

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

MID Assignment, Trimester: Summer 2024

Course Code: CSE 113/EEE 2113; Course Title: Electrical Circuits

Section: C

Question 1:

A circuit element is connected to a voltage source as shown in **Figure 1a**. The charge entering through this element is shown in **Figure 1b**. Now, answer the following questions:

- i) Calculate and sketch the current flowing into this element between 0 to 10 ms.
- ii) Calculate and sketch the power of this element between 0 to 10 ms. Determine at which time intervals the power is absorbed and power is delivered.

Figure 1a

Figure 1b

Question 2:

Answer the following questions for the circuits shown in **Figure 2(a-b)**:

- iii) Determine the voltages V_1 and V_2 using KVL.
- iv) Determine the currents I_2 and I_S using KCL.

Figure 2b

Figure 2a

Question 3:

Determine the following for the circuit shown in **Figure 3**:

- i) Equivalent Resistance, R_{ab} for this circuit.
- ii) Current V_1 , I_1 and I_2 using CDR, VDR.

Question 4:

Answer the following questions for the circuit shown in Figure 4 (a-b):

- Use the mesh analysis method to determine the mesh currents and the value of i_ϕ in the **Figure 4a** circuit.
- ii)

Question 5:

Answer the following questions for circuit of Figure 5.

- i) Use node analysis to find the current I_0
- ii) Find the power absorbed or delivered by each source.

Question 6:

For the circuit of **Figure 6.** find V_0 using mesh analysis.

Question 7:

Use mesh analysis to find the value of V_x for the circuit in **Figure 7**.

