Multi-party DP Write-up 2 Stochastic Gradient Descent

1 Notations and Settings

Let $D = [\mathbf{X}, \mathbf{y}]$ be a database of size n, with $\mathbf{X} \in \mathbb{R}^{n \times p}$ and $\mathbf{y} \in \mathbb{R}$. [n] stands for the set $\{1, \ldots, n\}$. We use $z \sim N(\mu, \sigma)$ to denote a variable following the Gaussian distribution with mean μ and variance σ^2 .

Definition 1 (ERM). Given a data set $D = \{d_1, \ldots, d_n\}$ drawn from a universe $\mathcal{X} \subseteq \mathbb{R}^{n \times (p+1)}$, and a closed, convex set \mathcal{C} , the goal of Empirical Risk Minimization (ERM) is

$$\min_{\theta \in \mathcal{C}} L(\theta; D) = \sum_{i=1}^{n} l(\theta; d_i)$$
 (1)

The function l defines, for each data point d, a loss function l(.;d) on C. We will generally assume that l(;d) is convex and L-Lipschitz for all $d \in \mathcal{X}$.

Definition 2 (Lipschitz Function). $l: \mathcal{C} \to \mathbb{R}$ is L-Lipschitz (in the Euclidean norm) if, for all pairs $x, y \in \mathcal{C}$, we have $|l(x) - l(y)| \leq L|x - y|_2$.

Definition 3 (Distributed Private ERM). Let $A_1, \ldots A_m$ and B be m+1 parties. Each A_i owns some of the data $\{d_j\}_{j\in S_i}$, where $S_i\subseteq [n]$ and $|S_i|=n_i$. For simplicity, we assume $\{S_1,\ldots,S_t\}$ partition [n].

Our goal is to find an algorithm that makes $\{A_1, \ldots A_m, B\}$ distributively compute θ under ERM model. such that the entire computation, including all the intermediate outputs and final output, is (ϵ, δ) -differential private.

Privacy & **Utility.** There is always a trade-off between privacy and utility. We use the concept of worst case (over input data) *expected excess risk* to evaluate the utility of our algorithm.

Definition 4. Given loss function $L(\theta; D)$ over database D, its worst case expected excess risk is defined as

$$E[L(\theta; D) - L(\theta^*; D)] \tag{2}$$

where θ is the output of the algorithm, θ^* is the optimal minimizer of the loss function and the randomness comes from the algorithm.

2 Stochastic Gradient Descent

We propose two distributed algorithms, both of which are based on the stochastic gradient descent algorithm in [1].

Algorithm SGD1.

- 1. B uniformly chooses the initial assignment $\theta_0 \in \mathcal{C}$, learning rate function $\eta: [n^2] \to \mathbb{R}$, a noise variance $\sigma^2 > 0$, and a sequence of $\pi = [\pi_1, \dots \pi_{n^2}]$ with each π_j uniformly chosen from [n]. B broadcasts $(\theta_0, \eta, \sigma^2)$.
- 2. In each iteration i = 1 to n^2 , B gives a computing permission to agent A_j who owns data $d_{\pi(i)}$.
- 3. Upon receiving permission, A_j will compute $\theta_{i+1} = \Pi_{\mathcal{C}}(\theta_i \eta(i)G_i)$, where $G_i = n\nabla(l(\theta_i; d_{\pi(i)})) + z_i$ with $z_i \sim N(0, \sigma^2)^p$, and $\Pi_{\mathcal{C}}$ is the projection function onto set \mathcal{C} . A_j sends G_i to B.
- 4. B broadcast G_i together with a update permission to all other A_k , where $k \neq j$.
- 5. Each of the remaining A_k will update $\theta_{i+1} = \Pi_{\mathcal{C}}[\theta_i \eta(i)G_i]$
- 6. After n^2 iterations, B returns $\theta = \theta_{n^2}$ as the final output.

For $0 < \epsilon < 1$ and $\delta < 1/n^3$, we set parameters in Algorithm SGD1 as the follows

$$\sigma^2 = \frac{16L^2n^2\log^2(1.25n^2/\delta)}{\epsilon^2})$$
 (3)

$$\eta(t) = \frac{|\mathcal{C}|_2}{\sqrt{t(n^2L^2 + p\sigma^2)}}\tag{4}$$

Theorem 1. Algorithm SGD1 is (ϵ, δ) -Private.

Proof. The entire output of Algorithm SGD1 consists of $\{G_1, \ldots, G_{n^2}\}$. We show adaptively outputting n^2 such G_i is (ϵ, δ) -Private.

Let $G_i(D) = n\nabla(l(\theta_i; d_{\pi(i)})) + z_i$ be a random variable defined over the randomness of π , z_i and conditioned on θ_i . Fixing the randomness of π , by Lemma 2 each G_i is $(\frac{\epsilon}{2\sqrt{\log(1/\delta)}}, \delta/n^2)$ -DP [3]. (We just need to show with

probability at least $1 - \delta/n^2$, $|\log(\frac{G_i(D)}{G_i(D')})| \leq \frac{\epsilon}{2\sqrt{\log(1/\delta)}}$, where D, D' are a pair of neighboring databases)

It is obvious that π provides the same randomness as the uniform sampling from D. By the privacy amplification lemma in [1], each G_i is $(\frac{\epsilon}{n\sqrt{\log(1/\delta)}}, \delta/n^2)$ -DP. We apply the strong composition theorem lemma 1 with $k=n^2$, $\delta'=\delta^{1/3}$. We have

$$n^{2} \epsilon^{2} + \epsilon \sqrt{2n^{2} \log(1/\delta')} = \epsilon \left(\frac{\epsilon}{\log(1/\delta)} + \sqrt{2/3}\right) \le \epsilon \tag{5}$$

$$1 - (1 - \delta/n^2)^{n^2})(1 - \delta') \le \delta \tag{6}$$

Lemma 1 (Strong Composition Theorem). For any $1 > \epsilon > 0$, $\delta \in [0, 1]$ and $\delta' \in [0, 1]$ the class of (ϵ, δ) -differentially private mechanisms satisfies $(\epsilon', 1 - (1 - \delta)^k)(1 - \delta')$ -DP under k-fold adaptive composition for

$$\epsilon' = \min\{k\epsilon, k\epsilon^2 + \epsilon\sqrt{2k\log(1/\delta')}\}$$
 (7)

Lemma 2 (Gaussian DP). Let $\epsilon \in (0,1)$ be arbitrary. For $c^2 > 2 \ln(1.25/\delta)$, the Gaussian Mechanism F = f + b is (ϵ, δ) -differentially private, where $b \sim N(0, \sigma^2)$, parameter $\sigma \geq c\mathbf{SEN}(f)/\epsilon$ and $\mathbf{SEN}(f)$ is the sensitivity of function f defined as

$$\mathbf{SEN}(f) = \max_{neighboring(D,D')} |f(D) - f(D')|_2 \tag{8}$$

Theorem 2 (Utility guarantee). Let $\sigma^2 = \frac{16L^2n^2\log^2(1.25n^2/\delta)}{\epsilon^2}$). The expected excess risk of algorithm SGD1 has the following bound.

1. l is L-Lipschitz Set
$$\eta(t) = \frac{|\mathcal{C}|_2}{\sqrt{t(n^2L^2+p\sigma^2)}}$$
.

$$E[L(\theta; D) - L(\theta^*; D)] = O(\frac{L|\mathcal{C}|_2 \log^2(1.25n^2/\delta)\sqrt{p}}{\epsilon})$$
(9)

2. I is L-Lipschitz and Δ -strong convex. Set $\eta(t) = 1/\Delta nt$.

$$E[L(\theta; D) - L(\theta^*; D)] = O(\frac{L^2 \log^3(1.25n^2/\delta)p}{n\Lambda\epsilon^2})$$
 (10)

Algorithm SGD2.

1. B uniformly chooses the initial assignment $\theta_0 \in \mathcal{C}$ and broadcasts it.

- 2. In each iteration k where $0 < k \le T$, repeat (3) and (4).
- 3. Each A_i computes $\Sigma_{d_i \in S_i} \nabla(l(\theta_{k-1}; d_i))$ and sends $G_i^{(k)} = \Sigma_{d_i \in S_i} \nabla(l(\theta_{k-1}; d_i)) + b_k$ to B, where $b \sim N(0, \sigma^2)$.
- 4. B updates $\theta_k = \Pi[\theta_{k-1} \eta(k)\Sigma_{i=1}^t G_i^k]$ and broadcast it.
- 5. B return θ_T .

Theorem 3 (Privacy). Algorithm SGD2 is (ϵ, δ) -differential private.

Proof. (sketch)

- 1. Algorithm SGD2 outputs $\theta_0, \{G_i^{(1)}\}_{i \in [m]}\}, \dots, \theta_{T-1}, \{G_i^{(T)}\}_{i \in [m]}, \theta_T\}$
- 2. Given θ_{k-1} , elements in $\{G_i^{(k)}\}_{i\in[m]}$ are mutually independent (if each $d_i \in D$ is generated independently).
- 3. Given θ_{k-1} and $\{G_i^{(k)}\}_{i\in[m]}\}$, outputting θ_k does not give away any further information.
- 4. In each iteration k, the privacy level of SGD2 depends on the maximum (ϵ, δ) values of $\{G_i^{(k)}\}_{i \in [m]}\}$. Pick σ such that SGD2 is $(\frac{\epsilon}{\sqrt{T \log(1/\delta)}}, \delta/T)$ differential private.
- 5. Apply the strong composition theorem, it is straightforward to get SGD2 is (ϵ, δ) -DP.

Theorem 4 (Utility). The expected excess risk of algorithm SGD2 has the following bound.

l is L-Lipschitz and Δ -strong convex. Pick $\eta(t)$ appropriately.

$$E[L(\theta; D) - L(\theta^*; D)] \le \frac{8mp(\sigma^2 + n^2L^2)}{n\Delta T}$$
(11)

sketch

1. Following the standard convergence analysis of gradient descent, it can be shown that

$$E[L(\theta_k; D) - L(\theta^*, D)] \le 1/2k\eta(t)|\theta_0 - \theta^*|^2 + \eta(t)\sigma^2$$
 (12)

2. Use a similar technique in [4] to get a tighter bound.

3 References

- 1. http://www.cse.psu.edu/ ads22/pubs/BST14/2014-04-10-BST14-convex-opt.pdf
- 2. http://arxiv.org/pdf/1311.0776v2.pdf
- 3. http://www.cis.upenn.edu/aaroth/Papers/privacybook.pdf
- 4. http://jmlr.org/papers/v15/hazan14a.html