III B. Tech II Semester Regular/Supplementary Examinations, May/June - 2024 MACHINE LEARNING

(Com. To CSE & IT)

Time: 3 hours Max. Marks: 70 Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks **** **UNIT-I** 1. Write a short note on applications of machine learning to classification [7M] a) problems. Explain the following: i) Insufficient Quantity of Training Data ii) Non [7M] representative Training Data iii)Poor Quality Data iv) Over fitting and under (OR) 2. Describe the architecture and functionality of various layers of deep learning [7M] networks in detail. How do we estimate the risk and loss functions? Explain the role of statistics in [7M] b) it in detail. **UNIT-II** 3. Write a note on linear regression. Implement the linear regression to predict the [7M] stock market price prediction. Explain the working principle of the distance-based model. Give example. [7M] b) (OR) 4. Write the induction and deduction steps followed in the classification model a) [7M] and explain the basis for training and testing with examples. How can decision trees be used to classify the attributes? Explain the algorithm [7M] steps. UNIT-III 5. Discuss the most popular Ensemble methods given. [7M] Bagging ii) Boosting iii) Stacking With a neat sketch, explain the marginal planes used in linear SVM [7M] b) classification. (OR) Write a note on Hard voting classifier predictions. Explain with an example. 6. a) [7M] b) Implement Naïve Bayes classifier to classify the loan application as [7M] rejected/accepted based on the history of the customer with a limit on total loan amount of 50000/- Rs. **UNIT-IV** 7. How is dimensionality reduction handled by Principal omponent Analysis? [7M] Explain in detail. Consider an image with multiple objects. Explain the steps to be followed to b) [7M] perform clustering for image segmentation. (OR) 8. Write a detailed note on a kernel trick that implicitly maps instances into a very [7M] high-dimensional space. How do we perform complex nonlinear projections for dimensionality reduction with this? Initializing the k- centroids in k-means plays a vital role in yielding better [7M] performance by the k-means clustering algorithm. Discuss with example. 1 of 2

Code No: R2032051 (**R20**) (SET -1

UNIT-V

9. a) Relate Multi-Layer Perceptron and Backpropagation. Describe various [7M] activation functions used in it.

b) Present an algorithm for Training an MLP. Use Keras for implementation and explanation. [7M]

(OR)

- 10. Explain the following with an application where a student dataset is considered [14M] to predict the grade as Pass/Fail
 - a) Load Data
 - b) Define Keras Model
 - c) Compile Keras Model
 - d) Fit Keras Model
 - e) Evaluate Keras Model
 - f) Tie It All Together
 - g) Make Predictions

III B. Tech II Semester Regular/Supplementary Examinations, May/June - 2024 MACHINE LEARNING

(Com. To CSE & IT)

Time: 3 hours Max. Marks: 70

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

1.	a) b)	Write about various fields that form the basis for Artificial Intelligence. What is the significance of using statistical foundations in machine learning? Explain various tradeoffs in statistical learning.	[7M] [7M]
2.	a)	(OR) Write a short note on Supervised and unsupervised machine learning	[7M]
	u)	algorithms.	[/1/1]
	b)	How sampling distribution of an estimator finds the individual data values distributed over mean, variance and other parameters. Explain in detail. UNIT-II	[7M]
3.	a)	Differentiate classification and regression problems and their solutions with examples.	[7M]
	b)	What is a support vector? Explain the importance of maximal margin in support vector machine.	[7M]
		(OR)	
4.		Write a note on the following with respect to the decision tree.a) Training and Visualizing a Decision Treeb) Making Predictions	[14M]
		c) Estimating Class Probabilities	
		d) The CART Training Algorithm	
		e) Computational Complexity	
_		<u>UNIT-III</u>	553.63
5.	a)	What is the training algorithm used when sampling is performed with replacement? Explain its training process and difficulties.	[7M]
	b)	Differentiate SVM classification with linear and non linear input data sets.	[7M]
		(OR)	
6.	a)	Explain the working principle of the Random forest algorithm. How do we identify the feature's importance in it? Discuss.	[7M]
	b)	How will ensemble methods yield better performance than normal learning	[7M]
		algorithms? Explain various ensemble learning methods in detail.	
7	۵)	<u>UNIT-IV</u> Evaluin the following dimensionality reduction techniques	[7][1]
7.	a)	Explain the following dimensionality reduction techniques. Projection and Manifold Learning.	[7M]
	b)	Explain the following with respect to the K-Means clustering algorithm. i) The	[7M]
	ŕ	objective ii) How k-means clustering works iii) Implementation of K-Means Clustering	
		(OR)	
8.	a)	Explain the following with respect to principal component analysis: Randomization and Kernel Trick.	[7M]
	b)	Write a note on Gaussian mixtures. Explain its implementation to identify the	[7M]

clusters from the input data.

<u>UNIT-V</u>

9. a) Write a note on the functions of perceptron and its implementation of logical [7M] operations. Discuss its limitations.

b) How do we install Tensor flow? Explain the steps and detail the libraries used to implement machine learning algorithms. [7M]

(OR)

10. Give the overview of the five steps in the neural network model life-cycle in [14M] Keras: Define, Compile, Fit, Evaluate the Network and Make Predictions.

III B. Tech II Semester Regular/Supplementary Examinations, May/June -2024 MACHINE LEARNING

(Com. To CSE & IT)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit

All Questions Carry Equal Marks

		<u>UNIT-I</u>	
1.	a)	Write a short note on fields that contribute to Artificial Intelligence.	[7M]
	b)	How do you estimate the loss and accuracy of the machine learning model?	[7M]
		Explain for training and test cases.	
2	۵)	(OR)	[7] [7]
2.	a)	Explain the application of machine learning in classification and prediction.	[7M]
	b)	Explain various sampling distribution estimators used in statistical learning.	[7M]
		<u>UNIT-II</u>	
3.	a)	Explain the working principle of logistic regression. How is it different from	[7M]
	b)	linear regression? Give an example. What is multi-class classification? With MNIST data sets, explain the	[7M]
	U)	algorithm.	[/1/1]
		(OR)	
4.	a)	How do we select the features to be considered as nodes for splitting the	[7M]
		decision tree? Explain various measures considered.	
	b)	What is ranking? How do we determine it? Explain with any classification	[7M]
		algorithm.	
5.	a)	<u>UNIT-III</u> Explain the following Support Vector Machine models.	[7M]
٥.	a)	i) Linearly separable case ii) Linearly inseparable case	[/1/1]
	b)	Describe the depth of random forests. Does it improve the performance of	[7M]
		learning? Explain in detail.	
_		(OR)	
6.	a)	What is the importance of Baye's theorem in Naïve Baye's classification?	[7M]
	b)	Explain with an example. Write a short note on the implementation of SVM regression. How is it	[7M]
	U)	different from classification?	[/1/1]
		UNIT-IV	
7.	a)	Describe what is The Curse of Dimensionality. Explain the Main Approaches	[7M]
		for Dimensionality Reduction.	
	b)	Can we perform data cleaning and data reduction preprocessing techniques	[7M]
		with clustering algorithms? Discuss in detail.	
8.	a)	(OR) Explain the role of hyperplanes closer to the data sets and projections to down	[7M]
0.	u)	dimensions in principal component analysis.	[,1,1]
	b)	How to cluster the high dimensional data with density based clustering	[7M]
		algorithm? Explain the step-by-step process.	
		4 0 0	

Code No: R2032051 (R20) (SET -3)

UNIT-V

9.	a)	What are the various structures of artificial neural networks? Explain in detail.	[7M]
	b)	Write an algorithm to train the multi-layer perceptron.	[7M]
		(OR)	

10. Answer the following

[14M]

- a) Define a neural network in Keras
- b) How to compile a Keras model using the efficient numerical backend?
- c) How to train a model on data?
- d) How to evaluate a model on data?
- e) How to make predictions with the model?

Code No: R2032051 (R20) (SET -4)

III B. Tech II Semester Regular/Supplementary Examinations, May/June - 2024 MACHINE LEARNING

(Com. To CSE & IT)

Time: 3 hours Max. Marks: 70

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I

- 1. a) What are the challenges encountered in the implementation of machine [7M] learning algorithms?
 - b) Write a note on Empirical Risk Minimization. What is its significance in error [7M] minimization?

(OR)

- 2. a) Describe the following: i) Artificial Intelligence, ii) Machine Learning, iii) [7M] Deep Learning.
 - b) What are the concepts of statistics used in machine learning? Explain in detail. [7M]

UNIT-II

3. a) Explain the following

[7M]

[7M]

- i) Linear Regression ii) Non-linear Regression.
- b) Describe the importance of K-Values in nearest neighbour algorithms in detail. [7M]
- 4. a) Support Vector Machines outperform other linear models. Justify this [7M] statement.
 - b) Explain the steps to be followed in distance based classification models. [7M]

UNIT-III

- 5. a) Explain what is boosting, Adaboost and gradient boosting algorithms.
 - b) Describe the working principle of Naïve Baye's algorithm. How does it handle [7M] the dependency between attributes of data? Explain.

(OR)

- 6. a) Expand the construction of random forests and important parameters to be [7M] considered during construction.
 - b) Write the working principle of the voting classifier. Explain its limitations and [7M] handle them with other ensemble methods.

UNIT-IV

- 7. a) Write a note clustering? Why is clustering considered unsupervised? Explain [6M] various clustering techniques in detail.
 - b) i) What is k-means clustering?

[8M]

- ii) When to use k-means clustering to analyze data?
 - ii) How to implement k-means clustering?
 - iii) How to select a meaningful number of clusters?

(OR)

- 8. a) Write the algorithmic steps to be followed for clustering using the DBSACN [7M] algorithm.
 - b) How can you evaluate the performance of a dimensionality reduction algorithm [7M] on your dataset? Explain with PCA algorithm.

1 of 2

Code No: R2032051

SET-4

UNIT-V

- 9. a) Explain the biological neuron simulation as an artificial neuron. Describe its [7M] architecture and functions.
 - b) Explain the algorithms for perceptron training and fine-tuning of [7M] hyperparameters.

(OR)

10. Build a spam classifier and perform all required operations using Keras. Use [14M] the Multi-layer Perceptron algorithm as a predictive model that predicts the email class as spam or ham.