# Introduction to microarrays

Overview
The analysis process
Limitations
Extensions (NGS)



### **Outline**

- An overview (a review) of microarrays
- Experiments with microarrays
- The data analysis process
- Microarray limitations
- From microarrays to Next generation sequencing





# cDNA microarrays: Overview



To visualize an animation go to:

http://www.bio.davidson.edu/courses/genomics/chip/chip.html

### Oligo (Affy) microarrays: overview





### Comparison between two types

### **cDNA Microarrays**

#### **ADVANTAGES**

Cheaper (not anymore)
Flexibility (customizable)
High signal intensity (long sequences)

#### **DISADVANTAGES**

Lower reproducibility
Cross-hybridization (low specificity)
Need more manual handling (possibility of contamination)

### **Oligonucleotide Microarrays**

#### **ADVANTAGES**

Quick and robotic manufacturing
Higher Reproducibility
High specificity (short sequences)
Use many probes / gene

#### **DISADVANTAGES**

Requires more specialized equipment

Expensive

Less flexible (genes on the chip cannot be selected)

# Experiments with microarrays

### Types of studies (1): Class comparison



Nature Reviews | Neuroscience



# Types of studies (2): Class discovery





### Types of studies (3): Class prediction



# The microarray analysis process



# (0) Experimental design



|        | Awful design :-( |        |       |        | Balanced design :-) |        |       |
|--------|------------------|--------|-------|--------|---------------------|--------|-------|
| Sample | Treatment        | Sex    | Batch | Sample | Treatment           | Sex    | Batch |
| 1      | Α                | Male   | 1     | 1      | Α                   | Male   | 1     |
| 2      | Α                | Male   | 1     | 2      | Α                   | Female | 2     |
| 3      | Α                | Male   | 1     | 3      | Α                   | Male   | 2     |
| 4      | Α                | Male   | 1     | 4      | Α                   | Female | 1     |
| 5      | В                | Female | 2     | 5      | В                   | Male   | 2     |
| 6      | В                | Female | 2     | 6      | В                   | Female | 1     |
| 7      | В                | Female | 2     | 7      | В                   | Male   | 1     |
| 8      | В                | Female | 2     | 8      | В                   | Female | 2     |
|        |                  |        |       |        |                     |        |       |

- Variability
  - Sistematic
    - Calibrate/Normalize
  - Random
    - Experimental design
    - Statistical inference
- Must decide about:
  - Replicates
  - Batches ("Batch effect")
  - Pools ...

# (1) Image obtention



Input: Microarrays

Output:

Images (1/chip)

Information for each individual probe

Data to be used for

**Quality control** 

**Preprocess** 

**Summarization** 

## (2) Quality control



Input: Images (.CEL, ...)

Process

**Diagnostsics** 

**Quality checks** 

Output:

**Plots** 

**Quality indexes** 

# (3) Preprocess









|              | COI-OOI.CEL | C02-001.C | EL C03-   |
|--------------|-------------|-----------|-----------|
| 001.CEL      |             |           |           |
| 1415670_at   | 8.954387    | 9.088924  | 8.833863  |
| 1415671_at   | 10.700876   | 10.639307 | 10.610953 |
| 1415672_at   | 10.377266   | 10.510106 | 10.461701 |
| 1415673_at   | 7.320335    | 7.252635  | 7.112313  |
| 1415674_a_at | 8.381129    | 8.332256  | 8.393718  |
| 1415675_at   | 8.120937    | 8.082713  | 8.051514  |
| 1415676_a_at | 10.322229   | 10.287371 | 10.282812 |
| 1415677 at   | 9.038344    | 8.979641  | 8.905711  |

Input:

**Images** 

**Process** 

Noise filtering

Normalization

Summarization

Filtering

Output:

**Expression marix** 

# (4) Exploration





Input

**Expression matrix** 

**Process** 

PCA, Cluster, MDS

2D/3D plots

Output

Visualizations

Possible unexplained groupings (e..g. batch effect) detected

# (5) Statistical analysis (i): Selecting differentially expressed genes



Input:

Expression matrix

Analysis models

**Process** 

t-tests, ANOVA

P-value adjustment

### **Output**

Gene lists

Fold change, p.values

**Plots** 

**Expression profiles** 

# (5) Statistical analysis (ii): Building and validating a predictor



Input:

Expression matrix

**Process** 

Variable selection

Model fitting

Validation

Output

Predictive models

Measures of sensitivity and reproducibility

# (6) Biological significance

| ProbeSet           | gene   | ID           | logFC             |
|--------------------|--------|--------------|-------------------|
| 1450826_a_at       | Saa3   | 1450826_a_at | 4.911             |
| 1457644_s_at       | Cxcl1  | 1457644_s_at | 4.286             |
| 1415904_at         | Lpl    | 1415904_at   | -4.132            |
| 1449450_at         | Ptges  | 1449450_at   | 5.164             |
| 1419209_at         | Cxcl1  | 1419209_at   | 5.037             |
| 1416576_at         | Socs3  | 1416576_at   | 3.372             |
| 1450330_at         | II10   | 1450330_at   | 4.519             |
| 1455899_x_at       | Socs3  | 1455899_x_at | 3.648             |
| 1419681_a_at       | Prok2  | 1419681_a_at | 3.709             |
| 14365 <u>55</u> at | Slc7a2 | 1436555_at   | 3. <del>724</del> |
|                    |        |              |                   |



Input

Gene lists

**Process** 

GEA, GSEA,

Network analysis

Output:

Relevant GO or KEGG terms

Relevant pathways

**Networks** 

# Microarray limitations

### All that glitters is not gold THE LANCET



a peer-reviewed open-access journal published by the Public Library of Science

Home Browse Articles About For Readers For Authors and

### An array of problems

Despite the huge amount of published microarray data in cancer, little is being converted into clinical practice. Validating initial data is proving to be a key challenge, reports smon FRANTZ.

**EDITORIAL** OPEN

Why Bigger Is Not Yet Better: The Problems with Huge Datasets

### An array of problems?

- By the middle of the decade some claims against microarrays were raised.
  - Lack of reproducibility between studies.
  - Few coincidences between gene lists.
  - Predictions on new test data did not reproduce those in training data.
  - \_ ...
  - The step to the clinic always waiting.

### Que no estamos tan mal...



### Critical Review of Published Microarray Studies for Cancer Outcome and Guidelines on Statistical Analysis and Reporting

Alain Dupuy, Richard M. Simon



### So what?

- Sistematic reviews showed that the main problem was not the technology but unappropriate application of (statistical) methodology.
- Large quality control studies (MAQC) were promoted to investigate reliability and applicability of the technique.

# Some consensus (Allison 2006)

### Design

- Biological replication is essential
- There is strength in numbers: power & sample size
- Pooling biological samples can be useful

### Selecting differentially expressed genes

- Using FC alone as a differential expression test is not valid
- 'Shrinkage' is a good thing
- FDR is a good alternative to conventional multiple-testing approaches

### Classification and Prediction

- Unsupervised classification is overused
- Unsupervised classification should be validated using resampling-
- Supervised-classification requires independent cross-validation

### MicroArray Quality Control (MAQC)

### MAQC I STUDY DESIGN



ARTICLES

nature biotechnology

The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements

MAQC Consertium\*

Sept. 2006

### MAQC II STUDY DESIGN



piotechnology

The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models

MAQC Committee\*

August 2010

### In summary

- Microarrays have some reasonable limitations.
  - Some, such as noise or restriction to known sequences, are intrinsec and cannot be removed.
  - Other issues can be solved using appropriate data analysis methods.
- Studies suggest that, if well used, it is a reliable technique that yields reliable reproducible results.
- Statistics has made important contributions and has benefited from the problems raised by microarrays.
- However the step from beadside to clinic is taking much longer than expected.

### Is microarray time over?



### nature methods

Techniques for life scientists and chemists

#### Access

To read this story in full you will need to login or make a payme

nature.com > Journal home > Table of Contents

#### NEWS AND VIEWS

Nature Methods 5, 585 - 587 (2008) doi:10.1038/nmeth0708-585

#### The beginning of the end for microarrays?

Jay Shendure1

1. Jay Shendure is in the Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. e-mail: shendure@u.washington.edu

Two complementary approaches, both using next-generation sequencing, have successfully tackled the scale and the complexity of mammalian transcriptomes, at once revealing unprecedented detail and allowing better quantification.

#### Announcing the death of the Micro-array

Bookmark in Connotea

Ok, here it is: Micro-arrays are dead. I the fish head someone tossed into the co compost won't be picked up till this Tue waiting to be done.

ARTICLE LINKS

ARTICLE TOOLS

Send to a friend

Export citation

SEE ALSO

Figures and tables

Article by Cloonan ET AL.

Article by Mortazavi ET



#### Stories by subject

- Genetics
- Business
- Biotechnology

#### Stories by keywords

- Gene chips
- Next-generation sequencing
- Genomics

# naturenews

news archive

doi:10.1038/455847a

specials

opinion

features

news blog

### The death of microarrays?

High-throughput gene sequencing seems to be stealing a march on microarrays. Heidi Ledford looks at a genome technology facing intense competition.

Published online 15 October 2008 | Nature 455, 847 (2008) |

#### Heidi Ledford

News

Faster, cheaper DNA sequencing technology is revolutionizing the burgeoning field of personal gonomics But it







## Next generation sequencing



The future is here, now





# Next generation Sequencing

- By the middle decade new technologies consolidated allowing the massive production of tens of millions of short sequencing fragments.
- These techniques could be used to
  - Deal with similar problems than microarrays,
  - But also with many other.
- "Again" they raised the promise of personalized medicine..



### A CSI approach to gene selection (again)

- A crime has been committed (immune response)
- You're CSI –Horatio Fisher- and want to find who's responsible for this.
- Let's see how you would act ...
  - In the old times,
  - In the microarray age,
  - In the next generation age.



- You would chase the "Usual Suspects" and make an in deep interrogation.
  - If guilty you might make them talk,
  - But if not you might miss the bad guy.
- That is looking at specific genes may yield great or awful results.



### In the microarray age...

- You have the census of most people and their fingerprints.
  - If you find a fingerprint in your database that is clean enough you may find the bad guy.
    - What about bad prints?
    - What about those who are not censed.
    - And those no-fingerprints?
- That is you may look at all known genes but you
  - do it Indirectly and noisly
  - miss genes/forms that are uncensed.



### Why is sequencing different?

- If the crime scene had had cameras you would have directly known who the criminal was.
- Sequencing allows you to access everything
  - Known and unknown forms are sequenced.
  - The technique is less noisy and the resolution higher.



