

# FOUNDATION FOR ORGANISATIONAL RESEARCH AND EDUCATION NEW DELHI

Academic Session 2023-2025 Project-3

# Customer Classification and Prediction (Car Prices) on the basis of Cluster data Machine Learning for Managers

# FMG 32 Section A

**Submitted to:** 

**Submitted by:** 

**Prof. Amarnath Mitra** 

**321032 – Nisha Arora** 

# 1. Project Objectives

- $\rightarrow$  The first objective is to classify the car prices data into segments or clusters using cross-validation.
- $\rightarrow$  The second objective is to classify the car prices data into segments or clusters using ensemble methods.
- → The third objective is to determine the appropriate classification model.
- $\rightarrow$  The fourth objective is to identify significant variables or features and their thresholds for classification.

#### 2. Description of Data

#### 2.1. Data Source, Size, Shape

2.1.1. Data Source –

https://www.kaggle.com/datasets/syedanwarafridi/vehicle-sales-data

- 2.1.2. Data Size (in KB | MB | GB ...) **88 MB**
- 2.1.3. Data Shape | Dimension:

Number of Variables - 16 Number of Records - 558837

#### 2.2. Description of Variables

2.2.1. Index Variable(s): Car Id

- 2.2.2. Variables or Features having Categories | Categorical Variables or Features (CV)
  - 2.2.2.1. Variables or Features having Nominal Categories | Categorical Variables or Features **Nominal Type**: make, model, trim, body, transmission, state, colour, interior, seller
  - 2.2.2.2. Variables or Features having Ordinal Categories | Categorical Variables or Features **Ordinal Type:** Condition
  - 2.2.3. Non-Categorical Variables or Features: vin, odometer, mmr, selling price, sale date

Car ID: Unique identifier for each car

Year: Numeric representation of manufacturing year

Make: Brand or manufacturer of the car Model: Specific model name of the car Trim: Variant or version of the model

Body: Type of body style (e.g., sedan, SUV)

Transmission: Type of transmission system (e.g., automatic, manual)

VIN: Vehicle Identification Number, unique to each car

State: State where the car is located

Condition: Condition of the car, possibly ordinal categorical data

Odometer: Numeric representation of mileage

Color: Color of the car

Interior: Color or material of the interior

Seller: Entity selling the car

MMR: Market value of the car, likely non-categorical data

Selling Price: Price at which the car is sold

Sale Date: Date and time of sale

#### 2.3. Descriptive Statistics

2.3.1. Descriptive Statistics of Outcome Categorical Variables

It provides the statistics of cluster variable (categorical variable) by giving frequency as well as relative frequency (in %).

| Row ID   | [ count | D Relativ |
|----------|---------|-----------|
| duster_0 | 26011   | 23.273    |
| duster_1 | 59650   | 53.37     |
| duster_2 | 26106   | 23.358    |

- 2.3.2. Descriptive Statistics: Categorical Variables or Features
- 2.3.2.1. Count | Frequency Statistics

#### Color

| Row ID | <b>■</b> count |
|--------|----------------|
| black  | 22203          |
| white  | 21649          |
| silver | 16729          |
| gray   | 16352          |
| blue   | 10163          |
|        |                |

#### Model

| Row ID |      |
|--------|------|
| Altima | 6063 |
| F-150  | 2992 |
| Fusion | 2604 |
| Camry  | 2460 |
| Escape | 2247 |

#### Make

| Row ID    | <b>I</b> ▼ count |  |  |  |  |  |
|-----------|------------------|--|--|--|--|--|
| Ford      | 20837            |  |  |  |  |  |
| Chevrolet | 12069            |  |  |  |  |  |
| Nissan    | 10809            |  |  |  |  |  |
| Toyota    | 8033             |  |  |  |  |  |
| Dodge     | 6191             |  |  |  |  |  |

#### **Body**



#### **Transmission**

| Row ID    | [ count |
|-----------|---------|
| Sedan     | 2       |
| automatic | 108246  |
| manual    | 3514    |
| sedan     | 5       |

2.3.3 Descriptive Statistics: Non-Categorical Variables or Features

2.3.3.1. Measures of Central Tendency

| Row ID       | S Column     | D Min | D Max   | D Mean     | D Std. devi | D Variance     | D Skewness | D Kurtosis | D Overall s   | No. missi | No. NaNs | No. +cos | Nocos | D Median | Row count | 6  |
|--------------|--------------|-------|---------|------------|-------------|----------------|------------|------------|---------------|-----------|----------|----------|-------|----------|-----------|----|
| condition    | condition    | 1     | 49      | 30.574     | 13.314      | 177.254        | -0.83      | -0.197     | 3,417,183.716 | 0         | 0        | 0        | 0     | ?        | 111767    | 1  |
| odometer     | odometer     | 1     | 999,999 | 68,363.626 | 53,249.21   | 2,835,478,413  | 1.802      | 12.954     | 7,640,797,387 | 0         | 0        | 0        | 0     | 7        | 111767    | 1  |
| mmr          | mmr          | 25    | 178,000 | 13,782.935 | 9,718.146   | 94,442,361.104 | 2.026      | 11.693     | 1,540,477,346 | 0         | 0        | 0        | 0     | 7        | 111767    | 25 |
| sellingprice | sellingprice | 1     | 171,500 | 13,626.721 | 9,787.374   | 95,792,682.357 | 1.959      | 10.783     | 1,523,017,736 | 0         | 0        | 0        | 0     | 7        | 111767    | 1  |

#### 2.3.3.2. Measures of Dispersion

| Statistics Rows: 4   Co | lumns: 12   |               |              |         |         |              |              |              | Q          |
|-------------------------|-------------|---------------|--------------|---------|---------|--------------|--------------|--------------|------------|
| Name                    | Туре        | # Missing val | # Unique val | Minimum | Maximum | 25% Quantile | 50% Quantile | 75% Quantile | Standard 7 |
| condition               | Number (dou | 0             | 42           | 1       | 49      | 24           | 34           | 41           | 13.314     |
| odometer                | Number (dou | 0             | 78138        | 1       | 999,999 | 28,408       | 52,407       | 99,088       | 53,249.21  |
| mmr                     | Number (dou | 0             | 1066         | 25      | 178,000 | 7,100        | 12,250       | 18,350       | 9,718.146  |
| sellingprice            | Number (dou | 0             | 1222         | 1       | 171,500 | 6,900        | 12,100       | 18,250       | 9,787.374  |

#### Source of data-

https://www.kaggle.com/datasets/syedanwarafridi/vehicle-sales-data

#### 3. Analysis of Data

#### 3.1. Data Pre-Processing

#### 3.1.1. Missing Data Statistics and Treatment

- 3.1.1.1. Missing Data Statistics: 16
- 3.1.1.1.2. Missing Data Treatment: make, model, trim, body, transmission, state, colour, interior, seller, condition, vin, odometer, mmr, selling price, sale date
  - 3.1.1.1.2.1. Removal of Records with More Than 50% Missing Data
  - 3.1.1.2.1. Missing Data Statistics: Categorical Variables or Features

| Name         | # Missing values |
|--------------|------------------|
| year         | 0                |
| make         | 2141             |
| model        | 2170             |
| trim         | 2203             |
| body         | 2688             |
| transmission | 13241            |
| state        | 0                |
| color        | 163              |
| interior     | 163              |
| seller       | 0                |
|              |                  |

3.1.1.2.2. Missing Data Treatment: Categorical Variables or Features - 10 3.1.1.2.2.1. Removal of Variables or Features with More Than 50% Missing Data:

make, model, trim, body, transmission, state, colour, interior, seller, condition 3.1.1.2.2.2. Imputation of Missing Data using Descriptive Statistics: Mode

#### 3.1.1.3.1. Missing Data Statistics: Non-Categorical Variables or Features

| Name         | # Missing values |
|--------------|------------------|
| vin          | 2                |
| condition    | 2342             |
| odometer     | 21               |
| mmr          | 9                |
| sellingprice | 2                |
| saledate     | 2                |

- 3.1.1.3.2. Missing Data Treatment: Non-Categorical Variables or Features 6
  - 3.1.1.3.2.1. Removal of Variables or Features with More Than 50% Missing Data: vin, odometer, mmr, selling price, sale date
  - 3.1.1.3.2.2. Imputation of Missing Data using Descriptive Statistics: Mean

#### 3.1.2. Numerical Encoding of Categorical Variables or Features (Encoding Schema

- Alphanumeric Order)
- In this case, category to number node will be used to encode the categorical variables.

#### Color-

- 8 black
- 9 blue
- 14 gray
- 22 silver
- 24 white

#### Model

- 30-Altima
- 91- F-150
- 90- Fusion
- 62- Camry
- 75- Escape

#### Make

- 19-Ford
- 0-Chevrolet
- 5-Nissan
- 17-Toyota
- 22-Dodge

#### **Body**

- 0- Sedan
- 1-SUV
- 28-sedan
- 44-suv
- 9-Minivan

#### **Transmission**

- 0 Sedan
- 1- Automatic
- 2 Manual
- 3 sedan

#### **3.1.3. Outlier Statistics and Treatment** (Scaling | Transformation)

#### 3.1.3.1.1. Outlier Statistics: Non-Categorical Variables or Features

| Row ID | S Outlier    | Membe  | Outlier | D Lower | D Upper |
|--------|--------------|--------|---------|---------|---------|
| Row0   | condition    | 111767 | 0       | -1.5    | 66.5    |
| Row1   | odometer     | 111767 | 2066    | -77,611 | 205,105 |
| Row2   | mmr          | 111767 | 3244    | -9,775  | 35,225  |
| Row3   | sellingprice | 111767 | 3222    | -10,125 | 35,275  |

- 3.1.3.1.2. Outlier Treatment: Non-Categorical Variables or Features
  - 3.1.3.1.2.1. Standardization
  - 3.1.3.1.2.2. Normalization using Min-Max Scaler:

Min-max normalization, also known as feature scaling, is a technique

used in data preprocessing to scale numerical features to a specific range, typically between 0 and 1.

The formula for min-max normalization is:

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

#### 3.1.3.1.2.3. Log Transformation

#### 3.1.4. Data Bifurcation: Training & Testing Sets

The training and testing data have been bifurcated into 70% and 30% respectively.

#### 3.2. Data Analysis

#### 3.2.1. Cross-Validation using Decision Tree

Cross-validation using a decision tree involves splitting the dataset into k subsets, training the decision tree on k-1 subsets and validating on the remaining subset by repeating this process k times and averaging the results to assess the model's performance and generalization ability.

#### 3.2.2. Cross-Validation using Other Methods

#### 3.2.2.1.Logistic Regression

Cross-validation with logistic regression involves partitioning the dataset into training and validation sets, fitting the logistic regression model on the training data and evaluating its performance on the validation set. This process is repeated multiple times with different partitions to estimate the model's generalization performance and minimize overfitting.

#### 3.2.2.2. K-Nearest Neighbours

Cross-validation with KNN entails splitting the dataset into training and validation sets, then iterating through different values of k (number of nearest neighbours) to find the optimal k value that minimizes error on the validation set. This process helps assess the KNN model's performance and its ability to generalize to new data.

#### 3.2.3. Ensemble Method using Random Forest

Random forest is an ensemble learning method where multiple decision trees are trained on random subsets of the data and features. During prediction, each tree votes on the outcome and the final prediction is determined by the majority vote. This approach improves prediction accuracy and reduces overfitting compared to individual decision trees.

#### 3.2.4. Ensemble Method using XGBoost

XGBoost (Extreme Gradient Boosting) is a powerful machine learning algorithm that uses a gradient boosting framework. It sequentially builds multiple decision trees, each correcting the errors of the previous one. XGBoost incorporates regularization techniques to prevent overfitting and is known for its efficiency and effectiveness in various machine learning tasks.

#### 3.2.1.1. Model Performance Evaluation of Cross-Validation using Decision Tree

#### Without Pruning



| Table deladit | raure default "nomes 1 Spec - Columns: 11 Properties   Flow Variables |         |        |        |          |                    |               |               |          |            |          |
|---------------|-----------------------------------------------------------------------|---------|--------|--------|----------|--------------------|---------------|---------------|----------|------------|----------|
| Row ID        | TruePo                                                                | FalsePo | TrueNe | FalseN | D Recall | <b>D</b> Precision | D Sensitivity | D Specificity | D F-meas | D Accuracy | D Cohen' |
| duster_1      | 17895                                                                 | 0       | 15636  | 0      | 1        | 1                  | 1             | 1             | 1        | ?          | ?        |
| cluster_0     | 7804                                                                  | 0       | 25727  | 0      | 1        | 1                  | 1             | 1             | 1        | ?          | ?        |
| duster_2      | 7832                                                                  | 0       | 25699  | 0      | 1        | 1                  | 1             | 1             | 1        | ?          | ?        |
| Overall       | ?                                                                     | ?       | ?      | ?      | ?        | ?                  | ?             | ?             | ?        | 1          | 1        |

#### With Pruning



| Row ID    | TruePo | FalsePo | TrueNe | FalseN | D Recall | <b>D</b> Precision | D Sensitivity | D Specificity | D F-meas | D Accuracy | D Cohen' |
|-----------|--------|---------|--------|--------|----------|--------------------|---------------|---------------|----------|------------|----------|
| duster_1  | 17895  | 0       | 15636  | 0      | 1        | 1                  | 1             | 1             | 1        | ?          | ?        |
| cluster_0 | 7804   | 0       | 25727  | 0      | 1        | 1                  | 1             | 1             | 1        | ?          | ?        |
| cluster_2 | 7832   | 0       | 25699  | 0      | 1        | 1                  | 1             | 1             | 1        | ?          | ?        |
| Overall   | ?      | ?       | ?      | ?      | ?        | ?                  | ?             | ?             | ?        | 1          | 1        |

#### Cluster 0

- This cluster has a high number of true positives and true negatives indicating that the model correctly classified most instances within this cluster.
- The precision and recall scores are both very high suggesting that the model effectively identifies true positives while also minimizing false positives.

#### Cluster 1

- This cluster has a lower recall and precision compared to cluster 0, indicating that the model's performance is not as strong for this segment.
- The number of false positives is relatively high, suggesting that the model may misclassify some instances within this cluster.
- Despite the lower performance metrics, the specificity is very high indicating that the model correctly identifies true negatives within this cluster.

#### Cluster 2

- This cluster has a relatively high recall and precision, indicating that the model performs well.
- The number of false positives is relatively low suggesting that the model effectively minimizes misclassifications within this cluster.
- Both sensitivity and specificity scores are high indicating that the model correctly identifies both true positives and true negatives within this cluster.

#### Comparative analysis of decision tree with and without pruning

Pruning generally improves precision and specificity while slightly reducing recall and sensitivity. Pruning removes unnecessary branches from the tree, simplifying the model and reducing overfitting. This can lead to better generalization and potentially improved performance on unseen data.

We didn't observe a significant difference between a pruned and non-pruned decision tree in our case. It may be because:

- 1. **Dataset characteristics:** The data we used might be relatively simple, and the decision tree without pruning may not have overfit considerably.
- 2. **Pruning settings:** The pruning settings in KNIME's Decision Tree Learner node might have been configured in a way that resulted in minimal removal of branches.
- 3. **Randomness:** There can be an element of randomness in decision tree generation. Rerunning the experiment with both pruned and non-pruned trees might yield a slight difference on another iteration.

The choice of whether to prune the decision tree depends on the specific requirements of the problem and the trade-off between precision and recall. If minimizing false positives is crucial (can be used for risk assessment) pruning may be preferred. If capturing as many true positives as possible is more important (can be used for customer retention) pruning may be avoided.

# 3.2.2.1. Model Performance Evaluation of Cross-Validation using Other Methods Logistic Regression

| Tubic Goetileen |           | Spec - Columns.                        | 0       |
|-----------------|-----------|----------------------------------------|---------|
| Row ID          | S 🗻 Logit | S Variable                             |         |
| Row1            | cluster_0 | year                                   |         |
| Row2            | cluster_0 | transmission=automatic                 |         |
| Row3            | cluster_0 | transmission=manual                    |         |
| Row4            | cluster_0 | transmission=sedan                     |         |
| Row5            | cluster_0 | state=3vwd17aj4fm236636                |         |
| Row6            | cluster_0 | state=3vwd17aj5fm219943                |         |
| Row7            | cluster_0 | state=3vwd17aj5fm221322                |         |
| Row8            | cluster_0 | state=3vwd17aj5fm225953                |         |
| Row9            | cluster_0 | state=3vwd17aj7fm222388                |         |
| Row10           | cluster_0 | state=3vwd17aj7fm229552                |         |
| Row11           | cluster_0 | state=ab                               |         |
| Row12           | cluster_0 | state=al                               |         |
| Row13           | cluster_0 | state=az                               |         |
| Row14           | cluster_0 | state=ca                               |         |
| Row15           | duster_0  | state=co                               |         |
| Row90           | cluster 0 | color=silver                           | -0.003  |
| Row91           | cluster_0 | color=turquoise                        | 0.052   |
| Row92           | cluster_0 | color=white                            | 0.3     |
| Row93           | cluster_0 | color=yellow                           | 0.219   |
| Row94           | cluster_0 | color=â€"                              | -0.368  |
| Row95           | cluster_0 | interior=black                         | -0.159  |
| Row96           | cluster_0 | interior=blue                          | 0.19    |
| Row97           | cluster_0 | interior=brown                         | -0.292  |
| Row98           | cluster_0 | interior=burgundy                      | 0.009   |
| Row99           | cluster_0 | interior=gold                          | -0.112  |
| Row 100         | duster_0  | interior=gray                          | -0.041  |
| Row 101         | duster_0  | interior=green                         | -0.074  |
| Row 102         | duster_0  | interior=off-white                     | -0.087  |
| Row 103         | duster_0  | interior=orange                        | 0.033   |
| Row 104         | duster_0  | interior=purple                        | 0.076   |
| Row 105         | duster_0  | interior=red                           | 0.082   |
| Row 106         | duster_0  | interior=silver                        | 0.169   |
| Row 107         | duster_0  | interior=tan                           | -0.047  |
| Row 107         | duster_0  | interior=tan<br>interior=white         | 0.033   |
| Row 109         | duster_0  | interior=write<br>interior=yellow      | 0.001   |
| Row109          |           | · ·                                    | -0.269  |
| Row111          | duster_0  | interior=â€"                           | -0.269  |
| Row112          | duster_0  | Car id (to number)<br>make (to number) | -0.001  |
| Row112          | duster_0  |                                        | -       |
|                 | duster_0  | model (to number)                      | 0       |
| Row114          | duster_0  | trim (to number)                       | 0 032   |
| Row115          | duster_0  | body (to number)                       | -0.032  |
| Row116          | duster_0  | transmission (to number)               | -0.076  |
| Row117          | duster_0  | state (to number)                      | -0.02   |
| Row118          | duster_0  | color (to number)                      | 0.049   |
| Row119          | cluster_0 | interior (to number)                   | -0.031  |
| Row120          | cluster_0 | seller (to number)                     | 0       |
| Row121          | cluster_0 | Clusters (to number)                   | -72.932 |
| Row122          | cluster_0 | odometer                               | 0.625   |
| Row123          | cluster_0 | mmr                                    | -0.346  |
| Row124          | cluster 0 | sellinaprice                           | 0.312   |

|   |                  |           | color –r cu                      |       |                |
|---|------------------|-----------|----------------------------------|-------|----------------|
|   | Row215           | duster_1  | color=silver                     |       | -0.018         |
|   | Row216           | duster_1  | color=turquoise                  |       | -0.013         |
|   | Row217           | cluster_1 | color=white                      |       | 0.694          |
|   | Row218           | duster_1  | color=yellow                     |       | 0.289          |
|   | Row219           | duster_1  | color=—                          |       | -1.035         |
|   | Row220           | duster_1  | interior=black                   |       | -0.671         |
|   | Row221           | duster_1  | interior=blue                    |       | 0.432          |
|   | Row222           | duster_1  | interior=brown                   |       | -0.99          |
|   | Row223           | duster_1  | interior=burgundy                |       | -0.04          |
|   | Row224           | cluster_1 | interior=gold                    |       | 0.107          |
|   | Row225           | cluster_1 | interior=gray                    |       | -0.546         |
|   | Row226           | duster_1  | interior=green                   |       | -0.007         |
|   | Row227           | cluster_1 | interior=off-white               |       | -0.055         |
|   | Row228           | duster_1  | interior=orange                  |       | -0.119         |
|   | Row229           | cluster_1 | interior=purple                  |       | 0.06           |
|   | Row230           | cluster_1 | interior=red                     |       | 0.147          |
|   | Row231           | cluster_1 | interior=silver                  |       | -0.093         |
|   | Row232           | cluster_1 | interior=tan                     |       | 0.213          |
|   | Row233           |           | interior=white                   |       | 0.246          |
|   | Row234           |           | interior=yellow                  |       | 0.032          |
|   | Row235           |           | interior=â€″                     |       | -0.645         |
|   | Row236           |           | Car id (to number)               |       | -0             |
|   | Row237           |           | make (to number)                 |       | -0.015         |
|   | Row238           |           | model (to number)                |       | -0             |
|   | Row239           | duster_1  | trim (to number)                 |       | 0              |
|   | Row240           |           | body (to number)                 |       | 0.058          |
|   | Row241           | cluster_1 | transmission (to number)         |       | -0.187         |
|   | Row242           |           | state (to number)                |       | 0.008          |
|   | Row243           |           | color (to number)                |       | 0.152          |
|   | Row244<br>Row245 |           | interior (to number)             |       | -0.13<br>0     |
|   | Row245           |           | seller (to number)               |       | -149.664       |
|   | Row247           |           | Clusters (to number)<br>odometer |       | 0.943          |
|   | Row248           |           | mmr                              |       | -0.192         |
|   | Row249           |           | sellingprice                     |       | -0.132         |
|   | NOW 2 13         | ciustei_1 | sellingprice                     |       | 0.21           |
|   | Row141           | cluster_1 | state=fl                         | -0.13 | 38             |
|   | Row142           | cluster_1 | state=ga                         | -0.06 | 57             |
|   | Row143           | cluster_1 | state=hi                         | -0.04 | <del>1</del> 6 |
|   | Row144           | cluster_1 | state=il                         | 0.10  | 4              |
|   | Row145           | cluster_1 | state=in                         | 0.47  | 4              |
| L | Row146           | cluster_1 | state=la                         | 0.23  | 4              |
| L | Row147           | cluster_1 | state=ma                         | 0.04  | 6              |
|   | Row148           | cluster_1 | state=md                         | -0.6  | 19             |
|   | Row149           | cluster_1 | state=mi                         | -0.30 |                |
|   | Row150           | cluster_1 | state=mn                         | -0.4  |                |
|   | Row151           | cluster_1 | state=mo                         | 0.27  |                |
|   | Row152           | cluster_1 | state=ms                         | 0.15  |                |
|   | Row153           | cluster_1 | state=nc                         | -0.16 |                |
|   | Row154           | cluster_1 | state=ne                         | -0.4  |                |
|   | Row155           | cluster_1 | state=nj                         | 0.68  |                |

Cluster\_2 was used as the reference category

Cluster\_0 which represent car with maker Ford, model Altima and sedan body

Identity of cluster 0: Customers who value reliability, affordability, comfort, fuel efficiency, and practicality.

We observe that state, color, interior and transmission are most significant variables in cluster 0.

#### Cluster 1 which represent car with maker Honda, model Camry and SUV body

Identity of cluster 1: Customers who are family-oriented, seeking vehicles that offer ample space and versatility for various activities and lifestyles, also have interest in features that enhance convenience and comfort.

We observe that state, color and interior are most significant variables in cluster 0.

# Variables like make, body, trim, selling price, model have no significant impact in distinguishing cluster 1 and cluster 0 from cluster 2.

| Table detault - N | ows. T Spec - C | Joiumns: 11 Pr | operties riow | variables |          |             |               |               |          |            |          |
|-------------------|-----------------|----------------|---------------|-----------|----------|-------------|---------------|---------------|----------|------------|----------|
| Row ID            | TruePo          | FalsePo        | TrueNe        | FalseN    | D Recall | D Precision | D Sensitivity | D Specificity | D F-meas | D Accuracy | D Cohen' |
| duster_1          | 17895           | 0              | 15636         | 0         | 1        | 1           | 1             | 1             | 1        | ?          | ?        |
| cluster_0         | 7804            | 0              | 25727         | 0         | 1        | 1           | 1             | 1             | 1        | ?          | ?        |
| cluster_2         | 7832            | 0              | 25699         | 0         | 1        | 1           | 1             | 1             | 1        | ?          | ?        |
| Overall           | ?               | ?              | ?             | ?         | ?        | ?           | ?             | ?             | ?        | 1          | 1        |

The overall accuracy of the logistic regression model is very high at 100 and it effectively predicts the cluster labels for the majority of instances. Additionally, the Cohen's Kappa coefficient suggests substantial agreement beyond chance among the predicted and actual cluster labels.

#### 3.2.2.1.2. K-Nearest Neighbours

#### K=7



| Row ID   | TruePo | FalsePo | TrueNe | FalseN | D Recall | D Precision | D Sensitivity | D Specificity | D F-meas | D Accuracy | D Cohen' |
|----------|--------|---------|--------|--------|----------|-------------|---------------|---------------|----------|------------|----------|
| duster_1 | 11970  | 1908    | 13728  | 5925   | 0.669    | 0.863       | 0.669         | 0.878         | 0.753    | ?          | ?        |
| duster_0 | 6820   | 3031    | 22696  | 984    | 0.874    | 0.692       | 0.874         | 0.882         | 0.773    | ?          | ?        |
| duster_2 | 6903   | 2899    | 22800  | 929    | 0.881    | 0.704       | 0.881         | 0.887         | 0.783    | ?          | ?        |
| Overall  | ?      | ?       | ?      | ?      | ?        | ?           | ?             | ?             | ?        | 0.766      | 0.636    |

#### K=9



| Row ID    | TruePo | FalsePo | TrueNe | FalseN | D Recall | D Precision | <b>D</b> Sensitivity | D Specificity | D F-meas | D Accuracy | D Cohen' |
|-----------|--------|---------|--------|--------|----------|-------------|----------------------|---------------|----------|------------|----------|
| cluster_1 | 11815  | 1525    | 14111  | 6080   | 0.66     | 0.886       | 0.66                 | 0.902         | 0.757    | ?          | ?        |
| cluster_0 | 7010   | 3113    | 22614  | 794    | 0.898    | 0.692       | 0.898                | 0.879         | 0.782    | ?          | ?        |
| cluster_2 | 7096   | 2972    | 22727  | 736    | 0.906    | 0.705       | 0.906                | 0.884         | 0.793    | ?          | ?        |
| Overall   | ?      | ?       | ?      | ?      | ?        | ?           | ?                    | ?             | ?        | 0.773      | 0.649    |

#### K = 19

| Row ID    | duster_1 | duster_0 | duster_2 |
|-----------|----------|----------|----------|
| cluster_1 | 11347    | 3337     | 3211     |
| cluster_0 | 274      | 7528     | 2        |
| cluster_2 | 303      | 3        | 7526     |

|   | done delidate ito | or . Spec - c | Joidinis, 11 Fi | oper des 1 low | variables |          |             |               |               |          |            |          |
|---|-------------------|---------------|-----------------|----------------|-----------|----------|-------------|---------------|---------------|----------|------------|----------|
|   | Row ID            | TruePo        | FalsePo         | TrueNe         | FalseN    | D Recall | D Precision | D Sensitivity | D Specificity | D F-meas | D Accuracy | D Cohen' |
| П | duster_1          | 11347         | 577             | 15059          | 6548      | 0.634    | 0.952       | 0.634         | 0.963         | 0.761    | ?          | ?        |
| П | cluster_0         | 7528          | 3340            | 22387          | 276       | 0.965    | 0.693       | 0.965         | 0.87          | 0.806    | ?          | ?        |
| П | cluster_2         | 7526          | 3213            | 22486          | 306       | 0.961    | 0.701       | 0.961         | 0.875         | 0.811    | ?          | ?        |
|   | Overall           | ?             | ?               | ?              | ?         | ?        | ?           | ?             | ?             | ?        | 0.787      | 0.678    |

#### Similarly, we have applied k nearest neighbour for K=11, 13,15,17 and observed that -

In KNN, the number of neighbours to be considered are from k=7 to 19. From the images, it is seen that as the number of k increases the accuracy also increases. For k=19, as the accuracy is the highest from all the other k's, this cluster will be considered.

The overall accuracy of the KNN model is moderate showing mixed performance across different clusters. Cohen's Kappa coefficient also suggests moderate agreement beyond chance among the predicted and actual cluster labels.

#### 3.2.3.1. Model Performance Evaluation of Random Forest



|   | Row ID    | TruePo | FalsePo | TrueNe | FalseN | D Recall | <b>D</b> Precision | D Sensitivity | D Specificity | D F-meas | D Accuracy | D Cohen' |
|---|-----------|--------|---------|--------|--------|----------|--------------------|---------------|---------------|----------|------------|----------|
| Ш | cluster_1 | 17792  | 0       | 15739  | 0      | 1        | 1                  | 1             | 1             | 1        | ?          | ?        |
| Ш | cluster_0 | 7823   | 0       | 25708  | 0      | 1        | 1                  | 1             | 1             | 1        | ?          | ?        |
| Ш | cluster_2 | 7916   | 0       | 25615  | 0      | 1        | 1                  | 1             | 1             | 1        | ?          | ?        |
| Ш | Overall   | ?      | ?       | ?      | ?      | ?        | ?                  | ?             | ?             | ?        | 1          | 1        |

#### 3.3.2. List of Non-Relevant or Unimportant Variables

In the analysis, we see that these were the non-important variables that did not contribute in the supervised learning algorithm which are: -

Car id, odometer, vin, saledate, selling price, condition and trim.

#### 3.4 List of Relevant or Important Variables

In the analysis, we see that these were the important variables that contributed in the supervised learning algorithm which are: -

Transmission, color, interior, state, make, body and model.

#### 4. Results and Observations

4.1. Comparing Supervised Learning models: Cross Validation using Decision Tree VS Cross Validation using Logistic Regression, KNN

#### **Cross validation using Decision tree**

| File Hilite |           |           |           |
|-------------|-----------|-----------|-----------|
| Clusters \  | cluster_1 | cluster_0 | cluster_2 |
| cluster_1   | 17895     | 0         | 0         |
| duster_0    | 0         | 7804      | 0         |
| cluster_2   | 0         | 0         | 7832      |
|             |           |           |           |

Correct classified: 33,531 Wrong classified: 0

Accuracy: 100% Error: 0%

Cohen's kappa (ĸ): 1%

# **Cross validation using Logistic Regression**

| Clusters \ | duster_1 | duster_0 | duster_2 |
|------------|----------|----------|----------|
| duster_1   | 11930    | 0        | 0        |
| duster_0   | 0        | 5202     | 0        |
| duster_2   | 0        | 0        | 5222     |

Correct classified: 22,354 Wrong classified: 0

Accuracy: 100% Error: 0%

Cohen's kappa (κ): 1%

### Cross validation using KNN

#### K=19

| Clusters \ | cluster_1         | cluster_0 | cluster_2 |                      |
|------------|-------------------|-----------|-----------|----------------------|
| cluster_1  | 11347             | 3337      | 3211      |                      |
| cluster_0  | 274               | 7528      | 2         |                      |
| cluster_2  | 303               | 3         | 7526      |                      |
|            |                   |           |           |                      |
| Corre      | ect classified: 2 | 6,401     | Wro       | ng classified: 7,130 |
| A          | ccuracy: 78.736   | 5%        |           | Error: 21.264%       |
| Coher      | n's kappa (κ): 0  | .678%     |           |                      |

# **Cross Validation using Random Forest**

| Clusters \ | duster_1         | duster_0 | duster_2 |                    |
|------------|------------------|----------|----------|--------------------|
| duster_1   | 17792            | 0        | 0        |                    |
| duster_0   | 0                | 7823     | 0        |                    |
| duster_2   | 0                | 0        | 7916     |                    |
|            |                  |          |          |                    |
|            | ect dassified: 3 |          |          | Wrong dassified: 0 |

# 5. Managerial Insights

# 5.1. Appropriate Model

| Metrics         | Decision<br>Tree | Logistic<br>Regression | KNN    | Random<br>Forest |
|-----------------|------------------|------------------------|--------|------------------|
| Accuracy (in %) | 100%             | 100%                   | 78.74% | 100.00%          |

The decision tree and logistic regression has the highest accuracy (100%). KNN has significantly lower accuracy of 78.74%.

For this dataset, ensemble learning methods like Random Forest along with Decision Trees with pruning, seem to be the most effective models in terms of accuracy and robustness. Logistic Regression also performs well and provides interpretable results which can be advantageous in certain scenarios. However, KNN appears to be less suitable due to it less accuracy.

#### Managerial insights according to the appropriate model (Random Forests)

Managerial insights according to the Random Forests model for car prices:

**Market Segmentation**: Similar to the Decision Tree model, Random Forest can identify customer segments based on car preferences. It can discern nuances in preferences, such as body style, manufacturer, and additional features, leading to targeted marketing efforts.

**Dynamic Pricing Strategy**: Random Forest's ensemble approach can provide more robust price range estimations compared to a single decision tree. This allows for a dynamic pricing strategy that adapts to changing market conditions and customer preferences. For example, it can account for seasonal trends or fluctuations in demand for specific car models.

**Enhanced Inventory Management**: By predicting demand with higher accuracy, Random Forest assists in optimizing inventory levels. It enables dealerships to stock the right mix of cars, reducing carrying costs and minimizing the risk of stockouts. This ensures that the dealership meets customer demands efficiently.

**Customized Sales Approach**: Random Forest's ability to capture complex relationships between car attributes and prices allows for a more personalized sales approach. Sales teams can leverage insights from the model to tailor their pitches to individual customer preferences, enhancing the overall customer experience and increasing sales conversion rates

#### **5.2.** Relevant or Important Variables or Features

| The relevant or important variables that are used in the decision tree supervised learning algorithm are: - |
|-------------------------------------------------------------------------------------------------------------|
| State                                                                                                       |
| Color                                                                                                       |
| Interior                                                                                                    |
| Transmission                                                                                                |

Selling Price

Make

Model