Name:

These problems are not due and will not be graded.

Reading: [Bea19] or [Rav23].

(1) If R is a commutative monoid in ho(Sp) and $x \in \pi_n R$, let $R[x^{-1}]$ be the homotopy colimit of

$$R \xrightarrow{x} \Sigma^{-n} R \xrightarrow{x} \Sigma^{-2n} R \xrightarrow{x} \cdots$$

where by abuse of notation we write x: $\Sigma^n R \to R$ for any suspension/desuspension of the map

$$\Sigma^{n}R = \mathbb{S}^{n} \wedge R \xrightarrow{x \wedge id_{R}} R \wedge R \xrightarrow{\mu} R.$$

Show that $\pi_*(R[x^{-1}]) = (\pi_*R)[x^{-1}].$

(2) If A is a commutative ring, a regular sequence $a_1, a_2,...$ is a sequence of elements of A such that multiplication by a_n is injective on $A/(a_1,...,a_{n-1})$.

If R is a commutative monoid in ho(Sp) and $x_1, x_2, ...$ is a regular sequence in π_*R , show that

$$\pi_*(R/(x_1, x_2, \ldots)) \cong (\pi_*R)/(x_1, x_2, \ldots),$$

where $R/(x_1, x_2,...)$ is the homotopy colimit of the spectra $R/(x_1, x_2,...,x_n)$.

- (3) Assuming that $MU_{(p)}$ splits as a wedge sum of copies of BP, show that there must be infinitely many copies of BP in this wedge sum.
- (4) Use the chromatic fracture square to show that if X is E(n)-local, then X/p is K(n)-local.

REFERENCES

[Bea19] Agnes Beaudry. An introduction to chromatic homotopy theory. eCHT Minicourse, https://s.wayne.edu/echt/echt-minicourses/, 2019.

[Rav23] Doug Ravenel. The background and motivation for the telescope conjecture. eCHT Minicourse, https://s.wayne.edu/echt/echt-minicourses/, 2023.