

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, $P_g =$
(ASCE 7-05, Eq. 7-2)	18.56 psf	Sloped Roof Snow Load, $P_s =$
	1.00	I _s =
	0.82	$C_s =$
	0.90	$C_e =$

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	120 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 22.61 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and, here all desired.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{\rm s}$ of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>818.31</u>	<u>7293.56</u>	k
Compressive Load =	3948.07	<u>5481.53</u>	k
Lateral Load =	<u>11.13</u>	3905.45	k
Moment (Weak Axis) =	0.02	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 184621.9 in-lbs Resisting Force Required = 2797.30 lbs A minimum 132in long x 39in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4662.17 lbs to resist overturning. Minimum Width = <u>39 in</u> in Weight Provided = 7775.63 lbs Sliding Force = 938.71 lbs Use a 132in long x 39in wide x 18in tall Friction = 0.4 Weight Required = 2346.76 lbs ballast foundation to resist sliding. Resisting Weight = 7775.63 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 938.71 lbs Cohesion = 130 psf Use a 132in long x 39in wide x 18in tall 35.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3887.81 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

С	1.0D + 1.0S				1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
1	39 in	40 in	41 in	42 in	39 in	40 in	41 in	42 in	39 in	40 in	41 in	42 in	39 in	40 in	41 in	42 in
	1249 lbs	1249 lbs	1249 lbs	1249 lbs	1640 lbs	1640 lbs	1640 lbs	1640 lbs	2049 lbs	2049 lbs	2049 lbs	2049 lbs	-388 lbs	-388 lbs	-388 lbs	-388 lbs
	1235 lbs	1235 lbs	1235 lbs	1235 lbs	2378 lbs	2378 lbs	2378 lbs	2378 lbs	2595 lbs	2595 lbs	2595 lbs	2595 lbs	-3502 lbs	-3502 lbs	-3502 lbs	-3502 lbs
	163 lbs	163 lbs	163 lbs	163 lbs	1680 lbs	1680 lbs	1680 lbs	1680 lbs	1368 lbs	1368 lbs	1368 lbs	1368 lbs	-1877 lbs	-1877 lbs	-1877 lbs	-1877 lbs
	10259 lbs	10459 lbs	10658 lbs	10857 lbs	11794 lbs	11993 lbs	12193 lbs	12392 lbs	12420 lbs	12619 lbs	12818 lbs	13018 lbs	776 lbs	896 lbs	1015 lbs	1135 lbs
	3318 lbs-ft	3318 lbs-ft	3318 lbs-ft	3318 lbs-ft	4731 lbs-ft	4731 lbs-ft	4731 lbs-ft	4731 lbs-ft	5725 lbs-ft	5725 lbs-ft	5725 lbs-ft	5725 lbs-ft	3746 lbs-ft	3746 lbs-ft	3746 lbs-ft	3746 lbs-ft
	0.32 ft	0.32 ft	0.31 ft	0.31 ft	0.40 ft	0.39 ft	0.39 ft	0.38 ft	0.46 ft	0.45 ft	0.45 ft	0.44 ft	4.83 ft	4.18 ft	3.69 ft	3.30 ft
	1 83 ft	1 83 ft	1.83 ft	1.83 ft	1 83 ft	1.83 ft	1 83 ft	1 83 ft	1 83 ft	1 83 ft	1 83 ft	1 83 ft	1 83 ft	1 83 ft	1.83 ft	1 83 ft

254.8 psf

388.9 psf

Ballast Width

41 in

42 in

260.1 psf 259.0 psf

429.3 psf

434.8 psf

258.0 psf

424.2 psf

<u>40 in</u>

<u>39 in</u>

255.8 psf

393.1 psf

Maximum Bearing Pressure = 435 psf Allowable Bearing Pressure = 1500 psf

402.1 psf 397.5 psf

256.7 psf

257.7 psf

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3.25 \text{ ft}) =$

235.0 psf

329.0 psf

Use a 132in long x 39in wide x 18in tall ballast foundation for an acceptable bearing pressure.

257.0 psf

419.2 psf

0.0 psf

236.8 psf

0.0 psf

136.0 psf

0.0 psf

0.0 psf

ASD LC Width F_A

> M e L/6

f_{min}

236.3 psf

235.9 psf

334.6 psf

235.4 psf

331.7 psf

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 1164.0 \text{ ft-lbs}$

Resisting Force Required = 716.30 lbs S.F. = 1.67

Weight Required = 1193.84 lbs Minimum Width = 39 in in Weight Provided = 7775.63 lbs A minimum 132in long x 39in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		39 in			39 in			39 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	226 lbs	575 lbs	226 lbs	725 lbs	2062 lbs	725 lbs	66 lbs	168 lbs	66 lbs		
F _V	1 lbs	0 lbs	1 lbs	4 lbs	0 lbs	4 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	9852 lbs	7776 lbs	9852 lbs	9888 lbs	7776 lbs	9888 lbs	2881 lbs	7776 lbs	2881 lbs		
M	4 lbs-ft	0 lbs-ft	4 lbs-ft	14 lbs-ft	0 lbs-ft	14 lbs-ft	1 lbs-ft	0 lbs-ft	1 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft		
f _{min}	275.4 psf	217.5 psf	275.4 psf	275.9 psf	217.5 psf	275.9 psf	80.6 psf	217.5 psf	80.6 psf		
f _{max}	275.8 psf	217.5 psf	275.8 psf	277.3 psf	217.5 psf	277.3 psf	80.6 psf	217.5 psf	80.6 psf		

Maximum Bearing Pressure = 277 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 39in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 39in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

F		D 0: 1	
Front Strut		Rear Strut	
Maximum Axial Load =	3.037 k	Maximum Axial Load =	4.936 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>41%</u>	Utilization =	<u>67%</u>
Diagonal Strut			
Maximum Axial Load =	2.594 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>35%</u>		
	0	Struts under compression are s	shown to demon
	°	Struts under compression are s	hown to den

e shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 46.89 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.938 in Max Drift, Δ_{MAX} = 0.034 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 108 \text{ in}$$
 $J = 0.432$
 298.779

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 27.7 \text{ ks}$$

$$\phi F_L = 27.7 \text{ ksi}$$

$$\varphi \Gamma_L = 27.7 \text{ KS}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

2.155 in⁴

$$Sx = 1.335 \text{ in}^3$$

$$M_{max}St = 2.788 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_{b} = 108$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$$

$$\phi F_1 = 28.9$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$SZ = \frac{1}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

1.152 k-ft

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

 $M_{max}Wk =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi c k 2^* \sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S1 = \left(\frac{1.6Dt}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$φF_L = φb[Bt-Dt*√(Rb/t)]$$

 $φF_L = 31.1 \text{ ksi}$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{35.2}{m} = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\varphi F_L = 1.3 \varphi \varphi F c \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \ ksi \\ Ix = & 984962 \ mm^4 \\ & 2.366 \ in^4 \\ y = & 43.717 \ mm \\ Sx = & 1.375 \ in^3 \\ M_{max} St = & 3.363 \ k\text{-ft} \end{array}$$

3.4.16.1

N/A for Weak Direction

3.4.18

S.4.16
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 16.2$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{max} = 58.55 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$(C_c)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{1}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

27.5

 $C_0 =$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$$\phi F_L = \phi b [Bp-1.6Dp*b]$$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F F F Cy$$

$$\varphi F_L = 38.9 \text{ kg}$$

3.4.16.1

3.4.16

N/A for Weak Direction

b/t = 24.5

 $S2 = \frac{k_1 Bp}{1.6 Dp}$ S2 = 46.7

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

 $\phi F_L = 28.2 \text{ ksi}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{36.9}{m} = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\phi F_l Wk =$ 28.2 ksi

$$ly = 279836 \text{ mm}^4$$

0.672 in⁴

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk =$ 1.460 k-ft

Compression

 $\phi F_i St =$

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$

$$J = 0.942$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$$

$$\phi F_L = 30.2 \text{ ksi}$$

Weak Axis:

3.4.16

$$L_b = 63.42$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{\frac{\theta_y}{\theta_b}Fcy}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.2$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{b_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

$$\rho - \frac{\theta_y}{\theta_h} F c y$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$y = 0.672 \text{ in}^{-1}$$

 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^{-3}$
 $M_{\text{max}}St = 1.460 \text{ k-ft}$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.7854 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

3.4.9

24.5 b/t =S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_1 =$ 28.2 ksi b/t =24.5 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L = 28.2 \text{ ksi}$

Rev. 11.05.2015

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \phi F_L &= & \phi Fcy \\ \phi F_L &= & 33.25 \text{ ksi} \\ \phi F_L &= & 12.77 \text{ ksi} \\ A &= & 663.99 \text{ mm}^2 \\ &= & 1.03 \text{ in}^2 \\ P_{\text{max}} &= & 13.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Y	-46.9	-46 9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-69.356	-69.356	0	0
2	M14	٧	-69.356	-69.356	0	0
3	M15	V	-107.187	-107.187	0	0
4	M16	V	-107.187	-107.187	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	157.628	157.628	0	0
2	M14	V	119.797	119.797	0	0
3	M15	V	63.051	63.051	0	0
4	M16	V	63 051	63 051	0	0

Load Combinations

	Description	S	P	S E	3	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:__

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	777.798	2	1309.647	2	.597	1	.003	1	Ö	1	Ó	1
2		min	-953.306	3	-1731.328	3	.029	15	0	15	0	1	0	1
3	N7	max	.03	9	1105.644	1	367	15	0	15	0	1	0	1
4		min	226	2	-168.407	3	-8.558	1	017	1	0	1	0	1
5	N15	max	.025	9	3036.978	2	0	3	0	3	0	1	0	1
6		min	-2.491	2	-629.466	3	0	14	0	14	0	1	0	1
7	N16	max	2744.9	2	4216.565	2	0	1	0	1	0	1	0	1
8		min	-3004.192	3	-5610.427	3	0	3	0	12	0	1	0	1
9	N23	max	.03	9	1105.644	1	8.558	1	.017	1	0	1	0	1
10		min	226	2	-168.407	3	.367	15	0	15	0	1	0	1
11	N24	max	777.798	2	1309.647	2	029	15	0	15	0	1	0	1
12		min	-953.306	3	-1731.328	3	597	1	003	1	0	1	0	1
13	Totals:	max	4297.553	2	11900.692	2	0	3	·		·		·	
14		min	-4911.491	3	-10039.363	3	0	11						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	85.895	1	475.01	2	-6.518	15	0	15	.205	1	0	2
2			min	3.58	15	-835.595	3	-157.851	1	015	2	.009	15	0	3
3		2	max	85.895	1	332.053	2	-5.008	15	0	15	.065	1	.712	3
4			min	3.58	15	-588.247	3	-121.132	1	015	2	.003	15	404	2
5		3	max	85.895	1	189.096	2	-3.498	15	0	15	.002	3	1.176	3
6			min	3.58	15	-340.899	3	-84.413	1	015	2	038	1	664	2
7		4	max	85.895	1	46.139	2	-1.988	15	0	15	003	12	1.394	3
8			min	3.58	15	-93.551	3	-47.695	1	015	2	104	1	782	2
9		5	max	85.895	1	153.797	3	478	15	0	15	005	12	1.364	3
10			min	3.58	15	-96.818	2	-10.976	1	015	2	133	1	756	2
11		6	max	85.895	1	401.145	3	25.743	1	0	15	005	15	1.086	3
12			min	3.58	15	-239.775	2	168	3	015	2	126	1	588	2
13		7	max	85.895	1	648.494	3	62.462	1	0	15	003	15	.561	3
14			min	3.58	15	-382.732	2	1.468	12	015	2	081	1	277	2
15		8	max	85.895	1	895.842	3	99.181	1	0	15	.002	2	.177	2
16			min	3.58	15	-525.689	2	2.978	12	015	2	005	3	211	3
17		9	max	85.895	1	1143.19	3	135.9	1	0	15	.117	1	.775	2
18			min	3.58	15	-668.646	2	4.488	12	015	2	0	3	-1.23	3
19		10	max	85.895	1	1390.538	3	172.618	1	0	12	.271	1	1.515	2
20			min	3.58	15	-811.603	2	5.998	12	015	2	.006	12	-2.497	3
21		11	max	85.895	1	668.646	2	-4.488	12	.015	2	.117	1	.775	2
22			min	3.58	15	-1143.19	3	-135.9	1	0	15	0	3	-1.23	3
23		12	max	85.895	1	525.689	2	-2.978	12	.015	2	.002	2	.177	2
24			min	3.58	15	-895.842	3	-99.181	1	0	15	005	3	211	3
25		13	max	85.895	1	382.732	2	-1.468	12	.015	2	003	15	.561	3
26			min	3.58	15	-648.494	3	-62.462	1	0	15	081	1	277	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									LC
27		14	max	85.895	1	239.775	2	.168	3	.015	2	005	15	1.086	3
28			min	3.58	15	-401.145	3	-25.743	1	0	15	126	1	588	2
29		15	max	85.895	1	96.818	2	10.976	1	.015	2	005	12	1.364	3
30			min	3.58	15	-153.797	3	.478	15	0	15	133	1	756	2
31		16	max	85.895	1_	93.551	3	47.695	1	.015	2	003	12	1.394	3
32			min	3.58	15	-46.139	2	1.988	15	0	15	104	1	782	2
33		17	max	85.895	1	340.899	3	84.413	1	.015	2	.002	3	1.176	3
34			min	3.58	15	-189.096	2	3.498	15	0	15	038	1	664	2
35		18	max	85.895	1	588.247	3	121.132	1	.015	2	.065	1	.712	3
36			min	3.58	15	-332.053	2	5.008	15	0	15	.003	15	404	2
37		19	max	85.895	1	835.595	3	157.851	1	.015	2	.205	1	0	2
38			min	3.58	15	-475.01	2	6.518	15	0	15	.009	15	0	3
39	M14	1	max	42.574	1	515.503	2	-6.738	15	.011	3	.237	1	0	1
40			min	1.774	15	-655.142	3	-163.184	1	013	2	.01	15	0	3
41		2	max	42.574	1	372.546	2	-5.228	15	.011	3	.092	1	.562	3
42		_	min	1.774	15	-468.324	3	-126.465	1	013	2	.004	15	444	2
43		3	max	42.574	1	229.589	2	-3.718	15	.011	3	.003	3	.937	3
44		-	min	1.774	15	-281.505	3	-89.747	1	013	2	016	1	745	2
45		4		42.574	1	86.632	2	-2.208	15	.013	3	002	12	1.125	3
		4	max												
46		_	min	1.774	15	-94.687	3	-53.028	1_	013	2	088	1	903	2
47		5	max	42.574	1	92.132	3	698	15	.011	3	005	12	1.126	3
48			min	1.774	15	-56.325	2	-16.309	1	013	2	122	1	<u>918</u>	2
49		6	max	42.574	1	278.95	3	20.41	1	.011	3_	005	15	.94	3
50		_	min	1.774	15	-199.282	2	491	3	013	2	12	1	791	2
51		7	max	42.574	1	465.769	3_	57.129	1_	.011	3	003	15	.568	3
52			min	1.774	15	-342.239	2	1.252	12	013	2	082	1	52	2
53		8	max	42.574	1	652.587	3	93.848	1	.011	3	.001	10	.009	3
54			min	1.774	15	-485.196	2	2.762	12	013	2	006	1	106	2
55		9	max	42.574	1	839.406	3	130.566	1	.011	3	.106	1	.451	2
56			min	1.774	15	-628.153	2	4.272	12	013	2	0	3	737	3
57		10	max	42.574	1	1026.224	3	167.285	1	.011	3	.255	1	1.15	2
58			min	1.774	15	-771.11	2	5.782	12	013	2	.006	12	-1.67	3
59		11	max	42.574	1	628.153	2	-4.272	12	.013	2	.106	1	.451	2
60			min	1.774	15	-839.406	3	-130.566	1	011	3	0	3	737	3
61		12	max	42.574	1	485.196	2	-2.762	12	.013	2	.001	10	.009	3
62			min	1.774	15	-652.587	3	-93.848	1	011	3	006	1	106	2
63		13	max	42.574	1	342.239	2	-1.252	12	.013	2	003	15	.568	3
64			min	1.774	15	-465.769	3	-57.129	1	011	3	082	1	52	2
65		14	max	42.574	1	199.282	2	.491	3	.013	2	005	15	.94	3
66			min	1.774	15	-278.95	3	-20.41	1	011	3	12	1	791	2
67		15		42.574	1	56.325	2	16.309	1	.013	2	005	12	1.126	3
68		13	min	1.774	15	-92.132	3	.698	15	011	3	122	1	918	2
69		16	max	42.574	1	94.687	3	53.028	1	.013	2	002	12	1.125	3
70		10	min	1.774	15	-86.632	2	2.208	15	011	3	002	1	903	2
71		17		42.574	1	281.505	3	89.747	1	.013	2	.003	3	- <u>.903</u> .937	3
72		17	max	1.774		-229.589	2	3.718	15		3	016	1		2
		10	min		15					011			_	745	
73		18	max	42.574	1 1 5	468.324	3	126.465	1	.013	2	.092	1	.562	3
74		40	min	1.774	15	-372.546	2	5.228	15	011	3	.004	15	444	2
75		19	max	42.574	1	655.142	3	163.184	1	.013	2	.237	1	0	1
76	NAA C	4	min	1.774	15	-515.503	2	6.738	15	011	3	.01	15	0	3
77	M15	1	max	-1.859	15	719.836	2	-6.736	15	.013	2	.236	1	0	2
78			min	<u>-44.479</u>	1	-349.076	3	-163.178	1_	009	3	.01	15	0	3
79		2	max	<u>-1.859</u>	15	516.349	2	-5.226	15	.013	2	.092	1	.301	3
80			min	-44.479	1	-253.051	3	-126.459	1_	009	3	.004	15	<u>618</u>	2
81		3	max	-1.859	15	312.863	2	-3.716	15	.013	2	.003	3	.506	3
82			min	-44.479	1	-157.026	3	-89.74	1	009	3	016	1	-1.033	2
83		4	max	-1.859	15	109.376	2	-2.206	15	.013	2	002	12	.615	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
84			min	-44.479	1	-61.001	3	-53.021	1	009	3	088	1	-1.244	2
85		5	max	-1.859	15	35.023	3	696	15	.013	2	005	12	.628	3
86			min	-44.479	1	-94.111	2	-16.302	1	009	3	122	1	-1.251	2
87		6	max	-1.859	15	131.048	3	20.417	1	.013	2	005	15	.545	3
88			min	-44.479	1	-297.597	2	357	3	009	3	12	1	-1.056	2
89		7	max	-1.859	15	227.073	3	57.135	1	.013	2	003	15	.366	3
90			min	-44.479	1	-501.084	2	1.337	12	009	3	082	1	656	2
91		8	max	-1.859	15	323.098	3	93.854	1	.013	2	.001	10	.091	3
92			min	-44.479	1	-704.57	2	2.846	12	009	3	006	1	058	1
93		9	max	-1.859	15	419.123	3	130.573	1	.013	2	.106	1	.753	2
94			min	-44.479	1	-908.057	2	4.356	12	009	3	0	12	28	3
95		10	max	-1.859	15	515.148	3	167.292	1	.013	2	.255	1	1.763	2
96			min	-44.479	1	-1111.543	2	5.866	12	009	3	.006	12	747	3
97		11	max	-1.859	15	908.057	2	-4.356	12	.009	3	.106	1	.753	2
98			min	-44.479	1	-419.123	3	-130.573	1	013	2	0	12	28	3
99		12	max	-1.859	15	704.57	2	-2.846	12	.009	3	.001	10	.091	3
100			min	-44.479	1	-323.098	3	-93.854	1	013	2	006	1	058	1
101		13	max	-1.859	15	501.084	2	-1.337	12	.009	3	003	15	.366	3
102			min	-44.479	1	-227.073	3	-57.135	1	013	2	082	1	656	2
103		14	max	-1.859	15	297.597	2	.357	3	.009	3	005	15	.545	3
104			min	-44.479	1	-131.048	3	-20.417	1	013	2	12	1	-1.056	2
105		15	max	-1.859	15	94.111	2	16.302	1	.009	3	005	12	.628	3
106			min	-44.479	1	-35.023	3	.696	15	013	2	122	1	-1.251	2
107		16	max	-1.859	15	61.001	3	53.021	1	.009	3	002	12	.615	3
108			min	-44.479	1	-109.376	2	2.206	15	013	2	088	1	-1.244	2
109		17	max	-1.859	15	157.026	3	89.74	1	.009	3	.003	3	.506	3
110			min	-44.479	1	-312.863	2	3.716	15	013	2	016	1	-1.033	2
111		18	max	-1.859	15	253.051	3	126.459	1	.009	3	.092	1_	.301	3
112			min	-44.479	1	-516.349	2	5.226	15	013	2	.004	15	618	2
113		19	max	-1.859	15	349.076	3	163.178	1	.009	3	.236	1	0	2
114			min	-44.479	1	-719.836	2	6.736	15	013	2	.01	15	0	3
115	M16	1	max	-3.832	15	680.818	2	-6.525	15	.011	2	.206	1	0	2
116			min	<u>-91.951</u>	1	-317.33	3	-158.146	1	013	3	.009	15	0	3
117		2	max	-3.832	15	477.331	2	-5.015	15	.011	2	.066	1	.269	3
118			min	<u>-91.951</u>	1	-221.305	3	-121.427	1	013	3	.003	15	579	2
119		3	max	-3.832	15	273.845	2	-3.505	15	.011	2	0	3	.443	3
120			min	<u>-91.951</u>	1	-125.28	3	-84.708	1	013	3	037	1	955	2
121		4	max	-3.832	15	70.358	2	-1.995	15	.011	2	003	12	.52	3
122			min	-91.951	1	-29.255	3	-47.989	1	013	3	103	1	-1.127	2
123		5	max	-3.832	15	66.77	3	485	15	.011	2	005	12	.501	3
124		_	min	-91.951	1	-133.129		-11.27	1	013	3	133	1	-1.095	2
125		6	max	-3.832	15	162.795	3_	25.448	1	.011	2	005	15	.386	3
126			min	<u>-91.951</u>	1_	-336.615	2	.242	12	013	3	126	1	86	2
127		7	max	-3.832	15	258.82	3_	62.167	1	.011	2	003	15	.176	3
128			min	<u>-91.951</u>	1_	-540.102	2	1.752	12	013	3	082	1	422	2
129		8	max	-3.832	15	354.845	3	98.886	1	.011	2	.002	2	.22	2
130			min	<u>-91.951</u>	1_	-743.588	2	3.262	12	013	3	004	3	131	3
131		9	max	-3.832	15	450.87	3_	135.605	1	.011	2	.116	1	1.065	2
132		4.0	min	<u>-91.951</u>	1_	-947.075	2	4.772	12	013	3	.002	12	534	3
133		10	max	-3.832	15	546.895	3	172.324	1	.011	2	.27	1	2.114	2
134		4.4	min	-91.951	1_	-1150.562	2	6.281	12	013	3	.007	12	-1.033	3
135		11	max	-3.832	15	947.075	2	-4.772	12	.013	3	.116	1	1.065	2
136		40	min	<u>-91.951</u>	1_	-450.87	3_	-135.605		011	2	.002	12	534	3
137		12	max	-3.832	15	743.588	2	-3.262	12	.013	3	.002	2	.22	2
138		40	min	<u>-91.951</u>	1_	-354.845	3	-98.886	1	011	2	004	3	131	3
139		13	max	-3.832	15	540.102	2	-1.752	12	.013	3	003	15	.176	3
140			mın	-91.951	1	-258.82	3	-62.167	1	011	2	082	1	422	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
141		14	max	-3.832	<u>15</u>	336.615	2	242	12	.013	3	005	15	.386	3
142		4.5	min	-91.951	1_	-162.795	3	-25.448	1	011	2	126	1	86	2
143		15	max	-3.832	<u>15</u>	133.129	2	11.27	1	.013	3_	005	12	.501	3
144		1.0	min	-91.951	1_	-66.77	3	.485	15	011	2	133	1	-1. <u>095</u>	2
145		16	max	-3.832	<u>15</u>	29.255	3	47.989	1	.013	3	003	12	.52	3
146			min	-91.951	1_	-70.358	2	1.995	15	011	2	103	1	-1.127	2
147		17	max	-3.832	<u>15</u>	125.28	3	84.708	1	.013	3	0	3	.443	3
148		10	min	-91.951	_1_	-273.845	2	3.505	15	011	2	037	1	955	2
149		18	max	-3.832	15	221.305	3	121.427	1_	.013	3	.066	1	.269	3
150		10	min	-91.951	1_	-477.331	2	5.015	15	011	2	.003	15	579	2
151		19	max	-3.832	<u>15</u>	317.33	3	158.146	1	.013	3	.206	1	0	2
152			min	-91.951	_1_	-680.818	2	6.525	15	011	2	.009	15	0	3
153	<u>M2</u>	1		1112.776	2	1.922	4	.555	1	0	3	0	3	0	1
154			min	-1522.489	3	.453	15	.023	15	0	1_	0	2	0	1
155		2		1113.204	2	1.865	4	.555	1	0	3	0	1	0	15
156			min	-1522.167	3	.439	15	.023	15	0	1_	0	15	0	4
157		3	max	1113.633	2	1.809	4	.555	1	0	3	0	1	0	15
158			min	-1521.846	3	.426	15	.023	15	0	1_	0	15	001	4
159		4		1114.061	2	1.752	4	.555	1	0	3	0	1	0	15
160			min	-1521.524	3	.412	15	.023	15	0	1_	0	15	002	4
161		5		1114.489	2	1.695	4	.555	1	0	3	0	1	0	15
162			min	-1521.203	3	.399	15	.023	15	0	1_	0	15	002	4
163		6		1114.918	2	1.638	4	.555	1	0	3	0	1	0	15
164				-1520.882	3	.386	15	.023	15	0	1_	0	15	003	4
165		7		1115.346	2	1.582	4	.555	1	0	3	0	1	0	15
166			min	-1520.56	3	.372	15	.023	15	0	1	0	15	003	4
167		8		1115.775	2	1.525	4	.555	1	0	3	.001	1	0	15
168			min	-1520.239	3	.354	12	.023	15	0	1	0	15	004	4
169		9	max	1116.203	2	1.468	4	.555	1	0	3	.001	1	0	15
170			min	-1519.918	3	.332	12	.023	15	0	1	0	15	004	4
171		10	max	1116.632	2	1.411	4	.555	1	0	3	.001	1	001	15
172			min	-1519.596	3	.31	12	.023	15	0	1	0	15	004	4
173		11	max	1117.06	2	1.354	4	.555	1	0	3	.002	1	001	15
174			min	-1519.275	3	.288	12	.023	15	0	1	0	15	005	4
175		12	max	1117.489	2	1.298	4	.555	1	0	3	.002	1	001	15
176			min	-1518.954	3	.265	12	.023	15	0	1	0	15	005	4
177		13	max	1117.917	2	1.251	2	.555	1	0	3	.002	1	001	15
178			min	-1518.632	3	.243	12	.023	15	0	1	0	15	006	4
179		14	max	1118.346	2	1.206	2	.555	1	0	3	.002	1	001	12
180			min	-1518.311	3	.221	12	.023	15	0	1	0	15	006	4
181		15	max	1118.774	2	1.162	2	.555	1	0	3	.002	1	001	12
182			min	-1517.989	3	.199	12	.023	15	0	1	0	15	006	4
183		16		1119.203	2	1.118	2	.555	1	0	3	.002	1	001	12
184				-1517.668	3	.177	12	.023	15	0	1	0	15	007	4
185		17		1119.631	2	1.074	2	.555	1	0	3	.003	1	002	12
186				-1517.347	3	.155	12	.023	15	0	1	0	15	007	4
187		18		1120.06	2	1.029	2	.555	1	0	3	.003	1	002	12
188				-1517.025	3	.133	12	.023	15	0	1	0	15	007	4
189		19		1120.488	2	.985	2	.555	1	0	3	.003	1	002	12
190			min	-1516.704	3	.111	12	.023	15	0	1	0	15	007	4
191	M3	1		690.003	2	7.883	4	.138	1	0	3	0	1	.007	4
192			min	-827.835	3	1.853	15	.006	15	0	1	0	15	.002	12
193		2	max		2	7.116	4	.138	1	0	3	0	1	.005	2
194				-827.963	3	1.673	15	.006	15	0	1	0	15	0	12
195		3	max		2	6.348	4	.138	1	0	3	0	1	.002	2
196				-828.091	3	1.493	15	.006	15	0	1	0	15	0	3
197		4		689.492	2	5.581	4	.138	1	0	3	0	1	0	2

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]	LC	y-y Mome			
198			min	-828.219	3	1.312	15	.006	15	0	1_	0	15	002	3
199		5	max	689.321	2	4.814	4	.138	1	0	3	0	1	0	15
200			min	-828.347	3	1.132	15	.006	15	0	1	0	15	003	3
201		6	max	689.151	2	4.047	4	.138	1	0	3	0	1	001	15
202				-828.474	3	.952	15	.006	15	0	1	0	15	005	4
203		7	max		2	3.28	4	.138	1	0	3	0	1	002	15
204				-828.602	3	.771	15	.006	15	0	1	0	15	007	4
205		8	max	688.81	2	2.512	4	.138	1	0	3	0	1	002	15
206			min	-828.73	3	.591	15	.006	15	0	1	0	15	008	4
207		9	max	688.64	2	1.745	4	.138	1	0	3	0	1	002	15
208		3	min	-828.858	3	.411	15	.006	15	0	1	0	15	002	4
209		10		688.47	2	.978	4	.138	1		3	0		009 002	
		10	max							0		_	1		15
210		4.4		-828.985	3	.215	12	.006	15	0	1_	0	15	009	4
211		11	max	688.299	2	.361	2	.138	1	0	3	0	1	002	15
212				-829.113	3	143	3	.006	15	0	1_	0	15	01	4
213		12	max		2	13	15	.138	1	0	3	0	1	002	15
214			min	-829.241	3	592	3	.006	15	0	1_	0	15	01	4
215		13	max		2	311	15	.138	1	0	3	.001	1	002	15
216			min	-829.369	3	-1.324	4	.006	15	0	1	0	15	009	4
217		14	max	687.788	2	491	15	.138	1	0	3	.001	1	002	15
218			min	-829.496	3	-2.091	4	.006	15	0	1	0	15	008	4
219		15	max	687.618	2	671	15	.138	1	0	3	.001	1	002	15
220				-829.624	3	-2.858	4	.006	15	0	1	0	15	007	4
221		16	max		2	852	15	.138	1	0	3	.001	1	001	15
222		- ' -		-829.752	3	-3.625	4	.006	15	0	1	0	15	006	4
223		17	max		2	-1.032	15	.138	1	0	3	.001	1	001	15
224		- ' '	min	-829.88	3	-4.393	4	.006	15	0	1	0	15	004	4
225		18	max		2	-1.212	15	.138	1	0	3	.001	1	004	15
		10			3		4		15	0	1		15	002	
226		40		-830.007		<u>-5.16</u>		.006		_		0			4
227		19		686.937	2	-1.393	15	.138	1	0	3	.001	1	0	1
228				-830.135	3	-5.927	4	.006	15	0	1_	0	15	0	1
229	<u>M4</u>	1		1102.578	_1_	0	1	367	15	0	_1_	0	1	0	1
230				-170.707	3_	0	1	-8.842	1	0	1_	0	15	0	1
231		2		1102.748	_1_	0	1	367	15	0	_1_	0	3	0	1
232				-170.579	3	0	1	-8.842	1	0	1_	0	1	0	1
233		3	max	1102.918	_1_	0	1	367	15	0	1_	0	15	0	1
234			min	-170.452	3	0	1	-8.842	1	0	1	001	1	0	1
235		4	max	1103.089	1	0	1	367	15	0	1	0	15	0	1
236			min	-170.324	3	0	1	-8.842	1	0	1	002	1	0	1
237		5		1103.259	1	0	1	367	15	0	1	0	15	0	1
238				-170.196	3	0	1	-8.842	1	0	1	003	1	0	1
239		6		1103.429	1	0	1	367	15	0	1	0	15	0	1
240				-170.068	3	0	1	-8.842	1	0	1	004	1	0	1
241		7	max		1	0	1	367	15	0	1	0	15	0	1
242				-169.941	3	0	1	-8.842	1	0	1	005	1	0	1
243		8		1103.77	<u> </u>	0	1	367	15	0	1	0	15	0	1
		0					1	-8.842			1				
244				-169.813	3_	0			1	0		006	1	0	1
245		9		1103.94	1_	0	1	367	15	0	1_	0	15	0	1
246		4.0		-169.685	3	0	1	-8.842	1	0	1_	007	1	0	1
247		10		1104.111	1_	0	1	367	15	0	_1_	0	15	0	1
248				-169.557	3	0	1	-8.842	1	0	1_	008	1	0	1
249		11		1104.281	_1_	0	1	367	15	0	_1_	0	15	00	1
250				-169.43	3	0	1	-8.842	1	0	1_	009	1	0	1
251		12	max	1104.451	1	0	1	367	15	0	1	0	15	0	1
252				-169.302	3	0	1	-8.842	1	0	1	01	1	0	1
253		13		1104.622	1	0	1	367	15	0	1	0	15	0	1
254				-169.174	3	0	1	-8.842	1	0	1	011	1	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
255		14		1104.792	_1_	0	1	367	15	0	1	0	15	0	1
256			min	-169.046	3	0	1	-8.842	1	0	1	012	1	0	1
257		15	max	1104.962	1	0	1	367	15	0	1	0	15	0	1
258			min	-168.919	3	0	1	-8.842	1	0	1	013	1	0	1
259		16	max	1105.133	1	0	1	367	15	0	1	0	15	0	1
260			min	-168.791	3	0	1	-8.842	1	0	1	014	1	0	1
261		17	max	1105.303	1	0	1	367	15	0	1	0	15	0	1
262			min	-168.663	3	0	1	-8.842	1	0	1	015	1	0	1
263		18	max	1105.473	1	0	1	367	15	0	1	0	15	0	1
264			min	-168.535	3	0	1	-8.842	1	0	1	016	1	0	1
265		19	max	1105.644	1	0	1	367	15	0	1	0	15	0	1
266			min	-168.407	3	0	1	-8.842	1	0	1	017	1	0	1
267	M6	1	max	3542.399	2	2.479	2	0	1	0	1	0	1	0	1
268			min	-4936.127	3	102	3	0	1	0	1	0	1	0	1
269		2	max	3542.828	2	2.434	2	0	1	0	1	0	1	0	3
270			min	-4935.806	3	135	3	0	1	0	1	0	1	0	2
271		3	max	3543.256	2	2.39	2	0	1	0	1	0	1	0	3
272			min	-4935.484	3	168	3	0	1	0	1	0	1	001	2
273		4	max	3543.685	2	2.346	2	0	1	0	1	0	1	0	3
274			min	-4935.163	3	202	3	0	1	0	1	0	1	002	2
275		5		3544.113	2	2.302	2	0	1	0	1	0	1	0	3
276			min	-4934.841	3	235	3	0	1	0	1	0	1	003	2
277		6	max	3544.541	2	2.257	2	0	1	0	1	0	1	0	3
278			min		3	268	3	0	1	0	1	0	1	003	2
279		7	max	3544.97	2	2.213	2	0	1	0	1	0	1	0	3
280			min	-4934.199	3	301	3	Ö	1	0	1	0	1	004	2
281		8		3545.398	2	2.169	2	0	1	0	1	0	1	0	3
282			min	-4933.877	3	334	3	0	1	0	1	0	1	005	2
283		9	_	3545.827	2	2.125	2	0	1	0	1	0	1	0	3
284		Ť	min	-4933.556	3	367	3	0	1	0	1	0	1	005	2
285		10		3546.255	2	2.08	2	0	1	0	1	0	1	0	3
286		10	min	-4933.235	3	401	3	0	1	0	1	0	1	006	2
287		11		3546.684	2	2.036	2	0	1	0	1	0	1	0	3
288		.	min	-4932.913	3	434	3	0	1	0	1	0	1	007	2
289		12		3547.112	2	1.992	2	0	1	0	1	0	1	0	3
290		12	min	-4932.592	3	467	3	0	1	0	1	0	1	007	2
291		13		3547.541	2	1.948	2	0	1	0	1	0	1	.001	3
292		15	min	-4932.271	3	5	3	0	1	0	1	0	1	008	2
293		14		3547.969	2	1.903	2	0	1	0	1	0	1	.000	3
294		17	min	-4931.949	3	533	3	0	1	0	1	0	1	008	2
295		15	max	3548.398		1.859	2	0	1	0	1	0	1	.001	3
296		10	min		3	567	3	0	1	0	1	0	1	009	2
297		16		3548.826	2	1.815	2	0	1	0	1	0	1	.003	3
298		10	min		3	6	3	0	1	0	1	0	1	009	2
299		17		3549.255	2	1.771	2	0	1	0	1	0	1	.003	3
300		17	min	-4930.985	3	633	3	0	1	0	1	0	1	01	2
301		18		3549.683	2	1.726	2	0	1	0	1	0	1	.002	3
302		10	min		3	666	3	0	1	0	1	0	1	01	2
		19		3550.112		1.682	2		1		1		1	.002	3
303		19		-4930.342	2			0	1	0	1	0			
304	N /1-7	1	min		3	699 7.014	3	0	1	0	1	0	1	011	2
305	<u>M7</u>			2476.792	2	7.914	4	0	•	0	<u> </u>	0		.011	2
306		_	min	-2592.067	3	1.858	15	0	1	0	1	0	1	002	3
307		2		2476.621	2	7.147	4	0	1	0	1	0	1	.008	2
308			min		3_	1.678	15	0	1	0	1	0	1	004	3
309		3		2476.451	2	6.38	4	0	1	0	1	0	1	.006	2
310		4	min	-2592.322	3	1.497	15	0	1	0	1	0	1	005	3
311		4	max	2476.281	2	5.612	4	0	1	0	1	0	1	.003	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2592.45	3	1.317	15	0	1	0	1	0	1	006	3
313		5	max		2	4.845	4	0	1	0	1	0	_1_	.001	2
314			min	-2592.578	3	1.137	15	0	1	0	1	0	1	007	3
315		6	max	2475.94	2	4.078	4	0	1	0	1	0	1	0	2
316			min	-2592.706	3	.956	15	0	1	0	1	0	1	008	3
317		7	max	2475.77	2	3.311	4	0	1	0	1	0	1	002	15
318			min	-2592.834	3	.747	12	0	1	0	1	0	1	008	3
319		8	max	2475.599	2	2.637	2	0	1	0	1	0	1	002	15
320			min	-2592.961	3	.448	12	0	1	0	1	0	1	009	3
321		9	max	2475.429	2	2.039	2	0	1	0	1	0	1	002	15
322			min	-2593.089	3	.149	12	0	1	0	1	0	1	009	3
323		10	max	2475.259	2	1.442	2	0	1	0	1	0	1	002	15
324			min	-2593.217	3	278	3	0	1	0	1	0	1	009	4
325		11		2475.088	2	.844	2	0	1	0	1	0	1	002	15
326			min	-2593.345	3	726	3	0	1	0	1	0	1	009	4
327		12		2474.918	2	.246	2	0	1	0	1	0	1	002	15
328		12	min	-2593.472	3	-1.174	3	0	1	0	1	0	1	009	4
329		13		2474.748	2	306	15	0	1	0	1	0	1	002	15
330		13	min	-2593.6	3	-1.623	3	0	1	0	1	0	1	002	4
331		14		2474.577	2	487	15	0	1	0	1	0	1	002	15
332		14	min	-2593.728	3	-2.071	3	0	1	0	1	0	1	002	4
333		15		2474.407	2	667	15	0	1	0	1	0	1	002	15
334		15	min	-2593.856	3	-2.827	4	0	1	0	1	0	1	002	4
		16		2474.237					1		1		1		
335		16			2	847	15	0		0		0		001	15
336		47	min	-2593.983	3	-3.594	4	0	1	0	1	0	1_	006	4
337		17		2474.066	2	-1.028	15	0	1	0	1	0	1	001	15
338		1.0	min	-2594.111	3	-4.361	4	0	1	0	1	0	1	004	4
339		18		2473.896	2	-1.208	15	0	1	0	1	0	1	0	15
340			min	-2594.239	3	-5.129	4	0	1	0	1	0	1	002	4
341		19		2473.726	2	-1.388	15	0	1	0	1	0	1	0	1
342			min	-2594.367	3	-5.896	4	0	1	0	1	0	1_	0	1
343	<u>M8</u>	1		3033.912	2	0	1	0	1	0	1	0	1	0	1
344			min	-631.766	3	0	1	0	1	0	1	0	1	0	1
345		2		3034.082	2	0	1_	0	1	0	1	0	1	0	1
346			min	-631.638	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3034.253	2	0	1	0	1	0	1	0	1	0	1
348			min	-631.51	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3034.423	2	0	1	0	1	0	1	0	_1_	0	1
350			min	-631.382	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3034.594	2	0	1	0	1	0	1	0	1	0	1
352			min	-631.255	3	0	1	0	1	0	1	0	1	0	1
353		6		3034.764	2	0	1	0	1	0	1	0	1	0	1
354			min	-631.127	3	0	1	0	1	0	1	0	1	0	1
355		7		3034.934	2	0	1	0	1	0	1	0	1	0	1
356			min	-630.999	3	0	1	0	1	0	1	0	1	0	1
357		8	max	3035.105	2	0	1	0	1	0	1	0	1	0	1
358				-630.871	3	0	1	0	1	0	1	0	1	0	1
359		9		3035.275	2	0	1	0	1	0	1	0	1	0	1
360				-630.744	3	0	1	0	1	0	1	0	1	0	1
361		10		3035.445	2	0	1	0	1	0	1	0	1	0	1
362		10		-630.616		0	1	0	1	0	1	0	1	0	1
363		11		3035.616		0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3035.786	_	0	1	0	1	0	1	0	1	0	1
		12			3		1		1		1		1		1
366		12	min		_	0		0		0		0		0	_
367		13		3035.956		0	1	0	1	0	1	0	1	0	1
368			min	-630.233	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]	LC	P -	LC		LC
369		14		3036.127	2	0	1	0	1	0	1	0	1	0	1
370		4.5	min	-630.105	3	0	1_	0	1_	0	1_	0	1	0	1
371		15		3036.297	2	0	1	0	1	0	1	0	1	0	1
372		4.0		-629.977	3	0	1_	0	<u>1</u> 1	0	1	0	1	0	1
373 374		16		3036.467 -629.849	3	0	1	0	1	0	<u>1</u> 1	0	1	0	1
375		17		3036.638	2	0	1	0	1	0	1	0	1	0	1
376		17	min	-629.721	3	0	1	0	1	0	1	0	1	0	1
377		18		3036.808	2	0	1	0	1	0	+	0	1	0	1
378		10	min	-629.594	3	0	1	0	1	0	1	0	1	0	1
379		19		3036.978	2	0	1	0	1	0	1	0	1	0	1
380		13	min	-629.466	3	0	1	0	1	0	1	0	1	0	1
381	M10	1		1112.776	2	1.922	4	023	15	0	1	0	2	0	1
382	10110	Ė	min	-1522.489	3	.453	15	555	1	0	3	0	3	0	1
383		2		1113.204	2	1.865	4	023	15	0	1	0	15	0	15
384		_	min	-1522.167	3	.439	15	555	1	Ö	3	0	1	0	4
385		3		1113.633	2	1.809	4	023	15	0	1	0	15	0	15
386			min	-1521.846	3	.426	15	555	1	0	3	0	1	001	4
387		4	max	1114.061	2	1.752	4	023	15	0	1	0	15	0	15
388			min	-1521.524	3	.412	15	555	1	0	3	0	1	002	4
389		5	max	1114.489	2	1.695	4	023	15	0	1	0	15	0	15
390			min	-1521.203	3	.399	15	555	1	0	3	0	1	002	4
391		6	max	1114.918	2	1.638	4	023	15	0	1	0	15	0	15
392			min	-1520.882	3	.386	15	555	1	0	3	0	1	003	4
393		7		1115.346	2	1.582	4	023	15	0	1	0	15	0	15
394				-1520.56	3	.372	15	555	1	0	3	0	1	003	4
395		8	max	1115.775	2	1.525	4	023	15	0	_1_	0	15	0	15
396			min		3	.354	12	555	<u>1</u>	0	3	001	1	004	4
397		9		1116.203	2	1.468	4	023	15	0	1_	0	15	0	15
398		4.0	min	-1519.918	3	.332	12	555	1_	0	3	001	1_	004	4
399		10		1116.632	2	1.411	4	023	<u>15</u>	0	1	0	15	001	15
400		4.4	min	-1519.596	3	.31	12	555	1_	0	3	001	1_	004	4
401		11	max		2	1.354	4	023	<u>15</u>	0	1	0	15	001	15
402		40	min	-1519.275	3	.288	12	555	1_	0	3	002	1	005	4
403		12		1117.489 -1518.954	2	1.298	12	023	<u>15</u> 1	0	1	0	1 <u>5</u>	001	15
404		13	min	1117.917	3	.265 1.251	2	555 023	15	0	<u>3</u> 1	002 0	15	005 001	15
406		13		-1518.632	3	.243	12	555	1	0	3	002	1	006	4
407		14		1118.346	2	1.206	2	023	15	0	<u> </u>	0	15	001	12
408		14		-1518.311	3	.221	12	555	1	0	3	002	1	006	4
409		15		1118.774	2	1.162	2	023	15	0	<u> </u>	0	15	001	12
410		13	min	-1517.989	3	.199	12	555	1	0	3	002	1	006	4
411		16		1119.203	2	1.118	2	023	15	0	1	0	15	001	12
412		'		-1517.668	3	.177	12	555	1	0	3	002	1	007	4
413		17		1119.631	2	1.074	2	023	15	0	1	0	15	002	12
414				-1517.347	3	.155	12	555	1	0	3	003	1	007	4
415		18		1120.06	2	1.029	2	023	15	0	1	0	15	002	12
416				-1517.025	3	.133	12	555	1	0	3	003	1	007	4
417		19		1120.488	2	.985	2	023	15	0	1	0	15	002	12
418			min	-1516.704	3	.111	12	555	1	0	3	003	1	007	4
419	M11	1		690.003	2	7.883	4	006	15	0	1	0	15	.007	4
420				-827.835	3	1.853	15	138	1	0	3	0	1	.002	12
421		2		689.833	2	7.116	4	006	15	0	1	0	15	.005	2
422				-827.963	3	1.673	15	138	1	0	3	0	1	0	12
423		3	max		2	6.348	4	006	15	0	1	0	15	.002	2
424				-828.091	3	1.493	15	138	1	0	3	0	1	0	3
425		4	max	689.492	2	5.581	4	006	15	0	1	0	15	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-828.219	3	1.312	15	138	1	0	3	0	1	002	3
427		5	max		2	4.814	4	006	15	0	1	0	15	0	15
428			min	-828.347	3	1.132	15	138	1	0	3	0	1	003	3
429		6	max	689.151	2	4.047	4	006	15	0	1	0	15	001	15
430			min	-828.474	3	.952	15	138	1	0	3	0	1	005	4
431		7	max	688.981	2	3.28	4	006	15	0	1	0	15	002	15
432			min	-828.602	3	.771	15	138	1	0	3	0	1	007	4
433		8	max	688.81	2	2.512	4	006	15	0	1	0	15	002	15
434			min	-828.73	3	.591	15	138	1	0	3	0	1	008	4
435		9	max	688.64	2	1.745	4	006	15	0	1	0	15	002	15
436			min	-828.858	3	.411	15	138	1	0	3	0	1	009	4
437		10	max	688.47	2	.978	4	006	15	0	1	0	15	002	15
438			min	-828.985	3	.215	12	138	1	0	3	0	1	009	4
439		11	max	688.299	2	.361	2	006	15	0	1	0	15	002	15
440			min	-829.113	3	143	3	138	1	0	3	0	1	01	4
441		12	max	688.129	2	13	15	006	15	0	1	0	15	002	15
442			min	-829.241	3	592	3	138	1	0	3	0	1	01	4
443		13	max	687.959	2	311	15	006	15	0	1	0	15	002	15
444			min	-829.369	3	-1.324	4	138	1	0	3	001	1	009	4
445		14	max	687.788	2	491	15	006	15	0	1	0	15	002	15
446			min	-829.496	3	-2.091	4	138	1	0	3	001	1	008	4
447		15	max		2	671	15	006	15	0	1	0	15	002	15
448			min	-829.624	3	-2.858	4	138	1	0	3	001	1	007	4
449		16	max		2	852	15	006	15	0	1	0	15	001	15
450			min	-829.752	3	-3.625	4	138	1	0	3	001	1	006	4
451		17	max	687.277	2	-1.032	15	006	15	0	1	0	15	001	15
452			min	-829.88	3	-4.393	4	138	1	0	3	001	1	004	4
453		18	max	687.107	2	-1.212	15	006	15	0	1	0	15	0	15
454		1	min	-830.007	3	-5.16	4	138	1	0	3	001	1	002	4
455		19	max	686.937	2	-1.393	15	006	15	0	1	0	15	0	1
456		10	min	-830.135	3	-5.927	4	138	1	Ö	3	001	1	0	1
457	M12	1		1102.578	1	0	1	8.842	1	0	1	0	15	0	1
458			min	-170.707	3	0	1	.367	15	0	1	0	1	0	1
459		2		1102.748	1	0	1	8.842	1	0	1	0	1	0	1
460		_	min	-170.579	3	0	1	.367	15	0	1	0	3	0	1
461		3		1102.918	1	0	1	8.842	1	0	1	.001	1	0	1
462			min	-170.452	3	0	1	.367	15	0	1	0	15	0	1
463		4			1	0	1	8.842	1	0	1	.002	1	0	1
464			min	-170.324	3	0	1	.367	15	0	1	0	15	0	1
465		5		1103.259	1	0	1	8.842	1	0	1	.003	1	0	1
466				-170.196		0	1	.367	15	0	1	0	15		1
467		6		1103.429	1	0	1	8.842	1	0	1	.004	1	0	1
468		T .	min	-170.068	3	0	1	.367	15	0	1	0	15	0	1
469		7		1103.6	<u> </u>	0	1	8.842	1	0	1	.005	1	0	1
470			min		3	0	1	.367	15	0	1	0	15	0	1
471		8		1103.77	1	0	1	8.842	1	0	1	.006	1	0	1
472			min		3	0	1	.367	15	0	1	0	15	0	1
473		9		1103.94	1	0	1	8.842	1	0	1	.007	1	0	1
474		1		-169.685	3	0	1	.367	15	0	1	0	15	0	1
475		10		1104.111	<u> </u>	0	1	8.842	1	0	1	.008	1	0	1
476		10		-169.557	3	0	1	.367	15	0	1	.008	15		1
477		11		1104.281	<u> </u>	0	1	8.842	1	0	1	.009	1	0	1
477		11	min		3	0	1	.367	15	0	1	.009	15	0	1
479		12		1104.451	<u>ာ</u> 1	0	1	8.842	1	0	1	.01	1	0	1
480		14			3	0	1	.367	15	0	1	0	15	0	1
481		13		1104.622	<u> </u>		1		1		1	.011	1		1
		13				0	1	8.842		0	1			0	1
482			THILL	-169.174	3	0		.367	15	0		0	15	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	1104.792	_1_	0	1	8.842	1	0	_1_	.012	_1_	0	1
484			min	-169.046	3	0	1	.367	15	0	1	0	15	0	1
485		15	max	1104.962	1	0	1	8.842	1	0	1	.013	1	0	1
486			min	-168.919	3	0	1	.367	15	0	1	0	15	0	1
487		16	max	1105.133	1	0	1	8.842	1	0	1	.014	1	0	1
488			min	-168.791	3	0	1	.367	15	0	1	0	15	0	1
489		17	max	1105.303	1	0	1	8.842	1	0	1	.015	1	0	1
490			min	-168.663	3	0	1	.367	15	0	1	0	15	0	1
491		18	max	1105.473	1	0	1	8.842	1	0	1	.016	1	0	1
492			min	-168.535	3	0	1	.367	15	0	1	0	15	0	1
493		19		1105.644	1	0	1	8.842	1	0	1	.017	1	0	1
494			min	-168.407	3	0	1	.367	15	0	1	0	15	0	1
495	M1	1	max	157.857	1	835.562	3	-3.58	15	0	2	.205	1	0	15
496	IVII	<u> </u>	min	6.518	15	-474.382	2	-85.802	1	0	3	.009	15	015	2
497		2	max	158.462	1	834.588	3	-3.58	15	0	2	.159	1	.235	2
498			min	6.7	15	-475.68	2	-85.802	1	0	3	.007	15	441	3
499		3	max		3	571.063	2	-3.557	15	0	3	.114	1	.474	2
500		3	min	-298.321	2	-608.562	3	-85.414	1	0	2	.005	15	864	3
		1								_					_
501		4	max		3	569.765	2	-3.557	15	0	3	.069	1_	.176	1
502		-	min	-297.716	2	-609.536	3	-85.414	1_	0	2	.003	15	542	3
503		5	max		3	568.467	2	-3.557	15	0	3	.024	1_	003	15
504			min	-297.11	2	-610.509	3	-85.414	1_	0	2	0	15	221	3
505		6	max		3_	567.169	2	-3.557	15	0	3	0	<u>15</u>	.102	3
506			min	-296.505	2	-611.483	3	-85.414	1	0	2	021	1_	427	2
507		7	max	512.907	3_	565.871	2	-3.557	15	0	3	003	15	.425	3
508			min	-295.9	2	-612.457	3	-85.414	1	0	2	066	1_	726	2
509		8	max		3	564.572	2	-3.557	15	0	3	005	15	.748	3
510			min	-295.294	2	-613.43	3	-85.414	1	0	2	111	_1_	-1.024	2
511		9	max		3	51.192	2	-5.331	15	0	9	.067	1	.874	3
512			min	-229.445	2	.395	15		1	0	3	.003	15	-1.172	2
513		10	max	526.084	3	49.894	2	-5.331	15	0	9	0	15	.851	3
514			min	-228.839	2	.004	15	-128.024	1	0	3	0	1	-1.199	2
515		11	max	526.538	3	48.596	2	-5.331	15	0	9	003	15	.829	3
516			min	-228.234	2	-1.597	4	-128.024	1	0	3	068	1	-1.225	2
517		12	max	538.672	3	394.756	3	-3.472	15	0	2	.11	1	.723	3
518			min	-162.334	2	-670.834	2	-83.576	1	0	3	.005	15	-1.086	2
519		13	max	539.126	3	393.782	3	-3.472	15	0	2	.066	1	.515	3
520			min	-161.728	2	-672.132	2	-83.576	1	0	3	.003	15	731	2
521		14	max	539.58	3	392.809	3	-3.472	15	0	2	.022	1	.307	3
522			min	-161.123	2	-673.43	2	-83.576	1	0	3	0	15	376	2
523		15		540.035	3	391.835		-3.472	15	0	2	0	15	.1	3
524			min		2	-674.728		-83.576	1	0	3	022	1	041	1
525		16	+	540.489	3	390.861	3	-3.472	15	0	2	003	15	.336	2
526				-159.912	2	-676.026	2	-83.576	1	0	3	066	1	106	3
527		17		540.943	3	389.888	3	-3.472	15	0	2	005	15	.693	2
528				-159.307	2	-677.325	2	-83.576	1	0	3	111	1	312	3
529		18	max		15	682.662	2	-3.833	15	0	3	007	15	.349	2
530		10	min		1	-316.431	3	-92.042	1	0	2	158	1	154	3
531		19	max		15	681.364	2	-3.833	15	0	3	009	15	.013	3
532		13				-317.405			1				1		2
533	M5	1	min		1_1	2780.999	3	-92.042	1	0	2	206		011	2
	IVIO		max		1	-1619.685		0		0	1	0	1	.031	
534		0	min	11.996	12		2	0	1	0	1	0	1_1	0	15
535		2	max		1	2780.025	3	0	1	0	1	0	1_1	.886	2
536		_	min		12	-1620.984	2	0	•	0		0	1_	-1.466	3
537		3		1631.143	3	1692.472	2	0	1	0	1	0	1	1.702	2
538		4	min		2	-1919.06		0	1	0	1	0	1_	-2.877	3
539		4	max	1631.597	3	1691.174	2	0	1	0	_1_	0	<u>1</u>	.809	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
540			min	-1014.436	2	-1920.033	3	0	1	0	1	0	1	-1.864	3
541		5	max	1632.052	3	1689.876	2	0	1	0	1	0	1	.013	9
542			min	-1013.83	2	-1921.007	3	0	1	0	1	0	1	85	3
543		6	max	1632.506	3	1688.577	2	0	1	0	1	0	1	.164	3
544			min	-1013.225	2	-1921.981	3	0	1	0	1	0	1	974	2
545		7	max	1632.96	3	1687.279	2	0	1	0	1	0	1	1.178	3
546			min	-1012.62	2	-1922.954	3	0	1	0	1	0	1	-1.865	2
547		8	max	1633.414	3	1685.981	2	0	1	0	1	0	1	2.193	3
548			min	-1012.014	2	-1923.928	3	0	1	0	1	0	1	-2.755	2
549		9	max	1651.004	3	171.748	2	0	1	0	1	0	1	2.526	3
550			min	-873.409	2	.391	15	0	1	0	1	0	1	-3.139	2
551		10	max	1651.458	3	170.45	2	0	1	0	1	0	1	2.442	3
552			min		2	0	15	0	1	0	1	0	1	-3.229	2
553		11	max	1651.912	3	169.151	2	0	1	0	1	0	1	2.359	3
554			min	-872.199	2	-1.499	4	0	1	0	1	0	1	-3.319	2
555		12	max	1669.769	3	1223.594	3	0	1	0	1	0	1	2.07	3
556			min		2	-2033.574	2	0	1	0	1	0	1	-2.971	2
557		13	max	1670.223	3	1222.62	3	0	1	0	1	0	1	1.424	3
558			min	-733.091	2	-2034.872	2	0	1	0	1	0	1	-1.898	2
559		14	max	1670.677	3	1221.647	3	0	1	0	1	0	1	.779	3
560			min	-732.486	2	-2036.17	2	0	1	0	1	0	1	824	2
561		15	max	1671.131	3	1220.673	3	0	1	0	1	0	1	.251	2
562			min	-731.88	2	-2037.469	2	0	1	0	1	0	1	003	13
563		16	max	1671.585	3	1219.699	3	0	1	0	1	0	1	1.327	2
564			min	-731.275	2	-2038.767	2	0	1	0	1	0	1	509	3
565		17	max	1672.039	3	1218.726	3	0	1	0	1	0	1	2.403	2
566			min	-730.67	2	-2040.065	2	0	1	0	1	0	1	-1.152	3
567		18	max		12	2305.286	2	0	1	0	1	0	1	1.238	2
568			min	-345.263	1	-1093.193	3	0	1	0	1	0	1	603	3
569		19	max		12	2303.987	2	0	1	0	1	0	1	.022	2
570			min	-344.657	1	-1094.166	3	0	1	0	1	0	1	026	3
571	<u>M9</u>	1	max		1_	835.562	3	85.802	1	0	3	009	15	0	15
572			min	6.518	15	-474.382	2	3.58	15	0	2	205	1	015	2
573		2	max	158.462	1_	834.588	3	85.802	1	0	3	007	15	.235	2
574			min	6.7	15	-475.68	2	3.58	15	0	2	159	1	441	3
575		3	max		3	571.063	2	85.414	1	0	2	005	15	.474	2
576		_	min	-298.321	2	-608.562	3	3.557	15	0	3	114	1	864	3
577		4	max	511.545	3	569.765	2	85.414	1	0	2	003	15	.176	1
578			min	-297.716	2	-609.536	3	3.557	15	0	3	069	1	542	3
579		5	max		3	568.467	2	85.414	1	0	2	0	15	003	15
580			min		2	-610.509	3	3.557	15	0	3	024	1	221	3
581		6	max		3	567.169	2	85.414	1	0	2	.021	1	.102	3
582		-	min		2	-611.483		3.557	15	0	3	0	15	427	2
583		7	max		3	565.871	2	85.414	1	0	2	.066	1	.425	3
584			min	-295.9	2	-612.457	3	3.557	15	0	3	.003	15	726	2
585		8	max		3	564.572	2	85.414	11	0	2	.111	1	.748	3
586			min		2	-613.43	3	3.557	15	0	3	.005	15	-1.024	2
587		9	max		3	51.192	2	128.024	1	0	3	003	15	.874	3
588		40	min	-229.445	2	.395	15	5.331	15	0	9	067	1	-1.172	2
589		10	max		3	49.894	2	128.024	1_	0	3	0	1	.851	3
590		4.4	min		2	.004	15	5.331	15	0	9	0	15	-1.199	2
591		11		526.538	3	48.596	2	128.024	1	0	3	.068	1	.829	3
592		4.0		-228.234	2	-1.597	4_	5.331	15	0	9	.003	15	-1.225	2
593		12	max		3	394.756	3	83.576	1	0	3	005	15	.723	3
594		40	min		2	-670.834	2	3.472	15	0	2	11	1_	-1.086	2
595		13		539.126	3	393.782	3	83.576	1	0	3	003	15	.515	3
596			mın	-161.728	2	-672.132	2	3.472	15	0	2	066	1	731	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	539.58	3	392.809	3	83.576	1	0	3	0	15	.307	3
598			min	-161.123	2	-673.43	2	3.472	15	0	2	022	1	376	2
599		15	max	540.035	3	391.835	3	83.576	1	0	3	.022	1	.1	3
600			min	-160.517	2	-674.728	2	3.472	15	0	2	0	15	041	1
601		16	max	540.489	3	390.861	3	83.576	1	0	3	.066	1	.336	2
602			min	-159.912	2	-676.026	2	3.472	15	0	2	.003	15	106	3
603		17	max	540.943	3	389.888	3	83.576	1	0	3	.111	1	.693	2
604			min	-159.307	2	-677.325	2	3.472	15	0	2	.005	15	312	3
605		18	max	-6.707	15	682.662	2	92.042	1	0	2	.158	1	.349	2
606			min	-158.746	1	-316.431	3	3.833	15	0	3	.007	15	154	3
607		19	max	-6.525	15	681.364	2	92.042	1	0	2	.206	1	.013	3
608			min	-158.141	1	-317.405	3	3.833	15	0	3	.009	15	011	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
1	M13	1_	max	0	1	.123	2	.009	3 1.017e-2	2	NC	_1_	NC	1
2			min	0	15	022	3	005	2 -1.964e-3	3	NC	1_	NC	1
3		2	max	0	1	.268	3	.027	1 1.153e-2	2	NC	5	NC	2
4			min	0	15	03	1	001	10 -1.933e-3	3	745.562	3	8114.981	1
_ 5		3	max	0	1	.503	3	.064	1 1.289e-2	2	NC	5	NC	3
6			min	0	15	136	1	.002	10 -1.901e-3	3	411.765	3	3368.818	1
7		4	max	0	1	.646	3	.096	1 1.425e-2	2	NC	5_	NC	3
8			min	0	15	194	1	.004	15 -1.87e-3	3	323.496	3	2247.356	1
9		5	max	0	1	.68	3	.112	1 1.561e-2	2	NC	5	NC	3
10			min	0	15	194	1	.005	15 -1.838e-3	3	307.746	3	1927.338	1
11		6	max	0	1	.608	3	.108	1 1.697e-2	2	NC	5	NC	3
12			min	0	15	138	1	.004	10 -1.807e-3	3	343.142	3	2012.745	1
13		7	max	0	1	.451	3	.083	1 1.832e-2	2	NC	5	NC	3
14			min	0	15	04	1	0	10 -1.775e-3	3	457.118	3	2601.668	1
15		8	max	0	1	.251	3	.047	1 1.968e-2	2	NC	2	NC	2
16			min	0	15	.002	15	005	10 -1.744e-3	3	792.171	3	4672.659	1
17		9	max	0	1	.221	2	.028	3 2.104e-2	2	NC	4	NC	1
18			min	0	15	.004	15	012	2 -1.713e-3	3	2212.193	2	NC	1
19		10	max	0	1	.271	2	.028	3 2.24e-2	2	NC	3	NC	1
20			min	0	1	013	3	019	2 -1.681e-3	3	1460.41	2	NC	1
21		11	max	0	15	.221	2	.028	3 2.104e-2	2	NC	4	NC	1
22			min	0	1	.004	15	012	2 -1.713e-3	3	2212.193	2	NC	1
23		12	max	0	15	.251	3	.047	1 1.968e-2	2	NC	2	NC	2
24			min	0	1	.002	15	005	10 -1.744e-3	3	792.171	3	4672.659	1
25		13	max	0	15	.451	3	.083	1 1.832e-2	2	NC	5	NC	3
26			min	0	1	04	1	0	10 -1.775e-3	3	457.118	3	2601.668	1
27		14	max	0	15	.608	3	.108	1 1.697e-2	2	NC	5	NC	3
28			min	0	1	138	1	.004	10 -1.807e-3	3	343.142	3	2012.745	1
29		15	max	0	15	.68	3	.112	1 1.561e-2	2	NC	5	NC	3
30			min	0	1	194	1	.005	15 -1.838e-3	3	307.746	3	1927.338	1
31		16	max	0	15	.646	3	.096	1 1.425e-2	2	NC	5	NC	3
32			min	0	1	194	1	.004	15 -1.87e-3	3	323.496	3	2247.356	1
33		17	max	0	15	.503	3	.064	1 1.289e-2	2	NC	5	NC	3
34			min	0	1	136	1	.002	10 -1.901e-3	3	411.765	3	3368.818	1
35		18	max	0	15	.268	3	.027	1 1.153e-2	2	NC	5	NC	2
36			min	0	1	03	1	001	10 -1.933e-3	3	745.562	3	8114.981	1
37		19	max	0	15	.123	2	.009	3 1.017e-2	2	NC	1	NC	1
38			min	0	1	022	3	005	2 -1.964e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.262	3	.008	3 5.933e-3	2	NC	1	NC	1
40			min	0	15	392	2	005	2 -4.65e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
41		2	max	0	1	.557	3	.018	1 7.048e-3	2	NC	5	NC	1
42			min	0	15	664	2	002	10 -5.614e-3	3	730.251	3	NC	1
43		3	max	0	1	.81	3	.051	1 8.163e-3	2	NC	5	NC	2
44			min	0	15	902	2	.001	10 -6.578e-3	3	393.99	3	4273.333	1
45		4	max	0	1	.989	3	.082	1 9.277e-3	2	NC	15	NC	3
46			min	0	15	-1.081	2	.004	15 -7.542e-3	3	296.869	3	2658.268	1
47		5	max	0	1	1.08	3	.099	1 1.039e-2	2	NC	15	NC	3
48			min	0	15	-1.189	2	.004	15 -8.505e-3	3	263.758	3	2193.741	1
49		6	max	0	1	1.084	3	.097	1 1.151e-2	2	NC	15	NC	3
50			min	0	15	-1.226	2	.003	10 -9.469e-3	3	259.092	2	2235.186	1
51		7	max	0	1	1.013	3	.077	1 1.262e-2	2	NC	15	NC	3
52			min	0	15	-1.201	2	0	10 -1.043e-2	3	267.156	2	2838.153	
53		8	max	0	1	.899	3	.044	1 1.374e-2	2	NC	15	NC	2
54			min	0	15	-1.135	2	005	10 -1.14e-2	3	290.694	2	5017.146	1
55		9	max	0	1	.786	3	.025	3 1.485e-2	2	NC	5	NC	1
56			min	0	15	-1.063	2	011	2 -1.236e-2	3	322.335	2	NC	1
57		10	max	0	1	.732	3	.025	3 1.597e-2	2	NC	5	NC	1
58			min	0	1	-1.026	2	018	2 -1.332e-2	3	340.762	2	NC	1
59		11	max	0	15	.786	3	.025	3 1.485e-2	2	NC	5	NC	1
60			min	0	1	-1.063	2	011	2 -1.236e-2	3	322.335	2	NC	1
61		12	max	0	15	.899	3	.044	1 1.374e-2	2	NC	15	NC	2
62			min	0	1	-1.135	2	005	10 -1.14e-2	3	290.694	2	5017.146	
63		13	max	0	15	1.013	3	.077	1 1.262e-2	2	NC	15	NC	3
64			min	0	1	-1.201	2	0	10 -1.043e-2	3	267.156	2	2838.153	
65		14	max	0	15	1.084	3	.097	1 1.151e-2	2	NC	15	NC	3
66		<u> </u>	min	0	1	-1.226	2	.003	10 -9.469e-3	3	259.092	2	2235.186	
67		15	max	0	15	1.08	3	.099	1 1.039e-2	2	NC	15	NC	3
68		'Ŭ	min	0	1	-1.189	2	.004	15 -8.505e-3	3	263.758	3	2193.741	1
69		16	max	0	15	.989	3	.082	1 9.277e-3	2	NC	15	NC NC	3
70		1.0	min	0	1	-1.081	2	.004	15 -7.542e-3	3	296.869	3	2658.268	
71		17	max	0	15	.81	3	.051	1 8.163e-3	2	NC	5	NC	2
72		<u> </u>	min	0	1	902	2	.001	10 -6.578e-3	3	393.99	3	4273.333	
73		18	max	0	15	.557	3	.018	1 7.048e-3	2	NC	5	NC	1
74		10	min	0	1	664	2	002	10 -5.614e-3	3	730.251	3	NC	1
75		19	max	0	15	.262	3	.002	3 5.933e-3	2	NC	1	NC	1
76		13	min	0	1	392	2	005	2 -4.65e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.267	3	.008	3 3.949e-3	3	NC	1	NC	1
78	IVITO		min	0	1	392	2	004	2 -6.171e-3	2	NC	1	NC	1
79		2	max	0	15	.459	3	.018	1 4.77e-3	3	NC	5	NC	1
80			min	0	1	734	2	001	10 -7.335e-3	2	631.262	2	NC	1
81		3			15	.627	3	.051	1 5.591e-3		NC	5	NC	2
82			max	0	1	-1.028	2	.002	10 -8.5e-3	2	339.281	2	4258.661	1
83		4	max	0	15	.756	3	.082	1 6.413e-3	3	NC	15	NC	3
84		1	min	0	1	-1.242	2	.004	15 -9.664e-3	2	253.966	2	2650.453	
85		5	max	0	15	.836	3	.099	1 7.234e-3	3	NC	15	NC	3
86		1	min	0	1	-1.359	2	.004	15 -1.083e-2	2	223.368		2187.253	
87		6	max	0	15	.868	3	.004	1 8.056e-3	3	NC	15	NC	3
88			min	0	1	-1.377	2	.004	10 -1.199e-2	2	219.164	2	2227.52	1
89		7		0	15	.857	3	.004	1 8.877e-3	3	NC	15	NC	3
90			max		1	-1.313	2		10 -1.316e-2	2	234.352		2824.708	
91		8	min	0	15	<u>-1.313 </u>	3	0 .044	1 9.698e-3		NC	15	NC	2
92		0	max	0	1	-1.199	2	004	10 -1.432e-2	<u>3</u>	267.63	<u>15</u> 2	4973.008	
		0	min		_									
93		9	max	0	15	.771	3	.024	3 1.052e-2	3	NC	5	NC NC	1
94		40	min	0	1	<u>-1.081</u>	2	01	2 -1.549e-2	2	313.231	2	NC NC	1
95		10	max	0	1	.747	3	.023	3 1.134e-2	3	NC	5	NC NC	1
96		4.4	min	0	1	-1.025	2	017	2 -1.665e-2	2	341.135	2	NC NC	1
97		11	max	0	1	.771	3	.024	3 1.052e-2	3_	NC	5	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r			LC		LC
98			min	0	15	<u>-1.081</u>	2	01	2 -1.549e-2	2	313.231	2	NC	1
99		12	max	0	1	.817	3	.044	1 9.698e-3	3	NC	<u>15</u>	NC	2
100			min	0	15	-1.199	2	004	10 -1.432e-2	2	267.63	2	4973.008	
101		13	max	0	1	.857	3	.077	1 8.877e-3	3	NC	15	NC	3
102			min	0	15	-1.313	2	0	10 -1.316e-2	2	234.352	2	2824.708	1
103		14	max	0	1	.868	3	.097	1 8.056e-3	3	NC	15	NC	3
104			min	0	15	-1.377	2	.004	10 -1.199e-2	2	219.164	2	2227.52	1
105		15	max	0	1	.836	3	.099	1 7.234e-3	3	NC	15	NC	3
106			min	0	15	-1.359	2	.004	15 -1.083e-2	2	223.368	2	2187.253	1
107		16	max	0	1	.756	3	.082	1 6.413e-3	3	NC	15	NC	3
108			min	0	15	-1.242	2	.004	15 -9.664e-3	2	253.966	2	2650.453	1
109		17	max	0	1	.627	3	.051	1 5.591e-3	3	NC	5	NC	2
110			min	0	15	-1.028	2	.002	10 -8.5e-3	2	339.281	2	4258.661	1
111		18	max	0	1	.459	3	.018	1 4.77e-3	3	NC	5	NC	1
112		1.0	min	0	15	734	2	001	10 -7.335e-3	2	631.262	2	NC	1
113		19	max	0	1	.267	3	.008	3 3.949e-3	3	NC	1	NC	1
114		1.0	min	0	15	392	2	004	2 -6.171e-3	2	NC	1	NC	1
115	M16	1	max	0	15	.11	2	.007	3 7.158e-3	3	NC	1	NC	1
116	IVITO	_	min	0	1	089	3	004	2 -8.544e-3	2	NC	1	NC	1
117		2	max	0	15	.002	12	.027	1 8.31e-3	3	NC	5	NC	2
118			min	0	1	107	2	0	10 -9.522e-3	2	994.53	2	8156.834	1
119		3	max	0	15	.07	3	.064	1 9.461e-3	3	NC	5	NC	3
120		1	min	0	1	28	2	.003	15 -1.05e-2	2	554.173	2	3373.085	
121		4	max	0	15	.104	3	.003	1 1.061e-2	3	NC	5	NC	3
122		4	min	0	1	378	2	.004	15 -1.148e-2	2	442.676	2	2244.566	1
123		5	max	0	15	.098	3	.113	1 1.176e-2	3	NC	5	NC	3
124		5		0	1	388	2	.005	15 -1.246e-2	2	433.695	2	1920.174	1
125		6	min	0	15	.053	3	.005 .108	1 1.292e-2	3	NC	5	NC	3
126		0	max	0	1	313	2	.005	15 -1.344e-2	2	511.155	2	1998.443	
		7	min	-					1 1.407e-2	3	NC		NC	3
127 128		+-	max	0	15	0 17	15 2	.084 .002	10 -1.442e-2	2	770.987	<u>5</u> 2	2566.977	1
		0			15		1				NC		NC	•
129 130		8	max	0	1	.033 11	3	.048 003		3	2045.544	2	4532.14	2
			min				2		10 -1.539e-2	2				1
131		9	max	0	15	.16		.021	3 1.637e-2	3	NC	4	NC NC	1
132		40	min	0	1	188	3	008	2 -1.637e-2	2	2192.594	3	NC NC	1
133		10	max	0	1	.23	2	.02	3 1.752e-2	3	NC 1005 FC4	4	NC NC	1
134		4.4	min	0	1	222	3	015	2 -1.735e-2	2	1625.564	3	NC NC	1
135		11	max	0	1	.16	2	.021	3 1.637e-2	3	NC	4_	NC NC	1
136		4.0	min	0	15	188	3	008	2 -1.637e-2	2	2192.594	3	NC NC	1
137		12	max	0	1	.033	1	.048	1 1.522e-2	3	NC	3	NC 4500.44	2
138		40	min		15	<u>11</u>	3	003	10 -1.539e-2	2	2045.544	2	4532.14	1
139		13	max	0	1	0	15	.084	1 1.407e-2	3	NC 770.007	5_	NC 0500,077	3
140		4.4	min	0	15	17	2	.002	10 -1.442e-2	2	770.987	2	2566.977	1
141		14	max	0	1	.053	3	.108	1 1.292e-2	3	NC 544.455	5_	NC 1000 110	3
142		4-	min	0	15	<u>313</u>	2	.005	15 -1.344e-2	2	511.155	2	1998.443	
143		15	max	0	1	.098	3	.113	1 1.176e-2	3	NC 400,005	5_	NC 1000 171	3
144		1	min	0	15	388	2	.005	15 -1.246e-2	2	433.695	2	1920.174	
145		16	max	0	1	.104	3	.097	1 1.061e-2	3	NC	5	NC	3
146		-	min	0	15	378	2	.004	15 -1.148e-2	2	442.676	2	2244.566	
147		17	max	0	1	.07	3	.064	1 9.461e-3	3	NC	5_	NC	3
148		1	min	0	15	28	2	.003	15 -1.05e-2	2	554.173	2	3373.085	
149		18	max	0	1	.002	12	.027	1 8.31e-3	3	NC	5	NC	2
150			min	0	15	107	2	0	10 -9.522e-3	2	994.53	2	8156.834	
151		19	max	0	1	.11	2	.007	3 7.158e-3	3	NC	_1_	NC	1
152			min	0	15	089	3	004	2 -8.544e-3	2	NC	1_	NC	1
153	<u>M2</u>	1_	max	.007	2	.008	2	.007	1 -7.458e-6	15	NC	1_	NC	2
154			min	009	3	013	3	0	15 -1.79e-4	1	8140.005	2	9409.621	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC) LC
155		2	max	.006	2	.007	2	.006	1	-7.e-6	15	NC	_1_	NC	1
156			min	009	3	012	3	0	15	-1.68e-4	1_	9299.251	2	NC	1
157		3	max	.006	2	.006	2	.006	1	-6.542e-6	<u>15</u>	NC	_1_	NC	1
158			min	008	3	012	3	0	15	-1.57e-4	1_	NC	1_	NC	1
159		4	max	.006	2	.005	2	.005	1	-6.085e-6	<u>15</u>	NC	_1_	NC	1
160			min	008	3	<u>011</u>	3	0	15	-1.46e-4	1_	NC	1_	NC NC	1
161		5	max	.005	2	.004	2	.004	1	-5.627e-6	<u>15</u>	NC	1	NC	1
162			min	007	3	011	3	0	15	-1.35e-4	1_	NC NC	1_	NC NC	1
163		6	max	.005	2	.003	2	.004	1	-5.17e-6	<u>15</u>	NC	1_1	NC	1
164 165		7	min	007	2	01 .002	2	0	15	-1.24e-4	1_	NC NC	<u>1</u> 1	NC NC	1
166			max	.004 006	3	002 009	3	.003	1 15	-4.712e-6 -1.13e-4	<u>15</u> 1	NC NC	1	NC NC	1
167		8	min	006 .004	2	.002	2	.003	1	-1.13e-4 -4.255e-6	15	NC NC	1	NC NC	1
168		0	max min	004	3	002	3	<u>.003</u> 0	15	-4.255e-6 -1.02e-4	1	NC NC	1	NC NC	1
169		9	max	.004	2	<u>009</u> 0	2	.003	1	-1.02e-4 -3.797e-6	15	NC	1	NC	1
170		3	min	005	3	008	3	0	15	-9.102e-5	1	NC	1	NC	1
171		10	max	.003	2	<u>000</u>	2	.002	1	-3.34e-6	15	NC	1	NC	1
172		10	min	005	3	008	3	0	15	-8.003e-5	1	NC	1	NC	1
173		11	max	.003	2	0	2	.002	1	-2.882e-6	15	NC	1	NC	1
174			min	004	3	007	3	0	15	-6.903e-5	1	NC	1	NC	1
175		12	max	.003	2	0	2	.001	1	-2.425e-6	15	NC	1	NC	1
176		i -	min	004	3	006	3	0	15	-5.804e-5	1	NC	1	NC	1
177		13	max	.002	2	0	2	0	1	-1.967e-6	15	NC	1	NC	1
178			min	003	3	005	3	0	15	-4.704e-5	1	NC	1	NC	1
179		14	max	.002	2	0	15	0	1	-1.51e-6	15	NC	1	NC	1
180			min	003	3	005	3	0	15	-3.605e-5	1	NC	1	NC	1
181		15	max	.001	2	0	15	0	1	-1.052e-6	15	NC	1	NC	1
182			min	002	3	004	3	0	15	-2.505e-5	1	NC	1	NC	1
183		16	max	.001	2	0	15	0	1	-5.945e-7	15	NC	1	NC	1
184			min	002	3	003	3	0	15	-1.405e-5	1_	NC	1_	NC	1
185		17	max	0	2	0	15	0	1	-1.172e-7	10	NC	_1_	NC	1
186			min	001	3	002	3	0	15	-3.058e-6	1_	NC	1_	NC	1
187		18	max	0	2	0	15	0	1	7.937e-6	_1_	NC	1_	NC	1
188			min	0	3	001	3	0	15	1.086e-7	12	NC	1_	NC	1
189		19	max	0	1	0	1	0	1	1.893e-5	_1_	NC	_1_	NC	1
190	140		min	0	1	0	1	0	1	7.781e-7	15	NC	1_	NC NC	1
191	<u>M3</u>	1	max	0	1	0	1	0	1	-2.629e-7	<u>15</u>	NC	1_	NC NC	1
192			min	0	1	0	1	0	1	-6.381e-6	1_	NC NC	1_	NC NC	1
193		2	max	0	3	0	15	0	1	1.281e-5	1_	NC	1_	NC	1
194 195		3	min	0	3	002	15	0	1 <u>5</u>	5.327e-7	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
		3	max	0		004		0		3.201e-5		NC NC	1		1
196 197		4	min	.001	3	004 001	15	0	1 <u>5</u>	1.328e-6 5.12e-5	<u>15</u> 1	NC NC	1	NC NC	1
198		4	max min	0	2	001	4	0	15		15	NC NC	1	NC NC	1
199		5	max	.002	3	002	15	0	1	7.04e-5	1	NC	1	NC	1
200		5	min	001	2	002	4	0	15	2.919e-6	15	NC	1	NC	1
201		6	max	.002	3	007	15	0	1	8.96e-5	1	NC	1	NC	1
202		-	min	002	2	002	4	0	15	3.715e-6	15	NC	1	NC	1
203		7	max	.002	3	003	15	0	1	1.088e-4	1	NC	1	NC	1
204			min	002	2	003 011	4	0	15	4.511e-6		8611.263	4	NC NC	1
205		8	max	.003	3	003	15	.001	1	1.28e-4	1	NC	1	NC	1
206			min	002	2	012	4	0	15	5.306e-6		7730.884	4	NC	1
207		9	max	.002	3	003	15	.001	1	1.472e-4	1	NC	2	NC	1
208			min	003	2	013	4	0	15			7210.314	4	NC	1
209		10	max	.004	3	003	15	.002	1	1.664e-4	1	NC	2	NC	1
210			min	003	2	013	4	0	15	6.897e-6		6958.855	4	NC	1
211		11	max	.004	3	003	15	.002	1	1.856e-4	1	NC	2	NC	1
													_		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio	LC		
212			min	003	2	013	4	0	15	7.693e-6	15		4	NC	1
213		12	max	.004	3	003	15	.002	1	2.048e-4	1_	NC	2	NC	1
214			min	004	2	013	4	0	15	8.489e-6	15	7154.522	4	NC	1
215		13	max	.005	3	003	15	.003	1	2.24e-4	1_	NC	1_	NC	1_
216			min	004	2	012	4	0	15	9.284e-6	15	7648.614	4	NC	1
217		14	max	.005	3	003	15	.003	1	2.432e-4	1	NC	1	NC	1
218			min	004	2	011	4	0	15	1.008e-5	15	8531.601	4	NC	1
219		15	max	.006	3	002	15	.004	1	2.624e-4	1	NC	1	NC	1
220			min	005	2	01	4	0	15	1.088e-5	15	NC	1	NC	1
221		16	max	.006	3	002	15	.004	1	2.815e-4	1	NC	1_	NC	1
222			min	005	2	008	4	0	15	1.167e-5	15	NC	1	NC	1
223		17	max	.006	3	001	15	.005	1	3.007e-4	1	NC	1	NC	1
224			min	005	2	006	1	0	15	1.247e-5	15	NC	1_	NC	1
225		18	max	.007	3	0	15	.006	1	3.199e-4	1	NC	1	NC	1
226			min	006	2	004	1	0	15	1.326e-5	15	NC	1	NC	1
227		19	max	.007	3	0	15	.006	1	3.391e-4	1	NC	1	NC	1
228			min	006	2	002	1	0	15	1.406e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.006	2	0	15	5.214e-5	1	NC	1	NC	3
230			min	0	3	007	3	006	1	2.175e-6	15	NC	1	3892.914	1
231		2	max	.002	1	.005	2	0	15	5.214e-5	1	NC	1	NC	2
232			min	0	3	007	3	006	1	2.175e-6	15	NC	1	4232.039	1
233		3	max	.002	1	.005	2	0	15	5.214e-5	1	NC	1	NC	2
234			min	0	3	007	3	005	1	2.175e-6	15	NC	1	4635.723	1
235		4	max	.002	1	.005	2	0	15	5.214e-5	1	NC	1	NC	2
236			min	0	3	006	3	005	1	2.175e-6	15	NC	1	5120.723	1
237		5	max	.002	1	.004	2	0	15	5.214e-5	1	NC	1	NC	2
238			min	0	3	006	3	004	1	2.175e-6	15	NC	1	5709.812	1
239		6	max	.002	1	.004	2	0	15	5.214e-5	1	NC	1	NC	2
240			min	0	3	005	3	004	1	2.175e-6	15	NC	1	6434.576	
241		7	max	.002	1	.004	2	0	15	5.214e-5	1	NC	1	NC	2
242			min	0	3	005	3	003	1	2.175e-6	15	NC	1	7339.844	1
243		8	max	.002	1	.003	2	0	15	5.214e-5	1	NC	1	NC	2
244			min	0	3	005	3	003	1	2.175e-6	15	NC	1	8491.001	1
245		9	max	.001	1	.003	2	0	15	5.214e-5	1	NC	1	NC	2
246			min	0	3	004	3	002	1	2.175e-6	15	NC	1	9986.474	1
247		10	max	.001	1	.003	2	0	15	5.214e-5	1	NC	1	NC	1
248			min	0	3	004	3	002	1	2.175e-6	15	NC	1	NC	1
249		11	max	.001	1	.002	2	0	15	5.214e-5	1	NC	1	NC	1
250			min	0	3	003	3	002	1	2.175e-6	15	NC	1	NC	1
251		12	max	.001	1	.002	2	0	15	5.214e-5	1	NC	1	NC	1
252			min		3	003	3	001		2.175e-6		NC	1	NC	1
253		13	max	0	1	.002	2	0		5.214e-5	1	NC	1	NC	1
254			min	0	3	002	3	001	1	2.175e-6	15	NC	1	NC	1
255		14	max	0	1	.002	2	0	15	5.214e-5	1	NC	1	NC	1
256			min	0	3	002	3	0	1	2.175e-6	15	NC	1	NC	1
257		15	max	0	1	.001	2	0	15	5.214e-5	1	NC	1	NC	1
258		1	min	0	3	002	3	0	1	2.175e-6	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	5.214e-5	1	NC	1	NC	1
260		1.0	min	0	3	001	3	0	1	2.175e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	5.214e-5	1	NC	1	NC	1
262			min	0	3	0	3	0	1	2.175e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	5.214e-5	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	2.175e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	5.214e-5	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	2.175e-6	15	NC NC	1	NC	1
267	M6	1	max	.021	2	.028	2	0	1	0	1 <u>15</u>	NC NC	4	NC NC	1
268	IVIO		min	03	3	04	3	0	1	0	1	1570.999	3	NC NC	1
200			111111	03	J	04	J	U		U		1370.333	J	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
269		2	max	.02	2	.026	2	0	1	0	1	NC	4	NC	1
270			min	028	3	038	3	0	1	0	1	1667.157	3	NC	1
271		3	max	.019	2	.023	2	0	1	0	1	NC	4	NC	1
272			min	026	3	035	3	0	1	0	1	1775.815	3	NC	1
273		4	max	.018	2	.021	2	0	1	0	1	NC 1000 507	4_	NC NC	1
274		_	min	025	3	033	3	0	1	0	1	1899.527	3	NC NC	1
275		5	max	.017	2	.019	2	0	1	0	1	NC	4	NC NC	1
276			min	023	3	031	3	0	1	0	1_	2041.575	3	NC NC	1
277		6	max	.015	2	.017	2	0	1	0	1	NC	4	NC NC	1
278		7	min	022	2	028	2	0	1	0	1	2206.258 NC	3	NC NC	1
279 280			max	.014 02	3	.015 026	3	0	1	0	1	2399.308	3	NC NC	1
281		8	min	.013	2	.026 .013	2	0	1		1	NC	<u>ა</u>	NC NC	1
282		0	max	018	3	024	3	0	1	0	1	2628.546	3	NC NC	1
283		9	max	.012	2	.011	2	0	1	0	1	NC	1	NC NC	1
284		-	min	017	3	022	3	0	1	0	1	2904.929	3	NC	1
285		10	max	.011	2	.009	2	0	1	0	1	NC	1	NC	1
286		10	min	015	3	019	3	0	1	0	1	3244.289	3	NC	1
287		11	max	.01	2	.007	2	0	1	0	1	NC	1	NC	1
288			min	013	3	017	3	0	1	0	1	3670.383	3	NC	1
289		12	max	.008	2	.006	2	0	1	0	1	NC	1	NC	1
290			min	012	3	015	3	0	1	0	1	4220.556	3	NC	1
291		13	max	.007	2	.004	2	0	1	0	1	NC	1	NC	1
292			min	01	3	013	3	0	1	0	1	4957.064	3	NC	1
293		14	max	.006	2	.003	2	0	1	0	1	NC	1	NC	1
294			min	008	3	01	3	0	1	0	1	5991.992	3	NC	1
295		15	max	.005	2	.002	2	0	1	0	1	NC	1	NC	1
296			min	007	3	008	3	0	1	0	1	7549.537	3	NC	1
297		16	max	.004	2	.001	2	0	1	0	1	NC	1	NC	1
298			min	005	3	006	3	0	1	0	1	NC	1	NC	1
299		17	max	.002	2	0	2	0	1	0	1	NC	1_	NC	1
300			min	003	3	004	3	0	1	0	1	NC	1	NC	1
301		18	max	.001	2	00	2	00	1	00	1	NC	1_	NC	1
302			min	002	3	002	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1	NC	1
305	<u>M7</u>	1	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
306			min	0	1	0	1	0	1	0	1_	NC	1_	NC NC	1
307		2	max	.001	3	0	2	0	1	0	1	NC	1_	NC NC	1
308			min	001	2	003	3	0	1	0	1_	NC NC	1_	NC NC	1
309		3	max	.003	3	0	2	0	1	0	1	NC NC	1	NC NC	1
310		1	min	002	2	005	3	0	1	0	1	NC NC	1_	NC NC	1
311		4	max	.004	3	001	15	0	1	0	1	NC NC	1	NC NC	1
		-	min	004	2	008			1	0	1	NC NC	1	NC NC	1
313		5	max min	.005 005	3	002 01	15	<u>0</u> 	1	0	1	NC NC	1	NC NC	1
315		6	max	.006	3	002	15	0	1	0	1	NC	1	NC	1
316		-	min	006	2	012	3	0	1	0	1	8516.867	3	NC	1
317		7	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
318			min	007	2	003 014	3	0	1	0	1	7614.889	3	NC	1
319		8	max	.007	3	003	15	0	1	0	1	NC	1	NC NC	1
320			min	008	2	015	3	0	1	0	1	7082.417	3	NC	1
321		9	max	.01	3	003	15	0	1	0	1	NC	1	NC	1
322			min	01	2	015	3	0	1	0	1	6809.29	3	NC	1
323		10	max	.011	3	003	15	0	1	0	1	NC	1	NC	1
324		1.0	min	011	2	016	3	0	1	0	1	6746.271	3	NC	1
325		11	max	.013	3	003	15	0	1	0	1	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
326			min	012	2	016	3	0	1	0	1	6881.301	3	NC	1
327		12	max	.014	3	003	15	0	1	0	1	NC	1_	NC	1
328			min	013	2	015	3	0	1	0	1	7233.987	3	NC	1
329		13	max	.015	3	003	15	0	1	0	1	NC	_1_	NC	1
330		4.4	min	014	2	01 <u>5</u>	3	0	1	0	1_	7759.416	4_	NC	1
331		14	max	.016	3	003	15	0	1	0	1	NC	1_	NC NC	1
332		45	min	016	2	014	3	0	1	0	1	8650.814	4	NC NC	1
333		15	max	.018	3	002	15	0	1	0	1_	NC	1_	NC NC	1
334		10	min	017	2	012	3	0	1	0	1_4	NC NC	1_	NC NC	1
335		16	max	.019	3	002 011	15	<u>0</u> 	1	0	1	NC NC	1	NC NC	1
336		17	min	018 .02	3	011 001			1		•	NC NC	1	NC NC	1
337		17	max	019	2	001 009	15	0	1	0	1	NC NC	1	NC NC	1
339		18	min	.021	3	<u>009</u> 0	15	0	1	0	1	NC NC	1	NC NC	1
340		10	max min	02	2	007	3	0	1	0	1	NC NC	1	NC NC	1
341		19	max	.023	3	<u>007</u> 0	15	0	1	0	1	NC	1	NC NC	1
342		13	min	022	2	005	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	2	.003	2	0	1	0	1	NC	1	NC	1
344	IVIO	'	min	002	3	023	3	0	1	0	1	NC	1	NC	1
345		2	max	.002	2	.019	2	0	1	0	1	NC	1	NC	1
346		_	min	001	3	022	3	0	1	0	1	NC	1	NC	1
347		3	max	.006	2	.018	2	0	1	0	1	NC	1	NC	1
348			min	001	3	02	3	0	1	0	1	NC	1	NC	1
349		4	max	.006	2	.017	2	0	1	0	1	NC	1	NC	1
350			min	001	3	019	3	0	1	0	1	NC	1	NC	1
351		5	max	.006	2	.016	2	0	1	0	1	NC	1	NC	1
352			min	001	3	018	3	0	1	0	1	NC	1	NC	1
353		6	max	.005	2	.015	2	0	1	0	1	NC	1	NC	1
354			min	001	3	017	3	0	1	0	1	NC	1	NC	1
355		7	max	.005	2	.014	2	0	1	0	1	NC	1_	NC	1
356			min	001	3	015	3	0	1	0	1	NC	1_	NC	1
357		8	max	.004	2	.012	2	0	1	0	1	NC	1_	NC	1
358			min	0	3	014	3	00	1	0	1	NC	1_	NC	1
359		9	max	.004	2	.011	2	0	1	0	1_	NC	_1_	NC	1
360			min	0	3	013	3	0	1	0	1	NC	1_	NC	1
361		10	max	.004	2	.01	2	0	1	0	1	NC	_1_	NC	1
362			min	0	3	012	3	0	1	0	1	NC	1_	NC	1
363		11	max	.003	2	.009	2	0	1	0	1	NC		NC NC	1
364		40	min	0	3	01	3	0	1	0	1	NC	1_	NC	1
365		12	max	.003	2	.008	2	0	1	0	1_	NC NC	1_	NC NC	1
366		40	min		3	009	3	0	1	0	1	NC NC	1	NC NC	1
367		13	max	.002	2	.007	2	0	1	0	1	NC NC	1	NC NC	1
368		1.1	min	002	3	008	2	0	1	0	1	NC NC	<u>1</u> 1	NC NC	1
369		14	max	.002	3	.006	3	0 0	1	0	1	NC NC	1	NC NC	1
370 371		15	min max	.002	2	006 .005	2	0	1	0	1	NC NC	1	NC NC	1
372		10	min	.002	3	005	3	0	1	0	1	NC NC	1	NC NC	1
373		16	max	.001	2	.003	2	0	1	0	1	NC NC	1	NC NC	1
374		10	min	0	3	004	3	0	1	0	1	NC NC	1	NC NC	1
375		17	max	0	2	.002	2	0	1	0	1	NC NC	1	NC NC	1
376		17	min	0	3	003	3	0	1	0	1	NC	1	NC NC	1
377		18	max	0	2	.003	2	0	1	0	1	NC	1	NC	1
378		1.0	min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		1.5	min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	2	.008	2	0	15	1.79e-4	1	NC	1	NC	2
382			min	009	3	013	3	007	1	7.458e-6	_	8140.005	2	9409.621	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC) LC
383		2	max	.006	2	.007	2	00	15	1.68e-4	_1_	NC	_1_	NC	1
384			min	009	3	012	3	006	1	7.e-6		9299.251	2	NC	1
385		3	max	.006	2	.006	2	0	15	1.57e-4	_1_	NC	_1_	NC	1
386			min	008	3	012	3	006	1	6.542e-6	15	NC	1_	NC	1
387		4	max	.006	2	.005	2	0	15	1.46e-4	_1_	NC	_1_	NC	1
388		_	min	008	3	011	3	005	1	6.085e-6	15	NC	1_	NC	1
389		5	max	.005	2	.004	2	0	15	1.35e-4	_1_	NC	_1_	NC	1
390			min	007	3	011	3	004	1	5.627e-6	15	NC	_1_	NC	1
391		6	max	.005	2	.003	2	0	15	1.24e-4	_1_	NC	_1_	NC	1
392		_	min	007	3	01	3	004	1	5.17e-6	<u>15</u>	NC	1_	NC	1
393		7	max	.004	2	.002	2	0	15	1.13e-4	1_	NC	1_	NC	1
394			min	006	3	009	3	003	1	4.712e-6	15	NC	1_	NC	1
395		8	max	.004	2	.002	2	0	15	1.02e-4	1_	NC	1_	NC	1
396			min	006	3	009	3	003	1	4.255e-6	15	NC	1_	NC	1
397		9	max	.004	2	0	2	0	15	9.102e-5	1_	NC	_1_	NC	1
398		10	min	005	3	008	3	003	1	3.797e-6	15	NC	1_	NC	1
399		10	max	.003	2	0	2	0	15	8.003e-5	1_	NC	1	NC	1
400		1.4	min	005	3	008	3	002	1	3.34e-6	15	NC	1_	NC	1
401		11	max	.003	2	0	2	0	15	6.903e-5	1_	NC	1_	NC	1
402		40	min	<u>004</u>	3	<u>007</u>	3	002	1 1 5	2.882e-6	<u>15</u>	NC NC	1	NC NC	1
403		12	max	.003	2	0	2	0	15	5.804e-5	1_	NC NC	1	NC NC	1
404		40	min	004	3	006	3	001	1_1	2.425e-6	15	NC NC	1_	NC NC	1
405		13	max	.002	2	0	2	0	15	4.704e-5	1_	NC NC	1	NC	1
406		4.4	min	003	3	005	3	0	1_1	1.967e-6	15	NC NC	1_	NC NC	1
407		14	max	.002	2	0	15	0	15	3.605e-5	1_	NC NC	<u>1</u> 1	NC NC	1
408		4.5	min	003	3	005	3	0	1	1.51e-6	<u>15</u>	NC NC		NC NC	
409		15	max	.001	2	0	15	0	15	2.505e-5	1_	NC NC	1_	NC NC	1
410		4.0	min	002	3	004	3	0	1	1.052e-6	<u>15</u>	NC NC	1_	NC NC	1
411		16	max	.001	2	0	15	0	15	1.405e-5	1_	NC NC	<u>1</u> 1	NC NC	1
412		17	min	002	2	003 0	15	<u> </u>	15	5.945e-7	<u>15</u> 1	NC NC	1	NC NC	1
414		17	max	0 001	3	002	3	0	1	3.058e-6 1.172e-7	10	NC NC	1	NC NC	1
414		18	min	<u>001</u> 0	2	<u>002</u> 0	15	0	15	-1.086e-7	12	NC NC	1	NC NC	1
416		10	max	0	3	001	3	0	1	-7.937e-6	12	NC NC	1	NC NC	1
417		19		0	1	<u>001</u> 0	1	0	1	-7.937e-6 -7.781e-7	15	NC NC	1	NC NC	1
417		19	max	0	1	0	1	0	1	-1.761e-7	<u>15</u> 1	NC NC	1	NC NC	1
419	M11	1	max	0	1	0	1	0	1	6.381e-6	1	NC	1	NC	1
420	IVI I I		min	0	1	0	1	0	1	2.629e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-5.327e-7	15	NC	1	NC	1
422			min	0	2	002	4	0	1	-1.281e-5	1	NC	1	NC	1
423		3	max		3	002 0	15	0		-1.281e-5 -1.328e-6			1	NC NC	1
424		J	min	0	2	004	4	0	1	-3.201e-5	1	NC	1	NC	1
425		4	max	.001	3	004 001	15	0		-2.124e-6		NC	1	NC	1
426			min	0	2	006	4	0	1	-5.12e-5	1	NC	1	NC	1
427		5	max	.002	3	002	15	0	15	-2.919e-6	•	NC	1	NC	1
428			min	001	2	002	4	0	1	-7.04e-5	1	NC	1	NC	1
429		6	max	.002	3	002	15	0	15	-3.715e-6	•	NC	1	NC	1
430			min	002	2	002	4	0	1	-8.96e-5	1	NC	1	NC	1
431		7	max	.002	3	003	15	0		-4.511e-6		NC	1	NC	1
432			min	002	2	011	4	0	1	-1.088e-4	1	8611.263	4	NC	1
433		8	max	.003	3	003	15	0			•	NC	1	NC	1
434			min	002	2	012	4	001	1	-1.28e-4	1	7730.884	4	NC	1
435		9	max	.002	3	003	15	0	15			NC	2	NC	1
436			min	003	2	013	4	001	1	-1.472e-4	1	7210.314	4	NC	1
437		10	max	.003	3	003	15	0	15		15	NC	2	NC	1
438		'	min	003	2	013	4	002	1	-1.664e-4	1	6958.855	4	NC	1
439		11	max	.004	3	003	15	0		-7.693e-6	15	NC	2	NC	1
			max	.00-		.000			10	0000 0		110			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
440			min	003	2	013	4	002	1	-1.856e-4	1	6939.46	4	NC	1
441		12	max	.004	3	003	15	0	15	-8.489e-6	15	NC	2	NC	1
442			min	004	2	013	4	002	1	-2.048e-4	1_	7154.522	4	NC	1
443		13	max	.005	3	003	15	0	15	-9.284e-6	15	NC	1	NC	1
444			min	004	2	012	4	003	1	-2.24e-4	1	7648.614	4	NC	1
445		14	max	.005	3	003	15	0	15		15	NC	1	NC	1
446			min	004	2	011	4	003	1	-2.432e-4	1	8531.601	4	NC	1
447		15	max	.006	3	002	15	0	15	-1.088e-5	15	NC	1	NC	1
448			min	005	2	01	4	004	1	-2.624e-4	1	NC	1	NC	1
449		16	max	.006	3	002	15	0	15	-1.167e-5	15	NC	1	NC	1
450			min	005	2	008	4	004	1	-2.815e-4	1	NC	1	NC	1
451		17	max	.006	3	001	15	0	15	-1.247e-5	15	NC	1	NC	1
452			min	005	2	006	1	005	1	-3.007e-4	1	NC	1	NC	1
453		18	max	.007	3	0	15	0	15	-1.326e-5	15	NC	1	NC	1
454			min	006	2	004	1	006	1	-3.199e-4	1	NC	1	NC	1
455		19	max	.007	3	0	15	0	15		15	NC	1	NC	1
456			min	006	2	002	1	006	1	-3.391e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.006	2	.006	1	-2.175e-6	15	NC	1	NC	3
458			min	0	3	007	3	0	15		1	NC	1	3892.914	1
459		2	max	.002	1	.005	2	.006	1	-2.175e-6	15	NC	1	NC	2
460			min	0	3	007	3	0	15		1	NC	1	4232.039	
461		3	max	.002	1	.005	2	.005	1	-2.175e-6	15	NC	1	NC	2
462			min	0	3	007	3	0	15	-5.214e-5	1	NC	1	4635.723	1
463		4	max	.002	1	.005	2	.005	1	-2.175e-6	15	NC	1	NC	2
464			min	0	3	006	3	0	15	-5.214e-5	1	NC	1	5120.723	1
465		5	max	.002	1	.004	2	.004	1	-2.175e-6	15	NC	1	NC	2
466			min	0	3	006	3	0	15	-5.214e-5	1	NC	1	5709.812	1
467		6	max	.002	1	.004	2	.004	1	-2.175e-6	15	NC	1	NC	2
468			min	0	3	005	3	0	15		1	NC	1	6434.576	1
469		7	max	.002	1	.004	2	.003	1	-2.175e-6	15	NC	1	NC	2
470			min	0	3	005	3	0	15		1	NC	1	7339.844	1
471		8	max	.002	1	.003	2	.003	1	-2.175e-6	15	NC	1	NC	2
472			min	0	3	005	3	0	15	-5.214e-5	1	NC	1	8491.001	1
473		9	max	.001	1	.003	2	.002	1	-2.175e-6	15	NC	1	NC	2
474			min	0	3	004	3	0	15	-5.214e-5	1	NC	1	9986.474	1
475		10	max	.001	1	.003	2	.002	1	-2.175e-6	15	NC	1	NC	1
476			min	0	3	004	3	0	15	-5.214e-5	1	NC	1	NC	1
477		11	max	.001	1	.002	2	.002	1	-2.175e-6	15	NC	1	NC	1
478			min	0	3	003	3	0	15		1	NC	1	NC	1
479		12	max	.001	1	.002	2	.001	1		15	NC	1	NC	1
480		T	min	0	3	003	3	0		-5.214e-5	1	NC	1	NC	1
481		13	max	0	1	.002	2	.001	1	-2.175e-6		NC	1	NC	1
482			min	0	3	002	3	0		-5.214e-5	1	NC	1	NC	1
483		14	max	0	1	.002	2	0	1	-2.175e-6	•	NC	1	NC	1
484			min	0	3	002	3	0	15	-5.214e-5	1	NC	1	NC	1
485		15	max	0	1	.002	2	0	1	-2.175e-6		NC	1	NC	1
486		10	min	0	3	002	3	0	15		1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-2.175e-6		NC	1	NC	1
488		1.0	min	0	3	001	3	0	_	-5.214e-5	1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-3.214e-3	•	NC	1	NC	1
490		''	min	0	3	0	3	0	15		1	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-2.175e-6	•	NC	1	NC	1
492		10	min	0	3	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-3.214e-3 -2.175e-6	•	NC	1	NC	1
494		13	min	0	1	0	1	0	1	-5.214e-5	1	NC	1	NC	1
495	M1	1	max	.009	3	.123	2	0	1	1.236e-2	2	NC NC	1	NC NC	1
496	IVI I		min	005	2	022	3	0		-2.505e-2	3	NC NC	1	NC NC	1
430			1111111	005	 	022	J	U	IJ	-2.5056-2	J	INC		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

497 2 max .009 3 .059 2 0 15 6.06 498 min 005 2008 3005 1 -1.23 499 3 max .009 3 .014 3 0 15 3.40 500 min 005 2011 2007 1 -1.28	9e-2 3 8e-5 10 4e-4 3	NC 1782.838 NC	2	NC NC	1
499 3 max .009 3 .014 3 0 15 3.40	8e-5 10 4e-4 3		2	NIC	
	4e-4 3	NC.			1
500 min005 2 011 2 007 1 -1.28			5	NC	1
	20 2	859.658	2	NC	1
501 4 max .009 3 .052 3 0 15 4.31		NC	5	NC	1
502 min005 2089 2006 1 -4.80		543.043	2	NC	1
503 5 max .009 3 .101 3 0 15 8.60	6e-3 2	NC	5	NC	1
504 min005 217 2004 1 -9.47	5e-3 3	392.151	2	NC	1
505 6 max .008 3 .154 3 0 15 1.29		NC	15	NC	1
506 min005 2249 2002 1 -1.41	5e-2 3	308.995	2	NC	1
507 7 max .008 3 .205 3 0 1 1.715	9e-2 2	NC	15	NC	1
508 min005 232 2 0 3 -1.88	2e-2 3	259.893	2	NC	1
509 8 max .008 3 .248 3 0 1 2.14	9e-2 2	9752.557	15	NC	1
510 min005 2375 2 0 15 -2.34	9e-2 3	230.842	2	NC	1
511 9 max .008 3 .276 3 0 15 2.43	5e-2 2	9119.992	15	NC	1
512 min004 2411 2 0 1 -2.36		215.716	2	NC	1
513 10 max .008 3 .286 3 0 1 2.62			15	NC	1
514 min004 2423 2 0 15 -2.08		211.277	2	NC	1
515 11 max .008 3 .279 3 0 1 2.819			15	NC	1
516 min004 2411 2 0 15 -1.80		216.428	2	NC	1
517			15	NC	1
518 min004 2374 2 0 1 -1.51		233.003	2	NC	1
519 13 max .007 3 .218 3 0 15 2.17			15	NC	1
520 min004 2315 2 0 1 -1.21		265.139	2	NC	1
521			15	NC	1
522 min004 2242 2 0 15 -9.09		320.177	2	NC	1
523		NC	5	NC	1
524 min004 2162 2 0 15 -6.07		415.106	2	NC	1
525		NC	5	NC	1
526 min004 208 2 0 15 -3.05		591.303	2	NC	1
527		NC	5	NC	1
528 min004 2006 2 0 15 -3.80		968.755	2	NC	1
		NC	4	NC NC	1
		2060.07	2	NC NC	1
531		NC NC	1	NC NC	1
		NC NC	-	NC NC	•
533 M5 1 max .028 3 .271 2 0 1 0		NC	1	NC NC	1
534 min019 2013 3 0 1 0		NC NC	1	NC NC	1
535 2 max .028 3 .128 2 0 1 0		NC	5	NC	1
536 min019 2 0 3 0 1 0		806.883	2	NC NC	1
537 3 max .028 3 .043 3 0 1 0		NC 070 F04	5	NC	1
538 min019 2033 2 0 1 0		379.561	2	NC NC	1
539 4 max .027 3 .139 3 0 1 0			15	NC	1
540 min019 2226 2 0 1 0			2	NC	1
541 5 max .027 3 .273 3 0 1 C			15	NC	1
542 min019 2435 2 0 1 0		163.45	2	NC	1
543 6 max .026 3 .423 3 0 1 0			15	NC	1
544 min018 2642 2 0 1 0		126.324	2	NC	1
545 7 max .026 3 .57 3 0 1 C) 1		15	NC	1
546 min018 283 2 0 1 0) 1	104.783	2	NC	1
547 8 max .025 3 .694 3 0 1 0) 1		15	NC	1
548 min018 2981 2 0 1 0) 1	92.217	2	NC	1
549 9 max .025 3 .774 3 0 1 0) 1		15	NC	1
550 min017 2 -1.076 2 0 1 0			2	NC	1
551 10 max .024 3 .802 3 0 1 0			15	NC	1
552 min017 2 -1.108 2 0 1 0		83.868	2	NC	1
553 11 max .024 3 .782 3 0 1 0) 1		15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			o LC
554			min	017	2	-1.076	2	0	1	0	1_		2	NC	1
555		12	max	.023	3	.715	3	0	1	0	1_		15	NC	1
556			min	017	2	977	2	0	1	0	1	93.195	2	NC	1
557		13	max	.022	3	.606	3	0	1	0	1	4993.094	15	NC	1
558			min	016	2	818	2	0	1	0	1	107.322	2	NC	1
559		14	max	.022	3	.468	3	0	1	0	1	6038.095	15	NC	1
560			min	016	2	621	2	0	1	0	1	132.054	2	NC	1
561		15	max	.021	3	.315	3	0	1	0	1	7849.356	15	NC	1
562			min	016	2	408	2	0	1	0	1	175.956	2	NC	1
563		16	max	.021	3	.16	3	0	1	0	1		15	NC	1
564			min	016	2	2	2	0	1	0	1	260.567	2	NC	1
565		17	max	.02	3	.014	3	0	1	0	1	NC	5	NC	1
566			min	015	2	019	2	0	1	0	1		2	NC	1
567		18	max	.02	3	.118	2	0	1	0	1	NC	5	NC	1
568		1.0	min	015	2	11	3	0	1	0	1	996.474	2	NC	1
569		19	max	.02	3	.23	2	0	1	0	1	NC	1	NC	1
570		15	min	015	2	222	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.009	3	.123	2	0	15	2.505e-2	3	NC	1	NC	1
572	IVIƏ		min	005	2	022	3	0	1	-1.236e-2	2	NC	1	NC	1
		2		.005	3		2	.005	1	1.239e-2	3	NC	4	NC	1
573 574			max	005	2	.059 008	3	.005	15	-6.067e-3	2	1782.838	2	NC NC	1
		3	min		_					1.284e-4			5	NC NC	
575		3	max	.009	3	.014	3	.007	1		3				1
576		-	min	005	2	011	2	0	15	-3.408e-5	10	859.658	2	NC NC	1
577		4	max	.009	3	.052	3	.006	1	4.802e-3	3	NC 540	5	NC NC	1
578		_	min	005	2	089	2	0	15	-4.312e-3	2	543.043	2	NC NC	1
579		5	max	.009	3	.101	3	.004	1	9.475e-3	3	NC NC	5	NC_	1
580			min	<u>005</u>	2	17	2	0	15	-8.606e-3	2	392.151	2	NC NC	1
581		6	max	.008	3	.154	3	.002	1	1.415e-2	3		15	NC_	1
582			min	005	2	249	2	0	15	-1.29e-2	2	308.995	2	NC_	1
583		7	max	.008	3	.205	3	0	3	1.882e-2	3_		15	NC_	1
584			min	005	2	32	2	0	1	-1.719e-2	2		2	NC	1
585		8	max	.008	3	.248	3	0	15	2.349e-2	3		15	NC	1
586			min	005	2	375	2	0	1	-2.149e-2	2		2	NC	1
587		9	max	.008	3	.276	3	0	1	2.367e-2	3		15	NC_	1
588			min	004	2	411	2	0	15	-2.435e-2	2		2	NC_	1
589		10	max	.008	3	.286	3	0	15	2.085e-2	3		15	NC_	1
590			min	004	2	423	2	0	1	-2.625e-2	2		2	NC	1
591		11	max	.008	3	.279	3	0	15	1.803e-2	3	9119.62	15	NC	1
592			min	004	2	411	2	0	1	-2.815e-2	2	216.428	2	NC	1
593		12	max	.007	3	.256	3	0	1	1.513e-2	3		15	NC	1
594			min	004	2	374	2	0	15	-2.715e-2			2	NC	1
595		13	max	.007	3	.218	3	0	1	1.211e-2	3		15	NC	1
596			min	004	2	315	2	0		-2.177e-2	2		2	NC	1
597		14	max	.007	3	.17	3	0	15	9.095e-3	3	NC	15	NC	1
598			min	004	2	242	2	002	1	-1.639e-2	2	320.177	2	NC	1
599		15	max	.007	3	.115	3	0	15	6.076e-3	3	NC	5	NC	1
600			min	004	2	162	2	004	1	-1.102e-2	2	415.106	2	NC	1
601		16	max	.007	3	.059	3	0	15	3.057e-3	3	NC	5	NC	1
602			min	004	2	08	2	006	1	-5.638e-3		591.303	2	NC	1
603		17	max	.007	3	.005	3	0	15	3.808e-5	3	NC	5	NC	1
604			min	004	2	006	2	006	1	-4.556e-4	1	968.755	2	NC	1
605		18	max	.007	3	.055	2	0	15	3.857e-3	3	NC	4	NC	1
606			min	004	2	044	3	004	1	-9.383e-3			2	NC	1
607		19	max	.007	3	.11	2	0	1	7.835e-3	3	NC	1	NC	1
608		Ť	min	004	2	089	3	0		-1.884e-2		NC	1	NC	1
											_				

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 14-42 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	1/5			
Project:	Standard PVMax - Worst Case, 37-42 Inch Width					
Address:						
Phone:						
E-mail:						

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 37	Standard PVMax - Worst Case, 37-42 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{ ext{ed},Na}$ $\Psi_{ ext{g}}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	N _a (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa	3C. D.7.3	0.72	0.48	120.3 %	1.2	Pas
-------------------------------------	-----------	------	------	---------	-----	-----

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.