

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Cálculo III

27 de Abril de 2019

(1) Calcule as integrais iteradas:

(a)
$$\int_{1}^{4} \int_{0}^{2} (6x^{2}y - 2x) dy dx$$

(b)
$$\int \int_R \frac{xy^2}{x^2+1} dA$$
, onde $R = [0,1] \times [-3,3]$.

(c)
$$\int \int_R x e^{xy} dA$$
, onde $R = [1, 3] \times [0, 1]$.

(d)
$$\int_0^1 \int_x^{2x} (2x+4y)dydx$$
.

(e)
$$\int_1^e \int_{\ln x}^1 x dy dx$$
.

(2) Calcule $\int \int_R y dA$, onde R é a região do primeiro quadrante compreendida pelo círculo $x^2+y^2=25$ e a reta x+y=5.

 $\left(3\right)\,$ Mude a ordem de integração e calcule as integrais abaixo:

(a)
$$\int_0^1 \int_{3y}^3 e^{x^2} dx dy$$

(b)
$$\int_0^4 \int_{\sqrt{x}}^2 \frac{1}{y^3 + 1} dy dx$$

(4) Usando coordenadas polares, calcular:

(a) $\int \int_R \frac{dA}{1+x^2+y^2}$, onde R é a região do segundo quadrante delimitada pela circunferência $x^2+y^2=4$.

(b)
$$\int \int_R \sqrt{x^2 + y^2} dA$$
, onde R é a região delimitada por $x^2 + y^2 = 1$ e $x^2 + y^2 = 9$.

- (5) Calcule as integrais triplas abaixo:
 - (a) $\iiint_B 2y \mathrm{sen}(yz) dV \text{ onde } B = [0,\pi] \times [0,\tfrac{\pi}{2}] \times [0,\tfrac{\pi}{3}].$
 - (b) $\int_1^3 \int_x^{x^2} \int_0^{\ln z} x e^y dy dz dx.$
 - (c) $\int_{1/3}^{1/2} \int_0^{\pi} \int_0^1 zx \operatorname{sen}(xy) dz dy dx$.
- (6) Calcule $\int \int \int_E x^2 + y^2 dV$, onde E é o cilindro $x^2 + y^2 \le 1, \ 1 \le z \le 4.$

Figure 1. Região E

FIGURE
2. Projeção
no plano XY

(7) Calcular $\int \int \int_E xy dV$, onde E é a região delimitada pelos planos $y=0,\ y=4,\ z=0$ e por $z=4-x^2.$

Figure 3. Região E

FIGURE 4. Projeção no plano ZX

Gabarito

- (1) (a) 222 (b) $9 \ln 2$ (c) $e^3 e 2$ (d) $\frac{8}{3}$ (e) $\frac{e^2 3}{4}$
- (2) $\frac{125}{6}$
- (3) a) $\frac{1}{6}(e^9 1)$
 - b) $\frac{\ln 9}{3}$
- (4) a) $\frac{\pi}{4} \ln 5$
 - b) $\frac{52\pi}{3}$
- (5) b) $\pi^2 6\text{sen}(\frac{\pi^2}{6})$
- $\operatorname{cosen}\left(\frac{\pi^{\frac{1}{6}}}{6}\right)$ $\operatorname{c}\left(\frac{118}{3}\right)$ $\operatorname{d}\left(\frac{\pi 6 + 3\sqrt{3}}{12\pi}\right)$ $\left(6\right) \frac{3\pi}{2}$

 - (7) 0