

Universidad del Bío-Bío Facultad de Ciencias Empresariales Depto. De Ciencias de la Computación y Tecnologías de la Información

Base de Datos 2018-2 Acuario: SQL.

M. Angelica Caro

1. Modelo Relacional

Considere las siguientes relaciones de la base de datos Acuario:

- especies(sno: int, nombre: varchar(30), alimento: varchar(40))
- tanques(<u>tno</u>: int, nombre_tanque: varchar(30), color_tanque: vachar(20), volumen: int)
- peces(pno: int, nombre_peces: varchar(30), color_peces: varchar(20), tno: int, son: int)
- eventos(<u>eno</u>: int, <u>pno</u>: int, fecha: date)

<u>Instancias</u>: Considere la siguiente instancia de la Base de datos:

especies				
sno	nombre	alimento		
17	delfin	arenque		
22	tiburon	cualquier cosa		
74	olomina	gusano		
93	ballena	mantequilla de mani		
100	pez espada	gusano		
120	pez globo	gusano		

		tanques					
	tno	nombre_tanque	color_tanque	volumen			
	55	charco	verde	300			
	42	letrina	azul	100			
	35	laguna	rojo	400			
İ	85	letrina	azul	100			
İ	38	playa	azul	200			
	44	laguna	verde	200			

Universidad del Bío-Bío Facultad de Ciencias Empresariales Depto. De Ciencias de la Computación y Tecnologías de la Información

	peces					
pno	nombre_peces	color_peces	tno	sno		
164	charlie	naranjo	42	74		
347	flipper	negro	35	17		
228	killer	blanco	42	22		
281	albert	rojo	55	17		
119	bonnie	azul	42	22		
388	cory	morado	35	93		
700	maureen	blanco	44	100		
800	beni	rojo	55	17		
900	nemo	rojo	44	74		
150	vicky	rojo	55	100		
160	mati	amarillo	42	100		
110	rafa	azul	85	100		
222	jimmy	amarillo	38	100		
144	bisho	rojo	42	93		
125	chris	azul	38	93		
183	sable	amarillo	44	93		
241	taz	rojo	55	93		
300	baltasar	azul	85	100		
200	cash	azul	85	100		
424	bandido	verde	35	100		
454	romo	blanco	85	93		

eventos					
eno	pno	fecha			
3456	347	2010-01-26			
6653	164	2010-05-14			
5644	347	2010-05-15			
5645	347	2010-05-30			
6789	281	2010-04-30			
5211	228	2010-08-20			
6719	700	2010-10-22			
4555	164	2011-11-03			
9647	281	2011-12-06			
5347	281	2011-01-01			

2. Consultas.

Exprese en SQL las consultas indicadas a continuación.

- 1. Encontrar el código, nombre y color de los peces que comen gusanos (Genere una solución utilizando consultas anidadas y otra utilizando la cláusula JOIN).
- 2. Listar el nombre de las especies para las cuales existen peces que participan en eventos entre marzo y mayo del 2010 (Genere una solución utilizando consultas anidadas y otra utilizando la cláusula JOIN).
- 3. Listar el código, nombre y color de aquellos peces que participan en eventos y se encuentran en tanques de color verde (Genere una solución utilizando consultas anidadas).

- 4. Listar el código y nombre de los tanques que solo tienen peces de color rojo o peces de color azul.
- 5. Encontrar el nombre de las especies que no tienen peces de color morado (Genere una solución utilizando el operador EXIST).
- 6. Genere una consulta que obtenga el código y nombre de las especies que no tienen peces.
- 7. Listar el promedio de volumen de los tanques del acuario.
- 8. Listar el código, nombre y cantidad de peces de cada estanque,
- 9. Listar el código y nombre de las especies que tienen más peces de color rojo.
- 10. Listar el código y el nombre de aquellos peces pertenecientes al estanque con más peces.

3. Vistas.

- 1. Genere una vista llamada "densidad" que muestre el código, nombre, color y densidad de peces por cada estanque (recuerde que la densidad se calcula como la cantidad de peces del estanque dividido por el volumen del estanque).
- 2. De la vista anterior, realice una consulta mostrando el estanque más densamente poblado.
- 3. Genere una vista llamada "alimento" que muestre el alimento, el nombre y código del estanque, y la cantidad de peces que requieren de ese alimento dentro de ese estanque.
- 4. Utilizando la vista anterior, realice una consulta mostrando la cantidad de peces en total que requieren cada alimento.