta & -v_{12}\frac{\delta}{\varepsilon} & -v_{13}\frac{\delta}{\varepsilon} \\ 0 & k_{12}\frac{\delta}{\varepsilon} - m_{12} & 0 \\ 0 & 0 & k_{13}\frac{\delta}{\varepsilon} - m_{13} - m_{23} \end{pmatrix}$$

$$\lambda_1 = -\delta < 0, \ \lambda_2 = k_{12} \frac{\delta}{\varepsilon} - m_{12}, \ \lambda_3 = k_{13} \frac{\delta}{\varepsilon} - m_{13} - m_{23}.$$

Откуда имеем:

$$\lambda_2 < 0 \Leftrightarrow \frac{\delta}{\varepsilon} < \frac{m_{12}}{k_{12}}, \quad \lambda_3 < 0 \Leftrightarrow \frac{\delta}{\varepsilon} < \frac{m_{13} + m_{23}}{k_{13}}$$

В зависимости от значений λ_2, λ_3 данная точка может быть:

- і. Устойчивым узлом, если $\lambda_2, \lambda_3 < 0$,
- іі. Устойчивым узлом в плоскости $x_2=0$ и седлом в плоскости $x_3=0$, если $\lambda_2>0, \lambda_3<0,$
- ііі. Устойчивым узлом в плоскости $x_3=0$ и седлом в плоскости $x_2=0,$ если $\lambda_2<0,$ $\lambda_3>0,$
- iv. Седлом в плоскостях $x_2 = 0, \ x_3 = 0, \ \text{если} \ \lambda_2, \lambda_3 > 0$
- 2. Если $x_1 = x_2 = 0$, то в третьей строчке получем

$$(-m_{13}-m_{23})\,x_3=0.$$

Поскольку $x_3 > 0$, то данное равенство не может быть выполнено.

3. Если $x_1 = x_3 = 0$, то во второй строчке получем

$$-m_{12}x_2 = 0.$$

Поскольку $x_2 > 0$, то равенство не может быть выполнено.

4. Если $x_1 = 0; x_2, x_3 > 0$:

$$\begin{cases} (-m_{12} - v_{23}x_3) x_2 = 0, \\ (-m_{13} + k_{23}x_2 - m_{23}) x_3 = 0. \end{cases} \Rightarrow \begin{cases} x_3 = \frac{m_{12}}{-v_{23}} < 0, \\ x_2 = \frac{m_{13} + m_{23}}{k_{23}}. \end{cases}$$

Эта точка будет находиться вне исследуемой области.

5. Если $x_2 = 0; x_1, x_3 > 0$:

$$\begin{cases} (-\varepsilon x_1 + \delta - v_{13}x_3) x_1 = 0, \\ (k_{13}x_1 - m_{13} - m_{23}) x_3 = 0. \end{cases} \Rightarrow \begin{cases} x_3 = \frac{\varepsilon x_1 - \delta}{-v_{13}}, \\ x_1 = \frac{m_{13} + m_{23}}{k_{13}}. \end{cases}$$

В исследуемой области данная точка будет находиться, если $x_1 \leq \frac{\delta}{\varepsilon}$.

$$A = J \Big|_{x^{(2)}} = \begin{pmatrix} -\varepsilon x_1 & -v_{12}x_1 & -v_{13}x_1 \\ 0 & (k_{12}x_1 - m_{12}) - v_{23}x_3 & 0 \\ k_{13}x_3 & k_{23}x_3 & 0 \end{pmatrix}$$

$$\det(\lambda I - A) = \left(\lambda - \left((k_{12}x_1 - m_{12}) - v_{23}x_3\right)\right) \left((\lambda + \varepsilon x_1)\lambda + v_{13}x_1k_{13}x_3\right) = 0$$

$$\lambda_{1,3} = \frac{-\varepsilon x_1 \pm \sqrt{(\varepsilon x_1)^2 - 4v_{13}k_{13}x_1x_3}}{2}, \ \lambda_2 = (k_{12}x_1 - m_{12}) - v_{23}x_3$$

При разных параметрах могут быть разные комбинации устойчивости этой точки. Однако, коэффициенты в $\lambda_{1,3}$ и λ_2 не пересекаются, значит существуют параметры, которые сделают эту точку устойчивым узлом или устойчивым фокусом.

6. Если $x_3 = 0; x_1, x_2 > 0$:

$$\begin{cases} (-\varepsilon x_1 + \delta - v_{12} x_2) x_1 = 0, \\ (k_{12} x_1 - m_{12}) x_2 = 0. \end{cases} \Rightarrow \begin{cases} x_2 = \frac{\varepsilon x_1 - \delta}{-v_{12}}, \\ x_1 = \frac{m_{12}}{k_{12}}. \end{cases}$$

В исследуемой области данная точка будет находиться, если $x_1 \leq \frac{\delta}{\varepsilon}$.

$$A = J \Big|_{x^{(3)}} = \begin{pmatrix} -\varepsilon x_1 & -v_{12}x_1 & -v_{13}x_1 \\ k_{12}x_2 & 0 & -v_{23}x_2 \\ 0 & 0 & k_{13}x_1 - m_{13} + k_{23}x_2 - m_{23} \end{pmatrix}$$

$$\det(\lambda I - A) = \left(\lambda - (k_{13}x_1 - m_{13} + k_{23}x_2 - m_{23})\right) \left((\lambda + \varepsilon x_1)\lambda + v_{12}x_1k_{12}x_3\right) = 0$$
$$\lambda_{1,2} = \frac{-\varepsilon x_1 \pm \sqrt{(\varepsilon x_1)^2 - 4v_{12}k_{12}x_1x_2}}{2}, \ \lambda_3 = k_{13}x_1 - m_{13} + k_{23}x_2 - m_{23}$$

Аналогично предыдущей точки можно подобрать параметры, чтобы точка была устойчивой.

7. Если $x_1, x_2, x_3 > 0$:

$$\begin{cases}
-\varepsilon x_1 + \delta - v_{12}x_2 - v_{13}x_3 = 0, \\
k_{12}x_1 - m_{12} - v_{23}x_3 = 0, \\
k_{13}x_1 - m_{13} + k_{23}x_2 - m_{23} = 0.
\end{cases}$$

$$\begin{cases} x_1 = \frac{-\delta k_{23}v_{23} - k_{23}m_{12}v_{13} + m_{13}v_{12}v_{23} + m_{23}v_{12}v_{23}}{-\varepsilon k_{23}v_{23} - k_{12}k_{23}v_{13} + k_{13}v_{12}v_{23}}, \\ x_2 = \frac{\delta k_{13}v_{23} - \varepsilon m_{13}v_{23} - \varepsilon m_{23}v_{23} - k_{12}m_{13}v_{13} - k_{12}m_{23}v_{13} + k_{13}m_{12}v_{13}}{-\varepsilon k_{23}v_{23} - k_{12}k_{23}v_{13} + k_{13}v_{12}v_{23}}, \\ x_3 = \frac{-\delta k_{12}k_{23} + \varepsilon k_{23}m_{12} + k_{12}m_{13}v_{12} + k_{12}m_{23}v_{12} - k_{13}m_{12}v_{12}}{-\varepsilon k_{23}v_{23} - k_{12}k_{23}v_{13} + k_{13}v_{12}v_{23}} \end{cases}$$

$$A = J \Big|_{x^{(4)}} = \begin{pmatrix} -\varepsilon x_1 & -v_{12}x_1 & -v_{13}x_1 \\ k_{12}x_2 & 0 & -v_{23}x_2 \\ k_{13}x_3 & k_{23}x_3 & 0 \end{pmatrix}$$

Для вычислительного эксперимента будем численно находить собственные значения данной точки равновесия.

4.3. Вычислительные эксперименты

Возьмём такие функции для реализации модели:

$$\varepsilon(x_1) = -x_1 + 10,$$

$$K_{12}(x_1) = x_1 - 5, \ K_{13}(x_1) = x_1 - 3, \ K_{23}(x_2) = x_2 - 4,$$

$$V_{12}(x_1) = 2x_1, \ V_{13}(x_1) = 3x_1, \ V_{23}(x_2) = x_2.$$

Тогда точки равновесия и их собственные значения равны:

$$x^{(0)} = (0, 0, 0), \ \lambda_i = (10, -5, -7),$$

$$x^{(1)} = (10, 0, 0), \ \lambda_i = (5, 3, -10),$$

$$x^{(2)} = (7, 0, 1), \ \lambda_i = (1, -3.5 \pm i \cdot 2.96 \dots),$$

$$x^{(3)} = (5, 2.5, 0), \ \lambda_i = (0.5, -2.5 \pm i \cdot 4.33 \dots),$$

$$x^{(4)} = (5.5, 1.5, 0.5), \ \lambda_i = (-0.348 \dots, -2.57 \dots \pm i \cdot 4.13 \dots),$$

4.3.1. При вымершей первой популяции

Рис. 5

При $x_1=0$ (Рис. 5) нулевая точка является устойчивым узлом. Обе популяции хищников в итоге вымрут.

4.3.2. При вымершей второй популяции

Рис. 6

При $x_2 = 0$ (Рис. 6) нулевая точка является седлом, точка (10,0) седлом, а (7,1) – устойчивым центром. Обе популяции со временем придут к точке баланса и их биомасса перестанет меняться.

4.3.3. При вымершей третьей популяции

Рис. 7

При $x_3=0$ (Рис. 7) нулевая точка является седлом, точка (10,0) седлом, а (5,2.5) – устойчивым центром. Обе популяции со временем придут к точке баланса и их биомасса перестанет меняться.

4.3.4. Несколько изначально не вымерших популяций

Рассмотрим поведение решений во всей исследуемой области.

Рис. 8: На отрезке времени [0, 3].

На рисунке 8 изображены проекции на плоскости и 3-х мерная область с решениями. В отличие от исследованной модели Лотки-Вольтерры, начальные объёмы популяций, расположенные вне «нулевых» плоскостей, не способствуют вымиранию ни одной популяции. Рассмотрим как ведут себя решения вблизи ненулевой устойчивой точки равновесия.

Рис. 9: Около точки (5.5, 1.5, 0.5). На отрезке времени [0, 3].

На рисунке 9 чёрной точкой изображена точка равновесия и несколько решений с указанными начальными значениями. Видно что все решения стремятся к ней, но также следуют по пути устойчивого фокуса, закручиваясь по спирали.

Теперь возьмём ненулевые начальные значения, но на большем удалении от этой точки равновесия.

Рис. 10: Несколько ненулевых начальных значений. На отрезке времени [0, 3].

На рисунке 10 все решения стремятся только к ненулевой точке равновесия. Значит, можно сделать вывод, что модель с данными параметрами при любых ненулевых начальных значениях приводит такие популяции к состоянию баланса, и их биомасса перестанет меняться.

5. Заключение

заключение.

6. Список литературы

- [1] Свирежев, Ю. М. Устойчивость биологических сообществ // Ю. М. Свирежев, Д. О. Логофет М.: Наука, 1978.
- [2] Понтрягин, Л. С. Обыкновенные дифференциальные уравнения // Л. С. Понтрягин М.: Наука, 1974.
- [3] Филипов, А. Ф. Введение в теорию дифференциальных уравнений // А. Ф. Филипов М.: КомКнига, 2007.
- [4] Нефёдов, Н. Н. Обыкновенные дифференциальные уравнения // Н. Н. Нефёдов, В. Ю. Попов, В. Т. Волков М.: Физический факультет МГУ им. М. В. Ломоносова, 2016.
- [5] Березин, И. С. Методы вычислений // И. С. Березин, Н. П. Жидков М.: Наука, 1959. Т. 2.