# Categorización de productos con Deep Learning

Keras, Tensorflow, Pandas, Numpy, etc

Agustín Sarasúa / agustin.sarasua@mercadolibre.com

Pablo Zamudio / pablo.zamudio@mercadolibre.com



## Agenda

- Intro / Problema
- Conceptos generales
  - Al vs ML vs DL
  - ¿Por que Deep Learning?
  - Tipos de algoritmos
- Redes Neuronales
  - Cost & Loss Function
  - Gradient Descent
- Intro Natural Language Processing
  - Tokenization
  - Vectorization
- Workflow
- Intro a Python, Numpy y Pandas
- Entrenar una NN

#### Intro / Problema

"Desmalezadora Bordeadora Gardenplus Gp Naftera"



#### Accesorios para Vehículos



# Accesorios para Vehículos Alimentos y Bebidas Animales y Mascotas Arte y Antigüedades Bebés Cámaras y Accesorios Celulares y Telefonía Coleccionables Computación Consolas y Videojuegos Deportes y Fitness Electrodomésticos y Aires Ac. Electrónica, Audio y Video Herramientas y Construcción Hogar, Muebles y Jardín

Industrias y Oficinas



Hogar, Muebles y Jardín > Jardín y Exterior > Máquinas para el Jardín > Desmalezadoras y Repuestos



Accesorios para Vehículos Alimentos y Bebidas Animales y Mascotas Arte y Antigüedades Bebés Cámaras y Accesorios Celulares y Telefonía Coleccionables Computación Consolas y Videojuegos Deportes y Fitness Electrodomésticos y Aires Ac. Electrónica, Audio y Video Herramientas y Construcción Hogar, Muebles y Jardín Industrias y Oficinas

Baño
Cocina y Bazar
Comedor
Decoración
Dormitorio
Escritorio
Iluminación para el Hogar
Jardín y Exterior
Lavadero y Limpieza
Living
Otros

Buzones
Calefactores de Exterior
Cercas
Contenedores de Residuos
Decks
Escaleras
Gazebos
Herramientas de Jardín
Hornos y Parrillas
Jardinería
Máquinas para el Jardín
Miscola de Jardín
Piscinas
Riego
Sombrillas

Accesorios para Piscinas

Bordeadoras y Repuestos Cortacercos Cortadoras de Césped Desmalezadoras y Repuestos Fumigadores Hidrolavadoras Motosierras y Repuestos Sopladoras y Aspiradoras Otras Máquinas para el Jardín



#### Intro / Problema

- 20 árboles de categoría (1 por país)
- +3K categorías
  - o E.g. CELLPHONES, TABLETS, BICYCLES, etc.

## Agenda

- Intro / Problema
- Conceptos generales
  - Al vs ML vs DL
  - ¿Por que Deep Learning?
  - Tipos de algoritmos
- Redes Neuronales
  - Cost & Loss Function
  - Gradient Descent
- Intro Natural Language Processing
  - Tokenization
  - Vectorization
- Workflow
- Intro a Python, Numpy y Pandas
- Entrenar una NN

### Al vs ML vs DL











# ¿Por que Deep Learning?





- Supervisados
  - Clasificación
  - Regresión

- No supervisados
  - Clustering
- Reinforcement Learning
- etc...





Regression

## Agenda

- Intro / Problema
- Conceptos generales
  - Al vs ML vs DL
  - ¿Por que Deep Learning?
  - Tipos de algoritmos
- Redes Neuronales
  - Cost & Loss Function
  - Gradient Descent
- Intro Natural Language Processing
  - Tokenization
  - Vectorization
- Workflow
- Intro a Python, Numpy y Pandas
- Entrenar una NN

## Redes Neuronales - Arquitectura



## **Redes Neuronales - Conceptos**

- Parameters: Los aprende el modelo
- Hyperparameters:
  - Lo que podemos ajustar. Ej: #unidades #capas, learning rate
- Loss Function:
  - Aplicada a un solo ejemplo del training set
- Cost Function:
  - Aplicada al training set completo
  - Efectividad de los parámetros aprendidos sobre training set
- Features: El input que usamos para alimentar el modelo

## Visualizando una predicción



# **Loss Function: Categorical Cross Entropy**

$$L(y, \hat{y}) = -\sum_{i}^{C} y \log(\hat{y})$$

$$L(y,y^{\wedge}) = -1^{*}\log(0.1) = 2.302$$

$$L(y,y^{\wedge}) = -1^{*}\log(0.9) = 0.105$$

### **Cost Function**

$$L(y, \hat{y}) = -\sum_{i=1}^{C} y \log(\hat{y})$$

Para 1 dato de entrenamiento

Para todos los datos de

$$J(\theta) = \frac{1}{m} \sum_{i}^{m} L(y_{i}, \hat{y}_{i})$$

### **Softmax Activation**

Softmax: Squashes a vector in the range of (0,1) and sum(vector) = 1

$$f(s)_i = \frac{e^{s_i}}{\sum\limits_{j}^{C} e^{s_j}}$$

$$0.01 \text{ Class 1}$$

$$0.14 \text{ Class 2}$$

$$0.85 \text{ Class 3}$$

Output layer Multi-class classification





#### **Gradient Descent**



# Split de Datasets



## Agenda

- Intro / Problema
- Conceptos generales
  - Al vs ML vs DL
  - ¿Por que Deep Learning?
  - Tipos de algoritmos
- Redes Neuronales
  - Cost & Loss Function
  - Gradient Descent
- Intro Natural Language Processing
  - Tokenization
  - Vectorization
- Workflow
- Intro a Python, Numpy y Pandas
- Entrenar una NN

## **Preparar los datos**





#### **Tokenization**

"Oferta!!! Cómoda 4 Cajones Blanco Miel Dormitorios."

- ¿Que es el texto?
  - Secuencia de caracteres
  - Secuencia de palabras
  - Secuencia de frases
  - Secuencia de oraciones
  - Secuencia de párrafos

#### **Tokenization**

"Oferta!!! Cómoda 4 Cajones Blanco Miel Dormitorios."



oferta comoda 4 cajones blanco miel dormitorios





### **Token normalization**

- Stemming
  - eliminar sufijos de las palabras para retornar una nueva forma de la palabra (stem).
  - o ej: perros, perras, perritos -> perr
- Lemmatization
  - usando un vocabulario retornar el significado de diccionario de la palabra (lemma).
  - o ej: peces -> pez



#### **Vectorization**

#### **Bag of Words**

Vocabulario →

| Oferta! Celular apple iphone 8 64gb + |
|---------------------------------------|
| funda apple de regalo                 |

Funda para samsung galaxy oferta

Tablet apple ipad con funda

|     | apple | funda | samsung |      | celular |     |
|-----|-------|-------|---------|------|---------|-----|
|     | 2     | 1     | 0       |      | 1       | ••• |
| ••• | 0     | 1     | 1       | •••• | 0       | ••• |
|     | 1     | 1     | 0       |      | 0       |     |



N-grams

Problema: Vocabulario muy extenso (muchas features)

| celular apple iphone 8      |  |
|-----------------------------|--|
|                             |  |
| funda samsung galaxy oferta |  |
|                             |  |
| tablet apple ipad con funda |  |
|                             |  |

| Celular<br>apple | apple | Apple iphone | <br>funda |
|------------------|-------|--------------|-----------|
| 1                | 1     | 1            | <br>0     |
| 0                | 0     | 0            | <br>1     |
| 0                | 1     | 0            | <br>1     |

### **Vectorization**

- **TF-IDF**: Term frequency Inverse Document Frequency
- TF: cantidad de ocurrencias del término t en el documento d
- IDF: importancia del término **t** en el corpus (todos los documentos)

Ejemplo: "Vendo iphone de primera de 64gb de color negro"

TF-IDF("iphone") = TF("iphone") \* IDF("iphone") = (1/9) \* (número grande) TF-IDF("de") = TF("de") \* IDF("de") = (3/9) \* (número pequeño)

$$\operatorname{idf}(t,D) = \log rac{N}{|\{d \in D: t \in d\}|}$$

## Agenda

- Intro / Problema
- Conceptos generales
  - Al vs ML vs DL
  - ¿Por que Deep Learning?
  - Tipos de algoritmos
- Redes Neuronales
  - Cost & Loss Function
  - Gradient Descent
- Intro Natural Language Processing
  - Tokenization
  - Vectorization
- Workflow
- Intro a Python, Numpy y Pandas
- Entrenar una NN

### **Workflow**



https://developers.google.com/machine-learning/guides/text-classification/

## Agenda

- Intro / Problema
- Conceptos generales
  - Al vs ML vs DL
  - ¿Por que Deep Learning?
  - Tipos de algoritmos
- Redes Neuronales
  - Cost & Loss Function
  - Gradient Descent
- Intro Natural Language Processing
  - Tokenization
  - Vectorization
- Workflow
- Intro a Python, Numpy y Pandas
- Entrenar una NN



Repositorio en Github:

http://bit.ly/workshop-categorizacion-productos

#### Notebooks:

- 1. Intro Python, Numpy, Pandas
- 2. Train a NN for Products Categorization
  - a. Gather & Explore Data (solución)
  - b. Prepare the data for training (solución)
  - Build, train & evaluate model (<u>solución</u>)

## Próximos pasos

#### #MeLiDataChallenge!!!

- Workshop de fast.ai con baseline (incluye grabación y notebooks)
- <u>Inscribirse</u> y participar para ganar entradas para <u>Khipu</u>!!

#### Toda la info en:

https://ml-challenge.mercadolibre.com/

# Muchas gracias

