Signals and Systems

Lecture 12: CT Feedback and Control

Instructor: Prof. Yunlong Cai Zhejiang University

04/03/2025
Partly adapted from the materials provided on the MIT OpenCourseWare

Feedback and Control

Feedback: simple, elegant, and robust framework for control.

Last time: robotic driving.

Feedback and Control

This week: using feedback to enhance performance.

Examples:

- increasing speed and bandwidth
- controlling position instead of speed
- reducing sensitivity to parameter variation
- reducing distortion
- stabilizing unstable systems
 - magnetic levitation
 - inverted pendulum

Op-amps

An "ideal" op-amp has many desireable characteristics.

- high speed
- large bandwidth
- high input impedance
- low output impedance
- ...

It is difficult to build a circuit with all of these features.

The gain of an op-amp depends on frequency.

Frequency dependence of LM741 op-amp.

Low-gain at high frequencies limits applications.

Unacceptable frequency response for an audio amplifier.

An ideal op-amp has fast time response.

Step response:

Determine the step response of an LM741.

System function:

$$K(s) = \frac{\alpha K_0}{s + \alpha}$$

Impulse response:

$$h(t) = \alpha K_0 e^{-\alpha t} u(t)$$

Step response:

$$s(t) = \int_{-\infty}^{t} h(\tau)d\tau = \int_{0}^{t} \alpha K_0 e^{-\alpha \tau} d\tau = \frac{\alpha K_0 e^{-\alpha \tau}}{-\alpha} \Big|_{0}^{t} = K_0 (1 - e^{-\alpha t}) u(t)$$

Parameters:

$$A=K_0=2\times 10^5$$

$$\tau=\frac{1}{\alpha}=\frac{1}{40}\,\mathrm{s}$$

Performance parameters for real op-amps fall short of the ideal.

Frequency Response: high gain but only at low frequencies.

Step Response: slow by electronic standards.

We can use feedback to improve performance of op-amps.

$$V_{-} = \beta V_o = \left(\frac{R_2}{R_1 + R_2}\right) V_o$$

6.003 model

$$\frac{V_o}{V_i} = \frac{K(s)}{1 + \beta K(s)}$$

Dominant Pole

Op-amps are designed to have a dominant pole at low frequencies:

 \rightarrow simplifies the application of feedback.

$$lpha=40\,\mathrm{rad/s}=rac{40\,\mathrm{rad/s}}{2\pi\,\mathrm{rad/cycle}}pprox 6.4\,\mathrm{Hz}$$

Using feedback to improve performance parameters.

$$V_- = \beta V_o = \left(\frac{R_2}{R_1 + R_2}\right) V_o$$

6.003 model

$$\frac{V_o}{V_i} = \frac{K(s)}{1 + \beta K(s)}$$

$$= \frac{\frac{\alpha K_0}{s + \alpha}}{1 + \beta \frac{\alpha K_0}{s + \alpha}}$$

$$= \frac{\alpha K_0}{s + \alpha + \alpha \beta K_0}$$

What is the most negative value of the closed-loop pole that can be achieved with feedback?

1.
$$-\alpha(1+\beta)$$

1.
$$-\alpha(1+\beta)$$
 2. $-\alpha(1+\beta K_0)$

3.
$$-\alpha(1+K_0)$$
 4. $-\infty$

4.
$$-\infty$$

5. none of the above

Using feedback to improve performance parameters.

$$V_- = \beta V_o = \left(\frac{R_2}{R_1 + R_2}\right) V_o$$

6.003 model

$$\begin{split} \frac{V_o}{V_i} &= \frac{K(s)}{1 + \beta K(s)} \\ &= \frac{\frac{\alpha K_0}{s + \alpha}}{1 + \beta \frac{\alpha K_0}{s + \alpha}} \\ &= \frac{\alpha K_0}{s + \alpha + \alpha \beta K_0} \end{split}$$

What is the most negative value of the closed-loop pole that can be achieved with feedback?

Open loop system function: $\frac{\alpha K_0}{s+\alpha}$

 \rightarrow pole: $s = -\alpha$.

Closed-loop system function: $\frac{\alpha K_0}{s + \alpha + \alpha \beta K_0}$

 \rightarrow pole: $s = -\alpha(1 + \beta K_0)$.

The feedback constant is $0 \le \beta \le 1$.

ightarrow most negative value of the closed-loop pole is $s=-lpha(1+K_0).$

What is the most negative value of the closed-loop pole that can be achieved with feedback? 3

1.
$$-\alpha(1+\beta)$$

1.
$$-\alpha(1+\beta)$$
 2. $-\alpha(1+\beta K_0)$

3.
$$-\alpha(1+K_0)$$
 4. $-\infty$

4.
$$-\infty$$

5. none of the above

Feedback extends frequency response by a factor of $1+\beta K_0$ ($K_0=2\times 10^5$).

Feedback produces higher bandwidths by **reducing** the gain at low frequencies. It trades gain for bandwidth.

Feedback makes the time response faster by a factor of $1+\beta K_0$ ($K_0=2\times 10^5$).

Step response

$$s(t) = \frac{K_0}{1 + \beta K_0} (1 - e^{-\alpha(1 + \beta K_0)t}) u(t)$$

Feedback produces faster responses by **reducing** the final value of the step response. It trades gain for speed.

Step response

$$s(t) = \frac{K_0}{1+\beta K_0} (1-e^{-\alpha(1+\beta K_0)t}) u(t)$$

$$2\times 10^5 \begin{array}{c} s(t) & \beta \\ 0 & 0.5\times 10^{-5} \\ 1.5\times 10^{-5} & t \text{ [seconds]} \end{array}$$

The maximum rate of voltage change $\frac{ds(t)}{dt}\Big|_{t=0,1}$ is not increased.

Feedback improves performance parameters of op-amp circuits.

- can extend frequency response
- can increase speed

Performance enhancements are achieved through a reduction of gain.

We wish to build a robot arm (actually its elbow). The input should be voltage v(t), and the output should be the elbow angle $\theta(t)$.

We wish to build the robot arm with a DC motor.

$$v(t) \longrightarrow \mathrm{DC} \ \mathrm{motor} \longrightarrow \theta(t)$$

This problem is similar to the head-turning servo in 6.01!

What is the relation between v(t) and $\theta(t)$ for a DC motor?

- 1. $\theta(t) \propto v(t)$
- 2. $\cos \theta(t) \propto v(t)$
- 3. $\theta(t) \propto \dot{v}(t)$
- 4. $\cos \theta(t) \propto \dot{v}(t)$
- 5. none of the above

What is the relation between v(t) and $\theta(t)$ for a DC motor?

To first order, the rotational speed $\dot{\theta}(t)$ of a DC motor is proportional to the input voltage v(t).

First-order model: integrator

What is the relation between v(t) and $\theta(t)$ for a DC motor?

- 1. $\theta(t) \propto v(t)$
- 2. $\cos \theta(t) \propto v(t)$
- 3. $\theta(t) \propto \dot{v}(t)$
- 4. $\cos \theta(t) \propto \dot{v}(t)$
- 5. none of the above

Use proportional feedback to control the angle of the motor's shaft.

$$\frac{\Theta}{V} = \frac{\alpha \gamma \mathcal{A}}{1 + \alpha \beta \gamma \mathcal{A}} = \frac{\alpha \gamma \frac{1}{s}}{1 + \alpha \beta \gamma \frac{1}{s}} = \frac{\alpha \gamma}{s + \alpha \beta \gamma}$$

The closed loop system has a single pole at $s=-\alpha\beta\gamma$.

$$\frac{\Theta}{V} = \frac{\alpha \gamma}{s + \alpha \beta \gamma}$$

As α increases, the closed-loop pole becomes increasingly negative.

Find the impulse and step response.

The system function is

$$\frac{\Theta}{V} = \frac{\alpha \gamma}{s + \alpha \beta \gamma} \,.$$

The impulse response is

$$h(t) = \alpha \gamma e^{-\alpha \beta \gamma t} u(t)$$

and the step response is therefore

$$s(t) = \frac{1}{\beta} \left(1 - e^{-\alpha\beta\gamma t} \right) u(t) \,.$$

The response is faster for larger values of α .

Try it: Demo.

The speed of a DC motor does not change instantly if the voltage is stepped. There is lag due to rotational inertia.

Step response of the models:

Analyze second-order model.

$$\frac{\Theta}{V} = \frac{\frac{\alpha\gamma p\mathcal{A}^2}{1+pA}}{1+\frac{\alpha\beta\gamma p\mathcal{A}^2}{1+pA}} = \frac{\alpha\gamma p\mathcal{A}^2}{1+pA+\alpha\beta\gamma p\mathcal{A}^2} = \frac{\alpha\gamma p}{s^2+ps+\alpha\beta\gamma p}$$
$$s = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - \alpha\beta\gamma p}$$

For second-order model, increasing α causes the poles at 0 and -p to approach each other, collide at s=-p/2, then split into two poles with imaginary parts.

Increasing the gain α does not increase speed of convergence.

Step response.

Step response.

Step response.

Motor Controller

Step response.

Motor Controller

Step response.

Using feedback to enhance performance.

Examples:

- improve performance of an op amp circuit.
- control position of a motor.
- reduce sensitivity to unwanted parameter variation.
- reduce distortions.
- stabilize unstable systems
 - magnetic levitation
 - inverted pendulum

Reducing sensitivity to unwanted parameter variation.

Example: power amplifier

Changes in F_0 (due to changes in temperature, for example) lead to undesired changes in sound level.

Feedback can be used to compensate for parameter variation.

$$H(s) = \frac{KF_0}{1 + \beta KF_0}$$

If K is made large, so that $\beta KF_0 \gg 1$, then

$$H(s) \approx \frac{1}{\beta}$$

independent of K or $F_0!$

Feedback reduces the change in gain due to change in F_0 .

Check Yourself

Feedback greatly reduces sensitivity to variations in K or F_0 .

$$\lim_{K \to \infty} H(s) = \frac{KF_0}{1 + \beta KF_0} \to \frac{1}{\beta}$$

What about variations in β ? Aren't those important?

Check Yourself

What about variations in β ? Aren't those important?

The value of β is typically determined with resistors, whose values are quite stable (compared to semiconductor devices).

Feedback can compensate for parameter variation even when the variation occurs rapidly.

Example: using transistors to amplify power.

This circuit introduces "crossover distortion."

For the upper transistor to conduct, $V_i - V_o > V_T$. For the lower transistor to conduct, $V_i - V_o < -V_T$.

Crossover distortion can have dramatic effects.

Example: crossover distortion when the input is $V_i(t) = B\sin(\omega_0 t)$.

Feedback can reduce the effects of crossover distortion.

When K is small, feedback has little effect on crossover distortion.

As K increases, feedback reduces crossover distortion.

As K increases, feedback reduces crossover distortion.

As K increases, feedback reduces crossover distortion.

Demo

- original
- no feedback
- K = 2
- \bullet K=4
- K = 8
- K = 16
- original

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto Nathan Milstein violin

Using feedback to enhance performance.

Examples:

- improve performance of an op amp circuit.
- control position of a motor.
- reduce sensitivity to unwanted parameter variation.
- reduce distortions.
- stabilize unstable systems
 - magnetic levitation
 - inverted pendulum

Control of Unstable Systems

Feedback is useful for controlling **unstable** systems.

Example: Magnetic levitation.

Control of Unstable Systems

Magnetic levitation is unstable.

Equilibrium (y = 0): magnetic force $f_m(t)$ is equal to the weight Mg.

Increase $y \rightarrow$ increased force \rightarrow further increases y.

Decrease $y \rightarrow$ decreased force \rightarrow further decreases y.

Positive feedback!

The magnet generates a force that depends on the distance y(t).

The net force accelerates the mass.

Over small distances, magnetic force grows \approx linearly with distance.

Levitation with a Spring

Relation between force and distance for a spring is opposite in sign.

$$F = K(x(t) - y(t)) = M\ddot{y}(t)$$

Over small distances, magnetic force nearly proportional to distance.

Block Diagrams

Block diagrams for magnetic levitation and spring/mass are similar.

Spring and mass

$$F = K\left(x(t) - y(t)\right) = M\ddot{y}(t)$$

$$x(t) \xrightarrow{K} \ddot{y}(t) \xrightarrow{K} y(t)$$

Magnetic levitation

Check Yourself

How do the poles of these two systems differ?

Spring and mass

$$F = K\left(x(t) - y(t)\right) = M\ddot{y}(t)$$

$$x(t) \xrightarrow{\qquad \qquad } K \xrightarrow{\qquad \qquad } \ddot{y}(t) \xrightarrow{\qquad \qquad } y(t)$$

Magnetic levitation

$$F = Ky(t) = M\ddot{y}(t)$$

$$x(t) = 0 \longrightarrow + \longrightarrow K \qquad \ddot{y}(t) \longrightarrow A \qquad \dot{y}(t) \longrightarrow y(t)$$

Check Yourself

How do the poles of the two systems differ?

Spring and mass

$$F = K(x(t) - y(t)) = M\ddot{y}(t)$$

$$\frac{Y}{X} = \frac{\frac{K}{M}}{s^2 + \frac{K}{M}} \ \rightarrow \ s = \pm j \sqrt{\frac{K}{M}}$$

Magnetic levitation

$$F = Ky(t) = M\ddot{y}(t)$$

$$s^2 = \frac{K}{M} \rightarrow s = \pm \sqrt{\frac{K}{M}}$$

Magnetic Levitation is Unstable

Magnetic Levitation

We can stabilize this system by adding an additional feedback loop to control i(t).

Stabilizing Magnetic Levitation

Stabilize magnetic levitation by controlling the magnet current.

Stabilizing Magnetic Levitation

Stabilize magnetic levitation by controlling the magnet current.

Magnetic Levitation

Increasing K_2 moves poles toward the origin and then onto $j\omega$ axis.

But the poles are still marginally stable.

Magnetic Levitation

Adding a zero makes the poles stable for sufficiently large K_2 .

Try it: Demo [designed by Prof. James Roberge].

Inverted Pendulum

As a final example of stabilizing an unstable system, consider an inverted pendulum.

$$\underbrace{ml^2}_{I} \frac{d^2\theta(t)}{dt^2} = \underbrace{mg}_{\text{force}} \underbrace{l\sin\theta(t)}_{\text{distance}} - \underbrace{m\frac{d^2x(t)}{dt^2}}_{\text{force}} \underbrace{l\cos\theta(t)}_{\text{distance}}$$

Check Yourself: Inverted Pendulum

Where are the poles of this system?

$$ml^{2}\frac{d^{2}\theta(t)}{dt^{2}} = mgl\sin\theta(t) - m\frac{d^{2}x(t)}{dt^{2}}l\cos\theta(t)$$

Check Yourself: Inverted Pendulum

Where are the poles of this system?

$$m\frac{d^2x(t)}{dt^2} + \frac{1}{\theta(t)} mg$$

$$ml^{2} \frac{d^{2}\theta(t)}{dt^{2}} = mgl\sin\theta(t) - m\frac{d^{2}x(t)}{dt^{2}}l\cos\theta(t)$$
$$ml^{2} \frac{d^{2}\theta(t)}{dt^{2}} - mgl\theta(t) = -ml\frac{d^{2}x(t)}{dt^{2}}$$

$$H(s) = \frac{\Theta}{X} = \frac{-mls^2}{ml^2s^2 - mal} = \frac{-s^2/l}{s^2 - a/l}$$
 poles at $s = \pm \sqrt{\frac{g}{l}}$

poles at
$$s = \pm \sqrt{\frac{g}{l}}$$

Inverted Pendulum

This unstable system can be stablized with feedback.

Try it. Demo. [originally designed by Marcel Gaudreau]

Using feedback to enhance performance.

Examples:

- improve performance of an op amp circuit.
- control position of a motor.
- reduce sensitivity to unwanted parameter variation.
- reduce distortions.
- stabilize unstable systems
 - magnetic levitation
 - inverted pendulum

Assignments

- Reading Assignment: Chap. 11.0-11.2, Review Chap. 9.7-9.8, 10.7-10.8
- Homework 6