Лабораторная работа № 3 «Однофакторный дисперсионный анализ»

студента <u>Ма</u>	<u> Моисеенко Олеся</u>	группы <u>Б</u> 2	<u>20-514</u> . Дата	сдачи:	
Ведущий г	іреподаватель: <u>Со</u>	рока А.А.	оценка:	подпись:	

Вариант №15

Цель работы: изучение функций Statistics and Machine Learning Toolbox™ MATLAB / Python SciPy.stats для проведения однофакторного дисперсионного анализа (*One-Way ANOVA*).

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, <i>m</i> _i	Дисперсия, σ_i^2	Объем выборки, <i>n</i> _i
X_1	$\chi^{2}(15)$	k = 15	15	30	50
X_2	R(5, 25)	a = 5 $b = 25$	15	33,333333 = 100/3	100
<i>X</i> ₃	N(5, 2)	$m = 5$ $\sigma^2 = 2$	5	2	100

Количество случайных величин k = 3

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \bar{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i
X_1	15.601281	31.689094	5.629307
X_2	15.425819	35.128094	5.926896
X_3	5.076484	1.970757	1.403837
Pooled	11.321177	47.178926	6.868692

2. Визуальное представление выборок

Диаграммы Box-and-Whisker:

Примечание: для построения диаграмм использовать функции **boxplot**, **vartestn** (**matplotlib.pyplot.boxplot**)

3. Проверка условия применимости дисперсионного анализа

Статистическая гипотеза: $H_0: \sigma_1^2 = ... = \sigma_k^2$

Критерий Бартлетта:

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
164.22850946678074	2.1788748384198263e-36	Н ₀ отклоняется	нет

Примечание: для проверки гипотезы использовать функцию vartestn (scipy.stats.bartlett)

4. Однофакторный дисперсионный анализ

Таблица дисперсионного анализа:

Источник вариации	Показатель вариации	Число степеней свободы	Несмещённая оценка
Группировочный признак	$D_b^* = 26.001567114822492$	K – 1 = 2	$n * D_b^*/(K - 1) = 3250.1958893528117$
Остаточные признаки	$D_w^* = 21.177359296548417$	n – K = 247	n * D _w */(n - K) = 21.434574186789895
Все признаки	$D_X^* = 47.17892641137091$	n - 1 = 249	$n * D_X^*/(n-1) = 47.368400011416576$

Эмпирический коэффициент детерминации $\eta^2 = 0.5511267231497595$

Эмпирическое корреляционное отношение $\eta = 0.7423790966546402$

Статистическая гипотеза: $H_0: m_1 = ... = m_k$

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
151.633331319262	1.0896405147776392e-43	Н ₀ отклоняется	нет

Примечание: при расчетах использовать функцию anova1 (scipy.stats.f_oneway)

5. Метод линейных контрастов

Доверительные интервалы для $m_1, ..., m_k$:

Попарные сравнения m_i и m_j :

Гипотеза	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
H_0 : $m_1 = m_2$	0.8524	0.6353	Н ₀ принимается	нет
H_0 : $m_1 = m_3$	-10.619	0.001	Н ₀ отклоняется	нет
H_0 : $m_2 = m_3$	-11.4715	0.001	Н ₀ отклоняется	нет

Примечание: при расчетах использовать функцию **multcompare** (statsmodels.stats.multicomp.pairwise_tukeyhsd)