

IDC 203: INTRODUCTION TO EARTH SCIENCES

Introduction

- 1. Continental Hypothesis
- 2. Sea floor spreading
- 3. Plate tectonics

Plate tectonics

- Plate tectonics is the theory that explains the global distribution of geological phenomena.
- Refers to the movement and interaction of the earth's lithosphere.
- Plates tectonic describes the movement of plates and forces acting on them

- Seuss, 1885, proposed 'Gondwanaland' by studying fossils, rocks, mountains
- Wegener and Taylor, early 1900's, proposed continental drift and Pangaea
- Evidence supporting the idea that the continents had drifted.
 - -Geographic fit of continents
 - -Fossils
 - -Mountains
 - -Glaciation

Geographic fit

Continents seem to fit together like pieces of a puzzle

Fossils

Similar distribution of fossils such as the Mesosaurus

Glossopteris

Mountain chain

Mountain ranges match across oceans

Rock types

Glaciers

Glacial ages and climate evidence

EVIDENCE FOR A TALCHIR (LOWER GONDWANA) GLACIATION: STRIATED PAVEMENT AND BOULDER BED AT IRAI, CENTRAL INDIA¹

Source: Smith, 1963

EVIDENCE FOR A TALCHIR (LOWER GONDWANA) GLACIATION: STRIATED PAVEMENT AND BOULDER BED AT IRAI, CENTRAL INDIA¹

Rejection and acceptance of Continental drift

•Rejected by most geologists.

•Absence of mechanism involving movements of continents

•New data after WWII led to the "plate tectonic revolution" in 1960's.

•Now embraced by essentially everybody.

•Today's geology textbooks radically different than those of 40 years ago.

- Continental drift reexamined in 1960's with new information
 - Supporting evidence for seafloor spreading
 - World seismicity
 - Volcanism
 - Age of seafloor
 - Paleomagnetism
 - Heat flow

Mid oceanic ridge

Seismicity

Seismicity

Earthquake distribution matches plate boundaries

Volcanism

Volcanoes match some plate boundaries

Age of the oceanic crust

- Youngest sea floor is at mid-ocean ridge
- Oldest sea floor away from mid-ocean ridge

Paleomagnetism

B. Research vessel towing magnetometer across ridge crest

C. Location map

Heat flow

New sea floor created at the mid-ocean ridge and destroyed in deep ocean trenches

Plate tectonics

- The unifying concept of the Earth sciences.
- The outer portion of the Earth is made up of about 20 distinct "plates" (~ 100 km thick) that move relative to each other.
- Plates interact with each other along their edges (plate boundaries)
- Plate boundaries have high degree of tectonic activity
 - mountain building
 - earthquakes
 - volcanoes

Plate tectonics

Lithosphere: the outer rigid shell of the earth (~ 100 km). The plates are composed of this material.

Asthenosphere: part of mantle beneath lithosphere.

The lithosphere rides on the top of the Asthenosphere

Present day plates

Three types of plate boundaries

- 1. Divergent
- 2. Convergent
- 3. Transform/Conservative

(a)

Plate Boundaries

Divergent

Plates move away from each other New crust is being formed

Divergent Boundaries

- Youngest rocks form at ridge
- Older rocks are further from ridge

Divergent Boundaries

Rift valley continent-continent

Divergent Boundaries

East African Rift

Mid-Atlantic Ocean Ridge

ICELAND IS BEING
PULLED APART AS IT SITS
ASTRIDE THE MIDATLANTIC RIDGE.

Convergent Boundaries

• Plates are moving toward each other

Crust is being destroyed

•Three Types:

Ocean-continent

Ocean-ocean

Continent-continent

Convergent Boundaries

- Destroys old crust and forms new mountains
- Three types of convergent boundaries

Convergent Boundaries

Continent-continent convergence Folded mountains

Eurasian/Indian plates

volcanoes

- **Subduction Zones:** where ocean plates slide under another plate
- Creates magma which moves upward, pushing up the land above it.
- Heat from the magma can change the rock around it. Rock that recrystallizes without melting becomes metamorphic rock..

Fig. 8–3. Subduction of the Nazca Plate below the South American Plate forming composite

Denser oceanic plates always subduct beneath less dense continental plates

Ocean-continent convergence

Trench & Coastal Volcanoes

Ocean-continent convergence

Ocean-ocean convergence

Trench & Island arc

Transform plate boundary

Crust is neither created nor destroyed

Plates slide past one another

Transform plate boundary

San Andreas Fault

Carrizo Plains, Central California

Summary of Plate Movements

Convection currents

In 1960's convection currents has been proposed as driving force to move continents

Convection currents

Driving force for convection?

Movement of matter is driven by Earth's internal and external sources of energy

Convection currents

How deep does the convection occurs?

Figure 2.14 Two competing hypotheses for the mantle convection system.

Two competing hypotheses for the mantle convection system

Rates and History of plate movements

How fast do plates move?

Do some plates move faster than others, and if so, why?

Is the velocity of plate movements today the same as it was in the Geologic past?

Rates and History of plate movements

C. Location map

The global isochron map of the ocean floor

Reconstructing history of plate movements

- -Sea floor isochron
- -Transform fault boundaries
- Evidences also derived from rock types, fossils, mountain belts etc

THE SUPERCONTINENT OF PANGAEA (237 MILLION YEARS AGO)

Break up of Pangaea

Evidence-rift system-volcanic rocks from Nova Scotia and North Carolina

Break up of Pangaea

Early stage of break up- Atlantic ocean opened up and Tethys sea contracted

-Southern continents and northern continent split up

Break up of Pangaea

Early stage of break up- Atlantic ocean opened and widened

- -Tethys ocean was closing to form Mediterranean
- India was well going northward

The present day and future world

