Implementation and evaluation of a self-monitoring approximation algorithm for 3-Hitting-Set

Bachelor-Arbeit zur Erlangung des Grades eines Bachelor of Science

an der Universität Trier Fachbereich IV

vorgelegt von

Khoa Le

Musterstraße

Musterstadt

Matrikelnummer

Musterstadt, im [Monat] [Jahr]

ERKLÄRUNG ZUR BACHELORARBEIT

Hiermit erkläre ich, dass ich die Bachelorarbeit selbstständig verfasst und keine and	leren als
die angegebenen Quellen und Hilfsmittel benutzt und die aus fremden Quellen dir	ekt oder
indirekt übernommenen Gedanken als solche kenntlich gemacht habe.	

Die Arbeit	habe ich	bisher	keinem	anderen	Prüfungsamt	in gl	leicher	oder	vergleichbarei	Form
vorgelegt.	Sie wurde	e bishe	r nicht	veröffent	licht.					

Datum	Unterschrift

Contents

1	Programming Language	2
2	Datastructures 2.1 Vertex 2.2 Edge 2.3 Hypergraph	2 2 2
3	Misc. Algorithms/Utilities 3.1 Edge Hashing	3 3 3
4	Hypergraph Models4.1 First Testing Model4.2 Preferential Attachment Hypergraph Model	4 4
5	5.2.8 Small Edge Degree 2 Rule	5 5 5 6 6 7 8 9 12 13
6	6.1 Main Algorithm	16 16 16
7	7.1 Triangle Vertex Deletion	18 18 19 20 20 22 22
8	Testing	22
A	Appendix	23
Re	eferences	24
T	odo list	14
		17

needs proof?	19
explanation?	19
get data for random rule application to compare	19
add amazon graph section	19

1 Programming Language

We chose the Go programming language. It is a statically typed, compiled language, with a C-like syntax. It is using a garbage collector to handle memory management, which at first seems off-putting for an application like this. Since Go's GC is very efficient, we are not worried about that fact. Go also provides great developer tooling without the need for additional third party tools. The builtin profiler pprof can visualize captured performance profiles as flame graphs or standard graphs, which makes it easy to spot performance bottlenecks.

2 Datastructures

2.1 Vertex

```
type Vertex struct {
   id int32
   data any
}
```

The Vertex datatype has two fields. The field id is an arbitrary identifier and data serves as a placeholder for actual data associated with the vertex.

2.2 Edge

```
type Edge struct {
    v map[int32]bool
}
```

The Edge datatype has one field. The field v is a map with keys of type int32 and values of type bool. When working with the endpoints of an edge, we are usually not interested in the associated values, since we never mutate the edges. This simulates a Set datatype while allowing faster access times than simple arrays/slices.

2.3 Hypergraph

The HyperGraph datatype has five fields. Both fields Vertices and Edges are maps with keys of type int32 and values of type Vertex and Edge respectively. We chose this Set-like datastructure over lists again because of faster access times, but also operations that remove edges/vertices are built-in to the map type. The field edgeCounter is an internal counter used to assign ids to added edges. The field IncMap is a map of maps, essentially storing the hypergraph as a sparse incidence matrix. We will also derive vertex degrees from this map. And at last the AdjCount map, which will associate every vertex $v \in V$ all vertices adjacent to v. Additionally this map will also store the amount of times such a vertex is adjacent to v.

3 Misc. Algorithms/Utilities

3.1 Edge Hashing

Time Complexity: $n + n \cdot \log(n)$, where n denotes the size of arr.

We start by sorting arr with a QUICK-SORT-Algorithm. We then join the elements of arr with the delimiter "|", returning a string of the form " $|id_0|id_1|\dots|id_n|$ ". Whenever we refer to the hash of an edge we refer to the output of this function, using the endpoints of the edge as the arr argument.

3.2 Compute Subsets of Size s

Given an array arr and an integer s, compute all subsets of arr of size s.

Algorithm 1: An algorithm to compute all subsets of size s

Input: An array arr, the subset size s and a list subsets.

Output:

Lists in Go are not very memory efficient, but since we exclusively call this function with arr representing the vertices in an edge, the value is usually fixed at 3. The raised memory problems occur at values of n > 10000, thus justifying the continued usage of lists. For the case where we have to compute a lot of subsets, we provide a slightly different version of this function. Instead of passing in the *subsets* list, we pass in a callback function that shall be called whenever we find a subset, using the found subset as an argument.

3.3 Two-Sum

Given an array of integers and an integer target t, return indices of the two numbers such that they add up to t

Time Complexity: n, where n denotes the size of items.

Algorithm 2: An algorithm for the Two-Sum problem

```
Input: An array of integers arr, a target value t
```

Output: Two indices a, b, such that arr[a] + arr[b] = t, a boolean indicating if a solution was found

7 return nil, false

We start by creating a map called *lookup*. Iterating other the elements of arr, we check if the entry lookup[t - arr[i]] exists.

- If the entry exists, we return a pair (i, lookup[t arr[i]]) and the boolean value true since we found a solution.
- If the entry does not exist, we add a new entry to the lookup map using arr[i] as key and i as value.

If no solution was found, we return nil and the boolean value false.

This algorithm is an ingredient for the implementation of one of the reduction rules, specifically the approximative vertex domination rule. The actual implementation accepts a map instead of an array as its first parameter. We also implemented a version that finds all solutions, which accepts an additional callback function as a parameter. Instead of returning the solution, we call the callback function with the solution as the first argument. This version is an ingredient for the implementation of the approximative double vertex domination. We refer to this version as Two-SumAll inside the algorithm listings.

4 Hypergraph Models

4.1 First Testing Model

func GenerateTestGraph(n int32, m int32, tinyEdges bool) *HyperGraph

Let us explain the arguments first:

- n are the number of vertices the graph will have
- m is the amount of edges the graph will at most have
- tinyEdges when false indicates that we do not want to generate edges of size 1.

We use a very naive approach for generating (pseudo-)random graphs. We first create an empty Hypergraph struct and add n many vertices to that graph. We then compute a random float32 value r in the half-open interval [0.0, 1.0). This value will be used to determine the size of an edge e. The edges are distributed based on their size as follows:

$$size(\mathbf{r}) = \begin{cases} 1 & \mathbf{r} < 0.01 \\ 2 & 0.01 \le \mathbf{r} < 0.60 \\ 3 & \text{else} \end{cases}$$

The result of $size(\mathbf{r})$ is stored in a variable d. We then randomly pick vertices in the half-open interval $[0, \mathbf{n})$, until we have picked d many distinct vertices. If an edge with these endpoints does not exist, we add it to our graph.

That results in the graph having at most m edges and not exactly m, since we did not want to artificially saturate the graph with edges. One could also look into generating random bipartite graphs that translate back to a hypergraph with the desired vertex and edge numbers.

4.2 Preferential Attachment Hypergraph Model

In the Preferential Attachment Model, one will add edges to an existing graph, with a probability proportional to the degree of the endpoints of that edge. This edge will either contain a newly added vertex, or will be comprised of vertices already part of the graph.

We will use an implementation by Antelmi et al. as reference [1], which is part of their work on *SimpleHyper-graphs.jl* [2], a hypergraph software library written in the Julia language. The implementation is based on a preferential attachment model proposed by Avin et al. in [3].

func GeneratePrefAttachmentGraph(n int, p float64, maxEdgesize int32)

• n is the amount of vertices the graph will have

- p is the probability of adding a new vertex to the graph
- maxEdgesize is the maximum size of a generated edge

5 Reduction Rules

The ususal signature of a reduction rule looks as follows:

```
func NameRule(g HyperGraph, c map[int32]bool) int32
```

We take both a HyperGraph struct g and a Set c as arguments and mutate them. We then return the number of rule executions. We prioritize time complexity over memory complexity when implementing rules, which does not equate to ignoring memory complexity completely.

5.1 Executions

The proposed rules are meant to be applied exhaustively. A one to one implementation of a rule will only find one of the structures the rule is targeting. Calling such a rule implementation exhaustively will take polynomial time, but will be very inefficient in regards to memory writes and execution time. It is therefor necessary to design the algorithms for the rules with the aspect of exhaustive application in mind.

The general outline of an algorithm will look as follows,

- 1. Construct auxiliary data structures that are used to find parts of the graph, for which the rule can be applied.
- 2. As long as we can apply rules do:

Iterate over the auxiliary data structure, or the vertices/edges themselves.

- Identify targets of the rule.
- Mutate the graph according to the rule.
- Mutate the auxiliary data structure according to the rule.

This way we minimize memory writes by reusing existing data structures we built in step 1, but also save on execution time, since we mutate and iterate the auxiliary data structure at the same time.

5.2 Algorithms

The algorithm descriptions occasionally omit implementation details. We do this to try and keep these descriptions as concise as possible. The real implementations correspond to the pseudocode listings. Proofs are provided in the case, where the algorithm does not simply follow the definition of a rule.

We further introduce a map data structure in our pseudocode with syntax map[A]B, which describes a mapping from A into B. We use square brackets to indicate access and mutation of the mapping, e.g. $\gamma[0] \leftarrow 1$ maps the value 1 to the key 0 in map γ . The map type also exposes a primitive function with the signature $delete(\gamma, x)$, which simply means that we want to delete the entry with key x from our map. When iterating over a map in a for-loop we destructure the entries into a (key, value)-pair, e.g. for $(_, v) \in map$ do. Note that unused values are omitted with the underscore symbol.

5.2.1 Tiny/Small Edge Rule

- tiny edges: Delete all hyperedges of size one and place the corresponding vertices into the hitting set.
- small edges: If e is a hyperedge of size two, i.e., $e = \{x, y\}$, then put both x and y into the hitting set.

 $O(|E|^2)$ **Algorthm**. We iterate over all edges of the graph. If the current edge e is of size t, put e into the partial hitting set and remove e and all edges adjacent to vertices in e from the graph.

Algorithm 3: Algorithm for exhaustive application of Tiny/Small Edge Rule

Input: A hypergraph G = (V, E), a set C, an integer t denoting the size of the edges to be removed **Output:** An integer denoting the number of rule applications.

```
\begin{array}{c|cccc} \mathbf{1} & rem \leftarrow \emptyset \\ \mathbf{2} & exec \leftarrow 0 \\ \mathbf{3} & \mathbf{for} \ e \in E \ \mathbf{do} \\ \mathbf{4} & | & \mathbf{if} \ |e| = t \ \mathbf{then} \\ \mathbf{5} & | & exec \leftarrow exec + 1 \\ \mathbf{6} & | & \mathbf{for} \ v \in e \ \mathbf{do} \\ \mathbf{7} & | & C \leftarrow C \cup \{v\} \\ \mathbf{8} & | & V \leftarrow V \setminus \{v\} \\ \mathbf{9} & | & \mathbf{for} \ f \ \text{incident to} \ v \ \mathbf{do} \\ \mathbf{10} & | & E \leftarrow E \setminus \{f\} \end{array}
```

11 return exec

5.2.2 Edge Domination Rule

• (hyper)edge domination: A hyperedge e is dominated by another hyperedge f if $f \subset e$. In that case, delete e.

O(|E|) Algorithm. We partition our set of edges into two disjoint sets sub and dom. The set dom will contain edges that could possibly be dominated. The set sub will contain hashes of edges e that could dominate another edge. We then iterate over the set dom and compute every strict subset of the current edge f. For each of these subsets, we test if the hash of the subset is present in our set sub. If it is then f is dominated by another edge.

The exact time complexity is as follows:

$$T = |E| \cdot d \cdot \log(d) + (|E| \cdot (d + 2^d + (2^d \cdot d \cdot \log(d))))$$

Specifically applied to d = 3, this results in a time complexity of:

$$T = |E| \cdot 3 \cdot \log(3) + (|E| \cdot (11 + 24 \cdot \log(3)))$$

= |E| \cdot (3 \cdot \log(3) + (11 + 24 \cdot \log(3)))

Lemma 5.1 Algorithm 4 finds all edges of G that are dominated, iff G has no size one edges.

Proof. Let e be a dominated edge. Since there are no size one edges, edges with size two cannot be dominated. Thus e has to be of size three. Then simply removing e will not create or eliminate an edge domination situation. It is therefore sufficient to only check size three edges for the domination condition. \square

This also allows us to parallelize the main part of the algorithm, where we check each edge in our *dom* set. We can achieve a speedup of approximately 2 on a six-core CPU and a pseudo-random graph with one million vertices and two million edges.

5.2.3 Vertex Domination Rule

• A vertex x is dominated by a vertex y if, whenever x belongs to some hyperedge e, then y also belongs to e. Then, we can simply delete x from the vertex set and from all edges it belongs to.

Algorithm 4: Algorithm for exhaustive application of Edge Domination Rule

Input: A hypergraph G = (V, E) without size one edges, a set C **Output:** An integer denoting the number of rule applications.

```
1 sub \leftarrow \emptyset
 2 \ dom \leftarrow \emptyset
 3 exec \leftarrow 0
 4 for e \in E do
         if |e|=2 then
              sub \leftarrow sub \cup \{hash(e)\}
         else
           dom \leftarrow dom \cup \{e\}
 9 if |sub| = 0 then
         return \ exec
11 for e \in dom \ \mathbf{do}
         subsets \leftarrow \texttt{getSubsetsRec}(e, 2)
         for f \in subsets do
13
14
              if hash(f) \in sub then
                   E \leftarrow E \setminus \{e\}
15
                   exec \leftarrow exec + 1
16
                   break
17
```

18 return exec

 $O(|V|^2 \cdot |E|)$ Algorithm A vertex v is dominated, if one of the entries in AdjCount[v] is equal to deg(v). In that case we remove v from all edges and our vertex set.

5.2.4 Approximative Vertex Domination Rule

• approximative vertex domination: Assume there is a hyperedge $e = \{x, y, z\}$ such that, whenever x belongs to some hyperedge h, then y or z also belong to h. Then, we put y and z together into the hitting set that we produce.

 $O(|V|^2 \cdot |E|)$ Algorithm. The additional factor |E| looks scary at first, but will only occur in the worst case, if there exists a vertex v, that is incident to all edges in G.

We start by iterating other the AdjCount map of the graph, referring to the current value in the iteration as AdjCount[v]. We then use the Two-Sum-Algorithm to compute and return the first pair (a,b) in AdjCount[v], s.t. for (a,b) holds,

$$AdjCount[v][a] + AdjCount[v][b] = deg(v) + 1$$

If such a pair exists, then we conclude that for every edge f such that $v \in f$, it holds that, either $a \in f$ or $b \in f$.

Lemma 5.2 The outlined procedure above is correct, under the assumption that the underlying graph does not contain any duplicate edges.

Proof. Let G be a hypergraph. We first remove all edges of size one with the *Tiny Edge Rule*. We then construct our map AdjCount. Let v be an entry in AdjCount and sol = (a,b) the result of calling our Two-Sum implementation on AdjCount[v] with a target sum of n = deg(v) + 1.

Proposition. If sol is non-empty, then the edge $\{v, a, b\}$ exists.

Algorithm 5: Algorithm for exhaustive application of Vertex Domination Rule

Input: A hypergraph G = (V, E)

Output: An integer denoting the number of rule applications.

```
2 outer \leftarrow true
   while outer do
        outer \leftarrow false
        for v \in V do
 5
            dom \leftarrow false
 6
            for (\_, val) \in AdjCount[v] do
 7
                 if val = deg(v) then
 8
                     dom = true
 9
                     break
10
            if dom then
11
                 outer = true
                 for e incident to v do
13
14
                  e \leftarrow e \setminus \{v\};
                 V \leftarrow V \setminus \{v\}
15
                 exec \leftarrow exec + 1
16
```

17 return exec

Let sol = (a, b) be the solution obtained by calling our Two-Sum algorithm on AdjCount[v] with a target sum of n = deg(v) + 1. For the sake of contradiction let us assume that the edge $\{v, a, b\}$ does not exist. Since our graph does not contain duplicate edges and does not contain $\{v, a, b\}$, there exist deg(v) + 1 many edges that contain either $\{a, v\}$ or $\{b, v\}$. This however contradicts that there only exist deg(v) many edges containing v. Therefore it must be, that the assumption that $\{v, a, b\}$ does not exist, is false.

Since $\{v, a, b\}$ exists, a and b can only occur n-2=deg(v)-1 times in other edges containing v. Since duplicate edges of $\{v, a, b\}$ can not exist, we know that every other edge containing v also contains a or b, but not both simultaniously. \square

We then add the two vertices in the solution sol to our partial solution c.

Idea: The initial idea for this algorithm involved the usage of a complete incidence matrix, where edges are identified by the rows and the vertices are identified by the columns. To check the *Domination Condition* for a vertex v, the algorithm would select all edges/columns that contain v and then add up the columns. Now let n be the amount of edges containing v. If there exist two entries in the resulting column that have a combined value of n+1, then the rule applies for v under the assumption that there are no duplicate edges. This would result in an algorithm with a worse time complexity of $|V| + |V|^2 \cdot |E|$.

5.2.5 Approximative Double Vertex Domination Rule

• approximative double vertex domination: Assume there is a hyperedge $e = \{x, y, a\}$ and another vertex b such that, whenever x or y belong to some hyperedge h, then a or b also belong to h. Then, we put a and b together into the hitting set that we produce.

 $\mathcal{O}(|V|^2 + |E|)$ Algorithm. We start by creating a map called tsHashes, which maps subsets of E to subsets of vertices. We then iterate over all vertices in V. For the current vertex x, compute all Two-Sum solutions with input array/map AdjCount[x] and target deg(x). If there exists a solution $sol = \{z_0, z_1\}$, such that $tsHashes[sol] \neq \emptyset$, then for all $y \in tsHashes[sol], y \neq x$ construct two edges $\{x, y, z_0\}$ and $\{x, y, z_1\}$. If one of these two edges exists in E, then we found a approximative double vertex domination situation. If $tsHashes[sol] = \emptyset$, map tsHashes[sol] to $tsHashes[sol] \cup \{x\}$.

Algorithm 6: Algorithm for exhaustive application of Approximative Vertex Domination Rule

Input: A hypergraph G = (V, E), a set C **Output:** An integer denoting the number of rule applications.

```
1 exec \leftarrow 0
2 outer \leftarrow true
   while outer do
         outer \leftarrow false
         for (v, count) \in AdjCount do
 5
              sol, ex \leftarrow TwoSum(count, deg(v) + 1)
 6
              if not ex then
 7
                  continue
 8
 9
              outer \leftarrow true
              exec \leftarrow exec + 1
10
              for w \in sol \ \mathbf{do}
11
                   C \leftarrow C \cup \{w\}
12
                   V \leftarrow V \setminus \{w\}
13
                  for e incident to w do
14
                       E \leftarrow E \setminus \{e\}
15
```

16 return exec

Lemma 5.3 Algorithm 7 is correct.

Proof. Let G = (V, E) be a hypergraph. Let x be the current vertex in the algorithm's iteration over V. If T = Two-SumAll(AdjCount[x], deg(x)) is empty, then x will not be able to trigger a approximative double vertex domination situation. If T is not empty, then we know that there exist sets $\{a,b\}$, such that all edges incident to x either contain a or b. If $tsHashes[\{a,b\}]$ is empty, then there are currently no other vertices for which $\{a,b\}$ is a Two-Sum solution. In that case we add x to $tsHashes[\{a,b\}]$. Otherwise there exist vertices y, such that $\{a,b\}$ is a Two-Sum solution for y. All edges incident to x and y either contain a or b. If for one of these vertices y there exists a size three edge $\{x,y,a\}$, or without loss of generality $\{x,y,b\}$, then we found a approximative double vertex domination situation at $\{x,y,a\}$ or $\{x,y,b\}$ respectively. If none of these edges exist, then x could still trigger another approximative double vertex situation with another vertex. Thus we need to add x to $tsHashes[\{a,b\}]$. \square

5.2.6 Small Triangle Rule

• small triangle situation: Assume there are three small hyperedges $e = \{y, z\}$, $f = \{x, y\}$, $g = \{x, z\}$. This describes a triangle situation (e, f, g). Then, we put $\{x, y, z\}$ together into the hitting set, and we can even choose another hyperedge of size three to worsen the ratio.

 $O(|E| + |V|^2)$ Algorithm We start by constructing an adjacency list adjList for all edges of size two. We then iterate over the entries of the list. For the current entry adjList[v] we compute all subsets of size two of the entry. If there exists a subset s such that $s \in E$, then we found a small triangle situation. If we find a triangle situation we put the corresponding vertices in our partial solution and alter the adjacency list to reflect these changes. We do this by iterating over all vertices that are adjacent to the triangle. For every vertex w of these vertices we delete all vertices of the triangle from the entry adjList[w].

This last step will introduce the quadratic complexity, since in the worst case, for a vertex v in a triangle, there could exist |V| many size two edges that contain v. This worst case occurs very rarely, which justifies using this quadratic algorithm. We could alternatively move the last step of the algorithm outside of the loop, and wrap both procedures with an outer loop which breaks if we dont find any more triangles. This simulates calling the rule exhaustively, while achieving a linear time complexity.

Algorithm 7: Algorithm for exhaustive application of Approximative Double Vertex Domination Rule

Input: A hypergraph G = (V, E), a set C

Output: An integer denoting the number of rule applications.

```
1 exec \leftarrow 0
 2 outer \leftarrow true
 з for outer do
        outer \leftarrow false
        tsHashes \leftarrow \texttt{map}[2^V]2^V
 5
        for x \in V do
 6
             for sol \in TwoSumAll(AdjCount[x], deg(x)) do
                  \{z_0, z_1\} \leftarrow sol
 8
                 if tsHashes[sol] \neq \emptyset then
 9
                      for y \in tsHashes[sol] do
10
                          if y = x then
11
                            continue
12
                           f_0 \leftarrow \{x, y, z_0\}
13
                          f_1 \leftarrow \{x, y, z_1\}
14
                           found \leftarrow false
15
                          for e incident to y do
16
                               if e = f_0 or e = f_1 then
17
                                    found \leftarrow true
 18
                                   break
 19
                          if found then
20
                               exec \leftarrow exec + 1
21
                               outer \leftarrow true
22
                               C \leftarrow C \cup sol
23
                               for a \in sol \ \mathbf{do}
24
                                   for e incident to a do
25
                                     E \leftarrow E \setminus \{e\}
 26
                               break
27
                          tsHashes[sol] \leftarrow tsHashes[sol] \cup \{x\}
28
29
                 else
                   tsHashes[sol] \leftarrow \{x\}
30
31 return exec
```

10

Algorithm 8: : Algorithm for exhaustive application of Small Triangle Rule

Input: A hypergraph G = (V, E), a set COutput: An integer denoting the number of rule applications. $\mathbf{1} \ adjList \leftarrow \mathtt{map}[V]2^V$ 2 $rem \leftarrow \emptyset$ **3** $exec \leftarrow 0$ 4 for $e \in E$ do if $|e| \neq 2$ then continue 6 $\{x,y\} \leftarrow e$ 7 $adjList[x] \leftarrow adjList[x] \cup \{y\}$ 8 $adjList[y] \leftarrow adjList[y] \cup \{x\}$ 10 for $(z, val) \in adjList$ do if |val| < 2 then 11 continue **12** $subsets \leftarrow \texttt{getSubsetsRec}(val, 2)$ **13** for $s \in subsets$ do 14 $\{x,y\} \leftarrow s$ **15** if $y \in adjList[x]$ or $x \in adjList[y]$ then 16 $exec \leftarrow exec + 1$ **17** $C \leftarrow C \cup \{x, y, z\}$ 18 $rem \leftarrow rem \cup \{x,y,z\}$ 19 for $u \in \{x, y, z\}$ do 20for $v \in adjList[u]$ do 21 $| adjList[v] \leftarrow adjList[v] \setminus \{u\}$ **22** delete(adjList, u)23 break; $\mathbf{24}$ 25 for $v \in rem do$ $V \leftarrow V \setminus \{v\}$ 26 27 for e incident to v do $E \leftarrow E \setminus \{e\}$

29 return exec

5.2.7 Extended Triangle Rule

• Assume that the hypergraph contains a small edge $e = \{y, z\}$. Moreover, there are hyperedges f, g such that $e \cap f = \{y\}$, $e \cap g = \{z\}$, $f \cup g = \{v, x, y, z\}$ and |f| = 3. Then, put all of $f \cup g$ into the hitting set.

Algorithm 9: Algorithm for exhaustive application of Extended Triangle Rule

```
Input: A hypergraph G = (V, E), a set C
   Output: An integer denoting the number of rule applications.
1 exec \leftarrow 0
2 outer \leftarrow true
з for outer do
        outer \leftarrow false
        for e \in E do
 5
            if |e| \neq 2 then
 6
 7
               continue
 8
            for a \in e do
                y \leftarrow a
 9
                 \{z\} \leftarrow e \setminus \{y\}
10
                 f_0 \leftarrow nil
11
                incy:
12
                for f incident to y do
13
                     if |f| \neq 3 or z \in f then
14
                      continue
15
                     for g incident to z do
16
                         cond \leftarrow true
17
                         for b \in g do
18
                              if b = z then
19
                                  continue
20
                              if b \notin f then
21
                                  cond \leftarrow false
22
23
                                  break
                         if cond then
24
                              f_0 \leftarrow f
25
                              break incy
26
                if f_0 \neq nil then
27
                     outer \leftarrow true
28
                     exec \leftarrow exec + 1
29
                     C \leftarrow C \cup f \cup \{z\}
30
                     V \leftarrow V \setminus f \cup \{z\}
31
                     for h incident to f \cup \{z\} do
32
```

5.2.8 Small Edge Degree 2 Rule

33

34 return exec

 $E \leftarrow E \setminus \{h\}$

• small edge degree 2: Let v be a vertex of degree 2, and let the two hyperedges containing v be $e = \{x, v\}$ and $f = \{v, y, z\}$. Then we can select a hyperedge g that contains one of the neighbors of v in f but not x, for example $g = \{u, w, z\}$ (when y = w is possible as a special case) or $g = \{u, z\}$. We put x, u and z and w (when existing) into the hitting set.

 $O(|V| \cdot |E|)$ Algorithm We start by iterating other all vertices in V. If the vertex v in the current iteration is of degree two, check if there is a size two edge e and a size three edge f incident to v. If these two edges exist, save $e \setminus \{v\}$ in a variable x. Then iterate over the vertices w in $f \setminus v$ and check if there exists an edge h incident to w, such that $h \neq f$ and $x \notin h$. If such an edge exists, then we found a small edge degree 2 situation. We then put both x and all vertices of h into the partial hitting set.

Algorithm 10: Algorithm for exhaustive application of Small Edge Degree 2 Rule

Input: A hypergraph G = (V, E), a set C **Output:** An integer denoting the number of rule applications.

```
1 exec \leftarrow 0
\mathbf{2} \ outer \leftarrow true
з for outer do
        for v \in V do
            if deg(v) \neq 2 then
 5
                continue
 6
            s2. s3 \leftarrow nil
            for e incident to v do
 8
                 if |e| = 3 then
 9
                     s3 \leftarrow e
10
11
                 else if |e| = 2 then
                     s2 \leftarrow e
12
            if s2 = nil or s3 = nil then
13
              continue
14
             \{x, \_\} \leftarrow s2
15
            found \leftarrow false
16
            rem \leftarrow nil
17
            for w \in s3 \setminus \{v\} do
18
                 for f incident to w do
19
                     if x \in f or s3 = f then
20
                          continue
21
22
                      else
                          found \leftarrow true
23
                          rem \leftarrow f
\mathbf{24}
                          break
25
                 if found then
26
                  break
27
            if found then
28
                 outer \leftarrow true
29
                 exec \leftarrow exec + 1
30
                 for a \in \{x\} \cup rem do
31
                      C \leftarrow C \cup \{a\}
32
                      for h incident to a do
33
                         E \leftarrow E \setminus \{h\}
```

5.3 Self-Monitoring

Each of the reduction rule functions returns a int32 value, which indicates the number of rule executions.

We store the ratios for each rule in a map of the form:

```
var ratios = map[string]pkg.IntTuple{
    "kRulename": {A:1, B:1},
}
```

Where A denotes the amount of vertices put into the partial solution by a single rule execution. And B denotes the amount of vertices present in an optimal solution. We can then use these values to calculate the estimated approximation factor as follows:

```
execs := ApplyRules(g, c)

var nom float64 = 0

var denom float64 = 0

for key, val := range execs {
    nom += float64(ratios[key].A * val)
    denom += float64(ratios[key].B * val)
}
```

We conducted some preliminary testing on graphs with 10, 100, 1000 and 10000 vertices. We calculateted the estimated approximation factor for these graphs. We did this for ratios $r = \frac{|E|}{|V|}$ of 1 to 20.

Figure 1: Estimated Approximation Factor for Graphs with 10, 100, 1K, 10K Vertices for $r \in [1, 20]$

We also looked at the number of rule executions for r = 1 and r = 10.

Note that the reduction rules alone are sufficient to compute a Hitting-Set for our graphs. The est. ratio is quite low, since we do not need to put whole size 3 edges into our hitting set. This is due to the way our random-graph model works. This will not work for all graph classes, namely 3-uniform graphs.

We can observe a large performance hit, once our graph is near 3-uniform. We present some ideas that could potentially speedup the execution for these graphs.

Factor-3 Rule Targeting. The Factor-3 rule will select the to be removed edge at random. We could alternatively choose an edge e, s.t. the removal of e will allow the execution of the Vertex Domination Rule.

remove
Factor-3
Rule function paragraph

Figure 2: Number of Rule Executions, r = 1

Figure 3: Number of Rule Executions, r=10

This could potentially lower the number of Factor-3 Rule executions quite significantly.

6 Algorithms

6.1 Main Algorithm

It is crucial to apply the rules in a given order. Some rules expect that other rules can not be applied. As for the exact rules, one can save execution time, if a specific order is enforced when executing them. We use the order proposed in the original paper [4], also referred to as precedence of rule executions. We will just use the shorter term *precedence* going forward.

- 1. Exact Rules: vertex domination \rightarrow tiny edge \rightarrow edge domination
- 2. approximate (double) vertex domination rules
- 3. small edge degree 2 rule
- 4. small triangle rule
- 5. extended triangle rule
- 6. small edge rule

The main algorithm will apply all rules exhaustively according to the precedence, possibly mutating the input graph. If the graph has no more edges, then we are done. If not, put a size three edge into the partial hitting set and start over with the rule application. Note that the step of "applying all rules exhaustively" leaves room for interpretation and that the produced hitting sets are highly dependant on the actions taken during this step. We will refer to the procedure in this step as *rule strategy* or just *strategy* if the context allows it. We now present three strategies to apply the rules in the precedence.

The base strategy is quite simple. Execute a rule exhaustively and then do the same for the next rule in the precedence. Do this until no more rules can be applied. This is obviously not very optimal, since we do not check, wether a "better" rule can be applied again, before possibly executing a worse rule. We can however add some heuristics, that preserve the fast execution time and improve on effectiveness. Instead of executing the vertex domination \rightarrow tiny edge \rightarrow edge domination cascade only once, we execute it three times. By just doing this, we can recoup a lot of cascades we might have missed with the base strategy. Iteration values higher than three did not yield better results. We should also execute this cascade after rules, that are applied the most. Since these rules are the ones most likely to make the extact rules applicable. That would be the approximative (double) vertex domination rules. The second strategy is also derived from the same base strategy. The only modification is that, we start over with the vertex domination rule, whenever one of the rules was applied at least once. This should in theory lead to more exact rules being executed, while sacrificing a bit of execution time. The third strategy tries to maximize the exact rule executions. We start by applying the exact rules exhaustively. We then execute the other rules at most once, according to the precedence. If a rule has been applied, we execute the exact rules exhaustively and start over with the first non-exact rule in the precedence.

6.2 Incremental Frontier Algorithm

As experienced with the DBLP coauthor graph, there are some graph instances that do not work well with the prior algorithm. These instances do not admit a lot of rule executions after applying the fallback rule. Running the algorithm on the whole graph again, knowing that only small parts of the graph have changed is not very time efficient. The algorithm should only look at the part of the graph where the fallback rule, or in fact any rule, was applied. We therefore propose a new approach, which involves the usage of a *vertex frontier*. Such frontiers are common in search algorithms such as BFS, where each vertex in the frontier has the same distance to the root vertex. But let us explain the general structure of the algorithm first.

We first apply all reduction rules exhaustively for the entire graph G. If the graph has no more edges we are done. Else we try to find a size three edge e, which will trigger a vertex domination situation if removed. We choose a random size three edge if there is none. We then build up our initial frontier. We put all vertices into the frontier that are adjacent to a vertex in e, excluding vertices in e itself. Then remove all edges that are incident to vertices in e. Next the frontier will be expanded, by adding all edges incident to the frontier to

a new graph H. All vertices in H that were not part of the frontier will form the next frontier. The amount of expansion steps can be set by the user. The fields $\mathtt{AdjCount}$ and \mathtt{IncMap} of G will be reused by H. Thus changes in H will be reflected in G and vice versa. The main loop will be explained next.

proof that expansion step of 1 is sufficient?

We apply the rules as usual, but only on H. The rules are modified, such that they also return the vertices adjacent to vertices in a modified/removed edge. If there are any, then H will be expanded at these vertices and the loop will be continued. If not, apply the targeted fallback rule, considering the edges in the original graph G and expand accordingly. This will be repeated until G has no more edges.

```
Algorithm 11: Incremental 3-approximation algorithm for 3-HS
```

```
Input: Hypergraph G = (V, E), and a partial hitting set C
   Output: A hitting set C
 1 Apply all reduction rules exhaustively mutating G and C
 l \leftarrow 2
 3 if |E| = 0 then
    \parallel return C
 5 H \leftarrow \text{empty hypergraph}
   /* H will act as a mask over G, the rules will only be applied to vertices/edges in
        H
 6 for |E| > 0 do
       Apply all reduction rules exhaustively on H mutating H,G and C
       exp \leftarrow vertices of edges adjacent to removed or modified edge
       if |exp| > 0 then
 9
           H \leftarrow \texttt{ExpandFrontier}(G, l, exp)
10
           continue
11
       e \leftarrow \texttt{F3TargetLowDegree}(G)
12
       if e = \emptyset then
13
        continue
14
       H \leftarrow \texttt{ExpandFrontier}(G, l, e)
15
16 return C
   func ExpandFrontier(G, l, exp):
17
       H \leftarrow \text{empty hypergraph}
18
19
       for i \leftarrow 0 to l do
           next \leftarrow \emptyset
20
           for v \in exp do
21
               for e \in G.E incident to v do
22
                   if e \notin H.E then
23
                       H.E \leftarrow H.E \cup \{e\}
\mathbf{24}
                       for w \in e do
25
                           if w \notin H.V then
26
                                H.V \leftarrow H.V \cup \{w\}
27
                               next \leftarrow next \cup \{w\}
28
29
           if |next| = 0 then
               break
30
           exp \leftarrow next
31
        H.IncMap = G.IncMap
32
        H.AdjCount = G.AdjCount
33
       return H
```

Algorithm 11 was designed around both rule strategy 1 and 2. It is not compatible with strategy 3, since the

Figure 4: Mean number of rule executions for Triangle Vertex Deletion on DBLP coauthor graph per rule strategy, n = 100

auxiliary graph could at some point be empty and thus |exp| = 0, with the original graph still admitting rule applications. In such a case, we have to apply the first applicable rule in the precedence and use the neighborhood of the removed vertices to rebuild the auxiliary graph.

7 Applications and Results

All tests were run on a machine with a AMD Ryzen 5 3600 3.6 GHz six-core, 12-thread CPU and 32 gigabytes of 3200 MT/s DDR4 RAM. The machine was running Ubuntu Server 22.04.04 LTS and the binaries were compiled with Go version 1.22.1. Measured execution times do not include the time it takes to load in a graph from disk or the time needed to transform the graph to a new problem instance. We provide results for Triangle Vertex Deletion and Cluster Vertex Deletion problems using real world networks, as well as randomly generated hypergraphs.

7.1 Triangle Vertex Deletion

[PROBLEM DEFINITION]

TRIANGLE VERTEX DELETION can be reduced to the 3-HITTING SET problem. Triangles in the input graph will be represented as size 3 edges in a hypergraph, containing the vertices that make up the triangle.

7.1.1 DBLP Coauthor Graph

We tested the algorithms on a DBLP coauthor graph and ER graphs of varying densities. It was considered to use the complete DBLP coauthor graph, which was quite large. We ultimately decided to use a dataset of the largest connected component. The network is made available by the Stanford Network Analysis Project and part of a paper by J. Yang and J. Leskovec [5] about community detection in real-world networks. The network contains 2224385 triangles, resulting in a 3-HITTING SET instance of the same size. We now present the collected data during a run of the algorithm on this hypergraph, which can be found in table 1.

(a)	base	rul	e s	trat	egy

	ratio	C	est. opt	time
mean	1.7594	115672	65745	$17 \mathrm{sec}$
std	0.0005	79	41	$1 \sec$
\min	1.7577	115469	65635	$16 \sec$
median	1.7594	115677	65741	$17 \sec$
max	1.7610	115998	65904	$19 \sec$

(b) rule strategy 1

	ratio	C	est. opt	time
mean	1.5708	106339	67697	$29 \mathrm{sec}$
std	0.0006	65	40	$1 \mathrm{sec}$
\min	1.5691	106183	67597	$26 \sec$
median	1.5708	106342	67699	$29 \sec$
max	1.5727	106500	67797	$31 \sec$

(c) rule strategy 2

	ratio	C	est. opt	time
mean	1.5437	105084	68071	$104 \mathrm{sec}$
std	0.0006	63	35	$2 \sec$
\min	1.5422	104922	67956	$99 \sec$
median	1.5438	105084	68072	$104 \sec$
max	1.5453	105261	68146	$110 \sec$

(d) rule strategy 3

	ratio	C	est. opt	time
mean	1.4195	99456	70066	$474 \mathrm{sec}$
std	0.0009	52	31	$7 \sec$
\min	1.4171	99323	69987	$457 \sec$
median	1.4196	99450	70069	$474 \sec$
max	1.4215	99575	70133	$493 \sec$

Table 1: Results for Triangle Vertex Deletion on DBLP coauthor graph; n = 100

Rule strategy 1 has the fastest execution time with a mean of 29 seconds, but also the worst ratio with a mean of 1.5708. Rule strategy 3 has the best ratio with a mean of 1.4195, but also the worst execution time of about 8 minutes. We used the frontier technique in all of the tests, since we could observe a speedup of about 90, just using the base rule strategy. This speedup can be attributed to the fact, that the original coauthor graph exerts a community structure. These communities are preserved when converting it to a Triangle Vertex Deletion and thus 3-Hitting-Set instance. The expansion steps will only expand the auxiliary graph H inside these communities. This drastically reduces the amount of edges the algorithm has to process per iteration. One can see the opposite happen in really dense hypergraphs. Due to the high density, even a small expansion two neighborhoods deep will add all edges of G to H, eliminating possible gains. In fact, constant rebuilding of the auxiliary graph H will even worsen the execution time.

needs proof?

Figure 4 displays the number of rule executions per strategy. Note that the there is rule called SED2* in this chart. Recall that the small edge degree 2 rule can either put four or three vertices into the hitting set. Both cases were counted seperately, where SED2* refers to the version that puts three vertices into the hitting set. There are several interesting observations to be made, for example the decrease of edge domination rule executions for strategy 2 compared to strategy 1. Quite frankly we do not know why this happens. Another observation can be made about the number of small edge rule executions. Strategy 2 does not apply the small edge rule at all, which is surprising. This is probably a result of only applying rules one at a time. The exact rules that are executed after each rule application will possibly destroy situations that are favourable for other rules. The number of fallback rule executions is also rather interesting. All strategies are executing this rule around 3000 times. This leads us to the hypothesis that, as long as the order in the precedence is obeyed, a "worse" strategy will not result in significantly more fallback rule executions.

7.1.2 Amazon Product Co-Purchasing Graph

To validate that our previous findings were not just due to the structure of the DBLP coauthor graph, we conduct the same tests with an unrelated network. We chose an Amazon product co-purchasing graph, which had a similar amount of vertices and edges compared to the DBLP coauthor graph. The resulting TRIANGLE-VERTEX-DELETION instance only contains 667129 edges and thus should be structurally distinct, compared to the instance obtained from the DBLP coauthor graph. As seen in table 2 and figure 5, the algorithm achieves a mean estimated ratio of 1.3136 and behaves the same as for the DBLP coauthor graph.

explanation

get data for random rule application to compare

add amazon graph section

Figure 5: Mean number of rule executions for TRIANGLE VERTEX DELETION on Amazon product copurchasing graph per rule strategy, n = 100

7.1.3 ER Graphs

7.2 Cluster Vertex Deletion

7.3 Comparison with LP rounding based Algorithms

There exist randomized approximation algorithms for d – HITTING SET that rely on LP rounding, which promise quite competetive (actual) approximation ratios. They are also fast, since most of the work happens during the solving of the LP. We will begin by explaining the ILP/LP formulation of HITTING SET and its dual problem SET COVER, since one of the algorithms is actually a SET COVER algorithm. After that we will briefly examine the two proposed algorithms and end with a comparison to our algorithm. Note that we will somtimes use slightly different notation and variable names than the original papers to avoid confusion (for example Δ is defined in both, in one as maximum vertex degree and the other as maximum edge size).

Let G = (V, E) be a hypergraph with n := |V| and m := |E|. Let $V = \{v_1, v_2, \dots\}$ and $E = \{e_1, e_2, \dots\}$ be the set of vertices and edges respectively. Abusing notation, we also allow referring to a vertex or edge using its index, i.e. vertex 1 and vertex v_1 shall mean the same. The HITTING SET problem can now be formulated as an integer linear program as follows,

minimize
$$\sum_{i=1}^n x_i$$
 subject to
$$\sum_{i \in e_j} x_i \ge 1 \quad \forall e_j \in E$$

$$x_i \in \{0,1\} \quad \forall i \in [n]$$

The LP relaxation of this ILP would allow for x_i to be any value in the interval [0, 1] for all $i \in [n]$. The

(a) base rule strategy

	ratio	C	est. opt	time
mean	1.7466	95256	54539	$3 \mathrm{sec}$
std	0.0003	82	41	$0 \sec$
\min	1.7458	95032	54433	$3 \sec$
median	1.7466	95269	54543	$3 \sec$
max	1.7474	95441	54632	$4 \sec$

(c) rule strategy 2

	ratio	C	est. opt	time
mean	1.4215	84813	59666	$38 \sec$
std	0.0005	58	32.3300	$0 \sec$
\min	1.4206	84670	59586	$37 \sec$
median	1.4215	84814	59664	$38 \sec$
max	1.4227	84927	59740	$39 \sec$

(b) rule strategy 1

	ratio	C	est. opt	$_{ m time}$
mean	1.4731	86359	58624	$6 \sec$
std	0.0005	61	36	$0 \sec$
\min	1.4719	86213	58534	$6 \sec$
median	1.4731	86359	58627	$6 \sec$
max	1.4741	86496	58723	$6 \sec$

(d) rule strategy 3

	ratio	C	est. opt	time
mean	1.3136	80829	61532	$166 \mathrm{sec}$
std	0.0006	59	34.6300	$2 \sec$
\min	1.3121	80684	61444	$160 \sec$
median	1.3136	80836	61535	$166 \sec$
max	1.3149	80943	61616	$171 \mathrm{sec}$

Table 2: Results for Triangle Vertex Deletion on Amazon product co-purchasing graph; n = 100

dual to the problem, the SET COVER problem, can be formulated similarly for the unweighted case,

$$\begin{array}{ll} \text{minimize} & \sum_{j=1}^m x_j \\ \\ \text{subject to} & \sum_{j:i \in e_j} x_j \geq 1 \quad \forall i \in [n] \\ \\ & x_j \in \{0,1\} \quad \forall j \in [m] \end{array}$$

And again, the LP relaxation of this ILP would allow for x_j to be any value in the intervall [0,1] for all $j \in [m]$.

It might not obvious at first that SET COVER is the dual of HITTING SET, but formulating both problems informally gives it away in an understandable way. One problem tries to cover sets with elements, while the over aims at covering elements with sets. For a formal reduction from HITTING SET to SET COVER let G = (V, E) be a hypergraph and $C \subseteq V$. Let $S_v = \{e \mid v \in e\}$ for $v \in V$, i.e. the set of edges that are incident to a vertex v. Now C is a hitting set if and only if $S = \{e \in S_v \mid v \in C\}$ is a set cover. Let us assume that C is a hitting set for G, then it holds that,

$$\forall e \in E \mid e \cap C \neq \emptyset \quad \Leftrightarrow \quad \forall e \in E \; \exists v \in C \; \text{ s.t. } e \in S_v \quad \Leftrightarrow \quad \bigcup_{v \in C} S_v = E$$

The first algorithm we look at was proposed by Ouali et. al. in [6]. Let G = (V, E) be a hypergraph. The algorithm starts by solving the LP relaxation of the hitting set ILP for G. Let $\operatorname{Opt}^* = \sum_{i=1}^n x_i^*$ be an optimal solution to the LP relaxation. With that solution construct the following four sets:

algorithm	solver	ratio UB	actual ratio	Opt^*	C	solver time
Hitting Set(1)	GLPK CLP HiGHS	2.9986	? 1.7838 1.6709	64452.6941 64452.6992 64452.6993	? 114972 107697	1 hour 50 sec 17 sec
Set Cover(2)	GLPK CLP HiGHS	1.9148	1.5944 1.8068 1.6826	64452.6940 64452.6992 64452.6993	102762 116455 108447	1 hour 47 sec 19 sec

Table 3: Results for LP based rounding algorithms for HITTING SET and SET COVER on TRIANGLE VERTEX DELETION instance of Amazon product co-purchasing graph

$$S_0 = \{ i \in [n] \mid x_i^* = 0 \}$$
 $S_{\geq} = \{ i \in [n] \mid 1 \neq x_i^* \geq \frac{1}{\lambda} \}$

$$S_1 = \{i \in [n] \mid x_i^* = 1\}$$
 $S_{<} = \{i \in [n] \mid 0 \neq x_i^* < \frac{1}{\lambda}\}$

Remove all vertices in S_0 from V and remove all edges incident to S_0 from E. Then put all vertices in S_1 and S_{\geq} into the hitting set C, by removing all vertices in $S_1 \cup S_{\geq}$ from V and removing all edges incident to $S_1 \cup S_{\geq}$ from E. Next is the randomized rounding step. For all vertices $i \in S_{<}$ include i in the hitting set with probability $\lambda \cdot x_i^*$, independently for all i. If |E| = 0 return the hitting set C. Else, as long as |E| > 0, select a vertex from an uncovered edge and put it into the hitting set C. We will further elaborate on the definition of λ when discussing the test results of the algorithms.

Next we look at the algorithm proposed by Saket and Sviridenko in[7]. Let V be a ground set and $E \subseteq 2^V$ a set system. We also want to define two variables, Δ the maximum number of sets any element in V is contained in and d the maximum size of any set in E. The algorithm starts by solving the LP relaxation to the SET COVER ILP for (V, E). Let $\mathrm{Opt}^* = \sum_{j=1}^m x_j^*$ be an optimal solution to the LP relaxation. For all $j \in [m]$, choose to include set e_j with probability $p_j = \min \left\{1, \alpha \Delta \cdot x_j^*\right\}$, where $\alpha = 1 - e^{-\frac{\ln d}{\Delta - 1}}$. Let I^r be the set of elements of V that are uncovered. For all $v \in I^r$, choose a set with the lowest weight in E that contains v and include it in the cover.

We used PuLP [8] to model the linear programs in Python and implemented the algorithms in Python aswell. Both algorithms were tested with three open source solvers GLPK[9], CLP[10] and HiGHS[11] a comparatively newer solver that uses a parallel dual simplex method developed by Q. Huangfu and J. A. J. Hall[12]. Table 3 shows the results for both algorithms on the Triangle Vertex Deletion instance of the Amazon product co-purchasing graph, which is a 3-uniform hypergraph with maximum vertex degree of 551. Algorithm (1) promises a hitting set size of $|C| \leq d(1 - \frac{d-1}{8\Delta}) \cdot \text{Opt}^*$ with probability $\frac{3}{4}$, under the assumption that the hypergraph is d-uniform and $3 \leq d \leq \frac{16}{3}\Delta$. Our hypergraph fulfills both of these requirements, which should result in a ratio of at most $3(1 - \frac{3-1}{8\cdot551}) \cdot \text{Opt}^* = 2.9986 \cdot \text{Opt}^*$. This upper bound is only valid for $\lambda = l(1-\epsilon)$ where $\epsilon = \frac{l\text{Opt}^* - |S_1|}{2m}$. Algorithm (2) promises a hitting set size of $|C| \leq ((\Delta-1)(1-e^{-\frac{lnd}{\Delta-1}})) \cdot \text{Opt}^*$. Applied to our set cover instance, this yields a ratio of $(3-1)(1-e^{-\frac{ln551}{3-1}}) \cdot \text{Opt}^* = 1.9148 \cdot \text{Opt}^*$.

7.4 Preferential Attachment Hypergraphs

7.5 3-Uniform ER Hypergraphs

8 Testing

Every reduction rule is tested for their correctness with unit tests. We create small graphs in these tests, that contain structures, which the rules are targeting. We then test for the elements in the partial solution,

amount of edges/vertices left in the graph and degree of the vertices left.

A Appendix

References

- [1] C. Spagnuolo *et al.*, "SimpleHypergraphs.jl," 2020, Available: https://github.com/pszufe/SimpleHypergraphs.jl/blob/master/src/models/random-models.jl
- [2] C. Spagnuolo *et al.*, "Analyzing, exploring, and visualizing complex networks via hypergraphs using simplehypergraphs.jl," *Internet Math.*, vol. 2020, 2020, doi: 10.24166/IM.01.2020.
- [3] C. Avin, Z. Lotker, and D. Peleg, "Random preferential attachment hypergraphs," *CoRR*, vol. abs/1502.02401, 2015, Available: http://arxiv.org/abs/1502.02401
- [4] L. Brankovic and H. Fernau, "Parameterized approximation algorithms for hitting set," in *Approximation and online algorithms*, R. Solis-Oba and G. Persiano, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 63–76.
- [5] J. Yang and J. Leskovec, "Defining and evaluating network communities based on ground-truth," *CoRR*, vol. abs/1205.6233, 2012, Available: http://arxiv.org/abs/1205.6233
- [6] M. E. Ouali, H. Fohlin, and A. Srivastav, "A randomised approximation algorithm for the hitting set problem," *Theor. Comput. Sci.*, vol. 555, pp. 23–34, 2014, doi: 10.1016/J.TCS.2014.03.029.
- [7] R. Saket and M. Sviridenko, "New and improved bounds for the minimum set cover problem," in Approximation, randomization, and combinatorial optimization. Algorithms and techniques 15th international workshop, APPROX 2012, and 16th international workshop, RANDOM 2012, cambridge, ma, usa, august 15-17, 2012. Proceedings, A. Gupta, K. Jansen, J. D. P. Rolim, and R. A. Servedio, Eds., in Lecture notes in computer science, vol. 7408. Springer, 2012, pp. 288–300. doi: 10.1007/978-3-642-32512-0\ 25.
- [8] J.-S. Roy, S. A. Mitchell, C.-M. Duquesne, F. Peschiera, and A. Phillips, "PuLP." https://github.com/coin-or/pulp, 2024.
- [9] "GLPK." https://www.gnu.org/software/glpk/glpk.html, 2024.
- [10] J. Forrest, "Coin-or/clp: Release releases/1.17.9." https://github.com/coin-or/Clp; Zenodo, 2024. doi: 10.5281/zenodo.10041272.
- [11] J. Hall, I. Galabova, Q. Huangfu, L. Gottwald, and M. Feldmeier, "HiGHS." https://github.com/ERGO-Code/HiGHS, 2024.
- [12] Q. Huangfu and J. A. J. Hall, "Parallelizing the dual revised simplex method," *Math. Program. Comput.*, vol. 10, no. 1, pp. 119–142, 2018, doi: 10.1007/S12532-017-0130-5.