

Università degli Studi di Padova

Principal Component Analysis

Machine Learning 2023-24
UML Book Chapter 23

Slides P. Zanuttigh (derived from F. Vandin slides)

analyzed

Recall: Supervised Learning

Training data with labels

Unsupervised Learning: Training Data is Unlabeled

Training data (unlabeled)

ML model

(training: estimate parameters)

Unsupervised Learning: Training data is not labeled

Prediction

Unsupervised Learning Techniques

We are going to see only a couple of unsupervised learning tasks and a few very simple and commonly used methods

- Clustering (already seen)
 - o K-means
 - Linkage-based clustering
- ☐ Dimensionality reduction
 - Principal Component Analysis (PCA)

There are many other techniques (not part of this course)

- Mean shift clustering, spectral clustering....
- Compressive sensing

Dimensionality Reduction

- ☐ Take data from a highly dimensional space and project to a lower dimensional one
- ☐ Many applications:
 - Reduce number of features (learn with less samples, lower computation req.)
 - Capture most important aspects of the data for subsequent analysis
 - Data visualization
 - etc..
- ☐ By reducing dimensionality part of the information get lost
 - Lower dimensional data should be a *good approximation* of the higher dimensional representations
 - Good approximation: lower dimensional data should allow for reconstructing the original data with a reasonable accuracy

Dimensionality Reduction

- ☐ Lower dimensional data should be a *good approximation* of the higher dimensional representations
- Good approximation: minimize error obtained by reprojecting the data back to the high dimensional space (→ similar to lossy data compression)
- ☐ Focus on linear mapping of the data (represented by a matrix multiplication)
- ☐ Principal Component Analysis (PCA): find the linear mapping that minimizes the mean squared error in the reprojection

Principal Component Analysis (PCA)

- \square $x_1, x_2, ..., x_m \in \mathbb{R}^d$: data points
- \square $W \in \mathbb{R}^{n,d}$ (n < d): mapping $\mathbf{x} \to \mathbf{y} = W\mathbf{x}$
 - ightharpoonup where $y = Wx \in \mathbb{R}^n$ is a lower dimensional representation of $x \in \mathbb{R}^d$
- \square $U \in \mathbb{R}^{d,n}$ (n < d): inverse mapping $\mathbf{y} \to \widetilde{\mathbf{x}} = U\mathbf{y}$
 - \triangleright used to recover an approximation $\tilde{x} = UWx$ of x
- ☐ Target: find the lower dimensional representation that better approximates the data \rightarrow that leads to minimum squared distance between \tilde{x} and x
 - \triangleright Corresponds to seek for the *n*-dimensional basis that best captures the variance in the d-dimensional data $\widetilde{x_i}$

$$\underset{W \in \mathbb{R}^{n,d}, U \in \mathbb{R}^{d,n}}{\operatorname{argmin}} \sum_{i=1}^{m} ||x_i - UWx_i||_2^2$$

Lemma

There exist an optimal solution (U^*,W^*) of $\underset{W \in \mathbb{R}^{n,d},U \in \mathbb{R}^{d,n}}{\operatorname{argmin}} \sum_{i=1}^m \|x_i - UWx_i\|_2^2$ where:

Recall: orthonormal

- the columns of U^* are orthonormal (i.e., $(U^*)^T U^* = I$)
- $W^* = (U^*)^T$

- $\mathbf{u}_i^T \mathbf{u}_j = 0, \forall i \neq j$ $||\mathbf{u}_i|| = 1 = \mathbf{u}_i^T \mathbf{u}_i, \forall i$

Demonstration:

- 1. Fix U,W and consider the mapping $\mathbf{x} \to UWx$
 - \triangleright The range of the mapping is $R = \{UWx : x \in \mathbb{R}^d\}$
- 2. $V \in \mathbb{R}^{d,n}$: matrix whose column form an orthonormal basis of R
 - ightharpoonup Recall that $V^TV = I$ and $\forall x \in R: Vy$ with $y \in \mathbb{R}^n$
- $\forall x \in \mathbb{R}^d$, $\forall y \in \mathbb{R}^n$:
 - $||x Vy||_2^2 = ||x||^2 + y^T V^T V y 2y^T V^T x = ||x||^2 + ||y||^2 2y^T (V^T x)$
- 4. Minimize $||x||^2 + ||y||^2 2y^T(V^Tx)$ w.r.t y: set $\nabla = 0 \to 2y 2(V^Tx) = 0 \to y_{ont} = V^Tx$
- 5. $\forall x : \operatorname{argmin} ||x \tilde{x}||_2^2 = V y_{opt} = V(V^T x)$: it is the best approximation in subspace R
- 6. $\forall x$: includes also x_1, \dots, x_m (data vectors): $\sum_{i=1}^m ||x_i UWx_i||^2 \ge \sum_{i=1}^m ||x_i VV^Tx_i||^2$, so we can replace U,W with VV^T without increasing the objective
- 7. Holds for $\forall U, W$: there exist a solution that minimize $\sum_{i=1}^{m} ||x_i UWx_i||^2$ with V orthonormal columns and $W = U^T$

Optimization Problem

There exist an optimal solution (U^*,W^*) of $\underset{W \in \mathbb{R}^{n,d},U \in \mathbb{R}^{d,n}}{\operatorname{argmin}} \sum_{i=1}^m \|x_i - UWx_i\|_2^2$ where:

- the columns of U^* are orthonormal (i.e., $(U^*)^T U^* = I$)
- $W^* = (U^*)^T$

The optimization problem can be rewritten as:

$$\underset{U \in \mathbb{R}^{d,n}: U^T U = I}{\operatorname{argmin}} \sum_{i=1}^{m} \|\boldsymbol{x}_i - U U^T \boldsymbol{x}_i\|_2^2$$

- Trace: Σ elements on diagonal
- It is a scalar
- $trace(A^TB) = trace(AB^T) =$ = $trace(B^TA) = trace(BA^T)$

With some manipulations:
$$\|x - UU^T x\|_2^{\frac{1}{2}} = \|x\|^2 - 2x^T UU^T x + x^T UU^T UU^T x = \|x\|^2 - x^T UU^T x = \|x\|^2 - trace(x^T UU^T x) = \|x\|^2 - trace(U^T x x^T U)$$

$$\underset{U \in \mathbb{R}^{d,n}: U^T U = I}{\operatorname{argmax}} \operatorname{trace}\left(U^T \sum_{i=1}^m \boldsymbol{x_i} \boldsymbol{x_i^T} U\right) = \underset{U \in \mathbb{R}^{d,n}: U^T U = I}{\operatorname{argmax}} \operatorname{trace}(U^T A U)$$

Notice: $A = \sum_{i=1}^{m} x_i x_i^T$ is symmetric and positive semidefinite. It can be rewritten as $A = VDV^T$ where D is diagonal (with eigenvalues $D_{d,d} \ge 0$) and $V^TV = VV^T = I$ (the columns of V are the eigenvectors of A)

Theorem (PCA)

Let $x_1, x_2, ..., x_m$ be arbitrary vectors in \mathbb{R}^d

$$let A = \sum_{i=1}^m x_i x_i^T$$

let u_1, \dots, u_n be n eigenvectors of A corresponding to the largest n eigenvalues of A

Notes:

- ullet Recall: Decompose A as VDV^T (SVD decomposition, D diag. and $V^TV=VV^T=I$)
- It is a common practice to "center" the examples before applying PCA (i.e., subtract the mean)
- \Box Computation time is $O(d^3) + O(md^2)$ (the first term for calculating eigenvalues and the second for constructing A)
- □ Trick for faster solution in case *d>>m* (not part of the course)

Pseudocode

Input

 $X \in \mathbb{R}^{m,d}$: matrix that contains m samples, one for each row n: number of components

Algorithm

Compute $A = X^T X$

Perform eigenvalue decomposition of A

Let $u_1, ..., u_n$ be the eigenvectors of A corresponding to largest

eigenvalues

Output: u_1, \dots, u_n

On the book: trick for *d>>m*(not part of the course)

Eigenvectors of A:

- 1. First principal component (p.c.) = direction with largest projected variance
- 2. Second p.c. = orthogonal direction with largest projected variance
 - i.e., largest remaining variance after removing the first p.c.
- 3. ... iterate for all the other components (3...n)

Example: From 2D to 1D

Set of 2D vectors (blue) and their reconstruction (red) after dimensionality reduction to 1D with PCA

Example: Face Compression

enlarged example

Example: Face Recognition

- Faces with the same type of mark (+, x, *, o) belong to the same individual
- PCA can be used for face recognition! (eigenfaces algorithm)