#### Sec 2.1 Sets

Comp 232 Robert Mearns

- 1. What is a Set?
  - a) Definition: A set is an un-ordered collection of objects.

Ex: students in this class or chairs in this room

- b) Vocabulary and notation:
  - (i) The objects in a set are called the elements, or members of the set.
  - (ii) A set is said to contain its elements.
  - (iii) A set is denoted by an uppercase letter, the elements denoted by a lowercase letter.
  - (iv) The notation  $a \in A$  denotes that a is an element of the set A.
  - (v) The notation  $\neg (a \in A) \equiv a \notin A$  ( $\notin$  means "not contained in")
  - (vi) Set elements are usually enclosed with brace brackets {}
- 2. Three ways to define the elements of a set:



a) Listing the elements:

| Ex:                                 | Order of element listing does not change set. panda2ici@gmail.com                                                          |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| $S = \{a,b,c,d\} = \{a,b,c,d\}$     | Order of element listing does not change set. pandaze.  Order does not matter.                                             |  |
| $S = \{a,b,c,d\} = \{a,b,c,b,c,d\}$ | Listing an element more than once does not change the set.                                                                 |  |
| $S = \{a,b,c,d,, z \}$              | Run on dots called Elipses (), may be used to describe a set without listing all of the members when the pattern is clear. |  |

panda2ici 🌅

- b) Set Builder notation:
  - Specifies the property or properties that all set members must have.
  - Use notation  $A = \{x \mid \underline{\hspace{1cm}}\}$  (fill in the blank with the properties)
     Read as: "A = set of all x such that \_\_\_\_\_" (| means such that )

| Set Builder                                                         | List elements       |
|---------------------------------------------------------------------|---------------------|
| $S = \{x \mid x \text{ is a positive integer less than } 100\}$     | S = {1,2,3,99}      |
| $S = \{x \mid x \text{ is an odd positive integer less than } 10\}$ | S = {1,3,5,9}       |
| $S = \{x \mid x \text{ is perfect square} < 100\}$                  | S = {1,4,9,16,81}   |
| A predicate may be used:                                            |                     |
| $S = \{x \mid P(x), P(x): x < 6, Domain is Z \}$                    | S = {1,0,1,2,3,4,5} |

# c) Describe with words:

| Words                            | List or Set Builder                                                                                                |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| Set of Natural numbers with zero | $N = \{0,1,2,3\}$                                                                                                  |  |
| Set of Integers                  | $\mathbf{Z} = \{0,1,2,3\}$ $\mathbf{Z} = \{,-3,-2,-1,0,1,2,3,\}$ $\mathbf{Z} + = \{1,2,3,\}$ $panda2ici@gmail.com$ |  |
| Set of positive Integers         | $\mathbf{Z} + = \{1, 2, 3, \dots\}$ panda <sup>21Clos 3</sup>                                                      |  |
| Set of Rational numbers          | $Q = \{x \mid x=p/q, p, q \in \mathbb{Z}, q \neq 0\}$                                                              |  |
| Set of Irrational numbers        | Irr = $\{x \mid x \in R \land x \notin Q\}$ (is non repeating, non terminating when written as a decimal)          |  |
| Set of Real numbers              | $R = \{x \mid x \in Q \text{ or } x \in Irr\}$                                                                     |  |
| Set of Complex numbers           | $C = \{x \mid x = a + bi, a, b \in \mathbf{R}, i = \sqrt{-1}\}\$                                                   |  |

#### 3. Universal Set

- a) Definition: The Universal set U is the Domain
   Universal set contains every element currently under consideration.
- b) The Universal set always exists. Sometimes we imply it exists without its listing or description.
- c) Sometimes we explicitly state the values in the Universal set.

# 4. Empty Set

- a) The Empty set is the set that contains no elements.
- b) The Empty set denoted by the Greek letter  $\emptyset$ (phi) or by { }

## 5. Venn Diagram

- a) A Venn diagram is a geometric representation of a set
- b) The Venn diagram was invented by John Venn (1834-1923)

Ex: 
$$V = \{ a, e, i, o, u \}$$

U = { English alphabet characters }

#### 5. Some things to remember

a) Sets can be elements of sets.

Ex: 
$$\{\{1,2,3\}, a, \{b,c\}\}\}$$

b) The empty set is different from a set containing the empty set.

Ex: 
$$\emptyset \neq \{\emptyset\}$$
  
Why?  $\emptyset = \{\} \text{ and } \{\emptyset\} = \{\{\}\}\}$ 

#### 6. Subsets

- a) Definition: The set A is a subset of B, if and only if every element of A is also an element of B
- b) The notation  $A \subseteq B$  is used to indicate that set A is a subset of set B.
- Definition written in symbols:  $A \subseteq B$  if and only if  $\forall x (x \in A \rightarrow x \in B)$

Theorem:  $\emptyset \subseteq S$ , for every set S By definition of subset  $\subseteq$ , we need to show:  $a \in \emptyset \to a \in S$  is T Proof (Vacuous)

Consider the implication 
$$a \in \emptyset \rightarrow a \in S$$
  $a \in \emptyset$  is False

Hence the implication  $a \in \emptyset \rightarrow a \in S$  is Ture  $\emptyset$  has no elements

Truth Table for  $\longrightarrow$  Definition of subset

QED

- 7. Showing a Set is or is not a Subset of another set
  - a) To prove  $A \subseteq B$ , show that  $\forall x (x \in A \rightarrow x \in B)$  is True
  - b) To prove  $A \nsubseteq B$ , show that  $\neg \forall x (x \in A \rightarrow x \in B)$  is True

 $\exists x \neg (x \in A \rightarrow x \in B) \text{ is True}$  $\exists x \neg (\neg x \in A \lor x \in B) \text{ is True}$  $\exists x (\neg \neg x \in A \land \neg x \in B) \text{ is True}$ 

 $\exists x \ (x \in A \land x \notin B) \text{ is True}$ 

Hence: find at least one  $x \in A \land x \notin B$ .

De Morgan for quant.

→ in terms of 0r

De Morgan

Double neg. Equiv. for \$\epsilon\$

Counter Example

Ex: The set of all C.S. students at Concordia is a subset of all students at Concordia The set of integers whose squares are < 10 is not a subset of the set of  $\mathbb{Z}$ +

- 8. Equal Sets
  - a) Definition: Two sets are equal if and only if they have the same elements.
  - b) The notation A = B is used to indicate that set A equals set B
  - c) Definition in symbols: A = B if and only if  $\forall x (x \in A \leftrightarrow x \in B)$ .

Ex:  $\{1,3,5\} = \{3,5,1\}$  Order does not change set  $\{1,5,5,5,3,3,1\} = \{1,3,5\}$  Repeating elements does not change set

d) Another way of expressing equality of sets. Use the logical equivalences below:

 $A = B \text{ iff } \forall x (x \in A \leftrightarrow x \in B)$ 

 $A = B \text{ iff } \forall x [(x \in A \rightarrow x \in B) \land (x \in B \rightarrow x \in A)]$ 

A = B iff  $\forall x \ (x \in A \rightarrow x \in B) \land \forall x \ (x \in B \rightarrow x \in A)$ 

A = B iff  $A \subseteq B \land B \subseteq A$ 

Definition of = sets
Def. of bi-conditional
∀x equivalence with ∧

Definition of subset

# 9. Proper Subsets

- a) A is a proper subset of B iff  $A \subseteq B$ , and  $A \ne B$
- b) A a proper subset of B is denoted A⊂B
- c) In symbols  $A \subset B$  iff  $\forall x [(x \in A \rightarrow x \in B) \land \forall x (x \in B \land x \notin A)]$
- d) Venn diagram for  $A \subset B$ :



## 10. Set Cardinality

- a) Definition: If there are exactly n distinct (different) elements in S we say that S is finite. Otherwise S is infinite.
- b) Definition: The cardinality of a finite set A is the number of distinct elements of A.
- c) Cardinality of A is denoted |A| or n(A)

Ex: 
$$|\emptyset| = 0$$
 or  $n(\emptyset) = 0$   
Let S be the letters of the English alphabet then  $|S| = 26$   
 $|\{1,2,3\}| = 3$   
 $|\{\emptyset\}| = 1$   
The set of integers is infinite.

- 11. Cartesian Product Set: Invented by René Descartes (1596-1650)
  - a) Definition: The Cartesian Product of two sets A and B, is the set of : ordered pairs (x, y) where  $x \in A$  and  $y \in B$
  - b) The Cartesian Product is denoted by A x B
  - c) The set builder notation:  $A \times B = \{(x, y) \mid (x \in A) \land (y \in B)\}$

Ex 1: If 
$$A = \{1, 2, 3\}$$
 and  $B = \{5, 6\}$  then  $A \times B = \{(1,5), (1,6), (2,5), (2,6), (3,5), (3,6)\}$ 

Ex 2: The Cartesian products can be expanded beyond two sets If  $A = \{0,1\}$ ,  $B = \{3\}$  and  $C = \{0,1,2\}$  $A \times B \times C = \{(0,3,0),(0,3,1),(0,3,2),(1,3,0),(1,3,1),(1,3,2)\}$ 

- 12. Power Set
  - a) Definition: The power set of A is the set of all subsets of a set A
  - b) The Power set is denoted P(A)Ex If  $A = \{a,b\}$  then  $P(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$
  - c) If a set has *n* elements, then the cardinality of the power set is n^2
- 13. Truth Set

Definition: The Truth Set of P(x) is the set of elements x in Domain D for which P(x) is true.

- b) The truth set of P(x) is denoted by  $\{x \in D \mid P(x)\}$
- c) Ex: The truth set of P(x) where the domain is the integers and P(x) is "|x| = 1" is  $\{-1, 1\}$