- Introducción
- Simple PLDs
- Complex PLDs
- FPGAs

- Diseño tradicional: basado en CIs estándar SSI/MSI
- Obtención de la función lógica
- Reducción a términos producto
- Minimización:
 - Número de integrados
 - Retardo de propagación

- Sistemas actuales de diseño digital:
 - Dispositivos lógicos programables (PLDs)
 - Microcontroladores (capacidad para ejecutar un conjunto de instrucciones)
 - ASICs (Application Specific Integrated Circuits): circuitos integrados diseñados "a medida"

- Dispositivos lógicos programables:
 - integrados LSI/VLSI
 - estructura circuital regular y flexible
 - configurables para realizar la función lógica requerida
 - programables (estructura de interruptores)

- Ventajas de los PLDs
 - Menos dispositivos en el diseño
 - Menor coste
 - Menos espacio de tarjeta
 - Menor consumo
 - Flexibilidad para modificar el diseño
 - Automatización del diseño

- Dispositivos lógicos programables: clasificación
 - SPLDs (Simple PLDs): basados en campos AND-OR
 - CPLDs (Complex PLDs): basados en campos AND-OR
 - FPGAs: basados en bloques lógicos formados por multiplexores o tablas (LUTs)

- Introducción
- > Simple PLDs
- Complex PLDs
- FPGAs

- SPLDs
 - PROMs
 - PALs, GALs
 - PLAs

PROMs

- Programmable Read Only Memory
- Campo AND fijo (decodificador completo)
- Campo OR programable
- Se usan para almacenamiento de datos (LUTs: look-up tables)
- Dispositivos borrables: EPROMs, EEPROMs

A_1A_0	Ď	$_3D_2$	D_1	D_0
0 0 0 1 1 0 1 1	0	0	1	0
0 1	0	1	0	1
1 0	1	0	1	1
1 1	1	0	1	0

Ejemplo de programación de una PROM

PALs y GALs

- Programmable Array Logic
- Campo AND programable
- Campo OR fijo
- Desarrolladas por Monolithic Devices en 1976
- GAL: Generic Array Logic (PAL borrable eléctricamente)

Denominación

Información en:

http://www.ti.com/sc/docs/products/proglgc/index.htm

PAL16L8

PAL16R4

PAL22V10

22V10

- 12 entradas (I)
- 10 entradas/salidas (I/O)
- Cada pin I/O posee asociada una OLM (Output Logic Macrocell)
 - Cada macrocelda posee un biestable
 - La salida de cada macrocelda se puede configurar como combinacional o con registro
 - La salida puede configurarse como activa en alto o en bajo

22V10

- Número de términos producto variable de 8 a 16
- Todos los biestables del OLM comparten:
 - Señal de reloj (mismo flanco activo)
 - Reset asíncrono (AR)
 - Preset síncrono (SP)

Esquema de una macrocelda de salida

Posibles configuraciones de la macrocelda de salida

PLAs

- Programmable Logic Array
- Campo AND programable
- Campo OR programable
- Desarrolladas por la firma Signetics
 Corporation en 1975

Tecnología de programación

- Bipolar
 - Cada interruptor es un fusible que se funde con un pico de corriente
 - Una vez programado no se puede reprogramar (OTP: One Time Programmable)

- MOS

- Cada interruptor es un transistor MOS de puerta aislada
- EPLD: borrado por luz ultravioleta
- EEPLD: borrado eléctrico

- Introducción
- Simple PLDs
- > Complex PLDs
- FPGAs

CPLDs

- Complex Programmable Logic Devices
- Contiene varios bloques lógicos, cada uno similar a un pequeño PLD
- Los bloques lógicos se comunican mediante interconexiones programables
- Se obtiene un uso altamente eficiente del área de silicio
- El origen de las CPLDs son las EPLDs de Altera (1984)

■ EPLDs de Altera http://www.altera.com

Figure 8. EP610 Block Diagram

Numbers without parentheses are for DIP and SOIC packages. Numbers in parentheses are for J-lead packages.

■ EPLDs de Altera

Figure 1. Classic Device Macrocell

EPLDs de Altera

Table 1. Classic Device Features					
Feature	EP610 EP610I	EP910 EP9101	EP1810		
Usable gates	300	450	900		
Macrocells	16	24	48		
Maximum user I/O pins	22	38	64		
t _{PD} (ns)	10	12	20		
f _{CNT} (MHz)	100	76.9	50		

CPLDs

 Tomamos como ejemplo las CPLDs de la firma Xilinx http://www.xilinx.com

Table 1: XC9500 Device Family

	XC9536	XC9572	XC95108	XC95144	XC95216	XC95288
Macrocells	36	72	108	144	216	288
Usable Gates	800	1,600	2,400	3,200	4,800	6,400
Registers	36	72	108	144	216	288
t _{PD} (ns)	5	7.5	7.5	7.5	10	10
t _{SU} (ns)	3.5	4.5	4.5	4.5	6.0	6.0
t _{CO} (ns)	4.0	4.5	4.5	4.5	6.0	6.0
f _{CNT} (MHz)	100	125	125	125	111.1	111.1
f _{SYSTEM} (MHz)	100	83.3	83.3	83.3	66.7	66.7

Note: f_{CNT} = Operating frequency for 16-bit counters

fsystem = Internal operating frequency for general purpose system designs spanning multiple FBs.

Figure 1: XC9500 Architecture

Figure 2: XC9500 Function Block

Figure 3: XC9500 Marcocell Within Function Block

Figure 8: Product Term Allocator Logic

Figure 10: I/O Block and Output Enable Capability

Figure 13: In-System Programming Operation (a) Solder Device to PCB and (b) Program Using Download Cable

- Introducción
- Simple PLDs
- Complex PLDs
- > FPGAs

- Tecnología Gate Array
 - Desarrollada por IBM en los años 70
 - Basada en circuitos que contienen:
 - Puertas lógicas simples
 - Elementos de interconexión
 - Elementos de entrada/salida
 - Todos estos elementos son conectados entre sí en el momento de la fabricación del chip para obtener el diseño lógico deseado

FPGAs

- Field Programmable Gate Arrays
- Formadas por:
 - Bloques lógicos
 - Bloques de entrada/salida
 - Canales de interconexión
- Los bloques lógicos constan de:
 - Tablas (look-up tables)
 - Multiplexores
 - Registros

- La primera FPGA fue desarrollada por Xilinx en 1984, y se denominaba LCA (Logic Cell Array)
- Configurables mediante elementos de memoria RAM (volátil). Se precisa una EPROM externa de configuración
- Tomamos como ejemplo la serie XC4000 de Xilinx

Estructura general de una FPGA

Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)

Figure 4: 16x2 (or 16x1) Edge-Triggered Single-Port RAM

Figure 15: Simplified Block Diagram of XC4000E IOB

Figure 28: Single- and Double-Length Lines, with Programmable Switch Matrices (PSMs)

Figure 26: Programmable Switch Matrix (PSM)

Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays

	Logic	Max Logic Gates	Max. RAM Bits	Typical Gate Range	CLB	Total	Number of	Max.
Device	Cells	(No RAM)	(No Logic)	(Logic and RAM)*	Matrix	CLBs	Flip-Flops	User I/O
XC4002XL	152	1,600	2,048	1,000 - 3,000	8 x 8	64	256	64
XC4003E	238	3,000	3,200	2,000 - 5,000	10 x 10	100	360	80
XC4005E/XL	466	5,000	6,272	3,000 - 9,000	14 x 14	196	616	112
XC4006E	608	6,000	8,192	4,000 - 12,000	16 x 16	256	768	128
XC4008E	770	8,000	10,368	6,000 - 15,000	18 x 18	324	936	144
XC4010E/XL	950	10,000	12,800	7,000 - 20,000	20 x 20	400	1,120	160
XC4013E/XL	1368	13,000	18,432	10,000 - 30,000	24 x 24	576	1,536	192
XC4020E/XL	1862	20,000	25,088	13,000 - 40,000	28 x 28	784	2,016	224
XC4025E	2432	25,000	32,768	15,000 - 45,000	32 x 32	1,024	2,560	256
XC4028EX/XL	2432	28,000	32,768	18,000 - 50,000	32 x 32	1,024	2,560	256
XC4036EX/XL	3078	36,000	41,472	22,000 - 65,000	36 x 36	1,296	3,168	288
XC4044XL	3800	44,000	51,200	27,000 - 80,000	40 x 40	1,600	3,840	320
XC4052XL	4598	52,000	61,952	33,000 - 100,000	44 x 44	1,936	4,576	352
XC4062XL	5472	62,000	73,728	40,000 - 130,000	48 x 48	2,304	5,376	384
XC4085XL	7448	85,000	100,352	55,000 - 180,000	56 x 56	3,136	7,168	448

^{*} Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Sistemas de desarrollo

- Software diseñado para ayudar al usuario a realizar un desarrollo basado en PLD de una manera sencilla
- Generalmente incluyen:
 - Editor HDL (Hardware Description Language)
 - Editor de máquinas de estado
 - Captura de esquemático
 - Simulador temporal