Universidade Federal de Viçosa Departamento de Matemática

MAT 141 (Turma 1) – Cálculo Diferencial e Integral I – 2017/II 1^a Lista de Limite e Continuidade

1) Para a função g, cujo gráfico é apresentado abaixo, encontrar os seguintes limites ou explicar porque não existe.

2) Suponha que
$$\lim_{x\to 0} f(x) = 1$$
 e $\lim_{x\to 0} g(x) = -5$. Calcule:

$$\lim_{x \to 0} \frac{2f(x) - g(x)}{(f(x) + 7)_3^{\frac{2}{3}}}.$$

3) Calcule os limites:

(a)
$$\lim_{s \to 4} \frac{3s^2 - 8s - 16}{2s^2 - 9s + 4}$$

(b)
$$\lim_{y \to -2} \frac{y^3 + 8}{y + 2}$$

c)
$$\lim_{x \to 1} \frac{\sqrt{x-1}}{x-1}$$

(d)
$$\lim_{h \to 0} \frac{\sqrt[3]{h+1} - 1}{h}$$

(e)
$$\lim_{x \to 2} \frac{x^4 - 16}{8 - x^2}$$

f)
$$\lim_{x \to 3} \frac{\sqrt{1+x}-2}{x-3}$$

g)
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
h) $\lim_{x\to 0} \frac{\sqrt{2x+1} - 3}{x}$

h)
$$\lim_{x \to 4} \frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}$$
,

4) Seja
$$f$$
 definida por $f(t) = \begin{cases} t+4, & \text{se} & t \leq -4, \\ 4-t, & \text{se} & t > -4. \end{cases}$.

Faça o esboço do gráfico de f e calcule $\lim_{t \to -4^+} f(t)$, $\lim_{t \to -4^-} f(t)$, $\lim_{t \to -4} f(t)$. Se o limite não existir, justifique.

- 5) Dada a função f, definida por $f(x) = \frac{|x|}{x}$ para todo $x \in \mathbb{R}^*$, calcule $\lim_{x \to 0^+} f(x)$ e $\lim_{x \to 0^-} f(x)$. O limite $\lim_{x \to 0} f(x)$ existe? Justifique.
- 6) Calcule os limites laterais no ponto que não pertence ao domínio de f definida por f(x)

7) Determine o valor da constante
$$a$$
 para que exista $\lim_{x \to -1} f(x)$, em que $f(x) = \begin{cases} 3x - 2, & \text{se} & x > -1 \\ 3, & \text{se} & x = -1 \\ 5 - ax, & \text{se} & x < -1 \end{cases}$

8) Resolva os seguintes limites laterais.

a)
$$\lim_{x \to 0^+} \frac{2x+1}{x}$$

d)
$$\lim_{x \to 3^+} \frac{x^2 - 3x}{x^2 - 6x + 9}$$

g)
$$\lim_{x \to 0^-} \frac{\sqrt{3}}{x}$$

b)
$$\lim_{x \to 0^-} \frac{x-3}{x^2}$$

c)
$$\lim_{r \to 0^-} \frac{3}{r^2 - r}$$

e)
$$\lim_{x \to 0^+} \frac{2x+1}{x^2+x}$$

f)
$$\lim_{x \to 1+} \frac{3x-5}{x^2+3x-4}$$

h)
$$\lim_{x \to 3^+} \frac{\sqrt{x^2 - 9}}{x - 3}$$

i)
$$\lim_{x \to 0^+} \frac{1}{x} - \frac{1}{x^2}$$

j)
$$\lim_{x \to 0^{-}} \frac{2 - 4x^3}{5x^2 + 3x^3}$$

k)
$$\lim_{x \to -4^-} \frac{2}{x^2 + 3x - 4} - \frac{3}{x + 4}$$

9) Sejam x e y números reais quaisquer.

- a) Mostre que $|x+y| \le |x| + |y|$.
- b) Use o item anterior para mostrar que $|x| |y| \le |x y|$
- c) Use o item anterior para mostrar que $||x| |y|| \le |x y|$

(10) Suponha que $\lim_{x\to a} g(x) = M$. Mostre que:

- (a) $\lim_{x \to a} |g(x)| = |M|$
- b) Se $M \neq 0$, $\exists \delta > 0$ tal que |g(x)| > |M|/2
- (c) Se $M \neq 0$, então $\lim_{x \to a} 1/g(x) = 1/M$

(11) a) Mostre que se
$$|x-3| < \frac{1}{2}$$
, então $\frac{1}{|x-2|} < 2$

b) Usando o item (11a), mostre por definição de limite que $\lim_{x\to 3} \frac{1}{x-2} = 1$.

(12) a) Mostre que se
$$|x+1| < 1$$
, então $|x-3| < 5$

b) Usando o item (12a), mostre por definição de limite que
$$\lim_{x\to -1} x^2 - 2x + 3 = 6$$
.

13) Resolva os seguintes limites no infinito.

a)
$$\lim_{x \to -\infty} \left[5 + \frac{1}{x} + \frac{3}{x^2} \right]$$

e)
$$\lim_{x \to -\infty} \frac{2x^3 + 1}{x^4 + 2x + 3}$$

i)
$$\lim_{x \to +\infty} [x - \sqrt{x^2 + 1}]$$

b)
$$\lim_{x \to +\infty} \left[2 - \frac{1}{x}\right]$$

f)
$$\lim_{x \to -\infty} \sqrt[3]{\frac{x}{x^2 + 3}}$$

$$j) \lim_{x \to +\infty} [\sqrt{x+1} - \sqrt{x+3}]$$

c)
$$\lim_{x \to -\infty} \frac{2x+1}{x+3}$$

g)
$$\lim_{x \to +\infty} \frac{\sqrt[3]{x^3 + 2x - 1}}{\sqrt{x^2 + x + 1}}$$

k)
$$\lim_{x \to +\infty} (5 - 4x + x^2 - x^5)$$

d)
$$\lim_{x \to +\infty} \frac{5x^4 - 2x + 1}{4x^4 + 3x + 2}$$

h)
$$\lim_{x \to +\infty} \frac{\sqrt{x} + \sqrt[3]{x}}{x^2 + 3}$$

1)
$$\lim_{x \to +\infty} (x^3 - 2x + 3)$$

14) Ache todas a(s) assíntota(s) vertical(is) e horizontal(is) das funções abaixo.

a)
$$f(x) = \frac{2x+1}{x-3}$$

b)
$$f(x) = 1 - \frac{1}{x}$$

c)
$$f(x) = \frac{2}{\sqrt{x^2 - 4}}$$

15) Calcule os seguintes limites (use o Primeiro limite fundamental):

a)
$$\lim_{x \to 0} \frac{\sin 3x}{\sin 5x}$$

c)
$$\lim_{x \to 0} \frac{1 - \cos x}{\sin x}$$

e)
$$\lim_{y\to 0} \frac{3y}{\text{sen } 5y}$$

b)
$$\lim_{t \to 0} \frac{1 - \cos t}{t}$$

$$d) \lim_{x \to 0} \frac{2 \operatorname{tg}^2 x}{x^2}$$

16) Calcule os seguintes limites (Use o Segundo Limite Fundamental)

a)
$$\lim_{x \to +\infty} \left(1 + \frac{3}{x}\right)^x$$

b)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x+3}\right)^x$$

$$c) \lim_{x \to 0} \frac{3^x - 1}{x}$$

- 17) Verificar se a função f definida por $f(x) = \begin{cases} \frac{x^2 4}{x + 2}, & \text{se } x \neq -2, \\ 4, & \text{se } x = -2. \end{cases}$ é contínua em x = -2.
- 18) Seja a função real f definida por $f(x) = \begin{cases} x^2, \text{ se } x < 1, \\ 4 3x, \text{ se } x \ge 1 \end{cases}$.
 - a) Esboce o gráfico de f.
 - b) Calcule $\lim_{x \to 1} f(x)$.
 - c) Calcule $\lim_{x\to 2} f(x)$.
 - d) Mostre que f é contínua.
 - e) Calcule $\lim_{h\to 0} \frac{f(1+h)-f(1)}{h}$.
 - f) Calcule $\lim_{h\to 0} \frac{f(2+h)-f(2)}{h}$.
 - g) Determine um intervalo [a,b] em que é garantido pelo TVI que f tem pelo menos uma raiz real. Justifique.
- 19) Determine os intervalos em que f é contínua.

a)
$$f(x) = \frac{x+1}{x^2 - 4x + 3}$$

c)
$$f(x) = \sqrt{2x+4}$$

b)
$$f(x) = 1 - \operatorname{cossec}(x)$$

d)
$$f(x) = \sinh x$$

20) Exiba o gráfico de uma função f definida no intervalo [-3,5] tal que:

i)
$$\lim_{x \to 3^+} f(x) = 2$$
.
ii) $\lim_{x \to 5^-} f(x) = 4$.

iii)
$$f$$
 é descontínua em $x = 3$.

v)
$$f(-2) = 1$$

ii)
$$\lim_{x \to 5^{-}} f(x) = 4$$
.

iv)
$$\lim_{x \to -1} f(x) = \infty$$
.

vi)
$$\exists \lim_{x \to 1} f(x)$$

- 21) Mostre que não existe $\lim_{x\to 0} \text{sen}(1/x)$. Dica: tome $x = \frac{2}{(2n+1)\pi}$.
- Use o teorema do confronto para determinar os limites.

(a)
$$\lim_{x \to \infty} \frac{\sin x}{x^2}$$

(b)
$$\lim_{x\to 0} x^4 \cos(\frac{2}{x})$$

23) Sabendo-se que $\lim_{x\to 0} \frac{a^x-1}{x} = \ln a$, $0 < a \neq 1$ (Limite Fundamental Logarítmico), calcule os limites:

a)
$$\lim_{x \to 0} \frac{e^x - 1}{2x}$$

c)
$$\lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

d)
$$\lim_{x \to 2} \frac{5^x - 25}{x - 2}$$

b)
$$\lim_{x \to 0} \frac{e^x - 1}{\sin x}$$

d)
$$\lim_{x \to 2} \frac{5^x - 25}{x - 2}$$

- 24) Seja a função real f definida por $f(x) = x^3 4x + 2$. Encontre uma aproximação x_n para uma raiz a de f no intervalo [0,1] tal que $|f(x_n)| < 0,1$. Dica: divida o intervalo [0,1] e calcule $f(a_1)$, em que $a_1 = \frac{a+b}{2}$. Verifique se $f(a_1).f(b) < 0$ ou $f(a_1).f(a) < 0$. Escolha o novo intervalo que satisfaça as condições do TVI. Repita o procedimento até que $|f(x_n)| < 0, 1$).
- 25) Sejam $f \in g$ lineares tais que (a,0) pertence aos gráficos de $f \in (0,3)$ pertence ao gráfico de $f \in (0,6)$ ao gráfico de g. Determine $\lim_{x\to a} \frac{f(x)}{g(x)}$

$$f(x) = \begin{cases} x^2 & x \text{ \'e racional e } x \neq 0 \\ -x^2 & x \text{ \'e irracional} \end{cases}$$

Então pode-se afirmar que:

- (a) Não existe a tal que $\lim_{x\to a} f(x)$ existe.
- (b) Talvez exista a tal que $\lim_{x\to a} f(x)$ existe, mas é impossível dizer qual o valor de a sem mais informações.
- (c) $\lim_{x \to a} f(x)$ existe somente se a = 0.
- (d) $\lim_{x\to a} f(x)$ existe para infinitos valores de a.

27) Verifique se as afirmações são verdadeiras ou falsas. Se verdadeira, prove. Se falsa, exiba um contra-exemplo.

- a) Se $g(x) \le f(x) \le h(x)$ quando x está próximo de a (exceto possivelmente em a) e $\lim_{x \to a} g(x) = L \ne M = \lim_{x \to a} h(x)$, então $\lim_{x\to a} f(x)$ existe.
- b) Se f é uma função qualquer e $\lim_{x\to a}g(x)=0$, então $\lim_{x\to a}g(x)f(x)=0$.
- c) Se fé uma função qualquer e $\lim_{x\to a}g(x)=0,$ então $\lim_{x\to a}g(x)f(x)$ existe.
- d) Se f é uma função limitada em torno de a e $\lim_{x\to a}g(x)$ existe, então $\lim_{x\to a}g(x)f(x)$ existe.

28) Verifique se as afirmações são verdadeiras ou falsas e justifique sua resposta.

- a) Como a medida que x se aproxima de 100, f(x) = 1/x se aproxima de 0, então o limite de f(x) quando x tende a 100 é 0.
- b) $\lim_{x\to a} f(x) = L$ significa que se x_1 está mais perto de a que x_2 , então $f(x_1)$ estará mais próximo de L que $f(x_2)$.
- c) Suponha que você quer saber se $\lim_{x\to 0} f(x)$. Para isso, você mostrar que f(x)=0 para $x=0.1,0.01,0.001,\ldots$ De fato, você consegue mostrar que para todo $n=1,2,\ldots,$ $f(\frac{1}{10^n})=0$. Então conclui que $\lim_{x\to 0} f(x)$.

29) Mostre por definição que:

(a)
$$\lim_{x\to 0} \frac{x-1}{x+1} = -1$$

(b)
$$\lim_{x \to 4} x^2 + x - 11 = 9$$
.
(c) $\lim_{x \to 9} \sqrt{x} = 3$.

(c)
$$\lim_{x \to 0} \sqrt{x} = 3$$

(d)
$$\lim_{x \to 1} \frac{x}{(1-x)^2} = +\infty.$$

(e)
$$\lim_{x \to +\infty} \frac{x}{1-x} = -1$$

30) Calcule:

(a)
$$\lim_{x \to +\infty} (\sqrt{x^2 + x} - \sqrt{x^2 + 9})$$

(b)
$$\lim_{x \to -\infty} x(\sqrt{x^2 + 1} - x)$$

(c)
$$\lim_{x \to \pm \infty} \frac{3x + |x|}{7x - 5|x|}$$

(d)
$$\lim_{x \to 1^+} \frac{2x^2 - 5x - 3}{x - 1}$$

(e)
$$\lim_{x \to 4} \frac{|16 - x^2| + 1}{(4 - x)\sqrt{5 - |x - 1|}}$$

(f)
$$\lim_{x \to \pi} \frac{1 - \operatorname{sen}(\frac{x}{2})}{\pi - x}$$

(f)
$$\lim_{x \to \pi} \frac{1 - \operatorname{sen}\left(\frac{x}{2}\right)}{\pi - x}$$
(g)
$$\lim_{x \to 0} \frac{\sqrt{1 + \operatorname{sen}\left(x\right)} - \sqrt{1 - \operatorname{sen}\left(x\right)}}{x}$$
(h) Calcule
$$\lim_{x \to \infty} \left(\frac{x + 4}{x - 1}\right)^{x + 4}$$
(i) Calcule
$$\lim_{x \to 0^{+}} \frac{\operatorname{sen} x}{x^{3} - x^{2}}$$

(h) Calcule
$$\lim_{x \to \infty} \left(\frac{x+4}{x-1}\right)^{x+4}$$

(i) Calcule
$$\lim_{x\to 0^+} \frac{\text{sen } x}{x^3-x^2}$$

(j) Calcule
$$\lim_{x \to +\infty} \frac{5^x}{3^x + 2^x}$$

(k)
$$\lim_{x\to 0^-} \frac{x\mathrm{sen}(x)}{1-\cos(x)}$$

(o)
$$\lim_{x \to 0} \frac{x^2 \operatorname{tg}(x)}{x^2 + 1}$$

(1)
$$\lim_{x \to 1^+} \frac{x^2 - 5x + 4}{|x - 1|}$$

(p)
$$\lim_{x \to +\infty} \frac{\cos^2(2x)}{3 - 2x}$$

(m)
$$\lim_{x \to 0} \frac{\operatorname{tg}(x)}{x}$$

$$(p) \lim_{x \to +\infty} \frac{\cos(2x)}{3 - 2x}$$

(n)
$$\lim_{x \to 1^+} \frac{x-1}{\sqrt{2x-x^2}-1}$$

(q)
$$\lim_{x \to +\infty} \arcsin\left(\frac{2x}{1+4x}\right)$$

31) Determine as assíntotas ao gráfico das funções definidas por:

(a)
$$\frac{x^2+3}{\sqrt{x^2+1}}$$

(b)
$$\frac{x^2 + 3x - 1}{x + 1}$$

(c)
$$\frac{2x^2-x+3}{x^2-1}$$

32) Determine as constantes $a \in b \in \mathbb{R}$ para que as funções a seguir sejam contínuas em \mathbb{R} .

(a)
$$f(x) = \begin{cases} x \operatorname{sen}(\frac{1}{x}), & x \\ a, & x = 0 \end{cases}$$

(a)
$$f(x) = \begin{cases} x \operatorname{sen}(\frac{1}{x}), & x \neq 0 \\ a, & x = 0 \end{cases}$$
 (b) $f(x) = \begin{cases} -2\operatorname{sen}(x), & x \leq -\frac{\pi}{2} \\ a\operatorname{sen}(x) + b, & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \cos(x), & x \geq \frac{\pi}{2} \end{cases}$

33) Mostre que $f(x) = x^3 - 4x + 2$ admite três raízes reais distintas.

34) Determine um intervalo de comprimento 1 que possua pelo menos uma raiz da função h definida por $h(x) = 1 + x \cos\left(\frac{\pi x}{2}\right).$

35) Considere a função $f(x) = x^7 - 5x^4 + 1$. Existe algum ponto x_0 no intervalo [-1,0] tal que $f(x_0) = -2$? E no intervalo [0,1]?

36) Mostre que
$$\lim_{x \to +\infty} \sqrt{x + \sqrt{x}} - \sqrt{x - \sqrt{x}} = 1$$
.

37) Mostre que dado $a \in \mathbb{R}$, $\lim_{h \to 0} \frac{\operatorname{sen}(a+h) - \operatorname{sen}(a)}{h} = \cos(a)$.

Resposta de alguns exercícios

1) a) Não existe

b) 1

c) 0

2) $\frac{7}{4}$

3) a) $\frac{16}{7}$ b) 12 c) $\frac{1}{2}$ d) $\frac{1}{3}$ e) 8 f) $\frac{1}{4}$ g) 1 h) $\frac{2}{3}\sqrt{2}$

4) $\lim_{t \to -4^+} f(t) = 8$, $\lim_{t \to -4^-} f(t) = 0$, O limite não existe, pois $\lim_{t \to -4^+} f(t) \neq \lim_{t \to -4^-} f(t)$.

5) $\lim_{x\to 0^+} f(x) = 1$ e $\lim_{x\to 0^-} f(x) = -1$. Não existe $\lim_{x\to 0} f(x)$

6) $\lim_{x\to 2/3^+}f(x)=-1$ e $\lim_{x\to 2/3^-}f(x)=1.$ Não existe $\lim_{x\to 2/3}f(x)$

7) a = -10

 $k) +\infty$

8) a) $+\infty$ c) $+\infty$ e) $+\infty$ g) $-\infty$ i) $-\infty$ b) $-\infty$ d) $+\infty$ f) $-\infty$ h) $+\infty$ j) $+\infty$

b) 2 d) $\frac{5}{4}$ f) 0 h) 0 j) 0 l) $+\infty$

14) a) y = 2, x = 3

b) y = 1, x = 0

c) y = 0, x = -2, x = 2

15) a) $\frac{3}{5}$

b) 0

c) 0

d) 2

16) a) e^3

b) *e*

c) ln 3

17) Não pois $\lim_{x\to -2} f(x) \neq f(-2)$

b) 1

c) 2

d) (i) Se x < 1, $f(x) = x^2$, então $\forall a < 1 \lim_{x \to a} f(x) = \lim_{x \to a} x^2 = a^2 = f(a)$. (ii) Se x > 1, f(x) = 3x = 4 Logo, se a > 1, $\lim_{x \to a} f(x) = \lim_{x \to a} 3x - 4 = 3a - 4 = f(a)$. (iii) Pelo item (a), f é contínua em x = 1. Logo, por (i)–(iii), f é contínua em \mathbb{R} .

e) não existe

f) -3

19) a) $\mathbb{R} - \{1, 3\}$

b) $\{x \in \mathbb{R} | x \neq k\pi, k \in \mathbb{Z}\}$ c) $[2, \infty)$

d) R

a) 0

b) 0

23) a) 1/2

b) 1

c) e^x

d) $25 \ln(5)$

24) Aplicando-se sucessivamente o TVI no intervalo [c, d], em que c ou d é atualizado em cada passo do algoritmo, obtém-se em particular, a = 17/32 com f(a) < 0, 1.

30) (a) $\frac{1}{2}$

(d) $-\infty$

(g) 1

 $(j) +\infty$

(m) 1

(o) 0 (p) 0

(b) $-\infty$ (c) $2 e^{\frac{1}{6}}$ (e) ∄

(f) 0

(h) e^5 (i) $-\infty$

(k) 2

(l) -3

(n) $-\infty$

(q) $\pi/6$

31) (a) y = -x, y = x

(b) x = -1, y = x + 2

(c) $x = \pm 1$, y = 2

32) (a) a = 0

(b) a = -1, b = 1