Taller de práctica Prueba 2

Parte 1

La siguiente base contiene 1338 observaciones respecto a la contratación de seguros médicos. Las columnas de la base de datos son las siguientes:

- age: edad en años del beneficiario principal.
- sex: sexo ("female", "male") del beneficiario principal.
- bmi: índice de masa corporal del beneficiario principal.
- children: número de niños cubiertos por el seguro.
- smoker: indica si es ("yes") o no ("no") fumador el beneficiario principal.
- region: el área residencial del beneficiario en los EEUU, "northeast", "southeast", "southwest", "northwest".
- charges: costos médicos (en dólares) individuales facturados por el seguro de salud.

Considere que la base de datos está almacenada en el objeto data.

- 1. Se ejecutó en R el comando: lm(charges \sim age, data = data). Los valores de SCT y SCReg son 1.9607422× 10^{11} y 1.8898072 × 10^{10} , respectivamente.
 - a) Calcule SCE.
 - b) Calcule R^2 .
- 2. Se ejecutó en R el comando: lm(bmi ~ age, data = data). Aquí SCT = 4.972×10^4 , SCReg = 596, $S_{\widehat{\beta}_0} = 0.5842$ y $S_{\widehat{\beta}_1} = 0.0118$. Además, la ecuación de regresión ajustada es

$$\hat{Y}_{\text{bmi}} = 28.8790 + 0.0475 X_{\text{age}}$$

- a) Calcule MCE y MCReg.
- b) Estudie la prueba de no nulidad para cada uno de los parámetros de la regresión al $98\,\%$ de confianza. Interprete utilizando la siguiente tabla.

Tabla 1: Valores críticos según significancia

	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
$t_{1-\alpha/2,n-2}$	2.5795	2.3291	2.1724	2.0558	1.9617	1.8824	1.8134	1.7520	1.6966	1.6460
$t_{\alpha,n-2}$	-2.3291	-2.0558	-1.8824	-1.7520	-1.6460	-1.5558	-1.4767	-1.4059	-1.3415	-1.2822

Parte 2

A continuación, haciendo uso de la base de datos explicada en la Parte 1, se despliega una salida de R asociada a un modelo de regresión lineal simple. Considere que el modelo se ha guardado en el objeto modelo.

```
##
## Call:
## lm(formula = charges ~ bmi, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20956 -8118 -3757 4722 49442
```

```
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
  (Intercept) 1192.94
                           1664.80
                                     0.717
                                     7.397 2.46e-13 ***
                 393.87
                             53.25
## bmi
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11870 on 1336 degrees of freedom
## Multiple R-squared: 0.03934, Adjusted R-squared: 0.03862
## F-statistic: 54.71 on 1 and 1336 DF, p-value: 2.459e-13
```

Luego,

- 1. Escriba la ecuación de regresión poblacional.
- 2. Escriba la ecuación de regresión ajustada.
- 3. Interprete los parámetros estimados.
- 4. Estudie las pruebas de hipótesis de no nulidad de cada parámetro. Utilice una confianza del 95 %. Escriba las hipótesis involucradas.
- 5. Interprete las métricas del modelo.
- 6. Utilice la siguiente tabla (que contiene un resumen de salidas en R) para estudiar los supuestos de Homocedasticidad, Independencia y Normalidad del modelo de la pregunta anterior. Indique la fila del código seleccionado para cada supuesto, justificando su elección, además, escriba las pruebas de hipótesis involucradas e interprete utilizando una confianza del 96 %.

	Prueba de hipótesis	Valor-p	Datos utilizados	Hipótesis alternativa
1	Shapiro-Wilk	0.0837	modelo\$fitted.values	-
2	Shapiro-Wilk	0.0321	rstandard(modelo)	-
3	Anderson-Darling	0.068	modelo\$fitted.values	-
4	Durbin-Watson	0.0698	age \sim charges	true autocorrelation is not 0
5	Durbin-Watson	0.0457	charges \sim bmi	true autocorrelation is not 0
6	Durbin-Watson	0.0701	charges \sim age	true autocorrelation is not 0
7	Breusch-Pagan	0.0416	age \sim charges	-
8	Breusch-Pagan	0.0303	charges \sim bmi	-
9	Breusch-Pagan	0.0877	charges \sim region	-

Parte 3

Considere el siguiente modelo de regresión lineal simple:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

- 1. Obtenga el estimador de mínimos cuadrados de β_0 y β_1 .
- 2. Muestre que SCT = SCReg + SCE.