Your name is:

Note: Make sure your exam has 4 problems.

Problem	$egin{array}{c} \mathbf{Points} \\ \mathbf{possible} \end{array}$
1	_ 30
2	_ 16
3	_ 30
4	_ 24
Total	_ 100

Note: Some problems are worth more than others.

1 (30 pts) Let

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}.$$

- (a) Find orthonormal vectors q_1 , q_2 , and q_3 so that q_1 and q_2 form a basis for the column space of A.
- (b) Which of the four fundamental subspaces contains q_3 ?
- (c) Find the projection matrix P projecting onto the left nullspace (not the column space!) of A.
- (d) Find the least squares solution to Ax = (1, 2, 7).

2 (16 pts) Compute the determinant of

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}.$$

- 3 (30 pts) Consider this sequence: $G_0 = 0$, $G_1 = 1$ and $G_{k+2} = (G_k + G_{k+1})/2$. (So G_{k+2} is the average of the previous two numbers G_k and G_{k+1} .) This problem will find the limit of G_k as $k \to \infty$.
 - (a) Find a matrix A which satisfies

$$\left[\begin{array}{c} G_{k+2} \\ G_{k+1} \end{array}\right] = A \left[\begin{array}{c} G_{k+1} \\ G_k \end{array}\right].$$

- (b) Find the eigenvalues and eigenvectors of A.
- (c) Write $A^k = S\Lambda^k S^{-1}$, where Λ is a diagonal matrix. You do **not** need to multiply this out to get a single matrix.
- (d) Find the limit as $k \to \infty$ of the numbers G_k .

4 (24 pts) Suppose A is a 3×3 matrix with eigenvalues 0, 1, and 2. Find the following:

- (a) the rank of A.
- (b) the determinant of $A^{T}A$.
- (c) the determinant of A + I.
- (d) the eigenvalues of $(A+I)^{-1}$.