

NVIDIA Jetson AGX Xavier Developer Kit Carrier Board

Specification

Document History

SP-09778-001_v2.0

Version	Date	Description of Change
1.0	August 9, 2018	Initial Release
1.7	July 24, 2019	General
		Updated to use Jetson AGX Xavier throughout doc
		Introduction
		Updated USB connections in main block diagram
		Updated board placement figures
		USB
		Updated figure:
		Added details of HDMI_DP connections
		Added DP_AUX connections
		Removed UPHY lanes not involved in USB-C connections
		НДМІ
		Updated figure:
		Added load switch & enable pin
		Changed module pin names to be specific to HDMI_DP2
		UFS / Micro SD
		Updated figure:
		Removed AC caps from UFS TX lines.
		Removed PU on SD_POWER_SW_ON (GPI021) line
		Added PU on SD Detect line.
		eSATA / USB Combo Connector
		 Updated intro to indicate eSATA is GEN3, but PCle side of bridge is GEN2.
		 Updated figure to add connection from NC_3 to VDD_1V_SATA_PHY supply
		M.2 Key E
		Updated figure:
		Added OD buffer on WLAN disable (pin 56) line (& pull-up)
		Removed PU on PEX_WAKE_N
		Moved GPI03_AP_WAKE_BT_M2 connection from pin 61 to pin 38.
		Changed PU rail for GPI030_M2_E_ALERT_R* to VDD_1V8.
		Removed stuffing options for I2C interface & removed associated note.
		Added level shifters on I2S3 & BT_WAKE_AP signals.
		Updated table:
		Updated I2S3 IF to be level shifted
		 Updated pin 20 (BT_WAKE_AP) to add level shifter reference

Version	Date	Description of Change
		Updated pin 32 & 36 (UART5_TX & RTS) to add buffer reference
		• Updated pin 58 & 60 (I2C GP2) to remove mention of stuffing option
		Moved AP_WAKE_BT from pin 61 to 38
		• Updated pin direction for pins 14, 53
		M.2 Key M
		Updated figure to add PU to pin 44 (ALERT*)
		Camera Connector
		• Updated pins 56, 57, 58 & 101 to be reserved for digital camera supplies
		Audio Panel Header
		• Updated pin direction for pins 1, 3, 5, & 9
		Expansion Header (40-pin)
		Updated module pin name for exp header pin 7 (MCLK05)
		Updated pin direction for pin 18
		Automation Header
		Updated pin 7 to be CVB_STBY (STANDBY_ACK_N)
		• Updated pin direction for pins 2, 3, 4, & 7
		Miscellaneous
		Added I2C usage tables for module & carrier board.
		Power
		Updated figure & supply allocation table to change 5V_AO regulator
2.0	January 14, 2020	Updated memory to remove memory size
		Added Pin 1 indicator to fan header in Figure 1-2
		 Added Pin 1 indicators to camera connector, JTAG header, automation header, audio header, and voltage select jumper in Figure 1-3.
		Added PCle and SLVS to carrier board standard connectors
		Removed connection figure from "Gigabit Ethernet Connector" section
		• Removed "Signal Name" column and added "Module Pin #" column in Table 2-4
		Added PCIe connector support for EndPoint and Root Port cards
		Removed unused lower x8 section in Figure 2-1
		 Included SLVS control signals connected to PCIe reset, wake, and clock request pins in Figure 2-1
		Show internal 3.3V pull-ups on the PCIe control in Figure 2-1
		Updated Table 2-6 with LSVS related information and PCIe receive lane descriptions
		Updated notes to Table 2-6
		Removed text mentioning I2S and DMIC interfaces in Section 3.2
		Added 3x4 lane to CSI in Section 3.2
		Added note to Section 3.2

Version	Date	Description of Change
		Removed C-PHY connection example from Figure 3-1
		Removed note related to SPI in Table 3-2
		Updated connector on the carrier board to Wieson G2100CE04C-008- H
		Updated VBUS[2:1] power rail usage in Table 5-1
		Added Table 5-3 based on P2822 power tree

Table of Contents

Chapter 1. Introduction	
1.1 Jetson AGX Xavier Feature List	
1.2 Carrier Board Feature List	2
1.3 Jetson AGX Xavier Carrier Board Block Diagram	3
Chapter 2. Jetson Carrier Board Standard Connectors	7
2.1 USB Ports	8
2.2 Gigabit Ethernet Connector	9
2.3 HDMI Connector	10
2.4 PCIe x16 Connector	10
2.5 UFS and Micro SD Card Socket	13
2.6 eSATA and USB 3.1 Type A Connector	14
2.7 M.2 Key E Expansion Slot	14
2.8 M.2 Key M Expansion Slot	16
2.9 Audio Panel Header	18
2.10 JTAG Header	19
Chapter 3. Carrier Board Custom Expansion Connections	20
3.1 Module Connector	
3.2 Camera Expansion Header	20
3.3 40-Pin Expansion Header	23
3.3.1 40-Pin Expansion Header Interface Guidelines	25
3.4 Fan Control	25
3.5 Automation Header	26
3.6 DC Power Jack	27
Chapter 4. Miscellaneous	28
4.1 Buttons, Jumpers and Indicators	28
4.2 I2C Interface Usage	29
Chanter 5 Interface Power	30

List of Figures

Figure 1-1.	Jetson AGX Xavier Carrier Board Block Diagram	4
Figure 1-2.	Jetson AGX Xavier Carrier Board Placement – Module Connector Side	5
Figure 1-3.	Jetson AGX Xavier Carrier Board Placement – Non-module Connector Sid	e6
Figure 2-1.	PCIe x16 Connector Connections	11
Figure 2-2.	M.2 Key E Connections	15
Figure 2-3.	Audio Panel Header Connections	18
Figure 3-1.	Camera CSI Connections – D-PHY	22
Figure 3-2.	Expansion Header Top View	23
Figure 3-3.	4-Pin Fan Header – J9	25
Figure 5-1.	Interface Connector Power Diagram	30

List of Tables

Table 2-1.	USB 2.0 Micro B Connector Pin Description – J501	8
Table 2-2.	USB 3.1 Type C Connector Pin Description – J512	8
Table 2-3.	USB 3.1 Type C Connector Pin Description – J513	9
Table 2-4.	Ethernet RJ45 Connector Pin Description	9
Table 2-5.	HDMI Connector Pin Description	10
Table 2-6.	PCIe 8-Lane Connector Pin Description	11
Table 2-7.	PCIe Card Maximum Trace Delays	13
Table 2-8.	SLVS Adapter Card Maximum Trace Delays	13
Table 2-9.	UFS and SD Card Combo Socket Pin Description	13
Table 2-10.	Hybrid USB 3.1 Gen1 and eSATA Connector Pin Description	14
Table 2-11.	M.2 Key E Expansion Slot Pin Description	15
Table 2-12.	M.2 Key E Card Maximum Trace Delays	16
Table 2-13.	M.2 Key M Expansion Slot Pin Description	17
Table 2-14.	M.2 Key M Maximum Trace Delays – PCIe up to Gen3	17
Table 2-15.	Audio Panel Header Description	18
Table 2-16.	JTAG Header Description	19
Table 3-1.	Camera Expansion Connector Pin Description	21
Table 3-2.	Camera Module CSI PCB Trace Allowances – D-PHY Only	23
Table 3-3.	40-Pin Expansion Header Pin Description	24
Table 3-4.	40-Pin Expansion Header Related Carrier PCB Trace Delays	25
Table 3-5.	Fan Connector Pin Description	26
Table 3-6.	Automation Header Description	26
Table 3-7.	DC Jack Pin Description	27
Table 4-1.	Buttons	28
Table 4-2.	Jumpers	28
Table 4-3.	LED Indicators	28
Table 4-4.	Jetson AGX Xavier I2C Interface Usage	29
Table 4-5.	Jetson AGX Xavier Developer Kit Carrier Board I2C Interface Usage	29
Table 5-1.	Interface Power Supply Allocation	31
Table 5-2.	Interface Supply Current Capabilities	31
Table 5-3.	Supply Current Capabilities Per Connector Per Supply	32

Chapter 1. Introduction

This specification contains recommendations and guidelines for engineers to follow to create modules for the expansion connectors on the NVIDIA® Jetson AGX Xavier™ carrier board as well as understand the capabilities of the other dedicated interface connectors and associated power solutions on the platform.

CAUTION: ALWAYS CONNECT THE JETSON AGX XAVIER AND ALL EXTERNAL PERIPHERAL DEVICES BEFORE CONNECTING THE POWER SUPPLY TO THE AC POWER JACK OR TYPE C CONNECTOR.

The Jetson AGX Xavier Developer Kit carrier board contains ESD-sensitive parts. Always use appropriate anti-static and grounding techniques when working with the system. Failure to do so can result in ESD discharge to sensitive pins, and irreparably damage your Jetson AGX Xavier carrier board. NVIDIA will not replace units that have been damaged due to ESD discharge.

The Jetson AGX Xavier carrier board is ideal for software development within the Linux environment. Standard connectors are used to access Jetson AGX Xavier features and interfaces, enabling a highly flexible and extensible development platform. Go to https://developer.nvidia.com/embedded-computing or contact your NVIDIA representative for access to software updates and the developer SDK supporting the OS image and host development platform that you want to use. The developer SDK includes an OS image that you will load onto your Jetson AGX Xavier device, supporting documentation, and code samples to help you get started.

Jetson AGX Xavier Feature List

- Applications processor
 - Xavier
- Memory
 - 256-bit wide LPDDR4x DRAM
 - eMMC 5.1
- Network
 - RGMII I/F for 10/100/1000 BASE-T Ethernet
- Advanced power management
 - Dynamic voltage and frequency scaling
 - Multiple clock and power domains
 - Thermal transfer plate (TTP) and optional fan/heat sink

Carrier Board Feature List 1 2

- Connection to Jetson AGX Xavier
 - 699-pin (11x65) board-board connector
- Storage
 - MicroSD Card + UFS combo socket
 - USB / eSATA connector
- ▶ USB
 - 2 x USB type C connectors
- Wired Network
 - Gigabit Ethernet (RJ45 connector)
- ► PCI Express
 - Standard PCIe x16 connector (lower x8 used)
- Display
 - a). HDMI[™] Type A connector
 - b). 2x VESA® DisplayPort™ (DP) routed to Type C connectors
- Camera Expansion Header
 - 120-pin (2x60) Board-Board
 - CSI: 6, x2 8, x4 (D-PHY or C-PHY)
 - Camera CLK, I2C and Control
- ► M.2 Key E Connector
 - PCle x1 Lane, USB 2.0
 - I2S, UART, I2C, Control

- ► M.2 Key M Connector
 - PCIe x4 Lane, Control
- Expansion Header
 - 40-pin (2x20) header
 - 12C, SPI, UART, 12S, CAN, D-MIC
- UI and Indicators
 - Power, Reset and Force Recovery Buttons
 - LED: Main 5.0V Supply
- Debug
 - JTAG Connector (2x5-pin header)
- Miscellaneous
 - Fan Connector: 5V, PWM and Tach
- Power
 - DC Jack: 9V to 20V (19V Adapter included)
 - Main 5V Supply: NCP81239
 - Main 3.3V Supply: TPS53015
 - Main 1.8V Buck Supply: APW7307
 - USB VBUS Load Switches: RT9715 and APL3511
 - 12V Boost (PCIe): NCP81239
 - Load Switches/LDOs (SD/HDMI/Display/Camera)
- Developer Kit Operating Temperature Range
 - 0 °C to 50 °C

Jetson AGX Xavier Carrier Board 1.3 **Block Diagram**

Figure 1-1 through Figure 1-3 show the block diagram and various placement views for Jetson AGX Xavier and the carrier board.

Figure 1-1. Jetson AGX Xavier Carrier Board Block Diagram

Figure 1-2. Jetson AGX Xavier Carrier Board Placement - Module Connector Side

- M.2 Key M Slot (75-pin) J1
- J3 Jetson AGX Xavier Connector (65x11)
- J4 MicroSD & UFS Socket
- PCle x16 Connector J6

- Fan Header (4-pin, 1.25mm pitch)
- J513 USB Type C Connector #2
- DS2 VDD_5VLED

Figure 1-3. Jetson AGX Xavier Carrier Board Placement - Non-module Connector Side

J2 J30 J501 J502 J504	Power Jack 40-Pin Expansion Header (2x20, 2.54mm pitch) Micro USB B Connector (for UART console) JTAG Header (2x5, 1.27 pitch) HDMI Type A Connector	J510 J511 J512	Camera Connector (2x60, 0.5mm pitch) RJ45 Ethernet Jack Audio Panel Header (2x5, 2.54mm pitch) USB Type C Connector #1 Voltage select for Expansion Header Signal Level Shifters (1x3, 2.54mm pitch)
J505	M.2 Key E Connectivity Slot (75-pin)	S501	Power Button Reset Button Force Recovery Button
J507	eSATA + USB 3.1 Type-A Connector	S502	
J508	Automation Header (2x4, 2.54mm pitch)	S503	

Chapter 2. Jetson Carrier Board Standard Connectors

The Jetson AGX Xavier carrier board provides several standard expansion connectors to support additional functionality beyond what is integrated on the main platform board. This includes:

- ▶ USB 2.0 Micro B Connector
- ▶ USB 3.1: 2x Type C Connectors
- ► Gigabit Ethernet: RJ45 Connector
- ► HDMI: Type A Connector
- ► PCIe x16 Connector (PCIe or SLVS)
- UFS / Micro SD Card Socket
- eSATA: Standard SATA Connector, 22-pin including power
- ► M.2, Key E Slot
- M.2, Key M Slot
- Audio Panel Header
- JTAG

USB Ports

The carrier board supports two USB Type C Connectors (J512 and J513 shown in the figure below). These connectors support USB 3.1 and alternately DisplayPort. The USB connector J512 supports recovery mode. In addition, a USB 2.0 Micro B connector (J501) is supported. This connector provides access to a UART console and the carrier board Power/Reset/Force Recovery signals. Recovery mode is not supported on this connector.

Table 2-1. USB 2.0 Micro B Connector Pin Description - J501

Pin #	Jetson Module Pin Name	Jetson Module Pin Name Module Pin # Usage/Description		Type/Dir Default
1	-	-	VBUS Supply	Power
2	USB0_N	F13		
3	USB0_P	F12	USB 2.0 #0 Data	Bidir
4	_	-	Unused	-
5	-	-	Ground	Ground

Table 2-2. USB 3.1 Type C Connector Pin Description – J512

Pin#	Module (Type C Re- driver / PD Controller) Pin Name	Module Pin #	Usage/Description	Type/ Direction	Pin#	Module (Type C Re- driver / PD Controller) Pin Name	Module Pin #	Usage/Description	Type/ Direction
A1	-	_	Ground	Ground	B1	-	_	Ground	Ground
A2	(TX1P)		USB 3.1 #0 Transmit 1 (or DP)	Outout	B2	(USB0_TX2_DUT_P)		LISP 2.1 #0 Transmit 2 (or DD)	Outout
A3	(TX1N)	_	OSB 3.1 #O Transmit 1 (or DP)	Output	В3	(USB0_TX2_DUT_N)	_	USB 3.1 #0 Transmit 2 (or DP)	Output
A4	-	-	USB VBUS Power	Power	В4	-	_	USB VBUS Power	Power
A5	(PD Ctrl – CC1_P1)	-	Type C #0 Config Channel 1	Bidir	B5	(PD Ctrl - CC2_P1)	_	Type C #0 Config Channel 2	Bidir
A6	USBO_P	F12	UCD 2 0 #0 D-+-	Bidir	В6	USB0_P	F12	LICD 2 0 #0 D-+-	Bidir
A7	USBO_N	F13	USB 2.0 #0 Data	Biair	В7	USB0_N	F13	USB 2.0 #0 Data	Blair
A8	(SBU1)	-	Type C Sideband Use 1	Bidir	В8	(SBU2)	_	Type C Sideband Use 2	Bidir
A9	-	ı	USB VBUS Power	Power	В9	1	_	USB VBUS Power	Power
A10	(RX2N)				B10	(RX1N)			
A11	(RX2P)	-	USB 3.1 #0 Receive 2 (or DP)	Input	B11	1 (RX1P)		USB 3.1 #0 Receive 1 (or DP)	Input
A12	-	_	Ground	Ground	B12	-	_	Ground	Ground
_	UPHY_RX1_N	C22	UCD 2 0 #2	la a t	ı	UPHY_TX1_N	G22	HCD 2 0 #2	0
_	UPHY_RX1_P	C23	USB 3.0 #2	Input	-	UPHY_TX1_P	G23	USB 3.0 #2	Output

USB 3.1 Type C Connector Pin Description - J513 Table 2-3.

Pin#	Module (Type C Redriver / PD Controller) Pin Name	Module Pin #	Usage/Description	Type/ Direction	Pin#	Module (Type C Redriver / PD Controller) Pin Name	Module Pin #	Usage/Description	Type/ Direction
A1	-	_	Ground	Ground	B1	-	_	Ground	Ground
A2	(TX1P)		LICD 2.1 #0 Transmit 1	0	B2	(USB0_TX2_DUT_P)		UCD 2.4 #0 Transmit 2	0
A3	(TX1N)	_	USB 3.1 #0 Transmit 1	Output	В3	(USB0_TX2_DUT_N)	_	USB 3.1 #0 Transmit 2	Output
A4	-	_	USB VBUS Power	Power	В4	-	_	USB VBUS Power	Power
A5	(PD Ctrl – CC1_P2)	-	Type C #0 Config Channel 1	Bidir	B5	(PD Ctrl – CC2_P2)	_	Type C #0 Config Channel 2	Bidir
A6	USB1_P	F12	LICD 2 0 #0 D-+-	Bidir	В6	USB1_P	F12	HCD 2 0 #0 D-t-	Bidir
A7	USB1_N	F13	USB 2.0 #0 Data	Blair	В7	USB1_N	F13	USB 2.0 #0 Data	Blair
A8	(SBU1)	-	Type C Sideband Use 1	Bidir	B8	(SBU2)	_	Type C Sideband Use 2	Bidir
A9	-	_	USB VBUS Power	Power	В9	-	_	USB VBUS Power	Power
A10	(RX2N)				B10	(RX1N)			
A11	(RX2P)	_	USB 3.1 #0 Receive 2	Input	B11	(RX1P)	_	USB 3.1 #0 Receive 1	Input
A12	-	_	Ground	Ground	B12	-	_	Ground	Ground
_	UPHY_RX6_N	C22	UCD 2 0 #0	la a t	ı	UPHY_TX6_N	G22	1100 2 0 40	0
_	UPHY_RX6_P	C23	USB 3.0 #0	Input	-	UPHY_TX6_P	G23	USB 3.0 #0	Output

- The signal names in parenthesis come from the Type C Re-driver or PD Controller.
 The USB[1:0]_TX/RX lines can alternately carry DP signaling. In that case, the SBU pins carry DP_AUX and CC1 pins carry HPD functionality.
 In the Type/Dir column, Output is to USB Connectors. Input is from USB connectors. Bidir is for bidirectional signals.

Legend	Ground	Power	Reserved
--------	--------	-------	----------

2.2 Gigabit Ethernet Connector

The carrier board implements an RJ45 connector (J510) along with the necessary magnetics device.

Table 2-4. Ethernet RJ45 Connector Pin Description

Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default
1	_	-	Gigabit Ethernet MDI 0+ from Ethernet PHY	Bidir
2	_	-	Gigabit Ethernet MDI 0– from Ethernet PHY	Bidir
3	_	_	Gigabit Ethernet MDI 1+ from Ethernet PHY	Bidir
4	-	_	Gigabit Ethernet MDI 2+ from Ethernet PHY	Bidir
5	-	_	Gigabit Ethernet MDI 2– from Ethernet PHY	Bidir
6	-	-	Gigabit Ethernet MDI 1– from Ethernet PHY	Bidir
7	_	-	Gigabit Ethernet MDI 3+ from Ethernet PHY	Bidir
8	_	_	Gigabit Ethernet MDI 3– from Ethernet PHY	Bidir

Note: In the Type/Dir column, Output is to RJ45 connector. Input is from RJ45 connector. Bidir is for bidirectional signals.

2.3 HDMI Connector

A standard HDMI Type A connector (J504) is supported.

Table 2-5. **HDMI** Connector Pin Description

Pin #	Module Pin Name	Module Pin#	Usage/Description	Type/Direction
1	HDMI_DP2_TX0_P	D51	HDMI Transmit Data 2+	Output
2	-	-	Ground	Ground
3	HDMI_DP2_TX0_N	D52	HDMI Transmit Data 2–	Output
4	HDMI_DP2_TX1_P	B51	HDMI Transmit Data 1+	Output
5	-	-	Ground	Ground
6	HDMI_DP2_TX1_N	B52	HDMI Transmit Data 1–	Output
7	HDMI_DP2_TX2_P	A51	HDMI Transmit Data 0+	Output
8	-	-	Ground	Ground
9	HDMI_DP2_TX2_N	A50	HDMI Transmit Data 0–	Output
10	HDMI_DP2_TX3_P	C51	HDMI Transmit Clock+	Output
11		-	Ground	Ground
12	HDMI_DP2_TX3_N	C50	HDMI Transmit Clock-	Output
13	HDMI_CEC	J50	HDMI CEC	Bidir
14	-	-	Unused	Unused
15	DP2_AUX_CH_P	G53	HDMI DDC Clock	Bidir /OD
16	DP2_AUX_CH_N	G54	HDMI DDC Data	Bidir/OD
17	-	-	Ground	Ground
18	-	-	HDMI 5V Power	Power
19	DP2_HPD	K50	Hot Plug Detect	Input

Note: In the Type/Dir column, Output is to HDMI connector. Input is from HDMI connector. Bidir is for bidirectional signals.

Legend Ground Power Reserved

PCIe x16 Connector

The Jetson carrier board includes a standard PCIe x16 connector (J6). Only the first x8 portion of the connector is used to support up to 8 PCIe lanes. This connector can support PCIe Endpoint or Root Port cards or an SLVS camera adapter card.

Note: The following pairs of signals are tied together on the carrier board and the PCIe signal is pulled to 3.3V on the module: PEX_L5_RST_N and GPI019, PEX_L5_CLKREQ_N and GPI018, PEX_WAKE_N and SPI3_MOSI. If any of these SLVS control signals operate at 1.8V on the camera module, level shifters will be required.

Figure 2-1. PCIe x16 Connector Connections

Table 2-6. PCIe 8-Lane Connector Pin Description

Pin #	Module Pin Name	Module Pin #s	Usage/Description	Type/ Direction	Pin #	Module Pin Name	Module Pin #s	Usage/Description	Type/ Direction
A1	-	ı	Ground	Ground	B1				
A2			42146	D	B2	-	_	12V Supply	Power
А3	_	_	12V Supply	Power	В3				
A4	-	-	Ground	Ground	В4	-	_	Ground	Ground

Pin #	Module Pin Name	Module Pin #s	Usage/Description	Type/ Direction	Pin #	Module Pin Name	Module Pin #s	Usage/Description	Type/ Direction
A5	SPI2_SCK	E61	SPI 2 Clock	Output	B5	I2C_GPO_CLK		General I2C #0 Clock	Bidir/OD
A6	SPI2_MISO	D62	SPI 2 Master In/Slave Out	Input	В6	I2C_GP0_DAT		General I2C #0 Data	Bidir/OD
A7	SPI2_MOSI	F60	SPI 2 Master Out/Slave In	Output	В7	-	-	Ground	Ground
A8	SPI2_CS0	D60	SPI 2 Chip Select #0	Output	В8	-	-	3.3V supply	Power
A9	_	_	3.3V supply	Power	В9	SPI3_MISI	D56	SLVS XCLR	Output
A10			3.3 v 3uppiy	100001	B10				
A11	PEX_L5_RST_N GPIO19 (See Note 1)	H10 K56	PCIe Lane 0 Reset	Output	B11	PEX_WAKE_N SPI3_MOSI	A8 G56	PCIe Wake (Shared) SLVS XCE	Input
A12	-	-	Ground	Ground	B12	PEX_L5_CLKREQ_N GPIO18 (See Note 3)	C8 C55	PCIe (#5) Clock Req. SLVS XHS	Bidir
A13	PEX_CLK5_P (Note 2) NVHS_SLVS_REFCLK_P	F24 E30	PCle (#5) Ref ClockOutput or	See	B13	-	-	Ground	Ground
A14	PEX_CLK5_N (Note 2) NVHS_SLVS_REFCLK_N	F25 E31	SLVS Ref Clock Input	Usage/Des c	B14	NVHS0_TX0_P	H24	PCIe (#5) Lane 0 Transmit	Output
A15	-	_	Ground	Ground	B15	NVHS0_TX0_N	H25		
A16	NVHS0_SLVS_RX0_P	D24	PCIe (#5) or SLVS Lane 0	lanut	B16	-	-	Ground	Ground
A17	NVHS0_SLVS_RX0_N	D25	Receive	Input	B17	-	-	Reserved	Reserved
A18	-	ı	Ground	Ground	B18	-	-	Ground	Ground
A19	-	1	Reserved	Reserved	B19	NVHS0_TX1_P	K25		
A20	-	ı	Ground	Ground	B20	NVHS0_TX1_N	K24	PCle (#5) Lane 1 Transmit	Output
A21	NVHS0_SLVS_RX1_P	B25	PCIe (#5) or SLVS Lane 1		B21				
A22	NVHS0_SLVS_RX1_N	B24	Receive	Input	B22	_	_	Ground	Ground
A23					B23	NVHS0_TX2_P	G27	201 (115) 1 27 11	
A24	-	-	Ground	Ground	B24	NVHS0_TX2_N	G26	PCle (#5) Lane 2 Transmit	Output
A25 A26	NVHS0_SLVS_RX2_P NVHS0_SLVS_RX2_N	C27 C26	PCIe (#5) or SLVS Lane 2 Receive	Input	B25 B26	-	-	Ground	Ground
A27 A28	-	_	Ground	Ground	B27 B28	NVHS0_TX3_P NVHS0_TX3_N	J26 J27	PCIe (#5) Lane 3 Transmit	Output
A29	NVHSO SLVS RX3 P	A26	PCIe (#5) or SLVS Lane 3		B29	- IVVII30_1X5_IV	J27	Ground	Ground
A30	NVHSO SLVS RX3 N	A27	Receive	Input	B30			Ground	Ground
A31		-	Ground	Ground	B31	-	-	Reserved	Reserved
A32			Greana	Ground	B32	-	-	Ground	Ground
A33	-	-	Reserved	Reserved	B33	NVHS0 TX4 P	H28	Ground	Ground
A34	_	_	Ground	Ground	B34	NVHS0_TX4_N	H29	PCle (#5) Lane 4 Transmit	Output
A35	NVHSO SLVS RX4 P	D28	PCIe (#5) or SLVS Lane 4	Ground	B35	1441130_1X4_14	1123		
A36	NVHS0_SLVS_RX4_N	D29	Receive	Input	B36	-	-	Ground	Ground
A37	1441130_3243_1044_14	023			B37	NVHSO TX5 P	K29		
A38	-	-	Ground	Ground	B38	NVHS0_TX5_N	K28	PCIe (#5) Lane 5 Transmit	Output
A39	NVHSO SLVS RX5 P	B29	PCle (#5) or SLVS Lane 5		B39	1441130_173_14	KZO		
A40	NVHS0_SLVS_RX5_N	B28	Receive	Input	B40	-	-	Ground	Ground
A41	1441130_3E43_103_14	DZO			B41	NVHS0 TX6 P	G31		
A41	-	-	Ground	Ground	B41	NVHS0_TX6_N	G30	PCIe (#5) Lane 6 Transmit	Output
A42	NVHSO SLVS RX6 P	C31	DCIo /#E) or CI)/C C		1	IN A LIDOT IVOTIA	030		
A43	NVHS0_SLVS_RX6_P	C31	PCIe (#5) or SLVS Lane 6 Receive	Input	B43 B44	-	-	Ground	Ground
A45	-	-	Ground	Ground	B45 B46	NVHS0_TX7_P NVHS0_TX7_N	J30 J31	PCIe (#5) Lane 7 Transmit	Output
0.67	NIVILLO CLIVE DIG 5	420	DOI (115) DIVISI -			INVIDU_IA/_IN	131		
A47 A48	NVHS0_SLVS_RX7_P NVHS0_SLVS_RX7_N	A30 A31	PCIe (#5) or SLVS Lane 7 Receive	Input	B47 B48	-	-	Ground	Ground
A49	-	-	Ground	Ground	B49				

- 1. PEX_L5_RST_N and GPIO19, PEX_L5_CLKREQ_N and GPIO18, PEX_WAKE_N and SPI3_MOSI are tied together on the carrier board and the PCIe control signals are pulled to 3.3V on the module. If any of these SLVS control signals operate at 1.8V on the camera module, level shifters will be required.

 2. The selection for either PEX_CLK5_P/N or NVHS_SLVS_REFCLK_P/N is determined by a mux on the carrier board. The mux is controlled by the module GPIO6 pin (low =
- PEX_CLK5, high = SLVS_REFCLK.
- 3. Table shows only the PCle x8 section of the connector as this is the only portion used. The rest of the x16 signal connections are no-connects (except GND pins).
- 4. In the Type/Dir column, Output is to the PCle connector. Input is from the PCle connector. Bidir is for bidirectional signals.

Legend	Ground	Power	Reserved

PCIe Card Maximum Trace Delays Table 2-7.

Worst Case PCIe (GEN3) Carrier Board PCB Delay (ps)	Max Trace Dela	ay Allowed (ps)	Max Trace Del PCIe Ca	•
	Stripline	Microstrip	Stripline	Microstrip
685	1600	1250	915	565

SLVS Adapter Card Maximum Trace Delays Table 2-8.

Max Trace Delay Allowed on SLVS (PCIe) Card (ps)					
Stripline					
310					
Note: Max length based on the SLVS board used for verification.					

2.5 UFS and Micro SD Card Socket

A combo UFS and Micro SD Card Socket (J4) is implemented. The SD card interface supports up to SDR104 mode (UHS-1). The UFS interface supports up to HS-GEAR 3.

UFS and SD Card Combo Socket Pin Description Table 2-9.

Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default
1	-	-	Ground	Ground
2	UPHY_TX10_N	K12		
3	UPHY_TX10_P	K13	UFS Transmit	Output
4	_	_	Ground	Ground
5	UPHY_RX10_N	B13		
6	UPHY_RX10_P	B12	UFS Receive	Input
7	-	-	Ground	Ground
8	UFS0_REF_CLK	A6	UFS Reference Clock	Output
9	-	-	1.8V Power for UFS	Power
10	GPI031	H60	UFS Card Detect	Input
11	_	_	Ground	Ground
12	_	_	3.3V Power for UFS & SD	Power
13	SDCARD_D1	F8	SD Card Data #1	Bidir
14	SDCARD_D0	E8	SD Card Data #0	Bidir
15	SDCARD_CLK	В6	SD Card Clock	Output
16	SDCARD_CMD	A5	SD Card Command	Bidir

Pin #	Module Pin Name Module Pi		Usage/Description	Type/Dir Default
17	SDCARD_D3	D6	SD Card Data #3	Bidir
18	SDCARD_D2	A4	SD Card Data #2	Bidir
19	GPI002	L6	SD Card, Card Detect	Input
	GPI021	B58	UFS & SD Card load switch enable	Output

Note: In the Type/Dir column, Output is to card socket. Input is from card socket. Bidir is for bidirectional signals.

Legend	Ground	Power	Reserved

eSATA and USB 3.1 Type A Connector

The Jetson AGX Xavier carrier board has a hybrid connector supporting eSATA and USB 3.1 (J507). The eSATA interface is GEN3. The PCIe side of the PCIe-SATA bridge is GEN2. The USB 3.1 interface is GEN1.

Table 2-10. Hybrid USB 3.1 Gen1 and eSATA Connector Pin Description

Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir	Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir		
1	_		USB VBUS Power	Power	11	_		Ground	Ground		
2	USB3_DN	G10	JSB 2.0 #3	Bidir	12	UPHY_RX11_N	D13	USB 3.1 Receive	Input		
3	USB3_DP	G11	U3B 2.U #3	bluii	13	UPHY_RX11_P	D12	USB 3.1 Receive			
4			Ground		Canada	Cround	14	-		Ground	Ground
5	_	ı		Ground	15	UPHY_TX11_N	H13	LICD 2 1 Transmit	0		
6			SATA Transmit +		16	UPHY_TX11_P	H12	USB 3.1 Transmit	Output		
7	_	_	SATA Transmit –	Output	17						
8	-	_	Ground	Ground	18						
9			SATA Receive +	1	19	_	-	Ground	Ground		
10	_	_	SATA Receive –	Input	20						

Note: In the Type/Dir column, Output is to connector. Input is from connector. Bidir is for bidirectional signals.

Legend Ground Reserved

M.2 Key E Expansion Slot

The Jetson carrier board includes a M.2, Key E Slot Mini-PCIe Expansion slot (J505). This includes interface options for WLAN/BT including PCIe (x1), USB 2.0, UART, I2S and I2C. The connections and power rails associated with the connector are shown in Figure 2-2.

Figure 2-2. M.2 Key E Connections

Note: Series 0Ω resistor pads are recommended on the I2C connections. Some non-compliant cards can cause issues if the M.212C pins are connected to the module I2C interface. It is suggested these are left unstuffed unless the I2C interface on the M.2 socket is required.

Table 2-11. M.2 Key E Expansion Slot Pin Description

Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default	Pin#	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default	
1	_	-	Ground	Ground		_	ı	-	-	
3	USB2_P	A10	LISP 2 O Data	Bidir	2			Main 2 2V Supply	Dower	
5	USB2_N	A11	USB 2.0 Data	biuii	4	_	ı	Main 3.3V Supply	Power	
7	_	-	Ground	Ground	6	-	-	Unused	Unused	
9					8	I2S3_CLK	C59		Bidir	
11				Unused	10	12S3_FS	C60	I2S #3 (Level shifted to 1.8V)	Bidir	
13			Unused		12	I2S3_SDIN	J59		Input	
15	_			onuseu	Olluseu	14	I2S3_SDOUT	K59		Output
17								16	-	-
19					18	_	-	Ground	Ground	
21	GPIO12	E10	WLAN Wake AP	Input	20	GPIO13	G7	Bluetooth Wake AP (Level shifted to 3.3V)	Input	
23	GPIO14	L15	WLAN Enable	Output	22	UART5_RX	H58	UART#5 Receive	Input	
25					24					
27			Hausad	Hausad	26			Unusad	Unusad	
29	_	-	Unused	Unused	28	_	-	Unused	Unused	
31					30					

Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default	Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default
33	_	-	Ground	Ground	32	UART5_TX	L5	UART #5 Transmit (Buffered)	Output
35	UPHY_TX7_P	H16			34	UART5_CTS	H57	UART #5 Clear to Send	Input
37	UPHY_TX7_N	H17	PCIe IF #3 Transmit	Output	36	UART5_RTS	K58	UART #5 Request to Send (Buffered)	Output
39	-	-	Ground	Ground	38	GPIO03	D54	AP Wake BT	Output
41	UPHY_RX7_P	D16	PCIe IF #3 Receive	lanut	40				
43	UPHY_RX7_N	D17	PCIE IF #3 Receive	Input	42				
45	_	-	Ground	Ground	44	-	-	Unused	Unused
47	PEX_CLK3_P	F20	20, 15,112,2,5		46				
49	PEX_CLK3_N	F21	PCIe IF #3 Reference clock	Output	48				
51	-	-	Ground	Ground	50	-	ı	Suspend Clock (32KHz)	Output
53	PEX_L3_CLKREQ_N	J10	PCIe IF #3 Clock Request	Input	52	PEX_L3_RST_N	К9	PCIe IF #3 Reset	Output
55	PEX_WAKE_N	A8	PCIe Wake	Input	54	GPIO26	H51	WLAN Disable #2 (Level Shifted to 3.3V)	Output
57	-	-	Ground	Ground	56	GPIO01	J4	WLAN Disable #1 (Level Shifted to 3.3V)	Output
59	GPIO24	J51	RF Power Control or GPIO	Output	58	I2C2_DAT	K61	General I2C Interface #2	Bidir/OD
61	_	_	Unused	Unused	60	I2C2_CLK	J61	(See note)	Bluil/OD
63	_	-	Ground	Ground	62	GPIO30	B55	M.2, Key E Connector Alert	Input
65			Llaure d	Harrand	64				
67	_		Unused	Unused	66			u	tte end
69	_	_	Ground	Ground	68	_	_	Unused	Unused
71					70				
73		-	Unused	Unused	72			Main 2 2V Sunah	Danna
75	_	-	Ground	Ground	74		ı	Main 3.3V Supply	Power

^{2.} In the Type/Dir column, Output is to M.2 module. Input is from M.2 module. Bidir is for bidirectional signals

Legend	Ground	Power	Reserved

Table 2-12. M.2 Key E Card Maximum Trace Delays

Worst Case CSI Carrier Board PCB Delay (ps)	Max Trace Dela	ay Allowed (ps)	Max Delay for Camera Module (ps)			
PCIe						
520	880		360			
USB	Stripline	MicroStrip	Stripline	MicroStrip		
375	1050	900	675	525		
125						
600	36	00	30	00		

Note: For USB 2.0 max length allowed, the case with Common-Mode-Choke (CMC) is assumed. Longer length possible without CMC.

M.2 Key M Expansion Slot

The carrier board includes an M.2, Key M Slot NVMe Expansion slot (J1). This includes PCIe (x4) and I2C.

^{1.} Series 0Ω resistor pads are recommended on the I2C connections. Some non-compliant cards can cause issues if the M.2 I2C pins are connected to the module I2C interface. It is suggested these are left unstuffed unless the I2C interface on the M.2 socket is required.

Table 2-13. M.2 Key M Expansion Slot Pin Description

Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default	Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default
3	-	-	Ground	Ground	2 4	-	-	Main 3.3V Supply	Power
5 7	UPHY_RX5_N UPHY_RX5_P	C18 C19	PCle IF #0 Lane 5 Receive	Input	6 8	_	_	Unused	Unused
9	_	ı	Ground	Ground	10				
11	UPHY_TX5_N	G18	DCIa IF #0 Lang F Transmit	Outout	12				
13	UPHY_TX5_P	G19	PCIe IF #0 Lane 5 Transmit	Output	14			Main 3.3V Supply	Power
15	_	-	Ground	Ground	16	_	_	Ivialii 5.5 v Supply	rowei
17	UPHY_RX4_N	A19	PCIe IF #0 Lane 4 Receive	lanut	18				
19	UPHY_RX4_P	A18	PCIe IF #0 Lane 4 Receive	Input	20				
21	-	-	Ground	Ground	22				
23	UPHY_TX4_N	J19	DCIa IF #0 I am a 4 Treament	0	24				
25	UPHY_TX4_P	J18	PCIe IF #0 Lane 4 Transmit	Output	26				
27	_	-	Ground	Ground	28				tte end
29	UPHY_RX3_N	D21			30	_	_	Unused	Unused
31	UPHY_RX3_P	D20	PCle IF #0 Lane 3 Receive	Input	32				
33	-	-	Ground	Ground	34				
35	UPHY_TX3_N	H21			36				
37	UPHY_TX3_P	H20	PCIe IF #0 Lane 3 Transmit	Output	38				
39	-	-	Ground	Ground	40	I2C4_CLK	D61	C 1 2 C 1 4 / C 1 - 1	bidir
41	UPHY_RX2_N	B20			42	I2C4_DAT	E60	General I2C #4 (See note)	bidir
43	UPHY_RX2_P	B21	PCle IF #0 Lane 2 Receive	Input	44	GPIO34	A55	M.2 Key M Alert	Output
45	-	1	Ground	Ground	46				11
47	UPHY_TX2_N	K20			48		ı	Unused	Unused
49	UPHY_TX2_P	K21	PCIe IF #0 Lane 2 Transmit	Output	50	PEX_LO_RST_N	D10	PCIe IF #0 Reset	Output
51	-	-	Ground	Ground	52	PEX_LO_CLKREQ_N	E11	PCIe IF #0 Clock Request	Input
53	PEX_CLKO_N	E14	PCIe IF #0 Reference Clock	Output	54	PEX_WAKE_N	A8	PCIe Wake (Level Shifted from 3.3V to 1.8V)	Input
55	PEX_CLKO_P	E15	1		56				
57	-	_	Ground	Ground	58				
59					60				
61					62	-	-	Unused	Unused
63					64				
65	-	-	Unused	Unused	66				
67					68	-	-	32KHz Suspend Clock	Output
69					70				
71					72	-	_	Main 3.3V Supply	Power
73	_	-	Ground	Ground	74				
75							-		
<u> </u>									

Note:

Legend Ground Power Reserved

Table 2-14. M.2 Key M Maximum Trace Delays – PCIe up to Gen3

Worst Case PCIe (GEN3) Carrier Board PCB Delay (ps)	Max Trace Del	ay Allowed (ps)	Max Trace Delay Allowed on M.2 Card (ps)			
	Stripline	Microstrip	Stripline	Microstrip		
400	1600	1250	1200	850		

^{3.} Series 0Ω resistor pads are recommended on the I2C connections. Some non-compliant cards can cause issues if the M.2 I2C pins are connected to the module I2C interface. It is suggested these are left unstuffed unless the I2C interface on the M.2 socket is required.

^{4.} In the Type/Dir column, Output is to M.2 module. Input is from M.2 module. Bidir is for bidirectional signals

2.9 Audio Panel Header

The Jetson carrier board includes a 10-pin (2x5, 2.54 mm pitch) audio panel header (J511). This can be used to connect to a standard PC audio panel to support connections to microphone, line-in, headphones, powered speakers, etc.

dVDD_1V8 **Audio Codec Jetson AGX** MICBIAS1 **Audio Panel** AUDIO_MCLK **Xavier** Header BCLK1 I2S1_CLK IN1P AUD_GPIO4 I2S1 FS LRCK1 IN2P AUD_HPOR 5 AUD_MIC_JD DACDAT1 **C7** I2S1_DOUT HPO R SENSE_SEND Key I2S1_DIN Н8 ADCDAT1 HPO L AUD_HPOL O AUD_HP_JD IRQ GPIO 11 GPIO3 ◀ GPIO4 I2C4_CLK D61 MIC_IN_DET E60 SDA I2C4_DAT

Audio Panel Header Connections Figure 2-3.

Table 2-15. Audio Panel Header Description

Pin #	Module (Codec) Pin Name	Module Pin #	Usage/Description	Type/Dir Default	Pin #	Module (Codec) Pin Name	Module Pin #	Usage/Description	Type/Dir Default
1	(IN1P)	-	Microphone #1 input	Input	2	_	-	Ground	Ground
3	(IN2P)	-	Microphone #2 input	Input	4	(GPI04)	-	Presense – detects if audio dongle is connected to header.	Input
5	(HPO_R)	-	Headphone output right channel	Output	6	(MIC_IN_DET)	-	Jack/Microphone detect pin	Input
7	NA	-	Pulled to analog GND	NA	8	Unused	-	Key	-
9	(HPO_L)	-	Headphone output left channel	Output	10	(GPI03)	-	Headphone or jack detection	Input
-	AUDIO_MCLK	Н9	Audio master clock	Output	-	12S1_CLK	L14	I2S #1 clock	Output
_	GPI011	B8	Audio interrupt	Input	_	I2S1_FS	D8	I2S #1 field select	Bidir
_	12C4_CLK	D61	I2C #4 clock	Bidir	-	I2S1_D0UT	C7	I2S #1 data output	Output
-	I2C4_DAT	E60	I2C #4 data	Bidir	-	12S1_DIN	H8	I2S #1 data input	Input

Note: In the Type/Dir column, Output is to audio panel header. Input is from audio panel header. Bidir is for bidirectional signals.

2.10 JTAG Header

The Jetson carrier board has a 10-pin (2x5, 1.27 mm pitch) JTAG header (J502).

Table 2-16. JTAG Header Description

Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default	Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default
2	JTAG_TMS	E58	JTAG Test Mode Select	Input	1	_	-	Main 1.8V Supply	Power
4	JTAG_TCK	A60	JTAG Test Clock	Input	3				
6	JTAG_TDO	D58	JTAG Test Data Out	Output	5	-	-	Ground	Ground
8	JTAG_TDI	B60	JTAG Test Data In	Input	7				
10	SYS_RESET_N	L60	Main carrier board reset	Input	9			Detect presence of JTAG debugger connection. (FTDI GPIO Expander)	Input

Note: In the Type/Dir column, Output is to JTAG header. Input is from JTAG header. Bidir is for bidirectional signals.

Legend	Ground	Power	Reserved

Chapter 3. Carrier Board Custom **Expansion Connections**

The Jetson carrier board supports several custom expansion headers:

- Jetson AGX Xavier Connector, 65x11
- ► Camera Expansion Header, 2x60, 0.5 mm pitch
- Expansion Header, 2x20, 2.54 mm pitch
- ▶ Audio Panel Header, 2x5, 2.54 mm pitch
- Fan Header, 4-pin, 1.25 mm pitch
- DC Power Jack

The Routing Guidelines for the interfaces supported on the expansion connectors can be found in the Jetson AGX Xavier OEM Product Design Guide. Those quidelines cover the PCB routing from the Jetson AGX Xavier to the peripheral device or actual device connector. When designing modules for one of the Jetson AGX Xavier expansion connectors, the routing on the carrier board must be accounted for. Tables are provided for the critical interfaces that provide the PCB delays on the carrier board. These delays are subtracted from the delays allowed in the Jetson AGX Xavier OEM Product Design Guide routing guidelines. The tables also include the max trace guidelines and remaining max trace delay allowed on the peripheral modules. See the Jetson AGX Xavier OEM Product Design Guide for other requirements (Impedance, trace spacing, skews between signals, etc.).

Module Connector

The carrier board interfaces to Jetson AGX Xavier using a 699-pin (65x11) connector (J3). The part number for the connector used on the carrier board can be found in the Jetson AGX Xavier Supported Component List (SCL) document. This interfaces with the module. See the Jetson AGX Xavier Module Data Sheet for the connector used on the module. The connector pinout can be found in the Jetson AGX Xavier OEM Product Design Guide.

Camera Expansion Header

The Jetson AGX Xavier carrier board includes a 120-pin (2x60, 0.5 mm pitch) camera expansion connector (J509). The connector used on the carrier board is a Samtec QSH-060-01-H-D-A.

The mating connector is a Samtec QTH-060-01-H-D-A. The expansion connector includes interface options for multiple cameras. Refer to the Jetson AGX Xavier Camera Module Hardware Design Guide (DG-09364-001) for more information.

- ► CSI up to 3x4 lane or 6x2 lane
- ► CAM_I2C, Clock and Control GPIOs for the cameras
- ► I2C (2x in addition to CAM_I2C)

Note: Due to the CSI routing length on the carrier board and the additional connector between the module and the end device, MIPI C-PHY mode is not supported and D-PHY mode is supported only up to 1.5 Gbps.

Table 3-1. Camera Expansion Connector Pin Description

Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default	Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default
1	CSIO_DO_P	E42	CSI 0 Data 0	lanut	2	CSI_1_D0_P	G41	CSI 1 Data 0	lanut
3	CSIO_DO_N	E41	C3I O Data O	Input	4	CSI_1_D0_N	G42	CSI I Data 0	Input
5	_	_	Ground	Ground	6	-	-	Ground	Ground
7	CSIO_CLK_P	F43	CSI 0 Clock	Input	8	CSI_1_CLK_P	H43	CSI 1 Clock	Input
9	CSIO_CLK_N	F42	CSI U CIUCK	input	10	CSI_1_CLK_N	H42	CSI I Clock	iliput
11	-	_	Ground	Ground	12	-	_	Ground	Ground
13	CSIO_D1_P	E39	CSI 0 Data 1	Input	14	CSI_1_D1_P	J41	CSI 1 Data 1	Input
15	CSIO_D1_N	E38	CSI O Data 1	iiiput	16	CSI_1_D1_N	J42	CSI I Data I	прис
17	_	_	Ground	Ground	18	-	_	Ground	Ground
19	CSI2_D0_P	A41	CSI 2 Data 0	Input	20	CSI_3_D0_P	E45	CSI 3 Data 0	Input
21	CSI2_D0_N	A42	CSI 2 Data 0	прис	22	CSI_3_D0_N	E44	C3I 3 Data 0	прис
23	_	_	Ground	Ground	24	-	-	Ground	Ground
25	CSI2_CLK_P	B43	CSI 2 Clock	lanut	26	CSI_3_CLK_P	F46	CSI 3 Clock	lanut
27	CSI2_CLK_N	B42	CSI 2 CIOCK	Input	28	CSI_3_CLK_N	F45	CSI 3 Clock	Input
29	_	_	Ground	Ground	30	-	-	Ground	Ground
31	CSI2_D1_P	C42	CSI 2 Data 1	Input	32	CSI_3_D1_P	G44	CSI 3 Data 1	Input
33	CSI2_D1_N	C41	CSI 2 Data 1	input	34	CSI_3_D1_N	G45	CSI 3 Data 1	input
35	-	_	Ground	Ground	36	-	-	Ground	Ground
37	CSI4_D0_P	G48			38	CSI6_D0_P	K44		
39	CSI4_D0_N	G47	CSI 4 Data 0	Input	40	CSI6_D0_N	K43	CSI 6 Data 0	Input
41	-	_	Ground	Ground	42	-	-	Ground	Ground
43	CSI4_CLK_P	F48	CCL 4 Classic		44	CSI6_CLK_P	J44	cci c classi	1
45	CSI4_CLK_N	F47	CSI 4 Clock	Input	46	CSI6_CLK_N	J45	CSI 6 Clock	Input
47	-	_	Ground	Ground	48	-	-	Ground	Ground
49	CSI4_D1_P	E47	CCL 4 Data 1	la a t	50	CSI6_D1_P	H46	CCLC Data 1	la a de
51	CSI4_D1_N	E48	CSI 4 Data 1	Input	52	CSI6_D1_N	H45	CSI 6 Data 1	Input
53	_	_	Ground	Ground	54	-	_	Ground	Ground
55			Reserved for Low Voltage		56			Reserved for Low Voltage	,
57	_	_	Digital Supply	Power	58	-	-	Digital Supply	Power
59	CSI5_D0_P	D42	CCLE Date 0		60	CSI7_D0_P	A44	CCL 7 Date 0	1
61	CSI5_D0_N	D43	CSI 5 Data 0	Input	62	CSI7_D0_N	A45	CSI 7 Data 0	Input
63	-	_	Ground	Ground	64	-	_	Ground	Ground
65	CSI5_CLK_P	C44			66	CSI7_CLK_P	B45		
67	CSI5 CLK N	C45	CSI 5 Clock	Input	68	CSI7 CLK N	B46	CSI 7 Clock	Input
69	_	-	Ground	Ground	70	_	-	Ground	Ground
71	CSI5_D1_P	D46			72	CSI7_D1_P	C47		
73	CSI5 D1 N	D45	CSI 5 Data 1	Input	74	CSI7_D1_N	C48	CSI 7 Data 1	Input
75	I2C3 CLK	F53			76				
77	I2C3 DAT	E53	Camera I2C	Bidir	78	-	-	Unused	Unused
79	-	-	Ground	Ground	80	-	_	Ground	Ground
			2.8V Analog Camera supply					2.8V Analog Camera supply (see	
81	-	_	(see note)	Power	82	-	_	note)	Power

Pin#	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default	Pin #	Module Pin Name	Module Pin #	Usage/Description	Type/Dir Default
83					84		_	Unused	Unusad
85	-	-	Unused	Unused	86	_	_	onuseu	Unused
87	I2C2_CLK	J61	Conoral Burness 12C#2	ם:א:؞/סם	88	MCLK03	H53	Camera #1 Master Clock	Output
89	I2C2_DAT	K61	General Purpose I2C#2	Bidir/OD	90	GPIO15	F10	Camera #1 Powerdown	Output
91	MCLK02	J54	Camera #0 Master Clock	Output	92	GPIO16	F9	Camera #1 Reset	Output
93	UART4_CTS	L49	Camera #0 Powerdown	Output	94	MCLK04	H55	Camera #2 Master Clock	Output
95	UART4_TX	L4	Camera #0 Reset	Output	96		_	Unused	Unused
97	-	_	Unused	Unused	98		_	onuseu	Olluseu
99	-	-	Ground	Ground	100	-	_	Ground	Ground
101			Reserved for Digital Supply	Power	102	-	_	1.8V Camera supply.	Power
103	_	_	Unused	Unused	104			Harrand .	I I marria and
105	I2C4_CLK	D61	General I2C #4	D:4:-/OD	106	-	_	Unused	Unused
107	I2C4_DAT	K61	General I2C #4	Bidir/OD	108			2.21/2	D
109					110	-	_	3.3V supply	Power
111	-	-	Unused	Unused	112				tte end
113					114	-	_	Unused	Unused
115	-	-	Ground	Ground	116	-	_	Ground	Ground
117	-	-	Unused	Unused	118	_		2 24 4 4 1	D
119	GPIO25	K49	System power enable	Output	120		_	3.3V supply	Power

Note:

Legend Ground Power Reserved

Figure 3-1. Camera CSI Connections – D-PHY

See the *Jetson AGX Xavier OEM Product Design Guide* for routing guidelines. Include the carrier board PCB trace delays in the following table when calculating max trace length and for skew matching.

^{1.} The 2.8V supply supports up to 600mA total from all three pins.

^{2.} In the Type/Dir column, Output is to camera module. Input is from camera module. Bidir is for bidirectional signals.

Table 3-2. Camera Module CSI PCB Trace Allowances - D-PHY Only

Worst Case CSI Carrier Board PCB Delay (ps)	Max Trace Dela	ay Allowed (ps)	Max Delay for Camera Module (p		
	1Gbps	1.5Gbps	1Gbps	1.5Gbps	
360	1100	800	740	440	

40-Pin Expansion Header

The Jetson AGX Xavier carrier board includes a 40-pin (2x20, 2.54 mm pitch) expansion header (J30). The connector used on the carrier board is a Wieson G2100CE04C-008-H.

Figure 3-2. Expansion Header Top View

Legend 1.8V/3.3V Selectable by J514

Note: Caution must be taken when using the CAN[1:0] DIN, CAN[1:0] DOUT pins (Exp. Conn. pins 37, 29, 33, and 31). These are pulled to 3.3V when system is powered on due to internal 3.3V pull-ups in the SoC enabled by default. If used, they should only be connected to 3.3V tolerant device pins. The voltage rail can be switched by software after boot to 1.8V, and the internal pull-ups can be disabled, but the initial power-on state of these pins is pulled to 3.3V.

The 40-pin expansion connector includes various audio and control interfaces including:

- 12S (See Note)
- Audio Clock and Control
- Digital Microphone IF
- I2C (x2) (See Note)
- ► SPI (See Note)
- UART (See Note)

40-Pin Expansion Header Pin Description Table 3-3.

1 2	_		- G	Usage/Description	Alternate Functionality	Type/ Direction	Power Pin Max Current	GPIO Port #	Power-on Default	PU/PD on Module	Notes
2		1	-	Main 3.3V Supply	-	Power	1A	-	-	1	1
	-	_	-	Main 5.0V Supply	-	Power	1A	-	-	-	1
3 12	2C5_DAT	C53	DP_AUX_CH3_N	General I2C #5 Data	_	Bidir/OD	1mA/-1mA	-	Z	2.2ΚΩ PU	2
4		1		Main 5.0V Supply	_	Power	1A	-	_	-	1
5 12	2C5_CLK	A53	DP_AUX_CH3_P	General I2C #5 Clock	-	Bidir/OD	1mA/-1mA	-	Z	2.2ΚΩ PU	2
6	_	ı	-	Ground	_	Ground	_	-	-	ı	_
7 N	MCLK05	L57	SOC_GPIO42	GPIO	Audio Master Clock	Bidir	20uA / -20uA	Q.06	PD	-	3
8 L	JART1_TX	K53	UART1_TX	GPIO	UART #1 Transmit	Output	24mA / -24mA	R.02	PD	-	4
9	-	_	-	Ground	-	Ground	-	-	-	-	_
10 L	JART1_RX	K54	UART1_RX	GPIO	UART#1 Receive	Input	-	R.03	Z	-	4
11 l	JART1_RTS	L51	UART1_RTS	GPIO	UART#1 Request to Send	Output	24mA / -24mA	R.04	PD	ı	4
12 2	2S2_CLK	G4	DAP2_SCLK	GPIO	Audio I2S #2 Clock	Bidir	20uA / -20uA	H.07	PD	ı	3
13	GPIO32	J55	SOC_GPIO04	GPIO	PWM	Bidir	20uA / -20uA	R.00	PD	-	3
14	_	_	-	Ground	-	Ground	-	_	_	_	_
15 G	GPIO27	H52	SOC_GPIO54	GPIO	PWM	Bidir	20uA / -20uA	N.01	PD	-	3
16	GPIO08	B62	CAN1_STB	GPIO	Digital Mic Input Data	Input	1mA / -1mA	BB.00	PD	_	5
17	-	-	_	Main 3.3V Supply	_	Power	1A	-	_	_	1
18	GPIO35	L50	SOC_GPIO12	GPIO	PWM	Output	20uA / -20uA	H.00	Z	-	3,7
19 S	SPI1_MOSI	D55	SPI1_MOSI	GPIO	SPI #1 Master Out/Slave In	Bidir	20uA / -20uA	Z.05	PU	-	3
20	_	-		Ground	-	Ground	_	-	-	-	-
21 S	SPI1 MISO	A56	SPI1 MISO	GPIO	SPI #1 Master In/Slave Out	Bidir	20uA / -20uA	Z.04	PU	_	3
22 (GPIO17	A54	SOC GPIO21	GPIO		Bidir	20uA / -20uA	Q.01	PD	_	3
23 S	SPI1_CLK	J57	SPI1_CLK	GPIO	SPI #1 Shift Clock	Bidir	20uA / -20uA	Z.03	PD	-	3
24 S	SPI1 CSO#	E55	SPI1 CSO	GPIO	SPI #1 Chip Select #0	Bidir	20uA / -20uA	Z.06	PU	-	3
25	_	_	_	Ground	_	Ground	_	-	-	-	-
26 S	SPI1 CS1#	B56	SPI1 CS1#	GPIO	SPI #1 Chip Select #1	Bidir	20uA / -20uA	Z.07	PU	-	3
27 12	2C2_DAT	K61	GEN2_I2C_SDA	General I2C #2 Data	GPIO .	Bidir/OD	1mA / -1mA	DD.00	Z	2.2ΚΩ PU	2
28 12	2C2_CLK	J61	GEN2_I2C_SCL	General I2C #2 Clock	GPIO	Bidir/OD	1mA / -1mA	CC.07	Z	2.2ΚΩ PU	2
29 C	CANO_DIN	F58	CAN0_DIN	GPIO	CAN #0 Data In	Input	1mA / -1mA	AA.03	PU	_	5
30	_	_	_	Ground	-	Ground	-	_	_	_	_
31 C	CANO DOUT	D59	CANO DOUT	GPIO	CAN #0 Data Out	Output	1mA / -1mA	AA.02	PU	-	5
-	GPIO09	C61	CAN1_EN	GPIO	Digital Mic Input Clock	Bidir	1mA / -1mA	BB.01	Z	-	5
33 C	CAN1 DOUT	H61	CAN1 DOUT	GPIO	CAN #1 Data Out	Output	1mA / -1mA	AA.00	PU	-	5
34		-	-	Ground	-	Ground	-	-	-	-	-
35 12	2S2 FS	E4	DAP2 FS	GPIO	AUDIO I2S #2 L/R Clock	Bidir	20uA / -20uA	1.02	PD	-	3
36 L	JART1_CTS	H54	UART1_CTS	GPIO	JART#1 Clear to Send	Input	_	R.05	PU	-	4
-	CAN1 DIN	B61	CAN1 DIN	GPIO	CAN #1 Data In	Input	1mA / -1mA	AA.01	PU	_	5
_	2S2 DIN	F6	DAP2 DIN	GPIO	Audio I2S #2 Data in	Input	20uA / -20uA	1.01	PD	-	3,7
39	_	-	_	Ground	-	Ground	_	_	_	-	_
40 12	2S2_DOUT	F5	I2S_DOUT	GPIO	Audio I2S #2 Data Out	Output	20uA / -20uA	1.00	PD	-	3,7

Notes:

- 1. This is current capability per power pin.
- 2. These pins connect to the SoC through an I2C (FXMA2102L8X) level shifter. They are open-drain (either pulled up, or driven low by the SoC when configured as outputs). The voltage level at the header pins can be selected by J514 to be 1.8V (2-3) or 3.3V (1-2). The max drive that meets the data sheet VOL is 1 mA.
- 3. These pins connect to Ti TXB0108 level translators. The voltage level at the header pins is selectable (see Note #2). Due to the design of these devices, the output drivers are very weak so they can be overdriven by another connected device output for bidirectional support.
- 4. These pins connect to a SN74LVC4T245 buffer. The voltage level at the header pins is selectable (see Note #2).
- 5. These pins are directly connected to the SoC. The max drive that meets full data sheet VOL/VOH is 1mA.
- 6. For power-on default, PD = SoC Internal Pull-down, PU SoC Internal pull-up, and Z Tristate
- $7. \ \ In the \ Type/Dir \ column, Output \ is \ to expansion header. Input \ is from \ expansion header. Bidir \ is \ for \ bidirectional \ signals.$
- 8. The direction indicated matches that indicated in the reference design schematics. These signals can be bidirectional.

Legend Ground 5.0V Power Rail 3.3V Power Rail

3.3.1 40-Pin Expansion Header Interface Guidelines

See the Jetson AGX Xavier OEM Product Design Guide for routing guidelines. Include the carrier board PCB trace delays in the following table when calculating max trace length and for skew matching.

40-Pin Expansion Header Related Carrier PCB Trace Delays Table 3-4.

Module Module Signal	Carrier Board PCB Delay (ps)	Max Trace Delay Allowed (ps)	Max Delay for Expansion Module (ps)	Module Module Signal	Carrier Board PCB Delay (ps)	Max Trace Delay Allowed (ps)	Max Delay for Expansion Module (ps)
I2S				SPI			
I2S2_CLK_3V3	240.32	3600	3359.68	SPI1_SCK_3V3	190.26	1228	1037.74
I2S2_FS_3V3	89.46	3600	3510.54	SPI1_MOSI_3V3	191.32	1228	1036.68
I2S2_SD0UT_3V3	148.74	3600	3451.26	SPI1_MISO_3V3	186.70	1228	1041.30
I2S2_SDIN_3V3	145.98	3600	3454.02	SPI1_CS0_3V3	179.06	1228	1048.94
				SPI1_CS1_3V3	178.24	1228	1049.76

Note: Max trace delay allowed for SPI assumes a single load case. If two loads are implemented, See the Jetson AGX Xavier OEM Product Design Guidefor details.

Fan Control

The Jetson carrier board includes a 4-pin fan header (J9).

Figure 3-3. 4-Pin Fan Header - J9

Table 3-5. Fan Connector Pin Description

Pin #	Module Pin Name	Module Pin #	Tegra Pin Name	Usage/Description	Type/Dir Default
1	_	-	_	Ground	Ground
2	_	-	_	Gated version of Main 5.0V Supply (Enabled by VDD_3V3_SLP)	Power
3	FAN_TACH	E54	SOC_GPI022	Fan Tachometer signal	Input
4	FAN_PWM	K62	TOUCH_CLK	Fan Pulse Width Modulation signal	Output

Note: In the Type/Dir column, Output is to fan connector. Input is from fan connector. Bidir is for bidirectional signals.

Legend Power Ground

Automation Header

The Jetson carrier board includes an 8-pin header (J508) that makes accessible several critical system control signals.

Table 3-6. Automation Header Description

Pin#	Module Pin Name	Module Pin #	Tegra Pin Name	Usage/Description	Type/Dir Default
1	-	-	-	Ground	Ground
2	FORCE_RECOVERY_N	L10	SOC_GPI000	Force Recovery Strap	Output
3	SYS_RESET_N	L60	SYS_RESET_N	System Reset – Connected to Reset Button on carrier board	Output
4	_	-	_	Power Button On – Connected to Power Button on carrier board	Output
5	_	-	_	Output from USB Type C PD Controller (See note)	Output
6	-	-	-	ACOK (USB Type C or DC Jack power OK). To button power-on controller.	Input
7	STANDBY_ACK_N	J60	SOC_PWR_REQ	Carrier board standby	Input
8	SYSTEM_OC_N	A61	BATT_OC	System Overcurrent indicator	Input

Notes: Auto-Power-On is enabled when Pin 5 and Pin 6 are tied together

In the Type/Dir column, Output is to header. Input is from header. Bidir is for bidirectional signals.

3.6 DC Power Jack

The Jetson carrier board uses a DC power jack (J2) to bring in the power from the included DC power supply. The jack used on the Carrier board is a Singatron Enterprise 2DC-G213-B73F.

Table 3-7. DC Jack Pin Description

Pin #	Module Pin Name	Module Pin #	Tegra Pin Name	Usage/Description	Type/Dir Default
1	-	-	_	Option for Main DC input supplying SYS_VIN_HV (Typc C VBUS1 or VBUS2 are other options).	Power
2	-	-	-	Ground	Ground
3	-	-	-	Ground	Ground
4	-	-	-	Ground	Ground
5	-	-	-	Ground	Ground
6	-	-	-	Ground	Ground

Chapter 4. Miscellaneous

4.1 Buttons, Jumpers and Indicators

Table 4-1 through Table 4-3 describe the buttons (switches), jumpers and indicators.

Table 4-1. **Buttons**

Button	Description	Usage
S501	Power button	Used to power system up if off, or power down if on. If held for >10 seconds, will shut down the system.
S502	Reset button	Used to force a full system reset.
S503	Recovery button	Used to enter Force Recovery Mode. Button is held down while either system is first powered on, or by pressing and releasing reset button while recovery button is pressed.

Table 4-2. Jumpers

Jumper	Description	Usage
J514	Voltage select header	Selects the level shifter voltage on the non-Jetson AGX Xavier side of the level shifters for the signals in the following list. When a jumper is on Pin 1 and Pin 2, 3.3V level is selected. When on Pin 2 and Pin 3, 1.8V level is selected. Audio MCLK05, I2S2 PWM[3:1]
		 FWM[S:1] SPI1 UART1 I2C GP[5,2]

Table 4-3. **LED Indicators**

LED	Description	Usage
DS2	SOC Regulator Power LED (Green)	Indicates when the main 5.0V (VDD_5V) supply is enabled

4.2 I2C Interface Usage

The following tables show the I2C usage on the Jetson AGX Xavier module and developer kit carrier board.

Table 4-4. Jetson AGX Xavier I2C Interface Usage

Ctrlr	Module Pin Names (Xavier Pins)	Usage on Module	I2C Address	Xavier Block	On-Module Pull-up/voltage
I2C1	I2C1_CLK/DAT	ID EEPROM	7'h50	CONN	1KΩ to 1.8V
I2C2	I2C2_CLK/DAT	Current Monitors	7'h40 and 7'h41	AO	1KΩ to 1.8V (also current monitors via 1.8V-5V level shifters w/10k pull-ups to 5V)
I2C3	I2C3_CLK/DAT			CAM	1KΩ to 1.8V
I2C4	DP1_AUX_CH_N/P			EDP	1KΩ to 1.8V
I2C5	(PWR_I2C_SCL/SDA) On-module only	NA	NA	SYS	NA
I2C6	DP0_AUX_CH_N/P			EDP	None
I2C7	DP2_AUX_CH_N/P			EDP	None
I2C8	I2C4_CLK/DAT			A0	1KΩ to 1.8V
I2C9	I2C5_CLK/DAT			EDP	1KΩ to 1.8V

Table 4-5. Jetson AGX Xavier Developer Kit Carrier Board I2C Interface Usage

Ctrlr	Module Pin Names (Xavier Pins)	Usage on Carrier Board	I2C Address	Xavier Block	On-Module Pull-up/voltage
I2C1	I2C1_CLK/DAT	ID EEPROM	7h56	CONN	1KΩ to 1.8V
I2C2	I2C2_CLK/DAT	12V DC-DC USB PD Controller	7'h74 7'h08	AO	1KΩ to 1.8V (also Current Monitors via 1.8V-5V level shifters w/10k pull-ups to 5V)
I2C3	I2C3_CLK/DAT			CAM	1KΩ to 1.8V
I2C4	DP1_AUX_CH_N/P	Audio Codec	7'h1A	EDP	1KΩ to 1.8V
I2C6	DP0_AUX_CH_N/P			EDP	None
I2C7	DP2_AUX_CH_N/P			EDP	None
I2C8	I2C4_CLK/DAT			AO	1KΩ to 1.8V
I2C9	I2C5_CLK/DAT			EDP	1KΩ to 1.8V

Chapter 5. Interface Power

Figure 5-1 shows the interface connector power diagram.

VDD_SRC (SYS_VIN_HV) Jetson AGX Xavier VBUS1 VDD_5V (SYS_VIN_MV) FET VCC_DCIN VBUS2 VBUS1 VDD_3V3_PD USB-C #2 FET AP2204RA-3.3 VBUS2 USB Type C PD Controller & Power NCP81239 _____VCC_USBPD VCC USBPD Path DC-DC V5V P1/V5V P2 APL3510 Ld Sw x2 TPS53015 ______VDD_3V3 VDD 3V3 USB Type C #1/#2 DC-DC VBUS[1:0] FETs Redriver & Conn. 3V3 AO GS7116S5LDO EFM8SB10 uCont. VDD 3V3 SD TPS22908 Load Sw. APW7307 ______VDD_1V8 VDD 1V8 SD UFS / SD Card TPS22908 Load Sw. DC-DC VDD_3V3 VDD_1V8 TPS53015 ______5V_AO **Ethernet** EPB_1V0 NCP705 LDO DC-DC VDD_5V0_HDMI_CON APL3511 Load Sw. **►** HDMI VDD 1V8 **Audio Codec** VDD_5V VDD_5V FETs VDD_3V3 M.2 Key E Socket VDD_3V3 M.2 Key M Socket VDD_3V3 (+3V3AUX) PEX_3V3 TPS22965 Load Sw. PCIe x16 Connector NCP81239 ______ VDD_12V VDD_12V DC-DC VDD 3V3 VDD_1V_SATA_PHY **ESATA Bridge &** NCP57948 LDO VDD_5V_SATA Connector APL3511 Load Sw. VDD 5V Fan VDD 3V3 Camera Expansion VDD_1V8 AVDD_CAM_2V8 Connector APL5932 LDO VDD 3V3 VDD 5V **Expansion Connector**

Interface Connector Power Diagram Figure 5-1.

The following tables show the allocation of supplies to the connectors on the Jetson carrier board and current capabilities.

Interface Power Supply Allocation Table 5-1.

Power Rails	Usage	(V)	Power Supply or Gate	Source	Enable
VCC_SRC	Main power input from DC Adapter or USB type C VBUS[2:1]	9-20	FETs	DC Adapter or Type C USB	
VCC_USBPD		5-20	NCP81239 Regulator	VCC_SRC	
VDD_3V3_PD		3.3	AP2204RA-3.3 DC-DC	VCC_DCIN/VBUS[2:1]	VCC_DCIN, VBUS[2:1]
5V_AO	Always-on 5V supply	5.0	TPS53015 DC-DC	VCC_SRC	VDD_3V3_PD
VDD_5V	Main 5V supply	5.0	FETs	5V_AO	VIN_PWR_ON
VDD_3V3	Main 3.3V supply	3.3	TPS53015 DC-DC	VCC_SRC	CARRIER_PWR_ON
VDD_1V8	Main 1.8V supply	1.8	APW7307 DC-DC	VCC_SRC	CARRIER_PWR_ON
VDD_12V	12V rail for PCIe, Fan	12.0	NCP81239 DC-DC	VCC_SRC	Module GPIO05
VBUS[2:1]	VBUS pin from USB Type C connectors (alternative is DC Jack)	5-20	FETs	VCC_USBPD	PD Controller
PEX_3V3	PCIe x16 connector +3V3 rail supply	3.3	TPS22965 Load Switch	VDD_3V3	Module GPIO23
VDD_3V3_SD	SD Card & UFS VCC power rail	3.3	TPS22908 Load Switch	VDD_3V3	Module GPIO21
VDD_1V8_SD	UFS VCCQ2 power rail		TPS22908 Load Switch	VDD_1V8	Module GPIO21
EPB_1V0	Ethernet PHY DVDD power rail	1.0	NCP705 LDO	VDD_3V3	VDD_3V3
VDD_5V0_HDMI_CON	5V rail for HDMI connector	5.0	APL3511 Power Switch	VDD_5V0	Module GPIO20
VDD_1V_SATA_PHY	PCIe to eSATA bridge VDD power rail	1.0	NCP57948 LDO	VDD_1V8	VDD_1V8
VDD_5V_SATA	VBUS for USB portion of Hybrid eSATA connector.	5.0	APL3511 Load Switch	VDD_5V	Module GPIO22
DVDD_CAM_LV	Reserved for potential use as Camera Digital power rail	NA	NA	NA	NA
AVDD_CAM_2V8	Camera Analog power rail	2.8	APL5932 LDO	VDD_3V3	Module GPIO36

Table 5-2. Interface Supply Current Capabilities

Power Rails	Usage	(V)	Max Current (A)
VCC_SRC	Main power input from USB Type C connectors or DC Jack	9-20	5.0
VDD_5V	Main system 5V supply	5.0	9.5
VDD_3V3	Main system 3.3V supply	3.3	10.5
VDD_1V8	Main system 1.8V supply	1.8	2.8
VDD_12V	12V rail for PCIe connector & optionally for Fan	12	5.5
AVDD_CAM_2V8	Analog Camera rail	2.8	3.0

The values shown in the "Max Current" column indicate the total power available on the expansion connectors minus the current used on the platform (not per connector pin).

If a given voltage rail cannot provide enough current, a possible solution is for the user to use a regulator from VDD_12V, VDD_5V, VDD_3V3, or VDD_1V8 to generate the desired rail.

Supply Current Capabilities Per Connector Per Supply Table 5-3.

Power Rails	Connector	(V)	Max Allocated Current (A)
VDD 12V	Fan (optional)	12	0.45
VDD_12V	PCIe	12	3.0
VDD 5V	40-pin 5		1.0
VDD_3V	Fan (default)	3	0.15
	PCIe 3.3V Aux		1.0
VDD 3V3	Camera 3.3		1.44
VDD_3V3	M.2 Key M	3.3	0.93
	M.2 Key E		0.8
PEX_3V3	PCIe 3.3V	3.3	3.0
AVDD_CAM_2V8	Camera	2.8	0.6
VDD_1V8	Camera	1.8	1.72

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

Unless specifically agreed to in writing by NVIDIA, NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA'S aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All other brands or product names are the property of their respective holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

Trademarks

NVIDIA, the NVIDIA logo, Jetson, Jetson AGX Xavier, and Xavier are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018, 2019, 2020 NVIDIA Corporation. All rights reserved.

