

Motional Stark Effect Measurements

S. Gibson¹, N. C. Hawkes², M. Carr², N. J. Conway², J. Howard^{3,} R. M. Sharples¹

- 1. Center for Advanced Instrumentation, Durham University, UK
- 2. Culham Center for Fusion Energy, Culham, Abingdon, UK
- 3. Plasma Research Laboratory, Australia National University, Canberra, Australia

ABSTRACT

A key research theme for MAST-U is pedestal physics, particularly with the introduction of new divertor configurations which will give access to ITER relevant pedestal structures. The motional stark effect (MSE) diagnostic provides a radial measurement of magnetic pitch angle, used to constrain equilibrium reconstruction codes such as EFIT++. From MSE measurements, it is possible to infer a radial toroidal current density profile and q profile. We present preliminary results on edge current measurements on MAST. The effect of radial electric field on polarization angle, and subsequently on the Current profile is shown.

THE MOTIONAL STARK EFFECT

MSE is a passive beam spectroscopy diagnostic.

Hydrogen atoms injected into plasma, experience strong Lorentz E field and Stark effect splitting energy levels.

Doppler shifted emission away from $H\alpha$ and polarised parallel (π) and perp (σ) to E field.

MSE measures polarisation angle γ , in absence of Er proportional to pitch angle γp :

$$\tan \gamma = -\frac{\cos \beta}{\sin \alpha} \tan \gamma_p$$

Fig. 1: Geometry of the MSE measurement, etendue of each line of sight and Doppler shifted measured spectrum. [1]

MAST-U MSE DIAGNOSTIC

<u>Capabilities</u>

2.5cm spatial resolution ~1ms time resolution $\Delta \gamma \leq 0.5$ angular noise at $\Delta \gamma \leq 1$ ms

MSE-constrained EFIT available inter-shot

Fig 2: Schematic of the MAST MSE diagnostic. [2]

»Narrow bandpass filters

- »Overlapping π and σ spectral lines due to low B field \rightarrow less Stark splitting
- »Narrow interference filters select either π or σ line (0.1nm FWHM)
- »Require wavelength matching to account for beam voltage variation

» Photoelastic Modulators (PEMs)

- »Encode polarization as intensity modulation: Dual PEM operation at 20kHz, 23kHz.
- »Allow for synchronous detection of the second harmonic of each PEM to recover y.

» Fibers, Filterscopes and Detectors

- »Image fiber bundles onto avalanche photodiodes (APDs)
- »Fibers arranged in hexagonal packing to minimise broadening of filter bandshape.

EDGE CURRENT AND Q PROFILE MEASUREMENTS ON MAST

Polarisation angle profiles

Observed peaked γ inside LCFS in H mode (#24409).

Inferred q and current profiles

Calculate Bz from γ and j using Ampere's law:

$$\mu_0 j_\phi = \frac{\partial B_R}{\partial Z} - \frac{\partial B_Z}{\partial R}$$

2D COHERENCE IMAGING MSE

Principle: Imaging polarisation interferometer using whole MSE spectrum.

IMSE Advantages:

- ✓ Obtain 2D profile of Bz
- ✓ Insensitive to broadband polarised light
- ✓ Operate over range of beam energies

Future work:

Assess feasibility of IMSE on MAST-U given small Stark splitting through diagnostic forward modelling.

Fig 6: Optical setup for IMSE. Waveplate thickness is optimised to maximise contrast between π and σ polarised light. [3]

TOWARDS ITER RELEVANT MSE

Plasma deposition degrades conventional MSE optics.

Background polarised light significant on ITER – alternative approach required [5]

Line splitting proportional to |B|:

$$\Delta \lambda_S = \frac{3ea_0}{2hc} \lambda_0^2 m |E|$$

- ✓ Polarisation free measurement
- \checkmark High B field \rightarrow well defined π / σ
- ✓ Ready to be tested in ITER relevant JET DT campaign

References

- [1] N. C. Hawkes, Rev. Sci. Instrum. **70**(1), 1999
- [2] N. Conway, Rev. Sci. Instrum. **81**(10) 2010
- [3] J. Howard, K-STAR presentation, 2010
- [4] J. Howard, ECPD Proceedings, 2017[5] M. De Bock, ITER System Design Description, 2014