Выборка. Порядковая статистика.

Выборка или **выборочная совоку́пность** — часть <u>генеральной совокупности</u> элементов, которая охватывается экспериментом (наблюдением, опросом).

Характеристики выборки:

- Качественная характеристика выборки что именно мы выбираем и какие способы построения выборки мы для этого используем.
- Количественная характеристика выборки сколько случаев выбираем, другими словами объём выборки.

А теперь важное: Выборка в математической статистике

Последовательность независимых случайных величин x_1, x_2, \dots, x_n , соответствующих всем возможным результатам п статистических экспериментов и имеющих одинаковый закон распределения вероятностей со случайной величиной X, называется выборкой объёма п, порождённой случайной величиной X. Если X — дискретная случайная величина, то выборкой объёма п называется любое подмножество п объектов генеральной совокупности объёма N, выбранное равновероятно среди всех таких подмножеств.

Буква X (большая) означает, что это случайная величина.

- В теории вероятностей и статистике **случайные величины** обозначаются большими буквами (например, X,Y,Z), потому что их значения заранее неизвестны.
- Когда мы говорим о **выборке**, мы рассматриваем несколько случайных величин **одновременно**.
 - Если у нас есть выборка из n наблюдений, то у нас n случайных величин: X_1, X_2, \ldots, X_n
- Это означает, что каждое X_i (где $i=1,\ldots,n$) это случайная величина, полученная из одного и того же распределения F(x).

Тогда может возникнуть следующий вопрос: Почему выборка состоит из нескольких случайных величин?

Потому что в реальности мы **не можем наблюдать всё распределение**, а имеем только ограниченное количество данных.

Пример:

- Допустим, мы изучаем рост людей. Рост случайная величина X, имеющая распределение (например, нормальное).
- Мы измеряем рост у разных людей и каждое измерение даёт нам случайную величину:

$$X_1 = 170, X_2 = 165, X_3 = 180, \dots, X_n = 175$$

Таким образом, **каждый** Xi — это реализация одной и той же случайной величины X, но на разных наблюдениях.

Почему говорят, что $X_1, X_2, ..., X_n$ распределены по F(x)?

Это означает, что:

- 1. Все элементы выборки **независимы** (обычно предполагается независимая выборка).
- 2. Все элементы выборки **имеют одно и то же распределение** F(x) (например, нормальное, экспоненциальное и т. д.).

炉 Пример:

- Если мы бросаем монету 10 раз, то каждый раз исход может быть **Орел** или **Решка**
- Тогда каждая случайная величина X_i (где $X_1=1$, если орёл, и $X_i=0$, если решка) **имеет одно и то же распределение** биномиальное с параметром p.

В чем разница между X_i и конкретными значениями?

- X_i это случайная величина (до эксперимента мы не знаем, чему она равна).
- x_i это конкретное значение, которое получилось в эксперименте.

- Пусть X_1, X_2, \dots, X_5 это выборка случайных величин, обозначающих оценки студентов.
- Мы не знаем заранее их значения, но после эксперимента получаем:

$$x_1 = 80, x_2 = 75, x_3 = 90, x_4 = 85, x_5 = 70$$

• Здесь $x_1, x_2, ..., x_5$ — это конкретные числа, которые мы наблюдаем.

 \nearrow Важно: выборка может быть **разной каждый раз**, но она подчиняется одному и тому же распределению F(x).

Вывод:

- Выборка состоит из случайных величин, потому что каждое наблюдение это случайная величина.
- Все элементы выборки $X_1, ..., X_n$ имеют одно и то же распределение F(x).
- До наблюдения каждое X_i случайная величина, а после наблюдения конкретное значение x_i .

Порядковые статистики

Допустим, у нас есть выборка случайных величин:

$$X_1, X_2, \ldots, X_n$$

Все X_i независимы и имеют одно и то же распределение F(x).

Если мы отсортируем элементы выборки по возрастанию, получим **упорядоченную выборку**:

$$X_{(1)} \le X_{(2)} \le \ldots \le X_{(n)}$$

Где:

- $X_{(1)}$ минимальное значение выборки (первая порядковая статистика)
- $X_{(n)}$ максимальное значение выборки (n-я порядковая статистика)
- $X_{(k)}$ k-я порядковая статистика, то есть k-й по величине элемент

₽ Пример:

Допустим, у нас есть выборка из пяти случайных чисел:

$$X_1 = 7.1, X_2 = 5.3, X_3 = 6.4, X_4 = 9.2, X_5 = 8.0$$

После сортировки по возрастанию получаем:

$$X_{(1)} = 5.3$$
, $X_{(2)} = 6.4$, $X_{(3)} = 7.1$, $X_{(4)} = 8.0$, $X_{(5)} = 9.2$

Здесь:

- X₍₁₎=5.3 минимум
- X₍₅₎=9.2 максимум
- **X**₍₃₎**=7.1** медиана (если п нечётное)

Распределение порядковой статистики

Как найти $F_{(k)}(x)$ — функцию распределения k-й порядковой статистики:

• Функция распределения **k-й порядковой статистики** получается через биномиальные вероятности:

$$F_{(k)}(x) = P(X_{(k)} \le x) = \sum_{j=k}^{n} F(x)^{j} \cdot (1 - F(x))^{n-j} \cdot C_{n}^{j}$$

- Для экстремальных значений формулы упрощаются:
 - \circ Для **минимума** $X_{(1)}$:

$$F_{(1)}(x) = 1 - (1 - F(x))^n$$

Для максимума

$$F_{(n)}(x) = F(x)^n$$

Таким образом функции плотностей распределения будут выглядеть:

$$f(x) = \frac{dF(x)}{x}$$

Тогда:

 \circ Для **минимума** $X_{(1)}$:

$$f_{(1)}(x) = n(1 - F(x))^{n-1} f(x)$$

о Для максимума

$$F_{(n)}(x) = n \cdot F(x)^{n-1} \cdot f(x)$$

Рассмотрим следующий вопрос: Что если объем выборки (n) достаточно велик? Возможно ли рассматривать распределение порядковой статистики как нормальное?

Ответ: Да, можно! Давайте посмотрим

Вспомним, что означает формула

Функция распределения **k-й порядковой статистики** $X_{(k)}$ выражается как:

$$F_{(k)}(x) = P(X_{(k)} \le x) = \sum_{j=k}^{n} F(x)^{j} \cdot (1 - F(x))^{n-j} \cdot C_{n}^{j}$$

Это сумма биномиальных вероятностей — значит, распределение $X_{(k)}$ связано с биномиальным распределением.

Введём обозначение:

 $B_n =$ количество элементов выборки, не превышающих x

Тогда B_n имеет биномиальное распределение:

$$B_n \sim Bin(n, F(x))$$

А порядковая статистика $X_{(k)}$ — это **такое значение** x**, при котором** $\boldsymbol{B}_n \geq k$.

ЦПТ утверждает, что если $B_n \sim Bin(n, F(x))$, то при большом n биномиальное распределение приближается к нормальному:

$$B_n \approx N(\mu = nF(x), \sigma^2 = nF(x)(1 - F(x)))$$

Тогда для $X_{(k)}$, используя апроксимацию биномиала нормальным распределением, можно записать:

$$X_{(k)} \approx F^{-1} \left(\frac{k}{n} + N(\mathbf{0}, \sigma^2) \right)$$
$$\sigma^2 = \frac{k}{n} \left(1 - \frac{k}{n} \right)$$

То есть, если n достаточно велико, то $X_{(k)}$ приближается к нормальному распределению с центром в квантиле $F^{-1}\left(\frac{k}{n}\right)$.

Что это означает на практике?

- Если n большое, то порядковая статистика $X_{(k)}$ ведёт себя примерно как нормальная.
- Это полезно в задачах, связанных с экстремальными значениями, например, при анализе максимальных убытков в финансах или надежности оборудования.
- Однако асимптотическое нормальное распределение будет хорошим приближением только в середине выборки (для медианы или квантилей).

Р Важно:

• Для крайних порядковых статистик (минимума и максимума) нормальное приближение хуже работает, потому что там мы приближаемся к распределениям экстремальных значений (Gumbel, Fréchet, Weibull).

Итог

- Если n большое, можно рассматривать распределение порядковой статистики $X_{(k)}$ как асимптотически нормальное.
- Центрируется оно в квантиле $F^{-1}\left(\frac{k}{n}\right)$.
- Но если рассматриваются крайние порядковые статистики (минимум или максимум), то лучше использовать теорию экстремальных значений, а не ЦПТ.

Реальное применение.

Анализ экстремальных значений (Максимумы и минимумы)

Используется в страховании, финансах, инженерии и метеорологии.

Страхование и анализ рисков

- Максимальные убытки: в страховой математике оценивают вероятность наступления редких, но очень дорогих событий (например, стихийных бедствий, аварий).
- Value at Risk (VaR): в финансах рассчитывают, какой убыток может произойти с заданной вероятностью (например, 5%-квантиль потерь).

Пример:

Если банк хочет узнать, какой может быть **наибольший убыток** за месяц с вероятностью 99%, он рассматривает 99%-квантиль распределения прибыли — а это порядковая статистика!

Инженерия и надёжность

- Минимальное время до отказа: если у нас есть выборка из nnn устройств, мы анализируем $X(1)X_{(1)}X(1)$ время, когда первое устройство сломается.
- **Тестирование на прочность**: допустим, испытывают 100 бетонных балок. Инженеры интересуются **наименьшей прочностью** (потому что слабая балка может вызвать катастрофу).

₽Пример:

Автопроизводитель испытывает 100 двигателей на прочность. Чтобы избежать массовых поломок, ему важно знать **минимальный срок службы** $X_{(1)}$ — ведь именно **он** определяет гарантийный срок.

Оценка квантилей и медианы

Порядковые статистики помогают находить **квантили**— значения, которые делят распределение на части.

Медиана и квантильная оценка

- **Медиана** устойчивая альтернатива среднему, так как не чувствительна к выбросам. В статистике часто рассматривают $X_{\left(\frac{n}{2}\right)}$ как **оценку медианы**.
- **Квантили** помогают в медицине и экономике (например, **90%-квантиль дохо- дов** показывает, сколько зарабатывают **самые богатые 10%** людей).

ਊПример:

Допустим, врач хочет узнать, какое **время восстановления** после операции типично для пациентов. **Среднее значение** может быть искажено (если у кого-то восстановление длилось 2 года). Вместо этого лучше взять **медиану** $X_{\left(\frac{n}{n}\right)}$.

Экстремальная метеорология

Порядковые статистики применяются в анализе экстремальных погодных явлений:

- Максимальные температуры $X_{(n)}$ \to при прогнозировании жары.
- **Минимальные температуры** $X_{(1)} \to \text{при оценке рисков заморозков.}$
- **Наибольший уровень осадков** → для расчета наводнений.

₽Пример:

Метеорологи изучают **наибольшие зафиксированные осадки за 50 лет**, чтобы оценить вероятность новых **аномальных дождей и наводнений**.

ВыводПорядковые статистики используются в самых разных сферах:

Область	Что анализируют?	Как применяют?
Финансы	Максимальные по- тери	Оценка риска (VaR)
Страхование	Крупнейшие убытки	Расчёт страховых вы- плат
Инженерия	Минимальное время до отказа	Надёжность оборудова- ния
Медицина	Медианы времени восстановления	Оценка эффективности лечения
Метеорология	Экстремальные тем- пературы	Прогноз катастроф
Машинное обу- чение	Квантили признаков	Нормализация данных