Design and Analysis of Algorithms Midterm Review

Lecture 8: Soring in Linear Time, Selection Problem, and Optimal Binary Search Tree Problem

Yongxin Tong (童咏昕)

School of CSE, Beihang University yxtong@buaa.edu.cn

Review to Part I

 In Part I, we illustrated Divide-and-Conquer using several examples:

Maximum Contiguous Subarray (最大子数组)

Counting Inversions (逆序计数)

Polynomial Multiplication (多项式乘法)

QuickSort and Partition (快速排序与划分)

Review to Part I

 In Part I, we illustrated Divide-and-Conquer using several examples:

Maximum Contiguous Subarray (最大子数组)

Counting Inversions (逆序计数)

Polynomial Multiplication (多项式乘法)

QuickSort and Partition (快速排序与划分)

Introduction to Part II

- In Part II, we illustrated sorting and searching problems using several examples:
 - Heapsort and Priority Queues (堆排序与优先队列)
 - Lower Bound for Sorting (基于比较的排序下界)
 - Sorting in Linear Time (线性时间排序)
 - Selection Problem (选择问题)
 - AVL Tree (AVL树-二叉平衡树)

Introduction to Part II

- In Part II, we illustrated sorting and searching problems using several examples:
 - Heapsort and Priority Queues (堆排序与优先队列)
 - Lower Bound for Sorting (基于比较的排序下界)
 - Sorting in Linear Time (线性时间排序)
 - Selection Problem (选择问题)
 - AVL Tree (AVL树-二叉平衡树)

Review to Part III

- In Part III, we illustrated Dynamic Programming (DP) using several examples:
 - 0-1 Knapsack (0-1背包)
 - Rod-Cutting (钢条切割)
 - Chain Matrix Multiplication (矩阵链乘法)
 - Longest Common Subsequences (最长公共子序列)
 - Minimum Edit Distance (最小编辑距离)
 - Optimal Binary Search Trees (最优二叉查找树)

Review to Part III

- In Part III, we illustrated Dynamic Programming (DP) using several examples:
 - 0-1 Knapsack (0-1背包)
 - Rod-Cutting (钢条切割)
 - Chain Matrix Multiplication (矩阵链乘法)
 - Longest Common Subsequences (最长公共子序列)
 - Minimum Edit Distance (最小编辑距离)
 - Optimal Binary Search Trees (最优二叉查找树)

Review to Divide-and-Conquer (DC)

 Divide-and-conquer (DC) is an important algorithm design paradigm.

Divide

Dividing a given problem into two or more subproblems (ideally of approximately equal size)

Conquer

Solving each subproblem (directly if small enough or recursively)

Combine

Combining the solutions of the subproblems into a global solution

Review to Dynamic Programming (DP)

- Dynamic Programming (DP) is similar to Divide and Conquer (D&C)
 - They both partition a problem into smaller subproblems
- DP is preferable when the subproblems overlap, i.e., they share common subproblems
- Often DP is used for optimization problems
 - Problems that have many solutions, and we want to find the best one
- Main idea of DP
 - Analyze the structure of an optimal solution
 - Recursively define the value of an optimal solution
 - Compute the value of an optimal solution (usually bottom-up)

Comparison of DC and DP

Commonalities:

- Partition the problem into particular subproblems.
- Solve the subproblems.
- Combine the solutions to solve the original one.

• Differences:

DC:

- Efficient when the subproblems are independent.
- Not efficient when subproblems share subsubproblems.
- Some subproblems might be solved many times.

DP:

- Suitable when subproblems share subsubproblems.
- Do each subproblem only once.
- The result is stored in a table in case it is needed elsewhere.
- DP trades space for time.

Outline

- Sorting in Linear Time
 - Counting Sort

- Randomized Selection Problem
 - Problem Definition
 - First solution: Selection by sorting
 - A divide-and-conquer algorithm

- Optimal Binary Search Tree Problem
 - Review of Binary Search Tree
 - Problem Definition
 - A Dynamic Programming Algorithm

Outline

- Sorting in Linear Time
 - Counting Sort

- Randomized Selection Problem
 - Problem Definition
 - First solution: Selection by sorting
 - A divide-and-conquer algorithm

- Optimal Binary Search Tree Problem
 - Review of Binary Search Tree
 - Problem Definition
 - A Dynamic Programming Algorithm

Review of Comparison-based Sorting

- All sorting algorithms seen so far are based on comparing elements
 - E.g., insertion sort, merge sort and heapsort
- Insertion sort has worst-case running time $\Theta(n^2)$, while the others have worst-case running time $\Theta(n \log n)$

Question

Can we do better?

Goal

We will prove that any comparison-based sorting algorithm has a worst-case running time $\Omega(n \log n)$.

Can we do better?

Are there sorting algorithms which are not based on comparisons? Do they beat the $\Omega(n \log n)$ lower bound?

Can we do better?

Are there sorting algorithms which are not based on comparisons? Do they beat the $\Omega(n \log n)$ lower bound?

Counting sort (计数排序)

Radix sort (基数排序)

Outline

Sorting in Linear Time

- Counting Sort
- Radix Sort

Randomized Selection Problem

- Problem Definition
- First solution: Selection by sorting
- A divide-and-conquer algorithm

AVL Tree

- Binary Search Tree and AVL Tree
- Insertion/Deletion Operations of AVL Tree

Optimal Binary Search Tree Problem

- Problem Definition
- A Dynamic Programming Algorithm

Main Ideas

• Counting sort determines, for each input element *x*, the number of elements less than *x*.

Main Ideas

Counting sort determines, for each input element x,
 the number of elements less than x.

 It uses this information to place element x directly into its position in the output array.

Main Ideas

Counting sort determines, for each input element x,
 the number of elements less than x.

- It uses this information to place element x directly into its position in the output array.
 - For example, if 17 elements are less than x, then x belongs in output position 18.

Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0;
end
for j \leftarrow 1 to n do
|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
end
for i \leftarrow 2 to k do
|C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \leq i\}|
end
for j \leftarrow n \ to \ 1 \ do
    B[C[A[j]]] \leftarrow A[j];
   C[A[j]] \leftarrow C[A[j]] - 1;
end
return B;
```

Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
 Output: B[1...n], sorted
let C[1...k] be a new array;
 for i \leftarrow 1 to k do
 C[i] \leftarrow 0;
 end
 for j \leftarrow 1 to n do
 |C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
 end
 for i \leftarrow 2 to k do
 |C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \leq i\}|
 end
 for j \leftarrow n \ to \ 1 \ do
     B[C[A[j]]] \leftarrow A[j];
    C[A[j]] \leftarrow C[A[j]] - 1;
 end
 return B;
```


Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
 Output: B[1...n], sorted
 let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0;
end
 for j \leftarrow 1 to n do
 |C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
 end
 for i \leftarrow 2 to k do
 |C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \leq i\}|
 end
 for j \leftarrow n \ to \ 1 \ do
     B[C[A[j]]] \leftarrow A[j];
    C[A[j]] \leftarrow C[A[j]] - 1;
 end
 return B;
```


for
$$i \leftarrow 1$$
 to k do $|C[i] \leftarrow 0$; end

Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
 Output: B[1...n], sorted
 let C[1...k] be a new array;
 for i \leftarrow 1 to k do
 C[i] \leftarrow 0;
end
for j \leftarrow 1 to n do
C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
end
 for i \leftarrow 2 to k do
 |C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \leq i\}|
 end
 for j \leftarrow n \ to \ 1 \ do
     B[C[A[j]]] \leftarrow A[j];
    C[A[j]] \leftarrow C[A[j]] - 1;
 end
 return B;
```


$$egin{array}{c|cccc} &1&2&3&4\ \hline C&0&0&0&1 \end{array}$$

for
$$j \leftarrow 1$$
 to n do $|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|$ end

$$egin{array}{c|cccc} 1 & 2 & 3 & 4 \ \hline C & egin{array}{c|cccc} 0 & egin{array}{c|cccc} 1 & 0 & 1 \ \hline \end{array}$$

for
$$j \leftarrow 1$$
 to n do $|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|$ end

for
$$j \leftarrow 1$$
 to n do $|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|$ end

$$egin{array}{c|ccccc} &1&2&3&4\ \hline C&1&1&0&2 \end{array}$$

for
$$j \leftarrow 1$$
 to n do $|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|$ end

for
$$j \leftarrow 1$$
 to n do $|C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|$ end

Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
 Output: B[1...n], sorted
 let C[1...k] be a new array;
 for i \leftarrow 1 to k do
 C[i] \leftarrow 0;
 end
 for j \leftarrow 1 to n do
 |C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
 \mathbf{end}
for i \leftarrow 2 to k do
| C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \le i\}|
end
 for j \leftarrow n \ to \ 1 \ do
     B[C[A[j]]] \leftarrow A[j];
    C[A[j]] \leftarrow C[A[j]] - 1;
 end
 return B;
```

$$C egin{bmatrix} 1 & 2 & 3 & 4 \ 1 & 2 & 0 & 2 \end{bmatrix}$$

$$C' \ \ 1 \ \ 3 \ \ 0 \ \ 2$$

for
$$i \leftarrow 2$$
 to k do
$$| C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \le i\}|$$
end

$$C egin{array}{|c|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\ \hline C & 1 & 2 & 0 & 2 \\ \hline \end{array}$$

$$C' \ \ 1 \ \ 3 \ \ 2$$

for
$$i \leftarrow 2$$
 to k do $|C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \le i\}|$ end

$$C egin{array}{|c|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\ \hline 1 & 2 & 0 & 2 \\ \hline \end{array}$$

$$C' \ \ 1 \ \ 3 \ \ 3 \ \ 5$$

for
$$i \leftarrow 2$$
 to k do $|C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \le i\}|$ end

Counting Sort

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
 Output: B[1...n], sorted
 let C[1...k] be a new array;
 for i \leftarrow 1 to k do
 C[i] \leftarrow 0;
 end
 for j \leftarrow 1 to n do
 |C[A[j]] \leftarrow C[A[j]] + 1; //C[i] = |\{key = i\}|
 end
 for i \leftarrow 2 to k do
 |C[i] \leftarrow C[i] + C[i-1]; //C[i] = |\{key \le i\}|
 end
for j \leftarrow n \ to \ 1 \ do
   B[C[A[j]]] \leftarrow A[j];
C[A[j]] \leftarrow C[A[j]] - 1;
end
 return B;
```


for
$$j \leftarrow n$$
 to 1 do

$$\begin{vmatrix} B[C[A[j]]] \leftarrow A[j]; \\ C[A[j]] \leftarrow C[A[j]] - 1; \end{vmatrix}$$
end

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0; //O(k)
end
return B;
```

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}

Output: B[1...n], sorted

let C[1...k] be a new array;

for i \leftarrow 1 to k do

C[i] \leftarrow 0; //O(k)

end

for j \leftarrow 1 to n do

C[A[j]] \leftarrow C[A[j]] + 1; //O(n)

end
```

return B;

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0; //O(k)
end
for j \leftarrow 1 to n do
C[A[j]] \leftarrow C[A[j]] + 1; //O(n)
end
for i \leftarrow 2 to k do
C[i] \leftarrow C[i] + C[i-1]; //O(k)
end
```

return B;

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0; //O(k)
end
for j \leftarrow 1 to n do
C[A[j]] \leftarrow C[A[j]] + 1; //O(n)
end
for i \leftarrow 2 to k do
C[i] \leftarrow C[i] + C[i-1]; //O(k)
end
for j \leftarrow n \ to \ 1 \ do
    B[C[A[j]]] \leftarrow A[j];
   C[A[j]] \leftarrow C[A[j]] - 1; //O(n)
end
return B;
```

Counting-Sort(A,B,k)

```
Input: A[1...n] where A[j] \in \{1, 2, ..., k\}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i \leftarrow 1 to k do
C[i] \leftarrow 0; //O(k)
end
for j \leftarrow 1 to n do
C[A[j]] \leftarrow C[A[j]] + 1; //O(n)
end
for i \leftarrow 2 to k do
C[i] \leftarrow C[i] + C[i-1]; //O(k)
end
for j \leftarrow n \ to \ 1 \ do
   B[C[A[j]]] \leftarrow A[j];
   C[A[j]] \leftarrow C[A[j]] - 1; //O(n)
end
return B;
```

Total: O(n+k)

If k = O(n), then counting sort takes O(n) time.

• But didn't we prove that sorting must take $\Omega(n \log n)$ time?

If k = O(n), then counting sort takes O(n) time.

- But didn't we prove that sorting must take Ω(n log n) time?
- No, actually we proved that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time.

If k = O(n), then counting sort takes O(n) time.

- But didn't we prove that sorting must take Ω(n log n) time?
- No, actually we proved that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time.
- Note that counting sort is not a comparison-based sorting algorithm.

If k = O(n), then counting sort takes O(n) time.

- But didn't we prove that sorting must take Ω(n log n) time?
- No, actually we proved that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time.
- Note that counting sort is not a comparison-based sorting algorithm.
- In fact, it makes no comparison at all!

Stable Sorting

Counting sort is a stable sort

it preserves the input order among equal elements.

Stable Sorting

Counting sort is a stable sort

it preserves the input order among equal elements.

Exercise

What other sorts have this property?

Outline

- Sorting in Linear Time
 - Counting Sort

Randomized Selection Problem

- Problem Definition
- First solution: Selection by sorting
- A divide-and-conquer algorithm

Optimal Binary Search Tree Problem

- Review of Binary Search Tree
- Problem Definition
- A Dynamic Programming Algorithm

Linear Time Selection

Definition (Selection Problem)

Given a sequence of numbers $\langle a_1, \ldots, a_n \rangle$, and an integer i, $1 \le i \le n$, find the ith smallest element. When $i = \lceil n/2 \rceil$, it is called the median problem.

Linear Time Selection

Definition (Selection Problem)

Given a sequence of numbers $\langle a_1, \ldots, a_n \rangle$, and an integer i, $1 \le i \le n$, find the ith smallest element. When $i = \lceil n/2 \rceil$, it is called the median problem.

Example

Given $\langle 1, 8, 23, 10, 19, 33, 100 \rangle$, the 4th smallest element is 19.

Linear Time Selection

Definition (Selection Problem)

Given a sequence of numbers $\langle a_1, \ldots, a_n \rangle$, and an integer i, $1 \le i \le n$, find the ith smallest element. When $i = \lceil n/2 \rceil$, it is called the median problem.

Example

Given $\langle 1, 8, 23, 10, 19, 33, 100 \rangle$, the 4th smallest element is 19.

Question

How do you solve this problem?

Outline

- Sorting in Linear Time
 - Counting Sort

Randomized Selection Problem

- Problem Definition
- First solution: Selection by sorting
- A divide-and-conquer algorithm

Optimal Binary Search Tree Problem

- Review of Binary Search Tree
- Problem Definition
- A Dynamic Programming Algorithm

 Sort the elements in ascending order with any algorithm of complexity O(n log n).

- Sort the elements in ascending order with any algorithm of complexity O(n log n).
- Return the ith element of the sorted array.

- Sort the elements in ascending order with any algorithm of complexity O(n log n).
- Return the ith element of the sorted array.

The complexity of this solution is O(

- Sort the elements in ascending order with any algorithm of complexity O(n log n).
- Return the ith element of the sorted array.

The complexity of this solution is O(n log n)

- Sort the elements in ascending order with any algorithm of complexity O(n log n).
- Return the ith element of the sorted array.

The complexity of this solution is O(n log n)

Question

Can we do better?

- Sort the elements in ascending order with any algorithm of complexity O(n log n).
- Return the *i*th element of the sorted array.

The complexity of this solution is O(n log n)

Question

Can we do better?

Answer: YES, but we need to recall Partition(A,p,r) used in Quicksort!

Outline

- Sorting in Linear Time
 - Counting Sort

Randomized Selection Problem

- Problem Definition
- First solution: Selection by sorting
- A divide-and-conquer algorithm

Optimal Binary Search Tree Problem

- Review of Binary Search Tree
- Problem Definition
- A Dynamic Programming Algorithm

Review of Randomized-Partition (A,p,r)

Problem: Select the *i*th smallest element in A[p..r], where $1 \le i \le r-p+1$

Problem: Select the *i*th smallest element in A[p..r], where $1 \le i \le r-p+1$

Solution: Apply Randomized-Partition(A, p, r), getting

Problem: Select the *i*th smallest element in A[p..r], where $1 \le i \le r-p+1$

Solution: Apply Randomized-Partition(A, p, r), getting

pivot is the solution

Problem: Select the *i*th smallest element in A[p..r], where $1 \le i \le r-p+1$

Solution: Apply Randomized-Partition(A, p, r), getting

- i = k
 - pivot is the solution
- i < k
 - the ith smallest element in A[p..r] must be the ith smallest element in A[p..q-1]

Problem: Select the *i*th smallest element in A[p..r], where $1 \le i \le r-p+1$

Solution: Apply Randomized-Partition(A, p, r), getting

- pivot is the solution
- i < k
 - the ith smallest element in A[p..r] must be the ith smallest element in A[p..q-1]
- i > k
 - the *i*th smallest element in A[p..r] must be the (i k)th smallest element in A[q+1..r]

If necessary, recursively call the same procedure to the subarray

Randomized-Select(A, p, r, i)

Input: An array \boldsymbol{A} , the range of index $\boldsymbol{p}, \boldsymbol{r}$, the \boldsymbol{i} th smallest element that we want to select

Output: The *i*th smallest element A[i]

Randomized-Select(A, p, r, i)

```
Input: An array A, the range of index p,r, the ith smallest element that
        we want to select
Output: The ith smallest element A[i]
if p is equal to r then
   return A[p];
end
```

Randomized-Select(A, p, r, i)

```
Input: An array A, the range of index p,r, the ith smallest element that
        we want to select
Output: The ith smallest element A[i]
if p is equal to r then
   return A[p];
end
q \leftarrow \text{Randomized-Partition}(A, p, r);
```

```
Input: An array A, the range of index p,r, the ith smallest element that we want to select

Output: The ith smallest element A[i]

if p is equal to r then

| return A[p];

end

q \leftarrow \text{Randomized-Partition}(A, p, r);

k \leftarrow q - p + 1;

if i \leftarrow k then
```

```
Input: An array A, the range of index p, r, the ith smallest element that we want to select

Output: The ith smallest element A[i]

if p is equal to r then

| return A[p];

end

q \leftarrow \text{Randomized-Partition}(A, p, r);

k \leftarrow q - p + 1;

if i \leftarrow k then

| return A[q];//The pivot is the answer end
```

```
Input: An array A, the range of index p, r, the ith smallest element that
         we want to select
Output: The ith smallest element A[i]
if p is equal to r then
   return A[p];
end
q \leftarrow \text{Randomized-Partition}(A, p, r);
k \leftarrow q - p + 1;
if i \leftarrow k then
   return A[q];//The pivot is the answer
end
else if i < k then
   return Randomized-Select(A, p, q - 1, i);
end
```

```
Input: An array A, the range of index p, r, the ith smallest element that
        we want to select
Output: The ith smallest element A[i]
if p is equal to r then
   return A[p];
end
q \leftarrow \text{Randomized-Partition}(A, p, r);
k \leftarrow q - p + 1;
if i \leftarrow k then
   return A[q];//The pivot is the answer
end
else if i < k then
   return Randomized-Select(A, p, q - 1, i);
end
else
   return Randomized-Select(A, q + 1, r, i - k);
end
```

Randomized-Select(A, p, r, i)

```
Input: An array A, the range of index p,r, the ith smallest element that
        we want to select
Output: The ith smallest element A[i]
if p is equal to r then
   return A[p];
end
q \leftarrow \text{Randomized-Partition}(A, p, r);
k \leftarrow q - p + 1;
if i \leftarrow k then
   return A[q];//The pivot is the answer
end
else if i < k then
   return Randomized-Select(A, p, q - 1, i);
end
else
   return Randomized-Select(A, q + 1, r, i - k);
end
```

To find the ith smallest element in A[1..n], call Randomized-Select(A, 1, n, i)

- Find the 8th smallest element of the following list of numbers:
 - 8 25 2 14 3 20 15 13 12 11 7 5 9 10 16 18 1 23 26 21

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

$$i = 8, p = 1, r = 20$$

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

$$i = 8, p = 1, r = 20$$

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

$$i = 8, p = 1, r = 20$$

 $q = 16, k = 16$

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k: the (i-k)th smallest element in A[q+1..r]

$$i = 8, p = 1, r = 20$$

 $q = 16, k = 16$

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

p r
8 2 14 3 15 13 12 11 7 5 9 10 16 18 1 20 25 23 26 21

$$i = 8, p = 1, r = 15$$

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

$$i = 8, p = 1, r = 15$$

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k: the (i-k)th smallest element in A[q+1..r]

q = 7, k = 7

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k: the (i-k)th smallest element in A[q+1..r]

$$i = 1, p = 8, r = 15$$

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

$$i = 1, p = 8, r = 15$$

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the *i*th smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

$$i = 1, p = 8, r = 10$$

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

$$i = 1, p = 8, r = 10$$

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

$$q = 8, k = 1$$

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the *i*th smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

- Select the ith smallest element in A[p..r], pivot is A[q],
 k = q-p+1.
 - i = k : pivot is the solution
 - i < k : the ith smallest element in A[p..q-1]
 - i > k : the (i-k)th smallest element in A[q+1..r]

10 is the 8th smallest element of the array.

Randomized Quicksort vs Randomized Selection

Question

Why does Randomized Selection take O(n) time while Randomized Quicksort takes $O(n \log n)$ time?

Randomized Quicksort vs Randomized Selection

Question

Why does Randomized Selection take O(n) time while Randomized Quicksort takes $O(n \log n)$ time?

Answer:

 Randomized Selection needs to work on only 1 of the two subproblems.

Randomized Quicksort vs Randomized Selection

Question

Why does Randomized Selection take O(n) time while Randomized Quicksort takes $O(n \log n)$ time?

Answer:

- Randomized Selection needs to work on only 1 of the two subproblems.
- Randomized Quicksort needs to work on both of the two subproblems.

Outline

- Sorting in Linear Time
 - Counting Sort

- Randomized Selection Problem
 - Problem Definition
 - First solution: Selection by sorting
 - A divide-and-conquer algorithm

- Optimal Binary Search Tree Problem
 - Review of Binary Search Tree
 - Problem Definition
 - A Dynamic Programming Algorithm

A BST on a set S of n integers is a binary tree T satisfying all the following requirements:

• T has n nodes.

- T has n nodes.
- Each node u in T stores a distinct integer in S, which is called the key of u.
- For every internal u, it holds that:

- T has n nodes.
- Each node u in T stores a distinct integer in S, which is called the key of u.
- For every internal u, it holds that:
 - The key of u is larger than all the keys in the left subtree of u.

- T has n nodes.
- Each node u in T stores a distinct integer in S, which is called the key of u.
- For every internal u, it holds that:
 - The key of u is larger than all the keys in the left subtree of u.
 - The key of u is smaller than all the keys in the right subtree of u.

Binary-search-tree property

For every node *x*

- All keys in its left subtree are smaller than the key value in x
- All keys in its right subtree are larger than the key value in x

Height

The **height** of a node in a tree is the number of edges on the longest downward path from the node to a leaf

Height

The **height** of a node in a tree is the number of edges on the longest downward path from the node to a leaf

- Node height
 - = max(children height) +1

- Node height= max(children height) +1
- Leaves: height = 0

- Node height= max(children height) +1
- Leaves: height = 0
- Tree height = root height

- Node height= max(children height) +1
- Leaves: height = 0
- Tree height = root height
- Empty tree: height = -1

- Node height= max(children height) +1
- Leaves: height = 0
- Tree height = root height
- Empty tree: height = -1
- Tree operations typically take
 O(height) time

- Node height= max(children height) +1
- Leaves: height = 0
- Tree height = root height
- Empty tree: height = -1

- Node height= max(children height) +1
- Leaves: height = 0
- Tree height = root height
- Empty tree: height = -1

- Node height= max(children height) +1
- Leaves: height = 0
- Tree height = root height
- Empty tree: height = -1

 A binary tree T is balanced if the following holds on every internal node u of T:

- A binary tree T is balanced if the following holds on every internal node u of T:
 - The height of the left subtree of u differs from that of the right subtree of u by at most 1.

- A binary tree T is balanced if the following holds on every internal node u of T:
 - The height of the left subtree of u differs from that of the right subtree of u by at most 1.
- If u violates the above requirement, we say that u is imbalanced.

- A binary tree T is balanced if the following holds on every internal node u of T:
 - The height of the left subtree of u differs from that of the right subtree of u by at most 1.
- If u violates the above requirement, we say that u is imbalanced.
- The balance factor of a node is the height of its right subtree minus the height of its left subtree.

- A binary tree T is balanced if the following holds on every internal node u of T:
 - The height of the left subtree of u differs from that of the right subtree of u by at most 1.
- If u violates the above requirement, we say that u is imbalanced.
- The balance factor of a node is the height of its right subtree minus the height of its left subtree.
- A node with balance factor 1, 0 or −1 is considered balanced.

- A binary tree T is balanced if the following holds on every internal node u of T:
 - The height of the left subtree of u differs from that of the right subtree of u by at most 1.
- If u violates the above requirement, we say that u is imbalanced.
- The balance factor of a node is the height of its right subtree minus the height of its left subtree.
- A node with balance factor 1, 0 or −1 is considered balanced.

An **AVL**-tree on a set S of n integers is a balanced binary search tree T where the following holds on every internal node u

u stores the heights of its left and right subtrees.

An **AVL**-tree on a set S of n integers is a balanced binary search tree T where the following holds on every internal node u

u stores the heights of its left and right subtrees.

 By storing the subtree heights, an internal node knows whether it has become imbalanced.

- By storing the subtree heights, an internal node knows whether it has become imbalanced.
- The left subtree height of an internal node can be obtained in O(1) time from its left child. Similarly for the right.

Outline

- Sorting in Linear Time
 - Counting Sort

- Randomized Selection Problem
 - Problem Definition
 - First solution: Selection by sorting
 - A divide-and-conquer algorithm

- Optimal Binary Search Tree Problem
 - Review of Binary Search Tree
 - Problem Definition
 - A Dynamic Programming Algorithm

Definition

Figure Given a sequence $K = \langle k_1, k_2, ..., k_n \rangle$ of *n* distinct keys in sorted

order $(k_1 < k_2 < ... < k_n)$;

Vocabulary	
Word	Probability
d_0	q ₀ =0.1
Algorithm	<i>p</i> ₁ =0.4
d_1	q ₁ =0.05
Crowd	p ₂ =0.2
d_2	q ₂ =0.02
Search	p ₃ =0.2
d_3	q ₃ =0.03

Definition

Figure Given a sequence $K = \langle k_1, k_2, ..., k_n \rangle$ of *n* distinct keys in sorted

order $(k_1 < k_2 < ... < k_n)$;

 \triangleright For each key k_i , the search probability is p_i

Vocabulary	
Word	Probability
d_0	q ₀ =0.1
Algorithm	<i>p</i> ₁ =0.4
d_1	q ₁ =0.05
Crowd	p ₂ =0.2
d_2	q ₂ =0.02
Search	p ₃ =0.2
d_3	q ₃ =0.03

Definition

Figure Given a sequence $K = \langle k_1, k_2, ..., k_n \rangle$ of n distinct keys in sorted

order $(k_1 < k_2 < ... < k_n)$;

- \triangleright For each key k_i , the search probability is p_i
- Some values not in K:
 - \triangleright n+1 "dummy keys" d_0 , d_1 , ... d_n ;

Vocabulary	
Word	Probability
d_0	q ₀ =0.1
Algorithm	<i>p</i> ₁ =0.4
d_1	q ₁ =0.05
Crowd	<i>p</i> ₂ =0.2
d_2	q ₂ =0.02
Search	<i>p</i> ₃ =0.2
d_3	q ₃ =0.03

Definition

Figure Given a sequence $K = \langle k_1, k_2, ..., k_n \rangle$ of n distinct keys in sorted

order $(k_1 < k_2 < ... < k_n)$;

- \triangleright For each key k_i , the search probability is p_i
- Some values not in K:
 - \triangleright n+1 "dummy keys" d_0 , d_1 , ... d_n ;
 - \rightarrow d_0 represents all values $< k_1$;
 - $\rightarrow d_n$ represents all values $> k_n$;
 - $\succ d_i$ represents the values between k_i and k_{i+1}
 - \triangleright Search probability is q_i

Vocabulary	
Word	Probability
d_0	q ₀ =0.1
Algorithm	<i>p</i> ₁ =0.4
d_1	q ₁ =0.05
Crowd	<i>p</i> ₂ =0.2
d_2	q ₂ =0.02
Search	<i>p</i> ₃ =0.2
d_3	q ₃ =0.03

Definition

- Construct a BST on these keys and dummy nodes
 - \triangleright Each key k_i is an internal node;
 - \triangleright Each "dummy key" d_i is a leaf

Vocabulary	
Word	Probability
d_0	q_0 =0.1
Algorithm	<i>p</i> ₁ =0.4
d_1	<i>q</i> ₁ =0.05
Crowd	<i>p</i> ₂ =0.2
d_2	<i>q</i> ₂ =0.02
Search	<i>p</i> ₃ =0.2
d_3	q ₃ =0.03

Definition

Search on this BST, every search is either successful or unsuccessful, we have

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$$

Vocabulary	
Word	Probability
d_0	q ₀ =0.1
Algorithm	<i>p</i> ₁ =0.4
d_1	q ₁ =0.05
Crowd	<i>p</i> ₂ =0.2
d_2	q ₂ =0.02
Search	<i>p</i> ₃ =0.2
d_3	q ₃ =0.03

Goal

Construct a BST whose expected search cost is the **smallest**.

Node : distinct keys $(k_1 < k_2 < ... < k_n)$

Goal

Construct a BST whose expected search cost is the **smallest**.

$$E(search cost in T) = \sum_{i=1}^{n} [depthT(k_i) + 1] \cdot p_i + \sum_{i=0}^{n} [depthT(d_i) + 1] \cdot q_i$$

$$= 1 + \sum_{i=1}^{n} \operatorname{dep} thT(k_i) \cdot p_i + \sum_{i=0}^{n} \operatorname{dep} thT(d_i) \cdot q_i$$

- Node: distinct keys $(k_1 < k_2 < ... < k_n)$
- d_i Leaf: n+1 "dummy keys" d_{0} , d_{1} , ... d_{n} , $q_{0} = 0.1$, $q_{1} = 0.05$, $q_{2} = 0.02$, $q_{3} = 0.03$

Goal

Construct a BST whose expected search cost is the **smallest**.

$$E(search cost in T) = \sum_{i=1}^{n} [depthT(k_i) + 1] \cdot p_i + \sum_{i=0}^{n} [depthT(d_i) + 1] \cdot q_i$$

 $= 1 + \sum_{i=1}^{n} \operatorname{dep}(thT(k_i) \cdot p_i) + \sum_{i=0}^{n} \operatorname{dep}(thT(d_i) \cdot q_i)$

$$E(T) = 1 * 0.2 + 2 * 0.4 + 2 * 0.2 + 3 * 0.1 + 3 * 0.05 + 3 * 0.02 + 3 * 0.03$$

= 2

- ... Node: distinct keys $(k_1 < k_2 < ... < k_n)$
- d_i Leaf: n+1 "dummy keys" d_{0} , d_{1} , ... d_{n} , $q_{0} = 0.1$, $q_{1} = 0.05$, $q_{2} = 0.02$, $q_{3} = 0.03$

Outline

- Sorting in Linear Time
 - Counting Sort

- Randomized Selection Problem
 - Problem Definition
 - First solution: Selection by sorting
 - A divide-and-conquer algorithm

- Optimal Binary Search Tree Problem
 - Review of Binary Search Tree
 - Problem Definition
 - A Dynamic Programming Algorithm

Step 1: Space of subproblems

• Subproblem: finding an optimal BST containing the keys k_i , ..., k_j , where $i \ge 1$, $j \le n$, and $j \ge i-1$. (when j = i-1, there are no actual keys, we have just the dummy key d_{i-1} .)

Step 1: Space of subproblems

- Subproblem: finding an optimal BST containing the keys k_i , ..., k_j , where $i \ge 1$, $j \le n$, and $j \ge i-1$. (when j = i-1, there are no actual keys, we have just the dummy key d_{i-1} .)
- e[i,j]: the expected cost of searching an optimal BST containing the keys k_i , ..., k_i .

Step 1: Space of subproblems

- Subproblem: finding an optimal BST containing the keys k_i , ..., k_j , where $i \ge 1$, $j \le n$, and $j \ge i-1$. (when j = i-1, there are no actual keys, we have just the dummy key d_{i-1} .)
- e[i,j]: the expected cost of searching an optimal BST containing the keys k_i , ..., k_i .
- Ultimately, wish to compute e[1, n].

Step 1: Space of subproblems

- Subproblem: finding an optimal BST containing the keys k_i , ..., k_j , where $i \ge 1$, $j \le n$, and $j \ge i-1$. (when j = i-1, there are no actual keys, we have just the dummy key d_{i-1} .)
- e[i,j]: the expected cost of searching an optimal BST containing the keys k_i , ..., k_i .
- Ultimately, wish to compute e[1, n].
- Boundary cases:

• When j=i-1, the tree has only one leaf d_{i-1} ,

• $e[i, i-1] = q_{i-1}$.

Step 2: Relating the value of a problem and those of its subproblems

- When j ≥ i, select a root k_r from among k_i, ..., k_j
 - make an optimal BST with keys k_i , ..., k_{r-1} its left subtree
 - and an optimal BST with keys k_{r+1} , ..., k_i its right subtree.

Step 2: Relating the value of a problem and those of its subproblems

 What happens to the expected search cost of a subtree when it becomes a subtree of a node?

Step 2: Relating the value of a problem and those of its subproblems

 What happens to the expected search cost of a subtree when it becomes a subtree of a node?

Step 2: Relating the value of a problem and those of its subproblems

 What happens to the expected search cost of a subtree when it becomes a subtree of a node?

Step 2: Relating the value of a problem and those of its subproblems

Step 2: Relating the value of a problem and those of its subproblems

$$E_{T} = \sum_{\substack{x=m\\l}}^{l} (depth(k_{x}) + 1 + 1) \cdot p_{x} + \sum_{\substack{x=m-1\\l}}^{l} (depth(d_{x}) + 1 + 1) \cdot q_{x}$$

$$= \sum_{\substack{x=m\\l=m}}^{l} (depth(k_{x}) + 1) \cdot p_{x} + \sum_{\substack{x=m-1\\l=m-1}}^{l} (depth(d_{x}) + 1) \cdot q_{x} + \sum_{\substack{x=m\\l=m-1}}^{l} p_{x} + \sum_{\substack{x=m-1\\l=m-1}}^{l} q_{x}$$

$$= e[m, l] + w[m, l]$$

Step 2: Relating the value of a problem and those of its subproblems

$$w[m, l] = \sum_{x=m}^{l} p_x + \sum_{x=m-1}^{l} q_x$$

$$w[m, l] = \sum_{x=m}^{l} p_x + \sum_{x=m-1}^{l} q_x$$

$$= \sum_{x=m}^{l} (depth(k_x) + 1 + 1) \cdot p_x + \sum_{x=m-1}^{l} (depth(d_x) + 1 + 1) \cdot q_x$$

$$= \sum_{x=m}^{l} (depth(k_x) + 1) \cdot p_x + \sum_{x=m-1}^{l} (depth(d_x) + 1) \cdot q_x + \sum_{x=m}^{l} p_x + \sum_{x=m-1}^{l} q_x$$

$$= e[m, l] + w[m, l]$$

Step 2: Relating the value of a problem and those of its subproblems

$$w[m, l] = \sum_{x=m}^{l} p_x + \sum_{x=m-1}^{l} q_x$$
$$= w[m, l-1] + p_l + q_l$$

$$w[m, l] = \sum_{x=m}^{l} p_x + \sum_{x=m-1}^{l} q_x$$

$$= w[m, l-1] + p_l + q_l$$

$$E_T = \sum_{x=m}^{l} (depth(k_x) + 1 + 1) \cdot p_x + \sum_{x=m-1}^{l} (depth(d_x) + 1 + 1) \cdot q_x$$

$$= \sum_{x=m}^{l} (depth(k_x) + 1) \cdot p_x + \sum_{x=m-1}^{l} (depth(d_x) + 1) \cdot q_x + \sum_{x=m}^{l} p_x + \sum_{x=m-1}^{l} q_x$$

$$= e[m, l] + w[m, l]$$

Step 2: Relating the value of a problem and those of its subproblems

Thus, if k_r is the root of an optimal subtree containing keys k_i,
..., k_j, we have

```
e[i,j] = p_r + (e[i,r-1] + w[i,r-1]) + (e[r+1,j] + w[r+1,j])
```

Step 2: Relating the value of a problem and those of its subproblems

• Thus, if k_r is the root of an optimal subtree containing keys k_i , ..., k_j , we have

$$e[i,j] = p_r + (e[i,r-1] + w[i,r-1]) + (e[r+1,j] + w[r+1,j])$$

• Noting that $w[i, j] = w[i, r-1] + p_r + w[r+1, j]$

$$(w[i,r-1] = \sum_{x=i}^{r-1} p_x + \sum_{x=i-1}^{r-1} q_x , w[r+1,j] = \sum_{x=r+1}^{j} p_x + \sum_{x=r}^{j} q_x)$$

Step 2: Relating the value of a problem and those of its subproblems

• Thus, if k_r is the root of an optimal subtree containing keys k_i , ..., k_j , we have

$$e[i,j] = p_r + (e[i,r-1] + w[i,r-1]) + (e[r+1,j] + w[r+1,j])$$

• Noting that $w[i, j] = w[i, r-1] + p_r + w[r+1, j]$

$$(w[i,r-1] = \sum_{x=i}^{r-1} p_x + \sum_{x=i-1}^{r-1} q_x , w[r+1,j] = \sum_{x=r+1}^{j} p_x + \sum_{x=r}^{j} q_x)$$

• We rewrite e[i, j] as

$$e[i, j] = e[i, r-1] + e[r+1, j] + w[i, j]$$

Step 2: Relating the value of a problem and those of its subproblems

 Choose k_r as the root that gives the lowest expected search cost, giving us our final recursive formulation:

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1, \\ \min_{i \le r \le j} \{ \mathbf{e}[i,r-1] + \mathbf{e}[r+1,j] + w[i,j] \} & \text{if } i \le j. \end{cases}$$

• *e[i, j]* give the expected search costs in optimal BST.

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
$\overline{q_i}$	0.05	0.10	0.05	0.05	0.05	0.10

Step 0: Initialization

$$e[i, i-1] = q_{i-1}$$

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
$\overline{q_i}$	0.05	0.10	0.05	0.05	0.05	0.10

Step 0: Initialization

$$e[i, i-1] = q_{i-1}$$

$$w[i, i-1] = q_{i-1}$$

	i	0	1	2	3	4	5
	p_i		0.15	0.10	0.05	0.10	0.20
-	q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$w[1,1] = w[i,j-1] + p_j + q_j$$

= $w[1,0] + p_1 + q_1$
= $0.05 + 0.15 + 0.10 = 0.30$

	i	0	1	2	3	4	5
	p_i		0.15	0.10	0.05	0.10	0.20
-	q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$e[1,1] = \min_{1 \le r \le 1} (e[i,r-1] + e[r+1,j] + w[i,j])$$

= $e[1,0] + e[2,1] + w[1,1]$
= $0.05 + 0.10 + 0.30 = 0.45$

$$w[1,1] = w[i, j-1] + p_j + q_j$$

= $w[1,0] + p_1 + q_1$
= $0.05 + 0.15 + 0.10 = 0.30$

	i	0	1	2	3	4	5
	p_i		0.15	0.10	0.05	0.10	0.20
,	q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$e[2,2] = \min_{2 \le r \le 2} (e[i,r-1] + e[r+1,j] + w[i,j])$$

= $e[2,1] + e[3,2] + w[2,2]$
= $0.10 + 0.05 + 0.25 = 0.40$

$$w[2,2] = w[i,j-1] + p_j + q_j$$

= $w[2,1] + p_2 + q_2$
= $0.10 + 0.10 + 0.05 = 0.25$

	i	0	1	2	3	4	5
	p_i		0.15	0.10	0.05	0.10	0.20
-	q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$e[3,3] = \min_{3 \le r \le 3} (e[i,r-1] + e[r+1,j] + w[i,j])$$

= $e[3,2] + e[4,3] + w[3,3]$
= $0.05 + 0.05 + 0.15 = 0.25$

$$w[3,3] = w[i,j-1] + p_j + q_j$$

= $w[3,2] + p_3 + q_3$
= $0.05 + 0.05 + 0.05 = 0.15$

	i	0	1	2	3	4	5
	p_i		0.15	0.10	0.05	0.10	0.20
-	q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$e[4,4] = \min_{4 \le r \le 4} (e[i,r-1] + e[r+1,j] + w[i,j])$$

= $e[4,3] + e[5,4] + w[4,4]$
= $0.05 + 0.05 + 0.20 = 0.30$

$$w[4,4] = w[i,j-1] + p_j + q_j$$

= $w[4,3] + p_4 + q_4$
= $0.05 + 0.10 + 0.05 = 0.20$

	i	0	1	2	3	4	5
	p_i		0.15	0.10	0.05	0.10	0.20
,	q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$e[5,5] = \min_{5 \le r \le 5} (e[i,r-1] + e[r+1,j] + w[i,j])$$

= $e[5,4] + e[6,5] + w[5,5]$
= $0.05 + 0.10 + 0.35 = 0.50$

$$w[5,5] = w[i,j-1] + p_j + q_j$$

= $w[5,4] + p_5 + q_5$
= $0.05 + 0.20 + 0.10 = 0.35$

	i	0	1	2	3	4	5
	p_i		0.15	0.10	0.05	0.10	0.20
-	q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$\begin{split} e[1,2] &= \min_{1 \leq r \leq 2} (e[i,r-1] + e[r+1,j] + w[i,j]) \\ &= min \begin{cases} e[1,0] + e[2,2] + w[1,2] \\ e[1,1] + e[3,2] + w[1,2] \end{cases} \\ &= min \begin{cases} 0.05 + 0.40 + 0.45 = 0.90 \\ 0.45 + 0.05 + 0.45 = 0.95 \end{cases} \end{split}$$

$$w[1,2] = w[i,j-1] + p_j + q_j$$

= $w[1,1] + p_2 + q_2$
= $0.30 + 0.10 + 0.05 = 0.45$

	i	0	1	2	3	4	5
	p_i		0.15	0.10	0.05	0.10	0.20
•	q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$e[2,3] = \min_{2 \le r \le 3} (e[i,r-1] + e[r+1,j] + w[i,j])$$

$$= min \begin{cases} e[2,1] + e[3,3] + w[2,3] \\ e[2,2] + e[4,3] + w[2,3] \end{cases}$$

$$= min \begin{cases} 0.10 + 0.25 + 0.35 = 0.70 \\ 0.40 + 0.05 + 0.35 = 0.80 \end{cases}$$

$$w[2,3] = w[i,j-1] + p_j + q_j$$

= $w[2,2] + p_3 + q_3$
= $0.25 + 0.05 + 0.05 = 0.35$

	i	0	1	2	3	4	5
	p_i		0.15	0.10	0.05	0.10	0.20
-	q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$e[3,4] = \min_{3 \le r \le 4} (e[i,r-1] + e[r+1,j] + w[i,j])$$

$$= min \begin{cases} e[3,2] + e[4,4] + w[3,4] \\ e[3,3] + e[5,4] + w[3,4] \end{cases}$$

$$= min \begin{cases} 0.05 + 0.30 + 0.30 = 0.65 \\ 0.25 + 0.05 + 0.30 = 0.60 \end{cases}$$

$$w[3,4] = w[i,j-1] + p_j + q_j$$

= $w[3,3] + p_4 + q_4$
= $0.15 + 0.10 + 0.05 = 0.30$

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$e[4,5] = \min_{4 \le r \le 5} (e[i,r-1] + e[r+1,j] + w[i,j])$$

$$= min \begin{cases} e[4,3] + e[5,5] + w[4,5] \\ e[4,4] + e[6,5] + w[4,5] \end{cases}$$

$$= min \begin{cases} 0.30 + 0.50 + 0.50 = 1.30 \\ 0.30 + 0.10 + 0.50 = 0.90 \end{cases}$$

$$w[4,5] = w[i,j-1] + p_j + q_j$$

= $w[4,4] + p_5 + q_5$
= $0.20 + 0.20 + 0.10 = 0.50$

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$e[1,3] = \min_{1 \le r \le 3} (e[i,r-1] + e[r+1,j] + w[i,j])$$

$$= \min \begin{cases} e[1,0] + e[2,3] + w[1,3] \\ e[1,1] + e[3,3] + w[1,3] \\ e[1,2] + e[4,3] + w[1,3] \end{cases}$$

$$= \min \begin{cases} 0.05 + 0.70 + 0.55 = 1.30 \\ 0.45 + 0.25 + 0.55 = 1.25 \\ 0.90 + 0.05 + 0.55 = 1.55 \end{cases}$$

$$w[1,3] = w[i,j-1] + p_j + q_j$$

= $w[1,2] + p_3 + q_3$
= $0.45 + 0.05 + 0.05 = 0.55$

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

Step 3: Computing *e*[*i*, *i*+2], *w*[*i*, *i*+2]

$$e[2,4] = \min_{2 \le r \le 4} (e[i,r-1] + e[r+1,j] + w[i,j])$$

$$= \min \begin{cases} e[2,1] + e[3,4] + w[2,4] \\ e[2,2] + e[4,4] + w[2,4] \\ e[2,3] + e[5,4] + w[2,4] \end{cases}$$

$$= \min \begin{cases} 0.10 + 0.60 + 0.50 = 1.20 \\ 0.40 + 0.30 + 0.50 = 1.20 \\ 0.70 + 0.05 + 0.50 = 1.25 \end{cases}$$

$$e$$

$$5 \qquad 1$$

$$j \qquad 4 \qquad 2 \qquad i$$

$$3 \qquad 3 \qquad 3 \qquad 3$$

1.25

0.40

0.70

0.05

0.90

0.10

0.45

0.05

1.20

0.25

0.60

0.05

0.90

0.05

0.50

0.10

0.30

$$w[2,4] = w[i,j-1] + p_j + q_j$$

= $w[2,3] + p_4 + q_4$
= $0.35 + 0.10 + 0.05 = 0.50$

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

Step 3: Computing *e*[*i*, *i*+2], *w*[*i*, *i*+2]

$$e[3,5] = \min_{3 \le r \le 5} (e[i,r-1] + e[r+1,j] + w[i,j])$$

$$= \min \begin{cases} e[3,2] + e[4,5] + w[3,5] \\ e[3,3] + e[5,5] + w[3,5] \\ e[3,4] + e[6,5] + w[3,5] \end{cases}$$

$$= \min \begin{cases} 0.05 + 0.90 + 0.60 = 1.55 \\ 0.25 + 0.50 + 0.60 = 1.35 \\ 0.60 + 0.10 + 0.60 = 1.30 \end{cases}$$

$$e$$

$$5 \qquad 1$$

$$j \qquad 4 \qquad 2 \qquad i$$

$$3 \qquad 3$$

$$2 \qquad 1.25 \qquad 1.20 \qquad 1.30 \qquad 4$$

$$1 \qquad 0.90 \qquad 0.70 \qquad 0.60 \qquad 0.90 \qquad 5$$

0.30

0.05

0.50

0.10

0.45

0.05

0.10

0.40

0.05

0.25

0.05

$$w[3,5] = w[i, j - 1] + p_j + q_j$$

= $w[3,4] + p_5 + q_5$
= $0.30 + 0.20 + 0.10 = 0.60$

	i	0	1	2	3	4	5
	p_i		0.15	0.10	0.05	0.10	0.20
-	q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$\begin{split} e[1,4] &= \min_{1 \leq r \leq 4} (e[i,r-1] + e[r+1,j] + w[i,j]) & w[1,4] &= w[i,j-1] + p_j + q_j \\ &= w[1,3] + p_4 + q_4 \\ &= 0.55 + 0.10 + 0.05 = 0.70 \\ e[1,2] &+ e[4,4] + w[1,4], e[1,1] + e[3,4] + w[1,4] \\ &= min \begin{cases} 0.05 + 1.20 + 0.70, 0.45 + 0.60 + 0.70 \\ 0.90 + 0.30 + 0.70, 1.75 + 0.05 + 0.70 \\ &= 1.75 \end{split}$$

	i	0	1	2	3	4	5
	p_i		0.15	0.10	0.05	0.10	0.20
-	q_i	0.05	0.10	0.05	0.05	0.05	0.10

$$\begin{split} e[2,5] &= \min_{2 \leq r \leq 5} (e[i,r-1] + e[r+1,j] + w[i,j]) & w[2,5] &= w[i,j-1] + p_j + q_j \\ &= w[2,4] + p_5 + q_5 \\ &= 0.50 + 0.20 + 0.10 = 0.80 \\ e[2,3] &+ e[5,5] + w[1,5], e[2,2] + e[4,5] + w[2,5] \\ &= min \begin{cases} 0.10 + 1.30 + 0.80, 0.40 + 0.90 + 0.80 \\ 0.70 + 0.50 + 0.80, 2.00 + 0.10 + 0.80 \end{cases} \\ &= 2.00 \end{split}$$

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

Algorithm 1: OPTIMAL-BST(p,q,n)

1 let e[1..n + 1, 0..n], w[1..n + 1, 0..n] and root[1..n, 1..n] be new tables;

Algorithm 1: OPTIMAL-BST(p, q, n)

5 end

```
1 let e[1..n+1,0..n], w[1..n+1,0..n] and root[1..n,1..n] be new tables;
2 for i=1 to n+1 do
3 e[i,i-1]=q_{i-1};
4 w[i,i-1]=q_{i-1};
```

```
1 let e[1..n+1,0..n], w[1..n+1,0..n] and root[1..n,1..n] be new tables; 2 for i=1 to n+1 do 3 e[i,i-1]=q_{i-1}; w[i,i-1]=q_{i-1};
```

- 5 end
- 6 for l=1 to n do

```
1 let e[1..n+1,0..n], w[1..n+1,0..n] and root[1..n,1..n] be new tables;

2 for i=1 to n+1 do

3 | e[i,i-1] = q_{i-1};

4 | w[i,i-1] = q_{i-1};

5 end

6 for l=1 to n do

7 | for i=1 to n-l+1 do

8 | j=i+l-1;

9 | e[i,j] = \infty;

10 | w[i,j] = w[i,j-1] + p_j + q_j;
```

```
1 let e[1..n+1,0..n], w[1..n+1,0..n] and root[1..n,1..n] be new tables;

2 for i=1 to n+1 do

3 | e[i,i-1] = q_{i-1};

4 | w[i,i-1] = q_{i-1};

5 end

6 for l=1 to n do

7 | for i=1 to n-l+1 do

8 | j=i+l-1;

9 | e[i,j] = \infty;

10 | w[i,j] = w[i,j-1] + p_j + q_j;

11 | for r=i to j do

12 | t=e[i,r-1] + e[r+1,j] + w[i,j];
```

```
1 let e[1..n + 1, 0..n], w[1..n + 1, 0..n] and root[1..n, 1..n] be new tables;
2 for i=1 to n+1 do
e[i, i-1] = q_{i-1};
   w[i, i-1] = q_{i-1};
5 end
6 for l=1 to n do
      for i = 1 to n - l + 1 do
          j = i + l - 1;
          e[i,j] = \infty;
          w[i,j] = w[i,j-1] + p_j + q_j;
10
         for r=i to j do
11
              t = e[i, r - 1] + e[r + 1, j] + w[i, j];
12
             if t < e[i, j] then
13
             e[i,j] = t;
root[i,j] = r;
14
15
              end
16
```

```
1 let e[1..n + 1, 0..n], w[1..n + 1, 0..n] and root[1..n, 1..n] be new tables;
 2 for i=1 to n+1 do
   e[i, i-1] = q_{i-1};
   w[i, i-1] = q_{i-1};
 5 end
 6 for l=1 to n do
       for i = 1 to n - l + 1 do
          j = i + l - 1;
          e[i,j] = \infty;
          w[i,j] = w[i,j-1] + p_j + q_j;
10
         for r=i to j do
11
              t = e[i, r - 1] + e[r + 1, j] + w[i, j];
12
              if t < e[i, j] then
13
               e[i,j] = t;
root[i,j] = r;
14
15
               end
16
           \mathbf{end}
17
       end
18
19 end
```

```
1 let e[1..n + 1, 0..n], w[1..n + 1, 0..n] and root[1..n, 1..n] be new tables;
 2 for i=1 to n+1 do
   e[i, i-1] = q_{i-1};
    w[i, i-1] = q_{i-1};
 5 end
 6 for l=1 to n do
       for i = 1 to n - l + 1 do
          j = i + l - 1;
          e[i,j] = \infty;
          w[i,j] = w[i,j-1] + p_j + q_j;
10
         for r=i to j do
11
              t = e[i, r - 1] + e[r + 1, j] + w[i, j];
12
             if t < e[i, j] then
13
              e[i,j] = t;
root[i,j] = r;
14
15
              end
16
          end
17
       end
18
19 end
20 return e and root;
```

```
Algorithm 1: OPTIMAL-BST(p, q, n)
```

```
1 let e[1..n + 1, 0..n], w[1..n + 1, 0..n] and root[1..n, 1..n] be new tables;
 2 for i=1 to n+1 do
   e[i, i-1] = q_{i-1};
   w[i, i-1] = q_{i-1};
 5 end
 6 for l=1 to n do
       for i = 1 to n - l + 1 do
          i = i + l - 1;
         e[i,j] = \infty;
         w[i,j] = w[i,j-1] + p_i + q_i;
10
         for r=i to j do
11
              t = e[i, r - 1] + e[r + 1, j] + w[i, j];
12
             if t < e[i, j] then
13
              e[i,j] = t;
root[i,j] = r;
14
15
16
           end
17
       end
18
                     Complexity: The loops are nested three levels deep. Each loop index takes on
19 end
                     \leq n values. Hence the time complexity is O(n^3). Space complexity is \Theta(n^2).
20 return e and root;
```

