

IPB Reactor Calibration

For discussion purposes only November 2, 2106

Objectives for calorimeter analysis

Prepare any claimed result for rigorous review

- An error bar on every data point; quantified uncertainty on every claim.
- Employ methods that others with comparable expertise will accept
- Document the methods and the thread of reasoning from raw data to conclusion

During exploration, discover in the data what a human might miss

- Use structured model based machine learning to understand the apparatus
- Avoid the human foible of observer bias
- During calibration learn the system behavior very well so that during experiments deviations from model predictions can be trusted as significant

Specific to this project

- \circ Test the hypothesis that COP \sim 1.3 by measuring energy COP to better than +/- 0.03
- Replicate any significant claim many times
- Any verified positive result shall include access to apparatus during setup and data

Proposed equivalent circuit: physical comparison

Proposed equivalent circuit

Two inputs:

- Input power is the sum of heater power and Q pulse power
- T_{surroundings} is the outer Al block temperature

Two states:

- Ta is the core temperature
- Tb is the inner block

Four elements: (up to twelve fitting parameters)

- Two thermal masses and three conductances
- All elements are capable of fitting non-linearity (in temperature) to second order.

<u>Important reassurance:</u> If the model is not adequate, the calibration will reveal that prior to hypothesis testing

Model differential equation

$$\frac{dT_a}{dt} = \frac{P_{in} - k_{as}(T_a - T_s) - k_{ab}(T_b - T_s)}{c_a}$$

$$\frac{dT_b}{dt} = \frac{k_{ab}(T_a - T_s) - k_{bs}(T_b - T_s)}{c_b}$$

On the method

Grey box

- Structure of the differential equation is known
- Values of model parameters are learned

Nonlinear, time independent:

 The model parameters may be temperature dependent, time invariant

System identification

 All time series data are used, the parameters are optimal when the weighted residual error is minimized

Coefficient of performance

- Modeling of both stored and conducted power
- Instantaneous power and integrated energy COP

Energy COP defined

$$COP_{energy}(t) = rac{\int\limits_{0}^{t} \left[P_{out}(t) + P_{stored}(t)
ight]dt}{\int\limits_{0}^{t} P_{in}(t)dt}$$

Example equations for a two state two capacitor model

$$P_{out}(t) = k_{as} [T_a(t) - T_s(t)] + k_{bs} [T_b(t) - T_s(t)]$$

P_{in} is measured directly and used as an input to solve the model system

$$P_{stored}(t) = c_a \frac{dT_a(t)}{dt} + c_b \frac{dT_b(t)}{dt}$$

Calculation of energy COP

$$COP_{energy}(t) = rac{\int\limits_{0}^{t} \left[P_{out}(t) + P_{stored}(t)
ight]dt}{\int\limits_{0}^{t} P_{in}(t)dt}$$

 T_a k_{ab} T_b k_{bs} T_{0K} $T_{surroundings}$

Measured

Calibrated

Measured and Modelled

$$P_{out}(t) = \frac{k_{as}}{T_a(t)} - \frac{T_s(t)}{T_s(t)} + \frac{k_{bs}}{T_b(t)} - \frac{T_s(t)}{T_s(t)}$$

$$P_{stored}(t) = \frac{c_a}{dt} \frac{dT_a(t)}{dt} + \frac{c_b}{dt} \frac{dT_b(t)}{dt}$$

The measured and modeled temperatures give us what we saw and what we expected to see

What comprises calibration?

Possibilities

- Replace Q pulse with resistive heater
- Replace sample with an inactive material with comparable electrical and thermal properties

Time series data needed

- Heater power
- Q pulse power
- Core temperature
- Inner block temperature
- Outer block temperature

Also nice to have:

End plate temperature

Next steps