Investigating Multi-Stream FaaS Applications in Geo-Distributed Edge Environments

Jinsun Yoo¹, Anirudh Sarma¹, Difei Cao², Kartik Sinha¹, Myungjin Lee³, Umakishore Ramachandran¹

School of Computer Science [1], School of Electrical and Computer Engineering [2], Cisco [3]

Introduction

Function as a Service (FaaS) is gaining interest for **Situation Awareness Applications**

- Limited Resources on the Edge / Pay-as-you-Go
- Swift scaling capabilities

Current FaaS platforms do not provide the abstractions necessary for a **geo-distributed multi-stream** applications

- Combining insight from multiple clients
- Deploying across geo-distributed edge sites to match client defined SLO

Application Model

Detect objects in line of sight and share information

- Stitch function aggregates objects from multiple vehicles in an Area of Interest
- Functions can be reused between different vehicles

Challenges

Preemptive and Reactive

resource constraints

adjustment from latency and

Our Programming Model

Sample User Input

User only provides the **minimal description** of the DAG and **no changes to the function** is necessary

The system takes care of ensuring correctness & orchestration

Underlying DAG Concept

User specifies DAG of the application with set of inputs System takes care of mapping user's DAG respecting **spatiotemporal correctness and SLO** requirements of the applications

Future Work

Algorithmic Study & Evaluation

- Consensus to maintain mapping across distributed Edge sites
- Timestamp scheme to ensure temporal correctness
- Enhanced scheduling considering client movement and DAG topology