1. Introduction

OLTP - On Line Transaction Processing

Traditional DBMS usage.

These DBs are also called operational DB since they are mainly used in companies to record/store several stuff(details of certain products etc).

They are mostly relational DB and they tipically have read/write operation that access not too many records.

Characterized also by short transactions which they abide by the ACID properties.

Lastly, the database size is around the megabytes/gigabytes.

OLAP - On Line Analytical Processing

The main idea behind it it's to analyze the whole data rather than answer specific questions. For example, in a grocery store, we'd want to identify the most critical sector such as the one with the lowest income in a given year, it is thus used for **historical data**, often collected by **operational databases**.

Characterized by access of million on records at the same time.

Queries are also more complex.

ACID properties are less critical.

Database sizes of terabytes called Data warehouse.

Data science and Big data

Data whose scale, diversity and complexity require new architectures, techniques, algorithms and alaytics to manage it and extract value and hidden knowledge from it.

The Vs of Big data

Five properties characterizing big data.

- Volume: big data deals with huge data collection, huge volume. Those are data regarding social medias, weather forecasting and etc
- **Velocity:** velocity in data production(high data generation rate) and data processing. It used thus for (almost) real time processing.
- Variety: Various formats types and structures for data integrated together
- Veracity: Data must be of high quality to guarantee a reliable extraction/analysis
- Value: Data must be transformed into a valuable information. It's supported by domains expert.

Data science process

- 1. Data generation
- 2. Data acquisition
- 3. Data storage
- 4. Data analysis:
 - Objectives: descriptive/predictive/prescriptive analysis
 - Methods: Statistical analysis, ML, data mining, text mining, network/graph data mining

Machine learning and data mining

Non trivial extraction of **implicit**, **previously unknown** and **potentially useful** information from **available data**.

The extraction is automated by certain algorithms.

Association Rules

Goal: extraction of frequent correlations/pattern from a transactional database.

For example, the following association rule in a given dataset:

diapers
ightarrow beer

where 2% of the transactions contains both items BUT

30% of the transactions containing diapers also container beer.

This is thus an unexpected hidden information that has been extracted from the dataset and that can be used for strategies in companies.

Classification

Goal: prediction of a class label(category) and the definition of an interpretable model.

Training data, which is already labeled/categorized, is used to make a classifier.

This classifier is then utilized to label unclassified data.

This is an example of supervised learning

Clustering

Goal: detecting group of similar data objects and exceptions/outliers

Clusters are a collection of data objects with similar aspects.

They can be constructed through **unsupervised** learning.