

Simple Linear Regression

Dr. Zahoor Tanoli COMSATS Attock

Correlation vs. Regression

- A scatter plot can be used to show the relationship between two variables
- Correlation analysis is used to measure the strength of the association (linear relationship) between two variables
 - Correlation is only concerned with strength of the relationship
 - No causal effect is implied with correlation

Introduction to Regression Analysis

- Statistical process for estimating the relationships among variables
- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to

predict or explain

Independent variable: the variable used to predict

or explain the dependent

variable

Simple Linear Regression Model

- Only one independent variable, X
- Relationship between X and Y is described by a linear function
- Changes in Y are assumed to be related to changes in X

Types of Relationships

Linear relationships

Curvilinear relationships

Types of Relationships

(continued)

Strong relationships

Types of Relationships

(continued)

Simple Linear Regression Model

Simple Linear Regression Model

(continued)

Simple Linear Regression Equation (Prediction Line)

The simple linear regression equation provides an estimate of the population regression line

The Least Squares Method

 b_0 and b_1 are obtained by finding the values of that minimize the sum of the squared differences between Y and \hat{Y} :

$$\min \sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - (b_0 + b_1 X_i))^2$$

Interpretation of the Slope and the Intercept

b₀ is the estimated mean value of Y
 when the value of X is zero

 b₁ is the estimated change in the mean value of Y as a result of a one-unit increase in X

Glucose (mg/dL)	Absorbance
50	.10
100	.20
150	.30
200	.40
250	.50
300	.60

To find the y-intercept, calculate \overline{x} and \overline{y} the average of the x- and y-values respectively

$$\bar{x} = 175$$

$$y = 0.35$$

Calculating the Y-Intercept

Formula

- Regression Equation(y) = a + bx
- Slope(b) = $(N\Sigma XY (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 (\Sigma X)^2)$
- Intercept(a) = (ΣY b(ΣX)) / N
- Where
 - x and y are the variables.
 - b = The slope of the regression line
 - a = The intercept point of the regression line and the y axis.
 - N = Number of values or elements
 - X = First Score
 - Y = Second Score
 - ΣXY = Sum of the product of first and Second Scores
 - ΣX = Sum of First Scores
 - ΣY = Sum of Second Scores
 - ΣX² = Sum of square First Scores

Regression Example

X Values	Y Values		
60	3.1		
61	3.6		
62	3.8		
63	4		
65	4.1		

To find regression equation, we will first find slope, intercept and use it to form regression equation

Step 1 and 2

- Count the number of values. N = 5
- Find XY, X²

X Value	Y Value	X*Y	X*X
60	3.1	60 * 3.1 = 186	60 * 60 = 3600
61	3.6	61 * 3.6 = 219.6	61 * 61 = 3721
62	3.8	62 * 3.8 = 235.6	62 * 62 = 3844
63	4	63 * 4 = 252	63 * 63 = 3969
65	4.1	65 * 4.1 = 266.5	65 * 65 = 422 5

- Find ΣX, ΣY, ΣXY, ΣX².
 - $\Sigma X = 311$
 - $\Sigma Y = 18.6$
 - $\Sigma XY = 1159.7$
 - $\Sigma X^2 = 19359$

- Substitute in slope formula given
 - Slope(b) = $(N\Sigma XY (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 (\Sigma X)^2)$
 - $((5)*(1159.7)-(311)*(18.6))/((5)*(19359)-(311)^2)$
 - \bullet (5798.5 5784.6)/(96795 96721) = 13.9/74 = 0.19

- Substitute in intercept formula
 - Intercept(a) = (ΣY b(ΣX)) / N
 - **(18.6 0.19(311))/5**
 - **(18.6 59.09)/5**
 - -40.49/5 = **-8.098**

- Then substitute these values in regression equation formula
- Regression Equation(y) = a + bx
 - -8.098 + 0.19x
- Suppose if we want to know the approximate y value for the variable x = 64. Then we can substitute the value
 - Regression Equation(y) = a + bx
 - -8.098 + 0.19(64).
 - **-8.098 + 12.16 = 4.06**

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (Y) = house price in \$1000s
 - Independent variable (X) = square feet

Simple Linear Regression Example: Data

House Price in \$1000s (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Simple Linear Regression Example: Scatter Plot

House price model: Scatter Plot

SPSS Output

Coefficients^a

				Unstandardized Coefficients		Standardized Coefficients			
×	Model			В	Std. Error		Beta	t	Sig.
	4	(Constant)		98.248	58.03	3		1.693	.129
		Area in Square F	et	.110	.03	13	.762	3.329	.010

a. Dependent Variable: House Price

Simple Linear Regression Example: Graphical Representation

House price model: Scatter Plot and Prediction Line

Simple Linear Regression Example: Interpretation of b_o

- b₀ is the estimated mean value of Y when the value of X is zero (if X = 0 is in the range of observed X values)
- Because a house cannot have a square footage of 0, b₀ has no practical application

Example

A statistics professor wants to use the number of hours a student studies for a statistics final exam (X) to predict the final exam score (Y). A regression model was fit based on data collected for a class during the previous semester, with the following results:

$$\hat{Y}_i = 35.0 + 3X_i$$

What is the interpretation of the Y intercept, b_0 , and the slope, b_1 ?

SOLUTION The Y intercept $b_0 = 35.0$ indicates that when the student does not study for the final exam, the predicted final exam score is 35.0. The slope $b_1 = 3$ indicates that for each increase of one hour in studying time, the mean change in the final exam score is predicted to be +3.0. In other words, the final exam score is predicted to increase by 3 points for each one-hour increase in studying time.

Simple Linear Regression Example: Interpreting b₁

- b₁ estimates the change in the mean value of Y as a result of a one-unit increase in X
 - Here, $b_1 = 0.10977$ tells us that the mean value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Simple Linear Regression Example: Making Predictions

Predict the price for a house with 2000 square feet:

house price =
$$98.24833 + 0.10977$$
 (sq.ft.)
= $98.24833 + 0.10977$ (2000)
= 317.78

The predicted price for a house with 2000 square feet is 317.78(\$1,000s) = \$317,780

Simple Linear Regression Example: Making Predictions

What will happened when we try to extrapolate the results?

Store	Square Feet (X)	Annual Sales (Y)	X^2	Y 2	XY
1	1.7	3.7	2.89	13.69	6.29
2	1.6	3.9	2.56	15.21	6.24
3	2.8	6.7	7.84	44.89	18.76
4	5.6	9.5	31.36	90.25	53.20
5	1.3	3.4	1.69	11.56	4.42
6	2.2	5.6	4.84	31.36	12.32
7	1.3	3.7	1.69	13.69	4.81
8	1.1	2.7	1.21	7.29	2.97
9	3.2	5.5	10.24	30.25	17.60
10	1.5	2.9	2.25	8.41	4.35
11	5.2	10.7	27.04	114.49	55.64
12	4.6	7.6	21.16	57.76	34.96
13	5.8	11.8	33.64	139.24	68.44
14	3.0	4.1	9.00	16.81	12.30
Totals	40.9	81.8	157.41	594.90	302.30

COMPUTATIONAL FORMULA FOR THE SLOPE, b1

$$b_1 = \frac{SSXY}{SSX}$$

where

$$SSXY = \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i=1}^{n} X_i Y_i - \frac{\left(\sum_{i=1}^{n} X_i\right)\left(\sum_{i=1}^{n} Y_i\right)}{n}$$

$$SSX = \sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} X_i^2 - \frac{\left(\sum_{i=1}^{n} X_i\right)^2}{n}$$

COMPUTATIONAL FORMULA FOR THE YINTERCEPT, b_0

$$b_0 = \overline{Y} - b_1 \overline{X}$$

where

$$\overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$SSXY = \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i=1}^{n} X_i Y_i - \frac{\left(\sum_{i=1}^{n} X_i\right)\left(\sum_{i=1}^{n} Y_i\right)}{n}$$

$$SSXY = 302.3 - \frac{(40.9)(81.8)}{14}$$
$$= 302.3 - 238.97285$$
$$= 63.32715$$

$$SSX = \sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} X_i^2 - \frac{\left(\sum_{i=1}^{n} X_i\right)^2}{n}$$

$$= 157.41 - \frac{(40.9)^2}{14}$$

$$= 157.41 - 119.48642$$

$$= 37.92358$$

$$b_1 = \frac{SSXY}{SSX} = \frac{63.32715}{37.92358} = 1.67$$

$$\overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n} = \frac{81.8}{14} = 5.842857$$

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{40.9}{14} = 2.92143$$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

$$= 5.842857 - (1.6699)(2.92143)$$

$$= 0.9645$$

Check the results with SPSS, Rapidminer, etc.