Ch 5.1.3-4: *k*-Fold Cross-Validation

Lecture 13 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Wed, Oct 4, 2023

Announcements

Last time:

LOOCV

Validation Set

•

Announcements:

Covered in this lecture

• k-fold CV

Section 1

Last time

Validation set approach

- Divide randomly into two parts:
 - Training set
 - Validation/Hold-out/Testing set
- Fit model on training set
- Use fitted model to predict response for observations in the test set
- Evaluate quality (e.g. MSE)

Dr. Munch (MSU-CMSE) Wed, Oct 4, 2023

Problems

Ex. Predict mpg using horsepower

- Highly variable results, no consensus about the error
- Tends to overestimate test error rate

Leave One Out CV (LOOCV)

- Remove (x_1, y_1) for testing.
- Train the model on n-1 points: $\{(x_2, y_2), \dots, (x_n, y_n)\}$
- Calculate $MSE_1 = (y_1 \hat{y}_1)^2$
- Remove (x_2, y_2) for testing.
- Train the model on n-1 points: $\{(x_1, y_1), (x_3, y_3), \dots, (x_n, y_n)\}$
- Calculate $MSE_2 = (y_2 \hat{y}_2)^2$
- Rinse and repeat

Return the score:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i$$

Dr. Munch (MSU-CMSE) Wed, Oct 4, 2023

Pros and Cons

- No variance
- Higher computation cost

8 / 17

. Munch (MSU-CMSE) Wed, Oct 4, 2023

Speeding up LOOCV

Warning: This only works for least squares linear or polynomial regression.

$$h_i = \frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{j=1}^n (x_j - \overline{x})^2} \qquad \qquad \frac{1}{n} \sum_{i=1}^n MSE_i = CV_{(n)} = \frac{1}{n} \sum_{i=1}^n \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

9 / 17

Dr. Munch (MSU-CMSE) Wed, Oct 4, 2023

Section 2

k-Fold CV

The idea

Or. Munch (MSU-CMSE) Wed, Oct 4, 2023

Mathy version

- Randomly split data into k-groups (folds)
- Approximately equal sized. For the sake of notation, say each set has ℓ points
- Remove *i*th fold U_i and reserve for testing.
- Train the model on remaining points
- Calculate $\mathrm{MSE}_i = \frac{1}{\ell} \sum_{(\mathsf{x}_i, \mathsf{y}_j) \in U_i} (\mathsf{y}_j \hat{\mathsf{y}}_j)^2$

Rinse and repeat

Return

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

By hand first!

There are 10 students in the class, and we have data points for each. They have already been randomly permuted below. Write down the training/testing sets for a 3-fold CV

Fold 1 Fold 2 Fold 3 Damien

- Alice
- Greta
- Jasmin
- Benji
- Inigo
- Firas
- Carina
- Enrique
- Hubert

Wed. Oct 4, 2023

Coding - Building k-fold CV

Dr. Munch (MSU-CMSE)

Pros and Cons

Pros: Cons:

Comparison

16 / 17

r. Munch (MSU-CMSE) Wed, Oct 4, 2023

Next time

Lec#	Date			Reading	Homeworks
12	Mon	Oct 2	Leave one out CV	5.1.1, 5.1.2	
13	Wed	Oct 4	k-fold CV	5.1.3	
14	Fri	Oct 6	More k-fold CV,	5.1.4-5	
15	Mon	Oct 9	k-fold CV for classification	5.1.5	
16	Wed	Oct 11	Resampling methods: Bootstrap	5.2	
17	Fri	Oct 13	Subset selection	6.1	
18	Mon	Oct 16	Shrinkage: Ridge	6.2.1	
19	Wed	Oct 18	Shrinkage: Lasso	6.2.2	
	Fri	Oct 20	Review		
	Mon	Oct 23	No class - Fall break		
	Wed	Oct 25	Midterm #2		
20	Fri	Oct 27	Dimension Reduction	6.3	

Dr. Munch (MSU-CMSE) Wed, Oct 4, 2023