Inverse Trigonometric Functions

$$y = \arcsin x$$
, Domain = [-1, 1], Range = $[-\frac{\pi}{2}, \frac{\pi}{2}]$,

$$y = \arccos x$$
, Domain = $[-1, 1]$, Range = $[0, \pi]$,

$$y = \arctan x$$
, Domain $= (-\infty, \infty)$, Range $= (-\frac{\pi}{2}, \frac{\pi}{2})$.

By definition,

$$y = \arcsin x$$
 implies $x = \sin y$,

$$y = \arccos x$$
 implies $x = \cos y$,

$$y = \arctan x$$
 implies $x = \tan y$.

Graphs of inverse trigonometric functions:

Note that $y = \arcsin x$ is an increasing functions while $y = \arccos x$ is a decreasing function. $y = \arctan x$ (shown below) is also an increasing function.

Example 1. Evaluate (a) $\arcsin\left(\frac{1}{\sqrt{2}}\right)$ (b) $\arccos\left(-\frac{\sqrt{3}}{2}\right)$ (c) $\arctan(-\sqrt{3})$.

Example 2. Find an algebraic expression for $\tan(\arcsin 2x)$.

Example 3. Evaluate $\sin(\arccos(-3/4))$.