PEU 438 Assignment 1

Mohamed Hussien El-Deeb (201900052)

Contents

1	Problem 1	2
	1.1 Blackbody Radiation Energy Inside the Eye	2
	1.2 Energy Entering the Eye from Light Bulb	3
	1.3 Comparison	3
	1.4 Answer	3
2	Problem 2	4
	2.1 General Solution	4
	$2.2 \tau_{\lambda,0} \ll 1 \dots \dots \dots \dots \dots$	4
	$2.3 \tau_{\lambda,0} \gg 1 \dots \dots \dots \dots \dots \dots$	4
3	Problem 3	5
	$3.1 \tau_{\lambda,0} \ll 1 \dots \dots \dots \dots \dots$	5
	$3.2 \tau_{\lambda,0} \gg 1 \dots \dots \dots \dots \dots$	6
4	Problem 4	7
5	Problem 5	8

1.1 Blackbody Radiation Energy Inside the Eye

Radius of the Eye (r):

$$r = 1.5 \,\mathrm{cm} = 0.015 \,\mathrm{m}$$

Volume of the Eye (V_{eye}) :

$$V_{\text{eye}} = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (0.015 \,\text{m})^3 = 1.4137 \times 10^{-5} \,\text{m}^3$$

Energy Density of Blackbody Radiation (u):

$$u = aT^4$$

Where $a=7.5657\times 10^{-16}\,\rm J\cdot m^{-3}\cdot K^{-4}$ is the radiation constant, and $T=37^{\circ}\rm C=310.15\,K.$

$$T^4 = (310.15 \,\mathrm{K})^4 = 9.254 \times 10^9 \,\mathrm{K}^4$$

Then,

$$u = (7.5657 \times 10^{-16} \,\mathrm{J \cdot m^{-3} \cdot K^{-4}})(9.254 \times 10^9 \,\mathrm{K^4}) = 7.0013 \times 10^{-6} \,\mathrm{J/m^3}$$

Total Energy Inside the Eye (E_{eye}) :

$$E_{\text{eye}} = u \times V_{\text{eye}} = (7.0013 \times 10^{-6} \,\text{J/m}^3)(1.4137 \times 10^{-5} \,\text{m}^3) = 9.9 \times 10^{-11} \,\text{J}$$

1.2 Energy Entering the Eye from Light Bulb

Intensity at 1 Meter (I):

$$I = \frac{\text{Power}}{4\pi r^2} = \frac{100 \text{ W}}{4\pi (1 \text{ m})^2} = 7.9577 \text{ W/m}^2$$

Area of the Pupil (A_{pupil}) :

$$A_{\text{pupil}} = 0.1 \,\text{cm}^2 = 1 \times 10^{-5} \,\text{m}^2$$

Power Entering the Eye (P_{eye}) :

$$P_{\text{eye}} = I \times A_{\text{pupil}} = (7.9577 \,\text{W/m}^2)(1 \times 10^{-5} \,\text{m}^2) = 7.9577 \times 10^{-5} \,\text{W}$$

Energy Entering the Eye in 1 Second (E_{in}) :

$$E_{\rm in} = P_{\rm eye} \times t = (7.9577 \times 10^{-5} \,\mathrm{W})(1 \,\mathrm{s}) = 7.9577 \times 10^{-5} \,\mathrm{J}$$

1.3 Comparison

$$\frac{E_{\rm in}}{E_{\rm eve}} = \frac{7.9577 \times 10^{-5} \,\mathrm{J}}{9.9 \times 10^{-11} \,\mathrm{J}} \approx 8 \times 10^{5}$$

1.4 Answer

It is dark when we close our eyes because the energy of the blackbody photons inside the eye is below the threshold needed to stimulate the photoreceptors.

2.1 General Solution

$$I_{\nu} = I_{\nu}(\tau_{\nu} = 0)e^{-\tau_{\lambda,0}} + \int_{0}^{\tau_{\lambda,0}} S_{\nu}(\tau_{\nu})e^{-(\tau_{\lambda,0} - \tau_{\nu})} d\tau_{\nu}$$

$$I_{\nu}(\tau_{\nu} = 0) = 0, \quad S_{\nu}(\tau_{\nu}) = S_{\nu}$$

$$I_{\nu} = S_{\nu}e^{-\tau_{\lambda,0}} \int_{0}^{\tau_{\lambda,0}} e^{\tau_{\nu}} d\tau_{\nu}$$

$$I_{\nu} = S_{\nu}(1 - e^{-\tau_{\lambda,0}})$$

2.2 $\tau_{\lambda,0} \ll 1$

$$e^{-\tau_{\lambda,0}} \approx 1 - \tau_{\lambda,0}$$

$$I_{\nu} = S_{\nu}\tau_{\lambda,0}$$

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}, \quad \tau_{\lambda,0} = \alpha_{\nu}L$$

$$I_{\nu} = j_{\nu}L$$

Where j_{ν} is the emission function of a specific wavelength.

2.3 $\tau_{\lambda,0} \gg 1$

$$I_{\nu} = S_{\nu}$$

$$I_{\nu} = B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1}$$

$$I_{\nu} = I_{\nu}(\tau_{\nu} = 0)e^{-\tau_{\lambda,0}} + \int_{0}^{\tau_{\lambda,0}} S_{\nu}(\tau_{\nu})e^{-(\tau_{\lambda,0} - \tau_{\nu})} d\tau_{\nu}$$

$$I_{\nu}(\tau_{\nu} = 0) = I_{\lambda,0}, \quad S_{\nu}(\tau_{\nu}) = S_{\nu}$$

$$I_{\nu} = I_{\lambda,0}e^{-\tau_{\lambda,0}} + S_{\nu}e^{-\tau_{\lambda,0}} \int_{0}^{\tau_{\lambda,0}} e^{\tau_{\nu}} d\tau_{\nu}$$

$$I_{\nu} = I_{\lambda,0}e^{-\tau_{\lambda,0}} + S_{\nu}(1 - e^{-\tau_{\lambda,0}})$$

3.1 $\tau_{\lambda,0} \ll 1$

$$e^{-\tau_{\lambda,0}} \approx 1 - \tau_{\lambda,0}$$

$$I_{\nu} = (1 - \tau_{\lambda,0})I_{\lambda,0} + \tau_{\lambda,0}S_{\nu}$$

$$I_{\nu} = I_{\lambda,0} + (S_{\nu} - I_{\lambda,0})\tau_{\lambda,0}$$

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}, \quad \tau_{\lambda,0} = \alpha_{\nu}L$$

$$I_{\nu} = I_{\lambda,0}(1 - \alpha_{\nu}L) + j_{\nu}L$$

$$I_{\nu} = I_{\lambda,0} + (j_{\nu} - \alpha_{\nu} I_{\lambda,0}) L$$

Where j_{ν} is the emission function of a specific wavelength and a_{ν} is the absorption coefficient for a specific wavelength.

3.2
$$\tau_{\lambda,0} \gg 1$$

$$I_{\nu} = S_{\nu}$$

$$I_{\nu} = B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1}$$

References

[1] M.H. El-Deeb. PEU-438 Assignments.