RECONOCIMIENTO DE IMÁGENES SÓLIDAS CON MÉTODOS TRADICIONALES Y REDES NEURONALES

Diego Isla-López diego.isla@comunidad.unam.mx dislalopez@gmail.com 30 de junio de 2020

Definición del problema

- Entrenar una serie de modelos de clasificación con imágenes a color y verificar su desempeño haciendo predicciones en figuras sólidas (siluetas)
- Utilizar métodos tradicionales y redes neuronales convolucionales

Definición del problema

Definición del problema

Objetivos

- Obtener resultados de ambos tipos de modelos
- Hacer una comparación del rendimiento

Métodos tradicionales

- ► Regresión logística
- KNN
- Gradiente estocástico (SGD)
- SVM
- Random forest

Extracción de características

- ► Momentos de imagen
- ► Texturas Haralick
- ► Histograma de color
- Descriptor KAZE

Resultados (métodos tradicionales)

Modelo	Valor de pérdida	Precisión
LR	0.045492	38.21 %
KNN	0.036158	24.1 %
RF	0.03594	73.48 %
SGD	0.062634	35.08 %
SVM	0.048544	28.39 %

Cuadro: Tabla de resultados para CNN

Resultados (métodos tradicionales)

Redes neuronales (CNN)

- ► Modelo pre-entrenado
- ► Arquitectura MobileNets

Resultados (CNN)

Resultados (CNN)

Conjunto	Valor de pérdida	Precisión
Validación	0.40	88.02 %
Prueba	2.02	36.67 %

Cuadro: Tabla de resultados para CNN

Resultados (CNN)

Conclusiones

- ¿Implementación de extracción de características?
- Utilizar diferentes métodos de optimización (Adam)
- Aprendizaje por transferencia

Disclaimer

Ningún Pokémon fue dañado durante la realización de este proyecto