Deep Features for the Evidence of Covid-19 Screening Using Chest X-rays

Supriti Ghosh and KC Santosh

supriti.ghosh@coyotes.usd.edu and santosh.kc@usd.edu

Applied Artificial Intelligence Research Lab

Department of Computer Science
University of South Dakota
IdeaFest 2022

Overview

Chest X-ray images could facilitate greatly in mass Covid-19 screening.

In this study, we build deep learning models to detect Covid-19 positive cases using chest X-ray image.

We leverage DNN models such as CheXNet, DenseNet, ResNet, VGG to build automated Covid-19 screening.

Early results (based on deep features) show performance improvement and further possibilities.

Normal

Pneumonia

Motivation

- Since December 2019, the infection rate of Covid-19 cases has been very high.
- In such infectious disease, early detection tools would help largely to mitigate the spread and save lives.
- Current Covid-19 screening are expensive and time-consuming.
- Chest X-ray imaging is available and accessible in many clinical sites as it is considered standard equipment in most healthcare systems.

Coronavirus World Map: Tracking the Global Outbreak

Updated March 30, 2021, 8:24 P.M. E.T.

Related Work

- A number of AI-driven tools have been used to help predict, screen, and diagnose Covid-19 positive cases.
 - Santosh, K.C. AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and Cross-Population Train/Test. Models on Multimudinal/Multimodal Data. J Med Syst 44, 94 (2020). https://doi.org/10.1007/s10916-020-01562-1
- A Convolutional Neural Network (CNN) —tailored Deep Neural Network (DNN) has been proposed that can collectively train/test both CT scans and Chest X-rays.
 - Mukherjee, H., Ghosh, S., Dhar, A., Santosh, K.C. et al. Deep neural network to detect Covid-19: one architecture for both CT Scans and Chest X-rays. Appl Intell (2020). https://doi.org/10.1007/s10489-020-01943-6
- However, the performance was not up to the mark because at that time there were not available data. Now we are using state-of-the art for better performance.

Data Collection

• We have collected 8,214 Chest X-Ray images from 4 different sources.

Balanced Dataset for Experiment:
 4,716 CXRs (2,358 Covid-19 positive &
 2,358 non-Covid-19 (Healthy: 1,583 +
 Pneumonia: 775)

Chest X-Ray Image	Collections
Healthy Chest X-Ray	1,583
Pneumonia Chest X-Ray	4,273
Covid-19 Chest X-Ray	2,358
Total Chest X-Ray	8,214

Methodology

• The schematic view of the Deep learning models that we followed

Training

- Schematic representation of cross validation
- We are using k-fold cross validation to make model more robust.

Results

μ ± σ	AUC	ACC	SPEC	SEN
CheXNet	0.99 ± 0.008	98.45 ± 0.011	0.98 ± 0.013	0.99 ± 0.007
DenseNet169	0.98 ± 0.005	98.13 ± 0.008	0.99 ± 0.008	0.98 ± 0.008
ResNet50	0.59 ± 0.022	59.18 ± 0.020	0.59 ± 0.022	0.59 ± 0.022
VggNet16	0.59 ± 0.024	58.92 ± 0.025	0.59 ± 0.024	0.59 ± 0.024

Comparison: AUC, ACC (in %), SPEC, and SEN of CheXNet, DenseNet169, ResNet50 and VggNet16 (Covid-19 vs Non-Covid-19)

Conclusion

Chest X-ray imaging enables rapid screening of patients to suspect of Covid-19 virus.

Because of Chest X-ray's availability and accessibility, early detection is possible to reduce the infection rate, specially in mass populated area.

Chest X-ray images of Covid-19 patients could compare with other abnormalities like Pneumonia, Tuberculosis, Lung Cancer, etc.

Future Work

Based on the results, we would improve the model architecture to explore more features.

We would be able to use our model in consumption with other models that work on diseases like Pneumonia, Tuberculosis x-ray images.

The model would be deployed in real world scenarios for screening and prediction.

References

- [1] Santosh, K.C. AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and Cross-Population Train/Test. Models on Multimudinal/Multimodal Data. J Med Syst 44, 94 (2020). https://doi.org/10.1007/s10916-020-01562-1
- [2] Mukherjee, H., Ghosh, S., Dhar, A., Santosh, K.C. et al. Deep neural network to detect COVID-19: one architecture for both CT Scans and Chest X-rays. Appl Intell (2020). https://doi.org/10.1007/s10489-020-01943-6
- [3] Mukherjee, H., Ghosh, S., Dhar, A., Santosh, K.C. et al. Shallow Convolutional Neural Network for COVID-
- 19 Outbreak Screening Using Chest X-rays. Cogn Comput (2021). https://doi.org/10.1007/s12559-020-09775-9
- [4] Das, D., Santosh, K.C. & Pal, U. Truncated inception net: COVID-19 outbreak screening using chest X-rays. *Phys Eng Sci Med* **43**, 915–925 (2020). https://doi.org/10.1007/s13246-020-00888-x
- [5] https://www.nytimes.com/interactive/2020/world/coronavirus-maps.html
- [6] https://github.com/lindawangg/COVID-Net
- [7] https://github.com/ieee8023/covid-chestxray-dataset
- [8] Kermany, Daniel, Kang Zhang, and Michael Goldbaum. "Labeled optical coherence tomography (OCT) and Chest X-Ray images for classication." Mendeley data 2.2 (2018), https://doi.org/:10.17632/rscbjbr9sj.2
- [9] https://data.mendeley.com/datasets/rscbjbr9sj/2

Thank you

