BPHY101L	PHY101L Engineering Physics				С			
	l and h	3	0	0	3			
Pre-requisite	12 th of equivalent	Syllab			ion			
			1.0					
Course Objective								
<u>.</u>	e dual nature of radiation and matter.							
	nrödinger's equation to solve finite and infinite potential pro	blems	and	da t	ply			
•	as at the nanoscale.							
	nd the Maxwell's equations for electromagnetic waves and	apply	the					
	semiconductors for engineering applications.							
Course Outcom								
	course the student will be able to							
 Comprehend the phenomenon of waves and electromagnetic waves. 								
Understand the principles of quantum mechanics.								
	um mechanical ideas to subatomic domain.							
	he fundamental principles of a laser and its types.							
	pical optical fiber communication system using optoelectron	iic de						
	duction to waves			7 ho				
Waves on a string - Wave equation on a string (derivation) - Harmonic waves- reflection and								
	vaves at a boundary - Standing waves and their eigenfred							
•	Superposition of waves and Fourier method (qualitative)	- Wa	ive p	oack	et			
	nd group velocity.	-						
	tromagnetic waves			7 ho				
	gence - gradient and curl - surface and volume integral - N							
	Continuity equation for current densities - Displace							
	wave equation in free space - Plane electromagnetic wave	es in t	free	spa	ce			
Hertz's experime		-						
	nents of quantum mechanics			7 ho				
Need for Quantum Mechanics: Idea of Quantization (Planck and Einstein) - Compton effective								
(Qualitative) - de Broglie hypothesis - justification of Bohr postulate - Davisson-Germer								
	ve function and probability interpretation - Heisenberg unce							
	riment (Heisenberg's microscope) - Schrödinger wave	equ	ıatıo	n (t	ime			
	me independent).	1		<u> </u>				
	lications of quantum mechanics			<u>6 ho</u>				
	d eigenfunction of particle confined in one dimensional							
. ,	tuantum confinement and nanostructures - Tunnel effect	(qua	litati	ve)	anc			
scanning tunneling				0 l				
Module:5 Lase		<u>, </u>		6 ho				
	stics - spatial and temporal coherence - Einstein coeff							
•	pulation inversion - two, three and four level systems - Pu		-					
•	oefficient - Components of a laser - He-Ne, Nd:YAG and		ıas	ers	and			
their engineering								
	pagation of EM waves in optical fibers	(1		5 ho				
	optical fiber communication system - light propagation		_					
	le - Numerical aperture - V-parameter - Types of fibers			uatio	חכ.			
	nodal and intramodal. Application of fiber in medicine - End	ioscop						
	pelectronic devices			5 ho				
Introduction to semiconductors - direct and indirect bandgap - p-n junction, Sources: LED								
	Photodetectors: PN and PIN	-		<u> </u>				
	temporary Topics			2 ho	urs			
Guest lectures fr	om Industry and, Research and Development Organisation							
	Total Lecture hours	. = 1	1	5 ho	lirc			

Text Book(s)

- 1. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 2020, 15th Edition, Pearson, USA.
- 2. D. K. Mynbaev and Lowell L. Scheiner, Fiber Optic Communication Technology, 2011, Pearson, USA

Reference Books

- 1. H. J. Pain, The Physics of vibrations and waves, 2013, 6th Edition, Wiley Publications,
- 2. India.
 - R. A. Serway, J. W. Jewett, Jr, Physics for Scientists and Engineers with Modern
- 3. Physics, 2019, 10th Edition, Cengage Learning, USA.
- 4. K. Krane, Modern Physics, 2020, 4th Edition, Wiley Edition, India.
- 5. M.N.O. Sadiku, Principles of Electromagnetics, 2015, 6th Edition, Oxford University Press, India.

W. Silfvast, Laser Fundamentals, 2012, 2nd Edition, Cambridge University Press, India.

Mode of Evaluation: Written assignment, Quiz, CAT and FAT							
Recommended by Board of Studies	26.06.2021						
Approved by Academic Council	No. 63	Date	23.09.2021				